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Preface

This book developed from my annual course on the genesis of joints in rocks, in the
department of rock engineering at the University of Technology, Graz, Austria. As joints
are fractures which, barren or filled with fluid or minerals, interrupt the continuity of rock
bodies, the development of these features is a mechanical process. Hence, the course and,
in more detail this book, deal with the mechanical genesis of joints.

By considering jointing as a mechanical process of fracturing one hopes to obtain a
simpler, more intelligible and coherent picture of the bewildering multiformity and
complexity of joints and joint systems in the field, and to facilitate the engineering
assessment of jointed rocks. However, one has to admit that the mechanics of jointing is
still at the stage of being a loose patchwork of theoretical models, each of which cope with
a special aspect of jointing; but it still leaves many gaps and unsolved problems.

Limited by time and didactic requirements, when lecturing I restricted myself to the
mechanical aspects of jointing that I considered to be well understood. But then, in writing
this book, doubts arose about theories which I had treated somewhat summarily in the
course, and which, I felt, needed to be re-examined, and possibly amended or improved.
Also, when aiming for a more coherent exposition, I occasionally introduced tentative
suggestions and “guesstimations”. All of this had the effect that some chapters became
lengthier than originally intended – a shortcoming, which I have tried to remedy by
inserting summaries at the ends of each chapter. I therefore advise any reader who is
discouraged by the length of a chapter, to turn first to the summary to find out whether the
chapter, or part of it, is of interest to him.

Throughout the book, I have used the extremely useful graphical method of Mohr’s
stress circle, by which much of the mathematics is avoided. For the reader who is less
conversant with this method, an Appendix on Mohr’s stress circle is reprinted from my
former book “Faulting in Brittle Rocks” (“FBR”, 2000, Springer). Although the present
book sometimes overlaps with “FBR”, it is intended to be completely self-contained.

I should further note, that the analyses in the book ignore the morphological details
of the fracture surface; instead, the fracture surface is assumed as smooth, the way it
appears when viewed on a scale much larger than the “micro”-scale of the surface features.
Readers interested in the surface morphology of fractures and the associated mechanisms,
the field of “Fractography”, are referred to the expositions in D. Bahat, Tectono-
fractography (1991, Springer) and to Section 2.2 in Bahat, A. Rabinowitch, B.V. Frid,
Tensile Fracturing in Rocks (2004, Springer).

Another point to be mentioned concerns the list of references. Instead of compiling
many pages of references, I inserted key references in the text, at the places where the
related issues were discussed. So, the reader may at least be sure that this author has
actually studied the papers he referred to.

In concluding this preface I wish to thank my friends Prof. Florian Lehner,
Prof. Horst Neugebauer and Norbert Tschierske for their encouragement and support, and
Mrs. Emma Moseley for correcting the manuscript.

But above all, I would like to thank Berta, who unselfishly endured the times of my
seclusion in writing the book, or my bad mood when I was hit by software calamities.

Georg Mandl
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Chapter 1

Fig. 1.1. Kinematic fracture types: joints (A), faults (B), dilational faults (C)

A B C

Introduction

The general theme of this book is the genesis of rock joints (germ. Kluftgenese); that is to
say the physical or mechanical processes by which joints of various kinds are produced.
What are rock joints, and why should we be concerned with their genesis? First, by
definition, rock joints are fractures, hence discontinuities caused by the rupturing of the
rock material. The ruptures may be restricted to individual grains or may cut continuously
through rock bodies over distances varying from millimetres to kilometres. We shall be
mainly concerned with the latter case, the “macroscopic” fractures whose dimensions are
much larger than the characteristic grain size of the rock.

From a phenomenological point of view, the macroscopic rock fractures are
basically divided in two major classes: “joints” and “faults”. In the terminology of the
International Society of Rock Mechanics, “a joint is a break of geological origin in the
continuity of a body of rock occurring either single, or more frequently in a set or system,
but not attended by a visible (italics by the author) movement parallel to the surface of
discontinuity.” In contrast, a fault is defined “as a fracture or fracture zone along which
there has been displacement of the two sides relative to one another parallel to the fracture.
(This displacement may be a few centimeters or many kilometers.)” This descriptive
classification is schematized in Fig. 1.1. Joints may be barren fractures, or infilled by
various materials, such as quartz, calcite, or other minerals. In this case the fractures are
called veins (germ. Gangspalten) or dykes if filled by solidified magma.

Note that the distinction between joints and faults hinges on the term visible which,
unfortunately, depends on the scale of observation. Thus, a joint may have formed by a
parting of the rock strictly perpendicular to the fracture plane (Fig. 1.1A) or even by
involving some shear displacement of the fracture walls that remains “invisible” at the
scale of observation. In this book we shall focus on joints, as faulting, the most prominent
deformation mechanism in the Earth’s crust, has been dealt with in a variety of text books
(e.g., G. Mandl (2000) Faulting in Brittle Rocks, Springer; henceforth referred to as FBR).

Joints are probably the most ubiquitous and, at the same time, most confusing
features of crustal rocks. They vary greatly in appearance, dimensions, and arrangement,
and occur in quite different tectonic environments. Figures 1.2–1.6 give a first impression
of the wide range of the appearance of rock joints.



2 Appearance of rock joints

Fig. 1.2. Cooling joints in andesite,
Mt. Rainier National Park, Wash.
(A. Lachenbruch (1962) Special
GSA paper, New York)

Fig. 1.3. Joint sets in limestone layers
separated by marl beds (J. Ramsay and
M. Huber (1987) Modern Structural

Geology, Vol. 2, Academic Press)

Fig. 1.4. Joint system in flat lying Entrada
sandstone, Utah; aerial photograph, scale ca.
1:40000 (from D. Meier and P. Kronberg
(1989) Klüftung in Sedimentgesteinen, Enke
Verlag, Stuttgart)

Figure 1.2 shows a polygonal joint pattern caused by shrinkage during the cooling
of a volcanic rock. (Similar patterns of shrinkage fractures are readily observed in drying
mud.) Figure 1.3 shows typical joint sets in an alternating sequence of limestone and marl
beds. The joints cut roughly orthogonally across the limestone layers (germ. bankrechte

Klüfte) while, interestingly, the marl beds have not been fractured at all. Quite a different
view is presented in Fig. 1.4, as an example of regional systems of parallel joints that
extend straight over a wide region. It is, in particular, the surprising straightness of the
regional joints that is still somewhat of a mystery. Figure 1.5 brings us down to the other
extreme of scale; it shows a core sample of a Tertiary oil source rock (diatomite) that was
fractured by high-pressure hydrocarbons to provide escape routes along sill- and dyke-type
fractures. Figure 1.6 gives a foretaste of the fascinating association of joints with anticlinal

2 cm

Fig. 1.5. Dyke-sill system in oil source
rock
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Fig. 1.6. Traces of anticlinal joint sets (Bude, Devon, SW-England)

bending. The traces of typical anticlinal joint systems can be seen on the nicely exposed
anticlinal “whale back” (periclinal fold) in Carboniferous turbidite sediments.

These examples should give the reader some feeling for the abundance of rock
joints. But it is not our aim in this course to indulge in a broad exposition and detailed
descriptions of the various joint geometries. Rather, we shall inquire into the mechanical
side, that is into the mechanical aspects that are common to various, or even all types of
rock joints. In this way geometrically disparate or dissimilar joint phenomena may be
revealed and understood as closely related by the underlying mechanical process, and
complex arrangements of joints may be better understood. In the first place, this approach
brings out the very crucial role of rock stresses and fluid pressures in the development of
rock joints. Most rock joints owe their origin to stresses that were induced or imposed from
outside (e.g. by the stretching of layers, or the rise of pore fluid pressure by external
compression or fluid injection). We shall therefore fix our attention on the processes of
jointing that are caused by exogenous loading of rock bodies, and leave aside jointing by
the endogenous tensile rock stresses induced by the shrinkage of a cooling (Fig. 1.2) or
desiccating rock whose outside boundaries remained fixed.

Why should structural geologists, engineering geologists and rock engineers be
interested in a discourse on the mechanics of rock joints? Naturally, there is intellectual
satisfaction to be gained from understanding how and why the various types of joints are
formed in rocks. But besides this academic aspect, the study of the jointing mechanisms
has a very practical side: Observations of joint systems can convey information on the
tectonic stress field that was active at the time the joints were formed. And since joint
systems commonly consist of several joint sets, often different in age, the associated stress
fields may also differ and represent different geologic periods or episodes. Conversely, if
the tectonic history of a region or locality is known, the character of ancient or recent stress
fields may be inferred, and eventually a reasonable idea conceived of the joint structures to



4 Why joint mechanics?

be expected in the interior of a rock body. On the other hand, if interior joints are identified
as “recent” features, they can provide information on the present state of the local rock
stresses. If the joints are open, the rock pressure on these joints is clearly zero. If the joint
faces show traces of striation (germ. Striemung), this is evidence of the action of shear
stresses. Also note that the stress field is changed near a free surface, which commonly
gives rise to some extra jointing that should be “filtered out” when predictions are made on
the joint structures further inside the rock.

Obviously, the better one knows a local joint system, in particular the orientation,
type, density and interconnectivity of the joints, the more realistically one can estimate the
stability and deformability of rock bodies in the design of large underground cavities, and
the better one may be able to cope with foundation problems in designing bridges, dams, or
power plants. In addition, information on the distribution of open and healed or sealed
joints is essential for the prediction of fluid flow, and for the reconstruction of migration
paths of ore-forming or hydrocarbon fluids. It is the presence of unhealed or only weakly
sealed joints and their inherent hydraulic conductivity that poses a major problem in the
planning of underground nuclear-waste depositories or the storage of gas and oil in
depleted reservoirs. Here again, the stress field is a major factor, since the hydraulic
conductivity of barren, or only weakly sealed joints depends very sensitively on the rock
pressure that keeps the joints closed.

A further point to mention is that joint-mechanical insight can be very useful in the
evaluation of in-situ measurements of rock stresses (by overcoring, flatjack tests, hydraulic
fracturing, bore hole break-outs, etc.). Strictly speaking, the measurements merely repre-
sent the state of stress at tiny spots in the whole field relevant to the engineering operation.
Unfortunately, it is quite common that the rock stresses vary greatly over distances not
much larger, or even smaller than the dimensions of the measuring device. These fluctua-
tions are caused by heterogeneities of the rock material (e.g. layering of the rock) and by
the presence of discontinuities, such as joints, faults and bedding planes. Thus, the in-situ
stress measurements are not much more than “pinpricks” in the relevant stress field. Natu-
rally, this raises the question of how reliable these data are as input in a prognostication of
the stresses one may have to cope with as the engineering work progresses. We shall see,
later in this course, how the mechanical interpretation of joints, or joint sets and systems
may be of assistance in evaluating and weighting in-situ stress data.

As mentioned before, the confusing multiformity in the appearance of rock joints
should become simpler, more intelligible and coherent, if jointing is considered as a mecha-
nical process of fracturing. To get started with this approach two basic concepts should be
stated. First, rock joints are considered as approximately planar fractures, whose two faces
are separated across the fracture plane by a distance that is much smaller than the fracture
length. The fracture faces unite at the fracture front. According to the type of displacement
three fundamental fracture modes are distinguished, as illustrated in Fig. 1.7. Rock joints are
mode I fractures when the relative displacement of the fracture walls is normal to the frac-
ture plane or, alternatively, the joints could be mode II shear fractures (shear joints) with a
shear displacement of the fracture walls that is “invisible” at the scale of observation.

The second point that should be made clear is that a rock joint is a brittle fracture
(germ. Sprödbruch). What does this mean? The term brittle is often used in a somewhat
ambiguous way; we should therefore define more precisely what we mean by “brittle”. To
this aim let us consider how a cylindrical rock sample will fail when axially loaded by a
normal stress v that is uniformly distributed over the end faces of the sample. The sample
may be laterally unconfined or loaded by a uniform confining pressure c. Disregarding
the technical details of the sophisticated testing machineries used in rock mechanics
laboratories, Fig. 1.8 summarises how the rock sample may fail.
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Fig. 1.8. Failure types in cylindrical rock sample under axial-symmetric loading:
A) tension fracture (germ. Zugbruch); B) extension or “cleavage” fracture (germ. Spalt-

bruch); C) dilational or hybrid extension-shear fracture (germ. hybrider Dehnungs-Scher-

bruch); D) shear fracture (germ. Scher- or Gleitbruch), E) multi-shear cataclasis (germ.
Multischerungs-Kataklase)

Fig. 1.7. The fundamental fracture modes: A) mode I, opening mode (germ. Trennbruch);
B) mode II, in-plane shear or sliding mode (germ. Scherbruch);
C) mode III, anti-plane shear or tearing mode (germ. Querscherungsbruch)

c´ > 0

c´ < 0c´ < 0

v´ > 0v´ > 0v´ < 0

v´ > 0 v´ > 0

c´ > 0

A B C
A B C
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Fig. 1.9. Typical stress-strain responses in axisymmetric loading (Fig. 1.8) (see text for
explanation)

peak
stress

yield
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Now, which of the failure modes A to D in Fig. 1.8, and the associated deformation
behaviour of the material should we consider as brittle? And what about the continuous
deformation mode in Fig. 1.8E? To answer these questions we have to consider several
aspects: First, the stress-strain curves of the loading tests, second, the effect of the rate of
loading, and third, the nature of the micro-processes involved. Figure 1.9 shows schemati-
cally the type of stress-strain curves that are recorded in axial loading tests.

Figure 1.9A represents the ideal or very brittle material behaviour. The material re-
sponds to the loading indicated in Figs. 1.8A,B by some small purely elastic extension or
shortening, and fails by fracturing at a certain critical stress level, – the “peak stress”. The
fracturing is accompanied by a sudden stress drop and the release of the elastically stored
strain energy, thereby separating the sample into parts which have not undergone per-
manent deformation and could be fitted together. (Naturally, the elastic strain response
need not be strictly proportional to the increase in stress (linear elasticity) as indicated in
the figure, and the steepness of the elastic stress-strain curve may somewhat decrease as
straining continues.) In reality, rocks do not deform in a purely elastic way up to peak
stress, but rather already start deforming inelastically at a lower, somewhat ill-defined
stress level – the so-called “yield point” (Fig. 1.9B). This point lies commonly at a level
about half the peak stress. The inelastic increase in stress beyond the yield point is referred
to as “strain hardening”. It allows the sample to withstand a further increase in load, until
it fractures at peak stress, again with a sudden drop in the axial loading stress v and the
complete loss of cohesion along the fracture surface. The stress-strain curves in
Figs. 1.9A,B are associated with the loading procedures and failure modes in Figs. 1.8A–C.

Next we consider the situation in Fig. 1.8D, where the rock sample is loaded by
axial and lateral compressive stresses, as typical for the compressive stress conditions that
generate tectonic faults. The differential stress v c reaches a “peak” level under
continued elastic/inelastic straining, but decreases thereafter in a more gentle way, as is
schematically illustrated in Fig. 1.9C. The post-peak descent of the stress-strain curve
implies a gradual reduction in the load-carrying capacity of the material, commonly
referred to as “strain softening”. Under the all boundary compressive stresses, fractures
form as shear fractures or narrow shear bands (Fig. 1.8D). On the fracture plane, cohesion
may be maintained, at least partly, and a frictional resistance is mobilised by the remaining
compressive stresses. This allows the fractured rock to support a certain residual stress
difference v res c.

The shear failure of the rock under all boundary compression (Fig. 1.8D) is
commonly preceded by a continuous inelastic deformation. Depending on the rock type,
the magnitude of the inelastic (i.e. permanent) strain will increase as the applied confining
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pressure c is raised. If raised sufficiently, say up into the kilobar range, strain softening
can be completely suppressed (Fig. 1.9D) and pervasive shortening (and lateral extension)
of the sample continues under a monotonic increase in axial loading stress v, at least
within the range of straining in modern high-pressure testing machines, where shortening
seldom exceeds 25%. To illustrate this material deformation behaviour in rocks under
compression we insert stress-strain curves from Theodore von Kármán’s classical
compression tests on cylindrical rock specimens at room temperature (Fig. 1.10). The
marble specimens (A) show strain softening at confining pressures up to about 700 bar, but
continue to strain-harden at still higher confining pressures; the sandstone (B) behaves
similarly. This trend of behaviour has been observed in triaxial testing of a great variety of
rocks and loose granular materials all over the world.

Let us now return to the initial question of what we mean by “brittle”. Which of the
different deformation and failure modes considered in Fig. 1.8 together with the associated
stress-strain responses in Fig. 1.9 should we consider as brittle? The failure modes A, B, C,
D in Fig. 1.8, with associated stress-strain responses A, B, C in Fig. 1.9 have in common
the existence of a peak stress and post-peak strain softening. This is the first, but not the
only characteristic of “brittleness”. The second, equally important constituent of brittle
behaviour is the rate independence of the pre- and post-peak deformation and fracturing.
By that we mean that the inelastic deformation process is not, or only slightly affected by
the rate at which the rock is strained or loaded. Naturally, this depends on the deformation

A B

Fig. 1.10. Th. von Kármán’s (1911) stress-strain curves for Carrara marble (A) and red
Mutenberg sandstone (B) (Differential stress v c is plotted against the axial shorten-
ing in percent. The numbers on the curves are the confining pressure c in bar.)
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processes that operate at the microscale. If the predominant microprocesses are fairly
insensitive to the rate of straining or loading, the macroscopic deformation will be so too.
Such rate-insensitive processes are the breakage of intergranular bonds, the abrasion,
breakage or crushing of grains, frictional intergranular sliding, reorientation of grains, the
growth of microcracks, and the associated volume dilation. These energy dissipating
“cataclastic” processes operate at moderate temperatures, e.g. below 240–400°C in quartz-
rich rocks, and below 400–600°C in feldspar-rich rocks. Thus, disregarding some slight
rate dependence, we arrive at the following definition of general brittleness:

A macroscopic deformation process is “brittle” in a general sense if it is rate-
independent and demonstrates strain-softening in the post-peak region.

Note that in this broad definition, it is of little relevance whether the post-peak
softening occurs as a sudden rupturing and complete loss of strength or as a more gradual
reduction of the strength of the material to a residual level.

Given the geothermal gradient, the temperature limits stated above for microcata-
clastic processes also specify the depth range of the so-called “brittle” upper crust of the
Earth, where tension and cleavage joints (i.e. the brittle fractures of type A and B in
Fig. 1.8) and brittle shear fractures could be generated under suitable stress conditions.
Then, assuming an average geothermal gradient of 25°C/km depth, which is typical for
continental areas, the temperature would restrict the formation of tension and cleavage
joints in quartz-rich rocks to a depth range of around 10 km.

Let us now return to the cases in Figs. 1.9D and 1.10 where inelastic hardening
continues beyond the yield stress. This kind of continuous deformation is commonly called
“ductile”. But note that, when used in this way, the term is purely phenomenological and
does not refer to the microprocesses involved. Accordingly, the term is considered as the
opposite of “brittle”, if the use of the latter term is restricted to the violent stress drop of
Fig. 1.9A.

In contrast, we prefer to reserve the terms “brittle” and “ductile” to a rheological
characterisation of the material by taking into account the stress-strain response of the
material. Idealising the real rock behaviour, we distinguish between rate-insensitive and
rate-sensitive deformation processes. “Brittleness” then comprises all rate-insensitive
deformations which terminate in strain-softening; violent rupturing of the rock is then
merely the most extreme case in the whole brittleness range. “Ductility”, on the other hand,
refers to rate-sensitive processes, associated with “viscous” flow, creep and stress
relaxation phenomena. These deformations result from diffusive transport processes inside
the grains, along grain boundaries, or through the pore water.

At this point, we should note that a deformation such as the continued hardening in
Figs. 1.9D and 1.10, although ductile in the phenomenological sense, need not be ductile in
the rheological sense, because the processes that operate at the grain-size scale may be
predominantly brittle and thus produce rate-insensitive hardening. On the other hand, the
macroscopic hardening may result from the combined operation of cataclastic micro-
processes and intra-crystalline gliding; it is then referred to as “semi-brittle”. The multi-
shear cataclastic hardening in Fig. 1.8E may be an example of semi-brittle behaviour in
marble and various other rocks under high confining load and moderate temperatures.

Finally, it should be understood that the distinction between rate-sensitive and rate-
insensitive behaviour strictly pertains to the deformation process itself and not to the
conditions that initiate the deformation. To elucidate this point, consider a block of rock
salt; when left alone, subject to its own weight, or put under a gently increased surface
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load, the block will slowly change its shape by viscous flow. If, however, a heavy weight is
dropped onto the block, the block may be made to fracture in a brittle manner. Similarly, a
rock specimen which deforms in a brittle manner in triaxial testing at room temperature,
can be made to deform in a ductile mode at elevated temperatures. In other words, one and
the same material can deform either way, in a brittle or in a ductile mode, depending on the
particular deformation conditions.

Obviously, these conditions can change in time. A sufficient reduction in tempera-
ture of a rock body, say below about 300°C in quartz-rich rock, will stop a ductile defor-
mation and allow brittle deformation processes to operate. Similarly, an increase in the rate
of the imposed straining may no longer allow the diffusion-controlled viscous deformation
mechanisms to keep pace with the imposed straining. Hence, ductile stretching or
shortening of a rock layer may change into brittle fracturing when the rate of the applied
extension or shortening is sufficiently raised. Thus joints may also be found embedded in
material that has been deformed by viscous flow.

In general, the viscous flow behaviour is not best described as a Newtonian fluid,
which implies a linear relationship between strain rates and stresses, but is more
realistically modelled by a non-linear creep law. In describing the creep behaviour of a
rock under a constant load, one can distinguish three phases of creep, as schematically
shown in the strain-time diagram of Fig. 1.11: Under a constant load, the rock specimen
begins to deform (“primary” creep I), but the strain rate (represented by the slope of the
strain-time curve) decreases. At the end of this phase, the creep flow either comes to a
complete halt or, under sufficient load, continues and accelerates eventually until rupture
occurs. Between this phase of accelerating unstable creep (“tertiary” creep III) and the
decelerating “primary” creep, rocks are often found to flow at an approximately constant
rate (“secondary” or steady state creep II).

Occasionally, creep flow may also occur under the pressure and temperature
conditions of the brittle upper crust where rocks normally deform in a brittle way. Two
typical examples are rock salt and clays or clay-rich sediments. It is well-known that rock
salt can flow in steady state (creep phase II) over geological periods. However, clays and
clay-rich sediments which have been normally compacted, do not exhibit a steady state
flow; they either come to rest after primary creep or, under sufficient load, undergo
accelerating tertiary creep that terminates in the formation of discrete fractures.

t (time)

Fig. 1.11. Creep under constant load:
I primary or transient creep;
II secondary or steady state creep;
III tertiary or unstable creep

strain



Chapter 2

Fig. 2.1. True triaxial loading

II
III

I

Experimental Evidence and Elementary Theory

Strength. In the preceding chapter we reviewed the modes (Fig. 1.8) by which a rock will
fail when uniformly stressed beyond a critical state of stress, loosely referred to as the
“strength” of the rock. This critical state depends on the rock type and the type of loading.
In uniaxial tension (Fig. 1.8A), the critical state is characterised by the maximal tensile
stress the rock can sustain (“tensile strength”), in uniaxial compression (Fig. 1.8B) it is the
greatest axial compressive stress (“uniaxial compressive strength”), and in compressive
shear failure (Fig. 1.8D) it is the maximal differential stress (“shear strength”) I III ,
( I  being the greatest, III  the smallest principal stress) which the rock can withstand.

Strength is not a unique material parameter, even if associated with a certain failure
type. It depends to a greater or lesser degree on the confining pressure, as was already
illustrated by von Kármán’s stress-strain curves in Fig. 1.10, and if a rock sample is
laterally confined by two different principal stresses II  and III  (Fig. 2.1), the strength
may also depend on the intermediate principal stress II . In general, the strength decreases
when the temperature is substantially raised or when the loading rate is reduced by orders

of magnitude. But above all, failure in a porous rock
is not affected by the pressure of the pore fluid, as
will be seen shortly.

Yet, before turning to this important point,
we have to draw the readers attention to the sign
convention we use when dealing with stresses.
Following the common usage in rock and soil
mechanics, we consider compressive normal stres-

ses as positive. This choice is motivated by the fact
that even in extensional regimes, most normal
stresses in the Earth’s crust are compressive. To
avoid confusion, note that in elasticity theory tensile
stresses are counted as positive.

Fig. 2.2. Schematic drawing of the trace of a macroscopic surface element (SS) with centre
at P and unit normal n. The total area is S, and the intersections of the solid skeleton are
indicated by ss, and the pore sections by ff

Pore pressure. So far, we have considered the straining and failure behaviour of dry rocks,
and that the stresses on test specimens were total stresses; i.e., normal and shear forces
transmitted across the total area of a unit cross-section that is very large compared with the
dimensions of grains or pores and the like. Thus, this cross-section cuts through the solid
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skeleton of the rock and pore space alike, as sketched in Fig. 2.2. However, under
geological conditions porous rocks are always saturated with fluids (water, oil, gas), which
differ greatly from the solid components of the rock in both their mechanical and thermal
properties, and therefore respond differently to mechanical loading and changes in
temperature. In particular, the pore fluid carries a proportion of the total normal stress 
on a cross-sectional element inside, or on the boundary of a rock body. Thus it is obvious
that in dealing with deformational processes and fracturing in porous rocks (including
almost all sedimentary rocks) the pore pressure has to be introduced as a separate state
variable.

Despite its apparent simplicity, the concept of “pore pressure” conceals a subtlety
which has to be pointed out. Note that the concept of stress only makes sense if applied to
a material continuum. Now, a fluid-saturated rock consists of at least two components, a
fluid and a solid part. The pore pressure, p, is simply defined as the sum of all forces that
act perpendicularly across the fluid part of a large cross-sectional or surface element (SS in
Fig. 2.2), divided by the fluid-filled area of the element (force per unit fluid area). The
value of the pore pressure is assigned to the centre P of the cross-sectional element. Note
that this point may coincide with any point of the solid-fluid continuum, irrespective of its
position in the fluid or solid part. Hence, the pore pressure field p(P) occupies the whole
solid-fluid continuum, although it only results from the pressures that act in the fluid-filled
pores of the rock.

Similarly, the total normal or tangential stresses that act on the element SS in
Fig. 2.1 are simply the sum of all the normal or tangential forces that act across the solid
and fluid parts of a cross-sectional element SS, divided by the total area of SS, and
assigned to its centre P. Naturally, the state of total stress at P is defined by the tensorial
components of total stress, that act on three mutually orthogonal elements with a common
centre at P. Thus we have two stress fields: the field of the total stresses and the field of the
pore pressure – both being defined at any point of the continuum composed of solid
skeleton and pore space.

In the laboratory, fluid-saturated rock specimens are mostly tested in the so-called
triaxial-testing apparatus, which is schematically shown in Fig. 2.3. In this apparatus, the
pore fluid pressure can be controlled independently from the axially and radially applied
compressive stresses. It is also possible to apply pore pressures in excess of the total axial
stress v. Naturally, one may expect that the pore pressure will in some way diminish the
effect of the total stresses on the failure behaviour of a porous rock. But how to account for
this?
 During the second half of the last century, an impressive body of careful
experimental work on a great variety of porous rocks, and over a wide range of pore
pressures, was accumulated. Most remarkably, the data on brittle rock failures
convincingly demonstrate that the strength, i.e. the critical state of stress which the material
can sustain without failing in extensional or shearing modes shown in Fig. 1.8, is not
affected by the pore pressure. That means that brittle failure is not controlled by the total
normal stresses i, but by the effective stresses

i i p               (i 1, 2, 3; I, II, III) (2.1)

introduced in soil mechanics by Karl Terzaghi in 1923. Note that shear stresses are not
affected by the pore pressure, since the pore fluid cannot transmit net shear stresses across
a macroscopic interface.

Hence, an increase in pore pressure, while keeping the total stresses constant, will
reduce the strength of the material. Interested readers may find more information on
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Terzaghi’s “effective stress principle” in G. Mandl, FBR (pp. 88, 114–120, 174–175).
Here the following remark may suffice: Although Terzaghi’s effective stresses control,
rigorously or to a very good approximation, the onset of brittle failure in porous rocks, they
are, in general, somewhat different from the stresses that are “effective” in producing the
elastic pre-failure strains. Linear elastic straining in fluid-saturated rocks is controlled by
the effective normal stresses

i i i sa.p 1 K / K .p            (i 1, 2, 3; I, II, III) (2.2)

where 1/K is overall compressibility of the porous rock, and 1/Ks is the compressibility of
the skeletal material (e.g., quartz or calcite). The stresses i* are often referred to as
“generalised effective stresses”, which is a misleading term, since these stresses only apply
to the elastic straining.

Fig. 2.3. Simplified schematic drawing of triaxial testing apparatus.
The porous rock sample is loaded by an axial stress v and a radially applied confining
pressure c (representing two equal principal stresses). The fluid that exerts the confining
pressure is separated from the rock by a weak but impermeable jacket. The pore-fluid
pressure pf is controlled independently (from J. Suppe (1985) Principles of Structural

Geology, Prentice-Hall Int., London)

Tensile fracture (germ. Zugbruch). In Fig. 1.8 we have schematically summarized how
rock samples may fail by fracturing in a brittle or semi-brittle way. We shall now consider
the basic failure modes and the mechanical conditions of their formation in more

Axial
stressv

Jacket

Steel

cc Rock

pf Fluid pressure

c Confining pressure
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detail, beginning with the tension fractures. Suppose that a cylindrical rock sample under
zero effective confining pressure ´c (Fig. 2.4A) is put under an axial tensile load in a way
that the axial tensile stress v is fairly uniform across the sample. At a critical value –To of
the effective tensile stress ´v the sample is disrupted along a fracture plane which runs
perpendicular to the direction of the applied tensile stress. To (> 0) is the “tensile strength”

at zero confining pressure, and the fracture that disrupts the rock sample is a brittle tension

fracture. It should be mentioned that the experimental determination of uniaxial tensile
strength is difficult and produces test data with considerable scatter. Moreover, the
measurements are carried out on intact specimens, and therefore are likely to overestimate
the actual tensile strength of natural rocks. Typical values of To are between 5 and 30 MPa.

The stress state that leads to this failure is represented by the solid circle in the
Mohr diagram of Fig. 2.4B. Although the tensile strength was defined for rock specimens
under zero confining pressure, tension fracturing will still occur at ´v = –To when the
specimen is laterally loaded by a low confining pressure ´c. This state is indicated in
Fig. 2.4B by a dashed circle. The reader may be reminded that the Mohr circles in
Fig. 2.4B represent the normal and tangential stress components on the set of cross-
sectional elements which are parallel to the axis of the intermediate principal stress II, as
illustrated in Fig. 2.4C.

Fig. 2.4. A) Tension fractures under uniaxial extension; B) Mohr circles for tension frac-
turing; C) normal stress ( ) and shear stress ( ) on plane which is parallel to the II axis,
represent a point on Mohr’s stress circle through ´I and ´III on the ´axis

Some idea of the effective confining pressure that would still allow tensile fractures
to develop may be obtained from a failure condition derived by A.A. Griffith (1925) for a
flat elliptical crack. According to Griffith’s theory, the limiting confining pressure for the
formation of tensile fractures is 3To. Applying a tensile load to a specimen under a higher
confining pressure would produce failure of a different mode, as will be discussed later,
without the tensile stress reaching the tensile strength. Thus the conditions for tensile
fracturing are:

v III o c I o´ ´ T , ´ ´ 3T (2.3)

where the first condition is purely empirical, and the second purely theoretical and derived
for an ideal fracture shape.

´v´v < 0

´c = 0
compression

´v

= –To ´c

= 0

´III

´

´II

n unit normal

A B C
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In nature, rock fractures which are generated by effective tension are a special class
of “joints”, which may be called “tension joints” (germ. Zugklüfte) where the word
“tension” is used in the sense of effective tensile stress. At a given depth in the Earth’s
crust all total stresses are compressive, and the effective stress condition (Eq. 2.3) for
tension joints can only be satisfied when the pore fluid pressure exceeds a total stress
component. In fact, high fluid pressures generated inside a rock layer, or supplied from
outside, play a key role in the generation of joints. A detailed discussion of this will be
given later.

Although the empirical tensile strength To is a very useful concept for estimating
the geological conditions that promote the formation of tensile fractures, it does not tell us
anything about the propagation of fractures or the concentration of tensile stresses near the
fracture tip, where decohesion of the material takes place. These problems are the concern
of the more sophisticated theory of linear elastic fracture mechanics (LEFM). Our tensile
fracture is the “mode I” or “opening mode” fracture shown in Fig. 1.7A of the preceding
chapter. Figure 2.5 shows half of such a fracture in two-dimensional view, with a vastly
exaggerated aperture. Fracture and stresses are supposed to continue uniformly in the third
dimension which makes the cross-sectional plane a deformation plane. Note that the stress
components, here referred to a Cartesian coordinate frame, are total stresses. The tensile or
compressive “remote” stress r

2 acts uniformly at a distance >> L.

1,2 I 1,2
r

I 2 i

12 I 12

.K f ( ) / 2 r

where K m( p ) L
.K f ( ) / 2 r

Fig. 2.5. The stress concentration in the near-tip region of a tensile fracture with internal
fluid pressure (see text for further explanation)

The formulae given in Fig. 2.5 represent the stress components in a near-tip region
whose radius is much smaller than L. The locations in this region are defined by the
distance r from the cuspate fracture tip, and the angle . Two separate, well-defined funct-
ions describe the dependence of the stresses on r and . According to the formulae, the
stresses being proportional to r–1/2 increase towards the tip and attain infinite values at the
fracture tip. Since such a singularity does not exist in real materials, the formulae do not
apply in the very close vicinity of the fracture tip. The parameter KI in the formulae – the
so-called “stress intensity factor” – is independent of the coordinates and only
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determined by the external load system, the geometries of the elastic body and the
fractures. For the uniform loading system considered, KI is given by the expression stated
in the figure. Note that the stress intensity increases with the square root of L, which, in a
way, expresses the fact that the separated fracture walls exert some leverage on the near-tip
region, thereby increasing the magnitude of the local tensile stresses. This is qualitatively
illustrated in Fig. 2.6. Assuming that the rock is impermeable, a fluid inside the fracture
exerts a pressure pi on the fracture walls and thus contributes to the leverage action. The
term for the “opening” or “driving stress” in the formula for KI in Fig. 2.5 is therefore

r
2  pi, which is the sum of two negative terms, since we consider tensile stresses as

negative. If the remote stress were compressive, as also indicated in Fig. 2.5, the pressure
of the fracture fluid would have to exceed the remote rock pressure in order to keep the
fracture open.

The coefficient m in the formula for KI is a dimensionless “modification factor”. It
has the value 1 for a straight internal crack at some distance from the remote boundaries of
the elastic body. The value of m increases when the ratio L/w of a double-ended fracture
contained in an elastic strip of width 2w parallel to the fracture increases. For a fracture
that begins open-ended at the edge of a semi-infinite elastic body and ends in a cuspate tip
at the distance L from the edge, m attains the value 1.12 (see B.R. Lawn and T.R. Wilshaw
1975, Fracture of Brittle Solids). This result is interesting, because it suggests that tension

joints grow more easily from the bedding planes into a rock bed than from locations inside
the bed, provided the fracture nuclei are of comparable shape and orientation. One should
expect this tendency to be further enhanced by “notch”-type bedding plane irregularities,
as is illustrated in the photograph of Fig. 2.7.

Fig. 2.7. Tension joints in a
Carboniferous turbidite se-
quence with high pore pres-
sure (Cornwall, West Eng-
land). Note that bedding plane
irregularities serve as nuclei
for fracture initiation

Fig. 2.6. The “leverage” action
of fracture walls on the near-
tip region (schematically)
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The stress intensity factor provides a refinement of the concept of tensile strength.
The net driving stress r

2  pi, will propagate a fracture, when KI attains a certain critical
value KIc – the so-called “fracture toughness” (germ. Bruchzähigkeit). This is a real
material constant, which combines the various material properties that control the
decohesion process in the near-tip region of the fracture. From the literature we learn that
typical values for KIc for hard rocks vary between about 1 and 3 MPa.m1/2. When we insert
KIc for KI in the formula for KI in Fig. 2.5, we obtain the critical tensile “driving stress” for
fracture propagation:

r
i Iccrit

p K / m L (2.4)

where r  denotes the remote tensile stress ( r
2 < 0 in Fig. 2.5) that acts normal to the

fracture plane.
We recall that in deriving this expression the fracture walls were assumed to be

impermeable. How should the above formula be modified in order to apply to the more
general case of a tensile fracture in a porous rock? In brittle fracturing, the build-up of
stresses that leads to fracture propagation is of a predominantly linearly elastic nature. The
elastic strains in the porous rock with pore pressure p are then controlled by the generalised
effective stresses (Eq. 2.2). Hence, when applying Eq. 2.4 to a porous rock, we have to
replace the total boundary stresses r  and pi by the effective stresses r * = r  – a.p and
pi* = pi – a.p. Note, however, that because of the minus sign in Eq. 2.4 the value of the left
hand side of the equation remains unchanged. Thus, the driving stress that propagates a
tensile fracture in a fluid-saturated porous rock is

r* r
i i Iccrit crit

(p a.p) p K / m L (2.5)

Therefore, in terms of the remote total boundary stress and the fluid pressure pi inside the
fracture, the condition for fracture propagation in the fluid saturated permeable rock and in
the non-porous rock is the same.

We can draw several important conclusions from this expression: First, since at the
onset of fracture growth the fracture pressure pi is equal to the pore pressure p of the
surrounding fluid-saturated rock, the onset of fracture growth is controlled by the remote
Terzaghi stress (Eq. 2.1)

r* r
Iccrit

a.p p) K / m L (2.6)

Secondly, since the driving stress decreases as the fracture grows in length, the
fracture growth is accelerated by the increase in the tensile excess load (and by the release
of elastic strain energy), if the remote tensile stress r  and the pore pressure p are kept
constant. In reality, however, the fracture pressure pi in a propagating double-ended
fracture will drop as the volume of the growing fracture increases. This causes an inflow of
pore fluid from the surrounding rock at a rate depending on the hydraulic permeability of
the rock. At the same time, the decrease in fracture pressure will entail a decrease in the
driving stress | r  – pi|, which will retard, possibly stabilise or even temporarily stop the
propagation of a tensile fracture inside the fluid-saturated rock.

In closing this interlude on elastic fracture mechanics, we recall that LEFM does
not provide a theory of fracture initiation, but rather deals with the stress concentration and
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propagation of existing fractures of a certain minimum length. We also have to realize that
the concept of the stress intensity factor applies to the tip region of the fracture in a
homogeneous material and may break down when macroscopic heterogeneities occur in
that region.

After having discussed how the critical tensile driving stress depends on the
fracture length, and how this affects the growth of a tensile fracture, we are now
confronted with the question of the use and reliability of the “tensile strength” To

determined by uniaxial tension tests. We first draw attention to the fact that a test specimen
which is selected for its homogeneity is still highly heterogeneous on a micro-scale.
Fractures of a certain length and favourable orientation may already exist inside the
specimen; and, even if this is not the case, microscopic flaws, inclusions, pores of irregular
shape, or grains with different elastic properties, etc., will act as local concentrators of
tensile stresses and thus serve as nuclei for tensile fractures. Obviously, the tensile stress
applied to the test specimen has to be raised to a level that is sufficient to generate suitable
fractures and to initiate their growth or to start propagating already existing fractures. This
level is the limit To of the tensile stress which the specimen can sustain, since at this
stress the propagation of macroscopic fractures, sub-perpendicular to the applied tension, is
not only initiated but can continue without any further increase in tensile load, in
accordance with Eqs. 2.5 and 2.6. Recall that the tensile load required to propagate the
fractures decreases as the fractures grow in length, and that the decrease in the driving
stress is even enhanced by the fact that the form factor m increases as the growing fracture
approaches the boundary of the rock specimen. Hence, at least in a specimen of dry rock
under the critical tensile stress To, the growing surplus in net driving force, in
combination with the release of elastic strain energy, will cause a rapid and violent
rupturing of the test specimen.

Thus in conclusion, we expect the “tensile strength” To to be the remote tensile
stress that is required to start the propagation of fractures already present in the unstressed
rock or, if such fractures are not present, to generate suitable fractures and to initiate propa-
gation in a direction perpendicular to the remote tensile stress. In this sense, the tensile
strength determined in uniaxial tension tests is a material constant only for the sample of
material tested. But, in general, the rock mass from which a test sample was taken, is more
heterogeneous than the sample, and most likely contains more favourably orientated
fractures of greater length than the test sample. Therefore, in geological applications, the
tensile strength of rock samples should be considered as an upper bound of the tensile
strength of the rock mass from which the samples were taken.

Extension or “cleavage” (“axial splitting”) fracture (germ. Spaltbruch). While the
tension fractures are fairly well understood, the fracture type, illustrated in Fig. 2.8A, may
appear almost paradoxical: A specimen, under zero lateral confining pressure, can be split
along one or several axial fracture planes by an axial compressive load ´v > 0. These
“cleavage” fractures, which open perpendicular to the direction of the maximum
compressive stress in the absence of any tensile boundary stress, are also called “exten-
sion” fractures; a term, which we exclusively apply to cleavage fractures to distinguish
them from the tensile fractures, which are generated by a tensile load. Extension fracturing
(splitting) of a sample under a uniform uniaxial compression takes place when the
maximum effective compressive stress ´I (= ´v) reaches a critical value Co – the
“uniaxial compressive strength” (germ. Druckfestigkeit):

I 0 III cC and 0 (2.7)
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Fig. 2.9. “Pinching-off effect”

Fig. 2.8. Extension (cleavage)
fractures under uniaxial com-
pression:
A) Cylindrical specimen
under uniform axial loading;
B) Mohr circles for extension
fracturing (splitting) of a
specimen ( ´c effective con-
fining pressure, ´v effective
axial stress, Co “uniaxial
compressive strength”)

This critical state of stress is represented by the solid circle in the Mohr diagram in
Fig. 2.8B. Typical values of Co reported in the literature lie between 50 and, say, 500 MPa.
Note, however, that in lithologically anisotropic rocks, especially in layered rocks, one
should expect a certain anisotropy of the uniaxial compressive strength.

The morphology of these fractures is very similar to that of brittle tensile fractures.
It should, therefore, not be surprising that the explanation for this fracture phenomenon has
been sought in radial tensile stresses which could have been induced at the end faces of the
test specimens by friction between the specimen and the loading pistons of the testing
machine. However, in the past, great care was taken to eliminate such end effects in

producing axial splitting. Moreover, the
same type of fracturing is obtained when a
cylindrical specimen is loaded by high fluid
pressure on the curved surface while the end
faces are kept stress free, or are even loaded
by some small compressive axial stress
(Fig. 2.9). Under a sufficiently high fluid
pressure, the loaded cylinder is “explosively”
disrupted by one or several extension
fractures perpendicular to the cylinder axis
(“disking” in “Bridgman’s paradox”).

Today, the phenomenon is basically
understood in terms of compression-induced local tension regions inside the rock
specimen. Although the brittle behaviour of rocks in compression and, in particular, that of
porous rocks is very complex, it is clear that on a grain or pore scale a variety of
mechanisms can give rise to localized tensile stresses inside the rock. In Fig. 2.10, four of
these mechanisms are schematically illustrated, all of which have been extensively dealt
with in the more recent literature. The mechanism favoured most by theoreticians who
attempt to derive the macroscopic deformation and failure behaviour of brittle solids from
micro-mechanical processes, is the so-called “wing crack” model (Fig. 2.10A). In the early
1960’s W.F. Brace and E.G. Bombolakis, and E. Hoek and Z.T. Bieniawski, demonstrated
that cracks which are inclined with respect to the remote maximum compressive stress 

r

I

will not propagate as shear cracks in their own planes when the compressive stress is
raised, but will have tensile “wing cracks” branching off. It is easily seen (Fig. 2.10A) that
an inclined parent crack is under shear which causes extensions of the crack walls at the
receding sides near the crack tips. At these locations, the wall-parallel tensile stress attains

partial envelope

uniaxial

compression

A B
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Fig. 2.10. Schematised brittle micro-mechanisms
that induce localised tensile stresses (see text for
explanation)

its highest value and can produce tensile fractures when the remote compressive stress 
r

I

is sufficiently raised. When the walls of the parent crack are not in frictional contact, the
“wing cracks” start perpendicularly from the inclined parent crack. If there is frictional
contact between the fracture walls, the direction of a wing crack will be inclined towards
the tip of the parent crack. The wing cracks grow stably, requiring a progressively larger

r

I, and tend to align themselves parallel to the remote maximum principal stress.
A second important mecha-

nism that gives rise to local tensile
stresses, is illustrated schematically
in Fig. 2.10B: The presence of a
spherical or elliptical hole in an
elastic continuum under remote uni-
axial compressive loading will cause
wallparallel tension to concentrate at
two points of the cavity wall. Again,
tensile cracks will start growing in a
stable manner when the remote uni-
axial compressive stress is progres-
sively raised. A third mechanism
operates at the contacts between
grains. As shown in Fig. 2.10C, the
maximum tensile stresses act in a
radial direction at the circular
boundary of the contact area of two
elastic spheres pressed together by a
compressive load. The contact
pressure attains its maximum (p) at
the centre of the contact area and

produces the maximum tensile stress indicated in the figure. The fourth cause of local
concentrations of tensile fracture stresses is associated with an elastic mismatch of particles
in compressive contact. In Fig. 2.10D a stiffer and a weaker body are depicted in contact
along some finite area; bonds or contact friction prevent slippage when a uniaxial
compressive load is applied. The compressive load must then induce shear stresses near the
contact because, under the applied load, the weaker body has the tendency to extend
further in the lateral direction than the stiffer body. These shear stresses will put the central
part of the contact area under tension, and a progressive increase in the compressive stress
will eventually produce a stably growing tensile fracture.

There are still other mechanisms, such as the bending of elongated grains, or the
indentation of sharp grain corners into neighbour grains which locally induce tensile
stresses that propagate small tensile fractures. All these fractures grow in a stable way
under a progressively increasing compressive load, and align – in a statistical sense – along
the direction of the uniaxial compressive stress. At some level of this stress, some fractures
become interlinked, and one may expect the longer fractures to grow more easily than the
shorter ones. This will localise the progress of fracturing into macroscopic extension
fractures which will eventually split the rock sample in the axial direction

Whatever the mechanisms are by which tensile micro-fractures are induced by uni-
axial compression, the growth of the fractures is very sensitively affected by a compressive
stress normal to the fracture plane. It is, therefore, quite obvious that a confining pressure

´III = ´c > 0 acting on the test specimen in Fig. 2.8A will have an adverse effect on the
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formation and growth of microfractures and will obstruct the formation of macroscopic
extension fractures parallel to the imposed maximum compressive stress. However, the
generation of macroscopic extension fractures will not be abruptly stopped by the
application of an arbitrarily small confining pressure; hence, there is good reason to expect
a range of very moderate confining pressures which still allow macroscopic extension
fractures to be formed. Obviously, the range of these low confining pressures will depend
on the rock type. Moreover, axial splitting under some small confining pressure will
require a higher axial compressive stress than in purely uniaxial compression. Such a state
of stress is represented, in a qualitative way, by the largest circle in the Mohr diagram of
Fig. 2.8B. Similarly, one should expect that axial splitting can be produced by an axial
compression that is smaller than Co, when the confining stress is slightly tensile ( ´III < 0),
as indicated by the smallest circle in the Mohr diagram of Fig. 2.8B. Thus, by applying
different confining stresses slightly deviating from zero, a set of critical Mohr circles for
the extensional (cleavage) fracturing of a given rock sample can be obtained, which
increase in size with increasing maximum compressive stress and are enclosed by a pair of
inclined envelopes.

Some experimental corroboration of this concept may be found in observations
reported by outstanding researchers in rock mechanics in the 1970’s, and in recent results
of axial loading tests on tuff specimens under very moderate confining pressures (J.M.
Kemeny 1993; in: Pasamehmetoglu et al. (eds.) Assessment and Prevention of Failure
Phenomena in Rock Engineering, Balkema, Rotterdam, pp. 23–33). We must remember
that, in experiments of this type, great care has to be taken to avoid friction between the
ends of the test specimen and the platens of the testing machine that could promote axial
splitting. There is certainly a need for more experimental work in this field.

However, theoretical and experimental results leave no doubt that the propagation
of tensile microfractures and, consequently, the formation of macroscopic extension
fractures parallel to the imposed compressive boundary stress ´I are completely sup-
pressed by confining pressures ´III which amount to more than a few percent of ´I.

Geological implications. Figure 2.11 presents examples of joints that have been interpreted
as cleavage (extension) fractures. Figure 2.11A shows a fan of extension fractures that
formed sub-parallel to a free vertical rock face on which ´III must vanish. The fractures in
Fig. 2.11B,C are most likely cleavage fractures generated in response to unloading by the
removal of overburden while the rocks were still under a relatively high bed-parallel
residual compressive stress. But what can be stated, more generally, on the geological
conditions of jointing under joint-parallel compression?

What can be inferred from the rock mechanical data of cleavage fracturing? First, it
may be safely concluded that in nature, the formation of joints is only possible if ´III is
zero, or close to zero. But what can be said about the necessary maximum compressive
stress ´I? Here we face a serious problem. The uniaxial compression tests in the
laboratory determine the axial stress Co at the instant the test specimen fails by splitting.
Yet axial cleavage fractures develop and grow in a stable way with increasing axial load,
long before ´I has reached the limit value Co. This is known from experiments (e.g., H.
Bock (1980) N. Jb. Geol. Paläont. Abh. 160, pp. 380–405) and is supported by theories on
the development of cleavage fractures, which will be discussed later in this book (see
Chapt. 4, pp. 87–94). Unfortunately, there are little data available that would allow a
quantification of the onset and growth of cleavage fractures as a function of the applied
axial stress ´I. Tentatively we may hypothesize that the development of cleavage fractures
starts at ´I  Co/2.
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Nevertheless, one has to bear in mind that Co may be substantially reduced by a layer-
parallel ´III which is slightly tensile, though still much less so than the tensile strength of
the rock. Furthermore, the collapse mechanisms, (such as buckling,) in unconfined test
samples, may differ markedly from the behaviour of a thick horizontal plate under uniform
vertical load. And finally, the uniaxial compressive strength also decreases to some degree
with increasing volume of the sample and decreasing loading rate (V.S. Vutukuri, R.D.
Lama, S.S. Saluja (1974) Handbook on Mechanical Properties of Rocks, Vol. I, Transtech
Publ.).

Although the incongruities between the rock mechanical experiments and the
geological environment forbid an exact quantification of the compressive stress ´I that is
required for cleavage jointing in the brittle crust, we can draw the following conclusions.
First, it is almost certainly erroneous to assume that the necessary effective compressive
stress ´I for cleavage fracturing has to reach the uniaxial compressive strength Co of the
rock. Secondly, as demonstrated by the Mohr diagram in Fig. 2.12, the smallest value of
the maximum effective stress ´I that can initiate faulting (of any kind) is, in general, still
greater than the compressive stress ´I necessary for the formation of cleavage fractures
when ´III = 0.

Also note that in Fig. 2.12 the regime of cleavage fracturing (see also Fig. 2.8) is
separated from the regime of compressional faulting. This means that we consider cleavage
fracturing and shear faulting in compression as being two mechanically different processes.
Hence, we do not follow the practice of relating the uniaxial compressive strength Co

directly to the shear strength parameters o and  of the straight Mohr-Coulomb tangent of
the stress circles which represent the conditions for the onset of faulting under compressive
stresses (Fig. 1.8D).

Fig. 2.11. Extension (cleavage-)jointing
approximately parallel to a free surface:
A) Fan of subvertical extension joints at a
vertical rock boundary (from P. Bankwitz
et al. (2000) Z. geol. Wiss. 28(1/2));
B) buckled exfoliation sheet in granitic
rock, Yosemite National Park, Cal., USA
(from J. Suppe 1985, Principles of

Structural Geology, p. 201, Prentice Hall);
C) bed-parallel extension joints in lime-
stone, Münster Basin, Germany

 C

A B



Extension (cleavage) joints in geological environments                                                                           23

Hence, in principle, cleavage fracturing should be possible in all tectonic stress
regimes that lead to faulting. However, this does not yet say anything about the aperture
and the spacing of parallel cleavage joints; we shall revert to these open questions in
Chapt. 4 (pp. 91–94). Here we are content with a few remarks on the existence of cleavage
fractures in geological settings.

Layer-parallel cleavage joints may form in near-surface rocks under high surface-
parallel compression ´I. This offers an explanation for the enigmatic extension joints

(sheet fractures) which were formed at shallow depth (at very small ´III) sub-parallel to

the topographic surface as it existed at the time of fracturing (see Fig. 2.11B). Note that
the cohesive bonds on planes parallel to the layering or bedding of the rock are weaker
than in any other direction, and therefore allow easier splitting of the rock. Nevertheless,
the layer parallel joints will be restricted to depths of not more than several tens of metres
below the surface at the time of fracturing.

Vertical cleavage joints can form in compressive regimes of vertical strike-slip
(wrench) faulting, where ´I and ´III are horizontal, and the overburden stress is the
intermediate principal stress ´II. Of course, ´III has to be reduced to approximately zero.
This need not be achieved by horizontal tectonic extension at right angles to the ´I

trajectories, but may also be the result of abnormally high pore pressures that are generated
by the build-up of the high compression ´I.

The compression process is described by the Mohr diagram in Fig. 2.13 for a layer
of medium stiffness under 2.3 km of overburden. Before the onset of the horizontal com-
pression, the layer is tectonically undisturbed and under the normal hydrostatic pore
pressure p° = 23 MPa. The initial effective stresses, represented by the circle I, are changed
by the uni-directional tectonic compression. The horizontal stress is raised in the direction
of the compression from the original value ´h

o = 15 MPa to a value ´H that is only
limited by the maximum compressive stress ´I

limit that would initiate wrench faulting. In
the absence of horizontal tectonic extensions, the compression also raises the pore pressure
by p, which in turn reduces the horizontal effective stress normal to the compression
direction by p, if we assume that the total stress h

o remains unchanged (a point to be
dealt with at the beginning of the next chapter). In the present case, the pore pressure has to
be raised by 15 MPa to reduce ´h

o to zero. At this state, represented by the shaded circle II,

Fig. 2.12. Mohr diagram comparing the smallest ´I value in faulting with the uniaxial
compressive strength for a typical sedimentary rock ( o = 15 MPa,  = 35°, Co = 67.5 MPa)
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the pore pressure is p° + p = 38 MPa, and the ratio of the pore pressure to the total
overburden stress  = p/ v = (p° + p)/( ´v

o + p°)  0.66. As compared with  = 0.4 for
normal hydrostatic pore pressures, the -factor required for vertical cleavage jointing in the
wrench faulting regime represents a moderate overpressure. (In the next chapter, it will be
seen that higher overpressures are required if the layers cannot extend horizontally normal
to the direction of shortening.)

In the thrusting regime, the effective overburden stress ´v is the smallest principal
stress. Therefore,  would have to approach 1 in order to reduce this stress to zero. But this
is only possible on a very local scale, since  = 1 implies a pore pressure that balances the
total overburden weight, and may thus separate bedding planes and produce overburden-
carrying fluid “sills”. Hence, cleavage fractures would tend to be along the bedding planes.

There remains to be considered the extensional regime that leads to normal faulting.
Since in this regime the effective overburden stress is the greatest principal stress ( ´v = ´I),
it is this stress that would have to generate vertical cleavage fractures, provided a
horizontal effective stress is reduced to approximately zero. Although as mentioned before,
we do not know the magnitude of ´I that is actually needed for cleavage fracturing, we
consider it as rather unlikely that the necessary ´v in sandstones and limestones (with Co

values in the rather low range of 50–60 MPa) would be less than 35 MPa, the value
assumed in Fig. 2.13. Thus it would seem rather unlikely that vertical cleavage jointing in
the extensional regime would take place under less than 2–3 km overburden. With
reference to the circles I and II in Fig. 2.13, it will be further seen that the reduction of a
horizontal effective stress to zero cannot be achieved by overpressuring, since this would
also decrease the effective overburden stress. Hence, the horizontal stress reduction

overpressure
 = 0.65

p

Wrench faulting

´I
limit

(90 MPa)´v
o

(35 MPa)

(15 MPa)
o

35°
Limit line
(faulting)

Undisturbed initial
state (normal pore
pressure)

´h
o

(15 MPa)

?

´h = 0 ´H = ´I

II I

Fig.2.13. Mohr diagram of the overpressuring of the pore fluid in a wrench faulting
regime. The layer considered is under 2.3 km of overburden and undisturbed before the
onset of the tectonic compression. Initially, the horizontal effective stresses ( ´h

o) are
related to the effective overburden stress ( ´v

o) by the empirical relation ´h
o = Ko. ´v

o,
with Ko = 0.43 chosen for a relatively stiff layer (circle I). During horizontal compression,
circle I is shifted into position II by the overpressuring, and the greatest principal stress is
raised to a value less than ´I

limit
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would have to be produced by a tectonic extension. At a depth below a few kilometres it
may therefore become difficult to distinguish between vertical tension joints and cleavage
(extension) joints.

Summary. In closing this chapter we can summarise the main points:

A fluid-saturated porous rock is considered as a single continuum consisting of a solid
and a fluid component. Total stresses and fluid pressure are then defined at any point of
the continuum, irrespective of whether the point lies in the solid or fluid part of the
rock.

The formation and propagation of fractures are controlled by Terzaghi’s effective
stresses (Eq. 2.1).
Tension joints (germ. Zugklüfte) (Fig. 2.4) are tensile fractures (mode I) which form
and open perpendicular to the direction of the smallest principal stress ( ´III < 0) when
the magnitude of this tension reaches the tensile strength To of the material, while the
greatest principal stress ( ´I > 0) remains below a certain limit (Eq. 2.3).

In general, a relatively undisturbed rock sample has a higher tensile strength than
the rock mass from which the sample is taken. In a uniform elastic material, a single
fracture will start to grow when the remote effective tensile stress normal to the
fracture plane produces a critical stress concentration near the fracture tip (Eq. 2.6). In
LEFM, the near-tip stress concentration is characterized by the stress intensity factor KI

(Fig. 2.5) which increases with the square root of the fracture length. Hence, the
longest fractures will first start growing when the remote effective tensile stress is
raised. The critical stress intensity factor KIc is a real material constant, – the “fracture
toughness” (germ. Bruchzähigkeit) of the material.
Extension or “cleavage” joints (germ. Spaltbrüche; Fig. 2.8) have the same mor-
phology as tensile fractures and, similar to tensile fractures, form parallel to the ´I

direction. But contrary to tensile fracturing, extension fractures are “driven” by a high
effective compressive ´I, while the confining stress ´III is close to zero. On the micro-
scale, wing cracks (Fig. 2.10A) are perhaps the most important mechanism in the
formation of the compressive extension fractures.

In the testing of unconfined samples under uniaxial compression, splitting of the
samples occurs when the axial stress ´I attains a critical value Co, the “uniaxial
compressive strength”. However, it is important to note that cleavage fractures already
form, prior to splitting the sample, at a lower compressive stress ´I < Co.
Unfortunately, the lack of relevant experimental data does not allow a reliable
quantification of this stress, and one has to resort to educated guesses.
Geological environment of cleavage joints. Cleavage joints parallel to flat lying layers
can form in near-surface rocks under a high residual compression ´I parallel to the
surface, and produce exfoliations (Fig. 2.11B). At greater depth, layer-parallel cleavage
jointing can only occur on a very local scale, since besides a high layer-parallel
effective compression (thrusting regime), the layer-normal effective stress must be
close to zero. Thus in flat lying layers, the pore fluid would have to be so heavily over-
pressured that it carries the total overburden load, and possibly is forming fluid sills.

Vertical cleavage joints in flat layers may be expected in regimes of wrench
faulting; in particular, when the pore fluid is moderately overpressured by the layer-
parallel maximum compressive stress (Fig. 2.13). In an extensional regime, vertical
cleavage jointing would seem possible at burial depths of 2–3 km, when a horizontal
effective stress is reduced to zero by tectonic extension.



Chapter 3

Hydraulic Fractures

In the preceding chapter we remarked that high fluid pressures play a key role in the
generation of tension joints. Since at some depth in the Earth’s crust all total stresses are
compressive, the fluid pressures are required to push aside the rock walls against the action
of the total rock pressure. Similarly in extension (cleavage) jointing (“axial splitting”), high
fluid pressures may contribute in reducing ´III to almost zero. When the fluid pressure is
instrumental in fracturing, the fractures are commonly referred to as hydraulic fractures.

Such fractures may start from microfractures or flaws inside a bed or from
irregularities at bed boundaries, when the pore pressure inside the bed is uniformly raised
to a sufficient level, or when the bed is ruptured by the “wedging” action of a highly-
pressured fluid injected from outside. The first fracture type we call internal hydraulic

fractures, the second type hydraulic intrusion fractures. The two fracture types are
schematically shown, for horizontal layers, in Fig. 3.1.

Internal hydraulic fracturing. In order to allow tension fractures to form (Fig. 3.1A), a
rise in pore pressure p > 0 is required to reduce the smallest (Terzaghi-) effective stress to
the value of the tensile strength –To of the material. During the process of overpressuring
the rock layer may be allowed to laterally extend, or to remain confined. Hence, we
consider two extreme boundary conditions: (1) where the interlayer shear resistance is
negligibly small, and the layer is completely free to expand in elastic response to a uniform
pressure rise p, and (2) where the layer is confined and not allowed to extend in lateral
directions. In both cases, the principal stresses remain vertical and horizontal during the
rise in pore pressure, with ´I = v´ and III´ = h´. But the horizontal stress h´ behaves
differently in the two cases.

(Eqs. 2.3)

Fig. 3.1. Hydraulic fractures: A) internal fractures, B) intrusion fractures
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h´ = . p = . v´

Fig. 3.2. Mohr diagrams of stress changes in horizontal layers due to the rise p in pore
pressure: A) unrestrained layer, B) laterally confined layer

When the layer is free to extend in horizontal directions, both total normal stresses v

and h remain unchanged. Hence, all normal effective stresses are reduced by the pore
pressure p, and the Mohr circle in Fig. 3.2A is shifted towards the tension domain without
a change in diameter. In order to satisfy the condition for tensile fracturing (Eq. 2.3), v´
has to be smaller than 3To at the onset of fracturing. Since ´I – ´III = ´v – ´h remains
constant during the rise in pore pressure and ´h = –To at the onset of fracturing, the stress
difference ´o

v – ´o
h must be smaller than 4To before the rise in pore pressure. In Fig. 3.2

we have also inserted a branch of a Coulomb-Mohr’s limit line which is tangential to all
stress circles which represent the effective stress states that would induce shear failure
(Fig. 1.8D) in a brittle environment of all around compressive effective stresses. The
experimentally determined part of the limit line is extended straight (dashed in the figure)
to the intersection o with the  axis, which is commonly referred to as the “cohesive shear
strength”. Since the radius of the stress circle in Fig. 3.2A is 2To and, according to rock
mechanical data, 2To is smaller than o, the stress circle cannot touch the Coulomb-Mohr
limit line before being shifted into the tension field.

Next we consider the pervasive rise of the fluid pressure in a layer that is laterally
completely confined, but is free to deform in the vertical direction. A rise in pore pressure

p will therefore leave the total overburden load v unchanged, but raise the total
horizontal normal stress h, since any lateral extension is suppressed. Therefore, as
indicated in Fig. 3.2B, the decrease in horizontal effective stress h´ is less than the
decrease in vertical effective stress v´ = p:

Thus, the stress circle in Fig. 3.2B shrinks while it is shifted towards the tension regime
by the increase in pore pressure.

0 <  1                           (3.1)

o
o
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Noting that the formation of vertical tension fractures requires h´ = ( h´° + To),
with h´° the effective stress before the pore pressure is raised, the rise in pore pressure
required for vertical tensile fracturing follows from Eq. 3.1:

o
ohp ( T ). (3.2a)

Obviously, this relation reduces to
o

hp (3.2b)

for vertical cleavage fractures, if both I and III are horizontal (wrench faulting regime).
Next we have to determine the factor , of which we, so far, only know that it is

positive and attains its maximum value of 1 when the layer is laterally unconstrained. We
assume that the rock is mechanically isotropic in all horizontal directions, and responds in
a linear-elastic fashion to the pervasive rise p in pore pressure. We recall that the poro-
elastic strain increments ei are, in general, not related to the changes in Terzaghi’s
effective stresses I´, but to the changes in the generalized effective stresses I*, as
defined by Eq. 2.2 of the preceding chapter. The poro-elastic stress-strain relations for the
horizontal x1, x2, and the vertical x3-axis are (see G. Mandl, FBR, pp. 164–175):

where E is Young’s modulus and  the Poisson ratio.
Because the material is assumed as isotropic in horizontal directions, the pore

pressure rise p will change all horizontal stresses by the same amount h*. Because of
the lateral confinement, e1 = e2 = 0 in the above equations, which thus reduce to

h v1
(3.4)

and further, since according to Eq. 2.2 v v 1
K

Ks
p  and v 0 ,

h
s

K
1 p

 K
(3.5)

where K and Ks are the compression moduli of the bulk and the solid material of the
porous rock, respectively.

Being concerned with fracturing, we have to rewrite the last result in terms of
Terzaghi’s effective stress (Eqs. 2.1, 2.2) h´ = h  p = h*  (K/Ks).p. Writing Eq. 3.5 in
the form of Eq. 3.1, the -factor becomes

Inserting, for example, for a rock of intermediate stiffness the parameter values  = 0.25,
K/Ks = 0.3, one has  = 0.53.

(3.3)

(3.6)s1 1 K K 1 2  < 1
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According to Eqs. 3.2a,b, the pore pressure rise necessary for fracturing depends on
the horizontal effective stress h´° prior to the pore pressure rise. Unfortunately, this stress
is commonly a subject of speculation, except when the lateral stress can be related to the
much better known overburden stress v´°. This is the case in tectonically undisturbed flat
strata that often occupy large parts of sedimentary basins. In the absence of horizontal
straining in these layers, the stresses h´° build up in response to the increasing overburden
load. But it would be erroneous to describe the development of the horizontal rock stresses
by means of Eq. 3.4, since the process is not elastic in nature, but predominated by
inelastic processes such as compaction and diagenetic consolidation. We therefore prefer to
follow soil-mechanics to characterize the final state of h´°, attained in a laterally confined
sedimentary rock under a vertical effective stress v´°, by an empirical parameter

Ko = h´°/ v´° < 1 (3.7)

or in terms of the ratio of total stresses:

h°/ v° = [ Ko.(1 )]   with  = p°/ v
o (3.8)

From soil mechanics and in situ stress measurements we infer that typical Ko values for tec-
tonically undisturbed beds will rarely have a value smaller than, say, 0.4 or higher than 0.75.

Inserting from Eq. 3.7, the pore pressure conditions (Eqs. 3.2a,b) are

o
o ovp ( T ).K for tension joints

and (3.9)
o

o vp .K for cleavage joints

At the end of the preceding chapter (Fig. 2.13) it was shown how vertical cleavage
jointing in a wrench faulting regime is accomplished by a moderate overpressuring
(  = 0.66) in a laterally unrestrained layer. In accordance with Fig. 3.2A, the Mohr circle
was rigidly shifted towards h´ = 0 by the rise in pore pressure. On the other hand, if the
layer is laterally completely confined, a markedly higher degree of overpressuring is
required to shift the shrinking circle (Fig. 3.2B) towards h´ = 0. Assuming the same initial
conditions as in Fig. 2.13, that is h´° = Ko. v´° = 15 MPa, v° = 58 MPa, p° = 23 MPa,
and inserting the aforementioned value  = 0.53, the formula in Eq. 3.9 yields p = 28.3 MPa,
and a total pore pressure p = p° + p = 51.3 MPa. Therefore, the ratio of the total pore
pressure to the total overburden  = p/ v° = 51.3/58 = 0.88. Thus a “hard” overpressure is
needed for the formation of vertical internal hydraulic cleavage joints in laterally
completely confined layers.

Turning to the condition of internal hydraulic tension jointing under lateral
constraints, we have to note that the corresponding relation (Eq. 3.9) is not the only
condition, but that the second fracture condition (Eq. 2.3) requires I´ < 3To. Since at the
onset of vertical tensile fracturing I´ = v´ = v´°– p and p is given by the first Eq. 3.9,
the effective overburden stress v´°, prior to the rise in fluid pressure, is restricted by

o o

o
v

(3 1).T
<

 K
(3.10)

Obviously, this restricts the depth down to which the tensile hydrofractures can be gen-
erated. But this is still not the complete picture. The pervasive rise in pore pressure (Eq. 3.9)
is limited, since the pore pressure cannot rise beyond the value that, on a larger scale, reduces

v´ to zero, and may separate bedding planes and produce overburden carrying fluid “sills”.
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(3.13)

Since v´ = v´° – p, the vanishing of v´ limits the pervasive rise in pore pressure
to p = v´

o, if the usually very small tensile strength across bedding planes is neglected.
From (Eq. 3.9) then follows:

o

o
v

T

 K
(3.11)

Combining Eqs. 3.10 and 3.11 we finally arrive at the condition which, prior to the rise in
pore pressure, must be satisfied by the effective overburden stress, in order to allow the
formation of vertical internal tension type hydrofractures:

oo o

o o
v

T (3  1).T
<

  K   K
(3.12)

What can be inferred from this condition about the depth range of possible tensile
internal hydrofracturing? First note that since before a rise in pore pressure the effective
overburden stress is compressive ( v

o´ > 0), Eq. 3.12 implies

or with  from Eq. 3.6:

o
s

K 1
1 (1 ).

K 1 2
K (3.13a)

Although Eq. 3.13 is always fulfilled if the layer is laterally unconstrained and
tectonically not compressed, since in this case  = 1 (Fig. 3.2), and Ko < 1, the condition
need not be fulfilled if the layer is laterally constrained. As noted before, typical Ko values
for tectonically undisturbed beds will rarely have a value smaller than, say, 0.4 or higher
than 0.75. The weaker the material, the higher its Ko value. On the other hand, Poisson’s
ratio  for porous rocks (determined at constant pore pressure) seldom exceeds 0.3.
Assuming  = 0.25, Eq. 3.13a reads (1  K/Ks) < 1.5 (1 – Ko) and thus imposes a quite
delicate restriction on the admissible K/Ks ratios. When the compressibility of the skeletal
material 1/Ks, (i.e. the reciprocal of the compression modulus) is much smaller than the
overall compressibility 1/K of the bulk of the porous rock, 1  K/Ks approaches 1 and
Eq. 3.12 cannot be satisfied for any reasonable Ko value (>1/3). This is quite possibly the
case for highly porous “hard” rocks. But the smaller the porosity of rocks with
mechanically similar skeletal materials, the smaller the bulk compressibility 1/K in
comparison with the compressibility 1/Ks of the skeletal material, and the lower the value
of the left-hand side in the inequality 3.13a. Thus, the more readily can the inequality be
satisfied for reasonable values of Ko and .

In rocks whose parameters do not satisfy condition (Eq. 3.13) a rise in pore pressure
can generate vertical tension fractures only after Ko is sufficiently reduced by some lateral
extensional straining of the layers.

When condition 3.13, 3.13a is satisfied, the inequality 3.12 defines a range in depth z
where vertical internal hydrofractures of the tensile mode can be formed in laterally
constrained layers. Assuming that prior to the rise in pore pressure the effective overburden
stress v´° increases by 15 MPa per km depth, the depth range is

o o

o o

T MPa (3 1).T (MPa)
z(km)  

( K ) 15( K )
(3.14)

o  <  K
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To illustrate the implications of this condition, consider a horizontal, laterally
confined layer with  = 0.55, Ko = 0.45, and To = 5 MPa. The layer would have to lie at a
depth of between 3.3 and 8.8 km, in order to be vertically fractured by a rise in pore
pressure. According to Eq. 3.9, the pore pressure would have to be raised by 50 MPa at the
depth of 3.3 km, and by 117 MPa at 8.8 km. Assuming that the original pore pressure p°
increased by 10 MPa per kilometer and the total overburden stress v

o by 25 MPa, the ratio
 = p/ v

o = (p° + p)/ v
o would vary with depth from 1 at 3.3 km to 0.93 at 8.8 km. This

demonstrates the surprisingly high overpressures that are required to hydrofracture a laterally
confined layer. Also note, that if the layer were free to expand in lateral directions (  = 1),
the depth range from Eq. 3.14 would lie between only 0.6 and 2.4 km, and the associated

-factor would vary between 1 and 0.75, again representing “hard” overpressuring.

Aperture of tensile hydraulic fractures. Having established the conditions for the vertical
hydrofracturing of a horizontal layer by high internal pore pressures, we face the
interesting question of how wide can the fractures be open; or in other words, what is the
aperture of the vertical fractures? In answering this question we restrict ourselves to
tension joints, since a satisfactory theory for the opening of cleavage joints is not yet
available. (Qualitative aspects of the aperture of cleavage joints will be dealt with in
connection with the spacing of cleavage joints in Chapt. 4.) We continue with considering
the laterally completely constrained layer. As the fractures grow, they open and fill with
fluid from the surrounding pore space, and the fracture fluid gradually attains the value of
the pore pressure p inside the layer. We assume that, despite the increase in fluid volume
due to the new fracture space, the pore pressure is maintained by the fluid contact with
adjacent beds, at the level required for fracturing. We further assume that the smallest
principal stress III

o = h
o acts along one horizontal direction only, allowing the formation

of a single array of parallel vertical fractures perpendicular to the direction of h
o. At the

onset of fracturing h´ = To throughout the whole layer. After formation, the fractures are
filled with pore fluid of pressure p, which exerts the total normal stress p upon the fracture
walls. Hence, the tensile effective stress h´ = h – p vanishes at the location of the
fractures, thereby increasing from the negative value –To to 0, as is illustrated by the
shaded stress circle in Fig. 3.3. In other words, the material of the fracture walls
experiences a compressive stress h´ = To. As the pore pressure is unchanged by this
process, the total stress h and the generalized effective stress h* are also raised by To.
Thus, h´ = h = h* = To inside the wall material.

Now let us consider two adjacent parallel fractures which transect the horizontal
layer as schematically shown in Fig. 3.4. The open space of the fractures is produced by
elastic compression of the material between the fractures. The maximum opening of the
fractures is established when the contraction of the material is not hindered by a
cohesive/frictional contact with the adjacent layers. The compression of the inter-fracture
material is then produced by the full effective compressive stress h* = To, and the
fracture aperture d is readily determined by the first two stress/strain equations (Eq. 3.3).
Inserting into these equations 1 = h* = To, e2 = 0 because straining along the strike
of the fractures is suppressed, and 3* = 0 because the effective overburden remains
unchanged by the formation of the fractures, the contractive strain e1 becomes

2

1 o
d 1

e .T
d E

(3.15)

where d/d is the relative change in distance d between the midplanes of the neighbouring
fractures.
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Fig. 3.4. Aperture ( d) of parallel vertical hydrofrac-
tures in overpressured, laterally constrained layer

o

–To v´

´

Fig. 3.3. Release of layer-
parallel tension by internal
hydrofracturing

To illustrate this result, we assume again To = 5 MPa,  = 0.25, E = 104 MPa, and
obtain d/d  0.5 x 10–3 from Eq. 3.15. Naturally, the greater the distance between the two
fractures, the more fracture opening d is elastically accommodated. Assuming arbitrarily
a “large” distance d = 1 m, the aperture d is only 0.5 mm. But note that this result most
likely overestimates the apertures that occur in real cases, where the contraction of the
fractured layer is opposed by the unfractured ambient layers which react by building up
shear stresses on the layer contacts (a problem we shall be concerned with in Chapt. 4). We
therefore may safely conclude that the fractures in the laterally constrained layer have the
appearance of “hairline cracks” – at least as long as the fracture volume is accommodated
by a purely elastic deformation. (An inelastic accommodation of fracture space by the
withdrawal of material by pressure solution will be considered in connection with the
formation of veinlets in Chapt. 8, p. 192.)

Next, the question arises as to whether the aperture equation (Eq. 3.15) also applies
to a laterally unconstrained layer. First we recall that, in deriving the formula, we assumed
that the pressure drop which, inside the fracture, accompanies the creation of new fracture
space, is compensated for by an inflow of high-pressure fluid from ambient beds. Thus, the
constant total stress h = p is maintained on the fracture walls, or re-established, and
exceeds the original total stress h

o by h = To. Secondly, Eq. 3.15 defines an upper
bound of the fracture aperture, since the material between fractures was considered
completely free to contract, unhindered by cohesive/frictional contacts with the adjacent
layers. Under these conditions, the fracture-bounded segments in a laterally perfectly
unconstrained layer would be pushed sideways in an accelerative motion, since the in-
cremental stress h is not balanced by reactive lateral boundary stresses. Thus, as long as
the internal fracture pressure is restored after the drop associated with an increase in
fracture space, the vertical fractures would widen, and the fractured layer extend, albeit in
a discontinuous fashion.

In reality, however, the adjacent layers react to the widening of the fractures by
mobilizing an interlayer shearing resistance which hinders the widening of the fractures
and the extension of the fractured layer. Although this subject will be taken up in Chapt. 4,
a special point should be mentioned here, since it is relevant to the internal fracturing of
layers with unconstrained lateral boundaries. Consider the internally fractured brittle layer
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embedded in overpressured beds of a semi-brittle material, which, under shear load,
deforms by viscous creep. In this case, the obstructive shear stresses may, at least to some
degree, relax in time, and allow for a delayed increase in fracture aperture. Naturally, the
process requires that overpressured fluid is supplied from the ambient layers, and/or that
semi-brittle bulk material of the ambient layers is squeezed into the fractures. As a likely
setting for this process, we envisage a brittle sandstone layer embedded in highly
overpressured, normally consolidated shales.

In conclusion, it may be stated that vertical internal tension mode hydrofractures
develop as “hairline” cracks, when the opening of the fractures is mainly accommodated
by elastic deformation and any layer-parallel extension is suppressed. Conversely, a wider
opening of the fractures suggests that the fractured layer was extended in response to a
high pore pressure and/or an external force.

Hydraulic intrusion fracturing (Fig. 3.1B). Rock layers under effective compres-sive
stress can be fractured by the injection of high-pressured fluids such as water, oil, gas, salt,
fluidized sand, or magmas. Intrusion fractures which cut across the bedding (discordant
fractures) are termed dykes (germ. bankrechte Gänge), while hydraulic fractures that
intrude the rock parallel (concordant) to its bedding are termed sills (germ. schichtparallele
Gänge). Mostly discussed in the geological literature are magmatic dykes and sills. Here,
we are mainly concerned with dyke- and sill-systems that are caused by the injection of
water, oil, or gas into sedimentary rocks, as illustrated by the photographs in Fig. 3.5A–E
on the next page, and in Fig. 1.5. Notice that in Fig. 3.5A,B the intrusion process is
dominated by dyke-type fractures, in Fig. 3.5C,E by sill-type fractures, while in Figs. 3.5D
and 1.5 both fracture types contribute about equally to the process of fluid transport. The
interplay of the two fracture types in the passage of high-pressured fluids across rock
layers of very low or zero permeability is illustrated in the schematic diagram in Fig. 3.6.

While internal hydrofractures form under an effective tensile stress, intrusion
fractures may be generated in a layer under effective compression, when the pressure of
the injected fluid exceeds the sum of the total normal stress and the tensile strength, as
already noted in Fig. 3.1B. Considering again, for convenience, horizontal or near-
horizontal layers with the smaller layer-parallel total stress h

o and the total overburden
stress v

o being principal stresses, the formation of intrusion fractures of the dyke or sill
type requires that the pressure pf of the fracture fluid satisfies the basic conditions

dykes: o o o
f h o h IIIp T ( ) (3.16a)

sills: o o o
f v ov v IIIp T ( ) (3.16b)

where To is the tensile strength against fracturing perpendicularly across the bedding of a
sedimentary rock, and Tov is the tensile strength against bedding-parallel fracturing.
Commonly, in sedimentary rocks, the tensile strength is highly anisotropic, with Tov much
smaller than To, which, therefore may be neglected with respect to the total overburden
stress v

o in Eq. 3.16b.
Again we emphasize that, as discussed in the preceding chapter, the “tensile

strength” To is not a real material constant, and the conditions (Eqs. 3.16a,b) are little
more than crude approximations of reality. In particular, the fracture fluid pressure
required to break the cohesive bonds in the tip region of the fracture will decrease as a
monotonic function of increasing fracture length. However, in spite of this, the fracture
conditions (Eqs. 3.16a,b) may suffice to define the in situ stress states that will most
likely promote the initiation of intrusion fractures.
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C) Short oil sills connected by dykelets (core sample, Adriatic Sea; courtesy Shell Int.
Petr. Mij); D) Oil bearing fractured limestone showing oil intrusion both by flow through
per-meable zones and by intrusion fracturing (core sample from 3150 m, Tertiary and
Upper Cretaceous, Adriatic Sea; courtesy Shell Int. Petr. Mij.); E) Dyke-sill system in
carbonate oil source rock; notice the compressive folding (core sample, Qatar; courtesy
Shell Int. Petr. Mij.)

Obviously, the dyke-type hydrofractures are essential in enforcing pathways of fluid
migration across beds of very low or zero permeability (“cap rocks”). Hence, we shall
focus on this type of hydrofracture. Quite similar to the discussion of parallel vertical in-
ternal hydrofractures in Fig. 3.4, we consider in Fig. 3.7 parallel dyke-type hydrofractures.
We assume that, before fracturing, the minimum principal stress III

o = h
o acts along the

horizontal x1 direction only. Under this condition, only a single set of parallel vertical
dykes can develop. The bed as a whole is not allowed to extend in any horizontal direction,
but the material between the dykes is elastically compressed ( e1 = eh > 0) by the extra

1.5 cm

Fig. 3.5. Photographs of fluid dykes and sills
in sedimentary rocks:
A) Dykelets formed in lime mud sediments
by the injection of fluidised clay from a thin
clay band (white). Notice that some fractures
terminate already inside the layer (Middle
Triassic, Weserbergland, Germany; courtesy
D. Meier);
B) Oil dykelets in Carbonate source rock (core
sample, Qatar; courtesy Shell Int. Petr. Mij.);

BA

EDC
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Fig. 3.6. The sill-dyke mechanism in sedimentary
rocks (note the anisotropy of the tensile strength)

Fig.3.8 Aperture (dd) of parallel dykes in a
horizontal, laterally constrained layer.

The aperture d of the
parallel dykes is then determined
in exactly the same way as the
aperture of the parallel vertical
internal hydrofractures (Fig. 3.4),
which was caused by the extra
normal stress h* = To. In a
non-porous wall rock, the ma-
terial between two parallel dykes
is compressed by h* = h =
pf h

o. Hence, the aperture d
of the parallel dykes is deter-
mined by

Fig. 3.7. Aperture ( d) of parallel dykes in a hori-
zontal, laterally constrained layer

stress h = pf h
o exerted by

the fracture pressure pf. Along the
strike of the dykes, i.e. in the x2

direction, straining is suppressed
( e2 = 0). Commonly, sediment-
ary rocks have some permeabi-
lity, which allows the fracture
pressure and the fluid pressure in
the wall rock to interact, and thus
to cause a gradual decrease of
the fracture stress h after the
formation of hydrofractures. In
due course, we shall deal with
this additional complication, but
for now we shall concern our-
selves with the simpler problem
of hydrofracturing of nonporous
rocks.

2
o

f h
d 1

(p )
d E

       (3.17)

where d is the distance between
the midplanes of neighbouring
fractures. Note that the formula

would also apply to a porous and permeable wall rock, as long as the pore pressure is
maintained at the pre-fracturing level by interaction with an external fluid source.

Another particularly interesting aspect of dyke formation is the spacing of parallel
dykes. Regardless of whether or not the aperture of dyke-type intrusion fractures changes
with time, as shall be considered later, the distance between neighbouring parallel dykes is
related to the initial aperture. Fracture mechanics (LEFM) provides a relationship between
the aperture and the length L of a single hydrofracture, if it is not hindered by neighbouring
fractures (e.g., D.D. Pollard, P. Segall (1987); Chapt. 8 in: B.K. Atkinson (ed.) Fracture
Mechanics of Rocks, London). Referring to Fig. 3.7, where we replace 1

o by h
o, the

fracture-mechanical relationship between the aperture d at the injection end (x3 = 0) and
the length of the hydrofracture is

p° initial pore
pressure in wall
rock

p°
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2
o

f hd (0) = 4 (p ).L (3.18)

The average of the aperture, from the injection end to the fracture tip, is

2
o

av f h
1 3

d 3.14 (p ).L d(0)
E 4

(3.19)

In this formula, d(0) is the aperture at the moment the dykes are formed. Since at
this instant the interaction between the fracture fluid and the pore fluid has not yet affected
the pore pressure, the fracture aperture is determined by Eq. 3.17, which was derived for a
non-porous rock, or a rock whose pore pressure was kept constant. Combining Eq. 3.19
with Eq. 3.17, and eliminating d (= dav), one arrives at the extremely simple
approximation of the fracture spacing d:

d 3L

Note that in deriving this formula it was assumed that neighbouring fractures develop
without affecting each other. Hence, the spacing predicted by the formula should be
considered as an upper bound of the actual spacing of parallel dyke-type intrusion
fractures.

The rate at which an intrusion fracture grows is mainly controlled by the rate of fluid
supply to the fracture tip. If the injection pressure at the injection end is maintained for a
sufficient period, an approximate expression for the growth rate of a dyke-type intrusion
fracture is obtained by the law for steady, one-dimensional laminar flow of a viscous fluid
(viscosity f) between parallel plates, separated by the distance dav. The mean velocity
between the vertical plates, which represents the growth rate of the fracture, is

2
av

f
f

d dp
v g

12 ds
(3.21)

where dp/ds is the upwards driving vertical pressure gradient of the fracture fluid and fg
is the increase in gravitational potential energy of the unit fluid volume per unit vertical
distance. We neglect the comparatively small gravity term and approximate the pressure
gradient to dp/ds = (pf – h

o)/L, assuming a linear pressure drop from pf at the injection
end to h

o at the closed fracture tip. Inserting for dav in Eq. 3.21 from Eqs. 3.19 and 3.18,
gives a crude estimation of the growth rate of the vertical intrusion fracture:

2 2
o 3

f h2
f

3 (1 v )
v (p ) .L

4 .E
(3.22)

Thus, the growth rate of the dyke is proportional to the fracture length L and proportional
to the cube of the excess pressure in the fracture.

Therefore, the development of sets of hydrocarbon dykelets may be envisaged as
sketched in Fig. 3.8. The fractures nucleate, closely spaced, at the base of a bed. Naturally,
some fractures will be longer than others and therefore grow faster than the shorter ones.

(3.20)
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The shorter fractures are stopped by compression of the rock ahead of them. Thus, the
fracture fluid will enter a bed in a diffuse way through many fractures, but while pro-
ceeding through the bed, the fractures will decrease in number and increase in width. An
indication of this phenomenon may be seen in the photograph of Fig. 3.5A.

Fig. 3.8. The growth of vertical intrusion fractures (dykes) of different length (after G.
Mandl and R.M. Harkness (1987); in: M.E. Jones and R.M.F. Preston (eds.) Deformation
of Sediments and Sedimentary Rocks, Geol. Soc. Special Publ. 29, pp. 39–53)

In general, the growth rate of the vertical fractures is high, as can be seen by
inserting some typical values in Eq. 3.22, say, E = 104 MPa,  = 0.2, pf h

o = 1 MPa,
f = 10–2 Poise (= 10–3 Pa.s = 10–9 MPa.s), and L = 1 m. The fracture would advance at a

rate of about 7 m/s. If we take into account that high-pressured fracture fluids have a high
compression modulus and that, therefore, the discharge of a small volume of fluid from the
feeder reservoir will cause a sharp pressure drop, and the restoration of the original fluid
pressure in the feeder reservoir will take some time, it is very likely that, temporarily, the
injection pressure will drop below the value needed to maintain open fractures at the
injection end. Thus, the growth of the fractures will stop until the injection pressure has
been sufficiently raised again. In other words, the vertical intrusion fractures grow in a
spasmodic fashion.

Movement of closed fractures. There is another interesting aspect of the growth of
intrusion fractures. Consider a dyke that is continuously fed by high-pressure fluid. In
general, the dyke will grow in a regional field of horizontal stress h

o that increases in a
downward direction at a greater gradient than the fluid pressure pf, as indicated in
Fig. 3.9A. For convenience, we assume both gradients as constants. When the injection
pressure pf(0) at the base (z = 0) is reduced, the width of the dyke at the injection end will
decrease, and eventually the dyke will close. But note that closure is not yet achieved when
pf(0) = h

o(0), since the average excess pressure pf av h
o

av in the fracture exerts a certain
leverage on the fracture walls, which tends to keep the lower fracture end open. Hence,
complete closure requires that the injection pressure drops to a level less than h

o
(0), as

indicated in Fig. 3.9A. If, before closure, the fracture is of sufficient length, the
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excess pressure pf h
o in the upper tip region will induce tensile stresses which can break

the interparticle bonds of the rock and allow the fracture to propagate upwards.
J. Weertman (1971, J. Geoph. Res. 76, No. 5) analyzed the problem in two

dimensions for water-filled crevasses in glaciers and magmatic dykes by means of a
dislocation model. He found that the closed fractures have a slender “teardrop” (or
“tadpole”) profile because of the stress gradients. He also determined the critical fracture
volume that would allow a stable fracture of this shape to migrate vertically through the
rock. Using LEFM, D.D. Pollard and O. Müller (1976, J. Geoph. Res. 81, No. 5) and D.T.
Secor, Jr. and D.D. Pollard (1975, Geophys. Res. Letters 2, No. 11) rederived Weertman’s
results, and presented the formula

2 / 3
1/ 3 2 / 3 o

c c f h
d

L 2 .K (p )
dz

(3.23)

for the critical length Lc, which an intrusion fracture would have to attain before closing at
its lower end in order to allow the fracture to rise, as shown in Fig. 3.9B. The material
parameter Kc is the “fracture toughness” KIc, which was introduced as a measure of tensile
strength in Chapt. 2 (Eq. 2.4).

The length of the isolated fracture cannot exceed Lc, because when L = Lc the
fracture closes at its base, and the driving fracture pressure cannot rise any further. When

Fig. 3.9. Rising hydrofracture (with greatly exaggerated aperture of cross-sectional tear-
drop shape):
A) hydrofracture closed at base by drop in injection pressure;
B) rising stable fracture of critical length
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A B

the rock is non-porous, the fracture will rise at constant length through a rock of constant
gradient d h

o/dz. According to the literature, the fracture toughness of hard rocks varies
between, say, 1 and 3 MPa m1/2, while for soft carbonate rocks, such as chalk, it may be an
order of magnitude smaller. Assuming that the fracture fluid is water, and h

o = 0.7. v
o,

with v
o increasing in depth by 0.025 MPa per meter, the critical length of the fractures

varies between 35 m and 73 m for hard rocks, and drops to a few meters for very soft
rocks.

Note that the first hydrofractures propagating through a bed leave traces of
practically zero tensile strength, as indicated by a dotted line in Fig. 3.9B. Hence we ex-
pect subsequent fluid intrusions to travel along these fracture traces as isolated, very short
thin pockets.

The theoretical results were tested experimentally by Akira Takada (1990) who
injected various fluids into a block of gelatin. Figure 3.10 shows two photographs from
Takada’s paper. The cracks were three-dimensional and penny shaped, and detached
themselves from the injection needle once they had reached a critical length and started
moving. In front view, the tip line of the cracks were elliptical in shape; in side view, they
show the typical “frog-larva” shape predicted by Weertman.

Fig. 3.10. Photographs showing formation and propagation of an isolated crack in a gelatin
block (0.5 m x 0.3 m x 0.3 m) during and after the injection of silicon oil from the bottom:
A) state during fluid injection in front view (left side) and in side view (right side);
B) rising fracture after detachment from injection needle, again in front and side view
(from Akira Takada (1990) J. Geoph. Res. 95, No. B6, pp 8471–8481; reproduced by
permission of American Geophysical Union)

The dyke-sill mechanism. So far we have considered dyke-type hydrofractures as growing
or rising along a straight path unhindered by barriers imposed by changes in the lithology
or the in-situ stresses. In dyke-dominated intrusion processes it is frequently observed that
the dykes side-step along bedding planes by feeding short sill-type intrusions before
continuing their rise through the layered rock. A typical small-scale example are the side-
stepping oil dykelets in Fig. 3.5. That a dyke does not directly cross a bedding plane is
easily understood when the shear resistance on the bedding plane is low, for instance,
because of a low effective overburden stress. When a fracture arrives at the bedding plane,
a sharp crack tip cannot be maintained, since, pushed by the fluid pressure pf of the
fracture, the fracture walls slide apart along the lower side of the bedding plane. Hence, the
stress concentration that is required to split the rock on the opposite side of the bedding
plane is released, and the dyke cannot directly proceed across the bedding plane.

The process was studied by D. Pollard (1973) theoretically and in a series of
experiments in which grease was injected into a stack of gelatin layers. Figure 3.11A,B is
taken from Pollard’s paper, and schematically show an experiment in which a grease
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sheet was intruded into gelatin at right angles to an interface. When the interface was well
lubricated, virtually no shear stress from the advancing intrusion was transmitted across the
interface, but the interface was deformed by normal stresses and a small gap was formed as
shown in Fig. 3.11A. The formation of the gap is ascribed to the elastic Poisson effect: The
aperture of the advancing dyke imposes a horizontal stretching of the material just ahead of
the fracture tip; this, in turn, causes a contraction in the vertical direction (Poisson effect),
which pulls the lower layer away from the upper layer. The grease then intrudes into the
gap along the interface, as sketched in Fig. 3.11B.

Since the process is controlled by very local stress changes induced by the
advancing fracture, one would expect the fluid-filled gap to be very short. Nevertheless,
the small gap on the interface may extend into a short, though relatively thin sill. This is
not easily understood, considering that the pressure pf of the dyke fluid is smaller than the
total overburden stress on the interface. We can suggest two mechanical factors that may
contribute to the extension of the fluid-filled gap along the bedding plane: First, when
sliding apart, the dyke walls exert shear stresses on the bedding plane in front of the gap
ends and these stresses may extend the gap in mode II fashion along the bedding plane of
low shear strength. Secondly, and probably more importantly, the fluid pressure of the
fracture will abruptly rise due to the inertial forces associated with the sudden arrest of the
fluid and the associated vanishing of the driving pressure gradient of the viscous flow.

On the other hand, an advancing hydrofracture will ignore a bedding plane, or any
other planar discontinuity in its path, if the high shear strength of the plane prevents the
fracture walls from sliding apart. We should also bear in mind that lithological contrasts
across bedding planes are often associated with discontinuous changes in the bed-parallel
normal stress, as illustrated in Fig. 3.12. Such stress jumps may cause a change in the
aperture of a dyke, or even stop the advancing dyke.

In Figs. 1.4 and 3.5E, the fracture system is dominated by sills of oil which is
expelled from the layers of a mature hydrocarbon source rock. The sills are interlinked by
numerous dykelets which permit the oil to escape from the source rock. We recall that the
formation of sills requires (Eq. 3.16b) that the pressure of the injected fluid must be greater
than or equal to the overburden stress. This would seem to contradict the generally held

A B

Fig. 3.11. Sketch of David Pollard’s experiment in which grease was injected into gelatin
perpendicular to a well-lubricated interface. The dyke fluid pressure is smaller than the
total overburden stress on the interface (from D.D. Pollard (1973) Tectonophysics 19,
pp 233–269)



42 The dyke-sill mechanism

view that pore fluid pressures cannot exceed the weight of the overburden column of a unit
cross-section, since otherwise the overburden would be in a kind of “floating” state. But
this view is not strictly correct. It implies that fluid pressure and overburden stress are
averaged over a large area. Locally (that is, in restricted areas) fluid pressures in excess of
the overburden column may very well be balanced by the sub-vertical frictional shear
resistance which is mobilized in the overburden above the margins of these patches of
excessive fluid pressure.

We believe that this mechanism is actually limiting the extent to which a fluid sill
can spread out along a bedding plane. Other limiting factors are lithological barriers, or the
leakage of fluid from the sill into the cap rock, which is accompanied by a decrease in fluid
pressure along the sill.

Fig. 3.12. Stress barriers at layer interfaces due to discontinuous changes of layer-parallel
normal stresses ( ):
A) tectonically undisturbed layers of different lithologies (the shear couple would be due to
an inclination of the layers);
B) tectonic shortening or extension of an alternating sequence of strong and weak beds

A B

Fig. 3.13. Formation of a sill-dyke mechanism and up-dip fluid migration in the com-
pression regime on a long slope
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The next question is how fluid may escape from a sill by breaking through to
stratigraphic higher levels and form stacks of sills, as demonstrated by the examples of oil
migration in Fig. 1.5 and Fig. 3.5B–E, and schematically illustrated in Fig. 3.6. The
detailed dynamics of stepping-up are still not very well known. We must therefore restrict
the discussion to a mechanism which may very well be the most important one. A strictly
horizontal layering of rocks is rare, and more commonly the beds are somewhat inclined,
on a local or larger scale. They therefore experience some bedding-parallel shear stress ( ),
exerted by the bed-parallel component of the overburden weight. Consider, for example,
gently dipping beds on a long slope (Fig. 3.13). On such slopes the bed-parallel normal
stress  increases downslope, and over a wide distance  + To may exceed the bed-
normal stress , thus promoting conditions for sill formation. When a fluid sill forms
along such a bedding plane, the effective compressive stress ´ across the bedding plane
will be locally reduced by the pressure of the sill fluid which, according to Coulomb’s
friction law, implies a proportional decrease in shear strength. Therefore, at the location of
the fluid sill the beds may no longer be able to carry the full shear stress, and the bed-
parallel normal stresses  has to adjust itself in order to preserve static equilibrium. As
indicated in the figure, the reduction in shear stress  will cause a drop in  in the upslope
part of a sill, which is compensated for by an increase of this stress in the down-dip
direction to maintain slope stability. The reduction in  will allow dykes to form and cross
beds to feed new sills at stratigraphically higher levels. In this way, a process of upslope
sill-dyke migration may be envisaged (Fig. 3.13).

Permeable wall rocks. Before closing this chapter on intrusion fracturing we recall that we
have, so far, disregarded (p. 34) the fact that a permeable wall rock may allow the fracture
pressure to interact with the pore pressure in the ambient rock. Hence, the pore pressure
may be raised by the higher fracture pressure, and consequently reduce, or even close the
initial opening of the dyke-type hydrofractures. The reason for the reversal of the
compression by the formation of the hydrofractures can be easily explained: The fracture
fluid exerts the total stress h = pf upon the porous walls of the vertical fractures.
Therefore, as long as the fracture pressure pf is maintained, the bed-parallel total normal
stress h between parallel vertical fractures in a uniform horizontal layer remains equal to
pf. It thus exceeds the total stress h

o, which existed prior to fracturing, by h = pf h
o.

In a laterally confined layer, this excess load is balanced by reactive boundary stresses, and
is not affected by a rise in pore pressure p. If the horizontal layer is of uniform thickness,
the total stress h equals pf throughout the whole layer. In contrast, the effective stress h*
will vary in time and space, because, after an initial rise in pore pressure due to the
instantaneous compression of the rock by the formation of the hydrofractures, a further rise
in pore pressure proceeds in a diffusion-type process from the fractures into the wall rock.
The rise in pore pressure depends on the drainage conditions of the wall rock
(permeability, bed thickness, fracture spacing and conditions at the bed surface) and the
compressibilities of the porous rock, its solid skeleton, and the fluid.

Our problem is now the generalization of the aperture formula (Eq. 3.17). To
simplify the problem, we consider the rock, as before, as being uniform and mechanically
isotropic in all horizontal directions, and assume that the mechanical properties of the rock
are not affected by the pore pressure changes. Then, within the realm of linear elasticity
(Eq. 3.3), we can replace the pore pressure rise p (x,t) by its spatial average p̂(t)
between neighbouring vertical fractures. Thus, in accordance with the definition in Eq. 2.2,
the spatial average of the transient change in effective stress h*(t) is
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h*(t) = h  a. p̂(t) = pf ho  a. p̂(t) (3.24)

where a = 1  K/Ks (Eq. 2.2).
The elastic extension eh < 0 that is associated with the decrease in effective stress

h*, is again determined by the poro-elastic stress-strain relationships (Eq. 3.3), where we
insert e2 = 0 in the second equation and eliminate 2* from the first two equations. With

1* h* and e1 eh, and 3* v* = a. p̂  for the change in the effective
overburden stress (the total overburden stress v remaining constant), the poro-elastic
equation for eh = d/d (Fig. 3.7) can be described as

2
o

f h
d 1

ˆ[(p ) (1 ). p]
d E

(3.25)

where  is the material parameter defined by Eq. 3.6.
Hence, in order to maintain some aperture ( d > 0), the fracture pressure must satisfy

the condition

pf > h
o + (1 ). p̂ (3.26)

to ensure a positive right-hand side of Eq. 3.25. If the rock has no porosity, p̂  = 0, and the
aperture relation (Eq. 3.25) reduces to Eq. 3.17. This would also hold in a fluid-saturated
rock, whose pore pressure is maintained at the original level po by an ideal hydraulic
interaction with ambient rocks. In general, however, the drainage of the fractured beds is
rather limited, and the pore pressure will rise ( p̂(t) > 0). Part of this rise occurs
instantaneously at the onset of hydrofracturing, as the bulk material is compressed by the
fracture pressure under virtually undrained conditions. This initial rise in the fluid pressure

p(0) is determined by Eq. 3.32 in the appendix to this chapter.
In the most unfavourable situation, the fractured bed remains completely undrained,

as for example, when the fractured bed is enclosed in thick overpressured shales. After the
instantaneous rise p(0) at the point in time t = 0, the pore pressures will eventually
approach pf, that is, p̂  pf  po. We insert this in Eq. 3.26, and express ho and po as
fractions of the overburden stress v

o. This is done by making use of the Ko-value (Eq. 3.7)
and the -factor,  = po

vo, (Eq. 3.8). Then, with

h
o = h´°+ + . v

o = Ko v´° + . v
o = v

o [(1 ).Ko + ] (3.27)

Eq. 3.26 can be written as

o o
f v

(1 ).K
p . (3.28)

On the other hand, in a dyke-dominated intrusion process one has pf < v
o + Tov. In

general, Tov may be neglected with respect to v
o, and the bracketed expression in Eq. 3.28

has therefore to be smaller than 1. As one readily verifies, this implies

again with  = 1  (1  2 ).(1 ) 1.(1  K/Ks) as defined by Eq. 3.6.

Ko < (3.29)
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Not surprisingly, Eq. 3.29 is the same as Eq. 3.13 for open internal hydrofractures in
a laterally confined layer under a uniform pore pressure (p. 31). As pointed out before, this
condition is not always satisfied. For example, in an undrained low-permeability clay bed,
Ko is high, probably > 0.7; furthermore, 0.2 <  < 0.4  and K/Ks < 0.1 would be a
reasonable guess. This results in Ko > , which makes it rather unlikely that water dykelets
can remain open in an undrained clay bed. However, we have to concede that during the
formation of the dykelets which, as we have seen (p. 38), is a rapid process, the wall rock
may be eroded and/or loose material may be dragged into the fracture. Hence after
“closure”, the intrusion fractures may remain as streaks of higher permeability, and thus
act as paths for further fluid migration. In connection with this, also notice in Fig. 3.5A the
traces of the fluidized clay (white) that was injected into the dykelets.

So far, both fracture and wall rock were considered as saturated by the same fluid. In
passing, we draw attention to the practically important case that, instead of water, oil or gas
is injected into a water-saturated bed. In general, the pore walls of a water-saturated rock
are preferentially “water wet”, while gas and most crude oils are “non-wetting” regarding
the pore walls (Fig. 3.14). The non-wetting fluids only enter the porous wall rock by
overcoming a capillary entry pressure pc. The fracture pressure pf in oil or gas dykelets,
therefore, always exceeds the water pressure inside the wall rock by the capillary entry
pressure pc. Hence, the maximum of the average pore pressure rise p̂  in Eq. 3.26 is p̂max

= pf  po  pc. With this expression inserted in Eq. 3.26, and following the argumentation
which led to Eq. 3.29, one arrives at the condition for dykes fed by non-wetting fracture
fluids to remain open in an undrained water saturated rock:

c
o o

v

p1
K .

1
(3.30)

Fig. 3.14. Hydrocarbon/water interfaces at fracture wall (schematic)

We notice that even if Eq. 3.29 is violated (Ko > ), and therefore water fractures
could not remain open in a water-saturated undrained bed, non-wetting fracture fluids may
still keep intrusion fractures open, though only down to a certain depth. Interestingly, this
limiting depth, given by

o c
v

o

(1 ).p

(1 ).(K )
(3.30a)

increases with the degree of overpressure in the pore fluid (0.42  < 1) prior to
fracturing.
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Summary. In closing this lengthy chapter on hydrofractures we shall summarise the main
points.

At some depth in the Earth’s crust all total stresses are compressive. The formation of
open fractures at that depth therefore requires fluid pressures in excess of the smallest
total normal stress. Fractures of this kind are termed “hydraulic” fractures. There are
two types of hydraulic fractures: internal fractures and intrusion fractures.

Internal hydraulic fractures are formed by a pervasive rise in pore pressure. They
are of the tensile type if the smallest (Terzaghi-)effective stress is reduced by the pore
pressure to the negative value of the tensile strength (To), while the greatest effective
stress remains smaller than approximately three times the tensile strength (Fig. 3.1A).

The internal fractures are of the cleavage (extension) type if the smallest effective
stress is reduced to approximately zero, while the greatest (compressive) effective
stress has a high value, as already discussed and summarized in Chapt. 2.

Intrusion fractures are formed by the injection of highly-pressured fluids into a bed
from outside (Fig. 3.1B) whereby the injection pressure exceeds the smallest total
stress plus the tensile strength.
Vertical internal hydrofracturing in a horizontal bed requires that the pore pressure is
raised throughout the bed to the value given by Eqs. 3.2a,b for the tensile and the
cleavage mode, respectively. Thus the pore pressure rise p depends on the value of
the smallest bed-parallel effective stress ( ´h°) prior to the rise in fluid pressure, and is
inversely proportional to a dimensionless factor ( ).

If, though it is somewhat unlikely  = 1, the bed is completely free to expand in
response to the pressure rise p. In the more realistic case  < 1, the lateral expansion
is hindered by a lateral confinement. If the lateral expansion is completely suppressed,
and the material reacts elastically to the rise in pore pressure,  is determined by the
elastic rock moduli (Eq. 3.6). (Typical values of  may lie, say, between 0.4 and 0.7.)

In laterally confined layers, internal tension and cleavage fractures require
surprisingly high (“hard”) overpressures (0.8 <  = p/ v° < 1); and only cleavage type
fracture in laterally unconstrained layers may form under moderate overpressures (say,
0.6 <  < 0.7).

Besides the high overpressure, tensile internal hydrofracturing of laterally confined
layers requires (Eq. 3.13 or 3.13a) that Ko < , with Ko the ratio of the smallest
horizontal effective (Terzaghi-)stress to the overburden stress, both stresses being
considered before pore pressure rise. The condition need not be satisfied in highly
porous “hard” rocks or overpressured shales, where the formation of internal tension
fractures would require some reduction of the Ko-ratio by tectonic extension. But even
if the overpressure is sufficiently high and the additional condition Ko <  is fulfilled,
internal tensile fracturing remains confined to a certain depth range (cf. inequality 3.12
or 3.14).

If any layer-parallel extension is suppressed, the vertical internal hydrofractures in
the tensile mode develop as “hairline” cracks (see Eq. 3.15, Fig. 3.4). Conversely, a
wider opening of the fractures suggests that the fractured layer was extended by the
cooperation of a high pore pressure and extensional external forces, or by tectonic
extension alone.
Dyke-dominated intrusion processes. Dyke-type fractures serve as migration paths for
fluids across rocks of very low or zero permeability (“cap rocks”). The aperture d
(Eqs. 3.18, 3.19), the spacing d (Eq. 3.20), and the growth rate (Eq. 3.22) of parallel
dykes are proportional to the fracture length L. Hence, the fracture fluid will enter a
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bed in a diffuse way through many closely spaced fractures, but while proceeding
upwards through the bed the fractures will decrease in number and increase in width,
and thereby stop the shorter fractures (Fig. 3.8).
Rising dykelets. In general, the intrusion fractures will grow in a spasmodic fashion, as
temporarily, the injection pressure drops below the value needed to keep the fracture
open at the injection end. If, before closure, the fracture is of a length L  Lc, with Lc a
critical length determined by Eq. 3.23, an isolated fracture of length Lc will form and
rise through the rock driven by the upward decrease in lateral rock stress

h
o (Fig. 3.9). The rising fractures have a very slender “teardrop” profile, and a length

depending on the fracture toughness Kc of the rock (Lc  Kc
2/3). A rising fracture will

keep its critical length as long as no fracture fluid is lost to the wall rock. Otherwise,
the rise will come to a halt, until the fluid volume of the fracture is restored by
connecting fractures, which ascend along a trail of reduced fracture toughness created
by the previous fracture.
Dyke-sill mechanism. Even in dyke-dominated intrusion processes, dykes are often
forced to make short side-steps when arriving at bedding planes of low shear
resistance. The dykes are arrested at such bedding planes, because of the release of
stress concentration at the fracture tip. Dykes are also arrested by stress barriers
associated with abrupt changes in the bed-parallel normal stresses (Fig. 3.12). In either
case, the sudden arrest of the fluid flow in the fracture invokes a brief rise in fluid
pressure at the fracture tip, which may suffice to “lift off” the overburden around the
contact of fracture and bedding plane. If the fracture system is dominated by bedding-
plane sills, the fluid may still break through to stratigraphic higher levels, and form
stacks of sills with interlinking dykelets (see Figs. 1.5, 3.5B–E and 3.6). This process
of fluid migration operates in compressional regimes, in particular on slopes
(Fig. 3.13).
Dyke-type fractures in permeable rocks. The hydraulic interaction of fracture fluid and
pore fluid through permeable fracture walls, tends to reduce the initial pressure
difference by increasing the pore pressure of the wall rock. Since this reduces the
effective compression between parallel dykes, the original fracture pressure can no
longer maintain the initial opening (aperture) of the fractures. In the worst case of a
fractured layer that is hydraulically isolated from the adjacent layers, some aperture of
the fracture can only be maintained if Eq. 3.29 is satisfied. In view of this condition, it
seems unlikely that water dykelets can remain open in an undrained clay bed. The
situation is different when oil or gas is injected into a water-saturated bed. Since these
fluids are “non-wetting” with respect to the pore walls of the “water wet” rock, they
can only penetrate into the wall rock by overcoming a capillary entry pressure. In this
case, Eq. 3.29 is replaced by Eq. 3.30, which indicates that non-wetting fracture fluids
can still keep intrusion fractures open when water fractures would be closed.
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Appendix to Chapter 3

The instantaneous build-up of pore pressure

A part p(0) of the total pressure build-up p̂  is caused by the undrained isothermal
volume change of the rock at the instant of hydrofracturing. It is expressed in terms of the
total stress load by the Skempton-Bishop formula (see G. Mandl, FBR, p. 174):

1 2 3p(0) B.
3

(3.31)

where
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and  is the porosity, and the compression moduli are K, for the bulk volume, Ks for the
solid skeleton material, and Kf for the pore fluid.

The total stress increments in Eq. 3.31 are: 1 = h = pf h
o, 3 = v = 0, and

2  = a p(0),  according to the definition of the generalized effective stresses

(Eq. 2.2).
The term  is obtained by inserting e2 = 0 into the second equation (Eq. 3.3):

* * *
h v h.( ) .( a. p (0))

or in terms of total stresses:

h. (1 2 ).a. p (0)

Inserting the total stress increments into Eq. 3.31, the rise in pore pressure at the
instant t = 0 of hydrofracturing becomes

o
hf

(1 p
p (0)

(3 / B) (1 2 ).a
(3.32)

where, as before, a = 1 – K/Ks.
As an example, let us insert in Eq. 3.32 the parameter values  = 0.2, B = 0.4, and

a = 0.7, as may be considered typical for porous rocks of intermediate strength (e.g.,
G. Mandl, FBR, p. 179). p(0) is then 17% of the total stress rise h = pf h° in the
undrained rock.



Chapter 4

Termination and Spacing of Tension Joints

in Layered Rocks

In the preceding chapter, we discussed the mechanism of natural hydraulic fractures, i.e.,
internal and intrusion fractures which are mainly produced by high fluid pressures. Here,
we shall consider in some detail the behaviour of the mode I fractures that are produced in
layered rocks by the effective tension associated with a layer-parallel extension. These
tension joints form under the conditions schematically represented below (Fig. 4.1).

Fig. 4.1. Formation of tension joints in extending layer. Layers are schematised on the left,
with the associated Mohr circle diagrams on the right

Termination of tension joints. In layered sedimentary rocks, the tension joints may
terminate at bedding contacts, cut straight across contacts, or continue after side-stepping
along a layer interface. A typical example of sets of joints confined to single layers was
presented in Fig. 1.3, where the joints cut across the limestone beds but not across the
interbedded weaker marls. Similar examples of alternating sequences of lithologically
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contrasting layers are shown in Figs. 4.2 and 4.3. Figure 4.4 represents a case where a
systematic joint set (characterised by straight fracture traces on the bedding) cuts straight
through a layer interface. Figure 4.5 shows the side-stepping of almost straight

Fig. 4.4. Orthogonal joint sets in siltstone beds (Cornwall). Wider spaced systematic joints
in the thicker bed cut through the bedding plane. Thinner bed is more intensely fractured

Fig. 4.2. Liassic limestone layers separated
by unfractured shales (“Blue Lias” oil source
rock), Wessex Basin (South England, Lime
Bay)

Fig. 4.3. Flexural slip (left lateral) of folded
Carbon., NE rim of Rhenish massif (note the
fracture inclination due to the reorientation
of the  axis by the slip imposed shear

)
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Fig. 4.5. A) Profile of vertical
joints in an alternating siltstone/
shale turbidite sequence.
The joint traces are discontinu-
ous at bedding interfaces, as
shown by the close-up view
(0.5 x 0.5 m) in B) (from D.E.
Helgeson and A. Aydin (1991) J.
Struct. Geol. 13/8, pp. 897–911)

vertical fractures on bedding planes, similar to the side-stepping of oil dykelets in
Fig. 3.5B of the preceding chapter. These examples may suffice to illustrate the
overwhelming evidence of joint termination and propagation in layered sedimentary rocks.
And, like in the case of the dyke-sill process in Chapt. 3, we face the problem of what
controls the termination, side-stepping or straight propagation of tension joints. The
problem has considerable practical and economical implications, that have already been
referred to in the introductory Chapt. 1.

Let us first turn to the most striking and ubiquitous phenomenon of sets of parallel
tension joints that are confined to single layers, as shown by the examples in Figs. 4.2 and
4.3. In Chapt. 3 (“The dyke-sill mechanism”) we mentioned as possible reasons for the
arrest of dyke-type mode-I fractures at layer interfaces: (1) the weakness of the interface
with respect to its shearing resistance and its tensile strength, and/or (2) the presence of a
stress barrier at the upper side of the interface. Although the tension joints we are con-
cerned with here are not produced by the wedging action of some high-pressured injection
fluids, but by layer-parallel extension, one may expect the mechanisms of fracture arrest to
be similar in both cases. Consider first, a stack of mechanically very similar layers in direct
contact with one another, and let the whole stack be uniformly extended in a layer-parallel
direction until the tensile strength is reached. The tension joints that form in the individual
layers will then terminate at the bedding interfaces if the interfaces are very weak in tensile
strength and shear resistance. In this case, a tension joint approaching an interface cannot
maintain the near-tip stress concentration necessary for crossing the interface. As
mentioned with regard to dyke-type fractures, the loss in near-tip stress concentration is
commonly ascribed to two mechanisms. Firstly, just ahead of an advancing tension
fracture, the interface is very slightly opened by the Poisson-type contraction of the
material between fracture tip and interface, that accompanies the layer-parallel elastic
stretching ahead of the fracture tip due to the aperture of the tension fracture. Secondly, the

A B
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tip of a tension fracture arriving at a weak interface is blunted and the stress concentration
lost, as the fracture walls can slip sideways along the interface. Interestingly, and some-
what unexpectedly, the results of recent numerical modelling experiments suggest that it is
the local opening, rather than interfacial sliding, which primarily causes the termination of
tension joints at weak interfaces between mechanically very similar layers (M.L. Cooke
and Ch.A. Underwood (2001) J. Structural Geology 23, Nr. 2/3, pp. 223–238).

Although the joints in mechanically similar layers terminate at weak interfaces, and
are thus confined to separate layers, the joints in one layer need not develop independently

from the joints in an adjacent layer; they may
even combine into larger composite joints. A
simple, but instructive example of a composite
joint is shown in Fig. 4.6, which is taken from
the same paper as Fig. 4.5. The figure shows a
graphic representation of joints that formed in
a stack of siltstone layers. Note that the
individual joint segments are aligned in a
vertical plane. Also, the initiation points are
vertically aligned and are all located at the top
of each layer, at the point where the joint from
above first arrived. This suggests that the bed
contacts still allowed an arriving fracture front
to maintain some of its stress concentration
which, when added to the tensile stress in the
adjacent layer, triggered a new fracture.

Fig. 4.6. Graphic representation of a composite joint in a stack of siltstone layers, showing
the initiation points of the fractures, hackle traces, and reconstructed joint fronts (from
D.E. Helgeson and A. Aydin (1991) J. Struct. Geol. 13/8, pp. 897–911)

Unhealed pre-existing cracks can play a similar role as weak layer interfaces in
stopping the propagation of tension joints. There is abundant evidence of younger joint sets
abutting a set of earlier joints which have not yet been healed and thus still behave as very
weak contact planes. The younger joints are therefore truncated by the older joints. The
traces of the older joints may continue straight over wider areas, and are then referred to as
“systematic” joints (germ. fundamentale Klüfte or Hauptklüfte). The joints truncated by the
systematic joints are called “non-systematic” joints (germ. Nebenklüfte). The concept of
systematic and non-systematic joints is illustrated in Fig. 4.7. A set of systematic joints

abutted by non-systematic joints can be seen in
Fig. 4.4. Two sets of systematic joints, and trunc-
ated non-systematic joints are shown in Fig. 4.8.

Fig. 4.7. Orthogonal systematic and non-syste-
matic joints (after N.J. Price (1966) Fault and

Joint Development, Pergamon Press)

10 cm10 cm
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The fact that weak layer interfaces or joints can arrest approaching fractures is also
exploited by rock engineers in underground excavation operations and in the construction
of road cuts. In these operations, pre-existing fractures or artificially created cracks (“pre-
splitting”) function as barriers to the fractures produced by blasting. This is illustrated by
the photograph in Fig. 4.9.

            The appearance of the non-systematic joints naturally poses the question as to the
stress field that controlled the formation of these tension fractures. Obviously, this stress
field cannot be the same as the field that generated the systematic tension joints. We shall
deal with this question in Chapt. 5. Here, we conclude the discussion of the joint arrest at
weak interfaces between mechanically very similar layers by adding a few remarks on the
so-called side-stepping, or step-over, of tension fractures at bedding contacts. Figure 4.5B
may serve as an illustration of the phenomenon. Recall that we have already encountered
this phenomenon in the context of the dyke-sill mechanism in Chapt. 3 (see Fig. 3.5).
There, we expected the intruding high-pressure fluid to play an essential role in producing
side-steps at bedding contacts, i.e. short sill-type intrusions, before the dyke-type fracture
could continue into the next layer. Here, in the case of tension joints, side-stepping does
not involve the intrusion of a high-pressure fluid. Although the side-stepping process is not
yet completely understood, and it seems that, in particular, the role of inertial effects in the
arrest of fractures has not been taken into account, we may draw a somewhat cursory
picture of the mechanical process from recent publications.

Fig. 4.8. Aerial view of joints in flat-lying
Permian sandstone (Canyonlands National
Park, Utah). Two sets of systematic joints
intersect at an angle of 70°, and are abutted
by non-systematic joints under about 90°
(photograph by G.E. McGill, from John
Suppe (1985) Principles of Structural

Geology, Prentice-Hall)

Fig. 4.9. Fractures radiating from a
blast hole in a quarry wall. The frac-
tures have been arrested by the pre-
existing crack (a natural pre-split) on
the right hand side of the photograph
(from P.E. Gretener (1983) Bull. Ver.
Schweiz. Petroleum-Geol. u. Ing. 49,
Nr. 116, pp. 29–35)
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Consider in Fig. 4.10 a fracture which propagates in the x1 direction, and look for the
position of the maximal tensile stress | | on the line x1 = d, x2 > 0. The position of the
maximum (or the maxima) is determined by Eq. 4.1 for the field of the minimum principal
stress . Interestingly, the maximum is not attained at x1 = d, x2 = 0, but at
x2 0,53d. Hence, for reasons of symmetry, two equal maxima lie symmetrical to the
fracture plane at x2 0,53d  The maxima exceed the value of the principal tensile stress at
x1 = d, x2 = 0 by about 13%.

1 1
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But despite this, the fracture propagates straight ahead in the uniform material
along the x1-direction. This is in accord with LEFM’s prediction that the rate at which
mechanical energy is released during incremental crack extension (“crack extension
force”) is maximal when the mode I crack propagates in its own plane. Now, if the fracture
approaches a plane of low tensile strength (e.g., a weak bed contact or an unhealed
fracture) at x1 = d, the plane will be locally opened by the Poisson effect, and the energy
release rate drops and can no longer propagate the fracture. However, tensile stress
maxima will still be induced on the plane of weakness at points which lie symmetrically
off the x1 axis, although most likely not exactly at the points indicated in Fig. 4.10.
Combined with the overall (far-field) tension on the opposite side of the plane of
weakness, the induced tensile stress maxima may trigger new tension fractures to the right
and left of the plane of the “parent” fracture.

In summary, a tension joint propagating toward a contact between mechanically
similar beds under the same layer-parallel effective tension may either: (1) terminate at
the contact, (2) propagate straight through the contact, (3) continue across the contact
by triggering a new joint segment on the opposite side of the contact, or (4) side-step to
the right or left of the bedding contact.
How the approaching joint behaves at the interface depends mainly on the tensile and
shearing strengths of the interface. Fracture termination is favoured by a very low
interfacial tensile strength, while very strong interfaces may be ignored by a
propagating tension joint. Contacts of moderate strength may cause side-stepping, or
the sequential development of joint segments arranged in-plane with each other.
Since higher effective overburden pressures tend to suppress the small local opening of
bedding contacts and increase the frictional strength of the contacts, deep burial may
promote the straight propagation of tension joints across bedding planes.

Fig. 4.10. Maxima of tensile stress ahead of mode I fracture
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Fig. 4.11. Multilayer of
stiff (E1) and softer layer
(E2) under uniform later-
al extension. Extension
causing tension fractures
in the stiffer bed:

E2 < E1

L
H

E2

E2

E1

Spacing of tension joints. We now turn to a curious, but rather common phenomenon in
layers of sedimentary rocks: the fairly regular spacing (germ. Kluftabstand) of parallel
tension joints, as shown in Figs. 4.2 and 4.3. What causes a regular spacing of parallel
tension joints? Previously, we have seen that joints in adjacent mechanically similar layers
may interact with each other. When we wish to understand the reasons for regular spaced
tension jointing of a layer, and to define the controlling parameters, it is advisable to first
consider a layer which is not affected by jointing in a neighbouring layer. A glance at the
jointed layers in Fig. 4.2 tells us that this is best achieved by considering the jointed layers
as being separated by thick layers of an “incompetent” material, as for instance, a clayey
sediment. By “incompetent” we mean a material which, in comparison, has a relatively low
elastic stiffness (Young’s modulus E), or even deforms by creep flow under the applied
(slow) extension. The extension of the whole sequence then induces sufficient tensile
stresses in the stiffer (more competent) layers to generate tension joints, but not so in the
lower modulus interlayers, where, in the case of creep flow, the layer-parallel stress may
even remain compressive (cf. Fig. 3.12B with reversed arrows). The configuration we are
dealing with is schematized in Fig. 4.11.

A number of mechanical models have been developed to explain the regular
arrangement of the tension joints in the stiffer layer. Two models deserve special attention,
since they bound the range of mechanisms that in reality produce sets of equidistant
tension joints. The simpler of the two mechanical models was proposed by N.J. Price (N.J.
Price (1966) Fault and Joint Development in Brittle and Semi-brittle Rocks, Pergamon
Press, Oxford), the more intricate model was presented by D.W. Hobbs (1967; Geol. Mag-
azine 104, pp. 550–556). In order to obtain a clear picture of how appropriately the mod-
els analyze and explain the main features of the real process, we have to discuss the theo-
retical models and the underlying assumptions (some of which were tacitly made) in detail.

Fig. 4.12. Generation of a single joint (filled by pore fluid of pressure p) in an extended
layer; interfacial frictional shear stresses ( ) balance the reduction in tensile stress x´

y

x

L

 H

p

x = x´ p
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Price’s frictional coupling model. Price’s model is basically a static balance of the
mechanical forces in a stiffer layer which is in frictional contact with the ambient strata of
softer material. The layer is horizontal and uniform, and the whole set of layers is uniform-
ly extended. This induces a uniform tensile stress x´ in the stiff layer being considered,
while leaving the layer boundaries free of shear loads, and only loaded by the compressive
effective overburden stress v´. When the tensile stress reaches the tensile strength (–To), a
first joint is formed normal to the layer, and filled with pore fluid. The state of stress in the
vicinity of the fluid-filled tension fracture is schematically shown in Fig. 4.12 for a section
parallel to the plane of deformation (plane strain) and representing a slice of unit width.

Assuming a sufficient permeability of the rock, the fluid pressure in the fracture
quickly attains the value of the pore pressure p in the layer, and therefore exerts the total
stress x = p upon the fracture walls. Thus, the effective stress on the vertical fracture walls
drops to zero, and the release in tensile stress tends to shorten the separated parts of the
layer. If there were no cohesive/frictional resistance along the layer boundaries, the
shortening would be uniform and accommodated by the widening of the joint. Further
extension of the layer would simply be accommodated by further widening of the joint and
slippage of the intact parts of the layer. In reality, however, the slippage of the layer is
hindered by interfacial shear stresses ( which are mobilized in reaction to the shortening
of the layer material.

Let us for the moment assume that we know the average av of the induced shear
stresses, the total shear resistance on a layer segment of length L then is av.L. Next,
consider in Fig. 4.12 a cross section of height H and unit width at the distance L from the
fracture wall. Since the pore pressure part p.H balances the force of the fluid pressure on
the fracture wall, the static balance of all forces that act parallel to the layer (per unit
width) is simply

x av(L) H 2 .Lˆ . (4.2)

where ˆ x  denotes the average of x  on the vertical cross section at x.
At this point, we may draw an initial conclusion about the spacing of tension joints.

Consider two horizontal layer systems, both linear-elastic, with the same mechanical
properties, the same pore pressure, and loaded by the same overburden stress, but differing
in geometric scale by a common scaling factor m. Thus, when the thickness of the stiff
layer in the first system is H, it is m.H in the second system. As a consequence of the
linearity of the laws of linear elasticity, the same horizontal uniform straining induces the
same tensile stress x  at corresponding points (x and mx) in the two systems. When a first
tension joint is formed in the corresponding layers, the associated unloading ( x  = 0) of
the fracture walls causes exactly the same stress perturbations at corresponding points in
the two systems. In particular, the same average stress av will act upon the two stiff layers
considered, and ˆ x  at x = L in the layer of thickness H will be the same as at x = m.L in
the layer of thickness m.H. Therefore, if the effective tensile stress generates a second
tension joint at a distance L from the first joint in the layer of thickness H, it also generates
a second joint at a distance m.L in the layer of thickness m.H. Hence, the ratio L/H in
Eq. 4.2 is the same for both layers.

Thus, as was already pointed out by Price, the joint spacing to layer thickness ratio
L/H is the same in all sets of a jointed layer and its unfractured embedment, which are
geometrically similar (i.e., the bed thicknesses being scaled by a common factor), but do
not differ in the (elastic) mechanical properties.

This may explain why in an alternating sequence of, say, limestone beds and shales,
the thicker beds may show the same L/H ratio, or nearly so, as the thinner beds. But it does
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L H.To 2 av

not yet tell us anything about the magnitude and the controlling parameters of the
dimensionless spacing ratio. In order to determine L/H from Eq. 4.2 we have to know, or at
least estimate, the parameters ˆ x  and av.

In Price’s model of joint spacing, a new joint can form at a distance L from the first
one if the vertical cross-section at x = L is the very end of the zone of the stress pertur-
bation caused by the first joint. At this cross-section, the tensile stress x´ is still uniform
and equal to the tensile strength. Hence, with ˆ x  = x´ = –To in Eq. 4.2, the distance at
which, or beyond which, the next joint can be generated is

If we knew av in this formula, the problem of determining the spacing of the joints would
be solved. Unfortunately, it is the crux of the whole problem, that we do not know the
average shear stress av

In Price’s “slip” model, it is assumed that the cohesive part of the interfacial shear
strength is zero. Hence, the shear stresses induced at the layer boundaries by the formation
of the first joint cannot exceed the fully mobilized interfacial Coulomb friction

tan  (with the friction angle of the interface).Although, prior to jointing, the
vertical normal stress  on the interfaces was the effective overburden stress v´, after
the formation of a joint it no longer has this constant value. But, as we can show in
Appendix A to this chapter, the average ˆ  of  remains equal to v´.

Since the maximum shear stress, mobilized by the fracture-induced release of
tensile stress, cannot exceed the Coulomb limit stress tan , the total reactive shear
force on an interface cannot exceed L. v´.tan . This value is actually attained if slip
occurs on the whole interfacial segment from x = 0 to x = L. Making this “slip” model
assumption, av in Eq. 4.3) becomes equal to v´ tan  and the spacing to layer thickness
ratio is therefore

How adequately the assumption of complete frictional slippage compares with real
situations is a question that will be discussed later in this section (see “Models and
reality”). But in any case, the slip assumption provides the greatest possible shear
resistance on cohesionless interfaces, and Eq. 4.4 therefore defines a lower bound of actual
joint spacing to layer thickness ratios.

Also note, that the dimensionless spacing L/H of equidistant joints decreases with
increasing depth. This is readily seen by expressing the effective overburden stress ´v in
Eq. 4.4 in terms of the total stress ´v = v (1 ), (with  = p/ v, the ratio of the pore
pressure p to the total overburden stress v), and noting that in sedimentary rocks v

increases by about 25 MPa per kilometer depth. Choosing the common value of 0.7 for
tan , we obtain the dimensionless spacing in terms of the thickness z (km) of the
overburden at the time of jointing:

oT MPaL

H 35(1 MPa/km) z km
(4.4a)

For example,if the pore water is under normal hydrostatic pressure, i.e.  and the
layer has a tensile strength To = 5 MPa, joints with L/H = 0.5 would be formed at the depth
of only about half a kilometer. Also note, that the slip model would also account for
relatively small joint spacings; for instance, joints with L/H = 0.1 could be formed under
about 2.5 km of overburden ( .

(4.4)o vL/H  T / 2 tan

(4.3)
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Fig. 4.12A. Accommodation of joined extension of
fractured and unfractured layers
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It should also be recalled, that Eqs. 4.4 and 4.4a were derived for flat-lying layers.
If the layers dip under angles of more than a few degrees, one should expect the formation
of joint sets to be affected by the normal stresses and shear stresses which are induced,
prior to jointing, by the components of the overburden weight normal and parallel to the
interfaces. We shall return to this complication later.

Finally, it is an important implication of Price’s slip model that, once a layer is
transected by a set of more or less regularly spaced joints, further extension of the layers
cannot generate new joints in between (“infill joints”). This may be seen as follows.

By the formation of the second joint the tensile stress ˆ x  between the joints is
further reduced, and in reaction, the interfacial shear stresses are reduced as well. But the
shear stresses are raised again when the whole set of layers is extended further. The reason
for this lies in the different straining of the layers, as illustrated in Fig. 4.12A. Although all

layers are extended by the
same amount, the extension
in the fractured layer is
mainly accommodated by
the widening of the joints,
which leaves the joint-
bounded segments nearly
undeformed, whereas the
extension of the adjacent
material is accommodated
by continuous straining.
Hence, the layer-parallel
displacements decrease
across the interfaces of the
joint-bounded segments,
which results in a layer-
parallel shear stress av,

directly proportional to the displacement gradient. The shear stresses increase with
increasing extension of the layers until slippage takes place. Therefore, in the slip model,
the shear stress cannot exceed the Coulomb-frictional shear stress ( av = v tan ). In the
case of complete interfacial slippage, the balance relation (Eq. 4.2) states that, midway
between two joints, ˆ x (L/2) = L/H) v tan . Or, when compared with Eq. 4.4:
ˆ x (L/2) = To/2. Thus, the average effective tensile stress inside a joint-bounded segment
cannot exceed half the value of the tensile strength.

The Hobbs model. Somewhat curiously, the spacing formulae (Eqs. 4.3, 4.4) do not
contain elastic material parameters, such as the Young moduli of the layers. The reason for
this is, that the stiff and weak layers in the model are decoupled by an interfacial shearing
resistance ( max) that is independent of the actual stiffnesses of the layers. This is different
in the model, introduced by D.W. Hobbs (1967; Geol. Magazine 104, pp. 550–556) which
shall be discussed next.

Consider in Fig. 4.13 a stiff layer (1) and ambient weaker (low modulus) layers (2)
that are “welded” together by strong cohesive bonds which exclude any interfacial
slippage. It is assumed that the weaker layers are considerably thicker than the stiff layer of
thickness H. The layers are supposed to respond elastically to extensional straining. When
prior to jointing the three-layer unit is subjected to a uniform extensional displacement of
its vertical boundaries, the induced layer-parallel displacement u° has a uniform gradient
du°/dx throughout the whole three-layer unit. Hence, so far, the straining has not yet
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yx = 0

xy(x,o) = c(x)

induced a shear stress on the contact planes, although the tensile stresses differ between the
layers due to the difference in elastic moduli (E1 > E2).

As the uniform straining increases, the higher tensile stress in layer 1 eventually
reaches the tensile strength, and a first joint is formed (Fig. 4.13). From this moment on,
the displacement fields in layer 1 and layers 2 develop differently into the (differentiable)
displacement fields u1 = u1 (x,y) and u2 = u2 (x,y). On the interfaces the displacements are
the same on both sides (u1 = u2) because slippage is excluded, but the displacement
gradients u/ y will differ because of the difference in shear moduli (G1  G2). However,
the shear stress xy associated with the displacement gradient will vary continuously across
the interfaces:

c = xy(x, 0) = G1.( u1/ y)y=0 = G2.( u2/ y)y=0 (4.5)

Obviously, the value of the shear stress xy (x,y) will decrease monotonically with
increasing distance from the interface. Thus u1,2/ y  0, at least within a certain distance
from the interfaces. But this entails in static equilibrium ( x/ x + xy/ y = 0) that the
layer-parallel normal stress x varies in the x-direction. Consequently, the longitudinal
strain ex which, prior to the fracturing in layer 1, was uniform throughout the three-layer
system, becomes non-uniform by the formation of the first joint. Thus, while the average
strain in the layers 2 remains

av
x2e U/W (4.6)

with W being the half-length of the layered system, and u = U the uniform boundary
displacement (see Fig. 4.13), the local strain ex2 in the unfractured embedment is altered by
the onset of fracturing in the stiff layer 1. This is an important point to be kept in mind
during the exploration of the assumptions and implications of Hobbs’ “welded layer”
model.

Fig. 4.13. D.W. Hobbs’ elastic model of joint spacing in a stiff layer (1) “welded” to the
ambient low-modulus layers (2) (see text for explanation)
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The aim of the model is to determine the distribution of the tensile stress in layer 1,
in order to establish the closest distance L between neighbouring joints that develop
simultaneously or consecutively. In tackling the formidable problem of analysing the stress
and strain history in the three-layer unit, Hobbs resorted to various simplifying assump-
tions concerning the relationship between the stresses and strains. Two of the assumptions
may seem rather drastic and will be introduced after the uncontroversial part of the theory.

To start with, Hobbs does not consider the fields of stresses x1(x,y) and displace-
ments u1(x,y) in layer 1, but the cross-sectional averages ˆ

x1(x) and û1(x). Furthermore, he
disregards pore pressure effects, apparently considering only non-porous rocks. We shall
include the pore pressure (p) by following Hobbs’ approach in terms of Terzaghi’s
effective stresses, assuming that the pore pressure p in layer 1 is uniform and remains
unchanged during the extension of the layers. Reasonably, the layers are assumed to
deform in plane strain in the x,y-plane, while the effective overburden stress ´y remains
unchanged. The poro-elastic stress-strain relations (Eq. 3.3) then relate the increments of
the local average strain êx1(x)  to the change in local average stress ˆ

x1(x), where, for
simplicity, the generalized effective stresses * (Eq. 2.2) are replaced by Terzaghi’s effect-
ive stresses ´(Eq. 2.1) (implying that the compression modulus Ks of the solid matrix
material is much higher than the compression modulus K of the bulk of the porous rock):

2 1
x1 1 x1ˆˆ = E .(1 ) . e (4.7)

In exception to our usual notation practice, we follow here Hobbs in counting tensile
strains and stresses as positive. Also note, that in Hobbs’ paper the 2-term is omitted,
which, however, is of little relevance to the further derivations.

Further, it is important to recall that strains and stresses in Eq. 4.7 are referred to
the same initial state of layer 1. Since the tensile stress ˆ

x1(x) is built up from the
unstressed state ( x1(x,y) = 0) , the extensional strain êx1(x)  is also referred to this state.
Commonly, however, part of the total extensional strain in layer 1 is already expended in
releasing a compressive pre-stress. Recall that, even in tectonically undeformed sediment-
ary rocks, layer-parallel compressive pre-stresses are built up during the deposition. To
release the pre-stress in layer 1 the “welded” layer system had to be subjected to a uniform
tensile strain eo in x1-direction. Therefore, the extensional strain êx1(x)  in Eq. 4.7 is the
total local tensile strain dû1/dx minus the pre-strain eo. Henceforth denoting the total tensile
stress in layer 1 by ˆ

x1(x), Eq. 4.7 becomes

2 1
x1 1 1 oˆ ˆ = E .(1 ) . du dx e (4.7a)

It is this stress that has to vanish at the location of tension joints in layer 1:

x1 x1ˆ ˆ(x 0) (x L) 0 (4.7b)

At the instant a first tension joint is formed at x = 0, the unloading and lateral
shrinkage of the material in layer 1 is counteracted by reactive shear stresses xy c(x) at
the contact planes (y = 0, –H). Hence, in static equilibrium and at uniform pore pressure,
the gradient of the effective tensile stress ˆ

x1  is balanced by the interfacial shear stresses:

x1 cˆd / dx 2 (x) / H (4.8)

So far, the derivation is still in line with the general theory of linear elasticity. Now
Hobbs’ first assumption is introduced concerning the gradient of the force H. ˆ

x1  in the
fractured layer 1. The value of H.d ˆ

x1/dx at x is assumed to be proportional to the diffe-
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rence between the local average displacement û1(x) after the formation of the joint, and the
displacement uo(x) at the same location just prior to the formation of the joint. Thus

H.d ˆ
x1/dx = 2C.[û1(x) uo(x)] (4.9)

This equation is differentiated with respect to x:

2 o
x1 1
2

ˆ ˆd du2C du
.

H dx dxdx
(4.10)

(Note that the contribution of the displacements associated with the release of a com-
pressive pre-stress in layer 1 cancel out in the equation.)

Equation 4.10 is turned into an ordinary differential equation of ˆ
x1  by employing

Eq. 4.7a to express dû1/dx in terms of ˆ
x1 , and recalling that duo/dx  eo is the uniform pre-

fracture straining “e” of the three-layer unit after a compressive pre-stress in layer 1 has
been released. The differential equation for the tensile stress then reads:

1
1

2
2x

x2

ˆd 2C
ˆk e

Hdx
(4.11a)

where
2

2

1

2C.(1 )
k

H.E
(4.11b)

and the uniform layer-parallel strain e of the three-layer unit is attained just prior to the
formation of a joint in layer 1, and is referred to the stress-free state ( x1(x,y) = 0) .

The general solution to Eq. 4.11a is the stress distribution

2 1
x1 1ˆ (x) E .(1 ) .e A.sinh k x B.cosh k x (4.12)

with the constants A and B are determined by inserting ˆ
x1  = 0 at the joint positions

x = 0 and x = L.
Since the formation of a first joint in layer 1 is accompanied by the strain “e”

switching from a uniform to a non-uniform state, while the boundary displacement U
(Fig. 4.13) remains fixed, the strain “e” in Eq. 4.12 may be interpreted in two ways: as the
uniform strain just prior to jointing, or as the average ex

av (Eq. 4.6) of the strain in the
layers 2 just after the formation of the first joints in layer 1.

The interested reader may wish to follow more closely the derivation of the stress
equation 4.12. We substitute in Eq. 4.11a:

1 1
2 1

xˆ Y E .(1 ) .e (4.11c)

which transforms the differential equation into the homogeneous form

2
2

2

d Y
k .Y

dx
(4.11d)

The reader may then readily verify by insertion, that

Y(x) A.sinh kx B.cosh kx (4.11e)

is the general solution to Eq. 4.11d.
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Before determining the constants in Eq. 4.12 we have to decide on the sequence of
fracturing events in layer 1. Hobbs assumed that a single joint is first formed at a critical
(uniform) strain e, and that a further increase in (average) strain ex

av > e in layers 2 is
needed to produce a second joint in layer 1. Without disputing the adequacy of this
assumption, we take the liberty of deviating from Hobbs’ conception by assuming that a
first set of parallel joints, separated by a distance L, is simultaneously formed when the
layer-parallel strain reaches the critical value e (again interpreted as uniform pre-jointing
strain just prior to jointing, or as average strain just after joint formation). The constants A
and B are then determined by inserting ˆ

x1(x = 0) = ˆ
x1(x = L) = 0 in Eq. 4.12:

B = E1.(1
2)–1.e for x = 0, 

–1
L L

and  A B .sinh k . cosh k  for  x L
2 2

(4.13)

With these expressions inserted, and after some manipulation with relations of
hyperbolic functions, Eq. 4.12 yields the stress distribution between two joints which are
separated by the distance L and are produced by the uniform external strain e (again
referred to the initial state x1(x,y) = 0 of layer 1):

1
1

x1 2

E L L
ˆ (x) .e. 1 cosh k kx . cosh k

2 21
(4.14)

Note that the post-jointing tensile stress ˆ
x1  in Eq. 4.14 vanishes at x = 0 and x = L, as

required, and attains its maximum ˆ
x1

max midway between the neighbouring joints at
x = L/2:

1
max 1

x1 2

E L
ˆ .e. 1 cosh k

21
(4.14a)

The stress distribution (Eq. 4.14) is a function of the applied extensional strain and
the separation of the joints. We eliminate the extensional strain by dividing Eq. 4.14 by
Eq. 4.14a, which gives the dimensionless stress as a function of the single parameter L/H:

x1
max

x1

L L 2x
cosh cosh  

ˆ (x) H H H
Lˆ cosh 1 
H

(4.15)

with

1

C.H (1 )
k.H /2 .

2 E
(4.16)

A graphical presentation of the distribution of the dimensionless tensile stress
between neighbouring joints is shown in Fig. 4.14. Interestingly, numerical differences in
ˆ

x1 / ˆ
x1
max do not appear until the third decimal, although the parameter L/H in Eq. 4.15

was varied over the range from 0.1 to 1.2, corresponding with an interval 0.1  E2/E1  1 of
the stiffness ratio, and 0.25  L/H  2 of the fracture spacing to layer thickness ratio; in the
graph, these variations merely show as variation in the thickness of the curve.

The external strain e = e* that has to be applied in order to generate tension joints at
x = L/2 is obtained by setting ˆ

x1
max = To in Eq. 4.14a:
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12
o

1

T .(1 ) L L
e*  .cosh . cosh 1

E H H
(4.17)

or in terms of the inverse hyperbolic function cosh–1:

1
2 –1

o 1

L e*
.cosh

H e*  T (1 ) E  
(4.17a)

with  defined by Eq. 4.16.

Fig. 4.14. Graphical representation of the stress solution to Eq. 4.15 showing the variation
of the normalised tensile stress with the position x/L between neighbouring tension joints
at a spacing L. Variations in the parameter L/H of Eq. 4.15 hardly affect the shape of the
curve (courtesy of Norbert Tschierske)

Notice that the strain e* in Eqs. 4.17 and 4.17a is not the extensional strain e that
produced the first joints at the spacing ratio L/H, but the somewhat higher (average) strain
that is required to raise the midway stress ˆ

x1
max to the highest possible value To. Thus the

strain e* in Eqs. 4.17 and 4.17a is the external strain (referred to the initial state

x1(x,y) = 0 of layer 1) required to produce joints at L/2H. Further, note that because of
the strain releases in layer 1 due to jointing, the strains in the joint-bounded segments will
be smaller than the external strain e*. Since, according to Eq. 4.7, the local maximum of
the strain at x = L/2 in the jointed layer is To.(1 2)/E1, the denominator on the right hand
side of Eq. 4.17a remains positive.

At this point it may be good to summarize the procedure followed so far. By virtue of
the assumption regarding the stress gradient (Eq. 4.9), which may well be considered as
basic to Hobbs’ theoretical model, the local stresses ˆ

x1  (averaged over vertical cross-
sections) were determined without regard to the stress and strain perturbations inside the
weak embedment of the fractured layer. The penalty for taking this short cut lurks in the, as
yet undetermined constant C of the material parameter  (Eq. 4.16).

But, remarkably despite this incompleteness, the Eqs. 4.17 or 4.17a already describe
the effect of the tectonic extension e* on the spacing of the joints. For the purpose of
illustration, let us specify the term To /E1 in Eq. 4.17a. Assuming 
To = 5 MPa, and E1 = 2.4x104 MPa, as reasonable values for, say, a medium strength
sandstone, we have To /E1 = 2x10–4. With this value inserted in Eq. 4.17a, L/H
attains the values of 0.47, 0.33 and 0.23 for e* = 0.2%, 0.4% and 0.8% respectively. Since,
as will be shown a little later on, the parameter  solely depends on elastic moduli, in our
example the spacing/thickness ratio L/H is reduced by a factor of approximately 0.7, when
the imposed extensional strain is doubled.

L/H = 0.2

1.2

x/L

ˆ x1

ˆ x1
max
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Fig.4.16. Flattening of steep normal fault accommo-
dated by splaying of the fault and closely spaced
jointing. (Bristol Channel, South England)

Fig. 4.15. Tensional jointing in the hinge zone of a
small-scale flexural slip fold (Swiss Jura Mount.)

The reduction in the spacing of joint sets by increased tectonic extension is, at least
qualitatively, in agreement with what is observed in the field. When the extensional pre-
jointing strain varies along a layer, the spacing of joints will vary too. In folded layers, the
spacing decreases as the extensional straining increases with increasing curvature. It is, for
example, quite common that the joint frequency in a layer increases at the transition from
straight fold limbs to hinge zones. Figure 4.15 is included to illustrate this point, although
it should be said that jointing in the flexural slip fold is the result of more than just one
mechanism. We shall consider this problem in Chapt. 7 when dealing with extensional
jointing in compressional folds. An increase in joint frequency is also to be expected in the
vicinity of a fault, where layers are bent by the frictional drag along the fault. A somewhat
different case is shown in Fig. 4.16, where layers are stretched on the down-thrown side of
a normal fault to accommodate the local flattening of the fault.

In order to complete the derivation of Hobbs’ formula for L/H, the constant C has
to be specified. To this end, Hobbs introduced additional assumptions concerning the shear
stress xy that is induced in layers 2 by the formation of a fracture in layer 1 (Fig. 4.13).
Obviously, this stress perturbation in layer 2 decreases with the vertical distance y from the
interface, and may be considered to effectively vanish at a distance “d”. Assuming that the
decrease of xy from a value c at the interface y = 0 is linear, i.e., xy = c.(1 y/d), Hobbs
determines the constant C as

C = 2G2/d (4.18)

where G2 (= E2.(1 )–1/2 is the elastic shear modulus of the layers 2.

The interested reader may wish to retrace the derivation of this expression. First, compare
relation 4.9 with the equilibrium condition (Eq. 4.8), and find C related to the contact shear
stress c:

o
c 1C ˆ/(u u ) (4.18a)

In this expression, both numerator and denominator are functions of x only. Recall that the
denominator is the difference between the displacement uo of the three-layer unit just prior to the
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first fracturing, and the displacement û1 (averaged over vertical sections) in layer 1 after fracturing.
As to the displacements u2 in layers 2, which prior to fracturing were independent of y (i.e., u2(x) =
uo(x)), it is assumed that the perturbation by the fracturing in layer 1 dies out at a distance “d” from
the interfaces, where u2 attains the value uo of the undisturbed displacement. Since the
displacement gradient u2/ y is equal to the layer-parallel shear stress c.d/2 and Eq. 4.18b divided
by the shear modulus G2, one has

o
d d

2
2 xy

20 0

u 1
u (x) u (x, y 0) = dy (x,y)dy

y G
(4.18b)

Inserting xy = c.(1 y/d) in the integral on the right, according to the assumption of a linear
decrease of xy, the integral attains the value c.d/2, and Eq. 4.18b turns into

o
2 c 20u (x) u (x,y ) = .d 2G (4.18c)

Finally, when the actual displacement u2 (x,y = 0) = u1(x,y = 0) at the interface y = 0 is replaced in
Eq. 4.18c by the average displacement û1 of the fractured layer, comparison with Eq. 4.18a
immediately leads to relation 4.18 for the constant C.

Naturally, the substitution of û1(x) for u1(x,y = 0) involves a further approximation, which
somewhat underestimates the shear stress c, since û1(x) > u1(x,y = 0), as will be seen later.

Unfortunately, the formula 4.18 for C still contains the unknown depth “d” of the
effective penetration of the fracture-induced shear stress xy into the embedding layers 2.
Hobbs remedied this uncertainty by assuming, somewhat daringly, that d = H. Thus,
Eq. 4.18 becomes C = 2G2/H, and Eq. 4.16 turns into

(1)
2

2

1

G .(1 )

E
(4.19)

With this expression for , Eq. 4.17a finally attains the form

11
2 2 1

2 (1) o (1) 1

EL e *
.cosh

H G .(1 ) e * T (1 ).E
(4.20a)

where E1 and (1) are the elastic moduli of the fractured layer, and G2 is the shear modulus
of the embedding layers (G2 = E2(1 + (2))

–1/2).
Hobbs’ formula (Eq. 4.20a) is instructive in demonstrating the effects which extens-

ional straining, stiffness contrast, and thickness of the fractured layer have on the spacing
of vertical tension joints. Due to the special choice of the shear penetration depth “d”, the
joint spacing (L in our notation) scales with the thickness H of the fractured layer, provided
that the layers under comparison have the same tensile strength and elastic moduli, and that
the embedding layers have similar elastic properties.

Although the predictions of Eqs. 4.20 and 4.20a are found to be in fair agreement
with the field observations, the simplifications in Hobbs’ analytical approach to the truly
formidable boundary problem of the fractured three-layer unit need to be borne in mind.
The boundary conditions of the problem, recapitulated in Fig. 4.13, have to be satisfied
by the average stresses and displacements of Hobbs’ model. Also, the simplifying
assumptions (Eqs. 4.9 and 4.18) on the stress-coupling between the layers must concur
with these requirements.
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At this point, some questions arise as to the conditions at the outer bedding planes
of the three-layer-unit. Hobbs assumed that the embedding layers (2) sufficiently exceed
the stiff interlayer (1) in thickness so as to ensure that at the outer bedding planes of the
three-layer-unit the uniformity of the strain e (= ex = U/W), which is imposed by the
uniform boundary displacement U, is not affected by the fracturing of the interlayer. Thus,
at the outer boundary planes (y = const.) ex/ x = 0; this implies x/ x = 0 because
of Hooke’s law; and further xy y = 0 because of the equilibrium condition ( x/ x +

xy/ y = 0).
The last condition is not satisfied by Hobbs’ assumption, implicit in condition 4.18,

of a linearly varying shear stress xy in 0  y  d, since xy y = c/d. Consequently,
neither ex nor x are uniform at y = d. Also note that the non-uniform strain ex cannot
abruptly change across the plane y = d into a uniform strain, since this would imply a
discontinuous change in the layer-parallel displacement u2.

Naturally, one might argue that the local deviations of the extensional strain from
the uniform state of strain (ex = U/W), which alternate between contraction and extension,
may remain tolerably small. Nevertheless, the fact remains that Hobbs’ assumption
(Eq. 4.18) does not comply with the undisturbed boundary displacements u(x), indicated
in Fig. 4.13 for the upper boundary plane; instead, it complies with the stress conditions

y = ov, xy = 0 on the planes at a distance “d” from the layer 1. In fact, this stress
condition is the adequate boundary condition for the ideal layer system which we shall
consider a little later, and where, in our opinion, an amended Hobbs model may seem even
more appropriate than in the case of the three-layer-unit above.

Thin weak interlayers. In nature, the unfractured weaker layers (2) are very often much
thinner than the fractured layers (1). Examples of this can be seen in this book. Now, what
prevents us from applying Hobbs’ model to just this particular case?

Naturally, some idealizations are again required. Let us consider a pile of identical
three-layer units under uniform extension, a few layers of which are illustrated in Fig. 4.17.
By some geometrical or mechanical triggering, the first joints in the stiffer layers (1) are
vertically aligned. This alignment might be brought about, for example, by swell structures
of the weak interlayers, or by a local accumulation of flaws, or by some slight local
bending of the beds. But more likely, the formation of a first joint in a layer (1) localizes
the position of a second joint just above the first one in a neighbouring layer (1). As
illustrated in Fig. 4.17A, we envisage the vertical alignment of the joints as being produced
by the transmission of some layer-parallel shear stress across the thin interlayer (2). The
situation is similar to the alignment of joint nuclei in the stack of layers in Fig. 4.6. But
while that alignment was ascribed to the near-tip tensile stresses of the fracture arriving at
the contact of two competent layers, it is the maximum interfacial shear stress max induced
by the first joint which determines the position of the next higher joint. The thinness of the
weak interlayer allows the (strongly) reduced max to be felt at the base of the next higher
layer (1) where it locally raises the tensile stress of the already stretched layer. Thus,
except for some minor side-stepping, the joints would be vertically aligned by the maxima
of the interfacial shear stresses.

Once two neighbouring layers (1) are cut by the aligned joints (Fig. 4.17B), the
reactive shear stresses xy must vanish along the midplane of the weak interlayer (2), and
the perturbed stress fields above and below this plane are each others mirror images.
Although we do not exclude the possibility of xy vanishing (or nearly so) inside a mid-
band rather a midplane, we may assume that the width of this band decreases with
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decreasing height H2 of the weak interlayer (2). At the same time, the linear stress function
| xy| = | c|.|y|/d for 0  |y|  d may more closely approximate the real non-linear function of
y. Therefore, when d = H2/2 is inserted in the constant C (Eq. 4.18), the parameter  of
Eq. 4.19 becomes

(1)
21 2 1

2 1 2

H G H
. .(1 ) .

H /2 E H /2
(4.19a)

Then, with in Hobbs’ formula (Eq. 4.20a) on page 63 replaced by *, the spacing
formula for thin weak interlayers (H2 << H1) becomes:

(4.20b)

Hence we expect weak interlayers which are considerably thinner than the fractured
layers, to drastically reduce the spacing of regularly spaced joint sets.

Finally, when inspecting the formulae 4.20a,b, it should be clear that although the
formulae constitute a continuous relation between the dimensionless spacing L/H and the

Fig. 4.17. Vertical alignment of tension joints in a stack of identical three-layer units with
thin weak layers (H2 << H1):
A) Maxima of reactive shear stresses in weak interlayer (2) on top of a first tension joint in
layer (1). Nucleation of a second tension joint (stippled).
B) Depth of shear penetration “d” in thin interlayer (2) when H2 << H1

1 12
2 1
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H / 2L e*
. .cosh
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extensional strain e*, this does not imply that every change in e* results in a change in
L/H. In fact, the formation of new joints, midway between the already existing ones, is a
discontinuous process which requires quite specific increases of the external strain e*. This
process of “infill jointing” between already existing, more or less regularly spaced joints, is
our next issue.

Infill jointing. Price’s and Hobbs’ models of joint spacing differ greatly in the mechanism
of stress transfer between the intact embedment and the fractured interlayer. Although, in
both models, the fracturing of the stiff layer is preceded by a uniform extension of the
whole multilayer, in the slip model the strain release by fracturing is counteracted by the
fully mobilized interfacial Coulomb friction, whereas Hobbs’ “welded-layer” model allows
for arbitrarily high reactive shear stresses on the interfaces. As a consequence of this
difference, the slip model allows for the formation of only one set of regularly spaced
tension joints, while in Hobbs’ model the continued straining of the intact ambient layers
can raise the tensile stress in the segments of the fractured layer until the tensile strength is
reached and new joints are formed.

If, in the case of infill jointing, the spacing ratio of the very first joint set was L, the
dimensionless stress distribution after the nth infill jointing is determined by Eq. 4.15, when
L/(2n) is inserted for the spacing of the nth infill set, since the spacing L of the first joint set
has been halved n-times. This may give the impression that infill jointing in Hobbs’ model
can be made to go on “ad infinitum”, as was criticized by some authors.

In fact, the infill process is severely limited by the onset of fracturing or faulting in
the embedding layers which were considered as linear elastic. Let us illustrate this
limitation by assuming E2/E1 = 0.2, E2 = 0.5 x 104,  = 0.2,  = 0.4, –1 = 3.82, and, as
before (p. 63), To(1 – (1)

2).E1
–1 = 2 x 10–4 for a medium strong sandstone. Prior to the

extension, the layers were undisturbed, under normal pore pressure, and at a depth of about
1.5 km; the compressive stresses in layer 1 and 2 are assumed as ´x1° = 9 MPa and ´x2° =
15 MPa, respectively. We recall, that the strain e* in formula 4.20a is referred to the state

´x1 = 0; hence, prior to the application of e*, a reduction of the compressive stresses ´x1°
to zero is accompanied by a reduction of ´x2° to 13.2 MPa. If the layers 2 fracture at a
tensile stress of, say, –5 MPa, the maximum strain e* supported by the intact layers would,
according to Hobbs’ formula (Eq. 4.20a), be e* = 36.4 x 10–4, which accounts L/H = 1.3 in
the stiff layer. But, as mentioned before, the parameter L/H in Hobbs’ formula refers to
neighbouring joints, whose midway tensile stress has just reached the tensile strength.
Hence, in our example, the smallest spacing ratio possible would be L/H = 0.65.

Of course instead of fracturing, the embedding layers may also deform in a viscous
or frictional-plastic mode; a process, to which Hobbs’ model does not apply.

Improvements and “fracture saturation”. In Hobbs’ model of joint spacing we considered
the tensile stresses in the fractured layer as stresses ( ˆ x ) averaged over orthogonal cross
sections of the stiff interlayer. Up to the formation of a first set of tension joints, the
bonded layers were equally stretched and the tensile stress in the uniform interlayer was a
strictly uniform principal stress, since the contacts between equally stretched layers are free
of shear stresses whatever the stiffness difference of the layers may be. Thus, there was no
need to distinguish between the average stresses and the actual local stresses in applying
the fracturing condition ( ˆ x1 = x1 = To) to the first generation of joints. But, the stresses
between neighbouring joints of the first, or any later generation, are highly non-uniform, as
was indicated by the distribution of the average tensile stress in Fig. 4.14. Thus it seems
possible, or even likely, that the actual tensile stresses x1 in the fractured layer not only
vary in the x-direction, but also in the y-direction.
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Then, if x1(x,y) strongly deviates from ˆ x1, the condition ˆ x1 = To in Hobbs’
model would be a rather crude criterion for the formation of infill joints. Since by
definition of the average stress, a difference between the two stresses at x implies that

x(x,y) exceeds ˆ x (x) on a part of the cross section at x, and may there generate a tension
fracture, even though ˆ x1 < To. Only if such an “infill fracture” is stopped before cutting
across the whole layer, the existing set of fully developed joints will have the smallest
spacing possible under the given mechanical and geometrical conditions. In other words,
the joint set would be “saturated”.

We should, therefore, understand how the stresses x vary in a fracture-bounded
segment of the stiff interlayer. To this aim, we start again from the fact that the vanishing
of the effective stress x on the walls of a fluid-filled fracture causes a release of tensile
stress in the interlayer material, while the associated shortening is gradually reduced by the
reactive shear stresses at the interfaces. If the walls of the joint would accommodate the
shortening of the adjacent material like frictionless rigid pistons, the shortening would not
vary in the y-direction, and x would only depend on x. But the fracture walls are flexible,
as sketched in Fig. 4.18A, and the widening of the joint will be greatest in the central part,
and least at the firmly bonded interfaces where the joint can open up only as far as allowed
by the stretching of the ambient layers. Therefore, the tensile stress will maintain its
highest value at the interfaces, where the material is stretched in unison with the adjacent
intact units, and will decrease towards the mid-plane of the fractured layer.

Fig. 4.18. Joints reduce the
tensile stress (considered as
positive) in the fractured layer,
and induce shear stresses.

A) The layer-parallel tensile
stress component decreases
from a maximum at the
interfaces to a minimum at the
mid-plane (y = 0), in accord
with the deformation of the
stress-free fracture walls
( x = 0).
B) The shear stress ( )
decreases in magnitude from
the maximum at the interfaces
to zero at the mid-plane,
causing the tensile stress to
increase with increasing
distance from the joint

As sketched in Fig. 4.18B, the reactive shear stresses  on the interfaces are
transmitted into the layer while decreasing in magnitude towards the mid-plane y = 0. For
reasons of symmetry,  vanishes at the mid-plane, as was already indicated in Fig. 4.12.
Considering the static balance of the layer-parallel forces on a rectangular volume element
in Fig. 4.18B, one notices that the vertical increase in |  must be balanced by a horizontal
increase in the tensile stress x (here counted as positive).
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In differential form, this balance is expressed by the equilibrium equation

x 0
x y y

(4.21)

where, with reference to Fig. 4.18B, both sides are positive.
When differentiated again with respect to y, the left hand side of Eq. 4.21 remains

positive, since the (positive) x increases in the positive y-direction. Therefore / y2  0,
with the equality sign applying if x/ y = 0. This means, as sketched in Fig. 4.19A, that
as long as x increases on a cross section x = const. (dashed) from mid-plane towards
interfaces, the curve  = (y) steepens in the positive y-direction. If in a vertical interval

y the tensile stress x remains constant ( x/ y = 0), the shear stress gradient / y
must be constant as well, and  will either vary linearly with y, or remain constant, and
possibly even zero. We shall shortly specify this in more detail.

Thus, in a broad sense, the tensile stress x increases with increasing distance from
the joint, and decreases from its maximum value at the interfaces towards a minimum at
the mid-plane of the fractured layer. The tensile stress x will therefore exceed the average
stress ˆ x  near either interface, and drop below the average stress in the middle part of the
layer. Hence, layer-orthogonal fractures can nucleate near the interfaces and start growing
in the vertical direction before the average stress has reached the “critical” value To, as is
suggested on the right of Fig. 4.18A. This tendency is further enhanced by the fracture
mechanical result (see Chapt. 2, p. 16) that, even under uniform tension, tension fractures
grow more easily from the bedding planes into a rock bed, than from locations inside the
bed. We also know from Chapt. 2 (Eq. 2.4) that the critical tensile “driving stress” for
fracture propagation decreases with increasing square root of the fracture length. (Although
this result was derived for fractures under homogeneous tensile loading, the fracture length
may safely be expected to facilitate the fracture growth also under the inhomogeneous
stress conditions of our case.)

To developing into a joint proper, the fracture has to cut across a central lamina,
where the tensile stresses are lowest, or even fully released. The latter may be the case if
the opening joints are very slender and thus allow a flat central part of the fracture wall to
be uniformly displaced. Consequently, as illustrated with some exaggeration in Fig. 4.19A,
the displacement will also be uniform, or nearly so, in a central strip (shaded in the figure).
Since in this region the displacement gradient in the y-direction vanishes, or nearly
vanishes, the vanishing shear stress  G. ux/ y) cannot suppress the release in tensile
stress. We therefore envisage a seam, not necessarily of uniform width, around the mid-
plane y = 0 of the jointed layer, in which x  0. This central seam will thus form an
obstacle to the propagation of a fracture.

However, the central zone of zero tension cannot maintain the blockade of infill
fractures when the extension of the ambient layers is sufficiently increased. This is seen by
reference to the uniqueness theorem of linear elasticity: stresses and strains in an elastic
body are uniquely determined by the tractions or displacements that act on the whole
boundary of the body. This implies, for our problem, that by increasing the extensional
strain (and hence the displacements ux) in the ambient layers by a constant factor “m”, all
shear and tensile stresses in the joint-bounded segment of the interlayer are uniformly in-
creased by this factor. Note that the boundary conditions are multiplied by “m” on the
whole boundary of the joint-bounded segment considered, because the effective pressure
on the joint walls remains zero. Therefore, the tensile “driving force” of fracture
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propagation is increased by the factor “m”. Hence, if the tensile straining of the ambient
layers is sufficiently raised, new fractures are propagated across the interlayer, and become
new infill joints, essentially in accordance with Hobbs’ model.

So far we have tacitly assumed that two neighbouring joints were so far apart
(Fig. 4.19A) that the perturbations of the stress field by either joint did not interfere with
each other. What happens when the joints are too close together? It stands to reason that
the interaction of the two joints will restrain the shortening between the joints. As sketched
in Fig. 4.19B, the layer-parallel displacement ux decreases from the fracture walls towards
the cross section midway between the two joints. Thus, the material of the middle strip is
now under layer-parallel contractive strain. Hence, with the exception of the close vicinity
of the fracture walls, where x = 0, a compressive stress is superimposed on the original
tension. If the neighbouring joints are sufficiently close, the contractive straining of the
middle strip renders the stress x negative (here again, compression is considered as
negative); and the closer the neighbouring joints, the higher are the values that the
compressive x will attain along the x-axis. In addition, one should expect | x | to increase
between x = 0 and x = L/2, since it remains zero at the fracture walls.

Fig. 4.19. Displacement effects of the opening of tension joints (strongly schematized):
A) Widely spaced tension joints: the opening of the joints causes the vertical displacement
gradient ( ux/ y) and the associated shear stress ( G. ux/ y) to vanish, or nearly vanish, in a
central zone (shaded), allowing the tensile stress there to be fully, or nearly, released ( x = 0).
B) Closely spaced tension joints: interference of the displacement fields of neighbouring
joints causes contraction and compressive stresses x in a central zone (shaded)
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Fig. 4.20. Contour plots of the layer-parallel normal stress ( x ) between neighbouring
vertical joints at different joint spacing to layer thickness ratios (L/H) after T. Bai and
D.D. Pollard (2000; J. Structural Geol. 22, pp. 1409–1425, Fig. 3)

Our qualitative assessment of the developing stress field in a joint-bounded
segment of the fractured layer may help to understand what, at first sight, might appear as a
baffling result of a recent numerical analysis of the problem by T. Bai and D.D. Pollard
(2000; J. Structural Geology 22, pp. 1409–1425). The authors applied a two-dimensional
finite element code, designed for the study of elastic fracture problems, to the elastic three-
layer problem we are dealing with. Accordingly, a uniform layer-parallel displacement U
was applied to the vertical boundaries of the three-layer unit, while the horizontal outer
boundary planes were kept free of shear stress, but subjected at the upper plane to a
uniform vertical downwards displacement in order to simulate the compressive action of an
overburden stress. In fact, these are the same boundary conditions as those complied with
in Hobbs’ model on the planes at distance “d” from either interface. (While d = H1 in
Hobbs’ model, d = 1.5H1 in the specific configuration chosen for the numerical model.)
Thus it is not assumed that the horizontal strain along the horizontal outer boundary planes
is uniform, i.e. undisturbed by the fracturing of the interlayer, as was assumed in Fig. 4.13.

Figure 4.20 shows two contour plots of x  (which we may also read as effective
stress x) from Fig. 3 of Bai’s and Pollard’s paper. In plot A, obtained for a joint spacing
layer thickness ratio L/H = 1, x = 0 in a central region, as we would have expected for
small interference of the neighbouring joints. In plot B, the closer spacing layer thickness
ratio L/H = 0.8 results in a compressive region that extends across the central area of the
fractured layer almost from joint to joint. Note that the stresses obtained for a specific L/H
ratio are the same in all geometrically similar layer systems with identical elastic properties
and the same external strains.

Admittedly, the tensile stresses in the contour plots of Fig. 4.20 are too high to be
sustained by rocks in the field. But the numerical results illustrate the concept of a central
compressive belt in a fractured layer under extension. Although at first sight somewhat
enigmatic, the existence of such a compression belt may be understood as the result of
interfering displacement perturbations of closely spaced joints, as discussed above in
connection with Fig. 4.19B.

Obviously, the presence of a central compression belt presents a formidable
obstacle to the propagation of a vertical tension fracture that originates from a flaw or a

L/H = 0.8

H

A L/H = 1

L

B

H

Extensional strain
of intact layers:
0.002;
E1/E2 = 1

Tensile stress is
positive (solid
contours),
compression is
negative (dashed
contours).



Joint saturation           73

“notch”-type irregularity near an interface. Nevertheless, as A.H. Lachenbruch (1961) has
shown in a remarkable paper on “Depth and spacing of tension joints” (J. Geophys. Res.
66/12, pp. 4273–4292), a tension fracture need not be arrested when x  passes from
tension to compression, but a fracture may penetrate into or even transect a compression
region by exactly halfway between adjacent pre-existing joints. We would rather expect
infill joints to form at a shorter distance from the earlier joints, where the compressive
stress is lower (see Fig. 4.20B). Hence, we would expect infill jointing at the saturation
stage, or shortly before, to somewhat disturb a regular array of earlier joint sets.

Now, what are the conditions that prevent a tension fracture from transecting the
central compression zone? The answer lies in an energy balance – the basic concept of
elastic fracture mechanics. An actual or even virtual incremental extension of a fracture is
“driven” by the release of mechanical energy of the system, and is impeded by the mechan-
ical and/or thermodynamic energy that is consumed during the incremental extension. In
our case, the release of mechanical energy involves just the strain energy that is stored in
the joint-bounded segments. The energy consumed during the incremental fracture exten-
sion consists of two parts: the energy required to rupture and/or plastically deform the
material in the vicinity of the advancing fracture tip, and secondly, the energy consumed
by increasing the strain energy of the compressive region. In other words, the fracture can
only grow if the strain energy release G per unit extension area, i.e. the so-called “strain-
energy-release rate” or “crack extension force”, balances or exceeds the rate Gc at which
energy is consumed per unit area of fracture extension – the “crack resistance”. A
stationary (stable) growth of the fracture requires G = Gc.

It is obvious, that fractures that enter the compressive region from outside stop
when the strain-energy-release rate G just equals the rate of strain-energy increase Gcomp in
the compressive region, since no energy would be left to rupture the intact material. Since
the compressive strain energy of the central region, and the rate of its increase Gcomp,
increase as L/H decreases, one may readily imagine a strained state of the joint-bounded
segment, where the stored tensile strain energy does not allow for a strain release rate
G > Gcomp. Hence, when the elastic three-layer model is in a state where G  Gcomp = 0,
further infill jointing is certainly impossible, and the process of infill jointing comes to a
halt. A state of joint saturation is reached.

The state of joint saturation is characterized by a certain critical joint spacing to
layer thickness ratio (L/H)cr. It is important to note that the state G  Gcomp = 0, if once
attained, cannot be altered by further extensional straining of the layer system. This
follows from the definition of the strain energy density (referred to an initial zero state),
expressed in principal stresses and strains:
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(4.22)

As mentioned before, an increase of the external extensional strain by a factor m entails an
increase of the stresses and strains in the linear-elastic material by the same factor.
Therefore, the release of strain energy in the tensile region, and the increase in compressive
strain energy in the compressive region per unit extension area of the fracture, will both be
multiplied by the same factor (m2). Thus, further increase of the external extensional strain
does not affect the state G  Gcomp = 0.

In the aforementioned numerical analysis, Bai and Pollard also analyzed the propa-
gation behaviour of vertical cracks in the three-layer model. The authors calculated the
stress intensity factor KI (Chapt. 2, p. 15) – essentially an equivalent of the strain-energy-



74 Joint saturation

release rate G – for vertical tension cracks of varying length and position in the
inhomogeneous stress field midway between neighbouring joints. We restrict our interest
to fractures that start growing from a location near an interface, since this starting position
is more favourable for the propagation of a fracture than a position further inside the
fractured layer. In fact, the most favourable starting position at the interface is midway
between neighbouring joints, and it is the fracture propagation from this position which is
analyzed by Bai and Pollard.

As the fracture grows, the stress intensity factor changes because of the increase in
fracture length and the inhomogeneity of the stress field. Naturally, KI is positive in the
high tension region near the interface where the fracture originates. In order to intersect the
layer, KI has to remain positive. If, at a certain L/H ratio KI drops to zero somewhere on
the virtual fracture path, we may safely assume that the fracture cannot cut through the
entire layer since it cannot overcome the fracture toughness KIc of the material. (Note that
this is completely analogous to the above condition G  Gcomp = 0.) As noted before, an
increase in the externally applied strain cannot change KI = 0 into KI > 0. The limiting joint
spacing to layer thickness ratio (L/H)cr that is associated with the occurrence of KI = 0 on
the virtual fracture path midway between neighbouring joints, was found by the numerical
analysis as (L/H)cr = 0.55. If L/H < (L/H)cr, infilling fractures can only partially cut the
fractured layer. On the other hand, if L/H > (L/H)cr, the formation of new infill joints may
be promoted by increasing the applied extensional strain.

Again, we may wonder whether the position halfway between neighbouring joints
would indeed be the most favourable for infill jointing. True enough, the midway position
provides the best starting condition for vertical fracturing from the interface, since it
provides the highest tensile stress (and KI-value), but at the same position the central
compression belt offers the greatest resistance to vertical fracturing. As said before, a
glance at Fig. 4.20B would have us suspect the state of joint saturation to be achieved by
infill jointing away from the midway position between already existing neighbour joints.

Finally, three more remarks may be added concerning the numerical analysis of the
infill fracturing. First, the limiting spacing/thickness ratio of 0.55, was determined without
taking into account the material resistance against rupturing (“fracture toughness”; see
Chapt. 2, p. 17). Hence, (L/H)cr = 0.55 is a lower bound for the occurrence of infill joints,
but will hardly coincide with the actual minimum joint spacing. From the data in the Bai
and Pollard paper (especially Fig. 8) we would rather infer a realistic minimum joint
spacing (L/H)min of not less than 0.8, below which a central compression zone (Fig. 4.19B)
will prevent further infill jointing. Secondly, like in Hobbs’ model, the numerical analysis
is limited by the assumed linear elastic behaviour of the layers. The numerical analysis by
Bai and Pollard was carried out for E1/E2 = 1, and the applied extensional strain was 0.2%.
A more realistic ratio of the Young moduli may raise the external strain, required for
minimal joint spacing, close to, or possibly beyond the elastic limit of the rock. And
thirdly, the joint saturation is determined for a single configuration of the layers only, and
thus does not yet provide information on the influence of the thickness ratio H2/H1.

Models and reality.  When interpreting field data on joint spacing in terms of the
theoretical predictions of the “slip” model or the “welded-layer” model, one should first
bear in mind that the models imply drastic, and mutually exclusive, simplifications of the
stress coupling between the fractured layer and the intact surroundings, i.e. complete
interfacial slip vs. perfect cohesive contact. One consequence of this is that the joint
spacings predicted by the two models differ. Secondly, one would wish to know whether a
set of equidistant tension joints, observed in nature, can adequately be explained by Price’s
slip model, or by the “welded-layer” model, – or by neither.
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Let us reconsider the theoretical models with regard to aspects of their application.
Assume that the inspection of a uniform flat-lying layer, embedded between unfractured
layers in nature, reveals a constant spacing to thickness ratio L/H, and that the appearance
of the adjacent unfractured layers suggests that fracture interference from other layers can
be excluded. Furthermore, suppose that traces of the activity of overpressured pore fluids
during fracturing will not escape the attention of the observer.

Then, if there is sufficient evidence of interfacial slip of the joint bounded seg-
ments, one may put the slip model to the test and tentatively apply Eq. 4.4a to relate the
observed L/H ratio to the depth of the flat lying layer at the time of fracturing. The slip
model may then be accepted as a reasonable mechanical explanation of the observed joint
set, when after choosing reasonable values of To, and the -factor (say, between 0.4 and
0.6, to allow for moderate water overpressures during fracturing), Eq. 4.4a predicts values
of the overburden thickness z (km) that correlate to the estimates based on the pre-
fracturing history of the layer.

If there are no indications of interfacial slip of the joint-bounded segments and, in
particular, if there is evidence that several generations of joints constitute the observed
joint set, one will turn to the “welded-layer” model. When reasonable values of To and of
the elastic moduli of the fractured interlayer and the softer embedment are inserted in
Eq. 4.20a or 4.20b, the equation predicts the extension of the multilayer that supposedly
produced the joint set. The model can then be validated by comparing the predicted exten-
sion with the layer extension that follows from a reconstruction of the deformation history.

As already said, both models are based on extreme idealizations of the shear coup-
ling between the fractured layer and its surroundings. It might very well be that neither the
assumption of perfect interfacial bonding, nor that of complete interfacial slippage along
cohesionless interfaces, are fully realized in the natural process. Instead, to some degree,
the actual shear coupling might involve both slip- and non-slip conditions. In particular,
near the joint tips the maxima of the interfacial shear stress might exceed the interfacial
shear strength and debond the interface material. This very local rupture of the interface
may or may not grow and spread out into an interfacial shear fracture that delaminates the
fractured layer from the adjacent layers. Regarding the welded-layer model, we therefore
face two problems: the first, and probably more difficult one, concerns the possible
nucleation of an interfacial shear crack by the stress concentration at a joint tip; the second
problem concerns the possible growth of the initial rupture into a fully developed
delamination fracture. We turn first to the problem of the nucleation of interfacial shear
fracturing by the termination of a tension joint.

Unfortunately, maxima of the interfacial shear stresses were not recorded in the Bai and
Pollard paper. Nor do we know of a satisfactory fracture mechanical analysis of the problem.
But a first indication of interfacial rupturing at the point of joint termination may be obtained
by comparing the interfacial shear stresses of the two “end-member” models of Price and
Hobbs. Referring back to the distribution of the dimensionless tensile stress ˆ x1 / ˆ x1

max  in
Eq. 4.15 and Fig. 4.14, we insert the highest possible value for the maximum stress ˆ x1

max  be-
tween the neighbouring joints, namely To, and find for the derivative of 1xˆ  at the joint x = 0:

x1 ox = 0
ˆd dx 4T L (4.23)

erting this in the force balance equation (Eq. 4.8) gives the maximum magnitude max of
Hobbs’ interfacial shear stress:

x1
max (Hobbs) o

x 0

ˆdH H
= 2 .T

2 dx L
(4.24)
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When compared with the frictional slip stress av in Price’s force balance (Eq. 4.3 or 4.4),
which is the maximum interfacial shear stress of the slip model, Hobbs’ maximum
interfacial shear stress at a joint position turns out to be about four times the maximum
shear stress of Price’s slip model:

max (Hobbs) max (Price)  4 (4.25)

provided the jointing occurs in both the “welded” and the non-cohesive layer at about the
same spacing to thickness ratio L/H.

What can be inferred from this relation? Consider two flat-lying layers with the same
mechanical properties, both being loaded by the same effective overburden stress ´v, and
jointing being initiated in both layers at about the same spacing to thickness ratio L/H. In
both cases, the frictional part ( ´v tan ) of the interfacial shearing resistance is the same, but
while one layer is “welded” to its neighbours (“cohesion” o > 0), the other layer is in purely
frictional contact ( o = 0). To remain welded during jointing, would then require for the
“welded” layer: max (Hobbs) < o + ´v tan . This implies (see Eq. 4.25) the no-rupture
condition

o v> 3 tan (4.25a)

But note that this condition refers to the most critical locations where joints meet
the interface. Let us assume again tan  = 0.7, and the effective overburden stress ´v

increasing by 15 MPa per kilometer, as typical for sedimentary rocks with normal hydro-
static water pressure (  = 0.4); condition 4.25a then reads: (MPa) > 31.5 z(km) .
Considering that the cohesion o in intact sedimentary rocks is of the order of 10 to 20
MPa, and that these values are very likely higher than the cohesion at layer contacts, which
may not amount to more than a few MPa, the condition 4.25a suggests that, below a depth
of a few hundred meters, decohesion of the sedimentary interface near the joint ends can
hardly be avoided. (Note that this may be different in crystalline rocks where o may reach
50 MPa.) Thus, we consider it highly likely that in most cases of “welded” sedimentary
layers jointing generates interfacial rupture nuclei.

We shall, therefore, start the analysis of interfacial shear fracturing in sedimentary
rocks from the assumption that any point of joint termination at an interface is a potential
nucleus for interfacial shear rupture. It remains then to be seen next, under what conditions,
and to what extent the shear fractures can spread out into a wider detachment
(delamination) zone.

The reader may have already noticed that the assumption of joint-induced nuclei of
shear rupture conflicts with the model of joint saturation presented in the preceding section
(Improvements and “fracture saturation”). As shown in the numerical analysis by T. Bai and
D.D. Pollard (loc. cit.), infill joining is impeded by a central compression zone which forms
between too closely spaced joints. In the numerical analysis and in our explanation of the phe-
nomenon (Fig. 4.19, p. 71), the joints remain closed at the tips. If the fracture walls are al-
lowed to slide apart at the fracture tips, the change in fracture shape will affect the stress gra-
dients inside the joint-bounded segment, and therefore also affect the “stress barriers” against
infill jointing. The possible effect of this on the minimum spacing L/H is not yet known.

Delamination. It should be possible to obtain an estimate of the range of interfacial
detachment by considering the changes in energy during the propagation of a detachment
front. We have defined the plane problem in Fig. 4.21. Figure 4.21A shows a vertical slice
of a part of the fractured layer of unit width, with the delamination (indicated by dotted
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Fig. 4.21A,B. Propagation of decohesion along a jointed horizontal interlayer:
A) Vertical cross section of the decohesion zone (dotted lines) and frontal element S;
B) Hypothetical decrease of tensile stress ˆ x inside the frontal element S

lines) caused by a first tension joint. As the delamination front F has advanced by the
length x, it has traversed the frontal volume element S = H.1. x. Thereby, the interfacial
material has been weakened by reduction of the cohesive shear strength o of the interfaces
to zero. For simplicity we assume that the weakening is a linear process confined to the
frontal segment S, as illustrated in Fig. 4.21B. Taking into account the linear decrease c

of the shear stress from X to X X, the shear force on an interfacial area x.1 of S is
reduced by c

av. x = ( o/2). x. Adding the shear force reductions on the two interfaces,
the balancing force is provided by the decrease ˆ x  of the (cross-sectional) average tensile
stress ˆ x  from X – x to X in layer (1):

(1)
x oˆ .H x (4.26)

And since the shear stress is linearly decreasing from o to 0 as x increases from X x to
X, the decrease in average tensile stress is also a linear function of x:

(1)
x o

X x
ˆd (x).H 2 dx     (X x x X)

x
(4.27)

In the case of horizontal layering, no external forces assist the delamination
process; therefore, a delamination fracture (of unit edge width) is solely propagated by the
elastic energy release Eel in the three-layer unit. For reasons of symmetry we restrict the
energy relation to the upper half (H/2) of the jointed layer (1) and to the adjacent weaker
layer (2). Propagation of the decohesion over x then requires that the elastic energy
release exceeds, or at least equals, the energy Wf dissipated by the frictional displacement
of the detached interlayer segment of length X x, plus the energy 2 x (  measured in
Joule/m2 = Pa m) which is expended as surface energy of the newly generated fracture
walls and is consumed in producing a frontal damage zone (“process zone”) of length x:

el fE W 2 x (4.28)

The stress drop ˆ x  in the frontal element S of layer (1) in Fig. 4.21A is accomp-
anied by an elastic shortening of S, which is accommodated by widening of the joint. This
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x

allows the detached part (0  x  X x) of the layer (shaded in the figure) to slip. The
elastic plane-strain shortening of S in layer (1) is given by

(1)
x x X x1 1 o

(1) (1)

ˆx x
 1 .E 1 .E x

x 2 2H
(4.29)

with x* the length of the shortened frontal element. The relation follows from the
stress/strain relations (Eq. 3.3) where again the generalised effective stresses * are
replaced by Terzaghi’s effective stresses ´, and from Eq. 4.27. (Note that the shortening
and the change in tensile stress over the interval x have the same sign.)

According to Eq. 4.29 the (positive) displacement u(1) = x x* of the point
X x towards the decohesion front at rest is

(1) 2 1 2
(1) (1)u  1 .E x (4.30)

As the debonded segment X x of layer (1) slips over the distance u(1), it consumes at
each interface the energy

(1)(1)

(1)

2
2

f ˆ ˆW u .(X x). . tan . .(X x). . tan . x
2E

(4.31)

per advancement x of the detachment front. Note that the normal stress ˆ  is the average
of the normal stress  on the debonded part of the interface.

Next we have to evaluate the release of elastic strain energy Eel in the three-layer
system per advancement x of the delamination front. Since the change in the density Eel

of the elastic strain energy is given by

22
xy2

el x x xy xy x

( )11
E e . . e ( )

2 2E 2G
(4.32)

a rigorous determination of the total energy release Eel per advancement x of the delamina-
tion front, while the outer boundaries remain fixed, would require detailed knowledge of the
field of stress perturbations caused by the interfacial unloading. We circumvent this formi-
dable task by a somewhat cruder estimation of Eel based on some simplifying assumptions.



Delamination              79

First, we consider the whole energy release as concentrated in the frontal strip with
the basal area x.1, which extends through the upper half layer (1) and the adjacent layer (2).
Secondly, we assume, as in Hobbs’ model, that the magnitude X.y)  of the reduction in
layer-parallel shear stress xy decreases linearly with the distance from the interface; this is
illustrated in Fig. 4.21C,D.

Since the layer-parallel shear stress must vanish at the mid-plane (y = 0) of
layer (1), we have in the interval 0  y  H/2 of layer (1):

xy o
X x y

(x,y) = .
x H/2

(4.33a)

and in the interval H/2  y  H/2 + d of layer (2):

xy o
X x y H/2

(x,y) = . . 1
x d

(4.33b)

where “d” again denotes a hypothetical depth to which the unloading perturbation
effectively penetrates.

As a direct consequence of the assumed linear variation of xy along the y-coordi-
nate, the associated change in tensile stress x is independent of y. (This is immediately
seen by differentiating the static equilibrium condition x/ x + xy/ y = 0 with respect to
y.) Hence, we have from Eq. 4.27 for the stress change in layer (1) over the interval x:

(1) (1)
x x o

X x x
ˆ(x, y) (x) .

x H
(4.34a)

and in analogy for layer (2):

(2) (2) (1)
x x o x

X x x H
ˆ(x, y) (x) . . = .

x d d
(4.34b)

With the stress changes (Eqs. 4.33a,b and 4.34a,b) inserted in the energy expression
(Eq. 4.32), and integrating the energy density Eel

(1) over the frontal half-strip S/2 in layer (1),
i.e. from x = X x to X and from y = 0 to y = H/2, one obtains

X H / 2

X x 0

2
(1)(1) 2

el o
(1) (1)

2 2 21 X x x 2 y
E . . dx dy

2E x H 1 H / 2

2
2
(1) 2

o
(1) (1)

1 x x 2 H / 2
. .

2E 3 2H 3(1 ) x
(4.35a)

where G in (4.32) was expressed in E(1) and . Likewise, integrating the energy density
Eel

(2) in layer (2) from x = X – x to X and from y = H/2 to y = d gives

2 2
(2)(2) 2

oel
(2) (2)

1 x x 2 d
E . .

2E 3 d 3(1 ) x
(4.35b)

Inserting Eel E el
(1) Eel

(2) from Eq. 4.35a,b, and Wf from Eq. 4.31 in the
basic energy relation (Eq. 4.28) for the upper half of the three-layer unit, we arrive at the
inequality
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(1)2
o o 2

(1)

E
a   12 . 0

x1
(4.36)

with
2

(1) (2)
2

(1) (2) (2)(1)

E 1x 2 H / 2 x 2 d
a= . .

2H 3(1 ) x E d 3(1 ) x1
(4.37a)

and
 X x  X x

ˆ= 3 tan 3 . tan      vH H
(4.37b)

In the last equation, the average normal stress ˆ  on the debonded horizontal
interface is replaced by the effective overburden stress v . This slightly underestimates
the length of the decohesion zone, since v  is somewhat greater than ˆ , as is shown in
Appendix B to this chapter. Also, note that all terms in the inequality 4.36 have the same
physical dimension of a stress squared.

In the following we use the simplified form of the expression 4.37a:

(1) (1) (2)
2

(1) (2)(1)

2E (1 ) (1 )H
a . . .d

E 2 E3(1 ). x
(4.37c)

by making the reasonable assumption that the length x of the damage zone (“process
zone”) ahead of the interfacial fracture is much smaller than the thickness of the jointed
interlayer and the depth, d, of the shear penetration into the adjacent layer ( x << H, d).

Since the delamination condition (Eq. 4.36) is a quadratic inequality in o, it implies

(1)

(1)2
o ( ) 2

12E
a   / 2   ( / 2)  . .a

x1
(4.38)

Hence, to start the decohesion process at  = 0 (X = x) requires

(1)
2 1

(1)
2
o

12E (1 ) . / x
a (4.39)

If this condition is satisfied, the maximum length of the decohesion zone is obtained by
choosing the equality sign in Eq. 4.38 and solving for :

(1)
2 1

(1)
max o 2

o

12 E (1 ) / x
. a (4.40)

With Eq. 4.37b the dimensionless maximum length of the interfacial slip zone smax/H
= (Xmax – x)/H finally becomes:

(1)
2 1

(1)max o
2

v o

12 E (1 ) . / xs
a

H 3 tan
(4.41)

This equation contains the energy term  which in fracture mechanics is also
referred to as “fracture resistance”. It is associated with the highly complex process of the
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growth of a shear fracture in a cohesive granular rock. Therefore the fracture path is
tortuous, and interrupting intergranular contacts and/or cutting through weaker grains and
loosening material ahead of the crack tip. Hence, it would seem unfeasible to attempt an
estimation of the magnitude of on micromechanical grounds. Experimental data of 
for sedimentary rocks, and particularly for interfacial fracturing, are scarce and should only
be applied with caution. Although the reported  data were obtained under mode I
fracturing conditions, we assume that  is of the same order of magnitude if the fractures
are of mode II. We then infer from the data collected by B.K. Atkinson and Ph.G. Meredith
(B.K. Atkinson (ed., 1987) Fracture Mechanics of Rocks, Academic Press, Table 11.2) that
2  for sandstones and limestones rarely exceeds 102 J.m–2 (= 102 Pa.m = 10–4 MPa.m) in
order of magnitude. Considering the reported data, 2  = 2 x 102 J.m–2 = 2 x 10–4 MPa
would seem a reasonable assumption when quantifying the conclusions which we can draw
from Eq. 4.41 in combination with Eq. 4.37c.

Obviously, the sign of the bracketed expression in Eq. 4.41 determines whether
decohesion takes place (positive sign) or not (negative sign). For decohesion to occur, the
(positive) “a”-term must exceed the second (positive) term in the bracketed difference.
Since both bracket terms contain the length x of the frontal “process zone” in the denom-
inator, x does not affect the sign of the bracket expression, and the decohesion condition
may be written as

(1) (2)1
2

(1) (2) o

1 1H 2
. d. 9

2 E E
(4.42)

While the left side of the inequality contains the elastic moduli and geometrical
parameters of the system, the right side exclusively contains the parameters 2  and o

which both characterize the shear fracture resistance of the intact interface, although they
stem from quite different theoretical models. Hence, given an alternating sequence of two
different sedimentary rocks with well-defined mechanical properties, it will only depend
on the thicknesses of adjacent beds as to whether jointing will initiate interfacial
delamination or not. In itself this result is almost obvious, since the thicker a bed, the more
energy will be released by the jointing to “drive” a delamination process. But one would
wish to have an idea of the range of bed thicknesses which in nature would either promote
or impede interfacial decohesion.

For this purpose, we compare the orders of magnitude of the two sides of the
inequality by inserting reasonable values for the parameters; first for the case of H2 > H1

(  H), where we may follow Hobbs in assuming d = H1(m). (Recall that in Bai and
Pollards numerical analysis d = 1.5H1.) With E(1) = 2 x 104 MPa, E(2) = 0.15 E(1), (1) = 0.2,

(2) = 0.4, and o = 3 MPa, the decohesion condition (Eq. 4.42) then reads

31H
.10 2 (MPa.m)

2
(4.42a)

Inserting for 2 the aforementioned value of 2 x 10–4 MPa.m then leads to the conclusion
that interfacial decohesion is initiated if H1 > 40 cm.

Next, consider the case of very thin weak interlayers (H2 << H1) that was discussed
previously (pp. 66–67). In this type of multilayer the depth “d” of shear penetration
approaches half the thickness of the weak layers, d = H2/2 << H1/2, and the decohesion
condition (Eq. 4.42) approximates to

(1)1
2

(1) o

1H 2
. 9

2 E
(4.42b)
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Inserting the same values for the material parameters as before, we find that the fractured
layers would need a thickness H1 > 8 m to provide the energy release needed for initiating
interfacial decohesion.

Naturally, these threshold values of H1 strongly depend on the mechanical para-
meters, in particular on the value of 2 . For example, one might easily envisage a
sedimentary sequence with a ten times lower interfacial fracture resistance ; if all the
other mechanical factors are kept equal, delamination would then only require one tenth
the thickness (H1) of the jointed layers.

Further, it should be noted that the Coulomb friction term ´v tan  in Eq. 4.41, and
thus the effective overburden, has no explicit effect on the onset of delamination, but it will
affect the delamination range. This brings us back to the original question of how far the
interfacial friction will allow the delamination to procede once it has been triggered near
the upper tip of a joint in layer (1).

To obtain an idea of the magnitude of the decohesion range smax/H1 we again
choose the above material parameters and, in addition, the typical frictional parameter
tan  and the effective overburden stress v = 15 MPa.z(km). If we again assume
d = H1, the expression 4.41 in combination with Eq. 4.37c yields

max 1
3

1

s H12.7 2

H z(km). x(m) 2 10
(4.41a)

Assuming x = 0.01 m and 2  = 2 x 10–4 MPa.m, the dimensionless delamination
distance becomes smax/H1 = 2.6/z(km), if the critical H1 value of 0.4 m is raised, say, to
0.44. Note that the length of the delamination decreases in inverse proportion to the depth
of burial z(km), reflecting the increase in frictional resistance with increasing effective
overburden.

We consider the above estimates of the delamination length as rather conservative,
since the elastic energy release is very likely underestimated by the calculation, the value
of the surface energy  of fractures along an interface is probably smaller than the value
reported for interior fractures, and inertial forces generated by the elastic surplus energy
may drive the delamination further than predicted by the quasi-static model.

The reader may readily convince himself, by varying the values of x, 2  and o

within reasonable limits in Eq. 4.41, that the decohesion will not remain confined to a
narrow region surrounding the initiation point, but the decohesion length will at least
exceed the thickness of the jointed layer. This is an important result, since the joint
spacings predicted by the slip- and “welded” layer models rarely exceed the bed thickness.
Therefore, in general, if interfacial decohesion is triggered by a joint near its ends, the
decohesion will reduce the maximum of the reactive interfacial shear stress to the Coulomb
friction, the most basic feature of the slip model.

In the above example related to condition 4.42a, the thickness (H1) of the beds that
remained welded to the weaker interlayers during jointing was less than 40 cm. Again, this
threshold value depends on the choice of the parameter values; in particular, on the value
of the interfacial cohesion o. If, for example, instead of o = 3 MPa, as chosen above, o is
reduced to 1.5 MPa, the lower bound of H1 for interfacial decohesion is raised to 1.6 m;
and it is lowered to 0.1 m, if o = 6 MPa. It may appear as somewhat odd that a higher
shear strength of the bonded interface should allow easier decohesion. The reason for this
seeming paradox lies in the higher energy release rate (Eq. 35a,b).

One further point to be mentioned concerns the role of the effective overburden
stress v . As noted previously, this stress does not explicitly affect the onset of
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decohesion, since it does not explicitly occur in the decohesion formula (Eq. 4.42).
However, it seems very likely that the fracture surface energy 2 of a macroscopic shear
fracture is an implicit function of v , because work in the process zone of the fracture is
also per-formed in intergranular sliding and dilation of the material; both processes being
affected by the effective compressive stress normal to the macroscopic fracture plane. The
lower this stress, the less work will be needed to perform the intergranular sliding and
dilation required in propagating the macroscopic shear fracture. Hence, although no
experimental data are available, it is reasonable to expect 2 to decrease (non-linearly)
with decreasing v . This implies that a jointed layer whose thickness does not satisfy the
decohesion condition (Eq. 4.42) at a depth of a few kilometers, and thus is perfectly
“welded” to the adjacent beds, might become debonded when uplifted to a shallow depth
under the concomitant removal of overburden. (The same effect may be achieved by heavy
overpressuring of the pore fluid.)

The delamination of the uplifted layer would thus prevent extension of the layer to
produce the tensile stresses needed for the formation of infill joints. Instead, the extension
of the layer would be accommodated by the opening of older joints that were formed at
greater depth. Thus, in the uplifted state “the strata would be saturated with joints”, to
quote W. Narr and J. Suppe (1991, J. Structural Geol. 13/9, pp. 1037–1048).

The main conclusions of the lengthy analysis of the delamination process may be
summarized as follows:

(1) The maximum interfacial shear stress induced in sedimentary rocks by jointing, is
about four times higher in the “welded”-layer model than in the slip model. This
suggests that the joint terminations at cohesive interfaces are potential nuclei for
interfacial shear rupture (with the possible exception of layers under very low effective
overburden).

(2) The shear ruptures grow into delamination zones which extend beyond the distance
between neighbouring joints if the jointed layers are of sufficient thickness to provide
the release of elastic energy needed for “driving” the decohesion process. As far as
may be inferred from the “guesstimated” range of interfacial strength data, the
minimum layer thickness needed for delamination lies between a few decimeters and a
few meters at most. This implies that, in sedimentary sequences of alternatingly stiff
and weak rocks (e.g. limestone beds interspersed with clayey layers), with the stiff rock
beds differing in thickness, jointing in the thicker beds may cause delamination, while
it may leave the contacts of the thinner beds firmly bonded.

(3) It would therefore appear that application of the “welded” layer model is restricted to
the thinner beds, while the slip model would more aptly describe the joint spacing of
thicker beds, even if they were strongly bonded prior to jointing.

(4) High effective overburdens reduce the delamination range.

Inclined layers.  So far we have examined the models of joint spacing with respect to flat-
lying layers. However, in nature, layers are commonly not completely horizontal. If the dip
angle ( is not more than a few degrees it is of little concern, but greater dip angles may
affect the formation of joint sets. So far, this point has received little attention in the
literature, and we are therefore limited to a cursory discussion of a few aspects of jointing
in inclined layers. Consider in Fig. 4.22A a sequence of parallel, uniform sedimentary
layers on a long ideal slope. The slope surface and the layers dip at a constant angle, If
the density of the rock does not change with depth, the effective normal stress ´  and the
shear stress ||  exerted on the bedding planes by the overburden weight are simply determi-
ned by the condition of static equilibrium (see e.g. G. Mandl, FBR, pp. 19–20, 235–239).
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Fig. 4.22. Jointing on a submarine slope:
A) The weight-induced effective normal stress ´  and the shear stress  on the bedding
are determined by the formulae given in the insert, with ´ the “submerged” weight of the
solid component of the porous rock. The common direction of maximum compressive
stress ´I and tension joints is inclined with respect to the normal to the bedding planes.
The joint-induced shear stress couples  are indicated by broken arrows.
B) Mohr diagram of the stress state at the instant of jointing at the depth z = 1 km ( ´v =

´z = 15 MPa.z(km), To = 5 MPa, and slope angle  = 15°); the ´I direction is graphically
determined by the pole method (see the Appendix to this book)

The simple results are stated in the insert of Fig. 4.22 for the case of a long submarine
slope. (Note that the coordinate axis z* in the figure is orthogonal to the slope, and thus
deviates from the vertical axis z by the dip angle ) The state of stress, just before the
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formation of a first joint, is represented by the Mohr circle in Fig. 4.22B. For illustration
purposes, it is assumed that the layer, dipping at the relatively high angle =15°, lies at the
depth z = 1 km (z* = 0.97 km), and has a tensile strength of 5 MPa. The Mohr circle is then
fully determined by the point To, 0 and the stress point ´ = 14 MPa, || = 3.75 MPa on
the straight line through (0, 0) which is inclined at = 15° to the horizontal. This slope-
parallel line also defines the “pole” of the stress circle (see the Appendix at the end of this
book) whose straight connection with the point –To, 0 has the direction of the maximum
compressive stress ´I with respect to the sloping layer.

Now note that the angle of the direction of ´I with the interfaces is less than 90°
(79° in the case considered in the figure). Accordingly, the joints are no longer orthogonal
to the layering, a fact already illustrated in Fig. 4.3. Secondly, consider the sense of the
shear couples || (broken arrows in figure A) which are induced upslope by a first joint.
Whereas on the upper interface, the joint-induced shear couple || and the gravitational
shear couple || (solid arrows) have the same sense of action, they oppose each other on the
lower interface. Therefore, the upslope propagating delamination will now be asymmetric,
being facilitated on the upper interface and hampered on the lower one. Conversely,
downslope delamination slip will be facilitated on the lower interface.

The asymmetry in delamination may also affect the energy balance (Eq. 4.28)
which, so far, has not had to account for work performed by the surroundings of the jointed
interlayer during interfacial slip. However, on the slope the gravitational shear stresses
perform such work. Although the work expended per unit slip area on one interface is
cancelled out by the work consumed on the other interface, the incremental upslope growth
of the slip area on the upper interface exceeds that on the lower interface, thus giving rise
to the expenditure of net work. This work should be added to the “driving” elastic energy
release Eel.H in the balance (Eq. 4.28), and will thus contribute to upslope slip on the
upper interface (or to downslope slip on the lower interface).

Irregular spacing and closely spaced joints. Field observations often reveal strong devia-
tions from a regular spacing and, in particular, from the proportionality between spacing
and layer thickness even in layers of mechanically identical or very similar rocks under
similar overburdens. As to the reasons for the observed deviations from a regular spacing
of tension joints, we first note that, in general, a layer contains some (more or less)
randomly distributed weaker spots, such as flaws, layer necks, or notch-type irregularities

Fig. 4.23. Closely spaced joints in limestone layers (Chimney Rock, Utah)
(from T. Bay and D.D. Pollard (2000) J. Structural Geology 22, pp. 1409–1425)
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Fig. 4.24. Plot of average joint sepa-
ration vs. bed thickness for Asmari
limestone (McQuillan) and turbidites
(Ladeira) (after an internal Shell
Research report by N.J. Price (1978))

of the interfaces (see Fig. 2.7), which may act as nuclei for the formation of the first
tension joints. These precursor joints are therefore likely to be irregularly spaced. But,
where neighbouring precursor joints are sufficiently far apart, sets of equidistant infill-
joints can then be generated in between, when the tensile stress is sufficiently raised.

Secondly, we have to bear in mind that thin incompetent interlayers may allow
tensile fractures of one layer to intrude into, or intersect, an adjacent stiff layer, as was
illustrated in Fig. 4.4. Conversely, if fractures are arrested at a layer interface, as in
Figs. 4.5 and 4.6, they may induce sufficient additional tensile stresses at the opposite side
of the interface to trigger new fractures at that location, as was already considered in the
section on “Thin weak interlayers” (pp. 66–68). These mechanical interactions between
fracturing layers may cause an irregular spacing of the joints or, if leaving the joints regu-
larly spaced, may violate the proportionality rule L/H = const. for mechanically identical
layers. This appears to be the case in Fig. 4.4, where the distance between the systematic
joints of the thinner bed is much larger than the thickness of the bed. More often, however,
it is found that the distance between regularly spaced joints is only a few tenths of the layer
thickness. A good example of such closely spaced joints is shown in Fig. 4.23.

But even in cases where one may be reasonably sure that unfractured interlayers
have prevented fracture interaction between neighbouring beds, and therefore a regular
joint spacing should scale with the layer thickness and thus not be much smaller than the
layer thickness, spacings of only a few tenths of the layer thickness, or even less, are not
uncommon (see e.g. Fig. 2.7). This puzzling phenomenon is not yet fully understood.
Nevertheless, we shall venture into some possible causes of the “abnormally” close joint
spacing in single layers.

H. McQuillan (1973) studied the devel-
opment of closely spaced fractures in thick units
of Asmari limestones (SW Iran), and F.L.
Ladeira and N.J. Price (1981) reported measure-
ments of fracture separation in thick beds
(H > 1.5 m) of Carboniferous turbidites and
Jurassic limestones. Based on these data, Price
and Ladeira plotted the relationship between
joint separation and bed thickness, the essence
of which is shown in Fig. 4.24. The dotted hori-
zontal lines in the figure mark the layer
thickness at which the relationship between
spacing and layer thickness exhibits a drastic
change. Up to these lines, the thickness vs.
spacing curves may be approximated by straight
lines, indicating proportionality between joint
spacing and the thickness of fractured layers of
the same lithology, whereas above the dotted
lines, the spacing is practically independent of
the layer thickness. Noting the difference in
length scales on the two axes, one notices that
L/H is considerably smaller than 1, and varies
from less than 0.1 to a few tenths.

Ladeira and Price offer a possible
mechanical explanation of why the joint spacing
(L) observed in thick layers may no longer



Cleavage joints           87

depend on the thickness of the layers. The authors argue that, as a tensile fracture develops
in a permeable bed the opening of the fracture is temporarily accompanied by a reduction
of the fluid pressure inside the fracture which causes a “draw-down” of the pore pressure in
an adjacent region, as sketched in Fig. 4.25. The fluid pressure gradient dp/dx is
independent of the thickness of the layer, but depends on the permeability, and is therefore
also related to the lithology of the rock. Since inside the draw-down region the tensile
effective stress ´x cannot reach the tensile strength, the fracture nearest to the first one
will not develop within a given distance L which is independent of the layer thickness, but
depending on the lithology. As noted previously, the draw-down of the pore pressure is a
temporary phenomenon and diffusion tends to restore the original fluid pressure. Hence,
the proposed spacing mechanism only applies to sets of contemporaneous joints.

Cleavage (extension) joints. The small L/H ratios reported by Ladeira and Price, and even
smaller regular spacings of parallel joints, are not uncommon in sedimentary rocks.
Although the hydraulic pressure-draw-down mechanism may be responsible for the small
L/H ratios in some cases, in others, one has to search for a different mechanism. In fact,
one may even doubt that the densely spaced joints were generated by effective tension, and
may instead speculate that the joints were generated by uniaxial compression parallel to the
joint planes. Thus, the very closely spaced joints would not be proper tension fractures, but
cleavage (extension) fractures. We recall from Chapt. 2 (pp. 18–25), that the growth of
cleavage fractures is “driven” by a high effective compressive stress ´I parallel to the
direction of fracture growth, while the smallest effective stress is zero, or close to zero,
possibly even very slightly compressive. Although the magnitude of the driving
compressive stress ´I is not well known, it is most likely smaller than the uniaxial
compressive strength Co of the rock, but by less than an order of magnitude.

As was argued at the end of Chapt. 2, cleavage fracturing should, in principle, be
possible in all tectonic regimes that are prone to compressional tectonic faulting
( 0 , compressive stresses positive). This would seem to concur with the
view held by some prominent researchers that the overwhelming majority of macroscopic
rock joints are of the cleavage type (e.g., J. Gramberg (1989) A Non-conventional View on
Rock Mechanics and Fracture Mechanics, Balkema, Rotterdam; P. Bankwitz, D. Bahat
and E. Bankwitz (2000) Z. geol. Wiss. 28, pp. 87–110). However, it should be noted that
this opinion seems to be mainly based on numerous observations on “hard rocks”, i.e.
igneous and metamorphic rocks, where foliations of various types constitute strong
mechanical anisotropies with parallel planes of weakness along which the rock may be
cleaved. This is different in layered sedimentary rocks with layer-parallel bedding;
although these rocks also have some intrinsic mechanical anisotropy, this is commonly of
the transversely isotropic type, with the axis of symmetry perpendicular to the bedding
plane and mechanical isotropy in all directions parallel to the bedding plane. Since the

Fig. 4.25. Temporary draw-
down of pore pressure by the
opening of a tension joint in
a permeable rock (from
N.J. Price and J.W. Cosgrove
(1990) loc.cit., p. 59)

Fig.4.25   Temporary draw-
down of pore pressure by the
opening of a tension joint in a
permeable rock.
(From N.J. Price and J.W. Cos-
grove, 1990, loc.cit., p.59.)

pp
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resistance of sedimentary rocks against splitting is usually lower along the bedding plane,
and greatest orthogonally to the bedding plane, the anisotropy of layered sedimentary
rocks will not favour the growth of vertical fractures in flat-lying beds.

The situation may be somewhat different in flat-lying strata which were built up by
the deposition of material on planes that are steeply inclined towards the stratal boundary
planes. A typical case is the deposition of “foreset” beds on a prograding delta slope, where
the inclined bedding planes are known to affect the dip angle of normal faults. However, it
is also commonly held that this strength anisotropy decreases with increasing effective
overburden stress and degree of lithification.

Recapitulating what has been stated at the end of Chapt. 2 and in Chapt. 3 on the
geological environments of cleavage jointing, vertical cleavage jointing in flat-laying
layers is readily envisaged in a compressional regime conducive to strike-slip faulting. In
such a regime, the overburden stress ( v) is the intermediate principal stress, and the
reduction of a compressive, layer-parallel ´III to approximately zero may be accomplished
by lateral extension and/or by overpressuring of the pore fluid. If the reduction of ´III is
achieved by overpressuring alone, without externally applied lateral extension the required
overpressures are moderate if the fractured layers can freely accommodate the pressure-
induced lateral extension, but “hard” overpressures are needed (p. 29) in layers that are
laterally completely confined.

A tectonic stress regime of this kind exists in the forelands of thrust and fold belts,
especially if these are slightly convex towards the foreland (N.J. Price and J.W. Cosgrove
(1990) Analysis of Geological Structures, Cambridge Univ. Press, pp. 312–314). The
situation is sketched in Fig. 4.26. Note that, in the present context we ignore the fact that

´I decreases in magnitude with distance from the thrust front, and that the ´I trajectories
are bent slightly downwards from the horizontal because of the frictional resistance at the
base of the compressed foreland. Likewise, we ignore that the foreland may be bent down
near the thrust front by the load of the thrust belt.

The overpressuring of the pore fluid, caused by the compression of the foreland,
may reduce the smallest effective stress ´ close to zero, or even shift ´  into the
tensile range, and thus generate vertical “internal hydraulic” joints of the cleavage or the
tension type. The process is illustrated in the Mohr diagram of Fig. 4.27. for a foreland
layer buried under 2 km of overburden. It is assumed that, prior to the compression by the
thrust belt, the flat lying sediments were undisturbed and the pore pressure was “normal”,
i.e. solely due to the weight of the hydrostatic water column. The horizontal effective
stresses ´h

o are related to the effective overburden stress by the empirical Ko factor
(Eq. 3.7), which we have repeatedly used, and to which we here assign the

T h r u s t  a n d  f o l d  b e l t

F o r e l a n d

Fig. 4.26. 
Regional princi-
pal stress trajec-
tories in the fore-
land of an arcuate
fold and thrust
belt (greatly sim-
plified)
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relatively small value 0.4, which we consider as appropriate for very stiff, undisturbed
sedimentary rocks. We further assume, that the rock freely adjusts by horizontal straining
to a rise in pore pressure, and thus allows the principal effective stresses to be reduced by
the full rise in pore pressure (see Fig. 3.2). (Since we are concerned with the maximal
reduction in effective stresses by overpressuring, we disregard a possible component of
tectonic extension, which might oppose the build-up of overpressures.)

One then easily finds that the ratio of pore pressure to total vertical stress = p/ v,
must be greater than 0.64 to render a horizontal compressive effective stress tensile. In the
figure, = 0.65 allows the horizontal effective stress orthogonal to the thrust direction to
reach the tensile strength of –8 MPa. The shaded stress circle in Fig. 4.27 represents the
associated critical stress state. On the other hand, the foreland compression not only raises
the pore pressure, but also the maximum effective stress ´I. In fact, this stress may attain
any value short of the value associated with the initiation of wrench faulting. In the figure,
the limit value ´I limit is defined by the dotted circle through ´III = 0, which is the smallest
compressional stress circle that touches the Coulomb limit line and thus indicates the onset
of faulting in the compression range. For the shear strength parameters assumed in the
figure, one finds ´I = ´I limit = 61 MPa which probably leaves sufficient scope for the
foreland compression to raise ´I to the level needed for cleavage jointing.

It may be argued that, in reality, the value of ´I limit will even be higher than the
value defined by the dotted circle in the figure because in triaxial testing (see Fig. 2.3), a
rock sample has to be laterally supported by some confining pressure ( ´III > 0) since,
otherwise, the sample will fail by axial splitting, rather than by faulting (see also Fig. 2.12
and the comments on pp. 22–23).

Thus, we may expect in the overpressured foreland, or at least in its most
overpressured parts and at certain distances from the thrust belt, the formation of vertical

Fig. 4.27. Mohr diagram of overpressuring of the foreland of a fold and thrust belt,
possibly causing vertical tension or cleavage joints. (Layer is under 2 km overburden, total
overburden stress v° = 50 MPa, Ko = 0.4, pore pressure p/ v° = 0.65, o = 2To = 16 MPa)
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“internal hydraulic” tension joints and cleavage joints which trend parallel to the ´I

trajectories. It should not be a surprise to find regions where tension joints, cleavage joints,
and conjugate (Andersonian) wrench faults overlap, since the effective stresses in the
foreland vary not only in space but also in time.

Vertical cleavage joints can also form in an extensional regime, for example, by a
gentle passive bending of the layers which may be produced by the emplacement of
laccoliths or salt pillows; by the rise of diapirs; or by differential vertical compaction and,
more generally, by the flow and local thinning of ductile substrata. But, for several reasons,
the conditions of cleavage jointing in an extensional regime are more restricted than in the
wrench faulting regime.

Firstly, because the effective overburden stress is now the maximum principal
stress, overburdens of at least 2–2.5 km are needed to provide the high compressive stress
( ´I) required for cleavage fracturing. Secondly, the reduction of a horizontal effective
stress to approximately zero is primarily achieved by an externally applied extension,
rather than by overpressuring of the pore fluid, since the overpressuring would reduce the
overburden stress ´v at least as much as layer-parallel normal stresses (see Fig. 3.2). Apart
from that, a significant contribution of overpressuring is unlikely, since overburden-
induced overpressures are relieved by the extension of the layer. Thirdly, the loading
procedure that produces cleavage fractures in nature will seldom follow the experimental
procedure of raising ´I while maintaining ´III near zero. The reverse process is more
likely, with ´III being reduced to approximately zero while ´I remains more or less
constant. The overburden stress ´v° (= ´I) is then limited by the overburden stress in the
smallest limit state of normal faulting, since at a higher overburden stress the reduction of

´III would lead to normal faulting and, in turn, stop the further reduction of ´III before it
could approach zero. This is illustrated in the Mohr diagram of Fig. 4.28 for a horizontal

o
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Fig. 4.28. Mohr diagram of extensional unloading promoting vertical cleavage jointing in
horizontal layers under constant overburden load ( ´v

o)(The strength parameters are the
same as in Fig. 4.27.)
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layer of, say, sandstone or limestone under 3 km of overburden ( ´v° = 37.5 MPa); the
strength parameters are the same as in Fig. 4.27, and therefore again ´I limit = 61 MPa. In
other words, the initiation of normal faulting would require an overburden of at least 4 km.
Hence, during the extensional reduction of ´III (indicated by the arrow in the figure), the
overburden stress must remain smaller than ´I limit to prevent the growing stress circle
from touching the limit line.

Thus, in order to induce vertical cleavage fractures in the layer considered in
Fig. 4.28, the overburden stress ´v° must be smaller than 61 MPa and greater than the
value ´I min that would be necessary to start the fracturing process, which was arbitrarily
assumed as 30 MPa. Overburden-induced vertical cleavage fracturing under normal pore
pressure conditions would therefore be restricted to the depth range of 2 to 4 kilometres.

At this point, we face many unanswered questions; in particular, the fact that we do
not know whether any value of ´v° between ´I min and ´I limit would “drive” the growth
of cleavage fractures when ´III approaches zero. Unfortunately, to our knowledge,
uniaxial compression tests on rocks have not yet been carried out in a way that would
simulate the loading conditions of the geological process, where the lateral confining
pressure is gradually reduced to zero, while the axial compressive load remains more or
less constant. It is also regrettable that, despite the innumerable conventional compression
tests on rocks, experimental data on the pre-failure growth of axial cleavage fractures seem
to be extremely rare. Nevertheless, we propose the hypothesis that vertical cleavage
fractures may form at any value of the overburden stress between ´I min and ´I limit,
though probably at slightly different ´III-values close to zero. The theoretical basis for this
hypothesis will be discussed a little later.

Spacing of cleavage joints. Next, we ask what may control the spacing of cleavage joints,
and in particular, why these joints would be spaced more closely than tension joints. This
subject has up to now been little explored. Clearly, the theoretical spacing models for
tension joints do not apply to compressive joints, simply because there is no layer-parallel
normal stress to be released by the cleavage joints, and therefore no reactive shear stresses
are induced to restore the equilibrium of forces. More precisely, if we consider a macro-
scopic cleavage fracture on the scale that is employed in defining (and measuring) rock
stresses, that is, a scale which is large with respect to the grain and pore dimensions of the
rock, the fracture appears as a smooth, closed cut. Such a fracture, when cutting
perpendicularly across a horizontal layer under horizontal and vertical principal stresses,
would not in any way disturb the (macroscopic) stress field. The mechanisms which
control the separation of parallel cleavage joints must therefore be sought in the
micromechanics of cleavage fracturing.

In Chapt. 2 (Fig. 2.10) we schematically illustrated some mechanisms which, on a
pore or grain scale in a rock under compression, give rise to local tensile stresses and
tensile microfractures (pp. 20–21). Under uniaxial loading, in the absence of any lateral
confining pressure, some micro-fractures are enlarged in a stable way by increasing the
axial compression, and will eventually somehow combine into macroscopic cleavage
fractures. Although the mechanisms involved are extremely complex, it is generally held
that the key role in the formation of cleavage fractures is played by “wing cracks” which
nucleate on pre-existing small cracks (Fig. 2.10A). The pre-existing flaws are distributed in
all orientations throughout the rock, and the cracks inclined towards the axis of the remote
maximum compressive stress are under some shear. When the shear stress on a crack
exceeds the frictional resistance of the crack faces, slip can occur and induce small tension
regions near the crack tips. Under sufficient local tension, secondary tension fractures
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Fig. 4.29. The initiation of a
cleavage fracture by the linkage
of wing cracks and crack-type
flaws (highly schematised)

´I Uniaxial com-
pressive stress

(“wing-cracks”) are generated and branch off the parent crack (Fig. 2.10A). The axial
stress ´I required for the initiation of a wing crack is found to be inversely proportional to
the square root of the length of the parent crack. The wing cracks grow because they are
wedged open at their base by the sliding on the parent cracks. The growth can therefore
continue as long as the sliding on the parent cracks is maintained by increasing the axial
compressive stress ´I. The growth is stable as long as the lateral stress ´III is zero or
compressive, but a tensile ´III would eventually lead to unstable growth. On the other
hand, a compressive ´III, even if much smaller than ´I, severely hinders the growth of
wing cracks.

Furthermore, it is important to note, that the individual cracks in a wing crack
population, produced by the overburden stress, are rather short, even if the lateral effective
confining pressure is zero. Consider, for example, a parent crack of 1 cm length, favou-
rably inclined at 30° towards the vertical, with a friction coefficient  = 0.6, and assume a
typical fracture toughness (see p. 17) KIc = 1 MPa m1/2 for the rock. From a fracture
mechanical study by M.F. Ashby and S.D. Hallam (1986, Acta metall. 34, pp. 497–510,
Eq. 7), we infer that the formation of wing cracks of 0.25 cm length at ´III = 0 would
require an effective overburden stress of ´I = 67 MPa (while wing cracks of 0.5 cm would
require ´I = 88 MPa). Since the pre-existing cracks are, in general, rather small, we expect
the formation of macroscopic cleavage fractures to be achieved by the interaction of a great
number of wing cracks and small pre-existing cracks. Furthermore, we know from fracture
mechanics, that parallel cracks (statistically aligned with the remote ´I direction) never
merge, but may terminate on pre-existing cracks. One therefore envisages, on a micro-

scale, that macroscopic cleavage fractures in rocks
are produced via the linkage of pre-existing crack-
type flaws and wing cracks. The highly schematical
sketch in Fig. 4.29 should give a notion of this self-
organization of microfractures into a continuous
cleavage fracture.

The important point now is that the wing
cracks are open cracks. Therefore, when a uniaxial
vertical load initiates a population of uniformly dis-
tributed wing cracks which nucleate from uniformly
distributed crack-type flaws, the volume of the rock
will be increased by the opening of the wing cracks.
As the rock layer is laterally confined, the dilatation
causes a uniform internal compression that suppres-
ses the further growth of the wing cracks. Hence, the
fractures would be “self-confined” (to use a term
coined by J. Gramberg) in an embryonic state. One
would think that the growth of wing cracks could
then only be resumed, and cleavage fractures event-
ually be formed and propagated, after the internal
compressive stress had been relaxed by tectonic
extension of the layers and/or internal creep.
However, we expect the process, in reality, to be
quite different, as we shall explain next.

Instead of considering a uniform dilation of
the rock, we envisage that at a very early stage of the
wing crack formation the volume dilation turns
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from a uniform distribution into a non-uniform one, probably even with a certain spatial
periodicity. We assume that the formation of isolated patches, or zones, of the type shown
in Fig. 4.29 goes hand in hand with the concentration of volume dilation in these proto-
cleavage fractures, while the adjacent material is being pushed aside and compressed
between neighbouring proto-cleavage fractures. Hence, the volume increase of the vertical
proto-cleavage fractures is accommodated by the contraction of the material in between.
This is schematically illustrated in Fig. 4.30 for the upper half (above the midplane SS) of
a horizontal layer which is loaded by an effective overburden stress ´ov. The layer
contains vertical proto-cleavage fractures (cf) which have not yet reached the layer
boundaries. The gradation in shading in the figure is supposed to indicate the transition
from the highest dilation (light) and zero horizontal compressive stress ´h = 0 inside the
proto-cleavage fractures, to the zones of contraction (dark) and horizontal compressive
stress ´h > 0. Clearly, the horizontal normal stresses are now no longer in equilibrium, and
the imbalance must be compensated for by horizontal shear stresses ( ), as conjecturally
indicated in the figure. Necessarily, the direction of the principal stress ´I is deflected by
the shear stresses, and ´I remains vertical only where  = 0 inside and midway between
neighbouring proto-cleavage fractures. But, inside and above the compression regions, the
principal direction is deflected from the vertical to make an acute angle with the shear
directions shown in the figure. Therefore, the ´I-trajectories (not shown in the figure) will

Fig. 4.30. Schematic section of parallel proto-cleavage fractures (cf) inside a layer under
high overburden stress ´v. (The fracture segments lie above a plane of symmetry SS.)
Dilation inside the cleavage fractures is accompanied by contraction (shaded) of the
material in between; this produces a horizontal compressive stress ( ´h > 0) in the
contracted material, while leaving the horizontal stress ´h = 0 in the dilating cleavage
fractures. The resulting imbalance of the horizontal normal stresses is compensated for by
horizontal shear stresses ( ) which deflect the trajectories of the principal stress ´I (not
shown in the figure) towards the cleavage fractures, and thereby raise the axial load on the
cleavage fractures and reduce the vertical stress on the contracted material, as is
schematically indicated in the figure



94 Summary of joint spacing

tend to converge towards the proto-cleavage fractures, and thereby redistribute the
overburden load as sketched in the figure. Thus, the vertical stress on the cleavage
fractures is raised above the average overburden stress, and is reduced below the average
level on the compression regions.

The picture we have drawn of the role of “dilation banding” in the formation of
cleavage fractures is purely qualitative and leaves many questions open. Nonetheless, it
illustrates how vertical cleavage fracturing in horizontal layers of sedimentary rocks may
be achieved by a high overburden stress and a zero confining pressure without resorting to
the volume accommodation by a layer extension on a geological time-scale, or by internal
creep processes. Instead, the dilational increase in volume is accommodated “instantly” by
contraction of the material between neighbouring cleavage fractures.

Thus, the spacing of the parallel cleavage fractures appears to be primarily con-
trolled by a spatial alternation of dilation and contraction. But, since both dilatancy and
contractancy in rocks are inelastic phenomena, depending, in particular, on the density and
size of the pre-existing micro-cracks, it is difficult to quantify the width of the contracted
regions that separate neighbouring cleavage joints. Nevertheless, the model suggests that,
depending on the micro-structure of the material, the spacing of the cleavage fractures may
become extremely small, perhaps not exceeding the thickness of a cleavage fracture (or
rather its dilation band) by more than an order of magnitude. Thus, the model may offer a
conceivable, though not necessarily exclusive, explanation of the extremely close regular
joint spacings that are sometimes observed in sedimentary rocks.

Summary of joint spacing. In the second part of this chapter we have attempted to explain
why parallel tension joints in layers of sedimentary rocks are often regularly spaced, and
what controls the distance between parallel joints. The mechanical genesis of the
phenomenon is rather complex, as is reflected by the patchwork of quantitative mechanical
models, hypotheses and conjectural elements in our presentation. Therefore, a brief review
may be useful which focuses on the basic features of the theory, leaving aside various
intermediate steps of the foregoing argumentation.

A three-layer unit consisting of a stiff uniform layer between uniform lower-modulus
beds, is uniformly extended in a lateral direction until tension joints form in the stiff
interlayer. Since the layer-parallel (effective) tension is completely released at the
fracture walls, the unfractured material of the stiff layer tends to shorten. This tendency
is counteracted by the clamping action of reactive shear stresses on the layer
boundaries (Fig. 4.12); this confines the reduction of the tensile stresses on either side
of a joint to a zone wherein no tension joints can form (assuming a uniform tensile
strength). The length (L) of this zone is determined by the resultant force of the
interfacial shear stresses (Eq. 4.3), and defines the minimum distance of parallel joints
under the actual boundary conditions.

The crucial factor in determining the spacing of equidistant tension joints is the
distribution of the joint-induced interfacial shear stresses which represent the
mechanical coupling of the fractured interlayer and the unfractured embedment. Two
extreme idealizations of the coupling mechanism have been considered: (1) frictional
slip and (2) firm cohesive bonding of the layers. The first mode of coupling is the basis
of N.J. Price’s “slip model” of joint spacing (1966), while the second mode is the basic
assumption of D.W. Hobbs’ “welded layer” model (1967).
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Price’s slip model is simply a static balance of the mechanical forces which act on the
material of the stiffer layer (Eq. 4.2). The mechanical coupling mechanism is localized
at the contacts between the stiff layer and its embedment, assuming that the interfacial
shearing resistance is solely provided by the fully mobilized Coulomb friction (zero
interfacial cohesion) which acts on the whole interfacial area between two
neighbouring joints. Thus, the shear stresses exert the highest possible clamping action
per unit area of the cohesionless interfaces, thereby minimizing the possible distance
(L) between neighbouring joints.

In flat-lying layers, the dimensionless ratio L/H of joint spacing (L) to thickness
(H) of the fractured layer turns out to be proportional to the tensile strength (To), and
inversely proportional to the effective overburden stress ( ´v). The dimensionless joint
spacing therefore decreases with increasing depth of burial at the time of jointing. As
long as the effective overburden stress is not drastically raised, the slip model allows
for the formation of only one set of regularly spaced tension joints; further extension of
the multilayer being accommodated by widening of the existing joints.
Hobbs’ “welded” layer model. Fracturing in the stiff interlayer disturbs the straining of
the three-layer unit that was strictly uniform before the onset of fracturing, and induces
layer-parallel shear strains and shear stresses. Since slippage is excluded, the interfacial
shear stresses caused by the jointing can only be determined as part of the whole post-
jointing stress field of the three-layer unit. In order to obtain an approximate solution to the
formidable problem of determining the stress field the following assumptions are made:

(1) the deformational behaviour of the three-layer unit is linear-elastic. (2) The
layer-parallel normal stresses and displacements in the stiff layer are considered as
cross-sectional averages ( ˆ

x, û1), and tension joints form when the effective average
tensile stress ˆ

x reaches the tensile strength To. (3) The layer-parallel gradient of ˆ
x(x)

in the stiff layer is proportional to the fracture-induced local change in the
displacement field (Eq. 4.9).

These assumptions are sufficient to determine the distribution of the dimensionless
tensile stress ˆ x / ˆ x

max  between neighbouring joints, with ˆ
x

max the maximum tensile
stress midway between the joints (Fig. 4.14). But, a further assumption is needed to
obtain an explicit relation between the joint spacing (L), the interlayer thickness (H),
the elastic stiffness difference between the layers, and the extensional straining (e*) of
the three-layer unit. It is assumed (4) that the joint-induced layer-parallel shear stress in
the ambient layers decreases linearly with the distance from the interfaces, and
vanishes at a distance (d) equal to the thickness of the jointed layer (d = H).

The final result (Eq. 4.20a) then states that the joint spacing to layer thickness ratio
(L/H) is proportional to the square root of the stiffness ratio E(1) (stiff)/E(2) (soft),
increases with increasing tensile strength To of the stiff layer, and decreases with
increasing extensional strain of the whole multilayer.

Thus, both Price’s slip model and Hobbs’ “welded-layer” model predict a joint
spacing that scales with the thickness of the stiff interlayer.
Thin weak interlayers. The weak layers in Hobbs’ model were supposed to be thicker
than the jointed interlayer to make sure that the jointing was not affected by the
fracturing in other layers. But Hobbs’ theoretical approach may also be applied (even
more aptly) to the contrary situation of very thin low-modulus layers (2) separating a
set of stiffer layers (1) of identical properties. The weak interlayers are not fractured,
but must be that much thinner than the stiff layers, so that joints in one layer (1)
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localize the formation of joints in a neighbouring layer (1) in vertically aligned
positions (Fig. 4.17). According to the analogue (4.20b) to Hobbs’ formula (4.20a), the
spacing L/H1 of the vertically aligned joints in the stiff layers (1) is then proportional to
the square root of the thickness ratio H2/H1.

Thus, the presence of very thin weak interlayers (H2 << H1) may drastically reduce
the spacing of vertically (or nearly so) aligned tension joints.
Infill jointing and “fracture saturation”. While the slip model allows for only one set
of regularly spaced tension joints, the “welded-layer” model allows new joints to be
formed midway between existing joints by a continued extensional straining of the
intact ambient layers. Since the layers are “welded” together, the external straining is
fully transmitted to the joint-bounded sections of the interlayer, where it can raise the
midway tensile stress ( ˆ

x
max) until it reaches the tensile strength. Although, in

principle, several generations of infill joints can be generated, with each set halving the
separation of the former one, the sequence of infill episodes is strongly restricted by the
limited strength of the ambient elastic layers.

More importantly, the fracture condition applied to infill jointing in Hobbs’ model
refers to cross-sectional averages of the layer-parallel tensile stresses ( ˆ

x
max = To),

which may strongly vary from the actual stresses x  on a cross-section. Therefore, a
more accurate theory of infill jointing should analyze the non-averaged layer-parallel
normal stresses x . Such an analysis (pp. 68–74) reveals that near either interface the
tensile stress x  exceeds the cross-sectional average ˆ

x, and drops below ˆ
x in a

central strip (Fig. 4.19). Tension fractures may therefore nucleate near the interfaces
and start growing in the vertical direction before the average stress has reached the
tensile strength To. Under sufficient tensile straining of the ambient layers, the fractures
can propagate across the central region of low or zero tension and thus develop into
tension joints proper, i.e. fractures transecting the layer. Interestingly, however, if the
already existing tension joints are too closely spaced, x will become compressive in a
central strip (Fig. 4.19), as was demonstrated in a numerical analysis by T. Bai and
D.D. Pollard.

Applying basic fracture mechanical concepts, Bai and Pollard also analyzed the
propagation of vertical cracks and found that the fractures cannot penetrate the central
compression zone between neighbouring joints when the joint spacing to layer
thickness ratio (L/H) is less than 0.55 (or, more realistically, about 0.8). At this critical
joint spacing a state of joint saturation is reached where a further rise in external strain
cannot produce new infill joints (pp. 70–72).
Models and reality – delamination (pp. 74–83). The reactive shear stresses that are
induced by jointing in sedimentary rocks attain maxima at the interfaces, which in
Hobbs’ model are about four times higher than in the slip model (Eq. 4.25). This
strongly suggests (Eq. 4.25a), that the joint terminations at the interfaces, where the
interfacial shear stresses are highest, are nuclei of interfacial shear rupture (with the
possible exception of layers under very low effective overburden).

Interfacial shear ruptures which start from joint tips, grow into delamination zones
if the jointed layers are of sufficient thickness to release the necessary elastic energy
for “driving” the decohesion process against the resistance of interfacial friction and
the fracture resistance 2 (Eq. 4.28). As far as inferred from “guesstimated”
interfacial strength data, the length of the delamination zone (Eq. 4.41) will easily
exceed the distance between neighbouring joints, while the required minimum layer
thickness may lie between a few decimeters and a few meters at the most.

Thus in sedimentary sequences of alternatingly stiff and weak rocks (e.g. limestone
beds interspersed with clayey layers), with the stiff rock beds differing in thickness, the
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thicker beds may be delaminated by jointing, while the thinner beds are left firmly
bonded. It would therefore appear that the “welded” layer model applies to the thinner
beds, while joint spacing in thicker beds is more aptly described by the slip model,
even if prior to jointing the beds were strongly bonded.
Closely spaced joints. Whereas the joint spacings predicted by the slip model and the
welded-layer model will not be much less than the thickness of the jointed layer,
regular joint spacings of a few tenths or less of the layer thickness are not uncommon
in sedimentary rocks (Figs. 2.7, 4.23). As mentioned before, vertically aligned joints in
neighbouring layers may be closely spaced if the unfractured interlayers are very thin.
In some cases (Fig. 4.24) of permeable rocks, narrow spacing may be attributed to the
temporary draw-down of the pore pressure around a newly formed tension joint
(Fig. 4.25). In other cases, one may suspect that the vertical or subvertical joints are not
tension joints in the strictest sense at all, i.e. joints formed under externally applied
extension, but cleavage (extension) joints, i.e. joints generated parallel to a high
compressive effective stress I´ and a zero, or nearly zero, effective normal stress III´
perpendicular to the fractures (Fig. 2.8).
Cleavage (extension) joints. While the phenomenon of cleavage fracturing is well
established by uniaxial compression tests on rock samples, an inquiry into the when
and where of cleavage joints in the brittle crust encounters many uncertainties. The
differences between the rock-mechanical objectives and the subjects of geomechanical
analyses do not allow a direct transposition of rock-mechanical results to the geological
field (see Chapt. 2). In particular, the development of cleavage fractures in flat-lying
strata which, when transected by cleavage fractures are still held together by the
ambient layers and the resistance of lateral boundaries, is different from the rock
engineer’s interest in the uniaxial failure load (Co) at which a laterally unconfined
block fails by splitting.

An appraisal of the conditions of cleavage fracturing in the brittle crust requires
first of all, an estimate of the maximum compressive stress I´ needed for the initiation
of cleavage fractures. Although relevant data for rock layers of some lateral size are
lacking, it is a reasonable assumption that the critical stress I´ is considerably smaller
than the uniaxial compressive stress Co of unconfined samples, albeit probably by less
than a whole order of magnitude.

Vertical cleavage joints in flat-lying layers are mainly expected in the compres-
sional tectonic regime that is characteristic of (Andersonian) strike-slip faulting. Such a
stress regime, with horizontal principal stresses I´ and III´, exists in the foreland of
fold and thrust belts (Fig. 4.26), where III´ may be reduced to zero by an arcuate shape
of the fold belt, or by the push of the thrust belt generating overpressures of the pore
fluid (Fig. 4.27). The overpressures required vary from moderate  0.65) to very
high  0.9), depending on whether the layers are free to extend in a lateral direction
or are completely constrained (see also Chapt. 3, pp. 30, 46). Vertical cleavage joints
may also form in an extensional regime (with the overburden stress v´° = I´),
although only within a rather restricted depth range.

The formation of a cleavage joint is accompanied by volume dilation and the build-
up of an internal lateral compressive stress (pp. 92–93). This follows from the micro-
mechanics of cleavage fracturing, which mainly consists of the formation of open
wing- cracks that branch off pre-existing cracks (Fig. 4.29). It is envisaged that at an
early stage of the wing crack formation, dilation concentrates in isolated patches which
are separated by contracted material. This, as yet hypothetical dilation banding
(Fig. 4.30) would determine the spacing of parallel cleavage joints, and might explain
the extremely narrow spacing sometimes observed in sedimentary rocks.
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Appendix to Chapter 4

A) The mobilized Coulomb friction in Price’s model after the formation of a first joint

The fully mobilized Coulomb friction at the interfaces of a horizontal layer is tan
(with the friction angle of the interface). Before the formation of a first joint, the normal
stress  on the horizontal bed surface is the effective overburden stress v´, but it is no
longer constant along the bed surface when a first joint and the balancing interfacial shear
stresses are formed. In the following analysis, we will evaluate the average of the Coulomb
friction av = ˆ tan over the interfacial slip interval. We make use of the superposition
principle of linear elasticity, which allows us to establish the state of stress in a body under
given boundary conditions by partitioning these conditions and adding the states of stress
associated with the partial boundary conditions.

Following this procedure, we will consider (in Fig. 4.31) the state of stress in the
competent layer, after the formation of a first joint, as being the sum of the uniform state of
stress just before jointing (indicated in Fig. 4.31a), and the stresses (indicated in
Fig. 4.31b) that are caused by applying the compressive stress x´ = To to the walls of the
first fracture. Because of the symmetry of the problem with respect to the horizontal mid-
plane (see Fig. 4.12), we only need consider the lower half of the fractured layer. The
boundary problem in Fig. 4.31b is stated for the rectangular layer segment (shaded) that
extends from the joint to the stress-free vertical section at an unknown distance L. While
the top surface in Fig. 4.31b is also free of shear stresses, and likewise of effective normal
stresses, the stress distributions on the lower interface are complex, and can only be
determined as part of an analysis that includes the deformation of the adjacent elastic
material. Fortunately, for the present purpose, we do not need the solution to this difficult
“contact problem”, but may be content with considering the balances of total forces and
force moments on the rectangular body in Fig. 4.31b.

In formulating the boundary problem (Fig. 4.31b), we take care to define the
boundary conditions in terms of stresses only. This means, that no part of the boundary is
rigid or fixed in place, since this would impose displacement boundary conditions. In
particular, the transverse extension, which is associated via the Poisson effect with the
contraction due to x

post , is not hindered by the boundaries. Similarly, the fracture walls
do not necessarily remain planar when the material contracts in the x-direction. We notice
that the shear stress  must vary along the basal interface, since it must decrease near the
fracture wall which is free of shear stress, and also gradually decrease to zero near x = L.
Nevertheless, the average value av of the interfacial shear stress is determined by the
balance of the total forces parallel to the x-axis: av.L = To.L/2. (As mentioned previously
(p. 56), the contributions of the pore pressure on the vertical boundary planes cancel each
other out.) Next we consider the balance of the force moments. As a point of reference, we
conveniently choose the point Q midway along the basal plane in Fig. 4.31b, since the
moments of the basal shear forces with respect to this point are zero. The constant pore
pressure on the whole boundary does not exert a resultant moment on the rectangular body
either. But, there remains the clockwise moment of the fracture force o.H/2 with the
“moment arm” H/4 to be compensated by an anticlockwise moment of magnitude o.H

2/8.
This counter moment can only be provided by basal effective normal stresses post that
are induced by the “push” force on the fracture walls. Note that, the average ˆ post of these
stresses must vanish, since there is no counter force to balance the vertical force ˆ post.L.
Therefore, as indicated Fig. 4.31, the distribution of the effective normal stresses on the
basal plane consists of both a tensile and a compressive component. In order to provide the
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required counterclockwise moment around Q, the stresses will be predominantly
compressive between Q and x = L, and predominantly tensile between the joint (x = 0) and
the reference point Q. Moreover, near x = L, the compressive stress decreases to zero,
since the state of stress at x = L is still assumed to be undisturbed by the formation of the
first fracture.

The combination of the stress states in Fig. 4.31a and b, will therefore change the
effective normal stresses  on the interfaces into v´ + post, but will leave the mean
value ˆ  equal to v . Since the maximum shear stress, mobilized by the fracture-induced
release of tensile stress, cannot exceed the Coulomb limit stress tan , the total
reactive shear force on an interface cannot exceed L. v´.tan . This value is actually
attained if slip occurs on the whole interfacial segment from x = 0 to x = L. With this
assumption of the “slip” model, av in Eq. 4.3 becomes equal to v tan .

Fig. 4.31a,b. The state of stress after the formation of a first joint, as the result of the
superposition of the uniform pre-fracture state (ante) in a) and the disturbance (post) field
in b). Note that the resultant basal normal force in b) is zero

B) Partial slippage on the interface

In Eq. 4.37b (p. 80) the unknown average normal stress ˆ  on the sliding part of a
horizontal interface was replaced by the overburden stress v´ that existed at the onset of
jointing. The situation differs from the slip model, where slippage was assumed to occur
over the whole distance between neighbouring joints and the basal average stress ˆ and

v´ were equal, as shown by the vanishing of the vertical basal force in Fig. 4.31b.
The disturbance field associated with a partial slippage on the interface is

considered in Fig. 4.32, where, after jointing, normal and tangential stresses act on a cross-
section x = L. We consider again the balances of forces and moments of forces that act on
the shaded segment of height H/2 in the figure. Choosing conveniently the corner point Q
as reference point for the balance of force moments, we notice that only the normal
stresses have a moment arm (i.e. the perpendicular distance from the reference point to the
line of action of the force). In combination, the horizontal normal stresses on the sections
x = 0 and x = L exert a right-turning moment which, like in the former case of Fig. 4.31b,
has to be balanced by a suitable distribution of the basal normal stress ´ post. But in
addition, the resultant vertical force ˆ post. L  must balance the upward directed shear

force av(x L).H / 2  at x = L. Hence, the basal disturbance force must be negative (i.e.
tensile), and will thus somewhat diminish the effect of the overburden stress ´v on the
interfacial friction.



100 Appendix

Fig. 4.32. Disturbance stresses (post) after slippage restricted to a part L of the total
distance L between neighbouring joints. Note that the basal normal force must be tensile
to balance the upward directed shear stress on the cross-section x = L

x´
post

= +To

x

av

Joint

Q

 = 0

o

ˆ
x
post To av . L

H / 2

av
post 0 (tensile)

post

L

x = 0



Chapter 5

Systematic joints
Non-systematic joints

Multiple Sets of Tension Joints

Systematic and non-systematic joints. As a rule, tension joints in sedimentary rocks are
arranged in more than one set of parallel or sub-parallel fractures. The simplest and most
frequent arrangement consists of a set of “systematic” joints with straight traces on the
bedding, and a set of “non-systematic” joints with less straight traces, roughly orthogonal
to the systematic joints. Because of its fairly common occurrence, even in systems of more
than two joint sets, this orthogonal or nearly orthogonal pattern is also referred to as the
“fundamental joint system” (germ. fundamentales Kluftsystem), a schematization of which
was presented in Fig. 4.7 (p. 52). Illustrating cases of the fundamental joint system are
given in Fig. 4.4 (p. 50) and Fig. 5.1 below.

Fig. 5.1. Bedding plane traces of a fundamental joint system of throughgoing systematic
(master) joints and non-systematic joints abutting on the systematic joints (Upper
Cretaceous, Beckum, Westphalia, Germany; from H. Bock (1989) Z. dt. Geol. Ges. 131,
pp. 627–650)

Systems of systematic and non-systematic cross joints occur on a local scale, in
particular, when associated with folds or faults, or on a regional scale where “lineaments”
of systematic joint traces may cut across whole sedimentary basins, even in completely
undisturbed flat-lying layers (see Fig. 1.4 and Fig. 5.2). Naturally, the systematic joints are
formed prior to the non-systematic joints which they have terminated. Since the systematic
joints form normal to the direction of greatest tensile stress ´III (< 0), the formation of the
orthogonal set of the non-systematic joints requires a rotation of this principal stress
direction through 90°. The switch in the ´III direction is easily understood when the
jointing was produced by a biaxial stretching of the layers. Sketched in Fig. 5.3 is a layer
that is subject to layer-parallel extensional strains ex and ey, with |ex| > |ey|. Assuming layer-
parallel isotropy, ´III acts parallel to the greatest extensional strain (ex), and is reduced to
zero when the first joint set is formed. From this moment on, the greatest tensile stress acts
parallel to the first joints, and can be raised to the tensile strength of the rock by a
continued increase in the extensional strain ey. As discussed in the beginning of Chapt. 4,
the new joints will be arrested at the older ones, if those have not yet been healed, but they
may intersect joints already healed. Now, the degree of healing also depends on the age of
the joints, which differs among a set if the continued biaxial straining results in infill
jointing, as was extensively discussed in the preceding chapter. Infill jointing and vari-
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ations in the degree of joint healing may explain various deviations from the ideal “ladder”
pattern of continuous systematic joints and connecting cross joints.

Fig. 5.2. Systematic joint lineaments on bedding planes of flat-lying Upper Cretaceous
limestone; Münster basin, Germany (courtesy of Dietmar Meier, Petershagen, Germany)

Fig. 5.3. Biaxial extension generating systematic (A) and orthogonal non-systematic (B)
tension joints in “ladder”-type position. Mohr diagrams indicate the associated change in
the layer-parallel principal stresses

It is even possible that a second set of straight systematic joints forms which cross-
cuts the first set without apparent interaction or offsets. Such a case was shown in Fig. 4.8
where, however, the two sets of systematic joints do not intersect orthogonally but at an
angle of 70°. This acute angle may cause some doubts as to whether the joints are
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Fig. 5.4. Different stages of tensile
fracturing of a PVC plate under a com-
bined torsional and flexural deforma-
tion (see text) (T. Rives and J.-P. Petit,
(1990); in: Rossmanith (ed.) Proc.

Intern. Conf. Mechanics of Jointed and

Faulted Rocks, Balkema, Rotterdam,
pp. 205–211)

correctly interpreted as tension fractures, or should rather be considered as conjugate shear
joints. This delicate question will be taken up in a separate section on shear joints. Here, it
suffices to point out that the tension joint interpretation requires that the two sets were not
formed simultaneously, contrary to what would be required for the formation of conjugate
shear fractures, and that the older joint set has gained shearing strength by mineralization.
(Less likely, though not impossible, a frictional shearing strength could also be imposed by
a change of the fracture-normal tension into compression.) Only then can the joints of the
younger set cut straight across the healed joints of the older set. This can even be the case,
when after the formation of the first set, the pair of layer-parallel principal stress directions
of the regional stress field have experienced some rotation. But since the rotation induces
shear stresses on the older joints, the rotation angle should remain relatively small to avoid
slippage on the healed joints, and thus cause segmentation of the younger joints.

Non-orthogonal sets. If the joints of the first set are still open at the time the second set is
formed, and the ´III-axis makes an acute angle with the strike of the first joints, the joints
of the second set will be non-orthogonal and abut the joints of the first set. This is very
well illustrated in an experiment by T. Rives and J.-P. Petit (1990) that is schematically
shown in Fig. 5.4, taken from the paper by the authors. In the experiment, a PVC plate

coated with a brittle varnish was first slightly
deformed by torsion producing an oblique
fold axis (Fig. 5.4A); then a shortening was
applied (Fig. 5.4B) which caused a rotation
of the fold axis and tension at the curved plate
surface. The first set of tension fractures cut
the varnish nearly parallel to the fold axis. As
the shortening was continued (Fig. 5.4C), the
fold axis was rotated further, while the tension
on the curved plate surface became nearly
parallel to the shortening direction. The tension
eventually produced a second set of joints
which strike orthogonally to the axis of
shortening and abut the open fractures of the
first set.

The combined bending and torsion in
the experiment suggest a tectonic mechanism
which, at least on a local scale, produces a non-
orthogonal change in the ´III-direction.

If the systematic first joints are open,
they act as free surfaces and are therefore prin-
cipal stress planes in the rotated regional stress
field. Assuming that  > 0 is normal to the
layer, near a joint plane, one of the layer-
parallel principal stresses must act parallel to
the strike of the joint and the other one, III,
must act normal to the joint plane, where it
vanishes. (Naturally, the principal stress axes

are indetermined when all normal stresses vanish near the open joint.) If it were not for the
presence of the open first joints, the stress field rotated around the  axis would be
uniform with the layer-parallel principal stresses II > 0 or < 0 and III < 0. Although
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perturbed by the first joint set, the rotated stress field may be considered as undisturbed at
a sufficient distance from each joint, and defined by the directions and values of the
“remote” principal stresses. R. Dyer (1988, J. Struct. Geology 10, pp. 685–699) analyzed
the perturbed stress field in a jointed layer of a linearly elastic material. For the special
case of a stress rotation through 30°, he found that the horizontal principal stress which is
parallel to the joint planes ( || ) is compressive at the joints, if

1
3

3
(5.1a)

and tensile if
1

1
3

(5.1b)

where again II and III are the undisturbed “remote” principal stresses. In deriving these
results, it was necessary to consider not only the “remote” principal stresses but also the
normal stresses perpendicular ( ) and parallel ( ) to the joint planes. The analysis then
showed that  has to be tensile in the “remote” field in order to allow a smooth transition
to  = 0 in approaching an open joint. With the exception of the joints themselves, 
then becomes tensile everywhere in the perturbed field.

Fig. 5.5. Schematic diagram of bedding plane traces of open bed-normal tension joints
(systematic joints) and hypothetical fracture paths of younger (non-systematic) joints
which are generated by bed-parallel loading with the direction of the greatest tensile stress

III (< 0) at an acute angle with the older joints. While the joint-normal tensile stress 
vanishes on the open joints of the first set, the joint-parallel principal stress ( ||) at the
joints is either compressive (A) or tensile (B), depending on the far-field values of the
principal stress ratios II/ III (see Eqs. 5.1a and 5.1b). Accordingly, the II trajectories are
curved near the open joints, as sketched in the figure (figure slightly modified after R.
Dyer (1988), J. Struct. Geol. 10, pp. 685–699; see text for further comment)

The growth of a mode I fracture in a non-uniform stress field with curved principal
stress trajectories poses a formidable problem in linear elastic fracture mechanics, since the
eigen-field of the growing tension fracture, i.e. the stress concentration at the fracture tips
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which is characterized by the stress intensity factor KI (Chapt. 2, pp. 15–16), depends on
(and also affects) the non-homogeneous “guiding” stress field and the shape of the growing
fracture. The present problem can probably only be tackled in a rigorous way by advanced
numerical methods (see e.g. A.L. Thomas and D.D. Pollard (1993) J. Struct. Geology 15,
pp. 323–334). But in the light of observations in the field, and in experiments, it seems
reasonable to obtain a first approximation to the solution by assuming that a mode I crack
will propagate in a field of non-uniform principal stress directions with each crack
increment perpendicular to the local III-direction.

In our case, this means that a tension fracture grows along the II trajectories, as
sketched after Dyer’s paper in Fig. 5.5. The fractures will start midway between the older
joints where the uniform field of the remote stresses is least affected by the joint planes and
the tensile stress III has its highest value. The state of stress at the mid-plane between two
joints is assumed equal to the state of the imposed remote stresses. Near the older joints the

II trajectories will then be curved, as indicated in Fig. 5.5, either aligning with the open
joints (Fig. 5.5A) or terminating on them orthogonally (Fig. 5.5B). Hence, when sufficient
remote tension ( III) is applied, a mode I fracture will follow a II trajectory until it
terminates either orthogonal or parallel to an open joint. Note, in Fig. 5.5B the abrupt
change in fracture orientation when the fracture closely approaches an unhealed older
fracture. (According to Dyer’s analysis the change occurs at a distance as close as about
one tenth of the total height of the older joint.)

It needs to be borne in mind that the analysis ignores interactions of the eigen-field
of the growing tension fractures and the non-uniform stress field between the older joints.
One may expect this interaction to be most significant in the vicinity of the open joints and
possibly to affect the angle at which the two joints meet. This point was given special
attention by Thomas and Pollard (1993) in connection with their laboratory and numerical
experiments on the interaction of echelon fractures.

Further causes of orthogonal jointing. Some other mechanisms, besides biaxial tectonic
extension, have been proposed as possible causes of orthogonal cross-jointing. First, as a
set of open systematic joints cuts a layer into narrow bands, a gentle local bending of the
bands produced, for example, by local differences in overburden load or by differential
compaction of substrata, may be sufficient to induce the necessary tension for the
formation of non-systematic cross joints.

Secondly, the elastic Poisson “cross strain” effect has been suggested in the literat-
ure as a possible cause of non-systematic cross jointing. This effect implies that a bed
which is extended in one direction tends to shorten in the orthogonal directions. If the
shortening is prevented, the elastic material responds by tensile stresses. Suppression of the
Poisson cross strain has been suggested as a possible cause of tension fractures in uplifted
sedimentary basins and compressionally folded beds. In the following, we shall examine
the two cases in some detail.

Jointing in basins. Let us first consider a flat-lying layer of a sedimentary basin that is
uplifted, while the basin surface is maintained in position by the erosive removal of
overburden. We assume that, the strongly lithified material responds linearly elastic to the
reduction of overburden. Uplifted beds, therefore, not only thicken but, due to the Poisson
effect, also tend to shorten horizontally. M.R. Gross (1993; J. Struct. Geol. 15, pp. 737–751)
considered how the shortening of weak layers with high Poisson ratios ( ) was restrained
by the smaller shortening of stiffer interlayers, and conjectured that the hindrance of
shortening would produce sufficient tension in the weak layers to generate vertical tension
fractures.
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Let us more closely examine the possible role of the Poisson effect in uplifting.
Consider a horizontal layer (Fig. 5.6) with layer-parallel x and y axes that is uplifted over

z kilometers, while an overburden of the thickness z is simultaneously removed by
erosion. Let us further assume, that the uplifted layer remains laterally completely con-
strained ( ex = ey = 0). This appears a reasonable assumption, at least for a central region
of the basin, because in reality most of the deformation of the uplifted sedimentary layers
is accommodated by faulting and folding at the basin margin. Note that, the exclusion of
any horizontal shortening ensures maximal tensional effect of the suppressed Poisson
shortening. We also consider the layer as mechanically isotropic, and the stress reduction is
therefore the same in all horizontal directions, x = y = h < 0.

Fig. 5.6. Uplift of a laterally confined horizontal layer and erosive removal of overburden
maintaining the surface position at z = 0. Decrease in overburden stress z, pore pressure p
and rock temperature T

It is important to notice, that horizontal stress changes during uplift of the laterally
constrained layer are not only due to the suppression of the Poisson effect, but also result
from the decreases in pore pressure and temperature of the uplifted rock. The elastic
reduction in the total horizontal normal stress h is therefore a linear function of the
decreases in total overburden stress z(MPa), in pore pressure p(MPa) and in
temperature T(°C). This functional relationship is derived from the linear poro-thermo-
elastic equations (see e.g. G. Mandl, FBR, Sect. 5.1):
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Here, the equations are written in terms of total stresses, where a = 1 – K/Ks with K and Ks

being the compression moduli of the bulk and the solid material of the porous rock,
respectively. The coefficient  represents the thermal volumetric expansion of the
unconstrained porous rock. Typical values of  for rocks are of the order of 10–5 per °C.
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Inserting as stated before, x = y = h and ex = ey = 0 for the laterally
completely constrained layer, Eqs. 5.2 reduce to the relationship for the increment in total
horizontal stress:

h z
E a p T

.
1 1 K 3 3

(5.3)

Note that all terms in this equation are negative, indicating tensile stresses. To
quantify the terms we assume an average rock density  = 2.5 gm/cm3, and a geothermal
gradient T/ z = 25°C/km which is typical for continental areas. We further assume, that
the erosive removal of overburden keeps pace exactly with the amount of uplift z(km)
which is counted as negative. With these data inserted in Eq. 5.3, uplifting over z kilo-
meters under the simultaneous removal of overburden of thickness z, reduces the hori-
zontal total stress by

h
E a p 25 z (km)

(MPa) .25(MPa) z (km) .
1 1 K 3 3

(5.4)

The only unknown parameter left on the right-hand side of the equation is the
decline in pore pressure p. We consider the pore pressure as approximately equal to the
pressure of the overlying hydrostatic fluid column. Assuming that the pore fluid is water,
the pore pressure declines by p = 10 z MPa during an uplift of z(km). (Recall that z is
counted as negative.)

We apply Eq. 5.4 to a rock of intermediate strength and stiffness with the typical
parameters: E = 0.2 x 105 MPa, = 0.2, K = 1.1 x 104 MPa, Ks = 3.6 x 104 MPa,
a = 1 – K/Ks = 0.69, and = 1.5 x 10–5/°C. (Note that the values of the Poisson ratio and
the bulk compression modulus K should be understood as mean values, since these
parameters vary somewhat with the changes in differential stress and effective mean stress
during the uplift of the rock.) With these rock parameters inserted, Eq. 5.4 yields

h = MPa/km  or  ´h = MPa/km (5.5)

It is interesting that the suppression of the Poisson effect, represented by the first
term on the right of Eq. 5.4, has contributed only 43% to h in Eq. 5.5, while the rest
is provided by the suppression of the shrinkage of the bulk volume that would have
been caused by the decrease in pore pressure and temperature in the laterally unconfined
layer.

But even though we have generalized the Poisson effect by including the shrinkage
due to the decline in pore pressure and temperature, the decrease in effective horizontal
stress ´h = –4.6 MPa/km for the chosen rock parameters is not enough to establish
tensile (negative) stresses h´. This we conclude by considering the compressive horizontal
stresses h

o´ that existed before the uplifting of the layer, and is the result of the increasing
overburden load during the subsidence phase of the sedimentary basin. It is a reasonable
assumption that, at least in the central region of a subsiding basin, the build-up of the
horizontal stresses takes place under complete lateral confinement (zero horizontal exten-
sion) of the subsiding layers (Mandl 2000, loc.cit., Sect. 5.2.1). But, as already noted in
Chapt. 3, the horizontal stress response to the increasing overburden load is not elastic in
nature, and is therefore characterized by an empirical parameter Ko, which in soil
mechanics is known as the “coefficient of earth pressure at rest” (see p. 30). The final state
of the horizontal effective stress h

o´ after subsidence of the laterally confined layer is then
proportional to the effective overburden stress z

o´:
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o o
o oh zz . z .15(MPa/km). z(km)K K (5.6)

Together with Eq. 5.5, the relation 5.6 determines h´ after an uplift of z km:

oh z z K .15 z 4.6 z (5.7)

Thus, we notice that the stress h (z z)  after uplift can be tensile (negative)
only if Ko < 0.3 | z|/|z|. But, since Ko will rarely have a value smaller than 0.4 or 0.45,
provided the layer was not extensionally disturbed by tectonic processes prior to uplifting,
and because | z|/|z| < 1, the uplift of the laterally confined layer cannot produce tension
joints. In fact, it will even produce horizontal effective compressive stresses of several
MPa at shallow depth (Mandl 2000, loc.cit., p. 181). Only if the uplifting takes place under
a much higher geothermal gradient T/ z than chosen in Eq. 5.4, could tension stresses be
produced. For example, a high geothermal gradient of 50°C/km would allow the formation
of tensile stresses after the layer (with initial o = 0.4) was uplifted over 80% of its
original burial depth.

A higher gradient in pore pressure p/ z would have to be taken into account in
Eq. 5.3 if the pre-uplift pore pressure was abnormally high and the beds were uplifted
under hydraulic insulation. This “undrained” uplift of a sealed, overpressured layer was
discussed at length by Mandl (2000, loc.cit., pp. 182–188), however, without finding
theoretical indications of the formation of tensile stresses ´h.

The rock parameters used above may be considered as fairly typical for the
majority of sedimentary rocks. If, however, the uplifted rocks are extremely stiff, Eq. 5.3
may determine tensile reductions ´h per kilometer uplift, the sum of which may then
convert the initially compressive stresses h

o´ into a tensile stress ´h. Choose, for
example, the parameters  = 0.15, E = 105 MPa and a/K = 8.3 x 10–3 for a very stiff rock;
Eq. 5.4 then determines ´h = –9.4 MPa/km. With this value replacing the coefficient
–4.6 in Eq. 5.7  and Ko being given the small value of 0.4, Eq. 5.7 then shows that any
uplift beyond 64% of the original burial depth zo would produce horizontal tensile effective
stresses. But, recall from Chapt. 3 (pp. 32–33) that these internal hydraulic fractures are
formed as “hairline” cracks.

Likewise, in very weak rocks, vertical hydraulic tension fractures may be generated
during the uplifting, as may be seen by inserting, for example, the parameters  = 0.4,
E = 3 x 103 MPa, a/K = 8.3 x 10–3 in Eq. 5.4, which then determines ´h = –10.1 MPa/km.
Assuming further that Ko = 0.6, which implies h

o´(3 km) = 27 MPa, we notice that ´h

turns from compressive into tensile at a depth of 325 m. If the layer is unfractured, ´h

would become –3.3 MPa at the surface. Hence, near the surface, the tensile effective stress
in the very weak (e.g. clayey) rock is likely to cause vertical tension fractures.

Thus, it would appear that only in rocks which are very stiff or very weak, or in
rocks under very high geothermal gradients, could uplifting under lateral confinement
produce vertical tension fractures. In the majority of sedimentary rocks, the combined
reductions of overburden, pore pressure and temperature will not suffice in producing
subvertical tension joints in uplifted layers, even though Poisson’s cross strain is fully
suppressed.

So, what other factors might contribute to the build-up of the necessary tensile
stress for subvertical tension jointing during uplift? The factor that first comes to mind is a
reduction of the Ko value prior to the uplift. This could render the right hand side of Eq. 5.7
negative. Recall that Ko is the ratio of the effective layer-parallel normal stress to the
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Fig. 5.7. Subsidence of large hypo-
thetical basin; straining effect of the
curvature of the Earth’s surface.
A) Elongated basin in plan;
B) sections through the long and
short axes (after N.J. Price (1974);
see also Price and Cosgrove (1990),
loc. cit., pp. 214–217)
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Fig. 5.7C. Sinusoidal basin section CD of Fig. 5.7A: 2z(x) = 1 + cos ( x/64)

effective overburden stress, established during the subsidence phase of the basin in a
laterally completely confined horizontal layer. Obviously, any relaxation of the lateral
confinement during the accumulation of overburden, will affect the Ko value that enters
Eq. 5.7 for the subsequent uplift of the meanwhile lithified sediments. Unfortunately,
evaluations of changes in Ko during the downwarp of a basin are obstructed by the
complexities and uncertainties of the basin histories in terms of sedimentation and
boundary geometry, and by the inelastic build-up of effective stresses under the increasing
overburden. However, despite these impediments, we may obtain an impression of the Ko

changes during the subsidence phase from an extremely simplified basin model that was
analyzed by N.J. Price (1974; Proc. 3rd Int. Conf. Soc. Rock Mech., Denver, 1A, p. 487).

Price drew attention to the fact that in large sedimentary basins the curvature of the
Earth’s surface may have a considerable effect on the straining of subsiding layers. As a
hypothetical example, he considered the elongated basin illustrated in Fig. 5.7. During
subsidence a layer initially at the surface experiences shortening along its long axis AB

(Fig. 5.7B) down to a depth of 4 km, but extension along the short axis CD after shortening
during subsidence down to merely 0.3 km. The strains are considered as uniformly
distributed along the cross sections CD and AB. With the radius of the earth (6400 km) and
the length of the surface arc AB (450 km) in Fig. 5.7A, one simply derives the length of
the associated chord in Fig. 5.7B to be about 449.9 km. Hence, during subsidence to a
depth of 4 km, the layer experiences the total compressive strain ey = 0.1/450 = 0.22 x 10–3.

In the cross-section CD the subsiding layer experiences the compressive total
straining ex = 0.086 x 10–3 during the first 0.3 km of subsidence (indicated by the stippled
line in Fig. 5.7B). But in order to determine the extension of the layer during further
subsiding to the central depth of 4 km, an assumption has to be made on the shape of the
subsided layer in the cross-section CD. According to Price’s original illustration in
Fig. 5.7B, the shape of the subsided layer is a circular arc (greatly exaggerated in the
figure) of the circumscribed circle of the triangle CSD. We consider here, the more
realistic shape of the section CD shown in Fig. 5.7C. The length of the boundary curve is
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then 128.31 km, which implies that the surface arc CD has experienced the total exten-
sional strain ex = –2.4 x 10–3 during subsidence.

In reality, the straining of the inner region of the subsiding sediment body is very
likely considerably less than predicted by the simplistic basin model above, since the
extensional strain will not be uniformly distributed along the subsiding layers, but will be
mainly accommodated along the basin margin (parallel to the AB axis) by flexural
stretching and/or the formation of small grabens and normal boundary faults which
eventually form inside the marginal flexure zone. Nevertheless, it would appear likely that
sufficient tensile strain is left in the undisturbed inner parts of the subsiding basin for a
substantial reduction in the value of Ko. Hence, in accord with Eq. 5.7, the subsequent
uplifting of the meanwhile lithified sediments may produce a tensile layer-parallel stress

CD´, and generate vertical tension joints which strike parallel to the long basin axis (AB).
Strictly speaking, Eq. 5.7 was derived under the condition CD´= AB´, and thus

applies to circular basins. In such a basin, with the diameter CD used in Fig. 5.7B, the
uplift would produce an irregular orthogonal pattern of mutually abutting vertical joints. In
elongated basins, the pre-uplift values of Ko will differ along the x- and y-axes, being
reduced in the x-direction and increased along the y-axis. Hence, a set of systematic joints
will develop which trend parallel to the long y-axis of the basin. Note that the joints form
while under strike-parallel compression ( y´), – a point we shall refer to later.

But, vertical joints which trend parallel to the long basin axis do not only develop
during uplift, but also prior to the uplift phase if the pore fluid is highly overpressured. The
accretion of overburden in the subsidence phase, and possibly the shortening along the
long basin axis (AB), are likely to generate high overpressures in thick shale beds, from
where the overpressures can invade interbedded layers of porous rocks, such as sandstones
or carbonates. The associated changes in effective stress are cursorily outlined by the Mohr
diagrams in Fig. 5.8.

Figure 5.8 refers to a horizontal layer under an overburden of 4 km. Under a normal
hydrostatic pore pressure, the effective vertical stress v´

o is 60 MPa, and in the absence of
tectonic compression, represents the maximum principal stress. (Note that this value is not
affected by a water column on top of the basin, since the total normal stress on the basin
surface is the same as the pore pressure in the top layer.) The stippled limit circle in
Fig. 5.8A represents the state of stress that would initiate normal faulting. But, we may
reasonably assume that new normal faults do not form once the subsidence has ceased.
Therefore, without overpressure of the pore fluid, the smallest principal stress ( CD´) must
certainly be greater than the minimal principal stress necessary for normal faulting. It
defines, together with v´

o, the (solid) circle that represents the stresses on all cross-
sectional elements parallel to the long basin axis AB. The stress AB´o, parallel to the long
axis, is the intermediate principal stress, whose magnitude we do not know. Since the basin
boundaries no longer deform when subsidence has ended, the layer at 4 km depth may be
considered as laterally confined. Hence, while a rise in pore pressure p reduces v´

o by
p, the horizontal stresses CD´o and AB´o are reduced by the smaller amount p. The

overpressuring, therefore, not only shifts the original stress circle towards the tension side
of the stress plane, but also reduces the diameter of the circle, as was explained in Chapt. 3
(Fig. 3.2B). Since tensile fracturing requires that the new stress circle (shaded in the figure)
intersects the negative ´-axis at the tensile strength point, the required magnitude of p
depends on the tensile strength To and the value of CD´o under normal hydrostatic pore
pressure conditions. Assuming that the rock is sufficiently lithified to elastically respond to
the overpressuring, the value of the parameter  is determined by the elastic moduli of
the rock (see Eq. 3.6). (Also, note that the  value chosen in the diagram as 0.48
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satisfies the condition Ko <  of Eq. 3.13 with Ko = CD´/ v´  0.3.) In the diagram, the
overpressure parameter  = p/ v attains the value 0.85, which is indicative of a “hard”
overpressure.

Fig. 5.8. Mohr diagrams of overpressured stress states (hypothetical) in a subsided layer at
4 km below the surface of an elongated basin. (The subscripts CD and AB refer to the short
and long basin axes in Fig. 5.7. The basin walls are immobilised at the end of the
downwarp phase.)
A) Vertical internal hydrofracturing parallel to the long basin axis AB by “hard”
overpressuring (  = 0.84). Note that the effective stress AB´ parallel to the AB axis
remains the intermediate principal stress if, without overpressuring, its value ( AB´o) lies
inside the hatched interval of the ´-axis. Otherwise, the roles of the principal stress AB´
and the overburden stress v´ would be interchanged by the rise in pore pressure.
B) If, in the absence of overpressures, the intermediate principal stress AB´o was only a
little smaller than the overburden stress v´

o, the overpressuring would produce (minor)
strike-slip faults instead of tension fractures
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Since the shaded stress circle in Fig. 5.8A represents the effective normal stresses
on the cross-sectional elements which are parallel to the AB axis, and the maximal tensile
stress acts parallel to the CD axis, the overpressuring will generate vertical internal hydro-
fractures that trend parallel to the long basin axis. But, note that a sufficient overpressuring
is not the only pre-requisite for these joints to be formed. Recall, that the restrictive
condition Eq. 2.3 for tensile fracturing requires that the maximum compressive stress
remains smaller than 3To. This implies, in terms of the notations in Fig. 5.8, as was already
discussed in Chapt. 3 (p. 30):

CD
o

o
v o

1
= 15(MPa/km).z(km) < 4 .T (5.8)

We obtain an impression of the depth range of the internal hydro-fracturing by
inserting the values of To, CD´/ v´, and from Fig. 5.8A into the above condition. This
results in the limiting depth zlim = 4.03 km, which indicates that the layer in Fig. 5.8 has
just subsided to the level where high overpressures can still produce vertical tension joints.
But recall that the values of and To in Fig. 5.8 were chosen to represent sedimentary
rocks of intermediate stiffness and strength. A greater stiffness, and hence a greater value
of  (<1) in Eq. 5.8 would result in a smaller limit depth zlim, while a higher tensile
strength would increase the limit depth.

So far, we have not taken the intermediate principal stress AB´o into consideration.
Although it does not enter the condition for tension fracturing, it is of interest. In the Mohr
diagram of Fig. 5.8A, AB´o on the ´-axis lies inside an interval marked by the dotted line.
It is immediately seen that for any value of AB´o inside this interval, the stress AB´
remains the intermediate principal stress during the process of overpressuring. However, if

AB´o lies to the right of the marked interval, it is converted by the overpressuring into the
maximum principal stress AB´o – p, while the overburden stress v´

o turns into the
intermediate principal stress v´

o – p. Therefore, vertical tension joints will then develop
parallel to a relatively high horizontal stress. As we shall see later, this is an important
factor in stabilizing the fracture path.

The reader can also verify, with reference to Fig. 5.8A, that a smaller pore pressure
rise p = 35 MPa would reduce CD´o to zero, and thus shift the shaded circle only to the
origin of the stress plane. A high AB´o of, say, 50 MPa, would then be reduced to
50 – p = 33 MPa, and the effective overburden stress to 25 MPa. It would then seem
likely that in some sandstone or limestone layers at III´ = CD´ = 0, the maximum
principal stress of 33 MPa could generate vertical cleavage fractures parallel to the long
basin axis. Naturally, this conclusion remains somewhat speculative because of the
complete lack of appropriate experimental data and the difficulty (or impossibility) in
distinguishing between tension and cleavage fractures by inspecting the fracture planes in
the field or in the laboratory.

Finally, if in the absence of overpressuring the intermediate principal stress ( AB´o)
differs from the overburden stress ( v´

o) by about as little as indicated in Fig. 5.8B, the
overpressuring can no longer produce tension or cleavage fractures, but (minor) strike-slip
faults instead.

In summary, the processes of jointing considered above take place during or after
the downwarp phase and during subsequent uplift. The idealised processes are supposed to
operate in tectonically undeformed or only slightly deformed layers on a regional scale,
that is, over large parts of sedimentary basins. In considering the downwarp phase, the
basin is assumed as large enough to allow the curvature of the Earth’s surface to
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impose significant strains on the subsiding layers. If the basin is of an elongated shape, a
subsiding layer experiences an extension parallel to the short basin axis. The associated
reduction of the corresponding horizontal effective stress contributes during a subsequent
uplift phase to the combined tensional effects of the suppression of the Poisson strain and
the decline in pore pressure and temperature. Together, the four factors may sufficiently
reduce the effective stress parallel to the short basin axis in an ascending layer to allow the
formation of vertical tension joints parallel to the long basin axis. Likewise trending
tension joints, albeit of the internal hydraulic fracture type, can be produced by very high
overpressures prior to the uplifting.

While these processes explain, at least partly, the formation of systematic vertical
tension joints parallel to the long basin axis, the question remains as to how, on a regional
scale, a second set of joints may be formed that trend orthogonally, or nearly so, to the first
set of joints. Thus, the joints of the second set of the fundamental joint system should be
roughly parallel to the short basin axis.

We fail to see how these joints could be produced by overpressuring of the
subsided layer in Fig. 5.8. On the other hand, when the subsidence continues beyond the 4
km depth, compression along the AB axis (Fig. 5.7B) would turn into extension. Hence,
after the overpressuring has produced the longitudinal hydraulic joints at a depth of, say,
between 3 and 4 km, further subsidence by a few more kilometers might eventually
produce regional joints parallel to the short basin axis (CD). This is the situation of the
biaxial extension sketched in Fig. 5.3, with the first joint set reducing the tensile stress

CD´ to zero and allowing the stress AB ´ to become the minimum principal stress.
But, since uplifts of large sedimentary basins over more than 3–4 km seem to be

rare, the observation of orthogonal joint nets in uplifted layers would suggest that the
second joint set was formed during the uplift phase. Indeed, the uplift would tend to
reverse the downwarp compression along the AB axis (Fig. 5.7B). However, as mentioned
before, in reality, the uplifting during basin inversion proceeds along boundary faults,
partly by the reactivation of normal boundary faults of the subsidence phase (for an
illustrated discussion of the inversion of graben-type basins see: Mandl (2000), loc.cit.,
Sect. 7.4). Thus, most of the extension of the uplifted layers will be accommodated near
the basin margins, an observation on which we based the assumption of complete lateral
constraint (Fig. 5.6) of the uplifted layers in a circular basin. Here, we allow for some
minor extension along the AB axis in the tectonically undeformed interior of the basin. The
extension is supposed to be just sufficient to trigger the release of “locked-in” stresses
which would then perform most of the fracturing work in generating the second joint set of
a fundamental joint system. The concept of “locked-in” stresses needs some further
comment.

“Locked-in” or “residual” stresses (germ. Eigenspannungen). Let us first revert to the
uplifting of sedimentary rocks as was indicated in Fig. 5.6, and consider two horizontal
layers, firmly “welded” together by cohesive bonds, and strongly contrasting in elastic
stiffness. One layer is of intermediate stiffness and strength, the other layer is very weak.
To characterize the elastic response of the rocks, we use the material parameters listed in
Fig. 5.9A, which are the same as used before (pp. 101–102). In Fig. 5.9A, we consider the
stress states in the two layers after subsidence to a depth of 3 km. The parameters and
stresses of the stiff and weak layer are indicated by the superscript “s” and “w”, respective-
ly. The horizontal stresses h

s´ and h
w´, for simplicity assumed as isotropic, are deter-

mined by the respective Ko values of 0.4 and 0.6 in the laterally completely confined
layers. Figure 5.9B shows the uplifted layers near the surface (z = 0), still under complete
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lateral confinement. The horizontal effective stresses recorded in the figure are calculated
by Eq. 5.4, thereby taking the decrease in pore water pressure as 10 MPa per km uplift.
After uplifting, a horizontal compressive stress of 4.2 MPa is left in the stiff layer, and a
tensile horizontal stress of –3 MPa in the weak layer, if the layer withstood the tensile
stress without being fractured. It is, however, very possible that the weak layer was jointed
at a few hundred meters below the surface. This would cause the effective horizontal stress
to drop to zero, and to remain zero during the final ascent, when the fractures are not
healed. This alternative result is indicated in brackets in Fig. 5.9B. Also note that the
difference between total and effective stress vanishes at the surface.

The uplifted multilayer in Fig. 5.9B is still under complete lateral confinement. In
this state, in-situ stress measurements should give horizontal stress values as indicated in
the figure. Since these stresses are the remainder of the stresses that existed prior to the
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uplift, they are referred to as remnant (or remanent) stresses. But what happens to the
stress field when the lateral constraints of the near-surface layers are removed by natural or
artificial processes, as schematically indicated in Fig. 5.9C. The unloading causes the
layers to extend. But since the layers are firmly welded together, they are forced to extend
as a unit. Therefore, the unloading reduces the compressive horizontal stress in the stiff
layer and adds compressive stress to the tensile stress in the weak layer. Thereby, the
horizontal force across a vertical cross-section in the stiff layer must be balanced by the
force across a vertical cross-section in the weak layer, to meet the requirement of zero
force at the vertical free boundaries (see the box next to Fig. 5.9C). Based on this
condition, and on Hooke’s law, Holzhausen and Johnson (1979) determined the stresses
which remain “locked” in the welded layers; the corresponding formulae are presented in
the box next to Fig. 5.9B (for further details also see Mandl (2000) loc.cit., Sect. 5.2).

Thus, the horizontal stresses in the welded layers are self-equilibrating in the sense
that the forces are in balance inside any adequate subdomain of the rock body, and remain
in balance when the external loads of the rock body are completely removed. By definition,
these locked-in stresses are referred to as “residual stresses” (germ. Eigenspannungen). It
is these stresses that would be released when the cohesive bonding and interlayer friction
of the layers were removed.

In the unloaded layer unit of Fig. 5.9C the residual stresses are moderate. Much
higher residual rock stresses may be locked in “pockets” of a few grains in cemented or
fused contacts. Probably the first experiments which demonstrated the existence of this
type of residual stresses in rocks were conducted by N.J. Price on unweathered samples of
nodular, muddy limestone. After several cycles of large uniaxial compression, the samples
began to expand against the axial load (N.J. Price (1966) Fault and Joint Development in
Brittle and Semi-brittle Rocks, Pergamon Press, Oxford, pp. 46–51). Price concluded that
the distributed residual stresses in the rock samples, which gave rise to the expansion, were
of the order of 60 MPa. Very careful studies on residual strains and stresses in rocks have
been undertaken by M. Friedman (1972; Tectonophysics 15, pp. 297–330) and by
Friedman and J.M. Logan (1970; J. Geoph. Res. 75, No. 2, pp. 387–405), who applied
X-ray diffractometry to measure distortions of the crystal lattice (spacing of lattice planes)
in quartz grains at polished surfaces of quartzose sandstones. (The interested reader may
find an extensive review on residual and remnant stresses in T. Engelder (1993) Stress
regimes in the lithosphere, Chapt. 10, Princeton University Press.)

Friedman demonstrated that the residual strains in individual quartz grains are
relaxed when the grains are freed from the constraints by its nearest neighbours. This
implies, that the residual strains are indeed elastic distortions which were locked in
individual grains by the cementation or “welding” of quartz grain boundaries while the
rock was still under load. This immediately raises the question: will the propagation of a
macrofracture release locked-in strains and stresses, and how far from the fracture walls
will the relaxation occur? To answer these questions, the X-ray technique was applied to a
quartzite and a sandstone before and after propagating a macrofracture through the rocks. It
was found that the residual elastic strains (and stresses) were relaxed within a narrow zone
of not more than 5 mm on either side of the macrofracture.

One may further suspect the orientation of macrofractures to be affected by an
anisotropy of residual strains and stresses in a similar way as it is affected by the material
anisotropies because of bedding or grain orientation. In studying possible fracture control
by residual strain anisotropy, Friedman and Logan (1970) induced fractures in disks of
sandstone and quartzite by applying compressive axial point loads or diametrical loads.
When tensile macrofractures and shear fractures were produced by applying the load
normal to the bedding, the strike of the fractures turned out as normal to the orientation of
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Fig. 5.10. Locking-in of intergranular stresses in
a loaded grain bridge: A) before cementation;
B) after cementation; C) stress transfer after un-
loading (double arrows indicating tension in the
cementing material)

A

B

C

the most tensile residual stress in the bedding plane that was determined by X-ray
diffractometry before the loading of the specimens.

After this interlude on residual stresses, we return to the intriguing question of how
a set of tension joints may be generated parallel to the short axis of an uplifted layer. We
recall that during the downwarp of the large basin, the layer was compressed along the
long basin axis (AB in Fig. 5.7B), but most of the shortening occurred by folding and
faulting near the basin boundaries, while the main part of the subsiding layer remained
nearly undeformed. Let us now envisage how, in this part of a layer, residual stresses can
develop during a subsidence-uplift cycle.

First, note that a compressive load is not uniformly transmitted through a rock with
a granular structure, but is carried by a framework of grain bridges, as was clearly
demonstrated by photo-elastic experiments and numerical simulations (see e.g., G. Mandl,
FBR, pp. 92–93). In Fig. 5.10, we consider, greatly simplified, a load carrying grain bridge
which is roughly aligned with the direction of a high layer-parallel compression, and is
laterally supported by some compressive stress, such as applied by the overburden. The
grains which in Fig. 5.10A are still in cohesionless contact, become cemented in
Fig. 5.10B. Assuming that, after hardening, the cementing material is weaker than the grain

material, the grains and grain
contacts will still carry most of the
load. When the indurated rock is
unloaded by a reduction or re-
moval of the horizontal com-
pression in the direction indicated
in Fig. 5.10C, the granular frame-
work tends to expand in that di-
rection. But, as long as grains and
cement remain firmly bonded, the
extension of the granular frame-
work is hindered by the cementing
material which is now put under
tension. On a macroscale, this
tensile pre-stress constitutes a
layer-parallel strength anisotropy,
with the effective tensile strength
now being smallest across planes
at right angles to the direction of
the horizontal unloading. In the
uplifted layers, this should
facilitate the formation of vertical
tension joints normal to the long
basin axis.

On the other hand, the
removal of overburden during up-
lift implies a vertical unloading
which puts the cementing material
under vertical tension (not indi-
cated in Fig. 5.10C). Pockets of
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vertical tensile residual stress may initiate exfoliation fractures parallel and close to the
topographic surface (see Price and Cosgrove (1990) loc.cit., pp. 109–110).

Although, during uplifting, the decrease in the compressive stress AB´ (parallel to
the long basin axis) initiates residual tension which, when relieved may facilitate the
formation of vertical tension joints parallel to the shorter basin axis, the question remains
whether AB´ will be sufficiently reduced to relieve the tensile pre-stress. Let us therefore
first recall what was stated before (p. 108), with respect to the uplifting under complete
lateral confinement: in the very stiff and the very weak rocks the horizontal effective stress
becomes tensile at some distance from the surface. Comparing this with the uplift situation
in an elongated basin, one should expect the onset of tension to be suppressed along the
short axis by shortening and advanced along the long axis by extension. Hence, in a very
stiff or very weak layer, the uplift should produce vertical tension joints parallel to the
short basin axis long before the layer has approached the surface. Thus, the joints produced
by extension along the long basin axis and the associated relief of residual tensile stresses,
would be orthogonal to the systematic joints which strike parallel to the long basin axis.

However, the formation of these cross-joints poses a more difficult problem if the
uplifted layers are of intermediate stiffness. In this case, the uplift under complete lateral
confinement leaves the horizontal effective stresses compressive, even near the free
surface, as we have seen before (cf. Fig. 5.9C). Also, recall that this result was obtained
even though the horizontal Poisson tension caused by the vertical unloading was fully
accounted for. Using the material parameters of the stiff layer listed in Fig. 5.9A, the uplift
formula (Eq. 5.7) for a laterally completely constrained layer would predict a horizontal
compressive effective stress AB´ = 9.2 MPa after an uplift from a depth of 3 km to 1 km.
Thus, ignoring mechanisms which operate at the surface, such as weathering and buckling
of exfoliation sheets, we have to invoke, again, extension along the long basin axis. To
reduce the effective compressive stress of 9.2 MPa to zero by uniaxial extension along the
long basin axis would require an extensional strain of 0.44 x 10–3. This is about four times
the uniformly distributed extensional strain that would be gained by a complete reversal of
the vertical subsidence from 1 to 3 km in the hypothetical basin of Fig. 5.7. Thus, it seems
very likely that some extra extension has to be imposed, for example, by slightly
upbending the ascending layers, to allow the relief of locked-in tensile stresses and the
formation of cross-joints.

An interesting question in relation to residual tensile stresses has not yet received
much attention: how does the relief of these locked-in stresses affect the distance between
neighbouring parallel joints? As already mentioned, Friedman has demonstrated that the
propagation of a tensile macrofracture in a quartzite or a sandstone relaxes the residual
strains within a distance of not more than 5 mm from the fracture walls. Would this not
suggest, that the release of residual tensile stresses in the intergranular cement may control
the distance between neighbouring joints, and perhaps be a reason for the very narrow
spacings of tension joints (or cleavage fractures) that are sometimes observed, but not
accounted for by the models in Chapt. 4?

Orthogonal joint sets in compressional folding. A further geological setting where fun-
damental systems of orthogonal or nearly orthogonal joints are commonly observed is
compressive folding. Folds of this probably most common type are initiated and amplified
by compressive forces, which are roughly parallel to the layering in its undeformed state.
The sketch in Fig. 5.11A serves to distinguish compressional folding from the bending
mechanism in Fig. 5.11B, where a stack of layers is being bent in response to the weight of
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the rock, and to the local uplifting by igneous intrusions, rising salt or clay domes and
ridges, or by the differential, subvertical movements of basement blocks that force the
overlying layers into draping the basement steps.

Fig. 5.11. Compressive folding (A) and drape folding (bending) (B) of layered rocks

In dealing with jointing and faulting in compressional folds, N.J. Price and J.
Cosgrove (1990, loc.cit., pp. 252–253) refer to one of the simpler results of the elastic plate
theory which concerns the bending of a plate whose upper and lower surfaces are free. If
the plate is bent parallel to the yz plane in Fig. 5.12A, the material on the surface above the
neutral surface (middle surface of zero extension) is extended along an arc in the yz plane,
and a set of tension joints will eventually develop parallel to the hinge line. At the same
time, the Poisson effect tends to shorten the material in a crosswise direction, i.e. parallel
to the hinge line in the xz plane. Hence, the two principal curvatures (i.e., the curvatures of
the orthogonal intersections of the plate surface with the xz and yz planes) have opposite
signs (“anticlastic”). However, when the plate is very long in the x and y directions, the
plate will be bent to a cylindrical surface as indicated in Fig. 5.12B, and the Poisson
shortening by anticlastic bending is suppressed. For the present purpose, it suffices to note
that the suppression of the hinge line curvature created a tensile stress x = y.

The cylindrically bent plate in Fig. 5.12B may be compared to a thick competent
bed inside a buckling multilayer, whose buckling resistance is actually controlled by the
competent bed. Although the fold is of finite length, the anticlastic bending is definitely
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Fig. 5.12. Poisson effect in the buckling of an elastic plate:
A) Anticlastic bending of a short plate with free upper and lower surfaces implies ortho-
gonal stretching of the outer arc and shortening parallel to the hinge line above the neutral
surface. (The principal curvatures have opposite signs – “anticlastic” surface.)
B) If an extensive plate is bent to a cylindrical surface, shortening along the hinge line i
suppressed, which results in the tensile stress x = y
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suppressed by the confinement of the competent bed between other beds which continue
outside the fold. Despite the mechanical interaction of the thick layer with its less
competent neighbours (of higher Poisson ratio and lower E-modulus), we may safely
conclude that the tensile stresses ( x) induced along the hinge line of the competent layer
by the Poisson effect will not be greater than -times the tensile stress ( y) across the fold
hinge.

Thus, as in the case of basin uplift, other mechanisms are needed in addition to the
suppression of the Poisson effect, in order to raise the hinge-parallel tensile stress to
overcome the tensile strength To. A first mechanism of this kind is associated with the
upwards convex curvature of the hinge line in buckle folds which have the well-known
periclinal (“whale back”) shape (e.g., Fig. 1.6). As the buckle fold grows, the length of the
hinge line increases and its curvature varies. The hinge line curvature is greatest in the
axial end regions of the fold, which migrate outwards as folding progresses. In these end
regions, the tension induced by the curvature and the Poisson effect together may be
sufficient to produce joints at right angles to the hinge line (“cross joints”).

However, in the central region of the fold the hinge line curvature may be practically
zero, and one cannot expect the Poisson effect on its own to raise the hinge-parallel tension
to –To. On the other hand, cross joints are commonly observed over the whole length of the
fold axis. This then suggests that prior to folding, tensile pre-stresses existed in the flat
lying layers, which acted parallel to the layering and normal to the direction of the greatest
horizontal compression. Pre-stresses of this kind are indeed encountered in the forelands of
thrust and fold belts, as was discussed in the preceding chapter (pp. 88–89, Figs. 4.26 and
4.27). These tensile pre-stresses may have generated a regional system of tension joints
parallel to the direction of maximum compression, and thus more or less at right angles to
the later fold axes.

On the other hand, pre-folding pre-stresses in flat lying layers may also be of the
residual type. Consider, for example, the process sketched in Fig. 5.10 in terms of
cementation of compressed foreland sediments. When the cemented layers are folded, the
layer-parallel compressive stress normal to the fold axis is reduced, and the stress transfer
sketched in Fig. 5.10C puts the cementing material under tension. On a macro-scale, the
locked-in tensile forces represent a maximum tensile stress along the trajectories of former
maximum compression. The relief of this tension may, therefore, produce longitudinal
jointing, i.e., jointing parallel to the hinge line. This may offer an explanation of the
existence of longitudinal joints outside the hinge zone of a fold, in particular, in fairly
straight fold limbs.

On the other hand, hinge-parallel joints in straight fold limbs are often clearly
associated with the inter-layer shearing in flexural-slip folding. An example of this was
presented in Fig. 4.3. Also, the jointing by flexural slippage, to which we shall revert in
Chapt. 7, may be greatly facilitated by the relief of residual tensile stresses.

Undoubtedly, there are still other, as yet unexplored factors involved in the
formation of orthogonal joint systems. A vexing problem, for example, concerns the reason
why systematic joints are often surprisingly straight and continuous over great distances
(see Figs. 1.4 and 5.2). We shall look into this next.

The straightness of systematic joints. If a Mode I fracture propagates in a uniform stress
field perpendicularly to the tensile ´III axis, local heterogeneities of the material or
neighbouring fractures are likely to deviate the propagating fracture from a straight path.
What are the stress conditions that push a kink-type or smoothly curved deviation back to a
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straight path. In other words, under what conditions is the straight path of a Mode I fracture
stable or unstable? B. Cotterell and J.R. Rice (1980; Int. J. Fract. 16, pp. 155–169)
analysed the problem by determining the stress intensity factors at the tip of a small kink-
type or smoothly curved crack path extension. The result of the rather intricate analysis is
simple: the straight propagation path under pure Mode I loading is stable, if the difference
between the remote normal stress ´ parallel to the fracture and the remote normal stress

´  perpendicular to the fracture is positive:

|| 0 (5.9)

Note that, compressive stresses are considered positive (contrary to the usage of Coterell
and Rice). If the differential stress is negative, the straight fracture path is unstable.

This result may be understood in a heuristic and qualitative way. First, note that in a
uniform field of principal stresses any (geometrical) cross-section parallel to the inter-

mediate principal stress, and inclined with
respect to the directions of I and III, experi-
ences the shear stress

where is the angle between the trace of the
cross-sectional element in the I, III plane and
the I axis, as illustrated in Fig. 5.13. (A simple
derivation of the formula is given in the
Appendix on Mohr’s stress circle.)

Next, consider in Fig. 5.14A the straight
mode I fracture and the remote principal tensile
stresses ´  = ´  < 0, ´  = 0. The mode I
fracture has propagated by a small kinked ele-

ment, which is no longer under pure mode I loading but, according to Eq. 5.10, is also
affected by the remote shear stress

( / 2) sin 2 ( / 2) sin 2 (5.10a)

which induces dextral shearing along the kinked element, as is schematically indicated in
Fig. 5.14A. In contrast, a remote tensile principal stress ´ ´  < 0 parallel to the
mode I fracture in Fig. 5.14B induces sinistral shearing on the kinked element, while the
remote compressive principal stress ´  > 0 in Fig. 5.14C would induce dextral shearing.
If both normal and parallel principal stresses are acting, the sign of the remote principal
stress difference in Eq. 5.9 decides the sense of the shear on the kinked fracture element.
The shearing sense is dextral (positive) when ´ > 0 and ´ , and thus condition 5.9
is satisfied.

While the stress field near the tip of a mode I crack is symmetrical with respect to
the straight extension of the crack, this is no longer so near the tip of the kinked extension,
since the material is compressed on one side by the shear couple, and extended on the
opposite side (Fig. 5.14D). Therefore, the principal stress trajectories are asymmetrically
distorted in the near-tip region. This is schematically indicated, for the trajectories of the
maximum tensile stress ´III, in Fig. 5.14E. No matter what the exact shape of the
trajectories may be, in principle, the trajectories have to swing around the tip of the

sin 2
2

Fig. 5.13. Principal stresses and shear
stress

(5.10)
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fracture increment as indicated. Figure 5.14F shows the mirror image situation with the
negative deviation angle ; in accordance with Eq. 5.10, the shearing sense on the kinked
fracture increment is now sinsistral (negative).

Although, because of the shear couple, the fracture increment is of a mixed mode
I–II, the propogation of the element will be predominantly controlled by the maximum
tensile stress, and the fracture path will intersect the tensile stress trajectories at right
angles, or nearly so, as indicated by the dotted curves in Fig. 5.14E and F. In both cases,
the propagating fracture is forced to resume the straight propagation path normal to the
remote tensile stress. In other words, the fracture path is stabilised in accordance with
condition 5.9, by the shear couple which is induced by a compressive stress ´ .

Examples of geological settings where this stabilizing condition is fulfilled were
encountered in the previous discussion on systematic jointing in basins and compressional
folding. Tension joints are formed parallel to the long axis of large elongated basins during
the uplift phase, or by high overpressures during or after the subsidence phase. These
longitudinal joints form under strike-parallel compression (pp. 110–112). Similarly, in
folding, vertical cross-joints (i.e., joints orthogonal to the fold axis) may develop prior to
folding while following the direction of greatest compression.

+ shear induced
tangential compression

shear induced
tangential tension

C

A B

D

< 0

> 0

E

parent fracture

stabilising
path
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stabilising
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Fig.5.14. Mode I fracture extended by a kinked element in a field of remote principal
stresses normal and parallel to the parent fracture. The shear stresses induced on the kinked
fracture element and near its tip (A, B, C, D) cause asymmetric distortions of the trajec-
tories of the maximum tensile stress (E, F). If the normal stress parallel to the parent
fracture is compressive, the distortion of the trajectories forces the propagation path back
to the straight extension of the mode I fracture
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Certainly, one may envisage yet other geological settings where tension joints form
under stress conditions in accordance with the Cotterell-Rice condition (Eq. 5.9). Never-
theless, there remain some doubts as to whether the Cotterell-Rice condition does
adequately explain the straightness of very long joints. Note that, the condition was derived
for fractures that have developed independently of other fractures, and not by the
coalescence of fractures that initiated from non-coplanar sources. In fact, one would rather
expect major joints to have formed by the coalescence of shorter fractures that have grown
from nuclei off the plane of the main fracture. Thus, the straightness of major joint traces
still poses some puzzles.

Another factor in promoting the straight propagation of tension joints is most likely
the effective strength anisotropy that may result from residual tensile stresses. We have
argued before, that the uniaxial unloading of a cemented granular material (see Fig. 5.10)
produces tensile stresses in the intergranular cement; the mean orientation of the residual
intergranular tensions being parallel to the direction of unloading. Therefore, when
relieved, these residual stresses constitute a reduction of the tensile strength (or even
represent a tensile stress component) across the macroscopic planes perpendicular to the
unloading direction. Thus, when propagating along such a plane of macroscopic fracture
anisotropy, the tension joint is likely to relieve the residual tensile stresses just ahead of the
fracture tip, and so produce a swarm of intergranular microfractures which are
preferentially aligned parallel to the joint plane. It seems very probable that the micro-
fractures are also most densely arranged along the geometrical continuation of the joint
plane, since the tensile macro-stress is greatest there. Thus, this crack concentration may
act as a “fracture guide” which keeps the path of the growing tension joint within a straight
strip of only a few grains in width.

Summary of multiple joint sets. Joints generally occur in several, differently oriented sets
of parallel or sub-parallel fractures. Although the systems of sets may be quite complex,
they commonly allow a fundamental system of two orthogonal or nearly orthogonal sets to
be discerned, with a set of “systematic” joints striking straight and continuously over larger
distances, and a second set of commonly shorter, “non-systematic” joints whose somewhat
curved traces trend roughly orthogonal to the systematic joints (Fig. 5.1).

The origin of systematic and non-systematic tension joints. The formation of
orthogonal joint sets requires a rotation of the III direction through 90° after the first
(systematic) joint set has formed. This switch in principal stresses is most readily
achieved by biaxial stretching of the layers (Fig. 5.3). If the joints of the first set are
still open (or unhealed) when the joints of the second set are generated, these (non-
systematic) joints will terminate at the systematic joints. If the principal stress axes
were rotated through less than 90°, the non-systematic joints will trend at an acute
angle with respect to the systematic joints which they intersect or abut on, depending
on whether the older joints are healed or still open. In the latter case, the non-
systematic joints terminate by curving to become parallel or orthogonal to the
systematic joints (Fig. 5.5).
Jointing during basin subsidence and uplift. The formation of joint sets in sedimen-
tary basins can only be understood in terms of the stress history. However, a rigorous
(numerical) analysis of the stress history is severely impeded by the uncertainties about
the sedimentation history, the development of the basin geometry and the boundary
stresses, and also by the material laws which govern the inelastic deformation
behaviour (compaction, faulting and folding) of the accumulating sediments. Despite
these impediments, insight into the mechanics of large-scale jointing in basins may be
gained by invoking some reasonable, though fairly drastic, simplifications.
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The analysis considers a “reference model” consisting of a horizontal, mechanically
isotropic layer which subsided during the downwarp of the basin and ascended to the
surface during basin inversion. During the whole process, the overburden surface
remains horizontal and fixed in position by sedimentation and erosion during
subsidence and uplifting of the basin respectively. Noting that during downwarp and
uplift, in reality, most of the deformation is accommodated by folding and faulting at
the basin margin, it is assumed that an inner part of the subsiding or uplifted layer
remains laterally completely constrained, allowing neither layer-parallel extension nor
shortening. During subsidence the material responds inelastically (compaction) to the
increase in effective overburden; the horizontal effective stress ( h

o´) in the subsided
layer is therefore related (Eq. 5.6) to the effective overburden stress v

o´ (= z
o´) by the

empirical Ko factor (< 1). Any superimposed horizontal extension or compression
would reduce or increase the value of this factor respectively. In contrast to subsidence,
the uplifted layer is sufficiently lithified to respond (linear) elastically to the reductions
in overburden weight, pore pressure and geothermal temperature (Eq. 5.3).

For this reference model it was then found: (1) that during subsidence vertical
tension jointing of the laterally completely confined inner parts of the layers is only
possible if the pore fluid is highly overpressured (pp. 110–111, Fig. 5.8A); and (2) that
uplifting cannot give rise to vertical tension joints in layers of intermediate stiff-
ness and tensile strength (p. 107). The suppression of the shortening tendencies of
the Poisson effect and the decline in pore pressure and temperature in the uplifted
layer does not sufficiently reduce the layer-parallel effective compression stress
( h

o´ = Ko. v
o´). Possible exceptions, are very stiff and very weak rocks (p. 108), or

very high geothermal gradients.
Hence, according to the reference model, vertical tension jointing during uplifting

would require a substantial reduction of the layer-parallel compressive pre-stress ( h
o´)

before uplift. This may be accomplished, even without additional tectonic
complications, in large basins, where the curvature of the Earth’s surface causes
subsiding layers to be significantly strained. Considering Price’s model of a large
elongated basin after a central downwarp of 4 km (Fig. 5.7 and the hypothetical basin
section in Fig. 5.7C), it appears likely (p. 109) that the undisturbed inner region of a
subsided layer accumulates a tensile strain along the short basin axis (CD), which
effectively reduces the Ko factor in that direction, while along the long basin axis Ko is
increased by compression. The associated reduction of the horizontal pre-uplift stress
( CD

o´) parallel to the short basin axis may then allow the combined tensile effects of
the suppressed Poisson strain and the decline in pore pressure and temperature to
produce systematic tension joints parallel to the long axis of the basin.

The formation of vertical tension joints parallel to the short basin axis, and thus,
orthogonal to the systematic joints (“cross-joints”), is more difficult to understand.
While the layers in a large elongated basin experience shortening along the long basin
axis during subsidence (Fig. 5.7B), the uplift may reverse the process and impose some
extension parallel to the long axis. Recall, that the reference model predicts layer-
parallel effective tension in very stiff or very weak layers when the uplifted layers
approach the surface. Hence, the additional elastic extension imposed along the long
basin axis by the curvature of the Earth’s surface may suffice to trigger the release of
residual tensile stresses (see below) parallel to the long basin axis. This should allow
cross-joints to be formed long before the layers have approached the surface. Most of
the fracturing work may thereby be performed by the released residual tension.

In contrast to very stiff and very weak layers, uplifted layers of intermediate
stiffness and strength in the reference model remain under lateral compressive effective
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stresses all the way up to the surface. Thus, a set of cross-joints can only form when an
additional uniaxial extension is imposed, for instance, by regional upbending of the
layers.
Residual (locked-in) stresses. Residual stresses in rocks are stresses inside a rock body,
or in parts of it, which remain in equilibrium after all boundary loads have been
removed. A typical example of residual stresses on a meso-scale is a sedimentary
multilayer consisting of alternating weak and stiff layers which are firmly “welded”
together (Fig. 5.9). When, after uplifting, multilayered blocks are cut out of the
sequence and are thus completely unloaded (Fig. 5.9C), layer-parallel normal stresses
of an opposite sign remain locked in adjacent layers by the interlayer bonding.

Higher residual stresses may exist on a microstructural scale. In sedimentary rocks,
they may typically originate from the lithification processes. In a granular material,
boundary loads are transmitted through a framework of load carrying grain bridges
(Fig. 5.10). If, after cementation of the grain contacts and hardening of the cement, the
indurated rock is unloaded, the extension of the granular framework is hindered by the
cementing material, which is thereby put under tension (Fig. 5.10C). These locked-in
intergranular tensile stresses constitute a reduction in the effective tensile strength of
the rock.

Applied to subsidence and uplifting of an elongated basin, this means that the
subsiding sediments are indurated by cementation while being compressed parallel to
the long basin axis. As the compression is reversed into extension during a subsequent
uplift, tensile stresses are initiated in the cementing material, which facilitate the
formation of layer-normal joints parallel to the short basin axis.
Fundamental joint systems in compressive folds consist of bed-normal tension joints
which are (sub-) parallel and (sub-)normal to the fold hinge (line of maximum
curvature). Hinge-parallel tension joints (longitudinal joints) are caused by the
extension along hinge-normal arcs (Fig. 5.12B) and/or by the relief of residual stresses
in the cementing material of compressed foreland sediments. As in the aforementioned
basin uplift, the residual tensile stresses are initiated in the cementing material during
the transition from compression to extension (p. 119), and are therefore parallel to the
direction of the pre-folding compression.

Hinge-normal (cross-fold) tension joints seem to be the result of several factors:
Firstly, suppression of the elastic anticlastic bending (Fig. 5.12) which implies a tensile
Poisson stress parallel to the hinge line. But this stress alone is too small to produce
cross-fold joints. So it may be, secondly, supplemented by tension due to the hinge line
curvature of periclinal (“whale-back” shaped) folds. And thirdly, regional sets of
tension joints which strike roughly at right angles to the fold axes may already have
been formed in the flat-lying foreland sediments of arcuate fold and thrust belts (p. 88,
Fig. 4.26), by horizontal tensile stresses normal to the direction of the greatest
horizontal compression.
The straightness of systematic joints. Straightness of tension fractures has been
ascribed to a stabilizing shear couple induced by a compressive stress in the direction
of fracture propagation (Fig. 5.14). Very likely, the fracture path may also be stabilized
by an effective strength anisotropy caused by residual tensile stresses. Eventually,
some straight joints of an alleged tension character might, on closer examination, turn
out to be shear joints a quite different joint type which is the topic of the next chapter.
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Fig. 6.1. Beds of Namurian fold limbs with two non-orthogonal, continuous fracture sets
(“Fisherstreet” Bay, Irish West coast); tension joints or conjugate shear planes?

Shear Joints

In the introductory Chapt. 1, a joint was defined as an approximately planar fracture that
was formed without visible movement parallel to its plane; in contrast, a fault is a fracture
or fracture zone that was formed by shear displacements which are still clearly visible.
This purely phenomenological distinction hinges on the term “visible” which, un-
fortunately depends on the scale of observation. Thus, a joint may be a tension or a
cleavage (extension) fracture, as discussed in Chapt. 2, where the relative displacement of
the fracture walls is normal to the fracture plane, or it could be a shear fracture with a shear
displacement of the fracture walls that is “invisible” at the scale of observation. Such shear
fractures are commonly referred to as “shear joints”. They are to be distinguished from
tension fractures that have experienced shearing at a later stage.

“Shear joints” vs. tension joints and faults. In the field, it may be extremely difficult to
clearly identify fractures as shear joints. For example, Fig. 6.1 shows two non-orthogonal,
continuous sets of discontinuities that cut perpendicularly across the bedding of a straight
fold limb. Are these fractures shear joints or tension joints? (The same question might be
raised with respect to the two non-orthogonal sets of systematic joints in Fig. 4.8.) Why is
this question important? Simply, because from a mechanical point of view, the two kinds
of features are completely different, since they are generated by different stress systems,
and thus, possibly associated with different tectonic episodes. The alternative stress
systems are illustrated in Fig. 6.2.

Although a systematic shear displacement on the discontinuities of Fig. 6.1 is not
obvious we can speculate that the discontinuities originated as conjugate shear planes, as
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Fig. 6.2. Alternative mechanical interpretations of the fracture sets in Fig. 6.1.
A) Block diagram of wrench-type conjugate shear planes with - and -directions in
bed-ding plane; -direction bisecting the acute angle between the shear planes;
B) Mohr diagram of bedding-parallel effective stresses ( ´ ´ > 0, compressive)
associated with A); C) Block diagram of a single set of tension joints with bed-parallel
principal tensile stress ´ normal to fracture planes; D) Mohr diagram of bed-parallel
stresses associated with C)

A

´
´

C

´

´

´

´
To

´= 0

B D

´´

o

I III

2
I III

2
.sin

o cos

Coulomb-Mohr
limit condition

sketched in Fig. 6.2A. In favour of this interpretation we hold that the two sets are straight,
equally well developed, and have evidently been formed simultaneously. It further seems,
that the sediments were only weakly consolidated at the time of folding, which makes
tensile fracturing less likely. But most importantly, the acute angle between the two sets of
planar discontinuities is bisected by a line which could very well coincide with the
direction of the maximum principal stress  during compressive folding. The principal
effective stresses would then be compressive (positive) as indicated in Mohr diagram B).

In principle, ´ could also be slightly tensile; but this would imply hybrid
“extension-shear” fractures (see Fig. 1.8C, and G. Mandl, FBR, pp. 94–95) which,
however, would likely have a rougher and less continuous appearance than seen at the
location of Fig. 6.1. Further notice, that in Fig. 6.2A  acts parallel to the bedding plane,
indicating zero friction on the bedding plane. Although bedding plane friction in flexural
slip folding may be very low, commonly due to high pore pressures, it will generally cause
the direction of to be inclined towards the bedding plane at a certain angle; thus, both
the - and -axes are rotated through this angle around the bedding-parallel -axis.
Therefore, the -axis is no longer normal to the bedding; and since the intersection line of
two conjugate shear planes is parallel to the direction of the intermediate principal stress
(see e.g. G. Mandl, FBR, Fig. 6.67), the intersections of the conjugate shear planes on the
fold limb should deviate from the bedding normal. The deviation should be in the co-
rotational sense with the bedding plane slip. Although, regrettably, this feature was not
inspected at the location of Fig. 6.1, it should prove to be an important indicator of
conjugate shear joints.

Nevertheless, we cannot be sure that the fractures in Fig. 6.1 are shear joints,
although more elaborate constructions of biaxial or two-phase straining would be required
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Fig. 6.3. Family of sigmoidal shear surfaces connecting two parallel gliding horizons of
dextral overthrusting in turbidites. Slip surfaces quartz-coated and slickensided. (Wide-
mouth Bay, North Cornwall, England)

to explain the two non-orthogonal sets of discontinuities as (“systematic”) tension joints.
Assuming that the sediments were sufficiently consolidated to attain any tensile strength at
all, the reader should be reminded of several prerequisites for the formation of two non-
orthogonal sets of systematic tension joints: (1) contrary to conjugate shear joints, the two
sets of tension joints can only be formed in succession; (2) the first set must have acquired
sufficient shearing strength to allow the straight intersection by the younger set (see the
summary on p. 54); (3) while orthogonal sets of tension joints may be generated by biaxial
extension with an interchange of the roles of ´ and ´, without rotation of the principal
axes (see p. 102, Fig. 5.3), non-orthogonality would require a rotation of the principal axes
around the ´ axis, either in addition to the switch between ´ and ´, or as rotation of
the principal axes through the whole angle between the two joint sets.

In compressional folding, the last condition could be fulfilled in at least two ways:
first, by a combined flexural and torsional deformation of the layers (p. 103, Fig. 5.4) when
the first set is healed before the second set is formed by the progressing deformation.
Secondly, the first set has already been formed (and healed) in the flat-lying foreland
sediments of an arcuate fold and thrust belt (p. 88, Fig. 4.26) parallel to the compression
direction of later folding, and the second set is formed parallel to the fold axis during later
folding. As the directions of the regional compression and the fold axes may deviate from
strict orthogonality, the two joint sets may be non-orthogonal (see also the anticlinal joint
sets in Fig. 1.6, p. 3). In any case, the tension joint interpretation of two sets of
discontinuities as shown in Fig. 6.1, requires that at least one set of discontinuities exhibits
clear evidence of being healed in the past.

We may be more certain about the mechanical character of the fractures in Fig. 6.3.
The family of sigmoidal fractures form a duplex structure connecting two parallel gliding
horizons of a right lateral overthrust. Although shear displacement is hardly visible, closer
inspection shows slickensiding on the fracture surfaces. The structure is typical of the
upstepping of bedding-plane thrusts along secondary shears. (Various mechanical aspects
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of the process were discussed in G. Mandl, 1988 (1993), Mechanics of Tectonic Faulting,
Elsevier; henceforth referred to as MTF, see Sect. I.5.3.) Observations in the field and the
mechanical analysis strongly suggest that the fractures were generated as shear fractures
rather than tension fractures which were sheared later.

Although, as indicated by the last example, in some field cases fractures may be
clearly identified as shear fractures, much more often it will be impossible to decide
between tension or extension (cleavage) joints, and shear joints, and to draw conclusions
regarding the nature of the causative stress system.

The concept of shear joints was criticized as “sheer nonsense” in an excellent
review article by David Pollard and Atilla Aydin (1988; Geol. Soc. Am. Bull. 100,
pp. 1181–1204), because by combining “shear” and “joint” the concept mixes fracture
types of quite different mechanical origin. The authors argue, that a fracture generated in a
shearing mode should be called a “fault”, and the term “joint” should be restricted to
fractures with field evidence for dominantly opening displacements. If the history of
relative displacements and the fracture modes involved are uncertain, the observed
discontinuities should be simple referred to as “fractures”.

Despite the logic in this argument, we shall adhere to the term “shear joint” for
three reasons: first, a tectonic fault is a narrow shear band, generally produced by shear
concentration in a damage zone, rather than developed by the growth of a single shear
fracture (see G. Mandl, FBR, Sect. 3.4). Further, an important attribute of faulting is the
reduction in shear strength of the fault material by the shearing process. Hence, we use the
term “shear joint”  to distinguish a single shear fracture from a proper fault. Secondly,
following N.J. Price (N.J. Price and J.W. Cosgrove (1990) loc.cit.) we also apply the term
to shear bands whose aspect ratio, i.e. the ratio of the maximum shear displacement to the
total length of the shear zone, is a hundred or thousand times smaller than the aspect ratio
commonly estimated for tectonic faults of a wide range in length. Thirdly, we consider
shear bands as shear joints, if they formed at a “pre-peak” state of stress of the sheared
frictional material, as indicated in Fig. 6.4, and further shearing stopped before the
maximum shear stress could pass the peak value. Therefore, shear zones of this kind lack
the characteristic softening of true faults. Although shear bands of still hardening material
are rather unconventional in geology, we consider them of great practical importance, and
shall elaborate on their mechanical genesis at the end of this chapter.

Fig. 6.4. Shear strain response
of material elements under con-
stant effective mean stress. Pre-
peak shear banding under plane
strain conditions in the harden-
ing range (see further discus-
sion at the end of this chapter)
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Origins of shear joints. In any case, shear fractures or shear bands are considered as shear
joints, regardless of their origin, if they did not develop into faults sensu-stricto. Then, our
main problem is to explain why the shearing processes failed to develop shear
discontinuities into proper faults. Probably the most important reason for the early arrest of
shear displacement is the stress drop associated with the formation of a brittle fracture or
shear band. In a cohesive brittle rock, only a very small shear displacement is needed to
break the cohesive bonds between fracture walls or inside an embryonic shear band,
thereby reducing the shear resistance of the fracture or the shear band. Similarly, the shear
resistance of shear bands in loose material is reduced by dilatancy, grain breakage, or the
reorientation of grains, etc. This causes the differential stress in the surrounding area of the
shear fracture or shear band to drop below the critical level necessary for the fracture or
shear band to develop further. Hence, the differential stress would have to be built up again
to allow shear fractures and shear bands to grow in length and shear displacement. The
situation is similar to seismic faulting, where after every slip event the differential stress is
built up again by the ongoing tectonic deformation. If after a first slip event the unloading
is not undone, no further slip will occur.

This is, in particular, the case when compressional residual stresses are unloaded by
a single slip event. Such residual stresses may have quite different origins, as was dis-
cussed in the section on “Locked-in” or “residual” stresses in the preceding chapter
(pp. 113–117, 124). For instance, the uplifting of sedimentary basins leaves horizontal
compressive stresses locked-in in near-surface layers.

In other cases, a switch of principal stresses may cause shear jointing. Such a tectonic
situation is sketched in Fig. 6.5A, showing, in plan view, a horizontal layer that is com-
pressed by the horizontal stress ´hl (= ´I). The layer is laterally confined and assumed to lie
on a lubricating substratum. Because of the lateral constraints, a transverse horizontal com-
pressive stress ´h2 is induced by ´h1, which may be considerably greater than the overbur-
den stress ´v, as stated in the Mohr diagram of Fig. 6.5A´. When the horizontal compression
by ´h1 is relaxed, ´h2 remains “locked-in” (Fig. 6.5B), and a new state of stress is estab-
lished, as indicated by the shaded stress circle in Fig. 6.5B´. The new state of transverse com-
pression could be released by shear joints of the strike-slip type, as sketched in Fig. 6.5B.

ss

Fig. 6.5. Strike-slip shears
induced in laterally confined
horizontal layers when the
original thrust force (A) is
relaxed and the roles of prin-
cipal stresses are changed (B)

Another mechanism that
may produce shear joints rather
than faults is associated with
the “bookshelf” mechanism
(see G. Mandl, FBR, Sect. 6.4).
We consider the “domino”-
style rotation of antithetic
Coulomb shears in a layer
under direct shear, as sketched
in Fig. 6.6A. The flattening of
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Fig. 6.6. Domino-style rotation of en-échelon shears:
A) Rotation of parallel antithetics by external dextral shear; B) state of a rock slice after
rigid-body rotation through angle , and extension of the fractured layer; C) rotational slip

s and aspect ratio s/s

the shear fractures is accompanied by thinning and extension of the sheared layer, as
indicated in Fig. 6.6B. In Fig. 6.6C the slip s on the rotating fractures is determined and
related to the fracture length s, which leads to an extremely simple formula for the aspect
ratio s/s as a function of the initial inclination angle  the rotation angle , and the ratio
of the thickness of the rock slices t and the layer thickness H.

The domino-style formation and collective rotation f parallel shear fractures in a
layer under direct shear can only operate as long as the layer-parallel normal stress ´||is
smaller than the normal stress ´  on the layer boundaries (again see G. Mandl, FBR,
Sect. 6.4). If, however, the extension of the layer during the collective rotation of the rock
slices is impeded by lateral boundaries, the layer-parallel normal stress ´|| will rise rapidly
and stop the rotational process, even though the driving shear stress is maintained, or even
increased. As mentioned before, an early arrest of the rotation may result in the formation
of shear joints rather than faults. This is expressed, in more quantitative terms, by means of
the formulae in Fig. 6.6. Let us assume, for example, that the parallel fractures are initially
inclined at  = 60°, and the confinement of the brittle layer permits an extension of not
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Fig. 6.7. Conceptual échelon arrays of strike-slip shear joints (or faults) in a large horizon-
tal sheet of brittle rock under uniform horizontal shortening and extension. Step-over of
shear planes to the receding side ( ) are indicated by the insert A

more than, say, 0.5%. The extension formula in Fig. 6.6B then predicts a maximum
rotation  = 0.5°, with a maximum aspect ration s/s = 0.01.t/H. Since the length of the
fractures transecting the layer is s = 1.15H, the rotational slip s on the fractures is about
1% of the thickness of the joint-bounded slices (fracture spacing) t. This illustrates the
difficulty one may face in distinguishing shear joints from tension or extension joints in en-
échelon arrays of relatively densely packed fractures.

Échelon arrays of strike-slip joints are not only produced by the shearing displace-
ment of stronger and stiffer boundary rocks, such as the wall rocks of faults, overriding
thrust sheets or lateral graben boundaries, but may also be generated in a stationary field of
horizontal principal stresses I and III. Consider, in Fig. 6.7, a large sheet of strong and
brittle rock loaded by an overburden and resting on a weaker substratum. The layers are
uniformly shortened in one horizontal direction and extended in the direction perpendicular
to it, allowing horizontal principal stresses I and III to develop in the brittle layer. As the
uniform deformation continues, the principal stresses approach a critical level in the brittle
sheet, and shear fractures start forming at randomly distributed flaws or other material
heterogeneities. Since the principal directions are constant throughout the brittle layer, at
least on a scale that is large relative to the dimensions of material heterogeneities, the
fractures develop into vertical strike-slip planes of conjugate orientations associated with
the I direction. Such shear planes may be arranged into en-échelon arrays by the
interaction of several mechanisms which mainly result from the interference of the local
stress fields of neighbouring fractures (for an exploratory account see G. Mandl, FBR,
pp. 403–404).

A point of special interest, is the sense of the échelon arrangement of shear
fractures, i.e. the sense of the step-over from fracture to fracture. In frictional materials, the
near-tip stress field of shear fractures is asymmetric with respect to the fracture plane and
first attains the critical state for shear failure at the receding sides ( ) of the fractures.
Therefore, in en échelon arranged (Andersonian) strike-slip fractures, the direction of the
step-over should depend on the sense of slip on the individual fractures: right lateral (or
left-lateral) shear joints should step to the right (or left) side, as shown in Fig. 6.7.

weak substratum

strong brittle rock

1

+ 2

A
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Fig. 6.8. Regional tilting imposing ver-
tical simple shear on an undisturbed
layer

Yet another interesting mechanism was proposed by N. J. Price (see N.J. Price and
J.W. Cosgrove (1990) loc.cit., pp. 227–238) to explain the occurrence of large regional
joint sets in tectonically undisturbed sediments. Consider, in Fig. 6.8 an undisturbed
horizontal sediment sequence which is gently tilted. In the figure, it is assumed that the

tilting is caused by a set of normal basement
faults, while more ductile interlayers prevent
the basement faults from printing through into
the overburden. One can also envisage the
tilting of the sediment layers by the gradual
thinning of ductile substrata in unidirectional
flow (substratal squeeze flow). In any case, the
tilting imposes a vertical simple shear, as
indicated in Fig. 6.8.

We assume that prior to tilting the over-
burden stress is the maximum principal stress

´° as indicated in Fig. 6.9A for the vertical
section through the axis of ´°. The value of

´° in the Mohr diagram of Fig. 6.9A´ is
chosen for a layer with normal fluid pressure
under 2 km overburden, and the tectonically
undisturbed effective stress ´° = Ko. ´° =
0.4. ´°. Following N.J. Price, we assume that
the layer-normal and layer-parallel normal

stresses are not changed when a vertical simple shear  (Fig. 6.9B) is superimposed.
Thus, the stress components on a layer-parallel section are ´° and  as shown in the
Mohr diagram of Fig. 6.9B´. As  increases the stress circle expands concentrically until
it touches the limit lines. The orientation of the new maximum principal stress ´ and
the directions of the potential shear planes are determined by the pole method (see
the Appendix on the Mohr circle). Notice that the trace of one of the shear planes
in Fig. 6.9B´ is almost vertical. The stresses on this shear plane are the coordinates

´ *, * of the tangent point on the lower limit line, which therefore satisfy the condition
| *| – o = ´ *.tan .

It is important to note that the normal effective stress ´ * on the subvertical shear
planes at 2 km depth is about 14 MPa. Hence, the shear planes are firmly closed, and
opening of the fractures would require a rise in pore pressure of at least 20 MPa. In
contrast, when interpreted as tension joints, the fractures would have acted, or may still do
so, as preferential conduits for fluid migration. This illustrates the practical importance of
distinguishing between joints and shear joints.

It is interesting, and perhaps surprising, that the required tilt angle is very small.
This can be demonstrated by a simple estimation. Because ´ * and * differ relatively
little from ´°III and , respectively, we approximate the limit condition of the near-vertical
shear plane by

o
III I

o
o o. tan . . tanK (6.1)

We further assume a predominantly elastic behaviour of the sedimentary rocks during
tilting – an assumption that appears justified if the sediments are well consolidated and the
shear angle remains of the order of tenths of a degree. The imposed shear stress 
(Fig. 6.9B) is then related to the shear angle  by  = /G, where G is the elastic shear
modulus. From Eq. 6.1, we then obtain the following estimate of the shear angle
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Fig. 6.9. Vertical simple shear imposed on a layer initially under vertical maximum
compressive stress ( ´°). A) Vertical cross section of the unit element in initial state, with
corresponding Mohr diagram A´. B) Superimposed vertical simple shear , and Mohr
diagram B´ of the resulting state of stress with pole construction of potential shear planes
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G G
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Let us assume that the sedimentary rock has the shear modulus G = 104 MPa. Then,
with Ko = 0.4,  = 30°, o = 5 MPa, the above expression predicts the extremely small tilt
angle  1.2 x 10–3 rad, i.e. 0.07°. Accommodation of this tilt angle by parallel vertical
shear planes with separation d would require an average slip s  10–3.d on each plane. In
reality, the displacements on the shear planes may be even smaller, such as when a
proportion of the vertical shear is accommodated by continuous deformation.

Regarding the extreme smallness of the tilt angle, N.J. Price considered it very
likely that most sediments experience several periods of tilting in different directions. If the
tilt axes differ sufficiently in direction, several sets of differently striking subvertical shear
joints could develop.

Furthermore, it is obvious from the construction in Fig. 6.9B´, that changing the
material parameters o, G, Ko affects the dip angle of the steep shear plane, and the value
of the necessary vertical shear stress . The reader may easily verify, for instance, that
increasing  from 30° to 35°, while leaving all other parameters and the initial state
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of stress unchanged, would imply that  has to be raised from 11.8 MPa to 13.4 MPa, and
the steep shear planes would become vertical. Hence, to generate these shear planes, the tilt
angle has to be increased slightly. The influence of the effective overburden load on the
value of  is more important: if, for instance, the layer considered in Fig. 6.9 is buried
under 4 km of overburden ( ´°I = 60 MPa) instead of 2 km,  would have to attain 18 MPa,
and the steep shear plane would dip at 81.5°.

The increase in shear stress  with depth does not necessarily require a proportional
increase in tilt or shear angle  (= /G), since one may expect the elastic shear modulus G
to increase as the material gains in stiffness under higher effective overburden stress.
Nevertheless, one should expect a tendency in the process of sub-vertical shear jointing to
progress from near-surface layers to greater depth as the tilt angle is increased.

As we have seen, the dip angle of the steep joints is not only affected by the effective
overburden, but also by the material parameters , o, G, Ko. Although the variation in the
dip angle will hardly exceed a few degrees, it may cause kinks or “facets” in the sub-
vertical joint plane, which, as suggested by N.J. Price, may be diagnostic features of
vertical-shear joints.

Pre-peak shear bands. So far we have considered shear joints which, although initiated
by the same stress conditions as faults, got stuck in an embryonic state of development,
since the differential stresses were not restored after the drop caused by the softening of the
shear band material. From these “embryonic” faults, we now turn to the completely
different type of shear joints that are formed while the sheared material is still in the
hardening state; that is, where the shear resistance of the intrinsic material still rises with
further shearing (Fig. 6.4). Such a “pre-peak” shear localization is an uncommon concept
in geology, where shear concentration in a uniform material is usually attributed to local
strain softening of the material, and/or to inhomogeneous boundary conditions promoting
inhomogeneous deformations. It is indeed quite plausible that shearing in the deforming
rock begins to concentrate at a place where a slight inhomogeneity of the material, or of
the stress field, promotes an early decrease in local shear resistance, and allows shearing to
progress with ever greater facility, while the surrounding material may still be hardening.
But it is not plausible at all, that shear bands can form while the frictional material is still
hardening everywhere, and we therefore have to take a critical look at the available
evidence of “pre-peak” shear localization in frictional materials.

Since it is practically impossible to decide whether a shear band in the field has
formed before or after the loading peak, primarily one will look for experimental evidence.
It is indeed not difficult to find cases reported in the literature on biaxial or triaxial rock
testing where shear bands or shear fractures have appeared before the differential boundary
stress had attained the limit which the rock specimen could withstand. However, for
several reasons, it is difficult to draw firm conclusions from these observations. First of all,
the development of a shear band causes a macroscopic inhomogeneity in the mechanical
properties of an initially homogeneous and uniformly stressed specimen, accompanied by a
redistribution of the stresses. The material then no longer deforms as a homogeneous
continuum, and the measured boundary stress-strain response need no longer represent the
stress-strain behaviour of the intrinsic material. In other words, the stress-strain curve of
the shear zone material will separate from that of the specimen as a whole, which is called
the system. We have to add, however, that the point of separation on the loading path
cannot be very accurately determined, since the shear bands develop rather gradually.
Moreover, experiments also indicate that the shear concentration first occurs in separate
patches which subsequently connect into a continuous band.
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It is therefore clear, that only under very special testing conditions can one decide
whether the material of a shear band, that forms prior to the peak of the differential
boundary stress on the rock specimen, is in a softening state or still hardening. A suitable
test, indicated in Fig. 6.10A, is the plane strain uniaxial compression of a perfectly
homogeneous rectangular sample, which is confined between lubricated front and back
walls, and loaded axially via well-lubricated end platens, and laterally loaded by a constant
fluid pressure p. Consider then, in Fig. 6.10B, a shear band that asymmetrically intersects
the sample, without terminating at the loading platens. If the development of this band
requires an increase in the vertical boundary stress, the shear-band material is obviously
still in a hardening state, since softening of the asymmetric shear band (i.e. post-peak state
on the material stress-strain curve) would cause a drop of the load-bearing capacity of the
system. By contrast, such a conclusion could not be drawn if shear bands developed in a
symmetric fashion, as sketched in Fig. 6.10C. It would seem possible that, even if the shear
bands are softening, the internal stress field, and, in particular, the I directions, may be
redistributed so as to support a further raise of the external load.

Experiments of the type shown in Fig. 6.10B were carried out with sand, by
Tatsuaoka, Nakamura, Huang and Tani (1990; Soils and Foundations 30, No. 1), and very
carefully analyzed. It was found that a continuous shear band developed asymmetrically
across the sample before the uniaxial load reached its peak. Regrettably, similar plane
strain experiments on hard rocks have not yet been performed. Therefore, instead of
relying on more direct evidence for the existence of hardening shear joints, we have to
content ourselves with circumstantial evidence.

An observation in support of the formation of hardening shear bands was made in a
model experiment with dry sand, instigated by the author at Shell Research (1984–1985),
to study processes of faulting by X-ray computer imagery. Figure 6.11 shows two X-ray
tomography scans of a vertical section through a sandpack on a horizontal base which
consists of two wooden plates covered by a rubber sheet. The sheet was glued to the plates,
except for a central strip that was left free, and could be uniformly stretched parallel to the
plane of the section in the figure, by pulling the base plates apart. The sand pack in
Fig. 6.11A shows an extension of the rubber strip of 5%, at which the adjacent grains
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Fig. 6.10. Rectangular rock sample in uniaxial plane strain compression:
A) before shear localisation; B), C) incipience of shear banding
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experienced a relative displacement of only about 5% of the average diameter of the grains
used in the experiment. Although higher up in the sand pack the grain displacement was
even less, the dilatancy concentration was already clearly visible. In Fig. 6.11B, the
extension of the basal strip is 10%, and the photograph shows two darker zones, indicating
increased dilatancy in these zones, since the X-rays are absorbed less where the pore space
is increased. The photographs give an indication of the extreme sensitivity of the method in
detecting early dilatancy concentration.

Inside each dilatancy zone in Fig. 6.11B, dilatation has already concentrated into
several closely spaced, parallel shear bands. The important point now, is that the inelastic
volume strain p = Vp/V which accompanies the shearing of a frictional material begins
long before the differential stress ( ´ ´III)/2 reaches its peak (cf. Fig. 6.4). In granular
materials under moderate effective load, the inelastic shear deformation proceeds by
loosening the interlocking of densely packed grains, and thereby increasing the inter-
granular pore space, by intergranular slippage, and reorientation of load-carrying grain
contacts (see e.g., Fig. 5.10, p. 116). Up to a certain state of dilation of a volume element,
the operation of these micro-processes requires an increase in load on the volume element,
which implies that the material is hardening while dilating. Only when the loosening of the
granular aggregate has reached a point where the collapses of load-carrying grain bridges
outnumber the new formations, does the material start to soften while continuing to dilate,
though at a decreasing rate (d p/d , relative to the shear strain . We may therefore safely
conclude, that the dilatations in Fig. 6.11, and the early dilatation observed in similar
CT-experiments, took place prior to peak stress of the granular material. Consequently, the
shear bands that formed during the early dilatation period are also very likely pre-peak
phenomena. We further draw attention to the fact, that not all shear bands in Fig. 6.11 have
a similar density, but that in one pair of conjugate shear bands at least, the dilatation has
proceeded further. These bands might be seen as precursors of a selective development of
pre-peak shear bands into true faults.

Shear dilatancy is a common feature of shear zones throughout the brittle crust of
the Earth. But, of course, the dilational processes in strong brittle rocks are quite different
from those in loose granular materials, and mainly involve the formation and growth of
micro-fractures. These differences in the deformation mechanisms at the microscale raise
the crucial question: Do shear bands of the type in Fig. 6.10B form while the rock is still
hardening throughout?

Fig. 6.11. Incipience of shear bands in a broad zone of dilated material: X-ray tomo-
graphy image of sand pack section after 5% (A) and 10% (B) horizontal extension of a
central strip of the rubber base, as schematically illustrated in (C)
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In answering this question, we anticipate a result of the theory of shear banding, to
which we shall turn a little later, which states that pre-peak shear-banding requires plane or
nearly-plane strain conditions. Hence, on theoretical grounds, pre-peak shear-banding (of
the type in Fig. 6.10B) is not to be expected under the axially-symmetrical loading
conditions that are commonly applied in rock-mechanical laboratories. Thus, the experi-
mental verification of the theoretical result would require plane strain experiments on hard
rocks, which would visualize, or otherwise record, the appearance of asymmetric shear
bands. (Actually, it would be sufficient to load cuboidal specimens in a true triaxial
apparatus, and to inspect the shear concentration in the mid-plane of the sample parallel to
the I and III-axes, which for symmetry reasons is under plane strain.) Since, regrettably,
such data are not yet available, we have to rely on theoretical analyses, which indeed
provide the strongest arguments for a pre-peak formation of shear bands.

Various authors have undertaken computer simulations of shear-banding in
frictional (Coulomb-type) materials. Despite the differences in numerical techniques, and
in the refinement of approximating the material behaviour, all simulations are based, in one
way or another, on the theory of elastic/frictional plastic materials. Here is not the place to
indulge in the theory (for a detailed presentation see G. Mandl, FBR, Sect. 9.2; or MTF,
II.7), but we should at least reiterate the three basic constituents of the theory. These are
(1) the stress equations of static or dynamic equilibrium (i.e. including inertial forces);
(2) the yield condition which must be satisfied by the stresses during plastic deformation
(i.e. a Coulomb-Mohr-type limit condition with varying strength parameters  and o); and
(3) the elastic/plastic flow rules that connect increments of stresses and strains. Plastic
hardening and softening is accounted for in the yield condition by strain dependent
changes in the strength parameters and o, which include the hardening and softening
effects of shear dilatancy. The volumetric changes by shear dilatancy are accounted for in
the flow rules by introducing a “dilatancy factor” defined as the increment of volumetric
plastic strain p (> 0) divided by the corresponding increment of the maximum plastic
shear strain p

max.
In a series of numerical experiments, P. Cundall (1990; in: H.P. Rossmanith (ed.)

Mechanics of Jointed and Faulted Rocks, Balkema, pp. 11–18) simulated graben faults that
were observed in sandbox experiments by W.T. Horsfield (in G. Mandl, MTF, Fig. I.2-23)
where plane strain conditions were fairly well approximated. Figure 6.12A,B shows an
intermediate state in the development of a typical crestal collapse graben produced in the
sandbox by the post-sedimentary tilting of a “basement” block. The numerical simulation
was carried out with the large-strain, finite difference program FLAC 2.3, developed by
Cundall himself. Figure 6.12C,D gives two representative results in the form of contour
plots of the maximum shear strain-rate. Each contour bundle defines a shear band.

The computational results are remarkable for several reasons: first, the
elastic/frictional plastic model of the cohesionless material was rigorously simplified by
assuming zero dilatancy ( p = 0) and by letting the plastic deformation (“yield”) in the
simulation of Fig. 6.12C start and proceed at a constant friction angle  = 40°. Thus, shear
softening was completely excluded, and the yield condition was identical to the Coulomb-
Mohr limit condition. Surprisingly, shear bands did form, despite the perfect-plastic
behaviour (i.e. without hardening and softening). However, because of the lack of
softening, the shear bands do not represent faults, but shear joints. In contrast to this, the
shear bands in Fig. 6.12D formed during weak strain-softening of the yielding material,
whereby decreased linearly from 40° to 35° over an accumulated plastic strain of 10%.
Since the shear bands have a slightly smaller shear strength than the adjacent material, they
represent genuine faults, which are fewer in number than the non-softened shear bands,
and similar to the faults observed in the sandbox.
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One may further note that the shear joints in the non-softening material are more or
less straight, while curvature is associated with strain-softening. According to Cundall, the
shear bands start near the free surface, where, due to the greater extension, yielding begins.
The initial fault is “locked in” by shear-softening and rotated with the bending layers,
while the fault grows downwards towards the hinge in the basement.

The initial stress field in the sediment cover of Fig. 6.12 is non-uniformly changed
by the tilting of the basement block, and the perturbation is concentrated in a region above
the basement hinge, wherein plastic deformation begins and leads to the formation of shear
bands. Although, undoubtedly, stress concentrations can trigger the shear concentration
into shear bands, it is important to note that shear bands have also been generated
numerically in a completely homogeneous set up. In an interesting paper, A.N.B. Poliakov,
H.J. Herrmann, Y.Y. Podladchikov and St. Roux (1994; Fractals 2, No. 4, pp. 567–581,
especially Fig. 3) report shear-band simulations by Cundall’s FLAC code, whereby pure
shear was applied to a square sample of the same homogeneous non-softening material as

Fig. 6.12. Graben formation by post-sedimentary tilting of a “basement” block, simulated
by sandbox experiment and numerical analyses:
A) Photograph of an intermediate stage of graben formation in a sandbox with the left-
hand “basement” block tilted towards left.
B) Sketch based on stereo viewing of photos showing active faults (W.T. Horsfield, Shell
Research, 1978);
C and D) Numerical large-strain analyses of elastic/frictional plastic deformation under
sandbox boundary kinematics by P.A. Cundall (1990, Numerical modelling of jointed and
faulted rock; in: H.P. Rossmanith (ed.) Mechanics of Jointed and Faulted Rocks, Balkema,
pp. 11–18).
The bundling of contours of maximum shear strain increments during a deformation step is
clear evidence of shear band formation (see text)

A B

C D
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used by Cundall in Fig. 6.12C. The calculated shear bands, shown in Fig. 6.13, form a
network of conjugate bands, reminiscent of real geological structures. In this simulation
study, the shear bands were not triggered by the boundary geometry, material inhomo-
geneities, or stress concentrations, but by computational round-off errors.

Fig. 6.13. Network of shear bands produced by
computer simulation (FLAC-type technique) by
A.N.B. Poliakov, H.J. Herrmann, Y.Y. Podladchi-
kov and St. Roux (1994; Fractals 2, No. 4,
pp. 567–581). Simulation of pure shearing of a
two-dimensional pressure-dependent elasto-plastic
medium under confining pressure; the material
was non-dilating; and the shear bands in the figure
accommodate the accumulated plastic strain after
104 time steps

So far, we have mentioned shear-band simulations in non-softening materials which
also did not harden. Next, we will refer to the finite element analysis of shear-band
formation in a hardening, non-softening frictional material by Y. Leroy and M. Ortiz
(1990; Int. J. Numerical and Analytical Methods, Geomechanics 14, pp. 93–124, see
Fig. 10). A rectangular sample of the non-softening and non-dilating ( p = 0) material was
subject to plane strain uniaxial compression (Fig. 6.10A). The friction angle  was
assumed to increase monotonically (hardening parameter) from 10° to 20° as a function of
the plastic strain. A softer element (  = 17°) at the center of the specimen served as a
material imperfection, from which two conjugate shear bands propagated as the axial
boundary displacement was raised sufficiently.

It is gratifying that this numerical result is in accordance with a condition for the
earliest incipience of shear banding that was derived analytically in the classical paper by
J.W. Rudnicki and J.R. Rice (1975; J. Mech. Phys. Solids 23, pp. 371–394). The elastic/
frictional plastic material is unconstrained, homogeneous, dilating, strain hardening and
softening, and initially homogeneously deformed and uniformly stressed. It is subjected to
a quasi-static continuation of the deformation that could give rise to a homogeneous field
of strain rates. That is, a homogeneous field of strain rates would be compatible with the
equilibrium equations, yield condition, and the elastic-plastic flow rules. However, the
analysis reveals that, at a critical state of plastic straining, a highly inhomogeneous field of
localized shear rates also becomes possible. In other words, the solution to the continuum
mechanical problem bifurcates from a homogeneous deformation into a highly concent-
rated shear band mode. The critical state of the first possible shear band formation
corresponds with a critical value of the plastic hardening modulus, which in simple shear
would play the same role as the shear modulus G in elastic simple shear. This is illustrated
in Fig. 6.14, which shows a schematic shear stress vs. shear strain curve at constant
hydrostatic stress, and the relationship between the tangent modulus htan, the plastic
hardening modulus hpl, and the elastic shear modulus G. If the material is still in a
hardening state (i.e. pre-peak), the plastic hardening modulus is positive; it vanishes at
peak, and is negative in the softening range.
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Fig. 6.14. Material shear stress vs. shear strain curve at constant confining stress. The
tangent modulus htan (Eq. 1) is related to the plastic hardening modulus hpl (Eq. 2) and the
elastic shear modulus G by Eq. 4 in the figure

The formula for the critical plastic hardening modulus hpl cr derived by Rudnicki
and Rice (their Eq. 20) reduces for plane strain to

2
21G

h . .  pl cr 18 1
(6.3)

where G is the elastic shear modulus,  the elastic Poisson ratio, and  and  are
generalized friction- and dilatancy moduli, respectively, which belong to the hardening
state. Hence, whatever the exact values of the frictional and dilatancy moduli are, the
critical hardening parameter is non-negative.

Therefore, if we exclude the unrealistic cases with  in any plane strain
deformation, a range of positive hardening moduli hpl  hpl cr exists where shear banding
becomes possible before the peak stress is attained. Moreover, according to the unabridged
formula in the Rudnicki and Rice paper, pre-peak shear banding is even possible in
deformations that are not strictly planar, but sufficiently close to plane strain. In contrast to
this, axially symmetric compression permits shear band formation only in the post-peak
state, i.e. when the material is softening. This result was corroborated by other authors who
derived a structurally similar formula for hpl cr by using the Coulomb-Mohr type
formulation of frictional plasticity (see Eq. 8.7 in P.A. Vermeer and R. de Borst (1984),
Heron 29, pp. 1–64):

2
h h

pl cr

sin sinG
h .  

8 1
(6.4)

In this formula, the angle h is not a constant, but the “mobilized friction angle”
which monotonically increases with strain in the inelastic hardening range, until it reaches
its maximum at the peak of the stress-strain curve (Fig. 6.14), where it becomes identical to
the friction angle of the Coulomb-Mohr theory. Similarly, h is a “mobilized dilatancy
angle”, which attains its maximum  at peak stress. The dilatancy factor sin h is defined
as the ratio of the increment of volumetric plastic strain p to the corresponding increment
of the maximum plastic shear strain pmax.
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Fig. 6.15. Definition
of the slightly differ-
ent dilatancy angles

h and h in the
Mohr circle of exten-
sional strain incre-
ments

p p

h p p
max max

d dV / V
sin

 d   d
(6.5)

where the negative sign is inserted, since an increase in volume is counted as negative in
this book.

Note, that the dilatancy angle h is defined here by means of the sine function, in
analogy with the sin  term in the Coulomb-Mohr limit condition (Fig. 6.2B). But a
slightly different dilatancy angle may be defined by replacing the left hand side of Eq. 6.5
by tan h. To avoid confusion, the difference between the two dilatancy angles is pointed
out in the diagram of incremental strains in Fig. 6.15.

While there is still a lack of experimental work on pre-peak shear localization in
rocks and soils, there exists an impressive amount of theoretical research papers on the
subject. But it is difficult to evaluate the various quantitative results regarding the onset,
orientation, and stability of shear bands, because of the differences in the applied plasticity
models, and of the various simplifications and suppositions introduced to bridge the gaps
in our knowledge of the natural process, and to facilitate mathematical treatment.
Nevertheless, with some caution, certain trends can be determined which could be of
geological relevance. In particular, concerning the orientation of shear bands, there are
strong theoretical indications that pre-peak shear bands in plane strain form at an
inclination angle  to the I axis, which is closer to [45° – ( )/4]  than to the
Coulomb orientation /2). In contrast, shear bands in the softening range, as is
common in faulting, prefer the Coulomb orientation (P.A. Vermeer (1990) Géotechnique
40, No. 2, pp. 223–236).

In conclusion, the numerical simulations and the mechanical theory of shear
localization, and some experimental work, leave no doubt that shear bands in frictional
materials under plane strain can spontaneously form while the material is still getting
stronger. These shear bands thus form a special class of shear joints. Nevertheless, the
mathematical proof of pre-peak shear localization does not really satisfy our wish to
understand the physics behind the mathematical formalism. In other words, we wish to
understand why shear bands can form in the hardening range. Before concluding this
chapter, we therefore explore a model that may explain, at least in part, why the formation
of a shear band in a frictional (pressure-sensitive) material does not necessarily require
material softening.

Mechanism of pre-peak banding.  Let us consider in Fig. 6.16A, a potential shear band that
is unrestrained in length and, for some reason, experiences a decrease in the band-parallel
normal stress across the boundary from a constant value || outside the band to a smaller
value || || inside the band, but where there are no changes in the stresses
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|| ||,  ,  and  in the band-parallel x2-direction. Naturally, the change in || must be
continuous, since a stepped change across the boundary, though compatible with static
equilibrium, would invoke an infinite shear stress  at the band boundary, on either side of
which the material is the same, but the continuous transition of || is restricted to a narrow
band margin. With reference to Fig. 6.16A, static equilibrium of stresses then requires that

/ x3 = / x3 = 0 (see e.g., Eq. 4.21 with the specific weight of the material being
neglected). Thus, as indicated in Fig. 6.16A, the stresses  and  remain constant in- and
outside the potential shear band. The postulated reduction in || ,  which does not affect the
shear strength of the material, has been termed “stress softening” (P. Cundall, 1990).

The important question now is, how can the reduction in || promote shearing
inside the potential shear band? An answer is provided by the “bookshelf” mechanism of
direct shear, which was discussed extensively by the author (Mandl, FBR, Sect. 6.4), and
was already invoked in Fig. 6.6 as a mechanism of post-peak formation of shear joints.
Here, we use the “bookshelf” mechanism, with rotating parallel slip elements, to explain
pre-peak shearing of a band of frictional material. The band, loaded by a constant  can
accommodate “simple-shear” movements of its boundaries by the repeated formation of
transverse, antithetic shear planes and their collective rotation (Fig. 6.16B).

Note that, by letting the distance between the en-échelon planes and the rotation
angle shrink to zero, the kinematics of the process become continuous. Further note, that
simple shearing sensu stricto would require that, as indicated in Fig. 6.16B, the transverse
slip elements are generated orthogonally to the band boundaries. The repetitive process of
formation of slip elements and rotation through an infinitesimal angle, accompanied by
infinitesimal sliding, would then leave the distance between the boundary planes un-
changed, and thus produce a band-parallel shear without dilatancy or contractancy of the
sheared material. This was assumed in Cundall’s numerical simulation of the graben
structures of Fig. 6.12C. In passing, we also note that this simple shearing mechanism was
first proposed by the soil mechanician G. de Josselin de Jong (1959; Dr. Thesis, Techn.

Fig. 6.16. Stress-state “softening” of an incipient shear band:
A) Reduction of band-parallel normal stress  inside the band.
B) “Domino” style book-shelf mechanism of parallel slip planes (see text)
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University, Delft) as an alternative to simple shearing by sliding along boundary-parallel
slip planes (“card-deck” mode).

Now we still face the problem of how the simple-shearing mechanism of Fig. 6.16B
can be established by solely reducing the band-parallel normal stress ´o inside a poten-
tial shear band, while leaving the exterior of the band in a subcritical (pre-peak) state of
stress. This may be shown in Mohr’s stress plane. (Readers who are less conversant with
the graphical method of stress circles and stress poles are referred to the Appendix at the
end of the book.) To start with, we consider a homogeneous, isotropic rock which is
horizontally confined by a constant compressive stress ´°, represented by point O in the
diagram of Fig. 6.17A. The vertical load is applied by raising a uniform compressive
principal stress ´. The shearing strength of the material is represented by the pair of
straight Coulomb limit lines in Fig. 6.17A. The straining is planar and parallel to the °,

°-plane; and the - and -axes of the stress plane are identified with the vertical and
horizontal directions in real space, respectively. This superposition of space- and stress
axes allows us to insert, in the °, °-plane, the trace of a potential band of shear
localization at its orientation in real space. We draw the -line at the inclination angle 
towards the vertical direction of ° through the point O, which serves as pole of the
stresses outside the band . The intersection S of  with the stress circle Cex then
represents the tangential and normal stress components acting on the shear band.

Fig. 6.17A. Mohr Diagram of pre-peak formation of a simple-shear band ( ) in biaxial
loading under vertical stress ´o and constant horizontal confining stress ´°. The band-
parallel shearing is produced by the “bookshelf”-type collective rotation and slippage of a
train of elements R´, as sketched in the insert. The shaded circle Clim it

int  represents the limit
state of stress inside the shear band, while the circle Cex through O and S represents the
stresses outside the shear band (see text for further comment)
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The onset of shear displacement along  requires that: 1)the band is in the frictional
plastic limit state, and (2) the maximum shear stress max

int in the band acts parallel to the band
boundary (the material being assumed as isotropic). These two conditions define the stress

circle C limit
int  of the activated shear band in Fig. 6.17A; the circle does not only have to touch

the limit lines (in T) but the vertex S of the circle must lie on the -line. At the same point S,
the circle Cex of the external stresses must intersect the limit circle C limit

int  since the interior
and exterior of the shear band have the tangential stress  and the normal effective stress ´
in common (the latter assuming continuity of the pore pressure). We notice that the circle Cex

need not touch the limit lines, thus allowing the external stress state to remain subcritical.

Further, note that, as shown in

Fig. 6.17B, the shear stress max
int  on 

is smaller than the shear stress f on a
fault plane F that would be initiated
by the uniform limit state at the same
lateral confining stress ´°.
            Associated with the limit state
of stress inside the shear band 
(Fig. 6.17A) are two sets of conjugate
slip elements R and R´, which include
the acute angle (45° ) with
the direction of the new I

int -axis.
The directions of R, R´ and  are
determined by the pole method in
Fig. 6.17A. The point where the

-line intersects the lower part of the
limit circle C limit

int  is a “stress pole”,
and the chord drawn to this point
from any point ( ´,  on the circle is
the real-space trace of the planar
element (with the normal in the

-plane) that is acted upon by the stress components ´ and . Thus, in particular,
the chords connecting the points of tangency (T) with the pole are the traces of the
conjugate slip elements in real space. Likewise, the chord drawn from the circle point

III
int , 0 to the pole is the trace of a material element acted upon by the principal stress

III
int , and is thus parallel to the I

int  direction.
An en-échelon array of parallel slip elements of R´-type can generate a simple (or

quasi-simple) shearing of the band by repeatedly being formed and collectively rotated, as
sketched at the lower end of the -line and in the insert of Fig. 6.17A. It is important to note
that the angle between the slip elements R´ and the band trace in the figure is slightly
smaller than 90°. Therefore, the rotation of the en-échelon elements is accompanied by some
thickening of the band (“dilational” mode of the “bookshelf” mechanism) while the band
tends to shorten. In contrast,  > 90° would imply that the band is sheared in “domino” style
(Fig. 6.6) which involves a transverse contraction and a lengthening of the band.

In passing, we note that shearing imposed by the dilational mechanism is not simple
shearing sensu stricto, but a mode of quasi-simple (or “direct”) shearing. Further, quasi-
simple shearing by the collective rotations of en-échelon slip elements can only be
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Fig. 6.18. Graphical determination of
the angle between the shear band 
and the antithetic slip elements R´
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performed by R´-type elements, and not by the conjugate R-type elements (Fig. 6.17A).
This is easily seen by comparing the sense of the rotation-induced slip with the slip due to

I
int  (see also G. Mandl, FBR, pp. 281–282).

Whether the angle  in Fig. 6.17A is greater or smaller than 90° is of crucial
importance. Note again, that the formation of a shear band by subcritical external loading
can only be achieved when the band-parallel normal stress inside the band is drastically

reduced (from ||
ex  to ||

int in Fig. 6.17A). As long as the potential shear band is
completely contained inside the rock, the shortening or lengthening of the band by the
shearing mechanism will be suppressed by the resistance of the ambient rocks. Thus, the
suppression of the shortening tendency of the dilational shearing mechanism will result in
a reduction of the band-parallel compression, as is necessary for the formation of a shear
band under subcritical biaxial load. In contrast, the suppression of the extensional tendency
of a domino-style shearing mechanism would increase the band-parallel compression, and
thus impede the pre-peak formation of a shear band. Hence, we expect pre-peak shear
bands to form only if 90°.

At first glance, one might expect the key parameter  to depend on the strength
parameters and o, and on the inclination and position O of the potential shear band .
Surprisingly,  is completely defined in a rather simple way by the angle of internal
friction , as was pointed out to the author by Norbert Tschierske. Consider in Fig. 6.18
the heavier lined arc ST of the internal limit circle C limit

int  and the angles extended over the
arc from P and the center C. Since, according to an elementary geometrical theorem, the
angle extended from any point on the periphery of a circle over a given circle arc is half the
angle extended over the same arc from the center of the circle, one immediately reads off
the figure:

2 2
(6.6)

Thus, we know that pre-peak shear
banding in a brittle rock with a given friction
angle  is achieved by the same dilational
bookshelf mechanism, irrespective of cohesive
strength, confining pressure, and in particular,
of the inclination  of the shear band. But,
although the “bookshelf” kinematics of the
shear banding is independent of the band
inclination, the mechanism can only be
activated within a certain interval of inclination
angles. The reason for this is easily seen: as
soon as, with increasing external load, the circle
Cex in Fig. 6.17A touches the limit lines
(Fig. 6.17B), the mode of shear localization
changes into fault-type shearing, i.e. slippage
parallel to the shear band (“card deck” mode).

This limits the inclination angle  of the
shear bands towards the external -direction to
the interval determined by the condition

sin2 sin .cos2 ( ) 1                (6.7)
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The derivation of this inequality by N. Tschierske is given in the Appendix to this chapter.
According to Eq. 6.7, the inclination angle  lies in the interval

min < < 45 (6.7a)

where min  is defined by Eq. 6.7 when the equality sign is used. For instance: min  = 15.2°
if = 35°.

Having obtained upper and lower bounds for  we finally ask which value the
inclination angle will actually attain. The answer is simple:  depends on the state of the
(uniform) external stress, i.e. the stress circle Cex, at the onset of shear localization.
Consider in Fig. 6.19, the development of internal and external stresses in a rock with the

typical friction angle = 35°. The limit circles C limint  and Clim
int , and the associated 

lines, mark the interval of possible pre-peak stress states and -values. Let us further
assume, that shear localization commences when the vertical loading stress I

ex attains

Fig. 6.19. Mohr diagram of the orientation of a pre-peak shear band. The localization is
assumed to take place at 70% of the vertical peak load. The circles C int and C ex represent
the stress states in- and outside the band, and lie in the interval defined by the upper and
lower bound stress states C limint and Clim

int  (see text)
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70% of the peak load max
ex . Then the inclination angle  of the shear band has the

uniquely determined value of 25°.
At this point it should be noted that the above derivations, although referring to an

angle  that was counted clockwise from the vertical, also apply to an anticlockwise . In
other words, the corresponding constructions in the Mohr plane are each others mirror
images with respect to the horizontal -axis; hence, the above results also apply to pairs of
conjugate shear bands.

Is there experimental evidence of the bookshelf mechanism operating in pre-peak
shear banding? We think that such evidence does exist, and refer to the narrow bands of en
échelon fractures reported by G. Sobolev, H. Spetzler and B. Salov (1978; J. Geophys.
Res. 83, No. B4, pp. 1775–1784). The bands, less than 1 mm in width, formed in biaxially
loaded samples of a pyrophyllite lava before the formation of any macrocracks, and at a
differential load far below peak level.

But it should also be recalled, that the bookshelf-type shearing mechanism of discrete
Coulomb slips becomes a continuous mode of frictional-plastic deformation if, at the limit,
the Coulomb slip elements are infinitesimally close, repetitively formed, and rotated
through an infinitesimal angle. In fact, the resulting continuous shearing deformation
would be predicted by a theory of ideal frictional plasticity that is based on the concept of
conjugate Coulomb slips (“double gliding” model) and applies to both continuous and
discontinuous deformations. (The interested reader is referred to the brief account of the
theory of frictional-plastic materials presented by the author in FBR, pp. 416–419, or, in
more detail, in MTF, Sect. II.7.5). The fact, in itself, that a continuum theory of ideal
frictional plasticity is derived from the Coulomb concept of discrete conjugate slips,
implies that the actual shearing of the pre-peak band need not be accomplished by an
internal array of discernible slip elements, but may also be accommodated by continuous
flow of the band material in the limit state.

Regarding this theory and its bearing on pre-peak shear banding, it should be
emphasized that the theory deals with an ideal frictional-plastic behaviour of the material
without inelastic hardening or softening.

In concluding this section on pre-peak shear banding, we turn to the intriguing
question of what happens to a pre-peak band when the external loading stress ´I is raised
beyond the level at which the shear band was activated. To this aim, we consider, step by
step the somewhat crowded diagram of Mohr circles in Fig. 6.20. The solid circles Cint and
Cex again represent the stress states in- and outside the shear band of Fig. 6.19. Now, the
vertical loading stress ´I is raised to ´I*, changing the circle Cex into the stippled circle
Cex* that intersects the -line at S’. If the shear band  is to remain active, the stippled
(and shaded) limit circle, with vertex at S’, would have to represent the internal stresses of
the band. Thus, the vertex S of the former stress circle would have to shift up the -line to
S’. But this shift implies an increase || ´

int of the band-parallel compressive stress, which
is quite incompatible with the activity of the dilational bookshelf mechanism.

Thus, the dilational mode of bookshelf-type shearing, although necessary for the
formation of a shear band inside a rock under subcritical biaxial load, will block the
internal shearing mechanism when the external load is raised beyond the level at shear
band formation. In other words, the pre-peak shears “freeze” when the external principal
stresses are changed. Interestingly, the gradient of ´ across the boundaries of the
formerly active band ( ´ex ´int in Fig. 6.17A) will persist in the new stress field.
Thus, the stress field has acquired a “memory” of the pre-peak shear band, as was already
concluded by P.A. Cundall (1990, loc.cit.) from his numerical analyses.
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On the other hand, while immobilizing a shear band, the increase in the loading
stress ´I may generate new pre-peak bands at greater inclination angles . This is indicated
in Fig. 6.20 by the dotted limit circle Cint * whose vertex S* lies on the new band trace *.

These results lead us to expect that in nature, even minor changes in magnitude
and/or direction of the principal stresses immobilize pre-peak shears and generate new
ones at altered orientations. The traces of the pre-peak shears, possibly of hairline
appearance, would then crisscross each other in a complex network. On the other hand,
when confronted with the vexing appearance of such complex crisscross patterns in nature,
one may well be advised to consider a possible pre-peak origin of the fractures.

Fig. 6.20. Mohr Diagram explaining how pre-peak shear banding is inactivated when the
external load is raised beyond the level at which the band ( ) was first activated (see text)

Spacing of shear joints. It seems that, in the field, not only are sets of parallel tension
joints commonly quite regularly spaced, but so are also joints that are justifiably
interpreted as shear joints. Although, in the case of shear joints, the mechanics of regular
spacing is much less well understood than in the case of tension joints, we shall briefly
comment on the problem. First, recall that, from the mechanical point of view, shear joints
may be subdivided into “embryonic” faults and pre-peak shear bands, depending on
whether or not the formation of the shear joints is accompanied by shear softening, i.e. a
reduction of the shearing strength of the joint material.
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As in fully developed faults, the minimal distance between parallel shear joints of the
embryonic fault type is controlled by two main factors: the unloading of the driving shear
stress by reduction of the shearing resistance of the joint material, and the reactive stresses
set up in the ambient rocks. It is the competition between the unloading by shear softening
and the stress recovery by boundary reactions which determines the unloading “halo” (or
stress “shadow”) of a shear joint, inside which no other shear joint can form. The
mechanics of the process in faulting have been discussed in some detail in FBR (Sect. 8.1,
pp. 387–394). Here, we content ourselves with the summarizing statement that the stress
shadow of a shear joint increases with the extent of the strength reduction and the rate at
which the reduction takes place in relation to the applied shear. Further, the spacing also
increases with the length of the shear joints and the thickness of the jointed layer.

Since in shear jointing the shear displacement may be less than required for the shear
strength to drop to the residual level (Fig. 6.4), parallel shear joints may be more closely
spaced than fully developed faults. This may be the case, for instance, when parallel strike-slip
faults are interspersed between parallel shear joints. Such an arrangement would seem likely
in a strike-slip regime, where longer shear joints grow faster into faults than shorter ones, and
thereby develop larger unloading halos which stop the growth of shorter neighbours.

In contrast to post-peak shear jointing, virtually nothing is known about the spacing
of pre-peak-shears, mainly because diagnostic tools for the identification of these joints are
missing.

Summary and comments. Let us recapitulate the essential results of this lengthy chapter.

The recognition of shear joints. From a purely phenomenological point of view shear
joints are indistinguishable from tension joints, but from a genetic-mechanical point of
view the two joint types are essentially different: although both joints develop parallel
to the -axis, in contrast to tension joints, shear joints form at an acute angle to the -
axis of the stress field. Shear joints are notoriously difficult to identify; nevertheless,
there are certain features which, particularly in combination, may indicate or suggest a
shearing origin of the joints: (1) the joints occur as two non-orthogonal sets, with both
sets equally well developed, and intersecting each other with mutual displacement
which indicates a simultaneous development in the same stress field; (2) joints are sub-
parallel to fully developed faults; (3) the fracture walls of presumptive shear joints are
striated or slickensided; (4) there is evidence of an extremely small aspect ratio of
slippage (e.g. 10–5). (5) Quite generally, presumptive shear joints should easily fit into
a paleo-stress field whose trends are known from contemporaneous tectonic structures.
Origins and types of shear joints. Shear fractures or shear bands and proper faults have
in common the fact that they are generated by shear stresses on their boundaries.
During the shearing process, the resistance against shearing first increases (“hardening”
range) until reaching a peak value, and thereafter decreases (“softening” range) to a
“residual” shear strength (Fig. 6.4). We distinguish between “pre-peak” shear bands
which are generated by a shear stress which did not increase up to the peak value, and
“post-peak” shear bands which experienced softening, possibly even down to the
residual level of shear strength. In the latter case, the total shear strain is supposed to be
of the order of magnitude of the shear strain associated with the whole softening range,
while in proper faults the total shear strain exceeds the softening strain by several
orders of magnitude. The shear joints occur in sets, because they are generated in fields
of pervasive straining.
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Post-peak shear joints are initiated by the same stress conditions as faults, but got
stuck in an embryonic state of development (“embryonic” faults) for two reasons: (1)
the “driving” shear stress (and the differential stress) dropped below the level necessary
for further activity of the joint, and was not restored afterwards; (2) the frictional
resistance of the joint was increased as, for example, in the frictional locking of en-
échelon shears in “domino”-style rotation (Fig. 6.6). The drop in driving shear stress is
mainly caused by the elastic unloading of the surroundings of an active joint in
response to the shear-softening of the joint material. Short-lived “driving” shear
stresses may be associated, for example, with the switch of principal stresses in a
compressional regime (Fig. 6.5), or with the formation of subvertical shear joints in
layers above a basement that is gently tilted on a regional scale (Figs. 6.8, 6.9).
“Residual” stresses as those, for instance, locked in uplifted layers of sedimentary
basins, or in flat foreland layers in a compressional pre-folding state (see pp. 113–116,
119) are likely released by a single slip event. Although the release of “locked-in”
stresses may primarily cause tension jointing, it may also generate shear joints.

Similar to fully developed faults, the spacing of parallel shear joints increases with
the extent of the strength reduction and the rate at which it takes place in relation to the
applied shearing; the spacing also increases with the length of the shear joints and the
thickness of the jointed layer. But since shear softening might not be completed during
a single slip event, the post-peak shear joints may be more closely spaced than
interspersed parallel faults, especially if the latter are longer than the shear joints.

Pre-peak shear bands are formed while the loaded rock is still in a hardening state,
and can still sustain further increases in load. This implies that the “driving” shear
stress ( int

max  in Fig. 6.17A) exerted by the surroundings upon the boundaries of a “pre-
peak” shear band is not at its peak value. Although pre-peak shear bands form before
the rock fails under the applied load, pre-failure shear bands of the post-peak type
cannot be excluded since softened shear bands may form in patterns (Fig. 6.10C) that
would still allow the rock to support a further raise in external load.

In a theoretical analysis, Rudnicki and Rice (1975) determined the possible onset of
pre-peak shear banding (Fig. 6.14) in a homogeneous elastic/frictional plastic (i.e.
pressure-sensitive) material under a load that would also be compatible with a field of
uniform straining (e.g. simple or pure shear). Interestingly, the pre-peak shear bands
only occur in a field of plane, or almost plane, strain, and have normals perpendicular
to the axis. (In contrast, axially symmetric loading, as commonly applied in rock-
mechanics laboratories, permits shear band formation only in a post-peak state.) The
theoretical analysis is corroborated by computer simulations of the formation of pre-
peak shear bands in frictional plastic materials (Figs. 6.12, 6.13), and by experiments
with dry sand (e.g. Fig. 6.11).

As shown in P. Cundall’s (1990) numerical analyses, shear bands may even form in
ideal elastic/frictional plastic materials, i.e. materials without any inelastic changes in
material shear strength. The shear localization is then produced by a kind of “stress-
state softening” which reduces the band-parallel normal stress ( int

|| ) inside the band
(Fig. 6.16A).

How a pre-peak shear band is actually formed at the “bifurcation” of the stress
solution is explained by the dilational “bookshelf” mechanism (Fig. 6.17A and insert).
The mechanism operates by repeated formation and subsequent small rotations of
transverse en-échelon slip elements. The collective rotation of the elements results in a
component of band-parallel shear, some thickening (dilation) of the band, and a
decrease of the internal band-parallel normal stress ( int

|| ). Thus, in contrast to
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faulting, the simple or quasi-simple shearing of the pre-peak band is not achieved by
band-parallel slippage or flow (“card-deck” mode).

Remarkably, the kinematics of the mechanism is determined by a single material
parameter – the angle of internal friction . The angle between shear band and slip
elements is 90° – /2, the range of possible band inclinations to the external

I-direction is determined by Eqs. 6.7 and 6.7a, and the orientation of the conjugate
pre-peak shear bands is uniquely determined by the construction in Fig. 6.19, provided
the loading stress ´I

ex at band formation (bifurcation) is given (or assumed) as a
fraction of the peak load ex

max  (at a lateral confining stress ´°).
Because of the lack of material softening, pre-peak shear bands should be rather

transient phenomena, and in contrast to proper faults, be immobilized by the slightest
changes in directions and magnitudes of the principal stresses that activated the bands.
This is also illustrated by the dilational bookshelf mechanism of pre-peak shearing,
which is immobilized when the external load is raised beyond the level at shear band
formation (Fig. 6.20). Naturally, a raise of pre-peak loading will generate new shear
bands at different inclination angles.

As a consequence of the stress-sensitivity of pre-peak shear bands, one should
expect the bands to frequently form complex crisscross patterns. The observation of
such patterns might be of some help in the, not very promising, attempts to locate pre-
peak shear bands in the field.
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Fig. 6.21. Determination of the -range in Mohr diagram (after N. Tschierske)
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Appendix to Chapter 6

The possible orientations of pre-peak shear bands

The range of possible inclinations  of a pre-peak shear band  to the external
-direction is limited by the condition that the circle Cex of the stresses outside the band

must not intersect the limit lines. Hence, the radius OMex of Cex in the above figure must
not exceed the distance from the center Mex to the limit lines:

OMex  MexB (6.8a)

Since, in the triangle OSMex the sides OMex and MexS are equal, the angle at Mex is 2 .
Therefore, with reference to the figure:

int
ex ex ex exmaxOM M S =     and    M B = AM .sinsin2 (6.8b)

where

ex int int ex int
max

1
AM  AM M M cot 2

sin
(6.8b)

Inserting the Eqs. 6.8b and 6.8c into condition 6.8a gives



Chapter 7

Joints in Faulting and Folding

The formation of tectonic faults and folds in the brittle crust is commonly associated with a
conspicuous increase in the frequency and variety of joints. The analysis of such fracture
systems is complicated by the fact that some joint sets were forerunners of the faulting or
folding, while others accompanied the formation of the structures or were generated
afterwards. Therefore, in this chapter, rather than trying to disentangle specific fracture
patterns in faulted or folded rocks in the field (and getting ourselves entangled in
controversies) we shall attempt to review the various joint sets as they may form in
succession during the development of fault- and compressional fold structures.

Joints and faults. We begin with joints that are associated with tectonic faults. First, let us
recall that, apart from the very special case of slippage on a pre-existing plane of
weakness, we regard tectonic faults in the brittle regime as narrow shear bands which are
generated by a gradual process of shear concentration and localization in a region (the
“proto-fault” zone) of pre-damaged rock. Accordingly, we shall first consider the fracture
structures which are successively generated during the development and the activity of a
tectonic fault. There are: the swarms of fractures from which tectonic shear bands evolve;
the fracture structures initiated by incremental fault slips; and the subsidiary joint and fault
structures that adapt a sliding fault block to fault curvatures, or accommodate the stretching
of layers dragged along a fault.

After that, we shall turn to the effects which a fault may have on a set of joints that
were not generated by the activity of a fault. This will include the opening of healed
tension joints by the reactivation of a fault; the occurrence of strike-slip faults within sets
of parallel joints; and the perturbation of joint sets by pre-existing faults.

Pre-faulting fractures. In the brittle regime, the pre-faulting damage consists in pervasive
fracturing, mainly by tension cracks which may vary in length from the order of grain size
to a mesoscopic scale. Evidence for this is found in tectonic shear zones which have
stopped at an early stage of growth, and is abundantly illustrated by detailed laboratory
studies of shear failure in rocks ranging from loose granular sediments to highly cohesive
hard rocks. In FBR (Fig. 3.11) we illustrated the formation of a pre-failure swarm of
tension fractures in axially loaded quartzite samples using photographs from the classical
paper by D.K. Hallbauer, H. Wagner and N.G.W. Cook (1973); here, we reprint in Fig. 7.1,
two fault maps of axial sections of triaxially loaded samples of Westerly granite from a
paper by D.E. Moore, R. Summers and J.D. Byerlee (1990; in: H.-P. Rossmanith (ed.)
Mechanics of Jointed and Faulted rocks, Balkema, Rotterdam, pp. 345–352). In both
cases, a fault was formed inside a complex array of fractures. But, as the authors state, “no
noticeable difference in fracture density was observed between samples for which the
experiment was terminated at the initial failure and ones for which post-failure shear was
permitted”. Thus, in the main, the fractures were formed prior to the fault. Further, note
that the amount of fracturing decreases gradually with increasing distance from the faults.

The formation of a “fault” in the experiment is a highly complex process involving
the interlinking of small-scale tension cracks that are subparallel to the -axis, with
inclined cracks. Various micro-mechanical models have been constructed to elucidate the
damage processes that lead to shear failure in samples of hard rocks. The majority of
models postulate, that the actual interlinking is established by tensional “wing” cracks
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which emanate from pre-existing inclined cracks under shear (see p. 20, Fig. 2.10A; p. 92,
Fig. 4.29). However, we reiterate that the formation of wing cracks of longer than, say, the
grain size, is severely impeded by the effective confining pressures that prevail in the
Earth’s crust. A numerical 2D simulation of the micro-damage process that did not involve
the wing-crack mechanism, and thus was capable of modelling the effect of the confining
pressure, was presented by D.A. Lockner and Th.R. Madden (1991; J. Geophys. Res. 96,
pp. 19623–19642). The authors studied the growth of populations of horizontal, vertical
and diagonal (45°) cracks under biaxial compressive loading, and found that under low
confining pressures, the crack growth is predominantly parallel to the vertical maximum
load, but at higher (horizontal) confining pressures, the growth of diagonal mode II cracks
dominates.

As a detailed review of micro-mechanical damage models would by far exceed the
scope of this book, we restrict ourselves to a very schematic illustration in Fig. 7.2 of the
basic concept of the various damage models. In the figure, vertical arrows indicate an axial
compressive load, black lateral arrows indicate a confining pressure, while, alternatively,
open lateral arrows represent a boundary tension. In Fig. 7.2A, continuous shear fractures
are formed by the interlinking of axially oriented small-scale tensile fractures with oblique
sliding fractures with the same sense of right-lateral or left-lateral displacement.

Another mode of formation of macro-shear fractures is illustrated in Fig. 7.2B,
where small beams, bounded by axial tension cracks, are arrayed en-échelon and slightly
rotated by shear stress, the rotation being accommodated by slip along the tension cracks.
The reader will recognize the dilational “bookshelf” mechanism which was proposed in
Chapt. 6 (Figs. 6.16 and 6.17) to explain the formation of pre-peak simple shearing bands.
Eventually, the rotating beams, initially connected with the surrounding rock, are bent and
torn loose from their surroundings by tension fractures induced by the bending.

Next, let us complement the experimental development of a shear zone with a field
case study: the development of strike-slip faults in the dolomites of the Sella Group in the
central area of the Dolomites of Northern Italy, as described and interpreted in an
interesting paper by Pauline N. Mollema and Marco Antonellini (1999; J. Structural
Geology 21, pp. 273–292). Figure 7.3 reproduces a map of an en-échelon array of joints
with cross joints. The systematic parallel joints are hairline joints parallel to the I

direction, which is related to the direction of the compression caused in the Neogene by the
Alpine orogeny. According to the authors, the deformation of the area always occurred in
regimes of moderate to low confining pressures under a burial depth of less than 1 km. The
joint pattern concentrates into a zone which represents a preliminary stage in the
development of a right-lateral strike-slip fault, and shows a certain similarity with the
experimental fracture pattern in Fig. 7.1.

In spite of this similarity, we find it difficult to infer from experiments the
dimensions and fracture density of pre-faulting damage zones at a field scale. We here
encounter the same problem as when dealing with the spacing of cleavage joints (pp. 92–
94): the conditions of the rock-mechanical experiments do not allow a direct transposition
of the experimental results to the geological field. Even if the rock material were the same
in the experiment and the field, the dilation associated with the fracture damage is
accommodated by thickening of the test sample in the experiment, but, in general, is
impeded in the field by lateral constraints on the fractured rock. Secondly, the
experimentally produced shear zones are limited in length by the sample size, and may,
therefore, only represent a single element in the chain of separate shear bands that are
interlinked into a fault in the field.

G. King and C. Sammis have outlined the process of fault formation in brittle rocks
(1992; PAGEOPH 138, No. 4(S), pp. 611–640) in a scenario that starts with small-scale
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Fig. 7.1. Maps of fractures in dry samples of Westerly granite under vertical load:
A) sample slid stably under a confining pressure of 83 MPa; B) sample slid in stick-slip
mode under 485 MPa confining pressure. Note, that the subsidiary fractures formed prior
to the continuous faults (from D.E. Moore, R. Summers and J.D. Byerlee (1990); in:
H.-P. Rossmanith (ed.) Mechanics of Jointed and Faulted Rock, Balkema, Rotterdam,
pp. 345–352)

Fig. 7.2. Idealized concept of the incipience of macroscopic shear fractures in the brittle
regime illustrating the basic role of small-scale tension fractures, statistically aligned along
the -axis (open lateral arrows indicate boundary tension, black lateral arrows represent
confining pressure). A) Oblique shear fractures formed by interlinking of axially oriented
tensile fractures and inclined pre-existing fractures under shear; B) “bookshelf”-type shear
band of tension fractures

A B

A B
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fracturing concentrated in irregularly distributed clusters. The clustering develops at in-
creasing scales. Larger clusters, when sufficiently close, coalesce into isolated shear bands
at a somewhat larger scale. The localization of shearing into these bands or patches in a
cohesive rock is, to a great extent, accomplished by locally intensified fracturing at various
scales inside a narrowing zone. Thus, we expect each shear band to have its own “seam” of
fracture-damage. Eventually, a compound fault is formed by the interlinking of shear bands
in a step-wise manner. This results in a further increase in the damage seam that surrounds
the newly formed compound fault.

We also expect the intensity and width of the damage seam to increase with
increasing brittleness of the rock, since a greater brittleness involves higher and steeper
local stress drops (cf. Fig. 1.9B,C) to accompany small-scale fracturing and, thereby
causing the emission of stronger pressure/tension pulses (noticed as a stronger acoustic
signal) that may trigger additional fracturing.

Fracturing in the tip region of a growing fault. In a fully developed fault, the surrounding
damage zone is only partly the result of pre-faulting fracturing, since additional fracture
damage accrues during the growth of the fault in length and shear displacement. An initial
source of this syn-faulting damage lies in the tip region of a growing fault. Let us,
therefore, consider first a perfectly planar fault which is completely enclosed by uniform
rock (“blind” fault). As the fault grows in its own plane, either in a succession of seismic
jerks or in episodic stable sliding, strains develop in the surrounding area of an advancing
fault tip which, in general, are far too high to be accommodated by elastic deformation.
Hence, at least part of the straining in the tip regions of propagating brittle faults is

Fig. 7.3. Map of a zone of en-échelon and cross joints accommodating dextral shear in the
Sella dolomites of northern Italy (latitude 46°31'N, longitude 11°51'E). The longer parallel
(systematic) joints strike parallel to the direction of the maximum compressive stress
(from Mollema and Antonellini 1999; J. Struct. Geology 21, pp. 273–292, Fig. 4)
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Fig.7.4. Planar section of the highly schematised near-edge region of a “blind” fault prop-
agated by two-sided displacement (plane strain):
A) fracturing in the tip region causes a fracture halo in the displaced wall rock;
B) angular deviation of the  direction near the fault tip
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accommodated by brittle fracturing of the rock. This elastic/frictional plastic “process
zone”, attached to the propagating fault tip, leaves an additional halo of macroscopically
fractured rock around the propagating fault. This is very schematically indicated in
Fig. 7.4A, together with the obvious fact that, the material is compressed on the advancing
side (+) of the leading edge and stretched on the receding side ( ), at least as long as the
growth of the single blind fault is not obstructed by other faults, joints or lithological
barriers.

The growing fault causes perturbations of the stress field along the fault and in the
tip regions. These perturbations may generate subsidiary faults, tension fractures or
extension (cleavage) fractures. This has been more extensively discussed in Sect. 7.2 of
FBR. Here, we restrict ourselves to the most essential features of fracturing by near-tip
stress changes. At some distance from the fault, the “remote” or “far field” stresses may be
considered as uniform, with the trajectory of the maximum compressive stress  at a
constant acute angle with the dip line of the fault, as indicated in Fig. 7.4B. But the -
direction will be deflected along the fault because the fault material has a lower elastic
stiffness and a lower shear strength than the adjacent rock, which limits the shear stress
carried by the fault. Note, that if the fault were a frictionless plane, the trajectories
would terminate tangentially on the advancing (compressive) side of the fault, and perpen-
dicularly on the receding (extensional) side. Under realistic conditions of fault friction, the
angular deflections of the trajectories will be less severe, as is also confirmed by various
elastic analyses.
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At this point, it should be noted that elastic analyses may be legitimately applied to
the wall rock behind the propagating fault tips since shear softening of the fault material
there has reduced the differential stress in the wall rock below the limit state, and thus rein-
duced an elastic state of stress. Quite differently, the near-tip region ahead of a propagating
fault is, at least partly, in a frictional plastic state and cannot be adequately dealt with by
elasticity theory. Nevertheless, it may be inferred from the elastic deflections of the

trajectories behind the propagating fault tip (Fig. 7.4B), that the trajectories do not cross
the inelastic near-tip region undeflected, but instead swing around the fault tip in a
sigmoidal fashion, as tentatively indicated in Fig. 7.4B. Naturally, the curvature of the
trajectories decreases – probably fairly rapidly – with increasing distance from the fault tip,
where the stresses approach the far-field state. As indicated in Fig. 7.4B, we characterize
these stresses by the components o, o, o, normal and tangential to the prolongation of
the fault plane.

Despite the analytical complications due to the frictional plastic state in the tip
regions, some insight into the development of the near-tip stresses can be gained in a fairly
elementary way. Let us consider two points Q+ and Q– in Fig. 7.4B, which are positioned
symmetrically with respect to the prolongation of the fault plane. And let us further assume
that the fault propagates unhindered into a reasonably uniform and effectively unbounded
rock mass. The relative displacements along the fault then produce strains and stresses at
Q+ and Q– in mirror symmetry with respect to the plane of the fault. We relate the stress
changes in Q+ and Q– to the effective remote stresses in the Mohr diagram of Fig. 7.5A,
where the fault trace is plotted as a horizontal line which is supposed to correspond, in real
space, with the dip direction of a normal or reverse fault, or with the strike of a strike-slip
fault. The friction angle is that of the intact rock. In response to the relative displacement
on the fault, the mean normal stress at Q+ on the advancing side is increased to

´(Q+) = ´o + ´, and decreased at Q– on the receding side to ´(Q–) = ´o ´. The
centers of the corresponding Mohr circles are thus displaced in opposite directions, as
indicated in Fig. 7.5B. Similarly, the fault-parallel normal stress ´o is increased by + ´
at Q+ and decreased by ´ at Q–. The changes in the fault-normal stresses ´ at Q+ and
Q– (not indicated in Fig. 7.5B) are then implicitly defined, since the stress points ´ and

´ on the ´-axis lie symmetrical with respect to the centers ´– and ´+ of the Mohr
circles. It is fairly obvious that | ´| is considerably smaller than | ´|, because ´
merely changes in response to the change in ´.

Finally, the changes in normal stresses are accompanied by an increase  in the
fault-parallel shear stress . For symmetry reasons, this increase is the same at Q+ and Q–,
and the total fault-parallel shear stress at these points is raised to ° + (Q±). (Note, that

(P) > (Q±) at the midpoint P in Fig. 7.4B). Clearly then, the stress changes | ´|,
| ´|, and  increase with increasing displacement on the fault, and eventually one of the
two stress circles will touch the limit line. Evidently, this is the circle associated with point
Q– on the receding side of the fault.

Admittedly, our argumentation is of a qualitative nature, but one can easily verify
that the asymmetrical behaviour of the near-tip stresses still persists when the values of the
remote stresses and the strength parameters are varied over a wide range. We therefore
conclude that, the plastic limit state at the leading edge of a fault propagating into a
mechanically uniform and unbounded material is first induced on the receding side. Note,
however, that this asymmetry is due to the pressure sensitivity of the shear strength and
does not occur in cohesive rocks with pressure-insensitive strength (  = 0), as would exist
in the transition region from brittle upper crust to ductile lower crust.

In Fig. 7.5A,B the remote stresses is sufficiently compressive to allow the stress
circle at Q– to remain in the compressive part of the stress plane. Hence, in the limit



Near-fault tip fracturing on the receding side                                                                                          159

Fig. 7.5. Mohr diagrams of stresses induced near the leading fault edge by incremental
shear displacement on the fault:
A) Mohr diagram of remote stress components referred to the plane of the “blind” fault.
B) Changes of the mean normal stress ´ = ( ´  + ´)/2, the fault-parallel stress ´, and
the shear stress  at advancing (+) and receding (–) sides of the fault plane. The limit state
(shaded) is first attained at the receding side (see text for discussion).
C) Exchange of effective stress states due to increase (decrease) in pore pressure on the
advancing (receding) side of the fault plane (see text for discussion)

state, subsidiary faults, or shear fractures, should develop on the receding side of the near-
tip region. Quite differently, at shallow depth, and in regions of highly overpressured pore
fluids, the compressive remote stress ´o in Fig. 7.5A, and the diameter of the stress circle,
may be sufficiently small to allow the fault displacement to render the principal stress

´– at Q– tensile and make it eventually equal to the tensile strength of the rock ( ´– = –To).
Hence, tension joints will form on the receding side of the fault tip. Such tension fractures
may branch off the fault as “wing cracks”, as considered in Fig. 2.10A, if the remote
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loading is approximately uniaxial ( ´o  0, and the growth of wing cracks is, therefore,
not suppressed by a compressive ´o. It should be mentioned that various aspects of the
near-tip fracturing have already been elucidated in experimental studies by J.-P. Petit and
M. Barquins (1988; Tectonics 7, No. 6, pp. 1243–1256), and by M. Barquins and J.-P. Petit
(1992; J. Structural Geology 14, pp. 893–903).

Ideally, in the case where the fault grows in a mechanically fairly uniform material,
not hindered or affected by any obstacles, such as material discontinuities or boundaries,
we should, therefore, expect tension or extension joints, or shear joints, to form on the
receding side of the near-tip region. Along a growing blind fault, these fractures should
then leave a fracture seam, preferentially on the receding side of the fault.

However, in reality, near-tip fracturing and, in particular, en échelon tension joints,
may also occur on the advancing side of a fault, and we should, therefore, briefly venture
into the possible reasons for this deviation from the ideal case. First, note that we have
tacitly assumed that the pore pressure is uniform throughout the near-tip region. But, we
may envisage that slip or even creep on a fault may cause a transient rise in pore pressure
at the advancing (compressive) side of the near-tip region, and a decrease in pore pressure
on the receding (extensional) side. The consequences of the changes in pore pressure are
illustrated in Fig. 7.5C. The unshaded circles represent the changes in effective stresses
induced at the mirror points Q+ and Q–, when the pore pressure would remain the same at
Q+ and Q–. If the pore pressure is raised by p at Q+, and reduced by the same amount at
Q–, the positions of the stress circles are interchanged, as shown by the shaded circles in
Fig. 7.5C. Considering the (shaded) advancing-side circle in the figure, and recalling the
conditions for cleavage jointing in Chapt. 2 (“Extension or cleavage fracture”), it appears
quite feasible that cleavage joints may form on the advancing side of the near-tip region.
The reader may also notice, that by choosing a lower value of ´° and a smaller diameter
of the unshaded circle at Q+, the pore pressure rise may even shift the advancing-side stress
circle sufficiently far into the tension domain that (hydraulic) tension fractures may be
initiated.

Another mechanism that changes the mirror symmetric development of the strains
and associated stresses with respect to the fault plane, and thereby, possibly promotes
fracturing on the advancing side of the tip region, was discussed in FBR (Sect. 7.2): the
condition of mirror symmetry of the near-tip stresses may be violated when the growing
fault approaches a boundary, such as may be imposed by a layer of stiffer rock, a free
surface, or a fault or fracture plane. This is schematically illustrated by Fig. 7.6,
reproduced from FBR. As long as the boundaries of the rock mass are far enough away
from the fault, and thus do not affect the slip-induced near-tip changes in stress and strain,
these changes depend on the relative displacement on the fault, and not on the way the
displacement is actually distributed on either side of the fault, when referred to a reference
frame at rest. (Note, that the distribution of the same relative displacement in A and B only
differs by a uniform fault-parallel translatoric motion which, in the absence of interfering
boundary reactions, would not affect the stress field.) If, however, confining boundaries of
stiffer rocks (e.g. fixed basement, graben walls, or faults) interfere with the propagation of
a fault and affect the mirror image symmetry of the near-tip stresses, the development of
these stresses is then no longer controlled by the relative displacement on the fault, but by
the displacements on either side of the fault, as referred to the same reference frame at rest.

If movement is suppressed on one side of a fault, as schematically illustrated for a
near-tip fault segment in Fig. 7.6C, the slip-induced strains and associated stress changes
will predominate on the opposite side of the tip-region. The result is then a tendency for
near-tip fracturing to shift towards the advancing side of the parent fault.
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This is best seen by considering the extreme situation, where the wall rock opposite
the advancing side is completely immobilized by “rigid” boundaries. The shear stress ( )
exerted upon the immobilized block across the fault is then balanced by the opposite shear
stress on the boundaries, and, therefore, cannot affect the fault-parallel normal stress ´°
in the immobilized block. On the advancing side (+), however, the increase  in shear
stress required to advance the fault tip is provided by an increase ´° of the fault-parallel
normal stress. This entails an increase ´° in the fault-normal stress when the
displacement normal to the fault plane is suppressed. Here, we assume that the advancing
material can move laterally away from the fault plane without being hindered by boundary
reactions; hence, ´° = 0. Consider then, in the Mohr-diagram Fig. 7.7, the circle C° as
representing a state of effective stresses as may typically exist prior to fault progression at
a relatively shallow depth, or under high overpressures of the pore fluid. One can then
easily envisage that, in a certain area around the progressing fault tip, the stress changes on
the advancing side may establish a stress condition such as the one represented by circle
C1, which may be conducive to cleavage fracturing. Also, indicated in the figure, is the
direction of the maximum compressive stress ( ´(1)), which includes the acute angle  with
the direction of the displacement on the fault plane. Hence, the trace of the cleavage
fractures in the , -plane would include the angle with the parent fault.

Interestingly, movement on the fault may even induce tensile fracturing in the
immobilized block. Although, as said before, ´° in the immobilized fault block is not
affected by the increment  of the shear stress on the fault, and the free boundary of the
moving block allows the fault-normal stress ´° to remain constant, the increase in fault-
parallel shear stress affects the principal stresses inside the immobilized block. The
corresponding stress circle may then enter the tension regime, as shown by the (dashed)
circle C2 in Fig. 7.7. The tensile fractures on the immobilized side of the advancing fault
would then be parallel to the ´(2)-direction in the figure.

Also, recall that the circle C° in the figure was chosen in accordance with stress
states associated with faulting at a relatively shallow depth or under high overpressures of
the pore fluid. At higher levels of effective compressive stresses, the circle C° would be
greater and, on the ´-axis, centred more to the right than shown in Fig. 7.7. The circle C1,

Effect of “rigid” boundaries

 fixed

 walls

 fault

Mechanically equivalent displacements
unhindered by boundary reactions

Q+

Q–

Q+

Q–

A B C

Fig. 7.6. Slip-induced displacements near the leading edge of a fault plane:
A,B) Unhindered two-sided and one-sided displacements of equal magnitude produce the
same deformation and stress fields.
C) One-sided displacement and rigid confinement on the opposite side cause an accumula-
tion of stress increments and strains on the advancing side
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Fig. 7.7. Mohr diagrams of presumptive stress states prior to faulting (C°) and during fault
progression, when boundary confinements restrict the displacements to the area on the
advancing side of the fault (see insert on the right). The circle C1 represents the stresses in
the advancing block, which is free to deform perpendicularly to the fault, and remains
loaded by the fault-normal stress ´° that already acted before the advancement of the
fault tip (see insert). The (dashed) circle C2 represents the stresses on the immobilised side
of the advancing fault. The position and diameter of the circle C° conform to the stress
state prior to the fault progression at a relatively shallow depth, or under high over-
pressures (see text)

which refers to the increments of ´ and that allow the fault to advance, may then touch
the Coulomb limit lines, indicating the onset of subsidiary faults or shear joints near the
moving tip, that branch off the parent fault towards the advancing side.

At this point in the discussion, it is good to recall that our assessment of the
fracture-inducing stresses only applies to the “near-tip” area of faults, that is, the small
region where the growing fault overcomes the cohesive strength of the rock. In these
frontal regions, the shear stress must exceed the shear stress required to maintain slip
elsewhere on the fault. As seen in Fig. 7.7, this excess shear stress  is the key parameter
in our analysis of the stress perturbations. (In this case, is considered as constant, while
in an earlier problem concerning the delamination of jointed layers (Chapt. 4, p. 77), the
corresponding parameter c was assumed to vary linearly across the frontal decohesion
zone.) Here it is assumed as constant. Clearly, the fracture damage by movement on a
plane fault can only be produced at fault locations where | > 0.

This is primarily the case in the near-tip regions of a growing fault. But, the
fracturing condition | > 0 may also be fulfilled at other fault locations, when, as is usual
on tectonic faults, slip or creep does not occur along the whole fault at once, but in separate
patches whose locations vary in the course of successive movements on the fault. At the
edges of these patches, |  will be greater than zero, and fractures, similar to those at
moving fault tips, may be generated.
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The trends of the asymmetric development of tension- and cleavage fractures, and
secondary faults, in near-tip regions are very schematically illustrated in Fig. 7.8. When the
parent fault propagates unhindered into an effectively unbounded rock mass, tension
fractures, or subsidiary faults and shear joints, develop on the receding side (A). Subsidiary
faults and fractures formed on the receding side are deactivated as the parent fault
propagates, and are arranged in a single-sided array behind the propagating fault tip. On
the other hand, cleavage fracturing or subsidiary faulting is shifted to the advancing side
(B) by the blockade of absolute displacement and deformation behind the advancing fault
tip on the receding side. Since, in an absolute sense, the whole displacement takes place in
the wall that moves with the fault tip, the splay faults or cleavage fractures should remain
located near the moving fault edge on the advancing side of the parent fault. Furthermore,
in a low effective stress regime, tension joints may also form on the immobilized side of
the propagating fault tip, as was concluded from the position of the dashed circle C2 in
Fig. 7.7. These joints are indicated by the set of dashed lines in the lower part of B.

As was argued above, cleavage fracturing on the advancing side of a moving fault
tip (lower figure in Fig. 7.8B) requires not only that the displacements on the opposite side
are suppressed, but also, in general, that the material on the advancing side is allowed to
move laterally away from the fault plane without, or only by slightly, increasing the fault-
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Fig. 7.8. Simplistic view of secondary faults and joints in near-tip regions on receding (A)
and advancing side (B) of a propagating fault
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normal stress ´. These conditions may be fulfilled in various types of faults in near-
surface layers or in overpressured layers; for instance, in thrust faults where the com-
pressed material of the advancing side can expand towards the free surface while the
footwall is at rest; or in normal faulting on a slope when the footwall does not move with
respect to a reference frame at rest, but where the hanging wall expands in the down-slope
direction. One may also envisage similar situations in strike-slip faulting, when displace-
ment is confined to one side, for instance, by a graben boundary or an obliquely striking
fault.

Certainly, our qualitative arguments are in need of rigorous poro-elastic analyses
which, in particular, should include the inertial forces induced in the solid matrix and in
the pore fluid caused by a sudden slip on a fault. The inertial effects also manifest them-
selves in stress pulses that travel along the fault on which the seismic slips occurred, and
possibly generate fractures in the vicinity of the fault. Neville Price (in N.J. Price and J.W.
Cosgrove 1990; loc.cit., pp. 150–159) analyzed the stress pulses (in terms of total stresses)
and found that they rapidly fall off in magnitude with the distance from the slip locus.
Price, therefore, concluded that fractures generated by seismic stress pulses should remain
confined to relatively narrow zones on either side of the seismic fault.

Rock deformation along faults. Sedimentary rocks may be deformed near an active fault
in many ways. Some typical fault-related deformation modes in extensional regimes are
schematically illustrated in Fig. 7.9: A) Layers may be flexured and transected by minor
normal faults before being cut by a major fault (after F. Lehner and W.F. Pilaar 1974, Shell
Research Report). B) Layers are stretched by frictional drag on a fault plane, or C)
deformed into “roll-over” structures when rotationally sliding along a listric normal fault
( = shovel). D) Strata in the hanging wall of normal faults (and in the reverse
sense in thrust faults) are also extended in the strike direction as the dip-slip dies out along
the strike, as shown in the block diagram. E) The diagram shows two downwarped layers,
separated by a thinner weak layer, in the hanging wall of a normal fault. The flexure shape
of the layers is controlled by the competent thick layer 2. The thinner layer 1, mechanically
decoupled from the control unit by the weak interlayer, is stretched over its full length. In
the brittle and semi-brittle regime, the deformation at a macro-scale is accommodated by
minor faults and/or tension and extension joints, as sparsely marked in the diagrams. But,
whereas the role of subsidiary faults in accommodating fault-imposed deformations is
fairly well understood (see e.g. FBR, Chapt. 6), the when and where of an accommodation
by jointing, or even the type of operating joints, are still much less known (notice the
question marks in Fig. 7.9).

Although joint sets and minor normal faults are common features in competent
layers which are extended in the vicinity of a fault (e.g. Fig. 4.16), the phenomenon poses
several questions. First, consider a flat-lying layer which is extended by bending in the
vicinity of a major normal fault, say, in one of the modes shown in Fig. 7.9. Then consider,
in the Mohr diagram of Fig. 7.10, the critical stress states for tensile failure and shear
failure in the layer, and compare the largest possible limit circle for tension failure and the
smallest limit circle for shear failure (i.e. normal faulting of the type in Fig. 1.8D, p. 5).
Whereas the difference in ´III between the two limit states is of little concern, because it
would tend to vanish when tension joints are formed, the difference in ´I is considerable
(amounting to almost 5To, if o = 2To and = 35°). Since, in general, in an extensional
regime ´I differs little in magnitude from the overburden stress ´v, it appears impossible
that both the tension joints and the minor normal faults can form together in the same layer
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Fig. 7.9. Schematic diagrams of conjectural accommodation fracturing near normal faults
(see text for comments)
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Fig. 7.10. Mohr diagram of limit states of tension jointing and incipient normal faulting in
the same layer, which shows the difference in magnitude of the maximum compressive
stress that still permits the formation of tension joints and the minimum compressive stress
required for incipient normal faulting (the dotted circle represents a stress state associated
with the formation of a dilational fault – a hybrid extension-shear fracture; Fig.1.8C)

of the hanging wall of a major normal fault. In fact, the tension jointing is restricted to
layers under a small effective overburden stress, whereas faulting requires higher effective
overburdens. (But note, that this restriction does not imply that a fault cannot approach the
free surface; in a cohesive material the fault will steepen near the surface by changing into
a dilational or hybrid tension-shear fault of the type shown in Fig. 1.8C (p. 5), and possibly
terminate in subvertical tension joints.)

Although tensile fracturing and normal faulting are mutually exclusive processes,
this does not exclude that, in the same layer, tension joints and normal faults may form in
succession, when the magnitude of the effective stress ´I changes drastically with time, or
joints and normal faults form simultaneously in separate parts of a layer along which ´I

varies greatly in magnitude. The first situation could arise in downwarped strata when,
after high overpressuring of the pore water has reduced ´v ( ´I) to values smaller than
3To, and thereby allowed the formation of tension joints, the pore pressure is again
“normalized” by drainage, facilitated by the joints; the associated increase in effective
overburden stress may allow the formation of minor normal faults in the extending layer.

The second situation, where joints and faults form concomitantly in separate parts
of a layer, might exist in strata downwarped between the hinges of a major normal fault, as
shown schematically in Fig. 7.9E. Above a downbent layer, the ´I trajectories are
deflected from an initially vertical position towards the layer shoulders, as indicated in the
insert in the figure, thereby shifting the overburden load from the central part to the
shoulders of the layer. The arch-type redistribution of the ´I trajectories (“stress arching”)
above a subsiding block or a synclinal structure is well-known in soil mechanics and rock
engineering (see also MTF I.3.3 and Fig. II.7-32, and FBR Fig. 7.33). It is understood that,
for a given shear resistance of the overlying material, the unloading of the inner part of the
downthrown layer is more effective with a greater thickness of the overburden and a
smaller distance between the fault hinges. We, therefore, presume that at some stage in
normal faulting the inner part of a downwarped and pervasively stretched layer (such as



Joints and minor accommodation faults                                                                                                  167

layer 1 in Fig. 7.9E) may be sufficiently unloaded to allow the formation of tension joints
there, while minor normal faults (small grabens) are accommodating the extension of the
marginal parts of the layer. We also note, that in thrusting (reverse faulting) the process
should occur in reverse, with tension jointing at the margin and normal faulting in the inner
part of an upbent layer.

So far, we have considered tension jointing and minor normal faulting in one and
the same layer. What about two mechanically different layers at nearly the same depth of
burial in a sedimentary sequence? Let us consider in Fig. 7.11A two horizontal sandstone
layers, Sd 1 and Sd 2, which are separated by a weak clay layer. The sandstone layers
differ in shear strength ( o, ) as indicated in the Mohr diagram of Fig. 7.11B, but the

Fig. 7.12. Minor normal fault intersecting Liassic shale beds and continuing along tension
joints in stronger sandstone beds (Lilstock, Bristol Channel, SE England)

Fig. 7.11. Uniform extension of a horizontal multilayer generating tension joints and nor-
mal faults in different layers under the same overburden stress ´I = ´V.
A) Schematic picture of a jointed layer of competent sandstone (Sd 1), an intact interlayer
of clay, C, and a sandstone layer (Sd 2) intersected by normal faults.
B) Mohr diagram with different strength conditions for Sd 1 and Sd 2 and corresponding
limit circles 1´ and 2´
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overburden stress ´v may be taken as the same in all three layers. When the layers are
extended together, it is possible that normal faults will be produced in one layer and tensile
fractures in the other. This is demonstrated by the stress circles in the Mohr diagram,
where the circles 1 and 2 represent the stress states in layer Sd 1 and Sd 2, respectively,
before the extension; both circles run through the point ´v,0. The joint extension of the
layers may change circle 1 into circle 1´ which intersects the ´ axis at –To, and at some
stage of extension circle 2 may be altered into the circle 2´ which touches the limit line of
the weaker material of layer Sd 2. Therefore, the extension of the layers will be accom-
modated in the stronger layer Sd 1 by tension joints, and by normal faults in the weaker
layer Sd 2, as shown in Fig. 7.11A. Note that, in general, the two limit states will be
attained at different stages of the extension of the whole. Also note again, that the
formation of tension joints in Sd 1 is only possible as long as ´v  3To, which at normal
pore pressure and for the conditions in the figure, would imply a limiting overburden
thickness of approximately 450 m.

A somewhat related phenomenon is shown in Fig. 7.12, where a small normal fault
transects an alternating sequence of sandstones and shales by connecting fault segments in
shale beds across tension joints in the stronger sandstone beds.

Healed joints opening concurrently with fault slip. The relationships between joints and
faults considered above applies to the formation of joints that accompanies faulting. But
one may also wonder how faulting might affect healed tension joints or veins which were
generated before the onset of the faulting. Let us consider the problem in a simplified form
as studied by R.H. Sibson (1981; Nature 289, pp. 665–667). We assume a set of healed
tension fractures or veins in flat-lying beds, which are aligned along the vertical I (= v)
direction in a uniform stress field with a horizontal III direction. Moreover, the layers are
transected by a plane of weakness whose normal lies in the I, III plane; the trace (  and
dip angle ( ) of the plane of weakness are shown in Fig. 7.13A. The chord of the stress
circle in Fig. 7.13B is drawn parallel to from the stress pole P, and, therefore, defines the
normal and tangential stresses ( ´ , ) on the plane of weakness. Also indicated in the
figure are the intact rock strength parameters o,  and To, a smaller tensile strength To* for
the healed joints or veins, and the shear strength parameters o* and * for the plane of
weakness. In the figure, it is assumed that slip on the plane commences, which implies
that the horizontal effective stress ´III is reduced until the end-point of the

-parallel chord arrives at the limit line for the plane of weakness. If it so happens that at
this stage ´III = –To*, the healed tension joints will be opened.

Naturally, the opening of the joints at the moment of slip on the plane of weakness
would appear as highly coincidental, were it not that slip-induced negative values of ´III

exist through a certain overburden range, where ´III varies with the value of ´I. But, it is
already clear from the diagram in Fig. 7.13B, that only relatively small values of ´I,
corresponding with a shallow depth of burial or the presence of high overpressures, are
compatible with negative values of ´III.

The range of ´I values which allows slip on the fault plane simultaneously with the
opening of the healed tension joints is easily quantified by determining the coordinates

´ (S), (S) of the intersection point S in Fig. 7.13B and using elementary geometry on the
right-angled triangles in the figure. This gives:

I* = (S) + (S).tan (7.1)

with

o o o
1

(S) = * T * tan . tan tan *   and   (S) = * + (S). tan *
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Hence, a positive ´I*, implying a positive effective overburden stress ´v, is only
possible if

o o
2* > T * .(sin .cos sin .tan *) (7.1a)

If, for example,  = 20° and = 62.5°, the cohesive shear strength o* of the
inactive plane of weakness would have to be greater than 0.7.To*. With the effective
overburden stress ´v ~ ´I*, slip and reopening of the joints require that

´v = o*  2.1To* (7.1b)

Accepting, for the purpose of illustration, the values o* = 5 MPa and To* = 1 MPa,
Eq. 7.1b predicts ´v = 12.9 MPa, which corresponds at normal pore pressures to a burial
depth of approximately 860 m. Note, however, that overpressures would increase the depth
level by the factor 0.6/(1 – ), where = p/ v.

Now that the condition is established which must be fulfilled that slip on a normal
fault and the opening of healed subvertical joints can occur together under the same
effective overburden, we face a critical question concerning the origin of the normal fault
that acted as a plane of weakness. To see the problem, consider the stress circle 1 in
Fig. 7.14, which represents the effective stresses that generate a normal fault with the
dip angle  of Fig. 7.13; all normal stresses are compressive, the pore pressure is normal
(  = 0.4), and the overburden stress v´

o is the maximum compressive stress. The stress
circle is tangential to the straight Coulomb-limit line which, in the intact rock, defines the
onset of faulting under all-compressive normal stresses. The formation of the normal fault
causes a decrease in differential stress v´

o ´, while the overburden stress v´
o remains

constant, as indicated in the figure by the (shaded) circle 2. The fault plane is now a plane
of weakness with the reduced strength parameters o* and *. But, in order to satisfy the
condition 7.1, the stress circle 2 would have to be brought into the position of the stress
circle in Fig. 7.13. This is only possible if, after the formation of the fault, the effective

Fig. 7.13. Slip induced on plane of weakness by reduction of III´ at overburden ( ´v = ´I).
A) Trace of plane of weakness ( ) in I, III plane;
B) Mohr diagrams of stresses inducing slip on plane of weakness and opening healed joints
of tensile strength To*
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overburden is drastically reduced. This can only be achieved by overpressuring the pore
fluid. The overpressuring will shift the circle 2 to the left. But, at the same time, the circle
has to shrink (circle 3) in order to enter the tension region of the stress space. However, as
was pointed out in Chapt. 3 (pp. 28–32), the shrinkage of the stress circle requires that
lengthening of the layer in response to the rise in pore pressure is suppressed.

The shrinkage of the stress circle (Fig. 3.2B) is characterized by the parameter 
which is inserted into Fig. 7.14 from Eq. 3.1. Note, that under the strength conditions and
the initial stress state (circle 1) assumed in the figure, the value  = 32 allows the -chord
of the shifted circle 3 to terminate on the limit line of the plane of weakness at the point S
in Fig. 7.13B, thereby triggering slip on the fault. At the same time, the layer-parallel stress

III´* attains the value –To* and reopens healed tension joints or veins with a tensile
strength To*, or even generates new internal hydrofractures in a rock with this tensile
strength. Clearly, the value of To* depends on the shear strength parameters of the intact
rock, the stress release by faulting, and the degree of weakening of the fault plane; but
primarily, To* varies with the thickness of the effective overburden.

The primary factor in this process is the overpressure of the pore fluid. Because of
the low compressibility of the pore water, only very small amounts of pore water drainage
are needed to drastically reduce the overpressure. As suggested by Sibson, the opening of
vertical hydraulic tension joints may provide this drainage, and the resulting drop in pore

Fig. 7.14. Stress diagrams illustrating the history of a normal fault from incipience (1) and
relief of differential stress (2), to the remobilization of the weakened fault plane by
overpressuring of the pore fluid under suppressed horizontal extension (3)
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pressure would immobilize the fault by increasing the fault-normal stress ´ . The
deposition of hydrothermal minerals may then reheal and seal the joints or veins, and
thereby stop the drainage and allow the overpressure to be restored to the level required for
slip on the fault and reopening of the fractures. Obviously, one may think of the bleeding
of overpressure, the rehealing of joints and the subsequent restoration of the overpressure
as a repetitive process which results in intermittent slippage on a normal fault accompanied
by the reopening of healed joints. The process may then be seen as a manifestation of John
Ramsay’s “crack-seal mechanism” (J.G. Ramsay 1980; Nature 284, pp. 135–139).

Thus, the above process explains the possible coincidence of the opening of internal
hydrofractures and the slip on a normal fault plane in highly overpressured rocks. But, it
should be borne in mind, that the process neither implies that the fault slip is a prerequisite
for the reopening of healed joints, nor that the fault slip must be accompanied by the
reopening of healed hydrofractures.

A further point that should be remarked upon is the assumption that the layer is
laterally confined and cannot extend in response to the increase in pore pressure, otherwise,
the stress circle 2 in Fig. 7.14 could not be shifted into the tension domain. On the other
hand, slip on the weakened normal fault in the stress state 3 would require some horizontal
displacement of the adjacent rock, which might seem to contradict the postulation of a lateral
confinement of the layers. However, the two requirements become compatible when the rock
in the vicinity of the slipping fault contracts by the ejection of pore fluid along the fault
plane. Nevertheless, the question remains why the geological boundary conditions have
changed from a regime of horizontal extension that produced normal faults (states 1 and 2 in
Fig. 7.14) to a regime of high overpressures under horizontal confinement. This question
does not arise when the faults are dilational, as will be considered next.

A dilational normal fault, as shown in Fig. 1.8C, is formed by the interlinking, on a
microscale, of tension fractures and shear fractures (as sketched in Fig. 7.2A). There, the
tension fractures predominate in accordance with the minimum effective stress, being
tensile on a macroscale. As a consequence, the interior of a dilational fault is more jagged
and, at least initially, more porous and permeable than the surrounding rock; dilational
faults, therefore, typically provide preferential conduits for fluid flow. This, in turn,
produces a certain degree of cohesive strength, by mineralization of the fault material.

Fig. 7.15. Stress circles illustrating the origin of tension joints and dilational faults:
A) Stress conditions for dilational normal faulting at different depths (z1 < z2 < z3); the
stresses at depth z3 open the healed joints of tensile strength To*.
B) Vertical tension jointing (1) and (2) with ´III  at shallow depth; subsidence to a
greater depth (3) and partial healing of the joints (4)
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It is important to note, that the incipience of these faults is not controlled by a
Coulomb-Mohr limit condition, since this exclusively applies to faulting when none of the
effective stresses are tensile. In contrast, the critical stress circles for dilational faults have
a curved envelope as shown in Fig. 7.15A (also see FBR, pp. 129–131), and the fault-
normal stress ´  is tensile. Assuming again, that the overburden stress ´v is the greatest
compressive stress, the critical stress circles increase in diameter with increasing depth (z),
but are limited by the circle whose point of tangency with the envelope has the abscissa

´ = 0. If we insert reasonable values of o and To for a medium-strong rock, and allow
for some variation of the envelope point on the  axis, it transpires that dilational faulting
at normal pore pressures is very likely restricted to a depth of less than 1 km. The same
holds true for the formation of vertical tension joints.

Because the stress states that generate dilational normal faults are very similar to
those which produce vertical tension joints, one can imagine how healed tension joints or
veins may be opened by the formation of a dilational fault. Let us consider in Fig. 7.15B a
stress state, represented by the stress circle 1, which produces an array of vertical tension
joints in a horizontal layer of tensile strength To. As the parallel fractures are filled with
pore fluid, the effective tensile stress is reduced to zero (circle 2), and remains zero under
an accumulating overburden as long as the fracture walls remain separated (dashed circle 3).
Under real conditions, the water-filled joints of the subsiding layer will acquire some
tensile strength To* which allows a tensile stress to build up in response to further
extension of the subsiding layer. When the tensile stress ´III reaches the value –To* (stress
circle 4), the healed joints will reopen.

Now, let us go back to Fig. 7.15A, and consider the range of critical stress states for
dilational faulting. At any depth zi, a dilational fault will be formed if the tensile horizontal
stress attains the value ´III(zi) that is uniquely related to the overburden load at this depth.
If it so happens that ´III(zi) equals the tensile strength To* of healed vertical joints at the
depth zi, the extension-induced ´III(zi) will simultaneously create dilational normal faults
and reopen the healed joints. If | ´III(zi)| < To* dilational faults may form, but without
opening the tension joints. Conversely, joints may be reopened by extensional straining of
layers under an overburden load which is still too small for the formation of a dilational
fault (or any type of fault). When and where a concomitant reopening of joints and
dilational jointing may actually occur will obviously depend on the interplay of the
processes of sediment accretion and extension of the subsiding layers.

In any case, it transpires from the above discussion that the coincidental occurrence
of reopened joints or veins and dilational normal faults is due to a very special state of
stress which makes the coexistence of the two structures possible. In other words, there is
no direct causal connection between the reopening of veins or joints and the activity of
dilational faults. Hence, we cannot infer with confidence, the existence of normal faults
from the observation of reopened and rehealed joints or veins, or vice versa. On the other
hand, if both structures are observed at the same location, one may arrive at conclusions
concerning the stress field and, possibly, the role of overpressured pore fluids.

Strike-slip faults parallel to joints. Faults can develop by the shearing of preexisting
parallel joints. This has been convincingly demonstrated by Paul Segall and David D.
Pollard in a paper on “Nucleation and Growth of Strike Slip Faults in Granite” (1983;
J. Geophysical Research 88, No. B1, pp. 555–568). The authors analyzed parallel fractures
within granodiorite in two areas of the central Sierra Nevada, California. The fractures in
the study areas form single sets of steeply dipping joints. In Fig. 7.16, a fracture map of
one study area is reproduced from the paper. Some of the fractures were identified as
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dilational fractures and joints (without further specification as to whether the joints are of the
tensional or cleavage type), and are mostly hairline in appearance. Other fractures were iden-
tified as small faults with left-lateral strike separation of up to 2 m, and a width of 1 to 10
mm or more. Also note that, in contrast to the regular spacing of joints in layered sedi-
mentary rocks, the spacing of the parallel joints in the crystalline rock body is not uniform.

Obviously, the spacing mechanism in layered rocks considered in Chapt. 4 does not
apply here. Instead, under horizontal tension, a vertical tension fracture grows in depth

Fig. 7.16. Map of strike slip faults along pre-existing subvertical joints in granitic rocks of
the central Sierra Nevada (Bear Creek area in the Mount Abbot quadrangle), California.
The map is reproduced from P. Segall and D.D. Pollard (1983; J. Geophysical Research
88, No. B1, p. 563; reproduced by permission of AGU) (see text for further explanation)

Explanations:

Left-lateral strike
separation (cm)

No strike separation

Fault zone
(arrows show direction
of movement)

Granodiorite

Aplite dike

Covered area in central
part of map
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surrounded by a zone of elastic tension release and unhindered by the layer interfaces
(A.H. Lachenbruch 1961; see reference on p. 73). Within this elastic halo or “shadow
zone”, a second fracture cannot grow. Hence, when a set of initially densely spaced
shallow cracks is subject to a progressive horizontal extension, slightly deeper fractures
will grow, while their tension release zones impede the growth of shorter fractures. As the
process proceeds, the number of deepening fractures decreases, while their spacing
increases. The process is very similar to the growth and spacing of parallel dyke-type
intrusion fractures, which were considered in Chapt. 3 (pp. 34–38). Furthermore, it seems
reasonable that a vertical fracture that grows in depth, also grows in horizontal length at the
same time if it is not hindered by lateral barriers. Hence, in map view, longer tension
fractures will be wider spaced than shorter ones (A. Nur 1982; J. Struct. Geol. 4, No. 1,
pp. 31–40).

The single set of dilational joints in Fig. 7.16 was formed when the region was
extended, and left-lateral slip was imposed on the joints at a second stage of regional defor-
mation that produced a counterclockwise rotation of the I-axis through an acute angle
from the strike of the joints. Thus, faults were nucleated on pre-existing joints, and
proceeded along the joints even though the fractures were sealed with mineral fillings.
However, the shearing did not continue into the intact rock as a single fault, coplanar with
the parent joint, but was instead accommodated by secondary fracture structures in the two
dilational quadrants at the receding side of the joint ends, as illustrated in Fig. 7.8A.

In the study area of Fig. 7.16, numerous strike slip fault zones (with a left-lateral
strike displacement of approximately 10 m and a width of 0.5 to 2 m) also parallel the
joints and small faults. These fault zones were formed by the linkage of adjacent smaller
faults by secondary fractures. The linkage process was studied in detail by S.J. Martel
(1990; J. Structural Geology 12, No. 7, pp. 869–882). In essence, we think that the linkage
of smaller faults and the transfer of the shearing displacement is accomplished by a
dilational “bookshelf” mechanism which we have referred to before (see Fig. 6.17, and
FBR Sect. 6.4). As schematically illustrated in Fig. 7.17, a sinistral strike-slip fault zone
develops by left-laterally sheared joints or small faults stepping to the left between
adjacent dilational tip zone quadrants (–), as was considered in Fig. 6.7. The shearing is
transferred across the extensional offset areas by the “bookshelf”-type rotation of en
échelon sets of secondary fractures. The inclination of the secondary fractures in the figure
is chosen in qualitative agreement with Martel’s observations, and implies that the shearing
transfer is accomplished by the dilational mode of the bookshelf mechanism, schematically
shown in the insert of Fig. 7.17. We expect the process to still work when the overlap of

Dilational bookshelf

Extensional offset

Dilational

“bookshelf”

Fig. 7.17. Conceptual formation of a sinistral
strike-slip fault by left-stepping of parallel joints
under left-lateral shearing, and linkage by parallel
secondary fractures operating in the dilational
“bookshelf” mode (see insert)



Joints perturbed by faults 175

the fault elements is smaller than in the figure, or even missing at all. We leave the
question open as to whether the secondary fractures are “splay” fractures emanating from
the fault tips, as assumed by Martel, antithetic Riedel shears, or fractures produced as
tension joints in the extensional offset zone. Although at first sight one might be tempted to
interpret the parallel joints in Fig. 7.16 as shear joints, Segall and Pollard firmly concluded,
after closer inspection, that all of the fractures in the study area were originally formed as
dilational joints, and none of them as shear joints. Nevertheless, in reality we also expect
uniform stress conditions to exist which are conducive to the formation of parallel shear
joints (pre-peak or post-peak), some of which, probably those of greatest length, develop
into strike-slip faults.

Perturbation of joints by pre-existing faults. In the preceding sections on the reopening of
healed joints and on joints turning into strike-slip faults, the faulting post-dated the
formation of the joints. Now, we consider the reverse sequence, where jointing postdates
the formation of strike-slip faults in horizontal, or nearly horizontal layers.

Let us begin with the simplest case of a straight vertical strike-slip fault
(Andersonian type) which is not affected by other faults. We briefly recapitulate in
Fig. 7.18 the stress states associated with the initiation, weakening and the eventual
inactivation of the fault. The dotted stress circle in Fig. 7.18A represents the uniform stress
system that initiated the fault, with the principal stresses ´I

(o) and ´III
(o) parallel to the

layering. We consider the ´-axis in the Mohr diagram as coinciding with the direction of
´III

(o) in real space, and draw the chord of the stress circle from the “pole” at ´III
(o), = 0

to the point of tangency T with the limit line. The chord then has the orientation of the
strike line of the fault in real space (see Appendix), which includes the angle  with the

´III
(o)-axis. This is also schematically illustrated in Fig. 7.18B. We recall, that the

formation of the fault is accompanied by a reduction in shear strength of the fault material,
which causes a reduction of the stress difference ´I

(o) – ´III
(o) to ´I

(1) – ´III
(1), i.e. the

diameter of the shaded circle in Fig. 7.18A. Thus, the active fault is a plane of weakness,
whose shear strength is determined by a separate limit line defined by the reduced strength
parameters o* and *. Since the directions of the principal stress axes and the strike line of
the fault remain unchanged during the formation of the active fault, the point ´III

(1),
 = 0 is a stress pole of the shaded circle. Therefore, the -line drawn through this pole

defines the point where the stress circle intersects the limit line, and thereby determines the
normal and tangential stresses ( ´, ) on the fault plane.

Next, we assume (Fig. 7.18C) that the fault is inactivated by reducing the principal
stresses to ´I* and ´III*, which allow parallel tension joints to form. During the stress
reduction, the directions of the horizontal principal stresses need not remain fixed, but may
be turned through an angle  around the vertical II-axis, as illustrated in Fig. 7.18D. This
angular change shifts the stress pole from the circle point ´III*, * = 0 to the point shown
in Fig. 7.18C, and the stresses ´*, * on the inactive fault plane  are readily determined
by the simple construction in the Mohr diagram.

The inactivated fault does not affect the stress field. The tension joints, therefore,
propagate along the straight ´I*-trajectories of the uniform stress field (Fig. 7.19A) either
crossing the fault or being arrested by the weakness of the fault. When crossing the plane
of weakness, a tension fracture will probably make a small side-step, as was discussed in
Chapt. 4 (pp. 50–54).

Naturally, the assumption of a uniform shear stress along the fault plane will be
rarely met in reality. Instead, one should expect the shear strength of the fault material to
vary along the fault, and in some local areas even be insufficient to withstand the shear
load imposed by the stress field. Let us, therefore, consider in Fig. 7.19B the extreme case
of a strike-slip fault with a segment  on which the shear strength is zero. Since the segment
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Fig. 7.18. Stress diagrams of the formation and inactivation of a vertical strike-slip fault:
A) Mohr diagram of the horizontal stresses (dashed circle) that initiate the fault ( ) and are
changed (shaded circle) by the weakening of the fully developed fault.
B) Diagram of the principal stress axes in the horizontal plane.
C) Inactivation of the fault by reduction of principal stresses to a limit state of tensile frac-
turing, possibly accompanied by a rotation ( ) of the horizontal principal axes; pole con-
struction determines the normal and tangential stresses on the inactive fault plane.
D) Diagram of the rotated principal stresses
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The figure C is based on Fig. 8.6C of a paper by D. Pollard and P. Segall (1987); in: B.K.
Atkinson (ed.) Fracture Mechanics of Rocks, Academic Press, p. 309)

cannot carry a shear load, the deficit in the capacity of the fault to carry the imposed
boundary load can only be compensated for by an increase in the shear force, on the part of
the fault, downwards from the segment . We assume, that the increased shear stresses
remain below the limit line of the plane of weakness (Fig. 7.18C), and the fault, therefore,
remains inactive. Since the fault segment  is free of shear stress, it is a principal plane,
and on the fault segment the direction of ´I can only be normal or parallel to the fault. In
fact both orientations occur, though on different quadrants of the segment as indicated in
Fig. 7.19B. Clearly, the smallest principal stress ´III is parallel to the fault on the
extensional part (–) on either side of , while ´I is parallel to the fault on the compressed

A

C

´< 0

´´

B

+

+

´

´
S

Fig. 7.19. Perturbation of trajectories of
maximum compressive stress ( ´) by a fault
element ( ) of zero shear strength:
Inactive left-lateral strike-slip fault (plan
view) under uniform biaxial horizontal loading;
shear strength of the fault is uniform, and the
tension joints follow the straight ´ lines.
B) Schematised pattern of ´-axes in contrac-
tive (+) and extensional (–) quadrants of the
shear-stress free fault element . Note the stress
isotropy at the midpoint S, and the discontinuous
change of the ´-axis across the fault element.
C) Detailed pattern of ´-axes around a shear-
stress free fault segment which is oriented at 45°
to the remote ´ direction. (Length of lines
does not indicate the stress magnitude.)

´

´
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Fig. 7.20. Maximum principal stress
direction and fault plane

part (+). The ´I trajectories which are straight and parallel further away from the fault in
the uniform stress field, will curve smoothly into the ´I directions on the fault segment.
This is illustrated in Fig. 7.19C by the direction field of ´I which was found by applying
EFM to a fault segment that is oriented at 45° to the uniform ´I direction of the remote
field. Also note, the stress isotropy ( ´I = ´III) at the mid-point S in Fig. 7.19B, which is a
center of symmetry of the perturbed field.

Further, note that the discontinuous change in the direction of ´I across the fault
segment in Fig. 7.19 is only possible in association with a jump-like change of the fault-
parallel normal stress ( ||). This follows from a simple formula, shown in Fig. 7.20, and
derived in the Appendix on the Mohr circle, which relates the acute angle  between the I

direction and the direction of the resolved
shear stress on the fault plane, with the
values of the stresses || and . The
equilibrium conditions only allow the fault-
parallel normal stress || to discontinuously
change across the fault; but a jump-like
change in || would be accompanied by a
discontinuous change of the associated fault-
parallel longitudinal strains. This requires
the decoupling of the fault-parallel strains on
both sides of the fault plane by slippage on
the fault. Thus, a diffraction of the I

trajectories on a fault plane can only be
established during fault slip.

This is quite different in the case of a
very weak fault which, extremely simplified

is considered as frictionless and cohesionless everywhere with the exception of a relatively
small non-slip segment, representing a major asperity or a minor kink in the fault path. It is
the non-slip element which allows shear forces to balance the constant remote boundary
loads and to maintain the fault in a stable state, while outside this area the fault acts as a
principal surface. This is schematically illustrated in Fig. 7.21A,B. The pattern of the
principal stress trajectories were analyzed and simulated in photo-elastic experiments by
K.D. Rawnsley, T. Rives, J.-P. Petit, S.R. Hencher and A.C. Lumsden (1992; J. Structural
Geology 14(8/9), pp. 939–951), who used the model to interpret observed perturbations of
joint systems near pre-existing faults on the U.K. coast.

Figure 7.21C is intended to show the essence of the model: near the fault, where it
is free to slip, the I trajectories must sweep into an orthogonal or a tangential position,
whereas along the non-slip interval they should be inclined towards the fault as
qualitatively indicated in the figure. Note that, contrary to the case of a non-slip fault with
a slip element (Fig. 7.19), the principal stress directions may now jump from the normal to
the tangential position across the fault outside the non-slip area, everywhere where slip
actually occurs, thereby allowing the fault-parallel normal stress to change discontinuously
across the fault plane. But it does not seem quite so simple to decide where along the
shear-free fault the direction of I will be normal and where tangential. In drawing
Fig. 7.21C we assumed that the section shown is sufficiently far away from the ends of the
“blind” fault so that the compressional or tensional effect of the tip regions can be
neglected. On the other hand, a fault tip close to the non-slip region, might determine
which of the two possible orientations the I direction will attain.

||

tan 2
2

| |
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Although the model of a frictional fault with a slip segment (Fig. 7.19) would often
seem to be closer to reality than the model of a single frictionless fault kept in a stable state
by an asperity or similar, the simplifying assumption of shear-free fault planes, even
without any non-slip segments, appears apposite to the analysis of the stresses in systems
of conjugate faults. It is easily seen, that a mosaic of wedges bounded by conjugate strike-
slip faults of zero shear stress may be in static equilibrium under a biaxial remote load,
with the I-trajectories meeting the faults orthogonally or tangentially. Systems of tension
joints between conjugate strike-slip faults have been studied by J.-P. Petit et al. (2000). A
sketch of the joint traces is reproduced in Fig. 7.22A, and in Fig. 7.22B are compared to
the result of a numerical analysis by St.J. Bourne and E.J.M. Willemse (2001), based on
linear elasticity and zero shear stress on the faults. The calculated pattern compares quite
well to the observed fracture pattern, except for the upper left corner and the right margin
of the figure where faults or fault segments just beyond the limits of the map in Fig. 7.22A
may exert an effect that is not accounted for in the calculation.

Fig. 7.21. Perturbation of trajectories of the maximum compressive stress ( ´) by a non-
slip element ( ) in an otherwise frictionless and cohesionless fault:
A) Uniaxially loaded “blind” fault; open arrows schematically indicate the fault-parallel
downward push and pull of the vertical boundary forces, which are balanced by a shear
couple on 

 Balancing of fault-parallel forces by the presence of the non-slip element.
C) The maximum compressive stress ( ´) is orthogonal or parallel to the friction- and co-
hesionless fault (dotted tails suggest further course of trajectories), but the ´-axes are per-
turbed by the non-slip element, as schematised in the figure

C

B

A
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Fig. 7.22. Conjugate strike-slip faults (thick straight lines) and joint patterns (thin lines)
produced in perturbed stress fields around faults (near Nash Point, Bristol Channel, UK).
A) Detailed sketch of observed fracture patterns by J-P. Petit, V. Auzias, K.D. Rawnsley
and T. Rives (2000; in: F.K. Lehner and J.L. Urai (eds.): Aspects of Tectonic faulting,
Springer)
B) Joint pattern calculated by three-dimensional numerical method based on linear
elasticity and assuming zero shear stresses on the fault planes, by St. J. Bourne and E.J.M.
Willemse (2001; J. Structural Geology 23, pp. 1753–1770)

A B

Joints in compressive folds. We now turn to tension and cleavage fracturing in
compressive folding. Since the basic conditions and mechanisms involved in these
processes have been addressed at various places in previous chapters, we content ourselves
with summarizing the main results.

First, not all joint sets observed in a compressive fold need to be the result of the
folding; some regular joint sets may form in flat lying layers while the compressive stress

´ is still building up towards the magnitude necessary for the onset of folding. As
discussed in Chapt. 4 (pp. 88–90), a tectonic regime of this kind exists in the foreland of
thrust and fold belts when overpressuring of the pore fluid by the foreland compression
sufficiently reduces the smallest effective stress ´, orthogonal to the thrust direction, to
allow the formation of vertical “internal hydraulic” joints of the tension or cleavage type.
The joints will form a regional set, parallel to the ´I trajectories, and thus more or less at
right angles to the later fold axis. Note, that the pattern of these cross-fold joints is not
affected by the local curvature of the folded layers; but the opening of the individual joints
is, of course, affected by the tension or compression (below the neutral surface in
Fig. 5.12) due to the local curvature.

On the other hand, several sets of new joints are generated by the process of folding
itself. There is, firstly a jointing mechanism that is still related to the pre-stresses in the flat
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Fig. 7.23. Interlayer shearing in flexural-slip folding
induces a rotation of the principal stress directions
which would have existed in the case of zero inter-
layer friction

´I ´I

lying foreland sediments. As argued in Chapt. 5 (p. 119), with reference to Fig. 5.10
(p. 116), a part of the layer-parallel compressive stress normal to the later fold axis is
locked-in by intergranular cementation. In folding, the layer-parallel compressive stress is
reduced, not only in the hinge region, but also in the reasonably straight fold limbs. This
puts the intergranular cementing material under tension which, on a macro-scale,
represents a maximum tensile stress along the trajectories of the former maximum
compressive stress. The relief of this tension may produce “longitudinal” tension joints
parallel or slightly out of parallel to the hinge line of the fold; the latter situation is to be
expected if, during folding, the hinge line of a layer is diverted from orthogonality with the
direction of the horizontal pre-folding compression.

Another set of hinge-parallel tension joints is generated by the extension along
hinge-normal arcs (in the yz-planes of Fig. 5.12B). In contrast to the longitudinal joints
that are caused by the release of locked-in compression, the tension joints generated by the
curvature of a layer are expected to be located in or near the hinge region, where the
spacing of the joints decreases with the spatial increase in curvature, as predicted by the
Hobbs’ model (Chapt. 4, pp. 63–64). Moreover, in a thicker layer the tension fractures may
not completely transect the layer because the fractures are stopped inside a lower part of
the layer that is put under compression by the bending (Fig. 5.12).

While these joints are caused by the bending of layers, hinge-parallel tension joints
may also be generated in straight fold limbs of a flexural-slip fold. As the individual layers
slide over each other towards the crest of the fold, as sketched in Fig. 7.23, they exert a
shear stress ( ) on the interfaces, thus putting the layers (locally) under simple shear. This
changes the directions and magnitudes of the principal stresses ( I°´, III°´) that would
exist in a layer if the interlayer friction were zero (  = 0). Considering, in Fig. 7.23, plane
strain in a vertical cross-section at right angles to the hinge line of the multilayer fold, the
axes of I°´ and III°´ lie in the plane, and are either normal or tangential to the frictionless
interfaces, or the stresses are isotropic.

In the latter case, the super-
position of the interlayer shear stress
establishes different principal stres-
ses ( I´ III´) which include the
angle of ±45° with the interface
normal. When the imposed shearing
reduces III´ to –To, tension joints
form parallel to the 45° direction of

I´. This result may also easily be
obtained by means of Mohr dia-
grams, as shown in Fig. 8.3 of the
next chapter. There, it is also demon-
strated that the imposed shearing can
only produce tension joints if the ef-
fective stresses prior to shearing are
smaller than 2To.

In general, however, I°´ differs from III°´ in the frictionless situation. It can then
be shown, either in Mohr diagrams or analytically (Appendix, Eq. A.6), that if I°´ is
normal to the frictionless interface, the I´-axis is rotated through less than 45° from the
normal to the interface (as indicated in Fig. 7.23), but through more than 45° if I°´ is
parallel to the frictionless interface. Hence, in the example of Fig. 4.3, I°´ would have
been directed normal to the interface.
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Finally, compressional folds are commonly transected by joint sets normal to the
hinge line, which, together with hinge-parallel joints, may form a fundamental joint
system. There have been two mechanisms identified as possibly generating cross-fold
joints: first, the regional pre-folding stresses in an overpressured foreland, as mentioned
above; and secondly, the hinge-parallel stretching due to the upwards convex curvature of
the hinge line. Since this curvature is greatest near the axial end regions of the fold (see the
example of a “whale back” shaped fold in Fig. 1.6), one should expect the highest
frequency of cross joints in these regions. Nevertheless, the cross joints may be distributed
over most of the fold because the axial end regions migrate outwards as folding progresses.

It is often suggested, that the suppression of the “anticlastic” bending of the buckled
layers (pp. 118–119, Fig. 5.12A) would produce the tension required for the formation of
the cross joints. But, although this factor may contribute to the tensional effect of the
hinge-line curvature, in itself it cannot provide the necessary tension, even if stress
reductions by inelastic deformation processes are not considered.

Summary of joints in faulting. In the brittle regime, the initiation, development and
activity of a tectonic fault is accompanied by fracture damage in the rock surrounding the
fault. Several phases can be distinguished in the build-up of the damage zone. Starting with
the pervasive fracturing by tension fractures that precedes the concentration of shearing
into narrow shear bands.

Pre-faulting fractures (pp. 153–156). Rock mechanical experiments show that a fault
forms by a complex process of the growth and interlinking of small-scale tension
cracks, which – in a statistical sense – are aligned parallel to the direction of the
macroscopic maximum compressive stress (see Fig. 7.1).

At low effective confining pressures, the interlinking of tension fractures is thought
to be established by tensional “wing” cracks which emanate from the tips of inclined
tension cracks under shear. But at higher confining pressures, as are more common in
the Earth’s crust, the interlinking may involve mode II fractures or “bookshelf”-type
arrays of tension or shear fractures, as illustrated in Fig. 7.2A,B. A small-scale field
example of the bookshelf-type interlinking mechanism in a preliminary stage of fault
development is shown in Fig. 7.3.

It is difficult, if not impossible, to infer from rock-mechanical experiments the
dimensions and fracture densities of pre-faulting damage “seams” in the field, due to
the differences in boundary conditions and the experimental limitation in sample size.
The latter does not allow observation of a later phase of fault development where
separate shear bands, say of sample size, coalesce into a compound fault, embedded in
a wider damage zone.
Tip region fracturing (pp. 157–164). In a brittle rock, the stress perturbation near a
propagating fault tip generates fractures of various kinds. Under ideal circumstances,
that is, in the case where the fault propagates unhindered inside a mechanically uniform
rock, the displacements along the fault produce stresses and strains in strict mirror
image symmetry with respect to the fault plane and its straight prolongation. This
allows the conclusion (Fig. 7.5) that tension- or shear fractures will form and branch
off the fault on the receding side of the near-tip region. In a regional regime of low
effective stresses, the fractures will be of the tensile type; but the fractures are of the
shear type in a regime of higher effective stresses (see the schematic illustration in
Fig. 7.8A). As the fault grows, the fracturing in the near-tip region will leave a halo of
macroscopically fractured rock along the receding side of the fault.
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In contrast, near-tip fracturing may be shifted to the advancing side when the
mirror symmetry is broken by: (1) an increase in pore pressure on the advancing side,
and decrease on the receding side of the near-tip region (Fig. 7.5C); or (2) when, on
one side of the fault, the displacement is suppressed (Figs. 7.7 and 7.8B). In the latter
case, it seems possible that, in regimes of low effective stresses, tension joints are also
formed on the immobilized side (see circle C2 in Fig. 7.7 and the dashed joint traces in
Fig. 7.8B). The fracture halo will develop in unison with the moving fault edge.
Rock deformation along faults (pp. 164–167). Rock layers are deformed by faulting in
many ways, either before they are cut by a fault or while they are displaced along a
fault. In extensional regimes, normal faults cause extensions in neighbouring layers of
sedimentary rock, which give rise to tension joints or secondary normal faults; typical
cases are schematically shown in Fig. 7.9.

Tension joints and faults cannot form simultaneously at the same location
(Fig. 7.10), but they may form in succession; for instance, in a layer downwarped
between the hinges of a normal fault (Fig. 7.9E), when overpressures in the layer are
drained by jointing, thereby increasing the effective overburden load to a stage
conducive to normal faulting of the stretched layer. On the other hand, joints and faults
may form at the same time in separate parts of the downwarped layer, when “arching”
of the ´I trajectories above the downbent layer shifts the overburden load from the
central part to the shoulders of the layer.

Furthermore, when, at nearly the same depth of burial, two layers (for instance, two
sandstones) of different shear strength are extended together, normal faults may be
generated in the weaker layer and tension joints in the stronger one (Figs. 7.11 and
7.12).
Healed joints opening concurrently with fault slip (pp. 168–171). It has been shown
(Fig. 7.13) that slip on a normal fault and the opening of healed subvertical joints or
veins can only occur together if a simple relation (Eq. 7.1) between the effective
overburden stress, the tensile strength of the healed joints, and the shear strength
parameters of the fault prior to slip, is fulfilled. This implies that: (1) the inactive fault
must have a cohesive shear strength greater, or only a little less than the tensile strength
of the healed joints, and (2), the thickness of the effective overburden is severely
limited by the strength parameters of the inactive fault and the healed joints (Eq. 7.1b).

But how does one explain the coexistence of a normal fault and a set of healed
tension joints? It is readily seen (Fig. 7.14) that, after the formation of a normal fault
under effective compressive stresses, high overpressures are required to allow the
formation of vertical tension joints while leaving the weakened fault in a state of
impending slippage. The opening of the internal hydraulic joints may rapidly reduce
the overpressure, and thus immobilize the fault plane by increasing the fault friction.
The open joints are sealed by mineral deposition, which stops the drainage of pore
fluids; if the overpressure is restored, the fault can slip again, accompanied by a
reopening of the joints or veins. If repeated, the process would be a manifestation of
Ramsey’s “crack-seal” mechanism.

The question remains as to why the geological boundary condition should have
changed from a horizontal extension conducive to normal faulting under effective
compressive stresses, to a regime of high overpressures under horizontal confinement.
This problem does not arise when the normal faults are not Coulomb-type (with the
critical stress circles lying completely in the compression half of the stress plane), but
are dilational type (with critical stress circles touching a curved limit line in the tension
half of the stress plane, Fig. 7.15A).
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Because the stress states that generate dilational normal faults are very similar to
those which produce tension joints, it is not difficult to see how healed tension joints or
veins may be opened by the formation of a dilational normal fault (Fig. 7.15B).
However, the coincidence of the formation or reopening of joints and the formation or
activity of dilational normal faults requires a very special state of stress, depending not
only on the strength properties of the rock and the healed joints or veins, but also on the
interplay of the accretion of the effective overburden and the extension of subsiding
layers.

Hence, although it is understood that dilational faults can reopen healed joints,
opened joints and dilational faults may also exist together, without one being the cause
of the others.
Strike-slip faults parallel to joints (pp. 173–175). Pre-existing subvertical joints (of
tension or cleavage type) may be sheared in a stress field with a rotated subhorizontal

I-axis. In the field case (Fig. 7.16) studied by Segall and Pollard (1983), the sheared
joints terminate in secondary fracture structures (schematically shown in Fig. 7.7A);
and small faults of the sheared-joint type are linked into larger strike-slip faults by
secondary fractures operating in the dilational “bookshelf” mode (Fig. 7.17).

The spacing of vertical tension fractures in a crystalline rock under horizontal
tension may grow in depth unhindered by mechanical interfaces; their spacing will,
therefore, differ from the spacing in layered sedimentary rocks, as discussed at length
in Chapt. 4. With greater depth of penetration, the joints will be longer in the strike
direction, and surrounded by a wider halo of elastic tension release, resulting in a wider
spacing.
Perturbations of joints by pre-existing faults (pp. 175–180). The path of tension joints
which formed in horizontal layers after the formation and inactivation of a straight
strike-slip fault, may be affected by the fault. Consider first, a uniform biaxial
horizontal stress system which generates the joints and is compatible with the existence
of an inactive fault with uniform shear strength (Fig. 7.18C and D, and Fig. 7.19A). As
the inactive fault does not affect the stress field, the joints will propagate along the
straight I trajectories of the uniform field, either crossing the fault or being arrested by
the weakness of the fault.

In the field, the shear strength will, most likely, vary along the fault and perturb the
principal stress trajectories in some neighbourhood of the fault, thereby distorting the
pattern of the joints. Two extreme cases of strength variation are dealt with to obtain an
understanding of the perturbed joint patterns observed near faults in the field: (1) a
“blind” fault with a shear-stress free element ( ) and uniform shear strength
everywhere else (Fig. 7.19B); and (2) a fault free to slip everywhere, except on a non-
slip element ) that keeps the fault in a stable state (Fig. 7.21A).

In case (1), the joints will smoothly curve into the ´I directions on the slipping
fault segment, which are normal on one half of the segment, and tangential on the other
half, changing between the two directions across the slipping fault element
(Fig.7.19B,C). In case (2), the joints curve near the fault into directions normal to the
fault on one side of the non-slip element, and tangential on the other side, with a
continuous change of directions along the non-slip element established by the
balancing shear couple. Where the fault actually slips outside the non-slip element, the

I directions may jump across the fault plane from the normal to the tangential position
(Fig. 7.21). Model (2) may come close to reality in a mosaic of wedges bounded by
conjugate strike-slip faults (Fig. 7.22).



Chapter 8

Échelon Joints and Veins

In the preceding chapter, we considered how tension joints form on the receding side of the
near-tip region of a propagating fault (Fig. 7.8A), and array en-échelon one-sidedly behind
the advancing fault tip. More commonly, échelon arrays of dilatant fractures (i.e. tension
and cleavage fractures, hydraulic intrusion fractures, gashes or veins), form independently
of faults or sheared joints. Examples, of the kind shown in Fig. 8.1, are frequently exposed
on denuded bedding planes of sedimentary rocks. Even in town, when strolling over a
pavement of rock slabs, one may stumble upon the phenomenon. However, despite their
abundance, the mechanical origin of échelon fractures is still the subject of debate. Several
mechanisms have been proposed to explain the phenomenon; it transpires that “more than
one mechanism can produce en échelon veins”, as J.E. Olson and D.D. Pollard aptly
remarked (1991; The initiation and growth of en échelon veins, J. Struct. Geol. 13, No. 5,
pp. 595–608). In this last chapter, we will examine these processes.

En échelon cracks in shear zones. First, it is readily understood that échelon tension
joints can be produced in weaker rocks which are sheared by stiffer (“competent”)
boundary rocks. This occurs, for instance, in grabens with horizontal movement of the
graben boundaries (Fig. 8.2A), in the straight limbs of a flexural slip fold (Fig. 8.2B), and
in the shearing of sediments by strike-slip faulting in stiffer substrata (Fig. 8.2C).
Considering parallel boundaries, the shearing is of a quasi-simple mode if the distance

Fig. 8.1. Sigmoidal en échelon veins in slightly metamorphic sandstone (middle
Miocene); Lushan formation, “Backbone Range” near Taimali, Taiwan (courtesy Prof.
F.-J. Brosch) (see later explanation by Figs. 8.4 and 8.5)
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between the boundaries is allowed to accommodate shearing dilatation. Typically, the
simple or quasi-simple shearing imposed by the moving boundary rocks enforces a rotation
of the direction inside the sheared material. This is shown in the drawings in
Fig. 8.3A,B,C for the case that, prior to shearing, the effective stress state is isotropic in the
plane of the shear couple. The Mohr diagram in Fig. 8.3D is included as a reminder of the
fact that the effective normal stresses perpendicular ´  and parallel ( °´) to the
imposed shear direction must remain smaller than roughly twice the tensile strength To of
the rock in order to permit tension fractures to be formed by the simple shearing. In
contrast, if the effective stresses are at a higher level, such as is the case in the main part of
the brittle crust of the Earth, simple shearing will produce Coulomb shears (so-called
Riedel shears R and R´), as indicated in the Mohr diagram in Fig. 8.3E.

Note that, prior to shearing, in Fig. 8.3, the stresses in the plane of the shear couple
are assumed to be isotropic, and the stresses ´ and ´ remain equal during the shearing.
Only under these conditions does the I´ direction include the acute angle  = 45° with the
imposed shearing direction (Fig. 8.3D). If ´ > ´, the angle  is smaller than 45°; and
greater than 45°, if ´ > ´ (see Appendix, Eq. A.6). But in any case, prior to fracturing,
the shear-induced angle  is smaller than 90°. Thus, although a 45° orientation of shear-
induced tension joints may serve as a convenient reference orientation for the display of
the basic mechanisms of tension jointing in a shear zone, the joints may actually form at a
quite different orientation.

Once parallel tension fractures are formed in the shear zone, a further increase of
the boundary shear stress may rotate the joints; because < 90°, the rotation must be
dilational in style (Figs. 6.17 and 7.17). If unhindered by “rigid” boundaries, the fractures
may grow in length, while the central part is passively rotated and opens up permitting a
vein to develop, as is nicely shown in Fig. 8.1. As long as the fracture-bounded rock slices
(“lithons”) are still connected to the adjacent rock, the end parts of the advancing fractures
propagate in mode I fashion, thus following the local direction. The joints, therefore,
develop a sigmoidal shape (Fig. 8.1), as is further explained in Figs. 8.4 and 8.5.

C competent (stiff)
I incompetent (weak)
F fault

A

B

C

Fig. 8.2. Schematized geological processes of quasi-simple shearing:
A) horizontal shearing between lateral boundary blocks (e.g. “graben shoulders”);
B) shearing in flexural-slip folding;
C) overburden sheared by strike-slip faulting in the “basement”
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Fig. 8.3. Stress rotation by a shear couple (plan view of shearing arrangement):
A) Isotropic state of stress ) before onset of shearing.
B) Elastic quasi-simple shearing (  = const.) establishes the direction of  at 45° to the
external shear direction, if  also remains unchanged ( ).
C) When = –To (and the material in the -plane is still isotropic) tension joints
form parallel to the 45° direction of 
D) Mohr diagram determining the 45° direction of , and indicating that simple shearing
can produce tension joints only in regimes of rather low effective stresses:  < 2To.
E) Mohr diagram illustrates how even very moderate effective compressive stresses

 prevent tension fracturing by simple shearing, and promote instead the formation
of synthetic (R) and antithetic (R´) Riedel shears

C
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A B

–To

E

3To

o

T

T

R´

R

Pole
45°–

D

–To

3To

o

Pole



188 En échelon fractures in shear zones

Fig. 8.4. Dilational development of an en échelon array of tension joints in a growing
shear zone: A) initial state; B) advanced state with sigmoidal veins

In the absence of separate  direction indicators, such as pressure solution seams,
it may be difficult, in practice, to decide whether rotated en échelon joints were formed as
tension (or cleavage) joints, or as shear fractures. This ambiguity stems from the range of
possible inclination angles  in the  direction, mentioned above, which does not exclude
the formation and subsequent rotation of antithetic Riedel shears (the R´-shears in
Fig. 8.3E). During rotation, the R´ shears may also attain a sigmoidal shape by propagating
at an angle (45° – /2) to the  direction. Like tension fractures, the shear fractures will
open up in dilational mode when rotated (Fig. 8.5), and may, thereby, even develop into
veins.

When the shearing of a well-defined narrow band of en échelon joints proceeds, the
friction along the opened, fluid-filled, middle part of the rotated fractures is lost, and the 
trajectories are deflected, as indicated in Fig. 8.5. In addition, the normal stress ´ on the
shear boundary is likely to increase as a consequence of the dilation which accompanies
the rotation of the fracture-bounded “lithons”.

A B

Fig. 8.5. Echelon tension joints rotated in dilational mode; opened central parts of fracture
planes and associated  trajectory (conjectural)
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Therefore, as stated by the author (G. Mandl 1987; Tectonophysics 141, pp. 277–316):
“sophisticated analyses are not needed to recognize that slender rock slices will hardly be
capable of carrying the eccentric load imposed from outside on the shear band. The shear
stress that acts upon the band margin M (Fig. 8.5) cannot be transmitted across the band of
open fractures and would have to be balanced inside the boundary zones M by an extra
normal stress acting parallel to the band boundary M. Since this stress would increase
linearly in the direction of the imposed shearing in order to balance the resulting shear
force, it seems evident that arrays of open fractures with slender lithons would have to be
rather short and arranged in a patchy fashion. We may thus infer that long arrays of tension
or shear fractures would be associated with relatively short open fractures, i.e. fractures in
which the open length would hardly amount to more than two or three times the fracture
spacing.”

Following this line of reasoning, it appears likely that during the rotation of
en échelon fractures a state is reached where the marginal zone of the shear band experiences
a reduction in shear strength by small-scale ruptures, thereby allowing shear localization
along the band margin, which possibly develops into a fault parallel to the shear zone. The
normal fault in Fig. 8.6 may serve as an example of a fault cutting through an échelon array
of quartz-filled fractures. Although, in this case, the fractures are found to pre-date the
actual formation of the fault, in similar cases, these “feather (pinnate) joints” may have
formed on the receding side of the near-tip region of a growing fault (see Fig. 7.8A).

Since the shear zones considered were enforced parallel to the direction of the
maximum shear stress, parallel to the kinematically imposed simple shearing (Fig. 8.2), the
shear bands differ in orientation from Coulomb’s slip direction. Therefore, a fault along
such a kinematically controlled fracture band, is not a Coulomb- (or Andersonian) type
fault. It shares the non-Andersonian aspect with the class of “simple-shear faults” (see e.g.
FBR, Sect. 8.2) which are enforced by the movement of “rigid” boundary blocks in
regimes of all-compressive effective stresses.

Fig. 8.6. Normal fault with échelon tension fractures which preceded the formation of the
fault (Broad Haven, Pembrokeshire, SW Wales, GB):
A) the array of quartz-filled fractures is cut by the through-going fault;
B) drawing from photograph

A B

1 m
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But the mechanisms of shear localization into a continuous fault may differ widely
between a compressional stress regime conducive to faulting, and a stress regime that
generates échelon tension or cleavage fractures. Consider first, the limit state of stress in
Fig. 8.3E, where prior to the application of the shear couple  the stresses and

are equal. The development of a continuous strike-slip fault is a process of
successively forming Coulomb-type faults (for reference see MTF, pp. 78–80, and FBR,
Sect. 8.2). The essence of the process is illustrated in Fig. 8.7, where a first set (1) of
Riedel shears, operating synthetically with the external shear direction, causes the material
to be compressed in the overlapping region of neighbouring faults. This causes both an
increase in magnitude of ´I, and its closer alignment with the direction of the Riedel
shears (1). Once the critical state is reached in the overlap regions, new faults (2)

1
1

2
2

45°

Fig. 8.7. Development of a continuous “simple-shear fault” (in plane strain) by the inter-
linking of synthetic Riedel shears (1) into shear lenses (schematic). The second set (2) of
synthetic faults is associated with a reoriented  between parallel Riedels (see text)

T

T

Pole

P’P

Fig. 8.8. The formation of antithetic
faults (P´) by a shear couple (
when .
Note, that the required external shear
stress  is smaller than the “driving”
shear stress  if  (Fig. 8.3E).
Arrayed en échelon, the antithetic
P´ shears could accommodate the ex-
ternal shear in a similar dilational
bookshelf mode as the tension frac-
tures in Fig.8.5
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will develop at a smaller angle to the external shear direction. As a result, a series of shear
lenses is formed parallel to the external shear direction. Inside the lenses, new faults may
form at even smaller angles to the external shear direction, concentrating the shearing in an
ever-narrowing band of cross-connecting Coulomb-type shears that constitute a continuous
fault.

However, in contrast to this development which is commonly observed in con-
ventional shearing devices, the external shear may also be accommodated by antithetic
Riedel shears in dilational bookshelf mode, similar to, and perhaps undistinguishable from,
rotated échelon tension fractures (Fig. 8.5). This is pointed out by the pole construction in
the Mohr diagram in Fig. 8.8, which shows that the formation and subsequent dilational
rotation of antithetic Riedel shears (P´) is possible in the case where the normal stress

) parallel to the imposed shear direction is markedly greater than the normal stress
) perpendicular to it. Under these conditions, we expect it to be much more likely that

the external shear is accommodated by rotating antithetic shears rather than by non-rotating
synthetic Riedel shears (Fig. 8.7). This is simply because the required “driving” shear
stress  in Fig. 8.8 is smaller than the shear stress in the corresponding Fig. 8.3E.

In view of the range of possible orientations which échelon tension fractures and
shear fractures can have in common, it is often difficult to decide whether the observed
échelon fractures and veins were generated as tension fractures, cleavage fractures, shear
fractures, hybrid extension-shear fractures (Fig. 1.8), or sheared tension fractures. Note,
that even veins need not necessarily originate from tension or extension fractures, since
similar to the opening of tension joints in Fig. 8.5, shear fractures in cohesive rocks also
open up under a dilational bookshelf-type rotation. Thus, understandably, the mechanical
history of échelon joints and veins in the field are a matter of quite some debate in the
literature. For a review of relevant papers, the reader is advised to consult J.E. Olson and
D.D. Pollard (1991; loc.cit.), or Terry Engelder’s article “Joints and shear fractures in
rocks” (in: B.K. Atkinson (ed.) (1987) Fracture mechanics of rocks, Academic Press).

Differentiation between a tension- and a shear-fracture origin of en échelon veins is
easier when pressure solution seams occur together with the veins, as considered in
Fig. 8.9. The example shows conjugate bands of échelon quartz veins and pressure solution
seams in a sandstone bed. The dark solution seams are orthogonal to the direction of ´
during the activity of the solution process, and the quartz veins are at right angles to the
pressure solution seams. From this, and from the fact that the veins show very little sign of
rotation, one may conclude that the veins have originated from tension or extension
(cleavage) cracks. Therefore, on both sides of the line bisecting the angle between the
conjugate bands, the ´ trajectories must somehow curve into the direction of the veins, as
is tentatively indicated in the figure by dashed lines.

A. Beach, in studying similar structures (1977; Tectonophysics 40, pp. 201–225),
concluded that the veins developed as hydraulic fractures under high pore-fluid pressures,
and received the mineral infill from neighbouring pressure solution seams. Assuming that
the pressure solution does not significantly raise the local fluid pressure, the opening of the
fractures is attributed to a pervasive overpressure. Thus, with reference to Chapt. 3, the
veins originated as internal hydraulic fractures (Fig. 3.1A) which, under elastic confine-
ment, should form as “hairline-cracks” (p. 34). Obviously, this is in sharp contrast to the
large vein dilations that are actually observed. However, a closer inspection of hand
samples and thin sections revealed that the dilation of the veins is generally the result of
John Ramsay’s “crack-seal” mechanism (J.G. Ramsay 1980; Nature 284, pp. 135–139),
which implies a repetitive sealing of cracks by the deposition of quartz, and the opening of
new cracks, adjacent to the sealed ones, by a periodic rising and falling of the high pore
pressure.
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In general, the rotation of principal stress axes under simple shearing allows the
development of échelon fracture bands of just one orientation at a time. In contrast, the
simultaneous formation of equally well developed conjugate bands, either singly or in
pairs, as shown in Fig. 8.9, indicates that the structures were formed in a stationary stress
field, such as that caused by a biaxial straining of bed-parallel extension and shortening.
Similar to the formation of conjugate shear joints in a field of non-rotating principal stress
axes, which was discussed in Chapt. 6 (Fig. 6.7), the occurrence of conjugate fracture
bands immediately raises the question of how the bands originate. Asked more specifically:
Did the pressure solution seams and tension (or extension) joints form before, or after, the
formation of a shear zone? What controls the angle between the conjugate fracture bands?
Can Coulomb-Mohr’s theory of fault orientation be applied (see FBR, Sect. 4.3), or should
the fracture bands be considered as dilational faults (Fig. 1.8C), or as something different?
And, did the structures develop in a uniform or a locally perturbed stress field? A
perturbation might be caused, for instance, by pressure solution at an isolated location,
such as the intersection of the conjugate bands show in Fig. 8.9; in passing, it may be noted
that the removal of material may force the -trajectories to “arch” over the “subsiding”
intersection area of the fracture bands (see the discussion of “stress arching” in FBR,
pp. 252–253).

Echelon fractures in pre-peak shear bands. Answers to the above questions may be
found by interpreting échelon fracture bands as “pre-peak shear bands”. This con-tinuum-
mechanical concept was discussed in Chapt. 6 (pp. 134–149). There, it was explained how
a simple-shear band can form under a compressive biaxial load by the operation of a

Fig. 8.9. Photograph of conjugate sets of échelon quartz veins and pressure solution seams
in sandstone beds (Marloes sands, Pembrokeshire, SW Wales, GB). Note the orthogonal
intersection of the dark weathered solution seams by the quartz veins; from this it is
inferred that the fractures formed parallel to the local ´ direction. Dashed lines indicate
conjectural -trajectories

?

?
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dilational bookshelf mechanism of parallel slip elements (see Fig. 6.17A and insert). The
mechanism can produce shear bands inside a loaded rock, which is still in a “hardening”
state, and thus capable of sustaining yet higher loads. Although the bookshelf fractures in
Fig. 6.17A are Coulomb-type shear joints, the concept of a pre-peak shear banding is easily
adapted to the operation of parallel tension joints, or cleavage fractures, inside the band.

For this purpose, the Coulomb-Mohr limit condition inside the incipient band is
replaced by the conditions of tension jointing or cleavage fracturing. Let us consider the
formation of tension fractures inside an incipient simple-shear band ) in the Mohr
diagram in Fig. 8.10. The stresses inside the band are represented by the (shaded) circle
Cint with ´int = –To and ´int = 3To which is the highest value that is still compatible with
the onset of tensile fracturing. The circle Cex represents the uniform compressive loading
stresses outside the shear band. The principal stresses ´ex and ´ex act parallel to the
bedding of the rock in the directions indicated in the upper right corner of the figure. The
circle Cex must intersect the smaller circle Cint, since the normal stress ´ and the shear
stress on the shear band must be the same both inside and outside the band boundaries, at
least as long as the pore pressure is the same on both sides of the boundaries. Moreover,
the intersection points S and S* have to coincide with the opposite vertices of the circle Cint

to ensure that the band-parallel shear stress is the maximum shear stress int
max  inside the

band, as required for simple shearing. In contrast to the continuity of ´ and  across the
band boundaries, the band-parallel normal stress  in Fig. 8.10 decreases discont-
inuously from ex to int across the band boundaries. Naturally, such a stress jump,
although compatible with static equilibrium, would invoke an infinite shear stress at the
band boundary, on either side of which the material is the same. Therefore, the dis-
continuous change of  in the Mohr diagram should be understood as a continuous
transition inside a narrow band margin. In fact, the abrupt decrease of  from outside to
inside the shear band is the main feature of the “stress softening” model which is applied
here (see pp. 142–149).

Next, we consider the line  drawn through the points O and S of the circle Cex. It
represents the trace of the shear band in real space, where it includes an angle  with the
direction of the maximum loading stress ´ex. (Note that the point O is a stress pole of the
circle Cex, since the orientation of the element that is acted upon by the stress ´ex in real
space is known.) Since S also lies on the circle Cint, the intersection of the -line with the
lower part of the circle Cint serves as a pole of the stresses inside the band. The graphical
construction then shows that the maximum compressive stress ´int inside the band is
directed at 45° to the shear band, in accordance with the maximum shear stress int

max  acting
parallel to the band.

Thus, as a result of the difference in the band-parallel normal stresses ´, the ´-
directions inside and outside the band are different. Consequently, close to the band, the -
trajectories should bend into the ´int direction; in fact, much more sharply than
conjectured in Fig. 8.9. Since inside the band, tension fractures or cleavage fractures are
generated parallel to the direction of ´int, the fractures are arranged in dilational
“bookshelf” mode at the acute angle of 45° to the shear band, as indicated in the lower left
corner of Fig. 8.10. Further note, that the joint-bounded rock slices of the band are still
connected to the surrounding rock; this suppresses the tendency of the band to shorten
when the slices are rotated (see insert in Fig. 6.17A). Consequently, the band-parallel stress

int is decreased, which is quite in line with the starting assumption int < ex.
Also note, that the conjugate band *, that would be inclined towards the vertical

´ex-direction at the anticlockwise angle , is constructed, in the Mohr plane of Fig. 8.10,
by drawing the *-line through O and the second point of intersection S* of the two
circles, and again applying the simple pole construction (not shown in the figure). The two
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conjugate bands and fracture sets are then each others’ mirror image with respect to the
´ex-direction in the I, III-plane. While the bands include the angle 2 , the fractures of

the conjugate sets include the angle /2 – 2 .

The inclination angle  in Fig. 8.10 is found from the relations in the triangle
OSQ:

2OM
tan  = ,   SM OM.MQ,   SM = RM 

SM
(8.1)

o
ex

I o

(1 + )TRM
tan      0 1

MQ  T
(8.2)

where To is the abscissa of M.
The circle Cex that intersect a circle Cint at S and S* is defined by the pairs of

dimensionless principal stresses ´ex/To, ´ex/To that satisfy the relationship
1ex ex

2III I

o o

=  – 1 + .   0 1
T T

(8.3)

which is obtained by combining the relationships 8.1 and 8.2.

Fig. 8.10. Mohr Diagram of the pre-peak formation of a simple-shear band under com-
pressive biaxial load ( ´ex, ´ex). The band-parallel shearing is produced by a dilational
“bookshelf” mechanism of échelon tension fractures (see lower left corner). The shaded
circle Cint represents the state of stress inside the shear band, with ´int being assigned the
greatest possible value (3To) compatible with the onset of tensile fracturing. The circle Cex

through O and S represents a homogeneous stress state outside the shear band (see text for
further comment)
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The stress parameters in this equation are further limited by the condition that the
circle Cex has to remain below Coulomb-Mohr’s limit line to exclude the onset of faulting.
In terms of the external principal stresses the limit condition is

ex ex
oI III

o o o

.k + 2 . k     with   k = 1 + sin 1 sin
T T T

(8.4)

Hence, when taking o = 2To and  = 37° as in Fig. 8.10, the restrictive condition
for the circle Cex becomes

ex ex
I III

o o

0.4   1.6  < 3.2
T T

(8.5)

Note, that the radius of the stress circle Cint in Fig. 8.10 is chosen as equal to 2To,
which is already the greatest radius that is theoretically compatible with the formation of
tension joints. This implies that the parameter , introduced in Eq. 8.2, attains the value 1.
The limit circle Cint with ´int = 3To will be intersected at the vertices by the growing
Cex-circles that maps the build-up of a biaxial load at a mean stress ( III´

ex + ´ex)/2  3To.
Some typical loads and the associated inclination angles, determined by the relation-
ships 8.2 and 8.3 with  = 1, are given below:

Note that, in view of the limit condition (Eq. 8.5), III´
ex/To can only attain values

up to 0.57. Further, note that the stars mark the parameter values of the circle Cex which is
tangential to the vertex line, – the line through the vertices S of all limit circles Cint.

The table shows, that pre-peak shear bands which are produced at a mean stress
( III´

ex + ´ex)/2  3To are inclined at an angle  which decreases with increasing
maximum load III´

ex/To. Quite differently, at a mean stress 0  ( III´
ex + ´ex)/2 < 3To,

biaxial loading produces pre-peak shear bands at the uniform inclination angle  = 22.5°.
This is readily seen by considering the Cex-circles that are tangential to the vertex line of
the Cint-circles, which is inclined at 45° to the -axis. Once a growing stress circle Cex has
touched the vertex line, and initiated a first shear band, any further increase in differential
load will cause the stress circle to intersect the vertex line at two points. Hence, for the
initial shear band to remain active, the internal stress circle would have to shift with
placing its vertex at an intersection point. Moving the centre of the Cint-circle to the right
implies an increase of the parallel stress II´

int; this is clearly incompatible with the
shortening tendency of dilational bookshelf-type shearing. Moving the circle to the left
implies a reduction of the shear stress on the band. In general, this will also halt the
rotational operation of the “bookshelf” fractures. Hence, it is rather unlikely that biaxial
loading at 0  ( III´

ex + ´ex)/2 < 3To will generate pre-peak shear bands of tension
fractures at inclination angles different from  = 22.5°.

But this still does not answer the question as to how the shear banding started. Did
the échelon fractures come first, and produce the localized reduction of the normal

III
ex

To
0 0.1 0.2 0.3 0.4 0.5

I
ex

To
5.0 5.4 6.0 6.7 7.7 9.0

o 26.6 24.2 21.8 19.3 16.7 14.0

(8.6)
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Fig. 8.11. The self-organisation of
en échelon tension fractures and veins
(see text for explanation)

stress component, or was the stress reduction first, and localized the formation of the
fracture array? Or did the two phenomena develop simultaneously in an intertwined
fashion? It is this last mode of development that is corroborated by a fracture-mechanical
model proposed by Olson and Pollard (1991; loc.cit.) for the development of en-échelon
vein arrays. The essence of the model is outlined next, in qualitative terms.

Self-organization of en échelon fractures . Consider a rock with randomly located and
oriented flaws. When a biaxial load is applied to the rock, micro-cracks will develop from
flaws and align sub-parallel to the direction of I. Each fracture is surrounded by a tensile
stress release halo, which is widest at the middle part of the fracture and narrows towards
the fracture tips. As the fractures grow in length, their halos also grow in size, and the
fractures start to interact, with longer fractures suppressing the growth of shorter ones. It is
clear, that the shape of the stress release halos allows neighbouring fractures to approach
each other more closely (in terms of the orthogonal distance of the fracture planes) when
the parallel fractures only partly overlap, as schematically indicated for the fractures 1–3 in
Fig. 8.11. In numerical experiments, Olson and Pollard showed that the growth of
neighbouring fractures is enhanced by mechanical fracture interaction for all fracture
arrays with  (see the figure) less than about 50°.

Thus, the model tells us that, in a random fracture population under a tension load,
certain arrays of a few neighbouring micro-cracks will preferentially grow into macro-
fractures in en échelon positions. However, we now face the question: will a rather short en
échelon array, say, of three fractures, born by chance, grow into a longer array by
incorporating additional fractures? In other words, is the formation of en échelon fracture
sets a self-organizing process?

The problem is illustrated in Fig. 8.11.
Assume that there are, ahead of the en échelon
array, micro-fractures in favourable growth
positions. Then, a candidate fracture can grow
into a macro-fracture on only one side of the free
tip region at the end of the en échelon set (4 or 4a
in the figure). Otherwise the distance between the
new fractures would be too small. If it were
fracture 4a, the growth of the en échelon en-
semble would be stopped. Thus, a systematic
growth of the en échelon set requires a stress
asymmetry, with extra tension on the outer side of
fracture 3.

One may safely assume that this tensional
asymmetry is generated by the external shear
couple that acts upon the fractured band of rock,
and tends to rotate the rock slices in dilational
bookshelf mode.

In Fig. 8.11, the parallel fractures are
assumed as straight; but it is easily seen, as very
schematically indicated in Fig. 8.12, that the
dilatant fractures exert shear stresses upon each
other, in the region of overlap. This may cause the
growing fractures to curve towards each
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Fig. 8.12. Shearing interaction of
neighbouring en échelon fractures
(highly simplified)

other, as indicated in the right fracture. This may
result in a sigmoidal shape of the en échelon veins;
this was numerically simulated by Olson and
Pollard (1991; loc.cit.), following earlier fracture-
mechanical studies by D.D. Pollard, P. Segall and
P.I. Delaney (1982; Geol. Soc. America Bull. 93,
pp. 1291–1303).

Recalling from the end of Chapt. 5
(Fig. 5.14E,F) how a remote compressive fracture-
parallel stress tends to stabilize a straight fracture
path, we would expect the sigmoidal deformation
of neighbouring fractures due to shearing inter-
action to be suppressed by high remote compression
parallel to the fractures. This, and other mechanisms
which tend to stabilize the straight propagation of
tension fractures were discussed by C.E. Renshaw
and D.D. Pollard (1994; J. Struct. Geol. 16, No. 6,
pp. 817–822).

Fig. 8.13. Segmentation of an open vertical tension joint by a superimposed horizontal
shear couple that rotates the horizontal III- and II-axes

Shear couple

´III

´III

´I

Open parent tension joint
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The breakdown of parent cracks into dilatant échelon cracks . When a dilatant fracture,
(be it an open tension fracture, a cleavage (extension) fracture, or a hydraulic intrusion
fracture,) enters a region where the axis of the principal stress ´III has been rotated about
the local ´I axis, the parent fracture will disintegrate into numerous en échelon fractures.
This is schematically illustrated in Fig. 8.13. The mechanics of this particular mode of en
échelon fracturing in rocks was studied in a fracture-mechanical analysis by Pollard, Segall
and Delaney (1982; loc.cit.). Here, we shall circumvent the discussion of fracture-
mechanical details by resorting to the “integrability theorem” of vector fields in differential
geometry, which we have already employed to explain the segmentary development of
faults (G. Mandl 1987; J. Struct. Geology 9, No. 1, pp. 105–110; see also MTF, II.7.6, and
FBR, 4.5.)

The theorem states, that a vector field v  (satisfying all the required differentiability,
etc.) will be normal everywhere to a set of smooth, non-intersecting surfaces if, and only if,
the scalar product of the vector field with its own curl vanishes:

v.curl v = 0 (8.7)

Written in extenso for a Cartesian x, y, z system, this condition is

x z y y x z z y xv v / y – v / z v v / z – v / x v v / x – v / y 0 (8.7a)

Now, we identify the vector Fehler! Textmarke nicht definiert. with the unit vector
Fehler! Textmarke nicht definiert. in the direction of the minimum principal stress III,
which we assume to lie in a plane z = const.; the unit vector e I in the direction of I is
parallel to the vertical z-axis.

Since the z-component eIII z of e III  vanishes, Eq. 8.7a reduces to

III III III IIIy x x ye . e / z e . e / z 0 (8.7b)

in terms of the x and y-components of e III.
Introducing the angle  of the unit vector IIIe with the (horizontal) x-axis, the

components of the vector are eIIIx = cos  and eIIIy = sin . Inserting these expressions into
Eq. 8.7b, and noting that  may vary in the z-direction to allow the direction of the
horizontal minimum principal stress to vary with z as assumed in Fig. 8.13, Eq. 8.7b turns
into

d
0

d z
(8.8)

This simple result states that surfaces orthogonal to the direction field of the
minimum principal stress III exist if, and only if, the normal to the plane through the I-
and III-axes has the same direction everywhere. Note, that this condition only refers to the
directions of the principal stresses, and not to their magnitudes. Since, as is generally
accepted, tensile, cleavage or hydraulic macro-fractures must develop normal to the
direction of III, the fractures cannot form as coherent and continuous structures if
condition 8.8 is not satisfied.

Without going into further mathematical details, it should be noted that the above
condition also holds for curved I- and III-trajectories; as long as the two sets of
trajectories lie in parallel planes or on smooth parallel surfaces, the macroscopic fractures
propagating along a curved I-trajectory (as in Figs. 4.26, 5.5, 7.22) will be continuous and
smooth, at least as long as the fractures are not affected by material inhomogeneities or
anisotropies.
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A typical situation, where condition 8.8 is not satisfied, is schematically shown in
Fig. 8.13, where a vertical parent fracture enters a region in which the III-axis spirals
around the vertical; this causes the parent fracture to break down into segments. Clearly,
the differential-geometrical approach does not tell us what the width of the fracture
segments may be in real materials; but it does suggest that twisted fracture segments
themselves may be segmented in a “spiral staircase” mode. Naturally, the twisting of the
fracture segments will stop when, ahead of the propagating fracture, the orientation of the

III-axis becomes constant.
M. Lagalli already recognized in 1930 (Z. Gletscherkunde 17, pp. 285–301) that a

three-dimensional variation of principal stress directions with depth caused the discont-
inuity of crevasses in glaciers. In rocks, similar variations of principal directions with
depth may result from a variety of tectonic situations. A. McGarr (1980; J. Geoph. Res. 85,
pp. 9213–9338) showed that, when I is the overburden stress and the horizontal stresses
vary linearly with depth, the horizontal principal stresses may, from the surface downward,
monotonically change their directions. Thus, even in a fully compressive regime where no
tension or cleavage joints were to be expected, sheetlike intrusions would break up into
separate dykes or dykelets. Some similar tectonic situations were discussed in MTF
(pp. 328–330, II.7.6) and FBR (pp. 147–149, 398–401). In general, the changes in the III

direction are associated with shear couples superimposed on a major stress field.
Interestingly, the break-up of a vertical joint into échelon dilatant fractures is also

observed on the scale of hand specimens (see Pollard, Segall and Delaney 1982, loc.cit.).
In this case, the break-up requires a rotation of the local principal stresses over a very short
distance. What kind of geological conditions might produce the phenomenon? Convincing
answers to this intriguing question seem to be scarce. Nevertheless, a few suggestions may
be made.

Let us consider a horizontal two-layer system of sedimentary rocks consisting of a
stiff layer (1) overlaid by a softer rock (2). The rocks are assumed to be mechanically
isotropic in all layer-parallel directions (transverse isotropy), and are laterally confined
during the accretion of the overburden. The effective overburden load causes horizontal
normal stresses ´h

o, as indicated for a horizontal element in Fig. 8.14A. Naturally, these
stresses differ between the two layers; they are smaller in the stiff rock than in the soft
rock: ´h

o(1) < ´h
o(2). The initial state of the horizontal stresses is changed by a uniform

tectonic extension of the whole two-layer unit in the horizontal direction “1”, without
straining the layers in the horizontal direction “2”. In addition, a simple shear is applied
parallel to the horizontal direction “2”, as schematically shown in Fig. 8.18B. The
deformation reduces the horizontal normal stress in the “1” direction by ´h, and induces
a horizontal shear stress h, as indicated in the figure. Although the straining is the same in
both layers, the induced stresses are different, with ´h

(1) (stiff layer) > ´h
(2) (soft layer).

In contrast, the shear stress h
(1) (stiff layer) will be greater than h

(2) (soft layer).
The orientations of the horizontal principal directions are described in Fig. 8.14C

by the angle , which is easily determined by the formula shown in the figure. We assume
that the rocks respond linear elastically to the uniaxial straining e1, under the lateral
confinement e2 = 0, and to the simple shearing through the angle . The stresses in the
formula in Fig. 8.14C may then be expressed in terms of strains by applying Hooke’s law
(Eq. 3.3 and = G = 2(1 + E). The orientation of the horizontal principal directions
is then given by the simple relation

1

(radians)
tan 2 (1 )

e
(8.9)
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Note, that the E-modulus dropped out of the formula, because it was assumed to be the
same in both the extensional straining and the simple shearing operation. In general, the E-
modulus is greater in unloading than in loading of the rock. Hence, if the shearing takes
place after the extension of the rock, the shear modulus G would be related to a smaller E-
value, and a multiplier smaller than 1 would have to be inserted into the right side of
Eq. 8.9. Another uncertainty occurs due to the Poisson ratio , which is known to vary with
the mean normal stress.

Notwithstanding these simplifications, the relation 8.9 provides a first impression of
the extent to which the combined operation of extension and simple shearing may affect
the orientation of the principal stress axes. Taking = 1.5° = 0.026 rad and e1 = 0.02, and

 = 0.15 for layer “1”, and  = 0.45 for layer “2”, Eq. 8.9 yields: 1 = 24° and 2 = 18°.
Thus, the principal axes would be rotated through only the modest angle of 6° about the
vertical 1-axis, even though the parameter values were chosen for maximum effect.

However, Eq. 8.9 also suggests that the rotation angle may substantially increase if
the shear angle varies in the vertical direction. This may be geologically achieved, for
example, by horizontal shearing between “rigid” boundary rocks of an inclined contact
with the sheared layers (Fig. 8.15). If then, in a vertical interval,  changes from, say 1.5°
to 0.75°, while the values of e1 and  remain the same as in the example before, the
principal axes are rotated through the angle = 14°.

Similarly, the rotation angle is raised when the uniaxial straining differs between
two layers. This may occur in the two-layer system if the straining of the unit as a whole
continues after tension joints have been generated in the stiff layer “1”. As discussed
before (see Figs. 4.18 and 5.5), at the instant of jointing, the stresses and strains in layer
“1” become highly non-uniform, and further straining of the unit is accommodated in layer
“1” by the opening of the joints. Layer “2” is continuously, albeit non-uniformly

Fig. 8.14. Stresses in transverse isotropic horizontal layer of sedimentary rock:
A) horizontal effective stresses caused by overburden load;
B) uniaxial horizontal stretching and simple shearing through angle ;
C) orientation of principal stress directions
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s  strained, with alternating extensional and contractive local deviations from the average
strain e1

(2) (also see p. 66). Taking e1
(2) = 0.02 for the mean value of e1 in layers “2”,

and e1
(1) = 0.005 in layer “1” at the onset of jointing, and  = 1.5°, 1 = 0.15, 2 = 0.45, as

chosen before, Eq. 8.9 predicts a rotation angle = 21°. Hence, in the case where at the
total horizontal strain e1

(2) = 0.02 tensile jointing is also induced in layer “2”, the new
joints will strike at an angle of 21° with respect to the earlier formed joints in layer “1”.
But, although arrayed en échelon, the joints in layer “2” can hardly be considered as
“break-up” structures of a parent tension fracture. However, a break-up would occur to a
hydraulic intrusion fracture that enters layer “2” from the jointed layer “1”.

We think that these examples provide an idea of how a layer-parallel uniaxial
straining in combination with a transverse simple shear couple may rotate the III-axis
around the I direction such as is required to break-up a dilational parent fracture into en
échelon segments. Certainly, other geological settings will exist that may produce these
kind of stress rotations; but detecting them must be left to the inventive reader.

Summary of dilatant en échelon fractures. Despite the abundance of dilatant fractures
(i.e. tension and cleavage fractures, hydraulic intrusion fractures, gashes and veins) in en
échelon arrays in rocks (Figs. 8.1, 8.6, 8.9), and despite the similarity of these structures,
they are the result of quite different mechanical processes. Not all of them are as yet
sufficiently well-understood.

Echelon cracks in shear zones. The formation of échelon fractures in sediments under
simple or quasi-simple (i.e. dilating) shearing by stiffer boundary rocks (Fig. 8.2) is
well understood. The movement of the parallel boundaries enforces a rotation of the I

direction through the angle = 45° if the normal stresses parallel ) and normal
( ) to the external shear direction are equal; otherwise  < 45° if  > , and

 > 45° if  < . Tension fractures form parallel to the rotated I direction only if
the effective stresses ´ and ´ remain smaller than about twice the tensile strength
of the rock. At moderately higher effective compressive stresses the shearing promotes
the formation of Riedel shears (Fig. 8.3), whose orientation is also affected by the
difference between ´ and ´. Hence, in the absence of other indicators, the angular
fracture orientation with respect to the external shear boundaries is not a reliable means
of differentiating between tensile and shear fractures.

Fig. 8.15. Horizontal simple shearing along the inclined contact with a moving boundary
block causes the shear angle to vary with depth

s

s
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Further shearing rotates tension fractures in a dilational bookshelf mode causing the
central fracture parts to open up and thus, allowing the infill of minerals, while the tips
of growing fractures follow the local I direction and give the fractures a sigmoidal
shape (Figs. 8.1, 8.4, 8.5). Small scale rupturing in the marginal zones of a band of
rotated fractures (Fig. 8.5) may then promote the localization of shear along a band
boundary, which could possibly develop into a minor fault. The fault, enforced by the
kinematic constraints of simple shearing, is not of a Coulomb- (or Andersonian) type,
but rather comparable to the non-Coulomb type faults produced under “shear-box”
conditions in all-compressive regimes (Fig. 8.7).

In an all-compressive regime, antithetic shears (P’ in Fig. 8.8) are likely to be
formed under simple shearing conditions when > ; the shears may accommodate
the external shear by rotation in a similar way to tension fractures, and even form veins
by opening during rotation in the dilational bookshelf mode. The similarity in
appearance may make it difficult, or even impossible, in the field to decide with
certainty whether the en échelon fractures were formed as tension fractures or as shear
fractures. The differentiation may become easier when pressure solution seams occur
together with veins in an en échelon array, since they indicate the local orientation of
the maximum compressive stress (Fig. 8.9).
En échelon fractures in pre-peak shear bands. The central question about en échelon
fractures is: how and why are they formed? To answer this question, at least to a great
extent, it is proposed that the en échelon fracture bands are formed as shear bands in a
rock under a compressional biaxial load, which is still below the limit load that the rock
can sustain. While the rock material is, therefore, still in a “hardening” state, the
uniformity of the stress field is perturbed by bands whose band-parallel normal stress

 is smaller inside than outside ( ´int < ´ex). This kind of “stress softening”
(already discussed in Chapt. 6, pp. 142–148) is associated with the formation and
rotation of en échelon tension (or cleavage) fractures inside the bands. Tensile fractures
are produced, and rotated in the dilational “bookshelf” style by the external shear stress
that acts on any band-parallel section in the rock (see the Mohr diagram Fig. 8.10, and
again Figs. 6.16, 6.17A). This has two effects: the band-parallel stress ´int is reduced,
and the bands are sheared in a quasi-simple mode.

There are two conjugate shear bands and * inclined at ±  to the external
direction of the maximum compressive stress ( ´ex). With reference to Fig. 8.10,
the inclination angle  is found to decrease with increasing ´I

ex (see Table 8.6) if
´I

ex/To + ´III
int/To  6To, and to remain at 22.5° if 0 ´I

ex/To + ´III
int/To  6To. The

tension fractures in a shear band are generated at 45° to the band boundary; hence, near
a band of en échelon tension fractures, the -trajectories must bend through an angle
of 45° –  towards the band. Furthermore, the pre-peak shear bands are immobilized by
minor changes in the external stress system, which makes it unlikely that shear bands
of this type develop into minor faults.
Self-organization of en échelon fractures. The continuum mechanical model of pre-
peak shear banding leaves the question open as to how the shear banding starts. A
likely scenario is presented on page 194 (Fig. 8.11): Olson and Pollard (1991; loc.cit.)
showed that, in a random population of micro-cracks, a few neighbouring cracks
which, by chance, form a certain array, will preferentially grow under tension load into
macro-fractures in the en échelon position. The preferential growth of the fractures is
due to the mechanical interaction of partly overlapping parallel fractures.
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But an en échelon array of a few macro-fractures, born by chance, can only develop
into a longer array by incorporating additional fractures in a systematic way, which
preserves the en échelon geometry of the ensemble. This is achieved if the near-tip
stresses of the rearmost fracture of the array, to which the new fracture is to connect,
are asymmetric with a greater tension on the side facing the new fracture. This stress
asymmetry is induced by the external shear couple that acts on the compound of the
initial en échelon fractures (see Fig. 8.11).
The breakdown of parent cracks. A dilatant fracture (tension-, cleavage-, or hydraulic
intrusion fracture) must disintegrate into numerous en échelon fractures when entering
a region where the III axis is rotated around the I axis (Fig. 8.13). A simple
straightforward proof of this statement is provided by the “integrability theorem of
vector fields” (Eq. 8.7).

In general, the changes in the III direction are associated with shear couples
superimposed on a major stress field. As a typical example, a horizontal multilayer of
stiff and softer layers is uniaxially stretched, and subjected to in-plane simple shearing
(angle  perpendicular to the direction of the extension (Fig. 8.14). A simple elastic
analysis (Eq. 8.9) reveals that the contrast in Poisson ratios ( ) of superincumbent
layers may rotate the horizontal III axis around the vertical I axis by a few degrees.
Considerably greater angles of rotation are obtained when the shear angle  changes in
the vertical direction; this would be caused, for example, by an inclination of the
contact between the shearing boundary rocks and the sheared multilayer (Fig. 8.15).
Likewise, the rotation angle is raised when the extensional straining of the multilayer
continues after tension joints have formed in a stiff layer.
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The Stress Circle

O. Mohr’s stress circle diagram is an extremely useful geometrical representation of the
state of stress at a point. It is particularly convenient in problems of plane deformation,
since the state of stress may then be visualized by a single stress circle.

Derivation. We consider in Fig. A.1 the equilibrium of forces on a prismatic volume
element, whose mutually orthogonal faces are chosen so as to be acted upon by the
principal stresses, I, II, III (the associated vectors being ,…). The oblique face
(shaded in the Fig. A.1) is acted upon by a normal stress  and a shear stress . In
addition, the volume element experiences the gravity force dV. As stated in the figure,
equilibrium requires that the vectorial sum of all forces on the prismatic element vanishes.
We divide I, III, t the equilibrium equation in the figure by the surface area d  and let the
prismatic element shrink towards a corner point. Since the ratio dV/d  is proportional to a
characteristic length of the prismatic element, it tends to zero as the element shrinks, and
the gravity force disappears from the equation. Thus, the vectorial equilibrium equation for
the infinitesimal prism becomes:

I III.cos .sin t 0 (A.1)

The vanishing of this vector sum implies that any component of it vanishes as well.
We consider two components: the first parallel to the exterior normal of the oblique side of
the prism, and the second parallel to the shear stress on this side (Fig. A.2). The projections
of the vectors , , t  on the exterior normal of the oblique surface element are

I.cos , III.sin  respectively, while the projections on the direction of  are
I.sin , III.cos , . Hence, the componental equations of Eq. A.1 are

2 2
III.cos .sin 0 (A.2a)

I III( ).sin .cos 0 (A.2b)

Equilibrium of forces:

I d  + III d + dV + t d  = 0

where d  = d .cos , d III = d .sin

Fig. A.1. Forces on a prismatic element
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Fig. A.2. Components of stresses on prismatic element

The Eqs. A.2a,b may be rewritten by means of the well-known trigonometric
identities sin2 = (1 – cos 2 )/2, cos2 = (1 + cos 2 )/2, sin 2  = 2sin .cos :

I III I III .cos 2
2 2

(A.3a)

I III .sin 2
2

(A.3b)

These formulae are extremely useful, since they relate the normal and tangential
components of a stress vector that acts upon a surface element, with the principal stress
values I, III and the angle  which the normal of the element includes with the

I direction. But note that these relations only apply to surface elements which are parallel
to the direction of the intermediate principal stress II. Also note that the last term in
Eq. A.3a attains a negative sign when the angle  is replaced by the complementary angle

/2 –  (Fig. A.1).

Fig. A.3. Mohr’s circle representation for stresses acting parallel to the I, III-plane
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The angle  can be eliminated from the Eqs. A.3a,b. Because of
sin2 2  + cos2 2 = 1, rearranging terms in the equations, squaring and adding yields

2 2
2I III I III

2 2
(A.4)

Mohr’s stress circle. If we compare Eq. A.4 with the equation

2 2 2x a y R

of a circle in a Cartesian x,y-coordinate system (Fig. A.3A), we notice immediately that
Eq. A.4 represents a circle in a two-dimensional Cartesian frame with the coordinates

and (Fig. A.3B).
The “stress circle” has the radius ( I – III)/2, intersects the -axis at the points

( III,0) and ( I,0), and is centred on the -axis at a distance of ( I + III)/2 from the origin.
The coordinates , of a point on the circle represent the normal and tangential stress
components of the stress vector t which acts on a planar element which is parallel to the
intermediate principal stress II. Since we count compressive stresses as positive, the
corresponding stress points will lie in the positive half-plane of the diagram.

It is important to note that the radius vector to a stress point, associated with a
planar element whose normal includes the angle with the I direction (Fig. A.2), includes
twice that angle with the -axis. The corresponding relation tan 2 = /[  – ( I + III)/2]
in Fig. A.3B follows directly from the parameter equations (Eqs. A.3a,b) of the stress
circle. Needless to say, is not only the angle between the normals of two planar elements,
but also the angle included by the elements themselves. Hence, when a planar element in
real space is rotated anticlockwise around the II-axis through an angle , the radius
vector of the stress circle is rotated through 2 .

Note also that the chord extending from the stress point ( III,0) to a stress point
( , ) makes the angle with the -axis, since according to an elementary geometrical
theorem the angle extended from any point on the periphery of a circle over a given arc of
the circle amounts to half the angle extended over the same arc from the center of the
circle.

Fig. A.4. Maximum shear stress in the Mohr diagram
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The Mohr circle is fully determined and easily constructed when the principal stress
values I and III are prescribed, or when the normal and shear stresses that act on two
arbitrary, mutually orthogonal planes, are known, in which case the associated stress points
lie at the opposite ends of a diameter of the circle.

Maximum shear stress. From the Mohr Diagram (Fig. A.4) it is immediately
apparent that maximum shear stresses max occur on elements inclined at 45° to the I-axis
(i.e. 2 = 90°) since  = 0 for the radius vector to the principal stress point ( I,0). The
normal stress acting on these elements is ( I + III)/2, while max = ±( I – III)/2. The two
maximum shear stresses are equal in magnitude, as is required by the symmetric
orientation of the two elements with respect to the I-axis.

Stress relations. If the normal and shear stresses that act upon two mutually perpendicular
planes which are parallel to the II direction are known, the values of the principal stresses

I, III and the maximal shear stress max can be read from the Mohr Circle. These stresses
may be also determined from the analytical expressions:

which are derived by applying Pythagoras’ Theorem to the shaded triangles in Fig. A.5A.
Similarly, the directions of the principal stresses I and III are easily determined

with respect to a material element whose normal and shear stress are known. For the simple
construction in the Mohr Diagram in Fig. A.5B the material reference element was chosen
with the normal parallel to the x3-axis of a Cartesian system (see insert of Fig. A.5B). The
element is acted upon by the stresses 3 and 31. Hence, the radius vector to the point
( 3, 31) on the stress circle includes the angle 2 with the radius vector to the point I,0),
i.e., twice the angle between the I-axis and the x3-axis in real space. The complementary
angle 2  in the Mohr Diagram is then twice the angle between the I axis and the x1-axis.
The shaded right-angled triangle in Fig. A.5B immediately provides the important
analytical expression for the orientation of the I-axis:

31
1 3

2
tan 2 tan 2 ( ) (A.6)

where 1 and 3 are the normal stresses that act upon the elements with normals parallel to
the x1- and x3-axes of a Cartesian frame, and 31 = 13 is the shear stress on these
elements.

Note that the roles of the x1- and the x3-axes in Eq. A.6 are interchanged, if 1 < 3,
and the angle * in tan 2 * = 2 / 3 – 1) becomes the angle between the I-axis and the
x3-axis.

Three-dimensional state of stress. So far, we have dealt with stresses that act upon
material elements whose normals are perpendicular to the II-axis Although we shall

max
I III

2
1 3

2

4 13
2

1 3
2

1 3
2

4 13
2

I

III

(A.5a)

(A.5b)
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mostly deal with this type of elements, occasionally we may also consider elements with
normals perpendicular to the I-axis or to the III-axis. The stresses of these elements map
on one of the smaller circles in Fig. A.6. Without proof, we add that the stresses ,
which act on elements that are obliquely oriented with respect to all three principal stress
directions map on the interior of the crescent-shaped region enclosed by the three principal
stress circles.
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Fig. A.5. Stress relations in the Mohr Diagram:
A) principle stresses and Cartesian stress components;
B) orientation of principal axes in Cartesian reference frame (see text)
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Fig. A.6. Mohr’s representation of a three-dimensional state of stress

Fig. A.7. Construction of the I direction by transposing the trace (AP) of a material
element in the I, III plane ( in the insert of Fig. A.5) into the Mohr Diagram

The “pole” of the stress circle. There is an even simpler way of determining in Fig. A.5B
the direction of I with respect to the element whose normal and shear stresses are known.
Consider in Fig. A.7 again the Mohr Circle and the stress point of Fig. 2.5B and draw the
chord from this point (A) parallel to the trace of the associated material element in the I,

III-plane of real space. The chord meets the stress circle at a point P. Now connect P with
the stress point ( I,0) at B. The angle  subtended by the chord AP and the line BP is then
half the angle subtended by the radii from the centre to the ends of the arc AB. The
angle is, therefore, the angle which, in real space, the element that is acted upon by I

includes with the reference element. Since we have conveniently chosen the chord AP

•• •x x°
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•
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parallel to the trace of the reference element in the I, III-plane, the line segment BP is
also parallel to the trace of the element acted upon by the maximum principal stress I.
Since I acts perpendicularly on this element, the I-axis is parallel to the chord drawn
from the point ( III,0) to P.

Naturally, the same procedure can be applied to determine the orientation or the
stresses of any material element which is parallel to the II axis, provided the Mohr Circle
and a single reference element with known orientation and stress components are given. In
Fig. A.8A,B the chords AP represent the traces of such reference elements, transposed
from the I, III-plane into the Mohr Diagrams. If we wish to know the orientation of the
material element that is acted upon by a given shear stress and a normal stress , all we
have to do, is to connect the point P with the corresponding stress point B on the circle.
This line is then parallel to the trace of the element in the I, III-plane. Conversely, if we
wish to know the stresses that act on a given element, we draw from P the chord parallel to
the trace of the element. The other endpoint of the chord represents the stresses on the
element. The point P is referred to as the pole of the stress circle, because of its prominent
role in this construction. The two diagrams in FigA.8 illustrate the difference between
reference elements with sinistral and dextral sense of shearing. The shear stress acts
towards the acute angle between reference element (AP) and I direction.

Fig. A.8. Pole of the stress circle; chord AP represents the trace of the reference element in
the I, III-plane. Shear stress on reference element: A) sinistral; B) dextral

Examples. 1. The principal stresses depicted in Fig. A.9A may act parallel to any plane in
space. In a vertical plane, for instance, I° could be the stress exerted by an overburden
upon a horizontal plane, while acting in horizontal directions ° and III° may give rise to
horizontal displacements along vertical fault planes. A Mohr Circle (Fig. A.9C) represents
the stresses on the material elements with normals parallel to the , III-plane. The chord
of the circle, drawn parallel to the trace of the plane acted upon by ° in Fig. A.9A,
determines the pole at ( III°,0). Since the two points coincide, the chord representing the

° direction by connecting the two points on the circle degenerates into the tangent shown
in Fig. A.9C.
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Fig. A.9. Change of I-direction by superposition of a shear stress

Next, we assume that a shear stress is imposed by some tectonic simple shearing
(Fig. A.9B), leaving the normal stress components on the orthogonal faces of the volume
element in Fig. A.9A unchanged. Thus these normal stresses maintain the original values
of I° and III°, which implies that the center of the stress circle remains fixed. How are the
principal stresses affected in magnitude and direction by the imposed shearing? The
question is important, since incipience and orientation of tectonic faults and joints are
determined by the principal stresses.

Figure A.9D shows again the original stress circle (shaded), but the point ( I°,0) is
no longer associated with the plane originally acted upon by I°. Instead, the stress point
( I°, ) is now associated with this plane, and completely determines the new stress circle,
since the centre of the circle is not changed by the imposed simple shear. The orientation of
the new maximum principal stress I is found by the simple pole construction in Fig. A.9D.

2. In the next example we consider a normal fault in a horizontally layered rock
mass with a horizontal surface. Figure A.10A shows the trace of the fault in a dip section,
which also is the I, III-plane as the fault strikes parallel to the II-axis. The vertical
overburden pressure is the maximum principal stress I, and the value of III is assumed to
be known, at least approximately, either from in-situ measurements or from shear strength
data of the rock. We wish to determine the normal stress and the shear stress that act

• ••

Pole

Pole

• ••

•

••

•

A B

C D

°

°

°

°

°°

° °
I



The “pole” of the stress circle                                                                                                                  213

upon the fault plane. With I and III being known, we can draw the stress circle in
Fig. A.10B. As in the preceding example, the point ( III,0) becomes again the pole, from
which we draw the chord parallel to the fault trace in Fig. A.10A. The coordinates of the
point where the chord meets the circle represent the normal and tangential stress
components on the fault.

Fig. A.10. Normal and shear stress on a normal fault in a horizontally layered rock mass:
A) dip section of the fault with principal stresses;
B) determination of fault stresses in the Mohr diagram
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Index

Symbols

-factor  28, 29
-factor  30

A

aperture (see hydraulic fracture)

B

basin
–, Earth’s curvature  109
–, exfoliation  116, 117
–, joint parallel to

–, long axis  111–113
–, short axis  116

–, reference model  106, 123
–, residual stress  116
–, subsidence  109–113

–, overpressuring  111
–, uplift  105–108

“bookshelf” mechanism
–, dilational style  143, 150, 174, 188, 191
–, domino style  142

brittle
–, definition  5–8

–, vs. ductile  8, 9
–, semi-brittle  8

C

cap rock (migration through)  30–43, 46
capillary entry pressure  45
cleavage fracture (axial splitting)  (see extension

fracture)
crack-seal mechanism  171, 191
Coulomb friction  98
crack and vein (see en échelon crack)
creep  9
Co uniaxial compressive strength  18, 19, 96

D

damage zone
–, pre-faulting  153–156, 182
–, syn-faulting, process zone  156–164, 182, 183

delamination  76–83, 96, 97
–, length  80
–, no-rupture condition  76

dilational faulting  5, 92–94, 136, 143, 154, 171,
172

dyke (see hydraulic fracture, intrusion)
dyke-sill mechanism  40–43, 47

E

en échelon crack and vein
–, break-up of parent fracture  199–201, 203

(see also segmentation of fracture)

–, pre-peak shear band  193–195
–, orientation  194, 195
–, self-organisation  196, 202

–, Riedel shear  143–145, 187, 188, 190, 191
–, shearing interaction  196, 197
–, shear zone  185–192, 201, 202
–, stress rotation  186

energy balance (fracture propagation)  73
energy release rate  73

–, in delamination  79
exfoliation  22, 25, 116, 117
extension fracture (“cleavage fracture”)  18–25,

87–91, 97
–, closely spaced  91–94, 97, 117
–, geological environment  23–25
–, initiation  92
–, microscopic aspect  20, 21
–, thrust and fold belt  88–91
–, uniaxial compressive strength

–, rock sample  18–21
–, geological condition  21–23

–, “wing” crack  20, 92

F

fault and joint
–, deformation along fault  164–166
–, dilational fault  5, 171, 172
–, joint perturbed by fault  175–179
–, pre-faulting fracture  153–156
–, reopening of healed joint (see healed joint)
–, strike-slip fault, joint-parallel  172–175, 184
–, syn-faulting fracture

–, on advancing side  160–164
–, on receding side  158, 159

–, trend of near-tip fracturing  163
fold (compressional)

–, jointing in  64, 180–182
–, flexural slip  181

foreland of fold belt  88–90
fracture

–, aperture of tension (see hydraulic fracture)
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–, extension (“cleavage”) (see extension
fracture)

–, hydraulic (see hydraulic fracture)
–, mode  5
–, near-tip  157–164, 182, 183
–, near-tip stress  15, 158
–, resistance  81
–, saturation (see joint)
–, segmentation  198–201
–, tension (mode I)  14–18
–, toughness  6

fundamental joint system  50, 52, 101–119

H

healed joint
–, intersection of  53, 54, 103
–, reopening and fault slip  168–172, 183, 184

–, condition  168, 169
–, “crack-seal” mechanism  171, 191
–, dilational fault  171, 172
–, overpressure  170, 171

hydraulic fracture
–, internal fracture

–, aperture  32–34
–, depth range  31
–, “hairline” crack  33
–, laterally constrained  28–34
–, laterally unconstrained  28, 88, 89

–, intrusion fracture  34–47
–, aperture  36
–, dyke-sill mechanism  40–43
–, growth  37, 38
–, non-wetting fluid  45
–, permeable wall  43–45
–, rising of closed fracture  38–40, 47
–, side-stepping dyke  40, 41
–, spacing  37, 38

J

joint
–, cleavage (extension) (see extension

fracture)
–, cooling  2
–, definition  1
–, dyke-sill  2
–, “feather”  189
–, healed (see healed joint)
–, in basin (see basin)
–, in faulting (see fault and joint)
–, in folding (see fold)
–, in inclined layer  83–85
–, infill  68, 96
–, practical aspect  3, 4
–, saturation of  68–74, 96
–, shear (see shear joint)

–, spacing of (see tension joint, extension
fracture)

–, straightness  119–122, 124, 197
–, system of (see multiple joint set)
–, tension (see tension joint)
–, vein  1
–, vertically aligned  67, 97

K

KIc  17
Ko  30, 107

L

laboratory test vs. geological condition  13, 18,
91, 97

M

Mohr’s stress circle  205–213
–, “pole” of  210–213
–, stress relation  208

multiple joint set  101–119
–, “fundamental joint system”  50, 52, 101,

122
–, in basin  105–113
–, in compressive fold  117–119
–, non-orthogonal  103–105
–, orthogonal  102, 105

O

overpressure  30, 32
–, in foreland of fold belt  88, 89, 97
–, in subsiding basin  110, 111
–, near progressing fault tip  160
–, reopening healed joint  170–172

P

pinching-off effect  19
Poisson effect  105

–, suppressed in basin uplift  106–108
–, suppressed in compressional folding

118–119
pore pressure  12

–, in wall rock  44
–, instantaneous build-up  48

pre-peak shear band  134–151
–, “bookshelf”-type  143–148
–, criss-cross pattern  151
–, conjugate  15
–, en échelon fracture  193–195
–, experiment  135, 136, 138
–, immobilisation  147, 148
–, orientation  141, 146, 147, 194, 195
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–, spacing  149
–, “stress softening”  142
–, theory  137–141

R

Riedel shear (see en échelon crack)
rock-mechanical testing

–, apparatus  13
–, vs. geological condition  22

S

segmentation of fracture  198–201, 203
shear joint  125–152

–, post-peak load  129–134, 150
–, biaxial load  131
–, “bookshelf” mechanism  130, 131
–, regional tilting  132–134
–, stress switch  129

–, pre-peak load (see pre-peak shear band)
–, spacing  148, 149
–, vs. tension joint and fault  125–128, 149

shear zone (see en échelon crack)
sign convention  11
sill  34, 35
“simple shear”  142, 143, 186, 187, 190
spacing (see extension joint, shear joint, tension

joint)
stability of fracture path (see tension joint)
straightness (joint) (see joint)
strain hardening and softening  6
strength

–, KIc  17
–, shear  11
–, tensile  11, 14, 18
–, uniaxial compressive  11, 18

stress
–, barrier  42, 51
–, effective

–, “generalised”  13
–, Terzaghi  12

–, intensity factor KI  15
–, jump  41, 42, 178
–, maximum shear  76, 207

–, near-tip  15, 16, 54
–, pole (see Mohr’s stress circle)
–, remanent (remnant)  114, 115
–, residual  113–117, 124, 181
–, rotation  186, 187, 197–200
–, strain relation

–, poro-elastic  29
–, poro-thermo-elastic  106

strike-slip fault  88, 131
–, conjugate  179
–, formation  173–176

T

tension joint
–, arrest (termination)  49–54
–, composite  52
–, formation  27, 48
–, hydraulic  28–34
–, infill  68
–, in compressional fold (see fold)
–, in inclined layer  83–85
–, in pre-peak shear band  193–195
–, model and reality  74–76
–, multiple set (see multiple joint set)
–, spacing models

–, Hobbs’ “welded-layer” model  58–66,
75, 76, 95

–, irregular spacing  85
–, joint saturation  68–74, 96
–, numerical result  72
–, pressure draw-down  86, 87
–, Price’s “frictional coupling” model

56–58, 75, 76, 95
–, thin weak interlayer  66, 67

–, perturbation by fault  175–180
–, path stability  120–122, 197
–, side-stepping  51, 53, 54
–, systematic and non-systematic (see multiple

joint set)
thermal expansion  107

W

wing crack  20, 92, 159, 160, 182


