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Foreword

In all, the European Space Agency (ESA) has developed 60 spacecrafts over
the last few decades. Some of these, such as the ERS satellites and Envisat,
are dedicated to monitoring the Earth and providing vital data on the health
status of our planet. Other spacecraft have helped to improve the accuracy
of weather forecasting. Galileo, the joint ESA/EU satellite navigation pro-
gramme, demonstrates the political dimension of space as service-provider
for the benefit of European citizens. While these missions involve utilitarian
space activities, others are devoted to either exploring the solar system, in-
cluding the Sun, or achieving a better understanding of the Universe and the
cosmic beginnings.

The orbits of these satellites cover a wide range (Sun-synchronous, geosta-
tionary, highly eccentric, at Lagrange points, etc.) so that a complete novice
may be astonished when tackling the space technology field. The main credit
of Michel Capderou’s book is to take the reader (whether it be a student,
an engineer or a research scientist) progressively from the basic Kepler laws
to the most complex equations of space mechanics. His educational concern
has led him to propose many examples and graphical illustrations from ESA,
but also from the American, Russian, Indian, Japanese or even Chinese space
agencies. These programmes provide scientific insights and moreover appear
to fascinate the general public, in particular the younger generation. Those
wishing to understand the orbital mechanisms behind these programmes will
find the explanations they seek in this book.

Paris, France

Jean-Jacques Dordain, ESA Director General

December 2004



Foreword to the French Edition

For more than forty years now, space science has revolutionised a whole
range of fields including telecommunications, data transmission, meteorology,
geodesy, precise positioning on the Earth’s surface, and Earth observation for
both civilian and military purposes. Within science itself, it has added a new
dimension to astronomy and astrophysics, to the study of the Solar System
and planets, and to our understanding of the mechanisms underlying the
behaviour of the various subsystems making up the Earth environment, i.e.,
the atmosphere, the oceans, the biosphere, the continental surfaces, and the
cryosphere. Space is now opening up to biology and medecine, and is used as
a laboratory for fundamental physics.

These advances are of course due to the invention and development of
ever more sophisticated methods of communication and observation, mak-
ing either active or passive use of the whole range of the electromagnetic
spectrum, from the shortest wavelengths associated with X and gamma rays,
to microwaves and centimetre waves. However, they also owe much to the
capability developed by research teams and engineers in the world’s space
agencies to position satellites and space probes with greater and greater ac-
curacy on orbits selected to fulfill the commercial, operational or scientific
aims of today’s missions. Indeed, an Earth-observation system, no matter
how advanced it may be, will never yield the results required of it unless it is
placed on an appropriate orbit and with suitable orientation, so that it can
deliver the predefined spatial and temporal resolutions. Likewise, a communi-
cations or positioning system, based for example on a satellite constellation,
will not achieve its objectives unless the orbits are correctly chosen to guaran-
tee full temporal coverage. Finally, space probes and large space observatories
in different ranges of the electromagnetic spectrum will only lead us to a bet-
ter understanding of the origin and evolution of our Universe and the Solar
System if they are adequately placed to observe the relevant objects.

With this in mind, Michel Capderou’s book makes an essential contribu-
tion to our understanding of the problems raised by the precise determination
of satellite and space probe orbits. His approach, based on physics and me-
chanics, reminds us that the underlying principles of celestial mechanics based
on the theory of gravitation were brought to light by the great names of sci-
ence, from Tycho Brahe and Copernicus to Newton, from Kepler and Galileo
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to Laplace, from Lagrange to Poincaré and Einstein. But this does not mean
that orbital calculations are any the simpler, and they appear in their full
complexity as soon as the relevant problem involves the mutual attractions of
several interacting bodies, or requires some consideration of perturbations to
the system, due for example to spatial and temporal anomalies in the Earth’s
gravitational field. But it is to Michel Capderou’s credit that he manages to
initiate us in the mathematical and physical techniques of orbit calculations
whilst nevertheless bringing out the full scope of the problem. Basing his
presentation on concrete examples which refer to real missions under devel-
opment or already launched, we are brought to a better understanding of the
relative advantages of the different types of satellite orbit and positioning
currently used. The completeness of this treatise guarantees its success as a
textbook, just as the accompanying software, developed and perfected by the
author himself, will help the reader to build up the kind of three-dimensional
vision that is a prerequisite to space observation, so that he or she may then
be able to design the orbit and mission appropriate to the problem at hand.
Michel Capderou’s book is an essential element for any student, engineer or
research scientist involved in space science.

Paris, France Gérard Mégie, President CNRS
July 2002 Professor, Pierre & Marie Curie University



Preface

Space mechanics is one thing, but space missions are many and varied. Indeed,
they are involved in the detection of forest fires and cyclones, television relay,
positioning on the globe to within a metre, measurement of sea level, and the
search for water on Mars, to mention but a few. Since 1957, several thousand
satellites have been launched and 1 200 satellite names appear in the index
to this book.

It is in this spirit of duality that the book was written: on the one side,
the ‘eternal’ laws of mechanics, and on the other, the rationale behind each
type of orbit, given the temporal constraints laid down by the nature of its
mission. The text is divided into four parts.

In the first part (Chaps. 1–3), which deals with the motion of the satellite,
it is difficult to be innovative with the fundamental laws of dynamics and the
theory of perturbations. We have introduced a great many figures in the hope
of making this part appear less theoretical.

In the second part (Chaps. 4–7), which is devoted to the orbit and its
ground track, we begin to present new tools that we have developed to provide
a clearer presentation of these key notions, such as the use of the constant
of Sun-synchronicity kh, or the frequency κ and the index Φ for the study
of recurrence. The theory is abundantly illustrated by examples relating to a
wide range of satellite trajectories, be they circular or elliptical, low or high,
or characterised in some other way.

In the next part (Chaps. 8–9), which treats the questions of spatial and
temporal sampling, we begin to examine the instruments carried aboard in
such a way as to describe what they will see from this vantage point. We study
the geometry of the satellite–target and satellite–target–Sun configurations.
This part is particularly concerned with Earth-observation satellites.

The results of these three parts are all taken up again in the last part of
the book, comprising Chaps. 10 and 11, where we consider a satellite around
Mars or some other celestial body.

Ixion, our orbitography and sampling software, provides the backbone of
this book. It originated in preparations for the ScaRaB project, a radiometer
designed by the LMD. Two models were carried aboard the Russian satellites
Meteor-3-07 in 1994 and Resurs-O1-4 in 1998. The software was originally
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devised to study the angular properties of radiation detected by the instru-
ment.

Having confronted the reality of ScaRaB’s pixels, Ixion was extended to all
Earth-observation satellites, then to all satellites, whatever their orbit, and
even to satellites revolving around attractive bodies other than the Earth.
Other features have been developed, such as ways of displaying cycles, pre-
cession or recurrence, or the detailed study of sighting conditions in relation
to solar illumination. All these ideas are discussed in the book. The software
Ixion has since been used for preliminary studies pertaining to observation
strategy, in which the relevant target phenomena are tied in with the question
of orbital characteristics. The latest applications concern the French–Indian
project known as Megha-Tropiques, the US–French mission Calipso and the
Mambo instrument for the French mission Premier to Mars.

In the Program part of the adjoined CD, the reader will find the program
IxionPC, which is the non-graphing part of Ixion. It can be used interactively
to study the orbit of any satellite and establish sampling tables.

The mathematical cartography software Atlas that we have created has
been coupled with Ixion to produce graphical representations of orbits and
ground tracks. We hope the reader will find the charts we have presented there
not just useful for a better understanding of what is at issue, but also pleasant
to the eye. Perhaps they will go some way towards banishing the typically
grey world of cartographic representations encountered in this field. Apart
from the maps appearing in the book itself, the reader will find hundreds of
others on the CD (Graphs part). With the exception of a few photographs
(indicated by the symbol c©), all the illustrations in this book are original.

Since the main subjects here are space mechanics and the geometry of
observation, this book makes no attempt to cover the many technological
questions relating to satellites. There is not a word on launch vehicles or ways
of getting satellites into orbit, nor on the problem of attitude control or even
the instruments carried aboard, except regarding their sighting geometry,
which may more or less directly affect the mission.

Throughout the book, our main concern has been to move forward in
a gradual way, demonstrating the formulas used and generously interspers-
ing the text with examples and illustrations. We have emphasised the more
subtle points, such as different definitions of period and conditions for Sun-
synchronicity, to cite but two examples, and we have given some attention to
questions which may rouse the reader’s curiosity, such as the Ellipso Borealis
orbits or the orbits of satellites located at Lagrange points. We have also
added a few notes on the history of astronomy, or the more recent history
of astronautics and the conquest of space, together with several comments of
an etymological nature.

So let me wish you a good trip into space!
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1 Keplerian Motion

1.1 The Satellite and its Motion

Satellites move discreetly across the heavens, on their tireless rounds. As we
scan the sky for shooting stars at nightfall on a summer evening, a satellite
may come into view and cross the firmament in ten minutes or so. But it is
soon forgotten, like a train which arrives on time. The passing satellite causes
no stir.

When the mass media are interested in a satellite, beware! There is dis-
aster in the air. In March 2001, over a period of one week, the Russian space
station Mir was the subject of everyone’s conversation. Was the sky to fall
upon us? Three fatal injections were administered by ground control engi-
neers and the station burnt up in the atmosphere. Its glowing embers fell to
Earth in the Pacific Ocean, more or less where they were intended to.

To the uninitiated but curious, this raised several questions. Why destroy
the space station? Could it not have prolonged its course, even indefinitely?
Was this not perpetual motion? And why was the final splashdown only given
approximately, when astronomers are renowned for their accuracy?

When a satellite re-enters the Earth’s atmosphere (a crucial stage, as
one might imagine, for passengers aboard the American Space Shuttle), de-
termination of the trajectory involves highly complex empirical models. On
the other hand, apart from this re-entry stage, a satellite’s motion can be
explained by the simple formalism invented by Kepler and Newton. This mo-
tion, based on Newton’s second law, applies to every single artificial satellite
launched since 1957, provided that it did not burn up in the atmosphere,
together with all space probes ever sent to the Moon or other planets, just as
it also applies to natural satellites (e.g., the Moon around the Earth or Titan
around Saturn), or the planets and comets that revolve about the Sun. This
is Keplerian motion.

In this chapter, we shall thus consider Keplerian motion, first from a
general standpoint, using the fundamental equations, then applying it to a
body in periodic motion. One might ask whether it is possible to explain
every aspect of a satellite trajectory in terms of Keplerian motion. We shall
see in Chap. 3 that, although Kepler’s laws account for many things, indeed
for the main features of the motion, they cannot explain the details. There
are certain small differences which, as time goes by, can develop into a large
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discrepancy. In astronomy, time is of the essence: a period of rotation or
revolution of a planet or a satellite can be measured over many years, giving
highly accurate results. Approximations must be brought into line.

We shall show that a satellite’s motion will accord perfectly with Kepler’s
laws precisely in the situation where everything is perfect for that satellite.
That is, the satellite must be a point object in orbit around a spherical
planet devoid of any defect, and the two bodies, satellite and planet, must
be alone in the universe. It is because this perfect situation does not exist
in the real world that one must make some slight modifications to Keplerian
motion, thereby generating a realistic motion that accounts for the various
small interactions. This is the so-called perturbed motion.

But let us begin with Keplerian motion. Using the basic laws of kine-
matics and Newton’s second law, we shall deduce the various relations which
define and characterise Keplerian motion. The main subject of this study –
the satellite – is of macroscopic dimensions and it moves slowly relative to
the speed of light. We therefore remain within the framework of of classical
mechanics and the Galilean approximation, except for one or two cases that
will be clearly distinguished, where relativistic effects will be observed. The
frame of reference will thus be assumed to be Galilean (see Chap. 2).

The area of mechanics discussed here is known as celestial mechanics or
space mechanics. The term ‘celestial’ is generally reserved for the study of
celestial bodies making up the Solar System. Since satellites and probes have
been launched, that is, since the conquest of space, the term ‘space mechanics’
has been used to refer to our many artificial moons.

1.2 General Acceleration

1.2.1 Velocity and Acceleration

We consider a material point S in space, referred to an origin O and three
fixed directions. The position vector, velocity and acceleration of the point S
are denoted by

r = OS , ṙ =
dr

dt
, r̈ =

d2r

dt2
.

Consider the plane containing the position and velocity vectors. An orthonor-
mal frame (O; i, j) is defined in this plane, together with a polar coordinate
basis (er, eθ). Adjoining the unit vector along the Oz axis, we obtain the
right-handed system:

k = i ∧ j = er ∧ eθ .

Let r be the length of the position vector, i.e., r = ‖r‖, and θ the angle
between the i axis and the position vector, viz., θ = (i, r). The unit vectors
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er and eθ are defined by er = r/r and (er, eθ) = π/2. The angular speed
and acceleration of the motion are denoted by θ̇ and θ̈.

In this plane coordinate system, the velocity and acceleration of the point
S are obtained by successive derivatives of the expression for OS. This gives

r = rer , (1.1)

ṙ = ṙer + rθ̇eθ , (1.2)

r̈ = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ . (1.3)

Note the relations (for nonzero r)

r·ṙ = rṙ , (1.4)

rθ̈ + 2ṙθ̇ =
1
r

d
dt

(r2θ̇) . (1.5)

1.2.2 Angular Momentum

The angular momentum per unit mass is defined by

C = r ∧ ṙ . (1.6)

Differentiating with respect to time, we obtain

dC

dt
= ṙ ∧ ṙ + r ∧ r̈ = r ∧ r̈ . (1.7)

Moreover, using the definition and the relations (1.1) and (1.2), we obtain
the following expression for C :

C = r2θ̇k . (1.8)

1.3 Central Acceleration

1.3.1 Definition and Properties

Consider a material point S in space. Its motion is said to undergo central
acceleration if there is some fixed point O such that, at each moment of time,
the vector OS and the acceleration vector are collinear.

The motion of the point has central acceleration if and only if

r ∧ r̈ = 0 . (1.9)
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Inserting this defining relation in (1.7), we obtain

dC

dt
= 0 , (1.10)

which shows that, for this type of motion, the angular momentum is constant
in time:

C = r ∧ ṙ = const. (1.11)

If this constant is zero, the motion is in a straight line, since r and ṙ are then
collinear.

If the constant vector on the right-hand side of (1.11) is not zero, and this
is the general case that we shall consider hereafter, the motion of the point is
contained in the plane orthogonal to the constant vector. Let P denote this
plane.

The quantity C calculated from (1.8) is thus constant:

C = r2θ̇ , with C = Ck . (1.12)

Note that θ̇ cannot change sign during the motion.

1.3.2 Characterising the Motion

Acceleration

Setting

r̈ = γer , with γ = f(r) , (1.13)

under the assumption that the acceleration is central, it follows that γ is the
signed magnitude of the acceleration vector, with a plus sign when it lies
parallel to the radial vector er. Using the value for r̈ calculated in (1.3), we
obtain the following two relations, one for each component:

r̈ − rθ̇2 = γ , (1.14)

1
r

d
dt

(r2θ̇) = 0 . (1.15)

The last relation shows once again that C is constant.

Areal Law

Let A be (the magnitude of) the area swept out by the vector r. The area
element is the area of the triangle with base rdθ and height r. Hence, dA =
(r/2)rdθ and the areal speed (area swept out per unit time) is thus

dA
dt

=
1
2
r2θ̇ =

1
2
C . (1.16)

This is the areal law. It tells us that the area swept out is proportional to
the time. Alternatively, equal areas are swept out in equal times.



1.3 Central Acceleration 5

Binet’s Equations

Binet’s equations give the velocity and acceleration as a function of the angle
θ and the auxiliary variable u defined by

u =
1
r

.

To find these relations, we eliminate the time t using (1.12), whence

θ̇ =
C

r2
= Cu2 ,

noting further that

rθ̇ = Cu , rθ̇2 = C2u3 .

Using the chain rule, we now have

ṙ =
dr

du

du

dθ

dθ

dt
= − θ̇

u2

du

dθ
= −C

du

dθ

and

r̈ =
dṙ

dt
=
(

dṙ

dθ

)
θ̇ = θ̇

d
dθ

(
−C

du

dθ

)
= −C2u2 d2u

dθ2
.

Then from (1.2) and (1.3), we obtain the velocity and acceleration vectors
relative to the basis (er, eθ):

ṙ = C

(
−du

dθ
er + ueθ

)
,

r̈ = −C2u2

(
d2u

dθ2
+ u

)
er .

Setting

V = ‖ṙ‖ ,

we obtain the two Binet equations from the last two equations. One refers to
the velocity via its magnitude V and the other refers to the acceleration via
the quantity γ :

V 2 = C2

[(
du

dθ

)2

+ u2

]
, (1.17)

γ = −C2u2

(
d2u

dθ2
+ u

)
. (1.18)
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1.4 Newtonian Acceleration

1.4.1 Equation for the Trajectory

A Newtonian acceleration is a central acceleration proportional to r−2. We
also speak of a Coulombic acceleration.1 The expression for the acceleration
given in (1.13) thus becomes

γ = ε
µ

r2
, (1.19)

where ε = −1, 0, +1 and µ is a positive constant.
The quantity ε, which takes three discrete values, allows us to deal simul-

taneously with the attractive case (ε = −1), the repulsive case (ε = +1), and
the situation with no acceleration (ε = 0). In terms of the auxiliary variable
u, we now have

γ = εµu2 . (1.20)

This reveals the usefulness of the Binet equation for the acceleration (1.18)
in the case of a Newtonian acceleration: comparing with (1.20), a factor of
u2 cancels out. This leads to the equation

d2u

dθ2
+ u = −ε

µ

C2
. (1.21)

This is a second order linear differential equation with constant coefficients
and the right-hand side is constant. It is easy to solve. The solution is the
sum of the general solution to the homogeneous equation (with zero on the
right-hand side), bringing in two constants of integration, and a particular
solution:

u = A cos(θ − θ0) − ε
µ

C2
,

where A and θ0 are the two constants of integration.
The expression for r is

r =
p

−ε + e cos(θ − θ0)
, (1.22)

where

p =
C2

µ
(1.23)

1 The term ‘Coulombic’ is usually reserved for electrostatic phenomena, where
forces may be attractive or repulsive, whilst the word ‘Newtonian’ refers to grav-
itational phenomena, where forces are exclusively attractive. In this chapter,
we shall use the term ‘Newtonian’, since we are concerned here with gravity.
However, we shall indicate the repulsive case in what follows.
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and

e = Ap . (1.24)

This is the equation for a conic section in polar coordinates with one focus at
the origin O. p is the focal parameter and e is the eccentricity. The quantities
e and θ0 are determined by the initial conditions. In order to study the
relationship between these quantities and the initial conditions, that is, to
investigate the main features of the trajectory, we use the Binet equation for
the speed (1.17).

1.4.2 Types of Trajectory

Eccentricity

Returning to the variable u, we now write

u =
−ε + e cos(θ − θ0)

p
. (1.25)

Differentiating this relation,

du

dθ
= − e

p
sin(θ − θ0) .

Substituting into (1.17), we have

e2 − 2εe cos(θ − θ0) + ε2 =
V 2

C2
p2 .

Equation (1.25) implies e cos(θ − θ0) = up + ε and since p = C2/µ, we now
have

e2 − 2ε

(
u

C2

µ
+ ε

)
+ ε2 =

V 2C2

µ2
.

The eccentricity is therefore given by

e2 = ε2 +
C2

µ2

(
V 2 + 2εµ

1
r

)
. (1.26)

Since e, C and µ are constants, this equation shows the constancy of the
quantity K defined by

K = V 2 + 2ε
µ

r
= const. (1.27)

At the end of the chapter, using the relation (1.83), we shall see that this
quantity corresponds to the mechanical energy. For motion under a New-
tonian acceleration, r and V vary in such a way that the relation (1.27) is
always satisfied.
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Figure 1.1. Trajectories in the various possible cases. ε = +1: hyperbola – convex
branch. ε = 0: straight line. ε = −1: hyperbola – concave branch, parabola, ellipse,
circle, in that order as we approach the origin O. In the example shown, all conic
sections have O as focus and the same axis of symmetry (θ0 = π/6)

Different Cases

We shall now investigate the quantities r and e defined by (1.22) and (1.26)
for the three possible values of ε (see Fig. 1.1).

• Repulsive Case ε = +1: The equation for the trajectory is

r =
p

−1 + e cos(θ − θ0)
. (1.28)

The eccentricity is

e2 = 1 +
C2

µ2

(
V 2 + 2

µ

r

)
(1.29)

and we find that e > 1 since the quantity K is in this case always positive.
The denominator in (1.28) may vanish, and r can thus be infinite. The
trajectory is a hyperbola with focus at O. This is the branch which is
convex with respect to the origin O, since the force is repulsive. Recall
that this cannot happen for gravitational interactions.

• Attractive Case ε = −1: The equation for the trajectory is
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r =
p

1 + e cos(θ − θ0)
. (1.30)

The eccentricity is

e2 = 1 +
C2

µ2

(
V 2 − 2

µ

r

)
. (1.31)

Depending on the value of K, e may be greater than or less than unity.
We see that the quantity

Ve =
√

2
µ

r
(1.32)

plays a specific role in this demarcation.
– If K > 0, i.e., V > Ve, then e > 1. We have a hyperbola with focus at

O. This time we have the branch which is concave with respect to the
origin O, since the force is attractive.

– If K = 0, i.e., V = Ve, then e = 1. We have a parabola with focus at
O.

– If K < 0, i.e., V < Ve, then e < 1. We now have an ellipse with one
focus at O. In this case, there is a condition for the equation (1.31):
the right-hand side cannot be negative. We must therefore have

V 2 − 2
µ

r
� − µ2

C2
=⇒ V 2 � 2

µ

r
− µ

p
,

whence the condition

V � Vs ,

where

Vs =
√

2
µ

r
− µ

p
. (1.33)

Vs is the orbital insertion speed for putting a satellite into orbit at the
distance r. We shall return to this case shortly. We shall also consider
the special case of an ellipse with zero eccentricity, which is in fact a
circle with centre at O.

It is easy to understand the significance of the speed Ve defined above.
When V � Ve, the point S describing a parabola or a branch of a hy-
perbola can go to infinity. On the other hand, when V < Ve, the point S
remains forever within a finite distance of O and the motion is periodic.
This speed (which depends on r) is therefore known as the escape velocity
at the distance r.
If the motion is to be periodic, the speed V must therefore satisfy the
conditions

Vs � V < Ve . (1.34)
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• No Acceleration ε = 0: The equation for the trajectory is

r =
p

e cos(θ − θ0)
. (1.35)

The product r cos(θ − θ0) is constant. This is the equation for a straight
line in polar coordinates. The trajectory of a point that is subjected to
no forces is indeed a straight line, covered at constant speed.
In this case K = V 2, implying that V is constant and e = CV/µ. Substi-
tuting for p, we obtain

r =
C

V

1
cos(θ − θ0)

.

The magnitude of the angular momentum defined by (1.6) is now

‖r ∧ ṙ‖ = rV cos(θ − θ0) = C .

Note. To end this discussion, note that the nature of the trajectory does not
depend on the orientation of the velocity vector, but only on its magnitude
V at a point at distance r from the origin.

1.5 Trajectory and Period for Keplerian Motion

1.5.1 Definition of Keplerian Motion

Keplerian motion is the motion of a point mass in a central force field going
as 1/r2. We shall see in Chap. 2 that this corresponds to a gravitational field
due to another mass, assumed motionless. We consider only these two masses
and make no attempt to include perturbations due to other bodies. In this
chapter, we shall study the motion of this material point S and it will suffice
to consider that it is subject to a Newtonian acceleration, or, in terms of
forces, that it undergoes a central force of the form 1/r2 in a Galilean frame
of reference.

Since the aim here is to study satellite trajectories, we shall hereafter
consider only periodic trajectories, that is, elliptical trajectories with K < 0
or e < 1.

1.5.2 Periodic Trajectories

Elliptical Trajectories

In the case of an elliptical trajectory, given the eccentricity in (1.31), we can
write

1 − e2 = −C2

µ2
K , with K < 0 .
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We also know that an ellipse is defined by its semi-major axis a and its
eccentricity e (see Sect. 1.10 for a review). The parameter p is related to
these two quantities by p = a(1 − e2). Hence,

1 − e2 =
p

a
=

C2

µa
. (1.36)

These relations imply

K = V 2 − 2µ

r
= −µ

a
. (1.37)

We may now deduce the expression for the speed V as a function of r :

V 2 = µ

(
2
r
− 1

a

)
. (1.38)

We can check that this is always positive since, in an ellipse, we have r < 2a.
To sum up, the equation for the elliptical trajectory can be written in

polar coordinates in the form

r = r(θ) =
C2

µ

1
1 + e cos(θ − θ0)

, (1.39)

where

e2 = 1 − C2

µa
, (1.40)

or alternatively,

r = r(θ) =
a(1 − e2)

1 + e cos(θ − θ0)
. (1.41)

During the periodic motion of the point S, the distance r goes through a
minimum and a maximum, denoted respectively by rp and ra :2

rp = r(θ = θ0) = a(1 − e) , (1.42)

ra = r(θ = θ0 + π) = a(1 + e) . (1.43)

The sum of these two lengths is equal to the major axis of the ellipse, i.e.,
2 The subscripts p and a stand for the perigee and the apogee, respectively, for

motion around the Earth (� ��̃� �̃�), or perihelion and aphelion for motion around
the Sun (� ���	�� 	
). More generally, when the gravitational source is not spec-
ified, we speak of the periastron and apoastron, or pericenter and apocenter.
The prefixes ‘peri’ and ‘apo’ come from the adverbs (���), meaning ‘above’ and
(���), meaning ‘far away’.
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rp + ra = 2a .

Moreover, referring to (1.38), we see that the speed V goes through a maxi-
mum Vp for r = rp and a minimum Va for r = ra, with respective values

Vp =
√

µ

a

√
1 + e

1 − e
=
√

µ

p
(1 + e) , (1.44)

Va =
√

µ

a

√
1 − e

1 + e
=
√

µ

p
(1 − e) . (1.45)

It follows that

rpVp = raVa =
√

µ

p
a(1 − e2) =

√
µp = C ,

leading us to the angular momentum C, since, for these two extremal points
on the ellipse, the velocity and the radial vector are orthogonal.

Note also that

Vp

Va
=

ra

rp
=

1 + e

1 − e
, (1.46)

e =
ra − rp

ra + rp
= 1 − rp

a
=

ra

a
− 1 . (1.47)

Special Case of Circular Trajectory

A circle is an ellipse with zero eccentricity, i.e., e = 0. Equation (1.40) gives

C2

µ
= a .

Substituting in (1.30), we obtain the expected relation for a circle, viz.,

r =
C2

µ
= a = p .

The speeds Ve and Vs defined by (1.32) and (1.33) become in this case

Vl =
√

2
µ

a
, Vs =

√
µ

a
=

Vl√
2

.

Moreover, the relation involving the constant K gives

K = V 2 − 2µ

a
= −µ

a
,
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whence

V =
√

µ

a
=

C

a
. (1.48)

This shows that the magnitude V of the velocity is constant and equal to Vs.
The motion is uniform.

Considering the value of γ given by (1.19), it can also be checked that
we do retrieve the usual value for the acceleration in the case of a uniform
circular motion:

γ = − µ

a2
= −V 2

a
.

1.5.3 Period and Angular Speed

Period

The period is the time T taken by the point S to describe the whole ellipse.
Integrating (1.16) over one period, we obtain

A =
1
2
CT .

In this case, A represents the area of the ellipse, i.e., A = πab, where b is the
semi-minor axis of the ellipse. Recall further that b2 = pa. Hence,

A = πa
√

pa = πC

√
a3

µ
.

The period is therefore

T = 2π

√
a3

µ
. (1.49)

This is called the period of revolution, the orbital period, or the Keplerian
period of the motion.3 Note that, for an attractive body µ, the Keplerian
period depends only on the semi-major axis a, and not the eccentricity e.

Mean Motion

The corresponding angular speed n, called the mean motion, is defined as
3 As will be seen in Chap. 3, for a perturbed Keplerian motion, one can define

several periods relative to the actual motion, such as the nodal (or draconitic)
period and the anomalistic period.
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n =
2π

T
=
√

µ

a3
. (1.50)

The mean motion is the angular speed of a fictitious point in uniform circular
movement at radius a and with the same period as a point in Keplerian
motion on an orbit with semi-major axis a.

The daily frequency ν of a satellite measures the number of revolutions
the satellite covers in one day (24 hours). This auxiliary quantity is often
used to present results. We have

ν =
86 400
T (sec)

=
1 440

T (min)
. (1.51)

The quantity ν is known as the daily orbital frequency or daily frequency of
revolution.

1.6 Position Along Orbit: The Three Anomalies

The formulas established above give us the trajectory of the material point S
in polar coordinates, i.e., the relation between r and θ. These relations were
obtained in a way which did not involve time, since the starting point was
the Binet equations, set up by eliminating the time. To find an expression
for the time t as a function of the polar coordinates, that is, to establish the
position of the point S at any time t, we must return to the constant in the
areal law for motion with a central acceleration, specified in (1.12). To obtain
t, we integrate this relation:

dt =
1
C

r2dθ . (1.52)

We shall examine several approaches based on the integration of r2dθ.

• In the first method, we eliminate r, expressing it as a function of θ, i.e.,
r = f(θ). We then obtain t from

t =
1
C

∫
[f(θ)]2 dθ .

• In the second approach, we eliminate θ, expressing dθ in the form dθ =
g(r)dr. We obtain t from

t =
1
C

∫
r2g(r)dr .

• The third and final method is based on the geometrical properties of the
ellipse.
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1.6.1 t = t(θ) and the True Anomaly v

In this first method, the starting point is (1.52). We replace r by its expression
as a function of θ, as given by (1.39):

dt =
1
C

p2

[1 + e cos(θ − θ0)]
2 dθ

The minimal value of r, namely r = rp is obtained when θ = θ0 [see (1.42)],
and it is convenient to measure angles from this origin. We therefore make
the change of variable

v = θ − θ0 . (1.53)

The angle v is called the true anomaly.4

We now calculate t = t(v) from

t =
p2

C

∫
dv

(1 + e cos v)2
.

This type of function integrates as follows:

I =
∫

dv

(1 + e cos v)2
= − e sin v

(1 − e2)(1 + e cos v)
+

1
(1 − e2)

∫
dv

1 + e cos v
,

∫
dv

1 + e cos v
=

2√
1 − e2

arctan

(√
1 − e

1 + e
tan

v

2

)
.

Using (1.36), we have

p2

C
=

√
a3

µ
(1 − e2)3/2 =

(1 − e2)3/2

n
,

with the expression for the mean motion n given by (1.50).
4 Kepler invented the term for this angle, from anomalia, æ in Latin. It originally

comes from the Greek word (� ��������� �	), which means ‘irregularity’ (prefix
�� privative, adjective 
����	, ‘self-similar’, ‘regular’). The idea behind this was
to express the irregular behaviour of the angle in time (since the motion does
not appear to be circular and regular). Kepler first used the term to indicate
the position of Mars with respect to the Sun and he defined several anoma-
lies. Among these were the three described in this chapter: the true anomaly
(anomalia coæquata vera), the eccentric anomaly (anomalia eccentri), and the
mean anomaly (anomalia media). In his work Astronomia Nova, apart from the
true anomaly, Kepler used the ‘artificial’ anomaly (anomalia coæquata fictitia)
and four other anomalies (anomalia circularis & elliptica, anomalia distantaria,
anomalia scrupularia).
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Taking the time origin as t = tp for r = rp and v = 0, we now obtain

t − tp =
(1 − e2)3/2

n
I ,

which gives the time as a function of θ via v :

n(t − tp) = 2 arctan

(√
1 − e

1 + e
tan

v

2

)
− e

√
1 − e2 sin v

1 + e cos v
. (1.54)

1.6.2 t = t(r) and the Eccentric Anomaly E

In the second method, instead of expressing dθ directly as a function of r,
we adopt a neighbouring approach, starting from (1.31). This relates V and
r to the parameters of the ellipse and allows us to write

V 2 =
2µ

r
− µ2

C2
(1 − e2) .

From the vector form for the velocity (1.2), we have

V 2 = ṙ2 + r2θ̇2 = ṙ2 +
C2

r2
,

where θ has been eliminated using the areal law (1.16). This leads to

ṙ2 = − µ2

C2
(1 − e2) +

2µ

r
− C2

r2
,

and the differential equation

dt =
rdr√

−µ2(1 − e2)r2/C2 + 2µr − C2
.

Replacing C2 by µa(1 − e2), we obtain the following simplifications:

− µ2

C2
(1 − e2)r2 + 2µr − C2 = −µ

a
r2 + 2µr − µa(1 − e2)

=
µ

a

(
−r2 + 2ar − a2 + a2e2

)
=

µ

a

[
a2e2 − (r − a)2

]
,

whereupon

dt =
√

a

µ

rdr√
a2e2 − (r − a)2

. (1.55)
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To integrate this equation, it is convenient to introduce the auxiliary angle
variable E such that a − r = ae cosE, which can also be defined by

cosE =
1
e

(
1 − r

a

)
. (1.56)

This angle is called the eccentric anomaly.5 It is illustrated in Fig. 1.2. Below,
we describe its geometric meaning with respect to the ellipse. Note that E = 0
for r = rp and E = π for r = ra [see (1.42) and (1.43)].

We now change variables,

r = a(1 − e cosE) . (1.57)

so that dr = ae sin E dE. As a function of E, (1.55) becomes

dt =
√

a

µ
a(1 − e cosE)dE .

The integration is carried out taking the time origin at t = tp for r = rp and
E = 0:

t − tp =

√
a3

µ
(E − e sinE) .

Bringing in the mean motion n, we obtain

n(t − tp) = E − e sinE . (1.58)

This is known as Kepler’s equation. We have thus expressed t as a function
of r via the variable E.

1.6.3 Geometric Approach to Kepler’s Equation

In the third approach, we use the areal law and the fact that the ellipse is
an affine transformation of the principal circle with expansion

√
1 − e2, axis

Ox and direction Oy (see Sect. 1.10).
Integrating the areal law (1.16) from tp to t, we obtain

t − tp =
2
C
A ,

where the quantity A is the area swept out between these two times, i.e., in
the notation of Fig. 1.2, the area of the curvilinear triangle OPS. Let A′ be
the area of the curvilinear triangle OPT , where T is the point giving S under
the affine transformation. We thus have
5 Eccentric means ‘off-centre’. The centre in question here is not the centre of the

circle or the ellipse, but the focus of the ellipse, which is the centre of attraction.
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Figure 1.2. Elliptical trajectory. Ellipse and principal circle, indicating the nota-
tion for points and angles used to establish Kepler’s equation geometrically

A =
√

1 − e2A′ .

Replacing C by
√

µa(1 − e2), we now have

t − tp =
2

√
µa

A′ .

The area A′ is given by

A′ = sector CPT − triangle COT

= sector {angle E} − 1
2
CO × HT

=
1
2
a2E − 1

2
(ae)(a sin E) =

1
2
a2(E − e sin E) .

This geometrical method yields Kepler’s equation very quickly, with the ex-
pression for A′ and introducing the mean motion:

n(t − tp) = E − e sinE . (1.59)

1.6.4 Relating the Anomalies: Mean Anomaly M

Relation Between the Anomalies v and E

To establish the relations between v and E (see Fig. 1.2), the ellipse is
equipped with a frame (Ox, Oy). Let O be the principal focus, the cen-
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tre of the Newtonian field, and C the centre of the ellipse. The major axis is
AP , where P is the point on the ellipse closest to O and A the point furthest
away. We choose the axis Ox along OP and the axis Oy at 90◦ to it in the
anticlockwise direction. Let R be the intersection of Oy with the ellipse, and
Q the intersection of the line parallel to Oy through C with the ellipse. We
then have the following correspondence:

a = CP , b = CQ ,
p = OR , ae = CO ,
rp = OP , ra = OA .

We also draw the circle with centre C and radius CP which contains the
ellipse and is tangent to it at P and A. This is the principal circle. Let S be
an arbitrary point on the ellipse and H its projection onto Ox.

The true anomaly can be defined immediately as the polar angle

v = (Ox, OS) .

The eccentric anomaly is obtained geometrically from its definition as

E = (Cx, CT ) ,

where the point T is the intersection of the straight line through H and S
with the principal circle. Indeed, according to the relation (1.56), we have
cosE = (a− r)/ae. Transforming (a− r) in such a way as to bring in v, i.e.,

a − r = a(1 − e2) − r + ae2 = r(1 + e cos v) − r + ae2 = e(r cos v + ae) ,

we find

cosE =
r cos v + ae

a
=

CH

CT
,

using the notation from Fig. 1.2. The angle E is indeed the angle C of the
right-angled triangle HCT .

To obtain the relation between the angles v and E, we write down the
coordinates of the point S,

x = r cos v = a(cosE − e) , (1.60)

y = r sin v = a
√

1 − e2 sin E , (1.61)

so that √
x2 + y2 = r = a(1 − e cosE) ,

and deduce the relations between the true and eccentric anomalies. Note that
v and E change sign together.

For v as a function of E :
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cos v =
cosE − e

1 − e cosE
, sin v =

√
1 − e2 sin E

1 − e cosE
,

tan
v

2
=

√
1 + e

1 − e
tan

E

2
. (1.62)

For E as a function of v :

cosE =
cos v + e

1 + e cos v
, sin E =

√
1 − e2 sin v

1 + e cos v
,

tan
E

2
=

√
1 − e

1 + e
tan

v

2
. (1.63)

We can also express the difference (v − E) as a function of v or E :

tan
v − E

2
=

β sinE

1 − β cosE
=

β sin v

1 + β cos v
, (1.64)

where

β =
e

1 +
√

1 − e2
. (1.65)

Using these relations, the expression (1.54) for t as a function of v gives the
expression (1.58) for t as a function of E. The integration leading to (1.54)
serves no purpose if we use the trigonometric relations between v and E.

Definition of the Mean Anomaly M

The product of n with a time gives a dimensionless quantity, representing
an angle in this case. The mean anomaly is simply defined as the angle M ,
product of n and t, with the usual initial conditions: t = tp for r = rp and
M = 0:

n(t − tp) = M . (1.66)

The mean anomaly can be viewed as the angle determining the position of
a fictitious point in uniform circular motion with angular speed n (mean
motion).

Differential Relations Between Anomalies

From the definition of M , we have a fundamental relation between the mean
anomaly and the mean motion, namely,
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dM

dt
= n . (1.67)

The relation between dM and dE follows from (1.58) and (1.66):

M = E − e sinE , (1.68)

n =
dM

dt
= (1 − e cosE)

dE

dt
. (1.69)

The relation between dM and dv is derived from the areal law. Equation
(1.16) yields

dθ

dt
=

C

r2
=

na2
√

1 − e2

r2
,

and since dθ and dv represent the same quantity, we have

n =
dM

dt
=

r2

a2
√

1 − e2

dv

dt
. (1.70)

1.6.5 Kepler’s Problem

We have just seen how to express the time in terms of the three anomalies,
in an analytical way. The converse problem consists in expressing the true
anomaly in terms of time. This is called Kepler’s problem. It has no analytical
solution.

The three anomalies v, E and M play quite different roles. v(t) allows one
to identify the position of the body in its orbit and gives the radial vector
r via (1.30). M(t) is another way of representing time, whilst E(t) is only
really used to solve Kepler’s problem.

Solution of Kepler’s Problem

At a given time t, defining the value M = M(t) of the mean anomaly, Kepler’s
equation becomes

E − e sin E = M . (1.71)

Since Kepler, dozens of methods have been put forward to solve this equation.
We seek to obtain E as a function of M , so that we may subsequently obtain v.

If the eccentricity is not too close to unity (e < 0.99), the fastest method
is Newton’s method, which involves approximating a curve at a point by its
tangent there (first order Taylor expansion). We then proceed by iteration.
Consider the point [xn, f(xn)] on the curve. Drawing the tangent at this
point, we find the point [xn+1, f(xn+1) = 0] where it intersects the x axis.
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Let f(x) be the function

f(x) = x − e sinx − M .

The solution we seek, x = E, will be such that f(E) = 0. Differentiating f
gives

f ′(x) = 1 − e cosx ,

so that we may express xn+1 as a function of xn by

xn+1 = xn − f(xn)
f ′(xn)

= xn − xn − e sinxn − M

1 − e cosxn
. (1.72)

Starting with the estimate x0 = M , this method generally gives the solution
to an accuracy of around 10−3 degrees within two or three iterations. With
the solution obtained for E, we can express v using (1.62), i.e.,

v = 2 arctan

(√
1 + e

1 − e
tan

E

2

)
. (1.73)

Example 1.1. Calculate the true anomaly for the planet Mars when the mean
anomaly is M = 98 .679 ◦.

The eccentricity of the orbit of Mars around the Sun is e = 0.09340. Angles are
given in degrees, but should be converted to radians for the purposes of calculation.
Set x0 = M . With the iteration (1.72), we obtain successively:

x0 = 98.679 , x1 = 103.896 , x2 = 103.875 , x3 = 103.875 .

To the required accuracy, two iterations suffice. We obtain v from (1.73):

E = x3 = 103.875 =⇒ v = 109.020 .

1.7 Representation of Anomalies

1.7.1 Summary of Anomalies

Let us sum up the results of the last two sections. If we express the time
t, represented by M , as a function of polar coordinates θ and r, themselves
represented by v and E, respectively, we obtain the analytical relations M(v)
and M(E):
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v �−→ M = M(v) equation (1.54) ,
E �−→ M = M(E) equation (1.58) ,
v = v(E) ←→ E = E(v) equations (1.62), (1.63) .

If we express the polar angle θ, represented by v, as a function of time t,
itself represented by M , we must go through E, solving Kepler’s problem by
iteration:

M �−→ E = E(M) iteration (1.72) ,
E �−→ v = v[E(M)] = v(M) equation (1.73) .

When we study a particular trajectory, we generally consider a sequence of
times t with a given separation, and at each time ti, ti+1, . . . , we solve Kepler’s
problem to obtain the true anomaly.

1.7.2 Representation of the Anomalies v(M) and E(M)

During a period, up to a factor of n, the mean anomaly M thus represents
the time elapsed since the passage at point P . We can plot graphs giving the
evolution of v and E as a function of time, i.e., the functions v(M) and E(M).
On the graphs shown in Fig. 1.3, M varies over one period, from M = −π
(S at A) to M = +π (S at A), passing through M = 0 (S at P ).

The upper graph of Fig. 1.3 shows the function v(M) for various values
of the eccentricity between e = 0.0 and e = 0.9, at intervals of 0.1. The
two angles are equal when e = 0.0 (circular trajectory), whilst the deviation
increases with e. When S is close to the periastron P (M = 0, v = 0), ever
bigger variations in v correspond to small variations in M (i.e., the time) as e
increases. In contrast, when S is close to the apoastron A (|M | = π, |v| = π),
large variations in M correspond to small variations in v. This is, of course,
an illustration of the areal law.

The lower graph of Fig. 1.3 shows the function E(M) for various values
of the eccentricity between e = 0.0 and e = 0.9, at intervals of 0.1. As for the
last function, the two angles are equal for e = 0.0 and the deviation increases
with e, although in a less marked way than for v(M). We have once again an
illustration of the areal law.

1.7.3 Equation of Centre

In Keplerian motion, it is useful to compare the true and mean anomalies.
In astronomy, one defines the equation of centre, denoted by EC, as the
difference between these two anomalies. This quantity6 is an angle:
6 The term ‘equation’ taken from algebra was defined in its modern sense by

Descartes in 1637. Prior to this, the word came from astronomy and was specified
and used by Kepler (æquatio, nis, in Latin) as ‘that variable quantity, determined
by calculation, which must be added or subtracted from the mean motion to
obtain the true motion’. This is how one should understand the name ‘equation
of centre’, but also ‘equation of time’, to be described later.
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Figure 1.3. Top: Variation v(M) of the true anomaly v as a function of the mean
anomaly M over a period for ten values of the eccentricity between e = 0.0 and
e = 0.9, at intervals of e = 0.1. Angles in radians. Bottom: Variation E(M) of the
eccentric anomaly E as in the upper graph
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Figure 1.4. Equation of centre. (v − M)(M): variation of the difference between
the true anomaly v and the mean anomaly M over a period for ten values of the
eccentricity between e = 0.0 and e = 0.9, at intervals of e = 0.1. Angles in radians

EC = v − M . (1.74)

We shall need this when studying the apparent motion of the Sun around the
Earth or Mars.

In the general case, we can study the position of the extrema of EC, given
by dEC = 0, i.e.,

dv

dt
=

dM

dt
.

Using (1.70), this corresponds to the value rm of r such that

r2
m = a2

√
1 − e2 , or rm =

√
ab .

Considering the value of r = r(v, a, e) given by (1.41), we have

rm =
a(1 − e2)

1 + e cos vm
= a(1 − e2)1/4 ,

where vm is the value of the true anomaly corresponding to the extremum.
We deduce that

cos vm =
1
e

[
(1 − e2)3/4 − 1

]
. (1.75)
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The graph of the function (v −M)(M) is shown in Fig. 1.4, which should be
compared with the upper graph in Fig. 1.3a. The values of v corresponding
to the maximum and minimum of (v−M) are symmetric with respect to the
origin (the periastron). In Chap. 2, we shall return to the equation of centre
in the case of low eccentricities.

1.8 First Integrals of the Motion

1.8.1 Conservation Laws

Starting from the expression for the Newtonian acceleration, we have ob-
tained the equation of motion by two integrations, to go from r̈ to r. Follow-
ing this rather detailed solution, we shall now give a brief presentation of a
more synthetic method. The motivation for this is that it brings out the quan-
tities remaining constant throughout the motion. These values are obtained
with just one integration, to go from r̈ to ṙ. This is why they are referred to
as first integrals of the motion. Starting from the equation of motion in the
case of a Newtonian acceleration, viz.,

r̈ = − µ

r2
er , (1.76)

we obtain the conservation of energy, angular momentum and Laplace vector
(which gives the equation of motion).

• Conservation of energy. We take the scalar product of both sides of (1.76)
with the velocity vector ṙ, using the relation (1.4):

r̈·ṙ =
1
2

d
dt

(
ṙ2
)

=
1
2

d
dt

(
ṙ2
)

,

− µ

r2
er·ṙ = − µ

r2
ṙ =

d
dt

(µ

r

)
.

Equation (1.76) thus gives

d
dt

(
1
2
ṙ2 − µ

r

)
= 0 , (1.77)

whence

1
2
K =

1
2
ṙ2 − µ

r
= const. (1.78)

This expresses conservation of energy. We can recover (1.27) by setting
V 2 = ṙ2 in the case ε = −1.
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• Conservation of angular momentum. We take the vector product of each
side of (1.76) with the radial vector r. This yields

r ∧ r̈ = − µ

r2
r ∧ er = 0 .

Using the derivative (1.7) of the definition (1.6), we obtain

C = r ∧ ṙ = const. , (1.79)

which expresses conservation of angular momentum. The motion is re-
stricted to a plane. We recover the relation (1.11).

• Conservation of the Laplace vector. Equation of motion. We consider the
vector product of the acceleration and the angular momentum:

r̈ ∧ C = − µ

r2
er ∧ r2θ̇k = µθ̇eθ = µ

der

dt
.

Now, since C is constant, we have

d
dt

(ṙ ∧ C) = r̈ ∧ C ,

whence

d
dt

(ṙ ∧ C) =
d
dt

(µer) . (1.80)

Considering this relation, we define the vector Λ, known as the Laplace
vector (or the Laplace–Runge–Lenz vector), which has the property of
being a constant vector:

Λ =
ṙ ∧ C

µ
− er = const. (1.81)

This vector Λ is perpendicular to C, since Λ ∧ C = 0. It thus lies in the
plane of motion. In order to evaluate Λ, we calculate ṙ ∧ C :

ṙ ∧ C =
(
ṙer + rθ̇eθ

)
∧ r2θ̇k = r3θ̇2er − r2ṙθ̇eθ .

If we project Λ onto er and use the value of C given by (1.8), we have

Λ · er =
1
µ

r3θ̇2 − 1 =
1
µ

C2

r
− 1 .

We thus obtain the expression for r :

r =
C2

µ

1
1 + Λ · er

. (1.82)
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Let v be the angle between the radial vector and the fixed vector Λ.
Setting Λ · er = ||Λ|| cos v and p = C2/µ, we find that the trajectory
is an ellipse. Comparing formulas, we see that ||Λ|| corresponds to the
eccentricity. The distance r goes through a minimum when the vectors Λ
and er are collinear (with v = 0): the vector Λ goes through the periastron
and v therefore represents the true anomaly as defined earlier. Once we
know the Laplace vector Λ, we automatically have the eccentricity and
the direction of the periastron.

Note. The conservation of these quantities is expressed by Noether’s theo-
rem.7

1.8.2 Note on Energy

When we study the Keplerian motion of a satellite, its mass never enters our
considerations.8 This is why we have always spoken of acceleration rather
than force. Everything we have said so far can be recast. For example, one
could speak of a Newtonian force applied to a material point S of mass m.
This would lead us to introduce the standard definition of energy. In the case
of a Newtonian attraction, the force is

F = −m
µ

r2
er .

This corresponds to a potential energy U (recalling that F = −∇U with the
convention that U vanishes for infinite r),

U = −m
µ

r
.

The point S moving at speed V has kinetic energy T given by

T =
1
2
mV 2 .

The mechanical energy E is thus
7 Emmy Noether (1882–1935) was a German mathematician, considered as the

founder of modern algebra (inventor of rings and ideals). Noether’s theorem
(1918) says that a conservation law is a consequence of the invariance of a phys-
ical law under a continuous transformation with one parameter. (This is proven
using the Lagrangian formalism for the equations of classical mechanics.) As far
as we are concerned here, conservation of momentum (resp. angular momentum)
results from the invariance of the laws of physics under translation (resp. rota-
tion) due to the homogeneity (resp. isotropy) of space, whilst conservation of
energy results from invariance under time translations due to the uniformity of
the flow of time.

8 In the study of perturbed motion, the mass of the body is relevant in certain
specific instances, such as the study of air resistance in the upper atmosphere or
radiation pressure.
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E = T + U =
1
2
m

(
V 2 − 2µ

r

)
. (1.83)

The angular momentum L is by definition

L = r ∧ mṙ . (1.84)

The quantities considered earlier are thus equivalent to those related to the
energy:

K =
2E
m

, C =
L

m
.

Equation (1.27) which establishes that K = const. is thus equivalent to

E =
1
2
mK = const. , (1.85)

which expresses the conservation of mechanical energy E .
For periodic motion, (1.37) yields

E = −1
2
m

µ

a
, (1.86)

which is negative (this arises due to the convention for U). We see that a is
related to E/m, which shows that the period depends only on the mechanical
energy per unit mass of the material point under consideration.

1.9 Historical Note on Universal Attraction

1.9.1 Kepler’s Laws

Using observations made by Tycho Brahe,9 Kepler10 explained the motion of
the planets in the Solar System by the following three propositions (Kepler’s
laws):
9 The Danish astronomer Tycho Brahe (1546–1601) spent twenty years in his ob-

servatory in Uraniborg (‘city of the sky’), in Denmark, making very accurate
astronomical measurements. He was the first to take into account the refraction
of light. The accuracy of his observations was 1′ (1 arcmin, or 1/60 of a degree),
whereas his contemporaries were not doing better than 10′.
He measured the motion of the planet Mars, observing ten oppositions. His model
of the universe was a compromise between Ptolemy’s geocentric model and the
heliocentric model of Copernicus. In 1597, he left for Bohemia where he worked
with Kepler to set up the astronomical tables known as Tabulae Rudolphinae.

10 The German astronomer Johannes Kepler (1571–1630) published the first two
laws in 1609, in Astronomia Nova (�� �������� ��) seu Physica Cœlestis and the
third in 1619, in Harmonices Mundi.
It would be wrong to think that the laws appear in a totally clear manner in
these writings, as they would in today’s scientific papers. The mathematical ter-
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1. Law of ellipses. (a) The trajectory of each planet lies in a plane and (b)
it is an ellipse in which one focus is the Sun.

2. Areal law. The area swept out by the radial vector is proportional to the
time it takes to sweep them out.

3. Harmonic law. The square of the period of revolution is proportional to
the cube of the length of the major axis.

These correspond to our earlier equations in the following way:

Law 1a ⇐⇒ equation (1.10) ,
Law 1b ⇐⇒ equation (1.39) ,
Law 2 ⇐⇒ equation (1.16) ,
Law 3 ⇐⇒ equation (1.49) .

Note that laws 1a and 2 apply in the case of central accelerations, and laws
1b and 3 in the case of central accelerations with 1/r2 dependence, i.e., New-
tonian accelerations.

minology was heavy and the explanations hard to follow. The first of these two
books is almost exclusively devoted to describing the orbit of Mars (whence the
subtitle Tradita comentariis de motibus stellæ Martis ex observationibus G. V.
Tychonis Brahe). The second law appears at the beginning of this work and the
first at the end. Naturally, they concern only the elliptical trajectory of the planet
Mars. The Greek word attached to the title Astronomia Nova is the substantive
arising from the verb (����������), ‘to seek the causes’.
Although these works seem difficult to follow nowadays, they nevertheless at-
test to the extraordinary discoveries made by their author. To demonstrate the
eccentricity of the orbit of Mars or the Earth required a great level of trust
in Tycho Brahe’s observations, made with the naked eye, and a considerable
degree of mathematical ability. Many other moral qualities were also involved.
Courage and self-confidence were essential to take such a revolutionary theory
to its logical conclusion in the face of universal opposition, in a climate of family
problems and widespread religious hostility, as the wars of religion tore Europe
apart. Perseverance was another quality we may safely attribute: in Astronomia
Nova, following fifteen pages of close calculations, Kepler tells us that he had to
repeat them seventy times in order to arrive at the result!
Kepler was deeply convinced that the cosmic and hence divine order had to be
perfect, and had great difficulty renouncing the perfection of the circular orbit
in favour of the ellipse, blemished as it was by the failings of the real world.
Throughout his approach to science, Kepler was guided by this search for divine
harmony. In this last work, this led to the musical harmony of the planets and
the geometrical harmony of the regular polyhedra he fitted around the planetary
orbits. In this context, Kepler wrote: “There are six planets because there are five
regular polyhedra. I cannot begin to express my wonder before this discovery.”
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1.9.2 Newton and the Law of Universal Attraction

Whilst Kepler was the founder of celestial mechanics, it was Galileo11 who
laid the foundations for terrestrial mechanics, at the same period.

But it required the genius of Newton12 to synthesise these two aspects
of the same phenomenon into a single idea: the universal law of attraction.
Today, we show that an attraction of type 1/r2 between the Sun and the
planets leads to an elliptical trajectory for the planets. But historically, New-
ton had to piece together the rudiments of infinitesimal calculus (called the
method of fluxions) and, starting from the elliptical trajectories discovered
by Kepler, deduce that the forces at play had to have the 1/r2 dependence,
whereupon he could put forward his law of universal attraction.

Let us rewrite Newton’s demonstration using the notation of modern
mathematics. We begin, as he did, with the principle that the forces were
central. We consider a material point, whose position is defined by a radial
vector r describing an ellipse. We can then write

u =
1
r

=
1 + e cos θ

a(1 − e2)
,

from which we deduce
11 Galileo Galilei (1564–1642) was an Italian physicist and astronomer. Shortly

after the invention of the refracting telescope, he began to use this instrument
to observe the sky. In 1610, he discovered four moons in orbit around Jupiter
and it was this observation that persuaded him that the Earth and the other
planets were in orbit around the Sun. The discovery of the crescent of Venus
(impossible in a geocentric system), confirmed this idea and he communicated
it to Kepler. Galileo wrote down all his astronomical discoveries in Sidereus
Nuncius. He propounded the principle of inertia, which corresponds to Newton’s
first law, in 1638, in Discorsi intorno a due nuove scienze. (This was not written
in Latin, but in the local vernacular, volgare, of Italy or Tuscany – this too was
revolutionary.)

12 Isaac Newton (1642–1727) was an English mathematician, physicist and as-
tronomer. In 1687, he proclaimed the three laws of mechanics in his Philosophæ
Naturalis Principia Mathematica:

1. the law of inertia,
2. the fundamental law of dynamics – in a Galilean frame of reference, the force

is equal to the product of the (inertial) mass and the acceleration,
3. the law of action and reaction.

It can be shown that (1) is a special case of (2) and that (3) follows from (2).
The fundamental law (2) (usually referred to as Newton’s second law) was not
originally expressed in this way by Newton.
Newton’s work dominated eighteenth century mathematics (analysis, solution of
equations, etc.) and physics, and in particular, optics (with the publication of
his book Opticks).
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du

dθ
= − e sin θ

a(1 − e2)
,

d2u

dθ2
= − e cos θ

a(1 − e2)
.

Substituting this into Binet’s equation (1.18) (recall that this refers to central
forces), we obtain

r̈ = −C2u2

[
− e cos θ

a(1 − e2)
+

1 + e cos θ

a(1 − e2)

]
er

= −C2u2 1
a(1 − e2)

er

= − C2

a(1 − e2)
1
r2

er .

Now C is given by πab = CT/2 (this is the areal law, which also refers to
central forces), i.e.,

C =
2π

T
a2
√

1 − e2 .

We can therefore deduce that

r̈ = −4π2

T 2
a3 1

r2
er ,

whereby we obtain

r̈ = − µ

r2
er = − µ

r3
r with µ =

4π2

T 2
a3 .

Tycho Brahe’s observations as interpreted by Kepler showed that this quan-
tity µ remains constant for all planets gravitating around the Sun. Newton
thus deduced that it could be written in the form

µ = GMS ,

where MS is the mass of the Sun and G is a universal constant.
Finally, the attractive force exerted by a body of mass M on a body of

mass m (and conversely) could be written

F = mr̈ = −GMm

r2
er .

This is indeed the law of universal attraction between two bodies of masses
M and m, where G is the gravitational constant.

1.10 Appendix: Geometry of the Ellipse

1.10.1 History, Definition, and Properties

The Greek mathematicians (notably Apollonios of Perga, ca. 200 BC) studied
the geometric figures obtained by intersecting a cone of revolution with a
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plane. They called these conic sections13 and classified them into various
types (ellipse, parabola, hyperbola).14

We shall be concerned here with the ellipse, which is given the following
definition today:

(a) The ellipse is the locus of points in the plane such that the sum of their
distances to two fixed points (F and F ′ in this plane, called foci) is equal
to some given value.

The etymological definition of the ellipse is:

(b) The section of a cone of revolution by a plane is an ellipse if the plane
through the apex, parallel to the intersecting plane, lies entirely outside
the cone.

Property (b) is proven from the definition (a), along with a great many
other properties, showing the tremendous wealth of this family of geometrical
objects. Let us mention the main properties:

(c) A light ray emerging from a focus15 goes through the other focus after
reflecting from the ellipse.

(d) The orthogonal projection of a circle on a plane is an ellipse.
(e) The ellipse is obtained from a circle by an affine transformation16 of ex-

pansion
√

1 − e2, where e is the eccentricity of the ellipse.
13 The word ‘conic’ is borrowed from the late Greek adjective kônikos, which itself

comes from kônos, (� ��̃���� ��), meaning ‘pine cone’.
14 Apollonios of Perga used the following three terms, all borrowed from the lan-

guage used by the Pythagoreans:

• ellipse: (� 	

����� ���) means ‘lack’ (‘omission of a word’), thereby reminding
us that this figure is an imperfect circle,

• parabola: (� ������
�� �̃�), action of ‘throwing next to’, whence ‘comparing’,
• hyperbola: (� ������
�� �̃�), action of ‘throwing over’, whence ‘exceeding’.

The last two words are built around the Greek verb (��

�� �), ‘to throw’. It is
interesting to note that, taken in this order, the three nouns ‘lack’, ‘equality’
(comparison) and ‘excess’ associated with the three conics correspond to the
relation that the eccentricity bears to unity. The names of the conic sections
were introduced by Kepler, Desargues and Descartes in the first half of the
seventeenth century, first in Latin, then in the modern European languages.

15 It is this property that justifies the term ‘focus’.
16 An affine transformation with axis D, direction δ and expansion k (k �= 0) is

the point transformation which maps any point M in the plane to the point M ′

constructed as follows: the straight line MM ′ parallel to δ meets D at H , where

HM ′ = k(HM ) .
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1.10.2 Cartesian and Polar Coordinates

We define a Cartesian coordinate system (O; x, y). Consider a circle with
radius a and centre at O. The ellipse is the affine transformation of the circle
with expansion k = b/a, axis Ox and direction Oy. In this case, a and b are
the lengths of the semi-major and semi-minor axes, respectively, as shown in
Fig. 1.5. The equation for the ellipse in Cartsian coordinates is thus

x2

a2
+

y2

b2
= 1 . (1.87)

The foci F and F ′ of the ellipse are symmetrical with respect to O. We set

OF = c ,

and let M be an arbitrary point on the ellipse. Hence, from the definition of
the ellipse,

MF + MF ′ = 2a .

When the point M is at B, we have MF = a, and we may write

a2 = b2 + c2 .

The eccentricity is defined by

c = ae .

We then obtain the relation

b2 = a2(1 − e2) , (1.88)

and the expansion k of the affine transformation mentioned above is equal to√
1 − e2.

We take F as the origin of the polar coordinate system (r, θ). Let M be an
arbitrary point on the ellipse and H its projection onto Ox. Polar coordinates
are defined by

r = ‖FM‖ , θ = (Fx, FM ) .

The relation between Cartesian and polar coordinates is thus{
x = OH = ae + r cos θ ,
y = HM = r sin θ .

The equation for the ellipse becomes

(1 − e2)(a2e2 + 2are cos θ + r2 cos2 θ) + r2 sin2 θ = (1 − e2)a2 .
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Figure 1.5. Ellipse and principal circle, using the notation of the Cartesian coor-
dinates (axes Ox, Oy) and polar coordinates (r = FM , angle θ)

With some calculation,

r2 − (1 − e2)(1 − e2)a2 + (1 − e2)2are cos θ − e2r2 cos2 θ = 0 ,

r2 =
[
a(1 − e2) − re cos θ

]2
,

r(1 + e cos θ) = a(1 − e2) ,

whereupon the equation for the ellipse in polar coordinates becomes

r =
p

1 + e cos θ
. (1.89)

We have introduced the focal parameter p

p = a(1 − e2) .

We can express p and e in terms of a and b :

p =
b2

a
, e2 =

a2 − b2

a2
,

or conversely,

a =
p

1 − e2
, b =

p√
1 − e2

.
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Low-Eccentricity Orbits

We thus see that, for an ellipse, the distance from the centre to the focus is
proportional to e and, for orbits with low eccentricity, the difference between
the semi-major axis and the semi-minor axis is proportional to e2:

c

a
= e ,

a − b

a

 1

2
e2 . (1.90)

The elliptical orbit with eccentricity 1/10 can be considered as a circle of
radius R but with a focus situated at a distance R/10 from the centre.17

Angle of Eccentricity

The eccentricity can be expressed via the auxiliary angle ψ, known as the
angle of eccentricity, defined by

e = sin ψ . (1.91)

It is easy to see (with sin ψ = ae/a, for example) the geometrical meaning
of this angle introduced by Gauss. For most relations involving e, we obtain
very elegant expressions in terms of ψ. Some examples are:

• For the semi-minor axis,

b = a cosψ .

• For the formulas giving the maximum and minimum speeds (1.44) and
(1.45), respectively,

Vp =
√

µ

a
tan

(
π

4
+

ψ

2

)
, Va =

√
µ

a
tan
(

π

4
− ψ

2

)
.

• For the relation (1.64) between the anomalies, which uses the auxiliary
variable β defined by (1.65), we have

β = tan
ψ

2
.

17 In the case of Mars, e = 9.3 × 10−2, e2/2 = 4.4 × 10−3. This orbit can therefore
be represented as a circle of radius 1 m (a = 1000 mm, b = 996 mm), but with
focus 9.3 cm from the centre.
This was how Kepler formulated, in 1600, what was to become his first law: the
orbit of Mars is circular and the Sun is not at its centre. Kepler used the idea
of the ellipse from 1603: Itaque plane hoc est ... Planetæ orbita non est figura
circula, sed ovalis (elliptica). Later he wrote: “I began by assuming that the
planetary orbits were perfect circles. This mistake cost me all the more time in
that it was upheld by the authority of all the philosophers and seemed altogether
plausible from a metaphysical standpoint.”
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1.10.3 Eccentricity and Flattening

When one focus plays a privileged role, as in the study of motion under the
action of a central force, we use the eccentricity and polar coordinates. When
the ellipse is treated as a flattened circle, under affine transformation, it is
the centre of the circle (and the ellipse) that plays a privileged role. We then
use the flattening and Cartesian coordinates.

The flattening f is defined by

f =
a − b

a
. (1.92)

The following relations hold between e and f :

b

a
=
√

1 − e2 = 1 − f ,

f = 1 −
√

1 − e2 ,

e2 = 1 − (1 − f)2 .

We shall now describe two examples.

Example 1.2. Calculate the polar radius of the Earth, treating it as an ellipsoid of
revolution with flattening f = 1/298.257.

Let Re be the equatorial radius and Rp the polar radius (i.e., with the standard
notation for the ellipse, Re = a and Rp = b). We take Re = R = 6378.137 km. For
the polar radius, we thus have

Rp = R(1 − f) = 6 356.752 km ,

and for the difference between the radii,

Re − Rp = Rf = 21.384 km .

For the eccentricity, we find e = 0.0818, but this idea is not used in the case of the

terrestrial ellipsoid for the reasons discussed above. Note that e2 ≈ 2f ≈ 1/150.

Example 1.3. Calculate the eccentricity of the orbit of an artificial satellite in orbit
around the Earth whose altitudes at perigee and apogee are 500 km and 40 000 km,
respectively (the so-called Molniya orbit). Take the value R = 6 400 km.

Let hp and ha be the altitudes at perigee and apogee, respectively. Using the dis-
tances rp and ra defined by (1.42) and (1.43), we have

rp = R + hp , ra = R + ha ,
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Figure 1.6. Different latitudes for a point M on the ellipse (representing the
terrestrial ellipsoid): geocentric latitude φ (angle AOM), geodetic latitude Φ, and
reduced latitude E

a = R +
ha + hp

2
,

which imply, with (1.47), that the eccentricity is given by

e =
ha − hp

2R + ha + hp
.

In the case of the Molniya orbit, we have

e =
39 500

12 800 + 40 500
≈ 0.75 .

Moreover, (1.46) gives Va/Vp = (1−e)/(1+e) = 0.25/1.75 = 1/7. This type of orbit

gives the satellite a speed seven times slower at the apogee than at the perigee.

1.10.4 Radius of the Ellipse

To study the terrestrial ellipsoid, we consider a polar coordinate system with
origin at the centre of the Earth. This is a compromise between the two
coordinate systems discussed above. Consider a plane through the axis of
revolution of the Earth (the axis joining the poles). Let M be a point in this
plane on the surface of the Earth, hence on the ellipse, as shown in Fig. 1.6
(where the flattening of the ellipse has of course been exaggerated).
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We set

ρ = ‖OM‖ , φ = (Ox, OM) .

ρ is called the radius of the ellipse. For the terrestrial ellipsoid, the angle
φ represents the latitude. To be more precise, we call this the geocentric
latitude to distinguish it from the geodetic latitude, which is denoted by Φ
in the figure.18

Now consider the point N on the principal circle, of radius a, for which
M is the affine transform. We define the angle E = (Ox, ON), known as
the reduced latitude, or parametric latitude, which is nothing other than the
eccentric anomaly defined earlier.

Later, when studying satellite altitudes, we shall need to know ρ as a
function of φ. To this end, we adopt Cartesian coordinates x and y,

x = ρ cosφ , y = ρ sin φ ,

inserting them into the definition (1.87) of the ellipse. We thus obtain

ρ2

(
cos2 φ

a2
+

sin2 φ

b2

)
= 1 ,

which gives ρ as a function of the geocentric latitude φ :

ρ(φ) =
a√

cos2 φ +
sin2 φ

(1 − f)2

, (1.93)

with f the flattening.
Note that

ρ(0) = ρ(π) = a ,

18 The geodetic latitude Φ is defined by the angle between the normal to the tangent
to the ellipse at M and the Ox axis. (We also define the astronomical latitude by
the angle between the vertical, given by the direction of a plumbline at a given
location, and the equatorial plane.) One can then prove the following relation
between Φ and φ:

tan Φ =
tan φ

(1 − f)2
.

For small f (f � 1), this formula simplifies to Φ ≈ φ+f sin(2φ). Such an approx-
imation is of course justified for the the terrestrial ellipsoid, and the difference
(Φ − φ) is therefore always very small. It reaches its maximum for φ = ±45◦

where it has the value Φ − φ = f (rad) = 0.19◦. Consequently, in this book, we
shall only consider the latitude φ, which we shall call the geographical latitude.
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ρ(π/2) = ρ(3π/2) = b .

When f is small (f � 1), we can expand (1.93) to first order in f to obtain
the simplified relation

ρ(φ) ≈ a(1 − f sin2 φ) .



2 Satellite in Keplerian Orbit

From now on, we shall be mainly concerned with the periodic motion of a
body, the artificial satellite,1 in the gravitational field of the Earth.

2.1 Gravitational Field

2.1.1 Universal Attraction

The law of gravity, or universal attraction, propounded by Newton says that
two point bodies A and B with masses M and m, respectively, attract each
other with a force proportional to each of their masses and inversely propor-
tional to the square of the distance separating them:

fA→B = −fB→A = −GMm

r2
er , (2.1)

where
1 In Latin, satelles, satellitis was a bodyguard, soldier, assistant, or accomplice.

The origins of the word are obscure. Some claim an Etruscan origin. The word
satelite appears in French around 1265 to denote an armed man who carries
out the orders of a commander, then in the form satellite, around 1500, to refer
to a man depending in some way on another, or accompanying another. It was
Kepler, in 1611, who gave it the modern meaning of ‘satellite’ in the Latin term
satelles, which he used to refer to the four satellites of Jupiter, recently discovered
by Galileo with his refracting telescope. He wrote: De quattuor Jovis satellibus
erronibus, that is, ‘Concerning the four wandering companions of Jupiter’. The
term ‘artificial satellite’ appeared around 1950.
In many languages, ‘satellite’ is expressed by a word coming directly from the
Latin term modernised by Kepler, as in the Latin and Anglo-Saxon languages.
In others, it is the word for ‘Moon’ which is used, as in Arabic (qamar s.anā’i,
meaning ‘artifical moon’).
However, certain languages have kept to the first idea of satelles. In modern
Greek, the satellite is still a bodyguard, since it is called doryphoros, � ����������

��, ‘armed with a spear’, built up from 	
 ����� �	��, ‘spear’ and the suffix
�����, ‘which carries’. In Russian, sputnik is the travel companion (put, ‘way’).
In Chinese, the satellite is called wei xing, ‘guardian star’, a word written with the
two ideograms wei, ‘guard’ and xing, ‘star’. The same form is found in Japanese.
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fA→B is the force exerted by A on B

and

AB = r = rer .

The value of G, the gravitational constant, is not used directly when study-
ing trajectories (see Table 3.7). Instead, one uses the specific gravitational
constant µ, which is the product of G and the mass of the relevant attracting
body (e.g., the geocentric or heliocentric gravitational constant).

The relation (2.1) is symmetric. In order to distinguish the role of one of
the two bodies, we may express the fact that body A, for example, creates a
gravitational field to which body B is subjected. This field g is such that

fA→B = mg ,

or, with µ = GM ,

g = − µ

r2
er = − µ

r3
r . (2.2)

2.1.2 Gauss’ Theorem

When studying the motion of the Earth with respect to the Sun, the two
bodies can be treated as pointlike compared with the vast distance that
separates them. But this is not the case for a satellite gravitating around the
Earth at an altitude of just 800 km, or when we consider the weight of an
object resting on the Earth’s surface. To face this difficulty, we apply Gauss’
theorem. There are many ways to prove this theorem. We shall use a method
based on the idea of solid angle.

Consider a closed surface S enclosing a volume V . We can thus define
an inside and an outside. Consider a surface element dS and a unit normal
vector n pointing from the inside towards the outside. The flux of an arbitrary
vector field g through the surface element is by definition

dΦ = g·dS , with dS = ndS .

The flux of g out through the whole of the surface S is

Φ =
∮

S

g·dS ,

where the integral is taken over the whole of the closed surface S.
Consider a surface S enclosing a distribution of masses: each point Ai is

attributed a mass Mi. The field created by each mass Mi at a point B is

gi = −GMi
AiB

‖AiB‖3
.
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As the point P runs over the surface S, the flux out of S is

Φ =
∮

S

g·dS = G
∮

S

∑
i

Mi
AiP

‖AiP ‖3
·dS = G

∑
i

Mi

∮
S

n·(AiP )
‖AiP ‖3

dS .

Now,

n·(AiP )
‖AiP ‖3

dS =
dS cosαi

‖AiP ‖2
=

dΣ

‖AiP ‖2
= dΩi ,

where αi is the angle between the normal and AiP , and dΣ is the projection
of dS on the plane perpendicular to AiP . The quantity dΩi is then the
element of solid angle, represented by the elementary cone with apex Ai

standing on the surface element dS (or dΣ, which amounts to the same
thing).

The integration over dΩi is independent of the surface S. We thus take a
sphere of centre Ai and radius R. This gives

Ωi =
∮

dΩi =
∮

dΣ

R2
=

1
R2

∮
dΣ =

4πR2

R2
= 4π .

On the other hand, an external mass, i.e., with Ai outside S, produces a
field whose flux through S is zero. Indeed, a cone with apex Ai standing
on a surface element dS determines two opposing flux elements, whose to-
tal contribution cancels. (dΦ is a scalar whose sign depends on the scalar
product.)

Finally, letting Mint =
∑

int Mi be the sum of the masses contained within
the surface S, the flux out of S is

Φ = −4πG
∑
int

Mi ,

and Gauss’ theorem is ∮
S

g·dS = −4πGMint . (2.3)

For a continuous mass distribution with density ρ at a given point, Mint is

Mint =
∫

V

ρ(r)dV .

2.1.3 Calculating the Field by Gauss’ Theorem

If the density depends only on r (the magnitude of r), i.e., if the mass distri-
bution is spherically symmetric, the field it produces will also have spherical
symmetry:
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g(r) = ‖g(r)‖r

r
.

Its flux is then easy to calculate. For S, we choose the surface of a sphere of
radius r containing all the mass Mint. From the symmetry, the field g must
be orthogonal to S at every point. Remembering that r is constant over the
whole surface S, we obtain

Φ =
∮

S

g·dS =
∮

S

‖g(r)‖r

r
·ndS = ‖g(r)‖

∮
S

dS = 4π‖g(r)‖r2 .

Applying Gauss’ theorem (2.3), we find that

4π‖g(r)‖r2 = −4πGMint ,

and hence the expression for the gravitational field g :

g(r) = −GMint
r

r3
. (2.4)

This shows that the field is the same as would be produced by a point mass
Mint located at the centre of the spherical distribution.

2.1.4 Gravitational Field of the Earth

In this chapter, we treat the Earth as a sphere whose density is a function of
distance from the centre O. If we consider a point outside or on the surface
of the Earth, the field at distance r from O is

g(r) = −µ
r

r3
, with µ = GM , (2.5)

where M is the total mass of the Earth. In this case, µ is called the geocentric
gravitational constant. Under such conditions, a satellite in orbit around the
Earth can be considered to follow Keplerian motion: a point mass moving in
a 1/r2 field created by a motionless point mass (the mass of the Earth). This
is precisely what we studied in Chap. 1. Under the conditions (1.34) on the
speed, we have a periodic motion whose trajectory is a plane ellipse.

In the real world (as we shall see in the next chapter), the motion of a
satellite is close to Keplerian, but slightly different nonetheless. There are
two main reasons for this:

• the Earth is not perfectly spherical and the mass distribution does not
depend on r alone,

• the gravitational fields of the Sun, the Moon and the planets in the Solar
System are superposed on the Earth’s own gravitational field.

The motion of a satellite is thus perturbed by these various effects. Satellite
trajectories are not therefore ideal Keplerian orbits, but orbits arising from
them in ways we shall now examine.



2.2 N-Body and 2-Body Problems 45

2.2 N -Body and 2-Body Problems

2.2.1 N-Body Problem

We consider N bodies in space, each producing a gravitational field. If we
wish to know the motion of one of these bodies, we must take into account
the fact that it is attracted to the other (N − 1) bodies. This is called the
N -body problem. It has no exact analytical solution in the general case, if
N is greater than or equal to 3. The 3-body problem was studied by Euler,
Lagrange, Laplace, and Poincaré. The motion of the Moon clearly falls into
the category of 3-body problems (involving the Moon, the Earth and the
Sun).

Poincaré showed that a system of 3 or more bodies is chaotic: it evolves
in a way that depends critically on the initial conditions, to such an extent
that those conditions would have to be determined to greater accuracy than
is actually possible. For the planets in orbit around the Sun, the problem is
simplified by considering the masses of the planets to be very small compared
with the mass of the Sun. (This is justified: the mass of Jupiter is only one
thousandth of the mass of the Sun.) The N -body problem is transformed
into (N − 1) two-body problems. Each planet is treated as subject to the
gravitational field of the Sun, taken as motionless, whilst the attractions due
to the other planets are treated as perturbations.2 The same can be done
for artificial satellites around the Earth: the action of the Sun and Moon are
treated as perturbations.

2.2.2 2-Body Problem

Consider two bodies A1 and A2, with masses m1 and m2, respectively, moving
in a Galilean reference frame (O0; x, y, z) (the notion of Galilean frame is
defined below). The system is isolated in the sense that each body feels only
the attractive force of the other. Taking an arbitrary origin O, Newton’s
second law takes the form

m1
¨OA1 = −Gm1m2

A1A2

‖A1A2‖3
,

m2
¨OA2 = −Gm1m2

A2A1

‖A2A1‖3
,

2 The first use of this approach was for a prediction of the return of comet Halley
by Clairaut, Lalande and Reine Lepaute. The comet (with period 76 years) was
expected in 1758, but these astronomers successfully announced its return for
March 1759, with a delay of 200 days due to the influence of Jupiter and Saturn,
having accurately calculated their perturbing effect. See also the note on Le
Verrier.



46 2 Satellite in Keplerian Orbit

which yields the relation

m1
¨OA1 + m2

¨OA2 = 0 . (2.6)

The barycenter C of two points A1 and A2 (also called the centre of mass)
is defined by

m1OA1 + m2OA2 = (m1 + m2)OC .

We thus have

ÖC = 0 =⇒ OC = v0t + u0 ,

where the vectors v0 and u0 are constant.
Since C is in uniform motion with respect to (O0; x, y, z), this shows that

the frame (C; x, y, z) is Galilean. Using (2.6) and the expressions for the
accelerations, we obtain

¨A1A2 = −G(m1 + m2)
A1A2

‖A1A2‖3
. (2.7)

Taking the barycenter C of these two points as the origin, we thus have

r1 = CA1 , r2 = CA2 , r12 = r2 − r1 ,

and from the definition of the barycenter,

m1r1 + m2r2 = 0 .

Equation (2.7) gives the equation of motion

r̈12 = −G(m1 + m2)
r12

‖r12‖3
, (2.8)

as observed with respect to a Galilean frame of reference. The motion of
the points A1 and A2 can then be deduced from the motion of r12 via the
relations

r1 = − m2

m1 + m2
r12 , r2 = +

m1

m1 + m2
r12 .

As an example, for the motion of the Moon (A2) around the Earth (A1),
we have m1 = 81m2: the motion is studied relative to the barycenter of the
Earth–Moon system.

For an artificial satellite (A2) in orbit around the Earth (A1), m2 is neg-
ligible in comparison with m1, and we have

r1 = 0 , r2 = r12 .

Briefly, the motion of an artificial satellite around the Earth will be treated
as follows:



2.3 Orbital Elements 47

• To begin with, it will be considered as a two-body problem in which one
body (the satellite) has negligible mass compared with the other. It will
therefore be in Keplerian motion and the orbit it follows will be called
the Keplerian orbit.

• In a second step, this motion will be considered to be perturbed. The real
orbit which results will be called the perturbed orbit.

2.3 Orbital Elements

2.3.1 Defining the Frame of Reference

The fundamental principle of mechanics known as the Galilean principle of
relativity says that the properties of space and time are the same, and the
laws of mechanics are identical, in all inertial frames of reference.

An inertial frame, or Galilean frame, is any frame of reference at rest
with respect to an absolute frame of reference called the Copernican frame.3

A representation of this Copernican frame can be obtained as follows: it is
a frame with origin at the Sun and axes in three perpendicular directions
fixed relative to the distant stars. The Sun and stars are considered to be
fixed. A frame centred on the Earth and with axes parallel to the axes of a
Copernican frame is not Galilean, because the Earth is in motion around the
Sun. However, in most cases, this frame can be considered as inertial.4

3 Nicolaj Kopernik (1473–1543), known in English as Nicolaus Copernicus and in
Latin as Nicolaus Copernicus Torinensis, was a Polish astronomer. By the time of
Copernicus, the inadequacies of the Ptolemaic system had become clear to several
astronomers, including those at the University of Padua. However, Copernicus
was the first, in his work De Revolutionibus orbium cœlestium, Libri VI, to reject
the geocentric system in favour of the heliocentric system. In this model, the
Sun occupies a central position and the planets all move on concentric spheres.
Fearing the reactions of contemporary theologians, he delayed publication of his
book, which came out in the year he died. (According to the story, it came out
on the very day of his death: Copernicus laid his hand on the printed copy of De
Revolutionibus and expired.)

4 The orbital motion (hence, accelerating) of the terrestrial frame explains the
phenomenon known in astronomy as aberration: the apparent position of a star
in the sky describes an ellipse, flattened to varying degrees depending on the
position of the star with respect to the plane of the ecliptic. The semi-major axis
of this ellipse subtends 20′′.5, a value which depends only on the ratio of the
speed of the Earth in its orbit to the speed of light.
Aberration is superposed in a quite independent manner on the phenomenon
of astronomical parallax. This is the displacement of the apparent position of a
star due to the change in position of the Earth in its orbit during the year, and
hence the change in position of the point of observation. Parallax decreases in
proportion to the distance of the star, and is relatively unimportant. Indeed, it
is less than 1 arcsec for the nearest star.
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Consider a satellite in periodic motion around the Earth. Let us define the
frame (O; x, y, z). The origin O is the centre of the Earth, which is taken to be
a sphere Σ. The axis Oz is the axis joining the poles, oriented from the south
to the north. The plane xOy is the equatorial plane of the Earth, denoted
E , which cuts the terrestrial sphere at the equator. The axis Ox is chosen
arbitrarily to point towards a distant star. The axis Oy is deduced from the
other two axes in such a way as to obtain a right-handed orthonormal frame.
The frame associated with this coordinate system is considered to be Galilean
and will be denoted by .

The motion of the satellite is Keplerian, i.e., it occurs on a Keplerian
orbit. In , the trajectory is a conic section, in this case an ellipse, with one
focus at the centre of attraction O, and lying in a plane P , the orbital plane.

In this Galilean frame, the orbital plane P is fixed. Let OZ denote the
straight line perpendicular to P at O. The intersection of the planes P and
E is a straight line through O, called the line of nodes.

2.3.2 Specifying a Point on an Orbit

In order to specify a point in Keplerian motion in space, the first step is to
identify the orbit, and then the point on the orbit. We thus define successively:

(a) the location of the orbital plane in this frame,
(b) the position of the elliptical orbit in this plane,
(c) the characteristics of the ellipse,
(d) the position of the moving point (i.e., the satellite) on the orbit.

We shall find that six parameters are necessary and sufficient to determine
the position of the satellite in . Let us now go through each of these points.

Points (a) and (b): Locating the orbital plane in the coordinate
system, and the orbit in the plane. The orbit is considered as a solid.
When a solid has a fixed point in a frame , its position relative to  is de-
termined by three parameters corresponding to the three degrees of freedom.
We choose the Euler angles, defined classically as the angle of precession ψ,
the angle of nutation θ, and the angle of proper rotation5 χ.

We shall return to the details of the decomposition of a rotation into
elementary rotations when we come to study the ground track in Chap. 5.
In the present context, to specify the plane P of the ellipse, we consider the
intersection of P with the sphere Σ, which gives the circle T , as shown in
Fig. 2.1. T is called the ground track of the orbit.

The projection of P , the perigee, on the ground track is P0 (the intersec-
tion of OP with Σ). The two points of intersection of the ground track T
5 The three Euler angles are traditionally denoted by φ, θ and ψ, respectively, in

the literature. We have broken with this tradition by using χ, to avoid confusion
with the latitude, which already uses the symbol φ.
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Figure 2.1. Ground track and orbital elements. The point S0 is the projection of
the point S (satellite) and the point P0 is the projection of the perigee P onto the
ground track. The point N is the projection of the ascending node and N ′ is the
projection of the descending node. The equatorial plane of the Earth is (xOy,N ,
N ′), normal to Oz. Orbital plane: (P0, S0, N , N ′), normal to OZ. Three of the
orbital elements are the Euler angles: the longitude of the ascending node (Ω),
the inclination (i), and the argument of the perigee (ω). The fourth, here the true
anomaly (v), specifies the point on the ellipse. The two other parameters (a and e)
serve to define the shape of the ellipse and are not shown here. Upper image: Orbit
viewed in a Galilean frame
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with the equator are denoted N and N ′. N is the projection of the ascending
node (where the moving point S passes from the southern hemisphere into
the northern hemisphere) onto the ground track, and N ′ is the projection
of the descending node (where the moving point S passes from the northern
hemisphere into the southern hemisphere) onto the ground track. In the fol-
lowing, we shall simply refer to N and N ′ as the ascending and descending
nodes, respectively.

For a circular trajectory, P , and hence P0, are not defined. If the orbit
is equatorial (P and E coincide), points N and N ′ are not defined. We shall
return to these cases below.

Using standard astronomical notation, the three Euler angles are:

• Angle of precession Ω, called here the right ascension of the ascending
node or the longitude of the ascending node:

Ω = (Ox, ON ) .

• Angle of nutation i, called here the inclination. This is the dihedral angle
i = (E ,P) between the equatorial and orbital planes, viz.,

i = (Oz, OZ) .

• Angle of proper rotation ω, called here the argument of the perigee:

ω = (ON , OP 0) .

The angles Ω and i achieve (a), that is, they locate P in , whilst the angle
ω achieves (b), that is, it specifies the position of the orbit in P .

Point (c): Characterising the ellipse. Since its axes are specified (OP
orients the ellipse), the ellipse is characterised by two parameters:

• Length of the semi-major axis and eccentricity,

a and e ,

respectively.

Point (d): Locating the satellite in its orbit. A point on the ellipse
is perfectly determined by an angle. We choose from the three anomalies
discussed in Chap. 1, i.e., v, E or M . If S0 is the ground position of the
satellite S (the intersection of OS with Σ), the true anomaly v is defined by

v = (OP 0, OS0) ,

and the mean anomaly M by

M = n(t − tp) ,
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where n is the mean motion and tp the time of passage at perigee (when S
is at P , or S0 at P0), as given in (1.66).

We can also use the angle α, called the argument of the latitude or the
position on orbit:

α = ω + v , (2.9)

which specifies the position of S relative to the ascending node.

2.3.3 Keplerian Elements

The parameters discussed above define the orbit and the position of the
satellite on the orbit. These parameters constitute the six orbital elements,
also known as the Keplerian elements. They are generally organised in the
following order:

a, e, i, Ω, ω, M .

The parameter a has dimensions of length, whilst the five others (e and the
four angles) are dimensionless.

We should ask why there are 6 parameters. Here are two equivalent rea-
sons:

• Three points define the position of a solid in space. Once the point O is
fixed, 6 parameters (2 times 3 position coordinates) define the two other
points.

• The position of a point (3 position coordinates) and its velocity (3 velocity
components) at a given time can provide the initial conditions required
to integrate the equations of motion, thereby defining the position of a
point on its trajectory.

In Sect. 5.7, we shall examine the orbital elements which allow one in prac-
tice to locate a satellite with great accuracy. We shall describe the relation
between these elements and the Keplerian elements discussed here.

2.3.4 Adapted Orbital Elements

In certain cases (mathematically rather special but often encountered in prac-
tice), the Keplerian elements do not provide a precise enough system of pa-
rameters. They are then combined in such a way as to provide better adapted
parameters. We shall now list the combinations used to get around the dif-
ficulties. No attempt has been made to give more than a simple inventory.
These methods are used for a highly refined description of satellite motion
(accurate positioning and stationkeeping), which lie beyond the scope of the
present book.
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• Near-Circular Orbits. For very low eccentricities, the perigee is ex-
tremely difficult to establish and small fluctuations in e can lead to large
variations in ω. To specify the position of the satellite in its orbit, it is
more convenient to take the origin at the ascending node, with ω + M ,
than at the perigee, with M . The Keplerian elements are then replaced
by the following adapted parameters:

a, e cosω, e sinω, i, Ω, ω + M .

• Near-Equatorial Orbits. If the orbit lies almost in the equatorial plane,
the ascending node is ill-defined. There may even be discontinuities in Ω
when the plane of the orbit crosses the equatorial plane: the ascending
node becomes the descending node. In this case, it is preferable to use the
following parameters:

a, e, ω + Ω, 2 sin
i

2
cosΩ, 2 sin

i

2
sin Ω, M .

• Near-Circular Near-Equatorial Orbits. If the conditions of the last
two cases are brought together simultaneously (as in the case of geosta-
tionary satellites, as we shall see below), the following parameters are
preferred:

a, e cos(ω + Ω), e sin(ω + Ω),

2 sin
i

2
cosΩ, 2 sin

i

2
sin Ω, ω + Ω + M .

2.4 Near-Circular Orbits

Let us now reconsider near-circular orbits. We adopt a different standpoint to
the one taken above, where we discussed specially adapted parameters. The
aim here is not to specify the position of the satellite with high accuracy, but
rather to assess the error involved in treating a near-circular orbit as actually
being circular.

2.4.1 Low-Eccentricity Orbits

For low-eccentricity orbits, the equation of centre defined by (1.74) can be
used to assess the deviation from uniform circular motion. Expanding to first
order, we can obtain simplified relations between v and E, then between E
and M , using (1.64) and (1.68):⎧⎨⎩ v − E ≈ e

(
1 +

1
2
e cosE

)
sin E ,

E − M = e sinE .

(2.10)
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Neglecting e2 in comparison with e and replacing E by M in the argument
of the sine function, we obtain{

v − E ≈ e sinM ,
E − M ≈ e sinM ,

(2.11)

which gives for the equation of centre EC,

EC = v − M ≈ 2e sinM . (2.12)

The maximum of (v − M), denoted (v − M)m or ECm , is thus equal to

ECm = (v − M)m = 2e . (2.13)

Using (1.75) and truncating at first order, we obtain6

vm ≈ π

2
+

3
4
e . (2.14)

We thus obtain the corresponding value of Mm, viz.,

Mm = vm − 2e ≈ π

2
− 5

4
e . (2.15)

The values at the minimum are obtained by symmetry.

2.4.2 Near-Circular Orbits

Representing an elliptical orbit by a circular one amounts to identifying the
anomalies v, E and M . We can therefore evaluate the error involved by using
the quantity (v − M). We shall now give an example of this procedure.

Example 2.1. Find the error involved in calculating the various quantities asso-
ciated with the orbit of the satellite SPOT-4 under the assumption that its orbit is
circular.

The eccentricity of the orbit of SPOT-4 is e = 1.14×10−3 , as it is for all the SPOT
satellites. We thus have (v −M)m = 2.28× 10−3 rad, corresponding on the ground
track to a maximal error ∆x of

∆x = 2.28 × 10−3R ≈ 14 km ,

where R is the radius of the Earth. For the time of passage, given that the period
of this satellite is T = 101 min, the maximal error is ∆t given by

6 Recall that the Taylor expansion of arcsin is

arcsin x = x +
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+ · · · ,

and arccos x = π/2 − arcsin x.
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Figure 2.2. Keplerian period of a satellite as a function of altitude. Abbreviations
LEO, MEO and GEO are explained in Chap. 5

∆t = 2.28 × 10−3 T

2π
≈ 2 s .

In the context of precision orbitography, an error of 14 km is unacceptable. On

the other hand, for a time sampling study, an error of this order, corresponding

to 2 s, is quite negligible. Note also with regard to the orbit that, when applying

the relations (1.90), we may consider the trajectory of this satellite as a circle (the

difference between a and b is just 4 m for a radius of 7 200 km), with centre located

8 km from the centre of the Earth.

To end this section, it should be noted that the errors (between a near-
circular orbit and an orbit treated as circular) do not accumulate. After each
round trip, the errors are reset to zero: whether the orbit is highly elliptical
or circular, the period of a Keplerian motion depends only on the value of
the semi-major axis.

This shows that the accuracy required depends on the type of study one
intends to make. In precise orbitography studies, an ellipse, even a near-
circular one, remains an ellipse, whereas in sampling studies, these circular
orbits lead to non-cumulative errors of a few seconds at the time of passage,
and these can be ignored.
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2.4.3 Reduced Orbital Elements

Near-circular orbits (e ∼ 0.001) are generally called circular orbits. In this
case, the position of the satellite can be defined by four parameters, which
we refer to as the reduced parameters. The plane of the orbit is defined by
the inclination i. The semi-major axis a, which is the radius of the orbital
circle, can be written in the form

a = R + h ,

where R is the equatorial radius of the Earth and h is the altitude. As the
perigee P is not defined, we have seen that the satellite position can be
specified by the angle α, known as the nodal elongation, defined by

α = (ON , OS0) = ω + M .

This is equivalent to the position on orbit, an angle defined above by (2.9).
In circular motion, the three anomalies coincide. This is a uniform motion

and we may set

α = n(t − tNA) ,

where tNA is the time of passage of the ascending node (t = tNA when S0 is
at N).

When studying satellites in circular orbit, we thus use the following four
orbital elements:

h, i, Ω, tNA .

However, it is clear that these reduced parameters can only be used to desig-
nate orbits in the case when they are considered to be circular. In calculations
regarding orbits of arbitrary type, the six orbital elements must be used.

2.5 Keplerian Period

Whatever the eccentricity of an elliptical orbit may be, the Keplerian period
is given by (1.49). We denote this by T0 to distinguish it from periods defined
for perturbed motion:

T0 = 2π

√
a3

µ
. (2.16)

It is convenient to define the period T0(h=0) of a (fictitious) satellite in circular
orbit at ground level on a spherical Earth of radius R :
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Figure 2.3. Spherical rep-
resentation of the Earth
and circular satellite tra-
jectories as a function of
the reduced distance η. Or-
bital plane. Galilean frame
�. Period of time repre-
sented: 84.5 min (Keplerian
period of revolution of a fic-
titious satellite at ground
level). Upper : Arbitrary or-
bital plane. Lower : Orbital
plane coincident with the
Earth’s equatorial plane.
View from a point situated
on the Earth’s axis, above
the North Pole. The dot-
dashed line indicates the
angle of rotation of the
Earth over 84.5 min in the
frame �
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T0(h=0) = 2π

√
R3

µ
. (2.17)

We also define the reduced (dimensionless) distance of the satellite from the
centre of the Earth, denoted throughout this book by η:

η =
a

R
. (2.18)

It is now easy to obtain T0 in terms of a, η or h :

T0(a)
T0(h=0)

=
( a

R

)3/2

, (2.19)

T0(η) = η3/2T0(h=0) , T0(h) =
(

1 +
h

R

)3/2

T0(h=0) . (2.20)

Numerical calculation of the period of the satellite orbiting at ground level
gives

T0(h=0) = 5069.34 s = 84.4891 min . (2.21)

Figure 2.2 can be used as a quick way to evaluate the period as a function
of altitude. Several satellite appellations appear on the figure (LEO, MEO,
GEO). These will be explained later.

For small h compared with R (the case of low altitudes, i.e., LEO satel-
lites), we have

T0(h) ≈
(

1 +
3
2

h

R

)
T0(h=0) .

Circular Motion

The upper graph in Fig. 2.3 shows the trajectory of a satellite with circular
orbit (in its orbital plane) for various altitudes and over the same period of
time, chosen here to be equal to T0(h=0), i.e., 84.5 min. The frame is the
Galilean frame . The satellite is moving in a direct or prograde orbit. The
trajectory begins on the vertical axis, on which the values of η = a/R are
indicated, and ends at a black dot. For η = 1.0, the trajectory makes a
complete round trip, for η = 1.6, just half a revolution, and for η = 2.5, one
quarter of a revolution (since 22/3 ≈ 1.6 and 42/3 ≈ 2.5).

Consider now the lower graph in Fig. 2.3, representing the Earth’s equa-
torial plane. On this graph, which extends the last one, we have also marked
with a dot-dashed line the angle through which the Earth has rotated in
84.5 min relative to . For η < 6.6, the satellite moves around faster than
the Earth, otherwise more slowly. For η = 6.6, an equatorial satellite revolves
at the same angular speed as the Earth in the frame . In a terrestrial frame
T fixed with respect to the Earth, this satellite will appear to be motionless.
It is said to be geostationary. We shall return to this case in Chap. 4.
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Synodic Period

The idea of synodic period will often be used in this book, whether to speak of
planets or satellites. Consider two bodies in the same Galilean frame, moving
uniformly with angular speeds (mean motions) n and n1. The motion of the
first relative to the second is a (relative) motion of angular speed n′ given by

n′ = n − n1 . (2.22)

In terms of periods, this means that

1
T ′ =

1
T

− 1
T1

, (2.23)

where T ′ is the synodic period. A negative value of the period T ′ indicates
that the motion has period |T ′|, but in the opposite direction.



3 Satellite in Perturbed Orbit

Up to now, we have been discussing the Keplerian motion of a satellite around
the Earth: the satellite is pointlike and subject to the gravitational attraction
of a pointlike Earth. We have seen that the Earth’s attraction reduces to
the attraction due to a point mass, provided that the Earth can be treated
as spherical, with a spherically symmetric mass distribution. But when we
observe the motion of a satellite with sufficient accuracy, we find that it
does not follow exactly this kind of Keplerian motion. The difference is only
very slight over one revolution, but increases steadily as time goes by until it
becomes easily discernible after a few days. One might say that the Keplerian
orbit is gradually distorted.

The difference between the true motion and the ideal Keplerian motion
results from two considerations, as we have already mentioned:

• The Earth is not exactly spherical and the mass distribution is not exactly
spherically symmetrical.

• The satellite feels other forces apart from the Earth’s attraction: attrac-
tive forces due to other heavenly bodies and forces that can be globally
categorised as frictional.

3.1 Perturbing Forces

3.1.1 Order of Magnitude of Perturbing Forces

The forces felt by a satellite in geocentric orbit are examined below as a
function of the altitude of the satellite and summed up in Fig. 3.1. From
a physical standpoint, it is useful to divide these forces into two categories,
depending on whether or not they are conservative.

Conservative forces are ones that can be derived from a potential, e.g.,
gravitational forces such as the gravitational attraction of the Earth and
attraction to other heavenly bodies. Non-conservative forces are forces that
cannot be derived from a potential, i.e., dissipative forces involving energy
loss. Apart from atmospheric drag, which falls off very rapidly with increasing
altitude, the relevant forces here are due to radiation pressure.

It is important to assess the orders of magnitude of the various forces.
For example, for a satellite at an altitude of 800 km in a near-circular orbit,
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taking the central attraction to be unity, the other attractive effects have the
following much lower values:

• 10−3 for the perturbation due to the flattening of the Earth,
• 10−6 for perturbations due to other irregularities of the geoid,
• 10−7 for the attraction of the Moon,
• 10−8 for the attraction of the Sun.

The other forces (conservative and non-conservative) generally never exceed
about 10−8.

These are orders of magnitude, to which we shall return later. However,
we can already see that all these forces (except the main one) can be treated
as perturbations. They are not dealt with together in one global treatment,
but one by one, as quantities that remain small relative to the main force,
which is the Newtonian attraction.

The set of forces mentioned above can be written in terms of the acceler-
ations

γ = γCCC + γCCN +
∑

i

γCi +
∑

i

γDi , (3.1)

using the suffixes given in Table 3.3. The leading term is γCCC, compared
with which all the others are very small. Naturally, we have the equivalence

γCCC = g(r) = − µ

r2
er , (3.2)

where the vector field g(r) represents the Newtonian gravitational field of the
Earth, previously defined in (2.5).

3.1.2 Potentials

To begin with, let us consider only those terms due to conservative forces,
so that we may use the idea of potential. We know that the potential U
associated with a vector field γ is obtained from

γ = ∇U .

Then by the linearity of the gradient operator, we obtain

UC = UCCC + UCCN +
∑

i

UCi . (3.3)

Using the expression for γCCC, the leading term UCCC is found immediately
to be

UCCC =
µ

r
=

GM

r
. (3.4)
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To find the form of UCCN, the main perturbative term, we study the terrestrial
potential, known as the geopotential,

UCC = UCCC + UCCN . (3.5)

Note. The definition γ = ∇U used here is the usual one in astronomy. In
mechanics, one generally adopts the convention γ = −∇U .

3.2 Geopotential

3.2.1 Potential Element

The temporal variation in the terrestrial mass distribution (due to land and
ocean tides and phenomena linked to internal geophysical processes) and the
variation in the direction of the Earth’s axis of rotation (motion of the poles)
are not taken into account here. We only consider the averaged effect of these
phenomena over a given period and calculate the static geopotential produced
by a fixed mass distribution.

Let O be the centre of the Earth and (O; x, y, z) a coordinate system
based on the Galilean frame defined in Fig. 2.1, where Oz is the axis of the
poles and (xOy) the equatorial plane. Let S be a point outside the Earth (the
satellite). Its position is specified by the three spherical coordinates r, λ, φ. If
S1 is the projection of S onto the equatorial plane, we have

r = ‖OS‖ ,

λ = (Ox, OS1) ,

φ =
π

2
− (Oz, OS) = (OS1, OS) .

The angles λ and φ give the longitude and latitude of the point S, which
correspond to the geographical longitude and latitude of the projection S0

of S on the Earth’s surface. (The geographical latitude coincides with the
geocentric latitude here.)

Let T be a point inside the Earth. Its position is also specified by the
three spherical coordinates ρ, α, β, where ρ is the magnitude of OT , α the
longitude, and β the latitude. We now have the standard relations giving
components in Cartesian coordinates:

OS

r
=

⎛⎝ cosφ cosλ
cosφ sin λ
sin φ

⎞⎠ ,
OT

ρ
=

⎛⎝ cosβ cosα
cosβ sin α
sin β

⎞⎠ . (3.6)

Let θ be the angle between the two radial vectors, viz.,
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θ = (OS, OT ) ,

so that the distance D between the two points S and T is

D2 = ‖TS‖2 = r2 − 2rρ cos θ + ρ2 ,

D(T, S) = D = r

[
1 − 2

ρ

r
cos θ +

(ρ

r

)2
]1/2

.

The scalar product OS · OT yields

cos θ = sin φ sin β + cosφ cosβ cos(λ − α) .

The potential element is given by

dU =
GdM

‖TS‖ .

3.2.2 Obtaining the Potential by Integration

The potential UCC which we are seeking here is obtained by summing all
the potential elements produced by the mass elements making up the mass
distribution. The mass element dM is associated with the point T which
ranges over the whole of the Earth:

UCC = U(S) =
∫

Earth

dU = G
∫

T∈Earth

dM(T )
D(T, S)

. (3.7)

The expression for D arising in the calculation of the potential is given as a
function of θ by

1
D

=
1
r

1√
1 − 2

ρ

r
cos θ +

(ρ

r

)2
. (3.8)

This expression can be expanded in terms of Legendre polynomials (see
Sect. 3.15). The expansion converges if ρ/r < 1. The calculation is thus valid
if S remains strictly outside the sphere containing all the mass elements. We
may then write

1
D

=
1
r

∞∑
l=0

(ρ

r

)l

Pl(cos θ) , (3.9)

where Pl is the l th Legendre polynomial (or Legendre polynomial of degree
l). Replacing cos θ by its value in terms of spherical coordinates, the angles
λ, φ, α, β, or more precisely, φ, β, (λ − α), we now use the Legendre addition
formula
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Pl(cos θ) = Pl(sin φ)Pl(sin β)

+2
l∑

m=1

(l − m)!
(l + m)!

Plm(sin φ)Plm(sin β) cos m(λ − α) ,

where Plm are the associated Legendre functions. We thereby obtain 1/D in
terms of the six spherical coordinates. Substituting this expression into (3.9)
and then into (3.7), we obtain

U(r, λ, φ) = G
∫

ρ

∫
α

∫
β

dM(ρ, α, β)
D(r, λ, φ, ρ, α, β)

= G 1
r

∫ R

ρ=0

∫ 2π

α=0

∫ π/2

β=−π/2

∞∑
l=0

(ρ

r

)l
[

Pl(sin φ)Pl(sin β)

+2
l∑

m=1

(l − m)!
(l + m)!

Plm(sin φ) cos(mλ)Plm(sin β) cos(mα)

+2
l∑

m=1

(l − m)!
(l + m)!

Plm(sin φ) sin(mλ)Plm(sin β) sin(mα)

]
dM .

Finally, we obtain the expression for U in terms of the associated Legendre
functions Plm and the coefficients Clm and Slm:

U(r, λ, φ) =
µ

r

∞∑
l=0

(
R

r

)l
{

l∑
m=0

[
Clm cos(mλ) + Slm sin(mλ)

]
Plm(sin φ)

}
,

(3.10)

with µ = GM and M the mass of the Earth given by

M =
∫ R

ρ=0

∫ 2π

α=0

∫ π/2

β=−π/2

dM(ρ, α, β) ,

and Clm, Slm the harmonic coefficients of the geopotential of degree l and
order m.

In the expression (3.10), the terms for m = 0 refer to the Legendre polyno-
mial Pl, and the sum from m = 1 to m = l refers to the associated Legendre
functions Plm. The coefficients Clm and Slm are obtained by identifying the
two formulas for U . There are two cases, depending on whether m is zero or
not:

• Harmonic coefficients for m = 0, Cl0 and Sl0:

Cl0 =
1

MRl

∫ R

ρ=0

∫ 2π

α=0

∫ π/2

β=−π/2

ρlPl(sin β)dM(ρ, α, β) , (3.11)

Sl0 = 0 . (3.12)

The coefficient Sl0 can be chosen arbitrarily since it arises as a prefactor
of a zero term.
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• Harmonic coefficients for m �= 0, Clm and Slm:

Clm =
2

MRl

(l − m)!
(l + m)!

∫
ρ

∫
α

∫
β

ρlPlm(sin β) cos(mα) dM , (3.13)

Slm =
2

MRl

(l − m)!
(l + m)!

∫
ρ

∫
α

∫
β

ρlPlm(sin β) sin(mα) dM . (3.14)

3.2.3 Spherical Harmonics

The potential U has been given as a linear combination of spherical functions
Flm and Glm defined by

Flm(λ, φ) = cos(mλ)Plm(sin φ) ,

Glm(λ, φ) = sin(mλ)Plm(sin φ) .

These can be considered as the real and imaginary parts of functions Hlm,
called spherical harmonics:

Hlm(λ, φ) = eimλPlm(sin φ) .

These functions have many mathematical properties (such as orthogonality)
and there exists an extensive literature. In the present context, they can be
used to give a graphical decomposition of the geopotential.

One can gain an idea of the way the spherical functions vary by plotting
the points on the sphere where they vanish. To do so, the spherical harmonics
are divided into three groups: the zonal harmonics, the sectorial harmonics,
and the tesseral harmonics.

• Zonal harmonics. These are obtained when m = 0. In this case,

Fl0 = Pl0(sin φ) = Pl(sin φ) ,

Gl0 = 0 ,

Hl0 = Pl(sin φ) .

Hence, Hl0(λ, φ) = Hl0(φ) depends only on the latitude. Zonal harmonics
have axial symmetry about the axis through the poles. In particular, they
take into account the flattening of the Earth.

• Sectorial harmonics. These are obtained when m = l. In this case,

Plm(sin φ) = Pll(sin φ) =
(2l)!
2ll!

(cos2 φ)l/2 .

This function of φ is never zero, except at the poles. Hence, Hll is only
zero for certain values of λ. The sectorial harmonics only vanish on the
meridians and one generally gives a picture of the sphere that looks like
an orange separated into segments that meet at the poles.

• Tesseral harmonics. These are obtained in all other cases. The zeros pro-
duce a kind of spherical chessboard pattern, marked out by the meridians
and parallels.



3.2 Geopotential 65

3.2.4 Second Degree Expansion of the Potential

Theoretical Calculation of Coefficients

If we expand the potential U given by (3.10) up to second degree, we obtain

U(r, λ, φ) =
µ

r

{
C00P0(sin φ)

+
(

R

r

)[
C10P1(sin φ) + (C11 cosλ + S11 sin λ)P11(sin φ)

]
+
(

R

r

)2 [
C20P2(sin φ) + (C21 cosλ + S21 sinλ)P21(sin φ)

+(C22 cos 2λ + S22 sin 2λ)P22(sin φ)
]}

. (3.15)

Recall now the values of the first few Legendre polynomials and functions for
the argument (sinβ):

P0(sin β) = 1 , P1(sin β) = sin β , P2(sin β) =
1
2
(3 sin2 β − 1) ,

P11(sin β) = cosβ , P21(sin β) = 3 sinβ cosβ , P22(sin β) = 3 cos2 β .

We can now calculate the harmonic coefficients Clm and Slm from the four
formulas (3.11) to (3.14), using the spherical coordinates of the interior point
T defined by (3.6). The coordinates of the centre of gravity of the Earth are
(xG, yG, zG) and the components of the Earth’s inertia tensor are Ix (for Ix2),
Ixy, and so on. The results are displayed in Table 3.1.

As an example, the calculation of C20 goes as follows:

C20 =
1

MR2

∫
ρ

∫
α

∫
β

ρ2 3 sin2 β − 1
2

dM(ρ, α, β)

=
1

2MR2

∫ [
3z2 − (x2 + y2 + z2)

]
dM

=
1

2MR2

∫ [
(x2 + z2) + (y2 + z2) − 2(x2 + y2)

]
dM

=
1

2MR2
(Ix + Iy − 2Iz) .

Case of the Terrestrial Ellipsoid

In the case of a solid Earth, the origin of the coordinate system for decom-
posing the geopotential is taken at the centre of the Earth. We then have
xG = yG = zG = 0, which implies
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Table 3.1. Harmonic coefficients Clm and Slm of the geopotential of degree l and
order m, up to l = 2, m = 2

C00 = 1

C10 =
zG

R
C11 =

xG

R
S11 =

yG

R

C20 =
1

2MR2
(Ix + Iy − 2Iz) C21 =

1

MR2
Ixz S21 =

1

MR2
Iyz

C22 =
1

4MR2
(Ix − Iy) S22 =

1

2MR2
Ixy

C10 = 0 , C11 = 0 , S11 = 0 .

If we consider that the axis Oz passes through the centre of inertia, we have
Ixz = Iyz = 0, which implies

C21 = 0 , S21 = 0 .

The most significant inhomogeneity in the terrestrial mass distribution is due
to the flattening at the poles. As a first approximation, we may assume that
the Earth is an ellipsoid of revolution with axis Oz. In this case, the axial
symmetry implies that Ixy = 0 and Ix = Iy , which in turn implies that

C22 = 0 , S22 = 0 . (3.16)

The flattening at the poles is expressed by the fact that Iz > Ix. Hence,

C20 =
1

MR2
(Ix − Iz) , C20 < 0 . (3.17)

When we expand the geopotential to second order with the above assump-
tions, the only nonzero term (apart from the leading term C00 = 1) is thus
the term C20 (which is negative). It is customary to introduce the coefficients
Jl defined by

Jl = −Cl0 . (3.18)

The geopotential is then

U(r, λ, φ) = U(r, φ) =
µ

r

[
1 −

(
R

r

)2

J2
3 sin2 φ − 1

2

]
, (3.19)

with

J2 = 1.0826× 10−3 .
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Table 3.2. Harmonic coefficients Jn for the geopotential, up to n = 10. Values
taken from the GRIM5-C1 model

Jn = −Cn0 Value (dimensionless)

J0 1
J1 0

J2 +1082.626 220 70 × 10−6

J3 −2.536 150 69 × 10−6

J4 −1.619 363 55 × 10−6

J5 −0.223 101 38 × 10−6

J6 +0.540 289 52 × 10−6

J7 −0.360 260 16 × 10−6

J8 −0.207 767 04 × 10−6

J9 −0.114 567 39 × 10−6

J10 −0.233 800 81 × 10−6

This term is dimensionless, like all the coefficients Clm and Slm. The value of
the coefficient J2 was known for a long time from geodetic considerations (see
the historical note in Sect. 3.10), and then to very high accuracy by studying
the trajectories of the first artificial satellites.

3.2.5 Expanding the Potential to Higher Degrees

For degrees higher than 2, the potential can be written

U(r, λ, φ) =
µ

r

{
1 −

∞∑
l=1

(
R

r

)l

JlPl(sin φ) (3.20)

+
∞∑

l=1

l∑
m=1

(
R

r

)l [
Clm cos(mλ) + Slm sin(mλ)

]
Plm(sin φ)

}
,

with the above notation. In the part between curly brackets, there are three
groups of terms. The first comprises only the number 1, representing the
central potential. The second, with Jl and Pl, constitutes the contribution of
the zonal harmonics, whilst the third, involving Clm, Slm and Plm, gives the
contribution of the sectorial and tesseral harmonics.

For the Earth as it really is (dropping the ellipsoid approximation), the
numerical values of Jl (Jl generally denoted by Jn) are given in Table 3.2
(see also Table 3.6). Hence, for the geoid, the coefficients C10 (or J1), C11

and S11 are zero, whilst the coefficients C21 and S21 (∼ 10−9), C22 and S22

(∼ 10−6) are not zero. Concerning orders of magnitude, the term J2 is seen
to be about 103 times smaller than the leading term, but 103 times bigger
than the following coefficients.

To sum up, considering the expansion of the potential given by (3.20), we
observe that:
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• The term of order 0 is the leading term, causing the Keplerian motion, in
which the Earth is considered to be spherical and made up of homogeneous
layers.

• The term of degree 1, which would correspond to a shift in the centre of
mass of the Earth away from the geometrical centre, is made to vanish
by choice of the coordinate origin.

• The term of degree 2 corresponds to the flattening of the Earth when the
latter is considered as an ellipsoid of revolution.

• The terms of degree 3 and higher cater for deviations between the geoid
and the ellipsoid.

3.3 Perturbations and Altitude of a Satellite

Let us now investigate the whole range of perturbative forces (accelerations)
affecting a satellite S at distance r from the centre O of the Earth. We
may also express them in terms of h, the altitude of the satellite, given by
h = r − R, where R is the equatorial radius of the Earth. Figure 3.1 shows
the value of the acceleration γ as a function of r on a log–log scale (both
abscissa and ordinate are logarithmic scales).

The figure shows typical altitudes of three types of satellite (we shall
discuss these types in more detail later):

• h = 1 000 km for satellites in low orbit (LEO),
• h = 20 000 km for positioning satellites (MEO),
• h = 36 000 km for geostationary satellites (GEO).

The figure shows the sensitivity of the different types of satellite to the var-
ious perturbing forces depending on their altitudes. The forces, divided into
conservative and non-conservative (or dissipative) forces, are summarised in
Table 3.3.

3.3.1 Conservative Forces

The gravitational forces acting on the satellite come from the following
sources:

(a) Attraction by the Earth

The central acceleration, denoted here by γCCC, is given by (2.5) or (3.2):

γCCC(r) = g(r) =
µ

r2
. (3.21)

It is thus represented by a straight line of gradient p = −2 in a graph with
log–log scale. The value at the origin (r = R or h = 0) is
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Figure 3.1. Central acceleration and perturbative accelerations as a function of
the distance r of the satellite from the centre of the Earth, shown on a log–log
scale. Over the ranges considered, the curves can be approximated as straight lines
with gradients as noted. The altitudes of the three types of satellite have also been
indicated
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γCCC(R) = g(R) = g0 =
µ

R2
, (3.22)

with numerical value

g0 = 9.80 m s−2 .

Concerning the J2 term, the potential UCCN.J2 given by (3.19) goes as r−3.
The corresponding acceleration γCCN.J2 therefore goes as r−4, whence the
gradient p = −4 of the straight line representing it on the log–log graph. As
value at the origin (h = 0), we have taken

γCCN.J2(R) = g0J2 ,

which is an average value over the latitudes frequented by the satellite. The
acceleration γCCN.JN for the other terms Jn, n > 2, leads to an even steeper
slope. We shall see below that only those terms Jn with even n have any
long-term (secular) influence on the satellite. Equation (3.20) shows that the
potential goes as r−(n+1), and the acceleration therefore as r−(n+2). The slope
is p = −6 for J4, p = −8 for J6, and so on. At the origin, the numerical values
are

g0J2 = 1.1 × 10−2 m s−2 ,

g0J4 = 1.6 × 10−5 m s−2 , g0J6 = 5.3 × 10−6 m s−2 .

where we have, of course, taken the absolute values of the terms Jn.

(b) Attraction by the Sun and Moon

We consider an attracting body (the Sun or Moon) and calculate its action on
the satellite. As the Earth also feels an attraction from the same source, we
must calculate the differential attraction felt by the satellite in a coordinate
system fixed relative to the centre of the Earth.

The differential attraction due to the Sun produces the acceleration γCS

(calculated in Sect. 3.13). Equation (3.96) yields

γCS = 2
µS

a3
S

r , (3.23)

where µS is the heliocentric gravitational constant and aS is the Earth–Sun
distance (the semi-major axis of the Earth’s orbit around the Sun).

For the differential attraction due to the Moon, the acceleration γCL can
be calculated to a first approximation by a similar argument:

γCL = 2
µL

a3
L

r , (3.24)
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where µL is the lunar gravitational constant and aL the Earth–Moon distance
(the semi-major axis of the geocentric lunar orbit).

For the range of values represented here, γCS and γCL are proportional
to r, so that their variation has gradient p = +1. At the origin (h = 0),
numerical values are

γCS(R) = 2
µS

a3
S

R = 5 × 10−7 m s−2 , γCL(R) = 2
µL

a3
L

R = 1.1 × 10−6 m s−2 .

(c) Attraction by Other Planets

This differential attraction causes a very small acceleration of the satellite,
denoted γCP, also of slope p = +1. For each planet, the order of magnitude
is given by

γCP = 2
µP

a3
P

r , (3.25)

where µP is the gravitational attraction of the planet and aP the Earth–
planet distance. Depending on the configuration of the planets, the maximal
perturbative accelerations are

γCP ∼ 10−10 m s−2 due to Venus , γCP ∼ 10−11 m s−2 due to Jupiter .

(d) Tidal Effects

The ocean tides are caused by the perturbing effects of the Sun and Moon.
This idea was first put forward by Newton, then Bernoulli, and the theory
was completed by Laplace and Kelvin. The phenomenon is familiar to us and
easy to observe. It is less well known that this same perturbation also affects
the Earth’s crust: twice a day, the Earth’s solid envelope rises and falls with
an amplitude of around one decimetre.

Both ocean and land tides involve friction, so this phenomenon is not
conservative. Indeed, this effect explains the gradual reduction of the Earth’s
rotation. However, the effect of the tides on the satellite can be found using
the fact that the relevant stresses derive from a potential. It can be shown
that the interaction potential goes as r−3, giving rise to an acceleration that
goes as r−4. For r = R, we have γCT ∼ 5 × 10−7 m s−2. The effect of the
ocean tides is roughly one tenth of the effect of the land tides.

(e) Relativistic Effects

The speed of a satellite V never exceeds a few kilometres per second. This
is very small compared with the speed of light c and a relativistic treatment
is generally unnecessary. However, since the TOPEX/Poseidon mission, rel-
ativistic effects have been taken into account for altimetry and positioning
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(GPS-type) satellites. It can be shown that the correction amounts to con-
sidering a so-called relativistic acceleration, whose leading term is γCR given
by

γCR =
µ

r2

3V 2

c2
. (3.26)

For a circular orbit, with (1.48), we obtain

γCR =
3µ2

c2

1
r3

, (3.27)

giving a gradient of p = −3.
At the origin (h = 0), we have

γCR(R) = g0
3µ

c2R
= 1.6 × 10−8 m s−2 .

The main consequence of this is a secular effect on the argument of the
perigee: the perigee of the orbit moves around more quickly than classical
calculations would suggest. Indeed, the effect is known as the advance of the
perigee or the precession of the perigee. For planets in orbit around the Sun,
we speak of the advance or the precession of the perihelion, a phenomenon
first explained by Albert Einstein.1

1 Albert Einstein (1879–1955) was a German physicist. In 1905, he published his
first papers on the special theory of relativity. By 1915, he had established the
foundations for the general theory of relativity. In this, Euclidean space is re-
placed by a Riemannian space, which is said to be curved by the masses dis-
tributed within it. The first confirmation of general relativity was obtained by
Einstein himself when he explained the advance of the perihelion of Mercury.
The orbit of Mercury is an ellipse with e = 0.2056. Newtonian mechanics gives
a value of 531′′ per century for the motion of the perigee due to the perturbing
effects of the other planets. However, very precise measurements give the value
574′′ per century. This is a discrepancy of 43′′ per century, which remained unex-
plained until the advent of general relativity, when Einstein was able to produce
precisely this value. In order to understand the accuracies involved here, it is in-
teresting to compare with the Earth’s precession constant of 5 026′′ per tropical
century.
In 1889, F. Tisserand ended his monumental work Traité de Mécanique Céleste
with the statement that the advance of the perihelion of Mercury was the
greatest outstanding mystery of astronomy. He refuted all the current expla-
nations. For example, Le Verrier had tried to explain it by the presence of a
hypothetical planet situated between Mercury and the Sun, Newcomb by the
non-spherical aspect of the Sun, and Hall by an attractive gravitational force
going as r−2.000000151 . Tisserand concluded: “We may consider that the attrac-
tion between two celestial bodies can only be transmitted over a distance by
the intermediary effect of some kind of medium. But for the moment we know
nothing of these transmission modes.”
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Table 3.3. Forces felt by a satellite

Symbol Type of force

C Conservative forces

CC • Earth’s attraction
CCC • ◦ Central term µ = GM
CCN • ◦ Terms other than CCC

CL • Lunar attraction
CS • Solar attraction
CP • Planetary attraction
CT • Tidal effects (land and ocean)
CR • Relativistic effects

D Dissipative forces

DF • Atmospheric friction
DP • Solar radiation pressure
DA • Albedo effect

Calculations of this apsidal precession give a variation ∆1ω in the argu-
ment of the perigee ω for each revolution, where

∆1ω =
6πµ

a(1 − e2)c2
. (3.28)

The subscript 1 indicates that the value corresponds to one revolution, whilst
a subscript Y is used for the value obtained over one year. This value is very
small (a fraction of an arcmin per year), whether the satellite is in near-
circular or eccentric orbit:

• for SPOT-4 (a = 7.2 × 106 m), ∆Yω = 1.16 × 10−8 rad = 12′′.4,
• for TOPEX/Poseidon (a = 7.7×106 m), ∆Yω = 1.09×10−8 rad = 10′′.5,
• for Molniya (a = 2.6 × 107 m, e = 0.75), ∆Yω = 7.33 × 10−9 rad = 1′′.1.

The advance of the perihelion can also be observed in the orbits of other planets,
although the effect diminishes as the planet is further from the Sun (because it
moves more slowly relative to a Copernican frame). Values are 8′′63 per century
for Venus, 3′′84 per century for the Earth, and 1′′35 per century for Mars. For
the Moon in its motion around the Earth, the value is 2′′ per century. All these
values can be calculated using (3.28).
Returning to Einstein and his contribution to astronomy, the second confirma-
tion of general relativity was obtained during an eclipse of the Sun on 29 May
1919: observations of stars close to the occulted disk of the Sun confirmed that
light rays were deviated and gave results corresponding to the values calculated
from the theory. (These observations were mainly the work of the astronomer A.
Eddington on Principe, an island in the Gulf of Guinea.)



74 3 Satellite in Perturbed Orbit

3.3.2 Non-Conservative Forces

Non-gravitational perturbing forces are independent of the satellite mass m.
The corresponding accelerations thus go as 1/m. Along with the forces dis-
cussed below, one must include forces applied to the satellite (usually by gas
jets) when modifying its trajectory. These are the non-conservative forces
which allow one to guide the satellite.

(a) Atmospheric Drag

For satellites in low orbit (h < 800 km), friction with molecules of residual
atmospheric gases can be quite significant. This effect is difficult to model
theoretically. Indeed, it depends on the state of the upper atmosphere, which
in turn depends on various factors, such as the level of solar activity. It also
depends on the shape of the satellite,2 and in particular, the shape of its solar
panels. There exist a great many highly sophisticated models.

Atmospheric effects become very weak above h = 1 000 km and fall off
very quickly with altitude. Hence, they are very slight for TOPEX/Poseidon
at an altitude of 1 300 km, and almost imperceptible for LAGEOS at
6 000 km.

(b) Radiation Pressure

Solar radiation pressure goes as a−2
S , and is therefore independent of r (since

r � aS). The actual consequences of this radiation pressure on the satellite
depend on its shape, covering materials, and configuration.3 Naturally, there
are no consequences at all when the satellite passes into the Earth’s shadow
with respect to the Sun. The corresponding perturbative acceleration is eval-
uated to be

γDP(r) = γDP = const. ∼ 10−7 m s−2 .

Another effect is the albedo effect, wherein radiation scatters from the Earth
and creates a radiation pressure in the visible (short wavelengths) and in-
frared (long wavelengths). This depends on the region overflown and the
altitude. These effects can be considered to go as r−2.
2 In order to minimise these effects, the passive (i.e., without power supply) satel-

lite Starlette, is a sphere covered with 60 laser reflectors. Its core is made of
uranium (density 18.7) and it has a total mass of 47 kg and a diameter of 48 cm.

3 This perturbative effect was quite large for the first balloon-type satellites such
as Echo-1, launched in 1960, Echo-2 in 1964, and PAGEOS in 1966. These very
light satellites, comprising an aluminised mylar envelope just 13 µm thick, blown
up after the launch, had a diameter of 30 to 40 m.
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3.4 Perturbative Methods

3.4.1 Perturbed Equation of Motion

In this chapter, we have been concerned so far with perturbations which rep-
resent the difference between the Newtonian potential and the true potential.
We shall now see how this difference of potential can lead to a deviation in
the satellite motion.

In order to give the satellite position at an arbitrary time, i.e., to estab-
lish its equation of motion, there are two methods available: one involves
integrating the equation of motion using Cartesian coordinates at the point,
and the other uses the orbital elements. The latter allows one to express the
modifications of the motion in a clear and pictorial way, so that one might
say whether the eccentricity increases, or the orbit begins to precess, and so
on.

(a) Keplerian Motion

For Keplerian motion, the two approaches function in the following way. We
consider the equation of motion

r̈ = ∇U , where U =
µ

r
. (3.29)

• Using Cartesian coordinates: We integrate (3.29) for suitable initial con-
ditions. The system of equations can be written{

r̈ = −µ
r

r3
,

r(t = 0) = r0 , ṙ(t = 0) = ṙ0 .
(3.30)

• Using the orbital elements: We recall from Chap. 2 that the Keplerian
motion of a satellite is defined by six orbital parameters, the so-called
Keplerian orbital elements. We show that there exists a bijective map
between the six parameters and the six Cartesian components (in the
Galilean frame ) of the vectors r and ṙ:{

x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)
}

T�−→
{

a(t), e(t), i(t), Ω(t), ω(t), M(t)
}

.

In the Keplerian motion, the 5 parameters fixing the position of the or-
bit, viz., a, e, i, Ω, ω, remain constant, whilst M varies linearly with time,
i.e., M = n(t − tp), where tp is the time of the passage at perigee. The
dynamical equation (3.30) is equivalent to 6 relations:{

ȧ = 0 , ė = 0 , i̇ = 0 ,

Ω̇ = 0 , ω̇ = 0 , Ṁ − n = 0 ,
(3.31)

where the mean motion is given by n =
√

µ/a3.
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(b) Perturbed Motion

In the case where the satellite is not subject to a Newtonian acceleration but
the sum of a Newtonian acceleration and a perturbation, we shall assume
that, since the perturbation is relatively weak, the trajectory remains close
to the conic section trajectory. The equation of motion is then

r̈ = ∇U0 + γP , U0 =
µ

r
, (3.32)

where γP is the perturbative acceleration, which remains small compared
with the leading term:

γP � µ

r2
.

We consider here only perturbative acceleration fields that can be derived
from a potential. In this case,

γP = ∇R ,

where R is the perturbing potential.
The satellite is thus subject to the potential U given by

U = U0 + R . (3.33)

• Using Cartesian coordinates: The system of equations is in this case{
r̈ = −µ

r

r3
+ γP ,

r(t = 0) = r0 , ṙ(t = 0) = ṙ0 .
(3.34)

This system is very difficult to integrate because it involves second order
integrations. Although it is not used to find analytical solutions, it is used
for purely numerical methods.

• Using the orbital elements: Examination of the transformation T shows
that (3.34) is equivalent to the 6 relations{

ȧ = g1 , ė = g2 , i̇ = g3 ,

Ω̇ = g4 , ω̇ = g5 , Ṁ − n0 = g6 ,
(3.35)

where n0 =
√

µ/a3
0 and a0 is, to begin with, the value of a without

perturbation. The terms gi are small.

We then apply an iterative method. The parameters, which now vary in time,
are known as osculating orbital elements. They correspond to the parameters
of the Keplerian orbit that the satellite would follow if the perturbations
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suddenly ceased to act. These osculating elements4 provide a better way
of describing the deformation of the orbit than the values of the position
and velocity. As an example, this method allows one to establish the critical
inclination of the orbit, as we shall see later.

The perturbation method consists in solving the six equations above,
known as Lagrange’s equations.5

3.4.2 Basic Principles

The actual motion is obtained by calculating the small variations around the
first integrals of the unperturbed motion. For a perturbative acceleration field
deriving from a potential, (3.32) and (3.33) give the equation of motion as

r̈ = ∇U , where U = U0 + R . (3.36)

Transcribing this for each Cartesian component of r, we have

d2x

dt2
=

∂U

∂x
,

d2y

dt2
=

∂U

∂y
,

d2z

dt2
=

∂U

∂z
.

Let us write down the results for x. The first of the above equations yields,
4 The word ‘osculating’ does not mean the same thing here as in geometry. In

the purely geometrical context, two curves are said to be osculating if their
two centres of curvature coincide for some point of contact between them. In the
present context, in the investigation of trajectories in space, the osculating ellipse
defined by the osculating orbital elements is tangent to the actual trajectory,
since the velocity vector is the same, but it does not have exactly the same
radius of curvature, since the accelerations are different. The term was originally
invented by geometers in 1752 and then slightly deflected from its geometrical
meaning by the needs of astronomy. The etymology of the word attests to this
corruption. Indeed, it comes from the Latin osculatio, the noun from the verb
osculare meaning ‘to kiss’. This in turn derives from osculum, ‘little mouth’, a
diminutive form of os, oris, which is the standard term for ‘mouth’. The idea
which therefore underpins this term is therefore one of extended and continued
contact.

5 Joseph Louis de Lagrange (1736–1813) was a French mathematician. He applied
his analytical theories to the motion of the Moon and the periodic variation of
the major axes of the planets, published in Théorie de la libration de la Lune
et autres phénomènes qui dépendent de la figure non sphérique de cette planète
(1763). He also invented the idea of gravitational potential in 1772. All these ideas
were brought together in his magnum opus Mécanique analytique (1788). He
invented the theory of perturbations to study the motion of the heavenly bodies,
published in Sur la théorie des variations des éléments des planètes (1808). He
also continued Euler’s work, devising a final version of the method known as
variation of constants, published in Sur la théorie générale de la variation des
constantes arbitraires dans tous les problèmes de mécanique (1810). His name is
still associated with the equations and mathematical tools used in these theories.
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ẋ =
dx

dt
, (3.37)

dẋ

dt
=

∂U

∂x
. (3.38)

Bringing in the 6 orbital elements (or any 6 conveniently chosen variables),
we obtain ẋ as a sum of 6 terms, and hence ẍ as a sum of 36 terms.

The perturbation method solves the differential equations by the so-called
method of variation of constants. The choice of certain variables, called canon-
ical variables, allows us to obtain Lagrange’s equations in a very simple form,
the canonical form, as the relations (3.43). Several sets of 6 variables offer
this possibility, such as the Delaunay variables, the Poincaré variables, or the
Whittaker variables.

More will be said about the Delaunay variables later, but for the moment,
let us not enter into the details of these powerful mathematical theories,
developed principally to calculate planetary orbits, to which we now attach
the names of Euler,6 Lagrange, Laplace,7 Gauss and Poincaré.8

6 Leonhard Euler (1707–1783) was a Swiss mathematician. In astronomy, he stud-
ied the mutual perturbations of Saturn and Jupiter in Theoria motuum planetar-
ium et cometarum (1744), the precession of the equinoxes (1749), the restricted
three-body problem and the motion of the Moon (1772). In mathematics, his
vast contribution includes mechanics (the Euler angles), analysis, trigonometry
(the notation e for the exponential, i =

√
−1, and π were his and he obtained

the famous result eiπ = −1), algebra, and geometry.
7 Pierre Simon de Laplace (1749–1827) was a French mathematician, astronomer

and physicist. Not only did he seek to understand mathematically how universal
attraction could be compatible with the observed stability of the distances be-
tween the stars, but noting that the 43 observable bodies in the Solar System all
rotate in the same direction (the planets, moons and even the Sun itself), and
taking the cue from observations of the nebulas made with Herschel, he devised
a first cosmogonic system in Exposition du système du Monde (first edition in
1796 and fifth edition in 1824). According to this view, the Solar System and all
other objects in the universe were produced by the condensation of a primordial
nebula. During cooling, the rotation of this nebula would have generated a suc-
cession of rings in the same plane (the ecliptic), and these would have given birth
to the planets and their moons, with the central nucleus becoming the Sun. The
emperor Napoleon, in wonder before this work, raised the inevitable question:
“And what about God in all this?”, to which he replied: “Sire, I did not need
that hypothesis.” In the two centuries from Kepler to Laplace, the relationship
between astronomers and the divine order had changed considerably!
In Mécanique céleste (first edition in 1798 and sixth edition in 1825), he returned
to all the theories elaborated since Newton. He established fundamental results
in mathematics (harmonic functions, differential equations, probabilities) and in
physics (electromagnetism, thermodynamics).

8 Henri Poincaré (1854–1912) was a French mathematician. He studied changes of
variables which conserve the canonical form of the equations of mechanics (in the
Jacobi formulation). He also achieved new results with regard to the three-body
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3.5 Perturbative Method: Solution

3.5.1 Lagrange’s Equations

The perturbative method is explained in many standard textbooks on celes-
tial mechanics. The main developments involving calculations with Lagrange
brackets can be found in [[51]]. Here we shall simply state the results.

We obtain six equations giving the time derivative of the six orbital ele-
ments as a function of the perturbing potential R and the orbital elements.
The results are given in Table 3.4. This system of equations constitutes the
full set of Lagrange’s equations, which correspond, by successive equivalences,
to the original equation given in (3.32), i.e., the equation of motion. This can
be written in matrix form using the matrix L, which has two important prop-
erties: it is antisymmetric and depends on only three of the parameters, viz.,
a, e and i, i.e.,

L = L(a, e, i) .

To conclude this section, we shall show that, when the perturbative ac-
celeration field derives from a potential, the satellite motion is defined by
Lagrange’s equations. We check that, if R = 0, we recover the solution of the
two-body problem, i.e., Kepler’s solution: a, e, i, Ω, ω are constants and the
mean anomaly is given by M = n(t − tp).

3.5.2 Metric and Angular Orbital Elements

The matrix L clearly brings out the separation of the orbital elements into
two groups: on the one hand, a, e, i, and on the other, Ω, ω, M . Indeed we see
that, in Lagrange’s equations, the time derivatives of a, e, i involve only the
partial derivatives of R with respect to Ω, ω, M , and conversely. This can be
expressed in a global manner as follows:{

da

dt
,

de

dt
,

di

dt

}
= f1

(
a, e, i;

∂R
∂Ω

,
∂R
∂ω

,
∂R
∂M

)
,

{
dΩ

dt
,
dω

dt
,
dM

dt

}
= f2

(
a, e, i;

∂R
∂a

,
∂R
∂e

,
∂R
∂i

)
,

where f1 and f2 are functions of (a, e, i) and the partial derivatives mentioned.

problem in Sur le problème à trois corps et les équations de la dynamique (1889).
He developed this work in Les méthodes nouvelles de la mécanique céleste (1899)
and explained the stability of the Solar System.
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Table 3.4. Lagrange’s equations for the six orbital elements as a function of the
perturbing potential R

da

dt
=

1

na

„
2

∂R
∂M

«
de

dt
=

1

na2

1 − e2

e

„
− 1√

1 − e2

∂R
∂ω

+
∂R
∂M

«
di

dt
=

1

na2
√

1 − e2 sin i

„
−∂R

∂Ω
+ cos i

∂R
∂ω

«
dΩ

dt
=

1

na2
√

1 − e2 sin i

„
∂R
∂i

«
dω

dt
=

1

na2
√

1 − e2

„
1 − e2

e

∂R
∂e

− cos i

sin i

∂R
∂i

«
dM

dt
− n =

1

na2

„
−2a

∂R
∂a

− 1 − e2

e

∂R
∂e

«

In matrix form:2
666666666666666664

da

dt
de

dt
di

dt
dΩ

dt
dω

dt
dM

dt
− n

3
777777777777777775

= L

2
666666666666666664

∂R
∂a
∂R
∂e
∂R
∂i
∂R
∂Ω
∂R
∂ω
∂R
∂M

3
777777777777777775

L =
1

na2

2
6666664

0 0 0 0 0 +2a
0 0 0 0 −ττ +τ
0 0 0 −στ +στ cos i 0
0 0 +στ 0 0 0
0 +ττ −στ cos i 0 0 0

−2a −τ 0 0 0 0

3
7777775

where σ =
1

sin i
, τ =

1 − e2

e
, τ =

1√
1 − e2

.
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The parameters (a, e, i) are called metric orbital elements,9 or more
briefly, metric elements. If pi denote the metric elements and qi the angular
elements, the last two relations can be written in the form

ṗi = f1

(
pi;

∂R
∂qi

)
, q̇i = f2

(
pi;

∂R
∂pi

)
. (3.39)

Note. The quantity na2
√

1 − e2 often arises in the denominator of the ex-
pressions in the system of equations presented in Table 3.4. Returning to the
Keplerian orbit relations for the osculating elements, (1.23) becomes

C2 = µp = µa(1 − e2) = n2a4(1 − e2) ,

and we thus see that the quantity in question is the magnitude of the angular
momentum of the satellite, denoted by C :

C = na2
√

1 − e2 = nab . (3.40)

3.5.3 Delaunay Elements

The form of the matrix L given in Table 3.4, together with the symmetries
and similarities in the Lagrange brackets, suggest making a change of vari-
ables to obtain an even simpler formulation of the results and to group the
elements into two homogeneous sets. These elements are known as the Delau-
nay variables or Delaunay elements.10 These variables are written as follows,
clearly separating the elements L, G, H , which have the dimensions of angu-
lar momentum per unit mass (action variables), and the associated elements
l, g, h, which are dimensionless (angle variables):
9 This term serves to distinguish the two groups of orbital elements. However,

the term ‘metric’ is open to discussion. If it refers to the notion of length, only
the quantity a is actually a length. If it is intended to contrast with the notion
of angle, the inclination is actually an angle. Here, when the word ‘metric’ is
attributed to e and i, it indicates that these two elements behave mathematically
like a. The Delaunay variables discussed in the next section avoid this ambiguity:
variables in the same group have the same dimensions.

10 Charles Delaunay (1816–1872) was a French astronomer and author of many
works, including a very detailed study of the motion of the Moon in 1860, in
which he produced a perturbation expansion with 1967 terms. He detected a
slight disagreement between his predictions and observational results. Le Verrier
claimed that the error lay in Delaunay’s formulas, but the latter replied that the
disagreements were the result of unknown causes. In 1865, Delaunay put forward
the hypothesis that the discrepancy was due to a very gradual slowing down of
the Earth’s rotation, caused by friction due to the tides. This is indeed the
accepted theory today. Delaunay’s method is no longer used to study the motion
of the Moon, but it is still current practice for the moons of other planets. His
ideas were taken up by Von Zeipel, then Brouwer in 1959, to study the motion
of artificial satellites.
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{
L =

√
µa , G = L

√
1 − e2 , H = G cos i ,

l = M , g = ω , h = Ω .
(3.41)

Lagrange’s equations can now be written in a very simple form, called the
Delaunay equations:⎧⎪⎨⎪⎩

dL

dt
=

∂F

∂l
,

dG

dt
=

∂F

∂g
,

dH

dt
=

∂F

∂h
,

dl

dt
= −∂F

∂L
,

dg

dt
= −∂F

∂G
,

dh

dt
= − ∂F

∂H
,

(3.42)

where

F =
µ2

2L2
+ R .

In canonical form, the equations are even simpler than in (3.39):

ṗi =
∂F

∂qi
, q̇i = −∂F

∂pi
, (3.43)

where the pi are the action variables and the qi are the associated angle
variables.

According to (3.40), G is the angular momentum C and H is its projection
on the axis of the poles Oz:

H = C cos i = Cz . (3.44)

We shall not use the Delaunay variables in what follows (except for H a little
later). They are given here as an example of a homogeneous notation, in the
sense of physical dimensions, leading to canonical equations. The Hamilto-
nian method due to Von Zeipel and Brouwer involves integrating Lagrange’s
equations using the Delaunay variables.

3.5.4 Poorly Defined Parameters

There are two situations, already discussed in Chap. 2, which can raise diffi-
culties for the definition of certain parameters: the case e = 0 and the case
i = 0:

• The eccentricity e occurs in the denominator of the expressions for ė, ω̇
and Ṁ in Lagrange’s equations (see Table 3.4). If e is zero, these quantities
are not defined. This is to be expected since, as we have seen, the perigee
is not then defined, and this means that ω and M cannot be either.

• The inclination i occurs in the denominator of i̇, Ω̇ and ω̇. If i is zero,
these quantities are not defined. This is also to be expected since, as the
ascending node is not defined, Ω and ω cannot be either.
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In these two cases, one solution is to drop the ‘standard’ orbital elements
and replace them by others, obtained by suitably chosen combinations of
these. However, for the present purposes, this is not necessary. We shall see
later that, when the perturbing potential is limited to the J2n term of the
geopotential, the function R is such as to remove the indeterminacy when
e = 0 or i = 0. For example, with regard to the indeterminacy that arises in
Ω̇ when i = 0, we shall see that R is a function of (sin2 i). Its derivative with
respect to i yields a term in sin i cos i which cancels the term in sin i in the
denominator of Ω̇. In this case, the quantity Ω̇ is perfectly well defined for
i = 0.

With this type of perturbing potential, we shall find that all the angular
speeds Ω̇, ω̇, Ṁ are well defined for e = 0 or i = 0 (or e = 0 and i = 0), even
if the zero point of the angles is not.

3.5.5 Perturbative Accelerations not Derived from a Potential

When the perturbing acceleration γP does not derive from a potential, we
use a coordinate system moving with the orbit and decompose the vector
relative to this. This gives a system of equations called Gauss’ equations. We
shall not discuss this method further, for it only concerns non-conservative
forces such as atmospheric drag, radiation pressure, and so on, which we have
seen to be very small compared with the gravitational forces.

3.6 Perturbative Method:
Results for the Geopotential up to J2

In order to achieve our aim, that is, to find the time derivatives of the six
orbital elements, we must apply Lagrange’s equations. We must therefore
feed in the value of the perturbing potential R. We shall consider here the
perturbation due to the geopotential. We shall not tackle the other gravita-
tional potentials, such as the lunisolar attraction potential, treated here as
negligible.

As far as the geopotential is concerned, we shall proceed in steps, initially
considering the first zonal harmonic (see Sect. 3.6.1), corresponding to the
term in J2, then all the zonal harmonics up to the term in Jn (see Sect. 3.7.1),
and finally the general case, including all the zonal, sectorial and tesseral
harmonics (see Sect. 3.7.2).

3.6.1 Expression for Perturbative Potential up to J2

We expand the potential to second degree. Using (3.19) and putting U =
U0 + R, we find the following value for R :
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Figure 3.2. Subsatellite point S0, specified by the position on orbit α and the
geographical latitude

R = −µR2

r3
J2

3 sin2 φ − 1
2

. (3.45)

To integrate this over a period, we first find r and φ.

Expressions for r and φ

The distance r can be expressed as a function of a, e, and v, as we saw in
Chap. 1. Equation (1.41) gives

r =
a(1 − e2)
1 + e cos v

. (3.46)

To find an expression for the angle φ, the latitude of the satellite, we consider
the following points, as shown in Fig. 3.2: the projection N of the ascending
node on the Earth’s surface, the projection S0 of the satellite, and the point
Q where the meridian through S0 intersects the equator (i.e., the intersection
of the half-plane S0Oz with the equatorial circle). In the spherical triangle
NS0Q, with a right angle at Q, the angle N is the dihedral angle (E ,P), that
is, the inclination i. The known sides of the triangle (arcs of a great circle)
are

�

QS0= φ ,
�

NS0= α .
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Along with (ST VIII), the sine rule (see Sect. 3.16) gives

1
sin α

=
sin i

sin φ
.

Now, with α = ω + v (since α is the position on orbit), this leads to

sin φ = sin i sin(ω + v) . (3.47)

Hence, for the second Legendre polynomial,

P2(sin φ) =
3 sin2 φ − 1

2
=

3
2

sin2 i

2
[
1 − cos 2(ω + v)

]
− 1

2
.

According to what was said above, we can write R in the form

R = −3
2

µR2

a3

(
1 + e cos v

1 − e2

)3

J2

{
sin2 i

2
[
1 − cos 2(ω + v)

]
− 1

3

}
, (3.48)

which shows that R is a function of the constant quantities (a, e, i, ω are con-
sidered to be constant over one revolution) and v. It thus varies periodically,
with the same period T = 2π/n as the Keplerian motion. We note that R
does not depend on Ω. This is to be expected insofar as the only perturbation
we are considering arises from the replacement of the sphere by an ellipsoid
of revolution. In this situation, the terrestrial longitude is irrelevant. The po-
sition of the ascending node, and hence the value of Ω, is of no consequence,
and we have ∂R/∂Ω = 0.

Integrating R over a Period

We now calculate 〈R〉, the average value of R over one period, by integrating
with respect to time, i.e., with respect to the mean anomaly M . We first
express dM as a function of dv. This relation is given by (1.70), which we
obtained in Chap. 1 by applying the areal law:

dM =
r2

a2
√

1 − e2
dv .

Using the variables r, φ and v, and as the bounds of integration are the same
for v and M , we obtain

2π〈R〉 = − µR2J2

2a3(1 − e2)3/2

∫ 2π

0

3 sin2 φ − 1
r

dv .

Using (3.46) and (3.47), this yields

2π〈R〉 =
∫ T

0

Rdt =
∫ 2π

0

RdM = − µR2J2

2a3(1 − e2)3/2
I ,
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where

I =
∫ 2π

0

{
3 sin2 i

2
[
1 − cos 2(v + ω)

]
− 1
}

(1 + e cos v)dv .

Expanding the terms in this expression, we see that integration of the terms
periodic in v over the interval [0, 2π] will give zero. The only nonzero contri-
bution comes from the constant terms, independent of v, which yields∫ 2π

0

(
3 sin2 i

2
− 1
)

dv = 2π

(
3 sin2 i

2
− 1
)

.

The average value of the potential is thus

〈R〉 = −3
2

µR2

a3(1 − e2)3/2
J2

(
1
2

sin2 i − 1
3

)
. (3.49)

Periodic and Secular Variations

The integration of R over a period shows that we can decompose this quantity
into two parts:

R(v) = Rs + Rp(v) , (3.50)

where the constant Rs = 〈R〉 represents the average value and the periodic
Rp averages to zero over one period. The only part of the potential having a
long-term effect (over times longer than the period T ) is therefore Rs. These
slow variations, proportional to the time, are called secular variations (in
contrast to Rp, which causes only periodic effects).

The secular variations of the elements are obtained by differentiating this
part Rs of the perturbative potential R. Equation (3.49) shows that Rs = 〈R〉
can be expressed entirely in terms of the metric elements:

Rs = Rs(a, e, i) .

3.6.2 Variation of the Orbital Elements

Calculating the Variation of the Orbital Elements

We can at last apply Lagrange’s equations. Referring to the six equations in
Table (3.4), we replace the perturbing potential R by its secular part Rs and
replace µ by n2a3. The time derivatives da/dt, de/dt, and di/dt of the metric
elements obtained by differentiating with respect to the angle elements are
therefore all zero. Consequently, the parameters a, e, i remain constant in
time.

On the other hand, we see that the time derivatives of the angle elements
dΩ/dt, dω/dt, and dM/dt, obtained by differentiating with respect to the
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metric elements are nonzero. The partial derivatives of Rs expressed in (3.49)
yield

∂Rs

∂a
= −3

a
Rs ,

∂Rs

∂e
= − 3e

1 − e2
Rs ,

∂Rs

∂i
=

sin i cos i
1
2

sin2 i − 1
3

Rs .

The final result is:

ȧ = 0 , (3.51)

ė = 0 , (3.52)

i̇ = 0 , (3.53)

Ω̇ = − 3
2(1 − e2)2

nJ2

(
R

a

)2

cos i , (3.54)

ω̇ =
3

4(1 − e2)2
nJ2

(
R

a

)2 (
5 cos2 i − 1

)
, (3.55)

Ṁ − n = ∆n =
3

4(1 − e2)3/2
nJ2

(
R

a

)2 (
3 cos2 i − 1

)
. (3.56)

To begin with, we may take n = n0.
As a function of time t, and starting from the origin t = 0, the orbital

elements are thus

a(t) = a0 , e(t) = e0 , i(t) = i0 ,

Ω(t) = Ω0 + Ω̇t , ω(t) = ω0 + ω̇t , M(t) = M0 + nt + (∆n)t .

This system of equations represents the solution of the equation of motion
(3.32) as a function of the orbital elements.

Remarks Concerning the Variation of the Orbital Elements

To sum up, if we compare the actual trajectory of the satellite (perturbed by
the action of the J2 term of the geopotential) with the Keplerian trajectory,
we observe the following points:

1. The semi-major axis a of the orbit remains constant.
2. The eccentricity e of the orbit remains constant.
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3. The inclination i of the orbit with respect to the equatorial plane is
constant.

4. The orbital plane rotates uniformly about the polar axis with a constant
angular speed Ω̇. This motion is known as precession of the orbit or nodal
precession.11 When we speak of precession without further specification,
we are generally referring to this motion. According to (3.54), it can
occur either in the prograde or the retrograde direction, depending on
the inclination of the satellite:

prograde Ω̇ � 0 ⇐⇒ cos i � 0 ⇐⇒ i◦ �∈ D1 ,

retrograde Ω̇ � 0 ⇐⇒ cos i � 0 ⇐⇒ i◦ ∈ D1 ,

where D1 = [0.00, 90.00] in degrees of arc.
5. The perigee, and hence the whole orbit, rotate uniformly in the plane

of the orbit with constant angular speed ω̇. This motion is called ap-
sidal precession.12 According to (3.55), it can occur in the prograde or
retrograde direction depending on the inclination of the satellite:

prograde ω̇ � 0 ⇐⇒ sin2 i � 4
5

⇐⇒ i◦ �∈ D2 ,

retrograde ω̇ � 0 ⇐⇒ sin2 i � 4
5

⇐⇒ i◦ ∈ D2 ,

where D2 = [63.43, 116.57] in degrees of arc. We define the critical incli-
nation by

iC = arcsin
(

2√
5

)
. (3.57)

For the two values, i = iC = 63.43◦ and i = 180◦ − iC = 116.57◦, the
rate of apsidal precession ω̇ is zero. The value of the critical inclination
is independent of a and e. It is important for certain satellites in highly
elliptical orbit, because one seeks to avoid apsidal precession: as we shall
see, in the case of Molniya-type communications satellites, the position
of the apogee needs to be fixed on the orbit.
When ω̇ is calculated using an expansion going beyond the J2 term, the
value obtained for iC depends very slightly on a and e. It differs by a few
hundredths of a degree from the value given by (3.57).

11 The word ‘nodal’ means that the motion concerns the line of nodes, i.e., the line
joining the ascending and descending nodes. This straight line is the intersection
of the equatorial plane with the orbital plane.

12 The term ‘apsidal’ means that the motion concerns the line of apsides, i.e., the
line joining the perigee and the apogee. This line segment represents the major
axis of the ellipse. The perigee and apogee are the two apsides. The word comes
from the Greek (� ����� �̃���), meaning ‘arch’.
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6. The (true) mean motion of the satellite is not the same as it would have
been if there were no flattening. According to (3.56), it may be faster or
slower depending on the inclination of the satellite:

faster ∆n � 0 ⇐⇒ sin2 i � 2
3

⇐⇒ i◦ �∈ D3 ,

slower ∆n � 0 ⇐⇒ sin2 i � 2
3

⇐⇒ i◦ ∈ D3 ,

where D3 = [54.74, 125.26] in degrees of arc. A little later, we shall give
definitions of the various periods of the motion.

Example calculations are given in the following chapters. In Chap. 4, Figs. 4.1
and 4.2 show the quantities Ω̇, ω̇ and ∆n/n as a function of the inclination.

Note. The signs of the three quantities Ω̇, ω̇ and Ṁ −n relating to the angle
elements depend only on the inclination i.

3.7 Perturbative Method: Results for General Case

3.7.1 Geopotential up to Jn

Remark Concerning Zonal Harmonics

There is an interesting point when we assume that the Earth has an axial
symmetry, as we shall below. In this case, the geopotential involves only zonal
harmonics (i.e., the expansion involves only the Jn terms and not the sectorial
or tesseral harmonics), whose contribution to the full potential is by far the
greatest, as we have seen. The perturbative acceleration γP defined by (3.34)
then lies in the plane containing the satellite and the polar axis. It can thus
be decomposed as

γP = γ1er + γ2ez , (3.58)

where the unit vector along OS is denoted by er and the unit vector along
the polar axis Oz by ez. Using (1.7), the time derivative of the angular
momentum C is

dC

dt
= r ∧ r̈ = rer ∧

[(
− µ

r2
+ γ1

)
er + γ2ez

]
= rγ2 (er ∧ ez) ,

which is perpendicular to ez . If Cz is the projection of C onto the polar axis,
we thus have

dCz

dt
=

dC

dt
·ez = 0 .
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We saw earlier, in (3.44), that Cz corresponds to the Delaunay variable H ,
which gives here

dH

dt
=

dCz

dt
= 0 .

We deduce the following property:

H =
√

µa(1 − e2) cos i =
√

µp cos i = const. (3.59)

This relation is a very general feature of orbits perturbed by zonal terms with
the same axis.

As H is the metric element associated with the angle element h = Ω, it
follows from (3.42) that

dH

dt
=

∂F

∂Ω
= 0 ,

which shows that the function F does not depend on Ω. We may then recover
the result noted earlier: if the geopotential does not involve the longitude,
that is, if it only involves the zonal harmonics, then R (or F ) is independent
of Ω.

We also note the following formula, obtained by differentiating the last:

1
2a

da =
e

1 − e2
de + tan i di . (3.60)

Calculating the Perturbative Potential R
We now consider the Earth as a body with axial symmetry. The potential U
involves only the terms Jn. The full formula (3.20) reduces to

U(r, φ) =
µ

r

[
1 −

∞∑
n=2

(
R

r

)n

JnPn(sin φ)

]
. (3.61)

The perturbative potential R is obtained as the difference between U and
U0. This then replaces the value given by (3.45).

Let us begin our calculation of R by expanding up to third degree, thereby
bringing in the Legendre polynomials P2(sin φ) and P3(sin φ). We obtain

R = −µ

r

[
J2

(
R

r

)2 3 sin2 φ − 1
2

+ J3

(
R

r

)3 5 sin2 φ − 3
2

sin φ

]
. (3.62)

Written in simplified form (with Rn for degree n),

R = R2 + R3 ,
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where R2 corresponds to the sum Rs + Rp given in (3.50).

As before for R = R2, we calculate the average value 〈R3〉 of R3 over a
period, to evaluate the part which contributes to the secular variation:

2π〈R3〉 = − µR3J3

2a2(1 − e2)1/2

∫ 2π

0

5 sin2 φ − 3
r2

sin φdv .

With the help of (3.46) and (3.47), this gives

2π〈R3〉 =
∫ T

0

R3dt =
∫ 2π

0

R3dM = − µR3J3

2a4(1 − e2)5/2
J ,

where

J =
∫ 2π

0

{
5 sin2 i

2
[
1 − cos 2(v + ω)

]
− 3
}

(1 + e cos v) sin i sin(v + ω)dv .

Over one period, only the element v varies. Since the term sin(v+ω) appears
as a factor in the above expression, the integral J over the interval [0, 2π] is
zero. This amounts to saying that 〈R3〉 = 0, because sin φ is a factor in R3,
and this because x = sinφ is a factor in the Legendre polynomial P3(x).

Referring to Sect. 3.15, we see that the variable x is a factor in the expres-
sions for all the polynomials of odd order. We deduce that the terms Jn with
n odd make no contribution to the secular variation of the orbital elements.

Periodic and Secular Variations

From (3.61), we obtain R as a function of five orbital parameters (since Ω
does not occur):

R = R(a, e, i, ω, M) .

The potential R decomposes into a sum of terms Rn, one for each term Jn.
We consider Lagrange’s equations as given in Table 3.4. It can be shown that:

• If a term Rn depends on neither M , nor ω, it causes a variation in the
relevant orbital element which is proportional to the time, i.e., a secular
variation.

• If a term Rn depends on ω, but not M , there will be a variation whose
period will be of the order of the apsidal precession, i.e., a long-period
periodic variation.

• If a term Rn depends on both ω and M , there will be a variation whose
period will be of the order of the Keplerian period, i.e., a short-period
periodic variation.
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Metric Elements Angular Elements

Figure 3.3. Schematic representation of the time variation of the orbital elements.
Short-period variations are shown with a continuous curve and long-period varia-
tions with a dot-dashed curve. Secular variations are shown with a dashed line

To sum up, periodic variations are divided into short-period variations with
period less than the orbital period T , corresponding to the period of M ,
and long-period variations occurring over several tens of days (∼ 1 000T ),
corresponding to the apsidal period of ω. The latter are mainly due to the
influence of the J3 term, which affects e, i and the angle elements in particular.
There is no long-period perturbation of the semi-major axis a.13 This theorem
is known as the invariability of the major axis and it applies to many types
of motion in astronomy.

Secular variations are variations proportional to time. Naturally, it is this
kind of variation that deviates the satellite from its Keplerian orbit. We have
seen that the J2 term causes secular deviations in the three angle elements,
whilst having no effect on the metric elements. The other zonal harmonics, al-
though only the even ones, i.e., J4, J6, . . . , J2n, . . . , also contribute to secular
deviations [see (4.12), (4.13) and (4.14) in Table 4.1]. Figure 3.3 shows in a
schematic way all the periodic and secular variations of the orbital elements.

Example 3.1. Calculate the effect of perturbations when the geopotential is ex-
panded up to the term in J3. Long-period variations.

The potential R is given by (3.62). We have just seen that it can be written in the
form

R = (Rs + Rp) + R3 .

The term Rs(a, e, i) is given by (3.49). The term Rp(a, e, i, ω, M) leads to short-
period variations which we shall not discuss here. The term R3(a, e, i, ω) can be
written in the form

13 Laplace showed in 1776 that perturbations of the semi-major axis had no secular
terms to first order. In 1809, Poisson proved that there were no secular terms to
second order either.
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R3 =
3

2

µR3e

a4(1 − e2)5/2
J3

„
1 − 5

4
sin2 i

«
sin ω . (3.63)

The term R3(a, e, i, ω) leads to long-period variations.
Since ∂R3/∂M = 0 and ∂R3/∂Ω = 0, the equations for the metric elements

(the first three Lagrange equations in Table 3.4) become

da

dt
= 0 ,

de

dt
= − 1

na2

√
1 − e2

e

∂R3

∂ω
,

di

dt
=

1

na2

1√
1 − e2

cos i

sin i

∂R3

∂ω
.

This implies

de

di
= −1 − e2

e
tan i , (3.64)

which is equivalent to (3.60) when a is constant (which is almost always the case
for the kinds of motion occurring in astronomy). To calculate the variation arising
in i as a result of R3, we start with di/dt above, differentiate R3 with respect to
ω, and replace µ by n2a3. This gives

di

dt
=

3e

2(1 − e2)3
nJ3

„
R

a

«3

cos i

„
1 − 5

4
sin2 i

«
cos ω . (3.65)

To find the long-period variation in i due to the zonal harmonic J3, we integrate
(3.65) with respect to ω, using the relation (di/dt) = (di/dω)/(dω/dt) and the
value calculated for ω̇ from (3.55), to give finally

di

dω
=

1

ω̇

di

dt
=

1

2

e

1 − e2

J3

J2

„
R

a

«
cos i cos ω .

The required quantity is thus

∆LP3 i =
1

2

e

1 − e2

J3

J2

„
R

a

«
cos i sin ω , (3.66)

where the subscript LP3 indicates that this is a long-period effect due to the
zonal harmonic J3. To obtain the corresponding variation e, we use (3.64), tak-
ing (∆LP3e/∆LP3 i) for de/di :

∆LP3e = −1

2

J3

J2

„
R

a

«
sin i sin ω . (3.67)

Conversely, one can determine the value of J3 by measuring the values of ∆LP3 i

and ∆LP3e.

Variation of Orbital Parameters over One Revolution

The above results can be illustrated by expressing the variation of these
quantities over one revolution. Recall that R is the equatorial radius of the
Earth, a the semi-major axis of the elliptical orbit, and p the focal parameter
of the ellipse, with p = a(1 − e2). These variations carry the subscript 1
to indicate that they refer to the value obtained over one revolution. The
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variations, be they secular or long-period, are sufficiently slow to be able
to avoid integrating over the time t. Indeed, it is enough to multiply the
derivative with respect to t of the relevant quantity by T = 2π/n.

For the angle variables, we write ∆1Ω = Ω̇T and ∆1ω = ω̇T , where the
angles are of course given in radians. To first order, we take for Ω̇ and ω̇
the values given by (3.54) and (3.55), respectively, as a function of J2 alone,
when expanding the geopotential:

∆1Ω = −3πJ2

(
R

p

)2

cos i , (3.68)

∆1ω = +3πJ2

(
R

p

)2

2
(

1 − 5
4

sin2 i

)
. (3.69)

For the metric variables, the case for a can be dealt with immediately since
we may consider that ȧ is zero (invariability of the major axis). Concerning
the expressions for ė and i̇, related by (3.64), there is the term in J3 cosω, of
degree 3 in R/a, given by (3.65), followed by terms in J2

2 sin 2ω and J4 sin 2ω,
of degree 4 in R/a, and other terms of higher degree. We consider only the
first term in the expansion, referring to J3. We obtain for the variations over
one period:

∆1a ≈ 0 , (3.70)

∆1e = −3πJ3

(
R

p

)3

(1 − e2)
(

1 − 5
4

sin2 i

)
sin i cosω , (3.71)

∆1i = +3πJ3

(
R

p

)3

e

(
1 − 5

4
sin2 i

)
cos i cosω . (3.72)

The critical inclination plays an important role for ∆1ω, ∆1e and ∆1i.

3.7.2 Full Geopotential

When we consider the geopotential U(r, λ, φ) given by (3.10), it is extremely
difficult to calculate the effects of the perturbative potential R. However,
let us just mention the existence of orbital resonance phenomena: the influ-
ence of certain tesseral coefficients Clm and Slm defined by (3.13) and (3.14)
can, for one specific orbit, significantly exceeds the effects of coefficients with
higher or lower order and degree. For these values, the periodic perturbations
have relatively large amplitude. W. Kaula has developed a formalism which
predicts the resonances associated with these specific orbits.
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Table 3.5. Sources of perturbation and the effect (secular or periodic variation)
induced on the five orbital elements a, e, i, Ω and ω, for a satellite in low Earth
orbit, according to the King-Hele theory

Source Secular variation Periodic variation

of perturbation Large Small Indirect Moderate Small

Earth’s gravity Ω, ω − − e i, Ω, ω
Atmosphere a, e i Ω, ω − Ω, ω
Lunisolar gravity − − − − a, e, i, Ω, ω

This resonance phenomenon is particularly important for recurrent satel-
lites with a one-day recurrence cycle, i.e., effecting a whole number ν of
revolutions per day (see Chap. 7). Tesseral harmonics with order a multiple
of ν must be taken into account in orbital extrapolations (i.e., precise deter-
mination of satellite position at a given time from its osculating elements).

Particularly important are the following:

• For low-orbit satellites: harmonics of order 14, 28, . . . , (for ν = 14),
13, 26, . . . , (for ν = 13).

• For satellites of medium altitude: harmonics of order 2, 4, 6, . . . , in the
case where ν = 2 (two revolutions per day), whether the orbit is circular,
as for NAVSTAR/GPS, or highly elliptical, as for Molniya.14

• For geosynchronous satellites:15 harmonics of order 1, 2, 3, . . . .

More generally, this phenomenon affects all recurrent satellites, where ν is a
rational number, i.e., after a certain number of days, the satellite ground track
is repeated (see Chap. 7). For example, in the case of the SPOT satellites,
where ν = 14 + 5/26, there is a resonance for the tesseral terms of orders 15
and 29.

3.7.3 Terrestrial and Non-Terrestrial Perturbations

Atmospheric drag has a greater effect on a satellite as its orbit is low. It
can be shown that e tends to decrease (drag is greater at the perigee than
at the apogee, so the orbit tends to become more circular) and a also tends
to decrease (it is easy to understand that drag will tend to make a satellite
fall back to Earth). The other elements are not significantly affected, at least
not directly. However, the variation of a and e, which can be considered
14 For Molniya, the tesseral harmonic coefficients with the most effect are C22, C32,

C52; C44, C54, C64; C66, C76, C86; C98 and the corresponding Slm.
15 For a geostationary satellite, resonance periods of 24 hr and 48 hr are associated

with tesseral harmonics of order 1 (C31, C41 and the corresponding Sl1) and
resonance periods of 12 hr, 24 hr, 36 hr, and 48 hr are associated with those of
order 2 (C22, C32, C42 and the corresponding Sl2).
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as proportional to the time t (secular variation), induces a variation in the
angular parameters which rapidly dominates16 over the periodic variations,
because it is proportional to t2. The forces induced by radiation pressure
(solar or terrestrial) affect variations of the orbital elements.

Non-terrestrial gravitational potential is due almost entirely to the lu-
nisolar potential. The elements a and e are not affected by secular variations.
The various orbital elements undergo slight variations with long period. For
certain orbits, we observe a very slight secular drift in Ω. These results are
summarised in Table 3.5, for a low-orbiting satellite.

3.8 Different Definitions of Period

The three angles associated with Keplerian motion, the anomalies v, E and
M , increase by 2π when the time increases by 2π/n, where n is the mean
motion. The origin from which these angles are measured is taken at the time

16 For a precessional motion with angular speed Ω̇, the ascending node has longitude
Ω given by

Ω = Ω0 + Ω̇t = Ω0 + Ω̇(a0, e0, i0)t .

It can be shown that atmospheric drag introduces a secular decrease in a and e,
whilst the inclination i remains practically unchanged. We write these variable
parameters as a function of time t :

a = a0 − ȧt , e = e0 − ėt , i = i0 .

The longitude of the ascending node is thus Ω′, where

Ω′ = Ω0 + Ω̇(a, e, i0)t .

Expanding to first order, we write

Ω̇(a0 − ȧt, e0 − ėt, i0) = Ω̇(a0, e0, i0) −
„

∂Ω̇

∂a
ȧt +

∂Ω̇

∂e
ėt

«
,

which gives

Ω′ = Ω −
„

∂Ω̇

∂a
ȧ +

∂Ω̇

∂e
ė

«
t2 ,

or, putting δΩ̈ for the quantity in brackets in the above formula,

Ω′ − Ω = −(δΩ̈)t2 .

For the argument of the perigee, similar reasoning leads to

ω′ − ω = −(δω̈)t2 .
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t = tp when the satellite passes the perigee, as can be seen from (1.58) and
(1.66). The time interval between two successive passages at perigee is called
the anomalistic period.17 It is therefore the anomalistic period Ta which is
obtained with the mean motion n, and this differs from the period T0 obtained
with the Keplerian mean motion n0. We have the definition

nTa = n0T0 . (3.73)

With n = n0 + ∆n, calculated using (3.56), this implies

Ta =
1

1 +
∆n

n0

T0 . (3.74)

We also wish to know the time interval between two passages at the ascending
node (or the descending node). This is the nodal period or draconitic18 period
Td. This differs from Ta because the perigee moves through apsidal precession.
This happens even in the case of a circular orbit, since ω̇ does not vanish when
e is zero. We have the relation

n′Td = nTa , (3.75)

where n′ is the mean motion when the ascending node is taken as origin.
Composing the two motions, we have

n′ = n + ω̇ , (3.76)

yielding one period in terms of the other:

Td =
1

1 +
ω̇

n

Ta , (3.77)

Ta =
(

1 +
ω̇

n

)
Td . (3.78)

The draconitic period Td is given in terms of the Keplerian period T0 by

Td =
1(

1 +
ω̇

n

)(
1 +

∆n

n0

)T0 , (3.79)

17 The adjective ‘anomalistic’ derives from the word ‘anomaly’, since the three
anomalies are all zero (modulo 2π) at the perigee.

18 The adjective ‘draconitic’ was originally used for the draconitic period or month,
which refers to the passage of the Moon at its ascending node. The word comes
from the Greek (� ������� ��	�
), meaning ‘dragon’ (literally, ‘which stares’).
Eclipses only occur when the Moon passes through a node of its orbit. In ancient
times, the Greeks thought that, during an eclipse, the Moon was swallowed up
by a dragon, hiding near the nodes of the lunar orbit.
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or, to a first approximation,

Td ≈
(

1 − ω̇ + ∆n

n0

)
T0 . (3.80)

With this approximation, and for a circular orbit [with e = 0 in (3.55) and
(3.56)], we obtain

Td ≈
[
1 − 3

2
J2

(
R

a

)2 (
4 cos2 i − 1

)]
T0 . (3.81)

The daily orbital frequency ν, defined using the mean motion, is established
with the draconitic period. It represents the number of round trips, from one
north–south equatorial crossing to the next, per day:

ν = νd =
86 400
Td(sec)

. (3.82)

We also define the frequency νa, which represents the number of revolutions
(passages at perigee) per day:

νa =
86 400
Ta(sec)

. (3.83)

This quantity is provided by space organisations such as NORAD to calculate
the orbital elements. In fact, the period Ta is mainly used to calculate the
semi-major axis of the orbit. Concerning the motion of the satellite relative to
a frame fixed with respect to the Earth, it is the draconitic (or nodal) period
Td which comes into play. For Keplerian motion, all these periods coincide:
T = T0 = Ta = Td.

3.9 Precessional Motion

3.9.1 Precession of the Equinoxes

A simplified model of the terrestrial ellipsoid is given by a sphere with an
equatorial bulge. The mass of this bulge, uniformly distributed around the
equator, is such that the moments of inertia Ix and Iz with respect to an
equatorial diameter and the polar axis, respectively, are the same as for the
ellipsoid. This is a standard method for calculating the precession of the
equinoxes.

If the Earth were a sphere composed of homogeneous concentric layers, the
gravitational effect exerted by the bodies of the Solar System (in particular,
the Sun and Moon) would reduce to a force through its centre. The Earth’s
motion would then be a uniform motion around a fixed axis. The equatorial
plane would be fixed relative to the plane of the ecliptic. The straight line at
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the intersection of these two planes, the line of nodes (called here the line of
the equinoxes), would thus be fixed with respect to a Copernican frame.

Let us consider the bulging Earth model. As the precessional motion
here is very slow compared with the Moon’s revolutions, or the apparent
revolutions of the Sun around the Earth, we may replace the Moon and
the Sun by an equivalent mass distribution along their orbits, considered as
circular, in the plane of the ecliptic (which is an approximation for the Moon).
This is Gauss’ method.19 It can be shown (using Lagrange and Poisson’s
theory of motion with the gyroscopic approximation) that the the moment
of the gravitational forces exerted by the mass of the Sun and Moon on this
equatorial bulge causes a motion of the Earth’s axis of rotation, whilst the
angle between the equatorial and ecliptic planes remains fixed. This angle ε is
the obliquity. The line of nodes moves in the retrograde direction (opposite to
the direction of the Earth’s rotation). This motion, known as the precession
of the equinoxes, is very slow on the human time scale: one round trip every
25 800 years, or 50′′.29 per year, with the Moon contributing 34′′ and the Sun
16′′. The angular momentum, and hence the rate of precession, is proportional
to the difference (Ix − Iz) between the moments of inertia, related to the J2

term. The rate of precession is also proportional to cos ε.
The precession of the equinoxes has been known since ancient times,

thanks to Hipparchos.20

3.9.2 Precession of the Line of Nodes of a Satellite

With the same type of argument, one can calculate approximately the pre-
cessional motion of the circular orbit of a satellite. Consider a satellite in
19 Carl Friedrich Gauß (1777–1855) was a German astronomer, mathematician and

physicist. Gauss was interested in astronomy from very early on. In 1805, he
published a treatise on celestial mechanics, Theoria motus corporum coelestium.
In 1818, he published a monograph on the secular perturbations of a planet’s
motion when it is affected by another planet. The method consists in replacing
the perturbing body by a torus, distributing the matter of the body along its
trajectory. This immense work covers mathematics (geometry, cartography, con-
formal representations, probability), physics (magnetism, optics, field theory),
and geodesy. See also the note on Piazzi.

20 Hipparchos of Nicaea (second century BC), (� ���������	 �
), was a Greek as-
tronomer. By his observations made in Rhodes, he was the first astronomer to
make truly accurate measurements of the positions of the stars, specifying their
positions on the celestial sphere using meridians and parallels. He introduced
into Greece the Babylonian idea of dividing the circle into degrees, minutes and
seconds. He can be considered as the inventor of trigonometry. He invented the
stereographic projection. He discovered the precession of the equinoxes by com-
paring his measurements of stellar positions with those made by Timocharis a
century and a half earlier, and also with those made much earlier by the Babylo-
nians. The works of Hipparchos did not come directly to us, but were mentioned
by the geographer Strabo and the astronomer Ptolemy.
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circular orbit around the Earth with its equatorial bulge. We distribute the
mass of the satellite uniformly around its trajectory (the rate of precession
is roughly one ten thousandth of the orbital angular speed of the satellite),
and calculate the moment of the gravitational forces between these two rings.
We then show that the orbit undergoes a precessional motion in which the
angle between the orbital plane of the satellite and the equatorial plane of
the Earth (the inclination i of the satellite) remains constant. We calculate
the moment of the gravitational forces, then the rate of precession Ω̇, which
is proportional to (Ix − Iz), hence to J2, and to cos i.

3.9.3 The Earth as a Satellite

One can use the analogy between an artificial satellite in orbit around the
Earth and the Earth viewed as a satellite of the Sun. Let us first note a basic
difference between the two problems. The artificial satellite is considered as a
point with respect to the Earth and its Keplerian motion is mainly perturbed
by the ellipticity of the attracting body (via the J2 term of the Earth). As
a satellite of the Sun, the Earth cannot be treated as a point, but must be
considered as a rotating solid, with its polar axis of rotation defining the
equatorial plane, and non-spherical nature induced by perturbations.

For the Keplerian elements a, e and ω, the analogy between the two ap-
proaches is clear. The metric elements a and e undergo no secular variations.
Over a long period of time, there are none for a (stability of the major axis,
studied by Laplace, Poisson, and Poincaré), but there is one for e : the eccen-
tricity varies between e = 0.005 and e = 0.050, with a period of 100 000 yr.
The angle element ω undergoes a secular variation, ω̇ = 11′′.6 per year, which
corresponds to a cycle21 of 110 000 yr.

The variations of the other Keplerian elements can be understood by
regarding the Earth as a spinning top. (They are calculated by considering
the gyroscopic effect.) The third Keplerian metric element (equivalent to the
inclination) is the obliquity ε. It undergoes no secular variations, but it does
have a long-period variation in which ε varies between 22◦ and 25◦, with
a period of 40 000 yr, upon which is superposed a very small short-period
variation known as nutation, with amplitude 9′′ and period 18.6 yr due to
the Moon. The angle element Ω undergoes a secular variation, Ω̇ = −50′′.29
per year, mentioned above, representing the precession of the equinoxes.

The theory of Milankovitch (established between 1920 and 1940) is based
on a combination of these periods (100 and 40 thousand years) and cycles
(26 and 110 thousand years). This explains the succession of warm and cold
periods (ice ages) affecting the Earth’s climate. The theory was taken up

21 We use the word ‘cycle’ for a period of time at the end of which the relevant point
(here the perigee) is located in the same position with respect to a Copernican
frame. A cycle is related to a secular variation. For short or long periodic motions,
we shall use the word ‘period’.
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again by A. Berger in 1980 and obtained a striking experimental confirmation
with the analysis of air bubbles trapped in the Antarctic ice over a period of
400 000 yr.

3.10 Historical Note on Geodesy

3.10.1 Calculating the J2 Term Using Geodesy

The J2 term in the expansion of the geopotential, which can be related to a
difference between the moments of inertia of the Earth with respect to the
polar axis and an equatorial axis, as explained by (3.17) and (3.18) discussed
earlier, is not directly measurable. Without waiting for the advent of the
satellite, it was possible to determine it from geodetic considerations.

The geoid is an equipotential surface of the gravitational field which co-
incides with the mean sea level (disregarding the tides, currents and waves).
The direction given by a plumbline at any location on this surface is orthogo-
nal to it. The surface of a lake at rest represents this equipotential surface at
a given altitude. To study the field of gravity g at the surface of the Earth,
one must consider the gravitational force field in a frame T moving with the
Earth, rather than in the Galilean frame . To obtain the relevant relations
in T, one must take into account the acceleration of transport at due to the
Earth’s rotation as well as the acceleration calculated in  :

at = −�2HS0 ,

where � is the angular speed of rotation of the Earth22 and H is the projec-
tion of S0, the point of latitude φ at the surface of the Earth, on the polar
axis. The geocentre is O and we set r = OS0. We thus have HS0 = r cosφ.
The unit vector in the direction OS0 is er.

The acceleration g in T is obtained using the rule for combining accel-
erations:

g�T = g� + �2HS0 . (3.84)

The vector g�T corresponds to the weight: this is what defines the weight of
a body at a given location. The weight is the vector sum of the gravity g�
or g and the so-called centrifugal acceleration.

The vector g� lies along OS0 and the vector g�T makes a very small
angle with g� (at most 0.1◦). We may thus write

g� = −g�er , g�T = −g�Ter .

22 The notation � will only be used in this paragraph. In the following chapters,
we use another notation for this quantity, namely Ω̇T. This notation will be
explained later.
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The angle (HS, OS0) represents the latitude φ. Projecting (3.84) onto OS0,
we thus have

−g�Ter = (−g� + �2r cos2 φ)er . (3.85)

Expressing the fields g� and g�T in terms of the respective potentials U and
UT and integrating (3.85) with respect to r, we obtain

UT = U +
1
2
�2r2 cos2 φ .

Cutting off the expansion of U at the second order (geoid = ellipsoid), given
by (3.19), we obtain

UT(r, φ) =
µ

r

[
1 −

(
R

r

)2

J2
3 sin2 φ − 1

2

]
+

�2

2
r2 cos2 φ . (3.86)

We consider the terrestrial ellipsoid, with semi-major axis a = R = Re, and
semi-minor axis b. Now the geometric flattening, or flattening, is given by
(1.92)

f =
a − b

a
.

For an arbitrary point on the Earth’s surface (on the ellipsoid), the potential
is the same. Choose a point at the pole and a point on the equator:

UT(r = a, φ = 0) = UT(r = b, φ = π/2) .

The relation (3.86) gives

µ

a

(
1 +

1
2
J2

)
+

�2

2
a2 =

µ

b

(
1 − a2

b2
J2

)
.

The quantities f and J2 are small compared to unity. Neglecting small quan-
tities of second order, we obtain on the right-hand side

µ

a
(1 + f)

[
1 − J2(1 + 2f)

]
≈ µ

a
(1 + f − J2) ,

which yields

J2 =
2
3
f − 1

3
ma , (3.87)

where

ma =
�2a3

µ
. (3.88)
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The dimensionless quantity ma is easily calculated since all the elements are
known and f is known (f = 1/298.3). We obtain

f = 3.353× 10−3 , ma = 3.461 × 10−3 ,

J2 = 1.0814× 10−3 ,

which is very close to the value of J2 given in Table 3.2.
Carrying out the calculations with the small quantities of second order,

we find that

J2 =
2
3
f − 1

3
mb −

1
3
f2 +

2
21

fmb ,

where we have set

mb =
�2a2b

µ
= ma(1 − f) .

The numerical result gives J2 = 1.082 634 × 10−3, which leads to a relative
error of 8 × 10−6 with the value retained for J2.

3.10.2 Clairaut’s Formula

Historically, it was the quantity f that scientists sought to calculate. That
is, they wished to know the flattening without measuring the Earth’s merid-
ian. They had to find some way of expressing J2, and this can be done by
measuring g�T , the acceleration due to weight, at various points around the
Earth. Equation (3.85) gives

g�T =
µ

r2

[
1 − 3

(a

r

)2

J2
3 sin2 φ − 1

2

]
− �2r cos2 φ . (3.89)

We calculate g�T at the equator (ge) and the pole (gp):

ge =
µ

a2

(
1 +

3
2
J2

)
− �2a ,

gp =
µ

b2

(
1 − 3

a2

b2
J2

)
≈ µ

a2
(1 + 2f − 3J2) .

Neglecting small quantities of second order, the difference yields

gp − ge =
µ

a2
(2f − 9

2
J2) + �2a .

Replacing ge by (µ/a2) in the small terms, since g = µ/R2 to a first approx-
imation, we obtain
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gp − ge

ge
= 2f − 9

2
J2 + mg ,

where

mg =
�2a

ge
. (3.90)

The value of mg is equivalent under the given approximations to that of ma

in (3.88). We set

β =
gp − ge

ge
,

a dimensionless quantity which might be called the flattening of gravity. This
can be accurately obtained by measuring g at the equator and the pole. We
thus have another relation for J2, viz.,

J2 =
2
9
(2f + ma − β) . (3.91)

Comparing the two equations (3.87) and (3.91) giving J2, we obtain Clairaut’s
formula23

f =
5
2
ma − β . (3.92)

This formula gave f in terms of two measurements of g. It was then possible
to check the value for the flattening obtained using measurements of the
Earth’s meridians (see the next section). Numerical calculations give (with
ge = 9.7804 m s−2 and gp = 9.8322 m s−2) :

β = 5.296× 10−3 ≈ 1/189 , ma = 3.467 × 10−3 ≈ 1/288 ,

f = 3.373× 10−3 ≈ 1/297 .

Given the approximations made here, this result can be considered to be
highly satisfactory.

To sum up, the gravity g = g� varies between 9.814 at the equator to
9.832 at the pole, in SI units, due to the flattening of the Earth. Measured
experimentally, the weight g�T varies from 9.780 at the equator to the same
value 9.832 at the pole. This is because one must add the variation caused by
the Earth’s rotation (zero at the pole) to the variation of g�. The amplitudes
of these two variations are of the same order of magnitude.
23 Alexis Claude Clairaut (1713–1765) was a French astronomer and mathemati-

cian. Accepted into the French Academy of Sciences at the age of eighteen, he
published his Théorie de la figure de la Terre in 1743, using the different accel-
erations due to the weight at the poles and the equator. He then studied the
three-body problem and published his Théorie de la Lune in 1752.
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3.10.3 Terrestrial Ellipsoid

The first precise measurement of the Earth’s radius was made by Picard.24

Newton put forward the idea that the Earth was an ellipsoid flattened at
the poles and calculated the flattening to be f = 1/578, then f = 1/231.
Huygens obtained f = 1/230. A lively debate then ensued with Cassini,25

who maintained that the ellipsoid was stretched out along the polar axis,
with f = −1/95. Newton’s calculations were confirmed26 by measurements

24 Father Jean Picard (1620–1683) was a French astronomer and geodesist. He car-
ried out the first scientific (and highly accurate) determination of the Earth’s
radius. In 1670, he measured the length of an arc of 1◦22′ on the Earth’s merid-
ian (from Amiens to Paris, or more precisely, from Sourdon to Malvoisine) using
triangulation. He found that an arc of 1◦ (geodetic unit of measurement) cor-
responded at this latitude to 57 060 toises (1 toise = 6 feet). He immediately
communicated his result to Newton, who was thus able to check the relation
between the accelerations and the squares of the distances, thereby obtained a
clear confirmation of his universal theory of gravitation.
In another area, Picard was the first to carry out systematic measurements of
the diameter of the solar disk. He observed its variations and sought the con-
nection with climate change on Earth. His series of measurements between 1666
and 1682 was continued by La Hire from 1683 to 1718.

25 Jacques Cassini (1677–1756), known as Cassini II, was a French astronomer, son
of Jean-Dominique Cassini. He contributed to the measurement of the meridian
at the Paris Observatory (1700–1718) and concluded that the polar radius was
longer than the equatorial radius.

26 Under the recommendations of the French Academy of Sciences, the Count of
Maurepas, Naval Minister, organised an expedition to the equinoctial and polar
regions in 1734 to determine the flattening of the Earth. A group of academics
went to Peru (to a region which now belongs to Ecuador), and another to Lap-
land, in the outer reaches of Sweden and Finland. The unit of length was the toise
of Châtelet (Paris). The equatorial group (L. Godin, C. M. de la Condamine and
P. Bouguer) obtained 56 746 toises for 1◦ at a mean latitude of −01◦30′. The arc-
tic group (P.L.M. de Maupertuis, A.C. Clairaut and A. Celsius) obtained 57 438
toises for 1◦ at a mean latitude of 66◦20′. In France, the official value at this
period was 57 074 toises for 1◦ at a mean latitude of 49◦29′.
Naturally, the angles of 1◦ are not geocentric, but are measured from the normal
to the surface (taken as an ellipsoid). The radius of curvature ρc of an ellipse
(determined by a and e) as a function of the latitude φ is

ρc =
a(1 − e2)

(1 − e2 sin2 φ)3/2
.

Taking two measurements of arc and hence two radii of curvature ρc1 and ρc2 at
two different latitudes φ1 and φ2, we obtain e2 without needing to know a. For
a small flattening f , expanding f to first order (in particular, taking e2 ≈ 2f),
we obtain

f =
1 − (ρc1/ρc2)

2/3

cos 2φ1 − cos 2φ2
.
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carried out in person by the great scholars of the Age of Enlightenment, such
as Maupertuis,27 in Peru and Lapland.

From this time on, with Clairaut, the founder of modern geodesy, and
Cassini de Thury,28 the flattening of the Earth was taken to be around f =
1/300, which is very close to the currently accepted value.

Alongside these purely geodetic measurements, using measurements in
the field, knowledge of the Earth’s shape moved forward hand in hand with
mathematical progress in celestial mechanics. D’Alembert29 calculated the
flattening of the Earth in 1749 by studying the precession of the equinoxes.

Taking the arcs in France and Peru, this gives f = 1/300, which agrees with
the theories of the day. However, using the arc in Lapland, we obtain f = 1/207
when we combine it with the arc in Peru, and f = 1/123 when we combine it
with the arc in France. In the face of these results, the Swedish Academy organ-
ised a further expedition to Lapland in 1803.
The metre was defined as the ten-millionth part of one quarter of the Earth
meridian. Measurements were carried out by Delambre and Méchin between
1792 and 1798, using triangulation along the meridian from Dunkerque to
Perpignan. The characteristics of the Earth’s ellipsoid thereby defined were
a = 6375.653 km, f = 1/334.
When the metric system was officially established in France (10 December 1799
or 19 frimaire An VIII ), the official conversion from the toise to the metre was:
1 toise of Châtelet = 1.949 036 3 m .

27 Pierre Louis Moreau de Maupertuis (1698–1759) was a French physicist. He
led the expedition to Lapland, thereby earning himself the following verse from
Voltaire:

Vous allâtes vérifier en ces lieux pleins d’ennui
Ce que Newton trouva sans sortir de chez lui.

In these dull and dismal quarters you will only ascertain
What Newton always knew without leaving his domain.

There may be no connection with this ironic tribute, but Maupertuis subse-
quently discovered his famous principle of least action in 1744.

28 César-François Cassini (1714–1784), known as Cassini III or Cassini de Thury,
was a French astronomer. With his father Cassini II, he contributed to the mea-
surement of the perpendicular to the meridian at the Paris Observatory in 1733.
The new measurement of the meridian (1739–1740) convinced him of his father’s
mistake with regard to the flattening of the Earth. He published a map of France
known as the Cassini map, the first basic map of the country, a topographical
map with scale 1:86 400 (1 line for 100 toises), using the Cassini projection. It
was begun in 1744 and completed in 1790 by his son Jean-Dominique Cassini
(1748–1845), known as Cassini IV.
The four Cassinis were successive directors of the Paris Observatory from its
foundation by Cassini I in 1671 up to the French Revolution, with Cassini IV,
in 1793, the last three Cassinis taking up the succession at the death of their
fathers.

29 Jean le Rond D’Alembert (1717–1783) was a French mathematician, physicist
and philosopher. He published Recherche sur la précession des équinoxes et sur
la nutation de l’axe de la Terre dans le système newtonien in 1749. In 1743, he
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Then, in 1802, Laplace found practically the same value by studying the
libration and the motion of the Moon: f = 1/305 from the first, f = 1/303
from the second.

However, it was with the advent of the satellite that the most accurate
studies of the geoid could be accomplished.

3.11 Geoid

3.11.1 Satellites and Geodesy

The first artificial satellite artificiel, Sputnik-1, was launched by the USSR
on 4 October 1957 and only emitted its signal for three weeks. 30

However, by studying the trajectory of the following satellites,31 launched
shortly afterwards, the zonal coefficient J2 was determined by the British
geodesist D. King-Hele in 1958. The value32 was quite close to predictions
calculated from Earth-based measurements.

The US satellite Vanguard-1, launched on 17 March 1958, made it possible
for the first time to evaluate the discrepancy between the ellipsoid and the
geoid. The value of J4 was obtained in the same year, and that of J3, the first
odd zonal term, in 1959 by Y. Kozai. This important harmonic of degree 3
corresponds to a raising of the North Pole by 15 m above the ellipsoid and a
lowering of the South Pole by the same amount.

In 1961, W. Kaula produced a complete model of degree 4, i.e., involving
all the coefficients Clm and Slm: a sectorial harmonic, coefficient of the asso-
ciated Legendre function P22, accounts for an elevation of the geoid around
165◦E and 15◦W and a depression around 75◦E and 105◦W. These points
mark out four equal sectors on the equator33 since we are dealing with Plm

in the case l = 2 and m = 2.

put forward the principle now known as D’Alembert’s principle, in his Traité de
dynamique. With Diderot and others, he wrote the celebrated Encyclopédie [or
Dictionnaire raisonn des sciences, des arts et des métiers (1751-1772)].

30 Sputnik-1 was spherical with mass 84 kg and diameter 58 cm. Altitude at perigee
hp = 228 km, altitude at apogee ha = 947 km, inclination i = 65.128◦ , period
T = 96.17 min (∆T = 1.80 s/day), argument of the perigee ω = 41◦N, secular
variations (degrees/day): Ω̇ = 3.157, ω̇ = 0.432.

31 Sputnik-2 (mass: 508 kg) was launched on 4 November 1957: hp = 225 km,
ha = 1671 km, i = 65.310◦, T = 103.75 min (∆T = 3.08 s/day), ω = 40.45◦N,
Ω̇ = 2.663, ω̇ = 0.407.
Sputnik-3 (mass: 1 327 kg) was launched on 15 May 1958: hp = 226 km, ha =
1881 km, i = 65.188◦ , T = 105.95 min (∆T = 0.75 s/day), ω = 44.57◦N,
Ω̇ = 2.528, ω̇ = 0.326.

32 The results from Sputnik-2 gave J2 = 1.084 × 10−3. At this point, the notation
Jn was adopted in homage to the British geophysicist Sir Harold Jeffreys (1891–
1989).

33 D. King-Hele summed this up in a little verse of his own invention:
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Our knowledge of the Earth’s gravitational potential moved ahead very
quickly from this time. Geodesists not only took advantage of all available
satellites, but they also sent up their own dedicated satellites.34 Space-based
geodesy has now become a ‘dialectic’ science in the sense that geopotential
models are better known by localising satellites and studying their trajec-
tories, and the position of the satellites is better determined by improved
potential models.

The US satellites NAVSTAR, launched as part of the GPS programme
(Global Positioning System), or the Soviet then Russian satellites, for the
equivalent GLONASS programme, allow us to determine positions on Earth
with accuracies between a few metres and a few millimetres depending on
the receiver used and the chosen operational mode.

The French–US satellite TOPEX/Poseidon, launched in 1992 for oceano-
graphic and geodetic purposes, measures the sea level (whose mean represents
the geoid) relative to the reference ellipsoid with an accuracy between 2 and
3 cm. This means that the altitude of the satellite is known to an even better
accuracy. The quality of the altimeters used is important, but the accuracy
with which the satellite orbit is established by the DORIS system is just
as crucial. And this in turn is possible thanks to potential models involving
spherical harmonics of a very high degree.

To sum up, the geoid has been defined with great accuracy with respect
to the Earth ellipsoid. The North Pole is 10 m above and the South Pole 30 m
below. Apart from this deformation along the Earth’s axis of rotation, there
are two diametrically opposed bulges and two diametrically opposed hollows.
The largest bulge is 76 m above the ellipsoid, centered on the island of New
Guinea and extending across the whole of the western Pacific. The largest
hollow, measuring 93 m, is situated just south of India. Another is located in

When you cut a slice
Through the polar ice

The Earth is like a pear.
But sliced along the equator
She looks like a potato –

A giant pomme de terre.

34 Among these, the US series GEOS (Geodetic Earth Orbiting Satellite), GEOS-1
(Explorer-29), GEOS-2 (Explorer-36), PAGEOS, LAGEOS, with passive ranging
(PA) or laser ranging (LA) of the satellite, which followed on from the satellites
Echo-1 and Echo-2 (balloon satellites), Anna-1B (Army, Navy, Nasa, Air Force,
first satellite to emit flashes), ADE-A (Atmospheric Density Explorer, Explorer-
19), Beacon-Explorer-1 (Explorer-22 or BE-B, first satellite equipped with laser
reflectors), and Beacon-Explorer-2 (Explorer-27 or BE-C). After 1970 came the
French satellites Starlette and Stella, launched in 1975 and 1993, the Japanese
satellite EGS-1 (Earth Geodetic Satellite, or EGP (Experimental Geodetic Pay-
load, also called Ajisai, ‘hydrangea’ in Japanese), launched in 1986, and the
Russian satellite Fizeau (Meteor-2-21), launched in 1993.
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the Hudson Bay in Canada. These anomalies bear no relation to the relief of
the Earth’s surface. They are explained as manifestations of mass anomalies
in the Earth’s mantle. A map of these anomalies is given in Colour Plate
XVIa.

3.11.2 Development of Geopotential Models

The Main Models

The first satellite data were integrated into existing models and, from 1970,
certain models were established exclusively on the basis of space data (the so-
called satellite-only models). The SAO-SE model (Smithsonian Astrophysical
Observatory – Standard Earth), established35 in 1966, used in 1972 the first
laser-ranging measurements to establish satellite distances. The NSWC model
(Naval Surface Warfare Center, ex-NWL or Naval Weapon Laboratory) was
mainly based on satellites in the Transit series.

Models integrate space-based measurements (satellite trajectories, alti-
metric measurements made by satellite) and Earth-based measurements (sur-
face gravimetric measurements, currently accurate to 10−9g0). The main
models of this type currently in use are GEM, JGM, EGM and GRIM.

The GEM model (Goddard Earth Model) was established by NASA’s
GSFC (Goddard Space Flight Center) in the United States as a reaction to
the classified US military models. The first model, GEM-1, was published in
1972, expanding the potential to degree 12. Then came GEM-2, and a whole
series up to GEM-10 (expansion to degree 20) in 1977, followed by GEM-
L in 1983 (using LAGEOS36 data) and GEM-T in 1984 (preparation for
TOPEX/Poseidon). The GEM-T2 model, published in 1990, was obtained
using data from 31 satellites and 2.4 million observations (on 1130 orbital
arcs). It gave a model with all coefficients up to degree 36 and some up to
degree 50. It also gave a very high order expansion for the tides. This model
uses satellites with a wide range of orbits, some dedicated to geodesy and
others not.37 It will be further refined in GEM-T3.
35 The satellites used here, launched between 1959 and 1961, were, in order of

inclination, Explorer-2, Vanguard-2 and -3, Telstar, Echo-1, Relay-1, Anna-1B,
Transit-4A, Injun-1, Solrad-3 (or GREB-3), with i = 29◦ to 67◦, and MIDAS-4,
with i = 96◦. Note that Injun-1 and Solrad-3, launched as auxiliary passengers
on Transit-4A, were unable to separate from one another.

36 The name LAGEOS-1 was only given to this satellite after LAGEOS-2 was
launched.

37 One finds the complete range of inclinations, from the lowest (less than 40◦), rep-
resented by PEOLE, and Diadème-1 and 2 (D1-C and D1-D), up to the highest
(over 140◦), represented by OV1-2, through satellites with strictly polar orbits
(i = 90.0◦), represented by Transit-5B-2 and Nova-1. There are satellites that
have been launched recently, just as there are satellites launched at the very be-
ginning of space exploration, between 1959 and 1961, such as Courier-1B and all
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The JGM model (Joint Gravity Model) was produced jointly by NASA
and the University of Texas. In 1994, JGM-2 amended GEM-T3 with the
first results from TOPEX/Poseidon. In 1996, JGM-3 integrated data from
other satellites, such as LAGEOS-2.

The EGM model (Earth Gravity Model) is the result of collaboration
between GSFC-NASA, NIMA (National Imagery and Mapping Agency), and
OSU (Ohio State University). In 1996 came EGM96S, of degree and order 70,
with data provided solely by satellites, and EGM96, of degree and order 360,
adjoining geophysical data (see Colour Plate XVIa). They used data from
40 satellites,38 including satellite-to-satellite measurements, with the GPS
constellations39 and TDRSS.

The GRIM model was the result of a joint project between GRGS (Groupe
de Recherche en Géodésie Spatiale) in France and DGFI (Deutsches Geodätis-
ches Forschungsinstitut) in Germany. The first model, GRIM1, in 1976 (up
to degree 10), was followed by GRIM2, GRIM3 and GRIM4. The GRIM4-S2
model, obtained using 27 satellites, gave the harmonics up to degree 50 and
high order expansions for the tides, going even further with the GRIM4-S4
model. In 2000, there followed the GRIM5-S1 and GRIM5-C1 models, the
first based solely on satellite data,40 and the second using all data. The -C1
model provides a complete matrix of degree and order 120 and an incomplete
matrix for degrees 121 to 360. This corresponds to an accuracy of 50 cm for
the height of the geoid and 5.5 mgal for the surface gravity field.41 GRIM5
was established to prepare for two oceanographic missions, the French–US
satellite Jason-1 and the European Envisat, and other missions dedicated to
studies of the geopotential, namely, the satellites CHAMP, GRACE-A and
-B, and GOCE. Geodesy is moving ahead very quickly in this interplay with

those used by the SAO-SE model, remote-sensing and communications satellites,
such as Landsat-1, Oscar-7 and -14 (Transit-O-7 and -O-14), and of course satel-
lites with geodetic missions, such as OGO-2, the two Beacon-Explorers (called
BE-B and BE-C by geodesists), SECOR-5 (EGRS-5), LAGEOS-1, GEOS-1,
-2, -3, Ajisai, Starlette, Seasat, and Geosat. Note also the use of laser ranging
between the two satellites ATS-6 (geostationary) and GEOS-3.

38 In addition to those providing data for GEM-T2, we find the following more
recent satellites: ERS-1, Etalon-1, EUVE (BerkSat), GFZ-1, HILAT (NNS-O-
16), LAGEOS-2, Radcal, Stella et TOPEX/Poseidon.

39 The satellites NAVSTAR-35 and -36 (or USA-96, -100), launched in 1993 and
1994, are equipped with laser reflectors.

40 The satellites used were Starlette, Ajisai, LAGEOS-1 and -2, Geosat, SPOT-2
and -3, ERS-1 and -2, Stella, Westpac-1 (WPLTN-1, West Pacific Laser Tracking
Network), TOPEX/Poseidon, GFZ-1, D1-C, D1-D, GEOS-3, Meteor-3-07, Nova-
3, Etalon-1 and -2 (Kosmos-1989 and -2024), and PEOLE.

41 The gal is the unit of acceleration in the old CGS system, named after Galileo:
1 gal = 1 cm s−2. The gal is still used in geophysics. One milligal (mgal) corre-
sponds to about one millionth of the Earth’s gravity field g0.
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Table 3.6. Comparison between different models. Upper : normalised zonal coef-
ficients C∗

l0. All values to be multiplied by 10−6. Lower : values of the geocentric
gravitational constant µ, equatorial radius R, and flattening (1/f). The whole num-
ber part is the same for all models, i.e., only the decimal changes

Coefficient GEM-T2 JGM-3 GRIM5-C1 GRIM5-S1

C∗
2 0 −484.1652998 −484.165368 −484.16511551 −484.16511551

C∗
3 0 0.9570331 0.957171 0.95857491 0.95857492

C∗
4 0 0.5399078 0.539777 0.53978784 0.53978784

C∗
5 0 0.0686883 0.068659 0.06726760 0.06720440

C∗
6 0 −0.1496092 −0.149672 −0.14984936 −0.14985240

C∗
7 0 0.0900847 0.090723 0.09301877 0.09311367

C∗
8 0 0.0483835 0.049118 0.05039091 0.05046451

C∗
9 0 0.0284403 0.027385 0.02628356 0.02620763

C∗
10 0 0.0549673 0.054130 0.05101952 0.05076191

C∗
20 0 0.0199685 0.018790 0.02340848 0.02342817

C∗
99 0 −0.00128836 −0.00001554

Quantity Unit Integer part GEM-T2 JGM-3 GRIM5

µ = GM km3s−2 398 600 .436 .441 5 .441 5

R km 6 378 .137 .136 30 .136 46

1/f (dimensionless) 298 .257 .257 65 .257 65

satellite development, and should witness still more spectacular results in the
near future as data from geodetic satellites is put to use.

Comparison of Geopotential Models

Models of the geopotential cannot be compared term by term (beyond degree
5). Two models can have rather different terms and yet still have a very close
final result: different weightings of the spherical harmonics can lead to very
close results. Beyond degree 16, even the signs of the coefficients can change
from one model to another, without there being any harmful effect on the
restitution of the geoid and satellite tracking. This highlights a problem when
truncating series: the coefficients of a model of degree 10 do not correspond
to the coefficients of the first 10 degrees in a model of degree 20.

As an example, Table 3.6 (upper) gives the coefficients C∗
l 0 for four models

mentioned above. (Coefficients of order 0 and degree l between 2 and 10. We
recall that, for l = 0, the coefficient is equal to unity and, for l = 1, it is
zero. All coefficients in the table are in units of 10−6.) We have the following



112 3 Satellite in Perturbed Orbit

relation between the harmonic coefficients Cl 0 defined by (3.11) and the so-
called normalised zonal coefficients C∗

l 0:

Cl 0 =
√

2l + 1C∗
l 0 .

These coefficients are associated with values of µ, R and f corresponding to
each model [see Table 3.6 (lower)].

3.11.3 Evaluation of the Geocentric Gravitational Constant

It is easy to see that the geocentric gravitational constant µ = GM plays a
key role in space mechanics. It can be obtained to very high accuracy, well
above what can be achieved for the universal constant of gravitation G.42

The first values for µ were given by Kepler’s third law applied to the lunar
orbit. More and more precise values were obtained using the space probes
Ranger, Mariner, and Venera, then satellites, preferably with high altitude,
since lower satellites are subject to non-gravitational effects. Today, the most
precise measurements are obtained by laser ranging on the satellite LAGEOS.
Table 3.7 shows the values obtained for µ, together with the estimated error,
by various methods (mentioning the year).

3.12 Appendix: Astronomical Constants

The astronomical constants can be put into three groups: defining constants,
primary constants, and derived constants. The numerical values of these con-
stants are given in Table 3.8. These are the so-called IERS 1992 values, named
42 Henry Cavendish (1731–1810) was a British physicist and chemist. He was the

first to obtain a precise value for G, published in 1798 in his famous paper
entitled Experiments to determine the density of the Earth. He used a subtle
method: instead of taking advantage of very large masses (like those who, at the
time, sought to measure the deviation of a plumbline by a mountain), he used
a torsion balance with a very fine thread, suspending two small metal weights
(50 g). Bringing two large lead balls (30 kg) to a distance of 15 cm, he measured
the torsion of the thread using a mirror to create a ‘light lever’ and deduced G
from the period of the motion (∼ 2 hr). He thereby calculated the density of the
Earth and found d = 5.48 (current value: 5.52). This density is greater than that
of the rocks in the Earth’s crust (∼ 2.7), and Cavendish thus demonstrated that
the Earth contained a very dense central part.
The method was later refined by Charles Boys (1895) using a very fine quartz
thread (2 µm) and still smaller masses (2.7 g, 7.5 kg at 15 cm), on a short period
(3 min). This type of experiment is still used to measure G, but the relative
accuracy does not exceed δG/G = 10−4. Other ways are now sought to improve
accuracy. Current recommendations (CODATA 1998) give the value

G = (6.673 ± 0.010) × 10−11 m3s−2kg−1 .
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Table 3.7. Measured geocentric gravitational constant µ = GM and estimated
error. Historical evolution indicating method used and year

Method Year µ [km3s−2] Error

Lunar orbit 1959 398 620. ±6.
Explorer-27 1965 398 602. ±4.
Ranger-6, -7, -8, -9 1966 398 601.0 ±0.7
Mariner-9 1971 398 601.2 ±2.5
Venera-8 1972 398 600.4 ±1.0
ATS-6/GEOS-3 1979 398 600.40 ±0.1
Laser/Moon 1985 398 600.444 ±0.010
Laser/LAGEOS 1992 398 600.441 5 ±0.000 8
Laser/LAGEOS 2000 398 600.441 9 ±0.000 2

after the system defined in 1992 by the International Earth Rotation Service
(IERS). We have only included those constants used in this book.

Defining Constants

The two defining constants are the Gaussian gravitational constant and the
speed of light.

• We consider a body of mass m in gravitational interaction with the Sun,
of mass MS, in the framework of the two-body problem. We also assume
that m is negligible compared with MS. The mean motion of the Keple-
rian motion, with semi-major axis aS, is given by n =

√
µS/a3

S. We set
k2 = µS = GMS. Putting aS = 1 (this length is defined to be unity),
we thus obtain k = n. With this choice of units, the Gauss gravitational
constant k, is equal to the mean motion. Historically, it was calculated
from values measured for the Earth in orbit around the Sun. Using (2.8),
we obtain n2a3

S = k2(1 + M/MS), and hence the value of k, with the
mass of the Earth M (which is not neglected in comparison with MS)
and n = 2π/Nsid, where Nsid is the value for the sidereal year in days.
As the period of revolution of the Earth around the Sun is very stable,
the value of k is then defined to be k = 0.017 202 098 95, with aS as unit
of length and the mean day as unit of time. The dimensions of k are
the same as those of (GMS)1/2. Expressing angles in degrees, we have
k = 0.985 607 668 425.

• The speed of light has been a defining constant since 1983. At this date,
the definition of the unit of length became the following: the metre is the
length travelled by light in a time of 1/299 792 458 seconds. The speed of
light is thus given as a defined value, with no error margin. This develop-
ment was made because times are now measured to higher accuracy than
lengths.
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Table 3.8. Astronomical constants: defining constants, primary constants and de-
rived constants (in that order)

Constant Value Units

Gaussian gravitational constant k = 0.017 202 098 95 SI unit

Speed of light c = 299 792 458 m s−1

Light time for unit distance tA = 499.004 783 53 s

Equatorial radius of Earth R = 6378 136.3 m

Geopotential ellipticity factor J2 = 0.001 082 6362 (dimensionless)

Geocentric gravitational
constant µ = 3.986 004 415 × 1014 m3s−2

Mass ratio MMoon/MEarth µL/µ = 0.012 300 34 (dimensionless)

Obliquity of the ecliptic
for J2000 (2000 01 01 12:00) ε0 = 23◦26′ 21′′.4119 degrees

Mean angular speed
of rotation of the Earth � = 7.292 115 × 10−5 rad s−1

Unit of distance:
astronomical unit 1 a.u. = ctA ctA = 1.495 978 7061 × 1011 m

Heliocentric gravitational
constant µS = 1.327 124 40 × 1020 m3s−2

Mass ratio MSun/MEarth µS/µ = 332 946.045 (dimensionless)

Flattening of the Earth f = 1/298.257 (dimensionless)

Primary and Derived Constants

The primary constants are determined from observations. Derived constants
follow from simple relations using the first two types of constant.

Note. For some of these constants related to geodesy, such as R, J2 or µ,
there is a slight difference between the IERS 1992 values and those used in
geopotential models.

3.13 Appendix: Gravitational Sphere of Influence

3.13.1 Attraction of the Sun and Earth

It is easy to understand why a low-orbiting satellite should feel only the
Earth’s attraction, since the Sun’s attraction is extremely weak. But one
must ask how far out one may continue to ignore the influence of this third
body. In the following, we shall define the radius of the sphere beyond which
we may consider that a satellite of the Earth escapes to become a satellite of
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the Sun. This idea of the sphere of gravitational influence was developed by
the astronomer F. Tisserand.43

Consider three points A (Sun), B (Earth), and C (satellite). The gravi-
tational constant is µS for the Sun and µ for the Earth. Consider the special
case when C lies between A and B. We set

r = CB , satellite–Earth distance ,

aS = AB , Sun–Earth distance ,

aS − r = CA , satellite–Sun distance .

Consider now the reduced (dimensionless) variables k and x defined by

k =
µS

µ
, x =

r

aS
. (3.93)

Note that k � 1 and x � 1. For the values of the astronomical quantities,
see Sect. 3.12 and Table 3.8.

Satellite Close to Earth

The main acceleration here is the central acceleration γCCC, which we shall
write γT0 , due to the Earth (Keplerian motion):

γT0 =
µ

r2
. (3.94)

The perturbing acceleration for the satellite is the differental attraction γCS,
here denoted by γT1 , due to the Sun:

γT1 =
µS

(aS − r)2
− µS

a2
S

. (3.95)

In the expression for γT1 , the first term refers to the satellite and the second
to the Earth (since the Sun acts on the satellite and on the Earth). Since r
is small compared with aS, we obtain

γT1 ≈ µS

a2
S

[(
1 +

r

aS

)2

− 1

]
≈ 2

µS

a3
S

r . (3.96)

43 Félix François Tisserand (1845–1896) was a French astronomer. He continued
Delaunay’s work on the motion of the Moon and contributed to the Catalogue
photographique de la carte du ciel. He then published his Traité de mécanique
céleste in four volumes (1889–1896), in the spirit of Laplace’s work. See also the
note on Einstein.
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The ratio of the accelerations is

QT =
γT1

γT0

= 2
µS

µ

(
r

aS

)3

= 2kx3 . (3.97)

Note. By bringing in the expression for the periods, we obtain

QT = 2
µS/a3

S

µ/r3
= 2

(
T0

TS

)2

, (3.98)

where T0 is the Keplerian period of the satellite and TS is the period of
revolution of the Earth around the Sun, i.e., TS = 1 yr.

Satellite Far from Earth

If a satellite is very far from Earth, so that it is in fact a space probe, the
Earth’s attraction becomes very small compared with the Sun’s. The central
acceleration due to the Sun can be written

γS0 =
µS

(aS − r)2
≈ µS

a2
S

, (3.99)

for even in this case, r is small compared with aS. The perturbing acceleration
for the satellite is the differential attraction due to the Earth, viz.,

γS1 =
µ

r2
− µ

a2
S

≈ µ

r2
. (3.100)

The ratio of the accelerations is

QS =
γS1

γS0

=
µ

µS

(aS

r

)2

=
1

kx2
. (3.101)

3.13.2 Sphere of Influence

The Earth’s sphere of gravitational influence Σ is a sphere centred on the
Earth with radius ρΣ defined by the point on the straight line joining the
Sun and Earth such that QT = QS. This gives

2k2x5 = 1 , (3.102)

or44

ρΣ = 2−1/5

(
µ

µS

)2/5

aS . (3.103)

44 This demonstration is schematic insofar as we are considering the case of three
bodies lying along a straight line. The full proof due to Tisserand shows that the
surface we seek here is given by
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For the Earth, one finds

ρΣ = 0.805 × 106 km ,
ρΣ

R
= 126 ,

ρΣ

aS
=

1
186

,

using the numerical values of the astronomical quantities µS, the heliocentric
gravitational constant, and aS, the astronomical unit. It is thus possible to
treat r as small compared with aS.

In Chaps. 10 and 11, we shall apply this idea to other celestial bodies
apart from the Earth. For planets in the Solar System, the values of ρΣ are
given in Table 11.2 (lower).

To end this section, let us just note that we can define three spheres
around a celestial body:

• the sphere of influence discussed above, beyond which the planet can no
longer hold on to a satellite,

• the sphere of the synchronous orbit,
• the sphere relating to the Roche limit.

The last two spheres refer to the tidal effect. We return briefly to them in
Chap. 10, in the context of the natural satellites of Mars. The planetosyn-
chronous orbit for artificial satellites is discussed in detail in Chap. 4.

3.14 Appendix: Lagrange Points

3.14.1 Restricted Three-Body Problem

The Lagrange points arise in the context of the restricted three-body problem,
in which one of the bodies (here, the satellite) has negligible mass compared
with the two others. The two ‘massive’ bodies A and B revolve around their
centre of mass O (two-body problem) with constant angular speed θ̇. The
third, much lighter body C feels the gravitational attraction of A and B.

Lagrange showed that there are five special positions in space at which
the body C rotates about O with the same angular speed θ̇. In this situation,

ρΣ = ρΣ(θ) =

"„
µ

µS

«2
1√

1 + 3 cos2 θ

#1/5

aS ,

where the polar axis is the straight line Earth–Sun with origin at the centre of
the Earth. When θ = 0, we retrieve (3.103). This surface of revolution around
the polar axis differs only slightly from a sphere, since the polar radius varies by
a factor of 1 to 0.87 (= 2−1/5). Tisserand’s calculations were made to study the
trajectories of comets in the vicinity of Jupiter. The process had already been
suggested by D’Alembert, Laplace, and Le Verrier. Laplace used the term sphere
of activity.
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Figure 3.4. Schematic illustration of the five Lagrange points. The five points lie in
the orbital plane of B around A. The mass of B is considered to be small compared
with the mass of A

the point C is stationary in a Sun–Earth frame. The five points, traditionally
denoted by L1 to L5, are known as the Lagrange points or libration points.45

3.14.2 Simplified Study of Points L1 and L2

We shall now find in a schematic manner the position of the first two Lagrange
points in the case when B has much smaller mass than A (which is generally
the case). These equilibrium points are unstable. We use the notation of
Sect. 3.13. The centre of mass is at A and B revolves around A in a circular
orbit with constant angular speed θ̇. According to Kepler’s third law, we have

µS = θ̇2a3
S . (3.104)

Consider a satellite C at Li, close to B, on the straight line AB. The distance
from C to A is thus (aS + εr), where ε = −1 for L1 and ε = +1 for L2. For
45 The word ‘libration’ comes from the Latin libratio, which itself comes from libra,

meaning ‘balance’. The Moon’s libration is a complex nodding motion around its
central position, composed of a physical and a geometric libration (in longitude
and in latitude). It is through this motion that we are able to see 59% of the
Moon’s surface from Earth, instead of just a half. This term, generally used
for lunar libration (also studied by Lagrange), is also used to refer to the five
Lagrange points.
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each point L1 and L2, we express the fact that the resultant of the attractive
accelerations is equal to the radial acceleration. Projecting onto the AB axis
and using the notation ε, we obtain

µS

(aS + εr)2
+ ε

µ

r2
= (aS + εr)θ̇2 . (3.105)

Dividing the left- and right-hand sides of (3.105) and (3.104) and using the
reduced variables defined in (3.93), this yields

1
(1 + εx)2

+ ε
1

kx2
= (1 + εx) . (3.106)

We can expand (1 + εx)2 to first order in x since x � 1, whereupon

3εx ≈ ε
1

kx2
.

Cancelling out the device ε, we find that x has the same value in both cases,
namely,

x = (3k)−1/3 . (3.107)

For the distances ρLi , we now have

BL1 = BL2 = ρLi =
(

1
3

µ

µS

)1/3

aS . (3.108)

Example 3.2. Calculate the positions of the Lagrange points L1 and L2 for various
astronomical systems.

For the Sun–Earth system, where k = 3.329 × 105, or 3k ≈ 106, we have

distance from centre of Earth to L1,2 : ρLi = 10−2aS ≈ 1.5 × 106 km .

For the Earth–Moon system, where k = 81.3, replacing aS by aL, the mean radius
of the lunar orbit, we find

distance from centre of Moon to L1,2 : ρLi =
aL

(243.9)1/3
= 0.16aL ≈ 6 × 104 km .

For the system of Mars and its moon Phobos, where k = 5.05 × 107 and aP =
9.38 × 103 km, we obtain

distance from centre of Phobos to L1,2 : ρLi = 1.88 × 10−3aP ≈ 17.6 km .

As the subplanetary equatorial radius of Phobos is 13.4 km, points L1 and L2 are

only 4.2 km from the surface of Phobos.
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3.14.3 The Five Lagrange Points

A complete analysis to find the five points and the equilibrium conditions
is much more involved and goes beyond the scope of this book. The classic
method consists in writing the equations in a frame rotating about O. This
produces two equations: one involves the first three points, and the other the
last two. The position of the points is shown schematically in Fig. 3.4 (where
O coincides with A).

• Points L1, L2 and L3 lie on the straight line AB. Let y be the reduced
distance, i.e., y = ALi/AB (so that y = 1− x for L1), and α the reduced
mass of B, α = µ/(µ + µS) = 1/(1 + k). It can be shown that the three
possible values of y are given by the quintic equation

ε1

[
(1 − α)(1 − α + y)2

]
+ ε2α(α + y)2 + y(1 − α + y)2(α + y)2 = 0 ,

with suitable values of ε at each point: for L1 (ε1 = −1, ε2 = +1), for L2

(ε1 = ε2 = −1), or for L3 (ε1 = ε2 = +1). These three equilibrium points
are unstable.

• Points L4 and L5 can be shown to lie in the orbital plane of B and A
around O in such a way that triangles ABL4 and ABL5 are equilateral.
The positions of L4 and L5 do not depend on the masses of the bodies
A and B. It can also be shown that these positions are stable, provided
that the mass of A is big enough compared with the mass of B, i.e., 25
times bigger.46 L4 and L5 are distinguished by the convention that L4

is the point preceding the body B in its revolution, and L5 is the point
following it.

3.14.4 Lagrange Points in Astronomy

Lagrange’s theory was brilliantly confirmed in the field of planetary astron-
omy with the discovery of asteroids at the stable points L4 and L5 of the
Sun–Jupiter system. The first, 588 Achilles, was discovered in 1906, and this
was followed by 617 Patroclus at L5, and 624 Hektor and 659 Nestor at L4.
46 The exact calculation gives

k > k0 , with , k0 =
25

2

2
41 +

s
1 −

„
2

25

«2
3
5 = 24.96 .

The numerical value of k0 is called the Routh value. For the planes in the So-
lar System, this condition always holds by a large margin as far as the Sun is
concerned. For the Earth–Moon system, it also holds, since k = 81 in this case.
The only known exception in the Solar System is provided by the Pluto–Charon
system.
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Table 3.9. Distances of bodies A and B from the Lagrange points Li (i = 1, . . . , 5).
Distances are given in reduced units x and y (dimensionless), in km, and in units
of R (Earth radius)

System A–B L1 L2 L3 L4, L5

Sun–Earth
ALi y 0.990 1.010 0.999 1.000

BLi x 0.00997 0.010 1.999 1.000

ALi 106 km 148.10 151.10 149.4 149.6

BLi 106 km 1.49 1.50 299.0 149.6

BLi R 234 236

Earth–Moon

ALi y 0.85 1.17 0.99 1.00

BLi x 0.15 0.17 1.99 1.00

ALi 103 km 326.7 449.7 380.6 384.4

ALi R 51 71 60 60

BLi 103 km 57.7 65.3 765.0 384.4

Several hundred asteroids are now known at the two stable points47 of this
system, as illustrated in Fig. 3.5. The asteroids at L4 are called Greeks, whilst
those at L5 are the Trojans. The current trend is to use the term Trojans48

for the asteroids in both groups and to extend the term to other systems. In
1990, a ‘Trojan’ asteroid was discovered in the Sun–Mars system.49

In 1980, several new moons of Saturn were discovered by Earth-based
observation at the Lagrange points of the Saturn–Dione and Saturn–Tethys
systems. These are known as the Lagrangian moons. These moons librate50

around the stable positions L4 and L5. The various cases are summarised in
Table 3.10.
47 The libration of these asteroids is 14◦ on average. It cannot exceed 30◦.
48 The duality between Greeks and Trojans is intended to illustrate the unending

pursuit, immortalising the Iliad in the skies. However, there seems to have been
some misunderstanding of Homer’s tale, for we find Patroclus with the Trojans
and Hektor with the Greeks – enough to make Achilles writhe on his funeral
pyre!

49 This was the asteroid 5261 Eureka, in the L5 region. Five others are currently
known, of which one (1999UJ7) moves in the L4 region.

50 This libration can reach 30◦ for Helene. The Saturn system with its satellites and
rings is extremely rich and complex. One might mention the coorbital satellites
Janus and Epimetheus on a so-called horseshoe orbit, or the shepherd satellites,
which constrain the F ring and prevent it from breaking up.
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Figure 3.5. Representation of the 7 722 currently known asteroids (dots) and plan-
ets (disks) by their projection onto the plane of the ecliptic on 1 January 2000.
Moving out from the Sun at the centre: orbits of Mercury, Venus, Earth, Mars and
Jupiter. The Main Belt lies between the orbits of Mars and Jupiter, but it is easy
to make out the accumulation of Trojan asteroids on the orbit of Jupiter, close to
the points L4 and L5 of the Sun–Jupiter system. Credit: SMCS, University of St
Andrews

3.14.5 Artificial Satellites at Lagrange Points

Table 3.9 shows the positions of Lagrange points for the Sun–Earth and
Earth–Moon systems. We note that, in the latter system, the exact calcula-
tion of x gives 0.15 and 0.17 for BLi, whereas the approximate calculation
gives 0.16 for the same two points.

Some artificial satellites have been placed at the point L1 of the Sun–
Earth system. When the satellite arrives in the vicinity of the point L1,
about 1.5 million kilometres from Earth, it is placed in a so-called halo orbit,
also denoted by L1LO, the L1 Lissajous orbit, since the trajectory looks like
a Lissajous curve.

The first satellite to be placed in a halo orbit about the L1 point was
ISEE-3, between 1978 and 1982. It was followed by Wind, SOHO, ACE, and
Genesis. All these probes had astronomical missions. An Earth-observation
satellite DSCOVR is also planned for this orbit.
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Table 3.10. Examples of celestial bodies at Lagrange points L4 and L5: the so-
called Trojan asteroids for a Sun–planet system and natural satellites for a Saturn–
natural satellite system

System A–B Point L4 Point L5

Sun–Jupiter Greeks Trojans
588 Achilles 617 Patroclus
624 Hektor 884 Priam
659 Nestor 1172 Aenea
911 Agamemnon 1173 Anchises
...

...

Sun–Mars 5261 Eureka

Saturn–Dione Helene
Saturn–Tethys Telesto Calypso

The L1LO orbit lies roughly in a plane tilted with respect to the ecliptic
and has elliptical shape. It measures several hundred thousand kilometres
across and the period of motion of the satellite around the Lagrange point
is very long: 211 days for Wind, 180 days for SOHO, 179 days for Genesis.51

Since the Earth–satellite axis does not lie in the plane of the ecliptic, data
transmission is not too seriously perturbed by electromagnetic or particle
emissions from the Sun.

The point L2 of the Sun–Earth system was visited for the first time by the
probe MAP. Many other missions are destined for a halo orbit around this
point (the L2LO orbit). Following MAP, these include the satellites Planck,
FIRST renamed Herschel (Planck and Herschel should travel together to
the L2 point), GAIA and JWST, the successors of Hipparcos and Hubble,
respectively, and longer-term projects such as Eddington and Darwin.

The stable points should be occupied by solar observation satellites: a
Japanese project at L5 called L5-Mission and a US stereographic observation
project at L4 and L5 (STEREO-Ahead and STEREO-Behind). Looking at
Fig. 3.4 and recalling that the Earth has a prograde orbit around the Sun, it
is not difficult to understand the terms ‘ahead’ and ‘behind’.

Concerning the point L3 of the Sun–Earth system, it is not obvious what
kind of project might be located there, except possibly a film of the type
Planet X.
51 As an example, the orbital characteristics of Genesis are as follows. It has an

elliptical orbit in a plane making an angle of 46◦ with the plane of the ecliptic.
The latter is denoted by (L1; x, y), whilst the axis L1x lies along the Sun–Earth
direction. The projection of the semi-major axis along is L1x is 0.71×106 km and
the projection of the semi-minor axis along L1y is 0.56×106 km. These quantities
should be compared with the distance L1–Earth, which is 1.49 × 106 km.
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3.15 Appendix: Summary of Legendre Functions

Legendre Polynomials

The generating function for the Legendre52 polynomials is

1√
1 − 2tx + t2

=
∞∑

n=0

Pn(x)tn .

These polynomials are defined for any n � 0 by

Pn(x) =
1

2nn!
dn
[(

x2 − 1
)n]

dxn
.

The first few polynomials are:

P0(x) = 1 , P1(x) = x ,

P2(x) =
3x2 − 1

2
, P3(x) =

5x3 − 3x

2
,

P4(x) =
35x4 − 30x2 + 3

8
, P5(x) =

63x5 − 70x3 + 15x

8
.

Associated Legendre Functions

The associated Legendre functions are defined in terms of the Legendre poly-
nomials on the interval [−1, +1], for any l � 0 and 0 � m � l, by

Plm(x) =
(
1 − x2

)m/2 dmPl(x)
dxm

.

This gives

Pl0(x) = Pl(x) , Pll(x) =
(2l)!
2ll!

(
1 − x2

)l/2
,

and the first few associated Legendre functions are

P00(x) = 1 , P10(x) = x , P11(x) =
√

1 − x2 ,

P20(x) = 1
2 (3x2 − 1) , P21(x) = 3x

√
1 − x2 , P22(x) = 3(1 − x2) .

52 Adrien Marie Legendre (1752–1833) was a French mathematician. He introduced
the polynomials which are now named after him in his Recherches sur la figure
des planètes (1784). When put in charge of geodetic measurements (the dis-
tance between the Paris and Greenwich meridians) by the revolutionary govern-
ment known as the Convention, he made significant contributions to spherical
trigonometry. He obtained new results concerning the elliptic functions, the beta
and gamma functions, and the Euler integrals. His work Eléments de Géométrie
was reprinted thirteen times between 1794 and 1827.
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3.16 Appendix: Spherical Trigonometry

3.16.1 Gauss’ Relations

A spherical triangle is a triangle on a sphere of unit radius, whose sides
are arcs of great circles (or angles at the centre). The angles of the triangle
are defined at each vertex in the tangent plane to the sphere (i.e., they are
dihedral angles). The angles are usually denoted by A, B, C and the opposite
sides by a, b, c, as shown in Fig. 3.6. It can be shown that a spherical triangle is
determined by specifying three elements. A fourth element can be calculated
from the three known elements. We then have (6 × 5)/2 = 15 relations.

These trigonometric relations are easily obtained by considering the fol-
lowing change of frame. Consider three points A, B, C on a sphere, forming
a (non-flat) spherical triangle. We consider two orthonormal frames 1 and
′

1 such that

1(O; i, j, k) , ′
1(O; i′, j′, k′) , i = OA , i′ = OB ,

and such that k and k′ coincide. We then have (i, i′) = c.
The frame ′

1 is thus obtained from 1 by rotating through an angle
c about k. In each of the two frames 1 and ′

1, OC can be written in
Cartesian coordinates

OC =

⎛⎝ cos b
sin b cosA
sin b sinA

⎞⎠ , OC =

⎛⎝ cos a
− sina cosB
sina sin B

⎞⎠ . (3.109)

Using the matrix for the rotation through angle c about k, we thus obtain⎛⎝ cos a
− sin a cosB
sin a sinB

⎞⎠ =

⎛⎝ cos c sin c 0
− sin c cos c 0

0 0 1

⎞⎠×

⎛⎝ cos b
sin b cosA
sin b sin A

⎞⎠ . (3.110)

We thus obtain the three relations known as Gauss’ relations:

cos a = cos b cos c + sin b sin c cosA , (3.111)

sina cosB = cos b sin c − sin b cos c cosA , (3.112)

sin a sin B = sin b sin A . (3.113)

3.16.2 Fifteen Relations for the Spherical Triangle

These three equations lead us to the 15 required relations, which are generally
grouped as follows. The relations are numbered with Roman numerals from
I to XV and the annotation ST, which stands for ‘spherical trigonometry’.
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Figure 3.6. Spherical triangle ABC on a sphere with centre O and unit radius.
The angles A, B, C are dihedral angles. The corresponding sides a, b, c are arcs of
great circles defined by a = BC, b = CA, and c = AB

• Fundamental relations. These are deduced from (3.111) by cyclic permu-
tations. They relate three sides and an angle:

cos a = cos b cos c + sin b sin c cosA , (ST I)
cos b = cos c cos a + sin c sin a cosB , (ST II)
cos c = cos a cos b + sina sin b cosC . (ST III)

As a corollary, we obtain formulas relating three angles and one side:

cosA = − cosB cosC + sin B sin C cos a , (ST IV)
cosB = − cosC cosA + sin C sin A cos b , (ST V)
cosC = − cosA cosB + sin A sin B cos c . (ST VI)

• Sine formulas. These are deduced from (3.113). These three formulas re-
late two angles and the opposite sides:

(ST VII)

sina

sinA
=

sin b

sin B
=

sin c

sinC
. (ST VIII)

(ST IX)
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• Cotangent formulas. These are deduced from (3.112), which involves five
elements, and the two other Gauss relations. These formulas relate four
consecutive elements of the triangle:

cot a sin b = cos b cosC + sin C cotA , (ST X)
cot b sin a = cos a cosC + sinC cotB . (ST XI)

The second of these follows from the first by fixing the angle C and
permuting a and b, A and B. By cyclic permutation, we now obtain

cot b sin c = cos c cosA + sin A cotB , (ST XII)
cot c sin b = cos b cosA + sin A cotC , (ST XIII)
cot c sin a = cos a cosB + sin B cotC , (ST XIV)
cota sin c = cos c cosB + sin B cotA . (ST XV)

We thus obtain 6+3+6 = 15 relations. In the case of a right-angled spherical
triangle, where one of the three angles is a right angle, the above formulas
reduce immediately to (5 × 4)/2 = 10 relations.

Example 3.3. Calculate the distance D between two points M(λ, φ) and M ′(λ′, φ′)
on the Earth, defined by their longitude and latitude.

Consider the spherical triangle NMM ′, where point N represents the North Pole.
If N corresponds to A, M to B and M ′ to C, the angle A and sides b and c can be
written as follows in terms of the geographical data:

A = λ − λ′ , c =
π

2
− φ , b =

π

2
− φ′ .

The required distance is then a, the length of the arc of great circle MM ′. The first
Gauss relation (3.111) or (ST I) then gives

cos a = sin φ sin φ′ + cos φ cos φ′ cos(λ − λ′) .

The required distance is D = Ra, if we consider the Earth as spherical with radius
R and express a in radians.

Application: Calculate the distance from Paris to New York.

The geographical coordinates of Paris and New York are (48◦50′N; 2◦20′E) and
(40◦42′N; 74◦00′W), respectively, which gives, for the points M and M ′,

φ = +48.87 , λ = +2.33 , φ′ = +40.70 , λ′ = −74.00 .

The calculation yields

a = 0.91597 rad = 52.48◦ .

We thus obtain the distance directly in nautical miles (1 nautical mile is equivalent
to 1 arcsec on the Earth’s surface), viz.,
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D = 52.48 × 60 = 3149 nautical miles ,

or in kilometres, if we introduce the Earth’s radius, viz.,

D = 0.91597R = 5842 km .

The curve (arc of a great circle) joining two points on the surface of the Earth is
said to be orthodromic.

Note. When two points are very close, it is better to use a formula involving the
differences between the latitudes and the longitudes, and valid if a ∈ [0, π):

sin2 a

2
= sin2 φ − φ′

2
+ cos φ cos φ′ sin2 λ − λ′

2
.



4 Motion of Orbit, Earth and Sun

In the last chapter, we calculated the motion of the orbital plane of a satel-
lite with respect to a Galilean frame, via the rate of nodal precession, and
the motion of the orbit in this plane. At the beginning of this chapter, we
shall review the way the Earth moves with respect to a Galilean frame. By
composing the two motions, we will then be able to follow the motion of the
satellite relative to the Earth, which was indeed our original aim.

We shall then study the apparent motion of the Sun relative to the Earth,
so that we may subsequently study the cycles of the satellite in relation to
the Sun. The aim here will ultimately be to specify the geometry of the satel-
lite, its target, and the Sun: we consider a point on the Earth’s surface and
determine how this point is seen by the satellite and under what conditions
of solar illumination.

In the last two sections, we examine two types of satellite orbit for which
two of the quantities studied here play a key role. These quantities are the
mean motion n and the nodal precession rate Ω̇. We shall find that they
can take certain values of particular importance for the satellite. The first
quantity n determines the geosynchronous orbits, and the second Ω̇ the Sun-
synchronous orbits.

4.1 Motion of the Orbit

4.1.1 Secular Variations. Simplified Case

We reconsider here the equations giving the secular variations of the orbital
elements for a circular orbit, in the context of a simplified geopotential (ex-
pansion up to degree 2). We then treat the general case.

It is reasonable to ask why we should be concerned with the special case
of circular orbits when we could just set e = 0 in the general equations. We
have chosen to do so because it will allow us (at last!) to present a selection
of simple formulas, and the reader will agree that they are easier to use than
the general ones. Moreover, this is a particularly important special case, not
to mention the fact that the errors involved in setting the eccentricity to zero
are very small, as long as e is itself small. Indeed, for precession rates, e arises
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via a term (1 − e2)−2, which is roughly (1 + 2e2), if e < 0.1. As an example,
the error in Ω̇ will be of the order of 10−5 if e = 2 × 10−3.

Secular Variation of Orbital Elements

Keeping only the J2 term in the relative perturbation of the geopotential, we
showed in Chap. 3 that the metric elements remained constant, whilst the
angle elements underwent secular variations. Using (3.54) through (3.56), we
obtain the values of Ω̇, ω̇ and Ṁ as a function of the metric elements and
the mean motion n =

√
µ/a3 :

Ω̇

n
= −3

2
J2

(
R

a

)2

cos i , (4.1)

ω̇

n
=

3
4
J2

(
R

a

)2 (
5 cos2 i − 1

)
, (4.2)

Ṁ − n

n
=

∆n

n
=

3
4
J2

(
R

a

)2 (
3 cos2 i − 1

)
. (4.3)

The secular variation of the orbital element Ω will play a key role when we
come to study the trajectory of the satellite, as will the secular variations of
the elements ω and M when we calculate the period of the motion.

Concerning the parameter ω, the secular variation of ω̇ is perfectly well
defined by (3.55) when e = 0. However, the position of the perigee, deter-
mined by ω, is not defined for a perfectly circular orbit (with e = 0), and it is
poorly defined in the case of a near-circular orbit. Concerning the parameter
M , whose secular variation Ṁ − n0 is perfectly well defined by (3.56) for
e = 0, we encounter the same problem in defining an origin, for both circular
and near-circular orbits. In these cases, we generally choose the ascending
node as origin (see Sect. 2.3.4 on adapted orbital elements).

Nodal Precession Rate

Using (4.1) and expressing the mean motion, the nodal precession rate can
be written

Ω̇ = −3
2
J2

√
µ

R3

(
R

a

)7/2

cos i , (4.4)

and this can in turn be set in the form

Ω̇(a, i) = −K0

(
R

a

)7/2

cos i , (4.5)
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Figure 4.1. Precession rate (in degree/day) as a function of inclination i for various
values of the ratio η = a/R from η = 1.0 to η = 2.0, in steps of 0.1. Upper : nodal
precession Ω̇. Lower : apsidal precession ω̇
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Figure 4.2. Relative variation ∆n/n0 of the mean motion (dimensionless) as a
function of inclination i for various values of the ratio η = a/R from η = 1.0 to
η = 2.0, in steps of 0.1. For example, for i = 0 and a/R = 1.8, we may read off
∆n/n0 = 5.0 × 10−4

or again, using the reduced distance defined by (2.18),

Ω̇ = −K0η
−7/2 cos i ,

where

K0 =
3
2
J2

√
µ

R3
. (4.6)

We can also write K0 in the following form, using (2.16) and (2.17):

K0 =
3π

T0(h=0)
J2 .

Concerning the units of the angular velocity, apart from radians per second
(SI units), the units degrees per day and revolutions per year are also found
in the literature. With these three units, K0 is expressed as follows:

K0 = 2.012 788× 10−6 rad s−1 , (4.7)
K0 = 9.964 014◦day−1 , (4.8)
K0 = 10.109 49 rev yr−1 . (4.9)
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Figure 4.3. Nodal precession rate Ω̇ (in degree/day) as a function of the ratio
η = a/R for various values of the inclination between i = 0◦ and i = 180◦, in steps
of 10◦. For i = 90◦, Ω̇ = 0. Altitude h = a − R

Figure 4.1 (upper) graphs the variation of Ω̇(a, i) as a function of the inclina-
tion i for various values of the ratio a/R. The altitude thus varies from h = 0
for a/R = 1 to h = R = 6378 km for a/R = 2 in steps of 0.1R = 637.8 km.
The value of Ω̇ is given in degree/day.

Figure 4.3 graphs Ω̇(a, i) as a function of the semi-major axis a for various
inclinations. These graphs are combined in the upper part of Fig. 4.4. We have
plotted curves of constant nodal precession Ω̇ (nodal isoprecession curves) as
a function of the inclination i and the altitude h (or a/R).

From these graphs, it is quite clear that, when h increases for a given
inclination, Ω̇ decreases. The further the satellite moves from the centre of
the Earth, the less it is affected by irregularities in the geopotential. We
also see that, in the case of prograde orbits, Ω̇ is negative, i.e., precession
is retrograde, whereas in the case of retrograde orbits, Ω̇ is positive. For a
strictly polar orbit, Ω̇ is always zero, at all altitudes.

The maximum value of |Ω̇| is obtained for i = 0◦ or i = 180◦, with h = 0,
and it is equal to K0 = 9.96◦/day, or almost 10◦ per day. The value of Ω̇,
close to 1, and denoted by HEL on the two graphs of Fig. 4.4, is relevant for
the so-called Sun-synchronous satellites, which we shall discuss at the end of
this chapter. (In this case, Ω̇ = 0.986◦/day.)
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Figure 4.4. Nodal precession rate Ω̇ (in degree/day) as a function of the charac-
teristics of the circular orbit. Upper : altitude h between 0 and R, all inclinations.
Lower : usual range of operation of LEO satellites
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Figure 4.4 (lower) enlarges the part of the graph relevant to satellites
placed in low orbit, as we shall see shortly. For example, the satellite Meteor-3-
07 has h ≈ 1200 km and i ≈ 83◦, for which we find the value Ω̇ = −0.71◦/day
on the graph. We shall carry out this calculation in Example 4.2.

Apsidal Precession Rate

The apsidal precession rate is given in terms of the constant K0, defined in
(4.6):

ω̇(a, i) =
1
2
K0

(
R

a

)7/2 (
5 cos2 i − 1

)
, (4.10)

or alternatively,

ω̇ =
1
2
K0η

−7/2
(
5 cos2 i − 1

)
.

This is zero at the critical inclination defined in Chap. 3.
Figure 4.1 (lower) is a graph of ω̇(a, i) as a function of the inclination i for

various values of the ratio a/R. The value of ω̇ is given with the same units
and the same scale as Ω̇. The two values of the critical inclination appear
quite clearly on the graph at 63.4◦ and 116.6◦. Example 4.3 illustrates this
question further.

Variation of the Mean Motion

The relative variation of the mean motion is defined by (4.3) and this gives,
putting in the numerical factor explicitly,

∆n

n
= 8.119 701× 10−4η−2(3 cos2 i − 1) . (4.11)

Figure 4.2 graphs the relative variation ∆n/n0 of the mean motion as a
function of the inclination i for various values of the ratio η = a/R. We
observe that for i between 57.7◦ and 125.3◦, the true motion is slower than
the motion relative to a spherical Earth.

4.1.2 Secular Variations up to J4

If we consider an elliptical orbit and the expansion of the geopotential to a
high degree, the expressions for the variation of the orbital elements become
extremely complex. We shall not be concerned here with the periodic varia-
tions, affecting all the orbital elements. The secular variations concern only
the angle elements and it can be shown that only the even zonal harmonics
J2n are involved.
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Table 4.1. Secular variations of the angle elements for expansion of the geopotential
up to order 4. The parameter p and the mean motion n are given by p = a(1− e2),
n =

p
µ/a3. Abbreviations: s = sin i, e′ =

√
1 − e2. Referring to Table 3.4, we have

s = 1/σ, e′ = 1/τ

Ω̇

n
= J2

„
R

p

«2

cos i

„
−3

2

«

+J2
2

„
R

p

«4

cos i

»„
−45

8
+

3

4
e2 +

9

32
e4

«
+

„
57

8
− 69

32
e2 − 27

64
e4

«
s2

–

+J4

„
R

p

«4

cos i

„
15

4
− 105

16
s2

« „
1 +

3

2
e2

«
. (4.12)

ω̇

n
= J2

„
R

p

«2 »
3 − 15

4
s2

–

+J2
2

„
R

p

«4 »„
27

2
− 15

16
e2 − 9

16
e4

«

+

„
−507

16
+

171

31
e2 +

99

64
e4

«
s2

+

„
1185

64
− 675

128
e2 − 135

128
e4

«
s4

–

+J4

„
R

p

«4 »„
−3

8
+

15

8
s2 − 105

64
s4

« „
10 +

15

2
e2

«

+

„
−15

4
+

165

16
s2 − 105

16
s4

« „
1 +

3

2
e2

«–
. (4.13)

∆n

n
=

Ṁ − n

n
= J2

„
R

p

«2

e′
3

4

`
2 − 3s2´

×
(

1 + J2

„
R

p

«2
1

8

»
10 + 5e2 + 8e′ −

„
65

6
− 25

12
e2 + 12e′

«
s2

–)

−J2
2

„
R

p

«4

e′
5

64

`
2 − e2´

s2

−J4

„
R

p

«4

e′
45

128
e2 `

8 − 40s2 + 35s4´
. (4.14)
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Table 4.1 gives expressions for these secular variations in terms of a, e, i,
up to degree 4 in R/p. As well as the terms of degree 2 for J2, there are two
terms of degree 4, one for J4 and one for J2

2 . These quantities are expressed
in terms of their quotient by n, the mean motion. One thus obtains in each
case a ratio of angular speeds, which is a dimensionless quantity.

The expressions for Ω̇ and ω̇ in (4.12) and (4.13), respectively, were ob-
tained from J. Kovalevsky’s analytical theory of satellite motion in [[27]], whilst
the expression for ∆n in (4.14) was derived using P.E. Koskela’s theory in [[12]].

4.1.3 Applications: Period and Altitude

We shall now give two examples of calculations involving the relation between
the period of a satellite and its altitude. In the first, we calculate the period
of a satellite of known altitude, and in the second, the converse (and more
difficult) problem, that is, we determine the altitude of a satellite of known
period. Other examples of this type will be discussed in Chap. 7 (where the
period will be defined by the recurrence condition).

When we speak of the altitude of a satellite in this context, we are in fact
referring to the difference between the semi-major axis a of the orbit and the
equatorial radius R of the Earth, i.e., h = a − R. The quantity h is usually
used to describe the satellite, but it is the quantity a that is used in orbital
calculations.

The third example in this section is concerned with the apsidal precession
rate.

Example 4.1. Calculate the period of the satellite TRMM in near-circular orbit at
an altitude of 350 km, and with inclination 35◦. Calculate also the nodal precession
rate.

For this satellite, on 1 June 2001, we have a = 6728.216 8 km (or h = 350.0 km),
i = 34.9817◦, e = 9.96 × 10−5.
We begin by calculating the Keplerian mean motion for a = 6728 216.8 m:

n0 =

»
3.986 004 42 × 1014

(6.728 216 8 × 106)3

–1/2

= 1.143 981 × 10−3 rad s−1 ,

which gives the Keplerian period

T0 =
2π

n0
= 5492.38 s = 91.540 min .

The fractional variation ∆n/n0 is then found from (4.11) to be

∆n

n0
= 8.1197 × 10−4

„
6.378 137 × 106

6.728 217 × 106

«2 ˆ
3(0.819 34)2 − 1

˜
= 7.398 × 10−4 .

Using the more complex relation (4.14), we obtain 7.407 × 10−4, which gives the
true mean motion as
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n = n0 + ∆n = 1.144 828 × 10−3 rad s−1 .

The true motion is thus faster than the Keplerian motion (∆n > 0), since i < 57.7◦.
The anomalistic period Ta is obtained from (3.74) as

Ta =
91.540

1 + 7.407 × 10−4
= 91.472 min .

We now consider the apsidal precession ω̇. Using (4.2) or (4.10), we have ω̇/n =
1.720×10−4 , and using the more complex relation (4.13), ω̇/n = 1.725×10−4 . The
nodal period Td is found from (3.79) or (3.80) to be

Td = 91.314 min .

Note that the apsidal precession ω̇ is positive, since i < 63.4◦ and that it represents
a significant level at ω̇ = 9.77◦ per day.
Finally,

Td < Ta < T0 ,

with

Td − Ta = −9.47 s , Td − T0 = −13.54 s .

It is often useful to know the nodal precession Ω̇. It is negative since i < 90◦. From
(4.1) or (4.5), we have Ω̇/n = −1.196 × 10−4 and from the more complex relation
(4.12), Ω̇/n = −1.200 × 10−4. This gives, in the various different units:

Ω̇ = −1.372 × 10−6 rad s−1 = −6.80◦day−1 = −6.89 rev yr−1 .

The nodal precession is irrelevant when calculating the period, but concerns the

motion of the orbital plane.

The satellite TRMM (Tropical Rainfall Measurement Mission) is a Japanese project

in collaboration with NASA. It has a low inclination so as to cover the intertropical

region and flies at low altitude to improve the efficiency of its radar instrumentation.

From its launch in September 1997 until August 2001, it flew at an altitude of

350 km. Subsequently, in order to extend its lifetime, it was raised to an altitude

of 402 km.

Example 4.2. Calculate the altitude of the satellite Meteor-3-07, in near-circular
orbit with draconitic period 109.421 min and inclination 82.56◦.

It is more difficult to calculate the altitude from the period than vice versa, as
in Example 4.1. We proceed by iteration. Secular variations are calculated using
relations up to degree 4.

• We begin by calculating a0, the value of a corresponding to the Keplerian motion
with the given period. The value of Td is given by the satellite orbit bulletin as
Td = 109.421 425 min. In a first stage, we thus set T0 = Td = 6 565.285 6 s. The
calculation gives
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a3
0 =

µ

4π2
T 2

0 =
3.986 004 36 × 1014

4π2
(6.565 285 6)2 × 106 ,

whence

a0 = 7578.129 km .

With this value for a0, the inclination i and n0 = 2π/T0, we can calculate ∆n
and ω̇. We find

∆n

n0
= −5.469 × 10−4 ,

ω̇

n0
= −5.267 × 10−4 .

The true motion here is slower than the Keplerian motion (∆n < 0), so that
Ta > T0, and the perigee revolves in the retrograde direction (ω̇ < 0), so that
Ta < Td. We thus have

Td > Ta > T0 .

• Considering the approximate formula (3.80), we see that this value a0 for the
orbital radius corresponds to the Keplerian period T0 and a draconitic period
Td given by

Td =

„
1 +

∆T

T0

«
T0 ,

with

∆T = Td − T0 ,
∆T

T0
≈ − ω̇ + ∆n

n0
.

Since the fractional differences are much smaller than unity, this yields

T0 ≈
„

1 − ∆T

Td

«
Td .

As the value of Td is known, we obtain T0 from T0 = Td−∆T . Now for this value
of T0, there corresponds an orbit of radius a1, obtained from a0 by a1 = a0+∆a.
The differential relation between a and T is

dT

T
=

3

2

da

a
. (4.15)

For these finite increments, da corresponds to a1−a0 = ∆a and dT corresponds
to T0 − Td = −∆T . We obtain

∆a =
2

3

ω̇ + ∆n

n0
a0 = −2

3
1.073 5 × 10−3 × 7 578.129 = −5.423 km .

We thus find

a1 = 7572.706 km .

• The iteration continues in this way, using (3.79), and the results converge very
rapidly to give

a = 7572.704 km ,

which corresponds to an altitude h = 1194.6 km.
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For the values of the periods, we obtain

Td = 109.421 min , Ta = 109.364 min , T0 = 109.304 min .

This shows how important it is to distinguish the various periods. The differences
found here provide clear evidence for this: Td − Ta = 3.46 s and Td − T0 = 7.04 s.
Regarding the nodal precession, we have in the various different units:

Ω̇ = −1.429 × 10−7 rad s−1 = −0.71◦day−1 = −0.72 rev yr−1 .

This is small because the orbit is near-polar.

Example 4.3. Calculate the apsidal precession rate for the following satellites at
different inclinations: Megha-Tropiques, TOPEX/Poseidon, ADEOS-1 and Okean-
3. Calculate the critical inclination for Molniya.

We use (4.13) to obtain the apsidal precession rate. For Megha-Tropiques (h =
866 km, i = 20.0◦), we have in the various different units:

ω̇ = +22.133 × 10−7 rad s−1 = +10.96◦day−1 = +11.12 rev yr−1 .

For TOPEX/Poseidon (h = 1336 km, i = 66.0◦):

ω̇ = −0.912 × 10−7 rad s−1 = −0.452◦day−1 = −0.458 rev yr−1 .

For ADEOS-1 (h = 797 km, i = 98.6◦):

ω̇ = −5.905 × 10−7 rad s−1 = −2.92◦day−1 = −2.97 rev yr−1 .

For Okean-3 (h = 636 km, i = 82.5◦):

ω̇ = −6.590 × 10−7 rad s−1 = −3.26◦day−1 = −3.31 rev yr−1 .

For the first of these, Megha-Tropiques, the apsidal precession rate is positive, since
the inclination i is less than the critical inclination iC = 63.43◦. It is a very high
rate, since the perigee makes a complete round trip every 33 days, in the prograde
direction.
For TOPEX/Poseidon, on the other hand, (4.10) shows that the perigee moves
around very slowly because the inclination of its orbit is very close to the critical
inclination. The perigee takes more than two years to complete one round trip.
However, for inclinations close to iC, the J2 term of the geopotential is no longer
the crucial factor. Other terms in the potential must then be taken into account in
order to determine the (small) value of ω̇.
For ADEOS-1, the perigee takes 123 days to complete a round trip in the retrograde
direction. In fact, for the two satellites ADEOS-1 and TOPEX/Poseidon, (4.10) and
(4.13) are not sufficient to determine ω̇. Periodic variations must also be taken into
account, in addition to secular variations. The orbital parameters are chosen in such
a way that the perigee is practically stationary. The orbit is then said to be frozen,
a situation described further at the end of Chap. 7.
For Okean-3, the values of ω̇ calculated here agree perfectly with the true values,
such as those given in Example 7.16 (see Fig. 7.21).
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For Molniya, with a = 26 552.9 km, e = 0.75, and when the expansion of ω̇ is cut
off at J2, (3.57) gives:

iC = 63.4349◦ = iC(J2) .

Using (4.13) and an expansion of ω̇ up to J4, the elements a and e are involved.
This yields

iC = 63.4209◦ = iC(J4) .

This value is only slightly altered if the expansion is continued beyond J4. Indeed,

iC(J2) − iC(J4) = 0.014◦ .

4.1.4 Strictly Polar Satellites

Certain satellites have an inclination of 90◦ (to within a few tenths of a de-
gree). These are said to be strictly polar or on a strictly polar orbit. Equation
(4.12) shows that the nodal precession rate is then zero, since the term cos i
appears as a factor in all the terms Jn. The orbit of the satellite then remains
fixed in the frame , making a constant angle with a fixed direction in space,
e.g., the direction of the vernal equinox Υ. This orbit is sometimes said to be
inertial.1

Strictly polar orbits are generally used by satellites studying remote re-
gions of the Earth environment (e.g., the ionosphere, the exosphere, the solar
wind) or indeed aspects of astrophysics, as well as military satellites (e.g.,
the first military navigation systems), geodetic satellites, and the satellite
carrying the Gravity Probe experiment.

In the first group, we find the US satellites Aurora-1 (h = 3 850 km) and
OV3-6 (h = 420 km), launched in 1967, Explorer-54 (or AE-D, hp = 151 km
and ha = 3 819 km) launched in 1975, the satellites Dynamics Explorer-1
and -2 (also called DE-A and DE-B), in high and low eccentric orbits, respec-
tively, launched in 1981, the satellites REX-1 and -2 (Radiation Experiment),
launched in 1991 and 1996, in low orbits (h = 800 km). The astronomical
satellite Corot will be placed in inertial orbit.

In the second group, we find all the first polar satellites, which were all
US military reconnaissance satellites.2 This category also includes satellites
belonging to the Transit system of the US Navy, the first fully operational
navigation system. The first polar satellite in this series was Transit-5A,
1 Note that the direction of the point Υ is fixed in � if we neglect the precession

of the equinoxes. Galilean and other frames, e.g., those moving with the Earth,
are discussed in Chap. 2.

2 Examples are the first two military reconnaissance satellites in the KH-1 series,
Discoverer-1 and -2, launched in 1959, in a low elliptical orbit, with i = 89.9◦,
or the satellite MIDAS-12, in a higher orbit.
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launched in 1962, in a low orbit with h = 340 km, i = 90.6◦. The others3 all
had orbits with h ≈ 1100 km and inclination i = 90.0±0.3◦, from Transit-5B-
1, launched in 1963, right up to Transit-O-23 and -O-32, then Transit-O-25
and -O-31, launched4 in pairs in 1988.

The geophysical satellite Polar BEAR, launched on a strictly polar orbit
in 1986 (h = 1000 km), belongs to the NNS (Navy Navigation Satellite) series
of the Transit family, under the name NNS-O-17. Also in this family are the
three satellites5 in the Nova series, with h = 1170 km, i = 90.0 ± 0.1◦. The
Transit navigation system6 is the forerunner of the NAVSTAR/GPS system.

The orbit of the satellite Nova-2 made an angle of +70.2◦ with the point
Υ on 1 January 1992. The nodal precession rate was +0.19◦ per year, +1.12◦

for Nova-1, and +0.30◦ for Nova-3. For the Transit–Oscar satellites it was
+11.57◦ for Oscar-29, −5.00◦ for Oscar-30, and −1.13◦ for Oscar-31. These
values of Ω̇ are not exactly zero (perturbations other than the zonal terms Jn

act on the satellite), but they are extremely low. They can be compared with
the corresponding values for other satellites: Ω̇ = −258◦ per year for Meteor-
3-07, Ω̇ = +360◦ per year for Sun-synchronous satellites, as we shall see
below, and Ω̇ = −2 482◦ per year for the satellite TRMM (see Example 4.1).

The Gravity Probe Relativity Mission aims to carry out very accurate
experiments to test Einstein’s theory of relativity. The satellite GP-B has
orbital characteristics h = 650 km, i = 90.000◦, e = 0.0134. It must guarantee
a fixed direction to an accuracy of 20 milliseconds of arc per year.

4.2 Motion of the Earth

We consider here the motion of the Earth’s axis around the Sun, then the
motion of the Earth relative to this axis. We shall not take into account the
tiny motion of the Earth relative to its axis of rotation, called the motion of
the poles.
3 On 1 January 2000, the satellite Transit-5B-5 (or OPS/6582), launched on 13

December 1964, was the oldest satellite still emitting.
4 Satellites in the -O series (Operational) are also referred to under the name Oscar,

as for the two cited above, viz., Oscar-23, -32, -25 and -31 (Oscar representing
O in the aeronautic alphabet).

5 Launch dates in chronological order: Nova-1 on 25 May 1981, Nova-3 on 12
October 1984, Nova-2 on 16 June 1988.

6 One can add the US Navy’s SECOR satellites (Sequential Collation of Range),
also known as EGRS (Experimental Geodetic Research Satellites), most of which
were in polar orbit: SECOR-2 and -4, launched into low orbit in 1965, with
i = 90.0 ± 0.3◦, and SECOR-6, -7, -8 and -9, launched into higher orbits in
1966 and 1967, with h = 3700 km, i = 90.0 ± 0.3◦, and the three Prototypes
of Improved Transit, Triad-1 (or TIP), Triad-2 (or TIP-2), Triad-3 (or TIP-
3), launched into low strictly polar orbits in 1972 and 1976. The first drag-free
satellite to fly a complety gravitational orbit was Triad-1.
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4.2.1 Motion of the Earth about the Sun

The Earth takes one year to cover its elliptical orbit around the Sun. This is
the period of revolution. There are several definitions of the year:

• Sidereal Year. This is the duration of the Earth’s orbit about the Sun
referred to a fixed (Copernican) frame. It is equal to 365 d 6 h 9 m 10 s.

• Tropical Year. This is the duration of the Earth’s orbit about the Sun
referred to a moving frame. In fact, it is the time elapsed between two
consecutive transits of the Sun through the vernal equinox (the spring
equinox). It is equal to 365 d 5 h 48 m 46 s.

The sidereal year is used for all calculations in the Galilean frame . The
tropical year determines the cycle of the seasons.7 The tropical year is 20
minutes shorter than the sidereal year. This difference is due to the retrograde
motion of the vernal equinox, known as the precession of the equinoxes (see
Chap. 3).

• Anomalistic Year. This is the time elapsed between two transits at
perihelion. It is equal to 365 d 6 h 13 m 53 s. It is used in calculations
relating to the Keplerian motion of the Earth around the Sun.8

If Nsid and Ntro are the number of days in the sidereal and tropical years,
respectively, we have

Nsid = 365.256 360 day , Ntro = 365.242 199 day .

JM denotes the length of the mean day, i.e., by definition, exactly 24 hr,

JM = 24 hr 00 min 00 s = 86 400 s .

Tsid denotes the number of seconds in a sidereal year, so that

Tsid = JMNsid = 31 558 149.504 s .

The angular speed of the Earth’s axis around the Sun is Ω̇S (using the nota-
tion Ω̇ by analogy with the precession rate of the longitude of the ascending
node, and affixing the subscript S to indicate the Sun), which is thus equal
to

Ω̇S =
2π

Tsid
=

2π

JM

1
Nsid

. (4.16)

7 The Julian year of 365.25 days (with one leap year every 4 years), and the Gre-
gorian year of 365.2425 days (= 365 +1/4− 3/400) are designed to approximate
the tropical year.

8 If we compare these definitions of the year with the definitions of the different
periods of a satellite discussed in Chap. 3, the anomalistic year corresponds to
the anomalistic period Ta, whilst the tropical year corresponds to the nodal or
draconitic period Td. The draconitic year is defined in terms of the lunar motion.
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With the usual conventions, this value is positive because the Earth revolves
around the Sun in the positive trigonometric direction. With the three units
already mentioned, we have:

Ω̇S = 1.990 992 99× 10−7 rad s−1 , (4.17)

Ω̇S =
360
Nsid

= 0.985 61◦day−1 , (4.18)

Ω̇S = 1 rev yr−1 . (4.19)

The last relation is just the definition of the sidereal year.

4.2.2 Motion of the Earth about the Polar Axis

Relative to a Galilean frame, in one year, the Earth rotates Nsid = 365.25 . . .
times about its own axis and completes one round trip about the Sun, which
means that it rotates Nsid + 1 times in one sidereal year. Let Ω̇T be the
angular speed of the Earth (using Ω̇ because this is the angular speed of the
longitude Ω of the ascending node and affixing the subscript T to indicate
‘terrestrial’). Then

Ω̇T =
2π

Tsid
(Nsid + 1) =

2π

JM

Nsid + 1
Nsid

. (4.20)

With the usual conventions, this value is positive because the Earth rotates
in the positive trigonometric direction about its own axis (the polar axis Oz,
oriented from south to north).

We thus have, for the three different units:

Ω̇T = 7.292 115× 10−5 rad s−1 , (4.21)

Ω̇T = 360
Nsid + 1

Nsid
= 360 + Ω̇S = 360.985 61◦day−1 , (4.22)

Ω̇T = Nsid + 1 = Nsid + Ω̇S = 366.242 199 rev yr−1 . (4.23)

In the present book, we shall use the idea of the sidereal day9 with duration
23 h 56 m 04 s in contrast to the mean day. Hence,

Jsid = 23.934 471 hr ,

which represents the Earth’s period of rotation.
9 The sidereal day is the time interval for the Earth to return, in its daily rotation,

to the same given direction. However, this direction is not precisely fixed. It
follows the motion of the precession of the equinoxes. The length of the sidereal
day is thus JMNtro/(Ntro + 1) = 86 164.0905 s , or 23 h 56 m 04.0905 s. The
notion of the stellar day is sometimes used, defined by JMNsid/(Nsid + 1) =
86 164.0989 s , or 23 h 56 m 04.0989 s. The sidereal day is thus related to the
tropical year, and the stellar day to the sidereal year.
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We note the relation between the angular frequencies of the two motions
of the Earth considered here:

Ω̇T − Ω̇S =
2π

JM
, (4.24)

or in degrees per day,

Ω̇T − Ω̇S = 360◦day−1 .

4.2.3 Motion of the Orbit and Earth

Later, we shall often need to compare the motion of a satellite, mainly charac-
terised by the two angular speeds n (mean motion) and Ω̇ (nodal precession
rate), with the two motions of the Earth discussed above.

Daily Orbital Frequency ν

Recall that the daily orbital frequency ν of the satellite, the number of round
trips per day, is related to the mean motion n (always expressed here in
radians per second) by

n =
2π

JM
ν . (4.25)

We use the symbol P to denote the nodal precession rate in round trips per
year.10 We have

Ω̇ =
2π

JM

P

Nsid
. (4.26)

We thus obtain the following relations in terms of P :

Ω̇T − Ω̇ =
2π

JM

(
1 +

1 − P

Nsid

)
, (4.27)

Ω̇S − Ω̇ =
2π

JM

1 − P

Nsid
. (4.28)

We shall also need to compare Ω̇T − Ω̇ with n. We have

Ω̇T − Ω̇

n
=

1
ν

(
1 +

1 − P

Nsid

)
. (4.29)

10 This quantity is perhaps more meaningful than Ω̇ expressed in radians per sec-
ond. To avoid any confusion over units, we have used P for this quantity, ex-
pressed in round trips per year, whereas other quantities will be expressed in SI
units, unless otherwise stated.
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The following two expressions for the quantity P are particularly useful:

P =
JM

2π
NsidΩ̇ , (4.30)

P =
Ω̇

Ω̇S

. (4.31)

The last relation merely formulates the definition of P .

Daily Recurrence Frequency κ

We use κ to denote the daily recurrence frequency. This quantity, which will
be important in the study of recurrent orbits in Chap. 7, is defined by

κ =
n

Ω̇T − Ω̇
. (4.32)

It is related to the daily orbital frequency ν by

ν

κ
= 1 +

1 − P

Nsid
. (4.33)

4.3 Apparent Motion of the Sun

The aim in studying the apparent motion of the Sun is to represent the
direction of the Sun and to understand different notions of solar time, viz.,
apparent and mean solar time.

4.3.1 Celestial Sphere and Coordinates

On the celestial sphere,11 illustrated in Fig. 4.5, the equator and the ecliptic
(the Sun’s trajectory) intersect at two points. The point corresponding to the
direction of the Sun when its declination crosses zero from below is the vernal
equinox, traditionally denoted by Υ. It corresponds to the spring equinox.12

The dihedral angle between these two planes, known as the obliquity, is equal
to ε = 23◦26′21′′ = 23.44◦.

The direction of the Sun can be defined as follows, in two coordinate
systems with origin at the centre of the Earth.
11 One commonly represents directions in space by means of points on a sphere

with arbitrary centre and radius, called the celestial sphere. With any particular
direction, one associates the point of intersection of the celestial sphere and the
straight line in that direction with origin at the centre of the sphere.

12 The word ‘vernal’ comes from the Latin vernalis, the adjective derived from ver,
veris, meaning ‘spring’.
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Figure 4.5. Celestial sphere, with vernal equinox Υ, the Sun S, the equatorial
plane OΥS′, the ecliptic OΥS, the celestial north pole P , and the meridian PSS′.
In the spherical triangle ΥSS′, the arc ΥS represents the celestial longitude l, the
arc ΥS′ the right ascension α, and the arc SS′ the declination δ. The angle at Υ is
the obliquity ε and the angle at S′ is a right-angle

• Ecliptic Coordinates. The reference plane is the plane of the Sun’s
apparent trajectory during its annual revolution, known as the plane of
the ecliptic, or just the ecliptic. The origin of these coordinates is taken
at the vernal equinox. The angle of azimuth gives the Sun’s longitude l,
also called the celestial longitude or ecliptic longitude. The height angle
gives the Sun’s latitude b, called the celestial latitude or ecliptic latitude.
By definition, b = 0 corresponds to the ecliptic itself.

• Celestial Equatorial Coordinates. The plane of reference is the
Earth’s equatorial plane. The coordinate origin is taken at the vernal
equinox. The angle of azimuth is the right ascension α, the dihedral angle
between the meridians in the direction of the Sun and the direction of the
vernal equinox. The height angle is the declination δ, which is the angle
between the direction of the Sun and the reference plane. By definition,
the right ascension is related to the hour angle H and the apparent solar
time defined below. Concerning the declination, it varies during the year
in an almost sinusoidal manner, between the bounds δ = ε at the summer
solstice and δ = −ε at the winter solstice. The values δ = 0 are attained
at the equinoxes. We shall return to this point below (see Fig. 4.7).
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4.3.2 Hour Angle

Consider an arbitrary point on the Earth (apart from the poles), defined
by its coordinates (λ, φ) in T. The meridian plane through this location,
denoted by M, is the half-plane containing the polar axis and this point. At
a given time, we define the meridian plane of the Sun’s direction, denoted
by S, as the half-plane containing the polar axis and this direction, with
longitude λS. The dihedral angle between these two half-planes is called the
hour angle, denoted by H :

H = dihedral angle (M,S) = λ − λS . (4.34)

The angle H is measured in the retrograde sense. This convention can be
explained as follows. The idea is that the variations in H and the time should
occur in the same sense during the day, so that H is negative in the morning,
zero at midday, and positive in the evening.

The hour angle (which is in fact an azimuthal angle) can be defined for
an arbitrary direction. When it is defined specifically for the direction of the
Sun, as here, it is also called the apparent solar time. The hour angle and
the apparent solar time are angles, generally given in degrees or hours, where
1 hr corresponds to 15◦, since 24 hr corresponds to 360◦.

4.3.3 Equation of Time

The apparent solar time defined by the apparent motion of the Sun is a
‘natural’ idea. It is the time given by a sundial. But this motion does not
have the regularity required to form the basis for a time scale. It would be
regular, or uniform, if the Earth’s orbit were circular and if its plane contained
the Earth’s equatorial plane.

Equation of Centre

We consider the position of the Sun as defined by ecliptic coordinates. The
Sun’s trajectory relative to the Earth is not circular but elliptical. The celes-
tial longitude l does not therefore vary in a uniform manner, but corresponds
to the true anomaly v, with a different origin. Indeed,

l = v − vΥ , (4.35)

taking the origin of v at the perigee, which corresponds on average to 3
January, and the origin of l at the vernal equinox, which corresponds on
average to 21 March. The true anomaly of the vernal equinox is

vΥ = 78◦ . (4.36)

The regular motion is characterised by the mean anomaly M , proportional
to the time elapsed since the transit at perigee. The difference, induced by
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the nonzero eccentricity, between the elliptical and the uniform motions is
characterised by l − M or v − M , which are equal in value up to a constant.
We set

EC = v − M , (4.37)

a quantity known as the equation of centre, already mentioned in Chap. 1,
where it was defined by (1.74) in the discussion of Keplerian motion.

When e is small, as happens for the Earth orbit (e = 0.0167), we have
seen that this quantity is given by (2.12), viz.,

EC ≈ 2e sinM . (4.38)

The function EC is sinusoidal, with period one year and maximum ECm given
by

ECm = 2e = 0.0334 rad .

Its graph is shown by the dashed curve in Fig. 4.6. It is zero twice a year, at
the perigee (03 January) and at the apogee (05 July). It reaches its maximum
on 03 April and its minimum on 05 October.

Reduction to the Equator

We now consider the Sun’s position as defined by celestial equatorial coor-
dinates. The equatorial plane makes an angle ε with the ecliptic, as defined
above. It follows that the right ascension does not vary uniformly with the
longitude l.

The celestial sphere is represented in Fig. 4.5, where O is the centre of
the Earth, P the celestial north pole, Υ the vernal equinox, S the position
of the Sun, and S′ the intersection of the meridian half-plane of S with the
celestial equator. Concerning the spherical triangle ΥSS′, the angle at Υ is
the obliquity ε, the angle at S′ is a right-angle, and the sides (arcs of great
circles) have lengths:

�

γS= l ,
�

γS′= α ,
�

SS′= δ .

Recalling the relations (3.111) and (3.112) from spherical trigonometry (the
first two Gauss relations in Sect. 3.16):{

cos δ cosα = cos l ,
cos δ sinα = sin l cos ε .

Eliminating the solar declination δ, we obtain

sinα cos l = cosα sin l cos ε .
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Then, expressing cos ε in terms of the tangent of the half-angle,

sin α cos l
(
1 + tan2 ε

2

)
= cosα sin l

(
1 − tan2 ε

2

)
.

Finally,

sin(α − l) = − tan2 ε

2
sin(α + l) . (4.39)

The proximity of α and l is thus expressed in terms of the obliquity ε, and
we may say

α ≈ l − tan2 ε

2
sin 2l . (4.40)

The reduction to the equator ER is defined as

ER = α − l . (4.41)

This characterises the discrepancy, introduced by the obliquity, between the
true motion and uniform motion.

In the argument of the sine function, we may put l ≈ M − vΥ, which
yields

ER ≈ − tan2 ε

2
sin 2(M − vΥ) . (4.42)

This function ER is sinusoidal, with biannual period, and has a maximum
ERm given by

ERm = tan2 ε

2
= 0.0431 rad .

It goes to zero four times a year, at the two equinoxes (21 March, 23 Septem-
ber) and at the two solstices (21 June, 22 December). Its graph is shown by
the dash-dotted curve in Fig. 4.6.

Equation of Time

Consider the apparent motion of the Sun relative to the Earth. Its position
is defined by the right ascension α. The position that it would have in a
uniform motion of the same period is defined by the mean anomaly M . Tak-
ing the same origin, viz., the vernal equinox, we must therefore compare α,
which characterises the apparent solar time, with M−vΥ, which characterises
the mean solar time. The difference between these two angles is called the
equation of time ET, given by

ET = α − (M − vΥ) = α − l + l − M + vΥ = (α − l) + (v − M) .
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Figure 4.6. Graph of the equation of time as a function of the day of the year J .
The equation of time ET is the sum of the equation of centre EC and the reduction
to the equator ER. All these quantities are expressed in minutes. The table shows
the maxima, minima, and zeros of ET with corresponding dates. These dates may
vary by one or two days on either side, depending on the year
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This shows that the equation of time is the sum of the two quantities EC and
ER defined above:

ET = EC + ER . (4.43)

It thus has the value

ET = 2e sinM − tan2 ε

2
sin 2(M − vΥ) . (4.44)

Recall that M = n(t − tp), with n = 2π/T , where T is equal to one year
(strictly speaking, one anomalistic year). The mean value of ET over one
year is zero by definition.

To the accuracy required here, it is convenient to consider the period
equal to one civil year of 365 days and to characterise M by the day J of
the year, taking the beginning of the year as zero point (i.e., J = 1 is 1 Jan,
J = 2 is 2 Jan, and so on, up to J = 365 for 31 Dec). Then, with the passage
at perigee for J = 3,

M =
360
365

(J − 3) (4.45)

and

M − vΥ =
360
365

(J − 3) − 78 =
360[(J − 3) − 79]

365
=

360
365

(J − 82) . (4.46)

To express ET in time units, we convert radians to minutes of time. In one trip
round the orbit, the right ascension changes by 24 hr, so 2π rad is equivalent
to 1440 min. Finally, expressing the arguments of the sine function in degrees,
we obtain

ET(J) [min] = 7.64 sin
[
360
365

(J − 3)
]
− 9.87 sin

[
720
365

(J − 82)
]

. (4.47)

With this simplified formula, which is quite adequate for most situations,
we observe that the two effects decouple in ET. The eccentricity affects EC,
and the obliquity affects ER. This is due to the fact that the quantities e
and tan2(ε/2) are much smaller than unity. Extremely detailed and precise
expressions for ET can be found in the astronomical literature.

Figure 4.6 shows a graph of ET calculated using (4.47), noting the max-
ima, minima and zeros. In particular, we see that the equation of time varies
with an amplitude of one quarter of an hour and goes to zero four times a year.

Note. The sign convention in the definition of ET sometimes changes, de-
pending on the field of study, as does the convention for geographical lon-
gitudes. One must therefore exercise great caution over the sign used for
calculations.
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4.3.4 Solar Times

Apparent Solar Time, Mean Solar Time

The sign convention adopted is such that the equation of time is the amount
by which the mean solar time exceeds the apparent solar time. Hence, if we
add ET to the apparent solar time, we obtain the mean solar time:

equation of time = mean solar time − apparent solar time .

Variations in the duration of the apparent solar day (the time separating two
consecutive solar noons) correspond to these irregularities in the apparent
solar time. This duration lies between 23 h 59 m 39 s and 24 h 00 m 30 s.

Civil Time, Universal Time UT

With the above definitions, solar noon (hence, H = 0) corresponds to 0 h for
the apparent solar time. The civil time at a given location is the mean solar
time at this location increased by 12 hr.

Universal Time (UT) is civil time on the Greenwich meridian. In the end,
it is therefore based on the Earth’s rotation, and reflects irregularities in this
motion. International Atomic Time (TAI) is the most regular measure of
time we have yet been able to achieve. It is obtained in the laboratory using
state-of-the-art metrological techniques. This very accurate measurement of
time reveals a slowing down of the Earth’s rotation. Coordinated Universal
Time (UTC) is TAI adjusted by a whole number of seconds to UT.13

Solar Times LAT and LMT

In the rest of this book, the solar time scales we shall use are the civil time
scales. We reserve the abbreviations LMT for the local mean solar time (or
local mean time, for short) increased by 12 hr, and LAT for the local apparent
solar time (or local apparent time, for short) increased by 12 hr. We have

ET = LMT − LAT , (4.48)

noting the value at noon:

H = 0 ⇐⇒ LAT = 12 h , LMT = 12 h + ET .

The time scales LMT and UT are related by the hour angle:

LMT = UT +
λ

15
(λ in degrees, time in hours) , (4.49)

13 The old name GMT (Greenwich Mean Time) is considered to be inappropriate
by astronomers and has been out of use for several decades. One should avoid
using it, even though it does still turn up in certain contexts.
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with the convention already mentioned for longitudes (− W and + E).
In the following, t will denote the time in UT, and τ the corresponding

time in LMT. At a place with longitude λ, we then have

τ(t, λ) = τ = t +
λ

15
. (4.50)

Time on the LMT scale is also called local time, while time on the LAT scale
is called solar time.

Example 4.4. The ScaRaB (MV2) instrument aboard Resurs-O1-4 was launched
on 10 July 1998, at 06:30 UT from the Baikonur base in Kazakhstan. Calculate the
time on the LMT and LAT time scales at this location and time.

The geographical coordinates of the Baikonur space centre are 68◦ 16′ E and 45◦

38′ N. Hence, for the longitude, λ = +68.27◦ and the local mean time is

LMT = UT + 68.27/15 = UT + 4.551 = 06 h 30 m + 4 h 33 m = 11 h 03 m .

The date enters the equation of time: ET(J = 191) = 5.2 min. We thus obtain the
apparent solar time as

LAT = LMT − ET = 11 h 03 m − 0 h 05 m = 10 h 58 m .

In conclusion, at Baikonur, the time 06:30 UT corresponds to 11:03 LMT and, on

10 July, to 10:58 LAT.

4.3.5 Historical Note on Time Scales

Prior to 1960, the definition of the second was based on the Earth’s rotation.
One mean solar day was equal to 86 400 s. The time scale was Universal
Time (UT). Between 1960 and 1967, to get around the fact that there were
irregularities in the Earth’s rotation, the orbital motion of the Earth was
chosen to define the second, which thus became a fraction of the tropical
year 1900. The time scale was Ephemeris Time (ET).

The year 1967 was historically important in this respect, because it was
at this point that the definition of time first left the field of astronomy, to
be taken over by the world of physics. The second was defined as the period
of a certain type of radiation emitted by the caesium 133 atom. This time
scale was called International Atomic Time (TAI). This is currently the legal
definition of the second as a unit in the SI system.14

14 The accuracies attained today in observation and time measurement have com-
pelled astronomers to take relativistic effects into account. They have thus de-
fined the so-called dynamical time scales denoted by TDB, TCB, and TCG. For
example, one must now distinguish the time given by an Earth-based atomic
clock from that supplied by another clock at the barycentre of the Solar System.
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In the present book, in which we need to study such things as the crossing
time of a satellite and the position of the Sun at that particular moment, we
shall only need to use UT, LMT and LAT. It is quite clear that, in order to
determine the position of a satellite with sufficient accuracy, we shall not be
able to neglect the TAI–UTC adjustment: in one second (added every 12 to
18 months), the satellite will travel some 7 km!

4.3.6 Julian Day, Julian Date

In order to bring the slowing of the Earth’s rotation into our equations,
to calculate the time difference between two given dates, or to identify a
particular date in history without ambiguity, we use the Julian day. The
days are counted one after the next, without bringing in reference to month
or year, and without discontinuity when a change is made in the calendar.
The zero point is taken in a sufficiently remote past to incorporate historical
events.15

The Julian date corresponds to the Julian day increased by the fraction of
the day as counted from 12 h. On 1 January 2000, we then have the following
correspondence between the date of the Gregorian calendar and the Julian
date:

2000-01-01 12 : 00 : 00 ⇐⇒ JD 2 451 545.0 .

We shall use this notion of Julian date for the NORAD orbital elements in
Chap. 5, and for calculations relating to the orbit of Mars in Chap. 10.
15 Joseph Juste Scaliger (1540–1609), the French scholar, proposed a new chronol-

ogy in his De emendatione temporum (On the correction of time) in 1583. His
idea was to produce a continuous count of the years in such as way as to cover
all the great civilisations. He called this the Julian system, by analogy with the
Julian calendar (introduced by Julius Caesar). The Julian numbering system,
quoted by Kepler, was used by astronomers from 1860. They then added the
idea of Julian day and Julian date. Scaliger considered the cycles involved in
calculating the date of Easter, which was a major concern for astronomers in the
Christian world:

• the solar cycle (or dominical cycle) of 28 years (7 times 4, with 7 being the
number of days in the week, and there being one leap year every four years),

• the lunar cycle (the golden number, or the Metonic cycle) of 19 years (235
lunations in 19 years),

• the cycle of indiction, of 15 years (a number of historical rather than astronom-
ical significance).

To each year there corresponds a set of three numbers, one for each cycle. Every
28 × 19 × 15 = 7980 yr, the years return to the same values for the three cycles
(28, 19 and 15 being coprime). Scaliger chose as origin the year when the num-
bers of the cycles were all equal to 1. In an imaginary Gregorian calendar, this
corresponds to the date Monday 1 January −4712 at 12 h. This year (4713 BC)
is a leap year.
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Day J Day+month δ [degrees] δ Beginning Length
of season of season

21 21 Jan −20.00 89
54 23 Feb −10.00
80 21 Mar 0.00 δ = 0 Spring equinox

106 16 Apr +10.00 93
141 21 May +20.00
173 22 Jun +23.44 δ = +ε Summer solstice
205 24 Jul +20.00 93
240 28 Aug +10.00
266 23 Sep 0.00 δ = 0 Autumn equinox
293 20 Oct −10.00 90
326 22 Nov −20.00
356 22 Dec −23.44 δ = −ε Winter solstice

Figure 4.7. Solar declination δ as a function of the day J . The table shows im-
portant values of δ with the corresponding value of J . The obliquity of the Earth
is ε = 23.44◦. The lengths of seasons are given in days
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4.3.7 Declination

The solar declination is very simply expressed as a function of the Sun’s ce-
lestial longitude l and the obliquity ε. Considering the right-angled spherical
triangle shown in Fig. 4.5, and using the values of the angles given in the
figure caption or the section describing the reduction to the equator, we may
use the sine rule (ST VIII) from spherical trigonometry to show that

sin δ = sin l sin ε . (4.51)

Clearly, we obtain the declination δ in terms of the date (via the mean
anomaly M). Using the equation of centre, we have from (4.35), (4.36) and
(4.38),

l = v − vΥ = M + 2e sinM − vΥ = (M − vΥ) + 2e sinM .

We use the day of the year J (J = 1–365). With (4.45) and (4.46), we have
seen how M and M − vΥ are related to J . For angles expressed in degrees,
as is usual, we must give the eccentricity e in degrees:

e = 0.0167× 180/π = 0.96◦ .

This in turn gives

sin δ = sin ε sin
[
360
365

(J − 82) + 1.9 sin
360
365

(J − 3)
]

, (4.52)

or putting in the numerical value of the obliquity,

δ(J) = arcsin
{

0.39795 sin
[
360
365

(J − 82) + 1.9 sin
360
365

(J − 3)
]}

. (4.53)

We recall that the value from (4.38) is approximate (although a very good
approximation here). Equation (4.53) gives the declination to within 0.2◦,
which is quite adequate when studying solar angles, with dates defined in a
whole number of days. (The apparent diameter of the Sun is 0.5◦ and the
variation of δ is 0.4◦ per day near the equinoxes.)

The variation of the declination with date is shown in Fig. 4.7. The signif-
icant dates are indicated. Note that the lengths of the seasons, as defined by
90◦ intervals of solar longitude, are unequal. The passage at perigee (03 Jan)
is, in our century, close to the winter solstice (22 Dec), and the seasons close
to these dates (autumn and winter) are shorter than the seasons near the
passage at apogee. This is just an example of Kepler’s second law, the areal
law.
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4.4 Geosynchronicity

4.4.1 Definition

We consider the Earth’s rotation and the rotation of a satellite S in the
Galilean frame . The satellite is said to be geosynchronous if its motion
around the Earth and the rotation of the Earth about its axis have the same
angular frequency, i.e., if the mean motion n of the satellite is equal to Ω̇T.

geosynchronous satellite ⇐⇒ n = Ω̇T . (4.54)

This condition can be met by a satellite whose orbital elements e and i are
nonzero. However, in practice, what one usually seeks in a geosynchronous
motion is that the subsatellite point S0 should be immobile on the Earth’s
surface (in the frame T). One then says that the satellite is geostationary.

To achieve this, the vectors representing the Earth’s rotation and the
satellite’s rotation should be equal. Concerning their directions, they must
therefore be collinear. As the Earth’s rotation vector lies along Oz, the polar
axis, the same must also be true for the rotation vector of S. Since the orbit
of S is planar and this plane must contain the centre of attraction O, the
centre of the Earth, it must lie in the equatorial plane (whence i = 0). The
magnitudes of these vectors are equal since the satellite is geosynchronous.
As the value of Ω̇T is constant, the motion of S must be uniform, whereupon
the subsatellite point will be stationary. The orbit of S must therefore be
circular, i.e., with constant altitude:

geostationary satellite ⇐⇒

⎧⎨⎩n = Ω̇T ,
i = 0 ,
h = constant .

(4.55)

A geostationary satellite is thus geosynchronous.16 The converse is not always
true, e.g., Tundra-type orbit. Its position is determined by the longitude of the
subsatellite point, called the parking longitude of the geostationary satellite.

4.4.2 Calculating the Orbit

To calculate the radius of the circular orbit of S, we begin by considering the
value of the Keplerian mean motion. Setting n0 = Ω̇T, we obtain

a3
0 =

µ

Ω̇2
T

= 7.4960128× 1022 ,

16 In �, the satellite is synchronous, whilst in �T, it is stationary. The word ‘geosyn-
chronous’, meaning ‘synchronised with the Earth’, takes its origins from two
Greek roots and is more satisfying than the word ‘geostationary’, which is a
Greek–Latin hybrid.
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a0 = 42 164.159 km , h0 = 35 786 km .

Using the iterative method to obtain the altitude from the period, as illus-
trated in Example 4.2, we now obtain

a1 = 42 164.199 km , h1 = 35 786 km .

At this altitude, as can be seen from Fig. 3.1, the leading perturbation no
longer arises from the J2 term in the geopotential, but from the lunisolar
potential. Iterative calculations like those considered previously are no longer
suited to the problem. By studying the various perturbations (indeed, rather
weak compared with the leading term), one can extract the precise value of
the orbital radius, which we shall indicate here with a subscript GS to denote
geostationary:

aGS = 42 165.787 km , hGS = 35 788 km , (4.56)

or as a function of the Earth’s equatorial radius R :

aGS = 6.611R , hGS = 5.611R . (4.57)

In terms of the reduced distance η, we have

ηGS =
aGS

R
= 6.611 . (4.58)

4.4.3 Geostationary Satellites

It is easy to understand the importance of the geostationary satellite. The
point is that it always ‘views’ the same region, and with the same geome-
try (as we shall see in Chap. 10). For communications satellites and Earth-
observation satellites, these are crucial points. For example, such a position
allows a weather satellite to make a ‘film’ in real time, with one image every
15 min, showing the development of cloud formations.

It is just as easy to see the drawbacks of this kind of orbit. A geostationary
satellite cannot view the whole of the Earth’s surface, either in longitude
(which explains why one must arrange several of them at different longitudes),
or in latitude (regions above 55◦ are difficult to attain in this way). Moreover,
one is forced to view from a great distance.

Geosynchronous orbits have been a target since the beginnings of the
space age, starting with the US satellite series called Syncom17 (Synchronous
Communications Satellite), experimental communications satellites (mass
39 kg). The first, Syncom-1, at i = 33.3◦, was lost at launch. The next,
Syncom-2, at i = 32.8◦, was the first geosynchronous satellite. It provided
17 Launch dates: Syncom-1 on 14 February 1961, Syncom-2 on 26 July 1963,

Syncom-3 on 19 August 1964.



160 4 Motion of Orbit, Earth and Sun

the first telephone link between the Bight of Benin and the United States, on
31 July 1963 (see the upper part of Fig. 5.10). Syncom-3 can be considered as
the first geostationary satellite, since its inclination was i = 0.1◦. It is thanks
to this satellite that the Tokyo Olympic Games of 1964 could be followed live
in the United States.

Satellites in the subsequent ATS series (Applications Technology Satel-
lite) were already much bigger (mass 930 kg for ATS-6).18 The Intelsat series
(International Telecommunications Satellite Organisation) was the first fam-
ily of commercial communications satellites.19

The first images from geostationary satellites were those taken by ATS-1
and ATS-3, but the first meteorological satellites on this orbit belonged to
the SMS series (Synchronous Meteorological Satellite), launched in 1974 and
1975, SMS-1, i = 15.5◦ and SMS-2, i = 12.0◦. These were followed by the
GOES series, with GOES-1 at i = 12.4◦ to GOES-7 at i = 1.2◦. For the
GOES-Next series, starting with GOES-8, orbits were equatorial: i ≈ 0.2◦.

The first Soviet geostationary satellite was placed in orbit much later,
such satellites being of little use to a country like Russia. This was Kosmos-
637, launched on 26 March 1974 with i = 14.5◦. Shortly afterwards, the
French–German communications satellite Symphonie-1 was launched, on 19
December 1974, with i = 12.5◦. The first satellite of the European organ-
isation ESA was METEOSAT-1, launched in 1977 with i = 11.9◦. Since
1988, with METEOSAT-3, these meteorological satellites have been placed
on near-equatorial orbits (i < 1.5◦). In July 2001, there were 850 satellites in
near-geostationary geosynchronous orbit (with 52 being launched during the
year 2000), of which 320 were operational. The vast majority of these were
communications satellites.

In the 1980s, most of these satellites were not equatorial. The equatorial
orbit was mainly used for military satellites.20 These satellites have very low
18 Apart from two failures, for ATS-2 and -4, all the satellites were placed on slightly

inclined orbits. Launch dates: ATS-1, 07 December 1966, i = 14.5◦ (remained
operational for 18 yr, until April 1985), ATS-3, 05 November 1967, i = 14.5◦,
ATS-5, 12 August 1969, i = 14.5◦, ATS-6, 30 May 1974, i = 13.1◦.

19 The first in the series were Intelsat-1 F-1, also known as Early Bird, launched on
6 April 1965, i = 14.7◦ (stationed over the Atlantic to establish ‘fixed’ telephone
links between Europe and the United States) and the three Intelsat-2 satellites
launched in 1967, with i = 1.6◦ for Intelsat-2 F-2 (Lani Bird), i = 14.1◦ for
Intelsat-2 F-3 (Canary Bird), and i = 14.5◦ for Intelsat-2 F-4 (Lani Bird-2).
Since then, the Intelsat satellites have been launched on a regular basis and
placed over the Atlantic, Indian and Pacific oceans. At the end of 2003, with
the launch of Intelsat-907 (satellite 07 of generation 9), a total of 65 Intelsat
satellites had been launched, 60 successfully and 24 still operating today.

20 Examples are IMEWS-3 (DSP-F-3), launched in 1972, i = 0.2◦, and the subse-
quent satellites in the DSP series (Defense Support Program), such as DSP-F-10,
i = 0.7◦ and DSP-F-11, i = 0.8◦, used for early warning missions, i.e., rapid de-
tection of enemy missiles.
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eccentricity: e ≈ 2 × 10−4 for the latest METEOSAT and e ≈ 4 × 10−4 for
the latest GOES.

Concerning the problem of solar eclipse faced by geostationary satellites,
see Sect. 6.3.

4.4.4 Drift of the Geostationary Orbit

The geostationary satellite undergoes the effects of various perturbations,
causing it to drift from its course as time goes by. In other words, the sub-
satellite point S0 is no longer exactly the assigned reference point. There are
two kinds of drift: longitudinal drift and latitudinal drift.

Longitudinal Drift

For meteorological satellites, the longitudinal drift of S0 can be compensated
if it is not too great, by correcting the transmitted image. A very slight varia-
tion in a causes this shift and the satellite is then no longer geosynchronous. If
a increases, the period also increases and the mean motion decreases. Hence,
the satellite rotates less quickly than the Earth in , whence the subsatellite
point S0 moves westward in T. Likewise, if a decreases, S0 moves eastward.
This phenomenon is shown schematically in Fig. 4.8 (see also the lower part
of Fig. 2.3).

We shall calculate the displacement ∆1l of the subsatellite point over one
day for a variation ∆a in the orbital radius (or altitude). In , the subsatellite
point of a geostationary satellite moves a distance l between times t0 and t1,
where

l = RΩ̇T(t1 − t0) .

In , the subsatellite point of a satellite with mean motion n moves through
a distance l′ in the same time, where

l′ = Rn(t1 − t0) .

The difference measures the deviation in , or in T, which is the drift we
seek here:

l′ − l = R(n − Ω̇T)(t1 − t0) .

If the second satellite is close to the geostationary orbit, with a = aGS + ∆a
and n = Ω̇T + ∆n, we have the relation

dn

n
= −3

2
da

a
=⇒ ∆n

Ω̇T

≈ −3
2

∆a

aGS
.

Setting ∆l = l′ − l, we have
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Geostationary
Orbit

Figure 4.8. Orbit of a geostationary satellite and two other satellites at higher and
lower altitudes than those required by geosynchronicity. At time t = t0, the three
satellites share the same subsatellite point. At time t = t1, the subsatellite point
of the lowest satellite has slipped eastward, whilst that of the highest satellite has
slipped westward, relative to the subsatellite point of the geostationary satellite.
The diagram shows the Earth viewed from a point located high above the North
Pole, in the Galilean frame �

∆l = R∆n(t1 − t0) = −3
2
∆a

R

aGS
Ω̇T(t1 − t0) .

The value ηGS = aGS/R is completely determined by (4.58) for a geostation-
ary satellite.

If we consider a time interval of exactly one day, t1 − t0 = JM, we may
express Ω̇TJM using (4.20). This gives ∆1l (the subscript 1 indicates that we
are considering a time interval of 1 day), the displacement of the subsatellite
point over one day:

∆1l = −3
2

1
6.611

2π
366.25
365.25

∆a = −1.4295∆a (per day) . (4.59)

The sign here is valid if we apply the usual conventions concerning the lon-
gitudes for ∆l, i.e., negative for west and positive for east.

We now apply this to two examples. In the first, we calculate the drift of
a satellite that is not exactly at the required altitude, and in the second, we
show how one may take advantage of this drift to modify the position of the
satellite.
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Example 4.5. Calculate the longitudinal drift over one week of the subsatellite
point of a geostationary satellite whose altitude has increased by 100 m.

With ∆a = ∆h = 100 m, (4.59) gives ∆l = −143 m day−1. The position of the

subsatellite point on the ground thus moves 1.0 km westward in one week.

Example 4.6. As part of the INDOEX project (Indian Ocean Experiment), the
European organisation of meteorological satellites EUMETSAT decided to move the
satellite METEOSAT-5 from its standby (10 ◦W) to a new position above the Indian
ocean (63 ◦E). The method used consisted in shifting the satellite to a lower orbit,
whereupon it would drift eastward. Indeed, leaving its initial geostationary position
on 14 January 1998, it arrived at its new geostationary position on 19 May 1998.
By how much was the radius of the orbit adjusted to make this transfer?

The departure and arrival dates were J = 14 and J = 139, respectively, separated
by 125 days. Since it takes 12 hr to go from one orbit to the other, we consider
that the transfer took 124 days. The distance between the two positions is 73◦. The
satellite therefore had to move through 73/124 = 0.589◦ per day relative to the
Earth, which corresponds to 65.53 km per day on the ground track. Since the shift
was eastward, we thus have ∆l = 65.53 kmday−1. Applying (4.59), we find

∆a = − ∆l

1.4295
= −45.84 km .

The satellite was therefore placed on an orbit 46 km lower. Note that only the two

maneuvers at the beginning and the end required energy input, whilst the trip itself

cost nothing.21

Latitudinal Drift

Latitudinal variations of S0 (in which S therefore moves slightly outside
the equatorial plane under the action of gravitational forces other than the
Earth’s) show up through a distortion of the ground track. The orbit is
slightly tilted with respect to the equatorial plane (i �= 0). During the day,
the subsatellite point is not fixed but traces out a figure of 8, between lati-
tudes φ = +i and φ = −i. If the orbit remains circular, the intersection of the
straight line OS (joining the centre of the Earth O to the satellite S) with
the horizontal equatorial plane of the node of the orbit traces out a Bernoulli
lemniscate, as shown in the upper part of Fig. 5.10.
21 The speed of the transfer does have an energy cost. The faster one needs to go, the

lower the transfer orbit should be. For each transfer maneuver of METEOSAT-5
in the above example, which required two burns, one on the starting orbit and
one on the final orbit, EUMETSAT indicate that 300 g of fuel were burnt. The
satellite was carrying 6 kg of propellant before the move.
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4.4.5 Stationkeeping

The orbit of a geosynchronous satellite evolves as time goes by. The inclina-
tion i is affected mainly by the Moon and Sun, the semi-major axis a by the
tesseral terms in the geopotential, and the eccentricity e (since the distorted
orbit is no longer circular) by the effect of solar radiation pressure.

Concerning variations of the semi-major axis a, it can be shown that there
are four special points on the equator, the equilibrium points, with longitudes
75.1◦E and 105.3◦W for the stable points, and 164◦E and 11◦W for the un-
stable points. This effect is a manifestation of the tesseral harmonic P22, of
crucial importance amongst the tesseral terms: the terms C22 and S22 are
nonzero, whereas they are taken as zero in any model with cylindrical sym-
metry [see (3.16)]. Note that these four points divide the equator into almost
equal arcs of 90◦ (see Sect. 3.7.2). Depending on its position, a geostationary
satellite will move towards the stable points, or move away from the unsta-
ble points. For example, in three months the semi-major axis of the satellite
TDF-1, located at 19◦W and hence rather close to an unstable point, changed
from a = 42 164.9 km to a = 42 167.5 km, values on either side of aGS.

Stationkeeping involves repositioning a satellite within its ‘window’ after
a certain time. (A typical window would constitute about 1◦ in the east–west
direction and −0.1◦ to +0.1◦ in the north–south direction.) Stationkeeping
operations require maneuvers in which fuel is burnt, and this necessarily puts
a limit on the lifetime of the satellite. North–south control represents 95% of
the fuel consumption of a satellite like TDF-1.22

4.4.6 Geosynchronous Satellites with Highly Eccentric Orbit

Countries like Russia and Canada, situated as they are at high latitudes,
have little use for geostationary satellites, which are equatorial. As we shall
see shortly, the choice of an orbit that is both inclined and elliptical (to
take advantage of the areal law) can be favourable for northerly regions.
In order to reduce apsidal precession to a minimum, the critical inclination
i = iC = 63.4◦ is essential. The period can be fixed at one (sidereal) day so
as to obtain a geosynchronous satellite.

The Tundra-type orbit was studied by both Russia and Canada and the
idea taken up again by the European Space Agency (ESA) for its Archimedes
project. Two different orbits are planned: Tundra (or Tundra 2) and Super-
tundra (or Tundra 1), with the value a = 42 163 km almost independent of
the eccentricity and very close to aGS as given by (4.56). Since the values of
the inclination and period are determined, we have:
22 Launched in 1988, this satellite was maintained in position for its period of use. It

was then placed in a graveyard orbit where it was allowed to drift. On 26 April
1999, the altitudes of the perigee and apogee were 36 088 km and 36 093 km,
respectively (so that a = 42 469 km), and the inclination was i = 2.25◦. The
drift was −3.9◦ per day, corresponding to ∆a = 304 km, according to (4.59).
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• for Tundra, e = 0.2668, hp = 24 536 km, ha = 47 034 km,
• for Supertundra, e = 0.4230, hp = 17 950 km, ha = 53 620 km.

The visibility time, over which the satellite is visible in acceptable geometrical
conditions for the relevant regions (see Sect. 5.6), is 8 hr for the first of
these orbits and 12 hr for the second, once the position of the apogee has
been correctly established. This means that 3 and 2 satellites are needed,
respectively, to achieve permanent coverage. In such conditions, we may say
that we have obtained the equivalent of one geostationary satellite but at
high latitude.

The Tundra orbit has been used successfully since 2000 by the SD-Radio
constellation of US communications satellites.23

4.5 Sun-Synchronicity

4.5.1 Definition

The orbital plane P of the satellite rotates in , about the polar axis, at a
rate Ω̇, which characterises the angular speed of the vector ON in the plane
E , where O is the centre of the Earth and N the ascending node, as shown
in Fig. 2.1.

We seek a type of orbit in which the transit at the ascending node always
occurs at the same solar time. We thus require that ON make a constant
angle with the direction of the Sun, since the hour angle (and hence the local
mean time) is the dihedral angle between the meridian plane of the relevant
point (here N) and the plane containing the polar axis and the Sun. For this
to happen, the nodal precession rate Ω̇ must equal the angular speed of the
Earth’s motion around the Sun. Such a satellite is said to be Sun-synchronous
or heliosynchronous:

Sun-synchronous satellite ⇐⇒ Ω̇ = Ω̇S . (4.60)

A satellite with an elliptical orbit can be Sun-synchronous, in which case the
nodal precession rate is given in the form Ω̇ = Ω̇(a, e, i). We shall return to
this case below, with the example of the satellite Ellipso Borealis. However, in
most cases, and in particular for Earth-observation satellites,24 only circular
and near-circular orbits are used, so that Ω̇ = Ω̇(a, i).
23 The three satellites Sirius-1, -2 and -3 (also called SD-Radio-1, -2 and -3),

launched from Kazakhstan on 30 June, 5 September and 30 November 2000,
are on a geosynchronous orbit: e = 0.2700, hp = 24 400 km, ha = 47 170 km.
They are operational for North America between longitudes 60◦W and 140◦W.

24 Satellites devoted to magnetospheric studies are often placed in elliptical Sun-
synchronous orbits. Examples are MAGSAT, Ørsted or the two German satellites
Aeros-1 and -2. One should also mention those satellites whose orbits, origi-
nally intended to be circular, have become elliptical owing to launch errors, e.g.,
Nimbus-1, considered later.
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The ground track of a Sun-synchronous satellite always crosses a given
latitude at the same time (local mean time), which is not the crossing time
of the ascending node, and which is further away as one moves away from
the equator.

If P is the nodal precession rate in round trips per year, the condition for
Sun-synchronicity can clearly be written

P = 1 . (4.61)

4.5.2 Constant of Sun-Synchronicity

The condition (4.60) and the values of K0 and Ω̇S defined by (4.5) and (4.16)
lead us to define a quantity kh by

kh =
K0

Ω̇S

, (4.62)

which yields

kh =
3
4π

J2

√
µ

R3
Tsid . (4.63)

This dimensionless constant kh, which we shall call the constant of Sun-
synchronicity, plays a very important role in the study of satellites. It depends
only on:

• characteristics of the planet playing host to the satellite, such as the mass
(via µ), radius (R), flattening (ellipticity factor J2 of the potential),

• the motion of the planet around the Sun, determining the sidereal year
Tsid.

It can also be expressed in terms of the Keplerian period of the satellite at
altitude 0:

kh =
3
2

Tsid

T0(h=0)
J2 . (4.64)

This constant arises when considering the conditions for Sun-synchronicity,
but also more generally, in all aspects of the motion of the satellite orbit
relative to its host planet and the Sun.

For the Earth, it has the value

kh = 10.109 49 . (4.65)

This value of the constant, kh ≈ 10.11, means that for a satellite of altitude
h = 0 and inclination i = 0, the nodal precession rate is 10.11 times greater
than the angular speed of the Earth’s axis in its motion around the Sun
(absolute value).
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Figure 4.9. Satellite altitude as a function of angle of inclination for Sun-
synchronous satellites. The whole range of possible values is shown

4.5.3 Calculating the Orbit

Equations (4.4) to (4.6), (4.60) and (4.62) give

Ω̇(a, i) = Ω̇S ⇐⇒ − 1
cos i

( a

R

)7/2

= kh . (4.66)

For this type of orbit, we have relations giving a in terms of i, and conversely:( a

R

)7/2

= −kh cos i , (4.67)

i = arccos
[
− 1

kh

( a

R

)7/2
]

, (4.68)

or, using the reduced distance η,

i = arccos
(
−η7/2

kh

)
. (4.69)

We thus see that:

• the quantities i and a are related, so that if we choose one, the other is
thereby fixed,
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• the value of cos i must be negative for this equality to hold, which shows
that a Sun-synchronous orbit is necessarily retrograde.

Figure 4.9 shows the curve of a (or h) as a function of i :

η =
a

R
=

R + h

R
= (−kh cos i)2/7 . (4.70)

In general, the quantity a is chosen and the value of i is then deduced from
(4.68), in which case it is called the inclination of the Sun-synchronous orbit,
or more elliptically, the Sun-synchronous inclination. In this case, we may
attach the subscript HS to i , writing iHS = iHS(a) = i(a).

Bounds on i and h for a Sun-Synchronous Satellite

The minimum value of iHS, written iHSmin, is obtained for h = 0, i.e., for a
(fictitious) satellite revolving at ground level. With η = 1, we have

iHSmin = arccos
(
− 1

kh

)
= arccos(−0.0989) = 95.7◦ . (4.71)

The maximum value of h, written iHSmax, is obtained for i = 180◦:

ηHS max =
a

R
= (kh)2/7 = 1.9367 , (4.72)

aHS max = 12 331 km , hHS max = 5 964 km . (4.73)

It is therefore impossible to have a Sun-synchronous satellite (in near-circular
orbit) at inclination lower than 96◦, or altitude above about 6 000 km.

Calculations for a Standard Sun-Synchronous Satellite

Most Sun-synchronous satellites currently operating have altitude around
800 km (between 700 and 900 km for remote-sensing, and lower for recon-
naissance missions). Figure 4.9 shows that, at these altitudes, the relation
between iHS and h is almost linear.

Let us now examine the variation of i near the central value for the range
of altitudes mentioned here, i.e., h1 = 800 km. The inclination corresponding
to this altitude h1 is i1 = iHS1 = 98.60◦. Differentiating (4.67), we obtain

7
2

da

a
= − tan i di .

Taking i near iHS1 and a near R + h1, we have, for finite increments ∆iHS

and ∆a, with iHS in radians and a in metres,

∆iHS = 7.29 × 10−8∆a ,

or alternatively, with i in degrees and h (or a) in kilometres,

∆iHS = 4.17 × 10−3∆h , (4.74)

measuring the deviations from the values iHS1 and h1.
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Calculating the Orbit with Expansion up to Jn

Up to now, we have obtained results using (4.66), the basic relation for Sun-
synchronicity with the value of Ω̇ limited to the J2 term. This therefore
corresponds to the relation

Ω̇ = Ω̇S , with
Ω̇

n
= J2A2 cos i and A2 =

(
R

p

)2(
−3

2

)
. (4.75)

When we use an expansion up to degree l for Ω̇, where l is even and we set
l = 2m, this becomes

Ω̇ = Ω̇S , with
Ω̇

n
=

⎡⎣J2A2 + J2
2B2(i) +

m∑
j=2

J2jA2j(i)

⎤⎦ cos i , (4.76)

where

A2j(i) =
(

R

p

)2j j−1∑
k=0

q
(j)
2k sin2k i , B2(i) =

(
R

p

)4

(q′0 + q′2 sin2 i) ,

and the coefficients q
(j)
2k and q′2k involve numerical terms and the value of the

eccentricity e.
If we solve (4.76) for the inclination iHS, we obtain an equation of degree

(l−1) in cos i. This equation is in fact easy to solve because the terms J2
2 and

Jl do not exceed 10−3J2. We begin by calculating i in the case when only J2

is considered, using (4.66) or (4.75). Inserting this value in (4.76), and after
several iterations, we obtain the required value. The correction is of the order
of 0.03◦. For h = 800 km, we have iHS(J4) = 98.628◦ and iHS(J2) = 98.603◦,
i.e., a difference of 0.025◦.

Note. The value of the Sun-synchronous inclination iHS is indicated in all
figures in this book showing the ground tracks of Sun-synchronous satellites.
Obtained using the expansion to order Jl, they differ by a few hundredths of
a degree from the value obtained directly by (4.68).

4.5.4 Sun-Synchronous Satellites

Sun-synchronicity makes judicious use of the nodal precession of the satellite
orbit. It is a fundamental advantage in space-based observation to be able to
guarantee the passage of a satellite at constant local time for a given latitude,
hence in lighting conditions such that the solar zenithal angle varies annually
over a well-defined (and rather narrow) range.

The first Sun-synchronous satellite on record is SAMOS-2 (Satellite and
Missile Observation System), launched on 31 January 1961, with hp =
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474 km, ha = 557 km, i = 97.4◦, a US military photographic reconnaissance
satellite.25

The first civilian arena to be interested in Sun-synchronous orbits was
meteorology. The satellite Nimbus-1 was launched on 28 August 1964. As
the launch was not entirely successful, it ended up on an eccentric, although
nevertheless Sun-synchronous orbit, with hp = 429 km, ha = 937 km. It
was followed by TIROS-9 and TIROS-10, launched in 1965 into an eccentric
orbit for the former and a near-circular orbit with h ≈ 760 km, i = 98.8◦ for
the latter. All US meteorological satellites were subsequently placed in Sun-
synchronous orbit: Nimbus, ESSA, NOAA on the civilian side, and DMSP
for the military.

In contrast, the Soviet Union sent up dozens of meteorological satellites,
at a rate of three or four per year, as part of the series Meteor-1, -2 and
-3, for which they opted for a non-Sun-synchronous direct near-polar orbit.
Only the last four of the Meteor-1 series were Sun-synchronous: Meteor-1-28,
-1-29, -1-30, -1-31 (also known as Meteor-P-3, -P-4, -P-5, -P-6, respectively),
launched between 1977 and 1981, with h ≈ 600 km, i = 97.7◦. However,
these satellites in the Meteor-P series (Meteor-Priroda, where priroda means
‘nature’ in Russian), adaptations of the meteorological satellites, were more
generally devoted to environmental studies and remote-sensing.

Indeed, remote-sensing applications have an even greater interest in Sun-
synchronous orbits than meteorology. The first programme in this field was
American, with the Landsat programme, which began in 1972 and launched
all its satellites into Sun-synchronous orbit. Corresponding programmes, such
as the French SPOT, the European ERS, the Indian IRS, and the Russian
Resurs-O, were all based on Sun-synchronous satellites, like the environmen-
tal observation missions (e.g., EOS, Envisat) and the many programmes im-
plemented since 2000 (e.g., Ikonos) to provide, on a commercial basis, images
with resolution of the order of 1 m.

Military reconnaissance satellites intended to operate over long periods
(e.g., the French Hélios satellites) are also to be found in the latter category.
On the other hand, for reconnaissance satellites on short sporadic missions of
a few days or so, the idea of a Sun-synchronous orbit would be meaningless.
Indeed, any orbit is Sun-synchronous over a period as short as three days,
in the sense that the satellite will overfly a given latitude at almost con-
stant local time. Moreover, near-polar orbits are not necessarily convenient
for overflying ‘sensitive’ regions. Considering the US military reconnaissance
programme Key Hole (KH), in which more than three hundred satellites have
been launched, there have been very few Sun-synchronous orbits.26 If most
25 Among the following satellites, SAMOS-7, -8, -9, -10 and the last of the series,

SAMOS-11, launched in 1962, were Sun-synchronous, in very low orbits, with
h ≈ 200 km, i = 96.2◦.

26 There have been only a few isolated cases, such as KH-4A-18, launched in 1965,
and KH-4B-17, launched in 1972, with h ≈ 300 km, i = 96.3◦, and the satellites
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of the KH have been Sun-synchronous since the KH-11 series in 1976, this
is because the missions have been designed to last longer (months, or even
years).

4.5.5 Drift and Stationkeeping

As for any satellite, the orbit of a Sun-synchronous satellite will tend to drift
as time goes by, leading to slight modifications in the orbital elements. The
two main perturbative effects are the lunisolar attraction and atmospheric
drag. The first of these causes a slight variation in the satellite inclination,
whilst the second causes braking and hence a reduction in altitude.27

In the case of Sun-synchronous satellites, it is of particular importance to
achieve a constant crossing time at the ascending node (in local time or LMT).
If, like the SPOT, Landsat, ERS and ADEOS satellites, the Sun-synchronous
satellite is recurrent, in the sense that its ground track must repeat exactly
the same locus after a certain number of revolutions (see Chap. 7), it is even
more important to maintain the orbit.28

As an example, for the Japanese satellite ADEOS-1 (Advanced Earth
Observing Satellite, also called Midori, meaning ‘green’ in Japanese), the local
crossing time at the descending node29 τDN was fixed at τDN = 10:30± 0:15.

in the KH-7 and KH-9 series, such as KH-7-01 (Gambit-1), launched in 1963, h =
190 km, i = 95.5◦, and KH-9-01 (Big Bird-1), launched in 1971, hp = 180 km,
ha = 300 km, i = 96.4◦.

27 The density of molecules in the upper atmosphere is related to the level of so-
lar activity (with a cycle of about 11 yr). During the SPOT-4 mission it was
observed that the fall in altitude of this satellite was around 1.20 m per day in
periods of low solar activity. However, in periods of high activity, it was between
5 and 10 m per day, and could exceptionally reach 30 m per day.
ESA’s satellite ERM (Earth Radiation Mission) was designed for a very low alti-
tude (h = 362 km), with low cross-section to reduce atmospheric drag. Moreover,
the mission was programmed for 2005 to take advantage of a period of minimal
solar activity. In these conditions, orbital readjustments could have been carried
out every 10 days. However, the ERM project was abandoned in 1999 and re-
placed by EarthCARE (Clouds Aerosols Radiation Explorer), in a collaboration
with Japan. The launch has been pushed back to around 2008 and the altitude
will be increased in consequence to h = 453 km (see Table 7.2).

28 This is the case for the Japanese satellite JERS-1 (Japan Earth Resource Satel-
lite, also called Fuyo-1, meaning ‘purple rose’ in Japanese), launched on 11 Febru-
ary 1992. Its relatively low altitude (h = 568 km), Sun-synchronous orbit with
tightly tuned recurrence requires orbital readjustment every week.

29 Mission control provided the following value for τDN and the expected drift in
time: τDN = τ0 + aδ + bδ2 = 10.6872 + 4.4329× 10−6δ − 5.8434× 10−10δ2, where
the time τDN is expressed in decimal hours and δ represents the time elapsed in
hours since 00:00 on the launch day. The maximum of this parabolic function
obtains for δ = a/2b = 3.793 × 103 hr ≈ 158 day.
The satellite was launched on 27 August 1996, with τDN = 10:41. The value went
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Another example is the satellite SPOT-4, for which the crossing time at
the descending node was fixed at τDN = 10:30 ± 0:10. In order to keep to
the recurrence constraint, which required the ground track to pass within
3 km of the equator, altitude corrections were necessary. These maneuvers
took place every two to eight weeks depending on the level of solar activity.
Every eighteen months or so, the inclination was also reset. Such frequent
maneuvers meant that the crossing time at the descending node was in fact
τDN = 10:30 ± 0:02 (the maximal discrepancy of 2 min being well below the
variation in the equation of time).

Certain Sun-synchronous satellites are no longer maintained in orbit (by
necessity or by choice), and the local crossing time at the ascending node
drifts in consequence (see Fig. 6.6).

Calculating the Drift in Local Crossing Time

The drift in the local crossing time is due to the secular drift in the inclination
i of the orbital plane. The Lagrange equations show that di/dt = 0 under
the effects of the geopotential. In fact it is the gravitational perturbation due
to the Sun which causes this secular variation and, although it is extremely
small (a few hundredths of a degree per year), it mounts up like any other
such variation.

The local time at the equator, characterised by τDN, is directly related to
the (ascending, or here, descending) node Ω. Differentiating Ω̇ given by (4.1)
with respect to time, we thus obtain the second derivative of τDN(t) as

τ̈DN

n
=

d
dt

(
Ω̇

n

)
=

3
2
J2

(
R

a

)2

sin i

(
di

dt

)
, (4.77)

where di/dt is the secular variation of i. This value depends on the angle
between the orbit and the direction of the Sun, and hence on τDN. We have

di

dt
= −0.032 degrees/year for τDN ≈ 10:30 .

For a ‘typical’ Sun-synchronous satellite (h ≈ 800 km, τDN ≈ 10:30), this
gives

τ̈DN = −5.44 min/yr2 .

This constant value of τ̈DN causes a variation in τDN going as t2.

through a maximum τDN = 10:42 after 5 months and then returned to τDN =
10:41 after 10 months. The following values were then expected: τDN = 10:40 for
12 months, τDN = 10:35 for 24 months, and τDN = 10:24 for 36 months. The
value was τDN = 10:15 after 42 months. At this point, the orbit would have had
to be modified because the variation in τDN would have been very fast, but the
satellite only operated for 10 months. This mission was followed by ADEOS-2
(Midori-2, often written Midori-II), with the same choice for the local crossing
time.
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4.5.6 Sun-Synchronous Satellites with Highly Eccentric Orbit

For a highly eccentric orbit, the condition for Sun-synchronicity also depends
on another constraint. Indeed, to ensure that the perigee does not drift along
the orbit, the inclination must be chosen to have its critical value, given by
(3.57), which is here greater than 90◦, in fact, i = 116.6◦.

As the inclination is fixed, one next chooses a and e for a Sun-synchronous
orbit. This configuration (critical Sun-synchronous inclination) has been en-
visaged for the constellation of communications satellites Ellipso Borealis,
whose orbital elements are given in Chap. 5.



5 Orbit and Ground Track of a Satellite

5.1 Position of the Satellite on its Orbit

Let (O; x, y, z) be the Galilean reference frame already defined. The satellite
S is in an elliptical orbit around the centre of attraction O. The orbital plane
P makes a constant angle i with the equatorial plane E . However, although
this plane P is considered as fixed relative to  in the Keplerian motion, in
a real (perturbed) motion, it will in fact rotate about the polar axis. This
is precessional motion,1 occurring with angular speed Ω̇, as calculated in
the last two chapters. A schematic representation of this motion is given in
Fig. 5.1. We shall describe the position of S in  using the Euler angles.

5.1.1 Position of the Satellite

The three Euler angles ψ, θ and χ were introduced in Sect. 2.3.2 to specify
the orbit and its perigee in space. In the present case, we wish to specify
S. We obtain the correspondence between the Euler angles and the orbital
elements using Fig. 2.1:

ψ = Ω , (5.1)
θ = i , (5.2)
χ = ω + v . (5.3)

Although they are fixed for the Keplerian orbit, the angles Ω, ω and M − nt
vary in time for a real orbit. The inclination i remains constant, however.

The distance from S to the centre of attraction O is given by (1.41),
expressed in terms of the true anomaly v :

r =
a(1 − e2)
1 + e cos v

. (5.4)

1 The word ‘precession’, meaning ‘the action of preceding’, was coined by Coper-
nicus around 1530 (præcessio in Latin) to speak about the precession of the
equinoxes, i.e., the retrograde motion of the equinoctial points. This term was
then taken up in mechanics to describe the corresponding Euler angle. In the
motion of the satellite orbital plane, the word ‘precession’ clearly refers to a
motion that may actually be prograde, as well as retrograde.
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Figure 5.1. Precessional motion of the orbit in the frame �. The orbital plane ro-
tates about the polar axis, maintaining a fixed inclination relative to the equatorial
plane (xOy). Its projection onto the equatorial plane can be used to measure Ω,
the longitude of the ascending node, whose variation is given by Ω̇. If the satellite
has a prograde orbit (as here, where the ascending node has been indicated by a
small black circle, the descending node by a small white circle and the latest ground
track by a dash-dotted curve), the precessional motion is retrograde, i.e., Ω̇ < 0

Since this distance is specified, the position of S is determined by composing
the following three rotations, shown schematically in Fig. 5.2 and described
below:

• Precessional motion in E , taking the straight line Ox onto the straight
line ON (= Ox1):

=⇒ [P1] : Rotation through angle (Ox, Ox1) = ψ about Oz .

• Rotation of E onto P about the line of nodes:

=⇒ [P2] : Rotation through angle (Oz1, Oz2) = θ about Ox1 .

• Motion in P which takes the straight line ON (= Ox1 = Ox2) onto the
straight line OS (or OX):

=⇒ [P3] : Rotation through angle (Ox2, OX) = χ about Oz2 = OZ .

It can be shown that any rotation of a solid can be decomposed into three
elementary rotations about suitably chosen axes. In the case of the Euler
angles, this decomposition is one-to-one with the following domains:
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Figure 5.2. The three rotations taking a given point on a sphere to another ar-
bitrary point, using the three Euler angles. Black circles indicate the three axes of
rotation: Oz = Oz1 for [P1], Ox1 = Ox2 for [P2], and Oz2 = OZ for [P3]

ψ ∈ [0, 2π) , θ ∈ [0, π) χ ∈ [0, 2π) .

The axes and angles of rotation are summarised here:

(Ox, Oy, Oz) P1�−→ (Ox1, Oy1, Oz1 = Oz) ,

(Ox1, Oy1, Oz1)
P2�−→ (Ox2 = Ox1, Oy2, Oz2) ,

(Ox2, Oy2, Oz2)
P3�−→ (OX , OY , OZ = Oz2) .

We then have the three rotation matrices:

P1 =

⎛⎝ cosψ − sinψ 0
sin ψ cosψ 0

0 0 1

⎞⎠ , (5.5)

P2 =

⎛⎝1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞⎠ , (5.6)

P3 =

⎛⎝ cosχ − sinχ 0
sin χ cosχ 0

0 0 1

⎞⎠ . (5.7)
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The matrix product of these three matrices gives the matrix P calculated
below.

We consider without loss of generality that N is on the axis Ox at the
time origin. Its coordinates are thus (r, 0, 0). The coordinates of S(X, Y, Z)
are obtained from those of N(x, y, z) via application of P :⎛⎝X

Y
Z

⎞⎠ = P

⎛⎝x
y
z

⎞⎠ = P

⎛⎝ r
0
0

⎞⎠ .

We see that only the first column of the matrix P will be required for this
calculation. We shall therefore calculate the matrix product P = P1P2P3 and
write it in the form

P =

⎛⎝ cosψ cosχ − sin ψ sinχ cos θ P12 P13

sin ψ cosχ + cosψ sinχ cos θ P22 P23

sin χ sin θ P32 P33

⎞⎠ , (5.8)

which gives ⎛⎝X
Y
Z

⎞⎠ = r

⎛⎝ cosψ cosχ − sin ψ sin χ cos θ
sinψ cosχ + cosψ sin χ cos θ

sinχ sin θ

⎞⎠ . (5.9)

Using the orbital parameters given by (5.1)–(5.4), we obtain⎛⎝X
Y
Z

⎞⎠ =
a(1 − e2)
1 + e cos v

⎛⎝ cosΩ cos(ω + v) − sin Ω sin(ω + v) cos i
sinΩ cos(ω + v) + cosΩ sin(ω + v) cos i

sin(ω + v) sin i

⎞⎠ . (5.10)

Consider a spherical coordinate system in the Galilean frame . The plane
of reference is the equatorial plane xOy of the Earth, Oz is the polar axis
and the position of Ox is fixed in space.

The point S can be specified in  by its spherical coordinates, the lon-
gitude λ and the latitude φ, measured with the usual convention following
from the right-handed trigonometric system. The longitude of Ox (position
of N at the time origin) is denoted by λ0. Hence,⎛⎝X

Y
Z

⎞⎠ = r

⎛⎝ cosφ cos(λ − λ0)
cosφ sin(λ − λ0)

sin φ

⎞⎠ . (5.11)

We thus obtain the position of S(λ, φ) as a function of time and the other
orbital parameters via X, Y, Z :

φ = arcsin
Z

r
, λ = λ0 + arccos

X

r cosφ
, (5.12)

λ − λ0 from the sign of Y , λ − λ0 ∈ (−π, +π] . (5.13)

If |φ| = π/2, λ is not determined (and its determination would be pointless).
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5.1.2 Equation for the Ground Track

In many circumstances, one needs to know the position of the satellite relative
to the Earth. One must therefore represent S in the frame T, whose axes
in the equatorial frame rotate with the Earth. The transformation from this
frame to the Galilean frame  is obtained by a simple rotation about the
polar axis Oz with angular speed (−Ω̇T), since T rotates in  with angular
speed Ω̇T. Bear in mind that these calculations are carried out in the Galilean
frame , whilst the results may be expressed in the frame of our choice.

Recalling the above definition of λ0, the equations of motion of S are the
same in T as in , provided that we replace the value of ψ in (5.1) by

ψ = λ0 + (Ω̇ − Ω̇T)(t − tAN) , (5.14)

where the time origin, the crossing time at the ascending node N , is written
t = tAN.

The satellite ground track is defined as the intersection of the straight
line segment OS with the Earth’s surface. Its equation is thus obtained by
replacing r by R in the above equations. (For this application, we may treat
the Earth as a sphere of radius R.)

5.2 Ground Track of Satellite in Circular Orbit

Near-circular orbits, which may be considered as circular in a first approxi-
mation, constitute a very important and frequently encountered case. Let us
now study some notions developed specifically for these orbits, such as the
equatorial shift or the apparent inclination.

The velocity of the satellite will be calculated in Sect. 5.5.

5.2.1 Equation for Satellite Ground Track

When the orbit is circular, the motion is uniform with angular frequency n,
the mean motion. Using the notation introduced above, the value of χ in
(5.3) can be replaced by

χ = n(t − tAN) . (5.15)

We thus obtain the equation for the ground track, with (5.14), (5.2) and
(5.15) substituted into (5.9) and (5.11), where r has been changed to R.

In this case, the ground track of the satellite is determined by two quan-
tities relating to the ascending node taken as origin, namely, its longitude
λ0 and the crossing time tAN, which constitute the initial conditions of the
uniform motion.
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Sun-Synchronous Satellites

For Sun-synchronous satellites, the angle ψ takes a specific value since Ω̇ =
Ω̇S. We have seen that the two angular frequencies characterising the Earth’s
(annual and daily) motion are related by (4.24). Hence, according to (5.14),

ψ̇ = Ω̇S − Ω̇T = − 2π

JM
. (5.16)

Using the daily orbital frequency as given by (4.25), we obtain, for Sun-
synchronous satellites, the very simple relation

ψ̇ = −n

ν
. (5.17)

We shall see the very important consequences of this relation in the following
chapters, in particular, when studying the crossing time of the satellite and
the question of recurrent orbits.

5.2.2 Maximum Latitude Attained

The ground track moves between two bounding latitudes, φ = +φm in the
northern hemisphere and φ = −φm in the southern hemisphere. Considering
the maximum positive value of Z, obtained for sinn(t− tAN) = 1, we obtain

sin φm = sin i , (5.18)

which implies that:

• for prograde satellites (0 � i � π/2), φm = i,
• for retrograde satellites (π/2 � i � π), φm = π − i .

This value φm (φm � 0) is called the maximum attained latitude.

Example 5.1. Calculate the maximal latitude attained by the Chinese satellite FY-
1A, in Sun-synchronous orbit at an altitude of h = 901 km.

Given the altitude, we determine the inclination using (4.67). In the present exam-
ple, we can use the simplified formula (4.74):

∆i = (901 − 800) × 4.17 × 10−3 ≈ 0.4◦ , i = i0 + ∆i = 98.6 + 0.4 = 99.0◦ ,

which yields the maximal attained latitude φm = 180− i = 81.0◦. Note that this is

the latitude reached by the ground track, not by oblique sightings by instruments

carried aboard. The ground track of the satellite thus remains within the bounding

latitudes 81◦N and 81◦S.
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5.2.3 Equatorial Shift

The difference in longitude between two consecutive ascending nodes λ1 and
λ2 is called the equatorial shift and denoted by ∆λE, i.e.,

∆λE = λ2 − λ1 .

Rough Calculation

It is often sufficient to carry out a quick calculation of the equatorial shift,
which is then denoted by ∆0λE. Indeed we may say to a first approximation
that, during one revolution of period T (and we may take the Keplerian period
here), the orbit of the satellite will not have moved relative to , whilst the
Earth makes one complete turn every day, i.e., it rotates through 15◦ per
hour, or 1◦ every 4 min relative to this same frame. In this context, we do
not bother with the precession of the orbit, or the Earth’s motion relative to
the Sun over the time taken for the satellite to complete one revolution. This
amounts to using the relations ψ̇ ≈ −Ω̇T and Ω̇T ≈ 2π/JM.

We have the simplified relation

∆0λE [degrees] = −T [min]
4

, (5.19)

where the minus sign indicates a shift westwards. Observing that the value
of one degree of longitude is 111.3 km on the equator, we can also write

∆0λE [km] = −27.82T [min] . (5.20)

Using the daily orbital frequency ν (number of round trips per day), we
obtain ∆0λE [degrees] = −360/ν and ∆0λE [km] ≈ −4 × 104/ν.

Exact Calculation

During one revolution lasting T = Td, the orbital plane will have rotated
through an angle ψ with respect to T. The exact value of the equatorial
shift as given by (5.14) with t − tAN = T is therefore

∆λE = ψ̇T = −(Ω̇T − Ω̇)T . (5.21)

We note the following points, which follow from (5.21):

• The equatorial shift is always negative, since Ω̇T is greater than Ω̇. The
shift is westward for a satellite below the geosynchronous orbit.

• For satellites in Sun-synchronous orbit, we saw the specific value of ψ̇,
according to (5.16). Over one nodal period T , we have

∆λE = ψ̇T = − 2π

JM
T . (5.22)
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Writing the angles in degrees and the time in minutes, we obtain (5.19).
For a Sun-synchronous satellite, the approximate formula is identical to
the exact one. This is because the two approximations we made in the
rough calculation (neglecting precession and the annual motion of the
Earth) exactly balance for this type of satellite.

• For satellites in geosynchronous orbit, T = 2π/Ω̇T and Ω̇ is negligible.
(In any case, it is not the leading term in the perturbation treatment for
this type of satellite.) In this case, we thus have

∆λE = −Ω̇TT = −2π = 0 mod (2π) . (5.23)

There is no equatorial shift for such a satellite. The projection of two
consecutive ascending nodes does not move on the Earth. (If the satellite
is geostationary, we cannot even speak of an ascending node.)

Example 5.2. Calculate the equatorial shift for the satellite Meteor-3-07.

The characteristics of the orbit of this satellite are given in Example 4.2. For the
quick calculation, we use (5.20) with T = 109.4 min. Then

∆0λE = −27.82 × 109.4 = −3044 km .

For the exact calculation, with the values already given, viz.,

Ω̇T = 729.212 × 10−7 rad s−1 ,

Ω̇ = −1.429 × 10−7 rad s−1 ,

Ω̇T − Ω̇ = 730.641 × 10−7 rad s−1 ,

and T = 6565.28 s, we obtain

∆λE = −0.479 7 rad = −27.48◦ = −3 059.51 km .

The equatorial shift of the satellite Meteor-3-07 is thus 3 059.5 km westward (see

also Fig. 5.3 and Table 5.1).

5.2.4 Apparent Inclination

Definition and Calculation of Apparent Inclination

The apparent inclination is the angle between the ground track and the equa-
tor. This angle i′ differs from the angle i representing the inclination of the
satellite, which is the inclination of the orbital plane of the satellite with
respect to the equatorial plane. This happens because i is measured in ,
whereas i′ is measured in T.

To calculate i′, we consider in T the tangent plane to the sphere of radius
R at the point on the Earth’s surface corresponding to the ascending node,
using the orthogonal unit vectors eλ and eφ already defined. This ascending
node is denoted by N in  and N0 in T. At time t = tAN, the three points
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Figure 5.3. Orbit and ground track of the satellite Meteor-3-07 over one revo-
lution. The distance between the two successive ascending nodes is the equatorial
shift
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Figure 5.4. Diagrams for the description of apparent inclination. (a) Inclination i
and apparent inclination i′. The subsatellite point S0 and the point on the ground
track corresponding to the ascending node have been represented in �T. (b) Com-
ponents of the satellite velocity in the frame �T. The velocity vector v and its
projection vxy onto the equatorial plane have been represented in the frame mov-
ing with the Earth

S0 (the subsatellite point), N and N0 coincide. An infinitesimal time dt later,
N and S0 have moved away from N0, as shown in Fig. 5.4a. In the frame
T(N0, eλ, eφ), the components of the vectors N0N and NS0 are, setting
dt = 1,

N 0N =
(
−(Ω̇T − Ω̇)

0

)
, NS0 =

(
n cos i
n sin i

)
.

We thus deduce the components of N0S :

N0S =
(

n cos i − (Ω̇T − Ω̇)
n sin i

)
,

and the apparent inclination is given by

tan i′ =
n sin i

n cos i − (Ω̇T − Ω̇)
. (5.24)

In terms of the daily recurrence frequency κ defined by (4.32), we may write
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tan i′ =
sin i

cos i − (1/κ)
. (5.25)

Note that we always have i′ � i.
For a Sun-synchronous satellite, we may replace κ by ν, since according

to (4.33), these two daily frequencies are equal.

Example 5.3. Calculate the angle between the ground track of the TRMM satellite
and the equator when the satellite crosses the ascending node.

For TRMM (i = 34.98◦), we calculated the nodal precession rate in Example 4.1.
We obtain

tan i′ =
sin 34.98

cos 34.98 − 0.0649
= 0.7604 ,

i′ = 37.25◦ , i′ − i = 2.27◦ .

Example 5.4. Calculate the apparent inclination for the ground track of a geosyn-
chronous satellite.

For a geosynchronous satellite, we have Ω̇T/n = 1 and the term Ω̇ is negligible.
Equation (5.24) becomes

tan i′ =
sin i

cos i − 1
= − cos(i/2)

sin(i/2)
= tan

„
π

2
+

i

2

«
,

i′ = 90◦ +
i

2
, i′ − i = 90◦ − i

2
.

When i is very small, e.g., i = 1◦, we have i′ = 90.5◦: the ground track is not a point

but a small line segment almost perpendicular to the equator, between latitudes

1◦N and 1◦S, which transforms into a figure of 8 (lemniscate) when i increases,

growing larger with i. The first operational geosynchronous satellite, Syncom-2,

had inclination 32.8◦. Its ground track made an angle of 106.4◦ with the equator,

or an angle of 16.4◦ with the nodal meridian, as can be seen from the upper part

of Fig. 5.10.

Calculating the Inclination from the Apparent Inclination

We have obtained i′ as a function of i (and a). It is sometimes useful to do the
opposite calculation, obtaining i as a function of i′ (and a). Using (4.1) and
expressing Ω̇/n by means of J2 and i, (5.24) can be replaced by the following
equation:

A cos i − B = C sin i , (5.26)
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where

A = 1 − 3
2
J2

(
R

a

)2

, B =
Ω̇T

n
, C =

1
tan i′

. (5.27)

The aim now is to solve this for i. To begin with, we take n = n(a, i) = n0

in B so that this term does not depend on i. In a second step, we substitute
into B the value of n obtained using the previous value of i. The method
converges very quickly.

Equation (5.26) transforms to a second order equation in tan(i/2). The
solution, which is unique since the angle i lies in the interval [0, π], is given
by

tan
i

2
=

−C +
√

C2 + A2 − B2

A + B
. (5.28)

We note that we have A ≈ 1, B ≈ 1/ν and hence B < A, except for satellites
in geosynchronous orbit or higher. This method allows one to find the incli-
nation of a satellite of known altitude by measuring the apparent inclination,
on a map of the ground track, for example. As we shall see below, it also
allows one to calculate the inclination from the components of the velocity
vector of the satellite.

Calculating the Inclination from the Satellite Velocity

The position and velocity of a satellite can be found either from the orbit
bulletin or from remote-sensing data from the instruments aboard. The po-
sition and velocity are given relative to the Earth. Let vX , vY , vZ be the
velocity components in T. At the ascending node, the angle between the
velocity vector, and hence the satellite trajectory, and the equatorial plane is
the apparent inclination.

Using Fig. 5.4b, we obtain the relation between i and the velocity at
the node (using the absolute value for the velocity components if the nodes
cannot be distinguished):

tan i′ =
vZ√

v2
X + v2

Y

. (5.29)

From the value for a and the value for i′ obtained in this way, we find i using
(5.28).

Example 5.5. Calculate the inclination of the satellite Meteor-3-07 using the com-
ponents of the velocity vector.

The values in Table 5.1 were obtained by interpolation of the raw remote-sensing
data collected during the first revolution in which the instrument ScaRaB was
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Table 5.1. Raw remote-sensing data from the ScaRaB instrument relating to the
first operational revolution of Meteor-3-07. The table shows the altitude h (in km),
the velocity components vX , vY , vZ (in km s−1), the latitude φ and the longitude
λ (in degrees), and the crossing time (in UT) at the ascending (A) and descending
(D) nodes

Time Node Latitude Longitude Altitude Velocity components
1994 02 24 φ λ h vX vY vZ

07:43:29 A 0.00 −133.95 1211.658 0.280 −0.261 7.182
08:38:10 D 0.00 32.33 1188.318 −0.202 0.331 −7.204
09:32:54 A 0.00 −161.44 1211.657 −0.128 −0.361 7.182

recording. Nodes (1) and (3) were ascending (vZ > 0), whilst node (2) was de-
scending (vZ < 0). We calculate i′ from (5.29):

tan i′ =
7.182

0.383
= 18.763 , tan i′ =

7.204

0.388
= 18.578 , tan i′ =

7.182

0.383
= 18.751 .

We then deduce i in each case and take the average between the ascending and
descending nodes:

i′ = 86.933◦ .

We calculate the semi-major axis a from the nodal period, since we know the time
elapsed between two consecutive transits at the ascending node (see Examples 4.1
and 4.2). With T = 109 min 25 s = 109.42 min, we obtain a = 7572.7 km. We
observe that the altitudes given in Table 5.1 vary by 12 km on either side of the
average h = 1200 km depending on the type of node. This is explained by the fact
that the orbit is slightly eccentric and the argument of the perigee is not ±90◦.
With (5.28), the values of i′ and a give

A = 0.998 85 , B = 7.619 × 10−2 , C = 5.358 × 10−2 , cos i = 0.129 47 .

Finally we obtain the value of i, viz.,

i = 82.561◦ .

We thus find the inclination i = 82.56◦ of the satellite Meteor-3-07, which is pre-

cisely the value communicated by the Russian Space Agency.

5.2.5 Angle Between the Ground Track and a Meridian

We calculate the angle between the satellite ground track and a meridian for
an arbitrary point on the ground track. The calculation of the angle between
the ground track and a line of latitude gives a generalisation of the apparent
inclination. However, in practice, it is more useful to known the angle between
the ground track and the north–south direction.

In the frame , the satellite orbit cuts the meridian at an angle j. Refer-
ring to Fig. 6.4, P is the subsatellite point (with latitude φ), N is the point
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on the ground track corresponding to the ascending node (the dihedral angle
at N gives the inclination i), and PQ is the meridian through P , where Q
is on the equator. The dihedral angle at P is the angle j that we wish to
determine. Using the relation (ST V) with PQN for CAB, we obtain

sin j =
cos i

cosφ
. (5.30)

To calculate j′, we consider in T the plane tangent to the sphere of radius
R at the relevant point, with latitude φ, and orthogonal unit vectors eλ and
eφ as already defined. As in the calculation of the apparent inclination, the
relevant point is denoted by P in  and P0 in T. At time t = tAN, the three
points S0 (the subsatellite point), P and P0 coincide. After an infinitesimal
time dt (dt = 1), we obtain

P 0P =
(
−(Ω̇T − Ω̇) cosφ

0

)
, PS0 =

(
n sin j
n cos j

)
.

We deduce the components of P 0S :

P 0S =
(

n sin j − (Ω̇T − Ω̇) cosφ
n cos j

)
.

This should be compared with (5.24).
Using the daily frequency κ, we thus obtain

tan j′ =
sin j − (1/κ) cosφ

cos j
, (5.31)

and rewriting j,

tan j′ =
cos i − (1/κ) cos2 φ√

cos2 φ − cos2 i
. (5.32)

When the latitude of the point P equals the maximal attained latitude, one
can check that the ground track is in fact normal to the meridian.

5.3 Classifying Orbit Types

Satellite orbits can be classified according to various criteria: the inclination,
the altitude, the eccentricity, or various properties.

Classification by Inclination

We have seen that the angle of inclination i of the orbit (angle of nutation θ
for the Euler angles) is defined to lie between 0◦ and 180◦. If i is less than
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90◦, the orbit is prograde, whereas if i is greater than 90◦, it is retrograde.
When i = 90◦, the orbit is polar. One may say strictly polar, because when
i lies between 80◦ and 100◦, one often describes it as a polar orbit, whereas
near-polar would be more appropriate. Figures 5.5 and 5.6 show the ground
tracks of these orbits.

If i = 0◦ (or i = 180◦, although this has never happened), the orbit is
equatorial, and for i less than 10◦, it is near-equatorial.

Classification by Altitude

Satellites in near-circular orbit are classified according to their mean altitude.
We speak of a Low Earth Orbit (LEO) when the satellite flies at an altitude
below 1 500 km, a Medium Earth Orbit (MEO) for GPS satellites at an
altitude of around 20 000 km, and a Geostationary Earth Orbit (GEO) (also
sometimes called the Clarke orbit) for geostationary satellites at an altitude
of 36 000 km. We shall often use these abbreviations, which are concise and
consistent.2 Almost all satellites in orbits with low eccentricity fall into one
of these three categories. (For example, it is very rare, to find a satellite at
an altitude of 8 000 km.)

For highly elliptical orbits,3 such as the Molniya or Tundra orbits, we use
the abbreviation HEO (Highly Eccentric Orbit). The name GTO (Geosta-
tionary Transfer Orbit) is usually a temporary one, because the satellite has
been placed on this highly eccentric orbit for transfer towards a GEO orbit.
Some satellites can be found in such orbits, some deliberately placed there,
others because the apogee thrust used to make the orbit circular has been
unsuccessful. Finally, if a satellite has not been correctly placed in orbit, it
is sometimes given the title FTO (Failed Transfer Orbit)!

The orbits L1LO and L2LO refer to halo orbits around the Lagrange
points, which were discussed in Sect. 3.14.

Classification by Properties

When one needs to specify that a satellite is not geostationary, the term
non-geostationary satellite is used. Likewise a Sun-synchronous satellite is
contrasted with a non-Sun-synchronous satellite. We shall see other properties
later, such as recurrent and frozen orbits.
2 When we are referring to the satellite as LEO rather than the orbit, we un-

derstand of course ‘low Earth orbiting’ satellite. One does occasionally find the
term GEO meaning Geosynchronous Earth Orbit, as opposed to GSO for Geo-
Stationary Orbit. In addition, and somewhat unnecessarily, one finds the term
IGSO meaning Inclined GeoSynchronous Orbit for geosynchronous orbits that
are tilted and therefore not geostationary.

3 For Molniya-type orbits, the term THEO (Twelve Hour Eccentric Orbit) is some-
times used. For very high orbits, like the orbit of Geotail, we use the term VHO
(Very High Orbit).
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Orbit and Revolution

Since all scientific enterprise is based on a precise use of language, one must
mention a very common error which consists in saying ‘orbit’ instead of ‘rev-
olution’ or ‘round trip’, an error which occurs in English, French and very
likely in other languages too. For example, we may read: the satellite Terra,
during orbit 7778 . . . . This confusion is unjustified, and indeed, it is never
encountered in astronomy: one never says that the Moon makes one orbit
around the Earth every month.

5.4 Classifying Satellites by Mission

Our classification of satellites according to mission, which is of course rather
arbitrary, aims to illustrate the various types of orbit. We begin with satellites
designed for geophysics and Earth observation, then for navigation and com-
munications, astronomy, technological development, and others that elude
straightforward classification. We shall touch briefly upon military satellites
and their specific missions, and satellites carrying humans.

The mission of a satellite often covers a range of different areas, e.g., an
oceanographic satellite may also take part in a geodesy mission or a mission
to develop altimetric techniques, and there has often been a large measure
of ideology in satellite missions, especially at the beginning of the space age.
However, we shall not be making a special entry for ideology!

With regard to military (or partly military) satellites the nomenclature is
often somewhat vague (even confused). From 1984, the United States called
some of its satellites USA followed by a number specifying order of launch.
Previously, these satellites had been called OPS followed by a four-figure
number, without chronological ordering. (Between 1963 and 1984, close on
500 OPS satellites were launched.) The USSR, then Russia, also created con-
fusion with the Kosmos satellites: this name (from the Russian word kocmoc,
originating itself from the Greek word � ������� ��, meaning ‘order’ or ‘well
ordered’, hence ‘universe’) groups a whole multitude4 of satellites (not al-
ways military), on every type of orbit and for every available type of mission.
The People’s Republic of China did likewise with the appellation DFH (Dong
Fang Hong, where ‘dong fang’ means ‘Orient’ and ‘hong’ means ‘red’), which
covers the great majority of Chinese satellites. Without doing anything to
4 The launch dates were as follows: Kosmos-1 on 16 March 1962, Kosmos-1001 on

4 April 1978, Kosmos-2001 on 14 February 1989. The launch rate then subsided
somewhat. We give here the last Kosmos launched in the year: Kosmos-2054
(1989), Kosmos-2120 (1990), Kosmos-2174 (1991), Kosmos-2229 (1992), Kosmos-
2267 (1993), Kosmos-2305 (1994), Kosmos-2325 (1995), Kosmos-2336 (1996),
Kosmos-2348 (1997), Kosmos-2364 (1998), Kosmos-2368 (1999), Kosmos-2376
(2000), Kosmos-2386 (2001), Kosmos-2396 (2002), Kosmos-2404 (2003).
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simplify the situation, these satellites are also recorded by Western organisa-
tions under the appellation PRC (People’s Republic of China), with another
numbering system.

Satellites placed in orbit by the US Space Shuttle are noted: launched by
STS-(number). A satellite that is not specified in a series is denoted by -n
(e.g., Molniya-n).

Launch dates are given up to 1 November 2004.

5.4.1 Geophysical Satellites

Geodesy

We have already mentioned these satellites in Chap. 3, where we gave a
complete list of the satellites used for the geopotential models EGM96S and
GRIM5-S1.

The satellite Sputnik-1, the very first of all satellites, can be considered as
a geodesy satellite. At the beginning of space geodesy, many satellites were
placed above the LEO altitude so as to reduce atmospheric drag. Examples
are PAGEOS, launched in 1966, between 3 000 and 5 200 km, with i = 84.4◦,
the two LAGEOS (Laser Geodynamics Satellite), with h = 5 900 km and
inclinations i = 109.8◦ for LAGEOS-1, launched in 1976 and i = 52.6◦ for
LAGEOS-2, launched in 1992 by STS-52. The ground track of the orbit of
LAGEOS-1 is shown in Fig. 5.5 (upper).

The satellites SECOR-7, -8, -9 orbit at 3 700 km altitude and the Soviet
satellites Etalon-1 and -2 (Kosmos-1989 and -2024), launched in 1989 with
GLONASS, are in a circular MEO orbit, h = 19 130 km, i = 64.8◦. Others
are at altitudes between 1500 and 1000 km: the fifteen Soviet satellites Geo-
1K, such as Kosmos-2226, the French satellite Starlette and the US pioneer
Anna-1B, launched in 1962, h = 1 120 km, i = 50.1◦.

The Japanese satellite LRE (Laser Ranging Experiment), launched into
eccentric orbit in 2001, hp = 271 km, ha = 36 214 km, i = 28◦, is equipped
with 126 laser reflectors.

There are some Sun-synchronous satellites between 800 and 1 000 km,
such as TOPO-1 and those launched after 1993, Stella and Westpac-1 (Sun-
synchronous because they are microsatellites that were themselves launched
by Sun-synchronous satellites). Since then, geodesy satellites have been
placed in lower orbits. An example is GFZ-1 (Geo Forschungs Zentrum),
launched in 1995, h = 380 km, i = 51.6◦.

Our knowledge of the geopotential has become so precise that a whole
new generation of geodesy satellites5 was put in operation in 2000. They
carry ultra-sensitive accelerometers. Their altitudes must be as low as pos-
sible for better detection of gravitational anomalies, whilst a continuous
thrust compensates for the higher level of atmospheric drag. The German
5 Launch dates: CHAMP on 15 June 2000, GRACE-A and -B on 17 March 2002.



192 5 Orbit and Ground Track of a Satellite

satellite CHAMP (Challenging Minisatellite Payload for geophysical research
and applications) is on a near-polar orbit i = 87.3◦ with an initial altitude
h = 454 km (h = 300 km after 5 years, mission lifetime). The US–German
system GRACE (Gravity Recovery And Climate Experiment) comprises two
satellites, GRACE-A and GRACE-B, 220 km apart on the same orbit at
h = 485 km, i = 89.5◦. The altitude should drop down to 250 km over the
five-year lifetime of the two satellites. The experiment involves measuring the
relative speed of the two satellites to an accuracy of 1 µm s−1. This allows
one to detect very weak fluctuations in the Earth’s gravitational field and
hence to follow the movement of water in the Earth’s hydrological cycle.

The European project GOCE (Gravity field and steady state Ocean Cir-
culation Experiment) uses a Sun-synchronous satellite at very low altitude,6

i.e., h ≈ 250 km.

Earth Environment: Ionosphere and Magnetosphere

To study the Earth’s magnetic field, two satellites are in Sun-synchronous
LEO, but elliptical orbit, namely MAGSAT (Magnetic field Satellite, AEM-
3), launched in 1979, hp = 352 km, ha = 561 km, i = 96.8◦, and the Danish
Ørsted, launched in 1999, hp = 450 km, ha = 850 km, i = 96.5◦. To study
the radiation belts, the Chinese satellite SJ-5 (Shi Jian-5, DFH-47, where ‘shi
jian’ means ‘achievement’), launched in 1999, at the same time as FY-1C, is
in a circular Sun-synchronous orbit with h = 855 km. SJ-6A and SJ-6B,
launched in 2004, are in a lower orbit, h = 602 km.

In near-polar LEO orbit, between 800 and 1000 km, are the even-
numbered OGO satellites (Orbiting Geophysical Observatory), OGO-2, -4,
-6, called POGO (Polar OGO), launched between 1965 and 1969, the Swedish
satellites Astrid-1 and -2, launched in 1995 and 1998, and the strictly polar
satellite Polar BEAR (Beacon Experiments and Auroral Research).

To study the magnetosphere, that is, the zone of interaction between
particles excited by the solar wind and the Earth’s magnetic field, satellite
orbits have to be very high and highly elliptical. The first US satellite7 to be
placed in orbit, Explorer-1, launched on 11 February 1958, with hp = 347 km,
ha = 1 859 km, i = 33.2◦, already had some of these features. Its mass
was only 5 kg, but it discovered two radiation belts around the Earth, since
6 At this altitude, and for this 800 kg satellite, the acceleration due to atmospheric

drag is 1.5 × 10−5 m s−2, whilst the acceleration due to radiation pressure is
6.1× 10−8 m s−2. As a comparison, these values are respectively 6.0× 10−8 and
3.7×10−8 for µSCOPE, a 120kg satellite planned for circular orbit at an altitude
of 700 km.

7 Following the Soviet launch of the two Sputniks, the United States wished to
react very quickly. The first US satellite was to be a Vanguard, prepared by the
US Navy, but in the end it was an Explorer of the US Army that was first placed
in orbit. This competition between the two branches of the armed forces came
to an end when NASA was created on 1 October 1958.
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referred to as the Van Allen belts. This radiation was studied by the Soviet
Elektron programme for which four satellites were launched in two pairs in
1964: Elektron-1 and -2, Elektron-3 and -4. They all followed eccentric orbits,
with inclination i ≈ 61◦, and with ha ≈ 6 500 km for the odd numbers,
ha ≈ 65 000 km for the even numbers.

Magnetospheric studies continued with a great many satellites launched
between 1964 and 1968, such as the odd-numbered OGO satellites, OGO-1,
-3, -5, known as EOGO (Eccentric OGO), Explorer-34 (IMP-F or IMP-5,
Interplanetary Monitoring Platform), launched in 1967 with hp = 242 km,
ha = 214 400 km, i = 67.1◦, or Explorer-50 (IMP-J or IMP-8), launched into
a very high orbit in 1973 with variable inclination between 32◦ and 55◦ (and
after thirty years, this satellite is still operational).

For the ISEE experiment (International Sun–Earth Explorer), the two
satellites ISEE-1 and -2 were launched in 1977, on highly eccentric orbits:
hp ≈ 400 km, ha ≈ 138 000 km, i = 12.7◦ and 13.5◦. Then in 1978, ISEE-3
was the first satellite placed in a halo orbit8 around the Lagrange point L1,
i.e., the halo orbit known as L1LO (see Sect. 3.14).

The satellite Wind, launched in 1994, was also placed in an L1LO orbit
around the point L1, where it remained from May 1997 until April 1998.
From this location, it was able to observe the solar wind before it became
perturbed by the Earth’s magnetosphere. It was subsequently placed on a
highly complex orbit known as a petal orbit from November 1998 to April
1999.9 The satellite ACE (Advanced Composition Explorer), launched in
1997, is also in an L1LO orbit.

We should also mention the highly eccentric orbits of the following
satellites: Geotail, a Japanese satellite launched in 1992, hp = 41 360 km,
ha = 508 500 km, i = 22.4◦; Polar, launched in 1996, on an orbit with vari-
able parameters,10 a ≈ 60 000 km, e ≈ 0.7, i ≈ 80◦ (several revolutions are

8 When it had accomplished its mission, the satellite was withdrawn from the point
L1 in June 1982. Using a lunar flyby as a gravity-assist maneuver, it was removed
from the Earth’s gravitational attraction and sent into heliocentric orbit for the
ICE mission (International Cometary Explorer), in an encounter with a comet
(perihelion 0.93 a.u., aphelion 1.03 a.u., inclination 0.1◦, period 355 day).

9 The satellite left the point L1 in the Earthward direction, roughly in the plane
of the lunar orbit, before moving into the petal orbit. In this configuration, the
satellite moves alternately behind the Earth and the Moon. In this plane and
in a frame moving with the Earth, the trajectory sketches out a daisy with the
Earth at the centre. The tips of the petals represent the different positions of the
Moon in its rotation about the Earth. It has period 17.5 day, radius of ellipse
rp ≈ 6 to 10R, ra ≈ 80R (where the Earth–Moon distance is 60R).

10 The orbit shown in the figure is that of 13 February 2002. This satellite, the Polar
Plasma Laboratory, is part of the GGS mission (Global Geospace Science) with
Wind and Geotail, and this is itself just one component of the ISTP programme
(International Solar Terrestrial Physics), which includes the European missions
SOHO and Cluster and the Russian mission Interball.
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shown in the lower part of Fig. 5.22); FAST (Fast Auroral Snapshot Ex-
plorer, SMEX-2), launched in 1996, hp = 353 km, ha = 4 163 km, i = 83.0◦

(see lower part of Fig. 5.21 for orbit in November 2004); Equator-S, launched
in 1997, hp = 496 km, ha = 67 230 km, i = 7.0◦ (orbit obtained by transfer
via a GTO orbit); IMAGE (Imager for Magnetopause-to-Aurora Global Ex-
ploration, MIDEX-1), launched in 2000, on a polar orbit with hp ≈ 1000 km
and ha of the order of 7 Earth radii.

The Russian Interball experiment is based on Interball Tail (or Interbol-1,
Prognoz-11), launched in 1995 on a highly elliptical orbit with period T =
91 hr, and Interball Aurora (or Interbol-2, Prognoz-12), launched in 1996 on
a Molniya orbit. In each case, the Czech satellites Magion (Magnetosphere–
Ionosphere), Magion-4, then Magion-5, were launched jointly with an In-
terball satellite. The orbit of the forthcoming Interbol-3 is planned for
ha = 400 000 km. We also mention the Chinese satellite KF1-SJ-4 (Shi Jian-4,
DFH-38), launched in 1994, on a GTO orbit, with i = 28.6◦.

To study the magnetosphere and phenomena related to the aurora bo-
realis, Japan sent four satellites EXOS (Exospheric Observations) between
1978 and 1989, in alternately low and high eccentric orbits, with i = 69◦ for
EXOS-A (Kyokko), i = 31◦ for EXOS-B (Jikiken), and i = 75◦ for EXOS-C
(Ohzora) and EXOS-D (Akebono).

The European experiment Cluster-2 comprises four satellites in forma-
tion.11 They have a very high orbit, with hp = 17 200 km, ha = 120 600 km,
i = 65◦, T = 57 hr.

The Double Star programme comprises two Chinese satellites carrying
European satellites similar to those designed for Cluster, in eccentric orbits,12

with perigee at 600 km altitude. The first, DSP-1, ha = 79 000 km, is in an
equatorial orbit, and the second, DSP-2, ha = 39 000 km, is in polar orbit.

To study the ionosphere,13 there are the US satellites UARS (Upper At-
mosphere Research Satellite), h = 570 km, i = 56.9◦, and TIMED (Thermo-
Iono-Mesosphere Energetics and Dynamics), h = 625 km, i = 74.0◦. In addi-
tion, there is the Taiwanese satellite Rocsat-1 (Republic of China Satellite),
with a slightly inclined orbit, h = 630 km, i = 35◦ (for oceanographic pur-
poses) and many Interkosmos, such as Interkosmos-12, several Kosmos, such
as Kosmos-196, and the Chinese satellites Atmosphere-1 and -2 (DFH-31

11 These satellites, Rumba, Salsa, Samba and Tango, fly a few hundred kilometres
apart. They were launched in two stages, on 16 June and 19 August 2000, to
avoid repetition of the disaster when Cluster was launched together on 4 June
1996.

12 DSP-1 (also called Tan Ce-1 – Explorer-1 in Chinese – or TC-1), a = 46 148.1 km,
e = 0.8494, i = 28.5◦, launched on 29 December 2003. DSP-2 (Tan Ce-2 or TC-
2), a = 26 228.1 km, e = 0.7301, i = 90◦, launched on 25 July 2004.

13 Launch dates: UARS on 12 September 1991 (STS-48), TIMED 7 on Decem-
ber 2001 (with Jason-1 but in a different orbit), Rocsat-1 on 27 January 1999,
Interkosmos-12 on 30 October 1974, Atmosphere-1 and -2 (DFH-31 and -32) on
3 September 1990, SAMPEX on 3 July 1992, TERRIERS on 18 May 1999.
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and -32), which are Sun-synchronous with h = 800 km and h = 610 km. The
satellite SAMPEX (Solar Anomalous and Magnetospheric Particle Explorer,
SMEX-1) is near-polar, with hp = 506 km, ha = 670 km, i = 81.7◦. The
US satellite TERRIERS, is Sun-synchronous with h = 550 km, but did not
function as planned.

5.4.2 Earth-Observation Satellites

Atmosphere and Meteorology

The possibility of observation from space aroused the interest of meteorol-
ogists from an early stage. It was their dream to know the global state of
the atmosphere at a glance. In order to do so, the orbits used have always
been Sun-synchronous LEO orbits (see Fig. 5.7) or GEO orbits (see Fig. 5.8),
apart from the first satellites and the Meteor satellites.

LEO Meteorological Satellites. For NASA’s Nimbus programme14 all
seven satellites were Sun-synchronous: from Nimbus-1 to Nimbus-6, on a
rather high LEO orbit, h = 1 100 km, i = 99.9◦, whilst Nimbus-7 followed a
slightly lower orbit, h = 950 km, i = 99.1◦.

The programme which is known today as the NOAA programme (Na-
tional Oceanic and Atmospheric Administration), the US meteorological or-
ganisation, can be divided into five series: TIROS (Television and InfraRed
Observation Satellite), TOS (TIROS Operational System), ITOS (Improved
TOS), TIROS-N and ATN (Advanced TIROS-N). The first comprises twelve
satellites and began on 1 April 1960 with the launch of the first meteorological
satellite,15 TIROS-1. Up to TIROS-8, launched in 1963, the orbits were sim-
ilar, h ≈ 680 km, i between 48◦ and 58◦. Subsequently, all further satellites
were Sun-synchronous: TIROS-9 and -10, launched in 1964, and ESSA-1 and
-2 (Environmental Science Service Administration), launched in 1966. The
TOS series comprised seven satellites, from ESSA-3 to ESSA-9, launched be-
tween 1966 and 1969, on the orbit h = 1 450 km, i = 102◦. The ITOS series
used exactly the same orbit for six satellites, ITOS-1, NOAA-1, -2, -3, -4,
-5, launched between 1970 and 1976. The last two series16 adopted a lower
orbit: h = 800 km, i = 98.8◦ for TIROS-N, with the satellites TIROS-N and
14 Launch dates: Nimbus-1 on 28 August 1964, Nimbus-2 on 15 May 1966, Nimbus-

3 on 14 April 1969, Nimbus-4 on 8 April 1970, Nimbus-5 on 11 December 1972,
Nimbus-6 on 12 June 1975, Nimbus-7 on 24 October 1978.

15 The three US satellites launched in 1959 had provided useful meteorological
data. These were Vanguard-2, Explorer-6 (first photograph of the Earth) and
Explorer-7 (first data concerning the Earth radiation budget). However, the first
devoted entirely to meteorology was TIROS-1.

16 Launch dates: TIROS-N on 13 October 1978, NOAA-6 on 27 June 1979, NOAA-
7 on 23 June 1981, NOAA-8 on 28 March 1983, NOAA-9 on 12 December 1984,
NOAA-10 on 17 December 1986, NOAA-11 on 24 September 1988, NOAA-12 on
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LAGEOS-1
Orbit - Ground track
>>>>   Time span shown:   720.0 min =   0.50 day

Altitude = 5891.9 km a =12270.014 km

Inclination  = 109.81 °

Period =   225.49 min    * rev/day = 6.39

Equat. orbital shift  = 6286.6 km  (  56.5 °)

Asc. node:      0.00 °

App. inclin. = 117.79 °

Projection:  Plate-carrée

Property:   none

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

GP-B
Orbit - Ground track
>>>>   Time span shown:   720.0 min =   0.50 day

Altitude =  650.0 km a = 7028.137 km

Inclination  =  90.00 °

Period =    97.86 min    * rev/day =14.72

Equat. orbital shift  = 2730.9 km  (  24.5 °)

Asc. node:      0.00 °

App. inclin. =  93.90 °

Projection:  Plate-carrée

Property:   none

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Figure 5.5. Ground tracks of the orbits of a retrograde satellite, LAGEOS-1, and
a polar satellite, GP-B, over a time span of half a day
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ERBS
Orbit - Ground track
>>>>   Time span shown:   720.0 min =   0.50 day

Altitude =  608.9 km a = 6987.024 km

Inclination  =  57.13 °

Period =    96.85 min    * rev/day =14.87

Equat. orbital shift  = 2732.1 km  (  24.5 °)

Asc. node:      0.00 °

App. inclin. =  60.53 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Megha-Tropiques
Orbit - Ground track
Repeat c. = [14; -1;  7]  97

>>>>   Time span shown:   720.0 min =   0.50 day

Altitude =  865.6 km a = 7243.700 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

Asc. node:      0.00 °

App. inclin. =  21.52 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Figure 5.6. Ground tracks of the orbits of two prograde LEO satellites, ERBS
and Megha-Tropiques, over a time span of half a day
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NOAA-6 and -7; h = 850 km, i = 98.9◦ for ATN, with the satellites NOAA-
8 to -16, h = 812 km, i = 98.8◦ for NOAA-17. The programme known as
POES (Polar-orbiting Operational Environmental Satellites), comprising the
last two series, should be replaced around 2010 by the programme NPOESS
(National POES System), a joint project of NOAA and NASA. The pro-
grammes will be linked by the satellite NPP (NPOESS Preparatory Project),
h = 824 km.

The military satellites DMSP (Defense Meteorological Satellite Program)
supply some data to the civilian sector. They are all Sun-synchronous, follow-
ing slightly elliptical orbits, with h between 750 and 850 km, and i between
98.6◦ and 99.2◦. Thirteen satellites were launched between 1965 and 1969 to
make up the first block (known as Block 4), from DMSP-4A F-1 (OPS/6026)
to DMSP-4A F-13 (also called DMSP-4B F-3, or OPS/1127). The second
block (known as Block 5) began in 1970 with DMSP-5A F-1 (OPS/0054)
and is still running,17 with the extension Block 5D3.

Soviet then Russian meteorological satellites18 were not Sun-synchronous
until 2001. They are divided into three Meteor series with near-polar LEO
orbits. The first two series involved 48 satellites: Meteor-1, from Meteor-1-01
in 1969 to Meteor-1-27 in 1977, with h = 870 km, i = 81.2◦; Meteor-2, from
Meteor-2-01 in 1975 to Meteor-2-21 in 1993, with h = 940 km, i = 82.5◦. The
third series involved 6 satellites in slightly higher orbits, with h = 1 200 km,
i = 82.6◦. The new generation, known as Meteor-3M, is Sun-synchronous.
The first of the series is Meteor-3M-1, h = 1 005 km, i = 99.7◦.

The Chinese satellites19 in the FY-1 series (or Feng Yun-1, where ‘feng
yun’ means ‘wind and cloud’) are Sun-synchronous, with h = 858 km, i =
98.9◦.

The European Space Agency has a programme of (Sun-synchronous) polar
platforms. The initial programme POEM (Polar Orbiting Earth Mission)

14 May 1991, NOAA-13 on 9 August 1993, but only operated for a few days,
NOAA-14 on 30 December 1994, NOAA-15 on 13 May 1998, NOAA-16 on 21
September 2000, NOAA-17 on 24 June 2002.

17 Launch dates: DMSP-5D2 F-8 (also called USA-26) on 20 June 1987, DMSP-
5D2 F-9 (USA-29) on 3 February 1988, DMSP-5D2 F-10 (USA-68) on 1 Decem-
ber 1990, DMSP-5D2 F-11 (USA-73) on 28 November 1991, DMSP-5D2 F-12
(USA-106) on 29 August 1994, DMSP-5D2 F-13 (USA-109) on 24 March 1995,
DMSP-5D2 F-14 (USA-131) on 4 April 1997, DMSP-5D3 F-15 (USA-147) on 12
December 1999, and DMSP-5D3 F-16 (USA-172) on 18 October 2003.

18 Launch dates: Meteor-3-01 on 24 October 1985, Meteor-3-03 on 26 July 1988,
Meteor-3-04 on 25 October 1989, Meteor-3-05 on 24 April 1991, Meteor-3-06 on
15 August 1991, Meteor-3-07 on 25 January 1994, Meteor-3M-1 on 10 December
2001.

19 Launch dates: FY-1A (DFH-24) on 6 September 1988, FY-1B (DFH-30) on 3
September 1990, FY-1C (DFH-46) on 10 May 1999, FY-1D (DFH-53) on 15 May
2002. The next series of Sun-synchronous LEO satellites is FY-3, from FY-3A
to FY-3D.
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Feng Yun-1D
Orbit - Ground track
>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  859.3 km a = 7237.466 km

Inclination / SUN-SYNCHRON.=  98.88 °

Period =   102.24 min    * rev/day =14.08

Equat. orbital shift  = 2845.4 km  (  25.6 °)

Asc. node:      0.00 ° [20:15 LMT]Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre (r.): 18.0 ° N;  116.0 °E

Aspect:  Oblique

[  -90.0 /  +72.0 /  -26.0 ] Gr.Mod.:  GEM-T2

Figure 5.7. Orbit and ground track of a Sun-synchronous satellite over a time
span of one day
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Location Operator Satellite Satellite Type
λS (series) in orbit

0.0◦− EUMETSAT METEOSAT METEOSAT-7 O
0.0◦− EUMETSAT METEOSAT METEOSAT-8 P

63.0◦E EUMETSAT METEOSAT METEOSAT-5 O
74.0◦E India METSAT Kalpana-1 O
76.0◦E Russia GOMS Elektro-1 B
83.0◦E India INSAT INSAT-2E O
93.5◦E India INSAT INSAT-3A O

105.0◦E China Feng Yun-2 FY-2B O
140.0◦E Japan GMS GMS-5 B
155.0◦E US/NOAA GOES GOES-9 O
135.0◦W US/NOAA GOES-W GOES-10 O
75.0◦W US/NOAA GOES-E GOES-12 O

Figure 5.8. WMO Space Programme: Current geostationary satellites coordinated
within CGMS. (WMO: World Meteorological Organization; CGMS: Coordination
Group for Meteorological Satellites). List with parking positions of geostationary
meteorological satellites as of 1 February 2004. Satellite status: O (operational), P
(pre-operational), B (back-up). The geostationary orbit and the Earth are drawn
on the same scale. Orbits of Sun-synchronous satellites at altitude 800 km are also
plotted on the same scale. The viewpoint is located very high up on the polar axis
above the North Pole
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Terra
Orbit - Ground track
Recurrence = [15; -7; 16] 233

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  699.6 km a = 7077.738 km

Inclination / SUN-SYNCHRON.=  98.21 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

Asc. node:      0.29 ° [22:30 LMT]Projection:  Vue perspc. h=5.61 R

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre (r.):  0.0 °  ;  105.0 °E

Aspect:  Equatorial

[  -90.0 /  +90.0 /  -15.0 ] Gr.Mod.:  GEM-T2

TRMM
Orbit - Ground track
>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  350.1 km a = 6728.217 km

Inclination  =  34.99 °

Period =    91.31 min    * rev/day =15.77

Equat. orbital shift  = 2596.2 km  (  23.3 °)

Asc. node:      0.29 °Projection:  Vue perspc. h=5.61 R

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre (r.):  0.0 °  ;  105.0 °E

Aspect:  Equatorial

[  -90.0 /  +90.0 /  -15.0 ] Gr.Mod.:  GEM-T2

Figure 5.9. Ground tracks of the orbits of Terra and TRMM over a time span
of one day, as viewed from a geostationary satellite with parking longitude 75◦W
(left), 105◦E (right)
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was divided into two parts, one for the environment with Envisat, the other
for operational meteorology (EUMETSAT) with MetOp-1, -2 and -3. The
MetOp satellites (Meteorological Operational satellites) are planned for a
mean altitude of h = 830 km.

The project known as Rocsat-3/COSMIC (Constellation Observing Sys-
tem for Meteorology, Ionosphere and Climate), a collaboration between Tai-
wan and the United States, comprises a constellation of microsatellites,
h = 700 km, i = 72◦, with 3 planes containing 2 satellites each.

GEO Meteorological Satellites. The geostationary programme has been
very widely developed for the purposes of operational meteorology. In order
to avoid large distortions due to the viewing angle, the various meteorologi-
cal institutions have sought to distribute their satellites as harmoniously as
possible around the geostationary orbit, under the coordination of the World
Meteorological Organization (WMO).

In the United States, these satellites are placed alternately on the lon-
gitudes of the east and west coasts. This approach was already in use for
the SMS satellites (SMS-1 with λS = 75◦W, SMS-2 with λS = 115◦W) and
was continued with the GOES series20 (Geostationary Operational Environ-
mental Satellite) and GOES-Next, the satellites being designated GOES-
East or GOES-West depending on the case. The satellite GIFTS (Geosyn-
chronous Imaging Fourier Transform Spectrometer, or EO-3 NMP/NASA)
will be placed over the Indian Ocean.

For Europe, the geostationary programme is run by EUMETSAT with the
METEOSAT satellites. The various operational METEOSAT spacecraft21

have all been placed at longitude λS = 0◦. Some of them can be reserved,
or loaned (like METEOSAT-3 to replace GOES-E from February 1993 to
May 1995), or sent on missions (such as METEOSAT-5 for the INDOEX
experiment, see Example 4.6).

Although Russia generally prefers Molniya orbits to equatorial orbits,
it nevertheless launched the GOMS programme (Geostationary Operational

20 Launch dates: SMS-1 on 17 May 1974, SMS-2 on 6 February 1975, GOES-1
(SMS-3) on 16 October 1975, GOES-2 on 16 June 1977, GOES-3 on 16 June
1978, GOES-4 on 9 September 1980, GOES-5 on 22 May 1981, GOES-6 on 28
April 1983, GOES-7 on 26 February 1987, GOES-8 on 13 April 1994, GOES-9
on 23 May 1995, GOES-10 on 25 April 1997, GOES-11 on 3 May 2000, GOES-12
on 23 July 2001.

21 Launch dates: METEOSAT-1 on 23 November 1977, METEOSAT-2 on 19
June 1981, METEOSAT-3 on 15 June 1988, METEOSAT-4 on 6 March
1989, METEOSAT-5 on 2 March 1991, METEOSAT-6 on 20 November 1993,
METEOSAT-7 on 2 September 1997, MGS-1 (METEOSAT-8) on 28 August
2002. The satellite MSG-1, the first in the MSG series (METEOSAT Second Gen-
eration), was renamed METEOSAT-8 when it became operational. The satellites
MSG-2, -3 and -4 are programmed, and MTG-1 (METEOSAT Third Generation)
is planned for 2015.
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Syncom-2
Orbit - Ground track
Repeat c. = [ 1; +0;  1]   1

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =35787.6 km a =42165.785 km

Inclination  =  32.80 °

Period =  1436.05 min    * rev/day = 1.00

Equat. orbital shift  =40075.9 km

Asc. node:    -50.00 °

App. inclin. = 106.40 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;   50.0 ° W

Aspect:  Direct

[  +90.0 /   +0.0 /  -40.0 ] Gr.Mod.:  GEM-T2

GEO Transfer Orbit
Elliptical orbit - Ground track
>>>>   Time span shown:  1262.0 min =   0.88 day

Equiv. altit.  =  17993.5 km

e = 0.730706

a =24371.637 km

Inclination  =   7.00 °

Period =   630.23 min    * rev/day = 2.28

h_a = 35802 km;  h_p =  185 km;  arg. perigee:  +180.00 °

Longitude / Initialisation:

Asc. node:   -110.00 °

Apogee:        70.00 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;   50.0 ° W

Aspect:  Direct

[  +90.0 /   +0.0 /  -40.0 ] Gr.Mod.:  GEM-T2

Figure 5.10. Ground track of the orbit of a geosynchronous satellite (upper) and
the transfer orbit with the Ariane launch vehicle (lower)
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Meteorological Satellite) of geostationary satellites.22 For India, the INSAT
series (Indian Satellite) contains satellites for the purposes of meteorology23

and communications. China has launched satellites24 in the FY-2 series (Feng
Yun-2, not to be confused with the LEO satellite series FY-1 and FY-3 al-
ready mentioned) since 1997. Since 1977, Japan has been launching its geosta-
tionary GMS satellites25 (Geostationary Meteorological Satellite), also known
as Himawari (‘himawari’ means ‘sunflower’).

Figure 5.8 shows the (official) positions of the operational satellites as
of 1 February 2004. In this distribution, one observes a large ‘hole’ above
the Pacific, and very closely spaced satellites at Asian longitudes. China and
India prefer to control their own data.

Satellites for Atmospheric Studies. Satellites devoted to atmospheric
research fly in low orbits, that may be Sun-synchronous or otherwise.26 The
following are Sun-synchronous: HCMM (Heat Capacity Mapping Mission,
also called AEM-1, Application Explorer Mission), h = 600 km, ADEOS-1
and ADEOS-2, and the Swedish satellite Odin (atmosphere and astrophysics),
h = 622 km. Satellites for ozone studies are Sun-synchronous: TOMS-EP
(Total Ozone Mapping Spectrometer and Earth Probe), h = 750 km, was
Sun-synchronous, and its successor27 QuikTOMS should have been.

Non-Sun-synchronous satellites include the US satellites SAGE (Strato-
spheric Aerosols and Gas Experiment or AEM-2), h ≈ 600 km, i = 55◦,
ERBS (Earth Radiation Budget Satellite), launched by STS-17 (STS-41-
G), h = 600 km, i = 57◦, TRMM, h = 350 km, i = 35◦, and the Cana-
22 Launch date: GOMS-1 on 31 October 1994. The series is also called Elektro, and

this satellite thus carries the names Elektro-1 and GOMS-Elektro-1 as well as
GOMS-1.

23 Launch dates: INSAT-1A on 10 April 1982, INSAT-1B on 30 August 1983 (STS-
8), INSAT-1C on 21 July 1988, INSAT-1D on 12 June 1990, INSAT-2A on 10
July 1992, INSAT-2B on 23 July 1993, INSAT-2E on 3 April 1999, METSAT-1
(subsequently called Kalpana-1) on 12 September 2002, INSAT-3A on 9 April
2003, INSAT-3E on 27 September 2003.

24 Launch dates: FY-2A (DFH-45) on 10 June 1997, FY-2B (DFH-49) on 25 June
2000, FY-2C on 19 October 2004.

25 Launch dates: GMS-1 on 14 July 1977, GMS-2 on 10 August 1981, GMS-3 on
2 August 1984, GMS-4 on 5 September 1989, GMS-5 on 18 March 1995. The
next satellites will belong to the MTSAT generation (Multi-functional Transport
Satellite). The first will be MTSAT-1R (to replace MTSAT-1, destroyed during
launch on 15 November 1999), followed by MTSAT-2.

26 Launch dates: HCMM on 26 April 1978, ADEOS-1 on 27 August 1996, TOMS-
EP on 2 July 1996, Odin on 20 February 2001, QuikTOMS on 21 September
2001 (failed), SAGE on 18 February 1979, ERBS on 5 October 1984, TRMM
on 28 November 1997, ADEOS-2 on 14 December 2002, SciSat-1 on 13 August
2003.

27 Depending on how fast one writes it! The NASA satellites QuikTOMS and
QuikScat are spelt like this, whereas those of DigitalGlobe are written QuickBird.
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dian satellite SciSat-1, h = 650 km, i = 73.9◦. The Italian satellites San
Marco-2, -3, -4 and -5, launched between 1967 and 1988, are in equato-
rial LEO orbit (i = 3◦), as will be FBM (French–Brazilian Microsatellite),
h = 750 km, i = 6◦. The French–Indian satellite belonging to the Megha-
Tropiques project, h = 866 km, will be in a slightly inclined LEO orbit
(i = 20◦), devoted to study of the tropical regions.

Figure 5.6 (upper) shows the ground track of ERBS, and Fig. 5.9 (upper),
the ground track of TRMM. For Megha-Tropiques, as well as the ground track
shown in Fig. 5.6 (lower), the orbit is represented in Colour Plate X.

The joint project (United States, Japan, Europe) GPM (Global Precipi-
tation Mission) continues and expands the TRMM mission to study rainfall.
It includes a core satellite called GPM-core, h = 450 km, i = 70◦ and a con-
stellation of 6 to 8 Sun-synchronous satellites. Some of these, such as EGPM
(European GPM), h = 666 km, are specialised in this field. Others, such
as MetOp-1, the two GCOM and the two NPOESS, have a wider field of
investigation.

Earth Resources, Remote-Sensing, and Environment

This category contains satellites carrying instruments whose resolution at
ground level is between 50 and 5 m. Colour Plates IV and V show images
obtained by the MISR and MODIS imagers aboard Terra. These satellites
are all LEO and, apart from those in the Resurs-F series and a few special
cases, they are all Sun-synchronous. Recurrent and frozen orbits are required
for these satellites.

The first programme, Landsat, dates from 1972, and its first three satel-
lites had the same orbit characteristics: h = 910 km, i = 99.1◦. From Landsat-
4, the altitude was reduced to h = 700 km, i = 98.2◦, and this orbit has been
used ever since, not only for all the Landsat satellites,28 but by other NASA
satellites, such as EO-1 (Earth Observing) in the NMP programme (New Mil-
lenium Program) and the majority of the EOS satellites (Earth Observation
Satellite) in the ESE programme (Earth Science Enterprise), formerly MTPE
(Mission To Planet Earth). Several of these satellites are already on this or-
bit, and others are planned: EOS-AM-1 and EOS-AM-2 (EOS Morning, AM
= ante meridiem), EOS-PM-1 and EOS-PM-2 (EOS Afternoon, PM = post
meridiem), EOS-Chem-1 (to study atmospheric chemistry), OCO (Orbiting
Carbon Observatory), LDCM (Landsat Data Continuity Mission). Three of

28 Launch dates: ERTS-1 (Earth Resources Technology Satellite) on 23 July 1972,
renamed Landsat-1 on 13 January 1975, Landsat-2 on 22 January 1975, Landsat-
3 on 5 March 1978, Landsat-4 on 16 July 1982, Landsat-5 on 1 March 1985,
Landsat-6 on 5 October 1993 (lost in a launch failure), Landsat-7 on 15 April
1999, Terra (EOS-AM-1) on 18 December 1999, MTI on 12 March 2000, EO-1
and SAC-C on 21 November 2000, EO-2 (lidar aboard the Shuttle) cancelled,
Aqua (EOS-PM-1) on 4 May 2002, Aura (EOS-Chem-1) on 15 July 2004.
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them have been attributed new and less technical names: Terra for EOS-AM-
1, Aqua for EOS-PM-1, Aura for EOS-Chem-1.

The satellite Aqua should be followed on the same orbit, from a few tens
of kilometres, by the two satellites29 CloudSat and Calipso (Cloud Aerosol
Lidar and Infrared Pathfinder Satellite Observation), which should observe
the same fields of view. The French microsatellite PARASOL (Polarization
and Anisotropy of Reflectances for Atmospheric Science coupled with Obser-
vations from a Lidar) is also planned as part of the convoy, which will be
brought to a close by Aura. This sequence of five satellites on the same orbit,
called the A-train, with Aqua at the head and Aura bringing up the rear, is
a novel project. A sixth satellite, OCO, is now planned for this space train
(see Fig. 6.8).

The satellite EO-1 follows Landsat-7 at an interval of just one minute (of
time). In the following, we shall call this orbit, first used by Landsat-4, the
Terra orbit. It can be defined to great accuracy by its recurrence.

As part of the ESE programme, the Sun-synchronous satellite Aquarius,
h = 600 km, will measure the salinity of the sea surface.

The satellite MTI (Multispectral Thermal Imager or P97-3) is on a lower
Sun-synchronous orbit, h = 585 km, to observe both night and day, like the
two satellites, currently under development, NEMO (Navy Earth Map Obser-
vation), h = 606 km, for observations in hyperspectral mode, and HYDROS
(Hydrosphere State Mission), h = 670 km.

The SSTI mission (Small Spacecraft Technology Initiative), built around
the Sun-synchronous satellites30 Lewis and Clark, did not live up to expec-
tations.

The French programme of commercial remote-sensing has been carried out
by the SPOT family of satellites31 (Satellites Pour l’Observation de la Terre),
all on strictly the same orbit (h = 822 km), from SPOT-1 to -5. One may
therefore speak of the SPOT orbit. The images produced by these satellites
are used by the military (during the Gulf War, for example), who also have

29 These two satellites, also called ESSP-4 and ESSP-3, respectively, belong to
NASA’s ESSP programme (Earth System Science Pathfinder) which also in-
cludes the two satellites -A and -B of the GRACE mission (ESSP-2), for geodesy,
and VCL (Vegetation Canopy Lidar, ESSP-1), h = 400 km, i = 67◦, for environ-
mental studies. The US satellite with French collaboration ESSP-3 was originally
called Picasso–Cena (Pathfinder Instruments for Cloud and Aerosol Spaceborne
Observations – Climatologie Etendue des Nuages et des Aérosols). However, the
artist’s family was opposed to free use of the name and it was renamed Calipso.

30 Lewis, h = 523 km, and Clark, h = 479 km: the first launched on 23 June 1997,
whilst the second was cancelled in February 1998. Meriwether Lewis and William
Clark were two American officers who explored Louisiana just after the French
ceded it to the United States in 1803, eventually descending the Columbia river
to the Pacific.

31 Launch dates: SPOT-1 on 22 February 1986, SPOT-2 on 11 January 1990, SPOT-
3 on 26 September 1993, SPOT-4 on 24 March 1998, SPOT-5 on 4 May 2002.
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their own specific satellites of SPOT type, namely, the Hélios satellites,32

which are Sun-synchronous but at lower altitude (h = 680 km). The spatial
resolution of the SPOT satellites (5 m for SPOT-4, 2.5 m for SPOT-5) will
be further improved (1 m) with the next generation of satellites known as
Pléiades (Pléiades-1 and -2), at even lower altitude, h = 695 km. Linked with
Pléiades, Italy has launched the COSMO-SkyMed project (Constellation of
Small Satellites for Mediterranean Basin Observation), a constellation of 4
satellites equipped with radar, h = 620 km. The same orbit is planned for
HypSEO (HyperSpectral Earth Observer).

The two German projects in this field also used Sun-synchronous satel-
lites: RapidEye, a constellation of 4 satellites, h = 600 km, and the satellites
Diamant-1, -2 and -3, h = 670 km. The TerraSAR mission arose from a
common project between ESA and a private organisation InfoTerra. It in-
volves two satellites equipped with SAR radar, TerraSAR-X1 (X-band) and
TerraSAR-L1 (L band).

The Soviet then Russian programme began in 1979 with the series Resurs-
F1 then -F2, using 6 tonne satellites in very low near-polar orbits, which
operated for 14 days, then 30 days for the later version. Dozens of these
were launched,33 in near-polar orbit, i = 82.3◦, with altitude h = 275 km for
Resurs-F1, h = 240 km for Resurs-F2. Satellites in the series34 Resurs-O most
resemble other remote-sensing satellites: they are in Sun-synchronous orbits,
h = 600 km, i = 97.9◦, for Resurs-O1-1 to -O1-3, h = 820 km, i = 98.8◦ for
Resurs-O1-4 (‘resurs’ means ‘resource’, while F stands for film and O pour
operational). The Resurs programme is the follow-on of the Meteor–Priroda
programme.

Large remote-sensing and environmental satellites weighing several tonnes
require powerful launch vehicles which may be able to offer several piggy-
back positions for very light passenger satellites. Such satellites, with various
missions (although usually technological) also follow Sun-synchronous orbits,
very close to the orbit of the main satellite. These grouped launches35 provide
32 Launch dates: Hélios-1A on 7 July 1995, Hélios-1B on 3 December 1999. Hélios-

2A and -2B are currently under development.
33 The first 39 are recorded as Kosmos, from Kosmos-1127 in 1979 to Kosmos-1990

in 1989. There were then 20 more under the name of Resurs-F, Resurs-F-1 (type
F1) in 1989 to Resurs-F-20 (type F2) in 1995, followed by the modified version,
Resurs-F1M-1 in 1997 and Resurs-F1M-2 in 1999 (type F1M).

34 Launch dates: Resurs-O1-1 (Kosmos-1689) on 3 October 1985, Resurs-O1-2
(Kosmos-1939) on 20 November 1988, Resurs-O1-3 on 4 November 1994, Resurs-
O1-4 on 10 July 1998.

35 Here, in chronological order, are four examples of grouped launches where the
main satellite is a large Sun-synchronous remote-sensing satellite. For the first
two, ERS-1 and SPOT-3, launched by Ariane, the passenger satellites were
called ASAP (Ariane Structure for Auxiliary Payload). With ERS-1 (Europe):
UoSAT-5 (or OSCAR-22) (UK), Orbcomm-X (USA), Tubsat-A (Germany),
SARA (France). With SPOT-3 (France): Kitsat-2 (South Korea), PoSAT-1 (Por-
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an opportunity for countries with little experience in space to get their own
satellite into orbit.

Countries occupying a very large territory use Sun-synchronous remote-
sensing satellites. For India, in its IRS programme36 (Indian Remote Sensing),
the first satellites, IRS-1A and -1B, are on a rather high orbit, h = 910 km,
whilst the rest, IRS-P2, -P3 and -P6 (Resourcesat-1) are on a lower orbit,
h = 817 km. The future satellites Cartosat-1 (IRS-P5) and Cartosat-2 are
planned for orbits at h = 617 km and h = 630 km, respectively. The experi-
mental satellite TES (Technology Experiment Satellite) was launched on an
even lower orbit, at h = 565 km. The IRS-2 series (Oceansat-2, Climatsat-1,
Atmos-1) will be integrated mission that will cater to global observations of
climate, ocean and atmosphere.

China and Brazil have a joint programme37 called CBERS (China–Brazil
Earth Resources Satellite), or Zi Yuan (meaning ‘resources’ in Chinese), with
the satellites CBERS-1 and -2, h = 774 km and the following ZY-1 series.
Independently, China has also launched38 two satellites ZY-2 and -2B (se-
ries ZY-2) in a low orbit, h = 495 km and h = 476 km, then Tan Suo-1,
h = 610 km. Australia intends to launch its satellite ARIES-1 (Australian
Resource Information and Environment Satellite). The US private company
Resource21 (21 indicates the 21st century) should launch five satellites, RS21-
1 to RS21-5, around h = 480 km, with a resolution of 10 m.

Japan has launched JERS-1, already mentioned, and plans to send ALOS
(Advanced Land Observation Satellite), which should be followed by GCOM-

tugal), Stella (France), HealthSat-2 (UK), ItamSat (Italy), EyeSat-1 (USA).
With Resurs-O1-4 (Russia): FaSat-1 (Chile), TMSat (or Thai-Phutt) (Thailand),
TechSat-1B (Israel), Westpac-1 (Australia), Safir-2 (Germany). With Meteor-
3M-1 (Russia): Badr-B (Pakistan), Maroc-Tubsat (Morocco/Germany), Kom-
pass and Reflektor (Russia).
To complete this note on passenger satellites, we give a few examples
of grouped launches with oceanographic or technological satellites. Orbits
are Sun-synchronous, except for TOPEX/Poseidon and its passengers. With
TOPEX/Poseidon (USA/France): Uribyol (‘our star’ in Korean, Kitsat-1),
S80/T (France). With ARGOS (USA): Ørsted (Denmark), SunSat (South
Africa). The orbit remained circular for the main satellite, but was made elliptical
(e = 0.01545) for Ørsted and its companion. With Oceansat-1 (India): Kitsat-3,
DLR-Tubsat. With TES (India): BIRD (Germany), PROBA (Belgium/Europe).

36 Launch dates: IRS-1A on 17 March 1988, IRS-1B on 29 August 1991, IRS-1C on
28 December 1995, IRS-1D on 4 June 1997, IRS-1E (IRS-P1) on 20 September
1993 (before IRS-1C), failed, IRS-P2 on 15 October 1994, IRS-P3 on 21 March
1996, TES on 22 October 2001, IRS-P6 on 17 October 2003.

37 Launch dates: CBERS-1 (ZY-1, Zi Yuan-1) on 14 October 1999, CBERS-2 (ZY-
1B, Zi Yuan-1B) on 21 October 2003, CBERS-3 and -4 are planned to follow.

38 Launch dates: ZY-2 (Zi Yuan-2, DFH-50, Jian Bing-3, JB-3) on 1 September
2000, ZY-2B (Zi Yuan-2B, DFH-55, Jian Bing-3B, JB-3B) on 27 October 2002,
(the satellites ZY-2 use a CBERS platform), Tan Suo-1 (ExperimentSat-1) on
18 April 2004.
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A1 and -B1 (Global Change Observing Mission), then later by GCOM-A2
and -B2. The European Space Agency has many projects in this field.39

Satellite-based environmental studies are now very varied. Amongst these,
we mention the detection of forest fires, where instruments have a ground
resolution of about 100 m, as in the case of the Sun-synchronous German
satellite BIRD (Bi-spectral InfraRed Detection), h = 575 km. The projected
Spanish satellite FuegoSat, h = 700 km, i = 47.5◦, will be the precursor of
a constellation of 12 satellites, FuegoFOC (Fire Observation Constellation).
For surveillance of the Amazonian forest, Brazil is developing a project for
two satellites in equatorial orbit, h = 900 km, i = 0◦, SSR-1 and -2 (Satelete
de Sensoriamento Remoto).

Satellites designed for general environmental studies are rather large,40

equipped with radar, at altitudes h ≈ 780 km: for Canada, Radarsat-1, for
Europe, ERS-1, -2 (European Remote Sensing Satellite) and Envisat (Envi-
ronmental Satellite) [see Fig. 5.26 (upper)].

To study the polar ice caps and make precise measurements of variations
in their thickness, a novel orbit (near-polar non-Sun-synchronous LEO) has
been chosen for two missions,41 respectively American and European: ICE-
Sat (Ice, Clouds, and Land Elevation, formerly EOS-LAM), h = 592 km,
i = 94.0◦ and CryoSat (Cryosphere Satellite), h = 716 km, i = 92.0◦. At
these altitudes, the Sun-synchronous inclinations would be 97.8◦ and 98.3◦,
respectively.

The British project DMC (Disaster Monitoring Constellation), with in-
ternational cooperation, is currently underway.42 It comprises a constellation
of Sun-synchronous microsatellites, h = 686 km.
39 The satellite ADM (Atmospheric Dynamics Mission), renamed Aeolus-ADM,

will carry a lidar to study the winds. The satellite SMOS (Soil Moisture and
Ocean Salinity), comprising a large Y-shaped antenna, will analyse water emis-
sions in the centimetre band. In the more distant future, ESA has opted for
six missions: the Sun-synchronous satellites SPECTRA (Surface Processes and
Ecosystem Changes Through Response Analysis) which takes over from LSPIM
(Land-Surface Processes and Interactions Mission), EarthCARE, which takes
over from ERM and the Japanese mission Atmos-B1, WALES (Water vapour
and Lidar Experiment in Space), EGPM (European contribution to the Global
Precipitation Monitoring mission), and the constellations ACE+ (Atmosphere
and Climate Explorer), and Swarm, a constellation of small satellites to study
the dynamics of the Earth’s magnetic field.

40 Launch dates: Radarsat-1 on 4 November 1995, ERS-1 on 17 July 1991, ERS-2
on 21 April 1995, Envisat on 1 March 2002.

41 Launch date: ICESat on 13 January 2003.
42 Launch dates: AlSat-1 (Algeria) on 28 November 2002, BilSat-1 (Turkey),

NigeriaSat-1 (Nigeria) and BNSCSat (UK) with a grouped launch on 27 Septem-
ber 2003.
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Demeter (Detection of Electro-Magnetic Emissions Transmitted from
Earthquake Regions)43 is a French scientific microsatellite, h = 695 km,
Sun-synchronous, which will measure electrical effects generated by seismic
events.

We end this category of Earth-observation satellites with Triana,44 a US
project with an unusual orbit for this type of mission. After a 3.5 month jour-
ney, this satellite will be placed in a halo orbit around the Lagrange point L1

(orbit type L1LO, period 6 months). Its instruments will have a view of the
Earth which is permanently illuminated, but from a very great distance (234
Earth radii, or four times the distance from the Earth to the Moon). The
projected pixel size (resolution) is 8 km (1 arcsec). Due to the large dimen-
sions of the halo orbit, it will be possible to observe alternately the North
and South Poles of the Earth, with a special concern for the stratospheric
ozone. The project has been resumed under the name DSCO (Deep Space
Climate Observatory) or DSCOVR.

Remote-Sensing, Surveillance

Satellites in this category have a resolution of the order of 1 m in the visible
frequency range (and a few metres if they carry out infrared observations),
which was a level reserved for military satellites until 1994. Unless otherwise
specified, these are US commercial satellites. (OrbView-1 was the first remote-
sensing satellite to belong to a private organisation, in 1995.)

Almost all of these satellites, launched45 or under development, are Sun-
synchronous. We give the satellite series (and their resolutions46) in order of
decreasing altitude:

• Ikonos47 (resolution 0.8 m), h = 680 km.

43 Launch date: Demeter on 29 June 2004, with eight other microsatellites.
44 Rodrigo Triana was the first person to see the New World, in 1492, among the

sailors aboard Christopher Columbus’ caravels.
45 Launch dates: OrbView-1 (Microlab-1) on 3 April 1995 (with Orbcomm-FM-1

and -2, non-Sun-synchronous), EarlyBird/EarthWatch-1 on 24 December 1997,
Ikonos-1 on 27 April 1999, failed, Ikonos-2 on 24 September 1999, EROS-A1 on
5 December 2000, OrbView-4 (before OrbView-3) on 21 September 2001, failed,
QuickBird-1 on 20 November 2000, failed, QuickBird-2 on 18 October 2001,
OrbView-3 on 26 June 2003.

46 The resolution in panchromatic mode corresponds to black and white images,
and in multispectral mode, to colour images, generally composed of blue, green,
red and near-infrared.

47 The satellite Ikonos-1, lost in launch, was quickly replaced by Ikonos-2, launched
five months later, and renamed Ikonos to exorcise the failure of the first launch.
The resolution planned for Ikonos-3 is 0.5 m. The Greek name � ���������	

means ‘image’. But why choose the genitive, ikonos?
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• EarlyBird48 (resolution 3 m), h = 528 km.
• EROS49 (resolution 1.8 m for EROS-A, 0.8 m for -B), h = 474 km.
• OrbView (resolution 1 m in black and white, 4 m in colour), h = 451 km.
• QuickBird50 (resolution 0.6 m in black and white, 2.5 m in colour), h =

443 km.

The SPIN-2 missions51 are carried out on a non-Sun-synchronous orbit with
h = 260 km, i = 70◦.

For military applications, the main category of US surveillance satellites
(or spy satellites, depending on one’s point of view) carry the suggestive
name Key Hole (KH). They fall into several series, from KH-1 in 1959 to the
current KH-12. For the first few series up to KH-9, the basic principle was
always the same: a camera took photos, the film was placed in a capsule,
and as astonishing as it may seem, the capsule was then thrown back to
Earth. A parachute opened at an altitude of 20 km and, all being well, an
aircraft equipped with a net intercepted the prize in flight (although it could
also be picked up by ship in the ocean). Now that the results of the first
few series have been declassified, as they say in military circles, we may
observe that the success rate was actually very low, with only two successful
missions, Discoverer-14 and Discoverer-18, amongst the 27 satellites of the
KH-1 and -2 series (satellites Discoverer-1 to -27). The subsequent series
met with more success. Concerning series KH-11 and -12, the results are
transmitted via SDS military satellites. It is claimed that the images provided
by the latest satellites have a resolution of 15 cm. (However, one is led to
raise several questions, such as the influence of atmospheric turbulence, the
problem of data accumulation, etc.) Satellites in the future series KH-13 are
KH-12 satellites will be made undetectable to radar and IR sensors (stealthy
satellites), and those in the series 8X will apparently be gigantic telescope

48 To avoid confusion with the satellite Early Bird in the Intelsat series,
the name of the company operating the satellite is added to the name
EarlyBird-1 or 2. This private company, founded under the name World-
View Imaging, was renamed EarthWatch, and then in 2000, DigitalGlobe.
The satellite EarlyBird/EarthWatch-1 never functioned correctly and the
EarlyBird/EarthWatch-2 mission was cancelled. The company is now concen-
trating its efforts on the QuickBird satellites.

49 The first part of the EROS programme (Earth Resources Observation Satellite,
Israel), with EROS-A1, was considered to be so successful that EROS-A2 was
cancelled. The second part includes six satellites, from EROS-B1 to -B6.

50 The QuickBird satellites were initially planned for the orbit h = 610 km, i = 52◦.
The orbit of QB-1, never reached, should have been h = 590 km, i = 66◦. It was
eventually decided, from QB-2, to adopt a Sun-synchronous orbit.

51 Launch date: SPIN-2 (Kosmos-2349) on 18 February 1998. A private US–Russian
venture developed the SPIN-2 project (Space Information 2-meter), for com-
mercial use of high-resolution images (2 m in panchromatic mode) obtained by
satellites in the Resurs-F series.
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satellites called Monstersats, with centimetre resolution,52 in Molniya orbit,
refuelled by the Space Shuttle.

Missions were very short (a few days) for the first series, then longer (19
days for KH-4B, 50 days and two capsules for KH-8). Orbits were generally
low, with h between 200 and 400 km, near-polar (e.g., Discoverer-35, h =
260 km, i = 82◦) up to KH-3, then with lower inclination (e.g., KH-4A-14,
or Orbis, OPS/3360, hp = 117 km, ha = 329 km, i = 70◦) up to KH-6,
and subsequently Sun-synchronous or with high inclination (e.g., KH-7-27,
hp = 139 km, ha = 375 km, i = 117◦) up to KH-11, where missions become
much longer (which can justify use of a Sun-synchronous orbit, as we have
seen). The first eleven series involved a total of 262 satellites.

For KH-12, the satellites, at 20 tonnes, are sent up for long periods. The
first, in 1990, USA-53, was launched by STS-36, with h = 200 km, i =
62◦. The next two, in 1992 and 1996, USA-86 and USA-129, were placed in
elliptical Sun-synchronous orbits with hp = 256 km, ha = 911 km, i = 97.7◦

and hp = 153 km, ha = 949 km, i = 97.9◦, respectively.
‘All weather’ military observation is carried out by the Lacrosse radar

satellites, each with a mass of 20 tonnes. They have circular orbits with
medium inclination: Lacrosse-1 (USA-34), h = 440 km, i = 57◦, launched by
STS-27 in 1988; the three others, Lacrosse-2, -3 and -4 (USA-69, -133 and
152), launched in 1991, 1997 and 2000, h ≈ 680 km with inclinations i = 68◦,
i = 57◦, and i = 68◦, respectively.

Soviet military surveillance was carried out by a multitude of Kosmos
satellites. The first, in the Zenit series, had very low altitude, h ≈ 150 km
and characteristic inclinations of i = 63◦, 73◦, 82◦. Missions lasted a few days
and the film was recovered with the satellite. The technique of recovering the
capsule in flight appeared with satellites in the Yantar series, in 1975. The
Arkon series is the equivalent of KH-12. Radar observation is carried out
by the Almaz series (‘almaz’ meaning ‘diamond’ in Russian, from the Arabic
word al mās with the same meaning), 19 tonne satellites in low circular orbits
h = 300 km, i = 72◦, with Kosmos-1870 and Almaz-1, launched in 1987 and
1991, and the Oblik series, equivalent to Lacrosse.

Chinese military surveillance and remote-sensing satellites belong to the
FSW-2 and -3 series (Fanhui Shi Weixing), such as FSW-2-3, launched
in 1996, h = 125 km, i = 63◦, FSW-3 and FSW-3-2, launched in 2004,
hp ≈ 170 km, i = 63◦. They return to Earth after two weeks (as their name
suggests: ‘fanhui shi’ means ‘return’ and ‘weixing’ means ‘satellite’).

In parallel with the EROS programme, Israel has developed its military
programme Ofeq (‘horizon’ in Hebrew), with two operational satellites, Ofeq-

52 Resolutions announced by the US Air Force, which is in charge of the programme:
KH-1 (begun in 1959) 12 m, KH-2 (1960) 9 m, KH-3 (1961) 7.6 m, KH-4A (1963)
2.7 m, KH-6 (1963) 1.8 m, KH-8 (1966) 0.5 m. For KH-11 (1976) and KH-12
(1992) 0.15 m with a telescope similar to the Hubble. Projects: KH-13 at 0.10 m
and 8X at 0.05 m.
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3 and -5, launched in 1995 and 2002, on a highly inclined elliptical orbit: hp =
370 km, ha = 750 km, i = 143.5◦. These satellites thus cover latitudes below
37◦. Although there is no precise information available about this programme,
we may imagine that one motivation for the retrograde orbit is to increase
the synodic frequency of the satellite (with ν ≈ 15, we have ν′ ≈ 16 rather
than ν′ ≈ 14 for a prograde orbit), and hence the viewing frequency.

5.4.3 Oceanographic Satellites

The first oceanographic satellites had highly inclined orbits: GEOS-3 (Geody-
namics Experimental Ocean Satellite), h = 847 km, i = 115.0◦, and SeaSat,
h = 780 km, i = 108.1◦. The latter orbit was then taken over, to within
a few kilometres, by Geosat and GFO-1 (Geosat Follow On). The orbit of
TOPEX/Poseidon is rather high, h = 1330 km, to avoid atmospheric drag
as far as possible, and has a rather high inclination, i = 66◦, so as to overfly
almost the whole expanse of the oceans.53 To avoid any bias due to the in-
fluence of the Sun on the tides, it was essential that the orbit should not be
Sun-synchronous. The satellite Jason-1 is placed on exactly the same orbit
as TOPEX/Poseidon to guarantee the continuity of the French–US mission,
for which Jason-2 is then planned (see the lower part of Fig. 5.26).

These satellites, together with the two Sun-synchronous, have carried out
altimetric measurements on the oceans (precise measurements of the sea level
and its evolution), with very good results.54

The satellites55 in the Okean series of Soviet, then Russian/Ukrainian,
then Russian satellites (Ukraine having opted for the Sich series) are devoted
to study of the polar region and oceans. The Okean-O1 series comprises four
satellites. The first three, Okean-O1-1, -2 and -3, have altitude h ≈ 650 km
and inclination i = 82.5◦, typical of many Meteor and hundreds of Kosmos
satellites. The last in the series, Okean-O1-4, follows a Sun-synchronous orbit
at the same altitude. It is on this orbit, h = 663 km, i = 98◦, that Okean-O-1
was placed, the first satellite in the Okean-O series. The Ukrainian satellite
Sich-1 follows a similar orbit to Okean-O1-3.

The Chinese programme is based on the Haiyang satellites56 (meaning
‘ocean’), or HY, h = 798 km, i = 98.8◦.

53 Launch dates: GEOS-3 on 9 April 1975, Seasat on 28 June 1978, Geosat on 13
March 1985, GFO-1 on 10 February 1998, TOPEX/Poseidon on 10 August 1992,
Jason-1 on 7 December 2001.

54 Estimated measurement accuracy: GEOS-3: 25 cm; Seasat: 5 cm; Geosat: 4 cm;
ERS-1 and -2: 3 cm; TOPEX/Poseidon: 2 cm.

55 Launch dates: Okean-O1-1 on 5 July 1988, Okean-O1-2 on 28 February 1990,
Okean-O1-3 (generally called Okean-3) on 4 June 1991, Okean-O1-4 on 11 Oc-
tober 1994, Sich-1 on 31 August 1995, Okean-O-1 (generally called Okean-O) on
17 July 1999.

56 Launch date: HY-1 (Ocean-1 or DFH-54) on 12 May 2002 (with FY-1D). In
preparation: HY-2 (Ocean-2).
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When their main mission is not altimetry, oceanographic satellites57 are
Sun-synchronous: the Japanese satellites MOS-1 and MOS-1B (Marine Ob-
servation Satellite, also called Momo and Momo-1B, where ‘momo’ means
‘peach flower’), h = 908 km, the Indian Oceansat-1 (IRS-P4), h = 720 km,
the US SeaStar (OrbView-2), h = 700 km, the South Korean Kompsat-1
(Korea Multi-purpose Satellite), to study the oceans and land masses. Satel-
lites equipped with scatterometers to study the winds over the sea are also
Sun-synchronous, e.g., QuikScat (Quick Scatterometer), h = 805 km and
Coriolis58 (also called WindSat or P98-2), h = 830 km.

5.4.4 Navigation Satellites

The first US navigation system was provided by the Transit satellites,59 in
polar (often strictly polar) LEO orbit, as discussed in Chap. 4. They played
a very important part at the inception of space geodesy.60 Several of these
satellites were equipped with nuclear generators.61 A comparable Soviet then
57 Launch dates: MOS-1 on 19 February 1987, MOS-1B on 7 February 1990, SeaStar

on 1 August 1997, Oceansat-1 on 26 May 1999, QuikScat on 20 June 1999,
Kompsat-1 (with ACRIMSAT) on 21 December 1999, Coriolis on 6 January
2003.

58 Gustave Gaspard Coriolis (1792–1843) was a French mathematician and engi-
neer. In his first work, Du calcul de l’effet des machines (1829), he introduced the
ideas of work done by a force (force times displacement) and kinetic energy. In
his paper Sur le principe des forces vives dans le mouvement relatif des machines
(1831), he examined the various accelerations: absolute, relative, transport and
complementary. The last was subsequently given the name of Coriolis accelera-
tion. This is today a basic feature in the study of geophysical fluids in motion,
such as marine and atmospheric currents on the surface of the globe.

59 This system, an integral part of the Polaris nuclear submarine programme, began
with the successful launch of Transit-1B and Transit-2A in 1960, followed by the
doublet Transit-3B with Lofti-1.

60 In the geodesy literature, the satellites Transit-5B-1 and -5B-2 are often desig-
nated by the simplified notation VBN-1 and VBN-2.

61 In 1961, Transit-4A was the first satellite to be equipped with a nuclear genera-
tor for its electricity supply, the so-called SNAP (System for Nuclear Auxiliary
Power). These generators are also referred to by the acronym RTG (radioiso-
tope thermoelectric generator). Other satellites in this series were equipped with
RTG: Transit-4B in 1961, Transit-5B-1, -5B-2 and -5B-3 in 1963, Triad-1 in 1972.
The fuel was polonium-210 for the Transit-4 satellites, and plutonium-238 for the
Transit-5 satellites. In the other US series, satellites with RTG (plutonium-238)
were OPS/4682 (or Snapshot, a pun on SNAP), Nimbus-B (launch failure) and
Nimbus-3 in LEO orbit, together with the two satellites LES-8 and -9 in GEO
orbit. Concerning the Soviet satellites equipped with RTG, it is known that there
were accidents with Kosmos-954 and Kosmos-1402. Probes travelling far out into
the Solar System are also equipped with nuclear generators. (Cassini is carrying
35 kg of plutonium-238 to produce a power output of 750 W.)
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Figure 5.11. Orbit (relative to the Earth) and ground track of the orbit of a
satellite in the GLONASS constellation, over a time span of eight days (duration
of its recurrence cycle)
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Figure 5.12. Ground track of the orbit of a satellite in the NAVSTAR/GPS
constellation, over one day (duration of its recurrence cycle)
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Figure 5.13. Ground track of the orbit of a satellite in the Galileo constellation,
over a time span of three days (duration of its recurrence cycle)
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Russian system was constructed using the Tsikada and Nadezhda constella-
tions of satellites in polar orbit h = 1 000 km, i = 82.9◦, such as Kosmos-1383,
launched in 1982 or Nadezhda-5 in 1998.

Results of astonishing accuracy (positioning to within a few metres)
are currrently obtained with MEO satellite constellations. For the US sys-
tem known as NAVSTAR/GPS (Navigation System with Timing and Rang-
ing/Global Positioning System), the circular orbit at h = 20 200 km is such
that the period is 12 hr, or more exactly, half a sidereal day. Satellites in Block
I were experimental, with i = 63◦, from NAVSTAR-1 (OPS/5111) in 1978 to
NAVSTAR-11 (USA-10) in 1985. Block II comprises 24 satellites in 6 planes
of 4 operational satellites, with i = 55◦ (see Figure 5.12), from NAVSTAR-13
(USA-35) in 1989 to NAVSTAR-36 (USA-100), launched on 10 March 1994,
at which date the system became operational. To replace defective satellites,
so-called Block IIR satellites have been launched on a regular basis since
1996, such as NAVSTAR-37 (USA-117). By the end of 2004, NAVSTAR-55
(USA-178 or GPS-2R-12)) had been reached.

The underlying principle of GPS is simple. Each of the 24 satellites is
equipped with a very accurate clock,62 synchronised from a ground station,
and a transmitter which sends the clock signal and satellite position, calcu-
lated to great accuracy and regularly adjusted. An arbitrary point, which
can be on the Earth, an aircraft or a satellite, equipped with a receiver can
determine its distance from the emitting satellite by measuring the journey
time of the signal. Since the position of the emitting satellite is known, this
therefore determines a sphere, centred on the satellite, on which the given
point must be located. The intersection of this sphere with a second, centred
on another satellite, specifies a circle, and the intersection of this circle with
yet another sphere, centred on a third satellite, specifies two points. One
of these two points is an impossible position. A fourth intersecting sphere
can confirm this. But the real need for this fourth satellite is to correct the
time measurement made by the receiver clock. Indeed, this clock, paid for by
the user, is a much cheaper one and hence also much less accurate than the
transmitter clock.

The selective availability policy, introduced by the military to limit the
accuracy of the system for civilian activities, was abolished in May 2000. Po-
sition determinations are constantly being refined by technological advances,
such as more powerful signals and better correction for atmospheric pertur-
62 Block II satellites each have caesium and rubidium clocks. Those in Block IIR

should each carry a hydrogen maser atomic clock, with deviation less than 10−14 s
every three hours.
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bations, and improved statistical processing of the signal.63 The displacement
velocity of the receiver is obtained by measuring the Doppler shift.

The Russian system GLONASS (Global Navigation Satellite System) is on
a slightly lower orbit, at h = 19 100 km, i = 64.8◦ (see Fig. 5.11). It comprises
21 satellites, distributed in 7 planes of 3 satellites. The first satellite in the
constellation was Kosmos-1413, launched in 1982. The others were generally
launched in groups of three, about once a year. The last to be placed in
orbit were GLONASS-791, -792, -793 (Kosmos-2394, -2395, -2396), launched
together in 2002, and GLONASS-794, -795, -701 (Kosmos-2402, -2403, -2404),
launched together in 2003.

The European navigation system of MEO satellites was agreed in 2002
(financed in equal parts by Europe and ESA): this is the Galileo system. It is
made up of 30 satellites, in 3 planes of 9 satellites, with 3 back-up satellites.
The chosen orbit is circular with h = 23 616 km, i = 56◦ (see Fig. 5.13).

The European system EGNOS (European Geostationary Navigation Over-
lay Service) is based on three GEO satellites and uses GPS/NAVSTAR and
GLONASS. It will be operational from 2004 and aims primarily at aviation
in Europe.

The Chinese system BNS (Beidou Navigation System) resembles EGNOS,
with a constellation GEO satellites. The first two, Beidou-1 and Beidou-1B
(DFH-51 and -52), were launched in 2000, followed by Beidou-1C (DFH-56) in
2003. (‘Beidou’ is the Chinese name for the the constellation of Ursa Major.)

5.4.5 Communications Satellites

Telecommunications

The principle of communication by relay is to send a signal, e.g., telephone,
television, telecommunications, from a given point on the Earth to another by
relaying it through a satellite which detects, amplifies and retransmits it. A
GEO satellite can of course do this, provided it is visible from the two points
and in suitable conditions. For high latitudes, a group of HEO satellites can
guarantee the link. With LEO satellites, the time for which the satellite is
visible is rather short and a constellation is required (see Sect. 5.6).

GEO Satellites. Hundreds of GEO communications satellites are currently
operating. The geostationary orbit, which is by definition one-dimensional, is
63 We know that light travels 30 cm in 1 ns. If the receiver clock has an accuracy

of 200 ns, the accuracy on the ground is of the order of 60 m. The result is
improved by taking measurements over a period of a few minutes and then using
statistical analysis.
An accuracy better than one metre is achieved with the DGPS system (Differen-
tial GPS), which uses the well established positions of reference points, such as
airports. Averaging a DGPS signal can yield a position to within one centimetre.
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beginning to get congested today.64 Generally speaking, a country or group
of countries sets up its satellite at the longitude of one of its meridians.65 A
country like Indonesia can use a geostationary satellite to set up a telecommu-
nications network between the hundreds of islands composing it, much more
easily than using a network at ground level. Moreover, for many countries, a
geostationary communications satellite has an important symbolic value.66

64 For example, even in 1989, there were four television and telecommunications
satellites operating at the position λS = 19◦W, only a few tens of kilometres
apart: TDF-1 and TDF-2 (France), TVSat-2 (Germany), and Olympus-1 (UK).
In 1999, there were eight Astra satellites, from Astra-1A to Astra-1H, operating
between 19.2◦E and 19.3◦E, dispensing eight bouquets of television programmes
over the same regions. The same company duplicates this achievement with the
three satellites Astra-2A, -2B, -2D, operating since 2001 at longitude 28.2◦E.

65 As an example, we mention several satellites with their parking position on
30 June 1999. We give one satellite per country or organisation, operating at
this date, going round the equator in the positive direction: Sirius-2 (Swe-
den) 4.83◦E, Eutelsat-W3 (European organisation) 7.01◦E, Italsat-F2 (Italy)
16.24◦E, AfriStar (international foundation) 20.98◦E, Kopernikus-3 [DFS-
3] (Germany) 23.50◦E, Inmarsat-3-F5 (international organisation) 25.07◦E,
Arabsat-3A (Arab League) 27.20◦E, Astra-2A (Luxembourg) 28.23◦E, Gorizont-
31 (Russia) 39.91◦E, Turksat-1C (Turkey) 41.99◦E, Intelsat-704 (international
organisation) 66.04◦E, Thaicom-3 (Thailand) 78.50◦E, Zhongwei-1 [Chinastar-
1] (China) 87.53◦E, Measat-1 (Malaysia) 91.49◦E, INSAT-2C (India) 93.49◦E,
AsiaSat-3S (Hong-Kong/China) 105.50◦E, Cakrawarta-1 [Indostar-1] (Indone-
sia) 107.65◦E, Mugunghwa-2 [Koreasat-2] (South Korea) 115.89◦E, N-Star-
B (Japan) 133.98◦E, Optus-A3 [AusSat-3] (Australia) 164.05◦E, Solidaridad-2
(Mexico) 113.00◦W, Galaxy-8 (United States) 94.94◦W, Nimiq-1 [Telesat-DTH-
1] (Canada) 91.16◦W, Brasilsat-B3 (Brazil) 84.05◦W, Nahuel-1A (Argentina)
71.87◦W, Hispasat-1B (Spain) 29.99◦W, Telecom-2D (France) 5.03◦W, Amos-1
(Israel) 4.03◦W, Thor-3 (Norway) 0.84◦W. The first commercial satellite in this
category, Anik-A1 (Canada), was launched in 1972.

66 The names chosen for these satellites serve to demonstrate this. The multiethnic
country Indonesia, sometimes torn by internal conflict, chose the name Palapa,
which means ‘unity’ in Bahasa Indonesia (the official language).
Developed countries in the New World seek the names of their satellites in the
Amerindian languages, perhaps as a way of finding their roots. Canada named its
satellites Anik (����, in Inuit writing) and Nimiq (���ς�), which means ‘brother’
(for a sister) and ‘union’ (or ‘bond that unites’) in Inuktitut (the Inuit or Eskimo
language). Argentina uses the Araucanian word ‘Nahuel’ (Araucan, Mapuche
language), meaning ‘tiger’.
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These GEO communications satellites, which are becoming increasingly
common, bigger, and more expensive,67 currently represent the largest part
of the commercial market for space activities.

GEO satellites are also widely used for military communications. Exam-
ples are the US series DSCS (Defense Satellite Communications System),68

LES (Lincoln Experimental Satellite),69 TDRS (Tracking and Data Relay
Satellite)70 and Milstar (Military Strategic and Tactical Relay System),71

the Soviet series Luch (with Kosmos-2054 and Luch-1, where ‘luch’ means
‘light beam’ in Russian) and Raduga (up to Raduga-32, where ‘raduga’ means
‘rainbow’), and the Chinese series STTW (with China-26).

The satellite Telecom-2C is shared by French civilian and military organ-
isations. The first high-speed data transmission by laser was carried out in
67 The two satellites Westar-6 (Western Union Communications Satellite, US) and

Palapa-B2 (Indonesian) were launched by STS-11 (STS-41-B) on 3 February
1984, but they never reached the geostationary orbit. The insurers, the new
owners, paid for recovery and return of the satellites by the shuttle flight STS-19
(STS-51-A) on 16 November 1984. China bought Westar-6, and turned it into
AsiaSat-1, launching the satellite itself on 7 April 1990. The other satellite be-
came Palapa-B2R and was launched on 13 April 1990. The adventures of AsiaSat
did not end there. The satellite AsiaSat-3, launched by a Russian rocket on 24
December 1997, was placed on the wrong orbit, too highly inclined (GTO orbit,
i = 56◦). After purchasing it, the new owner (Hughes) attempted a novel maneu-
ver: the satellite was sent on two revolutions around the Moon (ra = 488 000 km,
T = 15 day, see the Luna-3 satellite). It then returned to a geostationary orbit
and became HGS-1 (Hughes Global Services), before being renamed PAS-22.
The replacement, AsiaSat-3S, was inserted into the wrong orbit on 21 March
1999: hp ≈ 10 000 km, ha = hGS, i = 13◦. Using its thrust motors, it was then
moved into GEO orbit. Another example of successful recovery, although less
spectacular, is the following. The satellite Palapa-C1, launched in 1996, broke
down in 1998. The manufacturer bought it back, repaired it under the name of
HGS-3 whilst it remained in GEO orbit, then resold it to Turkey under the name
of Anatolia-1, having displaced it in longitude.

68 Launched since 1971, they are stationed over the American continent. The super
secure communication satellites DSCS-3A3 (USA-167) and DSCS-3B6 (USA-
170) were launched in 2003.

69 In GEO orbit, from LES-5 to LES-9.
70 The TDRS satellites in the TDRSS series (TDRS System) are launched at in-

tervals varying between two and five years. The first were launched from the US
Space Shuttle, such as TDRS-1 in 1983 (STS-6), or TDRS-2, lost in the Chal-
lenger explosion of 1986, up to TDRS-7 in 1995 (STS-70). In 2000, TDRS-8 was
launched directly, and in 2002, TDRS-9 and -10 likewise.

71 The Milstar-1 satellites such as Milstar-1-1 (USA-99), launched in 1994, pro-
vide low data rate (LDR) communications. Those in the Milstar-2 series, such
as Milstar-2-3 (Milstar-DFS-5 or USA-164) launched in 2002 and Milstar-2-4
(Milstar-DFS-6 or USA-169), launched in 2003 provide medium data rate (MDR)
communications. The next generation, Milstar-AEHF, will operate at very high
speed (high data rate or HDR).
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Figure 5.14. Orbit of a Molniya satellite, over 1 day (2 revolutions). Upper :
Orbit, relative to the Earth (terrestrial reference frame). Lower : Orbit, relative to
the stars (celestial reference frame)
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Figure 5.15. Ground tracks of the (HEO) orbit of a Molniya satellite, with two
different perigee positions, over a time span of one day
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Figure 5.16. Ground tracks of satellites in (HEO) Tundra and Supertundra orbits,
over a time span of one day
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Figure 5.17. Ground track of the (HEO) orbit of a satellite in the Loopus con-
stellation, over a time span of three days
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Figure 5.18. Upper Orbit and ground track of the (HEO) orbit of a satellite in
the Ellipso Borealis constellation. Upper Ground track of a satellite in the VIRGO
constellation, over a time span of one day
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Figure 5.19. Ground track of the (MEO) orbit of a satellite in the WEST con-
stellation, over a time span of one day
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2001 between the European GEO satellite Artemis, launched just before for
this purpose, and the French LEO satellite SPOT-4. This prefigured trans-
missions between LEO satellites via a GEO satellite as intermediary.

HEO Satellites. The most common HEO orbit is the one used by So-
viet then Russian satellites, the Molniya orbit (meaning ‘lightning’), since
Kosmos-41 in 1964. The number of satellites launched in these orbits is stag-
gering: 93 for Molniya-1, from Molniya-1-01 in 1965 to Molniya-1-91 in 1998,
then Molniya-1-92 in 2003 and Molniya-1-93 (Kosmos-2405) in 2004, 17 for
Molniya-2, from Molniya-2-01 in 1971 to Molniya-2-17 in 1977, 53 for the
present series Molniya-3, from Molniya-3-01 in 1974 to Molniya-3-53 in 2003.

The satellites in these three series have the same orbit, to within a few tens
of kilometres:72 hp ≈ 500 km, ha ≈ 40 000 km, i = 63◦ (critical inclination).
The period is 12 hr (half a sidereal day): T = 717.7 min, a = 26 553 km,
e between 0.72 and 0.75. The argument of the perigee is ω = −90◦, which
means that the perigee is located in the southern hemisphere, region of the
Earth that the satellite overflies very quickly (see Example 1.3). On the other
hand, at the apogee, the satellite is almost stationary for 8 hr, when above
Russia (see Example 5.7). The orbit and the ground track of this orbit are
shown in Fig. 5.14 and 5.15.

This orbit is at the critical inclination, which fixes the position of the
perigee (and the apogee). Furthermore, the orbit is recurrent with a cycle of
one day: the ground track passes through the same point every day. With
three regularly spaced satellites on the same orbit, one almost achieves the
equivalent of a geostationary satellite for the regions close to the ground track
at apogee. This is a judicious method for solving the problem of geosyn-
chronicity at high latitudes.

The US military satellites SDS (Space Defense System), from SDS-1 in
1976 to SDS-7 (USA-21) in 1987, are in Molniya orbit.

The Tundra and Supertundra orbits, shown in Fig. 5.16 and discussed
in Chap. 4, are far less commonly used. The constellation SD-Radio, which
provides radio transmissions for American road users, is in a Tundra orbit.
The perigee of these two orbits is high, well above the Van Allen radiation
belt. This is not so for the Molniya orbits, where satellites cross this belt on
every revolution, an ordeal for electronic equipment.
72 As an example, here are the characteristics of several Molniya orbits with the

launch date of the satellite, using the notation [hp/ha/i] (altitudes in km,
angle in degrees): Molniya-1-01 (23 April 1965) [538/39300/65.5], Molniya-
2-01 (25 November 1971) [516/39553/65.0], Molniya-3-01 (21 March 1974)
[250/40095/64.1], Molniya-3-50 (8 July 1999) [464/39889/62.8], Molniya-3-51 (20
July 2001) [407/40831/62.9], Molniya-3-52 (25 October 2001) [615/40658/62.9],
Molniya-3-53 (19 June 2003) [637/39709/62.8], Molniya-1-93 (18 February 2004)
[634/39729/62.8].
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The Loopus orbit, a = 30 000 km, e = 0.6, Fig. 5.17, lies outside the
radiation belts. The period of the satellite is 3/5 of a day (T = 861.526 min,
see Galileo orbital characteristics).

The Ellipso Borealis orbit is highly original, as we have already seen:
it is Sun-synchronous and has the critical inclination. The parameters are:
hp = 524 km, ha = 7 838 km, i = 116.57◦, ω = −90◦, with a period of 3 hr
[see Fig. 5.18 (upper) and Colour Plate VII]. The Ellipso project includes a
HEO constellation, Borealis, with 10 satellites in 2 planes, and a constellation,
Concordia, with 4 (or perhaps 7) satellites in equatorial orbit, h = 8 050 km,
i = 0.0◦.

The US projects COBRA (Communications Orbiting Broadband Re-
peating Arrays) and VIRGO (or VirtualGEO, Virtual Geostationary) use
HEO orbits with a period of 8 hr, precisely one third of a sidereal day:
a = 20 261 km, e = 0.6458, i = 63.4◦ (see the lower part of Fig. 5.18). As in
the Molniya case, the VIRGO constellation is effectively playing the role of
a geostationary satellite.

MEO Satellites. The WEST orbit is circular with h = 13 900 km, i = 75◦

and a period of 8 hr (one third of a sidereal day), Fig. 5.19. The WEST
constellation project (Wideband European Satellite Telecommunication) in-
cludes 9 satellites on this MEO orbit, together with 2 GEO satellites.

Satellites Between LEO and MEO. The Odyssey project, abandoned in
2000, consisted of a constellation of 3 planes of 4 satellites, h = 10 354 km,
i = 50◦. The ICO constellation (Intermediate Circular Orbit)73 comprises 2
planes of 5 satellites, h = 10 390 km, i = 45◦.

LEO Satellites. Communications using LEO satellites always require a con-
stellation. For telephone communications, the advantage of LEO constella-
tions is the very short response time: the journey time of the signal transiting
via a GEO satellite is about 250 ms, and this quarter of a second is sometimes
considered to be a nuisance. However, this is not a big enough advantage to
ensure the success of a commercial venture. The failure of Iridium74 in 2000
and GlobalStar in 2002 clearly demonstrates this. The following satellite con-
stellations were operating or under construction (or had failed) in 2004:

• Orbcomm, 35 satellites (3 planes of 8), h = 810 km, i = 45.0◦,
• Iridium, 88 satellites (6 planes of 11), h = 780 km, i = 86.4◦,
• GlobalStar, 52 satellites (8 planes of 6), h = 1 410 km, i = 52.0◦,

73 Launch date: ICO-F2 on 19 June 2001.
74 Faced with commercial failure, the first reaction was to remove all the satellites

from orbit. However, in the end, the system was taken over by the US Department
of Defense. Originally, the constellation was to include 77 satellites, whence the
name Iridium, which is the chemical element (Ir) with atomic number 77.
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• Teledesic,75 288 satellites (12 planes of 24), h = 550 km, i = 97.7◦.

The total number of satellites in each constellation76 includes all spare satel-
lites.

The Russian system Gonets-D1 (‘gonets’ means ‘messenger’) is the com-
mercial version of the military system Strela-3 (‘strela’ means ‘arrow’). The
constellation was set up77 with the following characteristics:

• Gonets-D1, 48 satellites (6 planes of 8), h = 1400 km, i = 82.5◦.

The OSCAR satellites (Orbiting Satellite Carrying Amateur Radio), not
to be confused with Transit-Oscar, are launched on a regular basis for
amateur radio transmissions. Orbits are often near-polar and LEO, as for
OSCAR-1 in 1961 or OSCAR-30 in 1996.

Passive Communication

As their name suggests, the satellites Echo-1 and -2 were launched as passive
telecommunications relays. As one might imagine, the results were not very
convincing and this experimental system was dropped. However, these two
satellites were originally intended for space geodesy.

We should also mention another attempt to create a passive space com-
munications system. The idea was to place a ring in orbit around the Earth
to reflect radio waves. This was the US experiment called Westford Needles.
Two packages (Westford-1 and -2) were inserted into orbit. Once opened, they
distributed 350 then 475 million small copper needles (1.7 cm long, 0.1 mm
in diameter) along their trajectory. These military experiments were carried

75 The original project, in 1994, was to launch 840 active satellites (21 planes of
40).

76 Launch dates of the first and last satellite in each constellation: Orbcomm con-
stellation: Orbcomm-FM-1 and -FM-2 on 3 April 1995, launched with Microlab-
1, h = 740 km, i = 69.9◦, Orbcomm-FM-3 and -FM-4 on 10 February 1998,
launched with GFO-1, h = 830 km, i = 108.0◦, the other Orbcomm satellites
were launched with inclination i = 45.0◦, in clusters of 8, (beginning) Orbcomm-
FM-5 to -FM-12 on 23 December 1997, (end) Orbcomm-FM-30 to -FM-36 on
4 December 1999. Iridium constellation: (beginning) Iridium-4 to -8 on 5 May
1997, (end of initial programme) Iridium-83 to -86 on 6 November 1998, (restart)
Iridium-90 to -96 on 11 February 2002, Iridium-97 and -98 on 20 June 2002. Glob-
alStar constellation: (beginning) GlobalStar-M001 to -M004 on 14 February 1998,
(end) GlobalStar-M061 to -M064 on 4 December 1999. Teledesic constellation:
(demonstration satellite) Teledesic-1 on 26 February 1998.

77 The Strela-3 satellites were launched in clusters of 6. With the establishment of
the Gonets-D1 constellation, each cluster of 6 satellites has included 3 military
and 3 civilian. Launch dates: Gonets-D1-1, -2 and -3 (with the Strela-3 satellites,
Kosmos-2328, -2329, -2330) on 19 February 1996, Gonets-D1-4 and the following
on 14 February 1997, Gonets-D1-7 and the following on 17 December 2001.
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out between 1961 and 1963, from the satellites MIDAS-4, -5 and -7, in cir-
cular near-polar orbit h = 3 600 km. They were called Westford-1, Westford
Drag, and Westford-2, respectively. The experiment was severely criticised
by astronomers who saw in this a source of optical and radio pollution. In
the end, the needles constituted neither a reflector nor a pollutant.

5.4.6 Satellites for Fundamental Physics

The satellite Gravity Probe-B (GP-B), launched on 20 April 2004, has a
strictly polar LEO orbit, already mentioned in the last chapter. Its ground
track is illustrated in the lower part of Fig. 5.5. The aim of the mission is to
measure, using gyroscopes, the extent to which space and time are distorted
by the presence of the Earth, within the framework of the general theory of
relativity. The preliminary experiment GP-A, in June 1976, sent a hydrogen
maser clock into space in a sub-orbital flight up to an altitude of 10 000 km.

Two missions are being planned to provide experimental corroboration for
the principle of equivalence.78 The French project µSCOPE (Micro-Satellite
à Compensation de Trâınée pour l’Observation du Principe d’Equivalence),
or Microscope, is designed to check the universality of free fall. The satellite
will have a circular, Sun-synchronous LEO orbit at h ≈ 700 km. Drag ef-
fects on the satellite will be compensated by electric thrusters to ensure that
the two test masses carried aboard undergo perfect free-fall conditions over
thousands of kilometers (rather than just a few tens of meters, and with-
out compensation for air resistance, if one drops the objects from the leaning
tower of Pisa). The US satellite STEP (Satellite Test of the Equivalence Prin-
ciple) will be much bigger, with cooled instruments to increase measurement
accuracy.79 It will also follow a circular LEO orbit, with h = 400 km.

The LISA project (Laser Interferometer Space Antenna), a joint venture
between NASA and ESA, will attempt to detect gravitational waves using
three satellites in formation on a heliocentric orbit.80

78 The principle of equivalence postulated by Einstein is based on the observation
that all bodies, independently of their mass, have the same acceleration in a
gravitational field for identical initial conditions. This is the universal principle
of free fall: the passive gravitational mass of a body (m = mg in the expression
for the gravitational force, involving G) is equal to the inertial mass (m = mi in
Newton’s second law).

79 The relation mg/mi = 1 has been checked on Earth to an accuracy of 10−12.
The µSCOPE experiment aims to achieve 10−14 and STEP 10−17.

80 The three satellites will be placed at the corners of an equilateral triangle with
side 5 million kilometres. The centre of the triangle will lie in the plane of the
ecliptic at a distance of 1 a.u. from the Sun. The angle between the centre of the
triangle, the Sun and the Earth will be equal to 20◦ (measured positively). The
three satellites, linked by laser, will constitute a gigantic Michelson interferom-
eter.
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5.4.7 Satellites for Astronomy and Astrophysics

Astronomy and Astrometry

In most cases, astronomical missions are one-off experiments and the satellites
are not systematically placed on the same orbits, as they might be for remote-
sensing, for example. We shall discuss here several satellites for each region of
the electromagnetic spectrum used in astronomy. Most of them are American
and the remainder are mainly European. NASA launched a programme of
large orbiting observatories (Great Observatories Program): GRO (Gamma
Ray Observer), renamed Compton,81 for γ rays, AXAF (Advanced X-ray
Astrophysics Facility), renamed Chandra,82 for X rays, HST (Hubble Space
Telescope) often called Hubble83 for the visible, and SIRTF (Space InfraRed
Telescope Facility) renamed84 Spitzer or SST (Spitzer Space Telescope) after
launch, for the infrared.

Concerning more modest missions, the Explorer programme is NASA’s
continuing programme for orbital astronomy and space physics packages.
Explorers come in three sizes defined by budget considerations: Medium
Explorer (MIDEX), Small Explorer (SMEX), and University-class Explorer
(UNEX).

Cosmic Rays, Gamma Rays. Gamma astronomy began in 1961 with
Explorer-11, hp = 480 km, ha = 1 460 km, i = 29◦, which provided the
first detection of gamma rays from space. This was followed by OSO-3 and
OSO-7, both on the orbit h = 550 km, i = 33◦, then Explorer-48 (SAS-2),
h = 526 km, i = 1◦, not forgetting the Vela satellites mentioned again below.

In this field of investigation, orbits are generally low and not highly in-
clined, as for the HEAO satellites (High Energy Astrophysical Observatory),
HEAO-1, -2 (renamed Einstein), -3, h ≈ 500 km, i = 23◦, 23◦ and 44◦,
81 Arthur Holly Compton (1892–1962) was an American physicist. His work on X

rays led him to discover in 1923 the effect which now carries his name (interaction
between matter and X rays). He also studied cosmic rays.

82 Subrahmanyan Chandrasekhar (1910–1995) was an American astrophysicist of
Indian birth. He carried out a great many theoretical studies on the internal
structure of stars. He studied radiative transfer in stellar atmospheres. The root
‘chand’ means ‘Moon’ or ‘bright’ in Sanskrit.

83 Edwin Powell Hubble (1889–1953) was an American astronomer. He produced a
classification of extragalactic nebulas and, in 1928, established the law of spectral
shifts now known as the Hubble law, which says that the spectral shift of a galaxy
(redshift) is proportional to its distance, thus confirming the hypothesis that the
Universe is expanding. The constant of proportionality H0, called the Hubble
constant, is not precisely known and may even vary in time. It is measured in
kms−1 per megaparsec. Its reciprocal, which has units of time, gives the age of
the Universe to within an order of magnitude: 1/H0 ≈ 10 billion years.

84 In honour of Lyman Spitzer Jr. (1914–1957), the American astrophysicist who
was the first to suggest placing a large telescope in space.
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or the HETE satellites (High Energy Transient Experiment), HETE-1, -2,
h ≈ 500 km, i = 38◦ and 2◦. The Compton satellite (also called CGRO),
launched on 5 April 1991 by STS-37, h = 450 km, i = 28.5◦, had a mass
of 15 tonnes, of which 7 tonnes represented instrumentation. Great precau-
tions were taken when it was de-orbited on 3 June 2000. The international
project GLAST (Gamma-ray Large Area Space Telescope) will use a simi-
lar orbit: h = 550 km, i = 28.5◦, and the Italian Agile satellite will be in
equatorial orbit, h = 550 km, i ≈ 0◦. The US project Swift (MIDEX-3)
for detection of gamma-ray bursts will follow a similar orbit, h = 600 km,
i = 19◦. The European satellite Integral (International Gamma-Ray Astro-
physics Laboratory), launched on 17 October 2002, is on an HEO orbit:
a = 87 698.656 km, e = 0.8204 (i.e., hp = 9 400 km, ha = 153 300 km),
i = 57.1◦, T = 71.8 hr = 3Jsid,see Fig.5.20 and 5.21 (upper).

X Rays. Certain orbits are like those seen above, i.e., low, with h ≈ 550 km,
and with low inclination: i = 53◦ for ROSAT, i = 4◦ for BeppoSAX (Satellite
per Astronomia a raggi X ), i = 23◦ for XTE (X-ray Timing Explorer), i =
38◦ for HESSI (High-Energy Solar Spectroscopic Imager, SMEX-6), renamed
RHESSI (Reuven Ramaty HESSI).

The rest are very high and highly eccentric, as in the case of the Soviet
satellites Astron and Granat, or the European satellite Exosat, launched in
1983 (one revolution is shown in the upper part of Fig. 5.22). In 1999, two
large satellites, one American and the other European, used this type of
orbit: Chandra (also called CXO, Chandra X-ray Observatory), launched on
23 July by STS-93, hp = 10 157 km, ha = 138 672 km, i = 29.0◦, T = 63.5 hr,
and XMM (ESA’s X-ray Multi-Mirror Space Observatory, renamed XMM-
Newton), launched on 10 December, hp = 7 417 km, ha = 113 678 km, i =
38.8◦, T = 47.9 hr.

Ultraviolet (UV). These satellites use slightly inclined LEO orbits. The
satellites OAO-1, -2, -3 (Orbiting Astronomical Observatory), launched be-
tween 1966 and 1972, were on the orbit h = 750 km, i = 35◦. OAO-3
was renamed Copernicus to mark the 500th anniversary of the birth of the
great man. The US satellites EUVE (Extreme UV Explorer), h = 515 km,
i = 28.4◦, FUSE (Far UV Spectroscopic Explorer, MIDEX-0), h = 760 km,
i = 25.0◦, and GALEX (Galaxy Evolution Experiment, SMEX-7), h =
690 km, i = 28.0◦ were launched in 1992, 1999 and 2003, respectively. The
orbit of the Spanish Minisat-01, launched in 1997, h = 570 km, is also tilted
by about thirty degrees to the equator, since i = 151◦ (which is the highest
value yet encountered, to our knowledge).

The satellite CHIPSat (Cosmic Hot Interstellar Plasma Spectrometer
Satellite, UNEX-1) is on a near-polar orbit since it was launched as a passen-
ger of ICESat. CHIPSat was the first US mission to use end-to-end satellite
operations with TCP/IP and FTP.
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Visible. In the visible region of the electromagnetic spectrum, the two largest
missions have been the European Hipparcos and the American Hubble (with
ESA participation). Both have provided excellent results, despite a difficult
start.

The Hipparcos satellite (High Precision Parallax Collecting Satellite, com-
bined with the name of the great Greek astronomer Hipparchos) was devoted
to astrometry85 (accurate measurement of stellar positions). Launched on 8
August 1989, the satellite did not reach the planned geostationary orbit but
instead remained in the highly eccentric transfer orbit (GTO): hp = 542 km,
ha = 35 840 km, i = 6.7◦. Rewriting the computer programs and redis-
tributing the ground receiving stations, the mission was nevertheless carried
successfully to completion.

The Hubble observatory was correctly launched by STS-31 on 24 April
1990. The problems began as soon as the first image came through, clearly
showing that the telescope was shortsighted due to an inexcusable mirror
defect. The intention had been to carry out maintenance via the Shuttle,
and this possibility was used primarily to correct the optics. The results did
indeed come up to expectations and astronomy was revolutionised in the
process.

In contrast, Hubble’s successor must be beyond reproach from the mo-
ment of launch: NGST (New Generation Space Telescope), renamed86 JWST
(James Webb Space Telescope), should be placed at the Lagrange point L2

of the Sun–Earth system (see Sect. 3.14), and it will be quite impossible to
go out there and repair it! In addition to the visible region, JWST will also
observe in the infrared and for this reason will be equipped with cryogenic
systems. The successor to Hipparcos, named GAIA (Global Astrometric In-
terferometer for Astrophysics, with reference to � ��̃��, Gæe or Gaia, the
personification of the Earth according to the Ancient Greeks) will also be
placed there.87 The main advantage of the halo orbit (L2LO) around the
point L2 for stellar observation is that the Sun, the Earth and the Moon are
all located behind the line of sight of the telescope. The whole of the celestial
sphere can then be observed as the year goes by, without blind spots. This
region is also very stable as regards the thermal and particle environment.
85 The satellite determined the position, luminosity, and distance of 118 218 stars.

The accuracy of the measurements (2 milliarcsec), was 100 times better than
ground-based measurements of the day.

86 In honour of James E. Webb (1906–1992), NASA’s second administrator. He
directed the Apollo programme and was one of the instigators of the first inter-
planetary exploration.

87 GAIA’s mission is to observe and record a billion stars with an accuracy of
10 µarcsec. For stars within 500 light-years, the distance will then be calculable
to within a few light-years.
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Infrared (IR). The detection of IR radiation involves cooling the optical
system and associated instrumentation in the satellite. The satellite ceases
to function once its reserves of cryogenic fluid have been exhausted.

Certain satellites have used Sun-synchronous orbits, such as the helium-
cooled IRAS (IR All-sky Survey), h = 890 km, launched in 1983, and WIRE
(Wide field IR Explorer, SMEX-5), launched in 1999 with h = 560 km, whose
optical system is cooled by 3 kg of solid hydrogen. The satellite WISE (Wide
field IR Survey Explorer, MIDEX-5), h = 600 km, will also be in this type
of orbit.

The European satellite ISO (Infrared Space Observatory), with American
and Japanese participation, was equipped with a cryostat filled with super-
fluid helium. It operated between November 1995 and May 1998 on a highly
eccentric orbit, with a period of revolution of one day.88 Its successor Her-
schel89 (or HSO, Herschel Space Observatory), taking over from the FIRST
project (Far IR and Submillimeter Telescope), will be placed in orbit around
the Lagrange point L2, for three years. JASMINE (Japan Astrometry Satel-
lite Mission for Infrared Exploration) will measure parallaxes, positions with
the accuracy of 10µarcsec (Lissajous Orbit around the Sun-Earth L2 point)
in 2014.

The US satellite Spitzer, launched on 25 August 2003 under the name of
SIRTF, is on a different orbit. It follows the Earth at a distance of 0.1 a.u. or
15 million kilometres. This heliocentric orbit, known as ETHO (Earth-trailing
heliocentric orbit), maintains the satellite in an extremely cold environment,
propitious for technological innovation.90

88 Launched on 17 November 1995. Orbital characteristics: hp = 1110 km, ha =
70 504 km, i = 5.1◦, a = 42 185 km, e = 0.822, Td = 1436 min = 1 sidereal day.
Cryostat: 2 200 litres of superfluid helium. Temperatures of the various compo-
nents: detector 2 K, optical system 3–4 K, instruments 8 K.

89 The life of William Herschel (1738–1822), British astronomer of German origin,
attests to an unusual intellectual development, revealing an exceptionally curi-
ous nature. He was led to mathematics by music, and from there moved on to
astronomy. He made his own telescopes and they were the best of his day. He
discovered Uranus in 1781 and then later, two of its moons, followed by two of
the moons of Saturn. He demonstrated the displacement of the Solar System
through the Galaxy and gave the coordinates of the apparent convergence point
(the so-called apex) in 1783. In 1801, he discovered infrared radiation.

90 Unlike IRAS and ISO, however, Spitzer adopts an innovative ‘warm-launch’ cryo-
genic architecture. The observatory is launched at ambient temperature and
radiatively (or passively) cooled in the deep recesses of space. Only the focal-
plane instruments and the liquid helium cryostat are enclosed in a vacuum shell
containing the cryostat. It is important to recognize that the warm-launch ar-
chitecture is enabled by the choice of orbit. This innovative launch architecture,
combined with 360 liters of liquid helium, yields an estimated mission lifetime
of about five years. For the sake of comparison, IRAS used 520 liters of cryogen
during its 10-month mission.
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Figure 5.20. Orbit of the satellite Integral, over 3 days (1 revolution). Upper :
Orbit, relative to the Earth (terrestrial reference frame). Lower : Orbit, relative to
the stars (celestial reference frame)
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Figure 5.21. Upper : Ground track of the satellite Integral, over 3 days (1 revolu-
tion, recurrence cycle). Lower : Orbit of the satellite FAST, relative to the Earth
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Figure 5.22. Ground tracks of HEO satellite orbits. Upper : Exosat over 4 days
(1 revolution). Lower : Polar over 7 days (4 revolutions)
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Microwave. The US satellite COBE (Cosmic Background Explorer),
launched in 1989 on a Sun-synchronous orbit at h = 880 km, i = 99.0◦,
explored the millimetre radiation in space in order to study temperature fluc-
tuations in the diffuse cosmological background via extremely precise mea-
surements. (The temperature varies from 2.722 49 K to 2.722 51 K depending
on the observed region.) This informs us about fluctuations in the matter den-
sity of the early universe. Its successor MAP (Microwave Anisotropy Probe,
MIDEX-2), with angular resolution 0.2◦ as compared with 7◦ for COBE,
is placed91 in L2LO orbit. The European satellite Planck92 (formerly CO-
BRAS/SAMBA) launched slightly later, should further improve these results.
It will also be placed at the point L2.

For the study of galactic molecular clouds, SWAS (Submillimeter Wave
Astronomy Satellite, SMEX-3) was launched in 1998, and now follows a low
prograde orbit, with h = 640 km, i = 69.9◦.

Radio. The first satellites to study radio sources were RAE-A and -B (Radio
Astronomy Explorer, Explorer-38 and -49), launched in 1968 and 1973 on a
highly inclined circular orbit with h = 5850 km and i = 120.9◦. The Japanese
satellite Haruka (Muses-B, ‘haruka’ means ‘remote’), launched in 1997, is on
an HEO orbit, with hp = 569 km, ha = 21 415 km, i = 31.4◦. The Russian
project with European participation KRT-25 (a 25 m radio telescope) will
be placed in an orbit which, over seven years, will become more and more
eccentric: hp ≈ 5000 km, ha from 20 000 to 150 000 km, i = 63◦

Solar Astrophysics

Solar radiation is studied across the whole range of wavelengths. The Sun has
been the subject of investigation since the very beginning of the Space Age,
from 1962 to 1976, with LEO satellites at altitudes between 500 and 600 km,
such as the eight observatories OSO-1 to -8 (Orbiting Solar Observatory),
i = 33◦ and three Explorers, IQSY (International Quiet Sun Year, Explorer-

91 Launched on 30 June 2001, the MAP probe made four revolutions around the
Earth on ever more eccentric orbits, reaching the vicinity of the Moon a month
later. Using a lunar swing-by, it took another two months to arrive at the point
L2 of the Sun–Earth system on 1 October 2001 and go into the halo orbit. MAP
was re-christened Wilkinson MAP (or WMAP) in February 2003, in honour of
David T. Wilkinson of Princeton University, a world-famous cosmologist and
MAP team member who died in September 2002 at the age of 67.

92 Max Planck (1858–1947) was a German physicist. He studied blackbody ra-
diation and found an expression for the blackbody spectrum as a function of
temperature and frequency. This problem had stumped many physicists before
him. Planck solved it in 1900 by introducing the idea of the energy quantum.
The theory of these quanta then became the basis for much of modern physics.
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30), Solrad-9 and -10 (Solar Radiation,93 Explorer-37 and -44), i ≈ 55◦, or
with slightly inclined HEO orbits, such as the EPE programme (Energetic
Particles Explorer), with EPE-A, -B, -C and -D (Explorer-12, -14, -15, -26).
The German satellites Helios-1 and -2 are in heliocentric orbit (perihelion
0.309 a.u., aphelion 0.985 a.u., i = 0◦, ecliptic plane, T = 190 day).

Launched in 1980, the US satellite SMM (Solar Maximum Mission) was
the first satellite to be repaired in flight by the Shuttle STS-13 (STS-41-C),
in 1984. It operated until 1989 on the orbit h = 405 km, i = 26.5◦.

Recent LEO satellites are in near-polar orbits. Some are Sun-synchronous
like the US satellites TRACE (Transition Region and Coronal Explorer,
SMEX-4), with altitude h = 620 km, ACRIMSAT (Active Cavity Radiome-
ter Irradiance Monitor Satellite), h = 700 km (launched in 1998 and 1999,
respectively), or the French project Picard (see note on Picard), h = 700 km.
Others are prograde, such as the Russian–Ukrainian satellites Koronas-I and
Koronas-F (AUDS-SM-KI and -KF), h = 520 km, i = 82.5◦ (launched in
1994 and 2001).94 The US satellite SORCE (Solar Radiation and Climate
Experiment) was launched in 2003 on the orbit h = 641 km, i = 40.0◦. The
satellite Solar-B, currently in the planning stages for a Sun-synchronous or-
bit, should take over from the Japanese Solar-A (or Yohkoh, ‘Sun’), which
was launched in 1991 with hp = 526 km, ha = 795 km, i = 31.3◦.

Two large projects have inspired a collaboration between ESA and NASA
in this area: Ulysses and SOHO. The Ulysses probe, launched on 6 October
1990 from STS-41, set off first in the direction of Jupiter, to use it for a
gravity-assist maneuver (see Chap. 11) that would take it out of the plane of
the ecliptic. On 1 November 1994 it overflew the south pole of the Sun and on
1 October 1995, the north pole. The satellite SOHO (Solar and Heliospheric
Observatory), launched on 2 December 1995, went to Lagrange point L1 to
acquire a halo orbit. It subsequently discovered a great many comets.

Two projects should use the stable Lagrange points. The Japanese satel-
lite L5-Mission will observe the Sun in order to provide a regular space
‘weather’ forecast, and ensure better protection for space activities. The two
US satellites STEREO (Solar-Terrestrial Relation Observatory) are planned
for the Lagrange points, with STEREO-Ahead at L4, and STEREO-Behind
at L5, thus providing a 3D observation of the Sun.
93 It later transpired that the first Solrad missions, from Solrad-1 to -7B, between

1960 and 1965, were primarily spy satellites (ELINT). To give the Solrad pro-
gramme a more scientific countenance, it was also referred to as GREB (Galactic
Radiation Experimental Background) or GRAB (Galactic Radiation And Back-
ground).

94 The letters I and F are the initials of IZMIRAN and FIRAS, the names of the
institutes which designed the project.
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Stellar Seismology and the Search for Exoplanets

Three satellites, each carrying a small telescope, have been designed to study
the seismology of stars. They follow three very different orbits. The Cana-
dian satellite MOST (Microvariability and Oscillations of Stars, jokingly nick-
named the Humble Space Telescope by its developers), launched on 30 June
2003, follows a Sun-synchronous orbit at h = 625 km, i = 98.7◦. The Danish
satellite MONS (Measuring Oscillations in Nearby Stars) is on a Molniya or-
bit. The French satellite Corot (Convection, rotation et transits planétaires)
is looking for planets in orbit around stars other than the Sun by detecting
the transit (when the planet passes in front of its star and thereby diminishes
its luminosity), as well as studying stellar seismology. It has a circular, strictly
polar orbit with h = 827 km. These three satellites are a preparatory stage for
the European project Eddington,95 which will study the internal structure of
stars and seek to detect extra-solar planets. This satellite will be in an L2LO
orbit. In November 2003, ESA postponed the mission indefinitely. Another
project, a forerunner of Eddington that has since been abandoned, would
have sent the satellite STARS to the Lagrange point L5 of the Earth–Moon
system.

The European mission Darwin,96 will be devoted to astrobiology, but it
is a long-term project. (One also uses the term ‘exobiology’ to remove all
possible confusion with ‘astrology’.) The Darwin ‘flotilla’97 will also be in

95 Arthur Stanley Eddington (1882–1944) was a British astronomer and physicist.
He did much to promote the theory of relativity (see the note on Einstein),
through the publication of his book Space, Time and Gravitation (1920), which
is still being reprinted. He also laid the foundations for a new discipline, stellar
dynamics, with The Internal Constitution of the Stars (1926), in which he shows
that a star is subject to two opposing effects: it tends to contract under the effect
of gravity, whilst the release of energy tends to push it apart.

96 Charles Darwin (1809–1882) was an English naturalist. From 1831 to 1836, he
took part in an expedition to South America (and in particular, to the Galapa-
gos islands) and Oceanica, aboard the HMS Beagle. As a geologist and botanist,
he elaborated his theory of evolution on the basis of notes taken and collec-
tions brought back from this expedition. He concluded that the variability of the
species is due to the effects of their environment and to sudden variations. These
variations are only favoured by natural selection if they give the individual or-
ganism an advantage in its struggle for survival (subsistence and reproduction).
His famous book The Origin of Species was published in 1859. Darwin’s theory,
supported and developed by a great many intellectuals, was attacked without
scientific argument by the conservative-minded and religious classes. Here was
another problem of divine order!

97 The Darwin flotilla comprises six satellites in formation. They lie strictly in the
same plane and each is equipped with a telescope in such a way as to form an
infrared interferometer. One master satellite, a short distance from the others,
oversees the satellite positions and provides the link with the Earth. The aim is
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an L2LO orbit. The US project Kepler will follow a heliocentric orbit with
a = 1.013 19 a.u., e = 0.03188, and T = 372.5 day.

Space Exploration

Probes sent out to observe other planets in the Solar System or their moons
will be studied in Chaps. 10 and 11, along with satellites in orbit around
these celestial bodies.

We restrict ourselves here to probes involved in the study of comets. Hal-
ley’s comet,98 the most famous of all comets, was approached by six probes
in March 1986: ISEE-3 renamed ICE for the mission, Vega-1 and -2 (So-
viet probes, ‘Ve’ for ‘Venera’, ‘Ga’ for ‘Galleia’, ‘Venus’ and ‘Halley’ in Rus-
sian), Giotto (a European probe, which flew by the cometary nucleus at only
600 km), Sakigake and Suisei (Japanese probes, ‘scout’ and ‘comet’, respec-
tively, in Japanese).

The CONTOUR probe (Comet Nucleus Tour) was launched on 3 July
2002 and failed shortly afterwards. It was to investigate short period comets
such as P/Encke, whose orbit never extends beyond that of Jupiter.

The Rosetta mission99 is one of ESA’s cornerstone missions. The probe,
launched on 2 March 2004, should follow a complex path100 in order to ac-
quire an orbit around comet101 67P/Churyumov-Gerasimenko in May 2114.
In November 2114, the Philae module should land on the cometary nucleus
and ride with it to its perihelion.

NASA’s Stardust and Genesis missions involve in situ exploration with
sample-return.102

to detect planets orbiting other stars and to spy out possible signatures of life
beyond our own Solar System.

98 Edmond Halley (1656–1742) was a British astronomer. In 1682, he observed a
very bright comet near its perihelion. He calculated the orbital elements and
predicted that the comet would return in 1758. Once the period of 76 years had
been established, it was realised that this comet had been known since ancient
times. The first pictorial representation was due to the Italian painter Giotto in
1304. In 1716, Halley published a method using the transit of Venus, predicted
for 1761, to measure the distance from the Earth to the Sun.

99 The Rosetta stone carries a bilingual inscription in three scripts, which allowed
the French linguist Champollion to decipher the hieroglyphs of Ancient Egypt
in 1822. The name Rosetta comes from ‘Rachid’, the Arabic name for the village
in the Nile delta where the stone was found. ESA chose this appellation for its
cornerstone project because it expects the results to throw light upon some of
the mysteries of the formation of the Solar System.

100 EMEEGA: Earth (March 2005) Mars (March 2007) Earth (November 2007)
Earth (November 2009) Gravity Assist.

101 For the initially planned launch in January 2003, Rosetta was to meet up with
comet 46P/Wirtanen ten years on.

102 Stardust, launched on 7 February 1999, collected interstellar dust in 2002 and
particles from comet Wild-2 on 2 January 2004. The capsule should be returned
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5.4.8 Technological Satellites

This is the category of satellites whose mission it is to assist in various kinds
of technological development. The very first satellites fit well in this class.
Technological satellites are used to test instruments, orbital maneuvers, com-
munication techniques, and reentry vehicles (RV technology). They are also
used to test the design of electric or ion propulsion motors.

The satellite DODGE (Department Of Defense Gravity Experiment), h =
33 400 km, i = 12◦, was sent into space in 1967 to further the development of
geostationary satellites, although the first had already been launched some
years previously. A camera aboard this satellite took the very first colour
pictures of the Earth’s disk.

The military satellite ARGOS (Advanced Research Global Observation
Satellite or P91-1) was launched into a Sun-synchronous LEO orbit in 1999
to test electric propulsion systems and detect X rays.

To study the effect of radiation on various types of equipment, several
small technological satellites have been placed in highly elliptical orbits.
These are in fact the geostationary transfer orbits (GTO) of the main satel-
lites with which they were launched (see the lower part of Fig. 5.10). Such
GTO orbits expose the satellites to an extremely testing environment, since
they cross the Van Allen radiation belts on each revolution. With this mis-
sion, we find the British microsatellites STRV (Space Technology Research
Vehicle), hp = 300 km, ha = 36 000 km, i = 7◦, STRV-1A and -1B launched
in 1994 as passengers with Intelsat-702, and STRV-1C and -1D in 2000, pas-
sengers with PAS-1R (PanAmSat-1R). Likewise for Teamsat, launched with
the geostationary satellite Maqsat. The Japanese satellite MDS-1 (Mission
Demonstration Satellite) will go into a more highly inclined GTO orbit, with
i = 28.5◦.

This category also covers calibration satellites, such as Radcal, h ≈
800 km, i = 89.5◦, for radar calibrations, Reflektor, launched with Meteor-
3M-1, for laser calibrations, and the twelve nanosatellites (a few kg) launched
by STS-60 and -63, ODERACS-A to -F, and ODERACS-2A to -2F (Orbital
Debris Radar Calibration Sphere), to calibrate spacecraft debris.

One type of experiment, called a tether experiment, involves connecting
the satellite to a secondary body once it is already in orbit, using cables of
different lengths. These cables may or may not be conducting. The first tests
were carried out on the manned flights Gemini-11 and -12 (with a cable of

to the Utah desert on 15 January 2006. Stardust’s heliocentric orbit involves one
trip beyond the orbit of Mars.
Genesis, launched on 8 August 2001, reached LOI (Lissajous Orbit Insertion) on
16 November 2001. After two years at Lagrange point L1 (halo orbit), it collected
particles from the solar wind and returned the sample. The capsule was to have
been ejected and recovered by helicopter in the Utah desert, on 8 September
2004. However, the parachutes failed to deploy, resulting in a hard-landing, and
the samples are considered to be virtally unusable.
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30 m). Also worth mentioning, launched into LEO orbit between 1993 and
1996, are the satellites SEDS-1 then -2 (Small Expendable Deployer System),
with cables 20 km long, and TiPS (Tether Physics and Survivability), with
a 4 km cable. The orbit of the TiPS central satellite had the characteristics:
h = 1 022 km, i = 63.4◦, e = 0.000.

Among planned missions, we note the BOLAS experiment (Bistatic Ob-
servations with Low Altitude Satellites), devoted to the study of the iono-
sphere with a view to improving communications for GPS. It consists of two
satellites, BOLAS-1 and -2, connected by a non-conducting cable 100 m long
and rotating about their centre of gravity. They will be launched at the same
time as Radarsat-2, on a Sun-synchronous orbit, and will then acquire an
elliptical orbit with hp = 350 km, ha = 800 km, i = 102.81◦.

In the United States, the universities carry out missions with small tech-
nological satellites, such as TERRIERS or SNOE (Student Nitric Oxide Ex-
plorer). In Europe, this policy is mainly applied in the United Kingdom, with
the UoSAT (University of Surrey Satellites), and in Germany with the Tubsat
(Technische Universität Berlin Satellites). These satellites, which can gener-
ally be subsumed under the heading of technological satellites, are almost
always placed in Sun-synchronous orbits as passengers.

In this category we may also include satellites with biology missions. The
satellite Sputnik-2 carried a female dog aboard. Animals were sent in the
Russian Bion satellites to study the effects of radiation. For example, in 1996,
two monkeys flew in Bion-11, h = 300 km, i = 63◦. We may also mention
the US LEO satellite OFO-1 (Orbital Frog Otolith), occupied by two toads.
The aim was to study their inner ear, seat of the vestibular organ (balance
system).

5.4.9 Satellites with Specific Military Missions

Many programmes have been developed by the military and civilian sectors,
either jointly or in parallel, with similar areas of interest, such as remote-
sensing, surveillance and communications. However, certain programmes are
specifically military, such as the detection of nuclear explosions. Here is a
brief review.

Early Warning

These satellites are designed to detect enemy missiles as soon as possible
during or after their launch. In the United States, the first programme was
MIDAS (Missile Defense Alarm System), with near-polar LEO satellites, h ≈
3000 km, from MIDAS-3 in 1962 to MIDAS-12 in 1966. Satellites in the
following programme, IMEWS (Integrated Missile Early Warning Satellites),
extended by DSP (Defense Support Program), have been geostationary, i ≈
0◦, from IMEWS-2 in 1971 to DSP-F-21 (USA-159) in 2001, and DSP-F-22
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(USA-176) in 2004. The NMD project (National Missile Defense), currently
under discussion, is based on the SBIRS satellites (Space-Based IR System).
As soon as a missile is fired, it is detected by SBIRS-High (a system of 4 GEO
satellites and 2 HEO satellites). The missile is then tracked by SBIRS-Low
(a constellation of 24 satellites in 6 orbital planes).

The Soviet programme SPRN was equivalent to IMEWS, with a fleet of
GEO satellites. Satellites in the Oko series (‘eye’) are in Molniya orbit, from
Kosmos-520 in 1972 to Kosmos-2368 in 1999.

Nuclear Surveillance

In order to keep an eye on nuclear testing, the various space powers have
launched satellites that can detect explosion by their gamma-ray emissions.
The US satellites Vela had novel circular orbits, at very high altitudes h ≈
110 000 km, and with inclinations varying between 34◦ and 61◦. They were
launched in pairs, diametrically opposed with respect to the centre of the
Earth, from Vela-1 and -2 in 1963 to Vela-11 and -12 in 1970, and remained
operational until 1984. (‘Vela’ means ‘lookout’ in Spanish. These satellites
were also called Watchdogs or Vela Hotel.) They fullfilled a scientific mission
that had not been planned at all at the outset: between 1969 and 1979,
the satellites Vela-9 and -10 (OPS/6909 and OPS/6911), Vela-11 and -12
(OPS/7033 and OPS/7044) mapped gamma-ray sources in space. They were
the first to observe what have since become known as gamma-ray bursts
(GRB).

Destruction of Satellites, Star Wars

It is of little interest in this context to dwell upon satellite destruction pro-
grammes like ASAT (Air-Launched Anti-Satellite Missile), FOBS (Fractional
Orbital Bombardment System), or what is popularly referred to as ‘star wars’,
i.e., the US programme SDI (Space Defense Initiative).

Intelligence

Satellite interception of all kinds of electronic signal is considered to be of
great importance by the military. This is SIGINT (signal intelligence) or
ELINT (electronic intelligence). Military photographic surveillance is IMINT
(image intelligence). The US–British (and Commonwealth) project Echelon
is planning a constellation of 120 satellites.

The US SIGINT missions began with the GREB (or GRAB) series and
Ferret (beginning in 1962 with Ferret-2), on LEO orbits. Subsequently, the
whole range of different orbits was used. Each programme lasted for roughly
a decade. We note the following programmes, from the second generation
(the 1970s) to the fifth (the 2000s):
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• LEO: SSF (Subsatellite Ferrets), NOSS (Navy Ocean Surveillance Satel-
lite, also called White Cloud) and NOSS-Sub-sats (satellites in formation),
SB-WASS (Space-Based Wide Area Surveillance System), SB-WASS Next
Generation (with planned orbits inclined at 155◦).

• HEO: Jumpseat, Trumpet,103 Prowler.
• GEO: Canyon, Rhyolite/Aquacade, Chalet/Vortex, Magnum/Orion, Mer-

cury,104 Mentor, Intruder.

There have been similar Soviet then Russian programmes, beginning in 1970
with Kosmos-389. The Tselina programme, in LEO orbit, is the equivalent
of NOSS, with i = 82.6◦ for the Tselina-D series and i = 71.0◦ for the most
recent Tselina-2 series.

5.4.10 Satellites with Human Occupation

We give here a few dates marking out the history of manned spaceflight,
i.e., satellites in orbit with humans aboard: Vostok-1 (‘Orient’ in Russian),
launched on 12 April 1961, for the first man in orbit (one revolution); Apollo-
11, launched on 16 July 1969, for the first man on the Moon.

The idea of an orbital space station was first put into practice with the
Soviet Salyut (‘salvation’) from 1971 to 1986, followed by Mir (‘mir’ means
both ‘world’ and ‘peace’ in Russian) from 1986 to 2000, on a near-circular
orbit, h ∼ 300 km, i = 51.6◦. The United States used Skylab, in 1973, on
an equivalent orbit, h ∼ 400 km, i = 50.0◦. They then began to develop the
ISS (International Space Station), from 1998, in collaboration with Russia
and other nations. The orbit is circular, with h between 355 and 400 km,
i = 51.6◦.

The space shuttle idea is based on the possibility of a reusable space-
craft, a satellite becoming a plane in the landing stage. The five American
Space Shuttles are Columbia (1981–2003), Challenger (1983–1986), Discov-
ery (since 1984), Atlantis (since 1985), Endeavour (since 1992). Their flights
are numbered with the prefix STS (Space Transportation System). At the
end of 2003, there had been 113 shuttle flights: 111 successes, 2 failures, with
Challenger STS-33 (STS-51-L) and Columbia STS-107.

The shuttle has two configurations: a payload of 24.4 tonnes for a low
orbit, h = 204 km, i = 28.5◦, and a payload of 12.5 tonnes for a higher
orbit, h = 407 km, i = 51.6◦. It is the latter configuration that is used

103 The three satellites in the series Trumpet-1 (USA-103), Trumpet-2 (USA-112)
and Trumpet-3 (USA-136) were launched between 1994 and 1997. They follow
Molniya orbits with apogee over Russia. Their antennas have diameters of several
tens of metres, and between 100 and 150 m apparently for Trumpet-3. Data is
collected by the SDS satellites, also in Molniya orbit.

104 Mercury-1 (USA-105 or Jeroboam) and Mercury-2 (USA-118) were launched in
1994 and 1996. This programme is sometimes called Mercury ELINT to distin-
guish it from the Mercury programme of manned flights.
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for rendezvous with ISS. For maintenance of Hubble, the shuttle goes into a
higher orbit. A great many satellites have been placed in orbit by the shuttle.
Once in orbit, the satellite leaves the cargo bay of the shuttle and moves to
its destination under its own power (a nearby orbit, either geostationary or
heliocentric).

5.4.11 Non-Scientific Satellites

The Celestis satellites are placed under the ‘others’ heading of the miscella-
neous category in the otherwise rather detailed sample listed in the Celestrak
directory. Furthermore, they are the only representatives of this category.
Other US organisations classify them as burial satellites.105 Without wishing
to carry out unnecessary advertising for the Celestis company, we merely note
that the orbit of Celestis-1 has the high inclination of 151◦ (because launched
with Minisat-01). Celestis-2 has an inclination of 108◦ (because launched with
GFO-1) and Celestis-3 is Sun-synchronous (launched with ACRIMSAT and
Kompsat). They have altitude h ∼ 700 km. Celestis-4 burnt up in space fol-
lowing launch failure (grouped with OrbView-4 and QuikTOMS). Note that
these satellites have been renamed Earthview-01, -02, -03 and -04, which
might lead to some surprises in a remote-sensing bibliography.

5.5 Appendix: Velocity of Satellite and Ground Track
in Circular Orbit

Accurate calculation of the satellite velocity can be achieved using the equa-
tions of motion discussed in Chap. 3. Here we shall calculate the velocity
of the satellite and its ground track to very high accuracy, considering the
case of circular and Keplerian motion. This discussion could well have been
included in Chap. 2. However, we prefer to present it here, now that we have
defined the angular velocity of the Earth’s rotation and the different types of
satellite, especially geosynchronous satellites.

5.5.1 Definitions of the Different Velocities

The velocity of the satellite S and that of its ground track S0, in , can be
expressed in a simple manner in terms of the mean motion n :

105 Taking a closer look, one may read in the informative note of the Celestis com-
pany: ‘Celestis offers to launch a symbolic portion of the cremated remains of
the individuals into space.’ Business is clearly booming: several satellites have
been placed in orbit since 1997, not to mention a lunar impact with Lunar-01
(in fact, a capsule carried by Lunar Prospector) in 1998, following the same idea.
There is a project to send such spacecraft into deep space and out of the Solar
System.
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Table 5.2. Velocity of satellite and ground track, and relative velocity of the ground
track for various satellites, in circular (Keplerian) orbit. For each satellite, we give
the altitude h (in km) and the length of the semi-major axis a, or distance from the
centre of the Earth (in km), the daily frequency ν (in revs per day), the Keplerian
period T0 (in hours and minutes), the speeds V , V0, wE (for the three values of the
angle i, 0◦, 90◦, 180◦), defined in the present section (in kms−1). Also given is the
corresponding type of satellite T : GL (ground level), E (espionage, surveillance), SS
(space shuttle, manned flights and Earth observation), O (Earth observation from
LEO orbit), G (geodesy), I (communications with ICO-type orbit, between LEO
and MEO), P (positioning by GPS from MEO orbit), S (geostationary, GEO), V
(Vela-type), M (Moon)

h a ν T0 V V0 wE wE wE T
[km] [km] [rev/day] [d h m] 0 90 180

0 6378 17.04 1h24 7.91 7.91 7.44 7.92 8.37 GL
100 6478 16.65 1h26 7.84 7.72 7.26 7.74 8.19 E
200 6578 16.27 1h28 7.78 7.55 7.08 7.56 8.01 E
300 6678 15.91 1h31 7.73 7.38 6.91 7.39 7.84 SS
400 6778 15.56 1h33 7.67 7.22 6.75 7.23 7.68 SS
500 6878 15.22 1h35 7.61 7.06 6.60 7.07 7.52 O
600 6978 14.89 1h37 7.56 6.91 6.44 6.92 7.37 O
700 7078 14.58 1h39 7.50 6.76 6.30 6.78 7.23 O
800 7178 14.28 1h41 7.45 6.62 6.16 6.64 7.09 O
900 7278 13.98 1h43 7.40 6.49 6.02 6.50 6.95 O

1000 7378 13.70 1h45 7.35 6.35 5.89 6.37 6.82 O
1100 7478 13.42 1h47 7.30 6.23 5.76 6.24 6.69 O
1200 7578 13.16 1h49 7.25 6.10 5.64 6.12 6.57 O
1300 7678 12.90 1h52 7.21 5.99 5.52 6.00 6.45 O
1400 7778 12.66 1h54 7.16 5.87 5.41 5.89 6.33 O
1500 7878 12.42 1h56 7.11 5.76 5.29 5.78 6.22 O
1600 7978 12.18 1h58 7.07 5.65 5.19 5.67 6.11

2000 8378 11.32 2h07 6.90 5.25 4.79 5.27 5.71
3000 9378 9.56 2h31 6.52 4.43 3.97 4.46 4.90
4000 10378 8.21 2h55 6.20 3.81 3.34 3.84 4.27
5000 11378 7.15 3h21 5.92 3.32 2.85 3.35 3.78 G
6000 12378 6.30 3h48 5.67 2.92 2.46 2.96 3.39 G

10390 16768 4.00 6h00 4.88 1.85 1.39 1.91 I
20183 26561 2.01 11h58 3.87 0.93 0.47 1.04 P
35786 42164 1.00 23h56 3.07 0.47 0.00 S

110000 116378 0.22 4d13h45 1.85 0.10 −0.36 0.47 V

376805 383183 0.04 27d07h43 1.02 0.02 M
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V =
d(OS)

dt
, V = an =

√
µ

a
, (5.33)

V 0 =
d(OS0)

dt
, V0 = Rn =

R

a
V =

R

a

√
µ

a
. (5.34)

In the terrestrial frame T, consider a point on the surface of the Earth,
e.g., S0, and the right-handed triple of unit vectors associated with spherical
coordinates (er, eλ, eφ). In a plane tangent to the Earth (local horizontal
plane), the plane (eλ, eφ), the vector eλ lies along a line of latitude and the
vector eφ lies along a meridian. In this frame, the velocity of the ground
track, which we shall denote by w, is equal to

w = V 0 − R cosφ Ω̇Teλ .

If eu is the unit vector along V 0, we obtain the expression for w, which
can be called the relative velocity of the ground track, or the velocity of the
ground track relative to the ground:

w = R
(
neu − Ω̇T cosφeλ

)
. (5.35)

5.5.2 Velocity at the Equator

To compare values obtained for various satellites, we consider the relative
velocity w and the ascending (or descending) node, i.e., at the equator, where
it will be written wE :

wE

R
= neu − Ω̇Teλ .

It can be written in terms of the inclination i of the satellite as
wE

R
=
(
n cos i − Ω̇T

)
eλ + n sin i eφ . (5.36)

Let wE be the magnitude of wE taken in the direction of the velocity. We
obtain the results for three values of the inclination, namely, i = 0◦, i = 90◦

and i = 180◦, respectively:

wE

R
= n − Ω̇T ,

wE

R
=
√

n2 + Ω̇2
T ,

wE

R
= n + Ω̇T . (5.37)

Table 5.2 shows for various satellites the velocity of the satellite and its
ground track, V and V0, in , and the relative velocities of the ground track
wE, in T for these three values of i. Satellites are represented for a whole
range of altitudes between 0 and 1600 km, in steps of 100 km, and then for
a few altitudes characteristic of various types of mission.
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The maximal velocity of the ground track relative to the ground is
8.4 kms−1, obtained for a retrograde satellite moving at ground level. More
realistically, the velocity of the ground track at the equator for an operational
Sun-synchronous satellite is 6.6 km s−1. For a geosynchronous satellite with
i = 0, hence geostationary, we may check that wE = wE(i = 0) = 0.00.

The last satellite in the table is not as artificial as it may look. It is in fact
a simplified model of the Moon, in circular, Keplerian orbit at a distance of
380 000 km, with period about 27 day. Note that, in , the sidereal period is
equal to 27.32 day, whilst in T, the synodic period106 which takes the Earth’s
motion into account, is equal to 29.53 day, a lunar month.107 The synodic
period T ′ (in days) is calculated using the relation (2.23), with T = 27.32
and T1 = Nsid.

5.6 Appendix: Satellite Visibility Time

The span of time over which a satellite S is visible from a given point P on
the Earth is called the visibility time of S from P . This idea arises mainly in
the study of satellite constellations.

5.6.1 Satellite in Circular Orbit

Consider an arbitrary point P on the (spherical) surface of the Earth and
a satellite S whose orbital plane passes through P at a given time. This is
shown schematically in Fig. 5.23 (upper). The satellite S can be seen from P
as long as it remains above the local horizon for P , represented by the straight
line S1PS2, i.e., on the circular arc S1AS2. The angle α = (OP , OS1) can
be found immediately (reduced distance η):

cosα =
R

R + h
=

R

a
=

1
η

. (5.38)

The period of the satellite is taken equal to the Keplerian period T0. The
visibility time ∆tv is therefore

106 The noun � �������� ��, ‘synod’, is composed from ���, ‘with, together’ and �

	�
�� ��, ‘way, journey’. In Ancient Greek, it already had the two meanings of
‘meeting’ and ‘conjunction of heavenly bodies’, both of which illustrate the idea
of arriving at the same time.

107 In English it is no accident that the word ‘month’ should be so similar to the word
‘Moon’. This similarity can be found in German and other related languages. The
Indo-European root ∗men, ∗mes refers to the Moon, to lunation (= month), and
to measurement (of time). Many languages in this family have held on to this
proximity of meaning, although this has not happened in Greek or Latin. These
two languages referred to the Moon as ‘the shining one’ (� ������ �� and luna,
æ). See also the note on Chandrasekhar.
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∆tv =
α

π
T0 . (5.39)

Expressing α and T0 as functions of the semi-major axis a (here the radius)
of the orbit, we obtain

∆tv = 2

√
a3

µ
arccos

R

a
. (5.40)

Using the altitude h and the value of the period T0(h=0) defined by (2.17),
we have (for time in minutes and angles in radians)

∆tv (min) = 84.5
(

1 +
h

R

)3/2 1
π

arccos
R

R + h
. (5.41)

One may also consider the question by fixing a minimal zenithal angle of sight
ζ, with ζ = (PA, PS′

1). The visibility time then corresponds to the time
taken by the satellite to travel along the arc S′

1AS′
2. In this case, the angle

α = (OP , OS′
1) depends on η and ζ. Simple trigonometric considerations

(projecting S′
1 on PA) show that this angle is the solution of the equation

cosα − 1
tan ζ

sin α =
1
η

.

Hence,

α = 2 arctan
√

1 + Z2 − H2 − Z

1 + H
. (5.42)

with H = 1/η , Z = 1/ tan ζ ,

and we obtain the visibility time from (5.39).
When the satellite does not pass through the vertical at the relevant point,

the visibility time is obviously shorter.

Example 5.6. Calculate the visibility time for LEO and MEO satellites.

For a (SPOT-type) LEO satellite with h = 800 km, we find η = 1.125 and T0 =
101 min. Using (5.38), we obtain α = 27◦ and hence, by (5.39),

∆tv = (27/180) × 101 = 15 min .

If the visibility condition consists in requiring that the satellite should be at least
15◦ above the horizon, i.e., ζ = 75◦, the calculation with (5.42) gives α = 16◦ and
we deduce that ∆tv = 9 min. These visibility times are maximal values, assuming
that the satellite passes through the local vertical.
For a (NAVSTAR/GPS-type) MEO satellite with h = 20 200 km, we find η = 4.167
and T0 = 718 min. It follows that α = 76◦ and hence,

∆tv = (76/180) × 718 = 304 min ≈ 5 hr .

With ζ = 60◦ (visibility if the satellite is more than 30◦ above the horizon), we

have α = 48◦ and ∆tv = 192 min ≈ 3 hr.
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Figure 5.23. Schematic representation of the Earth and satellite trajectories. The
Earth and the orbits are drawn on the same scale. Upper : circular orbits. LEO
orbits are shown with h = 800, 1400 and 2000 km, together with the orbit h = R,
indicating the points mentioned in the text. Lower : HEO orbit with period T ≈
24 hr, e = 0.75, indicating the points mentioned in the text

5.6.2 Satellite in Highly Eccentric Orbit

For a highly eccentric elliptical orbit, with eccentricity e and type HEO, we
consider once again the most favourable situation: the relevant point P is the
subsatellite point when the satellite goes through its apogee A, as shown in
Fig. 5.23 (lower).

The satellite S can be seen from P as long as it remains on the elliptical
arc S1AS2. Given the approximations made here, one may replace the local
horizon S1PS2 by the parallel B1OB2 which goes through the centre of the
Earth O. We thus find the visibility time as the time taken by the satellite
S to travel along the elliptical arc B1AB2.

At a given time, the position of S is specified relative to the perigee A′

by the true anomaly v = (OA′, OS). The mean anomaly M of the point B1

is calculated from (1.54) with v = π/2. We obtain

M(B1) = 2 arctan

√
1 − e

1 + e
− e
√

1 − e2 . (5.43)
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Molniya
Elliptical orbit - Ground track
Recurrence = [ 2; +0;  1]   2

>>>>   Time span shown:  1440.0 min =   1.00 day

TIME MARKER

Equiv. altit.  =  20175.5 km

e = 0.736000

a =26553.629 km

CRITICAL Inclin. =  63.42 °

Period =   717.75 min    * rev/day = 2.01

h_a = 39719 km;  h_p =  632 km;  arg. perigee:  +270.00 °

Time marker: one point every  60.0 minutes

Longitude / Initialisation:

Asc. node:     72.94 °

Apogee:        80.00 °

Projection:  Stereographic

Property:  Conformal

T.:Azimuthal    Graticule: 10°

Map centre (r.): 90.0 ° N;   10.0 ° W

Aspect:  Direct

[  -90.0 /   +0.0 / +100.0 ] Gr.Mod.:  GEM-T2

Supertundra
Elliptical orbit - Ground track
Recurrence = [ 1; +0;  1]   1

>>>>   Time span shown:  1440.0 min =   1.00 day

TIME MARKER

Equiv. altit.  =  35785.1 km

e = 0.423000

a =42163.191 km

CRITICAL Inclin. =  63.43 °

Period =  1436.03 min    * rev/day = 1.00

h_a = 53620 km;  h_p =17950 km;  arg. perigee:  +270.00 °

Time marker: one point every  60.0 minutes

Longitude / Initialisation:

Asc. node:    -53.02 °

Apogee:      -100.00 °

Projection:  Stereographic

Property:  Conformal

T.:Azimuthal    Graticule: 10°

Map centre (r.): 90.0 ° N;   10.0 ° W

Aspect:  Direct

[  -90.0 /   +0.0 / +100.0 ] Gr.Mod.:  GEM-T2

Figure 5.24. Ground tracks. Upper : Molniya orbit. Lower : Supertundra orbit
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We deduce the visibility time as a function of the period:

∆tv =
[
1 − M(B1)

π

]
T0 . (5.44)

Example 5.7. Calculate the visibility time for HEO satellites.

For a (Molniya-type) HEO satellite, we have e = 0.736 and T0 = 718 min. From
(5.43) and (5.44), we obtain

M(B1) = 0.744 − 0.498 = 0.245 rad = 14◦ , 1 − 14/180 = 0.92 .

During one revolution, the satellite thus spends 92% of its time in going from B1 to
B2 via A (and 8% in going from B2 to B1 via A′), which corresponds to ∆tv = 11 hr
for a period of 12 hr.108 This result appears clearly in Fig. 5.24 (upper), where the
time interval between two consecutive points marked on the ground track of the
orbit is one hour. If we impose a minimal zenithal angle of sight ζ ∼ 70◦ and if P is
not exactly at the subsatellite point of A, we obtain a visibility span of about 8 hr.
For a (Supertundra-type) HEO satellite, we have e = 0.423 and T0 = 1436 min. We
obtain

M(B1) = 0.751 rad = 43◦ , 1 − 43/180 = 0.76 ,

which represents a visibility time of 18 hr, illustrated in Fig. 5.24 (lower). Imposing

the above restrictions, a time of more than 12 hr is nevertheless obtained.

5.7 Appendix: NORAD Orbital Elements

The organisation known as NORAD (North American Aerospace Defence
Command), founded in 1962, provides an inventory of all orbiting objects
(satellites, whether active or otherwise, rocket debris, etc.). The position of
the object on its orbit and the position of the orbit relative to the ECI
Galilean frame109 are defined by the orbital elements. The calculated posi-
tions are adjusted by radar measurements.

This data, referred to as the NORAD Two-Line Element Set Format, is
updated twice a day and can be accessed by Internet. Data for each satellite
consists of three lines in the following format:

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN

108 We observe that, although the name Molniya, lightning, suggests speed, it is
when the satellite is at its slowest that it is actually used.

109 Earth-Centered Inertial (ECI) coordinate system: the z axis runs along the
Earth’s rotational axis pointing North, the x axis points in the direction of the
vernal equinox, and the y axis completes the direct orthogonal system.
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Line 0 is a twenty-four character name. Lines 1 and 2 are the standard Two-
Line Orbital Element Set Format identical to that used by NORAD and
NASA. The format description is:

Line Column Description
1 01 Line Number of Element Data
1 03-07 Satellite Number
1 08 Classification (U=Unclassified)
1 10-11 International Designator (Last two digits of launch year)
1 12-14 International Designator (Launch number of the year)
1 15-17 International Designator (Piece of the launch)
1 19-20 Epoch Year (Last two digits of year)
1 21-32 Epoch (Day of the year and fractional portion of the day)
1 34-43 First Time Derivative of the Mean Motion
1 45-52 Second Time Deriv. of Mean Motion (decimal point assumed)
1 54-61 Drag term (decimal point assumed), ‘B*’ model
1 63 Ephemeris type
1 65-68 Element number
1 69 Checksum (Modulo 10)
2 01 Line Number of Element Data
2 03-07 Satellite Number
2 09-16 i Inclination (Degrees)
2 18-25 Ω Right Ascension of the Ascending Node (Degrees)
2 27-33 e Eccentricity (decimal point assumed)
2 35-42 ω Argument of Perigee (Degrees)
2 44-51 M Mean Anomaly (Degrees)
2 53-63 n Mean Motion (Revolutions per day)
2 64-68 Revolution number at epoch
2 69 Checksum (Modulo 10)

The correspondence between the six standard Keplerian elements (as dis-
cussed in Chap. 2) and the six NORAD elements is immediate for the metric
elements i and e and the angle elements Ω, ω, and M . The semi-major axis
a is obtained from the mean motion n.

In order to use these orbital elements in a practical context, two of them
require preliminary calculations:

• As we have just seen, the semi-major axis a is not given directly by the
NORAD elements. The number of revolutions per day gives the anomal-
istic period Ta (because the period, in this orbital study, is defined as the
time elapsed between two successive transits at perigee). By an iterative
method like the one used in Example 4.2, we obtain the value of a.

• The angle Ω, the right ascension of the ascending node, is measured in
the ECI frame from the direction of the vernal equinox. But in practice,
one needs to know λAN, the longitude of the ascending node, i.e., the
angular elongation of this point in a terrestrial frame (measured from
the Greenwich meridian). With the usual notation, we can say that Ω is
measured in , and λAN in T.
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We first calculate the angle ΩG00 between the Greenwich meridian and the
vernal equinox at 0 h UTC, on the relevant day. This angle corresponds to the
mean sidereal time GMST (Greenwich Mean Sidereal Time), at 0 h, written
qG00 and measured in seconds. It is obtained from the relation

qG00 = 24110.54841 + 8640184.812866Tu + 9.3 × 10−2T 2
u − 6.2 × 10−6T 3

u ,
(5.45)

where Tu = du/36525 and du is the number of days elapsed since 1 January
2000 at 12 h, which corresponds to the Julian date JD 2 451 545.0.

With the equivalence between days and round trips (1 day – 360◦), we
obtain ΩG00 in degrees from qG00 in seconds:

ΩG00 =
qG00

240
. (5.46)

We then calculate ΩGt, the angle between the Greenwich meridian and the
vernal equinox at the relevant UT time:

ΩGt = ΩG00 + Ω̇T∆t , (5.47)

where Ω̇T is the angular speed of rotation of the Earth, in degrees/day, given
by (4.22), and ∆t is the fraction of the day elapsed at the relevant UT time
since 0 hr UT.

The positions of the ascending node and the Greenwich meridian, Ω and
ΩGt, respectively, are measured from the same origin at the same time. We
thus obtain the longitude λAN of the ascending node in a terrestrial frame:

λAN = Ω − ΩGt . (5.48)

The longitude and the UT time then give the LMT crossing time at the
ascending node.

Example 5.8. Calculate the orbital elements of the ICESat satellite from the
NORAD elements.

During the first few months of its mission, the satellite ICESat followed a so-called
calibration orbit. Its ground track had to repeat every 8 days (we return to the
notion of recurrence in Chap. 7). The calibration orbit overflew the White Sands
ground station calibration site every 8 days. Once the satellite and its instruments
had been commissioned, burns were performed to attain ICESat’s 183-day repeat
ground track, mission orbit. The NORAD elements for the given day during this
calibration phase were as follows:

ICESAT

1 27642U 03002A 03175.25018279 .00000722 00000-0 75456-4 0 1631

2 27642 94.0031 263.4514 0002250 85.5696 274.5785 14.90462832 24163

We obtain the date from
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Figure 5.25. Transit of the ICESat satellite through the vertical of the calibration
site at White Sands (Arizona, USA). Calibration phase
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03175.25018279: year = 03, day = 175, hour = 0.25018279/24 ,

which gives 24 June 2003, at 06:00:15.79 UTC. Just for information, this was revo-
lution number 2416, counting from the satellite’s first transit at the ascending node.
The following elements are obtained immediately:

n = 14.904 628 32 rev/day , e = 0.000 225 0 , i = 94.003 1◦ ,

Ω = 263.451 4◦ , ω = 85.569 6◦ , M = 274.578 5◦ .

With the mean anomaly M , we can calculate the eccentric and true anomalies, very
close to M since the eccentricity is extremely small: E = 274.566◦ and v = 274.553◦.
With n, we find the anomalistic period Ta (min) = 1440/n, or Ta = 96.614 28 min.
To begin with, we set T0 = Ta, and with this Keplerian period, we obtain the
value of the semi-major axis of the Keplerian orbit: a0 = 6974.6 km. We calculate
the secular variation related to the mean motion, ∆n/n = −0.6695 × 10−3, then
recalculate a. After several iterations, this yields a = 6971.515 km, that is, an
altitude of h = a − R = 593 km. With the values of a and i, we can calculate the
precession rates and periods. This yields:

nodal precession Ω̇ = +0.5079◦/day ,

apsidal precession ω̇ = −3.5508◦/day ,

anomalistic period Ta = 96.6143 min ,

draconitic period Td = 96.6782 min.

To calculate the longitude of the ascending node, we determine the Julian date
of the relevant time, JD 2 452 814.750, which gives JD-JD2000 = 1 269.750 and
hence du = 1269.5. Using (5.45), we obtain qG00 = 65 217.588 (mod 86 400), or
ΩG00 = 271.740◦ . Given the fraction of the day elapsed, we obtain from (5.47),
ΩGt = 1.806◦ whence, by (5.48),

λAN = 263.451 − 1.806 = 261.646 .

For a transit at the ascending node at longitude 261.646◦ (i.e., 98.354◦W), the time

06:00 UT corresponds to 23:27 LMT. These elements suffice to represent the ground

track of the ICESat satellite over 8 days. During this time, the satellite should pass

through the vertical at the calibration site in White Sands (Arizona). Figure 5.25

shows that this constraint was respected.

5.8 Appendix: Cartographic Projections

A cartographic projection is a transformation mapping a point of the sphere
(or an ellipsoid), specified by its spherical coordinates λ, φ (longitude, lati-
tude), in a bijective manner onto its coordinates x, y on the map:

cartographic projection f = {f1, f2}
{

x = f1(λ, φ) ,
y = f2(λ, φ) .
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There exist infinitely many such projections.
The main problem to be solved by a cartographic projection can be put

succinctly as follows: the sphere is not developable. This means that the sur-
face of a sphere cannot be mapped onto a plane without distorting or tearing
it.110 Theoretical study of this question was carried out contemporaneously
by Lambert111 (1772), Euler (1777) and Lagrange (1779). It was definitively
solved by Gauss (1822), who studied the conditions under which an arbitrary
surface could be mapped onto another arbitrary surface.

A cartographic projection can have (exclusively) one or other of the fol-
lowing two properties:

• angles are conserved, and the projection is said to be conformal,
• areas are conserved, and the projection is said to be equal area or equiv-

alent.

It may be that it has neither of these properties,112 but it can never have
both. In fact, the map can conserve the angles or the area of a figure, but
it can never conserve the perimeter. No map can conserve distances in all
directions. In other words, no projection can have constant scale over the
whole field of projection.

In a conformal projection, the parallels and the meridians on the map
intersect at right-angles, since the same is true on the sphere, where they form
two sets of orthogonal curves. In an equal area projection, a country twice as
big as another is represented on the map by an area twice as big. When the
whole Earth is represented, it can be considered as spherical since projecting
the terrestrial sphere or ellipsoid on a plane leads to quite imperceptible
differences in the resulting maps, whatever projection may be used. The same
is not true for accurate regional maps, however.

Projections can be classified by type or by aspect. The type tells us how
the sphere appears when projected onto the map, i.e., cylindrical, conical,

110 Unlike the sphere, a cylinder is developable. If the body of a big cat could be
assimilated to a cylinder, one could understand how the tiger might change into
a bedside rug without deformation.

111 Jean Henri Lambert (1728–1777) was a Swiss and German astronomer, math-
ematician and physicist, with French ancestry. In astronomy, he calculated the
trajectories of comets and understood that the Milky Way was just a modest
galaxy in the Universe. In physics, he discovered the fundamental law of pho-
tometry. In his many mathematical works, among which he demonstrated the
irrationality of π (1766), he assigned great importance to problems of perspec-
tive and cartographic projections. He defined a great many projections, several of
which bear his name today. The best known is the conformal conical projection,
used in France for the map of France since 1922 and the cadastral survey since
1938.

112 The older literature is full of different adjectives describing these properties: au-
togonal and orthomorphic for conformal; authalic, homolographic for equivalent;
aphylactic, in the absence of these properties. Such terms have now gone into
disuse.
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Envisat
Orbit - Ground track
Recurrence = [14;+11; 35] 501

>>>>   Time span shown:  5760.0 min =   4.00 days

Altitude =  781.4 km a = 7159.497 km

Inclination / SUN-SYNCHRON.=  98.55 °

Period =   100.60 min    * rev/day =14.31

Equat. orbital shift  = 2799.7 km  (  25.1 °)

Asc. node:      0.13 ° [22:00 LMT]

App. inclin. = 102.46 °

Projection:  Snyder-Satel.Track/55°

Property:   none

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Jason-1
Orbit - Ground track
Recurrence = [13; -3; 10] 127

>>>>   Time span shown:  10.00 days

Altitude = 1336.3 km a = 7714.434 km

Inclination  =  66.04 °

Period =   112.43 min    * rev/day =12.81

Equat. orbital shift  = 3155.5 km  (  28.3 °)

Asc. node:     99.92 °

App. inclin. =  70.29 °

Projection:  Snyder-Satel.Track/35°

Property:   none

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Figure 5.26. Ground tracks of two Sun-synchronous and prograde satellites. Sny-
der projection, with different standard parallels. Upper : 55◦. Lower : 35◦
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TRMM
Orbit - Ground track
>>>>   Time span shown:  2880.0 min =   2.00 days

Altitude =  350.1 km a = 6728.217 km

Inclination  =  34.99 °

Period =    91.31 min    * rev/day =15.77

Equat. orbital shift  = 2596.2 km  (  23.3 °)

Asc. node:      0.00 °

App. inclin. =  37.24 °

Projection:  Snyder-Satel.Track/15°

Property:   none

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Megha-Tropiques
Orbit - Ground track
Recurrence = [14; -1;  7]  97

>>>>   Time span shown:  4320.0 min =   3.00 days

Altitude =  865.6 km a = 7243.700 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

Asc. node:      0.00 °

App. inclin. =  21.52 °

Projection:  Snyder-Satel.Track/ 0°

Property:   none

T.:Cylindrical    Graticule:  5°

Map centre:       0.0 °  ;   35.0 °E

Aspect:  Direct > zoom : 2.00

[  +90.0 /   +0.0 / -125.0 ] Gr.Mod.:  GEM-T2

Figure 5.27. Ground tracks of two prograde (low inclination) satellites. Snyder
projection, with different standard parallels. Upper : 15◦. Lower : 0◦
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azimuthal, and so on. We use the word ‘appears’ because a cartographic
projection is not usually (and the exceptions are very rare) a projection in
the sense of an intersection between a straight line and a plane. For example,
the Mercator projection is said to be cylindrical, but it is not the ‘projection’
of this sphere from its centre onto a cylinder that is tangent to it at the
equator (as one often reads).

The aspect of a projection can be direct (or normal), transverse, or
oblique. For example, for a stereographic projection (of azimuthal type) with
direct aspect (also called polar in this case), the point of contact of the plane
of projection with the sphere occurs at the pole, whilst it occurs on the equa-
tor for a transverse projection (also called equatorial in this case). For an
arbitrary point of contact, the projection is said to be oblique.

The computer software Atlas, which we have devised, is coupled with the
orbitography part of our program Ixion. Any satellite ground track can thus
be mapped out with the chosen projection. In each representation, every
effort is made to apply the most suitable cartographic projection. On all the
maps presented here, plotted using Atlas, we indicate the main features of
the projection: name, properties, type and aspect. Also given in the key are
the coordinates (longitude and latitude) of the centre of the map, together
with the three Euler angles which define the rotation of the globe for this
projection from the standard initial position.

The projections used in the present book can be grouped as follows:

• Conformal Projections. The angle between the ground track (of the
satellite or its swath) and the given meridian is conserved. The main
projections here are:
– the Mercator projection,
– the stereographic projection,
– the projections due to Guyou and Adams, based on elliptic integrals

of the first kind.
• Equal Area Projections. These projections are used when it is im-

portant to respect surface areas. The main projections used in this book
are:
– the Behrmann projection (dilated Lambert equal area cylindrical pro-

jection) and the Lorgna projection,
– the Mollweide and Sanson projections,
– the Goode homolosine projection (in interrupted form),
– the Hammer–Aitoff projection.

• Perspective Projections. Although they have no special properties,
these projections are rather visual, representing the planet as if it were
seen from space, viewed from various distances. The main projections
used are:
– the perspective view projection, where the viewing point is at a finite

distance (expressed as a number of planetary radii),
– the orthographic projection, where the viewing point is at infinity,
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– the Armadillo projection, due to Raisz, which represents the sphere in
a rather picturesque manner projected on a torus.

• Specific Projections. In 1977, the American cartographer John P. Sny-
der invented a specific projection to represent satellite ground tracks for
the satellite ERTS-1 (Landsat-1) and the following satellites in the Land-
sat programme. This projection, Satellite Tracking, keeps the meridians
regularly spaced and modifies the spacing of the parallels in such a way
that the satellite ground track is a straight line. We have adapted this
to any type of satellite. It is presented in the two parts of Fig. 5.26 and
Fig. 5.27, with four different dilatations of the latitudes.

• Archaic Projection. The so-called plate-carrée projection is very fre-
quently used (if not exclusively) in books and documents concerned with
satellite ground tracks. It represents longitudes and latitudes linearly
along the abscissa and ordinate, respectively. This projection is some-
what simple-minded (x = λ, y = φ), even primitive (it was fashionable
. . . in the Middle Ages). It has no particular properties (it is neither con-
formal, nor equivalent) and its only mathematical value is its simplicity.
This is no longer an argument with the advent of computer programming.
It has not been used here, except for the first three maps in the book, at
the beginning of the chapter. (We did not wish to upset habits too early
on.)
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We begin by studying the position of the orbit and ground track of an arbi-
trary satellite relative to the direction of the Sun. We then turn more specif-
ically to Sun-synchronous satellites for which this relative position provides
the very definition of their orbit.

6.1 Cycle with Respect to the Sun

6.1.1 Crossing Time

At a given time, it is useful to know the local time on the ground track,
i.e., the LMT, deduced in a straightforward manner from the UT once the
longitude of the place is given, using (4.49). The local mean time (LMT) on
the ground track at this given time is called the crossing time or local crossing
time.

To obtain the local apparent time (LAT), one must know the day of the
year to specify the equation of time ET. In all matters involving the position
of the Sun (elevation and azimuth) relative to a local frame, this is the time
that should be used.

The ground track of the satellite can be represented by giving the crossing
time. We have chosen to represent the LMT using colour on Colour Plates
IIb, IIIb and VII to XI.

For Sun-synchronous satellites such as MetOp-1, it is clear that the cross-
ing time (in the ascending or descending direction) depends only on the
latitude. At a given place (except near the poles), one crossing occurs during
the day, the other at night. For the HEO of the Ellipso Borealis satellite, the
stability of the crossing time also shows up clearly.

In the case of non-Sun-synchronous satellites such as Meteor-3-07, the
time difference shows up through a shift in the time from one revolution to
the next. For a low-inclination satellite such as Megha-Tropiques, we see that,
if the ascending node crossing occurs at 06:00, the northern hemisphere will
be viewed during the day, and the southern hemisphere during the night.
After a few days the crossing time at the equator will have changed.
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Figure 6.1. Nodal precession in the ecliptic. In the plane of the ecliptic, the centre
of the Sun has been marked C, and the centre of the Earth O at two given times.
The direction Ox is fixed relative to the stars. A satellite orbits the Earth. Its
ascending node N is shown by a small black dot , whilst the descending node is
shown by a small circle. The line segment joining the two nodes is the projection
of the line of nodes on the ecliptic, not on the satellite orbit

6.1.2 Calculating the Cycle CS

We consider the orbit of the Earth around the Sun, treating it as circular,
since in this calculation of the cycle, we identify LAT and LMT. In Fig. 6.1,
the centre of the Sun, and of the Earth’s orbit, is denoted by C, whilst the
centre of the Earth is O. The ascending node of a satellite in orbit around
the Earth is denoted by N . The dihedral angle between the meridian plane
of the Earth containing N and that containing C gives H , the hour angle of
the ascending node. This angle is represented in Fig. 6.1 by H = (OC, ON).
The diagram is schematic. To be precise, N should represent the projection
of the ascending node on the plane of the ecliptic. However, this will not
affect the following argument.

At the time t = t0, the direction CO defines an axis Ox, with fixed
direction in the Galilean frame . The hour angle of N is thus written H(t0) =
H0. At another time t = t1, the plane of the satellite orbit will have changed
due to the phenomenon of nodal precession by an angle Ω relative to the
frame , i.e., relative to the direction Ox. The hour angle of N is then given
by
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Figure 6.2. Variation of the cycle CS relative to the Sun as a function of the
inclination for a satellite at altitude h = 800 km. The cycle CS is given in days on
the left ordinate, and the nodal precession rate P is given in rev/yr on the right
ordinate

H(t1) = H1 = H0 + Ω − β ,

where β is the angle through which the Earth has moved on its orbit around
the Sun, viz.,

β =
(
CO(t0), CO(t1)

)
.

This angle β is equal to the difference in ecliptic longitude l of the Sun at
the two given times. Hence,

∆H = H1 − H0 = Ω − β ,

which represents the variation of the orbital plane relative to the direction of
the Sun.

Setting m = t1 − t0 for the time interval, the angles can be written in
terms of the angular speeds:

Ω = mΩ̇ , β = mΩ̇S ,

whence,

∆H = m(Ω̇ − Ω̇S) . (6.1)

The time interval m0 needed for the hour angle of the ascending node to vary
by 24 hr, or one round trip, is called the cycle relative to the Sun. Hence,
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H(t + m0) = H(t) [2π] ,

which implies that

m0 =
2π

Ω̇ − Ω̇S

.

Bringing in the nodal precession rate P in round trips per year as defined by
(4.30) and using (4.28), m0 becomes

m0 = −JM
Ntro

1 − P
.

The cycle relative to the Sun is usually given in days and we shall denote it
by CS (with C for ‘cycle’ and S for ‘Sun’). Since m0 is expressed in SI units,
i.e., in seconds, we obtain CS from the very simple expression

CS =
Ntro

P − 1
. (6.2)

The quantity P can be expressed in terms of the constant kh defined by
(4.63). This rate P is given by

P = −kh

(
R

a

)7/2

cos i . (6.3)

One can check that for a Sun-synchronous satellite we do indeed have P = 1.
In this way we obtain the cycle relative to the Sun as a function of the

orbital characteristics, taking care to note the signs:

CS = CS(a, i) = − Ntro

kh

(
R

a

)7/2

cos i + 1

, (6.4)

or with approximate numerical values (CS in days),

CS = − 365.25

10.11
(

R

a

)7/2

cos i + 1

. (6.5)

The cycle relative to the Sun, CS = CS(a, i), is a very important feature of
any satellite, but especially Earth-observation satellites.

6.1.3 Cycle CS and Orbital Characteristics

Cycle CS as a Function of Altitude and Inclination

The cycle CS is a function of a and i. Figure 6.2 shows the variation CS(i) for
a fixed altitude h = 800 km. The cycle CS(i) is given in days, with the sign
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indicating the direction of rotation. We have also plotted the nodal precession
P (i) in rev/yr, which is a sinusoidal curve, and P − 1 which determines
the vertical asymptote of CS(i) by its intersection with the horizontal axis
through the origin.

For the altitude represented here, typical of LEO satellites, we see that the
cycle remains in the vicinity of two months (CS ∼ −60 day) for inclinations
below 45◦. When i increases, the length of the cycle also increases. Above
the Sun-synchronous inclination, the cycle decreases (but there are very few
satellites in this configuration).

Specific Cases of the Cycle CS

We note here certain specific values of the cycle CS for different orbits.

• Polar Satellites. We see immediately from (6.4) or (6.5) that, if the
satellite is strictly polar, CS = −365.25 day. The cycle is annual. One
year goes by before we return to the same orbital configuration relative
to the Sun, since the plane of the orbit does not rotate with respect to
. The negative value of CS shows that the line of nodes moves in the
retrograde direction relative to T.

• Sun-Synchronous Satellites. Equation (6.2) shows that if Ω̇ = Ω̇S,
the cycle is infinite. This happens for Sun-synchronous satellites and we
may indeed treat CS as infinite, since after a very great number of days,
the angle H will not have changed. For Sun-synchronous satellites, the
hour angle of the ascending node, and hence the crossing time1 of the
satellite at the ascending node, is constant. For a given altitude, the cycle
CS is negative provided that i is less than the Sun-synchronous inclination
given by (4.68). Beyond this value, CS is positive.

• Shortest Cycle. The smallest value for the cycle is given by the minimum
of |CS(a, i)|. According to (6.5), it is obtained for i = 0 and a = R and
the value is

|CS|min =
Ntro

kh + 1
=

365.25
11.11

= 32.9 day . (6.6)

The cycle relative to the Sun CS can never be less than 33 days.

1 The time related to the hour angle is LAT. A Sun-synchronous satellite transits
at the ascending node at the same LMT. If there is no difference between LAT
and LMT here, it is because we have used a simplified scenario for the Earth
orbit. However, for the calculation of the cycle CS, this could not be otherwise:
we only want to know how many days it will be before the next crossing (to
within a few minutes), whatever time of year it is. To treat an elliptical Earth
orbit, we would have to specify the day we choose to begin the cycle.
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Time interval:
26 days

SPOT-4

Cs: infinitySun-synchronous Satellite

Time interval:
24 days

Radarsat-1

Cs: infinitySun-synchronous Satellite

Time interval:
15 days

Corot

Cs = -365.2

Time interval:
15 days

TRMM

Cs =  -46.3

Time interval:
15 days

LAGEOS-1

Cs = -560.1

Time interval:
15 days

GEOS-3

Cs = +208.2

Figure 6.3. Cycle relative to the Sun for various satellites. The time given is the
crossing time at the first ascending node
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Example 6.1. Calculate the cycle relative to the Sun for the satellites Meteor-3-07,
TOPEX/Poseidon, ICESat, ERBS and UARS.

These satellites have near-circular orbits. For Meteor-3-07, we have h = 1 194 km
and i = 82.56◦. Using (6.5), we obtain

CS = − 365.25

10.11

„
6378

7572

«7/2

cos(82.56) + 1

= − 365.25

10.11 × 0.5477 × 0.1295 + 1

= − 365.25

0.7169 + 1
= −365.25

1.7169
= −212.73 ,

which gives a cycle of 213 days (advance of crossing time). In this case it is easier
to use (6.2) because the value of P has already been calculated in Example 4.2:

P = −0.716 =⇒ CS =
365.25

P − 1
= −212.73 .

For TOPEX/Poseidon, with h = 1336 km and i = 66.04◦, we obtain P = −2.107,

which gives a cycle CS = −117.47, or 117 days (advance of crossing time).

ICESat is at low altitude, h = 592 km, with inclination i = 94◦ between the

polar inclination for which the cycle is one year (CS = −365.25) and the Sun-

synchronous inclination (iHS = 97.8◦ at this altitude) for which the cycle is infinite.

The calculation gives P = 0.515, whence CS = −752.7, which corresponds to a very

long cycle of more than two years.

ERBS and UARS, both launched by the space shuttle, have the same inclination

and the same altitude to within a few kilometres. The calculation gives P = −3.986

for ERBS, whence CS = −73.2, and P = −4.090 for UARS, whence CS = −72.0.

One often reads for these satellites that their cycle relative to the Sun is 36 days.

However, this is the half-cycle.

Nodal Precession and Cycle CS

In order to visualise the nodal precession and bring out the significance of
the cycle CS as clearly as possible, let us return to the graph in Fig. 6.1 and
apply it to a few satellites in the following example.

Example 6.2. Visualising the cycle CS for various satellites in prograde, polar,
retrograde and Sun-synchronous orbit.

Figure 6.3 shows the position of the Earth on its orbit around the Sun and the po-

sition of the nodes (ascending in black, descending in white) of the satellite orbit.

For the two Sun-synchronous satellites, SPOT-4 and Radarsat-1, it is clear that the

shift of the orbital plane compensates the Earth’s annual motion. For Radarsat-1,

the normal to the orbit lies in the meridian plane passing through the Sun.

For a strictly polar satellite like Nova-1 or Corot, the orbital plane is fixed in �.
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For Corot, which has this inertial orbit, stars are observed perpendicularly to the

orbit, six months in one direction, and six months in the opposite direction, in such

a way as to avoid viewing the Sun.

Let us consider now several retrograde (negative) cycles, one very short, for TRMM

(prograde orbit), one very long, for LAGEOS-1 (retrograde orbit). The satellite

GEOS-3 (retrograde orbit) provides a rare case of precession in the prograde direc-

tion.

6.1.4 Cycle and Ascending Node Crossing Time

Knowing the initial conditions, it is a simple matter to obtain the crossing
times at the ascending node at an arbitrary date, provided that we also know
the cycle relative to the Sun CS. Indeed, since the crossing time increases or
decreases by 24 hours every CS days, it is easy to calculate the increase or
decrease per day. Here is an example of this calculation.

Example 6.3. Calculate the dates during the year 1999 for which the LMT of the
ascending node crossing is the same for the satellites TRMM and Resurs-O1-4.

In order to study the Earth’s radiation budget, TRMM and Resurs-O1-4 were
equipped with the CERES and ScaRaB instruments, respectively. A joint mea-
surement campaign was organised in January and February 1999. The aim was to
compare the measurements obtained for the same region viewed by the two instru-
ments at roughly the same times (with a leeway of ±15 min). The Sun-synchronous
satellite Resurs-O1-4 crosses the ascending node at 22:20 LMT. The initial condi-
tions for TRMM are given by an ascending node crossing (tAN given in month day
hr min s):

tAN = 1999 01 21 20:43:47 (UT) , λ = +5.157◦ .

We calculate the value of τAN, LMT crossing time:

τAN = tAN +
λ

15
= 20:43:47 + 00:20:38 = 21:04:25 .

In Example 4.1, we found P = −6.89, which gives the cycle

CS = −365.25

7.89
= −46.29 day .

We thus obtain the daily drift as

1440

CS
= − 1440

46.42
= −31.02 min .

The difference between τAN = 21:04 on 21 January 1999 (J = 21) and the chosen
time of 22:20 is 76 min. The passage of TRMM at the chosen time thus occurs with
a shift of −76/31 = −2.45 days, or 2 days earlier, i.e., on 19 January 1999 (J = 19).
The ascending node crossing around 22:20 thus occurs on the days Jk given by

Jk = 19 + k|CS| ,
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where the integer k takes 8 values over one year (since |365/CS| = 7.9). Here, with

J0 = 19 and the values k = 0, . . . , 7, we obtain all the dates required for the year

1999. If we need to know the dates of passage of TRMM at 22:20 at the descending

node, we merely add a half-cycle to the values of Jk, which gives dates shifted by

23 days with respect to the first series.

6.2 Crossing Time for a Sun-Synchronous Satellite

6.2.1 Passage at a Given Latitude

The time in LMT at which a Sun-synchronous satellite crosses the ascend-
ing node is constant in time (provided that the orbit is suitably maintained,
of course), because in the frame , the nodal precession balances the mo-
tion of the Earth’s axis about the Sun. This is the defining feature of Sun-
synchronous orbits, brought out in the next example.

Example 6.4. Calculate the crossing time at two consecutive ascending nodes for
a Sun-synchronous satellite.

Consider the first crossing at the ascending node at longitude λ1 and time t = t0
in UT. Let τ1 be the corresponding LMT, so that, according to (4.50),

τ1 = t0 +
λ1

15
,

with time in hours and longitude in degrees.
The next passage (nodal period T ) will occur at longitude λ2 and at time

t = t0 + T . The corresponding LMT at the second crossing, denoted by τ2, is
therefore

τ2 = t0 + T +
λ2

15
.

The longitude λ2 is obtained simply by considering the equatorial shift given by
(5.22):

λ2 = λ1 + ∆Eλ = λ1 − 15T .

We thus have

τ2 = t0 + T +
λ1 − 15T

15
= t0 +

λ1

15
= τ1 ,

which shows that the LMT remains constant.
Since the mean motion is constant, the time taken to reach a given latitude

from the equator will be the same for each revolution. We may thus say that, for a
Sun-synchronous satellite:

• the LMT crossing time at a given latitude is constant,
• the LMT crossing time at a given meridian depends only on the latitude.
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Figure 6.4. Intersection of the ground track of a Sun-synchronous satellite orbit
(ascending node N) with a given meridian plane, defined by the point Q on the
equator

Establishing the Relation Between φ and ∆τ

The relation between τ (the crossing time at the meridian in LMT) and φ
(latitude) is found using the equations for the ground track and calculat-
ing the longitude corresponding to each latitude, whereupon the time can
be found in LMT. But there is a simpler way to obtain this relation from
geometric considerations.

Consider the Earth in the Galilean frame, as shown in Fig. 6.4. At a
given time, let A be the intersection of the meridian plane of the direction
of the Sun with the Earth’s equator. We consider the orbital plane of a Sun-
synchronous satellite. Its ground track cuts the equator at N , the projection
of the ascending node on the Earth’s surface. This plane makes an angle
i = iHS with the equatorial plane (this is indeed i since we are working in ,
rather than the apparent inclination).

The angle HAN = (OA, ON) remains constant by the Sun-synchronicity
condition, since HAN measures the hour angle, and hence the time in LMT,
of the ascending node.

Consider a meridian defined by a point Q on the equator. The ground
track of the orbit cuts this meridian at a point P of latitude φ. The hour
angle of P and of Q is H = (OA, OQ). We define

∆H = H − HAN = (ON , OQ) .
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Figure 6.5. Graph of φ(∆τ ), the relation between the latitude of the point under
consideration and the LMT time difference between transit at the ascending node
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of the altitude, h = 800 km and h = (800± 800) km. Lower : for three values of the
altitude, h = 800 km and h = (800 ± 200) km. This is a magnified view of part of
the upper figure
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This angle thus measures the difference in hour angle between N and P (or
Q).

In the spherical triangle PQN , with a right-angle at Q, we know the
side PQ, (OQ, OP ) = φ and the angle at N , representing the inclination
of the orbital plane. We obtain ∆H from the standard relation of spherical
trigonometry, corresponding to the relation (ST XII), identifying PQN with
CAB :

sin ∆H =
tan φ

tan iHS
. (6.7)

Naturally, this formula is valid whether the satellite orbit is prograde or retro-
grade. In the prograde case, tanN and sin ∆H are positive. In the retrograde
case, as here, tan N = tan(π − iHS) and ∆H are negative.

Let τAN and τ be the local crossing times at the ascending node and P ,
respectively. Then,

∆τ = τ − τAN =
1
K

∆H , (6.8)

where K is a constant depending on the units, so that if time is in hours and
angles in degrees, then K = 15 (since 1 hr corresponds to 15◦).

We thus have the following relations between the latitude φ and the dif-
ference in crossing times ∆τ :

∆τ =
1
K

arcsin
(

tanφ

tan iHS

)
, (6.9)

or

φ = arctan (tan iHS sin K∆τ) . (6.10)

Crossing Time at an Arbitrary Latitude

Let τAN and τDN be the crossing times at the ascending and descending nodes,
respectively. Then,

τAN = 12 + τDN [mod 24] .

For ∆τ , we take the value defined by (6.9), i.e., between −6 hr and +6 hr.
We thereby obtain the two daily crossing times τ(A) and τ(D) in the ascending
and descending parts of the ground track, respectively:{

τ(A) = τAN + ∆τ ,
τ(D) = τDN − ∆τ = τAN + 12 − ∆τ .

(6.11)

The time difference δ(φ) between two crossings, one in the ascending part
and the other in the descending part, at a given latitude is given by
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δ(φ) = τ(A) − τ(D) = 12 + 2∆τ . (6.12)

We now give some examples of this calculation.

Example 6.5. Calculate the LMT crossing time at latitude 15◦N for a Sun-
synchronous satellite at altitude h = 800 km, when the crossing time at the as-
cending node is 00:00 LMT.

We have seen that the inclination of the satellite is i = 98.6◦ for this altitude.
Equation (6.9) yields

∆τ =
1

K
arcsin

„
tan 15

tan 98.6

«
=

1

15
arcsin(−0.04052) =

−2.32

15
hr = −9.3 min .

We thus take ∆τ = −9 min, and inserting τAN = 00:00 in (6.11), this implies that

τ(A) = τAN + ∆τ = 24 h 0 min −9 min = 23:51 ,

τ(D) = τAN + 12 − ∆τ = 12 h 0 min +9 min = 12:09 .

The two passages at this latitude thus occur at 23:51 LMT and 12:09 LMT, as can

be checked on the upper part of Fig. 6.5.

Example 6.6. Calculate the LMT crossing time at latitude 50◦ for the Sun-
synchronous satellite SPOT-5, which transits the ascending node at 22:30 LMT.

For this satellite and latitude 50◦, (6.9) gives ∆τ = −42 min. With (6.11) and
τAN = 22:30, we will thus have

φ = 50◦N −→ 21:48 and 11:12 ,

φ = 50◦S −→ 23:12 and 09:48 .

The daytime crossing will occur, in the northern hemisphere, well after 10:30, in

fact, close to midday, with good solar lighting conditions. On the other hand, in

the southern hemisphere, the crossing occurs rather early in the morning and the

lighting conditions are not so good. The choice of node, e.g., descending at 10:30

rather than ascending) favours observation of the high latitudes of one hemisphere

at the expense of the other. We shall return to this point.

6.2.2 Choice of Local Time at the Ascending Node

Restrictions on the Choice of Crossing Time

The local crossing time at the ascending node is determined by the aims of
the mission. It is chosen as a compromise between various constraints which
we shall number here from C1 to C6 (where C stands for ‘constraint’):



278 6 Orbit Relative to the Sun. Crossing Times

(C1) to obtain the best solar lighting conditions for the regions observed,
(C2) to reduce the risks of antisolar or specular reflection,2

(C3) to take meteorological factors into account, e.g., a certain region may
be under cloud cover every day in the middle of the morning,

(C4) to take into account the crossing time of another Sun-synchronous satel-
lite carrying out the same type of mission,

(C5) to limit periods of solar eclipse,
(C6) to limit thermal variations during each revolution.

We shall now discuss the various times chosen according to the type of mis-
sion.

Different Choices Depending on the Constraints

Satellites with High Energy Requirements. It is important to avoid long
breaks in the power supply when satellites carry a radar or other instrument
with high energy requirements. The solar panels must be almost continuously
illuminated. To achieve this, the best-suited orbit has normal in the meridian
plane (the normal at the centre of the orbit and the Earth–Sun direction are
coplanar), because eclipses are then kept to a minimum (see Sect. 6.3). This
Sun-synchronous orbit is such that τAN = 06:00 or 18:00 and it is called the
dawn–dusk orbit.

Radarsat-1 is such a satellite (τAN = 18:00), as can be seen from Fig. 6.3:
the constraint (C5) is given precedence. This orbit has been chosen for the
future satellite Radarsat-2 (τAN = 06:00), for the Indian RISat-1 (Radar
Imaging Satellite), and the Argentinian SAOCOM-1A. The same goes for
oceanographic satellites using scatterometers, i.e., instruments measuring
wind speeds at the sea surface, such as QuikScat (τAN = 17:55) and Coriolis
(τAN = 18:00). It is also the orbit of the satellite Odin (τAN = 18:00).

This orbit is planned for the European projects GOCE, at very low al-
titude (h 
 250 km), Aeolus-ADM (Atmospheric Dynamics Mission) and
WALES, at low altitude (h 
 400 km), and SMOS (h = 755 km). Other
planned radar satellites will also be in dawn–dusk orbits: TerraSAR-X1 and
TerraSAR-L1, and the COSMO-SkyMed constellation.

Satellites with Orbits Requiring a Specific Configuration Relative
to the Sun. Solar observing satellites, if placed near the Earth, must gain
2 Specular reflection occurs when the normal at the point P , viewed by the satellite,

and the two directions P–satellite and P–Sun lie in the same plane to within
a few degrees and, in addition, the normal is close to the bisector of these two
directions. In this case, the satellite sensor may be blinded by the Sun, with
the Earth’s surface playing the role of mirror. This kind of reflection can be
very efficient, in the case of a calm sea, for example, or quite imperceptible. All
intermediate cases are possible, too. Antisolar reflection can occur when the Sun,
the satellite and the point P being viewed are collinear. This can only happen
between the two tropics.
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Figure 6.6. Drift of the ascending node crossing time τAN for Sun-synchronous
meteorological satellites in the POES programme. The time τAN is given for the
operating period of each satellite. From NOAA data

maximum advantage of their view of the day star. In its response to the
constraint (C5), only the dawn–dusk orbit can allow such continuous obser-
vation. The satellite TRACE (τAN = 06:00) is on this type of orbit, also
expected for Picard.

Satellites Subject to Limited Temperature Variation. It is of the ut-
most importance for satellites carrying out fundamental physics experiments
on the equivalence principle that temperature variations should be kept to
a minimum. The dawn–dusk orbit satisfies constraint (C6). This will be the
orbit for µSCOPE and STEP.

Oceanographic Satellites. When they are not specialised in altimetry,
oceanographic satellites are Sun-synchronous. If they do not carry scatterom-
eters, the equatorial crossing is often chosen around midday and midnight, to
satisfy constraint (C1): τAN = 00:00 for Oceansat-1, τAN = 00:20 for SeaStar,
and τN around midday for Ocean-1 and -2 (also called HY-1 and -2).

Meteorological Satellites. For these satellites which observe meteorologi-
cal phenomena, the crossing time is not critical. The ascending node crossing
times of the various satellites are therefore rather varied, as can be seen from
Table 6.1. Moreover, in most cases, these satellites are not kept at their sta-
tion, the crossing time being allowed to drift. This drift is quadratic in time,
as shown by (4.77). For the NOAA satellites, the drift, which can become
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Table 6.1. Ascending node crossing time τAN for various Sun-synchronous satel-
lites. The value of τAN is that of the first orbits for satellites actually launched or
the planned value for satellites still under development. Meteorological satellites.
For NOAA satellites, see also Fig. 6.6

Sun-synchronous satellite τAN

NOAA-2 20:30
NOAA-3 20:30
NOAA-4 20:30
NOAA-5 20:30
NOAA-17 22:20
FY-1A 15:30
FY-1B 19:50
FY-1C 18:20
FY-1D 20:15
FY-3A 21:30
FY-3B 21:30
Meteor-3M-1 09:15
MetOp-1 21:30
MetOp-2 21:30
MetOp-3 21:30

Sun-synchronous satellite τAN

Nimbus-6 11:45
Nimbus-7 23:50
HCMM 14:00
DMSP-5D2 F-8 06:15
DMSP-5D2 F-10 19:30
DMSP-5D2 F-11 18:11
DMSP-5D2 F-12 21:22
DMSP-5D2 F-13 17:42
DMSP-5D2 F-14 20:29
DMSP-5D3 F-15 21:15
DMSP-5D3 F-16 19:58
NPP 22:30
NPOESS-1, -4 21:30
NPOESS-2, -5 13:30
NPOESS-3, -6 17:30

quite significant, is shown in Fig. 6.6. The same goes for the DMSP satel-
lites. For example, for the satellite DMSP-5D2 F-10, the drift was 47 min
during 1991.

For the NOAA satellites from TIROS-N and NOAA-6 onwards, the con-
straint (C4) has been taken into account: for a given region, and with solar
illumination, one satellite overflies in the morning and the other in the after-
noon.

Satellites for Remote-Sensing of Earth Resources. A satellite may
carry instruments pertaining to different types of mission. For example, the
Russian satellite Resurs-O1-4 carries the Russian imaging device MSU for
remote-sensing and the French instrument ScaRaB to study the Earth radia-
tion budget (which can be classified as meteorological). But it is the remote-
sensing aspect that determined the choice of crossing time.

As already mentioned, satellites of this type are Sun-synchronous, with
very few exceptions. For satellites devoted to remote sensing of Earth re-
sources, constraints (C1) and (C2) are given priority. The local crossing time
at the node must be close to midday for (C1), but not too close because of
(C2). Moreover, considering the curve φ(∆τ), a shift away from midday yields
good solar lighting conditions for high latitudes. Mission designers generally
consider that the optimal time slot for viewing lasts for three hours centered
on noon, i.e., from 10:30 to 13:30 LMT for the crossing at the relevant place,
although these limits do not have to be strictly observed.
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Table 6.2. Ascending node crossing time τAN for various Sun-synchronous satel-
lites. The value of τAN is that of the first orbits for satellites actually launched or the
planned value for satellites still under development. Remote-sensing and resource
management satellites

Sun-synchronous satellite τAN

Landsat-1 21:30
Landsat-2 21:30
Landsat-3 21:30
Landsat-4 21:45
Landsat-5 21:45
Landsat-7 22:00
EO-1 22:01
SAC-C 22:15
SPOT-1 22:30
SPOT-2 22:30
SPOT-3 22:15
SPOT-4 22:30
SPOT-5 22:30
Hélios-1A 13:17
Hélios-1B 13:16
Pléiades-1 22:15
Pléiades-2 22:15
ERS-1 22:15
ERS-2 22:30
Envisat 22:00
EarthCARE 22:30
MOS-1 22:25
MOS-1B 22:30
JERS-1 22:30
ADEOS-1 22:30
ADEOS-2 22:30
ALOS 22:30
EROS-A1 21:45
Kompsat-1 22:50
Resource21-01 22:30
Resource21-02 22:30
Resurs-O1-4 22:15
TechSat-1B 22:15
FaSat-2 22:20

Sun-synchronous satellite τAN

IRS-1A 22:25
IRS-1B 22:25
IRS-1C 22:30
IRS-1D 22:30
IRS-P2 22:40
IRS-P3 22:30
IRS-P6 22:30
TES 22:30
Cartosat-1 22:30
Cartosat-2 22:30
CBERS-1 22:30
CBERS-2 22:30
TMSat 22:20
OrbView-3 22:30
OrbView-4 22:30
QuickBird-2 22:20
Ikonos-2 22:30
EarlyBird-1 22:30
QuikTOMS 22:30
BIRD 22:30
Terra (EOS-AM-1) 22:30
Aqua (EOS-PM-1) 13:30
CloudSat 13:31
Calipso 13:31
PARASOL 13:33
Aura (EOS-Chem-1) 13:38
OCO 13:15
Rocsat-2 21:45
Tan Suo-1 23:00
Diamant-1 23:30
Diamant-2 23:30
RapidEye-1 12:00
NEMO 10:30
SSR-1/ss 09:30
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Figure 6.7. Complementarity of Terra and Aqua. LMT crossing time as a function
of latitude for the Sun-synchronous EOS satellites. For various values of the LMT
ascending node crossing time: 10:30 and 22:30 for EOS-AM-1, 01:30 and 13:30 for
EOS-PM-1. The continuous curve shows the graph for values corresponding to the
crossing time retained in the final project, i.e., 22:30 for EOS-AM-1 and 13:30 for
EOS-PM-1 (Terra and Aqua, respectively)

Figure 6.8. A-Train mission spacing (with notation of descending node crossing
time). Credit: NASA, ESMO Project
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One can thus envisage the following cases, calculated for a satellite at
altitude h = 800 km:

• Equatorial crossing at the lower time limit. If the ascending node is at
10:30, τAN = 10:30, latitudes viewed between ∆τ = 0 and ∆τ = 03:00 are
obtained using (6.10). With K = 15, the calculation for ∆τ = 3 gives

φ = arctan
[
(tan 98.6)× (tan 45)

]
= −78◦ ,

which corresponds to latitudes lying between 0◦ (at 10:30) and 78◦S (at
13:30). If the descending node occurs at 10:30, τAN = 22:30, latitudes
viewed during this time interval lie between 0◦ (at 10:30) and 78◦N (at
13:30).

• Equatorial crossing at the upper time limit. If the ascending node is at
13:30, τAN = 13:30, latitudes viewed between ∆τ = 0 and ∆τ = −3:00
then lie between 78◦N (at 10:30) and 0◦ (at 13:30). If the descending node
is at 13:30, τAN = 01:30, latitudes lie between 78◦S (at 10:30) and 0◦ (at
13:30).

• Equatorial crossing at midday. If the ascending node occurs at 12:00,
τAN = 12:00, latitudes are viewed between ∆τ = −1:30 and ∆τ = 1:30.
The calculation for ∆τ = 1.5 gives

φ = arctan
[
(tan 98.6)× (tan 22.5)

]
= −68◦ ,

which corresponds to latitudes lying between 68◦N (at 10:30) and 68◦S
(at 13:30). If the descending node is at 12:00, τAN = 00:00, latitudes lie
between 68◦S (at 10:30) and 68◦N (at 13:30).

• Choice of time. As the midday crossing time at the node is not chosen,
to avoid specular reflection, the choice of the equatorial crossing time at
10:30 or 13:30 is guided by the choice between the northern and southern
hemispheres. Naturally, the northern hemisphere is generally favoured,
since it encompasses more visible land mass than the other hemisphere,
but also because it comprises more nations financing satellite launches.

For satellites observing Earth resources, the choice is between the two equa-
torial crossing times:

τAN = 22:30 =⇒ descending node 10:30 ,

τAN = 13:30 =⇒ ascending node 13:30 .

The graphs in Fig. 6.7 clearly explain these choices for the satellites EOS-
AM-1 and EOS-PM-1 (renamed Terra and Aqua, respectively).

The A-Train refers to the constellation of satellites that plan to fly to-
gether with EOS Aqua to enable coordinated science observation. These satel-
lites have an afternoon crossing time close to the local mean time of the lead
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satellite, Aqua, which is 1:30 p.m. This explains the name: A is short for
‘afternoon’ and ‘Train’ is self-explanatory (see Fig. 6.8).

The EROS satellites should form a constellation of six satellites for which
the choice of crossing times corresponds to the same strategy. The crossing
times retained for this project are τAN = 22:00, 22:30, and 23:00 for EROS-
B1, -B2 and -B3, and τAN = 13:00, 13:30, and 14:00 for EROS-B4, B-5 and
-B6.

The choice between the two possibilities τAN = 22:30 or τAN = 13:30 is
generally decided in response to the constraint (C3). In this way, one avoids
the rather systematic formation of cloud cover at certain times of the day in
certain well-defined regions. For example, the descending node was chosen at
the end of the morning for the seven satellites in the Landsat series and the
five SPOT satellites.

Table 6.2 shows the supremacy of the 22:30 crossing time for the ascending
node with this type of satellite.

We may lay stakes that, if Australia sends up a satellite to study Earth
resources across its territory, the ascending node will be at 10:30! Remaining
for a moment in the southern hemisphere, note that Brazil had a project for a
Sun-synchronous satellite, SSR-1 (here called SSR-1/ss), with ascending node
at 09:30. This project has been transformed into another, for surveillance of
the Amazon, requiring an equatorial orbit, although the satellite will still be
called SSR-1.

The crossing times of remote-sensing satellites are generally maintained
quite accurately, to within a few minutes.

Other Types of Mission. Other types of mission not mentioned above use
Sun-synchronous orbits. Here are a few examples of ascending node crossing
times: τAN = 12:00 for TOMS-EP, τAN = 14:00 for ARGOS, τAN = 22:50 for
ACRIMSAT. Note that τAN = 08:40 was planned for TERRIERS.

6.3 Appendix: Duration of Solar Eclipse

The satellite undergoes solar eclipse when the Sun is hidden from it by the
Earth. During the eclipse, the satellite cools down and its solar panels no
longer produce electricity. For some satellites, an eclipse is a critical phe-
nomenon, and in this case, the Earth–Sun–satellite geometry is examined in
detail. We shall discuss here two types of orbit: dawn–dusk LEO and GEO.

6.3.1 Dawn–Dusk LEO Orbit

Consider a Sun-synchronous satellite in low circular orbit. If the LMT crossing
time at the equator is around midday and midnight, the satellite is illumi-
nated by the Sun for roughly a little more than half the period. The rest of
the time, it moves in the shadow of the Earth.
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Figure 6.9. Schematic diagram of the Earth and the orbit of a Sun-synchronous
satellite in a dawn–dusk configuration. Left : Meridian plane. Intersection of orbit
with this plane: Si and S′

i. Right : Plane perpendicular to the meridian plane and
perpendicular to the direction of the Sun. The projection of the circular orbit on
this plane is an ellipse

On the other hand, if the equatorial crossing times are around 06:00 and
18:00, the satellite is rarely in the Earth’s shadow. This Sun-synchronous
LEO orbit, with τAN = 06:00 or 18:00 is called a dawn–dusk orbit, as we
have seen. In this configuration, which limits the length of the eclipse, one
finds satellites that cannot tolerate long breaks in their power supply, or are
sensitive to the sudden temperature change between day and night.

Eclipse Conditions

A Sun-synchronous satellite at altitude h (reduced distance η) has inclination
i = iHS given by (4.69). We set

j = iHS − π

2
. (6.13)

Figure 6.9 (left) shows the Earth (polar axis Oz, radius R) in the meridian
plane containing the Sun (hour angle zero). Light rays from the Sun make
an angle δ (declination) with the equatorial plane. The satellite orbit, which
is perpendicular to the meridian plane because it is a dawn–dusk orbit, cuts
this plane at Si and S′

i. One of the two points is illuminated, e.g., S′
i, and so

is the other if it is not in the Earth’s shadow, i.e., if OSi > OA, where the
point A is the intersection of the edge of the Earth’s shadow with the plane
of the orbit, in the meridian plane (the plane of the figure). In the example
given in the figure, if the satellite is in position S1, it undergoes solar eclipse,
whereas if it is at S2, there is no eclipse.
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We have immediately

OS = R + h = a , OA =
R

cos(δ + j)
.

The condition for there to be no eclipse is therefore

K > H (for a given declination) (6.14)

with: H = 1/η , K = cos(δ + j) .

The strongest constraint obtains at the two solstices, with |δ| = ε = 23.44◦.
In these conditions, when η is varied between 1 and 1.9367, the maximal value
for a Sun-synchronous satellite, given by (4.72), the condition (K > H) is
satisfied when η lies between 1.2181 and 1.5221. Using the altitude, we obtain

no eclipse ⇐⇒ 1 391 < h < 3 330 km .

If the altitude of the satellite is less than 1 391 km, there is eclipse, because
the satellite is not high enough to escape from the Earth’s shadow (at least,
at the solstice). If the altitude is greater than 3 330 km, the orbit is close
enough to the equatorial plane (i tends to 180◦) and the ecliptic to mean
that, despite its high altitude, the satellite moves into the shadow.

These observations are rather theoretical. In practice, most satellites in
dawn–dusk orbit are equipped with radar – with the constraint (C5) consid-
ered earlier – and an altitude less than 800 km is thus the norm. The eclipse
phenomenon is then inevitable at some point during the year.

Calculating the Duration of Eclipse

We calculate the duration of eclipse when the satellite has altitude less than
the limiting value h = 1 391 km. Looking along the direction of the Sun’s
rays, the Earth appears as a circle (C1) of radius R and the dawn–dusk
orbit appears as an ellipse (C2) with semi-major axis a, the actual radius
of the circular orbit, and semi-minor axis b, the projection of a on a plane
perpendicular to the direction of the Sun. Figure 6.9 (right) shows, for (C1),
R = OB, and for (C2), a = OT , b = OS1, so that

a = R + h , b = a cos(δ + j) = aK .

With the axes (O, x, y), the equations defining curves (C1) and (C2) can be
written

(C1) : x2 + y2 = R2 , (C2) : x2 +
y2

K2
= a2 .

We calculate the intersection (x1, y1) of these two curves, which yields
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Figure 6.10. Sun-synchronous satellite in dawn–dusk orbit. Duration of solar
eclipse in minutes during one revolution, for the altitude indicated, as a function
of the declination. Graphs are drawn for τAN = 18:00. For τAN = 06:00, take the
opposite value of the declination

x2
1 =

1 − η2K2

1 − K2
R2 .

Rotating the orbital plane onto the plane of the figure, we obtain the actual
value of the angle α which determines the duration of the eclipse (see Fig. 6.9,
right). Hence,

sinα =
x1

a
=

√
H2 − K2

1 − K2
. (6.15)

The duration ∆te of the eclipse is

∆te =
α

π
T0 , (6.16)

since the orbit is circular, with uniform motion of period T0.
In the case K > H , there is no eclipse, as explained above, and we put

α = 0.
Using the altitude h, the angle iHS and the value of the period T0(h=0)

defined by (2.17), we have (time in minutes, angles in radians), for declina-
tion δ,
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∆te (min) = 84.5
(

1 +
h

R

)3/2 1
π

arcsin

√
[R/(R + h)]2 − sin2(δ + iHS)

| cos(δ + iHS)| .

(6.17)

Figure 6.10 plots representative graphs of the duration of solar eclipse over
one revolution for various altitudes, as a function of the declination. For easier
understanding, Fig. 6.11 (upper) shows the same as a function of the day of
the year.

Ascending Node Crossing Time and Dates of Eclipse

Figure 6.9 (left) shows the situation in a northern summer (δ > 0, Sun at
the zenith in the northern hemisphere) with a satellite orbit crossing the
ascending node at 18:00 (taking into account the direction of rotation of the
Earth). The maximal eclipse occurs at the summer solstice when the satellite
passes close to the South Pole. The most favorable situation with regard to
the question of eclipse, even at very low orbit, occurs for δ = −j, i.e., during
the northern winter, when the direction of the Sun is exactly perpendicular
to the orbit.

For a satellite crossing the ascending node at 06:00, the straight line SiS
′
i

occupies a symmetric position with respect to the polar axis Oz. All the above
calculations remain the same, provided that we take the opposite value of the
declination. For example, in this case, the value δ = −23.44◦ corresponds to
the northern summer solstice.

Example 6.7. Calculate the eclipse dates and duration of eclipse for Radarsat-1
and SMOS.

Radarsat-1 has a near-circular Sun-synchronous dawn–dusk orbit with character-
istics: a = 7 167.064 km, iHS = 98.58◦, Td = 100.76 min, τAN = 18:00. Using the
above notation, we obtain

η = 1.1237 , H = 0.8899 , j = 8.58◦ .

To find the date of eclipse, we apply (6.14). With arccos(0.8899) = 27.14◦, we
obtain

δ + j = ±27.14 , hence δ = ±27.14 − 8.58 .

The solution δ = 18.56◦ is the only possible value, since for the other, |δ| > ε. As
we have τAN = 18:00, the dates are given directly by the values of δ. In the northern
summer, there is eclipse for days when the declination is greater than 18.56◦, i.e., in
the interval from 15 May to 20 July. To calculate the duration of the longest eclipse,
at the summer solstice, we use (6.15). With K = cos(ε + j) = cos(32.02) = 0.8479,
we obtain sin α = 0.5096, whence α = 30.6◦. Then, with (6.16),

∆te = 0.170T0 ≈ 17 min .



6.3 Appendix: Duration of Solar Eclipse 289

0 30 60 90 120 150 180 210 240 270 300 330 365

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

0

5

10

15

20

25

30

Day of the year

D
ur

at
io

n 
of

 s
ol

ar
 e

cl
ip

se
 (

m
in

) 
du

rin
g 

on
e 

re
vo

lu
tio

n

250

250

500

750

1000

1250

Altitude (km)

0 30 60 90 120 150 180 210 240 270 300 330 365

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

0

10

20

30

40

50

60

70

80

Day of the year

D
ur

at
io

n 
of

 s
ol

ar
 e

cl
ip

se
 (

m
in

) 
du

rin
g 

on
e 

da
y

Geostationary orbit

Figure 6.11. Duration of solar eclipse in minutes as a function of the day of the
year. Upper : Sun-synchronous satellite in dawn–dusk orbit. Duration of the eclipse
during one revolution at the given altitude. Graphs are drawn for τAN = 18:00.
For τAN = 06:00, take the opposite value of the declination. Lower : geostationary
satellite. Duration of eclipse over one day
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We can also obtain these results directly using (6.17).

The satellite SMOS should fly at an altitude of 755 km, so that iHS = 98.44◦. We

deduce that H = 0.8942 and j = 8.44◦. For the eclipse dates, we find once again that

there is only one possible value for the declination, viz., δ = 26.60−8.44 = 18.16. If

we choose τAN = 18:00, eclipse will occur for declinations greater than +18.16◦, or in

the interval between 13 May and 31 July, around the summer solstice. If we choose

τAN = 06:00, eclipse will occur for declinations less than −18.16◦, that is, in the

interval from 15 November to 28 January, around the winter solstice. Concerning

the duration of eclipse at the solstice, the calculation gives ∆te = 18 min per

revolution.

Example 6.8. Constraints imposed by eclipse on the satellites STEP and GOCE,
in very low orbit.

For STEP, the requirements of temperature stability forbid any period of solar
eclipse during its operating time. Moreover, the orbit must be low, the altitude
being fixed at 400 km. A Sun-synchronous dawn–dusk orbit is the only suitable
orbit. With iHS = 97.05◦ and η = 1.0627, we obtain j = 7.05◦ and H = 0.9410
and hence, δ + j = ±19.78. We thus have just one value for the declination, viz.,
δ = 19.78 − 7.05 = 12.73◦. Depending on the value of τAN, this corresponds to the
interval 25 April to 21 August or the interval 28 October to 15 February. Note that,
in the first case, the eclipse lasts for 118 days, whilst in the second case, it lasts
for 110 days, a consequence of the eccentricity of the Earth’s orbit. Finally, with
this orbit, there is a period of 8 months without eclipse. The accelerometers of the
STEP experiment are maintained at a temperature of 2 K, using a superfluid helium
cryostat, which limits the time over which the experiment can operate to around 6
months. The satellite must be launched shortly after 21 August, if τAN = 18:00 is
chosen, or shortly after 15 February, if τAN = 06:00 is chosen.

GOCE flies at the very low altitude h = 250 km. With iHS = 96.52◦ and η = 1.0392,
we obtain j = 6.52◦ and H = 0.9623, whence δ+j = ±15.79 and δ = ±15.79−6.52.
There are now two values of the declination:

δ = −22.31◦ , δ = +9.27◦ .

We can say that there are two eclipse ‘seasons’, one short, with |δ| close to ε,

the other long, as can be seen very clearly in Fig. 6.11 (upper). The mission is

planned to last 20 months (limited by the amount of fuel needed to compensate

for atmospheric drag) and the satellite should be launched at the end of the long

eclipse season. There are therefore only two possible launch windows: either in July,

taking τAN = 18:00, or in January, taking τAN = 06:00.

6.3.2 GEO Orbit

For a geostationary satellite, no shadow is cast by the Earth on the circular
orbit as long as the direction of the Sun has an inclination (declination δ),



6.3 Appendix: Duration of Solar Eclipse 291

with respect to the equatorial plane, greater than the angle with which the
satellite views the Earth. Let f0 be this angle, which is the half-angle at the
apex of the observation cone with which the satellite views the Earth, and
to which we shall return in Chap. 8 [see (8.24)]. With ηGS defined by (4.58),
the relation sin f0 = 1/ηGS gives f0 = 8.7◦.

There is therefore an eclipse if |δ| < f0. This happens twice a year, around
the equinoxes:

eclipse for GEO ⇐⇒ [27 Feb–12 Apr] , [01 Sep–16 Oct] .

During these periods, each lasting 45 days (from J = 58 to J = 102 and
from J = 244 to J = 289, although dates may vary by one day from year
to year), the longest eclipse occurs at the equinox itself. On this day, it lasts
∆te0 given by

∆te0 =
f0

π
T0 =

8.7
180

Jsid = 69.5 min ≈ 1 hr 10 min . (6.18)

On the other days, the duration of the eclipse is found by considering the
Earth’s disk, viewed by the satellite, occulting the Sun. The ‘ground track’ of
the Sun cuts the disk along parallel chords, passing through the centre of the
disk for δ = f0. This gives, for the duration ∆te of the eclipse as a function
of δ,

∆te =

√
1 −

(
δ

f0

)2

∆te0 . (6.19)

The value of ∆te as a function of the day of the year is shown in Fig. 6.11
(lower).



7 Orbit Relative to the Earth.
Recurrence and Altitude

In this chapter, we discuss the position of the satellite orbit relative to the
Earth. There are two distinct parts. The first concerns the position of the
satellite ground track relative to the Earth, and the second the altitude of
the satellite measured from the terrestrial ellipsoid.

7.1 The Recurrence Constraint

7.1.1 Definition of Recurrence

In observation missions using non-geosynchronous satellites, one often re-
quires repeated coverage of the Earth, in the sense that the satellite must
periodically overfly the same points of the Earth’s surface. This means that,
for a given point, one is sure to recover geometrically identical observing
conditions with this periodicity. This recurrence constraint on the mission
imposes specific characteristics on the orbital elements.

The recurrence period after which the satellite ground track repeats it-
self exactly on the Earth’s surface is called the recurrence cycle, but also
the repetitivity or repeat cycle.1 This corresponds to the cycle relative to
the Earth and we denote its value by CT, where the subscript T stands for
‘terrestrial’, just as we denoted the cycle relative to the Sun by CS in the last
chapter.

When recurrence has been achieved, the ground track of the satellite
forms a fixed grid with respect to the Earth, which covers the globe between
the highest attained latitudes. One point on the grid (the ascending node is
generally chosen) fixes the whole thing. We shall study this recurrence grid
below.

The calculational methods developed here to analyse recurrence remain
valid even if the satellite has an eccentric orbit. However, in practice, all
1 The term ‘resonance’ is sometimes found. In the present context, this is inap-

propriate. Indeed, in mechanics, resonance is a phenomenon in which a mutual
interaction modifies the motion of each body involved, e.g., Laplace resonance
for the Galilean moons of Jupiter. When we consider an artificial satellite in
orbit around the Earth, the motion of the Earth is not affected by the motion of
the satellite.
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recurrent LEO satellites are in near-circular orbits. On the other hand, re-
currence is not restricted to LEO satellites, but is used for MEO satellites
and HEO communications satellites.

Daily Recurrence Frequency

The angle precession, the Euler angle ψ, plays a key role in the study of
recurrence. Using (4.27) and (5.14), we obtain

ψ̇ = −(Ω̇T − Ω̇) = − 2π

JM

(
1 +

1 − P

Nsid

)
, (7.1)

ψ̇ = −n

κ
, (7.2)

with the notation Nsid, JM, P and κ defined in Chap. 4.
The daily recurrence frequency defined by (4.32), viz.,

κ =
ν

1 +
1 − P

Nsid

, (7.3)

allows one to compare the Earth’s rotation, the satellite motion, and its nodal
precession via the angular speeds. It is close to ν, the daily orbital frequency,
but it is not the same, except for Sun-synchronous satellites. Indeed only in
the latter case do we have κ = ν, since P = 1.

7.1.2 Calculating the Recurrence Cycle CT

Consider a non-geosynchronous satellite and the intersection of its ascending
ground track with the equator, which defines an ascending node of longitude
λ0. If the satellite is recurrent, its ground track will pass precisely through
this point λ0 on the equator, CT days later. The satellite will have made a
whole number of round trips between these two crossings. The number of
round trips is denoted by NTo , whereas CT is an arbitrary real number, a
priori non-integer. For the rest of this chapter, we shall attach the subscript
‘o’ to whole numbers (integers) entering our calculations.

From the above discussion, we obtain the following relation which gives
the length L of the time interval between the two crossings at the same
ascending node λ0 :

L = CTJM = NToTd . (7.4)

During this time L, the plane of the orbit makes a whole number of round
trips, denoted by ko, relative to the frame T, since the ground track returns
exactly to an earlier position. This yields
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L(Ω̇T − Ω̇) = 2πko . (7.5)

Equations (7.1), (7.2) and (7.4) now imply

NToTd
n

κ
= 2πko ,

which gives (since Td = 2π/n)

κ =
NTo

ko
.

This relation shows that, for a recurrent satellite, the parameter κ which we
have called the daily recurrence frequency is a rational number:

recurrent satellite ⇐⇒ κ rational . (7.6)

In terms of the daily orbital frequency ν, we have

CTJM = NTo

JM

ν
,

which implies for the value of the cycle CT,

CT =
NTo

ν
. (7.7)

The whole number ko defined above, which represents a whole number of
days, will be denoted by CTo . Hence,

CTo =
NTo

κ
. (7.8)

In the general case, we distinguish the recurrence cycle CT from the integer
recurrence cycle CTo . In the special case of Sun-synchronous satellites (and it
should be noted that this type of satellite covers most cases of recurrence), CT

and CTo coincide, since in this case κ = ν. This means that, for a recurrent
satellite:

• if it is Sun-synchronous, its ground track always returns to the same point
at the same time, i.e., at the end of a whole number of days, and CT is
an integer;

• if it is not Sun-synchronous, its ground track returns to a given point at
different times, and CT is not an integer.

Connection with the Cycle Relative to the Sun

The cycle CS relative to the Sun and the cycle CT relative to the Earth both
depend on the orbital characteristics, but not in a one-to-one manner. The
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orbital parameters of a satellite can be varied in such a way that, for example,
CS remains constant whilst CT takes any value we wish.

However, a useful relation can be brought out concerning the difference
CT − CTo and the cycle CS. From the definitions of CS, CT, CTo , P and κ,
we may write

ν

κ
= 1 − 1

CS
,

CT − CTo

CT
= 1 − CTo

CT
= 1 − ν

κ
=

1
CS

.

We thus obtain CT, given CTo and CS :

CT =
CTo

1 − 1/CS
. (7.9)

For a Sun-synchronous satellite, CT = CTo , since CS is infinite.

7.1.3 Recurrence Triple

The rational number κ, the daily recurrence frequency, can thus be expressed
in the form

κ =
NTo

CTo

. (7.10)

It can be written as the sum of an integer and a positive or negative fractional
part with modulus less than 1/2:

κ = νo +
DTo

CTo

. (7.11)

In this expression, νo is the whole number closest to κ and DTo the unique
integer such that

DTo = NTo − νoCTo . (7.12)

Hence, ⎧⎨⎩ |DTo | <
1
2
CTo ,

|DTo | and CTo coprime .

We shall call the triple of numbers νo, DTo and CTo the recurrence triple of
the satellite, written

[νo, DTo , CTo ] .
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The recurrence of a satellite orbit can thus be defined equivalently via the
recurrence triple or the pair of whole numbers NTo , CTo . The value of κ
obtained in this way from (7.10) or from (7.11) thus yields ν via (7.3), and
hence the period or mean motion, after an iterative calculation on P . The
period in minutes is given as a function of NTo , CTo and P by

Td (min) = 1440
CTo

NTo

(
1 +

1 − P

Nsid

)
. (7.13)

This iterative calculation involves making a first estimate of T , which gives
a, and using a with i to obtain P . This in turn gives a new value of T . This
iteration converges rapidly to give a final value for the period.

We provide example calculations below. Naturally, all these calculations
are much simpler for a Sun-synchronous satellite, since P = 1. It is for this
reason that we separate the following discussion into two parts, depending
on whether the satellite is Sun-synchronous or not.

7.2 Recurrence for a Sun-Synchronous Satellite

7.2.1 Method for Obtaining Recurrence

We have seen that the altitude of a Sun-synchronous satellite in near-circular
orbit lies between the theoretical bounds h = 0 and h = 5 964 km, which
corresponds to values of the daily orbital frequency of ν = 17.03 and ν = 6.34,
respectively. In current practice, when h is situated between 400 and 1 000 km,
ν varies between 15.5 and 13.8 round trips per day.

For a Sun-synchronous satellite, it is a simple matter to obtain recurrence
conditions since ν = κ. The daily orbital frequency ν = ν(a), which only
depends on a here, since i and a are related, is a rational number which can
be written in the form

ν = νo +
DTo

CTo

. (7.14)

The satellite ground track repeats every CTo days, after NTo = νCTo revo-
lutions.

7.2.2 Recurrence Diagram

The recurrence diagram is designed as an aid to visualising the altitudes
leading to different recurrence situations. It is basically a graph in which the
altitudes, from lowest to highest, are marked on the ordinate axis and the
recurrence cycles (in days) on the abscissa.

For each value of νo, for each cycle CTo , the quantity DTo is varied over its
range of possible values and ν is obtained from (7.14). This in turn gives the
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mean motion n and draconitic period T = Td. We thus obtain the altitude
and inclination, calculating a and i by an iterative method, as in Example
4.2, or Examples 7.1 and 7.2 below.

The value obtained is then marked on the diagram. In Fig. 7.1, these
values are indicated by small squares. In Figs. 7.2 and 7.3, the value of DTo

is noted explicitly in each case. The small dots on these diagrams indicate a
recurrence for which |DTo | and CTo are not coprime. Strictly speaking, this
is not a recurrence with cycle CTo . For example, for a given altitude, if the
recurrence is over three days, the satellite is sure to repeat its ground track
every 6 days, every 9 days, and so on. But the cycle considered is 3 days. In
its relationship with the prime numbers, this diagram is reminiscent of the
sieve of Eratosthenes.2

The diagram gives an overview of the possibilities for recurrence. For
short cycles, we see that these possibilities are limited to a handful of values.
Between 450 and 1 000 km, there is only one possible altitude for a 2 day
recurrence cycle (h = 720 km for Oceansat-1), and only three possible alti-
tudes for a 3 day cycle. On the other hand, for long cycles, there are many
more opportunities, especially if CTo is a prime number. For CTo = 31, there
are about 120 possibilities between 0 and 1 200 km, or roughly one available
altitude for recurrence every 10 km.
2 Eratosthenes of Cyrene (284–192 BC), � ����� ���	
�����, was a Greek as-

tronomer, mathematician and geographer. He discovered a systematic method
for obtaining the sequence of prime numbers up to any desired value. One writes
down the sequence of positive integers, then crosses out the multiples of 2, of
3, of 5, and so on. This method, which sifts the positive integers, keeping only
the primes, is known as the sieve of Eratosthenes. His abilities as an astronomer
and geographer are revealed by a scientific and relatively accurate measurement
of the Earth’s radius, in which he measured the shadow cast by a column in
Alexandria at midday on a day when he knew that the Sun’s rays reached the
bottom of the wells in ancient Syene (Assouan), the day of the summer solstice
at Syene, under the Tropic of Cancer. He determined the obliquity of the ecliptic
and estimated at 47◦42′ the arc of the meridian between the two tropics.
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Figure 7.1. Recurrence diagram for Sun-synchronous satellites. For altitudes be-
tween 0 and 1 250 km, the small squares denote values of the altitude h (and the
semi-major axis a) for which recurrence is possible. Abscissa: value of the recurrence
cycle in days. The daily frequency ν is in round trips per day
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Figure 7.2. Recurrence diagram for Sun-synchronous satellites. For altitudes be-
tween 320 and 650 km, the possible recurrences are indicated by the value of DTo .
Boxed values correspond to the satellites appearing in Table 7.1. For example, for
OrbView-3, we find the triple [15, +5, 16], i.e., νo = 15 (the integer closest to ν, as
ordinate), DTo = +5 (indicated on the diagram) and CTo = 16 (abscissa)
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Figure 7.3. Recurrence diagram for Sun-synchronous satellites. For altitudes be-
tween 640 and 970 km, the possible recurrences are indicated by the value of DTo .
Boxed values correspond to the satellites appearing in Table 7.1. For example, for
SPOT-5, we find the triple [14, +5, 26], i.e., νo = 14 (the integer closest to ν, as
ordinate), DTo = +5 (indicated on the diagram) and CTo = 26 (abscissa)
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Sun-syn. sat. νo DTo CTo NTo Td a h iHS

� Landsat-3 14 −1 18 251 103.27 7 285.799 908 99.09
� Terra 15 −7 16 233 98.88 7 077.738 700 98.21
� NOAA-7 14 +2 19 268 102.09 7 230.200 852 98.85
Nimbus-7 14 −1 6 83 104.10 7 324.842 947 99.27
� HCMM 15 −3 16 237 97.22 6 997.706 620 97.89
OrbView-3 15 +5 16 245 94.04 6 844.207 466 97.30
� Ikonos-2 15 −5 14 205 98.34 7 051.765 674 98.11
QuickBird-2 15 +7 18 277 93.57 6 821.490 443 97.21
Coriolis 14 +1 8 113 101.89 7 223.450 845 98.82
Aquarius 15 −1 8 119 96.81 6 978.050 600 97.81
NEMO 15 −1 7 104 96.92 6 983.652 606 97.83
NPP 14 +3 16 227 101.50 7 202.173 824 98.73

� SPOT-5 14 +5 26 369 101.46 7 200.546 822 98.72
� Hélios-1B 15 −10 27 395 98.43 7 056.025 678 98.12
� Pléiades-1 15 −11 26 379 98.79 7 073.059 695 98.19
� Envisat 14 +11 35 501 100.60 7 159.496 781 98.55
ERS-1 (Rec. 2) 14 +1 3 43 100.46 7 153.138 775 98.52
ERS-1 (Rec. 3) 14 +59 168 2 411 100.34 7 147.192 769 98.50
� MetOp-1 14 +6 29 412 101.36 7 195.606 817 98.70
MetOp-1 [0] 14 +1 5 71 101.41 7 197.940 820 98.71
TerraSAR-X1 15 +2 11 167 94.85 6 883.512 505 97.45
EGPM 15 −1 3 44 98.18 7 044.115 666 98.07

� MOS-1B 14 −1 17 237 103.29 7 286.941 909 99.10
JERS-1 15 −1 44 659 96.15 6 946.179 568 97.69
ADEOS-1 14 +11 41 585 100.92 7 174.906 797 98.61
� ADEOS-2 14 +1 4 57 101.05 7 181.058 803 98.64
ALOS 15 −19 46 671 98.66 7 069.809 692 98.18

� IRS-1B 14 −1 22 307 103.19 7 282.277 904 99.08
� IRS-P6 14 +5 24 341 101.35 7 195.119 817 98.70
Oceansat-1 14 +1 2 29 99.31 7 098.105 720 98.29
RISat-1 15 −1 12 179 96.54 6 965.021 587 97.76
Cartosat-1 15 −21 116 1 719 97.17 6 995.667 618 97.88
Cartosat-2 15 −1 4 59 97.63 7 017.502 639 97.97

Resurs-O1-3 15 −8 21 307 98.50 7 059.437 681 98.14
� Radarsat-1 14 +7 24 343 100.76 7 167.064 789 98.58
� CBERS-2 14 +9 26 373 100.38 7 148.868 771 98.50
SAC-C 15 −4 9 131 98.93 7 079.991 702 98.22
SAOCOM-1A 15 −4 17 251 97.53 7 012.831 635 97.95
Kompsat-1 15 −11 28 409 98.58 7 063.280 685 98.15
EROS-A1 15 +2 7 107 94.21 6 852.218 474 97.33
Rocsat-2 14 0 1 14 102.74 7 266.473 888 99.00
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Table 7.1. Opposite page. Orbital characteristics of Sun-synchronous satellites
obtained from the recurrence triple [νo, DTo , CTo ], where νo is the whole number
closest to the number of revolutions per day, DTo is the whole number equal to
NTo − νoCTo , CTo is the recurrence cycle (whole number of days), NTo is the
number of revolutions per cycle. The numbers in the triple give the draconitic
period Td (min) and hence the orbital characteristics: the semi-major axis a (km),
the altitude h (km) obtained from h = a−R, and the Sun-synchronous inclination
iHS (degrees). For satellites marked �, see Table 7.3

Table 7.2. As in Table 7.1, but for the ERM then EarthCARE project. The altitude
increases as the launch is delayed, since we are moving from the years of minimal
solar activity towards the years of maximal solar activity

Sun-syn. sat. νo DTo CTo NTo Td a h iHS

ERM 16 −1 3 47 91.91 6 740.440 362 96.92
EarthCARE [1a] 16 −4 9 140 92.57 6 772.571 394 97.03
EarthCARE [1b] 15 +1 2 31 92.90 6 788.780 411 97.09
EarthCARE [2a] 15 +4 11 169 93.73 6 828.979 451 97.24
EarthCARE [2b] 15 +11 31 476 93.78 6 831.593 453 97.25

Table 7.3. List of orbits common to different Sun-synchronous satellites. The B
satellites are on the same orbit as the corresponding A satellites

Satellite A Satellite B

Landsat-3 Landsat-1, -2
Terra Landsat-4, -5, -7
Terra SeaStar, EO-1
Terra Aqua, Aura
Terra CloudSat, Calipso
Terra PARASOL, OCO
NOAA-7 NOAA-6
HCMM COSMO-SkyMed
HCMM HypSEO
Ikonos-2 LSPIM
Radarsat-1 Radarsat-2

Satellite A Satellite B

SPOT-5 SPOT-1, -2, -3, -4
Hélios-1B Hélios-1A
Pléiades-1 Pléiades-2
Envisat ERS-1, ERS-2
MetOp-1 MetOp-2, -3
MOS-1B MOS-1
ADEOS-2 QuikScat
IRS-1B IRS-1A
IRS-P6 IRS-1C, -1D
IRS-P6 IRS-P2, -P3
CBERS-2 CBERS-1

7.2.3 Recurrence Defined by the Recurrence Triple

Recurrent Sun-synchronous satellites are defined by the recurrence triple.
All Sun-synchronous satellites with the same recurrence triple have the same
period, and hence the same values of a and i. (They also share the same value
of e, because the orbit is frozen, as we shall see at the end of the chapter.)
The recurrence triple thus defines the orbit. We may speak of the SPOT orbit
for all satellites having the same recurrence triple as SPOT-1.
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Table 7.1 shows the recurrence triple for various satellites, some no longer
in service, such as Landsat-3, some still operating, such as Terra, and some
under development, such as Aquarius. The recurrence originally planned for
MetOp-1, but later changed, is indicated by [0]. Regarding the EarthCARE
project, there are several candidates for recurrence, given separately in Ta-
ble 7.2. We have also mentioned the recurrence intended for several projects
such as ERM and LSPIM which have now been abandoned.

Figures 7.2 and 7.3 give the recurrence diagram over the range of alti-
tudes h from 320 to 970 km and cycles CTo from 1 to 30 days. Recurrence
possibilities are indicated in each case with DTo , CTo and νo, deduced from
ν. Values in use by satellites in Tables 7.1 and 7.2 are boxed.

Note that the draconitic period in minutes is given by

Td (min) = 1440
CTo

NTo

, (7.15)

which is the adaptation of (7.13) to Sun-synchronous satellites.

Example 7.1. Calculate the characteristics of the SPOT orbit.

Concerning the orbit of the SPOT satellites, the recurrence triple is [14, 5, 26]. We
observe that 5 and 26 are coprime and that 5 is less than 13. For strict recurrence,
the draconitic period is held at its exact value given by

Td (min) = 1440
26

369
= 101.463 .

To begin with, following the same lines as Example 4.2, we set T0 = Td, which gives
the corresponding Keplerian values:

a0 = 7206.1 km , i0 = iHS = 98.7◦ .

Using a0 and i0, we then calculate the relative values of the secular variations:

∆n

n0
= −0.593 × 10−3 ,

ω̇

n0
= −0.564 × 10−3 ,

which yields a new value a1 for the semi-major axis:

∆a

a0
= −2

3
× 1.157 × 10−3 , ∆a = −5.6 km ,

a1 = a0 + ∆a = 7 200.5 km .

The iterative calculation (one step is actually enough) delivers the semi-major axis
and the inclination as

a = 7 200.546 4 km , i = iHS = 98.723◦ .

Values given in the CNES documentation concerning SPOT are



7.2 Recurrence for a Sun-Synchronous Satellite 305

a = 7200.547 km , i = iHS = 98.723◦ ,

implying an altitude of h = a − R = 822 km.
If the secular variations are calculated with the expansion cut off at the term

in J2, this yields the following values after iteration:

a′ = 7 200.537 km , i = iHS = 98.70◦ .

Comparing the various values found for the semi-major axis, we thus observe that:

• the term a0 = 7206.1 km is obtained from the central term of the Newtonian
acceleration (degree 0 of the potential),

• the difference |a′ −a0| = 5.6 km arises from the terms of degree 2 (the J2 term)
in the geopotential,

• the difference |a − a′| = 10 m arises from the terms of degree 4 (the J2
2 and J4

terms) and higher order in the geopotential.

Concerning the relative orders of magnitude of the values found for the semi-major
axis, viz.,

|a − a0| ∼ 10−3a0 , |a − a′| ∼ 10−3|a − a0| ,

we obtain the same values as in Chap. 3 when comparing orders of magnitude of
J2 and 1, then J4 and J2.
These theoretical values can also be compared with the actual values as obtained
from the NORAD elements. We choose three dates, the second and third being
separated by 26 days and one year, respectively, from the first:

SPOT 5

1 27421U 02021A 03040.18015505 .00000155 00000-0 93359-4 0 9661

2 27421 98.7244 116.8304 0000554 58.9354 301.1883 14.20029420 39902

SPOT 5

1 27421U 02021A 03066.18009415 .00000138 00000-0 85210-4 0 469

2 27421 98.7212 142.4627 0000619 93.4275 266.6981 14.20038040 43590

SPOT 5

1 27421U 02021A 04040.23558731 .00000015 00000-0 27564-4 0 1157

2 27421 98.7426 116.1385 0000814 76.9405 283.1877 14.20014756 91717

The orbital elements obtained are as follows:

• First set, 9 February 2003, revolution 3 990: a = 7200.542 km, e = 5.54× 10−5,
i = 98.7244◦ , ω = 58.9354◦, λAN = 273.297◦ , τAN = 22:33 .

• Second set, 6 March 2003, revolution 4 359: a = 7200.513 km, e = 6.19 × 10−5,
i = 98.7212◦ , ω = 93.4275◦, λAN = 273.324◦ , τAN = 22:33 .

• Third set, 9 February 2004, revolution 9 171: a = 7200.593 km, e = 8.14×10−5,
i = 98.7426◦ , ω = 76.9405◦, λAN = 252.888◦ , τAN = 22:32 .

Between the first two sets, separated by 369 revolutions, we note a discrepancy in

λAN of 0.027◦, or 3.0 km, less than the tolerated maximum (5 km) for recurrence.

The elements a and i remain very close to the theoretical values. However, e is

much lower than the value needed to freeze the orbit (see the end of the chapter).

Consequently, there is a large variation in ω around 90◦. The crossing time τAN is
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assured to within 2 minutes, which is well below the variations in solar time due to

the equation of time.

Example 7.2. Calculate the characteristics of the Terra orbit.

For the orbit of satellites in the Terra family (see Table 7.3), the recurrence triple
is [15,−7, 16]. The draconitic period is maintained at

Td (min) = 1440
16

233
= 98.884 .

As before, we obtain

a0 = 7083.4 km , i = iHS = 98.2◦ .

We then calculate the relative values of the secular variations:

∆n

n0
= −0.619 × 10−3 ,

ω̇

n0
= −0.591 × 10−3 ,

which gives the new value of the semi-major axis as a1 = 7077.7 km. By iteration,

a = 7 077.737 8 km , i = iHS = 98.211◦ .

We have seen that, although the value of a can be accurately determined, the same

cannot be said of the altitude, which varies due to the ellipticity of the orbit and

the Earth. (This question will be tackled at the end of the chapter.) If we define

the altitude h as the difference between a and the equatorial radius R, the value

of h is well-determined. In the case of Terra, we obtain h = 700 km. The NASA

documentation gives the value h = 705 km for all satellites in the Terra orbit, the

altitude having been defined in a slightly different way.

The Argentinian satellite SAC-C (Satélite de Aplicaciones Cient́ıficas) was launched

with EO-1. The latter, coupled with Landsat-7, is on the Terra orbit. The satellite

SAC-C was placed on an orbit 2.2 km higher, leading to a recurrence cycle of 9

days. The value of ν for this satellite is ν = 15 − 4/9 = 14.5555, whilst for EO-1,

we have ν = 15 − 7/16 = 14.5625.

Example 7.3. Calculate the orbital characteristics of the satellite ERS-1 which has
had three different recurrence cycles: 35 days, 3 days and 168 days.

The ESA satellite ERS-1 was launched on 17 July 1991. It flies at an altitude of
about 780 km and its orbit is Sun-synchronous. It initially had a recurrence cycle
of 35 days. From 20 December 1993, a slight change of orbit brought the cycle to 3
days, better suited to the study of ice flows during the arctic winter, according to
the mission controllers. A further maneuver brought the cycle to 168 days so that
it could carry out geodetic observations. The satellite ERS-2, launched on 21 April
1995, carried out a mission in tandem with ERS-1 until 10 March 2000.
Let us now calculate the orbital characteristics for each recurrence condition:
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• Recurrence cycle 1. 35 day cycle over 501 revolutions:

ν1 =
501

35
= 14 +

11

35
=⇒ recurrence triple [14, 11, 35] .

From Td, we calculate a and i by the above method. The results are given in
Table 7.1: ERS-1 (Rec. 1) as Envisat, ERS-1 (Rec. 2) and ERS-1 (Rec. 3) (see
Fig. 5.26, upper).

• Recurrence cycle 2. 3 day cycle over 43 revolutions:

ν2 =
43

3
= 14 +

1

3
=⇒ recurrence triple [14, 1, 3] .

The change of cycle was brought about by going from ν1 to ν2, and this in turn
was done by reducing the altitude by 6.358 km (and the inclination by 0.027◦).

• Recurrence cycle 3. 168 day cycle over 2411 revolutions:

ν3 =
2411

168
= 14 +

59

168
=⇒ recurrence triple [14, 59, 168] .

The change of cycle was brought about by going from ν2 to ν3, and this in turn
was done by reducing the altitude by 5.948 km (and the inclination by 0.025◦).

Very small variations in altitude lead to totally different recurrence cycles, as can
be seen very clearly from Fig. 7.1. These variations in altitude are small enough
to make them easy to calculate (without carrying out the above type of iteration),
applying the relation for finite increments already used:

∆ν

ν
= −3

2

∆a

a
.

Setting

arec1 = 7159.496 km ,

we obtain

∆ν = ν2 − ν1 =
1

3
− 11

35
=

2

3 × 35
,

∆ν

ν1
=

2

3 × 35
× 35

501
=

2

3 × 501
,

∆arec1→rec2 = −6.358 km ,

∆ν = ν3 − ν2 =
59

168
− 1

3
=

1

56
,

∆ν

ν2
=

1

56
× 3

43
=

3

56 × 43
,

∆arec2→rec3 = −5.946 km .

Note that a recurrence condition based on such a long time scale as CTo = 168

days is quite exceptional. Values of CTo do not generally exceed 45 days.

When the orbit of a Sun-synchronous satellite is defined by its recurrence
cycle CTo and its approximate altitude, one determines the recurrence triple,
then returns to the previous analysis. From the altitude, one can calculate
ν, which gives νo. Once the cycle CTo is known, one can deduce NTo by an
iterative method, and then find DTo .
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Table 7.4. Recurrence triple [νo, DTo , CTo ] and number of revolutions NTo per
cycle for various non-Sun-synchronous satellites, giving the draconitic period Td

(min) and orbital characteristics: semi-major axis a, altitude h (km), and inclination
iHS (degrees). � T/P is the common orbit of TOPEX/Poseidon, Jason-1 and -2. For
ICESat and CryoSat, we have indicated the recurrence conditions for the mission
orbit and for the calibration orbit [cal]

Non-Sun-sync. νo DTo CTo NTo Td a h i

Seasat 14 +8 25 358 100.85 7 173.367 795 108.00
Geosat 14 +6 17 244 100.62 7 162.520 784 108.00
� T/P 13 −3 10 127 112.42 7 714.428 1 336 66.04
ICESat 15 −22 183 2 723 96.65 6 970.030 592 94.00
ICESat [cal] 15 −1 8 119 96.68 6 971.522 593 94.00
CryoSat 14 +178 369 5 344 99.25 7 094.555 716 92.00
CryoSat [cal] 14 +1 2 29 99.10 7 087.812 710 92.00

7.2.4 One-Day Recurrence Cycle

For LEO satellites (at least, for those which observe the Earth), one-day
recurrence cycles are avoided. Indeed, if such a satellite views exactly the
same regions every day, many other places must necessarily be missed out,
unless the instruments have a very wide field of view. Those altitudes between
0 and 1250 km giving a one-day recurrence cycle appear in the recurrence
diagram of Fig. 7.1 and are also indicated in Table 7.5. The corresponding
recurrence triples are of the form [νo, 0, 1].

To our knowledge, the only LEO satellite with a one-day recurrence cycle
is Taiwan’s Rocsat-2. The triple [14, 0, 1] induces a recurrence grid that has
been put to very judicious use in connection with the geographic position of
Taiwan. We shall return to this point later, when discussing recurrence grids.

7.3 Recurrence
for a Non-Sun-Synchronous LEO Satellite

7.3.1 Obtaining the Recurrence Triple

For a non-Sun-synchronous satellite, recurrence is defined by the recurrence
cycle CTo , in a whole number of days, differing here from the cycle CT. To
determine the recurrence triple, the altitude and inclination must also be
known, with a certain interval of possible variation.

The daily recurrence frequency is given by (7.3), where ν = ν(a, i) and
P = P (a, i). We calculate the product (κCTo ), allowing a and i to vary until
we obtain a whole number, which then represents NTo . With this value, we
obtain νo, the integer closest to κ, and by NTo = νoCTo + DTo , we obtain
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DTo . This gives the recurrence triple [νo, DTo , CTo ] and the value of CT.
Recall that CT and CTo are given by (7.7) and (7.8).

Table 7.4 gives the main recurrent, non-Sun-synchronous LEO satellites.
These are oceanographic satellites, except for ICESat and CryoSat. The satel-
lite ICESat, which repeats over a very long period (2 723 revolutions in 183
days), carries just one instrument, a laser altimeter. This is why it is impor-
tant that the satellite does not repeat its ground track before half a year.

Example 7.4. Calculate the recurrence triple and exact altitude for the satellite
TOPEX/Poseidon, which has a 10 day cycle and inclination i =66.04◦. Its altitude
is around 1 335 km.

The French–US satellite TOPEX/Poseidon comprises the US platform TOPEX
(Topography Experiment for Ocean Circulation) and the French altimetric instru-
ment Poseidon, equipped with the DORIS system (Détermination d’Orbite et Ra-
diopositionnement Intégrés par Satellite). Poseidon is used to calculate the orbit
to within a radial accuracy of 2 cm. Consequently the mean altitude of the oceans
can be measured to the same accuracy. The TOPEX/Poseidon experiment is being
continued by Jason-1, which uses exactly the same orbit. (The T/P orbit is shifted
by a half-interval on the ground track.)
To obtain the recurrence characteristics, treating the inclination as fixed at i =
i0 = 66.04◦, we vary h, allowing a margin of 10 km on either side of the central
value, doing the calculations with a. With the usual units, we obtain:

h = 1325 =⇒ P = −2.12 , ν = 12.838 , κ = 12.728 =⇒ κCTo = 127.276 ,

h = 1335 =⇒ P = −2.11 , ν = 12.811 , κ = 12.703 =⇒ κCTo = 127.032 ,

h = 1345 =⇒ P = −2.10 , ν = 12.786 , κ = 12.679 =⇒ κCTo = 126.788 .

By interpolation, we seek the value of a leading to the integer value κCTo = 127.
With a further iteration, we obtain the result:

h = 1336.297 =⇒ P = −2.106898 ,

ν = 12.8080 , κ = 12.7000 =⇒ κCTo = 127.00000 .

Finally, for this satellite, with CTo = 10, we thus have

a = 7714.434 km , i = 66.04◦ ,

T = 1440
10

270

„
1 +

1 − P

Nsid

«
= 1440

10

270

„
1 +

3.1068

365.25

«
= 112.4295 min ,

Td = 112.4295 min , Ta = 112.4185 min ,

and the recurrence triple is

κ =
127

10
= 13 +

−3

10
=⇒ [13,−3, 10] .
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The reference values communicated by the TOPEX/Poseidon team are

a = 7714.429 38 km , i = 66.0408◦ .

Every 127 revolutions, the satellite repeats its ground track precisely. However, the
time elapsed between two passages is not exactly 10 days, but 9.92 days. Indeed,

CT =
127

ν
=

127

12.8080
= 9.9156 day = 9 d 21 h 58 m 27 s ≈ 9 d 22 h .

In 10 days, the satellite thus gains 2 h 01 m 33 s = 2.043 h on its local crossing
time. After 117.45 days, it has gained 117.45 × 0.2043 = 24.00, or a whole day, as
we have seen in Example 6.1, where CS = −117.45 corresponds to the cycle relative
to the Sun. The relation between CTo and CT can be obtained directly from (7.9).
Let us now compare these theoretical values with those obtained using NORAD
data:

TOPEX

1 22076U 92052A 04068.34164556 -.00000038 00000-0 10000-3 0 6642

2 22076 66.0420 112.9091 0008368 272.0846 87.9192 12.80929020541452

JASON

1 26997U 01055A 04067.94661617 -.00000061 00000-0 00000-0 0 3432

2 26997 66.0416 113.4703 0008092 269.2700 90.7389 12.80928744105199

For T/P, on 8 March 2004 at 08:12 UT, with λAN = 183.880◦ , 20:27 LMT,

a = 7714.431 km .

For Jason-1, on 7 March 2004 at 22:43 UT, with λAN = 326.652◦, 20:30 LMT,

a = 7714.433 km .

7.3.2 Recurrence, Altitude, and Inclination

For a non-Sun-synchronous satellite, a given recurrence condition leaves a
certain freedom to vary the altitude and inclination. For concreteness, con-
sider a polar satellite, with i = 90◦ and recurrence [14,−1, 17]. Calculations
then give its altitude as h = 894.9 km. With i = 80◦, the satellite must be
brought down to an altitude h = 880.9 km in order to obtain the same re-
currence triple, whereas with i = 100◦, it must be moved up to an altitude
h = 910.2 km. We see that, in the neighbourhood of 90◦, a change of one
degree in the inclination implies a change of 1.5 km in the altitude, in order
to maintain the same recurrence conditions.

For each triple, we can calculate the value of h as a function of i, whilst
the inclination varies from 0 to 180◦. The graphs h(i) are shown in Fig. 7.4
(upper) for all triples [14,±1, CTo], where CTo varies between 5 and 17, and
also for the triple [14, 0, 1]. A more restricted range of variations is also shown
in the lower part of Fig. 7.4.
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Figure 7.4. Altitude as a function of inclination for a satellite holding the same
recurrence. Upper : Recurrence triples [14,±1, CTo ], for CTo varying between 5 and
17 (in steps of 2), and [14, 0, 1]. Values corresponding to DTo = −1 are above the
median, representing [14, 0, 1], while those corresponding to DTo = +1 are below it.
The dashed curve denotes the Sun-synchronous inclination as a function of altitude.
Lower : Detail from the upper diagram for a restricted range of inclinations, with
CTo varying between 4 and 17
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Figure 7.5. Schematic view of the recurrence space. Locus of points at which recur-
rence occurs. Quantities along axes: Ox for the inclination i, Oy for the recurrence
cycle CTo , Oz for the altitude h

Table 7.5. Orbital and recurrence characteristics for satellites with a one-day cycle.
Non-Sun-synchronous satellites with three different inclinations are compared with
Sun-synchronous satellites. Altitudes h in kilometres and angles i in degrees. The
daily orbital frequency ν is in rev/day

νo i = 20 i = 65 i = 110 i = iHS

h h h h iHS

16 176.4 214.9 294.6 268.1 96.6
15 478.6 511.6 583.1 561.0 97.7
14 814.4 842.5 906.1 888.3 99.0
13 1 191.1 1 214.5 1 270.6 1 257.1 100.7

Let us now consider a three-dimensional space with the angle of inclination
i along the Ox axis, the recurrence cycle CTo along the Oy axis, and the
altitude h along the Oz axis. We then plot the locus of points for which
recurrence occurs. This produces a graph like the one sketched in Fig. 7.5.
Examination of the space in the diagram shows that:

• the projection of the curves onto the plane xOz gives Fig. 7.4 (upper),
• the intersection of the curves with the plane yOz, for the Sun-synchronous

inclination, gives Fig. 7.1 (or Figs. 7.2 or 7.3), regarding the points for
the recurrence triples [14,±1, CTo] and [14, 0, 1].

As for Sun-synchronous satellites, one-day recurrence cycles are not generally
favoured for non-Sun-synchronous satellites. The ‘avoided’ altitudes are noted
in Table 7.5 for various inclinations.
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Table 7.6. Orbital and recurrence characteristics for the (MEO) GPS navigation
satellites and satellites in the constellation WEST. Distances a and h in km, angle
i in degrees, period T in minutes

MEO satellite a h i T Rec. triple NTo

NAVSTAR (I) 26 559.967 20 182 63.0 717.97 [2, 0, 1] 2
NAVSTAR (II) 26 560.904 20 183 55.0 717.98 [2, 0, 1] 2
GLONASS 25 507.598 19 130 64.8 675.73 [2, +1, 8] 17
Galileo 29 993.689 23 616 56.0 861.58 [2,−1, 3] 5

WEST 20 267.139 13 889 75.0 478.63 [3, 0, 1] 3

Example 7.5. Choice of orbit for surveillance satellites in the Resurs-F2 series.

The Soviet then Russian surveillance satellites in the Resurs-F2 series are in very
low orbit for one-month missions. With i = 82.3◦ (the usual inclination for these
satellites) and for an altitude h < 300 km, there is one possibility for a one-day
recurrence cycle. Calculation gives

h = 241.850 km , triple [16, 0, 1] , CT = 0.994 day .

The orbit of the satellite Resurs-F-10, launched on 21 May 1991, had characteristics

hp = 196 km and ha = 277 km, giving a mean altitude of h = 237 km. This value

put the satellite into a one-day recurrence cycle.

Example 7.6. Choice of orbit for the satellite Megha-Tropiques.

To study meteorological phenomena in the inter-tropical zone, the French satellite

Tropiques was intended to have a rather high altitude (h ∼ 1000 km) and low

inclination (i ≈ 15◦). After collaboration with India, its inclination was increased

to i = 20◦ (to cover the Himalayas) and its altitude reduced (a restriction imposed

by new instruments). The new name of the satellite is Megha-Tropiques (megha,

���, means clouds in Sanskrit and tropiques is the French word for tropics). The

altitude, then fixed at 817 km, put the satellite within 3 km of the altitude for a one-

day recurrence cycle. It was modified to give a recurrence cycle of 7 days or more.

Figure 7.4 (lower) can be used to choose this altitude. For the triple [14,−1, 7], the

altitude is h = 866 km. The calculation gives a = 7243.700 km and CT = 6.87 day.

7.4 Recurrence for MEO and HEO Satellites

The possible problems of one-day recurrence cycles arising for LEO satel-
lites are quite irrelevant for MEO and HEO satellites, for which this type of
recurrence is often desirable.

GPS navigation satellites have recurrence properties. For the US system
NAVSTAR/GPS (Block I, Block II), the recurrence is based on one day (2
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Table 7.7. Orbital and recurrence characteristics for the (HEO) Molniya and Tun-
dra satellites, and also for other satellites under development. Semi-major axis a
in km, period T in minutes. For all these orbits, with eccentricity e, the inclination
is at the critical value i = 63.43◦ (for Ellipso Borealis, i = 180◦ −63.43◦ = 116.57◦)

HEO satellite a e T Rec. triple NTo

Supertundra 42 163.2 0.4230 1436.03 [1, 0, 1] 1
Tundra 42 163.4 0.2668 1436.04 [1, 0, 1] 1

Molniya 26 552.9 0.7500 717.72 [2, 0, 1] 2
Molniya 26 553.6 0.7360 717.75 [2, 0, 1] 2
Molniya 26 554.3 0.7222 717.77 [2, 0, 1] 2

VirtualGEO 20 260.2 0.6609 478.36 [3, 0, 1] 3
COBRA 20 260.9 0.6459 478.39 [3, 0, 1] 3
Loopus 29 991.4 0.6000 861.53 [2,−1, 3] 5

Ellipso Borealis 10 559.3 0.3463 180.00 [8, 0, 1] 8

revolutions per day). For the Russian system GLONASS, it is based on 8 days
(17 revolutions over this period), while for the European system Galileo, it is
based on 3 days (5 revolutions). For satellites in the constellation WEST, the
recurrence cycle is one day (3 revolutions per day). Table 7.6 gives orbital
and recurrence features of MEO satellites.

It is also extremely useful for HEO communications satellites to have one-
day recurrence cycles so that they overfly ground stations (for transmission
and reception) once or twice a day with the same viewing geometry. For
these orbits, the apogee is fixed following the choice of the critical inclination.
Table 7.7 gives orbital and recurrence characteristics of HEO satellites.

Although associated with a quite different type of mission, it is interesting
to note the recurrence conditions of the satellite Integral, i = 57.1◦, which
makes one revolution in three days. This gives the unusual recurrence triple
[0, 1, 3], NTo = 1.

7.5 Recurrence Grid

7.5.1 Constructing the Recurrence Grid

As we saw in Chap. 6, the equatorial shift ∆λE represents the distance be-
tween two successive ground tracks (of the same kind, ascending or descend-
ing) at the equator. In the following, we consider near-circular satellites in
low orbit (LEO), the only ones for which the recurrence grid is relevant. For
the quantities already discussed, we have

∆λE = −(Ω̇T − Ω̇)T = −n

κ
T = −2π

κ
. (7.16)
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The equatorial shift is thus very simply related to the daily recurrence fre-
quency κ.

Consider a ground track defining one ascending node as origin, with lon-
gitude λ0. If λ1 is the longitude of the following ascending node, we thus
have, by definition of the equatorial shift,

λ1 − λ0 = ∆λE = −2π
CTo

NTo

. (7.17)

After νo revolutions (or about one day), the ground track cuts the equator
at the ascending node with longitude λνo such that

λνo − λ0 = νo∆λE = −2π
νoCTo

NTo

.

According to (7.11), this can be written in the form

λνo − λ0 = −2π

(
1 − DTo

NTo

)
= −2π + 2π

DTo

NTo

.

Since the longitudes are defined to within 2π, we thus have

λνo − λ0 = 2π
DTo

NTo

. (7.18)

If DTo is positive, i.e., if νo < κ, we have λνo − λ0 > 0, i.e., λνo to the east
of λ0. Indeed, if after νo revolutions a whole day has not gone by since the
crossing at λ0, the ground track λνo is indeed east of λ0.

In the opposite situation, if DTo is negative, i.e., if νo > κ, a little more
than one day has gone by and the ground track λνo is situated west of λ0,
which shows that λνo − λ0 < 0.

In the rest of this calculation, we shall denote the day of crossing by a
superscript and the number of the crossing in this day by a subscript on the
longitude of the ascending node, viz.,

λday
crossing .

The origin is denoted by λ0
0. We consider the case where DTo is positive for

concreteness. The other case would require us to use νo + 1 rather than νo

and change some of the signs. We thus have, with this notation,

λ0
1 − λ0

0 = ∆λE .

The last ascending node on day 0 is λ0
νo

, and the next, which is the first on
day 1, is written λ1

1. Hence,

λ0
νo

− λ0
0 = νo∆λE [2π] ,

λ1
1 − λ0

0 = (νo + 1)∆λE [2π] ,
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(d)

(c)

(b)

(a)

Figure 7.6. Constructing the recurrence grid. (a) Two consecutive ground tracks
from day 0 determine the base interval – these ground tracks are plotted in bold
type. (b) One ground track of day 1 passes through the base interval. (c) The
ground tracks for the following days, 2, 3, . . . , J pass through the base interval. (d)
All ground tracks up to day (CTo − 1) define the grid interval. Note: by ‘ground
track’, we understand the ground track at the ascending node

where [2π] indicates the congruence modulo 2π.
We now consider the interval [λ0

1, λ
0
0], which we shall call the base interval,

counting positively towards the east. We take λ0
1 as origin and set

δR = λ0
0 − λ0

1 , δD = λ1
1 − λ0

1 ,

where δR is the interval between ascending nodes for two consecutive revolu-
tions, so that δR = −∆λE, and δD the interval between ascending nodes for
two consecutive days. The interval δR is shown in Figs. 7.6a and b, and the
interval δD in Figs. 7.6b and c.

Calling δ the grid interval at the equator, defined by

δ =
2π

NTo

, (7.19)

we have the relations

δR = CToδ , δD = DToδ .
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The grid interval3 δ, related in this way to δR and δD, is indicated in Fig. 7.6d.
In the base interval, we have for the different days:

for day 1 λ1
1 − λ0

1 = δD ,

for day 2 λ2
1 − λ0

1 = 2δD ,

for day J λJ
1 − λ0

1 = JδD .

For day J , this relation holds if the point λJ
1 lies in the base interval. Other-

wise, we subtract a whole number of values of δR, expressing this by congru-
ence relations:

λJ
1 − λ0

1 = JδD [δR] ,

λJ
1 − λ0

1 = JDToδ [CToδ] ,

λJ
1 − λ0

1

δ
= JDTo [CTo ] .

We note that the quantity (λJ
1 − λ0

1)/δ is indeed a whole number. Hence,
for a given day, we obtain the position of the ascending node λJ

1 in the base
interval, hence also in the recurrence grid.

If u(J) denotes the position of the ground track of day J in the base
interval, in units of δ, i.e.,

u(J) =
λJ

1 − λ0
1

δ
, (7.20)

we have the fundamental relation for the recurrence grid:

u(J) = JDTo [CTo ] . (7.21)

The whole number u(J) can take CTo values between 0 and CTo − 1.
When we do not wish to favour one bound of the interval rather than the

other, we will consider the number u∗(J) defined by

u∗(J) = min
{

u(J), CTo − u(J)
}

, (7.22)

which is an integer taking values between 0 and CTo/2.
3 For a quick evaluation, δ can be obtained from an approximate relation for

recurrent satellites of altitude h = 900 ± 300 km. For these satellites, the daily
orbital frequency ν lies between 13 and 15. We may thus take ν to be equal to
14 and NTo equal to 14CTo . Expressing δ in degrees, we thus find that

δ ≈ 360

14CTo

, i.e., CToδ ≈ 25 .

We thus see that the product of the grid interval (in degrees) and the recurrence
cycle (in days) is roughly equal to 25. This relation is often given in the literature.
In certain texts, it is presented as a kind of magic formula, although we can see
from the above that it is very easy to derive.
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7.5.2 Using the Recurrence Grid

We now give several examples to show how the recurrence grid is determined
and used.

Example 7.7. Calculate the crossing order in the base interval for ADEOS-1.

The recurrence triple for this satellite is [14, 11, 41], whence NTo = 585. We thus
have

δ =
2π

585
= 0.010740 rad = 0.6154◦ = 68.504 km ,

and for the equatorial shift, δR = 41δ, i.e., δR = 25.23◦. Applying (7.21), we obtain
the values u(J) for each day of the cycle:

u(0) = 0 , u(1) = 11 , u(2) = 22 , u(3) = 33 ,

u(4) = 3 , u(5) = 14 , u(6) = 25 , . . . .

From these values u(J), we obtain the grid in the base interval, from u = 0 to
u = 41. The values of J are:

u = 0–9 �−→ 0, 15, 30, 4, 19, 34, 8, 23, 38, 12 ,

u = 10–19 �−→ 27, 1, 16, 31, 5, 20, 35, 9, 24, 39 ,

u = 20–29 �−→ 13, 28, 2, 17, 32, 6, 21, 36, 10, 25 ,

u = 30–39 �−→ 40, 14, 29, 3, 18, 33, 7, 22, 37, 11 ,

u = 40–41 �−→ 26, 41 = 0 .

The ascending node crossing u = 1 occurs on day J = 15. With (7.21), we can

check that u(15) = 15 × 11 [41] = 165 [41] = 1. Hence, u∗ = 1 for J = 15 and

J = 26.

Example 7.8. Calculate the crossing order in the base interval for Landsat-3 and
ADEOS-2.

All recurrent satellites with DTo = ±1 have sequential recurrence grids: in the base
interval, consecutive ground tracks are in the order of the days. Indeed, in this case,
(7.21) implies the very simple relation

DTo = +1 =⇒ u(J) = J , DTo = −1 =⇒ u(J) = CTo − J .

Many satellites fall into this category – see Table 7.1. Later on, we shall discover the

important consequences of this fact for the ground track during the recurrence cycle.

For Landsat-3, with DTo = −1 for an 18 day cycle, the various ground tracks u =

0, 1, 2, 3, . . . , 17, 18, occur on days J = 18 (= 0), 17, 16, 15, . . . , 1, 0. For ADEOS-2,

with DTo = +1 for a 4 day cycle, the various ground tracks u = 0, 1, 2, 3, 4, occur

on days J = 0, 1, 2, 3, 4.
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Cycle

Day 4

Day 3

Day 2

Day 1

Day 0

Figure 7.7. Construction of the recurrence grid for TOPEX/Poseidon (or Jason-1
and -2). For each cycle (J = 0, 1, 2, 3, 4, . . . ), the ground track at the equator is
marked in the base interval

Example 7.9. Calculate the crossing order in the base interval for TOPEX/Posei-
don (and Jason-1, Jason-2).

The recurrence triple for this satellite is [13,−3, 10], which immediately gives NTo =
127. We thus have

δ =
2π

127
= 0.049474 rad = 2.8346◦ = 315.551 km ,

and for the equatorial shift, δR = 10δ, or δR = 28.35◦. Applying (7.21), we obtain
u(J) for each day of the cycle. We thus deduce the grid in the base interval, from
u = 0 to u = 10, indicating the value of J for each u :

u = 0–10 �−→ 0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 10 = 0 .

Note that u∗ = 1 for J = 3 and J = 7. It is easy to obtain these values using a

graph like the one shown in Fig. 7.7.

7.5.3 Reference Grids

For a recurrent satellite, a single point on the ground track completely
fixes its ground track on the globe. Earth-observation satellites are main-
tained on their nominal orbits in order to guarantee the position of their
ground tracks to within a few kilometres (generally ±5 km, and ±1 km for
TOPEX/Poseidon and Jason-1, ±0.8 km for ICESat). All the SPOT satel-
lites, for example, use the same grid, which is fixed by giving an ascending
node longitude. Table 7.8 describes the main grids and their characteristics.4

4 Abbreviations are as follows. WRS: Worldwide Reference System. GRS: Grille
de Référence SPOT . ERS: ERS–SAR Reference System. MWRS: MOS-1 World
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Table 7.8. Characteristics of reference grids for various satellites. NTo is the num-
ber of revolutions per recurrence cycle, δ the grid interval, and λ the longitude
origin

Satellites Grid NTo δ [deg] δ [km] λ origin [deg]

Landsat-1 to -3 WRS-1 251 1.4343 159.7 294.5200
Landsat-4 to -7, Terra WRS-2 233 1.5451 182.0 295.4000
A-Train WRS-2 233 1.5451 182.0 295.4000
SPOT-1 to -5 GRS 369 0.9756 108.6 330.4000
ERS-1, 2, Envisat ERS 501 0.7186 80.0 0.1335
MOS-1, -1B MWRS 235 1.5190 169.1 326.7500
Oceansat-1 IRSP4G 29 12.4138 1381.9 328.1900

TOPEX/P, Jason-1 T/P 127 2.8346 315.5 99.9242

The ground track of TOPEX/Poseidon over one recurrence cycle (see
Fig. 7.10) represents the reference grid of this satellite and the satellites
Jason-1 and -2, since the initial conditions agree with those given in Table 7.8
(see also Fig. 5.26, lower).

Example 7.10. Using the recurrence grid for the first revolutions of ERS-2.

We consider the initial conditions for ERS-2 given by ESA, at the first ascending
node crossing of the measurement phase (revolution 147, the first 146 revolutions
being used to check the instrumentation):

day 1995 04 21 , time 03:16:54 UT , longitude λ = +288.277 .

We check that the satellite is indeed on the recurrence grid. To do so, we consider
the value of the longitude origin given in Table 7.8, and denoted here by λ0

1. The
calculation gives

λ − λ0
1

δ
= (288.2770 − 0.1335) × 501

360
= 401.000 ,

which is indeed an integer. We can also accurately calculate the ascending node
crossing time:

τAN =
288.277

15
+ tAN = 19:13:06 + 03:16:54 = 22:30:00 .

We thus see that the satellite is on its nominal orbit.

Example 7.11. Fitting a grid to geographic circumstances: the case of Rocsat-2.

Reference System. IRSP4G: National Remote Sensing Agency (India) IRS-P4
Grid.
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Rocsat-2
Orbit - Ground track
Recurrence = [14; +0;  1]  14

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  888.3 km a = 7266.472 km

Inclination / SUN-SYNCHRON.=  99.01 °

Period =   102.86 min    * rev/day =14.00

Equat. orbital shift  = 2862.5 km  (  25.7 °)

Asc. node:    127.43 ° [21:30 LMT]

App. inclin. = 103.00 °

Projection:  Snyder-Satel.Track/35°

Property:   none

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Rocsat-2
Orbit - Ground track
Recurrence = [14; +0;  1]  14

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  888.4 km

e = 0.000128

a = 7266.573 km

Inclination / SUN-S.=  99.14 °

Period =   102.86 min    * rev/day =14.00

Equat. orbital shift  = 2862.4 km  (  25.7 °)

Asc. node:   -103.81 ° [21:26 LMT]

[NORAD] Revolution:    486

Projection:  Miller II

Property:   none

T.:Cylindrical    Graticule:  5°

MapC:  0° ; 0° /ZoomC: 25.1 ° N;121.2 ° E

Aspect:  Direct > zoom : 3.50

[  +90.0 /   +0.0 /  -90.0 ] Gr.Mod.:  GEM-T2

Figure 7.8. Ground track of the Taiwanese satellite Rocsat-2, with one-day recur-
rence cycle. Upper : Recurrence grid. Lower : Magnified view centred on the island
of Taiwan, explaining this choice of grid
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Figure 7.9. Ground track of the SPOT-4 orbit over two recurrence subcycles, i.e.,
10 days
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Figure 7.10. Ground track of the TOPEX/Poseidon orbit over a recurrence cycle,
i.e., 10 days
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Figure 7.11. Ground track of the ADEOS-2 orbit over a recurrence cycle, i.e., 4
days
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Figure 7.12. Ground track of the ICESat mission orbit over a recurrence half-sub-
subcycle, i.e., 4 days
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Rocsat-2, launched on 20 May 2004, is devoted to the study of Earth resources and
meteorology, in particular, typhoon warnings. Its recurrence triple is [14, 0, 1]. This
means that each day, after 14 round trips, it exactly repeats its ground track (see
the upper part of Fig. 7.8). If we examine this grid, we find that the ascending and
descending ground tracks cross at latitude 26.415◦ (see Sect. 7.9 on grid points).
Now the island of Taiwan, formerly Formosa, lies between latitudes 22◦N and 25◦N.
The grid can thus be fixed in such a way that the island is crossed twice a day by
the (ascending and descending) ground track, as can be seen in Fig. 7.8 (lower).
The equatorial shift is ∆λE = 360/14 = 25.71◦. By symmetry considerations, we
understand that the longitude of the ground track intersection and the longitude
of the ascending node must be separated by a distance equal to one quarter of the
equatorial shift. The central longitude of Taiwan is λC = 121.2◦E, which means
that the ascending node must have longitude λ0 such that

λ0 = λC + ∆λE/4 = 121.2 + 6.4 = 127.6◦E .

7.5.4 Recurrence Subcycle

Definition of the Subcycle

Consider a day origin J = 0. A subcycle ETo is then the number of days
required for the ground track to pass at a grid interval δ of the ascending
node origin. This can be written

u(ETo) = ±1 [CTo ] , (7.23)

or

EToDTo = ±1 [CTo ] , (7.24)

or bringing in the distance u∗,

u∗(ETo) = 1 , (7.25)

which gives two value for ETo . If E∗
To

is the smallest of the two, we have

ETo = E∗
To

, ETo = CTo − E∗
To

.

We give several values for the subcycles of satellites discussed earlier.

Important Note. Care must be taken not to confuse the two quantities
DTo and E∗

To
. For the SPOT satellites, often described in the literature, it

happens that DTo = 5 and E∗
To

= 5. One cannot conclude, however, that
DTo represents a subcycle, contrary to what is often claimed. It is quite
clear in Example 7.12 that, for ADEOS-1, these two quantities are different:
DTo = 11 and E∗

To
= 15.
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Example 7.12. Recurrence subcycles for various Earth-observation satellites.

• For SPOT-4, we have E∗
To = 5. Indeed, E∗

ToDTo = 5 × 5 = 25 and CTo − 1 =
26− 1 = 25. This means that, 5 days before (J = −5 [26] = 21) or 5 days after
(J = 5) the day origin, the ground track passes at the grid interval from the
ground track origin (see Fig. 7.9).

• For Landsat-3, ADEOS-2, IRS-1A and all satellites for which DTo = ±1, we
have E∗

To = 1, whence ETo = 1 and ETo = CTo −1 (see Fig. 7.11 for ADEOS-2,
Fig. 7.13, upper, for IRS-1A).

• For ADEOS-1, we have E∗
To = 15. Indeed, E∗

ToDTo = 15 × 11 = 165 [41] = 1.
We thus have ETo = 15 and ETo = 41− 15 = 26, which can be confirmed from
Example 7.7, with u∗(15) = 1 and u∗(26) = 1.

• For TOPEX/Poseidon, E∗
To = 3, whence ETo = 3 and 7 (see Fig. 7.10).

• For ICESat, the cycle is very long in order to obtain a very short grid interval:
δ = 14.7 km. We have ETo = 25, because E∗

ToDTo = 25×(−22) = −550 [183] =
−1 (Fig. 7.12).

Note Concerning Cartography. Figures 7.9 and 7.10 show equal area
projections in interrupted form. For a land-observing satellite, the map is cut
in the region of the oceans in such a way as to minimise angular distortion
on the continents. For an ocean-observing satellite, it is cut in the region of
the land masses to minimise angular deformations across the oceans.

Time Required to Cover the Base Interval

The main reason for introducing the subcycle is to show how long it takes
to cover the base interval. For SPOT-5, the value of the subcycle E∗

To
= 5

indicates that almost the whole of the base interval has been scanned in five
days. However, for a satellite with E∗

To
= 1, we see that the ground track

remains almost at the same place in the base interval after one day and that
we need the whole cycle CTo (which can be of the order of a month) to cover
the whole interval. This situation is generally considered as a drawback, as
can be seen from the evolution of certain programmes.

The first Landsat satellites (Landsat-1, -2 and -3) had the subcycle E∗
To

=
1. Then, from Landsat-4, the orbit was changed to obtain E∗

To
= 5. The same

happened with the Indian satellites in the IRS programme: the first IRS
(IRS-1A and -1B) were replaced, from IRS-P2, with a change of subcycle
(but keeping almost the same cycle). This change is very clearly shown in
Fig. 7.13, where we have plotted the ground tracks of two IRS satellites IRS
over 5 days. For IRS-1A, over this time span, a fraction 5/22 or less than one
quarter of the interval has been covered. For IRS-P2, the whole interval has
been covered. On the ground track of IRS-P2, in the vicinity of the origin
(λ = 0, φ = 0), we see the end of the ground track for the fifth day, since in
5 days, this satellite has accomplished 5 × 14.208 = 71.04 round trips. The
distance between this ground track and the one going through the origin is
equal to the interval δ, since E∗

To
= 5 for this satellite.
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IRS-1A
Orbit - Ground track
Recurrence = [14; -1; 22] 307

>>>>   Time span shown:   5.00 days

Altitude =  904.1 km a = 7282.277 km

Inclination / SUN-SYNCHRON.=  99.08 °

Period =   103.19 min    * rev/day =13.95

Equat. orbital shift  = 2871.8 km  (  25.8 °)

Asc. node:      0.00 °

App. inclin. = 103.08 °

Projection:  Behrmann

Property:  Equal area

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

IRS-P2
Orbit - Ground track
Recurrence = [14; +5; 24] 341

>>>>   Time span shown:   5.00 days

Altitude =  817.0 km a = 7195.119 km

Inclination / SUN-SYNCHRON.=  98.70 °

Period =   101.35 min    * rev/day =14.21

Equat. orbital shift  = 2820.5 km  (  25.3 °)

Asc. node:      0.00 °

App. inclin. = 102.64 °

Projection:  Behrmann

Property:  Equal area

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Figure 7.13. Ground tracks of IRS-1A and IRS-P2 over 5 days, showing how long
it takes to cover the base interval
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Figure 7.14. Recurrence index for two IRS satellites, showing the change of
subcycle

The notion of subcycle is often used for recurrent satellites, since it is
rather informative. It tells us that, after a certain number of days representing
the subcycle, the ground track passes through almost the same place, where
‘almost’ means at the grid interval δ. However, it is just a special case of the
notion of recurrence index to be discussed next.

7.6 Recurrence Index

7.6.1 Definition of Recurrence Index

Consider a day origin J = 0 and its base interval defined by λ0
1 and λ0

0,
separated by a distance δR, the equatorial shift. The ascending node crossing
in this interval on a given day J determines an ascending node of longitude
λJ

1 , as discussed above. The distance between λJ
1 and the bounds λ0

1 and λ0
0

will be representative of the recurrence conditions. If the distance to one of
the two bounds is zero, this means that the ground track passes once again



330 7 Orbit Relative to the Earth. Recurrence and Altitude

through a certain point and we have recurrence with a cycle of J days, or
else J is a multiple of the cycle. If the distance is small compared with the
length of the interval, we may be in a situation with a subcycle.

We set

v(J) =
λJ

1 − λ0
0

δR
. (7.26)

From (7.20), we then have

v(J) =
u(J)
CTo

. (7.27)

These two equivalent definitions show that v(J) is a real number between 0
and 1, representing a relative distance.

Just as we defined u∗(J) by (7.22), we now define v∗(J) as the smallest
of the two relative distances v(J) from the ground track to one or other of
the bounds, viz.,

v∗(J) = min
{

λ0
1 − λJ

1

λ0
1 − λ0

0

,
λJ

1 − λ0
0

λ0
1 − λ0

0

}
, (7.28)

or

v∗(J) = min
{

v(J), 1 − v(J)
}

=
u∗

J

CTo

, (7.29)

whence,

v∗(J) = J
δ

δR
= J

|DTo |
CTo

. (7.30)

We shall call this the relative recurrence distance. It lies between 0 and 0.5.
It follows that:

• v∗(J) = 0, for a recurrence cycle of J days,
• v∗(J) = 1, for a recurrence subcycle for J ,
• v∗(J) = 2, for a ground track passing at 2δ from a bound,

and so on.
To obtain a function of J which increases as we approach recurrence

conditions, we define the function Φ(J), which is simply the reciprocal of
v∗(J), i.e.,

Φ(J) =
1

v∗(J)
. (7.31)

We shall call this function the recurrence index. It is a dimensionless quantity.
We now have:
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Figure 7.15. Recurrence index for satellites in the SPOT and Terra families

• Φ(J) = ∞ =⇒ recurrence cycle of J days ,
• Φ(J) = CTo =⇒ recurrence subcycle for J ,
• Φ(J) = CTo/2 =⇒ ground track passing 2δ from a bound ,
• Φ(J) = CTo/3 =⇒ ground track passing 3δ from a bound ,
• other cases,
• Φ(J) > 2 in every case.

This index provides a useful way of specifying cycles, subcycles, and other
quantities related to recurrence for any satellite, whether it is intentionally
recurrent or not.

7.6.2 Perfect or Imperfect Recurrence

The methods discussed above concern satellites with known recurrence ele-
ments. They allow one to find the orbital characteristics from these elements.
However, we may encounter another type of problem: given the orbit of a
satellite, we may wish to find its recurrence cycle. For this satellite, h and i
are known, so that P and ν are determined, and hence also κ.
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Figure 7.16. Recurrence index for ADEOS-1, TOPEX/Poseidon, Resurs-O1-4
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The day J corresponding to the recurrence cycle CTo will be such that the
product κJ is closest to a whole number. It will therefore be the day giving
the highest value of the recurrence index Φ(J), which we shall write Φm.

Indeed, considering the expression (7.11) for κ as a function of the recur-
rence triple, the product κJ is

κJ = Jνo + J
DTo

CTo

,

and since Jνo is an integer, we have

fractional part of κJ = v(J) ,

which implies that

distance between κJ and the nearest integer = v∗(J) .

If Φm is infinite, the satellite is recurrent, i.e., perfectly recurrent (and hence
probably deliberately recurrent). If Φm is not infinite, the recurrence is said
to be imperfect.

When we seek the recurrence characteristics from the orbital elements,
the recurrence may turn out to be imperfect, and in this case, the quantities
u(J) and u∗(J) are not whole numbers.

7.6.3 Applications of the Recurrence Index

We shall now give several example applications to show how the recurrence
index is used, where Φ(J) is recorded over a time span of several months.
The keys to the graphs carry the orbital characteristics of the satellite, the
values of the cycle, with the maximal recurrence index, which shows whether
recurrence is perfect or not, and the two basic quantities in this analysis, the
daily orbital frequency ν and the daily recurrence frequency κ.

The graphs clearly show the cycles and the subcycles which stand out to
varying degrees. It is also very easy to distinguish those satellites that are
deliberately recurrent from those with a certain level of recurrence but which
have not been intentionally attributed any recurrent behaviour.

Example 7.13. Recurrence index for Sun-synchronous and non-Sun-synchronous
satellites, whether or not recurrence is intended.

Unless specifically stated, the satellites are Sun-synchronous and recurrence is in-
tended.

• Change of subcycle leading to more rapid coverage of the base interval. We
indicated earlier how, for the Landsat and IRS satellites, a modification of the
subcycle DTo radically changed the way in which the base interval was covered.
For IRS-1A and IRS-P2, shown in Fig. 7.13, the graph of the recurrence index
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in Fig. 7.14 shows this change. For IRS-1A, the ground track moves steadily
across the base interval in 22 days. For IRS-P2, the ground track approaches
the initial ground track on four occasions during the 24 day cycle, on days
J = 5, 10, 14 and 19, or roughly every 5 days.

• Recurrence index for satellites in the SPOT and Terra families. These two fami-
lies of remote-sensing satellites include a great many satellites, whose recurrence
index is shown in Fig. 7.15. For SPOT, the index has 4 peaks in the 26 day
cycle, on days J = 5, 10, 16 and 21, indicating a passage very close to the initial
ground track roughly every 5 days. For Terra, there are two main peaks in the
16 day cycle, on days J = 7 and 9.

• Recurrence index for a satellite with very long cycle. The satellite ADEOS-1 has
a relatively long recurrence cycle, with CTo = 41 days. The recurrence index
shown in Fig. 7.16 (upper) has peaks about every 4 days. Referring to Example
7.7, we see that the two main intermediate peaks, for J = 15 and 26, correspond
to u∗ = 1, the next two, for J = 11 and 30, correspond to u∗ = 2, and so on.

• Recurrence index for a non-Sun-synchronous satellite. The non-Sun-synchronous
satellite TOPEX/Poseidon has short recurrence cycle CTo = 10 days, with two
peaks at J = 3 and 7 days (see Example 7.9 and Fig. 7.16, centre). We note
that κ and ν have different values: the cycle takes CT = 9.916 days. For ICESat,
below the subcycle J = 25, there are two peaks at J = 8 and J = 15. The base
interval is almost swept out in 8 days, as can be seen from Fig. 7.12.

• Recurrence index for a satellite which has not been designed to be recurrent.
Resurs-O1-4 was launched without concern for recurrence conditions. The re-
currence index shown in Fig. 7.16 (bottom) shows that there is no clear cycle.
There is a main peak for J = 134 (with Φm which is not infinite) and two
secondary peaks for J = 37 and 97 in this pseudocycle.

7.6.4 Recurrence Index and Orbital Characteristics

The recurrence index and recurrence itself are obviously sensitive to changes
in inclination, and very sensitive to changes in altitude, even very small ones.
The following example shows how a change in altitude of a few hundred
metres can completely change the recurrence characteristics after a few weeks.
Precisely recurrent satellites are moved back onto the nominal orbit as soon
as the altitude varies by a fraction of a kilometre. This maneuver is required
between one and four times a month.

Example 7.14. Recurrence index and altitude variations for SPOT-5.

Consider a Sun-synchronous satellite of the SPOT-5 type, with recurrence triple

[14, 5, 26]. The recurrence index is plotted for various altitudes in Fig. 7.17, which

graphs the function Φ(J, ∆h). For ∆h = 0, i.e., for the value of the altitude giving

the required recurrence, we see that the main peaks occur for values of J that are

multiples of CTo = 26 days. The secondary peaks are clearly visible, 5 days before

and after the main peak, corresponding to the recurrence subcycle. They become the

main peaks for neighbouring altitudes. The recurrence triple [14, 5, 26], for ∆h = 0,
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Figure 7.17. Recurrence index Φ(J, ∆h) as a function of the day J and the altitude
variation ∆h for a satellite with the characteristics of SPOT-5. The central value
∆h = 0 corresponds to the altitude giving the recurrence CTo = 26, with the triple
[14, 5, 26]. The value Φ = ∞ is denoted by 1000

becomes [14, 4, 21] for ∆h = +0.6 km and [14, 3, 16] for ∆h = +1.6 km. Reducing

the altitude, this initial recurrence behaviour becomes [14, 6, 31] for ∆h = −0.4 km,

[14, 7, 36] for ∆h = −0.7 km, [14, 8, 41] for ∆h = −1.0 km, and so on.

7.7 Altitude Variations

The following analysis of altitude and frozen orbits is valid for any type of
orbit, but only proves useful for near-circular LEO orbits. If the orbit is not
close to circular, the altitude variations of the satellite during its revolutions
are due to the eccentricity of the orbit, compared with which the flattening
of the Earth is negligible. For MEO satellites, the altitude is not the relevant
quantity. The same is true for GEO satellites, where the altitude is constant
in time, since the satellite is stationary.
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7.7.1 Altitude and Orbital Parameters

As we have seen, the altitude does not constitute a precise way of defining the
position of the satellite, and indeed, it is not one of the six orbital parameters.
The so-called near-circular, or even circular, orbit is never strictly circular
and the Earth is not exactly spherical.

In previous chapters, devoted to the satellite ground track, the altitude
has not been the main subject of discussion. However, it will be important
in the following chapters, when we study the way in which the instruments
aboard the satellite observe the Earth, i.e., how they ‘see’ it from a certain
height.

The altitude of the satellite is found from the difference between the radius
vector r(a, e, v) defining the position of the satellite, as given by (1.39) and
(1.53), and the Earth radius RT(φ) for the relevant latitude φ, treating the
Earth as an ellipsoid of revolution with flattening5 f . This value RT(φ) is
given by (1.93), in which ρ(φ) represents RT(φ) and where the semi-major
axis of the ellipse is taken to be R = RT(0). We see that, with this definition,
the altitude does not take into account the relief of the Earth’s surface.

We write the altitude h of the satellite in the form

h = r(a, e, v) − RT(φ) . (7.32)

The latitude φ is related to i, ω, v by (3.47), and we obtain h in the form

h = h(a, e, i, ω, v) . (7.33)

The altitude is thus written as a function of five orbital parameters. The
parameter Ω is not involved, since the terrestrial longitude is irrelevant here:
we consider the ellipsoid RT(φ) rather than the geoid RT(λ, φ). We find the
same case as was considered in (3.48).

The variation of the altitude is shown schematically in Fig. 7.18. The axis
Ox lies in the Earth’s equatorial plane, and the axis Oz is the polar axis. The
difference between the two semi-axes of the ellipse representing the Earth is
21.4 km (see Example 1.2). The trajectory represented is that of a satellite
in low, strictly polar orbit, with perigee over the North Pole (ω = 90◦). For
an eccentricity of the order of 10−3, the distance FC, between the focus F
of the ellipse (centre of attraction, centre of the Earth) and the centre C of
the ellipse, equal to ae, is of the order of 8 km. The orbit is near-circular. In
Fig. 7.18, the eccentricities of the ellipses have been greatly exaggerated for
illustrative purposes.
5 The flattening f of the Earth is small enough to identify, in this application,

the geocentric altitude, measured along a radius of the Earth, with the geodetic
altitude, measured along the normal to the ellipsoid (see Sect. 1.10 and Fig. 1.6).
Moreover, we neglect the dependence of RT(φ) on the longitude (related to the
sectorial and tesseral terms in the expression for the geopotential). We saw in
Chap. 3 that the difference in level of the ellipsoid and the geoid can reach several
tens of metres, with a maximum of 100 m.
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Figure 7.18. Schematic representation of the Earth ellipsoid, with centre O, and
the elliptical trajectory of the satellite S, with centre C and focus F identified with
O. The principal circles of the ellipses are indicated. The eccentricities used in the
figure have been greatly exaggerated compared with the true eccentricities

For a given revolution, we consider in (7.33) the mean values of the orbital
parameters a, e, i and ω. Instead of v, we have chosen α to determine the
position of the satellite on its orbit. We have already seen that this angle, α =
ω + v, specifies the position of the satellite as measured from the ascending
node.

The altitude h is thus expressed in terms of the position on orbit α by

h(α) = r(α) − RT(α) , (7.34)

r(α) = r
[
a, e, v(ω, α)

]
=

a(1 − e2)
1 + e cos v

, (7.35)

RT(α) = RT

[
R, f, φ(i, α)

]
=

R√
cos2 φ +

sin2 φ

(1 − f)2

, (7.36)

where

v = v(ω, α) = α − ω , φ = φ(i, α) = arcsin(sin i sinα) .
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Figure 7.19. Altitude of the satellite as a function of its position on orbit during
one revolution. For more detail, see Fig. 7.22. Upper : Oceansat-1 (IRS-P4). Lower :
DMSP-5D2 F-10
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Figure 7.20. Altitude of the satellite as a function of its position on orbit during
one revolution. For more detail, see Fig. 7.22. Upper : TOPEX/Poseidon. Lower :
ISS, International Space Station
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7.7.2 Altitude During One Revolution

Defining the function h(α) in this way, we note certain specific values of the
altitude: h(0) at the equator (ascending node), h(ω) at the perigee, h(π) at
the equator (descending node), h(ω + π) at the apogee. The function r(α)
has period 2π and amplitude ae. The function RT(α) has period π and its
amplitude varies between 21.4 km for polar satellites (value of the product
Rf) and 0 for equatorial satellites, because in this case, RT(α) = R for all α.

When we give the height of a satellite as a function of its position on
orbit, we must specify the revolution, or at least the day, because of the
displacement of the perigee.

For the satellites in near-circular orbit that we are concerned with here,
the difference between the anomalies v and M is very small (see Figs. 1.3,
1.4, and Example 2.1) and we will be able to replace α by the time t, using
the relation α = 2π(t/T ).

Example 7.15. Altitude h(α) of the LEO satellites Oceansat-1, DMSP-5D2 F-10,
TOPEX/Poseidon and ISS, during one revolution, as a function of the position on
orbit.

The metric orbit elements are practically constant over a time span of several days.
However, the argument of the perigee ω can change quickly (apsidal precession).
This is why the day and number of the revolution must be specified. The values
of the orbital parameters are given in the corresponding figure. These data are
provided by NORAD (North American Aerospace Defence Command).
For each satellite, the graphs are divided into two parts:

• on the lower part, the dashed curve gives

r(α) − r(0) ,

and the continuous curve gives

RT(α) − RT(0) .

• on the upper part, we have plotted the altitude relative to the altitude at the
equator, i.e.,

h(α) − h(0) ,

which is the difference between the two previous curves.

The altitude at the equator is obtained from

h(0) =
a(1 − e2)

1 + e cos ω
− R .

For easier comparison of these variations, all graphs are plotted on the same scale.

Figure 7.19 shows the altitude of two Sun-synchronous satellites. As they have the

same inclination, the contribution from the Earth ellipsoid in the variation of the



7.7 Altitude Variations 341

0 30 60 90 120 150 180 210 240 270 300 330 360

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50

675

670

665

660

655

650

645

640

635

630

625

620

Altitude
(km)

Position on orbit (°) Position on orbit (°)
Equator

ASC. NODE

Equator

DES. NODE

Equator

ASC. NODE

D
is

ta
nc

e 
(k

m
)

OKEAN-3 a = 7014.057 km

i = 82.522 °

eccentricity (J)

arg. perigee (J)Year 1998; J = 200, 230, 260, 290

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50

675

670

665

660

655

650

645

640

635

630

625

620

Altitude
(km)

Position on orbit (°) Position on orbit (°)
Equator

ASC. NODE

Equator

DES. NODE

Equator

ASC. NODE

D
is

ta
nc

e 
(k

m
)

OKEAN-3 a = 7014.057 km

i = 82.522 °

eccentricity (J)

arg. perigee (J)Year 1998; J = 200, 230, 260, 290

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50

675

670

665

660

655

650

645

640

635

630

625

620

Altitude
(km)

Position on orbit (°) Position on orbit (°)
Equator

ASC. NODE

Equator

DES. NODE

Equator

ASC. NODE

D
is

ta
nc

e 
(k

m
)

OKEAN-3 a = 7014.057 km

i = 82.522 °

eccentricity (J)

arg. perigee (J)Year 1998; J = 200, 230, 260, 290

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50

675

670

665

660

655

650

645

640

635

630

625

620

Altitude
(km)

Position on orbit (°) Position on orbit (°)
Equator

ASC. NODE

Equator

DES. NODE

Equator

ASC. NODE

D
is

ta
nc

e 
(k

m
)

OKEAN-3 a = 7014.057 km

i = 82.522 °

eccentricity (J)

arg. perigee (J)Year 1998; J = 200, 230, 260, 290

(1998) eccentricity arg. perigee

J = 200 0.0024698 67.73

J  =230 0.0022576 337.05

J = 260 0.0020711 233.99

J = 290 0.0022845 128.53

Figure 7.21. Representation of the altitude for the satellite Okean-3 as a function
of its position on orbit α, expressed in degrees. Four revolutions are shown, with
an interval of 30 days. On the left , the origin of the distance scale is the equatorial
crossing for the day origin (J = 200). On the right , the scale indicates altitudes
measured from the reference ellipsoid

altitude over one revolution is the same. It is the eccentricities of the orbits that are

very different in these two cases. For Oceansat-1 (Fig. 7.19, upper), the eccentricity

is very low. For DMSP-5D2 F-10 (Fig. 7.19, lower), it is relatively high for a near-

circular orbit, with a value of e ≈ 8× 10−3, giving a fairly large amplitude between

the apogee and the perigee. The altitude varies in this case between 730 and 850 km.

Figure 7.20 shows the altitude of two prograde satellites. The oceanographic and

geodetic satellite TOPEX/Poseidon has low eccentricity. The variation in altitude

(between 1335 and 1360 km) is mainly due to the shape of the Earth (Fig. 7.20,

upper). We shall see shortly that, for this satellite, the argument of the perigee

remains practically fixed in time. For a satellite with medium inclination, such as

the International Space Station ISS, the contribution from the Earth ellipsoid to

the altitude variation is only 13 km (Fig. 7.20, lower). For satellites with still lower

inclination, such as Rocsat-1 or TRMM (the maximal latitude attained is 35◦),
the difference between RT(α) and R is at most 7 km. It is then the value of the

eccentricity e which is the determining factor in altitude variations.
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7.7.3 Variation of the Altitude over a Long Period

If we consider the altitude over a period of several months, the elements a and
i remain practically constant. The eccentricity e fluctuates around a central
value and the argument of the perigee ω undergoes a secular variation to
which one must add secondary periodic variations. The form of the altitude
variation h(α) over one revolution depends mainly on the value of ω and to
a lesser extent on the value of e, as we shall show in the following example.

Example 7.16. Altitude as a function of the position on orbit h(α) for the satellite
Okean-3, on various days of the year 1998.

The satellite Okean-O1-3, generally called Okean-3, was launched on 4 June
1991. Figure 7.21 shows the altitude h(α) for four days during the year 1998, 30
days apart: J = 200 (19 July), J = 230 (18 August), J = 260 (17 September),
J = 290 (17 October). During this 90 day period, a did not change significantly,
whilst i varied between 82.521◦ and 82.523◦. The eccentricity fluctuated between
2.07 × 10−3 and 2.47 × 10−3. For its part, the argument of the perigee varied by
−90.68◦, −103.06◦ and −105.46◦ per 30 day interval. A small, long-period variation
(of the order of a few months) is superposed on the secular variation (proportional
to the time) in ω.
Calculating the mean apsidal precession rate, we find

ω̇ = −360 + 67.73 − 128.53

90
= −299.20

90
= −3.32◦day−1 ,

which agrees with the value calculated in Example 4.3, where we found ω̇ =

−3.31◦day−1. We see how, for ω, the periodic variations are superposed on the

secular variation. The values of e(J) and ω(J) are indicated in Fig. 7.21.

The graphs of h(α) have been plotted for the four days chosen. The right-hand

scale takes its origin as the altitude of the equatorial crossing for day J = 200. The

left-hand scale indicates the altitude relative to the reference ellipsoid.

7.8 Frozen Orbit

7.8.1 Definition of a Frozen Orbit

According to the expression for h given by (7.33), we see that the altitude of
the satellite relative to its given subsatellite point varies in time, very slightly
from one revolution to the next, but quite significantly over a time span of
several days, as we saw in Example 7.16. When we require a satellite to be
recurrent (cycle CT), the aim is to obtain identical viewing conditions every
CT days. However, when we arrange for recurrence, it is the ground track
which is fixed, not necessarily the altitude.

This may be a drawback for Earth-observation satellites, for which one
generally requires the altitude to be constant for a given subsatellite point,
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from one crossing to the next, in order to compared the images obtained at
different dates.

We would thus like to arrange for the altitude to depend only on the
latitude of the subsatellite point, without variation in time. If these conditions
are satisfied, we say that the orbit is frozen.6 Note that the freezing of an
orbit is independent of its recurrence characteristics, but that, in practice,
only recurrent satellites (whether Sun-synchronous or otherwise) have frozen
orbits.

7.8.2 Determining the Frozen Parameters

Consider now the relation (7.33) giving the altitude of the satellite above
an arbitrary given point of latitude φ, as a function of the osculating, i.e.,
instantaneous, orbital parameters. Expressing the time directly in each of the
orbital elements rather than via the true anomaly v, (7.33) becomes

h(t) = h
[
a(t), e(t), i(t), ω(t)

]
.

We only take into account long period or secular variations here. Short period
variations are averaged over one orbital revolution. In such conditions, as seen
in Chap. 3 and shown schematically in Fig. 3.3, the semi-major axis a does
not change. Equation (3.64) shows that, as long as the inclination is nonzero,
the variation in i is negligible compared with the variation in e, which is
illustrated in Example 7.16.

Equation (7.33) thus simplifies to

h(t) = h
[
e(t), ω(t)

]
.

Consequently, the two parameters that concern us here, e and ω, undergo a
long period variation due to the odd zonal terms, mainly J3, whilst ω also
undergoes a secular variation due to the even zonal terms, mainly J2. Writing
down the equations representing e and ω, whose values result from a complete
treatment of the Lagrange equations, we must solve{

ė = 0 ,

ω̇ = 0 ,

where ė = de/dt and ω̇ = dω/dt are functions of the unknowns e and ω, and
to a lesser extent of the other orbital parameters.

It is a very complex matter to establish the conditions for the frozen orbit
in the general case. We shall find them for an expansion up to degree 3.
6 The first publications treating the subject of frozen orbits date back to 1965.

They concerned satellites in low orbit around the Moon. The term ‘frozen orbit’
was first used to describe Seasat in 1976.
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Using the perturbing potential R = R2 + R3 calculated in Example 3.1 in
the Lagrange equations, we obtain

ė

n
=

3
2(1 − e2)2

J3

(
R

a

)3(
1 − 5

4
sin2 i

)
sin i cosω , (7.37)

ω̇

n
=

3
(1 − e2)2

J2

(
R

a

)2(
1 − 5

4
sin2 i

)[
1 +

1
2e(1 − e2)

J3

J2

(
R

a

)
sin i sin ω

]
.

(7.38)

If we neglect J3 in (7.37) and (7.38), we find ė = 0 and the relation (3.55),
respectively.

Inclination Close to the Critical Inclination

By the very definition of the critical inclination given in (3.57), the term
[1 − (5/4) sin2 i] is zero. We thus have ω̇ = 0 and ė = 0. The orbit is frozen,
whether the eccentricity is low or high.

For inclinations close to the critical inclination, large oscillations in ω are
due to the J4 term (and following) since the contribution from J2 and J3

is very small. The expressions (7.37) and (7.38) must be expanded to higher
degrees. It can then be shown that, for i between 53◦ and 74◦ (or between 106◦

and 127◦), the eccentricity for a frozen orbit varies between 0 and 30× 10−3.
For example, for i = 66.4◦, we need eF = 0.8 × 10−3 and ωF = −90◦ (values
chosen for TOPEX/Poseidon), where the frozen values have been given the
subscript F.

Inclination Far from the Critical Inclination

For inclinations far from the critical inclination (i < 53◦, 74◦ < i < 106◦, or
i > 127◦), which happens for typical Sun-synchronous satellites, referring to
(7.37), we obtain ė = 0 by taking ω = ±90◦. Substituting this value, written
ωF, into (7.38), we obtain ω̇ = 0 by setting the expression between square
brackets equal to zero, i.e., setting

eF = e(ωF) = −1
2

J3

J2

R

a
sin i sin ωF . (7.39)

Since this calculation refers to near-circular orbits, we have neglected e2 com-
pared to 1 in (7.38). We could also use (3.67).

The sign of sinωF depends on the sign of J3 in such a way that the
expression for e comes out positive. For the Earth, with J3 negative, we take

ωF = +90◦ , (7.40)
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eF = − J3

2J2

R

a
sin i . (7.41)

When the orbit is frozen, the perigee of a Sun-synchronous satellite thus lies
practically above the North Pole.7

An example application of (7.41) for the SPOT satellites yields eF =
1.03 × 10−3. The exact value of the frozen eccentricity is eF = 1.14 × 10−3.

Frozen Eccentricity

For LEO satellites, the value eF is always small (of the order of 10−3), and
the orbit is thus invariably near-circular. Many recurrent satellites, whether
Sun-synchronous or otherwise, have a frozen orbit. For certain satellites, it is
crucial to maintain8 the parameters e and ω at the reference values9 eF and
ωF, respectivement.

We should also note that some satellites require a non-frozen orbit. To
ensure that the perigee does not remain permanently in the vicinity of the
North Pole and that the gravitational field is sampled at different altitudes,
the geodetic satellite GOCE has variable eccentricity, ranging between 0 and
4.5 × 10−3. Hence, the altitude varies between 236 and 282 km.

7.8.3 Altitude of a Satellite on a Frozen Orbit

In the case of a frozen orbit, where the ellipse representing the satellite trajec-
tory is fixed in the orbital plane, we may calculate the altitude of the satellite
7 However, we should not forget the special case of Sun-synchronous HEO satellites

with critical inclination (orbits of the Ellipso Borealis type, with e = 0.3463). In
this case, the orbit can be frozen with ωF = −90◦.

8 For example, for the satellite TOPEX/Poseidon, between 1992 and 2002, we
note the following very narrow intervals of variation for the orbital elements: eF

from 0.73 to 0.83 × 10−3, ωF from 264 to 270◦, i from 66.037 to 66.046◦, a from
7714.422 to 7714.436 km.

9 Frozen eccentricity for various satellites, announced theoretical value. The value
of eF given in brackets after each satellite should be multiplied by 10−3. Satellites
are listed in order of increasing altitude for each category:

• Non-Sun-synchronous satellites with inclination close to the critical inclination:
Geosat (0.80), Seasat (0.80), TOPEX/Poseidon (0.75).

• Sun-synchronous satellites: Big Bird-1 (1.36), ERM (1.17), Aeolus-ADM (1.17),
JERS-1 (1.23), LSPIM (1.17), ALOS (1.050), Landsat-4, -5, -7, Terra, Aqua,
Calipso (1.1722), Oceansat-1 (1.13), CBERS-1, -2 (1.10), ERS-1, -2, En-
visat (1.165), Radarsat-1 (1.15), ADEOS-1 (1.15), ADEOS-2 (1.055), MetOp-1
(1.1655), SPOT-1, -2, -3, -4, -5 (1.144), NOAA-6, -7, TIROS-N (1.13), Landsat-
1, -2, -3 (1.11), MOS-1, -1B (0.9726), Nimbus-7 (1.00), NOAA-5 (0.97).

• Near-polar satellite: ICESat (1.30).

The true values (given by the NORAD elements) often differ somewhat from the
values announced.
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Figure 7.22. Representation of the altitude for the satellite MetOp-1, with frozen
orbit. The altitude is given as a function of the position on orbit α, expressed in
degrees. Lower : The difference between the distance r(α) of the satellite from the
centre of the Earth and the distance r(0) at its ascending node crossing is shown by
a dashed curve. The difference between the Earth radius RT(α) and the equatorial
radius R = RT(0) is shown by a continuous curve. Upper : Difference between the
first and second of the two curves in the lower part. Left : Scale for the differences.
Right : Scale for the altitudes relative to the reference ellipsoid

as a function of a single variable, e.g., α, over a period T . The altitude vari-
ation will then repeat itself identically with period T .

We give here an example calculation of an altitude and altitude variation
as a function of position on orbit.

Example 7.17. Calculate the altitude as a function of the position on orbit for the
satellite MetOp-1, which has a recurrent and frozen Sun-synchronous orbit.

The orbital characteristics of MetOp-1 provided by ESA are as follows: re-
currence of 412 revolutions in 29 days, Sun-synchronous inclination, frozen orbit:
eccentricity e = eF = 0.001 165 5, argument of the perigee ω = ωF = 90.0◦. The
satellites MetOp-2 and MetOp-3 should have the same orbit. We calculate the or-
bital elements from the recurrence triple [14, 6, 29] using the method described in
Example 7.1. This yields

• semi-major axis a = 7 195.606 km,
• Sun-synchronous inclination i = iHS = 98.702◦.

Knowing a and e, we calculate b and c :
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Figure 7.23. Altitude of the satellite MetOp-1, with frozen orbit. The altitude is
given as a function of the position on orbit α, expressed in degrees. The geographic
latitude φ is given for each value of α marked. The time is given as a fraction of
the period, with origin at the equatorial crossing (ascending node). Detail from
Fig. 7.22

c = ae = 8.386 km , b = a
p

1 − e2 = 7195.596 km , a − b = 0.010 km .

We have already noted that the orbit of a satellite of this kind is a circle shifted
by 8 km relative to the centre of the Earth. The distance c is proportional to e,
whereas the difference between the semi-axes is a function of e2: a and b are thus
equal to within 10 m. In Fig. 7.22, distances are expressed as a function of the
position on orbit α. The graph of r(α)−r(0) shows a difference of 2ae = 16.772 km
between the radius at apogee ra = r(ωF + π) and the radius at perigee rp = r(ωF).
Concerning the Earth ellipsoid, the maximum latitude attained, for α = ωF, is
φ = ±φm, with φm = 180 − i = 81.298◦, which gives at the perigee

RT[φ(ωF)] = RT(φm) = Rm = 6357.240 km , R − Rm = 20.897 km .

We now calculate the values of the altitude for particular points on the orbit (equa-
tor, ascending and descending nodes, perigee, and apogee):

Asc. node h(0) = a(1 − e2) − R = 7195.596 − 6378.137 = 817.459 ,

Perigee h(π/2) = a(1 − e) − Rm = 7187.223 − 6357.240 = 829.983 ,

Desc. node h(π) = a(1 − e2) − R = 7195.596 − 6378.137 = 817.459 ,

Apogee h(3π/2) = a(1 + e) − Rm = 7203.989 − 6357.240 = 846.749 ,
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h(π) = h(0) , h(3π/2) = h(π/2) + 2ae .

The minimum altitude is 816.623 km, reached when α = 11.512◦ and α = 168.488◦,
corresponding to a latitude φ = 11.378◦. The maximum altitude is attained at the

apogee.

Since the position of the perigee is symmetric with respect to the two nodes for

this satellite, the altitude depends only on the latitude φ, and we do not have to

specify the crossing direction (ascending or descending) of the orbit. In Fig. 7.23,

we have indicated the latitude on the abscissa, between its two extreme values −φm

and +φm.

7.9 Appendix: Grid Points for Recurrent Satellites

When a satellite is recurrent, its ground track forms a grid fixed on the
Earth (the reference grid discussed above). A grid point is any place where
two ground tracks intersect, one in the ascending part and the other in the
descending part. It can be very useful to know the latitudes of these points.
We have studied this problem theoretically and summarise the results here.

During a recurrence cycle (NTo revolutions in CTo days), the satellite
crosses a given meridian MTo times:

MTo = NTo − σCTo , (7.42)

where10 σ = sgn(cos i), i.e., +1 if i < 90◦ and −1 if i > 90◦.
We define the ordinate of the grid point, y in degrees, by

y = j
90

NTo

, (7.43)

where

j = 0, 2, 4, 6, . . . , MTo , if MTo is even ,

j = 1, 3, 5, 7, . . . , MTo , if MTo is odd .

The ordinates y obtained in this way are related to the latitudes φ of the grid
points by

y = gS(φ) , (7.44)

where gS is the function defined by
10 The method does not work if cos i and cos i′ have opposite signs, where i′ is the

apparent inclination. This situation never arises with existing recurrent LEO
satellites.
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Table 7.9. Latitude φ for the first values of the grid points of four recurrent
satellites (latitudes north and south). The variable j is defined by (7.43). The last
value in the table, for j = MTo , defined by (7.42), corresponds to the maximal
latitude φm attained by the satellite

Rocsat-2 Oceansat-1 T/P & Jason-1 ICESat [cal]
j φ j φ j φ j φ

1 26.415 1 14.198 1 1.977 1 5.4990
3 58.545 3 38.380 3 5.907 3 16.2909
5 70.714 5 54.317 5 9.763 5 26.4828
7 75.961 7 63.804 7 13.504 7 35.7413
9 78.615 9 69.553 9 17.096 9 43.8404

11 80.046 11 73.234 11 20.513 11 50.6936
13 80.770 13 75.720 13 23.740 13 56.3484

15 77.471 15 26.770 15 60.9440
...

...
...

...
...

...

15 80.992 31 81.706 117 66.040 127 86.0000

gS(φ) = σφ

∣∣∣∣arcsin
tanφ

tan i
− 1

κ
arcsin

sin φ

sin i

∣∣∣∣ , (7.45)

and σφ = sgn(φ).
The relevant latitudes φ can thus be obtained from the inverse function

by numerical methods:

φ = g−1
S (y) . (7.46)

Table 7.9 shows the results for several satellites. One can check these values
on ground track maps such as Fig. 5.25 for ICESat [cal].

The software Ixion on the attached CDROM can be used to calculate all
the grid points of a recurrent satellite.



8 View from the Satellite

In the preceding chapters, we have discussed the satellite’s orbit, position,
and ground track. All this can be deduced from the satellite’s position S as
seen from the centre of attraction O, which is the centre of the Earth. The
time has come to look at things from a different standpoint: we shall now be
concerned with the view from an instrument carried aboard the satellite. The
main difference here is that we are now looking at things from the point of
view of the satellite S. As a consequence, this chapter is principally concerned
with observation satellites.

8.1 Swath of an Instrument

8.1.1 Local Orbital Frame

Up to now, the satellite has been treated as a point, or at least, we have
considered only the motion of its centre of gravity. But as a vehicle, the
satellite can also move about its centre of inertia. Although this kind of
motion is largely irrelevant for the purposes of calculating its trajectory, it is
of course crucial when we come to ask what the instruments aboard will be
able to view. If we want to produce an image of the Earth, we must not aim
at the sky, and conversely!

Manipulation of the angular orientation of the satellite is referred to as
attitude control. The attitude of the satellite tends to vary under the action
of couples, which may be external, due to radiation pressure or atmospheric
drag on solar panels, or internal, due to mechanical motion of the instrument
motors. A stabilisation system is thus required to maintain the satellite in
the right position relative to the local orbital frame.

For any point S on the orbit, this frame is defined by the following three
axes, illustrated in Fig. 8.1:

• yaw axis SZc, directed towards the centre of the Earth, also called the
nadir axis,

• pitch axis SY c, directed normally to the orbital plane,
• roll axis SXc, lying in the orbital plane and completing an orthogonal

right-handed system of axes. This axis lies along the velocity vector of the
satellite when the eccentricity is zero.



352 8 View from the Satellite

Figure 8.1. The Cardan frame centred on the satellite S. The ground track goes
through the subsatellite point S0. The axis SZc points towards the centre of the
Earth and the axis SY c is perpendicular to the orbit. If the orbit is circular, the
axis SX c lies along the velocity vector

We shall refer to the axes of the local orbital frame as the Cardan axes, with
the appropriate subscript. The angles obtained by rotation relative to these
axes are the Cardan angles.1

8.1.2 Scanning Modes

There are various ways for an instrument to look at the Earth. The sensor
can be equipped with a fixed objective relative to the satellite, but in most
cases, the sensor is mobile (either itself or through the action of a mirror)
along some axis of rotation.

To begin with, we may define three basic scanning modes, when the in-
strument rotates relative to one of the three Cardan axes. In the first two
cases, the instrument axis and the axis of rotation are the same, whereas
1 Gerolamo Cardano (1501–1576), sometimes known as Jerome Cardan in English,

was an Italian mathematician. He provided a method for solving third order
equations and invented a joint, now known as the Cardan or universal joint,
which made the ship’s compass insensitive to the yaw, pitch and roll of the
vessel on the high seas. Note that the three terms all originate from the nautical
context.
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in the third, the instrument axis makes a constant angle with the axis of
rotation. These three scanning modes are as follows:

• With a rotation about SXc, the instrument scans perpendicularly to its
displacement. This is orthogonal or across-track scanning.

• With a rotation about SY c, the instrument scans along the ground track.
This is along-track scanning.

• With a rotation about SZc, the instrument scans in conical mode, defined
by the half-angle at the apex of the cone, which is the angle between the
instrument axis and the axis of rotation.

During an observation, the smallest detected element is called a pixel, which
is short for ‘picture element’. The set of all such elements viewed on the
ground in a single scan is called the swath.

The technical features of the various optical instruments and sensors are
not the concern of this book. We shall consider only the geometrical aspects
of scanning.

Scanning Mode for LEO Satellites

An instrument aboard an LEO satellite can use one of the three elementary
scanning modes listed above. It can also alternate between the first two, or
scan obliquely by a rotation of the instrument about an axis in the plane
SXcYc.

In orthogonal scanning, some instruments sweep from side to side across
the swath, pixel by pixel as it were. Other instruments simultaneously record
all the pixels in one row, and some can even record over several rows at once.2

Scanning Mode for GEO Satellites

In this case one cannot really say that there is a swath. Concerning the way
images are taken, geostationary satellites fall into two main categories.

For satellites with three-axis stabilisation, such as GOES (from GOES-8)
or GOMS, one axis is parallel to the polar axis, one axis points to the centre
of the Earth, and one axis lies along the satellite’s velocity vector. The sensor
scans the disk presented by the Earth.

For rotating satellites, such as the METEOSAT, GMS or FY-2 series, the
axis of rotation is parallel to the polar axis and the satellite rotates exactly
2 Charge-coupled devices can detect a row of pixels (1D-CCD, one-dimensional)

or several rows (2D-CCD, two-dimensional). Aboard SPOT-4, the HRVIR in-
strument uses the so-called push-broom mode with a 1D-CCD. The optical in-
strument is based on a telescope whose field of view is covered instantaneously
by a row of 1728 detectors, each corresponding to one pixel. In the case of the
POLDER instrument carried aboard ADEOS-1 and -2, and also planned for
PARASOL, the use of 2D-CCDs will make it possible to obtain a set of lines
simultaneously, instead of just one.
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100 times per minute. A mirror is used to sweep across the Earth’s disk.
For the satellites METEOSAT-1 to -8, this (east–west) scanning is carried
out from south to north in 2500 lines every 25 min. We note that, with this
method, although it gives excellent results, the Earth is only viewed over
17.4◦ per revolution, i.e., the sensor views the Earth for 4.8% of the time,
spending the other 95.2% of the time looking into the darkness of space (see
Colour Plate III)!

Whatever method is used, the swath of a geostationary satellite will be
treated like the across-track swath of a low-orbiting satellite: for a point P
viewed on Earth, we consider the plane SS0P (see Fig. 8.2) and define the
angles of sight as for an LEO across-track swath. We thus define the angle
S0SP which plays the role of the half-swath angle f discussed below.

8.2 Swath Viewing Geometry

8.2.1 Definition of Angles

The region of the Earth covered by the swath of the instrument (we shall just
say: viewed by the satellite) generally needs to be known with an accuracy
of the order of a few kilometres. As far as our study of swath geometry is
concerned, we shall thus treat the Earth as spherical.

Figure 8.2 shows all angles relevant to the satellite’s view and swath. The
satellite S is in orbit around the Earth at a distance OS = d from the centre
of the Earth O. The subsatellite point is denoted by S0. Thus OS0 = R is the
Earth radius and SS0 = h is the altitude of the satellite. We use the reduced
distance

η =
d

R
= 1 +

h

R
, (8.1)

i.e., the distance SO expressed in Earth radii and denoted by η, which we
have already defined in (2.18). For a circular orbit of radius a, we have d = a.

At a given instant of time, the angle between the line of sight from the
satellite and the nadir3 is

f = (SS0, SP ) , (8.2)

where the point P is the point the instrument is viewing, or target point.
This angle is called the swath angle or scan angle.
3 The nadir is the direction given by the vertical, looking downwards, i.e., towards

the centre of the Earth. The opposite direction is the zenith. The word ‘nadir’
comes from the Arabic word nād. ir, from the root of the verb ‘to look straight
at’. � �������

�
�
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Figure 8.2. Definition of angles relevant to the swath of an instrument aboard a
satellite. The satellite is S and the subsatellite point is S0. The instrument looks
at points P , such as the point P0 on the Earth’s limb. The Earth is spherical with
centre O

For the point P , we define the viewing zenith angle4 by

ζ = (OP , PS) , (8.3)

which is the angle at which the satellite is seen from the surface, measured
from the local vertical. The elevation or site angle is the complementary angle
of ζ, i.e., 90◦ − ζ.

We also use the angle α, which is the angle at the centre of the Earth
defined by

α = (OS, OP ) . (8.4)

These three angles are related by

f + α = ζ , (8.5)

by considering the triangle OSP . The maximum value of f is obtained when
the target point P is on the Earth’s limb. We denote this point by P0 and the
4 In Arabic, semt er-rās means ‘the path of the head’. This gives the word ‘zenith’,

the point on the sky just above the head. The word ‘azimuth’ comes from as-
semt, ‘the path’, with assimilation of the article. 	
����

�
� ��� ���� 	
���
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corresponding angles are given the subscript zero. Considering the triangle
OSP0, we obtain the relations

sin f0 =
R

d
=

R

R + h
, α0 =

π

2
− f0 , ζ0 =

π

2
,

or, using the reduced distance η,

sin f0 = cosα0 =
1
η

. (8.6)

Note on Terminology. The angle f defined above was called the half-swath
angle. When we speak of the swath of an instrument, we generally mean the
angle moved through by the instrument at the apex, i.e., 2fM, where the
angle fM is the maximum value reached by f when the instrument arrives
at the limit of its orthogonal scan. The angle at the apex is called the field
of view. If fM is greater than f0, we must obviously take fM = f0. To avoid
confusion, we will therefore speak of the maximum possible half-swath to
describe f0 and the maximum instrument half-swath to speak of fM.

8.2.2 Relations Between Angles

Let us now establish relations giving one of the angles f , ζ, α as a function
of one of the other two and the altitude via η. We thus obtain six relations.

Relations between f and ζ. In the triangle OSP , we have the relation

sin f

R
=

sin ζ

d
,

which yields

f = f(ζ, η) , sin f =
1
η

sin ζ = sin f0 sin ζ , (8.7)

ζ = ζ(f, η) , sin ζ = η sin f =
sin f

sin f0
. (8.8)

f and ζ as functions of α. To obtain f as a function of α, consider the
triangle OSP , and express the segment PA′ in two different ways (where A′

is the projection of P on OS) to deduce that

(d − R cosα) tan f = R sinα .

To obtain ζ as a function of α, consider the triangle OPA, where A is the
intersection of OS with the line through P perpendicular to OP . This yields

f = f(α, η) , tan f =
sin α

η − cosα
=

cosα0 sinα

1 − cosα0 cosα
, (8.9)
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ζ = ζ(α, η) , tan ζ =
sin α

cosα − 1/η
=

sin α

cosα − cosα0
. (8.10)

Expressions for α. We immediately obtain the values of α with (8.5) and
the above relations:

α = α(f, η) , α = −f + arcsin(η sin f) , (8.11)

α = α(ζ, η) , α = ζ − arcsin
(

1
η

sin ζ

)
. (8.12)

8.2.3 Ground Swath

The ground half-swath is the distance F on the Earth’s surface between the
subsatellite point and the target point at angle f . The ground swath is then
2F . The maximum ground half-swath is denoted by F0. These lengths are
given by

F = Rα , (8.13)

F0 = Rα0 = R arccos
1
η

. (8.14)

In Fig. 8.2, F corresponds to the arc S0P and F0 to the arc S0P0.

Example 8.1. Calculate the ground swath for an instrument viewing with angle
f = 45◦, aboard satellites at different altitudes: h = 350, 700, 1050 km, etc.

With 350/R = 5.487 × 10−2, we calculate η and the angles by the above formulas.

The results are given in Table 8.1. We can then compare the swaths of satellites

like TRMM (h = 350 km) or Terra (h = 700 km). For satellites with altitude less

than 1000 km, the roundness of the Earth does not account for more than 10% of

the value of the ground swath.

The limb is viewed with f = 45◦ when h = 2642 km. Indeed, according to (8.6),

we have
√

2 = η = (R + h)/R, and hence h = R(
√

2− 1) = 2642 km. We can check

from Table 8.1 that, for h = 2800 km, the swath f = f0 is less than 45◦.

8.2.4 Latitudes Viewed and Latitude Overlap

Viewed Latitude Range

For a satellite of inclination i, we defined the maximum latitude attained φm

by (5.18). The ground track of the orbit lies within the latitude range

[−φm, +φm] .
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Table 8.1. Sight angles for a half-swath f = 45◦ for an instrument aboard a satellite
at various altitudes h. Across-track swath. The angles f , ζ, α and f0 defined in this
chapter are in degrees. The altitude h and distances F and F0 are in kilometres

h 0 350 700 1 050 1 400 2 800

f0 90.0 71.4 64.3 59.2 55.1 44.0
f 45.0 45.0 45.0 45.0 45.0 44.0
ζ 45.0 48.2 51.7 55.4 59.6 90.0
α 0.0 3.2 6.7 10.4 14.6 46.0

F0 0 2 066 2 861 3 433 3 887 5 118
F 0 360 745 1 162 1 623 5 118
2F 0 720 1 491 2 324 3 245 10 236

Figure 8.3. Swath orthogonal to the ground track of satellite S, with half-swath
angle f . The plane of the diagram is the plane perpendicular to the orbit (of incli-
nation i) passing through the polar axis ON , i.e., the plane of the meridian of S0.
The satellite S is at its maximum latitude

Consider the plane perpendicular to the orbit passing through the polar axis,
as shown in Fig. 8.3. This is a meridian plane. With across-track scanning,
it is when the satellite crosses this plane that it sees points on the Earth at
the extreme latitudes. For an instrument with maximum half-swath fM, the
swath track lies in the interval

[−φv, +φv] ,
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where the angle φv is the maximum latitude viewed as defined by{
φv = φm + αM , if φm + αM < 90◦ ,

φv = 90◦ , if φm + αM � 90◦ ,
(8.15)

where αM = αM(fM, η) calculated from (8.11).

Latitude Overlap

When φm+αM is greater than 90◦, we say that there is latitude overlap. This
overlap concerns latitudes in the ranges:

[+90◦, 180◦ − (φm + αM)] in the northern hemisphere ,

[−90◦, (φm + αM) − 180◦] in the southern hemisphere .

For a satellite in near-circular orbit, if a pole is viewed during an across-track
scan, the two poles are viewed during each revolution.

Example 8.2. Calculate the maximum latitude viewed and, in the relevant situ-
ations, the range of latitudes covered by the ScaRaB instrument (fM = 48.91◦)
aboard Meteor-3-07, Resurs-O1-4 and Megha-Tropiques.

For Meteor-3-07, i = 82.6◦, φm = i, η = 1.187, we obtain φm+α = 97.1. All latitudes

are viewed. Moreover, there is overlap between the pole and latitude 180 − 97.1 =

82.9◦, for each hemisphere.

For Resurs-O1-4, i = 98.7◦, φm = 180 − i = 81.3◦, η = 1.128, we obtain φm + α =

90.6. All latitudes are viewed. The overlap is very slight, between the pole and

latitude 89.4◦, for each hemisphere.

For Megha-Tropiques, i = 20.0◦, φm = i, η = 1.136, we obtain φm + α = 30.0. The

latitudes viewed lie in the band [30.0◦S, 30.0◦N], which corresponds to the region

between the tropics (whence the name of the satellite).

8.3 Pixel Distortion

8.3.1 Calculating the Distortion Index

Consider an instrument which observes the Earth with across-track scanning.
The axis of rotation of the instrument is perpendicular to the plane defined
in Fig. 8.2.

Each angular interval δf of the half-swath angle corresponds to a half-
swath interval δF on the ground. It is clear that, for a given constant interval,
say 1◦, the value of δF is smaller at the nadir (for f = 0) than when viewing
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the limb (for f = f0): the satellite–target distance increases and, furthermore,
the roundness of the Earth is relevant here.

The pixel, which depends on the value of the elementary interval δf of
the instrument, has size δF in the scanning direction whilst its width can
be considered as constant in the perpendicular direction, parallel to the axis
of rotation of the instrument. To find the pixel distortion, we calculate the
variation of the ratio δF/δf as a function of the target point, which amounts
to finding the variation of the ratio δα/δf as a function of α.

Differentiating (8.9), we obtain

(1 + tan2 f) df =
η cosα − 1
(η − cosα)2

dα ,

which yields, replacing tan f by its value as a function of α,

dα

df
=

η2 − 2η cosα + 1
η cosα − 1

. (8.16)

Considering increments δf and δα small enough to identify them with df
and dα, we obtain

k(α, η) =
δα

δf
.

To measure the pixel distortion, denoted by K(α, η), we set

K(α, η) =
k(α, η)
k(0, η)

,

thereby expressing k(α, η) relative to its value at the nadir. This value is
k(0, η) = η−1, which can be checked by calculating δF in two different ways
at the nadir (using small angles), from the standpoint of S or O : δF = hδf =
Rδα.

This pixel distortion index is thus

K(α, η) =
η2 − 2η cosα + 1

(η − 1)(η cosα − 1)
, (8.17)

which can also be written using the bounding angle α0 as

K =
d

h

sin2 α + (cosα − cosα0)2

cosα − cosα0
.

The pixel distortion index thus measures a one-dimensional distortion, the
width being constant, for fixed increment δf . (We are not concerned here
with scanning in which δf varies with f in such a way that δF remains
roughly constant.) The function K is plotted in the following examples.
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Figure 8.4. Relative pixel distortion as represented by the index K. Upper : For
LEO satellites with altitude h = 200 km to h = 1800 km, in steps of 200 km, as
a function of the half-swath angle f . Lower : For any geostationary satellite as a
function of the angle α, representing the latitude or longitude from the subsatellite
point
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8.3.2 Pixel Distortion for LEO Satellites

The index K is calculated as a function of α, but the results are generally
expressed in terms of the variables ζ or f . The distortion index K(f) is
plotted in Fig. 8.4 (upper) for LEO satellites in near-circular orbit and for
altitudes between 200 and 1800 km, in steps of 200 km. The distortion index
becomes large (K > 2) when f reaches roughly two thirds of its maximum
value f0.

Example 8.3. Calculate the pixel size and distortion index for the ScaRaB instru-
ment aboard Meteor-3-07 and Resurs-O1-4.

Two identical ScaRaB instruments are carried aboard the Russian satellites Meteor-
3-07 and Resurs-O1-4. Scanning is across the ground track. The maximum instru-
ment half-scan angle, beyond which the instrument cannot view, is fM = 48.91◦,
giving a field of view of 97.82◦. The complete scan is divided into 51 increments,
which gives

δf =
2fM

51
= 1.92◦ = 33.5 milliradians ,

for the pixel size. (This may be described as the effective pixel, whilst the true pixel
is larger to give overlap.) This corresponds at the nadir to

δF = 40 km for ScaRaB on Meteor-3-07 ,

δF = 27 km for ScaRaB on Resurs-O1-4 .

At the limiting value of the scan angle, the pixel length is

K(fM) = 4.0 =⇒ δF = 161 km for ScaRaB on Meteor-3-07 ,

K(fM) = 3.2 =⇒ δF = 86 km for ScaRaB on Resurs-O1-4 .

The ground swath is 2FM = 3254 km for Meteor-3-07, which is greater than the

equatorial shift ∆λE = 3059 km. However, for Resurs-O1-4, the ground swath

2FM = 2078 km is well below the equatorial shift ∆λE = 2819 km. The ScaRaB

instrument was originally designed for satellites of type Meteor-3, at 1200 km al-

titude, the aim being to scan the whole planet in one day. To obtain this result

aboard satellites of type Resurs-O1, at only 800 km altitude, the instrument would

have been able to scan up to angles fM = 55◦, and this would have given a pixel

distortion of K = 5.3.

8.3.3 Pixel Distortion for GEO Satellites

Although a geostationary satellite sees almost half the Earth’s surface, around
the edge of the observed ‘disk’, the pixel distortion is large.
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Figure 8.5. Rotation through α corresponding to the swath f of an instrument
aboard the satellite. This figure complements Fig. 5.2. Black dots denote the four
axes of rotation. The axis of rotation of the instrument is OY in the orbital plane
Ox2X, perpendicular to OX . The ground track of a half-swath is shown by a dashed
curve

The graph of K(α) in Fig. 8.4 (lower) shows that, for a geostationary
satellite, the distortion index becomes greater than 2 beyond 50◦. α can be
replaced by |λ − λS|, the longitude along the equator measured from the
subsatellite point, or by |φ|, the latitude measured along the meridian λS.
These graphs are clearly going to be the same for all geostationary satellites.

8.4 Swath Track for an LEO Satellite

8.4.1 Across-Track Swath

In order to calculate the coordinates of the points viewed and thus plot the
ground track of the across-track scan, we return to the Euler angles first
discussed when determining the subsatellite point on the ground track.

We consider that the scan with instantaneous angle f from the satellite
S is equivalent to a scan with instantaneous angle α from the centre O of the
Earth. The scan is in the plane perpendicular to the orbit, passing through S
and O. Viewed from O, it is thus a scan with angle α, and axis OY (parallel
to SXc in the orbital plane), where the orthogonal axes OXY Z were defined
previously, in Fig. 5.2.
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Meteor-3-07
Orbit - Ground track
Recurrence = [13; +7; 71] 930

>>>>   Time span shown:   250.0 min =   0.17 day

Across track swath

Altitude = 1194.6 km a = 7572.703 km

Inclination  =  82.56 °

Period =   109.42 min    * rev/day =13.16

Equat. orbital shift  = 3059.5 km  (  27.5 °)

** Half-swath:     48.9°  =>  1622 km [  1.0 min]

Asc. node:      0.00 °

App. inclin. =  86.93 °

Lat. overlap: 82.9° <--> 90.0°

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Resurs-O1-4
Orbit - Ground track
>>>>   Time span shown:   250.0 min =   0.17 day

Across track swath

Altitude =  814.2 km a = 7192.377 km

Inclination / SUN-SYNCHRON.=  98.69 °

Period =   101.29 min    * rev/day =14.22

Equat. orbital shift  = 2818.9 km  (  25.3 °)

** Half-swath:     48.9°  =>  1034 km [  1.0 min]

Asc. node:      0.00 °

App. inclin. = 102.62 °

Lat. overlap: 89.4° <--> 90.0°

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GEM-T2

Figure 8.6. Across-track scan – LEO satellites equipped with the same instrument
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This rotation corresponds to the rotation matrix

P4 =

⎛⎝ cosα 0 − sinα
0 1 0

sinα 0 cosα

⎞⎠ . (8.18)

If (X ′, Y ′, Z ′) are the Cartesian coordinates of the target point on the Earth
relative to the frame (Oxyz), we obtain these new coordinates from⎛⎝X ′

Y ′

Z ′

⎞⎠ = P4

⎛⎝X
Y
Z

⎞⎠ ,

where the coordinates (X, Y, Z) of the subsatellite point were obtained using
the product of the three rotations

P = P1P2P3

defined by (5.8). Figure 8.5 completes Fig. 5.2 with the fourth rotation. Us-
ing (5.12) and (5.13), the Cartesian coordinates (X ′, Y ′, Z ′) can be used to
calculate the polar coordinates λ′ and φ′ of the target point.

Example 8.4. Swath track of the ScaRaB instrument aboard Meteor-3-07 and
Resurs-O1-4.

The value of the half-swath angle is fM = 48.91◦ in both cases. For Meteor-3-07,

the swaths overlap at the equator during two consecutive nodal crossings. This does

not happen for Resurs-O1-4 (see Fig. 8.6). This effect is expressed (see below) by

the fraction of equatorial overlap, which is greater than 1 in the first case, and less

than 1 in the second. For clarity, swaths have been plotted at 60 s intervals, whereas

ScaRaB actually scans every 6 s.

Scanning and Ground Track of the Across-Track Swath

When an instrument scans, the scan moves extremely quickly across the
ground. For example, the instrument ScaRaB aboard Meteor-3-07 completes
one scan in 6 s, so that the average speed of the scan on the ground is
3254/6 = 542 km s−1. Compared with the displacement of the subsatellite
point along the satellite ground track, which is 6 kms−1, each swath track
can be treated as instantaneous. For HRVIR aboard SPOT-4, the scan is
effectively instantaneous.

The ground track of the orthogonal swath, perpendicular to the orbital
plane, thus makes an angle of 90◦ − i with the equator. However, as we saw
previously, the ground track makes an angle i′ with the equator. This is the
apparent inclination. In diagrams showing the ground tracks, the normal to



366 8 View from the Satellite

the ground track of the swath thus makes an angle i − i′ with the satellite
ground track at the equator.

Note on Cartography. This angular difference only shows up true to scale
on maps plotted with a conformal projection.

Equatorial Overlap

Consider a full swath of an instrument to its viewing limit. Its width on the
ground is 2FM. Let LE be the portion of the equator covered by the swath
during one crossing by the satellite. To a first approximation,

LE ≈ 2FM

sin i
. (8.19)

In fact, the exact relation for the orbit and swath ground tracks at the equator
is

LE =
2FM

sin i + cos i tan(i − i′)
. (8.20)

It is interesting to compare this distance LE with the equatorial shift: both
lengths are measured along the equator and their ratio QE thus measures the
fraction of the equator seen by the satellite in one day, during the ascending
node crossing:

QE =
LE

DE
, (8.21)

where the distance DE is the equatorial shift, ∆λE calculated from (5.21) and
expressed in the same units as LE (usually in km), without regard for sign.
If QE is greater than unity, certain points on the equator are viewed more
than once a day during the ascending node crossing (and likewise, of course,
for the descending node crossing).

We may thus calculate the half-swath on the ground, F1 (in km), or α1

(in degrees), representing the necessary threshold to obtain full equatorial
overlap, i.e., QE = 1:

α1 =
∆λE

2
[
sin i + cos i tan(i − i′)

]
. (8.22)

With (8.9), this gives the threshold value of the half-swath f1.

Example 8.5. Fraction of equatorial overlap for the satellites Megha-Tropiques and
Oceansat-1.

On the graphs of Fig. 8.7, we have shown the overlap fraction as a function of the

half-swath f . We have also indicated the value of the half-swath F on the ground for



8.4 Swath Track for an LEO Satellite 367

0 10 20 30 40 50 60 70 80 90

0

1000

2000

3000

4000

5000

6000

7000

8000

Q=1

Q=2

Q=3

Q=4

Q=5

Q=6

Q=7

      Half-swath angle f (deg)

S
w

at
h 

on
 th

e 
gr

ou
nd

 (
km

)

Megha-Tropiques

Altitude =  865.6 km
Inclination  =  20.00 °
Period =   101.93 min
Equatorial shift=  2892.0 km

f = (field of view)/2
Maximal half-swath f =    61.7 °
F : swath on the ground (km)
D : equatorial shift (km)
L : equatorial overlap (km)
Q : fraction of equatorial overlap
Q = L / D
Q = 1  for f = 30.8 ° - F =1061.1 km

F= 6278.

F= 1061.
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Oceansat-1

Altitude =  720.0 km
Inclin. / SUN-S. =  98.29 °
Period =    99.31 min
Equatorial shift=  2763.8 km

f = (field of view)/2
Maximal half-swath f =    64.0 °
F : swath on the ground (km)
D : equatorial shift (km)
L : equatorial overlap (km)
Q : fraction of equatorial overlap
Q = L / D
Q = 1  for f = 57.3 ° - F =2707.9 km

F= 5789.

F= 2708.

Figure 8.7. Fraction of equatorial overlap for two LEO satellites
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QE = 1, denoted above by F1, and the maximum value F0 for limb viewing. For an

LEO satellite, the value of QE increases as the satellite altitude increases (for FM)

and as the angle between the orbital plane and the equator decreases (for 1/ sin i).

We give here an example for a near-polar satellite (Oceansat-1) and another for a

satellite with a small inclination at the equator (Megha-Tropiques).

Swath and Mission Constraints

The swath of the main instrument on a satellite and the orbital characteristics
of that satellite are related. This constraint is particularly important if the
satellite is recurrent. We shall give here several examples for the very different
cases of wide, narrow, and very narrow swaths.

Example 8.6. Fulfilling mission requirements with regard to swath and recurrence
for Oceansat-1, SPOT-1 and ICESat.

Oceansat-1. The Indian satellite Oceansat-1 (IRS-P4) is Sun-synchronous with
equatorial crossing at noon and midnight, and recurrent, with triple [14, 1, 2], cor-
responding to a cycle of 29 revolutions over 2 days. The equatorial shift is

∆λE = − 360

14.5
= −24.83◦ , DE = 2763.8 km .

The aim of the mission is to view the equator during daytime every two days. To
a first approximation (the orthogonal swath is practically parallel to the equator),
the ground swath 2FM must be at least half the equatorial shift, i.e.,

αM =
180

29
= 6.21◦ , FM =

DE

4
= 691 km .

Equation (8.9) gives fM = 42.3◦. The OCM instrument aboard this satellite has
a full swath of 1420 km, or FM = 710 km, a few kilometres more than the strict
minimum swath. Calculation gives

FM = 710 km =⇒ fM = 43.0◦ , QE = 0.52 .

The fraction of equatorial overlap is thus slightly more than 1/2. Figure 8.7 (lower)
can be used to estimate fM directly for Q = 0.5.

SPOT-1. When the SPOT project was under development, the satellite was
planned to fly between 800 and 850 km altitude, low enough for good resolution,
but high enough to avoid too much atmospheric drag. The HRV instrument aboard
SPOT-1 was designed with a field of view of 8.4◦, or fM = 4.2◦. The aim was then
to ensure that the grid interval δ defined by (7.19) was slightly less than the ground
swath.
We calculate the interval δ ≈ 2h tan fM ≈ 1.06◦, which gives the number of round
trips in a recurrence cycle as NTo = 360/1.06  340. The value of ν then lies be-
tween 14.26 for h = 800 km and 14.11 for h = 850 km. This implies, for the cycle
CTo = NTo/ν, the bound CTo = 24. Moreover, when the mission was set up, it was
hoped to have a cycle shorter than one month, and this implies
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24 � CTo � 30 .

The recurrence triple thus had to have the form [14, DTo , CTo ] with 340 � NTo �
427. Further considerations regarding subcycles then led to the choice of [14, +5, 26],
with 369 revolutions.

ICESat. This satellite is equipped with a laser designed for altimetry. The instru-

ment, known as GLAS, points at the nadir with an almost pointlike field of view,

since the pixel measures only 66 m on the ground. Recurrence with a very long

cycle, 2723 round trips in 183 days, giving a grid interval δ = 15 km, guarantees

that, throughout the cycle, the satellite never goes over its ground track.

8.4.2 Variable-Yaw Swath

The across-track swath corresponds to a yaw angle of 0. The yaw angle is
measured in a plane perpendicular to the yaw axis, or nadir axis, which points
from the satellite to the centre of the Earth. There are scanning modes along
the swath, called along-track scanning, and these correspond to a yaw angle
of 90◦. In this case, the swath does not exactly cover the ground track, for
the same reasons that the across-track swath is not exactly perpendicular to
the ground track – see Chap. 5 for the question of inclination and apparent
inclination (angles i and i′, or angles j and j′). By adjusting the yaw angle
as a function of the latitude overflown, the ground track can be covered by
the swath – see (5.32).

Yet another scanning mode varies the yaw angle continuously, as described
in the next example.

Example 8.7. Ground swath with variable yaw (PAP and RAP mode) of the
CERES radiometer aboard the satellite Terra.

NASA uses the following abbreviations for scanning modes:

• XT: across-track scanning, perpendicular to the orbit plane,
• AT: along-track scanning,
• PAP: programmable azimuth plane scanning,
• RAP: rotating azimuth plane scanning.

The satellites TRMM, Terra, and Aqua carry two CERES instruments: one is fixed
(FM-1), with across-track swath (XT), while the other (FM-2), has variable yaw.

AT and PAP Mode. In order to carry out radiometric assessments at the Anchor
Station Area, Valencia (Spain), we asked NASA’s CERES team to program the line
of sight of the instrument (PAP mode) according to (5.32), and this was done on
19 August 2004. The results are shown in Fig. 8.8 (upper). In AT mode, the line of
sight does not exactly retrace the track [see Fig. 8.8 (lower)].

RAP Mode. Figure 8.9 (upper) shows the instrument track of FM-2 aboard Terra,

when the satellite overflew California, at 18:13 UT on 9 February 2003, and Fig. 8.9
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Terra / CERES
Orbit - Ground track
Recurrence = [15; -7; 16] 233

>>>>   Time span shown:  1440.0 min =   1.00 day

2004 08 19 => PAP  [Swath over track] 

Altitude =  699.5 km

e = 0.000112

a = 7077.677 km

Incl. / SUN-S.= 98.19 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

**   Half-swath:  61.8°  =>  1801 km [  3.0 min]

Asc. node:   -128.44 ° [22:30 LMT]

[NORAD] Revolution:  24843

Max. attained latit. = 90.0 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule:  5°

MapC:  0° ; 0° / ZoomC: 25.0 ° N; 35.0 ° E

Aspect:  Direct > zoom : 2.50

[  +90.0 /   +0.0 /  -90.0 ] Gr.Mod.:  EGM96

Terra / CERES
Orbit - Ground track
Recurrence = [15; -7; 16] 233

>>>>   Time span shown:  1440.0 min =   1.00 day

2004 08 20 => AT [Along track scanning] 

Altitude =  699.5 km

e = 0.000114

a = 7077.675 km

Incl. / SUN-S.= 98.19 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

**   Half-swath:  61.8°  =>  1801 km [  3.0 min]

Asc. node:    -65.26 ° [22:30 LMT]

[NORAD] Revolution:  24855

Max. attained latit. = 90.0 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule:  5°

MapC:  0° ; 0 ° / ZoomC: 25.0 ° N; 35.0 ° E

Aspect:  Direct > zoom : 2.50

[  +90.0 /   +0.0 /  -90.0 ] Gr.Mod.:  EGM96

Figure 8.8. Variable-yaw swath (PAP mode) for an LEO satellite. Difference be-
tween along-track (AT), lower , and adjusted along-track (PAP), upper
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Terra / CERES
Orbit - Ground track
Recurrence = [15; -7; 16] 233

2003 02 09 => RAP [Rotating Azimuth Plane Scanning]

Alternated variable-yaw swath                [ +12.0 min]

Altitude =  699.6 km

e = 0.000092

a = 7077.704 km

Incl. / SUN-S.= 98.20 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

**   Half-swath:  56.0°  =>  1215 km [  0.1 min]

Asc. node:   -111.51 ° [22:32 LMT]

[NORAD] Revolution:  16731

Max. attained latit. = 90.0 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule:  5°

Map centre:      30.0 ° N;  110.0 ° W

Aspect:  Oblique > zoom : 4.00

[  +90.0 /  +30.0 /  +20.0 ] Gr.Mod.:  EGM96

Terra / CERES
Orbit - Ground track
Recurrence = [15; -7; 16] 233

>>>>   Time span shown:   720.0 min =   0.50 day

Alternated variable-yaw swath                [ +12.0 min]

Altitude =  699.6 km a = 7077.738 km

Inclination / SUN-SYNCHRON.=  98.21 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

**   Half-swath:  61.8°  =>  1801 km [  0.5 min]

Asc. node:    -64.60 ° [22:30 LMT]

App. inclin. = 102.06 °

Max. attained latit. = 90.0 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  EGM96

Figure 8.9. Variable-yaw swath (RAP mode) for an LEO satellite
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DMSP-5D2 F-11 / SSM/I
Orbit - Ground track
>>>>   Time span shown:  1440.0 min =   1.00 day

Ground track - Conical swath / VZA=53.1°

Altitude =  849.8 km a = 7227.887 km

Inclination / SUN-SYNCHRON.=  98.84 °

Period =   102.04 min    * rev/day =14.11

Equat. orbital shift  = 2839.8 km  (  25.5 °)

** Effect. h-ap.:  38.9 ° - Radius/grnd  915 km [   1.0 min]
** Half-aperture:   52.1 ° =  721 km - Effect. swath: 1442 km

Asc. node:      0.00 °

Max. attained latit. = 87.6 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre (r.): 42.0 ° S;  139.0 °E

Aspect:  Oblique

[  -90.0 / +132.0 /  -49.0 ] Gr.Mod.:  JGM-3

Megha-Tropiques / MADRAS
Orbit - Ground track
Recurrence = [14; -1;  7]  97

>>>>   Time span shown:   203.9 min =   0.14 day

Ground track - Conical swath / VZA=53.1°

Altitude =  865.6 km a = 7243.700 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

** Effect. h-ap.:  42.3 ° - Radius/grnd  928 km [   1.0 min]
** Half-aperture:   65.0 ° =  841 km - Effect. swath: 1682 km

Asc. node:      0.00 °

Max. attained latit. = 27.6 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre:      15.0 ° N;   42.0 °E

Aspect:  Oblique > zoom : 2.00

[  -90.0 /  +75.0 /  +48.0 ] Gr.Mod.:  GRIM5-C1

Figure 8.10. Conical swath – LEO satellites equipped with similar instruments
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(lower) shows the track over half a day. This RAP scanning mode consists in making

a half-turn in 6 min, followed by a half-turn in the opposite direction. The swath

represented here [Fig. 8.9 (upper)], every 6 s, corresponds to f = 56◦.

8.4.3 Conical Swath

Conical swaths are used by microwave radiometers, in particular. In this case,
for physical reasons connected with the phenomenon, the target points must
be viewed at a constant angle. The maximum half-swath fM must therefore
be adapted to the altitude of the satellite and also the angle ζM. We now give
several illustrations of the conical swath.

Example 8.8. Conical swath tracks of the radiometer SSM/I aboard the satel-
lite DMSP-5D2 F-11 and the radiometer MADRAS aboard the satellite Megha-
Tropiques.

SSM/I. The instrument SSM/I is a passive radiometer. The angle fM between its
axis and the axis of rotation, the nadir axis SZc, is constant, in such a way that
the viewing zenith angle is also constant, with ζM = 53.1◦. For this satellite, the
calculation gives fM = 44.9◦ and F = R(π/180)αM = 914.6 km. Scanning is not
through a complete circle of radius F , but over an arc of angle βM = 102.4◦, on
either side of the axis SXc along the velocity vector. For this satellite, scanning
is in the forward direction. The chord of the scanned arc is called the effective or
useful swath 2Fe. It is given by

2Fe = R(π/180) arcsin
`
sin αM sin βM

´
= 1442 km ,

where angles are in degrees. When βM is greater than 180◦, we find 2Fe = 2F .
Figure 8.10 (upper) shows the ground track in steps of one minute for greater clar-
ity, although the radiometer turns at 31.6 rev/min. During one revolution of the
instrument, i.e., 1.9 s, the subsatellite point moves through 12.5 km. Looking at
the ground track over one day, we see that a large fraction of the Earth’s surface is
viewed every day.

MADRAS. The sighting geometry of this radiometer, planned for the satellite

Megha-Tropiques, is practically the same. The ground track is shown over two

revolutions in Fig. 8.10 (lower).

8.5 View from a GEO Satellite

When a geostationary satellite views the Earth, the maximum swath in the
sense that we have defined f0 is

f0 = arcsin
1

ηGS
, (8.23)
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where the reduced distance here is ηGS defined by (4.58). This implies, with
ηGS = 6.611,

f0 = 8.700◦ = 0.1518 rad . (8.24)

The corresponding angle at the centre of the Earth is

α0 = arccos
1

ηGS
= 90◦ − 8.7◦ = 81.3◦ =⇒ 2F0 = 18 100 km . (8.25)

The part of the Earth viewed by a geostationary satellite is called the Earth’s
disk, although it is called the slot in the context of remote sensing.

Let λS be the longitude of the satellite S (the parking longitude or lon-
gitude of the subsatellite point). Then the longitudes viewed on the equator
by S lie in the interval

[λS − 81.3◦, λS + 81.3◦] .

Along the meridian λS, the latitudes viewed occupy the same interval of 81.3◦

on either side of the equator.
For an arbitrary point P on the Earth, with geographic coordinates λ and

φ, we write the distance D to the subsatellite point S0 (we mean, of course,
the distance on the sphere, measured along a great circle, viz., D = Rα) using
the spherical triangle S0PP ′, where P ′ is the intersection of the meridian of
P with the equator:

cos
�

S0P= cos
�

S0P
′ cos

�

PP ′ ,

cosα = cos(λ − λS) cosφ . (8.26)

This corresponds to (ST I).
The locus of points P viewed at distance D from the subsatellite point is

thus defined by

D = R
π

180
arccos

[
cos(λ − λS) cosφ

]
, (8.27)

where the angles are in degrees. This is the locus of points viewed at the same
angle from the satellite, and hence viewed with the same pixel distortion.

The condition for the point P to be viewed at all is given by (8.6) and
(8.26) as

ηGS cos(λ − λS) cosφ � 1 . (8.28)

The area s of the Earth which is viewed, for a given value of the angle α, is

s(α) = 2πR2(1 − cosα) .
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The maximal area viewed is thus s(α0), which represents the fraction

s(α0)
4πR2

=
1
2

(
1 − 1

ηGS

)
= 0.424 , (8.29)

or about 42% of the total area.

Example 8.9. Represent the locus of points on the Earth that are equidistant from
the subsatellite point of a GEO satellite.

The distance D between a point on the Earth seen by the geostationary satellite
and the subsatellite point of the same satellite is defined by (8.27). The locus of
points on the Earth at the same distance D has been represented with steps of
500 km in the value of D, and 200 km in the enlarged maps. We denote these loci
by L(D).

METEOSAT. The European satellites METEOSAT, in their operation phase, are
stationed at longitude λS = 0◦. Figure 8.11 (upper) shows the Earth as it is viewed
by the satellite, i.e., the Earth’s disk. The curves L(D) for given D are circles,
represented by circles on this map, which has a non-conformal but axisymmetric
projection. The Guyou projection, based on elliptic functions, presents the globe in
a rectangle, whilst preserving angles, i.e., it is a conformal projection. The curves
L(D) are represented in the direct aspect in Fig. 8.11 (lower).

FY-2A, FY-2B. The Chinese satellites FY-2A then FY-2B are stationed at lon-
gitude λS = 105◦E. Figure 8.12 (upper) shows the locus of points L(D) viewed at
the same angle in an orthographic representation centered on Peking (right-hand
image).

GOES. The US satellite GOES-East is stationed at longitude λS = 75◦W. This po-
sition was previously occupied by the succession of satellites SMS-1, SMS-2, GOES-
5, GOES-7, GOES-8 (partial or total occupation during their operating lifetimes).
The Argentinian meteorological office (Servicio Meteorológico Nacional) represents
data in a stereographic projection centered on the point (34.8◦S, 68.6◦W), situated
in the centre of the country. We have used this projection in Fig. 8.12 (lower) to
represent the locus of points viewed at the same angle. This locus L(D) is thus rep-
resented by circles, since the stereographic projection preserves angles. Note that
the GOES-East and Feng Yun-2 satellites are diametrically opposite one another
with respect to the centre of the Earth.

Elektro-1 (GOMS-1). The Russian satellite Elektro-1 (GOMS-1) is stationed at

longitude λS = 76◦E. We have represented L(D) in a Guyou transverse projection

centered on Moscow in Fig. 8.13. It is clear that geostationary satellites are not of

much interest to Russia.
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METEOSAT

Locus of points

equidistant

from the subsatellite point

Altitude =35787.6 km

Parking Longit.=  0.0 °

a_GS = 42165.785 km

Inclination  =   0.00 °

Period =  1435.91 min    * rev/day = 1.00

Equat. orbital shift  =40072.1 km

**   Half-swath:   8.7° - On ground 9050.2 km  [  500.0 km]

Geostationary

Max. attained latit. = 81.3 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Equatorial

[  -90.0 /  +90.0 /  +90.0 ] Gr.Mod.:  GEM-T2

METEOSAT

Locus of points

equidistant

from the subsatellite point

Altitude =35787.6 km

Parking Longit.=  0.0 °

a_GS = 42165.785 km

Inclination  =   0.00 °

Period =  1435.91 min    * rev/day = 1.00

Equat. orbital shift  =40072.1 km

**   Half-swath:   8.7° - On ground 9050.2 km  [  500.0 km]

Geostationary

App. inclin. =   0.00 °

Max. attained latit. = 81.3 °

Projection:  Guyou

Property:  Conformal

T.:(various)    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[  +90.0 /   +0.0 /  -90.0 ] Gr.Mod.:  GEM-T2

Figure 8.11. Locus of points equidistant from the subsatellite point of a GEO
satellite
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Feng Yun-2

Locus of points

equidistant

from the subsatellite point

Altitude =35787.6 km

Parking Longit.=105.0 ° E

a_GS = 42165.785 km

Inclination  =   0.00 °

Period =  1435.91 min    * rev/day = 1.00

Equat. orbital shift  =40072.1 km

**   Half-swath:   8.7° - On ground 9050.2 km  [  500.0 km]

Geostationary

Max. attained latit. = 81.3 °

Projection:  Orthographic
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Figure 8.12. Locus of points equidistant from the subsatellite point of a GEO
satellite
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Figure 8.13. Locus of points equidistant from the subsatellite point of the Russian
GEO satellite Elektro-1. The map is centered on Moscow (Russia)



9 Temporal and Angular Sampling

Once again, we shall change our point of view! From an arbitrary point P on
the Earth, we now note the time and angular conditions of our view of the
satellite S. This is the opposite problem to determining the ground track of
the swath: we must now establish the satellite sampling for a given instru-
ment. We shall only consider across-track swaths. We shall also determine,
for this point P , the direction of the Sun at the instant of time when P is
viewed by the satellite.

9.1 Basic Principles of Sampling

To obtain the sampling, our method consists in noting all the intersections
of the swath track with a given meridian, called the reference meridian. This
method, which underlies the ‘sampling’ function of the Ixion software, can
then be used to make various comparisons and produce statistics depending
on the latitude of the target point.

For each point viewed, called the target point and denoted by P , we
determine, in terms of the satellite position S, the time at which it is seen
and the direction PS, which is called the line-of-sight direction. This straight
line is defined by the angles of the spherical coordinate system: the zenith
angle and the azimuth angle. We call this the overpass of the satellite S at the
point P . We can then refer to the overpass time, and the zenith and azimuth
angles of overpass.

Temporal sampling is achieved when we know the overpass times in the
sense mentioned above for any point on the Earth, for a given satellite and
instrument, over a certain period of time, e.g., one month. When we speak
of angular sampling, we mean a record of the sight angles for each overpass.
When the word ‘sampling’ appears without further specification, we are gen-
erally referring to both sets of data. Sampling data is complemented by men-
tioning the conditions of solar illumination, i.e., the angles determining the
position of the Sun for each target point P .
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Figure 9.1. Directions relating to the swath of an instrument aboard a satellite.
The Earth is shown with centre O, as is the North Pole N and the equator. The
satellite S, with subsatellite point S0, views the point P in a swath S0P (doubled
curve). This swath lies in the plane OS0SP , called the swath plane F , orthogonal
to the direction of displacement of the satellite S. Figure 8.2 shows the angles in
the plane F

9.2 Satellite–Target Direction

9.2.1 Line-of-Sight Direction of the Satellite

Calculating Angles

Figure 9.1 shows the subsatellite point S0, which is the intersection of OS with
the Earth (centre O). The swath plane F is the plane OS0SP , orthogonal to
the direction of displacement of the satellite S. The velocity vector defines a
right-handed orientation in F .

At each time, we know the position of the satellite, and hence the geo-
graphic coordinates of S or S0, denoted by λS and φS, longitude and latitude,
and the swath angle f , through the angle α at the centre of the Earth. The
two angles defining the direction PS are the zenith and azimuth angles,
which belong to the spherical coordinate system centered on P , with the lo-
cal horizontal plane H as reference plane. This plane, perpendicular to OP ,
is the tangent plane to the sphere at P .

Zenith angle ζ. This is defined by
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ζ = (OP , PS) , (9.1)

measured in the positive sense for the orientation defined by the satellite
velocity vector, with the straight line OP (the local vertical) as origin, as
discussed in relation to Fig. 8.2. The zenith angle ζ can be calculated1 im-
mediately from the angle α using (8.10).

Azimuth angle β. This is defined in the local horizontal plane H. The local
vertical confers an orientation on H. The angle β is measured in the positive
sense for this orientation, taking the north as origin. It is the dihedral angle
between the swath plane F and the meridian plane OPN of P , denoted by
M :

β = dihedral angle {M,F} , (9.2)

that is, the angle in H between the swath track and the meridian at P . The
angle β is called the line-of-sight azimuth.

To calculate the angle β, we consider the spherical triangle NPS0, shown
in Fig. 9.1. If λ and φ are the geographic coordinates of the target point
P , the three known elements of the triangle are two sides (two arcs) and an
angle, the dihedral angle between the two meridian planes through P and
S0 :

�

NS0=
π

2
− φS ,

�

NP=
π

2
− φ , N̂ = λ − λS .

We seek the angle β which is the angle of the spherical triangle at P .
Using (ST X), we have

cot
�

NS0 sin
�

NP= cos
�

NP cosN + sin N cotP ,

or in the present case,

tan φS cosφ = sin φ cos(λ − λS) +
sin(λ − λS)

tan β
,

and finally,

tan β =
sin(λ − λS) cosφS

cosφ sinφS − sin φ cosφS cos(λ − λS)
. (9.3)

1 As the swath plane F is oriented, ζ can take positive or negative values. Indeed,
ζ varies in the interval [−π/2, +π/2]. Insofar as the azimuth angle β is defined
(below) throughout the whole plane, it would suffice to define ζ in the interval
[0, +π/2]. However, this redundancy allows one to say whether the satellite is in
the ascending or descending stretch of the orbit. One then assigns the sign of ζ
to f and α.
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From the tangent, the angle β′ between the straight line PS0 and the north
is obtained in the interval [−π/2, +π/2]. To obtain the angle β between PS0

and the north in the interval (−π, +π], we observe that β has the same sign
as λ−λS. Hence, if β′ = arctanβ has the same sign as λ−λS, we have β = β′.
In the other case, β = β′ + π [2π].

Note. The altitude of the satellite does not appear in the relation giving the
azimuth angle β.

Example 9.1. Calculate the azimuth angle when the target point and the satellite
lie on the same geographic parallel.

When φS = φ, (9.3) becomes

cot β = sin φ tan
λ − λS

2
.

We take the following points: P (45◦N,10◦W) and S0 (45◦N,20◦E). With the above

relation, we obtain tan β = −5.278, whence β′ = −79.3◦. With λ−λS < 0, we have

β = −79.3◦.
We observe that the direction P S0 is not at right-angles to the north. This direction

is taken on the arc of the great circle passing through P and S0. As the chosen

parallel is situated in the northern hemisphere, this arc is north of the parallel,

making an angle of 10.7◦ with the parallel at P . The angle is negative (S0 is east

of P ). Swapping P and S0, the angle β is positive.

If we choose points in the southern hemisphere, P (45◦S,10◦W) and S0 (45◦S,20◦E),

we obtain β′ = 79.3◦, hence β = 79.3◦ − 180◦ = −100.7◦. The north is still taken

as the origin.

Polar Viewing Conditions

For a circular orbit, if the pole is attained by the swath, it always sees the
satellite with the same zenith angle. A prograde satellite, oriented in the
direction of its displacement, always sees the North Pole to its left and the
South Pole to its right. Conversely, a retrograde satellite (hence any Sun-
synchronous satellite) always sees the South Pole to its left and the North
Pole to its right. With the sign conventions mentioned above, ζ is positive in
the case when a prograde satellite is viewed from the North Pole.

When viewing from the pole, the angles α and i are complementary (the
sum of the angles is a right-angle), as can be seen from Fig. 8.3. Equations
(8.9) and (8.10) thus become

tan f(NP) =
cos i

η − sin i
, tan ζ(NP) =

cos i

sin i − 1/η
, (9.4)

where the subscript (NP) indicates that the point under consideration is the
North Pole. The signs of ζ(NP) and f(NP) are given by the sign of cos i.
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For the South Pole, with subscript (PS), we find the negatives of these
values, viz.,

f(SP) = −f(NP) , ζ(SP) = −ζ(NP) . (9.5)

If a satellite in circular orbit is to see the pole during a revolution, and
hence both poles in each revolution, the half-swath f of its instrument must
be greater than the threshold value fP given by

pole viewed ⇐⇒ |f | � |fP| with fP = arctan
(

cos i

η − sin i

)
. (9.6)

9.2.2 Geostationary Satellites

Although the scanning mode is different, geostationary satellites can be
treated using the general relations with the substitutions η = ηGS = 6.611
and φS = 0, taking λS to be the parking longitude.

For the zenith angle, we first calculate α from (8.26). We then obtain ζ
from (8.10), which becomes here

tan ζ =
sinα

cosα − 1/ηGS
. (9.7)

For the angle β, (9.3) yields

tan β = − tan(λ − λS)
sin φ

. (9.8)

The two graphs in Fig. 9.2 give the sight angles ζ and |β| as a function of the
latitude |φ| and the longitude difference |λ − λS|. Figure 9.2 (upper) repre-
senting the values of ζ should be compared with Fig. 8.11 (lower) representing
the values of α.

Example 9.2. Calculate the line-of-sight directions of METEOSAT-7 from Paris
and of FY-2A from Sydney.

METEOSAT-7 (λS = 0◦). Viewing from Paris (48◦52′N, 2◦20′E), with λS = 0◦,
λ = +2.33◦, φ = +48.87◦, we obtain

α = 48.91◦ , ζ = 56.1◦ , β′ = −3.1◦ , β = 176.9 .

The line of sight thus has zenith angle 56◦ (or elevation angle 34◦) and azimuth
angle 177◦ with the north (or 3◦ with the south, directed slightly westward).

FY-2A (λS = 105◦E). Viewing from Sydney (33◦55′S, 151◦10′E), with λS =
+105◦, λ = +151.17◦, φ = −33.92◦, we obtain

α = 54.92◦ , ζ = 62.6◦ , β′ = 61.8◦ , β = 61.8 .

The line of sight thus has zenith angle 63◦ (or elevation angle 27◦) and azimuth

angle 62◦ with the north. With |φ| = 34◦ and |λ−λS| = 46◦, we find the calculated

values of ζ and β in Fig. 9.2.
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Figure 9.2. Sight angles for the target–satellite direction when the satellite is
geostationary, as a function of the latitude |φ| and the longitude difference |λ−λS|.
All angles are in degrees. Upper : |ζ|. Lower : |β|
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9.3 Target–Sun Direction

9.3.1 Solar Line-of-Sight Direction

For an arbitrary point P on the Earth’s surface, with geographic coordinates
λ and φ, we have already defined the local horizontal plane H. In this section,
quantities carrying the subscript s refer to the direction of the Sun. We now
calculate the spherical coordinates βs and ζs of the direction PSs, where Ss

represents the position of the Sun.
To this end, we consider the celestial sphere with centre O, relative to

the point considered, as shown in Fig. 9.3. The direction of the zenith is
OZ, normal to the horizontal plane H represented by the horizon circle at
that place. The direction of the celestial north pole is ON , normal to the
equatorial plane E represented by the celestial equator. The half-great circle
passing through N and Z is the geographical meridian M at the place in
question. This is the plane of Fig. 9.3.

The angle between the two straight lines OZ and ON , or the dihedral
angle (H, E), is equal to the colatitude at the point (the complementary
angle of the latitude φ):

(OZ, ON ) =
π

2
− φ . (9.9)

Consider now an arbitrary direction OM . The half-great circle through Z
and M is the vertical of M . The half-great circle through N and M is the
celestial meridian of M .

When describing the direction of the Sun, we consider M at the inter-
section of OSs with the celestial sphere. This direction OM can be specified
relative to E using celestial equatorial coordinates, i.e., the right ascension α
(or the hour angle H) and the declination δ. Relative to H, in local horizontal
coordinates, it is specified by the azimuth βs and the zenith angle ζs. We shall
express the horizontal coordinates as a function of the time (via H), the date
(via δ), and the geographical position of the point P (via φ).

In the spherical triangle NZM , the sides are given by

�

NZ=
π

2
− φ ,

�

ZM= ζs ,
�

NM=
π

2
− δ ,

and the angles are

N̂ = H , Ẑ = π − βs , M̂ ,

but note that the angle at M is not used here. Concerning the azimuth
angles, the origin is taken when the point M lies in the meridian plane M.
The azimuth βs, like β, is measured relative to the northerly direction.

The horizontal coordinates are expressed in terms of the equatorial coor-
dinates and the latitude in the form (βs, ζs) = f(H, δ; φ) by the relations:
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Figure 9.3. Celestial sphere relative to a given point on Earth. The axis OZ
is the local vertical, normal to the local horizontal plane H. The axis ON is the
celestial polar axis, normal to the celestial equatorial plane E . The straight line OM
represents an arbitrary direction from the point in question

cos ζs = sin φ sin δ + cosφ cos δ cosH , (9.10)

sin ζs sin βs = cos δ sinH , (9.11)

sin ζs cosβs = − cosφ sin δ + sin φ cos δ cosH . (9.12)

The reader is referred to Sect. 3.16, where the triangle ABC corresponds
here to the triangle NZM . The above three relations are the fundamental
relations of spherical trigonometry, sometimes known as Gauss’ relations.

Equation (9.10) gives ζs, an angle in the interval [0, π/2]. Substituting its
value into (9.12) yields the azimuth β′

s in [0, π]. The value of βs, which lies
in (−π, π], is then given by comparing with the sign of H : βs = β′

s if H � 0,
and βs = −β′

s if H � 0.
Equation (9.11) yields ζs in the interval [−π/2, +π/2], whenever we need

to know this angle, whether the Sun is above (ζs � 0) or below (ζs � 0) the
local horizon. In certain cases, it is preferable to use the solar elevation hs

rather than ζs. These two angles are complementary. See Colour Plate VI.
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Example 9.3. Calculate the position of the Sun on 10 July 1998, at 06:30 UT, at
the Baikonur launch site in Kazakhstan.

In Example 4.4, we calculated that the instant of time 06:30 UT corresponded on
this date with 10:58 LAT. Naturally, one must use the local apparent time in this
situation. We thus have for the hour angle

H = 10 h 58 m − 12 h 00 m = −1 h 02 m ,

or H = −62/4 = −15.5◦. Regarding the other quantities:

δ(J = 10 July) = +22.3◦ and φ = 45◦38′N = +45.6◦ .

Equation (9.10) gives cos ζs = 0.8947, whence ζs = 26.5◦, implying a solar elevation

hs = 63.5◦. Regarding the azimuth, (9.12) implies that cos βs = 0.8329, whereupon

β′
s = 33.6◦, and since H is negative, βs = −33.6◦. The straight line PSs thus points

eastward (we are before the apparent noon, i.e., 12:00 LAT).

9.3.2 Sunrise, Sunset and Apparent Noon

Sunrise and Sunset

The obliquity ε is used to define circles on the Earth’s surface (small circles
called parallels) at certain significant latitudes: the polar circles, which are the
arctic circle at φ = 90◦−ε = 66◦34′N and the antarctic circle at φ = 66◦34′S,
and the tropics, which are the Tropic of Cancer at φ = ε = 23◦26′N and the
Tropic of Capricorn at φ = 23◦26′S.

Between the tropics, the Sun passes through the zenith at noon on those
two days of the year when the declination is equal to the latitude. With δ = φ
and H = 0, (9.10) then gives cos ζs = 1, whence ζs = 0 or hs = 90◦. Beyond
the polar circles, there are days when the Sun never rises, and others when
it never sets.

To study the sunrise and sunset in the general case, we write (9.10) in the
form

cos ζs = sin hs = cos δ cosφ (cos H − T ) , (9.13)

with

T = − tan δ tanφ .

The case of the poles can be treated immediately. Equation (9.10) shows that,
for any H , we have hs = δ. Having eliminated this case, we see that solution
of sinhs = 0 is equivalent to solution of cosH = T .

We consider two cases, depending on whether |T | is greater than or less
than 1.

The Case |T | > 1. If |T | > 1, i.e., |φ|+ |δ| > 90◦, the quantity sinhs cannot
be zero for any H . In this case there is no sunset or sunrise.
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• If T is negative, i.e., T < −1, or |φ + δ| > 90◦, (φ and δ: same sign),

sinhs > 0 ⇐⇒ hs > 0 .

The Sun is above the horizon all day, a phenomenon known as the polar
day.

• If T is positive, i.e., T > +1, or |φ − δ| > 90◦, (φ and δ: opposite sign),

sinhs < 0 ⇐⇒ hs < 0 .

The Sun is below the horizon all day, a phenomenon known as the polar
night.

The Case |T | � 1. If |T | � 1, i.e., |φ| + |δ| < 90◦, (9.13) has two roots:

sin hs = 0 ⇐⇒ cosH = T ,

determining two opposite values of H , denoted Hrise and Hset :{
Hset = arccos(− tan δ tanφ) ,

Hrise = −Hset .

With ζs = 90◦ in (9.12), we obtain the corresponding azimuth values:⎧⎨⎩βsset = arccos
(
− sin δ

cosφ

)
,

βsrise = −βsset .

We have the following special cases:

• At the equator (φ = 0), for the whole year,

Hset = 90◦ , βsset = 90◦ − δ .

• At the equinoxes (δ = 0), for the whole Earth,

Hset = 90◦ , βsset = 90◦ .

The value Hset = 90◦ corresponds to sunrise at 06:00 LAT and sunset at
18:00 LAT.

Note. In these calculations, we have not taken into account atmospheric
refraction. For medium latitudes (|φ| < 55◦), and on average over the year,
refraction brings the sunrise forward by about 3 min and delays the sunset
by the same amount.
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SUN

SATELLITE

ZENITH

Target

Principal Plane

Figure 9.4. Angles used to describe the geometry of the Sun–target–satellite
configuration

Apparent Noon

Apparent noon, or 12:00 LAT, corresponds to H = 0. In all the monthly tables
showing overpass time at the end of this chapter, where the time (LMT) is
shown on the abscissa, we thus have

noon LMT = noon LAT + ET ,

where ET is the equation of time discussed in Chap. 4 [see (4.47) and (4.48)].
In these tables, the dashed curve shows the times (LMT) of the sunrise,

sunset, and apparent solar noon for the relevant place during the month.

9.4 Sun–Target–Satellite Configuration

Angles Describing the Sun–Target–Satellite Configuration

For any point P , the directions of the Sun and satellite at a given time
are defined by the four angles β, ζ, βs, ζs. When studying certain physical
phenomena, such as radiation phenomena or those related to questions of
remote sensing, it is useful to know that three angles are in fact sufficient to
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characterise the geometry of the Sun–target–satellite configuration. These are
the two zenith angles and the relative azimuth. Using the standard relations
in this area of study, we set⎧⎪⎨⎪⎩

θ0 = ζs ,

θ = |ζ| ,

ϕA = βs − β + π [2π] .

Defined in this way, the relative azimuth is zero when the directions are
opposite and it is equal to π when the Sun and the satellite are on the same
side with respect to the target point (see Fig. 9.4). Most of the phenomena
studied are symmetrical with respect to the principal plane, which is the plane
spanned by the direction of the Sun and the vertical at the target point. We
then consider the relative azimuth in the interval [0, π]. For reasons of clarity,
we use ϕA to denote the relative azimuth defined in [0, 2π] and ϕB the one
defined in [0, π] by

ϕB = ϕA if ϕA � π , ϕB = 2π − ϕA if ϕA > π .

In radiation-related studies, when we speak of the relative azimuth without
further specification, we are referring to ϕB, written ϕ.

Scattering Angle

In certain studies, there is reference to the scattering angle. This is the angle
between the two directions denoted here by PS and PSs. This angle γ takes
values in the interval [0, π]. Its value is found by taking the scalar product of
the two vectors PS and PSs :

cos γ = sin ζ sin ζs cos(β − βs) + cos ζ cos ζs , (9.14)

or using the above notation,

cos γ = cos θ0 cos θ − sin θ0 sin θ cosϕ . (9.15)

9.5 Monthly Sampling Tables

For an arbitrary point on the Earth, the monthly sampling tables allow one
to visualise all the overpasses of a given satellite, carrying an instrument
with well-specified swath. These tables are extremely useful, as much for the
preparation of missions as for the exploitation of data transmitted by the
satellite. We now give a series of examples.
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Table 9.1. Angles used to describe the geometry of the satellite–target–Sun con-
figuration in the case of an across-track swath. The satellite is Terra, recurrent with
a 16 day cycle, initialised at the date 2000 02 29 22:30 TSM. Instrument CERES:
fM = 61.8◦. Table for April 2000: J = 1 corresponds to the date 2000 04 01, for P
(λ = 64.6◦W, φ = 45.0◦N). The number of the overpass in the month is n, the day
of the month is J , the overpass time is in decimal hours LMT, and the angles f , ζ,
β, ζs, βs, ϕA and γ defined in the text are in degrees. Missing values, denoted by
a dash, indicate nighttime overpass. The values in the table can also be found in
Fig. 9.5

n J LMT f ζ β ζs βs ϕA γ

1 1 10.859 −18.3 −20 −100 44 −153 126 35
2 1 12.482 +60.3 +75 +62 41 +171 288 90
3 1 20.366 +61.5 +77 −61 – – – –
4 1 21.987 −3.9 −4 +101 – – – –
5 2 9.936 −57.4 −69 −90 49 −136 134 43
6 2 11.572 +39.2 +45 +73 41 −169 299 72
7 2 21.072 +51.8 +61 −69 – – – –
8 2 22.703 −49.4 −57 +94 – – – –
9 3 10.655 −33.7 −38 −97 44 −149 128 34

63 17 10.859 −18.3 −20 −100 38 −152 128 30
64 17 12.482 +60.3 +75 +62 36 +168 285 86
65 17 20.366 +61.5 +77 −61 – – – –
66 17 21.987 −3.9 −4 +101 – – – –
67 18 9.936 −57.4 −69 −90 44 −133 137 43

Example 9.4. Monthly sampling tables for a wide swath instrument aboard the
Sun-synchronous satellites Terra and Aqua, for a point with latitude 45◦N.

The CERES instrument scans across track. It has half-swath fM = 61.8◦ so that
ζM = 78.0◦. The overlap fraction is QE = 1.34 when the instrument is aboard a
satellite on a Terra-type orbit.

Terra. For the satellite Terra, launched in December 1999, we consider the following
initial conditions (ascending node crossing, doc. LaRC/NASA): λ0 = 29.06◦W, date
2000 02 29 22:30 LMT. The monthly table shows the month of April, with J = 1
corresponding to the date 2000 04 01. The point P has coordinates λ = 64.6◦W,
φ = 45.0◦N. For each overpass, we calculate the overpass time (UT then LMT) and
the angles describing the satellite–target–Sun geometry. See Fig. 9.5. The results for
the first few overpasses are shown in Table 9.1. The values for the whole month (31
consecutive days, whatever the month) are shown in the monthly sampling table
in Fig. 9.5. In this table, the LMT times are given from 0 to 24 on the abscissa
axis and the days from 1 to 31 on the ordinate axis. Each point (triangle with
apex at the top or the bottom) corresponds to an overpass, dashes (long or short)
refer to the target–satellite direction, and small circles (white or black) refer to the
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target–Sun direction. Dot-dashed lines indicate the times of sunrise and sunset, as
well as the local apparent noon.
The recurrence cycle CTo = 16 days is clearly visible. On days J and J + 16, we
find the same values of ζ and β. Moreover, since the satellite is Sun-synchronous,
we also find the same values of the LMT time.
Note that, for this latitude, on almost every day, there are two overpasses around
11 a.m. and two around 10 p.m. (120 overpasses in 31 days, or a daily average of
3.9 overpasses).

Aqua. For the satellite Aqua, on the same orbit as Terra, we consider the same
ascending node, with crossing at 13:30 LMT. We calculate the sampling with an
identical CERES instrument to the one aboard Terra (across-track scanning). The
monthly table shown in Fig. 9.6 shows a sampling that can be described as ‘sym-
metrical’ with respect to the one for Terra.

Average Number of Overpasses per Day. On a given meridian, Fig. 9.7 shows

the average number N of overpasses per day as a function of the latitude φ, from

the North Pole to the South Pole, for the CERES instrument aboard Terra (or

Aqua). For the maximum half-swath fM = 61.8◦ (continuous curve), the graph of

N(φ) has an almost flat minimum around the equator, then increases towards the

poles. Beyond φ = 82◦, each point is viewed on each revolution of the satellite. In

the same figure, we have plotted the graph of N(φ) for f = 3fM/4, f = fM/2, and

f = fM/4.

Example 9.5. Asymmetry between the northern and southern hemispheres regard-
ing the overpass time of a Sun-synchronous satellite.

Let us calculate the sampling for the VMI instrument, across-track swath, fM =

50.5◦, aboard the Sun-synchronous (τAN = 22:30) and recurrent (CTo = 26 day)

satellite SPOT-4. Fig. 9.8 shows a monthly table with the days of the month on the

horizontal axis and the latitudes on the vertical axis. We consider a given time slot

and note overpass times with triangles and angles ζ with line segments. The chosen

time slot was of 2.5 hr on either side of noon. This is the most favorable period for

image taking. It is easy to see why the northern hemisphere has the advantage over

the southern, through the choice of τAN. The recurrence cycle of 26 days is clearly

visible, as is the 5 day subcycle.

Example 9.6. Monthly sampling tables for an instrument with average swath
aboard a near-polar satellite (MetOp-1), for locations at various latitudes.

MetOp-1 is Sun-synchronous (τAN = 21:30) and recurrent (CTo = 29 day). We
have chosen λ0 = 0◦ as ascending node. The instrument MHS has a swath of rather
typical amplitude, intermediate between what one might call wide or narrow, with
fM = 49.4◦, whence ζM = 59.0◦ and QE = 0.77.
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• On the equator (Fig. 9.9), there is roughly one overpass per day (during the
day or the night). The recurrence subcycle of 5 days is clearly visible.

• For high latitudes, such as φ = 70◦ (Fig. 9.10), there are 6 daily overpasses in
two batches of consecutive overpasses.

Example 9.7. Monthly sampling tables for an instrument with average (then wide)
swath aboard a low-inclination satellite (Megha-Tropiques) over two consecutive
months.

Megha-Tropiques has inclination 20◦. We have chosen λ0 = 0◦ as ascending node,
with τAN = 12:00 at the date 2009 06 01.

Megha-Tropiques/ScaRaB. The instrument ScaRaB has swath of average am-
plitude, with fM = 48.9◦, whence ζM = 58.9◦ and QE = 2.09. We examine the
overpasses for the point with geographic coordinates λ = 0◦, φ = 15◦N. At such
a latitude, with this satellite/instrument configuration, there are 5 or 6 overpasses
per day, occurring in consecutive revolutions.
In the monthly tables for June, then July, shown in Figs. 9.11 and 9.12, we may
observe the influence of nodal precession on overpass times [ June (J=31) = July
(J=1) ]. The value of Ω̇ calculated above induces a value of CS = −51.3 days for the
cycle relative to the Sun. This means that the overpass time moves forward from
one day to the next, until, after 51 days, we return to the same overpass times.

Megha-Tropiques/FOV max. Figure 9.13 shows the mean number N of over-
pass times as a function of the latitude φ. The ScaRaB instrument aboard Megha-
Tropiques has been replaced by an instrument that would scan from limb to
limb, called here FOV max (maximal field of view). For the maximal half-swath,
fM = f0 = 61.7◦ (continuous curve), the graph of N(φ) exhibits a flat maximum
around the equator. This puts us in an interesting and novel situation: between
8◦N and 8◦S, every point is viewed during each revolution, i.e., 13.1 times per day.
In the same figure, we have plotted the graphs of N(φ) for f = 3fM/4 (this value
corresponds roughly to that for ScaRaB), f = fM/2 and f = fM/4. The ‘wobbly’
appearance of the graphs is due to the fact that the recurrence cycle is short (7
days).

Note. Since the nodal period Td is 101.93 min, the number of round trips per day

is ν = 14.1. As the satellite moves in the prograde direction, in the same direction

as the Earth, it will only overfly a meridian ν − 1 times per day. The mean daily

frequency of intersection of a meridian is thus 13.1. (If the satellite had inclination

i = 160◦, it would cross the meridian 15.1 times per day.) The period T ′ obtained

from this frequency is the synodic period of the satellite and the Earth.
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Figure 9.5. Monthly table. Overpass times
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Figure 9.6. Monthly table. Overpass times
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Figure 9.7. Monthly table. Overpass statistics
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Figure 9.8. Monthly table. Overpasses in a time slot
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Figure 9.9. Monthly table. Overpass times



9.5 Monthly Sampling Tables 399

LM
T

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
et

O
p-

1 
/ M

H
S

70
 °

 N
M

O
N

T
H

LY
T

A
B

LE

R
ec

ur
re

nc
e 

cy
cl

e 
=

  2
9 

da
ys

  [
14

; +
6;

 2
9]

 4
12

P
re

ce
ss

io
n 

cy
cl

e:
 in

fin
ity

 (
S

U
N

-S
.)

* 
J=

1 
(Y

r 
M

n 
D

y)
* 

[S
]  

--
 0

5 
01

[S
] :

 S
un

O
V

E
R

P
A

S
S

E
S

   
( 

n 
=

 1
72

 )

 [ 
G

R
IM

5-
C

1 
]

O
F

 S
A

T
E

LL
IT

E
 S

F
O

R
 P

O
IN

T
 P

- 
 L

at
itu

de
  :

   
70

.0
 °

 N
- 

 L
on

gi
tu

de
  :

   
0.

0 
°

F
or

  P
 : 

U
T

C
 =

 L
M

T
 +

 0
0h

 0
0m

F
IE

LD
 O

F
 V

IE
W

 : 
  9

8.
8 

°

a 
=

 7
19

5.
60

5 
km

A
lti

tu
de

 =
  8

17
.5

 k
m

In
cl

. /
 S

un
-s

.=
 9

8.
70

 °

E
qu

at
or

ia
l s

hi
ft=

  2
82

0.
8 

km

P
er

io
d 

=
   

10
1.

36
 m

in

M
ea

n 
m

ot
. =

 1
4.

21
 r

ev
/d

ay

H
al

f-
sw

at
h 

=
 4

9.
4 

°

M
ax

im
al

 z
en

ith
 a

ng
le

 =
 5

8.
9 

°

H
.-

sw
at

h 
(g

ro
un

d)
 =

 1
06

1.
5 

km

E
qu

at
or

ia
l o

ve
rla

p 
   

 =
 0

.7
69

M
ax

. a
tta

in
ed

 la
tit

. =
 9

0.
0 

°

La
t. 

ov
er

la
p:

 8
9.

2°
 <

--
>

 9
0.

0°

A
S

C
E

N
D

IN
G

 N
O

D
E

  (
A

N
) 

:  
* 

Lo
ng

itu
de

 A
N

 =
   

0.
00

 °
   

  *
 T

im
et

 =
 2

1h
 3

0m
in

 L
M

T
 / 

A
N

P
-S

 D
IR

E
C

T
IO

N

A
S

C
D

E
S

Z
en

.
A

zi
.

R
ig

ht
-h

an
de

d 
sy

st
em

- 
Z

en
ith

 a
ng

le
 (

in

pl
an

e 
or

th
og

. t
o 

tr
ac

k)
.

- 
A

zi
m

ut
h 

(in
 lo

ca
l

ho
riz

. p
la

ne
) 

/ N
or

th
.

S
U

N

(1
) (2

)

(1
)

(2
)

Figure 9.10. Monthly table. Overpass times



400 9 Temporal and Angular Sampling

LM
T

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
eg

ha
-T

ro
pi

qu
es

 / 
S

ca
R

aB
15

 °
 N

M
O

N
T

H
LY

T
A

B
LE

R
ec

ur
re

nc
e 

cy
cl

e 
=

   
7 

da
ys

  [
14

; -
1;

  7
]  

97

P
re

ce
ss

io
n 

cy
cl

e=
  5

1 
da

ys
   

(C
s=

 -
51

.3
)

* 
J=

1 
(Y

r 
M

n 
D

y)
* 

[T
]  

20
09

 0
6 

01
* 

[S
]  

20
09

 0
6 

01

[T
] :

 T
ra

ck
 -

 [S
] :

 S
un

O
V

E
R

P
A

S
S

E
S

   
( 

n 
=

 1
77

 )

 [ 
G

R
IM

5-
C

1 
]

O
F

 S
A

T
E

LL
IT

E
 S

F
O

R
 P

O
IN

T
 P

- 
 L

at
itu

de
  :

   
15

.0
 °

 N
- 

 L
on

gi
tu

de
  :

   
0.

0 
°

F
or

  P
 : 

U
T

C
 =

 L
M

T
 +

 0
0h

 0
0m

F
IE

LD
 O

F
 V

IE
W

 : 
  9

7.
8 

°

a 
=

 7
24

3.
70

0 
km

A
lti

tu
de

 =
  8

65
.6

 k
m

In
cl

in
at

io
n 

 =
  2

0.
00

 °

E
qu

at
or

ia
l s

hi
ft=

  2
89

2.
0 

km

P
er

io
d 

=
   

10
1.

93
 m

in

M
ea

n 
m

ot
. =

 1
4.

13
 r

ev
/d

ay

H
al

f-
sw

at
h 

=
 4

8.
9 

°

M
ax

im
al

 z
en

ith
 a

ng
le

 =
 5

8.
9 

°

H
.-

sw
at

h 
(g

ro
un

d)
 =

 1
10

8.
3 

km

E
qu

at
or

ia
l o

ve
rla

p 
   

 =
 2

.0
89

M
ax

. a
tta

in
ed

 la
tit

. =
 3

0.
0 

°

A
S

C
E

N
D

IN
G

 N
O

D
E

  (
A

N
) 

:  
* 

Lo
ng

itu
de

 A
N

 =
   

0.
00

 °
   

* 
D

at
e 

=
  2

00
9 

06
 0

1 
   

 *
 T

im
e 

=
 1

2h
 0

0m
in

 L
M

T
 / 

A
N

P
-S

 D
IR

E
C

T
IO

N

A
S

C
D

E
S

Z
en

.
A

zi
.

R
ig

ht
-h

an
de

d 
sy

st
em

- 
Z

en
ith

 a
ng

le
 (

in

pl
an

e 
or

th
og

. t
o 

tr
ac

k)
.

- 
A

zi
m

ut
h 

(in
 lo

ca
l

ho
riz

. p
la

ne
) 

/ N
or

th
.

S
U

N

(1
) (2

)

(1
)

(2
)

Figure 9.11. Monthly table. Overpass times
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Figure 9.12. Monthly table. Overpass times
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Figure 9.13. Monthly table. Overpass statistics



10 Satellites of Mars

10.1 Presenting the Planet Mars

10.1.1 Mars and Space Exploration

The planet Mars, situated after the Earth when we move away from the
Sun, is often described as Earth’s sister planet. Little brother would perhaps
be more appropriate. The diameter of this telluric planet is only half the
diameter of Earth, and its mean density is lower. The length of the Martian
day and the obliquity are very close to the values for the Earth. Climatic
phenomena related to the seasons can be observed on both planets, since
Mars does indeed possess an atmosphere, although much less dense and of a
different composition to the Earth’s atmosphere.1 The remoteness of Mars,
about 1.5 astronomical units further out than the Earth, means that it is
much colder than the Earth, the greenhouse effect due to the atmosphere
also being lesser. In addition, the year is almost twice as long.

The planet has been observed since ancient times. It doubtless owes its
association with the god of war to its red colour: Ares for the Greeks (�
������ ���, whence the prefix ‘areo’ for attributes pertaining to this planet)
and Mars for the Romans. Later, telescopic observation revealed some detail
on its surface and it was suggested that Martians had been digging canals.
In the twentieth century, more precise telescopic observations were improved
still further by data from probes at the beginning of the space age.

In October 1960, the URSS attempted to send two probes (sometimes
called Marsnik-1 and -2), just three years after the first Sputnik, to overfly
Mars. However, they exploded at launch. (In fact it is not clear whether
there were one or two probes.) All fourteen subsequent probes failed, either
at launch or later by loss of contact. Sputnik-29, Mars-1 (which was the first
probe to get near to Mars, but silent), and Sputnik-31 in 1962, Zond-2 and
-3 in 1965, two probes without clearly attributed names (Mars-1969-A and

1 The main components of the Martian atmosphere are, in molar fractions: carbon
dioxide CO2 (0.95), nitrogen N2 (0.03), argon Ar (0.02), water H2O (< 0.0005).
The mean pressure at the surface is 6 hPa. Due to the condensation of carbon
dioxide in the polar ice caps, the atmospheric pressure varies by as much as 30 %
with the seasons.
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-B) in 1969, Kosmos-419, Mars-2 and -3 in 1971, and Mars-4, -5, -6 and -7
in 1973.

Further attempts were made fifteen years later with Phobos-1 and -2,
launched in July 1988. The mission was to observe the moon Phobos from
an orbit around Mars. The probe Phobos-2 fulfilled part of its mission. Mars
was a forbidden planet for the Soviets and it remained so for the Russians.
The very ambitious mission Mars-96 ended on 16 November 1996, the day of
its launch, in the Pacific. In all, they clocked up 18.5 failures for 19 attempts.

The United States launched Mariner-3 and -4 in November 1964. The first
probe was lost, but Mariner-4 overflew Mars and sent the first photographs
on 14 July 1965. The probes Mariner-6 and -7, launched in February and
March 1969, overflew the Red Planet and provided a great many photographs.
Launched in May 1971 (like Mariner-8, lost at launch), Mariner-9 was the
first to go into orbit around the planet (hp = 1 650 km, ha = 17 100 km,
T ≈ 12 hr), on 14 November 1971. From then until 27 October 1972, it sent
back 7329 photographs which totally changed our understanding of Mars.

The two probes Viking-1 and -2, launched in August and September 1975,
also successfully accomplished their missions. For each probe, there was an
orbiter and a lander. The landers transmitted data concerning the Martian
atmosphere and surface over several Martian years.

The following probe, seventeen years after Viking, was the first not to be
sent in tandem. This was Mars Observer, launched on 25 September 1992,
lost as it was being placed in orbit.

The probe known as Mars Global Surveyor, launched on 7 November 1996,
took with it many of the instruments designed for the previous mission. It
went into orbit around Mars after a ten month journey to reach its destination
at 14 light-minutes from the Earth. We shall discuss this satellite further in
the present chapter (referring to it as MGS). Its orbit was made circular by
air braking.2 Such an orbit allows an instrument like MOLA to obtain a very
accurate topographical survey of Mars, and we shall use its results here. The
MOC camera produced high-precision photography, with a resolution of a
few metres on the ground.

Launched on 4 December 1996, the probe Mars Pathfinder made an op-
portune softlanding on 4 July 1997 and released the small robot Sojourner
which subsequently investigated the immediate vicinity of the landing site.
2 The probe, whose motion is mainly governed by the planetary attraction, goes

into a highly eccentric orbit with one focus at the centre of the planet. To obtain
a circular orbit, one uses the drag of the planetary atmosphere on the space-
craft. The satellite loses energy, mainly at the periastron, since this is where it
moves most quickly and there is the most atmosphere. The apoastron is thus
reduced upon each revolution. This maneuver is known as air braking. It has the
disadvantage of being very slow. In fact it takes several months. However, it is
very economical in terms of energy. Since it does not require use of retro rockets,
there is no need to carry propellant. And it is well known that it costs a great
deal of propellant to take on extra propellant.
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The orbiter and lander of the Mars Surveyor-98 programme both failed.
Concerning the orbiter, Mars Climate Observer launched on 11 December
1998 was lost due to an incorrect estimate of the altitude on 23 September
1999, as it approached Mars. As for the lander, Mars Polar Lander (MPL)
launched on 3 January 1999 went silent on 3 December 1999, just as it ar-
rived near Mars. Contact was lost with the probe and the two Deep Space-2
penetrators.

The probe Mars Odyssey, which took over the orbiter part of the Mars
Surveyor-2001 (MSP’01) project, was launched on 7 April 2001 and reached
Mars on 24 October. The orbit was circularised by air braking.

The Japanese failed to get their probe Nozomi (hope) into orbit.3

The three missions which left in 2003 were highly successful. The Eu-
ropean probe Mars Express, launched on 2 June, went into Martian orbit
on 25 December.4 The two US Mars Exploration Rovers, MER-A and -B,
launched on 10 June and 8 July, arrived on 4 and 25 January 2004, releasing
two robot vehicles of about 130 kg each, called Spirit and Opportunity, which
immediately began to carry out their missions.

A brief glance at future missions reveal a considerable interest in Mars
over the coming years. Unless otherwise stated, all projects are managed by
NASA.

In 2005, Mars Reconnaissance Orbiter (MRO) will use air braking to
circularise its orbit. In 2007, the Phoenix mission will raise something of the
MPL and MSP’01 missions from the ashes, sending a lander to the higher
latitudes of the planet.

In 2009, the mission Mars Science Laboratory (MSL) will send a rover as
large as a car, which will run on nuclear fuel for one Martian year. Shortly
afterwards, the satellite Mars Telecom Orbiter (MTO) will be placed in or-
bit as a relay for MSL. This mission replaces the US–Italian project for a
telecommunications satellite, the G. Marconi Mission, cancelled in 2003.

The French mission Premier (Programme de Retour d’Echantillons Mar-
tiens et Installation d’Expériences en Réseau) was also cancelled in 2003.
This was to prepare for the very ambitious US–French mission Mars Sample
Return to bring back Martian rock samples. The latter is still programmed,
for 2013 at the earliest.

In 2009, the European mission ExoMars should softland a rover (payload
Pasteur), as part of the Aurora programme.

3 Launched on 3 July 1998, the probe Planet-B (Nozomi) was to reach Mars on
11 October 1999, with a Moon–Earth–Moon gravity-assist maneuver. As this
maneuver was not perfectly successful, the probe was placed in a heliocentric
orbit so that it would, in principle, reach Mars four years behind schedule, in
January 2004. However, this attempt also failed.

4 Unfortunately, the lander Beagle-2 remained silent. The name Beagle given to
this ground-based laboratory is explained in the note on Darwin.
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These missions occur at a rate of about one every 26 months. Naturally,
the trip from Earth to Mars is undertaken only when the necessary conditions
contrive to make the journey as short as possible. This happens when the two
planets are in opposition, i.e., the Sun, Earth and Mars lie in that order along
a straight line. The interval of time between two consecutive oppositions is
the synodic period. With the values for the periods given in Table 10.1, T = 1
for the Earth and T1 = 1.88 for Mars (unit: Earth sidereal year), we obtain
the synodic period T ′ from (2.23) as T ′ = 1.88/0.88 = 2.135, which gives
T ′ = 780 day ≈ 2 yr 2 m.

An approximate value is sufficient here since the orbits of Earth and Mars
are not exactly concentric. We calculate more precisely that the interval be-
tween two oppositions varies from 764 days (oppositions close to the aphelion
of Mars) to 810 days (oppositions close to the perihelion of Mars) owing to
the eccentricity of the orbit.

10.1.2 Geography of Mars

We have presented maps of our own beautiful planet Earth without spe-
cific indications. However, the features of Mars are distinctly less familiar to
most Earthlings. How may we delineate these features? Although there is no
separation into land and sea, different zones may appear brighter or darker
through the telescope, depending on the albedo of the various terrains. The
maps shown here are topographical charts, bearing no relation to the albedo.
The curves are therefore contours, plotted from data obtained by the MOLA
instrument and processed by the MOLA/NASA science team.

The zero meridian is arbitrarily chosen, as it is on Earth. It passes through
the small crater5 called Airy-0 in homage to the ‘creator’ of the Greenwich
meridian.6 The zero altitude was chosen in an even more arbitrary manner
than on Earth. Today it is defined as the gravitational equipotential surface
5 In his 1877 map of Mars, the Italian astronomer Schiaparelli measured longitudes

from a meridian passing through a region which he considered characteristic
and easily identifiable, called Sinus Meridiani by Camille Flammarion. When
Mariner-9 mapped Mars in 1972, with a resolution of 1 km, a more precisely
defined point had to be chosen in this region. The choice of this small impact
crater was made by the Mariner-9 Team. It is 500 m across and located in the
crater Airy. The coordinates of Airy-0 are 5.2◦S, 0.0◦E.

6 George Biddell Airy (1801–1892) was an English astronomer who studied diffrac-
tion rings from the standpoint of astronomy, physics and mathematics. As the
seventh director of the Royal Observatory at Greenwich, from 1835 to 1881, he
considerably increased the importance of the institution when he established the
meridian by means of a transit telescope in 1850 and persuaded the whole coun-
try to adopt the local mean solar time at Greenwich. In 1884, the international
conference on the meridian chose the Greenwich meridian as the zero longitude.
This spelt the end for other proposed prime meridians in Paris, Moscow and the
Island of Ferro.
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Figure 10.1. Topographical chart of the planet Mars compiled from data gath-
ered by the MOLA instrument aboard MGS (processed by MOLA/NASA Team).
Contours: steps of 2.5 km. Altitude 0 in bold face, negative altitudes dashed . MOLA
data is used here in a downgraded mode with grid 2◦ for greater clarity. Geodetic
grid: graticule 10◦ in latitude and longitude. Upper : polar stereographic projection
(North Pole on the right and South Pole on the left). Lower : Equatorial Mercator
projection. The highest point is Olympus Mons (18◦N, 225◦E). To the south-east is
the Tharsis Bulge, a high region encompassing a line of three volcanoes: Ascraeus
Mons (12◦N, 254◦E), Pavonis Mons (0◦, 247◦E), Arsia Mons (9◦S, 239◦E). It is
bordered by Valles Marineris, stretching from 5◦S, 265◦E to 15◦S, 310◦E. North of
this region is Alba Patera (42◦N, 252◦E). The main impact basins are Hellas (45◦S,
70◦E), Argyre (50◦S, 320◦E), Isidis (12◦N, 88◦E), Utopia (45◦N, 110◦E).
Location of successful missions: Viking-1 (22.48◦N, 312.06◦E), Viking-2 (47.97◦N,
134.29◦E), Pathfinder (19.17◦N, 326.79◦E), Spirit (14.57◦S, 175.47◦E), Opportu-
nity (1.95◦S, 354.47◦E)
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Figure 10.2. The volcano Olympus Mons. Image reconstructed from images ob-
tained by the Viking orbiter. Altitudes are multiplied by a factor of 10. Credit:
NASA/JPL

whose mean value at the equator is equal to the mean radius determined by
MOLA, which implies an elevation of 2 km above the old zero level.

The topographical map in Fig. 10.1 and Colour Plate XIII show a very
clear difference of altitude between the northern and southern hemispheres.
The huge impact basis Hellas,7 in the southern hemisphere is the site of the
lowest point on Mars, some 7 825 m below the zero level. Near the equator,
Olympus Mons (21 183 m) is the highest mountain in the Solar System8 [see

7 At the end of the nineteenth century, names were attributed on the basis of an
Earthly design. Certain dark areas seemed to evoke the shape of the Mediter-
ranean, whereupon Greece or the Gulf of Syrtis were placed there. Naturally,
north and south were swapped, an artefact of telescopic vision! The astronomer
Giovanni Schiaparelli may be considered as the father of the current Martian
nomenclature, thanks to intensive observations he carried out from 1877. He
borrowed names from ancient history and classical mythology. The International
Astronomical Union unified the various appellations. They comprise two Latin
nouns, a generic noun such as mons for ‘mount’, and a proper noun such as
Olympus. This gives names like Olympus Mons, Mare Tyrrhenum, and so on.
Valles Marineris is the valley discovered by Mariner-9. The impact basins (Latin
noun: planitia), however, are generally designated by a single noun, e.g., Hellas,
Argyre, Utopia.

8 This volcano has a circular base with diameter 650 km. It has a very distinct
caldera, 40 km wide and 4 km deep. It is now inactive, like all Martian volcanoes,
but the small number of impacts on its surface indicate that it was active in the
geologically recent past. The volume of Olympus Mons is about a hundred times
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Fig. 10.2 and Colour Plate XVI (lower image)]. To the south-east of Olympus
Mons is the Tharsis region, known as the Tharsis Bulge, with its alignment
of three volcanoes (14 to 18 km high), and a little further east is the great
scar of Valles Marineris.9 The poles are covered by the ice caps.10

Geologically, the southern hemisphere, above the mean land level, is cov-
ered with large craters and composed of ancient landscapes, whilst the north-
ern hemisphere, several kilometers below the mean land level, features wide
plains under a layer of lava. In the equatorial zone, the Tharsis Bulge is a
vast plateau at high altitude, incorporating the great volcanoes.

The caption to Fig. 10.1 indicates the locations of successful Mars mis-
sions. They are situated in low-altitude regions which provide sufficient at-
mospheric thickness to allow for air braking with parachutes.

10.2 Geodetic and Astronomical Quantities

10.2.1 Satellite in Keplerian Orbit

It is no easy task to put a satellite into orbit around Mars. However, if
the probe, launched from Earth, is captured by the Martian gravitational
attraction without actually crashing into the planet, so that Mars becomes
the attractive centre of the satellite orbit, there is no fundamental difference
in the way the motion is determined compared with a satellite around the
Earth, as discussed at length in the first part of this book. To study the
Keplerian motion of a given satellite (semi-major axis a), we may simply
replace the value of the geocentric gravitational constant µ = GMEarth by
the areocentric gravitational constant µ = GMMars, as given in Table 10.1.

If we also know the radius of the planet, we use (2.16) and (2.17) to define
the periods T0 and T0(h=0). Hence,

T0(h=0) = 100.15 min , (10.1)

greater than the biggest terrestrial volcano. Eruptions of fluid lava have created
an enormous volcanic shield over very long geological periods. This volcano, like
the three others of the Tharsis region, has remained in the same position with
respect to the source of the magma. This great stability tends to prove that
tectonic activity is low or non-existent on Mars.

9 The Mariner valleys constitute a system of several parallel canyons, about
5000 km long. The greatest of them is 6 km deep over a width of about 200 km.

10 The two poles are covered by a polar deposit of radius several hundred kilometers.
These are undoubtedly made up of sediments and water ice. The whole thing is
then covered over with a permanent cap of water ice in the case of the North
Pole and frozen carbon dioxide (CO2) at the South Pole. On top of this, a
carbon dioxide ice layer condenses seasonally, in the Martian winter, to sublime
in summer. This alternation of summer and winter in the different hemispheres
has long been observed from Earth, as attested by drawings due to Huygens in
1672.
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Figure 10.3. Relation between period and altitude

and we obtain T0 as a function of η = a/R or h = a − R using (2.20). On
the graph of the function, shown in Fig. 10.3, we have noted specific orbits
LMO and SMO which will be discussed further below. This figure should be
compared with Fig. 2.2.

10.2.2 Geodetic and Astronomical Data

To study the true (perturbed) motion, geodetic characteristics of the planet
must be brought into consideration, in particular, higher terms in the expan-
sion of the attractive potential. To characterise specific orbits, e.g., stationary
or Sun-synchronous, and study instrument sampling, astronomical features
such as the periods of planetary motions, eccentricity and obliquity are re-
quired.

Table 10.1 provides geodetic11 and astronomical data for Mars, comparing
them with the same data for Earth. Table 10.2 shows how the evaluation
of the gravitational constant µ has evolved, from the first estimated values
obtained after the discovery of Phobos and Deimos to the Goddard Martian
Model (GMM) which makes use of MGS observations.

11 When Mars replaces the Earth as attractive centre, we sometimes replace the
prefix ‘geo’ by ‘areo’. However, certain terms such as ‘geophysics’, ‘geodesy’ and
‘geography’ are generally retained for all planets.



10.2 Geodetic and Astronomical Quantities 411

Table 10.1. Geodetic and astronomical data for Mars compared with the same for
Earth. For the units, n.d. means dimensionless

Quantity Symbol Unit Mars Earth

Gravitational µ = GM m3s−2 4.282 837 2 3.986 004 4
constant 1013 1014

Equatorial radius R km 3 396.200 6 378.137
Flattening 1/f n.d. 169.8 298.3
Acceleration at ground g ms−2 3.7 9.8
Gravitational potential J2 n.d. 1.960 × 10−3 1.083 × 10−3

Gravitational potential J3 n.d. +36.0 × 10−6 −2.5 × 10−6

Gravitational potential J4 n.d. −32.0 × 10−6 −1.6 × 10−6

Period of revolution
sidereal Nsid day 686.980 0 365.256 4
tropical Ntro day 686.972 5 365.242 2
anomalistic Nano day 686.995 1 365.249 6

Period of rotation
sidereal Jsid hr 24.622 962 23.934 471

s 88 642.663 86 164.090
mean solar day JM hr 24.659 8 24.000 0

s 88 775.245 86 400.000

Obliquity ε deg 25.19 23.44
Eccentricity e n.d. 0.093 40 0.016 71

Table 10.2. Measured areocentric gravitational constant µ = GM and estimated
error. Historical evolution, with method used and year

Method Year µ (km3 s−2) Error

Phobos, Deimos (Hall) 1878 42 900 ±70

Mariner-4 1969 42 828.32 ±0.13
Mariner-6 1970 42 828.22 ±1.83
Mariner-9 1973 42 828.35 ±0.55
MGS/GMM-1 1993 42 828.3580 ±0.0512
MGS/GMM-2B 2001 42 828.371 901 ±0.000 074

To carry out this study for Mars, we repeat the calculations made for
Earth, without change of notation. For example, the angular speed of Mars
in its orbit around the Sun and in its rotation about the polar axis will be
denoted by Ω̇S and Ω̇T, respectively. From (4.18) and (4.22), we obtain

Ω̇S = 0.52404◦day−1 , (10.2)
Ω̇T = 350.891 98◦day−1 . (10.3)
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The word ‘day’ refers to the unit of time equal to 86 400 s. As the mean day
on Earth lasts one day, it is better to find another name for the Martian day.
The mean solar day on Mars is tradiational called ‘sol’. We then have

JM = 1 sol = 1.027 491 27 day . (10.4)

It is useful to express the tropical year in sols, since it concerns the recurrence
of the seasons:

Ntro = 668.592 1 sol . (10.5)

10.2.3 Areocentric Longitude and Martian Day

Relation Between Longitude and Day

To determine a given day on Mars, i.e., specify the position of the planet on
its heliocentric orbit, we do not use the day of the month, as on Earth. We
consider the ecliptic longitude l, defined in ecliptic coordinates in Chap. 4.
It only differs from the true anomaly v by choice of origin. The origin for l
is at the vernal equinox12 and for Mars it is traditional to denote this angle
l by LS. It is called the areocentric solar longitude, or areocentric longitude
for short.

Hence, on Mars, the date is specified by the true anomaly with the spring
equinox as origin, whereas on Earth, it is specified by the mean anomaly
with 1 January as origin. The true anomaly v has its origin at the periastron
(perihelion). The solar longitude of the periastron LSp is

LSp = 250.98◦ .

The mean anomaly M also has its origin at the periastron and we shall denote
it by MS when the origin is at the vernal equinox. Its value at the periastron
is then denoted by MSp.

We have the relations

v = LS − LSp , (10.6)
M = MS − MSp . (10.7)

Recall that the mean anomaly M is obtained from the true anomaly v ana-
lytically, but that the converse problem of obtaining the true anomaly v from
the mean anomaly M requires us to solve the Kepler problem:
12 The orbit of Mars is itself subject to a precession of the equinoxes. This motion

is slower than it is for Earth: 7′′.51 per year, or one round trip in 173 000 yr. For
Mars, only the Sun contributes to this precession, whereas on Earth, not only is
the Sun’s effect greater, but one must add the even more significant contribution
due to the Moon, as we have already seen.



10.2 Geodetic and Astronomical Quantities 413

v �−→ M : M = M(v) by (1.54) ,

M �−→ v : v = v(E) , E = E(M) by iteration (1.72) .

With these relations, we obtain

MSp = 261.32◦ .

Likewise, at the vernal equinox, we have v = vγ = 360 − LSp = 109.02◦,
whence M = Mγ = M(109.02) = 98.68◦. Conversely, with M = 98.68◦, we
obtain v = 109.02◦ as shown in Example 1.1.

Day Obtained from the Areocentric Longitude. The day J (zero at
the vernal equinox) is obtained from the mean anomaly by

J =
Ntro

360
MS . (10.8)

We obtain the day in days (Jd) or in sols (Js) depending on whether Ntro

is expressed in days or in sols. We then express the Martian days in sols.
Using the relations between angles discussed above and the relation (1.54),
we obtain Js from LS :

Js = Jsp +
Ntro

360

[
2 arctan

(√
1 − e

1 + e
tan

LS − LSp

2

)

−180
π

e
√

1 − e2 sin(LS − LSp)
1 + e cos(LS − LSp)

]
[mod Ntro] ,

(10.9)

where

Ntro

360
= 1.85720 , Jsp =

Ntro

360
Msp = 485.32 . (10.10)

The values of the angles and days13 are given in Table 10.3.
The table also shows the reduced distance r/a, the distance to the Sun

divided by the semi-major axis of the orbit, and the eccentric anomaly E,
which are related by (1.57), and the quantity ECS = LS − MS, comparable
with the equation of centre, EC = v−M , defined in Chap. 1. The two angular
differences ECS and EC only differ by a constant; ECS is zero at the vernal
equinox and EC is zero at the periastron.

The extreme values of ECS are:

• maximum ECS = +0.35◦ for LS = 94.01 + LSp = 344.99◦,

13 Concerning the calculation of Js using (10.9), the object in square brackets must
be expressed in degrees, since it multiplies Ntro/360. Note also that, since LS = 0
implies Js = 0, we can calculate the value of Jsp from (10.9) without using
(10.10).
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Table 10.3. Correspondence between the areocentric longitude LS and the day
(expressed in days or in sols). The passage at periastron occurs for LS = LSp =
250.98◦, and at apoastron for LS = LSa = LSp − 180 = 70.98◦ (minimum and
maximum of the reduced distance r/a, respectively). The areocentric longitude
LS, the mean anomaly MS, and hence the days J have their origin at the vernal
equinox. The anomalies v, E and M have their origin at the periastron passage.
The difference LS − MS is the equation of centre ECS

LS MS ECS Jd Js v E M r/a
[deg] [deg] [deg] [day] [sol] [deg] [deg] [deg] –

0.0 0.0 0.0 0.0 0.0 109.0 103.9 98.7 1.0224
10.0 10.7 −0.7 20.4 19.8 119.0 114.2 109.3 1.0383
20.0 21.7 −1.7 41.3 40.2 129.0 124.7 120.3 1.0532
30.0 32.9 −2.9 62.9 61.2 139.0 135.4 131.6 1.0665
40.0 44.5 −4.5 84.9 82.6 149.0 146.1 143.2 1.0776
50.0 56.2 −6.2 107.3 104.5 159.0 157.0 154.9 1.0860
60.0 68.2 −8.2 130.1 126.6 169.0 167.9 166.8 1.0913
70.0 80.1 −10.1 152.9 148.8 179.0 178.9 178.8 1.0934
80.0 92.1 −12.1 175.8 171.1 189.0 189.9 190.8 1.0920
90.0 104.1 −14.1 198.6 193.3 199.0 200.8 202.8 1.0873

100.0 115.9 −15.9 221.1 215.2 209.0 211.7 214.5 1.0794
110.0 127.5 −17.5 243.2 236.7 219.0 222.5 226.1 1.0688
120.0 138.8 −18.8 264.9 257.8 229.0 233.2 237.5 1.0560
130.0 149.8 −19.8 285.9 278.3 239.0 243.7 248.5 1.0413
140.0 160.6 −20.6 306.4 298.2 249.0 254.1 259.3 1.0256
150.0 171.0 −21.0 326.3 317.5 259.0 264.3 269.7 1.0092
160.0 181.0 −21.0 345.5 336.2 269.0 274.4 279.7 0.9929
170.0 190.8 −20.8 364.1 354.3 279.0 284.3 289.5 0.9770
180.0 200.2 −20.2 382.1 371.8 289.0 294.0 298.9 0.9620

190.0 209.4 −19.4 399.6 388.9 299.0 303.6 308.1 0.9483
200.0 218.3 −18.3 416.6 405.4 309.0 313.1 317.0 0.9362
210.0 227.0 −17.0 433.2 421.6 319.0 322.4 325.7 0.9260
220.0 235.5 −15.5 449.5 437.4 329.0 331.7 334.2 0.9178
230.0 243.9 −13.9 465.5 453.0 339.0 340.9 342.6 0.9118
240.0 252.2 −12.2 481.4 468.5 349.0 350.0 350.9 0.9080
250.0 260.5 −10.5 497.1 483.8 359.0 359.1 359.2 0.9066
260.0 268.8 −8.8 512.9 499.2 9.0 8.2 7.5 0.9076
270.0 277.1 −7.1 528.7 514.6 19.0 17.3 15.8 0.9108

280.0 285.5 −5.5 544.7 530.1 29.0 26.5 24.1 0.9164
290.0 294.0 −4.0 560.9 545.9 39.0 35.8 32.6 0.9242
300.0 302.6 −2.6 577.5 562.0 49.0 45.1 41.3 0.9341
310.0 311.5 −1.5 594.4 578.5 59.0 54.5 50.2 0.9458
320.0 320.6 −0.6 611.8 595.4 69.0 64.1 59.3 0.9592
330.0 330.0 0.0 629.7 612.9 79.0 73.8 68.7 0.9740
340.0 339.7 0.3 648.2 630.8 89.0 83.7 78.3 0.9897
350.0 349.7 0.3 667.3 649.4 99.0 93.7 88.3 1.0060
360.0 360.0 0.0 687.0 668.6 109.0 103.9 98.7 1.0224
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• minimum ECS = −21.05◦ for LS = 259.99 + LSp − 360 = 156.97◦.

The amplitude of the variation is (21.05 + 0.35)/2 = 10.70◦. According to
(2.13), this value, expressed in radians as (π/180)10.70 = 0.1868, corresponds
to twice the eccentricity e = 0.0934 of the orbit of Mars.

Areocentric Longitude Obtained from the Day. Knowing the day Js,
we can calculate the difference with the day of passage at perigee. This differ-
ence, Js − Jsp, gives the difference in mean anomaly, MS −MSp. By iteration
(Kepler’s problem), we obtain the true anomaly v and this in turn gives the
areocentric longitude LS = v + LSp.

Relation with the Date on Earth. To find the longitude LS from the date
expressed in the form D = year month day hour, it is convenient to begin
by transforming the date D into a Julian date denoted by JD. We calculate
the difference with a date JD0, known as the time of passage of Mars at the
vernal equinox. We can take

D = 2002 April 18.7 �−→ JD0 = 2 452 383.2 =⇒ LS = 0 .

This difference gives

Jd = JD − JD0 [Ntro] .

All these quantities are in Earth days.
We can go from Jd to Js (in sol) using the coefficient given by (10.4),

obtaining LS as indicated above.

Example 10.1. Calculate the solar areocentric longitude for the date 1 October
2008.

The time calculated is for the relevant day at 0 h. The date D = 2008 10 01 00:00
gives JD = 2454 740.5. Taking the zero value JD0 mentioned above, we obtain

Jd = JD − JD0 = 2357.3 [686.97] = 296.3 .

From the sol/day coefficient, we have Js = 288.4. Solving the Kepler problem, we

eventually obtain LS = 135.0◦.

Definition of the Seasons

A season is the length of time corresponding to an interval of solar longitude
equal to 90◦, starting from the vernal equinox. The seasons are named as
on Earth, e.g., the northern spring or southern autumn corresponds to LS

between 0◦ and 90◦, etc. On Mars, the lengths of the seasons are not the
same, as on Earth, but the differences in their lengths are greater than on
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0.0 0.0 0.00 δ = 0 Spring equinox
24.1 48.7 10.00
53.5 112.1 20.00 193.3
90.0 193.3 25.19 δ = ε Summer solstice

126.5 271.2 20.00
155.9 328.7 10.00 178.6
180.0 371.8 0.00 δ = 0 Autumn equinox
204.1 412.1 −10.00
233.5 458.4 −20.00 142.7
270.0 514.6 −25.19 δ = −ε Winter solstice
306.5 572.7 −20.00
335.9 623.4 −10.00 154.0
360.0 668.6 0.00 δ = 0 Spring equinox

Figure 10.4. Graph of the declination δ as a function of the areocentric solar
longitude LS. Table: significant values of δ, with corresponding values of LS in
degrees and the date J in sols. The obliquity of Mars is ε = 25.19◦. Note the
unequal lengths of the seasons (in sols). The seasons indicated are those in the
northern hemisphere
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Figure 10.5. Graph of the equation of time ET, the sum of the equation of centre
EC and the reduction to the equator ER, as a function of the areocentric solar
longitude LS. Table: significant values of ET, with corresponding values of LS in
degrees and the date J in sols. Minutes (min) used for ET, EC and ER are minutes
of 60 seconds (1 sol = 1479.6 min)
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Earth: 193 sols for the spring and 143 sols for the autumn. The precise length
of the seasons is given in the table associated with Fig. 10.4.

It is sometimes useful to define the month in the same way, by an in-
terval of 30◦ in the solar longitude, starting from the vernal equinox. (No
name is attributed to these months, apart from the bounding values of LS.)
Table 10.3 can be used to calculate the length of these months. The shortest
(LS : 240◦–270◦) lasts 46.1 sols and the longest (LS : 60◦–90◦) lasts 66.7 sols,
i.e., 45% longer. These correspond to the passages at periastron and apoas-
tron, respectively, illustrating Kepler’s second law. The passage at periastron
occurs at the end of the northern autumn.

The exact equivalent on Earth of this division into twelve months is the
partitioning of the year into twelve signs of the zodiac. The shortest of these
signs (l : 270◦–300◦) is the one containing the passage at perigee (l = 282◦),
which lasts 29.45 days. The longest (l : 90◦–120◦) lasts 31.45 days, i.e., 7%
longer. This note should in no way be interpreted as an advertisement for
astrology!

10.2.4 Declination

When considering the Sun and the Earth in Chap. 4 [see Fig. 4.7 and (4.51)],
we have already calculated the declination, expressing it as a function of the
solar longitude. With the notation used there, we can write

sin δ = sin LS sin ε . (10.11)

The declination is thus very simply obtained as a function of LS :

δ = arcsin (0.42562 sinLS) . (10.12)

The graph of this function is plotted in Fig. 10.4, which also shows key values
of the declination.

Calculations to find the sunrise and sunset are strictly identical to those
for the Earth, provided that we continue to ignore atmospheric refraction.
We also define specific parallels on Mars: polar circles (64◦49′N and S) and
the tropics (25◦11′N and S), at slightly different values to their terrestrial
counterparts.

10.2.5 Equation of Time

In Chap. 4, we discussed the definition of the equation of time ET, the sum
of the equation of centre EC and the reduction to the equator ER. To express
the equation of centre EC = v−M , we return to (2.10). Stopping at the first
order, we can replace E by v in the argument of the sine to obtain{

v − E ≈ e sin v ,
E − M ≈ e sin v ,

(10.13)
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whence

v − M ≈ 2e sin v , (10.14)

and with (10.6),

EC ≈ 2e sin(LS − LSp) . (10.15)

The expression for the reduction to the equator ER = α−l, defined by (4.41),
is obtained directly with (4.40). Using the areocentric solar longitude, this
gives

ER ≈ − tan2 ε

2
sin(2LS) . (10.16)

The equation of time is then

ET = 2e sin(LS − LSp) − tan2 ε

2
sin(2LS) . (10.17)

To express ET in minutes, we convert radians into minutes of time: 2π rad
is equivalent to one sol, or 1 479.6 min. Expressing LS in degrees, we end up
with

ET(LS) [min] = 43.92 sin(LS − 251)− 11.74 sin(2LS) . (10.18)

The graph of the function ET is plotted in Fig. 10.5, with the graphs for EC

and ER. Significant values of the equation of time are given in the associated
tables.

Of course, as on the Earth, EC has an annual period and ER a period
of half the length. However, on Mars, the amplitude of EC is four times the
amplitude of ER, and ET reaches large values (with a maximum of 53 min).
It is worth remembering that ET = LMT − LAT.

Note on Expressions for the Declination and the Equation of Time.
To end this section, note that the expressions for the declination and the
equation of time are simpler for Mars than they are for the Earth. This
happens because, for Mars, we use LS as the variable, which amounts to
using the true anomaly, specifying the position of the Sun directly. For the
Earth, we use the day, related to the mean anomaly, which is only indirectly
related to the position of the Sun.

10.3 Satellite in Real Orbit

10.3.1 Perturbative Accelerations

The only difference in the calculation of the Keplerian orbit for the Earth
and for Mars is the value of µ, as noted earlier. For the true orbit, perturbing
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Figure 10.6. Central and perturbative accelerations as a function of the distance
r of the satellite from the centre of Mars. Log–log scale. In the range of variation
considered, the curves are approximately straight lines and their slope is indicated.
The altitudes of two types of satellite have also been noted
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terms must be taken into account, and these are of the same kind for Mars
as for Earth. Figure 10.6 shows the various accelerations affecting the motion
as a function of the distance r from the satellite to the centre of the planet.
This corresponds to Fig. 3.1 for the Earth. The notation for the accelerations
is the same as in Table 3.3.

Conservative Forces

The central acceleration γCCC has slope p = −2 for a log–log scale. Likewise,
the acceleration due to the term in J2 and those due to the following terms,
i.e., J4, J6, etc., follow the same pattern as their counterparts for the Earth,
i.e., p = −4 for γCCN.J2, p = −6 for γCCN.J4, etc. At the origin h = 0,
numerical values are

γCCC(R) = g(R) = g0 = 3.73 m s−2 ,

γCCN.J2(R) = 7.4 × 10−3 m s−2 , γCCN.J4(R) = 1.2 × 10−4 m s−2 .

The lunisolar attraction on a terrestrial satellite is simply replaced here by
the solar attraction, which is weaker than on Earth. As for the Earth, its
value is obtained from (3.96). The slope of the curve is p = +1 and its value
at the origin is

γCS(R) = 2
µS

a3
S

R = 8 × 10−8 m s−2 ,

where aS is the semi-major axis of the heliocentric orbit of Mars.
Tidal effects on the satellite are due to land tides caused by the Sun,

which are much less marked than on Earth. The relativistic effect γCR, with
slope p = −3, is calculated as for the Earth.

Dissipative Forces

The effect of drag due to the Martian atmosphere is less than on Earth for
the same reduced altitude, because the atmosphere on Mars is less dense and
the thermosphere is cooler. Solar radiation pressure is only half the value on
Mars as compared with the Earth (term going as a−2

S ). The albedo effect
depends on the region overflown. The albedo of Mars is rather low (mean
value 0.22).

10.3.2 Secular Variation of Orbital Elements

We use the theory of perturbations to determine the evolution of the six or-
bital elements of the satellite. We showed in Chap. 3 that the three metric
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elements a, e and i remained constant (ignoring short- and long-period pe-
riodic variations). The secular variation of the angular elements is given by
(4.1) or (4.4) for Ω̇, (4.2) or (4.10) for ω̇, and (4.3) for Ṁ , as a function of
the inclination i and the semi-major axis a of the orbit.

The periodic variations can be expressed with the help of the coefficient
K0 defined by (4.6). For Mars, this coefficient can be expressed as follows,
depending on the units used:

K0 = 3.074 84× 10−6 rad s−1 , (10.19)
K0 = 15.222◦day−1 , (10.20)
K0 = 15.640◦sol−1 , (10.21)

K0 = 29.047 rev (Martian yr)−1
. (10.22)

For given values of i and a, the precession rates are higher on Mars than on
Earth because of the value of the J2 term, which is twice as great.

The unit for calculations is rad/s, but in graphs showing these quantities
as a function of the inclination, we have used units of deg/sol. The nodal
precession rate Ω̇ shown in Fig. 10.7 (upper) has a maximum of 15.6◦sol−1

for a = R and i = 0◦ or 180◦. With the same conditions, the apsidal precession
rate ω̇ shown in Fig. 10.7 (lower) has a maximum of 31.2◦sol−1. The value of
the critical inclination is independent of the attracting planet (if the geoid is
close to ellipsoidal, i.e., if Jn < 10−2J2 for all n > 2).

Example 10.2. Calculate the nodal precession rate of a satellite at altitude 340 km,
with inclination 50◦.

This altitude corresponds to one tenth of the radius of Mars, i.e., η = a/R = 1.10.

Applying (4.4) and converting units, we find Ω̇ = −7.2◦sol−1. We also obtain the

result with Fig. 10.7 (upper), where the required value can be read off directly. A

complete round trip is made in 360/7.2 = 50 sol. The orbit of the satellite thus

accomplishes 669/50 = 13.3 round trips in the retrograde direction every Martian

year.

10.3.3 Classification of Satellites

The classification criteria are the same as for terrestrial satellites.

Areosynchronous Satellite

We define an areosynchronous satellite by n = Ω̇T, and an areostationary
satellite by adjoining the condition i = 0. Considering the mean Keplerian
motion, we obtain

a3
0 =

µ

Ω̇2
T

= 8.524 26× 1021 , a0 = 20 428 km , h0 = 17 031 km .
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Figure 10.7. Precession rate in deg/sol as a function of the inclination i for various
values of the reduced distance from a/R = 1.0 to a/R = 2.0, in steps of 0.1. Upper :
nodal precession rate Ω̇. Lower : apsidal precession rate ω̇. Note that the value of
the critical inclination is independent of the attractive source
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Figure 10.8. Altitude of a Sun-synchronous satellite as a function of the angle of
inclination. The whole possible range is shown

Bringing the J2 term into the calculation of the period, we obtain the value
a1, which is slightly bigger than a0. In the case of a stationary satellite for
Mars, the perturbing accelerating due to the term in J2 is greater than that
due to the Sun, as can be seen from Fig. 10.6. Recall that this is not so for
a terrestrial stationary satellite, where the lunisolar perturbation is greater
than that due to J2. We shall take this value a1 to be the one for an areosta-
tionary satellite, denoting it by aGS :

aGS = 20 430.99 km , hGS = 17 034.79 km , (10.23)

ηGS =
aGS

R
= 6.016 . (10.24)

The value of ηGS for the Earth, given by (4.58), is close to the value found
for Mars, because the same is true of the diurnal rotation periods and the
mean densities of these two planets.

The possibility of placing satellites in areostationary orbits is currently
under study, e.g., the satellite MARSat (Mars Areostationary Relay Satel-
lite).
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Sun-Synchronous Satellite

Concerning Sun-synchronous satellites, we have seen that the condition is
Ω̇(a, i) = Ω̇S. We begin by calculating the constant of Sun-synchronicity,
using (4.63), which gives for Mars

kh = 29.0403 .

This is three times the value for the Earth, because J2 is greater for Mars,
and in addition, the planet moves more slowly around the Sun.

From (4.67) or (4.68), we thus obtain the relation between the inclina-
tion and the altitude.14 Figure 10.8 shows the altitude as a function of the
inclination for a Sun-synchronous satellite, which is necessarily retrograde.

The minimum value of iHS, denoted by iHS min, is obtained for a (fictitious)
satellite revolving at ground level (η = 1 or h = 0):

iHSmin = arccos
(
− 1

kh

)
= arccos(−0.0344) = 92.0◦ .

The maximum value of h is obtained when i = 180◦:

ηHS max =
a

R
= k

2/7
h = 2.6182 ,

aHSmax = 8 892 km , hHS max = 5 496 km .

It is not therefore possible to place a Sun-synchronous satellite (in circu-
lar orbit) at an altitude greater than 5 500 km (roughly the same bounding
altitude as on Earth).

Terminology for Martian Satellites

The same terminology is used for satellites whether they are revolving around
the Earth or Mars. The orbit can be prograde or retrograde. It can be Sun-
synchronous, recurrent or frozen, or none of these.

Concerning altitude, a high orbit refers to areostationary satellites, also
known as Stationary Mars Orbiting (SMO) satellites, and a low orbit means
any satellite revolving below 1000 km, also known as Low Mars Orbiting
(LMO) satellites.

14 As for the Earth, there is a slight difference in the value of iHS depending on the
degree to which the planetary potential is expanded. For h = 400 km, iHS(J4) =
92.991◦ and iHS(J2) = 92.914◦, i.e., a difference of 0.077◦.
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[MARS] Mars Global Surveyor
Orbit - Ground track
Recurrence = [13;-233;550]6917

>>>>   Time span shown:   739.8 min =   0.50 sol

Altitude =  378.9 km a = 3775.116 km

Inclination / SUN-SYNCHRON.=  92.93 °

Period =   117.64 min   * rev/sol = 12.58

Equat. orbital shift  = 1696.8 km  (  28.6 °)

Asc. node:      0.00 °

App. inclin. =  97.46 °

Projection:  Plate-carrée

Property:   none

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  IAU91

"Equivalent" MGS
Orbit - Ground track
>>>>   Time span shown:   720.0 min =   0.50 day

Altitude =  711.6 km a = 7089.752 km

Inclination / SUN-SYNCHRON.=  98.26 °

Period =    99.14 min    * rev/day =14.53

Equat. orbital shift  = 2758.9 km  (  24.8 °)

Asc. node:      0.00 °

App. inclin. = 102.12 °

Projection:  Plate-carrée

Property:   none

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  WGS-84

Figure 10.9. Upper : ground track of the Sun-synchronous satellite MGS over half
a sol. Lower : ground track of the fictitious Sun-synchronous satellite equivalent to
MGS but with Earth as the attracting body
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Figure 10.10. Ground track of the Mars Odyssey satellite over two sols, during
the mapping phase
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[MARS] Mars Express [G3-u]
Orbit - ref.: Mars
Recurrence = [ 3; +1;  4]  13

>>>>   Time span shown:  5918.1 min =   4.00 sols

Equiv. altit.  =   5907.6 km

e = 0.606911

a = 9303.753 km

Inclination  =  86.35 °

Period =   454.49 min   * rev/sol =  3.26

h_a = 11554 km;  h_p =  261 km;  arg.periapsis: +345.08 °

Asc. node:   -127.07 °

Apoapsis:      -2.51 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre:      25.0 ° N;   80.0 °E

Aspect:  Oblique

[  -90.0 /  +65.0 /  +10.0 ] Gr.Mod.:  IAU91

[MARS] Mars Express [G3-u]
Ell. orb. ( h < 4000 km ) - Gr. track
Recurrence = [ 3; +1;  4]  13

>>>>   Time span shown:  5918.1 min =   4.00 sols

Equiv. altit.  =   5907.6 km

e = 0.606911

a = 9303.753 km

Inclination  =  86.35 °

Period =   454.49 min   * rev/sol =  3.26

h_a = 11554 km;  h_p =  261 km;  arg.periapsis: +345.08 °

Asc. node:   -127.07 °

Apoapsis:      -2.51 °

Projection:  Behrmann

Property:  Equal area

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  IAU91

Figure 10.11. Orbit and ground track of the satellite Mars Express (orbit G3-u)
over 4 sols, starting from 9 January 2004 (LS = 330◦). In the lower image, the
ground track is only indicated if the altitude of the satellite is less than 4 000 km
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Figure 10.12. Orbit of Mars Ex-
press when its altitude is less than
4 000 km, over a cycle of 4 sols,
from 9 January 2004 (LS = 330◦).
Type of orbit: 3G-u. This fig-
ure synthesises the two figures in
Fig. 10.11

10.4 Representing the Ground Track

For all considerations related to the ground track of a satellite in orbit around
Mars, we use the same relations as for a terrestrial satellite. This goes for
the equations for the ground track, the equatorial shift, apparent inclination,
and so on.

The ground track of an LMO satellite has the same general appearance
as the ground track of an LEO satellite. The following example brings out
this similarity.

Example 10.3. Comparison between the ground track of Mars Global Surveyor
(MGS), in near-circular Sun-synchronous orbit around Mars at an altitude of
379 km, with the ground track of a fictitious terrestrial satellite at the same re-
duced altitude, also on a Sun-synchronous orbit.

MGS. During its topographical phase, MGS followed a Sun-synchronous orbit with
h = 379 km. The reduced distance is

η = a/R = 3775.1/3196.2 = 1.111547 .

We obtain the inclination of the Sun-synchronous satellite MGS using (4.68):



430 10 Satellites of Mars

iHS = arccos(−1.1115472/7/29.0403) = 92.86◦ .

Expanding beyond the J2 term for the nodal precession rate, we obtain

iHS = 92.93◦ .

The ground track of the satellite thus lies between 87.07◦N and 87.07◦S. It is shown
in Fig. 10.9 (upper), over half a Martian day (half a sol). With 12.6 round trips per
sol, the equatorial shift is 29◦.

Equivalent MGS. To compare the orbits and ground tracks on Mars and on
Earth, we calculate the characteristics of a terrestrial satellite at the same reduced
altitude (i.e., the same reduced distance from the attractive centre of the planet,
and hence the same value for η). We call this fictitious satellite the equivalent MGS
(for the Earth). We obtain a = 1.1116R = 7 090 km, or h = 712 km. We deduce
the inclination iHS = 98.26◦. The ground track of the satellite lies between 81.74◦N
and 81.74◦S. It is shown in Fig. 10.9 (lower). With 14.5 round trips per day, the
equatorial shift is 25◦. We note here the main differences:

• the inclination of the Sun-synchronous Martian satellite is more polar (kh is
greater for Mars than for the Earth),

• the equatorial shift is a little greater for the Martian satellite, because its period
is longer, since Mars has a lower mean density than Earth [see (11.3)].

Example 10.4. Ground track of Mars Odyssey during the mapping phase.

In circular orbit for its mapping phase, the instruments of the orbiter Mars Odyssey

are carrying out a geological mapping mission. The ground track of the satellite is

shown in Fig. 10.10 over two sols, which corresponds to a recurrence quasi-cycle

(see Example 10.6 below). We have chosen an interrupted equivalent projection,

dividing the surface in such a way as to bring out the major geological features.

Example 10.5. Orbit and ground track of Mars Express during a cycle of 4 sols.

Mars Express has a highly eccentric orbit. Its near-polar inclination is a long way

from the critical inclination. This leads to an apsidal precession rate of ω̇ = −0.557◦

per sol, corresponding to precisely one round trip of the pericentre in one Martian

year. The representations given here concern the orbit type known as 3G-u (see

Table 10.5). The period represented begins on 9 January 2004 (LS = 330◦) and

lasts for a cycle of 4 sols. The orbit shown in Fig. 10.11 (upper) is plotted in

a frame moving with the planet. Its ground track, shown in Fig. 10.11 (lower),

is only plotted if the altitude of the satellite is less than 4 000 km. Above this

altitude, observation of the planet is not accurate enough. Figure 10.12 shows the

representation limited to h < 4 000 km for the orbit itself.
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10.5 Orbit Relative to the Sun. Crossing Times

To study the ground track in relation to the Sun, we apply the methods of
Chap. 6 to the Martian satellite. We need only note that the length of the
mean day on Mars is the sol. The second is still the unit of time, wherever
we are located, and one minute is equal to 60 seconds.

But a word of warning is in order for times. It is usual to note the overpass
time LMT on Mars as on Earth, e.g., 22:30 LMT. In this case, the overpass
occurred 22.5 hr after midnight, where the hour here is the fraction 1/24 of a
sol. To avoid confusion, we shall not use the word ‘hour’ for Mars, but rather
‘sol/24’.

The quantity P , in round trips per (Martian) year, is used to calculate
the cycle CS in sols.

Overpass Time for a Sun-Synchronous Satellite

For Sun-synchronous satellites, the overpass time is obtained as a function of
the latitude using (6.9). The value of the coefficient to adjust for units is the
same as on Earth: if times are in sol/24 and angles in degrees, then K = 15,
since 1 sol corresponds to 360 degrees.

The graph of the curve giving the latitude φ as a function of ∆τ = τ−τAN

is shown in Fig. 10.13. Comparing with Fig. 6.5 (lower), the equivalent for
the Earth, we see that on Mars there is no significant change with altitude
for a satellite in low orbit: this is due to the high value of the constant of
Sun-synchronicity kh.

Overpass times are chosen for Sun-synchronous satellites on Mars15 on
the basis of roughly the same considerations as on Earth. To obtain useful
lighting conditions, one requires the satellite to cross the equator about two
hours before or after midday; in order to benefit from a maximal illumination
of the solar panels, a dawn–dusk orbit is favoured.

The ground track of the satellite MGS, noting LMT times, is shown in
Colour Plate XII for its topographical phase (with τAN = 14:00).

10.6 Orbit Relative to Mars. Recurrence and Altitude

10.6.1 Recurrence

When we consider the question of recurrence on Mars, we encounter the same
advantages and constraints as we have already seen on Earth. Everything
15 At the beginning of a mission, a dawn–dusk orbit is generally used. Indeed, the

transfer of a space probe from Earth to Mars is made along a trajectory which is
tangential to the orbit of Mars, as viewed in the heliocentric frame, at the time
of insertion when the probe becomes a satellite of Mars. The orbit of the satellite
is then perpendicular to the Sun–Mars direction, and is therefore a dawn–dusk
orbit. The same reasoning would apply to a satellite of Venus.
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Figure 10.13. Graph of φ(∆τ ) : relation between the latitude of the point under
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and h = (400 ± 200) km (curves practically superposed). Compare with Fig. 6.5

discussed in Chap. 7 applies equally to Mars, provided of course that we use
sols instead of days.

Recurrence for a Sun-Synchronous Satellite

We have just seen that the altitude of a Martian Sun-synchronous satellite
lies between the theoretical bounds h = 0 and h = 5 496 km, which corre-
sponds to the values ν = 14.73 and ν = 3.49 of the daily orbital frequency,
respectively. The altitudes chosen for Sun-synchronous satellites in missions
under development or already carried out are generally less than 600 km, with
the exception of telecommunications projects, such as MTO (h = 4 450 km,
period 1/4 sol).

The recurrence diagram in Fig. 10.14 helps us to visualise the altitudes
leading to different recurrence configurations on Mars. This diagram is the
counterpart of Fig. 7.1, the recurrence diagram for the Earth.

Recurrent satellites on Mars are shown in Table 10.4 and in Fig. 10.15.
Given the recurrence triple (which is in principle maintained throughout the
mission), one can accurately determine the characteristics of the orbit.

Example 10.6. Calculate the orbital characteristics of the satellites Mars Global
Surveyor, Mars Odyssey and InterMarsNet.
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Figure 10.15. Recurrence diagram for Sun-synchronous satellites. For altitudes
between 260 and 630 km, the possible recurrences are indicated by the value of DTo .
Boxed values correspond to the satellites appearing in Table 10.4. For example, for
MRO, we find the triple [13, +1, 17], i.e., νo = 13 (the integer closest to ν, as
ordinate), DTo = +1 (indicated on the diagram) and CTo = 17 (abscissa)
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Table 10.4. Orbital characteristics for Sun-synchronous satellites obtained from
the recurrence triple [νo, DTo , CTo ]. For a complete description, see the caption
of Table 7.1. Orbit of satellites in orbit: MGS, Mars Odyssey; under development:
MRO. Planned orbit for a satellite which failed insertion: Mars Observer (recurrence
over 3 and 7 sols); for an abandoned project: InterMarsNet

Satellite νo DTo CTo NTo Td a h iHS

MGS 13 −233 550 6 917 117.64 3 775.116 379 92.93
Mars Odyssey 12 +1 2 25 118.36 3 790.524 394 92.98
Mars Odyssey 12 +15 32 399 118.66 3 796.875 401 92.99
MRO 13 +1 17 222 113.30 3 681.252 285 92.69

Mars Observer 13 −1 3 38 116.80 3 757.095 361 92.89
Mars Observer 13 −3 7 88 117.69 3 776.107 380 92.94
InterMarsNet 12 −1 2 23 128.65 4 007.867 612 93.61

MGS. The probe Mars Global Surveyor (MGS) left its heliocentric orbit for a
highly eccentric (hp = 258 km, ha = 54 021 km, e = 0.88, T = 45 hr) areocentric
orbit known as MOI (Mars Orbit Insertion) on 12 September 1997. The air-braking
maneuver lasted for 16 months, during which many scientific measurements were
carried out, in particular, on the magnetic field. The solar panels did not deploy
correctly, extending the time required for air braking. In February 1999, the final
orbit was near-circular, Sun-synchronous, recurrent and frozen. The satellite MGS
then entered its mapping phase. The instrument MOLA (Mars Orbiter Laser Al-
timeter) began to make very precise topographic measurements of the planet.
With recurrence maintained at 6 917 revolutions in 550 sols, the draconitic period
is given by

Td = 550/6917 sol = 117.6436 min .

To begin with, we set T0 = Td and thereby deduce the inclination and radius
a0 = 3781 km of the Keplerian orbit. We calculate the rate of secular variation
of the angle elements. We deduce the anomalistic period Ta = 117.5090 min, then
the values of the semi-major axis and the inclination, viz., a = 3775.116 km and
i = 92.93◦, respectively.

Mars Odyssey. The probe Mars Odyssey reached Mars on 24 October 2001 and
went into a high and highly eccentric Martian orbit (T ≈ 18.6 hr). Air braking
eventually led on 30 January 2002 to a Sun-synchronous (τAN = 04:30) circular
orbit close to 400 km (T ≈ 2 hr), with the satellite ground track repeating every 2
days. The recurrence diagram in Fig. 10.14 shows that, at this altitude, a recurrence
cycle over 2 sols corresponds to the triple [12,1,2], ν = 12.5, with 25 revolutions per
cycle. The draconitic period is therefore

Td = 2/25 sol = 118.36 min ,

and the various intervals discussed in Chap. 7 are δ = 360/25 = 14.4◦, δD = δ, and
δR = 2δ. By iterative calculation, we obtain the semi-major axis a = 3 790.524 km
(h = 394 km) and the inclination iHS = 92.98◦. In fact, during the science part
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of the mission, for each 2-sol repeat cycle, the ground track shifts a small amount
(53 km) at the equator. This shift by 0.9◦, which we denote by δ′, can be considered
as the grid interval of a longer cycle. After δ′/δ = 0.9/14.4 = 16 cycles of 2 sols, the
ground track has thus shifted by an interval δ, which means that, after 16 cycles
of 25 revolutions, the satellite, with this new recurrence characteristic, has made
one revolution less, i.e., 399 revolutions in 32 sols. The recurrence triple is then
[12,15,32]. The draconitic period is

Td = 32/399 sol = 118.66 min ,

and we recover the grid interval δ = 360/399 = 0.9◦ . We then obtain a =
3796.875 km (h = 401 km) and the inclination iHS = 92.99◦.
It should be noted that the satellite Mars Odyssey is not strictly Sun-synchronous,
since its LMT crossing time varies continuously from 03:23 to 05:20 during the
917 (Earth) days of the science mission, then from 05:20 to 06:50 during the 800
following days.

InterMarsNet. The InterMarsNet mission was a European project in collabora-
tion with the United States. This project, planned for 2003, was abandoned in 1996
and more or less replaced by Mars Express, for launch in 2003. We have included
it here as an example because of its interesting orbit, which is Sun-synchronous,
dawn–dusk, with 2-sol recurrence, frozen and eclipse-free. With a recurrence of 23
revolutions in 2 sols, we obtain

Td = 2/23 sol = 128.66 min .

After some calculation, we obtain a = 4007.867 km and the inclination iHS =

93.61◦.

Example 10.7. Characteristics of a Sun-synchronous satellite with one-sol recur-
rence and critical inclination.

During preliminary orbital studies for the Russian satellite Mars-96, an orbit was
examined that would both have been Sun-synchronous and have the critical inclina-
tion (like Ellipso-Borealis for the Earth). We re-examine this idea here, but adding
the further constraint that the satellite should be one-day recurrent, an interesting
configuration for links with ground bases. We have calculated the following orbital
characteristics:

a = 6996.822 km , e = 0.471 873 , i = 116.72◦ (critical and Sun-sync.) .

We deduce the following: hp = 299 km, ha = 3601 km, period Td = Ta =

296.21 min, recurrence triple [5, 0, 1].

Recurrence for a Non-Sun-Synchronous Satellite

After its insertion, the satellite Mars Express was placed in a recurrent near-
polar orbit with 13 revolutions in 4 sols, an orbit known as 3G-u, then 11
revolutions in 3 sols, the 3G-b orbit. The transition from 3G-u to 3G-b was
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Table 10.5. Orbital and recurrence characteristics for the Mars Express baseline
orbit. Semi-major axis a, altitudes at perigee and apogee, hp and ha in km, period
T in minutes. For these two orbits, with eccentricity e, the inclination is i = 86.35◦.
NTo is the number of revolutions in the cycle

Satel. / Orbit a e T Phase triple, NTo hp ha

MEx G3-u 9 303.8 0.606 91 454.49 [3, +1, 4], 13 261 11 554
MEx G3-b 8 584.4 0.573 93 402.83 [4,−1, 3], 11 261 10 115

Table 10.6. Orbital and recurrence characteristics for satellites with one-sol recur-
rence cycles. Non-Sun-synchronous satellites with three different inclinations and
comparison with Sun-synchronous satellites. Altitudes h in km, angles i in degrees.
Daily orbital frequency ν in round trips per sol

νo i = 20 i = 65 i = 110 i = iHS

h h h h iHS

14 48.6 81.2 146.0 117.6 92.3
13 237.0 263.8 321.0 296.2 92.7
12 449.0 470.6 520.6 499.2 93.3
11 690.5 707.4 750.7 732.6 94.0

made between 6 and 10 May 2004 (revolutions 372 to 386). The characteristics
of these orbits are given in Table 10.5.

As for Mars Odyssey, the orbits are not strictly recurrent. For G3-u, with
δ = 360/13 = 27.70◦, δR = 4δ = 110.77◦, the ground track slips by δ′ = 1.09◦

after each cycle of 4 sols.

Satellites with One-Day Recurrence

As on Earth, low-orbiting (LMO) satellites around Mars should a priori avoid
one-day recurrence cycles. For example, a Sun-synchronous satellite at alti-
tude h = 500 km would find itself in this situation, as is clear from the
recurrence diagram. Every day it would pass over the same ground track,
unable to observe other regions. Table 10.6 lists altitudes leading to such
recurrence, for Sun-synchronous and non-Sun-synchronous satellites.

Grid Points for Recurrent Satellites

The latitudes of grid points are calculated from the function gS defined by
(7.45). There is no difference with a terrestrial satellite, except that, for Sun-
synchronous satellites, the inclination iHS depends on the planet.16

16 For the satellite Mars Odyssey, with a 2-sol recurrence cycle and using the nota-
tion of Chap. 7, we obtain the following results: for j = 1, 3, 5, 7, . . . , MTo = 27,
latitudes are φ = 26.443, 62.674, 75.858, 80.789, . . . , φm = 87.024.
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Recurrence Index

Figure 10.16 shows the recurrence index for MGS. The recurrence cycle is very
long, CTo = 550 sol (over 6 917 revolutions). The graph has a secondary peak
for 7 sols (over 88 revolutions), and other significant peaks for 26 sols (over
327 revolutions), . . . , for 144 sols (over 1 811 revolutions). The MGS/JPL
terminology picks out three cycles: Repeat Cycle (7 sols), Mapping Cycle (26
sols), and Super Cycle (550 sols).

The instrument MOLA aboard MGS is a laser with an extremely narrow
beam. The very long cycle thus leads to a very small ground track interval,17

ensuring a complete coverage of the planet, apart from a small disk centered
on the poles (see Example 10.3), which has been dealt with by changing the
orientation of the satellite. On Earth, too, where cycles CTo rarely exceed 40
days, altimetry satellites like ICESat have very long cycles.

10.6.2 Altitude

Recall that we define the altitude of a satellite as a function of the angle α
giving the position on orbit (see Chap. 7). This altitude h(α), expressed by
(7.34), is obtained as the difference between the distance r(α) to the centre
of the planet (the centre of attraction) and the radius RT(α) of the reference
ellipsoid (the distance of the subsatellite point on the ellipsoid from the centre
of the planet).

Frozen orbits are less circular than on Earth for two reasons:

• the flattening of Mars is more pronounced,
• the value of the frozen eccentricity eF [see (7.41)] is greater, because the

ratio |J3/J2| is equal to 18.363× 10−3 for Mars and 2.339× 10−3 for the
Earth.

We also note that, since J3 and sinωF must have opposite signs, the position
of the frozen perigee is given by ωF = 270◦ for recurrent Sun-synchronous
satellites. The periastron of the frozen Sun-synchronous orbit is practically
over the South Pole.

Example 10.8. Altitude of the satellite MGS during the mapping phase.

The variation in altitude of the satellite MGS is shown in Fig. 10.17 over one period

as a function of the position on orbit α. The values of the orbital elements provided

by NASA correspond to a given revolution as specified in the figure, during its

mapping phase. As the orbit is maintained and frozen, we may consider that the

17 The beam angle of the MOLA laser is 2f = 0.85 mrad (or 3 arcsec), which gives
a spot on the ground of width ∆ = 2fh = 320 m. With NTo = 6917, the ground
track interval δ (expressed as a length) is δ = 2πR/6 917 = 3.085 km. At the
equator, we thus have ∆/δ ≈ 1/10.
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Figure 10.18. Pixel distortion index for LMO satellites with altitudes h = 100 km
to h = 1100 km, in steps of 100 km, as a function of the half-swath angle f

variation h(α) does not change from one revolution to another. We note that the

position ωF of the frozen periastron is at 7◦ from the ideal position. If we calculate

the frozen eccentricity using (7.41) with the orbital elements provided in Table 10.4,

we find eF = 8.25 × 10−3. This result is close to the true value for the revolution

under consideration, viz., eF = 8.87 × 10−3.

10.7 View from the Satellite

All the ideas discussed in Chap. 8 apply to Martian satellites. The adaptation
is facilitated by the fact that we have used the variable η which represents
the reduced distance a/R.

Pixel Distortion

For an LMO satellite in circular orbit, the pixel distortion index K is shown
in Fig. 10.18 for a range of altitudes. For an SMO satellite, in high stationary
orbit, the curve K(α) is almost the same as the one for a GEO satellite on
Earth, shown in Fig. 8.4. We obtain K = 2 for α = 49◦, K = 3 for α = 59◦

(instead of α = 50◦, α = 61◦, respectively, for the terrestrial satellite). This
similarity between the curves K(α) is due to the similar values of ηGS.
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Figure 10.19. Upper : orbital track of the satellite Premier and the swath of the
instrument Mambo. Lower : locus of equidistant points – SMO
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Swath Track for an LMO Satellite

Possible scanning modes are the same for instruments aboard terrestrial
and Martian satellites. Here we consider the ground track of an across-track
swath.

Example 10.9. Swath track of the instrument Mambo aboard Premier.

The instrument Mambo (Mars Atmosphere Microwave Brightness Observer), pro-

posed for the abandoned satellite Premier MO-07, views the limit of its across-track

scan, alternately left and right, each minute. In the representation of the track

shown in Fig. 10.19 (upper), black dots mark the place viewed at this limiting

point while small circles indicate the nadir of the satellite (the subsatellite point).

View from an SMO Satellite

When an areostationary (SMO) satellite views Mars, the maximum swath in
the sense that we have defined f0 is given by (8.23). With the value of ηGS

defined by (10.24), we obtain

f0 = arcsin
1

6.016
= 9.569◦ = 0.1670 rad . (10.25)

The corresponding angle at the centre of Mars is

α0 = 90◦ − 9.6◦ = 80.4◦ =⇒ 2F0 = 9 535 km . (10.26)

If λS is the longitude of the satellite S (parking longitude or longitude of
the subsatellite point), the longitudes viewed on the equator by S lie in the
interval

[λS − 80.4◦, λS + 80.4◦] ,

and depending on the meridian λS, latitudes are viewed over the same interval
of 80.4◦ on either side of the equator.

The fraction of the planetary surface viewed by the areostationary satel-
lite, calculated using (8.29), is in this case 0.417 (or about 42%, as for the
Earth).

Example 10.10. Locus of points on Mars at an equal distance from the subsatellite
point for an areostationary satellite.

As in Example 8.8, we plot the locus L(D). The distance D defined by (8.27)

represents here the (great circle) distance between a point on Mars viewed by

the areostationary satellite and the subsatellite point of this same satellite [see

Fig. 10.19 (lower)]. D varies in steps of 250 km. The subsatellite point chosen

in this example corresponds to the position originally proposed for the equatorial

NetLander of the Premier mission.
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10.8 Temporal and Angular Sampling

All the ideas described in Chap. 9 can be adapted to Martian satellites.
However, we should mention one point that will not be discussed here. When
Martian missions are set up, the Sun–target–satellite–Earth geometry has to
be taken into account. Indeed, whilst the eyes of the satellite are turned to-
wards Mars, its ears must be oriented towards Earth, from whence it receives
its instructions, and so must its mouth, for the transmission of data.

In the present section, we shall describe an example of temporal and
angular sampling, in the context of our study of the Sun–target–satellite
configuration.

Example 10.11. Sampling tables for a target viewed by the THEMIS instrument
aboard Mars Odyssey.

The instrument THEMIS (Thermal Emission Imaging System) carried aboard Mars
Odyssey uses limb-to-limb across-track scanning. We examine the sampling for the
point with geographic coordinates φ = −26.938◦, λ = 324.814◦ , corresponding to
Holden Crater in Uzboi Valles, photographed on 12 March 2002, during revolution
1063.

31-Sol Table. We begin by calculating the solar areocentric longitude LS for the
chosen date: D = 2002 03 12 gives LS = 341◦. In the table shown in Fig. 10.20,
the abscissa gives the ‘hour’ LMT, which is in fact 1/24 sol, as mentioned above,
while the ordinate gives the sol from J = 1 for sol 631 (LS = 341◦) to J = 31 for
sol 661 (LS = 356◦). The sunrise, sunset and local apparent noon are marked by
dot-dashed lines. Note the big difference between noon LMT and noon LAT, which
is the equation of time.18 Each overpass of the satellite (with the required viewing
conditions) is indicated by a triangle (see the explanations in Example 9.4). We see
that half of the overpasses occur during the day (the afternoon) and the other half
at night.

Statistics over 31 Sols. We consider points of different latitudes on the meridian
passing through the relevant point. This is in fact the meridian λ = 324.814◦, or
λ = 35.2◦W . We set up another type of table, shown in Fig. 10.21. On the horizontal
axis, we have the solar zenith angle from 0◦ (zenith) to 90◦ (sunrise or sunset), and
on the vertical axis, latitudes from +90◦ (North Pole) to −90◦ (South Pole). We
calculate the overpasses at these different latitudes, for the points on the chosen
meridian. These overpasses are indicated by circles, squares, and so on, depending

18 For LS between 341◦ and 356◦, we read the value of the equation of time from
Fig. 10.5: ET ≈ +50 min, which can be written +0:50. Thus, applying the
relation LMT = LAT + ET, we have, for local apparent noon, LMT = 12:00 +
0:50 = 12:50. In the sampling table, the line indicating noon LAT does indeed
go through 12:50 LMT (or more precisely, from 12:51 LMT for J = 1 to 12:44
LMT for J = 31).
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Figure 10.20. 31-sol table of overpass times
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Figure 10.21. 31-sol table. Solar angles as a function of latitude, noting the viewing
zenith angle, for all places on a given meridian
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Table 10.7. Velocity of satellite and ground track, and relative velocity of the
ground track for various satellites in circular (Keplerian) orbit. For each satellite,
we give the altitude h (in km), the length of the semi-major axis a or distance
to the centre of Mars (in km), the daily frequency ν (in round trips per sol), the
Keplerian period T0 (in min and in sol), the velocities V , V0, wE (for the two values
0◦ and 90◦ of the angle i), already defined. Type T of satellite: s (ground level), O
(for observation), C (for communications), S (areostationary, i.e., SMO). Natural
satellites: Φ (Phobos), ∆ (Deimos)

h a ν T0 T0 V V0 wE wE T
[km] [km] [rev/sol] [min] [sol] 0 90

0 3 396 14.77 100.15 0.068 3.55 3.55 3.31 3.56 s
100 3 496 14.14 104.61 0.071 3.50 3.40 3.16 3.41 O
200 3 596 13.56 109.13 0.074 3.45 3.26 3.02 3.27 O
300 3 696 13.01 113.71 0.077 3.40 3.13 2.89 3.14 O
400 3 796 12.50 118.36 0.080 3.36 3.00 2.76 3.01 O
500 3 896 12.02 123.06 0.083 3.32 2.89 2.65 2.90 O
600 3 996 11.57 127.83 0.086 3.27 2.78 2.54 2.79 O
700 4 096 11.15 132.66 0.090 3.23 2.68 2.44 2.69 O

4 450 7 846 4.21 351.68 0.238 2.34 1.01 0.77 1.04 C
5 983 9 379 3.22 459.63 0.311 2.14 0.77 0.53 Φ

17 031 20 427 1.00 1 477.38 0.999 1.45 0.24 0.00 S
20 063 23 459 0.81 1 818.16 1.229 1.35 0.20 −0.04 ∆

on the value of the viewing zenith angle.

Note. For the dates considered here, the declination varies from −8◦ to −2◦. This

is therefore the end of the austral summer. The high number of daytime overpasses

shown on this graph for latitudes close to the South Pole are due to the particularly

long polar day.

10.9 Appendix: Further Aspects of Martian Satellites

10.9.1 Velocity of Satellite and Ground Track

For a circular orbit, we calculate the velocity of the satellite and its ground
track using (5.33) through (5.37). Recall that the velocities V (satellite) and
V0 (ground track) are defined in the Galilean frame , and the velocity wE

in the Martian frame T. This velocity wE is said to be relative because it
represents the the velocity of the ground track relative to the planet. The
results are shown in Table 10.7.

If we compare a terrestrial and a Martian satellite at the same reduced
altitude, we see that the periods are roughly the same, but the velocities are
halved for the Martian satellite (as is obvious from a glance at the equations).
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Figure 10.22. Sun-synchronous satellite with dawn–dusk orbit. Length of solar
eclipse in minutes during one revolution for the given altitude as a function of the
declination. Graphs for τAN = 18:00 (for τAN = 06:00, take the negative of the
declination)

For an areostationary satellite, we do indeed find that the relative velocity
wE(0) is zero. We also note that T0 = Jsid, which is slightly different from
JM = 1 sol.

The two moons of Mars are shown in Table 10.7, Φ for Phobos and ∆ for
Deimos. They are discussed further below.

10.9.2 Duration of Solar Eclipse

Solar eclipse is a critical problem for a Martian satellite, primarily because
the solar constant is halved on Mars in comparison to the value on Earth, but
also because the accumulators used to store electrical energy greatly increase
the mass of the probe to be put in orbit.

LMO Dawn–Dusk Orbit

We consider a low-orbiting, Sun-synchronous dawn–dusk satellite (τAN =
06:00 or 18:00). Equation (6.14) is satisfied when η lies between 1.1354 and
2.2930, which gives, using the altitude,
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no eclipse ⇐⇒ 460 < h < 4 391 km .

The interval of altitudes where there is no eclipse is much wider than on
Earth. This is explained by the fact that the Sun-synchronous Martian orbit is
more polar than the equivalent terrestrial orbit, for the same reduced altitude
(due to the higher value of kh).

The satellite InterMarsNet, in dawn–dusk Sun-synchronous orbit at h =
612 km, would have been eclipse-free. The communications satellite MTO,
planned for altitude h = 4 450 km, Sun-synchronous with iHS = 130.2◦,
would suffer a very short eclipse in 06:00 or 18:00 dawn–dusk orbit.19 With
h = 4 391 km, iHS = 128.9◦, there is no eclipse for this type of orbit.

We have plotted representative graphs of the length of solar eclipse over
one revolution for various low altitudes, as a function of the declination (see
Fig. 10.22), or as a function of the solar areocentric longitude, which can be
related to the date [see Fig. 10.23 (upper)].

SMO Orbit

For an areostationary satellite, with the value of f0 obtained from (10.25),
there is eclipse if |δ| < f0. This situation occurs twice a year, when the
solar areocentric longitude is close to that of the equinoxes, with a longitude
difference20 less than ∆LS = 23◦ :

eclipse for SMO ⇐⇒ [LS : 337–23] , [LS : 157–203] .

The maximum eclipse is found from (6.18), whence

∆te0 =
9.6
180

Jsid = 78.8 min . (10.27)

The value of ∆te as a function of the declination is given by (6.19).

19 With the proposed configuration, the eclipse would occur on 395 sols per Martian
year, with a daily maximum of 47 min.

20 The value ∆LS of this bounding difference is easy enough to find. Equation
(10.11) relates δ and LS. The condition δ = f0 yields

sin ∆LS =
sin f0

sin ε
.

Expressing f0 in terms of the reduced distance, we obtain

∆LS = arcsin
1

ηGS sin ε
= arcsin

1

2.560
= 22.99◦ ,

and hence the value ∆LS = 23◦.



450 10 Satellites of Mars

10.9.3 Natural Satellites

Phobos and Deimos

The planet Mars has two natural satellites, discovered in August 1877 by
A. Hall.21 They have circular, equatorial orbits (i is about 1◦). Their small
size (of the order of ten kilometres)22 and lumpy shape makes them look like
large rocks. Like the Moon or other natural satellites, they always turn the
same face towards their planet.

The largest, Phobos (a = 9 377.2 km, i = 1.082◦, e = 0.0151, T =
0.318910 day), with η = 2.76, is well below the areostationary orbit.23

The second moon, Deimos (a = 23 463.2 km, i = 1.791◦, e = 0.00033,
T = 1.262441 day), with η = 6.91, is slightly higher.

One consequence of tidal effects is that the distance between the planet
and its moon varies slightly in time. If the satellite is beyond the synchronous
orbit, it moves away. If it is within, it moves closer until it breaks under tidal
forces when it reaches the so-called Roche limit.24

21 Hall named them after the two male offspring of Ares and Aphrodite. They had
the same weak points as their father: Phobos, � ������ ��, ‘fear’, Deimos, �
�	̃
���� ��, ‘dread’.

�� ���� ��� � � ������ ���	�� �	̃
��� �	 ����� �	
�	�����	�� ����� � �  ��	 � !��"	�� ������#���$

�������� ��	
��� � ���������

According to the Iliad, Book XV, transl. Ian Johnston:

Then he [Ares] told Terror and Flight to harness his horses,
while he dressed himself in his glittering armour.

22 Phobos – Mean diameter: 22.2 km (26.8 x 21.0 x 18.4), mean density d relative
to water: d = 1.9, albedo: 0.07
Deimos – Mean diameter: 12.6 km (15.0 x 12.0 x 10.4), d = 2.2, albedo: 0.07.

23 Phobos is one of the rare known examples of a natural satellite whose orbital
angular speed is greater than the angular speed of the planet about its own axis:
it is thus below the planetostationary orbit. Until certain discoveries made by
Voyager-1 and 2, it was the only natural satellite known to have this property.
For a Martian observer, Phobos rises in the west and sets in the east. Seen from
Phobos, Mars covers roughly half of the sky. Indeed, the planet is seen from the
apex of a cone with angle 2f0 = 2arcsin(1/η) = 42◦.

24 Edouard Roche (1820–1883) was a French astronomer. He devised a cosmogonic
theory of the Solar System and studied the internal structure of the Earth.
This combination of astronomical and geophysical knowledge led him in 1849 to
establish an expression for the tidal forces exerted by a central body on a natural
satellite. He calculated that the satellite in orbit is destroyed if the radius of the
orbit falls below a certain threshold, since called the Roche limit. The tidal
forces are then greater than the cohesive gravitational forces. This limit depends
on the relative densities of the satellite and the central body. In July 1994, the
comet P/Shoemaker–Levy-9 flew very close to Jupiter, in fact, within the Roche
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The Soviet probe Phobos-2 made a novel attempt to approach the moon
Phobos. In an equatorial orbit for two months from 29 January 1989, the
probe gradually moved towards Phobos. When it was only 50 m from the
surface of Phobos, on 27 March, it ceased to transmit, just as it was about
to launch its landing modules.

The Lagrange points of the Mars–Phobos system have been calculated in
Example 3.2.

View and Sampling

Phobos can only be viewed from those points on Mars with latitude less than
|φ| = φv = 69.8◦. Indeed, according to (8.15), we have

φv = i + arccos(1/η) = 1.08 + 68.77 = 69.85◦ .

The ‘sampling’ of a natural satellite is represented by its synodic period. This
period T ′ is obtained using (2.23):

1
T ′ =

1
1.027

− 1
0.319

= −2.161 day−1 ,

which gives T ′ = −0.463 day or −0.451 sol. The negative sign of the synodic
period indicates that the relative motion occurs in the retrograde direction.

Concerning Deimos, which is rather close to the areostationary orbit, only
those points close to the poles cannot view it. Indeed, we now have

φv = i + arccos(1/η) = 1.79 + 81.68 = 83.47◦ .

The synodic period is calculated from

1
T ′ =

1
1.027

− 1
1.262

= +0.1811 day−1 ,

which gives T ′ = +5.52 day or +5.37 sol.

limit, whereupon it broke up into about twenty fragments which crashed into
the planet. See also the note on Saturn and its rings.



11 Satellites of Other Celestial Bodies

In the present chapter, we shall examine the motion of a satellite around
another celestial body, but more concisely than we have done for the Earth
and Mars. The chapter is divided into two parts, each following practically
the same plan. Part A concerns the satellites of planets, whilst Part B deals
with satellites of natural satellites. In this second part, to avoid confusion, a
natural satellite or moon of a planet will be referred to by the term ‘natural
satellite’, and the term ‘satellite’ will be reserved for an artificial or techno-
logical satellite.

A: Satellite of a Planet

11.1 Planets of the Solar System

11.1.1 Presenting the Planets

The planets of the Solar System gravitate around its central star, the Sun.
They fall into two categories: the telluric planets and the giant planets.1

The telluric planets2 are the four planets closest to the Sun: Mercury,
Venus, Earth, and Mars. They are rather similar to one another in size and
composition (iron and siliceous rocks). The giant planets are more remote:
Jupiter, Saturn, Uranus, and Neptune. They are much bigger than the tel-
luric planets and have totally different compositions (mainly hydrogen and
helium). The radius of the giant planets is determined as being the radius of

1 One also finds the terms ‘terrestrial’ and ‘Jovian’, the latter being a reference to
Jupiter, from the Latin Jupiter, Jovis. Up until the Middle Ages, in the time of
the geocentric astronomy in which the roles of the Sun and Earth were swapped
over, the planets between the Earth and the Sun (the Moon, Mercury, and Venus)
were known as inferior planets, whilst those considered to lie beyond the Sun
(Mars, Jupiter, and Saturn) were known as superior planets.

2 In Latin, Terra, æ (f.) means ‘the Earth’, but Tellus, uris (f.) represents po-
etically the Earth goddess, or mother Earth, ‘the fertility goddess of crop and
cattle’ (Horace).
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an isobaric surface (at 1 bar). It is not possible to define a ground level or
obtain a geographical representation of the planet.

The asteroid belt gravitates between these two groups.3 It is composed
of thousands of rocky bodies, sometimes with quite strange shapes. Beyond
the giant planets lie a small planet, Pluto, and the asteroids of the Kuiper
Belt.4 Still further out lies the Oort cloud,5 a mysterious world of comets. At
the present time, astronomers tend to classify Pluto with the planetoids of
Kuiper and Oort, in the category of trans-Neptunian objects.

The two telluric planets furthest from the Sun both have their own nat-
ural satellites: the Earth has one, the impressive Moon, whilst Mars has two
minuscule followers. The giant planets each have a whole series of moons,
some of which are larger than Mercury or Pluto.

Mercury, Venus, Mars, Jupiter and Saturn have been known6 since ancient
times (the Earth itself has not been considered a planet for such a long time),
and have inherited in English and most European languages the names of
the main divinities in the Roman pantheon.7 The same custom applied to
3 Most of these asteroids belong to the Main Belt, between Mars and Jupiter,

but some actually lie on the orbit of Jupiter (the Trojan asteroids mentioned in
Sect. 3.14), whilst others cross the trajectory of Mars and even the Earth orbit
(near-Earth asteroids).

4 Gerard Kuiper (1905–1973) was an American astronomer of Dutch extraction.
He discovered the atmosphere of Titan (1945) and showed that it was made up
of methane. He also showed that the atmosphere of Mars was mainly composed
of carbon dioxide (1947). He hypothesised that the Solar System was encircled
by an asteroid belt, of which Pluto was a representative. Since 1992, hundreds of
trans-Neptunian objects have been discovered, some with a diameter of several
hundred kilometres. They form what is now called the Kuiper Belt (or Kuiper–
Edgeworth Belt).

5 Jan Hendrik Oort (1900–1992) was a Dutch astronomer. From his studies of
a great many very long period comets with orbits well outside the plane of the
ecliptic, he deduced in 1950 that one should find, beyond the orbit of Neptune and
the Kuiper Belt (which lie largely within the ecliptic), a ball-shaped rather than
ring-shaped ‘cloud’ made up of small celestial bodies, which could be considered
as a kind of cometary reservoir. The diameter of this so-called Oort cloud would
be some 105 astronomical units, or one light-year. Gravitational perturbations,
even very weak effects, would cause these comets to move either towards the
centre of the Solar System, or out towards others stars.

6 The word ‘planet’ comes from the Latin planeta, which comes in turn from the
Greek ��������, plural of � ������	 ��
�, which means ‘traveller, wanderer’. The
root means ‘to wander, to leave the path’. Indeed, Greek astronomers distin-
guished those bodies in movement (the planets, �������� ������) from fixed
objects (the stars, ������). They recognised seven planets, the five mentioned
above, plus the Moon and Sun. Replacing the name of the Sun by the name of
God, one obtains the days of the week as they are found in most Latin languages,
although not of course in English.

7 The planet with the shortest period is associated with Mercury (Hermes in
Greek): always in motion, appearing and disappearing in quick leaps and bounds
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planets discovered later: Uranus by W. Herschel in 1781, Neptune by J.G.
Galle in 1846 using the famous calculations of Le Verrier,8 and Pluto by C.W.
Tombaugh on 18 February 1930.

As soon as astronomers had switched to a heliocentric vision of the Solar
System, they were struck by the regularity or harmony (to use the term
employed by Kepler) of this system. The orbits9 of the first eight planets all

during the seasons, it is indeed well represented by the messenger of the gods.
The next, the brightest and most beautiful, is Venus (Aphrodite), goddess of
love. Then, red as blood, her belligerent companion Mars (Ares), god of war,
followed by Jupiter (Zeus), the master of Olympus, plenitude incarnated by a
planet, benevolence in person. Beyond him, with his characteristic slow gait and
pale countenance, Saturn, the father of Jupiter. The old man recalls the idea
of time through a Greek play on words between his name (Cronus, Kronos in
Greek) and the word ‘chronos’ for time.

8 Urbain Le Verrier (1811–1877) was a French astronomer, who remains famous
for having discovered a planet, not with any optical instrument, but with math-
ematical calculations: ‘Le Verrier spied Neptune with the nib of his pen’, in the
words of Arago. The first tables for Uranus, discovered some sixty years earlier,
contained too many disagreements with observation. Le Verrier suggested that
these errors could be explained by the presence of an unknown planet, which
he assumed to be in the plane of the ecliptic and at a distance given by the
empirical Bode’s law (or Titius–Bode law). He used the perturbation method to
determine the position of this heavenly body, obtaining the orbital elements to
great accuracy. Following his indications, the planet Neptune was discovered a
few days later, on 31 August 1846, by the German astronomer J.G. Galle. The
English astronomer J.C. Adams obtained very close results at the same time,
but was not supported by his director, Airy. Le Verrier then devoted himself to
the theory of the Solar System and setting up ephemerides. See also the notes
on Delaunay and Airy.
On 14 November 1854, a hurricane destroyed part of the French and allied fleet
in the Crimean war. Le Verrier understood that this storm had crossed Europe
from west to east, and set up the first network of weather stations, beginning in
1855.

9 As an example of the sought regularity, one must mention Bode’s law, also called
the Titius–Bode law. This was an empirical relation discovered in 1766 by the
German astronomer J.D. Tietz (whose name is latinised to Titius), then formu-
lated and established as a law by his colleague Bode in 1778. It can be formulated
as follows. Let aS be the semi-major axis of the planet’s orbit, expressed in as-
tronomical units. The relation gives aS for the six planets known at the time:

aS = 0.4 + 0.3 × 2n ,

with n = −∞ for Mercury, n = 0 for Venus, n = 1 for the Earth, n = 2 for
Mars, n = 4 for Jupiter, and n = 5 for Saturn. These values can be compared
with the values of aS in Table 11.2b. It appears that the result is not so bad.
However, we do not have here the accuracy of measurement that forms the basis
for astronomy! This law, which is not strictly a law in the scientific sense of
the term, has raised much controversy. Is it purely fortuitous? Does it reflect
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lie, to within a few degrees, in the same plane, known as the ecliptic. The
motion, along almost circular orbits, is always in the same direction, i.e.,
anticlockwise as viewed from above the north pole of the Sun. In most cases,
the planets rotate in this direction about their own axes, and their natural
satellites orbit them in this direction as well. Moreover, the fact that this
direction is also the direction of rotation of the Sun itself has long suggested
that there is a connection with the formation of the Solar System, as proposed
in Laplace’s theory in Exposition du système du monde of 1796.

11.1.2 Space Exploration of the Planets

One of the main motivations for space exploration today is the desire to find
traces of life, something usually associated with the presence of water in the
liquid state. This explains in part projects to investigate Mars, or indeed
Europa, a Galilean moon of Jupiter.

A further motivation is sometimes the study of the atmosphere in the case
of the telluric planets: Venus with its gases heated to tremendous temper-
atures by the greenhouse effect [mean pressure and temperature at ground
level: 90 bar, 750 K; composition: carbon dioxide CO2 (96%), nitrogen N2

(3%)] and Mars with its rarified gases [mean pressure and temperature at
ground level: less than 10−2 bar, about 250 K; composition: carbon dioxide
CO2 (95%), nitrogen N2 (3%)]. Two natural satellites also carry an atmo-
sphere: Titan, the largest moon of Saturn [mean pressure and temperature
at ground level: 1.5 bar, 90 K; composition: nitrogen N2 (98%), methane
CH4 (2%)], and Triton, the largest satellite of Neptune [mean pressure and
temperature at ground level: about 10−5 bar (1.5 Pa), 37 K; composition:
nitrogen N2 (95%)]. Not much is known about the atmosphere of Pluto and
its companion Charon, except that, if there is an atmosphere, it must be ex-
tremely tenuous. The same can be said for the atmosphere of Io, a Galilean
satellite of Jupiter with high levels of volcanic activity.

At the beginning of space exploration beyond the confines of the Earth,
the aims were many and varied: there was a thirst for knowledge about the

the action of physical forces during the formation of the Solar System? Does
it reveal the action of some gravitational phenomenon after the formation of
the planets? Today, astronomers have a preference for the first of these three
hypotheses, but one cannot deny at least one point in favour of this ‘law’: it
has played a considerable role in the historical development of the subject. It
was while looking for the planet n = 6, shortly after the formulation by Bode,
that Herschel found Uranus. Then, assuming that the body perturbing Uranus
was in the orbit n = 7, Le Verrier calculated the position of Neptune. His own
account shows this beyond doubt, and Adams had used the same arguments.
The most surprising thing is that the least good agreement between the ‘law’
and measurement is precisely for the case of Neptune! Many astronomers had
sought to fill the space at n = 3, until Piazzi discovered a first asteroid in the
space between Mars and Jupiter.
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various bodies making up the Solar System, without any specific programme,
but driven by the quest for technological and ideological ascension by the two
superpowers of the day, as will be seen from the brief chronology below.

During 1959, the probe Luna-1 achieved the first lunar flyby in January,
Luna-2 landed on the Moon in September, and Luna-3 sent the first photos
of the dark side of the Moon back to the USSR from its October flyby (see
Fig. 11.9). In 1966, Luna-9 made the first softlanding in January, and Luna-
10 was the first lunar satellite in March. The United States had their revenge
with the astronauts of Apollo-11, on 20 July 1969.

After the Moon, the next target was Venus: for the United States, suc-
cessful flybys were operated by Mariner-2 in December 1962, Mariner-5 in
November 1967, and the two probes Pioneer Venus-1 (or Pioneer Venus Or-
biter, or Pioneer 12) and Pioneer Venus-2 (or Pioneer Venus Probe Bus, or
Pioneer-13) in December 1978; for the USSR, successful missions were car-
ried out by Venera-4 in October 1967, Venera-5 and -6 in May 1969 with
atmospheric capsules, whilst the first softlanding was made by Venera-7 on
15 December 1970, followed by other successful missions Venera-8 to -16, a
record in perfect contrast to their Mars programme. Finally, the Soviets pro-
duced Vega-1 and -2 in June 85, releasing balloons and a landing module. As
the atmosphere of Venus is very opaque, it was mapped by radar, from 1990
to 1994, by the US probe Magellan, launched on 4 May 1989 by the shut-
tle Atlantis (STS-30) and placed in orbit around the planet on 10 August
1990. Before it, three probes had carried out measurements in orbit: Pioneer
Venus-1 from 1979 to 1992 and Venera-15 and -16 from 1983 to 1986.

The probe Mariner-10 accomplished the first mission to two planets. It was
launched on 3 November 1973 and flew by Venus on 5 February 1974, where-
after it encountered Mercury three times, on 29 March 1974, 21 September
1974 and 16 March 1975.10 The Venus flyby was the first use of a gravity-
assist maneuver.11

10 The overpasses were separated by 176 days. The probe had been placed in an
eccentric heliocentric orbit with exactly twice the period T1 of Mercury (T =
88 day). In this case, the synodic period is T ′ = 2T = T1 = 176 day.

11 To model the trajectory of a probe from the Earth to Venus, for example, we
use the idea of patched conics. As long as the probe is in the sphere of influence
of the Earth or of Venus, its motion is described by a conic section with the
relevant planet at the focus (in motion relative to the Sun). Between the two,
the motion is heliocentric, described by a conic section whose focus (the Sun)
is fixed. The three conics are then patched together. However, to go from the
Earth to a non-neighbouring planet (other than Venus or Mars), one can fly
close by some intermediate planet. To model the trajectory from the Earth to
Mercury in these conditions, five conic sections are then patched together. The
third corresponds to a flight close by Venus (generally, a branch of a hyperbola).
The velocity relative to Venus has the same magnitude when it enters and when
it leaves the sphere of influence, but the direction is significantly changed. This
is called gravitational deflection. In this way the (vectorial) velocity relative to



458 11 Satellites of Other Celestial Bodies

After Mars, discussed in the last chapter, the next target was the more
distant planets. Jupiter was overflown on 1 December 1973 by Pioneer-10,
launched on 3 March 1972, and 1 December 1974 by Pioneer-11, launched
on 6 April 1973. The latter continued out to Saturn, which it reached on 1
September 1979.

It was the Voyager probes, making full use of the gravity-assist technique,
that really revolutionised our knowledge of the outer planets. NASA took ad-
vantage of an exceptional alignment of the planets from Jupiter to Neptune,
at the beginning of the 1980s, to accomplish with these two probes what be-
came known as the Grand Tour. Such a favourable configuration only occurs
about once every 180 years.

Voyager-1, launched on 5 September 1977, flew past Jupiter on 5 March
1979 and Saturn on 12 November 1980, before making a closer investigation
of Titan. Voyager-2 was the subject of a remarkable round of gravitational
billiards: launched on 20 August 1977, it overflew Jupiter on 9 July 1979,
Saturn on 26 August 1981, Uranus on 24 January 1986 and Neptune on 24
August 1989, all the while sending back photos of great quality. The four
probes (Pioneer-10 and -11, Voyager-1 and 2) are currently on their way out
of the System System.

The probe Galileo, launched12 in 1989, was placed in orbit around Jupiter
in December 1995 to study the giant planet and its four large Galilean
moons.13 Although originally programmed to last two years, the mission of
the Galileo orbiter actually went on for eight years. When the fuel reserves
(hydrazine) had almost run out, the probe was sent into Jupiter to remove
all risk of collision with Europa, which might have contaminated it with
elements of terrestrial life. On the way from the Earth to Jupiter, Galileo
photographed Venus, the Earth – see Colour Plates I and II – and several
asteroids.

the Sun can be greatly modified without energy expenditure. To reach Mercury,
the speed must be reduced. To reach Jupiter or the more remote planets, the
speed is increased. This kind of maneuver is called a gravitational sling-shot.
It is used quite systematically for long-distance journeys. The probe Ulysses,
launched on 6 October 1990 to study the Sun, thereby reach a speed of 125 km/s
(or 450 000 km/hr). Using a Jupiter swing-by, it left the plane of the ecliptic to
overfly the south pole of the Sun in 1994, then the north pole in 1995. Further
examples are given below for the Galileo and Cassini probes.

12 VEEGA trajectory: Venus–Earth–Earth gravity-assist sequence. We give the
date (year month day) for each planet overflown. Launch: 1989 10 18, by At-
lantis shuttle, STS-34. Venus flyby: 1990 02 10. Earth fl. 1: 1990 12 08. Earth fl.
2: 1992 12 08. Jupiter Orbit Insertion (JOI): 1995 12 07).

13 These four natural satellites were discovered in 1610 by Galileo, an event which
had important scientific and philosophical consequences. Other much smaller
moons were discovered from 1892.
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The US probe Cassini14 was launched on 15 October 1997 to study the
Saturn system. Using four gravity-assist maneuvers,15 it went into orbit
around Saturn on 1 July 2004. On 25 December 2004, the European module
Huygens16 should separate from the main spacecraft and, three weeks later,
on 14 January 2005, descend towards the surface of Titan with the help of a
parachute.

Cassini’s mission consists in making 76 revolutions around Saturn over 4
years, which will bring it into 52 close encounters with seven of Saturn’s 31
known moons, and also involve 45 Titan flybys.
14 Giovanni Domenico Cassini (1625–1712) was a French astronomer of Italian ori-

gins (called Jean-Dominique Cassini by the French). As a famous planetary as-
tronomer in Italy, he was invited to France by Colbert and appointed to the
Academy of Science (1669). At the request of Louis XIV, he directed the Paris
Observatory from its foundation. This post was then successively occupied by
several generations of the Cassini family (see notes on Cassini II and Cassini III).
As the founder of this dynasty, G.D. Cassini is often called Cassini I. He wrote a
great many works on Venus, Mars, and Jupiter. His results concerning the moons
of Jupiter were used by Roemer to calculate the speed of light in 1675. Cassini
discovered four moons of Saturn between 1671 and 1684, and the gap between
rings A and B, known as the Cassini division.
Concerning the rings, note that Galileo had observed in 1610 that Saturn ap-
peared to have ‘two ears’, which he considered to be moons. However, a few
years later, they were no longer visible to him. Huygens realised that they were
looking at a ring, which was visible at various different inclinations. But it was
Cassini who first saw two concentric rings, A and B. Other rings have since been
observed and they are currently labelled with letters up to G. Cassini put for-
ward the hypothesis, since confirmed, that the rings were made up of a multitude
of small bodies gravitating on very close orbits. The current theories about Sat-
urn’s rings allow for two possibilities: either they consist of icy particles that have
never been able to accrete because they orbit Saturn within the Roche limit, or
they result from the break-up of a natural satellite whose orbital evolution has
brought it within the Roche limit.

15 VVEJGA trajectory: Venus–Venus–Earth–Jupiter gravity-assist sequence. For
each planet overflown, we give the date (year month day), and speeds in km/s,
in the form [before/after]. Speeds are expressed in a heliocentric frame. Launch:
1997 10 15. Venus/1: 1998 04 26 [37.2/40.9]. Venus/2: 1999 06 24 [39.2/42.3].
Earth: 1999 08 18 [35.0/39.1]. Jupiter: 2000 12 30 [11.6/13.7]. Saturn: 2004 07
01 (SOI, insertion in orbit).

16 Christiaan Huygens (1629–1695) was a Dutch physicist, mathematician and as-
tronomer. In addition to his great treatises on probability, dynamics (Horologium
oscillatorium in 1673), and optics (Treatise on Light in 1690), he also wrote fun-
damental works on astronomy. By eliminating chromatic aberration, he improved
the refracting telescope (Huygens’ eyepiece), and with this enhancement, made
fundamental discoveries in astronomy. For example, he discovered Saturn’s moon
Titan and the rings, as well as the rotation of Mars.
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Table 11.1. Exploration of the Solar System. Dates (Gregorian year or A, since an-
cient times) marking the beginning of the following events: observation from Earth,
flyby of celestial body, landing on object, orbit around object, sample return. Dates
in brackets refer to the year when projects should be achieved, with x representing
a number between 0 and 9. The number n is the number missions, successful or
otherwise, launched before 2005. For the Earth, N represents thousands of missions

Object Observation Flyby Landing Orbit Sample n
from Earth around return

Moon A 1959 1959 1966 1969 64

Mercury A 1974 2011 2
Venus A 1962 1966 1975 24
Earth − 1957 1961 1957 − N
Mars A 1965 1971 1971 (201x) 32
Jupiter A 1973 1995 6
Saturn A 1973 2004 4
Uranus 1781 1986 1
Neptune 1842 1989 1
Pluto 1930 (201x) 0

Asteroids 1801 1991 2001 2000 (2007) 5
Comets A 1985 (2011) (2011) (2006) 8

Table 11.2. Following page. Planets of the Solar System. (a) Geodetic character-
istics. Geodetic data: planetocentric gravitational attraction µ, equatorial radius R
of planet. Deduced quantities: central acceleration at ground level g0, escape veloc-
ity Ve, period of a satellite in Keplerian orbit at ground level T0(h=0), mean density
d. (b) Astronomical characteristics. Data relating to planetary orbit: semi-major
axis aS, sidereal period of revolution Nsid, eccentricity e, inclination i with respect
to the ecliptic. Data relating to the rotation of the planet: obliquity ε. Sphere of
influence ρΣ . (c) Planetosynchronicity. Astronomical data: period of rotation Jsid.
Deduced quantities: reduced distance ηGS for the orbit of a stationary satellite
(whence aGS and hGS). The distance ηGS should be compared with ρΣ/R. (d) Sun-
synchronicity. Astronomical data: period of revolution Nsid. Geodetic data: terms
J2, J3 and J4 in the expansion of the gravitational potential (values to be multiplied
by 10−6). Deduced quantities: constant of Sun-synchronicity kh, maximum value of
the reduced distance ηHSmax, denoted here by ηm for a Sun-synchronous satellite.
Dimensionless quantity n.d.



11.1 Planets of the Solar System 461

Planet µ = GM R g0 Ve T0(h=0) d
[m3 s−2] [km] [m s−2] [km s−1] [min] n.d.

Mercury 2.203 208 × 1013 2 439.7 3.70 4.25 85.02 5.44
Venus 3.248 586 × 1014 6 051.8 8.87 10.36 86.50 5.27
Earth 3.986 004 × 1014 6 378.2 9.80 11.18 84.49 5.52
Mars 4.282 831 × 1013 3 396.2 3.71 5.02 100.15 3.94
Jupiter 1.266 865 × 1017 71 492. 24.79 59.53 177.85 1.34
Saturn 3.794 063 × 1016 60 268. 10.45 35.48 251.54 0.69
Uranus 5.794 549 × 1015 25 559. 8.87 21.29 177.76 1.29
Neptune 6.836 540 × 1015 24 764. 11.15 23.50 156.08 1.64
Pluto 8.261 000 × 1011 1 195. 0.58 1.18 150.51 1.73

Planet aS Nsid e i ε ρΣ ρΣ/R
[a.u.] [yr] n.d. [deg] [deg] [km] n.d.

Mercury 0.387 0.241 0.205 63 7.00 2.0 9.79 × 104 40
Venus 0.723 0.615 0.006 77 3.39 177.4 5.37 × 105 89
Earth 1.000 1.000 0.016 71 0.00 23.4 8.05 × 105 126
Mars 1.524 1.881 0.093 41 1.85 25.1 5.03 × 105 148
Jupiter 5.201 11.862 0.048 39 1.31 3.1 4.20 × 107 587
Saturn 9.538 29.456 0.054 15 2.49 26.7 4.75 × 107 788
Uranus 19.183 84.019 0.047 17 0.77 97.9 4.50 × 107 1 763
Neptune 30.055 164.767 0.008 59 1.78 28.8 7.54 × 107 3 045
Pluto 39.440 247.689 0.248 81 17.14 122.0 2.68 × 106 2 244

Planet Jsid ηGS aGS hGS Planeto-
[hr] n.d. [km] [km] synchronous

Mercury 1 407.510 99.555 242 885 240 446 impossible
Venus 5 832.444 253.900 1 536 551 1 530 499 impossible
Earth 23.934 6.611 42 164 35 786 achieved
Mars 24.623 6.015 20 428 17 031 planned
Jupiter 9.925 2.238 160 009 88 517 possible
Saturn 10.659 1.863 112 271 52 003 possible
Uranus 17.240 3.235 82 689 57 130 possible
Neptune 16.110 3.372 83 514 58 750 possible
Pluto 153.294 15.515 18 540 17 345 −

Planet Nsid J2 J3 J4 kh ηm Sun-
[day] [10−6] [10−6] [10−6] n.d. n.d. synchronous

Mercury 87.969 60 0 0 0.13 < 1 impossible
Venus 224.701 6 1 0 0.03 < 1 impossible
Earth 365.256 1083 −3 −2 10.11 1.94 achieved
Mars 686.980 1960 36 −32 29.04 2.62 achieved
Jupiter 4 332.59 14 736 1 −587 775.46 6.69 polar
Saturn 10 759.2 16 298 0 −915 1 505.78 8.09 polar
Uranus 30 688.5 3 339 0 −32 1 245.12 7.66 polar
Neptune 60 182.3 3 410 0 −35 2 840.11 9.70 polar
Pluto 90 469.7 0 − − 0.00 − −
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As far as the outermost planet of the Solar System is concerned, US
projects to explore Pluto17 aim to include also an encounter with some of the
planetoids in the Kuiper Belt, which is still more remote. If Pluto appears to
be something of an intruder among the planets of the Solar System, thanks
to the inclination and eccentricity of its orbit, it looks much less out of place
as a large object belonging to the Kuiper Belt.

We shall mention space exploration of the asteroids a little later, when
we come to consider the probe NEAR. Cometary exploration (with Vega,
Rosetta, etc.) was discussed in Chap. 5, in the context of satellites classified
by mission (space exploration).

The main dates of this exploration have been summarised in Table 11.1.
The table gives the year marking the beginning of various types of mission
(in brackets, if the mission is still under development).

11.2 Geodetic and Astronomical Quantities for Planets

Geodetic and Astronomical Data

Table 11.2a gives the two basic quantities associated with each planet, its
constant of central attraction µ and its equatorial radius R, which allow one
to calculate the following quantities:

• the acceleration due to gravity g0 on the surface of the planet, from (3.22),
• the escape velocity Ve, from (1.32),
• the period of a satellite in circular Keplerian orbit at zero altitude, T0(h=0),

from (2.17), to which we shall return shortly,
• the density d, that is, the mass per unit volume of the body relative to

that of water (ρwater = 103 kgm−3, density dwater = 1).

Table 11.2b gives basic astronomical quantities concerning the orbit of the
planet around the Sun, including the semi-major axis aS and the sidereal
period Nsid.

Kepler’s third law is expressed very simply by

[Nsid (yr)]2 = [aS (a.u.)]3 , (11.1)

with the chosen units.
We have also calculated the radius of the sphere of influence ρΣ and noted

the characteristics of the planetary orbit, i.e., e, i and ε, quantities which are
17 The mission Pluto–Kuiper Express was to send a probe towards Pluto in 2004,

for approach in 2012, whereupon it would have extended its trip into the Kuiper
Belt. This project, abandoned in 2000, has been replaced by New Horizons, also
involving a JGA (Jovian Gravity Assist) orbit. With a departure in 2006, it is
due to arrive in 2015. Following this, it should study at least one object beyond
Pluto.
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Figure 11.1. Relation between period and altitude. In this graph, the abscissa is
the reduced period, i.e., the ratio of the period of the satellite to the period of a
satellite at zero altitude, and the ordinate is the reduced distance η = a/R, i.e., the
ratio of the semi-major axis of the orbit to the radius of the planet. Both quantities
are dimensionless

not directly necessary in this study, but which allow one to compare the
orbits of different planets. For example, we see that the orbit of Pluto is
highly eccentric and that the rotation of Venus is retrograde (ε > 90◦), etc.

To study the true motion and characterise special orbits, we use the geode-
tic and astronomical quantities given in Tables 11.2c and d.

Satellite in Keplerian Orbit

As already discussed, when a satellite is in orbit (semi-major axis a) around
a planet, the period T0 of its Keplerian motion is given by (2.16). We can also
calculate the period T0(h=0) of a fictitious satellite at zero altitude. Consider-
ing the mean mass per unit volume ρ of the planet, we have µ = ρV G, where
V is the volume of the planet, assumed spherical. With (2.17), we obtain

T0(h=0) =

√
3π

G
1
√

ρ
= 3.7584× 10−5ρ−1/2 . (11.2)

This shows that the Keplerian period T0(h=0) can be expressed uniquely in
terms of the mean density of the attractive body. As the Earth is the densest
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Figure 11.2. Accelerations as a function of the distance r from the satellite to
the centre of the planet. Log–log scale. Upper : Mercury. Lower : Venus
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planet in the Solar System, the period T0(h=0) is the shortest. Conversely, the
longest period is for a satellite orbiting around Saturn.

Using the mean density d relative to water and expressing the period in
minutes, we obtain

T0(h=0) (min) ≈ 198d−1/2 . (11.3)

The Keplerian period for semi-major axis a can then be written

T0(η) (min) ≈ 198

√
η3

d
, (11.4)

for reduced distance η = a/R. Figure 11.1 graphs the variation of T0/T0(h=0)

as a function of η = a/R.

Geographic Maps

Only the telluric planets can be mapped in the sense that we can produce a
geographic map of the surface. The mappable area, calculated on the ellipsoid
and expressed in millions of km2, has the following values for each planet: 75
for Mercury, 460 for Venus, 510 for the Earth (140 for the land masses and 370
for the sea bed), and 143 for Mars. For these four planets, this makes a total
of 1 188. We also have 18 for Pluto and 2.6 for the largest of the asteroids (and
0.001125 for 433-Eros). We shall discuss maps of natural satellites shortly.

The geography of Mars (volcanoes, impact basins, etc.) was outlined in
the last chapter. We shall not dwell further here on the geography of Venus
or the other telluric planets.

In this chapter, we shall use the following maps as background for repre-
senting ground tracks or orbits:

• for Venus, the topographical map built up from SAR (Synthetic Aperture
Radar) data gathered by Magellan,

• for Eros, the topographical map made from altimetry data gathered by
NEAR.

In both cases, contours are plotted at 2 km intervals, with the zero altitude
contour in bold face. Those at positive altitudes are represented by continuous
curves and those at negative altitudes by dashed curves.

For the planets, the zero meridian is chosen arbitrarily (see note on Airy
for the Earth and Mars).

11.3 Satellite of Planet in Real Orbit

11.3.1 Perturbative Accelerations

The sphere of influence discussed in Sect. 3.13 informs us of the distance
beyond which one can no longer neglect perturbations due to the Sun. Equa-
tion (3.103) gives the values of the radius ρΣ for all the planets. The results
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are displayed in Table 11.2b, where they can usefully be compared with the
values in Table 11.2c.

The variation of the central acceleration and perturbative accelerations
has already been plotted for the Earth in Fig. 3.1, and for Mars in Fig. 10.6.
To complete the list of telluric planets, we have plotted the same graphs for
Mercury and Venus in Fig. 11.2, using the same notation as in Table 3.3 (in
which, of course, we replace the terrestrial acceleration by the acceleration
due to the relevant planet).

For these two planets, there is no perturbing acceleration due to the terms
Jn, n � 3, since these terms are almost all zero. The very weak acceleration
γCCN.J2, due to the term in J2, is soon supplanted (for h ∼ R) by the per-
turbing acceleration γCS of the solar attraction. For Mercury, the perturbing
acceleration γDP due to solar radiation pressure is still poorly known.

For Venus, atmospheric drag causes an acceleration γDF which can be
very large, and depends on the altitude and shape of the satellite. The solar
radiation pressure, which leads to the perturbing acceleration denoted by
γDP, impinges on the satellite both directly and indirectly, by the albedo
effect, the mean albedo of Venus being very high (0.76).

11.3.2 Classification of Satellites

Rotational Motion of the Planets

The values given in Table 11.2a to d show that the two planets closest to
the Sun have very long periods of rotation Jsid : 58.646 day for Mercury18

(exactly 2/3 of the sidereal period of revolution) and 243.018 day for Venus.19

For these two planets, the day is longer than the year. This is due to the
proximity of the Sun.

Moving further out to the Earth and Mars, this period Jsid is about one
day, whilst for the giant planets from Jupiter to Neptune, it is of the order
of ten hours.
18 According to astronomers, the proximity of the Sun should have led to a 1:1

resonance phenomenon for Mercury, so that Mercury would always present the
same face towards the Sun, like the natural satellites and their planets. This
was indeed what was thought up until 1965, when radar measurements from
the Earth showed that it had a shorter rotation period, of only 59 days. The
Italian astrophysicist Guiseppe Colombo showed that this was a very rare case
of a 3:2 resonance, i.e., 3 rotations in 2 revolutions, due to the high eccentricity
of Mercury’s orbit.

19 Venus is the brightest celestial body as seen from Earth, apart from the Sun and
the Moon. This is partly because it is surrounded by a very thick layer of cloud.
The speed of rotation was only measured in 1962, with the advent of the radar.
The clouds have a much faster rotational motion, known as superrotation. At an
altitude of 70 km, the atmosphere makes one round trip in 4 days, corresponding
to winds at 100 m/s, in the direction of rotation of the planet.
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Planetosynchronous Satellite

For satellites that are stationary with respect to a planet, we have used (4.55)
to calculate the reduced altitude ηGS for a Keplerian orbit in terms of Jsid.
(For the Earth and Mars, the values were calculated for the Keplerian and
then the true orbit, in Chaps. 4 and 10, respectively.) They are displayed in
Table 11.2c.

The results prompt the following remarks:

• For Mercury and Venus, the values of ηGS are so large that this orbit
cannot be obtained. The solar perturbative attraction becomes too great
for these altitudes and such an orbit would pass way beyond the sphere
of influence of the planet.

• For the Earth and Mars, ηGS is about 6.
• For the giant planets, ηGS is about 2 or 3.
• For Pluto,20 the position of the stationary satellite is more complex, but

fortunately there is no urgency to carry out such a calculation!

Sun-Synchronous Satellite

To satisfy the condition (4.60) for a Sun-synchronous orbit, one must have
a large J2 term if the planet is close to the Sun, since its sidereal period of
revolution is short. Conversely, a weak J2 term is required if the planet is
remote from the Sun. Now, as we have already seen, if the planet is close to
the Sun, e.g., Mercury, Venus, its rotation about its own axis is blocked and
planetary flattening is very low. This in turn implies that J2 will be low, or
almost zero. We conclude that Sun-synchronicity is impossible.

If a planet is far from the Sun, as in the case of the giant planets, its
rapid rotation creates a significant flattening effect and J2 is consequently
large. To counterbalance this effect, the orbit must have a very low value of
cos i, indeed, practically zero. The orbit is therefore polar, to within a few
hundredths of a degree. But we should ask what Sun-synchronicity means for
a satellite in orbit around Jupiter, a planet which takes 12 years to go round
the Sun, or around Neptune, which takes 165 years.

For the two intermediate planets, the Earth and Mars, this condition can
be satisfied. The results for kh, the constant of Sun-synchronicity, calculated
using (4.63), are given in Table 11.2d, where we have also displayed ηm, the
value of the maximal reduced distance ηHS max, obtained for i = 180◦.
20 Pluto is accompanied by Charon, discovered on 2 July 1978 by J.W. Christy.

This satellite has such a large relative mass (1/6 of the mass of Pluto) that the
Pluton–Charon ensemble can be considered rather as a double planet. The semi-
major axis of Charon’s circular orbit is aP = 19 460 km, and it is interesting to
note that this value is very close to the value for the planetostationary orbit. We
have in fact aP/aGS = 1.05.
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Frozen Orbit

In Chap. 7, we saw that a satellite orbit could be frozen by taking advantage
of balancing effects between the various variations in the position of the
periastron, i.e., secular and long-period variations. The ratio J3/J2 arises
when we calculate the frozen eccentricity. For a frozen orbit to be useful, the
frozen eccentricity eF, which is of the order of (1/2)J3/J2, must be less than
0.01, for beyond this, differences in altitude become too great.

The J3 term is a zonal term (axial symmetry) expressing the effects of
asymmetry between the northern and southern hemispheres. For Mercury
and Venus, which are practically spherical, J3 is zero or very low. For the
giant planets, J3 is zero because the plasticity of these planets only generates
even zonal coefficients J2n (symmetry relative to the equatorial plane, or
north–south symmetry).

It follows that the only two planets that can have a satellite in frozen orbit
are the Earth and Mars. As regards Sun-synchronous frozen orbits, recall that
the argument of the periastron, related to the sign of J3, is ωF = 90◦ for the
Earth, ωF = 270◦ for Mars.

11.4 Ground Track for a Satellite of a Planet

The ground track of the satellite over several revolutions is characterised by
the equatorial shift, which depends for the main part on the angular speed
of rotation of the planet. For the Earth or Mars, the equatorial shift is of
the order of 25◦ for a low-orbiting satellite. For the giant planets, it is two
to three times greater. But for Mercury and Venus, which rotate very slowly
about their axes, the equatorial shift is very slight.

We shall now discuss, with a little more detail, the ground track of satel-
lites in orbit around Mercury, Venus, and the asteroid Eros.

11.4.1 Satellite of Mercury

Mercury has only received the visit of one probe, Mariner-10. However, there
are currently three projects under way. The US probe Messenger (Mercury
Surface, Space Environment, Geochemistry and Ranging), noting the mytho-
logical reference to the main occupation of Mercury or Hermes, was launched
in 2004 and will undergo no fewer than six gravity-assist maneuvers,21 before
going into a highly eccentric orbit around the planet in 2011 [hp = 200 km,

21 Launch 2004 08 02, Earth flyby (altitude: 2295 km) 2005 07 29, Venus fl. 1
(altitude: 3000 km) 2006 10 23, Venus fl. 2 (altitude: 300 km) 2007 06 04, Mercury
fl. 1 (altitude: 200 km) 2008 01 14, Mercury fl. 2 (altitude: 200 km) 2008 10 06,
Mercury fl. 3 (altitude: 200 km) 2009 09 29, Mercury Orbit Insertion (MOI) 2011
03 18.
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ha = 15 193 km, i = 80◦, T = 720 min, see Fig. 11.3 (upper)]. The periastron
will be located at latitude 60◦N to study the Caloris impact basin as closely
as possible. The mission in orbit will last for 12 months, i.e., 2 Mercurian
solar days.22

The Japanese probe Mercury Orbiter and the European probe Bepi-
Colombo Mercury Orbiter23 are due for launch in 2009, or later. The two
missions will be combined, although in a manner that has not yet been com-
pletely defined. The two orbiters, MPO (Mercury Planetary Orbiter) and
MMO (Mercury Magnetospheric Orbiter), should follow eccentric polar or-
bits (i = 90◦), with periastron at altitude hp = 400 km. The altitude at
apoastron will be ha = 1 500 km for MPO and ha = 12 000 km for MMO, in
such a way that the period of the second, T = 560 min, will be a multiple of
the period of the first, T = 140 min.

11.4.2 Satellite of Venus

The probe Magellan, named after the sixteenth century Portuguese explorer,
orbited Venus from 1990 to 1994, perfectly fulfilling its various missions, in
particular the main task of mapping the surface of the planet (achieved to
98%). The result is a topographical map of Venus, shown in Colour Plate
XV, in the form of two orthographic equatorial projections. For this map,
the Magellan data has been complemented where necessary by data from the
probes Venera-15, -16, and Pioneer Venus, as well as by Earth-based radar
observations (from the Arecibo observatory).

This radar mapping mission comprised three cycles, each lasting 243 jours,
during which the Magellan satellite followed an eccentric polar orbit, shown
in Fig. 11.4 (upper), with characteristics:

hp = 289.57 km , ha = 8 458.5 km , i = 85.7◦ , ω = 170◦ ,

a = 10 425.8 km , e = 0.391 76 , Ta = 195.59 min = 3.26 hr .

The ground track of this orbit has been shown over one revolution in Fig. 11.5
(upper). The radar mapping only proceeded for 37.2 min during each revo-
lution, from slightly before to slightly after the passage at periastron.

The length of the cycle of 243 days corresponds to Jsid, the time the planet
takes in a Galilean frame to make a complete round trip relative to the orbit
of the satellite, which remains fixed in this frame. Indeed, because Venus is
22 For a point on Mercury, the day lasts 176 terrestrial days: 88 days of nighttime

are followed by 88 days of daytime. This stretch of 176 days corresponds to two
revolutions around the Sun. One Mercurian day is exactly equal to two Mercurian
years (resonance 3:2).

23 So named in honour of the Italian mathematician Guiseppe ‘Beppi’ Colombo
(1920–1984), mentioned above.



470 11 Satellites of Other Celestial Bodies

[MERCURY] Messenger
Orbit - ref.: Mercury
>>>>   Time span shown:  4320.0 min =   3.00 days

Equiv. altit.  =   7696.5 km

e = 0.739577

a =10136.200 km

Inclination  =  80.00 °

Period =   719.98 min    * rev/day = 2.00

h_a = 15193 km;  h_p =  200 km;  arg.periapsis:  +61.57 °

Longitude / Initialisation:

A.n.: 160.75 ° - Apo.:   0.00 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre:      15.0 ° N;   90.0 °E

Aspect:  Oblique

[  -90.0 /  +75.0 /   +0.0 ] Gr.Mod.:  IAU91

[VENUS] Venus Express
Orbit - ref.: Venus
>>>>   Time span shown:  5760.0 min =   4.00 days

Equiv. altit.  =  33125.0 km

e = 0.839145

a =39176.801 km

Inclination  =  90.00 °

Period =  1424.71 min    * rev/day = 1.01

h_a = 66000 km;  h_p =  250 km;  arg.periapsis:  +70.00 °

Longitude / Initialisation:

A.n.:-179.28 ° - Apo.:   0.00 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre:      15.0 ° N;   90.0 °E

Aspect:  Oblique

[  -90.0 /  +75.0 /   +0.0 ] Gr.Mod.:  MGNP60

Figure 11.3. Orbit of satellite in a frame moving with the planet. Upper : Mes-
senger in orbit around Mercury. Lower : Venus Express in orbit around Venus
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[VENUS] Magellan
Orbit - ref.: Venus
>>>>   Time span shown:  1440.0 min =   1.00 day

Equiv. altit.  =   4374.8 km

e = 0.391764

a =10425.835 km

Inclination  =  85.70 °

Period =   195.59 min    * rev/day = 7.36

h_a =  8459 km;  h_p =  290 km;  arg.periapsis: +170.47 °

Longitude / Initialisation:

A.n.: -90.00 ° - Apo.:  89.27 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre:      15.0 ° N;    4.0 ° W

Aspect:  Oblique

[  -90.0 /  +75.0 /  +94.0 ] Gr.Mod.:  VGM6A

[VENUS] Planet-C
Orbit - ref.: Venus
>>>>   Time span shown:  2304.0 min =   1.60 day

Equiv. altit.  =  39450.2 km

e = 0.860406

a =45502.000 km

Inclination  = 172.00 °

Period =  1783.30 min    * rev/day = 0.81

h_a = 78600 km;  h_p =  300 km;  arg.periapsis:  +90.00 °

Longitude / Initialisation:

A.n.:   0.00 ° - Apo.:  89.11 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 20°

Map centre:      25.0 ° N;    4.0 ° W

Aspect:  Oblique

[  -90.0 /  +65.0 /  +94.0 ] Gr.Mod.:  MGNP60

Figure 11.4. Orbit of satellite in a frame moving with the planet. Upper : Magellan.
Lower : Planet-C
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[VENUS] Magellan
Ellipt. orbit - Gr. track
>>>>   Time span shown:   195.6 min =   0.14 day

Equiv. altit.  =   4374.8 km

e = 0.391764

a =10425.835 km

Inclination  =  85.70 °

Period =   195.59 min    * rev/day = 7.36

h_a =  8459 km;  h_p =  290 km;  arg.periapsis: +170.47 °

Longitude / Initialisation:

A.n.: -90.00 ° - Apo.:  89.27 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;   60.0 °E

Aspect:  Direct

[  +90.0 /   +0.0 / -150.0 ] Gr.Mod.:  VGM6A

[VENUS] Magellan
Ellipt. orbit - Gr. track
>>>>   Time span shown:  1440.0 min =   1.00 day

Equiv. altit.  =   4374.8 km

e = 0.391764

a =10425.835 km

Inclination  =  85.70 °

Period =   195.59 min    * rev/day = 7.36

h_a =  8459 km;  h_p =  290 km;  arg.periapsis: +170.47 °

Longitude / Initialisation:

A.n.:  10.00 ° - Apo.:-170.73 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre (r.): 32.0 ° N;   24.0 ° W

Aspect:  Oblique

[  -90.0 /  +58.0 / +114.0 ] Gr.Mod.:  VGM6A

Figure 11.5. Orbital track of the satellite Magellan. Upper : over one revolution.
Lower : over one Earth day
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[433-EROS] NEAR/OCM-2
Orbit - Ground track
>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  196.1 km a =  204.500 km

Inclination  =  37.00 °

Period = 14488.19 min    * rev/day = 0.10

Asc. node:      0.00 °

App. inclin. = 179.23 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  NLR190

[433-EROS] NEAR/OCM-6
Orbit - Ground track
>>>>   Time span shown:   7.00 days

Altitude =   41.6 km a =   50.000 km

Inclination  =  90.00 °

Period =  1761.08 min    * rev/day = 0.82

Asc. node:   -126.00 °

App. inclin. = 169.82 °

Projection:  Hammer-Aitoff

Property:  Equal area

T.:Modif. Azim.    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  NLR190

Figure 11.6. Orbital track of the satellite NEAR. Upper : over one day. Lower :
over 7 Earth days
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an almost perfect sphere (J2 = 4.4098×10−6, a very low value) and the orbit
of the satellite is near-polar, the precessional motion is very small. For the
orbit defined above, we obtain:

Ω̇ = −6 × 10−4deg/day and ω̇ = −4 × 10−3deg/day .

Following the mapping cycles, the satellite was placed in a circular orbit by
air-braking, with h = 250 km, to carry out geodetic studies. It was then
sacrificed in a final experiment, known as the windmill experiment. For one
and a half months, the solar panels were deployed to transform the satellite
into a sort of windmill, transmitting back the parameters of the atmosphere
which finally consumed it.

The gravitational potential model of degree and order 21, known as JPL-
VGM1B (JPL Venus Gravity Model), obtained using Doppler radio tracking
data from Pioneer Venus Orbiter, has evolved to degree and order 90 thanks
to data gathered by Magellan, to give the model MGNP90 (Magellan plus
PVO, 90th degree and order).24

The Japanese probe Planet-C (name before launch) should enter a highly
eccentric, near-equatorial orbit around Venus. The representation of this orbit
in Fig. 11.4 (lower) over slightly more than one revolution shows how little
the trajectory shifts from one revolution to the next, in a frame fixed relative
to the planet.

The European probe Venus Express, carrying the same type of instru-
ments as Mars Express, is due for launch in November 2005. It will go into
a highly eccentric polar orbit with a = 39 176 km, e = 0.839 (hp = 250 km,
ha = 66 000 km, T = 1 425 min), and periastron at latitude 70◦N [see Fig. 11.3
(lower)]. This orbit, almost fixed relative to the planet (as happens for all
Venusian satellites), will study the atmosphere, which for its part makes a
round trip of the planet very 4 days.

Example 11.1. Orbital track of the satellite Magellan.

The ground track of the orbit over one revolution shown in Fig. 11.5 (upper) exhibits

no obvious asymmetry, as is the case for eccentric terrestrial orbits. This is due to

the fact that the planet is almost motionless (compared with the satellite motion,

even at apoastron) in a Galilean frame. The very slow rotation of the planet about

its axis gives a very small equatorial shift of about 0.20◦, i.e., about 21 km between

consecutive ground tracks, as can be seen from Fig. 11.5 (lower), for a time span of

24 Planetocentric gravitational constant µ, in km3s−2:

µ = 324 858.60 ± 0.05 for JPL-VGM1B (1990) ,

µ = 324 858.601 ± 0.014 for MGNP90 (1997) .
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Table 11.3. Geodetic and astronomical data for the asteroid 433-Eros. Results
from the NEAR mission. Quantities are explained in the caption to Table 11.2.
The dimensions of the asteroid are called Di. The values of the J2, J3, and J4

terms should be multiplied by 10−3. Note the unusual units used here for g0 and
Ve, and the very high values of the terms Jn

µ = GM [m3s−2] 4.463 × 105 aS [a.u.] 1.458
R [km] 8.423 Nsid [yr] 1.76
D1 [km] 34.4 Nsid [day] 643
D2, D3 [km] 11.2, 11.2 e n.d. 0.233
g0 [mm s−2] 2.1–5.5 i [deg] 10.8
Ve [m s−1] 3.1–17.2 Jsid [hr] 5.27026
T0(h=0) [min] 121.18 ηGS n.d. 1.895
d n.d. 2.67 J2 10−3 117.4
ρΣ [km] 308 J3 10−3 3.1
ρΣ/R n.d. 37 J4 10−3 −37.5

one day, and from Colour Plate XIV, over a time span of six days. In the latter, the

Mercator projection used for the map is centered on Maxwell Montes. This great

mountain range in Ishtar Terra, the highest on Venus, is 11 km above the mean

level of the planet.

11.4.3 Satellite of the Asteroid Eros

The first asteroid discovered was 1-Ceres, by G. Piazzi25 on 1 January 1801.
It is in fact the largest asteroid (R = 454 km). A great many others have
since been observed. They are numbered in order of discovery, up to number
7 722 as of 1 January 2000 (see Fig. 3.5). With the sudden increase in au-
tomated search programmes, we had reached 253370 asteroids (85 020 num-
bered, 168 350 provisional) and 44 moons of asteroids (3 named, 41 provi-
sional) as of 1 September 2004.

On its way to Jupiter, the Galileo probe made the first asteroid flybys as
it crossed the Main Belt. These included 951-Gaspra and 243-Ida, with R ≈
20 km. A natural satellite of 243-Ida was even discovered on this occasion,
named Dactyl (roughly spherical, with R ≈ 0.7 km).

25 Father Giuseppe Piazzi (1746–1826) was an Italian astronomer who made a very
accurate catalogue of more than seven thousand stars. While he was doing so, he
discovered the first asteroid, which he called Ceres. Having specified the position
of the new planet, he was compelled to interrupt observations from his observa-
tory in Palermo due to bad weather. When he resumed, he was unable to relocate
his Ceres. It was the young Gauss who found it again, using methods he had
just developed and orbital elements provided by Piazzi. In the next seven years,
three other asteroids were discovered by H. Olbers. It was Gauss who showed,
by determining the orbital elements, that they all belonged to the same belt.



476 11 Satellites of Other Celestial Bodies

Figure 11.7. North polar region of Eros. Image taken by NEAR–Shoemaker on 31
March 2000 from an orbital altitude of 207 km. The image has been overlain with
lines of latitude and longitude. Latitude is measured in degrees from the equator
to the pole; longitude is measured in degrees west of a prime meridian. In both
cases, the vertex of the angle being measured is the center of Eros. The wander-
ing, curved shapes of the lines are caused by the highly nonspherical and irregular
asteroid shape. Credit (legend and photography): NASA and John Hopkins Uni-
versity/Applied Physics Laboratory

The NEAR probe (Near Earth Asteroid Rendezvous), launched on 17
February 1996, observed 253-Mathilde on 27 June 1997 before flirting with
Eros on St Valentine’s day 2000. The asteroid 433-Eros, made of siliceous
rock, has a rather cylindrical shape. From 14 February 2000, the probe,
renamed NEAR–Shoemaker, went into orbit to become the first satellite
of Eros. From an initially rather eccentric orbit (ellipse with semi-axes
a = 365 km, b = 204 km, i = 36◦), the satellite gradually moved closer
to Eros by means of maneuvers which alternated elliptical and circular or-
bits. The near-circular (a = 200 km), near-polar orbit eventually became
rather low (a = 100 km) and near-equatorial. On 28 January 2001, the satel-
lite left its approach orbit (a = 35 km, i = 180◦) and landed on the asteroid,
transmitting images up until the final impact.

The characteristics of the asteroid are displayed in Table 11.3 (see
also Fig. 11.7). The geodetic data come from the NLR190 (NEAR Laser
Rangefinder) shape, gravity, and dynamics model. The J2, J3, and J4 terms
are given for comparison with other planets.26

The Japanese probe Hayabusa (falcon), known as Muses-C before its
launch on 9 May 2003, is due to arrive at asteroid 25143-Itokawa in October
2005, from whence it will return a sample to Earth in June 2007.
26 In fact, these terms refer to the spherical harmonics and are not well-suited to

a body which is so far from spherical. In this case, one can decompose the grav-
itational potential using ellipsoidal harmonics, where the Legendre polynomials
are replaced by the Lamé functions of the second kind.
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The probe NEAP (Near Earth Asteroid Prospector), with orbiter and
lander, should visit asteroid 4660-Nereus. The project was set up by a private
company, SpaceDev, which hopes to bring in profits.

With its probe Dawn, NASA plans to visit first the brightest, then the
largest of the asteroids, viz., 4-Vesta and 1-Ceres, respectively. Launch is
programmed for 27 May 2006, with arrival at Vesta on 30 July 2010, departure
from Vesta on 3 July 2111, arrival at Ceres on 20 August 2014, and the end
of the Ceres mission on 26 July 2015. The Dawn spacecraft would be the first
purely scientific mission to be powered by ion propulsion (xenon thrusters).

Example 11.2. Orbital track of the satellite NEAR.

We have represented the ground track of the orbit of the NEAR probe, satellite of

433-Eros. We have considered two types of orbit, known as OCM-2 and OCM-6.

(Successive orbits of NEAR are numbered OCM-n, Orbital Correction Maneuver.)

In the first case, shown in Fig. 11.6 (upper), the satellite is very high relative to

the asteroid, since it takes 10 days (or 46 Eros days) to make one round trip.

The ground track thus takes 2.5 days to move from the equator to the maximum

latitude. In the second case, shown in Fig. 11.6 (lower), the satellite is on a much

lower orbit, although it remains above the planetosynchronous orbit. In this second

figure, we have used the cartographic projection chosen by the NEAR science team

to represent orbital tracks, i.e., the Hammer–Aitoff projection.

B: Satellite of a Natural Satellite

11.5 Natural Satellites in the Solar System

In previous chapters, we have discussed the three natural satellites of the
telluric planets. As far as the giant planets are concerned, the number of
known natural satellites was as follows in 2000:

• Jupiter 16: 4 small and very close, then the 4 Galilean moons, then 8
small and distant.

• Saturn 18: 9 small, 8 larger ones including Titan, and the very distant
Phoebe.

Since 2000, a great many very small natural satellites have been discovered
in orbit around Jupiter and Saturn.

• Uranus 15: 11 small, then the 4 largest, already known in the nineteenth
century.

• Neptune 8: 6 small, then Triton and Nereid further out.
• Pluto gravitates in a pair with Charon, which has 1/6 of its mass.



478 11 Satellites of Other Celestial Bodies

By a small natural satellite, we understand a celestial body with dimensions
of the order of a few hundred kilometres or less. Most of these were discovered
by Pioneer-11 or the Voyager probes, but the Cassini probe has added a great
many others.

These natural satellites have one very important characteristic: they all27

exhibit synchronous rotation, or 1:1 resonance, i.e., one rotation during one
revolution around the planet. They are practically fixed relative to an axis
passing through their centre of gravity and the centre of the planet. Like the
Moon for the Earth, they always turn the same face towards their planet.
This is due to the tidal effect.28

Apart from a small number of exceptions,29 natural satellites have orbits
with almost zero eccentricity, lying in the equatorial plane of the associated
planet. There is one major exception: the Moon does not gravitate in the
equatorial plane of the Earth.30

If we exclude the lunar conquest, discussed at the beginning of the chapter
in the more general context of space exploration, there is no specific mission
to the natural satellites. If we do organise a visit, it is always part of a
trip to the associated planetary system as a whole. One exception has been
programmed, and this is the mission to Europa, or better still, the JIMO
project (Jupiter Icy Moons Orbiter), for 2012. (The spacecraft could orbit
Europa for 2 months, then spend 4 months at Ganymede and another 4
months at Callisto.)

27 The only exceptions are two satellites of Saturn, beyond Titan. The most dis-
tant, Phoebe, has a retrograde orbit and non-synchronous rotation. The other,
Hyperion, trapped between the orbits of Titan and Japet, exhibits chaotic rota-
tion.

28 The planet exerts a tidal force on the natural satellite, much stronger than that
exerted by the natural satellite on the planet. Viscous friction inside the natural
satellite with its associated dissipation of energy ends up by slowing down the
rotation of the natural satellite. When the rotation becomes synchronous, the
natural satellite has been deformed into a shape extended in the direction of
the planet. (This deformation of the Moon in the direction of the Earth is very
slight, whilst that of Phobos towards Mars is enormous, relative to the size of
this moon.) As soon as the natural satellite finds itself in this 1:1 resonance, it
remains trapped in that situation by the restoring couple exerted by the planet.

29 Satellites situated a long way from the attractive planet can have a highly ec-
centric orbit, like Nereid around Neptune (e = 0.75). These may well be former
asteroids, captured by the gravitational attraction of the planet.

30 The motion of the Moon is a very complex problem to analyse. It is a 3-body
motion, involving the Moon, the Earth and the Sun (µ/µN = 81.300 59). The
Moon’s eccentric orbit makes an angle of i = 5.1454◦ with the ecliptic. The
inclination of the lunar orbit to the equator of the Earth thus varies between
ε − i = 18.28◦ and ε + i = 28.58◦.
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11.6 Geodetic and Astronomical Quantities
for Natural Satellites

Geodetic and Astronomical Data

We shall be concerned with four natural satellites: the Moon, because it is
our own moon, and has been encountered or visited so many times; Eu-
ropa, because one is led to presume the presence of liquid water; and Titan
and Triton, because these satellites carry an atmosphere. Table 11.4 displays
geodetic and astronomical data, together with deduced quantities.

Satellite in Keplerian Orbit

Provided its altitude is not too great (in a sense to be defined later), an or-
biting satellite (semi-major axis a) around a natural satellite will feel only
the attraction of this body. Let µN be the gravitational constant of this nat-
ural satellite, and keep µ for the gravitational constant of the corresponding
planet. All the formulas derived for the Keplerian orbit can be applied, re-
placing µ by µN, as in (2.16).

The period of the satellite at altitude 0 is given by (2.17) or (11.3). For
example, for the Moon, with d = 3.34, we obtain for this period T0(h=0) =
198/

√
3.34 = 108 min.

The values of T0(h=0) are given in Table 11.4a for various natural satellites.
Figure 11.1 graphs the variation of T0/T0(h=0) as a function of a/R, where R
is of course the radius of the natural satellite.

Geographical Maps

Natural satellites of planets can be mapped. The mappable area in millions
of km2 takes the following values for each of the natural satellites considered
here: 38 for the Moon, 31 for Europa, 83 for Titan, 23 for Triton. The total
area of the natural satellites is 425, including 231 for Jupiter’s four Galilean
satellites. The geography and geology of the Moon have been the subject of
very detailed study since Galileo’s first observations of lunar mountains.

In this chapter, we shall use the following maps as background to represent
the ground track or orbit:

• For the Moon, the topographical map based on laser altimeter data gath-
ered by Clementine. Contours are plotted in 2 km steps, with the same
convention for the curves as we used for planetary maps.

• For Europa, we shall not use a map, which would be difficult to read, but
several images compiled by Galileo, showing the rather unusual structure
of the ground.

In the case of natural satellites, the zero meridian is not chosen arbitrarily.
The origin for longitudes is taken to be the meridian exactly at the centre of
the face turned towards the planet.
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11.7 Satellite of a Natural Satellite in Real Orbit

11.7.1 Perturbative Accelerations

For a satellite in orbit around a natural satellite, the sphere of influence identi-
fies the region in which the acceleration due to the mother planet is negligible
compared to the central acceleration. To evaluate this, we go back to the for-
mulas in Sect. 3.13, replacing µS by µ and µ by µN, since for the satellite, the
planet/Sun system is now replaced by the natural satellite/planet system.
Table 11.4 shows the ratios µ/µN and the results of the calculation of ρΣ .
We note that, for Europa, ρΣ is very small because its mass is 40 000 times
less than the mass of Jupiter.

The variation of the central acceleration and perturbing accelerations with
the altitude of the satellite is shown in Fig. 11.8 (upper) for a satellite around
the Moon, and in Fig. 11.8 (lower) for a satellite around Europa. The notation
for the accelerations is adapted from Table 3.3.

For the central acceleration, (3.22) gives γCCC(R) = g(R) = g0, which
gives 1.62 m s−2 for the Moon and 1.31 m s−2 for Europa. The main difference
between the cases examined up to now, of satellites around planets, is clearly
the presence (and importance) of the term γCC1, the perturbing acceleration
due to the central planet.

For a satellite of the Moon close to ground level, γCCN.J2 is greater than
γCC1 :

γCCN.J2(R) = 32.8 × 10−5 m s−2 , γCC1(R) = 2.5 × 10−5 m s−2 .

However, above h ∼ 1 000 km, γCC1 soon exceeds γCCN.J2.
For a satellite of Europa, γCC1 is always greater than γCCN.J2 :

γCCN.J2(R) = 0.8 × 10−3 m s−2 , γCC1(R) = 1.3 × 10−3 m s−2 .

Moreover, this term γCC1 increases with altitude (slope p = 1 on a log–
log scale) and when the satellite is at an altitude of about 10 000 km, this
acceleration, due to Jupiter, is greater than the central acceleration γCCC due
to Europa. In this case, γCC1 can no longer be treated as a perturbation, just
as the satellite is no longer a satellite of Europa!

11.7.2 Classification of Satellites

Motion of Natural Satellites

The four natural satellites studied here, like the others, all have synchronous
rotation, i.e.,

Jsid = Nsid ,



11.7 Satellite of a Natural Satellite in Real Orbit 481

Altitude h (km)

Distance r (1000 km)

r/R

A
cc

el
er

at
io

n 
(m

.s
-2

)

10

-1
10

-3
10

-5
10

-7
10

-9
10

-11
10

2 3 4 5 6 7 8 9 10 20 30 40 50

1 2 3 4 5 6 7 8 12 16 20 24 28

0 200 1000 5000

slope

Altitude h (km)

Distance r (1000 km)

r/R

A
cc

el
er

at
io

n 
(m

.s
-2

)

10

-1
10

-3
10

-5
10

-7
10

-9
10

-11
10

2 3 4 5 6 7 8 9 10 20 30 40 50

1 2 3 4 5 6 7 8 12 16 20 24 28

0 200 1000 5000

slope

Figure 11.8. Accelerations as a function of the distance r of the satellite from
the centre of the natural satellite. Log–log scale. Upper : Moon. Lower : Europa
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Table 11.4. Four natural satellites of planets in the Solar System. Geodetic and
astronomical quantities. Data and deduced quantities are the same as those ap-
pearing in Table 11.2. Quantities specific to this table: gravitational constant of the
natural satellite µN, semi-major axis aP (planet–natural satellite). The inclination
i is taken relative to the plane of the ecliptic (ECL) or the equatorial plane of the
planet (EQU). The rotation of the natural satellite is synchronous: Jsid = Nsid. For
Triton, retrograde revolution (minus sign)

Satellite µN = GMN R g0 Ve T0(h=0) d
[m3 s−2] [km] [m s−2] [km s−1] [min] n.d.

Moon 4.9028 × 1012 1737.4 1.62 2.38 108.31 3.34
Europa 3.2014 × 1012 1561.5 1.31 2.02 114.23 3.01
Titan 8.9782 × 1012 2575.0 1.35 2.64 144.41 1.88
Triton 1.4279 × 1012 1352.6 0.78 1.45 137.86 2.06

Satellite (Satellite) aP µ/µN ρΣ ρΣ/R
planet/number [km] n.d. [km] n.d.

Moon Earth I 383 398 81.3 57 433 33.1
Europa Jupiter II 670 090 39 572.6 8 462 5.4
Titan Saturn VI 1 221 803 4 225.9 37 709 14.6
Triton Neptune I 354 759 4 787.8 10 415 7.7

Satellite Nsid = Jsid e i J2

[day] n.d. [deg] 10−6

Moon 27.321 662 0.0555 5.15 ECL 203
Europa 3.551 181 0.0090 0.47 EQU 629
Titan 15.945 446 0.0291 0.30 EQU −
Triton −5.878 850 0.0000 156.83 EQU −

where the first term is the sidereal period of rotation of the natural satellite
about its own axis and the second is the sidereal period of revolution of the
natural satellite about the central planet. For the natural satellites considered
here, this period ranges from 27 days for the Moon to less than 4 days for
Europa. It should be noted that the revolution (and hence the rotation) of
Triton occur in the retrograde direction around Neptune.

Stationary Satellite

We shall study the possibility of placing a satellite in synchronous orbit, and
more specifically, in stationary orbit, around a natural satellite. Consider a
natural satellite N in orbit (semi-major axis aP) around a planet P . If the
planet has gravitational constant µ, the natural satellite follows the Keplerian
orbit with mean motion nN given by
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nN =
√

µ

a3
P

.

Its angular speed of rotation Ω̇T about its own axis, relative to a Galilean
frame, is thus

Ω̇T = nN ,

since the rotation is synchronous.
Consider a satellite in orbit (semi-major axis a) around a natural satellite

N . If the natural satellite has gravitational constant µN, the satellite follows
the Keplerian orbit with mean motion n0 given by

n0 =
√

µN

a3
.

If the motion of the satellite is to be synchronous with that of the natural
satellite N , the attractive body, we must satisfy the condition

n0 = Ω̇T ,

and this implies

aGS = a =
(

µN

µ

)1/3

aP , (11.5)

where aGS is the semi-major axis of the stationary orbit.
We now compare this value with ρΣ , the radius of the sphere of influence.

Adapting (3.103) to the present situation, we obtain

ρΣ = 2−1/5

(
µN

µ

)2/5

aP . (11.6)

The satellite must stay within the sphere of influence, i.e., it must satisfy the
inequality

aGS < ρΣ . (11.7)

Hence, with the values obtained from (11.5) and (11.6),(
µN

µ

)5/3

<
1
2

(
µN

µ

)2

.

Finally,

µN > 8µ . (11.8)

This condition is absurd. A natural satellite cannot have greater mass than
the central planet. It is thus impossible to obtain a stationary orbit for a
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satellite of a natural satellite, at least in the sense that we have defined such
an orbit here.

If a satellite is stationary with respect to a natural satellite, it is also
stationary with respect to the planet, because of the synchronous rotation of
the natural satellite. This happens when it occupies one of the five Lagrange
points. It then remains fixed relative to the natural satellite–planet system.
Only L4 and L5 are stable. When the satellite is located at L4 (or L5), it forms
an equilateral triangle with the planet and the natural satellite. In the case
of the Moon and Earth, the satellite is thus located some 380 000 km from
the natural satellite. Needless to say, this is not much use for an observation
satellite. The mission STARS, since abandoned in this form, was envisaged
for the L5 point of the Earth–Moon system, but the aim was not to observe
the Moon.

Sun-Synchronous Satellite

We now study the case of a satellite in Sun-synchronous orbit around a
natural satellite. We can calculate the constant of Sun-synchronicity using
(4.63). We can also find a relation between khN and khP, the constants of Sun-
synchronicity for satellites in orbit around a natural satellite N and around
the central planet P, respectively. With the corresponding subscripts, we can
write

khN =
3
2

Tsid

T0(h=0)N
J2N , khP =

3
2

Tsid

T0(h=0)P
J2P .

It is important to note that the sidereal period of revolution Tsid is the same
in both cases: the natural satellite N takes the same time as the planet P to
accomplish one revolution around the Sun. We obtain

khN

khP
=

J2N

J2P

T0(h=0)P

T0(h=0)N
. (11.9)

Using (11.2) or (11.3) with the mean densities, we then have

khN

khP
=
√

dN

dP

J2N

J2P
. (11.10)

Let us return now to the four natural satellites studied here. For Titan
and Triton, we are unable to investigate the question of Sun-synchronicity,
because we do not have sufficient knowledge of the J2 term (and it would not
be particularly useful in these cases). For the Moon and Europa, the reader is
referred to the two parts of Fig. 11.8 which indicate the various accelerations.

For the Moon, the calculation of the constant of Sun-synchronicity kh =
khN using (11.10) yields

kh = 1.4725 .
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This in turn implies a minimal inclination of

iHS min = 133◦ .

For a satellite in low orbit around the Moon (LLO, Lunar Low Orbiting),
the perturbing acceleration γCC1 due to the Earth is less than the perturb-
ing acceleration γCCN.J2 due to flattening. If the LLO satellite is in Sun-
synchronous orbit, the effect of the Earth, which is one tenth the effect due
to the J2 term of the Moon, would soon remove the satellite from this Sun-
synchronous orbit, in a matter of a few days.

For Europa, the situation is more radical. The term γCC1 is always greater
than γCCN.J2, even at zero altitude. The perturbation due to Jupiter’s gravity
is greater than the one due to the flattening of Europa, whatever the altitude
of the satellite. There is therefore no hope of obtaining a Sun-synchronous
orbit for a satellite around Europa.

Frozen Orbit

Owing to a lack of accurate enough geodetic data concerning the natural
satellites, we can only investigate frozen orbits for satellites around the Moon.
In the case of our own natural satellite, the spherical harmonic coefficients of
the gravitational potential are well documented. Here are the first few values
of Jn × 106 in the LPLGM model:

J2 = 203.236 626
J3 = + 8.475 906 J4 = − 9.591 929 J5 = + 0.715 409
J6 = −13.577 715 J7 = −21.774 733 J8 = − 9.674 866

For a satellite in low near-polar orbit (with frozen perigee ωF = 270◦ since
J3 > 0), the frozen eccentricity eF can be approximately calculated using
(7.41) to give eF ≈ 0.02, which is relatively high for a frozen eccentricity.
For other inclinations, eF can take values between 0.01 and 0.001. These
calculations are complicated by the presence of the J7 term, whose value is
rather large here.

11.8 Ground Track of a Satellite of a Natural Satellite

11.8.1 Satellite of the Moon

After the conquest of the Moon (1959–1972), discussed at the beginning of
the chapter in the more general context of space exploration, further probes
and lunar orbiters were sporadic. The probe DSPSE (Deep Space Probe Sci-
ence Experiment), or Clementine, was launched on 25 January 1994 and
flew in lunar orbit for 70 days. It drew up a very accurate topographic
map of the Moon, but then failed in its planned encounter with the asteroid
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Table 11.5. Measured values of the selenocentric gravitational constant µ = GM
with estimated error. Historical evolution mentioning the method used and the year

Method Year µ [km3s−2] Error

Laser, LO-4 1980 4 902.799 ±0.003
GLGM-1 1993 4 902.802 6 ±0.000 1
GLGM-2 1997 4 902.802 9 ±0.000 2
LPLGM 1999 4 902.801 06 ±0.000 08

Figure 11.9. Left : first image of the hidden face of the Moon. Historic photograph,
taken by Luna-3 on 7 October 1959, during a flyby at altitude 66 000 km. Credit:
USSR Academy of Sciences. Right : Ixion/Atlas reconstitution of the Moon seen by
Luna-3 when the image was taken. The meridian (continuous curve) demarcates
the visible face (to the west, on the left) from the hidden (to the east, on the right)

1620-Geographos. The probe Lunar Prospector, launched on 7 January 1998,
went into a near-circular, near-polar orbit (h = 100 km, then h = 40 and
h = 30 km). On 31 July 1999, it impacted the Moon near the south pole in
a controlled crash to look for evidence of water ice, but none was found.

Lunar gravitational potential models first used laser ranging measure-
ments (LLR, Lunar Laser Ranging) carried out by means of reflectors set up
on the Moon, then the satellites Lunar Orbiter-1 to -5, Apollo-15 and -16,
Clementine, for the models known as GLGM-1 and 2 (Goddard Lunar Grav-
ity Model). The model known as LPLGM (Lunar Prospector Lunar Gravity
Model) also used Lunar Prospector (see Table 11.5).



11.8 Ground Track of a Satellite of a Natural Satellite 487

The Japanese project Selene (Selenological and Engineering Explorer),
called Lunar-A before launch, should place an orbiter in circular orbit (h =
100 km) for one year.

In the following, we represent several revolutions of the ground track
of Clementine and, in memory of the glorious lunar exploration, we give a
thought for Luna-3 and Apollo-15. On all maps of the Moon, we show the
meridians 90◦E and 90◦W by a thick continuous line. These symbolically
demarcate the visible and hidden faces of the Moon.

Example 11.3. Discovery of the hidden face of the Moon.

The Soviet probe Luna-3 was launched on 4 October 1959
and overflew the hidden face of the Moon on 7 October.
Unlike its successors, in heliocentric orbit, Luna-3 was in
fact a satellite of the Earth on a highly eccentric orbit, with
radius at apogee ra = 469 000 km and period 16.2 days.
(However, it also appears under the entry ‘space probe’ in
the index.).

Indeed, it burnt up in the Earth atmosphere in April 1960. The historic photograph

of the hidden face is shown on the left in Fig. 11.9. Next to it is a representation of

the Moon viewed under the same conditions from a distance of 38 lunar radii. On

the left of the photograph and the map is a part of the visible face featuring the

dark region of the Mare Crisium (centered on 17.0◦N, 59.1◦E). The hidden face,

incompletely photographed by Luna-3, was soon to be better revealed by Zond-3,

and then fully mapped by the US orbiters (Orbiter-3, -4, Explorer-35, Orbiter-5),

as they prepared in 1967 the landing areas for the Apollo programme. It was thus

discovered that the two faces looked rather different, as can be clearly seen from

the map shown in Fig. 11.11 (lower). This difference arises because the lunar crust

is thicker on the hidden face than on the visible face, surely a consequence of the

tidal effect. The wide basins on the hidden face are not filled with basalts from

ancient lava flows, as they are on the visible face. These features have been known

as ‘seas’ since ancient times.

Example 11.4. Ground track of the satellite Clementine over two days.

The probe Clementine, in its lunar mapping mission, followed the highly eccentric
polar orbit shown in Fig. 11.12 (upper), with pericenter (periselene) at latitude
28◦S during the first month and 29◦N during the second. Indeed, each measurement
cycle lasted one month, the time required by the satellite to observe the whole of
the Moon, since this is in fact the time it required to rotate about its own axis
in the Galilean frame. The ground track of the orbit is shown in the two parts
of Fig. 11.10, over two days, i.e., 9.5 revolutions (T = 5 hr). These revolutions
correspond to revolutions 103 to 112, on 13 and 14 March 1994 (cycle 1).
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[MOON] Clementine
Ellipt. orbit - Gr. track
>>>>   Time span shown:  2880.0 min =   2.00 days

Equiv. altit.  =   1675.9 km

e = 0.370300

a = 3413.300 km

Inclination  =  91.00 °

Period =   298.27 min    * rev/day = 4.83

h_a =  2940 km;  h_p =  412 km;  arg.periapsis:  -12.00 °

Longitude / Initialisation:

A.n.: 179.80 ° - Apo.: 178.69 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GLGM-2

[MOON] Clementine
Ellipt. orbit - Gr. track
>>>>   Time span shown:  2880.0 min =   2.00 days

Equiv. altit.  =   1675.9 km

e = 0.370300

a = 3413.300 km

Inclination  =  91.00 °

Period =   298.27 min    * rev/day = 4.83

h_a =  2940 km;  h_p =  412 km;  arg.periapsis:  -12.00 °

Longitude / Initialisation:

A.n.: 179.80 ° - Apo.: 178.69 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre (r.): 50.0 ° S;  180.0 °E

Aspect:  Oblique

[  -90.0 / +140.0 /  -90.0 ] Gr.Mod.:  GLGM-2

Figure 11.10. Ground track of the satellite Clementine over two days
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[MOON] Apollo-15 (Orbiter)
Orbit - ref.: Moon
>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  113.3 km a = 1850.700 km

Inclination  = 154.00 °

Period =   119.00 min    * rev/day =12.10

Equat. orbital shift  =   30.4 km  (   1.0 °)

Asc. node:     90.50 °Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre:      26.0 ° N;   24.0 ° W

Aspect:  Oblique

[  -90.0 /  +64.0 / +114.0 ] Gr.Mod.:  GLGM-2

[MOON] Apollo-15 (Orbiter)
Orbit - Ground track
>>>>   Time span shown:  5443.2 min =   3.78 days

Altitude =  113.3 km a = 1850.700 km

Inclination  = 154.00 °

Period =   119.00 min    * rev/day =12.10

Equat. orbital shift  =   30.4 km  (   1.0 °)

Asc. node:     90.50 °

App. inclin. = 154.07 °

Projection:  Mollweide

Property:  Equal area

T.:Pseudocyl.    Graticule: 10°

Map centre:       0.0 °  ;    0.0 °

Aspect:  Direct [interrupted]

[   +0.0 /   +0.0 /   +0.0 ] Gr.Mod.:  GLGM-2

Figure 11.11. Upper : Orbit of the lunar satellite Apollo-15 (Orbiter) over one
day. Lower : Ground track over four days (geochemical mapping mission)
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[MOON] Clementine
Orbit - ref.: Moon
>>>>   Time span shown:   7.00 days

Equiv. altit.  =   1675.9 km

e = 0.370300

a = 3413.300 km

Inclination  =  91.00 °

Period =   298.27 min    * rev/day = 4.83

h_a =  2940 km;  h_p =  412 km;  arg.periapsis:  -12.00 °

Longitude / Initialisation:

A.n.: 179.80 ° - Apo.: 178.69 °

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 20°

Map centre:      70.0 ° N;   18.0 °E

Aspect:  Oblique

[  -90.0 /  +20.0 /  +72.0 ] Gr.Mod.:  GLGM-2

[EUROPA] Europa Orbiter
Orbit - Ground track
>>>>   Time span shown:   720.0 min =   0.50 day

Across track swath

Altitude =  200.0 km a = 1760.700 km

Inclination  =  85.00 °

Period =   136.80 min    * rev/day =10.53

Equat. orbital shift  =  263.0 km  (   9.7 °)

**   Half-swath:  35.0°  =>   144 km [  1.0 min]

Asc. node:    -34.00 °

Latit. overlap: 89.7° <--> 90.0°

Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre:      12.0 ° N;   83.0 ° W

Aspect:  Oblique > zoom : 2.00

[  -90.0 /  +78.0 / +173.0 ] Gr.Mod.:  IAU91

Figure 11.12. Upper : Orbit of lunar satellite Clementine over seven days (quarter
of a month). Lower : Ground track of the Europa Orbiter with swath
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[EUROPA] Europa Orbiter
Orbit - Ground track
>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  200.0 km a = 1760.700 km

Inclination  =  85.00 °

Period =   136.80 min    * rev/day =10.53

Equat. orbital shift  =  263.0 km  (   9.7 °)

Asc. node:   -136.00 °Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre (r.): 36.0 ° N;  122.0 ° W

Aspect:  Oblique

[  -90.0 /  +54.0 / -148.0 ] Gr.Mod.:  IAU91

[TRITON] Triton Orbiter
Orbit - Ground track
>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  176.6 km a = 1529.200 km

Inclination  =  85.00 °

Period =   165.77 min    * rev/day = 8.69

Equat. orbital shift  = -166.3 km  (  -7.0 °)

Asc. node:   -135.00 °Projection:  Orthographic

Property:   none

T.:Azimuthal    Graticule: 10°

Map centre (r.): 36.0 ° N;  122.0 ° W

Aspect:  Oblique

[  -90.0 /  +54.0 / -148.0 ] Gr.Mod.:  IAU91

Figure 11.13. Ground track of a satellite around Europa (top) and around Triton
(bottom)
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Note. The very accurate topography established by Clementine revealed a gigantic

impact basin called the South Pole–Aitken basin, circular in shape, with diameter

2 500 km. (One diameter extends from the Aitken crater at 16.8◦S, 173.4◦E, to the

South Pole.) It is centered on the point 50◦S, 180◦E. The basin appears very clearly

on the right in Fig. 11.10 (lower), with an orthographic projection centered on the

centre of the basin.

Example 11.5. Ground track of the lunar orbiter Apollo-15 during its geochemical
mapping mission.

In the Apollo human exploration missions of the lunar floor, the capsule remained
in lunar orbit with an astronaut aboard [see Fig. 11.11 (upper)]. The two other
astronauts left the capsule in the lunar module (LM) and softlanded on the Moon.
After a stay lasting one or two days, or six in the case of Apollo-16, they regained
the capsule which then left the lunar orbit to return to Earth. During the Apollo-15
mission, the command module carried out a geochemical mapping experiment from
its lunar orbit. In fact it measured gamma radiation from the surface, resulting
from the natural radioactivity of the crust. The ground track of the orbit during
the experiment is shown for a time span of 4 days, between 1 and 4 August 1971, in
Fig. 11.11 (lower). The landing site of this mission was located at 26.10◦N, 3.65◦E,
at the limit of the maximum attained latitude. It is clear that, with a lunar orbit,
the area scanned over four days not very great.

Note on Map. The Moon is shown in Fig. 11.11 (lower) with an interrupted

Mollweide projection, in which the central disk corresponds to the visible face. The

altitudes there are lower than on the hidden side.

11.8.2 Satellite of Europa

Jupiter’s four large natural satellites, the so-called Galilean moons, each have
between half and twice the mass of the Moon. Moving away from the planet,
these moons are Io, Europa, Ganymede and Callisto, named after four of
Zeus’ lovers and companions (spot the boy), whose motions are related by
several resonances.31 Images sent back by Voyager-1 and -2, later refined by
those from Galileo, have provided us with a good level of knowledge about
these moons.

Europa is covered with water ice (temperature 110 K at the equator and
50 K at the poles). It appears to have an internal heat source, due to tidal
effects, and this implies that there may be an ocean of liquid water beneath
the frozen surface. Hence the enthusiasm of planetary scientists for further
31 The mean motions ni of the first three Galilean moons, i = 1 to 3, are related

(this is the Laplace resonance):

n1 − 2n2 = n2 − 2n3 = 0.7396◦/day .
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exploration! The Europa Orbiter mission will determine the thickness of the
icy crust. Following complex maneuvers which will take several months, the
probe should transit from an orbit around Jupiter to an orbit around Europa
which will eventually be circular, low altitude and near-polar.

Example 11.6. Orbital track of the Europa Orbiter.

A low-orbiting satellite completes about 10 round trips per (terrestrial) day with

an equatorial shift of the order of 10◦. In the case of the Europa Orbiter, the orbital

characteristics for the scientific mission will be h = 200 km, i = 85◦. Figure 11.12

(lower) shows the ground track of this orbit together with the swath (f = 35◦) over

half a day, whilst Fig. 11.13 (upper) shows the ground track for one day.

11.8.3 Satellite of Titan

The natural satellite Titan is in equatorial orbit around Saturn, with a rel-
atively high eccentricity. It was discovered by Huygens in 1655. In terms of
size and mass, it is the second natural satellite of the Solar System, just
behind Ganymede. The atmosphere of Titan is 4.5 times as dense as the
Earth’s atmosphere (at ground level, 1.5 bar with absolute temperature only
one third of that on Earth). Photochemical reactions abound due to solar
UV radiation, leading to the synthesis of an aerosol layer which masks the
surface in the visible. Images taken by Voyager-1 do not show the ground,
only the cloud cover. As for Venus, the atmosphere is in superrotation.

The Huygens module of the Cassini probe should make a parachute de-
scent lasting several hours in January 2005. There will not be a satellite
around Titan for some time yet.

11.8.4 Satellite of Triton

The natural satellite Triton is in circular equatorial orbit around Neptune,
with eccentricity e = 1.57 × 10−5. It was discovered by W. Lassel on 10
October 1846, just two weeks after the discovery of Neptune. As we have
already said, the rotation of Triton is synchronous with its revolution, which
is retrograde. It is the only large natural satellite to revolve in this direction.

Most of our knowledge of Triton comes from images transmitted by
Voyager-2 –see Figure 11.14. As far as it has been observed, these images
show a cracked surface, rather like the skin of a melon, and referred to as a
cantaloupe terrain. One can make out geysers with plumes rising up to 8 km,
although we do not know what they could be ejecting at this temperature.
The inclination of Triton with respect to the ecliptic creates a sequence of
seasons, as on the Earth and Mars.

A mission to Triton would be a difficult undertaking (it is a long way to
Neptune) and it will be some time before we see a satellite in orbit around
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Figure 11.14. Voyager-2 passed by Triton about 5 hours after skimming within
5000 km of the cloudtops of Neptune. Triton is one of the most unusual objects
encountered during all the Voyager planetary flybys. This image is a digital mosaic
of 12 individual images. The large south polar cap at the bottom of the image is
a slowly evaporating later of frozen nitrogen. Voyager data showed that Triton is
extremely cold (daytime temperature of 37 K), extremely bright (reflecting nearly
100 % of the sunlight incident upon it) and has a very tenuous atmosphere of
nitrogen and methane (with a surface pressure 10 millionths of Earth’s atmosphere
at sea level). Credit (legend and photography): JPL/NASA

this icy body. However, in the next example, we discuss the ground track of
a hypothetical Triton Orbiter!

Example 11.7. Orbital track of a satellite around Triton.

We have considered a satellite with the same reduced altitude and the same incli-

nation as the Europa Orbiter. The orbital track has been plotted over one day in

Fig. 11.13 (lower). The novelty here is that the shift occurs towards the east. Before

bringing this book to a close, we had to find an example of a celestial body in the

Solar System which goes round the ‘wrong’ way!
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variation of orbital elements

long period . . . . . . . . . . . . . . 91–94, 343
periodic . . . . . . . . . . . . . . . . . . . . . . . . . .95
secular . . . . . . . . . . 86, 90–95, 343, 421
short period . . . . . . . . . . . . . . . . . . 91, 92
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ground track . . . . . . . . . . . . . . . . . . . .247
satellite . . . . . . . . . . . . . . . . . . . . . . . . .247

Venus
astronomical data . . . . . . . . . . . . . . .461

atmosphere . . . . . . . . . . . . . . . . 456, 474
superrotation . . . . . . . . . . . . . . . . . 466

geodetic data . . . . . . . . . . . . . . . . . . . 461
perturbative acceleration . . . 464, 466
space exploration . . . . . . . . . . . . . . . 457

vernal equinox . . . . . . 147, 412, 415, 418
vertical . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
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visibility time . . . . . . . . . . . . . . . . 250–254
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at pole . . . . . . . . . . . . . . . . . . . . . . . . . 104
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yaw axis . . . . . . . . . . . . . . . . . . . . . . . . . . 351
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anomalistic . . . . . . . . . . . . . . . . 143, 152
civil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
draconitic . . . . . . . . . . . . . . . . . . . . . . .143
Gregorian . . . . . . . . . . . . . . . . . . . . . . .143
Julian . . . . . . . . . . . . . . . . . . . . . . . . . . 143
sidereal . . . . . . . . . . . . . . . . . . . . . . . . . 143
tropical . . . . . . . . . . . . . . . . . . . . . . . . . 143

– Z –
zenith . . . . . . . . . . . . . . . . . . . . . . . . 354, 385

passage of Sun . . . . . . . . . . . . . . . . . . 387
zodiac . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
zonal harmonics . . . . . . . . . . . . .64, 89–94
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The figure from Greek mythology known as Ixion was not, if the truth be
told, a particularly savoury one. The King of the Lapiths, he behaved in a
decidedly reprehensible manner on the day of his wedding, causing his future
father-in-law to fall into a burning pit so that he would not have to pay the
dowry.

This act was considered the ultimate crime, for it broke all the rules of
hospitality, and indeed, it was reproved by all the gods but one. The only
deity who would agree to purify Ixion for the murder was Zeus, a connais-
seur when it came to perjury and other misdemeanours. Zeus even felt some
compassion for this strong-minded king, inviting him to Olympus and offer-
ing him hospitality. As an exceptional sign of friendship, he bade him drink
ambrosia, which made him immortal.

Ixion admired Zeus’ antics and escapades and, encouraged by the atmo-
sphere of familiarity in the Olympian realm, began to covet Zeus’ own wife
Hera. But this was where he overstepped the mark! The king of the gods
cried out: “A little respect for one’s host!” As a punishment, he bound him
to a fiery wheel which whirled him forever through the skies.

As he had been made immortal, the poor fellow must still be spinning
around up there. One may thus consider Ixion as the first of all artificial
satellites, and this is therefore the name we have chosen for our software.
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CD Software

The CD software Ixion dixit accompanying this book comprises two parts:
Program and Graphs.

Program

The program IxionPC is an interactive orbitography and sampling program.
One can select a satellite on the list included, or define one at will. Such a
definition can be made directly by feeding in an altitude, inclination, eccen-
tricity, etc., or indirectly, by choosing the period or recurrence cycle.

The program IxionPC establishes the orbit, then provides various points
on the ground track. When it is given the characteristics of the swath, it
calculates the spatial and temporal sampling. For a given target point, this
sampling appears in the form of a table giving the time at which the satellite
points at the target and the angles describing the target–satellite geometry.
All these calculations can be carried out for the Earth and Mars.

IxionPC is part of the Ixion software, in particular, excluding the graphs
part.

Graphs

The Graphs part contains hundreds of charts showing satellite tracks and
orbits. This part is not interactive. There is a wide range of orbital parameters
in order to provide a varied panorama, reflecting the great diversity of satellite
orbits. It also includes a great many sampling tables, most of them taking
into account the direction of solar illumination.

In Graphs, sampling is given for Earth- and Mars-orbiting satellites, while
the ground track, orbit and swath are also represented for satellites of Mer-
cury, Venus, the asteroid Eros and the natural satellites Europa and the
Moon.

How to Use the CD

Insert the CD Ixion dixit in the appropriate drive of your computer. The
welcome page will appear with instructions for use of the software.



Colour Plate I. The Earth and the Moon. Image taken by the Galileo probe in
December 1992. After three gravity-assist maneuvers (Venus, Earth, Earth), the
probe was on its way towards Jupiter to explore the Jovian system (which it did
from 1995). On the Earth, one can make out the Pacific and South America, and
on the Moon, the Tycho crater. The images of the Earth and the Moon were
taken separately and put together with the same colour and albedo scales. Credit:
c©NASA/JPL, Galileo Team
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Colour Plate II. Upper : rather novel image of the Earth’s South Pole taken by
Galileo as it headed off for Jupiter in December 1992. Composite image taken over
a 24 hr period. Note the characteristic shape of the cloud systems (mid-latitude
weather fronts). Credit: c©NASA/JPL, Galileo Team. Lower : Ixion/Atlas recon-
stitution of the map of the Earth seen from the same point, showing the orbital
track of an ERS/Envisat-type satellite indicating local time (ascending node 22:15
LMT, colour scale as for MetOp-1 in Colour Plate VIII). Using the map, one can
make out the dark forms of Australia and South Africa, without cloud cover, on
the photograph
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Colour Plate III. Upper : classic image of the Earth’s disk as viewed by the
geostationary satellite METEOSAT-7. Colour image from VIS (visible) channel, 4
September 2001, 12:00 UT. Credit: c©2002 EUMETSAT. Lower : Ixion/Atlas recon-
stitution of the map of the Earth from the same viewing point, showing the orbital
track of an ERS/Envisat-type satellite indicating local time (ascending node 22:15
LMT, colour scale as for MetOp-1 in Colour Plate VIII)
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Colour Plate IV. Brittany, Cornwall, the English Channel and the Iroise sea.
Image taken by the MISR instrument (Multi-angle Imaging SpectroRadiometer)
aboard Terra. Revolution 7778, 4 June 2001. The turquoise areas off the coast
of Brittany reveal the intense efflorescence of phytoplankton (coccolithophores),
whose shields made of tiny platelets (of the order of µm) scatter solar light. At the
top of the picture, the band of cirrus clouds is striped with aircraft trails. Credit:
c©NASA/GSFC/LaRC/JPL, MISR Team
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Colour Plate V. Fire and smoke across Mato Grosso, Brazil. Image taken by the
MODIS instrument (Moderate Resolution Imaging Spectrometer) aboard Terra on
6 September 2004. In central South America, at the border of Mato Grosso state,
Brazil (top) and Bolivia (bottom left) numerous fires choked the skies with smoke on
6 September 2004, when the Terra MODIS instrument captured this image. Actively
burning fires detected by MODIS during the overpass are marked in red . At the
centre of the image, a small swath of green hangs down from intact rainforest to the
north. Credit: c© J. Descloitres, MODIS Land Rapid Response Team, NASA/GSFC



534 Colour Plates

A
u

ra
O

rb
it 

- 
G

ro
un

d 
tr

ac
k

R
ec

ur
re

nc
e 

=
 [1

5;
 -

7;
 1

6]
 2

33

>
>

>
>

   
T

im
e 

sp
an

 s
ho

w
n:

  5
76

0.
0 

m
in

 =
   

4.
00

 d
ay

s

-9
0

-7
5

-6
0

-4
5

-3
0

-1
5

0
15

30
45

60
75

90
S

un
 E

le
va

tio
n 

 (
°)

2
1
 J

U
N

 -
>

A
lti

tu
de

 =
  6

99
.6

 k
m

a 
=

 7
07

7.
73

8 
km

In
cl

in
at

io
n 

/ S
U

N
-S

Y
N

C
H

R
O

N
.=

  9
8.

21
 °

P
er

io
d 

=
   

 9
8.

88
 m

in
   

 *
 r

ev
/d

ay
 =

14
.5

6

E
qu

at
. o

rb
ita

l s
hi

ft 
 =

 2
75

1.
9 

km
  (

  2
4.

7 
°)

A
sc

. n
od

e:
   

  2
8.

55
 °

 [1
3:

38
 L

M
T

]
P

ro
je

ct
io

n:
  O

rt
ho

gr
ap

hi
c

P
ro

pe
rt

y:
   

no
ne

T
.:A

zi
m

ut
ha

l  
  G

ra
tic

ul
e:

 1
0°

M
ap

 c
en

tr
e 

(r
.)

: 4
9.

0 
° 

S
;  

 7
0.

0 
°E

A
sp

ec
t: 

 O
bl

iq
ue

[  
-9

0.
0 

/ +
13

9.
0 

/  
+2

0.
0 

] G
r.M

od
.: 

 E
G

M
96

Colour Plate VI. Ground track of the Sun-synchronous satellite Aura, indicating
the solar elevation, over four days
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Colour Plate VII. Orbit of the satellite Ellipso Borealis, indicating the local mean
time (LMT), over one day. The orbit is Sun-synchronous with critical inclination
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Colour Plate VIII. Ground track of the Sun-synchronous satellite MetOp-1, in-
dicating the local mean time (LMT), over five days, between 21:30 and 09:30 UT
each day
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Colour Plate IX. Ground track of the non-Sun-synchronous satellite Meteor-3-07,
indicating the local mean time (LMT), over nine days, between 12:00 and 24:00 UT
each day
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Colour Plate X. Orbit of the satellite Megha-Tropiques relative to the Earth,
represented over one day. The Earth’s equatorial plane has been shown with a blue
grid
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Colour Plate XI. Orbital track of the satellite Megha-Tropiques, indicating the
local mean time (LMT), over one day
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Colour Plate XII. Mars. Ground track of the Sun-synchronous satellite Mars
Global Surveyor (MGS), indicating the local mean time (LMT), over four sols
(Martian days). The projection used here (oblique orthographic) is the same as the
one used for the topography of Mars on the next page
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Colour Plate XIII. False colour topographical map of Mars, from data gathered
by the MOLA instrument aboard MGS. One can make out Valles Marineris, the
volcano Olympus Mons and the Tharsis Rise with its three volcanoes. Almost at
the antipodes of the Tharsis Rise is the Hellas impact basin. Credit: c©NASA/JPL,
MOLA Team

N
or

th
N

or
th

S
ou

th
S

ou
th



542 Colour Plates

[V
E

N
U

S
]

M
ag

el
la

n
E

lli
pt

. o
rb

it 
- 

G
r.

 tr
ac

k
>

>
>

>
   

T
im

e 
sp

an
 s

ho
w

n:
   

6.
00

 d
ay

s

E
qu

iv
. a

lti
t. 

 =
   

43
74

.0
 k

m

e 
=

 0
.3

91
76

4

a 
=

10
42

5.
83

5 
km

In
cl

in
at

io
n 

 =
  8

5.
70

 °

P
er

io
d 

=
   

19
5.

59
 m

in
   

 *
 r

ev
/d

ay
 =

 7
.3

6

h_
a 

=
  8

45
8 

km
;  

h_
p 

=
  2

90
 k

m
;  

ar
g.

pe
ria

ps
is

: +
17

0.
47

 °

Lo
ng

itu
de

 / 
In

iti
al

is
at

io
n:

A
.n

.: 
-9

0.
00

 °
 -

 A
po

.: 
 8

9.
27

 °

P
ro

je
ct

io
n:

  M
er

ca
to

r

P
ro

pe
rt

y:
  C

on
fo

rm
al

T
.:C

yl
in

dr
ic

al
  

  G
ra

tic
ul

e:
 1

0°

M
ap

 c
en

tr
e:

   
   

64
.0

 °
 N

;  
  4

.0
 °

E

A
sp

ec
t: 

 O
bl

iq
ue

 >
 z

o
o

m
 :

 1
.7

5

[  
+9

0.
0 

/  
+6

4.
0 

/  
-9

4.
0 

] G
r.M

od
.: 

 M
G

N
P6

0

Colour Plate XIV. Venus. Orbital track of the satellite Magellan, over six Earth
days. The projection (oblique Mercator) is centered on Maxwell Montes
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Colour Plate XV. Topographical map of Venus from data collected by the SAR
(radar) instrument aboard Magellan. Equatorial orthographic projections centered
on longitudes 0◦ (top) and 180◦ (bottom). Maxwell Montes can be made out in the
Ishtar Terra region, centered on 64◦N, 4◦E. Credit: c©NASA/JPL/MIT/USGS,
Magellan Team
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Colour Plate XVI. Upper : geopotential obtained using the model EGM96 (NASA
GSFC and NIMA Joint Geopotential Model). This shows the difference in me-
tres between the geoid and the terrestrial ellipsoid. Robinson projection. Credit:
c©NASA, OSU, NIMA. Lower : planet Mars. Close-up perspective view of west-
ern flank of Olympus Mons. Images taken by the High Resolution Stereo Camera
(HRSC) during Revolution 143 (21 April 2004) from an altitude of 266 km, aboard
Mars Express. Colour image created from the nadir and three colour channels.
Resolution: 25 m per pixel. Credit: c©ESA, Mars Express, DLR, FUB
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