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PREFACE

This volume contains the papers presented at the NATO Advanced Research 

Institute on "Non-Linear Dynamics and Fundamental Interactions" held in Tashkent, 

Uzbekistan, from Oct.10-16,2004. 

The main objective of the Workshop was to bring together people working in areas 

of Fundamental physics relating to Quantum Field Theory, Finite Temperature Field 

theory and their applications to problems in particle physics, phase transitions and 

overlap regions with the areas of Quantum Chaos. The other important area is 

related to aspects of Non-Linear Dynamics which has been considered with the topic 

of chaology. The applications of such techniques are to mesoscopic systems, 

nanostructures, quantum information, particle physics and cosmology. All this forms 

a very rich area to review critically and then find aspects that still need careful 

consideration with possible new developments to find appropriate solutions. 

There were 29 one-hour talks and a total of seven half-hour talks, mostly by the 

students. In addition two round table discussions were organised to bring the 

important topics that still need careful consideration. One was devoted to questions 

and unsolved problems in Chaos, in particular Quantum Chaos. The other round 

table discussion considered the outstanding problems in Fundamental Interactions. 

There were extensive discussions during the two hours devoted to each area. 

Applications and development of new and diverse techniques was the real focus of 

these discussions. 

The conference was ably organised by the local committee consisting of D.U. 

Matrasulov, M.M. Musakhanov, Kh.Yu. Rakhimov, A.A. Saidov, B.S. Yuldashev 

with P.K. Khabibullaev as the chair. A whole cadre of students helped with many 

detailed jobs. Our thanks go to Olga V. Karpova for help with the secretarial duties 

before, during and after the conference. The task of getting the proceedings ready for 

publication was carried out by Olga Karpova and Lee Grimard (University of 

Alberta). We thank them for their help. 

The conference was held at the Grand Mir hotel in Tashkent. The hotel management 

provided every assistance possible to make the conference run smoothly. 

Finally we wish to thank NATO Science Program for their financial assistance. 

Additional assistance was provided by Science and Technology center of 

Uzbekistan, Heat Physics department of Uzbek Academy of Sciences. 

Faqir Khanna 

Davron Matrasulov 
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Nonlinear Dynamics 



Heat conduction in one dimensional systems: Fourier

law, chaos, and heat control

Giulio Casati(a,b) and Baowen Li (b)

a) Center for Nonlinear and Complex Systems,
Universita’ degli studi dell’Insubria, Como
Istituto Nazionale di Fisica della Materia,
Unita’ di Como, and Istituto Nazionale di Fisica Nucleare,
sezione di Milano, Milano, Italy
b) Department of Physics, National University of Singapore,
Singapore 117542, Republic of Singapore

Keywords: chaos, heat control

1. Introduction

“It seems there is no problem in modern physics for which there are on
record as many false starts, and as many theories which overlook some
essential feature, as in the problem of the thermal conductivity of non-
conducting crystals” (Peierls, 1961). This statement by R. Peierls goes
back to almost 50 years ago, yet it appears to be still valid. Compared
with charge flow (electric current), much less is known about the heat
flow.

Nevertheless, encouraging results have been obtained in recent years
(see reviews(Bonetto et al, 1961) and the references therein). For exam-
ple it is now known that in one dimensional systems of the Fermi-Pasta-
Ulam (FPU) type (Lepri et al, 1998), heat conduction is anomalous and
the coefficient of thermal conductivity κ diverges with the system size
L as κ ∼ L2/5 (when the transverse motion is considered κ ∼ L1/3

(?)). The connection between anomalous conductivity and anomalous
diffusion has been also established(Li and Wang, 2003; Li et al, 2005),
which implies in particular that a subdiffusive system is an insulator
in the thermodynamic limit and a ballistic system is a perfect thermal
conductor, the Fourier law being therefore valid only when phonons
undergo a normal diffusive motion. More profoundly, it has been clar-
ified that exponential dynamical instability is a sufficient(Casati et al,
2005; Alonso et al, 2005) but not a necessary condition for the validity
of Fourier law (Li et al, 2005; Alonso et al, 2002; Li et al, 2003; Li
et al, 2004). These basic studies not only enrich our knowledge of the
fundamental transport laws in statistical mechanics, but also open the
way for applications such as designing novel thermal materials and/or

1
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2 Gulio Casati and Baowen Li

devices such as the thermal rectifier(Terrano et al, 2002; Li Wang
Casati, 2004) and the thermal transistor(Li Wang Casati, 2004).

In this paper we give a brief review of the relation between micro-
scopic dynamical properties and the Fourier law of heat conduction as
well as the connection between anomalous conduction and anomalous
diffusion. We then discuss the possibility to control the heat flow.

2. Microscopic dynamics and the Fourier heat law

In spite of several years of investigation, so far there is neither phenom-
enological nor fundamental transport theory which can predict whether
or not a given classical, many-body Hamiltonian system, yields an en-
ergy transport governed by the Fourier heat law. It is known that heat
flow obeys a simple diffusion equation which can be regarded as the
continuum limit of a discrete random walk. However, modern ergodic
theory tells us that for K-systems, a sequence of measurements with
finite precision mimics a truly random sequence and therefore these
systems appear precisely those deterministically random systems tac-
itly required by transport theory. It is therefore interesting to establish
which class, if any, of many-body systems satisfy the necessary stringent
requirements for the validity of Fourier law of heat conduction.

2.1. Dynamical chaos is a sufficient condition for the
Fourier law

2.1.1. Ding-a-ling model
The first example for which convincing evidence has been provided that
Fourier law can be derived on purely dynamical grounds, without any
additional statistical assumptions, is the so-called ding-a-ling model
proposed in (Casati et al, 2005).

The Hamiltonian of the ding-a-ling model is:

H =
1
2

∑ (
p2

k + ω2
kq

2
k

)
+ hard point core (1)

where ωk equals ω for even k and zero for odd k and where all
particles have unit mass. It can be shown that it is possible to fix the
energy per particle (E = 1) and the half of the lattice distance between
two bound particles (l0 = 1). After this the dynamics is uniquely deter-
mined by the frequency ω which becomes therefore the only adjustable
parameter.

As shown in Fig 1. the model is a one-dimensional array of equal
mass, hard-point particles, the even-numbered particles form a set of
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Figure 1. The N-particle ding-a-ling model. Odd particles can move freely in between
two collisions, while even particles are bounded by a harmonic spring.

equally spaced harmonic oscillators with each oscillator bound to its
individual lattice site and with all oscillators vibrating with the same
frequency ω. The odd-numbered particles are free particles constrained
only by the two adjacent even-numbered oscillators.

This model has been chosen in order to meet two requirements.
First, it is necessary to select a deterministically random system, and
second, the system must be sufficiently simple to allow efficient numer-
ical analysis. Let us also recall that even systems obeying the Fourier
heat law can transport energy in the form of slowly decaying coherent
excitations such as soundlike pulses. In numerical experiments, which
unavoidably consider only a small number of particles, this phenomenon
is quite troublesome. Though K or almost K-system guarantees that
these soundlike solutions will eventually decay, one needs to find a small
chaotic system in which this decay rate is sufficiently rapid(Li Wang
Casati, 1979). The selected model (1) is a many-body system which
exhibits, as the frequency is varied, the full range of behaviour from
integrable to almost K and which at the same time has no problem with
energy-bearing, long-lived, solitonlike pulses. Indeed, it can be shown
that as ω is increased from zero (which is the well known integrable
1-d hard point gas), the system undergoes a transition from integrable
to almost fully chaotic. This fact makes this model ideal to study the
connection between Fourier law and microscopic dynamical chaos.

Heat conductivity has been studied by placing the end particles
in contact with two thermal reservoirs at different temperatures (see
(Casati et al, 2005) for details)and then integrating the equations of
motion. Numerical results (Casati et al, 2005) demonstrated that, in
the small ω regime, the heat conductivity is system size dependent,
while at large ω, when the system becomes almost fully chaotic, the
heat conductivity becomes independent of the system size (if the size
is large enough). This means that Fourier law is obeyed in the chaotic
regime.
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Figure 2. The geometry of the Lorentz gas channel model. The two heat reservoirs
at temperatures TL and TR are indicated.

2.1.2. Lorentz gas channel
The above conclusions have been nicely confirmed and clarified in
(Alonso et al, 2005) where the heat conduction has been studied in
a Lorentz gas channel - a quasi one dimensional billiard with circular
scatterers. The model (see Fig. 2) consists of two parallel lines and
a series of semicircles of radius R placed in a triangular lattice along
the channel. By construction no particle can move along the horizontal
direction without colliding with the disks. The dynamics in the Lorentz
gas is rigorously known to be mixing and all trajectories with nonzero
projection on the horizontal direction are of hyperbolic type; further
it has positive Kolmogorov-Sinai entropy and a well defined diffusive
behavior. Very accurate numerical evidence has been provided (Alonso
et al, 2005) which shows that heat conduction in this model obeys the
Fourier law. This result therefore clearly indicates that mixing with
positive Lyapounov exponents is a sufficient condition to ensure Fourier
law of heat conduction.

2.2. Chaos is not a necessary condition

2.2.1. Triangle billiard gas channel
Quite naturally, the next question which arises is whether strong, ex-
ponential unstable chaos, being sufficient, is also necessary.

In this connection let us remark that in spite of several efforts, the re-
lation between Lyapounov exponents, correlations decay, diffusive and
transport properties is still not completely clear. For example a model
has been presented (Casati Prosen, 2000) which has zero Lyapounov
exponent and yet it exhibits unbounded Gaussian diffusive behavior.
Since diffusive behavior is at the root of normal heat transport then
the above result(Casati Prosen, 2000) constitutes a strong suggestion
that normal heat conduction can take place even without the strong
requirement of exponential instability.

The above problem has been addressed in (Li et al, 2003), where we
have considered a quasi-one dimensional billiard model which consists
of two parallel lines and a series of triangular scatterers (see Fig.3). In
this geometry, no particle can move between the two reservoirs without
suffering elastic collisions with the triangles. Therefore this model is
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Figure 3. The geometry of the triangle billiard gas channel. Particles move in the
region outside the triangular scatterers. The two heat reservoirs at temperatures TL

and TR are indicated.

analogous to the previous Lorentz gas channel with triangles instead
of discs: the essential difference is that in the triangular model the
dynamical instability is linear and therefore the Lyapounov exponent
is zero.

Strong numerical evidence has been given (Casati and Prosen, 1999)
that the motion inside a triangular billiard, with all angles irrational
with π is mixing, without any time scale. It is therefore reasonable to
expect that the motion inside the irrational polygonal area of Fig 3 is
diffusive thus leading to normal conductivity.

Indeed, numerical results in (Li et al, 2003) show that in the ir-
rational case (when the ratio θ/π and φ/π are irrational numbers)
the system in Fig 3 exhibits normal diffusion and the heat conduction
obeys the Fourier law. In the rational case instead, the system shows
a superdiffusive behavior, 〈σ2〉 = 2Dt1.178 (Li et al, 2003)and the heat
conductivity diverges with the system size as κ ≈ N0.25±0.01.

2.2.2. Alternate mass-core hard potential channel
In the two billiard gas models just discussed there is no local ther-
mal equilibrium. Even though the internal temperature can be clearly
defined at any position(Alonso et al, 2005), the above property may
be considered unsatisfactory(Dhars, 1999). In order to overcome this
problem, we have recently introduced a similar model which however
exhibits local thermal equilibrium, normal diffusion, and zero Lyapunov
exponent(Li et al, 2004).

This model consists of a one-dimensional chain of elastically colliding
particles with alternate masses m and M . In order to prevent total
momentum conservation we confine the motion of particles of mass M
(bars) inside separate cells. Schematically the model is shown in Fig.4:
particles with mass m move horizontally and collide with bars of mass
M which, besides suffering collisions with the particles, are elastically
reflected back at the edges of their cells. In between collisions, particles
and bars move freely.
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Figure 4. The geometry of the alternate mass-core hard potential channel. The
elementary cell is indicated by the two dotted lines. The bars have mass M = 1,
and the particles have mass m = (

√
5 − 1)/2. The two heat baths at temperatures

TL and TR are indicated.

Numerical results(Li et al, 2004) clearly indicate that this model
also obeys the Fourier law.

3. Anomalous heat conduction

Numerical experiments have shown that in many one dimensional sys-
tems with total momentum conservation, the heat conduction does not
obey the Fourier law and the heat conductivity depends on the system
size. For example, in the so-called FPU model, κ ∼ Lβ , with β = 2/5,
and if the transverse motion is introduced, β = 1/3. Moreover, in the
billiard gas channels (with conserved total momentum), the value of
β differs from model to model(Li and Wang, 2003). The question is
whether one can relate β to the dynamical and statistical properties of
the system.

Recently, a simple formula has been found (Li and Wang, 2003)
which connects anomalous heat conductivity with anomalous diffusion.
More precisely, it has been shown that for a one dimensional system,
if the energy diffusion can be described by

〈σ2〉 = 2Dtα, (0 < α ≤ 2) (2)

then the heat conductivity is given by

κ = −j/∇T ∝ Lβ (3)

where the exponent β is
β = 2− 2/α. (4)

This relation connects heat conduction and diffusion, quantitatively.
As expected,normal diffusion(α =1)corresponds to the size-independent
(β = 0) heat conduction obeying the Fourier law. Moreover, a ballistic
motion (α = 2) implies that the thermal conductivity is proportional to
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Figure 5. Comparison of prediction (4) with numerical data. Normal diffusion
(�). The ballistic motion (∗). Superdiffusion: 1D Ehrenfest gas channel (Li et al,
2005)(�); the rational triangle channel (Li et al, 2003) (empty box); the polygonal
billiard channel with (φ1 = (

√
5−1)π/4), and φ2 = π/3 (Alonso et al, 2002)(�); the

triangle-square channel gas(Li et al, 2005) (♦). β values are obtained from system
size L ∈ [192, 384] for all channels except Ehrenfest channel (Li et al, 2005). The
FPU lattice model at high temperature regime (Li et al, 2005)(�), and the single
walled nanotubes at room temperature (⊕). Subdiffusion: model from Ref. (Alonso
et al, 2002) (solid left triangle). The solid curve is β = 2 − 2/α.

the system size L, a superdiffusive behavior(1 < α < 2) implies a diver-
gent thermal conductivity (β > 0), and a subdiffusive behavior (α < 1)
implies zero thermal conductivity (β < 0) in the thermodynamic limit.

The simple relation (4) is in good agreement with existing data
from billiard gas channels to nonlinear lattices, and even single walled
nanotubes(Li et al, 2005). This is shown in Fig. 5, where we compare
the theoretical prediction (4) with existing data in different models.

We should mention here the one dimensional hard point gas model
for which anomalous heat conduction has been found by several au-
thors (Dhar, 2003; Grassberger et al, 2002). However it seems there
is no agreement on the numerical value of the exponent β. Indeed in
Ref.(Dhar, 2003), the value β ≈ 0.25 has been found, while the value
β ≈ 0.33 is reported in (Grassberger et al, 2002).

4. Control of heat flow

While in the previous sections we have discussed the relation between
dynamical chaos and heat conductivity, in the following we will turn our
attention to the possibility to control heat flow. Actually a model of
thermal rectifier has been recently proposed(Terrano et al, 2002) in
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Figure 6. Configuration of the thermal diode model based on two coupled FK chains.

which the heat can flow preferentially in one direction. Although this
model is far away from a prototype realization, it is based on a mech-
anism of very general nature and, as such, is suitable of improvement
and may eventually lead to real applications. This problem is discussed
in the next section.

4.1. Thermal diode

In a recent paper(Li Wang Casati, 2004), a thermal diode model has
been proposed in which, even though the underlying physical mecha-
nism is similar to the one in Ref.(Terrano et al, 2002), there is a new
crucial element which allows to improve the efficiency by more than
two orders of magnitude.

The diode model consists of two segments of nonlinear lattices cou-
pled together by a harmonic spring with constant strength kint (see
Fig. 6). Each segment is described by the (dimensionless) Hamiltonian:

H =
∑ p2

i

2m
+

1
2
k(xi − xi+1 − a)2 − V

(2π)2
cos 2πxi. (5)

The two ends of the system are put into contact with thermal baths
at temperature TL and TR for left and right bath, respectively. In
fact, Eq. (5) is the Hamiltonian of the Frenkel-Kontorova (FK) model
which is known to have normal heat conduction(Hu Li Zhao, 1998). For
simplicity we set the mass of the particles and the lattice constant m =
a = 1. Thus the adjustable parameters are (kL, kint, kR, VL, VR, TL, TR),
where the letter L/R indicates the left/right segment. In order to reduce
the number of adjustable parameters, we set VR = λVL, kR = λkL,
TL = T0(1 + ∆), TR = T0(1 − ∆) and, unless otherwise stated, we
fix VL = 5, kL = 1 so that the adjustable parameters are reduced to
four, (∆, λ, kint, T0). Notice that when ∆ > 0, the left bath is at higher
temperature and vice versa when ∆ < 0.

In Fig. 7 we plot the heat current J versus ∆ for different temper-
atures T0. It is clearly seen that when ∆ > 0 the heat current (J+)



Heat conduction in one dimensional systems: Fourier law, chaos, and heat control 9

Figure 7. Heat current J versus the dimensionless temperature difference ∆ for
different values of T0. Here the total number of particles N = 100, kint = 0.05,
λ = 0.2. The lines are drawn to guide the eye.

increases with ∆, while in the region ∆ < 0 the heat current (J−) is
almost zero, i.e. the system behaves as a thermal insulator. The results
in Fig. 7 show that our model has the rectifying effect in a wide range
of temperatures. The rectifying efficiency, defined as |J+/J−|, could be
as high as few hundreds times, depending on temperature as well as on
other parameters.

4.1.1. Rectifying mechanism
To understand the underlying rectifying mechanism, let’s start from
the energy spectrum of the interface particles. Fig. 8 shows the phonon
spectra of the left and right interface particles at different temperature
when the two lattices are decoupled (kint = 0).

The match/mismatch of the energy spectra of the two interface
particles controls the heat current. It is clearly seen from Fig. 8 that, if
the left end is in contact with the high temperature bath TL, and the
right end with the low temperature bath TR (< TL), then the phonon
spectra of the two particles at interface overlap in a large range of
frequencies, thus the heat current can easily go through the system
from the left end to the right end. However, if the left end is at lower
temperature TL and the right end is at higher temperature TR (> TL),
then the phonon spectrum of the right interface particle is mainly in
the low frequency part, while the left interface particle is in the high
frequency part. Then there is almost no overlap in phonon frequency,
and the heat current can hardly go through from right to left, and the
system behaves as an insulator. Why the left and right particles at
the interface have so different phonon spectra? This can be understood
from the following analysis on temperature dependent phonon spectra,
due to the nonlinearity.
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Figure 8. Spectra of the two particles at the interface for different temperatures at
kint = 0. (a) particle at the left side of the interface, (b) particle at the right side of
the interface. Here λ = 0.2, N = 100.

(1) Low temperature limit. At low temperature, the particle is con-
fined in the valley of the on-site potential. By linearizing the equation
of motion one can easily obtain the frequency band(Li Wang Casati,
2004): √

V < ω <
√

V + 4k. (6)

For the case of Fig.7 with T=0.01 (left) and T=0.002 (right), this
corresponds to 0.36 < ω/2π < 0.48 for the left particle and to 0.16 <
ω/2π < 0.21 for the right particle.

As the temperature is increased, the interparticle potential kx2/2
becomes more and more important until a critical value Tcr ≈ V/(2π)2

is reached (we take the Boltzman constant equal to unity), when the
kinetic energy is large enough to overcome the on-site potential barrier.
At this point low frequency appears and this happens at the critical
temperatures Tcr = 0.13 for V = 5 (left), and Tcr = 0.025 for V = 1
(right). This is in quite good agreement with the data of Fig.8.

(2) High temperature limit. In the high temperature limit the on-site
potential can be neglected, the system is close to two coupled harmonic
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0 < ω < 2
√

k, (7)

which gives 0 < ω/2π < 0.32 for the left particle and 0 < ω/2π < 0.14
for the right particle, again in good agreement with Fig.8.

In fact, in order to optimize the rectifying effect, one should avoid the
overlapping of the phonon bands in the low temperature limit (Eq.6)
and that in the high temperature limit (Eq.7) for each segment of the
system. According to the above estimates, one should have V > 4k,
which is satisfied for the case of Fig.8.

We should stress that it is the nonlinearity of the potential that
makes phonon spectra temperature dependent, and thus the rectifying
effect possible. Therefore it is reasonable to expect the rectifying effect
to be present, in different degrees, in typical nonlinear lattices.

4.2. Negative Differential Thermal Conductance

Apart from the “one-way heat flow”, the negative differential thermal
resistance phenomenon observed in a certain temperature intervals in
the thermal diode is of particular interest. As illustrated in Fig.7 for
∆ < −0.2, a smaller temperature difference (∆), can induce a larger
heat current since, due to nonlinearity, it can result in a better match
in phonon bands.

The same phenomenon is shown for different inter-face coupling
constants kint in Fig. 9(a), and different system size in Fig. 9(b).

4.3. Thermal Transistor

The phenomenon of negative differential thermal resistance allows us to
propose a “thermal transistor”(Li Wang Casati, 2004). The configura-
tion of the thermal transistor is shown in Fig.10(a). It consists of three
segments, D, S and G. The names D, S and G follow the ones used in a
MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor) that is
the most important device for very large scale integrated chips such as
microprocessors and semiconductor memories. Segment D (from D to
O) has a negative differential thermal resistance in a certain temper-
ature regime while segment S is a normal heat conductor, i.e., heat
current inside this segment is positively dependent on temperature
difference. Segment G is the control segment, which is connected to
the junction particle between segments S and D. Temperature TG will
be used to control temperature To (at the junction O) so as to control
the heat current from D to S. In analogy to the MOSFET, in which the
electronic current in the electrode G is very small, we require here that

chains, and the phonon band is given by(Kittel, 1996) :
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Figure 9. (a) Heat current versus temperature TL (at fixed TR = 0.2) for different
coupling constants, kint, with lattice size N = 50. The system parameters are:
VL = 5, VR = 1, kL = 1, kR = 0.2. (b) Same as (a) but for different system size N .
kint = 0.05. Notice that when TL ≤ 0.1 the heat current increases with decreasing
the external temperature difference.

the heat current JG through segment G to be as small as possible, (oth-
erwise it is hard to set TG to a required value in experiment). Moreover
the heat resistance of segment G must be small enough in order to well
control the temperature To by changing TG so that To ≈ TG.

Notice that, in typical situations, the differential heat resistance,

RS =
(

∂JS
∂To

)−1

TS=const
in segment S, and RD = −

(
∂JD
∂To

)−1

TD=const
in

segment D, are both positive and therefore there exists only one value
of To for which JS = JD so that JG = 0, Since JS = JD + JG, the
“current amplification factor”, α =

∣∣∣∂JD
∂JG

∣∣∣ =
∣∣∣ RS
RS+RD

∣∣∣ < 1, namely in
order to make a change ∆JD, the control heat bath has to provide a
larger ∆JG. This means that the “transistor” can never work!

The key point of our transistor model is the “negative differential
heat resistance” as we observed in the diode model(Li Wang Casati,
2004). It provides the possibility that when To changes both JS and
JD change simultaneously in the same way. Therefore JS = JD (or
Js ≈ JD) can be achieved for several different values of To or even in
a wide region of To as shown in Figs.10 and 11. In this situation heat
switch and heat modulator/amplifier are possible. In the ideal, limiting
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Figure 10. (a) Configuration of the thermal transistor. (b) Heat current versus
the control temperature TG. Parameters are: TD = 0.2, , VD = 1.0, kD = 0.2,
kint = 0.05; TS = 0.04, VS = 5, kS = 0.2, VG = 5, kG = 1, kintG = 1. Notice
that both JS and JD increase when the temperature TG is increased.

case of RS = −RD which, in principle, can be obtained by adjusting
parameters, the transistor works perfectly.

4.3.1. Thermal switch
We first demonstrate the “switch” function of our transistor, namely
we show that the system can act like a good heat conductor or an
insulator depending on the control temperature. This is illustrated in
Fig.10(b), where we plot JG, JS , and JD versus TG. When TG increases
from 0.03 to 0.135, both JD and JS increase. In particular, at three
points: TG ≈ 0.04, 0.09 and 0.135, JD = JS thus JG is exactly zero.
These three points correspond to “off”, “semi-on” and “on” states, at
which JD is 2.4 × 10−6, 1.2 × 10−4 and 2.3 × 10−4, respectively. The
ratio of the heat current at the “on” state and that at the “off” state is
about 100, hence our model displays one important function - switch -
just like the function of a MOSFET used in a digital circuit.
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Figure 11. Heat current versus the control temperature TG. Here:
TD = 0.2, VD = 1.0, kD = 0.2, TS = 0.04, VS = 5, kS = 0.2,
kint = 0.05, VG = 5, kG = 1, kintG = 0.1. The shadow region is the range of
variation of JG in the temperature interval TG ∈ (0.05, 0.135).

4.3.2. Thermal modulator/amplifier
As demonstrated above, the heat current from D to S can be switched
between different values. However, in many cases, like in an analog
circuit, we need to continuously adjust the current JS and/or JD in
a wide range by adjusting the control temperature TG. In Fig.11 we
demonstrate this “modulator/amplifier” function of our transistor. The
basic mechanism of such “modulator/amplifier” is the same as that of
the “switch” but we consider here different parameter values. It is seen
that in the temperature interval TG ∈ (0.05, 0.135), the heat current
through the segment G remains very small ((−10−5 ∼ 10−5), within the
shadow strip in Fig.10, while the heat currents JS and JG continuously
increase from 5× 10−5 to 2× 10−4.

5. Conclusions and discussions

In this paper, we have given a brief summary of our recent work on heat
conduction in one dimensional systems. We have shown that strong
chaos is sufficient but not strictly necessary for the validity of the
Fourier heat law. Indeed linear mixing can be sufficient to induce a
diffusive process which ensures normal heat conductivity.

For systems with total momentum conservation one typically finds
anomalous conductivity, namely the thermal conductivity is divergent
with the system size. Anomalous conductivity has been connected with
anomalous diffusion via the very simple formula (4).
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Finally we have shown the possibility to build a thermal diode which
exhibits a very significant rectifying effect in a very wide range of
system parameters. Moreover, based on the phenomenon of negative
differential thermal resistance observed in the thermal diode, we have
built a theoretical model for a thermal transistor. The model displays
two basic functions of a transistor: switch and modulator/amplifier.
Although at present it is just a model we believe that, sooner or later, it
can be realized in a nanoscale system experiment. After all the Frenkel-
Kontorova model used in our simulation is a very popular model in
condensed matter physics(Braun and Kivshar, 1998).
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Quantum graphs which sound the same

Talia Shapira and Uzy Smilansky
Department of Physics of Complex Systems,
The Weizmann Institute of Science, Rehovot 76100, Israel

Abstract. We present a method to construct pairs of isospectral quantum graphs
which are not isometric. These graphs are the analogues of the family of isospectral
domains in R

2 which were first introduced by Gordon, Webb and Wolpert (C. Gor-
don et.al., 1992), recently enlarged by P. Buser et. al. (P. Buser et.al., 1994), and
discussed further by Okada et. al. (Y. Okada et.al., 2001).

Keywords: Quantum graphs, isospectrality

1. Introduction

In response to M. Kac’s classical paper “Can one hear the shape of
a drum?” (M. Kac, 1966), much research effort was invested in two
complementary problems - to identify classes of systems for which Kac’s
question is answered in the affirmative, or to find examples which are
isospectral but not isometric. In the present paper we shall focus our
attention to quantum graphs and in the following lines will review
the subject of isospectrality from this intentionally narrowed point of
view. The interested reader is referred to (T. Sunada, 1985; C. Gordon
et.al., 1992; S. Chapman, 1995; P. Buser et.al., 1994; Y. Okada et.al.,
2001; S. Zelditch, 2004) for a broader view of the field where spectral
inversion and its uniqueness are discussed.

Spectral problems related to graphs emerge in two distinct ways. In
the first, the spectrum of the connectivity (adjacency) matrix is con-
sidered. It represents a discrete version of the Laplacian, and for finite
graphs, the spectrum is finite. This class of problems are often referred
to as combinatorial graphs. Quantum (metric) graphs are obtained by
associating the standard metric to the bonds which connect the vertices.
The Schrödinger operator consists of the one-dimensional Laplacians
on the bonds, complemented by appropriate boundary conditions at
the vertices (see next section). The spectrum of quantum graphs is
unbounded, and it displays many interesting features which made it a
convenient paradigm in the study of quantum chaos (T. Kottos et.al.,
1999).

Shortly after the appearance of Kac’s paper, M. E. Fisher published
his work ”On hearing the shape of a drum” (M.E. Fisher, 1966), where
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he addresses isospectrality for the discrete version of the Laplacian.
Since then, the study of isospectral combinatorial graphs made very
impressive progress. In particular, several methods to construct isospec-
tral yet different graphs were proposed. A review of this problem can
be found in (R. Brooks, 1999). In particular, a method which was origi-
nally put forward by Sunada (T. Sunada, 1985) to construct isospectral
Laplace-Beltrami operators on Riemann manifolds, was adapted for the
corresponding problem in the context of combinatorial graphs (L. Hal-
beisen et.al., 1999). Here we shall go one step further, and show that
it can be also adapted for quantum graphs.

The conditions under which the spectral inversion of quantum graphs
is unique was studied previously (R. Carlson, 1999; B. Gutkin et.al.,
2001). The main result is a theorem (B. Gutkin et.al., 2001) which
states:
Theorem(B. Gutkin and U. Smilansky): The connectivity and the bond
lengths of quantum graphs whose bond lengths are rationally indepen-
dent are determined uniquely by the spectrum.
That is the shape of the graph “can be heard”. (Some technical con-
ditions which appear in the original statement of the theorem are
automatically satisfied for the Neumann graphs which will be consid-
ered here.) The uniqueness of the inversion follows from the existence of
an exact trace formula for quantum graphs (Jean-Pierre Roth, ; T. Kot-
tos et.al., 1999). Thus, isospectral pairs of different graphs, must have
rationally dependent bond lengths. The Sunada method, which is based
on constructing the isospectral domains by concatenating several copies
of a given building block, automatically provide us with graphs with
rationally dependent lengths. Such a pair was already discussed in
(B. Gutkin et.al., 2001). Here we shall show that all the known isospec-
tral domains in R

2 (P. Buser et.al., 1994; Y. Okada et.al., 2001) have
corresponding isospectral pairs of quantum graphs.

The paper is organized in the following way. For the sake of com-
pleteness we shall give a short review of some elementary definitions and
facts on quantum graphs. We shall then show how pairs of isospectral
domains in R

2 can be converted to isospectral pairs of quantum graphs,
and discuss their spectra and eigenfunctions.

1.1. A short introduction to quantum graphs

We consider finite graphs consisting of V vertices connected by B
bonds. The V ×V connectivity matrix will be denoted by Ci,j : Ci,j = 1
when the vertices i and j are connected, and it vanishes otherwise.
The bonds are endowed with the standard metric and the length of
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the bonds will be denoted by Li,j . The total length of the graph is
L =

∑
i>j Li,j .

The domain of the Schrödinger operator on the graph is the L
2

space of differentiable functions which are continuous at the vertices.
The operator is constructed in the following way. On the bonds, it is
identified as the one dimensional Laplacian − d2

dx2 . It is supplemented
by boundary conditions on the vertices which ensure that the resulting
operator is self adjoint. We shall consider in this paper the Neumann
boundary conditions:

∀i :
∑
j

Ci,j
d
dxi,j

ψi,j(xi,j)

∣∣∣∣∣
xi,j=0

= 0 . (1)

Here and elsewhere, the bonds are identified by the vertices that they
connect, the coordinates along the bonds i, j are denoted by xi,j , and
the derivatives in (1) are directed out of the vertex i.

A wave function with a wave number k can be written as

ψi,j(xi,j) =
1

sin kLi,j
(φi sin k(Li,j − xi,j) + φj sin kxi,j) (2)

where the φi are the values of the wave function at the vertices. The
form (2) ensures continuity. The spectrum {kn} and the corresponding
eigenfunctions are determined by substituting (2) in (1). The resulting
homogeneous linear equations for the φi have a non trivial solution if
the determinant of the coefficients vanishes, and this happens at {k2

n},
which is a discrete positive and unbounded spectrum.

2. Isospectral quantum graphs

The first pair of isospectral planar domains which was introduced by
Gordon, Web and Wolpert (C. Gordon et.al., 1992) is a member of a
much larger set which was discussed in (P. Buser et.al., 1994; Y. Okada
et.al., 2001). The important and distinctive features of these pairs are:

− The domains are built by concatenating an elementary ”building
block” in two different prescribed ways to form the two domains. A
building block is joined to another by reflecting along the common
boundary. The shape of the building block is constrained only by
symmetry requirements, but otherwise it is quite general.

− The eigenfunctions corresponding to the same eigenvalue are re-
lated to each other by a transplantation. That is, the eigenfunction
in a building block of one domain can be expressed as a linear
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combination of the eigenfunction in several building blocks in the
other domain. The transplantation matrix is independent of the
considered eigenvalue.

− The construction of these pairs reflects an abstract algebraic struc-
ture which is due to T. Sunada (T. Sunada, 1985).
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Figure 1.

(a) Planar isospectral domains.

(b) Reducing the building block to a 3-star.

�
�

���
�

��
� �� �

�

c

a b

�

�

�
�

(b)

c
a

b
bc a
ab
c

c
a

b
b
a
ab

cca
b

c

1

2

3

4

57

6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

II

ba
c

c
b a

ac
b
ba
c

c
bba

c a
ac
b

1

2

3

4

57

6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

I

(c)
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An example of an isospectral pair and its building block is given in
figure 1.(a). Drawings of other examples are shown in e.g., (P. Buser
et.al., 1994; S. Chapman, 1995). Okada and Shudo (Y. Okada et.al.,
2001) analyzed these planar isospectral pairs, and showed that the
construction process can be described in terms of a pair of three colored
(not metric) graphs, one graph for each member of the pair. The vertices
stand for the building blocks, and the connecting colored bonds denote
the side about which the reflection is to be performed, each of the colors
represents one of the sides of the basically triangular building block.
This way, the colored graphs provide a systematic way to record and
discuss the topology and related algebraic properties of the domains.

We can construct metric graphs analogues of the domains in R
2,

by replacing the building blocks by appropriate metric graphs which
preserve the required symmetry. As an example, the triangular building
block of figure 1.(a) can be replaced by a 3 - star with bonds of lengths
a, b and c as shown in Figure 1(b). This yields the pair of isospectral
but non isometric graphs shown in figure 1(c). (In drawing figure 1.(c)
we took advantage of the fact that the “angles” between the bonds
do not have any significance). Note that the two graphs shown in
figure 1.(c). share the same connectivity matrix (they are topologically
congruent) however they are not isometric. As a matter of fact the right
and the left graphs are interchanged when the bonds “b” with “c” are
switched. Thus, the lengths b and c must be different to ensure that
the two graphs are not isometric. This is an example of the symmetry
requirement mentioned above.

From here on we shall study the spectrum of the graphs shown
in Figure 1.(c). Similar properties can be derived with only minor
modifications for all the other examples in (P. Buser et.al., 1994).

The vertices in the graphs can be divided to three classes, accord-
ing to their valency (cardinality) vi =

∑
j Ci,j . It is easy to see that

the values of the wave function at the 7 vertices with v = 3 (shown
in Figure 1(c). as numbered large dots) determine the wave function
on all the other vertices. We shall denote these values by �φ I,II =
(φI,II

1 · · · , φI,II
7 )� where the index I, II stand for the left or the right

graph, and the vertices are enumerated as in Figure 3. We shall refer
to the �φ I,II as the the vertex wave functions. The value of the wave
function on a v = 1 vertex connected to the i’th v = 3 vertex by a
bond of length t = a, b, c is

φv=1
t =

φi

cos kt
. (3)
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Similarly, the value of the wave function on a v = 2 vertex which is a
distances t from two v = 3 vertices, is

φv=2
t =

(φi + φj)
2 cos kt

. (4)

Using these relations we can construct the bond wave functions (2) and
express the matching conditions (1) in terms of the vectors �φ I,II only.
The resulting quantization conditions can be expressed in terms of the
matrix,

A(a, b, c; k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ − γ γ 0 0 0 0 0
γ ξ − α− γ α 0 0 0 0
0 α ξ − α− β β 0 0 0
0 0 β ξ − β − γ γ 0 0
0 0 0 γ ξ − α− β − γ α β
0 0 0 0 α ξ − α 0
0 0 0 0 β 0 ξ − β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

with

α(a; k) =
1

sin 2ka
; β(b; k) =

1
sin 2kb

; γ(a; k) =
1

sin 2kc
(6)

and
ξ(a, b, c; k) = tan ak + tan bk + tan ck . (7)

The secular equation for the graph (I) is

det A(a, b, c; kn) = 0 (8)

The corresponding vertex eigenfunction �φ I is the eigenvector of
A(a, b, c; kn) with a vanishing eigenvalue. The secular equation for the
graph II and the corresponding vertex eigenfunctions are obtained from
the matrix A(a, c, b; kn). (c and b are interchanged). Explicit compu-
tation shows that det A(a, b, c; k) = detA(a, c, b; k). This proves the
isospectrality of the two graphs.

The sum of the elements of any of the columns of A(a, b, c; k) is ξ.
Hence the vector �1 = (1, 1, 1, 1, 1, 1, 1) is an eigenvector with an eigen-
value ξ. The values of k for which ξ(a, b, c; k) = 0 are in the spectrum
of both graphs. They correspond to eigenfunctions which are the same
on each of the 3-star - the building block of the complete graphs (figure
1.(b)). As a matter of fact, the condition ξ(a, b, c; k) = 0 is the secular
equation for this 3-star with bond lengths a, b, c (T. Kottos et.al., 1999).
This subset exhausts 1/7 of the spectrum of the graphs, and in this set
the transplantation property is trivial.
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The transplantation property which is basic to the proof of isospec-
trality for the R

2 domains in (P. Buser et.al., 1994) can be explicitly
formulated by the transplantation matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, so that �φ II = T �φ I . (9)

We observe that the inverse transplantation is also effected by T :
�φ I = T �φ II , even though T is not self inversive. The fact that T
induces the transplantation in the two directions, implies that the
vertex wave functions �φ must be eigenvectors of T 2. (The wave func-
tions are defined up to normalization, and therefore the corresponding
eigenvalues can be different than unity). The spectrum of T 2 consists
of the eigenvalue 9 and the six-fold degenerate eigenvalue 2. Thus, the
vertex wave functions are either proportional to �1, or belong to the 6
dimensional subspace of vectors orthogonal to �1.



24 Talia Shapira and Uzy Smilansky

I II

a

b b

2a

2b

a 2a b

2b

a

a

2b

2a

b a

2b

bb 2a

a

1=2

3

4=5

6

7

1

2

3=4

5=7

6

�

�

�

�

�

�

� �

� �

�

�

�

�

�� �

��� �

�

Figure 2. The isospectral quantum graphs of (B. Gutkin et.al., 2001)
The isospectral pair which was proposed in (B. Gutkin et.al., 2001)

can be easily obtained from the example discussed above by taking the
limit c → 0. In this limit the vertices 1, 2 and 4, 5 on graph I, and 3,
4 and 5, 7 on graph II coalesce, and the remaining wave functions are
completely specified in terms of the values on the 5 resulting vertices.
This can be shown explicitly by expanding to leading order in ε = ck
both the matrix A (5) and the eigenvector �φ which corresponds to a
vanishing eigenvalue. We shall present the computation explicitly for
the graph I.

A =
1
ε
A−1 + A0 + εA1 ; �φ = �φ0 + ε�φ1 , (10)

so that the secular condition reads

A�φ =
1
ε
A−1

�φ0+
[
A0

�φ0 + A−1
�φ1

]
+ε

[
A1

�φ0 + A0
�φ1

]
+O(ε2) = 0 , (11)
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Where A1 is the unit matrix, A0 is obtained from A by replacing ξ by
ξ0 = tan ka + tan kb, and setting γ = 0.

A−1 =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0
1 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 1 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The secular condition (11) has to be obeyed separately for the leading
orders in ε. The diverging term implies that �φ0 = (φ1, φ1, φ3, φ4, φ4, φ6, φ7),
which follows from the coalescence of the vertices when c → 0. The
term proportional to ε requires �φ0 = −A0

�φ1. The remaining condition
can be expressed as (−A1A

−1
0 + A0)�φ0 = 0. This condition, in turn,

can be reformulated for vectors of dimension 5 obtained from �φ0 above
by disregarding the second and fifth components. The resulting 5 × 5
matrices for the two isospectral graphs are

AI(a, b; k) =

⎛
⎜⎜⎜⎜⎝

2ξ0 − α α 0 0 0
α ξ0 − α− β β 0 0
0 β 2ξ0 − α− 2β α β
0 0 α ξ0 − α 0
0 0 β 0 ξ0 − β

⎞
⎟⎟⎟⎟⎠ ,

AII(a, b; k) =⎛
⎜⎜⎜⎜⎝

ξ0 − β β 0 0 0
β ξ0 − α− β α 0 0
0 α 2ξ0 − α− β β 0
0 0 β 2ξ0 − β − α α
0 0 0 α ξ0 − α

⎞
⎟⎟⎟⎟⎠ . (13)

Direct computation shows that det AI(a, b; k) = det AII(a, b; k) for
all k, which proves isospectrality. The graphs which result from this
contraction are rather different from the original ones (i.e., they have
vertices with v = 4). They remain metrically distinct even when a = b.
The above discussion shows that their isospectrality is based on the
same algebraic roots,however, in some disguise. Note, that taking the
limit a→ 0 gives two identical graphs.

Finally, it should be emphasized, that the skeleton of v = 3 ver-
tices (shown by larger black dots and numbered in figure 3) form
graphs which are identical to the topological, colored graphs which
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were introduced in (Y. Okada et.al., 2001) to express the transplanta-
tion properties of the isospectral domains in R

2. The quantum, metric
graphs can be obtained simply by completing each topological vertex to
a 3-vertex star graph with lengths a, b, c. Topological bonds are associ-
ated with lengths according to their colors, and bonds are added to the
topological vertices with valency less than three, to complete to 3- stars.
This implies that the computation carried out here can be repeated for
any of the topological graphs shown in (Y. Okada et.al., 2001). The
last example, where we constructed new metric graphs by eliminating
the c bonds, can also be applied for the entire set, to generate a richer
variety of isospectral but not isometric quantum graphs.

3. Scattering approach to quantization

The secular function det A(a, b, c; k) (8) has poles on the real k axis,
which is not convenient for numerical work. In the present section we
use the scattering approach to quantization of graphs (T. Kottos et.al.,
1999), to derive a secular function which is finite on the real axis.

The scattering approach for quantization of graphs is explained in
detail in (T. Kottos et.al., 1999). In this method, to each vertex one
associates an elementary scattering matrix σi

d′,d, where d labels a di-
rected bond which is incoming to the vertex i while d′ labels a directed
bond which is outgoing from i. Denoting the valency of the vertex i
by vi, then σi is a vi × vi unitary matrix. Using the σ matrices for all
the vertices on the graph, one constructs a 2B × 2B unitary matrix,
SB

d′,d in the space of all the directed bonds. Its elements vanish unless
d and d′ are incoming and outgoing bonds from the same vertex i. In
this case

SB
d′,d(k) = eikLd′σi

d′,d , (14)

where Ld is the length of the bond d, and k the wave number. The
eigenvalues of the graph are the set {k2

n} where kn are the solutions of
the secular equation

det( I − SB(k) ) = 0 (15)

and I is the 2B × 2B unit matrix. The unitarity of SB(k) on the real
k line guarantees that the secular function is finite.

The main disadvantage of (15) is that the number of directed bonds
2B may be quite large, (in the example discussed presently, 2B = 30
while the matrix A has dimension 7. However, the tree structure of
most of the isospectral graphs under consideration here can be used
to obtain a much simplified, and almost explicit form of the secular
function. This simplification is the object of the present appendix.
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Most of the graphs we deal with are trees- that is, they do not have
any self tracing loops. Choose a vertex which will be the “root”. In the
example we consider here we shall take vertex 5 as the root (see figure
1.(c)). A wave which propagates from the root along a certain branch is
reflected, and this reflection can be expressed by a reflection from the
vertex which is next to the root. Once we know the reflection coefficient,
which because of unitarity is a complex number with unit modulus, we
can construct the SB(k) matrix. In the present cases, when the valency
of the root is 3, we get

SB(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

e2ika 0 0 0 0 0
0 e2ikb 0 0 0 0
0 0 e2ikc 0 0 0
0 0 0 e2ika 0 0
0 0 0 0 e2ikb 0
0 0 0 0 0 e2ikc

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 ρa 0 0
0 0 0 0 ρb 0
0 0 0 0 0 ρc

− 1
3

2
3

2
3 0 0 0

2
3 − 1

3
2
3 0 0 0

2
3

2
3 − 1

3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.(16)

The columns and rows of SB are arranged such that the bonds outgo-
ing from the root occupy the first 1.(c) indices, while the incoming ones
take the last ones. The first matrix on the left is just the exponentiated
bond-length matrix. In the second matrix, the reflection coefficients
are denoted by ρ with a suffix which labels the corresponding bond by
its length. The 3 × 3 matrix at the lower left quadrant is the vertex
scattering matrix for the root. After some algebra we get

det( I − SB(k) ) =

1
3

[4(1− ρ̃a(k)ρ̃b(k)ρ̃c(k)− (1− ρ̃a(k))(1− ρ̃b(k))(1− ρ̃c(k))] (17)

where ρ̃a(k) = e4iakρa(k), etc. The secular equation can be made real
by multiplying it with [detSB(k)]

1
2 = [−ρ̃a(k)ρ̃b(k)ρ̃c(k)]

1
2 . This gives

the desired form of the secular equation in real form, and the only task
is to compute the reflection coefficients ρa,b,c.

The computation of ρa or ρb (for graph I in figure 1.(c)) is straight
forward. It corresponds to scattering from a vertex from which emerge
two bonds of lengths p and q and the line on which the wave is incoming
and outgoing. The reflection coefficient is

r(p, q; k) = −tan kp + tan kq − i

tan kp + tan kq + i
(18)

Thus, ρa(k) = r(b, c; k) ; ρb(k) = r(a, c; k). The computation of the re-
flection coefficient of the more complex branch needs on more element.
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Consider a v = 3 vertex out of which a bond of length p emerges and
waves can imping on the vertex from two lines and be either transmitted
or reflected. The vertex scattering matrix in this case is 2 × 2 and it
reads

σ(k) =
(

r(p; k) t(p; k)
t(p; k) r(p; k)

)
;

t(p; k) =
1

1− i
2 tan kp

; r(p; k) =
i
2 tan kp

1− i
2 tan kp

. (19)

Proceeding now along the branch from the root, we encounter 3 vertices
with scattering matrices of the type (19) which are separated by and
vertices of lengths 2c, 2b, 2a until we reach a vertex from which the re-
flection coefficient is of the type (18). The effective reflection coefficient
can be computed iteratively, using

ρi = ri +
e2ikpit2i

1− rie2ikpiρi−1
ρi−1 . (20)

Here ρi is the reflection coefficient from the branch which starts at the
i’th vertex. The length of the bond i, i − 1 is pi, the verex with i = 0
is the last v = 3 vertex (number 1 in graph I of figure 3) and for the
computation here the iteration goes over i = 1, 2, 3. Clearly ρ0 = r(p =
a, q = b; k). The mapping ρi−1 → ρi is a Möbius transformation which
preserves the unit circle.

Finally it should be noted that the tools developed above, can be
directly applied for all but the pair 211 shown in figure 5 of (Y. Okada
et.al., 2001).

4. Summary

We presented above a general method to construct isospectral pairs
of quantum graphs, by converting each of the known pairs of domains
in R

2 to a corresponding pair of quantum graph. We demonstrated
it by an explicit example, and provided two secular functions whose
zeros are the spectrum of the graphs. One of these secular functions
preserves in a transparent way the underlying algebraic structure which
is responsible for the isospectrality. This is achieved at the cost of being
less convenient for numerical work. The scattering approach provides
another form of the secular function which is bounded on the real k
axis. The tree structure of the graphs can be used to simplify the secular
function, at the cost of obscuring the underlying algebraic structure.
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However, the secular functions for the pairs of graphs coincide in both
version - thus providing explicit proofs of isospectrality.
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Scarred states in strongly coupled quantum systems
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Abstract. Twenty years after they were first introduced, quantum wavefunctions
scarred on classically unstable structures continue to appear in new and surprising
contexts. Starting from the photoelectric effect in ultra-strong fields, the manu-
script briefly reviews some of these and suggests a motivation for a more general
understanding of this quantum phenomenon.

Keywords: Quantum chaology; photoelectric effect; decoherence; mesoscopic sys-
tems.

1. Introduction

In his 1987 Bakerian Lecture to the Royal Society in London, M. V.
Berry defined quantum chaology as “the study of semiclassical, but
nonclassical, behaviour characteristic of systems whose classical mo-
tion exhibits chaos” (M.V. Berry, 1987). For more than two decades
prior to this, work on systems which exhibited such behavior had been
ongoing under the nominal definition of ‘quantum chaos’ (G. Casati,
et.al., 1995). Unfortunately, the very nature of quantum mechanics
precludes many of the defining characteristics of classical chaos, making
this latter definition burdensome. In fact it even led some researchers
to ignore the unquestionable fact that there are quantifiable changes in
the quantum dynamics when the limiting classical dynamics exhibits
chaos, as compared with a nonchaotic counterpart. In this article, we
focus on one specific manifestation, the phenomenon of “scarring” of
quantum mechanical wavefunctions on unstable classical structures.

The concept of scarred quantum wavefunctions was introduced by
Eric Heller (E.J. Heller, 1984) a little over 20 years ago in work that
contradicted what appeared at the time to be a reasonable expecta-
tion. It had been conjectured (M.V. Berry, 1981) that a semiclassical
eigenstate (when appropriately transformed) is concentrated on the
region explored by a generic classical orbit over infinite times. Applied
to classically chaotic systems, where a typical orbit was expected to
uniformly cover the energetically allowed region, the corresponding
typical eigenfunction was anticipated to be a superposition of plane

© 2006 Springer. Printed in the Netherlands. 
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waves, i.e.
ψ =

∑
n

An exp (i �kn.�r) , (1)

with random amplitudes An and random orientation �kn though con-
stant | �kn|. Heller considered the system of the stadium or Bunimovich
billiards, known to be classical chaotic, and numerically computed the
excited states of the quantum problem. The surprise was that these
states were not at all random but exhibited pronounced ridges along
unstable classical periodic orbits. A heuristic explanation of this phe-
nomenon can immediately be constructed by considering a quantum
wavepacket centered on a classical unstable periodic orbit. The packet
returns with frequency ω and a reduced amplitude characterized by
the classical Lyapunov exponent λ and self-interferes. The ratio ω/λ
controls the local density enhancement, favoring shorter period orbits
and those that are less unstable. In general, states are associated with
a combination of periodic orbits than with a specific orbit except in the
deep semiclassical regime.

Semiclassical constructions of scarred wavefunctions, first in con-
figuration space (E.B. Bogomolny, 1988) and then more conveniently
in phase space (M.V. Berry, 1989), were quickly obtained. The phase
space construction is particularly suggestive for our view given the clear
analogy to the treatment of integrable systems. The result was a Wigner
function peaked along a periodic orbit with interference fringes due to
on- and off- energy shell effects. A few years later, a measure of the
extent of scarring (along a periodic orbit) or ‘scar weight’ was proposed
which once again reinforced the idea that lower period orbits are more
prone to scarring (O. Agam, et.al., 1994).

In this article, we take the view that scarred states provide a basis
for strongly coupled quantum systems, which typically exhibit non-
integrable classical limits. We use a simple paradigm to support this
view and cite other examples in the literature as evidence that the idea
may be valid in applications outside the strict semiclassical regime and
for open quantum systems. These are used to suggest the need for a
more general understanding of the scarring phenomenon, even in the
semiclassical regime (H. Schanz, et.al., 2003).

2. Photoeffect and stabilization

We were first introduced to the photoelectric effect as the emission
of electrons when a surface is irradiated with light. The threshold is
defined by hν = W where ν is the frequency of the light and W a
characteristic binding energy for the electron. It was soon realized that
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a generalized multi-photon threshold Nthhν = W was possible though
the intensity of the light had to be considerably higher with increasing
Nth. This principle was put into practice with the advent of the laser,
with atoms and molecules as targets, and W taken to be the ionization
or dissociation energy. Since that time, laser power has rapidly gone
through the kilo-, mega-, giga-, and tera- prefixes and is now into the
peta-Watt regime. This increase in intensity has brought with it new
and manifestly non-perturbative phenomena such as above-threshold
ionization (where the electron absorbs more photons than the minimum
needed for ionization) and harmonic generation (the irradiated system
scatters photons at frequencies which are large multiples of the incident
frequency). These have led to a revision of the traditional analysis of
multi-photon physics (P.W. Milonni, et.al., 1993). Most importantly,
from our perspective, it has brought dynamics to the foreground.

Despite these changes in our understanding of the photoeffect, the
one feature which had not been challenged was the fact that the proba-
bility of freeing the electron was still expected to increase with increas-
ing intensity of the light. In other words, the lifetime of the quantum
state was expected to decrease with growing intensity.

The phenomenon of ‘stabilization’ was reported in numerical ex-
periments (Q. Su, et.al., 1990) with a model Hamiltonian for a 1-D
atom:

H(x, p, t) = p2/2− 1/
√

1 + x2 + xF cos(ωt + φ) , (2)
where F , ω, and φ are the field strength, frequency, and phase of the
oscillating electric field (in atomic units). This 1-D model potential
asymptotes to the Coulombic potential for large x, but eliminates the
singular behavior at the origin. The solution of the time-dependent
Schrodinger equation, yielded the surprising result that on increasing
F , the probability for freeing the electron decreased dramatically, for
fixed interaction time. The wavefunction at this time also exhibited
peaks which were consistent with an effective double well potential
(Q. Su, et.al., 1990). Both ‘stabilization’ and the distinct ‘dichotomous’
form of the residual wavefunction were soon confirmed in more realistic
3-D simulations (K.C. Kulander, et.al., 1991). However, introducing
dynamics in the analysis shows that stabilization is an illustration of
the effects of ‘quantum chaology’, which can then be used to predict
both the extent of stabilization and the shape of the wavefunction
(R.V. Jensen, et.al., 1990).

In the high-field limit (F > 1 atomic unit meaning that it is greater
than the binding potential) the smoothed Coulomb potential in Eq.
(2) can be treated as a perturbation on the regular, classical motion
of a free electron in an oscillating field. So, let us first consider the
Hamiltonian for the one-dimensional motion of a free electron in the
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oscillating electric field E = Fcos(ωt + φ),

H0(x, v, t) = v2/2− xFcos(ωt + φ) . (3)

The classical equations of motion can be integrated exactly and the
solution for the position of the electron as a function of time,

x(t) = x0 −
F

ω2
[cos (ωt + φ)− cos φ] + [v0 −

F

ω
sin φ]t , (4)

describes a particle that oscillates back and forth in the electric field
with frequency ν = ω/2π and amplitude α = F/ω2, and drifts away
from its initial position, x0, with velocity vd = v0 − F

ω sin φ .
The classical motion is considerably simplified if we consider vari-

ables in the oscillating frame

q = x + α[cos (ωt + φ)− cos φ]
(5)

p = v − [
F

ω
sin (ωt + φ)] .

In the absence of any other forces p = vd is constant and the oscillation
center drifts at the constant velocity q(t) = x(0) + vdt. In particular, if
vd = 0 (eg. v0 = 0 and φ = 0 or π), then q(t) = x0 is constant.

On adding a potential V (x), we have in the transformed frame

H(q, p, t) = p2/2 + V (q − α[cos (ωt + φ)− cos φ]) , (6)

which can be conveniently expanded in a discrete Fourier series

H(q, p, t) = p2/2 +
∞∑

n=−∞
Vn(q)einωt , (7)

as the perturbation is periodic with period T = 2π/ω. The Fourier
coefficient V0(q) is simply the time-averaged potential which is all that
is required in the high-frequency approximation. Away from this limit,
the other coefficients Vn(q) contain valuable dynamical information.

The ansatz that Vn(q) ≈ V0(q) for a large number of n provides the
other extreme. In this case, the Hamiltonian in the oscillating frame
reduces to

H(q, p, t) ≈ p2/2 + V0(q)
∞∑

n=−∞
δ(t− nT + φT/2π) , (8)

using the Poisson sum rule. The phase φ can be set to zero with no loss
of generality and integrating the classical equations of motion over one
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period T leads to the nonlinear, area-preserving map,

qn+1 = qn + Tpn+1

(9)
pn+1 = pn + G(qn)

where qn and pn are the positions and momenta of the electron in the
oscillating frame, evaluated once every period of the field. The total
impulse of each kick G(qn) is the time-integral of the force over one
period and can be simply expressed in terms of the space derivative of
the time-integral of the oscillating potential,

G(qn) = − d

dq
TV0(q)|q=qn . (10)

A more physical motivation for the map as well as the explicit condi-
tions for its validity are discussed in Ref. (R.V. Jensen, et.al., 1990).

Figure 1. Kick potential as a function of q for F = 5.0 (a.u.) and ω = 0.52 (a.u.), for
both exact and approximate (evaluated only in the vicinity of the classical turning
points) kicking terms. The curves clearly show that a simple constant shift is the
only difference. Note that F = 5 means that the external field is five times larger
than the binding field.

We now consider the smoothed Coulomb potential

V (x) = −Z/
√

a2 + x2 , (11)

for which the time-average of the potential in the moving frame can be
expressed exactly in terms of elliptic integrals. For our purposes it is
enough to note that, as shown in Fig. 1, it is a double-welled potential
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Figure 2. The classical stability of the map (dots) and the full differential dynamics
(circles) was assessed by advancing the equations of motion 200 periods of the
perturbation. If the trajectory returned to the vicinity of the nucleus a point was
plotted in the (ω − F ) parameter plane. The dividing line α = 1.0 is indicated by
the dotted line while the stability boundary is shown by the solid line.

with minima near the classical turning points at 0 and −2α for the free
electron in the oscillating field. The map approximates the impulse
only at these turning points and results in G(qn) = kF (qn) where
k =

√
8/F and F (x) involves complete elliptic integrals of the first

and second kinds. The effective potential in the map approximation,
also shown in Fig. 1, is simply shifted relative to the exact potential.
The product κ = kT is the stochasticity parameter and determines
the nature (locally/globally/not chaotic) of the phase space of classical
solutions. Both high field and high frequency limits lead to small κ,
which implies ‘linear’ or integrable dynamics. The validity of the map
approximation can be checked and shown to be more effective with
increasing α (R.V. Jensen, et.al., 1990).

Using the mapping, a general stability analysis can be used to predict
the classical parameter bounds for stabilization. These are determined
merely by the existence or not of stable regions (islands) in phase space.
The clearest representation of the parameter values for which regular
regions exist in the classical phase space is a stability diagram in the
space of F − ω, shown in Fig. 2. The dotted line divides the overall
parameter space into two regions where α < 1 (on the right side) and
α > 1 (on the left side). When α << 1 the map potential is a single
well centered on a fixed point near −α.

Increasing α leads to the effective double-well potential shown earlier
with two elliptic (stable) and one hyperbolic (unstable) fixed points.
The elliptic fixed points become unstable for parameter values below
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Figure 3. Classical phase portraits (upper panel), residual quantum wavefunctions
(middle panel), and ionization probability versus time (in units of the period T )
(bottom panel). The parameters are (A) F = 5.0, ω = 0.52; (B) F = 20, ω = 1.04;
and (C) F = 10 and ω = 2.0. Note that the peak structure of the final wavefunction
reflects both stable and unstable classical fixed points. For case C, the peaks are
beginning to coalesce reflecting the approach of the single-well effective potential
(see text).

an analytically predicted stability border (solid line) after which no
classical mechanism for stabilization exists. The predicted boundary is
consistent with the existence of stable structures in both map dynam-
ics (indicated by the dotted region) and the full differential dynamics
(indicated by the open circles), as seen from Fig. 2. Note the region
of low F and ω where map and differential dynamics disagree. In this
regime, the relevant time scale is the internal period rather than the
external field period we use. This results in a different stroboscopic
approximation called the Kepler map (G. Casati, et.al., 1988).

We consider three parameter sets corresponding to the points A,
B and C in the stability diagram. Purely classical stability arguments
would suggest no stabilization for A and a larger fraction for C as
compared with B. C is also closer to the line α = 1 which means
a near single-well effective potential. As we shall see, the quantum
determination of stability is considerably more complicated.

For the quantum dynamics, we simply integrate the time-dependent
Schrodinger equation (in atomic units)

i
∂Ψ(x, t)

∂t
=

[
−1

2
∂2

∂x2
− V (x)− xE(t)

]
Ψ(x, t) , (12)
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on a space-time grid. The initial condition is the ground state of the
undriven potential. Given our picture of the stabilization mechanism
as resulting from a free-particle interacting periodically with trapping
centers (in this case a double well potential), a simple measure of ion-
ization is the fraction of wavefunction that is outside the “interaction
volume”. A smaller ionized fraction means increased stabilization. As
the maximum spacing of the double-wells (averaging over an external
period) is 4α, a suitable choice for this interaction volume (in one
dimension) is −4α ≤ x ≤ 4α. Thus, a definition of ionization as

PI(t) =
∫
|x|>4α

|Ψ(x, t)|2dx (13)

is adequate to establish when stabilization is significant.
The results of the quantum simulations for cases A, B and C are

shown in the lower two panels in Fig. 3. The corresponding classical
phase portraits shown reinforce our inferences from the stability dia-
gram; no stabilization for A while larger islands exist for C as compared
with B. However, the ionized fraction as calculated from the quantum
evolution supports the contrary result that there is more stabilization
for A as compared with B. Case C is the most stable which is at
least consistent with the classical prediction. What is the origin of this
discrepancy?

Figure 4. Homoclinic tangle associated with the fixed point at (−α, 0) for case A.
Near the fixed point, the solid line gives the unstable direction while the dashed line
is the stable direction. The size of Planck’s constant h is shown to illustrate that
several states can be supported by the single structure. An estimate of the number
of states is given by the number of h boxes needed to cover the structure.

The resolution comes from the fact that the classical predictions
were based entirely on the stability analysis of low-order fixed points.
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Though a fixed point may be unstable, there remains an important
dynamically invariant, but unstable, classical structure - the homoclinic
tangle. Homoclinic tangles corresponding to cases A and B are shown
in Figs. 4 and 5 respectively. The tangle emanates from unstable fixed
points and its complicated appearance is simply a consequence of the
area-preserving constraint of Hamiltonian evolution. The unstable tan-
gle also provides support for quantum wavefunctions - an example of
scarring. A simple estimate of the ‘support’ provided by the tangle for
quantization is obtained by considering how the size (area) of the tan-
gle compares with Planck’s constant. This measure clearly shows that
despite larger stable regions, the overall support stable and unstable,
is considerably less in case B as compared with case A. This is the
reason for the reduced stabilization. However, the wavefunction at the
end of the interaction time in case B exhibits three distinct peaks which
clearly reflect the stable regions in the phase space, unlike A. Case C
is one where the phase space is dominated by a large stable region
and classical and quantum intuition agree. Thus, the discrepancy in
cases A/B is a direct consequence of what was stated to be quantum
chaology - “..nonclassical behaviour characteristic of systems whose
classical motion exhibits chaos”.

Figure 5. Same as Fig 4 but for case B. Note that the classical excursion α = F/ω2

is the same in the two cases.

These considerations can be extended to the full 3-D system where
scarring is once again a relevant feature (R.V. Jensen, et.al., 1993;
F. Benvenuto, et.al., 1994). For those concerned by the large field
strengths used in the illustrative cases, it should be noted that these
results can be scaled to other frequency regimes and also to excited
state initial conditions, where an experimental realization is more likely
(R.R. Jones, et.al., 1991). However, our simple example is sufficient to
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illustrate the fact that scarred states provide a compact description of
the quantum behavior of this strongly coupled system.

3. Other examples and inferences

The system we just considered shows how the transfer of energy from
the external field to the atomic system is severely hampered when
scarred quantum states are excited. The very same effect was first
experimentally seen and analyzed in the context of highly-excited (Ry-
dberg) atoms in the presence of strong electric or magnetic fields. In
particular, we cite the example of microwave ionization of Rydberg
hydrogen atoms where it was observed that the field strengths re-
quired to ionize atoms prepared in n = 62 state was considerably
higher than when the initial state was n = 61 (Van Leeuven, et.al.,
1985; E.J. Galvez, et.al., 1988). On projecting the initial state onto a
appropriately chosen basis, it was shown that the n = 62 projection
was dominated by a single strongly scarred state (R.V. Jensen, et.al.,
1989). By contrast, n = 61 was composed of several states none of which
strongly inhibited excitation to higher levels. A detailed resolution to
the question as to why the excitation of this particular state inhibited
ionization was provided a few years later (J.G. Leopold, et.al., 1994)
when it was shown that the scarred state was less strongly coupled
to high lying states as contrasted with (energetically) adjacent states.
Other instances of non-monotonic variation in the data could also be
explained using this same idea.

This notion that scarred states may preferentially couple to other
states was also suggested more recently in the context of deviations
from random matrix theory (S. Jammalamadaka, et.al., 1999). The
authors considered the case of a Rydberg atom in a magnetic field and
looked for deviations in the statistics of transition probabilities from
the predictions of random matrix theory. They found variation from the
predicted distribution at large values of the (scaled) transition prob-
ability and related this to couplings among states scarred on classical
unstable periodic orbits. On removing these states from the sample, the
distribution reverted to the random matrix theory prediction. Thus, in
this case, the scarred wavefunctions formed a strongly coupled subspace
of states.

Another important contribution came in the form of a solution to
an old problem, that of the semiclassical theory of Helium (G.S. Ezra,
et.al., 1991). Besides demonstrating the necessity to include contri-
butions from unstable dynamics in computing the energies, the work
also showed that doubly excited resonances (corresponding to strongly
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coupled electronic motion) are scarred states. Together, these examples
(and others) appear to suggest that scarred states (when better char-
acterized) may be an effective basis for dealing with strongly coupled
quantum systems.

The stability of scarred states to external noise and other environ-
mental disturbances was the next natural issue that was raised and
partially addressed earlier (L. Sirko, et.al., 1993; R. Scharf, et.al., 1994).
The main conclusion was that scarred states are quite robust to ‘rea-
sonable’ levels of noise. This question took on added relevance with the
coming of age of mesoscopic systems where, be it spontaneous emission
in atom optics or leads or scattering and other forms of dissipation in
heterostructures, the open nature of the system must be accounted for.
These new experiments also provided non-ideal realizations of simple
theoretical paradigms such as stadium billiards and the kicked rotor,
with additional issues that had to be accounted for in the theory.

The role of leads in electronic realizations of billiard systems (C. M.
Marcus, et. al., 1992) is of particular interest. Here, the usual assump-
tion is that the coupling to the leads uniformly smears the (lead-free)
level spectrum. However, recent work (R. Akis, et.al., 2002) challenges
this notion, suggesting instead that level broadening is highly non-
uniform and that individual states can stay resolved even when the
leads are very wide. In particular, these ‘long-lived’ states were shown
to be those scarred on periodic orbits which avoid the leads, suggesting
situations under which some scarred states may survive an apparent
strong coupling to the environment.

Our recent work on a semiclassical view of the quantum-classical
transition in a class of open systems shows that environmental noise
modifies both classical and quantum dynamics to arrive at agreement
(B. D. Greenbaum, et. al.,). When the two dynamics match, the Wigner
function clearly highlights the early time segments of the unstable clas-
sical manifold (with some fringing) suggesting a possible connection to
the Berry construction for scars (M.V. Berry, 1989). Here again, the
coupling to the environment is significant when this occurs.

In summary, the main point of this paper can be put in the following
way. Integrable systems (classical and quantum) can be viewed as those
with a preferred (diagonal) representation, a feature that no longer
exists once the classical dynamics become nonintegrable or chaotic.
Here, quantum mechanically, any expansion basis is as effective as any
other. We have suggested (by considering just a few examples from a
large literature on the topic) that scarred states may be the preferred
basis for strongly coupled quantum systems and, as such, are worth
characterizing more fully.
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Nonlinear quantum dynamics

Salman Habib
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Abstract. The vast majority of the literature dealing with quantum dynamics
is concerned with linear evolution of the wave function or the density matrix. A
complete dynamical description requires a full understanding of the evolution of
measured quantum systems, necessary to explain actual experimental results. The
dynamics of such systems is intrinsically nonlinear even at the level of distribution
functions, both classically as well as quantum mechanically. Aside from being phys-
ically more complete, this treatment reveals the existence of dynamical regimes,
such as chaos, that have no counterpart in the linear case. Here, we present a short
introductory review of some of these aspects, with a few illustrative results and
examples.

Keywords: chaos, conditioned evolution, continuous measurement, density matrix,
quantum backaction, quantum feedback.

1. Introduction

It is hard to imagine a scientific discipline older than the study of
dynamical systems. The remarkable history of the field testifies to
nature’s inexhaustible store of subtlety and ability to surprise. Ever
since Galileo, remarkable experiments, deep theoretical insights, and
powerful calculational tools have all contributed to creating the rich
panorama that the field presents today.

by the rules of evolution and the physical objects to which these rules
apply. Our fundamental notions regarding both aspects have undergone
radical changes in the past few hundred years. Classical mechanics has
made way for quantum mechanics and absolute notions of space and
time have been replaced by the unified viewpoint of classical general
relativity. A key lesson to be drawn from these advances is that even
the most basic notions regarding the nature of physical information
must change as our overall understanding progresses.

The next step forward has yet to be taken: The clash between
relativity and quantum mechanics – the choice between causality and
unitarity – awaits resolution. However, on a less grand scale, the tension
between fundamentally different points of view is already apparent in
the discord between quantum and classical mechanics. Unlike special
relativity, where v/c → 0 smoothly transitions between Einstein and
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From a theoretical perspective, dynamical systems are specified
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Newton, the limit �→ 0 is singular. The symmetries underlying quan-
tum and classical dynamics – unitarity and symplecticity, respectively
– are fundamentally incompatible with the opposing theory’s notion of
a physical state: quantum-mechanically, a positive semi-definite density
matrix; classically, a positive phase-space distribution function.

Chaos provides an excellent illustration of this dichotomy of world-
views (A. Peres, 1993). Without question, chaos exists, can be exper-
imentally probed, and is well-described by classical mechanics. But
the classical picture does not simply translate to the quantum view;
attempts to find chaos in the Schrodinger equation for the wave func-
tion, or, more generally, the quantum Liouville equation for the density
matrix, have all failed. This failure is due not only to the linearity of the
equations, but also the Hilbert space structure of quantum mechanics
which, via the uncertainty principle, forbids the formation of fine-scale
structure in phase space, and thus precludes chaos in the sense of
classical trajectories. Consequently, some people have even wondered if
quantum mechanics fundamentally cannot describe the (macroscopic)
real world.

It is therefore clear that there is more than sufficient motivation
for investigating the notion of nonlinearity in classical and quantum
theories. The main point of this article is to provide an angle of vision
which sets nonlinearity in its experimentally relevant context. Familiar
to control theorists (P.S. Maybeck;Jacobs, 1993) – but much less so to
most physicists – this perspective bridges the classical and quantum
points of view and smoothly connects them with each other.

The ar ticle is organized as follows. We will begin with a discussion
of the various possibilities of dynamical description, clarify what is
meant by “nonlinear quantum dynamics”, discuss its connection to
nonlinear classical dynamics, and then study two experimentally rel-
evant examples of quantum nonlinearity – (i) the existence of chaos
in quantum dynamical systems far from the classical regime, and (ii)
real-time quantum feedback control.

The results described here are due to the efforts of many people
spread over the last thirty years or so, some results being even older.
Unfortunately, space limitations prevent anywhere near an adequate
job of referencing, for which a sympathetic understanding is begged in
advance. Restrictions also meant the omission of important topics and
explanations of derivations.
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2. Evolution: isolated, open, and conditioned

How should one describe a dynamical system? Before settling on a
definition, it is best to first ask some important physical questions.
As an illustrative example, a situation worth learning from arose in
the attempt to define a field-theoretic notion of a particle in a gen-
eral spacetime (W.G. Unruh, 1976). In Minkowski space, the formal
definition is simple: positive energy plane-waves, but this definition
cannot be extended to arbitrary metrics. It soon became clear that the
correct way to approach the problem was to give up the attempt to
arrive at a formal definition and replace it with a physical definition:
“A particle is what a particle detector detects.” Thus, specifying a field
theory Lagrangian is not sufficient to define the notion of a particle,
additionally we must model the detector and how it couples to the field.
Just what a physical ‘particle’ is depends on the design of the detector
and the field-detector coupling.

Keeping the lesson of the above example in mind, we will explore
three different dynamical possibilities below: isolated evolution, where
the system evolves without any coupling to the external world, un-
conditioned open ev olution, where the system evolves coupled to an
external environment but where no information regarding the system is
extracted from the environment, and conditioned open evolution where
such information is extracted. In the third case, the evolution of the
physical state is driven by the system evolution, the coupling to the ex-
ternal world, and by the fact that observational information regarding
the state has been obtained. This last aspect – system evolution condi-
tioned on the measurement results via Bayesian inference – leads to an
intrinsically nonlinear evolution for the system state. The conditioned
evolution provides, in principle, the most realistic possible description
of an experiment. To the extent that quantum and classical mechanics
are eventually just methodological tools to explain and predict the
results of experiments, this is the proper context in which to compare
them.

2.1. Isolated and Open Evolution

Suppose we are given an arbitrary system Hamiltonian H(x, p) in terms
of the dynamical variables x and p; we will be more specific regarding
the precise meaning of x and p later. The Hamiltonian is the generator
of time evolution for the physical system state, provided there is no cou-
pling to an environment or measurement device. In the classical case, we
specify the initial state by a positive phase space distribution function
fCl(x, p); in the quantum case, by the (position-representation) positive
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semi-definite density matrix ρ(x1, x2) or, completely equivalently, by
the Wigner distribution function fW (x, p) (M. Hillery et.al., 1984) (not
positive).

The evolution of an isolated system is then given by the classical and
quantum Liouville equations for the fine-grained distribution functions
(i.e., the evolution is entropy-preserving):

∂tfCl(x, p) = −
[

p

m
∂x − ∂xV (x)∂p

]
fCl(x, p), (1)

∂tfW (x, p) = −
[

p

m
∂x − ∂xV (x)∂p

]
fW (x, p)

+
∞∑

λ=1

(�/2i)2λ

(2λ + 1)!
∂2λ+1

x V (x)∂2λ+1
p fW (x, p), (2)

here we have assumed for simplicity that the potential V (x) can be
Taylor-expanded. Note that these evolutions are both linear in the
respective distribution functions. Classically, the limit fCl(x, p) = δ(x−
x̄)δ(p− p̄) is allowed, and, on substitution in Eqn. (2), yields Newton’s
equations. These may then be interpreted as equations for the particle
position and momentum, although this identification is only formal
at this stage (as in the Minkowski space definition of a particle in
the field theory example). Quantum mechanically, this ultralocal limit
is not allowed as fW (x, p) must be square-integrable, therefore, even
formally, no direct particle interpretation exists (an obstacle that arises
as something new is added – just like the generalization to arbitrary
metrics above).

The basic idea behind extension to open systems is simple to state
but not easy to implement in practice. The complete Hamiltonian
now includes a piece representing the environment and another, the
system-environment coupling. If the environment is in principle un-
observable, then a (nonlocal in time) linear master equation for the
system’s reduced density matrix is derivable by tracing over the envi-
ronmental variables (in practice, tractable equations are impossible to
obtain without drastic simplifying assumptions such as weak coupling,
timescale separations, and simple forms for the environmental and cou-
pling Hamiltonians). In any case, the important point to note is that the
act of tracing over the environment does not change the linear nature
of the equations. Generally speaking, master equations describing open
evolution of coarse-grained distributions augment the RHS of Eqns. (2)
and (2) with terms containing dissipation and diffusion kernels con-
nected via generalized fluctuation-dissi pation relations (R. Zwanzig,
2001). While the classical diffusion term vanishes in the limit of zero
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temperature for the environment, this is not true quantum mechanically
due to the presence of zero-point fluctuations.

2.2. Conditioned Evolution

Conditioned evolution of the type we are interested in here is fun-
damentally different from the equations discussed above. We assume
that measurements are possible on the environment and ask what the
evolution of the reduced density matrix of the system is, given that
the results of these measurements are known (H.J. Carmichael, 2001).
Let us consider an example. Suppose we wish to measure the position
of a nanomechanical oscillator (Fig. 1). By electrostatically coupling
the resonator to a single-electron transistor (SET), and measuring the
(classical) SET current – the measurement record – we are in fact
measuring the transverse displacement of the resonator. In this situa-
tion, the evolution of the reduced density matrix of the system must
contain a term that reflects the gain in information arising from the
measurement record (“innovation” in the language of control theory).
This term, arising from applying a continuous analog of Bayes’ theorem,
is intrinsically nonlinear in the distribution function. The coupling to an
external probe (and the associated environment) will also cause effects
very similar to the open evolution considered earlier, and there can
once again be dissipation and diffusion terms in the evolution equations.
The primary differences between the classical and quantum treatments,
aside from the kinematic constraints on the distribution functions,
are the following: (i) the (nonlocal in p) quantum evolution term in
Eqn. (2), and (ii) an irreducible diffusion contribution due to quantum
backaction reflecting the active nature of quantum measurements.

We now consider a simple model of position measurement to pro-
vide a measure of concreteness. In this model, we will assume that
there are no environmental channels aside from those associated with
the measurement. Suppose we have a single quantum degree of free-
dom, position in this case, under a weak, ideal continuous measure-
ment (C.M. Caves et.al., 1987). Here “ideal” refers to no loss of in-
formation during the measurement, i.e., a fine-grained evolution with
no loss of unitarity. Then, we have two coupled equations, one for the
measurement record y(t),

dy = 〈x〉dt + dW/
√

8k (3)

where dy is the infinitesimal change in the output of the measure-
ment device in time dt, the parameter k characterizes the rate at
which the measurement extracts information about the observable,
i.e., the strength of the measurement (A.C. Doherty et.al., 2001), and
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Figure 1. A nanomechanical resonator: the thin central bar is coated with a conduc-
tor (gold) which also forms the T-shaped control electrode to the left. The thin line
parallel to the resonator is the central island of a single-electron transistor which
serves as the position sensor.

dW is the Wiener increment describing driving by Gaussian white
noise (D.T. Gillespie, 1996), the difference between the observed value
and that expected. The other equation – the nonlinear stochastic mas-
ter equation (SME) – specifies the resulting conditioned evolution of
the system density matrix, given below in the Wigner representation,

fW (x, p, t + dt) =
[
1 + dt

[
− p

m
∂x + ∂xV (x)∂p + DBA∂2

p

]

+ dt
∞∑

λ=1

(�/2i)2λ

(2λ + 1)!
∂2λ+1

x V (x, t)∂2λ+1
p

]
fW (x, p, t)

+dt
√

8k(x− 〈x〉)fW (x, p, t)dW, (4)

where DBA = �
2k is the diffusion coefficient arising from quantum

backaction and the last (nonlinear) term represents the co nditioning
due to the measurement. In principle, there is also a (generalized)
damping term (D. Mozyrsky et.al., 2002), but if the measurement
coupling is weak enough, it can be neglected. If we choose to average
over all the measurement results, which is the same as ignoring them,
then the conditioning term vanishes, but not the diffusion from the
measurement backaction. Thus the resulting linear evolution of the
coarse-grained quantum distribution is not the same as the linear fine-
grained evolution (2), but yields a conventional open-system master
equation. Moreover, for a given (coarse-grained) master equation, dif-
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ferent underlying fine-grained SME’s may exist, specifying different
measurement possibilities.

The classical conditioned master equation [set � = 0 in Eqn. (4),
holding k fixed],

fCl(x, p, t + dt) =
[
1− dt

[
p

m
∂x − ∂xV (x)∂p

]]
fCl(x, p, t)

+dt
√

8k(x− 〈x〉)fCl(x, p, t)dW, (5)

does not have the backaction term as classical measurements are pas-
sive: Averaging over all measurements simply gives back the Liou-
ville equation (2), and there is no difference between the fine-grained
and coarse-grained evolutions in this special case. [In general, classi-
cal diffusion terms from ordinary open evolution can also co-exist, as
in the more general a posteriori evolution specified by the Kushner-
Stratonovich equation.] As a final point, we will delay our discussion
of how the classical trajectory limit is incorporated in Eqn. (5), i.e.,
the precise sense in which the “the position of a particle is what a
position-detector detects” to the next section.

3. QCT: The quantum-classical transition

As mentioned already, quantum and classical mechanics are funda-
mentally incompatible in many ways, yet the macroscopic world is
well-described by classical dynamics. Physicists have struggled with this
quandary ever since the laying of the foundations of quantum theory. It
is fair to say that, even today, not everyone is satisfied with the state of
affairs – including many seasoned practitioners of quantum mechanics.

If quantum mechanics is really the fundamental theory of our world,
then an effectively classical description of macroscopic systems must
emerge from it – the so-called quantum-classical transition (QCT). It
turns out that this issue is inextricably connected with the question
of the physical meaning of dynamical nonlinearity discussed in the
Introduction. The central thesis is that real experimental systems are by
definition not isolated, hence the QCT must be viewed in the relevant
physical context.

Quantum mechanics is intrinsically probabilistic, but classical the-
ory – as shown above by the existence of the delta-function limit for
the classical distribution function – is not. Since Newton’s equations
provide an excellent description of observed classical systems, including
chaotic systems, it is crucial to establish how such a localized descrip-
tion can arise quantum mechanically. We will call this the strong form of
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the QCT. Of course, in many situations, only a statistical description is
possible even classically, and here we will demand only the agreement
of quantum and classical distributions and the associated dynamical
averages. This defines the weak form of the QCT.

3.1. The Strong Form of the QCT

It is clear that the strong form of the QCT is impossible to obtain
from either the isolated or open evolution equations for the density
matrix or Wigner function. For a generic dynamical system, a localized
initial distribution tends to distribute itself over phase space and either
continue to evolve in complicated ways (isolated system) or asymp-
tote to an equilibrium state (open system) – whether classically or
quantum mechanically. In the case of conditioned evolution, however,
the distribution can be localized due to the information gained from
the measurement. In order to quantify how this happ ens, let us first
apply a cumulant expansion to the (fine-grained) conditioned classical
evolution (5), resulting in the equations for the centroids (x̄ ≡ 〈x〉,
p̄ ≡ 〈p〉),

dx̄ =
p̄

m
dt +

√
8kCxxdW, dp̄ = 〈F (x)〉dt +

√
8kCxpdW, (6)

where

F (x) = −∂xV (x), CAB = (〈AB〉+ 〈BA〉 − 2〈A〉〈B〉)/2, (7)

along with a hierarchy of coupled equations for the time-evolution of
the higher cumulants. These equations are the continuous measure-
ment, real-world, analog of the formal ultralocal Newtonian limit of
the distribution function in the classical Liouville equation (2). While
Eqns. (6) always apply, our aim is to determine the conditions under
which the cumulant expansion effectively truncates and brings their
solution very close to that of Newton’s equations. This will be true
provided the noise terms are small (in an average sense) and the force
term is localized, i.e., 〈F (x)〉 = F (x̄)+ · · ·, the corrections being small.
The required analysis involves higher cumulants and has been carried
out in Ref. (T. Bhattacharya et.al., 2000;2003). (Ref. (T. Bhattacharya
et.al., 2000;2003) also points to previous literature.) It turns out that
the distribution will be localized provided

8k 

√
(∂2

xF )2|∂xF |
2mF 2

(8)
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and the motion of the centroid will effectively define a smooth classical
trajectory – the low-noise condition – as long as

k  2|∂xF |
S

(9)

where S is the action scale of the system. Note that this condition does
not bound the measurement strength.

We now turn to the quantum version of these results. In this case,
the analogous cumulant expansion gives exactly the same equations for
the centroids as above, while the equations for the higher cumulants are

Localization holds in the weakly nonlinear case if the classical condition
above is satisfied. In the case of strong nonlinearity, the inequality
becomes

8k  (∂2
xF )2�

4mF 2
. (10)

Because of the backaction, the low-noise condition is implemented in
the quantum case by a double-sided inequality:

2|∂xF |
s

� �k � |∂xF |s
4

, (11)

where the action is measured in units of �, s being dimensionless.
The left inequality is the same as the classical one discussed above,
however the right inequality is essentially quantum mechanical. The
measurement strength cannot be made arbitrarily large as the back-
action will result in too large a noise in the equations for the cen-
troids. As the action s is made larger, both inequalities are satisfied
for an ever wider range of k. For continuously measured quantum
systems, trajectories that emerge in the macroscopic limit follow New-
ton’s equations, and hence can be chaotic as shown in Ref. (T. Bhat-
tacharya et.al., 2000;2003). Thus, as speculated in a prescient paper
by Chirikov (B.V. Chirikov, 1991), measurement indeed provides the
missing link between “quantum” and “chaos.”

3.2. The Weak Form of the QCT

If the conditions enforcing the strong form of the QCT are satisfied,
then the weak form follows automatically. The reverse is not true,
however: results from a coarse-grained analysis cannot be applied to
the fine-grained situation. Moreover, the violation of the strong in-
equalities (11) need not prevent a weak QCT: It does not matter if
the distribution is too wide, as long as the classical and quantum
distributions agree, and, even if the backaction noise is large, the coarse-
grained distribution remains smooth and the weak quantum-classical

a trajectory limit exists.different. We can again investigate whether
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correspondence can still exist. Consequently, the weak form of the QCT
has to be approached in a different manner. In fact, the weak version is
just another way to state the con ventional decoherence idea; however,
as discussed elsewhere (S. Habib et.al., 2002), mere suppression of
quantum interference does not guarantee the QCT even in the weak
form.

In a recent analysis carried out for a bounded open system with a
classically chaotic Hamiltonian, it has been argued that the weak form
of the QCT is achieved by two parallel processes (B. Greenbaum et.al.,
), explaining earlier numerical results (S. Habib et.al., 1998). First,
the semiclassical approximation for quantum dynamics, which breaks
down for classically chaotic systems due to overwhelming nonlocal in-
terference, is recovered as the environmental interaction filters these
effects. Second, the environmental noise restricts the foliation of the
unstable manifold (the set of points which approach a hyperbolic point
in reverse time) allowing the semiclassical wavefunction to track this
modified classical geometry.

It turns out that this analysis applies only to systems with a bounded
phase space. It is possible that topological restrictions on the accessible
phase space – and not only the form of the particular Hamiltonian –
play a crucial role in determining when the weak form of the QCT
actually applies. For example, this might explain why the open-system
quantum delta-kicked rotor is a counter-example to naive expectations
regarding the QCT (S. Habib et.al., 2002).

4. Chaos and quantum mechanics

The results of the previous section have already established that clas-
sical chaos and quantum mechanics are not incompatible in the macro-
scopic limit. The question then naturally arises whether observed quan-
tum mechanical systems can be chaotic far from the classical limit?
This question is particularly significant as closed quantum mechanical
systems are not chaotic, at least in the conventional sense of dynamical
systems theory (R. Kosloff et.al., 1981;1989). In the case of observed
systems it has recently been shown, by defining and computing a max-
imal Lyapunov exponent applicable to quantum trajectories, that the
answer is in the affirmative (S. Habib et.al., 1998). Thus, realistic
quantum dynamical systems are chaotic in the conventional sense and
there is no fundamental conflict between quantum mechanics and the
existence of dynamical chaos.

The basic idea in Ref. (S. Habib et.al., 1998) is to focus attention on
a single time-series, say, the expectation value 〈x〉, and analyze it for
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Figure 2. Finite-time Lyapunov exponents λ(t) for a driven Duffing oscillator with
measurement strengths k = 5 × 10−4, 0.01, 10, averaged over 32 trajectories (lin-
ear scale in time, top, and logarithmic scale, bottom; bands indicate the standard
deviation over the 32 trajectories) (S. Habib et.al., 1998).The (analytic) 1/t fall-off
at small k values (dashed red line), prior to the asymptotic regime, is evident in the
bottom panel.

chaos. Following Ref. (S. Habib et.al., 1998) the Lyapunov exponent is
defined to be

λ = lim
t→∞ lim

∆s(0)→0

1
t

ln ∆s(t) ≡ lim
t→∞λs(t) (12)

where the subscript s denotes the particular noise realization and ∆(t) =
|〈x(t)〉 − 〈xfid(t)〉| defines the divergence between two “trajectories.”
The noise realization is kept fixed when calculating ∆(t). For isolated
systems it is possible to prove that the Lyapunov exponent is zero, with
the finite-time exponent vanishing as 1/t, as t → ∞ (S. Habib et.al.,
1998). This is consistent with our expectation of not finding chaos
for linear evolution. In the case of conditioned nonlinear evolution,
however, the situation can be dramatically different as shown in Fig. 2.
What we find is that for small k, λ(t) first falls as 1/t (as for k = 0),
but then stabilizes at an asymptotic value which is k-dependent, and
different from the classical value. Even at values of k small enough
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that the strong inequalities (11) are not satisfied, λ is finite, and the
evolution is, thus, chaotic.

We stress that the chaos identified here is not merely a formal result
- even deep in the quantum regime, the Lyapunov exponent can be
obtained from measurements on a real system. Quantum predictions
of this type can be tested in the near future, e.g., in cavity QED and
nanomechanics experiments (H. Mabuch et.al., 2002;2004). Experimen-
tally, one would use the known measurement record to integrate the
SME; this provides the time evolution of the mean value of the posi-
tion. From this fiducial trajectory, given the knowledge of the system
Hamiltonian, the Lyapunov exponent can be obtained by following the
procedure described above. It is important to keep in mind that these
results form only a starting point for the further study of nonlinear
quantum dynamics and its theoretical and experimental ramifications.

5. Quantum feedback control

To illustrate an application of nonlinear quantum dynamics, we now
consider real-time control of quantum dynamical systems. Feedback
control is essential for the operation of complex engineered systems,
such as aircraft and industrial plants. As active manipulation and
engineering of quantum systems becomes routine, quantum feedback
control is expected to play a key role in applications such as preci-
sion measurement and quantum information processing. The primary
difference between the quantum and classical situations, aside from
dynamical differences, is the active nature of quantum measurements.
As an example, in classical theory the more information one extracts
from a system, the better one is potentially able to control it, but, due
to backaction, this no longer holds true quantum mechanically.

Controlling quantum systems is possible using state-estimation ideas
as pioneered by Belavkin (V.P. Belavkin et.al., 1992;2000) or direct
feedback of the measured classical current (H.M. Wiseman et.al., 1993).
Applications studied so far include controlling atomic (H.M. Wiseman
et.al., 2002) and qubit (R. Ruskov et.al., 2002) states as well as active
cooling of dynamical degrees of freedom. As one example, let us consider
an atom trapped in a high-finesse optical cavity in the strong-coupling
limit, with the output laser light monitored via homodyne detection.
The resulting photocurrent provides information about the position of
the atom in the cavity which, in turn, can be used to cool the atom’s
position degree of freedom by varying the intensity of the driving laser
field (D.A. Steck et.al., 2004) (Fig. 3). Nanomechanical resonators can
also be cooled by feedback. Here, the present state of the art has reached
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Figure 3. Feedback cooling in cavity QED: Evolution of the mean atomic effective
energy, with no cooling (top curve), cooling based on direct feedback of the pho-
tocurrent signal (middle), cooling based on feedback with a simple Gaussian state
estimator (bottom). Note the improved cooling efficiency in the second case.

the point where the resonators are less than a factor of 10 away from
the quantum limit, i.e., the point where the thermal energy is less than
the energy of the resonator ground state. Lowering the temperature of
the resonators to the mK regime would allow this goal to be reached. In
principle, active cooling could achieve this by measuring the resonator
position using a SET as described earlier (Fig. 1) and then applying
(damping) feedback through the control electrode (A. Hopkins et.al.,
2003). Experiments to test this idea are currently in progress.
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Almas F. Sadreev(a,b) and Karl-Fredrik Berggren(a)

(a) Department of Physics and Measurement Technology, Linköping University,
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e-mail: kfber@ifm.liu.se, almsa@ifm.liu.se
(b) Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
e-mail: almas@tnp.krasn.ru

Abstract. We discuss signatures of quantum chaos in open chaotic billiards. Solu-
tion for such a system are given by complex scattering wave functions ψ = u + iv
provided that a steady current flows through the billiard. For slightly opened chaotic
billiards the current distributions are simple and universal. It is remarkable, that
the resonant transmission through integrable billiards also gives the universal cur-
rent distribution. Currents induced by the Rashba spin-orbit interaction can flow
even in closed billiards. Wave function and current distributions for chaotic billiard
with weak and strong spin-orbit interactions have been derived and compared with
numerics.

The complex scattering wave function can be specified by nodal points at which
u = 0, v = 0. They have great physical significance since they are responsible for
current vortices. We have calculated distribution functions for nearest distances
between nodal points and found that there is a universal form for open chaotic
billiards. The form coincides with the distribution for the Berry function and hence,
it may be used as a signature of quantum chaos in open systems. All distributions
agree well with numerically computed results for transmission through quantum
chaotic billiards.

Similarities with classical waves are considered. In particular we propose that the
networks of electric resonance RLC circuits may be used to study wave chaos. How-
ever, being different from quantum billiards there is a resistance from the inductors
which gives rise to heat power and decoherence.

Keywords: distribution functions, transmission, nodal lines

1. Introduction

1.1. Closed Billiards

The nature of quantum chaos in a specific system is traditionally in-
ferred from its classical counterpart. It is an interdisciplinary field
that extends into, for example, atomic and molecular physics, con-
densed matter physics, nuclear physics, and subatomic physics (H.-
J. Stöckmann, 1999). The main achievement of this field is the estab-
lishment of universal statistics of energy levels: the typical distribution
of the spacing of neighbouring levels is Poisson or Gaussian ensembles
for integrable or chaotic quantum systems. This statistics is well de-
scribed by random-matrix theory (RMT). It was first introduced by
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Wigner (E.P. Wigner, 1951) to explain the statistical fluctuations of
neutron resonances in the compound nucleus. Rather than trying to
explain individual eigenfunctions, RMT addresses questions about their
statistical behavior. Its original justification was our lack of knowledge
of the exact Hamiltonian; RMT assumes maximal ignorance regarding
the system’s Hamiltonian except that it must be consistent with the
underlying symmetries. The theory proceeds to construct ensembles of
Hamiltonians classified by their symmetry. Wigner’s ideas were followed
by those of Porter and Rosenzweig (E.P. Wigner et. al., 1960) and
Mehta and Gaudin (M.L. Mehta et. al., 1961; M.L. Mehta, 1991).

Next, consider statistical properties of the eigenfunctions of the
chaotic two-dimensional quantum billiards in hard wall approximation

−∇2ψn(x, y) = εnψn(x, y), (1)

where the Dirichlet boundary condition is implied at the boundary
Ω of the billiard : ψ|Ω = 0. Here we use Cartesian coordinates x, y
which are dimensionless via a characteristic size of the billiard L, and
correspondingly εn = k2

n = En/E0, E0 = �
2/2mL2. Shapiro and

Goelman (M. Shapiro et.al., 1984) first presented statistics of the eigen-
functions although their numerical histogram P (ψ) was not compared
with the Gaussian distribution. This was done by McDonnell and Kauff-
mann (S.W. McDonald et.al., 1988) who concluded that the majority
(≈ 90%) of the eigenfunctions of the Bunimovich billiard are a Gaussian
random field (RGF) for all x, y. Also McDonnell and Kauffmann re-
vealed characteristic complex patterns of disordered, undirectional and
non-crossing nodal lines. Such features have also been observed exper-
imentally for microwave cavities (H.-J. Stöckmann, 1999; S. Sridhar
et.al., 1992) and acoustic resonators (C. Ellegaard et.al., 2001).

These results nicely agree with the Berry conjecture (M.V. Berry,
1977) of quantum chaos according to which the wave function in the
chaotic billiard has to be expressed as a sum over an infinite number
of plane waves

ψ(x, y) =
∑
j

aj exp[i (kjr + φj)] (2)

each having a random amplitude aj , phase φj and direction kj but
equal length |kj |2 = ε. In closed chaotic billiards we are to take the
real part of (2). This leads to a Gaussian amplitude distribution and
a spatial correlation function with Bessel function dependence. This
conjecture, in fact, was raised by Rayleigh (lord Rayleigh, 1945).

However, there exist also eigenfunctions which behave otherwise.
Most of them are localized on families of regular classical trajectories
(scars (E.J. Heller, 1984)) or bouncing ball modes (S.W. McDonald
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et.al., 1988)). Their number behaves as Nbb(E) = αEδ with α =
0.2, δ = 3/4 (G. Tanner, 1997; A. Bäcker et.al., 1997).

1.2. Open Billiards

The typical way to open a billiard is to attach some reservoirs with con-
tinuous energy spectrum, for example, the leads or microwave waveguides,
as shown in fig. 3 below. Full information about the scattering prop-
erties of the billiard is given by the scattering wave function which
is a solution of the Schrödinger equation Hψ = Eψ with the total
Hamiltonian

H = HB + HU + HL + V, (3)

where HB is the Hamiltonian of the closed quantum system, in the
present case the billiard with a spectrum given by eq. (1), HU + HL

describes two leads (the upper and lower as shown below in fig. 3) with
continuous spectrum and V = VU + VL is the coupling between the
closed system and the leads. The mathematical tool to treat scattering
processes is provided by scattering theory (H. Feshbach, 1958; U. Fano,
1961; C. Mahaux et.al., 1969; I. Rotter, 1991) which has been suc-
cessfully applied to billiards (Y.V. Fyodorov et.al., 1997; F.M. Dittes,
2000; A.F. Sadreev et.al., 2003). Assume, that we know the coupling
matrices WC(n, p), C = U, L of rank M×N where M is the number of
channels in the leads and N is the Hilbert dimension of the billiard. A
recipe how to calculate the matrix elements WC(n, p) for straight leads
is given in (F.M. Dittes, 2000; K. Pichugin et.al., 2002; A.F. Sadreev
et.al., 2003). Then the spectroscopic properties of the billiard are given
by complex eigenvalues zλ of effective non-hermetian Hamiltonian

Heff = HB − iπ
∑

C=U,L

W+
C WC . (4)

Re(zλ) defines positions of the resonances, while Im(zλ) gives their
widths.

Similar to closed chaotic billiards the idea was to adjust RMT to
the effective Hamiltonian Heff = H − iΓ (see the pioneering work
(J.J.M. Verbaarschot et.al., 1985) and (H.-J. Sommers et.al., 1999)
for references). These matrices correspond to GUE with broken time-
reversal symmetry. A next natural step was to assume that in the
transition region between GOE and GUE, the eigenfunctions are com-
plex and may be thought as columns of the unitary random matrix
(G. Lenz et.al., 1992; E. Kanzieper et.al., 1996) S = S1+iεS2, composed
of two independent orthogonal matrices. The parameter

ε2 =
〈Re(ψ)2〉
〈Im(ψ)2〉 (5)
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governs the crossover between GOE and GUE. Later different ap-
proaches were explored (R. Pnini et.al., 1996; P. Šeba et.al., 1997;
H. Ishio et.al., 2001) to give the same probability density distribution
ρ = |ψ|2

f(ρ) = µ exp(−µ2ρ)I0(µνρ), (6)

with the following notations⎧⎨
⎩

µ = 1
2

(
1
ε + ε

)
,

ν = 1
2

(
1
ε − ε

)
,

(7)

and I0(x) is the modified Bessel function of zeroth order.

2. The wave function and current statistics

The scattering wave function Hψ = Eψ can be mapped onto the
interior space of the billiard by the projection operator ψB = PBψ
where PB =

∑
n |n〉〈n|. Then this truncated scattering wave function

can be expanded in the eigenfunctions of the closed billiard ψn(x, y)
(A.F. Sadreev et.al., 2003)

ψB(x, y) =
∑
n

cnψn(x, y). (8)

If the contribution of the localized eigenfunctions (scars or bouncing
ball modes) in (8) is negligible, then all eigenfunctions ψn(x, y) are
RGF. The complex coefficients in the superposition, cn, depend on the
energy and the coupling between the billiard and leads and are not
random as in the Berry function (2). Nonetheless the superposition of
RGFs is also a complex RGF (W. Feller, 1971; M.I. Tribelsky, 2002)

ψB(x, y) = u(x, y) + iv(x, y). (9)

Even for the resonant transmission through the Sinai billiard, computa-
tions show that many eigenfunctions contribute to the scattering wave
function as shown in fig. 1. An assumption of a complex RGF for the
scattering function (9) means that the joint probability density has the
form

f(u, v) =
1

2π
√
〈u2〉〈v2〉 − 〈uv〉

exp

(
− u2

2〈u2〉 −
v2

2〈v2〉 +
uv

2〈uv〉

)
. (10)

First of all, following (A.I. Saichev et.al., 2002) we perform a phase
transformation

ψ(x)→ eiαψ(x) = p(x) + iq(x) (11)



Signatures of quantum chaos in open chaotic billiards 61

50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

n
|c

n|

Figure 1. The coefficients |cn| in the expansion (8) for the resonant transmission
through the Sinai billiard with numerical sizes 500 × 500, R = 50 with energy
ε = 10.425.

to new functions p(x) and q(x) with condition that the statistical
average 〈pq〉 = 0. This step eliminates phase ambiguity and ensures
that RGFs p and q are statistically independent. This phase transfor-
mation (11) corresponds to diagonalization of the quadratic form in
(10) (A.F. Sadreev et.al., 2004):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(p, q) = f(p)f(q),
f(p) = 1√

2π〈p2〉 exp
(
− p2

2〈p2〉
)

,

f(q) = 1√
2π〈q2〉 exp

(
− q2

2〈q2〉
)

.

(12)

This step is a matter of convenience which simplifies calculations. For
example, calculation of the distribution of intensity ρ = |ψB|2 becomes
elementary and gives the distribution (6) (A.I. Saichev et.al., 2002).

As for the next tutorial of a RGF we consider current distributions.
The expression for current

j = p∇q − q∇p, (13)

shows that the distribution for one component of the current den-
sity, say jx we need the Gaussian probability density f(p, px, q, qx)
(K.J. Ebeling, 1984). The density and its corresponding characteristic
functions are completely determined by the covariance matrix of the
field variables

M =

⎛
⎜⎜⎝
〈p2〉 〈pqx〉 〈pq〉 〈ppx〉
〈pqx〉 〈q2

x〉 〈qqx〉 〈pxqx〉
〈pq〉 〈qqx〉 〈q2〉 〈qpx〉
〈ppx〉 〈pxqx〉 〈qpx〉 〈p2

x〉

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
〈p2〉 〈pqx〉 0 0
〈pqx〉 〈q2

x〉 0 0
0 0 〈q2〉 〈qpx〉
0 0 〈qpx〉 〈p2

x〉

⎞
⎟⎟⎠ .

(14)
The covariance matrix may be simplified further if we assume that the
net current 〈j〉 ≈ 0. As shown in (A.F. Sadreev et.al., 2004) 〈jx〉 = T/Ly
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where T is the transmission probability through the billiard and Ly is
its width. We have 〈jx〉 ≈ 0 if the transmission is near zero or the aspect
ratio d/Ly is very small; d is the lead’s width. Therefore it follows from
(13) that for this case 〈pqx〉 ≈ 〈qpx〉 ≈ 0. Correspondingly the Gaussian
probability density factorizes as

f(p, px, q, qx) = f(p)f(q)f(px)f(qx), (15)

where ⎧⎪⎨
⎪⎩

f(px) = 1√
2π〈p2

x〉
exp

(
− p2

x
2〈p2

x〉
)

,

f(qx) = 1√
2π〈q2

x〉
exp

(
− q2

x
2〈q2

x〉
)

.
(16)

In particular this is the case for the Berry function (2) with 〈p2〉 =
〈q2〉, 〈p2

x〉 = 〈q2
x〉.

Now it is easy to calculate the current distribution functions. For
the x component we have

P (jx) = 〈δ(jx − pqx + qpx)〉 =
1
2π

∫ ∞

−∞
Θ(ax) e−iaxjx dax, (17)

where

Θ(ax) =
∫

dpdqdpxdqxf(p)f(q)f(px)f(qx)eiax(pqx−qpx) =
1

1 + a2
xτ2

,

(18)

τ2 = 〈p2〉〈q2
x〉 = 〈q2〉〈p2

x〉 =
1
2
k2〈p2〉〈q2〉 =

k2ε2

2(1 + ε2)2
(19)

provided that 〈p2〉 + 〈q2〉 = 1 (normalization condition), and ε is the
parameter of openness of the billiard (5). Finally substituting Eqs. (18)
and (19) into (17) we obtain the very simple form of the distribution
of the x component of current

P (jx) =
1
2τ

exp
(
−|jx|

τ

)
. (20)

For the case nonzero net current the distribution takes the following
form (K.J. Ebeling, 1984)

P (jx) =
1
2τ

exp
{
−|jx|

τ
+
〈jx〉jx

2τ2

}
. (21)

The distribution of the absolute value of current has also a simple form

P (j) =
j

τ2
K0(j/τ). (22)



Signatures of quantum chaos in open chaotic billiards 63

0 5 10
0

0.05

0.1

0.15

0.2

0.25

ρ/<ρ>

P
(ρ

)

−5 0 5
0

0.02

0.04

p/<p2>1/2

0 5 10
0

0.01

0.02

0.03

0.04

0.05

j / τ

P
(j)

−10 −5 0 5 10
−10

−8

−6

−4

−2

j
x
 / τ

ln
(P

(j x))

−10 −5 0 5 10
−10

−8

−6

−4

−2

j
y
 / τ

ln
(P

(j y))

f(
p)

Figure 2. Statistics of current for the transmission through the Sinai billiard for
T ≈ 0. The upper left panel shows the computed distribution for ρ = |ψ|2 together
with the Porter-Thomas distribution P (ρ) (solid curve). In the inset in the same
panel the computed wave function statistics f(p) for the real part of ψ is compared
with a random Gaussian distribution (solid curve).
In the right upper panel the distribution for the current density P (j) is shown
together with the theoretical prediction for the case 〈jx〉 = 0. Lower panels show
the computed distributions for the x− and y−components of j on a logarithmic
scale together with the analytic expression (20) (straight solid lines).

Fig. 2 demonstrates excellent agreement for the numerical statistics
of the current with formulas (20) and (22) for a slightly open Sinai
billiard. The current distributions might be applicable even for the case
of the resonant transmission through integrable billiards (A.F. Sadreev,
2004). For this case the real eigenfunction ψn with the eigenenergy
ε ≈ εn is dominant in the scattering wave function (8). However since
current is the imaginary part of ψ∗∇ψ, only ψn can not provide the
current. We are to take into account a small background of many other
non resonant eigenfunctions ψn′ , n �= n (see fig. 1 for an illustration).
Therefore the probability current flows only because of the background
which may be considered as random noise.

There is a close similarity with planar electromagnetic cavities (H.-
J. Stöckmann, 1999). The basic equations take the same form and, in
particular, the Poynting vector is the analog of the quantum mechani-
cal current. It is therefore possible to experimentally observe currents,
nodal points and streamlines in microwave billiards (M. Barth et.al.,
2002; Y.-H. Kim et.al., 2003). The microwave measurements have con-
firmed many of the predictions of the random Gaussian wave fields
described above. For example wave function statistics, current flow and
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various correlation functions have been verified. Recently we proposed
that the networks of electric resonance RLC circuits may be used to

Statistics of functions and currents in the quantum chaotic billiards
with the spin-orbit interaction was considered in (E.N. Bulgakov et.al.,
2004). The statistics crucially depends on the constant of the spin-orbit
interaction. For small constant the current statistics is described by
universal current distributions (20) and (22) although one component of
spinor eigenfunctions is not universal. For the strong spin-orbit constant
both components of the spinor eigen state are the complex random
Gaussian fields. The current statistics is becoming superposition of the
distributions (20) because of splitting energy levels by the spin-orbit
interaction. For intermediate values of the statistics of the eigen states
and currents both are deeply non universal.

3. Statistics of nodal points

For a closed billiard the eigenfunctions ψn are real functions. The equa-
tion ψn(x, y) = 0 determines a set of nodal lines which separate nodal
domains where ψn is of opposite signs. Blum et al (G. Blum et.al.,
2002) (see also (G. Foltin et.al., 2004)) argued that the statistics of the
number of these domains reflects the fundamental difference between
integrable and chaotic quantum systems. In (E. Bogomolny et.al., 2002)
the distribution of nodal domains was derived analytically based on a
simple percolation model. In open system the wave function is then a
scattering state with both real and imaginary parts as in (9). Then the
equation ψB(x, y) = 0 gives rise to two separate sets of non-crossing
nodal lines at which either u or v vanish. The points at which the two
sets of nodal lines intersect are the nodal points (NP). Since at NP |ψ| =
0, a phase of the ψ-function ψ = |ψ| exp(iθ) becomes unambiguous.
Explicit descriptions of NPs as phase singularities or topological charges
associated with a complex wave function are given in many articles, for
example (P.A.M. Dirac, 1931; J.F. Nye et.al., 1974; J.O. Hirschfelder
et.al., 1974; J.O. Hirschfelder, 1977; H. Wu et.al., 1993). As Dirac
demonstrated already in 1931 (P.A.M. Dirac, 1931) NPs give rise to a
current vortices. Moreover the vortices may be clock wise or anticlock
wise, i.e. have ±1 winding numbers. It was proven (I. Freund et.al.,
1994; K.-F. Berggren et.al., 2002) that neighboring NPs on the same
nodal line always have opposite winding numbers. Therefore, distrib-
ution of NPs is different from the distribution of completely random
points.

study wave chaos (K.-F. Berggren et.al., 2002; O. Bengtsson et.al.,;
E.N. Bulgakov et.al., ).



Signatures of quantum chaos in open chaotic billiards 65

Figure 3. The complexity of nodal lines, nodal points and saddles for the transmis-
sion through chaotic (Sinai) (left) and regular billiard (right).

Instead of nodal lines in closed systems we are interested in the
statistics of NPs for open chaotic billiards since they form vortex centers
and thereby shape the entire flow pattern (K.-F. Berggren et.al., 1999).
Thus we will focus on nodal points and their spatial distributions and
try to characterize chaos in terms of such distributions. The question
we wish to ask is simply if one can find a distinct difference between the
distributions for nominally regular and irregular billiards. The answer
to this question is clearly positive as it is seen from fig. 3. As shown
qualitatively NPs and saddles are both spaced less regularly in chaotic
billiard in comparison to the integrable billiard. The mean density
of NPs for a complex RGF (9) equals to k2/4π (M.V. Berry et.al.,
1986). This formula is satisfied with good accuracy in both chaotic and
integrable billiards.

Quantitatively the disorder among points may be expressed through
the correlation function of NPs and distribution of nearest distances be-
tween them. Let us introduce the density of nodal points as (M.V. Berry
et.al., 2000; A.I. Saichev et.al., 2001)

d(r) = |ω(rj)|δ(u(r))δ(v(r)) =
∑
j

δ(r− rj), (23)

where rj specify the NPs position, and ω(r) = ∇u(r) × ∇v(r) is
the vorticity. Then the correlation function of NPs can be defined as
(M.V. Berry et.al., 2000; A.I. Saichev et.al., 2001)

G(s) = 〈
∑
i,j

δ(r− rj)δ(r− rj − s)〉. (24)
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Figure 4. Distributions for separations between the nearest distances nearest NPs,
saddle points, NPs with the same (++) and opposite winding numbers (+-) in a
chaotic Sinai billiard. The radial distribution of nearest distances for completely
random points (26) is shown by the dashed curve in (a). The corresponding distrib-
ution for the Berry model function for a chaotic state (2) and random superposition
of 16 eigen functions for a rectangular box with the same size and energy are shown
by dots and thin curves, respectively.

This was considered by Halperin (B.I. Halperin, 1981) and Liu and
Mazenko (F. Liu et.al., 1992). Recently two teams (M.V. Berry et.al.,
2000; A.I. Saichev et.al., 2001; M.R. Dennis, 2003) presented different
complicated analytical expressions for the correlation function (24).
Numerically however they give the same results. Experimental veri-
fication was done in microwave billiards (Y.-H. Kim et.al., 2003). A
knowledge of the NP correlation function allows one to find the distri-
bution function of nearest distances between NPs (A.I. Saichev et.al.,
2001):

PNP (r) ≈ 4π

ρ3/2
rG(r)

(
1− 4π

3ρ

∫ √
ρr

0
G(s)sds

)2

. (25)

It is interesting that the distribution (25) is close to the nearest-
neighbour spacingdistribution of zeros of randompolynomials(P.Leboeuf
et.al., 1999). These polynomials approximate the eigenfunctions of the
unitary evolution operator of the quantum kicked rotator. It prompts
us to consider that the nearest-neighbour spacing distribution of zeros
is meaningful not only for the chaotic billiards but for other quantum
chaotic systems. Fig. 4 shows numerical results for the transmission
through the Sinai billiard (K.-F. Berggren et.al., 2002) compared to
the derived distributions. It also shows that nodal points with opposite
winding numbers have a tendency to attract each other, while points
with the equal winding numbers repel. Hence quantum chaos is not the
same as complete randomness. This also evident from the distribution
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for nearest neighbors among random points (J.R. Eggert, 1984)

P (r) =
π

2
r exp(−πr2/4). (26)
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From quantum graphs to quantum random walks

Gregor K. Tanner
School of Mathematical Sciences, University of Nottingham, UK

Abstract. We give a short overview over recent developments on quantum graphs
and outline the connection between general quantum graphs and so-called quantum
random walks.

Keywords: Dynamical chaos, Lyapunov exponents

1. Introduction

The study of quantum mechanics on graphs has become an important
tool for investigating the influence of classical dynamics on spectra,
wavefunctions and transport properties of quantum systems. Quantum
networks have been used with great success to model quantum phenom-
ena observed in disordered metals and mesoscopic systems (Chalker and
Coddington 1988); typical behaviour found in diffusive systems such as
localisation - delocalisation transitions (Freche et.al 1999), transport
properties (Pascaud and Montambaux 1999) and quantum spectral
statistics (Klesse and Metzler 1997) have been studied on graphs in
the limit of infinite network size. Kottos and Smilansky (1997, 1999)
looked at quantum graph models for general, non-diffusive graphs; this
approach was motivated by trying to understand the validity of the
Bohigas-Giannoni-Schmit (BGS) conjecture (Bohigas, et.al 1984) in
terms of periodic orbit trace formula. The conjecture relates the prop-
erties of the classical dynamics of a systems to the spectral statistics
of its quantum counterpart and states that for chaotic systems the
statistics depends only on the symmetries of the problem and follows
random matrix theory (RMT) otherwise.

Making use of the fact that periodic orbit trace formula are exact
on quantum graphs and that there are only a finite number of different
length scales on a finite graph, a series of remarkable results have
been obtained over the last couple of years. A closed form quantisation
conditions in terms of periodic orbits has been given by Blümel et.al
(2002); Barra and Gaspard (2000) derived an integral expression for
the level spacing distribution starting form the periodic orbit trace for-
mula. Furthermore, Schanz and Smilansky (2000) described localisation
on one-dimensional chains in terms of combinatorial expression using
periodic orbits. The most far reaching development is maybe due to
Berkolaiko et.al (2002,2003), who, inspired by work from Sieber (2002)
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and Sieber and Richter (2001), derived next to leading oder terms for
the formfactor. Extensions to all orders have been given by Müller
et.al (2004). Gap conditions given by Tanner (2001) and Gnutzmann
and Altland (2004) give lower and upper bounds for the border of
universality. For a recent review on quantum graphs see Kuchment
(2002).

Quantum dynamics on graphs became an issue also in the context of
quantum information. Aharonov et.al (1993) pointed out that a random
quantum walk on one dimensional chains can be faster than the corre-
sponding classical random walk. Since then, a whole field has emerged
dealing with quantum effects on graphs with properties superiour to
the corresponding classical operations. For an introductory overview
and further references, see Kempe (2003).

We will in the following give a general definition of quantum graphs
and discuss a specific set-up considered by Kottos and Smilansky (1997).
We will then review recent developments on the spectral statistics of
quantum graph ensembles. Next, we discuss a special class of quantum
graph ensembles, so-called regular quantum graphs. These types of
graphs can show strong deviations from RMT depending on topological
properties imposed on the graph in form of edge-colouring matrices. We
will show that such graphs can be interpreted as realisations of quantum
random walks on graphs.

2. Quantum graphs - a brief review

2.1. Quantum graphs on line graphs

In its most general form, a quantum graph is defined in terms of a
(finite) graph G together with a unitary propagator U; it describes the
dynamics of ”wavefunctions” φ on the graph according to

φn+1 = Uφn ,

such that waves can propagate only between connected vertices. Moti-
vated by physical application we will adopt a construction of quantum
graphs in terms of so-called line-graphs as explained below.

A (finite) directed graph or digraph consists of a finite set of vertices
and a set of ordered pairs of vertices called arcs. We denote by V G and
EG the set of vertices and arcs of the digraph G, respectively. Given
an ordering of the vertices, the adjacency matrix of a digraph G on n
vertices, denoted by AG, is the (0, 1)-matrix where the ij-th element
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is defined by

AG
ij :=

{
1, if (ij) ∈ EG,
0, otherwise. (1)

An undirected graph (for short, graph) is a digraph whose adjacency
matrix is symmetric. The undirected connections between vertices are
called edges in this case. The line digraph of a digraph G, denoted by
LG, is the graph which is obtained when taking the arcs as the new
vertices; it is thus defined as V LG = EG and, given (hi), (jk) ∈ EG,
the ordered pair ((hi)(jk)) ∈ ELG if and only if i = j (Bang-Jensen
and Gutin 2001).

A quantum graph associated with a digraph G on n vertices can then
be defined in terms of a set of unitary vertex scattering matrices σ(j)

on vertices j = 1, . . . n and a set of arc lengths Lij defined for every arc
(ij) ∈ EG. Waves propagate freely along the directed arcs, transitions
between incoming and outgoing waves at a given vertex j are described
by the scattering matrix σ(j), see Fig. 1a. The two sets specify a unitary
propagator of dimension nE = |EG| defining transitions between arcs
(ij), (i′j′) ∈ EG which has the form (Kottos and Smilansky 1997)

SG = DV with D(ij)(i′j′) = δi,i′ δj,j′ e
ikLij , (2)

where k is a wave number and

V(ij)(i′j′) = ALG
(ij)(i′j′)σ

(j)
ij′ with ALG

(ij)(i′j′) = δj,i′ . (3)

The local scattering matrices σ(i) describe the underlying physical process
which may be derived from boundary conditions on the vertices. We
will construct an example below but may often regard the σ(i)’s as
arbitrary unitaries. Let d−i and d+

i be the number of incoming and
outgoing arcs of a vertex i, respectively. A sufficient and necessary
condition for a digraph G to be quantisable in the way above is then,
that for every vertex i ∈ V G, d+

i = d−i = di = dimσ(i) (Pakoński et.al
2003). This means in particular that if G is an undirected graph then
it is quantisable.

Kottos and Smilansky (1997) considered solving the 1d Schrödinger
equation on an undirected graph assuming free propagation on the
arcs and imposing continuity and flux conservation at the vertices. The
solution on each arc propagating from vertex i→ j takes on the form

φ(xij) = φ+
ije

ikxij = φ−
ije

−ik(Lij−xij),

with φ±
ij being the outgoing (+) or incoming (−) wave at vertex i or j.

Continuity and flux conservation can then be written in terms of the
amplitudes φ+

ij(0) and φ−(Lij) at the vertices, that is
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Figure 1. a) Quantum graph; b) periodic path on a graph with quantum weights
defined with respect to the line - graph.

Continuity: φ+
ij = φ−

ji = ci for all j with(i, j) ∈ EG

Flux cons.:
∑

j:(ij)∈EG

φ+
ij =

∑
j:(ji)∈EG

φ−
ji

These conditions give rise to local scattering matrices σl mapping am-
plitudes φ−

il onto φ+
lj at vertex l having the form

σ
(l)
ij = −δij +

2
dl

. (4)

The eigenvalue condition is then given as

det(I− SG(k)) = 0 (5)

with SG(k) = D(k)V as defined in (2), (3). Scattering matrices for more
general boundary conditions can be found in Kottos and Smilansky
(1999).

The ”classical” dynamics corresponding to a quantum graph de-
fined by a unitary propagator SG is given by a stochastic process with
transition matrix T defined by

SG → T(SG) with T (SG)ij = |SG
ij |2 = |Vij |2 . (6)

The matrix T is clearly stochastic, as
∑nE

j=1 Tij = 1 due to the unitarity
of SG; the set of transition matrices related to a unitary matrix as
defined in (6) is a subset of the set of all stochastic transition matrices,
referred to as the set of unitary-stochastic matrices. The topology of the
set in the space of all stochastic matrices is in fact quite complicated,
see Pakoński et.al. (2001). In what follows, we will only use that T



From quantum graphs to quantum random walks 73

has a largest eigenvalue 1 with corresponding eigenvector 1
nE

(1, . . . , 1)
which follows from the Frobenius-Perron theorem and T being unitary-
stochastic.

Note that both the quantum mechanics as well as the associated
stochastic dynamics relates to transitions between arcs and is thus
defined on the line digraph of G.

2.2. Unitary stochastic ensembles and spectral statistics

Inspired by the BGS conjecture for quantum systems, we expect a link
between the dynamical properties of the stochastic process T and the
statistical properties of the spectrum of associated unitary matrices
SG. It is thus natural to consider the ensemble of unitary matrices

USET0 =
{
SGis quantum graph on G | T(SG) = T0

}
(7)

for a given graph G and a fixed unitary stochastic matrix T0 asso-
ciated with a stochastic process on the line-graph of G. Clearly, if
SG(k)inUSET0 for k = 0 then it is for all k ∈ R. In fact, if all the arc
length Lij are incommensurate, D(k) sweeps out the space of unitary
diagonal matrices of dimension nE . For practical purposes we will thus
often replace averages over a given USET by averaging over the space
of diagonal unitary matrices D with Dij = δije

iϕj using the Euclidean
measure on the nE - torus.

Rather than looking at the spectrum obtained from the secular de-
terminant (5), we will here consider the spectrum SG for fixed wavenum-
ber k and than average over k. One can write the spectrum in terms of
a periodic orbit trace formula reminiscent to the celebrate Gutzwiller
trace formula being a semiclassical approximation of the trace of the
Green function (Gutzwiller 1990). We write the density of states in
terms of the traces of SG, that is,

d(θ) =
nE∑
i=1

δ(θ − θi) =
nE

2π
+

1
π

Re
∞∑

n=1

Tr(SG)ne−inθ , (8)

where {θi}i=1,nE refers to the eigenphases of SG. The traces Tr(SG)n

can be given as sum over all periodic paths of length n on the graph,
i.e.

Tr(SG)n =
(n)∑
p

Ape
ikLp .

Describing a given periodic path in terms of its vertex code (v1, v2 . . . vn),
vi ∈ {1, 2, . . . n} with (vi, vi+1) ∈ EG being an allowed transitions
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between vertices, one obtains for the amplitudes Ap and lengths Lp

Ap =
n∏

i=1

V(vivi+1),(vi+1vi=2), Lp =
n∑

i=1

Lvivi+1 . (9)

where the amplitudes give again transitions between arcs (not vertices).
An example of such a periodic path is given in Fig. 1b.

Trace formulas like (8) are a starting point for analysing the sta-
tistical properties of quantum spectra. The statistical quantities such
as the two-point correlation function can be written in terms of the
density of states d(θ, N), that is,

R2(x) =
1

d
2 < d(θ)d(θ + x/d) >USET,θ , (10)

where d = N/2π is the mean level density. The average is taken here
over the angle θ as well as over the USE (which is equivalent to energy
averaging). The Fourier coefficients of (10) can be written in terms of
the traces of S; one obtains

K(τ) =<
1
N
|TrSNτ |2 >USET

(11)

with τ = n/N and the average is taken over a USE. The so-called form
factor K(τ) can thus be written as a double sum over periodic paths
on the graph

K(τ) = <
1
N

(n)∑
p,p′

ApAp′e
i(Lp−Lp′ ) >USET

(12)

≈ g
n

N
TrTn+ <

(n)∑
p
=p′

ApAp′e
i(Lp−Lp′ ) >USET

. (13)

The first term in (13), also called the diagonal term (Berry 1985),
originates from periodic orbit pairs (p, p′) related through cyclic per-
mutations of the vertex symbol code. There are typically n orbits of
that kind and all these orbits have the same amplitude A and phase
L. The corresponding periodic orbit pair contributions is (in general)
g · n - times degenerate where n is the length of the orbit and g is a
symmetry factor (g = 2 for time reversal symmetry).

Expanding the random matrix result for the formfactor, one obtains
for 0 ≤ τ = n/N ≤ 1

KCUE(τ) = τ

KCOE(τ) = 2τ − τ log(1− 2τ)
= 2τ − 2τ2 + 2τ3 + . . . .
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Figure 2. Periodic orbit with one intersection on undirected graphs: two different
paths exist having the same length following either the black or blue orbit.

The linear terms are reproduced by the diagonal contribution which
gives the important link between the stochastic dynamics and the spec-
tral statistics; it follows from limn→∞ TrTn = 1 given there is a gap
between the leading and next-leading eigenvalue of T. Contributions to
the double sum in (13) which survive the ensemble average are due to
periodic orbit pairs where orbits visit the same arcs along its path but
in different order. The simplest examples are ”figure eight” orbits of
the type shown in Fig. 2 which arise in undirected graphs. Berkolaiko
et.al. (2002) could indeed show that orbits of that type give the correct
O(τ2) - contributions to the GOE - form factor. In fact, a general
scheme emerges relating O(τn) contributions to periodic orbits with n
intersections. This work was inspired by a similar analysis for general
quantum systems by Sieber and Richter (2001). The periodic orbit
contributions giving the O(τ3) have been worked out by Berkolaiko
et.al. (2003) and a general scheme for obtaining higher order terms
iteratively has been given by Müller et.al. (2004).

2.3. Border of universality

In the light of these recent developments, it becomes important to
establish the boundaries at which the spectral statistics of quantum
graph ensembles (or more general quantum systems) starts to devi-
ate from random matrix behaviour. One can distinguish two different
scenarios. Firstly, the properties of the underlying dynamics, that is,
the stochastic process T may be linked to the spectral statistics and
may thus provide conditions for the onset of deviations from RMT
behaviour; such an approach is in the spirit of the original BGS -
conjecture making a connection between classical chaos and random
matrix statistics. Secondly, one may consider special phase or length
correlations in the quantum graph which could lead to interesting non-
universal statistics; in this approach, quantum graph ensemble averages
are carried out only over subsets of the full USE.
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We will discuss known bounds on the border of universality related
to the properties of the stochastic process. An interesting family of
quantum graphs which belongs to the second category are so-called
regular quantum graphs, which will be treated in more detail in section
3.

2.3.1. Spectral gap conditions
When studying the border of universality, we always need to consider
the limit of large graphs, that is, nE → ∞. This limit is in general
not well defined, but may often be obvious from the examples consid-
ered. We will thus define the semiclassical limit loosely via a family
of unitary-stochastic transition matrices {TnE} and associate USE’s
and take nE → ∞. The leading term in (13) then gives a condition
for a family to show deviations from RMT statistics in terms of the
spectrum of T; the diagonal term must obey

1− TrTnEτ ≈ e−∆nEτ → 0; for nE →∞

in order to match the leading coefficient in the expansion of the RMT
form - factor; here ∆ is the spectral gap, that is, ∆ = − log(1 − |Λ1|)
with Λ1 being the next to leading eigenvalue of TnE ) and τ = n/nE

is fixed. The condition above implies that we expect to see deviations
from RMT behaviour to leading order if

∆ ∼ n−α
E with α > 1,

that is, whenever the gap closes faster than 1/nE for large system sizes
(Tanner 2001). Based on super-symmetric techniques, Gnutzmann and
Altland (2004) could give a lower bound by showing that the spectral
gap condition guarantees RMT behaviour for α ≤ 1/2. The border of
universality must therefore lie in the range 1/2 < α ≤ 1. Other bounds
have been given by Berkolaiko et.al. (2002,2003) which have been de-
rived from higher order terms in the expansion of the form factor. Below
we we will give two examples families with α = 1 displaying critical
behaviour by neither converging to RMT nor to Poisson statistics in
the semiclassical limit.

2.3.2. Quantum star-graphs:
Quantum star-graphs arise naturally when one quantises a graph with
a single central vertex attached to nE undirected edges, see inset of
Fig. 3a. The underlying graph is complete, that is, we can reach every
edge from every other edge through the central vertex (ignoring the
trivial dynamics on the outer vertices). Typical boundary conditions
imposed on the wave equation at the central vertex following Kottos
and Smilansky’s approach in Sec. 2.1 yield scattering matrices which
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Figure 3. Form factor for a) star graphs: numerics (red) versus the power series
expansion (15) (green); b) diffusive network (in 2 d): deviations occur for small τ ,
see inset.

greatly favour backscattering. The vertex scattering matrix (4) which
is essentially equivalent to the matrix S here is

Sij = −δij +
2

nE
. (14)

The Markov processes associated with quantum star graphs correspond
to systems of weakly coupled edges. Its dynamical properties are deter-
mined by the spectrum of the stochastic matrix associated with (14)
which is highly degenerate and can be given explicitly (Kottos and
Smilansky 1999), that is,

Λ0 = 1, Λ1, . . . ,ΛnE−1 = (1− 4
nE

) ≈ 4
nE

.

Quantum star-graphs have therefore a critical classical spectrum with a
spectral gap vanishing proportional to 1/nE ; one finds indeed spectral
statistics intermediate between Poisson and COE statistics.

Berkolaiko et.al. (2001) and has been shown to coincide with the sta-
tistics of so-called Seba billiards, that is, rectangular billiards with a
single flux line. The first few terms in a power series expansion of the
form factor have been derived by Kottos and Smilansky (1999) and
Berkolaiko and Keating (1999) and yield

K(τ) = e−4τ + 8τ3 32
3

τ4 +
16
3

τ5 + . . . , (15)

see Fig. 3a.

2.3.3.
The quantum mechanics of classically diffusive systems has been stud-
ied mainly in the context of Anderson localisation and localisation-
delocalisation transitions, see e.g. Dittrich (1996) and Janssen (1998)
for recent review articles.

Diffusive networks

The two-point correlation function has been worked out explicitly by
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As a simple example, we consider here a quantum graph correspond-
ing to a classical Markov process on a regular lattice in d dimensions, see
Fig. 3b for d = 2. Choosing a stochastic matrix Td with constant tran-
sition probabilities tij = 1/2d between connected edges corresponds to
d-dimensional diffusion in the continuum limit L → ∞; here, L is the
number of vertices along each direction, that is, the total number of arcs
is nE = 2dLd. Solving the diffusion equation with periodic boundary
conditions allows one to recover the low lying part of the spectrum of
Td, that is,

log Λm = −4π2D

L2

d∑
i=1

m2
i , (16)

with diffusion constant D = 1
2d and m is a d-dimensional integer lattice

vector. The influence of the dimension d on the small τ behaviour of
the form factor in diffusive systems has been described in detail by,
for example, Dittrich (1996) and references therein. In terms of the
spectral gap condition, one obtains

∆N =
4π2D

L2
=

4π2(2d)2/d−1

n
2/d
E

that is, we expect universal statistics for d ≥ 3 only. (Actually, the
bound by Gnutzmann and Altland (2004) guarantees random matrix
statistics only for d ≥ 4, numerics suggests however, that d = 3 follows
RMT already (Tanner 2001)). One finds convergence to the Poisson
limit due to Anderson localisation in one dimension (Schanz and Smi-
lansky 2000). The two-dimensional case is critical with ∆ ∼ 1/nE

which shows up in the form factor as a plateau for τ → 0, that is,
limτ→0 K(τ) = 1/4π, see Fig. 3b (Tanner 2002).

3. Regular quantum graphs

In the following, we will consider quantum graphs for which the above
bounds do not necessarily hold due to length correlations in the graphs,
that is, averages are not taken over a full USE. We will actually look
at a specific set of such non-generic quantum graphs, namely quantum
graphs for which the global propagator S consists of identical local scat-
tering processes at every vertex. Such graphs have been called regular
quantum graphs by Severini and Tanner (2004); the name derives from
the notation regular graphs for graphs which have the same number of
incoming and outgoing arcs at every vertex and thus share the property
that vertices are locally indistinguishable. We will show that regular
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quantum graphs corresponding to the same underlying graph G can
behave very differently depending on how the local scattering processes
are connected to each other. We will show that a crucial element in this
is played by the possible ways regular graphs can be edge-coloured.
Regular graphs are in fact another way at looking at quantum random
walks as will be pointed out at the end of this section.

3.1. Regular quantum graphs and edge-colouring matrices

We will construct a quantum graph on a d-regular digraph G with n
vertices for which the wave dynamics at a given vertex of the graph is
”locally indistinguishable” from that of any other vertex of the graph.
This is done by choosing a unitary d-dim. matrix σ and a set of arc-
lengths Li, i = 1, . . . d and ascribing the scattering process σ to every
vertex in the graph with incoming as well as outgoing arcs chosen from
the set of Li’s at every vertex. This is done here by first fixing a so-
called edge-colouring of the graph (see eg Bollobás 1979), that is, we
assign one of d different ”colours” to every directed arc of the graph in
such a way that no vertex has two incoming or two outgoing arcs of the
same colour. Note that there are many different ways to edge-colour
a given regular graph for d ≥ 2. Edge-colouring can be described in
terms of a set of n - dimensional permutation matrices ρi, i = 1, . . . d
having the property that

d∑
i=1

ρi = AG (17)

with AG being the adjacency matrix of G; the arc (ij) is then assigned
the colour k if the (ij) matrix element of ρk is non-zero. We refer to the
set of ρi’s as the edge-colouring matrices of G1. In Fig. 4, an explicit
example is shown with

A =

⎛
⎜⎜⎝

1 1 1 0
0 1 1 1
1 1 0 1
1 0 1 1

⎞
⎟⎟⎠ , ρ1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

ρ2 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , ρ3 =

⎛
⎜⎜⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ .

1 In Severini and Tanner (2004), these matrices have been called connectivity
matrices.
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Figure 4. A 3-regular graph of size 4 together with a possible edge-colouring;
the edge-colouring matrices correspond to entries having the same colour in the
adjacency matrix A of the graph.

The adjacency matrix ALG of the line-graph of G can then be
written in the form (Severini 2003, Severini and Tanner 2004)

ALG =

(
d⊕

i=1

ρi

)
· (Jd ⊗ In) something , (18)

where Jd is the (d × d) matrix with all elements being equal to 1 and
In is the identity matrix. We proceed by defining a quantum graph on
the line-graph of G in the form of a unitary propagator SG as follows:

SG =

(
d⊕

i=1

ρi

)
· (C⊗ In) =

⎡
⎢⎢⎢⎣

C11 ρ1 C12 ρ1 · · · C1d ρ1

C21 ρ2 C22 ρ2 · · · C2d ρ2
...

...
. . .

...
Cd1 ρd Cd2 ρd · · · Cdd ρd

⎤
⎥⎥⎥⎦ , (19)

with C(k) = D(k)σ and D(k)il = δjle
ikLj describing the local scatter-

ing process. The d - dimensional matrix C is also called the coin in the
context of quantum random walks on graphs (Kempe 2003).

Note that different ways of edge-colouring the graph, that is, dif-
ferent decomposition of AG in the form (17) lead to different quantum
graphs which may have quite different properties as will be shown in the
next section; this is in contrast to the representations of the line-graph
adjacency matrix (18) which are all equivalent up to relabeling the
arcs in the graph. For modifications of this construction for undirected
graphs with time reversal symmetry, see Severine and Tanner (2004).

3.2. From ’integrable’ to ’chaotic’ regular quantum
graphs - some examples

In this section, we will show that different ways to edge-colour a graph
can indeed lead to very different types of quantum graphs with spectral
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Figure 5. The complete graph Kn with n = 5.

statistics ranging from Poisson to CUE. In other words, in regular
quantum graphs it is the choice of the edge-colouring matrices ρi, a
purely topological quantity, which determines the properties of the
quantum graph independent of the single vertex scattering processes
given through the coin C. We will demonstrate this here for a specific
example, namely so called complete graphs G = Kn with adjacency
matrix AG = Jn, that is every vertex is connected to every other vertex,
see Fig. 5. (Note that nE = n2, here). A more general treatment can be
found in Severini and Tanner (2004). In the examples discussed below,
we make use of the fact that for finite groups Γ of order n, we may
write

n∑
i=1

ρi = Jn . (20)

where the ρi’s form a regular representation of Γ. In what follows we will
study various decompositions of Jn and see how they effect statistical
properties of the spectra of quantum graphs.

3.3. The cyclic group Zn

We will first consider an abelian group, namely the cyclic group Zn.
The ρi’s forming a regular representation commute with each other and
are of the form

(ρj)kl = δk,(l+j) modnwith eigenvaluesχj
m = e2πi jm

n , where j, m = 1, . . . , n .

(21)
The abelian nature of the group allows one to block-diagonalise the

matrix SG into n blocks of dimension n each, independent of the coin
C. The spectrum of the quantum graph is then given by the spectra of
the sub-matrices

SG
m =

⎛
⎝ n⊕

j=1

e2πi jm
n

⎞
⎠ ·C with m = 1, . . . , n .
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The eigenvalues of SG are here characterised in terms of two quantum
numbers, an ’angular momentum’ quantum number m and a second
quantum number counting the eigenvalues in each m manifold. If the
spectra for different m are uncorrelated, one expects Poisson statistics
of the total spectrum in the limit n→∞.

Figure 6a) shows spectral properties of SG with n = 24, that is,
dimSG = 576. We plot here the nearest neighbour spacing (NNS)
distribution P (s) and the form factor K(τ). The coin is of the from
C(k) = D(k)σ where the local scattering matrix σ is choosen to be
the Fourier matrix and the arc lengths entering the diagonal matrix
D are chosen independently and identically distributed in [0, 1]. The
average is, for a fixed choice of the coin, taken by averaging over the
wavelength k. The numerical results are shown in Fig. 6a) and suggest
indeed Poisson-statistics apart form deviations in the form factor on
scales τ ≤ 1/n due to the ‘random nature’ of the coin.

3.4. The non-abelian case: the symmetric group S4

Next, we consider a specific example of a non-abelian group, namely the
symmetric group S4 with n = 24 elements. By writing the permutation
matrices ρi forming the regular representation of S4 in terms of the
irreducible representations (for short irreps) of S4, we can again give
the propagator SK24

in block-diagonal form where the blocks are now
of size nd, with d being the dimension of the irrep under consideration.
The group S4 has 2 one-dimensional, 1 two-dimensional and 2 three-
dimensional irreps, and each d - dimensional irrep is contained d times
in each ρi according to the general formula

2 · 11 + 1 · 22 + 2 · 33 = 24.

We thus have 5 independent sub-spectra making up the spectrum of
the quantum graph SG of which two are of dimension n = 24, one is
of dimension 2 · 24 = 48 and two are of dimension 3 · 24 = 72; the
latter once are two and three times degenerate, respectively. The huge
degeneracy in the spectra can clearly be seen in the spectral statistics;
it is manifest in the peak at s = 0 in P (s), see Fig. 6b, and leads to

[c]cccK(τ) = (2 · 33 + 1 · 23 + 2 · 13) = 8/3for τ > 3/24 . (22)

The spectra appear to be uncorrelated otherwise; note however, that
the spectrum for each sub-block alone are correlated following CUE
statistics, which gives rise to the deviations from purely Poisson be-
haviour in P (s) (cf. dashed curve) as well as in the behaviour of the
form factor for τ ≤ 3/24 which is dominated by the sub-spectra of the
three dimensional irreps.
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Figure 6. Formfactor K(τ) and nearest neighbour spacing distribution P (s) for: (a)
the ρi’s form the regular representation of the cyclic group Z24; (b) ρi’s represent
the symmetric group S4; (c) a ’random’ set of ρi’s without symmetries. The dashed
curve in (b) labeled ”red. Poisson” corresponds to a distribution of degenerate levels
being Poisson distributed otherwise.

3.5. The generic case: no symmetries

The overwhelming number of decompositions of the form (20) will of
course have no common symmetry, that is, it is not possible to block-
diagonalise the ρi’s simultaneously. We therefore do not expect any
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special features in the spectrum. The question remains, however, if the
’randomness’ put into the system by choosing a random edge-colouring
is enough to produce generic, random matrix type, statistics. After all,
these quantum graphs still possess a large degree of degeneracy due to
the presence of identical coins at every vertex. A numerical study may
thus reveal interesting insights into the range of validity of the RMT
- regime. Fig. 6c shows the level statistics for an unstructured choice
of edge-colouring matrices which is in good agreement with random
matrix theory for the CUE - ensemble 2. Note that the statistic has
been obtained from the spectrum on an (n2×n2) unitary matrix which
has only n3 non-zero elements of which only n2 are independent; in
addition, there are only n different arcs lengths to choose from for n2

different arcs. The origin of the universality in the spectral statistics in
this type of quantum graphs is here clearly not due to the ’randomness’
in the choice of the matrix elements but due to random edge-colouring
of the graph alone!

3.6. Quantum random walks

In recent years, the study of unitary propagation on graphs has also
been looked at from the perspective of devising a quantum version
of a random walk. This line of thought arose as part of the effort
to build quantum information systems being able to do operations
which are impossible or much slower on classical devices. It could
indeed be shown that quantum random walks have this property under
certain circumstances: quantum walks can be faster for some network
geometries (Aharonov et.al. 1993) and can even lead to an exponential
speed-up such as for the graph-traversal algorithm by Childs et.al.
(2003); for an introductory overview and further references, see Kempe
(2003). The generalisation of Grover’s algorithm (Grover 1997) to spa-
tial searches on graphs (Shenvi et.al. 2003, Ambianis et.al. 2004, Childs
and Goldstone 2004) is another remarkable recent result.

We will not study the properties of quantum random walks here;
instead, we would like to point out that the discrete quantum walk
modules discussed in the literature are in fact equivalent to regular
quantum graphs such as introduced in the previous sections.

In brief, a discrete quantum random walk comprises of an in general
d - regular graph G with n vertices (where lattices are favoured in the
literature) and a ’spin’ degree of freedom, where the spin can take up
d different states. A quantum state at a vertex v with spin i is then

2 Deviations in the formfactor for small τ can be attributed to the fact that the
spectrum of C itself is always contained in the full spectrum, see Severini and Tanner
(2004); this part has been removed in the NNS statistic.
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described by |v, i > and the quantum wave function is a superposition
of all possible vertex states. The quantum random walk consists of a
’walk’ element and a ’quantum coin toss’. The walk is steered by the
internal spin states, that is, there exist matrices ρi, i = 1, . . . d which
define in which direction the component |v, i > is flowing, that is,

ρi|v, i >= |v′, i >

where the internal spin states remains unchanged. The ρi’s are ob-
viously permutation matrices in the vertex space. The coin toss is
simulated by applying a unitary transformation C to the spin states at
every vertex, that is,

C|v, i >= |v,
∑
j

Cijj >;

the coin is unbiased, if |Cij |2 = 1/d throughout. It is clear from the
construction, that one obtains a classical random walk on such a net-
work, if one performs a measurement after every walk by projecting
out the spin degrees of freedom.

A full cycle of walk and coin toss is then described by a unitary
matrix

SQW =

(
d⊕

i=1

ρi

)
· (C⊗ In) (23)

which has exactly the form of the propagator for regular quantum
graphs in Eq. (19). We thus identify the ρi’s with the edge-colouring
matrices and the coin is in fact a local scattering matrix. Writing the
components of the wave function in |v, i > notation is thus just a
different way of labeling the arcs in the graph and the dynamics takes
indeed place on the line-digraph of G.

To demonstrate the mechanism, let us give a specific example: the
quantum walk on an infinite line. A popular setting is the following
walk:

states: |i, ↑>, |i, ↓>, i ∈ Z

walk: |i, ↑> → |i + 1, ↑>
|i, ↓> → |i− 1, ↓> , that is, ρ↑ = δi,i+1, ρ↓ = δi,i−1;

coin: C =
1√
2

(
1 1
−1 1

)
.

A random walk starting in the state |i, ↑> then evolves according to

|i, ↑> C→ 1√
2

(|i, ↑> −|i, ↓>) walk→ (|i + 1, ↑> −|i− 1, ↓>) C→ . . . .
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Continuing this process leads quickly to a probability profile which
grows linearly with the number of steps t which is in contrast to the
classical spreading for 1d random walks being of the order

√
t (Kempe

2003). It must be pointed out, however, that this is a pure symmetry
effect due the choice of edge-colouring matrices; in the setting cho-
sen here, the two operations ρ↑ and ρ↓ commute. Colouring the arcs
in a different way, for example by randomly assigning colours to the
arcs, leads to a completely different behaviour which is for a generic
choice of C similar to that of a quantum graph on a diffusive network
as discussed in sec. 2.3. In particular, one finds localisation in one-
dimensional chains, that is, a typical wave function will not spread at
all!
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Abstract. The Dirac equation is discussed in a semiclassical context, with an emphasis on
the separation of particles and anti-particles. Classical spin-orbit dynamics are obtained as the
leading contribution to a semiclassical approximation of the quantum dynamics. In a second
part the propagation of coherent states in general spin-orbit coupling problems is studied in
two different semiclassical scenarios.

Keywords: Dirac equation, semiclassics, spin-orbit coupling, coherent states

1. Introduction

Spin-orbit coupling problems are of a genuine quantum nature since a priori
spin is a quantity that only occurs in quantum mechanics. However, already
Thomas (Thomas, 1927) had introduced a classical model for spin precession.
Later, Rubinow and Keller (Rubinow and Keller, 1963) derived the Thomas
precession from a WKB-like approach to the Dirac equation. They found
that although the spin motion only occurs in the first semiclassical correction
to the relativistic classical electron motion, it can be expressed in merely
classical terms.

Our approach is based on a systematic semiclassical study of the Dirac
equation. After separating particles and anti-particles to arbitrary powers in
�, a semiclassical expansion of the quantum dynamics in the Heisenberg
picture is developed. To leading order this method produces classical spin-
orbit dynamics for particles and anti-particles, respectively, that coincide with
the findings of Rubinow and Keller: Hamiltonian relativistic (anti-) particles
drive a spin precession along their trajectories. A modification of that method
leads to a semiclassical equivalent of the Foldy-Wouthuysen transformation
resulting in relativistic quantum Hamiltonians with spin-orbit coupling.

In a second part we study the propagation of coherent states in general
spin-orbit coupling problems with semiclassical means. This is done in two
semiclassical scenarios: � → 0 with either spin quantum number s fixed
(as above), or such that �s = S is fixed. In both cases, first approximate
Hamiltonians are introduced that propagate coherent states exactly. The full
Hamiltonians are then treated as perturbations of the approximate ones. The
full quantum dynamics is seen to follow appropriate classical spin-orbit tra-
jectories, with a semiclassical error of size

√
�. As opposed to the first case,
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in the second scenario the classical spin motion is found to exert a back re-
action on the (anti-) particle trajectories. Finally, it is observed that the semi-
classical propagation holds up to the Ehrenfest time, which reads TE(�) =
| log �|/6λ when the classical trajectory is unstable with Lyapunov exponent
λ. Full proofs of the results presented here can be found in (Bolte and Glaser,
2004; Bolte and Glaser, 2004; Bolte and Glaser, 2005).

2. Semiclassics for the Dirac equation

We consider particles of spin 1/2, mass m, and electric charge e in a fixed
inertial frame. They shall be exposed to external electromagnetic fields that
are static in the given frame,

E(x) = −∇φ(x)
and
B(x) = ∇×A(x).
In relativistic quantum mechanics such particles are described by the Dirac

equation

i�
∂

∂t
Ψ(t, x) = ĤD Ψ(t, x) , (1)

where the Dirac-Hamiltonian reads

ĤD = cα ·
(

�

i
∇− e

c
A(x)

)
+ mc2β + eφ(x) . (2)

The relations αkαl + αlαk = 2δkl, αkβ + βαk = 0, and β2 = 14 define the
relevant Clifford algebra, for which we choose the Dirac representation. In a
phase space language, employing Weyl quantisation, this Hamiltonian can be
written as (see, e.g., (Dimassi and Sjostrand, 1999))

(
ĤDψ

)
(x) =

1
(2π�)3

�
e

i
�
p·(x−y) HD

(x+y
2 , p

)
ψ(y) dp dy , (3)

where

HD(x, p) =
(

(eφ(x) + mc2)12 (cp− eA(x)) · σ
(cp− eA(x)) · σ (eφ(x)−mc2)12

)
(4)

is the matrix valued Weyl symbol of the operator ĤD. For each point (x, p)
in phase space this is a hermitian 4× 4 matrix with the (twofold degenerate)
eigenvalues

h±(x, p) = ±
√

(cp− eA(x))2 + m2c4 + eφ(x) . (5)

The functions h±(x, p) are the classical relativistic Hamiltonians of spinless
particles with positive and negative energies, respectively.
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2.1. Particles and anti-particles

In order to achieve a semiclassical separation of particles and anti-particles
one starts with the projection matrices

Π±
0 (x, p) =

1
2

(
14 ±

α · (cp− eA(x)) + βmc2

ε(x, p)

)
(6)

onto the two-dimensional eigenspaces in C4 corresponding to the eigenvalues
(5); here we have introduced

ε(x, p) :=
√

(cp− eA(x))2 + m2c4 . (7)

The Weyl quantisations Π̂±
0 of (6) according to the rule (3), however, are not

projection operators on the Hilbert spaceH = L2(R3)⊗C4, since (see, e.g.,
(Emmrich and Weinstein, 1996))

(
Π̂±

0

)2 − Π̂±
0 = O(�) and [ĤD, Π̂±

0 ] = O(�) . (8)

One can improve the error to higher orders in � by successively adding �-
dependent corrections to (6), finally arriving at projection operators Π̂± that
are Weyl quantisations of (see again (Emmrich and Weinstein, 1996))

Π±(x, p) ∼
∞∑

k=0

�
k Π±

k (x, p) , (9)

and that almost commute with the Dirac-Hamiltonian,

[ĤD, Π̂±] = O(�∞) . (10)

Here O(�∞) indicates an error that is smaller than any power of �. The
operators Π̂± also provide a semiclassical resolution of unity,

Π̂+ + Π̂− = O(�∞) and Π̂+Π̂− = O(�∞) . (11)

In the Hilbert spaceH one can therefore introduce the subspacesH± = Π̂±H
that are almost invariant under the quantum dynamics generated by the Dirac
Hamiltonian (2), since the estimate (10) implies that

e−
i
�
ĤDtΠ̂±ψ − Π̂±e−

i
�
ĤDtψ = O(t�∞) . (12)

Hence, for finite times t any initial vector from H± remains in this subspace
up to an error of the order �

∞. Moreover, for semiclassically large times,
t � �

−N for any N > 0, the error is still approaching zero in the semi-
classical limit. Since the construction of the projectors Π̂± was based on
the “classical” projection matrices (6) associated with positive and negative
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classical energies, one can interpret the subspaces H± as to contain particle
and anti-particle states, respectively. This identification is exact in the ab-
sence of external electromagnetic fields, where the Weyl quantisation of (6)
already yields the proper projection operators to the particle and anti-particle
subspaces.

2.2. Classical dynamics

The classical motion corresponding to the quantum dynamics generated by
the Dirac-Hamiltonian (2) can most conveniently be obtained by considering
the limit � → 0 in the Heisenberg picture: Consider an operator B̂ that is a
Weyl quantisation of some symbol (see (Dimassi and Sjostrand, 1999))

B(x, p; �) ∼
∞∑

k=0

�
k Bk(x, p) , (13)

and propagate it to time t > 0,

B̂(t) = e
i
�
ĤDt B̂ e−

i
�
ĤDt . (14)

Up to a possible error of order �
∞ this operator is again a Weyl quantisation

of some symbol

B(t)(x, p; �) ∼
∞∑

k=0

�
k B(t)k(x, p) , (15)

if and only if the operator B̂ satisfies the condition

Π̂+B̂Π̂− = O(�∞) = Π̂−B̂Π̂+ , (16)

i.e., if B̂ semiclassically does not induce transitions between the particle and
anti-particle subspaces, see (Bolte and Glaser, 2004). In that case the coeffi-
cients B(t)k(x, p) in the expansion (15) can be determined order by order,
with leading term (Bolte and Glaser, 2004; Bolte and Glaser, 2004)

B(t)0(x, p) =
∑

ν=+,−
d†ν(x, p, t)

(
Πν

0B0Πν
0

)
(xν(t),pν(t)) dν(x, p, t) .

(17)
In this expression (x±(t),p±(t)) are solutions of the classical equations of
motion generated by the Hamiltonians (5), with (x±(0), p±(0)) = (x, p).
Moreover, d±(x, p, t) are unitary 4 × 4 matrices that describe the dynam-
ics of the spin degrees of freedom to leading semiclassical order along the
trajectories (x±(t),p±(t)) in phase space.

The classical spin motion that follows from the above considerations can
be viewed as a dynamics on the sphere S2 driven by the Hamiltonian dy-
namics in phase space. To see this one first transforms the (redundant) four-
dimensional representation of the matrix degrees of freedom, corresponding
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to either positive or negative energies, into a more convenient two-dimensional
form. The matrices

V+(x, p) =
1√

2ε(x, p)(ε(x, p) + mc2)

(
(ε(x, p) + mc2)12

(cp− eA(x)) · σ

)

V−(x, p) =
1√

2ε(x, p)(ε(x, p) + mc2)

(
(cp− eA(x)) · σ)
−(ε(x, p) + mc2)12

) (18)

provide isometries from C2 to Π±
0 (x, p)C4, such that V±V †

± = Π±
0 and

V †
±V± = 12, see (Bolte and Keppeler, 1999; Bolte and Glaser, 2004). That

way the expressions Πν
0B0Πν

0 occurring in (17) can be converted into the 2×2
matrices

V †
±(x, p)B0(x, p) V±(x, p) . (19)

E.g., for the spin operator

Σ =
(

σ 0
0 σ

)
(20)

this transformation amounts to

V †
±(x, p)ΣV±(x, p) = σ , (21)

which is independent of the phase-space point (x, p). The leading semiclas-
sical order of the spin operator following from (17) thus reads

D†
±(x, p, t)σ D±(x, p, t) (22)

in two-dimensional form, where the spin propagator D±(x, p, t) ∈ SU(2) is
determined by the equation (see (Bolte and Glaser, 2004))

i�
∂

∂t
D±(x, p, t) = �

2 C±(x±(t),p±(t)) · σ D±(x, p, t) , (23)

with D±(x, p, 0) = 12. Here

C±(x, p) = ± ec

ε(x, p)

(
B(x)± cE(x)× (cp− eA(x))

ε(x, p) + mc2

)
(24)

defines a spin Hamiltonian H±
spin = �

2 C± · σ at each point (x, p) in phase
space. The spin dynamics (22) is completely determined by a correspond-
ing classical spin motion. The latter follows from expectation values of the
operator (22) in spin states u ∈ C2 with ‖u‖C2 = 1,

n±(t) := 〈u, D†
±(x, p, t)σ D±(x, p, t)u〉C2 , (25)

see (Bolte and Keppeler, 1999). Clearly, n±(t) ∈ R3 is of unit length and
therefore represents a point on the sphere S2. Its dynamics immediately fol-
lows from (23),

ṅ±(t) = C±(x±(t),p±(t))× n±(t) . (26)
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This equation describes the Thomas precession of a classical spin (Thomas,
1927), which is driven by the underlying Hamiltonian dynamics in phase
space. In combination the two types of dynamics, Hamiltonian on phase space
and driven precession on the sphere, yield the following picture: There is a
combined phase space R3 ×R3 × S2 with two dynamical systems,

(x,p,n) �→
(
x±(t),p±(t),n±(t)

)
, (27)

that each posses the form of a skew product (see (Cornfeld, Fomin and Sinai,
1982)), qualifying them as genuine flows on the combined phase space. These
two motions are the classical dynamical systems that in leading semiclas-
sical order correspond to the quantum dynamics generated by the Dirac-
Hamiltonian (2). They involve the semiclassical separation of particles from
anti-particles and are independently associated with either particles (+) or
anti-particles (−).

2.3. Semiclassical Foldy-Wouthuysen transformation

In the previous discussion the semiclassical separation of particles and anti-
particles employed projection operators and the associated subspaces of the
Hilbert space. By suitable choices of bases such a separation can also be
constructed with the help of unitary operators rotating the Hamiltonian into
a block-diagonal form. Such a procedure is closely analogous to the Foldy-
Wouthuysen transformation that provides a similar separation in a non-relati-
vistic limit. A (unitary) semiclassical Foldy-Wouthuysen transformation Ûsc

rotates the Dirac-Hamiltonian ĤD into

Û †
sc ĤD Ûsc =

(
Ĥ+

D 0
0 Ĥ−

D

)
+ O(�∞) , (28)

where Ĥ±
D are Weyl quantisations of symbols

H±
D(x, p) ∼

∞∑
k=0

�
k H±

D,k(x, p) = h±(x, p) + �

2C±(x, p) · σ + O(�2) ,

(29)
see, e.g., (Cordes, 1983; Bruneau and Robert, 1999; Teufel, 2003). Cutting off
this symbol expansion after the two leading terms would yield the relativistic
quantum Hamiltonians

±
√(

�c
i ∇− eA(x)

)2 + m2c4 + eφ(x) + �

2C±
(
x, �

i∇
)
· σ , (30)

separately for particles and anti-particles, with completely relativistic spin-
orbit coupling. This has to be compared with the usual non-relativistic Foldy-
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Wouthuysen transformation that yields, up to second order in 1/c, the Pauli-
operators

± 1
2m

(
�

i
∇− e

c
A(x)

)2
+ eφ(x)∓ e�

2mc
B(x) · σ , (31)

which are themselves non-relativistic approximations to the operators (30).

3. Propagation of coherent states in spin-orbit coupling problems

Semiclassical studies of the propagation of coherent states have proven useful
in many circumstances see, e.g., (Klauder and Skagerstam, 1982; Perelomov,
1986). Here we consider spin-orbit coupling problems that result from the
Dirac equation either in a semiclassical or in a non-relativistic approximation
(see, e.g., the Hamiltonians (30) and (31)). The Hamiltonians Ĥ that arise in
such a context can be viewed as Weyl quantisations of symbols

H(x, p) = H0(x, p)12 + �

2 C(x, p) · σ , (32)

where H0(x, p) is a real valued function. This setting allows to cover a wide
range of problems including, e.g., spin-orbit couplings of the Rashba-type in
semiconductors (see, e.g., (Zaitsev, Frustaglia and Richter, 1982)).

The goal is to investigate solutions to the (“Pauli-type”) equation

i�
∂

∂t
Ψ(t, x) = Ĥ Ψ(t, x) , (33)

in the semiclassical limit, when Ψ(0,x) is a coherent state in the translational
as well as in the spin degrees of freedom.

Coherent states

Coherent states for the translational degrees of freedom (in d dimensions)
are Gaussians located at a point (q, p) in phase space. For convenience we
choose them as

ϕB
(q,p)(x) := NB e

i
�
p·(x−q)+ i

2�
(x−q)B(x−q) , (34)

where B is a complex-symmetric d × d matrix whose imaginary part is
positive-definite, and NB is a suitable normalisation. It is well known that
quadratic Hamiltonians, i.e., Weyl quantisations of

Hosc(x, p) =
∑

|α|+|β|≤2

Aαβ xα pβ , (35)

3.1.



96 Jens Bolte

propagate such coherent states exactly. This means

e−
i
�
ĤosctϕB

(q,p) = e
i
�
χ(t) ϕ

B(t)
(q(t),p(t)) , (36)

where (q(t),p(t)) is the classical trajectory generated by (35),

χ(t) =
∫ t

0

(
q̇ · p−Hosc

)
dt′ + π

2 σ(t) , (37)

and

B(t) =
(∂p(t)

∂p
B +

∂p(t)
∂q

) (∂q(t)
∂p

B +
∂q(t)
∂q

)−1
; (38)

here σ(t) is a suitable Maslov-phase. Spin-coherent states are associated with
unitary irreducible representations πs of the group SU(2) (see, e.g., (Klauder
and Skagerstam, 1982; Perelomov, 1986)). They are labeled by points

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (39)

on the sphere S2. Denoting by |s, s〉 ∈ C2s+1 a ”spin-up” (highest weight)
vector and introducing

gn :=

(
cos θ

2 − sin θ
2 e−iϕ

sin θ
2 eiϕ cos θ

2

)
, (40)

a coherent state of spin s is

φn = πs
(
gn
)
|s, s〉 . (41)

Spin-Hamiltonians that are linear in the spin operators, Ĥspin = C(t) · Ŝ,
propagate spin-coherent states exactly,

φn �→ eisρ(t) φn(t) . (42)

Here n(t) is a solution of the classical precession equation

ṅ(t) = C(t)× n(t) (43)

associated with Ĥspin, and

ρ(t) =
∫ t

0

[
(cos θ − 1)ϕ̇−C · n

]
dt′ . (44)

is the corresponding classical action integral.
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Semiclassical propagation

Obviously, the above discussion implies that quantum Hamiltonians of the
type Ĥosc + Ĥspin propagate initial product coherent states ϕB

(q,p) ⊗ φn ex-
actly; however, they do not describe any non-trivial spin-orbit coupling. The
time evolution of an initial product coherent states that is generated by some
Hamiltonian arising as a Weyl quantisation of (32), which describes gen-
uine spin-orbit coupling, can therefore only be studied in a semiclassical
approximation. This procedure is not unique since there are two semiclas-
sical parameters available: � corresponding to the translational part, and 1/s
associated with the spin. In the following two scenarios will be discussed.

(i) �→ 0 and s fixed,

(ii) �→ 0, s→∞ such that �s = S fixed.

The first case has already been considered section 2.0; the second case leads
to a strong classical spin-orbit coupling, which is reflected in a Hamiltonian
nature of the classical combined dynamics. In both situations the procedure
is to find a suitable approximate Hamiltonian ĤQ(t) that propagates coherent
states exactly along appropriate classical spin-orbit trajectories(x(t),p(t),n(t)).
(For problems with only translational degrees of freedom this has been sug-
gested in (Heller, 1975) and proven in (Combescure and Robert, 1997).) Then
one treats the full Hamiltonian as a perturbation of the approximate one and
calculates the full time evolution in quantum mechanical perturbation theory
(via the Dyson series), i.e., one iterates the Duhamel formula

Û(t) = ÛQ(t)− i
�

∫ t

0
Û(t− t′)

(
Ĥ − ĤQ(t′)

)
ÛQ(t′) dt′ (45)

for the unitary time-evolution operators up to any given order. The leading
expression (45) then allows to estimate

∥∥(Û(t)− ÛQ(t)
)
ϕB

(q,p) ⊗ φn

∥∥ (46)

in terms of the semiclassical parameters. This procedure depends on the semi-
classical scenario chosen, since estimating the difference (46) requires to
consider (Bolte and Glaser, 2005)

Ŝφn = �s n φn + · · · , (47)

where the dots indicate semiclassically subleading terms. The order in which
this expression contributes to (46) therefore depends on the choice �s =
O(�), as in case (i), or �s = S = O(1), as in case (ii).

The classical spin-orbit dynamics that emerge from the two semiclassical
limits are the following (Bolte and Glaser, 2005): In case (i) one obtains the

3.2.
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combined motion (27) consisting of the Hamiltonian translational dynamics
generated by the Hamiltonian H0(q, p) from (32), which drives a spin preces-
sion according to (26). Due to the relation (47) scenario (ii) implies a stronger
classical spin-orbit coupling that includes a back reaction of the spin on the
translational motion. The combined dynamics are Hamiltonian, generated by

Hso(q, p,n) = H0(q, p) + S n ·C(q, p) , (48)

so that

q̇(t) =
∂Hso

∂p
(q(t),p(t),n(t)) ,

ṗ(t) = −∂Hso

∂q
(q(t),p(t),n(t)) ,

ṅ(t) = C(q(t),p(t))× n(t) .

(49)

In order to define the approximate Hamiltonians ĤQ(t) one considers suit-
ably truncated Taylor expansions of the symbol (32) about appropriate classi-
cal trajectories (x(t),p(t), n(t)). Introducing z(t) = (x(t), p(t)) and w =
(x, ξ), in case (i) this reads

H
(i)
Q (t, w) =

∑
|ν|≤2

1
ν!

∂|ν|H0

∂zν
(z(t)) (w − z(t))ν + C(z(t)) · Ŝ . (50)

Notice that due to (47) the last term is effectively of order �. In case (ii) one
chooses

H
(ii)
Q (t, w) =

∑
|ν|≤2

1
ν!

∂|ν|H0

∂zν
(z(t)) (w − z(t))ν + C(z(t)) · Ŝ

+ S
∑

|ν|=1,2

1
ν!

n(t) · ∂
|ν|C
∂zν

(z(t)) (w − z(t))ν .

(51)

As opposed to (50), here the term with the spin operator is of effective order
one. The Weyl quantisations of (50) and (51) propagate initial coherent states
ϕB

(q,p) ⊗ φn to

e
i
�
R(t)+i π

2
σ(t) ϕ

B(t)
(q(t),p(t)) ⊗ φn(t) . (52)

The time evolution B(t) of the matrix B is defined as in (38), along the
appropriate trajectory (q(t),p(t)), and

R(t) =
∫ t

0

(
p · q̇ −H0 + �s

(
(cos ϑ− 1)ϕ̇−C · n

))
dt′ . (53)

In the case (i) this is the action integral of the translational motion plus � times
the action of the (driven) spin precession. In contrast, due to the condition
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�s = S, in the case (ii) this quantity is independent of � and represents
the action integral of the classical combined spin-orbit dynamics. In either
situation an estimate of the difference (46), based on the relation (45), yields
for finite times t,

∥∥(Û(t)− ÛQ(t)
)
ϕB

(q,p) ⊗ φn

∥∥ ≤ C(t)
√

� , (54)

where the t-dependence of C(t) < ∞ is determined by the stability of the
classical trajectory through (q, p, n). Thus, the full time evolution of an ini-
tial spin-orbit coherent state follows an appropriate classsical trajectory up
to an error of size

√
�. Moreover, if the classical trajectory is unstable with

maximal Lyapunov exponent λ, the error on the r.h.s. of (54) vanishes as
�→ 0 and t→∞, as long as t� TE(�). Here

TE(�) =
1
6λ
| log �| (55)

denotes the so-called Ehrenfest-time. In the case of a regular trajectory, on a
KAM-torus, the same holds up to times t� const. �−1/8.

It is possible to improve the error term in (54) to any desired order �
N/2

by replacing (45) with its N -th iterate. That way the state that is propagated
along classical trajectories is no longer given by the coherent state (52), but
by a suitably squeezed version of it. These states possess the same localisa-
tion properties as (52), however, their explicit form looks considerably more
awkward.
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Lassof inhomogeneously driven dyamical systems:General

theory, regular and chaotic properties, applications

Vladimir Damgov
Space Research Institute at the Bulgarian Academy of Sciences
6 Moskovska St., 1000 Sofia, Bulgaria

Abstract.
A generalized model of an oscillator, subjected to the influence of external waves

is considered. It is shown that the systems of diverse physical background which
this model encompasses by their nature should belong to the broader class of ”kick-
excited self-adaptive dynamical systems”.

A class of kick-excited self-adaptive dynamical systems is formed and proposed.
The class is characterized by a nonlinear (inhomogeneous) external periodic ex-
citation (as regards the coordinates of the excited system) and is remarkable for
the occurrence of the following objective regularities: the phenomenon of discrete
oscillation excitation in macro-dynamical systems having multiple branch attractors
and strong self-adaptive stability.

A generalized oscillator-wave model is considered showing that the inhomo-
geneous external influence is realized naturally and does not require any specific
conditions. The article considers also the presence of a small horseshoe in the dy-
namics of a particle under the action of two waves. Originally the problem comes
from the plasma physics in despite of the existence of some other applications of the
differential equation we study here.

Keywords: inhomogeneous, dynamical system, chaos

1. Introduction

The main goal of this report is to present a phenomenon of highly
general nature manifested in various dynamical systems. We present the
occurrence of peculiar “quantization” by the parameter of intensity of
the excited oscillations and we show that given unchanging conditions
it is possible to excite oscillations with a strictly defined discrete set
of amplitudes; the rest of the amplitudes being “forbidden”. The real-
ization of oscillations with a specific amplitude from the “permitted”
discrete set of amplitudes is determined by the initial conditions. The
occurrence of this unusual property is predetermined by the new general
initial conditions, i.e. the nonlinear action of the external excited force
with respect to the coordinate of the system subjected to excitation.

A striking example of the so formed class of kick-excited self-adaptive
dynamical phenomena and systems is the model of a pendulum influ-
enced by quasi-periodic short-term actions, as considered in papers
(Damgov, 2004) - (Damgov and Trenchev, 1999).
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Quantization (the idea of quantums, photons, phonons, gravitons)
is postulated in Quantum Mechanics, while the Theory of Relativity
does not derive quantization from geometric considerations. In the case
of the established phenomenon the ”quantized nature” of portioned
energy transfer stems directly from the mechanisms of the process and
has a precise mathematical description. The quasi-harmonic oscillator
obeys the classical laws to a greater extent than any other system.
A number of problems, related to quasi-harmonic oscillators, have the
same solution in classical and quantum mechanics.

Here we also consider the generalized “oscillator-wave” model and
show that, in this case, the inhomogeneous external influence is realized
naturally and does not require any specific conditions. Systems covered
by the “oscillation-wave” model immanently belong to the generalized
class of kick-excited self-adaptive dynamical systems. We show that
under certain condition in the system will arise non-attenuated oscil-
lations with a frequency close to the system’s natural frequency and
amplitude which belongs to a defined discrete spectrum of possible
amplitudes. A second important quality also appears – self-adaptive
stability of the excited oscillations with given amplitude for a broad
range of the incoming wave’s intensity.

Leaving the details, the equation describing the motion of one parti-
cle in two electrostatic waves allows perturbation methods to be applied
in its study. There are three main types of behavior in the phase space
- a limit cycle, formation of a non-trivial bounded attracting set and
escape to infinity of the solutions. One of the goals is to determine the
basins of attraction and to present a relevant bifurcation diagram for
the transitions between different types of motion.

2. A numeric demonstration of the excitation of
”quantized” pendulum oscillations

The inhomogeneously AC driven, damped pendulum system can be
described by the following equation:

d2x

dt2
+ 2δ

dx

dt
+ sin x = ε(x)Fo sin νt, (1)

where the function ε(x) can be analytically expressed in various ways,
such as:

ε(x) =
{

1 for |x| ≤ d′
0 for |x| > d′ . (2)
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or ε(x) = e
x2

2d′2 , ε(x) =
{ 1

2

[
1 + cos

(
π
d′ x

)]
for |x| ≤ d′

0 for |x| > d′ and so on;

d′ << 1 is a parameter limiting the external action on a small part of
the trajectory of motion in the system (in the particular case (2) the
parameter thereby determines a symmetric zone of action in the area
of the lower equilibrium position).

We emphasize the link with the name of the already formed class of
kick-excited self-adaptive systems and phenomena: the external force
is linked, through the function ε(x), with the motion coordinate in an
adaptive mode, and at the same time it exerts action in the form of
short impulses much shorter than the oscillation period of the system.

Results from the computer experiment are presented in (Damgov,
2004; Damgov and Trenchev, 2003): (i) the joint phase portrait of
stationary steady motion of the pendulum of four different initial con-
ditions; (ii) an illustration of a bifurcation of tripling the period of
oscillations; (iii) the multi-basins of the stationary attractors, or the
set of initial conditions that evolve toward each of the fixed points; (iv)
the colour images of the basins of the different attractor when changing
the control parameter (that is the amplitude of the external exciting
force); (v) the multi-bifurcation diagram of the system; (vi) the single
segment strange attractors; (vii) the multi- bifurcation diagram of the
Duffing oscillator.

3. Model of the interaction of an
oscillator with an electromagnetic

wave

Analytical approaches applicable for small and large amplitudes (for
weak and strong nonlinearity) of the oscillations in a nonlinear dy-
namic system subjected to the influence of a wave has been developed
(Damgov, 2004; Damgov, Trenchev and Sheiretsky, 2003).

The performed analysis shows that the continuous wave having a
frequency much larger than the frequency of a given oscillator can excite
in it oscillations with a frequency close to its natural frequency and an
amplitude belonging to a discrete set of possible stable amplitudes.

The settling of certain particular amplitude depends on the initial
conditions. When the motion becomes stationary the amplitude’s value
practically does not depend on the wave’s intensity when the latter
changes over a significant range above a certain threshold value. This
is reminiscent of Einstein’s explanation of the photoelectric effect using
Planck’s quantization hypothesis. In this case the absorption is also
independent of the incoming wave’s intensity. Besides, the absorbed
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frequencies can be expressed as integer multiples of a certain basic
frequency reminding of resonance phenomena.

4. ”Quantized” cyclotron motion

When an electromagnetic wave interacts with resonators, the effect of
“quantization” of all possible stationary stable oscillating amplitudes
arises without the requirement of any specifically organized conditions
(like the inhomogeneous action of external harmonic force).

An electric charge, moving on a circular orbit in a homogeneous
permanent magnetic field has been considered. When the charge was
irradiated by a flat electromagnetic wave having a length commensu-
rable with the orbit’s radius, an effect of discretization (“quantization”)
of the possible stable orbital radii (or motion velocities) was observed
(Damgov, 2004; Damgov, Trenchev and Sheiretsky, 2003).

5. General conditions for transition to
irregular behaviour in an oscillator

under wave action

General conditions for transition to irregular and chaotic behaviour
in an oscillator under wave action have been derived using the notion
about the Melnikov distance:

D(to, to) = −
∞∫

−∞
fo ∧ f1dt =

∞∫
−∞

2Fo
ch(t−to) sin[θ − 2ρ arcsin(th(t− to))]

+ 4δd
ch2(t−to)

dt

Irregular (chaotic) behaviour occurs for the areas where D(to, to)
passes through zero.

Under the condition D(to, to) = 0 and taking into account that
|sin(νto + θo| < 1 and that δd > 0, the general condition for trans-

mission to irregular (chaotic) behaviour in nonlinear oscillator under
the wave action takes the form 2δdsh(|ν|π) < πν2 |Fo| eν π

2 .
Obviously this condition is fulfilled in some domains of the space

(δd, Fo, ν).

6. Presence of a small horseshoe in the
dynamics of a particle under the action

of two waves

The equation which describes the motion of one particle in two elec-
trostatic waves is given by
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..
x = −M sin x− P sin(x− t), (3)

where x is the position of the particle measured in the frame of one
of the waves, P and M are dimensionless amplitudes of the waves. We
shall extend our model introducing a damping term in (4), and we shall
also assume that P << M . Under these assumptions the equation that
governs the motion of the particle can be written as

..
x + εδẋ + sin x = εf sin(νt− x), (4)

where x is again the position of the particle measured in the frame of
one of the waves, whereas δ, f and ν are real non-negative constants.
The form of the equation allows perturbation methods to be applied
in its study. Our preliminary numerical investigation of (5) revealed
very rich dynamics depending on the change of parameters and initial
conditions. There are three main types of behaviour in the phase space
of (5) that can be observed:
• Approaching a limit cycle;
• Formation of a non-trivial bounded attracting set;
• Escape to infinity of the solutions of (4).
One question which is of natural interest is to determine the basins

of attraction, and to present a relevant bifurcation diagram for the
transitions between different types of motion. Although there has been
reached a significant progress in the understanding of the behaviour
of driven non-linear oscillators, there exist some obstacles that prevent
clarifying the dynamics of particular examples. In our work we present
a rigorous result for existence of horseshoe-like dynamics for (4) and
hence for exhibiting the phenomena deterministic chaos. Our result is
as follows:

Theorem 1. The sufficient conditions for transition to chaotic mo-
tion in the dynamics of equality (4) is fulfilment of

4δ < fπν2
(

1
cosh(πν/2)

− 1
sinh(πν/2)

)
(5)

or

4δ > fπν2
(

1
cosh(πν/2)

+
1

sinh(πν/2)

)
(6)

In next section we shall give a short account of the Melnikov method
in a form convenient for our problem. Then we shall prove Theorem 1.
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6.1. Short summary of the Melnikov method

We shall explain the Melnikov technique following [11].

6.1.1. A. General assumptions and geometric structure of the
non-perturbed system

Consider the system of differential equations

ẋ = JDxH(x) + εg(x, t, ε), (7)

where (x, t) ∈ R2 × T 1 and J is the symplectic matrix defined by

J =
[

0 1
−1 0

]
.

We get the following structural assumptions:
1. The functions

JDxH : R2 −→ R2

g : R2 ×R×R −→ R2 ,

are defined and at least C2 differentiable on their respective domains
of definition, and that g is periodic in t with period T = 2π/ω.

2. The system (7) with ε = 0 is referred as unperturbed system.
About it we shall assume that it possesses a hyperbolic fixed point xo,h

connected to itself by a homoclinic orbit xh(t) ≡ (x1
h(t), x2

h(t)).
3. Denote by W s(xo,h) the set of points x ∈ R2 that approach

xo,h as t −→∞, and by W u(xo,h) the set of points x ∈ R2 that approach
xo,h as t −→ −∞, under the action of the unperturbed flow

.
x = JDxH(x) (8)

W s(xo,h) is referred as asymptotically stable manifold for xo,h, and
W u(xo,h) is referred as asymptotically unstable manifold for xo,h. De-
note by Γxo,h

≡
{
x ∈ R2 |x = xh(t), t ∈ R

}
∪ {xo,h} = W s(xo,h) ∩

W u(xo,h) ∪ {xo,h}. We shall assume that interior of Γxo,h
is filled with

continuous family of periodic orbits xa(T ) of (8) with period T a, α ∈
[−1, 0] and lim

a−→0
xa(t) = xh(t) and lim

a−→0
T a =∞.

When viewed in three-dimensional space R2×S, the hyperbolic fixed
point xo,h turns to hyperbolic periodic orbit of the system

.
x = JDxH(x)
.
θ = ω

(9)

and so do W s(xo,h) and W u(xo,h) which turn to two-dimensional as-
ymptotic manifolds W s(γ(t)) and W u(γ(t)), which coincide along the
two-dimensional homoclinic manifold Γγ(t) ≡ {(x, θ) ∈ R2×S |x = xh(t),
t ∈ R} ∪ {xo,h × S}.
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6.1.2. B. Geometric structure of the perturbed phase space.
Here we shall argue that most of the upper structure goes over for the
perturbed system

.
x = JDxH(x) + εg(x, θ, ε)
.
θ = ω

(10)

Proposition 1. For ε sufficiently small the periodic orbit γ(t) of (7)
survives as a periodic orbit γε(t) = γ(t)+O(ε) , of (10) having the same
stability type as γ(t), and depending on ε in a C2 manner. Moreover,
the local stable and unstable manifolds W s

loc(γε(t)) and W u
loc(γε(t)) of

γε(t) remain also ε-close to the local stable and unstable manifolds
W s

loc(γ(t)) and W u
loc(γ(t)) of γ(t), respectively.

Remark 1. The concept for local stable and unstable manifolds
becomes clear when one represents the stable and unstable manifolds
of the hyperbolic fixed point (periodic orbit) locally. For details see
(Wiggins, 1989) or (Wiggins, 1988).

.

W s(γε(t)) =
⋃
t≤0

(x, θ)t (W s
loc(γε(t)))

.

W u(γε(t)) =
⋃
t�0

(x, θ)t (W u
loc(γε(t)))

where we denote by (x, θ)t the phase flow of (10).
Consider the following cross-section of the plane R2 × S

.

Θθo =
{
(x, θ) ∈ R2 | θ = θo

}

Θθo is parallel to the x-plane (and coincides with the x-plane for θo = 0).
Note that γ(t)∩Θθo = xo,k and Γγ∩Θθo =

{
(x, θ) ∈ R2 | x = xo,k, t ∈ R

}
=

Γxo,h
. Consider a trajectory

(xε(t), θ(t)) (11)

of the perturbed vector field (10). Then its projection onto Θθo is given
by (xε(t), θo) = W s(γε(t)) ∩W u(γε(t)). Since xε(t) actually depends
on θo(as opposed to x(t), for some solutions (x(t), θ(t) of (10)), the
perturbed vector field (10) is non-autonomous, which may result in
a very complicated picture of (35) in Θθo , possibly intersecting itself.
The points from the Poincaré map Pε defined as the successive points of
intersection of the solution (xε(t), θ(t)) with Θθo , will be mapped also
onto this curve. It turns out that these points can form very complicated
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(non-trivial) sets due to transversal intersection of the asymptotic man-
ifolds W s(γε(t)) and W u(γ(t)). One computable criterion that assures
such dynamics is given by:

Proposition 2. Suppose that we have a point (to, θo) = (to, θo) such
that

1. M(to, θo) = 0,
2. ∂M

∂to

∣∣∣
(to,θo)

�= 0,
where M (to, θo) is the Melnikov vector

.

M(to, θo) =
∞∫

−∞
DH(xh(t).g(xh(t), ωt + θo, 0)dt

Then W s(γε(t)) and W u(γε(t)) intersect transversely at
(
xh(−to)+O(ε),θo

)
and consequently (from theS male-Birkhoff homoclinic theorem) for t he
map Pε there exists an integer n > 1 that Pn

ε has an invariant Cantor
set on which it is topologically conjugate to a full shift of N symbols.

6.1.3. C. Proof of Theorem 1
Consider equation (4) written in the form

.
x1 = x2

.
x2 = sin x1 + ε

[
−δx2 + f sin(θ − x1)

]
.
θ = ν

(12)

Then the following lemma holds:
Lemma 1. For ε = 0 system (12) contains hyperbolic periodic orbit
M =

(
x1, x2, θ(t)

)
= (±π, 0, vt + θo) ∈ R2 × T 1

This orbit is connected to itself by a pair of 2-dimensional homoclinic
manifolds given by

(
x1
±(t), x2

±(t), θ(t)
)

=
(
±2 arcsin(tanh(t− to),±

2
cosh(t− to)

, vt + θo

)

(13)
Proof . We easily see that (±π, 0) is a hyperbolic fixed point of

.
x1 = x2,

.
x2 = sin x1

linearizing (12) (for ε = 0) about it. A trivial check gives that (for
ε = 0) (13) in solution of (12). Furthermore, using asymptotic of (13)
we obtain that it connects (±π, 0, vt + θo) to itself. This proves the
lemma.

Using Proposition 2 and hyperbolicity of (13), we conclude that for
ε �= 0, (13) turns to hyperbolic periodic, orbit which we shall shortly
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denote by γε,± ≡ (±π + O(ε), 0 + O(ε), vt + θo). From Proposition 2 it
follows that its asymptotic manifolds W s(γε,±(t)) and W u(γε,±(t)) will
intersect transversely if the corresponding Melnikov vector

M±(to, θo, δ, f, v) =

=
∞∫

−∞

[
−δ
(
x2

h,±(t− to)
)2
+ f sin

(
vt + θo − x1

h,±(t− to)
)

x2
h,±(t− to)

]
dt =

=
∞∫

−∞

[
−δ
(

±2
cosh(t−to)

)2
+f
(

±2
cosh(t−to)

)
sin(vt+θo± 2 arcsin(tanh(t− to)))

]
dt

has a simple zero. Furthermore we fix θ = θo, which defines the cross-
section

Θθo = {(x1, x2, θ) |θ = θo ∈ [0, 2π)}
and consider the Poincaré map P θo

ε : Θθo → Θθo generated by the flow
(12). In order to make the conclusions we pursue about the dynamics
of P θo

ε we need to compute M±(to, θo, δ, f, v). After some algebra we
obtain for M±

M±(to, θo, δ, f, v) = −8δ ± 2f sin(vto + θo) [I1 ∓ 2I2]

where

I1 =
∞∫

−∞

1− sinh2 τ

cosh3 τ
cos(vt)dτ = v

∞∫
−∞

sinh τ

cosh2 τ
sin(vt)dτ

I2 =
∞∫

−∞

sinh τ

cosh3 τ
sin(vt)dτ =

v

2

∞∫
−∞

sinh τ

cosh2 τ
cos(vt)dτ

The integrals I1 and I2 are evaluated by the methods of residues.
The standard calculation gives

I1 = πv2

cosh(πv/2) ; and I2 = πv2

2 sinh(πv/2) .

Hence, for the Melnikov vector M± we obtain

M±(to, θo, δ, f, v) = −8δ±2fπv2
[

1
cosh(πv/2)

∓ 1
sinh(πv/2)

]
sin(vto+θo)

(14)

Then fulfillment of (5) assures existence of simple zero for

M±(to, θo, δ, f, v) = 0



110 Vladimir Damgov

and hence transversal intersection of the asymptotically stable manifold
W s(γε,+) and asymptotically unstable manifold W u(γε,+), whereas the
fulfillment of (6) assures existence of simple zero for

M (to, θo, δ, f, v) = 0

and hence transversal intersection of W u(γε,−) and W u(γε,−). Now
from Proposition 2 it follows for ε > 0 sufficiently small there exists an
integer n > 1 such that the map P θo

ε has an invariant Cantor set, subset
of the Poincaré section Θθo , on which the power (P θo

ε ) is conjugate to
a full shift of N symbols.

The last implies that high sensitiveness of solution to the choice of
initial conditions, or equivalently deterministic chaos.

7. General characteristic features of the
class of kick-excited self-adaptive
dynamical systems. conclusions

The main characteristics and regularities, characterizing the considered
class of kick-excited self-adaptive dynamical systems are as follows:

1. The excitation of oscillations with a quasi-natural system fre-
quency and numerous discrete stationary amplitudes, depending only
on the initial conditions (i.e. discretization of the processes of absorp-
tion by the system of energy, coming from the high-frequency source). A
new in principle property is the possibility for excitation of oscillations
with the system’s natural frequency under the influence of an external
high-frequency force on unperturbed linear and conservative linear and
non-linear oscillating systems.

2. Adaptive self-control of the energy contribution in the oscillating
process, exhibited in the sustaining of a value for the system’s oscilla-
tion amplitude and frequency which is stable over significant variance of
the amplitude of external influence, the quality factor of the oscillator
(the load) and other external variables.

The phenomenon of continuous oscillation excitation with an am-
plitude belonging to a discrete set of stationary amplitudes has been
demonstrated on the basis of a common model – an oscillator un-
der wave influence. It is shown that the conditions necessary for the
manifestation of this phenomenon are realized in a natural way in an
oscillator system interacting with a continuous fall wave.

Here-with is shown the potential for excitation of relatively low fre-
quency continuous oscillations having a discrete amplitude set under
the influence of a wave with incompatibly higher frequency. In the
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presence of particle flows and fields of different nature, the “oscillator-
wave” model realizes (materializes) widely in Nature in a very natural
way. Everywhere where waves interact with oscillators, conditions arise
for the excitation of oscillations with a discrete sequence of possible
stable amplitudes (for example, space ensembles of charged particles
under the action of fall waves from the ultraviolet band, the near and
the far IR range and the radio-band). In one way or another, the model
has been considered by a number of authors, but the most essential
feature of behaviour – the “quantization” phenomenon, has escaped
their attention.

On the basis of the presented oscillator-wave model it is also possible
to create heuristic models of the interaction of electromagnetic waves
with plasma particles in the Earth’s ionosphere and magnetosphere,
heuristic models of the generation of powerful low-frequency waves in
the space around the Earth when a cosmic electromagnetic background
is present etc. High-efficient sub-millimeter emitter, built on this basis,
could be suitable for radio-physical heating of plasma, e.g. in the ex-
periments aimed the achievement of controlable thermonuclear reaction
[1].

The main consequence of Theorem 1 is the strong dependence of
the solution of (4) on the choice of initial conditions. The phenomenon
deterministic chaos arises often in the dynamics of the driven non-
linear oscillators. In this regard our result is not surprising. Anyway,
we think that it is useful to present such a condition for the parameters
of the system which guarantees appearance of a Smale horseshoe like
dynamics, since usually the homoclinic bifurcation (due to a simple
zero of the Melnikov vector) is one of the first bifurcations that occur
in the transition from regular to irregular motion for a given system.
We want to emphasis that the homoclinic tangency (predicted with a
good accuracy by the Melnikov analysis), as a rule, implies formation
of a fractal boundary for the

The method developed of entering energy in oscillation processes and
the excitation of “quantized” oscillations in dynamic macro-systems
finds and will find in the future applications in the solving of important
practical problems in the creation of new methods and mechanisms for
the excitation and the sustaining of continuous oscillations and different
energy transformations which could be grouped in the following way:

1. Transformation of signals and oscillations of different nature
by frequency with a high efficiency at single division of the frequency
by ratio of tens, hundreds and thousands.

2. Energy transformation of one kind into another, for example
of electric into mechanical and vice-versa as with electric and electro-
mechanic transformers, generators of electric signals, transformers of
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wave energy, non-traditional methods for the transformation of heat
into electric energy etc.

3. Stabilization of different parameters with their change in
a wide range (e.g. 50-100-300%), including the voltage stabilizers for
microprocessor systems with a wide range of allowed change of the load
etc.

4. The development of new base elements for specialized calcu-
lating devices possessing a large number of stable discrete states.

5. Intensification of different processes through a special orga-
nization of interaction of different oscillation or wave processes such
as cavitational destruction, cleaning, emulgation of non-mixing liquids
and of substances in the liquid phase, the development of different wave
technologies.

6. The modelling of micro- and macro- processes with the meth-
ods of classic oscillation theory.
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Abstract. The development of modern spectroscopic techniques and efficient computational
methods have allowed a detailed investigation of highly excited vibrational states of small
polyatomic molecules. As excitation energy increases, molecular motion becomes chaotic
and nonlinear techniques can be applied to their analysis. The corresponding spectra get also
complicated, but some interesting low resolution features can be understood simply in terms
of classical periodic motions. In this chapter we describe some techniques to systematically
construct quantum wave functions localized on specific periodic orbits, and analyze their main
characteristics.

Keywords: Quantum chaos, Scar theory, Semiclassical theories, Excited vibrational states,
Vibrational spectroscopy

1. Introduction

The correspondence between classical and quantum mechanics has received
much attention since the early days of quantum theory, and more recently in
connection to quantum chaos (Reichl, 2004; Gutzwiller, 1990). This implies
elucidating which are the classical objects that should be quantized, this being
at the heart of every semiclassical theory. Among the different achievements
in the field of quantum chaos, random matrix theory (Metha, 1991), with the
celebrated Bohigas–Giannoni–Schmit conjecture on spectral statistics (Bo-
higas, Giannoni and Schmit, 1984), Gutzwiller’s semiclassical trace formula
able to quantize chaotic systems (Gutzwiller, 1990), and the theory of scars
(Kaplan and Heller, 1999) deserve special mention.

The term “scar” was introduced by Heller in his seminal paper (Heller,
1984), to describe the localization of quantum probability density of certain
individual eigenfunctions of classical chaotic systems along unstable peri-
odic orbits (PO), and he constructed a theory of scars based on wave packet
propagation (Heller, 1991). Another important contribution to this theory is
due to Bogomolny (Bogomolny, 1988), who derived an explicit expression
for the smoothed probability density over small ranges of space and energy
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(i.e. semiclassical average over a large number of eigenfunctions). The corre-
sponding theory for Wigner functions was developed by Berry (Berry, 1989).
Resummation techniques have also been applied to provide some information
about individual states (Agam and Fishman, 1994), and a systematic method,
based on dynamical arguments, was developed (de Polavieja, Borondo and
Benito, 1994) to quantify the contribution of the different eigenstates. The
influence of homoclinic motion (Tomsovic and Heller, 1991; Wisniacki et al,
2005) and heteroclinic connections (Wisniacki et al, 2004) on scarring has
also been considered in the literature.

From the experimental point of view, scars have been observed in mi-
crowave cavities (Sridhar, 1991) and mesoscopic devices (Wilkinson, 1996),
where they have an enormous practical interest.

In this chapter we present some results obtained by our group on scar the-
ory in the context of molecular vibrations, and in particular for the LiNC/LiCN
molecular system. This kind of (generic) systems exhibits a dynamical be-
havior in which regular and chaotic motions are mixed (Gutzwiller, 1990),
a situation which presents significant differences with respect to the com-
pletely chaotic case considered in most references cited above, and are very
important in many areas of physics and chemistry.

The corresponding classical mechanics is well understood in terms of the
Kolmogorov–Arnold–Moser (KAM) theorem (Reichl, 2004). At very low ex-
citation, molecular dynamics take place in the vicinity of Born–Oppenheimer
potential energy surface minima, where the motion corresponds to normal
modes. The associated spectra are simple, consisting of band progressions
easily assignable. As energy increases, anharmonicities and coupling terms
grow in importance. Spectra become distorted due to the influence of reso-
nances, and the different peaks can be hierarchically organized in terms of
polyads (Kellman, 1995). This reflects the importance of the intramolecu-
lar energy transfer processes taking place inside the molecule. At very high
excitation energies, the interactions become too large and the picture based
on normal mode states is no longer valid. Classically, the motion becomes
chaotic, as invariant tori are destroyed following the fate dictated by the KAM
theorem. However, the complexity of the emerging chaotic sea is organized
by periodic orbits (PO) and their associated manifolds. The corresponding
spectra can become very complex, but usually show simple low resolution
features related to the above mentioned classical structures (Taylor, 1989).
The associated nonlinear dynamical effects control chemically interesting
processes, such as intramolecular vibrational relaxation (Uzer and Miller,
1991) or chemical reactivity (Wiggins et al, 2001).

Some recent activity (Keating and Prado, 2001; Backer, Keating and Prado,
2001) related to scarring in generic systems should be mentioned. Special
consideration deserves the work of Keating and Prado (Keating and Prado,
2001) who showed, by considering scaling laws in an extension of Bogo-
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molny’s theory, that scars of quantum eigenfunctions by classical PO may
be dramatically enhanced when these orbits undergo bifurcations. These “su-
perscars” manifest as stronger localization on wider regions of configuration
space than in the case of the scars corresponding to isolated POs.

2. The system

The example that we have chosen to study is the dynamics of the molecular
vibrations of LiNC/LiCN. This system is representative of a large class of
triatomic molecules, which exhibit similar dynamical behavior, mainly de-
rived from the large amplitude motion in one of the vibrational modes. This
class includes other cyanides, such as HCN/HNC, RbCN/RbNC or KCN, and
other similar species, such as HCP, the HO2 radical or van der Waals com-
plexes. The vibrational motion in the bending coordinate for these systems
is very floppy, and then one atom (Li in the case of LiCN) can easily rotate
around the remaining (i.e. CN) fragment. In this way, extensive regions of
the potential energy surface are sampled, and the effects of anharmonicities
and mode couplings are very important. This makes chaos to set in at low
values of the excitation energy. Another important dynamical characteristics
of our system is that the C–N vibrational frequency is very high, and then it
separates effectively from the rest of vibrational modes. Finally, the barrier
separating the two stable isomers in LiNC/LiCN is very modest. All these
characteristics make the LiNC/LiCN molecule a very interesting dynamical
system: It constitutes a generic example in molecular physics, that can be de-
scribed very realistically, and has been often considered in the past (Borondo
and Benito, 1995), specially in relation with the quantum manifestations of
classical chaos.

The vibrational dynamics of this system can be adequately studied by a
two degrees of freedom model, with the C–N distance kept frozen at its equi-
librium value of re = 2.186 a.u. The vibrational (total angular momentum
J = 0) Hamiltonian in scattering or Jacobi coordinates is given by

H =
P 2

R

2µ1
+

1
2

(
1

µ1R2
+

1
µ2re

2

)
P 2

θ + V (R, θ), (1)

where R is the distance between the center of mass of the CN (anionic)
fragment to the Li atom, r the N–C distance, θ the angle formed by the cor-
responding vectors, and PR and Pθ the associated conjugate momenta. The
reduced masses, µ1 and µ2, correspond, respectively, to the Li–CN and C–N
fragments. The potential energy surface has been taken from the literature
(Essers, Tennyson, and Wormer, 1982) and is presented as a contours plot in
Fig. 1. The two stable isomers, LiNC and LiCN, appearing at θ = 180◦ and
0◦, respectively, are clearly visible as potential wells. They are separated in
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Figure 1. (Left) Potential energy surface for the LiNC/LiCN isomerizing system drawn as
a contours plot. The minimum energy path connecting the two stable linear isomers, LiNC
(θ = 180◦) and LiCN (θ = 0), is shown as a dotted line.
(Right) Energy profile along the minimum energy path.

energy by 2281 cm−1. Relevant information concerning the stationary points
of the potential energy surface is summarized in Table I. The minimum energy

Table I. Geometries and energies for the stationary points of the potential energy surface
(Essers, Tennyson, and Wormer, 1982) used in our 2D model of the LiNC/LiCN isomerizing
system.

Configuration θ(deg) R(a.u.) E(cm−1)

Li–NC 180◦ 4.35 0

Li–CN 0◦ 4.795 2281.0

saddle 48.41◦ 4.30 3454.0

“plateau”a 110◦ 3.65 1207.0

a See text for details.

path, connecting the two wells, Re(θ) has also been plotted superimposed as
a dotted line in Fig. 1. The energy profile along this path is shown in the right
part the figure.

There exist in the literature more accurate calculations of the LiNC/LiCN
potential energy surfaces. Makarewitz and Ha reported in 1995 new improved
ab initio quantum chemistry calculations including electron correlation at
MP4 level (Makarewitz and Ha, 1995). The geometries of the linear minima
predicted by these authors are in close agreement with those of Essers et
al., but there are significant differences in their relative energies. Another
difference is the existence, in the Makarewitz and Ha surfaces, of a stable
T–shaped minimum in the region around (R, θ) = (3.65 a.u., 110◦), where
the surface of Essers et al. only shows a small plateau. However, this fea-
ture is dynamically not very significant since the motion around this region
gets stabilized by an adiabatic separation mechanism for high value of the
excitation in the R coordinate, as it has been demonstrated by us (Borondo,
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Zembekov and Benito, 1995). Moreover, there is no experimental evidence
of the T–shaped minimum.

3. Calculations

In this section we describe the numerical methods used to study the classical
and quantal dynamics of the LiNC/LiCN system.

3.1. Classical calculations

The classical vibrational dynamics of the LiNC/LiCN molecular system is
followed by using the method of classical trajectories, which in our case are
calculated using a fixed step Gear algorithm for the numerical integration
of Hamilton equations of motion corresponding to Eq. (1). Most significant
vibrational details for this system are obtained by considering the motion
along the θ coordinate, which exhibits a rich dynamical behavior (isomeriza-
tion, anharmonicity, etc.). This dynamics are best monitored by computing a
Poincare surface of section (SOS) (Reichl, 2004) taking the sectioning plane
lying along the minimum energy path. Accordingly, the values of coordinates
(θ, Pθ) are recorded every time that a trajectory passes through R = Re(θ).
This presents a problem, since Re depends on θ, thus making the SOS a non-
preserving area map. This inconvenience is solved by making the following
canonical transformation (Benito et al, 1989):

ρ = R−Re(θ), ψ = θ, Pρ = PR, and Pψ = Pθ + Pρ(dRe/dθ). (2)

The SOS corresponds then to the conjugate pairs (ψ, Pψ) at the successive
intersections with the ρ = 0 plane, i.e. R = Re(ψ), taking only those points
for which Pρ is in a particular branch of the momentum, that is, in a particular
solution of the equation:

H(ρ = 0, ψ, Pρ, Pψ) = E. (3)

3.2. Quantum calculations

Quantum vibrational energy levels and the corresponding wave functions for
Hamiltonian (1) are calculated using the Discrete Variable Representation
(DVR) method (Bacic and Lightl, 1986). This procedure is ideally suited for
molecules with one or more large amplitude vibrational motions, contrary to
traditional variational methods based on finite basis representations (FBR),
which are more demanding computationally since they require larger basis
sets. The essence of the DVR is an orthogonal transformation into a repre-
sentation labelled by a discrete set of angles corresponding to the points of
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a given quadrature. This transformation presents the additional advantage of
allowing an easier way of handling the involved potential matrix elements. In
our case we use a discrete representation in the θ coordinate and a function
representation of distributed Gaussian basis (DGB) (Hamilton and Lightl,
1986)in the radial coordinate R. A prediagonalization along each θ ray pre-
pares the final basis set, that consisted of 2016 elements rendering the 900
low lying eigenvalues converged to within 0.1 cm−1.

Another way to study the quantum dynamics of a system is to consider
quantum phase space representations, that can be compared directly with
classical results. Although there is no unique way to define a phase space rep-
resentation of quantum mechanics, the most popular are the Wigner (Wigner,
1932) and Husimi (Husimi, 1940) functions. The Wigner transform

W(q,P) = (2π�)−N
∫
· · ·

∫
dx exp(ix ·P/�) ϕ(q− x/2)ϕ∗(q + x/2)

(4)
was proposed by this author as a tool to compute quantum corrections to sta-
tistical thermodynamics. Although certain properties of the Wigner function
support its interpretation as a probability density function in phase space,
namely, it gives the correct marginal probability distributions∫

dqW(q,P) = |〈P|ϕ〉|2,
∫

dPW(q,P) = |〈q|ϕ〉|2, (5)

others, in particular the fact that is not everywhere positive, make this inter-
pretation questionable. This problem is due to the uncertainty principle, that
precludes the possibility of defining distribution functions at precise points
of phase space. A way to overcome this difficulty was devised by Husimi,
who proposed the use of a Gaussian smoothing of the Wigner function. The
Husimi function defined in this way is everywhere non–negative, and should
be understood, consistently with the uncertainty principle, in the following
way: H does not give the probability density at a point in phase space, but
the probability density smoothed over a region of volume ∼ �

N around that
point. Furthermore, it can be shown to be given simply by the expression:

H(q,P) = (2π�)−N |〈χ|ϕ〉|2 (6)

where χ is a minimum uncertainty harmonic oscillator coherent state (Zhang,
1990)

χq,P(q′,P′) = [(2π(∆q)2]−N/4 exp[−(q′−q)2/4(∆q)2 + iq′ ·P/�], (7)

centered at the phase space point (q,P). From all these expressions, the
Husimi function can be interpreted in a number of ways: as a coherent state
representation of quantum mechanics, as a smoothed Wigner distribution, as
a coarse graining of phase space, or as the expectation value of the projection
operator on a certain state.
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The information contained in the Wigner or Husimi functions can be vi-
sualized in a number of ways. From the point of view of the present paper
the most interesting one is the construction of quantum analogues to the
classical Poincare surfaces of section, which hereafter will be called QSOS.
This can be accomplished, for example, by projection on suitable planes of
phase space, or by integrating out the unwanted coordinates and momenta.
In our case we have obtained Husimi based QSOS for the first 900 states of
LiNC/LiCN (Borondo and Benito, 1995) using the same definition introduced
in the previous subsection,

HQSOS(ψ, Pψ) = H[ρ = 0, ψ, Pρ = Pρ(E), Pψ], (8)

calculated by numerical integration of Eq. (6) using the DVR eigenfunctions.
We choose isotropic harmonic oscillator coherent states, with width parame-
ters corresponding to the geometric mean of that for the Li–NC bend and the
LiNC/LiCN stretch modes, for the calculation of the QSOS. Another com-
putational detail worth mentioning is the fact that for molecular systems like
ours and J = 0, wave functions are only defined on a half–plane whereas the
2D coherent states are defined on the full (x, y) plane. It is therefore necessary
to embed the 2D wave functions into a 3D cartesian space, and calculate
overlaps between wave functions ϕ(R, θ, φ) (independent of angle φ) and 3D
harmonic oscillator coherent states centered on the (R, θ) plane with zero
momentum out of this plane. Moreover, when comparing J = 0 classical and
quantum mechanics, we have the problem that the classical Hamiltonian is
planar while the quantum is not. To solve these problems, we simply follow
the procedure of folding the SOS into the interval 0 ≤ ψ ≤ π, taking into
account the corresponding invariance under the transformation

ψ → 2π − ψ Pψ → −Pψ. (9)

A lot of interest has been devoted in the literature to the study of the max-
ima of quasiprobability densities likeHQSOS , paying attention to the relation
of these maxima with fixed points and other relevant classical structures of the
corresponding SOS in conditions of widespread chaos. The topology of the
zeros of this function is also very interesting, specially in connection with the
understanding of scarring of vibrational wave functions (Arranz, Borondo,
and Benito, 1996; Bacic and Lightl, 2004).

Another popular and convenient way to study the quantum dynamics of
a vibrational system is wave packet propagation (Sepulveda and Grossmann,
1996). According to the ideas of Ehrenfest the center of these non–stationary
functions follows during a certain time classical paths, thus representing a
natural way of establishing the quantum–classical correspondence. In our
case the dynamics of wave packets can be calculated quite easily by projec-
tion of the initial function into the basis set formed by the stationary eigen-
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states of the system, followed by the application of the corresponding evolu-
tion operator

|Ψ(t)〉 = e−iĤt/�|Ψ(0)〉 =
∑
n

|ϕn〉〈ϕn|Ψ(0)〉 e−iEnt/�. (10)

This evolution can be studied either in time domain, by following the recur-
rences of the correlation function:

C(t) = 〈Ψ(0)|Ψ(t)〉, (11)

or in energy domain through the corresponding spectrum:

I(E) =
∑
n

|〈Ψ(0)|ϕn〉|2 δ(E − En), (12)

where the coefficients are known as Franck–Condon factors. It is well known
that these two quantities are related by Fourier transform,

I(E) = (2π�)−1
∫ +∞

−∞
dt eiEt/� 〈Ψ(0)|Ψ(t)〉. (13)

This equation constitutes the basis of the time–dependent formulation of the
spectroscopy (Heller, 1981), that has been widely used also in many fields.

As stated before, wave packets remain for some time close to classical
paths, and then can be used to explore which phase space objects are impor-
tant quantum mechanically. Recurrences in the wave packet motion imprint
its signature in the corresponding spectra as low resolution features (Taylor,
1989; Gomez–Llorente and Pollak, 1992). Moreover, the associated wave
functions can be calculated easily with a method developed by us (Gomez–
Llorente et al, 1992; de Polavieja, Borondo and Benito, 1994). Since they
correspond to structures which are not well defined in energy, they must
have some sort of resonant–like character. This character can be unveiled by
using appropriate calculation techniques that come from resonance theory.
For example, one can obtain the corresponding wave functions by Fourier
transforming the time–dependent wave packet |Ψ(t)〉 using a finite time span

|Ψk〉 = (2π�)−1
∫ τ

−τ
dt |Ψ(t)〉 eiEkt/�, (14)

where Ek represents is a representative energy of the spectral feature, and
τ is related to irs spectral width. In the way that we calculate |Ψ(t)〉, [i.e.
Eq. (10)], this expression reduces to

|Ψk〉 =
∑
n

|ϕn〉〈ϕn|Ψ(0)〉sin[(Ek − En)τ/�]
π(Ek − En)

, (15)
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Figure 2. (Left) Composite Poincare surface of section (SOS) for LiNC/LiCN at an excitation
energy of E = 4600 cm−1. Two islands of regularity are seen corresponding to the two stable
linear isomers, LiNC (θ = 180◦) and LiCN (θ = 0).
(Right) Three 1:1 periodic orbits (PO) relevant to our work. The corresponding fixed points
appear, respectively, as a circle (PO 1), a square (PO 2), and a triangle (PO 3) in the SOS at
the left part of the figure.

which can be approximated to

|Ψk〉 =
∑
n

′ |ϕn〉〈ϕn|Ψ(0)〉, (16)

with the prime indicating that the sum extend only to the states under the
k–th band (see examples below). Equation (16) clearly shows the projection
character implied in the procedure used to calculate |Ψk〉 (Gomez–Llorente
et al, 1992). Moreover, this method can be used to obtain information about
the localization process due to scarring of a given PO (de Polavieja, Borondo
and Benito, 1994).

4. Results

In this Section we present some results for LiCN related with the scarring
character of some particular POs which connect different branches of the
equipotential lines for energies above the isomerization barrier.

4.1. Classical results

To discuss the classical dynamics of the LiNC/LiCN system we present in
Fig. 2 a composite Poincare SOS at an excitation energy of 4600 cm−1. This
corresponds approximately to the energy of the 100–th vibrational eigenstate,
which is well above the isomerization barrier (see Table I). In it, two islands
of regularity, corresponding to the two stable linear isomers LiNC (θ = 180◦)
and LiCN (θ = 0), can be seen embedded in a big area with chaotic dynam-
ics corresponding to isomerizing trajectories, visiting both wells. We have
marked the positions of the fixed points of three 1:1 POs, which are relevant
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Figure 3. Infinite resolution spectrum (sticks) generated from a Gaussian wave packet
launched at the inner turning point of PO 1 in Fig. 2, and low resolution version of it (full
line).

to our work. The associated trajectories, which correspond to high excitations
in the R coordinate running vertical at an almost constant value of the angular
coordinate θ, are shown in the right part of the figure. The first one (PO 1)
sits on the saddle point of the potential energy surface (see Table I), while
the other two are originated in a saddle node bifurcation at a much lower
energy (see details in Ref. (Borondo, Zembekov and Benito, 1996)), being the
three of them very relevant in the localization properties of the LiNC/LiCN
eigenstates (Arranz et al, 2005).

4.2. Quantum results

Let us now discuss the localizing effect of the POs described above. For this
purpose we use the quantum dynamical method presented at the end of Sec-
tion 3, with allow the construction of wave functions highly localized along
the POs. In this sense, we refer to these functions as “scar wave functions”.

In Fig. 3 we present the stick spectrum [corresponding to infinite resolu-
tion; see eq. (12)] generated from a Gaussian wave packet of the form

〈R, θ|Ψ(0)〉 =
(

4αRαθ

π2

)1/4

exp[−αR(R−R0)2 − αθ(θ − θ0)2] (17)

initially located in the inner turning point of PO 1, (R, θ)0 = (3.992 a.u.,46.90◦),
and with values of the parameters αR = 16.114 and αθ = 14.123. As can be
seen, it looks quite complicated and seemingly unassignable, with the separa-
tion between levels and intensities distributed according to the laws of random
matrix theory (Metha, 1991). On the contrary, when one considers a smoothed
(low resolution) version of the spectrum it appears much more regular. For
example, we present in full line a convolution of the stick spectrum with a
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Figure 4. Scar wave functions (upper part) and corresponding Husimi based quantum surfaces
of section, QSOS, (lower part) for the four bands observed in the low resolution spectrum in
Fig. 3. As can be seen, there appear highly localized along the PO 1 (also plot in the figure)
of Fig. 2 and the corresponding fixed points. The horizontal and vertical axes for the wave
functions correspond to the θ and R coordinates, spanning the ranges 0–180◦ and 3–5.5 a.u.,
respectively while for the QSOS they are ψ and Pψ spanning 0–180◦ and –80–80 a.u.

Lorentzian of width 200 cm−1. It consists, in the range of energies shown in
the figure, of four equally spaced bands of a certain width, similar to what
it is obtained in a typical resonance spectrum. Moreover, the wave functions
associated to each of these bands can be computed by means of eq. (16).
The results are shown in the upper part of Fig. 4 along with the scarring PO
calculated at E=4600 cm−1. As can be seen, they correspond to four scar
wave functions with an increasing excitation in a vibrational mode that ap-
proximately coincide with the R coordinate. In these functions, the long term
contributions [see eqs. (14) and (15)] existing in the corresponding eigen-
states which are highly delocalized (in configuration and/or phase space),
corresponding to background and/or chaotic states, have disappeared due to
a coherence induced by the combined action of the coefficients 〈ϕn|Ψ(0)〉.

In the lower part of the figure we also present Husimi based QSOS. As
can be seen, all of them appear located over the fixed point corresponding
to the scarring PO. Second, and more important, these functions also spread
significantly along the manifolds (incoming and outgoing) associated to the
fixed point. This is not surprising since they constitute a dynamically signifi-
cant picture of the corresponding phase space densities, having been obtained
by smoothing the dynamics of a localized wave packet along the scarring
PO. As a consequence the scar wave functions constructed by us contains
information about the linearized dynamics taking place in the vicinity of
the PO on which the initial wave packet is launched. This structure of the
QSOS along the manifolds emanating from the fixed point of the scarring PO
would be better defined if a longer time, or equivalently a narrower width in
the smoothing convoluting Lorentzian function, is used, since in this way a
longer exploration of the dynamics of the system would have been allowed to
the wave packet.



126 F Borondo and R.M. Benito

Finally, let us examine another interesting point in connection with the
scar functions that we are studying, which is their projections on the eigen-
spectrum of the system. As it is well known (Heller, 1984; Heller, 1991), the
existence of scars implies a regularity in the corresponding spectrum, related
to the period of the PO (Gutzwiller, 1990; Kaplan and Heller, 1999). In time
domain, the dynamics of a packet running along a PO induce recurrences in
the autocorrelation function, that when Fourier transformed define an enve-
lope in the spectrum. This gives rise to peaks of width proportional to the
Lyapunov exponent, at energies given by a Bohr–Sommerfeld quantization
condition. Actually, Fig. 3 is a good example of this. In the case of LiCN
there exists another additional regularity in the spectrum superimposed to the
previous one. This new regularity is originated by the associated homoclinic
motion, and is given by the phase space area enclosed by the stable and un-
stable manifolds up to the first crossing. This regularity can be unveiled by
considering the fluctuations of the spectral widths corresponding to localized
wave functions along unstable POs, such as those presented before. For this
purpose we calculated the spectral bands originated by PO 3 of Fig. 2. We do
not present the corresponding spectrum or wave functions plots, since they
are completely similar to those already shown in Fig. 3. The corresponding
widths in the eigenvalue spectrum of LiNC/LiCN (stick spectrum) can be
easily calculated using the following expression

σn =
√∑

µ

|〈‖varphiµ|Ψn〉|2(Eµ − En)2, (18)

computed at a fixed value of the excitation energy (E = 9197.3 cm−1 in our
case (Wisniacki et al, 2005)). This is accomplished by artificially varying the
value of � until the center of the desired band coincides with the value of
the working energy. By using this procedure we make the spectral features
of the system directly comparable with the corresponding classical magni-
tudes, which otherwise would vary with the level of excitation. Indeed, as
the LiNC/LiCN system is very floppy, its classical dynamics depends very
strongly on the energy, as opposed to what happens with mechanically scal-
able systems, such as billiards. The values of the σn so obtained are made
dimensionless by division by the characteristic energy: �(n)ω,

σn =
σn

�(n)ω
. (19)

In our case ω = 530.8 cm−1 and corresponds to the frequency of PO 3
at E = 9197.3 cm−1. The corresponding results for σn are presented in
Fig. 5. As can be seen, they show a clear increasing linear tendency with
and slight oscillatory behavior, σosc, superimposed. This oscillatory behavior
is shown in the right part of the figure, and corresponds to a single frequency
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Figure 5. Dimensionless widths (left) and its oscillatory part (right) corresponding to the scar
function spectral peaks for periodic orbit number 3 in Fig. 2.

of 17.4 a.u. Moreover, our calculations show that these fluctuations have a
surprisingly simple explanation, since they are essentially governed by the
quantization of the primary homoclinic dynamics. This result has been thor-
oughly discussed in Refs. (Wisniacki et al, 2005), specially in the case of
the stadium billiard, and can be understood in terms of the coherence of the
classical homoclinic motion, which constitutes the natural global extension of
the local hyperbolic structure around the PO. As a result the frequency in the
oscillations of σosc coincides very well with the homoclinic area defined by
the stable and unstable manifolds emanating from the fixed point of the scar-
ring PO up to the point where they first cross. This result is very important,
since it points out to the fact that there may exist properties in the the long
term dynamics of chaotic system that can be understood in terms of a small
number of classical invariants (see also Ref. (Tomsovic and Heller, 1991).
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Abstract. We explore quantum aspects of characteristic, highly correlated configu-
rations of doubly excited two-electron atoms, in one, two and three dimensions, along
stable and unstable periodic orbits of the classical system. Comparing the autoion-
ization rates of such configurations we find that the two dimensional restriction is
in quantitative agreement with the real physical system, whilst the one dimensional
model can underestimate the actual decay rates by orders of magnitude. We also
study the influence of an additional electromagnetic field on the system. An accurate
ab initio quantum treatment of the driven planar atom indicates the existence of
nondispersive two-electron wave packets. These highly correlated wave packets arise
as a quantum manifestation of regular islands in a mixed classical space, induced
by nonlinear resonances between the external field and the unperturbed dynamics
of the associated regular configuration of the atom.

Keywords:

1. Introduction

The 3-body Coulomb problem (3BCP) is the microscopic realization
of one of the most famous problems of nonlinear physics: the 3-body
problem of celestial mechanics, which has attracted the attention of
many physicists like Laplace, Lagrange, Poincaré, Einstein, and many
others, for several centuries. There the dynamics is in general chaotic
with rather small regions of regular motion. The situation does not
change much for the 3BCP, and precisely the nonintegrability of the
classical dynamics caused the failure of the early quantization schemes
at the beginning of the last century. Indeed, after first (unsuccessful)
attempts to calculate the helium ground state in the days of Bohr and
Sommerfeld it took more than half a century to accurately describe the
spectra of 2-electron atoms (see (G. Tanner et.al., 2000) for a historical
review).

Notwithstanding, after hydrogen, helium is also the simplest natu-
rally available atomic species, which, in contrast to one electron atoms,
exhibits the additional electron-electron interaction, as a source of elec-
tronic correlations. Hence, helium is one of the simplest systems where
electronic correlations can be studied. Direct manifestations of elec-
tronic correlations have been found, e.g., in doubly excited states of
helium localized along highly asymmetric, though very stable, frozen
planet configurations (FPC) (K. Richter et.al., 1990), or scarred by
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unstable periodic orbits of antisymmetric stretch configurations (ASC)
(G.S. Ezra et.al., 1991). Even though the complexity of the dynamics
of the system is dramatically increased, these correlation effects can
prevail under the action of an electromagnetic field: Evidence of highly
correlated wave packets propagating along periodic orbits of the FPC
has been obtained in one dimensional model calculations (P. Schlagheck
et.al., 2003; P. Schlagheck et.al., 2003), when the atom is driven by an
electromagnetic field near-resonant with the classical round trip period
along the orbit.

Indirect signatures of correlated electron dynamics are provided by
the enhancement of the doubly charged ion production in the double
ionization process of helium from the ground state by strong laser
fields (B. Walker et.al., 1994). Whilst a qualitative description of this
phenomenom has been attempted within the framework of several ap-
proximate models (P.B. Corkum, 1993; D.N. Fittinghoff et.al., 1992;
A. Becker et.al., 2000), we are still lacking a quantitative understand-
ing of the correlated fragmentation process (Th. Weber et.al., 2000;
K. Sacha et.al., 2001; V.L.B. de Jesus et.al., 2004).

Such an accurate and clear understanding of the excitation and
fragmentation process under external driving requires an accurate the-
oretical treatment with a minimum of approximations. This, however,
defines a formidable theoretical and numerical challenge: even in the
simplest case of the field-free, 3D helium atom, the rapid increase of
the basis size and of the number of nonzero coupling matrix elements
with increasing angular momentum saturates the currently available
computing facilities, already at low values of the angular momentum.
An additional electromagnetic field will mix almost all the remaining
good quantum numbers of the field-free system. The density of states
dramatically increases, not only with the excitation of the electrons,
but furthermore with the order of the multiphoton excitation process
induced by the external drive. Therefore, a fully three dimensional
treatment of the driven helium problem, for arbitrary driving frequen-
cies and electronic excitations, still remains beyond reach, even of the
largest supercomputers currently available.

For this reason, we will restrict our subsequent approach to planar
configurations of the two electrons and of the nucleus, with the polariza-
tion axis within this plane. This presents the most accurate quantum
treatment of the driven three body Coulomb problem to date, valid
in the entire nonrelativistic parameter range, without any adjustable
parameter, and with no further approximation beyond the confinement
of the accessible configuration space to two dimensions. Whilst this
latter approximation certainly does restrict the generality of our model,
semiclassical scaling arguments suggest that the unperturbed three
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body dynamics is essentially planar at high electronic excitations and
small to moderate total angular momenta. The same is true for highly
correlated fragmentation processes starting from the atomic ground
state (K. Sacha et.al., 2001; J. Madroñero, 2004). Furthermore, the
planar three body Coulomb problem has independent realizations in
quasi two dimensional semiconductor structures (B. Stébé et.al., 1989),
as well as in 2D quantum dots (R.G. Nazmitdinov et.al., 2002).

In the present contribution, we will study the quantum signatures
of the FPC and the ASC. In section 2 we briefly sketch our theoretical
approach, in section 3 we review the most important aspects of the
classical FPC and ASC, and study the implications thereof for the
quantum spectrum. In section 4 we consider the quantum aspects of
the driven frozen planet configuration. We conclude in section 5.

2. Theory

The Hamiltonian of helium, in the center of mass frame and under the
action of an electromagnetic field polarized along the x axis, with field
amplitude F and frequency ω, reads, in atomic units,

H =
p2
1

2
+

p2
2

2
− Z

r1
− Z

r2
+

1
r12

+ F (x1 + x2) cos ωt. (1)

Here r1 and r2 are the distances from the electrons to the nucleus,
and r12 is the inter-electronic distance. Our approach combines the
Floquet theorem (J.H. Shirley, 1965), to account for the periodicity
of the external perturbation, the complex rotation method (Y.K. Ho,
1983), to extract the atomic decay rates, and the representation of (1)
in a suitable basis set (J. Madroñero, 2004; L. Hilico, 2002): subse-
quent parabolic coordinate transformations completely regularise the
Coulomb singularities in this Hamiltonian, and allow to express the
associated Floquet eigenvalue problem as a polynomial of finite degree
in the creation and annihilation operators of four harmonic oscillators.
Therefore the eigenvalue problem can be represented in a basis set
defined by the tensor product of Fock states of individual harmonic
oscillators, and all matrix elements have analytic expressions which only
involve square roots of integer numbers. The final eigenvalue problem
contains polynomials of maximal degree 16 in the creation and annihi-
lation operators, with altogether 5472 terms (generated using symbolic
calculus). The final matrix is complex symmetric (as a consequence of
complex rotation), sparse banded, with 488 nonzero matrix elements in
the band. Due to the high density of states the matrices to be diagonal-
ized are rather huge (J. Madroñero et.al., 2004). This requires advanced
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techniques of parallel programming, and an efficient implementation of
the Lanczos algorithm (C. Lanczos, 1950; D. Delande et.al., 1991).

3. Classical and quantum aspects of one dimensional
configurations of helium

In the FPC both electrons are located on the same side of the nucleus,
with asymmetric excitation. On the first glance, this highly asymmet-
ric structure might appear to be unstable. However, classical studies
(K. Richter et.al., 1990; D. Wintgen et.al., 1992; P. Schlagheck, 1992)
show that, indeed, it is dynamically stable: while the inner electron fol-
lows highly eccentric elliptic trajectories which precess around the sym-
metry axis of the configuration, the outer electron is localized around
some equilibrium distance far from the inner electron. It is dynami-
cally stabilized due to the fast oscillation of the latter, which implies a
rapidly oscillating potential experienced by the outer electron, due to
the competition between electron-electron repulsion and the Coulomb
attraction exerted on the outer electron by the screened Coulomb po-
tential of the nucleus. Upon averaging over the characteristic time scale
of the inner electron’s motion, the outer electron experiences an effec-
tive, time-independent, weakly attractive potential what determines
the equilibrium distance (V.N. Ostrovsky et.al., 1995; A. Buchleitner
et.al., 2002).

The classical dynamics of the FPC is governed by the Hamiltonian
(1) for F = 0 and is regular as evident from the Poincaré surface of
section in Fig. 1(a) (D. Wintgen et.al., 1992; P. Schlagheck, 1992),
where position and momentum of the outer electron are represented
by a point each time when the inner electron collides with the nu-
cleus. Due to the homogeneity of the Hamiltonian (1), the dynamics
remain invariant under scaling transformations (P. Schlagheck et.al.,
2003; J. Madroñero, 2004)

ri → ri(N − 1/2)2

pi → pi(N − 1/2)−1

E → E(N − 1/2)−2, (2)

where N represents an arbitrary, real positive quantity. Since any clas-
sical action scales linearly with N , we identify N with the principal
quantum number of the inner electron. From this property it is possi-
ble to identify intrinsic quantities of the configuration in terms of N .
For instance, the equilibrium position of the outer electron xmin, the
frequency ωI of small oscillations around this point, and the minimum
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Figure 1. Contour plots of the Husimi distributions of the ground (b), first excited
(c) and second excited (d) triplet FPS of the sixth series, compared with the classical
phase space of the collinear FPC in (a) (K. Richter et.al., 1990; P. Schlagheck, 1992).
The Husimi functions show perfect phase space localization: while the fundamental
state (a) is localized at the minimum of the effective potential at 2.6 scaled units,
the excited states are localized along frozen planet trajectories with higher energy,
with outer turning points (at the maximum of the distribution) at 4.2 (c) and 5.5
(d) scaled units.

electric field FI necessary to ionize the configuration are respectively
given by

xmin = 2.6 (N − 0.5)2, (3)
ωI = 0.3 (N − 0.5)−3, (4)
FI = 0.03 (N − 0.5)−4. (5)

As seen in Fig. 1(a) the phase space of the collinear FPC contains a
large region of bound motion. Therefore, it is possible to identify eigen-
states in the spectrum which are localized along the frozen planet orbit,
even for relatively weak excitations. Indeed, starting from the 3rd. Ry-
dberg series of helium there are subseries of frozen planet states (FPS)
converging to the associated single ionization thresholds. Figs. 1(b)-
(c) show the Husimi function projected on the phase space of the
outer electron, for the three lowest planar FPS from the 6th Rydberg
series: the fundamental state (b) is localized at the minimum (3) of the
effective potential, the excited states are localized along frozen planet
trajectories with higher energy. The localization of these states along
the periodic orbit is corroborated by the left plot in Fig. 2.
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Figure 2. Contour plot (on a linear scale) of the electronic density of the planar
frozen planet state in 2D configuration space spanned by the electrons’ distances r1

and r2 from the nucleus, in the collinear configuration (left). This eigenstate belongs
to the N = 9 series. The solid line depicts the associated classical periodic orbit.
Autoionization rates of frozen planet states of helium (right) in 1D (open circles; the
exchange energy vanishes in 1D configuration space, since the electrons are effectively
distinguishable (P. Schlagheck, 1992)), 2D (filled squares for singlet, filled diamonds
for triplet symmetry), and 3D (open squares for singlet, open diamonds for triplet)
configuration space. The much higher rates in two and three dimensions provide a
clear proof that autoionization in the longitudinal direction is a slow process, largely
dominated by autoionization in the transverse direction, which probes the chaotic
domain of phase space.

Indeed, triggered by pioneering experiments (U. Eichmann et.al.,
1990), the existence of such states was already demonstrated by earlier
accurate 3D (K. Richter et.al., 1990) and 1D (P. Schlagheck et.al., 2003)
quantum calculations, though dramatically enhanced ionization rates
of the 3D as compared to the 1D eigenstates were found. This contrasts
a wide spread argument (D.G. Lappas et.al., 1996), according to which
1D models should exhibit enhanced autoionization rates as compared
to the actual 3D problem, since in the 1D case no space is left for the
electrons to avoid the detrimental Coulomb singularity of the electron-
electron interaction term in (1). On the basis of simulations of the 3D
classical dynamics the authors of the 1D calculation (P. Schlagheck
et.al., 2003) therefore conjectured that the origin of this counterintu-
itive effect is caused by a dynamical stabilization mechanism: only not
too large transverse deviations from the ideal collinear case maintain
the stability – the region of classical stability has a finite extension in
the phase space component spanned by the transverse dimension.

If this argument holds true, already the frozen planet configurations
of planar helium should exhibit enhanced autoionization rates as com-
pared to the 1D case. In figure 2 (right) we therefore compare the decay
rates of our 2D frozen planet states with the earlier 1D and 3D results.
Clearly, the 2D rates are of the same order of magnitude as the 3D rates,
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and considerably larger than the 1D results. Thus, the present results
already confirm the above picture gained from classical calculations,
and imply an important caveat for oversimplified 1D models (D.G. Lap-
pas et.al., 1996; M. Lein et.al., 2000) of correlated electronic systems in
3D, where dynamical (and, in fact, often nonlinear) stabilization effects
are easily underestimated. On the other hand, since the 2D and 3D
rates are essentially identical, our present results also indicate that the
planar restriction of the three body Coulomb problem already extracts
the most important qualitative (if not quantitative) features of the
fragmentation process.

Another well-defined configuration of the classical three body Coulomb
problem with unambiguous quantum correspondence is the collinear
antisymmetric stretch configuration, where the electrons are located
on opposite sides of the nucleus. In contrast to the frozen planet orbit,
the antisymmetric stretch is unstable in the axial direction (G.S. Ezra
et.al., 1991; P. Schlagheck et.al., 2003), with the two electrons colliding
with the nucleus in a perfectly alternating way (Fig. 3 (left)). Hence,
already the one dimensional treatment accounts for the dominant clas-
sical decay channel of this configuration. As for the frozen planet, there
are doubly excited states of helium associated to the periodic orbit of
the ASC as illustrated in Fig. 3 (left).
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Figure 3. Contour plot of the electronic density of a (triplet) eigenstate strongly
scarred by the antisymmetric stretch orbit (left), in 2D configuration space (spanned
by the electrons’ distances r1 and r2 from the nucleus, in the collinear configurations
considered here). This eigenstate belong to the N = 9 series. The solid lines depict
the associated classical periodic orbit. Autoionization rates of antisymmetric stretch
singlet states (right) of the N th autoionizing series of the helium spectrum, in 1D
(squares), 2D (circles), and 3D (diamonds) configuration space.

Figure 3 (right) compares the life times of the collinear antisymmet-
ric stretch eigenstates in one, two, and three dimensions, for principal
quantum numbers N = 2 . . . 8, and for singlet symmetry. Apart from
unsystematic fluctuations – which we attribute to local avoided cross-
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ings with other states, a generic phenomenon in the doubly excited
energy range and more generally in any chaotic quantum system –
the autoionization rates are of the same order of magnitude in all
dimensions, with the 1D states almost always slightly more long lived
than those in 2D and 3D. This is consistent with our intuition already
alluded to above: since the classical antisymmetric stretch configuration
decays along the axial degree of freedom, already the 1D model can
grasp the dominant fragmentation process, and contributions to the
autoionization rates due to transverse tunnelling in the 2D and 3D case
are but a small correction. In addition, this observation corroborates
that the planar confinement does not imply any severe restriction for
the quantitative description of the (auto-)ionization process.

4. Driven frozen planet configuration

So far we have only considered quantum aspects of the field-free three-
body Coulomb problem. In the present section we investigate the lo-
calization properties of frozen planet states under the influence of a
near-resonant external driving field, in more than one dimension. Until
now this regime of driven helium has been unaccessible, simply due to
the mere size of the corresponding Floquet eigenvalue problem, brought
about by the field induced coupling of many angular momentum states,
and only a one dimensional approach to this problem can be found
(P. Schlagheck et.al., 2003). In the classical case, it is still possible
to find classically stable configurations of the driven collinear frozen
planet, which manifest as regular resonance islands in the associated
mixed regular-chaotic phase space. These islands propagate along the
near-resonantly driven periodic orbit of the field free problem, with the
frequency of the driving field (Fig. 4 a1−3). Semiclassical arguments
(G.P. Berman et.al., 1977; P. Schlagheck et.al., 1999) suggest the exis-
tence of quantum eigenstates of the driven system associated with these
phase space structures. Indeed, there are eigenstates of driven planar
helium which are anchored to the fix points of the phase space. Fig. 4
b1−3 shows the projection of the electronic density of the outer electron
of a Floquet state on the classical phase space component spanned by x1

and p1, for different phases of the driving field. Clearly, this state is en-
tirely associated with the chaotic phase space domain and localized on
the unstable (hyperbolic) fix point of the resonance. This wave packet
propagates periodically along the near-resonantly driven periodic orbit,
without dispersion. Fig. 4 c1−3 depicts the electronic density of the
outer electron, in configuration space, for a fixed position of the inner
electron on the x axis, at some distance close to the maximum of the
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Figure 4. Classical phase space structure of the restricted collinear problem
(P. Schlagheck et.al., 2003) (a1 − a3), as well as the wave packet triplet eigen-
state (b, c, d) along the N = 6 frozen planet trajectory of 2D helium, under
electromagnetic driving at frequency ω = 0.2(N − 0.5)−3 a.u. and amplitude
F = 0.005(N − 0.5)−4 a.u.. The contour plot of the Husimi distribution projected
onto the phase space component spanned by x1 and p1 (the position and momentum
of the outer electron) is shown for phase ωt = 0 (b1), ωt = π/2 (b2) and ωt = π
(b3) of the driving field, and compared with the corresponding Poincaré sections
(a1 − a3). Clearly, the electronic density is associated with the chaotic phase space
region, localized around the hyperbolic fix point of the 1:1 resonance, and propagates
along the near-resonantly driven periodic orbit. c1 − c3 show the electronic density
of the outer electron, for the inner electron fixed at x2 � 23 a.u. The projection of
the electronic probability density along the polarization axis of the field is depicted
in d1 − d3.

probability density. The strict correlation between the outer electron’s
dynamics and the inner electron’s position is apparent (there is no
dispersion of the wave packet in the transverse direction), and prevails
for any other choice of the inner electron’s position. This observation
finds an alternative expression in the configuration space representation
in Fig. 4 d1−3, where the x-coordinates of both electrons are correlated:
clearly, the outer electron propagates along the resonantly driven frozen
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planet orbit (in phase opposition to the field – hence its locking on
the hyperbolic fixed point in phase space), while the inner electron’s
dynamics remains largely unaffected.

The nondispersive wave packet illustrated here propagates along the
N = 6 frozen planet trajectory of 2D helium. In this highly excited
spectral range we already expect that semiclassical predictions are
applicable. In particular, the classical dynamics of the driven frozen
planet suggest that the system decays via ionization of a single elec-
tron (P. Schlagheck et.al., 2003). Therefore, in our calculations we
include only as many Floquet blocks as necessary to reach the next
single ionization threshold by absorbing the corresponding number of
photons. Even then, the matrices of the associated eigenvalue problem
almost saturate one of the largest currently available supercomputers
in Germany (RZG, 2005). For lower excitations, where it is possible
to reach the double ionization threshold, we do not find significant
deviations of the wave packets’ lifetimes if we increase the number
of Floquet blocks such that the wave packets are also coupled to the
double ionization continuum. This has been also observed in the 1D
case for higher excitations (N ∼ 10) (P. Schlagheck, 2005). Therefore,
the results presented here provide abundant evidence for the existence
of nondispersive two-electron wave packets in helium, with lifetimes of
approximate 500 cycles of the driving field.

5. Conclusions

In this paper we examined quantum aspects of special classical con-
figurations of two-electron atoms. In the doubly excited regime, we
found quantum states of helium that are localized along 1D periodic
orbits of the classical system. A comparison of the decay rates of such
states obtained in one, two and three dimensional ab initio calculations
allows us to conclude that the dimension of the accessible configuration
space does matter for the quantitative description of the autoionization
process of doubly excited Rydberg states of helium. Whilst 1D models
can lead to dramatically false predictions for the decay rates, the planar
model allows for a quantitatively reliable reproduction of the exact life
times.

For the driven atom, we developed an accurate approach without any
adjustable parameter, and with no other approximation than the con-
finement of the accessible configuration space to two dimensions. This
method was successfully applied for the study of the near resonantly
driven frozen planet configuration. Floquet states were found that are
well localized in the associated phase space and propagate along near-
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resonantly driven periodic orbits without any dispersion. Thus, strong
evidence for the existence of nondispersive two-electron wave packets in
helium, propagating in an effective, molecular-like potential, was given.
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Delande, as well as financial support by the DAAD through the PRO-
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zentrum Garching der Max-Planck-Gesellschaft and of the Leibniz-
Rechenzentrum der Bayerischen Akademie der Wissenschaft (under the
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Concerning regularities of particle’s motioninthe electric

and thermoelectric fields with distributed potential
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Academgorodok, Tashkent,
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Abstract. The subject of this research are the regularities of the particles motion in
the electric and thermoelectric fields with distributed potential and the influence of
temperature field to the particle motion trajectories in aggregate electric and thermal
fields. The analytical solution of the problem of particle motion in thermoelectric
field with distributed potential is produced. Common regularities of particle motion
and trajectory changes in such fields are derived. It is shown that nonlinear curves
give a nonconsiderable part of the trajectory within the macrostructures and so
the trajectory shape doesn’t considerably influence the electron flow transformation
process. Conversely, the trajectory shape does influence the aforesaid processes in
micro- and nanostructures defining the specific ways of transformation.

Keywords: Thermoelectric potential field, particles motion, trajectory of electrons.

1. Introduction

The problem of particle motion in stationary potential fields (electric,
thermal, gravity fields) commonly comes to the field parameters esti-
mates (the determination of potential function satisfying the Laplace’s
equation) and a solution of particle motion equation in this field (Lan-
dau et. al., 1988; Lorents, 1935). Analytical solution of the motion
equation in central forces system is derived for finite quantity of po-
tential distributions. The methods of calculus of approximation can
answer only special questions about the particle motion and operate
only in specified areas of potential field (Connie et. al., 2003; Leon O.
Chua, 2003; Mihael Zitnik, 2003). Because of that, seeking physical
systems which have the potential distribution satisfying the Laplaces
equation and the equations of motion with known common analytical
solution remains essential. One of the examples of such systems is
the potential field formed by two electrodes, constant-potential and
distributed-potential. This system could be used for measuring and
functional transformation of electric signals. During the operation of
such a solid-state system (usually using semiconductors) a thermal field
appears and forms the thermoelectric field with distributed potential.
The superposition of the latter and the original field can cause variation
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of the resulting field and distortion of its operational characteristics.
On the other hand, the discovery of this effect regularity would make it
possible to construct new functional electronics devices. Besides that,
a solution of this problem would probably give the generalized idea of
particle motion in accelerating and decelerating fields and the way to
research the general regularities of electron flow transformation in the
devices designed for such aims as determining the magnitude of the sig-
nal under study (Fedulov, No.2052823, 1996; Fedulov, No.3659, 1996).
The physics of electric signals transformation in such devices differs and
naturally requires different methods of transformation process analysis.
Temperature dependences of operational characteristics of semiconduc-
tor devices (which are representable by macrostructures) are deeply
researched and widely described in modern literature (Collinge, 2002).
The process of electron flow transformation in these structures de-
pends on its magnitude and doesn’t considerably depend on motion
trajectory. Oppositely, the electron motion trajectory shape is decisive
in micro- and nanostructures (Groves et. al., 2002; Despere et. al.,
2002; Al-Qahtani et. al., 2004). Because of that the papers concerning
the influence of temperature on electron trajectory shape in micro-
and nanostructures are the subject of great interest. The aim of the
present article is the research of the regularities of temperature field
influence on particle motion trajectory in the aggregate electric and
thermal fields.

2. Concerning particle motion regularities in stationary
thermoelectric fields

We’ll search for a solution of equation of motion in a stationary po-
tential thermoelectric field with distributed potential. Such a field is
generated in a plane-parallel structure (Fedulov, 2003) with distributed
potential (fig. 1). The potential thermoelectric field in this structure can
be described by the following independent expressions:

U(x, y) = (Umax − Umin)/l0d0 · x · y = ke · x · y (1)

T (x, y) = (Tmax − Tmin)/l0d0 · x · y) = kT · x · y (2)

where l0, d0 stand for the length and the width of the structure under
study, and Umin, Umax, Tmin, Tmax stand for minimal and maximal
values of potential and temperature at the edges of the electrode on
y = d0 plane respectively. The distribution of potential and temper-
ature along this electrode is linear: U1(x) = U(x, 0) = 0, U2(x) =
U(x, d0) = kx, assuming that ke = (Umax − Umin)/l0d0, and kT =
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Figure 1. The configuration of the task.

(Tmax − Tmin)/l0d0 stand for potential and temperature distribution
coefficients.

The field between the planes with the given potentials will be elec-
trostatic and plane-parallel and satisfies the two-dimensional Laplace’s
equation

∂2U/∂x2 + ∂2U/∂y2 = 0. (3)

The intensity of electrical field is determined by the expression:

E = −gradU = −k/d(y�x0 + x�y0). (4)

The electric field potential can be found using Eq. (1). The thermo-
electric field intensity can be written as [13]:

ET = L12/eL11T · ∇T = αT∇T (5)

Here: ET is the intensity of the electric field generated by the particle
motion in thermal field, L11 and L12 - Onsagera kinetic coefficients,
αT = L12 · (eL11)−1 · T−1 - thermoelectric coefficients.

Then we can rewrite the equation of electron motion in thermal field
with distributed potential as following:

mẍ = e · αT · gradT (6)

Since the form of the particle equation of motion in electric potential
and thermal fields is alike, both kinds of motion can be described by
following equations: {

ẍ = −em−1Ex = ay,
ÿ = −em−1Ey = ax,

(7)

The solution can be represented in parametric form as (Fedulov,
2003):

⎧⎪⎪⎨
⎪⎪⎩

2px(t) = p(x0 + y0)Ch(pt) + (V0x + V0y)Sh(pt)
+p(x0 − y0)Cos(pt) + (V0x + V0y)Sin(pt),

2py(t) = p(x0 + y0)Ch(pt) + (V0x + V0y)Sh(pt)
−p(x0 − y0)Cos(pt)− (V0x + V0y)Sin(pt),

(8)
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⎧⎪⎪⎨
⎪⎪⎩

2Vx(t) = p(xO + yO)Sh(pt) + (VOx

+VOy)Ch(pt)− p(xO − yO)Sin(pt) + (VOx − VOy)Cos(pt),
2Vy(t) = p(xO + yO)Sh(pt) + (VOx + VOy)Ch(pt)

+p(xO − yO)Sin(pt)− (VOx − VOy)Cos(pt),

(9)

where x0, y0, V0x, V0y - stand for entry point coordinates and initial
velocity components of the electron, e and m - its electric charge and
mass, αe = p2

e = e·ke/m·d0 and αT = p2
T = e·kT /m·d0 - structure para-

meters for electric and thermal fields respectively. The Eqs. (8) describe
the trajectory of electrons movement in modulating kind, and Eq. (9)
- its velocity. Let us assume that Y axis passes the points of equal
potentials normally to electrode planes. Electron motion equations in
electric and thermal fields only differ in p value. Since the influence of
thermal and electric fields on particle trajectory are independent, the
resulting trajectory can be regarded as a sum of two trajectories.

3. Concerning the particle motion in macrothermoelectric
fields

We can find from expressions Eq. (7) and Eq. (8) the functional de-
pendence between the values of structure’s parameter p, the value of
electron’s entry point into the structure x0 and y0 and the values of
components of its entry’s initial velocity V0x and V0y at which electron
remains in structure, or abandons it:

px0 = 2V0Sin(pt+arctgVOx/VOy)/(ept)+
√

2Sin(pt+π/4)−(VOX+VOY ).
(10)

At t = 0, Eq. (8) becomes:

px0 = V0Sin(arctgV0X/V0Y )− (VOX + VOY ) = B. (11)

The Eqs. (10) and (11) functionally connect the p parameter, the initial
electron’s velocity V0 and velocity’s constituents V0x and V0y in plane-
parallel structure with distributed potential with the coordinate of its
entry’s point x0, on the electrode with distributed potential. Let us
analyze Eq. (10): Under px0 ≤ B the electron will lose the initial kinetic
energy completely with generation of electromagnetic radiation (the
kinetic energy is absorbed completely). Under these conditions the elec-
tron doesn’t leave the structure. There is the partial selection of energy
under px0 ≥ B and the electron comes beyond the limits of structure.
If electron enters the structure normally (V0y = V0, V0x = V0) the
boundary condition after that electron leaves the structure can be
written as:

px0 ≥ −VOY (12)
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Figure 2. The measurer macrostructure with distributed potential. 1 − the cathode
(emitter), 2 − grids for a measured electrical signal, 3 − grid with a distributed
potential and 4 − anode.

Conditions (10), (11) and (12) divide the structure into two areas,
one of which behaves as accelerating while another as decelerating.
Electron flow passing through this structure is able to leave it when
in accelerating area only. Leaving point variations situated in this area
can be used for developing devices for measuring the magnitude of
electric signal. Voltage measuring devices can be categorized to micro-
and macrostructures reasoning from the particle equation of motion
form. We’ll assume that the electron passage time is greater than the
reciprocal of the structure parameter in macrostructures and smaller
in microstructures. The voltage measuring method has the variation
of electron flow intensity during its path through the structure in its
basis in microstructures and trajectory changing in macrostructures.
So the influence of thermal field on the electron flow transformation
process differs in this structure class. The macrostructure - based volt-
age measuring device is shown in fig. 2. The essence of this method is
judging about the magnitude of the signal under study by the observed
changing of electron flow while it passes through the decelerating and
accelerating parts of the structure.

The Eq. (12) for this structure can be turned into

Uc = (Umax − Umin)/L · x · F (U), (13)

where Umax, Umin stand for the values of maximal potential and min-
imal potential, which are applied to the ends of the electrode in the
plane y = d; L - the length of a structure (m); F (U) - the law of
distribution of potential on a grid.

It was demonstrated by research that the rectilinear form of electron
flow trajectory is characteristic for macrostructures and the tempera-
ture doesn’t considerably influence the overall process in this circum-
stances. At the same time changing of initial particle velocity (by vary-
ing the temperature or the potential) just leads to changing of accelerat-
ing area width and electron flow intensity near the anode. The influence
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of temperature on the technical characteristics of macrostructure-based
devices is widely researched (Collinge, 2002; Groves et. al., 2002) and
is not reviewed in this paper.

4. Concerning the particle motion in electric and
microthermoelectric fields

Particle motion trajectory changing during its pass through the accel-
erating and decelerating parts of thermoelectric field in microstructure
plays the major role in the research and voltage measuring methods
development areas. The most characteristic and interesting methods
of the design of electric signals measuring and transformation devices
are those which utilize the electron motion trajectory changing in the
area of S-shape trajectories (”the tunnel effect”) originated from the
same point (Despere et. al., 2002; Al-Qahtani et. al., 2004). The con-
ditions of existence of such area are researched for the electric field
system (Fedulov, 2003), and the electron motion trajectories in this
area regarding the initial velocity with constant entry point are shown
at Fig. 3. Fig. 4 shows the electron motion trajectories regarding the
initial velocity with constant entry point.

Produced process models can be used for the design of measuring
devices based on electromagnetic oscillation effect in the first case and
based on charged particle lodging area definition in second. The equa-
tions decribing the motions in thermoelectric field have the following
form:

x2(t)− y2(t) =
√

2x2
0e

petSinpt(pet− π/4) (14)

x2(t)− y2(t) =
√

2x2
0e

pT tSinpt(pT t− π/4) (15)

The electron motion trajectories in this area regarding the initial ve-
locity with constant entry point are shown in Fig. 5, and regarding
the initial velocity in Fig. 6. This figures display that the thermal
velocity component can considerably influence the motion trajectory
and naturally the technical characteristics of device.

5. Concerning the regularities of particle motion in the field
with distributed potential

While reviewing the operation of measuring and transformation devices
based on distributed potential structures utilizing the decelerating (re-
flective) and accelerating field areas (fig. 4), the problem of its operation
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Figure 3. The trajectories of electron’s motion in the area of ”the tunnel effect” at
change of value of its initial speed. 1 − the trajectories of electron’s motion in an
electric field, 2 and 3 − the trajectory of electron’s motion in aggregate electrical
and thermal fields, accordingly, under pT = 0.25pe and pT = 0.5pe, 4 and 5 − the
trajectory of electron’s motion in aggregate electrical and thermal fields, accordingly,
under pT = −0.25pe and pT = −0.5pe.

Figure 4. The trajectories of electron’s motion exiting from one point, at change of
value of initial speed and its components. 1 − the trajectories of electron’s motion
in an electric field, 2, 3 and 4 − the trajectory of electron’s motion in aggregate
electrical and thermal fields, accordingly, under pT = −0.25pe, pT = −0.5pe and
pT = −0.75pe, 5, 6 and 7 − the trajectory of electron’s motion in aggregate electrical
and thermal fields, accordingly, under pT = 0.25pe, pT = 0.5pe and pT = 0.75pe.

speed (particle pass time) estimation appears. Different field areas de-
fine the peculiarities of particle motion in such structures. We’ll serialize
the velocity expression (9) and limit it to the quadratic terms:

V (t) =
√

V 2
0 + 2VOyp2xOt + 2VOxVOyp2t2 + p4x2

0t
2. (16)

For a braking site of a field according to expression (10) coordinates of
an entry point always have negative value. Then expression (16) will
be written as:

V (t) = V0

√
1− VOyp2xOt · V −2

O . (17)
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Figure 5. A closed trajectory of electron’s motion in structure with symmetric
thermoelectric field. 1 − electrode with distributed potential, 2 − the pattern of
electrical field, 3 − closed trajectory of the electron.

Figure 6. The picture of researched volumetric structure and trajectory of the
electron’s motion.

The case is interesting, when the spectator is in braking area of a field
and researches character of driving of a particle. Researches (Fedulov,
No.3659, 1996; Collinge, 2002) have shown, that in a brake field at a
given entry point it is possible always to define value of initial entry
speed, at which on any site of a trajectory the moving along an axis
X will be infinitesimal. And, on the contrary, at any initial speed of
a particle it is possible to create such brake field always, at which
particle also will make infinitesimal moving along a X axis. Measured
value of speed of electron driving in any place of a braking site of a
potential field (20) will be always lower than the value of its initial
entry speed. Or, in other words it is possible to speak, that the speed
of a particle has the finite value, only for its local value. Besides it can
appear, that measuring speed of a particle before reflection and after
in two close points of brake field (at its infinitesimal moving along an
X -axes)) one can have equal values. It can reduce the spectator to
conclusion that the speed does not vary (rectilinear uniform driving).
The spectator can consider this point as unique. Probably, one cannot
speak about the character of particle’s driving in all potential field on
the basis of experimental definition of local value of particle’s speed in
braking electric fields only. The coincidence of these values measured in
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various moments in close points, can reduce to an incorrect conclusions
about the character of the particle driving. Particle’s speed measured
in another, sufficiently remote point of a trajectory of driving, can be
different. The value of speed for an accelerating site of a field can be
defined from the expression:

V (t) = V0

√
1± VOyp2xOt · V −2

O . (18)

Coordinate of an entry point under the radical in the (18) has always
positive value for accelerating area. And for an area, in which an entry
point coordinate has negative value (boundary conditions (10)), the
expression under a radical in the (18) has positive value also. Other
feature of the particle driving in the field with a distributed potential
is that the trajectories of particle motion are curvilinear to sites of
acceleration and deceleration (Fedulov, 2003). If one will consider the
curvilinear motion of the particle as an approximate uniform driving
on rectilinear trajectories, it will appear, that the particle’s path on
these trajectories are different for identical time. And then any hy-
pothesis is required to explain this effect. In other words there is a
danger of different treatment of results of experience, if the conditions
and legitimacies of driving of the particle in a concrete potential field
are not known for the spectator. These assertions can be confirmed
by other reasons also. The process of periodic motion of the particle
(acceleration and inhibiting action), in a symmetric electric field with
a distributed potential is featured by Eq. (16). This motion can be
decomposed into two sorts of motions - accelerated (deceleration and
acceleration) driving circumscribed by the equation

x2(t) + y2(t) = x2
0/2 · [2Sin2(pt + π/4)− Sh2pt], (19)

and uniformly accelerated driving on an arc of a circle:

x2(t) + y2(t) = x2
0/2. (20)

One can see from these expressions, that for identical time of driving
(for example, for half of period) the paths of the particle on different
trajectories are different. It is possible to tell, that the replacement of
driving on curvilinear trajectories on uniform rectilinear driving always
will require introducing some correction factor.
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6. The particle’s motion in a symmetric thermoelectric field

The symmetric thermoelectric field can be created in structure, showed
in fig. 5. The trajectories of an electron motion in a symmetric field with
a distributed potential are represented there.

There can be closed trajectories of motion in a symmetric potential
field under the condition (12). The electron’s motion in a symmetrical
electrical field is circumscribed by the equation

2[x2(t) + y2(t) = x2
0[1 + 2Sin2(pt + π/4)− Sh(2pt)]. (21)

The opportunity of creation of oscillating system in the structure with
braking potential field, which were made by the distributed potentials
and accelerating potential, is shown. The particle in such the field will
make fourfold process of braking and accelerating.

7. The particle’s motion in a symmetric volumetric
thermoelectric field

The equations for the description of an electron motion in a volumetric
thermoelectric field are following:

⎧⎨
⎩

ẍ = −e/m · Ex = αY ,
ÿ = −e/m · Ey = αX ,
z̈ = −e/m · Ez = αz,

(22)

where: αz = −e · (Umax z −Umin z)/m · lz = −e/m · kz, Umin z, Umax z,
- minimum and maximum values of a potential on an axes z, kz =
(Tmax z − Tmin z)/lz - distribution coefficient of an electrical potential.
Solutions of these equations are the trajectories (fig. 6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 · px(t) = p(x0 + y0)Ch(pt) + (V0x + V0y)Sh(pt)+
p(x0 − y0)Cos(pt) + (V0x + V0y)Sin(pt),

2 · py(t) = p(x0 + y0)Ch(pt)− (V0x + V0y)Sh(pt)−
p(x0 − y0)Cos(pt)− (V0x + V0y)Sin(pt),

2 · z(t) = 2 · z0 + 2 · V0z ·+αzt
2

(23)

For forming of apparent particle’s motion in (circular helix) it is
necessary to create in addition the tangential constituent of velocity
Z - direction. We can create such conditions at the cost of distributed
electrical field along Z - axle and then the particle in the submitted
structure will move over circular helix.
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8. The particle’s motion in a non-stationary thermoelectric
field

In practice of creation of measuring and transforming instruments on
structures with a distributed potential there are tasks about research of
trajectories of driving of a particle in a non-stationary thermoelectric
field. This task arises in conditions, when a varying potential adds to
one of electrodes of structure with a distributed potential. We consid-
ered the non-stationary task under condition of a linear dependence
between coefficients in a stationary and non-stationary thermoelectric
fields. The potential in such a field can be described by the equation

U = α0(1 + βt)/d · x · y, (24)

where: α0 = ek(md)−1 - coefficients of stationary potential field, β -
coefficient of change of a potential in time. An equation of motion looks
like: {

ẍ = −e/m · Ex = (α0 + βt)y
ÿ = −e/m · Ey = (α0 + β)x.

(25)

We can consider the parameter exchange

t = β · α−1 + z · β−1/3 (26)

and using Airy integration

Ai(z) =
1
π

∫ ∞

0
cos(t3/3 + zt)dt, (27)

we get the general solution for eq. (26)

λj(z) + µh(z) + ξf(z) + ηg(z) = 0 (28)

where

λ = −Γ(1/3)·31/3(υ0,x+υ0,y)+Γ(2/3)·32/3ω(x0+y0)·[2(1−ω)]−1 (29)

µ = −Γ(1/3)·31/3(υ0,x+υ0,y)+Γ(2/3)·32/3ω(x0+y0)·[2(1−ω)]−1 (30)

ξ = −Γ(1/3)·31/3(υ0,x−υ0,y)+Γ(2/3)·32/3ω(x0+y0)·[2(1−ω)]−1 (31)

η = −Γ(1/3) ·31/3(υ0,x +υ0,y)−Γ(2/3) ·32/3 2
3
3

2
3 ω(x0−y0) · [2(1−ω)]−1

(32)
Here

Γ(z) =
∫ ∞

0
xz−1 · e−xdx (33)
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So, our main purpose is attained, since we have solved the equations
of motion for the case, which is one of the most general cases of ex-
actly solvable models. This aim can be enlarged in the sense, that all
quadratic cases will be solved in the following papers.

9. The conclusion

The equations of motion of charged particles are output at simulta-
neous operation of electrical and thermoelectric fields with distributed
potentials, and analytical solutions of them are obtained. Essentially
variations of a trajectory of charged particles motion under operation
of an additional thermoelectric field with a distributed potential are
detected. This one can be used to create a new type of measuring
instruments and functional converters.
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Abstract. A theory of relativistic ideal gas (RIG), fluxons and electrons is pre-
sented. A distribution function of velocities (FRS) and the equation of state of the
RIG are found, together with the distribution function of the observed frequencies.

Keywords: fluxon gas in thermalized Josefson systems; the criteria of degeneracy of
the relativistic ideal gas; absolute minimum realization of the most probable state in
the equilibrium system; temperature of the primary microwave cosmic background;
primary quantum magnetic flow.

1. Introduction

As is well known, the theory of ideal gas (IG) formulated by Maxwell,
Boltzmann and Gibbs, consider it as an ensemble of material point
particles. The exponent of the distribution function for ensemble par-
ticles ”is a linear function of the energies, which at the same time are
quadratic functions of the momentum”. The study of ideal gases has
been developed further by Bose, Einstein, Fermi and Dirac who created
quantum statistical physics (QSP). Further, soliton theory introduced
non-linear modes in statistics. At the present time there does not exist a
general soliton statistical theory for the non-linear evolution of systems.
In this work we present some generalizations of certain results obtained
earlier (Djumaev et al., 1997)-(Jumaev, 2004), where we achieved the
idea of a soliton gas and found the statistics of a fluxon gas of thermal-
ized superconductor system (or Josephson system). Using the analogy
between solitons (or quasi particles) and particles we generalize this
result for relativistic ordinary particles.

This paper is organized as follows. Section 2 presents non-trivial
properties of the velocity distribution functions for RIG for quasi and
ordinary particles in one dimensions. In section 3 we find the state
equation for relativistic ideal gas of both types. Section 4 presents the
distribution function for the observed frequency radiation generated
for quasi and ordinary particles of the relativistic ideal gas, for fluxons
under transfer radiation and radiative atoms of the relativistic ideal
gas. Section 5 presents a generalization of the theory of the relativistic
ideal gas in three dimensions and the distribution function for particles
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in the relativistic ideal gas is found. Section 6 shows formulas for the
temperature of relic radiation which is based on the exact Doppler
formula and the velocity distribution function for particles forming this
radiation is found. In conclusion we formulate the two most important
physical results: initial quantum magnetic flow corresponding to the
absolute minimal realization of the most probable state, the temper-
ature of relic radiation corresponding also to the initial temperature
of the primary cosmic radiation absolute minimal realization observed
frequency radiation or in other words, the absolute minimal realization
of the most probable state of the considered equilibrium system.

2. Non trivial properties of relativistic DFV

It is known that in order to define the distribution function of many
particle systems it is enough to know the distribution function for one
particle. Here we use that the mean average quantities for the ensemble
are the thermodynamic averages. This is a consequence of the Ergodic
theorem which till now is not proved in full mathematical rigor (Gibbs,
1946; Einstein, 1965). The last investigation shows that this property
works for systems with elastic interaction and elastic collisions between
particles. This gives us non-trivial possibilities to construct non-linear
theory of ideal gases as solitons possessing unique properties of elastic
interaction between quasi particles.

Earlier the velocity distribution function of quasi particles of a rel-
ativistic ideal gas for a one dimensional system, for example, fluxons
in thermalized Josephson systems and electrons in a high temperature
plasma was found.

Let us introduce non-trivial properties of the distribution function of
velocities of a relativistic ideal gas for both cases. For this we remind
that the probability to find a particle with velocity between vx and
vx + dvx is

dW (vx) = f(vx)dvx∫
f(vx)dvx = 1

where f(vx) is the velocity distribution function of particles of the
relativistic ideal gas.

A) For quasi particles (fluxon in thermalized Josephson transmision
lines (JTL)):

f(vx) = A(1− v2
x

c2
)−3/2Exp[−a

v2
x

c2
(1− v2

x

c2
)−1]
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where c is the Swihart’s electromagnetic wave velocity in JTL; a is a
parameter; which is defined at the end of the report (see figure 1.a).

B) For ordinary particles (electrons in relativistic plasma)

f(vx) = B(1− v2
x

c2
)−3/2Exp[−b(1− v2

x

c2
)−1/2]

where x is light’s velocities and b is a characteristic parameter which is
defined in conclusions of the report (see also figure 1.b).

2.1. The most probable velocity

In order to define the statistical characteristics of a many particle sys-
tem, for instance an ideal gas, their distribution function with some
defined physical parameters (for example, velocity, momentum, energy,
etc) should be fully determined. In particular it is physically important
to define the velocity of particles corresponding to the most probable
state, which is the maximum of the distribution function.

Using this condition we obtain the following results.

A) For fluxons A is a constant (A =
√

a
π ) and for 0 < a < 3/2

there are the three extreme points of the distribution of fluxon velocity
(DFV),

vmp = ±c

√
1− 2

3
a vlp = 0.

B) For electrons (constant B = 1/2cK1(b), where K1(b) is the mod-
ified Bessel function). For 0 < b < 3, there are three extreme points of
DFV :

vmp = ±c

√
1− b

3
vlp = 0.

where vmp and vlp are the most and least probable velocities for parti-
cles of an ideal relativistic gas for fluxons and electrons.

From the physical point of view the condition a < 3/2 and b < 3 can
be interpreted as a criteria for a relativistic ideal gas to be degenerate.
In other words, this means that if these conditions are satisfied, there
exists a non-zero most probable velocity.
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2.2. The mean average square velocity

To define the mean velocity of particles in a relativistic ideal gas, as
always, we use that

vsq =
√

< v2 >.

The results obtained are the following.

A) For fluxons:

vsq = c[1−
√

πaeaerfc(
√

a)]1/2

where erfc(x) is the error function.

B) For electrons:

vsq = c[1− K(b)
K1(b)

]1/2

where K(b) is the integral function depending on the parameter b.

We have for a >> 1 and b >> 1 the following results

A) For fluxons:

< v2
x >= c2 1

2a
.

B) For electrons:

< v2
x >= c2 1

b
.

So these coincide with the non relativistic result. Indeed, for a non-
relativistic ideal gas theory - Maxwellian theory (for 1D systems)- we
obtain

< Ek >=
m

2
< v2

x >=
kT

2
or

< v2
x >=

kT

m
So, the characteristic parameters for those systems are

a =
E0

2kT
, E0 =

IcΦ
2π

,

and
b =

E0

kT
, E0 = mc2.
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where E0 is the rest energy for fluxons and electrons, respectively; k
is the Boltzman’s constant; Ic is the critical superconductivity current,
Φ = h/2e the quantum magnetic flow and T is the absolute temperature
for the system.

3. The equation of state for the relativistic ideal gas

We obtain using the relativistic expression for energy and force that

< E >= NE0 < (1− β2)−1/2 >,

< P >=
nE0

3
< β2(1− β2)−1/2 >,

where β = vxc, E is the energy and P is the pressure of ideal relativistic
gas.

A) For fluxons

E = NE0

√
a

4π
[K0(

a

2
) + K1(

a

2
)]ea/2

P = nE0

√
a

4π
[K0(

a

2
)−K1(

a

2
)]ea/2

E

V
− 3P = nE0

√
a

4π
K0(

a

2
)ea/2

where n is the number of particles in unit volume (or length) and Ki(x)
(i = 1, 2, 3) is the modified Henckel function (or entire Bessel function).

B) For electrons

E = NE0(
1
b

+
K0

K1
)

P =
nE0

3
(
1
b

+
K0

K1
−K0)

E

V
− 3P = nE0K0

When a >> 1 and b >> 1 we obtain that

P ≈ nE0

3
< β2

x >

that coincides with the equation of state for a non-relativistic ideal gas.
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4. The minimally observed signal

The exact Doppler formulas for the relativistic particles

ν = ν0

√
1− β

1 + β

(β = vxc) where ν and ν0 are the observer and emission frequencies
respectively (for β = 0). Since the particles in ideal gas are moving with
the different velocities, the observer frequency defined by the DFV of
particles of IRG. That is

∫
f(vx)dvx =

∫
f(vx(ν))|dvx

dν
|dν =

∫
f(ν)dν

where f(ν) is the profile form of the spectral radiation lines or distrib-
ution function of the observable frequency radiation.

A) JTL as system of SQUID’S. In this case using last formulas and
DFV of fluxons we obtain

f(x) =
1
2

√
a

π
ea/2(1 +

1
x2

)Exp[−a

4
(x2 +

1
x2

)]

where x = ( ν
ν0

)2 (see figure 2.a).

B) The form of profile of SRL

f(x) =
1

4K1(b)
(1 +

1
x2

)Exp[− b

2
(x +

1
x

)]

where x = ( ν
ν0

)2 (see figure 2.b).

It is easy to get that

xm =

√
3

√
4
3a

(r + s) + 3

√
4
3a

(r − s)− 1/3

with

r =
2a

9
+

1
2
; s =

√
2
3a

[(a− 13
16

)2 +
343
256

]

is the most probable normalized frequency for fluxons and

x̃m =
1
2
[
√

2w − (y − z)−
√

(y − z)]
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with

y = 2
3

√
[
√

1
27

+
1
b4

+
1
b2

], y = 2
3

√
[
√

1
27

+
1
b4
− 1

b2
]

w =
√

(y − z)2 + 3yz.

is the analog for radiating particles.
Analysis of the last formula shows that in both cases, in principle,

we can observe the minimal intensity of radiation or magnetic flow.
This is in agreement with the absolute minimal realization of the most
probable state in equilibrium system (see fig 3.a and fig 4.a, fig 3.b and
fig 4.b). They are in agreement with the values of the observed distrib-
ution function observable frequencies and are equal to Im = f(xm) for
fluxons and Im = f(x̃m) for radiating particles. For details of statistical
characteristics of observable frequencies see reference (Jumaev, 2004).

5. Some physical aspects of theory of relativistic ideal gases

Three dimensional generalization of the theory of relativistic ideal gas.
A) For fluxons

f(v) = (
a

π
)3/2JExp[−a

β2

1− β2
], β =

v

c

B) For electrons

f(v) =
1

4π(mc)3
b

K2(b)
JExp[− b√

1− β2
], β =

v

c

where J is given by
J = m3(1− β2)−5/2,

and is the Jacobian of transformation from momentum to velocities
((Gibbs, 1946)).

6. Statistical properties of the relic radiation

Using the exact Doppler formula and the DFV for particles forming
the relic radiation we have obtained that

T

T0
=

ν

ν0
=

√
1− β2

1 + βcosθ
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where β is the normalized velocities of the particles of an ideal rela-
tivistic gas which acts as a source of relic radiation.

In consequence, the statistical characteristic temperature of relic
radiation is fully determined in terms of relativistic invariant spectrum
of the cosmic microwave background radiation and the distribution ve-
locity function of radiating particles, i.e., is described with the following
expression (compare with the results of reference (Einstein, 1965))

<
T

T0
>=

∫ √
1− β2

1 + βcosθ
f(−→v )d−→v

where
d−→v = dvxdvydvz = v2dvsinθdθdϕ

Angular distribution, dispersion and relative fluctuation of the temper-
ature of the relic radiation ((Jumaev, 2004)) is found.

7. Conclusion

As follows from the previous analysis for quasi and ordinary particles
gases there exists a critical value of parameters a and b for which the
least value of the distribution function for observable frequencies is
observed. From the physical point of view this is in agreement with
the absolute minimal realization of the most probable state. As in any
equilibrium distribution, there is an unique most probable state which
the system tends to achieve. In consequence we conclude that the ob-
servable temperature of the relic radiation corresponds to this state. Or,
what is the same, the temperature of such radiation correspond to the
temperature originated in the primary microwave cosmic background
and the primitive quantum magnetic flow.

Therefore we can formulate two important results:

A) Primary quantum magnetic flow

Φ0 =
Φ
√

xm
≈ Φ

0.698
≈ 1.433Φ,

see figure 4.a.

B) Temperature of the primary microwave cosmic radiation

T0 =
T√
x̃m
≈ T

0.668
≈ 1.497T,

see figure 4.b. Here T is the observable temperature of the relic radi-
ation at the present time (T ≈ 2.728K). In consequence of the last
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relation it follows that the temperature of the primary microwave cos-
mic radiation at the creation of the universe was T0 ≈ 4.08K. Then
we get the following important conclusion: at temperature T0 and due
to the non linear fluctuation mechanism the vacuum was transformed
into matter and radiation.

Discussion of the quantum field and astrophysical aspects of this
problem are beyond the thematic of this conference and need special
consideration.
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realization of most probable states of system.



Theory of relativistic ideal gas for quasi and ordinary particles 165

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.7

0.8

0.9

1.0

1.1

1.2

1.3

 3b. 

X
m

ax
(b

)

b

1b.

 b=0.5
    1.5
    2.5
    3.5

φ(
u)

u

2b.

 b=0.5
    1.5
    2.5
    3.5

I(
x)

x
 4b.

I m
ax

(b
)

b

Figure 2. (1b) Distribution function of the velocity for the relativistic electrons. (2b)
Distribution functions of the observable frequencies. (3b) Most probable values of
the observable frequencies as a function of b. (4b) Absolute minimal realization of
most probable states of system.



Finite-temperature quantum billiards
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Abstract. A method for the computation of eigenvalues of quantum billiard
is offered. This method is based on combining of boundary integral method and
thermofield dynamics formalism.

Keywords: Quantum chaos, finite-temperature, quantum billiard

1. Introduction

Quantum chaos problem appeared in early eighties as a quantum me-
chanics of classically non-integrable systems and has been subject of ex-
tensive theoretical and experimental studies (Eckhardt, 1988;Gutzwiller,
1990) For the past decade quantum chaology has got new develop-
ments due to the newly appeared area, physics of mesoscopic systems
(Richter, 1990; Alhassid, 1990). Remarkable feature of these systems is
the fact that because of sizes such systems exhibit quantum as well as
classical properties that allows them to be a convenient testing ground
for the quantum-classical correspondence. Since nanostructures have
also mesoscopic scales these systems are of practical importance, too.
Such systems as quantum dots, quantum graphs, and quantum wires
are expected to play central role in nanotechnology. Particle dynamics
in mesoscopic systems could exhibit strong chaotic dynamics both in
classical as well as in quantum regimes. This makes them attractive
from the viewpoint of quantum chaology, too. Despite the considerable
progress made in the study of dynamical chaos in mesoscopic systems
some problems in this area still remain less-studied. Most important of
them is the role of finite-temperature in quantum chaos. In this paper
we treat quantum billiard problem at finite-temperature.

Another development in the quantum chaos where finite-temperature
effects are important is the Quantum field theory. As it is shown by re-
cent studies on the Quantum Chromodynamics (QCD) Dirac operator
level statistics (Bittner et.al., 1999), nearest level spacing distribution
of this operator is governed by random matrix theory both in confine-
ment and deconfinement phases. In the presence of in-medium effects
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these calculations should be performed within a finite-temperature field
theory. Also, the spectra of hadrons subjected to the color screening
exhibit considerable fluctuations (Gu et.al., 1999).

It should be noted that there is no universal approach for the study
of finite-temperature effects in quantum chaos, in particular for quan-
tum billiards. One of the way for introducing temperature in billiards
is to consider softer-wall Gaussian boundaries. Relation (Stockmann
et. al., 1997) between billiard geometry and the temperature has been
considered.

The role of finite temperature in quantum chaos is studied within
the imaginary time formalism via quantum action approach (Caron et
al 2001).

In this work we use thermofield dynamics formalism (Takahashi
et.al., 1996; Das, 1997) and boundary integral method (Li et.al., 1995)
to get temperature dependence in the billiard energy level spectrum. In-
stead of the zero-temperature Green’s function we use finite-temperature
one which is obtained within the TFD formalism.

2. Zero temperature case

Before proceeding to finite-temperature treatment we briefly describe
the boundary integral method for zero-temperature case, which was
introduced to solve this type of problem (Berry et al, 1984; Tiago et
al, 1997).

The billiard system is described by the following Schrödinger equa-
tion:

Ĥψ(r) =

[
−�

2∇2

2m
+ V (r)

]
ψ(r) = Eψ(r) (1)

This differential equation can be replaced by an integral equation
using the Green’s function from which one can obtain E and ψ(r). For
this purpose, the Green’s function G(r, r′; E) of the operator E− Ĥ, is
defined as a solution of

[E − Ĥ(r)]G(r, r′, E) = δ(r − r′) (2)

Multiplying eq.1 by G(r, r′; E), eq.2 by ψ(r) and adding the resulting
equations yield

ψ(r)δ(r − r′) = G(r, r′; E)Ĥψ(r)− ψ(r)ĤG(r, r′; E) (3)

and using the expression for the Hamiltonian we have

ψ(r)δ(r − r′) =
�

2

2m
[−G(r, r′; E)∇2ψ(r) + ψ(r)∇2G(r, r′; E)] (4)
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recalling the identity u∇2v = ∇(u∇v)−∇u∇v, valid for any differen-
tiable functions u(r) and v(r) and integration with respect to r over
the domain D; applying Green’s formula, the integral can be expressed
as a line integral along ∂D

ψ(r′) =
�

2

2m

∮
∂D

ds(r)[ψ(r)∂νG(r, r′; E)−G(r, r′; E)∂νψ(r)]

where ∂ν = ν(r)∂r normal derivative. This is so-called BIE (boundary
integral equation). Applying the normal derivative operator ν(r′)∂r′ to
both sides of equation which, according to definition:u(s) = ∂νψ(r)
and with boundary conditions: ψ(r) = 0, ∂νψ(r) = arbitrary, ∀r ∈ ∂D
finally we arrive at

u(r′) = −�
2

m

∮
∂D

ds(r)u(r)∂ν′G(r, r′; E)

for free particles inside a plane Euclidean billiard with the Green’s
function given as

G(r, r′; E) = − im

2�2
H

(1)
0 (k|r′ − r|)

and for BIE we have

u(r′) = − ik

2

∮
∂D

ds(r)cosφ(r, r′)u(r)H(1)
1 (k|r′ − r|)

where cosφ(r, r′) ≡ ν ′ r′−r
r′−r is the cosine of the angle between the exterior

normal vector to ∂D at r′ and the unit vector corresponding to r′ − r.
In order to calculate eigenvalues of energy use is made of the cor-

responding Boundary Element Equation (BEE) of this BIE. And for
matrix elements of BEE we have:

Cij(k) = δij +
ik

2
∆sicosφijH

(1)
1 (krij) (5)

cosφ(r, r′) ≡ νi
rij

rij

Energy eigenvalues can be determined as the roots of the determinant
of Cij

det|Cij(k)| = 0
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3. Finite temperature case

In the case of finite temperature a similar approach can be used based
on the boundary integral method, where instead of the zero tempera-
ture Green’s function, finite-temperatureGreen’s function derived within
TFD formalism is used. Introducing finite-temperature within the ther-
mofield dynamics formalism is based on two steps, doubling of the
Hilbert space and Bogolyubov transformations (Takahashi et.al., 1996;
Ademir, 2005).

In TFD the Green’s function is a 2× 2 matrix:

Gβ(r, r′; E) =

(
G11

β (r, r′; E) G12
β (r, r′; E)

G21
β (r, r′; E) G22

β (r, r′; E)

)

where elements are given as

G11
β (r, r′; E) = G0(r, r′; E) + v2(β, ω)(G0(r, r′; E)−G∗

0(r, r
′; E)),

G22
β (r, r′; E) = −G∗(0r, r′; E) + v2(β, ω)(G0(r, r′; E)−G∗

0r, r
′; E)),

G12
β (r, r′; E) = G12

β (r, r′; E) = v(β, ω)(1+v2(β, ω))1/2(G0(r, r′; E)−G∗
0

(r, r′; E)),
where G0(r, r′; E) is the zero-temperature Green’s function,

v2(β, ω) =
1

eβω − 1
for bosons

v2(β, ω) =
e−βω

e−βω + 1
for fermions.

and G∗
0 is the complex conjugate of G0.

Physical observables are related to G11
β (r, r′; E) only. Therefore in

the case of the billiard the finite-temperature Green’s function is

G(r, r′; E) = − im

2�2
(1 + 2v2(β, ω))H(1)

0 (k|r′ − r|).

Using in-boundary integral method for this Green’s function gives us
finite-temperature analog of the matrix given in Eq. (5),

Cij(k, β) = δij +
ik

2
∆sicosφij(1 + 2v2(β, ω)H(1)

1 (krij). (6)

Then finite-temperature eigenvalues of the quantum billiard can be
obtained from the equation

det|Cij(k, β)| = 0. (7)
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Figure 1. The nearest neighbor level spacing distribution for various parameter of
temperature a) zero temperature case; b) β = 0.1; c) β = 0.01;
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In Fig.1, the nearest neighbor level spacing distribution which is
plotted using the spectra calculated from Eq. 7 is presented. As it can
be clear from this plot, the finite-temperature effects lead to histogram
more Gaussian, which means strengthening of quantum chaos by finite-
temperature. Thus using the thermofield dynamics formalism we have
given a prescription for the calculation of finite-temperature energy
eigenvalues of the quantum billiard. This method allows us to treat
quantum chaos at finite-temperature using billiard models.
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Hans-Jurgen Stöckmann, Ulrich Stoffregen and Michael Kollmann Fachbereich,

J. Phys. A: Math. Gen., 30 129, 1997. Caron, L. A., H. Jirari, H. Kröger, X.Q.
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Chaotic dynamics of the relativistic kicked rotor
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Abstract. The relativistic periodically driven classical and quantum rotor prob-
lems are studied. Kinetical properties of the relativistic standard map is discussed.
Quantum rotor is treated by solving the Dirac equation in the presence of the
periodic δ-function potential. The relativistic quantum mapping which describes
the evolution of the wave function is derived. The time-dependence of the energy
are calculated.

Keywords: Dynamical chaos, kicked rotor, relativistic systems

1. Introduction

Kicked rotor is a paradigm in classical and quantum chaology that
allows a treatment of periodically driven systems with great success
(Casati et.al., 1979; Izrailev, 1990). Besides being the simplest sys-
tem whose dynamics is completely described by simple both classical
(standard) and quantum mappings it also provides excellent model for
many periodically driven systems in atomic and molecular physics.
Being quantised such systems exhibit some new feautures compared
to classical case. One of these features is the so-called quantum lo-
calization phenomenon which means the supression of classical chaos
in the quantum case (Izrailev, 1990; Casati et.al., 1987; Casati et.al.,
1987a; Casati et.al., 1988).

In the classical case, the evolution of the kicked rotor dynamics
is described by the well-known standard map (Chirikov, 1979). This
map greatly facilitates the qualitative treatment of the system. A map
describing the evolution of the wave function can be obtained in the
quantum case, too (Casati et.al., 1979). In spite of the fact, that the first
work with detailed treatment of the quantum kicked rotor appeared 23
years ago (Casati et.al., 1979), this system is still studied extensively
(Casati et.al., 1987; Izrailev, 1990).

∗ comments to sabmax1@mail.ru
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In this work we treat classical and quantum relativistic kicked rotor
problem. Using the relativistic standard map, we calculate the average
energy of the classical rotor for various values of the relativistic factor.
The relativistic quantum rotor is treated using the same approach as
in the pioneering work (Casati et.al., 1979).

As is well known (Chirikov, 1979; Izrailev, 1990), the phase-space
evolution of the norelativistic classical kicked rotor is described by
nonrelativistic standard map. The analysis of this map shows that the
motion of the nonrelativistic kicked rotor is accompanied by unlimited
diffusion in the energy and momentum. However, this diffusion is sup-
pressed in the quantum case (Casati et.al., 1979; Izrailev, 1990). Such a
suppression of diffusive growth of the energy can be observed when one
considers the (classical) relativistic extention of the classical standard
map (Nomura et.al., 1992) which was obtained recently by considering
the motion of the relativistic electron in the field of an electrostatic wave
packet. The relativistic generalization of the standard map is obtained
recently (Nomura et.al., 1992)

Pn+1 = Pn −
K

2π
sin(2πXn), (1)

Xn+1 = Xn +
Pn+1√

1 + β2P 2
n+1

, (2)

where

K =
4π2eE0k

m0ω2
β =

ω

kc
. (3)

It is clear that the relativistic standard map depends on two parameters
K and β. Here β is defined as a relativistic factor for the group velocity,
ω/k.

Being mainly concerned with the derivation and treatment of the
dynamical and symmetry properties of the relativistic standard map,
some papers (Nomura et.al., 1992) do not concern with the kinetical
aspects of this map. However, the kinetical properties are interesting
for particle transport and acceleration processes. Here we calculate the
time-dependence of the energy for various values of β including the
resonance case.

Fig. 1 (a) shows the energy as a function of time for resonance
(β = 1/2π) and nonresonance (β = 0.1) cases.

In the resonance case the diffusive growth of the energy can be
observed while it is highly suppressed for the value of β = 0.1 which
is less than β = 1/2π. However, the diffusion is not unlimited even for
the resonance case.
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Thus the diffusion in the energy of the relativistic kicked rotor
described by the relativistic standard map depends on the value of pa-
rameter β: for smaller values of β which are close to 0 the growth of the
energy is linear and the suppression is not considerable; for intermediate
values the energy grows (not linearly) for some time and suppression oc-
curs after that. For higher values (which starts from β = 0.1) excluding
resonance cases the growth of the energy is completely suppressed.

Definition of the relativistic quantum rotor is given earlier (Aldinger
et.al., 1983). According to this definition the relativistic quantum rotor
is an object having three limits:
i) the elementary limit, in which it is an elementary (pointlike) particle,
ii) the classical limit, in which it coincides with the classical relativistic
rotor and,
iii) the nonrelativistic limit, in which it coincides with the nonrelativis-
tic quantum rotor.

Quantum dynamics of the relativistic kicked rotor is described by
the following Dirac equation:

i
∂ψ

∂t
= Ĥψ (4)

where
Ĥ = αθpθ + β + ε0δ(t)cosθ (5)

and

δT (t) =
∞∑

m=−∞
δ(t−mT )

with T being the period of the kicks. The method to be used for
solution of this equation is the same as in (Casati et.al., 1979). The
wave function ψ(θ, t) is expanded in terms of the relativistic free rotor
eigenfunctions

ψ(θ, t) =
∑
n

An(t)Φn (6)

Over any period T between delta function kicks the An(t) evolves as

An(t + T ) = An(t)e−iEnT = An(t)e−i
√

1+n2T (7)

During the infinitesimal time interval of a kick the Eq. (4) takes the
form

i
∂ψ

∂t
= −ε0cosθδT (t)ψ (8)

Integration of this equation over the infinitesimal interval (before and
after the kick) (t + T ) to (t + T+) yields

ψ(θ, t + T+) = ψ(θ, t + T )eikcosθ, (9)
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where k = ε0T . Expanding both sides of this equation in relativistic
free rotor eigenfunctions we have

∑
n

An(t + T+)Φn(θ) =
∑
r,s

Ar(t + T )Φr(θ)bs(T )eisθ. (10)

Here we have used the expression

eikcosθ =
∑
s

bs(k)eisθ, (11)

where
bs(k) = isJs(k) = b−s(k), (12)

Js are the ordinary Bessel function of the first kind.
Multiplying both sides of Eq. (10) and taking into account that

2π∫
0

dθΦ∗
nΦre

isθ = 2
(

1 +
nr

(1 + En)(1 + Er)

)
δs,n−r (13)

we get the relativistic quantum mapping

An(t + T+) = 2
∑
r

Ar(t)bn−r(k)
(

1 +
nr

(1 + En)(1 + Er)

)
e−iErT (14)

It is clear from these equations that in the nonrelativistic limit (n, r �
1) the relativistic quantum mapping coincides with its nonrelativistic
counterpart (Casati et.al., 1979). Also, the structure of the relativistic
mapping shows that there are no resonances in the relativistic case due
to the fact that En is an irrational number in this case.

The main feature of the quantum kicked rotor is the quantum local-
ization phenomenon, which implies suppression of the diffusive growth
of energy of the quantum kicked rotor compared to the energy of the
classical rotor (Izrailev, 1990). The time dependence of the energy can
be calculated as

〈E〉 =
∑
n

β−2
√

β2n2 + 1ρ(n) (15)

In Fig.1(b) we compare the time-dependence of the energy for vari-
ous valus of the relativistic factor, β = c−1. For smaller values of β it
behaves as its nonrelativistic counterpart, while in strongly relativistic
regime the saturation occurs quite quickly.

Thus we have treated relativistic kicked rotor problem both in clas-
sical and quantum contexts. It is found that in the classical case the
diffusion is strongly suppressed in highly relativistic and ultrarelativis-
tic regimes. However, the energy growth can be observed in resonances
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Figure 1. The average energy for various parameter of β a) classical case β = 0.1,
β = 1/2π (resonance case); b) quantum case β = 0.1, β = 0.5 at the fixed K = 5.
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during a long time period, which is also saturated. In quantum problems
the situation is completely different than that in the nonrelativistic
case. There is no quantum localization phenomenon in this case. Satu-
ration occurs in quite short time period. Also, the absence of resonance
states is a feature of the relativistic quantum kicked problem.
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hydrogen-like atom in a uniform magnetic field

S.K. Avazbaev ∗ D.U. Matrasulov and P.K. Khabibullaev
Heat Physics Department of the Uzbek Academy of Sciences,
28 Katartal St., 700135 Tashkent, Uzbekistan

Abstract. Classical regular and chaotic dynamics of a system is treated on the basis
of solution of classical equations of motion. Appropriate scaling of the relativistic
Hamiltonian is presented. To determine the degree of chaoticity of the system the
largest Lyapunov exponents are calculated as a function of the scaled energy, which
includes both the energy and magnetic field strength. It is found that by increasing
the scaled energy the motion of the electron becomes more chaotic.

Keywords: Dynamical chaos, Lyapunov exponents

1. Introduction

For the past three decades deterministic classical systems with
chaotic dynamics have been the subject of extensive study (Chirikov,
1979)-(Sagdeev et. al., 1988). Dynamical chaos is a phenomenon pe-
culiar to the deterministic systems, i.e. the systems whose motion in
some state space is completely determined by a given interaction and
the initial conditions. Under certain initial conditions the behaviour of
these systems is unpredictable.

Many realistic systems and their models have been considered to
study dynamical chaos phenomenon. Such systems as, kicked rotor
and various billiard geometries allow one to treat chaotic behavior of
deterministic systems successfully.

It should be noted that there is a limited number of works on clas-
sical relativistic dynamical chaos (Chernikov et.al., 1989; Drake and
et.al., 1996; Matrasulov, 2001). However, the study of the relativistic
systems is important both from fundamental as well as from practi-
cal viewpoints. Such systems as electrons accelerating in laser-plasma
accelerators (Mora, 1993), heavy and superheavy atoms (Matrasulov,
2001) and many other systems in nuclear and particle physics are es-
sentially relativistic systems which can exhibit chaotic dynamics and
need to be treated by taking into account relativistic dynamics. Besides
that interaction with magnetic field can also strengthen the role of
the relativistic effects since the electron gains additional velocity in a
magnetic field.

∗ comments to sanat@hpd.uzscinet.uz
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Nonrelativistic hydrogen atom in a constant uniform magnetic field
is a paradigm of classical chaology (Friedrich and Wintgen, 1989; De-
lande and Gay, 1986; Schweizer et.al., 1988). In this work we address a
relativistic extention of this problem considering relativistic hydrogen-
like atom in a constant uniform magnetic field. Dealing with the scaled
Hamiltonian we calculate so called largest Lyapunov exponent (LLE),
which completely describes the dynamics of the system with 2 degrees
of freedom (Meyer, 1986).

2. The relativistic Hamiltonian

The classical Hamiltonian of the relativistic hydrogen-like atom in a
uniform magnetic field is given as (Landau, 1980)

H =
√

m2
ec

4 + (�p− e

c
�A)2 − Ze2

r
, (1)

where �A is the vector potential of the external electromagnetic field.
For the case when the field strength B is directed along the z-axis the
Hamiltonian (7) can be written as

H =
√

m2
ec

4 + p2 + 2meωLz + m2
eω

2(x2 + y2)− Ze2

r
. (2)

The frequency ω in (2) is half the cyclotron frequency ω = 1
2ωc = eB

2mec ,
me is the mass of the electron, Lz is the z-component of the angular
momentum. The Hamiltonian (2) in the relativistic system of units
(me = c = � = 1) and cylindrical coordinates is

H =

√
1 + p2

ρ + p2
z +

m2

ρ2
+ mγ +

γ2ρ2

4
− Z√

ρ2 + z2
, (3)

γ = B/B0 is the field strength written in units of B0 = m2e3c/� =
2.35× 105 T and m- is the azimuthal (magnetic) quantum number.

We scale coordinates and momenta to remove γ dependence of the
Hamiltonian (3)

r = γ′−1/2r̃, p =
√

p̃2γ′ − 1, (4)

where γ′ = α2γ, α is the fine structure constant. This transformation
leads to the Hamiltonian

ε = γ′−1/2H =

√
p̃2

ρ + p̃2
z +

m2

ρ̃2
+ m +

ρ̃2

4
− Z√

ρ̃2 + z̃2
. (5)
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Eq. (5) shows that the classical dynamics depends on the scaled energy
ε = Eγ′−1/2. As it is clear from Eq. (5) the Hamiltonian has the sin-
gularity at r̃ = 0. This singularity can be removed by performing the
following transformations

eν = r̃ − z̃, eµ = r̃ + z̃,

and

pν =
dν

dτ
, pµ =

dµ

dτ
.

Then new momenta are connected with old ones by the relation

p̃2
ρ + p̃2

z =
1
4

eνp2
ν + eµp2

µ

(eν + eµ)2
, (6)

where the scaled time is given by

dt = (eν + eµ)3/2dτ (7)

with t, τ being real and scaled times, respectively. Then the Hamil-
tonian takes the form

h =

√
1
4
(eνp2

ν + eµp2
µ) + (eν + eµ)2

[
m +

m2

eν+µ
+

eν+µ

4

]
−ε(eν+eµ) ≡ 2Z.

(8)
The equations of motion obtained from the Hamiltonian (5) at a fixed
value of the scaled energy are equivalent to ones obtained from the
Hamiltonian (8).

3.

The most important quantitative measure for the degree of chaotic-
ity is provided by the Lyapunov exponents (LE) (Eckmann and Ru-
elle, 1985; Wolf et. al., 1985). The LE defines the rate of exponential
divergence of initially nearby trajectories, i.e. the sensitivity of the
system to small changes in initial conditions. A practical way for cal-
culating the LE is given by Meyer (Meyer, 1986). This method is
based on the Taylor-expansion method for solving differential equa-
tions. This method is applicable for systems whose equations of mo-
tion are very simple and higher-order derivatives can be determined
analytically (Schweizer et.al., 1988).

Consider an n-dimensional continous-time dynamical system

The largest Lyapunov exponents for the relativistic hydrogen-like atom . . .

The Method for computing the largest Lyapunov
exponent

dz

dt
= F(z, t), (9)
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where z = (z1, z2, ..., zn) and F is an n-dimensional vector field. Let
Z(t) = z(t)−z0(t) denote deviations from the fiducial trajectory z0(t).
Linearizing Eq. (9) around this trajectory, we obtain

dZ
dt

= DF(z0(t), t) · Z, (10)

where DF denotes the n× n Jacobian matrix.
Integrating the linearized equations along the fiducial trajectory

yields the tangent map M(z0, t) which takes the initial variables Zin

into the time-evolved variables Z(t) = MZin. Let Λ be a matrix
Λ = lim

t→∞(MM̃)1/2t, where M̃ denotes the matrix transpose of M . The
Lyapunov exponents then equal the logarithm of the eigenvalues of Λ
(Eckmann and Ruelle, 1985).

Using the method described in (Janaki et.al., 1999) we get the fol-
lowing differential equations for the LLE and angles which are also
dynamical variables evolving simultaneously with LLE.

λ̇L = cos2θ1cos
2θ2cos

2θ3df11 + sin2θ1cos
2θ2cos

2θ3df22+

+sin2θ2cos
2θ3df33 + sin2θ3df44 −

1
2
sin2θ1cos

2θ2cos
2θ3(df12 + df21)−

−1
2
cosθ1sin2θ2cos

2θ3(df31 + df13)−
1
2
cosθ1cosθ2sin2θ3(df41 + df14)+

+
1
2
sinθ1sin2θ2cos

2θ3(df32 + df23) +
1
2
sinθ1cosθ2sin2θ3(df42 + df24)+

+
1
2
sinθ2sin2θ3(df43 + df34), (11)

θ̇1 = −Q̇11sinθ1 + Q̇21cosθ1

cosθ2cosθ3
, (12)

θ̇2 = −Q̇31 + Q̇41sinθ2tanθ3

cosθ2cosθ3
, (13)

θ̇3 = − Q̇41

cosθ3
, (14)

where dfij - are Jacobian matrix elements and Q̇ij - are functions of
angles and Jacobian matrix elements. The largest Lyapunov exponents
are calculated by solving these differential equations by the fourth-order
Runge-Kutta algorithm.
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Figure 1. The largest Lyapunov exponents for a) ε = 10; b) ε = 50; c) ε = 100 at
the fixed Z = 50, m = 1.
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4.

It is clear from Eq.(7) that the real time t flows dynamically. In
computing the trajectories with sufficiently small step sizes of τ , the
elapsing of real time t was followed by simultaneously integrating the
relation (7). Here the real time t will be given in the relativistic system
of units. The Lyapunov functions λL(t) are in units of 1/t.

In Figs. 1(a)-1(c) the Lyapunov functions are shown for Z = 50, m =
1 and different scaled energies. Fig. 1(a) shows results for ν = 0, µ =
0, ε = 10. λL(t) tends to zero indicating that this trajectory is regular.
This figure has the same shape as that for the nonrelativistic hydrogen
atom in a uniform magnetic field (Schweizer et.al., 1988). In Fig. 1(b)
the Lyapunov function for ν = 0, µ = 0, ε = 50 is shown. It tends to
some positive value, which means that this trajectory is chaotic. While
for ν = 0, µ = 0, ε = 100 (Fig. 1(c)) we find that the trajectory is
unstable.

As follows from the above treatment for higher values of the scaled
energy ε which includes both the energy and magnetic field strength the
behaviour of the system becomes more chaotic, while for the smaller
values regular behaviour is observed.
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Abstract. A resume of recent trends in thermal field theory is presented with
emphasis on algebraic aspects. In this sense, some representations of Lie symme-
tries provide, in particular, a unified axiomatization, via the so-called thermofield
dynamics (TFD) approach, of different methods treating thermal systems. First, a
connection between imaginary and real time formalism is presented, with emphasis
on physical paradigms of thermal physics. The study of Poincare Lie algebra leads
us to a derivation of Liouville-like equations for the scalar and Dirac field, and as an
application the Juttiner distribution for bosons is obtained. Exploring the fact that a
finite temperature prescription results to be equivalent to a path-integral calculated
on RD−1 × S1, where S1 is a circle of circumference β = 1/T, a generalization
of the thermal quantum field theory is presented in order to take into account the
space confinement of fields. In other words, we consider the TFD and the Matsubara
mechanism on a RD−N ×S11 ×S12 ...×S1N topology, describing time (temperature)
and space confinement. The resulting geometrical approach is then applied to analyse
the 3 − D N− component Gross-Neveu model compactified in a square of side L,
at a temperature T. The main result is a closed expression for the large-N effective
coupling constant, g(L, T ). For large values of the fixed coupling constant, we obtain
simultaneously asymptotic freedom, spacial confinement and a decoupling transition
at a temperature Td. Taking the Gross-Neveu model as describing the effective
interaction between quarks, the confining length and the deconfining temperature
obtained are of the order of the expected values for hadrons.

Keywords: Thermal Fields, Lie-groups, Compactification, Gross-Neveau model.

Introduction

Just fifty years ago, with an acclaimed paper by Matsubara (T. Mat-
subara, 1955), there was the emergence of a systematic approach for
the quantum field theory at finite temperature (T �= 0), presently well-
known as the imaginary time approach. Since then the development
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of the thermal field formalism, followed in a broad sense along the
lines of the achievements of the T = 0 quantum field theory, and its
first generalization was carried out by Ezawa, Tomonaga and Umezawa
(H. Ezawa et.al., 1957), who extended the Matsubara’s work to the
relativistic quantum field theory, discovering in particular the period-
icity (antiperiodicity) conditions for the Greens’s functions of boson
(fermion) fields. Many concepts, some originally introduced in T = 0
theories, could then be considered with the counterpart ideas at finite
temperature; and we can list, for instance, the thermal Ward-Takahashi
relations, the Goldstone theorem, KMS (Kubo, Martin, Schwinger)
relations, renormalization procedures, the notion of nonabelian gauge
field among others, with all its consequences for the particles physics
(A.L. Fetter et.al., 1971; J.I. Kapusta, 1989; M. Le Bellac, 1996).

Despite the successes, even with its generalizations, difficulties in
thermal field theory remain to be overcome in order to deal with
experimental and theoretical demands. In fact, numerous studies, in
particular using quantum chromodynamics (A. Smilga, 2001), have
been carried out in an attempt to understand, for instance, the quark-
gluon plasma at finite temperature; and in this common effort, some
underlying aspects have been identified. For example, the coupling
constants for π, σ, w and ρ mesons decrease to zero at a certain critical
temperature, which are, respectively, given by: T π

c = 360 MeV, T σ
c = 95

MeV, Tw
c = 175 MeV and T ρ

c = 200 MeV. All these results require
a general and consistent calculation to establish the phase transition;
reinforcing thus the claim for the development of the finite temperature
field theory in the context of the standard model, which would provide
us with a more definitive answer about the transition from hadrons to
quark-gluon plasma. In this realm, effective models have been largely
employed in trials to obtain clues to the behaviour of interacting par-
ticles. Among them, one recognizes the seminal paper by Dolan and
Jackiw (L. Dolan et.al., 1974), which performs the calculations for the
effective potential at finite temperature, and the Gross-Neveu model
(D.J. Gross et.al., 1974), dealing with the direct four-fermion interac-
tion, which has also been analyzed at finite temperature as an effective
model for QCD and for superconducting systems (see for instance
(C. de Calan et.al., 1991; H.R. Christiansen et.al., ; J-P. Blaizot et.al.,
) and references therein).

Beyond that, despite the numerous instances in high energy physics
and in condensed matted physics where (real) time dependance is essen-
tial, a nonequilibrium theory has not been fully developed as yet. This
difficulty was recognized early as a flaw in the Matsubara equilibrium
formalism and has been motivating attempts to construct real-time for-
malisms at finite temperature (D.N. Zubarev et.al., 1991; R. Floreanini
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et.al., 1988; S.P. Kim et.al., ; S.P. Kim et.al., 2000; S. Sengupta et.al.,
2003).

One of these real-time method is the closed-time path formulation
due to Schwinger and Keldysh (J. Schwinger, 1961). The approach
depends on a closed path in the complex-time plane such that the
contour goes along the real axis and then back. From this procedure
an effective doubling of the degrees of freedom emerges, such that the
Green’s functions are represented by 2×2 matrices. Actually, this kind
of doubling has been recognized as an intrinsic characteristic of real-
time theories, providing in turn a correct definition for perturbative
series, which is not the case of the Matsubara method (for a detailed
discussion see for example (M. Le Bellac, 1996)).

Concepts in quantum field approach have been usually implemented
as a matter of fundamental ingredients: a quantum formalism is strongly
founded on the basis of algebraic representation (vector space) theory.
This suggests that a T �= 0 field theory needs a real-time operator
structure. Such a theory was presented by Takahashi and Umezawa 30
years ago and they labelled it Thermofield Dynamics (TFD) (Y. Taka-
hashi et.al., 1975). As a consequence of the real-time requirement, a
doubling is defined in the original Hilbert space of the system, such
that the temperature is introduced by a Bogoliubov transformation.

TFD has been developed for practical purposes and some results
should be mentioned. The KMS condition follows in TFD after an
algebraic analysis; the Goldstone theorem can be proved within this for-
malism with a quite amazing physical and mathematical appeal and the
perturbative scheme can be set up with Feynman rules established to
carry out calculations completely in parallel with the zero-temperature
quantum field theory (H. Umezawa, 1993). Thus it has been success-
fully applied to study superconductivity (H. Umezawa et.al., 1982);
magnetic systems like ferromagnets and paramagnets (J.P. Whitehead
et.al., 1984); quantum optics and transport phenomena (A. Mann et.al.,
1989; A. Mann et.al., 1989; S. Chaturvedi et.al., 1999; L.M. Silva et.al.,
1997) ; d-branes (M.C.B. Abdala et.al., 2001; M.C.B. Abdala et.al.,
2003); among others. Furthermore, the propagators are 2× 2 matrices;
from this fact the association of the Matsubara and Schwinger-Keldysh
methods has been analysed in a unified sense via TFD (H. Chu et.al.,
1994).

Formally the thermal theory can be established, via TFD, within
c* algebra (I. Ojima, 1981; A.E. Santana et.al., 1999) and symme-
try groups (A.E. Santana et.al., 1999), opening a broad spectrum of
possibilities for the study of thermal effects. For instance, the kinec-
tic theory has been formulated for the first time as a representation
theory of Lie symmetries (A.E. Santana et.al., 2000) and elements of
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the q-group have been considered, where the effect of temperature is
related to a deformation in the Weyl-Heisenberg algebra (T. Kopf et.al.,
1997; E. Celeghini et.al., 1998).

Exploring topological aspects of a thermal formalism, we can observe
that the final prescription results in a scheme of compactification in
time of the T = 0 theory. That is the Matsubara prescription results
are equivalent to a path-integral calculated on RD−1 × S1, where S1

is a circle of circumference β = 1/T. As a consequence, the thermal
field theory can be thought, in a generalized way, as a mechanism to
deal simultaneously with spatial constraints and thermal effects in a
field theory model. These ideas have been developed recently for the
Matsubara formalism (A.P.C. Malbouisson et.al., 2002; A.P.C. Mal-
bouisson et.al., 2002; J.C. da Silva et.al., 2002) as well as for TFD
and applied to the Casimir effect considering the electromagnetic and
fermionic fields within a box (see the paper by Khanna et al in this
volume and (J.C. da Silva et.al., 2002; H. Queiroz et.al., )), to the λφ4

model as the Ginsburg-Landau theory for superconductors (L.M. Abreu
et.al., 2005), and to the Gross-Neveu model at T = 0 temperature
(A.P.C. Malbouisson et.al., 2004).

In this report we will review some algebraic aspects of TFD to
construct representations for the Poincaré symmetries leading, in par-
ticular, to the kinetic theory and to Liouville-von Neumann equations
for the Klein-Gordon and Dirac Field. We emphasize the aspects of
unification of different thermal theories and, by exploring the topo-
logical nature of such approaches, we address the problem of spatial
confinement of fermions at T �= 0. We then generalize the results of
Ref. (A.P.C. Malbouisson et.al., 2004) treating the Gross-Neveau model
via the Matsubara mechanism taking a path-integral formalism on a
RD−d×S11×...×S1d . In the case of D = d = 3 we demonstrate that the
model presents simultaneouly asymptotic freedom and spacial confine-
ment. Considering such a model as an effective description for the quark
interaction, we can take m ≈ 350MeV � 1.75fm−1, for the constituent
quark mass. Then we find a confining lengh, Lc � 3.13 m−1 ≈ 1.79 fm,
and a deconfining temperature, Td � 127MeV . These values should be
compared with the experimentally measured proton charge diameter
(≈ 1.74 fm) and the estimated deconfining temperature (≈ 200 MeV )
for hadronic matter, respectively. To the best of our knowledge this is
the first time that such results are derived analytically.
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1. Thermal theories and compactification

In this section we review the construction of thermal theories starting
with TFD to show the connection among different methods. A mecha-
nism for space and time compactification of a quantum field theory is
then discussed in this context.

1.1. Thermofield Dynamics

The ensemble average of an operator, A, in thermal equilibrium is given
by

〈A〉β = Z−1(β)Tr(e−βHA), (1)

where Z(β) is the partition function, β = 1/kBT , with kB being the
Boltzmann constant, and H the Hamiltonian. Then assuming that
H|n〉 = En|n〉 and 〈n|m〉 = δnm, we write

〈A〉β = Z−1(β)
∑
n

e−βEn〈n|A|n〉. (2)

The pertubative techniques of zero temperature field theory can
be used in the thermal context if we define a state |0(β)〉 so that
(Y. Takahashi et.al., 1975; H. Umezawa, 1993)

〈A〉β ≡ 〈0(β)|A|0(β)〉 = Z−1(β)
∑
n

e−βEn〈n|A|n〉.

This can be the case if we consider a product space, |n, m̃〉 = |n〉⊗ |m̃〉,
such that, A|n, m̃〉 = (A|n〉)⊗ |m̃〉. Therefore, defining

|0(β)〉 =
∑
n

fn(β)|n, ñ〉,

we can realize in a straightforward way that |0(β)〉 reproduces the
statistical average. That is, taking the expectation of an operator A
in the state |0(β)〉, we obtain,

〈0(β)|A|0(β)〉 =
∑
n,m

f∗
n(β)fm(β)〈n, ñ|A|m, m̃〉

=
∑
n,m

f∗
n(β)fm(β)〈n|A|m〉δnm.

=
∑
n

f∗
n(β)fn(β)〈n|A|n〉.

Comparing with Eq. (2) we have f∗
n(β)fn(β) = Z−1(β) e−βEn , which

has the solution
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fn(β) = Z−1/2(β) e−βEn/2.

Hence we introduce a thermal state |0(β)〉 if the degrees of freedom
are doubled. Let us explore some preliminary, but not the least, conse-
quences of what we have just introduced, analysing the case of bosons.

Considering a bosonic oscillator characterized by the Hamiltonian
H = wa†a, the state |0(β)〉 can be constructed if for each bosonic
operator a , another bosonic operator, say ã, is introduced such that
the tilde and non-tilde variables obey the following algebra

[ak, a
†] = [ã, ã†] = 1, [a, ã] = [a, ã†] = 0. (3)

This mapping of a→ ã is a consequence of the doubling in the Hilbert
space of the original system, |φ〉 → |φ, φ̃〉 = |φ〉 ⊗ |φ̃〉, which is defined
by

a|φ〉 → a|φ, φ̃〉 = (a|φ〉)⊗ |φ̃〉, (4)

ã|φ̃〉 → ã|φ, φ̃〉 = |φ〉 ⊗ (ã|φ̃〉) def
= |φ〉 ⊗ (〈φ|a†). (5)

In this way, the state |0(β)〉 is given by

|0(β)〉 = Z−1/2(β)
∑
n

exp(−βnω/2)|n, ñ〉

= (1− eβω) exp{exp[(−βω/2)a†ã†]}|0, 0̃〉, (6)

satisfying 〈0(β)|0(β)〉 = 1.
Let us consider in Eq. (1), A = n = a†a. Using Eq. (6) we get

n = 〈0(β)〉|a†a|0(β)〉 =
e−βε

1− e−βε
=

∞∑
n=1

e−βεn. (7)

Notice that, the physical variables are described by non-tilde operators,
while the tilde operators, up to now, play a role of ancillary variables
only. However, as we will see in Section 3, the full Hilbert space has
the original set of non-tilde operators associated to dynamical observ-
ables, whilst the tilde operators are connected with the generators of
symmetries.

The results derived earlier can be written via a Bogolubov transfor-
mation introduced by

U(β) = e−iG, (8)
where G = −iθ(β)(a†ã† − aã), such that θ(β) is defined via

cosh θ(β) =
1

[1− e−βε]1/2
≡ u(β), (9)

sinh θ(β) =
1

[eβε − 1]1/2
≡ v(β). (10)
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Using Eq. (8), the thermal state |0(β)〉 is given by |0(β)〉 = U(β)|0, 0̃〉.
On the other hand, thermal operators are introduced by

a(β) = U(β)aU †(β) and ã(β) = U(β)ãU †(β). (11)

It should be noticed that a(β) and ã(β) satisfy the same algebraic rela-
tion as those given in Eq. (3), and also that a(β)|0(β)〉 = ã(β)|0(β)〉 =
0. Then the thermal state |0(β)〉 is a vacuum for a(β) and ã(β) (oth-
erwise, |0, 0̃〉 is the vacuum for the operators a and ã). As a result, the
thermal vacuum average of a non-thermal operator is equivalent to the
Gibbs canonical average in statistical physics. As a consequence, the
thermal problem can be treated by a Bogoliubov transformation, such
that the thermal state describes a condensate with the mathematical
characteristics of a pure state.

At this point it is interesting to introduce a doublet notation that
is more adequate to treat with infinite degrees of freedom. Considering
then an arbitrary operator A we define

(Aa) =

(
A(β)
Ã†(β)

)
, (Aa†) =

(
A†(β) , Ã(β)

)
. (12)

The algebraic rules for the thermal bosonic operators are, therefore,
written as [aa(β), ab†(β)] = δab; a, b = 1, 2. The Bogoliubov transfor-
mation, Eq. (8), is in turn written as a 2× 2 matrix,

B =
(

u (β) −v(β)
−v(β) u(β)

)
, (13)

such that from Eq. (11) we have aa = (B−1)abab(β) and a†a = a†b(β)Bba,
that is

a = u(β) a(β) + v(β) ã†(β) , ã = u(β) ã(β) + v(β) a†(β). (14)

Notice that the thermal average can be given by taking the vacuum
average |0, 0̃〉 of a thermal non-tilde variables. For instance for the
particular case of the bosonic number operator, n = a†a, the thermal
distribution, as in Eq.(7) reads,

n(β) = 〈0, 0̃|a†(β)a(β)|0, 0̃〉 ≡ 1
eβε − 1

, (15)

which is the boson distribution. The same scheme can be then gener-
alized for a quantum field, a subject treated in the following.
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1.2. Thermal Propagators

In the case of the free scalar field, since we have equation of mo-
tion for the tilde and non-tilde variables, the β−dependent Klein-
Gordon field theory is given by the Lagrangian (Y. Takahashi et.al.,
1975; H. Umezawa, 1993)

L̂ =
1
2
∂µφ(x;β)∂µφ(x;β)− m2

2
φ(x;β)2 (16)

−1
2
∂µφ̃(x;β)∂µφ̃(x;β) +

m2

2
φ̃(x;β)2, (17)

where the metric gµλ is such that diag(gµλ) = (1,−1,−1,−1). This
Lagrangian gives rise to the equations of motions

(∂µ∂µ + m2)φ(x;β) = 0 , (∂µ∂µ + m2)φ̃(x;β) = 0.

Therefore, in TFD the Lagrangian can be written as L̂ = L− L̃ and, in
consequence, the Hamiltonian is Ĥ = H − H̃ (this is a general result,
which can be used for every field, as we will see in section 3).

The two-point Green function for the β-scalar field is defined, then,
by

G(x− x′; β)(ab) = 〈0, 0̃|T [φ(x;β)aφ(x′; β)b|0, 0̃〉

=
1

(2π)4

∫
d4k G(k; β)abeik(x−x′), (18)

where
G(k; β)(ab) = B−1(k0; β)Go(k)abB(k0; β),

with

B(k0, β) =
(

u(k0, β) −v(k0, β)
−v(k0, β) u(k0, β)

)
, (19)

and

(Go(k)ab) =

(
G0(k) 0

0 G̃0(k)

)
=

(
1

k2−m2+iε
0

0 −1
k2−m2−iε

)
. (20)

The components of G(x − x′)(ab) = 〈0, 0̃|T [φ(x)aφ(x′)b|0, 0̃〉, for a
massless bosonic field can be explicitly written, by using Eq. (20) with
m = 0, as

G
(11)
0 (x− x′) ≡ G0(x− x′) = − i

(2π)2
1

(x− x′)2 + iη
, (21)

G
(22)
0 (x− x′) ≡ G̃0(x− x′) =

i

(2π)2
1

(x− x′)2 − iη
, (22)
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and G
(12)
0 (x− x′) = G

(21)
0 (x− x′) = 0. Then we have

G(k; β)(ab) =
(

G(k; β)11 G(k; β)12

G(k; β)21 G(k; β)22

)
,

with

G(k; β)11 = G0(k) + v2(k, β)[G0(k) + G̃0(k)],

G(k; β)12 = G(k; β)21 = v(k, β)[1 + v2(k, β)]1/2[G0(k) + G̃0(k)],

G(k; β)22 = G̃0(k) + v2(k, β)[G0(k) + G̃0(k)].

The physical information is given by G(k; β)11 .
Using the definition of B(k0, β) given in Eq. (19), with

n(k0, β) = v(k0, β)2 = 1/[eβk0 − 1], (23)

and u(k0, β)2 = v(k0, β)2 + 1 = 1/[1 − e−βk0 ], the components of
G(k; β)ab read

G(k; β)(11) =
1

k2 −m2 + iε
− 2πi n(k0; β) δ(k2 −m2),

G(k; β)(22) =
−1

k2 −m2 − iε
− 2πi n(k0; β) δ(k2 −m2),

G(k; β)(12) = G(k; β)21 = −2πi [n(k0; β) + n(k0; β)2]1/2 δ(k2 −m2).

Since the non-tilde operators describe physical variables, G(k; β)11

is the physical propagator to be used to treat the properties of the
thermal bosonic system. It is interesting to observe that, except for
the non-diagonal elements, this TFD-propagator is equal to the one
introduced in the Schwinger-Keldysh approach, which is claimed to
be (in this equivalence with TFD) a thermal theory describing linear-
response processes only (H. Chu et.al., 1994).

1.3. Imaginary Time Formalism and Compactification

Let us analyse the component G(k; β)11 closely to address the connec-
tion of TFD with the imaginary time formalism. Using the fact that
n(k0; β) in Eq. (23) may be written as

n(k0) =
∞∑

m=1

exp(−mβk0),

we obtain

G(x− x′; β)11 =
∞∑

l=−∞
Go(x− x′ − iβln̂), (24)
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where n̂ = (1, 0, 0, 0) denotes a time-like unit vector and

Go(x− x′ − iβln̂) =
−i

(2π)2
1

(x− x′ − iβln̂)2
.

Then the thermal propagator is represented by a sum over free prop-
agators each one displaced in time by the pure complex quantity iβl.
Actually this result can be seen as describing a scalar field constrained
in the time axes, now considered as a sum of complex quantities. Each
term Go(x − x′ − iβln̂) in G(x − x′; β)11 is but the contribution of
images reflected on the “walls” placed at Im(t) = 0 and Im(t) = β. This
interpretation is reinforced by a similar expression that can be derived
if we consider the field within a slab of two parallel planes, such that
for instance one at z = 0 and the other at z = L (J.C. da Silva et.al.,
2002).

Notice that we can write iG(k; β)11 ≡ Tr{ρ(H; β)T [φ(x)φ(x′)]}
(J.I. Kapusta, 1989), where

ρ(H; β) =
exp(−βH)

Z

is the canonical density matrix. The periodical conditions of the prop-
agator can be also observed by a general result involving thermal two-
point functions. Let us define a two-time correlation function by

〈AH(t)BH(t′)〉 = Tr[ρ(β)AH(t)BH(t′)],

where AH(t) and BH(t′) are given in the Heisenberg picture (repre-
sented by the index H). Using then the canonical form for ρ(β), we
have

〈AH(t)BH(t′)〉 =
1
Z

Tr[exp(−βH)AH(t)BH(t′)]

=
1
Z

Tr[exp(−βH)AH(t) exp(βH) exp(−βH)BH(t′)]

=
1
Z

Tr[AH(t + iβ) exp(−βH)BH(t′)].

Using the trace property of invariance by cyclical transformations, it
results in

〈AH(t)BH(t′)〉 = 〈BH(t′)AH(t + iβ)〉.
Such equation is termed the KMS (Kubo, Martin and Schwinger) re-
lation and describes the conditions of periodicity to be obeyed by a
correlation, in particular the Green functions.

As a consequence, we can reduce the problem of calculating the
thermal quantities by taking the generating functional of the T = 0
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theory and performing the time integration for periodic fields, consid-
ering τ = it instead of t. Then, in the case of bosons, we can write the
partition function as (J.I. Kapusta, 1989)

Z = N

∫
d[φ]exp

(∫ β

0
dτ

∫
dx3L

)
(25)

All these results gathered together, for practical proposals, show
that we can interpret the effect of temperature as a process of com-
pactification in time. Reversing such an interpretation, we can assume
that the final result of a thermal theory is equivalent to a mechanism
to describe a quantum field on a torus, RD−1×S1, where S1 is a circle
of circumference β = 1/T. This contention is still more appealing if
we consider Euclidian theories. However, whether this is so as such,
we can think of generalizing this topological interpretation for a more
general torus, and consider the scheme for introducing temperature,
for more than one dimension. This can then be performed through
a proper generalization of either the Bogoliubov transformation in
TFD or the substitution of a time integral by a discrete sum over
the Matsubara frequencies. Thus, in principle, we would be able to
carry out calculations for compactified systems, within some specific
geometry, via a simple prescription for changing the Feynman rules.
In other words, we assume that to treat a compactified field theory
in spatial dimensions and in time (to describe temperature), the Mat-
subara mechanism can be considered on RD−d × S11 × ... × S1d . Up
to now there is no way to demonstrate this conjecture for the gen-
eral situation, except considering an immediate generalization of the
KMS condition in Euclidean geometries, a result confirmed by the
successful use in different physical situations, reproducing some known
results and bring new possibilities for calculations (A.P.C. Malbouis-
son et.al., 2002; A.P.C. Malbouisson et.al., 2002; J.C. da Silva et.al.,
2002; L.M. Abreu et.al., 2005; A.P.C. Malbouisson et.al., 2004). Notice
that, for some of those situations, it would be very cumbersome, even
rather impossible to get some useful information, to depart from the
very beginning with the modes of the confined field. A new application
of this result is presented in Section 5. (To see how this procedure works
in the case of the Bogoliubov transformations see Ref. (J.C. da Silva
et.al., 2002) and Khanna et al in this Proceedings.)

S(x− x′) = −iγα∂αG0(x− x′)

Similar results can be derived for fermionic fields (H. Queiroz et.al.,).
In such a situation, we can start with the propagator given by
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where S(x − x′) = −i〈0|T [ψ(x)ψ(x′)]|0〉. In this case vk(β) is defined
through the fermion number distribution, that is

v(k0; β) =
e−βk0/2

[1 + e−βk0 ]1/2
. (26)

Observe that we can write

v2(k0; β) =
∞∑
l=1

(−1)l+1e−βk0l; (27)

leading to the thermal Green’s function,

G11
0 (k; β) = G0(k) +

∞∑
l=1

(−1)l+1e−βk0l[G∗
0(k)−G0(k)], (28)

such that

G11
0 (x− x′; β) = G0(x− x′) +

∞∑
l=1

(−1)l+1[G∗
0(x

′ − x− iβln̂0)

−G0(x− x′ − iβln̂0)].

(for the use of such a result, see Khanna et al in this Proceedings)
It is worth emphasizing that for the fermionic field, we have antiperi-

odic KMS conditions, which when considered in terms of space com-
pactification, coincidewiththe physicalbag-model conditions (A.P.C.Mal-
bouisson et.al., 2004; A. Chodos et.al., 1974; C.A. Lutken et.al., 1988).
Such a result will be used in Section 5. Now we will be concerned with
the algebraic elements of the thermal theories.

2. Thermal algebraic structure

In this section we develop some preliminary algebraic aspects associated
to thermal systems. Our main interest will be the analysis of represen-
tations of Lie groups (for a more evolving discussion see (I. Ojima,
1981; A.E. Santana et.al., 1999; A.E. Santana et.al., 2000; T. Kopf
et.al., 1997)).

2.1. TFD, ∗-Algebras and q-Group

Let us denote by LT = {A, B, C, ..., Ã, B̃, C̃...} the set of dynamical
variables in TFD defined in the Hilbert space H with elements |Φ〉 =
|φ, φ̃〉. The action of generic operators A and Ã on |Φ〉 is specified by

A|Φ〉 ≡ A⊗ 1(|φ〉 ⊗ 〈φ|) = Al(|φ〉 ⊗ 〈φ|) = (A|φ〉)⊗ 〈φ|, (29)

Ã|Φ〉 = 1⊗ A(|φ〉 ⊗ 〈φ|) = Ar(|φ〉 ⊗ 〈φ|) = |φ〉 ⊗ 〈φ|A†, (30)
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where the operator A is defined in the usual Hilbert space, H, such that
|φ〉 ∈ H. The set of operator acting on H is denoted by L. The Hilbert
space in TFD, H, is given by

H = H⊗ H∗. (31)

Then we find that Eqs. (29) and (30) induce a mapping ˜ : LT �→
LT , called tilde (or dual) conjugation rules fulfilling the properties:

(AB)̃ = ÃB̃,

(A + βB)̃ = Ã + β∗ B̃,

(A†)̃ = (Ã)†,
˜̃
A = A,

[A, B̃] = 0.

this set of rules (which can also be derived directly from the Lie algebra
representation discussed in Sections (3) and (4)) emerge as a direct
consequence of the Tomita-Takesaki (standard) representation of w∗-
algebra, where the tilde conjugation is the usual anti-linear isometry,
ς, such that ς2 = 1, and ςAς = Ã. In this standard representation we
also have generators of isomorphism ̂ : LT → LT operators of the type

Â = A− ςAς = A− Ã. (32)

Thus TFD is nothing but a simple example of the standard represen-
tation of a w∗-algebra.

A Hopf algebra emerges by a proper redefinition of the antilinear
characteristics of TFD. Consider g = {gi, i = 1, 2, 3, ..} be an asso-
ciative algebra defined on the field of the complex numbers and let g
be equipped with a Lie algebra structure specified by gi♦gj = Ck

ijgk,

where ♦ is the Lie product and Ck
ij are the structure constants (we

are assuming the rule of sum over repeated indeces). Now we take g
first realized by L = {Ai, i = 1, 2, 3, ..} such that the commutator
[Ai, Aj ] is the Lie product of elements Ai, Aj ∈ L. Consider ψ and φ
two representations of L, such that ψ(A) (φ(A)) are linear operators
defined on a representation vector space Hψ (Hφ). As a consequence,
ϕ = ψ ∗ φ, defined by

ϕ(A) = (ψ ∗ φ)(A) = ψ(A)⊗ 1 + 1⊗ φ(A),

is a representation of L as a Lie algebra, since [ϕ(Ai), ϕ(Aj)] = ϕ[Ai, Aj ].
If L is equipped with a coproduct defined by ∆(A) = A ⊗ 1 + 1 ⊗ A,
then we can write (ψ∗φ) = (ψ⊗φ)◦∆. Notice that ∆ is not, in general,
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defined in the Lie algebra L but in the (universal) enveloping algebra
of A, say U(A).

But some algebraic characteristics of the enveloping algebra can be
immediately pointed out. U(A) is a Lie algebra and admits a Hopf
structure, which is induced by the product ∆(A), where the maps of
the coalgebra are

∆(A) = A⊗ 1 + 1⊗A, s(A) = −A, ε = 0.

Observe that the algebraic structure is respected for such maps; for
instance: [∆(Ai), ∆(Aj)] = ∆[Ai, Aj ].

In order to emphasize the Hopf-algebra ingredients attached to the
enveloping algebra, it is convenient to define the coproduct by two
different maps on A. That is, let ∆ be given by ∆ = ∆r + ∆l, where
∆r(A) = 1 ⊗ A and ∆l(A) = A ⊗ 1. Observe that ∆l and ∆r

induce two different representations of A, which can be denoted by ψ◦
∆l and ψ◦ ∆r, both preserving the Lie structure. In the context of
antilinear representation, we then reproduce the TFD structure. This
result leads to the fact that the temperature has been introduced as a
deformation parameter when we consider the Weyl-Heisenberg algebra
(E. Celeghini et.al., 1998).

2.2. TFD and Lie Algebras

This w∗-algebra structure can be used to develop a representation the-
ory of symmetry groups, taking H as a representation space for Lie
algebras. As before let g be a Lie algebra specified by gi♦gj = Ck

ijgk.
A unitary representation of g in H is then given by

[Ai, Aj ] = iCk
ijAk, (33)

[Ãi, Ãj ] = −iCk
ijÃk, (34)

[Ai, Ãj ] = 0. (35)

For physical interpretation, this algebra can be rewritten by the use of
the hat-operators, the generators of transformation in w∗-algebras, as
given in the last subsection. Therefore, from Eqs. (33)–(35) we get

[Ai, Aj ] = Ck
ijAk,

[Âi, Aj ] = Ck
ijAk,

[Âi, Âj ] = Ck
ijÂk.

Notice that this Lie algebra, to be denoted by gT , as a vector space is
given by gT = g⊕ ĝ , where g (ĝ) is a sub-vector space of gT given by
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the non-hat (hat) operators. Therefore, gT is a particular case of semi-
direct product of the two Lie algebras. g and ĝ. In the next section we
explore this representation(A.E. Santana et.al., 1999).

3. Representations of the poincare group in H

The gT Poincaré-Lie algebra, which will be denoted by pT , is given by
(A.E. Santana et.al., 1999)

[Mµν , Pσ] = i(gνσPµ − gσµPν), [Pµ, Pν ] = 0,
[Mµν , Mσρ] = −i(gµρMνσ − gνρMµσ + gµσMρν − gνσMρµ),

[M̂µν , Pσ] = [Mµν , P̂σ] = i(gνσPµ − gσµPν), [P̂µ, Pν ] = 0,

[M̂µν , Mσρ] = −i(gµρMνσ − gνρMµσ + gµσMρν − gνσMρµ),

[M̂µν , P̂σ] = i(gνσP̂µ − gσµP̂ν), [P̂µ, P̂ν ] = 0,

[M̂µν , M̂σρ] = −i(gµρM̂νσ − gνρM̂µσ + gµσM̂ρν − gνσM̂ρµ),

where Mµν stands for rotations and Pµ for translations.
Introducing, therefore, the Pauli-Lubanski matrices as usual, wµ =

1
2εµνρσMνσPρ, where εµνρσ is the Levi-Civita symbol, the invariants of
pT are

W = wµwµ, (36)
P 2 = PµPµ, (37)

Ŵ = 2ŵµwµ − ŵµŵµ = wµwµ − w̃µw̃µ, (38)

P̂ 2 = 2P̂µPµ − P̂µP̂µ = PµPµ − P̃µP̃µ, (39)

where
ŵµ =

1
2
ενρσ
µ (M̂νσPρ + MνσP̂ρ − M̂νσP̂ρ).

Let us study now the scalar and spin-1/2 representations.

3.1. Scalar Representation

Representations for pT can be built from the Casimir invariants, and
in this case we can write for the non-tilde variables explicitly

(P 2 −m2)|Ψ〉 → [(P 2 −m2)]l|Ψ〉 = [(P 2 −m2)⊗ 1]|Ψ〉 = 0, (40)

and for the tilde variables

(P 2 −m2)̃ |Ψ〉 → (P 2 −m2)r|Ψ〉 = [1⊗ (P 2 −m2)]|Ψ〉 = 0.
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Here we take
|Ψ〉 = |φ〉 ⊗ 〈φ| = |φ〉 ⊗ |φ̃〉, (41)

with 〈φ|φ〉 = 1. This fact defines the TFD representation for the states
|Ψ〉. We have, hence, two equations associated with the two invariants
P 2 ≡ � and P̂ 2 ≡ �̂, that is

(P 2 −m2)|Ψ〉 = (�−m2)|φ〉 ⊗ 〈φ| = 0, (42)

and
P̂ 2|Ψ〉 = [�l −�r]|Ψ〉 = 0, (43)

where

�l|Ψ〉 = (�⊗ 1)|Ψ〉 = (�|φ〉)〈φ|;
�r|Ψ〉 = (1⊗�)|Ψ〉 = |φ〉(〈φ|�).

By construction Eq. (38) associated with observables, describes the
mass-shell condition, while Eq. (43) is a density matrix equation giving
the time-evolution of the state Ψ. That this is so can be seen in the
following way. Considering Eqs. (41), let us multiply Eq. (43) by |φ〉,
that is

[�l −�r]|Ψ〉|φ〉 = (�|φ〉〈φ| − |φ〉〈φ|�)|φ〉 = 0.

Since 〈φ|�|φ〉 = m2 and 〈φ|φ〉 = 1, we derive the Klein-Gordon equa-
tion, i.e. (�−m2)|φ〉 = 0. Using, on the other hand, the bra vector, 〈φ|,
the Klein-Gordon equation in the dual Hilbert space may be obtained
from Eq. (43); that is

〈φ|(�|φ〉〈φ| − |φ〉〈φ|�) = 〈φ|(m2 −�) = 0.

This result shows that Eq. (43) is a (square root) density matrix equa-
tion for the Klein-Gordan field. This last aspect can be better under-
stood if write |Ψ〉 as

|Ψ〉 = ρ1/2|1〉,

such that [�l −�r]ρ1/2 = 0. That is

[�, ρ] = [PµPµ, ρ] = 0, (44)

where ρ can be interpreted as the density matrix associated to the
Klein-Gordon field, whose general form is then given by ρ(Pµ). We can
in addition show that the non-relativistic limit (c→∞) of Eq. (44) is
the usual Liouville-von Neumann equation for the Schrödinger equa-
tion.
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3.2. Spinor Representation

In order to construct a spinorial density-matrix equation, we can intro-
duce an equation like

(γµPµ)̂ |Ψ〉 = 0, (45)

such that, differently from Eqs. (39), we can write

(γµPµ)̂ (γµPµ)̂ = P̂ 2. (46)

Therefore we find

(γµPµ)̂ |Ψ〉 = [(γµPµ)⊗ 1− 1⊗ (γµPµ)]|φ〉 ⊗ 〈φ̄|
= (γµPµ)|φ〉 ⊗ 〈φ̄| − |φ〉 ⊗ 〈φ̄|(γµPµ)† = 0. (47)

where now |Ψ〉 is a 16-component spinor, and |φ〉(〈φ̄|) is the 4-component
(dual) Dirac spinor. The Liouville von Neumann-like equation for the
Dirac field can be then written, in parallel to the Klein- Gordon equa-
tion, as

[(γµPµ), ρ] = 0.

Multiplying the rhs of Eq. (47) by |φ〉, it results in (γµPµ−m) |φ〉 = 0,
the Dirac equation. Now, multiplying the lhs of Eq. (47) by 〈φ̄| it results
in 〈φ̄|(Pµγµ −m) = 0, the conjugated Dirac equation. In this sense, in
fact, Eq. (47) is a density matrix equation for the Dirac field.

3.3. Interpretation of the Doubling

From these two representations for bosons and fermions, we can infer
the meaning of the doubling in the algebraic degrees of freedom aris-
ing in pT = p ⊕ p̂. The subalgebra of hat-operators, p̂, is interpreted
as generators for dynamical symmetries, while the subalgebra of the
non-hat operators, say p, is to be interpreted as describing dynamical
observables.

The fact that pT is a semidirect product of these two subalgebras is a
necessary condition to support such an interpretation. Indeed, since we
have [p, p̂] = p, we see that the role played by the generators of symme-
tries p̂ is to impress dynamical modification on the observables p giving
rise to other observables. As a consequence, the non-commutativity
between the observables is a matter of measurement. In the case we
are studying in this section we have [p, p] = p resulting in a quantum
theory. For the sake of consistency, we expect to derive a classical TFD
theory with an algebra similar to pT but in which [p, p] = 0. (This
result has been explored in Ref.(L.M. Silva et.al., 1997))

In this context, a tilde operator, and the tilde conjugation rules
are introduced by the difference among a generator of symmetry and
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observables, that is Ã = A− Â (A.E. Santana et.al., 2000). What has
been shown, in classical theory as well as in quantum formalisms, is that
tilde operators, when used to define the Hamiltonian in TFD (actually,
the hat-Hamiltonian), play the role of heat-bath variables. However, if
the tilde operators are not interpreted in a proper way, their use would
be considered somewhat artificial, and has been, at times, designated
as “ghost” variables. But this naive artificiality (sometimes used as a
motive to deny the physical content of real-time formalisms) can be
treated with the analysis of symmetry, which shows the true content
of duplication of the degrees of freedom in thermal theories as we have
seen here. Moreover, since there is a connection between the Matsubara
formalism and real-time approaches, with such a physical interpretation
of the doubling we can better understand the real meaning of working
with an imaginary time.

4. Bosonic kinetic theory and juttiner distribution

In this section, using the representation theory introduced before, we
analyse the structure of statistical mechanics and kinetic theory for
bosons starting from Eq. (44). We consider that Eq. (44) describes
the evolution of an ensemble of quantum particles specified through
the density operator ρ such that the entropy is given by(A.E. Santana
et.al., 1999; A.E. Santana et.al., 2000)

S = −kBTrρ ln ρ, (48)

where kB is the Boltzmann constant. In a stationary case the entropy
is an extremum, that is

δS = 0, (49)

under the constraints

Trρ = 1, (50)
TrρN = 〈N〉, (51)

TrρP ν = 〈P ν〉, (52)

where 〈N〉, the macroscopic particle number, and 〈P ν〉, the macroscopic
four momentum, are assumed to be constant. Then we obtain

βo + βνp
ν + βNN − kB − kB ln ρ = 0, (53)

where βo, βN and βµ are the Lagrange multipliers attached to the
constraints given by Eqs. (50)–(52), respectively. From Eq. (53), we
get

ρ =
1
Z

exp[
1

kB
(βνP

ν + βNN)], (54)
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where
Z = exp(1− βo

kB
) (55)

is the partition function. Multiplying Eq. (53) by ρ, taking the trace
and using Eqs. (50)–(52) and Eq. (55 ), we derive

KB lnZ + βν〈P ν〉+ βN 〈N〉+ S = 0.

We obtain a physical interpretation of this approach by a suitable
definition of the Lagrange multipliers βν and βN . Thus we assume that

βν = −kBβUν , βN = kBµβ,

where β = 1/kBT , T is the temperature of the rest frame, µ is
the chemical potential and Uν is the macroscopic four-velocity field
satisfying the relation UνU

ν = 1. Therefore, ρ in Eq. (54) is given as

ρo =
1
Z

exp[−β(UνP
ν − µN)]. (56)

The partition function, Z, is inferred from the normalization of ρ. Thus,
Eq. (56) provides a general form to ρ for steady states. Let us analyse
this from another point of view.

Using Eq. (43), Eq. (44) can be written as

(∂µ′
∂µ′ − ∂µ∂µ)ρ(x′, x) = 0. (57)

In that case, defining the following four-operators by

∂

∂xµ
=

1√
2
(

∂

∂qµ
− pµ),

∂

∂ x′µ =
1√
2
(

∂

∂qµ
+ pµ), (58)

it is straightforward to show that Eq. (57) is given as

pµ ∂

∂qµ
ρ(q, p) = 0. (59)

This equation can be interpreted as the drift term of a collisionless
Boltzmann equation for the one-particle Wigner distribution ρ(q, p ). To
see that, let us explore the physical meaning of ρ(q, p) in this context.
First note that ρ(q, p ) is in principle a Lorentz scalar. Thus an invariant
solution of Eq. (59) is

ρ(q, p) =
∫

d4u δ(pvuv) exp{−u · q}g(p, u). (60)

The microscopic nature of ρ(q, p ) can be specified through the defini-
tion,

g(p, u) = 〈a†(p− u

2
) a(p +

u

2
)〉 = Trρa†(p− u

2
) a(p +

u

2
), (61)
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where a(p) and a†(p) are boson operators, such that the number and
momentum operators can be introduced by

N =
∫

d3p

po
a†(p)a(p), Pµ =

∫
d3p

po
pµa†(p)a(p).

Using Eq. (56) in Eq. (61), the result is

〈a†(p− u

2
) a(p +

u

2
)〉o = 〈a(p +

u

2
)a†(p− u

2
)〉o exp(βµ− pνUν)

which is derived from the properties of the trace in the equilibrium
average represented by 〈· · ·〉o. Hence we get

ρ(p) =
1

exp(βpνUν − βµ〈N〉)− 1
,

that is the Juttiner distribution (S.R. de Groot et.al., 1980). Thus
Eq. (61) is an appropriate choice for g(q, p), providing a physical inter-
pretation of the theory in the case of bosons in a steady state.

In a more general treatment, we consider the inclusion of anti-
bosons, such that g(q, p) in Eq. (60) can be defined as

g(p, u) = 〈a†(p− u

2
) a(p +

u

2
)〉+ 〈a†(p− u

2
) a(p +

u

2
)〉,

where a(p) and a†(p) are the momentum-space operators for anti-
bosons. Therefore, the microscopic specification of the operators N
and P ν , in the momentum representation, is

N =
∫

d3p

po
[a†(p)a(p) + a†(p)a(p)],

P ν =
∫

d3p

po
pν [a†(p)a(p) + a†(p)a(p)].

In particular the macroscopic current density is given by

〈Jµ〉 =
∫

d3p
1
po

pµρ(q, p) (62)

=
∫

d3p
1
po

pµ 1
exp(βpνUν − βµ〈N〉)− 1

. (63)

The representation of this expression in the coordinate space can be
done as usual.
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5. Compactification of the Gross-Neveu model

We now apply the generalized Matsubara formalism, discussed earlier,
to a fermionic theory aiming to discuss effects of simultaneous spa-
tial confinement and finite temperature. We consider the Wick-ordered
massive Gross-Neveu model in a D-dimensional Euclidean space, de-
scribed by the Lagrangian density (D.J. Gross et.al., 1974)

L = : ψ̄(x)(i�∇+ m)ψ(x) : +
u

2
(: ψ̄(x)ψ(x) :)2 . (64)

Here x ∈ RD and ψ(x) is a spin 1
2 field having N (flavor) components,

ψa(x) (a = 1, 2, ..., N), summation over flavor and spin indices being
implicit. We shall consider the large-N limit (N →∞), which permits
considerable simplifications. We use natural units, � = c = kB = 1.

To describe the fully compactified model, with Euclidean coordi-
nates, say xi, restricted to segments of length Li (i = 1, 2, ....D) and the
field ψ(x) satisfying anti-periodic (bag model) boundary conditions, the
Feynman rules should be modified following the Matsubara prescription

∫
dki

2π
→ 1

Li

+∞∑
ni=−∞

, ki →
2(ni + 1

2)π
Li

. (65)

Then the Li-dependent four-point function at leading order in 1/N ,
at zero external momenta, has the formal expression

Γ(4)
D (0; {Li}, u) =

u

1 + NuΣD({Li})
, (66)

where Li-dependent Feynman one-loop subdiagram is given by

ΣD({Li}) =
1

L1 · · ·LD

∞∑
{ni}=−∞

m2 −∑D
i=1 ν2

i(∑D
i=1 ν2

i + m2
)2 (67)

and νi = 2(ni + 1
2)π/Li. Introducing the dimensionless quantities bi =

(mLi)−2 and q = (2π)−1, one can write

ΣD({bi}) = mD−2(s−1)
√

b1 · · · bD

×
[
q2UD(s; {bi}) +

(
D∑

i=1

bi
∂

∂bi

)
UD(s− 1; {bi})

s− 1

]

s=2

,(68)

where

Ud(µ; {bi}) = q2(µ−1)
∞∑

{ni}=−∞

1(∑d
i=1 bi(ni + 1

2)2 + q2
)µ . (69)
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To calculate Ud(µ; {bi}), the summations over half-integers are trans-
formed into sums over integers, leading to

Ud(µ; {bi}) = 4π−2(µ−1)

[
Z4q2

d (µ; b1, ..., bd)−
d∑

i=1

Z4q2

d (µ; ..., 4bi, ...)

+
d∑

i<j=1

Z4q2

d (µ; ..., 4bi, ..., 4bj , ...)− · · ·+ (−1)d Z4q2

d (µ; 4b1, ..., 4bd)

⎤
⎦ ,

(70)

where Zh2

d (µ; {ai}) is the multivariable Epstein-Hurwitz zeta-function

Zh2

d (µ; {ai}) ≡
∞∑

{ni}=−∞
[a1n

2
1 + · · ·+ adn

2
d + h2]−µ

=
πd/2

√
a1 · · · ad Γ(µ)

[
1

h2µ−d
Γ
(

µ− d

2

)

+
d∑

w=1

2w+1
∑
{σw}

∞∑
{nσl

}=1

⎛
⎝π

h

√
n2

σ1

aσ1

+ · · ·+ n2
σw

aσw

⎞
⎠

µ− d
2

×Kµ− d
2

⎛
⎝2πh

√
n2

σ1

aσ1

+ · · ·+ n2
σw

aσw

⎞
⎠
⎤
⎦ . (71)

Here, {σw} represents the set of all combinations of {1, 2, ..., d} pos-
sessing w elements and Kν(x) is the Bessel function of the third kind.
This is an analytical extension of the multivariable Epstein-Hurwitz
zeta-function to the whole complex µ-plane (A.P.C. Malbouisson et.al.,
2002). The first term in Eq. (71) leads to a contribution for ΣD which is
divergent for even dimensions D ≥ 2 due to the pole of the Γ-function.
We renormalize ΣD by subtracting this contribution, corresponding to
a finite renormalization when D is odd.

From now on, we restrict ourselves to the case of D = 3. Notice that,
although the Gross-Neveu model is not perturbatively renormalizable
for D > 2, it has been shown to exist and has been explicitly con-
structed for D = 3 (C. de Calan et.al., 1991). We will be considering the
fermions confined to a square box of side L (L1 = L2 = L) and at finite
temperature T = β−1, with the confining length L3 = β. In this case,
using the formula for the Bessel functions K±1/2(z) =

√
πe−z/

√
2z, we

obtain the following expression for the L and T -dependent renormalized
single-loop subdiagram:

ΣR(L, β)
m

= 2π

[
2

mL
log(1 + e−mL) +

1
mβ

log(1 + e−mβ) + F1(L, β)
]
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− 4π2 + 1
4π

[
e−mL

1 + e−mL
+

e−mβ

1 + e−mβ
+ F2(L, β)

]
, (72)

where

Fr(L, β) = −2Gr(L, L) + 8Gr(L, 2L)− 8Gr(2L, 2L)− 4Gr(L, β)
+8Gr(2L, β) + 8Gr(L, 2β)− 16Gr(2L, 2β)
+4Hr(L, L, β)− 16Hr(2L, L, 2β)− 8Hr(L, L, 2β)
+16Hr(2L, 2L, β) + 32Hr(L, 2L, 2β)− 32Hr(2L, 2L, 2β),

with the functions Gr and Hr (for r = 1, 2) defined by

Gr(x, y) =
∞∑

n,l=1

(
m
√

x2n2 + y2l2
)r−2

exp
(
−m

√
x2n2 + y2l2

)
,

Hr(x, y, z) =
∞∑

n,l,k=1

(
m
√

x2n2 + y2l2 + z2k2

)r−2

× exp
(
−m

√
x2n2 + y2l2 + z2k2

)
.

Now, taking as usual Nu = λ fixed and using Eq. (66), we find the
large-N effective renormalized coupling constant as

g(L, β, λ) = NΓ(4)
3R(0, L, β, u) =

λ

1 + λΣR(L, β)
. (73)

Since limL,β→∞ ΣR(L, β) = 0, we find that g(∞,∞, λ) = λ is the renor-
malized fixed coupling constant in free space at zero temperature. On
the other hand, for either L→ 0 or β → 0, ΣR(L, β) diverges implying
that we have ultraviolet asymptotic freedom for short distances and/or
for high temperatures, irrespective of the value of λ.

Consider initially the situation at T = 0 (β → ∞); the behavior of
ΣR(L), in this case, is shown in Fig. 1 A. We find that ΣR(L) is negative
for L > Lmin

c � 2.29 m−1 and reaches a minimum (Σmin
R � −0.0624m)

for L = Lmax
c � 3.13 m−1. This implies that, for λ ≥ λc = −(Σmin

R )−1 �
16.03 m−1, λ/g(L, λ) has a non-positive minimum value and vanishes
for a length L

(0)
c (λ) in the interval

(
Lmin

c , Lmax
c

]
. This divergence of the

effective coupling constant as L approaches L
(0)
c (λ) can be interpreted

as the system being confined; that is, in the strong coupling regime
(with large enough λ), starting with L small (in the region of asymptotic
freedom), the side of the square can not go above the length L

(0)
c (λ)

since g(L, λ) → ∞ as L → L
(0)
c (λ). Similar behavior has also been

found for the 3D Gross-Neveu model compactified in a strip of width
L at zero temperature (A.P.C. Malbouisson et.al., 2004).
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Figure 1. A - Plot of S = ΣR(L,∞)/m as a function of mL. B - Plot of
G = λ/g(L, β, λ) as a function of L, with λ = 25.0 m−1, for some values of β:
3.0 m−1, 2.34 m−1 and 2.2 m−1 (dashed, full and dotted lines respectively).

Let us now consider the effect of temperature, taking λ ≥ λc. For
low (fixed) T , λ/g(L, β, λ) vanishes at a value L

(β)
c (λ) < L

(0)
c (λ), its

minimum (negative) value being slightly lower than the zero tempera-
ture case. Further raising the temperature, L

(β)
c (λ) and the minimum

value of λ/g increase and, at the temperature Td(λ) = β−1
d (λ), the

minimum of λ/g(L, β, λ) vanishes. For β < βd(λ), λ/g(L, β, λ) becomes
positive for all values of L and then the system is unconfined. Thus,
Td(λ) corresponds to the deconfining temperature for the given fixed
coupling constant λ ≥ λc. The behavior of λ/g is illustrated in Fig. 1 B.

The above discussion demonstrates analytically that, in the strong
coupling regime (λ > λc), the compactified 3D Gross-Neveu model
presents simultaneously asymptotic freedom and spatial confinement.
This means that, if we start with a system of a fermion-antifermion pair
bounded within a square of side L (< Lc(λ)) at low enough tempera-
ture, it would not be possible to separate them a distance larger than
Lc(λ). This spatial confinement of the pair could be interpreted as the
existence of bound (“baryon-like”) states, characteristic of the model in
the strong coupling regime. By raising the temperature, we find that the
spatial confinement disappears at the deconfining temperature Td(λ).

To estimate the values of the confining length and the deconfining
temperature, the fermion mass has to be fixed. Since, at most, the
Gross-Neveu model can be taken as an effective model for quark in-
teraction, we will choose m ≈ 350 MeV � 1.75 fm−1, the constituent
quark mass. Taking for λ the minimum strength for confinement, λ =
λc � 16.03 m−1, we have Lc � 3.13 m−1 ≈ 1.79 fm. For this case,
we find βd � 2.76 m−1 and so the deconfining temperature is Td �
127 MeV . These values should be compared with the experimentally
measured proton charge diameter (≈ 1.74 fm) and the estimated de-
confining temperature (≈ 200 MeV ) for hadronic matter, respectively
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(K. Gawedzki et.al., 1985; Particle Data Group, 2004; S.G. Karshen-
boim, 1999).

6. Concluding remarks

In this survey we have presented the main aspects and some of the con-
sequences of the algebraic structure underlying the finite-temperature
quantum field theory. The basic approach is the formalism known as
thermofield dynamics (TFD), from which the connection among the
famous methods of thermal theories has been established. The basic
ingredients consist of a doubling in the degrees of freedom, which are
indeed a basic fact in every T �= 0 formalism, and Bogolioubov transfor-
mations, introducing thermal degrees of freedom. Here such a doubling
has been identified with the elements of the standard representation of
w∗-algebras, the co-product of Hopf algebra, and with a semi-simple Lie
algebra. This last content has then been explored to derive density ma-
trix equations for the Klein-Gordon and Dirac Field, and a preliminary
analysis of the kinetic theory based on a representation approach.

The underlying topological structure of a thermal formalism is also
analysed giving rise to a mechanism of compactification in space and
time (in this case describing temperature), which has been applied
to study the 3-D Gross-Neveu model. In this case our main result
is the observations of asymptotic freedom and confinement, as well
as a critical temperature for deconfinement. The results are compared
with the experimentally measured proton charge diameter and with the
estimated temperature of deconfinement. In both situations we have
found very satisfactory agreement. It is worth noticing that this is the
first time that all these results are obtained analytically, despite the
fact we are treating an effective model for the hadronic matter.
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Abstract. Within the context of the Thermofield Dynamics, we introduce gener-
alized Bogoliubov transformations which accounts simultaneously for spatial com-
pactification and thermal effects. As a specific application of such a formalism, we
consider the Casimir effect for Maxwell and Dirac fields at finite temperature. Par-
ticularly, we determine the temperature at which the Casimir pressure for a massless
fermionic field in a cubic box changes its nature from attractive to repulsive. This
critical temperature is approximately 100 MeV when the edge of the cube is of the
order of the confining length (≈ 1 fm) for baryons.

Keywords: Thermofield dynamics, Bogoliubov transformation, Compactification,
Casimir effect.

Introduction

The Thermofield Dynamics (TFD) formalism (Y. Takahashi et.al., 1975;
H. Umezawa et.al., 1982; H. Umezawa, 1993) relies on two basic in-
gredients: first, the doubling of the original Fock space of the system
leading to an expanded space HT = H⊗H̃; this doubling is carried out
by associating to each operator a acting on H two operators in HT ,
A = a ⊗ 1 and Ã = 1 ⊗ a, which are connected by the tilde (dual)
conjugation rules (AiAj )̃ = ÃiÃj , (cAi +Aj )̃ = c∗Ãi + Ãj , (A†

i )̃ = (Ãi)†

and (Ãi)̃ = −ξAi, with ξ = −1 for bosons and ξ = +1 for fermions.
The physical variables are described by nontilde operators. Second, a
Bogoliubov transformation, B(α), introducing a rotation in the tilde
and nontilde variables, in such a way that thermal effects emerge from
a condensate state. In the standard doublet notation (H. Umezawa,
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1993), we write

(Ar(α)) =

(
A(α)

ξÃ†(α)

)
= B(α)

(
A

ξÃ†

)
, (1)

(Ar(α))† =
(
A†(α) , Ã(α)

)
, with the Bogoliubov transformation given

by

B(α) =
(

u(α) −v(α)
ξv(α) u(α)

)
, (2)

where u2(α)+ξv2(α) = 1. The usual parametrization of the Bogoliubov
transformation in TFD is obtained by setting α = β = T−1 and by
requiring that 〈0, 0̃|a†(α)a(α)|0, 0̃〉 (with a† and a being the creation
and the annihilation operators) gives either the Bose or the Fermi
distribution; therefore

u(β) =
(
1 + ξe−βε

)− 1
2 , v(β) =

(
eβε + ξ

)− 1
2 . (3)

The TFD formalism permits the discussion of several aspects in quan-
tum mechanics, as for example, the thermal coherent states of an
oscillator.

In this talk, we consider the TFD approach for free fields aiming
to extend the Bogoliubov transformation to account also for spatial
compactification effects. The main application of our general discus-
sion is the Casimir effect for cartesian confining geometries at finite
temperature.

1. Free massless fields in TFD

The formalism can be extended for a quantum field with the TFD
Lagrangian density given by LT = L− L̃, where L̃ is a replica of L for
the tilde fields so leading to similar equations of motion. For the pur-
pose of our applications, we shall restrict our analysis to free massless
fields. Thus, considering the free-massless boson (Klein-Gordon) field,
the two-point Green function in the doubled space is given by

G
(ab)
0 (x− x′) = 〈0, 0̃|Tφ(x)aφ(x′)b|0, 0̃〉

=
−1

(2π)4

∫
d4k G

(ab)
0 (k) e−ik·(x−x′), (4)

where (remember that ξ = −1 whenever we refer to bosons)

G
(ab)
0 (k) =

(
G0(k) 0

0 ξG∗
0(k)

)
=

(
1

k2+iε
0

0 −ξ
k2−iε

)
. (5)
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In the configuration space, we have explicitly

G0(x− x′) =
−i

(2π)2
1

(x− x′)2 − iε
. (6)

Also, the doubled free-photon propagator is given by

iD(ab)
µν (x− x′) = 〈0, 0̃|T [Aa

µ(x)Ab
ν(x′)]|0, 0̃〉 = gµνG

(ab)
0 (x− x′). (7)

On the other hand, for the free-massless Dirac field, the doubled
Green function is given by

S
(ab)
0 (x− x′) =

(
S0(x− x′) 0

0 −S∗
0(x′ − x)

)
, (8)

where S0(x − x′) = −i〈0|T [ψ(x)ψ(x′)]|0〉 = −iγµ∂µG0(x − x′). The
α-dependent Green functions in all cases are obtained through the
Bogoliubov transformations (2) (carrying a label k for each field mode)
acting on G

(ab)
0 (k):

G
(ab)
0 (k; α) = B

−1(ac)
k (α)G(cd)

0 (k)B(db)
k (α); (9)

explicitly, the components of G
(ab)
0 (k; α) are given by

G11
0 (k; α) = G0(k) + ξv2

k(α)[G∗
0(k)−G0(k)], (10)

G12
0 (k; α) = G21

0 (k; α) = ξvk(α)uk(α)[G∗
0(k)−G0(k)], (11)

G22
0 (k; α) = ξG∗

0(k) + v2
k(α)[G0(k)−G∗

0(k)]. (12)

Notice that, taking ξ = +1, we obtain the auxiliary doubled two-point
function which must be used for calculating the fermionic propagator.

We shall be concerned with the doubled operators describing the
energy-momentum tensor of the free Maxwell and Dirac fields; accord-
ing to the tilde conjugation rules, we have, respectively:

T
µν(ab)
M = −Fµλ(ab)F

ν(ab)
λ +

1
4
gµνF

(ab)
λρ F ρλ(ab) , (13)

T
µν(ab)
D =

i

2
(ψa

γµ∂νψb − ∂νψ
a
γµψb) , (14)

where F
(ab)
µν = ∂µAa

ν − ∂νA
b
µ is the electromagnetic field tensor. In all

cases, the α-dependent energy-momentum tensors are obtained from
these expressions replacing the fields by the Bogoliubov transformed
counterparts. Actually, to treat thermal (and space confinement) ef-
fects, we will consider the renormalized vacuum expectation value of

Thermofield dynamics: Generalized ogoliubov transformationsB
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the α-dependent energy-momentum tensor defined, by subtracting the
value corresponding to the free space at zero temperature, as

T µν(ab)(x;α) = 〈0, 0̃|Tµν(ab)(x;α)|0, 0̃〉 − 〈0, 0̃|Tµν(ab)(x)|0, 0̃〉. (15)

In fact, we will be interested in calculating only the (11)-component,
which corresponds to the physical energy-momentum tensor.

Let us now consider the thermal effects by taking α = β = T−1.
Notice, initially, that v2

k(α) (given in Eq. (3) for one mode, with k0 = ε)
can be written, for both boson (ξ = −1) and fermion (ξ = +1) fields,
as

v2
k(β) =

∞∑
l=1

(−ξ)l+1e−βk0l , (16)

so that Eq. (10) becomes

G11
0 (k; β) = G0(k) +

∞∑
l=1

(−ξ)l+1e−βk0l[G∗
0(k)−G0(k)]. (17)

Taking the inverse Fourier transform, we obtain

Ḡ11
0 (x− x′; β) =

∞∑
l=1

(−ξ)l+1 [G∗
0(x

′ − x− iβln̂0)

− G0(x− x′ − iβln̂0)
]
, (18)

where Ḡ11
0 (x−x′; β) = G11

0 (x−x′; β)−G0(x−x′) and n̂0 = (1, 0, 0, 0) is a
time-like vector. This expression is useful for calculating T µν(11)(x;β).

Consider, for example, the electromagnetic field. In this case, we
have

〈0, 0̃|Tµν(ab)
M (x;β)|0, 0̃〉 = −i

{
Γµν(x, x′)G(ab)(x− x′; β)

+2
(

n̂µ
0 n̂ν

0 −
1
4
gµν

)
δ(x− x′)δab

}∣∣∣∣
x→x′

,

where Γµν(x, x′) = 2(∂µ∂′ν − 1
4gµν∂ρ∂′

ρ). This leads to

T µν(11)
M (β) = −i

{
Γµν(x, x′)Ḡ11

0 (x− x′; β)
}∣∣∣

x→x′

= − 2
π2

∞∑
l=1

gµν − 4n̂µ
0 n̂ν

0

(βl)4
=
−π2

45β4
(gµν − 4n̂µ

0 n̂ν
0) , (19)

where we have used the Riemann zeta-function ζ(4) =
∑∞

l=1 l−4 =
π4/90. As expected, E(T ) = T 00(11)

M (β) = 1
15π2T 4 gives the correct

energy density of the photon gas at temperature T , the blackbody
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radiation. Similar result can be obtained for the free-massless fermionic
field. In this case, we have

〈0, 0̃|Tµν(ab)
D (x;β)|0, 0̃〉 = γµ∂νS(ab)(x− x′)|x′→x

= −4i∂µ∂νG
(ab)
0 (x− x′)|x′→x ,

leading to

T µν(11)
D (β) = −4i∂µ∂ν [Ḡ11

0 (x− x′; β)]x′→x

=
4
π2

∞∑
l=1

(−1)l

[
gµν − 4n̂µ

0 n̂ν
0

(βl)4

]
. (20)

From this tensor, using that
∑∞

l=1(−1)ll−4 = −7π4/720 we recover the
well known result for the internal energy density of the Dirac field at
temperature T , E(T ) = T 00(11)

D (β) = 7π2

60 T 4.
The main goal of this talk is to show that the Bogoliubov transforma-

tion of TFD can be generalized to account for spatial compactification
and thermal effects simultaneously. These ideas are then applied to the
Casimir effect in various cases.

2. Generalized Bogoliubov transformations

The preceding results show that the equilibrium TFD is equivalent to
the Matsubara imaginary-time formalism (for a detailed discussion, see
the chapter by Santana et. al. in this Proceedings). Matsubara formal-
ism has been used also to consider spatial compactification in field the-
oretical models (A.P.C. Malbouisson et.al., 2002; A.P.C. Malbouisson
et.al., 2002; A.P.C. Malbouisson et.al., 2004).

Similarly, confined fields can be treated with TFD by choosing ap-
propriately the parameter α entering in the Bogoliubov transformation
(J.C. da Silva et.al., 2002; H. Queiroz et.al., 2005). To see how this
works, replace β and k0 in Eq. (16) by α = i2L and k3, corresponding
to confinement along the z-axis, writing

v2
k(L) =

∞∑
l=1

(−ξ)l+1e−i2Lk3l . (21)

Using this v2
k in Eq. (10) and performing the inverse Fourier transform,

we get

Ḡ11
0 (x− x′; L) =

∞∑
l=1

(−ξ)l+1 [G∗
0(x

′ − x− 2Lln̂3)

− G0(x− x′ − 2Lln̂3)
]

(22)

Thermofield dynamics: Generalized ogoliubov transformationsB
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where Ḡ11
0 (x−x′; L) = G11

0 (x−x′; L)−G0(x−x′) and n̂3 = (0, 0, 0, 1).
For this situation, similar steps as those leading to Eqs. (19) and (20)
give

T µν(11)
M (L) = − 2

π2

∞∑
l=1

gµν + 4n̂µ
3 n̂ν

3

(2Ll)4
= − π2

720L4
(gµν + 4n̂µ

3 n̂ν
3), (23)

T µν(11)
D (L) =

4
π2

∞∑
l=1

(−1)l

[
gµν + 4n̂µ

3 n̂ν
3

(2Ll)4

]
= − 7π2

2880
[gµν+4n̂µ

3 n̂ν
3 ]. (24)

The Casimir effect for the electromagnetic field between parallel metal-
lic plates can be obtained from Eq. (23); the Casimir energy and pres-
sure are

E(L) = T 00(11)
M (L) = − π2

720L4
, P (L) = T 33(11)

M (L) = − π2

240L4
.

Similarly, from Eq. (24), we find the Casimir energy and pressure
for the Dirac field confined between parallel plates, with anti-periodic
boundary conditions, as:

E(L) = T 00(11)
D (L) = − 7π2

2880L4
; P (L) = T 33(11)

D (L) = − 7π2

960L4
.

These results demonstrate explicitly the usefulness of the Bogoliubov
transformation to treat confined fields in the context of TFD. From
the above considerations, a question emerges naturally: what should
be the appropriate generalization of the Bogoliubov transformation to
account for simultaneously space compactification and thermal effects?

Such a generalization must reproduce, for example, the known re-
sults for the Casimir effect in the case of the parallel plates geometry at
finite temperatures. Since energy is an additive quantity, we expect to
have L- and T -dependent contributions plus a mixed (LT -dependent)
contribution representing the interference of the two effects. In the next
Section, we will show that the proper extension of expressions (16) and
(21), for this case, is

v2
k(β, L) =

∞∑
l0=1

(−ξ)l0+1e−βk0l0 +
∞∑

l3=1

(−ξ)l3+1e−i2Lk3l3

+2
∞∑

l0,l3=1

(−ξ)l0+l3+2e−βk0l0−i2Lk3l3 . (25)

To treat the general situation, compatible with cartesian geometries,
we will consider the (1+N)-dimensional Minkowski space. Then, taking
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α = (α0, α1, α2, ..., αN ), we write

v2
k(α) =

N+1∑
s=1

∑
{σs}

(
s∏

n=1

f(ασn)

)
2s−1

×
∞∑

lσ1 ,...,lσs=1

(−ξ)s+
∑s

r=1
lσr exp{−

s∑
j=1

ασj lσjkσj}, (26)

where f(αj) = 0 for αj = 0, f(αj) = 1 otherwise and {σs} denotes
the set of all combinations with s elements, {σ1, σ2, ...σs}, of the first
N + 1 natural numbers {0, 1, 2, ..., N}, that is all subsets containing
s elements, which we choose to write in an ordered form with σ1 <
σ2 < · · · < σs. Inserting this v2

k(α) into Eq. (10) and taking the inverse
Fourier transform, we obtain

Ḡ11
0 (x− x′; α) =

N+1∑
s=1

∑
{σs}

(
s∏

n=1

f(ασn)

) ∞∑
lσ1 ,...,lσs=1

(−ξ)s+
∑s

r=1
lσr

×2s−1

⎡
⎣G∗

0(x
′ − x− i

s∑
j=1

ησjασj lσj n̂σj )

− G0(x− x′ − i
s∑

j=1

ησjασj lσj n̂σj )

⎤
⎦
∣∣∣∣∣∣
x′→x

, (27)

where ησj = +1, if σj = 0, and ησj = −1 for σj = 1, 2, ..., N . To get
the physical situation of finite temperature and spatial confinement, α0

has to be taken as a positive real number while αn, for n = 1, 2, ..., N ,
must be pure imaginary of the form i2Ln; in these cases, one finds that
α∗2

j = α2
j .

Considering such choices for the parameters αj and using the explicit
form of Ḡ11

0 (x− x′; α) in the 4-dimensional space-time (corresponding
to N = 3), we obtain the renormalized α-dependent energy-momentum
tensor in the general case, for both Maxwell and Dirac fields:

T µν(11)
M (α) = −i

{
Γµν(x, x′)Ḡ11

0 (x− x′; α)
}∣∣∣

x→x′

= − 2
π2

4∑
s=1

∑
{σs}

(
s∏

n=1

f(ασn)

)
2s−1

×
∞∑

lσ1 ,...,lσs=1

[
gµν

[
∑s

j=1 ησj (ασj lσj )2]2

−
2
∑s

j,r=1(1 + ησjησr)(ασj lσj )(ασr lσr)n̂µ
σj

n̂ν
σr

[
∑s

j=1 ησj (ασj lσj )2]3

]
; (28)
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T µν(11)
D (α) = −4i∂µ∂ν [Ḡ11

0 (x− x′; α)]x′→x

= − 4
π2

4∑
s=1

∑
{σs}

(
s∏

n=1

f(ασn)

) ∞∑
lσ1 ,...,lσs=1

(−1)s+
∑s

r=1
lσr

×2s−1

[
gµν

[
∑s

j=1 ησj (ασj lσj )2]2

−
2
∑s

j,r=1(1 + ησjησr)(ασj lσj )(ασr lσr)n̂µ
σj

n̂ν
σr

[
∑s

j=1 ησj (ασj lσj )2]3

]
. (29)

Notice that the results obtained so far (Eqs. (19) and (23) for the
Maxwell field and Eqs. (20) and (24) for the Dirac field) are particular
cases of the above expressions, corresponding to α = (β, 0, 0, 0) and α =
(0, 0, 0, i2L) respectively. Another important aspect is that T µν(11)(α)
is traceless in both cases, as it should be. Now, we will apply these
general results to some specific examples.

3. Casimir effect for parallel plates at finite temperature

As a first example of developments of the last Section, we now consider
the electromagnetic field satisfying Dirichlet boundary conditions on
parallel planes (metallic plates), normal to the z-direction, at finite
temperature. In this case, v2

k(α) is given by Eq. (25) with ξ = −1
(corresponding to the choice α = (β, 0, 0, i2L)) and Eq. (28) reduces to

T µν(11)
M (β, L) = − 2

π2

⎧⎨
⎩

∞∑
l0=1

gµν − 4n̂µ
0 n̂ν

0

(βl0)4
+

∞∑
l3=1

gµν + 4n̂µ
3 n̂ν

3

(2Ll3)4

+ 2
∞∑

l0,l3=1

(βl0)2[gµν − 4n̂µ
0 n̂ν

0 ] + (2Ll3)2[gµν + 4n̂µ
3 n̂ν

3 ]
[(βl0)2 + (2Ll3)2]3

⎫⎬
⎭ .(30)

It follows then that the Casimir energy (T 00(11)
M ) and pressure (T 33(11)

M )
are given by (J.C. da Silva et.al., 2002)

E(β, L) =
π2

15β4
− π2

720L4
+

4
π2

∞∑
l0,l3=1

3(βl0)2 − (2Ll3)2

[(βl0)2 + (2Ll3)2]3
, (31)

P (β, L) =
π2

45β4
− π2

240L4
+

4
π2

∞∑
l0,l3=1

(βl0)2 − 3(2Ll3)2

[(βl0)2 + (2Ll3)2]3
. (32)

The first two terms of these expressions reproduce Eqs. (19) and
(23), giving the blackbody and the Casimir contributions for the energy
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and the pressure, separately. The last term represents the interplay
between the two effects. These results have been obtained before with
the use of mode-sum techniques and the image method (L.S. Brown
et.al., 1969; G. Plunien et.al., 1986). Thefore, they constitute a clear
indication that our generalization of the Bogoliubov transformation has
the correct form.

We notice that the positive blackbody contributions for E and P
dominate in the high-temperature limit, while the energy and the pres-
sure are negative for low T . From Eq. (32), we can determine the critical
curve (βc = χ0L) for the transition from negative to positive values of
P , by searching for the value of the ratio χ = β/L for which the pressure
vanishes; this value, χ0, is the solution of the transcendental equation

π2

45
1
χ4
− π2

240
+

4
π2

∞∑
l,n=1

(χl)2 − 3(2n)2

[(χl)2 + (2n)2]3
= 0, (33)

given, numerically, by χ0 � 1.316.
Such an analysis can be extended to cases where two or more spatial

dimensions are compactified. This will be explored in the next Section
for the fermionic effect.

4. Casimir effect for fermions

We initially consider the massless Dirac field confined between parallel
planes. In this case, we take α = (β, 0, 0, i2L) and ξ = +1 in Eq. (29)
leading to

T µν(11)
D (β, L) =

4
π2

⎧⎨
⎩

∞∑
l0=1

[gµν − 4n̂µ
0 n̂ν

0 ]
(−1)l0(βl0)4

+
∞∑

l3=1

[gµν + 4n̂µ
3 n̂ν

3 ]
(−1)l3(2Ll3)4

− 2
∞∑

l0,l3=1

(βl0)2[gµν − 4n̂µ
0 n̂ν

0 ] + (2Ll3)2[gµν + 4n̂µ
3 n̂ν

3 ]
(−1)l0+l3 [(βl0)2 + (2Ll3)2]3

⎫⎬
⎭ ; (34)

the Casimir energy and pressure are readily obtained as:

E(β, L) =
7π2

60β4
− 7π2

2880L4
− 8

π2

∞∑
l0,l3=1

(−1)l0+l3 3(βl0)2 − (2Ll3)2

[(βl0)2 + (2Ll3)2]3
;(35)

P (β, L) =
7π2

180β4
− 7π2

960L4
+

8
π2

∞∑
l0,l3=1

(−1)l0+l3
(βl0)2 − 3(2Ll3)2

[(βl0)2 + (2Ll3)2]3
.(36)

Again, taking the limit L → ∞, we regain the Stefan-Boltzmann con-
tribution alone, while making β → ∞ the Casimir term at zero tem-
perature is recovered. The third term, which stands for the correction
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of temperature, remains finite as β → 0 and so, as expected, the
high temperature limit is dominated by the positive contribution of
the Stefan-Boltzmann term. These results for the fermionic Casimir
effect for parallel plates can be also obtained, using mode-summation
techniques, with the field satisfying anti-periodic (bag model) boundary
conditions (C.A. Lutken et.al., 1984).

As before, for any given value of L, the pressure changes from neg-
ative to positive when the temperature is raised. The critical curve for
this transition is βc = χ0L, where χ0 is the value of ratio χ = β/L for
which the pressure vanishes, that is the solution of the transcendental
equation

7π2

180
1
χ4
− 7π2

960
+

8
π2

∞∑
l,n=1

(−1)l+n χ2l2 − 12n2

[χ2l2 + 4n2]3
= 0; (37)

numerically, we find χ0 � 1.382.
To show how powerful our method is, let us consider fermions con-

fined in a tridimensional box at finite temperature. The energy-momentum
tensor is a long expression for the general case of a parallelepiped box,
but it follows from Eq. (29) that the Casimir energy for a cubic box of
edge L is given by

EB(β, L) =
7π2

60
1
β4
−
(

7π2

960
+
C

2π2

)
1
L4

+
24
π2

∞∑
l,n=1

(−1)l+n 3β2l2 − 4L2n2

[β2l2 + 4L2n2]3

− 48
π2

∞∑
l,n,r=1

(−1)l+n+r 3β2l2 − 4L2(n2 + r2)
[β2l2 + 4L2(n2 + r2)]3

+
32
π2

∞∑
l,n,r,q=1

(−1)l+n+r+q 3β2l2 − 4L2(n2 + r2 + q2)
[β2l2 + 4L2(n2 + r2 + q2)]3

,

(38)

where the constant C is defined by

C = 3
∞∑

l,n=1

(−1)l+n

(l2 + n2)2
− 2

∞∑
l,n,r=1

(−1)l+n+r

(l2 + n2 + r2)2
� 0.707 . (39)

Again, as β → 0, the Stefan-Boltzmann term dominates, while in the
limit β → ∞, we find the Casimir energy at zero temperature, the
second term in the right hand side of Eq. (38).

The pressure can also be obtained directly from Eq. (29). Notice
that, in the case of a cubic box, by symmetry we have T 11(11)

D =
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T 22(11)
D = T 33(11)

D . In terms of L and χ = β/L, the pressure can be
written as

PB(χ, L) =
1
L4

{
7π2

180
1
χ4
−
(

7π2

2880
+
C

6π2

)

+
16
π2

∞∑
l,n=1

(−1)l+n

[χ2l2 + 4n2]2
+

8
π2

∞∑
l,n=1

(−1)l+n χ2l2 − 12n2

[χ2l2 + 4n2]2

− 16
π2

∞∑
l,n,r=1

(−1)l+n+r

[χ2l2 + 4n2 + 4r2]2

− 32
π2

∞∑
l,n,r=1

(−1)l+n+r χ2l2 + 4n2 − 12r2

[χ2l2 + 4n2 + 4r2]2

+
32
π2

∞∑
l,n,r,q=1

(−1)l+n+r+q χ2l2 + 4n2 + 4r2 − 12q2

[χ2l2 + 4n2 + 4r2 + 4q2]2

⎫⎬
⎭ .

(40)

For a fixed value of L, as β → ∞ (T = 0), the pressure is neg-
ative, given by PB(L) � −0.036L−4, corresponding to an attractive
force between opposite faces of the cube. On the other hand, PB(β) ≈
7π2/(180β4) > 0 as β → 0 and, therefore, a transition from negative
to positive values of the pressure occurs by raising the temperature.
The critical temperature for such a transition depends on L and is
determined by the value of χ (χ0) for which PB(χ, L) = 0; numerically,
we find χ0 = 2.283 and the critical curve is given by

Tc(L) =
1

χ0L
� 1

2.283L
. (41)

From this expression we can obtain the value of Tc corresponding to
a given value of L. For L � 1 fm, which is a value of the order of
confining lengths for hadrons, we obtain Tc � 0.438 fm−1 � 87.6 MeV .
This gives us a crude estimate of the Casimir contribution of a single
quark flavor for the deconfining transition for hadrons.

5. Concluding remarks

We have shown that generalizations of the TFD Bogoliubov transfor-
mation allow a calculation, in a very direct way, of the Casimir effect
at finite temperature for cartesian confining geometries. This approach
is applied to both bosonic and fermionic fields, making very clear the
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differences between these cases. It is worth to emphasize that the pro-
cedure developed here is simpler and more direct than the standard
techniques, such as the sum of modes and the image method.

It is important to stress that use of the generalised Bogoliubov
transformatin provides an elegant physical interpretation of the Casimir
effect as a consequence of the condensation in the vacuum of the fermion
or the boson field. The method can be extended to other geometries
such as spherical or cylindrical.

It is interesting to note that we have calculated the casimir pressure
at finite temperature for parallel plates, a square wave-guide and a cubic
box. For a fermion field in a cubic box with an edge of 1.0 fm, which is
of the order of the nuclear dimensions, the critical temperature is 100
MeV. Such a result will have implications for confinement of quarks in
nucleons. However such an analysis will require a realistic calculation,
a spherical geometry, with full account of color and flavor degrees of
freedom of quarks and gluons.
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A force from nothing onto nothing: Casimir effect between
bubbles in the Fermi sea

Andreas Wirzba
Institut f-ur Kernphysik (Theorie), Forschungszentrum J-ulich
D-52425 J-ulich, Germany

Abstract.
We report on a new force that acts on cavities (literally empty regions of space) when

they are immersed in a background of non-interacting fermionic matter fields. The interaction
follows from the obstructions to the (quantum mechanical) motions of the fermions in the
Fermi sea caused by the presence of bubbles or other (heavy) particles immersed in the latter,
as, for example, nuclei in the neutron sea in the inner crust of a neutron star.

This effect resembles the traditional Casimir effect, which describes the attraction between
two parallel metallic mirrors in vacuum. Here, however, the fluctuating (bosonic) electro-
magnetic fields are replaced by fermionic matter fields. Furthermore, the Casimir energy is
inferred from the geometry-dependent part of the density of states, and its sign is not fixed,
but oscillates according to the relative arrangement and distances of the cavities.

In fact, with the help of Krein’s trace formula, the quantum field theory calculation is
mapped onto a quantum mechanical billiard problem of a point-particle scattered off a fi-
nite number of non-overlapping spheres or disks; i.e. classically hyperbolic (or even chaotic)
scattering systems.

This topic is relevant to the physics of neutron stars (nuclei or quark bubbles embedded in
a neutron gas), to dilute Bose-Einstein-condensate bubbles inside the background of a Fermi-
Dirac condensate, to buckyballs in liquid mercury and to superconducting droplets in a Fermi
liquid.

Keywords: Casimir effect, Fermi sea, scattering problem, Krein formula

1. Introduction

1.1. The original Casimir effect

In 1948 the Dutch physicist H.B.G. Casimir predicted a remarkable effect
(Casimir, 1948): two parallel, very closely spaced, flat, uncharged, metallic
plates of separation L attract each other in vacuum with a force per area A

F ||(L)
A

= − �c

L4

π2

240
≈ −1.3× 10−7 1

L4
N

µm4

cm2
. (1)

The corresponding Casimir energy is given by

E ||(L) = − �c

L3

π2

720
A . (2)

Note that the Casimir force does not depend on any material constants, but is
solely formulated in terms of fundamental constants, namely the velocity of
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light, c, and Planck’s constant, � = h/2π. In contrast to the long-range 1/L2

behavior of the Coulomb force, the Casimir force varies more rapidly with
distance, i.e. as 1/L4. Whereas it is negligible at a separation of more than
1 µm, the negative pressure between the plates at a separation of e.g. 10 nm
has already the magnitude of one atmosphere.

The origin of this force can be traced back to the zero-point fluctuations of
the electromagnetic field which are modified by the addition of the two plates
relative to the free case. This induces the following change in the energy of
the vacuum: ∑∫

1
2�ωk|plates(L) −

∑∫
1
2�ωk|free, (3)

where the summation/integration accounts for all the zero-point modes (la-
beled by the wave number k, for instance) and ωk is the eigenfrequency of
the modes. As the linear dimension of the plates is of the size of hundred(s)
of µm, whereas the separation is less than 1 µm, the Casimir effect belongs to
the mesoscopic manifestations of quantum fluctuations. It is related to the van
der Waals force; note, however, that the latter is attractive at the considered
ranges.

Only in the last decade the Casimir effect has been quantitatively con-
firmed in experiment, see the pioneering experiment of S. Lamoureaux in
1997 (Lamoureaux, 1997) and of U. Mohideen and A. Roy in 1998 (Mo-
hideen and Roy, 1998). On February 9, 2001 the Casimir effect even made
it into the science section of the New York Times. In fact, the Casimir effect
was not confirmed for the original geometry of two parallel plates, which
in real life are very hard to align in such a way that they stay parallel, but
for the much simpler geometry of a sphere (or part of sphere) of radius a
opposite to one plate (Lamoreaux, 1999). For such a system, independently
of the alignment of the plate, there always exists a minimal separation L. Of
course the force (1) has to be readjusted: under the so-called proximity force
approximation (Derjaguin, Abrikosova and Lifshitz, 1956) it is given by the
following expression

F o|(L) = 2πa
E||(L)

A
= 2πa

−�c

L3

π2

720
. (4)

1.2. Casimir effect and vacuum energy in quantum field
theory

We teach our students that the infinite zero-point energy that arises when a
free relativistic scalar (or Dirac-) field theory is canonically quantized can be
subtracted (discarded) by a suitable redefinition of the energy-origin; in other
words, by normal ordering. However, the energy-origin can be re-defined only
once, and only in homogenous space (i.e. without boundary conditions) and



A force from nothing onto nothing: Casimir effect between bubbles in the Fermi sea 231

without gravity. Therefore, the Casimir energy (density) should be defined as
the difference of a (properly regularized) eigen-mode sum of a constrained
quantum field theory minus the eigen-mode sum of the corresponding free
theory:

εC = lim
V →∞

EC
V

(V : quantization box)

= lim
Λ→∞

lim
V →∞

(−1)2S︸ ︷︷ ︸
statistics

⎛
⎝ ∫∑

k,νdeg

1
2�ωk|V,Λ,C −

∫∑
k,νdeg

1
2�ωk|V,Λ,∅

⎞
⎠ , (5)

where the constraint(s) can arise from the presence of gravity (e.g. non-flat
metric), external fields (e.g. anomalies), internal fields (e.g. non-perturbative
vacuum of quantum chromodynamics (QCD) versus its perturbative one)
or from the presence of geometry-dependent boundary conditions (e.g. two
plates, two half-spheres, etc.). Here Λ stands for an UV-cutoff, the labels C
and ∅ indicate the presence or absence of a constraint, respectively. The de-
generacy factor νdeg accounts for spin and internal quantum numbers, while
the spin-statistic factor (−1)2S (with S the spin (helicity) quantum number
of the modes) signals that fluctuating relativistic (fermionic) spin-one-half
modes acquire an additional minus sign.

2. Generalizations of the concept of Casimir energy

Geometry dependence of the Casimir energy

Before 1968 everybody expected that the Casimir forces, similarly to the
van der Waals forces, always are attractive, as it is indeed the case for two
parallel plates, a plate and a sphere or two opposing spheres. Casimir even
got inspired by this to suggest in 1953 the following idea of stabilizing the
electron (Casimir, 1953): Assume that the electron has the form of a thin
spherical shell of radius a, with its electric charge e uniformly distributed
over the whole shell. Then, according to Casimir, the arising repulsive static
Coulomb energy

Eem =
e2

2a
(6)

ought to be compensated by an attractive Casimir-type energy of the form

EC ?= −C
�c

2a3
4πa2 , (7)

which, in similarity to Eq. (2), is assumed to be negative, proportional to the
area, here 4πa2, and inversely proportional to the third power of the distance
scale, here a−3. Now if the coefficient C happens to be the fine-structure

2.1.
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constant e2/4π�c, both energies would balance independently of the radius a.
Unfortunately this intriguing way of determining the fine structure constant
as ‘an exercise in calculating Bessel functions’ (paraphrasing Feynman) is
incorrect, as shown by T. Boyer in 1968 (Boyer, 1968): the Casimir force for
a spherical shell is repulsive. Balian and Bloch confirmed this in the seventies
in their calculations for the total energy of the modes inside a cavity (Balian
and Bloch, 1970): the sign of this energy characteristically depends on the
geometry of the cavity.

Utilizing the geometry dependence of the Casimir
energy

Let us now invert the logic and define the Casimir energy as the energy
resulting from the geometry-dependent part of the density of states (d.o.s.)
– a concept that is closely related to the shell correction energy in nuclear
physics:

ρ(E) ≡
∑
Ek

δ(E − Ek) = ρ0(E) + ρbulk(E) + δρC(E, geom.-dep.) , (8)

where {Ek} are the eigenenergies of the modes, ρ0 is the d.o.s. of the ho-
mogeneous background, ρbulk is the bulk d.o.s. that sums up the excluded
volume effects, surface contributions and Friedel oscillations due to the in-
troduction of each of the obstacles separately, and δρC is the Casimir-effect
related geometry-dependent part of the d.o.s. that takes into account the rela-
tive geometric arrangement of the obstacles. The integrated density of states
(or number of states, N.o.s) reads as usual

N (E) ≡
∑
Ek

Θ(E − Ek) =
∫ E

0
dE′ ρ(E′) . (9)

Now the Casimir energy can be extracted from the geometry-dependent part
of the density of states as a simple integral

EC ≡
∫

dE E δρC(E, geom.-dep.) = −
∫

dENC(E, geom.-dep.) . (10)

Generalization of the Casimir energy concept to
matter fields

Let us assume that space is not “filled” with fluctuating electromagnetic modes,
but with a gas of non-interacting (non-relativistic) fermions.

Under this scenario we have the following similarities with the ordinary
Casimir effect: In both cases, there exist modes sums

∫∑
�ωk with constant

2.2.

2.3.
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degeneracy factors. The constant weight of the fluctuating electromagnetic
modes can be traced back to the two helicity states of the photon. The con-
stancy in the degeneracy of the fermionic matter modes, on the other hand,
follows from Pauli’s exclusion principle, where the pertinent weight can be
formulated in terms of spin and isospin factors.

However, the Casimir mode summation of matter fields differs from the
one of fluctuating fields by the presence of a further independent scale, namely
the Fermi energy (i.e., the chemical potential µ at zero temperature) in addi-
tion to the geometric size and distance scales (e.g. the area A and the plate
separation L).

In the following we will consider the case of matter fields (non-relativistic
fermions) located in the space between voids or cavities, such that the matter
fields will build up a quantum pressure on the voids. Even if we assume
that the matter fields are non-interacting, an effective interaction between the
empty regions of space will still arise in the background of the fermionic
matter fields, since the cavities – depending on their geometric arrangement
– can shield the free movement of the matter modes.

Applications of this scenario exist e.g. for the inner crust of neutron stars.
Inside the neutron star, with increasing distance from the star’s surface, the
nuclei start to loose neutrons due to the increasing pressure and density.
The folklore is that below saturation density, between ρ ≈ 0.03 fm−3 and
0.1 fm−3, there exists a chain of phases (Baym, Bethe and Pethick, 1971):
The lowest density phase consists of spherical nuclei (or nuclear drops) em-
bedded in a homogeneous low-density background of neutrons. With increas-
ing density, further inside the inner crust, the spherical bubbles fuse to form
rods. More deeper inside the inner crust the rods fuse to form plate-like struc-
tures surrounded by a low-density background of neutrons. At even higher
densities, again deeper inside the inner crust, the low-density background
phase is compressed to tubes, surrounded now by a high-density nuclear
background phase. Then these tubes spallate into low-density bubbles sur-
rounded by the high-density background. Eventually the density at about
0.1 fm−3 is high enough, such that the low-density bubbles are squeezed to
zero size and a uniform high-density nuclear phase emerges. Note that the
liquid drop model was used to predict these various phases via the interplay
between the Coulomb and surface energy terms and that the phase differ-
ences are of the order of a few keV/fm3. Aurel Bulgac and Piotr Magierski,
however, showed that the neglected shell correction energies of the surround-
ing background phases in the presence of bubbles and cylindrical tubes (in
other words, the Casimir energies) are of the same order of magnitude (Bul-
gac and Magierski, 2001). They argued that a chaotic transition between
the low-density nuclei phase and the high-density uniform phase is rather
more likely than the above-mentioned regular chain between the so-called
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meatball, spaghetti, and lasagne phases which received their descriptive nick-
names from the Italian cuisine.

The investigation of bubbles inside a Fermi gas background is also of
relevance for the inner core of neutron stars; namely, under the assumption
that quark droplets will form, there exists a similar pattern with the quark
droplet phase taking over the role of the embedded nuclei.

Finally, also in the laboratory the study of the interaction of cavities in-
side a uniform fermionic background is of importance (Bulgac and Wirzba.,
2001). Examples are C60 buckyballs immersed in liquid mercury. The liquid
metal itself serves only as free-moving shapeable neutral background which
provides the Fermi gas environment by its conductance electrons, in which
the buckyballs “drill” the voids. Another example would be buckyballs in
liquid 3He as Fermi gas. Finally, in the future, boson condensate cavities
immersed in dilute atomic Fermi condensates could serve as further system
with which the effective interactions of cavities inside a Fermi gas can be
studied in the lab.

3. Casimir calculation mapped to a scattering problem

Notethat the Casimir calculation under the presence of fermionic(non-relativistic)
matter fields simplifies enormously since the presence of the second scale, the
chemical potential µ=�

2k2
F /2m or the Fermi momentum kF , provides for a

natural UV -cutoff, ΛUV ≡ µ and kUV ≡ kF . Therefore the Casimir energy
for fermions between two impenetrable (parallel) planes at a distance L is
simply given as

EC = µ F (kF L) , (11)

namely in terms of the product of the chemical potential times a finite func-
tion of the dimensionless argument kF L.

For more complicated geometries, the computations become more and
more involved as it is the case for the ordinary electromagnetic Casimir ef-
fect. However, Casimir calculations of a finite number of immersed non-
overlapping spherical voids or rods, i.e. spheres and cylinders in 3 dimensions
or disks in 2 dimensions, are still doable. In fact, these calculations simplify
because of Krein’s trace formula (Krein, 2004; Beth and Uhlenbeck, 1937)

δρ(E) = ρ̄(E)− ρ̄0(E) =
1

2πi

d

dE
tr lnSn(E) , (12)

which links the variation in the level density δρ(E) (the difference of the total
density of states and the background one) to the energy-variation of the phase
shift 1

2i ln detSn(E) of the n-sphere/disk scattering matrix Sn(E). Note that
the level densities on the left hand side are averaged over an energy-interval
larger than the mean-level spacing in the volume V of the entire system
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in order to match the continuous expression on the right hand side. Thus
the Casimir calculation can be mapped to a quantum mechanical “billiard”
problem: the quantum mechanics of a classically hyperbolic or even chaotic
scattering of a point-particle off an assemble of n non-overlapping spheres (or
disks) (Eckhardt, 1987; Gaspard and Rice, 1989; Cvitanovic and Eckhardt,
1989; Henseler, Wirzba and Guhr, 1997).

In this way, the geometry-dependent Casimir fluctuations can be extracted
from the multiple-scattering part of the scattering matrix. The determinant
of the n-sphere/disk S-matrix can be separated into a product of the deter-
minants of the 1-sphere/disk S-matrices S1(E, ai), where ai are the radii of
the single scatterers, and the ratio of the determinant of the multi-scattering
matrix M(k) and its complex conjugate (A. Wirzba., 1999):

det Sn(E) =
n∏

i=1

det S1(E, ai)
det (M(k∗))†

det M(k)
. (13)

Here the energy E and the wave number k are related as E = �
2k2/2m.

When inserted into Krein’s formula, the product over the single-scatterer de-
terminants generates just the bulk (or Weyl term) contribution to the density
of states

ρ̄bulk(E, {ai}) ≡
n∑

i=1

ρ̄Weyl(E, ai) =
1

2πi

d

dE

n∑
i=1

ln detS1(E, ai) , (14)

which takes care of the excluded volume terms and the surface terms (in-
cluding Friedel oscillations). The geometry-dependent part of the d.o.s. is
therefore given by a modified Krein equation (Bulgac and Wirzba., 2001)
which is formulated in terms of the multi-scattering matrix instead of the full
S-matrix

δρ̄C(E, {ai}, {�rij}) = ρ̄(E)− ρ̄0(E)−
n∑

i=1

ρ̄Weyl(E, ai)

= − 1
π

Im
(

d

dE
ln detM(E)

)
, (15)

where �rij are the relative separation vectors between the centers of the spheres
(or disks). The pertinent Casimir energy can then be read off from the energy
integral

EC =
∫ µ

0
dE (E − µ) δρ̄C = −

∫ µ

0
dENC . (16)

Note that the chemical potential µ serves here as a UV cutoff. Thus the
integral is finite. Even if µ → ∞, the integral is at least conditionally con-
vergent, because of the oscillating nature of δρ̄C(E) as a function of E.
Note that it does not matter whether a canonical-ensemble formulation or a
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grandcanonical-ensemble formulation is used to calculate the Casimir energy.
In the former the total number of fermions of the geometry-dependent system
is the same as the one of the reference system (which is defined by infinitely
far separated cavities)

N =
∫ µ

0
dE (ρ̄0 + ρ̄bulk + δρ̄C) =

∫ µ0

0
dE (ρ̄0 + ρ̄bulk) , (17)

whereas the chemical potentials µ and µ0 are different in general. In the latter
formulation the chemical potentials of both systems are the same. The results
of both formulations merge when the system volume V of the non-interacting
fermionic background fields is taken to infinity (Bulgac and Wirzba., 2001).

4. The calculation

The problem is not simplified by Eq. (15), since there exists a closed-form
expression for the multi-scattering matrix for n spheres in terms of spherical
Bessel and Hankel functions, spherical harmonics and 3j-symbols, where l, l′
and m, m′ are total angular momentum and z-projection quantum numbers,
respectively (Henseler, Wirzba and Guhr, 1997):

M jj′
lm,l′m′ = δjj′δll′δmm′ + (1− δjj′) i2m+l′−l

√
4π(2l+1)(2l′+1)

×
(

aj

aj′

)2
jl(kaj)

h
(1)
l′ (kaj′)

∞∑
l̃=0

l′∑
m̃=−l′

√
2l̃ + 1

× il̃
(

l̃ l′ l
0 0 0

)(
l̃ l′ l

m−m̃ m̃ −m

)

×Dl′
m′,m̃(j, j′)h

(1)

l̃
(krjj′) Y m−m̃

l̃
(r̂(j)

jj′ ) (18)

The indices j, j′ = 1, 2, · · · , n are the labels of the n spheres of radii aj and

mutual separation rjj′ . The vectors r̂
(j)
jj′ are the unit vectors pointing from the

origin of sphere j (as measured in its local coordinate system) to the origin of
sphere j′. The local coordinate system of sphere j′ is mapped onto the one of
sphere j with the help of the rotation matrix Dl′

m′,m̃(j, j′).
For small scatterers the expression of the multi-scattering matrix simpli-

fies, since only s-wave scattering is important

M jj′(E) ≈ δjj′ − (1− δjj′) fj(E)︸ ︷︷ ︸
s-wave

exp(ikrjj′)
rjj′

+O(p-wave) , (19)

where spherical waves modulated by an s-wave amplitude propagate between
the spheres j and j′. This leads to the following expression for the integrated
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d.o.s. in the case of two small spherical cavities of common radius a and
center-to-center separation r (Bulgac and Wirzba., 2001):

N oo
C (E) = − 1

π
Im ln detMoo(E) ≈ νdeg

a2

πr2
sin[2(r − a)k] +O

(
(ka)3

)
,

(20)
where νdeg is the spin/isospin–degeneracy factor. This expression should be
compared with the semiclassical approximation that sums up all partial waves

N oo
C,scl(E) = νdeg

a2

4πr(r − 2a)
sin[2(r − 2a)k︸ ︷︷ ︸

Spo(k)/�

] . (21)

zwiller,1990), namely the contribution of the two-bounce periodic orbit between
the two spheres without repetition, with the action Spo(k)=2(r−2a)k where
2(r−2a) is the length of the geometric path. Note that the semiclassical result
is suppressed by a factor of 1/4 in comparison to the small-scatterer one.

As shown in Ref. (Bulgac and Wirzba., 2001) the semiclassical result is a
very good approximation of the full quantum mechanical result calculated
from the exact expression (18) of the two-sphere scattering matrix when
plugged into the modified Krein formula (15).

Therefore the Casimir energy for the two spherical cavities inside a non-
relativistic non-interacting fermion background can be approximated in terms
of a spherical Bessel function j1 as

Eoo
C = −

∫ µ(kF )

0
dEN oo

C (E) ≈ −νdeg µ
a2

2πr(r − 2a)
j1[2(r − 2a)kF ] , (22)

which is valid for kF a > 1. Note that this expression is long-ranged, i.e. 1/L3

with L = r− 2a, in comparison to the molecular van der Waals energies. For
the sphere-plate system the Casimir energy reads instead

Eo|
C ≈ −νdeg µ

a

2π(r − a)
j1[2(r − a)kF ] , (23)

which scales even as 1/L2 with L = r − a. Note that in both cases, the
two-sphere system or the sphere-plate system, the Casimir energy does not
have a fixed sign in contrast to the standard Casimir effect with fluctuating
electromagnetic or scalar fields between these obstacles. Instead the sign of
the Casimir energy oscillates as a function of the action of the two-bounce
orbit. Therefore, under an increase of the distance between the cavities, the
Casimir energy, which starts out to be attractive, can be made repulsive,
and under a further increase of this distance, it can become attractive again,
with a decreased strength of course. The reason for this new type of behavior
of a Casimir energy is the presence of a new scale in addition to the length

In fact, the latter is the leading contribution to Gutzwiller’s trace formula (Gut-
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scales, namely the chemical potential µ. In fact, the strength of this fermi-
onic Casimir energy scales with the strength of the chemical potential and
therefore with the UV-cutoff of the theory. Also this behavior distinguishes
the fermionic Casimir effect from the standard Casimir effect: the latter is
governed by the infrared behavior of the corresponding density of states.

In Ref. (Bulgac and Wirzba., 2001) the Casimir energy was also calculated
for three and even four spherical cavities inside the non-relativistic fermion
background, where the spheres were centered at the vertices of an equilat-
eral triangle or tetrahedron, respectively. In agreement with the semiclassical
scenario we expect the presence of many-cavity contributions to the Casimir
energy. However, as shown in Ref. (Bulgac and Wirzba., 2001) the three- and
four-body contributions in the equilateral triangle case and in the equilateral
tetrahedron case are completely dominated by the pairwise two-body con-
tributions. This does not come as a surprise if one takes the semiclassical
periodic orbit picture into account, namely the increase of the instabilities of
the periodic orbits with increasing bounce number: as every billiard player
knows, it is difficult to make long shots and even more difficult to make
shots with many bounces – the slightest error would ruin the shot. Since
the pairwise interactions dominate and since these interactions oscillate with
increasing distance between the cavities, systems with a large number of cav-
ities will arrange themselves as superlattices with discrete lattice constants
determined by the minima of the two-cavity Casimir energy.

5. Summary

We have shown that there exists an effective interaction between voids inside
a Fermi gas background, even if the fermions are non-interacting. This new
form of Casimir energy is neither attractive nor repulsive, but oscillates ac-
cording to the relative arrangement of the cavities. The Casimir contributions
can well be approximated semiclassically. Furthermore, there exist many-
body Casimir contributions in n-sphere systems. However, these terms are
short-ranged and dominated by long-ranged two-body interactions – even for
small separations or small scatterers. In Ref. (Bulgac and Wirzba., 2001) only
results for symmetric arrangements of spheres were presented. However, tests
of various asymmetrical configurations of three and four spheres show the
same general pattern: the integrated d.o.s. NC(E) can be represented fairly
accurately as a sum of the corresponding pairwise contributions. The spheres
can be replaced with other objects, if the curvature radii are larger than the
Fermi wave length. The effects of finite surface thickness can be considered as
Weyl-term contributions and do not affect the geometrical Casimir part if the
objects do not overlap. In the case of point scatterers (curvature radii smaller
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than the Fermi wave length) the pairwise additivity is reasonably well satis-
fied as well. The most important application are nuclei immersed in neutron
gas in a neutron star crust: The Casimir interactions are of the same order of
magnitude (∼ keV/fm3) as the energy differences between various liquid drop
phases (Bulgac and Magierski, 2001). Since the Casimir interaction between
bubbles is oscillating and rather long-ranged (in comparison to van der Waals
terms), disordered lattices are expected as emerging structures. The disorder
can be further enhanced by finite temperature T and corrugated surfaces. The
most promising case in the laboratory are buckyball-lattices in liquid mercury
or liquid 3He.

In Ref. (Bulgac, Magierski and Wirzba, 2004) new results for supercon-
ducting grains embedded in a normal Fermi gas were presented. The pairing
interaction induces an enhancement of the Casimir contributions, because of
the dominance of the particle-hole terms over the particle-particle and hole-
hole contributions. Semiclassically, this can be explained by the focusing (and
only for large separations defocusing) nature of the Andreev reflections (An-
dreev, 1964) in comparison to specular reflections at normal impenetrable
boundaries.

Finally note that the map method onto a scattering problem can be general-
ized from the Casimir effect in the Fermi sea to other systems; it is especially
applicable for the case of a fluctuating scalar field between two spheres or a
sphere and a plate (with Dirichlet boundary conditions) (Gies, Langfeld and
Moyaerts, 2003). Whereas the s-wave approximation in the small-scatterer
limit does not affect the fermionic Casimir energy, as it is governed by the
UV part of the d.o.s. (i.e. by the contribution at the chemical potential), it
is essential for the large distance physics of the fluctuating-scalar Casimir
effect, as the latter is governed by the infrared behaviour of the d.o.s. Re-
member the relative factor of four between the s-wave and semiclassical
result of the two-cavity d.o.s. The same expressions are valid for the d.o.s. of
the fluctuating-scalar Casimir effect. Therefore, we expect that the Casimir
energy for two far separated Dirichlet spheres is enhanced by a factor of four
relative to the result of the proximity force approximation which is only valid
for small separations. For the sphere-plate configuration the corresponding
enhancement for large separations is a factor of two, because only one sphere
is involved. In the case of the electromagnetic Casimir effect, the s-wave
dominance at large separation should probably be replaced by a p-wave dom-
inance, since the charge-neutrality of the sphere forbids a monopole term,
whereas a dipole contribution is allowed.
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Abstract. This article starts with an introduction into quantum chaos and its re-
lationship to classical chaos. The Bohigas-Giannoni-Schmit conjecture is formulated
and evaluated within the random-matrix theory. The objective of the presentation is
twofold and begins with recent results on quantum chromodynamics and the quark-
gluon plasma. We conclude with recent research work on the spectroscopy of baryons.
Within the framework of a relativistic constituent quark model we investigate the
excitation spectra of the nucleon and the delta with regard to a possible chaotic be-
havior for the cases when a hyperfine interaction of either Goldstone-boson-exchange
or one-gluon-exchange type is added to the confinement interaction. Agreement with
the experimental hadron spectrum is established.

Keywords: quantum chaos

1. Classical and quantum chaos

In order to understand in which manner classical chaos is reflected in
quantum systems, the question has been posed: Are there differences
in the eigenvalue spectra of classically integrable and non-integrable
systems? Billiards became a preferred playground to study both the
classical and quantum case. With the arrival of computers with in-
creasing power in the late seventies diagonalization of matrices with
reasonable size became possible. The behavior of the distribution of the
spacings between neighboring eigenvalues turned out to be a decisive
signature. In 1979 McDonald and Kaufman performed a comparison
between the spectra from a classically regular and a classically chaotic
system (McDonald and Kaufman, 1979). As seen in Fig. 1 they ob-
served a qualitatively different behavior between the nearest-neighbor
spacing distribution of the circle and the stadium. In the first case the
spacings are clearly concentrated around zero while they show repelling
character in the second case. There were several authors contributing
to this discussion and we mention the papers by Casati, Valz-Gris,
and Guarneri (Casati, Valz-Gris and Guarneri, 1980), by Berry (Berry,
1981), by Robnik (Robnik, 1984) and by Seligman, Verbaarschot, and
Zirnbauer (Seligman, Verbaarschot and Zirnbauer, 1984).
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Figure 1. Nearest-neighbor spacing distributions of eigenvalues for a circle (left) and
the Bunimovich stadium (right). Taken from Ref. (McDonald and Kaufman, 1979).

Figure 2. Nearest-neighbor spacing distributions of eigenvalues for the Sinai billiard
with the Wigner surmise compared to the Poisson distribution. The histogram com-
prises about 1000 consecutive eigenvalues. Taken from Ref. (Bohigas, Giannoni and
Schmit, 1984).

Very accurate results were obtained for the classically chaotic Sinai
billiard by Bohigas, Giannoni, and Schmit (see Fig. 2) which led them
to the important conclusion (Bohigas, Giannoni and Schmit, 1984):
Spectra of time-reversal invariant systems whose classical analogues
are K systems show the same fluctuation properties as predicted by
the Gaussian orthogonal ensemble (GOE) of random-matrix theory
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(RMT). K systems are most strongly mixing classical systems with a
positive Kolmogorov entropy. The conjecture turned out valid also for
less chaotic (ergodic) systems without time-reversal invariance leading
to the Gaussian unitary ensemble (GUE).

2. Random matrix theory

In lack of analytical or numerical methods to obtain the spectra of
complicated Hamiltonians, Wigner and Dyson analyzed ensembles of
random matrices and were able to derive mathematical expressions.
A Gaussian random matrix ensemble consists of square matrices with
their matrix elements drawn from a Gaussian distribution

p(x) =
1√
2πσ

exp

(
− x2

2σ2

)
. (1)

One distinguishes between three different types depending on space-
time symmetry classified by the Dyson parameter βD = 1, 2, 4 (Guhr,
Muller-Groeling and Weidenmuller, 1998). The Gaussian orthogonal
ensemble (GOE, βD = 1) holds for time-reversal invariance and rota-
tional symmetry of the Hamiltonian

Hmn = Hnm = H∗
nm . (2)

When time-reversal invariance is violated and

Hmn = [H†]mn , (3)

one obtains the Gaussian unitary ensemble (GUE, βD =2). The Gaussian
symplectic ensemble (GSE, βD = 4) is in correspondence with time-
reversal invariance but broken rotational symmetry of the Hamiltonian

H(0)
nm1I2 − i

3∑
γ=1

H(γ)
nmσγ , (4)

with H(0) real and symmetric and H(γ) real and antisymmetric.
The functional form of the distribution P (s) of the neighbor spacings

s between consecutive eigenvalues for the Gaussian ensembles can be
approximated by

PβD
(s) = aβD

sβD exp
(
−bβD

s2
)

, (5)
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which is known as the Wigner surmise and reads for example in the
case βD = 2 (GUE)

P (s) =
32
π2

s2 exp
(
− 4

π
s2
)

. (6)

If the eigenvalues of a system are completely uncorrelated one ends up
with a Poisson distribution for their neighbor spacings

P (s) = exp (−s) . (7)

An interpolating function between the Poisson and the Wigner distrib-
ution is given by the Brody distribution (Brody, 1973) reading for the
GOE case

P (s, ω) = α (ω + 1)sω exp
(
−α sω+1

)
, α = Γω+1

(
ω + 2
ω + 1

)
, (8)

with 0 ≤ ω ≤ 1.
Remarkably, the Wigner distribution could be observed in a number

of systems by physical experiments and computer simulations evading
the whole quantum world from atomic nuclei to the hydrogen atom in a
magnetic field to the metal-insulator transition (Guhr, Muller-Groeling
and Weidenmuller, 1998). In this contribution we address the situation
in QCD and in hadrons.

3. Quantum chromodynamics

The Lagrangian LQCD of quantum chromodynamics (QCD) consists of
a gluonic part LQCD

G and a part LQCD
F from the quarks

LQCD = LQCD
G + LQCD

F

= −1
4
F a

µν(x)Fµν
a (x) +

Nf∑
f=1

ψ̄f (x)(iD/−mf )ψf (x) , (9)

with the Dirac spinor ψf , the quark mass mf , the number of flavors
Nf , and the generalized field strength tensor

Fµν
a (x) = ∂µAν

a(x)− ∂νAµ
a(x)− gfabcA

µ
b (x)Aν

c (x) , (10)

where the gauge field Aµ
a with the SU(3) indices a, b, c = 1, . . . , 8, the

coupling constant g and the structure constants fabc of SU(3) enter. The
main object of study is the eigenvalue spectrum of the Dirac operator
of QCD in 4 dimensions

λa

2
= γµ∂µ + igγµAa

µ

λa

2
, (11)
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with the λa the generators of the SU(3) color-group (Gell-Mann ma-
trices). Discretizing the Dirac operator on a lattice in Euclidean space-
time and applying the Kogut-Susskind (staggered) prescription, leads
to the matrix

(MKS)aa′
xx′ =

1
2a

∑
µ

[
δx+µ̂,x′ Γxµ Uaa′

xµ − δx,x′+µ̂ Γx′µ U † aa′
x′µ

]
, (12)

where

Uxµ = exp
(

igAa
µ(x)

λa

2

)
(13)

are the gauge field variables on the lattice and Γxµ a representation of
the γµ-matrices.

In random matrix theory (RMT), one has to distinguish several
universality classes which are determined by the symmetries of the
system. For the case of the QCD Dirac operator, this classification
was done in Ref. (Verbaarschot, 1994). Depending on the number of
colors and the representation of the quarks, the Dirac operator is de-
scribed by one of the three chiral ensembles of RMT. As far as the
fluctuation properties in the bulk of the spectrum are concerned, the
predictions of the chiral ensembles are identical to those of the ordinary
ensembles in Sect. 2 (Fox and Kahn, 1964). In Ref. (Halasz and Ver-
baarschot, 1964), the Dirac matrix was studied for color-SU(2) using
both Kogut-Susskind and Wilson fermions which correspond to the
chiral symplectic (chSE) and orthogonal (chOE) ensemble, respectively.
Here (Pullirsch et al, 1998), we additionally study SU(3) with Kogut-
Susskind fermions which corresponds to the chiral unitary ensemble
(chUE). The RMT result for the nearest-neighbor spacing distribution
can be expressed in terms of so-called prolate spheroidal functions, see
Ref. (Mehta, 1991). A very good approximation to P (s) is provided by
the Wigner surmise for the unitary ensemble,

PW(s) =
32
π2

s2e−4s2/π . (14)

We generated gauge field configurations using the standard Wilson
plaquette action for SU(3) with and without dynamical fermions in
the Kogut-Susskind prescription. We have worked on a 63 × 4 lattice
with various values of the inverse gauge coupling β = 6/g2 both in
the confinement and deconfinement phase. We typically produced 10
independent equilibrium configurations for each β. Because of the spec-
tral ergodicity property of RMT one can replace ensemble averages by
spectral averages if one is only interested in bulk properties.
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The Dirac operator, D = ∂ + igA, is anti-Hermitian so that the
eigenvalues λn of iD are real. Because of {D, γ5} = 0 the non-zero λn

occur in pairs of opposite sign. All spectra were checked against the
analytical sum rules

∑
n λn = 0 and

∑
λn>0 λ2

n = 3V , where V is the
lattice volume. To construct the nearest-neighbor spacing distribution
from the eigenvalues, one first has to “unfold” the spectra (Bohigas and
Giannoni, 1984).
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Figure 4. Nearest-neighbor spacing distribution P (s) for the free Dirac operator on
a 53 × 47 × 43 × 41 lattice compared with a Poisson distribution, e−s.

Figure 3 compares P (s) of full QCD with Nf = 3 flavors and quark
mass ma = 0.05 to the RMT result. In the confinement as well as in
the deconfinement phase we observe agreement with RMT up to very
high β (not shown). The observation that P (s) is not influenced by the
presence of dynamical quarks is expected from the results of Ref. (Fox
and Kahn, 1964), which apply to the case of massless quarks. Our
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Figure 5. Nearest-neighbor spacing distribution P (s) for U(1) gauge theory on
an 83 × 6 lattice in the confined phase (left) and in the Coulomb phase (right).
The theoretical curves are the chUE result, Eq. (14), and the Poisson distribution,
PP(s) = exp(−s).

results, and those of Ref. (Halasz and Verbaarschot, 1964), indicate
that massive dynamical quarks do not affect P (s) either.

No signs for a transition to Poisson regularity are found. The decon-
finement phase transition does not seem to coincide with a transition
in the spacing distribution. For very large values of β far into the
deconfinement region, the eigenvalues start to approach the degenerate
eigenvalues of the free theory, given by λ2 =

∑4
µ=1 sin2(2πnµ/Lµ)/a2,

where a is the lattice constant, Lµ is the number of lattice sites in the
µ-direction, and nµ = 0, . . . , Lµ − 1. In this case, the nearest-neighbor
spacing distribution is neither Wigner nor Poisson. It is possible to
lift the degeneracies of the free eigenvalues using an asymmetric lat-
tice where Lx, Ly, etc. are relative primes and, for large lattices, the
distribution is then Poisson, PP(s) = e−s, see Fig. 4.

We have also investigated the staggered Dirac spectrum of 4d U(1)
gauge theory which corresponds to the chUE of RMT but had not
been studied before in this context. At βc ≈ 1.01 U(1) gauge theory
undergoes a phase transition between a confinement phase with mass
gap and monopole excitations for β < βc and the Coulomb phase which
exhibits a massless photon for β > βc. As for SU(2) and SU(3) gauge
groups, we expect the confined phase to be described by RMT, whereas
free fermions are known to yield the Poisson distribution (see Fig. 4).
The question arose whether the Coulomb phase would be described by
RMT or by the Poisson distribution (Berg et al, 1999). The nearest-
neighbor spacing distributions for an 83×6 lattice at β = 0.9 (confined
phase) and at β = 1.1 (Coulomb phase), averaged over 20 independent
configurations, are depicted in Fig. 5. Both are consistent with the
chUE of RMT.
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4. Hadrons

Taking the experimentally measured mass spectrum of hadrons up to
2.5 GeV from the Particle Data Group, Pascalutsa (2003) could show
that the hadron level-spacing distribution is remarkably well described
by the Wigner surmise for β = 1 (see Fig. 6). This indicates that
the fluctuation properties of the hadron spectrum fall into the GOE
universality class, and hence hadrons exhibit the quantum chaos phe-
nomenon. One then should be able to describe the statistical properties
of hadron spectra using RMT with random Hamiltonians from GOE
that are characterized by good time-reversal and rotational symmetry.
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Figure 6. Histograms of the nearest-neighbor mass spacing distribution for hadron
states with same quantum numbers. Curves represent the Poisson (dashed) and
Wigner (solid) distributions. Taken from Ref. (Pascalutsa, 2003).

In order to test this experimental finding we are comparing with the
eigenvalues of a Hamiltonian for a realistic quark model, namely the
Goldstone-boson-exchange (GBE) constituent quark model (Glozman
et al, 1998). It includes the kinetic energy in relativistic form

H0 =
3∑

i=1

√
�p 2

i + m2
i , (15)

with mi the masses and �pi the 3-momenta of the constituent quarks.
The interaction between two constituent quarks i, j

V (ij) = Vconf(ij) + Vχ(ij) (16)

is given by a confinement potential in linear form

Vconf(ij) = V0 + Crij (17)



Quantum chaos in QCD and hadrons 251

Figure 7. Low lying nucleon (left plot) and delta (right plot) states with total spin
and parity Jπ. The left and right bars are the theoretical energies predicted from
the GBE and OGE models as described in the text, respectively. The shaded boxes
represent the experimental energies with their uncertainties (Eidelman et al, 2004).

and a hyperfine interaction consisting of only the spin-spin part of the
pseudoscalar-meson-exchange potentials

Vχ(ij) =
[∑3

F=1 Vπ(rij)λF
i λF

j +
∑7

F=4 VK(rij)λF
i λF

j

+Vη(rij)λ8
i λ

8
j + 2

3Vη′(rij)
]
�σi · �σj .

(18)

Here rij is the distance between the quarks, �σi are the Pauli spin
matrices and λi the Gell-Mann flavor matrices of the individual quarks.
This kind of interaction is motivated by the spontaneous breaking of
chiral symmetry. As a consequence constituent quarks and Goldstone
bosons should be the appropriate effective degrees of freedom at low
energies. Baryons are then assumed to be bound states of three con-
fined constituent quarks with a hyperfine interaction relying on the
exchange of the Goldstone bosons. Due to the specific flavor dependence
in Eq. (18) a reasonable agreement between the spectra of the low
lying light and strange baryon states calculated from the model and
the experimental spectra could be achieved. In particular the ordering
of the excited states with respect to their parities comes out correctly
as is demonstrated in Fig. 7. It is interesting to notice that both the
experiment and the numerical treatment have their problems to resolve
the higher excited states.

In order to investigate the influence of the hyperfine interaction we
also analyze the nearest-neighbor spacings obtained with the confine-
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ment potential without the hyperfine interaction Vχ and with a model
consisting of a different kind of hyperfine interaction which is based
on one-gluon exchange (OGE). This was traditionally used in con-
stituent quark models and has a flavor independent spin-spin potential.
Therefore it has principal problems in reproducing the phenomenolog-
ical ordering of the low lying excited nucleon states. Nevertheless, for
comparison we consider here a simple version of such a model, i.e., a
reparametrization of the Bhaduri, Cohler, and Nogami model consisting
of a potential of the form

V (ij) = V0 + Crij −
2b

3rij
+

αs

9mimj
Λ2 e−Λrij

rij
�σi�σj , (19)

and also a relativistic kinetic energy term in its Hamiltonian (Theussl
et al, 2001). The spectra of the low lying nucleon and delta states
calculated with this model are inserted in Fig. 7.

In Fig. 8 we present our theoretical results of the nearest-neighbor
spacing distribution for the nucleon and the delta. Both the hyperfine
interaction of either Goldstone-boson exchange and one-gluon exchange
type yield spacing distributions corresponding to the GOE. One ob-
serves a preference for the GOE from the linear rise at the origin
while the other ensembles are quadratic or quartic (cf. Eq. 5). It turns
out that the linear confinement potential alone without reproducing
the spectra yields eigenvalues with reduced correlations between their
neighbors and thus leading to a Poisson distribution, as seen clearly
from the nucleon in Fig. 8.

5. Conclusion

We have outlined the universal applicability of random-matrix the-
ory and have presented our studies of quantum chromodynamics and
hadrons. Concerning QCD, we were able to demonstrate that the nearest-
neighbor spacing distribution P (s) of the eigenvalues of the Dirac oper-
ator agrees perfectly with the RMT prediction both in the confinement
and quark-gluon plasma-phase. This means that QCD is governed by
quantum chaos in both phases. We could show that the eigenvalues
of the free Dirac theory yield a Poisson distribution related to regu-
lar behavior. Our investigations tell us that the critical point of the
spontaneous breaking of chiral symmetry does not coincide with a
chaos-to-order transition. Concerning quarks building hadrons, we em-
ployed a relativistic quark potential model allowing for meson exchange
or one-gluon exchange. Computing the spectrum of the nucleon and
delta baryon indicates a spacing distribution, P (s), favoring the GOE
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Figure 8. Histograms of the nearest-neighbor spacing distribution for the nucleon
(left plots) and the delta (right plots). The data is for Goldstone-boson exchange
and for one-gluon exchange compared to a pure linear confinement potential of the
same strength. Curves represent the Poisson and the GOE-Wigner distributions.
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of RMT. A linear confinement potential alone without reproducing the
level ordering is not enough to obtain the correct fluctuations between
the eigenvalues. Our results are in agreement with an analysis of the
experimental mass spectrum of hadrons from the Particle Data Tables.
Invoking the Bohigas-Giannoni-Schmit conjecture, we conclude that
not only the quarks but also the hadrons show evidence of quantum
chaos.
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QCD instanton vacuum effective action
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Abstract. Low-momentum quark determinant and effective action in the presence
of current quark mass and external flavor fields is derived. The results of the calcu-
lations of various correlators are briefly presented. We conclude that, this approach
is a reliable tool for the hadron physics, especially including strange quarks.

Keywords: QCD, instanton, vacuum, quark, action, chiral symmetry.

Introduction

Classical vacuum in non-abelian gauge theory is infinitely degenerate
and numbered by Chern-Simons number NCS of vacuum gauge fields
Aa

i :

NCS =
∫

d3x K0 =
1

16π2

∫
d3x εijk

(
Aa

i ∂jA
a
k +

1
3
εabcAa

i A
b
jA

c
k

)
.

Since under large gauge transformations: Ai ⇒ U †AiU+iU †∂iU, NCS ⇒
NCS + NW where NW is the winding number of the gauge transforma-
tion:

NW =
1

24π2

∫
d3x εijk

[
(U †∂iU)(U †∂jU)(U †∂kU)

]
,

NCS can be considered as a collective coordinate. Potential energy den-
sity as a function of NCS is periodical. Instanton is a classical path in
Euclidean time corresponding to quantum tunneling from one minimum
of the potential energy to the neighbor one. On this path the action
is minimal( = 8π2/g2) and gauge fields are self-dual: Ga

µν = G̃a
µν . The

explicit expression for the instanton in the singular Lorenz gauge:

Aa
µ =

2ρ2Oabη̄µ
νb(x− z)µ

(x− z)2[ρ2 + (x− z)2]
, Oab = Tr(U †taUσb), OabOac = δbc.

Instanton collective coordinates are
4(position)+ 1(size) + (4Nc − 5)(color orientations)=4Nc.

Without any doubt instantons are a very important component of
the QCD vacuum. Simplest version of the instanton vacuum model
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corresponds to A =
∑

I AI +
∑

Ī AĪ . The main properties of the in-
stanton vacuum are given by the average instanton size ρ and inter-
instanton distance R. In 1982 Shuryak (E.V. Shuryak, 1982) fixed them
phenomenologically as

ρ = 1/3 fm, R = 1 fm. (1)

From that time the validity of such parameters was confirmed by the-
oretical variational calculations (D. Diakonov et.al., 1984) and recent
lattice simulations of the QCD vacuum (see (T. De Grand et.al., 1998;
M.C.Chu et.al.,1994; T. DeGrand, 2001; P. Faccioli et.al., 2003; J. Negele,
1999)). The following figure represent results of lattice calculations
(J. Negele, 1999).

It was found that normal zero-point oscillations lie on top of large
gluon fluctuations – instantons and anti-instantons with random po-
sitions and sizes. The left column – action density and the right col-
umn – topological charge density. Here instantons are peaks and anti-
instantons are holes.

The presence of instantons in QCD vacuum very strongly affects
light quark properties, owing consequent generation of quark-quark
interactions. These effects lead to the formation of the massive con-
stituent interacting quarks. This implies spontaneous breaking of chiral
symmetry (SBCS), which leads to the collective massless excitations of
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the QCD vacuum–pions. The most important degrees of freedom in
low-energy QCD are these quasiparticles. So instantons play a leading
role in the formation of the lightest hadrons and their interactions,
while the confinement forces are rather unimportant, probably.

The figure represents dynamical quark mass M(p) from a lattice
simulation (P. Bowman et.al., 2004). Here solid curve: from instantons
vacuum model no fitting (D. Diakonov et.al., 1986). So, rescattering of
massless quarks on an instanton vacuum leads to the dynamical quark
mass M(p), which is perfectly confirmed by lattice calculations.

Theproperties of the quasiparticles aredescribedby the low-momentum
(p < ρ−1) part of total quark determinant Dlow (in the field of N+

instantons and N− antiinstantons), calculated first by Lee and Bardeen
(C. Lee et.al., 1979):

Dlow = detB, Bij = imδij + aji, (2)

and aij is the overlapping matrix element of the quark zero-modes
Φ±,0 generated by instantons(antiinstantons)(in general, we define Φ±,n

by the equation (i∂̂ + Â±)Φ±,n = λnΦ±,n, where Aµ,± is a instanton
(antiinstanton) field and it was assumed the convention λ0 = 0). This
matrix element is nonzero only between instantons and antiinstantons
(and vice versa) due to specific chiral properties of the zero-modes and
equal to

a−+ = − < Φ−,0|i∂̂|Φ+,0 > . (3)

The overlapping of the quark zero-modes provides the propagation of
the quarks by jumping from one instanton to another one. So, Dlow

was reduced to the determinant of the finite matrix in the space of
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only zero-modes1. This result was reproduced further by another meth-
ods (D. Diakonov et.al., 1986), (T. Schafer et.al., 1998).

The fermionic determinant Detlow averaged over instanton & anti-
instanton positions, orientations and sizes leads to a partition function
of light quarks Z. Then the properties of the hadrons and their inter-
actions are concentrated in the QCD effective action written in terms
of the quasiparticles. This approach leads to the Diakonov-Petrov(DP)
effective action (D.I. Diakonov et.al., 1996). It was shown that DP effec-
tive action is a good tool in the chiral limit but fails beyond this limit,
checked by the calculations of the axial-anomaly low energy theorems
(M.M. Musakhanov et.al., 1997; E. Di Salvo et.al., 1998).

In detyB we observe the competition between current mass m and
overlapping matrix element a ∼ ρ2R−3. With typical instanton sizes
ρ ∼ 1/3fm and inter-instanton distances R ∼ 1fm, a is of the order
of the strange current quark mass, ms = 150 MeV . So in this case it is
very important to take properly into account the current quark mass.

Within this approach it was proposed so called improved effective
action which is more properly takes into account current quark masses
and satisfies axial-anomaly low energy theorems also beyond the chiral
limit (M.M. Musakhanov, 1999) at least at O(m).

In the present work we refine the calculations Dlow and derive the
QCD low-energy effective action not only with an account of current
quark masses but also other external V̂ = v̂ + âγ5 + s + pγ5 fields,
where v̂ = γµvµ, â = γµaµ. vµ and aµ are vector and axial fields, s
and p are scalar and pseudoscalar fields. They also may have flavor
content. We calculate this one via fermionic quasiparticle–constituent
quark representation of Dlow which provides easy way for the averag-
ing over instanton collective coordinates – positions and orientations
(M.M. Musakhanov et.al., 1997). This one provides a consistent way
for the calculation of various correlators.

We present in brief the results of the calculations of quark conden-
sate, G̃G → 2 photons correlator and QCD vacuum magnetic suscep-
tibility.

Low-momentum part of the quark determinant

The total quark determinant ≡ (i∂̂ + Â + V̂ + im) should be split
into two parts, i.e. low and high momentum (with respect to some
auxiliary parameter lying inside of an interval, R−1 � M1 � ρ−1):

1 The fermionic determinant is ∼ m|N+−N−| and strongly suppress the fluctu-
ations of |N+ − N−|. Therefore in final formulas we will assume N+ = N− =
N/2.
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Det = Detlow×high (D. Diakonov et.al., 1986). The fermion determinant
can be rewritten as a product

=
(i∂̂ + Â + V̂ + im)(i∂̂ + V̂ + iM)
(i∂̂ + Â + V̂ + iM)(i∂̂ + V̂ + im)

= Dethigh ·Detlow , (4)

where

Dethigh =
(i∂̂ + Â + V̂ + iM1)(i∂̂ + V̂ + iM)
(i∂̂ + Â + V̂ + iM)(i∂̂ + V̂ + iM1)

, (5)

Detlow =
(i∂̂ + Â + V̂ + im)(i∂̂ + V̂ + iM1)
(i∂̂ + Â + V̂ + iM1)(i∂̂ + V̂ + im)

.

So, high gets a contribution from fermion modes with Dirac eigenvalues
from the interval M1 to the Pauli–Villars mass M , and Detlow con-
siders eigenvalues less than M1. The product of these determinants is
independent on the scale2 M1. But, we may calculate both of them
only approximately. In (D. Diakonov et.al., 1986) it was demonstrated
a weak dependence of the product on M1 in the wide range of M1 which
serves as a check of the approximations.

The high-momentum part Dethigh can be written as a product of
the determinants in the field of individual instantons, while the low-
momentum one Detlow has to be treated approximately, would-be zero
modes being taken into account only.

Thus, according to this prescription, in the present case we have
to calculate the low-momentum part of the quark determinant in the
presence of instantons and also external V̂ = v̂ + âγ5 + s + pγ5 fields,
and then average it over the collective coordinates of the instantons to
find low-energy QCD partition function as a functional of the external
fields Z̃[m, V̂ ]. We specify v̂ = γµv mu, â = γµaµ, where vµ and aµ are
vector and axial fields, s and p are scalar and pseudoscalar fields they
also may have flavor content. We assume that vµ and aµ has a trivial
topological properties and their topological charges are equal to zero.
We are starting from the total quark propagator in the fields of the
instanton ensemble A and external fields V̂ :

S̃ = (i∂̂ + gÂ + V̂ + im)−1. (6)

Here we assume that with above mentioned average size of instantons
ρ ∼ 1/3 fm and average inter-instanton distance r ∼ 1 fm total in-
stanton field A may be approximated by the sum of single instantons

2 Certainly, (i∂̂+V̂ +im)

(i∂̂+V̂ +iM1)
and (i∂̂+V̂ +iM1)

(i∂̂+V̂ +iM)
must be properly normalized to free

fields case.
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Ai. Also we define quark propagator in the field of single instanton Ai

and external fields V̂ :

S̃i =
1

i∂̂ + gÂi + V̂ + im
(7)

and only in the external fields V̂ and free one:

S̃0 =
1

i∂̂ + V̂ + im
, S0 =

1
i∂̂ + im

. (8)

Then, the quark propagator S̃ can be expanded with respect to a single
instanton:

S̃ = S̃0 +
∑

i

(S̃i − S̃0) +
∑
i
=j

(S̃i − S̃0)S̃−1
0 (S̃j − S̃0) + ... (9)

We rewrite S̃i and S0 in another form

S̃i = Li
1

i∂̂ + gÂi + V̂ ′
i + im

L−1
i (10)

S̃0 = Li
1

i∂̂ + V̂ ′
i + im

L−1
i = LiS

′
0iL

−1
i (11)

where V̂ ′ = L†(i∂̂ + V̂ )L and L is P ordered exponential gauge factor:

Li(x, zi) = Pexp(i
∫ x

zi

dξµvµ(ξ) + γ5aµ(ξ)) (12)

Here xi is an instanton position.
We do not include fields s and p into L-factor since they transform

homogenously under local gauge transformations.
The main assumption of previous works (D. Diakonov et.al., 1986;

D.I. Diakonov et.al., 1996) (see also review (T. Schafer et.al., 1998))
was that at very small m the quark propagator in the single instanton
field Ai may be approximated as:

SI(m ∼ 0) ≈ 1
i∂̂

+
|Φ0I >< Φ0I |

im
(13)

It gives proper value for the < Φ0I |SI(m ∼ 0)|Φ0I >= 1
im , but in

SI(m ∼ 0)|Φ0I >= |Φ0I>
im + 1

i∂̂
|Φ0I > second extra term has a wrong

chiral properties. We may neglect this only for the m ∼ 0.
Our assumption for non-small m case is:

SI ≈ S0 + S0i∂̂
|Φ0I >< Φ0I |

cI
i∂̂S0, S0 =

1
i∂̂ + im

(14)
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where

cI = − < Φ0I |i∂̂S0i∂̂|Φ0I >= im < Φ0I |S0i∂̂|Φ0I > (15)

The matrix element < Φ0I |SI |Φ0I >= 1
im , more over

SI |Φ0I >=
1

im
|Φ0I >, < Φ0I |SI =< Φ0I |

1
im

(16)

as it must be.
In the presence of the external fields V̂ the extension of our assump-

tion is:

S̃i ≡ LiS
′
iL

−1
i = S̃0i + S̃0iLii∂̂

|Φ0i >< Φ0i|
−bi

i∂̂L−1
i S̃0i (17)

where
bi =< Φ0i|i∂̂(L−1

i S̃0Li −
1
i∂̂

)i∂̂|Φ0i > (18)

Then, Eq. (6) for the total propagator leads to:

S̃ = S̃0 + S̃0

∑
i,j

Lii∂̂|Φi0 > (
1
−D

+
1
−D

C
1
−D

+ ...)ij < Φ0j |i∂̂L−1
j S̃0

= S̃0 + S̃0

∑
i,j

Lii∂̂|Φi0 > (
1

−V − T
)ij < Φ0j |i∂̂L−1

j S̃0 (19)

where

Vij + Tij =< Φ0i|i∂̂(L−1
i S̃0Lj)i∂̂|Φ0j > (20)

Dij = δijVij ≡ biδij , Cij = (1− δij)Vij (21)

It is natural to introduce

|φ0 >=
1
i∂̂

Li∂̂|Φ0 > . (22)

It is easy to prove that the function |φ0 > has the same chiral properties
as the zero-mode function |Φ0 >. Then

S̃ − S̃0 = −S̃0

∑
i,j

i∂̂|φi0 >< φ0i|(
1

V + T
)|φj0 >< φ0j |i∂̂S̃0 (23)

with
V + T = i∂̂S̃0i∂̂. (24)

Then, from Eq. (9) and V+T we get

(S̃ − S̃0) = −
∑
i,j

< φ0,j,f,g1 |i∂̂ (S̃2
0)g1g2 i∂̂|φ0,i,g2,g3 > (25)

× < φ0,i,g3,g4 |(
1

i∂̂S̃0i∂̂
)g4g5 |φ0,j,g5,f >
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Introducing now the operator

B̃(m)fg
ij =< φ0,i,f,f1 |(i∂̂S̃0i∂̂)f1g1 |φ0,j,g1,g > (26)

it is easy to show that
∫ m

M1

idm′(S̃(m′)− S̃0(m′)) = (27)

=
∑
i,j

∫ B̃(m)

B̃(M1)
dB̃(m′)fg

ij (
1

B̃(m′)
)gf
ji =

˜
ln

B̃(m)
B̃(M1)

Here ˜means the trace on the flavor and only on zero-mode (|Φ0j >)
space.

Then the desired low-momentum part of fermionic determinant is

Detlow[V̂ , m] = det B̃(m) (28)

We see that B̃ is the extension of Lee-Bardeen’s matrix B, taking into
account the presence of the external fields V̂ and with an account of
the quark current mass m without making expansion over current mass
m and also extended to a few flavors case.

If we had turned off the external fields V̂ and expanded over m
keeping only O(m) term we would have obtained the same quark de-
terminant Detlow given by (C. Lee et.al., 1979).

Next problem is to average Detlow over instanton collective coordi-
nates to get quark partition function Z[V̂ , m].

As a first step for solving this problem, by introducing the Grass-
manian (Nf ×N+, Nf ×N−) variables Ω̄f

i , Ωg
j , we represent

det B̃ =
∫

dΩdΩ̄ exp(Ω̄B̃Ω), (29)

where

Ω̄B̃Ω =
∑

i,j,f,f1,g1,g

Ω̄f
i i < φ0,i,f,f1 |i∂̂S̃0,f1,g1i∂̂|φ0,j,g1,g > Ωg

j (30)

and to introduce Nf ×N+, Nf ×N− sources ηf
i and η̄g

j defined as:

η̄f1
i =

∑
f

Ω̄f
i < φ0,i,f,f1 |i∂̂, ηg1

j =
∑
g

i∂̂|φ0,j,g1,g > Ωg
j (31)

Then, (Ω̄B̃Ω) can be rewritten as

(Ω̄B̃Ω) = η̄S̃0η =
∑

i,j,f,g

η̄f
j (

1
i∂̂ + V̂ + im

)fg
ij ηg

i . (32)
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This Eq. (32) provides the representation of det B̃ as a path integral
over Nf constituent quark fields ψf (x)

B̃ =
∫

dΩdΩ̄ exp(Ω̄BΩ) =
(
(i∂̂ + V̂ + im)

)−1∏
i,f

∫
dΩf

i dΩ̄f
i

×
∏
f

DψfDψ†
f exp

∫
dx[

∑
f,g

ψ†
f (x)(i∂̂ + V̂ + im)fgψg(x)

+
∑
i,f

(η̄f
i (x)ψf (x) + ψ†

f (x)ηf
i (x))] (33)

The integration over Grassmanian variables Ω and Ω̄ provides finally
the fermion representation of the low-momentum part of the quark
determinant:

Detlow[V̂ , m] =
∫

DψDψ† exp

⎛
⎝∫ dx

∑
f,g

ψ†
f (i∂̂ + V̂ + im)fgψg

⎞
⎠

×
∏
f

⎧⎨
⎩

N+∏
+

V+,f [ψ†, ψ]
N−∏
−

V−,f [ψ†, ψ]

⎫⎬
⎭ , (34)

where

Ṽ±,f [ψ†, ψ] =
∑
f1,f2

∫
d4x

(
ψ†

f1
(x)Lf1f (x, z) i∂̂Φ±,0(x; ξ±)

)

∫
d4y

(
Φ†
±,0(y; ξ±)(i∂̂ L+

ff2
(y, z)ψf2(y)

)
. (35)

It is obvious that Ṽ±,f [ψ†, ψ] describes the nonlocal interaction between
constituent quarks generated by instantons. Since the range of integra-
tion in Eq.(35) is cut at ρ (it is defined by zero-mode functions Φ±,0)
the range of the nonlocality is ρ.

Note that external vµ and aµ fields gauges not only the kinetic
term of the QCD low-energy effective action but also its interaction
term Ṽ±,f [ψ†, ψ] in Eq. (35). The reason is obvious: It is the nonlocal
interaction induced by instantons. The external vµ and aµ fields are
present here due to the factor L attached to each fermionic line. This
factor provides us a gauge invariance of the interaction term Ṽ±,f [ψ†, ψ]
under the gauge transformation.
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QCD low-energy effective action

The remaining problem is to average the quark determinant over col-
lective coordinates ξ±. It is a rather simple procedure, since the low
density of the instanton medium (π2

( ρ
R

)4 ∼ 0.1) allows us to average
over positions and orientations of the instantons independently. Then

W̃± =
∫

d4ξ±
∏
f

Ṽ±,f [ψ† ψ] =
∫

d4zdetf iJ̃±(z) (36)

and

J̃±(z)fg =
(2πρ)2

Nc

∫
d4kd4l

(2π)8
exp(−i(k − l)z) (37)

×ψ†
f (k)F ((k + v(z)± a(z))2)

1± γ5

2
F (l + v(z)± a(z))2)ψg(l).

Form-factor F (k) is in fact a normalized zero-mode. It has explicit
form:

F (k) = − d

dt
[I0(t)K0(t)− I1(t)K1(t)]t= |k|ρ

2

(38)

In Eq. (37) soft external vµ and aµ fields, carrying momentum q <<
ρ−1, were assumed. Then, they are present inside of the form-factor F
in above mentioned form. If v, a external fields are flavor matrices then
form-factor F also becomes matrix Nf ×Nf . So, we get the partition
function Z̃[m, V̂ ], where W̃± are multi-quark interaction terms in the
presence of current quark mass m and external fields V̂ .

The next step – the exponentiation provide us the QCD low-energy
effective action SS[ψ†, ψ, λ±] in terms of the constituent quarks ψ and
couplings λ±:

Z̃[m, V̂ ] =
∫

dλ+dλ−DψDψ† exp(−S[ψ†, ψ, λ±]) (39)

−S[ψ†, ψ, λ±] =
∫

d4x ψ†(i∂̂ + V̂ + im)ψ (40)

+
∑
±

(λ±
∫

d4z det iJ̃±(z) + N± ln
N±

Kλ±
−N±)].

Interaction term in Eq. (39) has 2Nf quark legs 3. In Nf = 2 case it
resembles NJL-type models, except very important difference – there
is we have to integrate over the couplings λ±.

3 In Z̃ K is an unessential constant, which makes log expression dimensionless.
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As a further step, it is natural to make bosonization, using auxiliary
meson fields Φ±(x), which provide:

Z[m, V̂ ] =
∫

dλ+dλ−DΦ+DΦ− exp (−S[λ+, Φ+; λ−, Φ−]) , (41)

where

S[λ+, Φ+; λ−, Φ−] = −
∑
±

(
N± ln

N±
Kλ±

−N±
)

(42)

+
∫

d4x
∑
±

(Nf − 1)(det Φ±)
1

Nf−1 ,

− ln
p̂ + im + V̂ + i

∑
± λ

N−1
f

±
(2πρ)2

Nc
F (P±)Φ± 1±γ5

2 F (P±)

p̂ + im + V̂
.

means
∫

d4xcDf , p = i∂, P± = p + v ± a.
Without external fields (V̂ = 0) and at N± = N/2 the common

saddle-point on all variables is given by the equation:

N

V
= 4Nc

∫
d4k

(2π)4
MfF 2(k)(mf + MfF 2(k))

k2 + (mf + MfF 2(k))2
(43)

The saddle-point equation leads to the momentum dependent dynam-
ical quark mass Mf (k) = MfF 2(k). Mf here is a function of current
mass mf (M.M. Musakhanov, 2002). It was found that that M [m] is
a decreasing function and for the strange quark with ms = 0.15 GeV
Ms ∼ 0.5 Mu,d. This result in a good correspondence with (P. Pobylitsa,
1989), where another method was completely applied – direct sum is
of planar diagrams.

Correlators

The following is the list of recent applications of described approach to
the calculations of various correlators:

− Most simple correlator – quark condensate:

< q̄fqf >= −i < ψ†
fψf >= − 1

Z[m]
∂Z[m]
∂m

(44)

was considered in (M.M. Musakhanov, 2002). It was found that | <
q̄q > | is a decreasing function of m. So, strange quark condensate
< q̄sqs >∼ 0.5 < q̄u,dqu,d >.
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− In order to check the gauging method, applied here, by axial-
anomaly low-energy theorem, G̃G→ 2 photons correlator (M.M.
Musakhanov et.al., 2003) was calculated . It was found that this
gauged QCD
rem (M.M. Musakhanov et.al., 2003).

− Recently QCD vacuum magnetic susceptibility was calculated and
is defined as:

〈0|ψ†
fσµνψf |0〉F = ef χf 〈iψ†

fψf 〉0 Fµν , (45)

where ef denotes the quark electric charge, Fµν - external electro-
magnetic field. For different flavors, the following magnetic suscep-
tibility was found: χu,d〈iψ†

u,dψu,d〉0 ∼ 40 ∼ 45 MeV, while χs〈iψ†
sψs〉

0 �6 ∼ 10 MeV (H.C. Kim et.al., ).

Now the calculations of Gasser-Leutwyler couplings of their phenom-
enological chiral lagrangian (H.C. Kim et.al., 1984) and related with
this problem the meson loops calculations are in progress. First re-
sults show exact reproducing of the famous chiral log terms in various
correlators.

Conclusion

Proposed approach provides reliable tool in hadron physics with the
promising perspective of the application to strange quarks.
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New Casimir energy calculations for single cavities

H. Ahmedov and I. H. Duru(a),
(a) Feza Gürsey Institute, P.O. Box 6, 81220,
Çengelköy, Istanbul, Turkey

Abstract. Casimir energy calculations are presented for the massless scalar field
for pyramidal and conical wedges and cavities.

Keywords: wedges, cavities

1. Introduction

Having new three dimensional geometries in hand for which the Casimir
energies can be calculated is of interest. We may hope that for some
of these geometries the experiments may be performed. 1 In the light
of rapid advancements in nanotechnology our hope is well justified.
We also think that in nanostructures the Casimir energy can not be
neglected. Note that for a cavity with a typical size r, the Casimir
energy ( in � = c = 1 units ) is of the order 10−1

r . For nanometer value
r = 10−7cm, ( with 1eV ∼= 0, 5× 105cm−1 ) this energy is E � 100eV
which is of considerable magnitude.

In the coming sections we present the Casimir energy calculations
for a pyramidal wedge and then for a pyramidal cavity and a conical
cavity. We give the details for the former one, and for the conical cavity
we simply present the results.

2. Pyramidal region

We first consider the pyramidal wedge defined by the planes

P1 : x1 = x3, P2 : x2 = 0. P3 : x1 = x2; x1 > 0, x2 > 0, x3 > 0
(1)

Reflection operators with respect to these planes are

q1 =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ , q2 =

⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠ , q3 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ (2)

1 We like to remind that so far all the experiments performed are with geometries
involving two bodies (A. Wirzba., 2004). Single cavity experiment has not been
performed.
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The above reflections generate a group G of order 48

G = {gj , igj ; j = 0, 1 . . . 23} (3)

where the elements gj form the Octahedral group of order 24 with g0

being the unit element and

gi =

⎛
⎝ −1 0 0

0 −1 0
0 0 −1

⎞
⎠ (4)

is the parity operator (2).
defined

by (1) is given by

K(x, y) =
23∑

j=0

[G(gjx, y)−G(igjx, y)], (5)

with G(x, y) being the free space Green function

G(x, y) =
1

4π2

1
| x− y |2 . (6)

Here x and y are four vectors with interval | x − y |2=| �x − �y |2
−(x0 − y0)2; and the group elements gj , igj act only on the spatial
components. Since the sum in, Eq. (5) involves all the elements of the
group G and since q1, q2, q3 are the group elements, one can easily show
the relations

K(q1x, y) = K(q2x, y) = K(q3x, y) = −K(x, y) (7)

which guarantee the satisfaction of the Dirichlet boundary conditions
on the surfaces P1, P2, P3.

The satisfaction of the required equation ( η = diag(−1, 1, 1, 1) )

ηµν ∂2

∂xµ∂xν
K(x, y) = δ(x− y) (8)

is guaranteed if the region between the planes defined in (1) is the
fundamental domain of the group G, i.e., if every point in the domain
is the representative of the different orbit of G (2).

We employ conformally coupled energy momentum tensor for the

Tµν =lim
x→y

[
2
3
∂y

µ∂x
ν−

1
6
(∂x

µ∂x
ν +∂y

µ∂y
ν )−ηµν

6
ησρ∂y

σ∂x
ρ

+
ηµν

24
ησρ(∂x

σ∂x
ρ+∂y

σ∂y
ρ)] (9)

H. Ahmedov and I.H. Duru

K(x,y)

massless scalar field

The Green function for the massless scalar field in the region
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The energy density T (x) ≡ T00 is given by:

T (x) =
1

12π2

23∑
j=1

[T (gj)− T (igj)], (10)

where

T (g) = (
tr(g)− 1
| �η |4 − 2

|((1 + g)�η|2
| �η |6 ); �η = (1− g)�x (11)

with g standing for both gj and igj . Note that we omit j = 0 in (10)
which is required for renormalization. The other singularities i.e., the
surface and the vertex ones are all taken care of with the employment
of the conformal formula of Eq. (9) (3).

3. Pyramidal cavity

We add to the planes P1, P2, P3 the forth one P4 : x3 = a. Reflection
with respect to the P4 plane is given by

q4

⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ x1

x2

2− x3

⎞
⎠ (12)

obtain the Casimir energy. The wave function for the massless scalar
field in the cavity is

Ψ(�x) = Ω
23∑

j=1

[ei(�p,gj�x) − ei(�p,igj�x)] (13)

or

Ψ�p(�x) = −8iΩ[sin p1x1 sin p2x2 sin p3x3−sin p1x1 sin p2x3 sin p3x2+ c.p.]
(14)

where Ω is the normalization. Dirichlet boundary condition

Ψ�p(�x) |P4= 0 (15)

forces the momenta to the integer values

p1 =
π

a
n, p2 =

π

a
m, p3 =

π

a
k. (16)

Inspection of (14) reveals that coordinates x1, x2, x3 and the corre-
sponding momenta p1, p2, p3 appear in exactly the same manner, thus

Since we have a compact region (all the momenta are now discrete)
it is more convenient to employ the energy spectrum formulation to
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the momentum space is just a replica of the configuration space. We
then employe the properties

Ψgj�p(�x) = Ψ�p(�x) Ψi�p(�x) = Ψ�p(�x) (17)

which imply the hierarchy of the quantum numbers

k > n > m > 0. (18)

The energy density in the pyramidal cavity is then given by

T (x) =
π

2a

∞∑
k=3

k−1∑
n=2

n−1∑
m=1

√
n2 + m2 + k2 | Ψ�p(�x) |2 . (19)

After integrating over the volume of cavity
∫ a
0 dx3

∫ x3
0 dx1

∫ x1
0 dx2 we

obtain the total energy in the cavity

Epyr =
1
6
E1 −

1
2
E2 −

6 + 4
√

2
16

E3 (20)

Here E1, E2 and E3 are the Casimir energies for the cube with sides a,
for the rectangle with sides a, a√

2
and for the one dimensional system

of length a (Mostepanenko and Trunov, 1997) :

E1 =
π

2a

∞∑
n,m,k=1

√
n2 + m2 + k2 � −0, 015

a
(21)

E2 =
π

2a

∞∑
n,m=1

√
n2 + 2m2 � 0, 045

a
(22)

E3 =
π

2a

∞∑
n=1

n � −0, 131
a

(23)

Inserting the above known results into Eq. (20) we get the positive
result

Epyr �
0, 069

a
> 0 (24)

Note that for nanometer sizes i.e. for a = 10−7

∼= 0, 5× 105cm−1 ) is

Epyr � 35eV (25)

which is of considerable size.

(in � = c = 1 unit, 1eV
cm, the above energy
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4. A conical cavity

Consider the space between the following planes

P1 : x1 = x2, P2 : x2 = 0, P3 : x2 = x3; x1, x2, x3 > 0 (26)

together with the boundary conditions for the Green function:

K(x, y)|�x∈P2
= 0 (27)

and
K(x, y)|�x∈P1

= K(x, y)|g�x∈P3
(28)

where

g =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ (29)

is the rotation matrix around �n = (1, 1, 1) ( the intersection of P1, P2

) by 2π
3 . The region we obtain is then a conical wedge (Ahmedov and

Duru, 2004). We then consider the fourth and fifth planes

P4 : x1 = a, P5 : x3 = a. (30)

with Dirichlet boundary conditions on them. The resulting space is then
a conical cavity with height h = 2

√
2

3 a and opening angle β = arcsin 1
3

(Ahmedov and Duru, 2004).
The total Casimir energy for the massless scalar field in this conical

cavity is again positive:

Econ �
0, 085

a
> 0 (31)

5. Discussion

We still do not know what is the connection between the sign and the
magnitude of Casimir energy and the shapes and the dimension of the
cavity or the space.

The short calculations we presented here are all 3-dimensional cavi-
ties with trivial topology ( For example of not like the region between
co-axial cylinders or cones, co-centric spheres or tori (Ahmedov and
Duru, 2003) ). The known results ( including the present ones ) for
three dimensional cavities are

Cube of sides 2b Ecub � −
0, 007

b
< 0
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Sphere of radius b Esph �
0, 046

b
> 0

Pyramid located in the cube Epyr �
0, 069

b
> 0

Conical cavity of height b Econ �
0, 080

b
> 0 (32)

We choose the distance b to make the sizes of the cavities to be com-
parable to each other ( the details are given in (Ahmedov and Duru,
2004) ).

The above short list does not offer a hint about the sign of the effect.
All of the cavities including ours are of special types; i.e., the angles are
fixed. Thus we still do not know about the dependence on the shape
deformations.

If on the other hand we compare the three positive results of equal
volume, we observe that the energy for the pyramidal and conical
cavities are about half of the sphere of equal volume

Econ � 0, 54Esph

Epyr � 0, 51Esph (33)

The above results can be qualitatively understood. In spherical cavity
, the semi classical paths can bounce back from any point of the wall.
However a path ending for example at the summit of the conical cavity
has no direction to be reflected back. Thus one can speculate that the
configuration space available for a field in the conical cavity is less than
the spherical cavity.
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Quantumfieldtheory for nonequilibriumphasetransitions

Sang Pyo Kim
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Abstract. We review the recent development of quantum dynamics for nonequi-
librium phase transitions. To describe the detailed dynamical processes of non-
equilibrium phase transitions, the Liouville-von Neumann method is applied to
quenched second order phase transitions. Domain growth and topological defect
formation is discussed in the second order phase transitions. Thermofield dynamics
is extended to nonequilibrium phase transitions. Finally, we discuss the physical
implications of nonequilibrium processes such as decoherence of order parameter
and thermalization.

Keywords: Nonequilibrium phase transitions, Liouville-von Neumann approach,
domain growth, topological defect formation.

1. Introduction

When the symmetry of a system is broken explicitly, the system un-
dergoes a phase transition (T.W.B. Kibble et.al., 1976; A. Vilenkin
et.al., 1994). The phase transition proceeds in either equilibrium or
nonequilibrium, depending on whether the thermal relaxation time is
shorter or longer than the dynamical time of the evolution. Particularly,
a quenched system undergoes nonequilibrium phase transition when
the quench time is shorter than the relaxation time. For instance, the
universe would have undergone a supercooling process due to the rapid
expansion and thereby a sequence of nonequilibrium phase transitions
in the early universe. Another example would be the rapid cooling
of quark-gluon plasma in the Heavy Ion Collision or the liquid helium
He3 and He4, where domain walls and vortices (strings) may be formed.
These are the cases to which nonequilibrium but not equilibrium phase
transitions should be applied.

The finite-temperature field theory has been the most popular ap-
proach to equilibrium phase transitions (L. Dolan et.al., 1974). The
effective potential of quantum fluctuations around a classical back-
ground provides a convenient tool to describe phase transitions. The
symmetry breaking or restoration mechanism can be illustrated by a
scalar field model with broken symmetry

V (φ) = −m2

2
φ2 +

λ

4!
φ4. (1)
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Thermal fluctuations, however, may contribute to the classical potential
to restore the broken symmetry when the thermal energy is sufficient
enough to overcome the potential energy barrier between the true and
false vacua. The renormalized effective potential for the background
field φc is then given by

Veff(φc) ≡ Tr(ρ̂V ) =
1
2

(
−m2

R +
λR

24
T 2
)
φ2

c +
λR

4!
φ4

c . (2)

In terms of a critical temperature Tc, the potential takes the form

Veff(φc) =
1
2
(T 2 − T 2

c )φ2
c +

λR

4!
φ4

c . (3)

Therefore, the system restores the broken symmetry when T > Tc but
breaks the symmetry when T < Tc (L. Dolan et.al., 1974).

However, long wavelength modes suffer from instability during the
phase transition and grow exponentially. Thus the effective action gains
an imaginary part, which gives the decay rate of the false vacuum
(E.J. Weinberg et.al., 1987). Hence, the finite-temperature effective
action alone may not be enough to describe the dynamical processes
of phase transitions. Kibble (T.W.B. Kibble et.al., 1976) found the
correlation length of domains (regions of the same phase) by comparing
the thermal energy with the free energy of domains at the Ginzburg
temperature, kbTc ≈ ξ3(TG)∆F (TG). In this situation, since the field
can jump over the potential barrier to other configurations, topologi-
cal defects lose stability. Whereas, Zurek (T.W.B. Kibble et.al., 1976)
incorporated the dynamics into equilibrium process by introducing the
equilibrium correlation length and relaxation time that increase, re-
spectively, as ξ = ξ0|(Tc − T )/Tc|−ν and τ = τ0|(Tc − T )/Tc|−µ, where
µ and ν are model-dependent parameters. Near the critical tempera-
ture Tc, the process critically slows down and the correlation length
indefinitely increases. Therefore, there is a time t∗ when the correla-
tion length freezes: |t∗| = τ(t∗). Thus, the Kibble-Zurek mechanism
dynamically determines the domain size in terms of the quench rate as
ξ(t∗) ≈ τ

ν/(1+µ)
Q .

To describe nonequilibrium phase transitions, there have been devel-
oped many methods such as the closed-time path integral by Schwinger
and Keldysh (J. Schwinger et.al., 1961), the Hartree-Fock or mean
field method (A. Ringwald, 1987), and the 1/N -expansion method
(F. Cooper et.al., 1997;2000). In this talk, we shall employ the so-
called Liouville-von Neumann (LvN) method to describe nonequilib-
rium phase transitions (S.P. Kim et.al., 2000;2002;2001; S.P. Kim et.al.,
2003). The LvN method is a canonical method that first finds invariant
operators for the quantum LvN equation and then solves exactly the
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functional Schrödinger equation (H.R. Lewis et.al., 1969). Compared
with the other methods, this canonical method has an advantage that
it can be directly applied to time-dependent systems and density op-
erators can be readily found. We also extend thermofield dynamics
(TFD) (Y. Takahashi et.al., 1975;1996;1982;1993) to time-dependent
systems by combining the LvN equation with the basic notions of ther-
mofield dynamics (S.P. Kim et.al., ). The new formalism is applied to
a time-dependent oscillator by using the time-dependent creation and
annihilation operators that satisfy the LvN equation. Finally, we discuss
decoherence of long wavelength modes and thermalization during phase
transitions.

2.

As a field model for nonequilibrium phase transitions of second order,
we consider a scalar field potential

V (φ) =
1
2
m2(t)φ2 +

λ

4!
φ4, (4)

where m2 changes signs from m2
i to −m2

f . For a quench time scale τ ,
the adiabatic quench process with |∆m2| � τ is distinguished from the
rapid quench process with |∆m2|  τ . A simple analytical model is
provided by (S.P. Kim et.al., 2000;2002;2001)

m2(t) = m2
1 −m2

0 tanh
( t

τ

)
, (m0 > m1) (5)

where m2 → m2
0 +m2

1 for t→ −∞ and m2 → −(m2
0−m2

1) for t→ +∞.
Figure 1 shows the evolution of the potential with the mass given in Eq.
(5). In the limiting case of τ → 0, one has the instantaneous quench,
m2

i = m2
0 + m2

1 for t < 0 and m2
f = −(m2

0 −m2
1) for t > 0. The field

model can readily be generalized to an expanding universe

H(t) =
∫

d3x
[ π2

φ

2R3(t)
+ R3(t)

( (∇φ)2

2R2(t)
+ V (φ)

)]
, (6)

where R is the scale factor of the Friedmann-Robertson-Walker (FRW)
universe. The Minkowski spacetime is the special case of R = 1. In the
Hartree-Fock or mean-field approximation, the field φ is divided into a
classical background field φc with the equation of motion

φ̈c + 3
Ṙ

R
φ̇c −∇2φc +

(
m2(t) +

λ

6
φ2

c +
λ

2
〈φ2

f 〉
)
φc = 0, (7)

Quantum field theory for nonequilibrium phase
transitions
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Figure 1. The quenched potential V (φ) = 1
2

[
m2

1 −m2
0 tanh

(
t
τ

)]
φ2 + λ

4!
φ4. The time

direction is from the upper left to the lower right and the φ-direction from the lower
left to upper right. Classically, the field rolls down from the false vacuum at the
bottom of the upper left to the true vacua in the lower left or upper right. The field
fluctuates around such configurations.

and quantum fluctuations with the equation of motion

φ̈f + 3
Ṙ

R
φ̇f −∇2φf +

(
m2(t) +

λ

2
φ2

c +
λ

4
φ2

f

)
φf = 0. (8)

In the functional Schrödinger-picture, wave functionals carry all in-
formation of quantum states in real time (K. Freese et.al., 1985;1988).
The wave functionals satisfy the functional Schrödinger equation

i
∂

∂t
Ψ(φ, t) = Ĥ(φ,−iδ/δφ, t)Ψ(φ, t). (9)

The wave functionals are equipped with an inner product on each
spacelike hypersurface Σt

〈Ψ1|Ψ2〉 =
∫
D[φ]Ψ∗

1(φ, t)Ψ2(φ, t). (10)

Each operator acts on a wave functional as

Ô(φ, π)|Ψ(φ, π)〉 → Ô(φ,−iδ/δφ)Ψ(φ, t). (11)

The evolution of the wave functional may be found in terms of the
Green function

Ψ(x, t) =
∫

G(x, t;x0, t0)Ψ(x0, t0)dx0dt0, (12)

where the wave functional implicitly depends on the space through
φ(x). The Hamiltonian may be separated into a quadratic part, an
exactly solvable one, and a perturbation part:

Ĥ(t) = Ĥ0(t) + λĤP (t). (13)
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Here Ĥ0 includes not only the quadratic potential term but also some
contribution from nonlinear terms a la the Hartree-Fock or mean-field
approximation. Introducing a Green function for Ĥ0

(
i
∂

∂t
− Ĥ0(x, t)

)
G0(x, t;x′, t′) = δ(x− x′)δ(t− t′), (14)

we write the wave functional in terms of G0 as

Ψ(x, t) = Ψ0(x, t) + λ

∫
G0(x, t;x′, t′)ĤP (x′, t′)Ψ(x′, t′)dx′dt′, (15)

where Ψ0 is a wave functional for Ĥ0. The wave functional Ψ can be
put recursively into the righthand side of Eq. (15) to result in a series
expansion (S.P. Kim et.al., 2003)

Ψ(1) = Ψ0(1) + λ

∫
G0(1, 2)ĤP (2)Ψ0(2)

+λ2
∫ ∫

G0(1, 2)ĤP (2)G0(2, 3)ĤP (3)Ψ0(3) + · · · , (16)

where (i) denotes (xi, ti). Up to this stage, the quantum field theory
works for phase transitions exactly in the same manner as for ordinary
quantum field theory.

3. LvN method for nonlinear quantum fields

Recently we have developed another canonical method, the so-called
LvN or invariant method, based on the quantum LvN equation (S.P. Kim
et.al., 2000;2002;2001; S.P. Kim et.al., 2003)

i
∂

∂t
Ô(φ,−iδ/δφ, t) + [Ô(φ,−iδ/δφ, t), Ĥ(φ,−iδ/δφ, t)] = 0. (17)

The idea of the LvN method for quantum systems first introduced by
Lewis and Riesenfeld (H.R. Lewis et.al., 1969) is to solve Eq. (17) and
then find the solution to the Schrödinger equation as an eigenstate of
the operator in Eq. (17). In quantum field theory the wave functional
to the Schrödinger equation is directly given by the wave functional of
the operator

Ô(x, t)Ψϕ(x, t) = ϕ(x)Ψϕ(x, t). (18)

Note that the eigenvalue ϕ(x) does not depend on time, which is a
consequence of Eq. (17). In particular, for a quadratic Hamiltonian, the
operator satisfying Eq. (17) can be obtained explicitly. This canonical
method has an advantage that quantum statistical information can
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be naturally incorporated into the dynamics even for nonequilibrium
systems.

We now turn to the potential (4) for nonequilibrium phase transi-
tion. We separate the Hamiltonian density H into a quadratic part H0

and a perturbation part HP :

H0(t) =
π2

2R3
+

(∇φ)2

2R
+

R3

4
(2m2 + λ〈φ2〉)φ2,

HP (t) =
R3

4!
(φ4 − 6〈φ2〉φ2). (19)

We use the Fourier-cosine and sine modes of the field redefined as

φ
(+)
k (t) =

1√
2
[φk(t) + φ−k(t)], φ

(−)
k (t) =

i√
2
[φk(t)− φ−k(t)]. (20)

For simplicity reason, a compact notation α, β, · · ·, will be used for
{k, (±)}. Then the total Hamiltonian in a symmetric state takes the
form

H(t) =
∑
α

[ π2
α

2R3
+

R3

2
ω2

α(t)φ2
α

]
+

λR3

4!

[∑
α

φ4
α + 3

∑
α 
=β

φ2
αφ2

β

]
, (21)

where ω2
α is a time-dependent frequency squared

ω2
α(t) = m2(t) +

k2

R2
. (22)

We further separate the quadratic part of the Hamiltonian

H0(t) =
∑
α

π2
α

2R3
+

R3

2
Ω2

α(t)φ2
α, Ω2

α(t) = m2(t)+
k2

R2
+

λ

2

∑
β

〈φ2
β〉. (23)

Note that the quadratic part simply consists of decoupled oscillators.
We first find the Green function G0 for Ĥ0 and then obtain pertur-

batively the wave functional for the total Hamiltonian. In fact, each
mode of the quadratic part Ĥ0 can be solved exactly in terms the
time-dependent creation and annihilation operators (S.P. Kim et.al.,
2000;2002;2001; S.P. Kim et.al., 2003)

â†α(t) = −i[ϕα(t)π̂α −R3ϕ̇α(t)φ̂α], âα(t) = i[ϕ∗
α(t)π̂α−R3ϕ̇∗

α(t)φ̂α],(24)

which satisfy the LvN equation with Ĥα

i
∂

∂t
â†α(t) + [â†α(t), Ĥα(t)] = 0, i

∂

∂t
âα(t) + [âα(t), Ĥα(t)] = 0. (25)
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Then the auxiliary field ϕα satisfies the mean-field equation

ϕ̈α + 3
Ṙ

R
ϕ̇α + Ω2

αϕα = 0. (26)

Indeed, these operators satisfy the usual commutation relations at equal
times

[âα(t), â†β(t)] = δαβ , (27)

when the Wronskian condition meets

R3(ϕ̇∗
αϕα − ϕ∗

αϕ̇α) = i. (28)

In the oscillator representation, we express Ĥ0 and ĤP in terms of
{â†α, âα} in Eq. (24), but drop all c-number terms.

The essential point of the LvN method is that the number states of
â†α and âα

N̂α(t)|nα, t〉0 = â†α(t)âα(t)|nα, t〉0 = nα|nα, t〉0, (29)

are exact quantum states of the time-dependent Schrödinger equation.
The quantum state of the field itself is then a product of each mode
state. For instance, the Gaussian vacuum state of the field is given by

|0, t〉0 =
∏
α

|0α, t〉0. (30)

We now find the Green function for Ĥα

G0α(φα, t; φ′
α, t′) =

∑
nα

〈φα|nα, t〉0 0〈nα, t′|φ′
α〉, (31)

and the Green function for Ĥ0

G0(x, t;x′, t′〉 =
∏
α

G0α(φα, t; φ′
α, t′). (32)

The wave functional for the total Hamiltonian (21) can be obtained
perturbatively by substituting Eqs. (32) and ĤP in the oscillator rep-
resentation into Eq. (16).

4. Extension of TFD to nonequilibrium systems

Takahashi and Umezawa introduced thermofield dynamics (TFD), a
canonical formalism, for finite temperature theory (Y. Takahashi et.al.,
1975;1996;1982;1993). TFD keeps the analogy with the zero-temperature
field theory by describing thermal state, a mixed state, as a thermal
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vacuum, a pure state in an extended Hilbert space. That is, TFD
doubles the degrees of freedom by introducing a fictitious Hamiltonian
without any interaction with the system and uses the extended Hilbert
space of the system plus the fictitious system. Recently TFD has been
extended to time-dependent quantum systems by using the basis of
time-dependent creation and annihilation operators satisfying the LvN
equation (S.P. Kim et.al., ). Thus, the LvN method provides a direct
extension of TFD to time-dependent systems with minimal modifica-
tion.

As a simple model, we confine our attention just to a single mode
Hα(t) of the Hamiltonian (23). Note that neither any instantaneous
eigenstate of Ĥα(t) is an exact quantum state nor e−βĤα(t) is a density
operator. To calculate the thermal expectation value of an operator
Â, one needs either the Heisenberg operator ÂH or the density oper-
ator ρ̂α(t) = Ûαρ̂αÛ †

α. Now we use the time-dependent creation and
annihilation operators (24), invariant operators, to construct the Fock
space.

To extend TFD to the time-dependent system Ĥα, we introduce a
fictitious Hamiltonian

ˆ̃Hα(t) =
ˆ̃π

2
α

2R3
+

R3

2
Ω2

α
ˆ̃
φ

2

α. (33)

Here and hereafter the tilde conjugation rule, (cA)̃ = c∗Ã, will be used.
The time-dependent creation and annihilation operators for the ficti-
tious Hamiltonian (33) are obtained by applying the tilde conjugation
rule to Eq. (24)

ˆ̃a
†
α(t) = i[ϕ∗

α(t)ˆ̃πα −R3ϕ̇∗
α(t)ˆ̃φα], ˆ̃aα(t) = −i[ϕα(t)ˆ̃πα −R3ϕ̇α(t)ˆ̃φα].

(34)
In fact, the ˆ̃a

†
α(t) and ˆ̃aα(t) satisfy the LvN equation for the fictitious

Hamiltonian (33). The equal-time commutator [ˆ̃aα(t), ˆ̃a
†
α(t)] = 1 also

holds.
The Hilbert space of the total system, Ĥtot(t) = Ĥα(t) − ˆ̃Hα(t),

consists of

|nα, m̃α, t〉 = |nα, t〉 ⊗ |m̃α, t〉 =
â†nα (t)√

nα!

ˆ̃a
†m
α (t)√
mα!
|0α, 0̃α, t〉. (35)

The density operator in the extended Hilbert space is given by

ρ̂tot(t) = ρ̂α(t)⊗ ˆ̃ρα(t) =
1

Z2
α

e−β�ωα[â†
α(t)âα(t)−ˆ̃a

†
α(t)ˆ̃aα(t)]. (36)
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The thermal expectation value of the operator Â of the system now
takes the form

〈Â〉 = Tr[ρ̂tot(t)Â] = 〈0α(β), t|Â|0α(β), t〉, (37)

where the thermal vacuum state is given by

|0α(β), t〉 =
1

Z
1/2
α

∑
nα=0

e−β�ωαnα/2 1
nα!

â†nα (t)ˆ̃a
†n
α (t)|0α, 0̃α, t〉. (38)

Defining the time- and temperature-dependent annihilation and cre-
ation operators through the Bogoliubov transformation

âα(β, t) = cosh θα(β)âα(t)− sinh θα(β)ˆ̃a
†
α(t),

ˆ̃aα(β, t) = cosh θα(β)ˆ̃aα(t)− sinh θα(β)â†α(t), (39)

we find that the thermal state is the time- and temperature-dependent
vacuum

âα(β, t)|0α(β), t〉 = ˆ̃aα(β, t)|0α(β), t〉 = 0. (40)

At each moment, the thermal vacuum state still keeps the same boson
distribution

〈0α(β), t|â†α(t)âα(t)|0α(β), t〉 = sinh2 θα(β) =
1

eβ�ωα − 1
. (41)

Using TFD we are able to find the thermal expectation values of
operators. In general, through the Bogoliubov transformation from
{â†α(t), âα(t)} to {â†α(β, t), âα(β, t)}, we find the formula

〈F (â†α(t), âα(t))〉T = 〈0α(β), t|F (cosh θαâ†α(β, t) + sinh θα
ˆ̃aα(β, t),

cosh θαâα(β, t) + sinh θα
ˆ̃a
†
α(β, t))|0α(β), t〉.(42)

For instance, we obtain the thermal correlation function of high mo-
ments

〈φ̂2n
α 〉T =

(2n)!
2nn!

(ϕ∗
αϕα)n(1 + 2 sinh2 θα(β))n. (43)

5. Domain growth and topological defects

Now we study the effects of the dynamical processes of nonequilib-
rium phase transitions on domain growth and topological defects. The
quench models describe such nonequilibrium processes, which can be



286 Sang Pyo Kim

treated exactly for the free theory and approximately for the self-
interacting theory. Before the onset of the phase transitions, the mass
term dominates over the last term in Eq. (23) from the quantum
corrections. It is thus justified to use approximately the free theory
after the onset of phase transition until it crosses the inflection point
or spinodal line. This is also true for the quench process lasting for
an indefinitely long period. We first consider the free theory in the
Minkowski spacetime and then discuss the effect of nonlinear terms.

The free theory for the quench models is provided by the potential
(4), where λ = 0 and m2(t) changes signs either instantaneously or
for a finite period. In the Minkowski spacetime, we can apply the LvN
method simply by letting R = 1. Before the phase transition (mi =
(m2

0 + m2
1)

1/2), all the modes are stable and oscillate around the true
vacuum:

ϕi0k(t) =
1√
2ωik

e−iωikt, ωik = (k2 + m2
i )

1/2. (44)

The two-point correlation function is the Green function at equal times

G0(x,x′, t) = 〈φ̂(x, t)φ̂(x′, t)〉0 = G0(x, t;x′, t) (45)

with respect to the Gaussian vacuum or thermal equilibrium.
Either in the instantaneous quench or in the finite quench, short

wavelength modes with k > mf = (m2
0 −m2

1)
1/2 are still stable even

after the phase transition and oscillate around the false vacuum as

ϕfk =
αke−i(k2−m2

f )1/2t

√
2(k2 −m2

f )1/2
+

βkei(k2−m2
f )1/2t

√
2(k2 −m2

f )1/2
, (46)

where |αk|2−|βk|2 = 1. Whereas, long wavelength modes with k < mf

become unstable after the phase transition and exponentially grow as

ϕfk =
µke(m2

f−k2)1/2t

√
2(m2

f − k2)1/2
+

νke−(m2
f−k2)1/2t

√
2(m2

f − k2)1/2
, (47)

where µ∗
kνk − µkν∗

k = i.
The coefficients µk and νk are obtained from the exact solutions

of Eq. (26) in terms of the hypergeometric function (S.P. Kim et.al.,
2000;2002;2001). Using the exact solutions, we obtain the two-point
thermal correlation function during the the quench (−τ < t < τ)

Gm,T (r, t) � Gm,T (0, t)
sin

(√
τt

m0
r
)

√
τt

m0
r

exp
(
− r2

8
√

τt
m0

)
. (48)
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Thus, the domain size is scaled by the Cahn-Allen scaling relation

ξD(t) = 2
(2τt

m2
0

)1/4
. (49)

After the quench (t  τ), the two-point thermal correlation function
is given by

GfU ,T (r, t) � GfU ,T (0, t)
sin

(√
mf

2t̃
r
)

√
mf

2t̃
r

exp
(
−mfr2

8t̃

)
, (50)

where

t̃ = t− τ3m2
0

4
[ζ(3)− 1]. (51)

Then the Cahn-Allen scaling relation for the domain size takes another
form

ξD(t) =
( 8t̃

mf

)1/2
. (52)

The power of the scaling relation is the same as the instantaneous
quench, except for a time-lag proportional to the cube of the quench
duration τ .

6. Decoherence of order parameter and thermalization

Quantum phase transitions can be successfully described by quan-
tum field theory. It is the long wavelength modes that play a pivotal
role in the dynamical process of phase transitions and thus deter-
mine the growth of domains. In classical theory an order parameter
plays a similar role in phase transitions. So it is legitimate to ex-
pect some relation between long wavelength modes in quantum theory
and the order parameter in classical theory. We shall show that the
long wavelength modes constitute just an order parameter, which de-
scribes the dynamical process. For this order parameter to behave
classically, the quantum states of long wavelength modes should lose
quantum coherence and also follow their classical trajectories (S.P. Kim
et.al., 2000;2002;2001; F.C. Lombardo et.al., 2000;2001;2003). This is
known as the quantum-to-classical transition in more general context
(D. Guilini et.al., 1996).

In the phase transition model (4) long wavelength modes are coupled
to short wavelengths modes by nonlinear couplings (21). It is not known
whether this model can be solved exactly except for numerical methods.
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Instead of this nonlinear coupling, a linear coupling provides an exactly
solvable model with the Hamiltonian (S.P. Kim et.al., 2000;2002;2001)

H(t) =
1
2
π2

1 +
1
2
ω2

1(t)φ
2
1 +

1
2
π2

2 +
1
2
ω2

2(t)φ
2
2 + λφ1φ2. (53)

Here φ1 and φ2 are the long and short wavelength modes, respectively.
To model the instantaneous quench, we assume ω2

1(t) = −ω̄2
1 and

ω2
2(t) = ω̄2

2 when t > 0. Thus, φ1 becomes unstable but φ2 remains
stable even after the phase transition.

The Hamiltonian (53) has a Gaussian wave function of the form

Ψ0(φ1, φ2, t) = N(t) exp
[
−{A1(t)φ2

1 + λB(t)φ1φ2 + A2(t)φ2
2}
]
. (54)

Here N is the normalization constant and the coefficients A1, A2 and
B will be determined by Schrödinger equation. We are interested in
the reduced density matrix for the long wavelength mode φ1, which
is obtained by integrating the density matrix Ψ0(φ′

1, φ
′
2, t)Ψ

∗
0(φ1, φ2, t)

over the short wavelength mode φ2 = φ′
2. Then the reduced density

matrix for the long wavelength mode can be written in the form

ρR(φ′
1, φ1) = Ñ(t) exp[−Γcφ

2
1c − Γδφ

2
1δ − Γmφ1cφ1δ], (55)

where φ1c = (φ′
1 + φ1)/2 and φ1δ = (φ′

1 − φ1)/2 and Ñ is another
normalization constant. The measures for quantum decoherence and
classical correlation are given by

δQD =
1
2

√
Γc

Γδ
, δCC =

√
Γ2

cΓ2
δ

Γ∗
mΓm

. (56)

A quantum state loses quantum coherence (decoheres) when δQD � 1
and recovers classical correlation when δCC � 1 (M. Morikawa, 1990).
A system is classically correlated when its wave functions are peaked
along classical trajectories. And it decoheres when each trajectory loses
quantum coherence with its neighbors. Quantum decoherence is real-
ized when the diagonal term φc of the density matrix dominates over
the off-diagonal term φδ.

Before the phase transition (t < 0), the measures for decoherence
and classical correlation are exactly found

δQD =
1
2

(
1− λ2

Ω1Ω2(Ω1 + Ω2)2

)1/2

, δCC =∞, (57)

where

Ω2
1 = ω2

1 −
( λ

Ω1 + Ω2

)2
, Ω2

2 = ω2
2 −

( λ

Ω1 + Ω2

)2
. (58)
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On the other hand, after the phase transition, in the weak coupling
limit (λ� ω̄1, ω̄2), the measures for quantum decoherence and classical
correlation are given approximately by

δQD =
λ

2

√
5ω̄2

2(ω̄1 − ω̄2)
2ω̄1(ω̄2

1 + ω̄2
2)2

, δCC =
5λ6

4
|ω̄1 − ω̄2|

ω̄2
1(ω̄

2
1 + ω̄2

2)5
. (59)

Therefore, we conclude that the long wavelength mode neither deco-
heres nor is classically correlated before the phase transition. However,
after the phase transitions, the unstable long wavelength mode be-
comes classical, gaining both quantum decoherence and classical corre-
lation. Thus an order parameter appears from long wavelength modes
(S.P. Kim et.al., 2000;2002;2001).

Finally, we discuss the effect of nonlinear coupling on domain growth,
decoherence, and thermalization. As the wave functionals Ψ0 of Ĥ0 are
easily found, Eq. (16) leads to the wave functional beyond the Hartree
approximation. Putting the perturbation terms (19) into Eq. (16), we
first find the wave functional of the form

Ψ = Ψ(0)
0 +

∞∑
n=1

λnΨ(n)
0 , (60)

from which the Green function follows. The wave functionals Ψ(n)
0 in-

clude various types of nth order multiple scattering. One effect of the
nth order multiple scattering is that the correlation length beyond the
Hartree approximation has an additional factor (S.P. Kim et.al., 2003)

ξ(t) = (2n + 1)1/2ξD(t). (61)

The activation of each order of quantum contributions depends on
the period for the field rolling from the false vacuum into the true
one. The multiple scattering of unstable long wavelength modes with
infinitely large number of short wavelength modes (environment) pro-
vides a very efficient mechanism for decoherence (F.C. Lombardo et.al.,
2000;2001;2003). It is highly likely that since the quadratic part, Ĥ0,
alone cannot lead to thermalization after phase transition, the multiple
scattering via ĤP may result in energy transfer among long and short
wavelength modes as well as decoherence and thus lead to thermaliza-
tion.
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7. Summary

We applied the Liouville-von Neumann (LvN) method, a canonical
method, to nonequilibrium quantum phase transitions. The essential
idea of the LvN method is first to solve the LvN equation and then
to find exact wave functionals of time-dependent quantum systems.
The LvN method has several advantages that it can easily incorpo-
rate thermal theory in terms of density operators and that it can
also be extended to thermofield dynamics (TFD) by using the time-
dependent creation and annihilation operators, invariant operators.
Combined with the oscillator representation, the LvN method provides
the Fock space of a Hartree-Fock type quadratic part of the Hamil-
tonian, and further allows to improve wave functionals systematically
either by the Green function or perturbation technique. In this sense
the LvN method goes beyond the Hartree-Fock approximation.

The field model studied for nonequilibrium phase transitions is the
quenched φ4-theory with a quench time scale, where the mass changes
sign during the quench process. This model is a quantum model for the
classical Ginzburg-Landau theory for spinodal decomposition. Phase
transitions occur nonequilibrium when the quench (dynamical) time
scale is shorter than the thermal relaxation time scale. Some interesting
results are growth of domain sizes, topological density and decoherence
of an order parameter. We find that the domains have the Cahn-
Allen scaling relation in the instantaneous quench and different scaling
behaviors in finite quench. Further, the nonlinear effect leads to a
multiple-scaling relation of domains beyond the Hartree-Fock approx-
imation. Another interesting consequence of multiple scattering via
the nonlinear interaction is that long wavelength modes become classi-
cal, losing quantum coherence and gaining classical correlation, during
phase transitions. It is highly likely that the energy transfer among
long and short wavelength modes and decoherence of long wavelength
modes may lead to thermalization.
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The φ→ ωπ0 decay in the Chiral model

Kamil Nasriddinov(a), Boris Kuranov, and Nurmukhammad
(b)

Tashkent State Pedagogical University named after Nizami, Yusuf Khos
Khojib-103,700100,Tashkent,Uzbekistan(a), Institute of Nuclear Physics Uzbek
Academy of Sciences Ulugbek 702132, Tashkent, Uzbekistan(b)

Abstract. The φ → ωπ0 decay is studied using the method of phenomenological
chiral Lagrangians. Obtained in the framework of this method the expression of
weak hadronic currents between vector and pseudoscalar mesons has been checked
and it is shown that this decay channel proceeds only due to the φ − ρ - mixing
diagram.

Keywords: decay, mixing

Recently, experimental evidence (Achasov,1999) of the G-parity vi-
olating φ→ ωπ0 decay with the partial widths

B(φ→ ωπ0) = (4.8+1.9
−1.7 ± 0.8) ∗ 10−5

has been observed. At present the world average (Nagiwara, (2002)) for
this decay channel is estimated to be

B(φ→ ωπ0) = (5.2+1.3
−1.1) ∗ 10−5.

Here, we consider the φ → ωπ0 decay by the method of phenom-
enological chiral Lagrangians(PCL’s)(Weinberg,1967). Studies of this
decay channel is of interest in this model for the following reasons:
First, this decay channel is a unique ”laboratory” for verification of
weak hadron currents between pseudoscalar and vector meson states
which was obtained earlier (Nasriddinov, 1998) within the formalism
of phenomenological chiral Lagrangians

Ii
µ = gFπϑa

µϕbfabi, (1)

g is the ”universal” coupling constant fixed from the experimental ρ→
ππ decay widht g2/4π = 3.2, Fπ = 93MeV , ϑa

µ and ϕb are the fields of
the 1− and 0− mesons, respectively, and fabi are the structure constants
of the SU(3) group (a,b ,i = 1,...,8).
Second, this decay allows to study the nature of ρ, ω and φ− meson
mixing. Note,that in references (Nasriddinov, 1994; Nasriddinov, 2001)
the problems of π0 − η - and ω − φ mixings have been studied on the
basis of this model as well and obtained reasonable results for the τ -
lepton decay probabilities. In this calculation, we used ω − φ-mixing
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(Nagiwara,2002)in the form

φ = ω8cosθV − ω1sinθV

ω = ω8sinθV + ω1cosθV

According to the expression for weak hadronic currents between
pseudoscalar and vector meson states (1), the Born amplitude of this
decay is equal to zero, since the structure constants f13i = f83i = 0, (in
other words, the current Ii

µ responsible for the direct φ → ωπ0 decay
(FIG.1) is zero).

According to the method of phenomenological chiral Lagrangians
(PCL’s), this decay channel would originate via the intermediate D̄0∗
− meson state (FIG. 2). In this case the weak interaction Lagrangian
between φ and D̄0∗ mesons has the form given (Kalinovsky,1988) as

�L(∆C=1)
W = (1/2)−1/2GF h5(−

√
3I8

µ)I9−i10
µ + H.c.,

where GF = 10−5/m2
p is the Fermi constant, h5=0.285 is the factor

that describes deviations from the 20−plet dominance and which is
determined by the angles of current rotation about 7th and 10th axes
in the SU(4) space, and

I8
µ = (

√
2/gρ)m2

ϑϑ8
µ = (

√
2/gρ)m2

φφµcosθV .

I9−i10
µ = (

√
2/gρ)m2

DD̄0∗
µ .

In the PCL the strong interaction Lagrangian of vector mesons with
vector and pseudoscalar mesons has the form

LS(vvϕ) = −1/4gvvϕεµvaβ(dkln + ifkln)(∂µV k
v ∂αV l

βϕn), (2)

where gvvϕ = (3g2)/16π2Fπ is the coupling constant; dkln and fkln are
the symmetric and anti-symmetric structure constants of the SU(3)
group, respectively. Taking into account

D̄0∗ = (1/2i)−1/2(ϑ9 − iϑ10),

π0 = ϕ3,

it should be noted, that all structure constants responsible for this
interaction equal zero

f391 = f3101 = f398 = f3108 = d391 = d3101 = d398 = d3108 = 0.

Therefore, the second diagram does not give any contribution to φ →
ωπ0 decay.
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The next diagram (FIG. 3) also does not contribute to the partial
width for the φ→ ωπ0 decay. In this case the Lagrangian of the strong
coupling of axial-vector mesons to vector and pseudoscalar mesons is
derived in a similar way and has the form (Nasriddinov, 1994)

�LS(0−, 1+, 1−) = −Fπg2ϕlai
µϑk

µflki, (3)

where ai
µ are the fields of 1+ mesons.

The structure constants of the SU(3) group responsible for this tran-
sition are equal to zero f391 = f3101 = f398 = f3108 = 0. It should be
noted that the diagrams 2 and 3 do not contribute to the partial width
of the φ→ ωπ0 decay channel which is obvious also due to the hadronic
flavor conservation principle. According to the expression (2),also the
anomalous diagram (FIG.4.) does not contribute to the partial width
of the φ→ ωπ0 decay because

d311 = d388 = 0.

Finally the diagram with the intermediate ω meson (FIG. 5) does
not contribute to the partial width of this decay channel also because
of these structure constants.

Within the method of phenomenological chiral Lagrangians(PCL’s),
the partial width of the φ → ωπ0 decay is therefore given by the
diagrams with φ − ρ and ω − ρ mixings (FIG.6 and FIG.7). In this
case all the structure constants are equal to zero except

d331 = (1/2)−1/2, d338 = (1/3)−1/2.

Note, that we studied (Nasriddinov, 1998) the τ− → π−ηντ decay of
the τ lepton in the framework of this method with taking into account
the isotopic spin violation of chiral symmetry in the Oakes scheme.In
this case the π0 − η - mixing Lagrangian has the form

Lπ0/η = (−1/3)−1/2m2
π0π0η. (4)

It was shown, that this decay channel was suppressed with respect to
the τ− → π−π0ντ decay by a factor 10−4. Therefore, it is natural that
the φ → ωπ0 decay is strongly suppressed because of φ− ρ and ω − ρ
mixings.

According to (2), the Lagrangians describing ρ -meson interaction
with ω and π0 mesons (FIG. 6), and φ-meson interaction with ρ and
π0 mesons (FIG.7) have the forms, respectively

Ls(ρ→ ωπ0) = −1
4
(

1√
3
sinθV +

1√
2
cosθV×
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gvvϕεµναβ(∂µων∂αρβπ0), (5)

Ls(φ→ ρπ0) = −1
4
(

1√
2
sinθV −

1√
3
cosθV )×

gvvϕεµναβ(∂µφν∂αρβπ0). (6)

At θV = 390 the factors of these Lagrangians are equal,respectively

1
4
(

1√
3
sinθV +

1√
2
cosθV ) = 0, 23

1
4
(

1√
2
sinθV −

1√
3
cosθV ) = 0, 0005

Therefore, the contribution of the diagram with ω−ρ mixing (FIG.7)
is negligible with respect to the contribution of the diagram with φ− ρ
mixing (FIG.6). Thus,the decay width of the φ→ ωπ0 decay mainly is
defined by the diagram with φ− ρ mixing (FIG. 6).

Here, we estimate the contribution of this diagram to the partial
width of the φ → ωπ0 decay using the π0 − η mixing Lagrangian (4)
by making the substitutions π0 → ρ, and η → φ

Lφρ =
m2

ρ√
3
φρ (7)

The decay rate is given by

Γ =
1
3

1
2m
|M |2 Φ, (8)

where m is the φ-meson mass. The amplitude of the φ → ωπ0 decay
will be determined in accordance with (5) and (7),and has the form

M =
1

2
√

3
(

1√
3
sinθV +

1√
2
cosθV )2×

gvvϕ

m2
ρ

m2 −m2
ρ

⎡
⎣m2m2

ω −
(

m2 + m2
ω −m2

π

2

)2
⎤
⎦

The phase space has the form

Φ =
1

8πm2

[
m2 − (mω + mπ)2

]1/2
[m2 − (mω −mπ)2]1/2

where mω, mπ and mρ are the masses of ω, π0 and ρ mesons, respec-
tively. According to (8) the decay rate has the form

Γ =
1

4608πm3
(

1√
3
sinθV +

1√
2
cosθV )2g2

vvϕ(
m2

ρ

m2 −m2
ρ

)2
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×
[
m2 − (mω + mπ)2

]3/2 [
m2 − (mω −mπ)2

]3/2
(9)

It follows that the decay rate of the φ→ ωπ decay is

Γ(φ→ ωπ) = 0.27MeV,

here we have taken into account only the contribution of the interme-
diate ρ(770) meson state. The decay rate with taking into account the
contributions of intermediate ρ(1450) and ρ(1700) meson states is

Γ(φ→ ωπ) = 0.77MeV,

For the partial decay rate we obtain

B(φ→ ωπ) = 0.18,

that is four orders of magnitude large than the experiment (Nagiwara,
(2002)).Therefore, our estimation of the φ → ωπ0 decay rate using
π0 → η mixing Lagrangian is inconsistent with experimental data and
study of this process in the framework of the φ−ρ mixing is of interest.
In summary, we have studied the φ → ωπ0 decay in terms of chiral
Lagrangians,and we have shown that there is no direct φ→ ωπ0 decay
(as was indicated earlier (Achasov,1999)); therefore, this decay channel
with G-parity violation will originate mainly from φ − ρ - mixing.
Therefore, the φ→ ωπ0 decay is a unique ”laboratory” for studying of
the nature of the ρ − ω − φ - mixing. At present the investigation of
this mixing in the framework of phenomenological chiral Lagrangians
is in progress.
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Figure 1. The main diagram for the φ → ωπ0 decay, (W) weak-interaction vertex.

Figure 2. The diagram with the intermediate D̄0∗ − meson, (S̃) anomalous
strong-interection vertex.
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Figure 3. The diagram with the intermediate D̄0∗
A - meson, (S) strong-interection

vertex.

Figure 4. The anomalous diagram for the φ → ωπ0 decay
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Figure 5. The diagram with the intermediate ω - meson.

Figure 6. The diagram with the ρ − φ - mixing
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Figure 7. The diagram with the ρ − ω - mixing
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Abstract. The post Gaussian effective potential in D = 3 and D = 2+2ε are evalu-
ated for the Ginzburg−Landau theory of superconductivity. It is shown that,the next
order correction to the Gaussian approximation of the Ginzburg−Landau parameter
κ is significant.This strongly indicates that strong correlations play dominant role
in high Tc superconductivity.In D = 2 + 2ε fractal dimensions Ginzburg Landau
parameter turned out to be sensitive to ε and the contribution of the post Gaussian
term is larger than that for D = 3. Adjusting ε to the recent experimental data on
κ(T ) for high − Tc cuprate superconductor T l2Ca2Ba2Cu3O10(T�− 2223), we find
that ε = 0.21 is the best choice for this material.These results clearly show that,in
order to understand high − Tc superconductivity, it is necessary to include the
fluctuation contribution as well as the contribution from the dimensionality of the
sample. The method gives a theoretical tool to estimate the effective dimensionality
of the samples.

Keywords: superconductivity, fractal dimensions, Ginzburg − Landau model, non-
berturbative approach

Introduction

The Ginzburg−Landau (GL) theory of superconductivity (Ginzburg,
1950) was proposed long before the famous BCS microscopic theory of
superconductivity was discovered. A few years after the appearance of
the BCS theory, Gorkov derived (Gorkov,1958) the GL theory from the
BCS theory. Amazingly, the GL theory has played a significant role in
understanding superconductivity up to now. It is highly relevant for
the description of high − Tc superconductors, even though the original
BCS theory is inadequate to treat these materials. The success of the
GL theory in the study of modern problems of superconductivity lies in
its universal effective character in which the details of the microscopic
model are unimportant.

Even atthe level of mean field approximation (MFA), the GL theory
gives significant information such as penetration depth (l) and coher-
ence length (ξ) of the superconducting samples. Many unconventional
properties of superconductivity connected with the break down of the
simple MFA has been studied both analytically (Tesanovich, 1999)
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and numerically using the GL theory (Nguyen, 1999).Particularly, the
fluctuations of the gauge field were studied recently by Camarda et.al.
(Camarda, 2003) and Abreu et.al. (Abreu) in the Gaussian approxima-
tion of the field theory. The effective mass parameters of the Gaussian
effective potential (GEP), Ω and ∆, were interpreted as inverses of
the coherence length ξ = 1/Ω and of the penetration depth l = 1/∆,
respectively.

In refs (Kim,2004 Kim, 2005) we take one step further estimating
corrections to the Gaussian effective potential for the U(1) scalar elec-
trodynamics where it represents the standard static GL effective model
of superconductivity. Although it was found that, in the covariant pure
λφ4 theory in 3 + 1 dimensions,corrections to the GEP are not large
(Stancu,1990), we do not expect them to be negligible in three di-
mensions for high Tc superconductivity, where the system is strongly
correlated.

Apart from the strong correlation, another important factor, which
one should consider for high Tc superconductivity, is the dimensionality
of the system. It is well known that, most of the high Tc supercon-
ducting materials have layered structures, which strongly suggests two
− dimensional nature of high Tc superconductivity. In order to test
relative importance of the dimensionality contribution compared to
the post Gaussian corrections, we shall also study the case of fractal
dimension, D = 2 + 2ε.

The paper is organized as follows: in Section II the GL action is
introduced and the post Gaussian approximation is applied; in Section
III we discuss the input parameters of the model; in Section IV the
theoretical results for D = 3 and D = 2+2ε will be compared to existing
high Tc experimental data; in Section V we bring a brief summary.

1. Post Gaussian effective potential

We start with the Hamiltonian of the GL model in Euclidean D −
dimensional space given by (Kleinert)

H ′=
1
Tc

∫
dDx{1

4
F 2

ij+
1
2
|(∂i−ieµ(3−D)/2 �A)ψ |2+1

2
m2ψ2+λµ(3−D) | ψ |4}

(1)
where ψ and �A are the complex scalar and the static electromagnetic

fields, respectively; m, λ and e are the input parameters of the model.1

We introduce natural units employing ξ0 (coherence length at zero

1 µ is introduced to make λ and e dimensionless.
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temperature) and Tc as length and energy scale, respectively, through
the transformations :

m→ mξ−1
0 , µ→ µξ−1

0 , x→ xξ0,
e2 → e2ξ−1

0 T−1
c , λ→ λξ−1

0 T−1
c ,

ψ → ψξ
(1−D/2)
0 T

1/2
c , �A→ �Aξ

(1−D/2)
0 T

1/2
c .

(2)

Eq.(1) is now rewritten as,

H ′ =
∫

dDx{1
2 | �∇× �A |2 +1

2 | (∂i − ieµ(3−D)/2 �A)ψ |2
+1

2m2ψ2 + λµ(3−D) | ψ |4}. (3)

In accordance with refs.(camarda 2003,abreu),we apply tranverse
unitary gauge and express the partition function as

Z =
∫

DφDAT exp{−
∫

dDxH +
∫

dDxjφ + (�jA
�A)} (4)

where the Hamiltonian density is 2

H =
1
2
(�∇× �A)2 +

1
2
(�∇φ)2 +

1
2
m2φ2 +λφ4 +

1
2
e2φ2A2 +

1
2ε

(�∇ �A)2. (5)

We have introduced a gauge fixing term, with the limit ε→ 0 being
taken after the calculations are carried out.In Eq.(5) �A stands for the
transverse gauge field and φ is defined as ψ = φ exp(iγ). To obtain the
free energy density, Veff = F/V (effective potential), we introduce a
shifted field φ→ φ + φ0 and split the Hamiltonian into two parts:

H = H0 + Hint, (6)

where H0 is the sum of two free field terms describing a vector field �A
with mass ∆0 and a real scalar field φ with mass Ω0:

H0 =
1
2
(�∇× �A)2 +

1
2
∆2

0
�A2 +

1
2ε

(�∇ �A)2 +
1
2
(�∇φ)2 +

1
2
Ω2

0φ
2. (7)

The interaction term then reads

Hint(φ, A) =
4∑

n=0

vnφn − 1
2
∆2

0
�A2 +

1
2
e2 �A2(φ + φ0)2, (8)

where

v0 = 1
2m2φ2

0 + λµ(3−D)φ4
0, v1 = m2φ0 + 4λµ(3−D)φ3

0,

v2 = 1
2(m2 − Ω2

0) + 6λµ(3−D)φ2
0, v3 = 4λµ(3−D)φ0,

v4 = λµ(3−D).

(9)

2 From now on, we denote λµ(3−D) and e2µ(3−D) as λ and e2, respectively, for
simplicity.



306 Abdulla Rakhimov, Jae Hyung Yee and Chul Koo Kim

Now performing explicit Gaussian integration in Eq.(4),one obtains

Z = exp{−
∫

dDxHint(δ/δj, δ/δjA)}
∫

DφDAexp{
−
∫

dDxH0 + jφ +�jA
�A)}

= [detD−1
0 ]−

1
2 [det G−1

0 ]−
1
2 exp{−

∫
dDxHint(δ/δj, δ/δjA)}

×exp{jD0j/2}exp{jAG0jA/2},

(10)

where in momentum space

D0(p) = 1/(p2 + Ω2
0), G0(p) = 2/(p2 + ∆2

0). (11)

To calculate the partition function in post Gaussian approxima-
tion,by isolating cactus-type diagrams we use the method introduced
in refs. (Rakhimov 2004,Lee1997) and introduce the so called primed
derivatives:

( δ
δj(x))

′ ≡ Â
(1)
x = δ

δj(x) ,
δ

δjA(x))
′ ≡ B̂

(1)
x = δ

δjA(x) ,
δ2

δj2(x)
)′ ≡ Â

(2)
x = δ2

δj2(x)
−D0(x, x),

( δ2

δj2
A(x)

)′ ≡ B̂
(2)
x = δ2

δj2(x)
−G0(x, x),

( δ3

δj3(x)
)′ ≡ Â

(3)
x = δ3

δj3(x)
− 3D0(x, x)R(x),

( δ3

δj3
A(x)

)′ ≡ B̂
(3)
x = δ3

δj3
A(x)
− 3G0(x, x)RA(x),

( δ4

δj4(x)
)′ ≡ Â

(4)
x = δ4

δj4(x)
− 6D0(x, x) δ2

δj2(x)
+ 3D2

0(x, x)

( δ4

δj4
A(x)

)′ ≡ B̂
(4)
x = δ4

δj4
A(x)
− 6G0(x, x) δ2

δj2
A(x)

+ 3G2
0(x, x),

(12)

where R(x) =
∫

dDyD0(x, y)j(y) and RA(x) =
∫

dDyG0(x, y)jA(y), so
that

Â
(n)
x exp{jD0j/2} = Rnexp{jD0j/2},

B̂
(n)
x exp{jAG0jA/2} = Rn

A exp{jAG0jA/2}.
(13)

Now it can be shown that (Rakhimov 2004, Lee1997), the Gaussian
part of Z can easily be isolated as follows:

Z = ZG∆Z
ZG = exp{−I1(Ω)− 1

2I1(∆)− v0 − v2I0(Ω) + 3v4I
2
0 (Ω)

+∆2
0 + e2I0(Ω)− e2φ2

0)I0(∆)}
∆Z = exp{−v2Â

(2)− v3Â
(3)− v4Â

(4)
−1

2(e2φ2
0 −∆2

0)B̂
(2)− e2φ0B̂

(2)Â(1)
−1

2e2B̂(2)Â(2)exp{jDj/2}expjAGjA/2}

(14)

where new correlation functions D(p) = 1/(p2+Ω2) and G(p) = 2/(p2+
∆2) include modified masses:

Ω2 = Ω2
0 + 12v4I0(Ω) + 2e2I0(∆), ∆2 = ∆2

0 + e2I0(Ω). (15)
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In the above, following integrals are introduced

I0(M) =
∫ dDp

(2π)D
1

(M2+p2)
, I1(M) = 1

2

∫ dDp
(2π)D ln(M2 + p2). (16)

From Eqs.(2.14),(15) and (9),one gets the following Gaussian effective
potential:

VG = −lnZG = I1(Ω) + 1
2I1(∆) + v0 + v2I0(Ω)

−3v4I
2
0 (Ω)− (∆2

0 + e2I0Ω− e2φ2
0)I0(∆)

= I1(Ω) + 1
2I1(∆) + 1

2m2φ2
0 + λφ4

0

+1
2I0(Ω)[m2 − Ω2 + 6λI0(Ω) + 12λφ2

0

+I0(∆)[−(∆2
0) + e2I0(Ω) + e2φ2

0].

(17)

Note that, the last equation is exactly the same as it is in refs.
(camarda 2003, abreu). The post Gaussian effective potential

Veff = VG + ∆VG (18)

includes a correction part ∆VG :

∆VG = −ln∆Z = −ln{exp[−δŴ ]
×exp{jDj/2}exp{jAGjA/2} |j=0,jA=0}

= −ln{1− δŴexp{jDj/2}exp{jAGjA/2} |j=0,jA=0

+ δ2Ŵ 2

2! exp{jDj/2}exp{jAGjA/2} |j=0,jA= 0 + . . . , }
≡ δ∆V

(1)
G (B) + δ2∆V

(2)
G (B) + . . . ,

Ŵ = v2Â
(2) + v3Â

(3) + v4Â
(4) + 1

2(e2φ2
0 −∆2

0)B̂
(2)

+e2φ0B̂
(2) δ

δj + 1
2e2B̂(2)Â(2). (19)

Here we have introduced an auxiliary expansion parameter δ to be
set equal to unity after calculations, similar to δ expansion method
(de Souza,2002).The first order term ∆V

(1)
G (B) in this equation will

not contribute to the effective potential, i.e., ∆V
(1)
G (B) = 0,due to the

relations (13).The next term of order δ2 gives the first nontrivial contri-
bution to the post Gaussian effective potential.The explicit calculations
give

∆VG = [−1
2e4I2(∆)− 18I2(Ω)λ2]φ4

0 + {−3λI2(Ω)
×[−Ω2 + m2 + 2I0(∆)e2 + 12λI0(Ω)]
−e2I2(∆)[−∆2 + e2I0(Ω)]− 8λ2I3(Ω, Ω)

−2
3e4I3(∆, Ω)}φ2

0 − 1
8I2(Ω)[−Ω2 + m2 + 2I0(∆)e2

+12λI0(Ω)]2 − 1
2I2(∆)[−∆2 + e2I0(Ω)]2 − 1

12e4I4(∆, Ω)− 1
2λ2I4(Ω, Ω)

(20)
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where following loop integrals were introduced,

I2(M) = 2
(2π)D

∫ dDk
(k2+M2)2

I3(M1, M2) = 1
(2π)2D

∫ dDkdDp
(k2+M2

1 )(p2+M2
1 )((k+p)2+M2

2 )
,

I4(M1, M2) = 1
(2π)3D

∫ dDkdDpdDq
(k2+M2

1 )(p2+M2
1 )(q2+M2

2 )

× 1
((k+p+q)2+M2

2 )
.

(21)

For D = 3,and D = 2 + 2ε these integrals were calculated with dimen-
sional regulariztion in refs.(Braaten,1995) and (Kim 2004, Kim 2005)
respectively.The parameters Ω and ∆ are determined by the principle
of minimal sensitivity(PMS) :

∂Veff

∂Ω = FΩ(mλ, ε, Ω̄, ∆̄, φ̄0) = 0.
∂Veff

∂∆ = F∆ = (mλ, ε, Ω̄, ∆̄, φ̄0) = 0,
(22)

where the optimal values of Ω and ∆ are denoted by ω̄ and ∆̄, respec-
tively, and φ̄0 is a stationary point defined from the equation:

∂Veff

∂φ0
= Fφ(m, λ, ε, Ω̄, ∆̄, φ̄0) = 0. (23)

The explicit expressions for FΩ(m, λ, ε, Ω̄, ∆̄, φ̄0), F∆(m, λ, ε, Ω̄, ∆̄, φ̄0),
Fφ(m, λ, ε, Ω̄, ∆̄, φ̄0)) are rather long and may be found in refs.(Kim
2004, Kim 2005). Here we note that,in the Gaussian approximation,
for D = 3 the gap equations (22) are reduced to simple forms:

∂VG

∂Ω̄
= Ω̄2π − 6Ω̄λ− ∆̄e2 + 2m2π = 0

∂VG

∂Ω̄
= 8∆̄2πλ− e4∆̄− 4Ω̄e2λ + 2e2m2π = 0.

(24)

2. Input parameters

The solutions of the Eqs.(22) are related to the experimentally mea-
sured GL parameter κ as κ = �/ξ = Ω̄/∆̄. We make an attempt to
reproduce recent experimental data on κ(T ) (Brandstatter,1994) for
high − Tc cuprate superconductor T l2Ca2Ba2Cu3

O10(T�− 2223).
For this purpose, we adopt usual linear T dependence of parame-

trization of m and λ as:

m2 = m2
0(1− τ) + τm2

c ,
λ = λ0(1− τ) + τλc,

τ = T/Tc.
(25)



GinzburgLandau theory of superconductivity:Beyond the postGaussian approximation309

and calculate κ by solving nonlinear equations (22) (or (24) in Gaussian
case).Due to the parametrization (25), the model has in general six
input parameters: m2

0, λ0, m2
c ,λc,ε and e.The last parameter is related

directly to the electron charge: e2 = 16παkBTcξ0/�c, where α = 1/137,
ξ0 is a coherence length at T = 0, and Tc the critical temperature. The
experimental values for the cuprate T� − 2223 are ξ0 = 1.36nm and
Tc = 121.5K. The parameters m2

0 and λ0 are fitted to the expeimental
values of ξ and � at zero temperature: ξ0 = 1.36nm, �0 = 163nm.In
dimensionless units, (2),we have Ω̄0 = Ω̄(τ = 0) = 1 and ∆0 = ∆τ =
0) = ξ0/l0 = 0.0083 which are used to calculate m2

0 and λ0 from coupled
equations (22) (or (24) in the Gaussian case).The parameters m2

cc and
λc are fixed in the similar way. Actually the quantum fluctuations
shift m2

c from its zero value given by MFA. On the other hand, the
exact experimental values of m2

c and λc are unknown, since the GL
parameter at T = Tc is poorly determined. For this reason, we used
the experimental values of ξc and �c at very close points to the critical
temperature taking τc = 0.98 which gives Ω̄c = Ω̄(τc) = 1/ξc = 0.128
and ∆̄c = ∆̄(τc) = 1/�c = 0.0043. Then solving the equations (22)
(or (24) in the Gaussian case) with respect to mc andλc, we fix the
input parameters. Note that,for D = 2 + 2ε the above procedure was
repeated for each guessed value of ε.In Table I the input parameters for
the Gaussian and the post Gaussian cases for D=3 are summarized.

Table I. Input parameters of the GL model for D = 3
(All parameters are given in dimensionless units. See
Eq.(2).

m2
0 λ0 m2

c λc

Gaussian -0.456 0.046 0.0013 0.002

Post. Gaussian -0.525 0.050 0.0017 0.008

3. Results and discussions

3.1. The effect of fluctuations

After having fixed the input parameters, the temperature dependence
of Ω̄(τ), ∆(τ) as well as the GL parameter κ = Ω̄(τ)/∆(τ) are es-
tablished by solving the gap equations (22) and (24) numerically for
the Gaussian and the post Gaussian approximations, respectively.The
results are presented in Fig.1,where solid curve corresponds to the post
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Figure 1. The GL parameter, κ,in the Gaussian (the dotted line) and post Gaussian
approximations (the solid kine) in D = 3.

Gaussian and dotted one to the Gaussian approximation.It is seen
from the figure that corrections to the Gaussian approximation are
significant, and in the right direction, although the discrepancy from
the experimental values is still substantial.

On the other hand,a better agreement with the experiment has
been obtained even on the level of the Gaussian approximation by
the authors of ref. (Camarda,2003).However, they introduced a cut off
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parameter Λ as a characteristic energy scale of the sample to make
the divergent integrals I0 and I1 finite.We beleive that, the better
agreement is a result of introducing this rather arbitrary additional
parameter. It should be noted that,in the present approach for D = 3
there is no such additional adjustable parameter.Here we used dimen-
sional regularization 3 in which we put µ = Ω̄0. As it is expected, the
behavior of κ(τ) does not depend on µ:Another value of µ, e.g. µ = 2Ω̄0

leads to another set of input parameters {m02, mc, λ0, λ0}, but to the
same behavior for κ(τ).

Clearly, the solutions of nonlinear gap equations are not unique. In
numerical calculations we separated the physical solutions by observing
the sign of φ̄2

0 and that of the effective potential at the stationary
point:Veff (φ̄0). The temperature dependence of these two quantities
are presented in Fig. 2. It is seen that φ̄2

0 (solid line) is positive in the
large range of τ and goes to zero when τ is close to τ = 1. Similarly,
the depth of the effective potential at the stationary point, Veff (φ̄0),
becomes shallow when τ → 1 and vanishes at T = Tc.

3.2. The effect of dimensionality

All the above numerical calculations were made in D=3 dimension. On
the other hand it is widely known that, most of high Tc cuprates have
layered structures with 2D CuO2 planes which play an essential role
in the high Tc superconductivity.Therefore, it is nessesary to consider
the dimensional contribution in the calculation.For this purpose,we
consider the case of D = 2 + 2ε (ε �= 0) in the post Gaussian ap-
proximation.In this case the optimal values of m and λ also depend
on ε. Using Eq.(25) and the procedure outlined above one finds the ε
dependence of m2

0 presented in Fig.3 (solid line).
One notes that,for small values of ε (0 < ε ≤ 0.048) m2 becomes

positive. Bearing in mind that, in the GL model the phase transition
occurs where m2 changes sign (or more exactly the superconductive
phase holds only for m2 < 0),it shows that,in the present approximation
scheme, there is no phase transition in D = 2 + 2ε dimension for very
small values of ε.Note that, λ remains positive on the whole range of ε.

For ε ≥ 0.1,there is a possibility to adjust ε to the recent ex-
perimental data on κ(T ) (Brandstatter,1994) for high − Tc cuprate
superconductor T l2Ca2Ba2Cu3O10(T�− 2223). Our calculations show
that,the best choice of ε is found to be ε = 0.21.The appropriate κ(τ) is
presented in Fig.4 (solid line).The dashed line in this figure shows κ(τ)
for D = 3. This fitting process allows us to get an estimation on the
effective dimensionality of the high − Tc superconducting materials.

3 see ref.(Kim, 2004) for appropriate counter terms
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Figure 2. The stationary point φ̄2
0 and the depth of the post Gaussian effective

potential at the stationary point vs.temperature.

4. Summary

In this report we have carried out calculations of the Ginzburg − Lan-
dau effective potential beyond the Gaussian approximation.The result
is used to obtain the Ginzburg-Landau parameter,κ, and compared
with existing high Tc superconductivity data.It is shown that the post
Gaussian correction which is believed to originate from strong correla-
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Figure 3. The parameter m2 of the GL model v.s. ε in fractal dimension D = 2+2ε.
The solid and dashed lines are for the temperatures T = 0 and T = 0.6Tc,
respectively.

tion is substantial. We have studied also the role of dimensionality of
high Tc superconducting materials. In order to estimate the contribu-
tion from the quasi two dimensionality, we have carried out calculations
for D = 2 + 2ε case, letting ε as a free (but small) paramtere.It has
been shown that the GL parameter is rather sensitive to ε when the
loop corrections to the simple Gaussian approximation are taken into
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Figure 4. The GL parameter, κ, in D = 2 + 2ε (solid line) and in D = 3 (dashed
line) cases calculated in the PostGaussian approximation.

account.The optimal value of ε for the cuprate (T�− 2223) is found to
be ε = 0.21. It would be interesting to estimate optimal ε in fractal
dimensions for other cuprates also.
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The s-wave πd scattering length from πd atom using

effective field theory

B.F. Irgaziev and B.A. Fayzullaev
Theoretical Physics Department,
National University of Uzbekistan,
700174 Tashkent, Uzbekistan

Abstract. The π−d atom strong energy-level shift in the 1s state is derived by
using the effective field theory. Taking into account the large value of radius of pionic
deuterium and short radius of strong interaction between pion and deuteron we have
considered deuteron as a particle described by a vector field. Pion is described by a
scalar field. To obtain non-relativistic Hamiltonian for πd system Foldy-Wouthuysen
transformation has been derived for the vector field. The strong interaction between
pion and deuteron has been taken of zero-range. We have found the Deser type for-
mula for relation between the strong energy-level shift and the s-wave πd scattering
length.

Keywords: Pionic atoms, non-relativistic Hamiltonian, scattering length, energy
shift.

1. Introduction

Recently, substantial progress has been made in developing Chiral per-
turbation theory (ChPT) for pionic nucleon (πN) system (Mojzis, 1998;
Fettes, Meissner and Steininger, 1998; Fettes and Meissner, 2000; Fettes
and Meissner, 2001; Gasser J. et al, 2002). In this context the precision
X-ray experiments on pionic hydrogen and pionic deuterium were car-
ried out by ETH Zurich-Neuchâtel-PSI collaboration (Schröder et al,
2001). The s−wave πN scattering lengths are important for testing of
various theoretical consideration like the Goldberger-Miyazawa-Oehme
sum rule (Golberger, Miyazawa and Oehme, 1955) determining the
ππN coupling constant. The sigma term, which is used for lattice and
ChPT calculation, is sensitively affected by the isoscalar scattering
length. The πN and π d scattering lengths are determined directly from
the phase shift analysis and from the X-ray experiments on pionic atoms
using the Deser formula (Deser et al, 1954).

The extraction of the s-wave scattering length from the X-ray ex-
periments gives errors less than the phase shift analysis. The accuracy
of the modern level of experimental analysis of the parameters of pionic
hydrogen reached by the PSI Collaboration is about 1% for the strong
energy shift and 2% for the width of the energy level of the ground state
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of pionic hydrogen (Anagnostopoulos et al., 2003). The NPE measure-
ment (A. Wirzba., 1998) of the pionic deuterium atomic level strong
shift yields for the πd scattering length aπd = [−0.0261(±0.0005) +
i0.0063(±0.0007)]m−1

π , where mπ is the pion mass. Note the imaginary
part of the πd scattering length is approximately four times less than its
real part. Such results for π−d scattering can be explained by the fact
that the absorption channel π−d → nn and the radiative absorption
channel π−d → γnn give very small contribution to the scattering
length. Also π−d → π0nn channel, which is open at threshold, is sup-
pressed by the centrifugal barrier. Indeed, 96% of the deuteron state
is the 3S1 state, therefore according to Pauli principle the 3S1 state is
forbidden for nn system and the 1S0 state is not available if there is no
spin flip. In a series of papers (Peresypkin and Petrov, 1974; Afnan and
Thomas, 1974; Mizutani and Koltun, 1977; Deloff, 2001) the determina-
tion of the pion-deuteron scattering length was considered by solving
the Faddeev equations and the Lippman-Schwinger equation (Baru,
Kudryavtsev and Tarasov, 2004). There has been remarkable recent
progress in developing the effective field theories to problems relevant
to the πN (Lyubovitskji and Rusetsky, 2000; Ivanov et al, 2003) and
πd (Beane et al, 1998; Borasoy and Griesshammer, 2001; Beane et
al, 2003; Beane and Savage, 2003) scattering length. The main results
obtained from calculation of the πd scattering length are the follow-
ing: (a) in all theoretical calculations isospin symmetry of the strong
interactions is assumed; (b) the π−d scattering length can be extracted
from the 1s energy shift of pionic deuterium using the Deser formula;
(c) the electromagnetic contribution to the difference of the real parts
of the scattering length of π+ and π− is of order of the experimental
error in the scattering length. The aim of this paper is to establish the
precise relation between the strong energy-level shift of the π−d atom
in the 1s state, and strong πd scattering length using the effective field
theory. In the present paper we show how to obtain the nonrelativistic
Hamiltonian for πd system from the relativistic equations of motion for
the scalar and vector fields by taking into account the electromagnetic
interaction. The strong interaction is taken in the zero-range approach.

2. Nonrelativistic limits for the scalar and vector fields

The problem of nonrelativistic limit description for fundamental parti-
cles and their interactions may be solved in different ways. Although in
all methods of nonrelativistic expansion the first terms of the Hamil-
tonians coincide, however the difference begins to arise at transition
to the higher orders of expansion. The method of Foldy-Wouthuysen
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transformation is one of the safest method for solving this problem

scalar particles. In our task we need in nonrelativistic Hamiltonian for
massive vector field (deuteron is considered as a fundamental particle)
interacting with electromagnetic and scalar (pion) fields. In this ap-
proach suggested by us the equations of motion are basic for producing
nonrelativistic Hamiltonian.

We would like to point out some steps of derivation of the nonrela-
tivistic limit Hamiltonians by means of the Foldy-Wouthuyisen trans-
formation and Drell, 1964). The method is based on the trans-
formation of a relativistic equation of motion to the Schrödinger equa-
tion form.

The equation of motion for the scalar particle in the electromagnetic
field is (

D2 + m2
)

ϕ = 0, or D2
0ϕ =

(
D2 −m2

)
ϕ, (1)

where we use the standard notations

Dµ = ∂µ − ieAµ, D0 = ∂0 − ieA0, (2)
D = −∇− ieA, �π = iD = p + eA, (3)

and Aµ is the electromagnetic potential, �π is the generalized momen-
tum. Determining the ”big” and ”small” components of ϕ by equations

θ = ϕ +
i

m
D0ϕ, χ = ϕ− i

m
D0ϕ, (4)

we get

iD0θ = mθ − D2

2m
(θ + χ) , iD0χ = −mχ +

D2

2m
(θ + χ) , (5)

or

i∂tΦ = HΦ, Φ =
(

θ
χ

)
. (6)

where

H = mη − eA0 − η
D2

2m
− ρ

D2

2m
= mη − eA0 + η

�π2

2m
+ ρ

�π2

2m
, (7)

η =
(

1 0
0 −1

)
, ρ =

(
0 1
−1 0

)
. (8)

This Hamiltonian we should transform to separate the states with
positive energy from those of negative ones. Substituting

Φ = e−iSΦ′ (9)

(Bjorken and Drell, 1964). This method was mainly used for spinor and

Bjorken(
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into Eq. (6) we obtain
i∂tΦ′ = H ′Φ′, (10)

where
H ′ = eiS (H − ∂tS) e−iS . (11)

Using standard expansion formula for S and excluding the terms con-
taining ρ from the expansion, we get the new Hamiltonian up to the
accuracy O(1/m4) (Wirzba and Drell, 1964):

H ′ = η

(
m +

�π2

2m
− �π4

8m3

)
− eA0 −

ie

16m4
[�π2, �π ·E]. (12)

Now we can proceed to a massive vector field theory. A massive particle
of spin 1 has three degrees of freedom, so, it may be considered as
spatial part of a four vector ψµ. In Ref. (Corben and Schwinger, 1940) a
general theory describing particles of unit spin and arbitrary magnetic
moment was developed and applied to the motion of such particles
in the electromagnetic field. For our purpose we use the equations of
motion given in Ref. (Wentzel, 1949; Pauli, 1941). The massive four-
dimensional vector field ψν is described by

ψµν = Dµψν −Dνψµ, Dµψµν + M2ψν − ieκFνµψµ = 0, (13)

where M is mass of the vector particle,

Fνµ = ∂µAν − ∂νAµ (14)

is the strength tensor of the electromagnetic field,

Dµ = ∂µ − ieAµ (15)

is the electromagnetic covariant derivative and κ is the anomaly part
of magnetic moment of the particle. Acting on the second equation by
Dν we get the following constraint:

Dµψµ = − ie

2M2
Fµνψµν +

ieκ

M2
Dµ(Fµνψ

ν). (16)

Let us rewrite Eq. (13) as

D2ψν −DνD
µψµ + M2ψν − ieµFνµψµ = 0, (17)

where µ = 1 + κ is the full magnetic moment of the vector particle.
Using the constraint (16) we get

D2
0ψν =

(
D2 −M2

)
ψν + ieµFνµψµ

− ie

2M2

[
Dν(Fµνψµν)− 2κDνD

µ(Fµλψλ)
]
. (18)
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Further we replace the zero component of ψν through its spatial part :

ψ0 =
1

M2 −D2

[
ie(1 + κ)E · �ψ + D0D

iψi

]
, (19)

where ψi is spatial component of �ψ. Using the following notations

Ψi =
(

ζi

χi

)
, ζi = ψi +

i

M
D0ψi , χi = ψi −

i

M
D0ψi , (20)

and the procedure of the Foldy-Wouthuysen transformation as for the
scalar field we obtain the system of equations

i∂0Ψi = Hj
i Ψj , i, j = 1, 2, 3, (21)

where the Hamiltonian is equal to

Hij =

(
Mη − eA0 + η

�π2

2M
− η

�π4

8M3

)
δij +

ieµ

2M
ηεikjB

k

− ie

2M2

[
(2− µ)πiEj + µEiπj

]

+
ie

2M3
η

[
εkljπ

i
(
Bkπl + (µ− 1)πkBl

)
+ · · ·

]
, (22)

where we include terms up to order O(1/M3). In Eq. (22) Ei and Bi

are the components of an electric field intensity E and a magnetic field
of flux density B respectively.

Let us estimate magnitudes of terms included in the nonrelativistic
Hamiltonians (12) and (22) assuming that the pion and deuteron are in
the 1s bound state and they move relative to each other with momen-
tum p in the center of mass system. It is well known that the binding
energy of π−d atom is about 3 keV therefore we obtain p/m ∼ 6.6·10−3

for pion and p/M ∼ 5 · 10−4 for deuteron. The strong energy-level shift
in π−d atom is about ε ∼ 3 eV. Therefore we have to take into account
the terms of the Hamiltonians which give contributions of the same
order like ε. Assuming the Bohr radius of the atom to be Rb ∼ 200 fm,
i.e., 1/Rb ∼ 1 MeV, we arrive at values: the first relativistic correction
p4/(8m3) for pion has magnitude ∼ 3 · 10−2 eV and the Darwin term
(the last term in Eq. (12)) has magnitude 7 · 10−7 eV; the kinetic
energy of the deuteron is about 2 ·102 eV, the relativistic correction for
deuteron p4/(8M3) ∼ 1.3 · 10−5 eV, the term of order 1/M describing
interaction of the magnetic moment of deuteron with magnetic field
vanishes in the quantum mechanics case, because we consider 1s state
of the atom, the contribution of other terms of order 1/M2 and 1/M3
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are ∼ 7 · 10−4 eV and ∼ 5 · 10−9 eV respectively. Taking into account
these estimations we conclude that the last term in Eq. (12) and the
terms of order 1/M2 and higher are not important and we can omit all
relativistic corrections for deuteron. We underline that in the nonrela-
tivistic limit the down components in the wave functions Eq. (6) and
(20) go to zero.

Now we can write down the total Hamiltonian including into con-
sideration the strong πd interaction and the Hamiltonian of the elec-
tromagnetic field. We take the density of the Hamiltonian the strong
πd interaction in the zero range approach:

HS = −dπd
�Ψ†

dΦ
†
π
�ΨdΦπ, (23)

where Φπ and �Ψd denote the non-relativistic field operator of pion
and deuteron respectively, dπd is the coupling constant which does not
depend on the spin projection of the deuteron. The electromagnetic
Lagrangian is

Lem = −1
4
F 2

µν = −E · ∂0A + A0divE− 1
2
(E2 + B2), (24)

i.e.,

Hem =
1
2
(E2 + B2) (25)

is the (density) of the electromagnetic Hamiltonian and A0 is a La-
grange multiplier (it is not a dynamical variable).

To obtain the total Hamiltonian for πd system, in the Coulomb
gauge we exclude the A0 field by using the equations of motion, and
neglect high-dimensional operators that arise as a result of this oper-
ation. The result for the canonical Hamiltonian of the non-relativistic
πd system can be written as

H = H0 + HC + HR + Hγ + HS = H0 + HC + V, (26)

where H0 is the free Hamiltonian describing non-relativistic pions and
deuterons. Further, HΓ =

∫
d3xHΓ, Γ = C, R, S, γ, and

HC = e2 (�Ψ†
d
�Ψd)!−1 (Φ†

πΦπ) , (27)

HR = −Φ†
π,
∇4

8m3
Φπ , HS = −dπd

�Ψ†
d
�Ψd Φ†

πΦπ , (28)

Hγ = − ie

2M
�Ψ†

d (∇A + A∇) �Ψd +
ie

2m
Φ†

π (∇A + A∇) Φπ . (29)
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3. Energy shift of pionic deuterium atom

We consider the problem of s-state energy shift according to the per-
turbation theory. Such analysis was performed for the pionic hydrogen
in Ref. (Lyubovitskji and Rusetsky, 2000). Let H0 +HC be the unper-
turbed Hamiltonian, whereas V is considered as a perturbation. The
ground-state solution of the unperturbed Schrödinger equation in the
center of mass (CM) system frame (Ẽ1 −H0 −HC)|Ψ0(0)〉 = 0, with
Ẽ1 = M + m + E1, is given by

|Ψ0(0)〉 =
∫

d3p
(2π)3

Ψ0(p) b†(p) a†(−p) |0〉 , (30)

where a†(p) and b†(p) denote creation operators for non-relativistic π−
and deuteron acting on the Fock space vacuum, and Ψ0(p) stands for
the non-relativistic Coulomb wave function of 1S state in the momen-
tum space, E1 is the non-relativistic binding energy of pionic deuterium.

We are going to evaluate the energy-level shift of the ground state
due to the perturbation Hamiltonian V as in Ref. (Lyubovitskji and
Rusetsky, 2000). Let us define the free and Coulomb Green operators
by the expressions G0(z) = (z −H0)−1 and G(z) = (z −H0 −HC)−1,
respectively. Further, we define the “Coulomb-pole removed” Green
function as Ĝ(z) = G(z)(1−Π), where Π denotes the projector onto
the Coulomb ground state Ψ0 (30). The πd scattering states in the
sector with the total charge 0 are defined as |P,p〉 = b†(p1) a†(p2) |0〉
(p1 and p2 denote momenta of deuteron and pion, respectively). The
CM and relative momenta are defined by P = p1 + p2, p = (mp1 −
M p2)/(M+m). We remove the CM momenta from the matrix elements
of any operator R(z) by introducing the notation

〈P,q|R(z)|0,p〉 = (2π)3δ3(P) (q|r(z)|p) . (31)

The “Coulomb-pole removed” transition operator satisfies the equation

M(z) = V + VĜ(z)M(z) . (32)

According to the Feshbach’s formalism (Feshbach, 1958; Feshbach, 1962)
the scattering operator T(z) develops the pole at z = z̄ where z̄ is the
solution of the following equation

z̄ − Ẽ1 − (Ψ0|m(z̄)|Ψ0) = 0 , (33)

where (p|Ψ0) = Ψ0(p) and m(z) is related to M(z) through the defin-
itions (31).

In order to get the shift of the ground-state energy, the quantity
m(z) is calculated perturbatively from Eq. (32) by the iteration series



324 B.F. Irgaziev and B.A. Fayzullaev

at accuracy O(α2). Using the explicit expression of V given by Eq. (26),
replacing Ĝ(z) by G0(z) whenever possible, and retaining only those
terms that contribute at the accuracy we are working, the operator
M(z) can be written in the form M(z) = U(z) + W(z), where

U(z) = HR + HγG0(z)Hγ , W(z) = HS + HSĜ(z)HS . (34)

At the accuracy O(α2), the energy of the bound state is equal to
z̄ = Ẽ1 + ∆Eem

1 + ε1s, where

∆Eem
1 = Re (Ψ0|u(Ẽ1)|Ψ0) + Evac , ε1s = Re (Ψ0|w(Ẽ1)|Ψ0) . (35)

Here u(z), w(z) are related to U(z), W(z) through the definitions (31)
and Evac stands for the contribution due to the electron vacuum po-
larization which is added “by hand”. The results of calculations for the
matrix elements determining the energy-label shift are the same as in
Ref. (Lyubovitskji and Rusetsky, 2000):

Re (Ψ0|u(Ẽ1)|Ψ0) = −5
8

α4µ4
πd

M3 + m3

M3m3
− α4µ3

πd

Mm
,

Re (Ψ0|w(Ẽ1)|Ψ0) =
α3µ3

πd

π

[
−dπd

+d2
πd ( ξ +

αµ2
πd

π
(lnα− 1))

]
, (36)

where µπd is the reduced mass of the πd system, and

ξ =
αµ2

πd

2π

{
(µ2)d−3

(
1

d− 3
− Γ′(1)− ln 4π

)
+ ln

(2µπd)2

µ2
− 1

}
. (37)

Here d and µ denote the dimension of space and the scale of the di-
mensional regularization used as in Ref. (Lyubovitskji and Rusetsky,
2000), respectively.

The energy shift ( order α2 ) due to the vacuum polarization contri-
bution is given by the well-known expression (Lyubovitskji and Ruset-
sky, 2000). The calculation of the electromagnetic energy-level shift is
now complete.

We present our results in a convenient form

Ẽ1 + ∆Eem
1 = EKG + Evac + Erel , (38)

where

EKG = −1
2

µπdα
2
(

1 +
5α2

4

)
, (39)

Erel =
7
8

α4 µ3
πd

Mm
. (40)
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Table I. Contributions to the electromagnetic binding energy
of the π−p and π−d atoms (eV)

Type of contribution Notation π−p π−d

Point Coulomb, EKG −3235.156 −3459.0

KG equation

Vacuum polarization, Evac −3.241 −3.732

order α2

Relativistic recoil Erel 0.047 0.021

In Table I we present various contributions to the electromagnetic
energy-level shift of π−p and π−d atoms. As can be seen from Table I,
the calculated values of the electromagnetic shifts for π−p and π−d
atoms are close to each other.

4. s-wave scattering length and the Deser’s type formula

In order to complete the calculation of the strong energy-level shift,
one has to match at the accuracy O(α) the particular combination of
the non-relativistic coupling dπd. Therefore we consider the scattering
operator

TR(z) = VR + VRGR(z)TR(z),

VR = HC + Hγ + HS , GR(z) = (z −H0 −HR)−1 . (41)

In the scattering operator TR(z), all kinematical insertions con-
tained in HR are summed up in the external lines (see (Antonelli et
al, 2001) for details). We calculate the matrix element of the scattering
operator TR(z) between the π−d states at O(α). After removing the
CM momentum, the spin-nonflip part of this matrix element on energy
shell is equal to

(q|tR(z)|p) = − 4πα

|q− p|2 −
4πα

4Mm

(q + p)2

|q− p|2

+e2iαθC(|p|) (q|t̄R(z)|p), (42)

where the (divergent) Coulomb phase in the dimensional regularization
scheme is given by

θC(|p|) =
µπd

|p| µd−3
(

1
d− 3

− 1
2
(Γ′(1) + ln 4π)

)
+

µπd

|p| ln
2|p|
µ

, (43)



326 B.F. Irgaziev and B.A. Fayzullaev

and

Re (q|t̄R(z)|p) = −παµπddπd

|p| (44)

+
αµ2

πdd
2
πd

π
ln
|p|
µπd
− dπd + d2

πdξ + · · · ,

where ellipses stand for the terms that vanish at threshold. The first
two terms in Eq. (45) are arisen due to the electromagnetic interactions
between deuteron and pion, the sum of two next terms is amplitude of
scattering due to the strong interaction at threshold.

Therefore for the regular part of the s-wave scattering length we
have

− 2π

µπd
Aπd = −dπd + d2

πdξ. (45)

Finally compare Eq. (45) with Eq. (36) where we take into account
all terms at accuracy O(α2) we obtain the relation between the regular
part of the s-wave πd scattering length and the strong energy-level shift
of π−d atom:

ε1s = −2α3µ2
πdAπd , (46)

where the ultraviolet divergence contained in the quantity ξ, has been
cancelled.

5. Discussion and conclusion

From the measurement of the 3p − 1s X-ray transition of pionic deu-
terium the π−d scattering length has been determined. The strong
energy-level shift can be defined by

ε1s = Emag
3p−1s − Emeas

3p−1s , (47)

where Emag
3p−1s is the electromagnetic transition energy calculated in the

absence of the strong interaction (the strong interaction in the 3p state
is negligible), Emeas

3p−1s is the measured transition energy.
In order to combine the results from pionic hydrogen and pionic

deuterium, establishing a relation between Aπd and πN isoscalar and
isovector lengths b0 and b1 is the important problem. This relation can
be expressed as

Aπd =
1 + m/mN

1 + m/M
2b0 +A(higher order)

πd , (48)

where the first term is the scattering amplitude in the impulse ap-
proximation, 2b0 is the sum of the amplitude for π−p and π−n elastic
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scattering, mN is the nucleon mass. The second term is dominant
and it includes all remaining (higher order) contributions. The results
presented in Ref. (Schröder et al, 2001) shows that the s-wave double
scattering gives the most contribution while the multiple scattering and
form factor correction are much smaller. On the basis of the solution
of the Faddeev equation obtained in Ref. (Deloff, 2001) we get

Aπd =
2µπd

m

[
b̃0 + (b̃2

0 − b̃2
1)

〈
e−κr

r

〉

+ (b̃0 + b̃1)2(b̃0 − 2b̃1)

〈
e−2κr

r2

〉]
, (49)

where κ =
√

2µnpεd (εd is the binding energy of the deuteron, µnp is
reduced mass for proton and neutron) and b̃j = (1 + m/mN )b0. The
expectation values of e−κr/r and e−2κr/r2 are taken with respect to
the deuteron wave function. The calculations of the expectation value
〈1/r〉 performed by the various NN potentials gave 20% discrepancy
for its value (Deloff, 2001). That means it is necessary to calculate the
expectation value with a potential which has the right behavior at short
distances.
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Abstract. Finite-temperature mass spectra of heavy quarkonia are calculated using
an approach based on the thermofield dynamics formalism. Schrödinger operator for
heavy quarkonium is represented in a temperature-dependent form using doubling
procedure and Bogolyubov transformations. Energy eigenvalues of the quarkonium
are calculated by diogonalization of this operator on doubled harmonic oscillator
basis.

Keywords: Quarkonia, mass spectra, in medium effects.

Accurate theoretical prediction of mass spectra and other properties
of hadrons containing heavy quarks is important for mass spectra of
hadrons for forthcoming experiments on the study of their properties.
At present such facilities as Tevatron, LHC and JHF will have the
opportunity to produce hadrons with one or more heavy quarks. The
successful experiments at the Collider Detector at Fermilab Collabora-
tion on the observation of the Bc meson (Abe et. al., 1998) gives some
hope to observe heavy quarkonia, also.

Heavy flavored hadrons which can be observed experimentally are
heavy-light mesons, single- and doubly heavy quarkonia. Properties of
these quarkonia have been studied theoretically very extensively (Fleck
et. al., 1989; Kiselev et. al., 1999; Gershtein et. al., 2000; Matrasulov et.
al., 2000). Studying a larger set of flavored hadrons, including quarkonia
with two heavy quarks, and also exploring their properties in dense
matter allows to test the relevant aspects of the QCD forces acting in
these systems under varying conditions.

At present a considerable amount of data is available for heavy
flavored mesons, and it is expected that the experimental observation of
heavy flavored hadrons at modern hadron colliders with high luminosity
such as Tevatron, LHC and RHIC will further increase our knowledge
of this family of hadrons.

Despite the considerable progress made in the spectroscopy of hadrons
containing heavy quarks within the framework of potential models and
other approaches, most of the work on the calculation of mass spectra
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of such hadrons are made without proper account of in-medium effects
such as color screening and finite-temperature effects. However, in the
realistic cases such hadrons interact with nuclear or quark-gluon matter
that leads to these effects in their mass spectra.

In this work we treat finite-temperature effects in the spectra of
heavy quarkonia. As a tool for taking into account finite-temperature
effects we use, a real time finite-temperature field theory, thermofield
dynamics (TFD).

The main idea of TFD is the following (Santana, 2004): for a given
Hamiltonian which is written in terms of annihilation and creation
operators, one applies a doubling procedure which implies extending
the Fock space, formally written as HT = H ⊗ H̃. The physical vari-
ables are described by the non-tilde operators. In a second step, a
Bogolyubov transformation is applied which introduces a rotation of
the tilde and non-tilde variables and transforms the non-thermal vari-
ables into temperature-dependent form. This formalism can be applied
to quite a large class of systems whose Hamiltonian operators can be
represented in terms of annihilation and creation operators.

In the present work we will apply this formalism to the quantum-
mechanical Hamiltonian of the heavy quarkonium.

The Schödinger equation for heavy quarkonium can be written as

i
∂Ψ
∂t

= HΨ

where H is the quarkonium Hamiltonian

H = −∆
2
− αs

r
+ λr − 4

3
V0,

with αs = 4
3Z,

Multiplying both sides of this equation by r2 and introducing the
following time scaling

τ = r−2t

we have
i
∂Ψ
∂τ

= [−r2 ∆
2
− αsr + λr3 − 4

3
V0r

2]Ψ

By standard substitution

Ψ(r, θ, t) = e−iEτΨ(r, θ)

we can obtain stationary (time-independent) Schrödinger equation for
quarkonium system as:

[−r2 ∆
2
− αsr + λr3 − 4

3
V0r

2]Ψ = EΨ
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Separating angular and radial variables we get[
− 1

2
d

dr
(r2 d

dr
) +

1
2
l(l + 1)− αsr + λr3 − 4

3
V0r

2

]
Ψ = EΨ

Now, introducing annihilation and creation operators as

a =
1√
2

d

dr
+

1√
2
r a† = − 1√

2
d

dr
+

1√
2
r

we can write this equation in terms of these operators:

[−1
8
(a−a†)(a+a†)2(a−a†)− αs√

2
(a+a†)+

λ

2
√

2
(a+a†)3+

1
2
l(l+1)−2

3
V0(

a + a†
)2

]Ψ = EΨ (1)

Now applying TFD prescription (Santana, 2004) which consist of
the following doubling

Ĥ = H − H̃, (2)

and Bogolyubov transformations which are given by

a = a(β)coshθ + ã†(β)sinhθ

a† = a†(β)coshθ + ã(β)sinhθ

ã = a†(β)sinhθ + ã(β)coshθ

ã† = a(β)sinhθ + ã†((β)coshθ

where
β =

ω

kBT
, sinh2θ =

(
eβ − 1

)−1
.

The quarkoniumHamiltonian can be written in a temperature-dependent
form as

H=−1
8
{A1A2A2A1cosh

4θ+B1B2B2B1sinh4θ+[A1A2B2A1+A1B2A2A1−
A1A2A2B1−

−B1A2A2A1]cosh3θsinhθ+[B1A2B2B1+B1B2A2B1−B1B2B2A1−A1B2

B2B1]coshθsinh3θ+
+[A1B2B2A1−A1A2B2B1−A1B2A2B1+B1A2A2B1−B1A2B2A1−B1B2

A2A1]cosh2θsinh2θ}−
− αs√

2
[A2coshθ + B2sinhθ] +

λ

2
√

2
[A2A2A2cosh

3θ + B2B2B2sinh3θ+

+(A2A2B2+A2B2A2+B2A2A2)cosh2θsinhθ+(B2B2A2+B2A2B2+A2B2

B2)coshθsinh2θ]−
−2

3
V0

(
A2A2cosh

2θ + B2B2sinh2θ + (A2B2 + B2A2)coshθsinhθ
)

where
A1 = a(β)− a†(β), A2 = a(β) + a†(β),
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B1 = ã(β)− ã†(β) B2 = ã(β) + ã†(β)

Temperature-dependent energy spectrum can be found by numeri-
cally diagonalizing of the following matrix:

E = 〈n‘, ñ‘ | H(θ, a(β), a†(β), ã(β), ã†(β)) | ñ, n〉 =

=
1
8
(K − L + M)− αs√

2
N +

λ

2
√

2
O − 2

3
V0P,

where

K =
(
cosh4θ + sinh4θ

)(
2n2 + 2n + 3)δn,n′−

−
√

n(n− 1)(n− 2)(n− 3)δn,n′−4+
√

(n + 1)(n + 2)(n + 3)(n + 4)δn,n′+4

)
,

L =
(
cosh3θsinhθ + coshθsinh3θ

)(
4n2δn,n′−1 + 4(n + 1)2δn,n′+1

)
,

M = 2cosh2θsinh2θ

(
(4n2 + 4n− 1)δn, n′+

+
(
n(n−1)−

√
n(n− 1)

)
δn,n′−2+

(
(n+1)(n+2)−

√
(n + 1)(n + 2)δn,n′+2

)
,

N = (coshθ + sinhθ)(
√

nδn,n′−1 +
√

n + 1δn,n′+1),

O = (cosh3θ + sinh3θ)

(
3n
√

nδn,n′−1 + 3(n + 1)
√

n + 1δn,n′+1+

+
√

n(n− 1)(n− 2)δn,n′−3 +
√

(n + 1)(n + 2)(n + 3)δn,n′+3

)
,

P =

(√
n(n− 1)δn,n′−2+

√
(n + 1)(n + 2)δn,n′+2

)(
cosh2θ + sinh2θ

)
+

+2
(
nδn,n′−1 + (n + 1)δn,n′+1

)
coshθsinhθ

In tables 1 and 2 finite-temperature mass spectra of charmonium
and bottomonium obtained by diogonalizing this matrix are presented.
As is clear from these tables, taking account of finite-temperature leads
to considerable increasing of the binding energy and masses. Thus, ap-
plying thermofield dynamics formalism to quantum mechanical Hamil-
tonian of quarkonium we have estimated mass spectra of the heavy
quarkonia taking into account in medium effect, finite-temperature.
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Table I. The mass spectrum of cc̄ charmonium (in GeV )
at zero and finite temperature (K); mc = 1.5GeV,
αs = 0.4, λ = 0.1111GeV 2, V0 = 0.1GeV . n is the radial
quantum number.

n T = 0K T = 0.7241014K T = 0.7241015K

1 3.048681 3.641026 3.861899

2 3.616962 4.532977 4.835608

3 3.961313 5.290853 5.872907

4 4.691352 6.192815 7.025122

5 5.426366 7.513399 8.655732

6 6.269434 8.918955 10.37917

7 7.428792 10.51625 12.30986

The approach presented in this work can be also extended to the
case of Dirac and Klein-Gordon operators, too in order to calculate
finite-temperature spectra of heavy-light and hybrid mesons.
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Table II. The mass spectrum of bb̄ bottomonium
(in GeV ) at zero and finite temperature (K);
mb = 4.88GeV, αs = 0.4, λ = 0.0105GeV 2,
V0 = 0.1GeV . n is the radial quantum number.

n T = 0K T = 0.7241014K T = 0.7241015K

1 9.918375 10.13224 10.54522

2 11.04372 12.07665 13.27507

3 11.96444 14.64021 16.03880

4 13.53718 16.96896 20.61091

5 16.04498 20.03971 25.17539

6 18.38532 24.23369 30.52363

7 21.77419 28.90877 36.74519
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Chaotization of the periodically driven quarkonia
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Abstract. Classical regular and chaotic dynamics of the particle bound in the
Coulomb plus linear potential under the influence of time-periodical perturbations
is treated using resonace analysis. Critical value of the external field at which
chaotization will occur is evaluated analytically based on the Chirikov criterion
of stochasticity.

Keywords: quarkonia, quarks

1. Introduction

Dynamical chaos in periodically driven systems has become attractive
topic in many areas of contemporary physics such as atomic, molecu-
lar, nuclear and particle physics. Dynamical systems which can exhibit
chaotic dynamics can be divided into two classes: time independent and
time-dependent systems. Billiards, atoms in a constant magnetic field,
celestial systems with chaotic dynamics are time independent systems,
whose dynamics can be chaotic.

A convenient testing ground for the theoretical and experimental
study of chaos in the time-dependent dynamical systems is the highly
excited hydrogen atom in a monochromatic field. A theoretical analysis,
of the behaviour of a classical hydrogen atom interacting with mono-
chromatic field, based on the resonance overlap criterion, shows that
for some critical value of the external field strength εcr, the electron
enters into chaotic regime of motion, marked by unlimited diffusion
along orbits, leading to ionization. Experimentally this phenomenon
was first observed by Bayfield and Koch. Theoretical explanation of
this phenomenon was given later by several authors. Such an ionization
was called chaotic or diffusive ionization. During the last three decades
chaotic ionization of nonrelativistic atom was investigated by many
authors theoretically as well as experimentally.
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In this paper we consider the QCD counterpart of this problem.
Namely, we address the problem of regular and chaotic motion in pe-
riodically driven quarkonium. Using resonance analysis based on the
Chirikov criterion of stochasticity we estimate critical values of the
external field strength at which quarkonium motion enters into chaotic
regime.

Quarkonium in a monochromatic field can be considered as an ana-
log of the hydrogen atom in a monochromatic field, in which Coulomb
potential is replaced by Coulomb plus confining potential.

2. One-dimensional model

For simplicity we consider a one-dimensional model with a potential

V (x) =

⎧⎨
⎩
−Z

x + λx for x > 0

∞ for x ≤ 0
,

where Z = 4
3αs αs being the strong coupling constant and λ gives

strength of the confining potential.
As is well known, in the case of the hydrogen atom interacting with

a monochromatic field, one-dimensional model provides an excellent
description of the experimental chaotization thresholds for real three-
dimensional hydrogen atom (Jensen, 1984).

The Hamiltonian of the periodically driven quarkonium is given by

H =
p2

2
− Z

x
+ λx + εxcosωt, (1)

with ε and ω being the field strength and frequency, respectively.
Formally the unperturbed Hamiltonian is equivalent to the Hamil-

tonian of the hydrogen atom in constant homogenious electric field.
Chaotic dynamics of hydrogen atom in constant electric field under
the influence of time-periodic field was treated earlier (Berman et. al,
1985; Stevens and Sundaram1987). To treat nonlinear dynamics of this
system under the influence of periodic perturbations we need to rewrite
(1) in action-angle variables. Action can be found using its standard
definition:

n(E) =
1
2π

a∫
c

pdx =
√

2λ

a∫
c

√
(a− x)(x− c)

x
dx, (2)

where the momentum p is given by

p =
√

2(E − V (x)), (3)
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and the constants a and c given as

a =
E +

√
E2 + 2Zλ

2λ
, c =

E −
√

E2 + 2Zλ

2λ

are turning points of the particle. Since c < 0 for the action we have

n(E) =
1
2π

a∫
0

pdx = B

√
a +

1
a
·
[(

a− 1
a

)
E(k) +

1
a
K(k)

]
. (4)

where

B =
2
√

2

3πλ
1
4

,

here E(k) and E(k) are the elliptic integrals (Abramowitz and Stegun,
1964) and

k2 =
a2

a2 + 1
− (1 +

1
a2

)−1. (5)

Here we consider the two limit cases: a 1 and a� 1.
For the first case (a 1) we have:

E ≡ H0 = Z2An2/3 ·
[
1− λln4B−2/3n2/3

A2n4/3

]
, (6)

with

A =
(

3πλ

2
√

2

2
3
)

.

The corresponding proper frequency is

ω0 =
2
3
Z2
[

A

n1/3
+

λ

An5/3
[ ln(4A

√
λn2/3)]−1

]
(7)

For the case a� 1 we have:

E ≡ H0 = 0.5Z2(9.7λn2 − n−2); (8)

The proper frequency for this Hamiltonian is

ω0 = Z2(n−3 + 9.7nλ). (9)

The total Hamiltonian can be written as

H = H0 + ε
∑

xkcos(kθ − ωt), (10)

with

xk(n) = −
∫ 2π

0
x(n, θ)eikθdθ (11)
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being Fourier amplitude of the perturbation. For a � 1 we have an
estimate for the Fourier component

xk(n) ≈ −4E(n)
λ

1
k

sin2 πk
√

λ

2
. (12)

For a 1 we have

xk(n) = −2An2/3

π2λk2
. (13)

It is well known that the phase-space trajectories of the regular motion
lie on tori (so-called KAM tori). According to Kolmogorov-Arnold-
Moser theorem for sufficiently small fields most of the trajectories
remain regular. If the value of the external perturbation exceeds some
value, which is called the critical field strength, KAM tori start to break
down and chaotization of the motion will occur (Zaslavsky, 1988). In
Fig. 1 the phase-space portrait of the periodically driven quarkonium
is plotted for the following values of parameters: Z = 0.15, λ = 0.4,
ω = 10−5 and ε = 4 · 10−4. Eight regular and two chaotic trajectories
are shown. The values of these parameters are written in the system
of units where mq = h̄ = 1, where mq is the quark mass, c is the
light speed. The values are chosen to have chaotic as well as regular
behaviour. Fig.2 represents the phase-space portrait of the periodi-
cally driven quarkonium for a � 1 case for the values of parameters
Z = 0.15, λ = 10, ω = 10−5 and ε = 4 · 10−3. Again, the system of
units mq = h̄ = 1 is used.

To estimate the critical value of the external filed strength εcr we use
Chirikov’s resonance overlap criterion (Zaslavsky, 1988; Jensen, 1984),
which can be written as:

s =
∆νk + ∆νk+1

ω0(k + 1)− ω0(k)
, (14)

with
∆νk = (

εxk

ω′
0

)

being the width of the k-th resonance (Zaslavsky, 1988) and

ω′
0 = dω0/dn.

From the resonance condition we have

ω0(k)− ω0(k + 1) =
ω

k
− ω

k + 1
=

ω

k(k + 1)
.

Applying this criterion to the quarkonium Hamiltonian (10) we have
for a 1

εcr =
0.07Z2ωπ2λ

n2
· k(k + 1)
(k + 1)2 + k2

×
{

1 +
λ

A2n
4
3

[
5 ln

(
4Aλ− 1

2 n
2
3

)
− 7

]}

(15)
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and for a� 1:

εcr =
0.3ωα

k(k + 1)n2
·29αn4 − 9
29αn4 − 3

×
[
1
k

sin2(k
√

α
π

2
) +

1
k + 1

sin2((k + 1)
√

α
π

2
)
]−1

(16)
In Table 1 the values of the critical field for both approximations for

uū, dd̄, ss̄, cc̄ and bb̄ quarkonia at the following values of parameters:
ω = 109Hz, αs = 0.112(Barnett et. al, 1996), λ = 0.2Gev2, n = 10. are
presented. For light (u, d, s) quarkonia we use formula (15) and formula
(16) for bottomium and charmonium.

3. Three-dimensional model

The Hamiltonian for the three-dimensional model is

H0 =
p2

r

2
− Z

r
+ λr +

L2

r2
.

where L is the orbital angular momentum and pr is the radial momen-
tum.

The action can be expressed in terms of elliptic integrals:

n =
a∫

c

pdr =
a∫

c

√
2(E − L2

r2
+

Z

r
− λr)dr =

[
(2Z/3− L2/c + Ec/3)K(k) + E(a− c)/3E(k)+

+L2(c−1 − b−1)
∏

(β2, k)
]
g/
√

λ (17)

with a and c being the turning points, K, E,
∏

are complete elliptic
integrals of the first, second and third kind, respectively (Abramowitz
and Stegun, 1964), and the constants are given as
k2 = (a− b)/(a− c), β = ck2/b, g = 2/

√
a− c.

Applying resonance overlap criterion to this Hamiltonian we get the
following estimate for the critical field strength:

εcr =
0.07αω

k(k + 1)πn2

(
1− πL

n

)⎧⎨
⎩
√

16π2

9
+

1
k2

+

√
16π2

9
+

1
(k + 1)2

⎫⎬
⎭

−1

×
[
1− L2

4π4n2

]
. (18)

This estimate for the critical field assumes that n is large. If the external
field strength has the value exceeding εcr, breaking of KAM surfaces in
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Table I. The values of the critical field strength for various quarkonia.

Quarkonium Quark mass Critical field (V/cm)

(in MeV) n = 5 n = 7 n = 10

uū 5 2.124 · 108 1.084 · 108 5.31 · 107

dd̄ 10 2.231 · 105 1.138 · 105 5.578 · 104

ss̄ 150 1.047 · 105 5.34 · 104 2.617 · 104

cc̄ 1500 49.167 25.045 12.258

bb̄ 4800 1.224 0.624 0.306

the phase space will occur and and the quarkonium diffuses in action
and the motion becomes chaotic.

Thus we have treated the chaotic dynamics of the quarkonium in
a time periodic field. Using the Chirikov’s resonance overlap criterion
we obtain estimates for the critical value of the external field strength
at which chaotization of the quarkonium motion will occur. The ex-
perimental realization of the quarkonium motion under time periodic
perturbation could be performed in several cases: in laser driven mesons
and in quarkonia in the hadronic or quark-gluon matter.

The research of FCK is supported by NSERC.
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Abstract. Quantum chaos at finite-temperature is studied using a simple paradigm,
two-dimensional coupled nonlinear oscillator. As an approach for the treatment
of the finite-temperature a real-time finite-temperature field theory, thermofield
dynamics, is used. It is found that increasing the temperature leads to a smooth
transition from Poissonian to Gaussian distribution in nearest neighbor level spacing
distribution.

Keywords: Dynamical chaos, Termofield Dynamics, Yang-Mills-Higgs systems

Recent years there has been a growing interest in quantum chaos in
mesoscopic system theory, field theories and particle physics. Recent
studies of spectral statistics of the QCD Dirac operator showed that
the low-lying spectrum is governed by the Random Matrix Theory and
related to symmetries both in confinement and deconfinement phases.
Recent treatment of the charmonium spectral statistics and its depen-
dence on color screening has established quantum chaotic behaviour
(Gu et.al., 1999). It is supposed that such a behaviour could be the
reason for J/Ψ suppression (Gu et.al., 1999). Despite the considerable
progress made in the study of quantum chaos in field theories, particle
physics and related areas, all those investigations are restricted only
to zero-temperature cases. However, the role of finite-temperature is
important since the behavior of hadrons in quark-gluon or in nuclear
matter, electrons in quantum dots, and other mesoscopic systems could
strongly depend on the environment and heat bath effects (Hallman
et.al., 2002).

In this work we give a simple presciption for the treatment of finite-
temperature effects in quantum chaos using a well-known paradigm of
nonlinear dynamics, nonlinear oscillator.

To introduce temperature we use the thermofield dynamics (TFD)
formalism (Takahashi et.al., 1996; Das, 1997). TFD is a real time
finite-temperature field theory. In TFD the central idea is the doubling
of the Hilbert space of states. The operators on this doubled space

∗ comments to matrasul@infonet.uz
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are doubled. Bogolyubov transformations define a pure vacuum state.
The operators at finite-temperature are related to the operators at
zero temperature by Bogolyubov transformations. For our purposes,
i.e. for treating quantum chaos in gauge fields, TFD is a convenient
approach compared to other finite-temperature field theories, such as
Matsubara formalism (Matsubara, 1955) or Schwinger-Keldysh formal-
ism (Das, 1997) The possibility of representing the nonlinear oscillator
Hamiltonian in terms of annihilation and creation operators makes
TFD a useful tool to explore finite-temperature effects in the energy
fluctuations.

The quantum Hamiltonian we wish to treat is given by

Ĥ =
P 2

1

2
+

P 2
2

2
+ ω2(q2

1 + q2
2) + γ2q2

1q
2
2 (1)

Introducing annihilation and creation operators

âk =
√

ω

2
q̂k + i

√
1
2ω

p̂k â+
k =

√
ω

2
q̂k − i

√
1
2ω

p̂k

the Hamiltonian can be represented as

H = ω(a1a
+
1 + a2a

+
2 + 1) +

γ2

4ω2
(a1 + a+

1 )2(a2 + a+
2 )2 (2)

Operators âk and â+
l satisfy the commutation relations [âk, â

+
l ] =

δkl, k, l = 1, 2.
The eigenvalues of this Hamitonian can calculated by numerical

diagonalization of the truncated matrix of the quantum system in the
basis of the harmonic oscillator wave functions. The matrix elements
of H0 and V are

< n′
1, n

′
2|H0|n1, n2 >= ω(n1 + n2 + 1)δn′

1n1
δn′

2n2
,

and

< n′
1, n

′
2|V |n1, n2 >=

γ2

4ω2
{
√

n1(n1 − 1)δn′
1n1−2+

√
n1(n1 − 1)δn′

1n1+2 + (2n1 + 1)δn′
1n1
}

×{
√

n2(n2 − 1)δn′
2n2−2+√

n2(n2 − 1)δn′
2n2+2 + (2n2 + 1)δn′

2n2
}

The numerical procedure for diagonalization of this matrix is described
by Salasnich (Salasnich, 1997). We use the same method in the case of
finite-temperature calculations.
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Now we extend this result to the case of finite temperature using
TFD Formalism. In TFD the thermal average of any operator is equal
to the expectation value between the pure vacuum state |0(β) > defined
by applying Bogolyubov tranformations to the usual vacuum state .
Applying donbling and Bogoliubov transformations, we can write the
Hamiltonian in the temperature dependant form.

Thus the anharmonic oscillator Hamiltonian in TFD is given as

Ĥ = H − H̃ (3)

where H is given by eq.2 and H̃ is given as

H̃ = ω(ã1ã
+
1 + ã2ã

+
2 + 1) +

g2

8ω2
(ã1 + ã+

1 )2(ã2 + ã+
2 )2

First we need to rewrite the non-tilde part of the Hamiltonian in
the temperature-dependent form using the Bogolyubov transformations
which are given by

ak = ak(β)coshθ + ã+
k (β)sinhθ

a+
k = a+

k (β)coshθ + ãk(β)sinhθ

ãk = a+
k (β)sinhθ + ãk(β)coshθ

ã+
k = ak(β)sinhθ + ã+

k (β)coshθ

where
β =

ω

kBT

where tilde and non-tilde creation and annihilation operators satisfy
the following commutation relations:

[ak(β), a+
l (β)] = δkl [ãk(β), ã+

l (β)] = δkl

l, k = 1, 2, and sinh2θ = (eβ − 1)−1. All other commutation relations
are zero.

Then the temperature-dependent forms of H0 and H̃0 are

H0 = ω{(F1 + F2)cosh2θ+

(L1 + L2)sinh2θ + (S1 + S2)coshθsinhθ + 1},
H̃0 = ω{(F1 + F2)sinh2θ+

(L1 + L2)cosh2θ + (S1 + S2)coshθsinhθ + 1},
where

Fk = a+
k (β)ak(β),



344 Davron U. Matrasulov et al.

Lk = ãk(β)ã+
k (β),

Sk = a+
k (β)ã+

k (β) + ã+
k (β)ak(β),

For V and Ṽ we have

V =
γ2

4ω2
{A1cosh

2θ + B1coshθsinhθ+

C1sinh2θ}{A2cosh
2θ + B2coshθsinhθ + C2sinh2θ}

Ṽ =
γ2

4ω2
{A1sinh2θ + B1coshθsinhθ + C1cosh

2θ}×

×{A2sinh2θ + B2coshθsinhθ + C2cosh
2θ},

where
Ak = (ak(β) + a+

k (β))2,

Bk = (ak(β) + a+
k (β))(ã+

k (β) + ãk(β))+

(ã+
k (β) + ãk(β))(ak(β) + a+

k (β)),

and
Ck = (ã+

k (β) + ãk(β))2.

Diagonalizing this matrixnumerically we obtain thefinite-temperature
energy eigenvalues of the anharmonic system.

One of the main characteristics of the statistical properies of the
spectra is the level spacing distribution (Eckhardt, 1988; Gutzwiller,
1990) function. In this work we calculate the nearest-neighbor level-
spacing distribution (Eckhardt, 1988; Gutzwiller, 1990).

The nearest neighbor level spacings are defined as Si = Ẽi+1 − Ẽi,
where Ẽi are the energies of the unfolded levels, which are obtained
by the following way: The spectrum {Ei} is separated into smoothed
average part and fluctuating parts. Then the number of levels below E
is counted and the following staircase function is defined:

N(E) = Nav(E) + Nfluct(E).

The unfolded spectrum is finally obtained with the mapping

Ẽi = Nav(Ei).

Then the nearest level spacing distribution function P (S) is defined
as the probability of S lying within the infinitesimal interval [S, S+dS].

For the quantum systems which are chaotic in the classical limit
this distribution function is the same as that of the random matrices
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(Eckhardt, 1988). For systems which are regular in the classical limit
its behaviour is close to a Poissonian distribution function.

For Hamiltonians invariant under rotational and time-reversal trans-
formations the corresponding ensemble of matrices is called the Gaussian
orthogonal ensemble (GOE). It was established that GOE describes the
statistical fluctuation properties of a quantum system whose classical
analog is completely chaotic.

In Fig. 1 level spacing distributions for different temperatures are
plotted (ω = 0.01 and θ) for the energy spectrum calculated by diag-
onalizing of the matrix R. It is clear from this plot that the system
is regular at θ = 0. However, the increase of temperature leads to a
chaotization of the system and P (S) becomes closer to the Gaussian
distribution.

Thus increasing the temperature leads to a smooth transition from
a Poissonian to a Gaussian form in the level spacing distribution.
This fact makes finite-temperature treatment more interesting from
the viewpoint of quantum chaology.
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Figure 1. The level spacing distributions for different temperatures a) θ = 0
(zero-temperature case); b) θ = 0.01; c) θ = 0.2 at the fixed ω = 0.01.
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