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INTRODUCTION

Richard G. Weiss' and Pierre Térech?
1Department of Chemistry, Georgetown University, Washington, DC 20057-1227, USA

2UMR58]9 CEA-CNRS-Université J. Fourier, DRFMC-SI3M-PCM, CEA-Grenoble 17,
rue des Martyrs, 38054 Grenoble Cedex 9, France

It has been eight years since the editors of this book decided to review
the state of the art in a burgeoning field, “molecular gels” and their “self-
assembled fibrillar networks” (SAFINs) in which the agents for gelation, low
molecular-mass organic gelators (LMOGs), are differentiated from molecules
which polymerize during gelation and lead to mostly inorganic networks (e.g.,
sol-gel glasses) [1]. The rapid growth of interest in “molecular gels” since
1990 is indicated by Figure 1 in which the number published articles in the
Web of Science® that use the term “organogel” or “hydrogel” in their titles,
keywords, or abstracts is plotted by year. The plot of the “organogel” data
alone is included to demonstrate that its rate of rise surpasses that of even
hydrogels. An analogous plot, demonstrating the rise in interest in “molecular
hydrogelators” over amuch longer period, is included as Figure 1 of Chapter 17.
The actual number of publications per year dealing with “organogels” and
“hydrogels” is much larger than shown because many articles devoted to the
subject do not use either of these terms, and “molecular gels” are referred
to by several other names. More importantly, the numbers do not provide an
assessment of the enormous advances in our understanding of the subject that
has occurred during the intervening years. Regardless, the increased attention
paid to molecular gels and SAFINs is apparent, and the pace of discovery
shows no signs of slowing. Although many books have been written about gels
and their properties, virtually all are devoted to aqueous or organic polymeric
gels and their applications, mostly in the food, cosmetic, and pharmaceutical
industries [2], and we have been able to find no book devoted to molecular
gels or SAFINSs. The rise in interest in the field and its rapid development make
this a propitious moment to bring together the vast amounts of information that
have been accumulating. In this book, we attempt to place that information in

1
R.G Weiss and P. Terech (eds.),

Molecular Gels. Materials with Self-Assembled Fibrillar Networks, 1-13.
© 2006 Springer. Printed in the Netherlands.
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Figure 1. Number of articles per year found in “The Web of Science” in which “organogel”
or “hydrogel” (solid columns) or only “organogel” (shaded columns) appears in the title, key
word index, or abstract.

a framework that will be useful as a reference for scientists already active in
the field and as a guide for those interested in learning about it.

Initial attempts to develop an outline for the book confirmed what others
and we have known for some time — to present a comprehensive picture of
molecular gels and SAFINS, or even to attempt to do so — requires inputs from
scientists in diverse fields. The authors of the chapters are a testimonial to this
assertion. They include chemists, engineers, spectroscopists, physicists, biol-
ogists, theoreticians, and material scientists; the editors are a physicist and a
chemist. The subject, molecular gels, has given us a common forum to discuss
the complex issues dealing with them from a myriad of perspectives; Mother
Nature defines the problems and we work piece-meal to find the solutions. We
have tried to integrate those pieces as much as possible so that the interdisci-
plinary nature of the approaches to studying and understanding molecular gels
and SAFINs is apparent to the reader. The parable about the blind men and the
elephant may be an applicable analogy.

The different aspects of molecular gels and SAFINs — their theory, tech-
niques for investigating them, their different types, and their applications — are
treated by sections in the order shown. Each chapter delves into one or more
aspects of one of the topics in a didactive way. By design, and as a logical con-
sequence of the multi-disciplinary approaches needed to study molecular gels,
several topics are treated in more than one chapter, but from different perspec-
tives. Our objective is to present methodologies and perspectives rather than
reviews. The chapter authors have been selected carefully for their expertise in
the areas they treat and for their ability to relate them to the “total picture”; we
wish to reveal the true nature of “the elephant” for all to see and admire.

Before proceeding further, we address a fundamental, but not simple, ques-
tion: “What is a molecular gel?” To start, we will try to answer the broader
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question, “What is a gel?”, and then narrow the classification eventually to
“molecular gels”. Gels are very diverse systems chemically and they are not
easily defined in a few words. In 1861, Thomas Graham tried to describe gels:
“While the rigidity of the crystalline structure shuts out external expressions,
the softness of the gelatinous colloid partakes of fluidity, and enables the colloid
to become a medium for liquid diffusion, like water itself” [3]. He continued,
“The colloid possesses ENERGIA. It may be looked upon as the probable pri-
mary source of the force appearing in the phenomena of vitality.” [3] Given
the analytical tools at his disposition, Graham had no recourse except to use
descriptive and macro-structural terms; as “Master of the Mint” at the time, he
may have felt entitled to a bit of speculation about ENERGIA. One may assume
that he was referring to the ability of a colloidal suspension to undergo structural
changes when it is not at equilibrium, or he may have had more metaphysical
ideas in mind! Sixty-five years later, Dr. Dorothy Jordon Lloyd wrote, “The
colloid condition, the “gel,” is one which is easier to recognize than to define.”
[4] Then, she went on to state, “Only one rule seems to hold for all gels, and that
is that they must be built up from two components, one of which is a liquid at the
temperature under consideration, and the other of which, the gelling substance
proper, often spoken of as the gelator, is a solid. The gel itself has the mechani-
cal properties of a solid, i.e., it can maintain its form under the stress of its own
weight, and under any mechanical stress, it shows the phenomenon of strain.”
The latter definition addresses structural aspects of gels and comments on their
viscoelastic properties. The former definition is an enigmatic dictum, but when
adopted by an experimentalist looking for a quick determination of what is and
what is not a gel, it is very useful even though it is inaccurate, of course — not
all gels are colloidal and not all colloids are gels! [5]. All of these definitions
reflect the continued limited ability of scientists of the era to analyze complex
materials. By 1949, our understanding of gels had progressed to the point where
Hermans maintained that gels: “(a) ... are coherent colloid disperse systems of
at least two components, (b) ... exhibit mechanical properties characteristic of
the solid state...,” and “(c) both the dispersed component and the dispersion
medium extend themselves continuously throughout the whole system.” [6]
Still, Ferry recognized that the complexity of gels and gel types might obviate
the utility of a detailed encompassing definition. Thus, he offered a less rigor-
ous and more descriptive one: “[A gel] is a substantially diluted system which
exhibits no steady state flow.” [7] In a sense, this definition is a “retreat,” a
capitulation to the realization gleaned from detailed structural and rheological
investigations that gels are just diverse and complex! Finally, Webster’s Third
New International Dictionary defines a gel as “a colloidal in a more solid form
than a sol: as a: a semisolid apparently homogeneous substance that may be
elastic and jelly-like (as gelatin) or more or less rigid (as silica gel) and that
is formed by coagulation of a sol in various ways....” [8] This definition is
not intended to describe molecular gels! Several other definitions of gels which
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have appeared in the literature are much more sophisticated, but their complex-
ity makes them difficult to apply in daily practice. For screening purposes, at
least one of the editors of this book ascribes to the Lloyd philosophy: “... if it
looks like ‘Jell-O’, it must be a gel!” [1]

Each of the more sophisticated definitions attempts to link the microscopic
and macroscopic properties of a gel [9—-11]. Based on these definitions, one can
classify a substance as a gel if it (1) has a continuous microscopic structure with
macroscopic dimensions that is permanent on the time scale of an analytical
experiment and (2) is solid-like in its rheological behavior despite being mostly
liquid. Much more precise and detailed explanations of what is a gel and,
especially, what is a molecular gel, will be provided within the chapters of this
book. There are several subclasses of gels, and each meets both of these basic
criteria. Flory suggested four different types of gels [10, 12]:

1. Those with well-ordered lamellar structures. Some of these are lyotropic
liquid-crystalline phases.

2. Those with cross-linked polymeric networks swollen with solvent. In
these phases, the polymer chains are disordered.

3. Those with polymer networks in which the chain-chain interactions are
physical. The chains may be predominantly disordered, but regions of
local order (especially where inter-chain interactions occur) may also
exist.

4. Those with particulate disordered structures. They include materials in
which the gel networks are comprised of fibrils and are the focus of this
book.

For instance, polymer gels are “... cross-linked networks of polymers

swollen with a liquid,” [2d] and sol-gel glasses are 3-dimensional matrices

of crystalline or amorphous solids with honey-combed channels. As such,
their microscopic networks are present at all times and at all temperatures

(below those at which irreversible decomposition occurs). Especially for poly-

mers in which interchain attractions are based on electrostatic (N.B., polyelec-

trolytes) or H-bonding (N.B., poly-N-alkylacrylamides) interactions, network

(and, therefore, gel) stability can depend on temperature, pH, the nature of

the liquid, and even the history of the material. However, bonding within the

polymer chains does not; such systems start with one dimension of molecular
assembly, the covalent linkage of monomers within each polymer chain.

In molecular gels, supramolecular aggregation and corresponding SAFIN
formation usually occur when a solution or sol (i.e., “a fluid colloidal system:
as a: a dispersion of solid particles in a liquid colloid solution ...” [8]) of
a low concentration of gelator molecules (frequently <2 wt. %, representing
the percolation concentration threshold of the fibrillar species) in an appropri-
ate liquid is cooled below its characteristic gelation temperature (7). In this
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super-saturated concentration regime, microscopic phase separation occurs,
rather than the macroscopic phase separation common to crystallization pro-
cesses (where a bulk solid and liquid are visible to the naked eye). Instead,
the gelator molecules self-assemble in stochastic nucleation events involving
highly specific interactions that allow preferential one-dimensional growth,
usually to form fibers that are frequently crystal-like; they serve the function
of the polymer chains in polymer gels. The “junction zones” [13] between
fibers, whose shapes may be in the form of strands, tapes, chiral ribbons,
tubules or other aggregates with very large aspect ratios (see Chapters 2, 3,
14, 16, and 22), provide rigidity to the microstructure. They are the “glue”
that distinguishes the three-dimensional networks of gels from an aggregate of
one-dimensional fibrillar objects that do not interact. The resulting network of
microscopic or nanoscopic objects with high aspect ratios (and, in many cases,
mono-disperse cross-sections) interact to form the three-dimensional porous
lattice that permeates the volume of the sample, encapsulating the liquid com-
ponent and inhibiting its flow. Thus, solids or other aggregates (N.B., giant
worm-like micelles; see Chapters 6 and 19) in these gels differ from common
crystals, for which the ratio of dimensions of small and large crystals is usu-
ally nearly constant. In addition, crystalline morphs in the fibrils may be the
same as or different from those in the single crystals of the constituent LMOG
molecules (see Chapter 11). Fortunately, the rod-like species can be charac-
terized by techniques in real space (see Chapter 9) or reciprocal space (see
Chapter 10).

The interactions holding together individual strands as well as the junction
zones that link different strands of most SAFINs are non-covalent and consid-
erably weaker than covalent bonds. The natures of these secondary interactions
depend mainly on the structure of the gelator molecules, but they can run the
gamut from hydrogen bonds to weaker London dispersion forces, and the liquid
part of the gel can be instrumental by either promoting or discouraging interac-
tions among SAFINs (see Chapters 1 and 7). As mentioned above, gelators can
be organic or inorganic. When they are inorganic, the SAFINs frequently (but
certainly not always; N.B., laponite gels) are formed irreversibly because aggre-
gation is accompanied in those cases by new covalent bonds. Non-covalent
interactions among constituent low molecular-mass organic gelators (for the
purpose of this book, molecules of <2000 Daltons that are basically organic
in their structures) are more common (see Chapter 14). They lead to SAFINs
that can be repeatedly disassembled upon heating the gels and reassembled
upon cooling their solutions (or sols). The relationships between the molecular
structure of the LMOG and the ability to form rod-like structures are still topics
of active investigation and speculation. They involve very subtle balances
between opposing parameters, such as those controlling the solubility in a
given liquid and those that trigger the epitaxial growth into axially symmetric
elongated aggregates (see Chapter 4). At a larger length scale, the attractiveness
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of the potential between the rod-like species will influence the relative amounts
of SAFIN bundles and ends as well as the degree of homogeneity of the
mesh size.

In a few cases, the network appears to consist of branches in the fibrillar
assembly that provides a self-similar pattern, enabling the use of fractal descrip-
tions (see Chapter 9). Also, some static or semi-static properties of worm-like
aggregates formed by LMOGs can exhibit very specific rheological (in the
linear and non-linear regimes) and structural features that appear like those of
polymers, especially breakable “equilibrium polymers” (see Chapter 19). The
concepts that have been invoked to explain surfactant interactions and discrete
polymer domains are also applicable when considering theoretical frameworks
to derive phase diagrams that start from a conventional lattice description to a
refined cascade theory of gelation (see Chapter 1).

The nature of a SAFIN and the manner in which its constituent LMOG
molecules aggregate are very sensitive to the properties of the liquid being
gelated (see Chapters 7 and 14). The liquid may be aqueous (resulting in a
hydrogel; see Chapters 16 and 17) or organic (resulting in an organogel; see
Chapter 14). Due to the nature of the non-covalent interactions responsible for
the stabilization of the SAFINs, both types of molecular gels are classified as
physical, and LMOGs that gelate both organic and aqueous media are termed
“amphiphilic” (see Chapters 15-17). Liquid is trapped within the SAFIN net-
work, essentially stopping macroscopic flow (see Chapter 7). However, it has
been recognized for nearly a century that the vast preponderance of the liquid
molecules are able to diffuse, in some cases, as though the gel network is not
present [4, 14]. When heated to temperatures exceeding T,, the networks of
the reversibly-formed gels disassemble and the sample becomes free-flowing
again. In some cases, the liquid component of a molecular gel can be removed
without disassembling the SAFIN structures. Lyophilization, slow evaporation,
and careful liquid replacement (with a very volatile species, such as supercriti-
cal CO,) are examples of strategies that have been employed to isolate a SAFIN.
The network so obtained may or may not be the same structurally and mor-
phologically as the one within the gel. Many LMOGs are polymorphous and
can undergo a phase transition during removal of the liquid from the gel. In
addition, the network may collapse onto itself in the absence of liquid, resulting
in a xerogel. If the network does not collapse, an aerogel is obtained.

A wide variety of rheological behaviors and structures has already been
found in these physical gels, and they range from those associated with soft
viscoelastic solids to “equilibrium polymers” (see Chapters 5, 6, and 19) and
nematic-like gels (see Chapters 3, 6, 19, and 21). Each presents a spectrum of
degrees of ordering in the basic units and/or junction zones of the SAFINs (see
Chapter 9). Under certain circumstances, arheological chaos in sheared systems
is also found to be spatio-temporally dependent (see Chapter 6). Although a
great deal of attention has been paid to the structures and rheological properties
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of gels, very little attention has been paid to the dynamics of assembly of
SAFINSs in gels. Two noteworthy approaches to express the dimensionality and
kinetics of growth employ the Avrami equation or are related to it [15], and a
fractal model that is closely related in form to the Avrami equation [16] (see
Chapter 4).

Some forms of fibrils can be stabilized by twisting individual supramolec-
ular aggregates of rod-like chiral species. The competition between opposing
interaction energies may restrict the growth of the fibrils to finite cross-sectional
dimensions (see Chapter 3). Bending and twisting mechanisms are opposing
packing constraints and contribute to the existence of a hierarchical self-
aggregation process. The relation and the reversible tunability between molec-
ular and supramolecular chirality is of fundamental and applied importance
(see Chapters 15-17) [17]. In this regard, chiral molecules can self-assemble
into chiral membranes (see Chapters 2 and 3). Variations in the direction of
molecular tilt and in the curvature can induce the formation of helical ribbons
that behave as unstable intermediate states along a protracted process leading to
tubules. In turn, gels with tubular morphologies may have specific orientations
and flow characteristics.

Despite the crystalline natures of many SAFIN fibers, they are able to bend
somewhat as a result of their very large aspect ratios! These assemblies on
the micro- and nano-scales have the same mechanical properties designed by
architects and engineers [18] to protect skyscrapers from crumbling during
earthquakes. The link between this characteristic at different size scales has
been recognized and discussed in general terms for many centuries [19, 20].
Of course, Mother Nature has exploited SAFIN-like structures to impart unique
properties to many macrobiological systems. Examples include fibrous actin
[21] and clathrin [22], tubulin [23], keratin [24], insulin [25], collagen gels
[26], silk processing by insects and spiders [27], amyloid fibrils that have been
implicated in Alzheimer’s and other neurodegenerative diseases [28], sickle cell
anemia hemoglobin in its deoxy state [29], and fibrinogen, the blood clotting
factor [23a, 30]. One can envision that, one day, SAFIN structures of molecular
gels will be designed to direct and use the work done by biological “motors”
such as kinesin and myosin [31].

The specific properties of a gel may depend upon its history and method of
formation, the temperature at which it is kept, its age (because many molecular
gels are not thermodynamically stable and undergo phase separation or SAFIN
changes with time), LMOG concentration, and liquid type (see Chapter 4).
The compromise between attractive and repulsive interactions in SAFINs is
subtle and key to the metastability of the molecular gels. This issue is also
very important in determining the nature of the gel obtained since the orga-
nized structures in molecular gels are observed only after having moved the
system far from equilibrium. Although these perturbations are accomplished
usually by heating the system, they can be effected mechanically (as in the
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case of thixotropic gels; vide infra), by irradiation, or by addition of a chemical
agent. It is amazing then that gelation follows a supercritical entropy export
that directs the self-assembly process into well-organized structures on the
nanoscale.

For these reasons, the stability of a gel is difficult to define as well because
several criteria may be used, depending on one’s perspective and interests:

(1) T, is a popular stability criterion when temperature is most important.

(2) The lifetime of a gel at room temperature may be featured when long-
term applications are sought. Some gels are stable for a few hours while
others are stable for at least several decades.

(3) The critical gelator concentration (cgc; that is, the lowest concentration
of an LMOG providing a gel at room temperature) is a useful monitor
when maximizing the liquid content is important.

(4) Rheological criteria involving the magnitudes and ratios of the elastic
(G") and loss (G”) moduli and viscosity are probably the most use-
ful and physically quantifiable criteria (see Chapter 8). They allow
a differentiation between a “true” gel and a jelly. However, analyses
of the relations between the strain and stress tensors in such systems
reveal that the choice of the most appropriate theoretical context to
describe the mechanical properties is still not clear and depends upon
the type of SAFIN that is generated from a specific gelator/liquid mix-
ture. Thus, SAFINs have rheological behaviors that can be described
as cellular solids, fractal or colloidal systems, or soft glassy materials
(see Chapter 5).

In addition to the above considerations, many other physical properties
have not yet been explored extensively and certainly deserve close scrutiny.
For instance, the hindered dynamics of probes or non-connected components
in SAFINs, the “mapping” of heterogeneities and domains in SAFINs, the
reversibility of the properties in sol-gel transitions, and the control of the tun-
ability of some structural features are additional avenues of future investigation
to gain deeper scientific insights about the stabilities and properties of molecular
gels.

Thixotropic gels become flowing liquids if mechanically disturbed by stir-
ring or shaking and then return to their non-flowing gel state again if allowed
to stand undisturbed [32]. An early and interesting example of a thixotropic
molecular gel is comprised of <5.5 wt% cholesterol as the LMOG and iso-
propyl alcohol as the liquid [33]. Subsequent studies with substituted steroids
have led to discovery of many diverse gels and SAFIN structures (see Chap-
ters 14 and 15). We know of no thixotropic gels that exhibit rheopexy (i.e., the
accelerated gelation of a thixotropic sol brought about by jarring the containing
vessel, by slow stirring, or by pouring” [8]). However, many exhibit syneresis
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or Ostwald ripening (i.e., some shrinkage that expels a bit of liquid with
time as the population of smaller aggregates decreases and larger aggregates
grow).

Different forms of gels, including molecular gels, are common in everyday
life. Their applications range from personal care products (toothpaste, sham-
poo, deodorants, etc.) to foodstufts (puddings, syrups, etc.) to electronic devices
to drug delivery and tissue engineering [34]. Many of these will be discussed in
the Applications section of the book and others can be found in the books listed
in Ref. 2. Perhaps the extremes are represented, on the one hand, by the delicate
application of gels to the surfaces of oil paintings in art restoration (see Chapter
27) or the weaving of a spider’s web [35] and the massive pumping of gels into
oil wells to increase the efficiency of crude oil recovery [36] on the other. In
some cases, gels have been used for destructive purposes, as in the gelation of
gasoline to make napalm [37]. Vision in animals depends on two hydrogels, the
vitreous humor (the transparent, mass in front of the retina that fills the eyeball)
and stroma (the thickest layer of tissue in the cornea) of eyes [38]. A wonderful
“bubble” tea is made from the gelled seeds of Hyptis suaveolens (L.) Poir,
an herbal medicine whose common Chinese name, san-fan-yuan, translates as
“mountain powder ball” [39]. It is used as a treatment for colds, diarrhea, cuts,
etc. The chemicals in the plant include friedelin, lupeol, lupeolacetate, hen-
triacontane, hentriacotanone, urs-12-en-38-0l-29-oic acid, hyptadienic acid,
1,19a-dihydroxy-urs-2(3),12-dien-28-oic acid, amyrin, 38-hydroxylup-12-en-
28-oic acid, 3p-hydroxylup-20(29)-en-27-oic acid, ursolic acid, betulic acid,
sitosterol-B-D-glucoside, heptacosanone, campesterol, B-caryophyllene, and
myrcene. Some rather popular gastronomic collagen-based gels include the
aforementioned “Jell-O” [40] (eaten by the US editor) and aspic (consumed by
the French editor).

Finally, we end this introduction with a short and somewhat biased history
of gels [41]. Perhaps the first formal scientific molecular hydrogel “sighting”
dates from 1841 when Lipowitz reported the gelation of aqueous solutions
by lithium urate [42]. Thixotropic hydrogels have been implicated in a much
earlier and more controversial and bloody application dating from the 14th
century [43]. An early (if not the first) scientific study of thixotropy was part
of a larger investigation of the magneto-optical properties of colloidal ferric
hydroxide systems [44]. Thomas Graham’s account of the gel and jelly states
of aqueous (and alcoholic) mixtures of silicic acid and several other metallo
acids in 1864 [45] is a classic precursor of the now well-established sol-gel
chemistry.

In 1871, in aletter to the British Journal of Photography entitled, “An Exper-
iment with Gelatino Bromide,” Richard Leach Maddox, an English physician,
introduced the concept of “dry” gelatin plates with silver salts for photography
[46]. The plates increased the sensitivity of the salts to light (lowering light
exposure times) and avoided the necessity of immediate development after
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exposure. Subsequently, George Eastman coated silver halide dispersions in
gelatin onto cellulose nitrate rolls of film, and placed the film in a camera [47].
His product, the Kodak system, permitted 100 photographs to be recorded
before the film was developed and printed at the Rochester, NY factory. Thus
began photochemistry for the masses! Raphael Liesegang also investigated
hydrogels of gelatin and other substances for many years, and, as early as 1896,
reported on reactions of molecules, as well as their diffusion and crystallization,
in gels [48].

An early 20th century account describes the gelation of aqueous and alco-
holic liquids by fatty acid salts, and notes that this phenomenon was known
in the 19th century [49]. This paper, one published contemporaneously by
Hatschek [50], and another published by Hardy more than a decade before [51]
are noteworthy for several reasons. One is the inclusion and/or discussion of
microscopic images of the networks of several gels. Another yet earlier publi-
cation by Hardy describes a separation by gel electrophoresis! [52] Even in that
period, the definition of a gel was controversial and somewhat contentious [53].
Organogels using camphoryl thioisemicarbazide as the LMOG were made in
1907 by Foster and Jackson [54] and characterized later by Hatschek [50]. In
the late 19th century, Meunier discovered gels of 1,3:2,4-di-O-benzylidene-D-
sorbitol, a widely used LMOG today [55]. Hardy reported the properties of
thermally-reversible LMOG gels in 1912 [56].

As the field of colloids and gels became somewhat established, several
books that attempted to collect and categorize the many observations were
published. One of the earliest was “The Chemistry of Colloids” by Zsigmondy
and Spear [57]. More recently, cross-linked hydrogels of polymethacrylic acid
were observed to expand and contract as a function of pH. The article in which
the properties of these hydrogels appeared [58] contains a prophetic remark
given the interest today in artificial muscles: “... it is possible to realize on a
macroscopic scale the stretching and coiling of charged macromolecules, and
that it is possible by means of these systems, to transform chemical energy into
mechanical energy.” Subsequent developments have led to several different gel
systems, most of which are based on polymeric gellants, that respond mechan-
ically, physically, or electronically to a variety of stimuli (see Chapters 23, 24
and 26).

Serious attempts to formulate a theoretical basis for how rod-shaped objects
aggregate into colloids and, in some cases, result in gels were made perhaps
initially by von Weimarn [59] and Hardy [60], starting in the first decade of the
20th century. They were expanded upon in the 1930’s and 1940’s by Langmuir
and Onsager, amongst others [61]. Those efforts are ongoing [62], as witnessed
by the expositions in the section of the book entitled Theory, and will be in the
foreseeable future!
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1. Thermodynamic Theory of Network-Forming
Liquid Mixtures

This chapter presents a general theoretical framework for deriving phase
diagrams of multi-component liquid mixtures of low molecular-weight
molecules, as well as high molecular weight polymers, in which molecules
associate with each other by strongly attractive forces such as hydrogen bonds,
hydrophobic force, etc. We treat association from the viewpoint of reversible
chemical reactions forming molecular complexes by such associative forces.
We first present a general theory for studying molecular weight distribution
function of aggregates and phase transitions induced by association. These
transitions include macro- and microphase separation, micellization, hydra-
tion, thermoreversible gelation and liquid-crystallization. To stress the unique
feature of gelation, we classify this type of association into non-gelating and
gelating ones. In non-gelling mixtures, oligomers or clusters of finite size are
stabilized, while in gelling ones, aggregates grow to macroscopic scales. The
theoretical treatments of these two cases are fundamentally different. Several
possible applications of the theory to non-gelling systems are presented, fol-
lowed by a detailed study of thermoreversible gelation with multiple cross-link
junctions with special attention to the multiplicity and sequence length of the
network junctions. Then, the theory is applied to more complex thermore-
versible gels, such as binary networks (interpenetrating networks, alternating
networks and randomly mixed networks). Potential applications to hydrated
networks with high-temperature gelation, to polymer-surfactant interaction etc.
are suggested.

1.1. Models of Associating Mixtures

As a model system, we consider a binary mixture of linear polymers R{A }
and R{B,}. The number of statistical units on a chain (referred to as degree of
polymerization, DP) is assumed to be n4 for R{A s} chains and np for R{B,}
chains. Although we use the word “polymer” for the primary molecule form-
ing complexes, we may apply our theory to low molecular weight molecules
equally well by simply fixing n 4 and/or n g at small values. These polymers are
assumed to be reactive and carry a fixed number f of reactive groups indicated
by A for R{A s} and a number g of reactive groups B for R{B,}, both are capable
of forming reversible bonds that can thermally break and recombine. Hydro-
gen bonds, hydrophobic interaction, electrostatic interaction etc. are important
examples of such associative forces. The type of associative interaction need
not be specified at this stage, but it will be in each of the following applications.
We symbolically write this model system as R{A s} /R{B,}. In the experiments,
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various types of solvents are commonly used, so that we should consider a mix-
ture R{A s}/R{B,}/S, where § denotes the solvent. Extension of the following
theoretical consideration to such ternary systems is straightforward. Therefore,
for simplicity, we confine this article to binary systems. Forces working among
associative groups form intermolecular clusters covering a wide range of aggre-
gation number. If either of the functionalities f or g exceeds the critical value
(3 for pairwise association, but it can be 2 for multiple association), a cluster
grows to macroscopic dimensions as soon as a threshold temperature or com-
position (concentration) is reached. Above such a threshold, three-dimensional
networks, most generally comprized of the two components, are formed [1-5];
see also Chapter 19.

To describe such reversible network formation in associating mixtures, we
take the simplest theoretical view, and start from a conventional lattice theoret-
ical picture of polymer solutions [6-9] with an attempt to include association
[10-12] in the form of reaction equilibrium. Let us first divide the total volume
V of the system into small cells of size a of the monomeric unit on a chain [6].
We have a total number Q = V /a® of microscopic cells. We first specify the
part of the system containing only clusters of finite size, which will be referred
to as sol. Let N, be the number of connected clusters consisting of the num-
ber [ of R{A s} molecules (referred to as A-chains) and m of R{B,} molecules
(B-chains). We introduce the symbol (/, m) to specify such a cluster. The total
volume fraction of A-chains in the sol is given by:

Pr=nad> vim (1)
I,m

Vi.m = Nim/S2 is the number of clusters per lattice cell. Similarly, the total
volume fraction of B-chains in the sol is given by:

by =np Yy mu, 2
I,m

The total volume fraction of the sol in the system is given by ¢° = ¢3 + ¢3.
This should be equal to unity for non-gelling systems, or in the pregel regime
of gelling systems, but can be smaller than unity as soon as an infinite network
(referred to as gel) appears (i.e., in the postgel regime of the gelling systems).
In the postgel regime, the volume fraction of the chains of species i in the gel
network is given by ¢° = ¢; — ¢? for i = A, B, where ¢; is the total volume
fraction of the species i that is fixed at the preparatory stage of the experiments.
The number density vC of the speciesi in the gelis then givenby v’ = ¢ /n; =
NP /Q for i = A,B, where NU is the number of i-chains in the gel. Such
decomposition into a sol and a gel parts automatically takes place in accordance
with thermodynamic principles. Since we have the identity ¢4 + ¢ = 1, in
what follows we can take ¢4 as an independent variable and write it simply
as ¢. The volume fraction of B is then given by ¢pp =1 — ¢.



20 F. Tanaka
1.2. Free Energy and Distribution Function of Aggregates

In order to study thermodynamic properties, we start from the standard
reference state in which unconnected A-chains and B-chains are prepared sep-
arately in a hypothetical crystalline state [6, 8]. We first consider the free energy
change A Fi., to bring the system from the reference state to a fictitious inter-
mediate state in which chains are disoriented and connected in such a way that
the cluster distribution is exactly the same as the real one [12-14]. It is given
by:

BAFiea/ 2= ApwVim + 84v§ + Spv§ 3)

I,m

A;m is the free energy produced when a single (/,m) cluster is formed from
[ of A-chains and m of B-chains in the reference state. We call this the free
energy of reaction. Let u; , be the internal free energy of an (/, m) cluster. The
free energy difference A; , is then given by:

Apm =By — Iy o — mug ) “)

Under a constant pressure, u;, is equivalent to the internal free energy
produced by combination, configurational change, and bond formation of the
constitutional primary molecules. Specific forms of these contributions will be
considered in each of the following systems studied. Similarly, the §; (i = A, B)
are the free energy changes produced when an isolated chain of species i is
connected to the gel network: 84 = B(u” — g ) and 85 = B(uy’ — ug \)s
where 199 is the internal free energy of an i-chain in the gel network. The two
last terms in Eq. (3) are necessary in the postgel regime because the number of
molecules contained in the gel part becomes macroscopic and reaches a finite
fraction of the total number of molecules in the system. In the second step, we
mix these clusters with each other to get to the real mixture studied. According
to the conventional lattice theory of polydisperse polymer mixtures [8, 9], the
mixing free energy A Fyx in this process is given by:

BFmix/ Q=) vimngm+ xdp(1 — ¢) (5)
I,m

®1.m = (nal + ngm)vy , is the volume fraction occupied by the (/, m)-clusters,
and x is Flory’s x-parameter which specifies the strength of van der Waals
type contact interaction between monomers of different species. The first term
gives the mixing entropy of the clusters. Since clusters formed by associa-
tion are generally polydisperse, and have largely different volumes, a mixing
entropy of the Flory-Huggins type must be used even if the primary molecules
are low molecular-weight molecules. Macroscopically connected clusters, such
as gel networks (i.e., SAFINs), infinitely long linear aggregates, do not give
the mixing entropy since their centers of mass lose a translational degree of
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freedom. The y-parameter varies with temperature, but is assumed to be inde-
pendent of the composition, as in the conventional theory. The number of con-
tacts between the two species may change by molecular association, and hence
the mixing enthalpy (the last term of Eq. (5)) may be modified. We assume
here, however, that the same form remains valid after association except when
the modification is significant due to polymer conformational change etc. We
modify this term whenever necessary. The total free energy from which our
theory starts is given by the sum of the above two parts (Figure 1):

AF = AFey + AFpix. (6)

We next derive the chemical potentials of the clusters to study the solution
properties. By the thermodynamic definition of the chemical potential Ay, =
(QAF/dNim)1 N, for clusters of the size (I, m), we find:

ﬂA/’le =1+ Alm + 1n‘le - (nAl + an)VS
+x{nal(1 — @) + ngmep — (nal + npm)p(1 — ¢)}
+nal(1 — ¢) — ngml[8,(p)v§ — 85 (P)vE] (7)

where
=3 w, (8)
I,m

is the total number of finite clusters (per lattice cell) in the mixture. This number
gives the total number of molecules and clusters that possess a translational
degree of freedom. Within the ideal solution approximation, they equally con-
tribute to the osmotic pressure. Obviously, the gel part is excluded from vS
because it is macroscopic, and its center of mass is localized. The ratio defined
by Eq. (9) gives the number-average cluster size, or number-average aggrega-
tion number of clusters.

Po=[p/ns+ (1 —¢)/npl/v’ )

In particular, we have for molecules that remain unassociated:

BAuio 1+ In¢o
= -8+ x(1 = ¢)’
na na

+[8, (@)vg — S5(Ivg 11 — @) (10a)
BA o 1 4+ Ingg;

= — ¥+ x¢* — [8) (v — 85(p)vgle  (10b)
ng ng
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Figure 1. Construction of the free energy of associating mixtures. The total free energy is
given by the sum of the free energy of reaction and that of mixing. The standard reference state
is chosen in such a way that each species of molecules is regularly placed on a hypothetical
crystalline lattice with a reference intramolecular conformation (a straight rod in the case of
polymers).

Similarly, chemical potentials of the polymer chains in the gel part are
given by:

BAUS /na = 8a/na —vS + x(1 — ¢)?

+ (1= ¢) [8,@)§ - 8@ (112)

BAUG g = 55/np —v° + x¢? — ¢ [5,@)5 — Sp(@w5]  (11b)
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To find the equilibrium distribution of clusters, we impose the multiple
chemical equilibrium conditions in Eq. (12) for all possible combinations of
the integers (I, m).

Apgm =1AR10 +mA g (12)

Upon substitution of the specific forms of the chemical potentials, we find that
the volume fractions of the clusters are given by:

¢l,m = Kl,mxlym (13)

For simplicity, we have written as x and y for the concentrations ¢ ¢ and ¢y
of unassociated molecules. These unassociated molecules in the solution are
sometimes called unimers to avoid confusion with monomers. The new constant
K (equilibrium constant) is defined by Eq. (14) which depends only on the
temperature through A; ;.

Kim=expl+m—1—Arp) 14)
Similarly, the number density of clusters is given by:

Kl,m 1 m
x'y (15)

Vim =
nal +ngm

The total volume fraction ¢ and the total number v5 of clusters in the sol part
as functions of x and y are then found by the infinite sum:

P50, y) =D Kimx'y" (16)
l,m
and
K
S Lm I.m
, :E E—— 17
v (x,y) nAl+anxy (17

I,m

1.2.1. Pregel regime

In non-gelling mixtures, or pregel regime of gelling ones, the total volume
fraction should be given by Eq. (18) since all clusters are included in the
summation.

PS(x,y) =1 (18)
The volume fraction of each species is then given by:
¢ = na Zlvl,m (193)
I,m

1—¢ =ngy muu, (19b)
I,m
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These equations are transformed into the coupled equations, Eq. (20), for
unknown variables x and y.

v
¢ =nx— (20a)
0x
v’
I —¢ =npy— (20b)
ay

We solve them with respect to x and y, and substitute the result into the physical
quantities considered. For instance, the number-average numbers of A-chains
and B-chains in the finite clusters are given by:

dlnvS(x, dlnvS(x,
0y, = V@Y gy, = 2V Y) 21
dlnx dlny
The average symbol shows the number average of the quantity Q; ,,. Eq. (22).
Z Ql mVim
min = —_—— 22
(Q1.m) S (22)
Similarly, the weight-average is defined by:
Z Ql m¢lm
(Qimw =~ — (23)
: N Z d)lm

The weight-averages of the aggregation numbers / and m in the clusters are
then given by:
dng®(x, y) dng®(x,y)
(w=—7—""— and (m)y=———
dlnx dlny

The weight-average degree of polymerization (DP) of the clusters is thus given
by the sum:

— Y (nal + npm)eyy,

(24)

Mw = Z(le :nA(l>w +nB<m>w
= 9 9 IngS 25
h <nA81nx +n381ny> e (x.y) ()

1.2.2. Sol/gel transition and postgel regime

Thus far we have tacitly assumed that the infinite double summation in
@3 (and hence in v®) converges. These are double power series with positive
coefficients, so that they are monotonically increasing functions. For mixtures
capable of gelling, a borderline exists which separates the unit square on the
(x, y) plane into a convergent and a divergent region. Exactly on the boundary
line, the sol composition ¢* takes a finite value, but it diverges outside this line.
Since the radius of convergence generally depends on the composition, let us
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express the boundary by a parametric form (x*(¢), y*(¢)) for 0 < ¢ < 1.The
value ¢S (x*, y*) can become smaller than unity for a certain region of the com-
position and the temperature because the sum does not include contributions
from the infinite clusters appearing in the postgel regime. Hence, we can find
the sol/gel transition line by mapping the condition ¢°(x*, y*) = 1 onto the
original temperature-concentration plane.

In the postgel regime, a chain participating in the gel network must be in
chemical equilibrium with an unassociated chain of the same species. This
imposes the additional conditions:

Apro=Ap§ and Apoy = Apj (26)

Hence, we find that x and y become functions of the concentration in the form
of Eq. (27) for the gelating component in the postgel regime.

x* =explda(¢) — 1] and y" =expldp(d) — 1] 27)

Asterisks indicate quantities beyond the gel point. The chemical potentials of
each species take a uniform value in the solution, so that we can write them as
Auaand App.

We now substitute all relations obtained by such equilibrium conditions back
into the original free energy Eq. (6), or equivalently, we use the Gibbs-Diihem
relation AF/Q = Apap/na + Aug(l — ¢)/np,and find that the free energy
is simply given by:

BAF/Q = 1+ lnx¢ n 1+1Iny
na n
(The concentrations x and y should be replaced by x* and y* in the postgel
regime.) This free energy can be separated into two parts as:

BAF/Q = fru(®) + fas(P) (29)

The part in Eq. (30) is the conventional Flory-Huggins free energy of the non-
associative counterpart.

¢ 1 -¢)

(1—¢) = v’ + x¢(1 — ¢) (28)

na npg
fAs(¢)E¢ln(x)+l_¢1n( Y )+¢ 1_¢_vs 31)
A ¢ np 1—¢ na ng

The part in Eq. (31) gives the effect of association. It can also be regarded
as a renormalization of Flory’s x-parameter and produces a shift from y to
X + Ay, where:

Ax = fas(@)/op(1 — ¢) (32)

The short-range associative interaction energy originally introduced in the reac-
tion terms is now interpreted as a composition-dependent modification of the
X-parameter.
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1.3. Phase Separation, Stability Limit and Other
Solution Properties

Some important physical quantities characterizing the mixture are defined
now.

(1) Osmotic pressure. The osmotic pressure 7 of the A component is essen-
tially the chemical potential of the B species with opposite sign, and it given by:

Br/npa® = —(1 +1ny)/np + v3(x,y) — x¢>
+[8(p)vg — 85(P)vy 1o (33)

In a polymer solution in which the B component is a low molecular weight
non-associative solvent (ng = 1 and §g(¢p) = 0), this definition reduces to the
osmotic pressure in the conventional meaning. If this pressure is expanded in
powers of the concentration with ng = 1, we have the virial series:

ma’kgT =¢/ns + Arp® + Az’ + -+ (34)

Ay =1/2 — x — AA, with A A, being a positive temperature-dependent con-
stant. Hence, the second virial coefficient has a reduction AA; from 1/2 —
due to the associative interaction. At higher concentrations across the gel point,
the osmotic compressibility Ky = (d¢/dm)r /¢, or its higher derivatives, may
have a discontinuity due to the appearance of the gel part.

(2) Phase separation. The two-phase equilibrium conditions, or a binodal
line can be found by equating the chemical potential of each component [8, 9]:

Apa(@',T) = Apa(¢",T) (35)
App(¢' . T) = Aup(@".T) (36)

¢’ and ¢" are the compositions of the dilute phase and concentrated A phase,
respectively. If either or both phases, lie inside the postgel regime, the chem-
ical potentials must be replaced by their postgel forms, Au%(¢”,T) and
Aly@". 7).

(3) Stability limit. The thermodynamic stability limit or a spinodal line
can be found for the binary system by the single condition (0 A, /d¢)r = 0,
or equivalently, d(Apa/nas — Aug/ng)/d¢ = 0. Then, Eq. (37) obtains in
which the new functions are defined by Eq. (38).

ka(P) + kp(®)

—2x=0 37
nad | npl—¢) X &7

= d<1+¢Gd>lnx (38a)
k() —¢>d¢ g

d d
(@) = ~1 =9 1 (1 - ¢‘5d¢) Iny (38)
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In the pregel regime, these equations are related to the weight-average aggre-
gation number of clusters. For homopolymer association where only A-chains
are associated, for instance, k4 reduces to the reciprocal of the weight-average
cluster size as in conventional polydisperse polymer solutions [9, 15]. In het-
eropolymer association, however, «’s are related to the average cluster sizes in
a more complicated way.

2. Some Important Examples of Non-Gelling
Associating Mixtures

We first show some results for non-gelling mixtures. Throughout this
section, pairwise association of reactive groups is assumed. The strength of
association can be expressed in terms of the three association constants defined
by Eq. (38) for three combinations of pairs [16], where Af is the free energy
change upon forming a bond of the specified pair.

Aaa = exp(—=BAfaa), App =exp(—BAfpp), Aap = exp(—BAfap)
(39

To prevent gelation, we assume that the functionalities of either or both species
of polymers are less than or equal to two in this section.

The general theory presented above is applied and the main results are
summarized in the form of phase diagrams. For the numerical calculation, we
introduce the reduced temperature deviation:

1=1-0/T (40)

The unperturbed theta temperature ® is defined by the equation, x(®) =
1/2np. The unrenormalized second virial coefficient of the osmotic pressure
in the generalized sense defined by Eq. (34) vanishes at this temperature. We
then assume Shultz-Flory’s form [8, 17] in Eq. (41) for the bare interaction
parameter, where v is a dimensionless material parameter of order unity.

x(T)=1/2ng — Yt (41)

Since the binding free energy can be split into an energy and an entropy
part as Af = Ae — T As for all pairs, the association constant A(7) can be
rewritten:

MT) = hoexply (1 = 1)] (42)

The dimensionless binding energy is given by Eq. (43) and the entropy-related
constant Ag = exp(As/kp) [10, 12].

y = |Ael/ks® “43)
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2.1. Dimer Formation

The first system studied is a mixture of R{A;} and R{B;} chains, each
carrying a functional group A or B at its one end. Diblock copolymers are
formed by the end-to-end association (hetero-dimerization) [18]. End groups
A and B are assumed to be capable of forming a pairwise bond A-B by ther-
moreversible hetero-association. A hydrogen bond between an acid and base
pair is the most important example of this category. For such mixtures, we
have f = g = 1. A composite chain formed is a diblock copolymer R{A,}-
block-R{B} with a temporal junction (Figure 2). The system is made up of a
mixture of diblock copolymers, (1,1), and unassociated homopolymers of each
species, (1,0) and (0,1). It is apparently the same as a mixture of chemically
connected diblock copolymers dissolved in their homopolymer counterparts
[19, 20], but its phase behavior is much more complex because the population
of the block copolymers varies with both temperature and composition. Let
n = ny + np be the total number of the statistical units on a block copolymer
chain, and let a =n,/n(b =ng/n) be the fraction of A part (B part). The
relation, a + b = 1, holds by definition. Our starting free energy is given by:

BAF/Q = A - vy + viglngio + vor Ingo;
+vilngy + x¢(1 — @) (44)

A= B(uS.p — 1y — ny) is the free energy of dimer formation. By differen-
tiation, the chemical potential of each component is:

BApio = Inx + 1 —nav’ + xna(1 — ¢)? (452)
BApor = Iny + 1 — npv® + xnpe? (45b)
BApn = A+1Inz+1—m’ + x{na(l — ¢)* + npe?} (45¢)
VS =19 + vo1 + vy is the total number of molecules that possess a transla-

tional degree of freedom, and x = ¢;.0,y = ¢0.1,2 = P1.1.
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Figure 2. Block copolymer formed by reversible association of a pair of end-functional poly-
mers R{A}and R{B1}. The system becomes a mixture of block copolymers R{A}-block-R{B1}
and their homopolymers whose population distribution is thermally controlled.
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The association equilibrium condition in Eq. (12) then leads to Eq. (46) for

the volume fraction z of the block copolymers, where K = exp(1 — A) is the
temperature-dependent association constant.

z=Kxy (46)
Because of the non-gelling nature, we have an identity:
P’=x+y+Kxy=1 (47)

The number density of clusters is given by:

1
Vs:v:<x+y+m> (48)
n \a b

Solving the coupled Eq. (20):

x(@) ={p—a— K"+ D@} /2b (492)
y@) ={a—¢ - K"+ D@} /2 (49b)

Here, D(¢) = [a(1 — ¢) + bp + K~ ']*> — dabgp (1 — ¢).

We now split A into conformation and bonding parts as A = BA feonr +
B A foona- The conformational free energy appears because the entropy of disori-
entation is reduced when two chains are combined. Using the lattice-theoretical
entropy of disorientation [6, 8] in Eq. (50) for a linear chain of » statistical units
(¢ being the lattice coordination number, o the symmetry factor), yields Eq. (51)
for the entropy change, and the free energy is given by A feonr = —7 A Sgis-

(50)

_ 1\n—2
Sais(1) = kg 1n{”“§1)}

O—en—l

12
ASgis = Sais(na +np) — Sais(na) — Sais(np) = kg 111{0@1)} (51D
Cenab

Combining the free energy of bonding A fyona = A€ — T As, the equilibrium
constant is given by K = Age #2¢, where Ao = o (¢ — 1)2e2/*8 /¢ enab is a
temperature independent constant. The volume fraction of the diblock copoly-
mers z can then be calculated using the general theoretical scheme given above.

It is well known that diblock copolymers form a variety of microscopi-
cally ordered phases [21, 22]. To study their microphase separation transitions
(MST), one should calculate the correlation function S(q) of the concentration
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fluctuation as a function of the wave vector q (and temperature, concentration).
Details of the calculation using the random phase approximation (RPA) can be
found in references [21, 22]. When it is divergent at a certain finite wave num-
ber ¢, it is the precursor of the instability against the fluctuation whose spatial
variations are characterized by the length ¢ —'. Hence, it leads to the formation
of an ordered state with periodicity ¢ ~'. In the case of block copolymers, g~
is of the order of the radius of gyration of a single polymer chain. Divergence
of S(q) thus suggests periodic microdomain formation. We can, therefore, find
the MST boundary by the condition:

S(q)~'=0. (52)

From the same standpoint, the macroscopic stability limit (or spinodal con-
dition) can also be found from the condition S~!(q =0) =0 using the same
scattering function. This condition is equivalent to the divergence condition
(Eq. (37)) of the osmotic compressibility. The general theoretical scheme devel-
oped by Leibler [21] has been applied and the correlation function has been
calculated [18] for the associating diblock mixture. In this way, the MST bound-
aries for thermoreversible dimers were found.

Figure 3 shows a theoretical calculation of the phase diagram for a sym-
metric blend involved both chains have the same length [18]. The solid line
shows the binodal, the broken line shows the MST line, and dotted lines show
the spinodal. The MST and spinodal intersect at the two symmetric points

0.2

0.0

Figure 3. Atypical phase diagram of associating diblock copolymers in which macrophase and
microphase separation compete. Binodal (solid), spinodal (dotted) and MST (broken lines) are
drawn. Critical points are indicated by CP. At the crossing of spinodal and MST lines, Lifshitz
points (LP) appear. At the stoichiometric composition where the number of A groups equals
that of B groups, an eutectic point (e) appears. (Reprinted with permission from [14]. Copyright
(2002) Japanese Society for Polymer Science)
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(indicated by LP) at which the two conditions in Egs. (37) and (52) reduce to a
single one. They are examples of the Lifshitz point — the point where an order
parameter with finite wave number starts to appear [19, 23].

The whole plane is divided into several regions, each characterized by the
capital letters in it. The region with the letter H has a homogeneously mixed
fluid phase. Those shown by MS and MS’ exhibit microscopically ordered
phases where microdomains are regularly ordered. The region with the letters
2 in the figure is a biphasic region (or miscibility gap) where two distinct
phases coexist. The point indicated by the letter e in the middle of the phase
diagram is an eutectic point where the single microphase melts into the two
coexisting homogeneously mixed fluids when the temperature is lowered. At
extremely low temperature, the miscibility gap splits again at the point €’ in the
center of the concentration axis, and a new homogeneous microphase (shown
by MS) is stabilized in the region between. Such a low-temperature microphase
(a reentrant microphase) is stabilized because the population of block copoly-
mers becomes so large in this low-temperature region that they homogenize
the two demixed fluid phases into a single phase.

Experimentally, hydrogen bonds are expected to lead to a thermoreversible
MST if they are strong compared to the repulsive interaction between the poly-
mer segments but still weak enough to be broken by temperature. In this respect,
a single hydrogen bond is not sufficiently strong, but reversible lamellar forma-
tion was confirmed to be possible for semi-crystalline block copolymers, (i.e.,
a blend of one-end-aminated polystyrene and one-end-carboxylated polyethy-
lene glycol) [24-26]. By contrast, a variety of liquid-crystalline ordered phases
induced by multiple hydrogen bonds have been the focus of recent interest
[27-29].

2.2. Linear Association and Ring Formation

In this section, we consider the association of polymers R{A,} carrying two
functional groups at their ends (telechelic polymers) in a solution. We consider
only pairwise association, so that the polymers R{A,} form either linear chains
or rings (Chain/Ring Equilibrium) [30]. In the case of a low molecular mass
organic gelator (LMOG) [38] carrying two complementary hydrogen-bonding
groups, the molecular weight n, should be a small number, and no ring
formation is possible due to the stiffness of fibrous aggregates. The more
general case of multiple association, where polymer networks with micellar
junctions are formed, will be treated as a gelling case later. Let N¢ be the
number of m-mer open chains, and let N X be the number of m-mer rings in the
system. The total number of primary polymer chains (n4 = n) is then given by:

N = m©NS +NH (53)

m=1
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If Ny is the number of solvent molecules (ng = 1), the number of cells is 2 =
No +nN.Let ¢ = nmNE /Q and ¢X = nm N R/ Q be the volume fraction of
chains and rings. The volume fraction of polymers is then given by:

d=> @5+ =1—¢o (54)

m=1

¢y is the volume fraction of the solvent. The fraction of rings among the total
polymers is given by:

pP=> oK/9. (55)
m=1

We follow the general strategy given above, and start with the free energy of
the solution:

BAF = {ASNS + ARNEK) + Nolngy
m>1

+ Y (NSIng + NEIngR) + x¢(1 — )R (56)

m>1

The A are free energies of reaction defined by Egs. (57) and (58) for chains
and rings measured from those of the primary polymers.

AS = Bt — muy) (57)
Ay =BGy’ —mp) (58)

We first consider open chains. The number of different ways to connect m
identical polymers into a linear array is 2, but since the connected chain
is symmetric, we have to divide it by the symmetry number o¢ =2, and
hence, 2! is the combinatorial factor. The conformational term is the differ-
ence, AScont (M) = Sais(mn) — mSyis(n), as before. The bonding free energy is
assumed to be A fj for each bond. Hence, Eq. (59) is the equilibrium constant
of the chains, where A(T) = [o¢(¢ — 1)%/¢]e #4/0 is the association constant.

—_1)2 m—1 m—1
Kri _ 2m71m [Ob(iqé_D‘| (e*ﬁAfO)mfl =m (2’1}"> (59)

Thus, Eq. (60) is the volume fraction of chains, where x = 21¢C /n is the
number density of associating groups on the unassociated chains.

2)
¢S = mx" (60)
n

On the contrary, the equilibrium constant for the rings includes extra factor
of the probability to form a ring. This factor is proportional to (mn)~*/? for a
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Gaussian chain of length mn, but again we have to divide it by the symmetry
factor ogp = m for a ring because a chain may close at any one of m bonds
to form a ring. We thus have Eq. (61) for rings, where B = Bye #2/0 is a
temperature dependent constant.

29m—1
l’l; m5/2
_/2\""" B 61
The volume fraction of rings is given by:
20 g B
—¢,=m - ——=x". 62

The total volume fraction of polymers is the sum of the two:

22, 22, " x™
—¢=—@ +¢H =1 m"+BY —

m>1 m>1
X
= ——+ BOd(x:3/2 63
G BeER/2) (63)
The new function ® is defined by the infinite sum:
xm
d(x:ax) = — 64
(x:) m§21: — (64)

Although the upper limit of the summation is the maximum possible aggrega-
tion number and should not exceed the total number N of polymers, we have
taken the thermodynamic limit and let N go to infinity. The total number of
clusters and molecules is similarly given by:

AvS:k(1—¢)+me+BZ%

m>1 m>1

— (1 — ) + 1% + BD(x:5/2) (65)

Solving Eq. (63) with respect to x and substituting the result into (65), we com-
plete our general procedure, and can find the equilibrium solution properties.
The functions ® (x:a) with @ = 3/2,5/2 appear in the study of Bose-Einstein
condensation of ideal quantum particles [31] that obey Bose-Einstein statistics.
Their mathematical properties were studied by Truesdell [32] in detail, so that
it is called Truesdell function. Their radius of convergence is given by x = 1.
Both function ®(x:3/2) and ®(x:5/2) remain at a finite value at x = 1, but
diverge as soon as x exceeds unity. Jacobson and Stockmayer [30] showed the
fraction of chains and rings on the temperature-concentration phase plane, and
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found very interesting phenomena that are analogous to Bose-Einstein conden-
sation (i.e., when the parameter B exceeds a certain critical value, 100% rings
are formed below a critical concentration of polymers). Such a transition orig-
inates in the singularity in Truesdell functions, and hence loop entropy, and
serves as an interesting example of Bose-Einstein condensation in classical
statistical mechanics.

Another singular property of this model is the divergence of the weight-
average molecular weight at the point x = 1. The condition gives the thermal
polymerization line when mapped onto the temperature-concentration plane
because the average chain length goes to infinity at this point. Application
of our theory gives essentially the same results as those originally found by
Scott et al. [33], and later refined by Wheeler et al. [34-36]. More recently,
Dudowicz et al. [37] studied living polymerization theoretically as well as
thermal polymerization of sulfur using a similar approach.

In a similar way the mixed linear association of R{A,} and R{B,} molecules
can be studied. The sequence distribution along an associated chain can be either
alternative, sequential, or statistically random, depending upon the strength of
association constants. All these associated chains, or rings, are block copoly-
mers if the primary molecules are polymers, so that they undergo a microphase
separation transition as well as macroscopic phase separation. The problem of
competing micro- and macrophase separation in associating polymers remains
an unsolved important problem.

In the case of linear association of low molecular-weight rigid molecules, the
problem is related to fibrillar association of bifunctional molecules by (multi-
ple) hydrogen bonds, such as occurs in hydrogen-bonded supramolecular liquid
crystals [27-29] and LMOGs [38]. Equilibrium properties and phase diagrams
of other systems can be studied within the theoretical framework presented
here. Orientational ordering of the associated mesogens in hydrogen-bonded
liquid crystals will be considered in the following sections.

2.3. Side-Chain Association

The next system studied is a mixture of high molecular weight polymers
R{A/} (DP = n,) bearing a number f of associative A groups and low molec-
ular weight monofunctional molecules R{B;} (DP = ng) [39, 40], or solvent
molecules S (DP =1) [41]. We assume that a B group, or solvent molecule,
can be attached to an A group from a side of the polymer chains. Adsorption of
surfactant molecules onto polymer backbones by hydrogen bonds (Figure 4)
is an important example of the former, and hydration of water molecules in an
aqueous polymer solution (Figure 5) is an important example of the latter. To
simplify the theoretical description, we write the DP of molecules as n4 = na
and ng = nb by using n = n, + np. The type of clusters formed is specified
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Figure 4. Association of end-functional low molecular-weight molecules R{B} from the side
of a long polymer chain R{A ¢}. Comb like block copolymers are formed.

Figure 5. Hydration of water-soluble polymers. Water molecules S are hydrogen bonded to a
polymer chain R{A ¢}, so that they appear compatible with the surrounding solvent molecules.

by (1,m) withm =0, 1,2, ..., while the unassociated R{B,} molecule is indi-
cated by (0, 1). As in the general scheme, we start with the free energy of the
mixture:

S f
BAF =Y AuNiu + Notlngor + Y NiyIngi, + Qxé(1 — ¢)  (66)
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The volume fraction of R{A ;} molecules is given by:
f

a
¢=Za+mb¢1m (67)

m=0

The free energy required to form a (1, m)-mer from the primary molecules
in the reference state is given by:

Ay =B, — 5o — mi,) (68)

Chemical equilibrium conditions in Eq. (69) then lead to the distribution func-
tion of the clusters in Eq. (70).

Apim = Ao + mAjpg; (69)
dim = Knd1090; (70)

K., =exp(m — A,,) is the equilibrium constant. As usual, we split the free
energy A, into combinatorial, conformational and bonding terms:

1
Am = _F(Ascomb + ASconf) + mIBAfO (71)
B

The combinatorial entropy is given in terms of the number ;C,, of different
ways to attach m molecules onto f available sites on a polymer as Eq. (72) if
the attaching process occurs independently.

AScomb = kB ln(fcm) (72)

When there is strong attractive interaction between the attached R{B;}
molecules located next to each other along the chain, they are adsorbed in
sequences (i.e., sequences with varied length of R{B;} molecules distribute
along the polymer chain). These sequences may induce helical order on the
main chain due to the steric hindrance of neighboring adsorbed molecules.
The combinatorial factor changes to the number of different ways to select the
specified sequences from the finite total length n. Such a correlated adsorption
was recently studied in detail in relation to helix formation on polymers by
adsorption of chiral molecules [40].

The conformational entropy is given by Eq. (73) by using the entropy of
disorientation as before.

AScont (m) = Sais(na + mnp) — Sgis(na) — mSqis(np)

r b -1 2ym
S ’”{"“ ) b (73)
L a ngle
Putting the results together, we find
b [A(T)™
a ’ |l np
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for the equilibrium constant, where A(T) = [0 (¢ — 1)?/et]exp(—BAfy) is the
association constant. The cluster distribution function takes the form:

f)ﬂ)]m = mexy’" (75)
The two unknown variables are defined by

x= fAMT)p1o/na and y = A(T)¢o1/np (76)

These give the number density of A and B groups on the molecules that remain
unassociated in the solution. They are always accompanied by the association
constant A, so that the concentration can be scaled by this factor. The association
constant therefore behaves as a temperature shift factor of the concentration.
By counting the number of molecules and clusters moving together, the total
number density is:

S,y =y + %1 + )/ (77)

The coupled Eq. (20) becomes:

x(14+y) = fag/na (78a)
y+xy(L+ )™ = a1 — ¢)/np (78b)

Since the concentrations appear together with the association constant in the
right hand side of these equations, we introduce the new variables cs =
Afp/na and cg = A(1 — ¢)/np to describe concentrations. These variables
give the total number density of A and B groups. Solving these equations with
respect to x and y, we find:

x(@) = ca/(1 + y(¢))! (79a)
y@) = |ep —ca—1+ \/D(¢)} /2 (79b)

Substituting these results into physical properties, in particular into vS(x, y),
expresses them as functions of the temperature and concentration. For instance,
the average number (m) of B groups that attach to a polymer chain is given by:

f
(m) = mvy, = xy(1+ y)/ 7'/ (80)

m=0

The spinodal condition becomes:

Ka(®) n ks($)
na¢g nb(1 — ¢)

x =0 (81)
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In this equation, k4 (¢) and «(¢) are now functions of ¢ through c4 and cp.

ka(@) = 1— f¢y'"(@)/(1 + y(9)) (82a)
kp(@) = (1 — )y (@)/y(9) (82b)

We first show theoretical phase diagrams of hydrogen-bonded comb
copolymers. Ruokolainen and co-workers [42—46] have recently observed a
microphase separation transition (MST) in the mixture of poly(4-vinylpyridine)
(P4VP) and the surfactant 3-pentadecylphenol (PDP). In this system, the hydro-
gen bonds between the hydroxyl group of PDP and the basic amino nitrogen
in the pyridine group lead to the formation of combshaped block copolymers
with densely grafted short side chains (called a molecular bottlebrush [45]).
They observed lamellar structures at low temperature. The lamellar period L
decrease in proportion to the reciprocal of x, the fraction of surfactant molecules
per pyridine group in P4VP, and the MST temperature is a minimum value (eas-
iest MST) near the stoichiometric concentration x = 1. Our theory can readily
be applied to study such side-chain associations [39]. An example of the phase
diagram for associating comb polymers is shown in Figure 6. The structures of
possible mesophases inside the MS region were recently studied by Angerman
et al. [47] by constructing random phase approximation (RPA) free energies of
non-uniform systems.

Helix induction on a polymer chain by association of hydrogen-bonding
chiral molecules provides another important application of our theory. Chiral

0.4

: ¥ =6.0

0.0 p

1-0/T

Figure 6. Phase diagram in which macro- and microphase separation compete by comb-shaped
low-mass side-chain association. n4 = 1000, f = 200,np = 10,15 = 1.0, y = 6.0. Homoge-
neous liquid phase (H), microphase separated region (M), and unstable region (U) are shown.
MST is easiest at the stoichiometric composition indicated by ¢s;. Critical solution point (white
circle) and Lifshitz point (black circle) are indicated. Metastable regions inside M region are
indicated by horizontal thin lines. (Reprinted with permission from [39]. Copyright (1997)
American Chemical Society)



Molecular association and gelation 39

centers attached to a chain often induce helical structures along the polymer
chain as a consequence of the tendency of hydrogen bonds to grow in sequence.
The small difference in physical interaction is non-linearly amplified by the
cooperative nature of the bonds, such that formation of a new bond becomes
easier in the nearest-neighbor position of the already formed bond. Cooperative
helix induction and chiral ordering in polymers with hydrogen-bonding side
groups was reported by Yashima er al. [48]. A series of experiments [48-51]
with poly((4-carboxyphenyl)acetylene) revealed that, in the presence of chi-
ral and achiral amines and amino alcohols in dimethyl sulfoxide (DMSO) as
solvent, the optical activity measured by circular dichroism (CD) responds
sharply to a slight excess of the R enantiomers the (majority effect). It was also
found that the optical activity sharply responds to small concentrations of chiral
groups when achiral molecules are added. Chiral groups are therefore called
“sergeants” and achiral groups “soldiers” (sergeants-and-soldiers effect). We
attempted [40] to describe theoretically such cooperative chiral ordering in
polymers carrying hydrogen-bonded pendant groups by directly analyzing the
sequence selection process when chiral molecules are attached to the polymer
backbone. See also Chapter 2.

2.4. Hydration in Aqueous Polymer Solutions
and Closed-Loop Miscibility Gap

We next present phase diagrams for aqueous polymer solutions in which
water molecules are hydrogen-bonded onto polymer chains [41]. The solvent
molecule are regarded as R{B}, and fix ng = 1. The DP of polymers is given
by na = n. Figure 7 shows a possible phase diagram in which 1y = 0.002,
and y = 3.5 (from the measured strength of the hydrogen bond in a solution)
for a typical example. The number of the statistical units on a polymer chain
is varied from curve to curve. The number f of attaching sites on a polymer
chain is assumed to be equal to n because each monomer carries one hydrogen-
bonding oxygen. The open circles show critical solution points. The solid curves
show binodals, and the dashed curves spinodals. For such a small value of X,
there are two miscibility gaps for low molecular-weight polymers: one ordinary
miscibility dome and one closed loop above the dome (see n = 10% curve). The
closed loop [9, 52-55] has one upper critical solution temperature (UCST) at
the top and one lower critical solution temperature (LCST) at the bottom. The
dome has an ordinary UCST. As the molecular weight is increased, the LCST
and the UCST of the dome become closer, and for a certain value of n (1670
for the parameters given in this figure) the two points merge into a higher order
critical point (called the double critical point [56]). For a molecular weight
higher than this critical value, the two gaps merge into a single hourglass
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Figure 7. Phase diagram of hydrated polymer solutions. The segment number 7 is varied from
curve to curve. Binodals (solid lines) and spinodals (broken lines) are drawn. The critical solution
points are indicated by open circles. The LCST and UCST approach and eventually merge into
an hourglass upon increasing the polymer molecular weight. The phase separation loop vanishes
by decreasing the polymer molecular weight. (Reprinted with permission from [41]. Copyright
(1990) The American Physical Society)

shape. The miscibility loop shrinks with decrease in the molecular weight, and
eventually vanishes at a certain critical molecular weight (n = 37 in Figure 7).
This vanishing loop is called the hypercritical point. For a slightly higher value
of Ao, however, it was found that the two gaps remain separated no matter how
large the molecular weight may become [41]. There are three 6 temperatures
under such a condition to which each critical point approaches in the limit of
infinite molecular weight. For a still larger value of X, the closed loop does
not appear, and we are left with an ordinary miscibility dome only. Since the
parameter X is small if the entropy loss during the bond formation is large,
there must be a strong orientational or configurational constraint in the local
geometry for the appearance of an hourglass.

Figure 8 shows a comparison [41] of the theoretical calculation and the
observed phase diagram [57, 58] for polyethylene oxide (PEO) in water.
The number-average molecular weight in the experiment covers the range
2.17 x 10°> — 1.02 x 10%. The solid curves show the calculated binodals. The
number n of statistical units on a chain is varied from curve to curve. Param-
eters used for fitting are: ¢, = 1,0 = 730K,y =6, and 1y = 1.66 x 1075.
Fitting is made mainly by adjusting the unkown parameter A¢. The agreement
is very good. The calculation of PEO/water phase diagrams was later examined
by taking into account the hydrogen-bond networks in water [59]. The effect
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Figure 8. Phase diagram of aqueous poly(ethylene oxide) (PEO) showing closed-loop misci-
bility gap. Theoretical curves are fitted to the experimental data of the cloud points measured
by Saeki et al. The miscibility loop expands with increase in the molecular weight. The UCST
phase separation expected at low temperature cannot be observed due to crystallization of PEO.
(Reprinted with permission from [41]. Copyright (1990) The American Physical Society)

of pressure on the miscibility loop was studied to derive temperature-pressure
phase diagrams [60].

2.5. Hydrogen-Bonded Liquid-Crystalline Supramolecules

Some rigid molecules are known to become liquid crystalline when
hydrogen-bonded to each other. For a binary mixture of low-mass molecules,
as well as polymers, R{A} and R{B} (each carrying at least one rigid part
A and B that form a mesogenic core when associated), dimer, trimer, main-
chain, side-chain, combined, and network types are known [29, 61]. They
are called hydrogen-bonded supramolecular liquid crystals. For example, aro-
matic acid derivatives with alkoxy or alkyl terminal groups form dimers due to
hydrogen bonds between their carboxylic acid groups and show mesomorphism
[62—-65]. Association between different species of molecules also induces the
isotropic/anisotropic phase transition [29, 66, 67]. The most remarkable case
is that of non-mesogenic molecules forming compounds with mesogenic cores
when hydrogen-bonded. In such combinations, isotropic materials become
liquid crystallize by simple mixing.

To describe liquid crystallinity by association, we introduce the orientational
free energy in addition to the free energy of reaction and mixing. Assume that
an R{A s} molecule carries a number f of linear rigid associative groups A
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of length n’, and an R{B,} molecule carries a number g of rigid groups B
of length n;. The total DPs are ny = n'; + fn’ and ng = n'y + gnj. For the
orientational free energy, we employ the conventional molecular field theory
of Maier and Saupe [68], or its extension by McMillan [69] that includes both
orientational ordering of the mesogenic cores and translational ordering of their
center of mass. It is given by:

BAFyi ={(=InZ) + 5¢(n° + a0 ®)vy } Ny (83)

Ny, is the total number of mesogenic cores formed in the system, and vy, =
Ny / €2 is their number density. In contrast to conventional liquid crystals, they
are variables that depend on the temperature and composition, and should be
determined by the equilibrium condition. The symbol 1 expresses the nematic
order parameter defined by:

n = (Py(cosh)) (84)
Similarly, o is the smectic order parameter.
o = (Py(cos@)cos(2rrz/d)) (85)

(The function P»(x) = (3x% — 1)/2 is the Legendre polynomial of degree 2.)
The coupling constant ¢ (Maier-Saupe’s interaction parameter) is the nematic
interaction parameter, and « is McMillan’s smectic interaction parameter. The
averages refer to the statistical weight for orientation of each mesogenic core
whose partition function Z is defined by:

d 1
Z(n,o0) = cll/o dz/O dcosOexp{¢[n + aocos(2mz/d)]
X P>(cosO)vy}, (86)

d is the distance between the neighboring planes in the smectic A structure on
which the centers of mass of mesogenic cores are located (layer thickness).
The symbol 8 shows the angle of the longitudinal axis of each mesogenic
core measured from the preferential orientational axis. By using this statistical
weight, the definitions in Eqs. (84) and (85) become self-consistent coupled
equations to find the order parameters. First, these equations are solved with
equilibrium conditions for vy, and then, by substitution, the chemical potential
of each component as functions of the temperature and composition is found.
Anexample of the phase diagram calculated by this theoretical framework in the
case of dimer formation has been reported [70]. Figure 9 shows a phase diagram
of a symmetric mixture withn4 = np = 10,and n’;, = nj; = 1 (small rigid head
groups carrying short aliphatic flexible tails). The temperature is measured
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Figure 9. Phase diagram of a dimer-forming hydrogen-bonded supramolecular liquid crys-
tal, and its partial magnification. Parameters are fixed at ny =npg = 10,n"f1 = n} =1,A=
30.0,C =0.3,Cy = —0.5,Cy = —0.05, and « = 0.5. (Reprinted with permission from [70].
Copyright (2002) American Chemical Society)

by t = T/ Ty; in the unit of the nematic/isotropic transition temperature Ty;.
We have assumed that Flory’s y-parameter takes the form x = Cy 4+ C,/t
using the reduced temperature ¢ with C; and C, constants specified by the
combination of molecular species. They are fixed at C; = —0.5 and C, = 0.05.
The association constant is assumed to take the form A(T) = Agexp(C/t),
where C = |A€|/kpTy; is the dimensionless energy of the hydrogen bond.
We have fixed A¢ at 30.0 and C = 0.3. The inset magnifies the important part
in the figure. The thin solid line is for the I/N transition, and the thick solid
line the N/S,, transition. Letters I, N, and S, represent the state whose free
energy is lowest in the area. Dotted lines limiting the hatched metastable region
are binodals. The dark gray area indicated by U is the unstable region that
is hidden inside the coexistence region, whereas the light gray area with U’
is the conventional unstable region due to demixing. Open circles represent
critical solution points. An unstable region hidden in a two-phase coexistence
region due to the first order nature is well known in metallurgy as a metastable
phase boundary [71]. Recently the existence of the spinodal curve hidden in a
metastable region has been the focus of a study on crystallization of polymers
[72, 73]. These hidden unstable regions usually accompany first-order phase
transitions, and lie in the region where the liquid state has the lowest free
energy.

Athigh temperature, the coexistence regions, caused by first order I/N phase
transition, and by demixing the two different species of molecules, appear.
Depending upon the composition, the mixture separates into either two I phases
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by the effect of mixing enthalpy or I phase and N phase by the I/N transition.
At intermediate temperature, the two coexistence regions merge, but the U
region and the U’ region remain separated. From such a phase diagram, two-
step spinodal decomposition is possible; the mixture first separates into two
metastable I phases or metastable I and N phases, and then into stable I and
N phases. For example, when the mixture is quenched to the black triangle
point from a high temperature shown in Figure 9(b), it separates temporarily
into metastable I and N phases (open square) by the driving force based on
the I/N transition, and eventually into stable I and N phases (black square) by
cooperative driving force due to the I/N transition and the usual demixing. It is,
however, also possible that larger fluctuations in spinodal decomposition lead
to direct separation into stable I and N phases. At lower temperature, the two
unstable regions U and U’ also merge, so that the mixture separates directly
into stable I and N phases, or into stable I and S,, phases by the cooperative
driving force. If we divide the phase diagram into two at the middle and consider
the left half, it is similar to the theoretical phase diagram of a lyotropic liquid
crystal first derived by Flory [74], and later confirmed experimentally by Miller
et al. [75]. The narrow I/N coexisting region extending from the macroscopic
phase separation region is called a miscibility chimney. In lyotropic liquid
crystals, the chimney goes straight up to high temperature, but our results show
that there is a limiting temperature (the top of N phase) to which the chimney
approaches, because the number of mesogenic cores decreases with increasing
temperature.

3. Gelling Solutions and Mixtures

We consider now solutions that form gels. We first study simple pairwise
association of functional groups, and then generalize the theory to multiple
association. Finally, complex mixtures, where networks are formed by more
than one species of polymers, are treated.

3.1. Micellization and Gelation

We start with a simple model binary mixture [12-14] in which solute
molecules R{Ar} of molecular weight n, =n, each carrying f identical
functional groups A, are mixed with low molecular weight (ngp = 1) solvent
molecules S. The solute molecules can be low molecular-weight functional
molecules as well as polymers carrying functional groups. Pairwise associ-
ation between A groups only is assumed (Aga > 0,Aap = Agp = 0). In the
equilibrium state, solvent (0, 1) and /-mers (/, 0), where [ = 1,2, 3, etc. exist.
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To simplify the symbols, the double suffies are contracted into single ones, and
[ is written for an /-mer and O for a solvent. The starting free energy is given by:

BAF = > N/ng + Nolngy + xp (1 — $)Q
>1
+> AN+ 8(¢)NC (87)
>1

¢o =1 — ¢ is the volume fraction of the solvent, and N¢ is the number of
R{A/} molecules in the macroscopic cluster if it exists. In general, such a
macroscopic cluster can be any structure as long as its molecular weight is
infinite; it can be a three dimensional branched network, a worm-like micelle,
an infinitely long string, etc. But, in what follows, we mainly treat networks
(i.e., SAFINs). Let us first find a simple criterion for gelation with regard to
the size of the aggregate clusters.
By differentiation, the chemical potentials are:

BAw = A; + 1+ Ingy — nlvS + xnl(1 — ¢)?
+nl8 (P (1 — ¢) (88a)
BAuo =14+ 1In(1 —¢) —v° 4 x¢* — 8'(p)v%¢ (88b)

The general procedure developed above for chemical equilibrium leads to the
volume fraction of the clusters:

¢ = K1)} (89)

¢ is the volume fraction of the unassociated molecules, and the equilibrium
constant is given by:

Kl = CXp(l —1- A[) (90)

We then consider the total amount of materials in the sol:

o
¢ ) =y + ) K D
=1
x = ¢ for the solute molecules and y = 1 — ¢ for the solvent. To study con-
vergence of the infinite summation in this equation, we define the free energy
gain §; = A;/I produced when a single chain participates in a cluster of the size
[. Application of the Cauchy-Hadamard’s theorem [76] gives the convergence
radius x* of the power series in the form of Eq. (92) where the least upper
bound of the limit has been indicated by a bar.

1/x* = lim (K))'/' = e! ™" (92)

The quantity §», = lim;_, », ; is defined by the limiting value of §; as [ — oo.
In the present special case of self assembly, there is a linear boundary in the
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unit square on the (x, y) plane which is parallel to the y-axis. Within the radius
of convergence, the normalization condition ¢5(x, y) = 1 gives a one-to-one
relationship between ¢ and x. Formation of several different spatial structures
can be seen from the behavior of §;. Figure 10 schematically shows the exponent
8; + 1/1 — 1 in the equilibrium constant K 1—1/ " as a function of /. This function
may either be a minimum at a certain finite / (curve (I) and (III) of Figure 10) or
it may decrease monotonically to a finite value o, — 1 (curve (I)). [y is defined
as the value of / at which the curve reaches the minimum (including /p = oo
for the monotonic case). The cluster size [ for which the volume fraction ¢,
becomes largest is:

9A;/8l =1 + Inx (93)
oy + V-1
type I
| I* I*
=1 !
type II
type III
micellization
4} / gelation
i
[ singular point
|
| type II, ITI
0

01" o1

Figure 10. (Top) The binding free energy per molecule as a function of the aggregation num-
ber. (Bottom) Total volume fraction as a function of the unimer concentration. Type I leads
to micellization with a finite aggregation number. Type II and Type III lead to macroscopic
aggregates, such as infinitely long cylindrical micelles and three dimensional networks. In the
latter case, the volume fraction ¢ of the molecules that remain unassociated in the solution as
a function of the total volume fraction ¢ of the molecules shows a singularity at the point where
the weight average molecular weight of aggregates becomes infinite.
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[* is defined as the solution of this equation for the value of x at the convergence
radius x*. In the case where [* is finite, the total concentration corresponding
to the upper bound x* is called the critical micelle concentration (cmc), since
the volume fraction of the clusters with aggregation number [* goes to a finite
fraction at this value of the total volume fraction [77]. The Sharpness in their
appearance is controlled by the curvature of the function §; + 1// — 1 around
[*. At the cmc, [y = [*.

In the case where [* is infinite, a macroscopic cluster appears as soon as
x exceeds the critical value x* = exp(§* — 1). The macroscopic clusters can
be branched networks (SAFIN gels) [4, 5], infinitely long polymers [33], or
wormlike micelles [78—80]. For brevity, we call the former case gelation and
the latter case polymerization (including worm-like micellization) (Precisely,
worm-like micelles formed by hydrophobic association fall in the category of
multiple association described below. Here, we roughly call a one-dimensional
self-assembled object a worm-like micelle; see also Chapter 19.) The total con-
centration ¢* obtained from x* gives the concentration at which this transition
takes place. It depends on temperature through 8.,. For ¢ above ¢*, the sum in,
@5 (x,y), cannot reach ¢. The amount of shortage; ¢ — > ¢;; condenses into
the macroscopic clusters.

When molecules form a linear array as in Figure 11(a), the internal free
energy of an aggregate is u; = —(I — 1)akpT, where akpT is the free energy
of a bond. We have Eq. (94) with p = 1.

S +1/l—1=—(1—a)+a/l”+1/1 (94)

For two-dimensional, disk-like aggregates, as in Figure 11(b), we have the
same equation with p = 1/2, because the aggregation number [ is propor-
tional to the area 7 R?, and there are no bonds from outside along the edge.
Similarly, p = 1/3 for three dimensional aggregates as in Figure 11(c). All
these examples give monotonically decreasing curves of type II, and, hence,
(#1)eme = expl—(1 + «)] for the critical micelle concentration. Above the cmc,

(a) linear (b) disk-like (c) spherical

Figure 11. Micellization of end-associative polymer chains. (a) linear association, (b) two-
dimensional discotic association and (c) three-dimensional spherical association.
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the unimer concentration is nearly constant at this value, and the volume fraction
of aggregates with a specified number is given by ¢; >~ exp[—(1 + al'~7)], or:

e (p=1
p~ e <1 (p=1/2) (95)
e <1 (p=1/3)

Therefore, a widely polydisperse distribution for linear aggregates is expected
because ¢; is almost constant. For two- and three-dimensional aggregates, the
distribution function decays quickly with the aggregation number, and since
the total concentration is a given variable, aggregates of infinite size easily
appear.

Next, consider the type I and type III, where stable micelles of finite size
are formed. The binding free energy is expanded around /*:

1—81—;§a—b(l—l*)2+--- (96)
a and b are positive constants. Since the volume fraction of /-mers is:

¢ = A0 (e gy (97)
The cmc is determined from the condition:

(P1)eme =€ (98)

Hence, we have Eq. (99) near [ = [* (i.e., the distribution function of micelles
becomes Gaussian with mean value /* and variance 1/+/2[*b).

o = e—l*h(Al)2 (99)

3.2. Gelation by Pairwise Association

Consider the simplest gelling binary mixture in which primary functional
molecules form networks in a solvent [10-12]. In order to derive the equilib-
rium constants in an analytical form, a simple model for the internal structure of
clusters is introduced. Clusters are assumed to take a tree structure with no inter-
nal loops (called a Cayley tree). Cycle formation within a cluster is neglected.
This is a crude approximation, based on the classical theory of gelation [8, 81,
82], but it is known to work very well before the gel point is reached.

The general theoretical scheme gives the chemical potentials of the clusters
and solvent:

BAw = Ay — 1+ 1+ Ing; —nlvS + xnl(1 — ¢)?
+nl8' () (1 — ¢) (100a)
BAuo = 1+1In(l — ¢) —v° + x¢* — ' (@9 (100b)
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Eq. (101) gives the total number of molecules and clusters having translational
degree of freedom.

VSEZVI+1_¢ (101)
As usual, the free energy is split into three parts:
Al — Afomb 4+ Alconf 4 A})ond (102)

To find the combinatorial part, we employ the entropy change on combining
[ identical f-functional molecules to form a single Cayley tree. The classical
tree statistics [82] gives:

ASF™ = kpIn[ flay] (103)
Eq. (104) is Stockmayer’s combinatorial factor [82].
[ =1
w = _Yi=Dt (104)
I(fl =21 +2)!

The free energy is given by Ao = — A SOM° /fp.
For the conformational free energy, we again employ the lattice theoretical
entropy of disorientation (Eq. (50)), and find:

gen

_ 2\ /-1
ASF" = Sgis(In) — 1Sais(n) = kpIn [<0(;1)) l] (105)

Finally, free energy of bonding is given by Eq. (106) because there are / — 1
bonds in a tree of / molecules, where Af is the free energy change on forming
a single bond.

AP = (I — DBAS (106)

Combining these results, we find Eq. (107) for the equilibrium constant.

A -1
n
Also, A(T) is the association constant.

MT) =[o(¢ — 1)*/celexp(—BAfo) (108)

The distribution of clusters (Eq. (89)) then gives Eq. (109) for the number
density.

Ay = awpx! (109)
The independent variable x here is defined in Eq. (110).
x = fig1/n= fiv (110)
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It gives the number of functional groups f¢;/n carried by the unassociated
polymer chains in the solution, multiplied by the association constant A(7') as a
temperature shift factor. From this distribution function, we can obtain average
values of physical quantities. First, the total number concentration of the finite
clusters is given by:

A v = So(x) (111)
>1
Their volume fraction is:
A
=Y =51 (112)
=
Therefore, the number average of the cluster size is given by:
=Yt /3 v=81)/Sx) (113)
The weight average is:
=Y /Y v = $00/81(x) (114)

These are written in terms of the moments of Stockmayer’s distribution function
defined by:

Six) => Fox' (k=0,1,2,..) (115)
=1
These moments are explicitly written in terms of the extent « of reaction:
x=a(l —a)/? (116)
For instance:
So(x) = a(l — fa/2)/f(1 — a)? (117a)
$i1(x) = a/f(1 — @)’ (117b)
$r(x) = a(l +a)/f[1 = (f — Dal(l —a)’ (117¢)

To understand the physical meaning of «, the probability for a randomly chosen
functional group to be associated is calculated. Since an /-mer includes a total of
f1 groups, among which 2(I — 1) are associated, the probability of association
(extent of reaction) is:

2[81(x) = So(x)]/fS1(x) =« (118)

Thus, « gives the extent of association.
By using «, the average cluster sizes are:

I, = 1/(1 — fa/2) = P,(e) (119a)
I, = (1 +a)/[l = (f — Dal = Py(@) (119b)
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3.2.1. Pregel regime

The weight average diverges at « = 1/(f — 1). This suggests that o =
o =1/(f — 1) is the gel point. The number average also divergesato = 2/f,
butsince 2/f > 1/(f — 1), the postgel regime must be studied to examine its
behavior. In the pregel regime, where & < a*, the volume fraction ¢ occupied
by the polymer chains belonging to the sol must always be equal to the total
polymer volume fraction ¢ since no gel network exists. Thus, the total polymer
volume fraction ¢ and the extent of association « satisfy the relation:

fA o

s (120)

This equation can be solved for « (as in Eq. (121) in terms of the number
concentration of the functional groups (with the temperature shift factor of the
association constant) (Eq. (122))).

a=2lc{1+2c—\/1+4c} (121)
= ”;T%p (122)

All physical quantities directly can be expressed then in terms of ¢. For instance,
the total free energy per lattice cell is:

BAF _ ¢

o n{(f—Z)ln(l—a)+lna+;fa}
+(0 —¢)In(l — ¢) + xo(1 — ¢) (123)

Hence, the renormalization of the x-parameter by association becomes:

Ax(p) = [(f —2)In(l —a) +Ino + %foz —ln¢}/n(1 —¢) (124)

We thus find the molecular origin of the concentration dependence of the
X -parameter in associating polymer solutions. In a similar way, the spinodal
condition is:

k() 1
—— —2x=0 125
o t1z s X (125)
Here, a new function « is defined by Eq. (126) with « given by Eq. (121).
= (f=Da 1
D= T h@

(126)

It is the reciprocal of the weight-average cluster size.
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3.2.2. Gel point

Next, we find the sol/gel transition point. The free energy change &
per molecule is a steadily decreasing function of [/, approaching the limit-
ingvalue §o0o =1 — (f — DIn(f — D) + (f —2)In(f — 2) — InA(T). This
model therefore falls within category Il in Figure 10. This limit for the conver-
gence radius of the series given by Eq. (125):

¢1 = exp(doc — 1)
or, equivalently,
X =(f =7 =D (127)

in terms of x, and «* = 1/(f — 1) in terms of the extent of association as was
expected from the divergence of /,,. The volume fraction of polymers at the gel
point is then:

ATy o f -1

PRy

This gives the sol/gel transition line on the temperature-concentration plane.

(128)

3.2.3. Postgel regime

In the postgel regime, where ¢ > ¢* and o > «*, there is an additional
condition of equating the chemical potential of a polymer chain in the sol part
and one in the gel part [83]. This equilibrium condition Ap; = A% gives:

Inx =6(¢p) — 1 (129)

Here, the free energy 4(¢) produced on binding a chain onto the gel network
should depend upon the concentration because the structure of the gel changes.
It starts with the initial value 8., at the gel point, (i.e., §(¢*) = do). Thus, the
volume fraction of the unreacted chains is related to the binding free energy.

Since the conversion in the sol can in general be different from that in the
gel, the former is written as o’ and the latter as o”. The average conversion «
of the solution as a whole is:

a=adwS + " w’ (130)

The volume fraction ¢° of polymers belonging to the sol is consequently
expressed by Eq. (131) in the postgel regime, so that it is different from the
total ¢ that is in terms of c.

rpS/n = S () (131)
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The sol fraction w* is:

w’=¢"/¢ = 51(@)/Si(@) (132)
Hence, the gel fraction is:
wl =1—8(")/S(a). (133)

The number v* of total clusters in the chemical potentials must also be replaced
by Eq. (134) since it must give the number of molecules and clusters that have
a translational degree of freedom.

v =Sp@)/h+1—¢ (134)

The gel network spans the entire solution and loses translational motion. By
using this v5, the chemical potentials are:

PRIT _ LHI0X s (= 67 + 5@)(1 — O (1352)

n n

BALG =1+ 1In(1 — @) —v° + x¢* — 8'($)pv° (135b)

The function « in the spinodal condition takes the form of Eq. (136) which
is different from the one in the pregel regime.

(¢) = d (1+ ¢_d )1 (o) (136)
K¢_m U)m nx(o

Explicitly, it becomes:

k() = [1 + ws(l — Pw(o/))} ! G 4

Pu@) )] Pt " dlnqs(Pw(a)) (137)

(1) Flory's treatment. By the definition of « in Eq. (116), x takes a maximum
value x* = (f — 2)/72/(f — )/~Vata = 1/(f — 1). Therefore, two values
of « can be found for a given value of x. Consider the postgel regime, o > o*.
For a given a, the value of x is fixed by the relation x = a(1 — )/ ~2. Flory
postulated [8] that another root o, lying below «* of this equation for a given
value of x, gives the extent of reaction in the sol. The larger valued «, lying
above a*, applies to all functional groups in the system. The volume fraction
@5 of polymers in the sol is then:

a/

[ —a)?

Also, the gel fraction is:

§¢s _ (138)
n

wl=1-wS=1-(1-a)*/]-a)a (139)
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Hence, the gel fraction reaches unity only at the limit of complete reaction,
a = 1. The extent of association «” in the gel can be obtained from Eq. (130).
Explicitly, it gives:

o =[(1 —a)a® — (1 —a)’d?)/[(1 —a)a — (1 —a)?]  (140)

This value is larger than that given by the infinite limit in the tree approxi-
mation (Eq. (141)) so that, in Flory’s picture, cycle formation is allowed within
the gel network.

lim [(f —2)0 +21/fl=2/f (141)
The binding free energy §(¢) of a chain onto the gel network is then:
3(c)=1—(f — Dlnc+ fIn[(V1 + 4c — 1)/2] (142)

As shown in Figure 12, the absolute value of the binding free energy is
a monotonically increasing function of the concentration. With increase in
the concentration, the network structure becomes tighter, so that binding of a
polymer chain becomes stronger. The main results obtained by Flory’s picture
are summarized in Figure 13.

(2) Stockmayer’s treatment. However, Stockmayer [82] later remarked that
Flory’s result in the postgel regime is inconsistent with the tree assumption,
since the treatment permits cycle formation in the gel network. To remove
this inconsistency, he proposed another treatment for the postgel regime. He
introduced a different assumption, that the extent of reaction of functional
groups in the finite clusters remains at the critical value 1/(f — 1) throughout
the postgel regime. He also proposed that in the postgel regime the extent

-0.7 I T T

-1.0 —

I | | L l 1
" 0.6 0.7 0.8 0.9 1.0

¢

Figure 12. The dimensionless binding free energy in the postgel regime in two treatments. In
Flory’s treatment, the absolute value of the binding free energy increases with the concentration
because the number of junctions on a chain increases on average.
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Figure 13. The gel fraction, the extent of association, and the average molecular weight calcu-
lated on the basis of Flory’s postgel picture. The number average has discontinuous slope across
the gel point, while the weight average diverges.

of association in the gel network takes the value «” = 2/f appropriate to an
infinite tree structure without cycles. The weight fraction w¢ of the gel then
takes the form:

6 (f—Da—1
wo = D=1
1-2/f

a(>a”) is the extent of reaction including all functional groups. It is a lin-
ear function of «, and reaches unity at @ = 2/f before reaction is completed.
The volume fraction of the sol ¢° remains constant at ¢5 = ¢*. The num-
ber average DP remains constant at I, =( f —2)/2(f — 1), while the weight
average is divergent ([, = o0) in the postgel regime. The binding free energy is
fixed at §,. From a physical viewpoint, Flory’s model is closer to reality since
intramolecular connection is an essential feature of the network structure. The
main results obtained by Stockmayer’s picture are summarized in Figure 14.
Figure 15 compares phase diagrams calculated by the two different treat-
ments of the postgel regime [83]. Binodals and spinodals appear in different
positions. For the same association constant, Stockmayer’s treatment gives a

(143)
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Figure 14. The gel fraction, the extent of association, and the average molecular weight calcu-
lated on the basis of Stockmayer’s postgel picture. The number average has again a discontinuous
slope across the gel point while the weight average remains divergent in the postgel regime.

tricritical point (TCP) [84, 85] at the crossing of sol/gel transition line and bin-
odal (spinodal), while Flory’s treatment gives a critical endpoint (CEP) [85]
at the shoulder of the binodal and a critical point (CP) in the postgel regime.
This is possible because Flory’s treatment allows cycle formation within the gel
network. Existence of a CP in the postgel regime suggests that phase separation
between dilute gel (with only a few cycles) and concentrated gel (with many
cycles) in the postgel regime is possible.

Figure 16 presents a comparison of the experimental and theoretical
phase diagrams of atactic polystyrene (at-PS) solution in carbon disulfide
(CS,) [86-88]. This solution shows a TCP type phase diagram, but CEP types
were also reported for at-PS in different solvents [87]. Here, we attempted
to fit the data by simple pairwise crosslinking in Stockmayer’s picture. The
molecular origin of cross-linking has been the subject of a great deal of investi-
gation [4, 87, 89, 90], but divergent opinions still remain. One series of studies
postulates [89] the existence of short, crystallizable, stereoregular segment
sequences on polymer chains (even if they are atactic) that are responsible for
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Figure 15. Comparison of the theoretical phase diagrams for low molecular-weight (n = 1)
trifunctional (f = 3) molecules calculated by Flory’s treatment (upper lines) and Stockmayer’s
treatment (lower lines) of the postgel regime for the same association constant. Flory’s treatment
allows cycle formation within the gel network, so that phase separation between dilute gel with
only a few cycles and concentrated gel with many cycles with a critical solution point (white
circle indicated by CP) is possible in the postgel regime. (Reprinted with permission from [14].
Copyright (2002) Japanese Society for Polymer Science)
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Figure 16. Phase diagram of atactic polystyrene in carbon disulfide. Thermoreversible gelation
coexists with phase separation. Theoretical sol/gel transitions (broken line), binodal (solid line)
and spinodal (dotted line) are drawn. The reduced temperature is T = 1 — ® /T, with the theta
tempearature ® = —70° C. Experimental data of the gel points (black symbols) and cloud points
(white symbols) are shown for three different molecular weights of at-PS. The calculation is
fitted to the data for M = 9.06 x 10%. (Reprinted with permission from [14]. Copyright (2002)
Japanese Society for Polymer Science)
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the formation of microcrystalline junctions. Another study [4, 90] proposes
that cross-linking takes place by specific interactions, such as formation of
stoichiometric compounds involving solvent molecules. If such complex for-
mation were the mechanism of cross-linking, the gelation temperature should
not show steadily increase with increasing polymer concentration, but should
show a maximum at a certain concentration [90]. The existence of specific
interactions was later indicated by a light scattering study of a dilute at-PS
solution in toluene-CS, mixtures [91].

3.3. Multiple Association

Most thermoreversible gels of polymers and biopolymers have crosslink
junctions connecting polymer segments belonging to several distinct chains
(multiple junctions). For instance, gelation by micro-crystallization of chain
segments by ionic aggregation and by hydrophobic association of special
groups attached on the polymer chains belong to this important category [4, 5].
In some biopolymer gels, triple helices serve as extended cross-link junctions.

Among these, associating polymers (AP) are very important because they
form ultra-weak networks in water. Associating polymers are water-soluble
polymers carrying hydrophobic groups on the backbone or on the chain side
[13, 92]. Typical model APs that have recently been the focus of study
are partially modified by hydrophobic groups. One series of APs are
based on poly(ethylene oxide) chains (PEO), modified by short alkyl
chains [93-99], propylene oxide (or butylene oxide) chains [100] and fluo-
rocarbon chains [101-104]. Hydrophobes are either periodically or randomly
attached on a polymer chain. The simplest one is a telechelic polymer carrying
two hydrophobes at the chain ends. Another series of APs are based on cel-
lulose derivatives. Some examples are ethyl hydroxyethyl cellulose (EHEC)
[105-107] and hydroxypropyl methyl cellulose (HPMC) [108, 109]. Polyelec-
trolytes partially modified by hydrophobic groups have also been intensely
studied [110-114].

In this section, we attempt to extend our theory from pairwise association
to the more general multiple association. As a model solution, consider a mix-
ture of associative molecules in a solvent. Molecules are distinguished by the
number f of associative groups they bear, each group being capable of taking
part in the junctions with variable multiplicity which may bind together any
number & of such groups [115-117]. We include k£ = 1 for unassociated groups.
Junctions of all multiplicities are allowed to coexist in proportions determined
by the thermodynamic equilibrium conditions. In order to incorporate poly-
dispersity in the functionality, the number f of associative groups is allowed
to vary. Such polydispersity in the functionality of polymers is essential when
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associative groups are activated by the conformational transition of polymers as
in biopolymer gels. In such cases, the functionality f is not a fixed number but
changes depending upon temperature, concentration, and other environmental
parameters.

Let n s be the number of statistical segments on an f-functional primary
molecule, and let N be the total number of molecules in the solution. The
weight fraction w, of the associative groups carried by the molecules with
specified f relative to the total number of associative groups is:

wp=fN; /3Ny (144)

The number- and weight-average functionality of the primary molecules are
then:

fu = (wa/f)_1 (145a)
fo=) fwy (145b)

The volume fraction of f-functional molecules is ¢, =n vy, where v, =
Ny /2 is their number density, and the total volume fractionby ¢ = > ¢ .

In thermal equilibrium, the solution has a distribution of clusters with the
population distribution fixed by the equilibrium conditions. Following the nota-
tion used by Fukui and Yamabe [115], we define a cluster of type (j; 1) to consist
of ji junctions of multiplicity k(k =1, 2,3, ...) and [ ; molecules of functional-
ity f(f =1,2,3,...). The bold letters j = {1, j2, J3,...} andl = {[1, 15,3, ...}
denote the sets of indices (Figure 17). An isolated molecule of functionality
f, for instance, is indicated by jor = {f,0,0,...}, and oy ={0,...,1,0,...}.
(The f-th number is unity; others are zero.)

Let N (j; 1) be the number of (j; 1)-clusters in the system. Then their number
density is given by v(j; 1) = N(j; 1)/€2, and their volume fraction is:

¢ (i) = (anzf) v(§s D (146)

f=1

The total volume fraction of the polymer component in the sol part is the sum
over all possible cluster types:

o= o@D (147)
jil

As in the preceding sections, we start from the standard reference state
(polymers and solvent molecules being separated in hypothetical crystalline
states). The free energy change on passing from this reference state to the final
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Figure 17. A cluster formed by multiple association. It is characterized by a set of vectorial
indices j specifying the type of junctions and 1 specifying the type of molecules.

solution, at equilibrium with respect to cluster formation, is [116]:

BAF/Q = ¢olngo + > _v(i:DIAG:D + Ing(j; D]

il

+xGod + Y v78,(9) (148)
f

Here, the free energy change A (j;1) accompanying the formation of a (j; 1)-
cluster in a hypothetical undiluted amorphous state from the separate primary
molecules in their standard states is:

A1) zﬁ{w(j;l) - ZlquGOf;10f>} (149)
f

In the postgel regime where a cluster grows to a macroscopic network, the last
term for the gel part in the free energy is necessary [12, 116].

Following the general strategy, we first derive chemical potentials of the
clusters and solvent, and pose chemical equilibrium conditions (Eq. (150)) to
find the cluster size distribution function written in terms of the volume fraction
of the polymer chains that remain unassociated.

Ap(j;l) = le'Aﬂ(jOﬁ loy) (150)
f

Substituting the result back into the starting free energy (Eq. (148)), yields
Eq. (29), where the association part is:

by ¢or b5 s
=Y (| +1-9+> L - 151
fas{o)) Ef 0 n<¢f> ) Sy v (151)
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Here, ¢or = ¢ (Jos;lor) is the volume fraction of f-molecules that remain
unassociated in the solution. The number of molecules and clusters possessing
translational degree of freedom takes the form:

pS = (Z f;) /L, +1—¢ (152)

f

To derive I, (the number average DP of the clusters), we again apply classical
tree statistics, but now augmented to account for multiple association. We have
recently presented a systematic method [118, 119] to calculate number- and
weight-average DP of condensate polymers (aggregates) based on the applica-
tion of a cascade process [ 120] to the polycondensation of functional molecules.
Derivation of the main result is straightforward but tedious, so that only the
outline of the multiple cascade theory is described here.

First, the probability p; for a randomly chosen associative group to be in
the junction of multiplicity k is introduced. The total extent « of reaction is:

a=Yp (153)
k>2

Then, p; = 1 — « is the probability for an associative group to remain unasso-
ciated. This is equivalent to the normalization condition, >, p; = 1. The cascade
theory then uses the function u(x) with regard to the junction. This function
(referred to as the junction function) is:

u(x) =y px (154)

k>1

The number- and weight-average multiplicity of the junctions are:

-1
P (Z pk/k> (155a)
k

Aw = D _kpi (155b)
k

The cascade theory of multiple association [118, 119] then gives for the number-
and weight-average DP of polymer aggregates:

1
It=1- f,,/ xu' (X)dx =1 — f,(1 — 1/f1n) (156a)
0

7 fn(/lw - 1)
l,y =1 - 156b
T e DG D (1560)

From the weight average, the gel point is defined by the condition:

(fw — D@y — 1 =1 (157)
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In the case of the thermoreversible reaction we now consider that the probability
Pk obeys the reaction equilibrium condition:

v/ Wpn)* = Ki (158)
Y = fN;/Q is the number density of functional groups. Hence, py is:
pi= K"~ p} (159)

Then, the form K; = A(T)*~!y is assumed, where A(T) = exp(—Afo/kpT)
is the association constant (A f, being the binding free energy), and y; includes
the free energy due to the existence of the surface on the micellar junction.
Substituting this form of p; into the normalization condition, we find:

ATy = zu(z) (160)

The function #(z) to be used to characterize the junctions is defined by Eq. (161)
by using the parameter z defined in Eq. (162).

i(x) =Yy, (161)
k>1
=MD Yypr =AMy (1 — ) (162)

The parameter z gives the concentration of the associative groups that remain
unassociated in the solution (multiplied by the association constant). From
Eq. (160), that relates the parameter z (and hence reactivity «) with given poly-
mer concentration ¢, [i, and fi,, can be found as functions of the temperature
and concentration. Hence, the free energy is obtained. The gel point condition
(Eq. (157)) is transformed into the equation:

(fw — Dzi'(9)/i(z) = 1 (163)

The multiplicity of the junctions is, in principle, determined automatically
by the equilibrium requirement for a given associative interaction. In the case of
hydrophobic interactions, the chain length of a hydrophobe, the strength of the
water-hydrophobe interaction, the geometric form of an aggregate, and other
factors determine the association constant A(7") and the junction multiplicity
k. For practical treatment, we avoid this complexity in finding the precise form
of the coefficients y;, and, hence, the distribution of the multiplicity. Instead,
model junctions are introduced [116].

In one of the practical models in common use, multiplicities lying in a certain
range, covering k = kuy;, to kimax, are equally allowed (mini-max junction). We
have:

k = 1(free), k = kmin, kmin + 1, ..., kmax (associated) (164)
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The junction function takes the form:

kmax

B =1+ Y =14 =y - o) (165)

k=kmin

Such an assumption of limited range can be, to some extent, justified in the
case of micelles of hydrophobic chains [117].

When only a single value is allowed (i.e., kmin = kmax = k), the so-called
fixed multiplicity model is applied. Thus, for k = 2, the fixed multiplicity model
reduces to pair-wise association. The above normalization relation for the
fixed multiplicity model of monodisperse polymers ( f and n definite) is given
by Eq. (166) in terms of the extent o of association to the (scaled) polymer
concentration.

M)/ =o' CV/F( = ) ED, (166)
The gel point condition Eq. (163), gives (f — 1)(k — 1)a = 1 and, hence:
o =1/(f — Dk -1 (167)

This leads to the critical concentration:

MDY /n=(f — Dk — D/fI(f — Dk — 1) — 1]Y/&D (168)

¢* is the volume fraction of the polymer at the gel point.

Figure 18 plots the reduced concentration A(7)¢*/n at the gel point as a
function of the junction multiplicity. The functionality is changed from curve to
curve. For bifunctional molecules ( f = 2), at least multiplicity 3 is necessary
for gelation. The gelation concentration monotonically decreases with multi-
plicity. For functionality higher than 2, however, there is an optimal multiplicity
for which gelation is easiest. In such cases, growth of the networks becomes
difficult with an increasing number of branches at the junctions.

Figure 19 shows the shift of phase diagrams with increasing multiplicity
for bifunctional molecules. The sol/gel transition (thick broken), binodals (thin
broken) and spinodals (solid) lines are drawn for a fixed multiplicity within
Flory’s postgel treatment. Above a certain critical multiplicity (k =5 in the
figure) the two critical solution points merge into one, and the phase diagram
changes from CEP type to TCP type.

3.4. Structure of the Networks with Multiple Junctions

On passing the gel point, networks appear and coexist with finite clusters.
The structure of a network can be studied from two different viewpoints: the
local and the global viewpoint. The local structure of a network focuses on the
structure of each network junction, including its multiplicity, sequence length,
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Figure 18. The reduced concentration A(T)¢™*/n at the gel point plotted against the junction
multiplicity. The functionality is varied from curve to curve. For the bifunctional case of f = 2,
it is a monotonically decreasing function, while for f larger or equal to 3, it has a mimimum at
a certain multiplicity, where gelation becomes easiest.

degree of chain packing, etc., while the global structure treats topological con-
nectivity of the network as a whole, paying special attention to the cycle rank
(number of independent loops), number of elastically effective chains, number
of dangling ends, average path number of junctions, etc. Studies from such
different viewpoints are complementary, and both are necessary.

3.4.1. Local structure of networks — augmented Eldridge-Ferry method

When an associative group on a chain involves ¢ sequential repeat units, we
can write the standard free energy change as A fy = ¢(Ah — T As). By taking
the logarithm of the gelation concentration (Eq. (168)), the important relation
is obtained:

Ing* =20 L (f = Dk = n A5 (169)
kgT A = Dk — 1) — [PF/E=D kg
We can find the multiplicity k and sequence length ¢ by comparing this relation
with the experimental sol/gel transition concentration (see Figure 20) [121]. For
the hydrophobes on associating polymers, the enthalpy A/ of a cross-link is
found because ¢ is known from the number of carbon atoms in a hydrophobe.
For the fringed micellar micro-crystalline junction formed by homopolymers,
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Figure 19. Sol/gel transition lines (thick broken lines), binodals (thin broken lines) and spinodal
lines (solid lines) of bifunctional (f = 2) polymers withn = 100, Lo = 10.0 for association with
fixed multiplicity (kpin = kmax = k). Multiplicity k is changed from 3 to 8. The transition line
shifts to high temperature and low concentration regions with the multiplicity. Gelation is easier
for larger multiplicity. (Reprinted with permission from [14]. Copyright (2002) Japanese Society
Polymer Science)

each ¢ sequence of repeat units along a chain serves as a functional group for
cross-linking. In such a case, a polymer chain is regarded as carrying roughly
f =n/¢ functional groups. Since n is large, and hence f is large, we can
neglect 1 compared to n or f. This leads to Eq. (170) for micro-crystalline
gels.

Ah 1
Inc*=¢—— — In M + constant (170)
kgT  k—1
Here, the weight concentration c* has been substituted for the volume fraction.
This equation allows ¢ and k to be calculated independently. For the special
case of pair-wise association (k = 2), this equation reduces to the conventional
Eldridge-Ferry equation [122] (see also Chapter 8).
From a plot of Inc* against 10°/T + In M, the slope —B of the line at
constant T gives —1/(k — 1), while the slope —A of the line at constant M
gives:

3 3
_ 10 kBA: 10°R A (171)
|Ah| [(AR)mol

(Ah)mor 1s the enthalpy of bonding per mole of repeat units, and R is the gas
constant. This method has been applied to experimental data on the gel melting

curves of several thermoreversible gels [123, 124].
For example, Figure 21 presents the result for the gelation of poly(vinyl alco-
hol) (PVA) in water [123]. PVA is a typical crystalline polymer, but it also forms
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Figure 20. Micellar junction consisting of k chains combined together by the monomer
sequences of length ¢.

gels in aqueous solution under large supercooling. There are several pieces of
experimental evidence that the cross-links are formed by partial crystalliza-
tion of the polymer segments in which syndiotactic sequence dominates, while
subchains connecting the junctions consist mainly of atactic non-crystalline
sequences on PVA chains. The micro-crystals at the junctions are thought to
be stabilized by hydrogen bonds between the hydroxy groups. The gel melt-
ing temperature (for a given concentration) found from differential scanning
calorimetry (DSC) are plotted against visco-elastic measurements for PVA with
different molecular weights, covering the range from 2 x 10* to 8 x 10°, in
various concentrations [124]. The gel melting temperature 7,, is estimated
from the temperature at which the DSC heating curve shows an endotherm
peak. The slope of the solid lines in Figure 21 with constant molecular weight
gives A = 13.43; it is almost independent of molecular weight. Hence { = 26.7
kcal/mol/|(Ah)mor|- If we use the heat of fusion (Ah)me = 1.64 kcal/mol in
the bulk crystal, ¢ = 16.3. On the other hand, the slope of the dotted lines
with constant temperature depends on the temperature. At the highest tem-
perature, 7 = 91° C, of the measurement, it is —0.38, while it gives a larger
value, —0.9, at T = 71° C. The multiplicity is estimated to decrease from 3.6
for high-temperature melting to 2.1 for low-temperature melting, suggesting
a very thin junction structure. From the thermodynamic stability of the junc-
tions, it is natural that a gel which melts at lower temperature has thinner
junctions.

3.4.2.  Global structure of networks — elastically effective chains

To study visco-elastic properties of networks, we next find the number veg
of elastically effective chains [8, 125]. The elastically effective chains are those
that transmit stress when the network is deformed by an external force. They are
related to the topological structure of the network. First, the type of junctions
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Figure 21. Augmented Eldridge-Ferry plot applied to the gel melting concentration of
poly(vinyl alcohol)/water mixtures. Dotted lines show the gel melting concentration at con-
stant temperature, while thin straight lines show those at constant molecular weight of poly-
mer. (A)91° C; (#)87° C; ()83° C; (J)78° C; (A)74° C; (0)71° C. (Reprinted with permission
from [123]. Copyright (1996) American Chemical Society)

from their connection paths to the network matrix is specified [121]. A junction
of multiplicity k that is connected to the network matrix through i paths is
referred to as an (i, k)-junction. Let w;; be the number of junctions in the
network specified by the type (i, k) for 0 <i <2k and for k =1,2,3,4,....
The total number of junctions with multiplicity & is:

2%
Mk = Zui,k (172)
i—0

To find the number of elastically effective chains, the criterion introduced
by Scanlan [126] and Case [127] is employed. It assumes that only subchains
connected at both ends to junctions carrying at least three paths to the gel are
elastically effective. Thus, i,i’ > 3 for an effective chain. A junction with one
path (i = 1) to the gel unites a group of subchains dangling from the network
matrix whose conformations are not affected by an applied stress. A junction
with two paths (i = 2) to the gel merely extends the length of an effective
subchain. A junction with i > 3 is called an elastically effective junction. An
effective chain is defined as a chain connecting two effective junctions at both
ends. We thus find Eq. (173) for the number of elastically effective junctions,
and Eq. (174) for the number of elastically effective chains.

oo 2k

Mot = > Mik (173)

k=2 i=3
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oo 2k

1
Vet = EZZim,k (174)

k=2i=3

These numbers can be explicitly written in terms of the cascade junction func-
tion u(x) defined by Eq. (154). Specifically for monodisperse polymer chains
with a fixed functionality f, the number of elastically effective chains in a unit
volume of the solution takes the form:

1
verr = 5 (fvenl(§r +26) (1 = 6(%o)) — £76'(20)] (175)

v is the total number density of chains, « the extent of association (Eq. (153)),
the function 6(x) is the associated part of the junction function defined by
the equation u(x) =1 — o + af(x), and ¢; is the probability for a randomly
chosen unassociated functional group to be connected to the matrix of the gel
network through the number i of paths [121]. These probabilities are written
in terms of the solution ¢, of the algebraic equation (Eq. (176)) that is smaller
than unity; see reference [121] for details.

X = u(r) ! (176)

These topological relations hold for arbitrary networks. Their advantage lies
in the fact that, by combinatorial counting, we can actually find u; ; as afunction
of the degree « of association [128]. Thus, the degree « is found as a function
of the temperature and concentration through Eq. (160), so that all topological
numbers described above can be calculated as functions of the temperature
and concentration [121]. These curves can be compared with the experimental
data on the high frequency dynamic modulus measured by Annable et al. [93]
Their experimental data for HEUR C16/35K (PEO end-capped with C;¢Hss,
molecular weight 35,000) are compared with the theoretical calculation [121]
for f =2 in Figure 22. The value ¢* = 1.0% has been chosen for the weight
concentration at gelation. With this gel concentration, the scaling power at the
critical region gives t = 1.6, close to the percolation value [129]. However,
since this power depends sensitively on the way c¢* is chosen, more detailed
experimental examination in the critical region is clearly required. In fitting the
data, we have horizontally shifted the experimental data because of the temper-
ature pre-factor A(7") and also because of the difference in the units of polymer
concentration. Although fitting by a single theoretical curve is impossible due
to the existence of polydispersity in the multiplicity, the theory produces a good
result over a wide range of concentration with multiplicity ranging from 6 to 8.
It turns out that about 60% of the chains are elastically effective in the limit of
high concentration.
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Figure 22. The number of elastically effective chains as a function of the polymer concentra-
tion. Experimental data of the HEUR 16C/35K are compared with calculations. In the calcu-
lation, the junction multiplicity k is changed from curve to curve. (Reprinted with permission
from [121]. Copyright (1996) American Chemical Society)

3.5. Mixtures of Associative Molecules — Gelation
with Co-Networks

In biological and medical science, thermoreversible gels consisting of more
than two species of molecules or polymers are very important for controlling
the cross-link structure. For example, it has been suggested that the repeated
sol/gel transition of actin, controlled by the actin-binding protein (ABP), drives
motions of individual biological cells [130]. In this ternary system (actin, ABP
and water), ABP works as a cross-linker of the actin filaments. In the food
industry, biopolymer mixtures in which either single or multiple ingredients
form networks have many important applications, and have been the focus of
intensive experimental study [131, 132].

To study thermoreversible formation of mixed networks (see also
Chapter 21), we first consider a model mixture of reactive molecules R{A }
and R{B,}, each carrying the number f of A-groups and g of B-groups.
Another important case where each molecule carries both species A and B
(co-associating polymer) has recently been studied [118, 133]. We allow mul-
tiple association of both groups, but first consider the simpler case of pair-
wise association [16, 134]. The strength of the bonds can be expressed by
the three association constants in Eq. (38). By the relative strength of these
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constants, now we can place the types of association into three fundamental
categories [16]:

(1) Interpenetrating Polymer Networks (IPN) — Reactive groups A and B
form bonds within the same species, but do not form between different
species (i.e., A4 = 0). We refer to this case as A-A/B-B.

(i1) Alternating Polymer Networks (APN) — Bonds are allowed only
between different species (i.e., Ag4 = App = 0). We refer to this case
as A-B. Because the clusters (of finite or infinite size) formed are in
general multi-block copolymers, the system may undergo microphase
separation. Hence, macrophase separation, microphase separation, and
gelation interfere with each other.

(iii)) Randomly Mixed Networks (RMN) — If the strengths of associative
forces in all three combinations are of the same order, cluster forma-
tion progresses randomly. The resultant networks can be regarded as
macroscopic random block-copolymers.

We now extend this classification to suit multiple association. For multiple
association, it is convenient to classify from the mixing properties inside the
junctions. To specify a multiple junction precisely, a set of integers (ky, k) is
introduced, where k; is the number of A groups contained, and k; is the number
of B groups [118, 119]. The cascade junction functions then take the form in
Eq. (177) for the junction which an arbitralily chosen A-group (and B-group)
enters.

uA(x’y) = Z pkl,kzxkl_lykz (1773)
k1>1,ky>0

up(x,y) = > Guixty?! (177b)
k1>0,kp>1

Dk, .k, 1s the probability for a randomly chosen A-group to be in the junction
specified by the number (ki, k»), and g, x, is the same for the B-group. The
number density v3 of clusters and molecules that possess a translational degree
of freedom is:

»S = :;{1 - f/olxu’A(x)dx} + 1n_B¢{l - g/olyu’B(y)dy}

Abbreviated notations u4(x) = us(x, x) etc. for the diagonal elements have
been used.

This result can be intuitively derived by stoichiometric consideration.
Within the tree approximation, the number of connected clusters is the same as

(178)
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the number of primary molecules minus the total number of connecting bonds.
The integral in Eq. (178) gives:

! ki +ky —1 1
"ydx =S L2 =1—- — 179
/0 xu,(x)dx E Py Dy ks i (179)

Hence,

Y LBICS) R (RS

Here, the average multiplicity ;4 and fip of the mixed junctions are defined
by:

ﬁ,;l = Zpkl,kz/(kl + kz), and ITLE] = Z(ﬂq,kz/(kl + k2) (181)

Since the number of unreacted A-groups and B-groups are given by ¥4 p1.0,
and ¥qo.1, the reaction equilibrium condition for an A-group joining in a
(k1, k>) junction, is:

VA Pk k> _ KIEA}(
(Yap1,0)" (Yego1)* e

K ,EIA}Q is the reaction equilibrium constant. A similar relation holds for the
B-groups. Now, we assume as usual that the equilibrium constant takes the
form:

(182)

K, = v (e (183)

In Eq. (183), 1, (T) are the association constants written in terms of the free
energy A f, required for binding a reactive group of the type « into the junction.

Ae(T) = exp(—Af,/kyT), fora=A,B (184)

The coefficient y(A) gives a correction due to the existence of the surface of
micellar junction [116]. Similar formulae for K & kz are assumed.

Substituting the results into the cascade junction functions, we find
Eq. (185) by using new variables z4 = As¥api1.0 and zz = Ap¥pqo -

s, ) =pro > Ve @) zpy)* (185)
k1>1,kp>0

These z parameters are the number densities of reactive groups (times asso-
ciation constant) that remain unassociated in the system. We next define a u
function by the sum in Eq. (185) as in Eq. (186), and there is a similar equation
forup.

= Y, wip e (186)
k1>1,ky>0
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Since u4(1, 1) = 1, the parameters z4 and zp satisfy the coupled equations:

Aaa = zatia(za,2B) (187a)
AV = zpip(za,2B) (187b)

By solving these equations with respect to z’s, we find them as functions of
a given total number of reactive groups in a unit volume. Solution properties,
the gel point, etc. can be studied by substituting the result into the chemical
potentials, the weight-average molecular weight, etc.

For pair-wise association, we have only to assume pjo=1— (o +
phpia=p,ppo=caandqgo1=1—-(B+¢g),q1.1 =q,902=p,whereais
the reaction probability of an A-group with an A-group, p is that with a B-group,
while 8 is the reaction probability of a B-group with B-group, ¢ is that with
A-group. Figure 23(a),(b) shows typical phase diagrams [10] of alternately
cross-linked networks in a symmetric case (nq =np =10, f =g =3,A0 =
1.0). The dimensionless binding energy y (Eq. (43)) between the functional

(@) (b)

1-0/T

Figure23. Phasediagrams of an alternately cross-linked network in a mixture of low molecular-
weight trifunctional molecules (Flory’s treatment); ny =npg = 10, f = g = 3,19 = 1.0. The
Association constant y is changed with other parameters being fixed: (a) y = 1.9926, (b) y =
5.0. The sol/gel transition (thick solid lines), binodal (thin dashed) and spinodal (thin solid)
lines are shown. The postgel region is indicated by thin horizontal lines. The shaded parts
indicated by the letter U, are unstable regions. The open circles show critical solution points.
The gel region lies inside the spinodal for small values of the association constant as in (a), but
in the case of strong association as shown in (b), the miscibility gap splits into two separate
pieces, and the gel region is stabilized. The alternating network works as the solubilizer in
this case due to its amphiphilic nature. The critical points remain inside the gel region so
that phase separation into two gels with different concentrations, and hence different cross-
link densities, is possible. (Reprinted with permission from [16]. Copyright (1999) American
Chemical Society)
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groups on A-chains and B-chains is different. Thick solid lines show the sol/gel
transition, thin dashed lines are for binodal, thin solid lines are for spinodal,
and white circles show the critical solution point. The gel region is indicated
by the horizontal lines, and the unstable region (U) is shaded. For small y, the
gel region lies inside the unstable region, so that a stable homogeneous gel
is not expected. In Figure 23(a), the population of hetero-clusters becomes so
large at low temperatures that a reentrant homogeneous phase appears, and, as
a result, a new critical solution point lies on the sol/gel transition line. With a
slight increase in y, the two critical solution points lying at ¢ = 0.5 merge into
a single point. Upon further increase in y, the gel region grows and the mis-
cibility gap is completely separated around the stoichiometric concentration
(¢ = 0.5) (in the symmetric case) by the existence of mixed clusters.

For mixed networks with multiple junctions, Clark et al. [131], for instance,
studied composite aqueous gels consisting of thermoreversible cold-setting
gelating components such as agarose and gelatin by electron and optical
microscopy. They reported micrographs that appeared quite similar to those
observed for a number of synthetic interpenetrating networks [135, 136], and
showed phase separation into two polymer networks with possible phase inver-
sion at a certain mixture composition. Durrani et al. [137, 138] derived a phase
diagram for the ternary amylopectin-gelatin-D,O mixture in the sol state by
the use of Fourier transformed infrared spectroscopy.

Formation of mixed networks may also be used to modify the rheo-
logical properties of aqueous polymer solutions. For instance, it was found
[139] that the viscosity of mixtures of two species of polymers, poly(N-
isopropylacrylamide) and hydrophobically modified poly(sodium acrylate), in
aqueous solution becomes several orders of magnitude higher than is achieved
without hydrophobic modification. A possible mechanism of heteropolymer
cross-linking between the hydrophobes on the different species, followed by
network formation by the hydrophobic aggregation of molecules, was proposed
[139].

The theory presented in this section for treating binary mixtures with het-
eromolecular association is directly applicable to other important systems.
For instance, when polymer-polymer association and polymer-water associ-
ation coexist, as seen in aqueous biopolymer solutions, there is a mixture of
R{A/}and R{B,} with A-A and A-B bonds, and competition between hydration
and cross-linking takes place. As a result, the solution gels at high tempera-
ture (inverted gelation). Interaction of hydrophobically modified water-soluble
polymers with added surfactant molecules is another important example. In this
case, the hydrophobes of the surfactant molecules strongly interact with those
on the polymers, and form mixed micelles. The polymer network is modified
by the concentration of the added surfactant, leading to interesting rheological
behavior. Other potential applications to complex associating polymer solu-
tions of industrial importance are apparent.
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4. Conclusions and Perspectives for the Future

We have presented an outline of a theoretical scheme to study molecular
association and thermoreversible gelation in polymer solutions and mixtures.
The effects of the thermodynamic nature of the sol/gel transition, interference
with phase separation, structure of the network junctions, path connectivity
in the network have been studied on the basis of the multiple tree statistics
combined with classical lattice-theoretical polymer solutions. This chapter has
focused mainly on the gelation of water-soluble associating polymers driven
by hydrophobic aggregation, but applications to other many types of gels, such
as those driven by hydrogen bonds, micro-crystallization, helix formation, etc.
are possible. We close in hoping that, after reading this chapter, readers will try
to find phase diagrams of their own systems in the framework of this theory.
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1. Introduction

Helical self-assembled, supramolecular polymers have been known to exist
in nature for some time [1-6]. It is well-established that aggregates such as
f-actin [3, 4], tobacco mosaic virus [6] and S-sheet ribbons formed by certain
oligopeptides [7] are helical. Recently, many different molecules have been
synthesized that also self-assemble into helical conformations [8—16].

Helical self-assembly [17] can be a one-state or a two-state process, depend-
ing on the physical conditions. In the latter case, polymerization into non-helical
aggregates precedes a conformational transition of the assemblies to a helical
state. Both the helical transition and the polymerization can be triggered by
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changes in concentration or temperature [18, 19]. Neither of the two are phase
transitions in the true sense of the word, but more or less gradual crossovers.
However, the helical transition in particular can be fairly sharp due to co-
operative effects, leading to a remarkable temperature sensitivity. Because of
this, it is possible to define the transition temperatures. See below.

Several of the known helical self-assembled systems seem to display a gel-
like phase at high enough concentrations, which is presumably linked with
the helical transition [3, 8, 10, 20]. The reason is that helical polymers are
typically more rigid (i.e., have a larger radius of gyration) than non-helical
ones, and that the helical transition is accompanied by a strong increase in the
mean aggregate size and ultimately, when sufficiently long, entanglements.

2. Helical Aggregation

In order to understand the mechanisms driving the helical aggregation, a
host of experimental and theoretical work has been done [3, §-16, 21-23].
The most well-known theory in this context, is the Oosawa-Kasai treatment
for the helical assembly of f-actin fibers from the g-actin protein [3, 23]. Due
to their molecular architecture, the actin units are thought to be able to attach
themselves to each other in two ways, one of which results in a non-helical
assembly, and one in a helical one (see Figure 1). Oosawa and co-workers
assign one equilibrium constant to each process (K and Kj). This means that
their model is in essence an all-or-nothing model: partially helical polymers are
completely suppressed. Similar models are still in use (see [24] and references
cited therein).

In the Oosawa-Kasai model it is also possible for a non-helical chain to
become helical or vice versa. This introduces another (generalized) equilibrium
constant y (K, /K)¥ 3 with N > 2 the number of monomers in the aggregate,
possibly linked to a conformational switching of the protein molecules. In this

K K K K K
OO0 =000 = 00 == OO0 &=

M o] o]
X 2 Qo= Y =

Figure 1. Schematic depiction of the Oosawa-Kasai multi-equilibrium model. K is the
equilibrium constant for the addition of a monomer in a non-helical conformation, K, is
that for the addition in a helical conformation, and y is the nucleation parameter for a helical
trimer [3].



Growth and chirality amplification 81

picture, not every aggregate can undergo the transition from a non-helical to a
helical state; for f-actin it is surmised that a critical nucleus of three monomeric
units is necessary for helix formation. The model predicts that helical or non-
helical polymers form, dependent on the values of the three equilibrium con-
stants. For K;, > K and y — 0, a critical concentration for the formation of
helical aggregates is required. All excess monomers above this concentration
are absorbed into helical polymers that co-exist with the free monomers and
with short non-helical polymers.

The theory of Oosawa and Kasai is easy to implement and can be expected
to accurately describe systems requiring a nucleation step and which display
a large co-operativity of the helical transition, because then the polymers
become fully helical or fully non-helical. Indeed, the model seems to accurately
describe the helical polymerization of f-actin [25]. However, when compared
to experimental measurements on helical aggregates of disc-shaped monomers
(discotics) [9, 21, 22], shown in Figure 2, the agreement is poor. See Figure 5, to
be discussed in more detail below. Therefore, a different theoretical treatment
is needed if we wish to describe helical supramolecular systems in general.

Here, we outline a recent extension [21, 22, 26] of the theory of Oosawa
and Kasai to polymers that need not be fully helical or non-helical. The well-
known Zimm-Bragg model for the helix-coil transition in polypeptides [27]
is a similar improvement on the all-or-nothing model for this conformational
transition in conventional polymers [18]. Our treatment accurately describes
the conformational state of aggregates of the discotic molecules of Figure 2.
The treatment is fairly general, however, and can, in principle, be applied to

R'O OR*

@—OR‘

Figure 2. Chemical formula of the chiral discotic molecules used by Brunsveld
and co-workers in their helical-assembly experiments [9]. The chemical name of
the molecule is N,N’,N”-tris{3[3’-(3,4,5-tris{(2S)—2-(2-{2-[2-(2-methoxyethoxy)-ethoxy]-
ethoxy }-ethoxy)-propyloxy } )-benzoylamino]-2,2’-bipyridyl }benzene-1,3,5-tricarboxamide.



82 J. van Gestel et al.

any type of supramolecular polymer that displays a transition between a helical
and a non-helical state.

Because the helical transition is accompanied by a sharp increase in the mean
molecular weight of the supramolecular assemblies and that in their bending
stiffness, the solution viscosity should also dramatically increase. Indeed, as
is well known [28], the intrinsic viscosity of stiff, rod-like polymers grows
with their molecular weight to the second power in dilute solution, and with
a sixth power in semi-dilute solution when the rods overlap. This means that
a tenfold increase in the molecular weight upon crossing the helical transition
temperature could lead to a million-fold increase of the viscosity within a few
degrees of temperature change. It is for this reason, that we believe that helical
supramolecular polymers are promising candidates as gelating agents.

3. Discotics

The molecules we focus on in our comparison to experiment have a large
aromatic core and nine flexible, polar, side chains (see Figure 2). This allows
them to be dissolved in polar solvents, such as water and n-butanol. Since the
core of the molecules is solvophobic, the monomers form stacks in solution [9].
From the experiments, it becomes clear that the monomers can form disordered
linear aggregates, as well as helical aggregates with a relatively high degree
of order (depending on the temperature and the concentration) [9, 29]. This
can be explained microscopically by the propeller-like shape of the monomers,
which allows for a stronger interaction if they take on a helical conformation
by rotating the side groups out of the plane of the center of the monomer
(see Figure 3) [9, 21]. Phenomenologically, this corresponds to the situation
we presumably have in actin assembly, in that both monomers have a molecular

Monomer Weakly bound Strongly bound

Figure 3. Cartoon of the linear and helical aggregation of propeller-shaped discotic molecules.
The molecules self-assemble into disordered stacks, in which they are more or less free to rotate.
These stacks then undergo a transition to a more strongly bound, helical state, under the right
conditions.



Growth and chirality amplification 83

architecture that accomodates two types of binding, and can therefore undergo
a helical transition.

As shown in Figure 2, the discotics have a stereocenter in each of their side
chains. In the experiments of Brunsveld and co-workers [9] only one of the
enantiomers was used, which causes a bias for the formation of one helical
screw sense. Such a bias may also follow from, e.g., the use of a homochiral
solvent or homochiral counterions in ionic systems. If a racemic mixture of
the enantiomers had been used, or an achiral discotic, equal amounts of right-
handed and left-handed helices would form [30], and the conformational state
of the polymers could not be determined by spectroscopic methods such as
circular-dichroism (CD) spectroscopy. CD spectroscopy allows one to gauge
the overall chirality in a solution, but it so happens that for the material in hand,
it can be used to determine the helical state of the stacks because the individual
monomers do not display a Cotton effect. See Chapter 13 for experimental
details.

The disordered (non-helical) aggregates form due to the effects of mass
action, whereby the monomers gain binding energy, but lose translational
entropy relative to the free monomeric state. Upon lowering the temperature,
the bound monomers decrease their configurational entropy further by taking
on a helical conformation. This increases the binding enthalpy due to increased
proximity between the monomers (see Figure 3). The addition of a non-helical
bond to a helical aggregate or vice versa is unfavorable on steric grounds, as this
would ultimately lead to a frustrated conformational state. Nonetheless, unfa-
vorable or not, such thermally excited states would form for entropic reasons,
and are the reason why the theory of Oosawa and Kasai needs to be amended.

4. Linear Self-Assembly

Let us first focus on the theory of linear self-assembly (i.e., the self-assembly
of monomeric units into polymer-like chains) in which these monomers are con-
nected to each other by physical, reversible bonds [24, 31-37]. There are many
ways to theoretically deal with linear self-assembly [36, 38—47]. In the sim-
plest Ansatz, the aggregation depends solely on a single energetic parameter,
describing the free energy expended to break an aggregate into two. This free
energy cost is assumed to be independent of the point along the polymer where
the break is introduced [48, 49]. It is known in the field of giant micelles [48] as
the scission energy or the end-cap energy. For supramolecular polymers which
can undergo a helical transition, a single free-energy parameter does not neces-
sarily suffice, because the aggregate ends can have two different conformations,
and hence different energies [22, 26]. Also, and perhaps more importantly, the
chain becomes subject to conformational fluctuations that cannot be described
by a scission energy alone.
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Generally, the dimensionless grand potential density €2 of a solution of
non-interacting aggregates can be written as:

Q=> p(N)[lnp(N) =1 — uN — InE(N)] (1)
N=1

with p (N) the (dimensionless) number density of aggregates of degree of poly-
merization N, u the chemical potential of the monomers, and E(N) the gen-
eralized partition function of an individual aggregate. Note that all energies
are given here in units kg T, with kg Boltzmann’s constant and 7 the absolute
temperature, unless otherwise specified. By setting 6€2/50(N) = 0, we find for
the equilibrium size distribution:

p(N) = E(N)expuN 2)

It is obvious from Eq. (2) that any terms in the free energy —In Z(/N) of a
single chain, that are extensive (i.e., proportional to N) can simply be absorbed
into the chemical potential [48, 50]. This means that non-extensive terms in
In E(N), which are often ignored altogether in the context of conventional
polymers, are crucial to the description of equilibrium polymers and in fact
explain the emergence of the scission energy alluded to in the beginning of
this section. We cannot neglect them here as they couple directly to the size
distribution of the equilibrium polymers.

We can fix the chemical potential, u, by invoking conservation of mass
(Eq. (3)).

¢=> Np(N) 3)

N=1

Here, ¢ is the volume fraction of self-assembling material in the solution. The
mean size of the aggregates may be found from Eq. (4).

___ 9
B Z?vozlp(N)

The crucial ingredient in the theory that contains all the information about
the conformational state of the aggregates is the partition function E(N). It
follows from Eq. (2) that the size distribution of the aggregates and their con-
formational state are closely linked. If only one type of bond is formed, the
partition function effectively takes the form E(N) = exp(N — 1)E, with —E
the free energy of the formation of a bond. (This is true irrespective of the chain
model; it holds for rods and flexible chains alike.) The mean aggregate size is
then expressed by Eq. (5).

(N)=%+%\/1+4¢expE ®))

{N) “4)
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If two types of bonds are allowed, the situation is slightly more involved, as is
detailed in the next section.

5. A Two-State Model

While the conformational state of polymers depends on many factors, such
as the molecular architecture and the solvent composition, the helix-coil tran-
sition of polypeptides and other helix-forming polymers can be accurately
described in terms of a simple quasi one-dimensional model known as the
Zimm-Bragg model [18, 27]. It concerns a two-state model that can be mapped
onto the Ising chain [18, 51-53]. “Interfaces” between helical and non-helical
regions along the aggregate axis are attributed a free-energy penalty denoted
R that is related to the coupling constant in the Ising model.

Within a slight modification of the Zimm-Bragg theory, necessary to apply
it to equilibrium polymers, the partition function becomes Eq. (6) [21, 22, 27].

E(N) = [xAY 2 + yAY 2| expE(N — 1) (6)

Here, —E is the free energy of a non-helical bond between two neighboring
monomers, and the weights x and y represent non-extensive contributions to the
free energy that depend on the boundary conditions imposed on the aggregate
ends (see below) [26]. The quantities A, and A_ are the eigenvalues of the
so-called transfer matrix of the Ising chain [54]. For a detailed description of
the transfer matrix method we refer to the book of Poland and Scheraga [18].
From the Zimm-Bragg theory we have Eq. (7).

A —1+1 :I:I\/(l )2+ 4 7
=3 2s > s oS

s = exp — P, where P denoted the excess free energy of a helical bond over a
non-helical one, and o = exp—2R the square of the Boltzmann factor of the
free energy penalty R imposed on an interface between a helical and non-helical
part of the chain. The latter is often seen as a co-operativity parameter, because
the larger R becomes, the fewer interfaces form, and the longer the helical and
non-helical regions become [27, 55]. This implies a large co-operativity for
small values of .

Since A_ is always smaller than A, the second term of Eq. (6) is usu-
ally neglected in the limit where N > 1; this is the so-called ground-state
approximation. It corresponds to the earlier-mentioned treatment of ideal lin-
ear aggregates, albeit with a renormalized scission energy. Often, however, the
aggregates turn out to be too small to be accurately described with a ground-state
theory, and the full description as in Eq. (6) is required, a fact underappreciated
by workers in the field of giant micelles.
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Note that Eq. (6) is only valid for N > 3. For monomers we set Z(1) = 1,
whereas for dimers, the partition function depends on the boundary condi-
tions we enforce and becomes E(2) = x + y. The importance of the choice of
boundary conditions is discussed in more detail in the next section.

The mean fraction of helical bonds in a single aggregate can be calculated
from Eq. (8).

o) = . 2= (®)
(N -1 dlns
In the limit N — oo we have (§(N)) ~ % + %(s —1)/2y/(s — 1) + 4s0. At
the helical-transition temperature, 7., we require that half the bonds are helical,
so that (#(N)) = 1/2, i.e., for infinitely long chains it is given by s = 1. If we
average over all aggregate sizes, we get Eq. (9).

1
0) = Np(N){(6(N 9
0) == (1)2 p(N) (0(N)) 9

6. Aggregate Ends

It seems reasonable to suggest that the conformational state of monomers
near the ends of the chains are different from those in the center, because the
local environments of the monomers are different. Some care must be taken in
the description of the ends of the aggregates, because they have a large impact
on the self-assembly of the chains, as noted in Section (4) [26]. To account for
this, we define the Boltzmann factors a, b, ¢ and d for helical and non-helical
bonds at either aggregate end, where a and c represent a non-helical end, and
b and d a helical one. (Note that the ends of an aggregate need not be identical
since the helix is an object with an inherent direction.) The prefactors of Eq. (6)
then become Egs. (10) and (11).

(ax/o + bry — b)(c — ch_ + ds. /o)

= 10

Vohy —a0) (10

_ (ayo +br_ —b)(chy —c —ds /o) (1
YT JoOs — )

Even in the ground-state approximation, the aggregate ends influence the
scission energy, which becomes E + 2Ini; — Inx, and not E. Interestingly,
depending on the properties of the aggregate ends, the polymerization may in
fact require a nucleation step. For instance, if we consider the case that one
of the aggregate ends must be non-helical (soa =b =c =1, d = 0), we must
automatically assume that all dimers are also non-helical [26]. If we are in
the regime where the helical bond is more favorable than the non-helical one



Growth and chirality amplification 87

(s > 1), the aggregates become helical as they grow. This means that the non-
helical short chains represent a nucleation barrier, since, in order to form a
long helical chain, a non-helical (less energetically favorable) nucleus must
first be formed. This recalls the cases of actin polymerization and B-sheet tape
formation, in which nucleation is also believed to be required [3, 7].

Since the state of the ends couples strongly to the self-assembly, and since
the self-assembly couples to the helical state of the assemblies, the ends in
fact influence the nature of the helical transition in a non-trivial way. This is
shown in Figure 4. We obtain good fits to experimental data only if we let at
least one of the ends be helical. The figure also shows that the transition from
a non-helical aggregate to a helical one must be highly cooperative, since the
curve is quite steep at the transition temperature 7,. From the steepness of the
curve at this point, the Boltzmann factor for the formation of an “interface”,
/o, may be obtained, as in Eq. (12), provided the enthalpy A# for the helical
transition is known [21].

28]

Ah =4T,,
Ve oT

(12)

Tix

0.0 1

260 270 280 290 300 310 320 330

T[K]

Figure 4. The fraction of helical bonds as a function of temperature. The symbols indicate
experimental circular-dichroism data on solutions in n-butanol of the discotics of Figure 2, at a
volume fraction of monomers of 2.55 - 10~* [9]. The lines give the best theoretical agreement
with experiment, given the boundary conditions imposed. Drawn line: boundary conditions one
end helical. Dashed line: one end non-helical. The helical-transition temperature, Ty (Where
(0) = 1/2) is approximately equal to 296 K.



88 J. van Gestel et al.

For the material of Figure 2 dissolved in n-butanol, we find a value of the
Zimm-Bragg parameter o = 0.0015 (indicating a relatively high cooperativity,
comparable to that in some covalently bound helical polymers [18]) when we
insert the value for the excess helical-bonding enthalpy of —27(kpT), obtained
by differential scanning calorimetry measurements [9].

A comparison between experimental data and theoretical predictions on
the concentration dependence of the helical-transition temperature is shown
in Figure 5, highlighting again the importance of a careful description of the
ends. We find that the experimental system at hand can be well-described by the
limiting case conditions where we presume one or both ends to be non-helical
(a=b=c=1, d=0). Both the Oosawa-Kasai model and our model with
both ends free (as well as those with one or both ends helical — results not
shown) describe the experimental results poorly. For the latter set of bound-
ary conditions, this is because a helicity of one-half can always be attained,
irrespective of the size of the aggregates, whereas with the other boundary con-
ditions the dimers (and trimers) can never have a different conformation than
that enforced by the boundary conditions.

300 - o8
T.[K] |

298

296

294 - -

29240 o

290 T T T ¥ T ¥ T ¥ I
-3 2
log ¢ [M]

Figure 5. The helical-transition temperature Ty, in K versus the concentration in M of the
discotic compound of Figure 2 in n-butanol [9]. The symbols represent the experimentally
found values, the curves give the theoretical results for different limiting boundary conditions:
the dashed curve gives the results of the case with one end free and one fixed non-helical
(a =b=c=1,d =0), the drawn curve that for the case with both ends non-helical (¢ = ¢ =
1, b =d = 0), and the thick (horizontal) line that for the case where both ends are left free
(a =b =c=d =1). The dotted curve is a fit to the Oosawa-Kasai model [3, 23].
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Focusing on the imposed boundary conditions that best describe the exper-
imental data (i.e., with one end non-helical), we compare small angle neu-
tron scattering (SANS) measurements to the mean aggregate size in Figure 6,
and obtain reasonable agreement. If the temperature drops below the helical-
transition temperature (indicated by an arrow in Figure 6), the mean size of
the aggregates exhibits a growth spurt. It shows that there is a strong coupling
between the internal conformational state of the polymers and their growth.
Unfortunately, given the experimental data of Figure 6, we cannot distinguish
between the only two boundary conditions that describe the helical transition
in the discotics well, although in principle it should be possible to distinguish
them by means of the mean aggregate size measured for a larger temperature
range (see the inset of Figure 6).
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Figure 6. Theoretical fits to the results of SANS measurements on the system of the discotic
molecules depicted in Figure 2 in n-butanol at a concentration of 2.39 - 103 M. On the vertical
axis is the normalised scattering intensity (which is a measure for the mean aggregate size), on
the horizontal axis the temperature in K. The drawn line gives the weight-averaged aggregate
size as a function of the temperature, rescaled to give the best possible fit, for the limiting
case with one end free and one non-helical (¢ = b = ¢ = 1, d = 0). The dashed line gives the
same for the case with both ends non-helical (¢ = ¢ = 1, b = d = 0). In the inset is the mean
aggregate size as a function of the temperature, for the concentrations (from top to bottom)
9.21-1073 M, 9.64 - 105 M and 9.89-10~7 M, with the dashed line the case with one end
non-helical and the drawn line that with both ends fixed to be non-helical [21].
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Figure 7. Diagram of aggregated states of the discotic monomers (see Figure 2) in n-butanol in
terms of the temperature in °C and solute concentration in M. The symbols indicate experimental
results obtained with different techniques, such as circular-dichroism spectroscopy (CD), time-
resolved fluorescence spectroscopy, and UV spectroscopy, as indicated. The lines indicate the
temperatures where the theory predicts the helical (bottom, T44) and polymerization (top, Tx)
transitions to take place. At Ty, half the bonds are helical, at 7 half the dissolved material
is absorbed into aggregates [9]. Hence, the regime at the bottom of the Figure is the helical-
chain regime, in between the two curves non-helical chains dominate, and the top regime is the
monomeric regime.

In Figure 7 we summarise our results with a diagram of states. It would
seem that our model captures the essential physics of the problem at hand. We
conclude that there are two regimes, one where the polymerization and helical
transitions are far apart, and one where they practically coincide. Here, the
crossover from one to the other is regulated by the concentration of aggregating
material. A similar shift may be induced by a change in solvent [9, 56, 57].

7. Chirality Amplification

Another phenomenon of interest observed in supramolecular polymers is
chirality amplification [30, 58—61]. It is linked with the presence of both left-
and right-handed helical conformations, either in different assemblies or within
a single assembly; if the monomers are achiral, or if racemic mixtures of chiral
ones are present in the solution, both helical screw senses are formed in equal
amounts. The two forms are mirror images of each other, and one can therefore



Growth and chirality amplification 91

say that the formation of a helix introduces a macromolecular chirality into the
system [62]. Clearly, macromolecular (or in this case, supramolecular) chirality
cannot easily be detected if there is no net molecular chirality. Symmetry can
be broken by polymerizing homochiral material, leading to a bias for one of
the helical screw senses.

Often, however, the copolymerization of only a small amount of chiral
material suffices to introduce a bias for one of the helical screw senses, a
phenomenon referred to in the field as chirality amplification. Two types of
chirality amplification can be distinguished: the “sergeants-and-soldiers” type
[58-60, 63], and the “majority-rules” type [61, 64]. The former occurs if a
small amount of homochiral material is mixed with a large amount of achiral
monomers. A large number of bonds with the screw sense preferred by the
chiral monomers is then formed. The majority-rules principle is similar, except
that the monomers used are the enantiomeric forms of the (chiral) monomers.
A slight majority of one of the enantiomers produces a disproportionately large
preference for one screw sense.

8. Sergeants and Soldiers

Experimentally, chirality amplification of the sergeants-and-soldiers type
has been observed in solutions of mixtures of chiral and achiral discotics
[60, 65, 66]. Again, two regimes are found, one where the effect is independent
of the concentration of dissolved material, and one where this is not so. That a
treatment quite similar to that of the Zimm-Bragg theory described in Section 5,
is able to fit the experimental data in both regimes can be clearly seen from
Figures 8 and 9 [67, 68]. Perhaps the most striking feature of the Figures is the
maximum that occurs. How we deal with this feature theoretically is described
in some detail below. (For a similar treatment on the majority-rules principle
the reader is referred to the literature [69].)

The adaptation of the theory of Section 5 to model supramolecular chirality
amplification is fairly straightforward, with right-handed and left-handed heli-
cal bonds replacing the helical and non-helical bonds. This means that s now
gives the Boltzmann factor of a right-handed helical bond over a left-handed
one, and o is the square of the Boltzmann factor of a helix reversal [67]. The
analogy is not exact, however, since in chirality amplification two types of
monomer are present (chiral and achiral in the sergeants-and-soldiers experi-
ment and left-handed and right-handed for the majority-rules principle), requir-
ing an additional chemical potential. Another (obvious) small difference is in
the interpretation of experimental results, where the measured optical effect
corresponds to the difference between the fractions of right- and left-handed
helical bonds, rather than the bare number of helical bonds. This means we
study a mean net helicity n = 2 (¢) — 1 rather than the mean bare helicity (0).
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Figure 8. Sergeants-and-soldiers experiment. The net helicity 1 versus the fraction of chiral
material x (line). Symbols: experimental data of Brunsveld ef al. in water at two concentra-
tions [65]. (Circles: 1075 M, crosses 10~4 M). Line: fitted theoretical curve.

Figure 9. Fit of the theoretical net helicity n versus x to experimental data of Brunsveld
et al. [66] in n-butanol at two concentrations. Circles: 10~5M, crosses 10~ M. Dashed line:
fit for 107> M. Solid line: fit for 10™% M.
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To account for the extra component, the Boltzmann weight s of Section 5
has to be replaced by 1 + z, with z the excess fugacity of the chiral monomers
over the achiral ones. Note that there is no a priori preference for left- or
right-handed helical bonds in achiral aggregates. In order to keep the num-
ber of free parameters to a bare minimum, we insist that a bond following a
chiral monomer must always be right-handed helical, mimicking an absolute
preference of the chiral units for a certain screw sense.

That our treatment is reasonable is shown in Figure 8, where we compare
theoretical and experimental values for the net helicity n versus the fraction of
homochiral monomers x, and obtain very good agreement. In the limit of large
cooperativity (where the Boltzmann factor of a helix reversal, /o, is much
smaller than unity) we find that the point x, at which the net helicity is one-half
of its maximum value (Eq. (13)).

1
Xy N 5\/30 (13)

It provides an easy way to determine the helix-reversal penalty from exper-
iment. A qualitative argument that immediately gives Eq. (13) is that one in
principle only needs one chiral monomer per correlation length to get a fully
right-handed helical chain, and that the correlation length scales with o~!/2.
(This follows from the Ising model.) Note that both Eq. (13) and Figure 8 are
independent of the concentration of dissolved material.

In Figure 9, we give results similar to those in Figure 8, except that the
chirality amplification now does depend on the concentration. We interpret
the concentration dependence as an aggregate-size dependence, since in self-
assembly the concentration and aggregate size are well known to be linked
(see Eq. (5)). This means that we can describe the concentration-independent
results of Figure 8 by assuming long chains (and implementing the ground-state
approximation). In this case, the size of the aggregates is not an important factor,
and the conformational state of the aggregates can be described in terms of the
free energy of a helix reversal. Conversely, in the concentration-dependent
(short-chain) regime of Figure 9, the aggregates are too short to contain many
helix reversals, and in this case the average size of the aggregates determines
how many bonds a single chiral monomer influences. The amount of chiral
material needed to fully bias the handedness of an average chain is given by
the number of chains in the solution. A crude estimate for x, is therefore given
by Eq. (14) where (N) is given by Eq. (5).

1
Sy (14)
On average half the chains then have a fixed handedness. The full theory gives a
somewhat better estimate than Eq. (14), but needs to be evaluated numerically.

To fit the theory to the concentration-independent case (Figure 8) we extract
an estimate of the parameter o at the point x, using Eq. (13), and fix it at



94 J. van Gestel et al.

o = 0.0064. We describe the maximum in the optical activity by taking into
account the possibility of different contributions to the overall optical effect of
chiral and achiral monomers. This may be due to imperfect stacking, as sug-
gested by Brunsveld and co-workers [65, 67], since the chiral discotic has an
extra methyl group in each of its side chains and therefore potentially attains a
less perfect helix than the achiral monomer. This means that the optical rota-
tion per monomer may vary between the species. We assume that the chiral
monomers have a lower contribution to the overall optical effect than the achi-
ral ones, and so obtain a maximum in the curve. A detailed discussion of this
is beyond the scope of this chapter. We therefore refer to earlier work [67, 68].

For the concentration-dependent data of Figure 9, we perform a fit with the
parameter ¢ exp E to fix x, using Eq. (14) (see Section 4). We obtain good
agreement with the experimental results at the higher concentration for a value
of this parameter of 60 000. The bottom curve corresponds to a concentration of
a factor ten lower than the top one, and as such should give good agreement for
¢exp E = 6000. This is indeed the case, demonstrating that our model takes
the concentration dependence into account in a proper way (see Figure 9). Note
that the chirality amplification becomes independent of o in this regime.

9. Conclusions and Perspectives for the Future

The complex behaviour of monomeric units that can undergo helical
self-assembly can be captured by a relatively simple theory. It allows for the
(quantitative) prediction of such quantities as the fraction of helical bonds
(observable by circular-dichroism spectroscopy) and the mean aggregate size
(measurable by radiation scattering techniques). We find that the aggregate ends
have a large influence on the conformational state of the monomers inside the
aggregates, and that it can be determined what boundary conditions apply to a
specific system by comparing our theory to the experimental results.

Experiment and theory point at the presence of two regimes: one where
the helical transition and the polymerization are two separate transitions, and
one where they coincide. Which regime a system finds itself in depends on
the concentration of monomers and on the solvent type. As is also the case
in many helix-forming covalently-bound polymers, the helical transition is
strongly cooperative and an aggregate can become helical due to a change in
temperature of only a few degrees. Furthermore, it appears (experimentally and
theoretically) that the polymerization and the helical transition are coupled; the
polymers exhibit a growth spurt below the helical-transition temperature.

With some modifications, our model can also be used to describe chiral-
ity amplification in self-assembled helical polymers. Here, too, we find two
regimes, in accord with experiments. In one regime, the strength of the chiral-
ity amplification depends on the concentration of self-assembling material, and
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in the other it does not. In each regime a different control parameter dictates
the conformational state of the polymers. In the concentration-independent
(long-chain) regime, this is the free energy of a helix reversal along the chain,
in the concentration-dependent (short-chain) regime, it is the mean aggregate
size.

Extensions of our treatment to cases where the aggregates interact, form
liquid-crystalline phases or require an activation step before self-assembly seem
worthwhile. Work on applying our model to the majority-rules type of chirality
amplification and comparison to experimental results is in progress [69, 70].
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In this chapter, we examine the formation, structure and properties of
gels formed by simple peptides that have an intrinsic propensity to undergo
one-dimensional self-assembly into long tape-like structures having a cross- 3
structure. The motivation for this work derives from an emerging interest
in exploiting biological-like self-assembly as a route to novel nanostruc-
tured materials [1, 2]. We [3-11] and others [12] are focusing on exploiting
protein-like self-assembly to this end with the view of being able to incor-
porate protein-like responsivity into the nanostructure to provide for control
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of properties by external triggers. At the heart of this exercise lies the need
to harness one or more of the structural motifs that occur in natural proteins.
Arguably, the simplest is the cross- g structure as this involves one-dimensional
self-assembly which can be treated analytically. At the outset simple tapes were
expected to be produced in this way [5], but a hierarchy of structures obtain:
helical tapes (single molecule thick), twisted ribbons (double tapes), fibrils
(twisted stacks of ribbons), and fibers (entwined fibrils) are formed succes-
sively with increasing concentration in water [3]. Tapes are quite flexible and
can become topologically entangled at concentrations of ca. 0.001 v/v [5, 6].
In contrast, fibrils are semi-rigid and can form nematic fluids at concentrations
of ca. 0.001 v/v. At higher concentrations, fiber formation sets in and gives rise
to networks comprised of fibrils linked at fiber-like junctions creating nematic
hydrogels [3]. This behavior has been shown to stem from the chirality of the
peptide molecule which, in turn, originates from the intrinsic chirality of the
constituent amino acids (L in the case of naturally occurring ones). We believe
this to be a generic principle. It follows that any chiral molecule able to undergo
one-dimensional self-assembly may form fibrils and fibers and, consequently,
networks leading to gelation of the solvent (see Chapters 2 and 18). A rich vari-
ety of synthetic self-assembling chiral molecules appear to behave in this way
and give rise to what are generally termed “organogels” or “hydrogels” [13].
The terminology “Self-Assembling Fibrillar Networks” (SAFINs), proposed
by Terech [14] is therefore a highly appropriate descriptor of this novel class
of supra-molecular, soft-solid-like materials.

The theoretical model is outlined in Section 2, its predictions are compared
with detailed experiments on model peptides in Section 3, the issue of stabi-
lization of aggregate structures by twist is discussed in Section 4, the wider
applicability of the model is reviewed in Section 5, properties of nematic fluids
and gels are the focus of Section 6, and, finally, we consider the opportuni-
ties for controlling properties by external pH triggers and the production of
polyelectrolyte complexes in Section 7.

2. Theoretical Model of Self-Assembling Chiral
Rod-Like Units

Consider a peptide in a B-strand conformation as a chiral rod-like unit,
with complementary donor and acceptor groups aligned on opposing sides,
and having chemically different upper and lower surfaces (Figure 1a). In com-
mon with many successful approaches in statistical soft-matter physics, this
represents a single step of coarse-graining from atomic detail to the nanoscale.
The chiral unit is able to undergo one-dimensional self-assembly in solution
and to form the hierarchical set of structures depicted in Figure 1 at concen-
trations depending on the values of a small set of coarse-grained interaction
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Figure 1. Model of hierarchical self-assembly of chiral rod-like units: Local arrangements
(c-f) and the corresponding global equilibrium conformations (¢’ — f’) for the hierarchical
self-assembling structures formed in solutions of chiral molecules (a), which have complemen-
tary donor and acceptor groups, shown by arrows, via which they interact and align to form
tapes (c). The black and the white surfaces of the rod (a) are reflected in the sides of the helical
tape (c) which is chosen to curl towards the black side (¢’). The outer sides of the twisted ribbon
(d), of the fibril (e) and of the fiber (f) are all white. One of the fibrils in the fiber (f’) is drawn
with darker shade for clarity. () and (f) show the front views of the edges of fibrils and fibers,
respectively. Geometrical sizes (the numbers in parentheses show the values of the correspond-
ing geometric sizes for Py-1 and Pj-2 peptides, based on X-ray diffraction data and molecular
modeling): inter-rod separation in a tape by (by = 0.47 nm); tape width, equal to the length of
arod, b (b ~ 4nm); inter-ribbon distance in the fibril, & (¢ &~ 1.6-2nm for Py;-1, and o =
2-2.4nm for Py1-2) [3]. Copyright (2001) National Academy of Sciences, USA.

energies ¢;. Generally, an isolated monomer in solution will be in a differ-
ent conformation (Figure 1b), with lower free energy than in the rod-like
state: the corresponding conformational free energy change is &yqns. The rod-
like “monomers” self-assemble via intermolecular recognition between multi-
ple interacting groups to form long twisted tapes (Figure 1c): the association
free energy change is &pe per inter-monomer bond. The tape twist stems from
the chirality of the monomers (Figure 1a; e.g., right-handed in the case of pep-
tides, due to the L-chirality of naturally-occurring amino acids), which gives
rise to a left-handed twist around the long axis of the tape (Figure 1c). The
differences in the chemical structures of the two faces of the tape and in their
affinity to the solvent give rise to a cylindrical curvature, causing the tape to
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curl into a helical configuration (Figure 1¢’), with helical pitch /. and radius
T'tape given by:

o 1
hiape = by (2”) (1 + (V) ) (1)
Yo Yo

and

N
T'tape = by (y;) (1 + (yv> ) ()
Ve Yo
vy and yy are, respectively, the tape bend and twist angles (in radians) per
monomer rod, along the tape and b, is the distance between adjacent rods in
the tape.

One face of the tape (colored black in Figure 1c) is expected to be less
soluble than the other (i.e., black is more hydrophobic if the solvent is water).
This chemical anisotropy results in inter-tape attraction which leads to double
tape (ribbon, Figure 1d) formation (energy €3 . per peptide). Both faces of
the ribbon are identical (white in Figure 1d), and are characterized by a saddle
curvature. Hence, the ribbon does not bend, and its axis is straight at equilibrium
(Figure 1d’). The white sides of the ribbons are, in turn, mutually attractive
leading to stacking of ribbons into fibrils (Figure le). Furthermore, the ends
of the rods decorating the edges of the fibrils can also be mutually attractive,
causing fibrils to entwine into fibers (Figure 1f), stabilized by an attraction
energy per pair of interacting peptides, i .

All of the self-assembling structures in Figure 1 are left-handed twisted
due to chirality of the rod-like monomer. If the ribbons were not twisted,
an unlimited growth of fibril and fiber widths would be expected. Instead,
when twisted ribbons aggregate into stacks, fibrils with well-defined widths
are formed. Fibers are formed in a similar way from twisted fibrils, but again to
well-defined widths. Indeed, to aggregate, twisted objects must bend and adjust
their twist in response to the packing constraints imposed by its twisted neigh-
bors. Hence, there is an elastic energy cost &.1,x Which must be compensated
for by the gain in attraction energy (coming from e} . e and €3 ) upon
stacking. The distortion energy .y is higher for thicker stacks. This serves to
stabilize the widths of fibrils and fibers. Thus, the fibril width is determined by
a balance between the gain in attraction energy (coming from &fr.,) associated
with ribbon stacking and the elastic cost on the ribbons associated with fibril
formation. Assuming that the ribbon contour length is fixed and the deforma-
tions are weak, from symmetry arguments we find that this cost per unit length

of each ribbon in the fibril is given by Eq. (3):

1 2 1 2
Eelast = EKbend(V — ) + EKtwist(e — 6p) 3)
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where v and 6 are the local curvature and the local twist strength of the ribbon
within a fibril, 6y = 27/ hipbon 1 the equilibrium value of twist strength of an
isolated ribbon, while its bend strength is zero (vg = 0), and kpepg and Kiyise are
the ribbon elastic constants [4a]. For a ribbon a distance p from the central
axis of a fibril, it is straightforward to show that v = y2p/(1 + y2p?),0 =
y/(1 + )/2,02), where y = 27/ hpril and Ky 1s the fibril’s helical pitch. The
thicker is the fibril, the larger are the typical p, and hence, the higher the cost
Eelast- The net energy gain eqpg per peptide in a fibril (Eq. (4)) has a maximum
at some p; p is the number of ribbons in the fibril. Hence, a well-defined width
of fibrils arises, corresponding to this optimal p [4a].
-1 :

Efibril = %Sgﬁu — €fonls )

The “state diagram” of possible aggregate structures calculated by using
this model, and seeking its structure of minimum free energy in each case, is
shown in Figure 2. Fibrils with finite diameter are seen to be stable for a wide
range of values of efir., provided that the intrinsic pitch Zibpon Of the lone ribbon
strongly exceeds the inter-ribbon gap a in the fibril. For low e}, the ribbons
do not stack into fibrils. For high &3 | the ribbons form infinite aggregates
(sheet-like crystallites) in which the ribbons are completely untwisted. The
optimum number p of stacked ribbons per fibril, and hence the fibril diameter,
increases with Zyibpon and eir,. This is usually accompanied by an increase in
hfirit -

The concentration ranges over which the various self-assembled struc-
tures are observable, their contour lengths, and abruptness of inter-structure
transformations with concentration are determined by the energy parameters
¢;j. For example, if &y, is high enough (eyans > 4, all energies here are mea-
sured in kg T units) and &ippon 1S small (<1), the single tapes emerge abruptly at:

~ -1
cza;pe = Viape eXp(—&tape + Etrans) &)

and their typical aggregation number is:

(Miape) = [(c/c%) — 1] exp (euans/2) , ©6)

if ¢3¢ < ¢ < ¢P%; c is the total peptide concentration and vy, is the ‘freedom’
volume of the bonds forming the tape. Next, given that the tape bend and twist
are not very high (i.e., €ejast (cf. Eq. (3)) is small enough), the net ribbon energy
(Eq. (7)) is positive.

_ attr attr
Eribbon = 5 €ribbon — Eribbon (7

Hence, at concentration:

ribbon ~ tape + cmax

>~ max ~  —1 =2
cr — “er tape - i

¢ ctape Utape Srlbbon exp(—s tape) (8)
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Figure 2. Phase diagram of a solution of twisted ribbons which form fibrils. The scaled vari-
ables are: relative helix pitch of isolated ribbons % jppon /@, and relative side-by-side attraction
energy between ribbons sgtlgi] / Egbril (e;‘;brﬂ = (272b, /(12)Ktwist; see the text and Figure 1d,e
for notations). The areas divided by the thick lines reveal the conditions where ribbons, fibrils
and infinite stacks of completely untwisted ribbons are stable. The dotted lines are lines of stabil-
ity for fibrils containing p ribbons (p is written on the lines); kpend /Kiwist = 0.1 [3]. Copyright
(2001) National Academy of Sciences, USA.

the ribbons emerge; above ¢’ the population of peptide in single tapes
saturates at c;o; and all extra peptide goes into ribbons; simultaneously, the

average aggregation number of ribbons grows as:

(Mibbon) ~ [(c/ciP™™) — 11265100 €XP((Etrans + Etape) /2) )

whereas the length of tapes saturates at:
~ _—1
(mtape) = &libbon (10)

The formulae (Egs. (5), (6), (8), (9) and (10)) are asymptotic.

To realize sequentially the entire hierarchy of structures in Figure 1 with
increasing monomer concentration, it is essential that £gpe > kT >> Eribbon >
Eibril > Efiber- Otherwise, some structures may not appear. These are the net
energies gained per one peptide inside the corresponding structures as compared
to a peptide inside the structure of the previous level.
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3. Experiments Illustrating Predictions of the Model

3.1. Pj;-1: CH3CO-GIn-GIn-Arg-Gln-GIn-GIln-GIn-GIn-
Glu-GIn-GIn-NH,

The structure is based on a sequence of glutamine (Gln) residues whose side-
chains are believed to interact strongly in water [34], presumably via hydropho-
bic and complementary hydrogen bonding interactions. Arginine (Arg) and
glutamate (Glu) residues have been placed in positions 3 and 9, to provide
molecular recognition between adjacent antiparallel 8-strand peptides in tape-
like aggregates, in order to prevent random peptide association. These favorable
intermolecular side-chain interactions, coupled with co-operative intermolec-
ular hydrogen bonding between peptide backbones, results in high scission
€Nergy Eupe, thus promoting B-sheet tape formation (Figure 1¢). Furthermore,
one side (“black”) of the tape is lined by the CONH, groups of the Gln residues,
while its other side (“white”) is lined by the CONH,, the guanido, and the
COOH groups of the Gln, Arg and Glu, respectively. At low pH in particular,
there is also a net positive charge per peptide. The high hydrophilicity of both
surfaces of the tape, combined with the electrostatic repulsion between posi-
tively charged surfaces, results in very small €2} and e\, energies compared
to kT, thus promoting predominantly single tape formation for low enough
peptide concentration in acidic solutions.

At very low concentrations, Py;-1 is predominantly in a monomeric random
coil conformation (Figures 1b and 3a), whereas at higher concentrations
(¢ > 0.01 mM), itforms semi-flexible tapes (Figure 3b) witha width W ~ 4 nm,
equal to the expected length of an 11-residue peptide in a 8-strand conforma-
tion, and persistence length (l~ < 0.3um). The different chemical nature of the
two sides of the tape seems to cause it to bend and twist simultaneously, resulting
in curly tapes with a left-handed twist, a helical pitch (hp. ~ (30 &= 15) nm),
and a radius (rpe ~ Snm) (Figure 3b). At ¢ > 1 mM, loose ribbons are also
observed, with 7 ~ 0.3 — 1 pm, and A ippon ~ (50 £ 20) nm. These values, in
conjunction with the theoretical model, were used to derive the magnitudes
of the bend (y, = 3°) and twist (y» = 3°) angles for the single tapes and the
ribbons (Table 1).

FTIR spectra of aqueous solutions of Pj;-1 tapes exhibit absorption max-
ima in amide I’ at 1630 and 1690 cm~!, demonstrative of a predominantly
antiparallel 8-sheet structure. They also exhibit characteristic S-sheet circular
dichroism (CD) spectra [16] (see Chapter 13) with minimum and maximum
ellipticities at 218 nm and 195 nm, respectively (Figure 3a).

The fraction of the peptide in B-sheet tapes starts to grow abruptly at a
critical concentration, c2*® ~ 0.008 mM (Figure 3c). The two-state transition
from random-coil to B-sheet with increasing concentration has an isodichroic
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Figure 3. Self-assembly of Py1-1. (a) Far-UV CD spectra as a function of peptide concentration.
The solutions were prepared by mixing the dry peptide with the required volume of water adjusted
to pH = 2 with phosphoric acid. Data were collected with one-month old solutions stored at
20° C. For interpretation of the CD spectra, see the text and legend of Figure 5(a) and (b).
(b) Negatively-stained TEM image of single “curly” tapes, reminiscent of Figure 1¢’; the scale
bar corresponds to 50 nm. (c) Plot of the B-sheet fraction in solution (black circles) as a function
of total peptide concentration, based on the CD data (the mean residue ellipticity [#] at 219 nm
is taken as a linear function of the S-sheet fraction in solution). The solid line is the fit of the
data with the single tape theory. The best-fit values of the energetic parameters, &trans and tape.,
which were chosen to comply with the concentration dependence of the CD data and with the
observed lengths of tapes at ¢ = 5 mM, are shown in the panel. (d) Theoretical concentration
dependence of the average number (m) of peptides per single tape (dotted line) and in ribbons
(dash-dot line), based on the energetic parameters derived from the fit (c). Minimum number
of peptides in tapes is 2, and in ribbons is 4. The predicted lengths of tapes and ribbons are in
agreement with the observed lengths in the TEM pictures for the same peptide concentration [3].
Copyright (2001) National Academy of Sciences, USA.

point at 211 nm (Figure 3a). Using &yans and &gpe as fitting parameters, the
growth of the B-sheet CD band with concentration (solid line in Figure 3c)
could be described. The best-fit energy values are in Figure 2c. The e&yans
energy results in the nucleated growth of tapes, manifested by a “sudden” onset
of B-sheet tape formation at c2P°. Using these values of energetic parameters,
this single tape model predicts a mean tape contour length for a given pep-

tide concentration which agrees well with the observed range of contour lengths
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in the TEM images for the same concentration. At ci°™" ~ 1 mM, loose rib-
bons start appearing, implying a weak attraction between tapes. This attraction
may be mediated by multiple, co-operative, complementary hydrogen bonding
between the -CONH, groups of glutamine side-chains which line completely
one of the two polar sides of the tapes. van der Waals forces are likely to be
involved, too. From the value of ¢fi®®" the ribbons are estimated to be stabi-
lized by &iippon = (0.0035 £ 0.0015)k 5 T . Fibrils (Figure 1¢’) are not observed
up to ¢ = 25 mM. Hence, &qpii < 1073437, and £33 = 0.1x5T.

3.2. Pyj-2: CH3CO-GIn-GIn-Arg-Phe-GIn-Trp-GIn-Phe-
Glu-GIn-GIn-NH,

To increase the tendency of the peptide to associate into ribbons, the mag-
nitude of &ppon Must be increased either by decreasing gglgggn or by increasing
eatr .- The latter can be achieved by addition of salts or of appropriate cosol-
vents, but more elegantly by replacing the glutamines at positions 4, 6 and 8 by
phenylalanine, tryptophan and phenylalanine, respectively. This peptide, Py;-2,
forms B-sheet tapes with a hydrophobic “adhesive” strip running along one side
of the tape that promotes their association into ribbons in water. At ¢ > 0.1 mM
in water, P;;-2 forms long, stable semi-flexible 8-sheet ribbons with a width
of 2—4 nm, which fits with the expected cross section of &~ 2 x 4nm? of these
ribbons, and a persistence length [ ~ 1 wm (Figure 4a). At ¢ > 0.6 mM, a sec-
ond transition from ribbons to fairly rigid fibrils is observed (Figure 4b and c).
The fibrils have a well-defined screw-like structures with typical minimum and
maximum widths of W; =~ 4nm and W, ~ 8§ nm. At even higher concentra-
tions, a third structural transition takes place and fibers are detected. Typically,
they are comprised of two entwined fibrils (Figure 4d). The sequence of these
structural transitions is also supported by distinctive far- and near-UV CD
spectra, corresponding to P;1-2 monomers, ribbons and fibrils (Figure 5a and b).

Focusing on the behavior at low concentrations, it is seen that Pj;-2
is predominantly in the monomeric random coil conformation (Figure 1b),
whereas the fraction of peptide in 8-sheet structures starts to grow abruptly at
¢ ~ 0.07 mM (Figure 5a and c).

By treating &ans and &qpe as fitting parameters, the growth of the B-sheet
CD band with concentration could be described well. However, this single tape
model yields a mean tape length of about 20 nm at ¢ = 0.2 mM (Figure 5d),
much shorter than the observed length >500nm (Figure 4a). It is possible,
however, to describe the CD data (solid line in Figure 5¢) and simultaneously
to predict the occurrence of these long aggregates (Figure 4a) by inclusion
of a third energetic parameter associated with &jphon (double tape) formation
(Figure 1d). These long aggregates are double tapes rather than single ones
(Figure 5c and d). The CD spectra as a function of concentration have no
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Figure 4. Aggregate structures and liquid crystalline phase behavior observed in solutions of
P11-2 in water with increasing peptide concentration ¢ (log scale). The electron micrographs
(a) of ribbons (¢ = 0.2 mM), and (b) of fibrils (¢ = 6.2 mM) were obtained with a four month old
solution after platinum rotary shadowing. The observed micrometer-long contour length may be
limited by multiple ruptures of the fibrils during preparation of the samples for TEM imaging.
Higher resolution TEM images of ribbons were also obtained using negatively stained samples
(datanot shown). Micrographs (c) (c = 6.2 mM) and (d) (¢ = 6.2 mM) were obtained with a one-
month-old solution after uranyl acetate negative staining. CD and FTIR have confirmed that the
fibrils are made of B-sheet structures. X-ray diffraction data have also shown arcs corresponding
to 0.47 nm periodicity, consistent with the expected interstrand distance in a -sheet (unpublished
data). The TEM micrographs show the principle aggregate structures whose populations ¢j =
fJj c (fj is the fraction of peptides incorporated in the j-th structure) change with peptide
concentration, as depicted in (e). The curves in (e) were calculated with the generalized model
described in the text (see also Figure 5d). The aggregation behavior of the peptide, probed using
time-resolved fluorescence anisotropy and CD of filtered solutions, is fully consistent with the
model (data not shown). The polarizing optical micrograph (f) shows the thick thread-like texture
observed for a solution with ¢ = 3.7 mM in a 0.2 mm pathlength microslide. (g) shows a self-
supporting birefringent gel (¢ = 6.2 mM) in an inverted 10 mm o.d. glass tube, viewed between
crossed polarizers. The scale bars in a, b, ¢ and d correspond to 100 nm and in f to 100 wm [3].
Copyright (2001) National Academy of Sciences, USA.

isodichroic point (Figure 5a), further supporting that more than two states (i.e.,
peptide monomers, S-tapes and ribbons) are involved in the conformational
transition. The best-fit energy values obtained are: gy = (3 &= DT, Eape =
(24.5 £ 1.0)kpT and &ippon = (0.6 £ 0.3)x5T.

It is instructive to compare the energy parameters obtained for the two
peptides in the context of the proposed arrangements of peptide molecules in
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Figure 5. Self-assembly of Pj1-2. (a) and (b) far-UV CD spectra in water at 20°C. (a) Solutions
were prepared by dilution (within 15 min) of a freshly prepared isotropic fluid (3.1 mM), and
incubated for 3 days. The spectra were unchanged 10 days later. The negative ellipticity at ca.
200nm and a positive ellipticity at ca. 222 nm in spectra for ¢ < 50wM is characteristic of
random coil monomeric peptide, whereas the negative CD band at ca. 214 nm and the positive
band below ca. 195 nm, at 150 uM< ca. < 400 wM is typical of a B-sheet conformation [16].
(b) Comparison of the CD spectra of isotropic solutions of Pj;-2 ribbons and of fibrils at
¢ = 0.3 mM. The solution for the ribbon spectrum was prepared as in (a), while the solution
for the fibrils was prepared by dilution of a nematic gel (¢ = 3.1 mM). The fibril spectrum
reveals a red-shifted negative band (centred at 224 nm, compared to 214 nm for ribbons). The
red shift accompanying formation of fibrils is thought to arise partly from the superposition
of a strong aromatic CD band on the classical 8-sheet CD spectrum. The appearance of the
aromatic CD band suggests a change in the packing of tryptophan side chains [17], which are
in a more constrained chiral environment in fibrils than in ribbons. The ribbons and the fibrils
produce distinct near-UV CD spectra, which further supports a change of packing of aromatic
side-chains (unpublished data). (c) Fit of the theoretical model (solid line) for the self-assembly
of peptides into single and double S-sheet tapes, to the measured concentration dependence
of the mean residue ellipticity [0] of the negative CD band at A =214 nm. [0];14 is taken to
be a linear function of the fraction ff of peptides in B-sheet tapes. The fractions of peptides
involved in single and double tapes are represented with dotted and dash-dot lines, respectively.
(d) Theoretical concentration dependencies of the average number (m) of peptides in single
tapes (dotted line) and in ribbons (dash-dot line) and in fibrils made of p = 4 ribbons (dashed
line) [3]. Copyright (2001) National Academy of Sciences, USA.
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Pyl

Figure 6. Molecular arrangements in dimeric Py-1 and P;-2 cross-8 tapes showing details of
hydrogen bonding and side—chain orientations. Reprinted with permission from [9]. Copyright
(2003) American Chemical Society.

the tape-like substructures depicted in Figure 6. The estimated &y, is higher
for P;;-1 than for P;{-2 (Table 1).

Although both peptides have the same length, they may have a different
propensity to form a random coil in the monomeric state. This difference may
account for the difference in &rays. The magnitude of &,y is also higher for Py;-1
than for Py;-2, indicating that the inter-peptide glutamine side-chain interac-
tions between Pj -1 peptides are more efficient at promoting self-assembly
than intermolecular aromatic side-chain interactions between P;;-2 peptides
(Figure 6). &iibbon 1S at least two orders of magnitude lower for Pj;-1 then for
Py1-2, as predicted by peptide design. This difference explains the shorter (by
one order of magnitude) length of Py;-1 ribbons than the P;;-2 ones (Table 1).
It also accounts for the one order of magnitude difference in critical concentra-
tions for ribbon formation between the two peptides. As a result, single, curly
B-tapes are stable over a wide range of Py;-1 concentrations. In contrast, P;;-2
tapes are not observed because they convert to ribbons as soon as they are 3—4
peptides long, at very low concentration.

The formation of fibrils (Figure 4b) at higher concentrations of P;;-2, implies
the presence of a weaker attraction between the polar sides of Pj;-2 ribbons
(ear,, Figure le’). From the concentration at which they appear, we calculate
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Ehibrl = (2.0 £ 0.3) - 1074k 5T. Despite this attraction, the fibril dispersions are
stable and the fibril diameter is finite (rather than growing indefinitely). Further-
more, the fibril width W, corresponds to the expected length of an 11-residue
B-strand, while W, corresponds to roughly 4 ribbons (i.e., 8 single tapes, each
tape with a thickness of ca. 1 nm) per fibril, and is concentration independent
(at least from 0.6 to 7mM). The energy required to break such a fibril, scission
ENergy &g, 18 &g = 8&gpe ~ 200k T (comparable to covalent bond energies),
and is much higher than that of a single ribbon, &5 = 2&(pe ~ 50k T. This
results in fibrils whose equilibrium average lengths are predicted to be very
long: L ~ 10% km compared to Lyipbon ~ 1 pm, for c = 6 mM.

4. Stabilization by Twist

Thus, the general behaviors of P;;-1 and P;;-2 are consistent with the
predictions of the model outlined in Section 1. Tapes, ribbons, fibrils and fibers
all have an intrinsically left-handed twist. This twist and its handedness is a
result of the presence of the L-amino acid residues comprising the peptide pre-
cursors, and is reminiscent of the left-handed twisting of B-sheet regions in
natural proteins [18]. This is demonstrated in Figure 7 which shows how fibrils
of Py;-2 derived from D-amino acids have a right-handed twist.

Ribbons stack to form twisted fibrils, the structural characteristics of which
are also predicted by the model. Within a fibril, the degree of twist associ-
ated with each of the ribbon sub-units is necessarily reduced as a geometric
requirement in order for multiples of these objects to be stacked together. The
magnitude of this untwisting becomes greater as the number of ribbons within
the fibril is increased (Figure 2). This “flattening” of the ribbon structures from
their equilibrium twisted state is compensated for by the energy gained from
the interacting faces of the ribbons upon stacking inside the fibrils. In the case
of Py;-2, beyond a total of four stacked ribbons per fibril, the energy cost of
further untwisting of ribbons becomes greater than the energy gained from
inter-ribbon face-to-face interactions. Thus, according to the model, this subtle
energy balance determines the equilibrium dimensions of the fibril; gy is
ca.120-200 nm (Figure 4c). From the observed geometrical characteristics of
P;1-2 ribbons and of fibrils, the theory estimates /,ipbon ~ 120-200 nm, elastic
constants Kpeng and Kyyist, and twist angle yy = 1° for isolated Py;-2 ribbons and
ehir, ~0.015« 5T for fibrils (Table 1).

That Py;-1 ribbons do not associate into fibrils up to at least c = 25 mM while
Py1-2 forms fibrils at ¢ < 1 mM is at first sight surprising because the magnitude
of el is expected to be similar for both peptides in view of the identity of
their outer (“white”) polar sides (Figure 6). This behavior can again be traced
to the role of twist as gleaned from molecular dynamics-generated structures
[9] (Figure 8). That P;-1 and Py;-2 tapes have similar degrees of twisting about
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(a)

(b)

Figure 7. Uniaxial shadowed TEM of (a) L-P1-2 and (b) D-Py;-2 at 20 wM in HPLC water.
Observe the opposite fibril handedness. Scale bar = 100 nm. [A.Beevers, M.Bell, L.M.Carrick,
C.W.G. Fishwick, A. Aggeli, and N.Boden.]

their axes is not surprising in view of the similar overall amino acid sequences
of the two peptides. The greater bend in P;;-2 tapes stems from the greater
chemical asymmetry of its outer surfaces. For the ribbons, the twist is 3-4 times
weaker for Py;-2 than for Py;-1, indicating much stronger cross-tape attractive
forces in the case of the former. This is reflected in molecular dynamics based
estimates for the adhesion energies, 26.86 kcal/mol and 12.44 kcal/mol per
peptide molecule, for Py;-2 and Py;-1 ribbons, respectively. The much greater
adhesion between the inner tape-like faces within Pj;-2 ribbons stems from
hydrophobic forces arising from substitution of glutamines at positions 4, 6,
and 8 by phenylalanine, tryptophan, and phenylalanine, respectively (Figure 6).
Adhesion increases as contact between the two faces increases, and becomes a
maximum when the ribbon is flat. Opposing this is the tendency for the tape-like
faces to twist away from planarity in order to optimize side-chain interactions
within the tape-like sub-structures. The resulting twist of the ribbon is therefore
a compromise between these two opposing factors; strong inter-tape attractive
forces tend to flatten the ribbon, as in the case of P;-2.
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Py-1 Py-2 Py-1 P-2

Twist/deg. 4.3 3.0 4.5 1.
Bend/deg. 3.1 7.0 0.0 0.
Pitch/nm 28 10 3 144

Figure 8. Molecular dynamics generated structures of tapes (left) and ribbons (right) for
peptides Py1-1 and Py;-2 [9]. Reprinted in part with permission from [9]. Copyright (2003)
American Chemical Society. [A color version of this figure may be found on page 941.]

5. Wider Implications of the Model

The scheme in Figure 1 is expected to apply to any chiral molecule able
to undergo one-dimensional self-assembly, although only rod-like molecules
are expected to form tapes. The formation of fibrils and fibers, and, conse-
quently, SAFINS [14] is expected to be quite general. Here, three examples,
chosen because of their topical interest, but typifying the generic nature of the
phenomena, are discussed.

Natural proteins — amyloid fibrils. The core structures of the patholog-
ical amyloid fibrils associated with many degenerative diseases, such as
Alzheimer’s, have been shown by X-ray diffraction and '*C NMR [19] to be
comprised of several (typically 6 to 8) tapes having a cross-g structure, stacked
one atop the other, and a full twist pitch of ca. 100-200 nm [20-26]. Protein and
peptide molecules that are not implicated with amyloid pathologies [28-30],
as well as polyamino acids [31], have also been found to self-assemble into
amyloid-like fibrils. Interestingly, it has recently been suggested [32] that the
tendency to self-assemble into B-sheet tapes and, in turn, fibrils is an intrinsic
property of many natural proteins. A number of design motifs appear to have
evolved to suppress this tendency for spontaneous aggregation [33]. One is
to decorate the leading and trailing edges of the S-sheet domain with flexible
domains, rendering &, unfavorable. An alternative way of achieving the same
end is to incorporate electrostatically repelling, charged side-chains. Another
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control strategy is to regulate the term &5 in Eq. (5). Clearly, if ey 1S large,
the critical tape concentration will lie above the ambient protein concentra-
tion, and the tendency towards self-assembly is suppressed. However, &qps 1S
dramatically attenuated if the polypeptide chain is able to form a cross-g8 hair-
pin, thereby changing the critical tape concentration to a value well below the
ambient protein concentration. Huntington’s protein is one well-known exam-
ple where this mechanism is evident. The disease develops when a pathological
threshold of about 41 glutamine residues is exceeded [34]. Cross-strand hydro-
gen bonding between glutamines promotes hairpin formation. The folding of
poly(L-glutamine) into a hairpin configuration as a prerequisite for cross-f
assembly was first pointed out by Perutz [35] in 1994. The occurrence of a
nucleation step in the self-assembly of the Alzheimer’s peptide is also explica-
ble in terms of Eq. (5) [36].

Designer Peptides. The designed peptides considered in the previous sec-
tions have a random coil configuration in solution as the starting point for
self-assembly into tapes. The free energy &.,s associated with the transforma-
tion from random coil to rod-like S-strand plays a key role in determining the
critical tape concentration via Eq. (5). Other peptides have been observed to
assemble into fibrils from alternate distinctive starting configurations. These
include: «-helices [37, 38], B-hairpins [39], 12-16 amino acid residue long
B-strands flanked by nonstructured octapeptide sequences [40], B-sheet pro-
teins comprised of amphiphilic g-strands connected by appropriate turns
[41], the de novo B-sandwich protein betabellin 15 D [42] and self-assembling
peptide-PEG block copolymers [43]. &yans in Eq. (5) then takes on a different
significance accordingly. In this way the critical tape concentration can be dra-
matically changed; it is usually perceived as a way of controlling assembly of
B-sheets. However, as we have seen in the case of proteins, it is a matter of
degree rather than of substance.

Chiral organics. A wide variety of synthetic chiral “molecules” also
exhibits this kind of behavior. They are normally described as “LMOGs”(see
Chapters 14-18). Typical examples include complementary associating
derivatives of tartaric acid [44], or of chiral 1,2-diaminocyclohexane with
(§,S)1,2-cyclohexanol [45], substituted porphyrins and phthalocyanines [13a],
derivatives of carbohydrates [45] and cholesterol [13a, 46], lithium salts of D
(or L)-12-hydroxystearic acid [27], N-n-octyl-D-gluconamide [45, 47], copper
B-diketonates [13a] and chiral cyclohexanediamides [48], oligoheterocyclic
pyridine-pyridazine molecular strands [49], amphiphilic porphyrin bearing
four B-D-galactopyranoside groups [50], L-glutamic acid modified bolaam-
phiphilic diacetylene lipids [51], bis[(alkoxy)benzoylsemicarbazides] [52],
pyrene-based [53], and bis-urea-based LMOGs [54]. They form fibrils with
well-defined helicity and dimensions and which have the propensity to form
SAFINSs, gels and liquid crystals.

Figure 9 compares the mesoscopic structures of fibrils formed by represen-
tatives of the three classes of chiral molecules. Strikingly, they are essentially
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Figure 9. TEM images of fibrils of (a) P11-2 in water [3], (b) Alzheimer’s amyloid 8-protein
(B34-42) Reprinted with permission of the Biophysical Society [20]. (c) designed amphiphilic
B-sheet protein [41]. Copyright (1996) National Academy of Sciences, USA. (d) S-sandwich
protein betabellin. Reprinted with permission from [42]. Copyright (2000) Elsevier. (e) cationic
gemini surfactant with L-tartrate anion [27]. Reprinted with permission of Nature. (f) alky-
lamide derivative of trans-1,2-diaminocyclohexane [13b]. Reprinted with permission from
[13b]. Copyright (2003) Wiley-VCH. Scale bars 100 nm except (c) where it is 50 nm.
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the same; at the length scales of fibrils and also of the macroscopic gels, the
detailed chemical structures of the constituent molecules are not deterministic.
Thus, we conclude that the aggregate structures depicted in Figure 1 provide an
insight into the way in which chirality is expressed in the mesoscopic structures
of one-dimensional chiral aggregates. This, in turn, governs the macroscopic
structures and properties of these materials.

In contrast, the energetics that govern fibril formation depend on the
exact chemical nature of the monomeric unit and the experimental conditions.
The magnitude of &y.,s depends on the starting (monomeric) and final
(self-assembled) conformations of the LMOGs as well as on the solution
conditions. &gpe Or an analogous molecular energy governs the formation of
the individual thin self-assembled strands which are the subunits of the fibrils.
Eribbon aNd Ebyil can be different or the same in nature and magnitude depending
on whether the self-assembling molecule is uniaxial or biaxial. The competi-
tion between &yans and &qpe i expected to define the magnitude of the critical
concentration c2P® above which the nucleated self-assembly of the fibrils starts.

For example, we find that peptide self-assembly into S-sheet tapes and
fibrils starts at much lower concentrations in polar organic solvents, such as
methanol, than in water as a result of the lower relative dielectric constant of
the former. This causes a significant increase of the strength of the numerous
intermolecular hydrogen bonds that bind adjacent peptides in the tape, thus
increasing significantly the magnitude of &, and lowering ¢5P® in polar organic
solvents, &gpe can also be modulated by changing the solution pH when the
peptide contains acidic or basic side-chains. pH responsivity will be discussed
in Section 7.

The magnitude of &y, is expected to change significantly depending on
the chemical nature of the self-assembling objects (e.g., peptide, protein or
synthetic organic molecule). Unfortunately, there is very little quantitative work
available in the literature that allows comparisons of the magnitudes of the
energetic parameters of different systems. The application of the model in
Section 2 to a wide range of chemically distinct systems will provide insight
into the relationship between energetic parameters and molecular structure as
well as solvent properties. Such information will lead to the establishment of
the requisite protocols for designing molecular gels.

6. Peptide Gels are Nematic Hydrogels

The rigidity of the fibrils/fibers results in a nematic phase at ¢ > 0.9 mM
(0.001 v/v) for Py;-2. The texture in the optical micrograph in Figure 4f and its
dependence on flow are characteristic of viscoelastic nematic fluids of semi-
rigid polymers [55]. The isotropic-to-nematic phase separation gap is narrow:
0.8 mM<c;<cy<0.9mM (relative gap width, w = cy/c; — 1 < 0.13), and is
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insensitive to temperature variations from room temperature to at least 60°
C. Polydisperse rigid-rod solutions have much wider phase separation gaps
w ~2 [56]. The fibrils behave more like typical semi-rigid (worm-like) chains
with hard-core excluded volume interactions, for which w~0.09 [56]. The
isotropic-to-nematic transition of such chains with rectangular cross-section,
Wi x W,, is predicted [56] to occur at volume fractions, ®;y ~ S.SW/iﬁbri]
(where W = 2W W, /(W[ + W,), provided that L > [ﬁbri]); this yields for Py;-
2, &;n ~0.0004 — 0.0015 v/v (corresponding to c;y =~ 0.4 — 1.5mM), in
agreement with our observations. iribbon for Py;-1 is one to two orders of magni-
tude shorter than iﬁbbon of Py;-2. The isotropic-to-nematic transition of solutions
of semi-flexible ribbons of Py;-1 is predicted to occur at ®;y 2 0.015 — 0.05
v/v (corresponding to 15-50 mM). Indeed P;;-1 forms a nematic phase at
¢ ~ 13 mM (Table 1).

At ¢ > 4mM, the birefringent solution of P;;-2 becomes a self-supporting
birefringent gel (Figure 4g). Dynamic and steady-state rheological measure-
ments show that fibril-based gels are brittle and do not relax even after days,
behavior reminiscent of permanent gels of semi-rigid polymers [10]. Gela-
tion is associated with the onset of fiber formation (Figure 4) which leads
to the perception that in the gels, fibrils in the SAFINs are linked by fiber-
like junctions (Figure 10). In contrast, tape-based gels are more extendable
[5] and relax slowly with time, behavior indicative of transient gels of semi-
flexible polymers. We conclude that the type of polymer (tape, ribbon or fibril,
each associated with its own characteristic flexibility, contour length and cross-
linking mechanism) determines the liquid crystalline and gelation properties
of its solution.

[l %%

Nematic fluid Nematic gel

—

—

Figure 10. Schematic showing global arrangement of fibrils in nematic fluids (a), and the fiber-
like junctions in nematic gel states (b). (Reprinted with permission from [7]. Copyright (2003)
American Chemical Society.)
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At concentrations of ca. 0.001 v/v, tapes themselves become entangled to
form SAFINs and viscoelastic gels [5, 6]. The formation, structures and rhe-
ological properties of these gels fall outside the scope of this article, and the
reader is referred to the above references for further information.

7. Prospects for Engineering Functional Hydrogels

Up to this point, the focus has been on exposing the structural characteris-
tics and properties of peptide hydrogels. In this section, the prospects for their
applications are addressed. This will of course, depend on the functional prop-
erties that can be built into these materials. A wide variety of peptides could
be designed to assemble into chiral tape-like or fibrillar macromolecular struc-
tures which may persist as nematic fluids or gels. Moreover, by appropriate
peptide design, a combination of desirable properties, such as biological-like
functionality, chemical stability or responsiveness to external triggers (such as
solvent polarity, temperature, pH, light or ionic strength) can be incorporated,
making the new materials much more versatile than existing peptidic biomate-
rials such as collagen [57]. This unique combination of properties would make
these materials well suited for use in biomedical and other applications, such
as for the production of scaffolds to control the shape and alignment of cells
for tissue engineering, new suture materials, templates for growth of inorganic
helical nanotubes [58], and matrices for separation of chiral molecules.

By way of demonstration, how responsivity to pH can be readily incorpo-
rated by relatively minor changes in the chemical structure of the peptide P;;-2
will be outlined. The peptides in Table 2 exploit the fact that amino acid side
chains terminated with -COOH or -NHJ groups can be in either a protonated
or deprotonated state at pH values when they are, respectively, below or above
their nominal pK values. The side chains can, by design, be specifically located
on the peptide to modulate the electrostatic interactions between neighbor-
ing peptides and, thereby, to control &,.. For example, substituting glutamic
acid residues for glutamine residues in positions 5 and 7 of P;;-2 gives P;;-4
(Table 2).

We expected the y-carboxyl groups to be uncharged at low pH and sta-
ble dispersions of fibrils to obtain. At higher pH, all three carboxyl groups

Table 2. Peptide primary structures.

Py1-1:  CH3CO-GIn-Gln-Arg-GIn-Gln-Gln-Gln-Gln-Glu-Gln-GIn-NH;
Py1-2:  CH3CO-Gln-Gln-Arg-Phe-Gln-Trp-Gln-Phe-Glu-Gln-GIn-NH»
Py1-3:  CH3CO-GIn-Gln-Arg-Phe-Gln-Trp-Gln-Phe-Gln-Gln-GIn-NH>
P11-4: CH3CO-GIn-GIn-Arg-Phe-Glu-Trp-Glu-Phe-Glu-GIn-GIn-NH,
Py1-5:  CH3CO-GIn-GIn-Orn-Phe-Orn-Trp-Orn-Phe-Gln-GIn-Gln-NH,
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were expected to be deprotonated (negatively charged), resulting in electro-
statically repulsive forces between adjacent y-COO™ groups in neighboring
peptides, and severely attenuating the magnitude of &pe, and leading to fibril-
to-monomer dissociation (Figure 11).

In practice, more complex behavior was observed (Figure 12(a)): for ¢ =
6.3 mM, self-supporting birefringent gels were obtained between 2.0 < pH <
3.2 (region I); between 3.2 < pH < 5.0, flocculation occurs (region II); between
5.0 < pH < 7.0 viscous birefringent nematic fluids prevail (region III). Nematic
gels were obtained only at ¢ > 12.6 mM in the pH range 5.0 < pH < 7.0. At
pH > 7.2, optically isotropic Newtonian fluids were observed (region IV).
The nematic-to-isotropic fluid transition occurs within the pH range 6.8-7.2,
approximately three pH units higher than the pK (4.1) of free glutamic acid. This
complex behavior can be understood in the context of the results of a titration
of anematic gel of P;;-4 (pH 2) against 0.25 M NaOH solution (Figure 13). The
dissociation of protons occurs over a wide band of pH values from 2 to 8, remi-
niscent of the titration behavior of proteins and linear polyacids [59—61]. Proton
dissociation from the glutamic acids embedded in fibrils is influenced by exten-
sive electrostatic forces between y-COO™ of Glu, and also the 3-guanidinium™
groups of Arg in the tape-like substructure. Attractive forces essentially lower
the acid pK to below that of the free peptide (ca. 4.1), while repulsive ones raise
it to higher values [62]. It is usually more appropriate to consider the Gibbs
free energy change AG? as a function of degree of dissociation (Figure 13b).
Flocculation in region II is associated with electrical neutrality of the fibril:
the negative charge on the single ionized y-COO™ of Glu is balanced by the
single positive charge on the d-guanidinium™ of Arg in the tape-like substruc-
ture. Fibrils seem to require roughly one net positive or negative charge per
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Figure 11. lonization states of Py1-4 and Py1-5 at low and high pH values showing the side-
by-side organization of peptides in tape-like substructures and in their dissociated monomeric
states. (Reprinted with permission from [7]. Copyright (2003) American Chemical Society.)



Self-assembling peptide gels 121

(a) (c)
100 4 T T ! : .
% 10’ ¥
] . "
80 4 SUE %
] g
Fi0l 2 .
5 %1 1 funim v B
2 F100 2 :
£ 404 & TEE NS 2
2 o] F10-1 ; ‘-_.'u oy =
20 4 ) = -
-10-2 R _.
0 L%—o—u
—_——— 10-3 S
0 2 4 6 8§ 10 12 14 s
pH 100 nm
(b) (d)

absorbance
\j
1642

1700 1650 1600

100 pum wavenumber / em”

Figure 12. (a) Phase behavior of P11-4 (¢c=6.3 mM) as a function of pH (DCI/NaOD): I =
nematic gel, Il = flocculate, 1l = nematic fluid, IV = isotropic fluid. o =zero shear viscosity, and
e = %f-sheet determined using FTIR spectroscopy: the continuous line denotes the proportion
of peptide in fibrils. The broken vertical lines separating regions I, II and III denote approximate
boundaries between different macroscopic fibrillar states, while that separating regions III and
IV denotes a first order nematic-to-isotropic transition. (b) Polarizing optical micrograph of a
P11-4 gelin water (¢ = 6.3 mM, pH =3) showing a typical thick thread-like viscoelastic nematic
texture (Pathlength = 0.2 mM). (c) Transmission electron micrograph of a Pj;-4 gel in water
(c =6.3mM, pH = 3) showing semi-rigid fibrils and fibers. Micrographs were obtained after
dilution to 20 M and negative staining with uranyl acetate. (d) FTIR spectrum of amide I’
(mainly C= O stretching absorption) bands showing $-sheet conformation of P-4 nematic gel
(c = 6.3mM) in DCI at pH 2.5 (upper trace), and random coil state of P11-4 isotropic fluid
(c = 6.3 mM) in NaOD at pH 11 (lower trace). (Reprinted with permission from [7]. Copyright
(2003) American Chemical Society.)

peptide molecule to stabilize the dispersions against flocculation. This must
involve electrical double layer repulsive forces and explains why dispersions
of Py;-2 are only stable at pH < 5, while P;;-3 (in which substitution Glu— GIn
at position 9 leaves a single ionizable arginine side chain which is expected
to remain positively charged up to its pK (pH 12.5)), forms stable fibrillar
dispersions over a wide pH range (Figure 14). In region III, the electrostatic
repulsion between negatively charged P;;-4 fibrils becomes sufficient to cause
any fiber-like junctions to dissociate, resulting in fluid nematic phases.
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Figure 13. Titration of Py1-4: (a) The volume of 250 mM NaOH required to titrate glutamic acid
side chains in 200 L of 6.3 mM peptide solution as a function of pH. The corresponding number
of dissociated protons N is given on the right hand axis. I, II, IIl and IV denote the regions
corresponding, respectively, to nematic gel, flocculate, fluid nematic and isotropic solution
states; (b) the Gibbs free energy change AGY as a function of the degree of acid dissociation
0; (c) deprotonation of the first glutamic acid at pH = 2.0, the resulting charge distribution
[+ = ArgT; — = Glu~] along the peptide backbone is also illustrated; (d) depicts the effect of
increasing electrostatic repulsion on AG 0 resulting from raising the pH value above 2.0 (region
I). (Reprinted with permission from [7]. Copyright (2003) American Chemical Society.)

The isotropic-to-nematic transition observed on lowering the pH of a
6.3 mM solution of Py;-4 is distinctly different in its nature from that observed
with increasing concentration of Py;-2 in acid solution. IR experiments have
established that in the isotropic fluid state, the peptide is a monomeric species,
while in the nematic state, it is in elongated fibrils. Here, the isotropic-to-
nematic transition is governed by the reversible association of monomeric
peptide molecules into fibrils, a simple two-state transition. The width of
the nematic/isotropic co-existence region is determined by the pH inter-
val of this transition. It is quite narrow, between pH 6.8 and 7.2, accord-
ing to rheology measurements. Optical microscopy (Figure 15b) reveals a
similar isotropic-to-nematic coexistence interval for Pj;-5. Single domain
proteins undergo highly cooperative reversible unfolding transitions over
comparable pH intervals [63]. The highly cooperative dissociation of fib-
rils observed here stems from the regular crystal-like structure of the fib-
rils: they are comprised of stacks of twisted tapes. Within each tape, the
peptide molecules are arranged linearly and the peptide-peptide interaction
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Figure 14. Summary of phase behavior of 11 amino acid peptides in aqueous solution as a
function of pH. For Py1-2, P;1-3 and Py1-4 ¢ = 6.3 mM, for P{;-5 ¢ = 13.1 mM. (Reprinted
with permission from [7]. Copyright (2003) American Chemical Society.)

free energy &wpe contains contributions stemming from long-range electro-
static forces between charged side-chain groups. The deprotonation at a sin-
gle Glu will therefore trigger long range perturbations of &pe, and it is
responsible for the cooperativity of the transition and also its extreme sen-
sitivity to additions of very small aliquots of base/acid. Thus, repetitive and
rapid reversal of the transition can be achieved by addition of either acid
or base.

The converse switching process, between nematic gel at high pH and
isotropic fluid at low pH, can be accomplished by designing a complemen-
tary peptide P;;-5. It needs to be in the monomeric state in acid solutions and in
fibrillar aggregates in basic solutions (Figure 14). To achieve this, residues at
positions 3, 5 and 7 in P;;-2 were changed to ornithine (Arg3 — Orn, GIn5 —
Orn, GIn7— Orn), and the glutamic acid at position 9 to glutamine (Glu9—
Gln) (Table 7). It is unnecessary to incorporate a residue that will be negatively
charged at pH values greater than the apparent pK of Orn to prevent floccu-
lation of fibrils at very high pH values because, conveniently, the reaction of
CO, with the amino groups on deprotonated Orn at high pH values leads to
formation of carbamate [64]:

RNHT— RNH,—%_, RNHCOOH ——> RNHCOO™.
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Figure 15. (a) Phase behavior of Pj;-5 (¢ = 13.1mM) as a function of pH (DCI/NaOD),
showing the sharp transition from isotropic fluid to nematic gel states at pH 7.5. (b) Polarizing
optical micrograph showing nematic droplets with a radial director distribution (Maltese cross)
dispersed in an isotropic fluid phase. (c) Transmission electron micrograph of a gel (pH 9,
¢ = 13.1 mM) showing semi-rigid fibrils. (d) FTIR spectrum of amide I’ bands showing B-sheet
conformation of Py;-5 in the nematic gel state (¢ = 13.1 mM, pH 9 — NaOD) - upper trace, and
the random coil conformation in the isotropic fluid state (c = 13.1 mM, pH 2 — DCI) -lower
trace. (Reprinted with permission from [7]. Copyright (2003) American Chemical Society.)

Repulsion between negatively charged carbamate groups provides stabilization
of fibrillar dispersions.

Acidic solutions are Newtonian fluids of monomeric peptide, Above pH
7.8, fluid nematic phases occur at concentrations in excess of 0.9 mM and
nematic gels appear above 6.6 mM (comparable to the behavior of P;1-4). The
pH dependence of a 13.1 mM solution of Py;-5 is summarized in Figure 15a.
The isotropic-to-nematic transition occurs within the pH interval 7.4-7.8, some
3 pH units below the pH observed for deprotonation of ornithine in peptide
monomers [65]. A solution of pH = 7.6 displays nematic droplets with a radial
director distribution (Maltese cross when viewed between crossed polarizers;
diameter ~300pm) dispersed in an isotropic fluid phase, indicative of the
biphasic nature of the transition (Figure 15b). At pH < 7.4, the peptide is in
an unstructured state in solution (Figure 15d (lower trace)), while at higher pH
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values it is incorporated in semi-rigid fibrils (Figure 15c¢) in an anti-parallel
crossed-B configuration (Figure 15d (upper trace)). The maximum “diameter”
of the fibrils is typically 8—12 nm, corresponding to 8 to 12 stacked tapes.

In the pH window 7.2 < pH < 7.4, both P;;-4 (A- denoting anionic) and
Py1-5 (B-denoting cationic) are in their monomeric states (Figure 16a). The three
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Figure 16. (a) Phase behavior of 6.3 mM aqueous solutions of peptides A and C as a function
of pH. The nematic-to-isotropic biphasic region of A extends from pH 6.8 to 7.2 and for C
from 7.4 to 7.8, defining the pH interval 7.2 to 7.4 for mixing of A and C. The termini of the
horizontal lines spanning the biphasic intervals denote pH values of co-existing nematic and
isotropic phases. (b) Molecular structures of A, C and the complex CA, respectively, showing
the electrostatic charge distributions at pH 7.3. (Reprinted with permission from [8]. Copyright
(2003) Wiley-VCH.)
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Glu (-CH,CH,COOH) residues in A at positions 5, 7, and 9 are in their deproto-
nated states giving the peptide a net two units of negative charge (Figure 16b).
The resultant Coulombic repulsion keeps the peptides apart and suppresses
self-assembly. Similarly, for peptide C, the three Orn (-CH,CH,CH,NH,) in
positions 3, 5, and 7 are positively charged and give the peptide three units
of net charge (Figure 16b). When equal quantities of these two solutions at
pH =7.3 are mixed, a self-supporting, turbid gel is obtained instantaneously.
The gel is birefringent when viewed between crossed polarizers and the opti-
cal micrograph (Figure 17a) is characteristic of a nematic gel. The fibrils have

100 nm

Figure 17. (a) Polarizing optical micrograph of the gel (¢ = 6.3 mM) formed after mixing
aqueous solutions of monomeric peptides A and C at pH 7.3 showing a typical nematic tex-
ture [55]. (b) Transmission electron micrograph showing mainly fibrils and a few fibers (having
twice the diameter of the fibrils) in the nematic gel (c = 6.3 mM). (Reprinted with permission
from [8]. Copyright (2003) Wiley-VCH.)



Self-assembling peptide gels 127

cross-sections of 8 x4 nm and are comprised of 4 ribbons (Figure 17b), just
like those of pure A and B. Spectroscopic measurements are consistent with
the fibrils being a 1:1 complex of A and C, arranged alternately in an antiparallel
cross-8 structure within the tape-like fibrillar substructure. Being salts, these
complexes are stable over wide pH windows (1-12). They may be likened
to the polyelectrolyte complexes formed on mixing oppositely charged poly-
meric polyelectrolytes [66], and are accordingly termed Peptide Polyelectrolyte
B-sheet Complexes. The two residues employed here can be inserted into almost
any basic B-sheet tape forming peptide structure to create such complexes, as
long as the other functional properties have already been incorporated into the
structure. That is, functional properties can be incorporated additively to a first
approximation.

8. Conclusions and Perspectives for the Future

It is possible to exploit the intrinsic one-dimensional self-assembling
propensities of peptides to form cross-g structures [3] in order to produce
a hierarchy of structures: helical tapes (single molecule thick), twisted ribbons
(double tapes), fibrils (twisted stacks of ribbons), and fibers (entwined fibrils)
with increasing concentration in water [3, 4]. The fibrils are semi-rigid and can
form viscoelastic nematic fluids at concentrations of ca. 0.001 v/v. At higher
concentrations, fiber formation occurs and gives rise to networks comprised of
fibrils linked at fiber-like junctions (i.e., SAFINs) creating elastomeric nematic
hydrogels [3]. Single tapes can also become topologically entangled to form
viscoelastic gels. Organogels can readily be produced by appropriate peptide
design and using polar organic solvents. The stability of the gels is governed by
electrical double layer forces between tapes or fibrils accordingly. This requires
the peptides to have a net positive or negative residual charge. The charge on
peptides can be readily controlled by changes in pH values. pH can be used, in
turn, to control the self-assembly behavior and the macroscopic properties of
the solution. This self-assembly also leads to peptide polyelectrolyte S-sheet
complexes which are relatively insensitive to pH changes. pH switching pro-
vides a way for the direct and controlled production of gels from solid peptides,
avoiding any structural traps. Potential applications envisaged for these hydro-
gels are, for example, encapsulation, immobilization and separation of cells,
proteins, antibodies, or enzymes, and as templates for growing nanostructured
inorganic materials.

The self-assembly behavior of B-sheet-forming peptides has been shown to
be explicable in terms of a generic model for the self-assembly of chiral rod-like
molecules. The model is also applicable to the behavior of any chiral molecule
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that can undergo one-dimensional self-assembly. Since many LMOGs are chi-
ral, this model provides a generic insight into the formation of the corresponding
“hydrogels” or “organogels” which are comprised of SAFINs.
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1. Introduction

Phase formation processes, in general, and processes of structure formation
in non-crystalline materials, represent a particularly interesting field of the
universal phenomenon of self-structuring of matter. Such processes of ordering
cannot be, as a rule, influenced directly. They may be governed by choosing
appropriate initial and boundary conditions. For this reason, the knowledge of
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the dependence of these processes on the conditions under which they may
proceed, are of essential importance for their appropriate control.

The processes of phase formation and their further evolution may be
described frequently via three basic theoretical models, the nucleation-growth
model, the model of spinodal decomposition and aggregation (coagulation)
model. Here, we give a brief overview of the respective methods, focusing on
the main ideas and results. Details can be found in extended overviews [1-4]
and in the other references.

2. Some Basic Thermodynamic Concepts

Basic concepts of the theoretical description of first-order phase transi-
tions may be introduced quite easily via the consideration of the thermal
equation of state of the van der Waals fluid. In the pressure — volume dia-
gram and reduced variables (IT1 = p/p. (p: pressure), = v/v. (v: volume),
0 = T/T, (T: temperature); the subscript (c) refers here to the values of the
respective thermodynamic parameters at the critical point), the isotherms of the
van der Waals fluid, and the location of the binodal and spinodal curves have
a form as shown in Figure 1. The spinodal curve (dotted curve) connects (in
the framework of the mean-field approach underlying the derivation of the
van der Waals equation of state) the extrema of the isotherms, and the posi-
tion of the binodal curve (full curve) may be determined via the Maxwell rule
(e.g. [1]).

A similar picture is observed for segregation processes in solutions. Here
we consider, for illustration purposes, the simple cases of a binary regular
solution.

5 1,2
H 3 A 9 0,9 1
14 0,6 -
-1 4 0,3 -
—3 T T 0,0 - T T
0,1 1 10 100 0,1 1 10 100
w | w

Figure 1. Left: Isotherms of the van der Waals fluid. Right: Binodal (full) and spinodal (dotted)
curves of the van der Waals fluid. The arrows on the right hand side illustrate possible paths of
penetration of the system into metastable or unstable initial states.
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The chemical potentials of both components may be expressed for binary
regular solutions via the molar fraction of the second component, x, in the
form:

pi(p, T,x) = ui(p,T) + kgTIn(1 — x) + wx? (1)
pa(p, T,x) = wi(p,T) + kgTIn(x) + w(l — x)* (2)

The coordinates of the critical solution point and the location of binodal and
spinodal curves in this system are given by (cf. also Figure 2):

w 1
c:%a xc_i (3)
Y (i Y (7 PPN l—x=— 4
n( P )— (T>( — 2x), x( _x)_4Tc 4

The position of the binodal curve is thermodynamically well-defined. It can
be determined via measurements of the state parameters of the respective two-
phase system in equilibrium. The location of the spinodal curve is determined
here from the theoretical model of the respective systems. This procedure is
connected with some uncertainty due to the limits of validity of mean-field
approaches in the determination of the equations of state. However, as shown
in [5] for the case of bubble formation in liquids, the location of the spinodal
can be determined experimentally by an extrapolation of thermodynamic data
obtained for metastable states of the system to higher supersaturations.

Homogeneous states in between binodal and spinodal curves are metastable
states, they are small and unstable with respect to fluctuations exceeding a
well-defined finite size. These may act as “embryos” of the new phase (i.e., as
aggregates, capable to a further deterministic growth). This is the range of initial
states in the space of thermodynamic variables, where the model of nucleation

Figure 2. Left: Model system considered in the analysis: formation of a cluster in a binary
solution. Right: Phase diagram of a binary regular solution with critical point (7¢, x.), binodal
curve (full curve) and spinodal (dotted) curve.
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and growth is appropriate for the description of the transition of the system into
the new phase.

The spinodal curve encloses the region of thermodynamically unstable
states. In this range of homogeneous initial states, fluctuations of a particu-
lar type exist (long wave-length fluctuations with an initially small amplitude),
which may grow spontaneously. Here, it is not required that the amplitudes
of the fluctuations exceed critical size. For thermodynamically unstable initial
states, the description of the evolution of the new phase can be performed via
the model of spinodal decomposition describing the process of formation and
growth of such types of fluctuations.

In the analysis of phase formation, the concept of supersaturation is of
basic importance. As measures of supersaturation, different parameters may be
introduced describing the degree of penetration of the system into the two-phase
region (i.e., the distance from the binodal curve) in the course of the variation
of the thermodynamic state parameters. For the particular example of a van der
Waals fluid, one could define as supersaturation the deviations of the pressure
or the specific volume per particle in the homogeneous initial state from the
respective values at the binodal curves (referring to a stable equilibrium co-
existence of both phases at planar interfaces). Possible ways of increasing the
supersaturation in the system are marked in Figure 1 by arrows. Similarly, for
segregation processes in binary solutions, the deviation of the concentration
from the value at the binodal curve determines the degree of supersaturation
of the system.

For the description of phase formation in solids, the difference of the
chemical potentials, Au, per mole or particle in both considered phases is
a more convenient measure of the supersaturation [2]. The thermodynami-
cally stable phase corresponds — according to the general evolution criteria of
classical thermodynamics — to the minimum Gibbs free energy G. The differ-
ence between the values of G in both phases can be considered, therefore, as
the driving force of the transformation, A, or as the supersaturation (general-
izations for multi-component systems can be formulated in all mentioned cases
under certain conditions straightforwardly [2, 4]).

3. Basic Concepts of the Theory of Nucleation
and Cluster Growth

3.1. The Origin of Metastability: Critical Clusters

According to the thermodynamic evolution criteria, any spontaneous pro-
cess in a thermodynamic system is accompanied by a monotonic increase
(e.g., entropy at constant energy, volume and particle numbers in the system)
or decrease (e.g., the Gibbs and Helmholtz free energies at the appropriate
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boundary conditions) of the characteristic thermodynamic functions. Thus, the
questions arise: why, in the course of variation of pressure or temperature,
the evolution to the new phase does not start immediately after the system has
entered the range of parameters where the new phase corresponds to lower
values of the respective thermodynamic potential, and why are the respective
states stable with respect to small and unstable with respect to sufficiently large
fluctuations (i.e., why so-called metastable states exist)?

As explained in detail for the first time by Gibbs, the origin for the existence
of metastable states consists in the necessity of formation of a phase boundary
in the course of evolution of a critically-sized aggregate, an embryo of the new
phase, in the initially homogeneous ambient phase. A surface or interfacial
tension, o, may be assigned to the interfacial region with the surface area A,
too. The change of the thermodynamic potential (at constant external pressure
and temperature; this is the Gibbs free energy), due to the formation of an
aggregate of the newly evolving phase, may be expressed approximately as
[2, 4] in Eq. (5). We assume here that the cluster is incompressible with
some given density ¢, and, at least, approximately of spherical shape with a
radius R.

AG = —ny,Au+cA &)

Here, n, is the number of particles in the cluster of the newly evolving phase.

The dependence AG = AG(R) is illustrated at the left side of Figure 3.
For clusters with a radius R < R, the thermodynamic evolution criteria lead
to the conclusion that the respective aggregates will dissolve as a rule, again.
In contrast, clusters with a size R > R, will grow, in general, spontaneously
up to macroscopic dimensions.
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Figure 3. Left: Change of the thermodynamic potential AG (or the work of cluster formation,
W) in the course of formation of a cluster of the newly evolving phase. The variable state
parameters of the cluster (its size) are specified here by the radius, R (the respective dependence
is given in dimensionless terms W (R/R;) vs R/R.). Right: Qualitative shape of the Gibbs free
energy surface if several parameters (here ¢ and g;) are required for the specification of the
state of the clusters of the newly evolving phase.
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The critical cluster size, R, corresponds here to a maximum of AG. R, and
AG, = AG(R = R,) may be determined approximately [2, 4] via the relations
in Egs. (6a) and (6b).

R 20 (62)
c = a
ca AL
AG. = W. = l6r o3 (6b)
T3 (cpAp)?

In general, one parameter of state is not sufficient in order to describe the
properties of the aggregates of the newly evolving phase and, in particular,
the properties of the critical clusters. In addition to the size, the density of
the clusters may change and, for multi-component systems, their composition.
In addition, for application to crystal formation, structure parameters have to
be introduced into the description. In more general cases, the critical cluster
does not correspond to a maximum but to a saddle point of the free energy
surface. The maximum is reached with respect to variations of the size, while
with respect to a change of the state parameters of the cluster phase, the critical
cluster refers to a minimum of G. This situation is illustrated on the right hand
side of Figure 3.

The change of the thermodynamic potential, due to the formation of a
cluster of critical size, is also denoted commonly as work of critical clus-
ter formation, W,; it equals the minimum work on the system needed in a
reversible process to generate the same change of the state. The work of W,
represents the barrier for the transition of the system into the new phase.
For this reason, the work of critical cluster formation is required to tend to
zero for initial metastable states in the immediate vicinity of the spinodal
curve.

The values of the work of critical cluster formation may be reduced con-
siderably if heterogeneous centers of nucleation are present in the system.
Commonly, the work of critical cluster formation in the presence of heteroge-
neous nucleation cores, W), can be expressed via the respective value for
homogeneous nucleation, W™ multiplied by a factor ¢ < 1:

W;het) — Wc(hom)(P, @ < 1 (7)

The value of ¢ is determined by specific properties of the heterogenous nucle-
ation cores considered [2].

Similar effects may occur if sufficiently large structures of the ambient
phase are present which may catalyze the process of nucleation in the same
way as heterogeneous foreign particles. As possible examples, one could note
holes in a polymeric network (which could favor, eventually, bubble formation)
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or specific short-range order structures in glass-forming melts allowing eas-
ier crystallization. In contrast to heterogeneous nucleation cores, such centers
(which are also denoted as active homogeneous nucleation sites) cannot be
eliminated totally. However, the path of transfer of the system into the consid-
ered initial state can have a significant effect on their activity.

On the other hand, not all foreign particles and internal structures are active
with respect to nucleation. Much more work remains to be done in the future
until a satisfactory understanding of these effects will be reached.

3.2. The Steady-State Nucleation Rate

In accordance with the above given considerations, the formation of critical
and supercritical clusters is a fluctuative process. The rate of formation of such
clusters is determined as a rule by the lowest value of the barrier a cluster has
to surpass in its evolution to the new phase (or in other words, by the work of
critical cluster formation). This statement is reflected in the expression for the
steady-state nucleation rate, J, given generally by Eq. (8).

AG,
J=Joexp<—k T> (8)
B

J is the number of critical clusters formed per unit time in a unit volume of
the ambient phase [2, 4], kp is the Boltzmann constant and T is the absolute
temperature. In accordance with Eq. (8), thermodynamic aspects of the phase
transformation are described mainly by the work of AG.. Specific features of
the kinetics of the process are incorporated into the description via the pre-
exponential factor, Jj.

For one-component systems, we may write, for example [2, 4]:

Jo= cw™ (nC)F(Z) )

Here, c is the number of possible centers of the nucleation process. For homo-
geneous nucleation, it equals the number of particles in the considered one-
component system. ') is a thermodynamic correction factor (the Zeldovich
factor). The type of kinetics of aggregation and dissolution is specified by the
parameter w™*) (n.). It is the number of particles of the new phase which are
incorporated in unit time into a cluster of critical size.

For processes of condensation of gases, boiling in liquids or segregation
processes in solutions, this parameter depends often only weakly on the values
of the thermodynamic state variables (such as pressure and temperature). In
these cases, the dependence of the steady-state nucleation rate as a func-
tion of the supersaturation is determined basically by the exponential term
in Eq. (8).
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For small supersaturations, the nucleation rate is practically equal to zero.
Only after a certain critical value of the supersaturation is reached may inten-
sive nucleation processes be observed in the system. With a further even
moderate increase of the supersaturation, the nucleation rate increases dra-
matically by many orders of magnitude. As one consequence, the possibil-
ity of existence of metastable states is re-established. It follows further that
such systems cannot be transferred, as a rule, into unstable homogeneous
initial states (where spinodal decomposition determines the transformation)
along the paths shown in Figure 1 by horizontal arrows. Here, spinodal
decomposition may be of relevance only if the system is transferred into
unstable states by passing the vicinity of the critical point (e.g., the path
described by a vertical arrow in Figure 1). Consequently, for systems of such
type, phase formation processes will proceed as a rule via nucleation and
growth.

Figure 4 (left hand side) illustrates also the significant dependence of the
work of critical cluster formation and, consequently, of the steady-state nucle-
ation rate on the value of the surface or interfacial tension. If the value of the
surface tension is increased, intensive nucleation occurs at higher supersatura-
tions only.
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Figure 4. Dependence of the nucleation rate on supersaturation for different typical situations.
Left: For segregation processes in solutions (taken here for example), the dependence of the
nucleation rate on supersaturation (here determined via changes in the molar fraction of the
second component as compared with the respective value at the binodal curve) is determined
basically by changes in the work of critical cluster formation. After a certain value of the
supersaturation is reached, its further moderate increase results then in a dramatic monotonic
increase of the nucleation rate. The curves are shown for two different values of o (o (full
curve) and 0.5¢0 (dashed curve)). Right: Typical dependence of the nucleation rate as a function
of supersaturation in crystallization processes (shown here for a lithium disilicate glass [6]).
The increase of the supersaturation (connected here with the decrease of temperature) and the
resulting decrease of the work of critical cluster formation are compensated partly or totally by
the drastic decrease of the kinetic coefficients (or an increase of viscosity) with a decrease of
temperature.
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For the description of phase transformations in solids or, for example, in
glass-forming melts, the aggregation coefficients w*) (n.) may be expressed
either via characteristic jump or oscillation times around (temporary) equilib-
rium positions, 7, via diffusion- or self-diffusion coefficients, D, or applying the
so-called Stokes-Einstein relation (see, e.g., [2]), via the Newtonian viscosity,
n [2] as in Eq. (10).

w® (n,) % (10a)
w™P () x D (10b)
w® (n,) 717 (10c)

In this case, the dependence of the nucleation process on temperature is
governed by two equivalent importance factors acting against each other: the
increase of the thermodynamic driving force of the transformation (due to the
decrease of temperature) is compensated partly or totally by the decrease in
the values of the kinetic coefficients governing the rates of the aggregation
processes. As a result, a non-monotonous dependence of the nucleation rate
on temperature is found with a maximum located, in general, at temperatures
near the temperature of vitrification, 7,. With a further decrease of temperature,
the kinetic processes become widely frozen-in and the undercooled liquid is
transformed into a glass (see Figure 4, right).

Different aspects of the dynamics of molecular motions in liquids have
been discussed with a renewed interest during the last decade. In this connec-
tion, concepts like heterogeneous dynamics of the molecular motion, limits of
validity of the Stokes-Einstein equation, decoupling of diffusion and relaxation
etc. have been advanced. New insights for the understanding of the specific
features of the molecular motion in liquids should be forthcoming, with new
consequences in application to the theoretical understanding of nucleation. As
shown recently, decoupling of diffusion and relaxation in the vicinity and below
the temperature of vitrification results in changes of the kinetic prefactor and
other parts in the expression describing the steady-state nucleation rate. More
importantly, the expression for the work of critical cluster formation has to
be modified as well, taking into account the evolution of elastic stresses in
crystallization [6].

A general theory of nucleation in viscoelastic materials, where both stress
evolution and stress relaxation are considered, has been developed recently. Its
application to particular systems is being carried out presently. It is believed
that the incorporation of elastic stresses into the theoretical description of
phase formation in glass-forming melts will resolve a number of puzzles
in the interpretation of experimental results on nucleation which have not
found a satisfactory explanation so far. Such stresses are expected to have
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an important impact at different stages in the evolution of molecular gels
as well.

Similar equations to those discussed here for phase formation in one-
component systems may be derived for nucleation processes in multi-
component systems if the new phase has a given stoichiometric composition
independent of cluster size [4]. In this case, both the number of centers of aggre-
gation and the aggregation coefficients become functions of the thermodynamic
and kinetic parameters of all components, both in the ambient and the newly
evolving phases. However, in general, the state of the clusters depends on their
sizes and additional analyses have to be performed in order to determine the
dependence.

3.3. Methods of Determination of the Work of Critical
Cluster Formation

Accurate knowledge of the work of critical cluster formation and its depen-
dence on the state parameters of the homogeneous initial state are very impor-
tant for the correct determination of the steady-state nucleation rate. For this
reason, we summarize briefly the basic different methods for determination of
this quantity.

3.3.1. Gibbs’ classical method

In the framework of Gibbs’ method of description of heterogeneous systems,
the real inhomogeneous system is replaced by an idealized model system. This
idealized model system consists of two homogeneous phases that are divided
by a mathematical dividing surface. All extensive thermodynamic properties
of the real system are written, then, as the sum of the contributions of the two
homogeneous phases supplemented by a correction term. The correction terms
can be interpreted formally as properties of the mathematical dividing surface.
However this approach can lead to difficulties since correction terms to the
mole or particle numbers of the different components may be negative, for
example.

Here we outline briefly Gibbs’ approach for the case in which a cluster
of the newly evolving phase is formed in the initially homogeneous ambient
phase. The parameters of the ambient phase will be specified in general, by the
subscript (8), the parameters of the cluster phase by («), and the correction
terms by (o). Generally, for the description of a particular two-phase system,
we are interested in:

® = b, + Dy + D, (1n)
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In the framework of Gibbs’ method, the answers to two questions must be
addressed at this point: (a) How is the position of the dividing surface defined?
(b) Which properties should be assigned to the both homogeneous bulk phases
in Gibbs’ model system?

One of the possible definitions of the dividing surface consists for one-
component systems in the choice of the equimolecular dividing surface, R..
This dividing surface is defined in Eq. (12).

n=ny+ng+n, where n, =0 (12)

Generalizations for multi-component systems are possible (e.g., n;, = 0, where
the subscript i one specifies of the components).

In most applications (in particular, those employing the theory for the deter-

mination of the work of critical cluster formation), an alternative definition is
preferred. The so-called surface of tension, R = Ry, is chosen as the dividing
surface. Its location is defined theoretically in Gibbs’ theory via the expression
for the pressure equilibrium:
20 199 where [92] =0 fork = 13
Do pﬁ_R+[dR]Were[dR}_ or R = R (13)
The surface of tension refers to [do/dR] = 0. The derivative [do/dR] is
denoted commonly as a notional derivative that describes the variation of the
surface tension with a change of the position of the dividing surface while the
physical state of the system is unchanged.

Note that the surface of tension according to its definition cannot be deter-
mined directly via computer simulations or in experimental investigations. Its
location can be calculated via Gibbs’ theory if other characteristics of the critical
clusters are known.

In Gibbs’ theory, parameters such as the size of clusters and surface tension
depend significantly (in particular, for high supersaturations) on the choice of
the dividing surface. Only for planar interfaces do the respective quantities
coincide widely. In subsequent analyses, the surface of tension will be used as
the dividing surface.

The second problem in the application of Gibbs’ theory to nucleation pro-
cesses consists in the choice of the reference states for the description of the
bulk properties of the cluster phase. Note that Gibbs restricts his analysis to
equilibrium states, and in particular, to the analysis of phase coexistence of dif-
ferent types at thermodynamic equilibrium. Critical clusters obey the necessary
thermodynamic equilibrium conditions and can be treated by Gibbs’ method.
However, even equations suchas AG = —n, + o A (cf. Eq. (5)) represent non-
trivial generalizations of Gibbs’ method. They may be derived under certain
(somewhat drastic) simplifying assumptions [4] which restrict considerably the
field of possible applications. We will return to this point later.
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In line with Gibbs’ original method, the properties of the reference states for
the description of the bulk contributions of the cluster phase to the thermody-
namic functions are determined via a subset of Gibbs’ equilibrium conditions,
which can be written as shown in Eq. (14).

/L(/a(Ta,pa,{xl/a}) = ,LLjﬂ(Tﬂ,p/g,{x./ﬁ}), wherej = 1,2,...,k, and
T, = Ty
4
(Tg, pp. {xjp}) = (Tw, Pas {Xja}) (14)

Equation (14) determines uniquely the state parameters of the cluster phase, if
the state parameters of the ambient phase and the dependencies of the chemi-
cal potentials of both phases on the state parameters ({1t jo (T, po, {Xia})} and
{1 jg(Tg, pg, {xig})}) are known. Note that the determination of these reference
states is performed in Gibbs’ theory independent of the choice of the dividing
surface.

Moreover, the choice of the reference states for the bulk contributions of
the cluster phase is performed without reference to the actual state of the clus-
ter (which is not known in most cases). The reference states for the cluster
phase as determined via Gibbs’ original method resemble widely the macro-
scopic properties of the newly evolving phases (with modifications due to
the Young-Laplace equation Eq. (13); i.e., the difference in the mechanical
equilibrium conditions for phase coexistence at planar and curved interfaces).
This approach is applicable, in principle, for any arbitrary values of the ther-
modynamic parameters of the ambient phase, including the region near the
spinodal curve. However, one must be very careful in correlating Gibbs’ results
for the cluster properties with the properties of the actual evolving critically
sized clusters.

Provided the surface of tension is utilized as the dividing surface, Eq. (13)
allows determination of the ratio o/ R. Then, oy, must be known in order to
determine R, or vice versa.

Alternatively, one may calculate also the work of critical cluster formation.
In the framework of Gibbs’ method, one obtains without any further approx-
imations Eq. (15) for the work of cluster formation for clusters of spherical
sizes [4].

1

W, = AG, = gaAc (15a)

A, = 4 R? (15b)
20

R. = ——— (15¢)
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In this case, the new phase can be considered as incompressible, the substitution
Po — Pp = Ap may be performed, and we obtain approximately and as a
particular special case Eq. (6) [2, 4] that is employed widely in the analysis of
phase formation in solids.

Similar to previous considerations, we can conclude: if o is known, it is
possible to calculate W,, or if W, is known as a function of the supersaturation,
we can determine o and R as a function of supersaturation as well. Without
having at ones disposal such additional knowledge, one cannot calculate via
Gibbs’ method the parameters of the critical clusters. The same situation is
found in thermodynamic computations.

In the framework of the classical theory of nucleation, this problem is solved
by assuming that the surface tension of clusters of critical sizes is equal to
the respective values for the equilibrium coexistence of both phase at planar
interfaces: 0 = o (capillarity approximation). This approach has advantages,
such as: (i) it is relatively simple in its application (i.e., cluster properties may be
determined from knowledge of the properties of the respective macrophases);
(ii) it is correct for small supersaturations (large sizes of the critical clusters).
The disadvantage is that the results are as a rule quantitatively incorrect, and
for large supersaturations, even qualitatively wrong; they lead, for example, to
finite values of the work of critical cluster formation near the spinodal curve
(e.g., Figure 5).

A detailed analysis shows that the origin of these problems is connected
basically to Gibbs’ choice of the reference states for the critical clusters. For high
supersaturations, the bulk properties of the critical clusters differ considerably

100 | 10000
4
‘ \
B 1000 T
i | Ej
g 1 =~ \
e -
= g wor N\
& \ @
el
— ! < 1w+
x"““‘——-_._____‘ |
1 f t ! 1 : :
0,08 0,13 0,18 023 0,08 0,13 0,18 023
X X

Figure 5. Dependence of the radius of the critical clusters Récmss) (referred to the sur-
face of tension) and work of critical cluster formation, AGEClaSS) /kpT (both as deter-
mined via Gibbs’ classical approach) on the initial supersaturation (expressed by the
molar fraction of the solute, x, of a binary regular solution). In the determination of this
quantity, the capillarity approximation is employed. The temperature is chosen equal to
T =0.7T,.
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(as far as they may be determined uniquely at all) from the properties of the
newly evolving macrophases. Gibbs’ method of determination of the reference
states is, especially in this range of supersaturations, not adequate to describe
the real situation.

This problem is, however, not fatal for Gibbs’ theory. In the analysis with the
determination of the steady-state nucleation rate, one may always correct the
model by assuming a suitable form of a curvature dependence of the surface
tension. Indeed, for any arbitrary dependence of the work of critical cluster
formation, one can always find a dependence of o on the state parameters of
the ambient phase which fulfils Eq. (16).

167 o3

3 (pa — Pp)?

W.=AG, = (16)

Once the state parameters of the ambient phase, including pg, are known, p,
can be determined uniquely via the equilibrium conditions using Eq. (14). Then,
one can determine the critical cluster (referred to the surface of tension) and the
dependence o0 = o (R). In such an interpretation, the surface tension o loses
its original physical meaning but becomes a fitting parameter compensating
the inappropriate choice of the reference state for the bulk contributions of the
cluster phase.

In even more general terms and independent of the shape and the properties
of the real critical cluster, one can always construct a spherical Gibbs’ model
cluster resulting in the same values of the work of critical cluster formation as
found for the real one provided the work of critical cluster formation is known
in dependence on supersaturation. However, the real critical cluster and the
Gibbs model cluster will differ, of course, in their detailed characteristics and
usually by a large amount.

3.3.2. Density-functional approaches: van der Waals, Cahn & Hilliard,
Skripov, Baidakov, Oxtoby, . ..

The qualitative and quantitative defects of the classical theory, employ-
ing the additional assumptions described, may be overcome by employing an
approach developed for the first time by van der Waals at the end of the 19th
century and about sixty years later by Cahn and Hilliard, applied to phase for-
mation in regular solutions. According to this approach, the volume density
of the Gibbs’ free energy g of a binary solution has to be considered in the
simplest case as a function not only of pressure, temperature and concentration
of one of the components, ¢, but also of the spatial variation of the density or
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concentration. These dependencies can be expressed in the simplest case via a
dependence of g on the gradient Vc:

g(p.T,c)=g(p,T,c,Ve) a7

By a Taylor expansion of g with respect to the gradient terms, one obtains
Eq. (18) in a first approximation:

G=[g(p,T,c,Ve)dV = [ |g(p,T,c) + k(Ve)*|dV + --- (18)
V/gp c, Ve V/[gp c K c]

The problem consists now in the determination of those density or concentration
profiles c¢(r), which result in an extremum (saddle point) of the Gibbs free
energy. The properties of the critical clusters (and similar to the classical Gibbs’
approach, only of the critical clusters) can be determined via density functional
calculations utilizing basic results of the Gibbs’ theory as outlined above.

In order to perform the respective calculations, one has to have the following
information on the system of interest:

e Bulk properties of the systems under consideration, g(p, T, ¢). They can
be obtained from experiments or theoretical model studies (e.g., regular
solution model, van der Waals’ or improved equations of state, etc.);

e Values of the interfacial or surface tension for planar interfaces (exper-
iment or theoretical models) for the determination of the influence
coefficient «.

As the result of such calculations, Cahn and Hilliard came to the conclusion
for regular solutions that the work of critical cluster formation vanishes at the
spinodal and that the characteristic size of the critical clusters diverges there.
In more detail, one finds:

(i) The characteristic size of the critical clusters, expressed via the radius
of the equimolecular dividing surface, R,, and the value of the surface
tension, o,, referred to this particular dividing surface, behave in the
vicinity of the spinodal curve (¢ = ¢®) as:

R, o (¢ — c®) 7 (19a)

o o (¢ — )™V (19b)

(i) The work of critical cluster formation tends to zero in the vicinity of
the spinodal curve:

W (¢ — )32 (20)
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(i11) The surface tension o, and the radius R, of the surface of tension
behave near the spinodal curve as:

12 (21a)

(21b)

o5 o (¢ — c¥)

R, o (¢ — ¢@)'?
It follows as one consequence that notations like critical cluster size and surface
tension have a definite meaning only as far as the dividing surface is specified.

There are advantages and disadvantages of the van der Waals and Cahn-
Hilliard approach. The method allows the direct and, at least, qualitatively
correct determination of the work of critical cluster formation based on the
knowledge of macroscopic properties of the systems under consideration in
the whole range of metastable states, including in the vicinity of the spinodal
curve. Problems of this approach are, among others, the limits of validity of
the square gradient approximation in Eq. (18), in the effect of higher order
terms in the expansion, the method of determination of the coefficients «;; for
multi-component systems, the applicability to crystal nucleation, etc.

The van der Waals and Cahn-Hilliard approach may be formulated in an
alternative, microscopically-based form by introducing the interaction poten-
tials between the particles of the system. Following, for example, the approach
of Evans, Oxtoby and others, the Gibbs free energy may be expressed via a
contribution corresponding to a system of hard spheres (hs) supplemented by a
second term reflecting the contribution of attractive forces (i.e., their potentials
Vattr) on the thermodynamics of the system:

G = / dF gy () + / / A7 A7V (IF — FDe@e) (22)

Again, the density profile has to be determined corresponding to the extremum
or saddle point of the Gibbs free energy. The general qualitative result is (fol-
lowing Oxtoby): ... the surface free energy should depend on curvature and
the nucleation barrier should vanish at the spinodal. . . .

This and alternative density functional theories allow a qualitative analysis
of the properties of critical clusters to be performed. This is of importance,
in particular, for high supersaturations. It turns out that the properties of the
critical clusters deviate, in general, significantly from the properties of the
newly evolving macroscopic phases.

From a quantitative point of view, the results depend significantly on the
assumptions employed in the theoretical analysis (e.g., choice of the interaction
potentials, the radius of action of the forces etc.). As aresult, quantitatively cor-
rect calculations for real systems are outside the scope of current capabilities.
For this reason, an alternative approach outlined below, combining the simplic-
ity of the classical Gibbs’ approach with the advantages of density functional
calculations seems highly promising.
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3.3.3. A new approach: basic ideas and consequences

Our recently developed approach to the determination of the work of cluster
formation represents a modification or generalization of Gibbs’ theory ([4, 7, 8]
and the cited references). It has the following features:

e Its application is as simple and straight-forward as Gibbs’ classical
approach.

e Theresults are in agreement with the above mentioned approaches for the
determination of the work of critical cluster formation for small super-
saturations.

e For high supersaturations, where the classical Gibbs’ approach (involv-
ing the capillarity approximation) fails, the results are, at least, qualita-
tively as correct as those obtained via density functional computations.

e The method is applicable not only for the determination of the work
of critical cluster formation, but for the calculation of the change of
the thermodynamic potentials in cluster formation for clusters of any
size. Such quantities are required, for example, to model the evolution
of cluster size distributions during the whole course of the nucleation-
growth process [4, 7, 8].

The method is based on Gibbs’ original approach but differs in the choice
of the reference states for the specification of the bulk contributions of the clus-
ters. The state of the cluster phase was determined originally by an additional
postulate, denoted as the Generalized Ostwald’s Rule of Stages [4]. According
to this principle, the reference state of the cluster phase is selected as follows:
The intensive state parameters of the critical clusters will differ as a rule from
the respective parameters of the newly evolving macroscopic phase. Those
critical clusters will determine the process of nucleation, which correspond to
a minimum of the work of critical cluster formation as compared with all other
allowed states of the cluster.

For segregation in binary regular solutions, we arrive again at Eqs. (23)-
(25) for the determination of the critical cluster size and the work of critical
cluster formation [2, 4].

AGe _ o (%)

ksT 7 f2(x, %) (232)
R. = —sz (23b)
g(x,xy) = (x — x4)2 (24a)

Ap(p,T,x,xq) = —kpTf(x,xy) (24b)
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S, xy) = —(1 — xy) {ln <11__):’> +2 (?) (xi _ xz)}
e {m (?) +2 (;) [(1 —x)” = (1= x)2] } (25)

Here, ©2; and 2, are combinations of (constant) parameters of the system. For
the computations leading to Figures 5 and 7 they are both set equal to one.

For the specification of the value of the interfacial tension, an equation
derived by Becker (1938) from statistical model considerations is employed.
For the case of planar coexistence of two phases with the compositions x; and
x, at planar interfaces, Becker obtained Eq. (26).

O =0 (;) g(x1,x2)  where g(x1,x) = (x; — x2)° (26)
c
According to above given relations, both the surface tension and the ther-
modynamic driving force of the process of phase formation depend on the
composition of the ambient phase x, as well as on the composition of the newly
evolving cluster phase, x,. According to the classical approach to nucleation,
one has to assume:

e The critical cluster has bulk properties widely equivalent to the respective
properties of the newly evolving macrophase (i.e., x, = x\reh) ) as a
result of Gibbs’ equilibrium conditions;

e The surface tension equals the respective value for the equilibrium coex-

istence of both phases at a planar interface (capillarity approximation).

The classical results of the computation dependence of the work of critical
cluster formation and the radius of the cluster (referred to as the surface of
tension) on x (in the range between the values of x from the right hand side
binodal curve to the right hand side spinodal x,ﬂif;gal <x = x&ilﬁgdal) are shown
in Figure 5, employing the additional assumption that 2; = 2, = 1. The work
of critical cluster formation and the radius of the critical cluster, referred to the
surface of tension, decrease monotonously with increasing supersaturation;
they remain, however, finite at the spinodal curve.

As mentioned, the work of critical cluster formation should tend to
zero near the spinodal curve. Consequently, the result from the classical
approach to nucleation is qualitatively incorrect (as are, for example, anal-
yses by other approaches of condensation and boiling in a van der Waals
fluid [4]).

For regular solutions, the state of the critical cluster is determined from its
composition, x,. The dependence of the value of x, on supersaturation can be
determined in the newly developed approach using the generalized Ostwald’s
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rule of stages by searching, for any given value of x, for the minimum of AG,
as a function of x,. The result is shown in Figure 6.

Having at our disposal the dependence x, = x,(x), we can calculate depen-
dence of the work of critical cluster formation and the size of the critical cluster
on supersaturation. (Figure 7). They are qualitatively and, even quantitatively
equivalent to the results of density functional computations.

The method is not restricted in its applicability to systems with one state
parameter. For segregation processes in multi-component systems, the work of
critical cluster formation is, in general, a function of (k — 1) independent molar
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Figure 6. Dependence of composition of the critical cluster, x4, on supersaturation in the
system, x, for segregation processes in binary regular solutions. For the determination of the
composition of the cluster, x4, the generalized Ostwald’s rule of stages is employed as formulated
in the text.
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Figure 7. Dependence of the work of critical cluster formation and cluster size on supersat-
uration calculated by utilizing the generalized Ostwald’s rule of stages for the specification of
the state of the critical clusters.
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fractions of the different components. The work of critical cluster formation
can be written then in the form:

3 .
07 (DT, X1as X205 -+ o s Xk— 1,05 X185 X285 -+ - » Xk—1,8)

2
(AP, T, Xias Xogs -+ o s Xk— 1,05 X185 X2 « - s Xk—1,8) ]

W, 27

The composition of the critical cluster is determined in this case via the set of
equations:

oW,

8xl-a

=0, i=12,....,k—1 (28)
{xg}

In addition to the consideration of segregation in solutions, the method of
determination of the work of critical cluster formation has been applied suc-
cessfully to analyses of condensation and boiling [4, 7]. First attempts to apply
the method to experimental results on crystallization show that the properties
of the crystallites of critical and near-critical sizes will differ, as a rule, sig-
nificantly from the macroscopic properties of the newly evolving phases. The
application of the method to such type of processes will be ongoing.

3.3.4. Discussion

A detailed comparison of the basic assumptions underlying the classical
Gibbs’ approach and the new modification is given in [4, 7, 8]. Here we stress
one very important point, again. Gibbs’ theory is restricted to the analysis of
equilibrium states, including two-phase and multi-phase equilibria. The respec-
tive equations are developed only for such states. For quasi-stationary variations
of the state of the respective two-phase systems, Gibbs’ adsorption equation,
for example, leads to the conclusion that the surface tension depends on the
state parameters of one of the coexisting phases only.

However, in general, in order to find the extremum of some function, one
must formulate it for any reasonable states of the system, including those
non-equilibrium states which may be treated by the respective theory. Only
afterwards, having the functional dependencies, is it possible to search for the
extrema or saddle points. This is the methodology followed in any of the density
functional approaches discussed earlier.

First, the work of critical cluster formation is calculated for clusters of
arbitrary sizes (under certain assumptions applying thermodynamic methods).
Also, how the surface tension should behave as a function of the state param-
eters of both phases is specified. As a next step, the extremum conditions are
applied. This thermodynamic approach is equivalent to the results obtained via
the generalized Ostwald’s rule of stages. For this reason, it is really a direct
consequence of the modification of Gibbs’ approach.
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Summarizing the analysis, the newly developed method represents a gen-
erally applicable tool to the interpretation of experimental results on phase
formation processes. It can supplement or even replace employed methods of
determination of the work of critical cluster formation. Moreover, since it is
not restricted to equilibrium states, it should allow study of the evolution of the
state of a cluster from its initial formation up to the macroscopic phase.

3.4. Nucleation and Simultaneous Growth: The
Kolmogorov-Avrami Equation

In addition to the determination of the number of aggregates of the newly
evolving phase, the time evolution of the total mass or volume fraction of
the newly evolving phase has been studied extensively as well. In order to
describe the evolution of the total amount of the newly evolving phase, one has
to combine the description of nucleation and subsequent growth of the already
formed supercritical clusters.

We assume the nucleation process proceeds with some given rate J ()
starting at some moment of time ¢ = 0. The number of supercritical clusters
formed in the time interval ¢/, ¢’ 4 dt’, is given then by Eq. (29).

dN(@) = J (@) dr (29)
The clusters, once formed, grow and give a contribution dV (¢,¢) at time .
dv,t) =v@, thdN@) (30)

to the total volume V (¢) of the newly evolving phase. v(z, t’) is the volume of a
cluster at time ¢t which was formed originally at time ¢’. It is assumed commonly
that this quantity is determined mainly by the time of growth, r — ¢’.

G g, the growth rate of the linear dimensions of the aggregates of the newly
evolving phase, and w,, a geometrical shape factor, determine v(z, t').

v(t, t) = w, {/GR(t” — t’)dt”} 31)

The parameter n specifies the number of independent directions of cluster
growth in space in Eq. (31).
Substituting the variable x = ¢t — ¢, we obtain Eq. (32).

’ n

v(t,t') = w, /GR(x)dx (32)
0
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and Eq. (33) follows.

n

V(t) =wn/J(t’)dt' /GR(t”)dt” (33)
0 0

For spherical clusters and three-dimensional phase formation and kinetic
limited growth:

dR

s =1y, where y; =constant and Gg(t) =y (34)
When growth is diffusion limited:

dR

Fre 2)% where y, = constant and Gg(t) = 2[\/1)/72 (35)

Assuming, in addition, constancy of the nucleation rate, we arrive at Eq. (36)
for kinetic limited growth and Eq. (37) for diffusion limited growth:

wn ¥l
V() =T J"" where Ty = 36
(1) 1 where 1 "+ (36)
2
V(t) = T2Jt" 2 where T, = () oy, (37
n—+2

From knowledge of the value of the exponent of the time variable ¢, one can
derive conclusions concerning the mechanism of nucleation and growth; for
more details, see [2].

The degree of overall crystallization or the degree of completion of the
transformation, «(¢), at time ¢ is defined as the ratio in Eq. (38), where V (¢) is
the volume crystallized at time ¢ and Vj is the initial volume of the melt.

V() 18

o, (1) = 7 (38)
The main difficulty in solving the problem of overall crystallization kinetics in
the finite volume of an undercooled melt is to account adequately for the pos-
sibility of contact of different crystallites and the resulting inhibition of growth
when two or more growing crystallites meet. Another point is the decrease of
the ratio of the volume in the course of the transformation where further nucle-
ation may take place. Such a depletion of the volume open to nucleation has to
be taken into account in the analysis of overall crystallization.

In the derivation of an equation for «(¢), as proposed by Avrami, it is
assumed that the change of the degree of crystallization with time depends on
the ratio of still non-crystallized volume in the form of Eq. (39).

da(t) = (1 — a()dV(z) (39)
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This equation may be integrated to give Eq. (40).
a(t) =1 —exp[-V(D)] (40)

The dependence of o on ¢ has the typical s-shaped course. As mentioned,
conclusions about the type of nucleation and growth kinetics involved in the
transformation can be obtained if the form of the dependence of « on ¢ is known.

3.5. Depletion Effects and the Overall Course of
First-Order Phase Transitions

A more detailed analysis of the course of nucleation-growth processes can
be obtained by formulating and solving numerically a set of kinetic equations
for the cluster size distribution function [2, 3]. This set of equations can be
transformed into a Fokker-Planck equation, the so-called Frenkel-Zeldovich
equation. The latter equation can be analyzed analytically to derive further
important conclusions concerning the overall course of first-order phase tran-
sitions and basic characteristics of this process.

In fact, steady-state conditions are established in the system only after a
certain time-interval has passed. This time-interval is denoted as the time-lag in
nucleation. Thereafter, steady-state nucleation and simultaneous growth of the
clusters is followed for some characteristic nucleation time. Due to nucleation
and growth of the already formed supercritical clusters, the concentration of
single particles is decreased and the nucleation rate is decreased significantly
as well.

As the consequence, the stage of nucleation and growth is followed by a
stage of independent growth of the supercritical clusters, their number being
nearly constant. In the course of this process of independent growth, the super-
saturation is decreased to values near zero. Once this state is reached, a further
growth of the largest clusters is possible only if smaller clusters are dissolved.
This late stage of the transformation is usually denoted as coarsening or Ostwald
ripening.

A detailed analysis of the first stages of the nucleation-growth process,
including an analytical derivation of their basic characteristics, is givenin [3, 4].
An illustration is presented in the left-hand side of Figure 8. In the first stages
of the process, monotonically decreasing distributions are continuously trans-
formed in the further evolution into a bimodal distribution. Arrows indicate the
actual value of the critical cluster size. On the right hand side, the behavior in
the late stages of the process (in the course of Ostwald ripening) is shown. In
this late state of the evolution, the critical cluster radius behaves for diffusion-
limited growth as R? o t’, and a time-independent shape of the distribution
function ¢ (u) develops as predicted first by Lifshitz and Slezov.



154 J.W.P. Schmelzer

0 05 1 15 2 25

u=R/R,

Figure 8. Left: Different stages in the evolution of the cluster size distribution, f(n,t), if the
condition of conservation of the total number of monomers is taken into account. Right: Cluster
size distribution function ¢(u,t’) in reduced variables u = (R/R.) for different moments of
time (with (u,t’) = W F(R,t)R., where N is the total number of clusters of the new phase

at time ).

4. Spinodal Decomposition

Spinodal decomposition is another important mechanism by which first-
order phase transformations may proceed. In contrast to nucleation, it is char-
acterized by a continuous diffusional amplification of initially small variations
of density or concentration in the system (up-hill diffusion).

Actheoretical description of this process was developed first by Hillert, Cahn
and Hilliard based on the van der Waals theory of interfacial effects [3]. The
theory was extended by Filipovich and Cook among others, to include the
influence of stochastic fluctuations into the theory and by Langer, Bar-on and
Miller to account for non-linear terms in spinodal decomposition.

Following van der Waals, Cahn and Hilliard, the free enthalpy G of a binary
inhomogeneous solution can be written in a first approximation in the form of
Eq. (18). If the deviations from the initial homogeneous concentration ¢ are
relatively small, a Taylor expansion of Eq. (18) results in Eq. (41), an expression
for the change of the free enthalpy caused by the evolution of the concentration
field c(#, 1).

1 (3% 2 )
AG = / - | — (c=co)+x(Ve) | dV (41)
2\ ac?
C(),T

In agreement with the thermodynamic stability conditions, a spontaneous
growth of the density fluctuations takes place only for g”(c,, T) < 0, since
only in this case may the amplification of the density profile be accompanied
by a decrease of the free enthalpy of the system. This mechanism of decompo-
sition works for initial states inside the spinodal curves.

In the framework of the Cahn-Hilliard-Cook theory, the kinetics of the
decomposition process is described by a generalized diffusion equation
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connecting the variations in the thermodynamic potential G with the kinetics
of the decomposition process. It follows from Eqgs. (42) and (43) and has the
form of Eq. (44).

a - - - -

a—j +divj=0 where j = jp + ja 42)

- 6G

jp=—-MV— (43a)
éc

ja=—VAGF1) (43b)

dc(r, 1)

= Mg"(co, T)V*c(F,t) — 2MkVic(F,t) + VZAF, 1) (44)

at

Here fD s the vector describing the deterministic density of fluxes of par-
ticles, and j, represents the flow connected with the fluctuating scalar field
A(F, 1) superimposed on the deterministic flow. M is a mobility coefficient.

To solve this equation, the ¢(7, 1) and A(r, t) fields are expressed through
Fourier expansions in Egs. (45)—(48).

c(Fot) = co+ Y S(kn, 1) exp(ik,7)dF (45)
- 1 - P o o

Sky,t) = V/[c(r,t) — colexp(—ik,r)dr (46)
A, 1) = Y By, 1) exp(ik,7)d7 (47)
. 1 .

Blky.1) = + / A, 1) exp(—ik,7)dF (48)

V is the volume of the system.
Equations (42)—(48) result in the following differential equation for the
spectral function S(k,, t):

3S(k, 1)
3t

— R(k,1)S(k,t) — kK2B(k, 1) (49)
The amplification factor R(lz ,1) is determined by:
Rk, t) = —MK2 8" (co, T) + 2ick> (50)

The subscript 7 in l:n is omitted here and subsequently for simplicity of the
notations.
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Based on Eq. (50) and in analogy to the critical cluster size in nucleation
(cf. Eq. (6)), a critical wave number k. may be introduced. It is defined by the
condition that the deterministic amplification rate R (k., t) is equal to zero. This
condition yields:

s 1 ~
k= —58' (. T) (51)

Concentration waves in the Fourier spectrum with wave numbers k£ > k. decay
while the modes with k < k. grow. The value of the wave number corresponding
to the highest amplification rate is given by Eq. (52).

1
kmax = =
V2
Moreover, in experimental studies of phase transformation processes, a
quantity proportional to the average of the square of the spectral function (S?) =
(§8*), rather than the spectral function itself, is of relevance. Assuming that,

on average, the concentration fluctuations are equal to zero and uncorrelated
(Eq. (53)), one obtains Eqgs. (54) and (55).

ke (52)

(A(D)) =0 (53a)

(AE)AG)) = QRS — ) (53b)
2k - - - -

wgf’”) — 2R, )(S2(R. 1)) + K Q) (54)
o 2MksT 1 55

0 = =0 )

Finally, from Eq. (51) and by introducing dimensionless wave numbers k
and a dimensionless time scale 7 (Eq. (56)), Eq. (57) is obtained.

k = ak (56a)
- 4xM

P=—at (56b)
(S2k, D) = 122 ], e0r ~ | ksTad

e =k {[k iy } (S0 + (57)

The parameter a is a measure of the intermolecular distance in the solution.
Numerical solutions of Eq. (57) predict that after a relatively short initial
period, determined by the stochastic generation of the initial distribution (left
part in Figure 9), the typical features of the Cahn-Hilliard scenario of spinodal
decomposition (i.e., constant values of the critical wave number and the wave
number of highest amplification rates) are found (central part of Figure 9).
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However, in real systems and also in Monte-Carlo simulations of spinodal
decomposition, the situation is different. Both the critical wave number as well
as the wave number of highest amplification rate are shifted in the course of
time to lower values of k. Such effects may be accounted for by the introduction
of non-linear terms in the respective kinetic equation. In our simulations, such
linearities are accounted for already by the linear Cahn-Hilliard-Cook equation,
since the system is supposed to be in an adiabatic enclosure. Temperature
changes during the course of the decomposition process lead, then, to depletion
effects and to results similar to those in nucleation-growth processes.

Indeed, taking into account such non-linearities, the whole course of the
transition may be divided into several different stages (see Figure 10). In the first
stages of generation of the density fluctuations by fluctations and the subsequent
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Figure 9. Time evolution of the spectral function: Left: Initial stage of stochastic generation
of the density fluctuations (¢’ =30, 60, 90, 120, 150, 180, 210, 240, 270); Middle: Cahn-Hillard
deterministic amplification of the density fluctations (' =300, 600, 900, 1200, 1500); Right: Late
stages, where non-linear effects become of importance (¢’ = 3000, 4000, 5000, 7000, 9000).
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Cahn-Hilliard stage of evolution, the critical wave number remains nearly con-
stant. Non-linearities due to temperature changes lead then to a stage of evo-
lution where the critical wave number increases rapidly followed by a stage of
slow evolution characterized by self-similarity and scaling laws. Indeed, sim-
ilar to the stage of Ostwald ripening in nucleation-growth processes, we may
express then the spectral function in the form of Eq. (58).

k o0
(S2(K, 1)) = f(t)g <k> with /g(u)du =1 (58)

As evident from Figure 10 and verified analytically [3], k. oc #'/4 holds and
g(u) becomes independent of time in the late stage.

5. Secondary Aggregation, Coarsening and Ageing

In the kinetic description of nucleation processes, it is commonly assumed
that clusters of the new phase grow and decay by emission or incorporation of
atoms or molecules, only. This assumption represents, in a variety of cases, a
quite reasonable approximation. It allows frequently a description not only of
nucleation, but also of the stages of independent growth and coarsening.

However, in the more general case, one has to take into account other
mechanisms of cluster growth as well. One of them consists of the aggregation
of clusters of different sizes or the decay of clusters into smaller sized clusters.
A kinetic equation for the description of coagulation processes was formulated
for the first time by Smoluchowski. In the simplest case, for one-component
closed systems, it reads:

dN(n,t) &
BT D e (N K, 1) = wy k(N (n,1)] (39
k=1

N (n,t) is the number of clusters consisting of n particles, wy ,(¢) is the
frequency of transition of a cluster of size k into a cluster of size .

The kinetics of the aggregation process is thus fully determined by the
values of the kinetic coefficients. Many articles are devoted to analyses of the
kinetics of coagulation in diverse systems. In the case where emission and
aggregation of only single particles is allowed, the equations above give a
kinetic description of nucleation and growth processes.

Eq. (59) includes an assumption that for any value of #, the clusters trans-
form to an equilibrium shape in time scales that are small compared with
the characteristic aggregation times. However, once one is dealing with the
description of processes of gelation, this assumption is invalid.

The variety of structures which may evolve once this assumption is removed
has been indicated in the last decades by a large number of computer simulations
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(e.g., [9]). One of the widely employed models is the Witten-Sander model. It
assumes reactions exclusively between a cluster and single monomers. How-
ever, in contrast to the assumptions in the above theory, the further reorgani-
zation of the resulting cluster is widely or partially hindered by the strength of
the bonds. An example of the variety of different types of structures that may
be obtained is shown in Figure 11.

A second model approach incorporates cluster-cluster collision and the
resulting aggregation processes. Here, again, depending on the conditions of
aggregation, quite different structures may evolve. One such example is shown
in Figure 11.

Once formed, such clusters may form complete networks leading to gela-
tion. However, even at such a stage, they may rearrange their local configu-
rations further. These processes result in changes of the properties of the gels
denoted as ageing. In addition, the gel structure may serve as amore or less rigid
matrix affecting the processes of aggregation of a possible second component
of the system. In this case, aggregation, growth and coarsening in porous media

g

Figure 11. Top: Witten-Sander cluster (on lattice) with (leff) and without (right) noise reduction.
Bottom: Results of cluster-cluster aggregation with different numbers of blocked bonds [10].
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with some given pore size distribution must be considered. A theory of such
processes has been developed in the last decade. An overview of the results is
given in [3].

6. Overview

An overview of different approaches which can be employed in the analysis
of cluster formation and growth processes has been presented. Hopefully, it
will find use for the analysis of the very complicated and different problem
encountered in the analysis of processes of molecular gels [11].
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1. Introduction

This chapter describes a theoretical model developed to rationalize the rhe-
ology of a large class of soft materials. The members of this class, which include
foams, dense emulsions, pastes slurries, among others, display intriguing fea-
tures in their low frequency shear rheology. In oscillatory shear, for example,
their viscoelastic storage and loss moduli, G'(w) and G”(w), are often weak
power laws of shear frequency [1-7], while their nonlinear stress response o to
shear strain of constant rate y is often fit to the form ¢ = A + By" (known as
the Herschel-Bulkley equation, or when A = 0, the power-law fluid) [8-10].
The fact that such a broad family of soft materials exhibits similar rheologi-
cal anomalies is suggestive of a common cause, and it has been argued that
these anomalies are symptomatic of the generic presence in such materials
of slow, glassy dynamics [11, 12]. Indeed, all the above materials share fea-
tures of structural disorder and metastability: large energy barriers impede
reorganization into states of lower free energy because this would require rear-
rangement of local structural units, such as the droplets in a dense emulsion
(see Chapter 7). The term “soft glassy materials” (SGMs) has therefore been
proposed to describe such materials [11, 12]. A prime manifestation of glassy
dynamics is rheological ageing, where the elastic modulus increases as time
goes by, while the loss modulus decreases. Effects of this type can be rather
complicated, with the rate of ageing depending on stress [13]. Rheological
ageing effects have seen intense experimental interest recently [13—18], stim-
ulated (we may hope) at least in part by the theoretical developments that will
be reviewed below.

We will focus in this chapter on the “soft glassy rheology” (SGR) model
which has been developed over the last few years to describe the rheology
of soft glasses [11, 12, 19, 20]. As will be clear from the above introduction,
this model was designed for what can be termed repulsive glasses, in which
metastability arises because the particles (or droplets, etc.) that make up the
material are too compressed to easily move past each other and rearrange.
Gels, on the other hand, can be thought of as attractive glasses, where particles
form tenuous networks but are held together by bonds that are sufficiently
strong to again hinder rearrangements [21]. This aspect is not captured by the
SGR model. The model also does not incorporate structural changes during
ageing. This is appropriate for repulsive glasses: in a compressed assembly of
colloidal particles, only very weak changes in the overall structure are expected
while the material ages by local rearrangements which bring particles into
energetically more favourable positions. For gels, on the other hand, structural
changes during ageing are surely important, with characteristic lengthscales of
network structures growing in time. A final deficiency of the SGM model is that
it assumes local elastic properties to be essentially homogeneous, whereas in
gels strong inhomogeneities must be expected.
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In spite of these shortcomings, the present chapter will describe the SGM
model “as is”, without modifications that could be contemplated to make
it more appropriate for gels. It is hoped that the approach presented, which
attempts to capture complex rheological phenomena using minimal models,
will nevertheless prove useful. One key advantage of the SGR model is its sim-
plicity, which allows for a full study of a broad range of non-trivial rheological
effects including ageing. Confronting the resulting predictions with experiment
for verification or falsification should help to stimulate the development of
more sophisticated models, both for the “traditional” soft glasses and for gels.

We begin in Section 2 by briefly introducing rheology and ageing. Then
in Section 3 we review the SGR model and its recent generalization to a ten-
sorial description of stress and strain, and review its rheological predictions
under non-ageing conditions. Section 4 begins with a discussion of the origin
of the SGR model’s glass transition and the nature of the glass phase, and
then describes the predicted rheological ageing phenomena for conditions of
controlled strain. The corresponding results for imposed stress are given in
Section 5. We close in Section 6 by summarizing and discussing our results;
a brief comparison with related rheological models that have recently been
developed is also provided.

2. Rheology

Here we review the basic definitions of rheology. Unlike most in the
literature, our formulation [19] does not assume time translational invariance
(TTI). The formalism allows in principle an arbitrary dependence of the mate-
rial properties on time; we defer to Section 2.8 a discussion of what form this
dependence might take in materials which exhibit ageing effects, rather than
other, more trivial time dependencies.

2.1. Constitutive Properties

In general, deformation can comprise volume changes, extensional strain,
and shear strain; here we consider incompressible materials and assume that
only shear strains arise. A system’s shear stress o () then depends functionally
on its strain rate history y (¢’ < t), where y is the strain rate. Conversely, y (¢)
can be expressed as a functional of the preceding stress history. A specification
of either type is referred to as a constitutive equation. In general, of course, the
constitutive equation is a relationship between stress and strain tensors; see, for
example, Doi and Edwards [22] for an introduction. We mainly ignore the
tensorial aspects here, because the original SGR model is too simple to include
them. A recent tensorial generalization [20] will be described in Section 3.
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2.2. Step Strain

A standard rheological test consists of suddenly straining a previously unde-
formed material by an amount y,. Suppose this to be done at time ¢,: then
y(t) = »0O(t — ty), where O is the usual step function. For the moment, ¢,
is an arbitrary time label, but later we will take it as the time that the strain is
applied, relative to the preparation of the sample in some prescribed state, at
time zero. The subsequent stress can be written as Eq. (1), thereby defining the
step strain response, G (t — ty, tw; Y0)-

o(t) = yG(t — ty, tw; Vo) (1

2.3. Linearity

In the small deformation limit (yy — 0), a regime may exist for which o is
linearly related to yy:
lim G(7 — tw, tw; Yo) = G(t — tw, tw) (2)
)/()—)0
In this linear regime, by decomposing the applied strain y (¢) into a series of
infinitesimal steps, one finds that:

o) = /t Gt —1t,t)y@)dr 3)

Eq. (3) represents the most general (non-tensorial) linearized constitutive
equation. Note that there is no unique extension of this to the nonlinear case: the
response to an arbitrary flow cannot in general be written solely in terms of
G(t — ty, tw; Vo), although this is assumed for certain constitutive models [23].

If the material exhibits TTI, then G(t — ty,tw; o) can be written as
G(t — tw; Yo) — it depends only on the elapsed time since the step strain was
imposed. Only by assuming both linearity and TTI do we obtain:

o(t):/_ G(t —t)y()dr 4)

where G(t — t,) is the linear step-strain response as usually defined. In the
steady state (constant y) one recovers:

o=y /O G"ydr" )

The integral, whenever it exists, defines the material’s zero-shear viscosity
n. For many soft materials, however, G (¢) decays to zero so slowly that the
integral diverges. In this case, there can be no regime of linear response in
steady shear flow, although there may be a linear regime in, say, oscillatory
shear.
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2.4. Behaviour of the Linear Response Function

The principle of causality demands that the response function G (¢ — ¢, ty,)
is zero for times ¢ < t,,. Att = t, G typically increases very rapidly (in effect
discontinuously) to a value Gy, the instantaneous elastic modulus. Thereafter,
G(t — ty, ty) is (almost always) a decaying function of its first argument. Spe-
cializing to the TTI case, we recall that for a purely Newtonian liquid of viscos-
ity n, the function G (¢) approaches a delta function 1né(¢), whereas an ideally
Hookean elastic solid has G (¢) = Gy.

Mostreal materials display intermediate behaviour and are thus viscoelastic;
for the soft materials of interest here, the timescale of the viscoelasticity is
readily observable in rheological experiments. The simplest (TTI) example
is the Maxwell fluid (see Chapter 19), which is solid-like at short times and
liquid at longer ones, with a simple exponential response function G(¢) =
Goexp(—t/t) connecting the two (so that n = G(t). This behavior is seen in
a few experimental systems [24], but G (¢) is usually not an exponential.

2.5. Creep Compliance

Arguing along parallel lines to those developed above, we can write the stra
in response to a step stress o (t) = 0p®(t — ty) as:

)/(l) = UOJ(I — Iy, lw; OVO) (6)

The linear creep compliance J(t — t,,ty) is then found by letting oy — 0
(assuming this limit exists).

For a system exhibiting TTI, the linear compliance reduces to a function of
elapsed time, J (¢ — t). For a viscous liquid, an elastic solid, and a Maxwell
material we have J(t) =t/n, J(t) =1/Gy, and J(t) = 1/Gy + t/n, respec-
tively. The zero-shear viscosity 1 can then be defined as the limiting ratio of
stress to strain rate long after application of an infinitesimal step stress; it there-
fore obeys ! = lim,_, o, dJ(¢t)/d¢, which may be shown to be equivalent to
Eq. (§) whenever the required limit exists; see also Section 2.7 below.

2.6. Viscoelastic Spectra

A common experiment is to apply a steady oscillatory strain and measure the
resulting stress, or vice versa. For example, suppose that a sample is prepared
in a known state at time zero. The choice (Eq. (7)) describes an oscillatory flow
started at time #; after sample preparation, and continued up to (at least) the
time ¢ at which the stress is measured.

y (1) = Ot — t)Re |yoe @+ )
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For small enough y;, we can use the linear constitutive Eq. (3) to obtain:

4 . ’ .
o(t) = Re [yoia) / PTG — 1, 1) Al + ye' PTG (t — 1, 1)
Is

= Re [y0e G (@,1,1) ®)

where the second term in Eq. (8) accounts for any step strain arising at the
switch-on time #;. This procedure defines a time-varying viscoelastic spec-
trum as:

t . ’ .
G*(w,t,1) = iw / e DG — ¢ )dE + e UG — 1, 8)  (9)

Is

A similar compliance spectrum, J*(w, t, ¢;) can be defined by exchanging stress
and strain in this protocol.

Note that, in principle, to identify by experiment the real and imaginary
parts of G* for given w, t, t; one would require the experiment to be repeated
for two different phases ¢ (e.g., pure sine and cosine deformations). A more
common procedure for TTI systems is to maintain the oscillatory strain over
many cycles and record the “steady state” amplitude and phase response of
the stress. However, in systems without TTI this will only give a unique result
when material properties vary slowly enough; whenever it does, it will coincide
with Eq. (9).

Since it depends on two time arguments as well as frequency, G*(w, 1, t;) isa
cumbersome object. However, simplifications arise in the limit w (t — #;) > 1.
In the TTI case, where G*(w, 1, t;) depends only on the time interval r — £,
the further condition w (¢ — t;) > 1 can be used to eliminate simple transients.
The stress then settles to a simple harmonic function of time and we can write
o(t) = Re[G*(w)y (t)] where:

G*(w) = iw / ” e G (1) dr (10)
0

Traditionally one writes G*(w) = G’ (w) + iG"(w) where G" and G”, the stor-
age and loss moduli, give the in-phase (elastic) and out-of-phase (dissipative)
response to an applied strain.

Clearly one can reach an identical steady state by applying a small amplitude
oscillatory stress and measuring the resulting strain. This defines, for the TTI
case, acomplex compliance J*(w) viay (f) = Re[J*(w) o (¢)], which s just the
reciprocal of G*(w). But by an argument similar to that given above for Eq. (10)
one also has J*(w) = iw fooo ei! J (t)dt. Hence, within the linear response
regime of a system with TTI, knowledge of any one of G (¢), J (), G*(w), J*(w)
is enough to determine the other three.
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A similar set of simplifications are certainly not guaranteed in the absence
of TTI. However, the transient dependence on #; may become negligible
when w(t — £;) > 1. In this case we have Eq. (11).

G*(w,t,t) — G*(w,1) (11)

It gives a viscoelastic spectrum that depends only on the measurement time 7. If,
in addition, the time evolution of the underlying material properties is negligible
on the timescale of one oscillation, then G*(w, t) may obey the relation:

G*(w,1) = ia)/ e ' Gt t)dt (12)
0

Similar statements apply to the compliance spectrum J*(w,?,t;). Finally,
G*(w,t) and J*(w,t) may obey the usual reciprocal relation G*(w,t) =
1/J*(w,t). Indeed, we shall find that all the above simplifying relationships
are true for the SGR model (subject to an additional requirement that wt; > 1;
see below). As discussed by Fielding et al. [19], they may also hold more
generally for systems with “weak long term memory”, but there is no general
proof of this that we are aware of. The above simplifications cannot therefore
be assumed for all non-TTI systems, and should be verified for each system
studied. This prima facie breakdown of conventional linear viscoelastic
relationships in ageing systems was emphasized by Struik [25] though he
argued that they are recovered in sufficiently ‘short-time’ measurements. It
does not (as Struik seems to suggest) extend necessarily to breakdown of linear
superposition itself, which survives in the form of Eq. (3). In fact, breakdown
of TTI is a quite separate issue from nonlinearity; neither implies the other.

2.7. Steady State Response: The Flow Curve

Consider now the ultimate state of a material, with TTI, long after an
infinitesimal step stress of amplitude o has been applied. The ultimate deforma-
tion may involve a limiting strain y = oyJ (f — 00), in which case the steady
state elastic modulus is G, = 0y/y. Alternatively, it may involve a limiting
strain rate, in which case the zero-shear viscosity is n = 0¢/y . However, neither
outcome need occur. If, for example, one has “power law creep”, i.e., J (t) ~ ¢’
with 0 < y < 1, the material has both zero modulus (infinite compliance) and
infinite viscosity in steady state.

What if the stress amplitude is larger than infinitesimal? The ultimate steady
state can again be that of a solid, a liquid, or something in between. When a
liquid-like response is recovered, it is conventional to measure the “flow curve”,
or steady state relationship between stress and strain rate: ogs = o (). In many
materials, the limit in Eq. (13), called the yield stress, is non-zero.

o(y » 0)=oy (13)
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The experimental existence of a true yield stress, in this sense, is debatable
[10], though behaviour closely approaching it is often reported.

The presence of non-zero yield stress does not necessarily imply a finite
Hookean modulus G: for o < oy, the material could creep forever, but at an
ever decreasing rate. Alternatively, it could reach a steady strain y that is not
linear in o even as ¢ — 0. Nor does the absence of a finite yield stress imply
a finite viscosity; a counterexample is the power law fluid, for which o ~ y?.
This has oy = 0 but, for p < 1, infinite viscosity n = limy o0 (y)/y.

What is the flow curve for materials without TTI? For these, no meaningful
definition of “steady state response” exists in general. However, in the SGR
model considered below, TTI is restored for non-zero y [11, 12], and this may
be generic for certain types of ageing [11, 12, 26, 27]. If so, the flow curve,
including the value of the yield stress oy (but not the behavior for o < oy)
remains well-defined.

2.8. Ageing

Ageing has been intensively studied in the context of both spin glasses [26,
28-30] and structural glasses [31]. Some of the earliest experimental investi-
gations of ageing in fact involved rheological studies of glassy polymers [25].
Nevertheless, in much of the rheological literature ageing effects have tradition-
ally been regarded as unwanted obstacles to observing the “real” behavior of the
system, and not in themselves worthy of study. But this may be illusory: ageing,
when present, can form an integral part of a sample’s rheological response. For
example, the literature contains many reports of viscoelastic spectra in which
the loss modulus G”(w), while remaining less than the (almost constant) stor-
age modulus G’ (w) in a measured frequency window, appears to be increasing
as frequency is lowered (see Figure 1, bold lines). The usual explanation [32]
is that some unspecified relaxation process is occurring at a lower frequency
still, giving a loss peak (dashed), whose true nature could be elucidated if
only the frequency window was extended. This may often be the case, but an
alternative explanation, based on explicit calculations for the SGR model, is
shown by the thin solid lines in Figure 1, representing subsequent observations
in a wider frequency window. No oscillatory measurement can probe a fre-
quency far below the reciprocal of the sample’s age; yet in ageing materials, it
is typically the age itself which sets the relaxation time of whatever slow relax-
ations are present. Accordingly, the putative loss “peak” can never be observed
and is, in fact, a complete figment of the imagination. Instead, a rising curve
in G”(w) at low frequencies will always be seen, but with an amplitude that
decreases as the system gets older (typically ensuring that G” (w) never exceeds
G'(w)).
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Figure 1. Sketch of ageing scenario for dynamic moduli G’ (top) and G” (bottom). Thick
and thin solid lines: initial spectrum and two subsequent ones. Dashed: putative loss peak.
Dot-dashed: limit to frequency window set initially by sample age. (In fact, the solid lines are
calculated from the SGR model at noise temperature x = 0.7; see Section 4.) (Reprinted with
permission from [19]. Copyright (2000) The Society of Rheology.)

In the previous section, we set up a general framework for describing the
rheological properties of systems without TTI. Time translation invariance can
be broken, in a trivial sense, by the transients that any system exhibits during
equilibration. We now consider how such transients can be distinguished from
ageing proper, considering by way of example the linear step strain response
function G (¢t — t, tw). Ageing can then be defined [19] as the property that a
significant part of the stress relaxation takes place on timescales that grow with
the age t, of the system. If ageing is present, then in order to see the full stress
relaxation we need to allow the time ¢ at which we observe the stress to be much
larger than the time #,, at which the step strain has been applied. On the other
hand, if there is no ageing, then the full stress relaxation is “visible” on finite
timescales: as long as At =t — ¢, is large enough, we observe the full stress
relaxation whatever the age t,, of the system at the time when the strain was
applied. Mathematically, this means that the limits At — oo and #, — 00 can
be interchanged. We will refer to deviations from TTI in non-ageing systems
(for which all significant relaxation processes can essentially be observed on
finite timescales) as transients; see also the discussion, in the context of the
SGR model, in Section 4 below.

In the simplest case, there is only one growing timescale, t,,, proportional
to the age of the system itself. The (ageing part of the) stress relaxation then
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becomes a function of the scaled time difference (t — t)/t,. We will encounter
such simple ageing behaviour in the glass phase of the SGR model. More
complicated ageing scenarios are possible, however: There may be several
timescales that grow differently with the age of the system. This can be repre-
sented as:

G(t — tyot) = S Gilhi 0/ hi 6] = 3 Gi[&(1) — & (1)) (14)

The functions 4;(¢) define the different diverging timescales and & = Inh;,
g} (Inh) = G;(h).Ifthere is only a single term in the sum, with 4(¢) = ¢, then the
simplest ageing scenario is recovered. But Eq. (14) also includes TTI and inter-
mediate ageing scenarios: for £(¢) = t /1y, corresponding to A (t) = exp(t/1o)
(where 7y is a microscopic time), one has TTI. More generally, £(¢) =
(1 — )~ (t /7o) ~* interpolates between TTI for u = 0 and simple ageing for
@ — 1. In the regime of short time differences (t — #, < ty), one then finds
that the response function depends on §(¢) — &§(tw) = (t — tw)/ (tv’v‘ro1 ), thus
recovering Struik’s general ‘time waiting-time superposition principle’ [25].

3. The SGR Model

The phenomenological SGR model captures many of the observed
rheological properties of soft metastable materials, such as foams, emulsions,
slurries and pastes [1-7]. It is based upon Bouchaud’s trap model of glassy
dynamics, with the addition of strain degrees of freedom, and the replacement
of the thermodynamic temperature by an effective (noise) temperature. It incor-
porates only those characteristics deemed common to all soft glassy materials
(SGMs), namely structural disorder and metastability. We now review its essen-
tial features.

We conceptually divide a macroscopic sample of SGM into many meso-
scopic elements. By mesoscopic we mean large enough such that the continuum
variables of strain and stress still apply for deformations on the elemental scale,
and small enough that any macroscopic sample contains enough elements to
allow the computation of meaningful “averages over elements”. We then assign
to each element a local strain /, and corresponding stress k/, which describe
deformation away from some local position of unstressed equilibrium relative
to neighbouring elements. The macroscopic stress of the sample as a whole is
defined to be (k/), where () denotes averageing over elements.

For a newly prepared, undeformed sample, we make the simplest assump-
tion that / = O for each element. Physically, of course, (/) = 0 would be suffi-
cient and is indeed more plausible. The subsequent application of a macroscopic
strain at rate y causes each element to strain relative to its local equilibrium
state and acquire a non-zero /. For a given element, this continues up to some
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maximal strain /y, at which point that element yields, and rearranges into a
new configuration of local equilibrium with local strain / = 0. This ignores
possible “frustration” effects: an element may not be able to relax to a fully
unstrained equilibrium position due to interactions with neighbouring elements.
Such effects can be incorporated into the model, but are not expected to affect
the results in a qualitative way [12]. Under continued macroscopic straining,
the yielded element now strains relative to its new equilibrium, until it yields
again; its local strain (and stress) therefore exhibits a saw-tooth dependence
upon time.

The simplest assumption to make for the behaviour between yields is that
y = [: the material deformation is locally affine [22]. Yield events apart, there-
fore, the SGR model behaves as an elastic solid of spring constant k. Yields
confer a degree of liquidity by providing a mechanism of stress relaxation.

Although we have introduced yielding as a purely strain-induced
phenomenon, we in fact model it as an “activated” process [11, 12]. We assume
that an element of yield energy £ = %kl?, strained by an amount /, has a certain
probability for yielding in a unit time interval. We write this rate as 7 ~!, where
the characteristic yield time (Eq. (15)) is taken to be the product of an attempt
time and an activation factor which is thermal in form.

T = Tpexp KE — ;kﬂ) /x] (15)

This captures the strain-induced processes described above since any element
strained beyond its yield point will yield exponentially quickly; but it also
allows even totally unstrained elements to yield by a process of activation over
the energy barrier E. These activation events mimic, within our simplified
model, non-linear couplings to other elements. A more complete model would
treat these couplings explicitly. However, in the SGR model, which does not,
x is regarded as an effective “noise” temperature to model the process. Alter-
natively, we can think of x as the typical energy available for an activated
processes. We use units in which the Boltzmann constant kg = 1 throughout,
so there is no need to distinguish between these two interpretations of x as
either a temperature or an energy. Because the energy barriers are for typical
foams, emulsions, etc. large compared to the thermal energy kg7, so are the
energy changes caused by these nonlinear couplings, and so to mimic these,
one expects to need x of order the mean barrier height (E). Whether it is
fully consistent to have a noise temperature x > kg7 is a debatable feature
of the model [11, 12]. However, similar “macroscopic” effective temperatures,
which remain nonzero even for kg7 — 0, have been found in other theories
of out-of-equilibrium systems with slow dynamics [27, 33].

The disorder inherent to SGMs is captured by assuming that each ele-
ment of a macroscopic sample has a different yield energy: a freshly yielded
element is assigned a new yield energy selected at random from a “prior”
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distribution p(E). This suggests the following alternative view of the dynam-
ics: each material element of a SGM can be likened to a particle moving in a
landscape of quadratic potential wells or “traps” of depth E. The depths of dif-
ferent traps are uncorrelated with each other and distributed according to p (E).
The bottom of each trap corresponds to the unstrained state [ = 0; in straining
an element by an amount /, we then effectively drag its representative particle
a distance %kl 2 up the sides of the trap, and reduce the effective yield barrier
height (E — E — %klz). Once the particle has got sufficiently close to the top
of its trap (E — %kl2 ~ x), it can hop by activated dynamics to the bottom of
another one. This process corresponds to the yielding of the associated material
element.

A specific choice of p(E) is now made: p(E) = (1/xg) exp(—E/x,), where
x, = (E) is the mean height of a barrier chosen from the prior distribution p (E).
As shown by Bouchaud [34], the exponential distribution, combined with the
assumed thermal form for the activated hopping, is sufficient to give a glass
transition in the model. The transition is at x = x, and divides the glass phase
(x < xg),in which “weak ergodicity breaking” [34] occurs, from a more normal
phase (x > x,). Inthe glass phase, the Boltzmann distribution (which s the only
possible steady state for activated hopping dynamics, in the absence of strain),
Pey(E) < p(E)exp(E/x) is not normalizable: thus there is no steady state, and
the system must age with time. The converse applies for x > x,: there is then
a unique equilibrium state, which is approached at long times. Apart from our
use of an effective temperature x, the only modification to Bouchaud’s original
model of glasses lies in our introduction of dynamics within traps coupled to
strain.

It may appear suspicious that, to obtain a glass transition at all, an expo-
nential form of p(E) is required. In reality the glass transition is certainly a
collective phenomenon: the remarkable achievement of Bouchaud’s model is
to represent this transition within what is, essentially, a single-particle descrip-
tion. Thus, the chosen “activated” form for the particle hopping rates, and the
exponential form of the trap depth distribution, should not be seen as two inde-
pendent (and doubtful) physical assumptions, but viewed jointly as a tactic that
allows glassy dynamics to be modelled in the simplest possible way [11, 12].

From now on, without loss of generality, we choose units so that both
X, = k = 1. This means that the strain variable / is defined such that an element,
drawn at random from the prior distribution, will yield at strains of order one.
Since the actual value of the strain variable can be rescaled within the model (the
difference being absorbed in a shift of k), this is purely a matter of convention.
Our choice should nevertheless be borne in mind when interpreting the results:
where strains “of order unity” arise, these are in fact of order some yield strain
ly, which may in reality be a few percent or less. In addition we choose by
convention 7y = 1; the timescale in the SGR model is scaled by the mesoscopic
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“attempt time” for the activated dynamics. The low frequency limit, which is
the main regime of interest, is then defined by w1ty = @w <« 1. Note that, with
our choice of units, (E) = 1 so that we expect the interesting physics to involve
x>~ 1.

3.1. Constitutive Equation

The SGR model is exactly solved by two coupled constitutive equations
[12], the first of which expresses strain as an integral over stress history, while
the second embodies the conservation of probability. We assume that the sample
is prepared (in a known initial state of zero stress and strain) at time zero and
that a time dependent macroscopic strain y (¢) is applied thereafter, so y (1) = 0
for ¢ < 0. The constitutive equations are then:

o(t) = y()Go(Z(,0)) +/0 [y (@) —y ] Y ()G, (Z(t,1')dt’ (16)
1 = Go(Z(t,0)) +/0 Y("G,(Z(t,t"))dt 17)
In these equations,

Z(t, 1) = /t exp([y(z”) — y(tH)? /Zx)dt” (18)

while Y (¢') is the average yield rate at time ¢'. The functions G ,(Z) and G((Z)
obey:

G,(Z) = /000 p(E)exp (—Ze*E/X) dE (19)
Go(Z) = /0 ~ Po(E)exp (—Ze*E/X) dE (20)

Py(E) is the probability distribution for the yield energies (or trap depths) in
the initial state of preparation of the sample at time ¢ = 0.

These equations can be understood by viewing yielding as a “birth and
death” process: each time an element yields it dies and is reborn with zero
stress, and with a yield energy selected randomly from the prior distribution
o (E). The (average) yield rate rate at time ¢’ is Y (¢'); the birth rate at time ¢’
of elements of yield energy E is therefore Y (¢')p(E). The proportion of these
which survive without yielding until time ¢ is found as exp[—Z(t,t")/t(E)]
where 7(E) = exp(E/x) is the (mean) lifetime that an unstrained element of
yield energy E would have. The Eq. (18) for Z(z,t) reflects the fact that an
element that last yielded at time ¢" and has a yield energy E will have a yield rate

of T(E) 'exp ([y(t”) — y(t’)]2 /2x) at time ¢”. Here the exponential factor
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accounts for the lowering of the yield barrier by strain applied since the element
last yielded. Eq. (16) is then obtained by multiplying the contribution from each
element by the strain (and hence stress) y () — ¥ (¢') acquired since it was last
“born”, and integrating over ¢'. The additional first term arises from elements
that have never yielded since time 0. Eq. (17), which is an integral equation
for Y (), is obtained similarly from the conservation of the total number of
elements.

Under conditions where the local strain is everywhere negligible, one has
Z(t,t') -t — t'. More generally, Z(t,t') can be thought of as an effective
time interval measured on an “internal clock” within an element, which allows
for the effect of local strain on its yield rate, by speeding up the clock. This
speeding up effect, which describes strain-induced yielding, is the only source
of non-linearity within the (scalar) SGR model; additional non-linearities arise
in the tensorial version discussed next.

3.2. Tensorial SGR Model

Although we focus in the rest of this chapter on the scalar SGR model as
described above, it is worth outlining briefly how the model can be extended
to account fully for the tensorial nature of stress and strain [20]. It turns out
that the modifications required are in fact rather minimal. Instead of the shear
y (t), one now needs a tensorial quantity to describe the deformation history of
the material. This is furnished by E;,, the deformation tensor between times
t" and ¢: a small vector §r embedded in the material is transformed to E;;/-8r
during this time interval. E,, thus replaces y (£) — y (¢’). We can now assume as
before that the deformation of a local mesoscopic element follows the macro-
scopic deformation between yield events, and that elements are “reborn” in an
unstrained state after a yield event. The constitutive Eq. (16) is then replaced by
Eq. (21) while Eq. (17) remains as before except for the modified definition of
Z(t,t'), as shown in Eq. (22).

G(t)=Q(Ezo)Go(Z(t,0))+/O QENY ()G, (Z(t,1"))dt’ 21

Z(t,t") = /t exp[R(E;)/x]1dt” (22)

Here, o is the overall stress tensor, and Q and R are tensor and scalar functions
of E that can in principle be freely chosen. Q(E) gives the stress contributed by
an element that has been deformed by E, generalizing our earlier simple linear
relation between local strain / and local stress kl. R(E) is the corresponding
increase in internal energy of the element which lowers the yield barrier and
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generalizes the earlier k/?/2. All other quantities have the same meaning as for
the scalar model.

Suitable choices for Q and R are described in detail by Cates and
Sollich [20] with particular attention to the case of foams and emulsions. This
paper also discusses the predictions of the tensorial SGR model for a range of
rheological quantities and scenarios that cannot be addressed within the scalar
model, including normal stress differences and extensional flows.

3.3. Rheological Properties Without Ageing

We now return to the scalar SGR model and review briefly its predictions in
the non-ageing regime where TTI applies. Solution of the constitutive Egs. (16)
and (17) is then relatively straightforward [11, 12]. Only the linear spectra
and the flow curve are discussed below; predictions for more complicated
experiments such as large-amplitude oscillatory shear are detailed by Sollich
[12].

Aregime of linear rheological response arises whenever the effect of strain
on the effective time interval Z (¢, ¢') is small. This requires that the local strains
in each element remain small; in oscillatory shear, where y (t) = ype'®, this
is satisfied at low enough strain amplitudes y; for any finite frequency w. The
same is not true in steady shear flow; see below. The elements’ lifetimes are
then, to order y,, strain-independent, and in the constitutive equations Z(z, t')
can then be replaced by r — ¢'.

As described in Section 2.6 above, the conventional definition of the linear
viscoelastic spectra G'(w), G” (w) Eq. (10), requires not only linearity but also
TTI. Thus, they are well-defined only for an equilibrium state; in the SGR
model, the latter exists only for x > 1. But even at x > 1 these spectra show
interesting power law dependencies at low frequency; these are summarized
as follows (prefactors [11, 12] are omitted):

1
1

forl <x <2
forl <x <3

G'xw for2<x, xw'

G xw?* for3<x, o'~ (23)

Here and throughout, “low frequency” in the SGR model means w « 1, that
is, frequencies small compared to the mesoscopic attempt rate for activated
hopping t, ' = 1 (in our units).

The flow curve was defined in Section 2.7 as the nonlinear stress response
o(y) to a steady strain rate y. For the SGR model, it shows the following
scalings for y <« 1:

o Xy for x > 2
o oyl forl<x<?2 24)

1=
o—oyxy * forx <l
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These results exhibit two interesting features which are explored more fully in
Section 5.2. Firstly, for x < 1 there is a yield stress oy(x). A linear response
regime exists at o < oy; ageing can occur for all o < oy. For o > oy the
system achieves a steady state, and ageing no longer occurs. This is because
any finite flow rate, however small, causes strain-induced yielding of elements
even in the deepest traps; the time required to yield, with a steady flow present,
is only power law, rather than exponential in E. Thus the ageing process is
curtailed or “interrupted” by flow [11, 12, 19]; the flow curve is well-defined
even in the glass phase. The second interesting feature is that, for 1 <x < 2
(where ageing is absent) there is no linear response regime at all in steady shear:
however small the applied stress, the behaviour is dominated by strain-induced
yielding. There is an anomalous (power law) relation between stress and strain
rate, and an infinite zero-shear viscosity (cf., Section 2.7 above). This also
shows up in Eq. (23), where n = lim,,_,o G”(w)/w is likewise infinite. More
recently, it has been argued [35] that alternative methods of averageing the
contributions to the viscosity of the local elements can give a finite zero-shear
viscosity for 1 < x < 2. This then diverges strongly as x =1 is approached.

It is worth mentioning that the flow curves produced by the SGR model
are all shear-thinning, with o/y and do/dy both decreasing as y is increased.
The model can be modified, however, to account for shear-thickening effects.
This also leads to interesting rheological instabilities and even chaotic
behaviour [36, 37].

4. Rheological Ageing: Imposed Strain

Before giving the results for ageing under imposed strain, it is useful to
discuss some general features of ageing in the SGR model. These will provide
a basis for an intuitive understanding of the predicted behavior.

As noted above, to solve the constitutive Egs. (16) and (17) the initial distri-
bution Py(E) of yield energies at time zero must be specified. For simplicity, we
choose the case where Py(E) = p(E); this is equivalent to suddenly “quench-
ing” the noise temperature x, at time zero, from a very large value (x > 1) to
a value within the range of interest. The effects of other initial conditions are
discussed in detail in [19].

Following a quench, the system will age, and this will be reflected within
the SGR model in the evolution of the distribution of lifetimes (or equiva-
lently particle hopping rates). We ignore the presence of a strain, so that the
discussion applies when there is no flow, and in the linear response regime,
where strain-induced hops can be ignored. Under such conditions, the hop-
ping rate Y (¢) is a strain-independent function of time, and is readily found
from Eq. (17) by Laplace transform [19]: for x > 1, Y (#) — const. for t — oo,
while for x < 1, Y(¢) ~t*~!'. From this, the distribution of yield energies
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P(E,t)canbe deduced. By “birth-death” arguments similar to those above, itis
given by:

P(E,1) = Po(E)exp[—t/T(E)]
+ /0 Y(t")p(E)exp [—(t — t")/T(E)]d’ (25)

T(E) = exp(E /x) as before. Equivalently, one can consider the lifetime distri-
bution P (7, t). As pointed out above, in the absence of strain, the only candidate
for a steady state distribution of yield energies Peq(E) is the Boltzmann distribu-
tion: Peq(E) o p(E)exp(E/x), which translates to Peq (1) = Peg(E)dE /dT
t7*. In either language, the distribution is not normalizable for x < 1, lead-
ing to broken TTI in the model [34]: the probability distribution probability
distribution of trap lifetimes P(z,?,) evolves as a function of the waiting
time f,, elapsed since sample preparation. The initial lifetime distribution is
obtained from P(E,0) = p(E) as P(1,0) x p(E)dt/dE o t~U*+¥) . There-
after, by changing variable from E to t in Eq. (24), we find the following
approximate expressions for P(t, ty):

P(t,ty) >~ xY(ty)tp(r) for 7Kty and t, > 1

P(t,ty) >~ xY(ty)typ(r) for T>1t, and t,>1 (26)

For a quench “temperature” above the glass point (x > 1), P(t,t,) exhibits
a transient decay; as t,, — 00, P(t,1) — Peq(t) = (1 — x)T ™", as expected.
The nature of the approach to the long time limit is illustrated schematically in
Figure 2(a); the final distribution has most of its weight at 7 = O(1).Forx < 1,
in contrast, P(t,t,) evolves as in Figure 2(b). Since Y (ty) ~ té‘v_l — 0 at
long times, the limit of P(z,1,) is zero for any finite t as ¢, — oo. Thus,
the proportion of elements having yield time of order unity tends to zero as
tw — 00; the bulk of the distribution’s weight is at t >~ t,,. This is consistent
with the idea that, in a system undergoing ageing, the characteristic relaxation
time is typically of the order of the age of the system itself.

We are now ready to presented the predictions of the SGR model in the
ageing regime. Because the constitutive Egs. (16) and (17) are more readily
solved to find the stress response to an imposed strain, rather than vice-versa,
we discuss first strain-controlled experiments and defer the stress-controlled
case to Section 5.

4.1. Linear Response

As described in Section 3.3 above, when local strains are negligible, the
SGR model displays a linear response regime, with the effective time interval
Z(t,t") becoming the actual time interval  — ¢/, and the hopping rate Y (') a
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_ a) x=1.3 b) x=0.7

Figure 2. Schematic evolution of the relaxation time distribution (a) above the glass transition;
(b) below it. The first shows a transient decay onto a steady state, the second shows ageing
behaviour. The curves lie in order of increasing fy at the bottom of each figure. (Reprinted with
permission from [19]. Copyright (2000) The Society of Rheology.)

strain-independent function of time. The stress response to any strain history
then follows directly from Eq. (16).

For a step strain, the amplitude y; gives the maximum local strain experi-
enced by any element, making the condition for linearity yy < 1. The linearized
step strain response, defined in Eq. (2), can be found in the SGR model by
rewriting the constitutive Eq. (16) as:

t
G(t — ty,ty) =1 — / Y(NG,(t — 1) dr (27)
tw
Limiting analytic forms for G (¢ — #, #) can be obtained when experimental
timescales are large on the scale of the mesoscopic attempt time 7y = 1, so that
t —ty > 1 and t, > 1. We then identify two distinct regimes: a short time
interval regime t — f,, < t,, and long time interval regime t — f,, > t,, (Where
the measure of “short” and “long” is not now ty but ¢, itself). The limiting forms
in each case depend on the value of x. For x > 1, one has G ~ (t — t,)!™*
for short time intervals and G ~ ty (¢ — t,,)~" for long ones; here and in the
following we omit all numerical prefactors. In the glass phase (x < 1), on
the other hand, one has G ~ 1 — [(t — ty)/tw]'™ and G ~ [(t — ty)/tw]™,
respectively. These results can be motivated physically by recognizing that
G(t — tw,ty) just measures the fraction of elements that have not yielded
between t,, and ¢. To a good approximation, this is the fraction of elements that
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have a lifetime 7 > ¢ — f,, at time #, f,oftw P(z,ty)dr. Inserting the approx-
imate forms Eq. (26) for P one then indeed recovers the predicted scalings
of G.

Numerical results for G(t — ¢, tw) are shown in Figure 3. For x > 1, one
has no ageing and only transients, as displayed in the left panel: the curves
coincide at short time intervals ¢ — t,, < t,. At large ¢,,, this regime accounts
for more and more of the decay of G; the remaining #,-dependence is only
through an unimportant tail. For #, — oo, the “short time” regime extends
to all finite values of ¢t — t; one recovers the equilibrium response which
decays to zero on a ty-independent timescale. Equivalently, if we assume that
G(t — tw, ty) can be measured reliably only as long as it remains greater than
some specified value (a small fraction € of its initial value G (0, t,) = 1, for
example), then the results will become #,-independent for sufficiently large #.

For x < 1, on the other hand, one has ageing proper as illustrated in the
right panel of Figure 3: the major part of the decay of G occurs on a timescale
of order f,, itself, with unimportant corrections to this scaling at early times.
We note that in this regime, the SGR model shows the simplest kind of ageing,
with only a single ageing timescale that is directly proportional to ¢, and no

10° 10°
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G \ x=1.3
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107 - 10° L '
10' 10° 0’ 10’ 10% 10° . * 10° 10°

0 1 10 10

t-t, (-t )1,
Figure 3. Stress relaxation modulus G (¢t — tw, tw), for x = 1.3 against t — t (left) and for
x = 0.7 against the scaled time interval (# — fw)/fw (right). Shown are data for waiting times

tw = 102,103, ..., 100 (left to right in left panel, right to left in right panel). (Reprinted with
permission from [19]. Copyright (2000) The Society of Rheology.)
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separate TTI part of the stress relaxation which would take place for r — ¢,
of O(1).

Next we consider oscillatory strain, for which the stress response is deter-
mined by the spectrum Eq. (9). In principle, this quantity depends on f,, the
time when the oscillatory strain was started. However, when the experimental
timescales become large, one finds [19] that this dependence on £, is weak. In
fact, within the SGR model, the conditions needed to make G* negligibly depen-
dent on £, (for low frequencies, w < 1) are that w(t — ;) > 1 and wt; > 1.
The first signifies merely that many cycles of oscillatory strain are performed
before the stress is measured; the second ensures that transient contributions
from the initial sample preparation stage (the quench at + = 0) are negligible.
The fact that these criteria are sufficient even in the glass phase is far from
obvious physically, and requires a careful discussion [19]. Broadly speaking,
they are satisfied in any experiment that would reliably measure a conventional
G*(w) spectrum for systems with TTL

For the purposes of such experiments, we can therefore drop the #; argument
and define a time-dependent spectrum G*(w, t). For long times (¢ >> 1) this is
found to behave as [19]:

G*(w, 1) ~ (iw)*! forl <x <2

1 (28)
G*(w,t) =~ 1 — (iwt)* for x <1

These results are easily understood. By measuring G*(w,t) we are directly
probing the properties of the system at the time of measurement, . In the
ergodic phase (x > 1), G*(w, t) will reach a t-independent value within a
time of O(1/w) after the quench, as the relevant traps will then have attained
their equilibrium population. The relaxation time is then also of O(1) and the
response G*(w, t) is a function only of w. In contrast, below the glass point
the characteristic relaxation time at the epoch of measurement is of order ¢,
and the response is a function only of the product wt. Since, the losses in an
oscillatory measurement arise from traps with lifetimes less than about 1/w
(elements in deeper traps respond elastically), the overall response becomes
more elastic as the system ages into traps with 7 > 1/w.

Numerical results for the viscoelastic spectrum G*(w,t) are shown in
Figure 4. The spectra become increasingly flat as the glass point x =1 is
approached from above, with G" and G” being of comparable order of mag-
nitude; such flat spectra are seen experimentally in many materials; compare
the discussion in the introduction section of this chapter. In the glass phase,
the storage modulus at low frequencies evolves upwards, and the loss modulus
downwards as expected [11, 12]. If plotted against w rather than wt, the data
for x = 0.7 would resemble Figure 1. Each spectrum terminates at frequencies
of order wt ~~ 1. This is because one cannot measure a true oscillatory response
for periods beyond the age of the system. Therefore, the rise at low frequen-
cies in G”-spectra like Figure 1 represents the ultimate rheological behaviour.
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Figure4. Leftcolumn: viscoelastic spectra G’ (w) (solid lines) and G” (w) (dashed lines) versus
frequency, w (for x > 1) or scaled frequency wt (for x < 1). Right column: frequency-dependent
corrections to Hookean elasticity, 1 — G’ (solid lines), G” (dashed lines). Data are shown for
systems aged t = 107,108, ..., 101 At any fixed w the curves lie in order of age; data on
the oldest system is marked by the symbols. (Reprinted with permission from [19]. Copyright

(2000) The Society of Rheology.)
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(The middle rows of Figure 4 illustrate that at x = 1 itself, logarithmic correc-
tions cause G’ and G” to scale neither with w nor with wt.)

One can show [19] that the insensitivity of G*(w,t, ;) to f; in practical
measurements of the viscoelastic spectrum (where an oscillatory strain is main-
tained over many cycles) arises because the most recently executed strain cycles
dominate the stress response at time ¢. This “forgetfulness” of strain cycles in
the distant past also means that, in the SGR model, the Fourier relationship
Eq. (12) between oscillatory and step strain responses is recovered to a good
approximation.

We mention briefly, at this stage, that the SGR model has recently also
been used to analyse so-called “over-ageing” effects [16, 17]. These occur
experimentally if one applies a large-amplitude oscillatory strain to an ageing
system, for some finite duration, then lets the system evolve and eventually
measures is viscoelastic spectrum with a small oscillatory probe-strain. Naively,
one might suspect that the large-amplitude oscillatory strain would tend to
“reset” the ageing process, reducing the effective age . However, the situation is
more subtle: Viasnoff and Lequeux [16], Viasnoff et al. [17] the large-amplitude
strain leaves elements with large yield energies E unaffected. Elements with
moderate E are forced to yield, and will be reborn with small E (as directly after
a quench). The population of yield energies is thus depleted in an intermediate
range of E, and increased for small E. During the subsequent evolution and
continued ageing, the new population of small-E elements yields quickly and
acquires progressively larger E. The depletion of the intermediate E-values
then eventually becomes important, and the viscoelastic spectrum has a larger
contribution from deep traps. The overall effect is that the sample can behave as
if it the large oscillatory strain had made it older (hence the name over-ageing)
rather than younger.

Finally, consider a startup experiment in which a steady shear of rate y < 1
begins at time #,,. So long as we restrict attention to times short enough that the
total strain remains small (y (t — ty,) < 1) the system exhibits linear response;
the crossover to the nonlinear regime is discussed in Section 4.2. One finds
[19] for long times and in the linear response regime that o (¢t) ~ y (t — ty)
for x < 1 (which is purely elastic behavior), o (t) ~ y(t — ty)? ™ for 1 <
x < 2 (which is an anomalous power law), and o (x) ~ y for x > 2. Except
for prefactors, these scalings are independent of whether ¢ — ¢, < fy, or
> tw, so that linear startup experiments are not a useful probe of ageing
dynamics.

4.2. Nonlinear Response

We now turn to the non-linear behavior of the SGR model under imposed
strain. For step strain of amplitude y,, the effective time interval Z(z,t') is
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increased by a factor exp(y/2x) for times above t,, and this translates into
the simple relation:

G(t — ty, tw:70) = G ((t — ty)exp <y02/2x),tw) (29)

This result generalizes that of [12] for the non-ageing case (x > 1). It can
be understood as follows. Within the SGR model, instantaneous response to a
step strain at t,, is always elastic (thatis, G (0, t,, o) = 1); the fraction of stress
remaining at time ¢ > f,, is the fraction of elements which have survived from
tw to t without yielding (see above). The stress decay is therefore determined
entirely by the distribution of relaxation times in the system just after the strain is
applied at time t,,. The effect of a finite strain is solely to modify the distribution
of barrier heights, and hence to modify this distribution of relaxation times 7;
in fact (within the scalar model) nonlinear strain reduces the yield time of every
element by an identical factor of exp()/o2 /2x) [12].

In Section 4.1, we discussed the response to startup of steady shear (with
y < 1) at time t, assuming linear response. Now consider the effect of strain-
induced yield events, which cause nonlinearity. For x > 2 (where the SGR
model predicts Newtonian fluid behaviour for y <« 1), one can show that the
stress response remains linear at all times, including the steady state limit [19].
For x < 2, on the other hand, one finds [19] that the linear period ends at
t ~ y~! (within logarithmic terms, discussed below); at later times, the main
stress-bearing elements will, during their lifetimes, become strongly strained.
Indeed, at strain rate y, an element with yield energy E will be strained to the
top of its yield barrier in a time #, ~ E'/?/y ~ (Int)'/?/y. The tendency of
the distribution of local stresses to evolve toward deeper and deeper traps is
thereby interrupted: the lifetime of a deep trap is converted from 7 to a much
smaller value, of order (Int)!'/2/y [11, 12]. This truncation of the lifetime
distribution is enough to ensure that these distributions are never dominated
by the deep traps, and a steady state is recovered; accordingly, there are no
ageing effects at late enough times. Ageing is also absent during the initial
linear regime (Section 4.1), so any nontrivial effects must be confined to an
intermediate time regime. There, at the end of the linear regime, the stress can
be higher than the steady state value, leading to an overshoot in the startup
curve [12]. This overshoot region, unlike the two asymptotes, shows a sig-
nificant dependence on the system age f,,, as shown in Figure 5. The physics
of this is clear: the extent of the linear regime gets progressively larger as
is increased, because the system has aged into deeper traps (and because the
scalar SGR model assumes that within each trap the relation between stress
and strain is linear). Thus the strain at which strong yielding sets in increases
(roughly logarithmically) with #,; the height of the overshoot is accord-
ingly increased before dropping onto the same, #y-independent, steady-shear
plateau.
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Figure5. Stressresponse o, in shear startup, vs strain y at noise temperature x = 0.3 and strain
rate y = 0.001. Curves from bottom to top correspond to increasing ages tw = 102,103,...,10°
at time of startup. (Reprinted with permission from [19]. Copyright (2000) The Society of
Rheology.)

S. Rheological Ageing: Imposed Stress

We now review the SGR model’s predictions for various stress-controlled
rheological experiments; these are mostly obtained by numerical solution of
the constitutive equations [19].

5.1. Linear Response

In step stress, the SGR model predicts that there will be an instantaneously
elastic response. Elements then progressively yield and reset their local stresses
to zero; thus we must apply progressively more strain to maintain the macro-
scopic stress at a constant value. Potentially, therefore, individual elements can
acquire large local strains and linearity of the response need not be maintained
at late times. As for shear startup, it is therefore sensible to first assume that the
response is linear and then to consider a posteriori up to what time ¢ the linear
results remain valid.

In the linear regime the step stress response is described by the creep
compliance J(¢# — ty,ty), defined in Section 2.5. One finds that J scales
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as t —t,, for x > 2 and as (t — t,)*~! for 1 < x < 2. These results apply
both for t — t, < ty and ¢t — ty, > ty, though with different prefactors. The
non-Newtonian behavior for 1 < x < 2 reflects the low-shear rate power-law
behavior of the flow curve. In the glass phase (x < 1), finally, one finds
J ~In(t — t/ty) for t — t, > t,. This exhibits the expected ageing effects,
but being logarithmic these are rather weak; see Figure 6. Such behavior is intu-
itively reasonable: the strain response at time ¢ to step stress is not determined
purely by the relaxation spectrum at #,, (as was the case in step strain), but by the
dynamics of the system over the entire interval between #, and ¢. This decreases
the sensitivity to the time #,, at which the perturbation was switched on.

For oscillatory stress, one finds results very similar to those for the case of
oscillatory strain (Section 4.1). Although unsurprising, this does require explicit
confirmation in a system exhibiting rheological ageing; see Section 2.6. One
confirms numerically that the reciprocity relation J*(w,t) = 1/G*(w,t) is
obeyed to good accuracy, so that the linear responses to imposed oscillatory
strain and stress contain essentially the same information.
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Figure 6. Linear creep compliance J(f — ty, tw) against scaled time interval (r — ty)/tw for
noise temperature x = 0.7. Curves from bottom to top correspond to increasing times ty =
102,103, ..., 10° of stress onset. Note the approach to a limiting scaling form as #y becomes
very large compared with the microscopic time 7y = 1. (Reprinted with permission from [19].
Copyright (2000) The Society of Rheology.)
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5.2. Nonlinear Response

Within the SGR model, application of a step stress of size oy < 1 induces
a strain response y (t) which increases over time, but remains linear in oy for
at least as long as the linearized constitutive equations predict y (¢) < 1. This
is because y (¢) provides an upper bound on the local strain of each element.
Although sufficient to ensure linearity, this is not always necessary; one requires
only that the characteristic strain of those elements which dominate the stress is
small. For x > 2 (the Newtonian regime), the dominant elements have lifetimes
O (1) and so the response is linear to indefinite times so long as oy << 1 (ensuring
y(t) < 1 for all times t). But, whenever x < 2, the linear analysis sketched
above [19] indicates that the dominant elements have lifetimes of order t — ty,;
so a self-consistently linear response is maintained only provided that y (¢) (t —
tw) < 1, just as in startup of steady shear (see Section 4.2. For 1 < x < 2 this
condition translates into t — #,, < (1/09)"/®~Y [19]. Figure 7 indeed shows a
linear regime of the expected temporal extent, followed by a crossover into a
nonlinear steady-state flow regime, in which y () « 001 /=Dy The latter is in
agreement with the flow curve Eq. (24).
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Figure 7. Nonlinear creep compliance J (t — tw, tw, 0() as a function of time interval t — ty,
for a step stress of size o applied at time ty, = 100. The noise temperature is x = 1.3. Solid
lines, bottom to top: o9 = 1073, 1072'5, 1072, 1071'5, 10~L. Over the time intervals shown,
the curve for og = 1073 is indistinguishable from the linear compliance (not shown). Dotted
line: final flow behavior predicted from steady state flow curve for oy = 10715, (Reprinted
with permission from [19]. Copyright (2000) The Society of Rheology.)
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In the glass phase, x < 1, for which the flow curve shows a finite yield stress,
oy(x), the behavior is rather more complicated. As expected, the numerical
results for step stress of very small amplitude oy < oy show no crossover
to a steady flow regime at late times. Instead, the system continues to creep
logarithmically, according to the linear creep result for J (¢ — ty, t). When oy
is not small but less than the yield stress oy, the creep is still logarithmic to a good
approximation, but now with a nonlinear dependence of its amplitude on stress.
Very close to the yield stress, y (f) grows more quickly in time, but with a strain
rate y (¢) that still decreases to zero at long times. Finally, as expected from the
flow curve, only for stress amplitudes exceeding the yield stress o, does one see
an eventual crossover from logarithmic creep to steady flow at long times which
recovers numerically the flow-curve result, y (r) « (o9 — oy)/™9 (1 — 1).
Figure 8 illustrates these various behaviors. Comparison of the curves for the
two different waiting times for o9 /o, = 1.2 shows that before the crossover into
flow, the response scales with (¢t — t,,)/ty; once ergodicity has been restored
and the system flows, on the other hand, scaling with r — t,, is recovered.
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Figure 8. Nonlinear creep compliance J (¢t — tw, tw, 0() as a function of scaled time interval
(t — tw)/tw, for a step stress of size og applied at time t. The noise temperature is x = 0.3.
Solid curves, bottom to top: op/oy = 0.2,0.4,..., 1.2, all for t, = 100. The case op = oy is
shown in bold; the dotted curve is the linear response result (g — 0). The dot-dashed curve
shows the effect of decreasing the waiting time to tw = 50, for g/oy = 1.2. The dashed lines
are the predictions for final flow behavior (for the stress above yield) from the steady state flow
curve. (Reprinted with permission from [19]. Copyright (2000) The Society of Rheology.)
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6. Conclusions and Perspectives for the Future

In this chapter, we have reviewed the soft glassy rheology (SGR) model.
Taking into account only the shared features of disorder and metastability that
are present in many soft glasses, the model essentially adds strain degrees
to Bouchaud’s trap model. In the original formulation only shear strain and
stress are considered, but we have also outlined a recent generalization which
properly accounts for the tensorial nature of stress and strain. In either version,
the model can be solved to give an explicit constitutive equation.

One of the hallmarks of glassy systems is the occurrence of ageing, where
time-translation invariance is lost, and the SGR model indeed predicts such
ageing effects in the rheology of soft glasses. We outlined in Section 2 a general
formulation of the linear and nonlinear rheological response functions suited
to ageing materials, and also distinguished ageing from ordinary transients that
occur during equilibration. This conceptual framework is independent of the
SGR model and should be of wider relevance, not least to the analysis of gel
rheology.

The SGR model and its simple rheological properties were reviewed in
Section 3, while Sections 4 and 5 cover the more complicated rheological age-
ing effects. These occur mainly in the glass phase of the model (x < 1), where
the elastic elements that it describes evolve forever towards higher yield thresh-
olds (deeper traps), causing a progression toward more elastic and less lossy
behavior. Within this glass phase, there is a yield stress oy, and genuine ageing
arises for applied stresses less than this. For step strains and stresses, we showed
that the nature of the ageing is relatively simple: both the linear stress relaxation
function G (¢t — t,t) and the linear creep compliance J (¢ — ty, t,,) become
functions of the scaled time interval (¢ — t,,)/t, only. The time-dependent vis-
coelastic spectra G'(w, t) and G”(w, t) have the characteristic ageing behavior
shown in Figure 1: a loss modulus that rises as frequency is lowered, but falls
with age 7, in such a way that it always remains less than G'(w, ) (which is
almost constant by comparison). For x < 1 such spectra collapse to a single
curve (see Figure 4) if wt, rather than w, is used as the independent variable.

Significant ageing was also found for nonlinear rheological responses of the
SGR model. For example the nonlinear step-strain relaxation follows the same
ageing scenario as the linear one, except that all relaxation rates are speeded
up by a single strain-dependent factor Eq. (29). This form of nonlinearity is
a characteristic simplification of the SGR model, and extends to its tensorial
generalization [20]. Another interesting case was startup of steady shear; here
there is no significant ageing in either the initial (elastic) or the ultimate (steady
flow) regime; yet, as shown in Figure 5, the intermediate region shows an
overshoot that increases with sample age. Finally we found that the nonlinear
creep compliance (Figure 8) shows interesting dependence on both the stress
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level and the age of the sample. For small stresses one has logarithmic creep.
As the yield stress is approached this crosses over to a more rapid creep that
nonetheless has zero strain rate in the long time limit, and then finally to steady
flow above the yield stress.

There are, of course, many open issues with the model; these are discussed
in detail elsewhere [12]. One of these concerns the interpretation of the noise
temperature x and whether or not this should depend on flow history: we have
assumed throughout that it does not. Also, the rheological ageing predictions
of the model, though surprisingly rich as we have shown, do not include all
those found experimentally [13—15]. As a model for gel/ rheology, the SGR
model has further drawbacks. As explained in the introduction, it was designed
for (soft) repulsive glasses, whereas gels are more akin to attractive glasses. It
also neglects the possibility of significant structural change during ageing, and
assumes that the local elastic properties are homogeneous. Nonetheless, the
model certainly represents a useful step towards understanding the rheology
of soft glassy materials, in particular in regimes where their behavior is not
time-translation invariant [19].

We conclude by mentioning some recent approaches related to the SGR
model, which may provide inspiration for the development of improved models
in the future. Lequeux and co-workers proposed a model which is not dissimilar
from the SGR model but attempts to make explicit that the effective noise in the
system arises from yield events [38, 39]. Starting from the SGR picture, their
model can be obtained by the following modifications: (1) All elements have
the same yield energy E; (2) the yield rate, rather than being activated, is zero
for kI?/2 < E and a constant 1/, for larger |/|; (3) yield events are assumed to
lead to random changes and thus to an effective diffusion of the local strain /.
The self-consistent nature of the model comes in through the postulate that
the relevant diffusion constant D is proportional to the overall yielding rate,
D = aY. The constant o governs the behavior of the model: in the absence of
shear (y = 0), the system has nonzero Y and D only foro > o, = 1/2, while for
o < a,itis completely frozen. This occurrence of a glass-like phase is reflected
in the flow curve: for @ < «, there is a nonzero yield stress, while for o > «,
Newtonian behavior is predicted. Precisely at the transition, a power-law flow
curve o ~ y!/3 is predicted; this also governs the behavior for « close to .
and intermediate yp. It is arguable whether such a fixed power-law exponent
can be expected to reflect the behavior of a wide range of soft glasses. The
behavior under small oscillatory strain is also unusual: in the glass phase, the
stress response is always nonlinear, with G” exhibiting a peak at a frequency
scaling linearly with the strain amplitude 4. The linear response limit yy — 0
therefore gives purely elastic behavior.

We mention here that one could similarly make the effective temperature in
the SGR model self-consistent, for example by assuming that it is proportional
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to the overall yield rate, x = aY. The consequences of this remain to be fully
explored but appear to include interesting effects such as flow curves with
metastable and unstable branches.

To simplify their analysis yet further, Derec, Ajdari and Lequeux later sug-
gested a model with only two fundamental variables: the (shear) stress o and
a “mobility” D [40, 41]. The dynamic equation for ¢ is do/dt = —Do + ky
so that for D = 0 one gets purely elastic behavior; viscous effects require
D > 0. For the time evolution of D, the assumption is that dD/d¢ can, by
loose analogy with a Landau expansion, be expanded in powers of D for small
D. The coefficients are then taken to depend on stress ¢ and the imposed
shear rate . Depending on whether D evolves to zero in the quiescent state
(y =0) or not, one then again finds glass and liquid states. An interest-
ing result is that, for appropriate choices of the exponents in the Landau-
like expansion, the model predicts sub-ageing, where the typical relaxation
timescale grows not as f,, but as r% with u < 1. Some caveats apply, how-
ever: for example, some of the parameter settings considered by Derec et al.
[40, 41] give a well-defined response to oscillatory strain but produce diver-
gences for step strain. An even simpler one-parameter model involving only
the “degree of jamming” (essentially the inverse of D) has also recently been
proposed [42].

Finally, it is important to mention the so-called shear-transformation zone
(STZ) theory, developed by Falk and Langer [43] around the same time as
the SGR model. Inspired by numerical simulations, STZ theory postulates
that plastic deformations in a sheared amorphous material take place in local
elements that have bistable configurations. The defining equations of motion
then govern the evolution of the populations of the two kinds of configurations
as they are transformed into one another, created or destroyed. This model has
been very influential, and continues to be developed further [44—46].

It will be clear from the above brief survey that there are by now a number
of simple models designed to describe the rheology of soft glasses, with the
predictions of the SGR and STZ models having been explored in most detail.
Much further work needs to be done, in particular in making the models more
realistic without losing the important advantage of being able to extract pre-
dictions analytically rather than by simulation. There is even more scope in
modifying and extending models of this type to make them applicable to gels
in particular.
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1. Introduction

The rheological properties of viscoelastic gels formed by the entanglement
of wormlike micelles have been the subject of a large number of experimen-
tal and theoretical studies in recent years [1, 2]. Wormlike micelles are very
long and semi-flexible cylindrical micelles which act like “living polymers”
in aqueous media and self-assemble to form long-chain molecules even after
they are broken to pieces by a strong flow (see Chapter 19). They typically
have radii ~20-25 A and persistence lengths ~150 A while the average lengths
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can be several microns. Further, though the static and quasistatic properties
of these solutions are very similar to those of conventional polymeric sys-
tems, wormlike micelles, unlike covalently bonded polymers, can reversibly
break and rejoin, with profound consequences for stress relaxation and flow
behavior. In fact, it was found that while in steady shear, the rheological
properties of these systems are like those of entangled flexible polymers
[3], the application of large stresses and strains on wormlike micellar solu-
tions can result in a wealth of complex phenomena. It has been observed
that many dilute solutions of wormlike micelles exhibit a dramatic shear
thickening behavior when sheared above a certain threshold rate, often fol-
lowed by the onset of a flow instability [4-6]. Other experiments report
shear-banded flow in wormlike micellar solutions with formation of bands
or slip layers of different microstructures having very different rheological
properties [7-10]. Of particular interest are observations suggesting shear-
banding in transient organogels with organometallic monomolecular wires and
fibers [11].

Rheochaos or rheological chaos in surfactant solutions was first observed in
experimental investigations of the rheology of such a gel formed in the dilute
aqueous solutions of cetyltrimethylammonium tosylate, a surfactant (CTAT)
[12-15], which shows many intriguing features. In the non-linear regime,
the shear stress o shows a plateau as a function of the shear rate y above
a certain cutoff shear rate y.. Under controlled shear rate conditions in the
plateau regime, the shear stress and the first normal stress difference show
oscillatory and more complicated irregular time-dependence. The analysis
of the measured time series of shear stress and normal stress shows the
existence of a finite correlation dimension and a positive Lyapunov expo-
nent, unambiguously implying the presence of low-dimensional deterministic
chaos.

Subsequently, the presence of sustained rheological oscillations have been
reported in some other experiments on complex fluids in shear flow. Roux et al.
[16] have studied sustained oscillations of the viscosity of a complex fluid near
an out of equilibrium transition, namely the layering transition to the “onion”
state in a lyotropic lamellar system. The system under consideration is a close-
compact assembly of soft elastic spheres [16, 17]. The presence of oscillations
in the viscosity are due to structural changes in the fluid. It has been conjectured
that the oscillations in this particular system arise as a competition between an
ordering mechanism that is driven by stress and a slow textural evolution which
destroys the stress-induced ordered state.

Also noteworthy is the observation by Ramamohan et al. [18] of rheochaos
in numerical studies of sheared hard-sphere Stokesian suspensions, with
fluctuations that seem not to decrease significantly with increasing system
size.
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2. Deterministic Chaos in Viscoelastic Materials
in Shear Flow

2.1. Experiments

2.1.1.  Chaotic dynamics of sheared wormlike micelles — dilute aqueous
solutions of cetyltrimethylammonium tosylate (CTAT)

We summarize the experimental observations on the rheological behavior of
CTAT [12, 14]. The linear and non-linear rheology of dilute aqueous solutions
of this surfactant system at 25° C has been well studied [14]. Above concen-
trations of 0.04 wt. % and temperatures of 23° C [19], CTAT self-assembles to
form cylindrical wormlike micelles which become entangled at concentrations
>0.9 wt. %. The lengths of these wormlike micelles depend on the concen-
trations of the surfactant and the added salt, the temperature and the energy of
scission of the micelles. In these systems, stress relaxation occurs by reptation
on a time scale Ty (the curvilinear diffusion of a micelle through an imaginary
tube segment), as for conventional polymers, and by the reversible scission
(breakdown and recombination of micelles) with a time scale 7, [20]. The time
scales 7., and 7, may or may not be comparable and depend on the surfactant
concentration, presence of counterions in the solution and the temperature. The
frequency response of the system in the experiment of Bandyopadhyay e al.
[12] was measured using a rheometer with temperature control and software for
strain-rate control to measure the elastic and viscous responses of 1.35 wt. %
CTAT between the angular frequency range of 0.03 rad/sec and 10 rad/sec. The
rheometer used was equipped with four strain gauge transducers capable of
measuring the normal force with an accuracy of 10~* N. Linear response mea-
surements show that at the lowest frequencies CTAT behaves like a viscous
material, whereas in higher frequency runs, the behavior is found to be pre-
dominantly elastic. The crossover occurred at 0.3 rad/sec, which corresponds
to a relaxation time 7y of 3 secs. It has been shown by Cates et al. [21] that for
a system of wormlike micelles, like cetylpyridinium chloride-NaCl (CPyCl-
NaCl) (where 175, < Trep), G'(w) and G”(w) are given by the Maxwell model
(Egs. (1) and (2)) where T = (TpTrep) /2.

0)2‘172
G () = Go—E& 1
(w) ¥ ol (1)
WTR
G'(w) = Go——— 2
(w) T¥ 0l )

Some molecular gels (e.g., organic solutions of thin monomolecular
organometallic threads [22] which are sufficiently breakable) indeed exhibit
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a mechanical relaxation close to Maxwellian behavior. This is a rare example
of such behavior in apolar fluids and the rheological properties of this system
are strongly reminiscent of breakable giant entangled micelles.

However, for wormlike micelles of CTAT [12] at concentration 1.35 wt. %,
the fit to the Maxwell model is very poor [23]. Further, the Cole-Cole plot
deviates from the semi-circular behavior expected in Maxwellian systems and
shows an upturn at high frequencies. This deviation from Maxwellian behavior
is possibly due to the comparable values of 7., and 7, in this system, unlike
in other wormlike micellar systems where the differences in the time scales
lead to a “motional averaging” effect [21]. The behavior is also very different
from the Doi-Edwards model or the model proposed by Hess et al. [19]. The
nonlinear rheological studies of CTAT reveal yet another surprising feature. It
has been observed that the shear stress and the first normal stress difference
show chaotic oscillations in the plateau region of the flow curve [12].

Studies of the nonlinear rheology of CTAT involve measurement of the
flow curve of the system. The measurements done under conditions of con-
trolled stress showed that the flow curve saturates almost to a constant stress
value (cay?®, where « = 0.06 &= 0.004) above a critical shear rate y,, while the
first normal stress difference is found to increase linearly with shear rate [24].
The plateau of the shear stress at high shear rates in CPyCl-sodium salicylate
(CPyCl-NaSal) has been interpreted [24] as a characteristic feature of the flow
curves of complex fluids that gives rise to a dynamical instability of the nature
of shear banding [20]. Shear banding results in the formation of bands of high
and low viscosities in the sample, supporting low and high shear rates respec-
tively. However, the same phenomenon observed in cetyltrimethylammonium
bromide-NaSal (CTAB-NaSal) at a higher concentration has been explained
by Berret et al. [25] as due to the coexistence of stable thermodynamic phases,
namely isotropic and nematic, in the sheared sample. Studies on the stress
relaxation in the sample after subjecting it to a step strain rate show very novel
features [12]. At 25° C, on applying controlled shear rates whose values lie in
the plateau region of the flow curve, instead of decaying to a steady state, the
stress is found to oscillate in time. The relaxation of the stress as a function of
the shear rate and temperature is indicated in Figure 1. It is observed that for low
shear rates, y < 22 s~ !, relaxes monotonically to a steady state value in a few
seconds. At higher values of the shear rate, the stress oscillates in time, as shown
in Figure 1(a—e) for a few typical values of applied shear rates. Figure 1(f) shows
the oscillations in the normal stress measured along with the shear stress (curve
c) at y = 100s~'. As the temperature is increased, we observe a decrease in
the amplitude of oscillations in the stress relaxation, the oscillations finally
disappearing completely at a temperature of 35° C Figure 1(g). This may be
because of a decrease in the width of the stress plateau in the flow curve with
increasing temperatures [26]. A spectral analysis reveals that more and more
frequencies emerge as the value of the shear rate is increased. This might be
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Figure 1. Shear stress relaxation in CTAT 1.35% on subjecting the sample to step shear rates
of (a) 22.5s71, (b) 75571, (¢) 100s™!, (d) 138571, (e) 17557 at 25°C. Panel (f) shows
the time-dependent decay of the normal stress on application of y = 100s~1, also at 25°C.
Panel (g) shows the disappearance of the time-dependent oscillations at 35° C at y = 100 s~
(Reprinted with permission from [12]. Copyright (2000) The American Physical Society)

understood in light of realignment of macro-domains which form as a result
of shear banding. Stick-slip between these domains due to the application of
shear can result in the observed time-dependent behavior. A careful analysis of
these oscillations reveals signatures of low dimensional chaos [12].

Chaotic time-series data have often been observed in experiments on fluid
dynamics [27]. Liquid crystalline polymers show a wagging regime on the
application of suitable shear rates, where the director fluctuates periodically
between limiting values. Time resolved measurements of the linear conser-
vative dichroism in this regime [28] show irregular response at intermediate
shear rates which may have its origin in chaotic dynamics. Noronha et al.
[29] have reported the existence of chaotic dynamics in the jerky flow of some
metal alloys undergoing plastic deformation. These systems also exhibit non-
monotonic flow curves. As the name suggests the most obvious feature of a
chaotic data train is the lack of periodicity. Traditionally, therefore, a spectral
analysis is first done on a given data train to bring out hidden periodicities
that might explain the source of signal variability. Further, deterministic chaos
represents the apparently irregular behavior of dynamical systems that arises
from strictly deterministic laws in the absence of any external stochasticity.
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Thus, it is essential to look for signatures expected in a deterministic chaotic
system which would distinguish it from a stochastic one. Chaotic dynamics in
physical systems is characterized by an exponentially sensitive dependence on
initial conditions, as a result of which long-term predictability of the dynamics
of these systems is impossible. In other words, phase space trajectories that
have nearly identical initial states separate from each other at an exponentially
increasing rate. The Lyapunov exponent provides a quantitative measure of this
sensitivity. If we consider two neighboring points in phase space at the start
of the dynamics (i.e., r = 0) and if their separation along the ith direction is
[I16x; (0)]|, and ||6x;(¢)|| at times O and ¢, then the Lyapunov exponent is defined
by the average growth rate A of the initial distance:

1 Sx;(t
A= lim ,10g27” %
100 f l18x; (0) ]

3)
Chaotic time series may be characterized by certain invariants, metric and
dynamical, such as the various fractal dimensions, the largest Lyapunov expo-
nent and the sum of positive Lyapunov exponents. A chaotic time series is
characterized by a positive Lyapunov exponent, which is a direct consequence
of the sensitivity of its trajectories in phase space to small changes in the ini-
tial conditions and describes the divergence of neighboring trajectories [27].
A unique feature of strange attractors is their stretching and folding dynamics,
which in contrast to stochastic dynamics, prevents the orbits from filling the
entire local subspace and gives rise to a unique self-similar geometrical struc-
ture —a fractal. A common and efficient way to characterize the fractal geom-
etry or the boundedness of attractors is the so-called correlation dimension v
[30, 31].

We now describe the analysis of the time-dependent data for shear stress o
and normal stress difference Z to establish the presence of chaotic dynamics in
the sheared CTAT solution. The time series analysis was performed by using
the method of state space construction by embedding time delay vectors [32].
In doing so, it is crucial to determine the optimal embedding dimension m,,
because at m < m,, one is not looking at the real dynamics, but at its projec-
tion. The optimum value of embedding dimension for the experimental time
series described here was found to be 5. The calculated value of the correlation
dimension v of the attractors corresponding to the dynamics of stress relax-
ation is found to be >2 above a shear rate of 75s~! (e.g., it is 2.8 at a shear
rate of 100s~'; Figure 2(a)). Figure 2(b) shows the correlation dimensions v
as a function of the shear rate. v is found to increase monotonically with the
control parameter (shear rate), similar to that observed in the weakly turbulent
Couette-Taylor flow exhibited by orange oil [33], where the Rayleigh num-
ber was the control parameter. The largest Lyapunov exponent was calculated
for the time series of the viscoelastic stresses (using the method proposed by
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Figure 2. Panel (a) shows the plot of log(C(R)) vs. log(R) [58] of the stress trajectories at
y =100 s~ form=21t5 ((1)—(@v)). The slopes of the plots give the following values of v:
v=16form=2,(Gi)v=23form=3,(iii)) v =2.8 form=4and (iv) v = 2.8 form = 5.
Panel (b) shows the correlation dimensions calculated as a function of shear rate y. (Reprinted
with permission from [12]. Copyright (2000) The American Physical Society)

Gao and Zheng [31]), and was also found to increase monotonically with shear
rate [12].

The existence of a finite correlation dimension, v > 2, and a positive largest
Lyapunov exponent A indicates the presence of deterministic chaos in the
dynamics of stress relaxation in CTAT. This occurs only when the shear rates
are high enough and lie in the plateau region of the flow curve. Because the
volume fraction of CTAT in the experiment described is very small, the pos-
sibility of an isotropic-nematic phase transition was ruled out as the cause of
the observed instabilities. We conclude that the observed chaotic dynamics is
a natural consequence of a mechanical instability.

Many dilute solutions of wormlike micelles exhibit shear-thickening above
a certain threshold shear rate, characterized by a large increase in the time-
dependent values of the viscosity and the first normal stress difference (i.e., a
flow curve o (y) with upward curvature). The flow behavior of shear-thickening
materials [34, 35] can be complex. Rheological and neutron scattering studies
of shear-thickening solutions of CTAT [36] have shown the coexistence of a
highly viscoelastic shear-induced phase (SIP) with a viscous regime made up
of short aggregates. Subsequently, experiments [14] have found deterministic
chaos in the stress relaxation of dilute CTAT solutions in the shear thickening
regimes which can be possibly attributed to a stick-slip process between the
shear induced structures (SIS) and the co-existing dilute phases. This is fol-
lowed by an increase in the complexity of the dynamics of stress relaxation at
still higher values of the shear rate, due to the percolation and fracture of the
SIS, together with the formation of large vortices in the sheared solution. This
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suggests that the occurrence of co-existing phases, rather than a plateau in the
flow curve, is a prerequisite for the existence of complex dynamical behavior
in stress relaxation of a sheared surfactant solution.

2.1.2.  Sustained rheological oscillations in a dense lamellar phase

Lyotropic lamellar phases have shown a richness of behavior under shear
flow [16]. Shear controls the texture of these systems and the spatial orientation
of the lamellae changes as a function of the rate of shear. Roux ez al. [16] studied
the temporal behavior of rheological properties in a lyotropic lamellar phase
(prepared with sodium dodecyl sulphate, octanol and water, salted with sodium
chloride). This system shows several instabilities among which is a transition
between two states of multilamellar spherulites or onions —(a) a disordered state
in which the spherulites show only short range correlations, such as in liquids
or glassy states, and (b) an ordered state where the onions are organized in
hexagonal planes that flow over each other and exhibit long range orientational
order under shear (which is conserved and leads to long-range positional order
once the shear is stopped). This transition, also called the “layering transition”,
can be characterized using rheology. Taking into account only stationary states,
the stress/shear rate curve shows a jump in shear rate above a critical stress o,
which is controlled by both the temperature and the composition of the sample.
A constant shear stress is imposed and shear rate is recorded as a function of
time while the shear stress is varied as adiabatically as possible. In the vicinity
of the layering transition, the appearance of complex time-dependent behavior,
which includes sustained finite amplitude regular oscillations of the shear rate
(where the maximum of the shear rate corresponds to the “ordered state” and
the minimum to the “disordered state”) is observed. A complex signal which
can possibly be seen as chaotic is also detected. It is hypothesized that there is a
coupling between temporal behavior and spatial instabilities involving a finite
but small number of cells. The oscillations may be the result of a competition
between an ordering of the disordered state driven by the stress (mechanical
ordering) and slow textural evolution which destroys the stress-induced ordered
state. These two effects may take place on different time scales and may produce
oscillating behavior.

2.1.3. Elastic turbulence in polymer solution flow

Yet another example of flow instability in non-Newtonian fluids at very
low Reynolds number, Re, where non-linearity of mechanical properties of the
fluid can give rise to irregular flow, is the so-called phenomenon of “elastic
turbulence” in highly elastic polymer solutions [37]. A characteristic feature
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of turbulence is that fluid motion is excited in a broad range of spatial and
temporal scales, so that many degrees of freedom are excited in the system.
More than a century ago, since Osborne Reynolds discovered that turbulence
in fluid flow is controlled by the inertia or momentum of the fluid. Groisman
and Steinberg [37] found that flow of a polymer solution with large enough
elasticity can become quite turbulent even at low velocity, high viscosity and
in a small tank. The experiments were done on a swirling flow between two
plates with a wide gap. They showed that the transition to this flow occurs as
a result of an instability associated with polymer elastic stresses and hence the
name “‘elastic turbulence”.

They conjecture the scenario of development of elastic turbulence as
follows: The presence of polymers can change the stability of a laminar flow,
and polymers with large elasticity (i.e., large relaxation times) can be stretched
even by a weak primary shear flow, producing elastic instabilities which causes
irregular secondary flow. This flow further stretches the polymer molecules,
thereby increasing the elastic stresses further. Because of this feedback mech-
anism, turbulence increases until a kind of saturated dynamic state is reached.
The resulting increase of the elastic stresses can reach two orders of magnitude.
Also, while the Re may be arbitrarily low, the observed flow has all the main
features of developed turbulence, and can be compared to turbulent flow in a
pipe at an Re~10° [37].

2.1.4. Director turbulence in nematic liquid crystals

Another prime example of a phenomenon characterized by temporal fluc-
tuations and spatial irregularities seen in experiments on viscoelastic materials
is “director turbulence” in a nematic liquid crystal in shear flow [38, 39]. In
the experiments of [38, 39], a sequence of instabilities was found to occur
with increasing shear as the system cascades from one stationary state (for
the director) to another, finally leading to a turbulent state. The parameter
which governs the type of transitions observed in nematics at low shear rates
is the Ericksen number. It measures the effect of the shear on the director field
and is given by the ratio of the strength of distortional elasticity and viscous
effects. At very small values of the Ericksen number, the director first rotates
towards the vorticity direction, followed by the appearance of roll cells and
birefringent stripes, both oriented in the flow direction. With an increase in
the Ericksen number, this roll-cell structure becomes progressively fine scale,
with a decrease in roll spacing. At still higher values of the Ericksen num-
ber, the observed striped pattern becomes so irregular that no single dominant
stripe width can be derived from experimental observations. The director field
now becomes spatially irregular and time-dependent with disclination threads
generated in abundance and director turbulence sets in [38, 39].
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2.2. Theories

2.2.1.  Early work: Chaos in rheology of slender-body suspensions

One of the first theoretical investigations of chaos in rheological parame-
ters involved the demonstration of chaotic dynamics in dilute suspensions of
slender bodies in simple shear flow by Ramamohan et al. [40] They showed
that the orientation of periodically forced slender rods and spheroids in simple
shear flow varies chaotically for a certain range of the values of the parameter
corresponding to the external periodic force. They studied the effect of these
chaotic orientation evolution equations on rheological quantities such as the
viscometric material functions.

Ramamohan et al. have derived the evolution equations of the slender rods
in simple shear flow following the analysis of Berry and Russel [41]. The undis-
turbed velocity profile is chosen as v, = y yx where y is the shear rate, y is
the y coordinate and x is the unit vector in the x direction. A typical slender
body in the suspension is modelled as a rigid rod of length 2/. The particles
are assumed to be sufficiently small such that the boundaries of the physical
apparatus containing the suspension do not significantly affect the rheology of
the bulk of the suspension. It is found that in the presence of periodic forcing
(externally induced torque upon a slender rigid rod), the orientation of the par-
ticles evolves chaotically for a certain range of values of the components of the
orientation-independent part of the torque due to the external force and initial
conditions. Reference [42] also provides numerical evidence for existence of
a low-dimensional attractor in the rheological properties. Subsequently, they
have demonstrated that the dynamics underlying the fluctuations in stress of
Stokesian suspensions under shear flow is deterministic, low-dimensional, and
chaotic [18]; the simulations are for shear between plane parallel walls of a sus-
pension of rigid identical spheres in a Newtonian fluid, over a range of particle
concentration.

The existence of such complex behavior in this system, which is the simplest
of a class of such systems, is indicative of the possibility of existence of chaotic
dynamics in rheological properties of a wider variety of systems.

2.2.2. Rheological chaos in a shear thickening model

As discussed earlier, experiments [ 14] have observed deterministic chaos in
the stress relaxation of shear thickening surfactant solutions. Unlike Newtonian
fluids where flow instabilities essentially arise from the advection of momen-
tum, rheological instabilities observed in the shear thickening of viscoelastic
materials arise from the constitutive behavior of the material, perhaps strongly
enhanced by the presence of memory effects. Cates et al. [43] propose a simple
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phenomenological model for a shear thickening fluid with memory and an
underlying tendency to form shear-banded flows, with only one degree of
freedom — the shear stress. They show that the simplest constitutive equation
for spatially homogenous states of such a system that allows chaotic dynam-
ics has the following retarded and non-linear features: a nonlinear retarded
relaxation rate for stress (chosen nonmonotonic) and a linear and retarded
relaxation.

d’=))—R(O'])—)»O'2 (4)

with single exponential kernels:

o) = /Ota(t/)tl_lexp[—(t —1)/rldr
' %)
0y = / o(t)t; expl—(t — 1) /1,]dr

with 7; < 1 < 1,. The essential idea is that even with a nonmonotonic decay
rate R (o), the monotonicity of the flow curve can be recovered via the retarded
contribution coming from o, or o7 depending on in which case the relaxation is
more retarded. However, if too retarded, the temporal stability is not restored
because the system continues to amplify perturbations over short time scales.
For a range of parameter values in the unstable region, a period doubling
cascade is found to lead to chaos.

Recently Aradian and Cates [44] have studied a spatially inhomogeneous
extension of this model, with spatial variation in the vorticity (z) direction.
Working at a constant average stress ({o')), they observe complex spatiotempo-
ral dynamics, most remarkably seen in what they call “flip flop shear bands” —
alow and a high unstable shear band separated by an interface and periodically
flipping into one another. For a certain choice of parameters they observe irreg-
ular (though not chaotic) time-varying behavior.

2.2.3. Temporal chaos in nematogenic fluids

The presence of a shear flow always introduces some form of nematic
order in a complex fluid. In addition, wormlike micelles being elongated, will
inevitably have a local aligning tendency. Also, the constitutive equation for the
Johnson-Segalman model [45] which has generically similar non-monotonic
behavior to the reptation-reaction model of wormlike micelles is very similar to
the relaxation equation of the alignment tensor of a nematic liquid crystal and is
best thought of as arising from the underlying dynamics of an orientational order
parameter. We therefore now discuss the relaxation equation of the alignment
tensor characterizing the molecular orientation of a nematic liquid crystal in
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shear flow [47-49]. Rienaecker et al. [50] used these equations to investigate
the spatially homogeneous dynamics of nematic liquid crystals in flow. Very
recently the same authors have extended their analysis [51, 52] to include
biaxially ordered steady and transient states. Their work revealed a transition
from a kayaking-tumbling motion to a chaotic one via a sequence of tumbling
and wagging states. Both intermittency and period doubling routes to chaos
have been found.

Let us consider a nematogenic liquid consisting of N rodlike molecules,
with molecular orientation denoted by the unit vectors n; (i = 1, N). The pres-
ence of an average preferred direction of these molecules, called the director,
is a characteristic feature of a nematically ordered phase and distinguishes it
from the isotropic phase, but order in the system is not measured by the direc-
tor. Since the nematic phase is symmetric under a rotation by 7 about an axis
normal to the director, any vector order parameter constructed by averaging
over n will vanish. An appropriate choice for an order parameter to describe the
ordering in a nematic is a tensor built from an average over the second moment
of the orientational distribution function P (n):

N

Qs(r) = ;]Z<(nfxnfg — ;gaﬁ)>5(r — (6)

i=1

The equation governing the relaxation mechanisms of this alignment tensor
is given by:

88? =1 'G + (aok + a1k Q)57 + 2:Q — Q- R 7

The subscript ST denotes symmetrization and trace-removal. I is the unit
tensor, u is the hydrodynamic velocity field, k = (1/2)[Vu + (Vu)”] and
@ = (1/2)[Vu — (Vu)”] the shear-rate and vorticity tensors, respectively, t
is a bare relaxation time, and o and «; are parameters related to flow
alignment. The flow geometry imposed is plane Couette with velocity u =
yyx in the X direction, gradient in the y direction and vorticity in the Z
direction.

G, the molecular field conjugate to Q, for a Landau-de Gennes [53] free-
energy functional F that governs the equilibrium nematic-isotropic transition,
is given by:

= —(8F/8Q)sr = —[AQ — V6B(Q-Q)5; + CQQ:Q] (8)

A, B, C are phenomenological coefficients.
Qs a traceless and symmetric 2nd rank 3 x 3 tensor and so has five degrees
of freedom. Accordingly, the equations of motion of the alignment tensor
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when scaled appropriately, and expressed in the following orthonormalized
basis:

Q = ZaiTi

3 ..
T = \/;(ZZ)ST
.. ..
T, = \[Z(xx—yy)

T, = V2&§)sr
T: = V2(&Z)sr
T, = V2@F2)sr 9)

They yield the equations for the components a;, k =0, 1, ...,4 [51, 52].

In mean-field theory, the isotropic-nematic transition occurs at A = A, =
2B? /9C. As in [51, 52], we rescale time by the relaxation time 7/A, at the
isotropic-nematic transition, Q as well by its magnitude at that transition.
We choose A = 0 and ; = 0 throughout. A (= —(2/\/3)050), which is related
to the tumbling coefficient in Leslie-Ericksen theory [51, 52], and y are used
as the control parameters to study the phase behavior of this system.

Further, the contribution of the alignment tensor to the deviatoric stress [52,
54,55]is 6% o agG — o (Q - G) s where G, defined in Eq. (8), is the nematic
molecular field, and the total deviatoric stress is o °F plus the bare viscous stress
which is a constant within the passive convection approximation. We therefore
look at o “% alone.

We have integrated these equations using Runge-Kutta scheme with a fixed
time step (At = 0.001). Depending on the model parameters entering the equa-
tions, the order parameter equations can have different characteristic orbits
[51, 52]. Possible in-plane states, where as the name suggests, the principal
director is in the plane of flow determined by the direction of the flow and its
gradient and the order parameter components az, a4 = 0 are “Tumbling” (7', in
plane tumbling of the alignment tensor), “Wagging” (W, in plane wagging) and
“Aligning” (A, in plane flow alignment) states. Out of plane solutions, char-
acterized by non-zero values of a3 and a4, observed are “Kayaking-tumbling”
(KT, aperiodic orbit with the projection of the main director in the shear plane
describing a tumbling motion), “Kayaking-wagging” (K W, a periodic orbit
with the projection of the main director in the shear plane describing a wag-
ging motion, to be distinguished from the K7 motion by the method adopted
by Andrews et al. [56]) and finally “Complex” (C) characterized by compli-
cated motion of the alignment tensor. This includes periodic orbits composed
of sequences of K7 and KW motion and chaotic orbits characterized by a
positive largest Lyapunov exponent.
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A solution phase diagram based on the various in-plane and out-of-plane
states for A = 0 and oy = 0 as given in [52] is shown in Figure 3. It is observed
that oy # O gives similar results. We focus on the C regime. The dynamics of
the components of the order parameter for A; = 1.25, and y = 3.693 is shown
in Figure 4. We now study the time evolution of rheological quantities like

%-aq
o5 [1ES] 0.y 3 o9 12
8 | - T ' |
v
s bk o

Figure 3. Phase diagram for the spatially uniform model of Rienaecker et al. (Reprinted with
permission from [51]. Copyright (2002) The American Physical Society)
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Figure 4. Different components of the order parameter as a function of time ¢ for A = 1.25,
y = 3.693 for the spatially uniform case (At = 0.001) (Figure taken from [46]).
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the shear stress afyp (henceforth called X, for simplicity) and the first normal
stress difference agf — ayOyP (called X — X,). The time variation of the shear
stress shows features similar to the order parameter components. In Figure 5 we
show the time variation of shear stress. We have thereafter calculated the time
autocorrelation function of this signal and done a spectral analysis (Figure 6).
The sharp peak corresponds to a period of ~45. A wide range of frequencies
is also seen in the plot of the power spectrum which are not in harmonics.
This indicates that the signal is aperiodic and probably chaotic. Next we ana-
lyze the data train obtained by the numerical integration of the equations of
motion described earlier. A surrogate data analysis is first performed on the time
series of the shear stress to check for evidence of determinism. In this method,
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Figure 5. Time variation of the shear stress for A = 1.25, y = 3.693 for the spatially uniform
case. (Figure taken from [46]).
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Figure 6. Autocorrelation function (top panel) and power spectrum (bottom panel) for the
shear stress at A = 1.25, y = 3.693 for the spatially uniform case (Figure taken from [46]).



208 M. Das et al.

6| [ ]
5 °
4| .
>
3 L]
2. : * * * L 2
1e : : - :
1 2 3 m 4 5 6

Figure 7. The correlation dimension v [58] as a function of the embedding dimension m for
the data corresponding to the shear stress for y = 3.693, 4; = 1.25, 01 = 0 and A = O for the
original data (diamonds) and surrogate data (circles) (Figure taken from [46]).

stochastic surrogate data are generated that have the same power spectra as the
original, but have random phase relationships among the Fourier components.
If any numerical procedures for studying chaotic dynamics produce the same
results for the surrogates as for the original data, we cannot reject the hypothe-
sis that the observed dynamics is generated by a linear stochastic model rather
than representing deterministic chaos. We have plotted the correlation dimen-
sion v as a function of the embedding dimension m for the original time series
and the surrogate. It is seen in Figure 7, that v increases with m for surrogates
while for experimental time series, it initially increases and then saturates, thus
confirming existence of determinism in the data.

We numerically estimate a few dynamical invariants (maximum Lyapunov
exponent Ay, the correlation dimension v, embedding dimension m) to char-
acterize the chaos. We then compare it with the experimental data of rheochaos
in wormlike micelles in shear flow [12]. To this end, we use the non-linear time
series analysis package (TISEAN) to analyze the chaotic data [57]. As has been
pointed out earlier, in a situation where one is dealing with flow data of a single
dynamical variable, it is useful to construct m dimensional vectors:

Xi = (xi.x; + Lov....x; + Lo(m — 1)), (10)

m is the embedding dimension and L, is a delay parameter. Using X i, 1t is pos-
sible to calculate the correlation dimension v [58], which describes the strange
attractor on which the trajectories lie in the asymptotic limit [30]. The rate of
divergence of neighboring trajectories is provided by the Lyapunov exponent A
which may be calculated using the method proposed by Gao and Zheng [31].
The estimated value of the correlation dimension, for the time- series of the
shear stress for parameter values as mentioned in Figure 8 is v >~ 2.08. We have
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Figure 8. The correlation dimension v [58] as a function of the average neighborhood for
the first normal stress difference Xy — Xy, (left figure) and Xy (right figure) for different
embedding dimensions and y = 3.693, Ay = 1.25, 1 = 0 and A = 0 (Figure taken from [46]).
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Figure 9. The correlation integral C(R) [58] as a function of the average neighborhood R
on a log-log scale for the first normal stress difference Xxx — Xy for various embedding
dimensions for y = 3.693,1; = 1.25,¢1 = 0 and A = 0. The topmost curve (denoted by left
black triangles) corresponds to m = 1, and m increases as one moves progressively downward
(Figure taken from [46]).

also calculated the largest Lyapunov exponent of the data train using the algo-
rithm of [31] implemented using the TISEAN package [57]. The maximum
Lyapunov exponent turns out to be ~20.0159. The time series thus shows sig-
natures of low dimensional chaos. The variation of the correlation dimension
for the shear stress X, and the first normal stress difference ¥, — X,, as a
function of the shear rate for the uniform problem is shown in Figure 10. It
has been seen in experiments [12] that for sufficiently high values of the shear
rate the correlation dimension v ~ 2.7. We have not seen such high values of
the correlation dimension in any of our runs. We have also changed the shape
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Figure 10. Variation of the correlation dimension v for the first normal stress difference (left
figure) with shear rate y and for the shear stress with shear rate (right figure) in the C region of
the phase diagram [51, 52], for A, = 1.25, 1 = 0 and A = 0 (Figure taken from [46]).

factor to a nonzero value «; = 0.4 and calculated the dynamical invariants. It
is seen that the correlation dimension does not change substantially. We have
thereafter incorporated the spatial inhomogeneities in the model and looked for
shear banding and spatio-temporal chaos in such a case.

3. Spatio-temporal Rheological Oscillations
and Chaotic Dynamics

3.1. Theoretical Investigations of Spatio-temporal
Rheochaos

3.1.1. In a shear-banding model with flow-microstructure coupling

Many complex fluids have non-linear rheological constitutive equations
that cannot sustain a homogenous steady flow. This material instability occurs
when shear versus strain rate curve is non-monotonic in nature, admitting mul-
tiple strain rates y at a common stress X. Particularly for shear flow, it has
been shown [59] that homogenous flow is linearly unstable in a region where
the incremental shear viscosity is negative (i.e.,dX /dy < 0). The system then
undergoes a separation into two co-existing macroscopic shear bands at differ-
ent shear rates arranged so as to match the total imposed shear gradient. Systems
where the dynamic variables ¥ or y are coupled to microstructural quantities
may admit many other possibilities — the flow may never be rendered steady in
time, or it may become spatially inhomogeneous, erratic or both. Fielding and
Olmsted studied one such scenario [60] in the context of shear thinning worm-
like micelles where the flow is coupled to the mean micellar length n. They
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propose a simple model of shear banding governed by the following equations:

Y =04y (11)
oo = 0 4 ST has (12)
7(n) (n) Y
o = L4 N0 (13)
- T

Here g(x) = (x/1 4+ x?), N(x) = (no/1 + x#), o is micellar contribution to
the shear stress, 7 is the solvent viscosity and inertia has been ignored. ¢ has a
relaxation time t (n) that depends on the mean micellar length » and a homoge-
nous steady state o = g[y t(n)] which allows a negative slope in the constitu-
tive curve. T, is the relaxation time associated with » itself and can be used as a
control parameter for tuning the strength of coupling between the mechanical
quantities (X, o, ) and microstructure n. They studied the flow between two
parallel plates at y = 0, L with boundary condition 9, = 0, and parameter
values as described in [60].

Upon thus varying the strength of the instability and the applied shear rate,
they found a complex variety of spatio-temporal oscillations and chaotic shear
banded flows. At low shear and weak instability, the induced phase pulsates
in width while adhering to the wall of the flow cell, or meanders about the
cell. For stronger instability, single or multiple high shear pulses are observed
ricocheting back and forth across the cell (and also bouncing off each other in
the case of multiple pulses). In this regime, once three or more such pulses are
present, periodicity gives way to chaotic behavior. For an intermediate range
of shear rates, one observes intermittency between these chaotic patterns and
more regular oscillations. At high shear rates, regular oscillations of spatially
extended bands on either side of a defect are found. In some cases, multiple
defects exist and one finds oscillatory bands separated by defects moving across
the cell to interact with each other, giving rise once again to erratic banded
flow.

3.1.2. In nematic hydrodynamics

The equations for the uniform alignment tensor were analyzed in a previous
section. We now study the equations of the traceless symmetric order parameter
for a sheared nematogenic system, allowing for spatial variation [61]. Since
nematic fluids possess long-range directional order, there is a penalty associated
with the introduction of spatial inhomogeneities. In general, when the variable
describing an ordered phase is fluctuating in space, the free energy density
will also have terms corresponding to the energy cost in the form of bilinear
gradients. So, the derivative of the Landau-deGennes free energy functional
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now becomes:

G=-(8F/5Q)sr = —[AQ — V6B(Q-Q)s7 + CQQ:Q]
+T1V2Q + I2(VV-Q) g7 (14)

Here, we have considered only bilinears in VQ in F[Q], the lowest order terms
in such a correction in a series expansion both in powers of V and Q.
The equations of motion for the alignment tensor in this case are given by:

0Q
e +u'vQ = 77'G + (ke + a1k Q)7

+2-Q-Q-@ (15)

Hereafter, we express the equations in the same orthonormalized basis as
described in the purely temporal study. As in that case, we rescale time by
the relaxation time 7/A, at the isotropic-nematic transition, Q as well by
its magnitude at that transition, and distances by the diffusion length made
from I'; and 7/A,. The ratio I';/ I'y of the Frank constants is therefore a free
parameter which we have set to 1 in our study. We choose A =0 and «; =0
throughout.

The resulting equations are then numerically integrated using a 4th order
Runge-Kutta scheme with a fixed time step (Az = 0.001). For all the results
discussed here, a symmetrized form of the finite difference scheme involving
nearest neighbors is used to calculate the gradient terms. The results are not
changed if smaller values of At are used. The results do not change if the grid
spacing is changed and more neighbors to the left and right of a particular site
in question are used to calculate the derivative. This provides evidence that the
results do reflect the behavior of a continuum theory and are not artifacts of
the numerical procedure used. Boundary conditions have the director normal
to the walls. With this, the first 6 x 10° time steps were discarded to avoid any
possibly transient behavior. The time evolution of the system was monitored for
thenext5 x 10° time steps (i.e.,t = 5000), recording configurations after every
10? steps, and system sizes were varied from 100 to 5000. In the time-series
analysis for the Lyapunov spectrum, simulation were run until ¢+ = 20,000, for
a spatial system size of 5000, recording data at spatial points at gaps of 10. The
space-time evolution of the shear stress (the xy component of the deviatoric
stress 0 °F), referred to as Y.y, and the first and second normal stress differences
were monitored.

First we address the question of whether the nature of the phase diagram
changes upon the incorporation of the spatial degrees of freedom. This issue
was addressed by constructing local phase portraits (plotting different compo-
nents of the order parameter against each other) as a function of the parameters
entering into the model, the shear rate y and the tumbling parameter A;. Shown
in Figure 11 are the local phase portraits for a particular point xy for various
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Figure 11. Plots showing o1 (xq, ) vs ag(xg, ) for tumbling (panel T), chaotic (C), onset of
aligning (C — A) and aligning (A) regimes. (Reprinted with permission from [61]. Copyright
(2004) The American Physical Society.)

shear-rates y, obtained by holding the value of the tumbling parameter fixed
at A, = 1.25. The character of the phase portrait (space-filling or otherwise)
remains intact upon going from one space point to another although there is
no phase coherence between two such portraits. A closed curve corresponding
to a limit cycle is seen in the tumbling region of parameter space (denoted by
“T”) in the figure, while in the “C” region of the phase space, it is space filling.
When one goes away from the “C” region of the phase space to the region
where the director aligns with the flow the points reduce to those on a line and,
eventually, in the aligning regime where the director has already aligned with
the flow, it is represented by a point. This assures us that the local dynamics in
the spatially extended case is similar to that of the ODEs of [51, 52].

We now focus at the detailed spatio-temporal structure of the phase diagram
of this system. Many interesting phases are encountered, including spatio-
temporally chaotic states, states showing periodicity in time and/or space, those
showing dynamic shear banding, as well as a flow-aligned phase. Further, there
are regions of parameter space where co-existing phases appear. The parameter
values at which these are seen, furthermore, correspond well with the phase
diagram of [51, 52].

Let us now focus on the parameter region labelled “C” or “Complex” in
[51, 52], where spatio-temporal chaos is found. This regime is characterized by
dynamic instability of shear bands (Figure 12). It shows several distinct events,
such as the persistence, movement, and abrupt disappearance of shear bands.
It is found that the typical length scale at which banding occurs is a fraction
of the system size. As one moves closer to the phase boundary separating the
spatio-temporally chaotic state from stable flow alignment, the bands become
more persistent in time and larger in spatial extent (Figure 13).
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Figure 12. Space-time behavior of the shear stress in the chaotic regime, y = 3.678 and
Ak = 1.25. Spatial co-ordinate is along the x-axis, time is along y axis and shear stress along
the vertical axis. Slice taken from a system of size 5000.

Figure 13. Space-time behavior (surface plots) of the shear stress in the chaotic to aligning
regime, y = 4.05 and 1, = 1.25. Slice taken from a system of size 5000.

It would be useful to obtain a better understanding of the disorderly structure
of the shear bands in Figure 12 and compare it with the behavior seen close
to the phase boundary in Figure 13. It is also essential to rule out any hidden
periodicity in Figure 12. To this end, we look at the distribution of band sizes or
spatial “stress drops”, and look for the presence of dominant length scales in the
system. At a given time (say f;), we define a threshold X, slightly above the
global mean (X,,), ;, and map the spatial configuration to a space-time array
of :I:l:i)xy = sgn(Xy, — Xoyy). Figure 14 shows the histogram of the spatial
length of intervals corresponding to the +state for the Chaotic and the Chaotic to
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Figure 14. Spatial distribution of “stress drops” (corresponding to residence intervals in which
the shear stress is above a threshold Xy, = 0.8) in the Chaotic and C — A regimes.

Aligning (C — A) regimes. We have considered configurations extending over
2500 spatial points, and the statistics is summed over configurations sampled
at 5000 times (i.e., i = 1,5000). As expected, the distribution of band lengths
in the spatio-temporally chaotic regime is fairly broad and roughly exponential
in shape, whereas in the Chaotic-to-Aligning regime, the distribution is peaked
about a few dominant lengthscales. Also, note that as one moves away from
the chaotic regime and towards the flow aligned regime, the dominant mode in
the system grows in size.

We now monitor the approach to the spatio-temporally chaotic state as a
function of the tumbling parameter A, for a fixed value of y (= 3.8). Asequence
of states is observed. At low A, (1.0), the shear stress is periodic in time and
homogeneous in space (Figure 15(a)). As A is increased, states are encountered
which are both spatially and temporally disordered (Figures 15(b) and (c)), con-
sisting of patches of plane waves beset with highly irregular local structures
and which resemble geometric patterns seen in cellular automata. These states
are typical of what is known as “spatio-temporal intermittency” (STI) [62]. In
contrast to low dimensional systems where intermittency is restricted to tempo-
ral behavior, STI manifests itself as a sustained regime where coherent-regular
and disordered-chaotic domains coexist and evolve in space and time, and
previous studies suggest a relation to directed percolation [62]. It has been fur-
ther suggested that in systems showing spatio-temporal chaos, spatio-temporal
intermittency should occur in the transition route from regular to chaotic states
and indeed Figures 15(b) and (c) show complex irregular structures (high shear
stress) intermittently present with more regular low shear regions. A detailed
analysis of this route to the rheochaotic regime is presently underway [63]. In
Figures 15(d) and (e), the system is in the chaotic regime. On passing from
the chaotic towards the aligning regime, more regular structures are seen to
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Figure 15. Space-time plots (space along horizontal axis and time along vertical axis) of the
shear stress fory = 3.8and X, = 1.0,1.115,1.13,1.2,1.27,1.3,1.31 and 1.32. (Colormap used:

“hot”, black (low shear stress) — red — yellow (high shear stress)). Slices taken from system
of size 5000.
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evolve (Figures 15(f) and (g)); the shear bands grow in spatial extent and are
more long-lived. Figure 15(h) shows a snapshot of the shear stress in the flow
aligned regime.

We now try to characterize the chaotic state. In studying dynamics of spatio-
temporal systems, one has to establish whether the system is in a spatio-
temporally chaotic regime or can be described by a model with only a few
(dominant) independent modes. From the multivariate time-series generated by
such systems, quantities analogous to the invariant measures used to character-
ize low dimensional chaos should be computed. However, spatially extended
systems often have high dimensional attractors, with dimension growing with
the system’s spatial extent, and the estimation of invariants such as the corre-
lation dimension can be very difficult. Indeed we find that the chaos that we
observe is quite high dimensional (embedding dimension [32, 57] m > 10).
A very long data train is then required for the analysis of the spatially averaged
time series to yield a correct value of the correlation dimensions and would
require a prohibitively long time to generate.

An alternative approach is to study the Lyapunov spectrum. It has been
widely observed that the Lyapunov spectrum for spatio-temporal systems is
an extensive measure (i.e., A; = F(i/V) is a function depending on index i,
rescaled by volume of the system V) [64]. Related invariant measures like the
Kaplan-Yorke dimension, and number of positive Lyapunov exponents scale
extensively with system size [65]. A consequence of the rescaling property of
the Lyapunov spectrum is that instead of trying to study the spectrum and related
quantities in a large and potentially infinite system of size NV, one could confine
the analysis to relatively small, more manageable subsystems of size N; (i.e.,
at space points j in an interval iy < j < ip + Ny — 1, where iy is an arbitrary
reference point), and study the scaling of these quantities with subsystem size
N [57]. Thus, instead of trying to implement the correlation-dimension method
for our spatially extended problem, we study the Lyapunov spectrum [57, 66].
Further, instead of studying systems of ever-increasing size, subsystems of
size N in a given large system of size N are examined. For spatio-temporal
chaos, we expect to find that the number of positive Lyapunov exponents grows
systematically with N;, which is what Figure 16 shows. The procedure has
been carried out with two different reference points iy and essentially the same
curves have been found. Furthermore, it has been reported in many studies of
spatio-temporally chaotic systems [64] that when calculating the subsystem
Lyapunov spectrum for increasing subsystem size Ny, the Lyapunov exponents
of two consecutive sizes are interleaved (i.e., the ith Lyapunov exponent A; for
the sub-system of size N; lies between the ith and (i + 1)th Lyapunov exponent
of the subsystem of size N; + 1). A direct consequence of this property is that
with increasing subsystem size N,, the largest Lyapunov exponent will also
increase, asymptotically approaching its value corresponding to the case when
the subsystem size ~ system size. This trend is clearly seen in Figure 16 (right).
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Figure 16. Sum of positive Lyapunov exponents (left panel), number of positive Lyapunov
exponents (middle panel) and the largest Lyapunov exponent (right panel) as functions of sub-
system size Ny, for y = 3.678, 1) = 1.25, Embedding dimension for the time series of each
space point is 10. (ip = 101, see text).

4. Proposed Experiments

In summary, we have discussed a few examples of viscoelastic systems
where chaotic and irregular rheological response has been observed in experi-
ments and in numerical calculations. In particular, the nonlinear relaxation of
the order parameter in nematogenic fluids, together with the coupling of nematic
order parameter to flow, are the key ingredients for rheological chaos in a vari-
ety of problems. The dynamics of the alignment tensor can be studied in rheo-
optical experiments on dichroism [28], flow birefringence and rheo-small angle
light scattering [67]. Recently, spatio-temporal dynamics of wormlike micelles
in shear flow has been studied using high-frequency ultrasonic velocimetry
[10], and various dynamical regimes, including slow nucleation and growth of
a high-shear band and fast oscillations of the band position, have been observed,
although the complex fast behavior reported is not chaotic. We look forward to
experiments that measure directly the spatio-temporal structure of rheochaos
in micellar and other systems such as self-assembled rod-like species in sus-
pensions or gels formed with low molecular mass organic gelators.
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1. Introduction

The capillary length is defined as the length for which surface tension and
gravity balance each other. It is typically of the order of one millimeter for
a liquid/air system. For interfaces with dimensions larger than the capillary
length, gravity dominates the shape the interface takes. Conversely, for small
interfaces, capillary forces dictate the shape. Flow in a confined geometry such
as a capillary tube, fiber or fiber networks will therefore be driven by capillary
morphology and surface effects. In this chapter, we focus on the behavior of
liquids on single fibers and move onto fibrous networks. First, the formation
of drops on a fiber is considered, analyzing their shapes, with emphasis on the
existence of axisymmetric and asymmetric drops. Next, wetting along conical
fibers, and finally within a network of fibers is treated. In both of these systems,
the substrate curvature is not homogeneous, and leads to displacement of liquid
in order to decrease surface energy.
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R.G Weiss and P. Terech (eds.),
Molecular Gels. Materials with Self-Assembled Fibrillar Networks, 223-237.
© 2006 Springer. Printed in the Netherlands.



224 E. Lorenceau et al.
2. The Rayleigh-Plateau Instability

The most famous effect associated with the wetting of fibers is the Rayleigh-
Plateau instability, which takes place when a continuous wetting liquid film is
deposited on a fiber. This may be achieved by drawing the fiber out of a bath of
liquid, or by the condensation of a vapor. In both cases, the film will generally
break into a regular array of droplets, as shown in Figure 1. This instability
was first observed by Plateau [1] in a simple liquid jet in which liquid flowing
from a nozzle breaks into drops about 50 cm below the nozzle. Such arrays of
droplets can be observed on dew-covered spider webs early in the morning.
Indeed spiders use this very phenomenon to uniformly space sticky globules
along their snare lines.

The driving force of this instability is the interfacial tension between the
liquid and the surrounding medium, usually air. That is, the array of drops has
a smaller surface area than the cylinder from which they arise. More generally,
and provided that the wavelength of the instability is large enough, undulating
the surface of the liquid/air interface lowers the overall energy. This is a remark-
able feature of a cylindrical geometry and can be understood by considering
the Laplace pressure across the liquid interface, given by:

1 1
AP_)/C—)/<R1 +R2> (1)
Here, y is the liquid/air interfacial tension with a surface of curvature, C. It can
alternatively be stated in terms of the two principal radii of curvature, R; and
R;. The pressure in a cylindrical film is thus constant and equal to y /R, where
R is the radius of that cylinder. Fluctuations, external or thermal in origin,
can cause the cylinder of liquid to undulate, in turn modulating the pressure.
Provided the wavelength of the instability is large enough, the pressure in a
trough becomes larger than in a bump. Thus the trough will continue to empty
liquid into the bump, and the instability will grow until separate drops are
formed (Figure 1). Note that gravity does not deform the resulting drops. This
is understood by examining the balance of pressures in the system. While the

T ——

Figure 1. Pattern resulting from the spontaneous destabilization of a film of (wetting) silicone
oil deposited on a cylinder of radius b = 100 Lm.
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typical Laplace pressure across the cylinder is y /R, the difference of hydro-
static pressure between the topside and the bottom of the fiber is 2pg R, where
p is the liquid density. Hence, gravity can be neglected for cylinders of radius
smaller than /Y /pg, the so-called capillary length, which is in the millimeter
range for most liquids.

More precisely, the difference in surface energy A E between an undulating
film and a flat film can be evaluated on a length equal to one wavelength A:

A
AE = / 2w (b + 1)y ds — 27(b + t0)y A )
0

b is the radius of the fiber, ¢ is the modulated thickness of the film and #; is the
initial thickness of the film. If the amplitude, ¢, of the corrugation is not too
large, Eq. (2) becomes Eq. (3):

1 g2
AE =—y
4° b+ 1

27 0(g*(b + 19)> — 1) 3)

AE decreases if the wave number of the corrugation, g, is larger than the inverse
of the radius of the cylinder. Hence, if the wavelength of the perturbation is
larger than the circumference of the cylinder, a film longer than 277 (b + fy) will
break spontaneously into several droplets.

Note that this simple analysis does not discriminate between all unstable
modes (A > 27 (b + fy)). The kinetics of growth of the unstable modes can be
calculated, as first done by Lord Rayleigh [2] who found that the fastest mode
corresponds to a wavelength of about 10(b + 1), in very good agreement with
the experimental observations of Plateau. We will now analyze the shape of
the droplets resulting from this instability, and focus on the origins of their
asymmetry.

3. Drop Shapes

Because of the fiber curvature, a drop on a fiber has a shape very differ-
ent from one on a plate, particularly in the limit of complete wetting. A drop
spreading on a plate thins until it vanishes, while the same liquid will persist on
fibers as drops (see Figure 1). This behavior explains why it is often said that
fibers “cannot be wetted” by liquids. Indeed they can, but the wetting film will
coexist in general with drops, whose shape is dictated by the existence of two
antagonistic curvatures close to the ends of the drop. We will first focus on this
symmetric case, and then describe the possible existence of non-axisymmetric
drops.
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3.1. Axisymmetric Shapes

Droplets observed in Figure 1 are highly axisymmetric. Their shape is
deduced from a condition of constant curvature, and found by integrating
Eq. (1), as shown by Carroll [3, 4]. Neglecting gravity (i.e., considering a drop
of radius much smaller than the capillary length), the two radii of curvature
can be written as a function of the polar angle, ¢, defined in Figure 2:

Y <cos¢jf + Si2¢> =AP 4)

This equation can be integrated once, taking into account the boundary condi-
tions at the edge and at the apex of the drop (x = h, ¢ = /2andx = b, ¢ =0,
where 6 is the contact angle of the drop on the fiber). We deduce the pressure
across the drop in Eq. (5) where n = h /b (see Figure 2).

2y (n — cosb
AP=——— 5
b<n2—l> )

If the liquid totally wets the fiber (6 = 0), as in Figure 1, then Eq. (5) simplifies
to Eq. (6):

_ %
b+ h

This formula is consistent with the particular geometry of the fiber: when the
volume of the drop tends toward zero (h — b), AP tends to y /b, the pres-
sure across a cylinder of radius b. In this case, we expect drops to be nearly
cylindrical. On the other hand, if the radius of the fiber tends toward zero for
a drop of given volume, A P is equal to 2y / h, the pressure across a sphere of
radius A. A thin fiber will hardly deform a large drop which becomes nearly
spherical [5].

The profile, length, liquid/air surface area and volume of the drop can also
be derived analytically as a function of the maximal radius of the drop #, the
fiber radius b and the contact angle 6, using Eq. (4) — in which the constant

AP ©6)

2h

< >

Figure 2. Sketch of a drop of length L, of maximal radius 4, deposited on a fiber of radius b.
The liquid wets the fiber with a contact angle 6.



Wetting of fibers 227

AP is known and given by Eq. (5). Thus we can describe very accurately the
shape of these axisymmetric, so-called unduloidal, drops [3, 5, 6].

Those formulas can be used to calculate the evolution of shape of a drop
as a function of the different parameters of the system: volume, fiber radius
or contact angle. In Figure 3 the “cylinder-like” and “sphere-like” behaviors
described above can be seen as a function of maximal drop volume. The max-
imal radius of a drop deposited on a fiber of 150 wm radius has been displayed
as a function of the volume of the drop. For large volumes, the radius is found
to increase with the volume as a power law of exponent 1/3 — a signature of the
sphere-like regime — and for a small volume the maximal radius tends toward a
constant value slightly above 150 wm (the fiber radius), which is a characteristic
feature of a cylinder-like regime.

3.2. Asymmetric Droplets

There are two main reasons for a drop to be asymmetric (i.e., the influ-
ence of partial wetting or gravity). Figure 4 shows what can happen in partial

A (mm)

.

0.001 0.01 0.1 1 10

Q (mm")

Figure 3. Calculated maximum radius of a drop deposited on a fiber of (given) radius r =
150 pum, as a function of the volume of the drop. The thin line indicates the slope 1/3.

Figure 4. Drop in a partial wetting condition (water on fiber nylon of 100 jvm radius) adopting
an asymmetric shape. The drop is pointing upward showing that it is not deformed by gravity.
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wetting. If the contact angle is large enough, the drop is indeed found to be
asymmetric, simply because this conformation is of lower surface energy than
an axisymmetric case.

If the contact angle depends on an external parameter (such as an electric
field, or adsorption of surfactants), the drop is observed to roll up if the contact
angle is larger than some threshold value. This threshold decreases with the
drop volume. This process is important in detergency, as noted by Adam [7],
since an asymmetric grease drop sticks less to the fiber than a symmetric one
and is therefore easier to detach. The value of this critical angle was calculated
by Carroll and McHale, who characterized how it depends on the radius of the
drop and of the fiber [8—11].

Asymmetric configurations can also be induced by an external field acting
on the drop (gravity or electric field). For drops hanging in a gravity field,
this effect will be relevant for drops of size comparable to the capillary length
k' = /y/Apg, where Ap denotes the density difference between the two
fluids. Kumar et al. [12] focused on the influence of gravity for drops deposited
on a vertical fiber — hence in the limit where the external field and the fiber axis
are aligned.

Figure 6 displays photographs of drops of silicon oil in air hanging from
a horizontal fiber of radius » = 12um, hence in the limit where gravity is
perpendicular to the fiber axis [12]. The drops are of increasing volume from
left to right. It can be observed that the shape of the drop changes as its volume
increases: the two smallest drops are symmetric (as expected in this wetting
situation), but the largest ones are asymmetric. In particular the larger the drop,

(a) (b)

Figure 5. A drop deposited on a fiber can adopt two different conformations (a) axisymmetric
or (b) asymmetric.

Figure 6. Drops of silicon oil of various volumes (€2 = 0.01,0.10,0.23,0.32 and 0.52 mm?,
from left to right) hanging from a horizontal fiber of radius b = 12 um.
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the lower its centre of mass, which stresses the increasing influence of gravity.
The fiber is here much smaller than the capillary length ¥ ~!, which is of order
1.5 mm for silicon oils. However, the largest drops have a diameter of 1000 pm
and approach the capillarity limit.

All the drops in Figure 6 are static, which shows that gravity (for large
drops) can be balanced by capillary forces. Obviously, this equilibrium cannot
hold for very large drops: a capillary force is bounded, while the drop weight
increases as R> (with R the drop radius) — we thus expect a threshold radius R,
above which a drop will detach. We note the corresponding threshold volume
Qp (with Q) = 47 Ry, /3). Figure 7 shows a sequence of events occurring
when the drop size slightly exceeds 2.

This quantity can be measured, and Figure 8 shows how R, varies as a
function of the fiber radius (both quantities are normalized by the capillary
length and plotted in logarithmic scales).

It is observed that all the data collapse along the same curve despite the
range in capillary lengths. Moreover, we observed that for large fiber radii, Ry,
saturates at a constant value of 1.6« !, Then, the substrate curvature becomes
very small and the liquid behaves as if it were hanging from a flat solid surface.
The maximal volume €23, of such a pendant drop must scale as x>, since

I
Figure 7. Set of pictures showing a drop of silicon oil falling off a fiber of radius b = 350 pum.

The volume of the drop is just above 24, so that gravity dominates the capillary force: the drop
falls (interval between two successive pictures: 1 ms).

@ Silicon oil
R.{f K X Ethanol
A Hexadecane
© Water

0.1 .
0.001 0.01 0.1 1 b 10

Figure 8. Radius Ry of the largest drop hanging on a fiber, as a function of the fiber radius b.
Both quantities are normalized by the capillary length «~1, and are drawn in logarithmic
coordinates.
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the capillary length is the only length in the system. Padday [14] numerically
calculated this volume and found 2, to be equal to about 19 ¥ 3, which yields
Ry = 1.65k7!, in very good agreement with the observations. For thin fibers
(b < k1), Ry is found to scale as b'/3«~2/3. This again is quite logical, since
the capillary force and the weight scale as yb and pgR3,, respectively. The
balance between these two forces indeed leads to the observed scaling.

4. Heterogeneous Fiber

A drop will be at equilibrium if its pressure (expressed in Egs. (5) and (6) is
constant. If a fiber is not homogeneous in radius, and here we shall consider the
simple case of a conical fiber, the pressure in the drop axis will not be constant.
Provided that there is no contact angle hysteresis, the axial pressure gradient
is likely to induce a motion, as first noticed by Carroll [15].

Such a situation is reported in Figure 9, where a drop of silicone oil is
observed to spontaneously move on a conical copper wire (of conicity of about
1072), towards the region of larger radius. This can be easily understood by
considering Eq. (6), which shows that the pressure in a drop depends on the fiber
radius: the smaller the radius, the larger the internal pressure — a drop deposited
on a conical fiber will indeed move towards large radii, as described [16].

This phenomenon is of particular interest if one considers the impregnation
of a heterogeneous cluster of fibers, since a conical fiber can be seen as a
model substrate which helps to study the influence of heterogeneity in the
curvature substrate. Hence the drops shall always move toward the regions of
small curvature which are typically the overlaps in a fiber bed. Moreover, this
motion can be exploited for drying a solid, even if forced to be coated with a
film (which can be achieved either by a relative motion between the liquid and
the solid, or by exposing the latter to a vapor which condenses on it). It can be
seen in Figure 10 that films are driven towards regions of large radius, which
stresses that such cones could be used as efficient condensers, large surface

T —

—’.

Figure 9. Multi-exposed photograph of a millimetric drop of silicone oil on a tapered copper
wire. The time interval between two pictures is 1.6 s, and it is observed that the drop moves
towards the region of low curvature. (Reprinted with permission from [16]. Copyright Cambridge
University Press.)
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Figure 10. Successive snapshots (interval between each picture: 10 s) showing the evolution
of a liquid film (thickness between 8 and 25 wm) made of silicone oil (n =20 mPa.s and
y =20 mN/m) deposited on a conical fiber (of radius between 100 and 300 pwm). (Reprinted
with permission from [16]. Copyright Cambridge University Press.)

areas being coated and “pumped” towards thicker regions where the liquid can
be collected, without the use of any motor.

5. Invasion of a Network of Fibers

In many applications, fibers are gathered together to comprise a structure
designed to imbibe liquids. In one extreme this problem can be treated in
an academic exercise as an assembly of parallel fibers packed together with
hexagonal order. The criterion of wicking in such a porous medium is the same
as for a capillary tube: comparing this medium empty and full of liquid, we
see that the difference between the two situations is the replacement of a dry
surface (of surface energy ysv) by a wet one (of surface energy ysi). The
surface energy is thus lowered if we have: ys1, < ysv. Using Young’s relation
(ysv — ysL = y cos6), which expresses the link between the different surface
tension and the contact angle 9 (of the liquid on the solid, with air around), we
find that the criterion of wicking can be written equivalently: 8 < 90°.

This wetting criterion is much more difficult to define for arandom assembly
of fibers, as we shall see in the case of paper. Then, supposing that the liquid
invades the assembly, the size and shape of the meniscus is not clearly specified,
and itis likely to vary along the progression of the liquid. In some regions where
the fibers get further from each other, the meniscus radius increases as the liquid
progresses, as does the surface energy associated with this meniscus, making
the progression less likely. Conversely, as the liquid goes in more confined
regions, the meniscus radius gets smaller, making the liquid invasion more
favorable in these regions.

We can try to go further by describing flow into such a complex fiber web
and show that competition between local capillaries and global interconnectiv-
ity results in observed penetration rates. In the process which ultimately forms
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the sheet, many factors dictate the interconnectivity within the fiber web. The
physical and chemical heterogeneity has a great influence over preferred flow
paths. However, one can generalize about the way fibers are associated with
their neighbors. Fibers emerge from the refining process as millimeter long
hollow tubes of about 20 microns in diameter. These tubes typically collapse
during sheet formation so the fibers form flat, but very flexible ribbons less
than 10 microns thick. Where fibers overlap they can flatten and bond, which
locks the web in place, creating on average 80 fiber overlaps per millimeter of
fiber, with over 3000 fibers per mm? [17]. The way in which the sheet is formed
also aligns the fibers so the plane of the ribbons is largely oriented parallel to
the sheet, with a very low degree of cross-over from one layer to the next.

The structure is of course highly porous and, in the maze of fibers, it is
difficult to see which course a liquid might take in wetting the sheet. Figure 11
illustrates some of the potential pathways for liquid conduction. The shape
a wetting front creates as it moves over an interface is dictated by surface
curvature and interfacial energy, and in paper there are four different structures
which offer potential flow paths. In order of increasing capillary pressure they
are voids or “pores” formed between fibers (Figure 11b), channels formed by
overlapping fibers (Figure 11c), surface roughness on individual fibers, and
intra-fiber porosity.

Figure 11. (a) A scanning electron micrographic cross-section through a 100 micron thick sheet
of paper showing the complexity of the fiber arrangement. (b) Viewed from above the sheet a
surface void, seen center, produced between intersecting fibers gives the impression of a “pore”.
(c) A schematic illustrating the concave channels formed between overlapping fibers. Liquid
menisci can be seen in the wedge-shaped channels. Fibers also possess surface roughness on the
sub-micron scale, see (b), and some intra-fiber micro-porosity. Courtesy of Dr. R. J. Roberts.
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The “pores” at the surface of paper generally range from 20—50 microns and
have highly irregular cross-sections. Within a few fibers depth they typically
diverge into other voids and are characterised by many surface discontinuities.
Fluid negotiating these structures is faced with a range of opening diameters
in which to span. Small voids may fill, only to be constrained at the openings
of larger voids.

The channels formed by overlapping fibers present the next available path
flow. Here the wedge-shaped channels typically have included angles of < 90°
with a depth of a few microns. From the work of Hasuike er al. [17], it is clear
that the massive density of fiber overlaps forms a vastly interconnected network.
Surface roughness over the fiber and micro-porosity within it contribute to the
final pathways, and have structures well below a micron in scale.

While all structures do play some role in the overall wetting profile, only the
channels created between overlapping fibers can maintain interconnectedness
on the fiber-scale. This conclusion results from the direct microscopic obser-
vation of wetting films in paper [18], and is depicted in Figure 12. Here the
imbibing front is seen frozen in time, moving from top to bottom. Clearly, the
areas of fiber overlap show film flow, which thicken with time allowing voids
to fill. The films closest to the drop (top) are clearly thicker than those at the
extremities. Note that the tops of the fibers remain dry, which demonstrates
that fiber roughness does not contribute significantly to film flow. Here the
probability of pinning on top of a convex fiber surface is clearly higher than
along the concave channel formed between overlapping fibers. Thus, given the
choice, a film finds the path of highest capillary pressure and proceeds.

While it may not be surprising that the advancing front is via film flow, the
extent and use of inter-fiber channels is revealing. The language of describing

Figure 12. Unsized paper snap-frozen the instant a droplet of water began to wick into
the fibers. The wetting front was moving from the top of the image down. See Roberts et al.
[18] for details of this cryogenic SEM technique. Scale bar = 100 microns. Courtesy of
Dr. R. J. Roberts.
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flow in interconnected channels was first introduced by Lenormand et al.
[19] where they investigated the competition between piston-like flow and
film flow in model systems. They demonstrated that network connectivity and
channel morphology are crucial in determining the overall rate of impregna-
tion. This follows from their observation that surface inhomogeneities pin and
delay meniscus advance until films have found a path around the discontinuity.
Where films thicken and disconnect an air filled void, they coined the term
“snap-off”’. This mechanism of pore filling can be a rate limiting process in
many porous systems. This delay in local imbibition may ultimately cost the
“race” as an adjacent, but competing film can forge ahead depleting the first
film. Piston-like flow then occurs as a “rear guard” action behind the advancing
films.

Without knowledge of film flow, it has been convenient in the past to con-
sider the voids as the primary wetting path. Misleadingly, these voids have
been called “pores,” leading to the broad use of the Lucas-Washburn equation
in the literature, which simply models the web as a series of circular non-
connected, parallel capillaries. To support this approach, techniques such as
mercury porosimetry have provided effective pore size distributions. Being
a non-wetting liquid, however, mercury has no opportunity to fill via film
flow and gives information only about the large inter-fiber voids. In a highly
connected structure like paper the higher propensity to pin on a fiber surface
precludes extensive flow paths around single fibers, and greatly restricts pis-
ton flow through voids. In the case of spontaneous imbibition, the voids are
the final structures to fill, and only have a chance to fill once all pinning has
released the wetting film to form an unsupported concave meniscus (‘“‘snap-
off”) (Figure 13). The smaller the void the better chance it has of filling, but in
general this is completely dependant on the local configuration of fibers, and
one frequently observes incomplete saturation of paper.

Figure 14 shows a tomographic cross-section through a saturating paper
where several unfilled sub-surface voids can be seen.

Figure 13. Internal voids may (left) or may not (right) fill depending on propensity to pin the
wetting films.



Wetting of fibers 235

Figure 14. A section through the mid-plane of a paper sheet using X-ray tomography. Again
the liquid, flowing from top to bottom, has been snap-frozen during wetting and is seen in light
grey, with voids as dark to black. Note the voids shown do not connect with either surface of
the sheet and represent trapped air. Scale bar = 350 microns.

It can be very instructive to first consider the impregnation of a single
horizontal circular cavity: a capillary tube. The rate of penetration is determined
balancing the viscous pressure loss with the driving Laplace pressure that leads
to the well-known Lucas-Washburn equation [20]:

1,2
R

H= (”) 172 (7)
2n

Here, ¢ denotes the time, H is the height of liquid in the tube of radius R, and y
and 7 are the liquid/air surface tension and viscosity, respectively. As examined
recently, Washburn does predict the correct scaling of ¢'/? for impregnation rate
of liquid by a paper [21], but it over estimates the observed rate by more than
an over of magnitude [18]. This overestimation stems from both the failure to
take into account the channel geometry (wedge versus tube), and the network
of interconnected channels. The later has inherent delays built into the way a
film must negotiate surface discontinuities [22].

A predictive model for overall rate is not obvious. The problem cannot
be posed in terms of very slow wetting which would give rise to uniform
film thickness in all channels. Although convenient, since voids would simply
fill based on size alone, such a model would be unrealistic. The finite rate of
impregnation in channels implies that films are thicker nearest the liquid source,
and thin towards the extremities. Even complete knowledge of a network of
the channel connectivity would require computer simulation to test the range
of solutions possible.
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We have not considered here the other components often found in paper,
such as filters and sizing agents, or chemical heterogeneity. In reality, these
obey the same principals as above, and can be viewed as simply adding to
the array of alternative capillary networks within paper. An advancing film
continuously determines which of two capillaries is more favorable. Film flow
remains the dominant mode of wetting, and interconnectivity a crucial factor.

6. Conclusions and Perspectives for the Future

We have considered the wetting of fibers in different configurations. Firstly,
we considered the size and shape of drops supported by a single fiber. We have
shown that a cylindrical fiber of arbitrary length can only hold a quantity of
liquid that is bound. The volume of liquid is mainly in the drop, therefore
gravity eventually overcomes capillary forces. On the contrary, a surface of
varying curvature — an infinite conical fiber — can pump the liquid and drain it
toward regions of large radius. The amount of liquid that can be sustained by
a conical fiber is therefore not limited. Then, we have focused on spontaneous
impregnation into paper, where the displacement is assumed to be dominated by
capillary forces. The rate of penetration increases with the square root of time
as in a diffusive process. A more rigorous treatment of the complex dynamics
of frontal displacements requires accounting for film swelling, pore filling and
viscous pressure gradients associated with flow through films. The dynamics
of film flow, pore filling near and away from the front and the simultaneous
filling of multiple pores via films and filled throats ahead of the front can lead
to very different behaviors that are only now being considered.

A question of obvious interest in the perspective of molecular gels concerns
the possibility of extending the ideas described here to the case of molecules that
assemble into nanofibers. Recent experiments performed with nanotubes show
that capillary phenomena resist quite well a reduction of the size (the question of
the renormalization of the macroscopic quantities such as the surface tension
being the subject of active research today). Single wall nanotubes generally
form bundles, whose penetration by a wetting liquid should thus compare to
what is found with other assemblies of fibers. Nanocapillarity is indeed a very
natural extension of research in this field during the next several years.
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1. Introduction

In previous chapters, we have attempted to define the term “gel” in a
consistent and meaningful way, while recognizing that the gel state is often
easier to recognize than to define (if it looks like “Jell-O”, feels like “Jell-O”,
and responds like “Jell-O”, it must be a gel [1]). This leads us to the theme of
the present chapter, the elucidation of phase diagrams and composition maps
for molecular gels. Typically, this is the first step in a given study. Other chap-
ters are devoted to detailed analyses of gels and their phase transitions (see
Chapters 1-4).

Molecular gel samples are usually prepared by dissolving low molecular-
mass organic gelator (LMOG) in a liquid, usually by warming [1]. At this point,
241
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the gelator is unaggregated or in small aggregates and this system is referred
to as a sol. The sol is then cooled below a transition temperature whereupon
it transforms into a gel. Typically, the higher the gelator concentration c, the
higher is the sol-gel transition temperature 7, and a plot of T, against ¢ con-
stitutes a phase boundary. A phase diagram is a map of 7' vs. ¢ showing the
sol-gel boundaries as well as the boundaries of any multi-phase or lyotropic
liquid crystal regions that are also present. Most articles on molecular gels
usually have an accompanying phase diagram.

While studying gelators, especially those with novel structures, the focus is
on determining the entire phase diagram rapidly and using as little gelator as is
practically feasible. Thus, there is a need for simple, reliable, and convenient
techniques for phase characterization. Two such techniques fit the bill and are
widely used by practitioners for a broad range of molecular gelators:

(1) “Tabletop” rheological techniques: These are techniques such as the
tube inversion and falling sphere methods that have a rheological basis.
More detailed analyses of rheological properties of gels are found in
Chapters 5 and 6.

(2) Thermal characterization methods: In particular, differential scanning
calorimetry (DSC).

We will now consider these two techniques systematically in the rest of this
chapter. A variety of other techniques that are useful in studying specific types
of gelators are discussed in Chapters 9—13.

2. Detecting the Sol-Gel Transition by Tabletop Rheology

The definitive signature of a gel is its elastic rheological response, or more
precisely, the presence of a non-zero equilibrium modulus G, [2]. There are
two alternative ways of stating the same idea: the gel should not relax under a
small mechanical stress even if given an infinitely long time; or the gel should
not flow under the action of a mechanical stress imposed for an infinite period
of time. The former condition implies an infinite relaxation time #g in a linear
viscoelastic test while the latter stipulates the existence of a yield stress o,
below which no flow occurs, i.e., below which the viscosity is infinite. Note
that the stipulated conditions do not preclude relaxation or flow occurring at
higher (nonlinear) stresses or strains.

The existence of gel-like rheological properties in a sample can be
qualitatively diagnosed by simple (“tabletop”) experimental tests without using
a rheometer. Such tests, which rely on visual observation and feel, are particu-
larly useful in evaluating the sol-gel boundary. In a typical study, samples are
placed in a bath at constant temperature and their physical state (sol or gel) is
noted, for instance, by tube inversion. The bath temperature is then varied and
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the samples are equilibrated at a new temperature, whereupon their physical
state is again recorded. This process is repeated over the temperature range
of interest. Alternately, instead of equilibration, a slow heating or cooling rate
(e.g. <1°/min) may be imposed. Through these studies, a plot of 7, versus
gelator concentration ¢ can be obtained.

We consider below some of the common “tabletop” tests for gelation that
have a rheological basis. A discussion of gelation and gel point based on stan-
dard rheological measurements (using a rheometer) is given in Chapters 5, 6,
and 19.

2.1. Tube Inversion

The most common diagnostic test of gelation is to turn a test-tube or vial
containing the sample upside-down and then to note whether the sample flows
under its own weight (Figure 1). It is assumed that a sample having a yield
stress (gel) will not flow whereas a viscous but inelastic sample (sol) will show
appreciable flow [3]. The simplicity of this test makes it the method of choice
in phase behavior studies with molecular gels.

Care must be taken in conducting and interpreting tube inversion experi-
ments. It is easy to mistake a viscous sol for a gel and conversely, to misinterpret
a gel with a small yield stress to be a sol. To understand why, we will consider
the basis for the tube inversion test. Before doing so, it is useful to recall that
the yield stress o, is given by [3]:

6y, =G -y, (1)

(a) (b)

Figure 1. (a) Photograph of a gel from the author’s lab that satisfies the tube inversion test;
(b) The test sample is idealized as a cylinder of radius R and length L.
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G is the gel modulus and y., is the critical strain that marks the linear viscoelastic
limit (critical strain at yield). The gel modulus signifies the stiffness or rigidity
of the network, while the critical strain denotes the strength of bonds in the
network. Thus, for o, to be high, both G and y. should be high.

In the tube inversion test, consider a sample with yield stress o, placed
in a cylindrical vial of radius R, with the length of the vertical column of
sample being L (Figure 1b). The sample mass is 7w R*L - pg, where p is the
sample density and g the acceleration due to gravity. The condition for static
equilibrium, from the von Mises yield criterion, balances the yield stress with
the gravitational stress [4]:

oy,=pg-L )

It is assumed here that the sample yield coincides with the disruption of the
network structure in the gel.

Equation (2) shows that the tube inversion test is dependent on both sample
mass and vial size. The column height L is proportional to sample mass and
density, and inversely related to vial size for a given mass. When using this test
for phase behavior determination, it is therefore crucial to use the same sample
mass and vial type (geometry, size).

Rheological tests can confirm the approximate yield stress values indi-
cated by tube inversion. For example, Booth e? al. [5, 6] studied aqueous gels
of block copolymers using both tube inversion and conventional rheometry.
They used 0.5 g of each sample in tubes of 1 cm internal diameter. Under
these conditions, samples of yield stress o, > 40 Pa were able to hold their
own weight indefinitely. Incidentally, this value is in rough agreement with
Eq. (2).

The time of observation can also influence the outcome of tube inversion
experiments. To understand this, consider how a highly viscous but inelastic
sample would behave in the same inverted geometry as in Figure 1b. In this
case, the sample would move (flow) downward by a distance ¢ over a time ¢
under the action of gravity. An approximate expression for ¢ is obtained by
balancing the gravitational and viscous stresses [4]:

e . PgLR

t
Here, it is assumed that the sample viscosity 7 is invariant with shear-rate. This
equation shows that a high viscosity can inhibit motion of the sample. Using a
high value of 7, say 10° Pa - s (a very reasonable value for a pre-gel) together
with typical geometry conditions suggests that a sample may move only a few
millimeters in a couple of minutes. Thus, based on a short period of observation,
the motion detected may be so negligible that one may erroneously classify the
sample as a gel. To prevent such mistakes, a sufficiently large observation
time must be employed in tube inversion experiments. Experiments with a

3)
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test fluid such as honey (a highly viscous but inelastic fluid) may be used to
gauge timescales with viscous fluids and thereby to “calibrate” the geometry
of choice.

2.2. Falling of Spheres

A second method used for determining the onset of gelation is to examine
the motion of small spherical particles suspended in the sample (Figure 2).
This method is an adaptation of the Stokes’ law problem to yield stress fluids.
A quantitative criterion has been derived by Beris et al. [7] assuming that the
fluid can be approximated as a Bingham fluid (i.e., no flow till the yield stress;
Newtonian flow at higher shear stresses). Their prediction is that a spherical
ball of size R;, and density p, will not fall in a fluid of density p and yield stress
o, provided [4, 7]:

oy > 0.095(0, — p)g - Ry 4)

It is clear from Eq. (4) that the particle size and density dictate the bal-
ance between gravitational stress and the yield stress. This intuitive picture
is illustrated by Figure 2 where the settling of spheres of different sizes and
densities is shown in a range of viscoelastic polymeric fluids [8]. The Xanthan
gum and Carbopol® samples are physical gels that have appreciable yield
stresses and hence are able to suspend dense spherical particles for more than a
month [8].

Figure 2. Photograph of the falling sphere test in a series of viscoelastic or gel-like fluids. The
circles show the initial position of the test spheres, whereas this photograph was taken after one
month of storage. The four spheres in each flask correspond to different sizes and densities:
the furthest to the left is a low-density plastic sphere, while that at the rightmost is made of
high density steel. The four samples are aqueous solutions of: (A) 2.1% guar gum; (B) 2.3%
carboxymethyl cellulose; (C) 6% Xanthan gum; (D) 0.4% Carb0p01® 940F. (Reproduced with
permission from [8]. Copyright Noveon, Inc.)
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In using sphere settling for characterizing molecular gels, the ideal scenario
is for the sphere to remain immobile in the gel phase, but to rapidly settle in the
sol phase. For this, itis preferable to use a dense ball (e.g., of steel or other metal)
that is also sufficiently large. An important precaution is that the sample tube or
vessel should be much larger than the test sphere — if this is not so, the presence
of nearby walls can influence the motion of the sphere [9]. However, eliminating
wall effects completely would require an impractically large amount of sample,
S0 a compromise between accuracy and process economics has to be reached.
Finally, it is also important that the sphere settle from rest — most gels tend to
be shear thinning fluids and if the sphere is dropped into the fluid with a force,
the fluid in the local vicinity may be thinned, thus promoting further downward
motion of the sphere [9]. A simple way to ensure settling from rest is to place
a dense ball on top of the gelated material within a sealed vial [10].

2.3. Rise of Bubbles

A third method for evaluating the gel-like nature of a sample is to observe
the motion of bubbles in a sample. Bubbles can either be injected specifically
for this test or they may remain in the sample after preparation. The essential
idea is that bubbles will remain trapped in a gel whereas they will slowly rise
to the surface in a viscous fluid [11]. Note that the bubble rise problem is
mathematically identical to the settling sphere problem in Newtonian fluids
and thus, the rise velocity is expected to inversely scale with the fluid viscosity.
Therefore, to distinguish between a viscous sol and a gel requires long periods
of observation.

Bubble rise may still be a useful test for certain gels. When a sample is
heated, the bubbles tend to rise faster. Thus, for gels that form only upon heat-
ing, the trapping of bubbles may provide a stark contrast between sols and
gels. Likewise, techniques that are used to remove bubbles can serve as a
“quick and dirty” rheological indicator. For example, if gel samples are rou-
tinely centrifuged to remove bubbles, then the persistence of bubbles after
various extents of centrifuging (speed and duration) may offer a rapid qualita-
tive gauge of both the sol-gel boundary as well as the variation of yield stress
or gel modulus among different samples.

2.4. Other Methods

In principle, any method used to measure the yield stress can also be used
to devise a rheological criterion for gelation. The rheological literature reports
several inexpensive approaches to measure yield stress, most of which are
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(a) Motor drive

Air tight
plunger

SSs

support
tube

Yogurt

Fracture [~~~

%
(b) before

Figure 3. Extrusion of gel (yogurt) cylinders to measure their yield strength. A schematic of the
configuration used is shown in (a). When the extruded length exceeds Lmax, the gel fractures.
Images taken (b) before and (c) after fracture of the sample are also shown. (Reproduced with
permission from [4]. Copyright American Institute of Physics.)

variations on the themes explored above. For example, instead of tube inver-
sion, it is also possible to use an inclined plane, with the yield stress correlating
with the thickness up to which the sample stays intact on the plane [12].

A further variation on the inverted tube removes the influence of the
container walls [4]. Here, a sample is extruded through a tube (Figure 3),
exposing a piece of gel to gravitational tension. The maximum length L.«
at which the gel fractures can be correlated to the yield stress, in a manner
analogous to Eq. (2), as long as L, greatly exceeds the radius of the tube.
Figure 3 shows a demonstration of this test with a yogurt gel.

Finally, Boger et al. [13] also showed how to develop a “50 ¢ rheometer”
by utilizing the slump test. This method was originally used to determine the
flow properties of fresh concrete. Here, a cylindrical frustum is filled with the
sample and then the frustum is lifted off, allowing the sample to collapse under
its own weight. The difference between the initial and final heights (i.e., the
slump height) is inversely related to the yield stress.

3. Thermodynamics of Gelation: Sol-Gel Transition by
Calorimetry

A second approach for constructing gelator phase diagrams is using thermal
characterization techniques such as differential scanning calorimetry (DSC).
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Before we discuss this topic further, it is useful to briefly review the ther-
modynamics of gelation. The same topic is discussed in much more detail in
Chapter 1.

3.1. First- and Second-Order Phase Transitions

Is the sol-gel transition a first- or second-order process? There have been
many conflicting views on this issue, and we mention only the key points here.
First, let us distinguish between these two types of transitions [14].

First-order transitions are sharply defined — all molecules undergo the
transition in unison, provided there is sufficient thermal energy. Thus, quantities
that are first derivatives of the chemical potential w, such as the enthalpy H and
specific volume V, change discontinuously at the transition. Second derivatives
of w like the heat capacity ¢, (i.e., dH/dT) show a singularity (i.e., the system
has an infinite heat capacity at the transition temperature). First order transitions
typically proceed by a nucleation and growth mechanism and hence often
exhibit metastabilities arising from supercooling or superheating.

Second-order transitions, on the other hand, are “smooth”. The enthalpy H
and specific volume V change continuously, while the heat capacity c, shows
a discontinuity. In such transitions, the molecules begin to undergo changes
well before the transition temperature. The transition tends to be co-operative
(i.e., groups of molecules act in accord). As the transition point is approached,
the range of co-operativity increases, and this range or “domain size” diverges
at the critical point. Many properties of the system diverge through power
laws with respect to the distance from the critical point 7, (i.e., property ~
(T — T.)P). Second-order transitions occur by spinodal decomposition in the
unstable or spinodal region of the phase diagram. Between the binodal and
spinodal curves, the system phase separates via nucleation and growth, thus
allowing metastabilities to occur.

3.2. The Question of Gelation

In a DSC scan (Figure 4), the process of molecular gelation upon cooling
is often associated with an exothermic peak. Conversely, the process of gel
melting or dissolution upon heating is associated with an endothermic peak.
A sharp calorimetric peak indicates a discontinuous enthalpy change, implying
that the transition is first order. Guenet, in his book on polymer and biopolymer
gels [15], states that “in most cases, gel formation proceeds via a first-order
transition”. Note that the melting transition alluded to here does not correspond
to the melting point of the gelator itself — the latter typically occurs at much
higher temperatures.
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Figure4. DSC curves (heating, bottom and cooling, top) for the gelator dibenzylidene sorbitol
(DBS) in triethylene glycol. The numbers represent the gelator concentration in w/w. The dashed
lines are baselines used for the calculation of enthalpies. (Reproduced with permission from [16].
Copyright American Chemical Society.)

The melting peak for gelation, however, is often rather broad [5] or even
absent [17], suggesting that the transition may be weakly first-order or possi-
bly second-order. Support for the latter viewpoint arises from the power law
dependence of rheological properties in the vicinity of the gel point. Such
power laws also lend support to the idea of gelation as a percolative process
[1]. Percolation theory assumes that the gelator molecules assemble first into
small clusters, which then further assemble into a three-dimensional (3-D)
volume-filling network (a SAFIN). Thus, the cluster size or correlation length
increases in a power law as the gel point is approached. The divergence of the
correlation length is characteristic of a second-order process.

In the case of molecular gels, the experimental data can be rationalized in
the following manner [18]. It is assumed that the gelator molecules assemble
into fibrils, strands, ropes or other assemblies by a first-order process (i.e., with
a discontinuous enthalpy change). These assemblies then further link together



250 S.R. Raghavan et al.

to form clusters and ultimately the SAFIN. The cluster size diverges, as in a
second-order transition.

3.3. Calorimetry of the Sol-Gel Transition

In DSC, a sample cell and a reference cell are maintained at the same
temperature. The power supplied to raise the temperature of each cell at a con-
stant rate (e.g., 10° C/min) is recorded. This power is converted to a heat capac-
ity vs. temperature curve. The peak temperature in a heating curve corresponds
to the gel “melting” point 7, and the area under the peak yields the enthalpy of
gelation (melting). Figure 4 shows DSC curves for a sorbitol-based molecular
gelator in an organic solvent [16]. As the gelator concentration is increased, both
the melting temperature and the enthalpy of melting are observed to increase.
Note that there is some hysteresis in the gelation behavior, with the gel-to-sol
transition (melting) not coinciding perfectly with the sol-to-gel transition. Also
the peak is better defined in cooling curves rather than in heating curves.

3.4. Gelation Temperature vs. Gelator Concentration

Plots of the gelation temperature T, vs. gelator concentration ¢ are shown in
Figure 5a for a sugar-based gelator in two organic solvents [19]. Note that there
is an exponential increase of ¢ with T,. In turn this implies that an Arrhenius
plot of In ¢ vs. 1/T, will be linear, and this is nicely confirmed by Figure 5b.

(a) (b) e Diptemyletier
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£ oF. i ik ”
- : el
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Figure5. (a)Sol-gel phase boundaries for dibenzylidene sorbitol (DBS) in two organic solvents
determined by tube inversion. (b) The same data plotted in an Arrhenius-type plot. (Reproduced
with permission from [19]. Copyright Royal Society of Chemistry.)
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The above experimental result for 7, vs. c is well established for a wide
range of gelators, both molecular as well as polymeric. However, its physical
implication is still controversial. There are at least two models that can explain
such arelationship. First, the gel-to-sol transition can be interpreted as a melting
or dissolution of gelator crystals [14]. In that case, the gelator concentration
corresponds to the solubility of its crystals in an ideal solution at a temperature
T, and is given by the following equation [1, 19]:

i AH, 5

nc= RT, + constant &)
where R is the universal gas constant and A H,, is the enthalpy of fusion (melt-
ing) of the neat gelator. The above equation has been referred to as Schrader’s
equation [19] or the Schroeder-van Laar equation [17]. Note that this assumes
that the transition is first order. Eliminating the constant from Eq. (5) gives:

AH, [ 1 1
Inc = — - (6)
R \T, T,

Here T, is the melting temperature. Values of A H,, obtained via Eq. (6) are
typically comparable or slightly higher than values from DSC measurements
at the melting point of the gelator [19].

Anidentical form of Eq. (5) can be derived from very different assumptions.
Eldridge and Ferry [20] assumed that the gelation of biopolymers, such as
gelatin, is controlled by a pairwise crosslinking of biopolymer chains. The
crosslinking reaction is exothermic, and therefore one can write:

AH
Inc = + constant @)
g
Here, A H,, is the heat evolved in the crosslinking reaction. Once again, this
equation suggests an Arrhenius relationship from which one can obtain A H;.
Note, however, that gelation is considered here to be a second-order process,
which is in direct contrast to the assumptions inherent in Eq. (5).

4. Conclusions and Perspectives

In this chapter, we have described how the phase diagram for molecular
gelators can be obtained using simple, straightforward techniques. The phase
diagram is a plot of temperature vs. gelator concentration showing the location
of sol-gel boundari(es) as well as any multi-phase or lyotropic regions. The
first set of techniques involve application of rheological principles to detect
gelation. These include: (a) tube inversion; (b) falling sphere; and (c) rising
bubbles. Calorimetry studies are also useful in directly measuring the enthalpy
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of gelation (melting). The latter quantity can also be obtained by analyzing
an Arrhenius plot of the gelator concentration as a function of the gelation
temperature.

Among the rheology-based methods, tube inversion is by far the most
popular and convenient, and arguably also the least ambiguous. As a start-
ing point for studying gels, it is preferable to use tube inversion over falling
ball or other alternatives. If falling ball must be used, it is important to use a
heavy ball and a sufficiently large vessel in order to obtain a clean measurement.
Finally, where possible, the simple “tabletop” rheological methods should be
benchmarked using data from conventional rheometry.
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1. Introduction

Full characterization of liquid, semi-liquid, gel, or solid systems requires
direct, supramolecular-level information (i.e., images, which show how
molecules arrange to form clusters of various sizes and shapes). Cryogenic-
temperature transmission electron microscopy (cryo-TEM) is the method of
choice for obtaining such direct imaging of liquid or semi-liquid specimens,
thermally fixed into a vitreous or quasi-solid state. Cryo-TEM provides high-
resolution direct images of the assemblies in the system. Thus, it can elucidate
the nature of the basic building blocks that make up the systems, covering a wide
range of length scales from few nanometers to several microns. In addition,
coexistence of many different assemblies present in the examined systems is
quite easily observed in the micrographs. The interpretation of data cryo-TEM
produces is usually quite straightforward, not model-dependent. In contrast,
experimental interpretation data from “indirect methods”, such as scattering
techniques, is model dependent and is complicated when the system contains
more than one type of aggregate or a broad size distribution.
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In the case of molecular gels, the unique rheological properties are the result
of supramolecular aggregates. Those may be regular or irregular, homogenous
or very diverse. Thus, cryo-TEM is most useful to image the range of the nanos-
tructures present in those systems. In some cases, direct images provide the only
way to prove a suggested or a theoretically predicted model. That was demon-
strated for example in the case of the theoretically predicted branched micelles
[1], the shape of the “end-caps” of thread-like micelles [2, 3], and the exact
nanostructure and mechanism of formation of lithocholate nanotubes [4, 5].

While micrographs are most useful, at the same time one should keep in
mind that cryo-TEM is not a strictly quantitative technique. It is the technique
of choice to determine the structural building blocks of complex fluid systems,
but the quantitative data should be usually provided by other techniques, such
as small-angle X-ray scattering (SAXS) (see Chapter 11), small-angle neutron
scattering (SANS) (see Chapter 10), or nuclear magnetic resonance (NMR).
Another advantage of these scattering techniques is that they probe the bulk
of the system, not just a small sample of it; they thus provide a real statistical
average. However, in a very heterogeneous system, such an average may be
difficult to interpret. In addition, these techniques are “model dependent”; they
are not “observer-dependent”. In fact, the best experimental approach is to
apply cryo-TEM to collect data on the nature of the nano-building blocks of
the system, use that information to construct a physical model that is used to
interpret data from the above mentioned “indirect techniques”, and then check
whether those latter results agree with cryo-TEM images to rule out possible
artifacts.

Below we describe the basic aspects of cryo-TEM. That is followed by a
review of the applications of the technique to the study of gel and gel-like
systems. The interested reader will find more details about the technique and
its application to other systems in references [6, 7].

2. Cryo-TEM

To examine samples that contain high concentrations of liquids in the TEM,
it is necessary to lower in the vapor pressure to make them compatible with
the high vacuum in the microscope column, lower typically than 107 Pa. Also,
any supramolecular motion must be arrested to prevent blurring of the recorded
image. TEM specimens must be thin, not thicker than about 300 nm. Thicker
specimens give rise to inelastic electron scattering that deteriorates image qual-
ity. However, inelastically scattered electrons may be filtered out by electron
microscopes equipped with an in-column or post-column energy filter.

We can reduce vapor pressure and arrest supramolecular motion by either
“chemical” or “physical” (thermal) fixation. Chemical fixation involves addi-
tion of an alien chemical substance to the sample. Because microstructured
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fluids are very sensitive to changes in composition, addition of compounds
such as a stain or fixative, followed in some cases by a chemical reaction
between the fixative and the specimen, and often by drying the sample, may
alter the original microstructure of the studied system. That makes chemical
fixation unacceptable for the study of microstructured fluids. Hence, the method
of choice is thermal fixation (i.e., ultra-fast cooling of the liquid specimens into
a vitrified or quasi-solid state). This is achieved by rapidly plunging the speci-
men into a suitable cryogen. Because thermal diffusivities are larger than mass
diffusivities, thermal fixation is much more rapid than chemical fixation, and,
of course, eliminates the addition of an alien compound to the system.

The cooling rate needed for vitrification of water is on the order of
100,000 K/s, as estimated theoretically [8] and measured experimentally in
an actual specimen preparation set-up [9]. When cooling is too slow, hexago-
nal or cubic ice forms in aqueous systems, or other crystalline matrices may
form in non-aqueous systems. Such crystalline matrix formation leads to opti-
cal artifacts, to mechanical damage to the microstructure, and to redistribution
of solutes. Solutes are expelled from the growing ice lattice, and are deposited
either in the crystal grains or often at grain boundaries.

The high cooling rates needed for vitrification require very large surface
area-to-volume ratio. The geometry of choice is a thin film. Thin films (up to
300 nm thick, as stated above) are also required due to the limited penetra-
tion power of even high-energy electrons. High-resolution imaging requires
thinner samples. It should be emphasized that most direct-imaging vitrified
specimens display a wide thickness range. While microscopes operating at
200, 300 and 400kV, found in many universities and research institutes, are
capable of imaging specimens thicker than specified above, image interpre-
tation becomes increasingly more difficult with specimen thickness. It is the
high depth-of-focus of the TEM that leads to superposition of information from
many layers of thick specimens, all projected on the plane of the detector.

The cryogen needed to successfully vitrify the specimen has to be at a
low temperature, and well below its boiling point to avoid formation of a gas
film around the specimen during quenching; such a gas film acts as a thermal
insulator (the so-called Leidenfrost effect). The cryogen should also have a
high thermal conductivity. Liquid nitrogen is a poor cryogen because of the
narrow temperature range between its freezing and boiling. In contrast, liquid
ethane, cooled to its freezing point (—183° C) by liquid nitrogen, is the best
cryogen (its normal boiling point is about 100 K higher).

Anotherissue is the preservation of the nanostructure at precise conditions of
(especially) temperature and concentration. This cannot be achieved unless the
specimen is prepared in a controlled environment of the prescribed temperature
and atmosphere that prevents loss of volatiles (e.g., water vapor) from the speci-
men during preparation. This requires a so-called controlled-environment vitri-
fication system (CEVS). Several models are available, especially the relatively
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simple but very reliable systems based on that developed by Bellare et al.
[10] and modified by Talmon and co-workers over the years [9, 11], and the
automatic “Vitrobot” of the FEI company that was developed by Frederik and
co-workers [12]. The CEVS can be used from —10 to +70° C and with various
saturated or unsaturated atmospheres.

Cryo-TEM specimen preparation is performed inside the CEVS, where the
atmosphere is closed and controlled, from the outside. A small drop, typically
3to SuL, of a pre-equilibrated system is pipetted onto a perforated carbon film
supported on a TEM copper grid, held by tweezers and mounted on a spring-
loaded plunger. The drop is blotted by filter paper wrapped on a metal strip,
thus forming a thin liquid film supported on the perforated carbon film. After
blotting, the plunging mechanism is activated, a trap door opens simultaneously,
and the specimen is driven into the cryogen and vitrified. Finally, the vitrified
sample is transferred under liquid nitrogen to the “working-station” of a cooling
holder where it is loaded into the special holder and transferred in it into the
microscope. In some cases, a “bare grid” (i.e., a microscope grid not covered
by a perforated film) is used. More technical details can be found elsewhere
[6, 10].

The blotting of the specimen may be performed in a number of ways. The
simplest is wicking most of the liquid by simply touching the filter paper to
the edge of the grid carrying the drop. Viscoelastic fluids require blotting with
a shearing or “smearing” action. That temporarily reduces the viscosity of a
shear-thinning liquid, allowing the formation of a thin enough liquid film on
the support. Another way that can be performed either manually or, as in the
case of the Vitrobot, automatically, is to press two pieces of blotting paper on
the two sides of the specimen. That mode usually produces more uniform films.
The blotting process and the confinement of the liquid in a thin specimen may
introduce artifacts one should be aware of (see below). In addition to changes
of the nature of the nanostructure, distortions of large objects, and alignment
of slender “one dimensional” (rods or threads) or large “two-dimensional”
(sheets) objects may take place.

While the prepared specimen is still in the liquid form, one can keep it in the
controlled environment of the CEVS for some time. This allows the specimen
to relax, following shear and elongation it may experience during blotting [13,
14], or to undergo other processes directly on-the-grid. Such processes may
be chemical or physical reactions induced by different triggers, such as fast
heating [9, 11] or cooling [15], pH jumps [16], or gelation. Those processes
may be stopped at any intermediate stage by plunging the specimen into the
cryogen. By repeating the experiment a number of times, each time allowing
the process to proceed further towards completion, one can obtain a sequence
of vitrified specimens that give “time-sectioning” of the process. This protocol
is called “time-resolved cryo-TEM”. Several variations of the CEVS have been
built to facilitate such experiments [9, 11, 17].
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On-the-grid cooling (or, in rare cases, heating) is a straightforward way to
produce high-viscosity gel phases on the grid, starting with a low viscosity
precursor. An example, described in some detail below, is that of a high viscosity
lamellar phase formed upon cooling of a monoglyceride solution in olive oil.
Above 50° C, the system is a low viscosity liquid which can be easily made
into a thin liquid film in the properly controlled CEVS. The thin film is then
cooled in the CEVS to about 40° C, and the formed gel is vitrified. In such cases
one should use liquid nitrogen as the cryogen rather than liquid ethane, as the
latter is a good solvent for many organic compounds even at its freezing point.
Some systems, such as those containing glycerides, branched hydrocarbons or
aromatics, do not crystallize readily upon cooling, and thus can be vitrified
even in liquid nitrogen [18]. That is also true for aqueous systems containing
sufficiently high concentrations of glycols (>20%) [14].

An indirect route to cryo-TEM is freeze-fracture-replication (FFR). This
technique involves freezing the specimen (the specimen is larger than that of
direct imaging cryo-TEM; thus in most cases vitrification is not accomplished),
fracturing the frozen specimen, and preparing a metal replica of the fracture
surface by vapor deposition. First, a heavy metal is deposited at an angle of 45°
or less to the horizon, to enhance contrast (“shadowing”), and then a carbon
layer is added for mechanical stability of the replica. Following replication, the
sample is melted, the replica washed, dried, and imaged in the TEM at room
temperature. The entire process of fracturing the specimen and replication is
carried out in commercially available systems. Fast cooling may be carried out
in the CEVS to allow quenching from given, well controlled, conditions [19].
FFR is most useful to examine high viscosity systems, or systems containing
large particles that cannot be accommodated in the thin specimens of direct-
imaging cryo-TEM; in both cases, direct-imaging cryo-TEM is not practicable.
Of course, fine details or fine particles can be imaged by the technique. In fact,
one early success in imaging a network structure of molecular organogel was
achieved by applying the FFR technique in the study of a steroid/cyclohexane
physical gel by Wade et al. [20]. While the technique is excellent to complement
direct imaging cryo-TEM [4], it has lost popularity in the last two decades and,
regrettably, is used in only a few research laboratories.

To prevent warming, which may lead to water crystallization and rearrange-
ment of material, the vitrified specimens must be kept under liquid nitrogen
until they are examined in the microscope. In typical cryo work, transfer of
specimen into the microscope is carried out in a “cryo-holder”, a special spec-
imen holder that can be cooled by liquid nitrogen to —165° C or lower.

Low inherent contrast of cryo-specimens and their sensitivity to electron-
beam radiation-damage make them difficult to image. One has to take these
factors into account and optimize the conditions to extract as much information
as possible from the specimen. For most applications, an acceleration voltage
of 120 to 200kV is used. The lower acceleration voltage offers better contrast,
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while the higher affords better penetration power, and, in some cases, better
resolution. Because the cryo-specimen is the coldest spot in the vacuum sys-
tem and could collect contaminants by condensation, the vacuum system of the
microscope must be very clean. An “anti-contaminator”, a device made of large
liquid nitrogen-cooled surfaces installed in the microscope column as close as
possible above and below the specimen, must be used to trap molecules of
residual volatiles, preventing them from condensing on the specimen. Images
are recorded by cooled slow-scan CCD cameras. Such cameras offer easy
use, with straightforward low-dose operation and immediate post-microscopy
image processing. Such features are vital for the study of cryo-specimens.
Low electron dose exposure, not more than 10 e~ /A2, and possibly lower, is
applied to minimize electron-beam radiation damage. Phase contrast (equiva-
lent in principle to phase-contrast light microscopy, namely converting phase
differences to amplitude differences in image formation) is regularly applied
to enhance contrast by defocusing of the microscope objective lens. This must
be applied with care to avoid loss of resolution and introduction of imaging
artifacts.

The complications induced by the low inherent contrast and sensitiv-
ity of most molecular assemblies to electron-beam radiation damage are
demonstrated in Figure 1 of a cubic phase of Pluronic127TM (F-127). F-127 is
a commercial triblock copolymer, poly(ethyleneoxide)-poly(propyleneoxide)-
poly(ethyleneoxide) (PEO-PPO-PEO), that, at low polymer concentrations,
forms spheroidal micelles, ~8-9 nm in diameter, consisting of a bulky hydrated
shell and a fairly dense core. As the concentration is increased (>12.5%) and
the micellar volume fraction grows, the micelles close-pack into a body cen-
tered cubic lattice, and gel. In cryo-TEM images of a 15% F-127 sample, no
microstructures or texture are observed at regular electron doses (~10 e~ /A?)
used in examination of cryo-TEM specimens because of the low inherent con-
trast of the PEO and PPO polymer units (Figure 1, region A). At twice the expo-
sure, the fine texture of the ordered cubic phase emerges (Figure 1, region B).
It was confirmed by a fast-Fourier transform (FFT) that was easily applied to
the digitally-recorded image. A third exposure of the concentrated sample to
the electron beam leads to bubbling and complete distortion of the structure,
as seen in the lower right part of the image (region C).

3. Cryo-TEM Investigations of LMOG Gels

In the following sections, we review direct-imaging and FFR studies of
various gels formed by self-assembly and interactions between synthetic and
natural biopolymers, lipids, and surfactants, manifested, as described below,
in rich morphology and structure. Cryo-TEM has not been used extensively
yet to study strictly “LMOG gel” and SAFIN systems. However, we feel that
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Figure 1. Theeffect of beam-exposure on the texture of low-contrast cubic mesophase of F-127.
At low exposures of ~10e™/ A2, no texture is observed (region A). At twice this exposure, the
fine texture of the ordered cubic phase appears (region B), and, at 3-times the electron dose, the
structure is completely destroyed. Bar = 100 nm.

the examples shown here will be of interest to those who consider applying
cryo-TEM. They illustrate potential applications of the technique, the difficul-
ties associated with applying it to high-viscosity systems, and some routes to
overcome those obstacles en route to successful direct imaging.

Freeze-fracture and direct-imaging cryo-TEM were used to study the
viscous gel and diluted gel solutions of dioctadecyldimethylammonium
chloride (DODMAC), which formed upon heating monohydrate crystal slurries
to just below the Krafft temperature while stirring [21].

Typically, round liposomes and vesicles of up to several microns in diameter
were observed in the diluted samples at 25° C, but some vesicles and small lens-
like objects (suspended in solution or encapsulated in vesicles), with sharp
corners or cusps, were also found (Figure 2A). Similar structures were seen
in FF replicas of the viscous gel phase (Figure 2B). In contrast, mostly lens-
like structures and multilamellar angular vesicles were found upon vitrification
from 55° C, with a rather uniform spacing between membranes. Upon shearing
at room temperature, mainly round and much smaller multilamellar vesicles
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Figure 2. Cryo-TEM images of DODMAC dispersed in water: (A) direct-imaging micrograph
of a 2% dispersion sheared at 50,000 s~ to reduce vesicle size; (B) an FFR image of a 5%
gel-like dispersion. Both images show the same building blocks, mainly multilamellar vesicles
of a wide size-distribution, although the 2% solution flows freely while the 5% sample is in the
gel phase. Bars = 100 nm.

were found, encapsulating both round and lens-shaped structures. The decrease
in the vesicle size was coupled to a decrease in the viscosity. Upon aging, the
vesicles collapsed to form a flat, layered structure, with an interlayer spacing
of about 4 nm.

Vesicular phospholipid gels were also prepared by Kaiser and co-workers
[22] for encapsulation and release of anticancer drugs. The gels were formed
from mixtures of hydrogenated soy phoshpatidylcholine and cholesterol at
different compositions by high-pressure homogenization. Small lens-like
structures, similar to those seen in the DODMAC system, were found, free
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in solution and entrapped within round vesicles. The membrane defects of the
small, free lens-like structures (< 40 nm) were used to explain the fast initial
drug release.

Maitra and co-workers [23] synthesized tripodal bile acid derivatives that
act at low concentrations in the presence of organic cosolvents (such as acetone)
to form transparent thermoreversible and thixotropic gels. Cryo-TEM images
of the vitrified gel showed a well-developed intertwined network, made of
very thin flat ribbons, 2 to 5 nm wide, that formed by one-dimensional growth
of the tripodal bile. Twisted ribbons were also identified by cryo-TEM at the
early stages of gel formation of hydrogelators of the bis-urea dicarboxylic acids
family in the presence of CaCl, in Tris buffer [24]. The width of the ribbons
ranged from 15 to 40 nm; the periodicity of the twisting was from 120 to 330 nm.
The authors suggested that the ribbons are responsible for the gel formation,
by becoming entangled, then trapping and immobilizing solvent via surface
tension.

Viscoelastic solutions of lithocholic acid (LCA) form in an extended range
of concentrations at basic pH. Helical ribbons and several microns long, stiff
single-walled nanotubes, ~52 nm in diameter and ~1.5 nm thick, were identi-
fied by cryo-TEM in dilute LCA solutions [5]. Recently, FFR, direct-imaging
cryo-TEM, and SAXS studies were performed to elucidate the early struc-
tures leading to the formation of the uniform tubes (Figure 3). Direct-imaging
cryo-TEM images showed that less than 2 min after initiating the process by

Figure 3. Direct-imaging and FFR images (A and B, respectively), of LCA nanotubes.
(A) 0.1% LCA in 0.05N NaOH, 6 min 50s after mixing the components. Long, single- and
multi-walled nanotubes are found at the early times of nanotubes formation. (B) 1% LCA in
0.1N NaOH, 6 days after mixing. Notice the similarity in dimensions (diameter and length) in
the two images of the complementary cryo-TEM methods. Bars = 100 nm.
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mixing LCA powder in aqueous NaOH solution, single- and multi-walled
tubules of different diameters were formed [4]. Other intermediates, including
helical ribbons and thin long fibers, were also observed within the first 30 min.
The multi-wall structures were probably rather short-lived intermediates; after
one hour they were no longer observed. Upon heating to 62° C, the tubes
disintegrated and fibrillar aggregates, hundreds of micrometers long and resem-
bling some of the intermediates found at the early times of the assembly, were
found [25].

A comparative study on the assembly of the chiral amphiphile,
N-dodecanoyl-(D- and L-) serine, under reversed polarity conditions was per-
formed by Boettcher and co-workers [26]. Aqueous and toluene solutions were
cooled from 110° C to room temperature to give gels, and then vitrified in lig-
uid ethane and nitrogen, respectively. Multilamellar vesicles and tubules of
about 1 mm in length, 80 nm in diameter, and inner channels of 25 nm, formed
in toluene. Similar tubes but with diameters in the range of 80-139 nm were
found in buffered solutions. Interestingly, the curvature did not change upon
shifting from toluene to water, but much longer helices of up to 10 mm in length
formed in water. In addition, many multilayered twisted ribbons of different
widths were observed in water.

A gel-like phase consisting of microns long, overlapping, threadlike
micelles was found during solubilization of small, unilamellar vesicles of
phoshpatidylcholine-phosphatidic acid mixtures with the nonionic detergent
dodecyl maltoside (DOM) [27]. Other intermediate structures observed during
the solubilization process, prior to the micelles, include open and intact large
unilamellar vesicles, and bilayer fragments. Upon solubilization of biological
membranes (sarcoplasmic reticulum) by DOM, similar long micelles were seen,
but they were less numerous and progressively broke down. In reconstitution
studies by detergent removal, a slow transition through the gel-like phase led
to the formation of multilamellar liposomes, while homogeneous unilamellar
vesicles formed upon rapid transition. Another gel phase was identified upon
addition of the bile salt, sodium desoxycholate (NaDOC), to cetyltrimethylam-
monium chloride (CTAB). This system has been studied by cryo-TEM, but
the experiments were limited to the low viscosity conditions within the micel-
lar phase [28]. Various structures were observed including mixed spheroidal
micelles, flexible long and interconnected threadlike micelles, and short rod-
like structures.

Schneider and co-workers [29], designed a 20-residue peptide that self-
assembles in a pH-dependent manner to construct a chemically and mechan-
ically responsive hydrogel. Intermolecular folding of this peptide into a
B-hairpin is only permitted in basic aqueous solution (at pH >9), while
acidification of the solution results in B-hairpin unfolding, and dissolution
of the hydrogel. By cryo-TEM, they showed a network scaffold in the
assembled conformation, which resembles the networks found in surfactant
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systems. They also studied the gelation behavior of several amphiphilic diblock
copolypeptides, 200 amino acids long, of which the poly(L-lysine) or poly
(L-glutamic acid) hydrophilic block made up 80 or 90% of the structure, and
the hydrophobic block was made of poly(L-leucine) or poly(L-valine). These
copolypeptides form gels at low concentrations [30, 31]. The 90:10 mol%
hydrophilic:hydrophobic group polypeptide was studied at concentrations up to
5 wt.%. Cryo-TEM images showed a gel scaffold consisting of interpenetrating
membranous structures, several hundreds of nanometers long at all the concen-
trations studied. Within the cellular scaffold, particularly in the more diluted
gels (1 and 2%), the lateral distances observed between neighboring cell mem-
brane walls were larger than 100 nm [30]. In the case of the 80:20 polypeptide,
a thin film of ~100 nm of the hydrogel was pre-formed, and then applied to the
grid and vitrified. Cryo-TEM images showed the polypeptide gel was highly
porous, made of membranous networks surrounded by significant amounts of
water. Based on the appearance of the edges of the hydrogel matrix, it was
concluded that the polypeptide associated throughout the sample until there
was no free peptide in solution [31]. Hartgerink and co-workers, [32] designed
a self-assembling peptide-amphiphile (PA) to prepare a nanostructured com-
posite material that, upon mineralization, recreated the structural orientation
between collagen and hydroxyapatite observed in bone. At low pH and con-
centrations above 2.5 mg/mL, PA formed birefringent gels in water which by
cryo-TEM were shown to be a network of fibers about 7.6 nm in diameter and
several microns in length.

The globular phosphoglycoprotein ovalbumin unfolds in solution upon
heating. During unfolding, part of the hydrophobic regions are exposed, and
denaturation is followed by aggregation, and, finally, gelation. At pH 7 and
low ionic strength, ovalbumin self-organizes into linear cylindrical structures.
The effect of electrostatic interactions on the gelation process at this pH was
investigated by Weijers ef al. [33], but with cryo-TEM they only studied the
dilute solution. After heat treatment, long, flexible structures, about 57 nm in
diameter and containing only very few branch points, were seen at low ionic
strength. At higher ionic strength, but still below the gelation concentration,
densely branched clusters were found. The authors concluded that the aggrega-
tion at this pH was essentially the same at different ionic strength, but branching
is inhibited by electrostatic repulsions.

Gelation, precipitation, and re-dispersion may occur in mixed protein-
surfactant systems. Khan and co-workers studied the gelation of a similarly
charged system composed of lysozyme (a small ellipsoidal protein) and SDS
(sodium dodecyl sulfate) [34]. In the absence of surfactant, small globular
structures formed at low lysozyme concentrations. In the presence of low SDS
concentrations, within the 3-phase region of precipitate, gel, and solution, short
flexible aggregates, about 50 nm in diameter, were found to coexist with large
sheet-like domains. A variety of other structures were identified at increasing
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SDS concentrations near and after full redissolution of the precipitate, and at
various total protein concentrations. Those structures included small globular
assemblies and long rod-like (10 nm thick and 500-1500 nm long) intercross-
ing objects, termed star-like structures. No change in structures was observed
upon aging for several weeks. Similar phase behavior, namely coexistence of
precipitate, gel, and solution over a wide concentration range is exhibited by
the system composed of oppositely charged ovalbumin and DOTAC (dode-
cyltrimethylammonium chloride) at pH above the isoelectric point [34]. In that
system, flexible rod-like structures, which may constitute the gel phase, were
identified. Sheet-like structures were not seen in the cryo-TEM images, but the
authors found indications of large structures by light microscopy, suggesting
the large objects may have been expelled from the cryo-TEM specimen during
sample preparation (a known phenomenon in cryo-TEM). Similar structures
were found in the transparent and bluish phases of the oppositely charged
DOTAC-BSA (bovine serum albumin, prolate ellipsoidal structure) system.
Neither precipitate nor gel was observed in that system up to very high protein
concentrations.

Kappa-carrageenan (KC), a linear sulphated polysaccharide extracted from
red algae, is often used in the food industry as a gelating agent. Thermore-
versible gelation of KC occurs rapidly upon cooling, possibly as a result of a
coil-to-double helix transition. KC may also be gelated isothermally (at constant
ionic strength) by dialysis against “gel-inducing” salts such as KCl and CsCl
[35]. Early cryo-TEM studies showed stiff microfibers several hundred in nm
long and a few nm thick in the presence of KCI [36]. They were interpreted as
individual KC helices. In a series of papers, Piculell and co-workers used the
isothermal gelation approach to study the structure of intact and ultrasonically
degraded KC in solution and towards the gel phase [37-39]. Using mixtures
containing Nal and Csl salts at a constant salt concentration of 0.1M, they
tuned the helix-helix interactions and the tendency of the helices to aggregate.
Below Csl fractions of 0.4, no structures were observed. At higher concen-
trations where the viscosity increases, short and rigid “super-helical rods”,
~ 300-400 nm long and less than 5 nm thick, were found by cryo-TEM. Those
structures, which were arranged in bundles of 2-8 fibers, aggregated into larger
bundles and formed clusters and bigger aggregates as the amount of cesium salt
was further increased [37, 39]. These findings indicated that the network for-
mation occurs not through the double-helix formation itself, but only through
association of helices. Additional experiments were conducted in the presence
of locust bean gum (LBG), a plant polysaccharide having a random-coil struc-
ture in solution that considerably increases the gel strength of KC and reduces
the minimum concentration for gelation. Cryo-TEM images showed thicker,
polydispersed, and more flexible fibers in the presence of LBG, suggesting that
LBG stabilizes the superhelical rods, and shifts the transition to a lower Cs
content [38].
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Amylose and amylopectin are the two main components of starch. Amylose
is a linear polysaccharide, while amylopectin consists of short, highly branched
amylose segments. Aqueous solutions of these two polysaccharides are unsta-
ble, and upon cooling or aging tend to gelate, precipitate, or crystallize, depend-
ing on their concentration and molecular weight. The mechanism of amylose
gelation has been attributed to a transition from random coil configuration to
a phase-separated gel-like network with polymer-rich and polymer-deficient
regions. Cryo-TEM was used to characterize the behavior of dilute amylose
and amylopectin aqueous solutions as a function of time, and to determine
the dimensions and shape of the elementary structures constituting the net-
works at different steps of aggregation and crystallization [40]. Precipitation
of amylose appeared as a continuous process involving network clustering of
semicrystalline units of 10-15nm in size into branched networks, followed
by slow condensation of the networks into 300-500 nm domains, and later
of thick semicrystalline aggregates, roughly composed of polygonal blocks.
Amylopectin followed a similar pathway, and formed similar networks made
of necklace-like substructures. However, those networks remained stable for
several months and did not undergo further aggregation. It was suggested that
long-range rearrangement of the crystallites into large aggregates was hindered
by the branched configuration of the molecules.

Poly(ethylene glycol) (PEG) grafted with poly(lactic acid-co-glycolic acid),
PEG-g-PLGA, was studied as a potential injectable drug delivery system. Low
concentration aqueous solutions have low viscosity and flow freely at room
temperature, but aqueous solutions with high concentrations of PEG-g-PLGA
undergo a temperature dependent sol-to-gel transition [41]. In that study, the
authors showed by cryo-TEM that micelles about 9 nm in diameter exist at low
polymer concentrations and at 23.7° C.

Gels also formed upon absorption of PEG onto clay particles. At low poly-
mer concentrations, aggregation was inhibited by steric interactions, while at
high polymer and clay content the particles bridged to form gels. Recent cryo-
TEM studies revealed the polymer-clay gels contain structures on multiple
length-scales. Direct-imaging cryo-TEM of dilute pure clay solutions showed
individual clay platelets, about 1 nm thick [42]. In the polymer-clay gel, charac-
terized by FF, a fine texture of a network-like structure made of interconnected
strings, ~4 nm thick, was observed. These structures were interpreted as com-
plexes consisting of the 1 nm clay objects with absorbed polymer layers of about
1.5 nm on each side, in agreement with values obtained from the dilute solutions
and scattering data. Network formation was explained by bridging of neighbor-
ing clay particles by the polymer chains. These polymer-clay complexes extend
to microns through formation of fibrous polymer-clay bundles, thus forming
macroscopically homogeneous, transparent, shear-thinning hydrogels.

Paulsson and Edsman [43] studied the controlled-release of charged drugs
from gels by adding surfactants that interact with both the drug and polymer
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matrix. They investigated different types of gels, surfactants, and drugs, and
characterized the drug-surfactant structures in polymer-free solutions and in
gels by cryo-TEM. Unilamellar and oligolamellar vesicles, up to several hun-
dred of nm in diameter, and open membranes, formed at physiological salt
conditions in mixtures of oppositely charged diphenyldramine and SDS at a
1:2 drug:surfactant ratio. At half the SDS concentration, the system phase-
separated, while at double the SDS content the viscosity increased, and long,
highly branched threadlike micelles, similar to those found in surfactant/salt
systems and forming a bicontinuous structure, were observed. Vesicles were
found in mixtures of other drugs with SDS and negatively charged drugs with
oppositely charged surfactants. Vesicles of similar sizes were also observed
upon mixing 1:2 diphenyldramine and SDS in the gel, but they were facetted
as a result of interactions with the polymer. Such vesicles were seen for the
same solution composition of alprenolol and SDS, but, in the presence of the
polymer C1342 (a covalently crossed-linked poly(acrylic acid) hydrogel with
lipophilic modification), only very small vesicles, up to 50 nm in diameter,
were found.

Mixtures of cationic polyelectrolytes and net negatively charged catanionic
vesicles made of SDS and DDAB (didodecyldimethylammonium bromide)
also show a wide region of phase separation containing solution and precipitate,
and a polymer-rich gel region [44, 45]. Addition of JR-400 to the small catan-
ionic vesicles within the bluish solution region resulted in the formation of
huge concentric multilamellar vesicles coexisting with the small unilamellar
and bilamellar vesicles. In the vicinity of the precipitation boundary facetted
vesicles, open membranes, and disc-like aggregates became dominant, and
then precipitation occurred. Addition of LM200 (a hydrophobically modified
polymer) induced comparable changes, but at different ratios. Also, the vari-
ety of coexisting structures increased in the presence of LM200. Clustering
of small vesicles suggested that the hydrophobic side chains of LM200, bear-
ing the charge, anchor to the vesicle bilayer and cross-link them into possibly
vesicle-polymer networks, though the polymer chains were not imaged. In the
highly viscous polymer-rich phase and the gel phase, where excess of polymer
charge existed, open bilayers and large membrane fragments, as well as disc-
like structures that became dominant at higher polymer concentrations, were
observed. Upon further addition of polymer, small elliptical vesicles reformed.
Overall, an increase in the mean curvature was found with increase in the excess
of polymer charge.

Mixing the oppositely charged surfactants, SDS and DOTAC, with the non-
ionic hydrophobically modified hydroxyethyl cellulose (HMHEC) resulted
in the formation of completely different structures [46]. Here, the viscos-
ity increased with increasing DOTAC molar fraction at a constant polymer
concentration, reflected structurally in a transition from spheroidal micelles
to a structure of discrete micelles that were probably bound to (the invisible)
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polymer organized in a repeating cell-like pattern, as shown by cryo-TEM. At
high DOTAC concentrations, cell-like structures coexisting with unilamellar
and multilamellar vesicles were seen by cryo-TEM; vesicles of up to several
microns in diameter were detected by light microscopy.

While the polymer interacts with catanionic vesicles in the SDS/DDAB/JR-
400 system discussed above, the interaction is between the polymer and a
micelle-forming surfactant in SDS/JR-400 mixtures. Three distinct zones were
identified with increase in the surfactant level, including a clear solution at low
SDS concentrations and excess of polymer, precipitation and formation of a
clear non-viscous solution and a gel-like phase around charge neutralization,
and resolubilization at excess SDS, characterized also by a viscosity increase.
In the presence of low SDS levels, mainly membranous structures were found,
including bilayer fragments, small vesicles and disc-like aggregates [47]. Large
aggregates of spheroidal and elongated micellar structures, disc-like structures,
and a few vesicles were found in the turbid solution near the precipitation zone.
At a 1:1 charge ratio, large globular and elongated flocs were found by both
cryo-TEM and light microscopy. No structures were found in the supernatant
at the precipitation zone (2:1 surfactant:polymer charge ratio), but a variety
of structures were observed after resolubilization, including vesicles, disc-like
and thread-like objects that possibly contributed to the increase in the viscosity.
When resolubilization was completed, only spheroidal micelles were seen,
probably free SDS micelles with only little interaction with the polymer, which
was fully neutralized by SDS under those conditions.

In another anionic surfactant/cationic polyelectrolyte system, made of SDS
and PDAC (poly(dialkyldimethylammonium chloride)), a variety of nano- and
micro-particles were found upon changing the SDS/PDAC molar ratio [48].
Below the critical micellar aggregation of pure SDS in aqueous solutions,
large domains of a well-ordered phase, with spacings of ~4 nm, were found.
Based on the images, and supported by SAXS data, the authors concluded
that the ordered regions are of a hexagonal liquid crystalline phase of SDS
that formed by screening of electrostatic interactions by the polymer charges.
Small spheroidal micelles coexisting with particles of several tens of nm were
observed in the solubilization domain. Many particles were facetted, with
short threadlike micelles emerging from their surfaces. The size of these com-
plexes decreased, and they became less numerous, as the solubilization process
advanced by increasing the SDS/PDAC molar ratio, although complete solubi-
lization was not reached and some (probably metastable) complexes coexisted
with spheroidal micelles at all the conditions studied.

Viscous phases often form in surfactant solutions upon increasing the surfac-
tant concentration or temperature, adding salt to charge surfactants, or varying
the molar ratio between the components in mixed surfactant systems. In some
cases, a sharp rise of several orders of magnitudes in the viscosity was reported,
followed by a strong decrease to almost the viscosity of water [49, 50]; in a few
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instances, the formation of a second viscosity peak was also found [49]. The
viscosity increase was correlated to micellar growth, and the viscosity decrease
was explained by a structural transition from linear to branched micelles and
saturated networks [51]. These explanations are based primarily on the rheo-
logical measurements because direct structural information of such systems is
still limited due to difficulties in preparing thin vitrified films of highly-viscous
phases.

Early cryo-TEM studies by Clausen et al. [52] showed a transition
from spheroidal to long, flexible micelles of cetyltrimethylammonium bro-
mide and chloride surfactants at increasing salt concentration. More recently,
Bernheim-Groswasser et al. [2] showed a gradual transformation from
spheroidal micelles, existing at low surfactant concentrations, to long, thread-
like micelles and then to elongated branched micelles and a saturated networks
in aqueous solutions of the gemini (dimeric) surfactant, 12-2-12 (dimethylene-
1,2-bis(dodecyl dimethylammonium bromide), at increasing concentrations.
Vesicles were found in the viscous phase of the analogue hybrid fluorocar-
bon/hydrocarbon gemini surfactant C§C4—2—C§C4 [53], while saturated stiff
networks were observed in the hybrid C§C4—2-12 dimer. It was further shown
that after phase separation of C5C4-2-C5Cy and 12-2-12 mixtures, entangled
threadlike micelles existed in the 12-2-12 rich phase (upper phase), while
vesicles formed in the lower viscous phase contained mainly C§C4-2-CEC,y.
Other intermediates, including ribbons, open bilayers, small rings, and linear
micelles, were observed depending on the mixing ratios between the various
components [53].

Corce and co-workers [54] investigated the effect of added salt in the
EHAC/KCI system, and correlated the microscopy findings to the rheologi-
cal curve. Cryo-TEM images showed a transition from spheroidal micelles
in the absence of salt to linear elongated micelles at low KCI concentrations
(below the concentration of the viscosity peak), and to a network consisting of
3-fold junctions of branched micelles at compositions above the concentration
of the viscosity peak. Linear and branched micelles were also shown by cryo-
TEM in mixtures of CpClO;/NaClO3 (hexadecylpyridinium chlorate/sodium
chlorate) [13]. However, folded and crumpled bilayer fragments were also
found frequently in the vitrified samples. They were explained as long-lived
intermediate structures that formed on the grid during specimen preparation
by the strong shearing forces applied during blotting and formation of the thin
films [13].

A peak in the viscosity vs. surfactant molar ratio curve was also reported
for a system composed of the surfactant C128G1 (n-dodecyl-B-D-gluco-
pyranoside) in the presence of increasing SDS concentrations, above 40° C [55].
Our cryo-TEM studies [56] revealed a continuous transformation from a
lamellar phase in the absence of SDS, through saturated micellar networks,
to a micellar phase of spherical and short threadlike micelles, upon gradual
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Figure 4. Cryo-TEM images of C128G1/SDS mixtures, at a 5% constant total surfactant
concentration and increasing SDS fractions equal to 0.07 (A), 0.14 (B) and 0.2 (C). Panels (A)
and (B) relate to samples of comparable viscosity found below and above the viscosity peak
concentration, respectively. Both images show well-developed networks made of elongated
branched segments and closed rings. The network in (A) is saturated, while in (B) some free
rings are also observed, but not micellar endcaps. At low viscosities (~0.01 Pa S, panel C)
micellar endcaps appear, although interconnections between micelles are still frequent. (D)
Threadlike and spheroidal micelles coexist at high SDS content. Arrowheads in B and C point
to 3-fold junctions (white), and rings (black). Arrows point to micellar segments connected to
rings (white), and micellar endcaps (black). Bars = 100 nm.

increase in SDS levels. In this system, however, saturated networks of differ-
ent topology exist on both sides of the viscosity peak (Figure 4). At low SDS
content, and throughout the region of concentrations below the viscosity peak,
the network was made of multiple micellar segments that emerge typically from
small, closely packed and connected rings (Figure 4A). At concentrations above
the viscosity peak, where theoretically linear micelles should exist, a micel-
lar phase of well-developed networks, consisting typically of 3-fold junctions,
was found at high and medium viscosities. At high viscosities, the network was
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saturated, while at medium viscosities individual rings were observed occasion-
ally, coexisting with the connected micelles (Figure 4B). Upon further addition
of charges, the number of junction points decreased and the number of micellar
endcaps increased, but connected micelles were observed even at viscosities
comparable to those of water (Figure 4C). Eventually, at much higher SDS con-
tent, linear thread-like assemblies formed and coexisted with globular micelles
(Figure 4D).

Pure olive oil can be transformed into a butter-like spread (i.e., a “gel”) by
adding a sufficient amount of a monoglyceride. This is, of course, aphenomenon
of interest to the food industry, and is behind the water-free olive-oil spread
of the Eger Company of Israel. The product cannot be made into thin liquid
films at room temperature and it melts into a low-viscosity liquid above 60° C.
To directly image the nanostructure of this gel, we melted it at about 60° C,
prepared cryo-specimens in a CEVS kept at the same temperature, cooled the
grids to 58° C in the CEVS, and quenched the samples in liquid nitrogen. Olive
oil is vitrified even in that rather poor cryogen. Figure 5 shows an example
of such cryo-TEM images. Arrows point to stacks of lamellae. They have
sufficient contrast only when positioned parallel to the electron beam. When
they are positioned perpendicularly to the beam, there is insufficient contrast

Figure 5. Cryo-TEM image of 7% monoglyceride in olive oil vitrified in the gel phase, from
58° C. Arrows point to stacks of lamellae that are parallel to the electron beam. Bar = 50 nm.
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to make them visible; thus, much of the field-of-view does not show lamellae.
That the gel phase is indeed made of small liquid crystalline domains was
verified by SAXS and by light microscopy [15].

4. Conclusions and Perspectives for the Future

While the applications of direct imaging (“real-space”) methods to eluci-
date the nanostructure of LMOG gels have been so far rather limited, recent
technical development in cryo-TEM make the technique much more applicable
for the study of those systems. Perhaps the most important development is the
wide availability of reliable cooled-CCD cameras. Those cameras make low-
dose imaging, vital for gel systems applications, much easier. Higher format
cameras (4 mega-pixel, at least), and lower prices (they are still not cheap, but
prices are expected to continue to fall) make them the tool of choice to record
high resolution images that can be easily digitally processed. The great chal-
lenge when gels are concerned is still specimen preparation. We expect more
on-the-grid gelation experiments to be used, applying either “home-built” or
commercial CEVS-type systems. FFR, regrettably a “dying art”, should be
“revived” and used more for imaging high-viscosity systems.

Scanning probe microscopes, such as the atomic force microscope (AFM),
are also potentially very useful. Many can be operated on liquid and semi-
liquid systems under controlled temperature and humidity in operation modes
that are minimally destructive to labile systems. Thus, we may expect to see
clear images of gel systems emerge from these microscopes, too. A key to
the success of this direction will depend on development of techniques by a
“community” focusing on imaging this class of materials.
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1. Foreword

The present chapter is not a treatise on neutron scattering but a guide for
applying the small angle scattering technique to the original materials that are
molecular gels (i.e., mostly those containing low molecular mass organic gela-
tors (LMOGs), although some containing inorganic gelators are also known).
All details and rigorous mathematical formalisms will be found in specialized
collections. Classical demonstrations are not detailed here except for some basic
models, such as the rod-like and helical structures so as to take into account
both their academic interest and their high level of occurrence in real systems.
Specific hints are also given to prepare a classical experimental program, and
guidelines for data analysis are proposed in the context of Self-Assembled FIb-
rillar Networks (SAFINs) that form the solid-like part of molecular gels. Up
to now, examples of structural investigations using the Small Angle Scatter-
ing (SAS) technique are more numerous with molecular organogels than with
hydrogels. There is growing interest in hydrogels, motivated by their potential
biological applications and utility in nanosciences. Selected practical illustra-
tions are presented. Prospective digressions are included for fundamental issues
that are usually not treated in detail. Thus, chirality, heterogeneities, kinetics,
ionic interactions, and structure factors are aspects for which efforts expected
from theoreticians and experimentalists are clearly needed for a satisfactory
description of the scattering by molecular gels.

2. Introduction

For more than two decades, the SAS technique has been shown to be a
very powerful tool for the investigation of structures of a wide variety of col-
loidal systems. Photons (from infrared to X-rays), electrons and neutrons can be
used to probe the structure of matter. They provide complementary information
based on their interaction with matter. The interaction of X-rays with electrons
in molecules is electromagnetic while the nature of the interaction of an electron
beam is electrostatic. Neutrons interact with atomic nuclei through short-range
strong nuclear forces. Both X-rays and neutrons are frequently used to study
the molecular gels [1]. Light scattering (SALS) can be used for a few micel-
lar gels with appropriate optical properties. Unfortunately, many SAFIN gels
are more or less turbid, depending upon the concentrations, and thus may not
be suited for SALS studies. A supplemental interaction (not developed here) is
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available with neutrons through the dipole-dipole interaction between the mag-
netic moment of the neutrons and that of unpaired electron(s) when present in
the system. Other techniques to probe the structures at the nanoscopic scale of
fragile systems, such as molecular gels, are Transmission Electron Microscopy
(TEM) and Atomic Force Microscopy (AFM), for instance. Nevertheless, SAS
has the great advantage of using samples as they are and provides immediately
a picture in the reciprocal space that is a statistical average over the macro-
scopic irradiated volume. Relations between reciprocal and real space structural
features in molecular gels are presented here.

Standard SAS equipment usually gives access to 3 decades in reciprocal
space (0.001 A='—1 A1), corresponding to ca. 6000-6 A sizes of the scatterers
in real space. Smaller scattering angles are accessible with special spectrom-
eters (ultra-small angle diffractometer with a Bonse-Hart configuration, for
instance) [2]. Larger angles are part of the diffraction techniques from which
crystallographic molecular structures are extracted (see Chapter 11). A first
question concerns the choice of the most appropriate radiation. Considerations
for choosing between X-rays and neutrons are:

1. Penetration depth: short-range nuclear interactions allow a deeper pen-
etration of the beam. This can be useful for systems for which X-ray transmis-
sion is not good enough. The thickness of the sample is chosen to optimize the
transmission, the potentiality for undesirable multiple scattering and, finally,
the signal/noise ratio of the scattered intensity in the experimental Q-range
(vide infra).

2. Contrast variation: depending on the chemical composition of the
systems, it may be advantageous to analyze the scattering data for which the
contrast profile has been varied. This is conveniently achieved with neutron
scattering by changing the isotopic composition of the solvent (deuterated ver-
sus protiated). Sometimes, this can also be achieved by changing the isotopic
structure of the gelator itself. However, the synthetic challenges associated with
this approach are usually difficult. A contrast variation experiment can also be
performed by keeping the composition of the system unchanged but changing
the nature of the radiation. In particular, if metallic elements and/or protons are
present in the gelator, complementary X-ray/neutron scattering experiments
can be useful.

3. Solvent type: depending upon the type of liquid in a molecular gel, the
corresponding deuterated liquid may or may not be available at a reasonable
price.

4. Signal limitation: to extract a pure form-factor contribution in the scat-
tering signal, as dilute systems as possible must be studied in the gel domain
of the phase diagram. Under such conditions, the acquisition time to cover
the full desired Q-range (by varying the sample to detector distance and pos-
sibly the radiation wavelength) is important. Molecular gels can be formed
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at concentrations as low as 0.1% v/v. Thus, an equivalent solid quantity of
ca. Smg gelator (5S0pL) that is irradiated by a neutron beam can be made
ca. 50/100 times lower if a capillary is used in a micro-focus synchrotron beam
experiment. The flux at the sample position of the most powerful neutron source
(i.e., spectrometer D22 at ILL, Institut Laue Langevin, Grenoble, France) is
1.2 x 108 neutrons/(cm?.s) while the flux through the sample at the synchrotron
source ID2-ESRF (European Synchrotron Radiation Facility (ESRF), Greno-
ble, France) is 8 x 10'? photons/s. As a result, the counting time is a few sec-
onds at ESRF and a couple of hours at ILL.

5. Radiation damage: intense synchrotron beams may “burn” organic
molecules. Radiation damaging usually does not exist with conventional X-ray
(rotating anodes) or neutron sources.

6. Q-resolution: the devices for radiation detection are specific for each
type of radiation and have their own limitations (N.B., intensity dynamic range,
dead time, transfer of data, linearity of the response, correction procedures,
intrinsic background). Different options exist mainly for X-ray detection. The
Q-resolution needed for a given scattering profile has to be taken into account.
If numerous and narrow oscillations and/or Bragg peaks are expected, it is rec-
ommended to use X-ray experiments which provide a much larger number of
points (ID2, ESRF 1024 x 1024 points) compared to neutron experiments (usu-
ally 64 or 128 points per side of 296 x 96 cm? detector). The final Q-resolution,
including the beam divergence, the A distribution and the detection condition,
is usually better with a synchrotron source.

7. Amplitude of the contrast factor: with large facilities, this parameter is
usually not very crucial except if contrast variation experiments are involved.

8. Absolute intensities: the mechanism of formation of molecular gels,
starting from individual gelator molecules provides important information, and
the molecular weight per unit length of fiber is a determinant parameter. Abso-
lute intensities can also be useful for quantitative models for the determination

Figure 1. Cartoon representation for two extreme ideal situations in SAFINS. Left: crystalline-
like network with extended junction zones; right: swollen network of entangled semi-rigid fibers.
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of the interfacial surface per unit volume of aggregate, etc. Neutron detectors
allow an easy calibration of the intensities.

SAFINs are made up of fibers whose interactions may lead to two main
classes of networks. Figure 1 shows two situations resulting from interactions
that are slightly attractively or repulsively unbalanced potentials between the
constitutive fibers. The SAS technique attempts to characterize the structural
aspects of such SAFINSs.

The following discussions pertain to neutron scattering experiments, and
comparisons with X-ray scattering are occasionally given.

3. Basic Principles

Simplified expressions are given in the chapter. Rigorous formalisms are
found in original citations [3-5].

A quantum-mechanical context is necessary to deal with basic equations
describing the wave functions of neutrons. The Fermi nuclear potential has a
range small enough with respect to the neutron wavelength A (A is typically
6-15A) to consider that the interaction is punctual. Consequently, the neu-
tron scatters isotropically in contrast with X-rays. The scattering of neutrons
by matter can affect not only their momentum mv (mv = hk/2m, where h
is Planck’s constant, k is the neutron wave vector and v is its velocit}i) but
also their energy. In a classical scattering experiment, with momentum Q and
energy E transfers, an intensity 1 (Q, E) is measured. The intensity depends
on time-dependent correlations between positions of pairs (i, j) of atoms in the
irradiated system. The relative positions and motions of atoms in the specimen
can be related to the intensity of the scattered neutrons using a specific experi-
mental set-up. For instance, inelastic coherent scattering provides information
about the collective motion of correlated pairs. The present chapter focuses on
the SAS technique, where only elastic scattering is considered.

The inter-relation of momentum transfer and energy during collisions
between neutrons and matter leads to relations (Eq. (1)) describing the momen-
tum transfer. In the following, Q is expressedin A~!, inc subscriptis for incident
while scat refers to the scattered beam.

h/ZN(%inc - l_éscat) = h/27‘[ é (la)
Q =4msinf/A (Ib)

If the scattering proceeds in elastic conditions, only the direction of the
beam is modified by the collisions and not its momentum (ki = kscar = 277/ A).
Equation (1a) reduces to Eq. (1b) where 6 is half the scattering angle. If pairs
from different nuclei in the system interfere, the corresponding elastic coherent
scattering can provide information about the structure of the matter at equilib-
rium. The component due to the interaction of the neutron wave with individual
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nuclei (i = j) isindependent (no interferences) and is additive for each nucleus.
Such a component is the incoherent scattering and it provides information about
atomic diffusion. There is no incoherent scattering for nuclei with a zero nuclear
spin (e.g., '2C, '°0, etc.) since they produce no interaction with the neutron
spin. The level of incoherent (and coherent) scattering varies strongly with the
isotope considered, and it is listed in specialized Tables [6]. An illustration is
given for 'H and ?H for which the ratio of incoherent cross-sections o /op is
ca. 80.26/2.05. For SAS experiments, the incoherent scattering is undesirable
and the concentration of elements with high levels of incoherent scattering
should be kept to a minimum. The nuclear interaction, defined by the Fermi
pseudo-potential, is considered as punctual (m,, is the neutron mass) according
to Eq. (2):

UF) = (h/2m)m,b;8(F — T7) 2)

b; is the neutron scattering length of the nucleus i(related to the cross-section
o = 4 b? expressed in barns; 1 barn = 10724 cm?) and measures the strength
of the nuclear interaction (with a negative sign for a repulsive interaction).
The order of magnitude is ca.10™'? cm and is a real number for most nuclei.
Complex values of b; mean that b; depends upon the energy of the incident
beam, and the absorption component is described by the imaginary part of
the scattering length. For elastic scattering conditions, the incident plane wave
ef is scattered as spherical wavefronts (—b/r)el*” by a scattering center at
the origin of the coordinate system. The time dependence, exp(—iwt), does
not appear in the expression since the scattering is elastic. The scattering law
for a system is expressed from correlations between the positions of pairs of
atoms in the system. In the dlrectlon kscm, the scattered wave has a Q (r; -

) phase and an amplitude A(Q) for a given orientation of the vector Q
(modulus 0):

A(Q) = (Ao/r)exp(ikr) Y biexp(iQ - (7i — 7)) 3)
ij
The summation in Eq. (3) is extended to all i, pairs in the scatterer, as
assumed for coherent scattering conditions. The contrast between the aggregate
and the solvent may present discontinuities based on the distance within the
rod-like aggregate (usually radial). Examples of heterogeneous densities of
scattering length will be given.

1
== / p(Vdr — py )
%

Since SAS operates at low angles (low resolution 27 / Q ax ), it is convenient
for simplification to assume that the scatterer is locally a continuous medium
with a uniform neutron scattering length density (Eq. (4)). The aggregates
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with a scattering length density b,e, are immersed in a liquid with a uniform
scattering length density by, so that p(¥) is no longer r-dependent. Ap =
(bags — bsoly) /v is the contrast factor; the summation of the b; elements is done
over the aggregate volume v and the same volume of solvent.

A(Q) = Ay/r exp(ikr)A,o/exp(jQ . ’_”}j)d7 5)

The scattered intensity is the scattered power flux expressed as the average of
the squared amplitude (1 (Q) = (A(Q) - A*(Q)) = (|A(Q)|?)) in a summation

extended to all i, j pairs defined by 7;; =7; — F;.

2
1(Q) = (Iy/rH) Ap?

/exp(ié - ) dr

(6)

Equation (6) is the fundamental equation describing the small-angle elastic
and coherent scattering. The integral concerns the irradiated volume Vin which
large-scale fluctuations of the scattering length density define the individual
contours of the aggregates. At Q — 0, all scattered waves are in-phase and the
absolute value of Eq. (6) reduces to:

1(Q — 0) = (NyggvAp)? (7)

Ngge is the number of single aggregates of volume v (V = vN,g,). With
SAFINSs, V is related to the critical aggregation concentration cac of the gela-
tor. The determination of cac (using fluorescence, ESR, NMR techniques, etc.)
is important to estimate all absolute quantities associated to the amount of
gelator in the fibrillar aggregates C = Cy — cac, while Cj is the global gelator
concentration. The extraction of any structural information from SANS data
requires careful attention to the units used. The flux is expressed as the number
of neutrons per unit time and unit area at the sample position. The differential
do (Q)/dS2 is the number of scattered neutrons per unit time relative to the
incident flux per unit solid angle at Q and per unit volume of sample. The
partial coherent cross-section is dogop /d 2.

Widespread evidence of the prominence of fiber-like morphologies in
SAFINs has been collected from electron micrographs, in particular. Coher-
ent scattering is generated by large-scale fluctuations of the neutron scatter-
ing length density. These heterogeneities are associated with all kinds of a
solid-like aggregates present in the three-dimensional networks. A first basic
question is: Why using SAS techniques? It is not a priori trivial that work-
ing in the reciprocal Q-space is an advantage when dealing with molec-
ular gels. In fact, in most cases, fundamental and practical reasons may
account for this choice. Rheologically, molecular gels exhibit significant yield
stresses (a few hundreds of Pa for a 1% gel). Thus, molecular gels do
not flow and are soft solids with a variety of specific viscoelastic proper-
ties [7]. This consistency makes the clotting technique on a copper grid, as



282 P. Térech

described in different cryo-TEM protocols, difficult to be used. Standard SANS
measurements (except with micro-focused synchrotron set-up) do not select
specific regions of a specimen, but give a statistical average over ca. 0.1 cm?
volumes. In addition, neutron scattering offers opportunities to obtain com-
plementary patterns with a varied contrast, so as to emphasize or attenuate
different regions of the scatterer. A careful examination of the evolution of the
scattering profile as a function of the gelator concentration is a pre-requisite
before using any numerical analysis. SAFINs are formed with up to 3 basic
components:

— fibrillar interconnected species (the infinite network),
— nodal zones and
— smaller and non-connected species (spherical or elongated micelles).

Each component contributes to the scattering and, depending on the con-
centration, interference effects may also complicate the pattern. A dilute gel
corresponds, in fact, to the semi-dilute regime of concentrations of fibers that
are overlapping each other. As a first step in the analysis, conditions are sought
for which the scattering is dominated by the form-factor of the fibers (lower
limit of the semi-dilute concentration range).

4. Form-Factors of Rod-Like Scatterers

A variety of structures can be found with fibrillar species. Their cross-
sections can be anisotropic but can also be more-or-less heterogeneous (radial
contrast profile). The axial direction can also be subject to different options:
curvilinear fiber axes are found in helical morphologies and periodically axial
contrast fluctuations are found with special stacking aggregation mechanisms.
In all cases, the determination of the geometrical features of the fibers is helpful
to elucidate the mechanism of gel formation.

4.1. Plain Fibers

The calculation of the form-factor of cylindrical particles is the first step
for the analysis of the scattering of SAFINs. The amplitude A(Q) of the
scattered waves is first considered for a given orientation of the rod with
respect to the vector Q . To model the situation of randomly oriented rods,
as commonly found in molecular gels, all orientations of Q for a given
pﬁoint in the fiber (length 2L) are considered. Vectors 7 (r cos¢, rsing, z) and
Q(Qsinfcosyr, Osinfsinyr, Qcosf) are given in a cylindrical symmetry
with dv = rdrde¢dz (see, for example, Figure 13). Assuming a uniform neutron
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scattering length density over the rods of radius R, the amplitude of the scattered
wave for a given orientation of vector Q is:

N R r2n 00
A(Q) = A,o/ / /+ expi[ Qr sin 6 cos ¥ cos ¢
0 0 —00
+Qrsinfsiny sing + QzcosOlrdrde¢dz (8)

R R 2
A(Q) = Ap/o rdr/O expi[Qrsinfcos(Y — ¢)]drde

+00
x/ expi[Qzcosf]dz 9

—00

Since fh exp(ix cosd)ds = 2w Jy(x), it comes:

2P L exp(iQzcosO)], /rrJo(Qr sin@)dr (10)
0

iQcosf
- i Lcosf
AQ) = 4,TLA,OM
QL cosH

A(Q) =

/rrJo(Qrsine)dr (11)
0

Averaging over all orientations of vector Q defined by angles 6 and
¢ requires a summation of the type ﬁ Jo sin6d6 f02” d¢ which reduces to
ﬁ o sinfdé since the averaging over ¢ has already been made to explicit the
Bessel function. With oriented systems, this part of the calculation must be
strongly modified,

> 7 sin(QLcosO) [T . .
A(Q) = L,o/ —— [ rJy(Qrsinf)drsinf do (12)
0 QL cos6 0

The specific property of the second integral is such that:

- 7 sin(QLcosf) . r
A(Q) _LAp/O QLcosQSIHGdQ/o rJo(Qr)dr (13)

Knowing that Bessel functions can be generated, as in Eq. (14), the amplitude
A(Q) involves a Bessel function of the first kind J; (Eq. (15)).
[ e dx = 57 ) (14)

Ay 728, [ SINQLcosO) J1(9r)
A(Q) = Lr Ap/o OLoosg  Smodo—o

15)
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The scattered intensity / (é) is then:

T . 2 2

The first term can be reduced to Eq. (18) for large values of L knowing that:

/+°° sinzrx 2
( ) dx =1 (17)
—00 X
Lt ApPm [J1(Qr)7?
1(Q) = oL { Or } (18)

The final expression simplifies to:

1(Q) =

20 2 2
¢r-Ap [Jl(Q”)] (19)

20 Or

Equation (19) is used for long, rigid and isolated rods [8] and is given
per unit volume Vi, of gel (in [cm™'] with ¢ = nv/Vim = V/ Viam). The
assembly of fibers themselves has a total volume V of cylinders assumed to
have monodisperse sections. A first consequence is that the signal directly
depends on V and the square of the contrast. The first part of Eq. (19) is the
axial term exhibiting a typical Q! low-Q intensity decay. The second part of
the scattering function is the cross-sectional term describing the interferences
in a circular section. It generates typical oscillations in the large O domain. The
experimental intensity results finally from a convolution with the instrumental
resolution function Res according to:

do (Q)
dg

1((Q)) = /RCS(<Q>, Q) dQ (20)

where do /dS2 is the scattering differential cross-section.

The differential scattering cross-section dX /d€2 per unit sample volume
(X = 0/ Viam) is expressed in cm ™! and is the probability of an incident neutron
to be scattered by a volume element of the sample in a solid angle element d€2 of
the detector. Measurements are made with gels with the highest transmissions
T(T =¢/po =exp(—Xd), where ¢ is the flux after crossing the sample of
thickness d). The concentrations for a form-factor analysis are such that 7' of
the sample must not be very different from that of the solvent to minimize the
undesirable effects of both multiple and incoherent scattering of the protons of
the gelator.
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Figure2. SANS profile of a SAFIN gel of a modified androstanol steroid in deuterated methyl-
cyclohexane [9]. A clear 0~ llow-0 decay characterizes the scattering by long and rigid fibers
(ro =77A, e =0.13).

Equation (19) can be re-formulated (per unit volume of sample) in terms of
L and the section A of the fibers:

2J1(Qr)7?
o)

Figure 2 shows the axial and cross-sectional contributions in the scattering
of a fibrillar system (di-n-propyl-17,17-aza-17a-D-homo-5«-androstanol-33
steroid (PAS) organogel) that can be considered as the first “model” system in
the context of scattering studies of molecular gels.

wL

1(Q)=—|AA 21
Q) Q[ P 21

4.1.1. Low-Q asymptotic behavior

Equation (6) can be expanded at low Q values to Eq. (22), knowing that
exp(x)=14+x + %
2
> (22)

If the center of gravity of Ap () is also that for volume v, then:

> 1 - .
I(Q)=<’/VAp(r)(1+iQ-r— E(Q'r)2+'--)d3r

2
1 — 1o / 72A,0(?)d3rJ (23)

_ 2
1(Q) = (Apv) 3 Apv




286 P. Térech

Eq. (23) includes the definition of the second moment of the distribution of the
scattering density [10]:

1
2 =2 =\ 13
Fe = 5 /Ur Ap(r)d’r 24)

The analogy with classical mechanics leads to approximate r, to the radius of
gyration:

2.2
1(Q) =1, {1 — Q;g + J (25)

corresponding to I (Q) = Iyexp — Q2r§/3.
If the form-factor of fibers (Eq. (21)) is considered, the expansion of the

2
Bessel function at x — 0 is [%] — 1 — 1x? and gives equivalently:

4

1(Q) = ¢%Ap2nrzeXP(—Q2r2/4) (26a)
QI1(Q) = QI(0)exp(—r20?%/2) (26b)
where Q1(0) = (ApA)? (27)

The denominator of the Guinier Eq. (26b) is 2 (3 for a three-dimensional
scatterer; Eq. (25)) and the cross-sectional radius of gyration is then for a
circular section:

ro

V2

The geometrical radius r is deduced from the slope r2/2 of aIn(Q1)vs.Q?
plot. Depending on the geometrical model used, r, provides the typical correla-
tion length of the section. A second equation is needed for anisometric sections
(e.g., rectangular, elliptical etc.) which can be obtained from the Porod’s behav-
ior at large Q [11].

Figure 3 shows “Guinier plots” appropriate for fibers with heterogeneous
sections having metallic elements. A variation of the contrast using alternatively
X-rays to probe the organometallic core and neutrons to probe the overall
section is then very instructive.

re =

(28)

4.1.2. Influence of the cross-sectional polydispersity

Fibers in SAFINs exhibit more-or-less monodisperse sections. In addition,
a small fraction of fibers in dilute gels is involved in the formation of bun-
dles, acting as nodes in the network. As a result, the apparent radius of fibers,
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in(Ql) SANS
sxvs (o

Figure 3. Guinier representation In(Q/7)vs Q2 for very thin organometallic monomolecular
and semi-rigid fibers (r = 8.8 A) in perdeuterated cyclohexane. X-rays (e) and neutrons (+)
identify the two contrasting shells in the section (radius of the organometallic core = 2.8 A
probed by SAXS) [12]. (Reprinted with permission from [15]. Copyright (1994) American
Chemical Society.)

extracted from the global scattering, can be affected by this fraction of bundles
(in addition to thermodynamic shape fluctuations of the sections). For the sake
of simplicity and considering the uncertainty of the determination of r(£5%)
or M (£20%), a radial Gaussian polydispersity G (r) can be included in the
calculation.

24/In2
AV[/QJ_

The resulting scattered intensity is the convolution of Eq. (21) with the nor-
malized distribution of radial distances.

In2 2]1(Qr0x) In2
1/ / Orox > ex ——(x— 12 dx 30)

Aryy; is the full width of the Gaussian distribution, & = =12 and x =r/r.

oo In2 5 b3
/ exp——z(x — Ddx = ¢4/ — 31
oo £ In2

The effect of the radial polydispersity on the cross-sectional radius of gyration
is illustrated by an equation of the type:

G@r) =

()
exp—(4In2) A (29)

2

_ — 02,279 ~ _ﬁZ
O = Qlyexp—0Q*r7/2~ Q|1 = 50 (32)

It becomes:

, 1 [In2r3 [t In2 2
Q=,4_%“xmr—ﬂ_nm (33)
eV 7 2 /- &’
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The cross-sectional radius of gyration r, is then expressed as:

2
r
rP==2

2 , 1

=3l ama 't 3]

The distribution will also affect the extrapolation at Q — 0 of the
cross-sectional intensity Q7 (Q). The number of gelator molecules associated
in a section of fiber of unit length is n; o (Q1)y/C o krr? with C = pCy =
Cy — cac being the concentration of gelator molecules participating in the
self-aggregation process. As already mentioned, p (the corresponding frac-
tion) has to be estimated during the preliminary determination of the phase
diagram. The solubility of the molecular gelators is extremely variable, even if
frequently weak, but its temperature dependence may affect very significantly
the accuracy of n; values. The average and centered nominal value of n is

written n9 .

(34)

n? = 10°N (@) _ (35)
anpCO(bg - bsgsvg)2
The effect of the polydispersity is then:
ny = kr? (1 + 82> (36)
Vmrln2

where N is Avogadro’s number, M is the molecular weight of the gelator,
by[cm/g] is its specific scattering length density, b, [cm/g] is the specific scat-
tering length density of the solvent, g, [cm?/g] is the specific volume of the
solvent, and v, [cm?/g] is the specific volume of the gelator. The specific con-
trast is thus, Ab = Bg — l;sgsvg [cm/g].

Similar developments for other sectional morphologies give comparable
expressions. For instance, for a tubular structure (with either a cylindrical wall
separating the interior and exterior media or core/shell(s) systems), the expres-
sion for r. can be deduced. The radius of the core is identified with subscript
co and that of the shell with subscript sh. If the contrast factor is defined by
k = Apsn/ Apeo, Ap being the scattering length density calculated with respect
to the reference level of the solvent (Apy, = psn — Pco), then:

ke (k=Drd,
2 2 2
r. = 37
okl — (k—1Dr2 7
k =1 is for a plain cylinder r2 = r2 /2 while r> = “ZL”Z is for an elliptical

. . . 2412 .
plain section with a,b half axes. r? = - for a rectangular cross-section,

k — oo for a tube for which the inner part is identical to the external medium

2 2
Gt

(solvent) r? = 5. The effect of the radial polydispersity is described by
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Eq. (38) for rectangular polydisperse sections with identical ¢ values in the two
orthogonal directions.

2 _ 4t {1—# 2o ! J (38)
r. = & &
$T T3 N R

For simplicity, the cross-sectional and longitudinal contrasts can be assumed
constant over the volume of the rod. Chemical features of the aggregation mech-
anism are determinant for the estimation of the radial and axial polydispersities.
With fibers in hydrogels, the diameter results frequently from associated
bimolecules through hydrophobic interactions: weak radial fluctuations are
expected. The length or the molecular weight distribution is driven by thermal
equilibrium reactions. In a mean-field theory [13], the statistical contour length
of micellar fibers with a scission energy Ej; is described in the form:

(L) ~ ¢" 2 exp(Esi/2kpT) (39)

Possible variations of the exponent of the volume fraction are not discussed
here. As a result of mass-action effects, lengths are polydisperse and differ-
ent distribution functions can be used. Expressions developed to describe the
distribution of the molecular weight for polymers can be tentatively used.
A Flory-Schulz (one-parameter) or Schulz-Zimm (two-parameters) distribu-
tion function can conveniently model the length distribution. Using the poly-
mer terminology, the z-average may also describe the scattering function of
polydisperse semi-rigid fibers:

_ NW)L*I(Q,L,1,)dL
(I(Q,L,1)). = IN(L)L2dL

(40)

Here, N (L) is the number distribution of fibers of length 2L.

Since networks in molecular gels are giant meshes of connected fibers, it is
impossible to probe the lengths of individual fibers in SAFINs. Rare examples
of ternary suspensions, obtained from dilute gels in which the lengths can be
monitored by addition of end-cappers (so as to form rods), are known and
they can be discerned by SAXS-SANS scattering data [14]. In this case, the
modeling of SAFINs as described above is inadequate.

4.1.3. Asymptotic large-Q behavior
The asymptotic behavior at large-Q can also be used to extract structural

parameters of individual fibers since this part of the scattering curve is not
sensitive to large-scale interference effects. The correlation function y (r) is
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the average of the product of two fluctuations at a distance r. y (r) is obtained
by the inverse Fourier transform:

y(@r) =

,sin Qr
41
Vw/ 1@)0*75 7 d0 @1
The integral INV is a constant (invariant defined by Eq. (42)) and related to
the mean square fluctuation of the neutron scattering length density over the
volume (where ¢ is the volume fraction).

INV = /0 " 021(0)dQ = 21Vy(0) = (Ap)’¢(1 — ¢)27* (42)

The final slope at O — oo of the scattering function of any type of scatterer
is given by Eq. (43) (known as Porod’s law), S being the total interface of the
aggregates.

lim/(Q) = (Ap)m S 00— o (43)

Equation (43) is used to evaluate S assuming absolute intensities are avail-
able and the contrast is calculable a priori. A combination of Egs. (42) and (43)
leads to Eq. (44) in which no absolute intensity or a preliminary model of the
contrast is needed.

S/V=m-limI(Q)Q*/INV (44)

For long rod-like scatterers, the contribution to the interface by the ends
can be neglected and S/V # 2/r. The large-angle part of the scattering curve
(Porod region) can thus be used to estimate a radius of the fibers. A cross-check
with values extracted in the low-Q Guinier domain can be supported both by
values from a fit of the scattering profile and by M, values obtained by extrap-
olation at zero Q. These values should give a consistent pattern to corroborate
a structural model. Figure 4 shows a Porod’s plot that reveals four form-factor
oscillations characteristic of monodisperse sections in a fatty acid organogel
system. The asymptotic limit at large Q is identifiable as a plateau, allowing
further calculations (in absolute units using Eq. (43) or without any preliminary
structural hypothesis using Eq. (44)).

4.2. Short Rods

SAFINs are formed by the self-assembly of LMOGs into various micellar
aggregates at thermal equilibrium. The length polydispersity of fibers is very
large. Still, the presence of non-connected short rods is probable. By chance,
the end of the distribution function of lengths may fall within the experimental
Q-range. When the concentration is increased, a significant contribution of
such short rods to the scattering can thus be observed. Due to the finite length
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Figure 4. Porod [ 0*vsQ plot for a 12-hydroxystearic acid organogel in perdeuterated-
benzene [15]. Fibers have square sections (210 A side). Full line is a theoretical profile obtained
from Eq. (49). (Reprinted with permission of EDP Sciences, France, Copyright 1994.)

2L of the rods, the simplification mentioned for Eq. (18) cannot be used and the
form-factor is obtained through a numerical integration. For a rod axis oriented
at an angle 0 with respect to Q, the calculation becomes:

> sin(QLcosO) [ .
A(Q) =4nLAp— rJo(Qrsinf)dr
QL cosH 0
— 4nLr?Ap sin(QLcos8) Ji(Qr .sinQ) 45)
QL cos6 Qrsiné

The scattered intensity is obtained after averaging over all rod orientations
(random situation):

2
7/2 sin(QL cosf) J,(Qr sinf
A LriAp / sin(QL cos) Ji(Qrsinf) oo 4g (46)
0 QL cosf Qrsinf

1(Q) =

Experimental evidence for rods with finite lengths is the low-angle cut-off
of the Q~! decay. In a Guinier plot In(QI)vs Q?, the linear part from which
rc 1s extracted is preceded by a maximum. In SAFINs, long and short rods
can coexist and in a QlvsQ plot, a slightly positive slope in this graphic
representation transforms the aspect of this Q-domain into a profile having
a very broad bump [14]. Figure 5 displays 3 types of “Guinier plots” for
rod-like scatterers. Curve 1 is a straight line, curve 2 displays an innermost
extra-scattering and curve 3 shows the typical plot for rods with finite lengths
(L <2m/Qmin). The low-Q extra-scattering (curve 2) suggests an attractive
interaction potential between fibers leading to higher order aggregates or
heterogeneities.
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In{Ql)

Figure5. Guinier plotsln Q/vs 02 for rod-like scatterers. Left, 1: modified androstanol steroid
in D-methyl-cyclohexane (see Figure 1); 2: 12-hydroxystearic acid organogel in D-benzene
(square section, b = 100 A) [15]; right: rods formed by adding a pyridine end-capper species to a
porphyrinic organogel in perdeuterated-cyclohexane (circular section, r = 11 A, L/r ~ 3) [16].
(Reprinted with permission from [16]. Copyright (2003) American Chemical Society.)

S. Semi-Rigid Fibers

Micellar fibers in SAFINs are usually rigid on the length-scale associated
with the SAS technique. Nevertheless, electron and optical micrographs fre-
quently show large curvature radii. Rare examples exhibit semi-rigid charac-
teristics (in the polymer terminology) with persistence lengths /,, of the order
of a few hundreds of angstroms. For instance, very rare examples in organic
media are known of monomolecular fibrils [17] (or slightly thicker fibers)
[18] with a low rigidity that also undergo scission/recombinations reactions,
depending on the balance between the energy of scission and the thermal energy.
In aqueous solutions, a detailed examination is given in Chapter 19. The char-
acterization of the flexibility of micellar fibers can be determined at low con-
centrations so as to characterize a form-factor feature only. The ability to find
the combined existence of a dilute regime of concentrations and long enough
rods (2L > 1) is challenging. The complete characterization of the flexibility
requires the use of a complementary technique, such as magnetic birefringence
measurements [19, 20]. In fact, such a regime has never been found to date with
SAFINs. The characterization cannot usually be done in the gel phase since
conditions where /,, remains lower than the average mesh size of the network
may not be found due to the high rigidity of the fibers and the high gelat-
ing ability of the LMOGs. Furthermore, an unequivocal distinction between
a low-Q upturn due to a segmental fiber trajectory and due to the structure
of the network and its homogeneity is not trivial. The different formalisms
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developed for polymeric chains will not be detailed here since it is not evident
that SAFIN systems (or the viscous liquid-like suspensions from their ternary
mixtures) would lead to a reliable estimation. For instance, the scattering func-
tion of semi-rigid chains with excluded volume effects can use the numerical
parametrization given by Yamakawa [21-23]. Details are found in references
devoted to polymeric solutions or polymer-like micellar solutions.

To summarize, a Q2 low-Q upturn is the expected signature typical of
the form-factor of isolated, flexible rod-like aggregates. The flexibility is
expressed using the persistence length /,, or Kuhn length b where b = 21,,. Also,
for charged systems, an electrostatic contribution to the persistence length is
assumed (I, =1, . + [, o). Different models have been proposed, mainly in the
context of polyelectrolytes [24]. [, may also depend on the fiber concentration,
the counter-ions and added salts. The latter screen the interactions that usually
cause electrostatic repulsion and further stretching of the fibers. The electro-
static contribution can be expressed, according to Odijk et al. [25], as a function
of the Debye screening and Bjerrum lengths and it has an inverse dependence
on ionic strength. The Bjerrum (B; = e?/eokT) and Debye-Hiickel screening
lengths are related by:

DH? =87 B;C, 47)

C. is the concentration of counterions and B; in water is ca. 7.1 A. The Debye
screening length « ~! is given by ([ is the ionic strength, £ the dielectric constant
of water, and e the electronic charge):

2y V2
KlzlSJTNe ] 48)

1000k, T

Recently, significant effects of ionic strength on semi-rigid charged fibers
and associated networks of modified bile salt hydrogels have been discovered.
Rheology has been used to characterize the induced variations of the network
rigidity [26].

6. Fibers with Anisometric Sections

When intermolecular associations contribute to the formation of fibers
(through hydrogen bonds in organic media or hydrophobic interactions in aque-
ous media), rectangular and elliptical cross-sections can be potentially gener-
ated. However, they are somewhat rare. Mittelbach calculations [27-29] can
then be used to analyze such possibilities.
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6.1. Rectangular Sections

The scattering function involves a numerical integration of a trigonometrical
expression describing the cross-sectional factor.

2A¢Ap2> /77/2 {sin(Qa sin @) sin(Qbcos go)J 2 dy
0

49
0 QasinpQbcosy “49)
a, b are half the sides of the cross-section. The trigonometrical term accounts
for differences in the profiles illustrated in Figure 6 whose amplitudes must be
carefully evaluated to justify the use of additional parameters describing the
anisometry of the cross-sections.

I(Q)=(

6.2. Elliptical Cross-Sections

Instead of having sharp angles forming the edges of the cross-sections, it
may be more rational to consider elliptical cross-sections. Such a morphol-
ogy may also provide the possibility for development of an inner host cavity
possibly that may be able to accept polar additives in apolar organic media,

N
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Figure 6. Theoretical scattering profiles for different cross-sections of fibers (¢ = 0.1).1: rect-
angular, b = 50 A, b/a = 0.3; 2: hollow tube, r = 50 A, reore = 35 A; 3: elliptical, b = 50 A,
b/a = 0.3; 4: short rod with circular cross-section, r = 50 A, L/r =5; 5: circular, r = 50 A;
6: helix (see Ref. [36, 37]), r = 50 A, rey; = 7A, pitch = 150 A. Curves have been vertically
shifted for clarity.
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for instance. The structure can be considered as a precursor for tubular struc-
tures. The degree of roundness is expressed by the eccentricity «, defined as
0 <k =b/a < 1, where b is half the minor axis and a half the major axis.

(o [ - <Qa¢<l+fz> +(52) Cos¢)>
0 Qa\/<1+;2> n <12K2>

Figure 6 summarizes the various scattering curves obtained for rod-like
aggregates presenting a similar characteristic distance of 100 A and illus-
trates the variety of subtle differences between the intensity decays and
cross-sectional oscillations for simple form-factors.

The assortment can be compared to experimental profiles encountered with
real SAFINs (Figure 16). One parameter « (and possibly ¢, and/or g, for
anisotropic cross-sectional polydispersities), is thus needed to describe rectan-
gular and elliptical morphologies. Departures observed in the profile at low-Q
and/or large-Q oscillations that cannot be accounted for with a simple model
of plain, cylindrical fibers may suggest the use of anisotropic cross-sections
(N.B., rectangular and elliptical) in a refined analysis. Indications for such a
refined analysis can be either the observation of a low-Q asymptotic slope
slightly larger than the expected —1 value (form-factor analysis) or the obser-
vation of unfitted large-Q oscillations.

dg (50)

7. Tubes

The tubular structure derives from its homogeneous cylindrical morphol-
ogy, but it is complicated by a heterogeneous radial contrast profile. The sim-
plest case consists of a solid-like wall separating identical internal and external
media. Plain fibers made of two solid-like shells of different contrasts are tubes
with a three-step radial contrast profile.

Q1(Q) = K(pou — /Oin)2
% \‘pout - /Osolrz ]l(Qrout) 2 Jl(Qrin)J2

out

Pout — Pin Orout " Orin

(51

If the internal and external media are identical, p;, = pouc and Eq. (50) can be
simplified. The formation of hollow tubes in viscoelastic suspensions of self-
assembling chiral small molecules is known for a limited number of systems
(such as steroids, lipids, etc.) and are of great interest for potential applica-
tions in the nanoscience fields. The mechanism of tubule formation is complex
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and proceeds through various intermediates (fibrils, ribbons, chiral ribbons)
instead of being directly formed from smaller tubular embryos, as proposed
by a theoretical description [30, 31]. Because chiral molecules usually stack
at an oblique angle with respect to their neighbors, a twist is generated in the
aggregates that make a chiral membrane-like morphology folding into helical,
twisted ribbons or tubules with a given radius. Helical structures are intermedi-
ate states in the tube formation and the driving force is the chirality of the small
molecules. The theoretical modeling can be done in a continuum elastic free
energy framework [30, 31]. The cylindrical structure is determined by a com-
petition between the curvature and edge energies through bending, twist and
chirality factors balancing the free energy. The free energy includes standard
isotropic curvature rigidity and a chiral term. The optimum structure exhibits
a tilt angle of +45° with respect to the equator of the tube. Refinements of
the model [32] are available for situations in which the tilt is non-uniform in
the membrane, for instance. Striped modulation in the molecular tilt direction
is also a consequence of the molecular chirality that can be experimentally
observed. In the different intermediate species experimentally observed, chiral
ribbons (with cylindrical curvature) and twisted ribbons (with Gaussian curva-
ture) are associated respectively with a crystalline or fluid-like order within the
membrane. In such complex mechanisms of formation, the matching between
real and reciprocal-space observations is an efficient approach to extract reli-
able structural information in the reacting mixture.

To account for the sectional monodispersity in chiral systems, observed in
many molecular gels, there is a theoretical description of the stabilization of fib-
ril formation that is supported well by experimental data for aqueous solutions
of synthetic de novo 11-mer peptides (DN1) self-assembled into ribbons [33,
34]. The primary structure of DN1 is CH3CO-GIn-GlIn-Arg-Phe-Gln-Trp-Gln-
Phe-GIn-GIn-NH,. Thread-like fibrils are stabilized by face-to-face attractions
balanced by distortions of the ribbons (untwisting modes). The fibril aggre-
gation number and its equilibrium twist can be predicted by the theoretical
model (see Chapter 3). In this context, small-angle scattering techniques are
especially appropriate to estimate the monodispersity of the cross-sections of
1D aggregates since the scattering signal is a statistical average over a large
irradiated volume.

Examples of SAFINs in aqueous or organic liquids made up of connected
or entangled tubular species are rare. Suspensions of tubes refer usually to the
second generic class of networks presented in Figure 1. The frontier between
viscoelastic suspensions and gels is not sharp and needs some clarification.
Yield stress values measured in rheological experiments can be used to remove
the ambiguity. Approximately two orders of magnitude in the elastic shear
modulus measured at 1 Hz frequency distinguish the two types of materials.
For instance, a suspension of lithocholate tubes at volume fraction ¢ = 1%
exhibits G’ < ca. 100 Pa. The fundamental difference lies mainly in the strength
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of the interaction potential between the rod-like species. If the concentration is
further increased, the viscoelastic suspensions exhibit the consistency and G’
values typical of a gel, and a more refined rheological characterization is then
necessary to reveal the specificity of the interactions (through creep-recovery
protocols, for instance). The G’, G” rheological profiles as a function of the
frequency of the applied oscillatory stress are then used to discern gels from
suspensions or equilibrium-breakable segmental fibrils.

For tubes with elliptical cross-sections, the scattering intensity is given by:

2 /2
01(Q) x = /0

2J (Q\/(rgul sin? 9+£2r§mcosz€))
Q\/(rgul sin? @+e2r2,, cos26)
2J1 (Q\/(rﬁ1 sin29+€2r§1 cos29))

Q\/(rizn sin? (-H»ezrizn cos20)

2

(,Oout - /Os) +

dé (52)

Ain/Aout(pin - )Oout)

2 and ¢ is the ratio of the

. _ 2 _
The cross-sections are Aj, = wery,, Aow = TErS,

n?’
axes [35].

Figure 7 shows an example of remarkably monodisperse tubular aggregates
in aqueous viscoelastic suspensions of a lithocholate bile salt (C = 2 wt.%).
Depending on the concentration and pH, suspensions (0.001 wt.% < C <
1 wt.%) and gels can be obtained. Due to the subtraction of Bessel functions and
depending on the set of r;, and r, values, oscillations may be more marked than
with a thick fiber of equivalent diameter. The remarkable number of oscillations
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Figure 7. Experimental (4+) SAXS profile for an aqueous sodium lithocholate gel-like sys-
tem. Full line is the theoretical behavior for nanotubes (Dex; = 520 A, Djy; = 490 A). The
monodispersity of the section accounts for the observation of 7 clearly resolved form-factor
oscillations [36].
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indicates the high monodispersity of the diameters and wall thicknesses of the
structures.

A major challenge for fundamental and applied fields is the discovery of
chemical “rules” governing the spontaneous thermoreversible fibrillar aggrega-
tion and gelation phenomena. The elucidation of the mechanisms for structural
evolution from plain cylinders to fibers with elliptical cross-sections, elliptical
tubes and coaxial tubes within a class of gelators would also be of interest for
the important issue of “encapsulation” processes.

8. Helices

A large amount of work has already been dedicated to chiral LMOGs.
Chirality can be involved at different length scales of the SAFINs. From the
molecular to supramolecular length range, chirality may also be present in var-
ious intermediate species (twisted versus chiral ribbons) or can be generated
by various external actions on chiral SAFINs. Thus, external stimuli, such as
stresses developed at the migration of a liquid-gas meniscus during the evap-
oration of the solvent in a gel can produce helical superstructures in SAFINs
made up of chiral molecules [37].

The Fourier transform of an infinite continuous helix is non-zero on a set
of planes spaced by 2w /P (P is the pitch of the helix) perpendicular to its
axis [8, 38]. The calculation takes into account the fact that the helix shape is
generated by a convolution of a single turn with a lattice of points separated
by P (one-dimensional periodic crystal structure). The calculation is made for
an infinitely long and thin helix. Using cylindrical polar coordinates, vectors
7 and Q have respectively the components (r cos2wz/P,rsin2mz/ P, z) and
(a0, B, x). The Fourier transform becomes:

P
F(a, B, x) =/0 expilarcos(2mz/P) + Brsin(2rz/P) + xzldz (53)
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Figure 8. Correspondence between the rectangular and cylindrical polar coordinates in real
and reciprocal spaces.
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In cylindrical polar coordinates with v as the polar angle and & the projection
in the af plane, it gives:

P
FE, v, x) = /0 expilércosmz/P — V) + xz]ldz (54)

The transform has to be evaluated at x = 27!/ P (i.e., the /th plane in Q-space).
Assuming Z = z/ P, the equation simplifies to:

1
FE, ¥,1) =/ expil§rcos(QnZ — y¥)]expi[2nlZ] dZ (55)
0

The Fourier transform can be re-written as in Eq. (56) with X = &r and ¢ =
2n7Z — .

2r—y
(1/2m)exp(ly) exp(iX cos¢)exp(ilp)de (56)
-
The integral conveniently corresponds to a definition of the /th order of the
Bessel function of the first kind:

FE 1) =expil (Y + 7/2)Ji(§r) (57)

The scattered intensity on the /th plane (Q-space) is thus:
1§, D) = J}Er) (58)

The infinite summation for all / values of the x axis gives a diagonal cross-
like (&, x), two-dimensional pattern. For n-fold coaxial helices with a n-fold
rotation axis (equivalence obtained by a rotation of 27 /n), the repeat distance
is reduced from c to c/n. The layer line spacing in Q-space is then increased
to 2 n/c. Consequently, some layer lines can be absent and modify the profile
of a one-dimensional / (Q) plot.

Other numerical approaches are available to describe the scattering of heli-
cal supramolecular organizations. Among them, the Schmidt’s model [39, 40]
is a numerically convenient one describing a range of different structural pos-
sibilities. To simplify the calculations, the cross-section is sketched by sectors
extending from the center of the circular section with variable angular and
radial extensions. The model covers thus the cases of single, double and hol-
low helices. The main limitation is that the actual cross-sectional shape of the
helical aggregates cannot be idealized as in the Schmidt model. To summarize:

sin(nw/2)

w2 [¢.(OR, &) (59a)

QI1(Q) =) _e,co8(ng/2)
n=0
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where R is the external radius of the helix and a the hollow part (if any).

g.(OR,a) =2R7*(1 — a»)™! /rrJ,, (Qm/l — q3> dr (59b)

a
with: b=2nR/P,q, =nb/QR for QR > nb,
gn = 1for QR <nb,ep =1andeg, =2 for n>1 (59¢)

w is the angular of the sector containing the matter, and ¢ is the angle between
the two sectors or the angle by which the fact that one helix is rotated with
respect to the other (¢ = 0 for a single helix). Despite infinite series are involved
in the expression, the number of terms is limited since only terms forn < QR /b
must be considered, an expansion in a power series is easily obtainable. This
model has been tested with a steroid organogel [9]. Certainly, the data need
a sufficient number of oscillations to justify the use of a model with up to
6 parameters. An extension of such calculations of interest for SAFINs (and
related suspensions) would involve helical and twisted ribbon structures.

9. Scattering by the Junction Zones

The merging process of fibers in a network produces “junction zones” whose
shape can be rod-like (achiral or helical bundle), platelet-like or disk-like, or
even spherulitic-like (see Figure 9). The latter (Figures 4-9) corresponds to het-
erogeneities grown from a central nucleation site and represents a more-or-less
branched network that might also be considered in a fractal (or special epi-
taxial growth) context. Spheres with appropriate density decay functions can
also delimitate the heterogeneities in such a network. Due to their important
dimensions (compared to the cross-section), the junction zones mainly con-
tribute to the low-Q part of /vs Q curves through either their structure and/or
form factors. The evolution of the signal versus concentration is again crucial
to discern the origin of the extra-scattering.

In the following, situations describing the form-factors for simple structures
of uncorrelated heterogeneities are considered first before those for correlated
“nodal” scatterers.

9.1. Form-Factor of a Disk

Fibers can merge in platelet-like junction zones if interfacial polarities of the
genuine fibers differentiate the two orthogonal directions of the cross-section.
Similar arguments as those used with rod-like scatterers lead to a decoupling
approximation giving a ~ Q=2 factor typical of the flatness character (as was the
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Figure 9. Cartoon representations of the structural modes of fibers merging in junction zones.
1: hexagonal arrangement; 2: platelet-like structure; 3: helical merging; 4: branched germination.

Q! axial term with fibers) and a “thickness-factor” I,(Q) (as was the cross-
sectional term J;(Qr)/Qr with fibers). Integration over the large dimensions
of the disk gives non-negligible contributions only for Q nearly perpendicular
to the disk plane, accounting for the separation in two factors that can be
independently averaged.

27 sin(Qt/2)\?
I =A== (Ap)°*t? <> 60
(0)= A5 (80) 012 (60)
At low scattering angles, a “Guinier-type” expression is deduced:
2
1<Q):=Azﬁ<Apfﬁexp—<Q%2ﬂ2) (61)

From the slope s of a Guinier-like plot of In Q?Ivs Q?, appropriate for
platelets (as was the Guinier-like plot InQ I vs Q? for rods), the transverse thick-
ness is extracted as t = (12s5)'/2. Mechanisms of aggregation and growth are
different in the two orthogonal directions of the section. For instance, hydropho-
bic interactions in aqueous systems favor head-to-head bimolecular aggregates
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in one direction while H-bonds or any other stacking mode may proceed in the
other direction. The latter mechanism leads to an asymmetric degree of spatial
extension of the cross-section.

9.2. Spherulitic Nodes

To a certain extent, the high fluctuation of the gelator concentration observed
in some branched-like junction zones can be approximated with an overall
spherical shape (with possibly shells of decreasing density). For homogeneous
spherical scatterers, the corresponding scattering function is:

4 33(sin(Qr) — Qrcos(Qr)) 2

Q)= |3 (Or)

(62)

Variants with core-shell or depleted zone core-shell models are available to
describe layers of different contrasts. These models represent the progressive
decrease of gelator concentration from the center of the node to its periphery.
Naturally, a large polydispersity has to be introduced in the model to account
for the random character of the size of the merging-nucleating sites. These
options are progressively explored in concentrated SAFINs and compared to
other analyses (e.g., the fractal context) [41].

The following section details the most relevant ways to account for the
influence of correlated heterogeneities in SAFINs on the low angle scattering
signal.

9.3. Random Nodes: Debye-Biieche Context

Large scale fluctuations in arandom two-phase distribution can be described
by the Debye-Biieche model [42]. The spatial correlations of average length
E are damped according to the exponential correlation functiong g(r) =
exp(—r/ B). In reciprocal space, the related scattered intensity is:

=3

1) gy ©

I1(Q)g—0 =87 Ap?B3¢(1 — ¢), r is a radial distance, and ¢ is the volume
fraction of heterogeneities. Depending upon the value of E with respect to
the lowest Q experimentally available, the Q~* decay and possibly part of
the upturn before the plateau can be observed, thus allowing the evaluation
of E. This is probably an appropriate manner to analyze crystalline-like con-
centrated SAFINs [43]. A confirmation of E can be searched in the large-Q
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Figure 10. Example of a Debye-Biieche analysis attempted for a N-alkyl perfluoroalkanamide
organogel in perdeuterated benzene (C = 2% wt) [45]. Full line is a fit using Eq. (63) with
E ~ 600 A.

domain by taking advantage of the width of Bragg peaks typical of the inter-
nal structure of the heterogeneities. The mean thickness of the microcrystal-
lites along the normal to the Bragg planes is estimated by the Sherrer [44]
equation:

A(20) = _ 089 (64)

E COS OBrage

A(20) is the full width at half-maximum (FWHM) of a Bragg reflection at
OBrage- & 18 the average thickness of the microcrystallites along the normal to
the Bragg plane. The Debye-Biieche formalism is convenient to model the
Q~*low-Q decay in various materials, from molecular gels to ionic polymeric
membranes.

Figure 10 shows an example of a SAFIN for which the scattering is over-
whelmed by the Q~* decay assigned to the dispersed solid phase, which
is amorphous in this case. Figure 17-1 illustrates the complementary situ-
ation where the junction zones dominate the scattering and are formed of
crystallized domains responsible for an intense and narrow Bragg peak at

large Q.
9.4. Ideally Homogeneous Networks
Ideally, a suspension of semi-rigid fibers can entangle in the manner of

polymer solutions in good solvents [46]. A solution in the semi-dilute range
of concentrations is schematically described as a closely packed system of
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blobs of size £. Scaling laws of various static and semi-static properties of the
networks as a function of the average mesh size can be observed. The field of
polymer physics has been very active in this field and can be considered as a
reference framework, but few general behaviors and trends can be applied to
molecular gels. There are too many fundamental differences between the two
classes of systems. It is instructive to observe for instance, how the polymer
renormalization group theory for semi-dilute polymer solutions is applied to
the so-called “equilibrium polymers” [47] (see also Chapter 19). At higher
concentrations, gel phases are, nevertheless, frequently observed.

Also, the osmotic pressure in such ideal systems has a strong dependence
oné&.

_ T
n= 5—3 (65)
The pair correlation function may follow an Ornstein-Zernike form:
~ 5

8(r) = Cexp(=r/§) (66)

c§
The Fourier transform of Eq. (66) gives: = - 67a
6. (66) gives: 9(Q) = 5=y (6T)

I
It can be presented in a Lorentzian form: [(Q) = TOQZSZ (67b)

The smaller is & (dense network), the larger is the scattered signal. In an
TvsQ plot, a Q2 low-Q upturn is expected. Despite the applicability of the
blob concept, its appropriateness for SAFIN systems has not been demonstrated
the presence of crystalline-like heterogeneities certainly severely restricts the
restricts the observation of a Q2 decay. Still, the model is interesting and
addresses the question of the two main classes of networks in Figure 1.
The first class is made up of rigid fibers entangled or fused into crystalline-
like zones: a Q~* upturn (modeled by the Debye-Biieche context) is then
appropriate. The second class consists of semi-rigid fibers with more self-
avoiding trajectories in networks with only transient and/or poorly organized
zones.

9.5. Fractal Context

As shown in Figure 9, the branching degree of the networks might be envi-
sioned as a fractal feature. A gel may be an arrangement of uncorrelated domains
of size & and fractal dimension D [48, 49]. The characteristic self-similarity
property means that the detail of the merging/branching of fibers in junction
zones are structurally identical to observations made at different length scales.
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In SAFINSs, the branching itself can be viewed as resulting from the merging
of fibers, from self-epitaxial growth or from crystallographic mismatches [41,
50]. The relation between the mass and the gauge of measurement ry introduces
the mass fractal exponent D .

M(R) = (R/ro)"! (68)
The density distribution goes to zero at infinite distances and is expressed:
p = RS (69)

d is the dimension of space in which the fractal system is immersed. The
subsequent Fourier transform leads to a convenient relation for SAS character-
izations:

S(Q)= QP (70)

The relation holds in the range ¢! < Q < ry ! where ¢ is a cut-off dis-
tance at large scales introduced to be compatible with the non-zero density
of the sample. The auto-similarity property breaks down at large Q when the
form-factor of the individual fibers or the interfacial scattering is probed. In the
concentration and Q ranges dominated by S(Q), a simple log S(Q)vslog Q
plot enables a trivial extraction of the fractal dimension. The relation between
D and a kinetical mechanism is not evident with fibrous networks for which
conditions for diffusion-limited aggregation reactions are expected to be valid.
The comparison of fractal exponents obtained in a class of SAFINs should
relate to their branching degree, their mesh size and, in turn, their elastic shear
modulus G’ values. Open fractal-like structures have not yet been clearly char-
acterized by SAS in SAFINs. Usually, dilute gels exhibit a scattering profile
dominated by the form-factor of the fibers. On increasing the concentration in
crystalline-like gels, frequently, the scattering signal is overwhelmed by a Q—*
decay (N.B., the first generic class mentioned above). Intermediate situations
can be observed, but the assignment of a power law decay at low-Q to a self-
similarity relationship is not clear. Indeed, the complexity of the SAS signal is
such that at extremes, a Q ~* decay component, Q ~2 behaviors or contributions
from infinitely long and/or short rods (with different dimensions) may lead by
chance to non-integer exponents of the intensity decay in a given Q-range.

9.6. Orientation Correlated Domains

Two frameworks can be considered mainly to interpret oscillations (or sec-
ondary maxima) in a scattering curve of molecular gels. On the one hand,
monodisperse sectional morphologies have been shown to generate oscillations
after the Guinier Gaussian decay and are superimposed to a Q~# asymptotic
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behavior. On the other hand, a structure factor can imply Bragg or correlation
peak(s) whose broadening depends on the size of the crystallites (Sherrer’s
law) or type of correlation. The crystalline-like molecular ordering in the junc-
tion zones can be either of a solid or lyotropic nature. Depending upon the
2d symmetry of the in-plane organization of fibers, the sequence of peaks will
differ. Experiments at different concentrations can lead to identification of the
symmetry of the ordering and its distinction from form-factor oscillations of
thicker aggregates.

For hexagonal symmetry (space group pém), the relation between the posi-
tions of peaks in reciprocal space and the distances between the diffracting
reticular planes is:

Ope = 2ma*(h* + k* — hk)'/? (71)
a = K/(@"siny*) = K/(a*\/3/2).

The sequence of peaks has spacings: 1(Qqp), V3(Q12),2(Q2), V7(Q3)),
3(Q30)-

If fibers are hexagonally packed in junction zones with solvent entrapped
between the columns, the lyotropic nodal microdomains exhibit modified spac-
ings according to:

( drod >2 _
dswe N
C, is the concentration of gelator, v, and v are the partial volumes of gelator
and solvent, respectively, dsy. is the lattice parameter of the swollen system
(obtained from Q1 = d+/3/2), and d,.q is the diameter of the cylinders.

The analysis can be refined by considering the shape of the signal [51]. The
ideal situation, where the long axes of fibers are perfectly oriented perpendicular
to the incident beam, may represent a local situation in the junction zones.
Fibers either in close contact or separated are situations that can be described
by introducing the swelling ratio, y = D/2r, where D is the cylinder center-
to-center distance (r = d;oq/2). For a central hexagonal arrangement of seven
fibers, the intensity profile is given by Eq. (73) with F? being the form-factor
intensity of a fiber (see Eq. (19)).

1
1+ —— (72)
1+ 1c]

F2
1(Q) = 5[7 +24J02y Qr) + 6Jo(4y Or) + 1205(2v/3y 0r)]  (73)

For a similar system with fibers free to occupy any position in the orthogonal
plane, a radial distribution function g(r) is included in the calculation and the
intensity is:

1(Q) = F*(Qr) [1 - v/ooo2ﬂr(1 —g(r)Jo(Qr)dr (74)
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An increase of the correlation between the fibers reduces the intensity. The
special case, g(r) =0 for D¢ca/2 < r < 0, illustrates the maximum interfer-
ence effect on the intensity according to:

1(Q) = FX(Qr) [1 — v D%, <2J‘(QDCA)>}

75
ODca (73)

D¢ is the closest distance of approach and v is the number density of rod
centers in the plane normal to the longitudinal axes.

For rectangular ordering, diffraction conditions at which diffraction peaks
are observed become in the cmm space group:

Ome = 2 (h2a® + K*p*)Y2  withh + k = 2n (76a)
and in the pgg space group:
O = 2 (h2a® + kK**)'2  with ho = 2n, 0k = 2n (76b)

It is important to emphasize again the importance of a preliminary concen-
tration dependence analysis before attempting any interpretation of the profile
and its diffraction singularities. The complex nature of the networks requires
that variations of the scattering as a function of pertinent parameters be consis-
tent with the hypotheses used. For instance, if an asymptotic low-Q behavior
is assumed to characterize the fibrillar shape, its associated slope should not
depend on concentration in the range where the single particle approximation
holds. The contrary would support a S(Q) analysis. The problem is that usu-
ally this range is limited only to a few percent of gelator. Similarly, if large-Q
oscillations are thought to be due to the particular shape of the sections, their
position should not depend on the concentration. Conversely, if intensity oscil-
lations are believed to come from lyotropic organization in the network, it is
probable that their position should depend on the swelling degree of the gel.
It is also helpful to complement SAS data with other techniques. In particular,
if lyotropism is suggested, polarizing optical microscopy can provide some
insights, as can analysis of the anisotropy of the scattering signals.

10. Structure Factor Peak in Poorly Organized Fibrillar
Scatterers

Sections 9 and 10 could have been inserted in Section 8, but their potential
importance in SAFINs deserves a separate treatment. Calculation of correla-
tions between orientations and positions of rods in interacting systems is usually
not available. It requires a spherical symmetry of the scatterer and associated
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interactions. Only when it can be assumed that particles have a small anisotropy
(and a small polydispersity), can a decoupling approximation be proposed:

1(Q) = (Ap)? KFz(é,a)}a +{F(d.0) (5(D) - 1)J (77)

« is the angle between the rod axis and Q Such an approximation normally does
not hold for fibers with large aspect ratios in interconnected SAFINs. Neverthe-
less, a great deal of theoretical and experimental work has been devoted to the
description of interferences between fibrillar systems in a variety of charged
and uncharged materials. In the context of the random phase approximation
developed for stiff polymers, the interactions account for a so-called nematic-
like interaction in which segments of the polymers experience not only the
external field but also the molecular field interactions [52]. Other models use
a hard core repulsion between rods in a second virial approximation [53]. It
appears that the description, including the length distribution, is far from sim-
ple. S(Q) can also be described using the concept of correlation holes in ionic
domains [54] due to the repulsive potential in the region d < dc4 expelling
other fibers. Considering the complexity and the controversial character of the
structure factor in fibrillar systems and the rarity of SAFIN systems presenting
clear scattering features of S(Q), this aspect will not be developed further here.
Nevertheless, in molecular hydrogels of modified bile salts, evidence for such
behavior has been found [26]. In such a case, the spherical symmetry of the
spatial distribution and correlation of the globular scatterers allows a simpler
formalism:

do(Q)
dQ

Here, n is the number density of spherical scatterers per unit volume.
The starting point remains [3] the static structure factor for spherical scat-
terers of radius R.

=nV,(Ap)*(F(Q))*S(Q) (78)

2

sinQR — QRcos QR
S = |3
Q) l OB
© _ sin Qr
x{1+4n¢/0 re(g(ry—1) or er 79)

g(r) is the associated pair distribution function.

The globules can be assumed to interact through a hard sphere repulsion
potential with a closest distance of approach and according to a random distri-
bution. One advantage of such a modeling is to introduce only two parameters,
R the size of the pockets and the closest approach distance Rc4. Yarusso and
Cooper [55, 56] have tentatively described the structure of ionomers with a hard
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sphere model (Eq. (80)). A liquid-like degree of order in the relative positions
of spherical particles can also be included.

1
1+ (8Vea/v)eFsPh(Q, Rca)

e ~ 1 and F*?"(Q, Rc,) is the form-factor for spherical scatterers (Eq. (62)).
Hayter and Penfold have also derived convenient expressions for the struc-
ture factor of macro ion solutions [57, 58]. It is assumed that the repul-
sive screened Coulomb pair potential between the spherical macro ions is
a determing factor for the time-averaged structure of the solutions. A mean
spherical approximation is used and at a zero charge limit, a Percus-Yevick
hard sphere expression is recovered. Expressions to reproduce the maximum
of S(Q) can be also found in the work of Pedersen [59]:
1
O = T 249,620R,.9,)/ 20R,) ®D
R, is the hard-sphere radius of the particle interactions and G is a function of
x=20R,:

S(Q) = (80)

a(¢p)
2

X

Gy = (

> [sinx — xcosx]

+ ('B(%)) [2xsinx + (2 — x> cosx — 2]

x3

+ ()/(¢p)> [ — x*cosx

X3
+ 4[(3x* — 6)cosx + (x* — 6x)sinx + 6]] (82)

The coefficients «, 8, y are defined as:

_ U207 60,1+ 4/
(=" (=)t
(1+ 29,
= 2)— 83
Y= @/ T (83)

These formalisms must be used cautiously with SAFINs formed in
hydrogels and only after identification of the chemical nature of the globu-
lar scatterers. Analysis is complicated by scattering contributions from other
components, such as fibers, counterions, and rods. A peak position varying with
concentration consistently with simple space filling arguments in real-space is
a required reasonable first step.

Figure 11 shows a rare example of separated form and structure factor
features observable simultaneously for a molecular hydrogel comprised of a
tripodal cholamide LMOG. The low-Q peak is shifted towards large angles
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Figure 11. Example of structure and form-factor neutron scattering features in a hydrogel
(20:80 perdeuterated mixture of acetic acid:water) with a tripodal cholamine LMOG [26]. C =
0.02 (dark line curve) and 0.03 (light line curve) g - cm 3. The dotted line is a slope = —4.

when the concentration is increased (features 1, 2) and can be assigned to
a S(Q) contribution. The innermost Q~* upturn observed before the S(Q)
correlation peak is not predicted by the different models above and can be
attributed to a Debye-Biieche contribution of heterogeneities in the system.
Simultaneously, the large-angle part of the curve has a profile insensitive to the
concentration, as expected for a form-factor assignment. The corresponding
Q~!' and Q~* intensity decays are observed to precede a sectional form-factor
oscillation (feature 3).

The thermodynamic properties of molecular gels could also be approached
by the extrapolated value S(0), in the same manner used with light scattering
experiments on polymeric gels. No such SAXS/SANS examples are yet avail-
able with SAFINs. S(0) is related to the chemical potentials p. Such analyses
are interesting tests of models based on the free energy (u is the derivative of
the free energy) and interaction potentials.

—1 —1
S©) = N*(n = (n)*) = N**T [8"‘] — N2(n)kT [a”} (84)
a(n) a0
(n) is the mean number of solvent molecules, N is the number of scatterers, 7 is
the osmotic pressure, and p is the concentration of scatterers. Depending upon
the strength of interactions between the scatterers, the term (du/9n)~! will
vary from (n)/kT for no interaction (perfect gas) to O for strong interaction,
and S(Q) will be strongly affected. Thus, a lower value of S(0) contributes to
the observation of a maximum in S(Q).



Molecular gels and small-angle scattering 311
11. Oriented Fibers

11.1. One Dimensional Crystal and Fiber
Diffraction Pattern

Itis interesting to examine the effect on diffraction patterns of fiber orienta-
tion in one-dimensional SAFIN crystals. The corresponding Fourier transform
is the convolution product of the transform of a one-dimensional (1d) lattice
and a layer. For an infinite 1d periodic structure, the interference function S(Q)
is zero except at Q-regions where:

¢-Q=2nl (85)

c is the repeat distance along the c-axis.

The Ewald construction (Figure 12) shows that the diffraction pattern is
a series of lines formed when the planes /, where the intensity is non-zero,
intersect the sphere. The layer line at / = 0 is called the equator line while the

Z
s 5
_._l_..—Q__'_'_..
~ v’

Figure 12. Ewald construction for oriented fibers. Left: left sphere (Ewald sphere of reflection)
has a radius Q O of length 1/). Its intersection with the sphere of position in reciprocal space
(right sphere) indicates the direction of diffracted beam (Q P) which is also the normal to the set
of planes P for which the Bragg relation is fulfilled. Right: corresponding diffraction pattern.
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line parallel to the c-axis (and x-axis) is called the meridian line. The spacing
in Q-space is 2l /c. When the orientation of the c-axis is not the same all over
the imperfectly oriented system (or in the case of the existence of a 1d mosaic
spread), the structure projected onto a plane perpendicular to the z-axis can be
considered similar to a random array of discs. The corresponding diffraction
pattern is the intersection of the cylindrically symmetric intensity distribution
with the surface of the Ewald sphere. The interference function on the equator
line will provide information on the projected structure onto a plane perpen-
dicular to z and can be expressed with a two-dimensional radial distribution
function g(r). The cylindrical average about the y -axis is equivalent to an aver-
age over all ¢ values. S(&, x) is independent of y if the intensity distribution
remains in the cylindrical symmetry. The Fourier transform is:

FT = /oo 2nrp(r)Jo(Qr)dr (86)
0

Then, the equatorial intensity distribution is:

S¢E)=1+ n/o 2r[g(r) — 11Jo(§r)dr &7)

n is the number of discs per unit area.

Conditions for diffraction of a particular set of planes can be examined with
the Ewald sphere construction (Figure 12). The axes orthogonal to the fiber axis
are randomly distributed about this axis. In Q-space, on the sphere of position,
each scattering point describes a circle around the fiber axis (the diffraction
rings from randomly oriented specimens). Since the crystal axes are usually
disoriented about the fiber axis, the rings become bands. The disorientation
may be sufficient at low Q and large d, spacing to bring a lattice point on
the meridian into a reflecting position. The corresponding fiber diffraction pat-
tern is illustrated on the right part of Figure 12. If the beam is parallel to the
fiber axis, equatorial bands are observed while at intermediate orientations,
the reflections will be asymmetric along the fiber axis. Practically, it may be
useful to characterize the orientation degree of the rods. The evaluation of
an orientational distribution function f(8) (8 being the angle between a rod
and a nematic-like director 7) is of interest to compare the orientations in dif-
ferently processed samples. The method uses the intensity distribution of the
signal in the wide-angle diffuse crescent ring [60, 61] in a direction at polar
angle 6.

11.2. Shear Alignment

Due to the high yield stress values (0*) measured usually for molecular
gels, they can be sheared and oriented only in the disrupted state above o * or
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during the growth process. Since, in most cases, mechanical failure of a SAFIN
is accompanied by solid-liquid phase separation, this type of experiment is
frequently not possible. Below ¢ *, only minor orientation effects of the fraction
of non-connected short rods (if any) or shear-induced bundle formation are
possible. By contrast, under conditions where viscoelastic suspensions (low
o™) exist (as in weak molecular gels or ternary systems with end-cappers),
significant orientation effects can be observed. Also-called Couette measuring
cell (comprised of rotating concentric cylinders) is frequently used for liquid-
like micellar systems, but plate-plate or cone-plate geometries are preferred
for gels. Depending upon the type of cell and its specific set-up for scattering
measurements, the detection can be achieved either in the (v, neutral axis)
plane or(v, Vv) plane; the neutral axis is parallel to the axis of rotation of the
shear device). The calculation for solutions of rods in dilute isotropic systems
(non-interacting rods) leads to Eq. (88), an average over all orientations of rods
with respect to Q.

no=(lrof) (88)

F (é) is the form factor of a rod-like scatterer of length 2L and raclius roata
given orientation defined by the angle y between the rod axis and Q:

- _ sin(QLcosy) Ji(Qrsiny)
F(Q)=F(Q,y)=2ApV (OLcosy)  Qrsiny (89)

If rods have the same orientation, the intensity reduces to:

1(0) = FX(0)Sx(0) (90)

In the ideal situation of suspensions of non-interacting rods, Brownian
motion competes with the imposed viscous flow in a shear experiment accord-
ing to the ratio:

_dy/or
=5

r

oD

D, is the rotational diffusion coefficient and 0y /9t is the shear rate produced by
the alignment device. Expressions for D, applicable to various cells are known
and show that with common 9y /d¢ values, full alignment (I" > 1) is never
reached. This statement is correct for networks involving long fibers rigidly
interconnected. The scattered intensity depends upon the relative time spent in
a given orientation (6, ¢) characterized by a probability function p(8, ¢, I")

[62]. Here, 6 is the angle between the rod axis and the O, axis while ¢ is
the angle between Q, and the projection of rod axis in the plane (neutral
axis, Q). Theoretical treatments are available for different micellar systems
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Figure 13. SAS of assemblies of rods. é can rotate over 27 following ¥ in the plane (X, 7).
First row: dilute systems. Rods oriented perpendicularly to the direct beam: 1. Rods oriented
parallel to the direct beam: 2, 2. Bottom row: concentrated systems: 3, 4. (Reprinted with
permission of Marcel Dekker, from Surfactant Science Series, Vol. 87. Copyright 2002.)

[62—64]. Such equations can describe the anisotropic 2d patterns and/or the
deformation of a correlation peak (charged systems) as a function of the shear
gradient. The polydispersity and flexibility of the rods can be included in the
modeling.

Figure 13 illustrates the relationship between the rod orientation and the
scattering anisotropy. The vertical plane of the detector (X, Zz) contains Q for
large sample-detector distances (i.e., low-angle scattering). Rods with lengths
much larger than their diameters make a contribution to the scattering only
when they lie nearly perpendicular to Q. In a random gel, fibers are randomly
oriented and there is no dependence of the intensity with the angular position
of the sample in (X, Z). The detector shows isotropic scattering with circular
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isointensity contours. Conversely, with oriented systems, rods are position-
and/or orientation-correlated, and the scattering is dependent upon the angu-
lar position of the sample. Two extreme situations for perfect orientation of
the rods are shown. First, if the direction of orientation 7 is orthogonal to
the incident beam, Eq. (89) gives non-zero contributions only for y = 7 /2.
A horizontal line or band is observed (image 2). A real sample is not per-
fectly oriented and is composed of domains with a distribution of orienta-
tions around 7. The orientation of each rod in a domain is defined in polar
coordinates by angles € and ¢ and the direction is assumed to coincide with
Q,/(Q. is the orthogonal direction). In a sheared material, Q , is conveniently
taken as the direction of shear. The signal evolves to an anisotropic scatter-
ing with elliptical isointensity contours (image 2) which reveals, for each i
value in the (X,Z) plane, the existence gf a population of rods which ful-
fills the orthogonality condition of the Q and rod axes. The typical corre-
lation length in the perpendicular axis to the shear is decreased (increased
intensity in Q-space) while it is increased along the shear axis (decreased
intensity), forming thus an elliptical pattern. Second, the director can be par-
allel to the incident beam kj,. (i.e., 71 is orthogogal to the (X,z) detector
plane). An isotropic scattering independent of the Q position (X, Zz) develops
(image 1).

In the semi-dilute (C > 1/L?) and concentrated (C > 1/2rL?) regimes,
the long (L > 2r) rods interact. According to the symmetry of 2-d order-
ing, the structure factor can add specific diffraction features. Assuming that
rods are hexagonally packed, two situations are worthy of note. First, if
the directions of 7 and the incident beam are orthogonal, spots separated
in a 1:4/3:4/4:4/7 Q positional sequence, can appear along the horizontal
equatorial direction X. Due to imperfect ordering, elliptical intensity con-
tours can be superimposed on the spots (image 3). Second, if 7 is parallel
to the incident beam, rings appear in a 1:4/3:4/4:4/7 positional sequence
and contain hexagonally located spots. Additional spots along the equator
reveal the deviation from perfect ordering (image 4). The angular exten-
sion of the crescent-like spots shows the ordering degree described by
p(8, ¢), as for the measurement of the nematic order parameter of rod-shaped
molecules.

Shearing experiments distinguish between scatterers with a characteristic
relaxation or fluctuation time with respect to the typical time for flow (r =
1/dy /at). If the latter is short enough, the flow may affect the structural orga-
nization of the system. Combined shear and scattering experiments can then
provide information about the composition of the systems and their relaxation
and symmetry/structural modifications under flow. The complexity of SAFINs
is important and the structural composition of the network has to be estimated
to facilitate the interpretation of anisotropic signals. If non-entangled rods are
present in the interstices of the network, if lyotropic junction zones exist, or
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Figure 14. Comparison of the orientation effects in two different systems. Two-dimensional
isointensity contour plots for a hydrogel of sodium lithocholate (C = 8%) [36] submitted to
an elongational stress as studied by SAXS (left). Flow-induced orientation in an organogel of
4-tert-butyl-1-phenylcyclohexenol in perdeuterated-octane at C = 1.4% can also be observed
(right) [43]. (Reprinted with permission from [33]. Copyright (1997) Wiley-VCH.)

if the gel consistency is restricted to short times (Maxwell-like liquid), the
anisotropy of the scattering as a function of shear rate will have to be considered
accordingly.

Figure 14 shows that significant ordering can be obtained with both LMOG
hydrogels and organogels. When submitted to an elongational shear, a hydrogel
with a rather weak yield stress value can exhibit highly anisotropic scattering
patterns. A strong molecular organogel (i.e., with a high ¢* value) can also
exhibit same orientation of its fibers if it is induced by flow during the filling
protocol of the sample cell.

12. Real Space Data

Inverse Fourier transforms have been successfully used to extract structural
information in real-space with dilute suspensions of finite scatterers (micelles)
[4]. In SAFINS, heterogeneities may obscure the extraction. Different methods
are available whose applicability is probably restricted to systems presenting
a purely form-factor scattered intensity as shown in Figure 15. In particular,
the IFT (Inverse Fourier Transform) method [65-67] and variants [68] can be
used to reduce the usual constraints of the method since it does not require
Q-extrapolations of the experimental data. Corrections for the instrumental
smearing effects can also be included.

A Fourier transform of the scattering gives the pair distance distribution
function p(r):

p(r) =r’y(r) (92)
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300

Figure 15. Hankel representation for a paramagnetic steroid (38-hydroxy-17,17-dipropyl-
17a-aza-D-homoandrostanoyl-17a-oxy) organogel [69] (points are experimental, full lines are
theoretical curves using Eq. (93)). Curve 1: in perdeuterated-cyclohexane (C = 2.3 gcm_3),
r =54 A, & =0.2. Curve 2: in perdeuterated-methylcyclohexane (C = 2.1 g em 3 ), r =712 A,
e =0.12 (e is the cross-sectional polydispersity of the fibers, see Egs. (30)—(31). (Reprinted
with permission from [69]. Copyright (1989), EDP Sciences, France.)

y (r) is the correlation function and 45 p(r) represents the distribution of dis-
tances within the homogeneous particle. For large aspect ratio fibers, the Hankel
transformation can be used to extract p(r).

1 [e¢]
Pc(r)=7/ (Q1)Jo(Qr)QrdQ 93)
7 Jo

pc(r) is a distance distribution function within the cross-section of fibers.

For a Q-range large enough for a reliable integration to be conducted,
artifacts due to Q-truncation can be limited and the radial neutron scattering
length density can be reasonably deduced. The method and its variations are
not discussed here further because the conditions required to propose a unique
interpretation of p(r) are easier to extract from reciprocal space data.

13. Kinetic Studies

Depending upon the characteristic time scale of the molecular aggrega-
tion reactions, the SAS technique can be used to extract the number density of
growing rod-like particles in the system versus time during the sol-to-gel phase
transition. For faster kinetics (fequ < 15 min), a synchrotron beam is preferable.
To now, a stable sol phase preceding the SAFINs has never been observed by
scattering techniques. The heated solutions are unstable in the gel domain of
the phase diagram and the excess of material with respect to the solubility
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concentration at the equilibrium temperature (or cac) is involved in the var-
ious aggregates forming the SAFINs. In addition, the SAS technique (that
is sensitive to the presence of large-scale aggregates) can be combined with
a resonance or other spectroscopic method (that is sensitive to the molecu-
lar environment of the probes) to obtain complementary information about
the phase diagram. The SAS follows the increase of signal at the sol-to-gel
phase transition while the “molecular techniques” provide information about
the amount of isolated species in the solution fraction or other aspects of the
SAFIN component [70, 71].

During the course of a kinetic investigation, the estimation of the critical
threshold 7, (in a percolation sense) at which gelation occurs is a difficult task.
The unfavorable enthalpic excess due to the rod extremities is such that the
growth of long fibers is fast and their steric overlap concomitant. Three objec-
tives can be sought with SAS kinetic studies. First, the experimental conditions
(flux, time resolution of the technical set-up, contrast, kinetic features of the
aggregation reaction) allow the accumulation of scattering patterns as a function
of time. The morphological changes during the kinetics of aggregation can then
be analyzed. Usually, SAFINs made up of plain fibers exhibit embryos that are
also rods of the same diameter. A striking example of morphological evolution
from fibrils, chiral ribbons to tubules has been observed by SAXS in litho-
cholate hydrogels and has been confirmed by cryo-TEM measurements [73].

Within a purely form-factor approximation, the total counts of scattered
neutrons on the detector versus time (corrected by the incoherent signal) can be
approximated to the kinetic variation of the number of growing rod-like species,
whether or not they are connected. Such data [72] is useful to examine the
thermal reversibility of the aggregation phenomenon and its associated kinetic
constants. In addition, the dimensionality n (or the fractality) of the colloidal
growth can be analyzed since it will affect the mechanical properties of the gels.
The Avrami-Mempel heterogeneous kinetic models [74—76] provide a simple
approach to the complex relationship among kinetic, structural, and rheological
properties [71]. Two asymptotic regimes are distinguished (Eq. (94)), and from
trivial graphic representations of the reaction rate r (), the dimensionality n of
the growth can be deduced.

t—0 1 —r@) Zexp(—kt"th)
94)
t>0 1—r@)=Zexp(—kt")

Figure 16 illustrates the type and quality of kinetic data that can be obtained
from neutron scattering experiments. With interconnected networks in which
bundle formation and other types of heterogeneities are parts of the complex
architecture, the appropriate theoretical modeling is unfortunately still lack-
ing despite the availability of models describing the kinetics of nucleation,
aggregation and aging (see Chapter 4).
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Figure 16. Time-dependence of scattering intensity curves of gel formation with steroid gela-
tors. Variation of the total neutron counts scattered on the D22 ILL detector versus time for the
solid angle corresponding to the Q-range 3.2 x 1073 —73 x 1072 A~ 1, Acquisition time:
10s. Curve 1: Di-n-propyl-17,17-aza-17a-D-homo (5«) androstanol-38 steroid organogel in
perdeuterated cyclohexane (C = 4.3%) [72]. Curve 2: modified bile salt derivative hydrogel of
a cationic bile salt (derived from a 3,12-dihydroxycholane steroid) [26] at C = 1%.

14. Useful Hints for a Standard SANS Investigation
of Molecular Gels

The structural characterization of the SAFINs of LMOG gels is a compul-
sory step in the description of this special gelation phenomenon. A network
is composed of fiber-like particles that interact over variable lengths, energy
and time scales in the “junction zones” (or interaction zones). The structural
information can be gained at different length-scales using complementary tech-
niques operating in reciprocal space (mainly SAS and WAXS) and real space
(TEM, AFM, etc.).

The elucidation of “rules” that link the chemical structure of the LMOGs
and the structural features in the network is a major challenge for chemists and
physicists. Subtle variations in chemical structures of the gelators are known
to affect gelation ability, structures of the fibers, and mechanisms of formation
and structures of the junction zones. The chemical structure may also have a
key role in determining the mechanism of the evolution of the networks as
concentration is increased by altering the fibers/junction zones ratio.

The determination of the structures formed in the various aggregates is
of invaluable help to propose a molecular mechanism for aggregation. It is
also necessary to develop chemical synthesis strategies so as to obtain, by
a priori design, specific SAFIN structures and gel properties. The ability to
predict whether a molecule that is unrelated structurally to a known LMOG will
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function effectively to yield hydrogels or organogels (with specified liquids)
has not been achieved.

In accordance with the aggregation mechanism to form fibers and junction
zones at different length scales, it is important to characterize the flow prop-
erties of the gels. Practically, gels are used in many applications because of
their consistency and also when manipulation of their nanostructures is advan-
tageous. Knowledge of the sizes of the cross-sections of fibers, as well as
the type and structures of the junction zones, is useful to relate to the elastic
modulus and yield stress values of the systems. Other mechanical properties,
such as creep/recovery behavior, thermal stability, and thixotropy, are certainly
associated with structural features extracted from SAS.

When molecular gels are used for special applications such as the elabo-
ration of rigidified replicas, sol-gel switches, conducting systems, etc., their
efficiency can be monitored more easily if structures and flowing properties
are accurately known.

Other properties of molecular gels such as surface properties [77], wetting
aspects, evaporation kinetics and molecular diffusion are also fundamental
issues of importance both for the basic understanding of the systems and for
their application in the fields of drug control release and processing of gels.
Efforts are expected in these directions using specialized techniques, such as
reflectivity, grazing incidence X-ray diffraction (GID), and grazing incidence
X-ray small-angle scattering (GISAXS).

In most cases, molecular gels are heterogeneous systems, many of whose
properties are randomly distributed while some others are rather monodis-
perse. For instance, a network is made up of fibers that interconnect in junction
zones, but the SAFINs may be more complex. Fibers with a given morphology
can coexist with other species that may contribute to the thermal equilibria
between them (N.B., short rods, ribbons, twisted ribbons, and helices). The
number, the shape of the junction zones, and their organization and volume
fraction are parameters that may appear as somewhat chaotic variables [78].
With such potential complexity, it is reasonable to focus on non-sophisticated
structural parameters that can be extracted with a minimial number of cal-
culation parameters. Data obtained using different methodologies in different
Q-regions improve significantly the reliability of proposed structural models.
A sequence of operations as on to explore progressively the SAFINs is pro-
posed below as a conclusion and invitation to explore the structural aspects of
molecular gels with the SAS techniques:

1. Best choice of gelator/liquid: the solvent should ideally contain no pro-
tons (for SANS). Fluorine elements can be easily used (incoherent cross-section
is 0.0008 barns for F and oy, = 80.26 barns for H). The gelator should not
contain a very large number of H atoms per molecule, and the related inco-
herent contribution for a dilute system should be subtracted in the analysis
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of the scattered intensity. According to the stoichiometry, the examination
of the specific values of coherent and incoherent cross-sections will provide
information about the feasibility of the scattering experiment. The importance
of the absolute value of the contrast is decreased when using modern radiation
sources.

2. Arange of gel concentrations, typically between 0.1% to 5-10%, should
be used to identify features that are not relevant to the form-factor analysis
of the constitutive fibers; these include structure factors, form-factor of the
junction zones, internal structures, heterogeneities, and ordering effects. The
spectrometer is able to cover the range ca. 0.001-0.6 A~! that usually requires
3 sample-detector distances.

3. The dilute range must be sampled with at least 3 samples to guarantee
the reproducibility and validity of the subsequent conclusions. The first objec-
tive of the approach is to identify the structural features of the major fibrillar
component in the networks. The determination of the radius of the fibers from
the Guinier plot must be confirmed at large angles with the so-called Porod
analysis. At the end, a fit of the complete scattering curve should be attempted
with a simple model, focussing on the most significant Q-regions. The model
usually does not account for all parts of the scattering curve. In particular,
special treatments should focus on the existence of (i) Bragg peaks at large
angles, (ii) a Debye-Biieche component at low angle, or (iii) an interference
peak. Importantly, the molecular weight per unit length has to be consistent
with the value of the cross-sectional dimensions of the fibers.

15. Conclusions

Scattering techniques offer the advantage of probing unadulterated gel
samples. Moreover, they provide a picture that is a statistical average over the
irradiated volume of the sample. However, the structural information derived
from scattering data is model-driven due to the loss of phase information and
requires significant mathematical manipulation. This chapter is not a collec-
tion of convenient numerical recipes to extract the structural information, but
introduces the most used approaches applied to SAFINs. The examples used
represent well the rich complexity of this type of soft-condensed matter. Even
if very time consuming, the numerical treatment is not the rate-limiting step
for the data analysis. The “state of the art” consists in being able to con-
duct the appropriate experiments that clearly demonstrate the applicability
of the above models and formulas. Being able to distinguish and identify
in the scattering profile the asymptotic power laws, the oscillations, the bumps,
the broad Bragg peaks, and the curvatures in the intensity decay, and to make
the proper (consistent) structural assignments is the core of the technique. Find-
ing unambiguous relationships between variations in the scattering curves and
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Figure 17. Different scattering QIvsQ profiles observed in SAFINs. 1: N-alkyl perfluo-
roalkanamide [45] in perdeuterated benzene (C = 3%); 2: bicopper tetracarboxylate (C = 8%)
in perdeuterated cyclohexane [14]; 3: 12-hydroxystearic acid (C =2%) in perdeuterated
toluene [15].

experimental parameters (such as concentration, temperature, level of interfer-
ences, crystallinity of the network, ionic strength, etc.) is a mandatory corollary.
Such “premonitions” require both large amounts of beam time and a signifi-
cant experience in the data treatment of a variety of scattering signatures of
molecular gels. Figure 17 selects different scattering profiles of molecular gels
(in addition to those already presented in the chapter) to illustrate the extreme
variety of “signatures” that the scientist has to decipher!

The appropriate approaches vary from the Debye-Biieche random two-
phase model in a crystalline network (curve 1), the presence of an important
proportion of short rods with very monodisperse sections (curve 2) and finally
to a model involving long and thick fibers in a swollen network (curve 3).
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1. Introduction

Crystal structure determination by X-ray or neutron (see Chapter 10)
diffraction is an important method to understand molecular shapes, the modes
of molecular packing, and related physical and chemical properties. Using
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proteins, new superconductors, ionic conductors, polymers or ferro-magnetic
compounds, fundamental research is laying foundations for applications as
varied as microelectronics, metallurgy, fine chemicals, the oil industry, energy
storage, building materials, pulp, cosmetics and pharmaceuticals.

Many of the materials pertinent to these fields have complex packing
arrangements, such as partially disordered crystalline solids. The disorder can
be static or dynamic in origin, one being occasionally the consequence of the
other in the same structure. Various solids show some degree of disorder in their
periodic arrangement and can be very different in nature, as for instance, ionic
conductors and pharmaceuticals. An order-disorder transition initiating disor-
dered vacancies in the former may lead to ion diffusion inside the crystalline
solid, inducing high thermal vibrations of atoms in the lattice. In the latter,
size and individualistic character of the molecules gives rise to two kinds of
structural disorder due to intra- and inter-molecular atomic vibrations. The
high frequency internal modes correspond to torsions and distortions inside the
molecule, whereas the low frequency external modes describe oscillations of
the global molecule and result in larger atomic displacement parameters. The
intramolecular vibrations may perturb the long range order of the molecular
arrangement.

Nowadays, solving structures from single crystal data has become relatively
routine using well-proven modern methods and software packages assisted
by more and more powerful computers. Crystal structure determination from
powders, a much more recent technique, is less straight-forward. Even so,
the same basic principles are applied. The main drawback of this method is the
projection of the three-dimensional reciprocal lattice onto a single axis (6, d, q)
which very often produces a severe overlap of the Bragg reflections.

For that reason, it is highly advantageous to work with single crystals when
they are available. Unfortunately, it is often difficult or not possible to grow
single crystals of disordered molecules due to their intrinsically disorganized
character.

In order to overcome these difficulties when determining crystal structures
from powders, methods have been developed recently to improve the usual
procedures. Simulated crystallographic models can be built from molecular
chemistry, local atomic arrangement and structure fragments. The resulting
trial structures are calculated and compared to the diffraction data, and some
atom parameters are changed in the direct space in order to find the best fit.
Besides this, molecular dynamics, statistic genetic algorithms and simulated
annealing help to predict the most probable crystallographic structure. The next
step of the determination is classical refinements of Rietveld type.

In the following parts, some definitions and principles concerning the crys-
talline state are given. Then methods for determining and refining a crystal
structure are developed. Finally, some typical examples of structure determi-
nations of partially disordered structures are presented.
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2. Long Range Ordering

A crystalline compound may be defined as a homogeneous solid having an
ordered internal atomic arrangement and a definite overall chemical compo-
sition (stoichiometric or not). Beside the classical crystalline materials, other
compounds may be described as crystalline because they present some degrees
of long-range order over many periods. Such examples include sheet and fibrous
substances.

A crystal may be defined as a solid that is crystalline in three dimensions and
is bounded by plane faces. A useful distinction is that crystalline compounds
exhibit long-range order in three or fewer dimensions, whereas crystals have
three-dimensional regularity and plane bounding faces.

2.1. Diffraction and Diffuse Scattering

X-ray (or neutron) scattering by atoms can be separated into two parts. The
first part arises from the average periodic structure and the second from fluctu-
ations around and away from the equilibrium positions. The former describes
the Bragg scattering and the latter refers to diffuse scattering.

Diffuse scattering is due to inelastic scattering generated by electronic
excitations, to thermal diffuse scattering related to atomic motions (TDS), to
scattering from disorder, and/or from crystal defects (DDS). Thermal vibra-
tions break down the perfect periodicity of the crystals with fluctuations in
the atomic density around the instantaneous positions. Structure factor ampli-
tudes are reduced by such atomic displacement through the Debye-Waller
factor.

In solid-state physics, “lattice dynamics” and “lattice vibrations” are used in
referring to the collective modes of vibrations of the entire crystal. On the other
hand, “diffraction” is sometimes restricted to elastic scattering processes and
the measurement of the intensity as a function of direction then constitutes
a “diffraction experiment”. Indeed, “diffraction” has a more general sense
for any measurement involving the interference of wave trains scattered by
different atoms in the crystal. Thus, Bragg scattering, thermal diffuse scat-
tering of X-rays, and the coherent inelastic scattering of slow neutrons by
crystals are diffraction processes. Bragg scattering is simply coherent elastic
scattering.

2.2. The Crystal Structure

The crystalline state may be defined as a regular repetition in the three-
dimensional space of an object made of atoms, molecules or groups of
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molecules, extending over a distance corresponding to a very high number of
motif units. However, some crystals do not show three-dimensional periodicity,
as in defect compounds or in fibrous materials which are ordered only along the
fiber axis. Thus, the periodicity can be observed to a lesser extent in crystals,
but it is useful to introduce the ideal crystal with perfect periodicity and the
symmetry rules determining its formation [1]. Every crystal has a lattice as
its geometric basis that is described in relation to three basic translation vec-
tors a, b, ¢ and constituted of an infinite arrangement of points. A unit-cell is
defined as the smallest repeat unit for which its delimiting vectors are parallel
to important symmetry directions in the lattice. Fourteen three-dimensional lat-
tices, or Bravais lattices, can be built and are unequally distributed among the
seven crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, cubic,
hexagonal and trigonal (Figure 1).

Inside the unit-cell, atoms may correspond by combined symmetry opera-
tions defining a group, namely, rotary axes, mirrors, centers of symmetry and

Figure 1. Unit cells of the 14 Bravais lattices; interaxial angles are 90° unless indicated oth-
erwise by a numerical value or symbol: (1) triclinic P, (2) monoclinic P, (3) monoclinic C,
(4) orthorhombic P, (5) orthorhombic C, (6) orthorhombic 7, (7) orthorhombic F, (8) tetragonal
P, (9) tetragonal I, (10) cubic P, (11) cubic I, (12) cubic F, (13) hexagonal P, (14) trigonal
R. (Reprinted with permission from [1]. Copyright (1977) Plenum Press.)
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rotary inversion axes. Crystals can be classified in terms of the groups of sym-
metry operations they are related to. Each of these groups, known as the 32
point groups, represents one of the possible unique combinations of crystallo-
graphic symmetry elements. It can be shown rigorously that combining the 32
point groups with the 14 Bravais lattices leads to 230 unique arrangements of
points in space. These are the 230 space groups that describe the only ways in
which identical atoms of a crystal structure can be arranged in an infinite lat-
tice. Furthermore, knowledge of the symmetry elements between atoms, ions
or molecules in a crystal structure facilitates its determination by reducing the
number of unique parameters to be adjusted.

3. Single Crystal Diffraction

As it is still not possible to construct a microscope that would enable us
to clearly see the structure directly, X-ray (or neutron) diffraction must be
performed in order to determine the structure of a crystal. The term diffraction
refers to the interference phenomena exhibited by the coherently scattered
radiation and, consequently, this imposes the diffraction conditions.

An incident beam is reflected from parallel layers of atoms in a crystal. The
angle of incidence is equal to the angle of reflection, so both are designated as
6. Then, for a maximum in the reflected beam, the component beams reflected
from adjacent layers must be in phase (that is, they must have a path differ-
ence which is an integral number of wavelengths). Hence, it follows that the
reflection condition is:

niA = 2dsinf

n is an integer called the order of the reflection. This is the Bragg equation.

The Reciprocal lattice

From Bragg’s law it is seen that sin 6 is inversely proportional to d, the
interplanar spacing in the crystal lattice. Since sin 6 is a measure of the deviation
of the diffracted beam from the direct beam, it follows that structures with large
d will have compressed diffraction patterns, and conversely for small d. Thus,
the idea is to build a reciprocal lattice based on 1/d, which aries directly as
sin 6. This concept simplifies virtually all problems of lattice and diffraction
geometry.

The crystal lattice is called the direct lattice (a;, a;, a3 or a, b, ¢ axes) which
is opposed to the reciprocal lattice (a}, a3, a5 or a*, b*, ¢* axes) and they exist
in the direct space opposed to the reciprocal space. These axes are determined
by the relations:

*
a; -aj = aij
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where

(S,’j=1 fori:j
=0 foris#j

This definition of the reciprocal lattice axes requires that a* be normal to b
and ¢, and so on. Two properties useful for describing diffraction are derived:

(1) The reciprocal lattice vector
S(hkl) = ha* + kb* + Ic*

is normal to the family of planes (hkl) in the direct lattice
(2) The length of the reciprocal lattice vector S(hkl) is the reciprocal of the
interplanar spacing d(hkl) for the planes (hkl)

d(hkl) =1/S(hkl)

3.1. The Structure Factor

In a diffraction experiment, the intensities measured for a large number
of Bragg reflections are proportional to the squared amplitudes | Fj,;;|*> of the
structure factors Fjy; written in the form:

Fuq =Y fjexp(—=W;)exp[2mi(hx; + ky; + z;)]
=1

The summation is over the n atoms in the unit cell, f; is the X-ray scat-
tering factor (or alternatively b; is the coherent neutron scattering length) and
Xj,yj,zj are the co-ordinates of the jth atom within the cell. The quantity
exp(—W;) is the Debye-Waller factor which accounts for the lattice vibrations
and reduces the intensity of the Bragg reflection. For an isotropically vibrating
atom:

W.—B sin’ 6
J — = )Lz
The B-factor is related to the mean-square displacement of atom j in any
direction.

Examining the structure factor formula, it is obvious that translational sym-
metry elements can be detected from systematic absences of Bragg reflections.
This is a good aid to determine the space group symmetry, which is mandatory
for solving a crystal structure.
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3.2. Crystal Structure Solution

Actually, solving the crystal structure of a crystallized compound from
diffraction data needs two stages. The first one leads to the determination of
a rough model including the main features of the structure. The second is the
completion of the structure with the optimization of the original approximate
structural description by refining some adjustable parameters.

3.2.1. The phase problem and direct methods

The fundamental difficulty of determining a structure by diffraction is
the fact that the crystallographically available data consist only of the struc-
ture factor magnitudes and not their phases (Fyi; = | Furr €, where « is the
unobservable phase). The phase problem arises from the fact that this missing
information has to be supplied. There are various methods of obtaining phasing
models and the following list is not exhaustive:

Patterson Methods

Direct Methods (Inequalities, Fs, Us, and Es, Structure Invariants and
Seminvariants, Probability Methods)

Heavy Atom Methods

Search Methods (Trial-and-Error Methods, the Rotation Search, the
Translation Search, the Superposition Methods)

Once some atoms have been revealed by one or more of these methods, this
model is used for the calculation of structure factors (F,), and these serve as a
source of phases for Fourier calculations. We shall only focus our attention here
on the two most commonly used techniques, the Patterson and direct methods.

The Patterson function

If the structure factors and phases are known, the distribution of the electron
density (or nuclei-related density in the case of neutrons) in the unit cell can
be calculated using the general expression:

1 .
X,y,27) = — F e—2r[1(hx+ky+lz)
p(x,y,2) v Eh Ek Ez i

This Fourier series corresponds to the Fourier transform of the structure
factor Fjy; but crystallographic Fourier series can be calculated with any sort
of coefficients. One of these is the Patterson or | F|> function:

P(u,v,w) = %ZZZ|Fhkllzcos2n(lm + kv + lw)
h k I
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In this case, the coefficients of the Fourier series are the squares of the
observed structure factors |F,|. Since the coefficients are squares, they are
phaseless and the Patterson function can be immediately obtained from diffrac-
tion data [2].

Whereas the usual Fourier synthesis with F's as coefficients shows the dis-
tribution of atoms in the cell, the map calculated with | F|* gives peaks corre-
sponding to all of the interatomic vectors. Thus a peak at the point uvw in a
Patterson map indicates that atoms exist in the crystal at x;, y1, z; and x5, y2, 22
such that:

u =X — X
V=Y~
w =21 —22

For a molecule containing N atoms in a unit cell, the Patterson synthe-
sis will show N? peaks, corresponding to the N possible vectors that can be
drawn from each of the N atoms (Figure 2). Of these, N will be vectors of zero
length from each atom to itself and will be concentrated as a very large peak
at the origin. The remaining N>— N will be distributed throughout the cell.
The weight of a Patterson peak depends on the numbers of electrons (X-rays)
or on the scattering lengths (neutrons) of the atoms between which the vector

Ve |

{a) {b) {c)

(d)

Figure2. (a)Setofpoints. (b) Interatomic vectors. (c) Patterson peaks about the origin from one
set; (o) origin peak. (d) Patterson peaks in four unit cells. (Reprinted with permission from [2].
Copyright (1989) John Wiley and Sons.)
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occurs, and can be shown to be proportional to the products of their atomic
numbers or their scattering lengths. It is this fact that allows the heavy atom
vectors to be recognized in the Patterson map, usually without difficulty. Con-
cerning the symmetry of the Patterson function, the following rules can be
listed:

— All Patterson functions are centrosymmetric.

— Their lattice type (P, C, F, etc.) is the lattice type of the original space
group.

— Their space group is derived from the original space group by replacing
all translational symmetry elements (screws, glides) by the correspond-
ing non-translational elements (axes, mirrors) and by adding a center of
symmetry if it is not already present.

Despite the overlapping problem, structures have been solved from powder
data by Patterson techniques and this method seems less sensitive to errors in
the intensities than direct methods.

Direct methods

Methods of direct calculation of phases are now widely used and have
been automated to the extent that most of the programs work as “black box”
techniques in which the raw data go in at one end and the essentially solved
structure appears at the other. In fact, this is not really true in powder diffraction
which, once again, suffers from the small number of reliable reflections due to
overlapping. This situation is strongly improved by high resolution synchrotron
X-ray diffraction. Hereafter follows a short description of the methods, but
details can be easily found in specialized crystallographic literature.

Expressions relating phases to intensities and resulting from the combina-
tion of structure factor expressions with certain classical inequalities, provide
the first means of determining the phase of a reflection. These inequalities
represent limiting cases of the more general probability relationships and
become ineffective for reasonably complex structures. Another approach is
the probability methods: in the range of intensities that are too small for
inequalities but still relatively large, it is possible to set up “equations” that
are probably true, and from these to extract phase information. Thus, in the
case of centrosymmetric space groups, it can be shown that, within certain
restrictions:

Fua = Qi Y > Fur Facw ki i—v
WK

Qi 1s ascaling term. From this full Sayre equation, some probability equations
conditioning the phases have been derived. Equivalent expressions have been
obtained for non-centrosymmetric space groups as well.
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The practical objective of direct methods is to phase a sufficient number
of reflections to give an identifiable Fourier representation of the molecule
being studied. Roughly, 10 reflections per atom in the asymmetric unit seem
quite satisfactory. Two main procedures are used for the application of direct
methods.

Symbolic addition method

In this method, one starts with a very limited number of phases and uses
them to pyramid to a number large enough to give a recognizable Fourier
representation of the structure. The problem met in practice is that of obtaining
some initial phases to work with. Fortunately, a limited number, usually three,
can be assigned arbitrary values, subject to certain restrictions. These arbitrarily
assigned phases constitute the initial set.

Multiple solution methods

Various programs have been written to carry out symbolic addition by
machine, but the standard approach to symbolic addition does not make the
best use of computer abilities. On this basis, Woolfson and his collaborators
built their direct methods and the program MULTAN [3] which is widely used
either directly or in the form of other programs derived from it. This program
includes many features, one of them being the introduction of magic integer
methods which reduce the number of trial sets.

Once the analysis is completed, the result is a number of possible phase sets
and Fourier syntheses are calculated for each of these. The maps are examined
in order to determine the most promising structural model.

3.2.2. Real-space method and simulated annealing

Standing aside the direct methods for crystal structure solution are simulated
annealing techniques working in the real space [4].

The real-space method solves structures by altering positions, orientations
and conformations of the molecule(s) in the unit cell, according to the con-
straints of space group symmetry, until a good match is obtained between
calculated and observed intensities. For powder diffraction data, observed inte-
grated intensities can be extracted by Pawley or Le Bail full pattern refinements.
In the case of Pawley analysis, the level of agreement between a trial structure
and the experimental diffraction data is quantified by x?2, whose formula is:

=300 [ U = el FPYV il = el F) |
h  k

With [, , = extracted integrated intensity from Pawley refinements, Vj; =
covariance matrix, ¢ = scale factor, Fj, ; = calculated structure factor from
a trial structure.
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The process is a search for a global minimum in multi-dimensional param-
eter space, the parameters being positions, rotations and torsion angles. This
search is performed using a simulated annealing algorithm (i.e., a Monte-Carlo
method based on the Metropolis algorithm which implements a weighted ran-
dom walk through conformational space). A series of structures are generated,
and each structure is derived from the previous structure forming a Markov
chain. The first structure is chosen as a random position of the molecule(s) in the
unit cell. A trial structure generated from structure i is accepted automatically if
X2 — x? < 0;if x2,, — x? > 0.The trial structure is accepted only with prob-
ability e~ (U =x)/ksT) and rejected with probability (1 — e~ (U =1/ kBT)),
where kp is the Boltzmann constant and T a “temperature” that is decreased sys-
tematically according to an annealing process. If the trial structure is rejected,
structure i + 1 is taken to be the same as i. The above procedure is repeated,
and each structure is deduced from the previous one through small random
displacements until the system reaches a global minimum.

3.2.3. Refinements

The refinement stage of a structure analysis is assumed to begin with a
completed trial structure containing all the atoms and, thus, prior to it, the
Fourier techniques can help to reveal the missing one. The problem to be
solved is the following: given a set of experimental observations |F,| and a
theoretical model which, from trial values of some parameters, g