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V

Preface

Solar radiation has a decisive influence on climate and weather formation when
passing through the atmosphere and interacting with the atmospheric com-
ponents (gases, atmospheric aerosols, and clouds). The part of solar radiation
that reaches the surface is a source of the existence and development of the
biosphere because it regulates all biological processes. It should be mentioned
that the part of solar radiation energy corresponding to the spectral region
0.35–1.0 µm is about 66% and to the spectral region 0.25–2.5 µm is more than
96% according to (Makarova et al. 1991). Thus, the study of the interaction
between the atmosphere and the clouds and solar radiation in the short-wave
range is especially interesting.

Numerous spectral solar radiation measurements have been made by the
Atmospheric Physics Department, the Physics Faculty of Leningrad (now St.
Petersburg) State University and in the Voeykov Main Geophysical Observa-
tory under the guidance of academician Kirill Kondratyev for about 30 years
from 1960. The majority of radiation observations were made during airborne
experiments under clear sky condition (Kondratyev et al. 1974; Vasilyev O
et al. 1987a; Kondratyev et al. 1975; Kondratyev et al. 1973; Vasilyev O et
al. 1987b; Kondratyev and Ter-Markaryants 1976) and only 10 experiments
were accomplished with an overcast sky (Kondratyev, Ter-Markaryants 1976);
Vasilyev 1994 et al.; Kondratyev, Binenko 1984; Kondratyev, Binenko (1981).
The results obtained have received international acknowledgment and cur-
rently this research direction is of special interest all over the world (King
1987; King et al. 1990; Asano 1994; Hayasaka et al. 1994; Kostadinov et al.
2000).

The airborne radiative observations were made over desert and water sur-
faces using the improved spectral instrument in the 1980s. As a result of
10-years of observations volume of the data set became very large. However,
computer resources were not adequate for the instantaneous processing at that
time. All the data were finally processed only at the end of the 1990s and now
we have a rich database of the spectral values of the radiative characteristics
(semispherical fluxes, intensity and spectral brightness coefficients) obtained
under different atmospheric conditions. The database contains about 30,000
spectra including 2203 spectra of the upward and downward semispherical
fluxes obtained during the airborne atmospheric sounding.

The inverse problem of atmospheric optics has been solved using the nu-
merical method in the case of the interpretation of the observational results of
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the clear sky measurements and using the analytical method of the theory of
radiation transfer in the case of overcast skies.

The interpretation of the radiative experiments under clear and overcast sky
conditions is discussed in different sections because the mathematicalmethods
of the description differ extensively. In addition, the extended (hundreds of
kilometers) and stable (up to several days) cloudiness is worthy of special
consideration because of its strong influence on the energy budget of the
atmosphere and on climate formation.

It is necessary to set adequate optical parameters of the atmosphere for
the practical problems of climatology, for distinguishing backgrounds and
contrasts in the atmosphere and on the surface, and for the problems of the
radiative regime of artificial and natural surfaces. The values obtained from
the observational data are highly suitable in these cases. Unfortunately, to
the present, theoretical values of the initial parameters are mostly used in
the numerical simulations which leads to an incorrect estimation of the ab-
sorption of solar radiation in the atmosphere (especially when cloudy). The
influence of the interaction of the atmospheric aerosols and cloudiness with
solar radiation is taken into account in the numerical simulations of the global
changes of the surface temperature only as the rest term for the coincidence
between the calculated and observed values. The analysis of the database con-
vinces us that solar radiation absorption in the dust and cloudy atmosphere is
more significant than has been considered. Many authors have classified the
experimental excess values of solar shortwave radiation absorption in clouds
they obtained as an effect of “anomalous” absorption. This terminology indi-
cates an underestimation of this absorption. Thus, the correct interpretation
of the observational data, based on radiation transfer theory and the con-
struction of the optical and radiative atmospheric models is of great impor-
tance.

Our results provide the spectral data of the solar irradiance measurements
in the energetic units, the spectral values of the atmospheric optical parameters
obtained from these experimental data and the spectral brightness coefficients
of the surfaces of different types in figures and tables.

Let us point out the main results indicating the chapters where they are
presented:

Chapter 1 reviews the definition of the characteristics of solar radiation
and optical parameters describing the atmosphere and surface. The basic
information about the interaction between solar radiation and atmospheric
components (gases, aerosols and clouds) is cited as well.

In Chap. 2, the details of the radiative characteristic calculations in the
atmosphere are considered. For the radiance and irradiance calculation, the
Monte-Carlo method is chosen in the clear sky cases and the analytical method
of the asymptotic formulas of the theory of radiation transfer is used for the
overcast sky cases. Special attention is paid to the error analysis and applica-
bility ranges of the methods. Different initial conditions of the cloudy atmo-
sphere (the one-layer cloudiness, vertically homogeneous and heterogeneous,
multilayer, the conservative scattering, accounting for the true absorption of
radiation) are discussed as well.
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In Chap. 3, the results of solar shortwave radiance and irradiance observa-
tion in the atmosphere are shown in detail. The authors have described both
the instruments were used, as well as the special features of the measurements.
Observational error analysis with the ways to minimizing the errors have been
scrutinized. The methods of the data processing for obtaining the characteris-
tics of solar radiation in the energetic units are elucidated. The examples of the
vertical profiles of the spectral semispherical (upward and downward) fluxes
observed under different atmospheric conditions are presented in figures in
the text and in tables in Appendix 1. The results of the airborne, ground and
satellite observations for the overcast skies are considered together with the
contemporary views on the effect of the anomalous absorption of shortwave
radiation in clouds.

In Chap. 4, the basic methods of procuring atmospheric optical parameters
from the observational data of solar radiation are summarized. The applica-
tion of the least-square technique for solving the atmospheric optics inverse
problem is fully discussed. The influence of the observational errors on the ac-
curacy of the solution is described and the methodology for its regularization
is proposed. It is also shown how to choose the atmospheric parameters which
are possible to retrieve from the radiative observations.

Chapter 5 is concerned with the methods and conditions of the inverse
problem solving for clear sky conditions considered together with the results
obtained. The vertical profiles and the spectral dependencies of the relevant
parameters of the atmosphere and surface are shown in figures in the text and
in tables in Appendix 1.

In Chap. 6, the analytical method for the retrieval of the stratus cloud
optical parameters from the data of the ground, airborne and satellite radiance
and irradiance observations including the full set of necessary formulas is
elaborated. The example of the relevant formulas derivation for the case of
using the data of the irradiance at the cloud top and bottom is demonstrated in
Appendix 2. The analysis of the correctness of the inverse problem, existence,
uniqueness and stability of the solution is performed and the uncertainties of
the method are studied.

Chapter 7 provides the actual conditions of the cloud optical parameter
retrieval from the data of the ground, airborne and satellite (ADEOS-1) ob-
servations. The spectral and vertical dependencies of the optical parameters
are presented in figures in the text and in tables in Appendix 1. The analysis
of the numerical values is accomplished, and the empirical hypothesis, which
explains both the features revealed by the results and the anomalous absorp-
tion in clouds, is proposed. The book concludes with a summary of the results
obtained.

The authors have wrote Chaps. 1 and 3 together, Sect. 2.1 and Chaps. 4
and 5 was written by Alexander Vasilyev, Chaps. 2 (excluding Sect. 2.1), 6
and 7 – by Irina Melnikova. The authors’ intention was to present the ma-
terial clearly for this book so that it would be useful for a large range of
readers, including students, involved in the fields of atmospheric optics, the
physics of the atmosphere, meteorology, climatology, the remote sounding
of the atmosphere and surface and the distinguishing of backgrounds and
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contrasts of the natural and artificial objects in the atmosphere and on the
surface.

It should be emphasized that the majority of the observations were made
by the team headed by Vladimir Grishechkin (the Laboratory of Shortwave
Solar Radiation of the Atmospheric Department of the Faculty of Physics, St.
Petersburg State University). The authors would like to express their profound
gratitude to Anatoly Kovalenko, Natalya Maltseva, Victor Ovcharenko, Lyud-
mila Poberovskaya, Igor Tovstenko and others who took part in the preparation
of the instruments, the carrying out of the observations and the data process-
ing. Unfortunately, our colleagues Pavel Baldin, Vladimir Grishechkin, Alexei
Nikiforov and Oleg Vasilyev prematurely passed away. We dedicate the book
to the memory of our friends and colleagues.

The authors very grateful to academician Kirill Kondratyev, Professors
Vladislav Donchenko and Lev Ivlev, Victor Binenko and Vladimir Mikhailov
for the fruitful discussions and valuable recommendations.
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CHAPTER 1

Solar Radiation in the Atmosphere

1.1
Characteristics of the Radiation Field in the Atmosphere

In accordance with the contemporary conceptions, light (radiation) is an elec-
tromagnetic wave showing quantum properties. Thus, strictly speaking, the
processes of light propagation in the atmosphere should be described within
the ranges of electrodynamics and quantum mechanics. Nevertheless, it is
suitable to abstract from the electromagnetic nature of light to solve a number
of problems (including the problems described in this book) and to consider
radiation as an energy flux. Light characteristics governed by energy are called
the radiative characteristics. This approach is usual for optics because the fre-
quency of the electromagnetic waves within the optical ranges is huge and
the receiver registers only energy, received during many wave periods (not
a simultaneous value of the electro-magnetic intensity). The electromagnetic
nature of solar radiation including the property of the electromagnetic waves
to be transverse is bound up with the phenomenon of polarization, which is
revealing in the relationship of the process of the interaction between radiation
and substance (refraction, scattering and reflection) and configuration of the
electric vector oscillations on a plane, which is normal to the wave propagation
direction. Further, we are using the approximation of unpolarized radiation.
The evaluation of the accuracy of this approximation will be discussed further
concerning the specific problems considered in this book.

The followingmain typesof radiation (and their energy) aredistinguished in
radiation transferring throughout the atmosphere: direct radiation (radiation
coming to the point immediately from the Sun); diffused solar radiation (solar
radiation scattered in the atmosphere); reflected solar radiation from surface;
self-atmospheric radiation (heat atmospheric radiation) and self-surface radi-
ation (heat radiation). The total combination of these radiations creates the
radiation field in the Earth atmosphere, which is characterized with energy
of radiation coming from different directions within different spectral ranges.
As is seen from above, it is possible to divide all radiation into solar and self
(heat) radiation. In this book, we are considering only solar radiation in the
spectral ranges 0.3−1.0 µm, where it is possible to neglect the energy of heat
radiation of the atmosphere and surface, comparing with solar energy. Further
with this spectral range we will be specifying the short-wave spectral range.
Solar radiation integrated with respect to the wavelength over the considered
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Fig.1.1.Tothedefinitionof the intensityand to thefluxof radiation (radianceand irradiance)

spectral region will be called total radiation. Meanwhile, it should be noted
that further definitions of the radiative characteristics are not linked within
this limitation and could be used either for heat or for microwave ranges.

The notion of a monochromatic parallel beam (the plane electromagnetic
wave of one concrete wavelength and one strict direction) is widely used in
optics for the theoretical description of different processes (Sivukhin 1980).
Usually solar radiation is set just in that form to describe its interactions with
different objects. The principle of an independency of the monochromatic
beams under their superposition is postulated, i. e. the interaction of the ra-
diation beams coming from different directions with the object is considered
as a sum of independent interactions along all directions. The physical base of
the independency principle is an incoherence of the natural radiation sources1

(Sivukhin 1980).
This standard operation is naturally used for the radiation field, i. e. the

consideration of it as a sum of non-interacted parallel monochromatic beams.
Furthermore, radiation energy can’t be attributed to a single beam, because
if energy were finite in the wavelength and direction intervals, it would be
infinitesimal for the single wavelength and for the single direction. For char-
acterizing radiation, it is necessary to pass from energy to its distribution over
spectrum and directions.

Consider an emitting object (Fig. 1.1) implying not only the radiation source
but also an object reflecting or scattering external radiation. Pick out a surface
element dS, encircle the solid angle dΩ around the normal r to the surface.
Then radiation energy would be proportional to the area dS, the solid angle dΩ,
as well as to the wavelength ranges [λ, λ + dλ] and the time interval [t, t + dt].
The factor of the proportionality of radiation energy to the values dS, dΩ, dλ
and dt would be specified an intensity of the radiation or radiance Iλ(r, t) at the
wavelength λ to the direction r at the moment t according to (Sobolev 1972;

1It should be noted that monochromatic radiation is impossible in principle. It follows from the
mathematical properties of the Fourier transformation: a spectrum consisting of one frequency is
possible only with the time-infinite signal. Furthermore, the principle of the independency is not
valid for the monochromatic beams because they always interfere. It is possible to remove both these
contradictions if we consider monochromatic radiation not as a physical but as a mathematical object,
i. e. as a real radiation expansion into a sum (integral Fourier) of the harmonic terms. The separate
item of this expansion is interpreted as monochromatic radiation.
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Hulst 1980; Minin 1988), namely:

Iλ(r, t) =
dE

dSdΩdλdt
(1.1)

In many cases, we are interested not in energy emitted by the object but in
energy of the radiation field that is coming to the object (for example to the
instrument input). Then it would be easy to convert the above specification of
radiance. Consider the emitting object and set the second surface element of
the equal area dS2 = dS at an arbitrary distance (Fig. 1.1). Let the system to
be situated in a vacuum, i. e. radiation is not interacting during the path from
dS to dS2. Let the element dS2 to be perpendicular to the direction r, then the
solid angle at which the element dS2 is seen from dS at the direction r is equal
to the solid angle at which the element dS is seen from dS2 at the opposite
direction (−r). The energies incoming to the surface elements dS and dS2 are
equal too thus; we are getting the consequence from the above definition of the
intensity. The factor of the proportionality of emitted energy dE to the values
dS, dΩ, dλ and dt is called an intensity (radiance) Iλ(r, t) incoming from the
direction r to the surface element dS perpendicular to r at the wavelength λ at
the time t, i. e. (1.1). Point out the important demand of the perpendicularity
of the element dS to the direction r in the definition of both the emitting and
incoming intensity.

The definition of the intensity as a factor of the proportionality tends to
have some formal character. Thus, the “physical” definition is often given:
the intensity (radiance) is energy that incomes per unit time, per unit solid
angle, per unit wavelength, per unit area perpendicular to the direction of
incoming radiation, which has the units of watts per square meter per micron
per steradian. This definition is correct if we specify energy to correspond not
to the real unit scale (sec, sterad, µm, cm2) but to the differential scale dt, dΩ,
dλ, dS, which is reduced then to the unit scale. Equation (1.1) is reflecting this
obstacle.

Let the surface element dS′, which radiation incomes to, not be perpen-
dicular to the direction r but form the angle ϑ with it (Fig. 1.1). Specify the
incident angle (the angle between the inverse direction −r and the normal to
the surface) as ϑ = � (n, −r). In that case defining the intensity as a factor of
the proportionality we have to use the projection of the element dS’ on a plane
perpendicular to the direction of the radiation propagation in the capacity of
the surface element dS. This projection is equal to dS = dS′ cos ϑ. Then the
following could be obtained from (1.1):

dE = Iλ(r, t)dt dλdΩdS′ cos ϑ . (1.2)

It is suitable to attribute the sign to energy defined above. Actually, if we fix
one concrete side of the surface dS′ and assume the normal just to this side
as a normal n then the angle ϑ varies from 0 to π, and the cosine from +1
to −1. Thus, incoming energy is positive and emitted energy is negative. It
has transparent physical sense of the positive source and the negative sink
of energy for the surface dS′. Now specify the irradiance (the radiation flux
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of energy) Fλ(t) according to (Sobolev 1972; Hulst 1980; Minin 1988) (often
it is specified as net spectral energy flux) as a factor of the proportionality
of radiation energy dE′ incoming within a particular infinitesimal interval
of wavelength [λ, λ + dλ] and time [t, t + dt] to the surface dS′ from the all
directions to values dt, dλ, dS′s i. e.:

Fλ(t) =
dE′

dt dλdS′ . (1.3)

Adduce the “physical” definition of the irradiance that is often used instead of
the “formal” one expressed by (1.3). Radiation energy incoming per unit area
per unit time, per unit wavelength is called a radiation flux or irradiance. This
definition corresponds correctly to (1.3) provided the meaning that energy
is equivalent to the difference of incoming and emitted energy and uses the
differential scale of area, time and wavelength. Proceeding from this interpre-
tation, we will further use the term energy as a synonym of the flux implying
the value of energy incoming per unit area, time and wavelength.

To characterize the direction of incoming radiation to the element dS′ in
addition to the angle ϑ, introduce the azimuth angle ϕ, which is counted off
as an angle between the projection of the vector r to the plane dS and any
direction on this plane (0 ≤ ϕ ≤ 2π). That is to say in fact that we are using the
spherical coordinates system. Energy dE′ incoming to the surface dS′ from all
directions is expressed in terms of energy from a concrete direction dE(ϑ, ϕ)
as:

dE′ =
∫

Ω=4π

dE(ϑ, ϕ)dΩ ,

where the integration is accomplished over the whole sphere. Using the well-
known expression for an element of the solid angle in the spherical coordinates
dΩ = dϕ sin ϑdϑ we will get:

dE′ =

2π∫
0

dϕ

π∫
0

dE(ϑ, ϕ) sin ϑdϑ .

After the substituting of this expression to (1.3) with accounting (1.2) we will
get the formula to express the irradiance:

Fλ(t) =

2π∫
0

dϕ

π∫
0

Iλ(ϑ, ϕ, t) cos ϑ sin ϑdϑ . (1.4)

In addition to direction (ϑ, ϕ), wavelength λ and time t the solar radiance in the
atmosphere depends on placement of the element dS. Owing to the sphericity
of the Earth and its atmosphere, it is convenient to put the position of this ele-
ment in the spherical coordinate system with its beginning in the Earth’s center.
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Nevertheless, taking into account that the thickness of the atmosphere is much
less than the Earth’s radius is, in a number of problems the atmosphere could
be considered by convention as a plane limited with two infinite boundaries:
the bottom – a ground surface and the top – a level, above which the inter-
action between radiation and atmosphere could be neglected. Further, we are
considering only the plane-parallel atmosphere approximation. The grounds
of the approximation for the specific problems are given in Sect. 1.3. Then the
position of the element dS could be characterized with Cartesian coordinates
(x, y, z) choosing the altitude as axis z (to put the z axis perpendicular to the
top and bottom planes from the bottom to the top). Thus, in a general case
the radiance in the atmosphere could be written as Iλ(x, y, z, ϑ, ϕ, t). Under the
natural radiation sources (in particular – the solar one) we could neglect the
behavior of the radiance in the time domain comparing with the time scales
considered in the concrete problems (e. g. comparing with the instrument reg-
istration time). The radiation field under such conditions is called a stationary
one. Further, it is possible to ignore the influence of the horizontal hetero-
geneity of the atmosphere on the radiation field comparing with the vertical
one, i. e. don’t consider the dependence of the radiance upon axes x and y. This
radiation field is called a horizontally homogeneous one. Further, we are consid-
ering only stationary and horizontally homogeneous radiation fields. Besides,
following the traditions (Sobolev 1972; Hulst 1980; Minin 1988) the subscript λ
is omitted at the monochromatic values if the obvious wavelength dependence
is not mentioned. Taking into account the above-mentioned assumptions, the
formula linking the radiance and irradiance (1.4) is written as:

F(z) =

2π∫
0

dϕ

π∫
0

I(z, ϑ, ϕ) cos ϑ sin ϑdϑ . (1.5)

It is natural to count off the angle ϑ from the selected direction z in the at-
mosphere. This angle is called the zenith incident angle (it characterizes the
inclination of incident radiation from the zenith). The angle ϑ is equal to zero
if radiation comes from the zenith, and it is equal to π if the radiation comes
from nadir. As before we are counting off the azimuth angle from an arbitrary
direction on the plane, parallel to the boundaries of the atmosphere. Then the
integral (1.5) could be written as a sum of two integrals: over upper and lower
hemisphere:

F(z) = F↓(z) + F↑(z) ,

F↓(z) =

2π∫
0

dϕ

π|2∫
0

I(z, ϑ, ϕ) cos ϑ sin ϑdϑ , (1.6)

F↑(z) =

2π∫
0

dϕ

π∫
π|2

I(z, ϑ, ϕ) cos ϑ sin ϑdϑ .
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Fig.1.2. Definition of net radiant flux

The value F↓(z) is called the downward flux (downwelling irradiance), the
value F↑(z) – an upward flux (upwelling irradiance), both are also called semi-
spherical fluxes expressed in watts per square meter (per micron). The physical
sense of these definitions is evident. The downward flux is radiation energy
passing through the level z down to the ground surface and the upward flux
is energy passing up from the ground surface. The downward flux is always
positive (cos ϑ > 0), upward is always negative (cos ϑ < 0). In practice (for
example during measurements) it is advisable to consider both fluxes as pos-
itive ones. We will follow this tradition. Then for the upward flux in (1.6) the
value of cos ϑ is to be taken in magnitude, and the total flux will be equal to the
difference of the semispherical fluxes F(z) = F↓(z) − F↑(z). This value is often
called a (spectral) net radiant flux expressed in watts per square meter (per
micron).

Consider two levels in the atmosphere, defined by the altitudes z1 and z2
(Fig. 1.2). Obtain solar radiation energy B(z1, z2) (per unit area, time and
wavelength) absorbed by the atmosphere between these levels. Manifestly, it is
necessary to subtract outcoming energy from the incoming:

B(z1, z2) = F↓(z2) + F↑(z1) − F↓(z1) − F↑(z2) = F(z2) − F(z1) . (1.7)

The value B(z1, z2) is called a radiative flux divergence in the layer between levels
z1 and z2. It is extremely important value for studying atmospheric energetics
because it determines the warming of the atmosphere, and it is also important
for studying the atmospheric composition because the spectral dependence of
B(z1, z2) allows us to estimate the type and the content of specific absorbing
materials (atmospheric gases and aerosols) within the layer in question. Hence,
the values of the semispherical fluxes determining the radiative flux divergence
are also of greatest importance for the mentioned class of problems.

To provide the possibility of comparing the radiative flux divergences in
different atmospheric layers we need to normalize the value B(z1, z2) to the
thickness of the layer:

b(z1, z2) = B(z1, z2)|(z2 − z1) . (1.8)
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We would like to point out that the definition of the normalized radiative
flux divergences (1.8) with taking into account (1.7) gives the possibility of
its theoretical consideration as a continuous function of the altitude after its
writing as a derivation of the net flux b(z) = ∂F(z)|∂z.

When we have defined the intensity and the flux above, we scrutinized the
radiation field, i. e. the situation when radiation spreads on different direc-
tions. Actually, it is possible to amount to nothing more than this definition
because no strictly parallel beam exists owing to the wave properties of light
(Sivukhin 1980). Nevertheless, radiation emitted by some objects could be
often approximated as one directional beam without losses of the accuracy.
Incident solar radiation incoming to the top of the atmosphere is practically
always considered as one-directional radiation in the problems in question.
Actually, it is possible to neglect the angular spread of the solar beam because
of the infinitesimal radiuses of the Earth and the Sun compared with the dis-
tance between them. Thus, we are considering the case of the plane parallel
horizontally homogeneous atmosphere illuminated by a parallel solar beam.
Some difficulties are appearing during the application of the above definitions
to this case because we must attribute certain energy to the one-directional
beam.

The radiance definition corresponding to (1.1) is not applicable in this case
because it does not show the dependence of energy dE upon solid angle dΩ
[formally following (1.1) we would get the zero intensity]. As for the irradiance
definition (1.3), it is applicable. Thus, it makes sense to examine the irradiance
of the strictly one-directional beams. Then the dependence of energy dE′ upon
the area of the surfaces dS′ projection in (1.3) appears for differently orientated
surfaces dS′, which gives the follows:

F(ϑ) = F0 cos ϑ , (1.9)

where F0 is the irradiance for the perpendicular incident beam, F(ϑ) is the
irradiance for the incident angle ϑ.

The incident flux F0 is of fundamental importance for atmospheric optics
and energetics. This flux is radiation energy incoming to the top of the at-
mosphere per unit area, per unit intervals of the wavelength and time in the
case of the average distance between the Sun and the Earth, and it is called
a spectral solar constant. Figure 1.3 illustrates the solar constant F0 as a function
of wavelength. Concerning the radiance of the parallel incident beam, we can
define it formally using (1.5). Actually, for accomplishing (1.5) and (1.9), it is
necessary to assume the following:

I(ϑ, ϕ) = F0δ(ϑ − ϑ0)δ(ϕ − ϕ0) , (1.10)

where δ() is the delta function (Kolmogorov and Fomin 1999), ϑ0, ϕ0 are the
solar zenith angle and the azimuth angle which are determining the direction
of the incident parallel beam. Remember that the delta function is defined as:

b∫
a

f (x)δ(x − x0)dx = f (x0) .
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Fig.1.3. Spectral extraterrestrial solar flux according to Makarova et al. (1991)

No real function can have such a property, thus the delta function is just
a symbolic record. Roughly speaking it does not exist without the integrals.

Basing on (1.10) in the case of the parallel beam it could be said that the
irradiance incoming to the perpendicular surface is numerically equal to the
radiance, however this equality is truly formal because the radiance and the
irradiancehavedifferentdimensions [that’s all rightwithdimensions in (1.10)].

In conclusion consider the theoretical aspects of the procedures of radiance
and irradiance measurements. It is radiation energy that influences the register
element of an instrument. It could be written as:

E =

t2∫
t1

dt

λ2∫
λ1

dλ
∫
S

dxdy

×
∫
Ω

sin ϑdϑdϕIλ(x, y, ϑ, ϕ, t)f ∗
i (t)f ∗

λ (λ)f ∗
S (x, y)f ∗

Ω(ϑ, ϕ) ,

where Iλ(x, y, ϑ, ϕ, t) is the radiance incoming to the point of the input ele-
ment (input slit) of an instrument with coordinates (x, y); [t1, t2] is the time
interval of the input signal registration; [λ1, λ2] is the registration wavelength
interval; f ∗

t (t), f ∗
λ (λ), f ∗

S (x, y), f ∗
Ω(ϑ, ϕ) are the instrumental functions, which

characterize a signal transformation by the instrument and they depend on
time t, wavelength λ, input element point (x, y), and direction of incoming ra-
diation (ϑ, ϕ) correspondingly. The integration over the area S is accomplished
over the instrument input element surface, and the integration over the solid
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angle Ω is accomplished over the instrument-viewing angle. The instruments
are calibrated so that the measured value of the radiance would be outputting
instantaneously. From the theoretical point it means the normalization of the
instrumental functions.

ft(t) = f ∗
t (t)
/ t2∫

t1

f ∗
t (t)dt , fλ(λ) = f ∗

λ (λ)
/ λ2∫

λ1

f ∗
λ (λ)dλ ,

fS(x, y) = f ∗
S (x, y)

/∫
S

f ∗
S (x, y)dxdy ,

fΩ(ϑ, ϕ) = f ∗
Ω(ϑ, ϕ)

/∫
Ω

f ∗
Ω(ϑ, ϕ) sin ϑdϑdϕ

Then the measured value of radiance I is expressed through the real radiance
Iλ(x, y, ϑ, ϕ, t) by the following:

I =

t2∫
t1

dt

λ2∫
λ1

dλ
∫
S

dxdy

×
∫
Ω

sin ϑdϑdϕIλ(x, y, ϑ, ϕ, t)ft(t)fλ(λ)fS(x, y)fΩ(ϑ, ϕ) .

(1.11)

Actually, the equality I = I0 is valid according to (1.11) for normalized instru-
mental functions if Iλ(x, y, ϑ, ϕ, t) = I0 =const.

For the radiance measurements, the instrument viewing angle is chosen
as small as possible. In this case, all the factors except the wavelength are
neglected. Then the following is correct:

I =

λ2∫
λ1

Iλfλ(λ)dλ

and the main instrument characteristic would be a spectral instrumental func-
tion fλ(λ), that will be simply called the instrumental function. If the radiance is
slightly variable in the wavelength interval [λ1, λ2] the influence of the specific
features of the instrument on the observational process are possible not to take
into account.

The function fλ(λ) plays an important role in the observation of the semi-
spherical fluxes because the radiance at the instrument input changes evidently
along the direction (ϑ, ϕ). However, comparing (1.4) and (1.11) it is easy to see
that condition f ∗

Ω(ϑ, ϕ) = cos ϑ must be implemented specifically during the
measurement of the irradiance. This demand to the instruments, which are
measuring the solar irradiance, is called a Lambert’s cosine law.
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1.2
Interaction of the Radiation and the Atmosphere

Consider a symbolic particle (a gas molecule, an aerosol particle) that is
illuminated by the parallel beam F0 (Fig. 1.4). The process of the interaction
of radiation and this particle is assembled from the radiation scattering on the
particle and the radiation absorption by the particle. Together these processes
constitute the radiation extinction (the irradiance after interaction with the
particle is attenuated by the processes of scattering and absorption along the
incident beam direction r0). Let the absorbed energy be equal to Ea, scattered
in all directions energy be equal to Es, and the total attenuated energy be
equal to Ee = Ea + Es. If the particle interacted with radiation according
to geometric optics laws and was a non-transparent one (i. e. attenuated all
incoming radiation), attenuated energy would correspond to energy incoming
to the projection of the particle on the plane perpendicular to the direction
of incoming radiation r0. Otherwise, this projection is called the cross-section
of the particle by plane and its area is simply called a cross-section. Measuring
attenuated energy Ea per wavelength and time intervals [λ, λ + dλ], [t, t + dt]
according to the irradiance definition (1.3) we could find the extinction cross-
section as dEe|(F0dλdt).

However, owing to the wave quantum nature of light its interaction with the
substance does not submit to the laws of geometric optics. Nevertheless, it is
very convenient to introduce the relation dEe|(F0dλdt) that has the dimension
and the meaning of the area, implying the equivalence of the energy of the real
interaction and the energy of the interaction with a nontransparent particle
possessing the cross-section equal to dEe|(F0dλdt) in accordance with the laws
of geometric optics. Besides, it is also convenient to consider such a cross-
section separately for the different interaction processes. Thus, according to
thedefinition, the ratioof absorptionenergy dEa,measuredwithin the intervals
[λ, λ + dλ], [t, t + dt], to the incident radiation flux F0 is called an absorption
cross-section Ca. The ratio of scattering energy dEs to the incident radiation flux
is called a scattering cross-section Cs and the ratio of total attenuated energy
dEs to the incident radiation flux is called an extinction cross-section Ce:

Ca =
dEa

F0dλdt
, Cs =

dEs

F0dλdt
, Ce =

dEe

F0dλdt
= Ca + Cs . (1.12)

Fig.1.4. Definition of the cross-section of the interaction
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In addition to the above-mentioned, the cross-sections are defined as mono-
chromatic ones at wavelength λ (for the non-stationary case – at time t as
well).

Consider the process of the light scattering along direction r (Fig. 1.4). Here
the value dEd(r) is the energy of scattered radiation (per intervals [λ, λ + dλ],
[t, t+dt]) per solid angle dΩ encircled around direction r. Define the directional
scattering cross-section analogously to the scattering cross-section expressed
by (1.12).

Cd(r) =
dEd(r)

F0dλdtdΩ
. (1.13)

Wavelength λ and time t are corresponding to the cross-section Cd(r).
Total scattering energy is equal to the integral from dEd(r) over all directions

dEs =
∫

4π dEddΩ. Obtain the link between the cross-sections of scattering and
directed scattering after substituting of dEd(r) to this integral:

Cs =
∫
4π

CddΩ . (1.14)

Passing to a spherical coordinate system as in Sect. 1.1, introduce two pa-
rameters: the scattering angle γ defined as an angle between directions of the
incident and scattered radiation (γ = � (r0, r)) and the scattering azimuth ϕ
counted off an angle between the projection of vector r to the plane perpen-
dicular to r0 and an arbitrary direction on this plane. Then rewrite (1.14) as
follows:2

Cs =

2π∫
0

dϕ

π∫
0

Cd(γ, ϕ) sin γdγ . (1.15)

The directional scattering cross-section Cd(γ, ϕ) according to its definition
could be treated as follows: as the value Cd(γ, ϕ) is higher, then light scatters
stronger to the very direction (γ, ϕ) comparing to other directions. It is neces-
sary to pass to a dimensionless value for comparison of the different particles
using the directional scattering cross-section. For that the value Cd(γ, ϕ) has
to be normalized to the integral Cs expressed by (1.15) and the result has to
be multiplied by a solid angle. The resulting characteristic is called a phase
function and specified with the following relation:

x(γ, ϕ) = 4π
Cd(γ, ϕ)

Cs
. (1.16)

2It is called also “differential scattering cross-section” in another terminology and the scattering
cross-section is called “integral scattering cross-section”. The sense of these names is evident from
(1.12)–(1.15).
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Thesubstitutionof thevalueCd(γ, ϕ) from(1.15) to (1.16)givesanormalization
condition of the phase function:

1
4π

2π∫
0

dϕ

π∫
0

x(γ, ϕ) sin γdγ = 1 . (1.17)

If the scattering is equal over all directions, i. e. Cd(γ, ϕ) = const, it is called
isotropic and the relation x(γ, ϕ) ≡ 1 follows from the normalization (1.17).
Thus, the multiplier 4π is used in (1.16) for convenience. In many cases, (for
example the molecular scattering, the scattering on spherical aerosol particles)
the phase function does not depend on the scattering azimuth. Further, we are
considering only such phase functions. Then the normalization condition
converts to:

1
2

π∫
0

x(γ) sin γdγ = 1 . (1.18)

The integral from the phase function in limits between zero and scattering
angle γ 1

2

∫ γ
0 x(γ) sin γdγ could be interpreted as a probability of scattering

to the angle interval [0, γ]. It is easy to test this integral for satisfying all
demands of the notion of the “probability”. Hence the phase function x(γ) is
the probability density of radiation scattering to the angle γ. Often this assertion
is accepted as a definition of the phase function.3

The real atmosphere contains different particles interacting with solar ra-
diation: gas molecules, aerosol particles of different size, shape and chemical
composition, and cloud droplets. Therefore, we are interested in the interac-
tion not with the separate particles but with a total combination of them. In
the theory of radiative transfer and in atmospheric optics it is usual to abstract
from the interaction with a separate particle and to consider the atmosphere
as a continuous medium for simplifying the description of the interaction
between solar radiation and all atmospheric components. It is possible to at-
tribute the special characteristics of the interaction between the atmosphere
and radiation to an elementary volume (formally infinitesimal) of this contin-
uous medium.

Scrutinize the elementary volume of this continuous medium dV = dSdl
(Fig. 1.5), on which the parallel flux of solar radiation F0 incomes normally
to the side dS. The interaction of radiation and elementary volume is reduced
to the processes of scattering, absorption and radiation extenuation after ra-
diation transfers through the elementary volume. Specify the radiation flux

3Point out that the phase function determines scattering only in the case of unpolarized incident
radiation. After the scattering (both molecular and aerosol), light becomes the polarized one and the
consequent scatteringorders (secondaryandsoon)can’tbedescribedonlyby thephase functionnotion.
Thus the theory of scattering, which doesn’t take into account the polarization, is an approximation. In
a general case, the accuracy of this approximation is estimated within 5% according to Hulst (1980). In
special cases, it is necessary to test the accuracy that will be done in the following sections.
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Fig.1.5. Interaction between radiation and elementary volume of the scattering medium

as F = F0 − dF after its penetrating the elementary volume (along the inci-
dent direction r0). Take the relative change of incident energy as an extinction
characteristic:

dEe

E0
=

(F0 − F)dSdλdt

F0dSdλdt
=

dF

F0
.

As it is manifestly proportional to the length dl in the extenuating medium,
then it is possible to take the volume extinction coefficient α as a characteristic
of radiation, attenuated by the elementary volume. This coefficient is equal to
a relative change of incident energy (measured in intervals [λ, λ+dλ], [t, t+dt])
normalized to the length dl (i. e. reduced to the unit length) according to the
definition:

α =
dEe

E0dl
=

dF

F0dl
. (1.19)

The analogous definitions of the volume scattering σ and absorption κ co-
efficients follow from the equality of extinction energy and the sum of the
scattering and absorption energies.4

σ =
dEs

E0dl
, κ =

dEa

E0dl
, α = σ + κ . (1.20)

It would be possible to introduce a volume coefficient of the directional scat-
tering s(r) considering energy dEd(r) scattered along direction r in solid angle
dΩ analogously to (1.20): s(r) = dEd(r)|(E0dΩdl). However, it is not done
to use this characteristic. Actually, after accounting (1.20) we are obtaining
dEd(r) = 1

σ s(r)dEsdΩ and substituting it to the relation dEs =
∫

4π dEddΩ that
leads to the expression 1

σ
∫

4π sdΩ = 1. It exactly corresponds to the normalizing
relation (1.17) for the phase function in the spherical coordinates (Figs. 1.4 and
1.5) after the setting s(γ, ϕ) = 1

4πσx(γ, ϕ), where x(γ, ϕ) is the phase function
of the elementary volume. As has been mentioned above, we are considering

4Notice, that the introduced volume coefficients have the dimension of the inverse length (m−1,
km−1) and such values are usually called “linear” not “volume”. Further, we will substantiate this
terminological contradiction.
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further the phase functions depending only upon the scattering angle γ with
the normalization relation (1.18). Thus, we obtain the following relation for
energy scattered along direction γ

dEd(γ) =
σ
4π

x(γ)E0dΩdl . (1.21)

This relation may be accepted as a definition of phase function x(γ) of the
elementary volume of the medium (however, owing to the definition formality
it is often used the definition of the phase function as a probability density of
radiation scattering to angle γ).

Let us link the characteristics of the interaction between radiation and
a separate particle with the elementary volume. Let every particle interact with
radiation independently of others. Then extinction energy of the elementary
volume is equal to a sum of extinction energies of all particles in the volume.
Suppose firstly that all particles are similar; they have an extinction cross-
section Ce and their number concentration (number of particle in the unit
volume) is equal to n. The particle number in the elementary volume is ndV .
Substituting the sum of extinction energies to the extinction coefficient def-
inition (1.19) in accordance with (1.12) and accounting the definition of the
irradiance (1.3) we obtain the following:

α =
ndVCeF0dλdt

F0dSdλdtdl
= nCe .

Thus, the volume extinction coefficient is equal to the product of particle
number concentration by the extinction cross-section of one particle.5

If there are extenuating particles of M kinds with concentrations ni and
cross-sections Ce,i in the elementary volume of the medium then it is valid:
dEe =

∑M
i=1 nidVCe,iF0dλdt. Analogously considering the energies of scatter-

ing, absorption and directional scattering, we are obtaining the formulas,
which link the volume coefficients and cross-sections of the interaction:

α =
M∑
i=1

niCe,i , σ =
M∑
i=1

niCs,i ,

κ =
M∑
i=1

niCa,i , σx(γ) =
M∑
i=1

niCs,ixi(γ) .

(1.22)

We would like to point out that the separate items in (1.22) make sense of the
volume coefficients of the interaction for the separate kinds of particles. There-
fore, highly important for practical problems are the “rules of summarizing”
following from (1.22). These rules allow us to derive separately the coefficients

5Just by this reason, the term “volume” and not “linear” is used for the coefficient. It is defined by
numerical concentration in the unit volume of the air.
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of the interaction and the phase function for each of M components and then to
calculate the total characteristics of the elementary volume with the formulas:

α =
M∑
i=1

αi , σ =
M∑
i=1

σi ,

κ =
M∑
i=1

κi , x(γ) =
M∑
i=1

σixi(γ)
/ M∑

i=1

σi .

(1.23)

These rules also allow calculating characteristics of the molecular and aerosol
scattering and absorption of radiation in the atmosphere separately. Then
(1.23) is transformed to the following:

α = σm + σa + κm + κa ,

σ = σm + σa ,

κ = κm + κa , (1.24)

x(γ) =
σmxm(γ) + σa xa(γ)

σm + σa
,

where σm, κm, xm(γ) are the volume coefficients of the molecular scattering,
absorption and molecular phase function for the atmospheric gases corre-
spondingly and σa, κa, xa(γ) are the analogous aerosol characteristics.

The rules of summarizing expressed by (1.22)–(1.24) have been derived with
the assumption that the particles are interacting with radiation independently.
Here the following question is pertinent: is this assumption correct? From the
view of geometrical optics, which we have appealed to, when introducing the
cross-sections of the interaction, their areas (sections) mustn’t intersect within
the elementary volume, i. e. the total area of its projection to the side dS must
be equal to the sum of the areas of all particles. It would be accomplished
if the distances between particles were much larger than the linear sizes of
the cross-sections of the interaction or, roughly speaking, much larger than
the particle sizes. Dividing the elementary volume to small cubes with side d,
where d is the distinctive size of the particle we are concluding that for this
condition the particle number in the volume dV has to be much less than the
number of cubes – ndV << dV |d3, i. e. n << 1|d3, where n is the particle number
concentration. The second condition – the independency of the interaction
between the particles and radiation – follows from the points of wave optics,
according to which the independency of the interaction occurs if the distances
between the particles are much larger than radiation wavelength λ and that
leads to the inequality n << 1|λ3. Using the values of the real molecules and
aerosol particle concentrations in the atmosphere it is easy to test that the
condition n << 1|d3 is always correct, the condition n << 1|λ3 is correct in
the short-wave range for aerosol particles and is broken for molecules of
the atmospheric gases. Nevertheless, it is assumed that light scatters not on
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molecules but on the air density fluctuations (thus, the air is considered as
a continuous medium) and it is possible to ignore this violation (Sivukhin
1980). For the calculation of the radiation field the elementary volume is chosen
so that only one interaction act may happen within the elementary volume.
Such volume is different for particles of different sizes (cloud droplets size is
close to 10–20 µm, for atmospheric gases molecules (more exactly – density
fluctuations) – the size is about 0.5 × 10−3 µm). Thus, the diffusive medium is
turned out non continuous. The violation of both conditions could occur when
there are big particles in the air (for example cloud droplets). Actually taking
into account the large size of the droplets (tens and hundreds of microns), there
are a lot of gas molecules and small aerosol particles around these droplets
and the both conditions are violated for them. Therefore, the question about
the applicability of the summarizing rules in the cases mentioned above needs
a special discussion.

The volume coefficients of the interaction between radiation and atmo-
sphere are expressed through the scattering and absorption cross-sections
according to relations (1.22). Thus, the most important problem will be the
theoretical calculation of these cross-sections. The methods of their calcula-
tion are based on the description of the physical processes of the interaction
between radiation and substance (Zuev et al. 1997). However, as we are not
considering them here, the resulting formulas are adduced only, referring the
reader to the cited literature.

The volume coefficient and the phase function of the molecular scattering
are expressed as follows:

σm =
8
3

π3 (m2 − 1)2

nλ4

6 + 3δ
6 − 7δ

,

xm(γ) =
3

4 + 2δ
[1 + δ + (1 − δ)

2
cos γ] ,

(1.25)

where m is the refractive index of the air, n is the number concentration of
the air molecules, λ is the radiation wavelength, δ is the depolarization factor
(for the air it is equal to δ = 0. 035). The derivation of (1.25) is presented for
example in the books by Kondratyev (1965) and Goody and Yung (1996) (the
theory of the molecular scattering that is traditional for atmospheric optics)
and in the book by Sivukhin (1980) (the scattering theory on the fluctuations of
the air density). Using the known thermodynamic relation it is easy to obtain
the number concentration:

n =
P

kT
, (1.26)

where P is the air pressure, T is the air temperature, k is the Boltzmann constant.
For assuming the dependence of the air refractive index upon wavelength,
pressure, temperature, and moisture, we are using the semi-empiric relation
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from the book by Goody and Yung (1996):

m − 1 = 10−6
(

b(λ)
P[+10−6P(139. 855 − 2. 093T)]

5. 407(1 + 0. 003661T)

− Pw
8. 319 − 0. 0907λ−2

1 + 0. 003661T

)
, (1.27)

b(λ) = 64. 328 +
29498. 1

146 − λ−2 +
255. 4

41 − λ−2 ,

where Pw is the partial pressure of the water vapor. It should be noted that
in (1.27) wavelength is measured in microns (µm), pressure – in Pascals (Pa),
temperature – in degrees Celsius (◦C).

Two kinds of the input data for calculating cross-section of the molecular
absorption are available in the short wavelength range.

The data of the first kind are tabulated as a dependence of the experimental
cross-sections upon wavelength and in some cases upon temperature, i. e.
Ca,i(λ, T). Regretfully, the databases of mentioned cross-sections are not freely
accessible nowadays. Therefore, during the concrete calculation we have been
using the database collected from Sedunov et al. (1991) and Bass and Paur
(1984) together with the data taken from the base of GOMETRAN computer
code (Pozanov et al. 1995; Vasilyev et al. 1998) with the kind permission of
its authors Vladimir Rozanov and Yuri Timofeyev. The cross-section of the
molecular absorption of the specific gas (subscript “i” is omitted) is calculated
for the data of the first kind as a simple linear interpolation over the look-up
table:

Ca(λ, T) =∆1(λ, j)∆1(T, k)Ca(λj, Tk) + ∆1(λ, j)∆2(T, k)Ca(λj, Tk+1) (1.28)

+ ∆2(λ, j)∆1(T, k)Ca(λj+1, Tk) + ∆2(λ, j)∆2(T, k)Ca(λj+1, Tk+1) ,

where

∆1(y, l) =
yl+1 − y

yl+1 − yl
, ∆2(y, l) =

y − yl

yl+1 − yl
,

and numbers j and k are chosen over nodes of the table grid under the con-
ditions λj ≤ λ ≤ λj+1, Tk ≤ T ≤ Tk+1. In the absence of the temperature
dependence it is enough to set formally ∆1(T, k) = 1 and ∆2(T, k) = 0 in (1.28).

The data of the second kind describe the separate absorption lines of the
gases (parameters of the fine structure). The theoretical aspects of the calcu-
lations using these data have been interpreted in detail, e. g. in the book by
Penner (1959). For the concrete calculations, we have been using the database
HITRAN-92 (Rothman et al. 1992). The volume coefficient of the molecular
absorption according to the data of the second kind depends on the tempera-
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ture T and air pressure P, and is calculated as:

κm =
M∑
i=1

ni

(
T∗

T

)l(i) K(i)∑
j=1

Sij
Wij(T)

Wij(T∗)
fij(P, T, ν, νij) ,

Wij(T) = exp
(

−
c2Eij

T

)[
1 − exp

(
−

c2νij

T

)]
,

(1.29)

where the summarizing is accomplished over the subscript i over all gases, and
it is accomplished over subscript j over all absorption lines of the specific gas;
T∗ is the temperature which the spectroscopic information is presented for
(T∗ = 296 K); l(i) = 1 for linear molecules and l(i) = 1. 5 for other molecules,
fij is the function of spectral line contour, ν is the wave number, corresponds
to wavelength λ (ν = 1|λ), c2 is the second radiation constant, Sij, Eij, νij
are the spectral line parameters from the HITRAN-92 database: the intensity,
transition energy in the units of the wave number and the wave number in
the units of the spectral line correspondingly. There is no obvious analytical
expression for the function of spectral line contour fij in the general case.
Therefore, in our calculations the approximation proposed in Matveev (1972)
is applied:

fij(P, T, ν, νij) =
1
δ1

[√
ln 2
π

(1 − x) exp(−y2 ln 2) +
x

π(1 + y2)

− x(1 − x)
1
π

(
3

2 ln 2
+ 1 + x

)

×
(

0. 066 exp(−0. 4y2) −
1

40 − 5. 5y2 + y4

)]
,

x =
δ1

δ2
, y =

ν − νij

δ1
,

(1.30)

δ1 =
1
2

⎡
⎣δ2 +

√
δ2

2 + 4δ2
3 + 0. 05δ2

⎛
⎝1 −

2δ2

δ2 +
√

δ2
2 + 4δ2

3

⎞
⎠
⎤
⎦ ,

δ2 = dij
P

P∗

(
T∗

T

)mij

,

δ3 =
νij

c

√
2RT ln 2

µi
,

where P∗ is the pressure, which the spectral information is presented for
(P∗ = 1013 mbar), c is the velocity of light in a vacuum, R is the universal gas
constant, µi is the molecular mass of gas, dij, mij are the line parameters from
the HITRAN-92 database: the semi-intensity breadth of the spectral line caused
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by the collisions with the air molecules and the coefficient of the temperature
dependence correspondingly6

The calculations of the aerosol scattering and absorption cross-sections
so as an aerosol phase function are based on the simulations. The aerosol
particles are approximated with the certain geometrical solids of the known
chemical composition. Usually there are considered the homogeneous spher-
ical particles. The calculation of the optical characteristics for such particles
is accomplished according to the formulas of Mie theory, which we are not
adducing here referring the reader to corresponding books. The basis of the
theory and the formula derivations are presented in the books by Hulst (1957)
and Bohren and Huffman (1983), the transformation to the characteristics of
the elementary volume is presented in the book by Deirmendjian (1969), the
applied algorithms of the calculations are presented in Bohren and Huffman
(1983) and Vasilyev (1996, 1997). An important process influencing the optical
characteristics of the aerosol particles especially in the troposphere is their
rehydration – the absorption of the water molecules on the particle surface. It
leads to the essential variations of the aerosol optical properties depending on
the air humidity. The two-layer particle – “sphere in shell” – is the model for
the rehydrate particle. The methods of its calculation are presented in Bohren
and Huffman (1983) and Vasilyev and Ivlev (1996, 1997). The calculations are
usually accomplished in advance due to their large volume and the resulting
aerosol volume coefficients of the scattering and absorption together with the
phase function are used in problems of radiation transfer theory as look-up
tables. These data together with the incident data for the above-mentioned cal-
culations form the base of the aerosol models. Nowadays there are many studies
concerning the aerosol models. Here we are only mentioning that the choice
or the creation of the aerosol model is definite with the features of a concrete
problem. We will do this in Chapter 5 referring to the corresponding models.

The phase function of the aerosol scattering is presented in the above-
mentioned calculations as a look-up table with the grid over the scattering
angle. It isnot convenient for someproblemswhere thephase functionneedsan
analytical approximation. One of the widely used approximations is a Henyey-
Greenstein function (Henyey and Greenstein 1941):

x(γ) =
1 − g2

(1 + g2 − 2g cos γ)3|2 , (1.31)

where g is the approximation parameter (0 ≤ g < 1). Parameter g is often
called the asymmetry factor because it governs the degree of the phase function
forward extension. The function describes the main property of the aerosol
phase functions – the forward peak – (the prevalence of the scattering to the
forward hemisphere 0 ≤ γ ≤ π|2 over the scattering to the back hemisphere

6It should be marked that the spectroscopic data of both the first and the second kind have been
obtained from the observations, so they contain errors. Moreover, the formulas for the spectral line
contour eitherof empirical (1.30) or the theoretical (1.29) are approximations.Therefore, the calculation
using (1.29) and (1.30) gives an uncertainty. Nevertheless, the molecular absorption within the short-
wave range is weak enough, and we are not taking into account these uncertainties.
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π|2 ≤ γ ≤ π) and it is very suitable for the theoretical consideration, as will
be shown further. However, it describes the real phase functions with a large
uncertainty (Vasilyev O and Vasilyev V 1994). Therefore, the using of this
function needs a careful evaluation of the errors. The detailed consideration
of this problem will be presented in Chap. 5.

1.3
Radiative Transfer in the Atmosphere

Within the elementary volume, the enhancing of energy along the length dl
could occur in addition to the extinction of the radiation considered above.
Heat radiation of the atmosphere within the infrared range is an evident exam-
ple of this process, though as will be shown the accounting of energy enhancing
is really important in the short-wave range. Value dEr – the enhancing of energy
– is proportional to the spectral dλ and time dt intervals, to the arc of solid
angle dΩ encircled around the incident direction and to the value of emitting
volume dV = dSdl. Specify the volume emission coefficient ε as a coefficient of
this proportionality:

ε =
dEr

dVdΩdλdt
. (1.32)

Consider now the elementary volume of medium within the radiation field.
In general case both the extinction and the enhancing of energy of radiation
passing through this volume are taking place (Fig. 1.6). Let I be the radiance
incoming to the volume perpendicular to the side dS and I + dI be the radiance
after passing the volume along the same direction. According to energy defi-
nition in (1.1) incoming energy is equal to E0 = IdSdΩdλdt then the change of
energy after passing the volume is equal to dE = dIdSdΩdλdt. According to the
law of the conservation of energy, this change is equal to the difference between
enhancing dEr and extincting dEe energies. Then, taking into account the def-
initions of the volume emitting coefficient (1.32) and the volume extinction
coefficient, we can define the radiative transfer equation:

dI

dl
= −αI + ε . (1.33)

In spiteof the simple form, (1.33) is thegeneral transfer equationwithaccepting
the coefficients α and ε as variable values. This derivation of the radiative
transfer equation is phenomenological. The rigorous derivation must be done
using the Maxwell equations.

We will move to a consideration of particular cases of transfer (1.33) in
conformity with shortwave solar radiation in the Earth atmosphere. Within the
shortwave spectral range we omit the heat atmospheric radiation against the
solar one and seem to have the relation ε = 0. However, we are taking into
account that the enhancing of emitted energy within the elementary volume
could occur also owing to the scattering of external radiation coming to the
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Fig.1.6. To the derivation of the radiative transfer equation

volume along the direction of the transfer in (1.33) (i. e. along the direction
normal to the side dS). Specify this direction r0 and scrutinize radiation scat-
tering from direction r with scattering angle γ (Fig. 1.6). Encircling the similar
volume around direction ~r (it is denoted as a dashed line), we are obtaining
energy scattered to direction r0. Then employing precedent value of energy
E0 and definition (1.32), we are obtaining the yield to the emission coefficient
corresponded to direction r:

dε(r) =
σ
4π x(γ)I(r)dSdΩdλdtdΩdl

dVdΩdλdt
=

σ
4π

x(γ)I(r)dΩ .

Then it is necessary to integrate value dε(r) over all directions and it leads to the
integro-differential transfer equation with taking into account the scattering:

dI(r0)
dl

= −αI(r0) +
σ
4π

∫
4π

x(γ)I(r)dΩ . (1.34)

Consider the geometryof solar radiation spreading throughout the atmosphere
for concretization (1.34) as Fig. 1.7 illustrates. As described above in Sect. 1.1 we
are presenting the atmosphere as a model of the plane-parallel and horizontally
homogeneous layer. The direction of the radiation spreading is characterized
with the zenith angle ϑ and with the azimuth ϕ counted off an arbitrary
direction at a horizontal plane. Set all coefficients in (1.34) depending on the
altitude (it completely corresponds to reality).

Length element dl in the plane-parallel atmosphere is dl = −dz| cos ϑ. The
ground surface at the bottom of the atmosphere is neglected for the present (i. e.
it is accounted that the radiation incoming to the bottom of the atmosphere is
not reflectedback to theatmosphereand it is equivalent to thealmost absorbing
surface). Within this horizontally homogeneous medium, the radiation field is
also thehorizontallyhomogeneousowing to the shift symmetry (the invariance
of all conditions of the problem relatively to any horizontal displacement).
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Fig.1.7. Geometry of propagation of solar radiation in the plane parallel atmosphere

Thus, the radiance is a function of only three coordinates: altitude z and two
angles, defining direction (ϑ, ϕ). Hence, (1.34) could be written as:

dI(z, ϑ, ϕ)
dz

cos ϑ = α(z)I(z, ϑ, ϕ)

−
σ(z)
4π

2π∫
0

dϕ′
π∫

0

x(z, γ)I(z, ϑ′, ϕ′) sin ϑ′dϑ′
(1.35)

where scattering angle γ is an angle between directions (ϑ, ϕ) and (ϑ′ϕ′). It is
easy to express the scattering angle through ϑ, ϕ: to consider the scalar product
of the orts in the Cartesian coordinate system and then pass to the spherical
coordinates. This procedure yields the following relation known as the Cosine
law for the spheroid triangles7:

cos γ = cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(ϕ − ϕ′) . (1.36)

To begin with, consider the simplest particular case of transfer (1.35). Neglect
the radiation scattering, i. e. the term with the integral. For atmospheric optics,

7Use in (1.35) of the plane atmosphere model in spite of the real spherical one is an approximation.
It has been shown, that it is possible to neglect the sphericity of the atmosphere with a rather good
accuracy if the angle of solar elevation is more than 10◦. Then the refraction (the distortion) of the
solar beams, which has been neglected during the deriving of the transfer equation is not essential.
Mark that the horizontal homogeneity is not evident. This property is usually substantiated with
the great extension of the horizontal heterogeneities compared with the vertical ones. However, this
condition could be invalid for the atmospheric aerosols. It is more correct to interpret the model of the
horizontally homogeneous atmosphere as a result of the averaging of the real atmospheric parameters
over the horizontal coordinate.
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it conforms to the direction of the direct radiation spreading (ϑ0, ϕ0). Actually
in the cloudless atmosphere, the intensity of solar direct radiation is essentially
greater than the intensity of scattered radiation. In this case, the direction of
solar radiation is only one, the intensity depends only on the altitude, and the
transfer equation (1.35) transforms to the following:

dI(z)
dz

cos ϑ0 = α(z)I(z) . (1.37)

Mark that it is always cos ϑ0 > 0 in (1.37). Differential equation (1.37) together
with boundary condition I = I(z∞), where z∞ is the altitude of the top of
the atmosphere (the level above which it is possible to neglect the interaction
between solar radiation and atmosphere) is elementary solved that leads to:

I(z) = I(z∞) exp

⎛
⎝ 1

cos ϑ0

z∫
z∞

α(z′)dz′
⎞
⎠ .

It is convenient to rewrite this solution as:

I(z) = I(z∞) exp

⎛
⎝−

1
cos ϑ0

z∞∫
z

α(z′)dz′
⎞
⎠ . (1.38)

This relation illustrates the exponential decrease of the intensity in the extinct
medium and it is called Beer’s Law.

Introduce the dimensionless value:

τ(z) =

z∞∫
z

α(z′)dz′ , (1.39)

that is called the optical depth of the atmosphere at altitude z. Its important
particular case is the optical thickness of the whole atmosphere:

τ0 =

z∞∫
0

α(z′)dz′ . (1.40)

Then Beer’s Law is written as:

I(z) = I(z∞) exp(−τ(z)| cos ϑ0) . (1.41)

As it follows from definitions (1.39) and (1.40) and from “summarizing rules”
(1.23), the analogous rules are correct for the optical deepness and for the
optical thickness:

τ(z) =
M∑
i=1

τi(z) , τ0 =
M∑
i=1

τ0,i .
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Therefore, it is possible to specify the optical thickness of the molecular scat-
tering, the optical thickness of the aerosol absorption etc.

According to the condition accepted in Sect. 1.1 we are considering solar
radiation incoming to the plane atmosphere top as an incident solar parallel
flux F0 from direction (ϑ0, ϕ0). Then, deducing the intensity through delta-
function (1.10) and substituting it to the formula of the link between the flux
and intensity (1.5) it is possible to obtain Beer’s Law for the solar irradiance
incoming to the horizontal surface at the level z:

Fd(z) = F0 cos ϑ0 exp(−τ(z)| cos ϑ0) . (1.42)

In particular, it is accomplished for the solar direct irradiance at the bottom of
the atmosphere8:

Fd(0) = F0 cos ϑ0 exp(−τ0| cos ϑ0) . (1.43)

Return to the general case of the transfer equation with taking into account
scattering (1.35). Accomplish the transformation to the dimensionless param-
eters in the transfer equation for convenience of further analysis. In accordance
with the optical thickness definition (1.39) the function τ(z) is monotonically
decreasing with altitude that follows from condition α(z′) > 0. In this case
there is an inverse function z(τ) that is also decreasing monotonically. Using
the formal substitution of function z(τ) rewrite the transfer equation and pass
from vertical coordinate τ to coordinate z, moreover, the boundary condition
is at the top of the atmosphere τ = 0 and at the bottom τ = τ0, and the direction
of axis τ is opposite to axis z. It follows from the definition (1.39): dτ = −α(z)dz.
Specify µ = cos ϑ and pass from the zenith angle to its cosine (the formal
substitution ϑ = arccos µ with taking into account sin ϑdϑ = −dµ). Finally,
divide both parts of the equation to value α(τ), and instead (1.35) obtain the
following equation:

µ
dI(τ, µ, ϕ)

dτ
= −I(τ, µ, ϕ) +

ω0(τ)
4π

2π∫
0

dϕ′
1∫

−1

x(τ, χ)I(τ, µ′, ϕ′)dµ′ , (1.44)

where

ω0(τ) =
σ(τ)
α(τ)

=
σ(τ)

σ(τ) + κ(τ)
, (1.45)

8Point out that according to Beer’s Law the radiance in vacuum (α = 0) does not change (the
same conclusion follows immediately from the radiance definition). It contradicts to the everyday
identification of radiance as a brightness of the luminous object. Actually, it is well known that the
viewing brightness of stars decreases with the increasing of distance. It is evident that as the star is
further, then the solid angle, in which the radiation incomes to a receiver (an eye, a telescope objective),
is smaller, hence energy perceived by the instrument is smaller too. Just this energy is often identified
with the brightness (and it is called radiance sometimes), although in accordance to definition (1.1) it is
necessary to normalize it to the solid angle. Thus, the essence of the contradiction is incorrect using of
the term “radiance”. In astronomy, the notion equivalent to radiance (1.1) is the absolute star quantity
(magnitude).
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and the scattering angle cosine according to (1.36):

χ = µµ′ +
√

1 − µ2
√

1 − µ′2 cos(ϕ − ϕ′). (1.46)

For the phase function it is also suitable to pass from scattering angle γ to its
cosine χ with formal substitution γ = arccos χ.

Dimensionlessvalueω0 definedby (1.45) is called the single scatteringalbedo
or otherwise the probability of the quantum surviving per the single scattering
event. If there is no absorption (κ = 0) then the case is called conservative
scattering, ω0 = 1. If the scattering is absent then the extinction is caused
only by absorption, σ = 0, ω0 = 0 and the solution of the transfer equation is
reduced to Beer’s Law – (1.41)–(1.43). From consideration of these cases, the
sense of value ω0 is following: it defines the part of scattered radiation relatively
to the total extinction, and corresponds to the probability of the quantum to
survive and accepts the quantum absorption as its “death”.

It isnecessary to specify theboundaryconditionsat the topandbottomof the
atmosphere. As it has been mentioned above, solar radiation is characterizing
with values F0, ϑ0, ϕ0 incomes to the top. Usually it is assumed ϕ0 = 0, i. e. all
azimuths are counted off the solar azimuth. Additionally specify µ0 = cos ϑ0
and F0 = πS.9

As has been mentioned above, solar radiation in the Earth’s atmosphere
consists of direct and scattered radiation. It is accepted not to include the
direct radiation to the transfer equation and to write the equation only for
the scattered radiation. The calculation of the direct radiation is accomplished
using Beer’s Law (1.41). Therefore, present the radiance as a sum of direct and
scattered radiance I(τ, µ, ϕ) = I′(τ, µ, ϕ) + I′′(τ, µ, ϕ). From expression for the
direct radiance of the parallel beam (1.10) the following is correct I′(0, µ, ϕ) =
πSδ(µ − µ0)δ(ϕ − 0), and it leads to I′(τ, µ, ϕ) = πSδ(mu − µ0)δ(ϕ) exp(−τ|µ0)
for Beer’s Law. Substitute the above sum to (1.44), with taking into account
the validity of (1.37) for direct radiation and properties of the delta function
(Kolmogorov and Fomin 1989). Then introducing the dependence upon value
µ0 and omitting primes I′′(τ, µ, µ0, ϕ), we are obtaining the transfer equation
for scattered radiation.

µ
I(τ, µ, µ0, ϕ)

dτ
= −I(τ, µ, µ0, ϕ) +

ω0(τ)
4π

2π∫
0

dϕ′
1∫

−1

x(τ, χ)I(τ, µ′, µ0, ϕ′)dµ′

+
ω0(τ)

4
Sx(τ, χ0) exp(−τ|µ0) (1.47)

9Specifying πS has the following sense. Suppose that radiation equal to radiance S from all directions
incomes to the top of the atmosphere, and this radiation is called isotropic. Then, according to (1.6)
linking the irradiance and radiance, the incoming to the top irradiance is equal to πS. Thus, value S is an
isotropic radiance that corresponds to the same irradiance as a parallel solar beam normally incoming
to the top of the atmosphere is.
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where value χ is defined by (1.46) and for χ0 the following expression is correct
according to the same equation:

χ0 = µµ0 +
√

1 − µ2
√

1 − µ2
0 cos(ϕ) (1.48)

Point out that (1.47) is written only for the diffuse radiation. The boundary
conditions are taking into account by the third term in the right part of (1.47).
The sense of this term is the yield of the first order of the scattering to the
radiance and the integral term describes the yield of the multiple scattering.

The ground surface at the bottom of the atmosphere is usually called the
underlying surface or the surface. Solar radiation interacts with the surface
reflecting from it. Hence, the laws of the reflection as a boundary condition at
the bottom of the atmosphere should be taken into account. However, it is done
otherwise in the radiative transfer theory. As will be shown in the following
section, there are comparatively simple methods of calculating the reflection by
the surface if the solution of the transfer equation for the atmosphere without
the interaction between radiation and surface is obtained. Thus, neither direct
nor reflected radiation is included in (1.47). As there is no diffused radiation
at the atmospheric top and bottom, the boundary conditions are following

I(0, µ, µ0, ϕ) = 0 µ > 0 ,
I(τ0, µ, µ0, ϕ) = 0 µ < 0 .

(1.49)

Transfer equation (1.47) together with (1.46), (1.48) and boundary conditions
(1.49) defines the problem of the solar diffused radiance in the plane parallel
atmosphere. Nowadays different methods both analytical (Sobolev 1972; Hulst
1980; Minin 1988; Yanovitskij 1997) and numerical (Lenoble 1985; Marchuk
1988) are elaborated. Our interest to the transfer equation is concerning the
processing and interpretation of the observational data of the semispherical
solar irradiance in the clear and overcast sky conditions. The specific numerical
methods used for these cases will be exposed in Chap. 2. Now continue the
analysis of the transfer equation to introduce some notions and relations,
which will be used further.

The diffused radiation within the elementary volume could be interpreted
as a source of radiation. It follows from the derivation of the volume emission
coefficient through the diffused radiance in (1.34) if the increasing of the
radiance is linked with the existence of the radiation sources. Then introduce
the source function:

B(τ, µ, µ0, ϕ) =
ω0(τ)

4π

2π∫
0

dϕ′
1∫

−1

x(τ, χ)I(τ, µ′, µ0, ϕ′)dµ′

+
ω0(τ)

4
Sx(τ, χ0) exp(−τ|µ0) ,

(1.50)
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and the transfer equation is rewritten as follows:

µ
dI(τ, µ, µ0, ϕ)

dτ
= −I(τ, µ, µ0, ϕ) + B(τ, µ, µ0, ϕ) . (1.51)

Equation (1.51) is the linear inhomogeneous differential equation of type
dy(x)|dx = ay(x) + b(x). Its solution is well known:

y(x) = y(x0) exp(a(x − x0)) +

x∫
x0

b(x′) exp(a(x − x′))dx′ .

Applying it to (1.51) under boundary conditions (1.49), it is obtained:

I(τ, µ, µ0, ϕ) =
1
µ

τ∫
0

B(τ′, µ, µ0, ϕ) exp
(

−
τ − τ′

µ

)
dτ′ µ > 0 ,

I(τ, µ, µ0, ϕ) = −
1
µ

τ0∫
τ

B(τ′, µ, µ0, ϕ) exp
(

−
τ − τ′

µ

)
dτ′ µ < 0 .

(1.52)

Certainly (1.52) are not the problem’s solution because source function
B(τ, µ, µ0, ϕ) itself is expressed through the desired radiance. However, (1.52)
allows the calculation of the radiance if the source function is known, for exam-
ple in the case of the first order scattering approximation when only the second
term exists in the definition of function B(τ, µ, µ0, ϕ) (1.50). The expressions
for the reflected and transmitted scattered radiance of the first order scattering
in the homogeneous atmosphere (where the single scattering albedo does not
depend on altitude) have been obtained (Minin 1988):

I1(τ, µ, µ0, ϕ) =
Sµ0ω0

4
x(χ0)

1 − exp
[
−τ( 1

µ + 1
µ0

)
]

µ + µ0
µ < 0 ,

I1(τ, µ, µ0, ϕ) =
Sµ0ω0

4
x(χ0)

exp(−τ
µ ) − exp(−τ

µ0
)

µ − µ0
µ > 0 .

Return to general expressions for the radiance (1.21), substitute them to source
function definition (1.19), and deduce the following:

B(τ, µ, µ0, ϕ) =
ω0(τ)

4π

2π∫
0

dϕ′
[ 1∫

0

x(τ, χ)
dµ′

µ′

τ∫
0

B(τ′, µ′, µ0, ϕ′)

× exp
(

−
τ − τ′

µ′

)
dτ′ −

0∫
−1

x(τ, χ)
dµ′

µ′

τ0∫
τ

B(τ′, µ′, µ0, ϕ′) exp
(

−
τ − τ′

µ′

)
dτ′
]

+
ω0(τ)

4
Sx(τ, χ0) exp(−τ|ζ) .

(1.53)
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Equation (1.53) is the integral equation for the source function. Usually just this
equation is analyzed in the radiative transfer theory but not (1.47). The desired
radiance is linked with the solution of (1.53) with the simple expressions. It is
possible otherwise to substitute definition (1.50) to expressions (1.52) and to
obtain the integral equations for the radiance used in the numerical methods
of the radiative transfer theory.

It is possible to write the integral equation for the source function (1.53)
through the operator form (Hulst 1980; Lenoble 1985; Marchuk et al. 1980)

B = KB + q , (1.54)

where B = B(τ, µ, µ0, ϕ) is the source function, q is the absolute term, K is
the integral operator. The operator kernel and the absolute term are expressed
according to (1.53) as:

K = K(τ, µ, µ0, ϕ, τ′, µ′, ϕ′) =
ω0(τ)
4πη′ x(τ, χ) exp

(
−

τ − τ′

µ′

)
for 0 ≤ τ′ ≤ τ0 ≤ µ′ ≤ 1 ,

K = K(τµ, µ0, ϕ, τ′, µ′, ϕ′) = −
ω0(τ)
4πη′ x(τ, χ) exp

(
−

τ − τ′

µ′

)
for τ ≤ τ′ ≤ τ0 − 1 ≤ µ ≤ 0 ,

K = 0 out of the pointed ranges,

q = q(τ, µ, µ0, ϕ) =
ω0(τ)

4
Sx(τ, χ0) exp(−τ|µ0) .

(1.55)

Remember that according to Kolmogorov and Fomin (1989) the operator
recording is:

Ky ≡
b∫

a

K(x, x′)y(x′)dx′ .

Equation (1.54) is the Fredholm equation of the second kind. The mathematical
theory of these equations is perfectly developed, e. g. Kolmogorov and Fomin
(1989). The formal solution of the Fredholm equation of the second kind is
presented with the Neumann series:

B = q + Kq + K2q + K3q + . . . (1.56)

Expression (1.56) concerning the transfer theory is anexpansionof the solution
(the source function) over powers of the scattering order. Actually, the item q
is a yield of the first order scattering to the source function, the item Kq is the
second order, K2q = K(Kq) is the third order etc. As kernel K is proportional
to the single scattering albedo, the velocity of the series convergence is linked
with this parameter: the higher ω0 (the scattering is greater) the higher order
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of the scattering is necessary to account in the series. Mark that, according
to (1.56), source function B linearly depends on q. Hence, source function
B (and the desired radiance) is directly proportional to value S, i. e. to the
extraterrestrial solar flux. So it is often assumed S = 1 and finally the obtained
radiance multiplied by the real value S = F0|π.

As per (1.55) q = µ0BI0, where I0 = I(0, µ, µ0, ϕ) = πδ(µ − µ0)δ(ϕ) is the
extraterrestrial radiance. Consequently the desired radiance I = I(τ, µ, µ0, ϕ)
also linearly depends on I0 and it is possible to formally write the following:

I = TI0 , (1.57)

where T is the linear operator and the problem of calculating the radiance is
reduced to the finding of the operator. As function I0 is the delta-function of
direction (µ0, ϕ0) (where the azimuth of extraterrestrial radiation is assumed
arbitrary) the radiance could be calculated for no matter how complicated an
incident radiation field I0(µ0, ϕ0) after obtaining the operator T as a function
of all possible directions T(µ0, ϕ0) due to the linearity of (1.57). The following
relation is used for that:

I =

2π∫
0

dϕ0

1∫
0

T(µ0, ϕ0)I0(µ0, ϕ0)dµ0 . (1.58)

The linearity of (1.57) is widely used in the modern radiative transfer theory
including the applied calculations. It is especially convenient for describing the
reflection from the surface that will be considered in the following section.

The presentation of the solution of the differential and integral equation as
a series expansion over the orthogonal functions is the standard mathematical
method.Certain simplification is succeededafter expanding thephase function
over the series of Legendre Polynomials in the case of the radiative transfer
equation. Legendre Polynomials are defined, e. g. (Kolmogorov and Fomin
1999) as,

Pn(z) =
1

2nn!
d(z2 − 1)n

dz
.

However, during the practical calculation the following recurrent formula is
more appropriated:

Pn(z) =
2n − 1

n
zPn−1(z) −

n − 1
n

Pn−2(z) (1.59)

where P0(z) = 1, P1(z) = z.
With (1.59) the relations P1(z) = z, P2(z) = 1|2(3z2 − 1) etc. are obtained.

Legendre Polynomials constitute the orthogonal function system within the
interval [−1, 1]:

1∫
−1

Pn(z)Pm(z)dz = 0 , for n �= m and

1∫
−1

P2
n(z)dz =

2
2n + 1
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because any function within the interval could be expanded to the series over
Legendre Polynomials. The following is deduced for the phase function:

x(χ) =
∞∑
i=0

xiPi(χ)

xi =
2i + 1

2

1∫
−1

x(χ′)Pi(χ′)dχ′ .

(1.60)

From the normalizing condition of the phase function (1.18) and from equality
P0 = 1 it always follows x0 = 1. The first coefficient of the expansion x1 is of an
important physical sense:

x1 =
3
2

1∫
−1

x(χ)χdχ = 3g . (1.61)

From the phase function interpretation as a probability density of the scat-
tering to the certain angle it follows that value g = x1|3 is the mean cosine of
scattering angle. It determines the elongation of the phase function, namely,
as g is closer to unity then the phase function is more extended to the forward
direction and weaker extended to the backscatter direction. In the context of
parameter g the Henyey-Greenstein approximation (1.31) is appropriate. It is
easy testing that its mean cosine is just equal to the parameter of the approx-
imation and it is specified with the same sign g (but it is not otherwise, the
using of sign g for the mean cosine does not imply the Henyey-Greenstein ap-
proximation is obligatory). Other expansion items of the Henyey-Greenstein
function over Legendre Polynomials are also simply expressed through its pa-
rameter: xi = (2i + 1)gi. This very reason determines the wide application of
the Henyey-Greenstein function but not an accuracy of the real phase function
approximation.

Practically the series is to break at the certain item with number N. The
value N was shown in the study by Dave (1970) to reach hundreds and even
thousands to approximate the phase function with the necessary accuracy.
It is not appropriate for expansion (1.60) using for the radiance calculation
even with modern computers. It is the essential problem of the application of
the described methodology. We would like to point out that for the molecu-
lar scattering determined by (1.25) the phase function is much more simple
(N = 2):

xm(χ) = P0(χ) +
1 − δ
2 + δ

P2(χ) .

Thephase functioncosineχ in transfer equation (1.47) (and inall consequences
from it) is a function of directions of incident and scattered radiation (1.46).
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For such a function the theorem of Legendre Polynomials addition (Smirnov
1974; Korn and Korn 2000) is known. According to it the following is correct:

Pi

(
µµ′ +

√
(1 − µ2)

√
(1 − µ′2) cos(ϕ − ϕ′)

)

+ Pi(µ)Pi(µ′) + 2
i∑

m=1

(i − m)!
(i + m)!

Pm
i (µ)Pm

i (µ′) cos m(ϕ − ϕ′)
(1.62)

where Pm
i (z) are associated Legendre Polynomials defined as:

Pm
i (z) = (1 − z)m|2 dmPi(z)

dzm
and P0

i (z) = Pi(z) .

(Letter m specifies the superscript and not a power here and further in the
analogous relations). There are known recurrence relations for the practical
calculation of function Pm

i (z) (Korn G and Korn T 2000). Applying relation
(1.31) to expansion of the phase function (1.60) it is inferred:

x(χ) =
N∑

i=0

xiPi(µ)Pi(µ′)

+ 2
N∑

i=1

xi

i∑
m=1

(i − m)!
(i + m)!

Pm
i (µ)Pm

i (µ′) cos m(ϕ − ϕ′) .

(1.63)

After changing the summation order in the second item of (1.63) and account-
ing that for m=1 it is valid i = 1, . . ., N, and m = 2− is i = 2, . . ., N etc., we
finally obtain the following:

x(χ) = p0(µ, µ′) + 2
N∑

i=1

pm(µ, µ′) cos m(ϕ − ϕ′) ,

pm(µ, µ′) =
N∑

i=m

xi
(i − m)!
(i + m)!

Pm
i (µ)Pm

i (µ′) .

(1.64)

Write the relations analogous to (1.64) for the radiance and source function:

I(τ, µ, µ0, ϕ) = I0(τ, µ, µ0) + 2
N∑

i=1

Im(τ, µ, µ0) cos mϕ ,

B(τ, µ, µ0, ϕ) = B0(τ, µ, µ0) + 2
N∑

i=1

Bm(τ, µ, µ0) cos mϕ ,

(1.65)

where Im(τ, µ, µ0) and Bm(τ, µ, µ0) for m = 0, . . ., N are certain unknown func-
tions. Substitute expansions (1.64) and (1.65) to expression for the source
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function (1.50), compute the integral over the azimuth and level items with
the equal numbers m in the left-hand and right-hand parts of the equation.
Only the items with equal numbers m will be nonzero in the product of the
series (the phase function by the radiance) due to the orthogonality of the
trigonometric functions:

2π∫
0

cos m1ϕ′ cos m2ϕ′dϕ′ = 0 for m1 �= m2 ,

π for m1 = m2 ,
2π∫

0

sin m1ϕ′ cos m2ϕ′dϕ′ = 0 .

Finally, obtain:

Bm(τ, µ, µ0) =
ω0(τ)

2

1∫
−1

pm(τ, µ, µ′)Im(τ, µ, µ′)dµ′

+
ω0(τ)

4
Spm(τ, µ, µ0) exp(−τ|µ0) .

(1.66)

Further from (1.51) the following equation is derived:

µ
dIm(τ, µ, µ0)

dτ
= −Im(τ, µ, µ0) + Bm(τ, µ, µ0) , (1.67)

with boundary conditions:

Im(0, µ, µ0) = 0 , for µ0 > 0 and

Im(τ0, µ, µ0) = 0 for µ0 < 0 .
(1.68)

The following relations are correct for it:

Im(τ, µ, µ0) =
1
µ

τ∫
0

Bm(τ′, µ, µ0) exp
(

−
τ − τ′

µ

)
dτ′ µ > 0 ,

Im(τ, µ, µ0) = −
1
µ

τ0∫
τ

Bm(τ′, µ, µ0) exp
(

−
τ − τ′

µ

)
dτ′ µ < 0 .

(1.69)
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The substitution of (1.69) to (1.66) yields the integral equation again for the
source function:

Bm(τ, µ, µ0) =
ω0(τ)

2

1∫
0

pm(τ, µ, µ′)dµ′

µ′

τ∫
0

Bm(τ′, µ′, µ0) exp
(

−
τ − τ′

µ′

)
dτ′

−
ω0(τ)

2

0∫
−1

pm(τ, µ, µ′)dµ′

µ′

τ0∫
τ

Bm(τ′, µ′, µ0) exp
(

−
τ − τ′

µ′

)
dτ′

+
ω0(τ)

4
Spm(τ, µ, µ0) exp(−τ|µ0) .

(1.70)

Thus, passing to the phase function expansion over Legendre Polynomials
(1.60) and (1.64) allows obtaining (1.66)–(1.70), where the azimuthal depen-
dence of the functions is absent, that certainly simplifies the analysis and
solution. Besides expansions of the radiance and the source function (1.65)
are called expansions over the azimuthal harmonics and the method is called
a method of the azimuthal harmonics.

1.4
Reflection of the Radiation from the Underlying Surface

The ratio of the irradiances reflected from the surface to the irradiances in-
coming to the surface is called an albedo of the surface and it is one of the most
important characteristics of the underlying surface:

A =
F↑(τ0)
F↓(τ0)

. (1.71)

This characteristic has a clear physical meaning – it corresponds to the part
of the incoming radiation energy reflected back to the atmosphere. Actually,
if value A = 0 then the surface absorbs all radiation (the absolutely black
surface), if value A = 1 then, otherwise, the surface absorbs nothing and
reflects all radiation (the absolutely white surface). Generalizing the notion
of the albedo, we are introducing the albedo of the system of atmosphere plus
surface, specifying it at arbitrary level τ:

A(τ) =
F↑(τ)
F↓(τ)

. (1.72)

Remember that here and below we are considering values defining the single
wavelength, i. e. the spectral characteristics of the radiation field and surface.
The integral albedo that is called just “albedo” for briefness (do not confuse it
with the spectral albedo) is of great importance in atmospheric energetics.10

10It is necessary to point out that the albedo (like other reflection characteristics) is formally defined
only for the surface without the atmosphere. In transfer theory, they are often called “true”. Taking
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The albedo of the surface characterizes the reflection process of radiation
only as a description of the energy transformation, but doesn’t tell us about
the dependence of the radiance upon the reflection angle and azimuth. If
the surface were an ideal plane, such dependence would be defined with the
well-known laws of reflection and refraction (Sivukhin 1980). However, all
natural surfaces are rough, i. e. they have different scales of the roughness and
even the water surface is practically always not smooth. Therefore, considering
the incoming parallel beam is more complicated in reality, notwithstanding
the reflection from every micro-roughness is ordered to the classical laws
of geometric optics. In particular, reflected radiation extends to all possible
directions and not only to the direction according to the law: “the reflection
angle is equal to the incident angle”. This light reflection from natural surfaces
is usually called the diffused.

It is possible to select three main types of diffused reflection. The orthotropic
(or isotropic) reflection, when the diffused reflected radiance does not depend
on the direction. The mirror reflection, when the maximum of the reflected
radiance coincides with the direction of the mirror reflection (the reflection
angle is equal to the incident angle) and the backward reflection when the
maximum is situated along the direction opposite to the incident radiation
direction. The mirror reflection evidently characterizes the surfaces close to
the ideally smooth surface and otherwise the backward one characterizes the
surfaces close to the strongly rough surface because it is formed by a large
amount of the micro-grounds oriented perpendicular to the incident direction
of radiation.Theobservations someof themwewill consider indetail inChap. 3
indicate that the cloud and snow are the closest to the orthotropic surface, the
water is the most mirror surface and others are mainly backward reflected
surfaces. However, the reference to the observation is excessive because of the
mirror reflection of the banks from the water that everybody has seen and the
backward reflection maximum is clearly observed from the airplane board.

The orthotropic surfaces are especially convenient for the theoretical anal-
ysis and practical calculations because they are characterized with only one
parameter – the albedo and because of the simplicity of the mathematical
description. We would like to point out that the assumption concerning the
orthotropic reflection is an approximation and its accuracy is necessary to
evaluate in a concrete problem. It is said that the anisotropic reflection from
other surfaces needs some additional values for its description. The rather
variable characteristics of the anisotropic reflection are considered in differ-
ent studies, however here we are describing the general problem without its
concretization. Note also that the reflection processes depend on the incident
radiation polarization accompanying its change (Sivukhin 1980). Therefore,
the consideration of the reflection without an account of polarization is an

into account the atmosphere, the other characteristics of the system “atmosphere plus surface” are
analogously defined. For example, the incoming irradiance to the surface from the diffusing atmosphere
depends itself on the surface albedo (true) because it contains the part of the reflected radiation that
scattered back to the surface. Mark that on the one hand, only true values are used in formulas of
the transfer theory for the reflection characteristics, and on the other hand, only characteristics of the
system “atmosphere plus surface” are available for the observation.
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approximation. Considering different orientations of the micro-roughness of
the natural surfaces it is possible to assert that as reflection is closer to the
orthotropic, then reflected radiation is less polarized. The homogeneous dis-
tribution of reflected radiation over directions is corresponded to the fully
chaotic orientation of the micro-reflectors that causes the chaotic distribution
of the polarization ellipses, i. e. the unpolarized light. Thus, the orthotropic
reflection means also the absence of the dependence upon the polarization.
Otherwise, when the anisotropy is stronger the dependence is clearer. The
water surface is the most anisotropic surface, therefore, in this case the ques-
tion about the exactness of the approximation of unpolarized radiation needs
special study.

The function R(µ, ϕ, µ′, ϕ′), defined from the relation between the radiances
incoming on the surface I(τ0, µ, ζ, ϕ′), (µ′ > 0) and reflected from the surface
I(τ0, µ, ζ, ϕ), (µ < 0), characterizes the radiation reflection from the surface:

I(τ0, µ, µ0, ϕ) =
1
π

2π∫
0

dϕ′
1∫

0

R(µ, ϕ, µ′, ϕ′)I(τ0, µ′, µ0, ϕ′)µ′dµ′ . (1.73)

It is easy to test that for the orthotropic surface (1.71) and (1.73) yield the
equality R(µ, ϕ, µ′, ϕ′) = A and just it defines the existence of the factor µ′|π
for normalizing in (1.73). Equation (1.73) in the operator form is written as:

I↑ = RI↓ , (1.74)

where: I↑ = I(τ0, µ, µ0, ϕ) is the reflected radiance, I↓ = I(τ0, µ, µ0, ϕ) is the

incoming radiance, and r = µ′
π R(µ, ϕ, µ′, ϕ′) is the operator of the reflection

from the surface.
The necessity of accounting the reflection from the surface in the radiative

transfer theory is based on the evident assumption that the reflection is equal
to the illumination of the atmosphere from the bottom (i. e. from the bottom
boundary of the atmosphere τ = τ0). Thus, it is enough to solve the radiative
transfer problems for diffused radiation in the atmosphere first with the illu-
mination from the top and then with the illumination from the bottom, and
after all, it is necessary to add both results.

Introduce the following notation system:

1. the values related to the system “atmosphere plus surface” are specified
with the upper line;

2. thevalues related to theatmosphere illuminated fromthebottomwithout
surface are specified with the symbol ∼;

3. the values related to the atmosphere illuminated from the top without
surface are specified without special marks.

Then the solution of the radiative transfer problem, written in the operator
form (1.57), will be the following: I = TI0 where I0 is the radiance incoming to
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the top of the atmosphere. Introduce operator T↓, so that I↓ = T↓I0 specifying
that operator T↓ is to describe the transfer of both diffused and direct radiation
throughout the atmosphere. The latter has been excluded from the radiative
transfer equationand itmustbe taken intoaccountwhenweare considering the
reflection from the surface. The solution of the radiative transfer problem with
the illumination from the bottom is Ĩ = T̃Ĩ1 where Ĩ1 describes the radiation
field coming from the bottom to the lower boundary, which is taken into
account according to (1.58). Besides, operator T̃has to describe also the transfer
of direct reflected radiation (i. e. the radiation transferring from the surface
without scattering). Operator T̃↑ describes the radiance incoming from above
to the lower boundary illuminated from the bottom with radiance Ĩ1 so that
Ĩ↑ = T̃↑ Ĩ1.Value Ĩ↑ means the radiance reflected fromthe surface thenscattered
to the atmosphere and after all returned to the surface. Mathematically, the
problem of constructing all operators T, T↓, T̃, T̃↑ is uniform as it follows from
the previous section.

The radiance with a subject to the surface reflection is evidently obtained
as a sum of the following components. Firstly, it is the radiance of direct solar
radiation diffused to the atmosphere TI0. Secondly, it is the radiance of direct
and diffused radiation reflected from the surface T̃Ĩ1 that is the combination
T̃RT↓I0 with taking into account (1.74). Further, it follows a subject to sec-
ondary reflected radiation T̃Ĩ2 = T̃(rT̃↑ Ĩ1) = T̃(rT̃↑RT↓I0), etc. Finally, for the
desired radiance calculation we are obtaining the following:

2Ī = TI0 + T̃(1 + RT̃↑ + (RT̃↑)2 + (RT̃↑)3 + . . .)RT↓I0 . (1.75)

Expression (1.75) is known as a radiance expansion over the reflection order.
It is widely used in the algorithms of the numerical methods where it allows
organizing the recurrent calculations of the desired radiance. Note that the
series converges faster if the reflection is weaker. The operator approach is
presented in particular in the books by Hulst (1980) and Lenoble (1985).

Consider a particular problem concerned with radiative transfer and re-
flection from the surface. Let us consider only the radiance at the boundaries
Ī(0, µ, µ0, ϕ) (µ < 0) and Ī(τ0, µ, µ0, ϕ) (µ > 0) without consideration of it
between the boundaries. The obvious examples are the problems of the inter-
pretation of the satellite and ground-based observations of the diffused solar
radiance. In these problems, the viewing angles are assumed to be in the range
[0, π|2], i. e. the value of µ is assumed positive. Then the desired values of the
radiance are written as Ī(0, −µ, µ0, ϕ) and Ī(τ0, µ, µ0, ϕ) according to transfer
geometry (In any case it is µ0 > 0).

Specify the reflection and transmission functions in accordance with Sobolev
(1972) are shown as

I(0, −µ, µ0, ϕ) = Sµ0ρ(µ, µ0, ϕ) , I(τ0, µ, µ0, ϕ) = Sµ0σ(µ, µ0, ϕ) , (1.76)

where the reflection from the surface is not taken into account. Specify the
analogous function for the case of illumination from the bottom:

Ĩ(0, −µ, µ′, ϕ) = S̃µ′ρ̃(µ, µ′, ϕ) , Ĩ(τ0, µ, µ′, ϕ) = S̃µ′σ̃(µ, µ′, ϕ) , (1.77)
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Define these functions to the direction of the incoming irradiance πS̃ from the
bottom (µ′, 0) and assume this back-standing geometry completely similar to
the case of the illumination from the top then µ′ > 0 and consider τ0 in this
case as a top of the atmosphere.

The symmetry relations are the most important property of the reflection
and transmission functions:

ρ(µ, µ0, ϕ) = ρ(µ0, µ, ϕ) ,
ρ̃(µ, µ0, ϕ) = ρ̃(µ0, µ, ϕ) ,
σ(µ, µ0, ϕ) = σ̃(µ0, µ, ϕ) .

(1.78)

In general case, the proof of (1.78) is complicated and presented e.g. in the
book by Yanovitskij (1997). Specify the analogous functions for the system
“atmosphere plus surface” ρ̄(µ, µ0, ϕ) and σ̄(µ, µ0, ϕ).

It is possible to exclude the azimuthal dependence of the reflection and
transmission functions presenting them as expansions over the azimuthal
harmonics as follows:

ρ(µ, µ0, ϕ) = ρ0(µ, µ0) + 2
N∑

m=1

ρm(µ, µ0) cos mϕ , (1.79)

and the analogous expressions for the functions σ(µ, µ0, ϕ), ρ̃(µ, µ0, ϕ) etc.
Every harmonic satisfies relations of the symmetry (ρm(µ, µ0, ) = ρm(µ0, µ)
etc.).

Now consider the simplest but widespread case of the orthotropic surface
with albedo A. It is easy to demonstrate (Sobolev 1972) that the consideration
of the only zeroth harmonics for the isotropic reflection is enough. Actually, if
non-zeroth harmonics (1.79) varied it would mean the azimuthal dependence
of the reflected radiation as per definitions (1.76)–(1.77) that contradicts the
assumption about the orthotropness of the reflection.

Write the explicit form of the integral operators from (1.75). According to
the definition of T operator (1.58) and to the expression for extraterrestrial
radiance I0 (1.41) we are getting the following:

TI0 =

2π∫
0

dϕ′
1∫

0

dη′T(µ, µ′, ϕ, ϕ′)πSδ(µ′ − µ0)δ(ϕ′ − 0) = πST(µ, µ0, ϕ, 0)

comparing it with (1.76) and taking into account only the zeroth harmonics
the following is inferred:

T(µ, µ′, ϕ, ϕ′) =
µ0

π
ρ0(µ, µ0) for the top of the atmosphere

T(µ, µ′, ϕ, ϕ′) =
µ0

π
σ0(µ, µ0) for the bottom of the atmosphere

(µ′ ≡ µ0 and ϕ′ ≡ 0) .
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Direct radiation is necessary to take into consideration also for the description
of the reflection because:

T↓(µ, µ′, ϕ, ϕ′) =
µ0

π
[σ0(µ, µ0) + exp(−τ0|µ0)] .

For the case of the illumination from the bottom to direction (µ′ϕ′) the anal-
ogous expressions are obviously deriving. Further, according to the definition
of the operator (1.58) and with a subject to equality Ĩ0(µ′, ϕ′) = S̃ (due to the
orthotropy of the reflection, the link between the radiance and irradiance (1.4)
and equality of the irradiances in definitions (1.77)) we finally obtain for the
bottom of the atmosphere:

T̃↑(µ, µ′, ϕ, ϕ′) = 2

1∫
0

µ′ρ̃0(µ′, µ)dµ′ ,

i. e. the T̃↑ depends only on µ.
The analogous expression is obtained for the top of the atmosphere

T̃(µ, µ′, ϕ, ϕ′) = 2

1∫
0

[σ̃0(µ, µ′) + exp(−τ0|µ)]µ′dµ′ ,

where direct radiation and condition T̃(µ, µ′, ϕ, ϕ′) = T̃↑(µ, µ′, ϕ, ϕ′) are taken
into account.

The product of the integral operators is found by definitions (1.58) and
(1.73)

RT̃↑(µ, µ′, ϕ, ϕ′) =
1
π

2π∫
0

dϕ′′
1∫

0

R(µ, ϕ, µ′′, ϕ′′)T̃↑(µ′′, µ′, ϕ′′, ϕ′)µ′′dµ′′ ,

that yields after substituting the above-obtained expressions, in particular
R = A, constant AC for RT̃↑, where

C = 4

1∫
0

1∫
0

ρ̃0(µ′, µ′′)µ′µ′′dµ′dµ′′ . (1.80)

Absolutely analogously RT↓ is found as Aµ0φ(µ0), where

φ(µ0) = 2

1∫
0

σ0(µ′, µ0)µ′dµ′ + exp(−τ0|µ0) .
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As RT̃↓ is a constant relatively to the variable of the integration the following
is deduced with a subject to symmetry relations (1.78):

T̃RT↓ = Aµ0φ(µ)φ(µ0) for the top of the atmosphere ,

T̃RT↓ = Aµ0ψ(µ)φ(µ0) for the bottom of the atmosphere ,

where

ψ(µ) = 2

1∫
0

ρ̃0(µ, µ′)µ′dµ′ . (1.81)

After substituting the obtained expressions to series (1.75), summarizing the
geometric progression, accounting definitions (1.76), and expansions (1.79)
we are getting the known (Sobolev 1972) relations:

ρ̄(µ, µ0, ϕ) = ρ(µ, µ0, ϕ) +
Aφ(µ)φ(µ0)

1 − AC
,

σ̄(µ, µ0, ϕ) = σ(µ, µ0, ϕ) +
Aψ(µ)φ(µ0)

1 − AC
.

(1.82)

Relations (1.82) together with (1.80)–(1.81) are expressing the simple links of
the reflection and transmission functions in the case of the system “atmosphere
plus surface” with the same functions without reflection from the surface. That
is to say, a subject to the surface actually is not a complicated problem. Mark
that the symmetry of the reflection function is also correct with the reflection
from the surface ρ̄(µ, µ0, ϕ) = ρ̄(µ0, µ, ϕ).

1.5
Cloud impact on the Radiative Transfer

Clouds are the most variable component of the climatic system and they play
a key role in atmospheric energetics. The actual elaborations in the field of
the numerical climate simulation are the following: the creation of the high-
resolution models for the limited area scales which are suitable for the pa-
rameterization of cloud dynamics in the climate simulation; the evaluation
of the yields of the cloud radiative forcing and microphysical processes (with
taking into account the atmospheric aerosols) to the formation of the prop-
erties and structure of the cloud cover; the algorithms improvement for the
cloud characteristics retrieval from the remote sounding data. The methods
of the calculation of the characteristics of solar radiation (the semispherical
irradiances, radiances and absorption) and derivation of the cloud optical
characteristics from the radiation observational data will be considered below
to solve the problems mentioned above.

The process of the radiative transfer within clouds is also described with
radiative transfer equation (1.35), but the multiple scattering plays the main
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role unlike the clear atmosphere. Only the horizontally homogeneous atmo-
sphere will be considered below. Applying to the cloudy atmosphere, it means
the considering of the model of the infinitely extended and horizontally homo-
geneous cloud layer. In reality, it is the stratus cloudiness, which corresponds
best of all to this case. Fix on the properties of the stratus clouds, which allow
applying the considered theoretical methodologies to the real cloudiness.

Remember the classification of the stratiform clouds: the stratiform clouds
of the lower level are Stratus (St), Stratus-cumulus (Sc), Nimbus stratus (Ns);
the stratiform clouds of the medium level are Alto-stratus (As), Alto-cumulus
(Ac); the high stratiform clouds are Cirrus-stratus (Cs); and also the Frontal
cloud systems are Ns-As, As-Cs, Ns-As-Cs (Feigelson 1981; Matveev et al.
1986; Marchuk et al. 1986; Mazin and Khrgian 1989). The extended stratus
clouds are important in the feedback chain of the climatic system influencing
essentially the albedo, radiative balance of the “atmosphere plus surface”,
and total circulation of the atmosphere (Marchuk et al. 1986; Marchuk and
Kondratyev 1988). The stratus clouds widening over vast regions impact on
the Earth radiative balance not only in the regional but also in the global scale.

The cloud albedo is significantly higher than the ground or ocean albedo
without snow cover. Basing on this and assuming that clouds prevent the
heating of the surface and lower atmospheric layer in the low and middle
latitudes, a negative yield to the Earth radiative balance is usually concluded.
The clouds in the high latitudes don’t increase the light reflection because the
snow albedo is also high and, in this case, the clouds play a prevailing role in
atmospheric heating.

However, it has been elucidated in the last few decades that the situation
is more complicated: the clouds themselves absorb a certain part of incom-
ing radiation providing the atmospheric heating in all latitudes. Thus, the
problem of the interaction between the clouds and radiation comes to the
foreground in the stratus clouds study. The climate simulation requires in-
putting the adequate optical models of the clouds and so it is necessary to
obtain the real cloud optical parameters (volume scattering and absorption
coefficients). The including of atmospheric aerosols in the processes of the
interaction between short-wave radiation (SWR) and clouds affect equivocally
the forming of the heat regime of the atmosphere and surface. The direct and
indirect aerosol heating effects are indicated in the literature (Hobbs 1993;
Charlson and Heitzenberg 1995; Twohy et al. 1995). The radiation absorption
by the carbonaceous and silicate aerosols causes the direct effect. The indirect
effect is attributed to the hydrophilic atmospheric aerosols necessary to the
water vapor condensation and to the generating of the cloud droplets. Hence,
the high concentration of these aerosols increases the droplets number and
optical thickness of the cloud that, in turn, intensifies the reflection of solar
radiation and reduces the radiation absorption in the atmosphere and on the
surface. From the results of the airborne radiative observations of the last few
decades, it has been revealed that direct and indirect effects of the aerosols
influence differently the increasing or extinction of the solar radiation absorp-
tion in clouds of different origin in different geographical regions (Hobbs 1993;
Harries 1996).
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Table 1.1. The probability (%) of the conservation of the cloudiness with the cloud amount
equal to 1 above the European territory of the former USSR

Probability, % Duration of the existence of 1-amount cloudiness (h)
1 3 6 12 24

Winter 93 87 83 78 74
Summer 80 64 52 41 35

Table 1.2. The average altitudes of cloud zb (bottom) and zt (top) and geometrical thickness
∆H = zt − zb (km)

Type of zb zt ∆H
cloudiness Winter Summer Winter Summer Winter Summer

St 0.25 0.29 0.55 0.58 0.30 0.29
Sc 0.85 1.26 1.14 1.59 0.29 0.33
As 3.80 3.93 4.73 4.83 0.93 0.90

The detailed analysis accomplished in Harries (1996) with employing the
previous results of the observations concerning the greenhouse effect in the
global climate change has demonstrated an unfeasibility to evaluate accurately
the influenceof thecloudsandaerosols radiative forcingon theglobalwarming.

The data in the books by Feigelson (1981), Matveev (1984) and Matveev et al.
(1986) obtained as a generalization of the airborne and satellite measurements
and observations of the meteorological stations network illustrate the recur-
rence of the stratiform clouds and the average period of their conservation
above Europe that is equal to 13–15h in winter and about 5 h in summer time.
The probability of the conservation of the cloud amounts equal to 1 above the
European territory of Russia (over 10 stations) during different time intervals
is presented in Table 1.1 according to Mazin and Khrgian (1989).

As has been mentioned in the book by Feigelson (1981) it is necessary to
understand that the obtained cloud characteristics and parameters relate to
the very given cloud in the given time period because of the strong variability
of clouds. Nevertheless, the certain recurrences of some parameters of the
stratus clouds for some geographical regions are marked. Thus, for example,
the prevailing altitude of the stratus clouds in the polar and temperate zones
is about 2 km and in the tropical zone is about 3 km. After the data averaging
of the airborne and balloon observations the most typical values of the stratus
cloud top and bottom altitudes have been obtained that Table 1.2 illustrates.

The stratus clouds, which are not farther than 200 km from the boundary
of an atmospheric front when it is forming and passing the atmosphere, are
called frontal clouds. The width extension of the frontal zone in central Europe
could reach 1000 km according to the satellite observations (Marchuk et al.
1986,1988). The length of this zone is about 7000 km. The cloud zones are bro-
ken to the macro cells of a hundred kilometers in length, which, in turn, consist
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Table1.3.Recurrence (%)of theextensionof the frontaluppercloudinessabove theEuropean
territory of the former USSR

Width of zone Type of front Width of zone Type of front
(km) Cold Warm (km) Cold Warm

< 50 2.4 – 501– 600 – 25.0
51–100 12.2 – 601– 700 – 20.8

101–200 26.8 – 701– 800 – 11.7
201–300 29.3 6.5 801– 900 – 6.2
301–400 22.0 10.4 901–1000 – 2.6
401–500 7.3 12.9 1001–1500 – 2.6

Table 1.4. Recurrence (%) of the cloud areas with different extension of the frontal lower
cloudiness

Extension (km) Type of front
Cold Warm

<10 20 14
10– 20 28 19
20– 30 19 19
30– 50 18 21
50– 75 9 11
75–100 4 8

100–150 0 3
150–200 1 4
200–300 1 1

of the cloud strips or of the solid fields with the cloud cells inhomogeneous
in the density of tens of kilometers in length (Feigelson 1981; Matveev 1984;
Matveev et al. 1986).

The information about the recurrence of the frontal clouds zone width of
the upper and lower levels presented in books (Feigelson 1981; Matveev 1984;
Matveev et al. 1986) from the airborne observations is illustrated in Table 1.3.
The main conclusion of Table 1.3 is that the high-level cloud fields of the length
less than 200 km are typical for the cold front, and of the length 500–600 km
are typical for the warm front.

Table 1.4 indicates that the most frequent frontal lower level clouds have
a horizontal extension not exceeding 50 km for the cold front and 75 km for the
warm front. Thus, it follows from the above that it is possible to simulate the
stratus cloudiness with the homogeneous horizontally extended layer. Besides,
the stratus cloudiness is rather stable hence, the methodology for the retrieval
of cloud optical parameters based on the ground observations of the solar
irradiance for different solar incident angles (i. e. different moments with the
intervals 1–2 h) described below, could be applied to real data.
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CHAPTER 2

Theoretical Base of Solar Irradiance
and Radiance Calculation
in the Earth Atmosphere

In this chapter, we are considering two concrete calculation methods for the
solar radiances and irradiances needed for observational data interpretations.
They are the Monte-Carlo method for clear atmosphere and the asymptotic
method for overcast sky. The authors are not presenting or even reviewing all
numerical and analytical methods of the radiative transfer theory, referring
readers to the book by Lenoble (1985). The reasons of our choice among the
diversity of methods will be explained during the consideration below.

2.1
Monte-Carlo Method for Solar Irradiance and Radiance Calculation

The Monte-Carlo method (the more strict name is the method of statistical
modeling) is a most powerful method of radiative transfer theory. It allows
us to solve the problems concerned with the radiance calculation while taking
into account spherical geometry, polarization, heterogeneity of the atmosphere
and surface, etc. (Marchuk et al. 1980). Here we are applying this method for
solving the rather simple (compared with the above-mentioned) problem of
the solar radiance and irradiance calculation in the horizontally homogeneous
and plane parallel atmosphere.

Thereare twoapproaches todescribe theMonte-Carlomethodapplication in
atmospheric optics (Kargin 1984; Marchuk et al. 1980). The first one describes
it as a method of formal mathematical solving the problems (equations) of
radiative transfer and the second one considers it as a method of simulation of
the physical processes of radiative transfer in the atmosphere, when it is not
needed to attract a body of the transfer theory. Concerning our problem the
second way is easier for understanding so we are following it concurring with
the author of book (Kargin 1984) and then we will show that the elaborated
algorithm corresponds to the mathematical state of the problem considered in
Sect. 1.3.

Unlike other approaches in the Monte-Carlo method, it is appropriate not
to divide radiation to the direct, diffused and reflected from the surface. In
addition, we are not considering the optical thickness τ, but the altitude z as
a vertical coordinate. The reasons for this can be seen in Chap. 5.

Thus, we are solving the problem for the atmospheric model shown in
Fig. 2.1. Let the parallel solar flux F0 = πS income from direction (µ0, 0) to
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µ ′)0(µ′,

µ0µ, µ

Fig.2.1. Model of the atmosphere

the top of the plane parallel horizontally homogeneous atmosphere z∞. The
base of the atmosphere z = 0 is the orthotropic surface with albedo A (note
that the condition of the orthotropic reflection is not essential for the Monte-
Carlo method. The anisotropic reflection model will be considered in Chap. 5).
The initial optical parameters of the atmosphere are provided as look-up
tables over the altitude grid: volume extinction coefficient α(zi), probability
of the quantum surviving ω0(zi), phase function as a table over altitudes and
cosines of the scattering angles x(zi, χj), j = 1, . . ., M, χ1 = 1, χM = −1, where
i = 1, . . ., N, z1 = z∞, zN = 0. The physical atmospheric model (the vertical
profiles of the temperature, pressure, concentrations of the absorbing gases
and the aerosol model described in Sect. 1.2) defines all these parameters.
It is necessary to find the numerical values of the semispherical fluxes – the
downward one F↓(z) and upward one F↑(z) – at arbitrary altitude 0 ≤ z ≤
z∞ or (and) radiance I(z, µ, ϕ) for arbitrary direction (µ, ϕ). All mentioned
parameters and values are monochromatic for the chosen wavelength.

Let us express the optical thickness as a function of altitude by means
of (1.39) before presenting the Monte-Carlo method. Using the trapezoidal
quadrature, we obtain:

τ(z) =
k−1∑
j=1

1
2

[α(zj) + α(zj+1)](zj − zj+1) +
1
2

[α(z) + α(zk)](zk − z) (2.1)
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where number k is defined from condition zk+1 < z ≤ zk. The table of the
optical thickness simply appeared from (2.1):

τi ≡ τ(zi) =
i−1∑
j=1

1
2

[α(zj) + α(zj+1)](zj − zj+1) , (2.2)

where i = 1, . . ., N, moreover τ1 = 0, τN = τ0 is the optical thickness of the
atmosphere defined by (1.40). We are using the linear interpolation in accor-
dance with the trapezoidal quadrature here and further. Then function α(z) in
(2.1) is expressed as

α(z) = α(zk)
z − zk+1

zk − zk+1
+ α(zk+1)

zk − z

zk − zk+1
, (2.3)

which with taking into account (2.2) gives the polynomial of the power equal
to two

τ(z) = τk + α(zk)(zk − z) +
1
2

α(zk+1) − α(zk)
zk − zk+1

(zk − z)2 . (2.4)

After obtaining function τ(z) according to (2.2) and (2.4) it is possible to use the
altitude, as a coordinate because it is more appropriate in practice. The input
tables of the initial atmospheric parameters are directly converted to α(τi),
ω0(τi) and x(τi, χi), i = 1, . . ., N, and for obtaining the intermediate values, for
example ω0(τ), it is possible to use either the linear interpolation directly over
τ or to find the altitude as function z(τ) and to interpolate over altitude z in
(2.3) that is more correct. Inverse function z(τ) from (2.4) could be written:

z(τ) = zk +
α(τk) −

√
α2(τk) + 2∆k(τ − τk)

∆k
, (2.5)

where number k is deduced from condition τk ≤ τ < τk+1, and

∆k = [α(τk) − α(τk+1)] |[zk − zk+1] .

We should mention that as the procedure for the coordination of the altitude
and optical depth is not linked with the specific of the Monte-Carlo method at
all, it is possible to apply it in other numerical methods of radiative transfer
theory.

Here we will give an account of the Monte-Carlo method. It is based on
the modeling of radiative transfer in the atmosphere as a random process: the
motion of the conditional particle of light called the “photon”, the simulation
of the process on computer, and the calculation of the desired characteris-
tics as a mathematical expectation of random numbers appearing during the
simulation (Kargin 1984; Marchuk et al. 1980).

For the statistical simulation on computer, it is necessary to reproduce
a process that will play the role of the random event. Such an algorithm, called
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a random number generator or randomizer, is well known nowadays and we
are not dwelling upon its specific pointing only that we have been using here
the randomizer proposed in the study by Molchanov (1970). The totality of the
random numbers uniformly distributed over the interval [0, 1] is the basis of
the Monte-Carlo method. We are implying only these numbers using the term
“the random number”, specifying them by sign β, and at every appearance in
the text we mean a new random number. For compact writing of the numerous
recurrent relations occurring in the method we are using the operation of the
assignment “:=” as it is accepted in the programming languages.

Let the probability of a certain discrete random event be equal to P. Choose
the random number and if β ≤ P, then assume that the event has happened, in
theopposite caseassumethat ithasnothappened.Thegroundsof this approach
are evident: if the quantity of the simulating acts tends to the infinity then the
ratio of the quantity of the simulating acts when the event has happened
to the quantity of all acts is equal to the probability of the event, i. e. to P
due to the uniformity of the random numbers distribution. Note that for the
continuous random value simulating characterized with probability density
ρ(u) within the interval [a, b] the probability value u within the interval [a, u]
is equal to P(u) =

∫ u
a ρ(u′)du′ according to the definition. The application of

the above-mentioned approach for the discrete random values leads directly
to the following equation for values u simulating:

u∫
a

ρ(u′)du′ = β . (2.6)

As has been mentioned above, the process of radiative transfer in the Monte-
Carlo method is simulated as a photon motion. Coming to the atmosphere the
photon is moving along a certain trajectory, which finishes either with a photon
outgoing fromtheatmosphereorwith its absorption in theatmosphereorat the
surface. Thepositionof thephoton in the atmosphere is determinedcompletely
with three coordinates: τ′, µ′, ϕ′, hence, the simulation of the trajectory reduces
to the consequent counting of the coordinate data. Therefore, it is enough to
simulate only three processes: the free path of a photon (i. e. without interaction
with the atmosphere), the interaction with the atmosphere (the absorption and
scattering), and the interaction of a photon with the surface (the absorption
and reflection).

A free photon path is analogous to the transfer of solar direct radiation
throughout the atmosphere. Remember the formula of Beer’s Law (1.42):

Fd(τ) = F0µ0 exp(−τ|µ0) .

Let K photons income to the top of the atmosphere, i. e. F0µ0 = KE, where E is
the energy of a single photon. Substituting KE to Beer’s Law we obtain that the
quantity of photons reaching optical depth τ is K(τ) = K exp(−τ|µ0). However,
owing to the probability definition it means that the probability for a photon
to reach optical depth τ is exp(−τ|µ0). After replacing cosine of incident angle
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µ0 to cosine µ′ that characterizes an arbitrary direction and specifying the
free pass as ∆τ′, we obtain the following due to the method of the continuous
random values simulating:

∆τ′ = −µ′ ln β , τ′ := τ′ + ∆τ′ . (2.7)

Mark that, firstly, (2.7) is correctedboth for thephotonmovingdownward (µ′ >
0 and τ′ increases) and for the photon moving upward (µ′ < 0 and τ′ decreases).
Secondly, deriving (2.7) we don’t need the explicit form of the probability
density of the photon free path function, however we will need it later. As
follows from the above-mentioned relations the probability of the photon path
within the range of 0 to τ is P(τ) = 1 − exp(−τ|µ0). After differentiating with
respect to τ the following is obtained:

ρ(∆τ′) =
1

|µ′| exp(−∆τ′|µ′) . (2.8)

The probability of the photon scattering in the atmosphere is ω0(τ′) (di-
rectly to the terminology – the probability of the quantum surviving). Thus if
β ≤ ω0(τ′), then the photon scattering is occurring in the opposite case the
absorption is happening, i. e. at the end of the trajectory. The cosine of the
scattering angle χ and the azimuth of the scattering φ are to be obtained in
the scattering case. As the phase function does not depend on the azimuth it
is uniformly distributed within the interval [0, 2π] that gives φ = 2πβ. The
density of the probability of the scattering to the angle with cosine χ is phase
function x(χ) [according to the definition (1.2) in Sect. 1.1]. As this value is
specified in the look-up tables, based on simulating rule (2.6) and repeating
literally the reasons for (2.1)–(2.5) with accounting of 1|2 factor in normalizing
relation (1.18) we obtain:

χ = χk +
x(τ′, χk) −

√
x2(τ′, χk) + 2∆k(2β − Xk(τ′))

∆k
, (2.9)

where Xi(τ′) =
∑i−1

j=1
1
2 [x(τ′, χj+1) + x(τ′, χj)](χj − χj+1), number k is derived

from condition Xk(τ′) ≤ 2β < Xk+1(τ′), value β is the same as in (2.9) and:

∆k =
x(τ′, χk+1) − x(τ′, χk)

χk − χk+1

(
∆k = 0 provides χ = χk −

2β − Xk(τ′)
x(τ′, χk)

)
.

Owing to linear relation Xj(τ′) and x(τ′, χj) it is convenient to construct the
preliminary table Xj(zi), where j = 1, . . ., M, i = 1, . . ., N from the initial data
and to use it for the interpolation of function Xj(τ′) with (2.3) and (2.5). After
scattering, the photon needs to determine the next direction of its motion. This
not complicated problem is reduced to the solving of the spherical triangles
(Stepanov 1948). Specifying the direction of the photon before the scattering
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by value µ′
1 = µ′, we obtain:

µ′ = µ′
1χ +

√
(1 − µ′2

1 )
√

(1 − χ2) cos φ ,

ϕ′ := ϕ′ + arccos

⎛
⎝ χ − µ′µ′

1√
1 − µ′2

√
1 − µ′2

1

⎞
⎠ .

(2.10)

It is possible to attribute an evident meaning of the reflection probability to
the albedo in the description of the interaction with the surface: the reflection
occurs if β ≤ A and the opposite case corresponds to the photon absorption
by the surface and to the end of the photon trajectory. Due to the reflection
orthotropness all possible directions of the photon are uniformly distributed
because:

µ′ = − cos
(π

2
β
)

, ϕ′ = 2πβ , τ′ = τ0 . (2.11)

After the repeating of the above reasoning about the photon free path to
calculate the desired irradiances we are revealing that it is enough to count
the number of the photons passing level τ(z) to the interested direction, i. e.
downward (µ′ > 0) for F↓(z) and upward for (µ′ < 0) for F↑(z). For that we
introduce functions ξ↓

1 (z) and ξ↑
1 (z) with the zeroth initial values. Let τ′

1 be the
photon coordinate before simulating of the free path (2.7) and τ′

2 = τ′
1 + ∆τ′ be

the coordinate after the simulation. Then:

ξ↓
1 (z) := ξ↓

1 (z) + 1 , provided τ′
1 ≤ τ(z) ≤ τ′

2 ,

ξ↑
1 (z) := ξ↑

1 (z) + 1, provided τ′
2 ≤ τ(z) ≤ τ′

1 .
(2.12)

Equation (2.12) is also used in the case of the photon going out of the at-
mosphere (τ′

2 < 0) or reaching the surface (τ′
2 ≥ τ0). After the simulation of

a certain number K of trajectories the desired irradiances are found as a num-
ber of the counting photons multiplied by energy of the single photon, which
is equal to F0µ0|K (see above). Thus, we are inferring:

F↑(z) =
1
K

ξ↑
1 (z)F0µ0 , F↓(z) =

1
K

ξ↓
1 (z)F0µ0 . (2.13)

Values ξ↓
1 (z) and ξ↑

1 (z) will be called further the counters and the expressions
analogous to (2.12) will be treated as writing to the counters.

Equation (2.12) seems to contradict the formula of a link of the radiance and
irradiance (1.4) because they don’t account for the cosine of the photon zenith
angle. However, the photon is a carrier of the very irradiance and not of the
radiance. It is easy to understand from the physical meaning: the real quantum
of light as a photon has energy independent of the direction. The formal proof
of the correctness of (2.12) is elementary. Consider the trajectory of a single
photon (K = 1). Let the photon go out from the top of the atmosphere after the
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first scattering event. Then, the value of the upward irradiance at the top as per
(2.13) is to be equal to the value of the downward irradiance due to the law of
energy conservation (there is no absorption), and this condition wouldn’t be
broken only if the writing to the counters according to (2.12) does not depend
on value µ′.

In result, the following algorithm of the irradiance calculation is obtained:

1. In the beginning of every trajectory it can be written τ′ = 0, µ′ = µ0,
ϕ′ = 0.

2. Further, the photon free path is simulated according to (2.7) with the
writing to the counters (2.12).

3. If the photon is going out of the atmosphere (τ′ ≤ 0), its trajectory will
finish and the trajectory of the following photon will be simulated.

4. If the photon reaches the surface (τ′ ≥ τ0), its interaction (reflection or
absorption) with the surface will be simulated.

5. The absorption means the end of the trajectory and the trajectory of the
following photon is simulated.

6. The reflection from the surface gives the new direction of the trajectory
according to (2.11) and then the photon recurrent free path is simulated.

7. If the photon stays in the atmosphere (0 < τ′ < τ0), its interaction
(scattering or absorption) with the atmosphere is simulated.

8. The absorption leads to the end of the trajectory.

9. In thecaseof the scattering, thenewdirectionof thephoton isdetermined
using (2.9) and (2.10) and the photon following free path is simulated.
The desired values of the irradiances are found with (2.13) after sufficient
numbers K of the trajectories.

Mark that ratios ξ↓
1 (z)|K and ξ↑

1 (z)|K are the expectations (the arithmetic
means) of photon numbers written to the counters as the result of the simu-
lation of a single photon trajectory. Introduce counters ξ↓(z) and ξ↑(z) with
zeroth energies in the beginning of every trajectory and write a relation anal-
ogous to (2.12) for a single trajectory. Then, (2.12) transforms to:

ξ↓
1 (z) := ξ↓

1 (z) + ξ↓(z) , ξ↑
1 (z) := ξ↑

1 (z) + ξ↑(z) , (2.14)

moreover, the writing to the counters as per (2.14) is carried out at the end of
every trajectory.

Thus, the problem of the irradiance calculation by the Monte-Carlo method
is reduced in fact to the calculation of the expectations of random values ξ↓(z)
and ξ↑(z) (thenumberofphotonswritten to the counters) over thefinite sample
from K trajectories by (2.13) and (2.14). It is possible to calculate not only the
expectation but also other statistical estimations of random values ξ↓(z) and
ξ↑(z). Further, obtain their variance. For that we introduce the counters of
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squares ξ↓
2 (z) and ξ↑

2 (z) with zeroth initial values and write together with
(2.14) the following:

ξ↓
2 (z) := ξ↓

2 (z) + [ξ↓(z)]2 , ξ↑
2 (z) := ξ↑

2 (z) + [ξ↑(z)]2 . (2.15)

Using the known expression for variance D(ξ) = M(ξ2) − M2(ξ), where M(. . .)
is expectation, we obtain:

D(ξ↓) =
1
K

ξ↓
2 (z) −

(
1
K

ξ↓
1

)2

, D(ξ↑) =
1
K

ξ↑
2 (z) −

(
1
K

ξ↑
1

)2

. (2.16)

The behavior of the distribution of random values ξ↓(z) and ξ↑(z) is unknown.
However, the distribution of its expectations according to the central limit the-
orem tends to the normal distribution as K → ∞. Hence, desired irradiances
(2.13), which are also considered as random values, have the distributions
asymptotically close to the normal distribution. It is known that the normal
distribution is characterized with the expectation and the variance expressed
by (2.16). For the standard deviation (SD) (s(. . .) =

√
D(. . .)) of the irradiances

in accordance with the study by Marchuk et al. (1980) with taking into account
the known rule for the variances addition the following is obtained:

s(F↓(z)) = F0µ0

√
D(ξ↓)|K , s(F↑(z)) = F0µ0

√
D(ξ↑)|K . (2.17)

As follows from (2.17), the increasing of the number of trajectories K leads
to the minimization of the standard deviation (SD), i. e. of the random error
of the irradiances calculation. Evaluating the SD with (2.15)–(2.17) is of great
practical interest because it allows accomplishment of the calculations with
the accuracy fixed in advance. Actually, the calculation of the SD gives the
possibility of estimating the necessary number of photon trajectories and as
soon as the SD is less than the fixed value, the simulating is finished.

The above-considered scheme of the simulating of photon trajectories is
called “direct modeling” (Kargin 1984) as it directly reflects our implication
concerning photon motion throughout the atmosphere. However, direct mod-
eling is not enough for accelerating the calculation according to the algorithm
of the Monte-Carlo method or for the radiance calculation (Kargin 1984). Con-
sider two approaches to increase the calculation effectiveness that we have
applied. It is possible to find detailed descriptions of other approaches in the
books by Kargin (1984), and Marchuk et al. (1980).

The basis of optimizing the calculation with the Monte-Carlo method is an
idea of decreasing the spread in the values written to the counters. Then the
variance expressed by (2.16) decreases too and fewer trajectories are necessary
for reaching the fixed accuracy according to (2.17).

Assume that the photon could be divided into parts (as it is a mathematical
object and not a real quantum here). Then a part of the photon equal to
1 − ω0(τ′) is absorbed at every interaction with the atmosphere and the rest
ω0(τ′) is scattered and, then, continues the motion. During the interaction with
the surface these parts are equal to 1 − A and to A (A is the surface albedo)
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correspondingly. We specify the value w′ called the weight of a photon (Kargin
1984; Marchuk et al. 1980), which it is possible to formally consider as a fourth
coordinate. Assume value w′ = 1 in the beginning of every trajectory and
while writing to the counters, (2.12) will be assigned not unity but value w′.
Then the simulation of the interaction with the atmosphere is reducing to the
assignment w′ := w′ω0(τ′) at every step, and the simulation of the interaction
with the surface is reducing to the assignment w′ := w′A. Now the photon
trajectory can’t break (the surviving part of the photon always remains), the
break of the trajectory occurs only when the photon is outgoing from the
atmosphere top. Usually for not driving the photon with too small weight
within the atmosphere parameter of the trajectory break W is introduced: the
trajectory is broken if w′ < W . It is suitable to evaluate value W based on the
accuracy needed for the calculation: W = sδ, where s is the minimal (over all
altitudes z for the downward and upward irradiances) needed relative error of
the calculation; δ is the small value (we have used δ = 10−2). This approach of
the photon “dividing” is known under the unsuccessful name “the analytical
averaging of the absorption” (Kargin 1984) (the words “analytical averaging”
are associated with a certain approximation, which is not used in reality).

Consider a photon at the beginning of the trajectory at the top of the atmo-
sphere. In this case, before the simulation of the first free path (τ′ = 0, µ′ = µ0,
w′ = 1) using Beer’s Law (1.42) it is possible to account direct radiation, i. e.
radiation reaching level τ(z) without interaction with the atmosphere. For that
it is necessary to write to all counters ξ↓(z) the value depending on z instead
unity:

ψ = w′ exp
(

−
τ − τ′

µ′

)
, (2.18)

and further writing to the counters is not implemented for the first free path
(direct radiation). This approach is easy to extend to other parts of the trajec-
tory: before the writing of the free path to the counter, which the photon can
reach (ξ↓(z), for µ′ > 0 and τ ≥ τ′, or ξ↑(z), for µ′ < 0 and τ ≤ τ′) value ψ
calculated with (2.18) is writing and the further photon flight through the
counters is not registering. Note that as it has been shown above the exponent
in (2.18) is a probability of the photon started from level τ′ to reach level τ.
This general approach of writing to the counter the probability of the photon
to reach the counter is called “a local estimation” (Kargin 1984; Marchuk et al.
1980).

The analysis of the above-described algorithm of the irradiances calculation
indicates that the irradiances are not depending on photon azimuth ϕ′. Actu-
ally, calculated only in two cases with (2.10) and (2.11), azimuth ϕ′ does not
influence other coordinates and hence, the values written to the counters. Thus,
the “photon azimuth” coordinate is excessive in the task and it could be ex-
cluded for accelerating the calculations (but only in this task of the irradiances
calculations above the orthotropic surface).

Consider the second of the problems described above: the problem of ra-
diance I(z, µ, ϕ) calculation. It is obvious that the procedures either of the
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simulation of photon trajectories or of the calculation of the expectation and
variance are depending on the desired value, and hence they wouldn’t change.
The difference is concerning the procedure of writing the values to the coun-
ters. Encircle the cone with small solid angle ∆Ω(µ, ϕ) around direction (µ, ϕ).
We will be writing to the counter all photons, which have reached level z and
have come to the cone for radiance I according to the equation analogous
to (2.12). Moreover, in this case value 1||µ| has to be written to the counter
instead of unity in the case of the irradiance calculation to satisfy the link of
the radiance and irradiance (1.4). Pass further from the above-described (but
not realized) scheme of the direct modeling of the radiances to the schemes
of the weight modeling and local estimation. Let the photon have coordinates
(τ′, µ′, ϕ′). According to the definition of the phase function as a density of the
probability of the scattering (Sect. 1.2), the probability of the photon coming
to solid angle ∆Ω(µ, ϕ) after scattering at level τ′ is equal to the integral of the
phase function over the angle intervals defined by (1.17) (i. e. ∆Ω and scatter-
ing angle � (µ′, ϕ′)(µ, ϕ)) with taking into account normalizing factor 1|4π. Let
value ∆Ω decrease toward zero. Then we are revealing that the density of the
probability of the photon to reach direction (µ, ϕ) coincides with the value of
the phase function for argument χ′ = cos(� (µ′, ϕ′)(µ, ϕ)), which is computed
with (1.46). This probability is necessary to multiply by factor ψ defined with
(2.18), i. e. by the probability of the photon to reach level τ(z). Finally, the local
estimation for the radiance is obtained according to the results of the books by
(Kargin 1984, Marchuk et al. 1980).

ψ =
w′

4π
∣∣µ∣∣x(τ′, χ′) exp

(
−

τ − τ′

µ′

)

χ′ = µµ′ +
√

(1 − µ2)(1 − µ′2) cos(ϕ − ϕ′) .

(2.19)

Thus, the considered algorithm of the radiance computation according to the
Monte-Carlo method differs from the irradiance computation algorithm just
with the other equation for the local estimation (2.19) instead of (2.18) and with
other equations for the counters: for radiance over single trajectory ξ(z, µ, ϕ),
for expectation ξ1(z, µ, ϕ) and for the square of the expectation ξ2(z, µ, ϕ). Both
algorithms (for radiance and irradiance) couldbe carriedoutoncomputerwith
one computer code. It is pointed out that the condition of the clear atmosphere
(the small optical thickness) has not been assumed so the Monte-Carlo method
algorithms can be also applied for the cloudy atmosphere.

In conclusion, illustrate that the considered algorithms actually correspond
to the solution of the equation of radiative transfer (1.47).

The desired radiation characteristic (radiance, irradiance) could be written
in the operator form according to expressions of the radiance through the
source function (1.52), and as per the link of the irradiance and the radiance
(1.4):

ΨB =
∫

Ψ(u)B(u)du , (2.20)
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where function Ψ(u) is a certain function allowing the desired value calculation
through the source function [e. g. (1.52)]. Variable u specifies here and further
coordinates τ′, or (and) µ′, ϕ′ according to (1.52) and (1.6). The source function
in its turn is definedby theFredholm integral equationof the secondkind (1.54)
and (1.55) with kernel K and q as an absolute term.

The Monte-Carlo method has been primordially elaborated for computing
the integrals analogous to (2.20):∫

Ψ(u)B(u)du = Mξ(Ψ(ξ)) , (2.21)

where Mξ(. . .) is the expectation of random value ξ simulated with probability
density B(u) as per (2.6). Therefore, (2.20) and the equation for the source
function (1.54) at the Monte-Carlo method are written for a single trajectory
and the desired value is computed over the totality of the trajectories as an
expectation according to (2.21). Applying (2.20) to the formal solution of the
Fredholm equation, i. e. to the Neumann series (1.56) we obtain:

ΨB = Ψq + ΨKq + ΨK2q + ΨK3q + . . . . (2.22)

The computer scheme of the Monte-Carlo method is reduced to consequent ap-
plying of (2.22). Term Ψq is formed as follows: we are simulating random value
ξ(1) corresponded to probability density q and value Ψ(ξ(1)) is being written
to the counter. Then the term ΨKq is forming: using value ξ(1) random value
ξ(2) corresponded to density of the probability of the transition K(ξ(1), ξ(2))
is simulating, and value Ψ(ξ(2)) is being written to the counter. The follow-
ing procedures are simulating analogously. Finally, the absolute term ΨKnq is
forming: using value ξ(n) we are simulating random value ξ(n+1) corresponded
to density of the probability of the transition K(ξ(n), ξ(n+1)) and value Ψ(ξ(n+1))
is being written to the counter. The photon trajectory in the phase space is
a chain of the pointed transitions, the simulation is accomplished over many
trajectories, and, in accordance with (2.22) the desired value is mean value
Ψ(ξ) over all trajectories.

Now we are showing that the explicit form of operators q, K and Ψ in
the above-described algorithms corresponds to their form in the equations of
radiative transfer theorypresented inSect. 1.3. Furthermore, asdirect radiation
is not included in (1.54)–(1.56), operator Kq corresponds to q in (1.55) and
(1.56), the latter is specified as q′. The phase space is specified with three
coordinates (τ′, µ′, ϕ′). Operator q is evidently extraterrestrial solar radiation
q = F0µ0δ(µ−µ0)δ(ϕ) that corresponds to operator µ0I0 considered in Sect. 1.3
while (1.57) have been derived. Hence, to prove the correspondence of the
Monte-Carlo method algorithms to (1.54)–(1.56) it is enough to demonstrate
the correspondence of integral operators K to each other.

To begin with, consider the case without accounting for photon weights w′,
i. e. the radiation absorption is simulated explicitly. Let w′ ≡ 1 in the local
estimation expressed by (2.18) and (2.19). The K operator describes, as has
been mentioned above, the probability density of the photon path between two
points of the phase space, whose coordinates are specified as (τ′, µ′, ϕ′) and
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(τ, µ, ϕ) for the conformity with definitions (1.55). According to its meaning,
the probability density is the product of three probability densities: the density
of the photon free path of distance ∆τ′ = τ − τ′ according to (2.8), density of
the non-absorption of the photon in the atmosphere ω0(τ), and the density
of the scattering of the photon with change of the direction from (µ′, ϕ′) to
(µ, ϕ), which is equal to x(τ, χ′)|(4π) as per (2.19). However, this product is
exactly equal to K according to (1.55)! Taking into account that as per (2.6) and
(2.11) the photon probability within the directional interval [−µ′, 0] is equal to
P(µ′) = 2 arccos(−µ′)|π the following condition is added to (1.55) for τ′ = τ0,
µ′ < 0 to consider the surface albedo in the Monte-Carlo method:

K = K(τ, µ, ϕ, τ′, µ′, ϕ′) = −
A

π2µ′√1 − µ′2 exp
(

−
τ − τ′

µ′

)
. (2.23)

Now to find operator Ψ remember that the variables noted in the definition of
the K operator (1.55) as (τ, µ, ϕ), later become the integration variables them-
selves when the desired values are calculated using (2.20). For example, during
the calculation of the radiance according to source function (1.52) τ′ is a vari-
able noted in equations of the source function (1.53)–(1.55) as τ. Therefore,
coordinates of the point (τ, µ, ϕ) are to be noted as (τ′, µ′, ϕ′) at (2.10). After
the radiance calculation with (1.52), the irradiance is computed according to
relation (1.6) and factor 1|µ′ is canceled out. The integrating is accomplished
over all three variables (τ′, µ′, ϕ′) and for operator Ψ it yields the expression
exactly equal to simple local estimation (2.18). When the radiance is computed
with (1.52) the integration variable is τ′ only, so there is no dependence of the
source function upon coordinates (µ′, ϕ′). Actually, the probability density of
transition K is written accounting for the change of the notions for coordinates
(τ′, µ′, ϕ′) and for the radiance computation, using (1.52) coordinates (τ′, µ, ϕ)
are applied. Hence, the scattering angle, which the photon trajectory is sim-
ulated with, in the K operator according to the Monte-Carlo method, differs
from the operator defined by (1.55) in the transfer equation. Therefore, the
probability density of the scattering to direction (µ′, ϕ′) has not yet accounted
for. To account for it we are accomplishing the multiplication by the phase
function in the equation for local estimation (2.19). Thus, there is a complete
correspondence between (2.19) and (1.52)–(1.55) also during the consideration
of the radiance.

The case of simulating the photon trajectories with weights w′ corresponds
to the coordinated transformation of operators K and Ψ taking into account
that they are used in solution (2.22) only as a convolution of K with Ψ. In
this case, the multiplication by probability of the quantum surviving ω0(τ)
is passing from operator K to Ψ. It corresponds to the changing of photon
weight w′ when the powers of the K operator are calculated in (2.22), and then
to the multiplication of the local estimation to photon weight w′ in (2.18) and
(2.19) (Kargin 1984). Analogously it is concluded that the direct modeling of
the irradiances otherwise corresponds to the passing from the exponential
factor (the local estimation (2.18)) to the K operator. Similar transformations,
many of which are difficult to present from the physical point of view, are
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the basis for various other approaches of the calculation optimization in the
Monte-Carlo method (Kargin 1984; Marchuk et al. 1980), e. g. the computing
of the derivatives of the irradiances that will be considered in Chap. 5. As
has been shown using these methods, the same transfer equation (1.47) is
solved with different versions of operators K and Ψ simulating. In practice,
it is appropriate to use the following procedure. Assume that the probability
density of transition K is always determined by the concrete scheme of the
photons trajectories simulating, and operator Ψ is determined by the concrete
writing to the counters (in other words, K is responsible for radiative transfer
and Ψ answers for the model of its “observation”).

2.2
Analytical Method for Radiation Field Calculation in a Cloudy Atmosphere

Let us consider the model of an extended and horizontally homogeneous cloud
of large optical thickness τ0 >> 1 as Fig. 2.1 illustrates. At the first stage, the
cloud layer is assumed vertically homogeneous as well and the influence of
the clear atmosphere layers above and below the cloud layer is not taken into
account. The volume coefficients of scattering α and absorption κ, linked with
the cloud characteristics as κ + α ≡ τ0|∆z, α ≡ ω0τ0|∆z, κ ≡ τ0(1 − ω0)|∆z,
are used for the cloud description. The optical properties of the cloud are
described by the following parameters: single scattering albedo ω0; optical
thickness τ, and mean cosine of the scattering angle g, which characterizes
a phase function. From the bottom the cloud layer adjoins the ground surface
and its reflectance isdescribedbygroundalbedoA. Theunderlyingatmosphere
could be taken into account if albedo A is implying as an albedo of the system
“surface+atmosphere under the cloud”. Parallel solar flux πS is falling on the
cloud top at incident angle arccos µ0. The reflected and transmitted radiance
is observed at viewing angle arccos µ. The reflected radiance (in the units
of incident extraterrestrial flux πSµ0) is expressed with reflection function
ρ(τ0, µ, µ0) and the transmitted radiance (in the same units) is expressed with
transmission function σ(τ0, µ, µ0).

2.2.1
The Basic Formulas

At a sufficiently large optical depth within the cloud layer far enough from the
top and bottom boundaries the asymptotic or diffusion regime set in owing
to the multiple scattering. This regime permits a rather simple mathematical
description (Sobolev 1972; Hulst 1980). The region within the cloud layer is
called a diffusion domain. The physical meaning yields the following specific
features of the diffusion domain:

1. the role of the direct radiation (transferred without scattering) is negli-
gibly small compared to the role of the diffused radiation;

2. the radiance within the diffusion domain does not depend on the az-
imuth;
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3. the relative angle distribution of the radiance does not depend on the
optical depth (Sobolev 1972).

The name “diffusion” appears because the equation of radiative transfer is
transformed to thediffusionequation in that case (Hulst 1980). In the scattering
layer of a large optical thickness the analytical solution of the transfer equation
is possible and it is expressed through the asymptotic formulas of the theory
of radiative transfer (Sobolev 1972; Minin 1988), moreover the existence and
uniqueness of the solution have been proved (Germogenova 1961). According
to the books by Sobolev (1972), Hulst (1980), and Minin (1988), the solution
of the transfer equation, expressed through reflection ρ and transmission σ
functions, is the following:

ρ(0, µ, µ0, ϕ) = ρ∞(µ, µ0, ϕ) −
ml̄K(µ)K(µ0) exp(−2kτ0)

1 − l̄l exp(−2kτ0)

σ(τ0, µ, µ0) =
mK̄(µ)K(µ0) exp(−kτ0)

1 − l̄l exp(−2kτ0)
.

(2.24)

In these equations ρ∞(µ, µ0, ϕ) is the reflection function for a semi-infinite at-
mosphere; K(µ) is the escape function, which describes an angular dependence
of the reflected and transmitted radiance; m, l, k are the constants, depending
on the cloud optical properties, the formulas for its computing are presented
below; K̄(µ) and l̄ depends on ground albedo A as well. The following ex-
pressions are taking into account the ground surface reflection according to
Sobolev (1972), Ivanov (1976) and Minin (1988):

l̄ = l −
Amn2

1 − Aa∞ , K̄(µ) = K(µ) +
Aa(µ)n

1 − A
. (2.25)

In these expressions a(µ) is the plane albedo and a∞ is the spherical albedo of
a semi-infinite atmosphere (the atmosphere of the infinite optical thickness).

K̄(µ) = K(µ) + AQ̄a(µ) , n̄ =
n

1 − Aa∞ , l̄ = l − AmQ̄Q (2.26)

where a(µ), a∞, and value n are defined by the integrals:

a(µ) = 2

1∫
0

ρ(µ, µ0)µ0dµ0 , a∞ = 2

1∫
0

a(µ)µdµ

n = 2

1∫
0

K(µ)µdµ , n̄ = 2

1∫
0

K̄(µ)µdµ ,

It is seen that (2.24) are the asymmetric formulas relatively to variables µ and
µ0, which are input with escape functions K(µ) and K̄(µ). It links with different



Analytical Method for Radiation Field Calculation in a Cloudy Atmosphere 59

boundary conditions at the top and bottom of the layer. The top is free and
it could be assumed as an absolutely absorbing one for the upward radiation
and the bottom boundary reflects partly the downward radiation. Thus each
of them generates its own light regime described by different escape functions
K(µ) and K̄(µ) and constants l and l̄.

Consider the semispherical fluxes of diffused solar radiation (solar irradi-
ances) in relative units of incident solar flux πS. Reflected irradiance F↑(0, µ0)
and transmitted irradiance F↓(τ, µ0) are described by the formulas similar
to (2.24), where reflection function ρ∞(µ, µ0) and escape function K(µ) are
substituted with their integrals a(µ0) and n, according to (1.6) and (2.26). As
a result, the following formulas are inferred:

F↑(0, µ0) = a(µ0) −
mnl̄K(µ0) exp(−2kτ0)

1 − l̄l exp(−2kτ0)
,

F↓(τ0, µ0) =
mn̄K(µ0) exp(−kτ0)

1 − l̄l exp(−2kτ0)
.

(2.27)

The radiation absorption within the cloud layer is determined by the radiative
flux divergence (Sect. 1.1). It is computed with the obvious equation:

R = 1 − F↑(0, µ0) − (1 − A)F↓(τ0, µ0)

= 1 − a(µ0) +
nK(µ0)m exp(−kτ0)

1 − l̄l exp(−2kτ0)

[
l̄ exp(−kτ0) −

1 − A

1 − Aa∞

]
.

(2.28)

Mention that the term “asymptotic” specifies the light regime installed within
the cloud and it does not point out any approximation. Equations (2.24), (2.27)
and (2.28) are rigorous in the diffusion domain. Their accuracy will be studied
below depending on the optical thickness.

2.2.2
The Case of the Weak True Absorption of Solar Radiation

Inclouds, theabsorption is extremelyweakcomparedwith scattering (1−ω0 <<
1) within the short-wavelength range. As has been shown in the books by
Sobolev (1972), Hulst (1980), and Minin (1988) in this case both functions
ρ∞(µ, µ0) and K(µ) and constants m, l, k are expressed with the expansions
over powers of small parameter (1 − ω0). We consider here that parameter s,
where s2 = (1 − ω0)|[3(1 − g)], is more convenient for the problem in question
than parameter (1 − ω0). Value g is a mean cosine of the scattering angle or,
here, the asymmetry parameter of Henyey-Greenstein function (1.31). Then,
these expansions over the powers of s for the constants in (2.24)–(2.28) look
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like:

k = 3(1 − g)s

[
1 + s2

(
1. 5g −

1. 2
1 + g

)]
+ O(s3) ,

m = 8s

[
1 +
(

6 − 7. 5g +
3. 6

1 + g

)
s2
]

+ O(s4) ,

l = 1 − 6q′s + 18q′2s2 + O(s3) ,

a∞ = 1 − 4s + 12q′s2 −
(

36q′ − 6g −
1. 608
1 + g

)
s3 + O(s4) ,

n = 1 − 3q′s +
(

9q′2 − 3(1 − g) −
2

1 + g

)
s2 + O(s3) .

(2.29)

For the functions in (2.24)–(2.28) the followings expansions are correct ac-
cording to books by Sobolev (1972), Minin (1988), and Yanovitskij (1997):

K(µ) = K0(µ)(1 − 3q′s) + K2(µ)s2 + O(s3) ,

a(µ) = 1 − 4K0(µ)s + a2(µ)s2 + a3(µ)s3 + O(s4) , (2.30)

ρ∞(µ, µ0) = ρ0(µ, µ0) − 4K0(µ)K0(µ0)s + ρ2(µ, µ0)s2 + ρ3(µ, µ0)s3 + O(s4) ,

where the nomination is introduced:

q′ = 2

1∫
0

K0(ζ)ζ2dζ ∼= 0. 714 .

In these expansions functions ρ0(µ, µ0) and K0(µ) are functions ρ∞(µ, µ0)
and K(µ) for the conservative scattering (ω0 = 1) correspondingly, functions
a2(µ) and K2(µ) are the coefficients by the item s2. They are presented either in
analytical or in table form (Sobolev 1972; Hulst 1980; Minin 1988; Yanovitskij
1997). Asymptotic expansions (2.29) and (2.30) have been mathematically
rigorously derived, their errors are defined by items ∼ s3 or ∼ s4 omitting in
the series.

The coefficients by items s2 and s3 in the expansion for reflection function
ρ∞(µ, µ0) have been derived in the study by Melnikova (1992) and look like:

ρ2(µ, µ0) =
a2(µ)a2(µ0)

a2
, ρ3(µ, µ0) =

a3(µ)a3(µ0)
a3

, (2.31)

where a2, a3, a2(µ) and a3(µ) are the coefficients by s2 and s3 in the series for
spherical a∞ albedo as per (2.29) and in series for plane a(µ) albedo as per
(2.30) correspondingly.

According to the book by Minin (1988), where it has been shown that it is
possible to neglect the dependence of escape function K0(µ) upon the phase
function for the conservative scattering and values 0. 65 ≤ g ≤ 0. 9, we present
the following table:
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Table 2.1. Values of escape function K0(µ) for cloud layers (0. 65 ≤ g ≤ 0. 9)

µ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

K0(µ) 1.271 1.193 1.114 1.034 0.952 0.869 0.782 0.690 0.591 0.476

The approximation for function K0(µ) with the error 3% for µ > 0.4 has
been proposed in the book by Sobolev (1972): K0(µ) = 0.5 +0.75µ. In the book
by Yanovitskij (1997) and in the paper by Dlugach and Yanovitskij (1974) the
results of escape function K(µ) have been presented for the set of values of
phase function parameter g and single scattering albedo ω0. The analysis of
these numerical results yields the following approximation for function K0(µ)
with taking into account the phase function dependence:

K0(µ) = (0.7678 + 0.0875g)µ + 0.5020 − 0.0840g . (2.32)

The correlation coefficient of the formulas is about 0.99–0.93 depending on
parameter g.

In the book by Minin (1988) it has been proposed to present the function
K2(µ) with the expression K2(µ) = n2K0(µ)w(µ), auxiliary function w(µ) is
specified with the table.

The numerical analysis in Melnikova (1992) of the table presentation of
escape function K(µ) according to the paper Dlugach and Yanovitskij (1974)
gives the analytical approximation of function K2(µ):

K2(µ) = n2K0(µ)w(µ) = 1.667n2(µ2 + 0.1) . (2.33)

This approximation after the integration with respect of variable µ yields value
n2 with an error less than 0.02%.

In the study by Yanovitskji (1995) the rigorous expression for the function
a2(µ) has been derived, and the simple approximation for a3(µ) accounting for
the formula from the book by Minin (1988) (4.55, p. 155) has been deduced
(Melnikova 1992):

a2(µ) = 3K0(µ)
[

3
1 + g

(1.271µ − 0.9) + 4q′
]

,

a3(µ) = 4K0(µ)
[
4.5g −

1.6
1 + g

− 3 − n2w(µ)
]

.

(2.34)

The integration of the expressions for functions a2(µ) and a3(µ) with respect
to µ leads to values

a2 = 12q′ +
9

1 + g
(1.271q′ − 0.9) = 12q′ + 0.007
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Table 2.2. Values of second coefficient a2(µ) of the plane albedo expansion for the semi-
infinite layer and parameter 0.75 ≤ g ≤ 0.9

µ
g 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.75 1.310 2.220 3.118 4.078 5.126 6.256 7.475 8.786 10.19 11.70 13.29
0.80 1.267 2.236 3.151 4.117 5.163 6.289 7.494 8.796 10.18 11.66 13.23
0.85 1.201 2.242 3.181 4.148 5.198 6.320 7.512 8.798 10.17 11.63 13.18
0.90 1.092 2.244 3.208 4.193 5.237 6.350 7.529 8.808 10.16 11.60 13.12

and

a3 = 36q′ − 6 g −
1.6

1 + g

that gives errors 0.04 and 0.004% correspondingly. The values of function a2(µ)
computing for four values of parameter g are presented in Table 2.2.

Surface albedo A is assumed by the formulas:

K̄0(µ) = K0(µ) + A|(1 − A) ,

K̄2(µ) = K2(µ) +
A

1 − A

[
3K0(µ)

3. 8µ − 2. 7
1 + g

+ n2

]
,

(2.35)

2.2.3
The Analytical Presentation of the Reflection Function

The following group of formulas is the approximations obtained from the
analysis of the numerical values of the reflection function. As is usually done
(Sobolev 1972; King 1983; Minin 1988; Yanovitskij 1997), let us describe the
reflection function with the above-mentioned expansion over the azimuth
angle cosine to separate the item independent of the azimuth angle:

ρ(ϕ, µ, µ0) = ρ0(µ, µ0) + 2
∞∑

m=1

ρm(µ, µ0) cos mϕ , (2.36)

where functions ρm(µ, µ0) are the harmonics of the reflection function of
order m. Superscripts specify here the number of the azimuthal harmonics. As
has been mentioned above, we are using here the phase function described by
the Henyey-Greenstein formula (1.31).

The analysis of the numerical calculations (Yanovitskij 1972; King 1983;
King 1987; Yanovitskij 1997) shows that for the accurate description of func-
tion ρ(ϕ, µ, µ0) it is enough to know the zeroth and first 6 harmonics if either
of cosines µ and µ0 are greater than 0.15 even for value g = 0.9, unfavorable
for computing accuracy. This limitation does not restrict our consideration
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Table 2.3. Linear approximation for coefficients am, bm, cm in formula (2.37) for zero, first
and second azimuthal harmonics of the reflection function

m am bm cm µlimit

0 2.051g + 0.508 − 1.420 g + 0.831 0.930g + 0.023 –
1 1.821g − 0.558 − 1.413 g + 0.387 1.150g − 0.239 0.80
2 2.227g − 0.669 − 1.564 g + 0.481 1.042g − 0.293 0.55

Table 2.4. Power approximation for the coefficients am, bm, cm in (2.37) for 3rd, 4th, 5th and
6th azimuthal harmonics of the reflection function

0.3 ≤ g ≤ 0.9
m am bm cm µlimit

3 62.00g3 − 90.28g2 + 42.42g − 6.26 − 15.24g3 + 19.70g2 − 8.73g + 1.25 2.75g2 − 2.03g + 0.39 0.50
4 105.26g3 − 155.06g2 + 72.93g − 10.76 − 30.30g3 + 43.04g2 − 19.83g + 2.89 3.70g2 − 3.20g + 0.65 0.45
5 120.63g3 − 177.60g2 + 83.48g − 12.32 − 25.84g3 + 35.15g2 − 15.61g + 2.22 3.23g2 − 2.75g + 0.55 0.35
6 144.92g3 − 202.16g2 + 90.48g − 12.85 − 32.60g3 + 43.88g2 − 19.15g + 2.67 3.90g2 − 3.41g + 0.70 0.35

because it is also necessary to use a complicated model of the spherical atmo-
sphere and to take into account the refraction of solar rays for the small cosines
of zenith solar and viewing angles. These cases are not studied here.

The values of ρm(µ, µ0) for m = 0, . . ., 6 have been analyzed in the study
by Melnikova et al. (2000). The following expression, which is similar to the
formula for the zeroth harmonic in the book by Sobolev (1972), is used for the
description of high harmonics ρm(µ, µ0):

ρm(µ, µ0) = [amµµ0 + bm(µ + µ0) + cm]|(µ + µ0) . (2.37)

This presentation provides the reciprocity of the reflection function relative to
both zenith viewing and zenith solar angles.

The approximation of coefficients am, bm and cm in the range of parameter
g 0.3 ≤ g ≤ 0.9 is presented in Tables 2.3 and 2.4.

The well-known relation of the rigorous theory (Sobolev 1972; Minin 1988;
Yanovitskij 1997) is assumed for the isotropic and conservative scattering
(g = 0, ω0 = 1), namely:

ρ0(µ, µ0) =
ϕ(µ)ϕ(µ0)
4(µ + µ0)

, (2.38)

where ϕ(µ) is Ambartsumyan’s function (Sobolev 1972). In this case the follow-
ing approximation is correct: ϕ(µ) = 1.874µ + 1.058 and it has been obtained
that a0 = 0.88, b0 = 0.47, and c0 = 0.28 (Melnikova 1992). It is known that
the reflection function for the isotropic scattering does not differ very much
from the anisotropic values of ρ0(µ, µ0) if µ, µ0 > 0.25 (Minin 1988; Melnikova
et al. 2000), so it is possible to improve this approach for the enlarged angle
ranges. The formula for the isotropic scattering (2.38) could be corrected ap-
proximately with the linear dependence upon the asymmetry parameter as
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follows (Melnikova 1992; Melnikova et al. 2000):

ρ0(µ, µ0) =
ϕ(µ)ϕ(µ0) + g[4.8µ0µ − 3.0(µ0 + µ) + 1.9]

4(µ0 + µ)
. (2.39)

In the case of the Henyey-Greenstein phase function the high harmonics are
close to zero (ρm(µ, µ0) ≈ 0, m > 0) if either of zenith angle cosines µ and µ0
are greater than µlimit. The values of µlimit distinguish for different harmonics
and they are shown in Tables 2.3 and 2.4. The approximation by (2.37) with
coefficients am, bm and cm in Tables 2.3–2.4 gives an acceptable presentation
for all the harmonics of the reflection function considered here. The errors
of this approximation have been shown to depend on the values of the zenith
solar and viewing angles cosines, on the number of the harmonic m, and on
phase function parameter g (Melnikova et al. 2000). Some details of the error
analysis will be presented in Sect. 2.4.

The presented totality of rigorous asymptotic formulas (2.24)–(2.28), ex-
pansions (2.29)–(2.31) and approximations (2.32)–(2.35) allows computing
the reflected and transmitted radiance and irradiance together with the radia-
tive flux divergence for the cloud layer if the layer properties and the geometry
of the problem are known. The considered model has to satisfy the applica-
bility ranges of the presented formulas: large optical thickness and weak true
absorption. These ranges will be analyzed in Sect. 2.4 in detail. However, it is
necessary to point out that for the application of (2.24)–(2.28) the large optical
thickness is a condition with known asymptotic functions and constants. The
using of expansions (2.29)–(2.31) needs the weak absorption condition.

We would like to mention that the approximation formula for the reflection
function, for which needs to be known the whole phase function, has also been
proposed in the study by Konovalov (1997).

2.2.4
Diffused Radiation Field Within the Cloud Layer

Radiation within the cloud layer (in the diffusion domain: τ0 − τN−1 >> 1 and
τ1 >> 1) is described with formulas different from those presented above. The
correspondent analysis could be found in Minin (1988) and Ivanov (1976).
Here we are offering the results useful for further consideration.

The diffused radiance in energetic units in the diffusion domain at optical
depth τ satisfied conditions τ >> 1, τ0 − τ >> 1 and is expressed with the
equation, derived in the book by Minin (1988)

I(τ, µ, µ0, τ0) = SK(µ0)µ0 exp(−kτ)

× i(µ) exp(k(τ0 − τ))|i(−µ)̄l exp(−k(τ0 − τ))
1 − l̄l exp(−2kτ0)

,
(2.40)

where S is the solar constant, function i(µ) characterizes the angular depen-
dence of the radiance in deep levels of the semi-infinite atmosphere. The
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behavior of function i(µ) relative to the phase function shape and absorption
in the medium has been studied in the book by Yanovitskij (1997). The expan-
sion for function i(µ) has been derived in the paper by Yanovitskij (1972) in the
case of weak true absorption, which is presented here in terms of parameter s:

i(µ) = 1 + 3sµ + 3
1 − g2 + 2P2(µ)

1 + g
s2

+
[
9(1 − 1.5g)µ +

10.8P3(µ)
(1 + g)(1 + g + g2)

+
3.6µ
1 + g

]
s3 + O(s4) .

(2.41)

Functions Pi(µ) for i = 1, 2, . . . are Legendre polynomials of power i.
The diffused irradiance in relative units of πS within the optically cloud

layer is described with the following:

F↓(µ0, τ, τ0) =
K(µ0) exp(−2kτ0)

1 − l̄l exp(−2kτ0)
[i↓ exp(k(τ0 − τ)) − i↑ l̄ exp(−k(τ0 − τ))] ,

F↑(µ0, τ, τ0) =
K(µ0) exp(−kτ0)

1 − l̄l exp(−2kτ0)
[i↑ exp(k(τ0 − τ)) − i↓ l̄ exp(−k(τ0 − τ))] ,

(2.42)

where

i↓ = 2

1∫
0

i(µ)µdµ , i↑ = 2

1∫
0

i(−µ)µdµ .

Expansions for values i↓ and i↑ have been derived in the book by Minin (1988)
after integrating (2.41):

i↓↑ = 1 ± 2s + 3s2
1.5 − g2

1 + g
± 3s3

[
2 − 3g +

0.8
1 + g

]
+ O(s4) . (2.43)

It is also convenient to describe the internal radiation field with the values
of internal albedo b(τi) = F↑(τi)|F↓(τi) and net flux F(τi) = F↓(τi) − F↑(τi),
according to Minin (1988) and Ivanov (1976)

F(τ, µ0) = F↓(τ, µ0) − F↑(τ, µ0) =
4sK(µ0) exp(−kτ)
1 − l̄l exp(−2kτ0)

[1 + l̄ exp(−k(τ0 − τ))]

F↑(τ, µ0)
F↓(τ, µ0)

= b(τ) =
b∞ − l̄ exp(−2k(τ0 − τ))
1 − b∞ l̄ exp(−2k(τ0 − τ))

.

(2.44)

Value b∞ and function b(τ) are called the internal albedo of the infinite atmo-
sphere and the internal albedo of the atmosphere of the large optical thickness
correspondingly, moreover b∞ = 1 − 4s + s2 and the values of function b(τ)
could be obtained from the observations or from the calculations of the semi-
spherical irradiances at level τ.
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2.2.5
The Case of the Conservative Scattering

In the absence of the true absorption, according to the definition, we have
ω0 = 1 and the expressions for the radiative characteristics are particularly
simple (Sobolev 1972; Minin 1988).

For the reflection and diffusion functions:

ρ(0, µ, µ0, ϕ) = ρ0(µ, µ0, ϕ) −
4K0(µ0)K0(µ)

3
[
(1 − g)τ0 + δ + 4A

3(1−A)

] ,

σ(τ0, µ, µ0) =
4K0(µ0)K̄0(µ)

3
[
(1 − g)τ0 + δ + 4A

3(1−A)

] ;

(2.45)

for the semispherical fluxes in relative units of πS

F↑(0, µ0) = 1 −
4K0(µ0)

3
[
(1 − g)τ0 + δ + 4A

3(1−A)

] ,

F↓(τ0, µ0) =
4K0(µ0)

3(1 − A)
[
(1 − g)τ0 + δ + 4A

3(1−A)

] ,

(2.46)

and, finally, the simple expression for the net flux that summarizes both equa-
tions (2.46) is feasible at any level in the conservative medium because the net
flux is constant without absorption (Minin 1988)

F(τ, µ0) =
4K0(µ0)(1 − A)

3(1 − A)[(1 − g)τ0 + δ] + 4A
. (2.47)

It should be emphasized that equality F↑(τ, µ0) = F↓(τ, µ0) = K0(µ0) is correct
in the semi-infinite conservatively scattered atmosphere with a thick optical
depth, where the sense of escape function K0(µ) frequently met in our consid-
eration is clear from. The case of the conservative scattering becomes true in
a certain cloud layer at the single wavelengths within the visual spectral range.
Equations (2.45)–(2.47) are correct in the wider interval of the optical depth
(τ0 ≥ 3) than (2.24), (2.26), (2.28) derived with taking into account the absorp-
tion. Corresponding relations of the characteristics of the inner radiation field
are written as:

For the radiance:

I(τ, µ) =
Sµ0K0(µ0){(1 − A)[3(1 − g)(τ0 − τ) + 1.5δ + 3µ] + 4A}

(1 − A)[3(1 − g)τ0 + 3δ] + 4A
, (2.48)
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for the upward and downward semispherical solar fluxes:

F↑(τ, µ0) = K0(µ0)
(1 − A)[3(1 − g)(τ0 − τ) + 1.5δ − 2] + 4A

(1 − A)[3(1 − g)τ0 + 3δ] + 4A

F↓(τ, µ0) = K0(µ0)
(1 − A)[3(1 − g)(τ0 − τ) + 1.5δ + 2] + 4A

(1 − A)[3(1 − g)τ0 + 3δ] + 4A
.

(2.49)

It is possible to apply the formulas of the radiative characteristics in the case of
conservative scattering for a rough estimation even for very weak absorption
but the computational errors increase fast when the absorption grows and it is
necessary to use the equations for the absorption medium to reach a certain
accuracy.

2.2.6
Case of the Cloud Layer of an Arbitrary Optical Thickness

The optical thickness of certain cloud layers is not sufficient in some cases
for making use of the above-presented equations and their application leads
to significant errors and it causes the necessity of different approaches. We
would like to mention the two-flux Eddington and delta-Eddington methods
among all analytical approaches (Josef et al. 1980). These methods are no-
table for the simple expressions and they provide sufficient accuracy of the
calculations, however, they are approximations. In addition, they are awkward
enough and hence, are not convenient for the inverse problem transforming.
A mathematically rigorous method has been developed for the calculation of
the irradiances at the boundaries of the layer of arbitrary optical thickness in
Yanovitskij (1991,1997) and Dlugach and Yanovitskij (1983). The restrictions
to the true absorption are more rigorous than above and the optical thickness
is accepted in the range 0.1 < τ0 < 5.0 The irradiance outgoing from the layer
is described with the following:

F↑ = 1 − f [u(µ, τ0) ch kτ0 − v(µ, τ0)] ,

F↓ = f [u(µ, τ0) − v(µ, τ0) ch kτ0] ,

f =
4s

sh kτ0
.

(2.50)

Functions sh kτ0 and ch kτ0 specify the hyperbolic sine and cosine, functions
u(µ0, τ0) and v(µ0, τ0) are defined in several studies (Dlugach and Yanovitskij
1983; Yanovitskij 1991, 1997) and they are similar to the escape function.
Here we are not adducing these definitions. It should be emphasized only that
they depend on the optical thickness as well. Besides, these functions depend
inexplicitly on the phase function. The tables containing the values of functions
u(µ0, τ0) and v(µ0, τ0) for the wide set of the arguments and several values of
phase function parameter g have been calculated and presented in Yanovitskij
(1991) and Dlugach and Yanovitskij (1983)
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According to Yanovitskij (1991, 1997) and Dlugach and Yanovitskij (1983)
functions p(τ0) and q(τ0) have been specified for accounting the surface reflec-
tion

p(τ0) = 2

1∫
0

u(µ, τ0)µdµ , q(τ0) = 2

1∫
0

v(µ, τ0)µdµ , (2.51)

moreover, relation p(τ0) + q(τ0) = 1 is correct for these functions. The irradi-
ances outgoing from the layer at the boundaries with the reflecting surface at
the bottom are described as

F̄↑(µ0, τ0) = 1 − f
{
[u(µ0, τ0) ch kτ0 − v(µ0, τ0)] + AF̄↓[p(chkτ0 + 1) − 1]

}
,

F̄↓(µ0, τ0) = f [u(µ0, τ0) − v(µ0, τ0) chkτ0]|
{
(1 − A) + Af [p(ch kτ0 + 1) − 1]

}
.

(2.52)

The above-presented expressions may be useful for computing the solar ir-
radiances in the case of lower optical thickness (cirrus clouds or cloudless
atmosphere with a heavy gaze).

2.3
Calculation of Solar Irradiance and Radiance in the Case
of the Multilayer Cloudiness

The radiation field in the multilayer cloudiness was considered in many studies
(e. g. Sobolev 1974; Germogenova and Konovalov 1974; Ivanov 1976). Applying
the approaches developed in these studies, numerical difficulties arise connect-
ing with the necessity of accounting the total interrelation of all layers. While
solving the inverse problems, these difficulties are intensifying. However, it is
possible to neglect the whole totality of the interrelations and consider every
layer independently with taking into account the approximate influence of the
neighbor layers in real problems concerning cloud layers of rather large opti-
cal thickness. Just such an approach was elaborated in a study (Melnikova and
Minin 1977) for computing the downwelling and upwelling solar irradiances
in the vertically heterogeneous medium consisting of two optically thick lay-
ers with different optical properties. It has been assumed that the irradiance
transmitted by the upper layer accepted as an incident flux for the lower layer.
The influence of the lower layer on the upper radiation field is determined
by its spherical albedo, i. e. the lower layer is accepted as a reflecting surface
for the upper layer. That is to say, the angle distribution of diffused radiation
incoming from the bottom to the upper layer and from the top to the lower
layer is accounted for approximately. The test of the approach has indicated
the relative error of such approximation to be less than 1%.

Let the total optical thickness of the system of N cloud layers be τ0 = Στi >> 1,
where τi is the optical thickness of i-th sublayer. The single scattering albedo
of the i-th sublayer is ω0i, moreover the true absorption is weak compared
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to the scattering, 1 − ω0i << 1. The volume extinction coefficient is specified
as εi, the absorption coefficient of the i-th layer is κi = εi(1 − ω0i), and the
scattering coefficient is αi = εiω0i. We are neglecting the radiation scattering
in the optically thin clear atmosphere between the cloud layers and in the
underlying clear layer and assuming that the lower layer adjoins the ground
surface with albedo A.

Remember that the diffused irradiances outgoing from the optically thick
layer are described in relative units πS by (2.27). The albedo for the upper layer
is accepted as the value of the spherical albedo of the second layer (counting
from above):

A1 = a∞
2 −

n2
2m2 l̄2 exp(−2k2τ2)

1 − l2 l̄2exp(−2k2τ2)
.

Value a∞
2 specifies the spherical albedo of the infinite atmosphere with proper-

ties of the second layer: a∞
2 = 1 − 4s2 + 6δs22. The subscripts indicate for which

layer the values are calculated. In the system of N layers the escape function
K(µ0) of the layer with number i > 1 is replaced with the integral of the function
with respect to the value µ0 (with value ni) and multiplied by the irradiance
transmitted by the upper layer niF↓(τi−1). The following specifications have
been accepted in the study by Melnikova and Zhanabaeva (1996):

f̄σ(τi) =
mi exp(−kiτi)

1 − lil̄i exp(−kiτi)
,

f̄ρ(τi) = li e−kiτi f̄σ(τi) =
mil̄i exp(−2kiτi)

1 − lil̄i exp(−2kiτi)
,

n̄i =
ni

1 − Aia∞
i

.

(2.53)

Finally the expressions of the diffused irradiances at its boundaries are derived
for the layer with number k > 1:

F↓
k =

K(µ0)
n1

k∏
i=1

n̄inif̄σ(τi) = F↓
k−1n̄knkf̄σ(τk) ,

F↑
k = [a∞

k − n2
kf̄ρ(τk)]F↓

k−1 .

(2.54)

and

Ai = a∞
i+1 − Qi+1fρ(τi+1) .

The formulas for computing the solar diffused radiance are derived as above by
substituting the product that described diffused radiation incoming to layer:
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niσi−1(τi−1, µ0, µ). The expressions for the radiance are obtained as:

σk =
K1(µ0)

n1

k∏
i=1

K̄i(µ)nif̄σ(τi) = σk−1K̄k(η)nkf̄σ(τk) ,

ρk = [ak(µ) − Kk(µ)nkf̄ρ(τk)]σk−1 .

(2.55)

The subscripts in these expressions are related to the layer with the correspon-
dent number and optical parameters gi, ω0i and τi. If there is a conservative
scattering in the layer with number i, escape function K(µ) converts to func-
tion K0(µ), values ni and a∞

i are equal to unity, n̄i accepts value 1|(1 − Ai) and
functions fρ(τi) and fσ(τi), defining the dependence upon the optical thickness
are expressed with the formula:

f̄ρ(τi) = f̄σ(τi) =
4(1 − Ai)

(1 − Ai)[3(1 − gi)τi + 3q′] + 4Ai
. (2.56)

For the case of the layers of the arbitrary optical thickness, (2.52) is used for
the derivation of the expressions for multilayer clouds analogous to the thick
layers. The formulas for the irradiances for the upper layer coincide with (2.52).
The irradiances for the lower layers are expressed with:

F↑
i = F↓

i−1Āi = F↓
i−1

[
Ai +

Ai+1V2
i

1 − Ai+1Ai

]
,

F↓
i = F↓

i−1V̄i = F↓
i−1

Vi

1 − Ai+1Ai
,

(2.57)

where values Ai and Vi are computed with the relations:

Ai = 2

1∫
0

F↑
i µdµ = 1 − fi[p(τi)(ch kτi + 1) − 1] ,

Vi = fi[p(τi)(ch kτi + 1) − ch kτi] .

(2.58)

2.4
Uncertainties and Applicability Ranges of the Asymptotic Formulas

The asymptotic formulas of the transfer theory presented in this chapter are
obtained rigorously. It is necessary to take into consideration that they are
describing the radiation field within the boundaries and at them the more
exact, the bigger the optical thickness is and the less true absorption is. In
addition, there is a strong relationship between the accuracy and the degree
of the scattering anisotropy (the extension of the phase function forward or
the magnitude of parameter g). Certain mathematical aspects concerning the
estimation of the applicability ranges for the asymptotic formulas of reflection
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Fig.2.2a,b. The applicability ranges of the asymptotic formulas of radiative transfer theory
in the case of calculation reflected irradiance (a) and radiative flux divergence (b) for the
cloudy layer. Curves correspond to the relative uncertainty equal to 5%. The solid curve is
for phase function parameter g = 0.5; dashed line – g = 0.75 and the dashed dotted line –
g = 0.9; curves with circles correspond to µ = 1, with crosses – to µ = 0. 5

and transmission functions ρ(µ, µ0, τ0) and σ(µ, µ0, τ0) were analyzed in stud-
ies by Konovalov (1974,1975). The accuracy of the formulas for ρ(µ, µ0, τ0) and
σ(µ, µ0, τ0) has turned out roughly equal to each other. The uncertainties of the
formulas for reflected and transmitted radiation are about 2% beginning from
optical thickness τ0 ≥ 4|(1 − k). The numerical analysis of the formulas of the
spherical albedo and transmittance (the values of reflected and transmitted
irradiances integrated with respect to the cosine of the solar zenith angle) for
the wide set of parameters has been accomplished in the study by Harshvard-
han and King (1986). It has been shown there that their uncertainty does not
exceed 5% by values τ ≥ 2.0 and ω0 ≥ 0.7.

Theaccuracyof the formulas for irradianceswas tested toprovide therelative
errors less than 5% in the region plotted in coordinates “τ − ω0” in Fig. 2.2
(Demyanikov and Melnikova 1986). The curves in Fig. 2.2a,b correspond to the
level of 5% error of the reflected irradiance (a) and radiative flux divergence (b)
calculated for asymmetry parameters g = 0.5, 0.75 and 0.9 and for two values
of cosine µ0 = 1 and 0.5. The result for the transmitted irradiance is similar to
the result shown in Fig. 2.2 for the reflected irradiance.

The numerical analysis of the accuracy of the radiance calculation in the
optically thick layer has been accomplished in the book by Yanovitskij (1997).
According to this book the applicability region of the radiance (τ > 15; ω0 >
0.99) is more strongly restricted than of the irradiance (τ > 7; ω0 > 0. 9),
which in their turn is narrower than for the integral over the zenith angle
characteristics (τ > 2; ω0 > 0. 8).

The accuracy of asymptotic expansions (2.29) and (2.30) is defined by the
omitted items proportional to s3 or s4. The accuracy of the approximations
was tested by comparison with the function values computed by the numeri-
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Table 2.5. Uncertainty of the calculation of escape function K(µ), %

ω0 0.999 0.995 0.990 0.980
g 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.75 0.9
s 0.02580 0.05774 0.05774 0.12910 0.08165 0.18257 0.11550 0.16330 0.25820

µ = 0.1 0.1 0.2 0.4 1.0 0.5 2.0 10 33 127
µ = 0.5 0.1 0.4 0.1 2.0 0.1 4.0 6.0 29 79
µ = 0.7 0.3 0.5 0.3 0.8 0.4 3.0 5.0 25 64
µ = 1.0 0.2 0.6 0.6 2.0 1.0 4.0 2.5 12 45

Table 2.6. Uncertainty of the calculation of reflection function ρ∞(µ, µ) of the semispherical
layer

ω0 0.999 0.995 0.990
g 0.5 0.9 0.5 0.9 0.5 0.9
s 0.02580 0.05774 0.05774 0.12910 0.08165 0.18257

µ = 0.1 0.2 0.6 0.2 1.0 0.3 2.6
µ = 0.5 0.2 0.3 0.4 1.0 1.0 3.0
µ = 1.0 0.2 0.3 0.5 1.0 0.7 3.0

cal methods and presented in Yanovitskij (1997) and Dlugach and Yanovitskij
(1974).The relativeuncertaintiesof theescape functioncomputedwithapprox-
imations (2.31) are presented in Table 2.5. It has been found that uncertainties
are rather small as far as ω0 = 0.98 for magnitudes g = 0.5 and µ > 0.2.
Table 2.5 illustrates that the errors of the escape function calculation do not
exceed 6% for value s < 0.12.

Comparison of the results of the reflection function ρ∞(µ, µ0) calculation
accounting for coefficients ρ2(µ, µ0) and ρ3(µ, µ0) of expansion (2.30) with the
numerical computing results of studies by Yanovitskij (1997) and Dlugach and
Yanovitskij (1974) yields the errors shown in Table 2.6. Equation (2.31) for
functions ρ2(µ, µ0) and ρ3(µ, µ0) allow the computing of corresponding values
with a rather small error as far as ω0 = 0.9. Therefore, it is possible to calculate
the solar radiance reflected from the cloud layer in the shortwave spectral
range with the analytical formulas, and this fact is useful for the interpretation
of the satellite radiation data.

The accuracy of the formulas in the case of an arbitrary optical thickness
has been tested by comparison with the results of the numerical calculations
using the following methods: double and adding method, delta-Eddington
method and Monte-Carlo method. A wide set of parameters has been analyzed:
τ0 = 0.1−5.0; ω0 = 0.99−0.9999 and g = 0.25−0.75 (Melnikova and Solovjeva
2000). The results of all four methods have turned out to coincide with the
variations from 0.1 to 5% independent of the magnitudes of τ0, ω0 and g.
Thus, it can be thought that all tested magnitudes of the parameters are in the
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applicability region of the formulas derived in the work of Yanovitskij (1991)
and Dlugach and Yanovitskij (1983). For the weakly extended phase function
(g ≤ 0.5) calculations, the errors are not exceeding 1%.

The accuracy of the calculations of the radiative characteristics with (2.53)–
(2.56) for multilayer cloudiness has been tested for the following cases: τi =
5, 7, 10; gi = 0.65, 0.75, 0.85 and ω0i = 0.99, 0.995, 0.999 by comparison with
the values calculated with the doubling and adding method. Equations (2.53)–
(2.56) for the irradiance and radiance are accurate for all values of ω0i and gi
when τi ≥ 7, the errors are less than 1–2%, and when τi ∼ 5 the error reaches
10% (Melnikova and Zhanabaeva 1996).

2.5
Conclusion

Specific features of two methods are considered in Chap. 2: the first is the
Monte-Carlo method, one of the most widely used numerical methods for the
calculation of radiative characteristics; the other is a method of asymptotic
formulas from transfer theory applied to the calculation of radiative charac-
teristics in the case of the overcast sky.

The Monte-Carlo method allows for all features of the interaction of radi-
ation with the atmosphere and surface with high accuracy that makes it in-
dispensable for the standard calculations of the radiative characteristics of the
atmosphere. Besides, the Monte-Carlo method makes possible the simulation
of the processes of the real radiation measurements, which is especially impor-
tant for problems of observational data interpretation (Fomin et al. 1994). This
is the main reason for the application of the method in our analysis of airborne
observational data of the solar irradiances that will be considered in Chaps. 3–
5. Finally, we would like to mention that the Monte-Carlo method is rather
simple and flexible, which allows easy realization of computing algorithms on
PC and the application of these to different problems of the theory of radiative
transfer. Further dissemination of the method could be expected in the near
future taking into account the appearance of modern computer systems with
the ability to perform parallel calculations (Sushkevitch et al. 2002). The main
and rather serious disadvantage of this method is the random error contained
in its results (i. e. the method is a full analog of the observations). An increase
in computing time and modern computing systems can lead to a decrease in
this error.

The approach for the calculation of the reflection function of the semi-
infinite atmosphere with the analytical formulas is proposed for the Henyey-
Greenstein phase function. We would like to point out that on the one hand the
phase function for real clouds could be more complicated than the Henyey-
Greenstein formula. However, on the other hand Raleigh scattering together
with the influence of multiple scattering could turn out to be rather significant
and smooth the shape of the real cloud phase function. Thus, the proposed
approach can provide less computational error for the real cloudiness than
is to be expected according to the theory. We would like to stress that the
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analytical method is especially convenient for inverse problem solving namely
for the retrieval of optical parameters from the solar radiance and irradiance
observations. Analytical formulas presented here will be used later to derive
the correspondent inverse formulas, and to express the optical parameters of
cloud layers through the measured values of the solar radiance and irradiance
(Chap. 6).
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CHAPTER 3

Spectral Measurements of Solar Irradiance
and Radiance in Clear and Cloudy Atmospheres

Certain information concerning the instruments and methodologies of the
experimental study together with some results of the observations of solar ra-
diative characteristics in the atmosphere is presented in this chapter. The data
of detached radiative spectral airborne measurements obtained in the Labo-
ratory for the Shortwave Radiation of Atmospheric Department of Physics of
the Institute of Leningrad (now St. Petersburg) State University are considered
here as well.

Ground-based, airborne and ship observations of spectral solar radiances
and irradiances have been accomplished during more than 20 years (1970–
1990) under the guidance of Kirill Ya Kondratyev, Vladimir S Grishechkin and
Oleg B Vasilyev. The results of these observations and their interpretation were
described in numerous articles, annals and books (Kondratyev et al. 1972,
1973, 1974, 1975, 1976, 1978, 1987, 1987, 1990; Berlyand et al. 1974; Chapurskiy
and Chernenko 1975; Chapurskiy et al. 1975; Kondratyev and Ter-Markaryants
1976; Vasilyev O et al. 1982, 1987, 1995; Grishechkin and Melnikova 1989;
Grishechkin et al. 1989; Vasilyev A et al. 1994, 1997a, 1997b, 1997c). The review
of all or even of part of these results would be too bulky so here we are dwelling
on the results of the airborne radiance and irradiance measurements carried
out during 1983–1988, which have been processed recently and have not yet
published. We would like to mention that the airborne observations of solar
radiances and irradiances, which are aimed at studying atmospheric energetics
and the reflectance of surfaces, have been carried out rather intensively before
the middle of the 80-th in Russia (Kondratyev et al. 1972, 1973; Kondratyev
and Ter-Markaryants 1976). Later the interest in them decreased which is
bound up with the accumulation of a significant volume of data, the wide
development of satellite observations, and with well-known economic reasons
as well. However, single experiments including the airborne ones have still
been accomplished (Skuratov et al. 1999).

3.1
Complex of Instruments for Spectral Measurements
of Solar Irradiance and Radiance

The measuring complex of the instruments was created at the beginning of
the 80-th in St. Petersburg University and regretfully is not used nowadays.
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Therefore, together with the modern level of optical instrument making, the
features of the old measuring complex are not of great interest nowadays.
However, the methodological experience of many-years exploitation of the
measuring complex on board aircraft has not lost its actuality. Thus, we will
concentrate on it.

By the beginning of the 1980th, instruments for radiation observations were
united in a complex: an information-measuring system (Vasilyev O et al. 1987).
The measuring part of the complex was provided with the K-3 spectrometer
(Mikhailov and Voitov 1969). It was a diffractive mirror spectrometer with
a grating of 600 lines per mm as a dispersing element. The operating spec-
tral range of the instrument was 330–978 nm, registration time of the single
spectrum was 7 s and the spectral scanning was a mechanical one. The spec-
trometer had three overlapped operating ranges: the ultraviolet (UV), visual
(VD) and near infrared (NIR), with corresponding photomultipliers used as
a light receiver. The digital output signal was recorded to the magnetic tape
using an ordinary tape-recorder. It allowed the carrying out of all consequent
processing of the information on computer.

The spectral graduation, i. e. the determination of wavelengths λ′
i, attributed

to the discrete points with numbers i, which are defined by the time moments
in the process of mechanical scanning, was accomplished in the laboratory by
measuring of the mercury lamp spectrum and by identification of the known
spectral lines of the atmospheric gases at the output recording. The oxygen
band at 760 nm in the spectrum of diffused radiation of the sky was also used
for the graduation in the NIR range. As the mechanical scanning led to the
displacement of the registration points, graduating values λ′

i were determined
with a rather large uncertainty (both random and systematic). This uncertainty
was equated to the root-mean-square (RMS) deviation of the same series of
measurements of the mercury lamp spectrum and was equal to 1 nm.

The spectral instrumental function of K-3 spectrometer fλ(λ) (look at
Sect. 1.1) has been presented in the study by Vasilyev O et al. (1987). This
function has been obtained in the laboratory through the registration of laser
line (in visual range) and can be approximated by the triangle function with
halfwidth ∆λ equal to 3 nm, namely:

fλ(λ) = 1 −

∣∣∣∣2λ − λ′
i

∆λ

∣∣∣∣ , (3.1)

where ∆λ = 3 nm. It is obvious, that the mentioned graduating uncertainty
influences halfwidth ∆λ according to the conditions of the signal registration.
The accuracy of approximation fλ(λ) by the triangle function is about 1%. It
is important to mention that the measured value of the signal varies weakly
with wavelength change within the majority of the spectral range of the K-3
instrument, so it is possible not to take into account the instrumental function
and the uncertainties of the graduation for halfwidth ∆λ = 3 nm as has been
mentioned in Sect. 1.1. The exception is the comparatively narrow and deep
band of oxygen absorption 760 nm together with some deep Fraunhofer lines
of the solar spectrum in the UV region (Fig. 1.3). Therefore, the attention
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Fig.3.1. Deviation of real instrumental function f ∗
Ω(ϑ, ϕ) of the opaque-skinned integrator

of light conductor from the theoretical cosine dependence

granted to the instrumental function of the K-3 instrument was not enough
at those times. Regretfully, this lack of information makes the application of
modern complex approaches difficult for interpretation of the observational
results considered here.

The first concern of the accomplished airborne observations was to study
the spectral reflectance properties of natural surfaces. For this purpose the
upwelling radiance and downwelling irradiances were measured. Another
concern was the elucidation of the radiative regime of the atmosphere from
measurements of the upwelling and downwelling solar irradiances in different
atmospheric layers. All mentioned observations were accomplished on board
the IL-14 aircraft.

AK-3 spectrometerfixedonaspecial rotationdevicewas set to thehatch, and
allowed registration of nadir angles in the range 0−45◦ (the angle is counted
off the vertical to the airplane flight direction). The varying of the viewing
angle azimuth was reached with the change of flight direction, the azimuth
scale was set as follows: 0◦ was the direction to the Sun, 180◦ was the direction
opposite to the Sun. The instrument angle of view was 2◦ during the radiance
registration.

For airborne observations of the upwelling and downwelling irradiances,
a special light conductor was used. There was a metallic tube passing through
the aircraft fuselage and provided with the device allowing the directing of the
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measured upward or downward light fluxes to the instrument receiver. The
ends of the light conductor jutting out from the fuselage for 30 cm were pro-
vided with opaque-skinned integrators (over all directions of the hemisphere)
made of opal glass MS-23. The edges of glasses were specially manufactured
to provide cosine dependence (Sect. 1.1). Figure 3.1 demonstrates the relative
deviation curve of the real light conductor instrumental function f ∗

Ω(ϑ, ϕ) from
the desired cosine dependence obtained in the laboratory. As the direct radi-
ation provides the essential part of the total flux under clear sky conditions,
Fig. 3.1 illustrates that the systematic uncertainty of the downwelling irradi-
ance measurements does not exceed 2% for solar zenith angles less than 50◦,
but for higher angles the uncertainty are increasing. These uncertainties were
taken into account either during the observations or during the data processing
accomplished over two stages.

The first stage of processing of the observational results is called an initial
processing and obtained the radiance and irradiance spectra on the basis of
the output signal of the instrument. During the initial processing, the begin-
ning point of the spectrum λ′

1 was defined through the logical search of the
special benchmark (i. e. the square pulse formed by the mechanical system of
scanning). The first point after the benchmark was assumed as a spectrum
beginning point. Then the background (the value of the dark current) was
defined by the mean value of the signal at several points after the benchmark.
This value was subtracted from the signal magnitude at every wavelength. Note
that the constancy of the background was ascertained during the repeated lab-
oratory measurements. Further, the joining of the spectrum parts (UV, VD,
NIR) was accomplished by excluding the overlap regions while making use of
the known numbers of points at the beginning and at the end of every part.
As graduating scales λ′

i of different samples of the instrument varied, it was
necessary to carry out the linear interpolation over the spectrum from the
initial scale λ′

i to the united scale λi to pool the data. In the capacity of the
united scale the following set of wavelengths was chosen: 330–410 nm with the
step 1 nm and 412–978 nm with the step 2 nm (365 points in whole), moreover
the joining regions were 410–412 nm (the end of UV and the beginning of the
VD regions) and 698–700 nm (the end of the VD and the beginning of the NIR
regions).

The transformation of the obtained spectrum to energetic units:
mW cm−2 µm−1 for the irradiance and mW cm−2 µm−1 sterad−1 for the radi-
ance was the concluding step of the initial processing. The calibration was
conducted in the laboratory by measuring the signal from the standard lamp
SI-8 (Kondratyev et al. 1973a, 1974), whose spectrum was known in energetic
units. The special source of the high level stabilization of the electric current
and voltage was used for the lamp supply. During the calibration of the in-
strument, the registration of the lamp SI-8 irradiance was carrying out using
the light conductor. The calibration result was the ratio of the calculated lamp
energy (incoming to the instrument input slit) to the output signal of the in-
strument. This ratio was the factor, by which the output signal was multiplied
during the measurements (look at the theoretical normalizing of the instru-
mental functions in Sect. 1.1). The accuracy of the calibration was defined
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through the accuracy of the lamp SI-8 signal measurements. It was 15% in the
UV and 10% in the VD and NIR spectral regions.

To control the stability of the instrument sensitivity during the observation
the special internal standard was installed inside the instrument – an incan-
descent bulb with a stabilized supply. During the observation, the internal
standard spectra were monitored (about every 5 min). To correct the possible
deviations of the sensitivity, these spectra were compared with the average in-
strument spectrum, which had been registered during the calibration. For this
purpose, after every internal standard spectrum registration the mean ratio of
this spectrum to the average instrument spectrum was obtained over the spe-
cially chosen intervals (each interval contained 10 wavelengths) within every
spectral region of the instrument (UV, VD, NIR) to provide three correcting fac-
tors. Further, all measured spectra of the solar irradiances or radiances, which
followed this internal standard spectrum, were divided by these correcting
factors.

The external standard spectra similar to the internal ones (the spectra of
the incandescent bulb installed outside of the instrument) were registered to
correct for a factor of the transparency variations of the opal glass (due to
contamination) during the measurement process together with the difference
of the transparencies of the upper (for downward radiation) and lower (for
upward radiation) opal glasses. During the airborne observational process,
the recordings of the external standard through the opal glasses of the light
conductor were being accomplished on board of a landed aircraft. Analogously
to the above-considered procedure of obtaining the correcting factors, the
curve to correct for a factor of the transparency variations was plotted from
the ratio of the external standard spectra to the SI-8 lamp spectrum, registered
through the light conductor.

The computer code of the initial processing, whose last version was realized
on PC, allowed the fulfilling of all initial procedures (including the graduation
and calibration) in an interactive regime, with different levels of researcher
interference to the process: from step-by-step control to an automatic regime
directly outputting the desired spectra (Vasilyev O et al. 1995).

Nowadays all the obtained spectra forms a computer database of the Air-
borne Spectral Radiative Observations (ASRO product) containing the obser-
vational results since autumn 1983 and including about 30,000 spectra. Every
spectral file contains all necessary information concerning the observational
process (date and time of the registration, altitude of flight, solar zenith angle,
geographical coordinates, etc.) essentially simplifying and accelerating further
data processing. This database is also provided with a flexible interface, allow-
ing different procedures either with a separate spectrum or with groups of
spectra, e. g. table output, the examination of plots, interactive regime correc-
tion, arithmetic operations with spectra (addition, subtraction, multiplying,
division), smoothing, approximation with polynomial, elementary statistics
(computing the mean value and the variance), etc.

Additional secondary processing of the obtained radiances and irradiances
is necessary for determining the spectral reflectance characteristics of the sur-
faces and the values of radiative flux divergence in the atmospheric layers,
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which the observations were accomplished for. The specific features of sec-
ondary processing are defined by concrete methodologies of the observations
and result production. These points will be considered further. Now we will
continue discussing the common features of the observations and estimate the
uncertainties of the results, extremely important for further interpretation.

The random error of the measurements with the K-3 instrument was es-
timated in the laboratory over the spectra series registered from the lamp
SI-8 and was equal to 5% of the standard deviation in the UV, and to 1% in
the VD and NIR regions (this uncertainty is not to be taken for a systematic
uncertainty of the calibration, considered above). However, the real random
uncertainty of the airborne observations was significantly higher because flight
conditions influence the measurement results too. Certainly, the accuracy of
the instrument on board was increasingly worse than the accuracy of the same
instrument in the laboratory. The deviation of the receiving surface of the opal
glasses from the horizontal plane, the deviations of the instrument optical axis
from the fixed direction during the radiance registration, the unevenness of the
ground surface illumination and heterogeneity were the additional “airborne”
factors worsening the observation accuracy.

The aircraft lengthwise axis was disposed not horizontally but at a certain
angle even during the constant flight altitude. This angle is called a pitch and
it defines the slope of the light conductor. For compensation of the influence
of the pitch, the light conductor was put at a specially chosen angle with
a vertical direction but the influence couldn’t be excluded completely because
the pitch depended on the aircraft charging changing during the flight due
to fuel depletion. As has been mentioned above direct radiation is the main
part of the solar downwelling irradiance in a clear sky. The pitch influence on
the accounting of direct radiation in the measured irradiance was obviously
owing to the deviation of the angle of the solar beam incoming to the light
conductor glass from the solar incident angle. As follows from the elementary
geometrical consideration, this deviation would be maximum for the flight
azimuth 0 and 180◦, and minimum for 90 and 270◦. Thus, the observations
were mostly accomplished for the flight azimuth 90 and 270◦.

It is easy to estimate the systematic uncertainty of the downwelling irradi-
ance caused by the pitch, fixing the atmospheric model and using Beer’s law
(1.42). We would like to mention that this uncertainty is higher if the Sun is
lower and the upper atmosphere is optically thinner, i. e. if the flight altitude is
higher and the wavelength is longer (1.25)1. It is not complicated to estimate
this uncertainty experimentally conducting the observations at different az-
imuth angles. Both estimations have given similar results: the uncertainty is
less than 1% for the observations under azimuth angles 90 and 270◦ and in-
creases up to 5% in the UV and VD and up to 10% in the NIR spectral regions.
These values increase up to 10 and 15% for a solar zenith angle exceeding 60◦.

Aircraft flight conditions called “bumps” appear owing to atmospheric tur-
bulence. All parameters of the flight – altitude, pitch angle, roll angle (the angle

1Remember that the optical thickness of molecular scatteringvaries inverselywith λ4 as per Rayleigh
law
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between the aircraft transverse axis and the horizon) and the yawing angle (the
angle between the aircraft lengthwise axis and the horizon) – randomly vary
under the bumps conditions. These random variations lead to corresponding
variations of the observation geometric parameters yielding the additional
random error. The bumps influence mostly the roll angle, its variations can
reach 10◦. Moreover, the bumps become significant during a flight below a cer-
tain altitude. The experience of the IL-14 aircraft flights has shown that this
altitude is 300 m for a flight above a water surface and 500 m for a flight above
other surfaces. The experiments described here have been accomplished under
conditions of weak bumps (according to the aircraft classification).

An analysis analogous to the above-mentioned one indicates that the in-
fluence of the roll variations on the observational accuracy is maximum just
for the flight azimuths 90 and 270◦ that leads to similar estimations of the
uncertainty (not systematic uncertainty but the random one).

It is evident that it is possible to neglect the influences of the pitch and
bumps during the measurement of the upwelling irradiance because there is no
principal direction of the upward radiation. The case of observations above the
water surfaces with the mirror reflection could be a certain exclusion, however
the maximum peak of the mirror reflection will be shown to turn out (Sect. 3.4)
rather “smearing” due to the ripple. Hence, this peak weakly influences the
upwelling irradiance when the opal glass slightly deviates from the horizon.
The random variations of the pitch, roll and yawing angles lead to the random
variationsof theviewingangleduring theradianceobservations.However,with
taking into account the weak dependence of the surface reflection properties
upon theviewingangle it ispossible toneglect the correspondinguncertainties.
In some cases, the maximum peak of the mirror reflection could cause the
uncertainty to increase. We should point out that all the above-considered
uncertainties could be neglected under overcast conditions because there is no
direct solar radiation in this case.

The influence of the illumination unevenness together with the ground
surface heterogeneity links with the time interval of the spectrum registration
(7 s). While the observations were made, the aircraft was flying at about 400 m
and appearing above the other surface areas. It is obvious that in a clear
atmosphere, the illumination unevenness of the upper opal glass and of the
ground surface is negligible at such a distance. However, while flying below the
heterogeneous clouds, the downwelling irradiance transmitted by clouds can
vary. Moreover, if the surface type varies within the distance of 400 m (forest,
tillage, marsh, etc.) the ground surface unevenness influences the accuracy
of the upwelling radiance. Thus, observations of upward radiation can be
accomplished only above areas with a large extent of homogeneous surfaces.
In view of the observational experience, there are only three kinds of such
surfaces: sanddesert,waterandsnow.Practically, theobservationswerecarried
out only in cases when the influence of the mentioned factors did not exceed
10%. It was controlled by the visual estimation of the output signal variations
at fixed wavelength within the VD spectral region.

We would like to mention that the uncertainty linking with surface hetero-
geneity decreases fast with flight altitude because the increasing of the surface
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Table 3.1. Evaluation of the uncertainty (standard deviation) of airborne measurements of
the radiative characteristics

Uncertainty source Uncertainty
type

Observations, which
the uncertainty
influences

Uncertainty estimation

Displacement of the Systematic All observations 1 nm
wavelength scale Random All observations 1 nm

Deviation from the
cosine dependence

Systematic The irradiance
observations

Look at Fig. 3.1

Calibration Systematic All observations 15% within UV, 10%
within VD and NIR

K-3 spectrometer Random All observations 5% within UV, 1% within
VD and NIR

Aircraft pitch Systematic Observations of the
downwelling irradi-
ance in the clear
atmosphere

5% within UV, 10%
within VD and NIR for
the azimuths 0 and 180◦

Aircraft bumps Random Observations of the
downwelling irradi-
ance in the clear
atmosphere below
the bumps level

5% within UV, 10%
within VD and NIR for
the azimuths 90 and 270◦

Illumination
heterogeneity

Random Observations below
the inhomogeneous
clouds

10%

Surface heterogeneity Random Observations of the
upwelling radiance
and irradiance
below the bumps
level

10%

area in the field of view of the instrument is smoothing the surface hetero-
geneity. It is especially distinct during the upwelling irradiance observations:
the corresponding estimations indicated that the surface heterogeneity could
be neglected if the flight altitude was higher than the bumps level. Table 3.1
concludes the reasons and estimations of the uncertainties of the airborne
observations with the information-measuring system based on the K-3 instru-
ment.
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3.2
Airborne Observation of Vertical Profiles
of Solar Irradiance and Data Processing

The concern of the spectral observations of solar irradiances was to calculate
radiative flux divergences and it conditions both the observational scheme and
the methodology of data processing. It is necessary to distinguish two different
cases: observations under overcast and clear sky conditions. The observations
either of upwelling or of downwelling irradiance were accomplished using one
instrument through the upper and lower opal glasses in turn.

The observations of the solar irradiances in the overcast sky were accom-
plished out of the cloud (above the cloud top and below the cloud bottom) and
within the cloud layer at every 100 m. As the implementation of the experiment
under the overcast conditions needed both a horizontal homogeneity of the
cloud and its stability in time, the observations were accomplished as fast as
possible with measuring of only one pair of the irradiances (upwelling and
downwelling) at every altitude level. Besides, only one circle of observations
was needed as usual. We need to stress that cases of homogeneous and stable
cloudiness are rare so the quantity of observations for the overcast sky are less
than in the clear sky.

The main component of the uncertainty during irradiance observations
under overcast conditions is the random error due to the heterogeneity of
illumination (Table 3.1). It leads to distortions of the vertical profiles of the
spectrum, as Fig. 3.2 demonstrates. The filtration of these distortions was
possible using the smooth procedures, but the standard algorithms (Anderson
1971; Otnes and Enochson 1978) turned out to be ineffective in this case. Thus,
it was necessary to elaborate the special one (Vasilyev A et al. 1994).

The smooth procedure of distortions of the spectral downwelling and up-
welling irradiances provides the replacement of the irradiance value at every
altitude level with the weighted mean value over this level and two neighbor
(upper and below) levels:

F↓(zi) =
1∑

j=−1

βjf
↓(zi+j) , F↑(zi) =

1∑
j=−1

βjf
↑(zi+j) ,

1∑
j=−1

βj = 1 , (3.2)

where βj are the weights of smoothing (common for all wavelengths, altitudes
and types of the irradiances); f ↓(zi), f ↑(zi) are the observational results of the
downwelling and upwelling irradiances at level zi; F↓(zi), F↑(zi) are the values
of the irradiances calculated during the secondary data processing. Weights βj
in (3.2) have been obtained from the demands of the physical laws.

As the radiative flux divergence has to be positive, the net radiant flux does
not increase with the optical thickness increasing (from the top to the bottom
of the cloud) according to Sect. 1.1. That is to say, the following condition has
to be fulfilled for the results of (3.2):

F↓(zi) − F↑(zi) ≥ F↓(zi−1) − F↑(zi−1) (3.3)
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Fig.3.2. Vertical profile of net, downward, and upward fluxes of solar radiation in the
cloud for three wavelengths. Solid lines are the original measurements; dashed lines are
the smoothed values. Observation 20th April 1985, overcast stratus cloudiness. Cloud top
1400 m, cloud bottom – 900 m, solar incident zenith angle ϑ0 = 49◦ (µ0 = 0. 647), snow
surface

The substituting of (3.3) to (3.2) provided the conditions for obtaining weights
βj

1∑
j=−1

βj(f ↓(zi+j) − f ↓(zi−1+j)) ≥
1∑

j=−1

βj(f ↑(zi+j) − f ↑(zi−1+j)) ,
1∑

j=−1

βj = 1.

(3.4)

The equation system (3.4) was solved with the iteration method. Firstly, weights
βj for measured values f ↓(zi), f ↑(zi) were obtained after the conversion of the
inequality to the equality in (3.4). Only three spectral points in the interval cen-
ters (UV–370 nm,VD–550 nm,NIR–850 nm)were consideredasa smoothing
condition for all other wavelengths. Equation system (3.4) was solved using the
Least-Squares Technique (LST) (Anderson 1971; Kalinkin 1978). The formulas
and features of the LST in applying to atmospheric optics will be considered
in Chap. 4 and here we are presenting the results only.

Then values F↓(zi), F↑(zi) were calculated using (3.2), and conditions (3.3)
were verified for all wavelengths and altitudes. The iterations were broken in
the case of satisfying the conditions, otherwise the above-described procedure
was repeated after substituting values F↓(zi), F↑(zi) to f ↓(zi), f ↑(zi) in (3.4). One
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other physical restriction was added in this case: the deviations of values F↓(zi),
F↑(zi) from measured results f ↓(zi), f ↑(zi) at any iteration can’t exceed the root-
mean-square random uncertainty of the measurements (10%, Table 3.1). Mark
that two-three iterations were enough to obtain final values F↓(zi), F↑(zi).
Figure 3.2 illustrates an example of the considered procedure.

Obtained values of the irradiances under the overcast condition F↓(zi),
F↑(zi) were the results of the secondary processing. The root-mean-square de-
viation of the smoothed profile from the initial ones was accepted as a random
uncertainty of the result. Note that the systematic error of calibration brought
a considerable yield to the total uncertainty (Table 3.1), however the irradi-
ances were considered as non-dimension combinations for further processing
and interpretation, hence it was possible to ignore the calibration uncertainty.
Note that the solar zenith angle varies negligibly (1−2◦) owing to the fast ac-
complishment of the experiment, and during processing, the single value of
the solar zenith angle was attributed to all spectra of the experiment.

The comparison of the measured irradiances with the extraterrestrial solar
spectrum in the case of a clear atmosphere is of special interest. Beer’s Law
is the simplest ground of this approach if for example the optical thickness
of the atmosphere is retrieved from the observational data. It is impossible
to measure the solar extraterrestrial flux directly from the aircraft, thus the
yield of the systematic uncertainty is essential during observations in a clear
atmosphere.

The values of spectral radiative flux divergence are rather small in clear
sky, and the random uncertainties of the results of the irradiance observations
corresponding to the aircraft factors are extremely large. Thus, the main prob-
lem of experiment planning and data processing was the minimization of the
random uncertainty of the results and correction of the systematic uncertainty
during instrument calibration.

Increasing the measurement accuracy of the spectrometer is important itself
but the measurement uncertainty onboard the aircraft due to flight factors,
atmospheric conditions, and surface heterogeneity does not depend on an
instrument andcan reachhighvalues.Therefore, theonlymethodof getting the
highly accurate experimental results is applying the most adequate approaches
to the statistical data processing. It would be necessary to register several
spectra at every level if we meant to perform the statistical processing at its
simplest level – the data averaging. However, in this case, observations would
have taken a lot of time and the irradiances at different levels would have been
measured at essentially different solar zenith angles, complicating further the
interpretation.

According to the above-mentioned difficulty, a special scheme of observa-
tions called sounding was elaborated (Kondratyev and Ter-Markaryants 1976;
Vasilyev O et al. 1987). Corresponding to this scheme, two or three preliminary
ascents and descents were carried out in a range from 50 m (1000 mbar) to
5600 m (500 mbar) with registrations every 100 mbar and the detailed descent
was accomplished from 5600 m to 50 m at midday (during the period when
the solar zenith angle is weakly varying) with registrations every 100 m (Fig.
3.3a). The registration of the numerous irradiance spectra with the minimal
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Fig.3.3a,b.Scheme of the airborne sounding: a in the coordinates “time-altitude”, b in the
coordinates “cosine of the solar incident angle – atmospheric pressure”. Observation 14th
October 1983 above the Kara-Kum Desert, the points show the altitudes of the measurements

variation of the solar zenith angle during the detailed descent for obtaining the
altitudinal dependence of the irradiance and the application of the irradiance
values registered during the preliminary ascent and descent for correction of
the solar zenith angle variations during the detailed descent were the main
ideas of sounding. The minimal altitude 50 m was taken due to the special
demands of flight safety; the maximal altitude 5600 m was taken due to the
technical abilities of the IL-14 aircraft. While flying with the optimal regime,
we succeeded in only two ascents and descents during one experiment, how-
ever, the crew gladly assisted during the observations allowing us to carry out
three ascents and descents.

The flight altitude has been changed during the sounding but the scale
of pressure has been used instead of the altitude scale during further data
processing as Fig. 3.3b demonstrates. It was connected with the following: at
altitudes higher than 500 m the aircraft absolute scale of altitudes was used,
i. e. the altitude registered by the altimeter related to the level 1013 mbar or the
atmospheric pressure was expressed in altitude units according to the stan-
dard atmospheric model (Standards 1981). The accuracy of the instrumental
measurement of the altitude according to the absolute scale was about 50 m
but it was difficult for the crew to set a concrete altitude level exactly while
working under the conditions of time shortage so the real uncertainty of the
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altitude registration was assumed equal to 100 m. At altitudes below 500 m the
true aircraft altitude was used because the distance between the aircraft and
surface was measured with high accuracy with the radio altimeter. There was
a gap between these two scales caused by the Earth’s surface altitude above sea
level and by the variations of pressure profile of the real atmosphere compared
with the standard model (Standards 1981). This gap was determined through
the comparison of the altimeter and radio altimeter registrations and was ac-
counted for while forming the common altitude scale (by the pressure) for the
irradiance profiles.

For accomplishment of the soundings, the areas of the Ladoga Lake, the
Kara-Kum Desert (Turkmenistan, near the town of Chardjou) were chosen.
This choice was conditioned by the demands of surface uniformity mentioned
in the previous section and by the airports situated in the neighborhood as
well. Correspondingly the soundings were carried out above three types of
surface: snow (on the ice of the Ladoga Lake), water (the Ladoga Lake) and
sand (the Kara-Kum Desert).

The most complicated stage of the secondary data processing was the initial
one, i. e. the preliminary analysis and correction of the irradiance spectra.
First, it was connected with the rather complicated conditions of the flights,
which caused the malfunctions of the equipment on board and the errors of the
registered spectra at some wavelengths. However, owing to the high scientific
value of the data (and owing to the high price of the airborne experiments) it
was inappropriate to exclude the whole spectrum because of the errors at one
or several wavelengths. Hence, careful analysis of the errors together with the
spectra correction was needed. Besides, the flight conditions did not allow us
to realize the ideal sounding scheme as a whole; it caused the necessity of data
correction while taking into account the deviation of the measuring procedure
from the ideal scheme.

The attempts to create the universal algorithm of error correction of the
measured spectra failed because of a huge variety of concrete errors. They
were revealed and removed by hand, using the visual interface of the database
described in the previous section. This algorithm was applied to observations
in an overcast sky. However, applying this approach to the spectra of the clear
atmosphere needed too much time because there were many more of these
spectra. Just this obstacle was the reason why a significant volume of the
data measured in 1983–1985 was processed only at the end of 1990th when
a system for fast processing was created. The basis of the system was the idea
of the semiautomatic regime. The data analysis was accomplished without an
operator but after the error was revealed the passage to hand processing in the
interactive regime occurred. In addition, the program code suggested different
solutions to the operator.

The brief description of the proposed system of spectra processing with the
detailed consideration of the approaches and schemes that could find a wide
application in the preliminary analysis of the results of solar radiances and
irradiances measurements are presented below.

At the first stage, the errors like an overshoot together with breaks of the
spectrum parts are revealed using the logical analysis of every spectrum. The



90 Spectral Measurements of Solar Irradiance and Radiance in Clear and Cloudy Atmospheres

overshoot is an error where the values of the radiative characteristics at one
or several spectral points are sharply distinct by a magnitude from the neigh-
boring ones. If the relative difference of two neighbor values (following each
other) of the spectral points exceeds the fixed level (e. g. 10%) the consequent
point will be assumed as an overshoot. Note that a detailed logical analysis is
necessary lest a strong absorption band is attributed to an overshoot, either
it is necessary to account for all possible variants of the overshoot positions
in the beginning or end of the spectrum and the nearby overshoots as well.
An overshoot correction consists of the substitution of the point interpolated
over the neighbor sure points to the error point. After the removal of the er-
rors, the procedure is repeated (because the strongest overshoots can mask
the weaker ones) until there is no overshoot at the recurrent iteration. The
breaks at the boundaries of the UV–VD and VD–NIR regions of the spectrum
are caused by the measurements with different photomultipliers at different
spectrum regions (Sect. 3.1). These breaks are likely owing to the deviation
of the dynamical characteristic of the photomultiplier from the linear one.
The removal of the breaks is accomplished by the adding of the corresponding
constant correcting values to the break spectrum region.

The elucidating of the errors using logical analysis is not effective enough.
Usually, the operator easily identifies the errors visually just because he knows
in advance, what the “right” spectrum looks like. Scientifically speaking he
uses the a priori information about the spectrum shape accumulated from
experience. The following stage of the elucidating and correcting of the errors
is based just on that comparison of the spectrum shape with the certain a priori
spectrum. The spectrum under processing and the a priori one are compared
in relative units (they are reduced to the interval from 1 to 2) for excluding
the relationship between the spectrum shape and the signal magnitude. If the
modulus of the comparison result exceeds the standard deviation of the a priori
spectrum multiplied by a certain factor the spectrum will be identified as an er-
roneous one. The factor is selected during the process of the system tuning. We
have used the factor equal to 4.2 that differs from the traditional magnitude for
the statistical interval equal to three standard deviations. There is an apparent
dependence between the spectrum and atmospheric pressure together with
solar zenith angle, so the distribution of the resulting error is rather different
from Gaussian distribution that explains the deviation of the factor from 3.
Two stages of the system provide the calculation of the standards and of their
standard deviations. At the first stage, the a priori information is absent and
the block of comparing with the standard is turned off. The standard (as an
arithmetic mean over processed spectra) and its standard deviation are calcu-
lated from the results of the first stage (standards are being obtained separately
for upwelling and downwelling irradiances and for different surfaces). At the
second stage, all spectra are processed again with the block of comparing with
the standard turned on. This system of algorithms, which are accumulating the
a priori information, is a self-educating system as per the theory of the pattern
recognition and selection (Gorelik and Skripkin 1989).

The practice of the data processing demonstrates that the application of
self-educating systems in algorithms of the preliminary analysis of spectropho-
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Fig.3.4a,b.The example of the spectrum correction of the results of upward flux measure-
ments 14th October 1983, time (Moscow) 7:12, altitude 4200 m: a the initial spectrum; b the
corrected spectrum

tometer information is rather effective. Figure 3.4 illustrates an example of the
error removal. The above-considered stages of the observational data process-
ing deal with the analysis of the spectra shape.

Regretfully the errors were also revealed when the spectrum had a correct
shape but differed from the “right” spectrum with the signal magnitude. To
elucidate such situations, the dependence of the irradiance upon the atmo-
spheric pressure and solar zenith angle was studied. The approximation of the
dependence using the quadratic form gave an approximating curve rather close
to single spectrums. If there had been some deviations, it would have been the
reason to test the spectra for errors. For every wavelength the approximation
of the dependence of the irradiance upon pressure P and the cosine of the solar
zenith angle µ0 was calculated (separately of the upwelling and downwelling
irradiances).

Here is the example of the approximation of the downwelling irradiance:

f ↓(P, µ0) = a1 + a2P + a3µ0 + a4P2 + a5µ2
0 + a6Pµ0 . (3.5)

Desired coefficients of the approximation a1, . . ., a6 are obtained from the
totality of registered irradiances f ↓(Pi, µ0i) over every ascent and descent of
the sounding. Equation system (3.5) is solved with the LST, where the inverse
squares of the random standard deviation of the irradiances (Table 3.1) are
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taken as weights, for irradiances registered at the high solar zenith angles
having a smaller weight, the uncertainty caused by the deviation from the
cosine law is also included to the standard deviation as a random error.

The last stage of the preliminary analysis system is an accounting of indi-
vidual specific features of the flight scheme. Solar zenith angle ϑ0 (µ0 = cos ϑ0)
and a set of the atmospheric pressure values Pi, i = 1, . . ., Ni are chosen at
this stage, which the final magnitudes of the irradiances will be obtained for as
a result of the secondary processing of the sounding data. There are six levels in
the ordinary flight scheme Ni = 6 and the irradiances magnitudes are output
for the pressure levels from 1000 to 500 mbar through every 100 mbar.

After the above-described preliminary analysis, Nj downwelling irradiances
f ↓(Pj, µ0,j) and Nk upwelling irradiances f ↑(Pk, µ0,k) are registered, from which
it is necessary to obtain Ni values F↓(Pi, µ0) and F↑(Pi, µ0). The algorithm of
this problem solution was described in Vasilyev O et al. (1987). However,
this algorithm was based on several physically poor assumptions, e. g. on the
supposition about the linear dependence of the irradiances upon solar zenith
angle, on the square approximation of the dependence of the irradiances upon
the atmospheric pressure, on the supposition about the monotonic increasing
of the upwelling irradiance with altitude. Thus, the new algorithm has been
elaborated for processing the results of soundings accomplished in the years
1983–1985. It is also based on certain assumptions but not so severe as before.

Let us present the dependence of the irradiance upon the solar zenith angle
cosine and atmospheric pressure using Taylor series limiting by the items of
second power:

F↓
i − Df ↓

j = a1xj + a2yij + a3x2
j + a4y2

ij + a5xjyij ,

F↑
i − Df ↑

k = b1xk + b2yik + b3x2
k + b4y2

ik + b5xkyik ,
(3.6)

where D is the correcting coefficient for the compensation of the systematic
calibration uncertainty (the calibration factor). Specifications

F↓
i ≡ F↓(Pi, µ0) , F↑

i ≡ F↑(Pi, µ0) ,

f ↓
j ≡ f ↓(Pj, µj) , f ↑

k ≡ f ↑(Pk, µk) ,

xj = µ0 − µj , xk = µ0 − µk ,

yij = Pi − Pj , yik = Pi − Pk

are introduced for a brevity. The desired values are F↓
i , F↑

i , D, a1, . . ., a5,
b1, . . ., b5.

The conditions for determining calibration factor D are to be added to solve
equation system (3.6). The extrapolation of the downwelling irradiance to the
level Pi = 0 mbar and its comparison with known extraterrestrial flux δF0µ0,
where correction factor δ accounts for the deviations of the Sun–Earth distance
from the mean value for the date of the observation. The spectral magnitudes of
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Fig.3.5. Spectral solar extraterrestrial flux F0, taking into account the instrumental (K-3)
function (solid curve). Points show the initial values of F0 of the high spectral resolution
from the data according to Makarova et al. (1991)

F0 have been taken from the book by Makarova et al. (1991, Fig. 1.3) where the
recent data averaged over several original studies were presented. These values
were recalculated with (1.12) while accounting for the spectral instrumental
function expressed by (3.1) for a correct comparison with the data of the K-3
instrument. Figure 3.5 illustrates obtained curve F0(λ). The magnitudes of
correction factor δ are presented in the book by Danishevskiy (1957). The
system of linear equations is finally obtained:

a1xj + a2yij + a3x2
j + a4y2

ij + a5xjyij + Df ↓
j − F↓

i = 0 ,

b1xk + b2yik + b3x2
k + b4y2

ik + b5xkyik + Df ↑
k − F↑

i = 0 ,

a1xj + a2(−Pj) + a3x2
j + a4(−Pj)2 + a5xj(−Pj) + Df ↓

j = δF0µ0 .

(3.7)

System (3.7) consists of (Nj + Nk)Ni + Nj equations relative to 11 + 2Ni desired
values. Levels Pi have been chosen for the equation quantity exceeding the
number of the desired values not less than twice. System (3.7) is solved with
the LST independently for every wavelength, where the inverse squares of the
random standard deviation (Table 3.1) while accounting for the uncertainty
of the deviation from the cosine law are taken as weights. This is to impose
that the additional conditions of the formal mathematical solution do not
contradict physical laws. Here they are: the non-negativity of the radiative flux
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divergences and the a priori restraints to the albedo:

F↓
i+1 + F↑

i − F↓
i − F↑

i+1 ≥ 0 , i = 1, . . ., Ni − 1 ,

F↑(Pi = 1000 mbar)|F↓(Pi = 1000 mbar) ≥ A(−) ,

F↑(Pi = 1000 mbar)|F↓(Pi = 1000 mbar) ≤ A(+) ,

F↑
i |F↓

i ≤ A(max) , i = 1. . ., Ni .

(3.8)

The second and third lines in the set of restraints (3.8) account for the known
range of the spectral albedo of the surface: A(−) is a minimal possible mag-
nitude, A(+) is a maximal possible magnitude. These magnitudes A(−) and
A(+) have been chosen from the spectral reflectivity data of similar surfaces
(Chapurskiy 1986; Vasilyev A et al. 1997a, 1997b, 1997c) (spectral brightness
coefficients to nadir with the approximation of the orthotropic surface equal
to the albedo of sand, snow and pure lake water). These data will be considered
in Sect. 3.4. The maximal albedo of the system “atmosphere plus surface” is
assumed as A(max) = 0.95.

The solution of equation system (3.7) together with restraints (3.8) was
accomplished with the iteration technique. Firstly, (3.7) was solved with the
LST without accounting for restraints (3.8), and the fulfilling of restraints
(3.8) was tested for the obtained solution. The iterations were broken when all
these conditions had been fulfilled. Otherwise, the solution of system (3.7) was
searched with restraints (3.8). Restraints (3.8) were transformed to the rigorous
equality and the variables were excluded from system (3.7) by substitution of
these equalities. The corresponding formulas expressing this solution will be
presented in Chap. 4. The iteration scheme was constructed as follows. Firstly,
values F↓

i+1 were excluded from the restraints for the irradiances and values F↓
i

– from the restraints for the albedo. The solution of system (3.7) was inferred
for every excluded variable separately (2Ni solutions as a whole) with the LST,
and the one with the smallest error was chosen. For this solution, restraints
(3.8) were tested again. If they failed the iterations were continued, and the
couple of restraints were excluded, then three restraints, and so on. As the
worse variant it was to examine 3 · 22Ni−2 solutions and it was the appropriate
number for modern computers as in our experiments Ni = 6.

The final result of the secondary processing of the sounding data are the
desired values of irradiances F↓

i and F↑
i for i = 1, . . ., Ni together with the

covariance matrix of the errors. It should be emphasized that further interpre-
tation of the results is to obtain the matrix as a whole and not only its diagonal
(the variance of the irradiances values). If the solution has been obtained using
restraints (3.8), the part of the irradiances is linearly dependent and hence
non-informative. The indicator of the linear dependence has also been written
to the output file of the secondary processing. We would like to point out that
owing to the individual solution of system (3.7) while accounting for (3.8) for
every wavelength the number of the independent (informative) irradiance val-
ues are essentially different for different wavelength. Coefficients D, a1, . . ., a5,
b1, . . ., b5 and their standard deviations are additional result of the secondary
processing.
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We would like to point out that the three main sources of the systematic
uncertainties of the obtained results are: the uncertainty of extraterrestrial
solar flux F0; the non-adequacy of (3.7) for dependence of the solar irradi-
ance upon the pressure and solar zenith angle; and the atmospheric parameter
variations during the observation. The first uncertainty is rather large (about
several percents) according to the estimations of Makarova et al. (1991). How-
ever, if the same magnitude of F0 as in (3.7) is used for further interpretation,
this uncertainty will not influence the results. The second systematic uncer-
tainty, as has been shown in Vasilyev O et al. (1987) for the old system of
the equation, which is less exact than (3.7), does not exceed the random er-
ror of the observations and could be neglected. To an even greater degree,
this conclusion may be applied to the more exact equation system (3.7). Fi-
nally, consider the third uncertainty. The solution of (3.7) is mean-weighted
values over all observed spectra from the essence of the LST. Hence, they
could be attributed to the atmospheric and surface parameters averaged over
time and space. The spectra measured during the detailed descent give the
maximal yield (just because there are more of these spectra than other ones)
during the averaging. The detailed descent continues a bit longer than one
hour (Fig. 3.3a) during the sounding that coincides with the time of a bal-
loon flight. The space scale of the airborne observations is about 30 km that
is also analogical to the horizontal distance of a balloon route. Thus, it is
safe to say that the airborne data are not worse than any radio sounding data
from the point of the space and time averaging of the atmospheric parame-
ters.

3.3
Results of Irradiance Observation

The examples of the observational results and calculations according to the
above-described technique are presented here for a clear and an overcast sky.
The typical profiles of the downwelling and upwelling spectral irradiances
are demonstrated in Figs. 3.6–3.8 and in Tables A.1–A.3 of Appendix A. The
figures illustrate the vertical profiles of the downwelling (the upper group of
the curves) and upwelling (the lower group) irradiance – 6 curves in every
group from 500 mbar to 1000 mbar through 100 mbar from the upper curve to
the lower one. These results were obtained from the sounding data above three
kinds of surface: sand, snow and water. It is important to point out that the
uncertainty of the results is rather significant at the boundaries of the spectral
regions, where the sensitivity of the photomultiplier is weak.

The analysis of the observational results indicates the decreasing of both
upwelling and downwelling irradiances with the increasing of the atmospheric
pressure in all cases. This behavior is evident for the downwelling irradiance:
solar radiation decreases owing to the radiation extinction in the atmosphere.
For theupwelling irradiance this effectpoints to thepredominanceof scattering
processes over absorption processes in the short wavelength range, i. e. the
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Fig.3.6. Vertical profile of the spectral dependence of the solar semispherical irradiances
from the results of the airborne sounding 16th October 1983. Sand surface, solar zenith
angle 51◦

Fig.3.7. Vertical profile of the spectral semispherical solar irradiance from the results of the
airborne sounding 29th April 1985. Snow surface, solar zenith incident angle 48◦
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Fig.3.8. Vertical profile of the spectral semispherical solar irradiance from the results of the
airborne sounding 16th May 1984. Water surface, solar zenith incident angle 43◦

extinction of the upward radiation is weaker than its increasing caused by
backscattering of the downward radiation.

As has been mentioned in the previous section not all spectrum points are
independent and hence informative after the secondary processing. Figure 3.9
illustrates only the informative points of the same spectra as Fig. 3.6 does.
In practice, the real number of the informative points differs very much for
different spectra that seems to link with non-ideal weather conditions together
with the errors during the registrations.

The spectral region is excluded from the further processing when there are
less informative points in it. Thus, Fig. 3.9 demonstrates a sounding of high
quality. An example of a “bad” sounding is shown in Fig. 3.10 that is analogous
to Fig. 3.8 excluding the non-informative points.

The uncertainty of measurements is the most important characteristic vary-
ing strongly in different soundings. Figure 3.11 shows the minimal relative
standard deviation over all realizations for downwelling and upwelling irradi-
ances. It is easily seen from the comparison of the relative standard deviation
with the initial values (Table 3.1) that the statistical processing significantly
improves the accuracy of the results.

The vertical profiles of the spectral albedo of the “atmosphere plus surface”
system characterizing three types of the surface are presented in Fig. 3.12.
The figure demonstrates the results of the soundings above the sand surface
(16 October 1983) – solid lines, above the snow surface (29 April 1985) – upper
group of dashed lines, and above the water surface (16 May 1984) – lower group
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Fig.3.9. Informative points of irradiance spectra obtained 16th October 1983. The figure is
analogous to Fig. 3.6 excluding non-informative points

Fig.3.10. Informative points of the irradiance spectra obtained 16th May 1984. The figure is
analogous to Fig. 3.8, excluding non-informative points
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Fig.3.11. Minimal value of the standard deviation over all data set of the airborne sounding.
Upper curve – upwelling irradiance, lower curve – downwelling irradiance

Fig.3.12. Vertical profiles of the spectral albedo of the system “atmosphere plus surface”
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ofdashed lines.All valuesof the albedo increasewhen theatmosphericpressure
decreases (with the altitude) especially if the surface is dark. It confirms the
above conclusion about the predominance of scattering over absorption within
the short-wavelength range excluding the absorption bands in the NIR region
above the sand surface.

Figure 3.12 apparently indicates spectral transformation of the albedo in
molecular absorption bands with the increasing of atmospheric thickness
especially in the example of the water surface (Vasilyev A et al. 1997a, 1997b,
1997c). The figure also demonstrates that the magnitudes of the snow albedo of
the Ladoga Lake surface are not very high compared with other observations
(Chapurskiy 1986) that could be explained with the destruction and pollution
of ice in spring (April). Carrying out the observations in winter is complicated
owing to the lowSun.The standarddeviationof thealbedo is calculatedwith the
covariance matrix of the couple of corresponded irradiances. The calculation
methodology will be described in Chap. 4. The average uncertainty of the
albedo is about 5%.

3.3.1
Results of Airborne Observations Under Overcast Conditions

The experiments on the overcast sky were carried out in the field by companies
and conducted as components of CAENEX, GAAREX, GARP and GATE scien-
tific programs. The results of these programs are considered in several books
(Kondratyev 1972; Kondratyev and Ter-Markaryants 1976; Kondratyev et al.
1977; Kondratyev and Binenko 1981, 1984) and in several studies (Kondratyev
et al. 1976; Vasilyev A et al. 1994; Kondratyev et al. 1996, 1997a, 1997b). The
observations were carried out with K-2 and K-3 instruments (Mikhailov and
Voitov 1969) and each experiment in the cloudy atmosphere was accompanied
with the measurement for the same region under the clear sky conditions at the
same height levels and at the close time. Only optically thick stratus clouds of
large extension were studied during the overcast-sky experiments. The experi-
mental results in different latitudinal zones in different time during 1971–1985
were analyzed using the uniform observational data sets. The geographical
latitudes of the observations were changing from 15◦N (the East part of the
Atlantic Ocean close to the African coast) to 75◦N (above the Cara Sea). All
aircraft observations were accomplished above the homogeneous surfaces (sea
and snow surface, deserts). Under these conditions, it was possible to exclude
such factors as a horizontal heterogeneity of clouds and surface, broken cloudi-
ness, radiation escape through the cloud sides. To estimate the cloud radiative
forcing the data of the pyranometric (total SWR) and spectral observations
were used simultaneously.

The surface albedo was calculated as a ratio of the upwelling to downwelling
irradiances at the lowest level under the cloud layer. The information about the
cloudy experiments, which will be further interpreted in Chap. 7, is presented
in Table 3.2. The thickness of the cloud layer, the cosine of the solar zenith angle,
the latitudes, the surface type and albedo, the total values of the radiative flux
divergence over the spectral region in cases of the cloud and clear atmosphere



Results of Irradiance Observation 101

Ta
bl

e
3.

2.
R

es
ul

ts
of

th
e

ai
rb

or
ne

ra
di

at
iv

e
ob

se
rv

at
io

n
in

a
cl

ou
dy

at
m

os
ph

er
e

N
o.

E
xp

er
im

en
t

µ 0
ϕ,

◦ N
D

at
a

A
s

O
th

er
co

nd
it

io
n

f s
f s

R
,W

m
−

2
R

,W
m

−
2

To
ta

l
Sw

C
lo

ud
C

le
ar

G
A

T
E

1
T

he
A

tl
an

ti
c

O
ce

an
,c

lo
ud

0.
96

6
16

12
Ju

l.
74

0.
1

A
bo

ve
th

e
A

tl
an

ti
c

af
te

r
1.

74
3.

2
18

.9
2

T
he

A
tl

an
ti

c
O

ce
an

,c
lo

ud
0.

96
6

17
4

A
ug

us
t7

4
0.

06
du

st
in

tr
us

io
n

fr
om

th
e

1.
45

2.
9

26
.1

T
he

A
tl

an
ti

c
O

ce
an

,c
le

ar
0.

96
6

17
13

A
ug

us
t7

4
0.

02
Sa

ha
ra

D
es

er
t

2.
43

C
A

EN
EX

3
T

he
B

la
ck

Se
a,

cl
ou

d
0.

81
9

44
10

A
pr

il
71

0.
06

A
bo

ve
se

a
su

rf
ac

e
1.

11
1.

2
2.

86
4

A
zo

v
Se

a,
cl

ou
d

0.
61

6
47

5
O

ct
ob

er
72

0.
06

A
bo

ve
se

a
su

rf
ac

e
1.

16
2.

5
12

.8
A

zo
v

Se
a,

cl
ea

r
0.

61
6

47
6

O
ct

ob
er

72
0.

08
In

du
st

ri
al

po
llu

ti
on

3.
60

5
C

it
y

R
us

ta
vy

,c
lo

ud
0.

43
8

42
5

D
ec

em
be

r
72

0.
18

A
bo

ve
th

e
gr

ou
nd

1.
07

1.
3

15
.0

C
it

y
R

us
ta

vy
,c

le
ar

0.
43

8
42

4
D

ec
em

be
r

72
0.

22
In

du
st

ri
al

po
llu

ti
on

2.
35

6
T

he
La

do
ga

La
ke

,c
lo

ud
0.

44
0

60
24

Se
pt

em
be

r
72

0.
20

A
bo

ve
w

at
er

su
rf

ac
e

1.
13

1.
8

3.
61

La
do

ga
La

ke
,c

le
ar

0.
44

0
60

20
Se

pt
em

be
r

72
0.

10
A

bo
ve

w
at

er
su

rf
ac

e
3.

73
7

La
do

ga
La

ke
cl

ou
d

0.
64

7
60

20
A

pr
il

85
0.

64
A

bo
ve

ic
e

w
it

h
sn

ow
1.

10
1.

5
4.

5
La

do
ga

La
ke

,c
le

ar
0.

66
9

60
24

A
pr

il
85

0.
55

A
bo

ve
ic

e
w

it
h

sn
ow

0.
40

G
A

R
P

8
K

ar
a

Se
a,

cl
ou

d
0.

27
6

75
01

O
ct

ob
er

72
0.

40
A

bo
ve

w
at

er
w

it
h

ic
e

1.
00

1.
1

4.
63

K
ar

a
Se

a,
cl

ea
r

0.
27

6
75

30
Se

pt
em

be
r

72
0.

40
In

du
st

ri
al

po
llu

ti
on

1.
97

9
K

ar
a

Se
a,

cl
ou

d
0.

48
3

75
29

M
ay

76
0.

40
0.

90
0.

95
7.

25
10

K
ar

a
Se

a,
cl

ou
d

0.
48

3
75

30
M

ay
76

0.
40

A
bo

ve
w

at
er

w
it

h
ic

e
1.

00
1.

2
1.

1
K

ar
a

Se
a,

cl
ea

r
0.

46
0

75
21

A
pr

il
76

0.
05

A
bo

ve
w

at
er

su
rf

ac
e

1.
87



102 Spectral Measurements of Solar Irradiance and Radiance in Clear and Cloudy Atmospheres

Fig.3.13. The results of the airborne sounding in the overcast sky, experiment 7 in Table 3.2

are demonstrated. Value fs characterizing the variations of solar radiation
absorbed in the system “cloudy atmosphere plus surface” comparing with the
system “clear atmosphere plus surface” is presented in Table 3.2 as well. We
will describe value fs in detail in the following section.

The data of the spectral radiation measurements accomplished on the 20th
April 1985 above the Ladoga Lake and processed in accordance with the
methodology described in Sect. 3.2 are presented in Fig. 3.13 and in Table A.3
of Appendix A (experiment 7 in Table 3.2). The comparison with the data of the
observations carried out on 24 April 1985 in the clear atmosphere (Table A.2
of Appendix A) also above the Ladoga Lake indicate higher values of solar
radiation absorption in the cloud layer. Besides, the values of the downwelling
irradiance at level 1.4 km (∼ 850 mbar) of the second observation are lower
than the values of the first one. This might be caused by the extinction of
radiation in thin cirrus clouds or aerosol layers in the upper troposphere and
in the stratosphere.

3.3.2
The Radiation Absorption in the Atmosphere

Now we will pay attention to the estimation of the radiative flux divergence as
a main aim of the radiative observations. To provide the possibility of compar-
ison between the obtained results, the radiative flux divergence is normalized
to the thickness of the atmospheric layer and then it computes according to
(1.8).

The magnitude of the radiative flux divergence in the shortwave spectral
region is close to zero and its uncertainty is rather high. The magnitude of
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the standard deviation of the radiative flux divergence is close to the radiative
flux divergence mean value while calculating the uncertainty with the usual
methodology. However, the radiative flux divergence is a non-negative value
because it is a bounded value and its distribution differs from the Gaussian
one. Thus, the values of the mean radiative flux divergence and their standard
deviation obtained with the usual methodology do not correctly reflect the
distribution of the radiative flux divergence as a random value. The application
of the specially elaborated procedure of empirical simulation of the radiative
flux divergence with computing its mean value together with the standard
deviation removes this difficulty.

Let us consider one layer from Pi+1 to Pi for the appropriate determination
of the mean value and standard deviation of the radiative flux divergence.
We use the randomizer described in the book by Molchanov (1970) with the
expectation and variance equal to the correspondent values for the irradiance
(Sect. 3.2). Irradiances F↓

i+1, F↓
i , F↑

i+1, F↑
i are simulated as random values. The

mean value of the radiative flux divergence and its standard deviation over
the layer are computed by their concrete realizations with (1.7) and (1.8),
excluding physically impossible cases of the negative radiative flux divergence
values. Then, after accumulating enough statistics we get the estimation of the
radiative flux divergence and its standard deviation. Moving on to the radiative
flux divergence simulation for all layers the demand of the physical property
of the radiative flux divergence additivity is necessary: the total radiative flux
divergence has to be calculated as a sum of the radiative flux divergences
of all layers during the layers merging. Hence, the multilayer situation is to
be rejected if either of one layer has the negative value of the radiative flux
divergence. It is also necessary to account that after the secondary processing
the irradiance values correlate with each other so all irradiances are to be
simulated at once as a randomly distributed vector with the fixed mean value
and with the covariance matrix according to the methodology described in the
book by Ermakov and Mikhailov (1976).

According to the results of soundings accomplished in 1970–1980th, the
authors of various studies (Kondratyev and Ter-Markaryants 1976; Vasilyev O
1986; Vasilyev O et al. 1987) have revealed that it is possible to obtain the
radiative flux divergence with the appropriate accuracy for the atmospheric
layer of 100 mbar thickness if only the following set of conditions coincides:

– strong aerosol absorption;

– stability of the atmospheric parameters during the observations;

– stable functioning of the instruments.

All these conditions are hardly realized in practice. Thus, it has been proposed
to consider the averaged irradiances in the atmospheric layer 1000–500 mbar,
which are obtained as an arithmetic mean over the layers (with the corre-
sponded recalculation of standard deviations).

Figure 3.14 illustrates the typical values of the radiative flux divergence
above the Kara-Kum Desert and above Ladoga Lake. The molecular absorp-
tion bands of the atmospheric gases (ozone, oxygen and water vapor) are
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Fig.3.14a,b.Examples of typical values of the radiative flux divergences in the atmospheric
layer 1000–500 mbar; a above the Kara-Kum Desert, the airborne sounding 16th October
1983, solar zenith incident angle 51◦, sand surface; b above Ladoga Lake, the airborne
sounding 29th April 1985, solar zenith incident angle 48◦, snow surface. There are three
curves in every plot, average values and ranges of the 1SD interval

specified in Fig. 3.14. These results completely agree with values obtained
before (Kondratyev and Ter-Markaryants 1976; Vasilyev O et al. 1987).

It is important to mention that the clearer the atmosphere the less the
radiative flux divergence and the more complicated is satisfying the conditions
of itsnon-negativity.A largenumberofnon-informativepoints in the spectrum
of the sounding above Ladoga Lake is the usual situation. The best data are the
sounding results presented in the article by Vasilyev O et al. (1987). It can be
thought that the certain transformation of the molecular absorption bands in
the spectrum of the sounding above Ladoga Lake (Fig. 3.14b) is caused by the
same reasons.

The non-selective part (the constant level) in the irradiance spectra is to
be attributed to the aerosol absorption essentially varying in the atmosphere.
Aerosol absorption above the desert is about an order of magnitude higher
than absorption above the water surface. In addition, it is possible to trace
the specific features of aerosol absorption in the spectral dependence of the
radiative flux divergences above the desert. Figure 3.15 illustrates the radiative



Results of Irradiance Observation 105

Fig.3.15. Spectral dependence of the radiative flux divergences. The identification of the
hematite absorption band in spectra. Above the Kara-KumDesert: 1 – the airborne sounding
12th October 1983 under dust storm conditions; 2 – 10th October 1983 under dust gaze
conditions; 3 – 23rd October 1984, the pure atmosphere. Above Ladoga Lake: 4 – airborne
sounding 29th April 1985 (snow surface); 5 – the airborne sounding 16th May 1984 (water
surface). Spectral dependence of the imaginary part of the complex refraction index of the
hematite according to Ivlev and Popova (1975) is in the right-hand upper corner

flux divergences above the desert obtained during the beginning of the dust
storm (12 October 1983), with the dust gaze (10 October 1983), and in the pure
atmosphere (23 October 1983). The band of the selective aerosol absorption is
apparent in corresponding curves, and it is possible to attribute this band to
the ferrous oxides mixture (the component of the sand) called “hematite”. The
radiative flux divergences of the soundings above Ladoga Lake (29 April 1985
above the snow and 16 May 1985 above the water), where the mentioned band
is absent, are presented for comparison.

Concerning the “hematite”, it is important to point out that the concrete
substance Fe2O3 usually implied under this term has the maximum of its
absorption in theUVspectral regionanddoesnothave theapparentabsorption
selectivity as per the results of Ivlev and Popova (1975), Shettle (1996), and Ivlev
and Andreev (1986). However, the authors of the study by Ivlev and Andreev
(1986) have mentioned other ferrous oxides and hydroxides demonstrating
absorption bands similar to the one shown in Fig. 3.15. Not only Fe2O3 but
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Fig.3.16.Spectral dependenceof the radiativefluxdivergences for every layerof the100mbar
thickness from the results of the airborne sounding 16th October 1983 above the Kara-Kum
Desert: thin lines; the average value for the layer of 1000–500 mbar and the ranges of
1 standard deviation interval – thick lines

also other ferrous oxides are evidently included in the sand composition, and
we will symbolically call it “hematite”. Thus, we are following the book by
Zuev and Krekov (1986) where the complex mixture of ferrous oxides and
hydroxides is implied as a hematite and where the data concerning its complex
refractive index are taken from. The analysis of the radiative flux divergences
in Fig. 3.15 shows that the hematite absorption band is rather narrow and has
its maximum near 420 nm. Note that the high content of ferrous oxides in the
sand’s composition is typical for the Kara-Kum Desert (this is reflected in the
name “Black Sands”).

Analyzing the radiative flux divergences in separate layers it should be noted
that only three soundings among all processed spectra are exact enough for
identification of the atmospheric aerosols. Regretfully, there is no statistically
significant altitudinal dependence: the radiative flux divergences are approx-
imately equal to each other and close to the average radiative flux divergence
for the whole layer 1000–500 mbar as Fig. 3.16 demonstrates.

In addition to that considered above, while processing the soundings data,
complementary results have been obtained, namely: calibration curves D and
coefficients of the relationship between the irradiance, pressure and solar
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zenith angle a1, . . ., a5, b1, . . ., b5 from (3.6). These parameters were supposed
to be used during the correspondent correction of the irradiance spectra with
other observation schemes (not soundings). However, the analysis indicated
that the calibration curve D turns out to be highly dependent on the experiment
series (i. e. linked with the laboratory calibration), which their use impossi-
ble for other experiments. The accomplished estimations affirm the standard
deviations of calibration curve D to be equal to 2–3% in average, i. e. the calibra-
tion accuracy has been successfully improved by applying the above-described
approach. However, even this error is too high, and it creates difficulties in ap-
plying the modern complex approaches of observational result interpretation,
as will be shown in Chap. 5.

3.4
Results of Solar Radiance Observation.
Spectral Reflection Characteristics of Ground Surface

The main aim of the accomplished airborne observations of the solar radiance
in the atmosphere was studying spectral reflectance properties of the surfaces.
As has been shown in Sect. 1.4 the reflected characteristics of the surface
described with function R(µ, ϕ, µ′, ϕ′) are defined from the relation between
the income and reflected radiation with (1.73). The simplest characteristic of
the surface, the albedo is defined as a ratio of the upwelling to downwelling
solar irradiance (1.72) (see the footnote on page 33) (Sivukhin 1980).

Nevertheless, taking into account the insignificant yield of the multiple
scattered radiation to downwelling irradiance in the clear atmosphere, the ob-
served reflection characteristics are assumed to correspond to the theoretical
ones. However, the relationship between the observed reflection characteris-
tics and ratio of direct and scattered radiation in the downwelling irradiance
(Vasilyev O 1986) is particularly essential during comparison of the results
obtained in the clear and cloudy atmosphere.

Owing to the diffused reflection (Sect. 1.4) function of four arguments
R(µ, ϕ, µ′, ϕ′) it is impossible to measure for the solar radiation field because
the radiance really measured from direction (µ0, ϕ) depends on the whole field
of the income radiation [look at the definition of the reflection operator in
(1.74)]. Therefore, the maximally informative characteristic of the reflection
available from the observation is a spectral brightness coefficient (SBC) defined
as follows:

r(ϑ, ϕ) = I(ϑ, ϕ)|I0 , (3.9)

where ϑ is the viewing angle (direction ϑ = 0 is the nadir), ϕ is the viewing
azimuth (ϕ = 0 corresponds to the Sun’s direction), I(ϑ, ϕ) is the solar radiance
reflected from the surface and I0 is the radiance reflected from the absolutely
white orthotropic surface.

The direct measurements of value I0 were technically impossible during the
flight so following the scheme of the SBC observations was used. Radiance
I0 was measured using the same instrument and simultaneously downwelling
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irradiance F↓ was measured using a second instrument on the ground. The
aluminum plate covered with magnesium oxide (manufactured from the burn-
ing of magnesium shavings immediately before the airborne observation) was
used as an absolutely white orthotropic surface. The albedo of this plate was
assumed to be equal to 0.97. Calibration curve ρ = 0.97F↓|I0 was a result of
the ground measurements. Mark that relation ρ = π for the absolutely white
orthotropic surface follows from albedo definition (1.71) and from the ex-
pression for the upwelling irradiance through radiance I0 (1.4). The values
of downwelling irradiance F↓ and reflected radiance I(ϑ, ϕ) were registered
simultaneously by two instruments during the airborne observations. The SBC
was computed according to (3.9) as follows:

r(ϑ, ϕ) = ρI(ϑ, ϕ)|F↓ . (3.10)

The formula of the theoretical link between the SBC and surface albedo is
obtained by expressing value I(ϑ, ϕ) from (3.10) with relations (1.4) and (1.71):

A =
1
π

2π∫
0

dϕ

π|2∫
0

r(ϑ, ϕ) cos ϑ sin ϑdϑ . (3.11)

The instruments for the observations and the accuracy of the estimations
have been described in Sect. 3.1. However, two different instruments measured
the radiance and irradiance and the division (3.10) leads to the additional
uncertainty connected with the random displacement of wavelength scales of
the instruments relative to each other (Table 3.1). When the signal magnitude
is weakly varying with wavelength, the effect of displacement is insignificant,
but within the spectral regions, with the fast signal variations (e. g. within the
oxygen absorption band 760 nm) the uncertainty of the SBC could strongly
increase.

The random uncertainties of the SBC values calculated with (3.10) are caused
by theflight factors, especially by the surfaceheterogeneity, and indicated in the
SBC spectra as fast random oscillations. For its filtration the smooth procedure
with the triangle weight function (Otnes and Enochson 1978) has been used
that leads to the formulas:

Ri = d0ri +
m∑

j=1

dj(ri−j + ri+j) , dj =
1

m + 1

(
1 −

j

m + 1

)
(3.12)

where ri is the initial spectrumof theSBCand Ri is the smoothedone, subscript i
corresponds to thepointnumberof the spectrum, m is the smoothinghalfwidth
(we have used the value m = 9). We should mention that halfwidth m in (3.12) is
a parameter of the frequency filtration of the data as pointed out in the book by
Otnes and Enochson (1978) and it does not link with the instrumental function
halfwidth expressed by (3.1). We should emphasize that only smoothed SBC
spectra have been used for further analysis. The SBC spectra were considered
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in the spectral range 350–850 nm with a step of 10 nm accounting for the
smoothing halfwidth and narrowing the spectral interval of the smoothed
data (Vasilyev A et al. 1997a, 1997b, 1997c).

If the SBC is considered as a reflective characteristic of the surface only (and
not of the system “atmosphere plus surface”), the influence of the atmospheric
layerbetween theaircraft andsurfaceon theSBCis tobemaximallydiminished.
For this purpose, the observations seem to be conducted at minimal altitudes.
However, thebumpsbecomestrongerwith the altitudedecreasingand theyield
of the random item to the total uncertainty caused by the bumps increases.
Thus, it is necessary to choose the optimal altitudes for the observations
so that the influence of the atmospheric layer below the aircraft would be
insignificant and the bumps would not be the main factor determining the
random uncertainty. The experience of the flights on board of the IL-14 aircraft
has shown that the optimal altitudes above the water surface are 200–300 m
and above the ground are 300–500 m. However, sometimes the observations
had an occasion to be accomplished at non-optimal altitudes. The approach
excluding the influence of the atmospheric layer below the aircraft on the SBC
has been proposed in Kondratyev and Markaryants (1976), and Vasilyev O
(1986), with carrying out the measurement of the vertical profiles of the SBC.
Such observations were also conducted but their amount in the total quantity
of the spectra was not large thus, the authors have confined themselves to the
analysis of the SBC, measured at the altitudes from 500 m and lower (Vasilyev
A et al. 1997a, 1997b, 1997c). It is necessary to point out that the atmospheric
influence on the SBC is impossible to exclude as a whole even while observing
at low altitudes. It could be displayed as an overstating of the SBC values in the
UV spectral range caused by strong Rayleigh scattering and as an understating
of the SBC values within the oxygen and water vapor absorption bands in the
NIR spectral region.

Studying the SBC spectra dependence upon the surface type, viewing direc-
tion, solar zenith angle etc. is of greatest interest while analyzing the obtained
values SBC. The elucidating of the mentioned dependence is possible only
after statistical processing of the SBC data array with taking into account the
significance of the random item of the observational uncertainty. As there are
numerous and strongly varying factors (for example solar zenith angle varies
constantly) influencing the result, the application of the usual and easiest sta-
tistical methodology is ineffective in that case because the equal observational
conditions are impossible to attribute to large groups of spectra.

To overcome the difficulties mentioned above, cluster analysis (the method
of the formal classification of the SBC spectra) was applied during the data
analysis. Its essence is to divide the whole totality of the SBC spectra into classes
(or groups, clusters; Duran and Odell 1974; Gorelik and Skripkin 1989), each
of them forming without any a priori information but only using the principle
of the spectra “closeness”. Thus, the cluster analysis is reducing the problem
to a description of only a few numbers of classes. The metric function, i. e. the
distance between two classified objects is used as a numerical characteristic of
the spectra closeness (Duran and Odell 1974; Kolmogorov and Fomin 1989).
The algorithm of the classification has been constructed recurrently: let certain
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spectra (for the recursion start it would be one spectrum) to be selected in
the class. The following spectrum is added to the same class if the distance
between it and the selected class is less than a certain fixed value. After all
spectra are tested, the procedure of the classification will be returned for all
rested spectra, etc., till the whole totality will have been divided.

There is a sufficient amount of different functions in available books (Du-
ran and Odell 1974; Kolmogorov and Fomin 1989) satisfying the axiomatic
demands to the metric introduced in the book by Kolmogorov and Fomin
(1989). We should mention that the application of different metrics leads to
different results of the classification, so the metric is to be chosen based on the
concrete problem conditions. As has been mentioned in the books by Duran
and Odell (1974), these conditions sometimes don’t allow finding the mathe-
matically correct metrics. Thus, different heuristic metrics (Duran and Odell
1974) are used which are not metrics in the strict sense of the word. We have
had to follow the latter way and to use the function below as a measure of the
distance between spectra R(1) and R(2):

ρ(R(1), R(2)) = max
i

2|R(1)
i − R(2)

i |
si(R(1)

i + R(2)
i )

, (3.13)

where si is the relative random standard deviation of the measured SBC (con-
crete values are in the articles by Vasilyev A et al. 1997a, 1997b, 1997c). The
differences between spectra at every wavelength (not at all wavelengths in av-
erage) are accounted in (3.13) because the spectra difference even within the
narrow spectral region could turn out the essential one for classification. It
is especially important for revealing the erroneous spectra, as will be consid-
ered further. For transformation to the relative values, the difference of the
spectrum values in (3.13) is normalized to their mean arithmetic and to the
standard deviation to take into account the uncertainty variations over the
spectrum. As a distance between the spectrum and the class, the distance to
the starting spectrum of the class is used. The spectrum will be attributed to
the class if the distance is less then 3, i. e. according to the known statistical
rule “the allowed deviation from the average does not exceed three standard
deviations”.

The choice of the starting spectrum (also, the starting spectrum of every
following class recurrently) is the indefinite point of the cluster analysis. The
problem is that the spectrum is to correspond to the maximum of the distri-
bution of the multi-dimensional function (of the histogram) of the classified
objects totality and the search for the maximum is a complicated problem ei-
ther from the calculating or mathematical point of view. We have analyzed the
applicability of different approaches of the choice of starting spectrum to our
problem as per the book by Duran and Odell (1974) and we finally decided in
favor of the following algorithm. Every spectrum of the classified totality has
been tested for the possibility of using it as a starting one. For this spectrum,
the number of the spectra of the same class is determined together with the
average distance to the spectra of this class expressed by (3.13) and the ratio of
the average distance to the number of the spectra of the same class. The latter
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evidently has a sense of the spectra density in this class. Hence, the spectrum
providing the maximal spectra density in the class has been chosen as starting.

The formal computer classification has to be followed by a stage of hand
analysis. At this stage, the information concerning measuring factors is ana-
lyzed for every class. Some classes are united after this analysis. The important
result of the cluster analysis is the automatic revealing of the erroneous spectra
that can find a wide application in the operative processing of the atmospheric
and surface radiative characteristics. Actually the spectrum could be assumed
an erroneous one if there is only one spectrum in the class.

After the classification procedure the mean value and standard deviation is
calculated for every class over all contained spectra. The standard deviation is
mentioned to be sometimes less than the initial random standard deviation si.
It is suggested that there are mainly two reasons for this: the spectra statistical
averaging, and the yield to the standard deviation of the uncertainty linked
with the surface heterogeneity in the real observational conditions, which
could be less than the average estimation in Table 3.1.

Fig.3.17. Spectral brightness coefficients (SBC) of the typical natural surfaces. Average
values of the SBC of the correspondent classes and the one standard deviation interval:
1 – pure lake water with low chlorophyll and mineral matter content; 2 – lake water with
high chlorophyll and mineral matter content; 3 – snow; 4 – sand; 5 – black soil; 6 – green
vegetation (grass); 7 – yellow vegetation (ripe grain crop)
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The results of the accomplished classification are discussed in detail in the
articles by Vasilyev A et al. (1997a, 1997b, 1997c). Figure 3.17 illustrates the
typical spectra of the SBC for the natural surfaces. The SBC of three surface
types (snow, sand, and pure lake water) are presented in Fig. 3.17. In addition,
we should mention that the albedo coincides with the SBC for the orthotropic
surface. However, we will analyze to what extent this approximation is correct
for the considered surfaces. The analysis of the accomplished classification has
shown that there is no dependence upon the viewing direction for the snow
surface, i. e. the snow surface is close to the orthotropic. The uncertainty of the
approximation is determined by the standard deviation for the class “snow”
and is equal to 8% in average over the spectrum (Vasilyev A et al. 1997a, 1997b,
1997c). The description of the main classes of the SBC and their spectral values
are presented in Tables A.4–A.7 of Appendix A.

The water surface is the most anisotropic among all natural surfaces as
Fig. 3.18 demonstrates. The sharp maximum is a solar glare in the viewing
direction to the Sun (ϕ = 0◦) formed by the solar beams mirror-reflected
from the waving water surface (curves 2 and 3 in Fig. 3.18). There is a weak
minimum in the opposite direction (curve 4) that has been explained in the
book by Mulamaa (1964). Regretfully there was no possibility to measure
SBC dependence of the viewing angle and azimuth for the sand surface. The

Fig.3.18. Dependence between the spectral brightness coefficients of the water surface and
the viewing direction. Average values of the SBC of the relevant classes and one standard
deviation interval are shown: 1 – observation to nadir; 2 – the mirror reflection direction;
3 – the viewing angle corresponded to the mirror reflection at azimuth 45◦; 4 – the same as
3 for azimuth 180◦
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Fig.3.19. Dependence of spectral brightness coefficients of moose marsh upon the viewing
direction. Average values of SBC of the relevant classes and the 1 standard deviation interval
are shown: upper curve – the direction of the back reflection: middle curve – the viewing
angle, corresponding to back reflection for azimuth 135◦; lower – observation to nadir and
azimuth from 0 till 90◦

sand has just been noted to be a back-reflecting surface (see Sect. 1.4). The
similar property is also inherent in the moss marsh (qualitative pictures of
the anisotropy for sand and marsh are close). The data in Fig. 3.19 obtained
for the marsh surface allow the estimating of the analogous SBC dependence
upon the viewing angle and azimuth for the sand surface. The SBC increase is
apparent when approaching to the point opposite to the Sun (ϕ = 180◦): their
magnitudes exceed the magnitude to the nadir in 1.5–2 times.

For the analytical description of the anisotropy the following function is
introduced:

R(µ, ϕ) = πA
1
µ

X1(µ − µ′)X2(ϕ − ϕ′) , (3.14)

where A is the surface albedo, (µ, ϕ) is the definite certain selected direction
of the reflection namely it is the direction of the mirror reflection or the back-
reflection here, X1(µ′′) and X2(ϕ′′) are the certain functions describing the
anisotropy, when the viewing angle cosine µ and azimuth ϕ of the reflection
are deviating from the selected direction: µ′′ = µ−µ′, ϕ′′ = ϕ−ϕ′. Factor π|µ is
appearing to co-ordinate (3.14) with expression of the albedo through the SBC
(3.11). From the same relation the normalizing conditions for the functions
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X1(µ′′) and X2(ϕ′′) are derived:

1−µ′∫
−µ′

X1(µ′′)dµ′′ = 1 ,

2π−ϕ′∫
−ϕ′

X2(ϕ′′)dϕ′′ = 1 . (3.15)

Conditions (3.15) are similar thus, it is possible to construct the functions
X1(µ′′) and X2(ϕ′′) with the same analytical expression. These functions are
to reach maximums for µ = µ′ and ϕ = ϕ′ i. e. µ′′ = 0 and ϕ′′ = 0 and to
describe the decreasing of the reflection for other quantities. The classical
and well known Henyey-Greenstein function defined by (1.31) satisfies these
conditions. It is rather appropriate for the application, and the integrals of
types (3.15) are easy calculated for it. So the approximation on the base of the
Henyey-Greenstein function is proposed:

X1(µ′′) =
g1

1
((1−g1)2+2g1µ′)1|2 − 1

(1+g2
1+2g1µ′)1|2

· 1

(1 + g2
1 − 2g1µ′′)3|2 ,

X2(ϕ′′) =
g2

2π
·

1
(1+g2

2−g2ϕ′′|π)3|2

1
((1−g2)2+g2ϕ′|π)1|2 − 1

(1+g2
2+g2ϕ′|π)1|2

,

(3.16)

where 0 < g1 < 1 and 0 < g2 <1 are the approximation parameters.
Values A, g1, and g2 have been obtained by the simple counting of all possible

SBC magnitudes over all measurements (over the initial data but not classifi-
cation results) to estimate the accuracy of proposed approximations (3.14) and
(3.16) and to evaluate the approximation parameters. The procedure has been
conducted for the corresponding data of water and moss marsh surfaces with
choosing the concrete magnitudes of the parameters providing the minimal
standard deviation of the approximation. As the viewing angle did not exceed
45◦ (Sect. 3.1), the obtained values of albedo A have had no physical meaning (it
has not been the albedo but a certain coefficient). Concerning the anisotropy
parameters it has been obtained for water surface g1 = 0.7, g2 = 0.7 and for
moss marsh: g1 = 0.2, g2 = 0.5.

Mention that the observational grid is not rather detailed over viewing
angle and azimuth (Vasilyev A et al. 1997a, 1997b, 1997c), so the accuracy of
the obtained coefficients is not rather high, namely they could be considered
as a rough estimation with assuming their standard deviation is equal to
0.05. According to the same reason the spectral dependence of coefficients g1
and g2 (increasing from the UV to NIR spectral regions) could be ignored
and the equal magnitudes could be attributed to all wavelengths. It should be
emphasized, that the formally calculated standard deviation of approximations
(3.14) and (3.16) turns out about 10%, which is close to the observational
uncertainty. Hence, we can conclude that (3.14) and (3.16) are describing the
anisotropy of the natural surfaces reflection exactly enough, though the small
values of the standard deviation could only be the consequence of a small
amount of the grid points.
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3.5
The Problem of Excessive Absorption
of Solar Short-Wave Radiation in Clouds

Studies of the impact of aerosols and clouds on radiation balance and on radia-
tive flux divergence in the atmosphere are of great importance for the analysis
of various factors contributing to climate formation (Monin 1982; Hobbs 1993).
The data of the surface pyranometric observations of the downward and up-
ward short-wave radiation (SWR) fluxes permit us to calculate the short-wave
radiation budget (SWRB) of the surface, whereas the satellite observational
data characterize the outgoing short-wave radiation (OSWR). The difference
between SWRB and OSWR for conditions of the cloudy and clear sky deter-
mines short-wave radiative forcing at the surface Cs(S) and at the top of the
atmosphere Cs(TOA). The mean annual and mean global value of the short-
wave cloud radiative forcing Cs(TOA), at the top has been determined to vary
from −45 to −50 mW cm−2. The value Cs(TOA) = Cs(S) + Cs(A) is evidently
determined through the yields of the cloud radiative forcings of the surface
Cs(S) and atmosphere Cs(A). The ratio that describes the cloud forcing of the
system “atmosphere plus surface” has been introduced by the authors of the
study by Cess et al. (1995)

fs =
Cs(S)

Cs(TOA)
=

(Fo − Fc)bottom

(Fo − Fc)top
. (3.17)

The analysis of the observational data of the cloud radiative forcing of the
city Boulder (USA) has shown that Cs(S) = − 92.6 mW cm−2 and Cs(TOA) =
− 63.2 mW cm−2 that leads to the value fs = 1.46. The value calculated on the
basis of numerical simulations should be close to unity: fs ∼ 1. Thus, it follows
that the calculations are essentially underestimating the values of the absorbed
SWR by the cloudy atmosphere by magnitude Cs(TOA)−Cs(S) ∼ 30 mW cm−2

(Hobbs 1993; Cess et al. 1995). It has been called “excessive” (or even “anoma-
lous”) cloud absorption of shortwave radiation (Stephens and Tsay 1990; Cess
et al. 1995; Pilewskie and Valero 1995, 1996; Ramanathan et al. 1995). This
result has revealed a fundamental gap in present understanding of the cloud
impact on SWRB. This obstacle has led to an emotional scientific discussion
significantly changing the modern ideas about the role of cloudiness in climate
and weather formation (Stephens and Tsay 1990; Cess et al. 1995; Charlock et
al. 1995; King et al. 1995; Pilewskie and Valero 1995; Ramanathan et al. 1995;
Stephens 1995,1996; Titov and Zhuravleva 1995; Yamanouchi and Charlock
1995; Cess and Zhang 1996; Valero et al. 1997; Zhang et al. 1998). The im-
portance of the problem is seen even in the titles of articles (“An absorbing
mystery”, “Shortwave cloud forcing: a missing physics”, “Anomalous absorp-
tion paradox” etc.).
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3.5.1
Review of Conceptions for the “Excessive” Cloud Absorption
of Shortwave Radiation

The explanations of the excessive absorption of SWR proposed presently can
be divided into six main groups.

1. The excessive absorption is an artifact caused by observational errors
and imperfectness of data processing (Stephens and Tsay 1990; Pilewskie
and Valero 1995; Poetzsch-Heffter et al. 1995; Yamanouchi and Charlock
1995; Arking 1996; Taylor et al. 1996; Francis et al. 1997). Certain results
of SWR observations under the conditions of cloudy atmosphere have
provided the basis for this conclusion because of providing no signifi-
cant values of the cloud radiative absorption. The optical and radiative
properties of clouds are variable very much depending on the physical
mechanism of their origin and in many cases they don’t increase ra-
diation absorption by the system “atmosphere plus surface” but on the
contrary decrease it. It happens because the clouds are reflecting a signif-
icant part of incoming radiation preventing the absorption by the lower
atmospheric layers and ground surface. It also should be mentioned that
in many cases the observations don’t provide a data array sufficient for
the qualitative processing. Thus, observations in the cloudy atmosphere
frequently haven’t been accompanied with the corresponding observa-
tions in clear atmosphere at the same period, the ground albedo hasn’t
been measured every time and only reflected radiation has been reg-
istered. All these factors prevent adequate estimation of the radiative
characteristics of the cloudy atmosphere.

2. The increased absorption in the cloudy atmosphere in comparison with
the clear atmosphere could be explained with the radiation escaping
through the cloud sides in the broken clouds, as it has not been regis-
tered during the observations at the cloud top and bottom. Either field
(Hayasaka et al. 1994; Chou et al. 1995; Arking 1996) or simulated (Titov
1988, 1996a, 1996b; Romanova 1992) experiments could correspond to
this group of studies. The methodology of estimating the radiation es-
caping through the cloud sides proposed in the study by Chou et al.
(1995) a priori assumes the absence of true SWR absorption by clouds.
The authors of another study (Hayasaka et al. 1994) have processed the
observational data according to the method of study proposed by Chou
et al. (1995). The result of this processing is naturally to provide the
conclusion of SWR absorption absence by the cloud.

3. The excessive absorption is an apparent effect caused by the horizontal
transport of radiation in the cloud layer due to the horizontal heterogene-
ity of the layer (stochastic layer structure). A detailed presentation of this
approach is provided in the studies by Titov and Kasyanov (1997). In ad-
dition, it is necessary to distinguish the cases of the roughness of the top
cloud surface (case 1) and of the heterogeneity of the inner cloud struc-
ture (extinction coefficient variations; case 2). The numerical analysis
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has shown that the horizontal transport in the case of a stochastic cloud
top structure is revealed as stronger than in the case of the cloud inner
parameter variations. To estimate the absorption in the layer correctly,
the scale of the reflected and transmitted irradiances averaging over the
cloud horizontal extension should be 30 km for case 1 and 6 km for case 2
correspondingly. The case of the stochastic cloud top structure corre-
sponds to real cumulus clouds and the case of the cloud inner parameter
variations corresponds to real stratus clouds. Different combinations of
the absorption and scattering coefficients in the cloud layer and different
scales of the horizontal and vertical heterogeneity have been considered
in the study by Hignett and Taylor (1996) and the authors has revealed
that “the internal inhomogeneity in the cloud microphysics and in the
macrophysical structure in terms of cloud thickness are both important
in the determination of the cloud radiative properties”.

4. In addition to other reasons the anomalous absorption in clouds is
suggested to be explained with the water vapor absorption within the
absorption bands in the NIR spectral region, which has not been ac-
counted for before (Evans and Puckrin 1996; Crisp and Zuffada 1997;
Nesmelova et al. 1997; O’Hirok and Gautier 1997; Savijarvi et al. 1997;
Harshvardhan et al. 1998; Ramaswami and Freidenreih 1998). However,
while computing, the detailed and careful accounting of the molecular
absorption in the NIR region has not provided the observed magnitude
of the cloud absorption (Kiel et al. 1995; Ramaswami and Freidenreih
1998). Besides, the results of spectral observations (Titov and Zhuravleva
1995) have demonstrated the strongest effect of the anomalous absorp-
tion in the visual spectral region, where the water vapor absorption is too
weak. Thus, it is seen that the molecular absorption by water vapor in the
NIR region is not enough for an explanation of anomalous absorption.

5. The microphysical properties of clouds have been implied as a reason
of the excessive absorption in various studies (Ackerman and Cox 1981;
Wiscombe et al. 1984; Hegg 1986; Ackerman and Stephens 1987). Very
large drops of the cloud are considered in the studies by Ackerman and
Stephens (1987) and Wiscombe et al. (1984); it is suggested the presence
of them actually increases the radiation absorption within clouds, but it
is too weak and insufficient to explain the anomalous absorption. The
authors of another study (Hegg 1986) have calculated in detail the optical
and radiative parameters of clouds containing two-layer particles with
absorbing nuclei and a nonabsorbent shell and have not obtained high
enough values of the absorption by clouds either. In all considered mod-
els, the noticeable absorption by clouds succeeds only when assuming
a significant amount of the atmospheric aerosols (Wiscombe 1995; Bott
1997; Vasilyev A and Ivlev 1997).

6. The authors of three studies (Kiel et al. 1995;Hignett and Taylor 1996; Ra-
maswami and Freidenreich 1998) have considered the above-mentioned
reasons in different combinations and they conclude that with certain
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assumptions the calculated and observed values of the cloud radiation
absorption turns out to be close to each other. Nevertheless, it is safe to
say that there is no exhaustive explanation for the total set of observa-
tions. Thus, the problem has not been solved yet as the authors Wiscombe
(1995), Lubin et al. (1996), Bott 1997, Ramanathan and Vogelman (1997),
and Collins (1998) point out.

3.5.2
Comparison of the Observational Results of the Shortwave Radiation Absorption
for Different Airborne Experiments

In the above-mentioned studies of radiation absorption by clouds (confirm-
ing or denying the excessive absorption), the satellite data and the data of
the meteorological network have been mainly used. These observations were
accomplished with different instruments during a long period that called for
complicated statistical data processing. As a result, an averaging picture includ-
ing different types of clouds has been obtained. The absence of either uniform
data or a common methodology for data choice and processing is likely to lead
to the contradictory conclusions in the studies hereinbefore described.

Let the airborne observations considered in the previous section be ana-
lyzed in terms of factor fs. Absorption R = (F↓ − F↑)top − (F↓ − F↑)base in the
atmospheric layer with and without clouds is computed with the airborne mea-
surements of SWR. Table 3.2 demonstrates the conditions and results of the
airborne experiments and the values of factor fs for the total (within spectral
region 0.3–3.0 µm) and spectral (for wavelength 0.5 µm) radiation measure-
ments as values of the total absorption in the layer of the clear or cloudy
atmosphere. The results of the airborne observations are seen to allow fixing
of the effect of the strong shortwave anomalous absorption (fs > 1) in a set of
cases. In other cases there is no influence of clouds on the radiation absorption
(fs = 1) and in some cases the strong reflection of solar radiation by clouds
even prevents its absorption by the below cloud atmospheric layer and by the
ground surface (fs < 1).

3.5.3
Dependence of Shortwave Radiation Absorption upon Cloud Optical Thickness

In accordance with the results of the experiments either in pure and dust clear
atmosphere or under overcast conditions the relative value of SWR absorption
b(µ0, τ) = R|πSµ0 is presented as a function of the optical thickness in the
studies by Kondratyev et al. (1996, 1997a, 1997b) and Vasilyev A et al. (1994).
The approximation of the experimental points has elucidated the linear de-
pendence of function b(τ) that is confirming the analytical expression for SWR
absorption presented in the book by Minin (1988). Table 3.2 demonstrates dif-
ferent magnitudes of factor fs. It is close to unity for the thin clouds with optical
thickness τ ≤ 7 especially in the pure atmosphere in the Arctic region. In cases
with a high content of sand and black carbon aerosols it is valid fs ≥ 2.5 at
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wavelength 0.5 µm and fs ∼ 1.5 for total radiation over the shortwave spectral
region (experiments 1, 2 and 4) that is pointing to the strong absorption of
solar radiation in the atmosphere. Thus, the anomalous absorption obviously
reveals itself under conditions of a high content of absorbing aerosols together
with cloudiness of large optical thickness (τ > 15) and for small solar zenith
angles. Moreover, this effect is not displayed at all in the pure clouds of small
optical thickness.

3.5.4
Dependence of Shortwave Radiation Absorption upon Geographical Latitude
and Solar Zenith Angle

Presented in Table 3.2 are values of parameter fs and absorption R, which
demonstrate a decrease as they move from tropical to polar regions, which
is in agreement with the analysis results in the studies by Kondratyev et al.
(1996, 1997a, 1997b) and Vasilyev A et al. (1994). This tendency is broken
for the industrial zones characterized with high pollution of the atmosphere
(experiments 3–5) and in case 6 of two-layer cloudiness.

The detailed analysis of the mean monthly data sets of the total solar short-
wave irradiance obtained from the ground and satellite observations during
46 months (from March 1985 till December 1988) has been accomplished in

Fig.3.20. a Latitudinal dependence of the parameter fs as per Li et al. (1995) (solid line)
and the values obtained from the airborne observations (dashed and dotted lines). Squares
point to the values of fs in total shortwave spectrum, circles point to the wavelength 0.5 µm;
b Dependence of the parameter fs of cosine of the solar incident angle as per Imre et al. (1996)
(nomograph) and the values obtained from the airborne observation. Squares indicate the
total spectrum data; triangles indicate the data at the wavelength 0.5 µm
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the study by Li et al. (1995). The results of this study include the latitudinal
dependence of parameter fs cited in Fig. 3.20a as a solid line. The results of the
airborne observations (Kondratyev 1972; Kondratyev et al. 1973a; Kondratyev
and Ter-Markaryants 1976; Kondratyev and Binenko 1981; Kondratyev and
Binenko 1984; Vasilyev O et al. 1987; Grishechkin et al. 1989; Vasilyev A et al.
1994) are presented in the same figure. Squares and dashed lines correspond to
the total shortwave observations with the pyranometer, which almost coincide
with the data of the study by Li et al. (1995). Circles and dotted lines correspond
to the observations at a wavelength equal to 0.5 µm and they show crucially
larger values than the results of the total observations while keeping the same
latitudinal dependence. As hereinbefore described the values of parameter fs
exceeding 2.0 indicate the high content of the absorbing aerosols together with
the large optical thickness of the cloud.

The variations of the anomalous absorption with solar zenith angle were
studied in Imre et al. (1996) and Minnet (1999). The authors Imre et al. (1996)
derived the relationship between parameter fs and solar zenith angle, which we
are citing in Fig. 3.20b (nomograph) together with our results of the airborne
observations (Kondratyev 1972; Kondratyev et al. 1973a; Kondratyev and Ter-
Markaryants 1976; Kondratyev and Binenko 1981, 1984; Vasilyev O et al. 1987;
Grishechkin et al. 1989; Vasilyev A et al. 1994) (squares indicate total spectrum
data, triangles indicate data at wavelength 0.5 µm). The solar angle dependence
of the airborne data of the total irradiances is evidently coinciding with the
data of Imre et al. (1996) while the dependence in question for wavelength
0.5 µm is significantly higher. It should be pointed out that the mentioned
coincidence reflects the essence of the specific features of radiation absorption
in cloudy atmosphere, though the results either by Imre et al. (1996) and Li et
al. (1995) or by Kondratyev (1972), Kondratyev et al. (1973a), Kondratyev and
Ter-Markaryants (1976), Kondratyev and Binenko (1981, 1984), Vasilyev Oet al.
(1987), Grishechkin et al. (1989), and Vasilyev Aet al. (1994) were obtained with
different instruments, methodologies of measurements and processing. Thus,
the excessive (anomalous) absorption really exists and it is mostly evinced in
the shortwave spectral region.

The main result of the study by Minnet (1999) is the following: “solar zenith
angle is critical in determining whether clouds heat or cool the surface. For
large zenith angles (µ0 > 0.15) the infrared heating of clouds is greater than
the reduction in insolation caused by clouds, and the surface is heated by the
presence of cloud. For smaller zenith angles, cloud cover cools the surface
and for intermediate angles, the surface radiation budget is insensitive to the
presence of or changes in, cloud cover.” The linear dependence of the cloud
radiative forcing upon the cosine of the solar zenith angle in the Arctic has
been revealed in the study by Minnet (1999).

The impact of the thick cloudiness and black carbon aerosols on the solar
radiation absorption has been revealed in the study by Liao and Seinfield
(1998) to produce the forcing values three times higher than those under the
cloud-free conditions. Moreover, it is increasing with the growth of cosine of
the solar zenith angle. Thus, the absorbing aerosols within the clouds cause
the cloud radiation absorption.
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Fig.3.21. The annual zonal cloud amount: (1) averaged over the latitude; (2) above the sea
surface and (3) above the ground surface in 1971–1990 according to Matveev et al. (1986)

The common features of the considered relationship are clear because of
the evident relation between the solar zenith angle and geographical latitude
(keeping in mind that the radiative experiments are accomplished around
midday). However, the original reason is not clear: whether it is the solar
height or different cloud optical properties in different latitudinal zones.

It is obvious that for elucidation of the cloud absorption a sufficient amount
of clouds is necessary. It is of special interest that the comparison of the
latitudinal dependence of the cloud amount (Fig. 3.21) from the study by
Matveev et al. (1986) and the dependence of parameter fs characterizing the
cloud radiative forcing as per Fig. 3.20b are seen to coincide qualitatively.

The airborne radiative experiments accomplished in the range of CAENEX,
GAAREX, GARP and GATE programs have apparently demonstrated a signif-
icant absorption of SWR by clouds. In the remainder of this subsection the
following thesis are given:

The excessive absorption of SWR is defined just by the optical properties of
cloudiness and is not caused by the observational or processing uncertainties
as some investigators have presented.

1. The relationship between the scattering and absorbing properties of
stratus clouds and the geographical latitude, solar zenith angle, and type
of the atmospheric aerosols within clouds is experimentally proved.

2. The increase in radiation absorption is stronger in thick cloud layers in
a dusty atmosphere containing carbon or sand aerosols.

The effect of the excessive absorption is observed over the shortwave spectral
regionasawholebut it is especiallyhigh for the shorterwavelengths (λ < 0.7µ).
The existence of the anomalous absorption fundamentally changes the current
understanding of the energetic budget of the atmosphere. In this connection,
it is of great importance to account for the atmospheric heating caused by the
cloud absorption of SWR for climate forecast simulations.



122 Spectral Measurements of Solar Irradiance and Radiance in Clear and Cloudy Atmospheres

3.6
Ground and Satellite Solar Radiance Observation in an Overcast Sky

This section presents brief information about the experiments whose results
have been used for the retrieval of the cloud optical parameters. There are
groundobservationswith the spectral instrumentsdescribed invarious studies
(Mikhailov and Voitov 1969; Kondratyev and Binenko 1981; Radionov et al.
1981; Gorodetskiy et al. 1995; Melnikova et al. 1997) and satellite observations
with the POLDER instrument on board the ADEOS satellite (Deschamps et al.
1994; Breon et al. 1998).

3.6.1
Ground Observations

The ground observations have included the transmitted spectral radiance mea-
surements for several viewing angles. The conditions of their accomplishment
are listed in Table 3.3 (the numeration in the table continues Table 3.2). The
first experiment was performed under overcast conditions at the drifting Arc-
tic station SP-22 on the 13th August and on the 8th October 1979 (Radionov
et al. 1981). The measurements had been carried out in the spectral interval
0.35–0.96 µm with resolution 0.001 µm, but the results were processed only at
11 spectral points in each spectrum. The error of the transmitted radiance mea-
surements was evaluated within 3% (Mikhailov and Voitov 1969; Radionov et
al. 1981). There were extended, horizontally homogeneous thick clouds during
the experiment.

The second experiment was accomplished under the overcast condition in
St. Petersburg’s suburb on 12th April 1996 (Melnikova et al. 1997) with the
spectral instrument, constructed by the authors of the study by Gorodetskiy
et al. (1995) on the basis of the CCD matrix detector and with spectral res-
olution 0.002 µm and spectral range 0.35–0.76 µm (Gorodetskiy et al. 1995).
Use of this spectrometer allowed registration of the signal within the spectral
ranges 0.35–0.76 µm simultaneously in every spectral point. The instrument
was characterized with small size and was PC or Notebook compatible thus,
it was convenient for field observations, provided the diminishing of some
observational uncertainties and allowed the initial data processing at once.

Table 3.3. Details of the ground radiative experiments

No. Experiment µ0 ϕ, ◦N Date As Other conditions

11 Arctic drifting
station SP-22

0.500 85 13 August 1979 0.60 Surface is wet snow

12 Arctic drifting
station SP-22

0.275 85 08 October 1979 0.90 Surface is fresh snow

13 Petrodvorets 0.620 60 12 April 1996 0.70 Surface is fresh snow
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In all these cases, the data were obtained for 5 viewing angles (0◦, 10◦, 15◦,
45◦, 70◦) and for 5 azimuth angles to control the cloudiness homogeneity. One
set of measurements took about 10 minutes in the Arctic experiments. The
measurements were accomplished at midday, when the solar zenith angle was
changing weakly during the 10-minute period. The transmitted radiance for
different azimuth angles and for the one viewing angle varying in the range of
the measurement error was averaged in the data processing.

During the Arctic experiment the observations of the downwelling and
upwelling irradiance were accomplished and ground albedo A was obtained
in Radionov et al. (1981). Different types of snow cover were studied (fresh
snow, wet snow and so on), and in all cases the spectral dependence of ground
albedo A was weak. On the 13th August 1979, the ground surface was covered
with wet snow and ground albedo A was about 0.6. On the 8th October 1979,
the ground surface was covered with fresh snow and ground albedo A was
about 0.9.

In addition, the observation of direct solar radiation was carried out in
the clear sky during the Arctic experiment of 1979. It gave the opportunity of
calibrating the instrument in units of solar incident flux πS at the top of the
atmosphere necessary for the retrieval of optical thickness τ. The experiment
on 12th April 1996 was accomplished in a similar manner excluding the mea-
surement of direct solar radiation in the clear sky, hence the instrument was
not calibrated and optical thickness τ could not have been obtained. Figure 3.22
illustrates the spectral irradiances for cosines 1.0, 0.985, 0.966, 0.707, 0.340.

Fig.3.22. Results of the transmitted radiance observation (relative units) for overcast sky on
12th April 1996



124 Spectral Measurements of Solar Irradiance and Radiance in Clear and Cloudy Atmospheres

3.6.2
Satellite Observations

The POLDER radiometer consisted of three principal components: a CCD
matrix detector, a rotating wheel carrying the polarizers and spectral filters,
and wide field of view (FOV) telecentric optics as described in Deschamps et
al. (1994). The optics had a focal length of 3.57 mm with a maximum FOV
of 114◦. POLDER acquired measurements in nine bands, three of which were
polarized.

All POLDER measurements were sent to Centre National des Etudes Spa-
tiales (CNES, France) where they were processed. One can find a detailed
description in Breon et al. (1998). Processed data have 3 levels of products.
Level-1 product consists of radiometric and geometric processing. It yields
top-of-the-atmosphere geocoded radiances. Level-2 processing generates geo-
physical parameters from individual Level-1 products, which cover the fraction
of the Earth observed during one ADEOS orbit with adequate illumination con-
ditions. POLDER Level-2 product is taken here for interpreting.

Table 3.4. Details of the satellite experiments

No. Experiment, µ0 ϕ, ◦N Date Image τ0 ω0

geographic site size
(pixels)

14 The Southwest 0.7–0.9 43.7–47.8 24 June 1997 388 15 0.996
part of Europe,
1.65◦E–32.04◦E

15 The Atlantic Ocean, and 0.7–0.9 43.7–47.8 24 June 1997 316 15 0.997
the South of France
24.80◦W–3.24◦E

16 The North Sea and the 0.6– 0.8 57.7–60.8 24 June 1997 316 20 0.995
West part of Scandinavia
−0.48◦E–17.22◦E

17 Scandinavia 0.6–0.8 57.7–60.8 24 June 1997 289 15 0.995
and the Baltic Sea
1.57◦–38.88◦E

18 Baltic Sea 0.6–0.8 57.7–60.8 24 June 1997 316 7 0.995
and the Northwest part
of Russia 27.65◦–66.72◦E

19 Southeast Asia 0.8–1.0 6.7–13.8 24 June 1997 585 40 0.995
and the Pacific Ocean
121.63◦–123.61◦W

20 The East part of Siberia, 0.7–0.9 45.7–51.3 24 June 1997 585 30 0.997
the Pacific Ocean, Sakhalin
Island 127.60◦–148.68◦W
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The geometry for pixel was the following: the point remained within the
POLDER field while the satellite passed over it. As the satellite passed over
a target, from 6 up to 14 directional radiance measurements (for each spec-
tral band) were performed aiming at the point. Therefore, POLDER succes-
sive observations allowed the measurement of the multidirectional reflectance
properties of any target within the instrument swath.

Three wavelength channels with the centers at 443, 670 and 865 nm were
available for our analysis. The radiance multidirectional data were given in
units of the normalized radiance, i. e. the maximum spectral radiance divided
by the solar spectral irradiance at nadir and multiplied by πµ0, where µ0 was
the cosine of the solar incident angle. The solar angle, azimuth angle, viewing
directions and cloud amount were also included to the data array. The date
of the observations under interpretation was 24 June 1997. Seven sites with
extended cloud fields were chosen.

The information about the satellite images used for the optical parameters
retrieval hereinafter are shown in Table 3.4. The values of the single scattering
albedo and the optical thickness typical for most of the pixels of the image are
presented in columns number eight and nine of the table. We should mention
that images 14 and 15 demonstrate the same cloud field, as do images 16–18.
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CHAPTER 4

The Problem
of Retrieving Atmospheric Parameters
from Radiative Observations

This chapter presents a general statement of the problem of determination of
atmospheric and surface parameters from observational results of radiative
characteristics. The methods of determining the parameters of the radiative
transfer theoretical model providing the minimal standard deviation (SD)
between the numerical and measured results for the correspondent charac-
teristics are considered below in detail. The choice of a concrete set of the
parameters, the influence of systematic uncertainties of the numerical simu-
lations and the technical realization of the considered methods are discussed
further.

4.1
Direct and Inverse Problems of Atmospheric Optics

Hereinbefore described in Chaps. 1 and 2 we have demonstrated the possibil-
ities for solving the problem of calculating the solar radiance and irradiance
after setting the parameters of the atmosphere and ground surface (volume
coefficients of absorption and scattering, phase function, and surface albedo).
Furthermore, the results of the characteristic radiative observations have been
presented in Chap. 3. Therefore, this gives us the possibility of relating the
problem of selecting the atmospheric parameters, which allowed computing
values to be equal to the measured characteristics. The problems considered in
Chap. 2, i. e. calculations of the observational characteristics with the chosen
parameters of the atmosphere and surface, are specified as direct problems
of atmospheric optics. Contrary to this, the problems considered below, i. e.
determination of the atmospheric and surface parameters from observational
results of the radiative characteristics, are specified as inverse problems of
atmospheric optics.

The solution of the direct problem implies the creation of the mathemat-
ical model of observations, on the basis of which one can relate the physical
notions concerning the interaction of radiation with atmosphere and surface
(see Chap. 1). We should point out two important obstacles for further consid-
eration.

Firstly, the choice of the physical and consequently mathematical models
of the mentioned processes is ambiguous. Actually, while creating the mathe-
matical descriptions, different idealizations of the concrete physical processes
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together with simplifications and approximations are inevitable, so any model
is simpler than the reality is, so it is inadequate when compared to the reality
to a certain degree. Hence, the choice of the concrete model together with its
parameters is always ambiguous and it is defined either with the physical pro-
cesses put to the model, or with the degree of approximation of the description
of these processes. For example, if we are considering only the radiative trans-
fer, the parameters of the model will be the following: optical thickness, single
scattering albedo, and phase function (see Sect. 1.3). Then we could account
for the processes of the radiation-media interaction defining the mentioned
values (see Sect. 1.2), and the parameters of the model will be: vertical profiles
of the pressure, temperature, concentrations of the atmospheric gases, and
volume coefficients of the aerosol scattering and absorption.

Secondly, the number of parameters describing the mentioned processes
is always finite in the range of the chosen model. It is readily seen from the
technical point of view and needs no comment. However, from the other side
the number of the measured characteristics is finite too. Actually, if even the
continuous spectrum of the irradiance or radiance is registered, really it is
representing as a finite array of the measured characteristics (see Sect. 3.1).
The opposite case is impossible because of digitations of the output signal.

Thus, it is safe to say without the generality loss that while solving the direct
problem we realize an algorithm allowing the calculation of a strictly limited
set of values through a strictly limited set of parameters. This statement is
expressed with the mathematically formal relation:

Ỹ = G(U) , (4.1)

where Ỹ ≡ (ỹi), i = 1, . . ., N is the set, i. e. the vector, of the calculated val-
ues, corresponding to real N measurements; G is the operator of the direct
problem solving, i. e. the realization of a certain (concretely chosen as has
been pointed out above) mathematical model of the observational process;
U = (uj), j = 1, . . ., M is the vector of parameters of the model in question.
In general the components of vectors Ỹ and U could be inhomogeneous, i. e.
could have different meaning and different units (it is always so for vector U).
We should mention that vector U includes all necessary parameters for solving
the direct problem (not only parameters characterizing the atmosphere and
surface but also the solar zenith angle, value of the incident flux at the top of the
atmosphere, spectroscopic parameters for computing the volume coefficient
of the molecular absorption – Sect. 1.2 etc.), and vector Ỹ contains only the
observational results.

The formal statement of the inverse problem is determination (in atmo-
spheric optics it is accepted to say retrieval) of the components of parameter
vector U with the specified concrete values of observational result vector Y.
However, there is no sense in retrieving all parameters included in vector U.
Actually, some parameters of vector U, for example the solar zenith angle, are
known (exacter: are supposed to be known). Therefore, from the components
of vector U let us select vector X ≡ (xk), k = 1. . ., K, which has to be retrieved.
The concrete variants of this selection are considered in the study by Timofeyev
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(1998) where it is proposed to classify the inverse problems coming from the
type of known and desired parameters. We will return to the topic of choice
in Sect. 4.3, and now let us assume that the concrete parameters contained in
vector X are specified. Equation (4.1) could now be rewritten as:

Ỹ(X) = G(X, U \ X) , (4.2)

where U \ X is the set of vector U components not included in vector X, i. e.
the known parameters of the direct problem. Thus: G(U) = G(X, U \ X), i. e.
solution of the direct problem is not to depend on which parameters are to be
retrieved.

The inverse problem could be formulated as a determination of vector X
from the equation:

G(X, U \ X) = Y . (4.3)

However, in a general case system (4.3) may have no solution. Indeed, as has
been shown above, the operator of the direct problem G is just an approxi-
mation of reality. Hence, even if we supposed that it reflected reality exactly,
vector Y would not be adequate to reality because of the systematic and ran-
dom observational uncertainties. Thus, a set of possible solutions of the direct
problem Ỹ(X) could disagree with a set of possible values of the observational
results Y. In addition, the case of the nonexistence of the solution for (4.3) is
quite a likely one, even in the simplest variant of the linear operator G. It is con-
nected with the general properties of the abstract linear operators (Tikhonov
and Aresnin 1986; Kolmogorov and Fomin 1989). However in our version of
the inverse problem statement it is evident: if observations {yi} are linearly
independent and their quantity exceeds the quantity of the parameters under
retrieval (M > K), the system of the linear equations will be unsolved. There-
fore, generally the inverse problem of atmospheric optics can be formulated
as follows: to find a set of parameters of the direct problem so that its solution
would be as close as possible to the observational results. In mathematical
wording given in the book by Tikhonov and Aresnin (1986), it means to find
value X, for which the minimum is reached:

min
X∈T

ρ(Y, Ỹ(X)) = min
X∈T

ρ(Y, G(X, U \ X)) , (4.4)

where T is the set of possible solutions, ρ(. . .) is the certain measure in space
of the observational vectors, i. e. the metrics (more details are in the book by
Kolmogorov and Fomin 1989). Note that in particular cases the minimum in
question could be equal to zero, i. e. the equality in relation Y = G(X, U \ X) is
possible.

The essential factor, which is to be accounted for while solving the inverse
problem, is the observational uncertainty. These questions will be considered
in further detail and here we only mention that unknown parameters X are
determined with the uncertainty as well. Hence, accounting for the uncertainty
is an alienable and important stage of the inverse problem solving in atmo-
spheric optics. Besides, as the base of the inverse problem solving consists of
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the comparison between the observational results and solution of the direct
problem, the inverse problems are solved with the accuracy defined with the
uncertainty of the selected model parameters choice, i. e. with the concrete
choice of operator G. Hence, the stage of the choice of method for the direct
problem solving is the most important part of solving the inverse problem. Be-
sides, as has been mentioned above, the operator of the direct problem solving
is inevitably approximated in any case; hence, the account of the approximation
influence on the results is necessary as well.

In conclusion, the following general scheme for numerically solving the
inverse problems in atmospheric optics could be proposed:

1. Studying the contemporary theory of the physical processes forming the
measured characteristics.

2. Choosing a concrete mathematical model of the observations together
with its parameters, realization of this model on computer.

3. The error analysis of the direct problem.

4. Dividing the parameters of the mathematical model to the known ones
and to the subjects of the retrieval.

5. Choosing the method for solving the inverse problem. Estimating its
accuracy.

6. Realization of the solving algorithm on computer.

7. Observational data processing, the analysis and interpretation.

Excluding the first one, which has been considered in Chap. 1 we will discuss
all listed stages further, applying them to concrete inverse problems. However,
the survey is more appropriate in a different order from that listed above. We
should mention that firstly the described scheme has been proposed according
to the results of the accomplished observations, so the actual problem of the
optimal experimentplanningwill notbe touchedupon. Secondly, thepresented
algorithm has a more complicated logic in practice; in particular, returning to
previous stages with the purpose of verifying the model and modernization of
the numerical methods are possible. Thus, the numerous consequent versions
of the processed results presented in the studies by Chu et al. (1989, 1993)
and Steele and Turko (1997) are the standard situation while processing the
observational data of atmospheric optics. In fact, it is well known to specialists:
the results of the field observations in majority is impossible to process once
and for all, there is always something to improve.

We will not review the huge volume and variety of recent inverse problems
of atmospheric optics and methods of their solution. As has been mentioned
hereinbefore a certain classification of these problems was presented in the
study by Timofeyev (1998), and concerning the solution methods there has
been no classification for them yet. Here we will confine ourselves only to
the concrete inverse problems of retrieval of the atmospheric and surface
parameters from the results of the airborne and satellite observations of the
solar spectral radiance and irradiance in the atmosphere considered in Chap. 3.
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It is possible to distinguish two essentially different cases: clear and overcast
sky.

In case of the overcast sky, we succeeded in obtaining the explicit analytical
solution, i. e., to write the components of vector X through the results of
observations Y as explicit analytical expressions. Moreover, these expressions
are not the approximations or empirical formulas, which are often used, but
the consequences of the rigorous relations of the radiative transfer theory.
We should point out that deriving similar relations for the inverse problem
of atmospheric optics is a rather rare case against the backcloth of the recent
mass enthusiasm for the numerical solving of the inverse problems on PC.
Actually, it corresponds to the philosophical traditions of physics according
to which the analytical methods of description of the natural phenomena are
preferable.

As follows from the results of the well-known study by Tikhonov (1943)
concerning the mathematical aspects of the inverse problem theory: if the in-
verse problem solution is the limited set of continues functions1 (the analytical
solution is the limited set), this solution will be stable. It has been shown in
the book by Prasolov (1995) that the analysis of the stability of the inverse
problem solution (robustness) in the limited class of functions is reduced to
the statement of the intervals of the continuity of the functions describing the
solution. It follows from Chebyshev theorems about the solution stability in
the polynomials basis and from the Weierstrass theorem about the existence
of the uniform limit (converging to the solution) in the continuous function
space. In the case of the analytical solution, its analysis for the continuity is not
complicated. Further, the corresponding results will be presented while in de-
tail considering the possibilities of the analytical approaches. The derivations
of the pointed analytical relations will be shown in Chap. 6, and the analysis of
the results of the observational data processing for the cloudy atmosphere will
be considered in Chap. 7.

Regretfully, a similar analytical solution for the clear atmosphere has not
succeeded. It is easy to understand it basis on general principles. The variant of
the overcast sky, when only the diffused radiation is measured, and the variant
of the pure clear atmosphere, when only the direct radiation is accounted for
(the optical thickness is easily obtained from Beer’s law) are the limit cases of
very strong diffusion or its absence. The real clear atmosphere is an interme-
diate case from the point of view of the diffuse strength and the intermediate
cases are usually more complicated than the limit ones. So, while processing
the vertical profiles of the spectral irradiances, (Chap. 3) the inverse problem
has been put as a problem of numerical choice of the parameters satisfying
the above-formulated demand of the minimum minX∈T ρ(Y, G(X, U \ X)). The
search for the minimum (4.4) is not physical but a mathematical problem.
Thus, in this chapter this solution will be considered from the mathematical
side while accounting for the physical conditions and observational errors.

1In the original wording by Andrey Tikhonov, the term “continues mapping in the compact space”
is used. It is more general than that which we are using but these terms coincide in the case of finite
dimensioned space, which we are considering.
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The solution of the inverse problem for the irradiance observations in the
atmosphere and its results will be described in Chap. 5.

Before we present the concrete formulas and algorithms of the search for
minimum (4.4), we will mark that the mathematical aspects of the mentioned
problem solving are presented often in a rather abstract manner (Kondratyev
andTimofeyev1970) (coming fromtheapproachesofvariationcalculusand the
theory of self conjugate operators in Gilbert space, Elsgolts 1969; Kolmogorov
and Fomin 1989). Sometimes it is complicated in practical applications of
the abstract expressions and they are perceived as formal receipts for the
problem solving without the real physical meaning. Besides, the important
questions of the choice of the mathematical model for the direct problem
solving, the choice of its concrete parameters and their influence are out
of the scope of such a presentation. Our experience of solving the inverse
problems of atmospheric optics demonstrates that the understanding of the
physical meaning of the relations in use plays an important role together
with the formal mathematical approaches. Thus, we will try to present the
indicated mathematical approaches not from the abstract positions but from
the applied ones in the simplest manner not ignoring even the technical aspects
of the realization. To understand such a presentation knowledge of linear
algebra (Ilyin and Pozdnyak 1978) and mathematical statistics (Cramer 1946)
is enough. We should mention that it is very convenient for comprehension and
analysis of the described approaches to consider them applying to the problems
of the minimal dimensions (one-dimensional and two-dimensional).

The methodology presented below is not the only approach to the search for
minimum (4.4). In fact, the stated problem relates to the class of mathemat-
ical extreme problems, whose solutions are well known nowadays (Vasilyev
F 1988). For example, in practice such elementary manner as a sorting of
a limited quantity of the vector X variants (Kaufman and Tanre 1998) is often
used for the solution search. However, the methodology described below is the
mathematically faultless one and allows for the correct account of the obser-
vational uncertainties that is particularly important. Its application becomes
increasingly popular with the development of the possibilities of computer
techniques.

We will begin the presentation from the definition of the distance between
the vectors. Let us use the standard Euclid metrics (Kolmogorov and Fomin
1989) i. e. assume the following:

ρ(Y(1), Y(2)) =
1
N

√√√√ N∑
i=1

(y(1)
i − y(2)

i )2 . (4.5)

The matter of Euclid metrics (4.5) is the SD of two vectors, i. e. from the physical
point of view we are interested in the closeness between the observational
results and the direct problem solution in average over the entire observational
data set i = 1, . . ., N. The choice of this metric is predetermined because only it
succeeds the construction of the real algorithms for the search of the metrics
minimum. For example, if we take not an average difference between the
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observational and calculation results but the one, maximum over all points
i = 1, . . ., N, the path described below will become impassable.

The distance between the observational and calculated values of R ≡
ρ(Y, G(X, U \ X)) is called a discrepancy. Thus, finally it is possible to de-
fine the formulated problem as the revealing of the values of the vector X
components through the known observational vector Y corresponding to the
minimum of discrepancy:

R =
1
N

√√√√ N∑
i=1

(yi − ỹi)2 , Ỹ = G(X, U \ X) . (4.6)

The problem formulated in this manner constitutes the matter of a least-
squares technique (LST), proposed by CF Gauss. The following section contains
the consequent elucidating of the LST, its specifics and modification.

4.2
The Least-Square Technique for Inverse Problem Solution

Write the solution of the direct problem explicitly through the vector compo-
nents of the observations and initial parameters:

ỹi = gi(x1, . . ., xK) , i = 1, . . ., N , (4.7)

where gi(. . .) are certain functions where the components of vector U \ X are
included, however we will not write them further in the explicit relations.
Substituting (4.7) to the expression for discrepancy (4.6) and considering the
square of discrepancy R2 as a function of variables xk, k = 1, . . ., K to obtain its
extremums we derive the following equation system:

∂R2

∂xk
= 0 ,

i. e. the same in detail:

N∑
i=1

(yi − gi(x1, . . ., xK))
∂gi(x1, . . ., xK)

∂xk
= 0 , k = 1, . . ., K . (4.8)

In the common case of nonlinear functions gi the direct obtaining of the
solutions of system (4.8) and their analysis for the minimum of discrepancy are
rather complicated. Thus, to begin with, consider the case of linear functions gi,
which could be further generalized to the nonlinear dependence. Besides the
problems of obtaining the parameters of the linear dependence with LST often
appear, for example these veryproblemshavebeen solvedduring the secondary
processing of the airborne irradiance data (Sect. 3.2).
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Equation (4.7) in the case of the linear dependence is written as follows:

ỹi = gi0 +
K∑

k=1

gikxk . (4.9)

Coefficients gi0, gik are not to be the identical constants at all. They can be
rather complicated functions of vector U\X. It should only be noted that the
coefficients are constants fromthe senseof the considered relationshipbetween
the observations and desired parameters because all parameters of vector U\X
are known and fixed within the range of the concrete inverse problem. The
substitution of (4.9) to equation system (4.8) leads to the system of K linear
algebraic equations with K unknowns:

K∑
j=1

xj

(
N∑

i=1

gijgik

)
=

N∑
i=1

(yi − gi0)gik , k = 1, . . ., K . (4.10)

Rewrite (4.10) in the matrix form using above-defined vectors X ≡ (xk),
Y ≡ (yi) and introducing vector G0 ≡ (gi0) together with matrix G ≡ (gik),
i = 1, . . ., N, k = 1, . . ., K:

(G+G)X = G+(Y − G0) (4.11)

where the sign “+” specifies the matrix transposition. The vectors are assumed
as columns; the first indices of the matrix are assumed as indices of a line while
writing system (4.11), and we will stick to this order. Multiplying both parts of
(4.11) from the left-hand side to combination (G+G)−1 the desired solution is
obtained:

X = (G+G)−1G+(Y − G0) , (4.12)

We should mention that matrix (G+G) of equation system (4.11) is symmetric
(
∑N

i=1 gijgik =
∑N

i=1 gikgij) and positive defined (as per Sylvester criterion (Ilyin
and Pozdnyak 1978)). Hence, solution (4.12) exists, it is unique (because the
determinant of the positive defined matrix exceeds zero) and corresponds to
the discrepancy minimum (because the positive defined matrix (G+G) is its
second-order derivative). Equation (4.12) is called a solution of the system of
linear equations G0 + GX = Y with LST. Further, we will use this terminology.

The following standard normalizing approach (Box and Jenkins 1970) is
recommended here and further to diminish the possible uncertainty con-
necting with accumulation of the computer errors of the rounding-off dur-
ing the practical calculations with (4.12). Specify system (4.11) as AX = B
for a brevity and introduce operator dk =

√
akk, k = 1, . . ., K. Pass to system

A′X′ = B′, where a′
jk = ajk|(djdk), b′

k = bk|dk and after its solution X′ = (A′)−1B
obtain final results xk = x′

k|dk. The effective square root technique (Kalinkin
1978) is appropriate for the matrix A′ inversion owing to its symmetry and
positive definiteness. The computing of the factors in (4.12) is to be accom-
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plished from the right-hand side to the left-hand side; hence, all operations
will be reduced to the multiplying of the vector by the matrix.

Hereinbeforewehaveassumed that theyield to thediscrepancyof all squares
of the differences between the observational and calculation results is the same.
However, it is often desirable to account for the individual specific of these
yields. In this case, we use the generalization of the least-squares technique –
the least-squares technique “with weights” (Kalinkin 1978). Write the equation
for the discrepancy (4.6) as:

R2 =
N∑

i=1

wi(yi − ỹi)2
/ N∑

i=1

wi , (4.13)

where wi > 0 is a certain “weight”, attributed to point i. Then for linear
dependence (4.9) system (4.10) transforms to:

K∑
j=1

xj

(
N∑

i=1

wigijgik

)
=

N∑
i=1

(yi − gi0)wigik , k = 1, . . ., K . (4.14)

Not a vector but the diagonal weight matrix W ≡ (wij), wii = wi, wi,j �=i = 0,
i = 1, . . ., N, j = 1, . . ., N, is necessary to introduce for writing equation system
(4.14) and for solving it in the matrix form. Then the matrix of system (4.14) is
written as (G+WG), the free term is written as G+W(Y − G0) and the solution
is written as:

X = (G+WG)−1G+W(Y − G0) . (4.15)

It is important to mention that explicit expressions (4.14) are more convenient
to use during the practical calculations of the matrix and free term. The
meaning of the introduced weight matrix W will become clear in the following
section. Mention here, that the solution of the problem with LST does not
depend on the absolute magnitudes of the weights, i. e. the multiplying of all
values wi by the constant does not change the values of desired parameters X.
In particular, if all wi are equal, then solution (4.15) will coincide with the case
of the solution “without weights” (4.12).

In principle, weights wi could be chosen from different views. The situation
when the inverse square of the mean square uncertainty of the observations
is taken as a weight is rather usual, i. e. wi = 1|s2i , where si is the SD of the yi
observation. The theoretical reasons for this choice will be presented in the
following section. Now we should mention its obvious meaning: the greater
uncertainty the less its yield to the discrepancy and the demand to the closeness
of corresponding values yi and ỹi is weaker. The other important case of using
the weights is passing to the relative value of the discrepancy, i. e. summarizing
of the squares of not absolute but relative deviations yi from ỹi in (4.13).
Equality wi = 1|y2

i is evidently valid in this case. If the relative value of the
discrepancy is calculated and the relative SD of series points δi is fixed then
the following will be inferred: wi = 1|(δ2

i y2
i ) = 1|σ2

i . That is to say, that the
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case of the relative discrepancy minimization together with the specifying of
the relative SD is almost equivalent to the case of the absolute discrepancy
minimization with the specifying of the absolute value of the SD for every
point. The calculation scheme with “weight” has been used for accounting the
observational uncertainties in Sect. 3.2.

Parameters xk desired with LST are to be linearly independent, otherwise the
matrix of equation system (4.11) would be degenerate and the inverse matrix
would not exist. However, there are the cases, when the linear constraints
between the desired parameters are to be accounted for, this very situation has
been described in Sect. 3.2 during the secondary processing of the sounding
results. We can write the mentioned constraints in a general form as:

cj0 +
K∑

k=1

cjkxk = 0 , j = 1, . . ., J . (4.16)

Obviously, conditions (4.16) are to be linearly independent and J < K (oth-
erwise, the linear dependent lines should be excluded from system (4.16) by
decreasing value J). As per the theorem of basis minor (Ilyin and Pozdnyak
1978) there are J independent columns in the conditions (4.16). We will as-
sume they are the first ones from the left-hand side (otherwise, components xk

should be renumbered). Divide vector X into two parts: X(J) ≡ (xk), k = 1, . . ., J
and: X(K−J) ≡ (xk), k = J + 1, . . ., K. Then conditions (4.16) are written in the
matrix form as:

C0 + C(J)X(J) + C(K−J)X(K−J) = 0 , (4.17)

where C0 ≡ (cj0), C(J) ≡ (cjk), k = 1, . . ., J, C(K−J) ≡ (cjk), k = J + 1, . . ., K,
j = 1, . . ., J.MatrixC(J) isnon-degenerate,hence system(4.17) is soluble relating
to X(J):

X(J) = (C(J))−1(−C0 − C(K−J)X(K−J)) . (4.18)

On the basis of (4.18) the expression of vector X as a whole through its inde-
pendent part X(K−J) is inferred:

X = B0 + BX(K−J) , (4.19)

where vector B0 ≡ bk0 and matrix B ≡ bkl possess a similar structure:

bk0 = ((C(J))−1(−C0))k and bkl = ((C(J))−1(−C(K−J)))kl ,
for k = 1, . . ., J , l = 1, . . ., J ;

bk0 = 0 , bkk = 1 and bkl �=k = 0 ,
for k = J + 1, . . ., K ; l = J + 1, . . ., K .

Substituting (4.19) to initial equation system GX = Y, writing its solution with
LST for independent variables X(K−J) and passing again to the whole vector X
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with (4.19), the following is obtained while taking into account matrix general
property (GB)+ = B+G+ (and with adding the weights):

X = B0 + B(B+G+WGB)−1B+G+W(Y − G0 − GB0) . (4.20)

Equations system (3.7) has been solved in Sect. 3.2 just using relation (4.20)
with account of restrictions to the parameters (3.8). We should mention, that
the matrix of system (4.20) being a subject to inversion is still symmetric and
positive defined, with concern to all similar matrices, which will be presented
below. To compute the product of several matrices effectively is to use the
above-described approach of multiplying a matrix from the right-hand side by
a vector with consequent choosing of the last matrix columns of the product
as such vectors.

Now consider the general case of nonlinear relationship (4.7) between
observations Y and parameters X. Take certain initial values of parame-
ters X0 ≡ {x0,k} and expand (4.7) into a Taylor series accounting for only
the linear item:

ỹi = gi(x0,1, . . ., x0,K) +
K∑

k=1

∂gi(x1, . . ., xK)
∂xk

(xk − x0,k) , i = 1, . . ., N . (4.21)

Difference ỹi(x1, . . ., xK) − gi(x0,1, . . ., x0,K) = ỹi(x1, . . ., xK) − ỹi(x0,1, . . ., x0,K) is
a linear function of parameter difference xk − x0k (in the considered approxi-
mation). It allows the constructing of the iteration algorithm for the nonlinear
dependence using the above-obtained solution for the case of the linear one.
This standard approach of reducing the nonlinear problems to the linear ones
is known as a linearization. System (4.21) is converted to the matrix form as:

Ỹ(X) = G0 · (X − X0) + Ỹ(X0) , (4.22)

whereG0 is thematrixofpartial derivative (∂gi(x1, . . ., xK)|∂xk), i = 1, . . ., N, k =
1, . . ., K, calculated in point X0. This specification of the matrix of derivatives
is convenient because in the linear case of (4.9) the matrix G evidently has
the same meaning; hence, the successiveness of the specifications is kept.
The operator of the direct problem solution also keeps initial specification
G(X, U \ X), but for a brevity we will further write just G(X). Iterationally
applying the above-considered solution with LST as per (4.15) to (4.22) we
obtain:

Xn+1 = Xn + (G+
n WGn)−1G+

n W(Y − G(Xn)) , (4.23)

where n = 0, 1, 2, . . . is a number of the iteration.
There are three difficulties of the practical application of (4.23):

– indeterminacy of the zeroth approximation choice;

– necessity of elaborating the criteria for the iteration interruption;

– possible large spread in the desired values during the consequent itera-
tions.
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In concrete problems, the choice of zeroth approximation X0 is usually accom-
plished from the physical reasons. This choice is bound up with the “guessing”
of the solution. Indeed, the closer the zeroth approximation is to a final solution
the less number of the iterations is necessary and the better their convergence
is. Usually, certain a priori mean values are taken as a zeroth approximation.
It could be mean-climatic data for the problems of atmospheric optics. Some-
times there is a possibility to obtain anywise the approximate solution rough
as it is, and this solution is to take as X0. Usually such a choice of zeroth ap-
proximation essentially increases the effectiveness of iteration process (4.23).
Mention that owing to the problem of the nonlinearity, the solution could be
not unique, i. e. to depend on the concrete choice of X0. These questions we
will discuss in Sect. 4.4 in detail.

Standard condition ρ(Xn+1, Xn) < ε, where ρ(. . .) is a certain metric, and
ε is a parameter describing the solution accuracy, is used theoretically as a cri-
teria for breaking off the iteration. Usually the Euclid metric is used as ρ(. . .)
(4.10), because it is coordinated with the metric of the observations. Never-
theless, the other variants are possible, for example, the rigorous condition:
maxk=1,...,K |xn+1,k − xn,k| < ε (Box and Jenkins 1970). However, everything is
much more complicated during the practical calculations. The accumulation
of the errors of the computer calculation together with possible special fea-
tures of the discrepancy behavior around the minimum point leading to value
ρ(Xn+1, Xn) is finishing to diminish with n increasing, hence, the condition
for the breaking of the iterations could be not valid for too small ε. Thus, to
provide the solution independency of the concrete choice of value ε, the other
conditions are often used for breaking off the iterations. Thus, the effective way
is analyzing value ρ(Xn+1, Xn) as a function of n and breaking off the iteration
when its stable decreasing changes to the oscillations around a certain mag-
nitude (Vasilyev O and Vasilyev A 1994). In the simplest variant, the decision
about the breaking off is assumed in the interactive regime. Another simple
way is a choice of the solution corresponding to the minimum of the discrep-
ancy for the fixed iteration number. Note that the peculiarities of the iteration
convergence are caused by the conditions of the concrete problem and need
the special study within the range of the preliminary numerical experiments
(Vasilyev O and Vasilyev A 1994).

It is easy to understand the reason for the appearance of the strong spread of
values ρ(Xn+1, Xn) (i. e. the large difference of the desired values of two neigh-
bor iterations) from the physical meaning. Indeed, the matrix of the partial
derivatives Gn depends on current magnitude Xn, and vector Xn is quite pos-
sibly falling within the area where the measured values will extremely weakly
depend on some component of vector xn,j. However, it means that magnitude
xn,j could vary strongly without essential influence to the measured values.
Algorithm (4.23) operates in this very way. There are diverse approaches to
remove this difficulty. They all are based on the paradoxical idea of convergence
retarding, which does not allow the vector Xn values to distinguish too strong
at the neighbor iterations (the more haste the less speed). We will return
to this question repeatedly, and now consider one of the simplest possibili-
ties.
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Write initial equation (4.22) for iteration number n and add product Gn(Xn −
X0) to both parts. After accomplishing elementary manipulations and solving
the equation with LST, as has been shown by Timofeyev et al., (1986), the
solution could be expressed in the form:

Xn+1 = X0 + (G+
n WGn)−1G+

n W(Y − G(Xn) + Gn(Xn − X0)) . (4.24)

In algorithm (4.24), all iterations are counted off X0 that turns out a certain
obstacle for too strong spread of the values. At any rate, according to the
practical application, (4.24) demonstrates a higher effectiveness than (4.23)
does, in spite of the increased calculation volume. Furthermore, we will use
only algorithm (4.24) for solving the problem with LST.

Quite often the additional conditions (constraints and restrictions) are im-
posed to desired parameters x1, . . ., xk based on the physical reasons, i. e. the
problem of searching not absolute but conditional extremums appears from the
mathematical point of view. This problem is more complicated and common
methods of its solution, e. g., the classical method of Lagrange indeterminate
multipliers (Vasilyev F 1988), do not always blend with the LST ideology.

In some separate cases, we succeeded in accounting for the constraints and
restrictions to the desired parameters using special approaches. For example,
in the above-considered case of the linear constraints between parameters
x1, . . ., xk expressed through vector B0 and matrix B the following is elemen-
tarily obtained:

Xn+1 = X0 + B(B+G+
n WGnB)−1B+G+

n W(Y − G(Xn) + Gn(Xn − X0)) . (4.25)

Algorithm (4.25) is a generalization of algorithm (4.20) for the case of nonlinear
problems.

Some special difficulties will arise if the restrictions to the possible values of
the parameters are written as inequalities. For example, practically all param-
eters (gases and aerosols contents, surface albedo, etc.) are to be non-negative
proceeding from their physical meaning. In this case, the rather evident way of
the removal of restrictions is the conversion of the values to their logarithms
(Virolainen 2000; Potapova 2001). However, strictly speaking, in this case the
values of the logarithms providing the minimum of the discrepancy mustn’t
correspond to the values of the parameters providing the same minimum.
That is to say, that taking logs brings an additional uncertainty to the solution
obtained with LST. Hence, in spite of its simplicity and attractiveness it is nec-
essary to use this approach carefully, studying its “pluses and minuses” when
applying it to concrete problem conditions.

At the same time there is a general method allowing the approximate ac-
counting of any complicated constraints and restrictions to the retrieved pa-
rameters – the method of penalty functions (Vasilyev F 1988).

Let J conditions of the constraints be imposed on the desired parameters,
which could be written without breaking off the generality as:

cj(x1, . . ., xK) = 0 , j = 1, . . ., J . (4.26)
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Functions cj are supposed to be continuous and differentiable within the whole
region of the argument values. Note that in the method of penalty functions
unlike the linear case (4.16) under conditions (4.26) the relations between
the number of constraints J and number of parameters K could be arbitrary,
particularly, J ≥ K is admissible (and certainly concrete values cj could be
independent of all arguments at once). The search of the minimum of the
following value instead of discrepancy R minimum (4.13) is a matter of the
method of penalty functions:

R2
C = R2 + R2

H =
N∑

i=1

wi(yi − ỹi)2
/ N∑

i=1

wi +
J∑

j=1

h2
j c2

j (x1, . . ., xK)
/ N∑

i=1

wi ,

(4.27)

where hj is a certain constant. The idea of the method is elementary. Indeed,
additional sum R2

H in (4.27) with functions cj yields nothing to discrepancy R2

if conditions (4.26) are severely satisfied. The less constraint conditions (4.26)
are satisfied (i. e. the farther values of cj from zero), the greater the yield of the
additional sum is to total value R2

C. This yield is like a penalty for the violation
of the constraint conditions, hence the name of the method appears (penalty
functions are expressions hjcj(x1, . . ., xK)). During the search of minimum R2

C
the solution tends to the parameter values, when the additional yield of the
conditions is minimal, i. e. to the most exact satisfying of constraint conditions
(4.26). The choice of constants hj, j = 1, . . ., J in (4.27) are arbitrary enough. It
is clear that the greater they are, the more exact constraint conditions (4.26)
are satisfied by the solution. Theoretically, constants hj have to tend to the
infinity (Vasilyev F 1988), but practically the greater hj are, the more nonlinear
the problem is and the more difficult the calculation algorithm is adapted to
the problem. Thus, it is necessary to select constants hj carefully in practice.
Usually all constants hj are selected equal to each other, i. e. the algorithm is
managed by one parameter of penalty functions h = h1 = . . . = hj.

To solve the problem of the search for the value minimum (4.27) we are
applying linearization: at first, the solution of linear functions gi and cj is ob-
tained and then the nonlinear case is reduced to the linear one. From equation
system ∂R2

C|∂xk = 0 the following is obtained with linear dependences (4.9)
and (4.16) instead of (4.14):

K∑
j=1

xj

(
N∑

i=1

wigijgik +
J∑

l=1

h2
l cljclk

)
=

N∑
i=1

(yi − gi0)wigik −
J∑

l=1

h2
l cl0clk ,

k = 1, . . ., K .

(4.28)

Introducing the vector and matrix of the constraints C0 ≡ (cj0), C ≡ (cjk),
j = 1, . . ., J, k = 1, . . ., K and also diagonal matrix H ≡ (hjl), hjj = h2

j , hj,l �=j = 0
analogous to matrix W the solution of system (4.28) is obtained:

X = (G+WG + C+HC)−1(G+W(Y − G0) − C+HC0) . (4.29)
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Note that in practice especially with the equality of all hj, explicit expressions
(4.28) are to be used for the calculations. In the nonlinear case functions gi and
cj are expanded into Taylor series and with considering only the linear term
the equation for the iteration is obtained:

(G+
n WGn + C+

n HCn)(Xn+1 − Xn) = G+
n W(Y − G(Xn)) − C+

n HC(Xn) , (4.30)

where Gn and Cn are the matrices of partial derivatives (∂gi|∂xk) and (∂cj|∂xk)
for i = 1, . . ., N and j = 1, . . ., J, correspondingly, andC(Xn) is the vectorof func-
tion cj (4.26). All vectors and matrices are calculated for argument Xn. Applying
to (4.30) the above-described approach of improving the iterations conver-
gence, namely adding to both parts combination (G+

n WGn + C+
n HCn)(Xn − X0)

the iteration algorithm of LST is obtained with taking into account conditions
(4.26) according to the penalty functions method:

Xn+1 = X0 + (G+
n WGn + C+

n HCn)−1 (4.31)

[G+
n W(Y − G(Xn) + Gn(Xn − X0)) + C+

n H(−C(Xn) + Cn(Xn − X0))] .

An important point of general expression (4.31) is that the parameter values
of the previous step of the iterations are defined in the range of the current
iteration; hence, they can be used as constants in the penalty functions. For
example, demand that the desired parameters of the current iteration don’t
differ toomuch fromtheir values at theprevious iteration, i. e.weuse the above-
discussed approach of the convergence retarding. The constraint conditions
evidently correspond to it:

Xn+1 − Xn = 0 , (4.32)

and Xn here is not a variable but the constant. In this case, matrix C+
n HCn

coincides with matrix H, as Cn is the identity matrix. Also equality C(Xn) = 0
is correct as per to conditions (4.32) and (4.31) converts to the algorithm with
improved convergence, proposed in the study by Polyakov (1996):

Xn+1 = X0 + (G+
n WGn + H)−1

× [G+
n W(Y − G(Xn) + Gn(Xn − X0)) + H(Xn − X0)] .

(4.33)

In algorithm (4.33) the greater the weight magnitudes are, the closer the values
of the previous and following iterations, thus the smooth (without spread)
convergence of the iterations with correct selections of hj could be provided.

We should mention one other particular case of applying the penalty func-
tion method (Gorelik and Skripkin 1989), which could be used for the inverse
problems of atmospheric optics. The situation frequently met in practice, is
the case, where the part of the desired parameters (or even all) could be equal
to an integer only. For example, the problem of accounting for a certain factor
influencing the radiative transfer, which could be described by introducing to
vector X a certain parameter that can be equal to zero or unity, i. e. “to turn
on” or “turn off” this factor. These problems can be solved with the method of
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the reselection of all possible variants of the parameter values if their quantity
is small, however with a large quantity of parameter values it is unreal. Then
the penalty function method is appropriate, as the constraint equations have
the form xk(xk − 1) = 0.

Lastly, the case where we impose inequality on the desired parameters is
considered. They can be written without the generality loss as:

ψj(x1, . . ., xK) ≥ 0 , j = 1, . . ., J . (4.34)

But conditions (4.34) could be approximately reduced to the above-considered
constraint conditions (4.26) if the differentiable functions are used instead ψj.
These functions are close to zero, when the inequality is valid and they are
big enough when the inequality is not valid. The following condition could be
used as the simplest constraint satisfying the desired properties:

cj = exp(−hjψj(x1, . . ., xk)) , j = 1, . . ., J . (4.35)

Constants hj have the same meaning as the above-considered ones in relations
(4.26) because the matrix of the partial derivatives from condition (4.35) is
equal to:

∂cj

∂xk
= −hjcjψj

∂ψj

∂xk
.

Thus, formally, for coordination with the above-derived equations, the follow-
ing should be set everywhere:

H ≡ (hjl) , hjj = h2
j , hj,l �=j = 0 , and (Cn)jk = −cjψj

∂ψj

∂xk
.

The selection of values hj is arbitrary to a certain degree, the larger they are
the more exact the inequalities are, and the stronger the exponent nonlinearity
is. The method of penalty functions is obviously converted to the case when
constraints (4.26) and conditions (4.34) are imposed on the parameters.

4.3
Accounting for Measurement Uncertainties and Regularization
of the Solution

We will begin to consider the impact of the observational uncertainties on the
inverse problem solution from an elementary but rather important relation.
Let some parameters X be expressed linearly through observational results Y:

X = AY + A0 , (4.36)

where A and A0 are the specified matrix and vector. Note that all relations
obtained in the previous section finally have just a similar view, though vector X
is treated here in a wider sense: as some value linearly dependent on Y.
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Observational data Y contain the random errors characterized with the SD
of components yi, i = 1, . . ., N. In general, the errors could correlate, i. e. they
are interconnected (although everybody aims to avoid this correlation with all
possible means in practice). Thus, the observational errors are described with
symmetric covariance matrix SY of dimension N × N, which can be obtained
conveniently by writing schematically according to Anderson (1971) as:

SY =
∑

(Y − Ȳ)(Y − Ȳ)+ , (4.37)

where Ȳ is the exact (unknown) value of the measured vector, Y is the observed
value of the vector (distinguishing from the exact value owing to the observa-
tional errors), the summation is understood as an averaging over all statistical
realizations of the observations of the random vector (over the general set).

The relation for covariance matrix of the errors SX of parameters X, of
dimension K ×K written in the same way as (4.37). Then, substituting relation
(4.36) to it, the following is obtained:

SX =
∑

(AY − AȲ)(AY − AȲ)+ = A
(∑

(Y − Ȳ)(Y − Ȳ)+
)

A+ ,

SX = ASY A+ .
(4.38)

A set of important consequences directly follows from (4.38)
Consequence 1. Equation (4.38) expresses the relationship between the co-

variance matrices of observational errors Y and parameters X linearly linked
with them through (4.36), i. e. allows the finding of errors of the calculated
parameters from the known observational errors. Namely, values

√
(SX)kk are

the SD of parameters xk, values (SX)kj|
√

(SX)kk(SX)jj are the coefficients of the
correlation between the uncertainties of parameters xk and xj. In the particular
case of non-correlated observational errors that is often met in practice, (4.38)
converts to the explicit formula convenient for calculations:

(SX)kj =
N∑

i=1

akiajis
2
i , k = 1, . . ., K , j = 1, . . ., K , (4.39)

where aki are the elements of matrix A, si is the SD of parameter yi. In the
case of the equally accurate measurements, i. e. s = s1 = . . . = sN , the direct
proportionality of the SD of the observations and parameters follows from
(4.39):

(SX)kj = s2
N∑

i=1

akiaji .

Consequence 2. From the derivation of (4.38) the general set could be evi-
dently replaced with a finite sample from M measurements Y(m), m = 1, . . ., M,
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i. e. SY in (4.37) is obtained as an estimation of the covariance matrix using the
known formulas:

(SY )ij =
1

M − 1

M∑
m=1

(y(m)
i − ȳi)(y(m)

j − ȳj) , ȳi =
1
M

M∑
m=1

y(m)
i ,

i = 1, . . ., N , j = 1, . . ., N .

Then the analogous estimations are inferred for matrix SX with (4.38). On
the one hand, if just random observational errors are implied, then all M
measurements will relate to one real magnitude of the measured value. But
on the other hand the elements of matrix SY could be treated more widely,
as characteristics of variations of the vector Y components caused not by
the random errors only but by any changes of the measured value. In this
case, (4.38) is the estimation of the variations of parameters X by the known
variations of values Y

Consequence 3. Consider the simplest case of the relations similar to (4.36)
– the calculation of the mean value over all components of vector Y i. e. x =
1
N

∑N
i=1 yi (here K = 1, so value X is specified as a scalar). Then aki = 1|N for

all numbers i and the following is derived from (4.38) for the SD of value x:

s(x) =
1
N

√√√√√ N∑
i=1

N∑
j=1

(SY )ij . (4.40)

For the non-correlated observational errors in sum (4.40) only the diagonal
terms of the matrix remain and it transforms to the well-known errors sum-
mation rule:

s(x) =
1
N

√√√√ N∑
i=1

(SY )ii . (4.41)

SD of the mean value decreases with the increasing of the quantity of the av-
eraged values as

√
N (for the equally accurate measurements s(x) = s(y)|

√
N),

as per (4.41). As not only the uncertainties of the direct measurements could
be implied under SY , the properties of (4.40) and (4.41) are often used dur-
ing the interpretation of inverse problem solutions of atmospheric optics. For
example, after solving the inverse problem the passage from the optical char-
acteristics of thin layers to the optical characteristics of rather thick layers or
of the whole atmospheric column essentially diminishes the uncertainty of
the obtained results (Romanov et al. 1989). Note also that we have used the
relations similar to (4.41) in Sect. 2.1 while deriving the expressions for the
irradiances dispersion (2.17) in the Monte-Carlo method.

Consequence 4. Analyzing (4.41) it is necessary to mention one other obsta-
cle. It is written for the real numbers, but any presentation of the observational
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results has a discrete character in reality, i. e. it corresponds finally to inte-
gers. The discreteness becomes apparent in an uncertainty of the process of
the instrument reading. Hence, real dispersion s(x) could not be diminished
infinitely, even if N → ∞ [indeed the length value measured by the ruler
with the millimeter scale evidently can’t be obtained with the accuracy 1 µm
even after a million measurements, although it does follow from (4.41)]. Re-
gretfully, not enough attention is granted to the question of influence of the
measurement discreteness on the result processing in the literature. The book
by Otnes and Enochson (1978) could be mentioned as an exception. However,
this phenomenon is well known in practice of computer calculations where the
word length is finite too. It leads to an accumulation of computer uncertain-
ties of calculations, and special algorithms are to be used for diminishing this
influence even during the simplest calculation of the arithmetic mean value (!)
(Otnes and Enochson 1978). As per this brief analysis, the discreteness causes
the underestimation of the real uncertainties of the averaged values.

Consequence 5. In addition to the considered averaging, the interpolation,
numerical differentiation, and integration are the often-met operations similar
to (4.36). Actually, they are all reduced to certain linear transformations of
value yi and could be easily written in the matrix form (4.36). Thus, (4.38)
is a solution of the problem of uncertainty finding during the operations of
interpolation, numerical differentiation, and integration of the results. Note
that in the general case the mentioned uncertainties will correlate even if the
initial observational uncertainties are independent.

Consequence 6. Matrix SX does not depend on vector A0 in (4.36). Assuming
A0 = AY0, where Y0 is the certain vector consisting of the constants, (4.38)
turns out valid not for the initial vector only but for any Y + Y0 vector, i. e.
the covariance error matrix of parameters vector X does not depend on the
addition of any constant to observation vector Y.

Consequence 7. Consider nonlinear dependence X = A(Y). It could be re-
duced to the above-described linear relationship (4.36) using linearization, i. e.
expanding A(Y) into Taylor series around a concrete value of Y and accounting
only for the linear terms as shown in the previous section. Then the elements
of matrix A will be partial derivatives aki = ∂(A(Y))k|∂yi, all constant terms
as per consequence 6 will not influence the uncertainty estimations and the
same formula as (4.38) will be obtained. For example, the uncertainties of the
surface albedo have been calculated in this way with the covariance matrix of
the irradiance uncertainties obtained at the second stage of the processing of
the sounding results in Sect. 3.3. The uncertainties of the retrieved parameters,
while solving the inverse problem in the case of the overcast sky have been
calculated in this way, as will be considered in Chap. 6. Note, that relation (4.38)
is an approximate estimation of the parameters of uncertainty in the nonlinear
case because for exact estimation all terms of Taylor series are to be accounted.
The accuracy of this estimation is higher if the observational uncertainties (i. e.
the matrix SX elements are less).

Return to the inverse problem solution and to begin with again consider the
case of the linear relationship of observational results Y and desired parame-
ters X (4.9): Ỹ = G0 + GX. Let the observational errors obey the law of normal
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distribution, in which probability density depends only on the above-defined
Ȳ, SY and is equal to:

ρ(Y) =
1

(2π)N|2|SY |1|2 exp
(

−
1
2

(Y − Ȳ)+S−1
Y (Y − Ȳ)

)
.

Abstract from the above-discussed non-adequacy of the operator of the in-
verse problem solution and assume that the difference of real observational
results Y and calculated values Ỹ is caused only by the random error. Then
vector X, which true value Ȳ corresponds to (i. e. Ỹ = Ȳ), is to be selected as
an inverse problem solution. Substituting this condition to the formula for the
probability density, we obtain it as a function of both the observational and
desired parameters: ρ(Y, X). Then use the known Fisher’s scoring method in the
maximum likelihood estimation according to which the maximum of the com-
bined probability density is to correspond to the desired parameters. Writing
explicitly the argument of the exponent through parameter xk the maximum
is found from equation ∂ρ(Y, X)|∂xk = 0 that gives the system of the linear
equations:

K∑
j=1

xj

(
N∑

i=1

N∑
l=1

gij(S−1
Y )ilglk

)
=

N∑
i=1

N∑
l=1

(yi − gi0)(S−1
Y )ilglk k = 1, . . ., K .

(4.42)

The problem solution is obtained after writing (4.42) in matrix form:

X = (G+S−1
Y G)−1G+S−1

Y (Y − G0) . (4.43)

It is to be pointed out that if equality W = S−1
Y is assumed then (4.43) will

almost coincide with solution (4.15) for LST with weights. In particular, for
the case of non-correlated observational random uncertainties obeying Gauss
distribution, matrix SY is the diagonal one and solution with LST (4.15) is
an estimation of maximal likelihood (4.43). This statement is a kernel of the
known Gauss-Markov theorem (see for example Anderson 1971) – a severe
ground of selecting the inverse squares of the observational SD as weights of
the LST. It is evident that relation W = S−1

Y is directly applied to all further
algorithms of LST described by (4.20), (4.23)–(4.25), (4.28), (4.30) and (4.32).

As (4.43) has linear constraint form (4.36) between Y and X, the covariance
matrix of the uncertainties of the retrieval parameters SX is obtained with
(4.36). Substituting the expression A = (G+S−1

Y G)−1G+S−1
Y from (4.43) to (4.38)

and accounting the symmetry of matrix (G+S−1
Y G)−1 the following relation is

inferred:

SX = (G+S−1
Y G)−1 . (4.44)

Equation (4.44) allows finding estimations of the uncertainty of the retrieved
parameters through the known observational uncertainty, i. e. it almost solves
the problem of their accounting. Equation (4.44) evidently keeps its form for
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nonlinear algorithms, if matrix G is to be taken at the last iteration. Note that
(4.44) relates also to the penalty functions method (4.30) and (4.31). As the
additional yield to discrepancy at the last iteration is zeroth for this method (at
least, theoretically), hence the matrix of the system (4.36) is similar to above
matrix A.

The main stage of the inverse problem solving with LST and of the method
of the maximal likelihood (4.43) is solving a linear equation system, i. e. the
inversion of its matrix. However, in the general case the mentioned matrix
could be very close to a degenerate one. Then, with real computer calculations,
matrix (G+S−1

Y G)−1 is unable to inverse or the operation of the inversion is ac-
companied with a significant calculation error. The reason of this phenomenon
is connected with the incorrectness of the majority of the inverse problems of
atmospheric optics (that is a general property of inverse problems). The de-
tailed theoretical analysis of the incorrectness of the inverse problem together
with the numerous examples of the similar problems is presented in the book
by Tikhonov and Aresnin (1986). The simple enough interpretation was per-
formed in the previous section while discussing the phenomenon of the strong
spread of the desired values during the consequent iterations. Technically, the
incorrectness appears as mentioned difficulties of matrix (G+S−1

Y G)−1 inver-
sion, i. e. its determinant closeness to zero. Note that not all concrete inverse
problems are incorrect, however, the solving methods of the incorrect inverse
problems should always be applied if the correctness does not follow from the
theory. It is necessary because the analysis of the incorrectness is technically
inconvenient, as it needs a large volume of calculations (Tikhonov and Aresnin
1986). Thus, further we will consider the problem of the parameters X retrieval
from observations Y as an incorrect one. Assume for brevity the linear case of
the formulas and then automatically apply the obtained results to the algorithm
recommended for the nonlinear inverse problems.

The method of the incorrect inverse problems solving is their regularization
– the approach (in our concrete case of the linear equation system) of replacing
the initial systemwithanotherone close to it in a certainmeaningand forwhich
the matrix is always non-degenerate (Tikhonov and Aresnin 1986). Further,
we consider two methods of regularization usually applied for the inverse
problems solving in atmospheric optics.

The simplest approach of regularization is adding a certain a priori non-
degenerate matrix to the matrix of the initial system. Instead of solution (4.43),
consider the following:

X = (G+S−1
Y G + h2I)−1G+S−1

Y (Y − G0) , (4.45)

where I is the unit matrix, h is a quantity parameter. It is evident that solution
(4.45) tends to “the real” one (4.43) with h → 0. Thus, the simple algorithm
follows: the consequence of solutions (4.45) is obtained while parameter h
decreases and value X with the minimum discrepancy is assumed as a solution.
This approach is called “the regularization by Tikhonov” (although it had been
known for a long time as an empiric method, Andrey Tikhonov gave the
rigorous proof of it (Tikhonov and Aresnin 1986)).
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The regularization by Tikhonov is easy to link with the considered in the
previous section method of penalty functions. Indeed, if there are conditions
xk = 0 then the solution with the penalty functions method (4.28) converts
directly to (4.45). As the rigorous equality xk = 0 is not succeeded, the factor h is
selected as small as possible. Thus, the regularization by Tikhonov corresponds
with imposing the definite constraint on the solution, namely the requirement
of the minimal distance between zero and the solution, i. e. the reduction
of the set of the possible solutions of the inverse problem. Theoretically, all
regularization approaches are reduced to imposing the definite constraint
on the solution. Requirement xk = 0 means that the components of vector X
should not differ greatly from each other, i. e. it aborts the possibility of strongly
oscillating solutions. However in fact, it is the way to diminish the strong spread
of solutionsduring the iterationsofnonlinearproblems.Actually,nowadays the
regularization by Tikhonov is applied to all standard algorithms of nonlinear
LST (see for example Box and Jenkins 1970).

All desired parameters X in the considered statement of the atmospheric
optics inverse problems have physical meaning. Hence, definite information
about them is known before the accomplishment of observations Y, and it is
called an a priori information. Assuming that parameters X are characterized
by a priori mean value X̄ and by a priori covariance matrix D. Suppose that the
parameters uncertainties obey Gauss distribution, i. e.:

ρ(X) =
1

(2π)N|2|D|1|2 exp
(

−
1
2

(X − X̄)+D−1(X − X̄)
)

.

We should point out that mentioned a priori characteristics X̄ and D are the
information about the parameters known in advance without considering the
observations, in particular, it relates also to an a priori SD of parameters X.
Accounting for the above-obtained probability density of the observational
uncertainties ρ(Y, X), and supposing the absence of correlation between the
uncertainties of the observations and desired parameters, the criterion of
the maximal likelihood is required for their joint density ρ(Y, X)ρ(X). For
convenience difference X − X̄ is considered as an independent variable. The
following can be inferred after the manipulations analogous to the derivation
of (4.43):

X = X̄ + (G+S−1
Y G + D−1)−1G+S−1

Y (Y − G0 − GX̄) . (4.46)

Solution (4.46) is known as a statistical regularization method (Westwater and
Strand 1968; Rodgers 1976; Kozlov 2000). The regularization is reached here
by adding inverse covariance a priori matrix D−1 to the matrix of the equation
system. Indeed, it is easy to test that solution (4.46) exists even in the worst case
G+S−1

Y G = 0. On the other hand the larger the a priori SD of parameters, the less
the yield of matrix D−1 to (4.46) and in the limit, when D−1 = 0, solution (4.46)
converts to solution without regularization (4.43). Statistical regularization
(4.46) is much more convenient than (4.45), which is because it requires no
iteration selection of parameter h (though it requires a priori information),
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thus it is mostly used for the inverse problems of atmospheric optics. Note that
the solution dependence of X̄ disappears for the nonlinear problems, where
just the difference between the parameters is considered during the expansions
into Taylor series, i. e. the statistical regularization is equivalent to the adding
of D−1 to the matrix subject to inversion. Parameters X̄ are usually chosen as
a zeroth approximation. Using the following identity:

(G+S−1
Y G + D−1)−1G+S−1

Y = DG+(GDG+ + Sy)−1 , (4.47)

which is elementarily tested by multiplying both parts from the left-hand side
by combination G+S−1

Y G + D−1 and from the right-hand side by combination
GDG+ + Sy. For some types of problems, it is more appropriate to rewrite
solution (4.46) in the equivalent form not requiring the covariance matrix
inversion:

X = X̄ + DG+(GDG+ + SY )−1(Y − G0 − GX̄) . (4.48)

Compute the uncertainties of obtained parameters X using observational
uncertainties SY , i. e. the posterior covariance matrix of the parameters X
uncertainties. According to the definition, the following is correct: SX =∑

(X − X)(X̃ − X)+, where X is solution (4.48), and X̃ is the random devia-
tion from it caused by the observational uncertainties. Substituting (4.48) to
matrix SX definition, accounting Ȳ = G0 + GX̄, after the elementary manipu-
lations we are inferring SX = D − DG+(GDG+ + SY )−1GD. Note that a certain
positively defined matrix is subtracted from the a priori covariance matrix
in this expression, thus the observations cause the decreasing of the a priori
SD of the parameters, which has a clear physical meaning: the observations
cause precision of the a priori known values of the desired parameters. For the
further transformation of matrix SX , the following relation is to be proved:

(D−1)−1 − (G+S−1
Y G + D−1)−1 = DG+(GDG+ + SY )−1GD .

Use for that the identity A−1 − B−1 = B−1(B − A)A−1 with accounting (4.47).
Finally, the following is obtained:

SX = (G+S−1
Y G + D−1)−1 . (4.49)

It should be emphasized that (4.49) has the same form as (4.44) in spite of
the complicated method of deriving it, namely: the covariance matrix of the
uncertaintiesof thedesiredparameters is just the inversematrixof thealgebraic
equation system subject to solving, i. e. it is directly obtained in the process of
calculation.

As has been mentioned hereinbefore, posterior SD
√

(SX)kk obtained with
(4.49) are always not exceeded by a priori values

√
(D)kk. The ratio of these

SD characterizes the information content of the accomplished observations
relative to the parameter in question. The lower this ratio the more information
about the parameter is contained in the observational data. It is curious that
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proper observational results are not needed for the calculation of posterior SD
(4.49) in the linear case; it is enough to know the algorithm of the only solution
of the direct problem (matrix G). Thus, calculating the possible accuracy of
the parameters retrieval and the information content estimation could be done
even at the initial stage of the solving process before the accomplishment of
the observations. Strictly speaking, this confirmation is not correct for the
nonlinear case, when the matrix of the derivatives G depends on solution X;
nevertheless, even in this case (4.49) is often used for analyzing the information
content of the problem before the observations.

The choice of a priori covariance matrix D causes some difficulties while
using the statistical regularization method. If there are sufficient statistics
of the direct observations of the desired parameters then matrix D will be
easily calculated. Otherwise, we need to use different physical and empirical
estimations and models. The a priori models will be discussed in Chap. 5 for the
concrete problem of the processing of sounding results. Note that in the case of
thenecessityofmatrixD interpolation it is elementarily recalculatedwith (4.38)
as per consequence 5. It should be mentioned that the results of the covariance
matrix calculation have to be presented with a rather high accuracy without
rounding off the correlation coefficients. Otherwise, the errors of rounding
cause the distortions of the matrix structure (according to consequence 4),
those, in turn, lead to difficulties in the use of the matrix. In particular, all
reference data about the correlation coefficients of the atmospheric parameters
are presented with accuracy up to 2–3 signs, hence, these matrices are not to
inverse while using them. However, the difficulties with matrix D inversion
could be principal, as this matrix would be degenerate if the desired parameters
strongly correlate to each other.

To overcome the mentioned difficulties and to optimize the algorithm it is
necessary to transform the desired parameters to independent ones for those
there are no correlations for and the matrix D is diagonal. This transformation
is provided by matrix P consisting of the eigenvectors of matrix D, inciden-
tally matrix D converts to diagonal matrix L with the known formulas of
the coordinates conversion L = PDP−1 (Ilyin and Pozdnyak 1978). The inverse
transformation to the desired parameters P−1SXP is to be realized after the cal-
culation of the posterior covariance matrix and we infer the following solution
of (4.46) with accounting for eigenvectors orthogonality (P−1 = P+):

X = X̄ + P+(PG+S−1
Y GP+ + L−1)−1PG+S−1

Y (Y − G0 − GX̄) . (4.50)

The method of the revolution (Ilyin and Pozdnyak 1978) should be used for
calculating the eigenvectors and eigenvalues of matrix D. Although it is slow, it
works successfully for the close (multiple) eigenvalues. To prevent the accuracy
lost during the eigenvalue calculations the following approach of normalizing
is recommended. The a priori SD of parameter xk is assumed as a unit of
measurement, i. e. introduce vector dk =

√
(D)kk and pass to the values:

x′
k = xk|dk , x̄′

k = x̄′
k|dk , g′

0k = g0k , g′
ik = gikd , (D′)ik = (D)ik|(didk) ,
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where matrix D′ is the correlation one. After solving the inverse problem
with the primed variables pass to the initial units of measurements xk = x′

kdk,
(SK)ik = (S′

X)ikdidk. In addition, note that the eigenvalues of the covariance ma-
trix could become negative owing to the above-mentioned distortions while
rounding. The regularization by Tikhonov is recommended against this phe-
nomenon when matrix D′+h2I is used instead of matrix D′ with the consequent
increasing of value h up to the negative eigenvalues disappearing.

Only several maximal eigenvalues of matrix D differ from zero in the strong
correlation between the desired parameters often met in practice. Specify their
number as m. Then all calculations would be accelerated if only m pointed
eigenvalues remain in matrix L (it becomes of the dimension m × m) and
matrix P contains only m corresponding columns (dimension is m × K). This
approach is thekernel of theknownmethodof themain components. Specifying
the obtained matrices as Lm and Pm the following is obtained from (4.50):

X = X̄ + P+
m(PmG+S−1

Y GP+
m + L−1

m )−1PmG+S−1
Y (Y − G0 − GX̄) . (4.51)

Sometimes we can succeed in reducing the volume of calculations by an order
of magnitude and more using (4.51) instead of (4.50).

The criteria of selection of value m in (4.51) could be different. The math-
ematical criteria are based on the comparison of initial matrix D and matrix
P+

mLmPm, which have to coincide for m = K in theory. Correspondingly, value
m is selected proceeding from the permitted value of their noncoincidence. The
comparison of every element of the mentioned matrices is needless. Usually
the comparison of the diagonal elements (dispersions) or of the sums of these
elements (the invariant under the coordinates conversion (Ilyin and Pozdnyak
1978)) is enough. The objective physical selection of value m is proposed in the
informatic approach by Vladimir Kozlov (Kozlov 2000), though it is not conve-
nient for all types of inverse problems because of very awkward calculations.
According to Consequence 2 from (4.38), the variation of the observations
caused by the a priori variations of the parameters is GDG+. We will use the
eigenbasis of this matrix, i. e. the independent variations of the observations.
Then eigenvalues of matrix GDG+ are the “valid signal” that is to be compared
with the noise, i. e. with the SD of the observations. If the observations are
of equal accuracy and don’t correlate with SD equal to s then number m is
a number of the eigenvalues exceeding s2. The case of non-equal accuracy and
correlated observations (just that is realized in the sounding data processing)
is more complicated. In this case the observations are preliminary to reduce
to the independency and to the unified accuracy s = 1. This transformation is
based on the theorem about the simultaneous reducing of two quadratic forms
to the diagonal form (Ilyin and Pozdnyak 1978) and is provided with matrix
PY L−1|2

Y , where PY is the matrix of eigenvectors SY , and LY is the diagonal
matrix from eigenvalues SY corresponded to them. Thus, according to (4.38)
the selection of number m is determined by the number of the eigenvalues of
matrix PY L−1|2

Y GDG+L−1|2
Y P+

Y , which exceed unity. Note that matrix G varies
from iteration to iteration in the nonlinear case, but such awkward calculations
are unreal to be accomplished. That’s why it is preliminarily calculated using
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matrix G0 with a strengthening of the selection conditions for the guarantee,
i. e. comparing the eigenvalues not with unity but with the less magnitude.

Finally, we present the concrete calculation algorithms of the nonlinear
inverse problems. The general algorithm of the penalty functions method
(4.30) is converted to the form:

Xn+1 = X0 + P+
m(PmG+

n S−1
Y GnP+

m + L−1
m + PmC+

n HCnP+
m)−1Pm (4.52)

[G+
n S−1

Y (Y − G(Xn) + Gn(Xn − X0)) + C+
n H(−C(Xn) + Cn(Xn − X0))] .

The algorithm with improved convergence (4.32), which has been used in the
sounding data processing, transforms to:

Xn+1 = X0 + P+
m(PmG+

n S−1
Y GnP+

m + L−1
m + PmHP+

m)−1Pm

× [G+
n S−1

Y

(
Y − G(Xn)Gn(Xn − X0)

)
+ H(Xn − X0)] .

(4.53)

In both cases the posterior covariance matrix is calculated with the following
formula:

SX = P+
m(PmG+

n S−1
Y GnP+

m + L−1
m )−1Pm .

4.4
Selection of Retrieved Parameters in Short-Wave Spectral Ranges

Hereinbefore the mathematical aspects of the inverse problems have been
mainly considered. In addition to the availability of the formal-mathematical
algorithms, the analysis of the physical meaning of the obtained results is of
great importance. In particular, for the inverse problems of atmospheric optics
it is important to answer the question: to what extent the retrieved parame-
ters correspond to their real values in the atmosphere at the moment of the
observation. The comparison of the results of the inverse problem solution
with the data of direct measurements of the retrieved parameters answers this
question sufficiently clearly and unambiguously. However, in the general case,
the possibility of parallel direct measurements is limited. For example, during
the airborne observations the vertical profiles of the temperature, contents of
absorbing gases and parameters of the aerosols would have been measured
simultaneously with the radiances and irradiances, if there had been an op-
portunity. The situation with the satellite observations is even worse; because
the simultaneous airborne observations of the mentioned parameters are nec-
essary, that needs developing and financing the scientific programs at the state
level. Thus, the simultaneous direct measurements to test the retrieved param-
eters are too expensive. In this connection, the way proposed by the authors of
the book by Gorelik and Skripkin (1989) has to be mentioned, where the ex-
penditures for the technical solution of the problem (costs of the instruments,
experiments, data processing etc.) are included in the total value, which is
assumed as the minimum for the inverse problem solution. In that statement,
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the optimal ones will be the observations, where the demanded compromise
between the exactness of the parameter retrieval and needed expenditures for
obtaining them is reached, contrary to the observations providing the maximal
exactness. Note that testing the solution of the inverse problem by a compar-
ison with the independent measurements strictly speaking is reasonable for
the direct measurements only. If the parameters for the comparison have been
also obtained from the solution of another inverse problem, it is possible to
discuss the comparing of the instruments and methodics only.

Accounting for the above-mentioned difficulties together with the fact that
there has been no direct simultaneous observations for the considered sound-
ings hereinafter consider the problem of the analysis of the adequacy of the
inverse problem solution with the theoretical means.

Either the observation or the direct problem solution contains systematic
uncertainties. These uncertainties evidently cause the minimum of discrep-
ancy ρ(Y, Ỹ(X)) reached while the inverse problem solving will not correspond
to the minimum of the discrepancy of true values of the observational data
and direct problem solution. Take into account that the desired parameters
are linearly expressed through the difference of the observations and direct
problem solution in the formulas of Sects. 4.2 and 4.3, i. e. X = A(Y − Ỹ), where
A is a certain linear “solving” operator. Then writing Y = Y′ + ∆Y, Ỹ = Ỹ′ + ∆Ỹ,
where Y′ is the true mean value of the measured characteristic, Ỹ′ is the ab-
solutely exact solution of the direct problem, ∆Y, ∆Ỹ are the corresponding
systematic uncertainties of the observations and calculations, we are obtaining
X = A(Y′ − Ỹ′) + A(∆Y − ∆Ỹ). The first item is the desired adequate value X,
but the second item means its distortion by a random shift. As the random
observational uncertainty causes the obtaining of the vector of parameters X
either with the random uncertainty, the mentioned systematic shift is to be
estimated from its comparison with the random uncertainty of vector X. If
the systematic shift is not less than the random uncertainty is then the result
ignoring this shift will be evidently inauthentic. In practice, it is more conve-
nient to compare not the retrieval errors but the errors of the observation and
direct problem solution (Zuev and Naats 1990).

The systematic uncertainties of the observations are always much more
than the random ones, so value ∆Ỹ is of main interest. The simple receipt
of its accounting is presented in the book by Zuev and Naats (1990); if it is
essentially less than the random uncertainty is, then a subject to ∆Ỹ will not
be needed, otherwise it should be added to the random uncertainty. With this
adding, the observations become less accurate and it causes the corresponding
increase of the random uncertainty, i. e. SD of the retrieved parameters, and
the systematic shift does not cause the escape of parameters vector X out of
the admissible range of the confidence interval. Thus, the reliability of the
result is reached by increasing the SD. Quite often this fact is difficult to be
accepted psychologically, particularly, in limits of the “fight for accuracy”
traditional in the observational technology. However, it is obvious: in general
form while solving the inverse problems the measurements provide not only
the instrument readings but the results of their numerical modeling as well, so
both processes influence the accuracy. On the basis of the above arguments, the
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authors of another study (Zuev and Naats 1990) have inferred the existence of
a certain limit to the observational accuracy, conditioned by possibilities of the
contemporary methods of the direct problem solutions of atmospheric optics.
Beyond this limit, the further increasing of the accuracy becomes useless (but
accentuate, that it is valid only in ranges of the considered approach of the
inverse problem solving).

The algorithm of the direct problem has to account for all factors influencing
the radiation transfer maximally accurate and full for decreasing uncertainty
∆Ỹ. However, the similar algorithm could turn out rather complicated and awk-
ward for the practical application. Besides, the operational speed and memory
limits of computers demands the appropriate algorithms and computer codes
for the inverse problem solving. Therefore, different simplifications and ap-
proximations are inevitable in the radiative transfer description. It leads to the
necessity of elaboration and realization of two algorithms while solving the
inverse problems of atmospheric optics. The first algorithm is an etalon one
that solves the direct problem in detail with sufficient accuracy; and the second
algorithm is an applied one proceeding from the concrete technical demands
and possibilities (in the limit the applied algorithm might coincide with the
etalon one, but in reality it is almost impossible). The accuracy estimation
of the simplifications and approximations of the applied algorithm obtained
by the comparison of the corresponded results of two (applied and etalon)
algorithms is to be used as an uncertainty of direct problem solution ∆Ỹ.

In the aspect of the accuracy of the direct problem solution, a quite impor-
tant question is the selection of the set of parameters X subject to retrieval.
In practice, the total selection of the retrieved parameters is always evident
and is defined by the problems, which the experiment has been planned for.
Particularly the inverse problem of atmospheric optics formulated concerning
the atmospheric parameters (Timofeyev 1998) is to obtain the vertical profiles
of the temperature, contents of the gases absorbing radiation, aerosol charac-
teristics, and ground surface parameters. However, as has been mentioned in
Sect. 4.1 the direct problem algorithm depends on a wider set of parameters
in reality. For example, the parameters of the separate lines of the atmospheric
gases absorption (see Sect. 1.2) are needed for the volume coefficient of the
molecular absorption. However, all parameters of the direct problem solution
(all components of vector U) without excluding are known without absolute
exactness, but with a certain error. Thus, the problem of general selection of
retrieved parameters X could be formulated as follows: it is not only to select
vector X but to take into account the influence of the uncertainty of the initial
parameters, whose magnitudes are assumed to be known, i. e. U \ X.

The above-formulated problem of taking into account the uncertainty of
components U \ X is solved elementarily. Indeed, let us set X = U, i. e. will
assume all parameters of the direct problem to be unknown. Then using the
method of statistical regularization and setting the a priori mean values and
covariance matrix for X = U we obtain the analogous posterior parameters
after the inverse problem solving, with the solution depending on the a priori
covariance matrix, in particular, the posterior SD depends on the a priori one.
Thus, we will take into account the influence of the a priori indetermination
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of all parameters of the direct problem to the solution of the inverse problem.
Further we can divide vector X = U into two parts: X(1) are the retrieved
parameters (their analysis has the meaning) and X(2) are the parameters for
which the uncertainty of the initial values setting is taken into account cor-
rectly.

However, in practice this path is unrealizable, it is enough to weigh up the
number of the parameters describing the molecular absorption lines. Thus,
only the set of parameters, whose magnitudes are not initially defined, are
included to vector X, and other parameters U \ X are assumed as the exactly
known ones. The influence of the uncertainty of the U \ X assignment is es-
timated from the dependence of the exactness of the direct problem solution
upon this uncertainty, and it is to be considered as a part of systematic un-
certainty ∆Ỹ. This estimation is usually accomplished either from the physical
reasons (in this case there is a possibility to neglect the inaccurate assignment
of the parameters) or from the results of the numerical experiments, i. e. the
direct problem solving with varying values U\X in limits of the fixed accuracy
(Mironenkov et al. 1996). Note, that the possibilities of the modern computers
open large perspectives for the pointed numerical experiments. For example,
it is possible to obtain the reliable assessment of the complex effect of the
indeterminacy of the assignment of all vector U \ X components to the direct
problem solution, after varying all components of vector U\X at once with the
method of statistical modeling and accumulating the representative sample.

Concerning the dividing of the retrieved parameters X = U to the analyzed
X(1) and non-analyzed X(2) ones, it should be noted that this dividing is to be
accomplished based on the reasons of the retrieval accuracy only. Namely, the
retrieved parameters X(2) could be meaningless if their posterior dispersion
is close to the a priori one. However, the latter recommendation is rather
relative either, because even small preciseness of some physical parameters
might be the rather actual one. Quite often the vector X(1) components are
selected based on the problem stated while accomplishing the observations,
and as a result the precise data are thrown out to “a tray” – to vector X(2).
Therefore, for example in the study by Mironenkov et al. (1996), only the
possibility and accuracy of the total content of the gases absorbing radiation is
analyzed while processing the data of the ground observations of atmospheric
transparence within IR spectral region. At the same time the product of the
solar constant, instrument sensitivity, and aerosol extinction is accepted as
a retrieved parameter in this method, that could give useful information about
the aerosol extinction spectrum within the IR range while taking into account
the smooth spectral dependence of the two first factors.

According to the physical meaning, the part of the retrieved parameters
presents the vertical profiles (of the temperatureor gases content). Theproblem
arises of describing these profiles with the finite set of parameters. Then two
approaches are used: the approximation of the profile by the discrete altitude
grid and approximation of the profile by a certain function. In fact, both
approachesare equivalent, becauseanydiscrete grid supposes the interpolation
to the intermediate altitudes that the definite function accomplishes. However,
it is desirable to distinguish these approaches in the aspect of the application.
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While approximating the profile by the altitude grid, it is evident that the
lower the altitude step the more accurate the approximation. There is no
problem of selecting the grid in the range of the etalon algorithms. The grid
provided by the algorithm should be as detailed as possible. However, during
the construction of the applied algorithm, the less number of points that are in
the grid the less the number of the retrieved parameters that is available, hence,
the shorter computing time is used. Therefore, the problem of the optimal
altitudegrid selectionproviding themaximal accuracywith theminimalpoints
quantity arises. Regretfully, this problem has not often been studied in the
theoretical aspect. Thus, different empirical approaches have to be used for the
optimal grid selection. In particular, we have used the path described below.

Write the variations of the calculated values through the variations of the
retrieved components using the linear item of the Taylor series:

∆yi =
N∑

j=1

(
∂yi

∂xk

)
∆xk ,

where xk is the profile of the retrieved parameter, variation ∆xk corresponds
to the a priori SD. The corresponding term (∂yi|∂xk)∆xk is calculated for every
altitude level k of the initial maximally detailed grid. The excluding of the level
corresponds to the replacement of its derivative with the arithmetic mean value
over two neighbor levels and it is replaced with zero at the last level (the top
of the atmosphere). The increasing of derivatives (∂yi|∂xk)∆xk regulates and
consequently excludes the levels until variation ∆yi maximal over all numbers i
remains less than the fixed magnitude is. The parameter for the break of the
excluding is obviously linked with observation uncertainty yi. We have used the
value equal to one third of the SD. We should mention that the obtained grids
(and the altitudes of the top of the atmosphere) essentially differ for the vertical
profiles of different parameters, but the grid over them all will be the suitable
one. Quite often, the vertical grid is selected similar to the standard models,
radiosounding data, etc. without the above-described details, i. e. without the
accuracy estimation that is not methodically correct on our opinion.

The second approximation of the profile with a certain function is used in
the algorithms of the operative data processing because it allows for a decrease
of the quantity of the retrieved parameters by many times. Usually the func-
tion is constructed using the mean standard profiles cited in the references.
However, it is necessary to accomplish the analysis of its accuracy with the
etalon algorithm and a maximally detailed grid (Mironenkov et al. 1996).

The essential feature of inverse problems in the shortwave spectral range is
the necessity of aerosol optical parameters retrieval. The volume coefficients
of the aerosol scattering and absorption depend not only on altitude but on
wavelength as well. Thus, parameterization of both the altitudinal and spectral
dependence is necessary. In some particular problems, we succeed in describ-
ing the spectral dependence with a function of small quantity of the parameters
(Polyakov et al. 2001). However, the specification of the spectral dependence
as a grid over wavelengths is to be considered as a general case. In fact, there
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is no problem with this grid selection: the wavelength, which the processed
characteristics are presented for, is to be used. The etalon algorithms should be
elaborated in this way only. Nevertheless, the above-mentioned problem of the
grid optimization over wavelengths arises again in the applied algorithm. The
derivatives with respect of the volume coefficients of the aerosol extinction and
scattering at the excluded wavelengths are replaced with the interpolated val-
ues (at all altitudes) for this grid selection. The point of the spectral grid will be
excluded if the maximal variation of the measured characteristics during this
replacement does not exceed the fixed uncertainty. At first, the spectral grid
should be defined and then the altitudinal one is defined for every remained
wavelength points. The spectral grid for the surface albedo retrieval is selected
almost the same way.

Parameterization of the phase function of the atmospheric aerosols is the
especially complicated problem of selecting the concrete set of parameters
in the short wavelength range. The necessity of the solution of this problem
is connected with minimization of the quantity of parameters in the applied
algorithm. Indeed, the phase function is technically impossible to retrieve as
a table over scattering angle in addition to the tables of dependences upon the
altitude and wavelength. Thus, it should be described with a small quantity
of parameters. The Henyey-Greenstein function (1.31) could be an example of
such a parameterization. However, as it has been mentioned in Sect. 1.2 this
function describes the real phase functions with a low accuracy. Regretfully,
the attempts of finding a similar function with a small quantity of parameters
and describing any aerosol phase function with sufficient accuracy have not
been successful yet. Hence, the uncertainty of the aerosol phase function pa-
rameterization has still been one of the strongest and irremovable sources of
the systematic errors while elaborating the applied algorithms of the inverse
problems solving. The concrete choice of parameterization for the sounding
data processing we will discuss in Sect. 5.1. Note, that radiative characteris-
tics measured by different ways respond differently to the parameterization
accuracy. For example, the irradiance being the integral over the hemisphere
is essentially more weak connected with the shape of the phase function than
the radiance is; the latter is almost directly proportional to the phase function
(for example the single scattering approximation). Thus, the inadequacy of the
phase function statement is the most serious obstacle in the interpretation of
the satellite observations of the diffused solar radiance.

In addition to the listed problems, there is a general difficulty for the inverse
problems solving – the probable ambiguity of the obtained results. Actually,
the desired minimum of the discrepancy might not be single in the nonlinear
case. The numerical experiments allow conclusion of the uniqueness of the
solution after keeping the definite statistics.

The relationship between the inverse problem solution and observational
variations within the range of the random SD is studied in the numerical
experiments of the first kind. For this purpose, the direct problem is solved with
the definite magnitudes of the parameters, and then the obtained solution is
distorted by the random uncertainty using the method of statistical modeling
on thebasisof theknownSDof theobservations.After that, the inverseproblem
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is solved for these data and its result is compared with the initial parameters.
If the inverse problem solution coincides with the initially stated parameters
after a sufficient quantity of this statistical testing, it should be concluded that
the random observational error does not cause the solution ambiguity (and
the confident probability could be accessed). It is especially appropriate to
solve the direct problem with the Monte-Carlo method as it allows for easy
simulation of the results just as random values.

As the random observational error is not usually large, the indeterminacy
of the choice of zeroth approximation could significantly affect the solution
ambiguity while solving the nonlinear inverse problems. Thus, the numeri-
cal experiments of the second kind are necessary, where the dependence of
the solution upon zeroth approximation choice is studied, while allowing the
variations of this approximation to be as large as possible (Zuev and Naats
1990). To reduce the computing time it is appropriate to combine the numer-
ical experiments of the first and second kinds and to model both the random
error and indeterminacy of the zeroth approximation. Just this approach has
been applied in the study by Vasilyev O and Vasilyev A (1994) to this class of
problems and to the concrete problem of the sounding data processing during
the procedure of testing the computer codes. The solution uniqueness has re-
mained with the variation of the zeroth approximation within three a priori
SD of parameters. Note that this complex approach to the implementation of
the numerical experiment opens wide perspectives when taking into account
the possibilities provided by modern computers (Mironenkov et al. 1996). In
particular, it is possible to vary statistically the totality of the direct problem
parameters together with the zeroth approximation, a priori covariance matrix
etc. It should be emphasized that with the accumulation of sufficient statistics
of such complex numerical experiments, it is possible to estimate the accuracy
of the inverse problems solution without simplification formulas similar to
(4.49).
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CHAPTER 5

Determination of Parameters
of the Atmosphere and the Surface
in a Clear Atmosphere

This chapter provides a concrete statement of the complex inverse problem of
the retrieval of atmospheric and surface parameters from the observational
data considered in Chap. 3. The problem is solved applying the methods dis-
cussed in Chap. 4. This chapter concerns the following: the etalon algorithm
and accuracy estimation of different simplifications and approximations while
computing irradiances, the approach and formulas for calculating the deriva-
tives of the irradiances with the Monte-Carlo method, and inverse problem
solving with analysis of the obtained results.

5.1
Problem statement. Standard calculations of Solar Irradiance

The results of soundings (the airborne observations of solar spectral irradi-
ances) in the clear atmosphere have been presented in Chap. 3. These ob-
servations were intended for the calculations of spectral radiative flux in the
atmospheric layers; this analysis is also presented in Chap. 3. However, the
contemporary algorithms of the inverse problems solving described in the
previous chapter give the possibility of reprocessing the mentioned experi-
mental data aimed at a more complete and correct extraction of the infor-
mation concerning the aerosol and gaseous composition of the atmosphere,
and to the approbation of the operative approaches of similar observational
results. Incidentally, the processed results have lost their actuality from the
point of real-time monitoring, but they have not become outdated as a series
of unique experimental observations, useful for adequate modeling of the op-
tical properties of atmospheric aerosols and for correct comparison between
the results of model calculations and experimental data. At the same time, the
existing data set allows elaboration of the approaches for real-time monitoring
of the composition and structure of atmosphere and elucidating the technical
and methodological shortcomings of the accomplished experiments for the
purpose of its removal during further experiments.

To solve the stated problem we will follow the scheme presented in Sect. 4.1.
Its first stage is the model selection for the direct problem solving and the es-
timation of the uncertainties of the obtained results. As per Sect. 4.4 the etalon
algorithm for modeling the observational values while taking into account the
processes of the radiation interaction in the atmosphere with maximal accu-
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racy is needed for the direct problem solving. The applied algorithm containing
the definite simplifications and approximations proceeding from the technical
demands to the calculations is used in the process of the iteration solving of
the inverse problem. The accuracy of these approximations is defined by the
comparison of the results of the etalon and applied algorithms. To simplify the
presentation we will estimate the accuracy of the corresponding approxima-
tions while describing certain elements of the etalon algorithm, i. e. present the
etalon and applied algorithms simultaneously. For all the calculations consid-
ered here, the authors have used the aerosol model of the atmosphere described
in the study by Krekov and Rakhimov (1986), and the model of the profiles
of the temperature, pressure, and absorbing gases (Anderson et al. 1996) with
adding the profiles from the program code Gometran (Rozanov et al. 1995). To
select the data from the models the computer tools presented in the study by
Vasilyev A (1996) have been applied.

For the direct problem solving, i. e. for the model calculations of the mea-
sured solar irradiances, the Monte-Carlo method has been chosen; the expe-
diency of this choice has been described in Sect. 2.5. Here we just emphasize
the simplicity and flexibility of this method, which allows “turning on” and
“turning off” different concrete variants of the description of the processes
of radiative transfer, i. e. to transform the etalon algorithm to the applied one
without difficulty. The following model is considered as an atmospheric model
both for the etalon and applied algorithms: the reflecting characteristics of
the surface and the optical characteristics of the aerosols are specified directly
and the volume coefficients of the molecular scattering and absorption are
calculated with the formulas of Sect. 1.2. Thus, in a general problem statement
the vertical profiles of the temperature and absorbing gases are used as pa-
rameters, which the measured values depend on, and hence, are the subjects
for retrieval together with the above-described parameters during the inverse
problem solving.

The atmospheric pressure is accepted as a vertical coordinate in the observa-
tions of solar radiation (Chap. 3). Hence, it is necessary to pass from the altitude
scale to the pressure one during the mathematical modeling of the observa-
tional process. For this transformation it is enough to take into consideration
that the optical thickness has no dimensions, then, τ =

∫
αz(z)dz =

∫
αP(P)dP,

where αz(z) is the volume extinction coefficient connected with altitude z
(for example, in km−1), αP(P) is the volume extinction coefficient connected
with pressure p (for example, in mbar−1). The following is obtained using
hydrostatic equation dP

P = − g(z)µ(z)
RT(z) dz, where g(z) is the free fall acceleration,

µ(z) is the air molecular mass, T(z) is the air temperature and R is the gas
constant:

αP(P(z)) = αz(z)
RT(z)

g(z)µ(z)P(z)
. (5.1)

Recalculation of the volume coefficients is carried out with (5.1) where the
subscript at extinction coefficient αP is omitted and the pressure is used as
a vertical axis and considered as an independent variable. Incidentally, all
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formulas of Sect. 2.1 keep their form with accounting the optical thickness
definition as:

τ(P) =

P∫
0

α(P)dP .

In thisbookweconsider theunpolarizedradiative transfer, however,discussing
the accuracy estimation of the calculation of the radiative characteristic, it is
desirable to determine the uncertainty of this approximation. In the rigorous
problem statement, the equation of radiative transfer while accounting for po-
larization is rather complicated. However, in the etalon algorithm polarization
is accounted for approximately because only a crude estimation of the accuracy
is necessary. It should be implemented by dividing radiation (photon) into two
components and considering the transformation of the phase function that
depends on the relationship between the mentioned components. In this ap-
proximation, we assume that all scattering events happen at one scattering
azimuth corresponding to the maximal influence of polarization. Polarization
is not accounted for while passing to the applied algorithm. The comparison of
the calculation results with and without polarization has demonstrated a de-
crease of the influence of polarization from the UV to NIR spectral regions,
which is evident, because the yield of scattered radiation to the solar irradiance
changes in the same way. The uncertainty caused by ignoring the polarization
could be estimated as 1.5% on the average. It is close to the maximal uncer-
tainty of the irradiance observations in the UV and VD spectral regions and it
is essentially lower than the observational uncertainty in the NIR region.

The model of the ground surface (3.16) described in Sect. 3.4 together with
the concrete parameters values is used for accounting for the anisotropy. The
following schemeofmodeling thephotonreflecting fromthe surface equivalent
to the schemeexpressedby (3.14)–(3.16) is applied for simplicity. Themodeling
of the photon interaction with the surface is carried out as has been described
in Sect. 2.1 by recalculation of the photon weight with the specified surface
albedo. While modeling, the Henyey-Greenstein function will be used further
in (3.16) without the normalizing factor, i. e. in initial form (1.31). For that
function, the equation of modeling (2.27) is solved explicitly, which yields
the following formulas for the desired declination (η′′, ϕ′′) from the initial
direction:

η′′ =
(1 + g2

1)(2g1b2
1 + 2b1(1 − g1)) − (1 − g1)2

(2g1b1 + 1 − g1)2 , b1 = β ,

ϕ′′ = π
(1 + g2

2)(2g2b2
2 + 2b2(1 − g2)) − (1 − g2)2

(2g2b2 + 1 − g2)2 , b2 = β ,

(5.2)

where β is a random value. After the modeling of the declination of the re-
flection from the main direction (η′′, ϕ′′) with (5.2), the new direction of the
photon is (η, ϕ) and it is recalculated through the initial direction (η, ϕ) while
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considering the sense of the main direction (Sect. 3.4):

η := −ηη′′ + c
√

(1 − η2)(1 − (η′′)2) cos(∆ϕ)

∆ϕ = kπ + ϕ′′ .
(5.3)

The formulas of the recalculation are analogous to (2.21) for the scattering
angle but in (5.3) azimuth ∆ϕ is computed in the same coordinate system as ϕ.
Parameter k in (5.3) is equal to zero for the case of the mirror reflection (water
surface) and to unity for the backward reflection (sand surface). Parameter c
could be equal to two discrete magnitudes +1 and −1. The concrete magnitude
is selected from condition η < 0, i. e. the photon moves up after the reflection
(if this condition fulfills for both alternatives of value c, one of them will be
selected randomly).

The comparison of the calculation results with a subject to reflection aniso-
tropy and without it has been accomplished for the cases of the water and
sand surfaces, while the snow surface has been assumed as an orthotropic
one (Sect. 3.4). Note that these anisotropic models were constructed just for
the surfaces above which the sounding had been carried out. The results have
demonstrated that the influence of anisotropy on the observation uncertainty
is negligible in the UV region, and it is about the SD of the upwelling irradiance
(1–2%) in the VD and NIR regions. Thus, in the applied algorithm we ignore
anisotropy, however we are accounting for its influence on the accuracy. It
should be emphasized that the influence of anisotropy on the irradiance for
the highly anisotropic surface (water) turns out to be much weaker than for the
slightly anisotropic surface (sand). This phenomenon could be easily explained
with the following. The albedo of the water surface is small and decreases,
while passing from the UV to the VD region, hence the influence of the surface
properties on the upwelling irradiance is also small. The albedo of the sand
surface is rather significant and increases from the UV to VD region, thus its
reflecting properties greatly affect the upwelling irradiance especially in the
VD and NIR regions.

Simulation of monochromatic radiative transfer has been considered in
Sect. 2.1. However, according to (1.23) solar irradiance for the real observations
is the integral with instrumental function (3.1):

F(λi) =

λi+∆λ∫
λi−∆λ

F(λ′)fλ(λ′ − λi)dλ′ . (5.4)

The problem of its calculation with (5.4) connected with the complicated spec-
tral behavior of the volume coefficient of molecular absorption κm expressed
by (1.29) leads to the corresponding spectral behavior of monochromatic ir-
radiance F(λ′), so the direct integration of (5.4) needs a lot of computing time.

Thegeneral scheme that allowsus toavoid the calculationsof theproblemsof
multiple light scattering with (5.4) is presented in several studies (Lenoble 1985;
Minin1988;Tvorogov1994).This approach isbasedonpassing fromthe solving
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of the transfer equation at a fixed wavelength to its solving for the atmosphere
with the specified parameters monotonically dependent on wavelength (on
integration variable). This problem has not been solved completely yet and the
existing algorithms are based on certain approximations. Thus, expanding the
transmission function into a sum of exponents (as has been proposed in the
study by Minin (1988)) or taking into account the photon free path (Lenoble
1985) is provided by assumption about the atmosphere homogeneity. While
using the Monte-Carlo method, the most adequate approach is the passing to
probability density of appearing the definite magnitude of volume molecular
absorptioncoefficientκm.However, themodernalgorithmsof thispassage (e. g.
in the studybyTvorogov1994)demandveryawkwardpreliminary calculations,
which are ill adapted to the computing of the derivatives with respect to κm,
which is necessary for the inverse problems solving.

Nevertheless, taking into account the demands to the etalon algorithm we
are assuming (5.4) as an initial one while noting the following. Based on
the general formal scheme of the Monte-Carlo method wavelength λ′ could
be simulated for computing integral (5.4) by probability density fλ(λ′). Then
the method of double randomization is applied as per the book by Marchuk
et al. (1980), whose kernel consists of the inessentiality of integration order
for the Monte-Carlo method. Hence, it is enough to simulate only one photon
trajectory for every random wavelength. As a result, we will estimate the values
of the desired integral (5.4) from the counters magnitudes. After the modeling
of random wavelength while accounting for the triangle instrumental function
of the K-3 spectrometer and (2.6) the following is obtained:

λ = λi − ∆λ(1 −
√

2β) , β ≤ 1|2 ,

λ = λi − ∆λ(1 −
√

2 − 2β) , β ≥ 1|2 .
(5.5)

The instrumental function of the K-3 spectrometer is known with in an error of
1% (Sect. 3.1) that is comparable with the observational uncertainty. However,
this uncertainty is significant only in the spectral intervals with the molecular
absorption bands. Thus, its account as an additional yield to the uncertainty of
the direct problem solution should be accomplished only within the following
spectral intervals selected from the analysis of the radiative flux divergence
(Sect. 3.3): 330–360 nm (O3), 676–730 nm (H2O), 756–780 nm (O2), 804–850 nm
(H2O), 910–978 nm (H2O). In addition, the solar constant should be assumed
invariant within a narrow spectral interval [λi − ∆λ, λi + ∆λ] to avoid the
difference between the observational data and the calculation results, because
the solar irradiances have been corrected with the incident solar spectrum
taking into account the instrumental function, while processing the sounding
data.

Thus, computing with (5.4) is reduced, in fact, to constructing the maximally
fast and accurate algorithm of the profile κm calculation with (2.18) for the
wavelength randomly selected within the interval [λi − ∆λ, λi + ∆λ]. From that
point of view, we are using the algorithm of the simplifying account of the yield of
the spectral lines wings to the absorption elaborated by Virolainen and Polyakov
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(1999). According to this algorithm wavelength interval [λi − ∆λ, λi + ∆λ] is
divided into narrow intervals of 1 cm−1 length. When wavelength λ′ gets into
the definite narrow interval the spectral lines within the distance ±2 cm−1 from
it only are considered with rigorous (2.18)–(2.19) and the yield of the farthest
lines to coefficient κm is calculated with the approximated formula:

κm := κm +
P

P∗
M∑
i=1

ni

(
T∗

T

)l(i) 4∑
k=1

Rik(ν − ν′)4−k

Rik =
bk

π

K(i)∑
j=1

Sij
Wij(T)

Wij(T∗)

(
T∗

T

)mij dij

(ν − νi)6−k
,

(5.6)

where ν = 1|λ′, ν′ is the right boundary of the interval of the rigorous account-
ingof the spectral lines; the rest of the specifications are similar to (2.18)–(2.19).
According to Virolainen and Polyakov (1999) the magnitudes of the empirical
coefficients are: b1 = − 1.40276, b2 = 2.35451, b3 = − 1.93698, b4 = 0.99854,
for ν < ν′; b1 = 10.6522, b2 = 1.2675, b3 = 2.14156, b4 = 0.99750, for ν > ν′.
As coefficients Rik for every concrete gas depend only on temperature, they
are preliminarily tabulated and interpolated over the look-up tables during
the calculation process. This procedure decreases the computing time by an
order of magnitude. The uncertainty of approximation (5.6) is equal to about
the decimals of a percent as per the analysis of the study by Virolainen and
Polyakov (1999) and can be neglected in most cases.

All gases, about which the spectroscopic information (Sect. 1.2) is available,
shouldbe included in thecomputingcodeof theetalonalgorithm.Nevertheless,
only the gases, which the processing results are sensitive to, are to be taken
into account by the applied algorithm. Thus, we are estimating the ratio of
the maximal irradiance variation caused by the variation of the concrete gas
content to the SD of the observations, i. e. the value called usually “signal-to-
noise ratio (SNR)”, and the necessity of the gas account in the applied algorithm
is considered according to this ratio. During this calculation, the contents of the
considered gases should be tripled to estimate the limit variation (excluding
O2). The condition of the relative humidity less than 95% should be tested
while tripling the H2O content otherwise, the content corresponding to 95%
relative humidity is used.

The results of the calculations are presented in Fig. 5.1. Only five absorbing
gases have been accounted for in the applied algorithm: H2O, O3, O2, NO2 and
NO3. Concerning the absence of gas SO2 and the presence of gas NO3 in the
final list, the following should be pointed out. The SO2absorption band is rather
strong in the UV region but it almost coincides with the strongest ozone band.
Spectral interval 340–380 nm, where these bands could be divided, provides
too weak SO2 absorption to be registered by the K-3 instrument (Rozanov et
al. 1995). As for NO3, it is characterized with a very strong absorption band
in the VD spectral region, but it is traditionally assumed to be decomposed
by solar light so its content is negligibly low in the atmosphere. Nevertheless,
according to the modern data some troposphere photochemical reactions (in
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Fig.5.1. The ratio of the irradiance variation to the SD (“signal-to-noise”) when comparing
the calculations with different degree of the accounting of the molecular absorption. Lower
curve: five gases (O3, H2O, NO2, O2, NO3) are taken into account comparing with all
atmospheric gases; upper curve – accounting of all atmospheric gases comparing with the
case of the neglecting of molecular absorption; solid line corresponds to the minimal SD of
the measured irradiance, dashed line corresponds to the SD equal to 1%. Thick lines mark
the complete intervals of the molecular absorption

particular, heterogeneous) cause not only decomposition of NO3, but also its
generation in daytime (Rudich et al. 1998). The existence of NO3 in daytime
atmosphere is confirmed with the observations of its content with the method
of the spectral transparency (Weaver et al. 1996). At last, the NO3 absorption
band has been directly revealed in the spectral behavior of transmittance in
the clear sky (Vasilyev O et al. 1995).

The same estimation of the signal/noise ratio (SNR) should be used for se-
lection of the concrete spectral intervals. The selected intervals are presented in
Table 5.1. It should be noted that in spite of the traditional conceptions there is
no spectral interval within the VD region, where neglecting the molecular ab-
sorption ispossible apriori, if theaccuracyof theobservationsorcalculations is
about 1% (Ivlev and Vasilyev A 1998). Remember that the mentioned selection
of the gases and wavelengths intervals has been accomplished after carrying
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Table 5.1. Wavelength intervals for accounting for the molecular absorption of the atmo-
spheric gases

Gas Wavelength interval (nm)

H2O 444–446, 468–470, 502–510, 538–552, 566–602, 626–666, 684–746, 784–978
O3 330–356, 426–848
O2 626–632, 686–694, 758–774
NO2 330–616, 638–656
NO3 598–672

out the concrete observations with the concrete K-3 instrument. In principle,
application of these data to other experiments and instruments is admissible,
but the analogous estimations and calculations are desirable to implement.

In spite of using the fast algorithm for the calculation of the volume co-
efficient of the molecular absorption as per (5.6), its application takes time
unacceptable for the computer codes of the operative data processing. There-
fore, the passage, which is based on using the look-up tables of the preliminary
computed absorption cross-sections Ca(λ, P, T), could essentially simplify the
scheme of calculations in the applied algorithm.

The spectroscopic data of O3, NO2 and NO3 gases have been initially pre-
sented as look-up tables (Sect. 1.2). The temperature dependence of the ab-
sorption cross-section of O3 in 330–356 nm is described according to Bass and
Paur (1984) as follows:

Ca(λj, T) = C0(λj) + C1(λj)T + C2(λj)T2 . (5.7)

This very interval should be used for the interpolation over wavelengths and
temperature dependence of the absorption cross-section (1.28). The absorp-
tion cross-sections Ca(λ, P, T) of H2O and O3 are also computed preliminarily
as look-up tables. The grid over wavelength is selected as an irregular one to
describe all specific features of the spectrum on the one hand and to mini-
mize the wavelength quantity in the grid on the other hand. Some ideas of
the algorithm presented in the study by Pokrovsky (1967) constitute the basis
of this grid selection. The centers of the spectral lines are selected as basic
points λj because they correspond to maximal values Ca(λ, P, T). Other points
are defined by the consequent dividing of the basic grid proceeding from the
comparison of exact and interpolated values Ca(λ, P, T). Then the following
parameterization of dependence Ca(λ, P, T) is used:

Ca(λj, P, T) = R(λi)C0(λj)
(

P

P∗

)C1(λj) (T∗

T

)C2(λj)

, (5.8)

where R(λj) is the correcting factor. To minimize the systematic uncertainty
of (5.8) this factor is selected after the preliminary computing of every indi-
cation of the instrument corresponding to wavelength λj. Equation (5.8) has
been written on the basis of the known approximation of the coefficient of gas
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molecular absorption with the power function of temperature and pressure
(Kondratyev and Timofeyev 1970). Coefficients C0(λj), C1(λj), C2(λj) are se-
lected with LST. The influence of the uncertainty of (5.8) parameterization on
the calculations of solar irradiances does not exceed their random SDexcluding
several points of spectrum.

The necessity of the parameterization of the dependence of the aerosol
phase function upon scattering angle, while solving the inverse problems of
atmospheric optics has been described in Sect. 4.4. To select the appropri-
ate parameterization, the uncertainties of the calculation of irradiances, while
using the approximations of the tabulated phase functions in the etalon algo-
rithm have been analyzed by Krekov and Rakhimov (1986). In other words,
while using the SNR, the signal is assumed as a difference between the irra-
diance calculations for the table and analytical approximation of the phase
function. To estimate the maximal influence of the aerosols on radiative trans-
fer, the ground values of the volume coefficients of the aerosols scattering and
absorption (Krekov and Rakhimov 1986) have been increased by five times.
Unexpectedly the good susceptibility of the solar semispherical irradiances
(especially of the upwelling irradiance) to the shape of the aerosol phase func-
tion has been revealed. This susceptibility is likely to be caused by essentially
different yields of the radiation scattered to different directions of the phase
function to the upwelling irradiance. The yield of the single scattered light
caused by the radiation scattering under the small angles exceeds the yield of
the highest orders of the scattering for the aerosol extended phase functions.

The SNR has turned out to exceed unity for the Henyey-Greenstein func-
tion (1.31) and even for its two-parametric modification (Minin 1988), which
is expressed by two Henyey-Greenstein functions: one is extended forward
and the other one is extended backward. The situation has improved for the
results of using the two-parametric tabulated model described in the study
by Vasilyev O and Vasilyev A (1994) based on classifying the experimentally
observed phase functions, but the uncertainty influence is also too strong in
this case. The attempts to construct the analogous two-parametric model have
provided no success on the basis of the initially tabulated phase functions
(Krekov and Rakhimov 1986). However, higher accuracy has been reached in
the calculation with the analytical presentation of the phase function not at
all angles but at several fixed ones. Based on the strong correlation between
the cross-sections of scattering and directional scattering revealed by some
authors (Gorchakov and Isakov 1974; Gorchakov et al. 1976) and testing the set
of parameterizations, it is possible to obtain the best results with the following
expressions:

xa(χ, λ) = exp(ai(χ, λ) + bi(χ, λ) ln σa(λ) + ci(χ, λ) ln2 σa(λ))|C

C =
1
2

1∫
−1

exp(ai(χ, λ) + bi(χ, λ) ln σa(λ) + ci(χ, λ) ln2 σa(λ))dχ ,
(5.9)

where σa(λ) is the volume coefficient of the aerosol scattering, ai(χ, λ), bi(χ, λ),
ci(χ, λ) are the tables of the coefficients obtained for a certain set of wave-
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lengths λ and cosines of scattering angles χ. Coefficients ai(χ, λ), bi(χ, λ),
ci(χ, λ) for intermediate λ values are derived using linear interpolation. Sub-
script i means the dependence of the model upon altitudinal zone. The at-
mosphere has been divided into three zones: 0–4 km (the surface layer as
per Krekov and Rakhimov 1986), 4–11 km (the troposphere) and higher than
11 km (the stratosphere and upper atmosphere). Factor C is introduced to the
denominator of (5.9) to satisfy normalizing condition (1.18).

The SNR for model (5.9) is minimal over all considered approximation
although it exceeds unity. Thus, (5.9) will be used further for the phase function
parameterization in the applied algorithm. The evident shortcoming of this
parameterization (5.9) is its explicit referencing to the a priori aerosol model
[through coefficients ai(χ, λ), bi(χ, λ), ci(χ, λ)], however, the problem of the
adequacy of our a priori notions about the reality is the general difficulty
of all inverse problems of atmospheric optics, especially of the retrieval of
aerosol parameters (Zuev and Naats 1990). Although, dividing the atmosphere
looks like an artificial adjustment to the initial model structure by Krekov
and Rakhimov (1986), it could be grounded. Actually, according to studies
by Vasilyev A and Ivlev (1995, 1996) in the general case coefficients ai(χ, λ),
bi(χ, λ), ci(χ, λ) depend on the type of the aerosol substance only, and it is
accounted for during the selection of the altitude zones in (5.9).

Using model (5.9), where the phase function is uniquely defined with the
aerosol scattering coefficient means the excluding of the parameters describ-
ing the phase function shape and, hence, the rejection of the retrieval of all
phase function characteristics. The only parameters to obtain are the volume
coefficients of scattering and absorption. It seems to contradict the above con-
firmation about the strong relationship between the irradiances and the phase
function shape. However, we are using not real phase functions but the an-
alytical approximations similar to the real ones in shape. For the real phase
function, a strong correlation either with the scattering coefficient or with
the aerosol substance is observed (Barteneva et al. 1967, 1978; Gorchakov and
Isakov 1974; Gorchakov et al. 1976; Vasilyev A and Ivlev 1995, 1996). Thus, the
parameters of the phase function shape are hardly retrieved in the limits of the
concrete a priori model (Vasilyev O and Vasilyev A 1989a, 1989b, 1994a).

The weak point of parameterization (5.9) is a tabulated relationship between
phase function and scattering angle. Certainly, the analytical parameterization
is preferable. Nevertheless, all our attempts to find the phase function analyti-
cal presentation even for the calculations of the semispherical irradiances have
failed. The rude numerical estimation indicates the needed accuracy of the
phase function approximation about 5–10% for computing the upwelling irra-
diance above the dark (water) surface with the accuracy about 1%. It is a very
rigorous demand because the accuracy of the field observations of the phase
function is the same.

Note lastly, that all described approaches of the estimation of uncertainty
have been implemented while computing the irradiances above the surfaces
with small albedo (water surfaces) because the scattered radiation yields max-
imal solar upwelling irradiance. The link between the upwelling irradiance
calculation and phase function parameterization is essentially weaker for the
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bright surfaces (sand, snow) and the problem of the aerosol phase function
approximation is not so important for the present instance.

As the width of the instrumental function of the K-3 spectrometer is 6 nm,
in addition to the evident spectral dependence of the molecular absorption
within this interval there is the spectral dependence of the volume coefficients
of the molecular scattering, and of the aerosol scattering and absorption. For
example, thedifferencebetween thevaluesof the volumecoefficient andmolec-
ular scattering in interval 6 nm reaches 10% in the UV region. The estimation
of the influence of ignoring this dependence on the uncertainty of the solar
irradiance calculation shows that the spectral dependence of the molecular
scattering needs to be accounted for and the aerosol dependence could be
neglected. The latter provides essentially for faster work of the algorithm.

The general estimation of the simplifications and approximations intro-
duced to the applied algorithm is demonstrated in Table 5.2. Note that the
uncertainties caused by the molecular absorption and aerosol scattering have
been calculated for the corresponding extremal models, and hence, could be
considered as the limit ones. The uncertainties presented in Table 5.2 are the
systematic ones, so their mutual compensation could occur. Thus, the com-
parison between the results of the calculations with “turning on” (applied
algorithm) and “turning off” (etalon algorithm) all possible simplifications
has been accomplished to estimate the total accuracy of the direct problem

Table 5.2. Estimation of the uncertainty of the irradiance calculations

Source of the uncertainty Uncertainty (%) Comments

Considering the absorption by five
gases only

0.1–0.5 At separate wavelengths λi

Considering the molecular
absorption in the selected spectral
intervals only

0.3 At separate wavelengths λi

Tabulating the cross-sections of the
molecular absorption

0.7–2.0 At separate wavelengths λi

Ignoring the polarization 1.5 Decreasing from the UV to the
VD and NIR spectral regions

Parameterization of the aerosol
phase function

1.0–2.0 Maximal for F↑ above the water

Ignoring the anisotropy of the
reflection from the surface

1.0–2.0 Maximal for the sand surface

Ignoring the spectral dependence
of the aerosol characteristics
within the interval of the
instrumental function width

0.5
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Fig.5.2a,b. Comparison of the limited accuracy of the observations – solid lines and esti-
mation of the calculation uncertainty – dashed lines: a for downwelling irradiance; b for
upwelling irradiance: upper dotted line – observation above the water surface, lower lines –
above the sand and snow surfaces

solution. Figure 5.2 illustrates the results of the comparison together with the
limit accuracies of the observations including the uncertainty of the instru-
mental function equal to 1%. The uncertainty of the downwelling irradiance
calculation is seen significantly less than the uncertainty of its observations
(excludes the molecular absorption bands in the NIR spectral region). The
analogous picture is demonstrated for the upwelling irradiances above the
sand and snow. Regretfully, the uncertainty of the calculations of the upwelling
irradiances above the water surface exceeds the observational uncertainty.
The physical reason of this obstacle is the following. The upwelling irradiance
measured above the dark water surface has formed owing to the radiation
scattering in the atmosphere, and therefore, it needs higher accuracy of the
numerical simulation. The obtained uncertainties of the calculation should be
added to the observational uncertainties during the inverse problem solving
as per Sect. 4.4.

Scrutinize the technical testing of the computer codes used for the calcu-
lations. The correspondence of the computer code to the initial mathematical
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algorithm or, in other words, the analysis of the coincidence of the calculation
results with the certain expected values is interpreted as code testing (Borovin
et al. 1987). The considered code is related to the class, where the analytical
(“hand”) testing is principally impossible (Borovin et al. 1987), so the main way
of testing is the careful individual verification of the separate blocks during the
program debugging stage. Besides, the comparison of the results of our calcu-
lations with the data presented in the book by Lenoble (1985, Tables 9–11) has
been carried out. The deviation of the results of the calculation with the tested
code from the “exact” data (Lenoble 1985) has turned out to be less than 1%.
Taking into account that these “exact” data (Lenoble 1985) have been averaged
over independent calculations implemented with seven different methods with
the accuracy within 1%, the mentioned coincidence of the results of the tested
computer code and the “exact” data could be accepted as the complete one.

The comparison of the calculation results with the observational data is
shown in Fig. 5.3 as another technical test of the calculation algorithm. These
calculations are accomplished for the mean model of the atmosphere (Ander-
son et al. 1996) together with the ground aerosol model (Krekov and Rakhi-
mov 1986). We have not naturally expected the coincidence but the qualitative
similarity of the spectra shapes, the widths and positions of the molecular

Fig.5.3. Comparison of the calculation results (dotted lines) with the experimental data
(solid lines). The airborne sounding 16th May 1984, water surface, incident solar angle
43◦. Vertical profiles of the downwelling (upper group of the curves) and upwelling (lower
group of the curves) irradiances. Each group consists of 6 curves from 500 mbar (uppers) to
1000 mbar (lowers) at every 100 mbar
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absorption bands indicates the correctness of the computer code. On the other
hand, the essential numerical difference between the observations and calcu-
lations shows the susceptibility of the observed irradiances to the atmospheric
parameters (which have differed from the model values during the observa-
tions).

5.2
Calculation of Derivative from Values of Solar Irradiance

In addition to the irradiance calculations, the derivatives of the irradiances
with respect to all retrieved parameters are necessary for the inverse problem
solving using the methods presented in Chap. 4.

The derivatives computing in the Monte-Carlo method is based on the
differentiation of formal Neumann series (2.22) (Marchuk 1988), i. e. of the
general form of the solution of the equation of radiative transfer (Lenoble
1985; Marchuk 1988). We will keep the same specifications as in Sect. 2.1. Let
the derivative of direct problem (2.22) solution to be inferred:

ΨB = Ψq + ΨKq + ΨK2q + ΨK3 q+. . .

with respect to a certain parameter a, i. e. value ∂(Ψa Ba)|∂a where the sub-
script of the integral operators symbolizes their dependence of the parameter.
Differentiate Neumann series (2.22):

∂
∂a

(Ψa Ba) =
∂
∂a

(Ψa qa) +
∂
∂a

(Ψa Ka qa) + . . . +
∂
∂a

(Ψa Kn
a qa) + . . . (5.10)

Use for brevity of the derivative specification the following form:

(Ψa Ba)′ ≡ ∂
∂a

(Ψa Ba) (5.11)

and assuming the symbolic writing of integral operators (2.20) obtain the
following for the right part of series (5.10)

(∫
Ψa(u)Ba(u)du

)′
=
∫

Ψa(u)Ba(u)
(

Ψ′
a(u)

Ψa(u)
+

B′
a(u)

Ba(u)

)
du

=
∫

Ψa(u)Ba(u)Wa(u)du ,

(5.12)

where

Wa(u) =
Ψ′

a(u)
Ψa(u)

+
B′

a(u)
Ba(u)

. (5.13)
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The formula of the derivative is specially converted to form (5.12), (5.13).
Written in this way, it looks as integral (2.20) directly calculated with the
Monte-Carlo method according to (2.21).∫

Ψa(u)Ba(u)Wa(u)du = Mξ(Ψa(ξ)Wa(ξ)) (5.14)

That is to say, the calculation of the derivatives according to (5.14) is reduced
to the multiplying of the value written to the counter by a certain “weight”
function Wa(ξ) (Marchuk et al. 1980).

To construct the concrete algorithm of calculating Wa(ξ) the derivative
explicit form of the right part of series (5.10) is obtained. For that we are using
the known expression of the derivative of the product through the sum of
logarithm derivatives (xyz. . .)′ = (xyz. . .)(x′|x + y′|y + z′|z + . . .). The following
is obtained:

(Ψa qa)′ =
∫

Ψa(u)qa(u)
(

Ψ′
a(u)

Ψa(u)
+

q′
a(u)

qa(u)

)
,

(Ψa Kn
a qa)′ =

∫
. . .
∫

dudu1. . .dunΨa(u)qa(u1)Ka(u1, u2). . .Ka(un, u)

×
(

Ψ′
a(u)

Ψa(u)
+

q′
a(u)

qa(u)
+

K ′
a(u1, u2)

Ka(u1, u2)
+ . . . +

K ′
a(un, u)

Ka(un, u)

)
.

(5.15)

After writing (5.15) to form (5.14) as it is more convenient for the Monte-Carlo
method, finally derive:

(Ψa Kn
a qa)′ =

∫
. . .
∫

dudu1. . .dunΨa(u)qa(u1)Ka(u1, u2)

. . .Ka(un, u)Wa(u, u1, u2, . . ., un) , (5.16)

Wa(u, u1, u2, . . ., un) =
Ψ′

a(u)
Ψa(u)

+
q′

a(u)
qa(u)

+
K ′

a(u1, u2)
Ka(u1, u2)

+ . . . +
K ′

a(un, u)
Ka(un, u)

.

As it follows from (5.16), in the Monte-Carlo method the derivatives could be
calculated using the same algorithms as desired values with multiplying value
Ψ(ξ) by special weight Wa(ξ) during each writing to the counter. In addition,
if value Ψ(ξ) depends on the current magnitude of random value ξ only, i. e. of
the current coordinates of the photon, then Wa(ξ) is the sum and depends on
the whole history of its trajectory.

Thus, to compute the derivatives of the irradiances, it is enough to dif-
ferentiate the explicit expressions of functions Ψa(u), qa(u) and Ka(u, u′) with
respect to the retrieved parameters. Then the following elementary changes are
introduced to the algorithm of irradiance calculations described in Sect. 2.1:
the counting of values Wa (for entire set of parameters) at every modeling of
the element of the photon trajectory with the writing to the special counters
of the derivatives simultaneously with writing to the counters of the irradi-
ances. Although the irradiances are calculated as integrals with respect to



182 Determination of Parameters of the Atmosphere and the Surface in a Clear Atmosphere

wavelength (5.4), the wavelength remains the fixed one while modeling every
single trajectory. Hence, it is enough to consider the monochromatic case only
during the differentiation and the derivative of integral (5.4) will be obtained
automatically. It should be emphasized also that the optical thickness itself is
the function of differentiated parameters. Thus, the atmospheric pressure is
to be used as a vertical coordinate, while computing the derivatives. Nothing
changes in the real modeling but for the derivation of (2.8) the photon free path
probability from altitude level P1 (in the pressure scale) to level P is written as:

1 − exp

⎛
⎝−

1
µ

P∫
P1

α(P′)dP′
⎞
⎠ ,

where α(P) is the extinction coefficient, then probability density (2.8) trans-
forms to the following:

ρ(P) = −
α(P)
|µ| exp

⎛
⎝−

1
µ

P∫
P1

α(P′)dP′
⎞
⎠ . (5.17)

It is just (5.17), which is to be used as a probability density of the photon free
path, while differentiating.

Now apply the algorithm of the irradiance calculation, described in Sect. 2.1
to the algorithm for the calculating of derivatives while taking into account the
explicit form of the functions in (5.16).

Counters Wa are introduced for the whole set of parameters. Starting every
trajectory of the counter Wa := 0 is assumed. While modeling every photon free
path, the following value is assigned to the counter while taking into account
(5.17):

Wa := Wa +
1

α(P2)
∂
∂a

(α(P2)) −
1

|µ′|
∂
∂a

(∆τ′(P1, P2)) , (5.18)

where ∆τ′(P1, P2) is the photon free path from level P1 to level P2 (2.7). If the
photon reaches the surface, then the item with value α(P2) will be absent. While
modeling every act of the interaction between the photon and atmosphere, i. e.
while multiplying the photon weight by ω0(τ′), the following value is written
to the counter:

Wa := Wa +
1

ω0(P′)
∂
∂a

(ω0(P′)) , (5.19)

where P′ is the current coordinate (in the atmospheric pressure scale) corre-
sponding to optical thickness τ′. Analogously, the values for the interaction of
the photon with the surface is written to the counter in accordance with (2.23):

Wa := Wa +
1
A

∂
∂a

(A) . (5.20)
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The value is written to the counter at every step of modeling the photon
scattering in the atmosphere according to (2.9):

Wa := Wa +
1

x(P′, χ)
∂
∂a

(x(P′, χ)) . (5.21)

Finally, the following value is written to the counter of the derivatives simulta-
neously with writing weight ψ to the counter of irradiances as per to (2.18):

ψ
[

Wa −
1

|µ′|
∂
∂a

(∆τ(P′, P))
]

,

where P is the coordinate of the counter.
The obtained algorithm is essentially simplified while taking into account

that the following sum is calculated simultaneously at the point of the scattering
modeling P′ = P2

1
α(P′)

∂
∂a

(α(P′)) +
1

ω0(P′)
∂
∂a

(ω0(P′)) +
1

x(P′, χ)
∂
∂a

(x(P′, χ)) . (5.22)

After substituting the expressions of the optical parameters through aerosol
and molecular components (1.24) and (1.25) with the elementary algebraic
manipulations, this sum is reduced to the following form:

∂
∂a [σm(P′)xm(χ) + σa(P′)xa(P′, χ)]

σm(P′)xm(χ) + σa(P′)xa(P′, χ)
, (5.23)

where σm, xm, σa, xa are the volume coefficients and phase functions of the
molecular and aerosol scattering. In addition, remember that the phase func-
tion of the molecular scattering determined by (1.25) does not depend on
optical parameters. Finally, the only value is written to the counter in the
algorithm of the photon free path modeling:

Wa := Wa −
1

|µ′|
∂
∂a

(∆τ′(P1, P2)) , (5.24)

and after modeling the scattering angle the only value is:

Wa := Wa +
xm(χ) ∂

∂aσm(P′) + xa(P′, χ) ∂
∂aσa(P′) + σa(P′) ∂

∂a xa(P′, χ)

σm(P′)xm(χ) + σa(P′)xa(P′, χ)
.

(5.25)

The explicit expressions of the above-mentioned derivatives through the de-
sired parameters of the inverse problem are presented further. The total set
of the retrieved parameters has been defined in the previous section. There
are the vertical profile of air temperature T(Pi), profiles of contents of four
gases absorbing radiation QH2O(Pi), QO3(Pi), QNO2(Pi), QNO3(Pi) (The O2 con-
tent is constant), volume coefficients of the aerosol absorption and scattering
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σa(Pi, λj), κa(Pi, λj), and surface albedo A(λj). The concentrations of the atmo-
spheric gases will be expressed through the volume-mixing ratio that gives the
simple relation for their counting concentrations:

n(Pi) =
PiQ(Pi)
kT(Pi)

. (5.26)

Let the sets of altitude levels Pi and wavelengths λj to be specified in a general
form for the present, their concrete magnitudes will be obtained on the basis
of the derivative analysis (Sect. 4.4). Note that in practice to simplify the
derivatives computing (and to prevent the errors while programming) the
derivatives are to be written as a chain of the simplest formulas using the
rule of the composite function differentiation. It is also useful even if the
substituting of the derivatives to the general formulas causes the simplification
of the expressions. The other approach effectively simplifying the calculations
is application of the expression of the derivative of the product through the
logarithmic derivatives.

As intermediate values in the grids Pi and λj are computed with the linear
interpolation according to the following:

F(u) = F(ui)
ui+1 − u

ui+1 − ui
+ F(ui+1)

u − ui

ui+1 − ui
,

the derivative of function ∂F(u)|∂F(ui) is obtained as the following process:
After determining number n from condition un ≤ u ≤ un+1 the following

equalities are correct:

∂F(u)
∂F(ui)

= 0 for i < n or i > n + 1 ;

∂F(u)
∂F(ui)

=
ui+1 − u

ui+1 − ui
for i = n ,

∂F(u)
∂F(ui)

=
u − ui

ui+1 − ui
for i = n + 1 .

As the derivative depends on the argument only, specify it as ∂F(u)|∂F(ui) ≡
Li(u). Then the derivative with respect to the surface albedo is written as:

∂
∂A(λj)

(A) = Lj(λ) .

The photon free path ∆τ′(P1P2), as per (2.1)–(2.4), is the quadratic function
of volume extinction coefficient α(Pi). Hence the following algorithm is elab-
orated for computing derivative ∂|∂α(Pi)(∆τ′(P1, P2)), where inequity P2 < P1
is assumed for the definiteness:
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1. Finding numbers n1 and n2 from conditions Pn1 ≥ P1 ≥ Pn1+1, Pn2 ≥
P2 ≥ Pn2+1

2. Then three cases are considered depending on the magnitude of differ-
ence n2 − n1: n2 > n1 + 1

∂
∂α(Pi)

(∆τ′(P1, P2)) = 0 for i < n1 or i > n2 + 1 ;

∂
∂α(Pi)

(∆τ′(P1, P2)) =
1
2

(P1 − Pi+1)2

(Pi − Pi+1)
, for i = n1 ;

∂
∂α(Pi)

(∆τ′(P1, P2)) = P1 − Pi −
1
2

(P1 − Pi)2

Pi−1 − Pi
+

1
2

(Pi − Pi+1) ,

for i = n2 + 1 ; (5.27)

∂
∂α(Pi)

(∆τ′(P1, P2)) =
1
2

(Pi−1 − Pi+1) , for n1 + 2 ≤ i ≤ n2 − 1 ;

∂
∂α(Pi)

(∆τ′(P1, P2)) = Pi − P2 −
1
2

(Pi − P2)2

Pi − Pi+1
+

1
2

(Pi−1 − Pi) , for i = n2 ;

∂
∂α(Pi)

(∆τ′(P1, P2)) =
1
2

(Pi−1 − P2)2

Pi−1 − Pi
, for i = n2 + 1 .

n2 = n1 + 1. This case differs from the latter by the derivative being equal to:

∂
∂α(Pi)

(∆τ′(P1, P2)) = P1 − P2 −
1
2

(P1 − Pi)2

Pi−1 − Pi
−

1
2

(Pi − P2)2

Pi − Pi+1

for i = n1 + 1 = n2

(5.28)

n2 = n1:

∂
∂α(Pi)

(∆τ′(P1, P2)) = 0 for i < n1 or i > n1 + 1 ;

∂
∂α(Pi)

(∆τ′(P1, P2)) = Pi − P2 +
1
2

(P1 − Pi+1)2 − (Pi − P2)2

Pi − Pi+1
,

for i = n1 = n2 ,

∂
∂α(Pi)

(∆τ′(P1, P2)) = P1 − Pi +
1
2

(Pi−1 − P2)2 − (P1 − Pi)2

Pi−1 − Pi
,

for i = n1 + 1 = n2 + 1 .

(5.29)

Note that, the volume extinction coefficient in the described algorithm is
applied after recalculating per the pressure unit αP(Pi), while it has been
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calculated per the altitude unit initially. After the differentiation of (5.1) we
obtained:

∂αP(Pi)
∂αz(Pi)

=
RT(Pi)

g(Pi)µ(Pi)Pi
. (5.30)

Owing to summarizing rules (1.24), analogous relations are also derived for
the volume coefficient of the aerosol scattering.

Now the final formulas are presented for the derivatives of the radiative
characteristics with respect to the desired parameters. The specifications, used
in Chapter 1 and in the previous section are kept.

Derivatives with respect to contents of the gases absorbing radiation (exclud-
ing the water vapor). Volume coefficient of the molecular absorption κm(Pi)
depends on these contents and the volume extinction coefficient in its turn
depends on the volume coefficient of the molecular absorption as per (1.24).
Then specify the concrete gas with subscript k and obtain:

∂(∆τ′(P1, P2))
∂Qk(Pi)

=
∂(∆τ′(P1, P2))

∂αP(Pi)
∂αP(Pi)
∂αz(Pi)

∂αz(Pi)
∂κm,k(Pi)

∂κm,k(Pi)
∂nk(Pi)

∂nk(Pi)
∂Qk(Pi)

,

(5.31)

where:
∂αz(Pi)

∂κm,k(Pi)
= 1

according to (1.23) and (1.24),

∂κm,k(Pi)
∂nk(Pi)

= Ca,k

according to (1.22) and

∂nk(Pi)
∂Qk(Pi)

=
Pi

kT(Pi)

according to (5.18).
The cross-sections of the molecular absorption depending on wavelength

and (only for ozone) on temperature are computed by the linear interpolation
with (1.28) and (5.7). Certainly, the derivatives with respect to gases content
are not equal to zero within the spectral regions of these gases absorption only
(Table 5.1).

Derivative with respect to water vapor content. In addition to the volume
coefficient of the molecular absorption, the volume coefficient of the molecular
scattering also depends on H2O content as per (1.27). It yields the following
expression for the derivative of the free path:

∂(∆τ′(P1, P2))
∂QH2O(Pi)

(5.32)

=
∂(∆τ′(P1, P2))

∂αP(Pi)
∂αP(Pi)
∂αz(Pi)

(
∂αz(Pi)

∂κm,k(Pi)
∂κm,k(Pi)
∂nk(Pi)

∂nk(Pi)
∂Qk(Pi)

+
∂σz,m(Pi)
∂QH2O(Pi)

)
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and the following is obtained for the derivative with respect to the coefficient
of the molecular scattering:

∂σP,m(P′)
∂QH2O(Pi)

= Li(P′)∂σP,m(Pi)
∂σz,m(Pi)

∂σz,m(Pi)
∂QH2O(Pi)

. (5.33)

The derivatives depending on volume coefficient of the molecular scattering
have been calculated above, and the absorption cross-section for H2O is com-
puted with (5.8).

The expression for the derivative of the molecular scattering volume coeffi-
cient is obtained as follows:

∂σz,m(Pi)
∂QH2O(Pi)

=
∂σz,m(Pi)

∂m

∂m

∂Pw

∂Pw

∂QH2O(Pi)
, (5.34)

where:

∂σz,m(Pi)
∂m

= σz,m(Pi)
4m

m2 − 1
∂m

∂Pw
= 10−6 0.0624 − 0.00068λ−2

1 + 0.003661T(Pi)
∂Pw

∂QH2O(Pi)
= 0.7501Pi .

Derivative with respect to volume coefficient of the aerosol absorption. The
volume extinction coefficient only depends on volume coefficient of the aerosol
absorption that directly yields:

∂(∆τ′(P1, P2))
∂κz,a(Pi, λj)

=
∂(∆τ′(P1, P2))

∂αP(Pi)
∂αP(Pi)
∂αz(Pi)

∂αz(Pi)
∂κz,a(Pi)

Lj(λ) , (5.35)

where ∂αz(Pi)|(∂κz,a(Pi)) = 1 with taking into account (1.23) and (1.24).
Derivative with respect to volume coefficient of the aerosol scattering. The

volume coefficients of the absorption and scattering and the phase function
of the aerosol scattering as per (5.9) depend on the volume coefficient of the
aerosol scattering. Therefore, we obtain:

∂(∆τ′(P1, P2))
∂σz,a(Pi, λj)

=
∂(∆τ′(P1, P2))

∂αP(Pi)
∂αP(Pi)
∂αz(Pi)

∂αz(Pi)
∂σz,a(Pi)

Lj(λ) , (5.36)

where ∂αz(Pi)|∂σz,a(Pi) = 1 with taking into account (1.23) and (1.24).
Then we can write:

∂σP,a(P′)
∂σz,a(Pi, λj)

= Li(P′) ∂σP,a(Pi)
∂σz,a(Pi, λ)

Lj(λ) . (5.37)
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At last for the derivative of the phase function the following relations are
correct:

∂xa(P′, χ)
∂σz,a(Pi, λj)

= Li(P′)∂xa(Pi, χ, λ)
∂σz,a(Pi, λ)

Lj(λ) (5.38)

and with accounting for (5.9) after simple transformations we obtain:

∂xa(Pi, χ, λ)
∂σz,a(Pi, λ)

=
xa(Pi, χ, λ)
σz,a(Pi, λ)

⎛
⎝D(Pi, χ, λ) −

1
2

1∫
−1

D(Pi, χ′, λ)xa(Pi, χ′, λ)dχ′
⎞
⎠ ,

(5.39)

where

D(Pi, χ, λ) = bi(χ, λ) + 2ci(χ, λ) ln(σa,z(Pi, λ)) .

The derivative with respect to air temperature. A big quantity of values depends
on temperature. Begin from the photon free path and obtain the following for
it:

∂(∆τ′(P1, P2))
∂T(Pi)

=
∂(∆τ′(P1, P2))

∂αP(Pi)
∂αP(Pi)
∂T(Pi)

(5.40)

and for the volume coefficient of the molecular scattering:

∂σP,m(P′)
∂T(Pi)

= Li(P′)∂σP,m(Pi)
∂T(Pi)

. (5.41)

An important feature of calculating the derivatives with respect to temperature
is the necessity of accounting for the temperature dependence in the formula of
the recalculation of the volume extinction coefficients in terms of atmospheric
pressure (5.1). It is obtained as follows:

∂αP(Pi)
∂T(Pi)

= αP(Pi)
(

1
αz(Pi)

∂αz(Pi)
∂T(Pi)

+
1

T(Pi)

)
. (5.42)

The analogous relation is written for derivative ∂σP,m(Pi)|∂T(Pi), and for the
aerosol scattering volume coefficient the following is obtained:

∂σP,a(Pi)
∂T(Pi)

=
σP,a(Pi)
T(Pi)

.

Now the expression for the extinction coefficient is derived:

∂αz(Pi)
∂T(Pi)

=
∂σz,m(Pi)
∂T(Pi)

+
∂κz,m(Pi)
∂T(Pi)

. (5.43)
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Finally, the problem is reduced to the differentiation of the volume coefficients
of the molecular scattering and absorption. The first coefficient is equal to the
sum of the coefficients of absorbing gases (all, including O2) by (1.22). The
corresponding sum is inferred for the derivatives too. Specifying the concrete
gas with subscript k, with accounting for (5.18) we get:

∂κm,k(Pi)
∂T(Pi)

= κm,k(Pi)
(

−
1

T(Pi)
+

1
Ca,k

∂Ca,k

∂T(Pi)

)
. (5.44)

The absorption cross-sections of gases NO2, NO3, O3 within the range 426–
848 nm don’t depend on temperature, hence, equality ∂Ca,k|(∂T(Pi)) = 0 is
correct. The following is obtained from (5.7) for O3 within the range 330–
356 nm:

∂Ca,k(λ, T(Pi))
∂T(Pi)

= C1(λ) + 2C2(λ)T(Pi) . (5.45)

Equation (5.8) yields the following expression with taking into account the
linear interpolation of cross-sections over wavelength:

∂Ca,k(λ, Pi, T(Pi))
∂T(Pi)

= −Ca,k(λj, P, T(Pi))
C2(λj)

T(Pi)

λj+1 − λ
λj+1 − λj

− Ca,k(λj+1, P, T(Pi))
C2(λj+1)

T(Pi)

λ − λj

λj+1 − λj
.

(5.46)

The following is obtained for the derivative of the volume coefficient of the
molecular scattering with (1.25) and (1.26):

∂σz,m(Pi)
∂T(Pi)

= σz,m(Pi)
(

4m

m2 − 1
∂m

∂T(Pi)
+

1
T(Pi)

)
, (5.47)

and expression (1.27) yields the following:

∂m

∂T(Pi)
=

10−6

1 + 0.003661T(Pi)

{
b(λ)
[
2.178 × 10−11P2

i

− 5.079 × 10−6 Pi(1 + 10−6Pi(1.049 − 0.0157T(Pi)))
1 + 0.003661T(Pi)

]

+ 10−4Pw
2.284 − 0.0249λ−2

1 + 0.003661T(Pi)

}
(5.48)

After analyzing theobtainedderivativeswith themethodsdescribed inSect. 4.4
the concrete sets of altitudes and wavelengths are selected for the retrieval of
the atmospheric parameters, namely:
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– The grid over wavelengths: from 325 to 685 nm with step 20 nm and from
725 to 985 nm with step 40 nm (28 points in a whole).

– The grid over altitude: from 1000 to 800 mbar with step 10 mbar, from
800 to 500 mbar with step 20 mbar, 500 to 110 mbar with step 30 mbar,
90 to 10 mbar with step 10 mbar and levels 5.2 and 0.5 mbar (61 points as
a whole).

The selection of the detailed grid in the lower atmospheric layers is caused by
the irradiance sounding levels and have been measured with a step of 100 mbar.
Note that the top of the atmosphere corresponding to 0.5 mbar (about 55 km)
is in a good agreement with the altitude of the standard top atmospheric level,
usually used in calculations of the radiative transfer in the shortwave region
(Rozanov et al. 1995; Kneizis et al. 1996).

Consider briefly the specific features of the calculated derivatives of the
irradiances and their magnitudes. This analysis allows estimating the mech-
anisms of the parameter influences on the measured characteristics of solar
radiation and concluding the possibility of the retrieval of certain atmospheric
parameters.

Dependence of the upwelling irradiance upon the surface albedo is well
studied (Kondratyevet al. 1971, 1977).The inhomogeneous linear function (y =
ax + b) has been proposed for its description, where the multiplicative item is
the part of irradiance directly reflected from the surface proportional to albedo,
and the additive item is connected with diffused radiation in the atmosphere.
Correspondingly, the greater albedo is the stronger is the upwelling irradiance
dependent on it. The dependence of the surface albedo is also elucidated in the
downwelling irradiance (Sect. 3.4). The corresponding derivative is greater,
when the albedo is greater and the scattering in the atmosphere is stronger. It
could reach decimals of percent of the irradiance variation to one percent of
the albedo variation as it follows from the calculations with the bright surfaces
like snow. Thus, the influence of surface albedo on the downwelling irradiance
could exceed the uncertainty of the irradiance observation.

Out of O2 and H2O absorption bands, the dependence of the irradiance
upon temperature is extremely weak: it conserves close to the value of the
observational uncertainty even if the a priori variations of the temperature are
maximal. The same is valid in the case of the ozone absorption bands. Thus,
the temperature dependence of the irradiances could be ignored out of the
absorption bands and the corresponding derivatives could be assumed equal
to zero. At the same time, the temperature dependence is essential within the
O2 and H2O absorption bands including the weak bands also. In addition,
within some spectral regions, for example in wavelength 932 nm in the center
of the H2O band, it is strong and reaches the percent of the irradiance variation
to one-degree variation of the whole temperature profile.

Derivative with respect to water vapor content are also essential only within
its absorption bands, hence the relationship between the volume coefficient of
the molecular scattering and H2O content could be neglected. These derivatives
are maximal within the absorption band 910–980 nm, where the irradiance
variation reaches 40% to the a priori variations of the vertical profile of H2O
content as a whole.
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The derivatives with respect to ozone content reach the maximum in the
stratospheric ozone layer. Note that the selection of the upper boundary at
level 0.5 mbar is determined with the influence of the stratospheric ozone
on the solar irradiance value because the influence of all other components
(including the aerosols) is negligibly weak at the high altitudes. The maximal
irradiance variation at wavelength 330 nm is about 5% to the range of the
a priori ozone variations.

The values of the derivatives with respect to N2O content are very low, and,
even with accounting for the possible wide interval of its a priori variations,
the retrieval of N2O content is impossible. This conclusion does not contradict
the results obtained in the previous section as we have used the extremely high
values of the absorbing gases content there and have calculated the derivatives
for the averaged model (Rozanov et al. 1995; Kneizis et al. 1996). The analo-
gous situation is arising for NO3 gas, although the derivatives with respect to
N2O content within the absorption maximums (bands 524 and 662 nm) are
essentially greater and allow principally obtaining certain information about
NO3 contents with its high concentration.

The derivatives with respect to volume coefficient of the aerosol scattering are
specified with the complicated vertical dependence. The volume coefficient of
the aerosol scattering influences to the solar irradiances owing to two contrary
processes: the irradiances are decreasing with the aerosol optical thickness
growth and are increasing with the aerosol scattering growth. Thus, the profiles
of the derivatives in question are sign-invertible: they have a positive maximum
around the observational point, which is decreasing with holding away from
this point and then they transform to the negative ones. Evidently, this obstacle
is connected with the local character of the scattering yield to the irradiances:
it is maximal around the point of the measurement. The absolute value of
the derivatives with respect to volume coefficient of the aerosol scattering
is quite high: the variations of the coefficient even in separate layers could
cause the irradiance variations up to 10% and higher. The spectral behavior
of the derivatives in question is weakly expressed. There is an approach for
retrieval of the altitudinal dependence of the aerosol parameters from the
remote measurements within the 760 nm oxygen absorption band (Badaev and
Malkevitch 1978; Timofeyev et al. 1995). Indeed, there is a certain difference
between the vertical profiles shape of the derivatives within this band and
out of it but it is rather weak that is also provided by the conclusion of the
study (Timofeyev et al. 1995). However, the vertical profile of the retrieved
parameters is directly obtained from the airborne observations at different
levels of the atmosphere.

The derivatives with respect to volume coefficient of the aerosol absorption
greatly depend on the type of the selected aerosol model. The values are greater
if the aerosol absorption is stronger. It is the reason why the retrieval of the
aerosol absorption volume coefficient from the data of the observations above
Ladoga Lake has turned out a difficult problem and it has been much more
possible for the observations above the desert. The same conclusion is followed
from the analysis of the irradiances accomplished in Sect. 3.3.
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5.3
Results of the Retrieval of Parameters of the Atmosphere and the Surface

The inverseproblemof the retrieval of atmospheric andsurfaceparameterswas
solved with the method described in Sect. 4.3, i. e. with the method of statistical
regularization as per (4.53) (Vasilyev A and Ivlev 1999). Before discussing the
retrieval results, we are pointing at the selection of the a priori and covariance
matrices of the desired parameters necessary for the inverse problem solving.

The corresponding a priori models of temperature, water vapor, and ozone
were taken from the book by Zuev and Komarov (1986). Two cases: “mid-
latitudinal winter” for the observations above the ice and snow and “mid-
latitudinal summer” for the observations above the water and sand surfaces.
These models were completed with the data from the study by Anderson et al.
(1996) to expand them to the top of the atmosphere (0.5 mbar). While com-
pleting, the traditional exponential approximation was used for the covariance
matrices (Biryulina 1981).

corr(X(zi), X(zj)) = exp(−|zi − zj||r) (5.49)

where X is the temperature or content of the atmospheric gas; zi, zj are the
altitudes, where the correlation is calculated, r is the correlation radius and
the only scalar parameter, which the standard altitude of 5 km was used for
(Biryulina 1981).

The mean profiles of NO2 and NO3 were adopted from the text of GOME-
TRAN computer code (Rozanov et al. 1995; Vasilyev A et al 1998). The co-
variance matrices were modeled according to (5.49), and the a priori SD was
assumed equal to 100%.

The mean values and the covariance matrices of the albedo of sand, snow,
and pure lake water were calculated directly from the observations of the spec-
tral brightness coefficient, presented in Sect. 3.4. In the approximation of the
orthotropic surface, the albedo is equal to the spectral brightness coefficient.

Construction of the a priori aerosol models is the most difficult problem,
because there is no data about the variations and correlation links of the aerosol
parameters in the cited literature in spite of the significant amount of optical
aerosol models. In addition, the known models are not intended for applying
to the inverse problems solving and consists of not detailed enough grids over
altitudes and wavelengths. Thus, the special aerosol models for the regions and
seasons of the observations should be elaborated while taking into account the
features of the problem.

While elaborating such models, in addition to the cited literature data, the
results of the direct airborne observations of the number concentration and
chemical composition of the aerosol particles were used as well. These observa-
tions were accomplished by the team of the Laboratory for Aerosols Physics of
the Atmospheric Physics Department of the Physical Institute of the Leningrad
University above the Kara-Kum Desert and Ladoga Lake (Dmokhovsky et al.
1972; Kondratyev and Ter-Markaryants 1976). The following approach, tradi-
tional for the modern modeling of the optical properties of the aerosols was
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used there. The aerosols microphysical parameters were specified and the total
set of the desired optical parameters (in our case the aerosol absorption and
scattering volume coefficients and the phase function of the aerosol scattering
at the fixed altitude and spectral grids) were calculated with them. As the prob-
lem of the modeling was obtaining the a priori statistical parameters of the
aerosols, they were calculated by the variations of the microphysical parame-
ters. This methodology of modeling and the aerosol model itself are presented
in detail in the study by Vasilyev and Ivlev (2000).

The considered inverse problem of the retrieval of atmospheric optical pa-
rameters from the data of solar irradiance observations has no analogs in
contemporary literature. Thus, we aim the study at the principal possibil-
ity of the retrieval of atmospheric parameters from the data of the irradiance
measurements and also to the revealing of the methodological algorithm short-
comings. Therefore, we are presenting the analysis of all retrieved parameters
of the atmosphere including even the parameters whose obtaining from the
observational data is of no practical interest (the profiles of temperature and
humidity). Moreover, we are presenting some erroneous results, which are of
interest from the point of elucidating methodological shortcomings of the al-
gorithms. The results of the retrieval of the aerosol parameters are certainly the
most important ones, especially from the aspect of constructing and improv-
ing the aerosol models of the atmosphere. However, it should be emphasized
that, if the number of the accomplished experiments with the processed results
is less than ten for every type of surface, it would not be enough for statis-
tical analysis of the results and for presenting them as models. Nevertheless,
it is possible to limit our consideration with the most typical results because
they are the robust (statistically stable) estimation of the mean values of the
aerosol parameters for constructing the aerosol models. The obtained results
are presented in Tables A.8–A.11 of Appendix A.

Figure 5.4 illustrates the examples of retrieving the temperature vertical
profile. The specific features of the profiles, particularly, the strong maximum
at the level 500 mbar, hardly correspond to the real altitudinal temperature
behavior in the atmosphere, so they have been caused by the essential system-
atic uncertainty during the retrieval of the temperature profile. It is easy to
explain with the significant temperature dependence of the irradiance within
molecular absorption bands. In particular, it concerns oxygen narrow band
760 nm. However, as has been mentioned in Chap. 3, while describing the ob-
servations with the K-3 spectrometer the large systematic uncertainty could
appear within the oxygen band connected with the shift of the wavelength
scale owing to the mechanical scanning of the K-3 instrument. Besides, the
instrumental function obtained from the measurements in the VD spectral
region can (moreover, from the properties of spectral instruments, it has to)
show the relationship between its halfwidth and spectral region and can be
wider in the NIR region. Note that both specific features are clearly seen in
comparison of the observations and calculations, illustrated by Fig. 5.3. As the
oxygen content is fixed, while solving the inverse problem, the temperature
profile is the only parameter, which links with the absorption band shape and,
which could be varied in the algorithm. The systematic uncertainties of the
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Fig.5.4a,b. Results of the retrieval of the vertical temperature profile: a from the data of the
airborne sounding 16th October 1983 above the Kara-Kum Desert, b from the data of the
airborne sounding 29th April 1985 above Ladoga Lake. Dotted line indicates the a priori
profile

temperature profile are inevitable because of the existence of the observational
uncertainties within the oxygen band.

In this connection, the question of the possibility of using the radiosounding
data for the irradiance data processing was discussed even in the 70th, while ac-
complishing the described experiments (e. g. Kondratyev et al. 1977). However,
the geographical regions of the experiments differed with their microclimatic
properties. The weather and atmospheric conditions above Ladoga Lake varied
from those above the shore points, where the radiosounding was accomplished.
While carrying out the observations above the Kara-Kum Desert, the nearest
point of the radiosounding was the city Krasnovodsk at the Caspian Sea shore,
where the weather and atmospheric conditions were essentially different than
in the center of the desert (200 km from Krasnovodsk). Therefore, it was de-
cided not to use the data of the direct measurements of the temperature and
humidity profiles in the nearest points to the sites of the observations.

Figure 5.5 illustrates the examples of the retrieved water vapor vertical pro-
files. As follows from the previous analysis of the derivatives, H2O absorption
bands together with the oxygen absorption bands are the only spectral regions,
where the essential temperature dependence of the irradiance exists. Thus, the
significant uncertainties mentioned above could affect only H2O content pro-
file. However, as has been mentioned above, the retrieval of the temperature
and humidity is not of practical interest, and the pointed systematic uncer-



Results of the Retrieval of Parameters of the Atmosphere and the Surface 195

Fig.5.5a,b. Results of the retrieval of the volume H2O content vertical profile: a from the
data of the airborne sounding 16th October 1983 above the Kara-Kum Desert; b from the
data of the airborne sounding 29th April 1985 above Ladoga Lake. Dotted line indicates the
a priori profile

tainties could be ignored. It should be emphasized that there is no significant
contradiction in the results of H2O content profile. In particular, H2O content
at the ground level retrieved from the observations above the desert is less than
the a priori magnitude for mid-latitudes, as it should be in accordance with
logic.

The results of the ozone content retrieval are presented in Fig. 5.6. It is
seen that the retrieved profiles weakly differ from the a priori ones, though O3
content above the desert is rather higher than the a priori content.

As for the results of N2O and NO3 contents, their uncertainties are close
to the a priori ones, so it is better to discuss the correct accounting of the
a priori indefinites of their content assignments but not the results of the
vertical profiles of these gases.

Consider the most interesting components of the vector of the retrieved
parameters, namely the optical parameters of the atmospheric aerosols. The
examples of retrieving the vertical profiles of the aerosol scattering and absorp-
tion volume coefficients are presented in Figs. 5.7–5.9 and in Tables A.8–A.11
of Appendix A. Note that they are significantly lower than the a priori ones in
the lower troposphere that points out the necessity of correcting the a priori
models to decrease the aerosol particles content in the corresponding altitu-
dinal zones. In this connection, the known effect of the strong dependence of
the results upon zeroth approximation selection should be stressed (Zuev and
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Fig.5.6a,b. Results of the retrieval of the vertical volume ozone content profile: a from the
data of the airborne sounding 16th October 1983 above the Kara-Kum Desert; b from the
data of the airborne sounding 29th April 1985 above Ladoga Lake. Dotted line indicates the
a priori profile

Naats 1990; Vasilyev O and Vasilyev A 1994). Thus, the retrieved results could
be changed after correcting the aerosol model.

The systematic uncertainties of the instrument calibration strongly affect
the results of the vertical profiles of the coefficients in question (Vasilyev A
and Ivlev 1999). We illustrate this influence with the simplest example. Let the
measured value of the downwelling irradiance at the level 500 mbar be system-
atically underestimated only for 1–2% (Sect. 3.3). The only way to adjust the
direct problem solution to this observational data is introducing the extinc-
tion aerosol layer to the model at the altitude higher than 500 mbar. Taking
into account small a priori aerosol content at these altitudes, the introduced
aerosol layer must be sufficiently thick to cause the extinction of the down-
welling irradiance to 1–2%. Thus, even with the low systematic uncertainty in
the observed irradiances the algorithm of the inverse problem solving could
cause the false conclusion about the existence of the aerosol layers in the upper
troposphere and in the stratosphere. Hence, the results of the retrieval of the
aerosol scattering and absorption volume coefficients obtained in altitudinal
diapason of the airborne observations 500–950 mbar are much more reliable,
because only the relative values of the solar irradiances are essential there. The
corresponding profiles are presented in Fig. 5.8. The calibrating factor is likely
to be introduced to the vector of the parameters for retrieval though it is make
the retrieval accuracy worse.
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Fig.5.7a,b. Results of the retrieval of the vertical profiles volume coefficients of the aerosol
scattering (right curves) and absorption (left curves) at wavelength 545 nm: a from the data
of the airborne sounding 16th October 1983 above the Kara-Kum Desert; b from the data
of the airborne sounding 29th April 1985 above Ladoga Lake. Dashed lines indicate the
relevant profiles of the a priori models

Fig.5.8a,b. Results of the retrieval of the vertical profiles of the volume coefficient of the
aerosol scattering (right curves) and absorption (left curves) at wavelength 545 nm and at
the altitude levels corresponding to atmospheric pressure 500–950 mbar: a from the data of
the airborne sounding 16th October 1983 above the Kara-Kum Desert; b from the data of the
airborne sounding 29th April 1985 above Ladoga Lake. Dashed lines indicate the relevant
profiles of the a priori models
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Fig.5.9a,b. Results of the retrieval of the spectral dependence of the volume coefficients of
the aerosol scattering (upper curves) and absorption (lower curves) at the altitude levels
corresponding to atmospheric pressure 850 mbar: a from the data of the airborne sounding
16th October 1983 above the Kara-Kum Desert, b from the data of the airborne sounding
29th April 1985 above Ladoga Lake. Dashed lines indicate the relevant profiles of the a priori
models. (Middle curve in Fig. 5.9a) – The aerosol absorption volume coefficient from the
airborne sounding 12th October 1983 under sand storm conditions

The irregular, indent shape of the vertical profiles was obtained in the
other studies (for example Krekov and Zvenigiriodsky 1990; Polyakov et al.
2001) from the remote sounding processing and it was also obtained from
the airborne direct measurements of the aerosols particle concentrations even
after the statistical smoothing over a big volume of data (Hudson and Yonghong
1999). Thus, the retrieved serrated profiles of the optical parameters of the
atmospheric aerosols are not to be explained as an effect of only systematic
errors of the calibration and altitudinal conjunction, and they are likely to
reflect the real profile of the aerosol content in the atmosphere. The altitudes of
the most probable formation of cloudiness correspond to the local maximums
in curves of Fig. 5.8 (Hudson and Yonghong 1999). As is well known, the process
of the cloudiness formation is connected with the presence of atmospheric
aerosols as they serve the condensation nuclei.

In particular, the local maximum of the volume coefficients of the aerosol
scattering and absorption at altitude 1900 m (corresponding to 800 mbar) is
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evident in Fig. 5.8 and could be explained with the atmospheric aerosols
presence at this altitude. It corresponds to the most probable altitude of the
cloud formation of the lower level.

The examples of the spectral dependence of the volume aerosol scattering
and absorption coefficients are demonstrated in Fig. 5.9. We should mention
the essentially different character of the spectral dependence of the scattering
coefficient in question above the desert and above Ladoga Lake. In the first case,
there is no spectral dependence of the scattering coefficient or there is a weak
growth with wavelength. It might be explained by the rather high amount of
large particles in the atmospheric aerosols above the desert.

Figure 5.9 illustrates the results of the volume coefficient of the aerosol
absorption obtained from the sounding data above the desert under pure
atmospheric conditions (the weak absorption) and after a sand storm (the
strong absorption). The latter case demonstrates the evident absorption band
of the hematite, which appears even in the spectra of the solar radiative flux
divergence (Sect. 3.3). The second case illustrates the apparent decreasing of
the aerosol scattering coefficient with wavelength.

The examples of retrieving the spectral values of the surface albedo are pre-
sented in Fig. 5.10. The deviation of the spectrum of the snow surface from the
monotonic behavior (Fig. 5.10b) is likely caused by the surface inhomogeneity
(the snow was melting on 29th April). The surface inhomogeneity has been
smoothed during the second stage of the data processing, but the spectral
distortions of the upwelling irradiances have remained and they cause the sys-
tematic uncertainty of the retrieved albedo, which does not exceed the interval
of three SD and statistically can be assumed the insignificant one.

Note, that the spectral albedo is retrieved with the relative uncertainty about
1–3% that is much more accurate than in the case of direct dividing the up-
welling irradiance by the downwelling (Sect. 3.4). In addition, the retrieved
albedo is exactly correspondent to the notion of albedo used in the radia-
tive transfer theory (Sect. 1.4) and it has no distortion connected with the
gases absorption bands. Thus, the airborne experiments accomplished with
the sounding scheme and the following inverse problem solving could be used
for obtaining the surface albedo values with high accuracy.

We should mention that the uncertainties of the retrieved atmospheric pa-
rameters are greatly affected by the information content of the results of solar
irradiance observations (Sect. 3.3) and by the spectral resolution within the
absorption bands of gases, while retrieving their content. Thus, the uncertain-
ties of the retrieval from different soundings data are essentially different. It is
seen from the presented figures, where the posterior SDs of the retrieved pa-
rameters are shown. The uncertainties of the retrieval in the lower troposphere
are 10–50% on the average for the volume aerosol scattering coefficient; are
50–100% for the volume aerosol absorption coefficient (that, however, is less
than the a priori uncertainty); are 20–30% for ozone content and are 20–50%
for H2O content. We should point out that the higher the aerosol content in the
atmosphere the higher the accuracy of the aerosol parameters is.

The discreteness of the registration during the measurements (Sect. 4.3)
is not accounted for in the formal scheme of the inverse problem solving
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Fig.5.10a,b. Results of the retrieval of the spectral dependence of the surface albedo: a from
the data of the airborne sounding 16th October 1983 above the Kara-Kum Desert, sand
surface; b from the data of the airborne sounding 29th April 1985 above Ladoga Lake, snow
surface. Dashed lines indicate the relevant profiles of the a priori models

[consequence 4 from (4.38)]. However, the digitizing of the signal during the
observations with the K-3 instrument has been accomplished with an accuracy
to 10 binary, i. e. 3 decimal orders. This means that after averaging the results
of about 100 measurements the accuracy of the mean value could exceed the
accuracy of the instrument signal registration (Otnes and Enochson 1978). The
ratio about 1|100 appears between the number of the independent retrieved
parameters (during the transformation to the basis of the a priori covariance
matrix) and the number of observations. Certainly not only the averaging but
more complicated data processing is carried out during the inverse problem
solving, but it does not matter and the obtained SD of the retrieved parameters
could turn out lower than the real values. Especially it appears during the
surface spectral albedo retrieval because all observational results are used in
this case and the spectral albedo is described with only several independent
parameters owing to its strong autocorrelation. Therefore, the formal accuracy
of the albedo retrieval turns out fantastically high. However, in reality, the
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albedo could not be obtained with the accuracy exceeding the instrument
accuracy. Indeed, this very accuracy would be obtained without atmosphere.
Taking this fact into account the relevant correction has been introduced to
the SD value finally attributed to the spectral albedo, for it is not lower than
the random SD of K-3 instrument observations (Table 3.1).

It could be ascertained from the first experience of the inverse problem
solving that the problem in question is quite solvable. There is sufficiently high
susceptibility of the downwelling and upwelling irradiances to the variations
of the gas and aerosol composition of the atmosphere and surface albedo. The
strongrelationshipbetween the retrieval results andsystematicuncertaintiesof
calibration, graduation, and instrumental function is revealed. To diminish this
relationship and to account for the calibration parameters correctly, they are
to be included to the vector of the retrieved parameters, while the algorithm is
improving. Thus, it is seen that the presented method allows the full and correct
extraction of the information about the aerosol and gaseous composition of
the atmosphere from the large arrays of the accumulated data of the field
observations. It is doubtless that the elements of this method could be used in
the processing algorithms of the contemporary satellite data of the scattered
and reflected solar radiation in the shortwave spectral range (Vasilyev A et al.
1998).
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CHAPTER 6

Analytical Method of Inverse Problem Solution
for Cloudy Atmospheres

6.1
Single Scattering Albedo and Optical Thickness Retrieval
from Data of Radiative Observation

The approach of the numerical solving of the inverse problem of atmospheric
optics has been presented in Chaps. 4 and 5. In addition, the direct problem
solution compared with the values of the observed radiative characteristics
has been obtained with the universal numerical Monte-Carlo method. In some
cases we succeeded to find the solution of the direct problem in the analytical
form (Sects. 2.2 and 2.3), then the procedure of computing the derivatives of
the irradiances with respect to the atmospheric parameters becomes faster and
simpler. Moreover, the possibility of the analytical expressions of the radiative
characteristics suggest an idea to convert these expressions and to obtain the
inverse formulas for the retrieval of the desired parameters after substituting
themeasuredvaluesof the radiative characteristics.Thefirst studies in thisfield
assumed either the infinitely thick or the conservative scattering atmosphere
to exclude one of the unknown parameters. Thus, we are citing here only
the studies, which have presented some analytical expression for finding the
optical parameters but not the studies where the optical parameters have been
obtained with a simple comparison of calculations and observational results.

The authors of the study by Rozenberg et al. (1974) took the first step
by using the observation of the reflected solar radiation from satellites for
obtaining the small parameter connected with the single scattering albedo ω0
of the cloud while assuming its infinite optical thickness and the expansion
analogous to (2.29). Only the first power of the expansion was taken into
account, and the optical thickness of the cloud layer was not analyzed. In the
study by Yanovitskij (1972), the expression for spherical albedo of the infinite
atmosphere was inferred and applied to the clouds of Venus for defining the
single scattering albedo with the same assumption about the optically infinite
atmosphere (proven to be more correct than the assumption of the study
by Rozenberg (1974) for terrestrial clouds). The spectral values of ω0 for six
wavelengths from the data of the astronomical observations of the atmosphere
of Venus were evaluated there as well.

The expressions for the retrieval of optical thickness from the radiance
observations above the cloud layer and within it were firstly proposed in
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several studies (King 1987, 1993; King et al. 1990). Regretfully the authors of the
mentioned studies applied the formulas for the case of conservative scattering
only to obtain the optical thickness in the VD spectral region. As the radiation
absorption of the cloud layer was not accounted for, the significant errors
(the unknown a priori ones) could occur if there was radiation absorption
in the clouds. The problem of optical thickness retrieval from solar radiance
measurements in severalwavelength channelswithin the cloud layerwas solved
in the study by King et al. (1990) again with the assumption of the conservative
scattering.

The important exact expression for scaled optical thickness τ′ = 3(1 − g)τ0
throughthereflectedradiancewasderived in thestudybyKing(1987)asa result
of transforming the first of (2.24). Regretfully the author of the study (King
1987) continued the further application of the obtained formula assuming the
conservative scattering of radiation only.

The approach based on using the ratio of the radiances or irradiances at dif-
ferent levels within the cloud layer was proposed in several studies (Duracz and
McCormick 1986; McCormick and Leathers 1996) and the corresponding ana-
lytical formulas was derived for the realization of the approach. Unfortunately,
we have found no results of its application to the analysis of the observational
data.

The parameters of the optically thick atmosphere were determined on the
basis of applying the irradiance gradients to the observations of automatic in-
terplanetary station “Venera” in the atmosphere of Venus. The high accuracy
of the measurements (1) and sufficiently high variations of the correspon-
dent radiative characteristics with altitude (2) are readily needed to reach the
acceptable accuracy of the retrieval of optical parameters. While the second
condition is fulfilled in the atmosphere of Venus due to its large optical thick-
ness, the high observational accuracy is easier to reach in Earth’s atmosphere.
Anyway, calculating the derivative of the radiative characteristics with respect
to altitude with high accuracy is difficult. Various studies (Germogenova et al
1977; Ustinov 1977; Konovalov and Lukashevitch 1981; Konovalov 1982) have
considered the approach of retrieving the optical parameters of the atmosphere
of Venus from irradiance observations basing on the asymptotic formulas of
the transfer theory.

In this connection the study by Zege and Kokhanovsky (1994) should be
mentioned,where therelations foropticalparametersof thecloudyatmosphere
were deduced. The expansions over the parameter similar to the parameter
used in the study by Rozenberg (1974), (with taking only the first power of
the expansion), were convoluted together with the asymptotic formulas with
respect to τ0. This approach provided certain advantages but impeded the anal-
ysis of its applicability region to the single scattering albedo and to the optical
thickness separately. The algorithm of the cloud retrieval for this method was
presented in the study by Kohanovsky et al. (2003). In spite of the advantages
of the method itself, the algorithm was elaborated with certain shortcoming
assumptions: the conservative scattering in the VD spectral region, the invari-
ant optical thickness with respect to wavelength, together with the usage of
the insufficient number of the expansion terms (only the first power). More-
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over, the authors have not presented yet any example of the application of this
approach.

It should be emphasized that these assumptions are very often used because
it is believed in the model of the pure water clouds that nothing is absorbing
solar radiation out of the molecular bands. However, the existence of significant
absorption follows even from the results of the study by Rozenberg et al. (1974).
Note, that introducing the atmospheric aerosols to the cloud model provides
certain radiation absorption in the calculations of the radiative characteristics
(direct problem solving), but this is rather weak. Hence, many investigators
have been still assuming the conservative scattering of solar radiation in clouds
within the VD spectral region, though these assumptions strongly restrict the
problem solution. Further, in Chap. 7 it will be shown that both assumptions
(the conservative scattering in the VD spectral region, the invariant optical
thickness with respect to wavelength) are false in most cases of extended
clouds.

Let us return to Sects. 2.2–2.5, where the optical model of the extended
cloudiness and radiative characteristics observed during the experiments have
been considered. The radiation scattering in the layers above and below the
cloud is neglected at the first stage. In this chapter, we will derive the for-
mulas for the cloud optical parameters from the observed solar radiances or
irradiances values. Expansions (2.29), (2.30), and (2.44) over small parame-
ter s =

√
(1 − ω0)|(3 − 3g) that is characterized the radiation absorption and

phase function influence are substituted to (2.24), (2.26), (2.41) (2.43), and
(2.45) describing the diffused radiation in the cloudy atmosphere. Then op-
erations of multiplying and dividing are to be accomplished by exploiting the
rules of algebra of series while taking into account the terms till the second
power of the small parameter. Only the observed values of solar irradiances
F↑ and F↓ or radiance I and values of functions K0(µ0), K2(µ0) and a2(µ0) for
the fixed incident and viewing (for radiance) angles are included to the final
equations.

The approach for obtaining the cloud optical parameters, presented here is
useful for the interpretation of the airborne, ground and satellite observational
data, but it needs careful analysis of the accuracy of the desired parameters
retrieval, using the numerical models. This analysis has been accomplished
for the set of single scattering albedo ω0 and optical thickness τ0 (Melnikova
1991, 1992) and will be briefly presented in Sect. 6.3.

Relation κ = s2τ′|∆z expresses the absorption volume coefficient and no
assumption concerning the phase function is needed. Obtaining scattering
volume coefficient α = τ′(3 − 3g)|∆z − κ demands the assignment of phase
function parameter g or its determining using an independent methodology.
Fortunately, the phase function parameter does not vary strongly with wave-
length within the stratus clouds; hence, we assume the spectral values of mean
cosine of the scattering angle g in accordance with the results of the study
by Stephens (1979). If geometrical thickness ∆z stays unknown then it is only
possible to determine the optical thickness and single scattering albedo, but
not the scattering and absorption volume coefficients.
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6.1.1
Problem Solution in the Case of the Observations of the Characteristics
of Solar Radiation at the Top and Bottom of the Cloud Optically Thick Layer

Now appeal to (2.25) describing the upwelling and downwelling irradiance
scattered by the cloud layer at its top and bottom, which could be measured
from an aircraft board. Let the cloud layer adjoin the surface with albedo
A = F↑(τ0)/F↓(τ0). Function K(µ) and constants m, l, nand k in (2.25) depend
on true radiation absorption and phase function extension, which in their
turn are defined by microphysical properties of cloud medium and described
by expansions over parameter s (2.29). Substituting (2.29) to (2.25), after the
algebraic transformations we obtain two equations with two unknowns –
parameter s and scaled optical thickness τ′ (Melnikova 1991, 1992; Melnikova
and Mikhailov 1993, 1994). The corresponding manipulations are presented
in Appendix 2. Thus, for determining values s and τ′ using the data of the
irradiances measurements, the following expressions are deduced:

s2 =
F(0)2 − F(τ0)2

16[K0(µ0)2 − F↑(τ0)2] − 2a2(µ0)F(0) − 24q′F↑(τ0)F(τ0)
,

τ′
0 = 3τ0(1 − g) =

1
2s

ln

[
l̄

(
l +

mnK(µ0)

a(µ0) − F↑
0

)]
.

(6.1)

In thecaseofusing theobservationaldataof the solar radiances, theexpressions
keep the similar structure, but they become more awkward:

s2 =
K̄0(µ)2(ρ0 − ρ)2 − K0(µ)2σ2

16K0(µ)2
[
K̄0(µ)2K0(µ0)2 − ( Aσ

1−A )2
]

− J
,

τ′
0 =

1
2s

ln

[
l̄

(
l +

mK(µ)K(µ0)
(ρ0 − ρ)

)]
.

(6.2)

where the following is specified for brevity:

J =
24q′AK0(µ)

1 − A

[
K̄0(µ)(ρ0 − ρ)2 −

AK0(µ)σ2

1 − A

]

+
2AK̄0(µ)

1 − A

[
a2(µ) + n2 −

K2(µ)
K0(µ)

]
(ρ0 − ρ)2 +

a2(µ)a2(µ0)
6q′ K̄0(µ)(ρ0 − ρ)

F(0) = F↓(0) − F↑(0) and F(τ0) = F↓(τ0) − F↑(τ0) are the net solar fluxes
at the top (τ = 0) and at the bottom (τ = τ0) of the cloud layer; a2(µ0) is
the second coefficient in the expansion for the plane albedo of the semi-
infinite atmosphere, a∞ is the spherical albedo of the infinite atmosphere;
ρ = ρ(0, µ, µ0) and σ = σ(τ0, µ, µ0) are the radiances (in relative units of the
incident solar flux πS) measured during the radiative experiments: I(0, µ, µ0) =
Sµ0ρ(0, µ, µ0) and I(τ0, µ, µ0) = Sµ0σ(τ0, µ, µ0). Functions K0(µ0), K2(µ0) and
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Table 6.1. Deviation of the approximation of zeroth harmonic ρ0(0.67, 0.67) from unity

g 0.3 0.5 0.75 0.8 0.85 0.9

|1 − ρ0(0.67, 0.67)| 0.0037 0.024 0.021 0.0059 0.013 0.0046

a2(µ0) are completely defined by the cosine of the solar zenith angle, i. e. by the
time and place of the experiment, and functions K0(µ), K2(µ) and a2(µ) are
defined by the cosine of the viewing angle. Their values could be taken from
tables (Dlugach and Yanovitsky 1974; Hulst 1980; Minin 1988) or calculated
with (2.31), (2.34) and(2.35)presented inChap. 2, inaddition to theexpressions
for constants m, l, n2 and k (2.29).

We need the value of the surface albedo to calculate function K̄0(µ) =
K0(µ)+A|(1 − A). In the case of using the solar irradiance observations, value A
could be inferred by dividing the upwelling irradiance by the downwelling one
at the bottom of the cloud. In the case of the radiance, the situation is not so
simple. Therefore, we propose a convenient approach. We should mention the
value of the cosine of the zenith angle µ = 0.67 (it corresponds to 48◦), for
which the zeroth harmonic of reflection function is close to unity, especially
in the case of the Henyey-Greenstein phase function, the other harmonics
are close to zero and escape function K0(µ) is also equal to unity. Thus, the
reflected radiance, measured at the viewing angles close to 48◦ is equal to
the reflected irradiance (similar is also true for transmitted radiation). Both
radiance and irradiance, measured at solar angle 48◦, approximately coincide
with the spherical albedo of the cloud layer. The value of |1 − ρ0(µ, µ0)| in
the case of recent approximations ((2.37), (2.39) and Tables 2.3 and 2.4)
are presented in Table 6.1 for phase function parameter g = 0.3−0.9 and
µ = µ0 = 0.67. The small deviation from unity shows rather low error of
the approach proposed here. The analysis of zeroth harmonic of reflection
function ρ0(µ, 0.67) for different phase function parameter g demonstrates
that the deviation from unity is about 8% for g ≤ 0.5 and 10% for g = 0.85−0.9.

The reflection function has been calculated for the Mie phase function that
corresponds to the model of the fair weather cumulus (FWC) clouds (King
1983). These results indicate that the reflection function differs from unity by
2–5% at the zenith angles in the range 47–50◦. Hence, it is possible to conclude
that the reflection function is close to unity at these zenith angles even for
the complicated phase function. It has been shown (Kokhanovsky et al. 1998)
that the impact of the phase function on the radiative forcing is almost the
same for different phase functions, if the solar incident angle is about 45–
50◦ (µ0 = 0.643−0.707). The slightest influence of particle size distribution
on cloud phase function at scattering angles about 90◦ has been also obtained
(Kokhanovsky et al. 1998); that approximately corresponds to cosines of zenith
angle µ0 = µ = 0.67. It is possible to explain these facts with the following:
the reflection function (and the escape function) more weakly depends on the
phase function at this angular range than at other angles. Thus, it is more
suitable to accomplish measurements of the reflected radiation either at the
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zenith solar or at the viewing angle in the range 45–50◦ for the retrieval of the
optical thickness and single scattering albedo. Otherwise, as has been pointed
out earlier (Boucher 1998; Kokhanovsky 1998) it is better to use other zenith
angles for estimating the phase function parameter, at which the radiance is
susceptible to the phase function.

The viewing direction during observations of the solar radiance reflected
from the ground surface is not of great importance for the orthotropic surface,
but the directions close to nadir are preferable for maximal excluding an effect
of the radiation scattering within the atmospheric layer below the cloud.

6.1.2
Problem Solution in the Case of Solar Radiation Observation
Within the Cloud Layer of Large Optical Thickness

In the general case, the stratus cloud is known to be vertically inhomogeneous.
The determination of the vertical structure of the stratiform clouds is of great
interest from the point of studying its physical characteristics and the processes
of its forming. Here we are presenting the approach for the optical parameters
retrieval from the data of the airborne radiative observations within the cloud,
which could also serve to study the aerosol content and distribution.

While studying the scattered radiation field within clouds, it is necessary
to distinguish two essentially different cases: (1) a single optically thick cloud
layer with the optical properties, varying with vertical direction; and (2) a cloud
system consisting of several cloud layers separated from each other with clear
atmosphere.

In the case of vertically inhomogeneous clouds, the calculation uncertainties
of applying the formulas for the homogeneous clouds to the inhomogeneous
ones turns out to be sufficiently low because the information about the remote
points is “forgotten” due to the multiple scattering within the cloud. Therefore,
the photon, registered by the instrument, brings information only about the
last collision. Thus, while measuring the diffused irradiance, the information
collected by the instrument mainly concerns the points, remote from the in-
strument for the photon free path. In the case of stratus cloud this value is equal
to ∼ 20−50 m. Soundings within the stratus cloud is usually accomplished at
every 100 m, so it is possible to apply the results obtained below for the in-
terpretation of the airborne observations within the stratus cloud (Melnikova
and Mikhailov 2001).

It is possible to divide the process of the radiative transfer through the
optically thick cloud layer into three stages (Ivanov 1976), namely:

1. the transfer of radiation through the upper boundary sublayer adjusting
the cloud top τ = 0 (pumping);

2. the transfer through the inner layers (diffusion);

3. the transfer through the layer adjusting the cloud bottom τ = τ0 (escap-
ing).

Within the optically thick cloud, the processes of pumping, diffusion, and
escaping could be assumed independently. Consider consequently these stages.
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Suppose the optical thickness of the cloud is equal to τ0 = Σ(τi − τi−1),
where τi is the optical deepness of the i-th observational level. The values of
εi = (τi − τi−1)|(zi − zi−1), εi = κi + αi are the volume coefficients of extinction,
absorption, and scattering, where zi is the geometrical deepness of the i-th
level. The value of ω0,i = αi|εi is the single scattering albedo in the i-th sublayer
(situated between i − 1st and i-th levels). In the short-wave spectral range one
can assume 1−ω0,i << 1. The phase function is characterized with mean cosine
of scattering angle γ: gi = cosγ. Let the number of the analyzed sublayers be
equal to N.

We should mention the main points of deriving the formulas defining pa-
rameters s2 and τ′ from the irradiances observations within the cloud. The
cloud sublayer adjusting the cloud top is described by the first group of the
formulas, the inner sublayers are described by the second group and adjusting
the cloud bottom sublayer is described by the third group. Consider (2.26) to-
gether with (2.42) and expansions (2.29) and (2.30) to infer the corresponding
formulas. The equations linear in value s2 can be obtained after the algebraic
manipulation while keeping the terms proportional to s2. The results are con-
sidered in detail elsewhere (Melnikova 1998; Melnikova and Fedorova 1996;
Melnikova and Mikhailov 2001). The formulas for the optical thickness of the
sublayer (τi − τi−1) between measurement levels i − 1 and i are deduced from
the combination of (2.26) and (2.42). The following expressions are obtained:

– for the cloud top sublayer (level numbers are 0, 1)

s21 =
F(0)2 − F(τ1)2

16K0(µ0)2 − 4(F↓
1 + F↑

1 )2 + F(τ1)2(2n2 − 9q′2) − 2F(0)a2(µ0)
(6.3)

3(1 − g)τ1 =
1
2s

ln

[
(F(τ1) − 4F↓

1 s(1 − 2s))(F(0) + s(4K0(µ0) + a2(µ0)s))

(F(τ1) + 4F↑
1 s(1 − 2s))(F(0) − s(4K0(µ0) − a2(µ0)s))

]

– for the internal sublayers (level numbers are i − 1, i)

s2i =
[F(τi−1)2 − F(τi)2]F2(τi−1)

16[F(τi)2F↓(τi−1)F↑(τi−1) − F(τi−1)2F↓(τi)F↑(τi)]
(6.4)

3(1 − g)(τi−1 − τi) =
1
2s

ln

[
(F(τi−1) + 4F↑

i−1s(1−2s))(F(τi) − 4F↓
i s(1−2s))

(F(τi−1) − 4F↓
i−1s(1−2s))(F(τi) + 4F↑

i s(1−2s))

]

– for the cloud bottom sublayer (level numbers are N − 1, N)

s2N =
F(τN−1)2 − F(τN)2

4(F↓
N−1 + F↑

N−1)2 − 16F↑2
N − F(τN−1)2(2n2 − 9q′2) − 24q′F↑

NF(τN)

τ′
N − τ′

N−1 = 3(1 − g)(τN − τN−1) = (6.5)

=
1
2s

ln

[
l
(F(τN−1) + 4F↑

N−1s(1 − 2s))(F(τ0) − 4F↑
Ns(1 + 3q′s))

(F(τN−1) − 4F↓
N−1s(1 − 2s))(F(τ0) + 4F↑

Ns(1 − 3q′s))

]
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The expressions in the numerators of the first relations in (6.3)–(6.5) are
the differences of squares of the net fluxes, measured at corresponding alti-
tude levels. The following nominations are used for brevity: F↓↑

0 = F↓↑(0, µ0),
F↓↑

i = F↓↑(τi, µ0). It is important that the dependence upon ground albedo
appears in the case of the bottom sublayer only (through value F↑

N) and the
dependence upon incident solar angle (through functions K0(µ0) and a2(µ0))
appears at the upper sublayer only. Meanwhile, the results for the internal
sublayers are independent of these parameters.

Expressions (2.24) for the reflection and transmission functions together
with (2.40) and expansion (2.41) serve the base for inferring the inverse for-
mulas allowing the retrieval of values s2 and τ′ from radiance observations
within clouds. The formulas are divided into three groups in the case of obser-
vations of the radiance analogously to the case of the irradiance dependence
upon sublayer location.

The following modification of (2.40) is also used similar to (2.44):

J(µ) = I(µ) − I(−µ) =
1
2

mK0(µ0)

[
1 + l̄ e−2k(τ0−τ)]
1 − l̄l e−2kτ0

,

I(−µ)
I(µ)

=
b∞(µ) − l̄e−2k(τ0−τ)

1 − b∞(µ)̄le−2k(τ0−τ)
.

(6.6)

where the nomination is specified analogously to value b∞

– for the cloud top sublayer (level numbers are 0, 1)

s2 =
(ρ0 − ρ)2 − J(τ1)2

16K0(µ0)2K0(µ)2 + J(τ1)2[2Q2w(µ)−9q′2]−9µ2[I(µ) + I(−µ)]2 −Ξ

where specified Ξ = (ρ0 − ρ)
a2(µ)a2(µ0)

6q′ ,

τ′ =
1
2s

ln

[
l

[J(τ1) − 6µI(µ)s(1 − 3µs)]
[J(τ1) + 6µI(−µ)s(1 − 3µs)]

]

×
⎡
⎣ (ρ∞ − ρ) + 4K0(µ0)K0(µ)s + a2(µ0)a2(µ)

12q′

(ρ∞ − ρ) − 4K0(µ0)K0(µ)s + a2(µ0)a2(µ)
12q′

⎤
⎦ .

(6.7)

– for the internal sublayers (level numbers are i − 1, i)

s2 =
[J(τi−1)2 − J(τi)2]J(τi−1)2

36µ2[J(τi)2Ii−1(µ)Ii−1(−µ) − J(τi−1)2Ii(µ)Ii(−µ)]
, (6.8)

τ′
i − τ′

i−1 =
1
2s

ln

[
[J(τi−1)−6Ii−1(µ)µs(1−3µs)][J(τi)+6Ii(−µ)µs(1−3µs)]
[J(τi−1)+6Ii−1(−µ)µs(1−3µs)][J(τi)−6Ii(µ)µs(1−3µs)]

]
,
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– for the cloud bottom sublayer (level numbers are N − 1, N)

s2 =
K̄0(µ)2J(τN−1)2 − σ2

K̄0(µ)2{9µ2[IN−1(µ) + IN−1(−µ)]2 − J2(τN−1)(2n2 − 9q′2) − W} ,

where specified

W = 2
K0(µ)
K̄0(µ)

J2(τN−1)
(

n2(w(µ) − 1) +
3Ah(µ)
1 − A

)
− 24q′2 A(q̄′ + q′)

(1 − A)
,

τ′
N − τ′

Nn−1 =
1
2s

ln

[
l
J(τN−1) + 6IN−1(−µ)µs(1 − 3µs)
J(τN−1) − 6IN−1(µ)µs(1 − 3µs)

]

×
[

1 − A − 4As − 12Aq′s2

1 − A + 4As − 12Aq′s2

]
,

(6.9)

function w(µ) has been specified in Sect. 2.2 with (2.34).

Following notation are introduced in (6.9) for brevity:

h(µ) =
3.8µ − 2.7

1 + g
and q̄′ = q′ +

4A

3(1 − A)
, (6.10)

It should be noted that the formulas for value s2 are characterized with the
same properties, as the formulas for the irradiances are.

The expressions proposed here, constitute the set of formulas for solving
the inverse problem in the case of radiation observations within the cloud
layer. They allow more correct data interpretation than has been done in the
study by King (1987), because these expressions are derived while taking into
account the absorption of solar radiation and provide the data processing
independently at every wavelength.

6.1.3
Problem Solution in the Case of Observations of Solar Radiation Reflected
or Transmitted by the Cloud Layer

The possibilities of the interpretation of the radiation data from airborne ob-
servations have been analyzed hereinbefore. In addition to these data, there
is a huge volume of data either from satellite observations or from the re-
mote observations from the ground, which are conducted more regularly than
the airborne ones. The satellite observations have been implemented contin-
uously during the last decades while making use of various instruments, and
the ground remote observations are cheaper and easier to carry out from the
methodological and technical points. Besides, the remote observations pro-
vide the averaged characteristics necessary for using in the climatic models.
However, not all volume of the data from satellite and remote observations are
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suitable for applying the approach developed here. The principal restrictions
are put on space homogeneity and the temporal stability of cloud fields.

It should be pointed out that the interpretation of the radiation observations
based on the monochromatic radiative transfer theory is available with the
spectral measurements only. Applying the methodology to the observational
data of total radiation needs the special analysis of uncertainties appearing,
while integrating the formulas over wavelength. The values and functions in
the asymptotic formulas of the radiative transfer theory depend on single
scattering albedo and optical thickness, which in their turn are greatly varying
with wavelength. Regretfully, this fact is neither mentioned nor analyzed in
the many studies dealing with the observational data of total radiation.

The data of both the radiance and irradiance observations could be used for
retrieval of the optical parameters. Interpretation of the irradiance data needs
no high azimuthal harmonics of reflected radiances and the calculating errors
of these harmonics neither included to the result.

The reflected and transmitted solar irradiance for the optically thick and
weakly absorbing cloud layer are described by formulas (2.25). Consider these
expressions for two values of cosine of the incident solar angle µ0,1, µ0,2 corre-
sponding to the observations accomplished at two moments. The expressions
for parameter s2 and for scaled optical thickness τ′ = 3τ0(1 − g) are easy to de-
rive taking the ratios of the reflected (transmitted) irradiances for two different
values of the cosine of the incident solar angle as has been shown in Melnikova
and Domnin (1997) and Melnikova et al. (1998, 2000). Here they are:

– for the reflected irradiance

s2 =

[
(a(µ0,1)−F↑

1 )K0(µ0,2)

(a(µ0,2)−F↑
2 )K0(µ0,1)

− 1
]

n2(w(µ0,1) − w(µ0,2))
,

τ′ =
1
2s

ln

{
mnl̄K(µ0,i)
a(µ0,i) − F↑ + l̄l

}
,

(6.11)

where function w(µ) is defined with (2.34) for function K2(µ), and sub-
script i indicates that any of two values µ0,1, µ0,2 could be substituted to
the second of (6.11). It is convenient to apply these expressions for the
data processing of satellite observations of the reflected solar irradiance.

– and for transmitted irradiance:

s2 =

[
F↓

1 K0(µ0,2)

F↓
2 K0(µ0,1)

− 1
]

n2(w(µ0,1) − w(µ0,2))
,

τ′ = s−1 ln

⎡
⎣
√

(4F↓2 l̄l + m2n̄2K(µ0,i)2) + mn̄K(µ0,i)

2F↓ l̄l

⎤
⎦ ,

(6.12)
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where subscript i indicates that any of two values µ0,1, µ0,2 could be
substituted to the second of (6.12). The positive value of the square root
is chosen, owing to the demand of the logarithm argument positiveness.

Consider the observations of reflected radiance ρ1 and ρ2 at two viewing an-
gles: arccos µ1 and arccos µ2. The first of (2.24) gives difference [ρ∞(µ, µ0)−ρ],
where the arguments of measured value ρ are omitted. The ratio of differences
[ρ∞(µ1, µ0)−ρ1]|[ρ∞(µ2, µ0)−ρ2] for different µ1 and µ2 provides the follow-
ing expressions for values s and τ′ = 3(1−g)τ0 after the algebraic manipulations
(Melnikova and Domnin 1997; Melnikova et al. 1998, 2000):

s2 =
[ρ0(ϕ, µ1µ0) − ρ1]K0(µ2) − [ρ0(ϕ, µ2,µ0) − ρ2]K0(µ1)

[ρ0(ϕ, µ2,µ0) − ρ2]K0(µ1)
(

K2(µ1)
K0(µ1) − K2(µ2)

K0(µ2)

)
− R

,

where specified

R =
0.955a2(µ0)K0(µ1)K0(µ2)

q′(1 + g)
[µ1 − µ2] ,

τ′ = (2s)−1 ln

{
ml̄K(µi)K(µ0)

ρ∞(ϕ, µi, µ0) − ρ1
+ l̄l

}
(6.13)

where ϕ is the viewing azimuth relative to the Sun’s direction. It is possible to
use these formulas for processing the multi-directional satellite observational
data of the reflected solar radiance.

The couples of different pixels of the satellite image are characterized with
different solar and viewing angles. Let the cosines of the zenith solar and
viewing angles µ0,1, µ1 relate to the first pixel and µ0,2, µ2 relate to the second
pixel. It is suitable to apply this approach for the one-directional satellite
observations of the reflected solar radiance. Then the following expression of
parameter s2 is derived from the ratio of the radiances:

s2 =

[ρ0(ϕ1, µ1, µ0,1) − ρ1]K0(µ2)K0(µ0,2)
−[ρ0(ϕ2, µ2, µ0,2) − ρ2]K0(µ1)K0(µ0,1)

K0(µ1)K0(µ0,1)

×
[
[ρ(ϕ2, µ2, µ0,2) − ρ2]

(
K2(µ1)
K0(µ1) − K2(µ2)

K0(µ0,2)

)
+ a2(µ2)a2(µ0,2)

12q′
]

− R1

where specified

R1 = K0(µ2)K0(µ0,2) (6.14)

×
[
[ρ(ϕ1, µ1, µ0,1) − ρ1]

(
K2(µ2)

K0(µ0,2)
−

K2(µ1)
K0(µ1)

)
+

a2(µ1)a2(µ0,1)
12q′

]

With theverybigmagnitudesofoptical thickness, theatmosphere is considered
as a semi-infinite one. In this case, difference [ρ∞(µ, µ0) − ρ] tends to zero
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and reduce the numerator to zero. Thus, (6.11), (6.13) and (6.14) become
inappropriate and another formulas are necessary to use. The closeness of the
numerator to zero is defined by the expression

mnl̄K(µ0) exp(−2kτ)
1 − l̄l exp(−2kτ)

−→
τ→∞ C exp(−2kτ)

that is about 0.02 for τ0 equal to 100. The optical thickness is preliminarily
estimated approximately while assuming the conservative scattering as has
been proposed for example in the work by King (1987) and Kokhanovsky et al.
(2003). Then, if τ0 ≥ 100, the quadratic equations with respect to parameter s2

are derived using the expression of a(µ0) and ρ∞(µ, µ0) (2.30) taken with the
items proportional to s2:

a2(µ0)s2 − 4K0(µ0)s + 1 − F↑(µ0) = 0

a2(µ0)a2(µ)
12q′ s2 − 4K0(µ0)K0(µ)s + [ρ0(µ, µ0, ϕ) − ρ] = 0

Its solution is trivial:

s =
2K0(µ0) −

√
4K0(µ0)2 − a2(µ0)

(
1 − F↑(µ0)

)
a2(µ0)

. (6.15)

And the similar expression for case of the reflected radiance:

s =
2K0(µ)K0(µ0) −

√
4[K0(µ0)K0(µ)]2 − a2(µ0)a2(µ)

12q′ [ρ0(µ, µ0, ϕ) − ρ]

a2(µ0)a2(µ)
12q′

.

(6.16)

Problem of choosing the sign before the radicals is the consequence of the
ambiguity of the inverse problem solution, and it needs the special analysis of
the concretedata. It is easy todemonstrate that justminushas tobe chosenhere.
Indeed, in the case of the conservative scattering the equalities ρ = ρ0(µ, µ0, ϕ)
and s2 = 0 are satisfied only with minus before the radical.

In the case of using the transmitted radiance, the corresponding equation
for the values of parameter s2 and scaled optical thickness τ′ are similar to
(6.12):

s2 =
[

σ1K̄0(µ2)
σ2K̄0(µ1)

− 1
]

1
K̄2(µ1)
K̄0(µ1) − K̄2(µ2)

K̄0(µ2)

, (6.17)

τ′ = s−1 ln

⎡
⎣
√

4σ(τ, µ1,2, µ0)2 l̄l + m2K̄(µ1,2)2K(µ0)2 + mK̄(µ1,2)K(µ0)

2σ(τ, µ1,2, µ0)l̄l

⎤
⎦ ,
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where functions K̄0(µ) and K̄2(µ) are defined with formulas (2.35). The positive
value of the square root is chosen, owing to the demand of the logarithm
argument positiveness.

Any of the values of σ1 or σ2 (ρ1 or ρ2) corresponding to cosines of the
viewing angles µ1 or µ2 could be substituted to the expressions of the scaled
optical thickness. However, for better accuracy we recommend the use of the
observations for all available viewing angles and then to average the retrieved
values. We should mention that if the data of radiation measured in arbitrary
units is enough for the parameter s2 retrieval it will be necessary to use these
data in relative units of the incident solar flux at the top of the atmosphere for
the scaled optical thickness retrieval.

It is necessary to point out that the rigorous demand of the cloud field stabil-
ity is suggested in the case of the approach applied to the transmitted irradiance
observations because this approach needs carrying out the measurements at
several time moments. Using different pixels of the satellite images [as per
(6.14)] needs the horizontal homogeneity of the cloud field, which is checked
out at the initial stage of the approximate retrieval of the optical thickness with
assumption of the conservative scattering. The likewise demand is advanced,
while using the transmitted radiance at different viewing angles, where the
verification of the horizontal homogeneity is provided with the observations
at several azimuth angles.

6.1.4
Inverse Problem Solution in the Case of the Cloud Layer
of Arbitrary Optical Thickness

The case of the cloudiness with arbitrary optical thickness (not very thick
clouds) is described by the formulas derived in the study by Dlugach and
Yanovitskij (1974) and cited in Sect. 2 [(2.50)]. Applying the above-mentioned
transformations to (2.50), we deduce the inverse formulas of the optical thick-
ness and parameter s2. The following is obtained for the nonreflecting surface:

s2 =
(1 − F↑)2 − F↓2

16[u2 − v2]
, (6.18)

3(1 − g)τ0 = s−1 ln
tu + v ±√(u2 − v2)(t2 − 1)

u + tv
, where t =

1 − F↑

F↓ .

The expression in the numerator of the first formula is the difference of squares
of the net fluxes at the top and bottom of the cloud layer in units of the solar
incident flux at the top, and value t is the ratio of the same net fluxes. The
account of the surface reflection with albedo A transforms the functions and
values in (6.18) as follows:

ū = u − AF̄↓(p − 1) , v̄ = v + AF̄↓p ,

F↓ is changed to (1 − A)F̄↓ and t is changed to t̄ =
1 − F̄↑

(1 − A)F̄↓ .
(6.19)
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The obtained expressions would be suitable for the optical parameters retrieval
but there is one obstacle complicating the solution. Namely, functions u(µ0, τ0)
and v(µ0, τ0) depend not only on the cosine of the solar zenith angle µ0 but
also on optical thickness τ0, therefore (6.18) is inconvenient in this case. We
propose two ways for getting round this difficulty:

1. The problem is solved with successive approximation. To begin with,
the optical thickness is estimated from other approaches (e. g. with the
assumption of the conservative scattering) then the values of functions
u(µ0, τ0) and v(µ0, τ0) are taken from the look-up tables. After that pa-
rameter s2 is calculated and τ0 is defined precisely using the observational
data of semispherical irradiances F↓, F↑ at the cloud top and bottom. The
process is repeated, and it is broken after the preliminary fixed difference
between the values of the desired parameters obtained at the neighbor
steps is reached.

2. Otherwise theanalytical approximationof functionsu(µ0, τ0) andv(µ0, τ0)
together with the approximation of value p included in (6.22) should be
derived. Thus, it is necessary to deduce the formulas similar to (6.18).

6.1.5
Inverse Problem Solution for the Case of Multilayer Cloudiness

The cloudy system consisting of the separate cloud layers has been discussed
in Sect. 2.3, and the model of multilayer cloudiness together with the set of the
formulas solving the direct problem (2.54), (2.57) for irradiances and (2.55)
for radiances has also been presented there. The inversion of these formulas
for the optical parameters retrieval is analogous to the above-described pro-
cedures. The expressions for the upper cloud layer (i = 1) is similar to those
for the one-layer cloud with surface albedo A = A1. In formulas for all below
layers (i > 1), escape function K0,i(µ0) is substituted with F↓(τi−1) and second
coefficient of the plane albedo a2(µ0) is substituted with value 12q′ (Melnikova
and Zhanabaeva 1996a). The derivation of the expressions using the observa-
tional data of the irradiance has been presented in Melnikova and Fedorova
(1996) and Melnikova and Zhanabaeva 1996a,b), which yields the following for
parameter s2:

s21 =
F(0)2 − F(τ1)2

16[K0(µ0)2 − F↑(τ1)2] − 2a2(µ0)F(0) − 24q′F↑(τ1)F(τ1)
, for i = 1 ,

s2i =
F(τi−1)2 − F(τi)2

16[F↓(τi−1)2 − F↑(τi)2] + 24q′[F↓(τi−1)2 − F↓(τi)2]
×[F↓(τi−1)F↑(τi−1) − F↓(τi)F↑(τi)]

, for i > 1 ,

(6.20)

where F(0) = 1 − F↑(0) and F(τi) = F↓(τi−1) − F↑(τi) are the net fluxes at the
top of the whole cloud system and at the layer boundaries correspondingly.
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The expressions for τ′
i = 3τi(1 − gi) look like

τ′
1 =

1
2s1

ln

[
l21

(
1 +

2K0(µ0)s1(4 − 9s21)

a(µ0) − F↑(0)

)(
1 −

8A1s1
1 − A1a∞

1

)]
, i = 1 ,

τ′
i =

1
2si

ln

[
l2i

(
1 +

2si(4 − 9s2i )
a∞

i − Ai−1

)(
1 −

8Aisi

1 − Aia∞
i

)]
,

(6.21)

where a(µ0) and a∞ are the plane and spherical albedo of the upper layer and
a∞

i is the spherical albedo of the i-th layer.
For the data of the radiance observations the expressions for parameter s2

are the following:

– for the upper layer (i = 1)

s2 =
K̄0(µ)2(ρ0 − ρ1)2 − K0(µ)2σ2

1

16K0(µ)2

[
K̄0(µ)2K0(µ0)2 − σ2

1

(
A1

1−A1

)2
]

− J

, (6.22)

where J is specified as following

J =
2A1

1 − A1
[a2(µ) + n2(1 − w(µ))]K̄0(µ)(ρ0 − ρ1)2

+
a2(µ)a2(µ0)K̄0(µ)2(ρ0 − ρ1)

6q′

− 24q′ A1

1 − A1
K0(µ)

[
K̄0(µ)(ρ0 − ρ1)2 −

A1

1 − A1
K0(µ)σ2

1

]

– for the layer with number i > 1

s2i =
K̄0(µ)2(σi−1 − ρi)2 − K0(µ)2σ2

i

16K0(µ)2

[
K̄0(µ)2σ2

i−1 − σ2
i

(
Ai

1−Ai

)2
]

− J

,

J =
2Ai

1 − Ai
[ai(µ) + n2(1 − w(µ))]K̄0(µ)(σi−1 − ρi)2

+ 2a2(µ)K̄0(µ)2(σi − ρi)

− 24q′ Ai

1 − Ai
K0(µ)

[
K̄0(µ)(σi − ρi)2 −

Ai

1 − Ai
K0(µ)σ2

i

]
.

(6.23)

Functions a2(µ), K0(µ) and w(µ) and value n2 are calculated for phase function
parameter gi corresponding to the properties of the i-th layer. The subscripts
are omitted in the formula for brevity.

Remember here the above conclusion concerning the definition of albedo Ai.
The ratio of the radiances observed at viewing angles ϑ1,2 = arccos(±0.67) at
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the boundaries between layers i − 1 and i defines the albedo corresponding to
the boundary of the i-th layer: ρi( − 0.67)|σi−1 (0.67).

Scaled optical thickness of separate layers τ′
i = 3(1 − gi)τi is described with

the following formulas:

– for the upper layer: i = 1

τ′
1 =

1
2s1

ln

{
l21

(
1 +

2K0(µ)K0(µ0)s1(4 − 9s21)

(ρ∞ − ρ1)

)(
1 −

8A1s1
1 − A1a∞

1

)}
,

(6.24)

– for the layer with number i > 1

τ′
i =

1
2si

ln

{
l2i

(
1 +

2K0(µ)σi−1si(4 − 9s2i )
(ai(µ)σi−1 − ρi)

)(
1 −

8Aisi

1 − Aia∞
i

)}
.

(6.25)

The obtained expressions could be applied for the retrieval of the optical
parameters of the cloud layer from the observations of solar radiation at the
layer boundaries of the multilayer cloud system.

If the layers are not optically thick, it is possible to use the corresponding
formulas:

– for the upper layer: i = 1

s21 =
(1 − F̄↑

1 )2 − (1 − A1)2F̄↓2
1

16[ū2
1 − v̄2

1]
,

3(1 − g1)τ1 = s−1
1 ln

r1ū1 + v̄1 +
√

(ū2
1 − v̄2

1)(r̄2
1 − 1)

ū1 + r̄1v̄1
,

(6.26)

where

r̄1 =
1 − F̄↑

1

(1 − A1)F̄↓
1

, ū1 = u1 − A1F̄↓
1 (p1 − 1) and v̄1 = v1 + A1F̄↓

1 p1 .

– for the layer with number i > 1

s2i =
(1 − F̄↑

i )2 − (1 − Ai)2F̄↓2
i

16F̄↓2
i−1[p̄2

i − q̄2
i ]

,

3(1 − gi)τi = s−1
i ln

r̄ip̄i + q̄i +
√

(p̄2
i − q̄2

i )(r̄2
i − 1)

p̄i + r̄iq̄i
,

(6.27)

where

r̄i =
1 − F̄↑

i

(1 − Ai)F̄↓
i

, p̄i = pi − AiF̄
↓
i qi and q̄i = qi + AiF̄

↓
i pi .
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The latter group of formulas presupposed the same difficulties as (6.18) does,
because functions u(µ, τi), v(µ, τi), p(τi) and q(τi) depend on optical thickness τi.

6.2
Some Possibilities of Estimating of Cloud Parameters

6.2.1
The Case of Conservative Scattering

Sometimes there is no true absorption of solar radiation by clouds at separate
wavelengths, so the case of conservative scattering occurs. The single scatter-
ing albedo is equal to unity: ω0 = 1. Equations (2.45)–(2.49) describing the
radiative characteristics are rather simple. The expressions of scaled optical
thickness 3(1 − g)τ0 are readily derived using (2.45) for the radiance data:

3(1 − g)τ0 =
4K0(µ0)K0(µ)
ρ0(µ, µ0) − ρ

−
(

6q′ +
4A

1 − A

)
,

3(1 − g)τ0 =
4K0(µ0)K̄0(µ)

σ
−
(

6q′ +
4A

1 − A

)
,

(6.28)

and for the irradiance data using (2.46):

3(1 − g)τ0 =
4K0(µ0)
1 − F↑(τ)

−
(

6q′ +
4A

1 − A

)
,

3(1 − g)τ0 =
4K0(µ0)

F↓(τ)(1 − A)
−

(6q′ + 4A)
1 − A

(6.29)

and for net flux data using (2.47):

3(1 − g)τ0 =
4K0(µ0)

F(τ)
−
(

6q′ +
4A

1 − A

)
. (6.30)

Thus, it is possible to retrieve the optical thickness of the conservative ho-
mogeneous layer measuring the data of net flux F(τ) = F↓(τ) − F↑(τ) at any
level – within the cloud or at its boundaries – as the net flux is constant over
altitude. The observation at one viewing direction only is enough for the case
of conservative scattering.

It shouldbenoted that theexpression for theoptical thicknessusingairborne
radiance observations has been derived and applied in two studies (King 1987;
King et al. 1990).

Remember that conservative scattering is a priori assumed in many studies
concerning the deriving of optical thickness from radiation data (King 1987,
1993; King et al. 1990; Zege and Kokhanovsky 1994; Kokhanovsky et al. 2003).
We present the result of analyzing the possible uncertainties of this approx-
imation. The accuracy verification of applying (6.28)–(6.30) shows that they
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Fig.6.1. Dependence of relative uncertainty ∆τ0|τ0 upon optical thickness τ0 with the value
of ω0 = 0.999. Solid lines corresponds to A = 0.7, dashed lines corresponds to A = 0.1.
1 – for reflection irradiance; 2 – for transmitted irradiance; 3 – average values

are available even for τ0 ≥ 3 and the relative error does not exceed 5% for
ω0 ≥ 0.999. The error of the retrieval of optical thickness strongly decreases
with the increasing of radiation absorption. As is shown in Fig. 6.1 the error
analysis using the numerical simulation indicates that the first formula from
(6.29) provides the underestimation of value τ0 for 20–50% while substituting
the reflected irradiance at the cloud top, the second one overestimates value τ0,
while substituting the transmitted irradiance at the cloud bottom, and the av-
erage from these two values turns out to be rather close to real τ0 (the relative
error is about 10% for ω0 ≥ 0.990).

Fig.6.2.Dependenceof relativeuncertainty∆τ0|τ0 uponω0 formeanvalueof τ0, (6 < τ0 < 25)
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The dependence of relative error ∆τ0|τ0 of the average values of the optical
thickness obtained from the reflected and transmitted irradiance assuming the
conservative scattering versus to the single scattering albedo is demonstrated
in Fig. 6.2. It is clear that the ground albedo strongly increases the uncertainty.

The interpretation of the irradiance observations within the conservative
cloud layer is available using the formula readily derived from (2.46) and (2.49):

– the upper sublayer adjoins the cloud top

(1 − g)τ1 =
4K0(µ0) − 2(F↓

1 + F↑
1 )

3F(τ1)
− q′ , (6.31)

– the sublayer within the cloud

(1 − g)(τi − τi−1) =
4(F↓

i−1 − F↓
i )

3F(τi)
, (6.32)

– the sublayer adjoins the cloud bottom

(1 − g)(τN − τN−1) =
2(F↓

N−1 + F↑
N−1)

3F(τN−1)
−
(

q′ +
4A

3(1 − A)

)
, (6.33)

where N is the number of sublayers and τN = τ0.

6.2.2
Estimation of Phase Function Parameter g

All the above-presented expressions retrieve the scaled optical thickness, so
phase function parameter g is needed to obtain the optical thickness. The infer-
ring of phase function parameter g (asymmetry factor) of ice clouds has been
made in the 90th by measuring the radiative fluxes, calculating the radiative
transfer models, and selecting parameter g for the best coincidence with the
observations. However, the methodology of selecting parameters is ambiguous
as has been shown in Chap. 4 and needs careful error analysis. Probably, it is the
reason for inconsistent results. Besides, parameter g dramatically influences
the calculation of reflection function ρ∞(µ, µ0), thus it has to be obtained
from measurements for the adequate interpretation of the satellite radiation
observations.

The attempts to obtain parameter g from observations has been made in
two studies (Gerber et al. 2000; Garrett et al. 2001) using the nephelometer
measurements, and the values of parameter g is revealed to be equal to 0.85
for stratiform liquid clouds, to 0.81 for convective clouds, and to 0.73 for
nonconvective ice clouds. It is seen that the variation of the asymmetry factor
is significant and it is desirable to retrieve parameter g and the other optical
parameters together during one experiment.

Here we propose a way of estimating phase function parameter g for the
optically thick cloud from radiative observations as other optical parameters.
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Fig.6.3. Dependence of the ratio of K2(µ0)|[K0(µ0)g] upon solar zenith angle µ0; The points
indicate the calculated values; the solid line is the linear approximation

Fig.6.4. Dependence of the ratio of K2(µ0)|K0(µ0) upon the value of g for different µ0

The analysis of the two-moment observation of the irradiances (two values of
solar zenith angle) indicates that the dependence of difference K2(µ1)|K0(µ1)−
K2(µ2)|K0(µ2) upon parameter g is the linear one as is shown in Fig. 6.3 for
different zenith angles (see also Fig. 6.4). Then parameter g may be empirically
expressed as follows:

g =
1

5.57(µ1 − µ2)

[
K2(µ1)
K0(µ1)

−
K2(µ2)
K0(µ2)

]
. (6.34)
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However, in spite of the simplicity of (6.34), there is a problem in applying it. It
is impossible to obtain parameter g from the reflected or transmitted radiance
because the system of (6.34) with (6.11) or (6.12) for irradiance (6.13) or (6.20)
for radiance turns out to be homogeneous. There is a way to obtain parameter s2

with another approach for example from the airborne observations with (6.1)
or (6.2). Then difference K2(µ1)|K0(µ1) − K2(µ2)|K0(µ2) is expressed through
parameter s2 and through the observational data of the transmitted irradiance
or radiance using (6.34). Finally, parameter g is estimated using one of the
following expressions:

g =

[
(ρ0−ρ1)K0(µ2)
(ρ0−ρ2)K0(µ1) − 1

]
[5. 57(µ1 − µ2)s2]

g =

[
σ1K̄0(µ2)
σ2K̄0(µ1) − 1

]
[5. 57(µ1 − µ2)s2]

(6.35)

Here the expressions are written for the case of the radiance observational
data with demand of the horizontal homogeneity of the cloud field. The ir-
radiance data need the temporal stability because of using the two-moment
observations, and the formulasof the irradiances are almost likewise, excluding
value F↓, which is substituted with value σ, and (a(µ0) − F↑), which is substi-
tuted with (ρ0 − ρ). The evident advantages and disadvantages are seen, while
using the reflected or transmitted radiance, or the irradiance observations.
Thus, value ρ∞(µ, µ0) strongly depends on phase function. The dependence
of the plane albedo is weaker so using the reflected irradiance or transmit-
ted radiance is more preferable than using the reflected radiance. Using the
transmitted radiance is strongly influenced by the ground albedo, thus the
transmitted irradiance provides the better accuracy for the cloud above the
snow surface.

Now obtain the cloud optical parameters using the numerical model of the
radiative characteristics, calculated with the doubling and adding method.
Value s2 and scaled optical thickness τ′ are retrieved from F↓ and F↑ data.
Then parameter g is obtained for the pair of radiances with (6.35), and single
scattering albedo and optical thickness are calculated. Table 6.2 presents the
obtained results.

Table 6.2. Retrieval of the optical parameters of the cloud layer from the model values of the
radiative characteristics

Value Model magnitudes Retrieved magnitudes Uncertainty (%)

F↓ 0.3051
F↑ 0.6398
τ0 25 28.55 14
ω0 0.99900 0.99919 0.2
g 0.850 0.872 2.5
s2 0.002222 0.002227 0.2
µ 1.0 0.846
I↓(µ) 0.3866 0.3499
K0(µ) 1.272 1.153
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Even the small uncertainty of value g causes a significant error of the optical
thickness as per expression τ0 = τ′|[3(1 − g)] and is seen from Table 6.2. Model
value g = 0.85 allows obtaining τ0 = 24.36 with the uncertainty equal to
2.6%, while retrieved value g leads to the uncertainty equal to 14%. Hence, the
necessity of an accurate value of g is evident.

It is important to mention that a similar approach for the phase function
parameter has been considered in the book by Yanovitskij (1997) for the case
of conservative scattering on the basis of the rigorous theory. The approach
for obtaining parameter g has also been proposed in the study by Konovalov
(1997) with the approximation of the reflection function.

6.2.3
Parameterization of Cloud Horizontal Inhomogeneity

The simple approximate parameterization of the cloud top heterogeneity was
proposed earlier in the study by Melnikova and Minin (1977). The rough
cloud top causes an increase of the diffused radiation part in the incident
flux. Therefore, this obstacle turns out to be an essential one for calculating the
radiative characteristicsdependingonsolar incidentangle.Both theescapeand
reflection functions describe this dependence for the reflected radiance, and
the escape function together with the plane albedo of semi-infinite atmosphere
describe this dependence for the reflected irradiance. Thus, it was proposed
(Melnikova and Minin 1977) to replace all functions depending on incident
angle cosine µ0 with their modifications according to expressions:

ρ0(µ, µ0) = ρ0(µ, µ0)(1 − r) + ra(µ) ,

K(µ0) = K(µ0)(1 − r) + rn ,

a(µ0) = a(µ0)(1 − r) + ra∞ ,

(6.36)

where spherical albedo a∞, plane albedo a(µ0) and value of n are defined with
(2.27).

a∞ = 2

1∫
0

a(µ0)µ0dµ0 = 4

1∫
0

µ0dµ0

1∫
0

ρ0(µ, µ0)µdµ

n = 2

1∫
0

K(µ0)µ0dµ0

(6.37)

and parameter r describes the diffused part of light in the incident flux.
The influence of the overlying atmospheric layers (including high thin

clouds), the difference between the reflection functions of the real cloud
(described by the Mie phase function) and model cloud (described by the
Henyey-Greenstein phase function), and other factors impacting the angular
dependence of radiation, are also partly corrected by parameter r.
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Let us consider the numerical and analytical results concerning the cloud
heterogeneity. There have been many studies in this field lately (Tarabukhina
1987; Loeb and Davis 1997; Galinsky and Ramanathan 1998; Marshak et al.
1998). It was shown that the influence of geometrical variations of the cloud
parameters is by an order of magnitude greater than the internal variations
(Titov 1998). The analytical solutions (Tarabukhina 1987; Galinsky and Ra-
manathan 1998) emphasize that the cloud heterogeneity greatly impacts the
radiance and irradiance, and this obstacle is actually described with modifying
the escape function (or the analogous functions) as per the expression similar
to (6.26).

There are different estimations of the role, which this impact plays, while
simulating the radiative transfer within clouds. In our case it is expressed
with the value of parameter r and the analysis of above-mentioned studies
(Tarabukhina 1987; Galinsky and Ramanathan 1998) allows us to let r ∼
0.01−0.1. Most results also show that the minimal disturbance in the radiation
field caused by the cloud heterogeneity is at the solar angle equal to 48−49◦.
As has been mentioned above, all functions depending on incident angle are
approximately equal to the integrals over this angle. That is why parameter r
doesnot influence the result if themeasurement is accomplishedat this incident
angle.

Parameter r can be estimated from radiance or irradiance measurements in
the stable overcast conditions with the following approach. The ground-based
and satellite observations indicate that the measured radiance or irradiance
dependence upon solar incident angle is weaker than the dependences of the
calculated radiance and irradianceuponviewingand incident angles (Loeband
Davis 1997), and it is called the violation of the directional reciprocity for the
reflected radiation. Both the incident and viewing angle cosine dependences
of the radiation escaped from the optically thick layer is described with the
escape function K(µ0). Thus, the data set measured during several hours could
give us the solar incident angle dependence of the escape function. If it differs
from the radiance dependence upon viewing angle, it is possible to obtain the
value of r as follows:

r =
I(µ1, µ2) − I(µ2, µ1)

1 − I(µ1, 0.67)
K0(µ1)

K0(µ1) − K0(µ2)
. (6.38)

In this expression I(µ0, µ) is the observed (reflected or transmitted) radiance.
In addition, the assumption of ρ0(µ, 0.67) = K0(0.67) = 1 is used here. The
radiationabsorption influencing theescape functionasper expression (1−3q′s)
is divided out in the ratio. Certainly, this way needs high stability of clouds
that is possible sometimes (but not often) especially in the North Regions. This
method seems preferable for ground-based observations.

There is another method for parameter r estimation from the multi-di-
rectional radiance measurements (e. g. from the measurements by POLDER
instrument). The approximate values of the optical thickness of the cloud layer
are obtained for every available viewing direction and for every pixel assuming
the conservative scattering at the first stage of data processing and (2.24). Then
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the average value of the optical thickness is calculated for every pixel. The
relative deviations of the optical thickness obtained for every direction from
the average one could be taken as a measure of the deviation of the cloud top
from the plane. It is necessary to have in mind that parameter r also includes
the influence of the radiation scattering by the above atmospheric layers and
thin semitransparent above clouds. Then the following is proposed for the
evaluation of parameter r:

r =
1

N τ̄

N∑
i=1

|τ̄ − τi| , (6.39)

where N is the number of viewing directions for every pixel and τ̄ is the average
optical thickness over viewing directions. This methodology was applied to
POLDER (Polarization and Directionality of the Earth’s Reflectance) Level-2
data containing the reflected radiance at 14 directions (Melnikova and Naka-
jima 2000).

6.3
Analysis of Correctness and Stability of the Inverse Problem Solution

The above-proposed set of formulas is the solution of the inverse problem of
atmospheric optics for the accepted cloud model. According to the book by
Prasolov (1995) the range of the continuality of the obtained functions is to be
analyzed for testing the solution correctness.

In the case of (6.1) the analysis of continuality and positiveness of function
s2(F↓, F↑, µ0) taking into account evident condition F(0) ≥ F(τ0) yields the
following inequalities:

– For cosine of solar incident angle µ0 > 0.3

1 > 2[F↑2(0) + F↓2(τ0) − F↓(τ0)F↑(τ0)] + F(0) ,

s[8.0 + 0.2(1 − A)] > 0.54(1 − A)2 + 0.3(1 − A) ,
(6.40)

– For cosine of solar incident angle µ0 > 0.9

1 > 0.7[F↑2(0) + F↓2(τ0) − 0. 7F↓(τ0)F↑(τ0)] + 1.1F(0) ,

s[8.0 − 0.2(1 − A)] > 0.54(1 − A)2 − 0.2(1 − A) .
(6.41)

The concrete numerical magnitudes of the parameters providing continuality
and positiveness of function s2(F↓, F↑, µ0) are different for every observed pair
of upwelling and downwelling irradiances at the single level and wavelength.
Thus, the experimental data have to be tested for satisfying these inequalities
before applying (6.1) to the observational results. Corresponding procedures
are provided in the algorithms of the observational data processing. The anal-
ogous inequality could be easily derived for all cases considered hereinbefore
and the corresponding analysis is included to the processing algorithms.
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6.3.1
Uncertainties of Derived Formulas

There are four main sources of uncertainties, while using the proposed formu-
las for the retrieval of the cloud optical parameters:

1. observational uncertainties;

2. a priori specification of parameter g;

3. breakdown of the applicability region of the asymptotic formulas;

4. inhomogeneity of the cloud layer, while the derived expressions are as-
suming the cloud homogeneity (while consideration of the observations
within the cloud layer).

It is easy to deduce the corresponding formulas for relative uncertainties ∆s|s
and ∆τ0|τ0 caused by observational uncertainty, as we have the analytical
expressions for the calculation of the optical parameters using the approach
described in Sect. 4.3, namely, if the vector of observations y = f (x1, x2, . . ., xn),
then:

∆y ≤
∣∣∣∣ ∂f

∂x1

∣∣∣∣∆x1 +

∣∣∣∣ ∂f

∂x2

∣∣∣∣∆x2 + . . . +

∣∣∣∣ ∂f

∂xn

∣∣∣∣∆xn ,

where ∆xi is the mean square deviation caused by the observational uncertainty
or interpolation of the functions over look-up tables.

In particular, if irradiances F↑ and F↓ have been measured with uncertainty
∆F and the optical parameters have been calculated with (6.1), the expression
of the relative uncertainties are the following (Melnikova 1992; Melnikova and
Mikhailov 1994):

∆s

s
≤ ∆F

1 − F↑ − F↓ +
2∆Fa2(µ0) + 16K0(µ0)∆K0 + F(0)∆a2

16K0(µ0) − 2F(0)a2(µ0)
, (6.42)

and for relative uncertainty ∆τ0|τ0:

∆τ0

τ0
≤ 1

τ0

[
30∆s +

∆F

F(0)2

]
+

∆g

1 − g
+

∆s

s
, (6.43)

where value 1 − F↑ − F↓ defines the radiative flux divergence in the cloud layer
in relative units πS. In the short-wave range it is about 0.05–0.2. Then the first
item provides the order of the magnitude of the uncertainty, namely ∆s|s ≥ 4%
for ∆F ∼1–3W|m2.

The uncertainties of functions ∆K0(µ0) and ∆a2(µ0) are induced for two
reasons: the inaccurate measuring of the incident angle and the income of
partly scattered solar radiation to the cloud top. The first reason (measuring
of solar incident angle arccos µ0) could not give a significant error as the value
of µ0 is defined by the moment and geographical site of the observation and
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these parameters are known with sufficient accuracy. Concerning the second
reason, we present the following consideration. According to the bookby Minin
(1988), the part of diffused radiation in the cloudless atmosphere depends on
solar incident angle and wavelength, and this part is approximately equal to
0.3 of the total flux. Function K0(µ0) transforms to value n and function a2(µ0)
transforms to value 12q′ = 8.5 for the fully diffused radiation, that yields
∆K0 ∼ 0.03 and ∆a2 ∼ 0.25, and these values are minimal for µ0 = 0.6−0.7.
This condition should be provided during observations.

Relative uncertainty ∆τ0|τ0 is defined mainly by uncertainties of the retrieval
∆s|s and ∆g|(1 − g) as per (6.43), because the first item could be rather small
in the case of large cloud optical thickness and could weakly influence the
uncertainty. The value of ∆g|(1 − g) is caused by the second uncertainty source
and it depends on the consistency of the model value of parameter g to the real
cloud property. In accordance with the results of the study by Stephens (1979)
where the spectral values of g have been calculated with Mie theory for eight
cloud models, assuming g = 0.85, it is possible to conclude that the variations
of parameter g in the short wavelength region are not exceeding 2%.

Uncertainty ∆s|s provided by (6.3)–(6.5) yields ∆s|s ≤ 0.05 after calculating
the corresponding derivatives and substituting ∆F ∼ 1−3W|m2. The relative
uncertainty of single scattering albedo ω0 is derived from expression 1 − ω0 =
3s2(1 − g):

∆(1 − ω0)|(1 − ω0) = 2∆s|s + ∆g |(1 − g) . (6.44)

Assuming value s ≤ 0.05, we have: ∆(1 − ω0)|(1 − ω0) ≤ 0.12.
Relative uncertainty ∆τ0|τ0 provided by (6.6)–(6.8) is estimated according

to the following expression (Melnikova and Mikhailov 2001):

∆τ0|τ0 ∼ 2∆F

/[
∆s(F↓ − F↑)(1 − g)

]
+ ∆s|s + ∆g|(1 − g) . (6.45)

The values of the two first items in the sum defined by the observational
uncertainty and by the uncertainty of the retrieval of parameter s is about 15%,
the third item adds 2%, thus ∆τ0|τ0 ∼ 17%.

The error analysis in the case of using the reflected or transmitted irradiance
with (6.11) and (6.12) shows that the temporal stability of the cloud layer during
observations is necessary. As has been demonstrated in Sect. 1.5, the existence
of the overcast cloudiness during one hour is rather probable (about 80%).
Uncertainties ∆s|s and ∆τ0|τ0 are calculated in the case of using the reflected
irradiance by the following expressions:

∆s

s
=

∆K0(a − F↑) + K0(µ2)(∆a + ∆F)

K0(µ2)(a(µ1) − F↑
1 ) − K0(µ1)(a(µ2) − F↑

2 )

+
∆K0(a − F↑) + K0(∆a + ∆F)

2K0(µ11)(a(µ2) − F↑
2 )

+
2∆w(µ1) + ∆n2

(w(µ1) − w(µ2))n2

(6.46)
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∆τ0

τ0
=

∆s

s
+
[

∆l̄

l̄
+

mnK(µ)(∆m
m + ∆n

n + ∆K
K ) + ∆l(a(µ) − F↑) + l(∆a − ∆F↑)

mnK(µ) + l(a(µ) − F↑)

+
∆a − ∆F↑

a(µ) − F↑

]
1
τ0

.

And in case of using the transmitted irradiance:

∆s

s
=

2∆w + ∆n2

(w(µ1) − w(µ2))Q2
+

∆FK0 + ∆K0F↓

F↓
1 K0(µ2) − F↓

2 K0(µ1)
+

∆FK0(µ1) + ∆K0F↓

2F↓
2 K0(µ1)

,

(6.47)

∆τ0
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s
+
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⎢⎣∆r

r
+

r2

l̄l

(
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l + ∆l̄

l̄
+ 2∆r

r

)
(√

1 + r2

l̄l
+ 1
)

2
√
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l̄l

⎤
⎥⎦ 1

τ0
,

where

∆r

r
=

∆F

F
+

∆m

m
+

∆n̄

n̄
+

∆K

K
+

∆l

l
+

∆l̄

l̄
.

The error analysis as per (6.46)–(6.47) gives ∆s|s ∼ 8% and ∆τ0|τ0 ∼ 10% for
reflected irradiance and for transmitted irradiance – 6% and 10% correspond-
ingly, if the observational uncertainty is about 2%. In general, the irradiances
data allow obtaining the optical parameters within the cloud more accurately
than the radiances do, according to the study by McCormick and Leathers
(1996).

6.3.2
The Applicability Region

As has been mentioned in Sect. 2.4, the main lower bound connecting with the
diffusion domain is set on the optical thickness. The restriction on the true
absorption arises due to expansions over the small parameter for the asymp-
totic constants. The applicability region of the inverse expressions for values s
and τ′ have been studied in several studies (Melnikova 1992, 1998; Melnikova
et al. 2000) for the wide set of parameters. Calculation of the direct problem
has been accomplished with the doubling and adding method, and the ob-
tained radiative characteristics have served as measured values (Demyanikov
and Melnikova 1986). The retrieved parameters have been compared with the
model parameters of the direct problem for estimating the relative error. About
50 numerical models have been analyzed in total. The values of the relative un-
certainties of 1−ω0 and τ0 with fixed phase function parameter g are presented
in Figs. 6.5 and 6.6 versus the single scattering albedo and optical thickness
correspondingly. We should point out that the only uncertainties caused by the
break of the applicability region have been studied in the above-mentioned
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Fig.6.5. Relative uncertainties ∆τ0|τ0 (solid line) and g∆(1−ω0)|(1−ω0) (dashed line) versus
value ω0 with fixed value τ0 = 25

Fig.6.6. Relative uncertainties ∆(1 − ω0)|(1 − ω0) (solid line) and ∆τ0|τ0 (dashed line) versus
value τ0 with fixed value ω0 = 0.999

analysis, and the values of the radiative characteristics have been assumed as
the exact ones.

The radiative characteristics of the inhomogeneous cloud layer have been
calculated with the doubling and adding method for five sublayers with optical
thickness τi = 5 and single scattering albedo ω0,i together with asymmetry
factor g (two latter parameters varying for sublayers). The irradiances have
been calculated at the boundaries of sublayers. Then the optical parameters
have been retrieved with formulas (6.11) and (6.12). Table 6.3 demonstrates
the obtained results and the uncertainties of these results. The results of the
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Table 6.3. Influence of the vertical heterogeneity of the layer on the exactness of the optical
parameters retrieval

i G ω0 τ′
model s2model τ′ s2 ∆s2 (%) ∆τ′ (%)

Inhomogeneous layers

1 0.85 0.999 2.25 0.00222 2.29 0.00235 4.0 4.8
2 0.85 0.999 2.25 0.02222 2.27 0.02287 2.7 3.6
3 0.85 0.970 2.25 0.06667 2.17 0.07042 5.8 5.2
4 0.85 0.950 2.25 0.10870 2.54 0.11620 7.3 9.4
5 0.85 0.930 2.25 0.15556 2.95 0.15732 8.8 15

Homogeneous layers

1 0.85 0.999 4.59 0.00222 4.72 0.00228 3.0 3.1
3 0.85 0.970 4.59 0.06667 4.80 0.06349 5.4 5.0

analysis for two cases of the homogeneous layers with corresponding values of
τ0 and ω0 are presented in the same table.

As is seen fromthe table, theuncertainty in the caseof inhomogeneous layers
is the same as in the case of the homogeneous layers and depends only on the
applicability region of the used equations (magnitudes of the single scattering
albedo and optical thickness). The high values of the uncertainties appear only
for the high absorbing sublayers with values of the single scattering albedo
ω0,i = 0.95 and 0.93, which provide significant errors both for the irradiance
calculation (Fig. 2.2) and for the retrieved parameters (Fig. 6.5).
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CHAPTER 7

Analysis of Radiative Observations
in Cloudy Atmosphere

7.1
Optical Parameters of Stratus Cloudiness Retrieved
from Airborne Radiative Experiments

The data of airborne experiments accomplished in 1970–1980-th within the
range of research programs CAENEX, GATE, GARP have been presented in
Sect. 3.3 with the results of the experiments under the overcast conditions
being listed in Table 3.2. These results are used here for inferring spectral
dependence of the optical parameters of cloud layers (optical thickness τ0
and single scattering albedo ω0), applying the approach described in Chap. 6
(Melnikova 1989, 1992; Melnikova and Mikhailov 1993,1992). The spectral
values of phase function parameter g, needed for obtaining optical thickness τ0,
single scattering albedo ω0, and the volume scattering coefficient are taken
from the study by Stephens (1979). The procedure of retrieval is presented in
detail elsewhere (Melnikova 1992, 1997; Melnikova and Mikhailov 1994).

7.1.1
Analysis of the Results of Radiation Observations in the Tropics

The observations were carried out as a part of the GATE experiment above the
Atlantic Ocean close to the west coast of Africa (experiment No. 1: 12th July
1974, the latitude was 16◦N, experiment No. 2: 4th August 1974, the latitude
was 17◦N). The cloud bottom and top were at altitudes 0.3–3.3 and 0.5–5.0 km
for experiments 1 and 2 correspondingly. The uncertainties of the observations
were about 5–7% depending on wavelength. The retrieval of the optical param-
eters was implemented for every wavelength independently using (6.1). The
spectral values of optical thickness τ0 and single scattering co-albedo (1 − ω0)
are shown in Figs. 7.1a and 7.2a correspondingly and the volume absorption
and scattering coefficients are shown in Table A.12 of Appendix A. The oscil-
lations in the curves presenting the optical thickness in Fig. 7.1a are explained
with the high observational uncertainties; the smoothed curves are figured
there as well. It should be mentioned that the high values of single scattering
co-albedo (1 − ω0) are explained with the strong flue sand escaping from the
Sahara Desert to the observational site.
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Fig.7.1a–d. Spectral dependence of optical thickness τ0 retrieved from the data of airborne
radiative observations for different latitudinal zones: a 17◦N; b 45◦N; c 60◦N; d 75◦N
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Fig.7.2a–d.Spectral dependence of single scattering co-albedo 1−ω0 retrieved fromthe data
of airborne radiative observations for different latitudinal zones: a 17◦N; b 45◦N; c 60◦N;
d 75◦N
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7.1.2
Analysis of the Results of Observations in the Middle Latitudes

The observations in the overcast sky were accomplished above the Black Sea
(experiment No. 3: 10th April 1971, the latitude was 44◦N) and the Azov Sea
(experiment No. 4: 5th October 1971, the latitude was 47◦N) within the range
of the CAENEX program. The altitudes of the cloud bottom and top were
0.4–0.85 km in experiment 3 and 0.3–0.85 km in experiment 4. The retrieved
results are presented in Fig. 7.1b and 7.2b and in Table A.12 of Appendix A.
The observations above the Azov Sea were conducted under the conditions of
strong industrial pollution of the atmosphere that is confirmed with the values
of the volume absorption coefficient (κ = 0.12 km−1) that are higher than the
values of the observations above the Black Sea (κ = 0.05 km−1).

Besides, the radiative experiment was accomplished above the ground sur-
face in the suburb of Rustavi city, Georgia (experiment No.5: 5th December
1972, latitude42◦N).Thecloudbottomand topwereat altitudes 3.3–7.2 km cor-
respondingly. The spectral optical parameters are also presented in Figs. 7.1b
and 7.2b and in Table A.12 of Appendix A. The studied region had a heavy steel
industry with significant air pollution. The cloud was generated just at the
observational site and contained a lot of absorbing black carbon particles. The
cloud volume scattering coefficient in the observations above the land turned
out to be lower than in the case of the observations above the sea.

7.1.3
Analysis of the Results of Observations Above Ladoga Lake

The observations were accomplished at latitude 60◦N under overcast condi-
tions (experiment No. 6: 24th September 1972 and experiment No. 7: 20th April
1985). The two-layer cloudiness was observed in experiment 6 with the bot-
toms and tops at altitudes 0.3–2.5 km and 2.0–3.9 km correspondingly. These
results have been obtained by considering the cloud system as a whole. The
cloud bottom and top altitudes in experiment 7 were 0.9–1.4 km. The spectral
dependence of optical thickness τ0 and single scattering co-albedo (1 − ω0)
are presented in Figs. 7.1c and 7.2c. Value (1 − ω0) obtained from the data
of experiment 7 shows the conservative scattering at wavelength 0.42µ. The
oscillations in the curve illustrating the optical thickness in Fig. 7.1c are ex-
plained with the high observational uncertainties, and the smoothed curve is
shown in the same figure. The observational accuracy of experiment 7 is better
than the accuracy of the other cloud experiments. It appeared just during the
data processing: every retrieved point was situated close to the neighbor points
in the spectral curve (Fig. 7.1c), and the uncertainty of the processing were
increasing (the oscillations of spectral curve of τ0) only in regions of the molec-
ular absorption bands due to the break of the applicability region. The values
of volume scattering and absorption coefficients are presented in Table A.12 of
Appendix A.
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7.1.4
Analysis of the Results of Observations in the High Latitudes

The observations were accomplished above the Kara Sea at latitude 75◦N
(experiment No. 8: 1st October 1972, experiment No. 9: 29th May 1976 and
experiment No. 10: 30th May 1976). The altitudes of the cloud bottom and top
were 0.6–1.1 km in experiment 8, 5.0–8.0 km in experiment 9, 5.0–7.5 km and
8.0–9.0 km for two-layer cloudiness in experiment 10, considered as a whole
layer. The spectral optical parameters are shown in Figs. 7.1d and 7.2d. The
value of single scattering co-albedo (1 − ω0) retrieved from the data of exper-
iment 10 demonstrates the conservative scattering within wavelength interval
0.45–0.67 µm. The high absorption obtained from experiment 8 (1−ω0 ∼ 0.06)
is caused by the source of the high pollution that has been situated at the lee
side of the observational site.

7.2
Vertical Profile of Spectral Optical Parameters of Stratus Clouds

The retrieval of the vertical structure of stratus clouds is of interest for investi-
gation of either the physical properties of the cloud or the study of distribution
of pollution within clouds (Feigelson 1981; Marchuk et al. 1986; Kondratyev
1991). Hereinbefore the spectral dependence of volume scattering and absorp-
tion coefficients has been obtained for the cloud layer, considered as a whole. If
the data of the airborne radiative measurements are available at several levels
within the cloud, it is possible to derive the vertical structure of the cloud opti-
cal parameters. As has been discussed in Chap. 6, while studying the scattered
radiation field inside the cloud, it is necessary to distinguish two essentially
different cases: (1) a single optically thick cloud layer with the optical proper-
ties, which vary in vertical direction; and (2) cloud system consisting of several
cloud layers separated by clear atmosphere.

The airborne radiative observations suitable for these two cases have been
described in Sect. 3.4 (experiments 6 and 7). During these observations the
spectral irradiance was measured at several levels within the cloud and at
the cloud boundaries. The observational results provide the input data of the
optical parameters retrieval.

The conditions of the experiments were the following:
Experiment 6. The measurements were carried out at five levels of the

double-layer cloud: above the upper cloud layer at altitude z = 4.1 km, within
the upper cloud at altitude z = 3 km, between the cloud layers at altitude
z = 1.6 km, within the lower cloud at altitude z = 0.6 km and under the lower
cloud at altitude z = 0.05 km;

Experiment 7. The measurements were carried out at six levels of the single-
layer cloud: above the cloud top, within the cloud and under the cloud bottom
at altitudes: 1.4, 1.3, 1.2, 1.1, 0.95 and 0.8 km (Table A.3 of Appendix A and
Fig. 3.13).

The spectral rangeof experiment 6 is 0.45–0.85 µm, thedata set containsonly
41 wavelength points processed by hand; the spectral range in experiment 7
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is 0.35–0.95 µm and the data set contains 180 wavelength points. The ground
albedo were obtained from the measurements as F↑(τ0)|F↓(τ0): experiment 6
– A ∼ 0.2 (water surface) and experiment 7 – A ∼ 0.65 (snow surface).

Equations (6.20) and (6.21) for the retrieval of values s2 and τ′ in the system
of cloud layers have been applied to the data of experiment 6, and (6.3)–(6.5)
for the retrieval of values s2 and τ′ in one inhomogeneous layer have been
applied to the data of experiment 7. The results (single scattering albedo and
optical thickness) are presented in Tables A.13 and A.14 of Appendix A for both
experiments. There has been no problem with the interpretation of the data of
experiment 6. The magnitudes of the optical thickness of four cloud sublayers
have turned out to be high enough and the processing errors are less than
the observational uncertainty. As a result, the errors of the retrieved optical
parameter in experiment 6 are ∆s|s ∼ 6% and ∆τ|τ ∼ 10%. It is necessary to
point out that experiment 6 has been carried out with the earlier version of
the spectrometer and experimental uncertainty (∆F↑↓|F↑↓ ∼ 5−7%) is higher
than the uncertainty of experiment 7 (∆F↑↓|F↑↓ ∼ 1−2%), which has been
carried out with the improved version of the spectrometer. This difference is
expressed with the stronger oscillations on the curves of experiment 6 than
they are on the curves of experiment 7. In experiment 7 for the bottom sublayer
the negative values of s2 have been obtained because the absorption was strong
and the optical thickness was too small. Thus, the asymptotic formulas are off
the applicability range in this case. It corresponds to the solution expressed
through a discontinuous function that yields the absence of solution as per to
Sect. 6.3.

Fig.7.3a,b. Spectral values of the volume scattering coefficient of the cloud layers between
the measurement levels retrieved from experiment 6 –(a) and 7 – (b); digits in figures
indicate layer’s number: a 1 – layer 4.1–3 km; 2 – 3.0–1.6 km; 3 – 1.6–0.6 km; 4 – 0.6–0.05 km;
b 1 – layer 1.4–1.3 km, 2 – 1.3–1.2 km, 3 – 1.2–1.1 km, 4 – 1.1–0.9 km, 5 – 0.9–0.8 km
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Fig.7.4a,b. Spectral values of the volume absorption coefficient of the cloud layers between
measurement levels retrieved from experiment 6 – (a) and 7 – (b); Digits at curves indicate
the layer’s number: a 1 – layer 4.1–3.0 km; 2 – 3.0–1.6 km; 3 – 1.6–0.6 km; 4 – 0.6–0.05 km;
b 1 – layer 1.4–1.3 km, 2 – 1.3–1.2 km, 3 – 1.2–1.1 km, 4 – 1.1–0.9 km, 5 – 0.9–0.8 km

Comparison of the optical thickness, summarized over all layers, with the
optical thickness retrieved from the measurements at the top and bottom of
the same cloud layer (Kondratyev et al. 1998; Melnikova and Mikhailov 2001)
as per Sect. 7.1, indicates that the difference does not exceed the errors due to
the processing technique.

The spectral values of the volume scattering and absorption coefficients
between the measurement levels have been obtained from the values of s2 and
τ′, while taking into account the distance between the levels and the spectral
dependence of g parameter according to (Stephens 1979). Figures 7.3a,b and
7.4a,b illustrate the spectral dependence of the retrieved optical parameters
and Figs. 7.5a,b and 7.6a,b show their vertical dependence.

7.3
Optical Parameters of Stratus Cloudiness from Data
of Ground and Satellite Observations

Here the analytical method of processing the reflected radiance measurements,
elaborated in Sect. 6.1, is applied to the multi-angle ground observations of the
transmitted radiance and to the satellite observations of the reflected radiance
to obtain the cloud optical thickness and single scattering albedo. The obser-
vations have been described in Sect. 3.4 in Tables 3.3 and 3.4. The reflected
and transmitted radiance in units of the solar incident flux (reflection and
transmission functions) was measured in several viewing angles.
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Fig.7.5. Vertical profiles of the volume scattering coefficient for wavelength λ = 0.55 µm
retrieved from airborne radiative experiments 6 and 7

Fig.7.6. Vertical profiles of the volume absorption coefficient retrieved from airborne ra-
diative experiments 6 and 7 for wavelengths µm indicated in figure

7.3.1
Data Processing of Ground Observations

Two experiments of the ground observations have been processed with (6.17).
The first experiment has been performed using spectrometer K-2 (see Sect. 3.2)
under overcast conditions at drifting Arctic station SP-22 on the 13th August
and 8th October 1979 with the error of the transmitted radiance measure-
ments within 3% (Radionov et al. 1981). There were extended, horizontally
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homogeneous thick cloudiness during these observations, and the obtained
data seemed suitable for applying the analytical method.

The second experiment was accomplished using the spectral instrument,
whichhad spectral resolution0.002 µm and spectral range0.35–0.75 µm, under
the overcast condition in St. Petersburg’s suburb on 12th April 1996 (Melnikova
et al. 1997).

In all these cases, the data were obtained for five viewing angles and for
five azimuth angles. One set of the measurements took about 10 minutes. The
measurements were conducted at noontime, when the solar zenith angle hardly
varied during 10 minutes. The transmitted radiance at different azimuth angles
with the same viewing angle varied in the range of the measurement error and
it was averaged during the data processing.

During the Arctic experiment, the observations of the downwelling and up-
welling irradiance were also accomplished and ground albedo A was obtained
(Radianov et al. 1981). Different types of snow cover were studied (fresh snow,
wet snow and so on), and in all cases, a slight spectral dependence of ground
albedo A was observed. On 13th August 1979 the ground surface was covered
with wet snow and ground albedo A was about 0.6. On 8th October 1979 there
was fresh snow and ground albedo A was about 0.9. Thus, the data of 13th Au-
gust 1979 are more favorable for the present interpretation because the lower
value of ground albedo A decreases the errors of the optical cloud parameters
retrieval. During the observation of 12th April 1996 there was heavy snow-
ing, so the ground albedo was assumed equal to 0.9 (for fresh snow) as per
(Radionov et al. 1981).

Besides, the observation of direct solar radiation was carried out in clear
sky during the Arctic experiment of 1979. It gave the opportunity of calibrating
the instrument in units of solar incident flux πS at the top of the atmosphere
that is necessary for the retrieval of optical thickness τ0 according to (6.17).
The experiment of 12th April 1996 was accomplished likewise excluding the
measurement of direct solar radiation in the clear sky, hence the instrument
was not calibrated and optical thickness τ could not been obtained.

Each pair of the transmitted radiance is processed according to (6.20), and
then values s2 and τ′ are averaged. The final spectral values of single scattering
co-albedo (1 − ω0) and optical thickness τ0 are calculated accounting the spec-
tral dependence of parameter g according to the book by Stephens (1979). The
results are presented in Fig. 7.7 and in Table A.15 of Appendix A [the Arctic
cases (a) and St. Petersburg’s suburb case (b); Melnikova and Domnin 1997;
Melnikova et al. 1998, 2000]. Out of the molecular absorption bands spectral
values (1 − ω0) are about 0.002–0.004, that corresponds to the values obtained
earlier from the airborne experiments (Sect. 7.1). The optical thickness pre-
sented in Fig. 7.8 is typical for stratus clouds and demonstrates the apparent
spectral dependence similar to the one, presented in Sect. 7.1.
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Fig.7.7a,b. Spectral dependence of single scattering co-albedo 1 – ω0 retrieved from the
ground observation data: a in Arctic, 1979 and b in St. Petersburg suburb (city Petrodvorets),
1996

Fig.7.8. Spectral dependence of optical thickness τ0 retrieved from the data of the ground
observations in Arctic: experiment 11 – 13 August 1979 and experiment 12 – 08 October
1979

7.3.2
Data Processing of Satellite Observations

Optical thickness τ0 and single scattering co-albedo 1−ω0 for extended clouds
were obtained with inverse asymptotic formulas [(6.13), (6.28)]. The approx-
imate accounting of the horizontal inhomogeneity including the scattering of
radiation by the upper atmospheric layers was accomplished with (6.36) and
(6.39). Multidirectional reflected radiance measurements with the POLDER
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instrument were processed for the retrieval of cloud optical parameters. The
pixels with the cloud amount exceeding 0.5 were only considered.

The following sequence of the procedures for every pixel is proposed for
processing POLDER data:

1. At the first step the angular dependent functions are calculated.

2. The next step includes the calculation of the approximate optical thick-
ness for every viewing direction with the simple formula, assuming
the conservative scattering. The obtained values show the degree of the
shadowing influence (or the influence of the cloud top deviation from
the plane) and give the possibility to evaluate parameter r with (6.39).
Besides, they allow choosing the pairs of viewing directions where the
optical thickness is approximately equal.

3. The third stage consists of the parameter s2 retrieval from the radiances at
each pair of viewing directions with the equal optical thickness [(6.13)].
If the optical thickness defined at the previous stage without accounting
of the absorption is more than 100, parameter s2 is obtained according
to (6.16). Then the averaging over all pairs of the viewing directions is
accomplished, and the relative mean square deviation is estimated.

4. At the fourth stage optical thickness τ0 is calculated for every viewing
direction, assuming the true absorption, and the results are averaged.

5. Then, the similar procedure is repeated for every available wavelength.

6. At the sixth stage the results are prepared for mapping (inserting the
missed pixels; inserting the values averaged over the neighbor pixels
to the missed pixels or to the pixels with only one viewing direction;
rejecting the edge pixels). The uncertainties are calculated for every
pixel using the formulas similar to (6.46).

7. Finally, the images of the single scattering co-albedo and optical thick-
ness are figured with the GRADS editor. The space distribution of single
scattering co-albedo (1 − ω0) is shown in Fig. 7.9, optical thickness τ0
is shown in Fig. 7.10 (Melnikova and Nakajima 2000a,b). The values of
(1 − ω0) are in the range 0.001–0.010; the optical thickness is about
15–25 and can reach 100 in the Tropics. Black gaps in the images cor-
respond to the pixels with the cloud amount less than 0.5. Four images
are presented in Figs. 7.9 and 7.10, the upper picture join three images
registered during the successive satellite pass with time interval about
one hour (i. e. these images are presenting one cloud field). Figure 7.11
demonstrates the values of (a) – single scattering co-albedo (1 − ω0),
and (b) – optical thickness τ0 and shadow parameter r multiplied by 102

in three spectral channels versus pixel numbers. The latter turns not to
depend on wavelength, and in contrast the spectral dependence of the
optical thickness decreases with wavelength for all (!) processed pixels.
Please remember that the processing has been accomplished for every
wavelength independently. The size of every pixel is about 60 km.
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Fig.7.9. Images of single scattering co-albedo (1 − ω0) of the cloud pixels, retrieved from
POLDER data

Fig.7.10. Images of optical thickness τ0 of the cloud pixels, retrieved from POLDER data
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Fig.7.11a,b. Cloud optical parameters versus pixel numbers: a – single scattering co-albedo
(1−ω0), and b – optical thickness τ0 (solid line) and shadow parameter r×102 (dashed line)
for three wavelength channels 443 nm – black line; 670 nm – red line; 865 nm – blue line; 1 –
latitude 58.75◦N and longitude 23◦W–75◦; 2 – latitude 44.75◦N and longitude 24◦W–30◦E;
3 – latitude 8.75◦N and longitude 120◦E–140◦E

7.4
General Analysis of Retrieved Parameters of Stratus Cloudiness

7.4.1
Single Scattering Albedo and Volume Absorption Coefficient

Molecular absorption bands are apparent in the figures illustrating the spectral
dependence of single scattering co-albedo (1 − ω0) but they are expressed
differently in different cloud layers. The molecular band at wavelength 0.42 µ
appears in experiments 1, 2 and 4. It can be identified as an absorption by
hematite (see Sect. 3.3, Fig. 3.14 and studies by Ivlev and Andreev 1986 and
Sokolic and Toon 1999) contained in flue sand escapes from the Kara-Kum
and Sahara deserts. One can see the weak bands of the aerosol absorption at
wavelengths around 0.5 and 0.8 µm in the curves obtained from the data of
experiments 3 and 4, accomplished above the sea surface. It could be attributed
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to sea salt (namely to NaCl) content in the atmospheric aerosols according to
the study by Ivlev and Andreev (1986).

The atmosphere in the Arctic regions is purer – the conservative scatter-
ing becomes apparent within a large range of wavelength (Fig. 7.2d, experi-
ment 11). Spectral values (1–ω0) retrieved from airborne experiments 3 and
7 (Fig. 7.2b,c) and from the satellite experiments (certain parts of the curves
in Fig. 7.11, 3) demonstrate a monotonic increase with wavelength that can
be attributed to organic fuel combustion (Sokolic 1988). The values of single
scattering co-albedo (1–ω0) obtained from airborne experiments 1, 2 and 5
and most pixels of the satellite images show no spectral dependence, which is
typical for the black carbon and dust aerosols.

Consideration of volume absorption coefficient κ of the separate cloud sub-
layers (Fig. 7.4) indicates strong vertical inhomogeneity. The upper curves in
Fig. 7.4b demonstrate significant absorption by two upper cloud sublayers cor-
responding either to the oxygen and water vapor absorption bands (0.68, 0.72,
0.76 µm) or to the ozone Chappuis molecular absorption band (0.65 µm). Two
lower sublayers show the opposite spectral dependence. It could be explained
with the higher content of ozone in the upper tropospheric layers compared
with the lower ones. The results of experiment 7 show the monotonic increase
of the absorption coefficient with wavelength in the bottom layer (1.0–1.1 km).
A similar result has been mentioned above for the cloud, considered as a whole
layer.

In spite of significant uncertainties of the retrieval of values (1 − ω0,i) and
especially τi the obtained result demonstrates the rather real magnitudes and
spectral dependence coinciding with the results of considering the cloud layer
as a whole. Using the spectral dependence of the irradiances promotes dimin-
ishing the uncertainties of the retrieval because the results obtained for the
neighbor wavelengths do not distinguish strongly from each other. Smoothing
over spectral values out of the absorption bands could be rather effective for
obtaining the real values of the optical parameters.

Several pixels of the satellite images (in Fig. 7.11, 1) are characterized with
magnitude 0.05 for value (1−ω0). It could be concluded that the observational
errors increases at the edges of the image, especially for the single pixels with
the strong absorption. However, the other parts consist of several pixels with
the higher absorption and could correspond to the industrial regions with the
increasing content of the soot aerosols. Only some rare pixels above the ocean
are characterized with the conservative scattering of radiation.

7.4.2
Optical Thickness τ0 and Volume Scattering Coefficient α

The values of volume scattering coefficient α vary strongly in different exper-
iments. Spectral dependence α(λ) demonstrates the strong vertical inhomo-
geneity of the cloud, and both the magnitudes and the spectral dependence are
different in different cloud sublayers. It reflects the inhomogeneity of the mi-
crophysical cloud structure. The volume scattering coefficient obtained for the
cloud as a whole coincides with the averaged values obtained for the separate
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sublayers within the uncertainty range. The scattering coefficient is maximal
for the inner sublayers close to the cloud top. The obtained vertical profile of
the volume scattering coefficient is similar to the airborne results accomplished
in stratus-cumulus cloudiness in the Southern hemisphere (Boers et al. 1996)
and to the results of the FIRE experiment in the Arctic (Curry et al. 2000). The
same values are cited in the book by Mazin and Khrgian (1989) for stratus
clouds. Thus, our results could be assumed to be the quite real ones.

Figure 7.10 illustrates that most pixels are characterized with optical thick-
ness τ0 about 10–25, while in some regions consisting of several pixels the
optical thickness reaches 70–80 and even 100 (in the Tropical latitudes). Space
variations of the optical thickness seem rather monotonic in images obtained
from the satellite data, and this obstacle points to the low enough uncertainty
of either observations or data processing.

The presented results of the retrieval of optical thickness τ0 and single scat-
teringalbedoω0 fromtheairborne, ground, andsatellite radiativeobservations
demonstrate the similar values and spectral features in spite of using different
observational methods and different formulas. It shows the inverse asymptotic
formulas to be quite suitable for obtaining the cloud optical parameters. The
elaborated method has more advantages comparing with the other methods
(Rosenberg et al. 1974; Asano 1994; Nakajima TY and Nakajima T 1995; Rublev
et al. 1997) because it provides obtaining two parameters for every wavelength
in the shortwave spectral range and for every pixel of the satellite images
independently and with no additional restricting assumptions.

The approximate account of the cloud top inhomogeneity turns out to be
rathereffectiveeither for inverseor fordirectproblems.The introducedshadow
parameter turnsout to take intoaccount theupperatmospheric layers influence
together with the uncertainty of the phase function approximation with the
Henyey-Greenstein function. It will be promising to analyze the results of
similar data processing in the global scale.

It should be mentioned that the more accurate presentation of the phase
function would change the numerical magnitudes of the results because it has
to retrieve the phase function parameter for substituting its real value instead
of the model one to the formulas.

7.5
Influence of Multiple Light Scattering in Clouds on Radiation Absorption

7.5.1
Empirical Formulas for the Estimation
of the Volume Scattering and Absorption

The results discussed in the previous section have common features, namely:

1. magnitudes of the single scattering albedo are lower than the values
calculated with Mie theory,

2. and the existence of the spectral dependence of the optical thickness
contradicted Mie theory results.
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The interpretationof theUVradiationobservations in the cloudy skyby (Mayer
et al. 1998) also demonstrates the strong extinction: the cloud optical thickness
in the UV region has been retrieved to be equal to several hundreds.

Mie theory calculations yield volume scattering coefficient α (and optical
thickness τ0) for ensemble of the particles with size > 5 µm independent of
wavelength in the shortwave region, and the magnitude of the volume absorp-
tion coefficient in the cloud has to be in range 10−5–10−8 (single scattering
albedo ω0 is about 0.99999–1.0).

Here we propose a possible explanation of this contradiction. It links with
the multiple scattering within clouds. Qualitatively the similar assumption
has been proposed in the book by Kondratyev and Binenko (1984), while
considering the airborne observational data.

The cloud layer is considered to consist of droplets, sometimes with addi-
tion of aerosols within the droplet. The molecular scattering is accounted for
with summarizing the scattering coefficients and as the molecular scattering
coefficient is much lower (by a factor of 103) than the cloud scattering coef-
ficient, its yield turns out to be negligible. It’s known that the mean number
of the scattering events in the cloud with optical thickness τ0 is proportional
to τ2

0 owing to the multiple scattering (Minin 1981,1988; Yanovitskij 1997);
for reflecting photons it is proportional to τ0. Thus, the photon path within
the optically thick cloud significantly increases compared to the photon path
within the clear sky, and the number of collisions with air molecules (more
rigorous with fluctuations of the molecular density) increases as well. The
radiation absorption removes the part of photons and weakens the increasing
effect of the molecular scattering. Since it is necessary to take into account that
the cloud layer does not simply superpose to the molecular atmosphere, but
it increases the molecular scattering. We should mention that the increasing
of the molecular absorption within oxygen absorption band λ = 0.76 µm due
to the increasing of the photon path within the cloud has been considered in
various studies (Dianov-Klokov et al. 1973; Marshak et al. 1995; Kurosu et al.
1997; Pfeilsticker et al. 1997; Wagner et al. 1998; Pfeilsticker 1999). The same
reasons are also valid for radiation scattering and absorption by the aerosol
particles between droplets.

It is clear that the multiple scattering theory and the radiative transfer equa-
tion takes into account all processes of scattering and absorption, but it is
right only, if they are accurately put in the model of scattering and absorbing
medium. Usually the averaging values of scattering and absorption coefficients
over the elementary volume are substituted to the transfer equation and then
the solving is accomplished with one of the radiative transfer methods. How-
ever, from the physical point it is incorrect to average the initial parameters
over the elementary volume before solving. The incorrectness is intensified
with the essentially different scales of the elementary volumes for different
particles (molecules, aerosols and droplets), whose sizes distinguish by an or-
der of magnitude and much more (look Sect. 1.2) and the transfer equation
is derived in a phenomenological way for this incorrect elementary volume.
Strictly speaking, the equation of the radiative transfer for the complex multi-
component medium is to be inferred from Maxwell equations accounting all
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its components. However, we don’t aim here to consider the mathematical
aspect of the problem, thus we propose the empirical approach, presented in
several studies (Melnikova 1989, 1997; Kondratyev et al. 1997; Melnikova and
Mikhailov 2000).

Usually the scattering or absorption coefficients of the whole medium are
presented as a sum of the corresponding coefficients of separate components.
Specify the optical parameters relating to the molecular component with M,
relating to the aerosol component with A, and relating to the droplets with D.
Then the usual notation looks like:

α = αM + αA + αD ,
κ = κM + κA .

(7.1)

Accounting for the mutual influence of the scattering and absorption by dif-
ferent components, we propose the empirical relations:

α = (αM + αA)Cτp
Dωq

0 + αD ,

κ = (κ′
M + κ′

A)Cτp
Dωq

0 ,
(7.2)

where ω0 is the single scattering albedo, C is the factor of proportionality,
τD and αD are the optical thickness and the volume scattering coefficient
caused only by scattering by droplets (value of τ0 in Fig. 7.1 and value of α
in Fig. 7.12a for λ > 0.8 µm), α′

M , α′
A, κ′

M , κ′
A are the values of scattering and

absorptioncoefficientsofmolecules andaerosolparticles in the clear sky (α′
M is

a coefficient of Raleigh scattering) at corresponding wavelength and altitude of
theatmosphere; p and q are theempiric coefficients, estimated inseveral studies
(Melnikova 1989, 1992, 1997; Kondratyev et al. 1997; Melnikova and Mikhailov
2000). The coefficient of scattering by droplets αD has no factor because the

Fig.7.12a,b. Spectral dependence of the volume coefficients (a – scattering and b – absorp-
tion) of the stratus cloud, retrieved from the data of the experiments, numbered as per
Table 3.2
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Fig.7.13a,b. Volume coefficients of a – scattering and b – absorption, transformed using
(7.2). The curve numbering corresponds to the experiments, listed in Table 3.2. The curve
marked with letter R characterizes the molecular scattering at altitude 1 km

equation of radiative transfer and corresponding asymptotic formulas solving
it are written for one component – droplet (in some cases for the droplet with
the absorbing particle within it). Item κ′

Mτp
Dωq

0 in the second of (7.2) differs
from zero only within the molecular absorption bands. Remember that the
problem is considered only for τ0 >> 1.

Factor C turns out to be equal to unity. Powers p and q are equal to: p = 2 and
q = τ2

0, as per the estimations in several studies (Melnikova 1989, 1992, 1997;
Kondratyev et al. 1997; Melnikova and Mikhailov 2000). These magnitudes
correspond to the above-mentioned fact that the mean number of scattering
events in the cloud of optical thickness τ0 is proportional to τ2

0 (Minin 1981;
Yanovitskij 1997). We should point out that powers p and q were obtained from
the analysis of the magnitudes of volume scattering and absorption coefficients
for the data of two experiments at two wavelengths.

Transform values [α(λ) − α(0.8)] and κ(λ) (Tables A.8, Appendix A) using
(7.2) leads to the values obtained with Mie theory and usually attributed to
the cloud elementary volume (Grassl 1975; Nakajima et al. 1991). The spectral
dependence of the transformed values of both difference [α(λ) − α(0.8)] and
the volume absorption coefficient is presented in Fig. 7.13a,b. It is seen that the
magnitudes of the volume absorption coefficient demonstrated in Fig. 7.13b
practically coincide with the ones usually calculated with Mie theory for cloud
droplets (Grassl 1975). The molecular absorption bands become sharper. The
values of the single scattering albedo corresponding to the absorption coeffi-
cients presented in Fig. 7.13b are about 0.99998 that is close to the standard
magnitudes for the cloud layer. Difference [α(λ) − α(0.8)] converted with (7.2)
does not distinguish much from Raleigh scattering coefficient for the clear sky.

The presented consideration concerns the external mixture, i. e. the case,
when aerosol particles are situated between the cloud droplets. When aerosol
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particles are situated within the droplets (the internal mixture) the aerosol
absorption is correctly accounted for in calculation with the formulas for
one-component medium. Basing on the obtained results one could conclude
that the anomalous absorption by clouds points to the external mixture of
the atmospheric aerosols and cloud droplets because in the opposite case the
radiation absorption by clouds coincides with the theoretical values.

7.5.2
Multiple Scattering of Radiation as a Reason for Anomalous Absorption
of Radiation by Clouds in the Shortwave Spectral Region

The aerosols consisting of hydrophobic particles such as sand, soot etc. could
exist within the cloud between droplets with higher probability than the hy-
drophilic ones (salt, sulfates); hence, they increase the shortwave absorption
of radiation by the cloud. Hydrophilic particles, being the nuclei of conden-
sation increase the droplet number. This obstacle in turn increases the cloud
optical thickness and causes the cloud cooling. The aerosol absorption by the
cloud increasing up to 15% has been approximately estimated basing on the
proposed mechanism with the mean values of the aerosol volume absorption
coefficient equal to 0.08 km−1 and of the volume scattering coefficient equal to
30 km−1 with geometrical thickness ∆z = 1 km and within spectral range 0.4–
1.0 µm. The molecule absorption within the ozone Chappuis band increases up
to 6–10% and the molecule absorption within oxygen band 0.76 µm increases
up to 10% that coincides with the results of the study by Dianov-Klokov et al.
(1973).This effect turnsout stronger for the thicker clouds, and it quantitatively
explains the anomalous absorption by clouds.

Experimental studies (Boers et al. 1996; Bott et al. 1996) actually indicate the
higher content of the carbonaceous and mineral compound in the atmospheric
aerosols than has been assumed before together with their significant yield to
forming the radiative regime of the atmosphere. The hydrophobic particles
could be injected into the atmosphere as the result of industrial escapes, sand
storms, volcanic eruptions, and fires. These sources do not seem enough to ac-
count for the cloud anomalous absorption displayed on a global scale, however
the aerosols flue escapes extend up to 3000 km keeping their radiation activity
in the optical range (Mazin and Khrgian 1989).

In the remainder of this chapter, we would like to point out that careful
accountingof theoptical properties of all atmospheric components isnecessary
for the construction of optical models (Vasilyev and Ivlev 2002).
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CHAPTER 8

Conclusion

The authors have considered two effective methods for calculation of the
solar radiance and irradiance under clear and cloudy conditions (the direct
problem solving): the numerical one – the Monte-Carlo method for clear sky,
and the analytical one – the method of the asymptotic formulas for overcast
sky. The advantages of the methods during the calculation of the radiative
characteristics have been shown. The methods have been presented in detail
(including thealgorithms) so that interestedcolleagues coulddirectlyuse them.
The uncertainties of these methods have been analyzed. In the beginning of
the book (Chaps. 1 and 2) the physical characteristics and conceptions have
been defined and the main physical principles of light propagation in the
atmosphere have been explained.

While describing the experiments, the main emphasis has been put to the
methodological details of observations for improving the exactness of mea-
surements. Instruments are improved constantly, but the considered details
of the accomplishment of radiation observations, as we hope, could be useful
for specialists. The sources of observational and processing errors have been
analyzed, and the possibilities for their minimization have been proposed. The
elaborated algorithms of the experimental data processing are based on the
methods of mathematical statistics and even if they could not be directly ap-
plied to the data of other experiments they would be useful to study because the
common principles of processing a large volume of data are the fundamental
ones.

The presented examples of the vertical profiles and spectral dependence of
solar semispherical upward and downward fluxes are shown in figures and
tables for using these data in radiative models under different atmospheric
conditions or as the initial data of inverse problems. Here we have presented the
examples of observational data for different atmospheric and meteorological
conditions. For our colleagues who are interested in these data we would like
to remind them that the database is extended enough.

The developed classification of different types of surfaces could be also
mentioned.Theobtainedresults alloweffectively identifying the typeof surface
on the one hand and adequately taking into account the reflection of solar
radiation from the surface in atmospheric optics on the other hand.

The numerical and analytical methods of the retrieval of the atmospheric
parameters from the data of solar radiation measurements under clear and
overcast sky conditions (the inverse problem solving), elaborated by the au-
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thors are described in detail. Significant attention is paid to the correctness of
the inverse problem. Careful error analysis and study of the applicability range
in every considered case is in fact the investigation of stability of the inverse
problem solution. The detailed algorithms of the inverse problem solving and
its analysis could be applied to other similar data.

The application of the elaborated methods to the interpretation of the exper-
imental data allows the retrieval of new information: the spectral and vertical
dependence of the optical parameters of the clear and cloudy atmosphere.
The obtained examples of the vertical profiles and spectral dependence of the
optical parameters of the atmosphere and surface are presented in figures and
tables. There is a rich database of results similar to the examples presented here,
which could be used as an optical model for different atmospheric conditions.

On the basis of cloud optical parameters obtained from observations, the
mechanismof influenceof themultiple scatteringof radiationbyclouddroplets
on the increase of true absorption by atmospheric aerosols and on the molec-
ular scattering and absorption by the cloudy atmosphere is proposed. The
empirical formulas for taking into account this mechanism are inferred. They
allow correcting numerical optical models. Numerically estimating validation
of the obtained cloud optical parameters is accomplished.

This mechanism is applied to the multi-component medium (droplets,
molecules, aerosols) and used for the explanation of the anomalous short-
wave radiation absorption by clouds. Until now this effect has not had an
adequate interpretation.



Appendix A: Tables of Radiative Characteristics
and Optical Parameters of the Atmosphere

Table A.1. Semispherical solar irradiance (mW cm−1 µm−1) reduced to solar incident angle
51◦ and to the levels of the atmospheric pressure from the results of processing the airborne
sounding data 16 Oct. 1983 in the clear sky. Ground surface is the sand (continued on next
page)

λ (nm) Downwelling irradiance Upwelling irradiance
mW cm−2 µm−1 mW cm−2 µm−1

P (mbar) 1000 900 800 700 600 500 1000 900 800 700 600 500

350 21.6 24.0 26.7 29.8 33.3 37.0 1.48 3.41 5.31 7.20 9.06 10.9
360 25.9 28.1 35.0 33.3 36.3 39.5 2.09 4.10 6.10 8.08 10.0 12.0
370 42.6 45.7 47.8 51.6 54.6 57.5 3.96 7.09 10.1 13.0 16.0 18.9
380 43.4 46.1 48.9 51.7 54.5 57.3 4.87 7.64 10.4 13.2 16.0 18.8
390 46.0 48.6 51.2 53.9 56.6 59.2 5.70 8.31 10.9 13.6 16.3 19.0
400 64.6 67.1 69.9 73.1 76.5 80.2 7.86 10.4 12.9 15.5 18.1 20.7
410 68.8 71.4 74.3 77.5 81.0 84.8 8.30 10.9 13.5 16.2 18.8 21.5
420 76.5 79.3 82.2 85.3 88.6 92.2 9.33 12.2 15.0 17.9 20.8 23.8
430 55.7 58.3 61.2 64.4 67.9 71.7 7.24 9.47 11.7 14.0 16.3 18.7
440 69.2 72.2 75.6 79.3 83.3 87.6 9.97 12.5 15.1 17.8 20.5 23.2
450 86.3 89.5 93.0 96.8 101.0 106.0 13.7 16.6 19.5 22.5 25.5 28.7
460 88.1 91.0 94.3 97.8 102.0 106.0 15.0 17.6 20.3 23.1 26.0 28.9
470 87.5 90.2 93.2 96.5 100.0 104.0 15.5 17.9 20.5 23.1 25.8 28.5
480 92.9 95.6 98.5 102.0 105.0 109.0 17.4 19.8 22.2 24.7 27.3 30.0
490 86.8 89.2 92.0 95.0 98.3 102.0 16.9 19.1 21.3 23.6 26.0 28.4
500 85.8 88.1 90.7 93.5 96.7 100.0 17.7 19.7 21.8 23.9 26.2 28.4
510 90.0 92.2 94.7 97.4 100.0 104.0 19.8 21.8 23.8 25.9 28.1 30.3
520 83.3 85.4 87.7 90.3 93.1 96.2 19.4 21.1 22.9 24.8 26.8 28.8
530 89.4 91.5 93.8 96.4 99.2 102.0 22.1 23.8 25.6 27.5 29.4 31.4
540 86.6 88.4 90.5 92.9 95.5 98.3 22.7 24.2 25.8 27.5 29.3 31.1
550 89.2 90.9 92.9 95.2 97.7 101.0 24.6 26.1 27.7 29.4 31.1 32.9
560 87.1 88.8 90.8 93.0 95.5 98.2 25.4 26.8 28.2 29.7 31.3 33.0
570 87.7 89.5 91.4 93.6 96.1 98.7 26.6 27.9 29.2 30.7 32.2 33.7
580 88.1 89.8 91.8 94.1 96.5 99.2 27.8 29.0 30.2 31.6 33.0 34.5
590 83.5 85.2 87.1 89.2 91.6 94.2 27.2 28.3 29.4 30.6 31.9 33.3
600 86.2 87.7 89.3 91.2 93.4 95.7 28.6 29.7 30.8 32.0 33.3 34.6
610 86.1 87.4 88.9 90.7 92.7 94.9 29.3 30.3 31.4 32.6 33.8 35.2
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Table A.1. (continued)

λ (nm) Downwelling irradiance Upwelling irradiance
mW cm−2 µm−1 mW cm−2 µm−1

P (mbar) 1000 900 800 700 600 500 1000 900 800 700 600 500

620 84.4 85.8 87.4 89.2 91.3 93.5 29.3 30.3 31.4 32.5 33.7 35.0
630 80.7 82.2 83.9 85.9 88.0 90.4 28.6 29.4 30.3 31.2 32.3 33.3
640 80.4 81.7 83.2 85.0 86.9 89.1 28.7 29.6 30.5 31.5 32.5 33.6
650 78.3 79.5 80.9 82.6 84.4 86.5 28.3 29.1 29.9 30.9 31.8 32.9
660 76.4 77.4 78.7 80.1 81.8 83.6 27.7 28.5 29.4 30.3 31.3 32.4
670 77.7 78.7 79.9 81.3 83.0 84.8 28.6 29.4 30.3 31.2 32.2 33.3
680 75.4 76.4 77.6 79.0 80.7 82.6 28.1 28.9 29.7 30.6 31.6 32.6
690 66.7 68.1 69.8 71.7 73.8 76.2 25.5 25.9 26.4 27.0 27.6 28.2
700 67.5 68.8 70.3 72.0 73.9 76.1 25.3 25.8 26.5 27.1 27.8 28.6
710 65.3 66.5 67.9 69.6 71.5 73.6 25.1 25.6 26.2 26.8 27.5 28.2
720 59.7 61.3 63.1 65.2 67.4 69.8 22.5 22.9 23.2 23.7 24.1 24.6
730 59.9 61.3 62.8 64.6 66.6 68.8 23.1 23.5 23.9 24.4 24.9 25.4
740 61.2 62.3 63.6 65.1 66.8 68.7 24.8 25.2 25.6 26.1 26.7 27.3
750 59.6 60.7 62.0 63.5 65.2 67.1 24.6 25.0 25.5 26.0 26.5 27.1

760 42.2 45.0 48.0 51.1 54.5 58.0 18.5 18.5 18.6 18.6 18.7 18.8
770 53.7 55.0 56.5 58.3 60.2 62.4 22.8 23.1 23.4 23.7 24.1 24.6
780 56.2 57.2 58.4 59.7 61.3 63.1 23.9 24.3 24.7 25.1 25.6 26.2
790 54.4 55.4 56.6 58.0 59.5 61.3 23.3 23.6 24.0 24.4 24.8 25.3
800 53.0 54.0 55.2 56.5 58.0 59.8 22.8 23.1 23.5 23.9 24.3 24.8
810 49.3 50.5 51.8 53.4 55.1 57.0 20.9 21.1 21.4 21.7 22.0 22.3
820 46.1 47.4 49.0 50.7 52.5 54.6 19.3 19.5 19.7 19.9 20.2 20.5
830 45.5 46.7 48.0 49.5 51.3 53.2 19.5 19.7 19.9 20.2 20.5 20.8
840 46.8 47.7 48.8 50.0 51.4 53.0 20.6 20.9 21.1 21.4 21.8 22.2
850 45.0 45.9 46.9 48.1 49.5 51.0 20.3 20.5 20.8 21.1 21.4 21.8
860 43.7 44.5 45.5 46.7 48.0 49.6 19.8 20.1 20.3 20.6 20.9 21.3
870 45.5 46.2 47.1 48.1 49.3 50.6 20.4 20.7 21.0 21.3 21.6 22.0
880 44.3 45.1 46.1 47.2 48.5 49.9 19.9 20.1 20.4 20.8 21.1 21.5
890 41.8 42.7 43.7 45.0 46.4 48.0 18.4 18.6 18.9 19.2 19.4 19.8
900 38.3 39.4 40.8 42.3 44.0 45.8 16.3 16.5 16.6 16.8 17.0 17.2
910 35.1 36.5 38.1 39.8 41.7 43.7 14.8 14.9 14.9 15.0 15.0 15.1
920 36.6 37.7 39.1 40.5 42.2 43.9 15.6 15.7 15.9 16.0 16.1 16.3
930 21.3 23.7 26.3 29.1 32.1 35.3 8.35 8.34 8.31 8.28 8.23 8.18
940 21.1 23.5 26.1 28.8 31.7 34.8 8.19 8.12 8.05 7.97 7.89 7.80
950 21.5 23.7 26.1 28.7 31.4 34.3 8.52 8.44 8.36 8.27 8.19 8.10
960 5.71 6.56 8.22 10.6 13.7 17.5 3.73 3.40 3.09 2.81 2.55 2.32
970 0.16 1.11 1.11 1.11 9.00 9.43 0.104 1.05 1.05 1.05 0.80 1.23
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Table A.2. Semispherical solar irradiance (mW cm−1 µm−1) reduced to solar incident angle
48◦ and to the levels of the atmospheric pressure from the results of processing the airborne
sounding 29 Apr. 1985 in the clear sky. Ground surface is the snow on ice (continued on next
page)

λ (nm) Downwelling irradiance Upwelling irradiance
mW cm−2 µm−1 mW cm−2 µm−1

P (mbar) 1000 900 800 700 600 500 1000 900 800 700 600 500

330 19.9 20.9 22.3 24.4 27.2 30.5 9.72 10.7 11.8 13.0 14.1 15.3
340 30.5 31.6 33.1 35.1 37.5 40.5 15.3 16.3 17.3 18.5 19.7 20.9
350 35.7 37.2 38.9 41.0 43.4 46.1 18.2 19.5 20.9 22.3 23.8 25.3
360 38.3 39.7 41.2 43.0 45.1 47.4 19.8 21.1 22.6 24.1 25.7 27.3
370 54.2 55.8 57.6 59.4 61.5 63.9 28.8 30.5 32.2 34.0 35.9 37.8
380 56.9 58.3 59.8 61.4 63.1 64.8 31.2 32.6 34.1 35.7 37.4 39.1
390 57.2 58.4 59.7 61.1 62.7 64.7 30.9 32.1 33.4 34.8 36.4 37.9
400 82.1 83.5 85.1 86.8 88.6 90.6 43.7 45.1 46.6 48.3 50.2 52.2
410 83.8 85.0 86.3 87.9 90.1 92.8 44.4 45.6 46.9 48.5 50.1 51.8
420 87.2 88.6 90.1 91.9 93.9 96.9 46.2 47.6 49.1 50.9 52.9 54.8
430 75.8 76.8 78.1 79.5 81.1 82.9 40.6 41.6 42.8 44.2 45.8 47.7
440 91.1 92.2 93.6 95.1 97.0 99.0 48.3 49.4 50.8 52.3 54.2 56.2
450 103.0 104.0 106.0 108.0 110.0 113.0 54.6 55.7 57.1 58.8 60.9 62.8
460 107.0 108.0 109.0 111.0 113.0 115.0 56.3 57.4 58.7 60.3 62.1 64.2
470 106.0 107.0 108.0 110.0 112.0 113.0 55.6 56.6 57.8 59.2 60.9 62.9
480 111.0 112.0 113.0 115.0 116.0 118.0 57.1 58.0 59.1 60.5 62.2 64.1
490 105.0 106.0 107.0 108.0 110.0 111.0 53.7 54.5 55.6 56.9 58.4 60.2
500 103.0 104.0 105.0 106.0 107.0 109.0 52.2 52.9 53.8 55.0 56.4 58.0
510 107.0 107.0 108.0 109.0 111.0 112.0 53.6 54.2 55.1 56.2 57.5 59.1
520 99.4 100.0 101.0 102.0 103.0 104.0 49.8 50.4 51.2 52.2 53.5 54.9
530 105.0 106.0 106.0 107.0 109.0 110.0 52.1 52.7 53.4 54.4 55.6 57.1
540 101.0 101.0 102.0 103.0 104.0 106.0 49.6 50.2 50.9 51.8 53.0 54.3
550 103.0 103.0 104.0 105.0 106.0 107.0 50.5 50.9 51.6 52.5 53.6 55.0
560 101.0 101.0 102.0 103.0 104.0 105.0 49.3 49.7 50.4 51.2 52.2 53.5
570 102.0 102.0 103.0 103.0 104.0 105.0 49.2 49.6 50.2 50.9 51.9 53.1
580 101.0 101.0 102.0 102.0 104.0 105.0 48.1 48.4 48.9 49.6 50.3 51.2
590 97.9 98.2 98.6 99.3 100.0 101.0 46.6 46.8 47.3 47.9 48.7 49.7
600 98.3 98.6 99.0 99.7 100.0 101.0 46.1 46.4 46.8 47.4 48.3 49.2
610 97.3 97.6 98.0 98.6 99.4 100.0 45.9 46.2 46.6 47.2 48.0 49.0
620 96.7 96.9 97.3 97.9 98.7 99.6 45.4 45.7 46.1 46.7 47.4 48.4
630 93.3 93.5 93.9 94.4 95.1 96.6 43.2 43.3 43.7 44.2 44.9 45.6
640 92.6 92.7 93.1 93.6 94.2 95.0 42.4 42.6 42.9 43.4 44.0 44.9
650 89.8 90.0 90.3 90.8 91.5 92.3 40.9 41.1 41.4 41.9 42.6 43.4
660 86.5 86.7 87.0 87.5 88.2 89.0 39.1 39.3 39.7 40.1 40.8 41.6
670 88.0 88.2 88.5 89.0 89.6 90.4 40.0 40.2 40.5 41.0 41.7 42.5
680 85.7 85.8 86.1 86.6 87.2 88.0 38.8 39.0 39.3 39.7 40.4 41.1
690 78.0 78.3 78.9 79.9 81.1 82.7 34.2 34.3 34.5 34.8 35.2 35.7
700 79.1 79.3 79.6 80.0 81.0 82.3 34.3 34.5 34.8 35.2 35.7 36.2
710 70.4 71.0 71.8 73.0 74.6 76.4 30.6 31.2 31.8 32.5 33.3 34.1
720 65.8 66.5 67.5 68.9 70.7 72.7 28.0 28.4 29.0 29.5 30.2 30.9
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Table A.2. (continued)

λ (nm) Downwelling irradiance Upwelling irradiance
mW cm−2 µm−1 mW cm−2 µm−1

P (mbar) 1000 900 800 700 600 500 1000 900 800 700 600 500

730 62.9 63.9 65.1 66.7 68.6 70.8 25.6 25.9 26.4 26.8 27.3 27.8

740 64.9 65.4 66.3 67.4 68.9 70.7 27.3 27.8 28.3 28.9 29.5 30.3
750 64.3 64.8 65.4 66.5 67.8 69.5 27.6 28.1 28.7 29.3 30.0 30.8
760 39.1 40.0 41.5 43.7 46.6 50.2 17.6 17.8 18.0 18.3 18.6 18.9
770 48.5 50.1 52.0 54.3 56.8 59.7 20.2 20.4 20.6 20.9 21.3 21.7
780 59.6 60.1 60.9 62.0 63.4 65.1 25.0 25.4 26.0 26.5 27.1 27.8
790 58.6 59.1 59.7 60.7 62.0 63.5 24.2 24.6 25.2 25.8 26.4 27.1
800 56.8 57.3 57.9 58.9 60.1 61.7 23.2 23.6 24.2 24.7 25.3 26.0
810 55.5 55.9 56.5 57.4 58.6 60.1 22.5 23.0 23.4 24.0 24.5 25.2
820 49.9 50.7 51.8 53.1 54.7 56.6 19.1 19.4 19.7 20.0 20.4 20.8
830 49.1 49.8 50.8 52.1 53.6 55.4 18.9 19.2 19.5 19.9 20.3 20.7
840 49.9 50.4 51.1 52.1 53.3 54.8 19.9 20.2 20.6 21.0 21.5 22.0
850 49.3 49.7 50.2 51.1 52.2 53.5 20.0 20.4 20.9 21.3 21.8 22.4
860 48.0 48.4 48.9 49.7 50.7 52.0 19.4 19.8 20.2 20.7 21.2 21.7
870 47.7 48.0 48.5 49.3 50.4 51.7 19.1 19.4 19.9 20.4 20.9 21.4
880 47.6 48.0 48.5 49.3 50.3 51.6 18.8 19.1 19.6 20.0 20.5 21.1
890 46.8 47.2 47.7 48.5 49.6 50.9 18.0 18.4 18.8 19.2 19.7 20.3
900 40.8 41.5 42.5 43.7 45.1 46.9 14.6 14.8 15.1 15.4 15.8 16.1
910 35.1 36.5 38.1 39.8 41.7 43.7 14.8 14.9 14.9 15.0 15.0 15.1
920 36.6 37.7 39.1 40.5 42.2 43.9 15.6 15.7 15.9 16.0 16.1 16.3
930 21.3 23.7 26.3 29.1 32.1 35.3 8.35 8.34 8.31 8.28 8.23 8.18
940 21.1 23.5 26.1 28.8 31.7 34.8 8.19 8.12 8.05 7.97 7.89 7.80
950 21.5 23.7 26.1 28.7 31.4 34.3 8.52 8.44 8.36 8.27 8.19 8.10
960 5.71 6.56 8.22 10.6 13.7 17.5 3.73 3.40 3.09 2.81 2.55 2.32
970 0.16 1.11 1.11 1.11 9.00 9.43 0.104 1.05 1.05 1.05 0.80 1.23



Appendix A: Tables of Radiative Characteristics and Optical Parameters of the Atmosphere 265

Table A.3. Semispherical solar irradiance (mW cm−1 µm−1) reduced to solar incident angle
48◦ from the results of processing the airborne sounding 20 Apr. 1985 in the overcast sky.
Ground surface is the snow on ice (continued on next page)

λ (nm) Downwelling irradiance Upwelling irradiance
mW cm−2 µm−1 mW cm−2 µm−1

z (km) 1.4 1.3 1.2 1.1 0.9 0.8 1.4 1.3 1.2 1.1 0.9 0.8

350 62.01 57.70 47.16 37.50 31.49 29.52 39.26 37.62 30.34 25.44 21.09 20.38
360 68.89 64.81 55.08 44.37 37.39 35.43 44.17 42.26 33.76 28.05 23.92 22.30
370 85.71 81.02 68.52 54.42 47.03 44.75 57.19 54.86 43.40 36.24 30.92 29.03
380 76.88 72.38 60.97 49.09 42.24 40.56 47.65 43.54 34.68 30.78 27.60 27.71
390 79.70 74.86 62.74 50.75 43.97 42.00 47.00 43.40 36.02 33.63 30.97 27.62
400 111.72 104.84 87.95 71.48 61.52 58.99 67.47 61.7 49.86 43.96 39.19 39.95
410 113.57 106.09 89.42 73.66 63.86 61.34 71.80 65.24 51.99 45.81 40.88 41.26
420 109.40 99.78 78.82 70.72 65.59 62.34 65.91 59.76 49.13 44.1 39.98 40.56
430 110.17 100.11 78.01 70.32 65.19 62.05 66.05 59.87 49.00 44.22 40.35 40.66
440 115.66 105.34 82.80 74.70 68.04 65.84 68.98 62.47 51.36 46.15 41.88 43.06
450 130.51 118.52 91.65 82.68 76.18 73.28 76.02 69.04 57.18 51.28 46.47 47.78
460 139.61 126.44 96.97 87.83 81.15 77.80 80.75 73.32 60.26 54.13 49.18 49.79
470 138.56 125.49 96.20 87.15 80.93 77.41 80.04 72.79 59.96 53.74 48.74 49.59
480 139.61 126.31 96.51 87.67 81.09 77.86 79.33 71.96 58.89 52.76 47.88 49.09
490 133.62 120.97 92.39 83.72 77.02 73.94 75.12 68.30 56.17 50.26 45.54 46.48
500 132.58 119.99 91.43 82.91 76.94 73.61 74.09 67.24 55.40 49.47 44.71 45.77
510 129.45 117.02 88.77 80.72 74.77 71.64 72.02 65.24 53.08 47.58 43.20 44.17
520 126.84 114.41 86.46 78.82 72.77 69.82 70.27 63.70 52.11 46.71 42.39 43.36
530 125.80 113.35 85.19 77.86 72.53 69.429 69.32 62.66 50.78 45.47 41.22 42.36
540 129.19 116.44 87.83 80.50 74.43 71.28 70.91 64.08 52.19 46.72 42.32 43.46
550 130.23 117.31 88.20 80.74 75.00 71.44 71.23 64.25 51.99 46.69 42.42 43.46
560 129.44 116.67 87.89 80.70 74.66 71.52 70.78 63.94 51.78 46.53 42.29 43.36
570 125.59 113.06 84.77 77.80 71.81 68.57 67.91 61.03 49.29 44.29 40.25 41.25
580 123.97 111.50 83.30 76.52 70.33 67.36 66.51 59.62 47.88 43.02 39.12 40.05
590 123.97 111.46 83.34 76.68 70.14 67.13 66.23 59.32 47.57 42.78 38.93 39.75
600 122.14 109.80 81.47 74.67 68.48 65.39 64.36 57.51 45.81 41.10 37.32 38.14
610 119.8 107.64 80.42 74.24 68.43 65.22 63.51 56.86 45.40 40.93 37.32 38.14
620 116.68 104.79 78.12 72.16 66.39 63.29 61.61 55.21 44.03 39.56 35.95 36.54
630 112.77 101.39 75.77 69.91 64.14 61.10 59.48 53.17 42.12 37.84 34.43 34.93
640 111.73 100.41 74.86 69.08 63.59 60.39 58.36 52.07 41.25 37.16 33.86 34.23
650 109.90 98.89 74.03 68.31 62.42 59.41 57.38 51.06 40.15 36.04 32.77 33.43
660 107.30 96.32 71.73 66.32 60.93 57.72 55.51 49.48 38.85 34.97 31.89 32.42
670 106.78 96.10 72.11 66.60 60.84 57.77 55.58 49.59 38.85 35.07 32.07 32.32
680 105.48 94.79 71.10 65.91 60.32 57.01 55.23 49.24 38.32 34.51 31.48 32.02
690 95.50 85.71 63.65 58.42 53.04 49.64 48.87 43.26 33.16 29.59 26.80 27.11
700 96.44 86.96 65.86 60.104 52.40 48.70 49.80 44.09 32.33 28.73 25.98 26.70
710 96.56 87.12 65.95 59.88 52.25 48.42 49.57 43.97 32.44 28.71 25.83 26.55
720 94.23 84.81 63.69 58.02 50.11 46.72 48.56 42.81 31.08 27.55 24.87 25.50
730 87.89 78.82 59.04 53.55 45.25 41.87 44.76 38.84 26.93 23.70 21.32 21.88
740 89.65 80.79 61.24 55.46 47.57 43.83 45.52 40.07 28.93 25.3 22.59 23.39
750 88.95 80.24 61.85 56.55 48.30 44.82 46.37 40.91 29.55 26.09 23.48 24.39
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Table A.3. (continued)

λ (nm) Downwelling irradiance Upwelling irradiance
mW cm−2 µm−1 mW cm−2 µm−1

z (km) 1.4 1.3 1.2 1.1 0.9 0.8 1.4 1.3 1.2 1.1 0.9 0.8

760 83.27 75.06 57.38 52.71 44.81 42.15 44.58 39.14 27.75 24.40 21.85 22.98
770 61.52 55.77 41.63 36.80 30.57 28.23 29.55 25.74 17.81 15.30 13.52 14.45
780 84.39 76.70 58.12 52.02 43.64 40.48 42.39 37.28 26.23 22.90 20.42 21.08
790 85.67 77.98 59.26 52.80 44.54 40.97 42.79 37.53 26.09 22.75 20.30 21.08
800 81.98 74.42 56.44 50.39 42.18 38.93 41.35 36.06 24.64 21.39 19.03 19.48
810 80.27 72.56 55.58 50.12 41.58 38.46 40.73 35.50 24.04 20.95 18.71 19.27
822 72.60 65.31 49.62 44.66 36.33 33.10 36.54 31.35 19.98 17.20 15.27 15.96
830 71.06 63.83 48.59 43.65 35.70 32.42 35.67 30.64 19.90 16.98 14.91 15.86
840 71.72 64.44 50.54 45.91 37.62 34.16 37.37 32.45 21.21 18.24 16.16 17.16
850 71.07 63.87 50.67 46.42 38.37 34.70 37.56 32.86 21.99 18.96 16.79 17.56
860 67.77 60.88 48.59 44.53 36.74 33.26 35.78 31.09 20.44 17.62 15.61 16.96
870 67.95 61.02 48.98 44.96 36.66 33.34 36.18 31.46 20.62 17.70 15.62 16.46
880 67.37 60.34 48.16 44.28 35.91 32.63 35.49 30.68 19.58 16.88 15.01 15.66
890 66.18 59.10 47.06 43.31 35.00 31.69 35.05 30.18 18.94 16.15 14.23 14.56
900 59.91 53.33 41.36 37.24 28.65 25.84 30.00 25.15 14.28 12.12 10.75 11.04
910 58.60 52.16 40.23 36.14 27.43 24.47 29.12 24.30 13.36 11.32 10.06 10.44
920 57.80 51.44 39.21 34.84 26.50 23.40 28.09 23.36 12.77 10.52 9.09 8.98
930 57.78 51.43 39.79 36.03 27.76 24.80 29.08 24.29 13.53 11.26 9.83 10.74
940 41.78 36.74 25.88 22.41 15.81 13.52 18.78 14.77 6.33 5.27 4.75 4.80
950 42.19 37.32 26.40 22.60 15.38 13.78 18.09 14.38 6.70 5.38 4.61 4.38
960 44.77 39.64 27.87 23.83 16.79 14.83 19.23 15.33 7.16 5.91 5.16 4.89
970 49.87 44.31 31.63 27.24 20.09 17.23 21.84 17.31 7.54 6.48 5.93 6.32
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Table A.4. Description of classes of the spectral brightness coefficients (SBC) of the water
surface∗ (continued on next page)

Notation N – number of spectra in the class (mean and root-mean-square values of SBC
are calculated over them).
H – altitude of the flight in meters, three values: minimum, arithmetic mean
and maximum over all spectra of the class.
Z – solar zenith angle in degrees, three values: minimum, arithmetic mean and
maximum over all spectra of the class.
C(cl) – total chlorophyll contents, attributed to the class (µg/l) for the water
surface from the accompanied contact measurements
C(ms) – mineral matter contents, attributed to the class (µg/l) for the water
surface, from the accompanied contact measurements

Class 1.0 Pure lake water: central parts of the Ladoga and Onega Lakes, far from the coast
and river mouths. C(cl)=0.5 µg/l. C(ms)=0.5 µg/l. N = 930, H= (200/292/300),
Z= (37/44/64). Observation to nadir. Variation of weather conditions: clear sky,
transparent cloudiness, overcast sky.

Class 2.0 East part of the Ladoga Lake, central part of the Rybinsk reservoir during
the period before “water blossom”. C(cl)=1.5 µg/l, C(ms)=1.5 µg/l. N = 55,
H= (300/300/300), Z= (35/39/51). Observation to nadir. Weather conditions:
clear sky.

Class 3.0 The Ladoga and Onega Lakes at the distance 10–15km from the coast, cen-
tral part of the Rybinsk reservoir. C(cl)=2.5 µg/l, C(ms)=1.0 µg/l, N=226,
H= (300/300/300), Z= (35/43/64). Observation to nadir. Variation of weather
conditions: clear sky, overcast sky.

Class 4.0 TheLadogaLake: areasof theVolkhovandSvir riversmouths andPetrokrepost
bay, the Rybinsk and Tsimlyansky reservoirs C(cl)=2.5, C(ms)=3.0, N=182,
H= (200/299/300), Z= (35/40/63). Observation to nadir. Variation of weather
conditions: clear sky, overcast sky.

Class 5.0 The Ladoga Lake: areas of the Volkhov and Svir rivers mouths near the
coast, the Rybinsk reservoir. C(cl)=4.0 µg/l, C(ms)=1.0 µ g/l, N=165, H=
(300/300/300), Z= (35/40/63). Observation to nadir. Variation of weather con-
ditions: clear sky, overcast sky.

Class 6.0 The Ladoga Lake: areas near the Volkhov and Svir rivers mouths. C(cl)=
5.0 µg/l, C(ms)=3.0 µg/l. N = 66, H= (300/300/300), Z= (36/47/63). Observa-
tion to nadir. Weather conditions: clear sky.

Class 7.0 The Mingechaursky reservoir in the period of “water blossom”, the Sivash Gulf.
C(cl)=3.5 µg/l, C(ms)=3.0 µg/l.N = 35,H= (300/357/500), Z= (40/53/63).Ob-
servation to nadir. Weather conditions: clear sky.

Class 8.0 The Mingechaursky reservoir in the period of “water blossom”. C(cl)=4.0 µg/l,
C(ms)=4.0 µg/l. N = 43, H= (300/300/300), Z= (40/49/61). Observation to
nadir. Weather conditions: clear sky.

Class 9.0 The Mingechaursky reservoir in the period of “water blossom”. C(cl)=5.0 µg/l,
C(ms)=6.0 µg/l. N = 43, H= (300/300/300), Z= (41/48/56). Observation to
nadir. Weather conditions: clear sky.

Class 10.0 The Mingechaursky reservoir in the period of “water blossom”. C(cl)=9.0 µg/l,
C(ms)=14.0 µg/l. N = 22, H= (300/300/300), Z= (42/48/56). Observation to
nadir. Weather conditions: clear sky.
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Table A.4. (continued)

Class 11.0 The Tsimlyansky reservoir (water has light green color). There is no data about
C(cl) and C(ms). N = 6, H= (200/200/200), Z= (37/37/37). Weather conditions:
transparent cloudiness.

Class 12.0 The Volkhov river. There is no data about C(cl) and C(ms). N = 9, H=
(300/300/300), Z= (37/41/49). Observation to nadir. Weather conditions: clear
sky.

Class 13.0 The Don river (water has asphalt color). There is no data about C(cl) and
C(ms). N = 9, H= (100/100/100), Z= (36/37/38). Observation to nadir. Weather
conditions: overcast sky.

Class 14.0 The Black Sea (green water, i. e. the standard color of sea water), there is
no data about C(cl) and C(ms). N = 23, H= (150/470/500), Z= (25/31/38).
Observations to nadir, from nadir to 45◦ at azimuth angles 90◦ and 135◦, from
nadir to 22.5◦ at azimuth angle 180◦. Weather conditions: clear sky.

Class 14.1 The dependence of SBC upon the viewing direction for class 14.0. N = 3, H=
(150/383/500), Z= (29/32/37). Observations to viewing angle 22.5◦ at azimuth
angle 0◦ (the center of Sun glare). Azimuth angle 0◦ corresponds to flight
direction “to the Sun”, azimuth angle 180◦ – “opposite the Sun”).

Class 14.2 The dependence of SBC upon the viewing direction for class 14.0. N = 2,
H= (500/500/500), Z= (27/28/28). Observations to viewing angles 22.5◦ and
45◦ at azimuth angle 45◦ (“Sun glare”).

Class 14.3 The dependence of SBC upon the viewing direction for class 14.0. N = 23,
H= (150/333/566), Z= (25/30/38). Observations to viewing angles from 22.5◦
till 45◦ at azimuth angles 90◦ and 135◦; to viewing angle 45◦ at azimuth angle
180◦.

∗ There is an archive of spectra for every class (in a special binary code)
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Table A.6. Description of the classes of the spectral brightness coefficients (SBC) of the
ground surface∗

Class 15.0 Snow surface. N = 41, H= (200/354/500), Z= (60/62/65). Observation to nadir,
and from nadir to 45◦ at azimuth angles 0◦, 45◦, 90◦, 135°, 180°. Variation of
weather conditions: clear sky, overcast sky.

Class 16.0 Sand surface (dunes of the Kara-Kum desert). N = 63, H= (500/500/500),
Z= (52/54/62). Observation to nadir. Weather conditions: clear sky.

Class 17.0 Tillage (fields of the black soil). N = 134, H= (100/354/500), Z= (34/50/72).
Observation to nadir. Variation of weather conditions: clear sky, transparent
cloudiness.

Class 18.0 Field with weak green young growth. N = 6, H= (500/500/500), Z= (31/32/36).
Observation to nadir. Weather conditions: transparent cloudiness.

Class 19.0 Field with green young growth. N = 9, H= (100/144/200), Z= (41/46/50). Ob-
servation to nadir Weather conditions: clear sky.

Class 20.0 Fields with continuous green grass cover (without blossom). N = 26,
H= (100/438/500), Z= (28/45/58). Observation to nadir. Variation of weather
conditions: clear sky, transparent cloudiness.

Class 21.0 Moss marsh of brownish-green color. N = 89, H= (500/500/500), Z=
(37/41/54). Observation to nadir at azimuthal angles from 0◦ till 90◦, view-
ing angles from 15◦ till 45◦. Weather conditions: clear sky.

Class 21.1 Dependence of SBC upon the viewing direction for class 21: at azimuth angle
135◦ viewing angles from 15◦ to 45◦; at azimuth angle 180◦ viewing angles
from 15◦ to 30◦. N = 5, H= (500/500/500), Z= (37/38/39).

Class 21.2 Dependence of SBC upon the viewing direction for class 21 (direction is oppo-
site to the Sun): at azimuth angle 180◦ viewing angles from 30◦ to 45◦. N = 6,
H= (500/500/500), Z= (37/38/39).

Class 22.0 Fields with sunflower (blossom period, yellowish-green color). N = 46, H=
(200/200/200), Z= (30/39/57). Observation at azimuth angle 0◦. The viewing
angles from nadir to 45◦. Weather conditions: clear sky.

Class 23.0 Fields with maize (period of the corn ripening, yellowish-green color). N = 6,
H= (200/200/200), Z= (37/40/47). Observation at azimuth angle 0◦ from nadir
to 45◦. Weather conditions: clear sky.

Class 24.0 Ripe grain crop (wheat, barley). N = 57, H= (200/200/200), Z= (25/38/50).
Observation: at azimuth angle 0◦ viewing angles from nadir to 45◦. Weather
conditions: clear sky.

Class 25.0 Stubble (fields after harvesting of grain crop). N = 14, H= (200/200/200),
Z= (31/40/44). Observation: at azimuth angle 0◦ the viewing angles from nadir
to 45◦. Weather conditions: clear sky.

Class 26.0 Asphalt road (gray color, dry). N = 9, H= (50/50/50), Z= (34/44/52). Observa-
tion to nadir. Weather conditions: clear sky, transparent cloudiness.

Class 27.0 Concrete road (clean, light gray color). N = 3, H= (50/50/50), Z= (31/31/32).
Observation to nadir. Weather conditions: clear sky.

∗ There is an archive of spectra for every class (in a special binary code)
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Table A.8. Volume coefficients of the aerosol scattering (km−1) retrieved from the data of
airborne radiative sounding 16 Oct. 1983 (The Kara-Kum desert)∗ (continued on next page)

P (mbar)
λ (nm) 950 900 850 800 700 600 500

325 0. 0278
0. 0069

0. 0206
0. 0063

0. 0120
0. 0042

0. 1100
0. 0063

0. 0470
0. 0038

0. 0480
0. 0037

0. 0021
0. 0021

345 0. 0280
0. 0068

0. 0209
0. 0325

0. 0120
0. 0042

0. 1140
0. 0064

0. 0492
0. 0038

0. 0485
0. 0037

0. 0027
0. 0021

365 0. 0269
0. 0066

0. 0200
0. 0060

0. 0118
0. 0040

0. 1141
0. 0062

0. 0477
0. 0038

0. 0502
0. 0037

0. 0033
0. 0020

385 0. 0259
0. 0066

0. 0192
0. 0058

0. 0115
0. 0040

0. 1163
0. 0060

0. 0484
0. 0037

0. 0518
0. 0038

0. 0055
0. 0019

405 0. 0255
0. 0066

0. 0189
0. 0058

0. 0114
0. 0039

0. 1189
0. 0060

0. 0493
0. 0037

0. 0531
0. 0039

0. 0074
0. 0019

425 0. 0262
0. 0063

0. 0194
0. 0058

0. 0115
0. 0039

0. 1220
0. 0061

0. 0498
0. 0038

0. 0542
0. 0038

0. 0073
0. 0019

445 0. 0270
0. 0062

0. 0200
0. 0058

0. 0118
0. 0039

0. 1264
0. 0061

0. 0524
0. 0038

0. 0558
0. 0038

0. 0069
0. 0019

465 0. 0279
0. 0062

0. 0207
0. 0059

0. 0120
0. 0038

0. 1241
0. 0063

0. 0540
0. 0039

0. 0553
0. 0038

0. 0059
0. 00195

485 0. 0287
0. 0063

0. 0213
0. 0060

0. 0122
0. 0038

0. 1277
0. 0064

0. 0567
0. 0039

0. 0556
0. 0038

0. 0046
0. 00199

505 0. 0294
0. 0062

0. 0221
0. 0060

0. 0124
0. 0039

0. 1341
0. 0065

0. 0575
0. 0040

0. 0527
0. 0039

0. 0041
0. 00203

525 0. 0296
0. 0062

0. 0222
0. 0061

0. 0125
0. 0038

0. 1390
0. 0066

0. 0582
0. 0040

0. 0539
0. 0039

0. 0046
0. 00202

545 0. 0299
0. 0061

0. 0224
0. 0061

0. 0126
0. 0038

0. 1388
0. 0067

0. 0567
0. 0040

0. 0539
0. 0039

0. 0047
0. 00202

565 0. 0301
0. 0061

0. 0225
0. 0061

0. 0126
0. 0038

0. 1412
0. 0067

0. 0582
0. 0041

0. 0534
0. 0040

0. 0049
0. 0020

585 0. 0302
0. 0061

0. 0227
0. 0060

0. 0127
0. 0038

0. 1420
0. 0067

0. 0591
0. 0041

0. 0524
0. 0040

0. 0049
0. 0021

605 0. 0303
0. 0060

0. 0228
0. 0060

0. 0128
0. 0038

0. 1504
0. 0068

0. 0585
0. 0040

0. 0505
0. 0040

0. 0053
0. 0021

625 0. 0306
0. 0061

0. 0230
0. 0061

0. 0129
0. 0039

0. 1501
0. 0068

0. 0581
0. 0041

0. 0523
0. 0040

0. 0056
0. 0021

645 0. 0308
0. 0062

0. 0231
0. 0061

0. 0130
0. 0040

0. 1540
0. 0068

0. 0585
0. 0041

0. 0533
0. 0041

0. 0057
0. 0021

665 0. 0309
0. 0063

0. 0235
0. 0062

0. 0131
0. 0040

0. 1532
0. 0069

0. 0586
0. 0041

0. 0498
0. 0041

0. 0055
0. 0021

685 0. 0311
0. 0065

0. 0236
0. 0063

0. 0132
0. 0041

0. 1568
0. 0070

0. 0582
0. 0042

0. 0485
0. 0041

0. 00565
0. 0021

725 0. 0312
0. 0066

0. 0237
0. 0062

0. 0132
0. 0041

0. 1595
0. 0073

0. 0573
0. 0042

0. 0490
0. 0042

0. 0059
0. 0021

765 0. 0311
0. 0068

0. 0236
0. 0062

0. 0131
0. 0041

0. 1581
0. 0071

0. 0568
0. 0042

0. 0459
0. 0042

0. 0057
0. 0021

805 0. 0312
0. 0069

0. 0237
0. 0063

0. 0131
0. 0042

0. 1580
0. 0073

0. 0546
0. 0041

0. 0444
0. 0043

0. 0059
0. 0021

845 0. 0313
0. 0073

0. 0239
0. 0063

0. 0132
0. 0044

0. 1603
0. 0074

0. 0537
0. 0042

0. 0426
0. 0043

0. 0058
0. 0021

885 0. 0316
0. 0080

0. 0241
0. 0065

0. 0133
0. 0045

0. 1547
0. 0074

0. 0503
0. 0042

0. 0404
0. 0045

0. 0058
0. 0022
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Table A.8. (continued)

P (mbar)
λ (nm) 950 900 850 800 700 600 500

925 0. 0318
0. 0086

0. 0243
0. 0066

0. 0135
0. 0049

0. 1530
0. 0074

0. 0477
0. 0043

0. 0387
0. 0047

0. 0057
0. 0022

945 0. 0403
0. 0089

0. 0245
0. 0067

0. 0136
0. 0051

0. 1502
0. 0076

0. 0470
0. 0043

0. 0381
0. 0048

0. 0058
0. 0022

955 0. 0374
0. 0093

0. 0246
0. 0069

0. 0136
0. 0053

0. 1494
0. 0078

0. 0464
0. 0043

0. 0352
0. 0049

0. 0054
0. 0022

985 0. 0321
0. 0099

0. 0247
0. 0070

0. 0137
0. 0057

0. 1508
0. 0077

0. 0448
0. 0044

0. 0345
0. 0050

0. 0052
0. 0023

∗ Upper value is the arithmetic mean scattering coefficient, lower value is the standard
deviation (km−1)
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Table A.9. Volume coefficients of the aerosol absorption (km−1) retrieved from the airborne
radiative sounding 16 Oct. 1983 above the Kara-Kum desert∗ (continued on next page)

P (mbar)
λ (nm) 950 900 850 800 700 600 500

325 0. 0053
0. 0160

0. 0044
0. 0108

0. 0046
0. 0088

0. 0050
0. 0075

0. 0012
0. 0037

0. 0009
0. 0040

0. 0013
0. 0016

345 0. 0051
0. 0161

0. 0043
0. 0107

0. 0046
0. 0088

0. 0040
0. 0076

0. 0012
0. 0037

0. 0010
0. 0041

0. 0016
0. 0016

365 0. 0064
0. 0160

0. 0053
0. 0102

0. 0049
0. 0086

0. 0066
0. 0074

0. 0014
0. 0037

0. 0010
0. 0038

0. 0004
0. 0016

385 0. 0076
0. 0153

0. 0062
0. 0968

0. 0052
0. 0083

0. 0082
0. 0070

0. 0015
0. 0035

0. 0011
0. 0036

0. 0005
0. 0016

405 0. 0081
0. 0152

0. 0066
0. 0946

0. 0053
0. 0081

0. 0119
0. 0069

0. 0016
0. 0035

0. 0011
0. 0035

0. 0005
0. 0016

425 0. 0075
0. 0156

0. 0061
0. 0974

0. 0052
0. 0083

0. 0095
0. 0071

0. 0015
0. 0036

0. 0010
0. 0036

0. 00045
0. 0016

445 0. 0068
0. 0157

0. 0056
0. 0100

0. 0050
0. 0085

0. 0074
0. 0072

0. 0014
0. 0036

0. 0010
0. 0037

0. 0004
0. 0016

465 0. 0061
0. 0161

0. 0050
0. 0103

0. 0048
0. 0087

0. 0052
0. 0074

0. 0013
0. 0037

0. 0010
0. 0038

0. 0004
0. 0016

485 0. 0053
0. 0162

0. 0044
0. 0106

0. 0046
0. 0089

0. 0031
0. 0075

0. 0012
0. 0037

0. 0009
0. 0039

0. 0013
0. 0016

505 0. 0046
0. 0158

0. 0038
0. 0107

0. 0044
0. 0089

0. 0029
0. 0075

0. 0011
0. 0036

0. 0009
0. 0039

0. 0023
0. 0016

525 0. 0045
0. 0159

0. 0037
0. 0107

0. 0043
0. 0089

0. 0029
0. 0075

0. 0011
0. 0036

0. 0008
0. 0039

0. 0028
0. 0016

545 0. 0043
0. 0157

0. 0036
0. 0106

0. 0043
0. 0089

0. 0028
0. 0075

0. 0011
0. 0035

0. 0008
0. 0038

0. 0029
0. 0016

565 0. 0042
0. 0155

0. 0035
0. 0105

0. 0042
0. 0089

0. 0026
0. 0075

0. 0010
0. 0035

0. 0008
0. 0038

0. 0030
0. 0015

585 0. 0041
0. 0153

0. 0034
0. 0105

0. 0042
0. 0088

0. 0027
0. 0074

0. 0010
0. 0034

0. 0008
0. 0037

0. 0030
0. 0015

625 0. 0038
0. 0147

0. 0041
0. 0103

0. 0040
0. 0087

0. 0026
0. 0074

0. 0009
0. 0033

0. 0008
0. 0035

0. 0034
0. 0015

645 0. 0037
0. 0144

0. 0031
0. 0102

0. 0039
0. 0085

0. 0025
0. 0073

0. 0009
0. 0032

0. 0008
0. 0034

0. 0034
0. 0014

665 0. 0035
0. 0140

0. 0040
0. 0100

0. 0039
0. 0084

0. 0025
0. 0072

0. 0009
0. 0031

0. 0007
0. 0033

0. 0033
0. 0014

685 0. 0034
0. 0135

0. 0034
0. 0982

0. 0038
0. 0083

0. 0024
0. 0071

0. 0008
0. 0030

0. 0007
0. 0032

0. 0033
0. 0014

725 0. 0034
0. 0136

0. 0040
0. 0980

0. 0038
0. 0083

0. 0024
0. 0071

0. 0008
0. 0030

0. 0007
0. 0032

0. 0035
0. 0014

765 0. 0034
0. 0137

0. 0042
0. 0987

0. 0038
0. 0084

0. 0024
0. 0072

0. 0009
0. 0030

0. 0007
0. 0032

0. 0035
0. 0014

805 0. 0034
0. 0137

0. 0029
0. 0985

0. 0038
0. 0084

0. 0024
0. 0072

0. 0009
0. 0030

0. 0007
0. 0032

0. 0036
0. 0014

845 0. 0033
0. 0134

0. 0030
0. 0967

0. 0037
0. 0083

0. 00237
0. 00712

0. 00082
0. 00296

0. 0007
0. 0031

0. 0035
0. 0013

885 0. 0031
0. 0127

0. 0026
0. 0931

0. 0036
0. 0081

0. 0023
0. 0070

0. 0008
0. 0028

0. 0007
0. 0029

0. 0035
0. 0013

925 0. 0029
0. 0119

0. 0024
0. 0885

0. 0034
0. 0077

0. 0021
0. 0067

0. 0007
0. 0026

0. 0006
0. 0026

0. 0034
0. 0012
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Table A.9. (continued)

P (mbar)
λ (nm) 950 900 850 800 700 600 500

945 0. 0028
0. 0115

0. 0037
0. 0866

0. 0033
0. 0075

0. 0021
0. 0066

0. 0007
0. 0025

0. 0006
0. 0025

0. 0035
0. 0012

955 0. 0027
0. 0114

0. 0023
0. 0851

0. 0032
0. 0074

0. 0020
0. 0066

0. 0007
0. 0025

0. 0006
0. 0025

0. 0032
0. 0011

985 0. 0026
0. 0108

0. 0022
0. 0817

0. 0031
0. 0071

0. 0019
0. 0064

0. 0006
0. 0024

0. 0006
0. 0023

0. 0032
0. 0010

∗ The upper value is the arithmetic mean absorption coefficient, the lower value is the
standard deviation (km−1)
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Table A.10. Volume coefficients of aerosol scattering (km−1) retrieved from airborne radia-
tive sounding 29 Apr. 1985 above the Ladoga Lake∗ (continued on next page)

P (mbar)
λ (nm) 950 900 850 800 700 600 500

325 0. 563
0. 027

0. 435
0. 013

0. 309
0. 012

0. 244
0. 009

0. 0982
0. 0051

0. 0689
0. 0032

0. 0082
0. 0016

345 0. 537
0. 026

0. 419
0. 012

0. 309
0. 012

0. 239
0. 009

0. 0989
0. 0051

0. 0726
0. 0033

0. 0074
0. 0016

365 0. 501
0. 026

0. 404
0. 012

0. 308
0. 012

0. 243
0. 009

0. 0925
0. 0050

0. 0718
0. 0033

0. 0064
0. 0016

385 0. 455
0. 024

0. 408
0. 013

0. 307
0. 012

0. 248
0. 009

0. 0102
0. 0050

0. 0705
0. 0032

0. 0076
0. 0016

405 0. 465
0. 024

0. 388
0. 013

0. 292
0. 012

0. 241
0. 009

0. 0955
0. 0050

0. 0720
0. 0032

0. 0079
0. 0015

425 0. 450
0. 024

0. 383
0. 013

0. 295
0. 012

0. 235
0. 009

0. 0101
0. 0048

0. 0716
0. 0032

0. 0077
0. 0015

445 0. 449
0. 023

0. 373
0. 011

0. 294
0. 011

0. 237
0. 009

0. 0950
0. 0049

0. 0727
0. 0032

0. 0080
0. 0014

465 0. 428
0. 023

0. 371
0. 011

0. 280
0. 011

0. 235
0. 009

0. 0949
0. 0047

0. 0736
0. 0032

0. 0075
0. 0014

485 0. 418
0. 023

0. 361
0. 011

0. 277
0. 011

0. 237
0. 009

0. 0939
0. 0047

0. 0685
0. 0031

0. 0068
0. 0014

505 0. 418
0. 023

0. 361
0. 011

0. 280
0. 011

0. 236
0. 009

0. 0104
0. 0048

0. 0725
0. 0032

0. 0070
0. 0014

525 0. 385
0. 022

0. 349
0. 011

0. 272
0. 011

0. 246
0. 009

0. 0961
0. 0047

0. 0669
0. 0031

0. 0071
0. 0014

545 0. 378
0. 022

0. 342
0. 011

0. 275
0. 011

0. 236
0. 009

0. 0943
0. 0046

0. 0666
0. 0031

0. 0071
0. 0014

565 0. 370
0. 022

0. 341
0. 011

0. 275
0. 011

0. 233
0. 009

0. 0924
0. 0047

0. 0662
0. 0031

0. 0074
0. 0014

385 0. 455
0. 024

0. 408
0. 013

0. 307
0. 012

0. 248
0. 009

0. 0102
0. 0050

0. 0705
0. 0032

0. 0076
0. 0016

405 0. 465
0. 024

0. 388
0. 013

0. 292
0. 012

0. 241
0. 009

0. 0955
0. 0050

0. 0720
0. 0032

0. 0079
0. 0015

425 0. 450
0. 024

0. 383
0. 013

0. 295
0. 012

0. 235
0. 009

0. 0101
0. 0048

0. 0716
0. 0032

0. 0077
0. 0015

445 0. 449
0. 023

0. 373
0. 011

0. 294
0. 011

0. 237
0. 009

0. 0950
0. 0049

0. 0727
0. 0032

0. 0080
0. 0014

465 0. 428
0. 023

0. 371
0. 011

0. 280
0. 011

0. 235
0. 009

0. 0949
0. 0047

0. 0736
0. 0032

0. 0075
0. 0014

485 0. 418
0. 023

0. 361
0. 011

0. 277
0. 011

0. 237
0. 009

0. 0939
0. 0047

0. 0685
0. 0031

0. 0068
0. 0014

505 0. 418
0. 023

0. 361
0. 011

0. 280
0. 011

0. 236
0. 009

0. 0104
0. 0048

0. 0725
0. 0032

0. 0070
0. 0014

525 0. 385
0. 022

0. 349
0. 011

0. 272
0. 011

0. 246
0. 009

0. 0961
0. 0047

0. 0669
0. 0031

0. 0071
0. 0014

545 0. 378
0. 022

0. 342
0. 011

0. 275
0. 011

0. 236
0. 009

0. 0943
0. 0046

0. 0666
0. 0031

0. 0071
0. 0014

565 0. 370
0. 022

0. 341
0. 011

0. 275
0. 011

0. 233
0. 009

0. 0924
0. 0047

0. 0662
0. 0031

0. 0074
0. 0014

585 0. 339
0. 021

0. 332
0. 010

0. 265
0. 011

0. 229
0. 009

0. 0958
0. 0046

0. 0706
0. 0032

0. 0067
0. 0014
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Table A.10. (continued)

P (mbar)
λ (nm) 950 900 850 800 700 600 500

605 0. 322
0. 021

0. 322
0. 010

0. 262
0. 011

0. 231
0. 009

0. 0941
0. 0046

0. 0669
0. 0031

0. 0072
0. 0014

625 0. 317
0. 021

0. 321
0. 010

0. 258
0. 011

0. 227
0. 009

0. 0947
0. 0046

0. 0683
0. 0031

0. 0071
0. 0014

645 0. 299
0. 020

0. 314
0. 010

0. 251
0. 012

0. 233
0. 009

0. 0953
0. 0046

0. 0715
0. 0032

0. 0063
0. 0014

665 0. 327
0. 020

0. 312
0. 010

0. 252
0. 011

0. 233
0. 009

0. 0941
0. 0046

0. 0641
0. 0031

0. 0060
0. 0013

685 0. 312
0. 020

0. 311
0. 010

0. 248
0. 010

0. 231
0. 009

0. 0939
0. 0046

0. 0723
0. 0031

0. 0068
0. 0013

725 0. 299
0. 019

0. 302
0. 010

0. 241
0. 010

0. 233
0. 009

0. 0957
0. 0046

0. 0717
0. 0031

0. 0072
0. 0013

765 0. 279
0. 019

0. 292
0. 010

0. 239
0. 010

0. 232
0. 008

0. 0952
0. 0045

0. 0723
0. 0032

0. 0066
0. 0013

805 0. 262
0. 019

0. 288
0. 010

0. 233
0. 010

0. 228
0. 008

0. 0959
0. 0045

0. 0714
0. 0032

0. 0069
0. 0013

845 0. 243
0. 019

0. 283
0. 010

0. 228
0. 010

0. 229
0. 008

0. 0961
0. 0045

0. 0723
0. 0031

0. 0064
0. 0013

885 0. 238
0. 019

0. 279
0. 010

0. 224
0. 010

0. 226
0. 008

0. 0914
0. 0044

0. 0750
0. 0032

0. 0072
0. 0013

925 0. 226
0. 018

0. 264
0. 009

0. 225
0. 010

0. 233
0. 008

0. 0891
0. 0043

0. 0733
0. 0031

0. 0061
0. 0013

945 0. 173
0. 018

0. 257
0. 009

0. 222
0. 010

0. 229
0. 008

0. 0942
0. 0045

0. 0724
0. 0031

0. 0058
0. 0013

955 0. 168
0. 018

0. 257
0. 009

0. 221
0. 010

0. 225
0. 008

0. 0922
0. 0045

0. 0749
0. 0032

0. 0068
0. 0013

985 0. 135
0. 018

0. 254
0. 009

0. 218
0. 010

0. 227
0. 008

0. 0893
0. 0044

0. 0728
0. 0031

0. 0067
0. 0013

∗ Upper value – arithmetic mean scattering coefficient, lower value – standard deviation
(km−1)
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Table A.11. Volume coefficients of the aerosol absorption (km−1) retrieved from airborne
radiative sounding 29 Apr. 1985 above the Ladoga Lake∗ (continued on next page)

P (mbar)
λ (nm) 950 900 850 800 700 600 500

325 0. 0221
0. 0282

0. 0076
0. 0106

0. 0049
0. 0068

0. 0018
0. 0052

0. 0021
0. 0044

0. 0027
0. 0027

0. 0049
0. 0021

345 0. 0228
0. 0280

0. 0078
0. 0106

0. 0073
0. 0068

0. 0018
0. 0052

0. 0021
0. 0044

0. 0013
0. 0026

0. 0044
0. 0021

365 0. 0225
0. 0278

0. 0077
0. 0106

0. 0065
0. 0068

0. 0018
0. 0052

0. 0021
0. 0043

0. 0019
0. 0026

0. 0038
0. 0021

385 0. 0227
0. 0276

0. 0077
0. 0106

0. 0050
0. 0068

0. 0018
0. 0052

0. 0021
0. 0043

0. 0025
0. 0026

0. 0046
0. 0021

405 0. 0226
0. 0281

0. 0078
0. 0105

0. 0049
0. 0068

0. 0018
0. 0052

0. 0021
0. 0043

0. 0021
0. 0026

0. 0048
0. 0020

425 0. 0224
0. 0280

0. 0076
0. 0105

0. 0049
0. 0069

0. 0018
0. 0052

0. 0022
0. 0042

0. 0025
0. 0026

0. 0047
0. 0020

445 0. 0225
0. 0280

0. 0077
0. 0105

0. 0049
0. 0068

0. 0018
0. 0052

0. 0020
0. 0042

0. 0023
0. 0026

0. 0048
0. 0020

465 0. 0223
0. 0283

0. 0076
0. 0105

0. 0049
0. 0068

0. 0018
0. 0052

0. 0020
0. 0042

0. 0018
0. 0026

0. 0045
0. 0020

485 0. 0225
0. 0282

0. 0076
0. 0104

0. 0049
0. 0069

0. 0017
0. 0052

0. 0020
0. 0041

0. 0017
0. 0027

0. 0041
0. 0020

505 0. 0222
0. 0284

0. 0075
0. 0105

0. 0049
0. 0069

0. 0017
0. 0052

0. 0020
0. 0041

0. 0016
0. 0026

0. 0042
0. 0020

525 0. 0221
0. 0285

0. 0075
0. 0104

0. 0049
0. 0069

0. 0017
0. 0052

0. 0020
0. 0041

0. 0019
0. 0026

0. 0043
0. 0020

545 0. 0222
0. 0284

0. 0075
0. 0104

0. 0049
0. 0070

0. 0017
0. 0052

0. 0020
0. 0040

0. 0027
0. 0026

0. 0043
0. 0020

565 0. 0220
0. 0286

0. 0075
0. 0104

0. 0048
0. 0070

0. 0017
0. 0052

0. 0020
0. 0040

0. 0021
0. 0026

0. 0044
0. 0020

585 0. 0222
0. 0282

0. 0075
0. 0103

0. 0048
0. 0071

0. 0017
0. 0052

0. 0020
0. 0040

0. 0037
0. 0027

0. 0040
0. 0019

605 0. 0221
0. 0285

0. 0074
0. 0103

0. 0048
0. 0071

0. 0017
0. 0052

0. 0020
0. 0039

0. 0033
0. 0026

0. 0044
0. 0019

625 0. 0218
0. 0285

0. 0074
0. 0102

0. 0048
0. 0071

0. 0017
0. 0052

0. 0020
0. 0039

0. 0016
0. 0026

0. 0043
0. 0019

645 0. 0220
0. 0282

0. 0074
0. 0100

0. 0048
0. 0071

0. 0017
0. 0051

0. 0020
0. 0038

0. 0036
0. 0027

0. 0038
0. 0019

665 0. 0220
0. 0282

0. 0074
0. 0998

0. 0048
0. 0071

0. 0017
0. 0051

0. 0019
0. 0038

0. 0036
0. 0026

0. 0036
0. 0019

685 0. 0217
0. 0284

0. 0073
0. 0991

0. 0048
0. 0072

0. 0017
0. 0051

0. 0019
0. 0038

0. 0033
0. 0026

0. 0041
0. 0019

725 0. 0219
0. 0284

0. 0073
0. 0976

0. 0048
0. 0072

0. 0017
0. 0051

0. 0019
0. 0037

0. 0037
0. 0026

0. 0043
0. 0018

765 0. 0216
0. 0283

0. 0072
0. 0959

0. 0048
0. 0072

0. 0017
0. 0050

0. 0019
0. 0036

0. 0032
0. 0026

0. 0040
0. 0018

805 0. 0217
0. 0280

0. 0072
0. 0943

0. 0047
0. 0072

0. 0021
0. 0050

0. 0019
0. 0035

0. 0038
0. 0026

0. 0042
0. 0018

845 0. 0217
0. 0279

0. 0072
0. 0927

0. 0047
0. 0071

0. 0016
0. 0049

0. 0019
0. 0034

0. 0036
0. 0026

0. 0038
0. 0017

885 0. 0214
0. 0281

0. 0071
0. 0917

0. 0047
0. 0072

0. 0016
0. 0049

0. 0019
0. 0034

0. 0027
0. 0026

0. 0044
0. 0017
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Table A.11. (continued)

P (mbar)
λ (nm) 950 900 850 800 700 600 500

925 0. 0214
0. 0278

0. 0071
0. 0909

0. 0047
0. 0072

0. 0016
0. 0049

0. 0019
0. 0033

0. 0037
0. 0026

0. 0037
0. 0017

945 0. 0215
0. 0279

0. 0071
0. 0898

0. 0047
0. 0072

0. 0018
0. 0049

0. 0020
0. 0033

0. 0038
0. 0026

0. 0035
0. 0017

955 0. 0216
0. 0276

0. 0071
0. 0894

0. 0047
0. 0073

0. 0016
0. 0048

0. 0027
0. 0032

0. 0034
0. 0026

0. 0041
0. 0017

985 0. 0215
0. 0277

0. 0071
0. 0883

0. 0047
0. 0072

0. 0016
0. 0048

0. 0023
0. 0032

0. 0037
0. 0026

0. 0041
0. 0016

∗ The upper value is the arithmetic mean scattering coefficient, the lower value is the
standard deviation
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Table A.12. Volume coefficients of absorption κ and scattering α (km−1) retrieved from the
airborne radiative observation in the overcast sky (continued on next page)

λ
(nm)

The Black
Sea
10.04.1971

The Azov
Sea
05.10.1972

Rustavi city
05.12.1972

GATE
12.07.1974

GATE
4.08.1974

The Ladoga
Lake
20.04.1985

κ α κ α κ α κ α κ α κ α

400 0.0260 67.5 0.2903 60.7 0.1000 7.80 0.3069 31.9 0.2340 32.8 0.0145 56.8
410 0.0253 65.7 0.2873 60.3 0.0945 5.54 0.3065 31.7 0.2400 31.0 0.0068 56.0
420 0.0257 64.8 0.1708 59.6 0.0931 5.86 0.3053 31.5 0.2387 32.4 0.0000 55.6
430 0.0372 65.7 0.1334 57.4 0.0903 5.86 0.3031 31.1 0.2357 33.0 0.0012 54.4
440 0.0123 66.5 0.1089 58.0 0.0903 5.93 0.3004 32.1 0.2240 35.6 0.0031 53.6
450 0.0371 65.0 0.1132 55.0 0.0903 6.17 0.2954 33.2 0.2110 37.6 0.0086 51.7
460 0.0395 65.2 0.0470 53.5 0.0917 6.45 0.2966 31.1 0.2301 36.8 0.0130 50.4
470 0.0486 64.7 0.0354 54.7 0.0931 5.87 0.2946 31.9 0.2281 35.6 0.0132 47.2
480 0.0426 62.0 0.0299 54.8 0.0910 5.80 0.2903 31.5 0.2013 36.8 0.0135 43.6
490 0.0432 61.5 0.0259 53.1 0.0910 5.79 0.2895 31.4 0.1994 37.8 0.0123 42.0
500 0.0274 60.4 0.0817 53.5 0.0903 5.74 0.2876 30.7 0.1976 39.3 0.0110 40.2
510 0.0183 59.7 0.1416 52.0 0.0903 5.88 0.2894 30.4 0.2045 38.6 0.0156 39.3
520 0.0510 60.1 0.1860 52.4 0.0945 6.06 0.2913 30.0 0.2355 38.3 0.0224 38.6
530 0.0366 56.0 0.2043 50.9 0.0890 5.83 0.2938 29.8 0.2519 37.9 0.0198 38.5
540 0.0335 55.3 0.1177 48.5 0.0876 5.98 0.2980 29.7 0.2528 37.0 0.0309 37.2
550 0.0478 54.2 0.1177 47.5 0.0876 5.97 0.2945 28.5 0.2544 36.8 0.0367 37.3
560 0.0426 54.2 0.1177 45.7 0.0855 6.10 0.2965 27.7 0.2585 36.8 0.0405 36.6
570 0.0500 53.2 0.1330 46.1 0.0862 6.07 0.2983 27.0 0.2580 35.5 0.0435 36.1
580 0.0481 52.2 0.1330 43.9 0.0862 5.82 0.2952 27.4 0.2558 34.8 0.0468 35.4
590 0.0585 50.8 0.1369 44.8 0.0876 5.83 0.2962 26.8 0.2560 34.6 0.0477 34.8
600 0.0558 50.0 0.1404 44.0 0.0848 6.16 0.2904 27.3 0.2435 34.4 0.0497 34.1
610 0.0634 50.1 0.1404 43.2 0.0864 5.97 0.2897 28.4 0.2406 34.1 0.0488 33.9
620 0.0478 48.9 0.1437 42.8 0.0855 5.92 0.2914 28.4 0.2477 35.7 0.0491 33.6
630 0.0622 48.5 0.1465 42.6 0.0869 5.91 0.2936 28.2 0.2510 36.3 0.0532 32.3
640 0.0375 48.3 0.1368 42.4 0.0765 5.72 0.2924 28.3 0.2479 35.4 0.0559 31.1
650 0.0422 47.6 0.1261 42.0 0.0871 6.05 0.2918 28.6 0.2381 33.7 0.0603 30.6
660 0.0476 47.5 0.1052 41.3 0.0945 6.12 0.2885 29.0 0.2327 35.8 0.0644 30.8
670 0.0419 47.0 0.0950 41.8 0.0863 5.84 0.2960 28.4 0.2438 36.2 0.0688 30.8
680 0.0514 47.5 0.1411 42.0 0.0848 5.79 0.3120 25.6 0.2302 31.9 0.0724 32.4
690 0.0959 44.9 0.1205 41.3 0.0821 5.40 0.3012 30.0 0.2677 35.9 0.0746 31.5
700 0.0607 45.0 0.150 41.0 0.1099 5.20 0.2940 20.3 0.2420 25.6 0.0786 28.2
710 0.0552 44.3 0.1614 41.1 0.0876 5.73 0.2903 20.5 0.2563 24.9 0.0814 28.8
720 0.1170 44.5 0.1603 40.7 0.0882 5.75 0.3128 21.3 0.2688 24.7 0.0909 29.6
730 0.1105 40.7 0.1463 40.9 0.1523 5.98 0.3077 23.0 0.2490 29.3 0.0552 26.4
740 0.0628 41.3 0.1104 40.2 0. 0876 5.77 0.2977 23.3 0.2432 24.2 0.0451 25.4
750 0.0672 42.5 0.1182 40.6 0.0869 5.74 0.3330 24.0 0.2845 23.5 0.0467 25.7
760 0.2165 42.0 0.1463 40.7 0.0848 5.71 0.3723 25.8 0.3075 34.5 0.0667 25.4
770 0.0691 41.8 0.0796 40.1 0.0828 6.82 0.3102 24.3 0.2889 33.2 0.0559 25.1
780 0.0629 40.6 0.0280 39.5 0.0876 6.47 0.2877 24.0 0.2547 32.6 0.0405 24.6
790 0.0660 40.7 0.0206 38.9 0.0848 6.18 0.2900 23.2 0.2300 31.7 0.0542 23.8
800 0.0589 40.2 0.0542 39.0 0.0910 6.30 0.2933 20.5 0.2474 30.8 0.0637 23.4
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Table A.12. (continued)

λ
(nm)

The Black
Sea
10.04.1971

The Azov
Sea
05.10.1972

Rustavi city
05.12.1972

GATE
12.07.1974

GATE
4.08.1974

The Ladoga
Lake
20.04.1985

nm κ α κ α κ α κ α κ α κ α

810 0.0773 40.2 0.1502 39.1 0.0862 7.05 0.2959 18.0 0.2500 30.0 0.0788 23.2
820 0.1050 39.7 0.1685 38.4 0.0841 8.20 0.2944 19.7 0.2378 29.3 0.0940 23.5
830 0.0736 38.9 0.1585 38.8 0.0841 8.12 0.3012 18.6 0.2317 28.8 0.0647 23.4
840 0.0519 39.2 0.1284 38.5 0.0856 8.15 0.3094 19.7 0.2000 28.0 0.0583 23.8
850 0.0661 39.2 0.1073 38.3 – – 0.3142 18.3 0.2213 26.8 0.0521 23.0
860 0.0489 39.3 0.0358 38.3 – – 0.3088 19.2 0.2162 27.3 0.0453 23.2
870 0.0593 38.7 0.2950 38.1 – – 0.3152 18.4 0.2027 26.5 0.0437 23.5
880 0.0690 38.9 0.0850 38.0 – – 0.3020 20.2 0.1920 27.4 0.0418 23.4
890 0.0796 38.1 0.0397 37.9 – – – – – – 0.0744 22.8
900 0.0992 38.0 0.2187 37.7 – – – – – – 0.0859 21.4
910 0.2527 36.7 0.2371 37.6 – – – – – – 0.0888 20.5
920 0.1616 37.5 0.2559 37.5 – – – – – – 0.0863 20.2
930 0.2801 34.3 0.2672 37.3 – – – – – – 0.0932 21.7
950 0.2020 35.0 0.3574 37.1 – – – – – – 0.0953 20.4

Table A.13. The single scattering albedo and optical thickness of the stratus clouds from the
ground spectral irradiance observation

Date 13 Aug. 1979 08 Oct. 1979 12 Apr. 1996

λ (nm) ω0 τ0 ω0 τ0 ω0

350 0.9989 25.5 1.0000 26.2 –
400 0.9981 22.2 1.0000 20.6 0.9956
450 0.9987 21.0 0.9963 20.0 0.9919
500 0.9994 20.2 0.9985 19.3 1.0000
550 0.9990 19.7 0.9974 18.5 0.9975
600 0.9985 17.6 0.9987 17.4 0.9978
650 0.9907 17.3 0.9957 17.7 0.9972
700 0.9930 17.8 0.9968 17.0 0.9977
750 0.9894 16.5 0.9921 17.6 0.9957
800 0.9919 17.1 0.9919 17.4 –
900 0.9844 14.9 0.9868 18.0 –
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Table A.14. The single scattering albedo and optical thickness at different sublayers of the
stratus cloud from airborne spectral irradiance observation 24 Sept. 1972 above the Ladoga
Lake

z (km) 4.1–3.0 3.0–1.6 1.6–0.6 0.6–0.05

λ (nm) ω0 τ1 ω0 τ2 ω0 τ3 ω0 τ4

450 0.9972 21 0.9912 38 0.9947 28 0.9961 3.9
460 0.9968 18 0.9953 39 0.9945 27 0.9950 3.3
470 0.9956 20 0.9979 46 0.9943 28 0.9953 4.2
480 0.9959 23 1.0000 43 0.9939 27 0.9930 3.7
490 0.9966 19 0.9972 41 0.9827 27 0.9914 3.3
500 0.9973 24 1.0000 44 0.9932 31 0.9903 3.0
510 0.9974 22 1.0000 43 0.9913 27 0.9821 3.6
520 0.9971 21 0.9952 41 0.9951 34 0.9951 4.7
530 0.9971 21 0.9950 40 0.9950 33 0.9950 4.6
540 0.9972 18 0.9967 42 0.9931 31 0.9945 4.2
550 0.9970 21 0.9948 38 0.9949 32 0.9927 3.7
560 0.9964 22 0.9952 40 0.9957 33 0.9949 4.1
570 0.9951 17 0.9968 42 0.9936 30 0.9931 3.7
580 0.9955 19 0.9971 43 0.9953 29 0.9923 3.7
590 0.9962 18 0.9969 43 0.9934 27 0.9963 4.6
600 0.9954 18 0.9969 43 0.9934 27 0.9963 4.6
610 0.9954 20 0.9975 44 0.9937 25 0.9938 4.0
620 0.9963 20 0.9973 46 0.9943 20 1.0000 5.1
630 0.9947 24 1.0000 44 0.9944 26 0.9993 5.3
640 0.9954 18 0.9971 48 0.9930 28 0.9972 5.4
650 0.9964 25 0.9970 44 0.9925 29 0.9959 5.2
660 0.9952 19 0.9973 44 0.9938 31 0.9929 4.1
670 0.9964 22 0.9984 51 0.9921 29 0.9921 4.2
680 0.9957 17 0.9968 44 0.9924 27 0.9962 5.1
690 0.9952 17 0.9970 41 0.9912 26 0.9934 4.7
700 0.9964 22 0.9891 38 0.9898 23 0.9960 5.3
710 0.9961 22 0.9882 39 0.9912 24 0.9977 6.4
720 0.9815 17 0.9916 40 0.9882 23 0.9949 5.7
730 0.9933 19 0.9913 41 0.9913 23 0.9989 5.9
740 0.9962 17 0.9949 37 0.9907 25 0.9962 6.1
750 0.9966 18 0.9956 44 0.9919 26 0.9989 7.3
760 0.9808 20 0.9740 47 0.9600 24 0.9972 8.2
770 0.9964 20 0.9974 45 0.9928 25 0.9993 7.5
780 0.9968 20 0.9964 45 0.9866 23 0.9984 8.1
790 0.9988 21 0.9953 42 0.9899 26 0.9972 7.3
800 0.9974 21 0.9996 47 0.9863 24 0.9965 6.3
810 0.9962 17 0.9980 45 0.9841 30 0.9948 5.7
820 0.9958 18 0.9969 46 0.9875 27 0.9944 4.4
830 0.9959 20 0.9995 45 0.9882 27 0.9950 5.6
840 0.9978 18 0.9956 42 0.9936 31 0.9940 4.3
850 0.9954 17 0.9969 45 0.9918 34 0.9931 2.1
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TableA.15.The single scattering albedo and optical thickness at different levels of the stratus
cloud from airborne spectral irradiance observation 20 Apr. 1985 above the Ladoga Lake

z (km) 1.4–1.3 1.3–1.2 1.2–1.1 1.1–0.9 0.9–0.8

λ (nm) ω0 τ1 ω0 τ2 ω0 τ3 ω0 τ4 ω0 τ5

350 0.9831 2 0.9968 4.9 0.9949 5.3 0.9974 4.6 – 1.8
360 0.9891 1.5 0.9996 3.9 0.9942 4.7 0.9964 3.8 – 3.8
370 0.9876 1.5 0.9991 4.2 0.9944 5.0 0.9971 3.6 – 1.9
380 0.9971 1.7 0.9966 3.4 0.9899 3.9 0.9937 3.1 – 2.2
390 0.9925 1.4 0.9949 3.5 0.9881 4.0 0.9936 3.6 – 1.3
400 0.9961 1.4 0.9962 3.5 0.9906 4.0 0.9934 3.3 – 2.4
410 0.9977 1.7 0.9976 3.8 0.9920 3.9 0.9944 3.3 – 2.3
430 0.9920 2.1 0.9937 5.0 0.9957 2.4 0.9973 1.8 – 2.3
450 0.9889 1.8 0.9918 4.4 0.9956 2.1 0.9967 1.7 – 2.0
470 0.9876 1.8 0.9916 4.4 0.9960 2.0 0.9974 1.5 – 2.0
490 0.9867 1.8 0.9914 4.6 0.9959 2.0 0.9962 1.7 – 2.1
500 0.9876 1.9 0.9918 4.9 0.9964 2.1 0.9971 1.6 – 2.3
510 0.9873 1.9 0.9917 4.8 0.9960 2.0 0.9966 1.6 – 2.2
530 0.9859 1.9 0.9910 4.7 0.9963 1.8 0.9973 1.4 – 2.1
550 0.9857 1.8 0.9908 4.6 0.9961 1.7 0.9965 1.4 – 2.1
570 0.9858 1.8 0.9906 4.6 0.9961 1.7 0.9954 1.5 – 2.1
590 0.9854 1.8 0.9904 4.5 0.9960 1.6 0.9939 1.6 – 2.1
600 0.9842 1.8 0.9898 4.4 0.9960 1.6 0.9945 1.5 – 2.1
610 0.9850 1.8 0.9904 4.6 0.9961 1.5 0.9943 1.5 – 2.1
630 0.9858 1.9 0.9909 4.7 0.9962 1.5 0.9939 1.6 – 2.2
650 0.9852 1.8 0.9903 4.4 0.9956 1.4 0.9928 1.5 – 2.1
670 0.9839 1.7 0.9903 4.3 0.9950 1.4 0.9919 1.5 – 2.1
690 0.9825 1.6 0.9895 4.0 0.9944 1.3 0.9908 1.4 – 1.9
700 0.9804 1.5 0.9903 3.7 0.9920 1.4 0.9865 1.6 – 1.8
710 0.9829 1.5 0.9912 3.6 0.9920 1.3 0.9849 1.9 – 1.9
730 0.9866 1.6 0.9918 3.8 0.9913 1.3 0.9819 2.1 – 1.9
750 0.9874 1.6 0.9935 3.7 0.9933 1.3 0.9849 2.1 – 2.0
770 0.9822 1.5 0.9913 3.9 0.9895 1.6 0.9830 2.2 – 2.0
790 0.9870 1.5 0.9926 3.8 0.9884 1.6 0.9815 2.3 – 2.0
800 0.9879 1.5 0.9934 3.7 0.9898 1.5 0.9808 2.3 – 2.0
810 0.9889 1.6 0.9943 3.7 0.9899 1.3 0.9795 2.3 – 2.0
830 0.9897 1.7 0.9952 3.7 0.9903 1.4 0.9777 2.5 – 2.0
850 0.9871 1.7 0.9963 3.4 0.9944 1.1 0.9790 2.4 – 2.0
870 0.9902 1.7 0.9982 3.1 0.9927 1.1 0.9774 2.3 – 1.9
890 0.9894 1.6 0.9993 2.9 0.9923 1.0 0.9720 2.3 – 1.8
900 0.9875 1.6 0.9968 2.7 0.9890 1.0 – 2.6 – 1.8
910 0.9899 1.5 0.9979 3.0 0.9836 1.1 – 2.4 – 1.7
930 0.9874 1.5 0.9962 3.0 0.9838 1.0 – 2.4 – 1.7
950 0.9826 1.4 0.9903 3.4 0.9737 1.3 – 2.7 – 1.8
960 0.9873 1.4 0.9917 3.3 – 1.3 – 2.6 – 1.8



Appendix B: Formulas Derivation

Derivation of formulas for the determination of the cloud optical parameters
from the data of observations of solar irradiances at its boundaries. The initial
formulas for the irradiances reflected and transmitted by the cloud layer:

F↑(0, µ0) ≡ F↑
0 = a(µ0) −

nK(µ0)ml̄ exp(−2kτ0)

1 − l̄l exp(−2kτ0)
, (B.1)

F↓(τ, µ0) =
n̄K(µ0)m exp(−kτ0)

1 − l̄l exp(−2kτ0)
. (B.2)

From (B.1) the following is easy to derive:

exp(2kτ0) = l̄
mnK(µ0) + l[a(µ0) − F↑

0 ]

a(µ0) − F↑
0

. (B.3)

According to the definition, values n̄, assuming the ground albedo influence,
are expressed with the following:

l̄ = l −
Amn2

1 − Aa∞ and n̄ =
n

1 − Aa∞ .

Substituting (B.3) to (B.2) the intermediate relation is obtained:

F↓ = (a(µ0) − F↑
0 )

exp(−kτ)
l̄

1
1 − Aa∞ . (B.4)

Raise to thesquarebothpartsof (B.4), substituting theexpression forexp(−2kτ),
and deleting the common multilayer, obtain the following:

F↓2[1 − Aa∞][l(1 − Aa∞) − Amn2]

= mnK(µ0)[a(µ0) − F↑
0 ] + l[a(µ0) − F↑

0 ]2
(B.5)
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Substitute to (B.5) the following expansions over powers of small parameter s
for values:

m = 8s2
[
1 + s

(
6 − 7.5g +

3.6
1 + g

)]
+ O(s4) ,

l = 1 − 6q′s + 18q′2s2 + O(s3) ,

a∞ = 1 − 4s + 12q′′s2 + O(s3) ,

n = 1 − 3q′s + n2s2 + O(s3) ,

(B.6)

and for functions:

K(µ) = K0(µ)[1 − 3q′s + n2ω(µ)s2] + O(s3) ,

a(µ) = 1 − 4K0(µ)s + a2(µ)s2 + O(s3) ,
(B.7)

where:

a2(µ) = 3K0(µ)
(

3
1 + g

(1.271µ − 0. 9) + 4q′
)

.

Obtain the expression:

[a(µ0) − F↑]8sK0(µ0)(1 − 3q′s + n2w(µ0)s2)(1 − 3q′s + n2s2)

+ (1 − 6q′s + 18q′2s2)[a(µ0) − F↑]2

= F↓2
n (1 − 6q′s + 18q′2s2)(1 − A + 4As − 12q′As2)2

− 8As(1 − 6q′s + 9δ2s2 + 2n2s2)(1 − A + 4As − 12q′As2) .

(B.8)

Accomplishing the multiplication of polynomials and keeping items with the
power of s not exceeding 2 the following is obtained:

[1 − F↑ − 4K0(µ0)s + a2(µ0)s2]8sK0(µ0)(1 − 6q′s + 9q′2s2 + n2(1 + w(µ0))s2)

+ (1 − 6q′s + 18q′2s2)[(1 − F↑)2 + 16K2
0 (µ0)s2 + 2a2(µ0)s2]

= F↓2(1 − 6q′s + 18q′2s2)((1 − A)2 − 16A2s2 − 24q′As2) .

(B.9)

Divide both parts by polynomial 1 − 3δs + 19q′2s2, keeping the items with the
first and the second power of s, collecting the likewise terms and obtain the
linear equation respected to value s2:

1 − 3δs + 18q′2s2(1 − F↑
0 )2 + 2s2(1 − F↑

0 )a2(µ0) − 16s2K2
0 (µ0)

= F↓2(1 − A)2 − 24q′F↓2A(1 − A)s2 − 16F↓2A2s2 .
(B.10)

Assuming that 1 − F↑
0 = F0 and F↓

1 (1 − A) = F1 are the net fluxes at the top
(subscript 0) and bottom (subscript 1) of the cloud layer correspondingly, and
assuming that F↓

1 A = F↑
1 , obtain for value s2 the following:

s2 =
F2

0 − F2
1

16(K2
0 (µ0) − F↑2

1 ) − 2F0a2(µ0) − 24q′F↑
1 F1

. (B.11)



Appendix B: Formulas Derivation 293

The optical thickness of the cloud layer is derived from (B.3), and with a subject
to expansions (B.6) and (B.7), the result is obtained as:

τ′
0 = 3τ0(1 − g) =

1
2s

ln

[
l̄(mnK(µ0) − l)

a(µ0) − F↑
0

]
. (B.12)
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Index

A

a priori information 154
a priori spectrum 90
absolutely white orthotropic surface 107
absorbing aerosols 119
absorption
– aerosol 104,255
– analytical averaging 53
– anomalous 115,255
– anomalous, shortwave 118
– excessive 116
– molecular 17,103,252
– radiation 10,59,206,222,252
– shortwave 255
– solar radiation 102
– true 67,247
– volume coefficient 57,134,195
– weak true 64
absorption cross-section 10,174,189
absorption line 17
accuracy 71
accuracy estimation 169
aerosol absorption 104,183,255
aerosol characteristics 160
aerosol composition 201
aerosol content 210
aerosol heating effect
– direct 40
– indirect 40
aerosol model 19,192
aerosol parameters 193
aerosol particles 12
aerosol phase function 163
aerosol scattering 177,191
aerosol scattering coefficient 195
aerosols 252

– absorbing 119
– atmospheric 106,163,199,207,250
– carbonaceous 40
– hydrophilic atmospheric 40
– silicate 40
– soot 250
aerosols particle concentration 198
airborne experiment 237,250
airborne measurement 77
airborne observation 42,167,192
airborne radiative experiment 121
airborne radiative observation 210
aircraft absolute scale of altitudes 88
albedo 40
– ground 123,223,245
– of the system 94
– of the system of atmosphere plus surface

33
– plane 58,208
– single scattering 57,134,223
– snow 100
– spectral 33,200
– spherical 58,71,209
– surface 33,62,108,184,190,201,209
algorithms of inverse problem solving

167
analytical approximation 176
analytical averaging of absorption 53
analytical method 245
analytical solution 137
angular dependence of radiation 226
anisotropic reflection 34
anisotropic surface 170
anomalous absorption 115
– by clouds 255
applicability range 70
applicability region 73,206,229,231



296 Index

applied algorithm 162,168,172
arbitrary optical thickness 217
arithmetic means 51
asymmetry factor 19,223
asymptotic constants 64
asymptotic expansion 60,71
asymptotic formula 229
asymptotic functions 64
asymptotic regime 57
atmosphere
– clear 45
– cloudy 120
– homogeneous 27
– infinite 208
– physical model 46
– radiative regime 79
– semi-infinite 58,64
atmospheric aerosols 106,163,199,207,

250
atmospheric energetics 33
atmospheric optics 228
– direct problems 133
– inverse problems 133
atmospheric parameters 95,133,156,180
– initial 47
atmospheric pressure 92,182
atmospheric transparence 161
average uncertainty 100
azimuth angle 4
azimuthal dependence 37
azimuthal harmonics 33,62

B
backward reflection 34
bottom of the layer 59
bottom sublayer 242
boundary condition 24
bumps 82

C
calculation result 179
calibration 80
carbonaceous aerosols 40
chemical composition 192
classification
– of stratiform clouds 40
– SBC spectra 109

classification procedure 111
clear atmosphere 45
clear sky 173
climate simulation 39
climatic system 39
cloud bottom 222
cloud bottom sublayers 213
cloud heterogeneity 227
cloud model 228
cloud radiative absorption 116
cloud top 222
– heterogeneity 226
– sublayer 212
clouds 39
– extended stratus 40
– frontal 41
– inhomogeneous 210
– microphysics 117
– multilayer 68,70,218
– multilayer system 220
– optical models 40
– optical parameters 122
– optical properties 57
– radiative properties 116
– stratiform 210
– stratus 245
– thick 122,245
– vertically inhomogeneous 210
cloudy atmosphere 120
cluster analysis 111
computer scheme of Monte-Carlo method

55
concentrations of the atmospheric gases

134
condensation nuclei 198
conservative scattering 25,67,70,206,

207,217,221,250
constraints 145
continuality 228
continuous random values 49
correcting factors 81
correlation 149
counter 50,181
– writing 50
counting concentrations 184
covariance matrix 100,150,192
cross-section
– absorption 10,174
– extinction 10
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– molecular absorption 186
– scattering 10

D
data interpretation 213
data processing 87,213
delta-Eddington method 67
derivative
– calculation 182
– irradiance 180,190
– phase function 188
– with respect to air temperature 188
desired parameters 145
detailed descent 87,95
diagonal elements 157
diagonal form 157
diffused irradiance 65,69
diffused radiance 69
diffused radiation 190,226
diffused solar radiation 1
diffusion domain 57
diffusion equation 58
diffusion regime 57
direct aerosol heating effect 40
direct measurement 107
direct modeling 52
direct observation 134
direct problem 231
direct problem solving 168
direct problems of atmospheric optics

133
direct proportionality 149
direct radiation 1,23
directional scattering 13
discrepancy 139
– minimization 142
– minimum 139
discrete altitude grid 161
discrete random values 48
dispersion 157
distance between spectra 110
distribution
– normal 52
– of random values 52
double randomization 171
downward flux 6
downwelling irradiance 6,95,178,208
droplets 252

dust gaze 105
dust storm 105

E

eigenvalue, matrix 157
elementary volume 12,13,252
empiric coefficients 253
erroneous spectra 110
error
– correction 89
– observational 149
– random 82,149,164
escape function 58,72,226
estimation
– accuracy 169
– local 53,54
– maximum likelihood 152
– simple local 56
etalon algorithm 162,168,172
excessive absorption 116
expansion
– asymptotic 60
expansion over the azimuthal harmonics

37
expectation 51
experiment planning 87
experimental data 228
experimental results 100
experimental study 77
extended stratus clouds 40
external mixture 254
external standard spectra 81
extinction coefficient 182,188
extinction cross-section 10
extraterrestrial flux 92
extraterrestrial solar flux 29

F

flight conditions 82
flight direction 79
flux
– downward 6
– extraterrestrial 92
– incident 7
– net radiant 6
– radiation 3
– semispherical 6



298 Index

– solar extraterrestrial 87
– upward 6
free path of a photon 48,49
fresh snow 245
frontal clouds 41

G

gaseous composition 201
general algorithm 158
grid over altitude 190
grid selection 174
ground albedo 123,223,245
ground observation 36,42,122,244
ground surface 57,169
ground surface heterogeneity 83
ground surface parameters 160
ground-based observation 227

H

harmonics of the reflection function 64
hematite 105,249
Henyey-Greenstein approximation 30
Henyey-Greenstein function 59,114,169
H2O content 195
homogeneous atmosphere 27
horizontal inhomogeneity 246
hydrophilic atmospheric aerosols 40

I

illumination unevenness 83
improved convergence 147
incident angle 3
incident flux 7
incident solar angle 214
incident solar flux 208,217
incident solar spectrum 171
incorrectness of the inverse problem 153
industrial pollution 240
infinite atmosphere 208
– spherical albedo 208
inhomogeneity 229
inhomogeneous cloud layer 232
inhomogeneous clouds 210
initial atmospheric parameters 47
initial processing 80
initial spectrum 108

instrumental function 8,171,193
integral operator 180
integration 151
intensity of radiation 2
interactive regime 81
internal mixture 255
internal radiation field 65
internal standard 81
internal standard spectra 81
internal sublayers 212
interpolation 151
inverse asymptotic formula 246
inverse expressions 231
inverse formulas 212
inverse problem 68,201,228
– incorrectness 153
– of atmospheric optics 133,205
– solution 138,164
inverse problem solving 192
– algorithms 167
irradiance 3,103,221
– diffused 65,69
– downwelling 6,95,178,208
– reflected 71,214,231
– registered 91
– semispherical 65
– solar 24,85
– solar spectral 167
– transmitted 71,214,225,231
– upwelling 6,95,170,178,208
irradiance observation 223,225
isotropic reflection 34
isotropic scattering 63
iteration convergence 147

L

large optical thickness 58
least-squares technique 86,139
light 1
light conductor 82
light receiver 78
light reflection 40
linear interpolation 176
linearization 143
local estimation 53,54
logarithmic derivatives 184
lower optical thickness 68
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M

mathematical model of observation 133
mathematical modeling 168
maximum likelihood estimation 152
mean cosine of scattering angle 57,211
mean square deviation 229
mean value 150
measured value 150
measurement
– direct 107
– discreteness 151
– simultaneous direct 158
measurement uncertainty 87
measuring complex 77
method of main components 157
method of penalty functions 145
method of revolution 156
metric of observations 144
micro-reflectors 35
microphysical properties 208
minimum of discrepancy 139
mirror reflection 34
model parameters 231
modeling 181
moisture 16
molecular absorption 17,103,160,177,

252
– cross-section 186
molecular scattering 12,16,183,252
Monte-Carlo method 45
– computer scheme 55
multi-directional satellite observation

215
multidirectional reflectance 125
multidirectional reflected radiance

measurement 246
multilayer cloud system 220
multilayer cloudiness 68,218
multilayer clouds 70
multiple scattering 26,210,252

N

natural surfaces
– spectral reflectance properties 79
net flux 66
net radiant flux 6
net solar flux

– at bottom 208
– at top 208
non-informative points 97,104
normal distribution 52
normalizing condition 113,176
number concentration 192
numerical differentiation 151
numerical experiments 163
numerical modeling 159

O
observation
– airborne 42,167,192
– airborne radiative 210
– direct 134
– ground 36,42,122,244
– ground-based 227
– irradiance 223,225
– metric 144
– radiance 83
– radiation 78
– satellite 41,77,124,213
– satellite, multi-direction 215
– spectral 85
observational accuracy 83
observational data 179
observational error 149
observational point 191
observational results 95,133
observational uncertainty 135,142,169,

171,229
observational vector 135
opaque-skinned integrator 80
optical characteristics 150
optical depth 23,48
optical instrument 78
optical models of clouds 40
optical parameters 205,218,229
– retrieval 210
optical properties of clouds 57
optical thickness 23,57,134,182,205,206,

228,230,237,242,245,246,251,253
– large 58
– lower 68
– scaled 206
optically thick cloud layer 210
order of scattering 26
orthotropic reflection 34,170
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orthotropic surface 94,112,210
orthotropy of reflection 38
overcast sky 45,100,137,240
oxygen band 78
ozone content 199

P

particle number concentration 15
peak of the mirror reflection 83
phase function 11,13,134,175
phase space 55
photon 47
– weight 53
photon free path 48,49,182,184
photon scattering 49
photon trajectory 50
photons trajectories simulating 57
physical atmospheric model 46
physical parameters 161
pitch 82
pixel 227
plane albedo 58,208
plane-parallel atmosphere 5
polarization 169
positiveness 228
posterior covariance matrix 155
preliminary analysis 92
preliminary numerical experiments 144
pressure 16,134
pressure profile 89
probability density 49,55,171
– of observational uncertainty 154
– of transition 56
probability of quantum survival 25
profile
– air temperature 183
– content 183
pure lake water 192

Q

quadratic form 157

R

radiance 2,221
– diffused 69
– reflected 57

– reflected scattered 27
– solar 107,208
– solar spectral 136
– spectral, transmitted 122
– transmitted 57
– transmitted scattered 27
radiance observation 83
radiation 20
– angular dependence 226
– diffused 190,226
– diffused solar 1
– direct 1, 23
– intensity 2
– reflected solar 1
– scattered 23
– short-wave 40,115
– shortwave solar 20
radiation absorption 10,59,206,222,252
radiation budget 115
radiation characteristic 54
radiation extinction 10
radiation field 3,21
radiation flux 3
radiation observation 78
radiation scattering 10
radiative balance 40
radiative characteristics 67,133,205
radiative flux divergence 6,59,81,85,102,

229
radiative forcing 115
radiative properties of clouds 116
radiative regime of the atmosphere 79
radiative transfer 20,170,190,210
– equation 20,252
– model 223
– theory 28
random error 82,149,164
random event 48
random number 48
random uncertainty 108
random values 181
– continuous 49
– discrete 48
– distribution 52
randomizer 48,103
Rayleigh scattering 109
reciprocity of the reflection function 63
reflected characteristics of the surface

107
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reflected irradiance 71,214,231
reflected radiance 57
reflected scattered radiance 27
reflected solar radiance 215
reflected solar radiation 1
reflection
– anisotropic 34
– backward 34
– isotropic 34
– light 40
– mirror 34
– orthotropic 34,170
– orthotropy 38
reflection function 36,62,72,209,226
reflection probability 50
registered irradiance 91
registration point 78
regularization by Tikhonov 153
relative humidity 172
relative standard deviation 97
relative units 65
restrictions 145
restrictions to parameters 143
results of soundings 92
retrieval accuracy 161
retrieved parameters 151,183,231
retrieved profile 195
roll angle 82
root-mean-square random uncertainty

87
rules of summarizing 14

S
sand 192
sand surface 97
satellite experiment 250
satellite images 125,215,250
satellite observation 41,77,124,213
– multi-direction 215
scaled optical thickness 206,214,221
scattered radiation 23
scattered radiation field 210
scattering
– aerosol 191
– conservative 25,67,70,206,207,217,

221,250
– directional 13
– isotropic 63

– molecular 12,16,183,252
– multiple 26,252
– order 26
– photon 49
– radiation 10
– Rayleigh 109
– volume coefficient 134
scattering angle 11
scattering azimuth 11
scattering cross-section 10
secondary processing 81,94
semi-infinite atmosphere 58,64
semiautomatic regime 89
semispherical flux 6
semispherical irradiance 65
shadow parameter 247
shortwave absorption 255
shortwave anomalous absorption 118
shortwave radiation 40,115
shortwave solar radiation 20
shortwave spectral range 201
shortwave spectral region 102
signal-to-noise ratio 172
silicate aerosols 40
simple local estimation 56
single scattering albedo 57,134,206,223,

237,253
single scattering co-albedo 245,246
sky
– clear 173
– overcast 45,100,137,240
smooth procedure 85,108
snow 192
snow albedo 100
snow surface 97
solar constant 7,64
solar extraterrestrial flux 87
solar flux
– extraterrestrial 29
– incident 208,217
solar irradiance 24,85
– downwelling 79
– upwelling 79
solar irradiance calculation 177
solar radiance 107,208
– reflected 215
solar radiation absorption 102
solar spectral irradiance 167
solar spectral radiance 136
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solar zenith angle 92,208
solution accuracy 144
solution of inverse problem 138
soot aerosols 250
sounding 87,167
– data 95
– results 92,104
source function 26
space distribution 247
spectral albedo 33,200
spectral brightness coefficient 107,192
spectral dependence 161,199,241,250,

254
spectral graduation 78
spectral grid 163
spectral instrumental function 78
spectral instruments 122
spectral line 18
spectral observation 85
spectral optical parameters 241
spectral radiative flux divergence 87
spectral range 78,241
spectral reflectance characteristics of the

surface 81
spectral reflectance properties of natural

surfaces 79
spectral resolution 199
spectral transformation of the albedo 100
spectral transparency 173
spectral values 205,243
spectrometer 78
spectroscopic parameters 134
spectrum shape 90
spectrum to energetic units 80
spectrum, a priori 90
spherical albedo 58,71,209
– infinite atmosphere 208
spherical transmittance 71
spread of the desired values 153
standard atmospheric model 88
standard deviation 52,90,110
statistical processing 97
statistical realization 149
statistical regularization 155,160,192
statistical regularization method 154
stratiform clouds 210
stratus clouds 245
Sun–Earth distance 92
surface

– anisotropic 170
– orthotropic 94,112,210
– orthotropic, absolutely white 107
– reflected characteristics 107
– sand 97
– snow 97
– spectral reflectance characteristics 81
– water 97
surface albedo 62,108,184,190,201,209
surface parameters 133
surface properties 170
symmetric covariance matrix 149
symmetry relation 37,39
systematic uncertainty 82,95,174,193

T

temperature 16,134
temperature profile 193
thick cloudiness 245
thick clouds 122
top of the layer 59
trajectory break 53
transfer equation for scattered radiation

25
transmission function 36
transmitted irradiance 71,214,225,231
transmitted radiance 57
transmitted scattered radiance 27
transparency variation 81
true absorption 67,247
two-layer cloudiness 240

U

uncertainty 70,226,233
– average 100
– measurement 87
– observational 135,142,169,171,229
– of graduation 78
– of the results 82
– random 108
– systematic 82,95,193
uncertainty estimation 151
underlying surface 26
upward flux 6
upwelling irradiance 6,95,170,178,208
upwelling solar irradiance 79



Index 303

V
variance 52
variation of observations 157
variation of parameters 157
vertical coordinate 182
vertical dependence 243
vertical profile 134
– absorbing gases 168
– spectral albedo 97
– temperature 168
vertical structure 241
vertically inhomogeneous 210
vertically inhomogeneous clouds 210
viewing angle 9,122,209,243
viewing azimuth 215
viewing direction 109,247
volume absorption coefficient 240,250
volume coefficient
– absorption 134
– scattering 134
volume coefficients
– absorption 57
– scattering 57

volume extinction coefficient 13,69,168,
185,188

volume scattering coefficient 13,237,250
volume-mixing ratio 184

W
water surface 97
water vapor absorption 117
wavelength interval 174
weak true absorption 64
weight modeling 54
weight of a photon 53
writing to counters 50

Y
yawing angle 83

Z
zeroth approximation 144
zeroth harmonic of reflection function

209
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