Have you ever wondered what
happens after you press F57

CH

Deconstructed

Mohammad Rahman

ApPIess®

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUthOrccmimmimmr e ——————————————— Xi
About the Technical ReVIEWETcsveessrssssssssssssssssmssssssssmssssssssssssssssssssssssssssssssnsnssnsnsnsansas xiii
Chapter 1: Introduction to Programming LanguUage........ccceurrmsssnnnssssssssnssssssssnsssssssssssssssnns 1
Chapter 2: The Virtual Machine and CLR..........cccccunemmmmnnssmmmmmsssssnmmsssssssmsssssssssssssssssnsnans 25
Chapter 3: ASSEMDBIYccuieemmmmmsssnsmmmsssssmmmmssnsnmmmsssssnmmsssssnmmsssnsnmmssasnmessass . 39
Chapter 4: CLR Memory Modelccccuuiummmmmmssssssmmmmmmmmssssssssssmssssssssssssssssssssssssssssssssssnnss 61
Chapter 5: CLR Memory Model ll...........cccciuninmmmmmmmsssnnmmmmssssmmmmssssnmmssssssmsssssssssssssssssenans 87
Chapter 6: CLR Execution Model..........cccusmmmnssmmmmsssnsssssnsssssssssssssssssnsssssssesssssesssnsessnnness 111
Chapter 7: CLR Execution Model Ilccounmmmmmmmmmmmmmmmmssssssmmmmmmmmmssssssssssssssnssssssssssns 131
11 - . 153

CHAPTER 1

Introduction to
Programming Language

The basic operational design of a computer system is called its architecture. John von Neumann, a pioneer in
computer design, is credited with the architecture of most computers in use today. A typical von Neumann system has
three major components: the central processing unit (CPU), or microprocessor; physical memory; and input/output
(I/0). In von Neumann architecture (VNA) machines, such as the 80x86 family, the CPU is where all the computations
of any applications take place. An application is simply a combination of machine instructions and data. To be
executed by the CPU, an application needs to reside in physical memory. Typically, the application program is written
using a mechanism called programming language. To understand how any given programming language works, it is
important to know how it interacts with the operating system (OS), software that manages the underlying hardware
and that provides services to the application, as well as how the CPU executes applications. In this chapter, you will
learn the basic architecture of the CPU (microcode, instruction set) and how it executes instructions, fetching them
from memory. You will then learn how memory works, how the OS manages the CPU and memory, and how the OS
offers a layer of abstraction to a programming language. Finally, the sections on language evaluation will give you a
high-level overview of how C# and common language runtime (CLR) evolved and the reason they are needed.

Overview of the CPU

The basic function of the CPU is to fetch, decode, and execute instructions held in read-only memory (ROM) or
random access memory (RAM), or physical memory. To accomplish this, the CPU must fetch data from an external
memory source and transfer them to its own internal memory, each addressable component of which is called
aregister. The CPU must also be able to distinguish between instructions and operands, the read/write memory
locations containing the data to be operated on. These may be byte-addressable locations in ROM, RAM, or the
CPU'’s own registers.

In addition, the CPU performs additional tasks, such as responding to external events for example resets and
interrupts, and provides memory management facilities to the OS. Let’s consider the fundamental components of a
basic CPU. Typically, a CPU must perform the following activities:

e Provide temporary storage for addresses and data
e Perform arithmetic and logic operations

e Control and schedule all operations

CHAPTER 1~ INTRODUCTION TO PROGRAMMING LANGUAGE

Figure 1-1 illustrates a typical CPU architecture.

2N3ND uoNASY|

K
Expansion slots

\.,,..,__ Translate/Decode .~

- Mouse
| USB Controller i Keyboard
- Eb- Other USB devices:
Graphics e
= adapter b Dty
p— - ——
> sl Disk Controller >

Reservation Station (RS)

== |/0bus
!

Figure 1-1. Computer organization and CPU

Registers have a variety of purposes, such as holding the addresses of instructions and data, storing the result of
an operation, signaling the result of a logic operation, and indicating the status of the program or the CPU itself. Some
registers may be accessible to programmers, whereas others are reserved for use by the CPU. Registers store binary
values (1s and 0s) as electrical voltages, such as 5 volts or less.

Registers consist of several integrated transistors, which are configured as flip-flop circuits, each of which can be
switched to a 1 or 0 state. Registers remain in that state until changed by the CPU or until the processor loses power.
Each register has a specific name and address. Some are dedicated to specific tasks, but the majority are general
purpose. The width of a register depends on the type of CPU (16 bit, 32 bit, 64 bit, and so on).

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

REGISTERS

e General purpose registers: Registers (eight in this category) for storing operands and pointers
e FAX Accumulator for operands and results data
e EBX: Pointer to data in the data segment (DS)
e ECX: Counter for string and loop operations
e EDX:1/0 pointer

e ESI Pointer to data in the segment pointed to by the DS register; source pointer for string
operations

e EDI Pointer to data (or destination) in the segment pointed to by the ES register; destination
pointer for string operations

e ESP: Stack pointer (in the SS segment)
e EBP: Pointer to data on the stack (in the SS segment)
e Segment registers: Hold up to six segment selectors.

e EFLAGS (program status and control) register: Reports on the status of the program being
executed and allows limited (application-program level) control of the processor

e FEIP (instruction pointer) register: Contains a 32-bit pointer to the next instruction to be
executed

The segment registers (CS, DS, SS, ES, FS, GS) hold 16-bit segment selectors. A segment selector is a special
pointer that identifies a segment in memory. To access a particular segment in memory, the segment selector for that
segment must be present in the appropriate segment register. Each of the segment registers is associated with one
of three types of storage: code, data, or stack. For example, the CS register contains the segment selector for the code
segment, where the instructions being executed are stored.

The DS, ES, FS, and GS registers point to four data segments. The availability of four data segments permits
efficient and secure access to different types of data structures. For instance, four separate data segments may be
created—one for the data structures of the current module, another for the data exported from a higher-level module,
a third for a dynamically created data structure and a fourth for data shared with another program.

The SS register contains the segment selector for the stack segment, where the procedure stack is stored for the
program, task, or handler currently being executed. All stack operations use the SS register to find the stack segment.
Unlike the CS register, the SS register can be loaded explicitly, which permits application programs to set up multiple
stacks and switch among them.

The CPU will use these registers while executing any program, and the OS maintains the state of the registers
while executing multiple applications by the CPU.

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

Instruction Set Architecture of a CPU

The CPU is capable of executing a set of commands known as machine instructions, such as Mov, Push, and Jmp. Each
of these instructions accomplishes a small task, and a combination of these instructions constitutes an application
program. During the evolution of computer design, stored-program technique has brought huge advantages. With
this design, the numeric equivalent of a program’s machine instructions is stored in the main memory. During the
execution of this stored program, the CPU fetches the machine instructions from the main memory one at a time and
maintains each fetched instruction’s location in the instruction pointer (IP) register. In this way, the next instruction
to execute can be fetched when the current instruction finishes its execution.

The control unit (CU) of the CPU is responsible for implementing this functionality. The CU uses the
current address from the IP, fetches the instruction’s operation code (opcode) from memory, and places it in the
instruction-decoding register for execution. After executing the instruction, the CU increments the value of the IP
register and fetches the next instruction from memory for execution. This process repeats until the CU reaches the
end of the program that is running.

In brief, the CPU follows these steps to execute CPU instruction:

e Fetch the instruction byte from memory

e Update the IP register, to point to the next byte

e Decode the instruction

e Fetch a 16-bit instruction operand from memory;, if required
e Update the IP to point beyond the operand, if required

e Compute the address of the operand, if required

e Fetch the operand

e Store the fetched value in the destination register

The goal of the CPU’s designer is to assign an appropriate number of bits to the opcode’s instruction field and
to its operand fields. Choosing more bits for the instruction field lets the opcode encode more instructions, just
as choosing more bits for the operand fields lets the opcode specify a greater number of operands (often memory
locations or registers). As you saw earlier, the IP fetches the memory contents, such as 55, and 8bec; all these represent
an instruction for the CPU to understand and execute.

However, some instructions have only one operand, and others do not have any. Rather than waste the bits
associated with these operand fields for instructions that do not have the maximum number of operands, CPU
designers often reuse these fields to encode additional opcodes, once again with additional circuitry.

The instruction set used by any application is abstracted from the actual hardware implementation of that
machine. This abstraction layer, which sits between the OS and the CPU, is known as instruction set architecture
(ISA). The ISA provides a standardized way of exposing the features of a system’s hardware. Programs written using
the instructions available for an ISA could run on any machine that implemented that ISA. The gray layer in Figure 1-2
represents the ISA.

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

Instruction Set Architecture and
Operating System

Operating System

Figure 1-2. ISA and OS

The availability of the conceptual abstraction layer the ISA is possible because of a chip called the microcode
engine. This chip is like a virtual CPU that presents itself as a CPU within a CPU. To hold the microcode programs, the
microcode engine has a small amount of storage, the microcode ROM, which contains an execution unit that executes
the programs. The task of each microcode program is to translate a particular instruction into a series of commands
that controls the internal parts of the chip.

Any program or process executed by the CPU is simply a set of CPU-understandable instructions stored in the
main memory. The CPU executes these instructions by fetching them from the memory until it reaches the end of the
program. Therefore, it is crucial to store the program instructions somewhere in the main memory. This underlines
the importance of understanding memory, especially how it works and manages. You will learn in depth about
memory management in Chapter 4. First, however, you will briefly look at how memory works.

Memory: Where the CPU Stores Temporary Information

The main memory is a temporary storage device that holds both a program and data. Physically, main memory
consists of a collection of dynamic random access memory (DRAM) chips. Logically, memory is organized as a linear
array of bytes, each with its own unique address starting at 0 (array index).

Figure 1-3 demonstrates the typical physical memory. Each cell of the physical memory has an associated
memory address. The CPU is connected to the main memory by an address bus, which passes a physical address
via the data bus to the memory controller to read or write the contents of the relevant memory cell. The read/write
operation is controlled by the control bus connecting the CPU and physical memory.

CHAPTER 1~ INTRODUCTION TO PROGRAMMING LANGUAGE

U ‘Physical Memory

00 DO

ERSIT=2RA

. om.
I'éa‘ S
A2 ARA

Translate/Decode

Reorder Buffer

I
Address bus

Vector ALUs
Floating-Point
Unit
Scalar ALUs

Memory Access
Unit

System bus

Reservation Station (RS)
Data bus

Figure 1-3. Memory communication

As a programmer, when you write an application program, you do not need to spend any time managing the CPU
and memory, unless your application is designed to do so. This raises the issue of another kind of abstraction, which
introduces the concept of the OS. The responsibility of the OS is to manage the underlying hardware and furnish
services that allow user applications to consume the hardware and functionality.

Concept of the 0S

The use of abstractions is an important concept in computer science. There is a body of software that is responsible
for making it easy to run programs, allowing them to share memory, interact with hardware, share the hardware
(especially the CPU) among different processes, and so on. This body of software is known as the operating system
(0S). The OS is in charge of making sure that the system operates correctly, efficiently, and easily.

A typical OS in fact exports a set of hundreds of system calls, called the application programming interface (API),
that are available to applications to consume. The API is intended to do a particular job, and as a consumer of the AP],
you do not need to know its inner details.

The OS is sometimes referred to as a resource manager. Each of the components of a computer system, such
as CPU, memory, and disk, is a resource of that system; it is thus the OS’s role to manage these resources, doing so
efficiently and fairly.

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

The secret behind this is to share the CPU'’s processing capability. Let’s say, for example, that a CPU can execute
a million instructions per second and that the CPU can be divided among a thousand different programs. Each of the
programs can be executed simultaneously during the period of 1 second and can continue its execution by sharing
the CPU’s processing power. The CPU'’s time is split into processes P1 to PN, with each process having one or more
execution blocks, known as threads. The CPU will execute the processes one by one, but in doing so, it gives the
impression that all the processes are executing at the same time. The processes thus result from a combination of the
user application program and the OS’s management capabilities. Figure 1-4 displays a hypothetical model of CPU
instruction execution.

Pr29 I@ | P33 :3? |

Figure 1-4. Hypothetical model of CPU instruction execution

Asyou can see, the CPU splits and executes multiple processes within a given period. To achieve this, the OS uses
a technique of saving and restoring the execution context called context switch. Context switch consists of a piece of
low-level code block used by the OS. The context switch code saves the current state of the execution of a process and
restores the execution state of the previously stored process when it schedules to execute. The switching between
processes is determined by another executive service of the OS, called the scheduler. As Figure 1-5 illustrates, when
process P1 is ready to resume its execution (as the scheduler schedules process P2 to restore and start its execution),
the OS saves the execution state of process P1.

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

State Maintain
on each context
switch

Time

v

_{ Process Maintain .'
data structure

Figure 1-5. Saving the context to switch between processes

To save the execution state of the currently running process, the OS will execute low-level assembly code to save
the general purpose registers, PC, as well as the kernel stack pointer for that particular process. When the OS resumes
previously stopped process, it will restore the previously stored execution state of the soon-to-be-executing process.

Concept of the Process

A process is the abstract concept implemented by the OS to split its work among several functional units. The OS
achieves this by allocating a region of memory for each functional unit while executing. These functional units

are defined by the processes. Processes contain resources; for example, the CLR has the garbage collector (GC),
code manager, and just-in-time (JIT) compiler. In Windows a process has its own private virtual address space (see
Chapter 4), which is allocated and managed by the OS. When a process is initialized by Windows, it creates a process
environment block (PEB), a data structure that maintains the process.

The OS does not execute processes. A process is a container for functional units; the functional unit of a process
is a thread, and it is the thread that is executed by the OS (technically, a thread is a data structure that serves as an
execution unit for the functional units defined by the process). A process can have have a single or multiple threads.
In the next section, you will explore more about how the thread works in the OS.

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

Concept of the Thread

A process can never be executed by the OS directly; it uses the thread, which serves as the execution unit for the
functional units defined by the process. The thread has its own address space, taken from the private address space
allocated for the process. A thread can only belong to a single process and can only use the resources of that process.
A thread includes

e AnIP that points to the instruction that is currently being executed

e Astack

A set of register values, defining a part of the state of the processor executing the thread
e Aprivate data region

When a process is created by the OS, it automatically allocates a main, or primary, thread. It is this thread that
executes the runtime host, which in turn loads the CLR.

What Is Virtualization?

I have already introduced several abstraction concepts used in computer systems, as indicated in Figure 1-6. On

the processor side the ISA offers an abstraction of the actual processor hardware. On the OS side there are three
abstractions: files as an abstraction of I/O, virtual memory as an abstraction of program memory, and processes as an
abstraction of a running program. These abstractions, provided by the CPU and OS, as well as the API facility of the
OS, bring us to the concept of programming language.

Guest Operating System Intermediate Language
A A A A A A A A
Virtual Machine Virtual Execution Environment
, :) TAPICall T APICall § APIGall |
Operating System i Operating System i i ; i
4 9°¥ v v A v
instriction Set " Virtual Memory N InstuctonSet % VirtwalMemoy
h Architecture \‘«‘_. qﬁles ’l ‘ ‘-\\ Architecture \ \\FI!S i
........ Processor Main memory 1/0 Devices - Processor Main memory 1/0 Devices

Figure 1-6. Layers of abstraction

In layperson’s terms, programming language is a mechanism by which you can use your computer’s resources to
perform various tasks. In the following sections, you will briefly look at the concept of programming language.

CHAPTER 1~ INTRODUCTION TO PROGRAMMING LANGUAGE

Programming Language

You have seen how the CPU’s instructions abstracted as the ISA. The ISA helps the programmer write the application
program without having to worry about the underlying hardware resources. This abstraction concept introduces a
programming language concept known as assembly language. Assembly programming language was introduced

to manipulate the CPU’s mnemonics programmatically by providing a one-to-one mapping between mnemonics
and machine language instructions. The way this mapping has been achieved is by using another piece of software,
called the assembler. The assembler is responsible for translating the mnemonics into CPU-understandable machine
language. Assembly language is tightly coupled with the relevant hardware.

An application written to target a particular platform requires rewriting when it targets a different platform. The
nature of this coupling caused programmers to seek out an improved version of programming language, compared
with assembly language. This need ushered in the era of high-level programming language, with the help of a
compiler. A compiler is software that is more capable and complex than assembler. The main task of a compiler is to
transform source code written using high-level language into low-level language, such as assembly or native code.

Compilation and Interpretation

A compiler is a program written using other, high-level language. A compiler is responsible for translating a high-level
source program into an equivalent target program, typically in assembly language. A typical compiler performs many
tasks, including lexical analysis, preprocessing, parsing, and semantics analysis of the source code. A compiler also
generates the target code from the source code and performs the code optimization. Lexical analysis is a process that
is used to convert a sequence of characters from the source code into a sequence of tokens. In the code generation
phase, the compiler compiles source code into the target language. For instance, when C# source code compiles,

it translates the source code into intermediate language (IL) code. Figure 1-7 illustrates the major elements of a
compiler program.

Traditional compilation model

Figure 1-7. Traditional compilation model

Birth of C# Language and JIT Compilation

As you have seen, a compiler compiles the source code into the target language, such as assembly language. There is
a one-to-one relationship between the source code and the target code the compiler generates as compiled output.
This one-to-one mapping raises the issue of interoperability, which in turn introduces the need for a mechanism
that can compile the source code into common intermediate language (CIL) so that later, during the execution time,
that intermediate code can be compiled into native code. This gives the flexibility of having multiple high-level
languages targeting one intermediate language. Furthermore, that one intermediate language can be compiled into
machine-understandable native code. A compiler that acts on this compilation process is known as a just-in-time
(JIT) compiler.

10

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

One such JIT compiler is that of the CLR. Any .NET language targeting the CLR, such as C#, VB.NET, Managed
C++, and F#, will be compiled into the IL. Figure 1-8 demonstrates how C# languages use the JIT compiler at runtime.

U U U

.. Decoded ..

foerees Decoded

—

Assembler

Compiled
Compiled

Assembler Assembler

L S—

ereennenes Compled

H
4

.t
-
i
-
.

Compiled
Compiled

emsmsssssssssssssssssssessssssesasans

(LR High Level Language
(C/C++)

L T T —

Figure 1-8. JIT compilation

11

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

Listing 1-1 shows a simple program that calculates the square of a given number and displays the squared
number as output.

Listing 1-1.

/* importing namespace */
using System;

/* namespace declaration */
namespace Ch_01
{
/* class declaration*/
class Program

/* method declaration */
static void Main(string[] args)
{
PowerGenerator pg = new PowerGenerator();
pg.ProcessPower();
} /* end of method declaration */
}/* end of class declaration */

public class PowerGenerator
{
/* constant declaration */
const int limit = 3;
const string
original = "Original number",
square = "Square number";

public void ProcessPower()
{
/* statement*/
Console.WriteLine("{0,16}{1,20}", original, square);
/* iteration statement*/
for (int i = 0; 1 <= limit; ++1i)

{
}

Console.Write("{0,10}{1,20}\n", i, Math.Pow(i, 2));

}

} /* end of namespace declaration */

A C# program consists of statements, and each of these statements executes sequentially. In Listing 1-1 the
Pow method, from the Math class, processes the square of a number, and the Write method, from the Console class,
displays the processed square number on the console as output. When Listing 1-1 is compiled using the C# compiler
csc.exe, and executes the executable, it will produce the output given here:

Original number Square number
0

o s RO

1
2
3

12

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

Listing 1-1 contains a class called a program inside the namespace Ch01. A namespace is used to organize classes,
and classes are used to organize a group of function members, which is called a method. A method is a block of
statement defined inside curly braces ({}), such as {statement list}, inside a class; for example:

static void Main(string[] args){...... }

The int literal 3 and the string literals "Original number" and "Square number" are used in the program to
define three variables. In Listing 1-1 the iteration statement for is used to iterate through the processing. A local
variable, i, is declared in the for loop as a loop variable. For more details on the compilation process of a C# program,
see the section “Road Map to the CLR”

The C# language definition defines a machine-independent intermediate form known as common intermediate
language (CIL), or IL code. IL code is the standard format for distribution of C# programs; it allows portable programs
to be used in any environment that supports the CLR. The main C# compiler produces the IL code, which is then
translated into machine code immediately prior to execution by the JIT compiler. CIL is deliberately language
independent, so it can be used for code produced by a variety of front-end compilers. The C# language is different
from traditional language (see Figure 1-8).

If you want to view the IL code, the front-end compiler generated for Listing 1-1 executes the following command
at the Visual Studio command prompt:

J:\Book\C# Deconstructed\SourceCode\Chapters\CH_01\bin\Debug\>ildasm CH_01.exe /output:File.IL

This will produce, following the IL code, the Intermediate Language Disassembler (ILDASM) tool disassembly of
the assembly.

/! Microsoft (R) .NET Framework IL Disassembler
Version 4.0.30319.1

// Copyright (c) Microsoft Corporation. All rights reserved.

// Metadata version: v4.0.30319
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 EO 89) // .z\V.4..
.ver 4:0:0:0
}
.assembly CH 01
{
/*removed*/
.hash algorithm 0x00008004
.ver 1:0:0:0
}
.module CH_01.exe
// MVID: {B7A4D69C-5024-418E-9BDF-310A26522865}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000003 // TILONLY 32BITREQUIRED
// Image base: 0x002E0000

13

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

.class private auto ansi beforefieldinit Ch_01.Program
extends [mscorlib]System.Object
{

.method private hidebysig static void Main(string[] args) cil managed

{
.entrypoint
// Code size 15 (oxf)
.maxstack 1
.locals init ([0] class Ch_01.PowerGenerator pg)
IL_0000: nop
IL 0001: newobj instance void Ch_01.PowerGenerator::.ctor()
IL 0006: stloc.o
IL_0007: 1ldloc.o
IL 0008: callvirt instance void Ch_01.PowerGenerator::ProcessPower()
IL_oood: nop
IL_o00e: ret
} // end of method Program::Main

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed
{

// Code size 7 (0x7)
.maxstack 8
IL_0000: ldarg.o
IL 0001: «call instance void [mscorlib]System.Object::.ctor()
IL_0006: ret
} // end of method Program::.ctor

} // end of class Ch_01.Program

.class public auto ansi beforefieldinit Ch_01.PowerGenerator
extends [mscorlib]System.Object
{

.field private static literal int32 limit = int32(0x00000003)
.field private static literal string original = "Original number"
.field private static literal string square = "Square number"
.method public hidebysig instance void

ProcessPower() cil managed

{

// Code size 82 (0x52)

.maxstack 4

.locals init ([0] int32 i,

[1] bool CS$4$0000)

IL_0000: nop

IL 0001: ldstr "{0,16}{1,20}"

IL_0006: Ildstr "Original number"

IL ooob: ldstr "Square number"

IL_0010: call void [mscorlib]System.Console::WriteLine(string,
object,
object)

14

IL_0015:
IL_oo016:
IL_0017:
IL_0018:

IL_oo1a:
IL_001b:
IL_0020:
IL_0021:
IL_0026:
IL_0027:
IL_0028:
IL_0031:

IL_o036:
IL_003b:

IL_0040:
IL_oo041:
IL_oo042:
IL_0043:
IL_0044:
IL_0045:
IL_0046:
IL_0047:
IL_0048:
IL_oo4a:
IL_004b:
IL_004d:
IL _004e:
IL_oo4f:

IL_o051:

nop
ldc.i4.0
stloc.0
br.s

nop
ldstr
ldloc.0
box
ldloc.0
conv.r8
ldc.r8
call

box
call

nop

nop
ldloc.0
ldc.ig.1
add
stloc.0
ldloc.0
ldc.i4.3
cgt
ldc.i4.0
ceq
stloc.1
ldloc.1
brtrue.s

ret

IL_0046

"{0,10}{1,20}\n"

[mscorlib]System.Int32

2.
float64 [mscorlib]System.Math

[mscorlib]System.Double
void [mscorlib]System.Console

IL 001a

} // end of method PowerGenerator::ProcessPower

.method public hidebysig specialname rtspecialname

instance void

{

// Code size
.maxstack 8

IL_0000:
IL_0001:
IL_0006:

ldarg.o
call
ret

.ctor() cil managed

7 (0x7)

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

::Pow(float64,
float64)

t:Write(string,
object,
object)

instance void [mscorlib]System.Object::.ctor()

} // end of method PowerGenerator::.ctor

} // end of class Ch_01.PowerGenerator

// WARNING: Created Win32 resource file File.res

15

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

The CLR

In .NET the virtual execution system (VES) is known as the common language runtime (CLR). The CLR implements
and enforces the common type system (CTS) model and is responsible for loading and running programs written
for the common language infrastructure (CLI) (see Figure 1-9). The CLI provides the services needed to execute the
managed code and data, using the metadata to connect separately generated modules at runtime (late binding).

In this way, the CLI serves as a unifying framework for designing, developing, deploying, and executing distributed
components and applications.

(LR Abstraction Model Layer
i (| i
255 5235 E2§
288 §3° Ez%
TE5 8 £ =
§5% 3% Z2E%g
£ £s
= =
g ES
£
< £
= [
=N —
e = - v
= o >
[~ H v "
=l = o =
L a o E =
L= - "
S & o ==
F— a
= =3
=T

Figure 1-9. CLR as a virtual execution environment

The appropriate subset of the CTS is available from each programming language that targets the CLI.
Language-based tools communicate with each other and with the VES, using metadata to define and reference the
types used to construct the application. The VES uses the metadata to create instances of the types as needed and to
give data type information to other parts of the infrastructure (such as remoting services, assembly downloading,
and security).

The CLI supplies a specification for the CTS and metadata, the CLS, and the VES. Executable code
is presented to the VES as modules. A module is a single file containing executable content in the format
specified in Partition 2, sections 21-24 of the ECMA CLI standard, which is available on the ECMA web site
(http://www.ecma-international.org/publications/standards/Ecma-335.htm).

The CLI’s unified type system, CTS, is used by the compilers (C#, VB.NET, and so on), tools, and the CLI itself.
The CLI supplies the model for defining the type in your application. This model includes the rules that CLI follows
when declaring and managing types. The CTS is a rich type system that supports the types and operations of many
programming languages (see Figure 1-10).

16

http://www.ecma-international.org/publications/standards/Ecma-335.htm

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

P

Value Type | Reference Type

Bq.iltln\‘alueiype] User Defined] Self Describing J Interface I Pointer J Type Lt
:' e ‘ ,,-’E*-.. v":‘- _.-i--.
...... v H Na‘_,,.v--' T P a A ‘__,'-' "-A.‘
Ieger] oty J ledﬂeh'mc] . I mh’;zm] ;qm Fuldiml M-naeed] u-mgedl Sting J Obic J

| Bocd Valie |
Boxed Enums |
Figure 1-10. CTS type system

Details on the specification of the CTS and the complete list of CTS types can be found in Partition 1, section 8 of
the ECMA CLI standard.

Road Map to the CLR

The C# compiler compiles the C# source code into the module, which is later converted into the assembly at the
program’s compile time. The assembly contains the IL code, along with the metadata concerning that assembly.
The CLR works with the assembly, loading it and converting it into native code for execution.

When the CLR executes a program, it does so method by method. However, before the CLR executes any method,
unless the method has already been JIT compiled, the CLR’s JIT compiler needs to convert it into native code. The
JIT compiler is responsible for compiling the IL code into native instructions for execution. The CLR retrieves the
appropriate metadata concerning the method from the assembly, extracts the IL code for the method, and allocates
a block of memory to the heap, where the JIT compiler will store the JITted native code for that method. Figure 1-11
demonstrates the compilation process of a C# program.

CLR based compilation model

Virtual Execution Environment

Assembly and
___0.3_5_5. Loaders | MetaTable pm

Figure 1-11. Compilation overview

17

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

An assembly is defined by a manifest, which is metadata that lists all the files included and directly referenced
in the assembly, the types exported and imported by the assembly, versioning information, and security permissions
that apply to the whole assembly.

using System;

namespace Ch_01

{
class Program
{
static void Main(string[] args)
{
Console.Read();
ClassTest ct = new ClassTest();
while (true)
{
if (Console.ReadKey().Key == ConsoleKey.A)
break;
}
}
}
public class ClassTest
{
public void One() { }
public void Two() { }
public void Three() { }
}
}

When this application is compiled into an assembly (Ch_01.exe), using csc.exe, you can view the contents of the
assembly with the dumpbin tool, as shown:

J:\Book\C# Deconstructed\SourceCode\Chapters\CH_01\bin\Debug>dumpbin /all CH_01.exe>C:\CH_01_
Dumpbin.txt

The contents of the CH_01_Dumpbin.txt are as follows:

Microsoft (R) COFF/PE Dumper Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file CH O1.exe
PE signature found
File Type: EXECUTABLE IMAGE
FILE HEADER VALUES
14C machine (x86)
3 number of sections
533D4124 time date stamp Thu Apr 03 22:08:20 2014

0 file pointer to symbol table
0 number of symbols

18

EO
102

CHAPTER 1

size of optional header
characteristics
Executable
32 bit word machine

OPTIONAL HEADER VALUES

108
8.00
Aoo
800
0
283E
2000
4000
400000
2000
200
4.00
0.00
4.00
0
8000
200
0

3
8540

100000
1000
100000
1000

0

10

0

27F0
4000

6000
2770

o O O oo

e e K e W e e W e W e W e W e N e B e N e N e W M |

2000

2008

magic # (PE32)
linker version
size of code
size of initialized data
size of uninitialized data
entry point (0040283E)
base of code
base of data
image base (00400000 to 00407FFF)
section alignment
file alignment
operating system version
image version
subsystem version
Win32 version
size of image
size of headers
checksum
subsystem (Windows CUI)
DLL characteristics
Dynamic base
NX compatible
No structured exception handler
Terminal Server Aware
size of stack reserve
size of stack commit
size of heap reserve
size of heap commit
loader flags
number of directories
RVA [size]
RVA
RVA
RVA
RVA
RVA
RVA
RVA

0] of
] [

] [

] [

] [

] [

] [

] [

] RVA [size]
] [

] [

] [

] [

] [

] [

] [

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

Export Directory

Import Directory

Resource Directory
Exception Directory
Certificates Directory
Base Relocation Directory
Debug Directory
Architecture Directory
Global Pointer Directory
Thread Storage Directory

4B
520

RVA
RVA
RVA
RVA
RVA
RVA
RVA

Bound Import Directory

Delay Import Directory
COM Descriptor Directory
Reserved Directory

INTRODUCTION TO PROGRAMMING LANGUAGE

Load Configuration Directory

Import Address Table Directory

19

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

SECTION HEADER #1
.text name
844 virtual size
2000 virtual address (00402000 to 00402843)
A00 size of raw data
200 file pointer to raw data (00000200 to 00000BFF)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers
60000020 flags
Code
Execute Read

RAW DATA #1
00402000: 40 28 00 00 00 00 00 00 48 00 00 00 02 00 05 00 @(...... Hooooon
00402010: A8 20 00 00 04 07 00 00 03 00 00 00 01 00 00 06 "~ ...vuvreneennn

/* removed */

00402840: 00 00 5F 43 6F 72 45 78 65 4D 61 69 6E 00 6D 73 .._CorExeMain.ms
00402850: 63 6F 72 65 65 2E 64 6C 6C 00 00 00 00 00 FF 25 coree.dll..... V%
00402860: 00 20 40 00 . @.

Debug Directories

Time Type Size RVA Pointer
533D4124 cv 63 0000278C 98C Format: RSDS, {ABA92538-B058-4C6C-AFA8-
2208F3586205}, 3, J:\Book\C# Deconstructed\SourceCode\Chapters\CH 01\obj\x86\Debug\CH_01.pdb

clr Header:

48 cb
2.05 runtime version
20A8 [6C8] RVA [size] of MetaData Directory
3 flags
IL Only
32-Bit Required
6000001 entry point token

o[0] RVA [size] of Resources Directory

o[0] RVA [size] of StrongNameSignature Directory

o[0] RVA [size] of CodeManagerTable Directory

0 [0] RVA [size] of VTableFixups Directory

0 [0] RVA [size] of ExportAddressTableJumps Directory
o[0] RVA [size] of ManagedNativeHeader Directory

20

CHAPTER 1

Section contains the following imports:

mscoree.dll
402000 Import Address Table
402818 Import Name Table
0 time date stamp
0 Index of first forwarder reference

0 _CorExeMain

SECTION HEADER #2
.ISIC hame
520 virtual size
4000 virtual address (00404000 to 0040451F)
600 size of raw data
Coo file pointer to raw data (00000C00 to 000011FF)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers
40000040 flags
Initialized Data
Read Only

RAW DATA #2
00404000: 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 00 02 0O
/* removed */
004045B0: 66 6F 3E oD OA 3C 2F 61 73 73 65 6D 62 6C 79 3E fo>
004045C0: OD OA 00 00 00 00 00 00

SECTION HEADER #3
.reloc name
C virtual size
6000 virtual address (00406000 to 0040600B)
200 size of raw data
1200 file pointer to raw data (00001200 to 000013FF)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers
42000040 flags
Initialized Data
Discardable
Read Only

RAW DATA #3
00406000: 00 20 00 00 OC 00 00 00 60 38 00 00 ..

INTRODUCTION TO PROGRAMMING LANGUAGE

21

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

BASE RELOCATIONS #3
2000 RVA, C SizeOfBlock
860 HIGHLOW 00402000
0 ABS

Summary

2000 .reloc
2000 .rsrc
2000 .text

Tools Used in This Book

WinDbg is a debugging tool for performing user and kernel-mode debugging. This tool comes from Microsoft, as
part of the Windows Driver Kit (WDK). WinDbg is a graphical user interface GUI) built on Console Debugger (CDB),
NT Symbolic Debugger (NTSD), and kernel debugging, along with debugging extensions. The Son of Strike (SOS)
debugging extension DLL (dynamic link library) helps debug managed assembly by providing information on the
internal CLR environment.

WinDbg is a powerful tool; it can be used to debug managed assembly. and it allows you to set a breakpoint; view
source code, using symbol files; view stack trace information; view heap information; see the parameters of a method,
a memory, and registers; examine exception handling information; and much more.

WinDbg comes as part of the Debugging Tools for Windows package; WinDbg is free and available on the
Microsoft Web site (http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx). Once you have
downloaded and installed the installation package, open WinDbg from the installed directory, for example, by going
to Programs » Debugging Tools for Windows (x86) » WinDbg.

A symbol file contains variety of data that can be used in the debugging process, but this information is not
necessary for running the binaries.

Symbol files may contain

e Global variables

e Local variables

¢ Function names and the addresses of their entry points
e Frame pointer omission (FPO) records

e Source line numbers

When the debugger tools (such as WinDbg) have to have access to the related symbol files, then you need to set
the symbol file location. Microsoft has provided a symbol server, so it is good to point the debugger to it. To do this,
you can use the srv command, along with the local cached folder, to which the symbol files will be downloaded, and
the server location, from which the symbol files will be downloaded. It is as simple to use the symbol server with the
sTv command as it is to use the appropriate syntax in your symbol path. Typically, the syntax takes the
following format:

SRV*your local cached folder*http://msdl.microsoft.com/download/symbols

The local cached folder should contain any drive or share that is used as a symbol destination. For instance, to set
the symbol path in WinDbg, type this command in the Command window of the debugger:

.sympath SRV*C:\symbols*http://msdl.microsoft.com/download/symbols

22

http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

CHAPTER 1 * INTRODUCTION TO PROGRAMMING LANGUAGE

In the Symbol Search Path window, the symbol path location has been set as shown:
SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

Here, c:\symbols refers to the local cached folder, to which the symbol file will be downloaded from the location
specified as http://msdl.microsoft.com/download/symbols.

The final, important step of the WinDbg setup is to use right version of the SOS debugging extension DLL. You
will learn about this in the following section.

Son of Strike Debugging Extension DLL
The Son of Strike (SOS) debugging extension DLL helps debug managed assembly. 4With SOS, you will be able to
e Display managed call stacks
e Setbreakpoints in managed code
e Find the values of local variables
e Dump the arguments to method calls

e Perform most of the inspection and control debugging actions that you can use in native-code
debugging—only without the convenience of source level debugging

To load SOS.d11 and initiate the debugging environment in WinDbg, you need to run the following commands:
sxe 1d clrjit

.loadby sos clr
.load sos.dll

The .1load sos.d1ll command is used to load SOS, but if WinDbg cannot find the right version of the SOS,
it throws exception.

In .NET every version of the CLR has its own copy of the SOS extension DLL. You must always make sure to load
the right version of the SOS. To do this, you need to use the full path of the SOS (installed in your system), using the
.load command. The path syntax is asfollows:

.load <full path to sos.dll>

Or, altermatively:

.load %windir%\Microsoft.NET\Framework\<version>\sos.dll

For example, if the SOS is installed in the C: \Windows\Microsoft.NET\Framework\v4.0.30319\ directory, you
may need to execute this command:

.load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.d1ll
The complete list of the commands is as shown:
sxe 1d clrjit

8
.loadby sos clr
.load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.d1l

23

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

CHAPTER 1 © INTRODUCTION TO PROGRAMMING LANGUAGE

The ILDASM tool uses to examine .NET Framework assemblies in IL format, such as mscorlib.dl1, as well
as other .NET Framework assemblies provided by a third party or created by you. The ILDASM parses any .NET
Framework-managed assembly. ILDASM can be used to

e Explore Microsoft intermediate language (MSIL) code
e Displays namespaces and types, including their interfaces
e Examine the executable header information

The ILDASM tool comes with.NET Framework Software Development Kit (SDK), so you don’t need to download;
it will be installed as part of the Visual Studio installation.

Conclusion

A basic computer system consists of three main components: CPU, physical memory, and I/0. The CPU is the core
component, running the system, using the instructions it has defined and stored in the microcode component. This
instruction set has been abstracted into a high level to make the computer system closer to the people who program.
This was possible by introducing the concept of high-level programming language, with the help of a piece of software
called the compiler. The compiler concept became more dynamic with the introduction of the JIT compiler.

In C# language the JIT compiler is used to compile the language that targets the virtual execution environment,

such as CLR.

The CLR is a virtual execution environment. In layperson’s terms, the CLR is an abstraction of the execution
environment of an OS for the application program. You will learn about the virtual execution environment in Chapter 2.
The CLR understands the language it supports, such as IL. To execute any application program in .NET with the CLR,
a mechanism called the assembly is used to package the source code and pass it into the CLR to execute. You will
explore the assembly in Chapter 3.

Asyou have already seen, the CPU fetches application instructions from physical memory. It is crucial to know
how memory works and is managed by the OS. Most importantl you should know how the CLR uses this memory to
implement its own memory model. You will learn about memory management in the OS and CLR in Chapters 4 and 5.

So far, you have seen how the C# application is compiled by the front-end compiler and packaged into a
construct called the assembly. The assembly is loaded into and laid out in the physical memory and executed by the
CPU. But, owing to virtual execution, the CPU and OS will not be able to execute the assembly simply by fetching it
from the memory. The execution model of the CLR takes care of this. You will learn about the execution model of the
CLR in Chapters 6 and 7.

Further Reading

Bryant, Randal E., and David R. O’Hallaron. Computer Systems: A Programmer’s Perspective Upper Saddle River,
NJ: Prentice Hall, 2003.

Hyde, Randall. The Art of Assembly Language. San Francisco: No Starch, 2003.

Hyde, Randall. Write Great Code. Vol. 2, Writing High Level. San Francisco: No Starch, 2006.

Miller, James S., and Susann Ragsdale, S). The Common Language Infrastructure Annotated Standard.
Boston: Addison-Wesley, 2004.

Murdocca, Miles J., and Vincent P. Heuring. Principles of Computer Architecture. Upper Saddle River, NJ: Prentice
Hall, 2000.

Scott, Michael L. Programming Language Pragmatics. San Francisco: Morgan Kaufmann, 2000.

Sebesta, Robert W. Concepts of Programming Languages, Fifth Edition. Boston: Addison-Wesley, 2002.

Stokes, Jon. Inside the Machine: An Illustrated Introduction to Microprocessors and Computer Architecture.
San Francisco: No Starch, 2007.

24

CHAPTER 2

The Virtual Machine and CLR

A virtual machine is a virtual computer system that runs on the existing OS, or the host OS. A virtual machine provides
virtual hardware to the OS that targets the virtual machine. This is sometimes referred to as the guest OS.

Virtual machine systems were originally introduced to overcome some of the shortcomings of the existing
computer system. This virtual machine concept was adapted to the area of programming language by introducing
the virtual execution environment. In this chapter, you will learn about the virtual machine. Then, you will explore
the virtual execution environment, such as the CLR, which is Microsoft’s implementation of the virtual execution
environment, targeting .NET languages.

Virtual Machine

The term virtual can denote a technology that is used in the computer world. This technology is implemented as
software that runs on top of the OS and hardware. This virtualization concept has brought huge advancements to
computer system architecture. The virtual machine has helped decouple hardware and software design, such that
hardware and software designer can work more or less independently. The application developer can concentrate

on the application side without worrying about the changes to the OS, and hardware and software can be upgraded
according to different schedules. Most important, software can run on different hardware platforms targeting different
ISA. To begin, let’s see why we need a virtual environment.

Problems with the Existing System

In traditional computer architecture the major components of a computer system are the application program, the
08, and the hardware. These components can work only when they are in harmony. For example, Microsoft has built
an application for its Office suite targeting the Windows OS for the x86 platform; thus, this application can run solely
when itis in this environment. Similarly, Linux applications built targeting the Linux OS can run only on the Linux
OS, Macintosh applications built for the Macintosh OS will not run on Windows, and Windows applications built

for Windows will not execute on the Linux platform. This is one of the fundamental problems in typical computer
architecture (see Figure 2-1).

25

CHAPTER 2 ' THE VIRTUAL MACHINE AND CLR

Windows Linux Macintosh Windows
axp_licatiun_s applications applications applications
o A4 4 4
2 2 < 3 ymmm Mpmas

API API AP
Windows 05 Linux 05 ey BB LJnurOS
x86 x86 x86 x86

@) . (b)

Figure 2-1. Existing problems with the traditional computer system

If you look closely at this problem, you will find that application software compiled for a particular ISA will not
run on a hardware platform that implements a different ISA. For instance, Macintosh application binaries will not
directly execute on an Intel processor. Likewise, Windows applications built for the x86 hardware will not be able to
execute on a platform other than the x86. Even if the underlying ISA is the same, applications compiled for one OS will
not run if a different OS is used. For example, applications compiled for Linux and for Windows use different system
calls, so a Windows application cannot run directly on a Linux system, and vice versa.

Optimization During Execution

As an application developer, you must be aware of the optimization and performance of your application. An
application whose code is optimized for a certain hardware platform will perform well only when it is executed by
that platform. When you compile an application using a compiler, the compiler may produce optimized executable
code, based on your underlying hardware (CPU), but if you take that executable to a different hardware platform,
your application may struggle to perform well, owing to the optimization issue. Typically, only one version of a
binary is distributed, and it is likely optimized for only one processor model (if it is optimized at all). To address these
problems, special coupling software can be used to connect the major components, as shown in Figure 2-2.

26

CHAPTER 2 * THE VIRTUAL MACHINE AND CLR

"Host Operating System (Host)

Host Hardware

Figure 2-2. VM software

The coupling software shown in the figure 2is called Virtual Machine (VM). It is used to connect the guest
application with the host OS. Using its emulator component, VM translates the ISA, such that the conventional
software sees one ISA, while the hardware supports another.

The concept of the virtual machine has a huge portability value for any program targeted by the virtual
machine. The virtual machine will execute the targeted program, regardless of the underlying hardware platform,
translating it based on that platform. This portability raises the possibility of creating a virtual execution
environment that supports execution of the program code. In the following sections, you will learn about the
virtual execution environment.

27

CHAPTER 2 © THE VIRTUAL MACHINE AND CLR

Virtual Execution Environment

The virtual execution environment plays an important role in the optimization and portability of application
programs. The virtual execution environment introduces the concept of IL (for the .NET platform, IL; for Java, byte
code; and so on). The languages that target the virtual machine (for the .NET platform, C#, VB.NET, and so on) will be
compiled into this intermediate code at compile time. This compilation process is sometimes referred to as front-
end compilation. At runtime or execution time the intermediate code will be compiled into native code, using the

JIT compiler. In this book I will sometimes refer to this process as back-end compilation. The back-end compiler will
produce optimized native code targeting the underlying CPU.

The virtual execution environment also has the capability to execute the JIT compiled native code, using the OS
services. Here, virtual execution denotes the circumstance in which an application program written and compiled
using the languages supported by the virtual machine is executed, managed, and controlled by the same virtual
machine. For example, the virtual machine may handle memory management services; maintain the execution state,
using the concept of the method state; communicate with the OS to get the schedule for the processes running; and so
on. A virtual machine, such as Microsoft’s CLR, uses the JIT compiler to generate optimized native machine code from
the intermediate code at runtime; manages and controls the execution of the application, using the method state;
manages the object life cycle, using the GC; and so on.

Figure 2-3 illustrates a model of a hypothetical virtual execution environment. This virtual execution
environment controls and manages the execution of the languages L1to Ln by the virtual execution engine, using
the underlying OS’s services.

"-Host Operating System (Host)

Host Hardware

Figure 2-3. A typical VES

28

CHAPTER 2 * THE VIRTUAL MACHINE AND CLR

Components of the Virtual Execution Environment

A typical virtual execution environment has one or more programming languages, compiled into an IL form, that
will execute on that virtual platform. Virtual execution means that the compiled program will be executed by the
underlying OS but that the virtual machine will have all the control in managing the execution. The virtual execution
environment provides a layer of abstraction between a compiled program and the underlying OS and hardware
platform. Figure 2-4 displays a typical virtual execution environment.

: Assembly Virtual machine environment

mmedemn- : / Seeccsses

L Pepp—

cesdssan

Figure 2-4. High-level overview of the VES

An assembly consists of platform-independent code and platform-independent metadata. The metadata
describe the data structures (typically objects), their attributes, and their relationships. As shown in the figure, the
VM software consists of an emulator that can either interpret the code or translate it into native code. For example, in
C# language, IL code is compiled into native code, using the JIT compiler of the CLR. In this book, you will learn how
the CLR executes and uses CLI to generate the native code to run on a native machine. You will also discover some of
CLR’s advantages, namely, portability, compactness, efficiency, security, interoperability, flexibility, and, above all,
multi language support.

CLR: Virtual Machine for .NET

The CLR is the Microsoft implementation of the virtual execution environment. The CLR manages the execution of
source code written using C#, VB.NET, or any other language supported by .NET. The source code is first compiled
into MSIL, and later, during the execution phase, it is compiled into native code.

The CLR offers many services, such as code management; software memory isolation; loading and execution of
managed assembly; and compilation of the IL code into native code, including verification of the type safety of the
MSIL code. The CLR also accesses the metadata embedded within the assembly to lay out the type information in
memory and provides memory management, using the GC. In addition, the CLR handles exceptions, including
cross-language exceptions.

CLR SPECIFICATION

The ECMA C# and CLI standards can be downloaded from the Microsoft web site
(http://msdn.microsoft.com/en-us/vstudio/aa569283.aspx),

29

http://msdn.microsoft.com/en-us/vstudio/aa569283.aspx

CHAPTER 2 ' THE VIRTUAL MACHINE AND CLR

Figure 2-5 gives a high-level view of the CLR. The source code targeting the CLR is compiled into the IL and
assembled in the assembly. The assembly resides in the storage device (typically found on the hard drive) and
contains IL code and metadata. Before the assembly’s execution, the CLR loads it into memory and compiles the
relevant IL code into native code. The assembly is then executed by the underlying OS.

/ P E R
BE oo scsssuieues P2 '
! 2k g | E
\ 22 = B
-\Source Code g3 S > g
VO o = i N =
‘‘‘‘‘ - 2 8 E e i .
"""""" {E o = -z
25 N — -—
4 . iw 2 5 P2
/ SRt p— g {.. » 2
: Loadsand executes | = P9
' I s s by the CLR ; S g TR -
t 1 Assembly ;- OO | s TS - £ g i
'.. ."'." o=
(I &Metadata) . 2 L 2 (P
e - —

Figure 2-5. The internal CLR execution environment

The CLR provides private virtual address space for each of the applications it executes. The address space uses
mechanism called the application domain to afford the software isolation for the running applications. The CLR
enforces type safety access to all areas of memory when running type-safe managed code.

The CLR supplies the common infrastructure that allows tools and programming languages to benefit from
cross-language integration. Any technical improvements to the CLR will be of help to all languages and tools that
target the .NET Framework.

CLR Supports Multiple Languages

The CLR has advantages: it supports multiple languages and targets many platforms. Figure 2-6 shows the

C#, F#, VB.NET, J#, and Managed C++ languages compiled into the assembly, which contains simply IL code
and metadata. The assembly targets the CLR, which serves as a middle layer between the compiled code and the
underlying OS.

30

CHAPTER 2 * THE VIRTUAL MACHINE AND CLR

0 VBNET i ManagedC++ |+
" ‘E

Managed G++ %?

compiler S

g

g

A

v

¥ A

IL & Metadata ,,
H £

v £

=

CLR

v

Figure 2-6. CLR and multiple languages

The following four programs, written accordingly, using C#, Managed C++, F#, and VB.NET, respectively, compile
type at the front-end and will produce CLR-understandable IL code.
C# source code and disassembled IL code:

//Program.cs
using System;

namespace Ch_o01

{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("C#");
Console.ReadlLine();
}
}
}

31

CHAPTER 2 ' THE VIRTUAL MACHINE AND CLR

IL code for the previous assembly:

/*removed*/
.assembly Program
{
.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilationRelaxationsAttribute::
.ctor(int32) = (01 00 08 00 00 00 00 00)
.custom instance void [mscorlib]System.Runtime.CompilerServices.RuntimeCompatibilityAttribute::
.ctor() = (01 00 01 00 54 02 16 57 72 61 70 4E 6F 6E 45 78
//T..WrapNonEx
63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01)
// ceptionThrows.
.hash algorithm 0x00008004
.ver 0:0:0:0

}

/*removed*/

.class private auto ansi beforefieldinit Ch_01.Program
extends [mscorlib]System.Object

{
.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
// Code size 19 (0x13)
.maxstack 8
IL_0000: nop
IL 0001: ldstr "c#"
IL 0006: call void [mscorlib]System.Console::Writeline(string)
IL_ooob: nop
IL_oooc: call string [mscorlib]System.Console::ReadlLine()
IL_0011: pop
IL_o0012: ret
} // end of method Program::Main
/*removed*/

/] FrxeRkrkrkk DTSASSEMBLY COMPLETE ¥¥kkxkkkskkkkkkkkrkkkkk
// WARNING: Created Win32 resource file Program.res

Managed C++ source code and disassembled IL code:

// FileName: ManagedCPlusPlus.cpp
#include "stdafx.h"

using namespace System;

int main(array<System::String ~> “args)
{
Console: :WritelLine(L"Managed C++");
Console: :ReadLine();
return 0;

32

CHAPTER 2 * THE VIRTUAL MACHINE AND CLR

IL code for the prior assembly:

/*removed*/
.assembly ManagedCPlusPlus

{

.custom instance void [mscorlib]System.Security.SecurityRulesAttribute::.ctor
(valuetype [mscorlib]System.Security.SecurityRuleSet) = (01 00 01 00 00)

.permissionset reqmin

= {[mscorlib]System.Security.Permissions.SecurityPermissionAttribute =

{property bool 'SkipVerification' = bool(true)}}

.hash algorithm 0x00008004

.ver 0:0:0:0

}

/*removed*/

.method assembly static int32 main(string[] args) cil managed
{

// Code size 22 (0x16)

.maxstack 1

.locals (int32 V_0)

IL_0000: ldc.i4.0

IL 0001: stloc.0

IL_0002: ldstr "Managed C++"

IL_0007: call void [mscorlib]System.Console::WriteLine(string)
IL o0ooc: call string [mscorlib]System.Console: :ReadLine()
IL_0011: pop

IL 0012: 1dc.i4.0
IL 0013: stloc.0
IL_0014: ldloc.0
IL_0015: ret
} // end of global method main

/*removed*/

F# source code and disassembled IL code:
//FileName: FSharpProgram.fs

System.Console.WritelLine("F#\n Press any key to continue")
System.Console.ReadLine()

33

CHAPTER 2 ' THE VIRTUAL MACHINE AND CLR

IL code for the previous assembly:

/*removed*/

.assembly FSharpProgram

{
.custom instance void [FSharp.Core]Microsoft.FSharp.Core.FSharpInterfaceDataVersionAttribute::
.ctor(int32,

int32,
int32) = (01 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00
)
.hash algorithm 0x00008004
.ver 0:0:0:0
}
/*removed*/

.class private abstract auto ansi sealed '<StartupCode$FSharpProgram>'.$FSharpProgram
extends [mscorlib]System.Object
{

.field static assembly int32 init@

.custom instance void [mscorlib]System.Diagnostics.DebuggerBrowsableAttribute::.ctor(valuetype
[mscorlib]System.Diagnostics.DebuggerBrowsableState) = (01 00 00 00 00 00 00 00)

.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilerGeneratedAttribute::
.ctor() = (01 00 00 00)

.custom instance void [mscorlib]System.Diagnostics.DebuggerNonUserCodeAttribute::

.ctor() = (01 00 00 00)

.method public static void main@() cil managed

{
.entrypoint
// Code size 17 (0x11)
.maxstack 3
IL_0000: ldstr "F#\n Press any key to continue"
IL_0005: call void [mscorlib]System.Console::WritelLine(string)
IL 000a: call string [mscorlib]System.Console::ReadlLine()
IL_ooof: pop
IL_0010: ret

} 7/ end of method $FSharpProgram::main@

} // end of class '<StartupCode$FSharpProgram>'.$FSharpProgram

// WARNING: Created Win32 resource file FSharpProgram.res

34

CHAPTER 2 * THE VIRTUAL MACHINE AND CLR

VB.NET source code and disassembled IL code:

//FileName: MainModule.vb
Module MainModule

Sub Main()
Console.WritelLine("VB.NET")
End Sub

End Module
IL code for the prior assembly:

/*removed*/

.assembly MainModule

{
.custom instance void [mscorlib]System.Runtime.CompilerServices.RuntimeCompatibilityAttribute::
.ctor() = (01 00 01 00 54 02 16 57 72 61 70 4E 6F 6E 45 78

/7T..WrapNonEx

63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01)
// ceptionThrows.
.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilationRelaxationsAttribute::
.ctor(int32) = (01 00 08 00 00 00 00 00)
.hash algorithm 0x00008004
.ver 0:0:0:0

}

/*removed*/

.class private auto ansi sealed MainModule
extends [mscorlib]System.Object
{

.custom instance void [Microsoft.VisualBasic]Microsoft.VisualBasic.CompilerServices.
StandardModuleAttribute::.ctor() = (01 00 00 00)
.method public static void Main() cil managed

{
.entrypoint
.custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
// Code size 11 (oxb)
.maxstack 8
IL_0000: ldstr "VB.NET"
IL_0005: call void [mscorlib]System.Console::Writeline(string)
IL_ooo0a: ret

} // end of method MainModule::Main

} // end of class MainModule

/] FrxRRkrkkkk DTSASSEMBLY COMPLETE ¥¥kkxkkkskskkkkkkkkkkk
// WARNING: Created Win32 resource file MainModule.res

35

CHAPTER 2 ' THE VIRTUAL MACHINE AND CLR

COMPILERS AND ILDASM

For C#, Managed C++, F#, and VB.NET, the respective commands are as follows:

csc.exe Program.cs

cl /clr ManagedCPlusPlus.cpp

fsc.exe FSharpProgram.fs

vbc /reference:Microsoft.VisualBasic.dll MainModule.vb

To disassemble the assembly, use the following ildasm commands accordingly for C#, Managed C++, F#, and
VB.NET code:

ildasm Program.exe /out:Program.il

ildasm ManagedCPlusPlus.exe /out:ManagedCPlusPlus.il
ildasm FSharpProgram.exe /out:FSharpProgram.il
ildasm MainModule.exe /out:MainModule.il

A NET application written in any of the .NET-supported languages is compiled into IL code, which is in turn
JIT compiled at runtime into native code. The JIT compiler can produce optimized native code, based on the
underlying hardware.

Common Components of the CLR

As mentioned earlier, the CLR is the implementation of the CLI. The architecture of CLI comprises the following
elements:

e (IS

e CLS

e C(CILinstruction set

e VES (executes managed code and lies between code and the native OS)

The CTS defines the complete set of types available to a CLI-compliant program. In contrast, CLS defines the
subset of CTS types that can be used for external calls. Using the metadata concerning the code and data, the CLR
identifies the locations of objects and gives this information to the VES, which handles all the major overheads of
traditional programming models (exceptions, security concerns, performance, pointers, object life cycle, and so on).

CIL is an assembly-like language that is generated by the compilers of languages targeting CLI. How and
when the CIL is compiled to machine code is not specified by the standard, and those determinations rest with the
implementation of the VES. The most frequently used model is employment of a JIT compiler, which generates native
code as needed. Install-time compilers are another option, and it is also possible to implement an interpreter rather
than a compiler for the CIL.

A typical .NET virtual machine

e Executes code at runtime
e Manages the execution by maintaining the state
e Manages objects

e Isolates address space, and so on (see Chapter X)

36

CHAPTER 2 * THE VIRTUAL MACHINE AND CLR

Conclusion

The CLR is the Microsoft implementation of the virtual execution environment. The CLR supports multiple languages,
such as C#, VB.NET, and F#. If you write an application program using any of the CLR-supported languages, you will
be able to execute the compiled version of your application via the CLR. When you compile your .NET application.
the compiler compiles IL code and metadata. The compiler also uses a mechanism called the assembly to package
the IL code and metadata. In .NET the assembly is a deployment mechanism of your application program. The
assembly is loaded into memory and executed by the CLR. Therefore, it is important to understand how the assembly
is structured by the compiler, what this assembly contains, and how the CLR lays it out in memory.

In the next chapter, you will explore the assembly and its structure as well as the assembly-loading process used
in the CLR.

Further Reading

Juola, Patrick. Principles of Computer Organization and Assembly Language. Upper Saddle River, NJ: Prentice Hall, 2007.
Smith, James E., and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes. Amsterdam: Morgan
Kaufmann, 2005.
Stokes, Jon. Inside the Machine: An Illustrated Introduction to Microprocessors and Computer Architecture.
San Francisco: No Starch, 2007.

37

CHAPTER 3

Assembly

Assembly is a technical term used in the CLI to define a deployment unit. An assembly is a collection of compiled
code, presented as module and resources files, that forms a logical unit of functionality for deployment, versioning,
reuse, and security. In this chapter, you will learn about the assembly.

What Is the Assembly?

In .NET Framework an assembly exists in two forms: executable (EXE) and dynamic link library (DLL). Assemblies
such asmscorlib.dll, System.dll, and System.Configuration.dll are the DLL forms of assembly used in.NET
framework. Executable produced by the C# compiler (csc.exe) is a form of EXE assembly (see Listing 3-1).
Assemblies targeting the CLI contain code in CIL. The CIL is usually generated from a CLI language, such as C# or
VB.NET, and at runtime is compiled into native code by the JIT compiler.

An assembly always contains a manifest that specifies

e Version, name, culture, and security requirements for the assembly.

e Which other files, if any, belong to the assembly, along with a cryptographic hash of each
file; the manifest itself resides in the metadata part of a file, and that file is always part of the
assembly.

e The types defined in other files of the assembly that it is to export; types defined in the same
file as the manifest are exported based on attributes of the type itself.

e Optionally, a digital signature for the manifest itself and the public key used to compute it.

Here is an example of a manifest, extracted from Listing 3-1:

// Metadata version: v4.0.30319

.assembly extern mscorlib

{ .publickeytoken = (B7 7A 5C 56 19 34 EO 89)
.ver 4:0:0:0

}

.assembly extern System.Core

{ .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 4:0:0:0

}

.assembly extern System.Management

{ .publickeytoken = (Bo 3F 5F 7F 11 D5 OA 3A)
.ver 4:0:0:0

}

39

CHAPTER 3 © ASSEMBLY

.assembly DassemblyConsole
{ /*reference to the other types*/
/* Hash code */
.hash algorithm 0x00008004
.ver 1:0:0:0
}
.module DassemblyConsole.exe
// MVID: {332DA5SEA-B803-42A6-8DDF-B27D1E92D6D3}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000003 // TILONLY 32BITREQUIRED
// Image base: 0x03260000

In this chapter, you will explore the assembly, including its structure, (based on Partition 2 of the ECMA C#
standard) and how the CLR loads it at runtime. First, you will get an overview, using a simple C# application to
examine compilation by the C# compiler and to see a hexadecimal formatted view of the compiled assembly contents.
Then, you will analyze the hexadecimal contents to get a better understanding of assembly structure. Finally, you will
discover how the assembly is loaded by the assembly-loader component of the CLR.

CLI SPECIFICATION

The ECMA CLI standard can be downloaded from the ECMA web site:

http://www.ecma-international.org/publications/standards/Ecma-335.htm

Overview of Modules, Assemblies, and Files

Once a program and its associated types are written as a form of source code, and that code is compiled into an
assembly, the resulting assembly is distributed for use directly by user application (EXE) or indirectly by libraries
(DLL), which depend on its exported library types and functions. As mentioned earlier, the CLR’s logical unit

of deployment, execution, and reuse is, in this case, the assembly. An assembly contains one-to-many smaller,
independent physical units, or modules. Modules are files that are logically part of their containing assembly.
Modules can contain not only managed metadata and code, but also ordinary files, such as localized resources, plain
text, and opaque binary. The vast majority of managed applications employ single-file assemblies (i.e., those with
one module), although the ability to create multifile assemblies is a powerful (and underused) capability. Figure 3-1
demonstrates this general architecture at a high level.

40

http://www.ecma-international.org/publications/standards/Ecma-335.htm

CHAPTER 3 © ASSEMBLY

’ﬂssembly

Module 1

Module 2

L

Module 2

b A

Figure 3-1. A typical assembly structure

Introduction to PE Files

A portable executable (PE) is a file that is executable by the Windows OS. A PE file generally has an .exe ora .d11
extension. The first bytes in a PE file form a header, which can be interpreted by Windows when the executable
is launched. These bytes contain information such as the earliest version of Windows with which the executable
can be used and if the executable is a GUI or console application. The format of a PE file is optimized so as not to
degrade performance. Except for a few bytes, the rest of the file is an image of how the executable will be stored in
memory. Modules are also PE files, as the .NET platform takes advantage of Windows services to execute applications.
(Moreover, common object file format (PE/COFF) is the format used by the C++ compiler when it links object files.
The COFF extension of the PE/COFF format is ignored by the.NET platform.

The specification of the C# assembly has been defined in Partition 2 of the ECMA C# standard. Based on the
specification rule defined in clause 25.1, a typical assembly is structured as shown in Figure 3-2.

41

CHAPTER 3 © ASSEMBLY

PE header

MS-DOS Header PE file header

PE optional header

PE header standard fields

PE header Windows NT-specific fields

PE header data directories

(LI header

Section headers

Metadata root

Stream header

#~ stream #US

#Strings heap #Blob heaps

#GUID heap

Figure 3-2. Structure of the PE file

Asyou can see, a PE executable, or image, starts with the MS-DOS header, which is predefined as a 128-byte
MS-DOS stub placed at the front of the module. MS-DOS js followed by a PE signature and then the PE file header.
The PE file header is 18 bytes of data used to define information such as the number of sections used in the image,
the number of symbol tables, and so on. The PE optional header comes next. It is used to define the most importantly
to the data directories. The PE optional header is followed by PE section headers. The PE section table contains a
number of PE section headers, each of which has a total of 40 bytes of data.

Structure of the Assembly

Now, you will use the C# program depicted in Listing 3-1 to advance your understanding of assembly structure:
Listing 3-1.
using System;

namespace CH 03

{

class Program

{

static void Main(string[] args)

42

Book book = new Book();
book.Print();

public class Book

CHAPTER 3 © ASSEMBLY

public void Print() { Console.WriteLine("Blue Sky."); }

{
}
}
{
}

This program was compiled using the C# compiler, which generates the executable for the program. You will
open the executable with the HxD tool (or, you can choose your favorite hexadecimal viewer) to get the executable file
contents as hexadecimal format. Later in the chapter, I will be using this hexadecimal output to discuss the structure
of the assembly.

Offset(h)
00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070

00000080

/*PE file

00
4D
B8
00
00
OF
69
74
6D

50

he

01 02 03
5A 90 00
00 00 00
00 00 00
00 00 00
1F BA OE
73 20 70
20 62 65
6F 64 65

45 00 00

ader*/

00000090 00 00 00 00

/* PE header

000000A0
00000080
000000C0
000000D0
000000E0
000000F0

00
00
04
00
00
00

/* PE header

00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170

6C
00
00
00
00
00
00
00

standard

08 00 00
40 00 00
00 00 00
80 00 00
00 10 00
00 00 00

04 05 06 07
03 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 B4 09 (D
72 6F 67 72
20 72 75 6E
2E oD oD 0A

4C 01 03 00
EO 00 02 01

fields */

00 00 00 00
00 00 40 00
00 00 00 00
00 02 00 00
00 10 00 00
10 00 00 00

08
04
40
00
00
21
61
20
24

A5

0B
BE
00
04
00
00

09
00
00
00
00
B8
6D
69
00

ob

01
27
20
00
00
00

0A
00
00
00
00
01
20
6E
00

2D

08
00
00
00
00
10

Windows NT-specific fields*/

27 00 00
00 00 00
60 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

4F 00 00 00
00 00 00 00
0C 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00
00
00
EC
00
00
00
08

00
40
00
26
00
00
20
20

00
00
00
00
00
00
00
00

0B
00
00
00
00
4c
63
20
00

53

00
00
00
00
00
00

00
00
00
00
00
00
00
00

oC
FF
00
00
80
)
61
44
00

00

00
00
00
00
03
00

00
20
00
1C
00
00
08
48

oD
FF
00
00
00
21
6F
4F
00

00

08
20
02
00
00
10

00
05
00
00
00
00
00
00

OE
00
00
00
00
54
6E
53
00

00

00
00
00
00
40
00

00
00
00
00
00
00
00
00

OF
00
00
00
00
68
6F
20
00

00

00
00
00
00
85
00

00
00
00
00
00
00
00
00

..o.. .11 LLEiTh
is program canno
t be run in DOS

mode....$. ...
PE..L...¥.-S
P D
........ /A
@eee @ vunnn.
€evnnnnnnnnns @..
1'..0....@
AP i&......

................

43

CHAPTER 3 © ASSEMBLY

/*Section Header*/

00000180
00000190
000001A0
000001B0
000001CO
000001D0
000001E0

C4
00
2E
00
00
oC
00

07
00
72
06
00
00
00

00
00
73
00
00
00
00
000001F0 00

00 00

/*.text section*/

00000200 A0 27 00
8C
00
00
00
13
00
00
2A
01
2E

00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
000002A0

20
00
00
00
30
06
0A
1E
00
33

00
00
00
00
01
0A
2A
02
01
30

000002B0
000002C0
000002D0
000002E0
000002F0

14
23
18
23
23

02
53
00
47
42

00
74
00
55
6C
00000300 47 15 02
00000310
00000320
00000330

01
01
01

00
00
00

00
00
00

06
87
EC
06
6D
7
06
30
00
10
00

00000340
00000350
00000360
00000370
00000380
00000390
000003A0
000003B0
000003C0
000003D0
000003E0

00
99
06
87
8C
06
00
78
01
01
00

00
00
00
00
01
00
00
02
00
00
00

44

00
00
72
00
00
00
00

00

00

00
00
00
00
00
06
36
28
00
33

00
72
00
49
6F

00

00
00
00

00
00
00
00
01
01
00
00
00
00
00

00
00
63
00
40
00
00

00

00

60
00
00
00
OF
6F
00
11
00
31

23
69
23
44
62

09

13
12
01

37
06
87
39
06
87
3A
00
10
22
91

20
00
00
0A
00
60
00

00

00

06
00
00
00
00
03
72
00
00
39

7E
6E
55
00
00

00

00
00
00

00
00
00
01
00
00
02
00
00
00
00

00
00
00
00
00
00
00

00

00

00
00
00
00
00
00
01
00
00
00

00
67
53
00
00

00

00
00
00

30
BO
06
87
Ao
06
1A
00
14
1C
3E

00
00
00
00
40
00
00

00

00

00
00
00
00
00
00
00
0A
00
00

00
73
00
00
00

00

00
00
00

00
00
00
00
01
00
02
00
00
00
00

2E
00
00
20
00
2E
00
00

00

48
03
00
00
00
01
06
00
2A
oC
00

80
00
24
34

00
00

03
OE

00
06
87
05
06
6D
F7
06
01
1C
05
0A

74
08
00
05
00
72
02
00

00

00
00
00
00
00
00
00
70
00
00
00

02
00
05
05

00
FA

00
00

00
00
00
01
00
01
01
00
00
00
00
00

65
00
00
00
00
65
00
00

00

00
00
00
00
00
00
2A
28
00
00
05

00
00
00
00

00
25

00
00

oA
6E
06
87
54
06
E4
5A
00
05
01
01

78
00
00
00
00
6C
00
00

00

00
00
00
00
00
11
1E
12
00
00
00

00
00
00
00

00
33

00
00

00
00
00
00
01
00
01
02
00
00
00
00

74
00
20
00
00
6F
00
40

00

02
01
00
00
00
00
02
00
42
76

6C
8C
oC
10
2C

02
00

04
01

01
54
D
06
87
AE
3F
1A
00
01
03
6B

00
02
00
40
00
63
10
00

00

00
00
00
00
00
73
28
00
53
34

00
02
05
00
01

00
16

00
00

00
00
00
00
00
01
00
02
00
00
00
20

00
00
00
00
00
00
00
00

00

05
00
00
00
00
04
11
0A
4A
2F

00
00
00
00
00

00
00

00
00

00
06
87
1E
06
87
0B
06
01
01
50
00

00
06
00
00
00
00
00
00
42
30

00
00
00
00
00

01
00

00
00

00
00
00
01
00
00
02
00
00
00
20
00

......... text.
Kevev vevnnnnnn.
1srC @)

@..@.reloc
............ @..B
e Hoouonn
(N

Oieiennnnnns S

Y TR * . (
F6.r...p(e....
* .(....*...BSIB
............ V4.0

30319...... 1
PR U IO (N
#Strings........
L. WHUSS. ...
#GUID...4...,...
#Blob......un...
Gevevunnn 0%3.

veee7.0...n.T...
LU S S O
i.f..... oo,
...9.%...T.%...
E.m... .m...%.F.
C.¥...=.3.?2...
P VAR
XeOuoeeeooeoonnnn
M e P

L S k .

000003F0
00000400
00000410
00000420
00000430
00000440
00000450
00000460
00000470
00000480
00000490
000004A0
000004B0
000004C0
000004D0
000004E0
000004F0
00000500

00000510
00000520
00000530
00000540
00000550
00000560
00000570
00000580
00000590
000005A0
000005B0
000005C0
000005D0
000005E0
000005F0
00000600
00000610
00000620
00000630
00000640
00000650
00000660
00000670
00000680
00000690
000006A0
000006B0
000006C0
000006D0
000006E0
000006F0
00000700

00
86
43
14
43
4
14
43
89
10
13
2E
AA
58
2E
00
1C
01

64
50
6F
65
63
53
65
46
74
74
6C
6D
74
79
74
43
00
4
6C
62
64
41
74
52
65
6C
M
6C
74
65
53
63

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

75
72
6B
6D
74
79
72
72
65
69
65
62
74
43
72
6F
4
74
79
75
65
73
74
75
72
65
74
79
65
72
79
73

86
49
10
19
14
43
59
14
43
99
99
2B
2F
2
7B
01
00
27

6C
6F
00
00
6F
73
73
61
00
6F
4
6C
72
6F
69
6D
73
74
43
74
6D
73
72
6E
76
4
74
56
00
73
73
00

18
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

65
67
6D
4F
72
74
69
6D
53
6E
74
79
69
6E
62
70
73
72
6F
65
61
65
69
74
69
74
72
65
M
69
74
44

43
10
02
43
31
14
43
71
24
80
2E
A4
43
2E
02
00
04
00

3E
72
73
62
00
65
6F
65
79
00
74
44
62
66
75
61
65
69
70
00
72
6D
62
69
63
74
69
72
73
6F
65
65

00
00
00
00
00
00
00
00
00
02
00
00
00
00
01
00
00
00

00
61
63
6A
50
6D
6E
77
73
4
72
65
75
69
74
6E
6D
62
79
41
6B
62
75
6D
65
72
62
73
73
6E
6D
62

10
02
00
14
43
49
19
43
91
2F
1B
2F
A4
6B
2F
00
00
00

43
6D
6F
65
72
2E
69
6F
74
73
69
73
74
67
65
79
62
75
72
73
41
6C
74
65
73
69
75
69
65
41
2E
75

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

48
00
72
63
69
52
6E
72
65
73
62
63
65
75
00
41
6C
74
69
73
74
79
65
2E
00
62
74
6F
6D
74
44
67

02
81
01
21
14
43
61
14
43
2E
A4
33
2E
EC
83
00
00
00

5F
43
6C
74
6E
75
67
6B
6D
65
75
72
00
72
M
74
79
65
67
65
74
43
00
49
43
75
65
6E
62
74
69
67

00
20
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

30
48
69
00
74
6E
00
4
2F
6D
74
69
4
61
73
74
50
00
68
6D
72
75
53
6E
6F
74
00
4
6C
72
61
61

73
00
4F
43
39
14
43
79
10
0B
2E
99
53
2E
0B
00
00
00

33
5F
62
4D
00
74
54
74
52
62
65
70
73
74
73
72
72
4
74
62
69
6C
79
74
6D
65
4
74
79
69
67
62

20
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00

2F
30
00
61
61
69
61
74
65
6C
00
74
73
69
65
69
6F
73
4
6C
62
74
73
65
56
00
73
74
46
62
6E
6C

00
00
11
14
43
51
14
43
09
33
23
2F
A4
73
29
00
00

00
65
33
53
69
72
6D
72
72
66
79
41
69
65
6F
6D
62
64
73
74
79
75
75
74
72
69
47
73
72
69
75
6F
65

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

3C
78
00
79
6E
67
65
67
69
6C
54
73
6F
6D
6E
62
75
75
65
74
54
74
72
65
6F
73
75
65
69
6C
74
73
41

00
86
43
29
14
43
69
1E
43
2F
A4
3B
2E
F9
04
00
00

4D
65
42
73
00
73
2F
65
62
65
69
73
6E
62
4
6C
74
63
6D
72
72
65
65
6D
70
69
69
6D
62
65
65
74
74

00
18
00
00
00
00
00
00
00
00
00
00
00
00
80
00
00

6F
00
6F
74
2F
00
56
74
75
63
74
65
4
6C
74
79
65
74
62
69
61
00
4
2F
53
62
64
62
75
56
00
69
74

R I P
L P
Covvvvnnn 0...C.
Gl hClly)
.C...9.C
A.C...I.C...Q
Y.Co.o.alCl i
C...q.C...y.C
%.C.$.¢.C.....C
LMEe, 3...
"o g.. P
4+.0...3.M...
a,..C.g...5.9g..
[.A...k.i...s.0.
e o) €
e <Mo

dule>.CH 03.exe.
Program.CH_03.Bo
ok.mscorlib.Syst
em.Object.Main..
ctor.Print.args.
System.Runtime.V
ersioning.Target
FrameworkAttribu
te.System.Reflec
tion.AssemblyTit
leAttribute.Asse
mblyDescriptionA
ttribute.Assembl
yConfigurationAt
tribute.Assembly
CompanyAttribute
.AssemblyProduct
Attribute.Assemb
lyCopyrightAttri
bute.AssemblyTra
demarkAttribute.
AssemblyCultureA
ttribute.System.
Runtime.InteropS
ervices.ComVisib
leAttribute.Guid
Attribute.Assemb
lyVersionAttribu
te.AssemblyFileV
ersionAttribute.
System.Diagnosti
cs.DebuggableAtt

CHAPTER 3 © ASSEMBLY

45

CHAPTER 3 © ASSEMBLY

00000710 72 69 62 75 74 65 00 44 65 62 75 67 67 69 6E 67 ribute.Debugging
00000720 4D 6F 64 65 73 00 53 79 73 74 65 6D 2E 52 75 6E Modes.System.Run
00000730 74 69 6D 65 2E 43 6F 6D 70 69 6C 65 72 53 65 72 time.CompilerSer
00000740 76 69 63 65 73 00 43 6F 6D 70 69 6C 61 74 69 6F vices.Compilatio
00000750 6E 52 65 6C 61 78 61 74 69 6F 6E 73 41 74 74 72 nRelaxationsAttr
00000760 69 62 75 74 65 00 52 75 6E 74 69 6D 65 43 6F 6D ibute.RuntimeCom
00000770 70 61 74 69 62 69 6C 69 74 79 41 74 74 72 69 62 patibilityAttrib
00000780 75 74 65 00 43 6F 6E 73 6F 6C 65 00 57 72 69 74 ute.Console.Writ
00000790 65 4C 69 6E 65 00 00 00 00 13 42 00 6C 00 75 00 eline.....B.l.u.

000007A0 65 00 20 00 53 00 6B 00 79 00 2E 00 00 00 00 00 e. .S.k.y.......
000007B0 EE 52 B2 1D 54 A1 C2 4E 84 22 (3 B6 D1 CO A1 24 iR2.T;{AN,"ATNA;$
000007CO0 00 08 B7 7A 5C 56 19 34 EO 89 05 00 01 01 1D OE ..0z\V.4a%......
000007D0 03 20 00 01 04 20 01 01 OE 04 20 01 01 02 05 20 '+ vee weee eeen
000007E0 01 01 11 41 04 20 01 01 08 04 07 01 12 0C 04 00 ...A.
000007F0 01 01 OE 65 01 00 29 2E 4E 45 54 46 72 61 6D 65 ...e..).NETFIame
00000800 77 6F 72 6B 2C 56 65 72 73 69 6F 6E 3D 76 34 2E work,Version=v4.
00000810 30 2C 50 72 6F 66 69 6C 65 3D 43 6C 69 65 6E 74 0,Profile=Client
00000820 01 00 54 OE 14 46 72 61 6D 65 77 6F 72 6B 44 69 ..T..FrameworkDi
00000830 73 70 6C 61 79 4E 61 6D 65 1F 2E 4E 45 54 20 46 splayName..NET F
00000840 72 61 6D 65 77 6F 72 6B 20 34 20 43 6C 69 65 6E ramework 4 Clien
00000850 74 20 50 72 6F 66 69 6C 65 OA 01 00 05 43 48 5F t Profile....CH_
00000860 30 33 00 00 05 01 00 00 00 00 17 01 00 12 43 6F 03...cceveene. Co
00000870 70 79 72 69 67 68 74 20 C2 A9 20 20 32 30 31 34 pyright Ao 2014
00000880 00 00 29 01 00 24 65 36 36 61 61 32 64 31 2D 36 ..)..$e66aa2d1—6
00000890 36 66 65 2D 34 64 62 62 2D 38 36 31 63 2D 65 35 6fe-4dbb-861c-e5
000008A0 38 30 30 65 38 33 32 36 66 61 00 00 0C 01 00 07 800e8326fa......
000008BO 31 2E 30 2E 30 2E 30 00 00 08 01 00 07 01 00 00 1.0.0.0...0cvv.n.
000008CO 00 00 08 01 00 08 00 00 00 00 00 1E 01 00 01 00 +eveveevcecnannn
000008D0 54 02 16 57 72 61 70 4E 6F 6E 45 78 63 65 70 74 T..WrapNonExcept
000008E0 69 6F 6E 54 68 72 6F 77 73 01 00 00 00 00 00 00 ionThrows.......
000008F0 A5 0D 2D 53 00 00 00 00 02 00 00 00 63 00 00 00 ¥.-S........ Ceun
00000900 08 27 00 00 08 09 00 00 52 53 44 53 D2 4D C2 AC .'...... RSDSOMA-
00000910 CO A3 5A 44 A8 61 E6 CE F4 64 91 02 01 00 00 00 AfzD azldd‘.....
00000920 4A 3A 5C 42 6F 6F 6B 5C 43 23 20 44 65 63 6F 6E J:\Book\C# Decon
00000930 73 74 72 75 63 74 65 64 5C 53 6F 75 72 63 65 43 structed\SourceC
00000940 6F 64 65 5C 43 68 61 70 74 65 72 73 5C 43 48 5F ode\Chapters\CH_
00000950 30 33 5C 6F 62 6A 5C 78 38 36 5C 44 65 62 75 67 03\obj\x86\Debug
00000960 5C 43 48 5F 30 33 2E 70 64 62 00 00 94 27 00 00 \CH_OS.pdb..”'..
00000970 00 00 00 00 00 00 00 00 AE 27 00 00 00 20 00 00 ...vew... e
00000980 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 .evvevvencanennn
00000990 00 00 00 00 A0 27 00 00 00 00 00 00 00 00 00 00 ... "vevuevunenn
000009A0 00 00 5F 43 6F 72 45 78 65 4D 61 69 6E 00 6D 73 .._CorExeMain.ms
000009B0 63 6F 72 65 65 2E 64 6C 6C 00 00 00 00 00 FF 25 coree.dll..... y%
000009CO 00 20 40 00 00 00 00 00 00 00 00 00 00 00 00 00 . @eeeveeeennnnn
000009D0 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 teveveeoeeenannn
000009EO0 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 tivveeenoennannn
000009F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 eeveevvveaooaann
/* end of .text Section*/

46

/* begin of .

00000A00
00000A10
00000A20
00000A30
00000A40
00000A50
00000A60
00000A70
00000A80
00000A90
00000AAO
00000ABO
00000ACO
00000ADO
00000AEO
00000AFO
00000B00
00000B10
00000B20
00000B30
00000B40
00000B50
00000B60
00000B70
00000B80
00000B90
00000BAO
00000BBO
00000BCO
00000BDO
00000BEO
00000BFO
00000C00
00000C10
00000C20
00000C30
00000C40
00000C50
00000C60
00000C70
00000C80
00000C90
00000CAO
00000CBO
00000CCO
00000CDO
00000CEO
00000CFO
00000D00

00
10
00
01
00
00
00
00
Ao
30
90
52
46
00
3F
00
01
49
00
74
Fo
67
6F
30
01
63
00
30
65
31
34
6E
43
65
61
67
72
20
01
6C
65
65
72
6D
33
64
69
30
73

rsrc Section*/

00
00
00
00
00
00
00
00
40
43
02
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
34
53
4F
01
00
00
56
6E
54
69
00
46
00
30
46
72
00
08
72
2F
0A
61
48
00
6C
68
69
32
4F
46
00
78
6F
65
00
75
6F
2F
73

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
20
00
50
00
00
80
00
90
EA
00
49
00
00
00
00
61
66
72
6F
01
69
cc
34
69
69
43
01
73
30
01
6C
5F
48
43
74
67
30
72
69
43
65
64
00
34
63
6E
30
65

00
00
00
00
00
00
00
00
02
01
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
01
00
00
01
00
00
56
4F
00
00
00
00
72
6F
61
6E
53
6C
00
62
6C
70
48
46
69
2E
49
4E
30
12
6F
00
68
31
69
6C
48
00
75
00
08
74
00
00
6D

00
80
00
80
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
18
00
00
01
00
00
00
00
00
53
4E
BD
00
04
00
46
00
6E
00
74
65
01
30
65
74
5F
69
6F
30
6E
61
33
01
70
43
74
34
67
65
5F
2C
63
43
01
56
31
38
62

00
00
00
00
00
00
00
00
00
00
00
00
04
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
5F
5F
EF
01
00
00
69
00
73
00
72
49
30
00
44
69
30
6C
6E
2E
74
6D
2E
4C
79
6F
20
00
69
6E
30
06
74
48
50
65
2E
08
6C

00
00
00
00
00
00
00
00
00
00
00
00
FE
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
38
00
00
68
00
00
90
00
00
56
49
00
00
01
44
6C
24
6C
00
69
6E
30
34
65
6F
33
65
00
30
65
65
65
65
72
70
A9
3C
6E
61
33
01
4F
5F
72
72
30
01
79

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02
00
01
00
00
01
00
00
00
00
45
4E
01
00
00
00
65
04
61
BO
6E
66
30
06
73
6E
00
56
00
00
72
00
78
67
69
79
20
oA
61
6D
2E
50
61
30
6F
73
2E
s
20

00
80
00
00
80
00
00
00
00
00
00
00
00
00
00
00
00
00
00
04
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

ceee

...........

................

............

eV,

P NS PSP R DO -

TMONH = H
. :

DAY

.

= o
o X -

. S0 .
O He He B e

HTMIT o .
L oo

wv .
P
W S O 0O e

o

A K o0 + M I e

QM

ol

.
NN~ |

o - ™
—

~+ ™

moa » + MT -

o« . .
S 0 < -

coe

.

o

M W O M H O S5 He -

S —O RO

o S+ .
WYy S>SA @T KR MD®Mm®Mm®MmO -

oLl

ol

o .
« .

nw O O W

CHAPTER 3 © ASSEMBLY

47

CHAPTER 3

00000D10
00000D20
00000D30
00000D40
00000D50
00000D60
00000D70
00000D80
00000D90
00000DAO
00000DBO
00000DCO
00000DDO
00000DEO
00000DFO
00000E00
00000E10
00000E20
00000E30
00000E40
00000E50
00000E60
00000E70
00000E80
00000E90
00000EAO
00000EBO
00000ECO
00000EDO
00000EEO
00000EFO
00000F00
00000F10
00000F20
00000F30
00000F40
00000F50
00000F60
00000F70
00000F80
00000F90
00000FAO
00000FBO
00000FCO
00000FDO
00000FEO
00000FFO

00001000

00001010
00001020

48

ASSEMBLY

56
31
EF
3D
22
6E
65
3A
66
61
31
6C
6F
65
2E
74
3A
66
0A
0A
64
73
69
2E
72
6F
73
73
20
72
3C
2F
73
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

00
00
BB
22
55
65
6D
73
74
6E
2E
79
6E
3D
61
49
73
74
20
20
50
3D
63
76
65
6E
49
73
20
69
2F
74
73
00
00
00
00
00
00
00
00
00
00
00
00
00
00

20
00
00

65
2E
BF
31
54
3D
62
63
2D
69
30
49
3D
22
70
6E
63
2D
20
20
72
22
72
33
71
4C
6E
3D
20
76
73
72
65
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

00
00
3C
2E
46
22
6C
68
63
66
22
64
22
4D
70
66
68
63
20
20
69
75
6F
22
75
65
76
22
20
69
65
75
6D
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

72
30
3F
30
2D
79
79
65
6F
65
3E
65
31
79
22
6F
65
6F
20
20
76
72
73
3E
65
76
6F
66
3C
6C
63
73
62
00
00
00
00
00
00
00
00
00
00
00
00
00
00

oC
00
00

00
00
78
22
38
65
20
6D
6D
73
oD
6E
2E
41
2F
20
6D
6D
3C
20
69
6E
6F
ob
73
65
6B
61
2F
65
75
74
6C
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

73
2E
6D
20
22
73
78
61
3A
74
0A
74
30
70
3E
78
61
3A
73
20
6C
3A
66
0A
74
6C
65
6C
72
67
72
49
79
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

00
00
6C
65
20
22
6D
73
61
56
20
69
2E
70
oD
6D
73
61
65
3C
65
73
74
20
65
20
72
73
65
65
69
6E
3E
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

69
30
20
6E
73
3F
6C
2D
73
65
20
74
30
6C
0A
6C
2D
73
63
72
67
63
2D
20
64
6C
22
65
71
73
74
66
oD
00
00
00
00
00
00
00
00
00
00
00
00
00
00

co
00
00

00
00
76
63
74
3E
6E
6D
6D
72
3C
79
2E
69
20
6E
6D
6D
75
65
65
68
63
20
45
65
20
22
75
3E
79
6F
0A
00
00
00
00
00
00
00
00
00
00
00
00
00
00

37
00
00

6F
2E
65
6F
61
oD
73
69
2E
73
61
20
30
63
20
73
69
2E
72
71
73
65
6F
20
78
76
75
2F
65
oD
3E
3E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

00
00
72
64
6E
0A
3D
63
76
69
73
76
22
61
3C
3D
63
76
69
75
20
6D
6D
20
65
65
69
3E
73
0A
oD
oD
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

6E
30
73
69
64
3C
22
72
31
6F
73
65
20
74
74
22
72
32
74
65
78
61
3A
20
63
6C
41
oD
74
20
0A
0A
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

00
00
69
6E
61
61
75
6F
22
6E
65
72
6E
69
72
75
6F
22
79
73
6D
73
61
20
75
3D
63
0A
65
20
20
3C
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

00
00
6F
67
6C
73
72
73
20
3D
6D
73
61
6F
75
72
73
3E
3E
74
6C
2D
73
20
74
22
63
20
64
20
20
2F
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

V.e.r.s.i.o.n...
1...0...0...0...
ing<?xml version
="1.0" encoding=
"UTF-8" standalo
ne="yes"?>..<ass
embly xmlns="urn
:schemas-microso
ft-com:asm.v1" m
anifestVersion="
1.0">.. <assemb
lyIdentity versi
on="1.0.0.0" nam
e="MyApplication
.app"/>.. <trus
tInfo xmlns="urn
:schemas-microso
ft-com:asm.v2">.
<security>.
<requeste
dPrivileges xmln
s="urn:schemas-m
icrosoft-com:asm
V3", <
requestedExecuti
onLevel level="a
sInvoker" uiAcce
ss="false"/>..
</requestedP
rivileges>..
</security>.. <«
/trustInfo>..</a
ssembly>........

................
................

................
................
................
................

................

................

CHAPTER 3 © ASSEMBLY

00001030 00 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 .e.ivevvencnennns
00001040 00 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 .evvevvencnnnnnn
00001050 00 00 00 00 00 00 00 OO OO 00 OO0 OO0 00 00 00 00 ..iveveveenenannn
00001060 00 00 00 00 00 00 00 00 OO 00 OO 00 00 00 00 00 ..eevveveeneenens
00001070 00 00 00 00 00 OO 00 0O OO0 OO0 00 OO0 00 00 00 00 +evevevenncnnnns
00001080 00 00 00 00 00 00 00 OO 00 00 OO OO0 00 00 00 00 ..eeeveveenennens
00001090 00 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 .e.vevvenenennnn
000010A0 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 ...evevennennenn
000010BO 00 00 00 00 00 00 00 OO 00 OO 00 00 00 00 00 00 ..evveveenennens
000010CO 00 00 00 00 00 00 00 OO0 00 OO OO 00 00 00 00 00 ..eeeveveenennens
000010D0 00 00 00 00 00 00 00 00 00 OO OO OO 00 00 00 00 ..eeeveveenennens
000010E0 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 ..eeevevennennens
000010FO 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 ..eevevennennenn
00001100 00 00 00 00 00 00 00 OO0 OO 00 OO0 OO0 00 00 00 00 +.ivevevvenenannn
00001110 00 00 00 00 00 OO 00 00O OO 00 00 OO0 00 00 00 00 ..veveveeennannn
00001120 00 00 00 00 00 OO 00 00 OO0 OO0 00 OO0 00 00 00 00 +eveveveenennnnn
00001130 00 00 00 00 00 00 00 00O OO0 00 OO0 OO0 00 00 00 00 eeveveevnnennnns
00001140 00 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 .e.ivevvencnennns
00001150 00 00 00 00 00 00 00 OO0 OO0 OO0 00 00 00 00 00 00 ...vevvenenennnn
00001160 00 00 00 00 00 00 00 OO 00 OO 00 00 00 00 00 00 ..eeeveveenennens
00001170 00 00 00 00 00 OO 00 OO OO0 OO0 00 OO0 00 00 00 00 ..vieveveenenannn
00001180 00 00 00 00 00 00 00 OO OO OO OO OO 00 00 00 00 .eeeveveenennens
00001190 00 00 00 00 00 OO0 00 00 OO0 00 OO0 OO0 00 00 00 00 eeveveevncennnns
000011A0 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 ..eeevevennennens
000011BO 00 00 00 00 00 00 00 OO 00 OO OO0 00 00 00 00 00 ..evvevennennenn
000011CO 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 ..eeveveenennens
000011D0 00 00 00 00 00 00 00 00 OO OO OO 00 00 00 00 00 ..eeeveveenennens
000011E0 00 00 00 00 00 00 00 OO OO OO OO 00 00 00 00 00 ..eevveveevennens
000011F0 00 00 00 00 00 00 00 OO 00 00 OO0 OO0 00 00 00 00 ..eevvevennennens

HXD: HEX EDITOR

In this chapter the HxD tool is used to open the assembly file in hexadecimal format. This tool can be downloaded
from the mh-nexus web site: (http://mh-nexus.de/en).

Analysis of the Assembly

Within the assembly the MS-DOS header is followed by the PE signature and then the PE file header and the PE
optional header. The PE optional header has its own subheaders, such as standard fields, NT-specific fields, and data
directories. Next is the section header. The section header contains information on the sections, such as .text, .rsrc,
and .reloc.

The .text section is important, as it provides the CLI header, metadata, IL code, and other information, which
you will explore later in the chapter. Before we move into that discussion, let’s take a look at how each of the sections
has been defined and referenced by the assembly’s section header Figure 3-3 illustrates the assembly contents.

49

http://mh-nexus.de/en

CHAPTER 3 ASSEMBLY

PE Optional Header

Section Header

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00000000 4D SA 30 00 03 00 00 00 04 00 00 00 FF FF 00 00 M2Z..........7¥..8
00000010 BE 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ,.......@.ce....
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .eueuvveveenennn M5 Dos Header
00000030 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00€...:}(128bytesfollowed
00000040 OE 1F BA OE 00 B4 05 CD 21 B8 01 4C CD 21 54 €8 ..=..°.%1, .LI1TH ! pyehe PEsignature)
00000050 €3 73 20 70 72 €F €7 72 €1 €D 20 €3 €1 €E 6E €F is program cannc
00000060 74 20 €2 €5 20 72 75 €E 20 €9 €E 20 44 4F 53 20 <t be run in DOS
00000070 €D €F &4 €5 2E 0D OD OA 24 00 00 00 00 00 00 00 mode....$........ ¥
jooooooso so 45 00 00 ::I’ESignam
fmeassssnssesas. e eesansasnas ssnsssnases. e
/*PE file header*/ A
4C 01 03 00 A5 OD 2D 53 00 00 00 00 PE..L...¥.-5....:!PEfileheader
00000090 00 00 00 00 EO 00 02 01 v
/* PE header standard fields */ N 7Y 3
OB 01 08 00 00 08 00 00&...........it
000000AC 00 02 00 00 00 00 00 00 BE 27 00 00 00 20 00 00%'... .. EStandaNﬁelds
0000OOBO 00 40 00 00 . 2
/* PE header Windows NT-specific fields*/ 7Y
00 00 40 00 00 20 00 00 00 02 00 00 .@....@.. H
000000CO 04 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 . H .
00000000 00 80 00 00 00 02 00 00 00 00 00 00 03 00 40 85 .€............e; i N-Spedficfields
00ODOOEC 00 00 10 00 00 10 00 00 00 00 10 00 00 10 00 00eeeueeaan.ait
00000OFO 00 00 00 00 10 00 00 00 . A
/* PE header data directories*/ 7Y
00 00 00 00 00 00 00 00eueeeeuawnnait
00000100 €C 27 00 00 4F 00 00 00 00 40 00 00 20 05 00 00 1'..0....@.. ...}
110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00onvveuanaais
00000120 00 €0 00 00 OC 00 00 00 EC 26 00 00 1C 00 00 00i&...... H
00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .uuvwuueeunenn-. Data Directories
00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00owueeunennniil
00000150 00 00 00 00 00 00 00 00 00 20 00 00 OB 00 00 00 -vvceveuee wuenns H
00000160 00 00 00 00 00 00 00 00 08 20 00 00 48 00 00 00H...Q}
170 00 00 00 00 00 00 00 00 B 4 3
/*Section Header*/ .
2E 74 €5 72 74 00 00 00Text...id
00000180 €4 07 00 00 0O 20 00 00 00 08 00 00 00 02 00 00 A....i texrcoction
00000130 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 €60 '
000001A0 2E 72 73 72 €3 00 00 00 20 05 00 00 00 40 00 00 .rsre...@..iM
000001BO 00 06 00 00 0O OA 00 00 00 00 00 00 00 00 00 00 ..ueeueeewanaa.dit
000001CO 00 00 00 00 40 00 00 40) &
2E 72 €5 6C €F €3 00 00@..0.zeloc...&
00000100 OC 00 00 00 0O €0 00 00 00 02 00 00 00 10 00 00%...........;Telocsection
000001E0 00 00 00 00 DO 00 00 00 00 00 00 00 40 00 00 420..EY.
000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4
k 7y
/* begin of .text Section*/
00000200 AOQ 27 00 00 OO0 00 00 00 48 00 00 00 02 00 05 00 PR . S text section
/*removed*/
00000SFO 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00vvvuvennnn
/* end of .text Section*/ v
/* begin of .rsrc Section*/ A
00000A00 00 00 00 OO0 OO 00 00 00 OO0 00 Q0 OO0 0D 00 02 00voveveunns
/*removed*/ IS¢ section
Q000QFFO 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00 00cevuveunnn
/*end of .rsrc Section*/
/*begin of .reloc Section*/ 3
00001000 00 20 00 00 OC 00 00 00 CO 37 00 00 00 00 00 00A7......
/*removed*/ :
000011F0 00 00 00 00 OO0 00 00 00 OO0 00 00 00 00 00 00 00ivevnunnnnn eloc section
/*end of .reloc Section*/ y

Figure 3-3. A typical .NET assembly in hexadecimal format

50

Section Header

According to Partition 2, clause 25.3 of the ECMA C# standard, section headers contain the information
provided in Table 3-1.

CHAPTER 3 © ASSEMBLY

Table 3-1. Section Headers

Size Field Description

8 Name An 8-byte, null-padded ASCII string. There is no terminating null if the string
is exactly eight characters long.

4 VirtualSize Total size of the section, in bytes. If this value is greater than SizeOfRawData,
the section is zero padded.

4 VirtualAddress For executable images this is the address of the first byte of the section when
loaded into memory, relative to the image base.

4 SizeOfRawData Size of the initialized data on disk, in bytes; will be a multiple of
FileAlignment, from the PE header. If this is less than VirtualSize,
the remainder of the section is zero filled. Because this field is rounded,
whereas the VirtualSize field is not, it is possible for this to be greater than
VirtualSize as well. When a section contains only uninitialized data, this
field should be 0.

4 PointerToRawData Offset of the section’s first page in the PE file. This will be a multiple of
FileAlignment, from the optional header. When a section contains only
uninitialized data, this field should be 0.

4 PointerToRelocations Relative virtual address (RVA) of the .reloc section.

4 PointerToLinenumbers Always 0 (§24.1).

2 NumberOfRelocations Number of relocations; set to 0 if unused.

2 NumberOfLinenumbers Always 0 (§24.1).

4 Characteristics Flags describing a section’s characteristics.

From the PE file header contents, you can determine that there are three sections in the assembly and that each
of the sections is 40 bytes long, making the section header a total of 120 bytes long. It starts where the PE optional
header ends. The section header contents from the hexadecimal output from Listing 3-1 are as follows:

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB 0C
/*Section

00000180
00000190

000001A0
000001B0
000001CO

000001D0
000001E0

000001F0

Header*/

C4 07
00 00

00
00

00
00

00
00

20
00

00
00

2E 72
00 06
00 00

63
00
40

00
0A
00

00
00
00

73
00
00

72
00
00

oC 00
00 00

00
00

00
00

00
00

60
00

00
00

00 00 00 00 00 00 00

00
00

00
00
40

00
00

00

oD oE oF
2E
00

00

74
08
00

65
00
00

78
00
00

74
00
20

00
02
00

00
00
00

00
00
60

..............

..............

20
00

00
00

00
00

00
00

00
00

00
00

05
00

40
00 00 00 .ivvvvvnnnnnnnns
6C
00
00

6F
00
40

2E
00
00

00
00
00

00
00
42

72
02
00

65
00
00

63
10
00

...............

00 00 00 00 00 00 00 00

51

CHAPTER 3 © ASSEMBLY

Using the hexadecimal output, let’s take a closer look at the first 40 bytes to get a better understanding of the
first section:

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC oD OE OF
/*Section Header*/

2E 74 65 78 74 00 00 00 .text...
00000180 C4 07 00 00 00 20 00 00 00 08 00 00 00 02 00 00 A.... veeevenn..
00000190 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 60 c.eveeveeene ow

According to the header specification the first 8 bytes define the name of the section, so 00 00 00 2E 74 65
78 74 refers to the .text section. So, this is the . text section, and it has 00 00 07 (4 as virtual size, 00 00 20 00 as
virtual address, 00 00 08 00 as raw size, and 00 00 20 00 as raw address. The size of the . text section is 7C4 bytes,
starting from the offset 200. Based on this the end location of the . text section can be calculated as 200 + 7C4 = 9C4.
But, the actual size of the . text section is defined as 800 bytes by the compiler. According to the specification, the
remaining 3C bytes (800 - 7C4 = 3C) needs to pad with 0 (marked with underline), increasing the total length of the
.text section to 9C4 + 3C = A00 (which is actually 9FF). Thus, the total . text section will be as shown:

0ffset(h) 00 01 02 03 04 05 06 07 08 09 OA OB 0C oD OE OF

/* begin of .text Section*/

00000200 A0 27 00 00 00 00 00 00 48 00 00 00 02 00 05 00 RPN Hoootnn
/*removed*/

000009A0 00 00 5F 43 6F 72 45 78 65 4D 61 69 6E 00 6D 73 .. CorExeMain.ms
000009B0 63 6F 72 65 65 2E 64 6C 6C 00 00 00 00 00 FF 25 coree.dll..... y%
000009CO 00 20 40 00 00 00 00 OO0 OO OO OO OO0 00 00 00 00 . @..evvevennens
000009D0 00 00 00 00 00 00 00 OO 00 00 OO OO 00 00 00 00 .eeeveveevennens
000009E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..eevvevennennens
000009F0O 00 00 00 00 00 00 00 00 00 00 OO OO OO 00 00 00....vuveueennnns
/* end of .text Section*/

Now, let’s take a look at the next 40 bytes to understand the next section header.:

.rsrc section:

000001A0 2E 72 73 72 63 00 00 00 20 05 00 00 00 40 00 00 .ISIC..' @..
000001BO 00 06 00 00 00 OA 00 00 00 00 00 00 00 00 00 00 +iveeeveeeenaenn
000001CO 00 00 00 00 40 00 00 40

According to the header specification the first 8 bytes define the name, so 00 00 00 2E 72 73 72 63 refers to
.rsrc. Hence, this is the .rsrc section, and it has 00 00 05 20 as virtual size, 00 00 40 00 as virtual address, 00 00
06 00 as raw size, and 00 00 A0 00 as raw address. The size of the .rsrc section is 520 bytes, starting from the offset
A00. Based on this, the end location of the .rsrc section will be AO0O + 520 = F20. But, the actual size of the .rsrc
section is defined as 600 by the compiler. According to the specification, 600 - 520 = EO needs to pad the end of the
.rsrc section with 0 (marked with underline), up to F20 + EO = 1000 (which is actually FFF). Therefore, the total
.rsrc section will be as follows:

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF

/* begin of .rsrc Section*/

00000AO0 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 02 00 .eeeveveenennens
/*removed*/

00000F00 2F 74 72 75 73 74 49 6E 66 6F 3E 0D OA 3C 2F 61 /trustInfo>..</a
00000F10 73 73 65 6D 62 6C 79 3E 0D OA 00 00 00 00 00 00 ssembly>........
00000F20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +.veveveeernnnns
00000F30 00 00 00 00 00 00 00 00 00 OO OO 00 00 00 00 00 ..eeeveveeneenens

52

00000F40
00000F50
00000F60
00000F70
00000F80
00000F90
00000FAO
00000FBO
00000FCO
00000FDO
00000FEO
00000FFO
00000FFO
/*end of

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

.rsrc Section*/

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00

CHAPTER 3 © ASSEMBLY

The same technique can be applied to extract other section information. In the next section, you will examine
how the . text section has been defined in the assembly.

.text Section

According to Partition 2, clause 24.2.6 of the ECMA C# standard, the specification of the #~ streamis as shown in

Table 3-2.

Table 3-2. Section Header

Size Field Description
4 Reserved Reserved; always 0.
1 MajorVersion Major version of table schemata; will be 2.
1 MinorVersion Minor version of table schemata; will be 0.
1 HeapSizes Bit vector for heap sizes.
1 Reserved Reserved; always 1.
8 Valid Bit vector of present tables; let 7 be the number of bits that are 1.
8 Sorted Bit vector of sorted tables.
4*n Rows Array of n 4-byte unsigned integers, indicating the number of rows for each
present table.
Tables Sequence of physical tables.

53

CHAPTER 3 ASSEMBLY

Figure 3-4 illustrates the .text section of an assembly.

Offset(h) 00 O1L 02 03 04 05 06 07 08 05 OA OB OC OD OE OF
00000200 AD 27 00 00 00 00 Q0 00
/*begin of CLI header*/ 3
48 00 00 00 02 00 05 00 '...... Hoooooo.
00000210 8C 20 00 00 €0 06 00 Q0 03 00 00 00 QL Q0D Q0 06 @&covuuun
00000220 00 00 00 00 00 00 00 ©O 0O 00 00 00 00 00 00 00 ------11 CLIHeader
00000230 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .cveevvrecnnnanns
00000240 00 00 00 00 00 00 00 00 00 00 00 00 00 ¥
/*CLI method bodies*/ A
0000 00 ...vvvvencnnnnan
00000250 13 30 01 00 OF 00 00 00 O1 00 00 11 00 73 04 00 .0........... s.. Method Body
00000260 00 06 OA 06 €F 03 00 00 06 00 2A 1E 02 28 11 00o.....*..(..
00000270 OO0 OA 2A 3€ 00 72 01 00 00 70 28 12 00 00 OR 00 ..*€.r...p(.....
00000280 2A 1E 02 28 11 00 00 OA ZA 00 00 00
3 13
/*Metadata root*/ :
42 53 4A 42 *..(....*...BSJEB
00000290 01 00 01 00 00 00 00 00 OC 00 00 00 76 34 2E 30 v4.0 Metadata root
..000002A0 2E 33 30 33 31 35 00 00 00 00 05 00 B 4
i
/*Stream header+*/ 1
€C 00 00 00 .30315...... 1...
000002B0 14 02 00 00 23 7E 00 00 80 02 00 00
8C 0Z 00 00$~..€...GE...
000002C0 23 53 74 72 €9 €E €7 73 00 00 00 00
OC 05 00 00 #Strings........ Stream Header
000002D0 18 00 00 00 23 S5 53 00 24 05 00 00
10 00 00 008US.$.......
2E0 23 47 55 49 44 00 00 00 34 05 00 00 2C 01 00 00 #GUID...4...,...
2F0 23 42 €C_€F €2 00 00 00 A 4
/*begin of $~ stream*/
00 00 00 00 0Z 00 00 01 #Blob...........
00000300 47 15 02 00 09 00 00 00 00 FA 25 33 00 16 00 00 G........ 643, ..
00000310 01 00 00 00 13 00 00 00 03 00 00 00 04 00 Q0 QOO0c.cvvunnn #“"’Stream
/*removed*/
00000500 01 00 27 00 00 00 00 00 00 00 00 00
. /*end of g~ stream*/ Y
/*begin of §Strings stream*/ ?
00 3C 4D 6F ..° :
00000810 €4 75 € €5 3E 00 43 48 SF 30 33 2E €5 78 €5 00 dule>.CH_03.exe.}} #String
/*zemoved*/ H
00000780 75 74 €5 00 43 €F €E 73 €F €C €5 00 57 72 €3 74 ute.Console.Writi!
00000790 €5 4C €5 €E €5 00 00 00 H
{*end of $Strings stream*/ A
=
/*begin of $US stream*/ 4
00 13 42 00 €C 00 75 00 elime..... B.l.u.ii #S
0D000TAD €5 00 20 00 S3 00 €8 00 75 00 2E 00 00 00 00 00 e. .S.K.¥.......
;, /*end of $US stream*/
/*begin of $GUID stream*/ h
00000780 EE 52 BZ 1D S4 Al C2 4E 84 22 C3 B D1 CO Al 24 iRe.T;An,Agi;sii #GUID
_J’"ond of ¢ GUID stream*/ y
/*begin of $Blob stream*/ +
000007CO 00 08 B7 7A SC S6 19 34 E0 89 05 00 01 01 1D OE .. -z\V.4d%...... ! #Blob
/*removed*/ H
ODDDOSED €3 €F €€ S4 €28 72 €F 77 73 01 00 00 H
.[end of $Blch stream'/ \ 4
00 00 00 00 ionThrows.......
Q00008F0 AS OD 2D 53 00 00 00 00 02 00 00 OO0 €3 00 00 00 ¥.-S........ c...
/*removed*/
Q0000SFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...vvvveevennnns

/* end of .text section*/

Figure 3-4. .text section of an assenbly

54

CHAPTER 3 © ASSEMBLY

Table 3-3 shows the specification of the stream header.

Table 3-3. Stream Header

Size Field Description
4 Offset Memory offset to the start of this stream from the start of the metadata root.
4 Size Size of this stream, in bytes; will be a multiple of four.
Name Name of the stream as null-terminated, variable-length array of ASCII characters,
padded to the next 4-byte boundary with \0 characters. The name is limited to 32
characters.

The .text section of the assembly defines the stream headers used in the assembly. The stream header data
is as follows:

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA 0B 0oC OD OE OF

6C 00 00 00 1.,
000002B0 14 02 00 00 23 7E 00 00 80 02 00 00 8C 02 00 00#™..€...C...
000002C0 23 53 74 72 69 6E 67 73 00 00 00 00 OC 05 00 00 #Strings........
000002D0 18 00 00 00 23 55 53 00 24 05 00 00 10 00 00 00#US.$.......
000002E0 23 47 55 49 44 00 00 00 34 05 00 00 2C 01 00 00 #GUID...4...,...
000002F0 23 42 6C 6F 62 00 00 00 #Blob...

00 00 00 00 02 00 00 01
00000300 47 15 02 00 09 00 00 00 00 FA 25 33 00 16 00 00 G........ 0%3....

This hexadecimal output shows that the first 4 bytes, 6C 00 00 00, refer to the offset of this stream and are
followed by another 4 bytes representing the size of the stream and an 8-byte string referring to its name. As per
its definition, this #~ stream will start from the metadata root addition to the offset defined in the stream headers
section. The #~ streamhas an offset of 6C, and the metadata root starts at 28C, so the #~ stream will start at metadata
root + 6C = 28C + 6C = 2F8. The total size of the stream is 00 00 02 14, making the end address of the #~ stream
2F8 + 214 = 50C.

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA 0B 0oC OD OE OF

000002F0 23 42 6C 6F 62 00 00 00
/*begin of #~ stream*/

00 00 00 00 02 00 00 01 #Blob...........
00000300 47 15 02 00 09 00 00 00 00 FA 25 33 00 16 00 00 G........ 0%3. .

00000310 01 00 00 00 13 00 00 OO0 03 00 00 00 04 00 00 00 ceveeessoocccans
/*removed*/

00000500 01 00 27 00 00 00 00 00 00 00 00 0O

/*end of #~ stream*/

The same technique can be used to extract other header information. In the following sections, you will study the
different streams from the stream header data.

#~ stream

The type metadata are stored in tables. There are three kinds of metadata tables for types: definition tables, reference
tables, and pointer tables.

55

CHAPTER 3 © ASSEMBLY

Definition Tables

Each definition table contains information with respect to one type of element for the module (e.g., the classes, the
methods of the classes). I will not detail all the possible tables, but include here the most important ones.

ModuleDef

This table has a single entry that defines the current module. This entry provides the name of the file, with its
extension, but without its path.

TypeDef

This table presents one entry for each type defined in the module. Each entry offers the name of the type, the base
type, flags for the type (public, internal, sealed), and indexes referencing the members of the types in the metadata
tables (MethodDef, FieldDef, PropertyDef, EventDef, and so on).

MethodDef

This table has one entry for each method defined in the module. Each entry includes the name of the method; flags
for the method (public, abstract, sealed, and so on); an offset allowing the method to be located in the IL code; and
areference to the signature of the method, which is contained in a binary form in a heap called the #blob. There is
also a table for the fields (FieldDef), one for the properties (PropertyDef), one for events (EventDef), and so on. The
definition of these tables is standard, and each is coded with an identification byte. For example, all the MethodDef
tables in .NET modules have a table number of 6.

Reference Tables

Reference tables contain information on the elements referenced by the module. The referenced elements can be
defined in other modules of the same assembly or as part of other assemblies. Following are a few commonly used
reference tables.

AssemblyRef

This table has an entry for each assembly referenced in the module (i.e., each assembly that has at least one element
referenced in the module). Each entry provides the four components of a strong name: name of the assembly (without
path or extension), version number, culture, and public key token (may be null if one is not present).

ModuleRef

This table presents one entry for each module of the current assembly referenced in the module (i.e., each
module that contains at least one element referenced in the module). Each entry offers the name of the module,
with its extension.

TypeRef

This table has one entry for each type referenced in the module. Each entry includes the name of the type and a
reference to where it is defined. If the type is defined in this module or another module of the same assembly, the
reference indicates an entry in the ModuleRef table. If the type is defined in another assembly, the reference indicates
an entry in the AssemblyRef table. If the type is encapsulated within another type, the reference points to an entry in
the TypeRef table.

56

CHAPTER 3 © ASSEMBLY

MemberRef

This table provides one entry for each member referenced in the module. A member can be, for example, a method,
afield, or a property. Each entry includes the name of the member, its signature, and a reference to the TypeRef table.
The definition of these tables is also standard, and each table is coded with a byte. For instance, all MemberRef tables
in a .NET module are identified with the number 10.

In addition to these tables, the metadata section contains four heaps: #Strings, #Blob, #US, and #GUID.

The #Strings heap has character strings, such as the name of the methods. This means that elements of the tables,
such as MethodDef or MemberRef, do not contain actual strings, but references to the elements of the #String heap.

The #Blob heap offers binary information, such as the method signatures, stored in a binary format. This means
that elements from the MethodDef or MemberRef tables do not contain signatures, but references to the #Blob heap.

The #US (user string) includes character strings defined directly within the code.

The #GUID heap provides the globally unique identifier (GUID) defined and used in the program. A GUID is a
16-byte constant that is employed to name a resource. The particularity of a GUID is that it can be generated by tools
such as guidgen.exe in a way almost certain to guarantee its uniqueness.

MEMORY LAYOUT

| hear a lot of questions about memory layout. When we talk about laying out the memory of an assembly, we
simply mean reading the assembly contents at runtime; instantiating a CLR data structure in the CLR address
space; and populating the data structure with the relevant the values, extracted from the assembly contents. The
CLR will read the following contents (output from the C# program depicted in Listing 3-1) in hexadecimal and
lay them out in the memory as an IL code block that you can explore, using the !'dumpil SOS command via the
WinDbg tool.

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA 0B 0C OD OE OF

00 00 00 .ivvevennnennnnn
00000250 13 30 01 00 OF 00 00 00 01 00 00 11 00 73 04 00 .0..cevvennnn S..
00000260 00 06 OA 06 6F 03 00 00 06 00 2A 1E 02 28 11 000..... * (..
00000270 00 OA 2A 36 00 72 01 00 00 70 28 12 00 00 OA 00 ..*6.r...p(.....

00000280 2A 1E 02 28 11 00 00 OA 2A 00 00 00

Looking at the the hexadecimal output of this assembly, you can see that the #~ stream is defined in the .text
section, which contains different metadata, such as ModuleDef, TypeDef, MethodDef, AssemblyRef, ModuleRef,
and MemberRef, to define the types used in the program.

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

00 00 OA 00 01 00 00 00 .eveeueeennennns
00000340 00 00 06 00 37 00 30 00 06 00 6E 00 54 00 06 007.0...n.T...
00000350 99 00 87 00 06 00 Bo 00 87 00 06 00 CD 00 87 00 ™.f...°.f...I.%.
00000360 06 00 EC 00 87 00 06 00 05 01 87 00 06 00 1E 01 ..i.%}..... E:
00000370 87 00 06 00 39 01 87 00 06 00 54 01 87 00 06 00 *...9.%...T.%...
00000380 8C 01 6D 01 06 00 A0 01 6D 01 06 00 AE 01 87 00 G.m... .m...®.%.
00000390 06 00 C7 01 87 00 06 00 F7 01 E4 01 3F 00 OB 02 ..C.%...:.d.?
000003A0 00 00 06 00 3A 02 1A 02 06 00 5A 02 1A 02 06 00:..... Zo.o..
000003B0 78 02 30 00 00 00 00 00 01 00 00 00 00 00 01 00 X.0ueveevuueenns
000003CO 01 00 00 00 10 00 14 00 1C 00 05 00 01 00 01 00 .evveveevnneenns
000003D0 01 00 10 00 22 00 1C 00 05 00 01 00 03 00 50 20"....uuu.. P
000003E0 00 00 00 00 91 00 3E 00 OA 00 01 00 6B 20 00 00“.>..... k..
000003F0 00 00 86 18 43 00 10 00 02 00 73 20 00 00 00 00 ..T.C.....s

.....

57

CHAPTER 3 © ASSEMBLY

00000400 86 00 49 00 10 00 02 00 81 20 00 00 00 00 86 18 *t.I......T.
00000410 43 00 10 00 02 00 00 00 01 00 4F 00 11 00 43 00 C......... 0...C.
00000420 14 00 19 00 43 00 14 00 21 00 43 00 14 00 29 00C...!.C...).
00000430 43 00 14 00 31 00 43 00 14 00 39 00 43 00 14 00 C...1.C...9.C...
00000440 41 00 43 00 14 00 49 00 43 00 14 00 51 00 43 00 A.C...I.C...Q.C.
00000450 14 00 59 00 43 00 19 00 61 00 43 00 14 00 69 00 ..Y.C.. i
00000460 43 00 14 00 71 00 43 00 14 00 79 00 43 00 1E 00 C...q.C.. oo
00000470 89 00 43 00 24 00 91 00 43 00 10 00 09 00 43 00 %.C.$.¢.C.....C.
00000480 10 00 99 00 80 02 2E 00 2E 00 OB 00 33 00 2E 00 ..™.€ 3

00000490 13 00 99 00 2E 00 1B 00 A4 00 2E 00 23 00 A4 00 ..™.....g...#.g.
000004A0 2E 00 2B 00 A4 00 2E 00 33 00 99 00 2E 00 3B 00 ..+.

g...3."...;
000004B0 AA 00 2E 00 43 00 A4 00 2E 00 53 00 A4 00 2E 00 2...C.g...S.g..
000004C0 5B 00 C2 00 2E 00 6B 00 EC 00 2E 00 73 00 F9 00 [.A...k.i...s.u.
000004D0 2E 00 7B 00 02 01 2E 00 83 00 OB 01 29 00 04 80 { Fool). €

000004E0 00 00 01 00 00 00 00 00 OO OO OO 00 00 00 00 00 .eevveveenennens
000004F0 1C 00 00 00 04 00 00 OO0 OO0 OO OO OO 00 00 00 00 ..eeeveveenennens
00000500 01 00 27 00 00 00 00 OO0 00 00 00 00

The CLR will read this value and use it to lay out the type used in the assembly. You can easily find it, using
I'name2ee SOS command via WinDbg.

Assembly Loading

The CLR loads the assembly into memory and makes it ready to execute by the execution engine of the CLR. The
assembly-loading process in the CLR consists of the following steps:

1. Binding: In this step the CLR determines the assembly to load. To establish the identity
of the assembly, the CLR seeks information as the user inputs it or during dependency
resolution and consults system configuration and the fusion subsystem.

2. Probing: Binding often relies on the fusion subsystem to perform probing in order to
locate an assembly against which to bind. Probing encapsulates much of the complexity of
locating assemblies on your system so that the CLR loader does not have to.

3. Mapping: Once the identity of the assembly is determined, the CLR reads and
maps it in memory. The physical representation of the assembly is mapped in the virtual
memory space.

4. Loading: The last step is to prepare the loaded code for execution. Before code can be
executed, it must pass through the verification phase. Once the code is verified, the CLR
creates the relevant data structures to start execution.

Mapping and loading are mostly implementation details that you seldom need to worry about. The following
section discusses the loading and probing process further.

58

CHAPTER 3 © ASSEMBLY

Inside the Bind, Map, Load Process

A number of steps take place to determine what code to load, where to load it from, and what context it will be loaded
into. A conceptual overview of the process is depicted in Figure 3-5.

Invoke a
method I

Ched T
Status

Figure 3-5. Assembly loading

Arelated part of binding is probing. Probing is the act of searching for the physical binary, based on the version
and location information discovered earlier, in the loading process. Roughly speaking, these four activities can be
conceptually envisioned as described in the next section.

Binding to an Assembly

The binding process accepts a variety of inputs, including either a fully or a partially qualified assembly name, a

file path, or a byte[] block of memory. The process then uses this input to decide which bits must be loaded and

from where. The case of the byte[] is quite simple: the hard work is already done, and you can simply move on to
mapping it in memory, verifying its contents, and working directly with it. However, in the case of a strong name or
partial name, there is a bit of work to do initially. The first step is to transform the name into a location. For assembly
loads that do not specify version or key information, policy is not consulted. Loads that come from disk or a network
location (e.g., Assembly. LoadFrom) that use assemblies with this information will consult policy before fully loading
the assembly; this is determined by reading the assembly’s manifest. But, for all other loads, no configuration or global
assembly cache (GAC) searching is performed.

Consulting the Cache

In the assembly-loading process, before the CLR starts loading any assembly, it will ascertain whether it can reuse
an existing assembly. The CLR checks the local cache of the application domain to investigate the previous binding
activities. If the CLR discovers that the target assembly has already loaded, it will not start the probing process; it will
just reuse that code. Otherwise, the binder proceeds with the process of trying to find a suitable match.

59

CHAPTER 3 © ASSEMBLY

Conclusion

The CLR cannot execute the IL code directly; it needs the assembly. The assembly is a mechanism used by .NET to
deploy the application code. In this chapter, you have seen that the assembly has a specific format that is defined in
Partition 2 of the ECMA CLR specification. At a very high level the assembly contains information that describes the
application code; using predefined headers, the assembly stores the compiled IL code, along with the resource files.
The assembly files typically reside in the storage devices, but, as you have already seen, the CPU fetches instructions
from the memory. As a result, in order for the CPU to execute, the application code needs to reside in the physical
memory. The CLR is responsible for loading the assembly into memory. Understanding how the CLR does this
requires knowledge of how the memory works, how the OS manages it, and, most important, how the CLR uses
memory. Once you have a solid grasp of memory, you will be able to understand how the CLR handles assembly at
runtime. In the next chapter, you will learn about the memory—how it works and how the OS handles it.

Further Reading

Box, Don. Essential. NET: The Common Language Runtime. Vol. 1. Boston: Addison-Wesley, 2003.

Jacob, Bruce, Spencer W. Ng, and David T. Wang. Memory Systems: Cache, DRAM, Disk. Burlington, MA: Morgan
Kaufmann, 2008.

Miller, James S., and Susann Ragsdale. The Common Language Infrastructure Annotated Standard. Boston: Addison-
Wesley, 2004.

60

CHAPTER 4

CLR Memory Model

As you have seen in Chapter 1, the CPU executes instruction by fetching it from the physical memory (RAM).

The application code must reside somewhere in the physical memory to be executed by the CPU. It is therefore
important that you manage the physical memory while the CPU executes an application. The OS plays a significant
role in managing physical memory by abstracting it into a concept called virtual memory. The concept of the virtual
memory gives the illusion to the user application that it has a huge range of memory to consume. The OS offers
memory management services via the memory API.

The CLR has its own memory abstraction layer, implemented using this memory API, and provides a virtual
execution environment for any .NET application. This makes memory operation for the user application easier, and
the application developer is not required to write code to access memory, release memory to avoid unexpected
memory leak, and so on. The responsibility of managing the memory operations is left to the CLR.

In this chapter, you will focus on the relationship between the OS memory services and the CLR memory model.

Introduction

Physical memory is the range of the physical addresses of the memory cells in which an application or system stores
its data, code, and so on during execution. Memory management denotes the managing of these physical addresses
by swapping the data from physical memory to a storage device and then back to physical memory when needed.
The OS implements the memory management services using virtual memory. As a C# application developer you do
not need to write any memory management services. The CLR uses the underlying OS memory management services
to provide the memory model for C# or any other high-level language targeting the CLR.

Figure 4-1 shows physical memory that has been abstracted and managed by the OS, using the virtual memory
concept. Virtual memory is the abstract view of the physical memory, managed by the OS. Virtual memory is simply
a series of virtual addresses, and these virtual addresses are translated by the CPU into the physical address
when needed.

T — "0 era“" system
(IR Viraldloc | P o9 Y
VirtualFree e
VirtualDelete = " S . EEEET
i] a1l | 1l K
- E‘ Virtual E
(-]
p— S Memay T 2 EEEET
-
o

Figure 4-1. CLR memory abstraction

61

CHAPTER 4 © CLR MEMORY MODEL

The CLR provides the memory management abstract layer for the virtual execution environment, using the
operating memory services. The abstracted concepts the CLR uses are AppDomain, thread, stack, heapmemory-
mapped file, and so on. The concept of the application domain (AppDomain) gives your application an isolated
execution environment.

Memory Interaction between the CLR and OS

By looking at the stack trace while debugging the following C# application, using WinDbg, you will see how the CLR uses
the underlying OS memory management services (e.g., the HeapFree method from KERNEL32.d11, the Rt1pFreeHeap
method from ntd11.d11) to implement its own memory model:

using System;

namespace CH_04

{
class Program
{
static void Main(string[] args)
{
Book book = new Book();
Console.ReadlLine();
}
}
public class Book
{
public void Print() { Console.WriteLine(ToString()); }
}
}

The compiled assembly of the program is loaded into WinDbg to start debugging. You use the following
commands to initialize the debugging session:

:000> sxe 1d clrjit

:000> g

:000> .loadby sos clr

:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.d1l

o O O o

Then, you set a breakpoint at the Main method of the Program class, using the !bpmd command:
0:000>!bpmd CH_04.exe CH_04.Program.Main
To continue the execution and break at the breakpoint, execute the g command:

0:000> g

62

CHAPTER 4 © CLR MEMORY MODEL

When the execution breaks at the breakpoint, you use the !eestack command to view the stack trace details of all
threads running for the current process. The following output shows the stack trace for all the threads running for the
application CH_04.exe:

0:000> !eestack

Thread o0

Current frame: (MethodDesc 00233800 +0 CH_04.Program.Main(System.String[]))
ChildEBP RetAddr Caller, Callee

0022ed24 5faf21db clr!CallDescrWorker+0x33

/*trace removed*/

00221218 77712d68 ntdll!RtlFreeHeap+0x142, calling ntdll!RtlpFreeHeap

0022238 771df1ac KERNEL32!HeapFree+0x14, calling ntdll!RtlFreeHeap

0022f24c 5fb4c036 clr!EEHeapFree+0x36, calling KERNEL32!HeapFree

00221260 5fb4c09d clr!EEHeapFreeInProcessHeap+0x24, calling clr!EEHeapFree
0022274 5fb4co6d clr!operator delete[]+0x30, calling clr!EEHeapFreeInProcessHeap
/*trace removed*/

0022f4do 7771316 ntdll!RtlpFreeHeap+0xb7a, calling ntdll! SEH epilog4

0022f4d4 77712d68 ntdll!RtlFreeHeap+0x142, calling ntdll!RtlpFreeHeap

0022f4f4 771df1ac KERNEL32!HeapFree+0x14, calling ntdll!RtlFreeHeap

/*trace removed*/

This stack trace indicates that the CLR uses OS memory management services to implement its own memory
model. Any memory operation in.NET goes via the CLR memory layer to the OS memory management layer.

63

CHAPTER 4 © CLR MEMORY MODEL

Figure 4-2 illustrates a typical C# application memory model used by the CLR at runtime.

/."Jinual memory mapped into .NET
process

00020000 A Heap

IR0 v (hareable)

00040000

b

(0000000 A
% Private Data

¥

00300000 A
00320000 i Mapped File

00340000 w
00360000

OO0 ¢ Heap (Private Data)

00; H

£

Managed Heap

v
A
i Thread Stack
¥

et

::
7565000 |

TREAT0N H

75940000 E’
j mage (S
TM0000

60100 |

h

Figure 4-2. A typical C# application memory model

The CLR memory model is tightly coupled with the OS memory management services. To understand the CLR
memory model, it is important to understand the underlying OS memory model. It is also crucial to know how the
physical memory address space is abstracted into the virtual memory address space, the ways the virtual address
space is being used by the user application and system application, how virtual-to-physical address mapping works,
how memory-mapped file works, and so on. This background knowledge will improve your grasp of CLR memory
model concepts, including AppDomain, stack, and heap.

Windows Memory Management

Asyou learned in Chapter 1, the Windows OS uses the concept of the process to execute different tasks. For example,
when you run any C# application, it will run as a process. Moreover, even when Windows itself does anything, it uses
the concept of the process to execute.

64

CHAPTER 4 © CLR MEMORY MODEL

Concept of the Process

A process is the abstract concept used and implemented by the OS to split systems or application programs among
several functional units. The OS achieves this by allocating a separate, private address space for each process. This address
space maps resources for the application. For example, the CLR contains the GC, code manager, JIT compiler, and so on.
Each of these Windows processes has its own private virtual address space allocated and managed by Windows. When
a process is initialized by Windows, it creates a data structure, called the process environment block (PEB), to manage that
process, using the OS. When you execute the following application, the OS will create a process to start its execution:

using System;

namespace CH_04

{
class Program
{
static void Main(string[] args)
{
Console.Writeline("Process");
}
}
public class Test
{
public void TestMethod() { }
}
}

The compiled assembly of this program is loaded into WinDbg to start debugging. To find out more about the
process in Windows, you use the !process command in the kernel mode of WinDbg, while the application runs
separately. The !process command, with 0 as image name and 0 as Flags, will be shown a list of the processes
running in the system at the moment. Among these processes one will be CH_04.exe, as displayed here:

lkd> !process 0 0

**FkX NT ACTIVE PROCESS DUMP ik

PROCESS 8a9f3660 Sessionld: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBase: 0b100020 ObjectTable: e€1002e00 HandleCount: 2067.
Image: System

/*removed*/

PROCESS 8545b030 SessionId: 1 Cid: 1050 Peb: 7ffdf000 ParentCid: 14b8
DirBase: 7ef76620 ObjectTable: dc8291f8 HandleCount: 20.
Image: CH_04.exe

/*removed*/

PROCESS 88ced330 SessionId: 0 Cid: 07do Peb: 7ffdf000 ParentCid: 1idc

DirBase: 0b100800 ObjectTable: e42b9ef8 HandleCount: 93.
Image: Windbg

65

CHAPTER 4 © CLR MEMORY MODEL

IPROCESS 0 0

When using the !process command with Flags as 0, the output will include time and priority statistics; if 0 is
used for the process ID, and ImageName is omitted, the debugger displays information about all active processes.

Process Structure

Process is simply a data structure and is manipulated by the OS, based on the specification defined in the OS to
manage process. If you examine the process data structure, you will see that it has different fields; some (DirBase,
VadRoot, and so on) are used to maintain the address space for that process, as shownhere. You will use the process ID
8672e030, from the previous output, to learn the details of that process, using the ! process command, as follows:

lkd> !process 84bd4d4o 1

PROCESS 84bd4d40 SessionId: 1 Cid: 1650 Peb: 7ffd3000 ParentCid: 14b8
DirBase: 7ef76620 ObjectTable: db882408 HandleCount: 116.
Image: CH_04.exe
VadRoot 85453be8 Vads 70 Clone 0 Private 313. Modified 6. Locked 0.
DeviceMap 8c463540

Token d9b29c30
ElapsedTime 00:01:48.467
UserTime 00:00:00.000
KernelTime 00:00:00.000
QuotaPoolUsage[PagedPool] 0
QuotaPoolUsage[NonPagedPool] 0
Working Set Sizes (now,min,max) (1374, 50, 345) (5496KB, 200KB, 1380KB)
PeakWorkingSetSize 1374
VirtualSize 91 Mb
PeakVirtualSize 91 Mb
PageFaultCount 1415
MemoryPriority BACKGROUND
BasePriority 8
CommitCharge 1842
DebugPort 85d7efco
NOTE

Bit 0 (Ox1)Displays time and priority statistics.

Bit 1 (0x2)

Displays a list of threads and events associated with the process and their wait states.

Bit 2 (Ox4)

Displays a list of threads associated with the process. If this is included without Bit 1 (0x2), each thread is
displayed on a single line. If this is included with Bit 1, each thread is displayed with a stack trace.

Bit 3 (0x8)

(Windows XP and later) Displays the return address, stack pointer, and (on Itanium-based systems) binary space
partitioning (BSP) register value for each function. The display of function arguments is suppressed.

66

CHAPTER 4 © CLR MEMORY MODEL

Bit 4 (0x10)

(Windows XP and later) Sets the process context equal to the specified process for the duration of this command.
This results in a more accurate display of thread stacks. Because this flag is equivalent to using .process /p /r
for the specified process, any existing user-mode module list will be discarded. If the process is 0, the debugger
displays all processes, and the process context is changed for each one. If you are only displaying a single
process, and its user-mode state has already been refreshed (e.g., with .process /p /r), itis not necessary to
use this flag. This flag is only effective when used with Bit 0 (0x1).

PROCESS DATA STRUCTURE

If you want to see the complete data structure of the process structure of a process, use the dt command with
the structure name and process ID,like this 22:

lkd> dt nt! EPROCESS 84bd4d40

+0x000 Pcb : _KPROCESS
/* removed*/
+0x16¢ ImageFileName : [15] "CH_04.exe"
/* removed*/
+0x278 VadRoot : _MM_AVL TABLE
+0x298 AlpcContext : _ALPC_PROCESS_CONTEXT

+0x2a8 TimerResolutionLink : _LIST ENTRY [Ox0 - 0x0]
+0x2b0 RequestedTimerResolution : 0
+0x2b4 ActiveThreadsHighWatermark : 4
+0x2b8 SmallestTimerResolution : 0
+0x2bc TimerResolutionStackRecord : (

To view the inner structure, use dt nt! EPROCESS -b 89733020, in kernel mode.

The dt command displays information about a local variable, global variable, or data type. The !dt command,
with the symbol name nt! EPROCESS, shows the prior information about that e process.

Process Address Space

While studying the output gjven using ! process command, you may have noticed a field called DirBase. This field
represents the mapping table that mapped the virtual address of the process to the physical address.

You can use the!vad command, with the VadRoot address from the previous output (0x896a9920), to display the
virtual address tree associated with that address:

1kd> !vad 85453be8

VAD level start end commit

88f38fe8 (3) 10 11 2 Private READWRITE

/*removed*/

89213460 (4) 130 132 0 Mapped READONLY Pagefile-backed section
89048cdo (3) 140 140 0 Mapped READONLY Pagefile-backed section
88e13298 (5) 150 150 1 Private EXECUTE_READWRITE

89d489a8 (4) 160 160 1 Private READWRITE

67

CHAPTER 4 © CLR MEMORY MODEL

/*removed*/

88e64c70 (6)
/*removed*/

897cc728 (9)
892a7ed8 (10)
893¢5550 (11)
8a84d940 (12)
89735de8 (13)
/*removed*/

894c6e18 (1)
8a8a54bo (3)
88ed7a10 (4)
88ce3110 (2)
89353230 (4)
88fff088 (6)
88c7f248 (5)
89821168 (6)
8902a9c0 (3)
88cb5480 (5)
897b8728 (6)
/*removed*/

893c81c0 (9)
892c3998 (4)
89629920 (0)
88ace740 (5)
/*removed*/

89543620 (7)
89603d30 (6)
89bca380 (7)
898882¢8 (8)
89bocfao (9)

89209238 (10)

8891388 (3)
892d27b8 (4)
8954930 (2)
/*removed*/

88e9bba8 (4)
88ae66d8 (3)

READONLY

READWRITE
READONLY

EXECUTE_READWRITE

READONLY
READWRITE

EXECUTE_WRITECOPY

EXECUTE_READ
READONLY
EXECUTE_READ
READWRITE
READWRITE
READONLY
READWRITE
READWRITE

EXECUTE_READWRITE

READWRITE

NO_ACCESS
READONLY

EXECUTE_READWRITE

NO_ACCESS

EXECUTE_READWRITE

READWRITE

WrtWatch READWRITE

READWRITE
READONLY

READONLY

READONLY

WrtWatch READWRITE

\WINDOWS\system32\unicode.nls

\WINDOWS\system32\ctype.nls

Pagefile-backed section
Pagefile-backed section

\TestApp\TestApp\bin\Debug\TestApp.exe
Pagefile-backed section
Pagefile-backed section
Pagefile-backed section

Pagefile-backed section

Pagefile-backed section

Pagefile-backed section

EXECUTE_WRITECOPY \WINDOWS\system32\sxwmon32.d1ll

EXECUTE_READ
READONLY

290 2a5 0 Mapped
360 36F 5 Private
370 372 0 Mapped
380 3bf 3 Private
3co 3co 0 Mapped
3do 3dd 0 Mapped
400 407 2 Mapped Exe
410 4d7 0 Mapped
4e0 5e2 0 Mapped
5fo0 8ef 0 Mapped
8fo 8ff 5 Private
900 90f 4 Private
910 911 0 Mapped
920 92f 8 Private
930 93f 5 Private
940 97f 3 Private
980 98f 5 Private
9bo 9bf 2 Private
9co 9c1 0 Mapped
9do aof 3 Private
a10 a1f 3 Private
as0 a8f 3 Private
a90 b8f 255 Private
bgoo c2f 160 Private
c30 d2f 253 Private
d3o d96 0 Mapped
\WINDOWS\Microsoft.NET\Framework\v4.0.30319\1locale.nlp
dao 1071 0 Mapped
\WINDOWS\Microsoft.NET\Framework\v4.0.30319\sortdefault.nlp
1120 1121 0 Mapped
1130 312f 36 Private
10000 1003a 12 Mapped Exe
7f6f0 7f7ef 0 Mapped
7ffbo 7fd3 0 Mapped
7fdc 7fdc 1 Private

899242a0 (7)
/*removed*/

Total VADs: 78, average level: 6, maximum depth: 15

68

READWRITE

Pagefile-backed section
Pagefile-backed section

CHAPTER 4 © CLR MEMORY MODEL

Concept of the Thread

A process cannot be executed by the OS directly; it uses another abstract concept, the thread, which works as the
execution unit for the functional unit defined by the process. The thread has its own address space, which is a subset
of the virtual address space allocated for the process. A thread can only belong to a single process and can only use the
resources of that process. A thread includes

¢ Aninstruction pointer, which points to the instruction that is currently being executed
e Astack

e Asetofregister values, defining a part of the state of the processor executing the thread
e Aprivate data region

When a process is created by the OS, it automatically allocates a thread for it, called the main, or primary, thread.
It is this thread that executes the runtime host, which in turn loads the CLR.

THREAD ENVIRONMENT BLOCK: !TEB

The CLR maintains the data structure of the thread, as shown:

lkd> !teb

TEB at 7ffdfo00
Exceptionlist: 00127440
StackBase: 00130000
StackLimit: 0012booo
SubSystemTib: 00000000
FiberData: 00001€00
ArbitraryUserPointer: 00000000
Self: 7ffdfooo
EnvironmentPointer: 00000000
ClientId: 000015b8 . 00001564
RpcHandle: 00000000
Tls Storage: 00000000
PEB Address: 7¥fdbooo
LastErrorValue: 0
LastStatusValue: c000000f
Count Owned Locks: 0
HardErrorMode: 0

Here, the thread data structure is displayed in detail, using ?? @$thread or dt nt! ETHREAD:

lkd> ?? @$thread
struct ETHREAD * 0x88d97760

+0x000 Tcb : _KTHREAD

+0x1c0 CreateTime : _LARGE_INTEGER 0x0e79ba22”b42e96b8
+0x1c0 NestedFaultCount : 0y00

+0x1c0 ApcNeeded : 0yo

+0x1c8 ExitTime : _LARGE_INTEGER 0x88d97928 88d97928
+0x1c8 LpcReplyChain : LIST ENTRY [0x88d97928 - 0x88d97928]
+0x1c8 KeyedWaitChain : _LIST ENTRY [0x88d97928 - 0x88d97928]

69

CHAPTER 4 © CLR MEMORY MODEL

+0x1do
+0x1do
+0x1d4
+0x1dc
+0x1dc
+0x1dc
+0x1e0
+0x1e4
+0x1ec
+0x1f4
+0x1f4
+0x208
+0x208
+0x20cC
+0x210
+0x218
+0x21cC
+0x220
+0x224
+0x228
+0x228
+0x22C
+0x234
+0x238
+0x23C
+0x240
+0x244
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x24cC
+0x24cC
+0x24cC
+0x24cC
+0x250
+0x250
+0x250
+0x250
+0x254
+0x255
+0x258

ExitStatus

0fsChain
PostBlockList
TerminationPort
ReaperLink
KeyedWaitValue
ActiveTimerListLock
ActiveTimerListHead
Cid
LpcReplySemaphore
KeyedWaitSemaphore
LpcReplyMessage
LpcWaitingOnPort
ImpersonationInfo
Irplist

TopLevelIrp
DeviceToVerify
ThreadsProcess
StartAddress
Win32StartAddress
LpcReceivedMessageld
ThreadListEntry
RundownProtect
ThreadLock
LpcReplyMessageld
ReadClusterSize
GrantedAccess
CrossThreadFlags
Terminated
DeadThread
HideFromDebugger
ActiveImpersonationInfo
SystemThread
HardErrorsAreDisabled
BreakOnTermination
SkipCreationMsg
SkipTerminationMsg
SameThreadPassiveFlags
ActiveExWorker
ExWorkerCanWaitUser
MemoryMaker
SameThreadApcFlags
LpcReceivedMsgIdValid
LpcExitThreadCalled
AddressSpaceOwner
ForwardClusterOnly

DisableageFaultClustering :
11

KernelStackReference

: 0
: (null)

: 0x88ced330 _EPROCESS
: 0x7c8106f9 Void

: 0x0041f450 Void

1 0x41f450

: 0
: 7

: ox1fo3ff
: 0

¢ 0yo
¢ 0yo
: 0yo
1 0yo
: 0yo
¢ 0yo
: 0yo
: 0yo
1 0yo
: 0

: 0yo
¢ 0yo
: 0yo
: 0

: 0yo
1 0yo
: 0yo
0"

: 0no
: (null)

LIST ENTRY [Oxe5afc600 - 0xe5c92568]

: 0xe23f02d8 _TERMINATION PORT
: 0xe23f02d8 _ETHREAD

: 0xe23f02d8 Void

: 0

LIST_ENTRY [0x88d97944 - 0x88d97944]
CLIENT ID
KSEMAPHORE

KSEMAPHORE

: (null)
: (null)
: (null)

_LIST _ENTRY [0x88d97970 - 0x88d97970]

_LIST_ENTRY [0x8927824c - 0x8895cees]
_EX_RUNDOWN_REF
_EX_PUSH_LOCK

0"

70

CHAPTER 4 © CLR MEMORY MODEL

The process is the boundary, and the thread is the execution unit that is executed by the CPU. If you explore the
details of a process, for example, CH_04.exe, which is executing via the OS, you will discover how many threads are
associated with it, as shown:

lkd> !process 0 0

**kk NT ACTIVE PROCESS DUMP

PROCESS 8483a2e8 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBase: 00185000 ObjectTable: 89801e28 HandleCount: 649.
Image: System

/*code removed*/

PROCESS dc406d40 SessionId: 1 Cid: 128c Peb: 7ffd8000 ParentCid: 14b8
DirBase: 7ef76880 ObjectTable: dbfb9a80 HandleCount: 20.
Image: CH_o04.exe

/*code removed*/
The details of the threads associated with CH_04. exe are as follows:

lkd> !process dc406d40 4

PROCESS dc406d40 SessionId: 1 Cid: 128c Peb: 7ffd8000 ParentCid: 14b8
DirBase: 7ef76880 ObjectTable: dbfb9a80 HandleCount: 93.
Image: CH_04.exe

THREAD db4fbd48 Cid 128c.1598 Teb: 7ffdf000 Win32Thread: fco8bdd8 WAIT
THREAD 84a795c8 Cid 128c.130c Teb: 7ffde000 Win32Thread: 00000000 WAIT
THREAD 8509fd48 Cid 128c.0a10 Teb: 7ffddoo0 Win32Thread: 00000000 WAIT

Because the OS multitasks, each of the threads in Windows needs to run or be given a time to execute its
instructions by the CPU and also to simulate that everything is running simultaneously for a single CPU-based
system. The OS ensures this by introducing the concepts of scheduling and the quantum. The quantum is a period
of time allocated for each of the threads to use the CPU. To learn the quantum details of all the threads in the process
89961268, debug the application in WinDbg kernel mode while executing the following commands:

lkd> !process dc406d40

1kd> ?? @$thread 8947fab8
lkd> ?? @$thread->Tcb
lkd> ?? @$thread->Tcb
struct _KTHREAD
/*removed*/

+0x06f Quantum : 10 "'
/*removed*/

lkd> ?? @$thread 889ados8

struct _ETHREAD * 0x88d97760

+0x000 Tcb : _KTHREAD
/*removed*/

71

CHAPTER 4 © CLR MEMORY MODEL

lkd> ?? @$thread->Tcb
struct _KTHREAD
/*removed*/

.
w

+0x06f Quantum

/*removed*/

Thread Address Space

As discussed previously, each process has its own address space. Thread is no different in this respect; each of the
threads in a process has its own private virtual address space. The thread and virtual address space are shown here:

StackBase: 00130000
StackLimit: 0012b000

Thread and Frames

A system can have several processes, a process can have many threads, and a thread can have multiple activation
frames. The activation frame is a data structure that manages the state of a method while it is executing. A thread
begins its life when it is combined with a method as a starting point. To maintain this method call chain, each thread
is associated with a set of frames to keep track of the method states.

To get the details of these frames, the . frame command can be used. This command specifies which local context
is used by a particular method. The . frame command can take different parameters; /1 is shows registers and other
information about the specified local context, as displayed here:

0:000> .frame /r 01
01 001fela8 77720fad ntdll!NtMapViewOfSection+0xc
€ax=0c000000 ebx=00000000 ecx=600d9c84 edx=00010001 esi=7ffdf000 edi=001fe290

eip=7770507c esp=001felac ebp=001feifc iopl=0 nv up ei pl zr na pe nc
€s=001b $5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246
ntd11l!NtMapViewOfSection+0Oxc:

7770507¢ €22800 ret 28h

Concept of the Virtual Memory

The core function of Windows memory management is to manage the virtual memory. Virtual memory is a
conceptual memory model that represents the range of virtual addresses that are mapped to the physical addresses.
When any application requires access to memory, the OS allocates the virtual memory for the application. The
translation process of the virtual address is supported by the hardware (CPU). When an application program refers to
avirtual memory address, the CPU translates it into a physical address. The advantages of accessing memory through
avirtual address are as follows:

e Range of address: A program can use a contiguous range of virtual addresses to access a large
memory buffer that is not contiguous in physical memory.

e More address space: A program can use a greater amount of address space, compared with the
available physical memory address space. As the supply of physical memory decreases, the
memory manager saves pages of it (typically 4 kilobytes) to a disk file. Pages of data or code are
moved between physical memory and disk as needed.

72

CHAPTER 4 © CLR MEMORY MODEL

e Isolation address space: Application programs can use different address space from each
other and will be isolated from each other. The code in one process cannot alter the physical
memory that is being used by another process.

The range of virtual addresses that can be used by a process is called the virtual address space. The virtual address
space can be used in two modes, for example, user mode and kernel mode. Each user-mode process has its own private
virtual address space, as does kernel mode. For a 32-bit process the virtual address space is usually 4 gigabytes, and for a

64-bit process, 8 terabytes.

32-bit and 64-hit Process Addressing

A process is a data structure used by the OS to maintain information about it. Each process on 32-bit Microsoft Windows
has its own virtual address space that enables addressing up to 4 gigabytes of memory. Each process on 64-bit Windows
has a virtual address space of 8 terabytes. All the threads of a process can access their own virtual address space. However,
threads cannot access memory that belongs to another process, which protects processes from being corrupted by another
process. Figure 4-3 illustrates the addressing scheme used in Windows for 32- and 64-bit installations.

Virtual memory — 32 bit 0S

Q000000

00050000

Userspace

002 HOO0C

00310000

Kernel

Kemel space
(2/1Gb)

32-bit 05

User space
"11-»1»»»1-‘1»:» pa

. Kernelspace

D0050000

0020000

DU 10000

Virtual memory — 64 bit 0S

Figure 4-3. Windows memory architecture (32- and 64-bit OS)

73

CHAPTER 4 © CLR MEMORY MODEL

Windows uses privilege strategy when executing a process. Windows has two modes of execution, based on
classification by privilege level: user mode and kernel mode. Typically, user mode is less privileged than kernel mode.

Some examples of user-mode applications are the applications provided in this book, drivers, and so on;
examples of kernel mode are all the core OS components.

In Windows all processes run in isolation to eliminate the potential for a system crash; if one application crashes
while executing, the rest of the system can keep working. This multiprocess execution environment is possible
because of the use of isolated address space for each process.

Applications run in isolation as well. If an application crashes, the system will not stop working, and neither other
applications nor the OS is affected.

The Windows OS in 32-bit mode can support up to 4 gigabytes of addressable virtual space. Of this space,

2 gigabytes are used by the user-mode application, and 2 gigabytes, by the kernel itself. A user-mode application can
get up to 3 gigabytes, and kernel mode, 1 gigabyte of address space when the extended user application memory is
enabled in the system.

The 64-bit Windows OS addressable memory space is shared between active applications and the kernel.

The kernel address space includes a system page table entry (PTE) area (kernel memory thread stacks), paged pool
(page tables, kernel objects), system cache (file cache, registry), and Nonpaged pool (images, and so on).

The default 64-bit Windows OS configuration provides up to 16 terabytes (2A54) of addressable memory space,

divided equally between the kernel and the user applications; with 16 terabytes of physical memory available,

8 terabytes of virtual address space are allocated to the kernel, and 8 terabytes, to user application memory.

The kernel virtual address space is shared across processes. Each 64-bit process has its own space, whereas each
32-bit application runs in a virtual 2 gigabyte Windows-on-Windows (WOW).

The kernel address space includes a system PTE area (kernel memory thread stacks), paged pool (page tables,
kernel objects), system cache (file cache, registry), and nonpaged pool (images, and so on). You have seen how
VMMap shows the user application’s address space. Now, let’s look at the kernel-mode address space and how
the OS allocates it:

#H Start End Length (MB)Count Type

001 80000000 8o3fffff 400000 (4) 2 BootLoaded
002 80400000 8o7fffff 400000 (4) 2 SystemPtes
003 80800000 81dfffff 1600000 (22) 11 Bootloaded
004 81e00000 827fffff a00000 (10) 5 PagedPool
005 82800000 839fffff 1200000 (18) 9 BootLoaded
006 83300000 845fffff cooo00 (12) 6 PfnDatabase
007 84600000 851fffff cooooo (12) 6 NonPagedPool
008 85200000 853fffff 200000 (2) 1 SystemCache
009 85400000 867fffff 1400000 (20) 10 NonPagedPool
010 86800000 869fffff 200000 (2) 1 PagedPool
011 86a00000 871fffff 800000 (8) 4 SystemCache
012 87200000 873fffff 200000 (2) 1 SystemPtes
013 87400000 87dfffff aoooo0 (10) 5 SystemCache
014 87e00000 881fffff 400000 (4) 2 PagedPool
015 88200000 885fffff 400000 (4) 2 SystemCache
016 88600000 88ffffff 200000 (10) 5 DriverImages
017 89000000 897fffff 800000 (8) 4 BootLoaded
018 89800000 899fffff 200000 (2) 1 PagedPool
019 89a00000 8offffff 600000 (6) 3 SystemPtes
020 8a000000 8a3fffff 400000 (4) 2 SystemCache
021 8a400000 gasfffff 200000 (2) 1 SystemPtes
022 8a600000 8a7fffff 200000 (2) 1 SystemCache
023 8a800000 8a9fffff 200000 (2) 1 PagedPool
024 83a00000 8abfffff 200000 (2) 1 SystemPtes
025 8ac00000 8c3fffff 1800000 (24) 12 SystemCache

74

026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076

8c400000
8c600000
8c800000
8d400000
8d600000
8d800000
8dc00000
8de00000
8000000
8ea00000
8ec00000
81400000
8600000
8fa00000
8fc00000
91200000
91600000
91800000
92400000
92600000
93200000
93400000
94000000
94200000
94e00000
95000000
95600000
95a00000
95c00000
95e00000
96200000
96400000
96600000
96a00000
9600000
97800000
97c00000
98000000
9a000000
92400000
9a600000
9a800000
9b600000
9b800000
9bc00000
9be00000
9d200000
9d400000
9d600000
9ee00000
9f000000

8csFFFF
8CTFFFFS
8d3FFIFS
8dsFFIFf
8d7FFFFF
8dbFFFF
8ddFFFFF
BAFFFFFF
8egfffff
8ebffFf
8F3FFFFf
85 FFFFf
8FOFFFff
8FbFFFFf
9LLFFFFS
915FFFFf
917FFFFf
923FFFFF
925 FFFFF
931FFFFF
933FFFFf
93FFFFFS
941 FFFF
94dFFFFS
4FFFFFS
955 FFFFf
959 FFFFf
95bFFFFf
95dFFFFF
961FFFFF
963 FFFFf
965 FFFFf
969 FFFFf
96bFFFFF
OT7FFFFS
97bFFFFS
O7FFFFFS
99FFFFFf
9a3fFfff
9asFFFFf
9a7FFFFf
ObsFFFFF
b7 FFFFS
9bbFFFFF
ObdFFFFF
9d1FFFFF
9d3FFFFF
9dsFFFFF
9edFFFFF
9efFFFFf
a07FFFFf

200000 (
200000 (
€00000 (
200000 (
200000 (
400000 (
200000 (
200000 (
a00000 (
200000 (
800000 (
200000 (
400000 (
200000 (
1600000 (
400000 (
200000 (
€00000 (
200000 (
€00000 (
200000 (
€00000 (
200000 (
€00000 (
200000 (
600000 (
400000 (
200000 (
200000 (
400000 (
200000 (
200000 (
400000 (
200000 (
€00000 (
400000 (
400000 (
2000000 (
400000 (
200000 (
200000 (
€00000 (
200000 (
400000 (
200000 (
1400000 (
200000 (
200000 (
1800000 (
200000 (
1800000 (

2)
2)
12)
2)
2)
4)
2)
2)
10)
2)
8)
2)
4)
2)
22)
4)
2)
12)
2)
12)
2)
12)
2)
12)
2)
6)
4)
2)
2)
4)
2)
2)
4)
2)
12)
4)
4)
32)
4)
2)
2)
14)
2)
4)
2)
20)
2)
2)
24)
2)
24)

P NPRPBRRURPRRNRRLROORBR

1

P NP NPRPRPRNONMNORNPRPRRPNRPRRPRNWRPROCROPRPRODR ORNLPR

= = =
N R NRRO

CHAPTER 4

PagedPool
SystemPtes
SystemCache
DriverImages
SystemCache
PagedPool
DriverImages
SystemCache
DriverImages
SystemPtes
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
DriverImages
SystemPtes
SystemCache
DriverImages
PagedPool
SystemCache
SystemPtes
SessionGlobalSpace
SystemCache
PagedPool
SystemPtes
SystemCache
PagedPool
DriverImages
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
DriverImages
PagedPool
SystemCache
PagedPool
SystemCache

CLR MEMORY MODEL

75

CHAPTER 4 © CLR MEMORY MODEL

077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

76

20800000
a0a00000
a0c00000
a0e00000
22200000
22400000
22600000
23200000
a3400000
23600000
a3a00000
a5c00000
a5e00000
a7a00000
a7c00000
28000000
28400000
a8a00000
a8e00000
29000000
29200000
a9c00000
a9e00000
2aa00000
aac00000
aba00000
abc00000
ad400000
ad600000
ae400000
ae600000
aee00000
af800000
afa00000
b0000000
b0200000
b1e00000
b2000000
c0000000
€1000000
£c400000
fc600000
fca00000
ffc00000

ao9fffff
aobfffff
aodfffff
a21fffff
a23fffff
a25fFHfff
a31fffff
a33fffff
a35sfffff
a3offfff
asbfffff
asdfffff
a79fffff
a7bfffff
a7ffffff
a83fffff
a8offfff
a8dfffff
agffffff
a91fffff
a9bfffff
a9dfffff
aa9fffff
aabfffff
abofffff
abbfffff
ad3fffff
adsffff
ae3fffff
ae5Tfff
aedfffff
af7fffff
afofffff
afffffff
bo1fffff
bidfffff
b1ffffff
bfffffff
cOffffff
fo3fffff
fcsfHfff
fcofffff
ffbfffff
fHffff

200000 (2)
200000 (2)
200000 (2)
1400000 (20)
200000 (2)
200000 (2)
€00000 (12)
200000 (2)
200000 (2)
400000 (4)
2200000 (34)
200000 (2)
1c00000 (28)
200000 (2)
400000 (4)
400000 (4)
600000 (6)
400000 (4)
200000 (2)
200000 (2)
a00000 (10)
200000 (2)
€00000 (12)
200000 (2)
€00000 (14)
200000 (2)
1800000 (24)
200000 (2)
€00000 (14)
200000 (2)
800000 (8)
a00000 (10)
200000 (2)
600000 (6)
200000 (2)
1c00000 (28)
200000 (2)
€000000 (224)
1000000 (16)
3b400000 (948)
200000 (2)
400000 (4)
3200000 (50)
400000 (4)

i
o Rr R R

[=

[N
N RPN PRPORPRUVVRPRERPNWNNRPDERNNRROPRPR

=
[N =
NUNRPRDNMOONRDERWRUDSERIPR

~
~

N

PagedPool
SystemCache
SystemPtes
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
SystemPtes
PagedPool
SystemCache
SystemPtes
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
PagedPool
SystemCache
SystemPtes
SystemCache
PagedPool
SystemPtes
SystemCache
PagedPool
SystemCache
PagedPool
Unused
ProcessSpace
Unused
SessionSpace
Unused
SessionSpace
Hal

CHAPTER 4 © CLR MEMORY MODEL

RANGE OF VIRTUAL ADDRESS SPACE

You can use the poi command in WinDbg kernel mode to explore the virtual address space used by your system.
The ?poi command takes its symbol name from the relevant output its implementation yields. In this example,
nt!MmHighestUserAddress and nt!mmhighestuseraddress are used to investigate the range of virtual memory
for your system:

lkd> ?poi(nt!MmHighestUserAddress)
Evaluate expression: 2147418111 = 7ffeffff

lkd> dp nt!mmhighestuseraddress L1
82ba5714 7ffeffff

This output indicates that the user space ranges from the address 0x00000000 to 0x7FFEFFFF; the system space
therefore ranges from 0x80000000 to the highest possible address (which is oxFFFFFFFF on a standard 32-bit
Windows installation).

As discussed previously, each virtual memory allocated for a process is mapped to the physical memory by the
0S. The implementation details of this mapping are hidden, but you can use WinDbg to study the mapping during
the execution of a C# application.

Virtual-to-Physical Address Mapping

Each virtual address of a process is mapped to a physical memory address This mapping is managed by the OS.
The following C# program can be used to study how the virtual address is mapped to physical memory at runtime:

using System;
namespace CH_04

{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Virtual to Physical address mappings");
Console.ReadlLine();
}
}
}

Once the program is compiled, run it, opening it with WinDbg, in kernel mode, to explore the virtual-to-physical
address mappings. In the kernel mode of WinDbg, you will execute the ! process command, with the process value as
0 and the flags value as 0, to view currently running processes in the system, as shown:

lkd> !process 0 0

¥%% NT ACTIVE PROCESS DUMP ****

PROCESS 8483a2e8 Sessionld: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBase: 00185000 ObjectTable: 89801e28 HandleCount: 642.
Image: System

77

CHAPTER 4 © CLR MEMORY MODEL

/*process removed*/

PROCESS 84ae14f8 SessionIld: 1 Cid: 0b44 Peb: 7ffdao00 ParentCid: 14b8
DirBase: 7ef76820 ObjectTable: e006df68 HandleCount: 20.
Image: CH_04.exe

/*process removed*/

Each of the processes from the prior output has a set of elements to describe the process, such as Process ID,
PEB, and DirBase. The DirBase element specifies the directory base for the relevant process. This directory base
contains mapping between virtual and physical memory. You will use the ! ptov command in WinDbgkernel mode.
The !ptov command displays the entire physical-to-virtual memory map for a given process. You will be using the
process ID 7ec6f2e0 as a parameter of the ! ptov command to display the entire physical-to-virtual memory address
mapping for the process 7ec6f2e0.

Iptov 7ef76820
/*mapping removed*/

69676000 94632000
do77000 94633000
dff9000 94635000
7d1fa000 94636000
300bb000 94637000
4dc3c000 94638000
388af000 94639000

/*mapping removed*/

0 ffdobooo
106000 ffdocooo

/*mapping removed*/
fee00000 fffe0000

The address on the left-hand side is the physical address of each memory page that has a mapping for this
process. The address on the right-hand side is the virtual address used by the application.

Learn the Contents of a Particular Physical Memory Address

You can use the !dc command to view the contents of the physical address and the dc command to show the contents
of the Virtual address. Therefore, from the previous physical-to-virtual memory mapping, you looked at a physical
address and its corresponding virtual address to see whether the contents of these memory addresses are same or not.
You also used the !dc command with a physical address as a parameter, and a virtual address as a parameter with the
dc command to view the memory contents. Technically, the physical address and virtual memory address will have
the same contents, as the virtual address is mapped to the physical address.

78

CHAPTER 4 © CLR MEMORY MODEL

1kd> !dc 106000

106000 ffdo9000 ffdo7000 7fee3180 00000000 /7
106010 54445344 00003955 4247ef01 20202054 DSDTU9....GBT
106020 55544247 49504341 00001000 5446534d GBTUACPI....MSFT
106030 0100000c 5c054310 5f52505f 5c11835b CA_PR[..\
106040 52505f2e 5550435f 04100030 5b060000 . PR_CPUO...... [
106050 2e5c1183 5f52505f 31555043 00041001 ..\._PR_CPU1....
106060 835b0600 5f2e5c11 435f5250 02325550 ..[..\._PR_CPU2.
106070 00000410 11835b06 505f2e5c 50435f52[..\. PR _CP

HoH B H H R

1kd> dc ffdocooo

ffdocooo ffdo9ooo ffdo7000 7fee3180 00000000 peeeloce...
ffdoc010 54445344 00003955 4247ef01 20202054 DSDTU9....GBT
ffdoc020 55544247 49504341 00001000 5446534d GBTUACPI....MSFT
f£doc030 0100000c 5c054310 5f52505f 5c11835b C.A_PR[..\
ffdoco40 52505f2e 5550435 04100030 5b060000 . PR_CPUO...... [
ffdoco50 2e5c1183 5f52505f 31555043 00041001 ..\._PR_CPU1....
ffdoco60 835b0600 5f2e5c11 4355250 02325550 ..[..\. PR_CPU2.
ffdoco70 00000410 11835b06 505f2e5c 50435f52[..\._PR_CP

Furthermore, you used the physical address 106000 as a parameter with the ! dc command, and the

corresponding virtual address ffdoc000 as a parameter with the dc command, to display the memory contents.
Both addresses show the same memory contents, as they refer to the same memory cell.

Find a Virtual Address and Its Contents

Now, you will compile the program, using the C# compiler (csc.exe), and load it into WinDbg for debugging to find a
virtual address. Later, you will use that virtual address to examine the program’s contents.

using System;

namespace CH_04

{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Virtual to Physical address mappings");
}
}
}

The compiled assembly of this program is loaded into WinDbg to begin debugging. You will be using the
following commands to initialize the debugging session:

0:000> sxe 1ld clrjit

0:000> g

0:000> .loadby sos clr

0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll

79

CHAPTER 4 © CLR MEMORY MODEL

You will find a virtual memory address during this debugging session and use that address as the start address
for dumping the contents of the memory. Then, you will go downward from the start address, to 100, to use as the end
address of the range.

To achieve this, you set a breakpoint, using the !bpmd command at the Main method of the Program class:

0:000> !bpmd CH_04.exe CH_04.Program.Main

Then, you continue with the execution, using the g command, which will break when it hits the Main method, as
shown:

0:000> g

(b44.11e8): CLR notification exception - code e0444143 (first chance)

JITTED CH_04!CH_04.Program.Main(System.String[])

Setting breakpoint: bp 003B0070 [CH_04.Program.Main(System.String[])]
Breakpoint 0 hit

€ax=002437f0 ebx=00000000 ecx=019db674 edx=001leed90 esi=00297910 edi=001leece0

eip=003b0070 esp=001eech8 ebp=00leecc4 iopl=0 nv up ei pl nz ac pe nc
€s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000216
003b0070 55 push ebp

This output gives the contents of the registers’ values, along with other information. You will use the memory
address stored in the EIP register to view the contents of this memory. This address will be used as the base for a
range, spanning from the start address to 100. Next, you use the dd command to display the contents of the memory
for the given range; theywill display as double-worded values, like this:

0:000> dd 002437f0-100

0024360 00000000 00000000 00000000 00000000
00243700 00000000 00000000 00000000 00000000
00243710 00000000 00000000 00000000 00000000
00243720 00000000 00000000 00000000 00000000
00243730 00000000 00000000 00000000 00000000
00243740 00000000 00000000 00000000 00000000
00243750 00000000 00000000 029d1ff4 00000000
00243760 029d1ff8 00000000 5fb13a20 00000004

The left-hand column from this memory dump provides the start address of the memory, followed by the
contents of that location.

Memory-Mapped File

Typically, when you reference any virtual memory to access its contents, it will go to the physical memory, based on
the virtual-to-physical mapping table, where, as in the memory-mapped file, instead of seeking the physical memory,
it will look for the physical file, which has been mapped as a memory-mapped file, with the range of the virtual
addresses in the process address space.

Thus, accessing the content of a memory-mapped file is just a dereferencing of an address from the mapped
virtual memory, which will seek the contents of the address in the memory-mapped physical file stored in the storage
device (see Figure 4-4).

80

ADLL file is load as Memory Mapped file
instead of physically loaded into the
Physical memory

Figure 4-4. Memory-mapped file

Page Table Entry

50000

presazsssssnsnaas

T T T T T

CHAPTER 4 © CLR MEMORY MODEL

Physical Memory

T

g

0

50000

This block of Virtual Memory address has
not been mapped with the physical
address {

bssasssssnssssd

JFFE1000

enssannnsensnd

TFFE1000

S P

03

FRESTRARIR2IES22FRT
S=Z=2a2RAZZR2RIR===

i

4070000

Has been mapped into the page file so when any page fault occurred for any

relevantinstruction then the 05 will for that memory mapped stuff in the Paging

file

Hard drive

Bl
= s o
S= 8

 Addresses Data

For example, let’s say the range of virtual addresses from your process address space 10000 to 15000 has been
mapped as a memory-mapped file in the storage device MemoryMappedFile.txt. Thus, if you want to access the contents
of the virtual memory 10005, the memory management services of the OS will go to the MemoryMappedFile. txt file and
seek the region of the file that has been mapped as 10001.

81

CHAPTER 4 © CLR MEMORY MODEL

Now, let’s look at the output for a control area used for this process. This output shows how the memory-mapped
file has been handled and maintained by the OS. The following C# program will be compiled, using csc.exe, and then
loaded into WinDbg to see whether any memory-mapped file is used by the CLR at runtime to execute the program:

using System;
namespace CH_04

{
class Program
{
static void Main(string[] args)
{
Book book = new Book();
}
}
public class Book { }
}

The compiled assembly of the program is loaded into WinDbg to start debugging. Next, you use these commands
to initialize the debugging session:

0:000> sxe ld clrjit

0:000> g

0:000> .loadby sos clr

0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll

Then, you set a breakpoint, using !bpmd, and let the execution continue, using g, until hitting the specified
breakpoint:

0:000> !bpmd CH_04.exe CH_04.Book.Print
Found 1 methods in module 00412e9c...
Adding pending breakpoints...

0:000> !bpmd CH 04.exe CH_04.Program.Main
Found 1 methods in module 00412e9c...
MethodDesc = 00413800

Adding pending breakpoints...

0:000> g

After applying the g command, you use the frame command, with r parameters, to display the registers and other
information about the current local context:

(ca4.e40): CLR notification exception - code e0444143 (first chance)

JITTED CH-04!CH_04.Program.Main(System.String[])

Setting breakpoint: bp 004D0070 [CH_04.Program.Main(System.String[])]
Breakpoint 0 hit

eax=00413800 ebx=00000000 ecx=0196b77c edx=002bf0f0 esi=000f8e60 edi=002bf040

eip=004d0070 esp=002bf018 ebp=002bf024 iopl=0 nv up ei pl nz ac pe nc
€s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000216
004d0070 55 push ebp

82

CHAPTER 4 © CLR MEMORY MODEL

Next, you use the !address command to identify the memory address the target process uses. The !address
command has f parameters, which can take different filter values to allow display of only particular regions’ address
space for a given address.

Now, you will explore the mapped file, using !address /f:FILE_MAP, as shown:

0:000> !address -f:FileMap

Mapping file section regions...

Mapping module regions...

Mapping PEB regions...

Mapping TEB and stack regions...
Mapping heap regions...

Mapping page heap regions...

Mapping other regions...

Mapping stack trace database regions...
Mapping activation context regions...

BaseAddr EndAddr+1 RgnSize Type State Protect Usage
80000 81000 1000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE MappedFile "PageFile"
90000 a0000 10000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE MappedFile "PageFile"
20000 327000 67000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "\Device\

HarddiskVolume7\Windows\System32\locale.nls"

430000 4b0000 10000 MEM _MAPPED MEM_COMMIT ~ PAGE_READONLY MappedFile "PageFile"
4b0000 560000 b0000 MEM MAPPED MEM RESERVE MappedFile "PageFile"
560000 563000 3000 MEM MAPPED MEM COMMIT PAGE_READONLY MappedFile "PageFile"
563000 568000 5000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
930000 ab2000 182000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "PageFile"
ab2000 1530000 a7e000 MEM MAPPED MEM_RESERVE MappedFile "PageFile"

3a70000 3d3f000 2cfo00 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "\Device\
HarddiskVolume7\Windows\Globalization\Sorting\SortDefault.nls"

3d40000 4012000 2d2000 MEM MAPPED MEM COMMIT ~ PAGE READONLY MappedFile "\Device\
HarddiskVolume7\Windows\Microsoft.NET\Framework\v4.0.30319\sortdefault.nlp"

7f6f5000 7f7f0000 fb00O ~ MEM_MAPPED MEM_RESERVE MappedFile "PageFile"

Memory-mapped files and how they work—nice description of the memory mapped files provided here:

0:000> !vmmap

Start Stop Length AllocProtect Protect State Type
00000000-0000ffff 00010000 NA Free

00010000-0001ffff 00010000 RdWr RdWr Commit Mapped
00020000-0002ffff 00010000 RdWr RdWr Commit Mapped
00030000-00033fff 00004000 Rd Rd Commit Mapped
00034000-0003ffff 0000c000 NA Free

00040000-00040fff 00001000 Rd Rd Commit Mapped

83

CHAPTER 4 © CLR MEMORY MODEL

Here, the virtual memory has already been mapped as a memory-mapped file. It is maintained using the data
structure _CONTROL_AREA:

lkd> dt nt! CONTROL AREA

+0Xx000 Segment : Ptr32 _SEGMENT
+0x004 Dereferencelist : _LIST_ENTRY

+0x00c NumberOfSectionReferences : Uint4B

+0x010 NumberOfPfnReferences : Uint4B

+0x014 NumberOfMappedViews : Uint4B

+0x018 NumberOfSubsections : Uint2B

+0x01a FlushInProgressCount : Uint2B

+0x01c NumberOfUserReferences : Uint4B

+0x020 u : __unnamed

+0x024 FilePointer : Ptr32 _FILE_OBJECT
+0x028 WaitingForDeletion : Ptr32 _EVENT_COUNTER
+0x02c ModifiedWriteCount : Uint2B

+0x02e NumberOfSystemCacheViews : Uint2B
You use the !memusage command, from WinDbg, to see how the virtual memory is mapped:

lkd> !memusage
loading PFN database
loading (100% complete)
Compiling memory usage data (99% Complete).
Zeroed: 16041 (64164 kb)
Free: 4 (16 kb)
Standby: 148360 (593440 kb)
Modified: 36405 (145620 kb)
ModifiedNoWrite: 180 (720 kb)
Active/Valid: 317051 (1268204 kb)
Transition: 5132 (20528 kb)
Bad: 729 (2916 kb)
Unknown: o (0 kb)
TOTAL: 523173 (2092692 kb)
Building kernel map
Finished building kernel map
Scanning PFN database - (100% complete)

Usage Summary (in Kb):
Control Valid Standby Dirty Shared Locked PageTables name
1fffffd 3108 0 0 0 0 0 AWE

86770608 308 32 0 0 0 0 mapped_file(Siyamrupali.ttf)
84a8f148 0 380 0 0 0 0 mapped file(msmincho.ttc)
84c0768 16928 3908 0 14852 0 0 mapped file(chrome child.d1l)
8581d850 4012 5812 0 0 0 0 mapped file($Mft)

86896818 184 1024 0 0 0 0 mapped_file(1.TXT)

8569c8f0 5640 26460 0 0 0 0 mapped file($LogFile)
84c2ea88 128 9300 0 0 0 0 mapped file(data_1)

85771168 1888 2156 0 0 0 0 mapped file(No name for file)
84cbf5f8 108 236 0 0 0 0 mapped file(Visited Links)

84

CHAPTER 4 © CLR MEMORY MODEL

To obtain the details of this mapping, you investigate the control, using the ! ca command, which will give you the
inner workings of the memory-mapped mapping mechanism in Windows:

1kd> !ca 86896818

ControlArea @ 86896818
Segment 97c0ea80
Section Ref 1
User Ref 0
File Object 868b5be8
WritableRefs 0

Flags (c080) File WasPurged Accessed

\1.TXT

Segment @ 97c0ea80

ControlArea 86896818 ExtendInfo

Total Ptes 200

Segment Size 200000 Committed
Flags (c0000) ProtectionMask

Subsection 1 @ 86896868
ControlArea 86896818
Base Pte 9b891008

Flags d
Accessed
Flink 84efa224

Subsection 2 @ 84de7e38
ControlArea 86896818
Base Pte 86eb5000

Flags d
Accessed
Flink 00000000

ModWriteCount

Starting Sector
Ptes In Subsect
Sector Offset

Starting Sector
Ptes In Subsect
Sector Offset

Blink 00000000
Mapped Views 2
Flush Count 0
System Views 2

0 Number Of Sectors 100

100 Unused Ptes
0 Protection

84a70cbc MappedViews

100 Number Of Sectors 100
100 Unused Ptes 100

0 Protection

00000000 MappedViews

MEMORY REGIONS DISPLAYED

VAR: Busy regions. These regions include all virtual allocation blocks, the small block heap

(SBH), memory from custom allocators, and regions of the address space that fall under no other

classification.

e Free: Free memory. This includes all memory that has not been reserved.

Image: Memory that is mapped to a file that is part of an executable image.

Stack:Memory used for thread stacks.

Teb: Memory used for thread environment blocks (TEBS).

Peb: Memory used for the PEB.

Heap: Memory used for heaps.

85

CHAPTER 4 © CLR MEMORY MODEL

e PageHeap: The memory region used for the full-page heap.

e (SR :CSR-shared memory.

o Actx. Memory used for activation context data.

e NLS: Memory used for national language support (NLS) tables.

o FileMap: Memory used for memory-mapped files. This filter is applicable only during
live debugging.

Conclusion

physical memory (RAM) is the place where the application program, including OS executable instruction, is loaded
during execution. The CPU fetches instruction from the memory and executes. The OS is responsible for handling and
managing the physical memory and provides memory management services, using the concepts of virtual memory
and API to access those services. The API is capable of allocating, deallocating, querying, and deleting memory from
the physical memory via the memory management layer. Most of the programming languages targeting the Windows
OS have their own memory model, implemented with Windows memory management services, unless they explicitly
implement their own memory management layer to access physical memory directly.

In .NET the virtual execution environment the CLR implements its own memory abstraction layer, using the
Windows virtual memory management services. In this chapter you learned how Windows manages and handles
memory. In the next chapter, you will consider the memory abstraction layer used by the CLR. The CLR uses the
abstraction concept of the application domain to start execution of a .NET application. The application domain is the
combination of the virtual address space and specification implemented in the CLR. This specification indicates how
to deal with the range of the virtual memory, and so on. Inside the application domain the CLR lays out other abstract
concepts, such as managed thread, stack, and heap.

Further Reading

Farrell, Chris, and Nick Harrison. Under the Hood of .NET Memory Management. S.1., Simple Talk.

Hewardt, Mario. Advanced .NET Debugging. Upper Saddle River, NJ: Addison-Wesley, 2010.

Hewardt, Mario, and Daniel Pravat, D. Advanced Windows Debugging. Upper Saddle River,
NJ: Addison-Wesley, 2008.

Jacob, Bruce, Spencer W. Ng, and David T. Wang. Memory Systems: Cache, DRAM, Disk. Burlington,
MA: Morgan Kaufmann, 2010.

Juola, Patrick. Principles of Computer Organization and Assembly Language. Upper Saddle River,
NJ: Prentice Hall, 2007.

Lidin, Serge. Inside Microsoft: NET IL Assembler. Redmond, WA: Microsoft.

McDougall, Richard, and Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture.
Upper Saddle River, NJ: Prentice Hall, 2006.

Pratschner, Steven. Customizing the Microsoft .NET Framework Common Language Runtime.
Edited by Kathleen Atkins. Redmond, WA: Microsoft, 2009.

86

CHAPTER 5

CLR Memory Model lI

In Chapter 4, you learned about Windows memory management. The CLR uses the underlying Windows memory
management services to implement its own memory model to provide memory to the user’s application. In this
chapter, you will explore the CLR memory model to learn different concepts used in the CLR. You will look at the
application domain and how the CLR structures and allocates virtual memory for it. You will also examine other
contexts, such as Stack and Heap.

CLR Memory Model: Application Domain

In the CLR an application domain is used to isolate the execution boundary for security, versioning, reliability, and
unloading of the managed code. An application domain by itself cannot be executed by the CLR, which serves as the
container to hold the application. At runtime the CLR loads all the managed code of an application into one or more
application domains and executes that code, using one or more threads (thread is a mechanism used by the OS to
execute application code by the CPU; see Chapters 1 and 4).

There is not a one-to-one mapping between