

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��xi

About the Technical Reviewer��xiii

�Chapter 1: Introduction to Programming Language■■ ���1

Chapter 2: The Virtual Machine and CLR■■ ��25

Chapter 3: Assembly■■ ��39

Chapter 4: CLR Memory Model■■ ���61

Chapter 5: CLR Memory Model II■■ ��87

Chapter 6: CLR Execution Model■■ ���111

Chapter 7: CLR Execution Model II■■ ���131

Index��153

1

Chapter 1

Introduction to
Programming Language

The basic operational design of a computer system is called its architecture. John von Neumann, a pioneer in
computer design, is credited with the architecture of most computers in use today. A typical von Neumann system has
three major components: the central processing unit (CPU), or microprocessor; physical memory; and input/output
(I/O). In von Neumann architecture (VNA) machines, such as the 80x86 family, the CPU is where all the computations
of any applications take place. An application is simply a combination of machine instructions and data. To be
executed by the CPU, an application needs to reside in physical memory. Typically, the application program is written
using a mechanism called programming language. To understand how any given programming language works, it is
important to know how it interacts with the operating system (OS), software that manages the underlying hardware
and that provides services to the application, as well as how the CPU executes applications. In this chapter, you will
learn the basic architecture of the CPU (microcode, instruction set) and how it executes instructions, fetching them
from memory. You will then learn how memory works, how the OS manages the CPU and memory, and how the OS
offers a layer of abstraction to a programming language. Finally, the sections on language evaluation will give you a
high-level overview of how C# and common language runtime (CLR) evolved and the reason they are needed.

Overview of the CPU
The basic function of the CPU is to fetch, decode, and execute instructions held in read-only memory (ROM) or
random access memory (RAM), or physical memory. To accomplish this, the CPU must fetch data from an external
memory source and transfer them to its own internal memory, each addressable component of which is called
a register. The CPU must also be able to distinguish between instructions and operands, the read/write memory
locations containing the data to be operated on. These may be byte-addressable locations in ROM, RAM, or the
CPU’s own registers.

In addition, the CPU performs additional tasks, such as responding to external events for example resets and
interrupts, and provides memory management facilities to the OS. Let’s consider the fundamental components of a
basic CPU. Typically, a CPU must perform the following activities:

Provide temporary storage for addresses and data•	

Perform arithmetic and logic operations•	

Control and schedule all operations•	

Chapter 1 ■ Introduction to Programming Language

2

Figure 1-1 illustrates a typical CPU architecture.

Registers have a variety of purposes, such as holding the addresses of instructions and data, storing the result of
an operation, signaling the result of a logic operation, and indicating the status of the program or the CPU itself. Some
registers may be accessible to programmers, whereas others are reserved for use by the CPU. Registers store binary
values (1s and 0s) as electrical voltages, such as 5 volts or less.

Registers consist of several integrated transistors, which are configured as flip-flop circuits, each of which can be
switched to a 1 or 0 state. Registers remain in that state until changed by the CPU or until the processor loses power.
Each register has a specific name and address. Some are dedicated to specific tasks, but the majority are general
purpose. The width of a register depends on the type of CPU (16 bit, 32 bit, 64 bit, and so on).

Figure 1-1.  Computer organization and CPU

Chapter 1 ■ Introduction to Programming Language

3

REGISTERS

•	 General purpose registers : Registers (eight in this category) for storing operands and pointers

•	 EAX: Accumulator for operands and results data

EBX•	 : Pointer to data in the data segment (DS)

•	 ECX: Counter for string and loop operations

EDX•	 : I/O pointer

•	 ESI: Pointer to data in the segment pointed to by the DS register; source pointer for string
operations

•	 EDI: Pointer to data (or destination) in the segment pointed to by the ES register; destination
pointer for string operations

ESP •	 : Stack pointer (in the SS segment)

EBP•	  : Pointer to data on the stack (in the SS segment)

•	 Segment registers : Hold up to six segment selectors.

•	 EFLAGS (program status and control) register : Reports on the status of the program being
executed and allows limited (application-program level) control of the processor

•	 EIP (instruction pointer) register : Contains a 32-bit pointer to the next instruction to be
executed

The segment registers (CS, DS, SS, ES, FS, GS) hold 16-bit segment selectors. A segment selector is a special
pointer that identifies a segment in memory. To access a particular segment in memory, the segment selector for that
segment must be present in the appropriate segment register. Each of the segment registers is associated with one
of three types of storage: code, data, or stack. For example, the CS register contains the segment selector for the code
segment, where the instructions being executed are stored.

The DS, ES, FS, and GS registers point to four data segments. The availability of four data segments permits
efficient and secure access to different types of data structures. For instance, four separate data segments may be
created—one for the data structures of the current module, another for the data exported from a higher-level module,
a third for a dynamically created data structure and a fourth for data shared with another program.

The SS register contains the segment selector for the stack segment, where the procedure stack is stored for the
program, task, or handler currently being executed. All stack operations use the SS register to find the stack segment.
Unlike the CS register, the SS register can be loaded explicitly, which permits application programs to set up multiple
stacks and switch among them.

The CPU will use these registers while executing any program, and the OS maintains the state of the registers
while executing multiple applications by the CPU.

Chapter 1 ■ Introduction to Programming Language

4

Instruction Set Architecture of a CPU
The CPU is capable of executing a set of commands known as machine instructions, such as Mov, Push, and Jmp. Each
of these instructions accomplishes a small task, and a combination of these instructions constitutes an application
program. During the evolution of computer design, stored-program technique has brought huge advantages. With
this design, the numeric equivalent of a program’s machine instructions is stored in the main memory. During the
execution of this stored program, the CPU fetches the machine instructions from the main memory one at a time and
maintains each fetched instruction’s location in the instruction pointer (IP) register. In this way, the next instruction
to execute can be fetched when the current instruction finishes its execution.

The control unit (CU) of the CPU is responsible for implementing this functionality. The CU uses the
current address from the IP, fetches the instruction’s operation code (opcode) from memory, and places it in the
instruction-decoding register for execution. After executing the instruction, the CU increments the value of the IP
register and fetches the next instruction from memory for execution. This process repeats until the CU reaches the
end of the program that is running.

In brief, the CPU follows these steps to execute CPU instruction:

Fetch the instruction byte from memory•	

Update the IP register, to point to the next byte•	

Decode the instruction•	

Fetch a 16-bit instruction operand from memory, if required•	

Update the IP to point beyond the operand, if required•	

Compute the address of the operand, if required•	

Fetch the operand•	

Store the fetched value in the destination register•	

The goal of the CPU’s designer is to assign an appropriate number of bits to the opcode’s instruction field and
to its operand fields. Choosing more bits for the instruction field lets the opcode encode more instructions, just
as choosing more bits for the operand fields lets the opcode specify a greater number of operands (often memory
locations or registers). As you saw earlier, the IP fetches the memory contents, such as 55, and 8bec; all these represent
an instruction for the CPU to understand and execute.

However, some instructions have only one operand, and others do not have any. Rather than waste the bits
associated with these operand fields for instructions that do not have the maximum number of operands, CPU
designers often reuse these fields to encode additional opcodes, once again with additional circuitry.

The instruction set used by any application is abstracted from the actual hardware implementation of that
machine. This abstraction layer, which sits between the OS and the CPU, is known as instruction set architecture
(ISA). The ISA provides a standardized way of exposing the features of a system’s hardware. Programs written using
the instructions available for an ISA could run on any machine that implemented that ISA. The gray layer in Figure 1-2
represents the ISA.

Chapter 1 ■ Introduction to Programming Language

5

The availability of the conceptual abstraction layer the ISA is possible because of a chip called the microcode
engine. This chip is like a virtual CPU that presents itself as a CPU within a CPU. To hold the microcode programs, the
microcode engine has a small amount of storage, the microcode ROM, which contains an execution unit that executes
the programs. The task of each microcode program is to translate a particular instruction into a series of commands
that controls the internal parts of the chip.

Any program or process executed by the CPU is simply a set of CPU-understandable instructions stored in the
main memory. The CPU executes these instructions by fetching them from the memory until it reaches the end of the
program. Therefore, it is crucial to store the program instructions somewhere in the main memory. This underlines
the importance of understanding memory, especially how it works and manages. You will learn in depth about
memory management in Chapter 4. First, however, you will briefly look at how memory works.

Memory: Where the CPU Stores Temporary Information
The main memory is a temporary storage device that holds both a program and data. Physically, main memory
consists of a collection of dynamic random access memory (DRAM) chips. Logically, memory is organized as a linear
array of bytes, each with its own unique address starting at 0 (array index).

Figure 1-3 demonstrates the typical physical memory. Each cell of the physical memory has an associated
memory address. The CPU is connected to the main memory by an address bus, which passes a physical address
via the data bus to the memory controller to read or write the contents of the relevant memory cell. The read/write
operation is controlled by the control bus connecting the CPU and physical memory.

Figure 1-2.  ISA and OS

Chapter 1 ■ Introduction to Programming Language

6

As a programmer, when you write an application program, you do not need to spend any time managing the CPU
and memory, unless your application is designed to do so. This raises the issue of another kind of abstraction, which
introduces the concept of the OS. The responsibility of the OS is to manage the underlying hardware and furnish
services that allow user applications to consume the hardware and functionality.

Concept of the OS
The use of abstractions is an important concept in computer science. There is a body of software that is responsible
for making it easy to run programs, allowing them to share memory, interact with hardware, share the hardware
(especially the CPU) among different processes, and so on. This body of software is known as the operating system
(OS). The OS is in charge of making sure that the system operates correctly, efficiently, and easily.

A typical OS in fact exports a set of hundreds of system calls, called the application programming interface (API),
that are available to applications to consume. The API is intended to do a particular job, and as a consumer of the API,
you do not need to know its inner details.

The OS is sometimes referred to as a resource manager. Each of the components of a computer system, such
as CPU, memory, and disk, is a resource of that system; it is thus the OS’s role to manage these resources, doing so
efficiently and fairly.

Figure 1-3.  Memory communication

Chapter 1 ■ Introduction to Programming Language

7

The secret behind this is to share the CPU’s processing capability. Let’s say, for example, that a CPU can execute
a million instructions per second and that the CPU can be divided among a thousand different programs. Each of the
programs can be executed simultaneously during the period of 1 second and can continue its execution by sharing
the CPU’s processing power. The CPU’s time is split into processes P1 to PN, with each process having one or more
execution blocks, known as threads. The CPU will execute the processes one by one, but in doing so, it gives the
impression that all the processes are executing at the same time. The processes thus result from a combination of the
user application program and the OS’s management capabilities. Figure 1-4 displays a hypothetical model of CPU
instruction execution.

Figure 1-4.  Hypothetical model of CPU instruction execution

As you can see, the CPU splits and executes multiple processes within a given period. To achieve this, the OS uses
a technique of saving and restoring the execution context called context switch. Context switch consists of a piece of
low-level code block used by the OS. The context switch code saves the current state of the execution of a process and
restores the execution state of the previously stored process when it schedules to execute. The switching between
processes is determined by another executive service of the OS, called the scheduler. As Figure 1-5 illustrates, when
process P1 is ready to resume its execution (as the scheduler schedules process P2 to restore and start its execution),
the OS saves the execution state of process P1.

Chapter 1 ■ Introduction to Programming Language

8

To save the execution state of the currently running process, the OS will execute low-level assembly code to save
the general purpose registers, PC, as well as the kernel stack pointer for that particular process. When the OS resumes
previously stopped process, it will restore the previously stored execution state of the soon-to-be-executing process.

Concept of the Process
A process is the abstract concept implemented by the OS to split its work among several functional units. The OS
achieves this by allocating a region of memory for each functional unit while executing. These functional units
are defined by the processes. Processes contain resources; for example, the CLR has the garbage collector (GC),
code manager, and just-in-time (JIT) compiler. In Windows a process has its own private virtual address space (see
Chapter 4), which is allocated and managed by the OS. When a process is initialized by Windows, it creates a process
environment block (PEB), a data structure that maintains the process.

The OS does not execute processes. A process is a container for functional units; the functional unit of a process
is a thread, and it is the thread that is executed by the OS (technically, a thread is a data structure that serves as an
execution unit for the functional units defined by the process). A process can have have a single or multiple threads.
In the next section, you will explore more about how the thread works in the OS.

Figure 1-5.  Saving the context to switch between processes

Chapter 1 ■ Introduction to Programming Language

9

Concept of the Thread
A process can never be executed by the OS directly; it uses the thread, which serves as the execution unit for the
functional units defined by the process. The thread has its own address space, taken from the private address space
allocated for the process. A thread can only belong to a single process and can only use the resources of that process.
A thread includes

An IP that points to the instruction that is currently being executed•	

A stack•	

A set of register values, defining a part of the state of the processor executing the thread•	

A private data region•	

When a process is created by the OS, it automatically allocates a main, or primary, thread. It is this thread that
executes the runtime host, which in turn loads the CLR.

What Is Virtualization?
I have already introduced several abstraction concepts used in computer systems, as indicated in Figure 1-6. On
the processor side the ISA offers an abstraction of the actual processor hardware. On the OS side there are three
abstractions: files as an abstraction of I/O, virtual memory as an abstraction of program memory, and processes as an
abstraction of a running program. These abstractions, provided by the CPU and OS, as well as the API facility of the
OS, bring us to the concept of programming language.

Figure 1-6.  Layers of abstraction

In layperson’s terms, programming language is a mechanism by which you can use your computer’s resources to
perform various tasks. In the following sections, you will briefly look at the concept of programming language.

Chapter 1 ■ Introduction to Programming Language

10

Programming Language
You have seen how the CPU’s instructions abstracted as the ISA. The ISA helps the programmer write the application
program without having to worry about the underlying hardware resources. This abstraction concept introduces a
programming language concept known as assembly language. Assembly programming language was introduced
to manipulate the CPU’s mnemonics programmatically by providing a one-to-one mapping between mnemonics
and machine language instructions. The way this mapping has been achieved is by using another piece of software,
called the assembler. The assembler is responsible for translating the mnemonics into CPU-understandable machine
language. Assembly language is tightly coupled with the relevant hardware.

An application written to target a particular platform requires rewriting when it targets a different platform. The
nature of this coupling caused programmers to seek out an improved version of programming language, compared
with assembly language. This need ushered in the era of high-level programming language, with the help of a
compiler. A compiler is software that is more capable and complex than assembler. The main task of a compiler is to
transform source code written using high-level language into low-level language, such as assembly or native code.

Compilation and Interpretation
A compiler is a program written using other, high-level language. A compiler is responsible for translating a high-level
source program into an equivalent target program, typically in assembly language. A typical compiler performs many
tasks, including lexical analysis, preprocessing, parsing, and semantics analysis of the source code. A compiler also
generates the target code from the source code and performs the code optimization. Lexical analysis is a process that
is used to convert a sequence of characters from the source code into a sequence of tokens. In the code generation
phase, the compiler compiles source code into the target language. For instance, when C# source code compiles,
it translates the source code into intermediate language (IL) code. Figure 1-7 illustrates the major elements of a
compiler program.

Figure 1-7.  Traditional compilation model

Birth of C# Language and JIT Compilation
As you have seen, a compiler compiles the source code into the target language, such as assembly language. There is
a one-to-one relationship between the source code and the target code the compiler generates as compiled output.
This one-to-one mapping raises the issue of interoperability, which in turn introduces the need for a mechanism
that can compile the source code into common intermediate language (CIL) so that later, during the execution time,
that intermediate code can be compiled into native code. This gives the flexibility of having multiple high-level
languages targeting one intermediate language. Furthermore, that one intermediate language can be compiled into
machine-understandable native code. A compiler that acts on this compilation process is known as a just-in-time
(JIT) compiler.

Chapter 1 ■ Introduction to Programming Language

11

One such JIT compiler is that of the CLR. Any .NET language targeting the CLR, such as C#, VB.NET, Managed
C++, and F#, will be compiled into the IL. Figure 1-8 demonstrates how C# languages use the JIT compiler at runtime.

Figure 1-8.  JIT compilation

Chapter 1 ■ Introduction to Programming Language

12

Listing 1-1 shows a simple program that calculates the square of a given number and displays the squared
number as output.

Listing 1-1.

/* importing namespace */
using System;
 
/* namespace declaration */
namespace Ch_01
{
 /* class declaration*/
 class Program
 {
 /* method declaration */
 static void Main(string[] args)
 {
 PowerGenerator pg = new PowerGenerator();
 pg.ProcessPower();
 } /* end of method declaration */
 }/* end of class declaration */
 
 public class PowerGenerator
 {
 /* constant declaration */
 const int limit = 3;
 const string
 original = "Original number",
 square = "Square number";
 
 public void ProcessPower()
 {
 /* statement*/
 Console.WriteLine("{0,16}{1,20}", original, square);
 /* iteration statement*/
 for (int i = 0; i <= limit; ++i)
 {
 Console.Write("{0,10}{1,20}\n", i, Math.Pow(i, 2));
 }
 }
 }
} /* end of namespace declaration */
 

A C# program consists of statements, and each of these statements executes sequentially. In Listing 1-1 the
Pow method, from the Math class, processes the square of a number, and the Write method, from the Console class,
displays the processed square number on the console as output. When Listing 1-1 is compiled using the C# compiler
csc.exe, and executes the executable, it will produce the output given here:
 
Original number Square number
 0 0
 1 1
 2 4
 3 9
 

Chapter 1 ■ Introduction to Programming Language

13

Listing 1-1 contains a class called a program inside the namespace Ch01. A namespace is used to organize classes,
and classes are used to organize a group of function members, which is called a method. A method is a block of
statement defined inside curly braces ({}), such as {statement list}, inside a class; for example:
 
static void Main(string[] args){......}
 

The int literal 3 and the string literals "Original number" and "Square number" are used in the program to
define three variables. In Listing 1-1 the iteration statement for is used to iterate through the processing. A local
variable, i, is declared in the for loop as a loop variable. For more details on the compilation process of a C# program,
see the section “Road Map to the CLR.”

The C# language definition defines a machine-independent intermediate form known as common intermediate
language (CIL), or IL code. IL code is the standard format for distribution of C# programs; it allows portable programs
to be used in any environment that supports the CLR. The main C# compiler produces the IL code, which is then
translated into machine code immediately prior to execution by the JIT compiler. CIL is deliberately language
independent, so it can be used for code produced by a variety of front-end compilers. The C# language is different
from traditional language (see Figure 1-8).

If you want to view the IL code, the front-end compiler generated for Listing 1-1 executes the following command
at the Visual Studio command prompt:
 
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_01\bin\Debug\>ildasm CH_01.exe /output:File.IL
 

This will produce, following the IL code, the Intermediate Language Disassembler (ILDASM) tool disassembly of
the assembly.

// Microsoft (R) .NET Framework IL Disassembler
Version 4.0.30319.1
// Copyright (c) Microsoft Corporation. All rights reserved.
 
// Metadata version: v4.0.30319
.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..
 .ver 4:0:0:0
}
.assembly CH_01
{
 /*removed*/
 .hash algorithm 0x00008004
 .ver 1:0:0:0
}
.module CH_01.exe
// MVID: {B7A4D69C-5024-418E-9BDF-310A26522865}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000003 // ILONLY 32BITREQUIRED
// Image base: 0x002E0000
 

Chapter 1 ■ Introduction to Programming Language

14

// =============== CLASS MEMBERS DECLARATION ===================
 
.class private auto ansi beforefieldinit Ch_01.Program
 extends [mscorlib]System.Object
{
 .method private hidebysig static void Main(string[] args) cil managed
 {
 .entrypoint
 // Code size 15 (0xf)
 .maxstack 1
 .locals init ([0] class Ch_01.PowerGenerator pg)
 IL_0000: nop
 IL_0001: newobj instance void Ch_01.PowerGenerator::.ctor()
 IL_0006: stloc.0
 IL_0007: ldloc.0
 IL_0008: callvirt instance void Ch_01.PowerGenerator::ProcessPower()
 IL_000d: nop
 IL_000e: ret
 } // end of method Program::Main
 
 .method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
 {
 // Code size 7 (0x7)
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: ret
 } // end of method Program::.ctor
 
} // end of class Ch_01.Program
 
.class public auto ansi beforefieldinit Ch_01.PowerGenerator
 extends [mscorlib]System.Object
{
 .field private static literal int32 limit = int32(0x00000003)
 .field private static literal string original = "Original number"
 .field private static literal string square = "Square number"
 .method public hidebysig instance void
 ProcessPower() cil managed
 {
 // Code size 82 (0x52)
 .maxstack 4
 .locals init ([0] int32 i,
 [1] bool CS$4$0000)
 IL_0000: nop
 IL_0001: ldstr "{0,16}{1,20}"
 IL_0006: ldstr "Original number"
 IL_000b: ldstr "Square number"
 IL_0010: call void [mscorlib]System.Console::WriteLine(string,
 object,
 object)

Chapter 1 ■ Introduction to Programming Language

15

 IL_0015: nop
 IL_0016: ldc.i4.0
 IL_0017: stloc.0
 IL_0018: br.s IL_0046
 
 IL_001a: nop
 IL_001b: ldstr "{0,10}{1,20}\n"
 IL_0020: ldloc.0
 IL_0021: box [mscorlib]System.Int32
 IL_0026: ldloc.0
 IL_0027: conv.r8
 IL_0028: ldc.r8 2.
 IL_0031: call float64 [mscorlib]System.Math::Pow(float64,
 float64)
 IL_0036: box [mscorlib]System.Double
 IL_003b: call void [mscorlib]System.Console::Write(string,
 object,
 object)
 IL_0040: nop
 IL_0041: nop
 IL_0042: ldloc.0
 IL_0043: ldc.i4.1
 IL_0044: add
 IL_0045: stloc.0
 IL_0046: ldloc.0
 IL_0047: ldc.i4.3
 IL_0048: cgt
 IL_004a: ldc.i4.0
 IL_004b: ceq
 IL_004d: stloc.1
 IL_004e: ldloc.1
 IL_004f: brtrue.s IL_001a
 
 IL_0051: ret
 } // end of method PowerGenerator::ProcessPower
 
 .method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
 {
 // Code size 7 (0x7)
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: ret
 } // end of method PowerGenerator::.ctor
 
} // end of class Ch_01.PowerGenerator
 
// ===
 
// *********** DISASSEMBLY COMPLETE ***********************
// WARNING: Created Win32 resource file File.res

Chapter 1 ■ Introduction to Programming Language

16

The CLR
In .NET the virtual execution system (VES) is known as the common language runtime (CLR). The CLR implements
and enforces the common type system (CTS) model and is responsible for loading and running programs written
for the common language infrastructure (CLI) (see Figure 1-9). The CLI provides the services needed to execute the
managed code and data, using the metadata to connect separately generated modules at runtime (late binding).
In this way, the CLI serves as a unifying framework for designing, developing, deploying, and executing distributed
components and applications.

Figure 1-9.  CLR as a virtual execution environment

The appropriate subset of the CTS is available from each programming language that targets the CLI.
Language-based tools communicate with each other and with the VES, using metadata to define and reference the
types used to construct the application. The VES uses the metadata to create instances of the types as needed and to
give data type information to other parts of the infrastructure (such as remoting services, assembly downloading,
and security).

The CLI supplies a specification for the CTS and metadata, the CLS, and the VES. Executable code
is presented to the VES as modules. A module is a single file containing executable content in the format
specified in Partition 2, sections 21–24 of the ECMA CLI standard, which is available on the ECMA web site
(http://www.ecma-international.org/publications/standards/Ecma-335.htm).

The CLI’s unified type system, CTS, is used by the compilers (C#, VB.NET, and so on), tools, and the CLI itself.
The CLI supplies the model for defining the type in your application. This model includes the rules that CLI follows
when declaring and managing types. The CTS is a rich type system that supports the types and operations of many
programming languages (see Figure 1-10).

http://www.ecma-international.org/publications/standards/Ecma-335.htm

Chapter 1 ■ Introduction to Programming Language

17

Figure 1-10.  CTS type system

Figure 1-11.  Compilation overview

Details on the specification of the CTS and the complete list of CTS types can be found in Partition 1, section 8 of
the ECMA CLI standard.

Road Map to the CLR
The C# compiler compiles the C# source code into the module, which is later converted into the assembly at the
program’s compile time. The assembly contains the IL code, along with the metadata concerning that assembly.
The CLR works with the assembly, loading it and converting it into native code for execution.

When the CLR executes a program, it does so method by method. However, before the CLR executes any method,
unless the method has already been JIT compiled, the CLR’s JIT compiler needs to convert it into native code. The
JIT compiler is responsible for compiling the IL code into native instructions for execution. The CLR retrieves the
appropriate metadata concerning the method from the assembly, extracts the IL code for the method, and allocates
a block of memory to the heap, where the JIT compiler will store the JITted native code for that method. Figure 1-11
demonstrates the compilation process of a C# program.

Chapter 1 ■ Introduction to Programming Language

18

An assembly is defined by a manifest, which is metadata that lists all the files included and directly referenced
in the assembly, the types exported and imported by the assembly, versioning information, and security permissions
that apply to the whole assembly.
 
using System;
 
namespace Ch_01
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.Read();
 ClassTest ct = new ClassTest();
 while (true)
 {
 if (Console.ReadKey().Key == ConsoleKey.A)
 break;
 }
 }
 }
 
 public class ClassTest
 {
 public void One() { }
 public void Two() { }
 public void Three() { }
 }
}
 

When this application is compiled into an assembly (Ch_01.exe), using csc.exe, you can view the contents of the
assembly with the dumpbin tool, as shown:
 
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_01\bin\Debug>dumpbin /all CH_01.exe>C:\CH_01_
Dumpbin.txt
 

The contents of the CH_01_Dumpbin.txt are as follows:
 
Microsoft (R) COFF/PE Dumper Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.
 
Dump of file CH_01.exe
 
PE signature found
 
File Type: EXECUTABLE IMAGE
 
FILE HEADER VALUES
 14C machine (x86)
 3 number of sections
 533D4124 time date stamp Thu Apr 03 22:08:20 2014
 0 file pointer to symbol table
 0 number of symbols

Chapter 1 ■ Introduction to Programming Language

19

 E0 size of optional header
 102 characteristics
 Executable
 32 bit word machine
 
OPTIONAL HEADER VALUES
 10B magic # (PE32)
 8.00 linker version
 A00 size of code
 800 size of initialized data
 0 size of uninitialized data
 283E entry point (0040283E)
 2000 base of code
 4000 base of data
 400000 image base (00400000 to 00407FFF)
 2000 section alignment
 200 file alignment
 4.00 operating system version
 0.00 image version
 4.00 subsystem version
 0 Win32 version
 8000 size of image
 200 size of headers
 0 checksum
 3 subsystem (Windows CUI)
 8540 DLL characteristics
 Dynamic base
 NX compatible
 No structured exception handler
 Terminal Server Aware
 100000 size of stack reserve
 1000 size of stack commit
 100000 size of heap reserve
 1000 size of heap commit
 0 loader flags
 10 number of directories
 0 [0] RVA [size] of Export Directory
 27F0 [4B] RVA [size] of Import Directory
 4000 [520] RVA [size] of Resource Directory
 0 [0] RVA [size] of Exception Directory
 0 [0] RVA [size] of Certificates Directory
 6000 [C] RVA [size] of Base Relocation Directory
 2770 [1C] RVA [size] of Debug Directory
 0 [0] RVA [size] of Architecture Directory
 0 [0] RVA [size] of Global Pointer Directory
 0 [0] RVA [size] of Thread Storage Directory
 0 [0] RVA [size] of Load Configuration Directory
 0 [0] RVA [size] of Bound Import Directory
 2000 [8] RVA [size] of Import Address Table Directory
 0 [0] RVA [size] of Delay Import Directory
 2008 [48] RVA [size] of COM Descriptor Directory
 0 [0] RVA [size] of Reserved Directory
 

Chapter 1 ■ Introduction to Programming Language

20

SECTION HEADER #1
 .text name
 844 virtual size
 2000 virtual address (00402000 to 00402843)
 A00 size of raw data
 200 file pointer to raw data (00000200 to 00000BFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
60000020 flags
 Code
 Execute Read
 
RAW DATA #1
 00402000: 40 28 00 00 00 00 00 00 48 00 00 00 02 00 05 00 @(......H.......
 00402010: A8 20 00 00 04 07 00 00 03 00 00 00 01 00 00 06 ¨
 
 /* removed */
 
 00402840: 00 00 5F 43 6F 72 45 78 65 4D 61 69 6E 00 6D 73 .._CorExeMain.ms
 00402850: 63 6F 72 65 65 2E 64 6C 6C 00 00 00 00 00 FF 25 coree.dll.....ÿ%
 00402860: 00 20 40 00 . @.
 
 Debug Directories
 
 Time Type Size RVA Pointer
 -------- ------ -------- -------- --------
 533D4124 cv 63 0000278C 98C Format: RSDS, {ABA92538-B058-4C6C-AFA8-
2208F3586205}, 3, J:\Book\C# Deconstructed\SourceCode\Chapters\CH_01\obj\x86\Debug\CH_01.pdb
 
 clr Header:
 
 48 cb
 2.05 runtime version
 20A8 [6C8] RVA [size] of MetaData Directory
 3 flags
 IL Only
 32-Bit Required
 6000001 entry point token
 0 [0] RVA [size] of Resources Directory
 0 [0] RVA [size] of StrongNameSignature Directory
 0 [0] RVA [size] of CodeManagerTable Directory
 0 [0] RVA [size] of VTableFixups Directory
 0 [0] RVA [size] of ExportAddressTableJumps Directory
 0 [0] RVA [size] of ManagedNativeHeader Directory
 

Chapter 1 ■ Introduction to Programming Language

21

 Section contains the following imports:
 
 mscoree.dll
 402000 Import Address Table
 402818 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference
 
 0 _CorExeMain
 
SECTION HEADER #2
 .rsrc name
 520 virtual size
 4000 virtual address (00404000 to 0040451F)
 600 size of raw data
 C00 file pointer to raw data (00000C00 to 000011FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only
 
RAW DATA #2
 00404000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00
/* removed */
 004045B0: 66 6F 3E 0D 0A 3C 2F 61 73 73 65 6D 62 6C 79 3E fo>..</assembly>
 004045C0: 0D 0A 00 00 00 00 00 00
 
SECTION HEADER #3
 .reloc name
 C virtual size
 6000 virtual address (00406000 to 0040600B)
 200 size of raw data
 1200 file pointer to raw data (00001200 to 000013FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
42000040 flags
 Initialized Data
 Discardable
 Read Only
 
RAW DATA #3
 00406000: 00 20 00 00 0C 00 00 00 60 38 00 00 `8..
 

Chapter 1 ■ Introduction to Programming Language

22

BASE RELOCATIONS #3
 2000 RVA, C SizeOfBlock
 860 HIGHLOW 00402000
 0 ABS
 
 Summary
 
 2000 .reloc
 2000 .rsrc
 2000 .text

Tools Used in This Book
WinDbg is a debugging tool for performing user and kernel-mode debugging. This tool comes from Microsoft, as
part of the Windows Driver Kit (WDK). WinDbg is a graphical user interface GUI) built on Console Debugger (CDB),
NT Symbolic Debugger (NTSD), and kernel debugging, along with debugging extensions. The Son of Strike (SOS)
debugging extension DLL (dynamic link library) helps debug managed assembly by providing information on the
internal CLR environment.

WinDbg is a powerful tool; it can be used to debug managed assembly. and it allows you to set a breakpoint; view
source code, using symbol files; view stack trace information; view heap information; see the parameters of a method,
a memory, and registers; examine exception handling information; and much more.

WinDbg comes as part of the Debugging Tools for Windows package; WinDbg is free and available on the
Microsoft Web site (http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx). Once you have
downloaded and installed the installation package, open WinDbg from the installed directory, for example, by going
to Programs  Debugging Tools for Windows (x86)  WinDbg.

A symbol file contains variety of data that can be used in the debugging process, but this information is not
necessary for running the binaries.

Symbol files may contain

Global variables•	

Local variables•	

Function names and the addresses of their entry points•	

Frame pointer omission (FPO) records•	

Source line numbers•	

When the debugger tools (such as WinDbg) have to have access to the related symbol files, then you need to set
the symbol file location. Microsoft has provided a symbol server, so it is good to point the debugger to it. To do this,
you can use the srv command, along with the local cached folder, to which the symbol files will be downloaded, and
the server location, from which the symbol files will be downloaded. It is as simple to use the symbol server with the
srv command as it is to use the appropriate syntax in your symbol path. Typically, the syntax takes the
following format:
 
SRV*your local cached folder*http://msdl.microsoft.com/download/symbols
 

The local cached folder should contain any drive or share that is used as a symbol destination. For instance, to set
the symbol path in WinDbg, type this command in the Command window of the debugger:
 
.sympath SRV*C:\symbols*http://msdl.microsoft.com/download/symbols
 

http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

Chapter 1 ■ Introduction to Programming Language

23

In the Symbol Search Path window, the symbol path location has been set as shown:
 
SRV*c:\symbols*http://msdl.microsoft.com/download/symbols
 

Here, c:\symbols refers to the local cached folder, to which the symbol file will be downloaded from the location
specified as http://msdl.microsoft.com/download/symbols.

The final, important step of the WinDbg setup is to use right version of the SOS debugging extension DLL. You
will learn about this in the following section.

Son of Strike Debugging Extension DLL
The Son of Strike (SOS) debugging extension DLL helps debug managed assembly. 4With SOS, you will be able to

Display managed call stacks•	

Set breakpoints in managed code•	

Find the values of local variables•	

Dump the arguments to method calls•	

Perform most of the inspection and control debugging actions that you can use in native-code •	
debugging—only without the convenience of source level debugging

To load SOS.dll and initiate the debugging environment in WinDbg, you need to run the following commands:
 
sxe ld clrjit
g
.loadby sos clr
.load sos.dll
 

The .load sos.dll command is used to load SOS, but if WinDbg cannot find the right version of the SOS,
it throws exception.

In .NET every version of the CLR has its own copy of the SOS extension DLL. You must always make sure to load
the right version of the SOS. To do this, you need to use the full path of the SOS (installed in your system), using the
.load command. The path syntax is asfollows:
 
.load <full path to sos.dll>
 

Or, altermatively:
 
.load %windir%\Microsoft.NET\Framework\<version>\sos.dll
 

For example, if the SOS is installed in the C:\Windows\Microsoft.NET\Framework\v4.0.30319\ directory, you
may need to execute this command:
 
.load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

The complete list of the commands is as shown:
 
sxe ld clrjit
g
.loadby sos clr
.load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

Chapter 1 ■ Introduction to Programming Language

24

The ILDASM tool uses to examine .NET Framework assemblies in IL format, such as mscorlib.dll, as well
as other .NET Framework assemblies provided by a third party or created by you. The ILDASM parses any .NET
Framework–managed assembly. ILDASM can be used to

Explore Microsoft intermediate language (MSIL) code•	

Displays namespaces and types, including their interfaces•	

Examine the executable header information•	

The ILDASM tool comes with.NET Framework Software Development Kit (SDK), so you don’t need to download;
it will be installed as part of the Visual Studio installation.

Conclusion
A basic computer system consists of three main components: CPU, physical memory, and I/O. The CPU is the core
component, running the system, using the instructions it has defined and stored in the microcode component. This
instruction set has been abstracted into a high level to make the computer system closer to the people who program.
This was possible by introducing the concept of high-level programming language, with the help of a piece of software
called the compiler. The compiler concept became more dynamic with the introduction of the JIT compiler.
In C# language the JIT compiler is used to compile the language that targets the virtual execution environment,
such as CLR.

The CLR is a virtual execution environment. In layperson’s terms, the CLR is an abstraction of the execution
environment of an OS for the application program. You will learn about the virtual execution environment in Chapter 2.
The CLR understands the language it supports, such as IL. To execute any application program in .NET with the CLR,
a mechanism called the assembly is used to package the source code and pass it into the CLR to execute. You will
explore the assembly in Chapter 3.

As you have already seen, the CPU fetches application instructions from physical memory. It is crucial to know
how memory works and is managed by the OS. Most importantl you should know how the CLR uses this memory to
implement its own memory model. You will learn about memory management in the OS and CLR in Chapters 4 and 5.

So far, you have seen how the C# application is compiled by the front-end compiler and packaged into a
construct called the assembly. The assembly is loaded into and laid out in the physical memory and executed by the
CPU. But, owing to virtual execution, the CPU and OS will not be able to execute the assembly simply by fetching it
from the memory. The execution model of the CLR takes care of this. You will learn about the execution model of the
CLR in Chapters 6 and 7.

Further Reading
Bryant, Randal E., and David R. O’Hallaron. Computer Systems: A Programmer's Perspective Upper Saddle River,

NJ: Prentice Hall, 2003.
Hyde, Randall. The Art of Assembly Language. San Francisco: No Starch, 2003.
Hyde, Randall. Write Great Code. Vol. 2, Writing High Level. San Francisco: No Starch, 2006.
Miller, James S., and Susann Ragsdale, S). The Common Language Infrastructure Annotated Standard.

Boston: Addison-Wesley, 2004.
Murdocca, Miles J., and Vincent P. Heuring. Principles of Computer Architecture. Upper Saddle River, NJ: Prentice

Hall, 2000.
Scott, Michael L. Programming Language Pragmatics. San Francisco: Morgan Kaufmann, 2000.
Sebesta, Robert W. Concepts of Programming Languages, Fifth Edition. Boston: Addison-Wesley, 2002.
Stokes, Jon. Inside the Machine: An Illustrated Introduction to Microprocessors and Computer Architecture.

San Francisco: No Starch, 2007.

25

Chapter 2

The Virtual Machine and CLR

A virtual machine is a virtual computer system that runs on the existing OS, or the host OS. A virtual machine provides
virtual hardware to the OS that targets the virtual machine. This is sometimes referred to as the guest OS.

Virtual machine systems were originally introduced to overcome some of the shortcomings of the existing
computer system. This virtual machine concept was adapted to the area of programming language by introducing
the virtual execution environment. In this chapter, you will learn about the virtual machine. Then, you will explore
the virtual execution environment, such as the CLR, which is Microsoft’s implementation of the virtual execution
environment, targeting .NET languages.

Virtual Machine
The term virtual can denote a technology that is used in the computer world. This technology is implemented as
software that runs on top of the OS and hardware. This virtualization concept has brought huge advancements to
computer system architecture. The virtual machine has helped decouple hardware and software design, such that
hardware and software designer can work more or less independently. The application developer can concentrate
on the application side without worrying about the changes to the OS, and hardware and software can be upgraded
according to different schedules. Most important, software can run on different hardware platforms targeting different
ISA. To begin, let’s see why we need a virtual environment.

Problems with the Existing System
In traditional computer architecture the major components of a computer system are the application program, the
OS, and the hardware. These components can work only when they are in harmony. For example, Microsoft has built
an application for its Office suite targeting the Windows OS for the x86 platform; thus, this application can run solely
when it is in this environment. Similarly, Linux applications built targeting the Linux OS can run only on the Linux
OS, Macintosh applications built for the Macintosh OS will not run on Windows, and Windows applications built
for Windows will not execute on the Linux platform. This is one of the fundamental problems in typical computer
architecture (see Figure 2-1).

Chapter 2 ■ The Virtual Machine and CLR

26

If you look closely at this problem, you will find that application software compiled for a particular ISA will not
run on a hardware platform that implements a different ISA. For instance, Macintosh application binaries will not
directly execute on an Intel processor. Likewise, Windows applications built for the x86 hardware will not be able to
execute on a platform other than the x86. Even if the underlying ISA is the same, applications compiled for one OS will
not run if a different OS is used. For example, applications compiled for Linux and for Windows use different system
calls, so a Windows application cannot run directly on a Linux system, and vice versa.

Optimization During Execution
As an application developer, you must be aware of the optimization and performance of your application. An
application whose code is optimized for a certain hardware platform will perform well only when it is executed by
that platform. When you compile an application using a compiler, the compiler may produce optimized executable
code, based on your underlying hardware (CPU), but if you take that executable to a different hardware platform,
your application may struggle to perform well, owing to the optimization issue. Typically, only one version of a
binary is distributed, and it is likely optimized for only one processor model (if it is optimized at all). To address these
problems, special coupling software can be used to connect the major components, as shown in Figure 2-2.

Figure 2-1.  Existing problems with the traditional computer system

Chapter 2 ■ The Virtual Machine and CLR

27

The coupling software shown in the figure 2is called Virtual Machine (VM). It is used to connect the guest
application with the host OS. Using its emulator component, VM translates the ISA, such that the conventional
software sees one ISA, while the hardware supports another.

The concept of the virtual machine has a huge portability value for any program targeted by the virtual
machine. The virtual machine will execute the targeted program, regardless of the underlying hardware platform,
translating it based on that platform. This portability raises the possibility of creating a virtual execution
environment that supports execution of the program code. In the following sections, you will learn about the
virtual execution environment.

Figure 2-2.  VM software

Chapter 2 ■ The Virtual Machine and CLR

28

Virtual Execution Environment
The virtual execution environment plays an important role in the optimization and portability of application
programs. The virtual execution environment introduces the concept of IL (for the .NET platform, IL; for Java, byte
code; and so on). The languages that target the virtual machine (for the .NET platform, C#, VB.NET, and so on) will be
compiled into this intermediate code at compile time. This compilation process is sometimes referred to as front-
end compilation. At runtime or execution time the intermediate code will be compiled into native code, using the
JIT compiler. In this book I will sometimes refer to this process as back-end compilation. The back-end compiler will
produce optimized native code targeting the underlying CPU.

The virtual execution environment also has the capability to execute the JIT compiled native code, using the OS
services. Here, virtual execution denotes the circumstance in which an application program written and compiled
using the languages supported by the virtual machine is executed, managed, and controlled by the same virtual
machine. For example, the virtual machine may handle memory management services; maintain the execution state,
using the concept of the method state; communicate with the OS to get the schedule for the processes running; and so
on. A virtual machine, such as Microsoft’s CLR, uses the JIT compiler to generate optimized native machine code from
the intermediate code at runtime; manages and controls the execution of the application, using the method state;
manages the object life cycle, using the GC; and so on.

Figure 2-3 illustrates a model of a hypothetical virtual execution environment. This virtual execution
environment controls and manages the execution of the languages L1to Ln by the virtual execution engine, using
the underlying OS’s services.

Figure 2-3.  A typical VES

Chapter 2 ■ The Virtual Machine and CLR

29

Components of the Virtual Execution Environment
A typical virtual execution environment has one or more programming languages, compiled into an IL form, that
will execute on that virtual platform. Virtual execution means that the compiled program will be executed by the
underlying OS but that the virtual machine will have all the control in managing the execution. The virtual execution
environment provides a layer of abstraction between a compiled program and the underlying OS and hardware
platform. Figure 2-4 displays a typical virtual execution environment.

Figure 2-4.  High-level overview of the VES

An assembly consists of platform-independent code and platform-independent metadata. The metadata
describe the data structures (typically objects), their attributes, and their relationships. As shown in the figure, the
VM software consists of an emulator that can either interpret the code or translate it into native code. For example, in
C# language, IL code is compiled into native code, using the JIT compiler of the CLR. In this book, you will learn how
the CLR executes and uses CLI to generate the native code to run on a native machine. You will also discover some of
CLR’s advantages, namely, portability, compactness, efficiency, security, interoperability, flexibility, and, above all,
multi language support.

CLR: Virtual Machine for .NET
The CLR is the Microsoft implementation of the virtual execution environment. The CLR manages the execution of
source code written using C#, VB.NET, or any other language supported by .NET. The source code is first compiled
into MSIL, and later, during the execution phase, it is compiled into native code.

The CLR offers many services, such as code management; software memory isolation; loading and execution of
managed assembly; and compilation of the IL code into native code, including verification of the type safety of the
MSIL code. The CLR also accesses the metadata embedded within the assembly to lay out the type information in
memory and provides memory management, using the GC. In addition, the CLR handles exceptions, including
cross-language exceptions.

CLR SPECIFICATION

The ECMA C# and CLI standards can be downloaded from the Microsoft web site
(http://msdn.microsoft.com/en-us/vstudio/aa569283.aspx),

http://msdn.microsoft.com/en-us/vstudio/aa569283.aspx

Chapter 2 ■ The Virtual Machine and CLR

30

Figure 2-5 gives a high-level view of the CLR. The source code targeting the CLR is compiled into the IL and
assembled in the assembly. The assembly resides in the storage device (typically found on the hard drive) and
contains IL code and metadata. Before the assembly’s execution, the CLR loads it into memory and compiles the
relevant IL code into native code. The assembly is then executed by the underlying OS.

Figure 2-5.  The internal CLR execution environment

The CLR provides private virtual address space for each of the applications it executes. The address space uses
mechanism called the application domain to afford the software isolation for the running applications. The CLR
enforces type safety access to all areas of memory when running type-safe managed code.

The CLR supplies the common infrastructure that allows tools and programming languages to benefit from
cross-language integration. Any technical improvements to the CLR will be of help to all languages and tools that
target the .NET Framework.

CLR Supports Multiple Languages
The CLR has advantages: it supports multiple languages and targets many platforms. Figure 2-6 shows the
C#, F#, VB.NET, J#, and Managed C++ languages compiled into the assembly, which contains simply IL code
and metadata. The assembly targets the CLR, which serves as a middle layer between the compiled code and the
underlying OS.

Chapter 2 ■ The Virtual Machine and CLR

31

The following four programs, written accordingly, using C#, Managed C++, F#, and VB.NET, respectively, compile
type at the front-end and will produce CLR-understandable IL code.

C# source code and disassembled IL code:
 
//Program.cs
using System;
  
namespace Ch_01
{
  
 class Program
 {
  
 static void Main(string[] args)
 {
 Console.WriteLine("C#");
 Console.ReadLine();
 }
 }
} 

Figure 2-6.  CLR and multiple languages

Chapter 2 ■ The Virtual Machine and CLR

32

IL code for the previous assembly:
 
/*removed*/
.assembly Program
{
 �.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilationRelaxationsAttribute::
.ctor(int32) = (01 00 08 00 00 00 00 00)

 �.custom instance void [mscorlib]System.Runtime.CompilerServices.RuntimeCompatibilityAttribute::
.ctor() = (01 00 01 00 54 02 16 57 72 61 70 4E 6F 6E 45 78

//T..WrapNonEx
 63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01)
// ceptionThrows.
 .hash algorithm 0x00008004
 .ver 0:0:0:0
}
/*removed*/
  
.class private auto ansi beforefieldinit Ch_01.Program
 extends [mscorlib]System.Object
{
 .method private hidebysig static void Main(string[] args) cil managed
 {
 .entrypoint
 // Code size 19 (0x13)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "C#"
 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: call string [mscorlib]System.Console::ReadLine()
 IL_0011: pop
 IL_0012: ret
 } // end of method Program::Main
/*removed*/
  
// *********** DISASSEMBLY COMPLETE ***********************
// WARNING: Created Win32 resource file Program.res
 

Managed C++ source code and disassembled IL code:
 
// FileName: ManagedCPlusPlus.cpp
#include "stdafx.h"
  
using namespace System;
  
int main(array<System::String ^> ^args)
{
 Console::WriteLine(L"Managed C++");
 Console::ReadLine();
 return 0;
}
 

Chapter 2 ■ The Virtual Machine and CLR

33

IL code for the prior assembly:
 
/*removed*/
.assembly ManagedCPlusPlus
{
 .custom instance void [mscorlib]System.Security.SecurityRulesAttribute::.ctor
(valuetype [mscorlib]System.Security.SecurityRuleSet) = (01 00 01 00 00)
 .permissionset reqmin
 = {[mscorlib]System.Security.Permissions.SecurityPermissionAttribute =
{property bool 'SkipVerification' = bool(true)}}
 .hash algorithm 0x00008004
 .ver 0:0:0:0
}
/*removed*/
  
.method assembly static int32 main(string[] args) cil managed
{
 // Code size 22 (0x16)
 .maxstack 1
 .locals (int32 V_0)
 IL_0000: ldc.i4.0
 IL_0001: stloc.0
 IL_0002: ldstr "Managed C++"
 IL_0007: call void [mscorlib]System.Console::WriteLine(string)
 IL_000c: call string [mscorlib]System.Console::ReadLine()
 IL_0011: pop
 IL_0012: ldc.i4.0
 IL_0013: stloc.0
 IL_0014: ldloc.0
 IL_0015: ret
} // end of global method main
  
/*removed*/
// *********** DISASSEMBLY COMPLETE ***********************
 

F# source code and disassembled IL code:
 
//FileName: FSharpProgram.fs
System.Console.WriteLine("F#\n Press any key to continue")
System.Console.ReadLine()
 

Chapter 2 ■ The Virtual Machine and CLR

34

IL code for the previous assembly:
 
/*removed*/
.assembly FSharpProgram
{
 �.custom instance void [FSharp.Core]Microsoft.FSharp.Core.FSharpInterfaceDataVersionAttribute::
.ctor(int32,

 int32,
 �int32) = (01 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00
)
 .hash algorithm 0x00008004
 .ver 0:0:0:0
}
/*removed*/
  
.class private abstract auto ansi sealed '<StartupCode$FSharpProgram>'.$FSharpProgram
 extends [mscorlib]System.Object
{
 .field static assembly int32 init@
 .�custom instance void [mscorlib]System.Diagnostics.DebuggerBrowsableAttribute::.ctor(valuetype

[mscorlib]System.Diagnostics.DebuggerBrowsableState) = (01 00 00 00 00 00 00 00)
 �.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilerGeneratedAttribute::
.ctor() = (01 00 00 00)

 �.custom instance void [mscorlib]System.Diagnostics.DebuggerNonUserCodeAttribute::
.ctor() = (01 00 00 00)

 .method public static void main@() cil managed
 {
 .entrypoint
 // Code size 17 (0x11)
 .maxstack 3
 IL_0000: ldstr "F#\n Press any key to continue"
 IL_0005: call void [mscorlib]System.Console::WriteLine(string)
 IL_000a: call string [mscorlib]System.Console::ReadLine()
 IL_000f: pop
 IL_0010: ret
 } // end of method $FSharpProgram::main@
  
} // end of class '<StartupCode$FSharpProgram>'.$FSharpProgram
  
// ===
  
// *********** DISASSEMBLY COMPLETE ***********************
// WARNING: Created Win32 resource file FSharpProgram.res
 

Chapter 2 ■ The Virtual Machine and CLR

35

VB.NET source code and disassembled IL code:
 
//FileName: MainModule.vb
Module MainModule
  
 Sub Main()
 Console.WriteLine("VB.NET")
 End Sub
  
End Module
 

IL code for the prior assembly:
 
/*removed*/
.assembly MainModule
{
 �.custom instance void [mscorlib]System.Runtime.CompilerServices.RuntimeCompatibilityAttribute::
.ctor() = (01 00 01 00 54 02 16 57 72 61 70 4E 6F 6E 45 78

//T..WrapNonEx

63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01)
// ceptionThrows.
 �.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilationRelaxationsAttribute::
.ctor(int32) = (01 00 08 00 00 00 00 00)

 .hash algorithm 0x00008004
 .ver 0:0:0:0
}
/*removed*/
  
.class private auto ansi sealed MainModule
 extends [mscorlib]System.Object
{
 .�custom instance void [Microsoft.VisualBasic]Microsoft.VisualBasic.CompilerServices.

StandardModuleAttribute::.ctor() = (01 00 00 00)
 .method public static void Main() cil managed
 {
 .entrypoint
 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
 // Code size 11 (0xb)
 .maxstack 8
 IL_0000: ldstr "VB.NET"
 IL_0005: call void [mscorlib]System.Console::WriteLine(string)
 IL_000a: ret
 } // end of method MainModule::Main
  
} // end of class MainModule
  
// ===
  
// *********** DISASSEMBLY COMPLETE ***********************
// WARNING: Created Win32 resource file MainModule.res
 

Chapter 2 ■ The Virtual Machine and CLR

36

COMPILERS AND ILDASM

For C#, Managed C++, F#, and VB.NET, the respective commands are as follows:
 
csc.exe Program.cs
cl /clr ManagedCPlusPlus.cpp
fsc.exe FSharpProgram.fs
vbc /reference:Microsoft.VisualBasic.dll MainModule.vb
 
To disassemble the assembly, use the following ildasm commands accordingly for C#, Managed C++, F#, and
VB.NET code:
 
ildasm Program.exe /out:Program.il
ildasm ManagedCPlusPlus.exe /out:ManagedCPlusPlus.il
ildasm FSharpProgram.exe /out:FSharpProgram.il
ildasm MainModule.exe /out:MainModule.il 

A .NET application written in any of the .NET-supported languages is compiled into IL code, which is in turn
JIT compiled at runtime into native code. The JIT compiler can produce optimized native code, based on the
underlying hardware.

Common Components of the CLR
As mentioned earlier, the CLR is the implementation of the CLI. The architecture of CLI comprises the following
elements:

CTS•	

CLS•	

CIL instruction set•	

VES (executes managed code and lies between code and the native OS)•	

The CTS defines the complete set of types available to a CLI-compliant program. In contrast, CLS defines the
subset of CTS types that can be used for external calls. Using the metadata concerning the code and data, the CLR
identifies the locations of objects and gives this information to the VES, which handles all the major overheads of
traditional programming models (exceptions, security concerns, performance, pointers, object life cycle, and so on).

CIL is an assembly-like language that is generated by the compilers of languages targeting CLI. How and
when the CIL is compiled to machine code is not specified by the standard, and those determinations rest with the
implementation of the VES. The most frequently used model is employment of a JIT compiler, which generates native
code as needed. Install-time compilers are another option, and it is also possible to implement an interpreter rather
than a compiler for the CIL.

A typical .NET virtual machine

Executes code at runtime•	

Manages the execution by maintaining the state•	

Manages objects•	

Isolates address space, and so on (see Chapter X)•	

Chapter 2 ■ The Virtual Machine and CLR

37

Conclusion
The CLR is the Microsoft implementation of the virtual execution environment. The CLR supports multiple languages,
such as C#, VB.NET, and F#. If you write an application program using any of the CLR-supported languages, you will
be able to execute the compiled version of your application via the CLR. When you compile your .NET application.
the compiler compiles IL code and metadata. The compiler also uses a mechanism called the assembly to package
the IL code and metadata. In .NET the assembly is a deployment mechanism of your application program. The
assembly is loaded into memory and executed by the CLR. Therefore, it is important to understand how the assembly
is structured by the compiler, what this assembly contains, and how the CLR lays it out in memory.

In the next chapter, you will explore the assembly and its structure as well as the assembly-loading process used
in the CLR.

Further Reading
Juola, Patrick. Principles of Computer Organization and Assembly Language. Upper Saddle River, NJ: Prentice Hall, 2007.
Smith, James E., and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes. Amsterdam: Morgan

Kaufmann, 2005.
Stokes, Jon. Inside the Machine: An Illustrated Introduction to Microprocessors and Computer Architecture.

San Francisco: No Starch, 2007.

39

Chapter 3

Assembly

Assembly is a technical term used in the CLI to define a deployment unit. An assembly is a collection of compiled
code, presented as module and resources files, that forms a logical unit of functionality for deployment, versioning,
reuse, and security. In this chapter, you will learn about the assembly.

What Is the Assembly?
In .NET Framework an assembly exists in two forms: executable (EXE) and dynamic link library (DLL). Assemblies
such as mscorlib.dll, System.dll, and System.Configuration.dll are the DLL forms of assembly used in.NET
framework. Executable produced by the C# compiler (csc.exe) is a form of EXE assembly (see Listing 3-1).
Assemblies targeting the CLI contain code in CIL. The CIL is usually generated from a CLI language, such as C# or
VB.NET, and at runtime is compiled into native code by the JIT compiler.

An assembly always contains a manifest that specifies

Version, name, culture, and security requirements for the assembly.•	

Which other files, if any, belong to the assembly, along with a cryptographic hash of each •	
file; the manifest itself resides in the metadata part of a file, and that file is always part of the
assembly.

The types defined in other files of the assembly that it is to export; types defined in the same •	
file as the manifest are exported based on attributes of the type itself.

Optionally, a digital signature for the manifest itself and the public key used to compute it.•	

Here is an example of a manifest, extracted from Listing 3-1:
 
// Metadata version: v4.0.30319
.assembly extern mscorlib
{ .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}
.assembly extern System.Core
{ .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 4:0:0:0
}
.assembly extern System.Management
{ .publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A)
 .ver 4:0:0:0
}

Chapter 3 ■ Assembly

40

.assembly DassemblyConsole
{ /*reference to the other types*/
 /* Hash code */
 .hash algorithm 0x00008004
 .ver 1:0:0:0
}
.module DassemblyConsole.exe
// MVID: {332DA5EA-B803-42A6-8DDF-B27D1E92D6D3}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000003 // ILONLY 32BITREQUIRED
// Image base: 0x03260000
 

In this chapter, you will explore the assembly, including its structure, (based on Partition 2 of the ECMA C#
standard) and how the CLR loads it at runtime. First, you will get an overview, using a simple C# application to
examine compilation by the C# compiler and to see a hexadecimal formatted view of the compiled assembly contents.
Then, you will analyze the hexadecimal contents to get a better understanding of assembly structure. Finally, you will
discover how the assembly is loaded by the assembly-loader component of the CLR.

CLI SPECIFICATION

The ECMA CLI standard can be downloaded from the ECMA web site:

http://www.ecma-international.org/publications/standards/Ecma-335.htm

Overview of Modules, Assemblies, and Files
Once a program and its associated types are written as a form of source code, and that code is compiled into an
assembly, the resulting assembly is distributed for use directly by user application (EXE) or indirectly by libraries
(DLL), which depend on its exported library types and functions. As mentioned earlier, the CLR’s logical unit
of deployment, execution, and reuse is, in this case, the assembly. An assembly contains one-to-many smaller,
independent physical units, or modules. Modules are files that are logically part of their containing assembly.
Modules can contain not only managed metadata and code, but also ordinary files, such as localized resources, plain
text, and opaque binary. The vast majority of managed applications employ single-file assemblies (i.e., those with
one module), although the ability to create multifile assemblies is a powerful (and underused) capability. Figure 3-1
demonstrates this general architecture at a high level.

http://www.ecma-international.org/publications/standards/Ecma-335.htm

Chapter 3 ■ Assembly

41

Introduction to PE Files
A portable executable (PE) is a file that is executable by the Windows OS. A PE file generally has an .exe or a .dll
extension. The first bytes in a PE file form a header, which can be interpreted by Windows when the executable
is launched. These bytes contain information such as the earliest version of Windows with which the executable
can be used and if the executable is a GUI or console application. The format of a PE file is optimized so as not to
degrade performance. Except for a few bytes, the rest of the file is an image of how the executable will be stored in
memory. Modules are also PE files, as the .NET platform takes advantage of Windows services to execute applications.
(Moreover, common object file format (PE/COFF) is the format used by the C++ compiler when it links object files.
The COFF extension of the PE/COFF format is ignored by the.NET platform.

The specification of the C# assembly has been defined in Partition 2 of the ECMA C# standard. Based on the
specification rule defined in clause 25.1, a typical assembly is structured as shown in Figure 3-2.

Figure 3-1.  A typical assembly structure

Chapter 3 ■ Assembly

42

As you can see, a PE executable, or image, starts with the MS-DOS header, which is predefined as a 128-byte
MS-DOS stub placed at the front of the module. MS-DOS js followed by a PE signature and then the PE file header.
The PE file header is 18 bytes of data used to define information such as the number of sections used in the image,
the number of symbol tables, and so on. The PE optional header comes next. It is used to define the most importantly
to the data directories. The PE optional header is followed by PE section headers. The PE section table contains a
number of PE section headers, each of which has a total of 40 bytes of data.

Structure of the Assembly
Now, you will use the C# program depicted in Listing 3-1 to advance your understanding of assembly structure:

Listing 3-1.

using System;
 
namespace CH_03
{
 class Program
 {
 static void Main(string[] args)

Figure 3-2.  Structure of the PE file

Chapter 3 ■ Assembly

43

 {
 Book book = new Book();
 book.Print();
 }
 }
 public class Book
 {
 public void Print() { Console.WriteLine("Blue Sky."); }
 }
}
 

This program was compiled using the C# compiler, which generates the executable for the program. You will
open the executable with the HxD tool (or, you can choose your favorite hexadecimal viewer) to get the executable file
contents as hexadecimal format. Later in the chapter, I will be using this hexadecimal output to discuss the structure
of the assembly.
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ..........ÿÿ..
00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ¸.......@.......
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 €...
00000040 0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 ..°..´.Í!¸.LÍ!Th
00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
00000070 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 mode....$.......
 
00000080 50 45 00 00
 
/*PE file header*/
 4C 01 03 00 A5 0D 2D 53 00 00 00 00 PE..L...¥.-S....
00000090 00 00 00 00 E0 00 02 01
 
/* PE header standard fields */
 0B 01 08 00 00 08 00 00 à...........
000000A0 00 08 00 00 00 00 00 00 BE 27 00 00 00 20 00 00 ¾'... ..
000000B0 00 40 00 00 00 00 40 00 00 20 00 00 00 02 00 00 .@....@..
000000C0 04 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
000000D0 00 80 00 00 00 02 00 00 00 00 00 00 03 00 40 85 .€............@...
000000E0 00 00 10 00 00 10 00 00 00 00 10 00 00 10 00 00
000000F0 00 00 00 00 10 00 00 00
 
/* PE header Windows NT-specific fields*/
 00 00 00 00 00 00 00 00
00000100 6C 27 00 00 4F 00 00 00 00 40 00 00 20 05 00 00 l'..O....@.. ...
00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000120 00 60 00 00 0C 00 00 00 EC 26 00 00 1C 00 00 00 .`......ì&......
00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000150 00 00 00 00 00 00 00 00 00 20 00 00 08 00 00 00
00000160 00 00 00 00 00 00 00 00 08 20 00 00 48 00 00 00 H...
00000170 00 00 00 00 00 00 00 00
 

Chapter 3 ■ Assembly

44

/*Section Header*/
 2E 74 65 78 74 00 00 00 text...
00000180 C4 07 00 00 00 20 00 00 00 08 00 00 00 02 00 00 Ä....
00000190 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 60 `
000001A0 2E 72 73 72 63 00 00 00 20 05 00 00 00 40 00 00 .rsrc...@..
000001B0 00 06 00 00 00 0A 00 00 00 00 00 00 00 00 00 00
000001C0 00 00 00 00 40 00 00 40 2E 72 65 6C 6F 63 00 00 @..@.reloc..
000001D0 0C 00 00 00 00 60 00 00 00 02 00 00 00 10 00 00 `..........
000001E0 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 42 @..B
 
000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 
/*.text section*/
 
00000200 A0 27 00 00 00 00 00 00
 48 00 00 00 02 00 05 00 '......H.......
00000210 8C 20 00 00 60 06 00 00 03 00 00 00 01 00 00 06 Œ ..`...........
00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000250 13 30 01 00 0F 00 00 00 01 00 00 11 00 73 04 00 .0...........s..
00000260 00 06 0A 06 6F 03 00 00 06 00 2A 1E 02 28 11 00 o.....*..(..
00000270 00 0A 2A 36 00 72 01 00 00 70 28 12 00 00 0A 00 ..*6.r...p(.....
00000280 2A 1E 02 28 11 00 00 0A 2A 00 00 00 42 53 4A 42 *..(....*...BSJB
00000290 01 00 01 00 00 00 00 00 0C 00 00 00 76 34 2E 30 v4.0
000002A0 2E 33 30 33 31 39 00 00 00 00 05 00
 
 6C 00 00 00 .30319......l...
000002B0 14 02 00 00 23 7E 00 00 80 02 00 00 8C 02 00 00 #~..€...Œ...
000002C0 23 53 74 72 69 6E 67 73 00 00 00 00 0C 05 00 00 #Strings........
000002D0 18 00 00 00 23 55 53 00 24 05 00 00 10 00 00 00 #US.$.......
000002E0 23 47 55 49 44 00 00 00 34 05 00 00 2C 01 00 00 #GUID...4...,...
000002F0 23 42 6C 6F 62 00 00 00
 00 00 00 00 02 00 00 01 #Blob...........
00000300 47 15 02 00 09 00 00 00 00 FA 25 33 00 16 00 00 G........ú%3....
 
00000310 01 00 00 00 13 00 00 00 03 00 00 00 04 00 00 00
00000320 01 00 00 00 12 00 00 00 0E 00 00 00 01 00 00 00
00000330 01 00 00 00 01 00 00 00
 00 00 0A 00 01 00 00 00
00000340 00 00 06 00 37 00 30 00 06 00 6E 00 54 00 06 00 7.0...n.T...
00000350 99 00 87 00 06 00 B0 00 87 00 06 00 CD 00 87 00 ™.‡...°.‡...Í.‡.
00000360 06 00 EC 00 87 00 06 00 05 01 87 00 06 00 1E 01 ..ì.‡.....‡.....
00000370 87 00 06 00 39 01 87 00 06 00 54 01 87 00 06 00 ‡...9.‡...T.‡...
00000380 8C 01 6D 01 06 00 A0 01 6D 01 06 00 AE 01 87 00 Œ.m... .m...®.‡.
00000390 06 00 C7 01 87 00 06 00 F7 01 E4 01 3F 00 0B 02 ..Ç.‡...÷.ä.?...
000003A0 00 00 06 00 3A 02 1A 02 06 00 5A 02 1A 02 06 00 :.....Z.....
000003B0 78 02 30 00 00 00 00 00 01 00 00 00 00 00 01 00 x.0.............
000003C0 01 00 00 00 10 00 14 00 1C 00 05 00 01 00 01 00
000003D0 01 00 10 00 22 00 1C 00 05 00 01 00 03 00 50 20 ".........P
000003E0 00 00 00 00 91 00 3E 00 0A 00 01 00 6B 20 00 00 ‘.>.....k ..

Chapter 3 ■ Assembly

45

000003F0 00 00 86 18 43 00 10 00 02 00 73 20 00 00 00 00 ..†.C.....s
00000400 86 00 49 00 10 00 02 00 81 20 00 00 00 00 86 18 †.I......†.
00000410 43 00 10 00 02 00 00 00 01 00 4F 00 11 00 43 00 C.........O...C.
00000420 14 00 19 00 43 00 14 00 21 00 43 00 14 00 29 00 C...!.C...).
00000430 43 00 14 00 31 00 43 00 14 00 39 00 43 00 14 00 C...1.C...9.C...
00000440 41 00 43 00 14 00 49 00 43 00 14 00 51 00 43 00 A.C...I.C...Q.C.
00000450 14 00 59 00 43 00 19 00 61 00 43 00 14 00 69 00 ..Y.C...a.C...i.
00000460 43 00 14 00 71 00 43 00 14 00 79 00 43 00 1E 00 C...q.C...y.C...
00000470 89 00 43 00 24 00 91 00 43 00 10 00 09 00 43 00 ‰.C.$.‘.C.....C.
00000480 10 00 99 00 80 02 2E 00 2E 00 0B 00 33 00 2E 00 ..™.€.......3...
00000490 13 00 99 00 2E 00 1B 00 A4 00 2E 00 23 00 A4 00 ..™.....¤...#.¤.
000004A0 2E 00 2B 00 A4 00 2E 00 33 00 99 00 2E 00 3B 00 ..+.¤...3.™...;.
000004B0 AA 00 2E 00 43 00 A4 00 2E 00 53 00 A4 00 2E 00 ª...C.¤...S.¤...
000004C0 5B 00 C2 00 2E 00 6B 00 EC 00 2E 00 73 00 F9 00 [.Â...k.ì...s.ù.
000004D0 2E 00 7B 00 02 01 2E 00 83 00 0B 01 29 00 04 80 ..{.....ƒ...)..€
000004E0 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00
000004F0 1C 00 00 00 04 00 00 00 00 00 00 00 00 00 00 00
00000500 01 00 27 00 00 00 00 00 00 00 00 00
 00 3C 4D 6F ..'..........<Mo
00000510 64 75 6C 65 3E 00 43 48 5F 30 33 2E 65 78 65 00 dule>.CH_03.exe.
00000520 50 72 6F 67 72 61 6D 00 43 48 5F 30 33 00 42 6F Program.CH_03.Bo
00000530 6F 6B 00 6D 73 63 6F 72 6C 69 62 00 53 79 73 74 ok.mscorlib.Syst
00000540 65 6D 00 4F 62 6A 65 63 74 00 4D 61 69 6E 00 2E em.Object.Main..
00000550 63 74 6F 72 00 50 72 69 6E 74 00 61 72 67 73 00 ctor.Print.args.
00000560 53 79 73 74 65 6D 2E 52 75 6E 74 69 6D 65 2E 56 System.Runtime.V
00000570 65 72 73 69 6F 6E 69 6E 67 00 54 61 72 67 65 74 ersioning.Target
00000580 46 72 61 6D 65 77 6F 72 6B 41 74 74 72 69 62 75 FrameworkAttribu
00000590 74 65 00 53 79 73 74 65 6D 2E 52 65 66 6C 65 63 te.System.Reflec
000005A0 74 69 6F 6E 00 41 73 73 65 6D 62 6C 79 54 69 74 tion.AssemblyTit
000005B0 6C 65 41 74 74 72 69 62 75 74 65 00 41 73 73 65 leAttribute.Asse
000005C0 6D 62 6C 79 44 65 73 63 72 69 70 74 69 6F 6E 41 mblyDescriptionA
000005D0 74 74 72 69 62 75 74 65 00 41 73 73 65 6D 62 6C ttribute.Assembl
000005E0 79 43 6F 6E 66 69 67 75 72 61 74 69 6F 6E 41 74 yConfigurationAt
000005F0 74 72 69 62 75 74 65 00 41 73 73 65 6D 62 6C 79 tribute.Assembly
00000600 43 6F 6D 70 61 6E 79 41 74 74 72 69 62 75 74 65 CompanyAttribute
00000610 00 41 73 73 65 6D 62 6C 79 50 72 6F 64 75 63 74 .AssemblyProduct
00000620 41 74 74 72 69 62 75 74 65 00 41 73 73 65 6D 62 Attribute.Assemb
00000630 6C 79 43 6F 70 79 72 69 67 68 74 41 74 74 72 69 lyCopyrightAttri
00000640 62 75 74 65 00 41 73 73 65 6D 62 6C 79 54 72 61 bute.AssemblyTra
00000650 64 65 6D 61 72 6B 41 74 74 72 69 62 75 74 65 00 demarkAttribute.
00000660 41 73 73 65 6D 62 6C 79 43 75 6C 74 75 72 65 41 AssemblyCultureA
00000670 74 74 72 69 62 75 74 65 00 53 79 73 74 65 6D 2E ttribute.System.
00000680 52 75 6E 74 69 6D 65 2E 49 6E 74 65 72 6F 70 53 Runtime.InteropS
00000690 65 72 76 69 63 65 73 00 43 6F 6D 56 69 73 69 62 ervices.ComVisib
000006A0 6C 65 41 74 74 72 69 62 75 74 65 00 47 75 69 64 leAttribute.Guid
000006B0 41 74 74 72 69 62 75 74 65 00 41 73 73 65 6D 62 Attribute.Assemb
000006C0 6C 79 56 65 72 73 69 6F 6E 41 74 74 72 69 62 75 lyVersionAttribu
000006D0 74 65 00 41 73 73 65 6D 62 6C 79 46 69 6C 65 56 te.AssemblyFileV
000006E0 65 72 73 69 6F 6E 41 74 74 72 69 62 75 74 65 00 ersionAttribute.
000006F0 53 79 73 74 65 6D 2E 44 69 61 67 6E 6F 73 74 69 System.Diagnosti
00000700 63 73 00 44 65 62 75 67 67 61 62 6C 65 41 74 74 cs.DebuggableAtt

Chapter 3 ■ Assembly

46

00000710 72 69 62 75 74 65 00 44 65 62 75 67 67 69 6E 67 ribute.Debugging
00000720 4D 6F 64 65 73 00 53 79 73 74 65 6D 2E 52 75 6E Modes.System.Run
00000730 74 69 6D 65 2E 43 6F 6D 70 69 6C 65 72 53 65 72 time.CompilerSer
00000740 76 69 63 65 73 00 43 6F 6D 70 69 6C 61 74 69 6F vices.Compilatio
00000750 6E 52 65 6C 61 78 61 74 69 6F 6E 73 41 74 74 72 nRelaxationsAttr
00000760 69 62 75 74 65 00 52 75 6E 74 69 6D 65 43 6F 6D ibute.RuntimeCom
00000770 70 61 74 69 62 69 6C 69 74 79 41 74 74 72 69 62 patibilityAttrib
00000780 75 74 65 00 43 6F 6E 73 6F 6C 65 00 57 72 69 74 ute.Console.Writ
00000790 65 4C 69 6E 65 00 00 00 00 13 42 00 6C 00 75 00 eLine.....B.l.u.
 
000007A0 65 00 20 00 53 00 6B 00 79 00 2E 00 00 00 00 00 e. .S.k.y.......
000007B0 EE 52 B2 1D 54 A1 C2 4E 84 22 C3 B6 D1 C0 A1 24 îR2.T¡ÂN„"Ã¶ÑÀ¡$
000007C0 00 08 B7 7A 5C 56 19 34 E0 89 05 00 01 01 1D 0E ..0z\V.4à‰......
000007D0 03 20 00 01 04 20 01 01 0E 04 20 01 01 02 05 20
000007E0 01 01 11 41 04 20 01 01 08 04 07 01 12 0C 04 00 ...A.
000007F0 01 01 0E 65 01 00 29 2E 4E 45 54 46 72 61 6D 65 ...e..).NETFrame
00000800 77 6F 72 6B 2C 56 65 72 73 69 6F 6E 3D 76 34 2E work,Version=v4.
00000810 30 2C 50 72 6F 66 69 6C 65 3D 43 6C 69 65 6E 74 0,Profile=Client
00000820 01 00 54 0E 14 46 72 61 6D 65 77 6F 72 6B 44 69 ..T..FrameworkDi
00000830 73 70 6C 61 79 4E 61 6D 65 1F 2E 4E 45 54 20 46 splayName..NET F
00000840 72 61 6D 65 77 6F 72 6B 20 34 20 43 6C 69 65 6E ramework 4 Clien
00000850 74 20 50 72 6F 66 69 6C 65 0A 01 00 05 43 48 5F t Profile....CH_
00000860 30 33 00 00 05 01 00 00 00 00 17 01 00 12 43 6F 03............Co
00000870 70 79 72 69 67 68 74 20 C2 A9 20 20 32 30 31 34 pyright Â© 2014
00000880 00 00 29 01 00 24 65 36 36 61 61 32 64 31 2D 36 ..)..$e66aa2d1-6
00000890 36 66 65 2D 34 64 62 62 2D 38 36 31 63 2D 65 35 6fe-4dbb-861c-e5
000008A0 38 30 30 65 38 33 32 36 66 61 00 00 0C 01 00 07 800e8326fa......
000008B0 31 2E 30 2E 30 2E 30 00 00 08 01 00 07 01 00 00 1.0.0.0.........
000008C0 00 00 08 01 00 08 00 00 00 00 00 1E 01 00 01 00
000008D0 54 02 16 57 72 61 70 4E 6F 6E 45 78 63 65 70 74 T..WrapNonExcept
000008E0 69 6F 6E 54 68 72 6F 77 73 01 00 00 00 00 00 00 ionThrows.......
000008F0 A5 0D 2D 53 00 00 00 00 02 00 00 00 63 00 00 00 ¥.-S........c...
00000900 08 27 00 00 08 09 00 00 52 53 44 53 D2 4D C2 AC .'......RSDSÒMÂ¬
00000910 C0 A3 5A 44 A8 61 E6 CE F4 64 91 02 01 00 00 00 À£ZD¨aæÎôd‘.....
00000920 4A 3A 5C 42 6F 6F 6B 5C 43 23 20 44 65 63 6F 6E J:\Book\C# Decon
00000930 73 74 72 75 63 74 65 64 5C 53 6F 75 72 63 65 43 structed\SourceC
00000940 6F 64 65 5C 43 68 61 70 74 65 72 73 5C 43 48 5F ode\Chapters\CH_
00000950 30 33 5C 6F 62 6A 5C 78 38 36 5C 44 65 62 75 67 03\obj\x86\Debug
00000960 5C 43 48 5F 30 33 2E 70 64 62 00 00 94 27 00 00 \CH_03.pdb..”'..
00000970 00 00 00 00 00 00 00 00 AE 27 00 00 00 20 00 00 ®'... ..
00000980 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000990 00 00 00 00 A0 27 00 00 00 00 00 00 00 00 00 00 '..........
000009A0 00 00 5F 43 6F 72 45 78 65 4D 61 69 6E 00 6D 73 .._CorExeMain.ms
000009B0 63 6F 72 65 65 2E 64 6C 6C 00 00 00 00 00 FF 25 coree.dll.....ÿ%
000009C0 00 20 40 00 00 00 00 00 00 00 00 00 00 00 00 00 . @.............
000009D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000009E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000009F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
/* end of .text Section*/
 

Chapter 3 ■ Assembly

47

/* begin of .rsrc Section*/
 
00000A00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00
00000A10 10 00 00 00 20 00 00 80 18 00 00 00 38 00 00 80 €....8..€
00000A20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00
00000A30 01 00 00 00 50 00 00 80 00 00 00 00 00 00 00 00 P..€........
00000A40 00 00 00 00 00 00 01 00 01 00 00 00 68 00 00 80 h..€
00000A50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00
00000A60 00 00 00 00 80 00 00 00 00 00 00 00 00 00 00 00 €...........
00000A70 00 00 00 00 00 00 01 00 00 00 00 00 90 00 00 00
00000A80 A0 40 00 00 90 02 00 00 00 00 00 00 00 00 00 00 @..............
00000A90 30 43 00 00 EA 01 00 00 00 00 00 00 00 00 00 00 0C..ê...........
00000AA0 90 02 34 00 00 00 56 00 53 00 5F 00 56 00 45 00 ..4...V.S._.V.E.
00000AB0 52 00 53 00 49 00 4F 00 4E 00 5F 00 49 00 4E 00 R.S.I.O.N._.I.N.
00000AC0 46 00 4F 00 00 00 00 00 BD 04 EF FE 00 00 01 00 F.O.....½.ïþ....
00000AD0 00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00
00000AE0 3F 00 00 00 00 00 00 00 04 00 00 00 01 00 00 00 ?...............
00000AF0 00 00 00 00 00 00 00 00 00 00 00 00 44 00 00 00 D...
00000B00 01 00 56 00 61 00 72 00 46 00 69 00 6C 00 65 00 ..V.a.r.F.i.l.e.
00000B10 49 00 6E 00 66 00 6F 00 00 00 00 00 24 00 04 00 I.n.f.o.....$...
00000B20 00 00 54 00 72 00 61 00 6E 00 73 00 6C 00 61 00 ..T.r.a.n.s.l.a.
00000B30 74 00 69 00 6F 00 6E 00 00 00 00 00 00 00 B0 04 t.i.o.n.......°.
00000B40 F0 01 00 00 01 00 53 00 74 00 72 00 69 00 6E 00 ð.....S.t.r.i.n.
00000B50 67 00 46 00 69 00 6C 00 65 00 49 00 6E 00 66 00 g.F.i.l.e.I.n.f.
00000B60 6F 00 00 00 CC 01 00 00 01 00 30 00 30 00 30 00 o...Ì.....0.0.0.
00000B70 30 00 30 00 34 00 62 00 30 00 00 00 34 00 06 00 0.0.4.b.0...4...
00000B80 01 00 46 00 69 00 6C 00 65 00 44 00 65 00 73 00 ..F.i.l.e.D.e.s.
00000B90 63 00 72 00 69 00 70 00 74 00 69 00 6F 00 6E 00 c.r.i.p.t.i.o.n.
00000BA0 00 00 00 00 43 00 48 00 5F 00 30 00 33 00 00 00 C.H._.0.3...
00000BB0 30 00 08 00 01 00 46 00 69 00 6C 00 65 00 56 00 0.....F.i.l.e.V.
00000BC0 65 00 72 00 73 00 69 00 6F 00 6E 00 00 00 00 00 e.r.s.i.o.n.....
00000BD0 31 00 2E 00 30 00 2E 00 30 00 2E 00 30 00 00 00 1...0...0...0...
00000BE0 34 00 0A 00 01 00 49 00 6E 00 74 00 65 00 72 00 4.....I.n.t.e.r.
00000BF0 6E 00 61 00 6C 00 4E 00 61 00 6D 00 65 00 00 00 n.a.l.N.a.m.e...
00000C00 43 00 48 00 5F 00 30 00 33 00 2E 00 65 00 78 00 C.H._.0.3...e.x.
00000C10 65 00 00 00 48 00 12 00 01 00 4C 00 65 00 67 00 e...H.....L.e.g.
00000C20 61 00 6C 00 43 00 6F 00 70 00 79 00 72 00 69 00 a.l.C.o.p.y.r.i.
00000C30 67 00 68 00 74 00 00 00 43 00 6F 00 70 00 79 00 g.h.t...C.o.p.y.
00000C40 72 00 69 00 67 00 68 00 74 00 20 00 A9 00 20 00 r.i.g.h.t. .©. .
00000C50 20 00 32 00 30 00 31 00 34 00 00 00 3C 00 0A 00 .2.0.1.4...<...
00000C60 01 00 4F 00 72 00 69 00 67 00 69 00 6E 00 61 00 ..O.r.i.g.i.n.a.
00000C70 6C 00 46 00 69 00 6C 00 65 00 6E 00 61 00 6D 00 l.F.i.l.e.n.a.m.
00000C80 65 00 00 00 43 00 48 00 5F 00 30 00 33 00 2E 00 e...C.H._.0.3...
00000C90 65 00 78 00 65 00 00 00 2C 00 06 00 01 00 50 00 e.x.e...,.....P.
00000CA0 72 00 6F 00 64 00 75 00 63 00 74 00 4E 00 61 00 r.o.d.u.c.t.N.a.
00000CB0 6D 00 65 00 00 00 00 00 43 00 48 00 5F 00 30 00 m.e.....C.H._.0.
00000CC0 33 00 00 00 34 00 08 00 01 00 50 00 72 00 6F 00 3...4.....P.r.o.
00000CD0 64 00 75 00 63 00 74 00 56 00 65 00 72 00 73 00 d.u.c.t.V.e.r.s.
00000CE0 69 00 6F 00 6E 00 00 00 31 00 2E 00 30 00 2E 00 i.o.n...1...0...
00000CF0 30 00 2E 00 30 00 00 00 38 00 08 00 01 00 41 00 0...0...8.....A.
00000D00 73 00 73 00 65 00 6D 00 62 00 6C 00 79 00 20 00 s.s.e.m.b.l.y. .

Chapter 3 ■ Assembly

48

00000D10 56 00 65 00 72 00 73 00 69 00 6F 00 6E 00 00 00 V.e.r.s.i.o.n...
00000D20 31 00 2E 00 30 00 2E 00 30 00 2E 00 30 00 00 00 1...0...0...0...
00000D30 EF BB BF 3C 3F 78 6D 6C 20 76 65 72 73 69 6F 6E ï»¿<?xml version
00000D40 3D 22 31 2E 30 22 20 65 6E 63 6F 64 69 6E 67 3D ="1.0" encoding=
00000D50 22 55 54 46 2D 38 22 20 73 74 61 6E 64 61 6C 6F "UTF-8" standalo
00000D60 6E 65 3D 22 79 65 73 22 3F 3E 0D 0A 3C 61 73 73 ne="yes"?>..<ass
00000D70 65 6D 62 6C 79 20 78 6D 6C 6E 73 3D 22 75 72 6E embly xmlns="urn
00000D80 3A 73 63 68 65 6D 61 73 2D 6D 69 63 72 6F 73 6F :schemas-microso
00000D90 66 74 2D 63 6F 6D 3A 61 73 6D 2E 76 31 22 20 6D ft-com:asm.v1" m
00000DA0 61 6E 69 66 65 73 74 56 65 72 73 69 6F 6E 3D 22 anifestVersion="
00000DB0 31 2E 30 22 3E 0D 0A 20 20 3C 61 73 73 65 6D 62 1.0">.. <assemb
00000DC0 6C 79 49 64 65 6E 74 69 74 79 20 76 65 72 73 69 lyIdentity versi
00000DD0 6F 6E 3D 22 31 2E 30 2E 30 2E 30 22 20 6E 61 6D on="1.0.0.0" nam
00000DE0 65 3D 22 4D 79 41 70 70 6C 69 63 61 74 69 6F 6E e="MyApplication
00000DF0 2E 61 70 70 22 2F 3E 0D 0A 20 20 3C 74 72 75 73 .app"/>.. <trus
00000E00 74 49 6E 66 6F 20 78 6D 6C 6E 73 3D 22 75 72 6E tInfo xmlns="urn
00000E10 3A 73 63 68 65 6D 61 73 2D 6D 69 63 72 6F 73 6F :schemas-microso
00000E20 66 74 2D 63 6F 6D 3A 61 73 6D 2E 76 32 22 3E 0D ft-com:asm.v2">.
00000E30 0A 20 20 20 20 3C 73 65 63 75 72 69 74 79 3E 0D . <security>.
00000E40 0A 20 20 20 20 20 20 3C 72 65 71 75 65 73 74 65 . <requeste
00000E50 64 50 72 69 76 69 6C 65 67 65 73 20 78 6D 6C 6E dPrivileges xmln
00000E60 73 3D 22 75 72 6E 3A 73 63 68 65 6D 61 73 2D 6D s="urn:schemas-m
00000E70 69 63 72 6F 73 6F 66 74 2D 63 6F 6D 3A 61 73 6D icrosoft-com:asm
00000E80 2E 76 33 22 3E 0D 0A 20 20 20 20 20 20 20 20 3C .v3">.. <
00000E90 72 65 71 75 65 73 74 65 64 45 78 65 63 75 74 69 requestedExecuti
00000EA0 6F 6E 4C 65 76 65 6C 20 6C 65 76 65 6C 3D 22 61 onLevel level="a
00000EB0 73 49 6E 76 6F 6B 65 72 22 20 75 69 41 63 63 65 sInvoker" uiAcce
00000EC0 73 73 3D 22 66 61 6C 73 65 22 2F 3E 0D 0A 20 20 ss="false"/>..
00000ED0 20 20 20 20 3C 2F 72 65 71 75 65 73 74 65 64 50 </requestedP
00000EE0 72 69 76 69 6C 65 67 65 73 3E 0D 0A 20 20 20 20 rivileges>..
00000EF0 3C 2F 73 65 63 75 72 69 74 79 3E 0D 0A 20 20 3C </security>.. <
00000F00 2F 74 72 75 73 74 49 6E 66 6F 3E 0D 0A 3C 2F 61 /trustInfo>..</a
00000F10 73 73 65 6D 62 6C 79 3E 0D 0A 00 00 00 00 00 00 ssembly>........
00000F20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FA0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FB0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FC0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FD0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 
00001000 00 20 00 00 0C 00 00 00 C0 37 00 00 00 00 00 00 À7......
00001010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Chapter 3 ■ Assembly

49

00001030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000010A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000010B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000010C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000010D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000010E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000010F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000011A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000011B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000011C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000011D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000011E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000011F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 

HXD: HEX EDITOR

In this chapter the HxD tool is used to open the assembly file in hexadecimal format. This tool can be downloaded
from the mh-nexus web site: (http://mh-nexus.de/en).

Analysis of the Assembly
Within the assembly the MS-DOS header is followed by the PE signature and then the PE file header and the PE
optional header. The PE optional header has its own subheaders, such as standard fields, NT-specific fields, and data
directories. Next is the section header. The section header contains information on the sections, such as .text, .rsrc,
and .reloc.

The .text section is important, as it provides the CLI header, metadata, IL code, and other information, which
you will explore later in the chapter. Before we move into that discussion, let’s take a look at how each of the sections
has been defined and referenced by the assembly’s section header Figure 3-3 illustrates the assembly contents.

http://mh-nexus.de/en

Chapter 3 ■ Assembly

50

Figure 3-3.  A typical .NET assembly in hexadecimal format

Chapter 3 ■ Assembly

51

Section Header
According to Partition 2, clause 25.3 of the ECMA C# standard, section headers contain the information
provided in Table 3-1.

Table 3-1.  Section Headers

Size Field Description

8 Name An 8-byte, null-padded ASCII string. There is no terminating null if the string
is exactly eight characters long.

4 VirtualSize Total size of the section, in bytes. If this value is greater than SizeOfRawData,
the section is zero padded.

4 VirtualAddress For executable images this is the address of the first byte of the section when
loaded into memory, relative to the image base.

4 SizeOfRawData Size of the initialized data on disk, in bytes; will be a multiple of
FileAlignment, from the PE header. If this is less than VirtualSize,
the remainder of the section is zero filled. Because this field is rounded,
whereas the VirtualSize field is not, it is possible for this to be greater than
VirtualSize as well. When a section contains only uninitialized data, this
field should be 0.

4 PointerToRawData Offset of the section’s first page in the PE file. This will be a multiple of
FileAlignment, from the optional header. When a section contains only
uninitialized data, this field should be 0.

4 PointerToRelocations Relative virtual address (RVA) of the .reloc section.

4 PointerToLinenumbers Always 0 (§24.1).

2 NumberOfRelocations Number of relocations; set to 0 if unused.

2 NumberOfLinenumbers Always 0 (§24.1).

4 Characteristics Flags describing a section’s characteristics.

From the PE file header contents, you can determine that there are three sections in the assembly and that each
of the sections is 40 bytes long, making the section header a total of 120 bytes long. It starts where the PE optional
header ends. The section header contents from the hexadecimal output from Listing 3-1 are as follows:
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
/*Section Header*/
 2E 74 65 78 74 00 00 00 .text...
00000180 C4 07 00 00 00 20 00 00 00 08 00 00 00 02 00 00 Ä....
00000190 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 60 `
 
000001A0 2E 72 73 72 63 00 00 00 20 05 00 00 00 40 00 00 .rsrc...@..
000001B0 00 06 00 00 00 0A 00 00 00 00 00 00 00 00 00 00
000001C0 00 00 00 00 40 00 00 40 @..@
 2E 72 65 6C 6F 63 00 00 .reloc..
000001D0 0C 00 00 00 00 60 00 00 00 02 00 00 00 10 00 00 `..........
000001E0 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 42 @..B
 
000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 

Chapter 3 ■ Assembly

52

Using the hexadecimal output, let’s take a closer look at the first 40 bytes to get a better understanding of the
first section:
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
/*Section Header*/
 2E 74 65 78 74 00 00 00 .text...
00000180 C4 07 00 00 00 20 00 00 00 08 00 00 00 02 00 00 Ä....
00000190 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 60 `
 

According to the header specification the first 8 bytes define the name of the section, so 00 00 00 2E 74 65
78 74 refers to the .text section. So, this is the .text section, and it has 00 00 07 C4 as virtual size, 00 00 20 00 as
virtual address, 00 00 08 00 as raw size, and 00 00 20 00 as raw address. The size of the .text section is 7C4 bytes,
starting from the offset 200. Based on this the end location of the .text section can be calculated as 200 + 7C4 = 9C4.
But, the actual size of the .text section is defined as 800 bytes by the compiler. According to the specification, the
remaining 3C bytes (800 – 7C4 = 3C) needs to pad with 0 (marked with underline), increasing the total length of the
.text section to 9C4 + 3C = A00 (which is actually 9FF). Thus, the total .text section will be as shown:
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
/* begin of .text Section*/
00000200 A0 27 00 00 00 00 00 00 48 00 00 00 02 00 05 00 '......H.......
/*removed*/
000009A0 00 00 5F 43 6F 72 45 78 65 4D 61 69 6E 00 6D 73 .._CorExeMain.ms
000009B0 63 6F 72 65 65 2E 64 6C 6C 00 00 00 00 00 FF 25 coree.dll.....ÿ%
000009C0 00 20 40 00 00 00 00 00 00 00 00 00 00 00 00 00 . @.............
000009D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000009E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000009F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................
/* end of .text Section*/
 

Now, let’s take a look at the next 40 bytes to understand the next section header.:
 
.rsrc section:
000001A0 2E 72 73 72 63 00 00 00 20 05 00 00 00 40 00 00 .rsrc...@..
000001B0 00 06 00 00 00 0A 00 00 00 00 00 00 00 00 00 00
000001C0 00 00 00 00 40 00 00 40
 

According to the header specification the first 8 bytes define the name, so 00 00 00 2E 72 73 72 63 refers to
.rsrc. Hence, this is the .rsrc section, and it has 00 00 05 20 as virtual size, 00 00 40 00 as virtual address, 00 00
06 00 as raw size, and 00 00 A0 00 as raw address. The size of the .rsrc section is 520 bytes, starting from the offset
A00. Based on this, the end location of the .rsrc section will be A00 + 520 = F20. But, the actual size of the .rsrc
section is defined as 600 by the compiler. According to the specification, 600 – 520 = E0 needs to pad the end of the
.rsrc section with 0 (marked with underline), up to F20 + E0 = 1000 (which is actually FFF). Therefore, the total
.rsrc section will be as follows:
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
/* begin of .rsrc Section*/
00000A00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00
/*removed*/
00000F00 2F 74 72 75 73 74 49 6E 66 6F 3E 0D 0A 3C 2F 61 /trustInfo>..</a
00000F10 73 73 65 6D 62 6C 79 3E 0D 0A 00 00 00 00 00 00 ssembly>........
00000F20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Chapter 3 ■ Assembly

53

00000F40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000F90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FA0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FB0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FC0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FD0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000FF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
/*end of .rsrc Section*/
 

The same technique can be applied to extract other section information. In the next section, you will examine
how the .text section has been defined in the assembly.

.text Section
According to Partition 2, clause 24.2.6 of the ECMA C# standard, the specification of the #~ stream is as shown in
Table 3-2.

Table 3-2.  Section Header

Size Field Description

4 Reserved Reserved; always 0.

1 MajorVersion Major version of table schemata; will be 2.

1 MinorVersion Minor version of table schemata; will be 0.

1 HeapSizes Bit vector for heap sizes.

1 Reserved Reserved; always 1.

8 Valid Bit vector of present tables; let n be the number of bits that are 1.

8 Sorted Bit vector of sorted tables.

4*n Rows Array of n 4-byte unsigned integers, indicating the number of rows for each
present table.

Tables Sequence of physical tables.

Chapter 3 ■ Assembly

54

Figure 3-4.  .text section of an assenbly

Figure 3-4 illustrates the .text section of an assembly.

Chapter 3 ■ Assembly

55

Table 3-3 shows the specification of the stream header.

Table 3-3.  Stream Header

Size Field Description

4 Offset Memory offset to the start of this stream from the start of the metadata root.

4 Size Size of this stream, in bytes; will be a multiple of four.

Name Name of the stream as null-terminated, variable-length array of ASCII characters,
padded to the next 4-byte boundary with \0 characters. The name is limited to 32
characters.

The .text section of the assembly defines the stream headers used in the assembly. The stream header data
is as follows:
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 6C 00 00 00 .l...
000002B0 14 02 00 00 23 7E 00 00 80 02 00 00 8C 02 00 00 #~..€...Œ...
000002C0 23 53 74 72 69 6E 67 73 00 00 00 00 0C 05 00 00 #Strings........
000002D0 18 00 00 00 23 55 53 00 24 05 00 00 10 00 00 00 #US.$.......
000002E0 23 47 55 49 44 00 00 00 34 05 00 00 2C 01 00 00 #GUID...4...,...
000002F0 23 42 6C 6F 62 00 00 00 #Blob...
 00 00 00 00 02 00 00 01
00000300 47 15 02 00 09 00 00 00 00 FA 25 33 00 16 00 00 G........ú%3....
 

This hexadecimal output shows that the first 4 bytes, 6C 00 00 00, refer to the offset of this stream and are
followed by another 4 bytes representing the size of the stream and an 8-byte string referring to its name. As per
its definition, this #~ stream will start from the metadata root addition to the offset defined in the stream headers
section. The #~ stream has an offset of 6C, and the metadata root starts at 28C, so the #~ stream will start at metadata
root + 6C = 28C + 6C = 2F8. The total size of the stream is 00 00 02 14, making the end address of the #~ stream
2F8 + 214 = 50C.
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 
000002F0 23 42 6C 6F 62 00 00 00
/*begin of #~ stream*/
 00 00 00 00 02 00 00 01 #Blob...........
00000300 47 15 02 00 09 00 00 00 00 FA 25 33 00 16 00 00 G........ú%3....
 
00000310 01 00 00 00 13 00 00 00 03 00 00 00 04 00 00 00
/*removed*/
00000500 01 00 27 00 00 00 00 00 00 00 00 00
/*end of #~ stream*/
 

The same technique can be used to extract other header information. In the following sections, you will study the
different streams from the stream header data.

#~ stream
The type metadata are stored in tables. There are three kinds of metadata tables for types: definition tables, reference
tables, and pointer tables.

Chapter 3 ■ Assembly

56

Definition Tables

Each definition table contains information with respect to one type of element for the module (e.g., the classes, the
methods of the classes). I will not detail all the possible tables, but include here the most important ones.

ModuleDef
This table has a single entry that defines the current module. This entry provides the name of the file, with its
extension, but without its path.

TypeDef
This table presents one entry for each type defined in the module. Each entry offers the name of the type, the base
type, flags for the type (public, internal, sealed), and indexes referencing the members of the types in the metadata
tables (MethodDef, FieldDef, PropertyDef, EventDef, and so on).

MethodDef
This table has one entry for each method defined in the module. Each entry includes the name of the method; flags
for the method (public, abstract, sealed, and so on); an offset allowing the method to be located in the IL code; and
a reference to the signature of the method, which is contained in a binary form in a heap called the #blob. There is
also a table for the fields (FieldDef), one for the properties (PropertyDef), one for events (EventDef), and so on. The
definition of these tables is standard, and each is coded with an identification byte. For example, all the MethodDef
tables in .NET modules have a table number of 6.

Reference Tables

Reference tables contain information on the elements referenced by the module. The referenced elements can be
defined in other modules of the same assembly or as part of other assemblies. Following are a few commonly used
reference tables.

AssemblyRef
This table has an entry for each assembly referenced in the module (i.e., each assembly that has at least one element
referenced in the module). Each entry provides the four components of a strong name: name of the assembly (without
path or extension), version number, culture, and public key token (may be null if one is not present).

ModuleRef
This table presents one entry for each module of the current assembly referenced in the module (i.e., each
module that contains at least one element referenced in the module). Each entry offers the name of the module,
with its extension.

TypeRef
This table has one entry for each type referenced in the module. Each entry includes the name of the type and a
reference to where it is defined. If the type is defined in this module or another module of the same assembly, the
reference indicates an entry in the ModuleRef table. If the type is defined in another assembly, the reference indicates
an entry in the AssemblyRef table. If the type is encapsulated within another type, the reference points to an entry in
the TypeRef table.

Chapter 3 ■ Assembly

57

MemberRef
This table provides one entry for each member referenced in the module. A member can be, for example, a method,
a field, or a property. Each entry includes the name of the member, its signature, and a reference to the TypeRef table.
The definition of these tables is also standard, and each table is coded with a byte. For instance, all MemberRef tables
in a .NET module are identified with the number 10.

In addition to these tables, the metadata section contains four heaps: #Strings, #Blob, #US, and #GUID.
The #Strings heap has character strings, such as the name of the methods. This means that elements of the tables,

such as MethodDef or MemberRef, do not contain actual strings, but references to the elements of the #String heap.
The #Blob heap offers binary information, such as the method signatures, stored in a binary format. This means

that elements from the MethodDef or MemberRef tables do not contain signatures, but references to the #Blob heap.
The #US (user string) includes character strings defined directly within the code.
The #GUID heap provides the globally unique identifier (GUID) defined and used in the program. A GUID is a

16-byte constant that is employed to name a resource. The particularity of a GUID is that it can be generated by tools
such as guidgen.exe in a way almost certain to guarantee its uniqueness.

MEMORY LAYOUT

I hear a lot of questions about memory layout. When we talk about laying out the memory of an assembly, we
simply mean reading the assembly contents at runtime; instantiating a CLR data structure in the CLR address
space; and populating the data structure with the relevant the values, extracted from the assembly contents. The
CLR will read the following contents (output from the C# program depicted in Listing 3-1) in hexadecimal and
lay them out in the memory as an IL code block that you can explore, using the !dumpil SOS command via the
WinDbg tool.
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 00 00 00
00000250 13 30 01 00 0F 00 00 00 01 00 00 11 00 73 04 00 .0...........s..
00000260 00 06 0A 06 6F 03 00 00 06 00 2A 1E 02 28 11 00 o.....*..(..
00000270 00 0A 2A 36 00 72 01 00 00 70 28 12 00 00 0A 00 ..*6.r...p(.....
00000280 2A 1E 02 28 11 00 00 0A 2A 00 00 00
 
Looking at the the hexadecimal output of this assembly, you can see that the #~ stream is defined in the .text
section, which contains different metadata, such as ModuleDef, TypeDef, MethodDef, AssemblyRef, ModuleRef,
and MemberRef, to define the types used in the program.
 
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 00 00 0A 00 01 00 00 00
00000340 00 00 06 00 37 00 30 00 06 00 6E 00 54 00 06 00 7.0...n.T...
00000350 99 00 87 00 06 00 B0 00 87 00 06 00 CD 00 87 00 ™.‡...°.‡...Í.‡.
00000360 06 00 EC 00 87 00 06 00 05 01 87 00 06 00 1E 01 ..ì.‡.....‡.....
00000370 87 00 06 00 39 01 87 00 06 00 54 01 87 00 06 00 ‡...9.‡...T.‡...
00000380 8C 01 6D 01 06 00 A0 01 6D 01 06 00 AE 01 87 00 Œ.m... .m...®.‡.
00000390 06 00 C7 01 87 00 06 00 F7 01 E4 01 3F 00 0B 02 ..Ç.‡...÷.ä.?...
000003A0 00 00 06 00 3A 02 1A 02 06 00 5A 02 1A 02 06 00 :.....Z.....
000003B0 78 02 30 00 00 00 00 00 01 00 00 00 00 00 01 00 x.0.............
000003C0 01 00 00 00 10 00 14 00 1C 00 05 00 01 00 01 00
000003D0 01 00 10 00 22 00 1C 00 05 00 01 00 03 00 50 20 ".........P
000003E0 00 00 00 00 91 00 3E 00 0A 00 01 00 6B 20 00 00 ‘.>.....k ..
000003F0 00 00 86 18 43 00 10 00 02 00 73 20 00 00 00 00 ..†.C.....s

Chapter 3 ■ Assembly

58

00000400 86 00 49 00 10 00 02 00 81 20 00 00 00 00 86 18 †.I......†.
00000410 43 00 10 00 02 00 00 00 01 00 4F 00 11 00 43 00 C.........O...C.
00000420 14 00 19 00 43 00 14 00 21 00 43 00 14 00 29 00 C...!.C...).
00000430 43 00 14 00 31 00 43 00 14 00 39 00 43 00 14 00 C...1.C...9.C...
00000440 41 00 43 00 14 00 49 00 43 00 14 00 51 00 43 00 A.C...I.C...Q.C.
00000450 14 00 59 00 43 00 19 00 61 00 43 00 14 00 69 00 ..Y.C...a.C...i.
00000460 43 00 14 00 71 00 43 00 14 00 79 00 43 00 1E 00 C...q.C...y.C...
00000470 89 00 43 00 24 00 91 00 43 00 10 00 09 00 43 00 ‰.C.$.‘.C.....C.
00000480 10 00 99 00 80 02 2E 00 2E 00 0B 00 33 00 2E 00 ..™.€.......3...
00000490 13 00 99 00 2E 00 1B 00 A4 00 2E 00 23 00 A4 00 ..™.....¤...#.¤.
000004A0 2E 00 2B 00 A4 00 2E 00 33 00 99 00 2E 00 3B 00 ..+.¤...3.™...;.
000004B0 AA 00 2E 00 43 00 A4 00 2E 00 53 00 A4 00 2E 00 ª...C.¤...S.¤...
000004C0 5B 00 C2 00 2E 00 6B 00 EC 00 2E 00 73 00 F9 00 [.Â...k.ì...s.ù.
000004D0 2E 00 7B 00 02 01 2E 00 83 00 0B 01 29 00 04 80 ..{.....ƒ...)..€
000004E0 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00
000004F0 1C 00 00 00 04 00 00 00 00 00 00 00 00 00 00 00
00000500 01 00 27 00 00 00 00 00 00 00 00 00
 
The CLR will read this value and use it to lay out the type used in the assembly. You can easily find it, using
!name2ee SOS command via WinDbg.

Assembly Loading
The CLR loads the assembly into memory and makes it ready to execute by the execution engine of the CLR. The
assembly-loading process in the CLR consists of the following steps:

	 1.	 Binding: In this step the CLR determines the assembly to load. To establish the identity
of the assembly, the CLR seeks information as the user inputs it or during dependency
resolution and consults system configuration and the fusion subsystem.

	 2.	 Probing: Binding often relies on the fusion subsystem to perform probing in order to
locate an assembly against which to bind. Probing encapsulates much of the complexity of
locating assemblies on your system so that the CLR loader does not have to.

	 3.	 Mapping: Once the identity of the assembly is determined, the CLR reads and
maps it in memory. The physical representation of the assembly is mapped in the virtual
memory space.

	 4.	 Loading: The last step is to prepare the loaded code for execution. Before code can be
executed, it must pass through the verification phase. Once the code is verified, the CLR
creates the relevant data structures to start execution.

Mapping and loading are mostly implementation details that you seldom need to worry about. The following
section discusses the loading and probing process further.

Chapter 3 ■ Assembly

59

A related part of binding is probing. Probing is the act of searching for the physical binary, based on the version
and location information discovered earlier, in the loading process. Roughly speaking, these four activities can be
conceptually envisioned as described in the next section.

Binding to an Assembly
The binding process accepts a variety of inputs, including either a fully or a partially qualified assembly name, a
file path, or a byte[] block of memory. The process then uses this input to decide which bits must be loaded and
from where. The case of the byte[] is quite simple: the hard work is already done, and you can simply move on to
mapping it in memory, verifying its contents, and working directly with it. However, in the case of a strong name or
partial name, there is a bit of work to do initially. The first step is to transform the name into a location. For assembly
loads that do not specify version or key information, policy is not consulted. Loads that come from disk or a network
location (e.g., Assembly.LoadFrom) that use assemblies with this information will consult policy before fully loading
the assembly; this is determined by reading the assembly’s manifest. But, for all other loads, no configuration or global
assembly cache (GAC) searching is performed.

Consulting the Cache
In the assembly-loading process, before the CLR starts loading any assembly, it will ascertain whether it can reuse
an existing assembly. The CLR checks the local cache of the application domain to investigate the previous binding
activities. If the CLR discovers that the target assembly has already loaded, it will not start the probing process; it will
just reuse that code. Otherwise, the binder proceeds with the process of trying to find a suitable match.

Figure 3-5.  Assembly loading

Inside the Bind, Map, Load Process
A number of steps take place to determine what code to load, where to load it from, and what context it will be loaded
into. A conceptual overview of the process is depicted in Figure 3-5.

Chapter 3 ■ Assembly

60

Conclusion
The CLR cannot execute the IL code directly; it needs the assembly. The assembly is a mechanism used by .NET to
deploy the application code. In this chapter, you have seen that the assembly has a specific format that is defined in
Partition 2 of the ECMA CLR specification. At a very high level the assembly contains information that describes the
application code; using predefined headers, the assembly stores the compiled IL code, along with the resource files.
The assembly files typically reside in the storage devices, but, as you have already seen, the CPU fetches instructions
from the memory. As a result, in order for the CPU to execute, the application code needs to reside in the physical
memory. The CLR is responsible for loading the assembly into memory. Understanding how the CLR does this
requires knowledge of how the memory works, how the OS manages it, and, most important, how the CLR uses
memory. Once you have a solid grasp of memory, you will be able to understand how the CLR handles assembly at
runtime. In the next chapter, you will learn about the memory—how it works and how the OS handles it.

Further Reading
Box, Don. Essential.NET: The Common Language Runtime. Vol. 1. Boston: Addison-Wesley, 2003.
Jacob, Bruce, Spencer W. Ng, and David T. Wang. Memory Systems: Cache, DRAM, Disk. Burlington, MA: Morgan

Kaufmann, 2008.
Miller, James S., and Susann Ragsdale. The Common Language Infrastructure Annotated Standard. Boston: Addison-

Wesley, 2004.

61

Chapter 4

CLR Memory Model

As you have seen in Chapter 1, the CPU executes instruction by fetching it from the physical memory (RAM).
The application code must reside somewhere in the physical memory to be executed by the CPU. It is therefore
important that you manage the physical memory while the CPU executes an application. The OS plays a significant
role in managing physical memory by abstracting it into a concept called virtual memory. The concept of the virtual
memory gives the illusion to the user application that it has a huge range of memory to consume. The OS offers
memory management services via the memory API.

The CLR has its own memory abstraction layer, implemented using this memory API, and provides a virtual
execution environment for any .NET application. This makes memory operation for the user application easier, and
the application developer is not required to write code to access memory, release memory to avoid unexpected
memory leak, and so on. The responsibility of managing the memory operations is left to the CLR.

In this chapter, you will focus on the relationship between the OS memory services and the CLR memory model.

Introduction
Physical memory is the range of the physical addresses of the memory cells in which an application or system stores
its data, code, and so on during execution. Memory management denotes the managing of these physical addresses
by swapping the data from physical memory to a storage device and then back to physical memory when needed.
The OS implements the memory management services using virtual memory. As a C# application developer you do
not need to write any memory management services. The CLR uses the underlying OS memory management services
to provide the memory model for C# or any other high-level language targeting the CLR.

Figure 4-1 shows physical memory that has been abstracted and managed by the OS, using the virtual memory
concept. Virtual memory is the abstract view of the physical memory, managed by the OS. Virtual memory is simply
a series of virtual addresses, and these virtual addresses are translated by the CPU into the physical address
when needed.

Figure 4-1.  CLR memory abstraction

Chapter 4 ■ CLR Memory Model

62

The CLR provides the memory management abstract layer for the virtual execution environment, using the
operating memory services. The abstracted concepts the CLR uses are AppDomain, thread, stack, heapmemory-
mapped file, and so on. The concept of the application domain (AppDomain) gives your application an isolated
execution environment.

Memory Interaction between the CLR and OS
By looking at the stack trace while debugging the following C# application, using WinDbg, you will see how the CLR uses
the underlying OS memory management services (e.g., the HeapFree method from KERNEL32.dll, the RtlpFreeHeap
method from ntdll.dll) to implement its own memory model:
 
using System;
 
namespace CH_04
{
 class Program
 {
 static void Main(string[] args)
 {
 Book book = new Book();
 Console.ReadLine();
 }
 }
 
 public class Book
 {
 public void Print() { Console.WriteLine(ToString()); }
 }
}
 

The compiled assembly of the program is loaded into WinDbg to start debugging. You use the following
commands to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Then, you set a breakpoint at the Main method of the Program class, using the !bpmd command:
 
0:000>!bpmd CH_04.exe CH_04.Program.Main
 

To continue the execution and break at the breakpoint, execute the g command:
 
0:000> g
 

Chapter 4 ■ CLR Memory Model

63

When the execution breaks at the breakpoint, you use the !eestack command to view the stack trace details of all
threads running for the current process. The following output shows the stack trace for all the threads running for the
application CH_04.exe:
 
0:000> !eestack

Thread 0
Current frame: (MethodDesc 00233800 +0 CH_04.Program.Main(System.String[]))
ChildEBP RetAddr Caller, Callee
0022ed24 5faf21db clr!CallDescrWorker+0x33
 
/*trace removed*/
 
0022f218 77712d68 ntdll!RtlFreeHeap+0x142, calling ntdll!RtlpFreeHeap
0022f238 771df1ac KERNEL32!HeapFree+0x14, calling ntdll!RtlFreeHeap
0022f24c 5fb4c036 clr!EEHeapFree+0x36, calling KERNEL32!HeapFree
0022f260 5fb4c09d clr!EEHeapFreeInProcessHeap+0x24, calling clr!EEHeapFree
0022f274 5fb4c06d clr!operator delete[]+0x30, calling clr!EEHeapFreeInProcessHeap
 
/*trace removed*/
 
0022f4d0 7771316f ntdll!RtlpFreeHeap+0xb7a, calling ntdll!_SEH_epilog4
0022f4d4 77712d68 ntdll!RtlFreeHeap+0x142, calling ntdll!RtlpFreeHeap
0022f4f4 771df1ac KERNEL32!HeapFree+0x14, calling ntdll!RtlFreeHeap
 
/*trace removed*/
 

This stack trace indicates that the CLR uses OS memory management services to implement its own memory
model. Any memory operation in.NET goes via the CLR memory layer to the OS memory management layer.

Chapter 4 ■ CLR Memory Model

64

The CLR memory model is tightly coupled with the OS memory management services. To understand the CLR
memory model, it is important to understand the underlying OS memory model. It is also crucial to know how the
physical memory address space is abstracted into the virtual memory address space, the ways the virtual address
space is being used by the user application and system application, how virtual-to-physical address mapping works,
how memory-mapped file works, and so on. This background knowledge will improve your grasp of CLR memory
model concepts, including AppDomain, stack, and heap.

Windows Memory Management
As you learned in Chapter 1, the Windows OS uses the concept of the process to execute different tasks. For example,
when you run any C# application, it will run as a process. Moreover, even when Windows itself does anything, it uses
the concept of the process to execute.

Figure 4-2.  A typical C# application memory model

Figure 4-2 illustrates a typical C# application memory model used by the CLR at runtime.

Chapter 4 ■ CLR Memory Model

65

Concept of the Process
A process is the abstract concept used and implemented by the OS to split systems or application programs among
several functional units. The OS achieves this by allocating a separate, private address space for each process. This address
space maps resources for the application. For example, the CLR contains the GC, code manager, JIT compiler, and so on.
Each of these Windows processes has its own private virtual address space allocated and managed by Windows. When
a process is initialized by Windows, it creates a data structure, called the process environment block (PEB), to manage that
process, using the OS. When you execute the following application, the OS will create a process to start its execution:
 
using System;
 
namespace CH_04
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Process");
 }
 }
 public class Test
 {
 public void TestMethod() { }
 }
}
 

The compiled assembly of this program is loaded into WinDbg to start debugging. To find out more about the
process in Windows, you use the !process command in the kernel mode of WinDbg, while the application runs
separately. The !process command, with 0 as image name and 0 as Flags, will be shown a list of the processes
running in the system at the moment. Among these processes one will be CH_04.exe, as displayed here:
 
lkd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
PROCESS 8a9f3660 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
 DirBase: 0b100020 ObjectTable: e1002e00 HandleCount: 2067.
 Image: System
 
/*removed*/
 
PROCESS 8545b030 SessionId: 1 Cid: 1050 Peb: 7ffdf000 ParentCid: 14b8
 DirBase: 7ef76620 ObjectTable: dc8291f8 HandleCount: 20.
 Image: CH_04.exe
 
/*removed*/
 
PROCESS 88ced330 SessionId: 0 Cid: 07d0 Peb: 7ffdf000 ParentCid: 11dc
 DirBase: 0b100800 ObjectTable: e42b9ef8 HandleCount: 93.
 Image: Windbg
 

Chapter 4 ■ CLR Memory Model

66

!PROCESS 0 0

When using the !process command with Flags as 0, the output will include time and priority statistics; if 0 is
used for the process ID, and ImageName is omitted, the debugger displays information about all active processes.

Process Structure
Process is simply a data structure and is manipulated by the OS, based on the specification defined in the OS to
manage process. If you examine the process data structure, you will see that it has different fields; some (DirBase,
VadRoot, and so on) are used to maintain the address space for that process, as shownhere. You will use the process ID
8672e030, from the previous output, to learn the details of that process, using the !process command, as follows:
 
lkd> !process 84bd4d40 1
PROCESS 84bd4d40 SessionId: 1 Cid: 1650 Peb: 7ffd3000 ParentCid: 14b8
 DirBase: 7ef76620 ObjectTable: db882408 HandleCount: 116.
 Image: CH_04.exe
 VadRoot 85453be8 Vads 70 Clone 0 Private 313. Modified 6. Locked 0.
 DeviceMap 8c463540
 Token d9b29c30
 ElapsedTime 00:01:48.467
 UserTime 00:00:00.000
 KernelTime 00:00:00.000
 QuotaPoolUsage[PagedPool] 0
 QuotaPoolUsage[NonPagedPool] 0
 Working Set Sizes (now,min,max) (1374, 50, 345) (5496KB, 200KB, 1380KB)
 PeakWorkingSetSize 1374
 VirtualSize 91 Mb
 PeakVirtualSize 91 Mb
 PageFaultCount 1415
 MemoryPriority BACKGROUND
 BasePriority 8
 CommitCharge 1842
 DebugPort 85d7efc0 

NOTE

Bit 0 (0x1)Displays time and priority statistics.

Bit 1 (0x2)

Displays a list of threads and events associated with the process and their wait states.

Bit 2 (0x4)

Displays a list of threads associated with the process. If this is included without Bit 1 (0x2), each thread is
displayed on a single line. If this is included with Bit 1, each thread is displayed with a stack trace.

Bit 3 (0x8)

(Windows XP and later) Displays the return address, stack pointer, and (on Itanium-based systems) binary space
partitioning (BSP) register value for each function. The display of function arguments is suppressed.

Chapter 4 ■ CLR Memory Model

67

Bit 4 (0x10)

(Windows XP and later) Sets the process context equal to the specified process for the duration of this command.
This results in a more accurate display of thread stacks. Because this flag is equivalent to using .process /p /r
for the specified process, any existing user-mode module list will be discarded. If the process is 0, the debugger
displays all processes, and the process context is changed for each one. If you are only displaying a single
process, and its user-mode state has already been refreshed (e.g., with .process /p /r), it is not necessary to
use this flag. This flag is only effective when used with Bit 0 (0x1).

PROCESS DATA STRUCTURE

If you want to see the complete data structure of the process structure of a process, use the dt command with
the structure name and process ID,like this 22:
 
lkd> dt nt!_EPROCESS 84bd4d40
 +0x000 Pcb : _KPROCESS
/* removed*/
 +0x16c ImageFileName : [15] "CH_04.exe"
/* removed*/
 +0x278 VadRoot : _MM_AVL_TABLE
 +0x298 AlpcContext : _ALPC_PROCESS_CONTEXT
 +0x2a8 TimerResolutionLink : _LIST_ENTRY [0x0 - 0x0]
 +0x2b0 RequestedTimerResolution : 0
 +0x2b4 ActiveThreadsHighWatermark : 4
 +0x2b8 SmallestTimerResolution : 0
 +0x2bc TimerResolutionStackRecord : (null)
 
To view the inner structure, use dt nt!_EPROCESS -b 89733020, in kernel mode.

The dt command displays information about a local variable, global variable, or data type. The !dt command,
with the symbol name nt!_EPROCESS, shows the prior information about that e process.

Process Address Space
While studying the output gjven using !process command, you may have noticed a field called DirBase. This field
represents the mapping table that mapped the virtual address of the process to the physical address.

You can use the!vad command, with the VadRoot address from the previous output (0x896a9920), to display the
virtual address tree associated with that address:
 
lkd> !vad 85453be8
VAD level start end commit
88f38fe8 (3) 10 11 2 Private READWRITE
/*removed*/
89213460 (4) 130 132 0 Mapped READONLY Pagefile-backed section
89048cd0 (3) 140 140 0 Mapped READONLY Pagefile-backed section
88e13298 (5) 150 150 1 Private EXECUTE_READWRITE
89d489a8 (4) 160 160 1 Private READWRITE

Chapter 4 ■ CLR Memory Model

68

/*removed*/
88�e64c70 (6) 290 2a5 0 Mapped READONLY \WINDOWS\system32\unicode.nls
/*removed*/
897cc728 (9) 360 36f 5 Private READWRITE
892a7ed8 (10)     370   372     0 Mapped    READONLY \WINDOWS\system32\ctype.nls
893c5550 (11) 380 3bf 3 Private EXECUTE_READWRITE
8a84d940 (12) 3c0 3c0 0 Mapped READONLY Pagefile-backed section
89735de8 (13) 3d0 3dd 0 Mapped READWRITE Pagefile-backed section
/*removed*/
89�4c6e18 (1)    400   407     2 Mapped Exe   EXECUTE_WRITECOPY \TestApp\TestApp\bin\Debug\TestApp.exe
8a8a54b0 (3) 410 4d7 0 Mapped EXECUTE_READ Pagefile-backed section
88ed7a10 (4) 4e0 5e2 0 Mapped READONLY Pagefile-backed section
88ce3110 (2) 5f0 8ef 0 Mapped EXECUTE_READ Pagefile-backed section
89353230 (4) 8f0 8ff 5 Private READWRITE
88fff088 (6) 900 90f 4 Private READWRITE
88c7f248 (5) 910 911 0 Mapped READONLY Pagefile-backed section
898a1f68 (6) 920 92f 8 Private READWRITE
8902a9c0 (3) 930 93f 5 Private READWRITE
88cb5480 (5) 940 97f 3 Private EXECUTE_READWRITE
897b8728 (6) 980 98f 5 Private READWRITE
/*removed*/
893c81c0 (9) 9b0 9bf 2 Private NO_ACCESS
892c3998 (4) 9c0 9c1 0 Mapped READONLY Pagefile-backed section
896a9920 (0) 9d0 a0f 3 Private EXECUTE_READWRITE
88ace740 (5) a10 a1f 3 Private NO_ACCESS
/*removed*/
89543620 (7) a50 a8f 3 Private EXECUTE_READWRITE
89603d30 (6) a90 b8f 255 Private READWRITE
89bca380 (7) b90 c2f 160 Private WrtWatch READWRITE
898882c8 (8) c30 d2f 253 Private READWRITE
89b0cfa0 (9) d30 d96 0 Mapped READONLY
\WINDOWS\Microsoft.NET\Framework\v4.0.30319\locale.nlp
89209238 (10) da0 1071 0 Mapped READONLY
\WINDOWS\Microsoft.NET\Framework\v4.0.30319\sortdefault.nlp
889ff388 (3) 1120 1121 0 Mapped READONLY Pagefile-backed section
892d27b8 (4) 1130 312f 36 Private WrtWatch READWRITE
89�5f4930 (2) 10000 1003a 12 Mapped    Exe EXECUTE_WRITECOPY \WINDOWS\system32\sxwmon32.dll
/*removed*/
88e9bb48 (4) 7f6f0 7f7ef 0 Mapped EXECUTE_READ Pagefile-backed section
88ae66d8 (3) 7ffb0 7ffd3 0 Mapped READONLY Pagefile-backed section
899242a0 (7) 7ffdc 7ffdc 1 Private READWRITE
/*removed*/
 
Total VADs: 78, average level: 6, maximum depth: 15

Chapter 4 ■ CLR Memory Model

69

Concept of the Thread
A process cannot be executed by the OS directly; it uses another abstract concept, the thread, which works as the
execution unit for the functional unit defined by the process. The thread has its own address space, which is a subset
of the virtual address space allocated for the process. A thread can only belong to a single process and can only use the
resources of that process. A thread includes

An instruction pointer, which points to the instruction that is currently being executed•	

A stack•	

A set of register values, defining a part of the state of the processor executing the thread•	

A private data region•	

When a process is created by the OS, it automatically allocates a thread for it, called the main, or primary, thread.
It is this thread that executes the runtime host, which in turn loads the CLR.

THREAD ENVIRONMENT BLOCK: !TEB

The CLR maintains the data structure of the thread, as shown:
 
lkd> !teb
TEB at 7ffdf000
 ExceptionList: 0012f440
 StackBase: 00130000
 StackLimit: 0012b000
 SubSystemTib: 00000000
 FiberData: 00001e00
 ArbitraryUserPointer: 00000000
 Self: 7ffdf000
 EnvironmentPointer: 00000000
 ClientId: 000015b8 . 00001564
 RpcHandle: 00000000
 Tls Storage: 00000000
 PEB Address: 7ffdb000
 LastErrorValue: 0
 LastStatusValue: c000000f
 Count Owned Locks: 0
 HardErrorMode: 0
 

Here, the thread data structure is displayed in detail, using ?? @$thread or dt nt!_ETHREAD:
 
lkd> ?? @$thread
struct _ETHREAD * 0x88d97760
 +0x000 Tcb : _KTHREAD
 +0x1c0 CreateTime : _LARGE_INTEGER 0x0e79ba22`b42e96b8
 +0x1c0 NestedFaultCount : 0y00
 +0x1c0 ApcNeeded : 0y0
 +0x1c8 ExitTime : _LARGE_INTEGER 0x88d97928`88d97928
 +0x1c8 LpcReplyChain : _LIST_ENTRY [0x88d97928 - 0x88d97928]
 +0x1c8 KeyedWaitChain : _LIST_ENTRY [0x88d97928 - 0x88d97928]

Chapter 4 ■ CLR Memory Model

70

 +0x1d0 ExitStatus : 0n0
 +0x1d0 OfsChain : (null)
 +0x1d4 PostBlockList : _LIST_ENTRY [0xe5afc600 - 0xe5c92568]
 +0x1dc TerminationPort : 0xe23f02d8 _TERMINATION_PORT
 +0x1dc ReaperLink : 0xe23f02d8 _ETHREAD
 +0x1dc KeyedWaitValue : 0xe23f02d8 Void
 +0x1e0 ActiveTimerListLock : 0
 +0x1e4 ActiveTimerListHead : _LIST_ENTRY [0x88d97944 - 0x88d97944]
 +0x1ec Cid : _CLIENT_ID
 +0x1f4 LpcReplySemaphore : _KSEMAPHORE
 +0x1f4 KeyedWaitSemaphore : _KSEMAPHORE
 +0x208 LpcReplyMessage : (null)
 +0x208 LpcWaitingOnPort : (null)
 +0x20c ImpersonationInfo : (null)
 +0x210 IrpList : _LIST_ENTRY [0x88d97970 - 0x88d97970]
 +0x218 TopLevelIrp : 0
 +0x21c DeviceToVerify : (null)
 +0x220 ThreadsProcess : 0x88ced330 _EPROCESS
 +0x224 StartAddress : 0x7c8106f9 Void
 +0x228 Win32StartAddress : 0x0041f450 Void
 +0x228 LpcReceivedMessageId : 0x41f450
 +0x22c ThreadListEntry : _LIST_ENTRY [0x8927824c - 0x8895cee4]
 +0x234 RundownProtect : _EX_RUNDOWN_REF
 +0x238 ThreadLock : _EX_PUSH_LOCK
 +0x23c LpcReplyMessageId : 0
 +0x240 ReadClusterSize : 7
 +0x244 GrantedAccess : 0x1f03ff
 +0x248 CrossThreadFlags : 0
 +0x248 Terminated : 0y0
 +0x248 DeadThread : 0y0
 +0x248 HideFromDebugger : 0y0
 +0x248 ActiveImpersonationInfo : 0y0
 +0x248 SystemThread : 0y0
 +0x248 HardErrorsAreDisabled : 0y0
 +0x248 BreakOnTermination : 0y0
 +0x248 SkipCreationMsg : 0y0
 +0x248 SkipTerminationMsg : 0y0
 +0x24c SameThreadPassiveFlags : 0
 +0x24c ActiveExWorker : 0y0
 +0x24c ExWorkerCanWaitUser : 0y0
 +0x24c MemoryMaker : 0y0
 +0x250 SameThreadApcFlags : 0
 +0x250 LpcReceivedMsgIdValid : 0y0
 +0x250 LpcExitThreadCalled : 0y0
 +0x250 AddressSpaceOwner : 0y0
 +0x254 ForwardClusterOnly : 0 ''
 +0x255 DisableageFaultClustering : 0 ''
 +0x258 KernelStackReference : 1 

Chapter 4 ■ CLR Memory Model

71

The process is the boundary, and the thread is the execution unit that is executed by the CPU. If you explore the
details of a process, for example, CH_04.exe, which is executing via the OS, you will discover how many threads are
associated with it, as shown:
 
lkd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
PROCESS 8483a2e8 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
 DirBase: 00185000 ObjectTable: 89801e28 HandleCount: 649.
 Image: System
  
/*code removed*/
 
PROCESS dc406d40 SessionId: 1 Cid: 128c Peb: 7ffd8000 ParentCid: 14b8
 DirBase: 7ef76880 ObjectTable: dbfb9a80 HandleCount: 20.
 Image: CH_04.exe
 
/*code removed*/
 

The details of the threads associated with CH_04.exe are as follows:
 
lkd> !process dc406d40 4
PROCESS dc406d40 SessionId: 1 Cid: 128c Peb: 7ffd8000 ParentCid: 14b8
 DirBase: 7ef76880 ObjectTable: dbfb9a80 HandleCount: 93.
 Image: CH_04.exe
 
 THREAD db4fbd48 Cid 128c.1598 Teb: 7ffdf000 Win32Thread: fc08bdd8 WAIT
 THREAD 84a795c8 Cid 128c.130c Teb: 7ffde000 Win32Thread: 00000000 WAIT
 THREAD 8509fd48 Cid 128c.0a10 Teb: 7ffdd000 Win32Thread: 00000000 WAIT
 

Because the OS multitasks, each of the threads in Windows needs to run or be given a time to execute its
instructions by the CPU and also to simulate that everything is running simultaneously for a single CPU-based
system. The OS ensures this by introducing the concepts of scheduling and the quantum. The quantum is a period
of time allocated for each of the threads to use the CPU. To learn the quantum details of all the threads in the process
89961268, debug the application in WinDbg kernel mode while executing the following commands:
 
lkd> !process dc406d40
 
lkd> ?? @$thread 8947fab8
lkd> ?? @$thread->Tcb
lkd> ?? @$thread->Tcb
struct _KTHREAD
 /*removed*/
 
 +0x06f Quantum : 10 ''
 
 /*removed*/
 
lkd> ?? @$thread 889ad058
struct _ETHREAD * 0x88d97760
 +0x000 Tcb : _KTHREAD
/*removed*/
 

Chapter 4 ■ CLR Memory Model

72

lkd> ?? @$thread->Tcb
struct _KTHREAD
/*removed*/
 
 +0x06f Quantum : 3 ''
 
 /*removed*/

Thread Address Space
As discussed previously, each process has its own address space. Thread is no different in this respect; each of the
threads in a process has its own private virtual address space. The thread and virtual address space are shown here:
 
StackBase: 00130000
StackLimit: 0012b000

Thread and Frames
A system can have several processes, a process can have many threads, and a thread can have multiple activation
frames. The activation frame is a data structure that manages the state of a method while it is executing. A thread
begins its life when it is combined with a method as a starting point. To maintain this method call chain, each thread
is associated with a set of frames to keep track of the method states.

To get the details of these frames, the .frame command can be used. This command specifies which local context
is used by a particular method. The .frame command can take different parameters; /r is shows registers and other
information about the specified local context, as displayed here:
 
0:000> .frame /r 01
01 001fe1a8 77720fad ntdll!NtMapViewOfSection+0xc
eax=0c000000 ebx=00000000 ecx=600d9c84 edx=00010001 esi=7ffdf000 edi=001fe290
eip=7770507c esp=001fe1ac ebp=001fe1fc iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246
ntdll!NtMapViewOfSection+0xc:
7770507c c22800 ret 28h

Concept of the Virtual Memory
The core function of Windows memory management is to manage the virtual memory. Virtual memory is a
conceptual memory model that represents the range of virtual addresses that are mapped to the physical addresses.
When any application requires access to memory, the OS allocates the virtual memory for the application. The
translation process of the virtual address is supported by the hardware (CPU). When an application program refers to
a virtual memory address, the CPU translates it into a physical address. The advantages of accessing memory through
a virtual address are as follows:

•	 Range of address: A program can use a contiguous range of virtual addresses to access a large
memory buffer that is not contiguous in physical memory.

•	 More address space: A program can use a greater amount of address space, compared with the
available physical memory address space. As the supply of physical memory decreases, the
memory manager saves pages of it (typically 4 kilobytes) to a disk file. Pages of data or code are
moved between physical memory and disk as needed.

Chapter 4 ■ CLR Memory Model

73

•	 Isolation address space: Application programs can use different address space from each
other and will be isolated from each other. The code in one process cannot alter the physical
memory that is being used by another process.

The range of virtual addresses that can be used by a process is called the virtual address space. The virtual address
space can be used in two modes, for example, user mode and kernel mode. Each user-mode process has its own private
virtual address space, as does kernel mode. For a 32-bit process the virtual address space is usually 4 gigabytes, and for a
64-bit process, 8 terabytes.

32-bit and 64-bit Process Addressing
A process is a data structure used by the OS to maintain information about it. Each process on 32-bit Microsoft Windows
has its own virtual address space that enables addressing up to 4 gigabytes of memory. Each process on 64-bit Windows
has a virtual address space of 8 terabytes. All the threads of a process can access their own virtual address space. However,
threads cannot access memory that belongs to another process, which protects processes from being corrupted by another
process. Figure 4-3 illustrates the addressing scheme used in Windows for 32- and 64-bit installations.

Figure 4-3.  Windows memory architecture (32- and 64-bit OS)

Chapter 4 ■ CLR Memory Model

74

Windows uses privilege strategy when executing a process. Windows has two modes of execution, based on
classification by privilege level: user mode and kernel mode. Typically, user mode is less privileged than kernel mode.

Some examples of user-mode applications are the applications provided in this book, drivers, and so on;
examples of kernel mode are all the core OS components.

In Windows all processes run in isolation to eliminate the potential for a system crash; if one application crashes
while executing, the rest of the system can keep working. This multiprocess execution environment is possible
because of the use of isolated address space for each process.

Applications run in isolation as well. If an application crashes, the system will not stop working, and neither other
applications nor the OS is affected.

The Windows OS in 32-bit mode can support up to 4 gigabytes of addressable virtual space. Of this space,
2 gigabytes are used by the user-mode application, and 2 gigabytes, by the kernel itself. A user-mode application can
get up to 3 gigabytes, and kernel mode, 1 gigabyte of address space when the extended user application memory is
enabled in the system.

The 64-bit Windows OS addressable memory space is shared between active applications and the kernel.
The kernel address space includes a system page table entry (PTE) area (kernel memory thread stacks), paged pool
(page tables, kernel objects), system cache (file cache, registry), and Nonpaged pool (images, and so on).

The default 64-bit Windows OS configuration provides up to 16 terabytes (2^54) of addressable memory space,
divided equally between the kernel and the user applications; with 16 terabytes of physical memory available,
8 terabytes of virtual address space are allocated to the kernel, and 8 terabytes, to user application memory.
The kernel virtual address space is shared across processes. Each 64-bit process has its own space, whereas each
32-bit application runs in a virtual 2 gigabyte Windows-on-Windows (WOW).

The kernel address space includes a system PTE area (kernel memory thread stacks), paged pool (page tables,
kernel objects), system cache (file cache, registry), and nonpaged pool (images, and so on). You have seen how
VMMap shows the user application’s address space. Now, let’s look at the kernel-mode address space and how
the OS allocates it:
 
Start End Length (MB)Count Type
001 80000000 803fffff 400000 (4) 2 BootLoaded
002 80400000 807fffff 400000 (4) 2 SystemPtes
003 80800000 81dfffff 1600000 (22) 11 BootLoaded
004 81e00000 827fffff a00000 (10) 5 PagedPool
005 82800000 839fffff 1200000 (18) 9 BootLoaded
006 83a00000 845fffff c00000 (12) 6 PfnDatabase
007 84600000 851fffff c00000 (12) 6 NonPagedPool
008 85200000 853fffff 200000 (2) 1 SystemCache
009 85400000 867fffff 1400000 (20) 10 NonPagedPool
010 86800000 869fffff 200000 (2) 1 PagedPool
011 86a00000 871fffff 800000 (8) 4 SystemCache
012 87200000 873fffff 200000 (2) 1 SystemPtes
013 87400000 87dfffff a00000 (10) 5 SystemCache
014 87e00000 881fffff 400000 (4) 2 PagedPool
015 88200000 885fffff 400000 (4) 2 SystemCache
016 88600000 88ffffff a00000 (10) 5 DriverImages
017 89000000 897fffff 800000 (8) 4 BootLoaded
018 89800000 899fffff 200000 (2) 1 PagedPool
019 89a00000 89ffffff 600000 (6) 3 SystemPtes
020 8a000000 8a3fffff 400000 (4) 2 SystemCache
021 8a400000 8a5fffff 200000 (2) 1 SystemPtes
022 8a600000 8a7fffff 200000 (2) 1 SystemCache
023 8a800000 8a9fffff 200000 (2) 1 PagedPool
024 8aa00000 8abfffff 200000 (2) 1 SystemPtes
025 8ac00000 8c3fffff 1800000 (24) 12 SystemCache

Chapter 4 ■ CLR Memory Model

75

026 8c400000 8c5fffff 200000 (2) 1 PagedPool
027 8c600000 8c7fffff 200000 (2) 1 SystemPtes
028 8c800000 8d3fffff c00000 (12) 6 SystemCache
029 8d400000 8d5fffff 200000 (2) 1 DriverImages
030 8d600000 8d7fffff 200000 (2) 1 SystemCache
031 8d800000 8dbfffff 400000 (4) 2 PagedPool
032 8dc00000 8ddfffff 200000 (2) 1 DriverImages
033 8de00000 8dffffff 200000 (2) 1 SystemCache
034 8e000000 8e9fffff a00000 (10) 5 DriverImages
035 8ea00000 8ebfffff 200000 (2) 1 SystemPtes
036 8ec00000 8f3fffff 800000 (8) 4 SystemCache
037 8f400000 8f5fffff 200000 (2) 1 PagedPool
038 8f600000 8f9fffff 400000 (4) 2 SystemCache
039 8fa00000 8fbfffff 200000 (2) 1 PagedPool
040 8fc00000 911fffff 1600000 (22) 11 SystemCache
041 91200000 915fffff 400000 (4) 2 PagedPool
042 91600000 917fffff 200000 (2) 1 SystemCache
043 91800000 923fffff c00000 (12) 6 PagedPool
044 92400000 925fffff 200000 (2) 1 SystemCache
045 92600000 931fffff c00000 (12) 6 PagedPool
046 93200000 933fffff 200000 (2) 1 SystemCache
047 93400000 93ffffff c00000 (12) 6 PagedPool
048 94000000 941fffff 200000 (2) 1 SystemCache
049 94200000 94dfffff c00000 (12) 6 PagedPool
050 94e00000 94ffffff 200000 (2) 1 SystemCache
051 95000000 955fffff 600000 (6) 3 PagedPool
052 95600000 959fffff 400000 (4) 2 SystemCache
053 95a00000 95bfffff 200000 (2) 1 DriverImages
054 95c00000 95dfffff 200000 (2) 1 SystemPtes
055 95e00000 961fffff 400000 (4) 2 SystemCache
056 96200000 963fffff 200000 (2) 1 DriverImages
057 96400000 965fffff 200000 (2) 1 PagedPool
058 96600000 969fffff 400000 (4) 2 SystemCache
059 96a00000 96bfffff 200000 (2) 1 SystemPtes
060 96c00000 977fffff c00000 (12) 6 SessionGlobalSpace
061 97800000 97bfffff 400000 (4) 2 SystemCache
062 97c00000 97ffffff 400000 (4) 2 PagedPool
063 98000000 99ffffff 2000000 (32) 16 SystemPtes
064 9a000000 9a3fffff 400000 (4) 2 SystemCache
065 9a400000 9a5fffff 200000 (2) 1 PagedPool
066 9a600000 9a7fffff 200000 (2) 1 DriverImages
067 9a800000 9b5fffff e00000 (14) 7 SystemCache
068 9b600000 9b7fffff 200000 (2) 1 PagedPool
069 9b800000 9bbfffff 400000 (4) 2 SystemCache
070 9bc00000 9bdfffff 200000 (2) 1 PagedPool
071 9be00000 9d1fffff 1400000 (20) 10 SystemCache
072 9d200000 9d3fffff 200000 (2) 1 DriverImages
073 9d400000 9d5fffff 200000 (2) 1 PagedPool
074 9d600000 9edfffff 1800000 (24) 12 SystemCache
075 9ee00000 9effffff 200000 (2) 1 PagedPool
076 9f000000 a07fffff 1800000 (24) 12 SystemCache
 

Chapter 4 ■ CLR Memory Model

76

077 a0800000 a09fffff 200000 (2) 1 PagedPool
078 a0a00000 a0bfffff 200000 (2) 1 SystemCache
079 a0c00000 a0dfffff 200000 (2) 1 SystemPtes
080 a0e00000 a21fffff 1400000 (20) 10 SystemCache
081 a2200000 a23fffff 200000 (2) 1 PagedPool
082 a2400000 a25fffff 200000 (2) 1 SystemCache
083 a2600000 a31fffff c00000 (12) 6 PagedPool
084 a3200000 a33fffff 200000 (2) 1 SystemCache
085 a3400000 a35fffff 200000 (2) 1 SystemPtes
086 a3600000 a39fffff 400000 (4) 2 PagedPool
087 a3a00000 a5bfffff 2200000 (34) 17 SystemCache
088 a5c00000 a5dfffff 200000 (2) 1 SystemPtes
089 a5e00000 a79fffff 1c00000 (28) 14 SystemCache
090 a7a00000 a7bfffff 200000 (2) 1 PagedPool
091 a7c00000 a7ffffff 400000 (4) 2 SystemCache
092 a8000000 a83fffff 400000 (4) 2 PagedPool
093 a8400000 a89fffff 600000 (6) 3 SystemCache
094 a8a00000 a8dfffff 400000 (4) 2 PagedPool
095 a8e00000 a8ffffff 200000 (2) 1 SystemCache
096 a9000000 a91fffff 200000 (2) 1 PagedPool
097 a9200000 a9bfffff a00000 (10) 5 SystemCache
098 a9c00000 a9dfffff 200000 (2) 1 PagedPool
099 a9e00000 aa9fffff c00000 (12) 6 SystemCache
100 aaa00000 aabfffff 200000 (2) 1 PagedPool
101 aac00000 ab9fffff e00000 (14) 7 SystemCache
102 aba00000 abbfffff 200000 (2) 1 PagedPool
103 abc00000 ad3fffff 1800000 (24) 12 SystemCache
104 ad400000 ad5fffff 200000 (2) 1 PagedPool
105 ad600000 ae3fffff e00000 (14) 7 SystemCache
106 ae400000 ae5fffff 200000 (2) 1 SystemPtes
107 ae600000 aedfffff 800000 (8) 4 SystemCache
108 aee00000 af7fffff a00000 (10) 5 PagedPool
109 af800000 af9fffff 200000 (2) 1 SystemPtes
110 afa00000 afffffff 600000 (6) 3 SystemCache
111 b0000000 b01fffff 200000 (2) 1 PagedPool
112 b0200000 b1dfffff 1c00000 (28) 14 SystemCache
113 b1e00000 b1ffffff 200000 (2) 1 PagedPool
114 b2000000 bfffffff e000000 (224) 112 Unused
115 c0000000 c0ffffff 1000000 (16) 8 ProcessSpace
116 c1000000 fc3fffff 3b400000 (948) 474 Unused
117 fc400000 fc5fffff 200000 (2) 1 SessionSpace
118 fc600000 fc9fffff 400000 (4) 2 Unused
119 fca00000 ffbfffff 3200000 (50) 25 SessionSpace
120 ffc00000 ffffffff 400000 (4) 2 Hal
 

Chapter 4 ■ CLR Memory Model

77

RANGE OF VIRTUAL ADDRESS SPACE

You can use the poi command in WinDbg kernel mode to explore the virtual address space used by your system.
The ?poi command takes its symbol name from the relevant output its implementation yields. In this example,
nt!MmHighestUserAddress and nt!mmhighestuseraddress are used to investigate the range of virtual memory
for your system:
 
lkd> ?poi(nt!MmHighestUserAddress)
Evaluate expression: 2147418111 = 7ffeffff
 
lkd> dp nt!mmhighestuseraddress L1
82ba5714 7ffeffff
 
This output indicates that the user space ranges from the address 0x00000000 to 0x7FFEFFFF; the system space
therefore ranges from 0x80000000 to the highest possible address (which is 0xFFFFFFFF on a standard 32-bit
Windows installation).

As discussed previously, each virtual memory allocated for a process is mapped to the physical memory by the
OS. The implementation details of this mapping are hidden, but you can use WinDbg to study the mapping during
the execution of a C# application.

Virtual-to-Physical Address Mapping
Each virtual address of a process is mapped to a physical memory address This mapping is managed by the OS.
The following C# program can be used to study how the virtual address is mapped to physical memory at runtime:
 
using System;
namespace CH_04
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Virtual to Physical address mappings");
 Console.ReadLine();
 }
 }
}
 

Once the program is compiled, run it, opening it with WinDbg, in kernel mode, to explore the virtual-to-physical
address mappings. In the kernel mode of WinDbg, you will execute the !process command, with the process value as
0 and the flags value as 0, to view currently running processes in the system, as shown:
 
lkd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
PROCESS 8483a2e8 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
 DirBase: 00185000 ObjectTable: 89801e28 HandleCount: 642.
 Image: System
 

Chapter 4 ■ CLR Memory Model

78

/*process removed*/ 
PROCESS 84ae14f8 SessionId: 1 Cid: 0b44 Peb: 7ffda000 ParentCid: 14b8
 DirBase: 7ef76820 ObjectTable: e006df68 HandleCount: 20.
 Image: CH_04.exe
 
/*process removed*/
 

Each of the processes from the prior output has a set of elements to describe the process, such as Process ID,
PEB, and DirBase. The DirBase element specifies the directory base for the relevant process. This directory base
contains mapping between virtual and physical memory. You will use the !ptov command in WinDbgkernel mode.
The !ptov command displays the entire physical-to-virtual memory map for a given process. You will be using the
process ID 7ec6f2e0 as a parameter of the !ptov command to display the entire physical-to-virtual memory address
mapping for the process 7ec6f2e0.
 
!ptov 7ef76820
/*mapping removed*/
 
69676000 94632000
d077000 94633000
dff9000 94635000
7d1fa000 94636000
300bb000 94637000
4dc3c000 94638000
388af000 94639000
 
/*mapping removed*/
 
0 ffd0b000
106000 ffd0c000
 
/*mapping removed*/
 
fee00000 fffe0000
 

The address on the left-hand side is the physical address of each memory page that has a mapping for this
process. The address on the right-hand side is the virtual address used by the application.

Learn the Contents of a Particular Physical Memory Address
You can use the !dc command to view the contents of the physical address and the dc command to show the contents
of the Virtual address. Therefore, from the previous physical-to-virtual memory mapping, you looked at a physical
address and its corresponding virtual address to see whether the contents of these memory addresses are same or not.
You also used the !dc command with a physical address as a parameter, and a virtual address as a parameter with the
dc command to view the memory contents. Technically, the physical address and virtual memory address will have
the same contents, as the virtual address is mapped to the physical address.
 

Chapter 4 ■ CLR Memory Model

79

lkd> !dc 106000
106000 ffd09000 ffd07000 7fee3180 00000000p...1......
106010 54445344 00003955 4247ef01 20202054 DSDTU9....GBT
106020 55544247 49504341 00001000 5446534d GBTUACPI....MSFT
106030 0100000c 5c054310 5f52505f 5c11835bC._PR_[..\
106040 52505f2e 5550435f 04100030 5b060000 ._PR_CPU0......[
106050 2e5c1183 5f52505f 31555043 00041001 ..\._PR_CPU1....
106060 835b0600 5f2e5c11 435f5250 02325550 ..[..\._PR_CPU2.
106070 00000410 11835b06 505f2e5c 50435f52[..\._PR_CP
 
lkd> dc ffd0c000
ffd0c000 ffd09000 ffd07000 7fee3180 00000000 p...1......
ffd0c010 54445344 00003955 4247ef01 20202054 DSDTU9....GBT
ffd0c020 55544247 49504341 00001000 5446534d GBTUACPI....MSFT
ffd0c030 0100000c 5c054310 5f52505f 5c11835b C._PR_[..\
ffd0c040 52505f2e 5550435f 04100030 5b060000 ._PR_CPU0......[
ffd0c050 2e5c1183 5f52505f 31555043 00041001 ..\._PR_CPU1....
ffd0c060 835b0600 5f2e5c11 435f5250 02325550 ..[..\._PR_CPU2.
ffd0c070 00000410 11835b06 505f2e5c 50435f52 [..\._PR_CP
 

Furthermore, you used the physical address 106000 as a parameter with the !dc command, and the
corresponding virtual address ffd0c000 as a parameter with the dc command, to display the memory contents.
Both addresses show the same memory contents, as they refer to the same memory cell.

Find a Virtual Address and Its Contents
Now, you will compile the program, using the C# compiler (csc.exe), and load it into WinDbg for debugging to find a
virtual address. Later, you will use that virtual address to examine the program’s contents.
 
using System;
 
namespace CH_04
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Virtual to Physical address mappings");
 }
 }
}
 

The compiled assembly of this program is loaded into WinDbg to begin debugging. You will be using the
following commands to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Chapter 4 ■ CLR Memory Model

80

You will find a virtual memory address during this debugging session and use that address as the start address
for dumping the contents of the memory. Then, you will go downward from the start address, to 100, to use as the end
address of the range.

To achieve this, you set a breakpoint, using the !bpmd command at the Main method of the Program class:
 
0:000> !bpmd CH_04.exe CH_04.Program.Main
 

Then, you continue with the execution, using the g command, which will break when it hits the Main method, as
shown:
 
0:000> g
(b44.11e8): CLR notification exception - code e0444143 (first chance)
JITTED CH_04!CH_04.Program.Main(System.String[])
Setting breakpoint: bp 003B0070 [CH_04.Program.Main(System.String[])]
Breakpoint 0 hit
eax=002437f0 ebx=00000000 ecx=019db674 edx=001eed90 esi=00297910 edi=001eece0
eip=003b0070 esp=001eecb8 ebp=001eecc4 iopl=0 nv up ei pl nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000216
003b0070 55 push ebp
 

This output gives the contents of the registers’ values, along with other information. You will use the memory
address stored in the EIP register to view the contents of this memory. This address will be used as the base for a
range, spanning from the start address to 100. Next, you use the dd command to display the contents of the memory
for the given range; theywill display as double-worded values, like this:
 
0:000> dd 002437f0-100
002436f0 00000000 00000000 00000000 00000000
00243700 00000000 00000000 00000000 00000000
00243710 00000000 00000000 00000000 00000000
00243720 00000000 00000000 00000000 00000000
00243730 00000000 00000000 00000000 00000000
00243740 00000000 00000000 00000000 00000000
00243750 00000000 00000000 029d1ff4 00000000
00243760 029d1ff8 00000000 5fb13a20 00000004
 

The left-hand column from this memory dump provides the start address of the memory, followed by the
contents of that location.

Memory-Mapped File
Typically, when you reference any virtual memory to access its contents, it will go to the physical memory, based on
the virtual-to-physical mapping table, where, as in the memory-mapped file, instead of seeking the physical memory,
it will look for the physical file, which has been mapped as a memory-mapped file, with the range of the virtual
addresses in the process address space.

Thus, accessing the content of a memory-mapped file is just a dereferencing of an address from the mapped
virtual memory, which will seek the contents of the address in the memory-mapped physical file stored in the storage
device (see Figure 4-4).

Chapter 4 ■ CLR Memory Model

81

For example, let’s say the range of virtual addresses from your process address space 10000 to 15000 has been
mapped as a memory-mapped file in the storage device MemoryMappedFile.txt. Thus, if you want to access the contents
of the virtual memory 10005, the memory management services of the OS will go to the MemoryMappedFile.txt file and
seek the region of the file that has been mapped as 10001.

Figure 4-4.  Memory-mapped file

Chapter 4 ■ CLR Memory Model

82

Now, let’s look at the output for a control area used for this process. This output shows how the memory-mapped
file has been handled and maintained by the OS. The following C# program will be compiled, using csc.exe, and then
loaded into WinDbg to see whether any memory-mapped file is used by the CLR at runtime to execute the program:
 
using System;
namespace CH_04
{
 class Program
 {
 static void Main(string[] args)
 {
 Book book = new Book();
 }
 }
 
 public class Book { }
}
 

The compiled assembly of the program is loaded into WinDbg to start debugging. Next, you use these commands
to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Then, you set a breakpoint, using !bpmd, and let the execution continue, using g, until hitting the specified
breakpoint:
 
0:000> !bpmd CH_04.exe CH_04.Book.Print
Found 1 methods in module 00412e9c...
Adding pending breakpoints...
0:000> !bpmd CH_04.exe CH_04.Program.Main
Found 1 methods in module 00412e9c...
MethodDesc = 00413800
Adding pending breakpoints...
 
0:000> g
 

After applying the g command, you use the frame command, with r parameters, to display the registers and other
information about the current local context:
 
(ca4.e40): CLR notification exception - code e0444143 (first chance)
JITTED CH-04!CH_04.Program.Main(System.String[])
Setting breakpoint: bp 004D0070 [CH_04.Program.Main(System.String[])]
Breakpoint 0 hit
eax=00413800 ebx=00000000 ecx=0196b77c edx=002bf0f0 esi=000f8e60 edi=002bf040
eip=004d0070 esp=002bf018 ebp=002bf024 iopl=0 nv up ei pl nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000216
004d0070 55 push ebp
 

Chapter 4 ■ CLR Memory Model

83

Next, you use the !address command to identify the memory address the target process uses. The !address
command has f parameters, which can take different filter values to allow display of only particular regions’ address
space for a given address.

Now, you will explore the mapped file, using !address /f:FILE_MAP, as shown:
 
0:000> !address -f:FileMap
  
Mapping file section regions...
Mapping module regions...
Mapping PEB regions...
Mapping TEB and stack regions...
Mapping heap regions...
Mapping page heap regions...
Mapping other regions...
Mapping stack trace database regions...
Mapping activation context regions...
 
BaseAddr EndAddr+1 RgnSize Type State Protect Usage

80000 81000 1000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE MappedFile "PageFile"
90000 a0000 10000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE MappedFile "PageFile"
2c0000 327000 67000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "\Device\
HarddiskVolume7\Windows\System32\locale.nls"
4a0000 4b0000 10000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "PageFile"
4b0000 560000 b0000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
560000 563000 3000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "PageFile"
563000 568000 5000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
930000 ab2000 182000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "PageFile"
ab2000 1530000 a7e000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
3a70000 3d3f000 2cf000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "\Device\
HarddiskVolume7\Windows\Globalization\Sorting\SortDefault.nls"
3d40000 4012000 2d2000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "\Device\
HarddiskVolume7\Windows\Microsoft.NET\Framework\v4.0.30319\sortdefault.nlp"
7f6f5000 7f7f0000 fb000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
 

Memory-mapped files and how they work—nice description of the memory mapped files provided here:
 
0:000> !vmmap
Start Stop Length AllocProtect Protect State Type
00000000-0000ffff 00010000 NA Free
00010000-0001ffff 00010000 RdWr RdWr Commit Mapped
00020000-0002ffff 00010000 RdWr RdWr Commit Mapped
00030000-00033fff 00004000 Rd Rd Commit Mapped
00034000-0003ffff 0000c000 NA Free
00040000-00040fff 00001000 Rd Rd Commit Mapped
 

Chapter 4 ■ CLR Memory Model

84

Here, the virtual memory has already been mapped as a memory-mapped file. It is maintained using the data
structure _CONTROL_AREA:
 
lkd> dt nt!_CONTROL_AREA
 +0x000 Segment : Ptr32 _SEGMENT
 +0x004 DereferenceList : _LIST_ENTRY
 +0x00c NumberOfSectionReferences : Uint4B
 +0x010 NumberOfPfnReferences : Uint4B
 +0x014 NumberOfMappedViews : Uint4B
 +0x018 NumberOfSubsections : Uint2B
 +0x01a FlushInProgressCount : Uint2B
 +0x01c NumberOfUserReferences : Uint4B
 +0x020 u : __unnamed
 +0x024 FilePointer : Ptr32 _FILE_OBJECT
 +0x028 WaitingForDeletion : Ptr32 _EVENT_COUNTER
 +0x02c ModifiedWriteCount : Uint2B
 +0x02e NumberOfSystemCacheViews : Uint2B
 

You use the !memusage command, from WinDbg, to see how the virtual memory is mapped:
 
lkd> !memusage
 loading PFN database
loading (100% complete)
Compiling memory usage data (99% Complete).
 Zeroed: 16041 (64164 kb)
 Free: 4 (16 kb)
 Standby: 148360 (593440 kb)
 Modified: 36405 (145620 kb)
 ModifiedNoWrite: 180 (720 kb)
 Active/Valid: 317051 (1268204 kb)
 Transition: 5132 (20528 kb)
 Bad: 729 (2916 kb)
 Unknown: 0 (0 kb)
 TOTAL: 523173 (2092692 kb)
 Building kernel map
 Finished building kernel map
Scanning PFN database - (100% complete)
 
 Usage Summary (in Kb):
Control Valid Standby Dirty Shared Locked PageTables name
 1fffffd 3108 0 0 0 0 0 AWE
86770608 308 32 0 0 0 0 mapped_file(Siyamrupali.ttf)
84a8f148 0 380 0 0 0 0 mapped_file(msmincho.ttc)
84c076f8 16928 3908 0 14852 0 0 mapped_file(chrome_child.dll)
8581d850 4012 5812 0 0 0 0 mapped_file($Mft)
86896818 184 1024 0 0 0 0 mapped_file(1.TXT)
8569c8f0 5640 26460 0 0 0 0 mapped_file($LogFile)
84c2ea88 128 9300 0 0 0 0 mapped_file(data_1)
85771168 1888 2156 0 0 0 0 mapped_file(No name for file)
84cbf5f8 108 236 0 0 0 0 mapped_file(Visited Links)
 

Chapter 4 ■ CLR Memory Model

85

To obtain the details of this mapping, you investigate the control, using the !ca command, which will give you the
inner workings of the memory-mapped mapping mechanism in Windows:
 
lkd> !ca 86896818
 
ControlArea @ 86896818
 Segment 97c0ea80 Flink 00000000 Blink 00000000
 Section Ref 1 Pfn Ref 16a Mapped Views 2
 User Ref 0 WaitForDel 0 Flush Count 0
 File Object 868b5be8 ModWriteCount 0 System Views 2
 WritableRefs 0
 Flags (c080) File WasPurged Accessed
 
 \1.TXT
 
Segment @ 97c0ea80
 ControlArea 86896818 ExtendInfo 00000000
 Total Ptes 200
 Segment Size 200000 Committed 0
 Flags (c0000) ProtectionMask
 
Subsection 1 @ 86896868
 ControlArea 86896818 Starting Sector 0 Number Of Sectors 100
 Base Pte 9b891008 Ptes In Subsect 100 Unused Ptes 0
 Flags d Sector Offset 0 Protection 6
 Accessed
 Flink 84efa224 Blink 84a70cbc MappedViews 0
 
Subsection 2 @ 84de7e38
 ControlArea 86896818 Starting Sector 100 Number Of Sectors 100
 Base Pte 86eb5000 Ptes In Subsect 100 Unused Ptes 100
 Flags d Sector Offset 0 Protection 6
 Accessed
 Flink 00000000 Blink 00000000 MappedViews 2
 

MEMORY REGIONS DISPLAYED

·· VAR: Busy regions. These regions include all virtual allocation blocks, the small block heap
(SBH), memory from custom allocators, and regions of the address space that fall under no other
classification.

·· Free: Free memory. This includes all memory that has not been reserved.

·· Image: Memory that is mapped to a file that is part of an executable image.

·· Stack:Memory used for thread stacks.

·· Teb: Memory used for thread environment blocks (TEBs).

·· Peb: Memory used for the PEB.

·· Heap: Memory used for heaps.

Chapter 4 ■ CLR Memory Model

86

·· PageHeap: The memory region used for the full-page heap.

·· CSR : CSR-shared memory.

·· Actx: Memory used for activation context data.

NLS: Memory used for national language support (NLS) tables.··

·· FileMap: Memory used for memory-mapped files. This filter is applicable only during
live debugging.

Conclusion
physical memory (RAM) is the place where the application program, including OS executable instruction, is loaded
during execution. The CPU fetches instruction from the memory and executes. The OS is responsible for handling and
managing the physical memory and provides memory management services, using the concepts of virtual memory
and API to access those services. The API is capable of allocating, deallocating, querying, and deleting memory from
the physical memory via the memory management layer. Most of the programming languages targeting the Windows
OS have their own memory model, implemented with Windows memory management services, unless they explicitly
implement their own memory management layer to access physical memory directly.

In .NET the virtual execution environment the CLR implements its own memory abstraction layer, using the
Windows virtual memory management services. In this chapter you learned how Windows manages and handles
memory. In the next chapter, you will consider the memory abstraction layer used by the CLR. The CLR uses the
abstraction concept of the application domain to start execution of a .NET application. The application domain is the
combination of the virtual address space and specification implemented in the CLR. This specification indicates how
to deal with the range of the virtual memory, and so on. Inside the application domain the CLR lays out other abstract
concepts, such as managed thread, stack, and heap.

Further Reading
Farrell, Chris, and Nick Harrison. Under the Hood of .NET Memory Management. S.l., Simple Talk.
Hewardt, Mario. Advanced .NET Debugging. Upper Saddle River, NJ: Addison-Wesley, 2010.
Hewardt, Mario, and Daniel Pravat, D. Advanced Windows Debugging. Upper Saddle River,

NJ: Addison-Wesley, 2008.
Jacob, Bruce, Spencer W. Ng, and David T. Wang. Memory Systems: Cache, DRAM, Disk. Burlington,

MA: Morgan Kaufmann, 2010.
Juola, Patrick. Principles of Computer Organization and Assembly Language. Upper Saddle River,

NJ: Prentice Hall, 2007.
Lidin, Serge. Inside Microsoft: NET IL Assembler. Redmond, WA: Microsoft.
McDougall, Richard, and Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture.

Upper Saddle River, NJ: Prentice Hall, 2006.
Pratschner, Steven. Customizing the Microsoft .NET Framework Common Language Runtime.

Edited by Kathleen Atkins. Redmond, WA: Microsoft, 2009.

87

Chapter 5

CLR Memory Model II

In Chapter 4, you learned about Windows memory management. The CLR uses the underlying Windows memory
management services to implement its own memory model to provide memory to the user’s application. In this
chapter, you will explore the CLR memory model to learn different concepts used in the CLR. You will look at the
application domain and how the CLR structures and allocates virtual memory for it. You will also examine other
contexts, such as Stack and Heap.

CLR Memory Model: Application Domain
In the CLR an application domain is used to isolate the execution boundary for security, versioning, reliability, and
unloading of the managed code. An application domain by itself cannot be executed by the CLR, which serves as the
container to hold the application. At runtime the CLR loads all the managed code of an application into one or more
application domains and executes that code, using one or more threads (thread is a mechanism used by the OS to
execute application code by the CPU; see Chapters 1 and 4).

There is not a one-to-one mapping between application domains and threads. At runtime a single application
domain can be used to execute multiple threads, but a particular thread is not restricted to executing in a single
application domain. In the CLR, threads have the capability to cross application domain boundaries, and multiple
threads can be executed in any given application domain.

The CLR is responsible for keeping track of threads and the application domain relationship. The following
C# application can be used to explore the relationship between application domain and thread:
 
using System;
 
namespace CH_05
{
 class Program
 {
 static void Main(string[] args)
 {
 Book book = new Book();
 book.Print();
 }
 }
 
 public class Book
 {
 public void Print() { Console.WriteLine(ToString()); }
 }
}
 

Chapter 5 ■ CLR Memory Model II

88

Once this application is compiled into an assembly (CH_05.exe), using csc.exe, you load this assembly into
WinDbg to start debugging. You will be using the following command to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Next, set a break point, using the !bpmd command, and then let the execution continue, using the g command:
 
0:000> !name2ee CH_05.exe CH_05.Program.Main
Module: 00292e9c
Assembly: CH_05.exe
Token: 06000001
MethodDesc: 00293800
Name: CH_05.Program.Main(System.String[])
Not JITTED yet. Use !bpmd -md 00293800 to break on run.
 
0:000>!bpmd -md 00293800
0:000> g
 

The !threads command, along with the –live option, can be used to see all the running threads for this executable:
 
0:000> !threads -live
ThreadCount: 2
UnstartedThread: 0
BackgroundThread: 1
PendingThread: 0
DeadThread: 0
Hosted Runtime: no
 PreEmptive GC Alloc Lock
 ID OSID ThreadOBJ State GC Context Domain Count APT Exception
 0 1 1370 002c78e8 a020 Enabled 0166b684:0166c004 002c1078 2 MTA
 2 2 1660 003017c0 b220 Enabled 00000000:00000000 002c1078 0 MTA (Finalizer)
 

As you can see, the output offers information about domain. To find the domain, you can use the !dumpdomain
command, as follows:
 
0:000> !dumpdomain 002c1078

Domain 1: 002c1078
LowFrequencyHeap: 002c13f4
HighFrequencyHeap: 002c1440
StubHeap: 002c148c
Stage: OPEN
SecurityDescriptor: 002c27f0
Name: CH_05.exe
Assembly: 003033c0 [C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\
v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll]
ClassLoader: 00303460
SecurityDescriptor: 0030af20
 Module Name

Chapter 5 ■ CLR Memory Model II

89

55d81000 C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\
mscorlib.dll
 
Assembly: 003135d8 [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\bin\Debug\CH_05.exe]
ClassLoader: 00313678
SecurityDescriptor: 00312c00
 Module Name
00292e9c J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\bin\Debug\CH_05.exe
 

The CLR uses its own memory model while executing a .NET application. The CLR begins its execution by
allocating application domains for the .NET application. The application domain concept provides manageable,
isolated, secure structure for the .NET application at runtime.

The application domain is a combination of a data structure that has a virtual address space and specification
regarding how to manipulate that virtual address space to isolate the execution state of each application domain in
a process. Figure 5-1 displays a block of virtual addresses that have been allocated for different application domains,
such as System Domain, Shared Domain, and Default Domain.

Figure 5-1.  CLR application domain

Chapter 5 ■ CLR Memory Model II

90

The CLR allocates three default application domains, such as System Domain, Shared Domain, and Default Domain,
during the execution of an assembly. You can explore these application domains while debugging a C# application
via WinDbg. The following example can be used to reveal the different application domains used by this assembly:
 
using System;
 
namespace CH_05
{
 class Program
 {
 static void Main(string[] args)
 {
 Book book = new Book();
 book.Print();
 }
 }
 
 public class Book
 {
 public void Print() { Console.WriteLine(ToString()); }
 }
}
 

Once this application is compiled into an assembly (CH_05.exe), using csc.exe, you load the assembly into
WinDbg to start debugging. You will be using the following command to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Next, set a break point, using the !bpmd command, and then let the execution continue, using the g command:
 
0:000> !bpmd CH_05.exe CH_05.Program.Main
Found 1 methods in module 00232e9c...
MethodDesc = 00233800
Adding pending breakpoints...
 
0:000> !bpmd CH_05.exe CH_05.Book.Print
Found 1 methods in module 00232e9c...
Adding pending breakpoints...
 

The g command will continue the execution of the program until it hits the break point:
 
0:000> g
(fe8.1308): CLR notification exception - code e0444143 (first chance)
JITTED CH_05!CH_05.Program.Main(System.String[])
Setting breakpoint: bp 004A0070 [CH_05.Program.Main(System.String[])]
Breakpoint 0 hit
eax=00233800 ebx=00000000 ecx=0198b674 edx=0020f070 esi=002b78e8 edi=0020efc0
eip=004a0070 esp=0020ef98 ebp=0020efa4 iopl=0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000212
004a0070 55 push ebp
 

Chapter 5 ■ CLR Memory Model II

91

The !dumpdomain command can be used to show the domain details of the program. When !dumpdomain is used
with no parameters, it will list all AppDomain objects of the running process, as shown:
 
0:000> !dumpdomain

System Domain: 58cd2478
LowFrequencyHeap: 58cd2784
HighFrequencyHeap: 58cd27d0
StubHeap: 58cd281c
Stage: OPEN
Name: None

Shared Domain: 58cd2140
LowFrequencyHeap: 58cd2784
HighFrequencyHeap: 58cd27d0
StubHeap: 58cd281c
Stage: OPEN
Name: None
Assembly: 002f4368 [C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\v4.0_4.0.0.0__
b77a5c561934e089\mscorlib.dll]
ClassLoader: 002f4408
Module Name
56fc1000 C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\
mscorlib.dll

Domain 1: 002b1078
LowFrequencyHeap: 002b13f4
HighFrequencyHeap: 002b1440
StubHeap: 002b148c
Stage: OPEN
SecurityDescriptor: 002b27f0
Name: CH_05.exe
Assembly: 002f4368 [C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\v4.0_4.0.0.0__
b77a5c561934e089\mscorlib.dll]
ClassLoader: 002f4408
SecurityDescriptor: 002f4138
Module Name
56fc1000 C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\
v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll
 
Assembly: 00302110 [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\bin\Debug\CH_05.exe]
ClassLoader: 00301240
SecurityDescriptor: 002fe4f8
Module Name
00232e9c J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\bin\Debug\CH_05.exe
 

As mentioned earlier, the application domain is a range of virtual addresses where the CLR stores application-
related information at runtime. For example, Stack will be allocated for a region of the application domain, Heap will
be stored in the application,and so on. When an object is instantiated during application execution, the CLR will
store that object in a specific region of the application domain.

http://msdn.microsoft.com/en-us/library/system.appdomain(v=vs.110).aspx

Chapter 5 ■ CLR Memory Model II

92

Finding an object in the Application Domain
To find an object in the application domain, you will use the same debugging session as in the previous section.
In that debugging session the execution pointer was set in the Main method. Now, you will apply the g command to
continue the execution, but, because you set the break point at Print method, you will halt it at Print method:
 
0:000> g
(fe8.1308): CLR notification exception - code e0444143 (first chance)
JITTED CH_05!CH_05.Book.Print()
Setting breakpoint: bp 004A0110 [CH_05.Book.Print()]
Breakpoint 1 hit
eax=0023386c ebx=00000000 ecx=0198b684 edx=002b78e8 esi=002b78e8 edi=0020efc0
eip=004a0110 esp=0020ef84 ebp=0020ef94 iopl=0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000212
004a0110 55 push ebp
 

Then, execute the following command:
 
0:000> !clrstack -a
OS Thread Id: 0x1370 (0)
Child SP IP Call Site
0016ed84 00440110 CH_05.Book.Print()*** WARNING: Unable to verify checksum for CH_05.exe
 [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\Program.cs @ 16]
 PARAMETERS:
 this (<CLR reg>) = 0x0166b684
 
0016ed88 004400b4 CH_05.Program.Main(System.String[]) [J:\Book\C# Deconstructed\SourceCode\Chapters\
CH_05\Program.cs @ 10]
 PARAMETERS:
 args (0x0016ed90) = 0x0166b674
 LOCALS:
 0x0016ed8c = 0x0166b684
 
0016efc8 56b521db [GCFrame: 0016efc8]
 

The !clrstack command is used to show the current stack trace, From the Parameters section of the prior
output, you can find the address of an object, such as 0x0198b684. To discover where this object resides, use the
!findappdomain command, as shown:
 
0:000> !findappdomain 0x0166b684
AppDomain: 002c1078
Name: CH_05.exe
ID: 1
 

Chapter 5 ■ CLR Memory Model II

93

You can reveal the relevant domain information like so:
 
0:000> !dumpdomain 002c1078

Domain 1: 002c1078
LowFrequencyHeap: 002c13f4
HighFrequencyHeap: 002c1440
StubHeap: 002c148c
Stage: OPEN
SecurityDescriptor: 002c27f0
Name: CH_05.exe
Assembly: 003033c0 [C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\v4.0_4.0.0.0__
b77a5c561934e089\mscorlib.dll]
ClassLoader: 00303460
SecurityDescriptor: 0030af20
Module Name
55d81000 C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\
mscorlib.dll
 
Assembly: 003135d8 [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\bin\Debug\CH_05.exe]
ClassLoader: 00313678
SecurityDescriptor: 00312c00
 Module Name
00292e9c J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\bin\Debug\CH_05.exe

Address Space of the Application Domain
In Windows, process and thread maintain their own address space. A similar concept is used with .NET for the application
domain. The CLR allocates an address space for each of the application domains while executing an application. Once a
.NET application is loaded into the memory to execute, the CLR allocates virtual address space for that application,
using the concept of the application domain, and maintains this address space in the process data structure for the
application (see Figure 5-2). Later, the OS maps those virtual addresses in the physical memory as needed.

Chapter 5 ■ CLR Memory Model II

94

Let’s look at the following example, which you will be using to examine the address space allocated by the CLR
for a C# application:
 
using System;
 
namespace CH_05
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}
 

Once this application is compiled into an assembly (CH_05.exe), using csc.exe, you will load the assembly into
WinDbg to start debugging. You will be using the following command to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Figure 5-2.  CLR address space

Chapter 5 ■ CLR Memory Model II

95

The !eeheap command, along with the –loader option, can be used to display the range of the virtual addresses
allocated for the different domains of an application. The following output gives the address space of the prior application:
 
0:000> !eeheap -loader
Loader Heap:

System Domain: 58cd2478
LowFrequencyHeap: 001b0000(2000:1000) Size: 0x1000 (4096) bytes.
HighFrequencyHeap: 001b2000(8000:1000) Size: 0x1000 (4096) bytes.
StubHeap: 001ba000(2000:1000) Size: 0x1000 (4096) bytes.
Virtual Call Stub Heap:
 IndcellHeap: 00360000(2000:1000) Size: 0x1000 (4096) bytes.
 LookupHeap: 00365000(2000:1000) Size: 0x1000 (4096) bytes.
 ResolveHeap: 0036b000(5000:1000) Size: 0x1000 (4096) bytes.
 DispatchHeap: 00367000(4000:1000) Size: 0x1000 (4096) bytes.
 CacheEntryHeap: Size: 0x0 (0) bytes.
Total size: Size: 0x7000 (28672) bytes.

Shared Domain: 58cd2140
LowFrequencyHeap: 001b0000(2000:1000) Size: 0x1000 (4096) bytes.
HighFrequencyHeap: 001b2000(8000:1000) Size: 0x1000 (4096) bytes.
StubHeap: 001ba000(2000:1000) Size: 0x1000 (4096) bytes.
Virtual Call Stub Heap:
 IndcellHeap: 00360000(2000:1000) Size: 0x1000 (4096) bytes.
 LookupHeap: 00365000(2000:1000) Size: 0x1000 (4096) bytes.
 ResolveHeap: 0036b000(5000:1000) Size: 0x1000 (4096) bytes.
 DispatchHeap: 00367000(4000:1000) Size: 0x1000 (4096) bytes.
 CacheEntryHeap: Size: 0x0 (0) bytes.
Total size: Size: 0x7000 (28672) bytes.

Domain 1: 00201078
LowFrequencyHeap: 001c0000(2000:2000) Size: 0x2000 (8192) bytes.
HighFrequencyHeap: 001c2000(8000:2000) Size: 0x2000 (8192) bytes.
StubHeap: Size: 0x0 (0) bytes.
Virtual Call Stub Heap:
 IndcellHeap: Size: 0x0 (0) bytes.
 LookupHeap: Size: 0x0 (0) bytes.
 ResolveHeap: Size: 0x0 (0) bytes.
 DispatchHeap: Size: 0x0 (0) bytes.
 CacheEntryHeap: Size: 0x0 (0) bytes.
Total size: Size: 0x4000 (16384) bytes.

Jit code heap:
Total size: Size: 0x0 (0) bytes.

Module Thunk heaps:
Module 56fc1000: Size: 0x0 (0) bytes.
Module 001c2e9c: Size: 0x0 (0) bytes.
Total size: Size: 0x0 (0) bytes.

Chapter 5 ■ CLR Memory Model II

96

Module Lookup Table heaps:
Module 56fc1000: Size: 0x0 (0) bytes.
Module 001c2e9c: Size: 0x0 (0) bytes.
Total size: Size: 0x0 (0) bytes.

Total LoaderHeap size: Size: 0x12000 (73728) bytes.
=======================================

Stack in the CLR
When the CLR executes any method, it uses local storage for that method. This local storage is a range of the virtual
addresses allocated from the Stack region of the application domain. The Stack is also a range of virtual addresses
that are part of the application domain allocated to use as Stack for the application. The CLR uses parts of this Stack
address space as local storage for a method while executing it.

The life of the local storage of a method begins when the CLR is about to execute that method. Local storage is
simply a special convention for handling a range of virtual addresses. The CLR populates the local storage during
execution of the method, for instance, populating the Parameters section with data passed as parameters for the
method. The CLR stores local variables of the method in the Locals section of the method stack.

Here is an example that will help explain the concept of the Stack. Here, the Program class instantiates an
instance of the Book class and calls the Test_1 method from the instance of the Book class. Then, the Test_1 method
calls Test_2, Test_2 calls Test_3, Test_3 calls Test_4, Test_4 calls Test_5, and Test_5 calls Test_6, as shown:
 
using System;
 
namespace CH_05
{
 class Program
 {
 static void Main(string[] args)
 {
 Book book = new Book();
 book.Test_1();
 Console.ReadLine();
 }
 }
 
 public class Book
 {
 public void Test_1() { int i = 0; Console.WriteLine(++i); Test_2(); }
 public void Test_2() { int i = 1; Console.WriteLine(++i); Test_3(); }
 public void Test_3() { int i = 2; Console.WriteLine(++i); Test_4(); }
 public void Test_4() { int i = 3; Console.WriteLine(++i); Test_5(); }
 public void Test_5() { int i = 4; Console.WriteLine(++i); Test_6(); }
 public void Test_6() { int i = 5; Console.WriteLine(++i); }
 }
}
 

Chapter 5 ■ CLR Memory Model II

97

The life of the Test_1 method will start while executing the Main method as the Test_1 method is called from
it. Before the CLR begins executing the Test_1 method, it will allocate the range of virtual addresses from the Stack
region address space to the Test_1 method to use as the local storage for that method. When the local storage address
space is allocated to the Test_1 method, it will use that address space to store its parameters, local variables, and so
on. If you want to explore this further, compile the preceding program, and debug, using the WinDbg tool.

Once this application is compiled into an assembly (CH_05.exe), using csc.exe, you load the assembly into
WinDbg to start debugging. You will be using the following command to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

By debugging the program, you will find out more about the stack while the CLR executes the program on a
thread from the process:
 
0:000> !bpmd CH_05.exe CH_05.Program.Main
Found 1 methods in module 00142e9c...
Adding pending breakpoints...
 
0:000> !bpmd CH_05.exe CH_05.Book.Test_6
Found 1 methods in module 00142e9c...
Adding pending breakpoints...
 

Let the execution continue, using the g command:
g

The execution will break at the break point, which, in this case, is the Main method. You will execute the g command
again to let the execution continue and break at the Test_6 method. Then, you will execute the !clrstack command,
along with the parameter -a, to show arguments to the managed method and information on local variables:
 
0:000> !clrstack -a
OS Thread Id: 0x124c (0)
Child SP IP Call Site
0016f234 004002a0 CH_05.Book.Test_6() [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\Program.cs @ 22]
 PARAMETERS:
 this (<CLR reg>) = 0x018ab684
 LOCALS:
 <no data>
 
0016f238 00400289 CH_05.Book.Test_5() [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\Program.cs @ 21]
 PARAMETERS:
 this (0x0016f238) = 0x018ab684
 LOCALS:
 0x0016f23c = 0x00000005
 
0016f248 00400239 CH_05.Book.Test_4() [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\Program.cs @ 20]
 PARAMETERS:
 this (0x0016f248) = 0x018ab684
 LOCALS:
 0x0016f24c = 0x00000004
 

Chapter 5 ■ CLR Memory Model II

98

0016f258 004001e9 CH_05.Book.Test_3() [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\Program.cs @ 19]
 PARAMETERS:
 this (0x0016f258) = 0x018ab684
 LOCALS:
 0x0016f25c = 0x00000003
 
0016f268 00400199 CH_05.Book.Test_2() [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\Program.
cs @ 18]
 PARAMETERS:
 this (0x0016f268) = 0x018ab684
 LOCALS:
 0x0016f26c = 0x00000002
 
0016f278 00400147 CH_05.Book.Test_1() [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\Program.
cs @ 17]
 PARAMETERS:
 this (0x0016f278) = 0x018ab684
 LOCALS:
 0x0016f27c = 0x00000001
 
0016f288 004000b4 CH_05.Program.Main(System.String[]) [J:\Book\C# Deconstructed\SourceCode\Chapters\
CH_05\Program.cs @ 10]
 PARAMETERS:
 args (0x0016f290) = 0x018ab674
 LOCALS:
 0x0016f28c = 0x018ab684
 
0016f4c0 5d3a21db [GCFrame: 0016f4c0]
 

From the preceding WinDbg output, you can see how Test_1, Test_2, Test_3, Test_4, Test_5, and Test_6 stack
up on each other. The CLR will manage method state on each method call and store in the Stack region allocated
for the application. Figure 5-3 shows that the Main method sits at the bottom of the stack, as it is the initiator of the
method call chain, and Test_6 is the top of the stack, as this is where the method chain ends.

Figure 5-3.  CLR stack model

Chapter 5 ■ CLR Memory Model II

99

Each method state stores information related to that method, such as current execution state (e.g., IL using the IP).
In addition, each method state contains Parameters and Locals sections, in which it stores incoming arguments and
the local variables it uses.

Once the program is executed by the CLR, the CLR maintains the method call, as demonstrated in Figure 5-4.

Figure 5-4.  Virtual address space and the Stack

The CLR is responsible for using the Stack concept to maintain the method state. The method-calling convention
in the CLR is stack based, and the methods called are stacked up on each other. Once a method has finished its
execution, it is removed from the top of the stack by the CLR, as shown in Figure 5-5.

Chapter 5 ■ CLR Memory Model II

100

Figure 5-5.  CLR frame execution

The life of the local storage for a method ends when the method finishes its execution. In constrast, the CLR
will maintain the local storage of that method when the current method calls another method to execute. Until that
method finishes, the CLR keeps the local storage alive for the caller method. For example, if the CLR executes method
A, and method A then calls method B, until method B finishes the execution, the CLR will keep alive the local storage
for method A.

The CLR is responsible for using the Stack concept while executing the methods. For example, as mentioned
earlier, the CLR executes method by method while executing an application. A method will call the CLR, using a data
structure called an activation frame to capture the method execution state and return information. This activation
frame is the data structure that virtually refers to local storage.

As discussed previously, the CLR allocates the range of virtual addresses from the application domain address
space to use as the Stack. In the following section, you will study the Stack address space allocated by the CLR while
executing the example program.

Address Space of the Stack
As mentioned earlier, the Stack is simply a range of virtual memory addresses and the rules specified in the CLR
to handle them. If you apply the following command while debugging the previous executable, using WinDbg, you
will find that a range of virtual addresses is defined as the Stack. In WinDbg the !address command, along with the
-summary option, can be used to display the virtual memory allocated for the executable:
 
0:000> !address -summary
  
Mapping file section regions...
Mapping module regions...
Mapping PEB regions...
Mapping TEB and stack regions...
Mapping heap regions...
Mapping page heap regions...
Mapping other regions...

Chapter 5 ■ CLR Memory Model II

101

Mapping stack trace database regions...
Mapping activation context regions...
 
/*removed*/
Stack 1691000 fc000 (1008.000 kb)
/*removed*/
 

In WinDbg, using the !address command, along with the /f:Stack flag, will show you more information about
the Stack, such as size, range of virtual addresses allocated for the Stack block,and so on:
 
0:000> !address /f:STACK
 
 BaseAddr EndAddr+1 RgnSize Type State Protect Usage

 110000 111000 1000 MEM_PRIVATE MEM_RESERVE Stack
[~0; d7c.1018]
 111000 209000 f8000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack
[~0; d7c.1018]
 209000 20b000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack
[~0; d7c.1018]
 20b000 210000 5000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack
[~0; d7c.1018]
 1690000 1691000 1000 MEM_PRIVATE MEM_RESERVE Stack
[~1; d7c.1334]
 1691000 178d000 fc000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack
[~1; d7c.1334]
 178d000 178f000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack
[~1; d7c.1334]
 178f000 1790000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack
[~1; d7c.1334]
 38b0000 38b1000 1000 MEM_PRIVATE MEM_RESERVE Stack
[~2; d7c.e4c]
 38b1000 38b2000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack
[~2; d7c.e4c]
 38b2000 38b4000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack
[~2; d7c.e4c]
 38b4000 39ac000 f8000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack
[~2; d7c.e4c]
 39ac000 39ae000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack
[~2; d7c.e4c]
 39ae000 39b0000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack
[~2; d7c.e4c]
???

Chapter 5 ■ CLR Memory Model II

102

Heap
In .NET the heap is used to store all the reference types, such as

Classes•	

Interfaces•	

Delegates•	

Strings•	

Instances of objects•	

The CLR stores the instances of the reference types in either the large object heap (LOH) or the small object heap
(SOH), depending on the size of the objects. When the CLR instantiates any reference type, it instantiates on the heap
and assigns the reference type an address. This address is used to access that object later on (the object address from
the Stack region of the application can be used). In this example the reference type TestClass has been instantiated
to execute the Method_1 of that type:
 
using System;
 
namespace CH_05
{
 class Program
 {
 static void Main(string[] args)
 {
 TestClass testClass = new TestClass();
 testClass.Method_1();
 Console.ReadLine();
 }
 }
 
 public class TestClass
 {
 public void Method_1() { }
 }
}
 

The CLR will instantiate an instance of the TestClass while executing the Main method. During the TestClass
type instantiation the CLR allocates a block of virtual memory in which to lay out that type, which is referred to as an
object. The first address in the memory block will be used to refer to this object. The address can be used from the
location where the instantiation process of that type is triggered, such as the Main method. You can also pass around
this address to refer to the object in your application.

When you debugged the prior application, using WinDbg, the CLR stored on the local storage of the Main method
an address (0x0184b64c), which is the address of the instance of the TestClass. This address refers to the memory
block in which the CLR lays out out the instance of the TestClass.

Chapter 5 ■ CLR Memory Model II

103

To investigate this further, you can debug the executable produced by the preceding code in windbg.exe. While
debugging, using WinDbg, you will set the break point at Main method and Method_1, using the !bpmd command, and
let the execution continue, using the g command. During this execution the execution will break at Method_1. Next,
will you run the !clrstack command, which will give you information about the Locals section of the Main method
and Method_1 method. The Locals section of the Main method contains an address for the TestClass class variable,
as shown:
 
0:000> !clrstack -a
OS Thread Id: 0x14fc (0)
Child SP IP Call Site
002ff024 004e0110 CH_05.TestClass.Method_1() [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\
Program.cs @ 17]
 PARAMETERS:
 this (<CLR reg>) = 0x018ab684
 
002ff028 004e00b4 CH_05.Program.Main(System.String[]) [J:\Book\C# Deconstructed\SourceCode\Chapters\
CH_05\Program.cs @ 10]
 PARAMETERS:
 args (0x002ff030) = 0x018ab674
 LOCALS:
 0x002ff02c = 0x018ab684
 
002ff26c 5d3a21db [GCFrame: 002ff26c]
 

As discussed previously, whenever an object has been instantiated by the CLR, the CLR allocates a block of
virtual addresses from the Heap region of that application domain. You can use the !dumpheap command to find out
whether the object instantiated for the preceding program is located in the Heap region:
 
0:000> !dumpheap -mt 0x018ab674
Address MT Size
01b3b684 0x018ab674 12
total 0 objects
Statistics:
 MT Count TotalSize Class Name
00143880 1 12 CH_05.TestClass
Total 1 objects
 

As with the Stack region, the CLR allocates a range of the virtual addresses from the application domain address
space to use as the Heap. In the following section, you will explore the Heap address space allocated by the CLR while
executing the program.

Chapter 5 ■ CLR Memory Model II

104

Heap and Address Space
In WinDbg you can use the !address, command, along with the /f:Heap flag, to show more information about Heap,
such as size, range of virtual addresses allocated for the Heap block, and so on:
 
0:000> !address /f:HEAP
 
 BaseAddr EndAddr+1 RgnSize Type State Protect Usage

 10000 20000 10000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE Heap
[ID: 1; Handle: 00010000; Type: Segment]
 20000 30000 10000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE Heap
[ID: 2; Handle: 00020000; Type: Segment]
 e0000 e3000 3000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap
[ID: 3; Handle: 000e0000; Type: Segment]
 e3000 f0000 d000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 3; Handle: 000e0000; Type: Segment]
 260000 263000 3000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap
[ID: 6; Handle: 00260000; Type: Segment]
 263000 270000 d000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 6; Handle: 00260000; Type: Segment]
 270000 2d4000 64000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap
[ID: 0; Handle: 00270000; Type: Segment]
 2d4000 370000 9c000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 0; Handle: 00270000; Type: Segment]
 4e0000 4e1000 1000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READWRITE Heap
[ID: 4; Handle: 004e0000; Type: Segment]
 4e1000 520000 3f000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 4; Handle: 004e0000; Type: Segment]
 660000 661000 1000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READWRITE Heap
[ID: 7; Handle: 00660000; Type: Segment]
 661000 6a0000 3f000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 7; Handle: 00660000; Type: Segment]
 700000 703000 3000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap
[ID: 5; Handle: 00700000; Type: Segment]
 703000 710000 d000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 5; Handle: 00700000; Type: Segment]
 1400000 1401000 1000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READWRITE Heap
[ID: 9; Handle: 01400000; Type: Segment]
 1401000 1440000 3f000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 9; Handle: 01400000; Type: Segment]
 14e0000 14e1000 1000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READWRITE Heap
[ID: 10; Handle: 014e0000; Type: Segment]
 14e1000 1520000 3f000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 10; Handle: 014e0000; Type: Segment]
 1520000 1523000 3000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap
[ID: 8; Handle: 01520000; Type: Segment]
 1523000 1530000 d000 MEM_PRIVATE MEM_RESERVE Heap
[ID: 8; Handle: 01520000; Type: Segment]

Chapter 5 ■ CLR Memory Model II

105

objects
An object is a data structure that has different fields that describe the instance of a type. The address of an object is a
location in the virtual memory that points to a block of virtual memory addresses used by the CLR to lay out a type.
The contents of that memory block contain the definition of the object. At runtime the virtual memory allocated for
the object is mapped in the physical memory (see Chapter 4).

Figure 5-6 shows how an object is loaded into the physical memory and the layout itself, based on the allocation
of virtual memory.

Figure 5-6.  Object instance

The block of virtual memory addresses is used to define an object data structure. The virtual memory block
allocated for an object starts with header information. Here, the header contains a few elements, including Syncblk,
which points to the Synblk Entry Table. This table has a list of the Syncblock. The object header also has the
MethodTable, which contains all the methods defined in the type and inherited from the base type. You will use the
following example to further explore the object in the C# application:
 
using System;
 
namespace CH_05
{
 class Program
 {
 static void Main(string[] args)

Chapter 5 ■ CLR Memory Model II

106

 {
 Book book = new Book();
 book.Print();
 }
 }
 
 public class Book
 {
 public void Print()
 {
 Console.WriteLine(ToString());
 }
 }
}
 

Once this application is compiled into an assembly (CH_05.exe), using csc.exe, you will load this assembly into
WinDbg to start debugging. You will use the following commands to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Let the execution continue, using the g command, after setting the break point:
 
0:000> !bpmd CH_05.exe CH_05.Program.Main
Found 1 methods in module 00342e9c...
MethodDesc = 00343800
Adding pending breakpoints...
 
0:000> !bpmd CH_05.exe CH_05.Book.Print
Found 1 methods in module 00342e9c...
Adding pending breakpoints...
 
0:000> g
(15e8.139c): CLR notification exception - code e0444143 (first chance)
JITTED CH_05!CH_05.Book.Print()
Setting breakpoint: bp 003F0110 [CH_05.Book.Print()]
Breakpoint 1 hit
eax=0034386c ebx=00000000 ecx=01f7b684 edx=000878e8 esi=000878e8 edi=002ceda0
eip=003f0110 esp=002ced64 ebp=002ced74 iopl=0 nv up ei pl nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000216
003f0110 55 push ebp
 

Chapter 5 ■ CLR Memory Model II

107

When you execute the g command, it will continue the execution and stop at the break point (in this case, the
Print method). The Main method keeps track of the object in its Local Variables section, which can be used to further
study the object structure. If you execute the !clrstack command, along with the a option, it will show the current
execution state of the Main method, including local variable information. You will use the address of the object to
analyze the following code:
 
0:000> !clrstack -a
OS Thread Id: 0x139c (0)
Child SP IP Call Site
002ced64 003f0110 CH_05.Book.Print()*** WARNING: Unable to verify checksum for CH_05.exe
 [J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\Program.cs @ 17]
 PARAMETERS:
 this (<CLR reg>) = 0x01f7b684
 
002ced68 003f00b4 CH_05.Program.Main(System.String[]) [J:\Book\C# Deconstructed\SourceCode\Chapters\
CH_05\Program.cs @ 10]
 PARAMETERS:
 args (0x002ced70) = 0x01f7b674
 LOCALS:
 0x002ced6c = 0x01f7b684
 
002cefac 586e21db [GCFrame: 002cefac]
 

Let’s examine the memory contents of the object located at 0x0163b77c, which demonstrate how the CLR lays out
an object in memory:
 
0:000> dc 0x01f7b684-100
01f7b584 ffffffff 01f7b300 00000000 011ecf05
01f7b594 ffffffff 01f7b318 00000000 0215472d -G..
01f7b5a4 ffffffff 00000000 00000000 00000000
01f7b5b4 00000000 00000000 00000000 00000000
01f7b5c4 00000000 00000000 00000000 00000000
01f7b5d4 00000000 00000000 00000000 00000000
01f7b5e4 00000000 00000000 00000000 00000000
01f7b5f4 00000000 00000000 00000000 00000000
 

The output shows the header of the object, which has a few elements, including Syncblk and TypeHandle,
and instance fields.

You can use the !dumpobject (do) command to present the object structure in more user-friendly fashion:
 
0:000> !do 0x01f7b684
Name: CH_05.Book
MethodTable: 00343880
EEClass: 00341480
Size: 12(0xc) bytes
File: J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\bin\Debug\CH_05.exe
Fields:
None
 

Chapter 5 ■ CLR Memory Model II

108

Now, let’s look at the method table information:
 
0:000> !dumpmt -MD 00343880
EEClass: 00341480
Module: 00342e9c
Name: CH_05.Book
mdToken: 02000003
File: J:\Book\C# Deconstructed\SourceCode\Chapters\CH_05\bin\Debug\CH_05.exe
BaseSize: 0xc
ComponentSize: 0x0
Slots in VTable: 6
Number of IFaces in IFaceMap: 0

MethodDesc Table
 Entry MethodDesc JIT Name
571ea7e0 56fc4934 PreJIT System.Object.ToString()
571ee2e0 56fc493c PreJIT System.Object.Equals(System.Object)
571ee1f0 56fc495c PreJIT System.Object.GetHashCode()
57271600 56fc4970 PreJIT System.Object.Finalize()
003f00d0 00343878 JIT CH_05.Book..ctor()
003f0110 0034386c JIT CH_05.Book.Print()
 

Let’s examine as well the desc method:
 
0:000> !dumpmd 0034386c
Method Name: CH_05.Book.Print()
Class: 00341480
MethodTable: 00343880
mdToken: 06000003
Module: 00342e9c
IsJitted: yes
CodeAddr: 003f0110
Transparency: Critical

Garbage Collection
When you create an instance of a type in .NET, such as a reference type, using a new keyword, the CLR takes care
of the rest. For example, the CLR will instantiate the type onto the heap, allocate extra memory as needed, and
deallocate the memory when you finish with that object. The CLR carries out this memory reclaim process using
the GC. The GC maintains information about object usage and uses this information to make memory management
decisions, such as where in the memory to locate a newly created object, when to relocate an object, and when an
object is no longer to be in use or accessible.

Chapter 5 ■ CLR Memory Model II

109

In .NET automatic memory cleanup is achieved using the GC algorithm. This algorithm looks for an allocated
object on the heap and tries to determine if that object is being referenced by anything; if it is not, the GC will allocate
it for collection or to the cleanup cycle. There are several possible sources of these references:

Global or static object references•	

CPU registers•	

Object finalization references•	

Interoperability references (.NET objects passed to Component Object Model [COM]/API calls)•	

Stack references•	

The GC needs to traverse a number of objects to determine whether they can be collected for cleanup. The CLR
uses the concept of longevity of the object in memory. For instance, when the object is in use for a long time, it is less
likely to lose the reference, whereas a newly created object is more likely to be cleaned up.

In GC, three generations of object groups are used:

Generation 0•	

Generation 1•	

Generation 2•	

Generation 0
Generation 0 (Gen 0) is the youngest group, and it contains short-lived objects. An example of a short-lived object is a
temporary variable. GC occurs most frequently in this generation. Newly allocated objects form a new generation of
objects and are implicitly Gen 0 collections, unless they are large objects, in which case they go on the LOH in a Gen 2
collection. Most objects are reclaimed for GC in Gen 0 and do not survive to the next generation.

Generation 1
Gen 1 contains short-lived objects and serves as a buffer between short-lived objects and long-lived objects.

Generation 2
Gen 2 contains long-lived objects. An example of a long-lived object is a server application that contains static data
that are live for the duration of the process.

The life of an object starts in Gen 0. If the objects in Gen 0 survive, the GC promotes them to Gen 1, and likewise
for the promotion of Gen 1 objects to Gen 2. The objects in Gen 2 stay in Gen 2. Gen 0 objects are collected frequently,
so short-lived objects are quickly removed. Gen 1 objects are collected less frequently, and Gen 2 objects, even less
frequently. Thus, the longer an object lives, the longer it takes to remove from memory once it has lost all references.
When Gen 1 objects are collected, the GC gathers Gen 0 objects as well. In addition, when Gen 2 objects are collected,
those in Gen 1 and Gen 0 are also collected. As a result, higher-generation collections are more expensive.

GC cleanup consists of three phases:

•	 Marking phase: The GC finds and creates a list of all live objects.

•	 Relocating phase: The GC updates the references to the objects that will be compacted.

•	 Compacting phase: The GC reclaims the space occupied by the dead objects and compacts the
surviving objects; the compacting phase moves objects that have survived the GC toward the
older end of the segment.

Chapter 5 ■ CLR Memory Model II

110

Gen 2 collections can occupy multiple segments; objects that are promoted to Gen 2 can be moved to an older
segment. Both Gen 1 and Gen 2 survivors can be moved to a different segment, because they are promoted to Gen 2.

The LOH is not compacted, as this would increase memory usage to an unacceptable length of time.

Conclusion
In Chapters 4 and 5, you saw how the OS manages the use of physical memory and the layout of the application
program by the CLR. You also explored further the concept of the process, a mechanism that splits different sets of
functionality into their own boundaries. The OS takes care of this process, using data structure and specification;
the OS allows the process to have its own private virtual address space, thereby ensuring that the process runs in an
isolated boundary. The OS treats the CLR is like a process. So, to understand how the CLR execution model and JIT
compiler work, you need to know how the OS handles the CLR, forexample, its loading process, memory layout for
the application code, metadata, and resources. In the next chapter, you will examine the CLR execution model. In
addition, you will study the CLR bootstrapping process and the different components of the CLR.

Further Reading
Farrell, C., & Harrison, N. (2011). Under the Hood of. NET Memory Management. Simple Talk Pub..
Hewardt, Mario. Advanced .NET Debugging. Upper Saddle River, NJ: Addison-Wesley, 2010.
Hewardt, Mario, and Daniel Pravat. Advanced Windows Debugging. Upper Saddle River, NJ: Addison-Wesley, 2008.
Jacob, Bruce, Spencer W. Ng, and David T. Wang. Memory Systems: Cache, DRAM, Disk. Burlington, MA: Morgan

Kaufmann, 2010.
Juola, Patrick. Principles of Computer Organization and Assembly Language. Upper Saddle River, NJ: Prentice Hall, 2007.
Lidin, Serge. Inside Microsoft .NET IL Assembler. Redmond, WA: Microsoft.
McDougall, Richard, and Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture.

Upper Saddle River, NJ: Prentice Hall, 2006.
Pratschner, Steven. Customizing the Microsoft .NET Framework Common Language Runtime. Edited by Kathleen

Atkins. Redmond, WA: Microsoft, 2009.

111

Chapter 6

CLR Execution Model

The CLR is a virtual execution environment that is used to execute and manage managed code execution. In .NET
the code that provides information such as metadata to describe the method, property, class, and other elements of a
type; walks through the stack; manages and handles exceptions; and furnishes security over the code to allow the CLI
to offer a set of core services is referred to as managed code. As discussed previously, the CLR is implemented by the
CLI and CTS and supplies services, including automatic memory management, using GC (see Chapter 1); metadata
to describe the types and control type discovery, loading, and layout; analysis of managed libraries and programs
(see Chapter 3); a robust exception management subsystem to enable programs to communicate and respond to
failures in structured ways; native and legacy code interoperability; JIT compilation of managed code into native code;
and a sophisticated security infrastructure.

In this chapter, you will learn about the CLR, including bootstrapping of the CLR and class loading. This will help
advance your understanding of how the CLR manages managed code execution and manages virtual address space
to define AppDomain, Stack, Heap; and so on to create the execution environment, verification that is performed while
compiling the IL code at JIT compile time.

Overview of the CLR
The CLR is a standard Windows process that acts as a virtual execution environment for the .NET languages. The CLR
uses OS services to facilitate the loading, compilation, and execution of an assembly. The CLR serves as an execution
abstraction for the .NET languages. To achieve this, it uses a set of DLLs, which acts as a middle layer between the OS
and the application program. The CLR itself is a collection of DLLs, and these DLLs work together to define the virtual
execution environment. The DLLs are

•	 mscoree.dll

•	 clr.dll

•	 mscorsvr.dll or mscorwks.dll

And others•	

When we say that the CLR executes managed code, what we mean is that the managed code does not execute
directly, via the CPU itself. To be execute by the CPU, however, the application program does not need to implement
any special mechanisms; the CLR handles the execution, using the OS services. The CLR maintains the activation
frame on method invocation to maintain the state of method call, handle the context switch, manage the object life
cycle at runtime, and so on. If you ever have the opportunity to examine native code generated by the JIT compiler,
you will find that much of it references the aforementioned DLLs (e.g., CLR.DLL). These DLLs work, along with the
application code, to offer the services mentioned earlier.

Chapter 6 ■ CLR Execution Model

112

Let’s take a look at the following C# program, which is being compiled using the C# compiler (csc.exe) and
debugged with WinDbg:
 
using System;
 
namespace CH_06
{
 class Program
 {
 static void Main(string[] args)
 {
 ClassTest ct = new ClassTest();
 ct.Print();
 }
 }
 
 public class ClassTest
 {
 public void Print()
 {
 Console.WriteLine(ToString());
 }
 }
}
 

Once this application is compiled into an assembly (CH_06.exe), using csc.exe, you load the assembly into
WinDbg to start debugging. You will be using the following WinDbg command to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Now, you set a few breakpoints, as shown:
 
0:000> !bpmd CH_06.exe CH_06.ClassTest.Print
Found 1 methods in module 00342e9c...
Adding pending breakpoints...
 
0:000> !bpmd CH_06.exe CH_06.Program.Main
Found 1 methods in module 00342e9c...
MethodDesc = 00343800
Adding pending breakpoints...
 
0:000>g
 
0:000> !name2ee CH_06.exe CH_06.Program.Main
Module: 00142e9c
Assembly: CH_06.exe
Token: 06000001
MethodDesc: 00143800
Name: CH_06.Program.Main(System.String[])
JITTED Code Address: 003d0070
 

Chapter 6 ■ CLR Execution Model

113

The !u command of WinDbg is used with the method description address to display an annotated disassembly
of the managed method:
 
0:000> !u 003d0070
Normal JIT generated code
CH_06.Program.Main(System.String[])
Begin 003d0070, size 50
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_06\Program.cs @ 8:
>>> 003c0070 55 push ebp
003c0071 8bec mov ebp,esp
003c0073 83ec0c sub esp,0Ch
003c0076 894dfc mov dword ptr [ebp-4],ecx
003c0079 833d3c31340000 cmp dword ptr ds:[34313Ch],0
003c0080 7405 je 003c0087
003c0082 e8c85a6953 call clr!JIT_DbgIsJustMyCode (53a55b4f)
003c0087 33d2 xor edx,edx
003c0089 8955f8 mov dword ptr [ebp-8],edx
003c008c 90 nop
 
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_06\Program.cs @ 9:
003c008d b980383400 mov ecx,343880h (MT: CH_06.ClassTest)
003c0092 e8891ff7ff call 00332020 (JitHelp: CORINFO_HELP_NEWSFAST)
003c0097 8945f4 mov dword ptr [ebp-0Ch],eax
003c009a 8b4df4 mov ecx,dword ptr [ebp-0Ch]
003c009d ff15ac383400 call dword ptr ds:[3438ACh] (CH_06.ClassTest..ctor(), mdToken: 06000004)
003c00a3 8b45f4 mov eax,dword ptr [ebp-0Ch]
003c00a6 8945f8 mov dword ptr [ebp-8],eax
 
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_06\Program.cs @ 10:
003c00a9 8b4df8 mov ecx,dword ptr [ebp-8]
003c00ac 3909 cmp dword ptr [ecx],ecx
003c00ae ff1574383400 call dword ptr ds:[343874h] (CH_06.ClassTest.Print(), mdToken: 06000003)
003c00b4 90 nop
 
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_06\Program.cs @ 11:
003c00b5 90 nop
003c00b6 8be5 mov esp,ebp
003c00b8 5d pop ebp
003c00b9 c3 ret
 

When you write an application program using one of the .NET languages, you probably never think to use
methods such as clr!JIT_DbgIsJustMyCode from your application program. The CLR is responsible for doing this.
Figure 6-1 demonstrates the core components of the CLR, which include the assembly, class loader, and JIT compiler
as well as other services, such as the GC and security.

Chapter 6 ■ CLR Execution Model

114

To load the assemblies, the CLR is using the assembly loader component. The assembly-loading process can
also be used by the method that is currently executing. Let’s say, for example, a method is executing, and during
its execution, there is a reference to a functionality that is not in the running assembly, but resides in a different
assembly. As it is not yet loaded into memory, there is no chance of obtaining that method’s native code. You must
therefore load that assembly into the memory.

Initially, the assembly needs to be loaded into memory by the assembly loader. Once it has been loaded into
memory, the assembly has to locate the appropriate class to find the relevant method for which it has been loaded.
The class loader component of the CLR will load the class and lay out the metadata in memory. After loading the class,
the next step is to perform a JIT compilation.

Figure 6-1.  Overview of the CLR execution model

Chapter 6 ■ CLR Execution Model

115

The JIT compiler is used to compile any method defined in any type from IL code into the native code. If the method
has not yet been compiled into the native code, the JIT compiler will compile it; if it has already been compiled, the CLR
will use that compiled native code to execute. While the native code is executing, if it references a member that is in a
different class but that is in an assembly that has already been loaded, the CLR will invoke the class loader to create the
appropriate data structures, such as MethodTable, and other, related metadata for use by the calling method.

The CLR offers another function that enforces security by stopping the execution of illegal code—code that
generates an invalid address and jumps to it, thereby bypassing the CLR’s normal execution flow.

The CLR executes native code derived from a verified assembly, such as one generated by a CLI-compliant
compiler. There are a couple of ways for the CLR to make sure that an assembly has been verified (as described in
Partition I of the ECMA C# standard, which is available on the ECMA web site
[http://www.ecma-international.org/publications/standards/Ecma-335.htm]):

The assembly was downloaded from a trusted source, and it is assured not to have been •	
tampered with.

The EE runs its own verification tool on the assembly to ensure that it is type safe.•	

So far, you have seen how the CLR handles the execution of your code. In the following section, you will view
an example demonstrating the execution model used in the CLR. Then, you will explore the assembly loader, class
loader, JIT compiler, and method state, while the CLR executes your code in detail.

The C# Program and the CLR
As mentioned earlier, a .NET application uses two types of compiler, from compilation to execution phase. The
front-end compiler (e.g., csc.exe, in C# language) compiles the C# source code into the IL code and generates metadata
(to define the IL code). The back-end compiler is the JIT compiler, which compiles the IL code into native code.

Figure 6-2 shows that the C# source code is compiled by the C# compiler to generate the assembly. This assembly
contains IL code that is equivalent to C# code and metadata to define the types used in the IL code and PE and CLR
header information (see Chapter 3) to define the assembly.

Figure 6-2.  C# compilation

The following C# program demonstrates how the C# compiler compiles your application code into an assembly
and how the CLR loads the assembly into memory and manages the execution of that assembly at runtime. By
providing services, such as class loading, verification, JIT compilation, and code management, the CLR creates an
environment for code execution, the VES.
 

http://www.ecma-international.org/publications/standards/Ecma-335.htm

Chapter 6 ■ CLR Execution Model

116

using System;
 
namespace CH_06
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(Math.PI);
 }
 }
}
 

When this application is compiled into an assembly (CH_06.exe), using csc.exe, the CLR’s metadata engine
enables the source code compiler to place metadata in the PE file, along with the generated IL code.

Next, you use the dumpbin.exe tool with the /HEADER flag, as shown:
 
dumpbin /HEADERS CH_06.exe
 

This will generate the following output:
 
Microsoft (R) COFF/PE Dumper Version 10.00.40219.01
Copyright (C) Microsoft Corporation. All rights reserved.
 
Dump of file Program.exe
 
PE signature found
 
File Type: EXECUTABLE IMAGE
 
FILE HEADER VALUES
 14C machine (x86)
 3 number of sections
 530AB43E time date stamp Mon Feb 24 13:53:50 2014
 0 file pointer to symbol table
 0 number of symbols
 E0 size of optional header
 102 characteristics
 Executable
 32 bit word machine
 
OPTIONAL HEADER VALUES
 10B magic # (PE32)
 8.00 linker version
 400 size of code
 800 size of initialized data
 0 size of uninitialized data
 23DE entry point (004023DE)
 2000 base of code
 4000 base of data
 400000 image base (00400000 to 00407FFF)

Chapter 6 ■ CLR Execution Model

117

 2000 section alignment
 200 file alignment
 4.00 operating system version
 0.00 image version
 4.00 subsystem version
 0 Win32 version
 8000 size of image
 200 size of headers
 0 checksum
 3 subsystem (Windows CUI)
 8540 DLL characteristics
 Dynamic base
 NX compatible
 No structured exception handler
 Terminal Server Aware
 100000 size of stack reserve
 1000 size of stack commit
 100000 size of heap reserve
 1000 size of heap commit
 0 loader flags
 10 number of directories
 0 [0] RVA [size] of Export Directory
 2384 [57] RVA [size] of Import Directory
 4000 [4D8] RVA [size] of Resource Directory
 0 [0] RVA [size] of Exception Directory
 0 [0] RVA [size] of Certificates Directory
 6000 [C] RVA [size] of Base Relocation Directory
 0 [0] RVA [size] of Debug Directory
 0 [0] RVA [size] of Architecture Directory
 0 [0] RVA [size] of Global Pointer Directory
 0 [0] RVA [size] of Thread Storage Directory
 0 [0] RVA [size] of Load Configuration Directory
 0 [0] RVA [size] of Bound Import Directory
 2000 [8] RVA [size] of Import Address Table Directory
 0 [0] RVA [size] of Delay Import Directory
 2008 [48] RVA [size] of COM Descriptor Directory
 0 [0] RVA [size] of Reserved Directory
 
SECTION HEADER #1
 .text name
 3E4 virtual size
 2000 virtual address (00402000 to 004023E3)
 400 size of raw data
 200 file pointer to raw data (00000200 to 000005FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
60000020 flags
 Code
 Execute Read
 

Chapter 6 ■ CLR Execution Model

118

SECTION HEADER #2
 .rsrc name
 4D8 virtual size
 4000 virtual address (00404000 to 004044D7)
 600 size of raw data
 600 file pointer to raw data (00000600 to 00000BFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only
 
SECTION HEADER #3
 .reloc name
 C virtual size
 6000 virtual address (00406000 to 0040600B)
 200 size of raw data
 C00 file pointer to raw data (00000C00 to 00000DFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
42000040 flags
 Initialized Data
 Discardable
 Read Only
 
 Summary
 
 2000 .reloc
 2000 .rsrc
 2000 .text
 

As you can see, the IL code is compiled by the C# front-end compiler, and it will be further compiled by the JIT
compiler at runtime to generate the native code. This compiled native code will later be executed by the execution
engine of the CLR, as illustrated in Figure 6-3.

Chapter 6 ■ CLR Execution Model

119

In .NET the source code is compiled into IL code, along with the metadata, which later loads, verifies, and
JIT compiles to produce the native code on the fly, using the runtime compiler JIT. The metadata provide enough
information to the CLR for registration, debugging, memory management, and security. It is for this reason that this
code is also referred to as managed code. The assembly loader loads an assembly, and the class loader component
loads required classes from the assembly as well as related classes from .NET Framework libraries, as indicated
in the figure.

The JIT compilation at runtime can be omitted, using the precompilation process supported by the CLR. In this
process, IL code is precompiled into the native code, using a tool such as ngen.exe, before the containing assembly is
executed, to avoid JIT compilation while the assembly is executed by the CLR.

As discussed in Chapter 1, the CLR is a Windows process, and it controls the execution of the managed code.
The CLR itself cannot be loaded into memory to work as the execution environment; it needs to be triggered to load
and start as a process. In this case, a piece of code, known as bootstrapper, which is embedded in the application
program during compilation, is used to trigger the CLR to initialize and load into memory. Once the CLR has been
loaded, it is in charge of the application program for which it’s being loaded, and it will take care of execution of that
application program.

Bootstrapping is the mechanism used for loading the CLR. In the next section, I will discuss the CLR
bootstrapping process in detail.

Figure 6-3.  The CLR at runtime

Chapter 6 ■ CLR Execution Model

120

CLR Bootstrapping
The CLR is made up of a number of DLLs. It does not do anything unless they are being loaded by an application as
a host for them. The CLR works as the mediator between the application program and the OS. To load these DLLs to
initialize the execution environment and start executing the application program, the application program needs to
tell the Windows loader that this is a .NET application and that the CLR has to be loaded.

The bootstrapping process of the CLR is triggered by a piece of code. This thin piece of code, embedded in the
assembly, triggers the execution process of the application program. Figure 6-4 gives a high-level overview of the CLR
bootstrapping process.

Figure 6-4.  CLR bootstrapping

The bootstrapper of an executable simply uses a method call to the _CorExeMain method, located in mscoree.dll.
If you examine any C# assembly, and look for the mscoree.dll import table, you will find a reference to the
 _CorExeMain method. You use the dumpbin tool, from the Visual Studio command prompt, to find the Imports section
of mscoree.dll, using this command:
 
dumpbin /IMPORTS "J:\Book\C# Deconstructed\SourceCode\Chapters\CH_06\bin\Debug\CH_06.exe"
 

It shows the following output:
 
Microsoft (R) COFF/PE Dumper Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.
 
Dump of file J:\Book\C# Deconstructed\SourceCode\Chapters\CH_06\bin\Debug\CH_06.
exe
 
File Type: EXECUTABLE IMAGE
 

Chapter 6 ■ CLR Execution Model

121

 Section contains the following imports:
 
 mscoree.dll
 402000 Import Address Table
 4026F0 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference
 
 0 _CorExeMain
 
 Summary
 
 2000 .reloc
 2000 .rsrc
 2000 .text
 

The _CorExeMain method, from mscoree.dll, contains code that has forwarded a call to the mscoree.dll!_CorDllMain
method. Let’s take a look at the disassembled version of the _CorExeMain method, which displays how the CLR shim
process is triggered:
 
0:000> u mscoree!_CorExeMain_Exported
mscoree!_CorExeMain_Exported:
79004ddb 8bff mov edi,edi
79004ddd 56 push esi
79004dde e80c2f0000 call mscoree!ShellShim__CorExeMain (79007cef)
79004de3 6a00 push 0
79004de5 8bf0 mov esi,eax
79004de7 e84bc4ffff call mscoree!GetShimImpl (79001237)
79004dec e93a800000 jmp mscoree!_CorExeMain_Exported+0x11 (7900ce2b)
 mscoree!_imp_load__RegOpenKeyExW:
79004df1 b82c100479 mov eax,offset mscoree!_imp__RegOpenKeyExW (7904102c)
 

The shim is responsible for selecting either the workstation or the server build of the CLR, which is found in
mscorwks.dll and mscorsvr.dll. The shim process is triggered by the MSCOREE!ShellShim__CorExeMain method,
which can be explored by examining the stack trace of the CLR loading. You can use the following program to explore
how the CLR is triggered:
 
using System;
 
namespace CH_06
{
 class Program
 {
 static void Main(string[] args){}
 }
}
 

Chapter 6 ■ CLR Execution Model

122

Once this application is compiled into an assembly (CH_06.exe), using csc.exe, you load this assembly into
WinDbg to start debugging. You will be using these commands to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Now, you can use ~0 kn or !eestack –short, as both give the same result:
 
0:000> !eestack -short

Thread 0
Current frame: ntdll!KiFastSystemCallRet
ChildEBP RetAddr Caller, Callee
/* removed*/
002ffa14 71767f16 MSCOREE!ShellShim__CorExeMain+0x99
002ffa24 71764de3 MSCOREE!_CorExeMain_Exported+0x8, calling MSCOREE!ShellShim__CorExeMain
002ffa2c 76a21174 KERNEL32!BaseThreadInitThunk+0xe
002ffa38 774eb3f5 ntdll!__RtlUserThreadStart+0x70
002ffa78 774eb3c8 ntdll!_RtlUserThreadStart+0x1b, calling ntdll!__RtlUserThreadStart

Thread 2
 

–SHORT PARAMETER

The –short parameter limits the output to the following kinds of threads:

Threads that have taken a lock··

Threads that have been stalled to allow a garbage collection··

Threads that are currently in managed code··

The shim is a block of code that accepts a version number and other startup parameters from the host and starts
the CLR. Only one version of the shim exists on a given machine, and that version is installed on the machine’s default
search path (currently %windir%\system32). During the shim process the shim will call the mscoreei!_CorExeMain
method to ascertain the entry point of the assembly for starting the execution. Typically, the entry point is the Main
method for the executable assembly:
 
0:000> !u mscoree!ShellShim__CorExeMain
Unmanaged code
71767cef 8bff mov edi,edi
71767cf1 55 push ebp
71767cf2 8bec mov ebp,esp
71767cf4 51 push ecx
71767cf5 8365fc00 and dword ptr [ebp-4],0
71767cf9 8d45fc lea eax,[ebp-4]
71767cfc 50 push eax
71767cfd e83595ffff call MSCOREE!GetShimImpl (71761237)
71767d02 83f801 cmp eax,1
71767d05 0f84164c0000 je MSCOREE!ShellShim__CorExeMain+0x18 (7176c921)
 

Chapter 6 ■ CLR Execution Model

123

0:000> !u MSCOREE!ShellShim__CorExeMain+0x18
Unmanaged code
71767d07 16 push ss
71767d08 4c dec esp
71767d09 0000 add byte ptr [eax],al
71767d0b 83f803 cmp eax,3
71767d0e 0f84243a0000 je MSCOREE!ShellShim__CorExeMain+0x24 (7176b738)
71767d14 a194107a71 mov eax,dword ptr [MSCOREE!g_bShimImplDllUninitialized (717a1094)]
71767d19 85c0 test eax,eax
71767d1b 0f84074c0000 je MSCOREE!ShellShim__CorExeMain+0x34 (7176c928)
71767d21 e9fb4b0000 jmp MSCOREE!ShellShim__CorExeMain+0x18 (7176c921)
71767d26 85d2 test edx,edx
 

The shim is kept as small and straightforward as possible to ensure its compatibility with future versions of the CLR.
The startup shim ties the multiple versions of the CLR together. Specifically, the shim tracks which versions are installed
and is capable of finding the location on disk of a specific version of the CLR. Because of its role as arbitrator, the shim is
not installed side by side. Each machine has only one copy of mscoree.dll installed on %windir%\system32:
 
0:000> !address /f:IMAGE
....
Image [MSCOREE; "C:\Windows\SYSTEM32\MSCOREE.DLL"]
721c1000 72201000 40000 MEM_IMAGE MEM_COMMIT PAGE_EXECUTE_READ Image �[MSCOREE; "C:\Windows\

SYSTEM32\MSCOREE.DLL"]
72201000 72205000 4000 MEM_IMAGE MEM_COMMIT PAGE_READWRITE Image �[MSCOREE; "C:\Windows\

SYSTEM32\MSCOREE.DLL"]
72205000 7220a000 5000 MEM_IMAGE MEM_COMMIT PAGE_READONLY Image �[MSCOREE; "C:\Windows\

SYSTEM32\MSCOREE.DLL"]
.....
 

Requests to load the CLR come through the startup shim, which then directs each request to the version of the
CLR indicated. The shim decides where to look for these DLLs and which flavor to load based on a number of factors,
including registry settings and whether the user is on a uni- or multiprocessor machine. From there, other DLLs are
loaded as needed to execute the managed code. Forinstance, mscorjit.dll is used to compile IL to JIT (in the case of
non–native image generator [NGen] assemblies). The shim then calls the _CorExeMain method to determine the entry
point and start loading, as shown in the disassembled code of mscoree!ShellShim__CorExeMain+0x18 (7900c921):
 
*>�,&DoTheRelease<ICLRRuntimeInfo>,2>,0,&CompareDefault<ICLRRuntimeInfo *>,2>+0x30, calling
mscoreei!_EH_epilog3

0030fbec 5c66af00 clr!_CorExeMain+0x4e, calling clr!_CorExeMainInternal
0030fc24 716755ab mscoreei!_CorExeMain+0x38
0030fc30 716e7f16 MSCOREE!ShellShim__CorExeMain+0x99
0030fc40 716e4de3 MSCOREE!_CorExeMain_Exported+0x8, calling MSCOREE!ShellShim__CorExeMain
 

The CLR is now in charge, and it will start reading the executable to read the manifest, metadata, and IL code that
reside in the assembly and begin processing it from the managed entry point. As you have already seen, the assembly
that is trying to be executed contains the IL code, which is never executed by the processor, as it is stored as data.

Chapter 6 ■ CLR Execution Model

124

CLR Address Space
Before considering the CLR execution model, let’s quickly look at the address space allocation that occurs when
the CLR is loaded into memory. The address space is a range of virtual memory addresses that allow metadata,
types, and IL or native code mapped to it and other external assemblies to be mapped. If you examine the following
disassembled code of the mscoree!ShellShim__CorExeMain+0x18 (7900c921)method, you will see that it calls
mscoree!_imp__GetProcAddress to initialize the address space:
 
7900c92e 8b3518100079 mov esi,dword ptr [mscoree!_imp__GetProcAddress (79001018)]
 

Now, let’s perform a small experiment here, using the following C# program to explore address space:
 
using System;
 
namespace CH_06
{
 class Program
 {
 static void Main(string[] args) { }
 }
}
 

Once this application is compiled into an assembly (CH_06.exe), using csc.exe, you load this assembly into
WinDbg to start debugging. Use the following WinDbg command to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Before debugging the loaded assembly, set a breakpoint, using !bpmd at the Main method of this assembly, and
then continue with the execution, using g. Once the breakpoint, is hit, you study the MethodTable of the Program class
to determine the JIT status of the Main method, which is the entry point of this assembly:
 
0:000> !dumpmt -MD 00313804
EEClass: 003113ec
Module: 00312e9c
Name: CH_06.Program
mdToken: 02000002
File: J:\Book\C# Deconstructed\SourceCode\Chapters\CH_06\bin\Debug\CH_06.exe
BaseSize: 0xc
ComponentSize: 0x0
Slots in VTable: 6
Number of IFaces in IFaceMap: 0

MethodDesc Table
 Entry MethodDesc JIT Name
55faa7e0 55d84934 PreJIT System.Object.ToString()
55fae2e0 55d8493c PreJIT System.Object.Equals(System.Object)
55fae1f0 55d8495c PreJIT System.Object.GetHashCode()
56031600 55d84970 PreJIT System.Object.Finalize()
0031c015 003137fc NONE CH_06.Program..ctor()
00500070 003137f0 JIT CH_06.Program.Main(System.String[])
 

Chapter 6 ■ CLR Execution Model

125

The output demonstrates that the Main method has not yet been JIT compiled, but the CLR creates the
appropriate address space for allocating the different abstract memory regions.

Next, you examine the address space, using the WindDg tool to see how the CLR allocates address space to
initialize its virtual memory abstraction concept, such as AppDomain, Stack, or Heap. You will use the !address
command with different flags, such as summary, in the WinDbg tool to get the address space details:
 
0:000> !address -summary
 
--- Usage Summary ---------------- RgnCount ----------- Total Size -------- %ofBusy %ofTotal
Free 48 7a498000 (1.911 Gb) 95.54%
<unknown> 32 2105000 (33.020 Mb) 36.15% 1.61%
Image 139 1ee0000 (30.875 Mb) 33.80% 1.51%
MappedFile 12 13dc000 (19.859 Mb) 21.74% 0.97%
Stack 17 400000 (4.000 Mb) 4.38% 0.20%
Heap 20 260000 (2.375 Mb) 2.60% 0.12%
Other 9 132000 (1.195 Mb) 1.31% 0.06%
TEB 4 4000 (16.000 kb) 0.02% 0.00%
PEB 1 1000 (4.000 kb) 0.00% 0.00%
 

This shows the overall view of the different memory regions, such as Stack, Heap, and MappedFile, allocated by
the CLR. The !address command has different options that can be used to see the different regions of memory.
You will use the f flag with STACK, HEAP, PAGEHEAP, IMAGE, FILEMap, PEB, and TEB options to see how the address space
has been divided into these regions:
 
0:000> !address /f:STACK
 
BaseAddr EndAddr+1 RgnSize Type State Protect Usage
--
 80000 81000 1000 MEM_PRIVATE MEM_RESERVE Stack [~0; 88c.fc8]
 81000 179000 f8000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack [~0; 88c.fc8]
 179000 17b000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack [~0; 88c.fc8]
 17b000 180000 5000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack [~0; 88c.fc8]
 1530000 1531000 1000 MEM_PRIVATE MEM_RESERVE Stack [~1; 88c.ec4]
 1531000 162d000 fc000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack [~1; 88c.ec4]
 162d000 162f000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack [~1; 88c.ec4]
 162f000 1630000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack [~1; 88c.ec4]
 36b0000 36b1000 1000 MEM_PRIVATE MEM_RESERVE Stack [~2; 88c.640]
 36b1000 36b2000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack [~2; 88c.640]
 36b2000 36b4000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack [~2; 88c.640]
 36b4000 37ac000 f8000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack [~2; 88c.640]
 37ac000 37ae000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack [~2; 88c.640]
 37ae000 37b0000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack [~2; 88c.640]
 3b00000 3bfd000 fd000 MEM_PRIVATE MEM_RESERVE Stack [~3; 88c.f80]
 3bfd000 3bff000 2000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE|PAGE_GUARD Stack [~3; 88c.f80]
 3bff000 3c00000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Stack [~3; 88c.f80]
 
0:000> !address /f:HEAP
 

Chapter 6 ■ CLR Execution Model

126

BaseAddr EndAddr+1 RgnSize Type State Protect Usage

 10000 20000 10000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE Heap [ID: 1; Handle:

00010000; Type: Segment]
 20000 30000 10000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE Heap [ID: 2; Handle:

00020000; Type: Segment]
 210000 213000 3000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap [ID: 5; Handle:

00210000; Type: Segment]
 213000 220000 d000 MEM_PRIVATE MEM_RESERVE Heap [ID: 5; Handle:

00210000; Type: Segment]
 220000 221000 1000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READWRITE Heap [ID: 7; Handle:

00220000; Type: Segment]
 221000 260000 3f000 MEM_PRIVATE MEM_RESERVE Heap [ID: 7; Handle:

00220000; Type: Segment]
 350000 353000 3000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap [ID: 3; Handle:

00350000; Type: Segment]
 353000 360000 d000 MEM_PRIVATE MEM_RESERVE Heap [ID: 3; Handle:

00350000; Type: Segment]
 3e0000 3e3000 3000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap [ID: 8; Handle:

003e0000; Type: Segment]
 3e3000 3f0000 d000 MEM_PRIVATE MEM_RESERVE Heap [ID: 8; Handle:

003e0000; Type: Segment]
 430000 497000 67000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap [ID: 0; Handle:

00430000; Type: Segment]
 497000 530000 99000 MEM_PRIVATE MEM_RESERVE Heap [ID: 0; Handle:

00430000; Type: Segment]
 680000 683000 3000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE Heap [ID: 6; Handle:

00680000; Type: Segment]
 683000 690000 d000 MEM_PRIVATE MEM_RESERVE Heap [ID: 6; Handle:

00680000; Type: Segment]
 6c0000 6c1000 1000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READWRITE Heap [ID: 10; Handle:

006c0000; Type: Segment]
 6c1000 700000 3f000 MEM_PRIVATE MEM_RESERVE Heap [ID: 10; Handle:

006c0000; Type: Segment]
 720000 721000 1000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READWRITE Heap [ID: 4; Handle:

00720000; Type: Segment]
 721000 760000 3f000 MEM_PRIVATE MEM_RESERVE Heap [ID: 4; Handle:

00720000; Type: Segment]
 14b0000 14b1000 1000 MEM_PRIVATE MEM_COMMIT PAGE_EXECUTE_READWRITE Heap [ID: 9; Handle:

014b0000; Type: Segment]
 14b1000 14f0000 3f000 MEM_PRIVATE MEM_RESERVE Heap [ID: 9; Handle:

014b0000; Type: Segment]
 
0:000> !address /f:IMAGE
 

Chapter 6 ■ CLR Execution Model

127

BaseAddr EndAddr+1 RgnSize Type State Protect Usage
--
 260000 261000 1000 MEM_IMAGE MEM_COMMIT PAGE_READONLY Image [CH_04; "CH-04.exe"]
 261000 262000 1000 MEM_IMAGE MEM_RESERVE Image [CH_04; "CH-04.exe"]
 262000 263000 1000 MEM_IMAGE MEM_COMMIT PAGE_EXECUTE_READ Image [CH_04; "CH-04.exe"]
 263000 264000 1000 MEM_IMAGE MEM_RESERVE Image [CH_04; "CH-04.exe"]
 264000 265000 1000 MEM_IMAGE MEM_COMMIT PAGE_READONLY Image [CH_04; "CH-04.exe"]
 265000 266000 1000 MEM_IMAGE MEM_RESERVE Image [CH_04; "CH-04.exe"]
 266000 267000 1000 MEM_IMAGE MEM_COMMIT PAGE_READONLY Image [CH_04; "CH-04.exe"]
 267000 268000 1000 MEM_IMAGE MEM_RESERVE Image [CH_04; "CH-04.exe"]
55c30000 55c31000 1000 MEM_IMAGE MEM_COMMIT PAGE_READONLY Image [mscorlib_ni;
 
/*code removed*/
 
77d87000 77db0000 29000 MEM_IMAGE MEM_COMMIT PAGE_READONLY Image [ADVAPI32; "C:\Windows\
system32\ADVAPI32.dll"]
 
0:000> !address /f:FILEMap
 
BaseAddr EndAddr+1 RgnSize Type State Protect Usage

 18�0000 1e7000 67000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "\Device\

HarddiskVolume7\Windows\System32\locale.nls"
 1f0000 1f1000 1000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE MappedFile "PageFile"
 200000 210000 10000 MEM_MAPPED MEM_COMMIT PAGE_READWRITE MappedFile "PageFile"
 270000 275000 5000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "PageFile"
 275000 330000 bb000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
 330000 333000 3000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "PageFile"
 333000 338000 5000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
 760000 7f8000 98000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "PageFile"
 7f8000 1360000 b68000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
 37�b0000 3a7f000 2cf000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "\Device\

HarddiskVolume7\Windows\Globalization\Sorting\SortDefault.nls"
 3c�00000 3ed2000 2d2000 MEM_MAPPED MEM_COMMIT PAGE_READONLY MappedFile "\Device\

HarddiskVolume7\Windows\Microsoft.NET\Framework\v4.0.30319\sortdefault.nlp"
7f6f5000 7f7f0000 fb000 MEM_MAPPED MEM_RESERVE MappedFile "PageFile"
 
0:000> !address /f:PEB
 
BaseAddr EndAddr+1 RgnSize Type State Protect Usage

7ffdd000 7ffde000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE PEB [88c]
 
0:000> !address /f:TEB
 
BaseAddr EndAddr+1 RgnSize Type State Protect Usage
--
7ffdb000 7ffdc000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE TEB [~3; 88c.f80]
7ffdc000 7ffdd000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE TEB [~2; 88c.640]
7ffde000 7ffdf000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE TEB [~1; 88c.ec4]
7ffdf000 7ffe0000 1000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE TEB [~0; 88c.fc8]

Chapter 6 ■ CLR Execution Model

128

Class Loader in the CLR
When the CLR starts executing an assembly, it executes the contents of the assembly method by method, depending
on usage (e.g., if a method from an assembly is never called, it will never be JIT compiled). The CLR uses the threads
as the execution unit for executing methods via the OS. When the CLR creates the thread with the associated method,
that thread is scheduled by the OS’s scheduler to be executed by the OS based on the OS scheduling mechanism,
priority, and so on.

Any class from an assembly contains one (considering the default constructor) or more methods. All these
methods are either IL or native code (when compiled using ngen.exe) based. The assembly also contains the
metadata that define the types in the assembly, which are used by the class loader to load the appropriate IL code into
memory to define the type at runtime.

The class loader checks for certain consistency requirements that are vital to the .NET Framework security
enforcement mechanism. These checks constitute a minimal, mandatory verification process that precedes the IL
verification, which is more rigorous (although optional). In addition, the class loader supports security enforcement
by providing some of the credentials required for validating code identity. The CLR allows only one class loader—its
own. The .NET Framework does not support user-written class loaders.

Type-safe programs only reference memory that has been allocated for their use, and they access objects only
through their public interfaces. These two restrictions allow objects to safely share a single address space, and they
guarantee that security checks conducted by the objects’ interfaces are not circumvented. Code access security, the
CLR’s security mechanism, can effectively protect code from unauthorized access only if there is a way to verify that the
code is type safe. To meet this need, the CLR uses the information in type signatures to help determine whether MSIL
code is type safe. The CLR checks to see that the metadata are well formed, and it performs control flow analyses to
make sure that certain structural and behavioral conditions are met. The runtime declares that a program is successfully
verified only if it is type safe. Used in conjunction with the strong typing of metadata and MSIL, such checking can
ensure the type safety of programs written in MSIL. The .NET Framework requires code to be so checked before it is run,
unless a specific (administratively controlled) security check determines that the code can be fully trusted.

Locating the Main Entry Point
When the CLR loads an assembly to execute for the first time, it requires that the main entry point (usually the Main
method) of that assembly be located. The class loader will locate the class that contains the entry point and load that into
the memory. If you look at the stack trace of the CLR while debugging, using WinDbg, you will find that the Class loader
from the CLR will execute the RunMain method to execute the Main method from current running assembly. The following
stack trace was captured while debugging the previous listing, using WinDbg, to show how the CLR calls RunMain method:
 
0:000> !eestack -short

Thread 0
Current frame: ntdll!KiFastSystemCallRet
ChildEBP RetAddr Caller, Callee
002fe3a4 774d507c ntdll!ZwMapViewOfSection+0xc
 
/*removed*/
 
002ff080 587cce82 clr!ClassLoader::RunMain+0x24c, calling clr!MethodDescCallSite::CallWithValueTypes
002ff180 586ee30a clr!MethodDesc::GetSigFromMetadata+0x21
002ff1e4 587ccf90 clr!Assembly::ExecuteMainMethod+0xc1, calling clr!ClassLoader::RunMain
 
/*removed*/

Thread 2
 

Chapter 6 ■ CLR Execution Model

129

The class loader performs its function the first time a type has been referenced. The class loader loads .NET
classes into memory and prepares them for execution. Before it can successfully do this, however, it must locate
the target class. To ascertain the target class, the class loader looks in different places, including the application
configuration file (.config) in the current directory, the global assembly cache (GAC), and the metadata that are
part of the PE file, specifically the manifest. The information that is provided by one or more of these items is crucial
for locating the correct target class. Recall that a class can be scoped to a particular namespace, a namespace can
be scoped to a particular assembly, and an assembly can be scoped to a specific version. Given this, two classes,
both named Car, are treated as different types, even if the version information of their assemblies is the same. Once
the class loader has found and loaded the target class, it caches the type information for the class so that it does not
have to load the class again for the duration of this process. By caching this information, the class loader will later
determine how much memory has to be allocated for the newly created instance of this class.

Stub Code for the Classes
Once the target class is loaded, the class loader injects a small stub, such as a function prologue, into every method of
the loaded class.

This stub is used for two purposes: to denote the status of the JIT compilation and to transition between managed
and unmanaged code.

At this point, if the loaded class references other types, and those referenced types have already been loaded,
the class loader will do nothing; otherwise, the it will try to load the referenced types. As Figure 6-5 demonstrates,
the class loader loads the type-related information, such as IL code and metadata, into memory; maps it to virtual
memory; and sets it to a state that can be used by the CLR to start JIT compilation when needed during execution.

Figure 6-5.  Class loader

Chapter 6 ■ CLR Execution Model

130

Finally, the class loader uses the appropriate metadata to initialize the static variables and instantiate an object
of the loaded class.

Verification
Type verification is done at runtime; after the class loader has loaded a class and before a piece of IL code can execute,
the verifier starts searching for code that must be verified. By verifying type safety at runtime, the CLR can prevent the
execution of code that is not type safe and ensure that the code is used as intended and not illegally. In short, type
safety means more reliability. Let’s discuss where the verifier fits within the CLR.

The verifier is responsible for verifying that

The metadata are well formed (i.e., valid)•	

The IL code is type safe (i.e., the type signatures are used correctly)•	

Both of these criteria must be met before the code can be executed, because JIT compilation will take place only
when code and metadata have been successfully verified.

In addition to checking for type safety, the verifier also performs control-flow analysis of the code to ensure
that it is using types correctly. You should note that because the verifier is a part of the JIT compiler, it kicks in only
when a method is being invoked, not when a class or assembly is loaded. You should note as well that verification
is an optional step, as trusted code will never be verified, but will be immediately directed to the JIT compiler for
compilation (more details about the verification algorithm can be found in the ECMA C# specification IL, which is
available on the ECMA web site [http://www.ecma-international.org/publications/standards/Ecma-335.htm]).

Conclusion
The CLR executes any application written using a .NET language. The compiled code of an application resides in the
assembly as IL code, unless the assembly is precompiled. To be executed by the CLR virtual execution environment,
the IL code residing in the assembly must be JIT compiled into the native code. To accomplish this, the CLR uses
the JIT compiler, compiling the IL code into the native code at runtime. In the next chapter, you will learn about JIT
compilation, including how it takes place in the virtual execution environment during execution of the assembly.
You will be using the tool WinDbg to explore this.

Further Reading
Box, Don. Essential .NET: The Common Language Runtime. Vol. 1. Boston: Addison-Wesley, 2003.
Hewardt, Mario. Advanced .NET Debugging. Upper Saddle River, NJ: Addison-Wesley, 2010.
Miller, James S., and Susann Ragsdale. The Common Language Infrastructure Annotated Standard. Boston:

Addison-Wesley, 2004.
Richter, Jeffrey. CLR via C#, Second Edition. Redmond, WA: Microsoft, 2006.

http://www.ecma-international.org/publications/standards/Ecma-335.htm

131

Chapter 7

CLR Execution Model II

The CLR execution model contains different components for implementation. As you saw in Chapter 6, the assembly
loader of the CLR is used to load the assembly, which contains the IL code and metadata for the application that is
executing the CLR. The class loader component loads any type defined in the application assembly or external types
that reside in other assemblies. When the types are laid out in the memory, the execution engine can execute the
code of that assembly. But, as mentioned earlier, the IL code is not directly executable by the CPU but rather requires
compiling into native code. The CLR component piece that does this is called the JIT compiler. In this chapter, you will
learn about the JIT compiler.

JIT Compilation
The execution engine is the critical component of the CLR that uses the JIT compiler to compile the CIL code into
native code. How and when the CIL code is compiled into native code are not specified as part of the standard,
and those determinations rest with the implementation of the CLR, but all goes on demand.

There are many advantages to JIT compilation, among the most important being code optimization and
portability. The JIT compiler can dynamically compile code that is optimized for the target machine. For example, if
you take a .NET assembly from a single processor–based machine to a multiprocessor–based machine, the JIT compiler
on the latter knows about the multi-processor and may be able to spit out native code that takes advantage of it.

Method Stub of a Type
Each CTS type contains a method table to hold all the methods defined by that type. The method table of a type includes
all the methods that have been inherited from its base class as well as its own defined methods. To explore this, let’s
look at the following, simple example, in which the WinDbg tool is used to display the method table of the Program class:
 
using System;
 
namespace CH_07
{
 class Program
 {
 static void Main(string[] args)
 {
 Book book = new Book();
 book.Print();
 Console.ReadLine();
 }
 }

Chapter 7 ■ CLR Execution Model II

132

 public class Book
 {
 public void Print()
 {
 Console.WriteLine(ToString());
 }
 }
}
 

The Program class has only the Main method on its own, but this class inherited three other methods from its
base class, object. When this application is compiled into an assembly (CH_07.exe), using csc.exe, then you load
this assembly into WinDbg to start debugging. You will be using the following WinDbg command to initialize the
debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

After initializing the session, execute the !dumpMT command, along with the -MD option, to display a list of all the
methods defined by the object type. To do this, you need to get the relevant method table address of the Program
class, which can be extracted, using the!name2ee command, by providing the assembly name and class name as
parameters, as show:
 
0:000> !name2ee CH_07.exe CH_07.Program
Module: 00462e9c
Assembly: CH_07.exe
Token: 02000002
MethodTable: 00463814
EEClass: 00461418
Name: CH_07.Program
 

Now, you can use the MethodTable address, along with the !dumpmt command, to examine the method table of
the Program class. From the output of the !dumpMT command, you can see that the Program class has defined the Main
method and the default constructor, .ctor. Neither method has been JIT compiled yet, but the methods the Program
class inherited from the object class have been (see the output marked "PreJIT"):
 
0:000> !dumpmt -MD 00463814
 
/*removed*/
 
MethodDesc Table
 Entry MethodDesc JIT Name
 
/*Following method inherited by the Object class*/
55faa7e0 55d84934 PreJIT System.Object.ToString()
55fae2e0 55d8493c PreJIT System.Object.Equals(System.Object)
55fae1f0 55d8495c PreJIT System.Object.GetHashCode()
56031600 55d84970 PreJIT System.Object.Finalize()
 

Chapter 7 ■ CLR Execution Model II

133

/*Following method defined by the Program class*/
0046c015 0046380c NONE CH_07.Program..ctor()
0046c011 00463800 NONE CH_07.Program.Main(System.String[])
 

The CLR allocates a block of memory for each of the methods of a type. This block of memory contains
information about the method, including its code. The code block holds a pointer to a memory address that points
to another memory region. This memory region contains the implementation code for that method and is known as
a slot for that type. The collection of slots for a single type is called its virtual table (vtable). All vtable slots have an
instruction to a method prestub to tell the CLR to JIT compile as needed.

In a .NET application, three kinds of JIT compilation status are used to control the JIT compilation:

PreJIT: In the PreJIT state the IL code has been compiled into native code before the assembly •	
is executed by the CLR.

JIT: The JIT compiler compiles the IL code and stores it on the code heap. After the JIT •	
compilation the JIT compiler updates the memory location with the address of the method for
which the JIT compiler has been triggered.

NONE: In this state the IL code has not been compiled into native code, but each of the •	
methods that has a status of NONE has a method prestub that calls the JIT compiler.

To understand how these three options control and maintain the JIT compilation process in .NET, first you
need to learn how the JIT compiler compiles. In the following sections you will use the same debugging session you
employed previously to advance your understanding of the JIT compilation process.

JIT-Compiled Status: NONE
At runtime if the status of the method of a type is set to NONE, that method must be JIT compiled. It is important that
the CLR is aware of such methods. In the class-loading step the class loader adds a piece of code known as the stub
code to each of the methods that has not yet been JIT compiled, or that has a JIT status of NONE. To find these methods,
you will set a break point at the Main method and let the execution continue for the previous debugging session, using
the g command:
 
!bpmd CH_07.exe CH_07.Program.Main
g
 

Note that this method already has IL code, so do not confuse the two. The IL code is produced at the front-end
compile time by the C# compiler, which embeds the IL code into the assembly. You can use the !dumpmt command
to learn the method description address for each of the methods for the Book class:
 
0:000> !name2ee CH_07.exe CH_07.Book
Module: 00462e9c
Assembly: CH_07.exe
Token: 02000003
MethodTable: 00463880
EEClass: 00461484
Name: CH_07.Book
 
0:000> !dumpmt -MD 00463880
EEClass: 00461484
Module: 00462e9c
Name: CH_07.Book
mdToken: 02000003

Chapter 7 ■ CLR Execution Model II

134

File: J:\Book\C# Deconstructed\SourceCode\Chapters\CH_07\bin\Debug\CH_07.exe
BaseSize: 0xc
ComponentSize: 0x0
Slots in VTable: 6
Number of IFaces in IFaceMap: 0

MethodDesc Table
 Entry MethodDesc JIT Name
55faa7e0 55d84934 PreJIT System.Object.ToString()
55fae2e0 55d8493c PreJIT System.Object.Equals(System.Object)
55fae1f0 55d8495c PreJIT System.Object.GetHashCode()
56031600 55d84970 PreJIT System.Object.Finalize()
 
0046c041 00463878 NONE CH_07.Book..ctor()
0046c03d 0046386c NONE CH_07.Book.Print()
 

Now, the !dumpil command will show the relevant IL code for the relevant method:
 
!dumpil 55d84934
!dumpil 55d8493c
!dumpil 51dc495c
!dumpil 55d84970
!dumpil 00463878
!dumpil 0046386c
 

The IL output is as follows:
 
0:000> !dumpil 55d84934
ilAddr = 5749ba8a
IL_0000: ldarg.0
/*removed*/
 
0:000> !dumpil 55d8493c
ilAddr = 5749ba97
IL_0000: ldarg.0
/*removed*/
 
0:000> !dumpil 51dc495c
ilAddr = 5749baa6
IL_0000: ldarg.0
/*removed*/
 
0:000> !dumpil 55d84970
ilAddr = 5749ba88
IL_0000: ret
 
0:000> !dumpil 00463878
ilAddr = 00182070
/*removed*/
IL_0006: ret
 

Chapter 7 ■ CLR Execution Model II

135

0:000> !dumpil 0046386c
ilAddr = 00182050
IL_0000: nop
/*removed*/
 

In addition, each of the methods with a JIT status of NONE will point to a memory block that contains a method
call to the PrestubMethodFrame method. If you study this method, you will find that it contains jmp instructions (in
each slot for the type) to jump into a shared piece of code, called the PreJIT stub. This stub is responsible for invoking
the JIT compiler (which resides in mscorjit.dll) to generate native code for the method from which it has been
called. To see how the PreJIT stub calls the PrestubMethodFrame, you can disassemble all the methods from the
method table, using the !u command:
 
!u 0034c041
!u 0034c03d
 
0:000> !u 0034c041
Unmanaged code
/*removed*/
001ac024 e927480400 jmp 00ae0850
/*removed*/
 
0:000> !u 0046c03d
Unmanaged code
/*removed*/
001ac024 e927480400 jmp 0046c045
/*removed*/
 
!u 00ae0850
!u 0046c045
  
0:000> !u 00ae0850
Unmanaged code
001f0850 50 push eax
001f0851 52 push edx
001f0852 682037fe57 push offset clr!PrestubMethodFrame::`vftable' (57fe3720)
/*removed*/
 
0:000> !u 0046c045
Unmanaged code
001f0850 50 push eax
001f0851 52 push edx
001f0852 682037fe57 push offset clr!PrestubMethodFrame::`vftable' (57fe3720)
/*removed*/
 

Figure 7-1 demonstrates the JIT compilation for those methods with a JIT status of NONE.

Chapter 7 ■ CLR Execution Model II

136

At a later time, those methods that have a JIT status of NONE will be JIT compiled into native code by the JIT compiler.
When the JIT compiler compiles these methods, it produces the native code, stores the compiled native code in the code
Heap region of the memory, and then updates the stub code for the methods to point to this memory location.

Figure 7-1.  JIT compilation status: None

Chapter 7 ■ CLR Execution Model II

137

JIT-Compiled Status: JIT
All slots that have already been JIT compiled contain an unconditional jmp to the target JIT-compiled code in
their instruction section. Having a jmp in the slot enables fast execution of calls, with the overhead of only a single
jmp instruction. To explore this, run the following command, using the WinDbg tool:
 
0:000> !bpmd CH_07.exe CH_07.Book.Print
0:000> g
 
0:000> !dumpmt -MD 00463880
EEClass: 00461484
Module: 00462e9c
Name: CH_07.Book
mdToken: 02000003
File: J:\Book\C# Deconstructed\SourceCode\Chapters\CH_07\bin\Debug\CH_07.exe
BaseSize: 0xc
ComponentSize: 0x0
Slots in VTable: 6
Number of IFaces in IFaceMap: 0

MethodDesc Table
 Entry MethodDesc JIT Name
55faa7e0 55d84934 PreJIT System.Object.ToString()
55fae2e0 55d8493c PreJIT System.Object.Equals(System.Object)
55fae1f0 55d8495c PreJIT System.Object.GetHashCode()
56031600 55d84970 PreJIT System.Object.Finalize()
 
006700d0 00463878 JIT CH_07.Book..ctor()
00670110 0046386c JIT CH_07.Book.Print()
 

As you can see, those methods that had a JIT status of NONE are compiled, and their status is updated to JIT.
Next, by disassembling these methods, you will find that each of these methods jumps to a memory location

where the JIT compiler has stored the compiled native code:
 
u 006700d0
u 00670110
 
0:000> u 006700d0
006700d0 55 push ebp
006700d1 8bec mov ebp,esp
006700d3 50 push eax
006700d4 894dfc mov dword ptr [ebp-4],ecx
006700d7 833d3c31460000 cmp dword ptr ds:[46313Ch],0
006700de 7405 je 006700e5
006700e0 e86a5a7956 call clr!JIT_DbgIsJustMyCode (56e05b4f)
006700e5 8b4dfc mov ecx,dword ptr [ebp-4]
 

Chapter 7 ■ CLR Execution Model II

138

0:000> u 00670110
00670110 55 push ebp
00670111 8bec mov ebp,esp
00670113 83ec08 sub esp,8
00670116 894dfc mov dword ptr [ebp-4],ecx
00670119 833d3c31460000 cmp dword ptr ds:[46313Ch],0
00670120 7405 je 00670127
00670122 e8285a7956 call clr!JIT_DbgIsJustMyCode (56e05b4f)
00670127 90 nop
 

From the this disassembled code, if you look at the instruction details of the memory addresses 006700e5 and
00670127, you will see that they are pointing to the JIT-compiled native code:
 
0:000> u 006700e5
004700ea 8b4dfc mov ecx,dword ptr [ebp-4]
004700ed e88e6df956 call mscorlib_ni+0x2b6e80 (57406e80)
/*removed*/
 
0:000> u 00670127
00470135 90 nop
00470136 8b45fc mov eax,dword ptr [ebp-4]
00470139 8b4804 mov ecx,dword ptr [eax+4]
0047013c e86b6ff356 call mscorlib_ni+0x2570ac (573a70ac)
/*removed*/
 

Here is more explicit code:
 
0:000> !u 006700e5
Normal JIT generated code
CH_07.Book..ctor()
Begin 006700d0, size 22
006700d0 55
/*removed*/
004700ed e88e6df956 call mscorlib_ni+0x2b6e80 (57406e80) (System.Object..ctor(), mdToken: 06000001)
/*removed*/
 
0:000> !u 00670127
Normal JIT generated code
CH_07.Book.Print()
Begin 00670110, size 33
 
/*removed*/
0047013c e86b6ff356 call mscorlib_ni+0x2570ac (573a70ac) (System.Console.WriteLine(System.String),
mdToken: 06000919)
/*removed*/
 

Figure 7-2 demonstrates the JIT compilation for those methods that have a JIT status of JIT. The JIT-compiled
methods point to the memory location, which is simply the address of the memory section that contains the native
code for the method.

Chapter 7 ■ CLR Execution Model II

139

Figure 7-2.  JIT compilation status: JIT

Chapter 7 ■ CLR Execution Model II

140

JIT-Compiled Status: PreJIT
As mentioned earlier, PreJIT status is accorded to those methods that have already been compiled by other tools,
such as ngen.exe, and that do not require JIT compilation at runtime. The following output reveals the PreJIT status
of the inherited methodsis:
 
0:000> !name2ee CH_07.exe CH_07.Program
/*removed*/
MethodTable: 00463814
/*removed*/
 
0:000> !dumpmt -MD 00463814
/*removed*/
MethodDesc Table
 Entry MethodDesc JIT Name
55faa7e0 55d84934 PreJIT System.Object.ToString()
55fae2e0 55d8493c PreJIT System.Object.Equals(System.Object)
55fae1f0 55d8495c PreJIT System.Object.GetHashCode()
56031600 55d84970 PreJIT System.Object.Finalize()
/*removed*/
 

These PreJIT methods have been compiled earlier. The assembly was then loaded into the memory by the tool
ngen.exe. This tool generates native code and embeds it into the assembly. At runtime the class loader loads the native
code and stores it on the memory heap, from where it can be accessed. Figure 7-3 illustrates the methods that have a
status of PreJIT. The native code for these methods does not call the JIT compiler, but it contains direct native code.

Chapter 7 ■ CLR Execution Model II

141

You can explore further by examining this code:
 
u 55d84934
u 55d8493c
u 55d8495c
u 55d84970 
 

Figure 7-3.  JIT compilation status: PreJIT

Chapter 7 ■ CLR Execution Model II

142

0:000> u 55d84934
mscorlib_ni+0x4934:
55d84934 0200 add al,byte ptr [eax]
55d84936 1d11003800 sbb eax,380011h
55d8493b 0003 add byte ptr [ebx],al
55d8493d 001f add byte ptr [edi],bl
55d8493f 1101 adc dword ptr [ecx],eax
55d84941 b400 mov ah,0
55d84943 000400 add byte ptr [eax+eax],al
55d84946 21510a and dword ptr [ecx+0Ah],edx
 
0:000> u 55d8493c
mscorlib_ni+0x493c:
55d8493c 0300 add eax,dword ptr [eax]
55d8493e 1f pop ds
55d8493f 1101 adc dword ptr [ecx],eax
55d84941 b400 mov ah,0
55d84943 000400 add byte ptr [eax+eax],al
55d84946 21510a and dword ptr [ecx+0Ah],edx
55d84949 b420 mov ah,20h
55d8494b 2014b7 and byte ptr [edi+esi*4],dl
 
0:000> u 55d8495c
mscorlib_ni+0x495c:
55d8495c 06 push es
55d8495d 0027 add byte ptr [edi],ah
55d8495f 1102 adc dword ptr [edx],eax
55d84961 b000 mov al,0
55d84963 0007 add byte ptr [edi],al
55d84965 0029 add byte ptr [ecx],ch
55d84967 3305dc012001 xor eax,dword ptr ds:[12001DCh]
55d8496d 005000 add byte ptr [eax],dl
 
0:000> u 55d84970
mscorlib_ni+0x4970:
55d84970 0800 or byte ptr [eax],al
55d84972 2c11 sub al,11h
55d84974 035c0000 add ebx,dword ptr [eax+eax]
55d84978 0900 or dword ptr [eax],eax
55d8497a 2e3306 xor eax,dword ptr cs:[esi]
55d8497d d801 fadd dword ptr [ecx]
55d8497f 200400 and byte ptr [eax+eax],al
55d84982 50 push eax
 

None of the native code shown calls the JIT compiler, as the code has already been compiled.
Unfortunately, the CLR JIT compiler has to lose some intelligence in favor of code generation speed. Remember,

the JIT compiler is actually compiling your code as the application runs, so producing code that executes fast is not
always as important as producing code fast that executes.

Chapter 7 ■ CLR Execution Model II

143

How Many Times a Method Is JIT Compiled
During the subsequent invocations of the same method, no JIT compilation is needed, because each time the CLR
reads the information in the stub, it sees the address of the native method. The JIT compiler performs its trick the first
time a method is invoked. If the method is never required at runtime, it will never be JIT compiled. The compiled
native code stays in memory until the process shuts down and the GC clears off all references and memory associated
with the process.

In Chapter 6, you looked at how the CLR uses the assembly loader to load an assembly into memory, the class
loader component of the CLR to load requested class into memory, and the JIT compiler to compile managed code
into native code as required.

As discussed previously, the CLR executes an assembly method by method. Whenever the CLR executes a
method, it will use a mechanism to maintain the current state of the method and move to execute the calling method.
With the calling method the CLR will also maintain method state, and in this method state will be information to
return to the point from which it has been called. When it finishes execution of the calling method, the CLR will return
to the called method and resume its execution. In the following section, you will study the method state and how the
CLR handles it while executing a method.

Execution State of the CLR
The CLR is responsible for choosing the best way to call a method, lay out the stack, and maintain the method state.
The CLR achieves this abstraction by implementing a mechanism to maintain the global state and method state while
executing a .NET application.

The CLR maintains the method state by introducing a linked list of method states known as a thread of control.
When the CLR creates a new method state, it is linked to the current method state.

The method state describes the environment in which a method executes (in conventional compiler terminology
the method state corresponds to a superset of the information captured in the invocation stack frame). The .NET
Framework method state consists of the following items:

Instruction pointer (IP): This is used to store the next IL instruction to be executed.•	

Evaluation stack: The CLR uses nonaddressable memory block upon method execution. •	
This block of memory is preserved during other method calls from the currently
executing method.

Local variable array (starting at index 0): During method execution all the local variables •	
employed in the method use this area to preserve their values.

Argument array (starting at index 0): This is used to store the values of the current method’s •	
incoming arguments.

•	 methodInfo handle: This contains read-only information about the method. In particular, the
methodInfo handle holds the signature of the method, the types of its local variables, and data
about its exception handlers.

Local memory pool: The CLR uses addressable memory from the local memory pool for •	
dynamic object allocation and reclaimes memory pool upon method context termination.

Return state handle: During method switching the CLR uses this mechanism to store the •	
current context information of the executing method; set up the new method state of the
calling method; and, upon return, restore the previously stored method state.

Security descriptor: This is used by the .NET Framework security system to record •	
security override.

Chapter 7 ■ CLR Execution Model II

144

Figure 7-4 illustrates the machine state model, which includes threads of control, method states, and multiple
heaps in a shared address space. The method state is an abstraction of the stack frame. Arguments and local variables
are part of the method state, but they can contain object references that refer to data stored in any of the managed
heaps. The method state is laid out, using the concept of the Stack by allocated address space. The CLR allocates this
address space from the address space used for the current process.

Figure 7-4.  Managing the CLR execution state

Chapter 7 ■ CLR Execution Model II

145

Let’s look at CLR method state usage, using the following source code:
 
using System;
 
namespace CH_07
{
 class Program
 {
 static void Main(string[] args){}
 }
}
 

Once this application is compiled into an assembly (CH_07.exe), using csc.exe, you load the assembly into
WinDbg to start debugging. You will be using the following WinDbg command to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

Once the application is compiled into App.exe, using csc.exe, and loaded via WinDbg, you are ready to perform
a new experiment to explore how threads and method state are generated. By inputting the ~* command, you will see
the list of threads this assembly is using at runtime:
 
0:000> ~*
. 0 Id: 15b8.1564 Suspend: 1 Teb: 7ffdf000 Unfrozen
 Start: mscoree!_CorExeMain_Exported (79004ddb)
 Priority: 0 Priority class: 32 Affinity: 1
 1 Id: 15b8.110 Suspend: 1 Teb: 7ffde000 Unfrozen
 Start: clr!DebuggerRCThread::ThreadProcStatic (7929d0f4)
 Priority: 0 Priority class: 32 Affinity: 1
 2 Id: 15b8.16b8 Suspend: 1 Teb: 7ffdd000 Unfrozen
 Start: clr!Thread::intermediateThreadProc (792464f8)
 Priority: 2 Priority class: 32 Affinity: 1 

Note■■  T he first line of this output, 0, is the decimal thread number, 4DC is the hexadecimal process ID, 470 is the
hexadecimal thread ID, 0x7FFDE000 is the address of the TEB, and Unfrozen is the thread status. The period (.) before
thread 1 means that this thread is the current thread. The number sign (#) before thread 2 means that this thread was the
one that originally caused the exception or that it was active when the debugger attached to the process.

Chapter 7 ■ CLR Execution Model II

146

This output shows that a few threads were created to execute this application. Each of these threads has an
associated frame. So, thread 15b8 will create a MethodState frame and execute the different methods Let’s look at an
example that explains the behavior of the method state used by the CLR to handle the execution of an application:
 
using System;
 
namespace Ch_07
{
 class Program
 {
 static void Main(string[] args)
 {
 ClassTest ct = new ClassTest();
 ct.One();
 }
 }
 
 public class ClassTest
 {
 public void One() {
 Console.WriteLine("Hello World");
 }
 public void Two() { }
 public void Three() { }
 }
}
 

Once this application is compiled into an assembly (CH_07.exe), you load the assembly into WinDbg to start
debugging. You will be using the following WinDbg command to initialize the debugging session:
 
0:000> sxe ld clrjit
0:000> g
0:000> .loadby sos clr
0:000> .load C:\Windows\Microsoft.NET\Framework\v4.0.30319\sos.dll
 

When a C# application is executed by the CLR, the CLR uses the concept of the stack frame. With each method
call the CLR creates a frame and stores on the stack frame:
 
!bpmd Ch_07.exe Ch_07.Program.Main
!bpmd Ch_07.exe Ch_07.ClassTest.One
g
 

During execution of the previous program, when the CLR executes method One, by calling it from the Main
method, the CLR creates an activation frame for each of the method calls. The CLR maintains the method state for each
method call. For example, when the CLR calls the Main method from the clr!CallDescrWorker+0x33 method, it creates
an activation frame for storing the method state for the clr!CallDescrWorker+0x33 method so that it can be resume
the clr!CallDescrWorker+0x33 execution when the Main method finishes its execution by restoring the previous state.

Chapter 7 ■ CLR Execution Model II

147

The CLR uses the same technique for a process from start to finish. The following !for_each_frame command output
demonstrates how the CLR maintains the state of the method call from the beginning of the execution:
 
0:000> !for_each_frame r
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
00 0014f170 005000b4 0x500110
eax=0044386c ebx=00000000 ecx=0198b684 edx=003278e8 esi=003278e8 edi=0014f1b0
eip=00500110 esp=0014f174 ebp=0014f184 iopl=0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000212
00500110 55 push ebp
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
01 0014f184 60db21db 0x5000b4
eax=0044386c ebx=00000000 ecx=0198b684 edx=003278e8 esi=003278e8 edi=0014f1b0
eip=00500110 esp=0014f174 ebp=0014f184 iopl=0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000212
00500110 55 push ebp
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
02 0014f194 60dd4a2a clr!CallDescrWorker+0x33
eax=0044386c ebx=00000000 ecx=0198b684 edx=003278e8 esi=003278e8 edi=0014f1b0
eip=00500110 esp=0014f174 ebp=0014f184 iopl=0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000212
00500110 55 push ebp
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
03 0014f210 60dd4bcc clr!CallDescrWorkerWithHandler+0x8e
eax=0044386c ebx=00000000 ecx=0198b684 edx=003278e8 esi=003278e8 edi=0014f1b0
eip=00500110 esp=0014f174 ebp=0014f184 iopl=0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000212
00500110 55 push ebp
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/* code removed*/
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
00 0014f170 005000b4 0x500110
 

From the prior output you can see that upon calling the clr!CallDescrWorkerWithHandler+0x8e method, the
CLR stores the method state at the activation frame number 03, as well as the return address (60dd4bcc), so that when
it finishes with the clr!CallDescrWorkerWithHandler+0x8e method, it can return to the place from which it has been
called (60dd4bcc). Similarly, clr!CallDescrWorker+0x33 returns to 60dd4a2a, the Main method (located in region of
the address 0x5000b4) also stores the return address 60db21db on its activation frame, and, finally, the One method of
the TestClass class (which is located in the region of 0x500110) stores the return address 005000b4.

!FOR_EACH_FRAME

To get native code and see where it is being called from and where it will return to, you can use the following code:
 

!for_each_frame .echo [${@#ReturnAddress}] [${@#SymbolName}] [${@#SymbolAddress}]
!for_each_frame -? 

Chapter 7 ■ CLR Execution Model II

148

As mentioned earlier, the One method (0x500110) returns to 005000b4, so if you look at the disassembled code of
the One method; you will see that when it finishes its execution, it returns to the 005000b4 address:
 
0:000> !u 0x500110
Normal JIT generated code
Ch_07.ClassTest.One()
Begin 00500110, size 27
 
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_07\Program.cs @ 17:
>>>00500110 55 push ebp
00500111 8bec mov ebp,esp
00500113 50 push eax
 
/* code removed*/
 
00500136 c3 ret
 

Likewise, the One (0x500110) method is called just before the 005000b4 address, so if you disassemble the native
code located near the 005000b4-10 address, you can determine whether the method residing in the region of the
address 0x500110 has been called from this method to reside near 005000b4:

The address 005000b4 resides in the Main method of the Program class, as shown in the following disassembled code:
 
0:000> !u 005000b4-10
Normal JIT generated code
Ch_07.Program.Main(System.String[])
Begin 00500070, size 4a
 
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_07\Program.cs @ 8:
00500070 55 push ebp
00500071 8bec mov ebp,esp
00500073 83ec0c sub esp,0Ch
 
/* code removed*/
 
005000ae ff1574384400 call dword ptr ds:[443874h] (Ch_07.ClassTest.One(), mdToken: 06000003)
005000b4 90 nop
 
J:\Book\C# Deconstructed\SourceCode\Chapters\CH_07\Program.cs @ 11:
005000b5 90 nop
005000b6 8be5 mov esp,ebp
005000b8 5d pop ebp
005000b9 c3 ret
 

As you can see, at the offset 005000ae, the One method from the ClassTest has been called, and the address
005000b4 follows the method call. From the !for_each_frame output, the address 005000b4 is used as the return
address for the frame 00, allocated for the One (0x500110) method.

Chapter 7 ■ CLR Execution Model II

149

The same technique has been used for the Main method. Looking at the disassembled code of the method
residing in the 60db21db address, you will find that the Main method has been called at the offset 60db21d8 and uses
the offset 60db21db as the return address when the CLR finishes with the Main method:
 
0:000> !u 60db21db-10
Unmanaged code
60db21cb ff30 push dword ptr [eax]
 
/* code removed*/
 
60db21d8 ff5518 call dword ptr [ebp+18h]
 
60db21db 8b4d14 mov ecx,dword ptr [ebp+14h]
 
60db21de 83f904 cmp ecx,4
60db21e1 7407 je clr!CallDescrWorker+0x42 (60db21ea)
 

The same is true of the clr!CallDescrWorker+0x33 method call, in which the frame 02 is allocated when the
clr!CallDescrWorker+0x33 method is called, as shown in the following disassembled code:
 
0:000> !u 60dd4a2a-10
Unmanaged code
60dd4a1a 7514 jne clr!CallDescrWorkerWithHandler+0x94 (60dd4a30)
/* code removed*/
60dd4a25 e87ed7fdff call clr!CallDescrWorker (60db21a8)
 
60dd4a2a 8945c8 mov dword ptr [ebp-38h],eax
 
60dd4a2d 8955cc mov dword ptr [ebp-34h],edx
60dd4a30 897de0 mov dword ptr [ebp-20h],edi
60dd4a33 8b55e0 mov edx,dword ptr [ebp-20h]
60dd4a36 8b12 mov edx,dword ptr [edx]
 

As Figure 7-5 illustrates, the clr!CallDescrWorkerWithHandler+0x8e method calls the
clr!CallDescrWorker+0x33 method, which calls the Main method, and the Main method calls the One method from
the TestClass. With each of these calls, the CLR maintains the method state to store the current state of the executing
method so that when it finishes with the calling method, it can resume with the callee method.

Chapter 7 ■ CLR Execution Model II

150

Note that I have described the four areas of the method state—incoming arguments array, local variables array,
local memory pool, and evaluation stack—as if they were logically distinct areas. This is important, because it is a
specification of the CLR architecture. However, in practice, the CLR may actually map these areas in one contiguous
array of memory, held as a conventional stack frame on the underlying, target architecture.

Figure 7-5.  CLR activation frame while executing methods

Chapter 7 ■ CLR Execution Model II

151

Conclusion
We have come to the end of the book. In it, you have explored the basic structure of the computer system, such as
what computer architecture is and how the CPU works to execute instructions. In Chapter 1, you learned about the
the OS and how it manages the underlying hardware to provide application interfaces that allow the application
developer to write applications. In Chapter 2, you were introduced to the concept of programming language.
Because of the various platform issues, an application built for one system will not execute on a different platform;
this gave rise to the need for the virtual machine. This concept is used in programming language to implement a
virtual execution environment, such as the CLR. In Chapter 3, you discovered that the CLR understands IL code
and metadata while executing a .NET application. To package these and have them executed by the CLR, there is a
standard mechanism called the assembly. In Chapters 4 and 5 you examined memory, as this is the place where your
application stays while being executed by the CLR. In Chapters 6 and 7, you considered CLR execution, including the
JIT compiler. Overall, the book gave you a high-level overview of the .NET application execution life cycle,
from computer architecture to the CLR.

Further Reading
Box, Don. Essential .NET: The Common Language Runtime. Vol. 1. Boston: Addison-Wesley, 2003.
Richter, Jeffrey. CLR via C#. Second Edition. Redmond, WA: Microsoft, 2006.
Hewardt, M. Advanced .NET Debugging. Upper Saddle River, NJ: Pearson, 2010.
Miller, James S., and Susann Ragsdale, S. The Common Language Infrastructure Annotated Standard.

Boston: Addison-Wesley, 2004.

A�       �
Application domain

address space, 93
bpmd command, 88
debugging session

clrstack command, 92
Main method, 92
Print method, 92

dumpdomain command, 88
eeheap command, 95
g command, 88
heap memory

address space, 104
clrstack command, 103
dumpheap command, 103
reference types, 102
TestClass object, 102

stack memory, 98
address space, 100
clrstack command, 97
concepts, 96
debugging, 97
frame execution, 100
g command, 97
Test_1 method, 97
virtual memory, 99

threads command, 88
virtual addresses, 89

Assembly
loading process, 58–59
in NET Framework, 39–40
overview of, 40–41
PE files, 41–42
structure of, 42

B�       �
Binding process, assembly, 58

C, D, E, F, G�       �
Common language runtime (CLR), 16, 25

address space, 124
bootstrapping process

COREXEMain method, 121
dumpbin tool, 120
shim block, 122

CIL assembly-like language, 36
class loader

main method/main entry
point, 128

stub code, 129
type verification, 130

CLI-compliant program, 36
C# program, 112

compilation, 115
runtime, 119

CTS, 36
DLLs, 111
execution environment, 30
JIT compilation, 115

method state (see
Method state)

method table, 131
status of JIT, 137
status of NONE, 133
status of PreJIT, 140

and multiple languages
C# source code, 31–32
C++ source code, 32–33
F# source code, 33–34
VB.NET source code, 35

overview, 114
services, 29
short parameter, 122
u command, 113
VES, 36
WinDbg command, 112

Index

153

CPU
architecture, 2
instruction set architecture (ISA), 4
memory, 5
registers, 2

H�       �
Heap memory

address space, 104
clrstack command, 103
dumpheap command, 103
reference types, 102
TestClass object, 102

I�       �
IL disassembler

C# source code, 31–32
C++ source code, 32–33
F# source code, 33–34
VB.NET source code, 35

J, K�       �
JIT compilation, 11, 28

advantages, 131
method state

argument array, 143
callee method, 149
clr!CallDescrWorker+0x33 method, 146, 149
clr!CallDescrWorkerWithHandler+0x8e

method, 147, 149
evaluation stack, 143
for_each_frame command, 147
instruction pointer (IP), 143
local memory pool, 143
local variable array, 143
machine state model, 144
methodInfo handle, 143
MethodState frame, 146
return state handle, 143
security descriptor, 143
WinDbg command, 145

method table, 131
code block, 133
compilation status, 133
dumpMT command, 132
main method, 132

status of JIT, 137
status of NONE

dumpil command, 134
dumpmt command, 133
PrestubMethodFrame method, 135
u command, 135

status of PreJIT, 140

L�       �
Loading process, assembly, 58

M, N�       �
Mapping process, assembly, 58
Memory management

abstract layer, 62
C# application, 62
dc command, 78
description, 61
memory-mapped file, 80

address command, 83
ca command, 85
frame command, 82
g command, 82
memusage command, 84

physical address, 78
process

address space, 67
data structure, 66
process environment block (PEB), 65

thread
address space, 72
data structure, 69
execution unit, 71
frames, 72
WinDbg kernel mode, 71

virtual address, 79
virtual memory

address space, 77
advantages, 72
32-bit and 64-bit process, 73
mapping, 77

Memory model, 87
application domain (see Application domain)
garbage collection, 108

object groups, 109
phases, 109
references, 109

objects, 105
Method state

argument array, 143
callee method, 149
clr!CallDescrWorker+0x33 method, 146, 149
clr!CallDescrWorkerWithHandler+0x8e

method, 147, 149
evaluation stack, 143
for_each_frame command, 147
instruction pointer (IP), 143
local memory pool, 143
local variable array, 143
machine state model, 144
methodInfo handle, 143
MethodState frame, 146

■ index

154

return state handle, 143
security descriptor, 143
thread of control, 143
WinDbg command, 145

O�       �
Operating system (OS), 6

abstraction layers, 9
context switch, 8
hypothetical model, 7
process, 8
thread, 9

P, Q, R�       �
Portable executable (PE) file, 41–42
Probing process, assembly, 58
Process environment block (PEB), 65
Programming language, 1

compilation model, 10
C# program

assembly, 17
CLR, 17
compilation process, 17
dumpbin tool, 18
JIT compilation, 11
method, 13
namespace, 13
Pow method, 12
Write method, 12

debugging tool, 22
intermediate language (IL) code, 10
.NET Framework

Common language runtime
(CLR), 16

CTS type system, 17
DisassemblerVersion 4.0.30319.1, 13

Son of Strike (SOS), 23

S�       �
Stack memory

address space, 100
clrstack command, 97
concepts, 96
debugging, 97
frame execution, 100
g command, 97
Test_1 method, 97
virtual memory, 99

T, U�       �
Thread

address space, 72
data structure, 69
execution unit, 71
frames, 72
WinDbg kernel mode, 71

V, W, X, Y, Z�       �
Virtual machine (VM)

definition, 25
execution environment

components of, 29
hypothetical model, 28
JIT compiler, 28
optimization and portability of, 28

optimization and performance, 26–27
traditional computer architecture, 26

Virtual memory
address space, 77
advantages, 72
32-bit and 64-bit process, 73
mapping

process command, 77
ptov command, 78

■ Index

155

C# Deconstructed
Discover How C# Works on the

.NET Framework

Mohammad Rahman

C# Deconstructed

Copyright © 2014 by Mohammad Rahman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6670-9

ISBN-13 (electronic): 978-1-4302-6671-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Ewan Buckingham
Technical Reviewer: Damien Foggon
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: Lisa Vecchione
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

To my family.

vii

Contents

About the Author��xi

About the Technical Reviewer��xiii

�Chapter 1: Introduction to Programming Language■■ ���1

Overview of the CPU���1

Instruction Set Architecture of a CPU��� 4

Memory: Where the CPU Stores Temporary Information��5

Concept of the OS���6

Concept of the Process��� 8

Concept of the Thread�� 9

What Is Virtualization?�� 9

Programming Language���10

Compilation and Interpretation��� 10

Birth of C# Language and JIT Compilation��� 10

// Microsoft (R) .NET Framework IL Disassembler Version 4.0.30319.1��������������������������������������13

The CLR�� 16

Road Map to the CLR�� 17

Tools Used in This Book��22

Son of Strike Debugging Extension DLL��� 23

Conclusion��24

Further Reading��24

■ Contents

viii

Chapter 2: The Virtual Machine and CLR■■ ��25

Virtual Machine��25

Problems with the Existing System�� 25

Optimization During Execution��� 26

Virtual Execution Environment���28

Components of the Virtual Execution Environment��� 29

CLR: Virtual Machine for .NET���29

CLR Supports Multiple Languages�� 30

Common Components of the CLR��� 36

Conclusion��37

Further Reading��37

Chapter 3: Assembly■■ ��39

What Is the Assembly?���39

Overview of Modules, Assemblies, and Files���40

Introduction to PE Files��41

Structure of the Assembly��42

Analysis of the Assembly�� 49

Assembly Loading��58

Inside the Bind, Map, Load Process�� 59

Binding to an Assembly�� 59

Consulting the Cache�� 59

Conclusion��60

Further Reading��60

Chapter 4: CLR Memory Model■■ ���61

Introduction��61

Memory Interaction between the CLR and OS�� 62

■ Contents

ix

Windows Memory Management���64

Concept of the Process��� 65

Concept of the Thread�� 69

Concept of the Virtual Memory��� 72

Learn the Contents of a Particular Physical Memory Address ��� 78

Find a Virtual Address and Its Contents�� 79

Memory-Mapped File���80

Conclusion ���86

Further Reading��86

Chapter 5: CLR Memory Model II■■ ��87

CLR Memory Model: Application Domain���87

Finding an object in the Application Domain�� 92

Address Space of the Application Domain�� 93

Stack in the CLR��� 96

Address Space of the Stack�� 100

Heap��� 102

Heap and Address Space�� 104

objects��105

Garbage Collection���108

Generation 0��� 109

Generation 1��� 109

Generation 2��� 109

Conclusion��110

Further Reading��110

Chapter 6: CLR Execution Model■■ ���111

Overview of the CLR ��111

The C# Program and the CLR�� 115

CLR Bootstrapping��120

CLR Address Space��� 124

■ Contents

x

Class Loader in the CLR���128

Locating the Main Entry Point�� 128

Stub Code for the Classes�� 129

Verification�� 130

Conclusion��130

Further Reading��130

Chapter 7: CLR Execution Model II■■ ���131

JIT Compilation���131

Method Stub of a Type�� 131

JIT-Compiled Status: NONE��� 133

JIT-Compiled Status: JIT��� 137

JIT-Compiled Status: PreJIT�� 140

How Many Times a Method Is JIT Compiled��� 143

Execution State of the CLR���143

Conclusion��151

Further Reading��151

Index��153

xi

About the Author

Mohammad Rahman is a computer programmer. He has been a programmer since
1998 and for the past seven years he has been designing desktop and web-based
systems for private and government agencies using C# language in Microsoft.NET.
Currently he is working as a computer programmer and earning his doctorate as a
part-time student at the University of Canberra, Australia.

xiii

About the Technical Reviewer

Damien Foggon is a developer, writer, and technical reviewer in cutting-edge technologies. He has contributed to
more than 50 books on .NET, C#, Visual Basic, and ASP.NET. He is the co-founder of the Newcastle-based user group
NEBytes (www.nebytes.net). He is also a multiple MCPD in .NET 2.0 onward. Damien can be found online at
http://blog.fasm.co.uk.

http://blog.fasm.co.uk
http://www.nebytes.net

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction to Programming Language
	Overview of the CPU
	Instruction Set Architecture of a CPU

	Memory: Where the CPU Stores Temporary Information
	Concept of the OS
	Concept of the Process
	Concept of the Thread
	What Is Virtualization?

	Programming Language
	Compilation and Interpretation
	Birth of C# Language and JIT Compilation

	// Microsoft (R) .NET Framework IL Disassembler Version 4.0.30319.1
	The CLR
	Road Map to the CLR

	Tools Used in This Book
	Son of Strike Debugging Extension DLL

	Conclusion
	Further Reading

	Chapter 2: The Virtual Machine and CLR
	Virtual Machine
	Problems with the Existing System
	Optimization During Execution

	Virtual Execution Environment
	Components of the Virtual Execution Environment

	CLR: Virtual Machine for .NET
	CLR Supports Multiple Languages
	Common Components of the CLR

	Conclusion
	Further Reading

	Chapter 3: Assembly
	What Is the Assembly?
	Overview of Modules, Assemblies, and Files
	Introduction to PE Files
	Structure of the Assembly
	Analysis of the Assembly
	Section Header
	.text Section
	#~ stream
	ModuleDef
	TypeDef
	MethodDef
	Reference Tables
	AssemblyRef
	ModuleRef
	TypeRef
	MemberRef

	Assembly Loading
	Inside the Bind, Map, Load Process
	Binding to an Assembly
	Consulting the Cache

	Conclusion
	Further Reading

	Chapter 4: CLR Memory Model
	Introduction
	Memory Interaction between the CLR and OS

	Windows Memory Management
	Concept of the Process
	Process Structure
	Process Address Space

	Concept of the Thread
	Thread Address Space
	Thread and Frames

	Concept of the Virtual Memory
	32-bit and 64-bit Process Addressing
	Virtual-to-Physical Address Mapping

	Learn the Contents of a Particular Physical Memory Address
	Find a Virtual Address and Its Contents

	Memory-Mapped File
	Conclusion
	Further Reading

	Chapter 5: CLR Memory Model II
	CLR Memory Model: Application Domain
	Finding an object in the Application Domain
	Address Space of the Application Domain
	Stack in the CLR
	Address Space of the Stack
	Heap
	Heap and Address Space

	objects
	Garbage Collection
	Generation 0
	Generation 1
	Generation 2

	Conclusion
	Further Reading

	Chapter 6: CLR Execution Model
	Overview of the CLR
	The C# Program and the CLR

	CLR Bootstrapping
	CLR Address Space

	Class Loader in the CLR
	Locating the Main Entry Point
	Stub Code for the Classes
	Verification

	Conclusion
	Further Reading

	Chapter 7: CLR Execution Model II
	JIT Compilation
	Method Stub of a Type
	JIT-Compiled Status: NONE
	JIT-Compiled Status: JIT
	JIT-Compiled Status: PreJIT
	How Many Times a Method Is JIT Compiled

	Execution State of the CLR
	Conclusion
	Further Reading

	Index

