Beginning

Android 3D Game

Development

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Beginning Android 3D
Game Development

Robert Chin

Apress

Beginning Android 3D Game Development
Copyright © 2014 by Robert Chin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this
legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically
for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

ISBN 978-1-4302-6547-4
ISBN 978-1-4302-6548-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries. Apress
Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the author nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Technical Reviewer: Jim Graham

Developmental Editor: Anne Marie Walker

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editors: Anamika Panchoo, Christine Ricketts

Copy Editor: Michael G. Laraque

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer

Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress. com, or visit www.apress . com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www . apress. com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Contents at a Glance

About the AUthOr ... —————————————— Xvii
About the Technical ROVIEWETccuveesssssssssmsssssssssmssssssssssssssssssssssssssssssssssssssassnssssnsnsnsansas Xix
AcknowledgmEeNnts.......ccccciiiissssnmmmnmmmmmmsssssssssssnnneessssssssssssnnnsessssssssssnnnnnnsesssssssssnnnnnnnnesssssnnn Xxi
INtrodUCTiONceeiiiensissannssssnnnsssnnnsssnnnsssannsssnnnsssnnnsssannsssannnssannessannessannessannnnsnnnssssnnssssnnnsnns Xxiii
Chapter 1: Let’s Meet the Androidccccunnsemmmmmnsssnnmmmssssnmmmsssssmmsssssesssssssesssssssensnns 1
Chapter 2: Java for ANdroidccccceerrnnmnmmmmmssssssssmmmmmmmsssssssssnssssssnsssssss s 29
Chapter 3: 3D Math ReVieWc.ccccmmmmssmmmmmssssnsnmmssssssnmmssssssnssssssssnsssssssssnssssssnnsnssssnnnnnssns 57
Chapter 4: 3D Graphics Using OpenGL ES 2.0.........cccusmmmsssnmmsssnsmsssssssssssssssssssssssssssnssssnns 81
Chapter 5: Motion and ColliSion ... 135
Chapter 6: Game Environment...........cccccimnnnemmmmmmssssmmmmmssssmmmssssmmssssssmsssssssessssssnnans 183
Chapter 7: Drone Grid Case Study: Creating the Playerc..ccousmmmssammmsssnsssssnsssssnnsas 221
Chapter 8: Drone Grid Case Study: Creating the Enemiesccccusseenmnssssesnsnssssnsnnnnans 267
Chapter 9: Drone Grid Case Study: The User Interfaceccuccemmmnsssnnnmmssssnsnsnssssssnnnnans 321
Chapter 10: The Final Drone Grid GAME........cscurmssmssmsssnsssssnssssansssssnsessassessanssssansesssnness 353
Chapter 11: The Android Native Development Kit (NDK)c.cuccenmssenmmssansssssnsssssnsssssnsssns 393
Chapter 12: Publishing and Marketing Your Final Game..........ccconmmmsmmnmmmsssnsnsnssssssnsnssns 419
IN@X.euiieniierninsns s ——————————————————————_———— 453

Contents

About the AULROKccouuiemmmsnnmmsssnmmsssnnmsssnnmsssssmsssssmsssnsssssnsnsssnnssssannesssnnssssnnssssnnesssnnnssnnnss xvii
About the Technical ReVIEWETcsvsessssssssssssssssssmsssssssssssssmssssmssssssssssssssssssnssnsnssnsnsnsansas Xix
ACKNOWIEAYMENTS ...cceuriiissnnnnisssssnnnnsssssnsnssssssnnnssssssnnnesssssnsnesssssnnnessssnnnssssssnnnnsssssnnnnsssssnnnnss XXi
INtroductionccvvmmismmimss s ————————————————_—_—_— xxiii
Chapter 1: Let’s Meet the Androidcccuvmmsmnsmmsssmssssssmsssmssssssssssssssssssss s s s ssasnsnsns 1
OVErviEW Of ANAIOIdccoccreimienensiresesesesse s sr s sn s r s sne s se e snnnnnnns 1
Overview of the ANdroid SDK ... 1
Android Software Development Kit (SDK) ReQUIrEMENTS.........cccevrrereriererrerereresersesersesesersssersesessssessssessesassesseneres 2
Android SDK COMPONENTS OVEIVIEW.......coereerererrerererersersssersesessessssessssessssessssesssssssssssssssssessssessssessssssssssssssassesseneres 2

How t0 Set Up for DEVEIOPMENL........cccceerereeereertre st ree e rae e sae e s sa s rae e ae e saesasaesasaesa e e sae e saenesaenassesaesesannenans 6
Android Development Tools Integrated Development Environment (IDE) OVEIVIEWccoeeereerererererererensersenenes 7
Hands-on Example: Non-0penGL ES Text “Hello World” Program...........ccocverereersescensessensennnnns 14
Creating @ New Android PrOjJECL.........cceiieirierr et n e st e et n e e ne e nennnaens 14
Running on an Androit EMUIALOL ..ot s sn s s e n e s sn e nn e 20
Running on an Actual ANdroid DEVICE.........cccuerrerirereniresenesessesss et e e sss s sssessesessessssessssessssessssessssnsssssnens 23

The Main SOUICE COUE...........cuciiritictic bbb bbb bbb b 24

The GraphiCal LAYOULcccoeeeieeeeere e e s e e s e e s R psnnnn e 25

The Actual “Hello WOrld” DAtacocveereneneneseniniiiiisssssssssssssssssss s 27
SUMMAIY ...ttt r s ae e ae e s Re e s ea s e e Re e e Re e R e e e Re e e e nRe e nRe e n e eRnnnnnas 27

vi

Contents
Chapter 2: Java for Androidccccurssssmnnmmsssssssmsssssssssessssssnssssssssssssssssnssssssssnsssssssnnnnsssss 29
Overview of the Java LangUAQEcccceeeererrerrersessessessessessessessessssssssessssssssssssssssssssssssssssssssensnns 29
JAVA COMMENTS.......ceiccecceeci e a s ae e ae s nn e e ne e e nnnnnis 30
Java BasiC Data TYPES......cccvrerrerrersrrsessesssssessessss s s s s s sessss e s s s e s sesssssnssnssssssssessnesssssssssssssssnsnnes 30
4 | SRS 30
DAt MOGIfIEIS ... 31
JAVA OPEIALOrS ..ot e e e R n e n e n e nn e nn e n s 31
DA (T Lo C e T (0] £ 32
0T T 00 T=] 2 (0] T 32
CoNAItIoNAl OPEIFALOIScccceeerierrercrre e a et r e e e s b e R e e Re e Re e s Re s e e ae e R e e e Re e e Rennnnennanes 32
Bitwise and Bit Shift OPEIatorsccicererirere e sr e nens 33
Java Flow Control Statements..........cccuceeeeiennninessissss s snssesnes 33
JAVA CIASSES....cviviriuiscscine st 34
PACKAQES ANA ClASSEScveuerererrererrererserererasersssessessssessssessssessssessssessssssssssssessssessesessssssssssssessssessssessssensssassssassens 34
AcCESSING ClasSES IN PACKAQGES.......ccuverererererersersesersesessesassesssessessssssssssssssessssesssssssssssssssssessssessessssssssssssssesseneres 34
JAVA INTBITACESvvsrr s ———————————————————— 35
Accessing Class Variables and FUNCHONS.........ccccvvrverirererreresersesers e sessesassessssessssesssssssessssessssessssssssssssesssnenes 35
JAVA FUNCLIONS ...t 35
Calling the Parent FUNCLION ...t s e a et snsnennenens 36
The Basic Android Java Program FrameWOorKccecueevenrnsesessssesssssssssssessssssssssssesssssssessssssns 36
Android Activity Life CYCIE QVEIVIEWcceeeeererrsesererrssesesssesssssessssssssesssasssnns 37
Seeing the Activity Life CYCIe i ACHON........cccoveieeerrrrrccrirs e nnns 38
The Basic Android Java OpenGL FrameWOrKc.ccvvrverrerrernessensensessessessesssssessesssssesssssasssssenses 40
Basic Android OpenGL ES Framework for a Single-View OpenGL ES Applicationccccveevvvereerererevesersesenens 40
Basic Android OpenGL ES Framework for a Multiple View OpenGL ES Application...........cccvevvereererererererserenens 42
Hands-on Example: A 3D OpenGL “Hello Droid” EXampleccoceeercercercensessensesses s sessessenens 45
Importing Project ExXamples int0 ECHPSEccccvuecriicrrcrnerin e sn e sesnesnsnens 45
The MainActivity and MyGLSUIfaCEVIEW CIaSSEScueeererermeerirerreesesessse e sesssss e s s e ssssssssssssssssssnnns 45

The MYGLRENUEIEr ClASS.......ccceuierreerreiresise s et se e ss e e s b e st b e e b e s e e e et p e e e Re e s aenn e e ne e ns 47

Contents vii

ClASS DVBIVIBW ...ttt bbb bbb b bbb bbb bbb bbb 50
Experimenting with “Hello Droid” ... e s sr s n e s sn e snnnens 51
BT 1111 TSN 96
Chapter 3: 3D Math ReVieWccvcumimmsemmssmssssssmsssssssmsssssssssssssssssssssssssssssssnsssssssnsnnsssnnas 57
Vectors and Vector OPerationsccoceeeeeeereseseessesee s sss s ssesssssssssssssss s ssssesssssssssssnssnssnsssnnes 57
L U S Y= (0] 57
0L T (0] 0T 61
The VECtOr MagnitUdE.........ccoceurueoeeerireecrere et se s s s ne s e e nannnnnnns 61
VECtor NOrMANIZALION ..o 62
L= (0 oo 62
VECTOr MURIPIICALION........ceeeeeeececeecr e ae e s ne e npnnn e e 63
THE RIGNT THANGIE......ccoveeeeeeeereeeesere et r e e e s e s s ae et s s se e e s s ae s nn s nsnnnnnes 65
VECTOF DOt PrOUUCL........ccccciccccsceee e e 65
VECTOr CrOSS PrOUUCTcociccciccce e e e 66
Matrices and MatriX OPerationsSc.cccceevieerierieerierieerersss s sse s sse s s s s s e ssessesaesnesaessnesanen 67
LA T 0 L 67
Built-in Android MatriX ClaSScvveurirrmninnsnsniins s 68
TRE IAENELY MALTIX......ceveeeeeeeerererrererere s re s s res e ree e rsesessesasseras e rae e sae e saesasaesas e sae e sae e saesasaesaesenae e sae e naeanaeanneres 68
MALTIX TRANSPOSE ...uvrveereerersersrsersesersesersesersesssserssserssssssesssssssssessssersesessessssessssessesesseesssssssessssessssessssessssenssssssessnsens 68
D U] o] o= 0 R 69
LD Q11T T 70
HOMOQGENEOUS COOIUINALES........ceveerrerereerererereraeersesessesersesessesassersssessssessssassessssessesessessssssssssssessesessssessenanssssnaens 70
Using Matrices t0 MOVE ODJECTScccvereriererrererrereesereesersesesesassersssessesessesessessssessesessesssssssssessssessesessesesssnssassanaens 4l
Using Matrices t0 ROTAte ODJECTScccevererererrcre vt re s rae s e sse s s s e sae e sae e saesasaesas e sae e saenananananns 4l
Using Matrices t0 SCaIE ODJECES......ccverererererr st s e re s ra s rse e sae e s e e s e ae e sae e ae e saesa s e sae e saesesaenanannananns 72
COMDINING MALTICES.....eeuererererrerrererrerererer e res e raesersesesaesessesasaesas e sae e sae e saesasae s saesaesesaesesaeasaesassesassesassenassanaesnsens 72
Hands-on Example: Manipulating Objects in 3D Spacec.ccccvvrerrirnnresnscse e 73
Building @ 3D Object’s Model MALHiX.........coouieererireceririee e 73
Adding a Rotation 10 @n ODJECT............ccceeeeicee e 75
Moving an ODJECE iN 3D SPACE.......cccouruierirerirereririre s nenr s 76
L7214 10 T 0 10 0] P 78

BT 1111 TSN 80

viii Contents

Chapter 4: 3D Graphics Using OpenGL ES 2.0...........cccousmmsmmssmsssmssmmssssssssssssssssssssssssssnss 81
Overview of OpenGL ES 2.0 0N ANAIOidcceeeeeeiiesesesee e ses s ssessssssssssnsssssnsssssnssnssnssssnnnns 81
General Overview of OpenGL Object RENAEIING ... s 82
Specific Overview of the Rendering PrOCEAUNE ..o 85
Overview of the OpenGL ES 2.0 Shading LANgUAGEceoveererrrerrnsesessssessessssessssssssssssessessnsens 91
BaSIC DA TYPES....cveueererrrreererrsseesessssseseses s e e e s e s se s s s s e s s s s e s s se e e s s e se e s e Rn e e e e e Re e e e e R e e e e e R e e s 92
VECTOr COMPONENTSccveviveeeirerreesessssseseses e sesss e e ss e e e s s e e e s s e e ssss e e e e s s se e e e s nRe e e e s nse e e s naesn e s naasnnnnnes 92
OPerators AU EXPrESSIONS.......uoueeeerrrreserererssesesessssasesessssssssesssssssssssssssssssssssssssssssssasssssssssssssssssssesssssssssssssssasenes 93
Program FIOw Control STateMENTS.........cccceiienerirnces e ss s e s es 94
STOrAgE QUALITIBIS ..cuvvireeecrrereeseressssese s sssse e se e s s e e ss e e s s se e s se e R e e ne s e Re e e e e e Re e e e s Re e e e s R e nn e e nsans 95
RESEIVEU VAIADIEScoeececccccene et ne e e e e e e s 96
BUIIE-IN FUNCHIONS ... ne s 96
Overview of VerteX SNAdErs ... 97
A COMPIEX VEIEX SNAUETceveereereeerrerererereressessssessesessesassessssessssessssssssssssessssessessssssssssssssessssessessssssssssssssenseneres 97
Overview of Fragment or PiXel SHAdErS.........ccoeeeeecece e ne e 98
Overview of the Shader CIASSccuvrirmierinmnesnssesess s sr s sss s ssessnsens 99
LI TE T 1T - 106
The 3D ODJECE MESHc.eeereeer et r s r e r e r e sn e snennenan 111
LT YT G 1 L 111
ThE MESHEX ClaSS......coereeiiiiiiisisisisiesis s 112
(I 31 (1o TSP 119
OVEIVIEW OF LIGNTING....cccoveeeerrrrsecsersssesesesssssssse e e ses s s s s se s s s sas s s e s sa s s s ssssesesssssssssssssssssnssnsssenes 119
THE POINTLIGNT CIASS ...cveveueererrseesesssseesessssssesesssss s sssss s e sesssss s ssss e sssssssssssssssssssssssssssssssssssnssssssssnssssssssnsnns 120
Building the NOrMal MALHIX........cccceeeerireierirrsrssesesesssssesesssesess s s sesssssssesssss s e sssssssssssssssssssssssssssssssssssnssssssssnes 122
Lighting in the VErteX SNAUENccveceeriiiesesinsesesessese s ss s se e s ssssssssssssssssssssssssssssssssnes 123
Lighting in the Fragment SRACETccouevrecrerrce et see e s sa e sas e s e e s e s e s sas e sae e saenanaens 126
MALETIAIS ...ttt —————————————————— 128
LT V0 N 128

Materials in the Fragment SHAAENccvereevere st s e e s ss e e sae e sse e e sas e sae e saenanaens 128

Contents ix

=0 129
Texture Magnification and MinifiCationccccevrcererrerre e se e e e e e ae e nnen 130
Texture Clamping and REPEALING.........eecvuererererererererereererereraeres e ras s aesesaesesaesesaesas e sassessesesassasaesassessssesssenaes 130
THE TEXTUFE CIASS....ucviviisssisrisisssssssissss bbb bbb 131
Textures in the VErteX SNACEN ... 134
Textures in the Fragment SRACEcccoeereeere e s e e e sae e s sas e ae e s ae e sae e saesa s sa e e sae e nans 134

1111111 SR SRS SRS 134

Chapter 5: Motion and ColliSioncccunmmmmssssssmmmmmmmmmsssssssssmesssssssssssssssssssssssssssees 139

OVErview Of MOTIONccvureiiciciiri e 135
Linear Velocity and Linear ACCEIEIatioN...........cccerieerrrcresesesesessse s sessesssssssssessssesssssssssssssssssesssssssssssssnsnnees 135
Newton’s LaWS 0f MOTION ..o 137
6T 71 ORI 138
Angular Velocity and Angular ACCEIEIationcccvcceerereseriessssesssesss s sesesse s ssssessssessessssssnsssssssssssssssssssnes 139
ROTAtioNal FOICES......oviviririsirisisisisisisiisiss e 140

The PRYSICS ClaSS......ccccriererieririessissesse s se s ss s s sn s sn s snssn s sn s sn s nn e snesnennasnnnas 141

Hands-on Example: Linear Motion and Angular Motion Using FOrces..........ccccvvrvrverrerrersensenne 146
Creating @ FOUr-Sided TEXTUIEU GUDEcceererererererereesersesersesessesessersesessesessssassessssessesessssessessssessssesasnsssenasaens 146
Modifying the ODJECEIU ClASS......cceiererrererrereererererererrereesersesersesessesassesaesessesesassassesassessenesssessessssersssesssnsssenanaens 146
Modifying the MYGLRENAEIEE ClASS.......cceccruererererererersesersesersesessessssessesessesessssassessssessesssssssssessssessssesssssssesasaens 148

OVEIrVIEW OF COIlISIONSccveeeereereereereereeree e raesaesaesaesaesaesaesaesassaesaesaesaesaesaesassaesaesassaesaesnesnennesnnnes 149
COllISION DELECLION.......viecucrrrrecssss i 150
Modifying the MESHEX ClaSS.......ccceirriieririrrniesesissse s sessssesesesss s s sessssssesessssssssessssssssesssssssssssssssssssssssssnsnes 150
Modifying the ODJECIIU ClaSSccorrrrierirrrriiererirrse s st a s e b e b e e n et senp s 153
TYPES OF COlISIONScerieecririsieererss ettt e s e s e e AR e ee b s R e e AR e e e E b e et e e R e ae e e e Rennannnes 154
Modifying the PRYSICS ClaSSucererririereriirniesesissse s s sesss e sessssss s s s e sesssssssssssssssssesessssssssessssssssssssssnsnes 155
CalcUIAting COMlISIONSccvevereerererereresereesersesessesesseres e saesessesessessssesassessesessesassesassesassesssnssssssnsessssessssesssssnsenansens 158
Modifying the PRYSICS ClaSSccuccrerrrrierirrirniesesissse s sesss e sesss s s sss s e s s e e ssssssssesessssssssessssssssssssssnsnes 160

Hands-on Example: COllISIONSccccvcrrerimnnerser s sn s sn s 160

Modifying the MyGLRENUEIEr ClaSS........ccceurureerererrreneririsesesisessesesesessss e ss e e s e sesessssssssesessssssssssssssns 160

X

Contents

Newton’s LaW Of Gravity.........ouesnnnmmns s 163
Drone Grid Case Study: Creating a Gravity Grid Using a Vertex Shader...........cccecvverrerrierercnnen 164
Modifying the PRYSICS ClaSScccererrrrieririirnenesissse s sessssssesesss s sesssss e e s s s s ssssssssesessssssssessssssssssssssssnes 164
Modifying the MESHEX ClaSS.......ccceerririerirrirnesesissse s sessssesesesss s s sessssssesessssssssessssssssesssssssssssssssssssssssssssnes 164
The GravityGrIAEX ClaSS.......cccvuerererurrerereressesesesssssesessssssesesessssssessssssssessssssssessssssssessssssesessssssssessssssssssssssssnssnes 165
Creating the New VErteX SHAGEN.........cccvvvverrererertrrerte e ressesessesessesse e ssesessesassesassessssessssasssssssesassesssnsssesanaens 174
Modifying the MyGLRENAEIEr ClaSS........cccvrrriererrrrneserirsssesesesssseesesssssesessssssssesssnenes 178
BT 111 1P SRS 182
Chapter 6: Game Environment...........cccouvcmmimmnmmmsmmsmmmsmms s s s ssnssssns 183
Overview of SOuNds 0N ANArOidcccvienmrncnir e —————— 183
THE SOUNT CIASS ...t e 183
Modifying the ODJECI3U ClaSS........courureerererreerererre et n s esr s 185
Hands-0n EXample: SOUNGSccccevivieeriirieerirseesessseses e ssesssesssssesssesssssssssesssssssssssssssssssnsssesns 187
Modifying the MYGLRENAEIEE ClASS.......cceecruerererererereraesersesersesessessssersesessesessesassessssessesssssssssessssesssesssnsssssasaens 187
Overview of a Heads-Up DiSPlaycccoucererrernrnienscse s sss s e sss e e s s 190
OVErVIEW OF OUF HUD ...t bbb 190
Creating the BillBOArd ClaSScceieverrererrereereresereressessssessessssessssessssessessssesssssssssesssssssessssssssssssssessssesssssssesasaens 190
Creating the BillBOArdFONT ClaSScccevverererererieressersesersesessesesessssessesessesssssssssessssessssssssssssessssessssesssssssssanaens 193
Modifying the TEXIUIE ClASS.......cccccerrruieririirriesesisre e st e e s e s e p et nenp s 194
Creating the BillBoardCharaCterSet Classccccvieverrererererereresiersssersesessesessessssessssessssesssssssessssessssesssssssssanaens 195
Creating the HUDIEM ClaSS.......ccccrrererrererrerserersesssessssersesessessssessssessssessessssesssssssssessssessessssssssssssssessssesssssssessnsens 199
Creating the HUD ClasS........cciurrererreressersssersesessessssessssessssessessssessssessssessssssssssssssassessssessssssssssssessssesssesssssssensnsens 200
Modifying the ODJECTIIU ClaSS.......ccorrrrrererirriiereririse s a s e e s e bbb e e b e penn s 206
Drone Grid Case Study: Creating the HUD ...t 207
Modifying the MyGLRENUEIEr ClaSS........ccceururerererrrereriresesesisesseesesessss e s seses s e e ssssssssssssssssesesssssssssssssaes 207
Overview of Persistent Data...........c.cuvrmmmnnn s 215
Modifying the Orientation ClaSS..........cccceerererrererererrereesersesereresesesserae e sesesassassesasessesesassessesassesassesasssssenanaens 216
Modifying the PRYSICS ClaSSceerereriererrereereresereressersesersesessessssessssesssssssssessssassessssessesssssssssessssessssesssssssesasaens 216

Modifying the ODJECEIU ClASS......cceererrererrereerererereresrereesersesessesessesassesaesessesesassassesassessenessssessessssersssesssnsssesanaens 216

Contents xi

Hands-on Example: Saving Persistent Dataccccvvvvrvnnnrnssssss s 216
Modifying the MYGLRENAEIEE ClASS.......cceecruererererererersesersesersesesserassessesessesesssssssessssessesssssssssessssersssesssssssesasaens 216
Modifying the MyGLSUITACEVIEW ClASSccceeerererererrereesersesersesesersssersesessessssssassessssessesssssssssessssessssesssssssssasaens 218
Modifying the MaiNACTIVILY CIaSS........cccrerererrererererrereesersesersesessessssessesessesessssassessssessesssssssssessssessssesssssssesasaens 219

1111111 SR SRS SRS 219

Chapter 7: Drone Grid Case Study: Creating the Player.........ccccccnmnssennnmnssssnnsnsssssnnnnnnn 221

Creating the Player GraphiC..........cccccveenieneniniers s s 221
Creating the MESI ClaSS........cucvererrererrereeserseserseseseressessesessessssessssessssessssssssssssssassessssesssssssssssssssssessssesssssssessnsens 221
Modifying the ODJECIZU ClaSS.......ccorrrriererrrriieserirrse st a s e e s e s e e b e e b e nennenn s 222
Modifying Other Classes That Use the ODject3d Classcccuuererrrrnnenennnnesesessssesesssss s ssssssssesessssens 224
Creating the PYramid ClASScccccviierniniiiesesisne s sesss e sesss s se s ss e s s s e sessssesesssssssssssssssssssssesssnsnes 225
Creating the POWEIrPYIramitl ClasSs.cccvurrererinrnesesissnesesessssssesessssssesss s s e s sssssessssssssesssssssssssssssssssssssssssnes 226

Creating the Player’s Viewpoint and INPUL...........coeoeeeeece s 227
Modifying the MyGLRENUEIEr ClaSS........ccceururierererrrencririsesesesessesesesessssesesss s sesss s ss s s ssss e e sssssssessssssssssssssssaes 227
Modifying the MyGLSUITACEVIEW CIASScccecrerurerererireiesiresseeseses s se s se s se s e sssnsns 229

Creating Player Weapons and AMMUNILIONcccevererernressssssss s sse s sessssssssssssssssssssssssssssses 231

Creating the EXPIOSIONS..........cccieieniierrcre e s sa s se s n e s 239
Creating the POIYPArtICIEEX CIASS......uueeerrrriiererissssesesisssssesesssssesesssssesessssssesessssssssessssssssessssssssssssssssssssssssssnes 239
Creating the SphericalPolygonEXPIOSION ClASS.......cccccverriuerererrnreenessssse s seses s sesessssssesessssssssesssssssssssssssenes 244
Modifying the ODJECIZU ClaSS.......ccorrrriererrrriieserirrse st a s e e s e s e e b e e b e nennenn s 251

Creating Game Object StatiStiCS........ccrerererereie e 252
Creating the STAtS ClaSS. ..ot e s n et enn s 252
Modifying the ODJECI3U ClaSS.......cccuevrueierererieeririrre et n e n s 254

Hands-on Example: Target SN00tING! ..o 255
0 T 1 TR () o 255
Creating the Player’s WEAPON...........ccvceruerererererererersersesersesessessssessssessssssssssssssassessssessesssssssssessssessssesssssssssanaens 258
ProcesSing COIlISIONS.........ccceuerererererererseserseseresesesessersesessesessessssessssessesessessssesassessssessenssasssssessssessssesssnsssenanaens 262
Modifying the onDrawFrame() FUNCLION...........cceorerericre et s reree e ser e ses e ses e se e sae e ssesa s e sas e sassesaeanaens 263

SUMMAIY ...ttt a e e ae e R e e Re e s Re e e ae e e e e Renn e e nnernaen 266

xii

Contents
Chapter 8: Drone Grid Case Study: Creating the Enemiescccousmmsesmsnsssssssssasssannns 267
Creating Arena ODJECTES.......cocceeeececc e s s r e r e n e r e n e n e n e n e nn e nn e nn s 267
Overview of Artificial INtellIgENCE.........ccoueererrrrerrrrirer e 271
Creating the TANK ENEMY.........ccoveeeiiiierncre e ss s sa s s 273
Creating the TANK GIrAPICccceeeeererererrere e se s res e reesessesessesessesas e s e e ssesesaesassesas e sae e sassassessssesassesasnsssenanaens 273
Creating the TANK STALE...........cccviereriererierrrererere s s s raesessesesse e ssesas e s e e s aesasassassesas e sae e sae e ssenassesassesasssssenanaene 274
Creating VEhicle COMMANUS.........cccieveriererrerrereresesesessersssessesessesessesassessesessessssssassessssessssssssssssessssessssesssssssesansens 277
Creating the Tank State t0 Process COMMANGS...........ccvvererrererererseressersesessesesesassessssessesesssssssessssessssesssssssessnsens 283
Creating the VEhicle STEEING ClaSS.......ccvirererererieresiersesersesessesessesassessesessesssssssssessssessesssssssssessssessssesssssssssansens 284
Creating the Tank’s Patrol/AHACK STALEcccveverieriricre st s e se e ra e sa e sae e a e e naens 287
Creating the Tank Finite State MaChiNe..........ccoevriererierr e sa e e e sa e sae e saenanaens 296
Creating the DrVer fOr the TANK..........ceccveeererererereresreressersesesseseserassessesessesessssassesassesssssssssassessssesassesssssssensnaens 300
MOdifying the PRYSICS ClaSS......ccevrrereriererrererreresesersssersssessesessessssessssessesessessssssassessssessessssssssssssssessssesssssssessnsens 303
Modifying the ODJECIIU CIASS.....cccerereriererrerrereresereressersesersesessesessesassessesessessssssassessssessessssssssessssersssesssnsssessnaens 305
Creating the TANK ClASSccviriinisinisssssssss s 306
Hands-on Example: Arena Objects and TankKSccccvcvvrcrcssensenses s s e e 313
Modifying the MyGLRENUEIEr ClaSS........cccvurureiererrreririrsseesesesssesess s s ses s se s sa s se s se e ss s sssnnas 313
SUMMEAIY ...ttt e s sa s e s Re e e R e e e Re e s e e R e e e Re e e e eRennn e nrnnnnnas 320
Chapter 9: Drone Grid Case Study: The User Interfaceccouseummmssssnnsmsssssnssmsssssssnssans 321
Creating the Main Menu SYSTEM ... s 321
THE MENUITEIM CIASS.cueueueecccccrcreeeeees e e 321
The MaAINMENU CISS.ceeeeeeererereeseseseesesese e s e 323
Creating the High SCOre TaDIEcceeerererercrr e ss e sa e sassa e sn s sa e sa e sn s 326
The HIGRSCOIEENTIY ClASScuevereereriereererseserseressessssessesessesessessssessssessssessessssssssssssssessssessesessessssssssessssessensssssnaes 326
The HIghSCOrETADIE ClASScucevruereriereerersererserersesssessssessesessessssessssesssessesssssssssessssessssessessssssssssssssessssessensssssnaes 327
Creating the High Score Entry System ... 335
Hands-on Example: Demonstrating the User Interfacec.ccocvcevrvnirennscsesnssesnsesesssessssnnnas 341
Modifying the MyGLRENUEIEr ClaSS........cccvrrerererrrrnesesersssesessssssesesessnes 342

E3 111 1P 7S 352

Contents xiii

Chapter 10: The Final Drone Grid GAME........occcsressssnnnssssssnsnssssssnsnsssssssnssssssssssssssssnsnssss 353
Organizing and Controlling Groups of ENEMIES.........ccccceeeeereresssee s sns e 353
The Arena0bjECtSet CIASS...... . 353
THE TANKFIEET CIASSc.ccueueerereeecrereseeiri et e s se s e s e e e e e s s e e e e s n e s e s nn e e e s 363
The GamePlayController CIASSc.ccucvvrrrrersersirserses s se e e e sn s sssssssnssnsssssssnnns 367
Saving and Loading the Game STateccccvvrrrirnnrn s se e e 376
Modifying the MaiNACTIVILY CIaSS........ceierrrrerrrerererieressersesersesesssssssessssessesessesssssssssessssessesssssssssessssessssesssssssesansens 376
Modifying the MYGLRENAEIET ClASS........ceeerererererererrersesersesessessssersssessesessessssessssessssessesssssssssessssessssesssssssssansens 376
Adding in the Game Over Game State ... s 378
Hands-on Example: The Drone Grid GAmeccccvevvervennensenssssesses s sessss s e ses s ses s ssssssssssssnes 381
Modifying the MYGLRENAEIEE ClASS.......cccecruererererererereesersesessesessesassessesessesessesassessssessesssssssssessssessssessensssesssaens 382
E3 111 1P 7S 392
Chapter 11: The Android Native Development Kit (NDK)ccccccmmmsssnmnmmmssssnssmsssssssnnsans 393
NDK OVEIVIBW. ...c.veerucereessesesessesesessssessesss e sss s ssessssesssssssessssesssssssesssnssssssssesssssssesssnsssensssessensenes 393
NDK System ReqUIreMENtScccocrircrircirer s sn s sn s 393
Android Platform CompPatiDility.........c.ccereserrerrrseresessesnsssessssessessssesssse e sessessssessessssesssssssessssssns 394
Installing the Android NDK...........ccoinini s s 394
Ways to Use the Android NDK............cooereicercercnir i ss s s e snssnssns s sns s nnas 396
Java Native INterface OVEIVIBW..........cccceriererenserresisesssse e se s sse s sss s ssesss e sssssssessssesssssnsens 396
The Java INtErface POINTE..........ccccvuieierirercesererrse s e e s s s e s an e e nnansnnnnnes 397
Loading and Linking Native C/C++ MEtOUS.........cccceeeerrrererererresesessssse s sssesesssssesssssssssssssssssssessssssssssssssssnes 397
Naming Native FUNCHIONS.........cvceirerrieeseresssesesissse e nesessssssenensssnnes 398
Native FUNCLION PAr@MEIEIScccovriierirrirssescsissse s ss s ss s sssss s e sssssssesssssssssssssssnns 398
C vs. C++ Native FUNCHION FOrMALS........cccoiiicerrirnescsesrse e sss s ss s ss s ssssssesssesssssssssssssssnaes 399
NALIVE TYPES. eueererreeerrrrssesesesrssesesesss s e sssss e e s ss s se s s e se s s s e ne s s R e e e e e R e e e e e R e Re e e A e Re e e R e Re e e e e nResn e nensnsnaes 399
REfEIENCE TYPES. c.vveueerrrrreseserrssee s e e ss s e e e se s e s s e s s e e e s e et e e A e Re e e e A e Re e e s e Re e e e nRasn e e npnnnaes 399
NI SIGNALUIE TYPES ..uvveeecrrrreeeressee e e sssss e s s se s e s s s e s e s s e s s s ne A e R e e e e e s Re e e e s Re e e e s R e e e e nnane 400
Calling Native Code from Java and Accessing Java Methods from Native Code...........coceeererrrerererenrnsescsessnnnnes 401

L1103 (0] 402

xiv Contents
ANdroid JNI MAKEFIIEcoveueerereerercerese s s s s 403
Hands-on Example: “Hello World from JNI and Native Code”cccermrerrrnniernsesenenesensennns 403
Modifying the MyGLRENAErEr ClASS.........cocverererererererererisesssesesesesssssssssssssssssesenes 408
Hands-on Example: Adding Native Functions to the Drone Grid Game Case Study 409
Calculating Gravity in Native COUE..........covurererererrercririeere s 409
Rotating Objects from Native COE..........ccourmiiirerrercrieerccsirer e 410
Calculating the Reaction Force for a Collision from Native COdecccoveeerereriicncrerncscrersee e 413
RS0 12 P 417
Chapter 12: Publishing and Marketing Your Final Game..........cccuusssemmmmnnnnsssssssssnssnnnnnnas 419
Creating the Final Distribution File.........cccoeriririrennrcre s ses e sas s ss s sns e s s 419
Testing the Distribution .apk File..........ccovirinin s 425
List of Android Marketplaces and POlICIEScccceeererererere e e srenne s 430
CTTu 0| LN o T 430
Amazon ApPStore fOr ANAIOIMocceerereeiceireree st n e n s 431
SAMSUNG APPS STOTE ...ttt e s e e e A e R e e A e Re e e e s Re e b e s R e e e nnnnans 431
Y1 (0oL OO 432
FY 00T 2 OO TTO 432
T A T | PP 432
SHUBME. ...t R e e e R e e e s R e Re e e s R e Re e e s A e Re e e e A e Re e e s e e Re e e e s R e e e e nnans 432
LT (001 1 T 433
YOUr OWN WEDSITE.COM ...t e s as et e e e s s e e e s se e e psnennnnan s 433
List of ANAroid Ad NETWOIKScovererieeririeerirreeses e seessesssssessessessssssessssssessssssssssessssssssnesanes 433
Y40 0o 433
Y0 1112 435
LEAUBOIL.........eceee s 435
APPBUCKS. ...ttt 435
MODIIBCOTE......cuticcis iR 437
T o] 437
£ 1o o 439

Contents

List of Android Game Review Web Sites.........cccoverennsernnnnsessse s ssesessesssessessssens
List of Other Helpful Sites for Android DeVeIOPErsScceeverrrerernrere s

1111 - 2SSOSR

Xv

About the Author

Robert Chin holds a bachelor of science in computer engineering and is experienced in C/C++,
Unreal Script, Java, DirectX, OpenGL, and OpenGL ES 2.0. He has written 3D games for the
Windows and Android platforms. He is the author of Beginning iOS 3D Unreal Games Development,
published by Apress, and was the technical reviewer for UDK Game Development, published by
Course Technology, a part of CENGAGE Learning.

xvii

About the Technical
Reviewer

Jim Graham received a bachelor of science in electronics with a specialty in telecommunications
from Texas A&M University and graduated with his class (Class of ’88) in 1989. He was published
in the International Communications Association’s 1988 issue of ICA Communique (“Fast Packet
Switching: An Overview of Theory and Performance”). He has worked as an associate network
engineer in the Network Design Group at Amoco Corporation in Chicago, lllinois; a senior network
engineer at Tybrin Corporation in Fort Walton Beach, Florida; and as an intelligence systems
analyst at both 16th Special Operations Wing Intelligence and HQ US Air Force Special Operations
Command Intelligence at Hurlburt Field, Florida. He received a formal letter of commendation from
the 16th Special Operations Wing Intelligence on December 18, 2001

Xix

Acknowledgments

| would like to thank developmental editor Anne Marie Walker for making my manuscript as
smooth and informative as possible. | would like to thank Christine Ricketts and Anamika Panchoo
coordinating editors, for keeping me on track with deadlines and answering other important
questions | had. | would also like to thank copy editor Michael G. Laraque for correcting formatting
errors and making my manuscript more consistent and readable. Finally, | would like to thank

Jim Graham, the technical reviewer, for making sure all the Android examples in this book worked
and that the technical information was as accurate as possible.

’

Introduction

This book is meant to be a quick-start guide to developing 3D games for the Android platform using
Java and OpenGL ES 2.0. Development will utilize the Eclipse Integrated Development Environment
(IDE) with Android Development Tools (ADT) plug-ins installed. The goal is to cover key concepts and
illustrate them, using concrete hands-on examples and case studies. A single book cannot cover
every aspect of Android game development or Android software development in general. Thus, this
book is not meant as a reference guide. The following is a summary of each chapter in this book.

Chapter 1: “Let’s Meet the Android.” In this chapter, | provide an overview of
Android, an overview of the Android SDK, instructions on how to set up your
computer for Android development, and a hands-on example involving a simple
“Hello World” program for those unfamiliar with Android.

Chapter 2: “Java for Android.” In this chapter, | offer an overview of the Java
language, the basic Android Java program framework, and information on the basic
Java OpenGL ES framework.

Chapter 3: “3D Math Review.” In this chapter, 3D math, vectors, matrices, and
vector and matrix operations are discussed.

Chapter 4: “3D Graphics Using OpenGL ES 2.0.” In this chapter, | provide an
overview of OpenGL ES 2.0 on Android, 3D meshes, lighting, materials, textures,
saving persistent data, and creating a gravity grid using vertex and fragment
shaders.

Chapter 5: “Motion and Collision.” In this chapter, collision and Newtonian
mechanics are covered.

Chapter 6: “Game Environment.” In this chapter, sounds and the heads-up display
are discussed.

xxiii

Xxiv

Introduction

Chapter 7: “Drone Grid Case Study: Creating the Player.” In this chapter, | explain
how to create a player, including elements associated with a player within our Drone
Grid game, such as weapons, ammunition and player’s HUD.

Chapter 8: “Drone Grid Case Study: Creating the Enemies.” This chapter details
how to create the enemies in our Drone Grid game. The enemies are arena objects
and tanks. Arena objects are fairly simple in their behavior. Tanks are more complex
enemy objects that will require the use of complex artificial intelligence, which

| also cover.

Chapter 9: “Drone Grid Case Study: The User Interface.” User interfaces for our
Drone Grid game are discussed in this chapter, including the Main Menu System, the
creation of the high score table, and the high score entry menu.

Chapter 10: “The Final Drone Grid Game.” This chapter brings together everything
from previous chapters into the final Drone Grid game. A final complete working
game that integrates all the elements from previous chapters is presented. The final
game will use elements discussed previously such as menus, heads up display, and
enemy objects such as arena objects and tanks.

Chapter 11: “The Android Native Development Kit (NDK).” This chapter covers the
Android Native Development Kit and discusses the Java Native Interface (JNI)
in addition.

Chapter 12: “Publishing and Marketing Your Final Game.” This chapter discusses
how to publish and market your final Android game. It includes a list of Android
marketplaces from which you can upload your game distribution file, a list of
numerous ad networks that support Android, and a list of game sites that review
Android games.

Chapter

Let’s Meet the Android

Android mobile phones dominate the mobile smartphone market, surpassing even Apple’s iPhone.
There are hundreds of millions of mobile phones using the Android operating system in over

190 countries around the world. Every day, a million new users begin using their Android phones to
surf the Web, to e-mail friends, and to download apps and games. In fact, in the Google Play Store
alone, there are 1.5 billion downloads per month of Android games and applications. If you include
other web sites that offer Android games and apps for sale, such as Amazon Appstore for Android,
then the number is even higher.

In this chapter, you will learn about the Android Software Development Kit (SDK). You will learn how
to set up the Android development environment. You will also learn about the major components

of this environment, such as Eclipse. We then go through the creation and deployment of a simple
“Hello World” program for Android, to both a virtual Android emulator program and also a real
Android device.

Overview of Android

The Android operating system is a widely used operating system available on mobile phones and
tablets. It is even used on a video game console called the Ouya. Android phones range from
expensive phones that require a contract to inexpensive prepaid phones that do not require any
contract. Developing programs for the Android platform does not require any developer’s fees,
unlike Apple mobile devices, which require yearly fees in order to even be able to run your program
on their devices. A good working prepaid no-contract Android phone that can develop 3D games
using OpenGL ES 2.0 can be bought on Amazon.com for as little as $75-$100 with free shipping.

Overview of the Android SDK

This section discusses the Android SDK. Development system requirements and important individual
pieces of the SDK, such as the SDK Manager, Android Virtual Device Manager, and the actual
Android emulator will be covered.

http:\\Amazon.com

2 CHAPTER 1: Let’s Meet the Android

Android Software Development Kit (SDK) Requirements

Android development can be done on a Windows PC, Mac OS machine, or a Linux machine. The exact
operating system requirements are as follows:

Operating Systems:

Windows XP (32-bit), Vista (32- or 64-bit), or Windows 7 (32- or 64-bit)
Mac OS X 10.5.8 or later (x86 only)
Linux (tested on Ubuntu Linux, Lucid Lynx)

GNU C Library (glibc) 2.7 or later is required.

On Ubuntu Linux, version 8.04 or later is required.

64-bit distributions must be capable of running 32-bit applications.

Developing Android programs also requires installation of the Java Development Kit. Java Development
Kit requirements are JDK 6 or later and are located at www.oracle.com/technetwork/java/javase/
downloads/index.html.

If you are using a Mac, then Java may already be installed.

The Eclipse IDE program modified with the Android Development Tools (ADT) plug-in forms the basis
for the Android development environment. The requirements for Eclipse are as follows:

Eclipse 3.6.2 (Helios) or greater located at http://eclipse.org
Eclipse JDT plug-in (included in most Eclipse IDE packages)

Android Development Tools (ADT) plug-in for Eclipse located at
http://developer.android.com/tools/sdk/eclipse-adt.html

Notes Eclipse 3.5 (Galileo) is no longer supported with the latest version of ADT. For the latest information
on Android development tools, go to http://developer.android.com/tools/index.html.

Android SDK Components Overview

The different components of the Android SDK are the Eclipse program, the Android SDK Manager,
and the Android Virtual Device Manager and emulator. Let’s look at each in more detail.

Eclipse with Android Development Tools Plug-in

The actual part of the Android SDK that you will spend most of your time dealing with is a program
called Eclipse, which is customized specifically for use with Android through the ADT software
plug-in. You will enter new code, create new classes, run programs on the Android emulator and on
real devices from this program. On older, less capable computers, the emulator may run so slowly

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://eclipse.org/
http://developer.android.com/tools/sdk/eclipse-adt.html
http://developer.android.com/tools/index.html

CHAPTER 1: Let’s Meet the Android 3

that the best option would be running the program on an actual Android device. Because we are
dealing with CPU-intensive 3D games in this book, you should use an actual Android device to run
the example projects (see Figure 1-1).

¥
= Java - RobsGL20 Irobs/gldemolrobsgl java - Eclipse =2JEd
File Edt Run Source Mavigste Search Project Refactor Window Hep
L= A8 B iBiNE $-0-Q- #HCG- @™ F- P AeEN:L-G- i o Sooms (& eve
[8 Packags Explorer £3 = 0|) mainam 11 Camera java 11| GLES20TriangleRender) Gridjava £ L] GrawityGeid.java " = O[5 Outine &2 -0
= 81 e package robs.gldemo.robagli0cutorial; - Blhla e w| ¢~
& AndroidHeloworkd ~ B rabs gidemo.robsgizOutonal
; 3 "% impoct declarations
import android.content.Context: = orid
4 m_Grid ; Lic
& m_Humberlines k
public class Grid & MAX_GRID_BOYES_SIDE
i " . s 4 MAX_LINES : it
int MAX_GRID_BOXES SIDE = 25 . e P
int MAX_LINES (MAX_GRID_BOXES SIDE MAX_GRID_BOXEZ SIDE) 2: & DrawGrd(Camera)
int m_NumberL ines;
Lins[] m_Grid = new Line[MAX LINES]:
= [§ robs gidems.robsglz0tutorisl L T idHeight heigh
1] pirvahide.java i
B[] ArvehideFlost. jrva Grid(Contexe iContexe,
&7 i Vector3 GridColor,
= G float GridHeighe,
] Arena0bject3d.
+ @ m:mﬁ;:t:: float GridStarciValue, float GridStarc¥Value,
i float GridSpacing, int NuwberLines,
- Shader iShader)
{
.
&[0 Vectord LineBegin = new Vector? (GridSceftXValus, Geideight, GridStartiValue):
o l Canera.javs Vector3 LineEnd = new Vectord (GridScartiValus + GridSpacing, GridHeighe, Gridst
5 [cubedove Line Gridline:
® 1] Driver. java
& Ul Face.java 77 CraeE L i pAEAY L
B (7] FacsVerbax.java Creace Lines parallel to Z axis
+ (1) FSMOriver.java int LineNuwber = 0;
5 [3) Frwiojovs for (int i = 0; i < NumberLines; i++)
+ 4] FeMSpacePikt. java d P
% 1) GamePlayContraller_jsva / Create Lines acroas
% 17| GLESZOT rert for (int j = 0; j < NumberLines: J++)
J] risngleRenderer [
41| GravikyGrid.java
& [T GravieyGdEx.java Gridline = new Line|iContext,
1] Graviytine.java ishader,
LineBegin, LineEnd,
Gridiolor);
m_Grid{LineNumber] = GridLine; -
. HighScoreEntry. java < > < >
LI HighScoreErtryMeni java = P
4 oTibe, v 2 console | = Progress | D LogCat 1 5 Cal Hierarchy
® 1] HUDjava = -
® 1] muoen jova Sedfte BN W vebose v| |l B (D[&
= [T Al messages (o lkers)
h Level Tirve FID Applization Tag
® w 41 >
< ¥ 2
Wiritable Smart Insert | 23:50 - Android SDK Content Loader

Figure 1-1. Eclipse with Android Development Tools plug-ins

Android SDK Manager

The Android SDK Manager allows you to download new Android platform versions and tools through
its interface. Current tools and platform versions that are installed are also displayed. For example,
in Figure 1-2, the Android 2.2 platform has already been installed and is ready for use for development.
This means that you can compile your source code to target this platform.

4 CHAPTER 1: Let’s Meet the Android

£4 Android SDK Manager @@
Packages Tools
SDK Path:
Packages
Name API Rev. | Status
=[] Tools
[0 X android SOK Tools 16 r:;' Installed
[[] 7% android SDK Platform-tools 11 &P Instaled
= []izl Android 2.2 (API 8)
[] %" SDK Platform 8 3 [Pinstaled
[samples for SOK 8 1 Einstaled
#-]l Extras

show: [Y]UpdatesiNew [“]Installed [T]Obsolete Select few or Lipdares

Sort by: (5 AP level O Repository

@)

Fetching URL: https: fdl-ssl.google.comfandroidfrepasitory/repository-5. xml

Figure 1-2. The Android SDK Manager

Android Virtual Device

The Android SDK also supports a virtual device emulator (see Figure 1-3). In many instances, you will
be able to run your Android programs on a software emulator on your development system rather
than an actual device. However, this works best for non-graphic intensive applications. Because
this book deals with 3D games, we will not be using this software emulator but an actual Android
device. The Android Virtual Device Manager allows you to create new virtual Android devices, edit
existing Android devices, delete existing devices, and start up an existing virtual Android device.
Figure 1-3 indicates that there is a valid virtual Android device named “Android22,” which emulates
the 2.2 version of the Android operating system (API Level 8) and simulates the ARM CPU type. The
2.2 version of the Android operating system is important because it is the first version that supports
OpenGL ES 2.0, which we will be using in this book to develop our 3D graphics. OpenGL is the
graphics system that allows the programmer to create 3D graphics on the Android platform. It is
designed to be hardware-independent. That is, OpenGL graphics commands are designed to be the
same across many different hardware platforms, such as PC, Mac, Android, etc. The OpenGL 2.0
version of OpenGL is the first version of OpenGL that includes programmable vertex and fragment
shaders. OpenGL ES is a subset of regular OpenGL and contains fewer features.

CHAPTER 1: Let’s Meet the Android

Android Virtual Device Manager E]@
List of exdsting Android Yirtual Devices located at C:\Documents and Settings\Robert). androidiavd

| AVD Name Target hlame Platform AP Level CPUJABL '

| ~ Android22 android 2.2 2.2 8 ARM (armeabi)

|

~ A valid Android Virtual Device, | A repairable Android Virtual Device.
¥ An Android Yirtual Device that Failed to load. Click 'Details' to see the error,

Figure 1-3. The Android Virtual Device Manager

Figure 1-4 depicts the actual emulator after it is launched. The emulator depicted is the one for
version 2.2 of the Android operating system.

6 CHAPTER 1: Let’s Meet the Android

"~ 5554:Android22 BE <]

% Bl @ 10:495m
Android

10:49..

Thursday, October 3
€ Charging (50%)

i T A o e |
P v e p e e e e e
I P T 2 O o

P79 e o e e e
roemieal = e P

| ALT

Figure 1-4. The actual Android Virtual Device emulator

How to Set Up for Development

First, you need to download and install the Java Development Kit Version 6 or greater. The Android
development environment requires this as a prerequisite. After you verify that it is installed and
working, then you will have to install the main components of the Android SDK.

The quickest and easiest way to do this is to download the ADT Bundle located at
http://developer.android.com/sdk/index.html under the “Download for Other Platforms” section.

http://developer.android.com/sdk/index.html

CHAPTER 1: Let’s Meet the Android 7

The ADT Bundle is a downloadable zip file that contains a special version of Eclipse with the Android
Development Tools plug-in, the Android Virtual Device Manager, the SDK Manager and tools, as well
as the latest Android platform, and the latest Android system image for the Android emulator. All you
have to do to install this ADT Bundle is to create a new directory and unzip the file into it. You can
use a free tool such as 7-Zip to uncompress the file. After doing this, you can execute the new

ADT Integrated Development Environment by executing the eclipse.exe file located in the Eclipse
directory under the main bundle directory.

Note 7-Zip can be downloaded at www.7-zip.org.

Android Development Tools Integrated Development Environment
(IDE) Overview

The Eclipse IDE consists of several important sections that | will discuss here. The important
sections are the Package Explorer window, the Source Code Area window, the Outline window, and
the Messages windows, including a window that outputs programmer-specified debug messages
that is called the LogCat window. There are other Messages windows available, but they are less
important and won’t be covered in this section.

Package Explorer

When you start on a new Android programming project, you will create a new package for it. In Eclipse,
there is a window called Package Explorer, located by default on the left-hand side. This window lists
all the Android packages located in the current work space. For example, Figure 1-5 lists packages
such as “AndroidHelloWorld,” “AndroidHelloWorldTest,” and “ApiDemos.”

http://www.7-zip.org/

8 CHAPTER 1: Let’s Meet the Android

& Package Explorer £ = m

q

N
=

& AndroidHelloworld

-' Iajj AndroidHellowWorldTest
’:-l’ ApiDemos

55 CubeliveWallpaper

- ‘_; LunarLander

‘__—,j- LunarLander2

‘j-l’ MotePad

) ‘:j* OpenGLDemo

J ‘_:]» RobsadTest

‘_—j RobsGL20Tutorial

- ‘_—-lz RobsLightingDemo
‘_:j» RobsSimpleOpenGLDemo
T_':j’ SkeletonApp

i £ Snake

- ‘_—-l/ Test

| IS Testandroidl

J 157 TestTest

R o IR O R R O (O A & SR oA S SO o (R SRR

Figure 1-5. Package Explorer

You can also expand a package so that you can access all the files related to that package by
clicking the “plus” symbol next to the package name. The Java source code files are located in the
“src” directory, and the project-related resources, such as textures, 3D models, etc., are located in
the “res” (short for resources) directory. Double-click a source code file or resource file to bring it
up for viewing inside Eclipse. Source files can also be expanded so that you can get an overview
of the class’s variables and functions. You can double-click a variable or function to go to that
variable or function within Eclipse’s source view window. In Figure 1-6, there is only one function
in the “AndroidHelloWorldActivity” class, which is “onCreate.” Finally, every Android package has
an AndroidManifest.xml file that defines such things as what permissions are needed to run the
program, program-specific information such as version number, program icon, and program name,
as well as what minimum Android operating system is needed to run the program.

CHAPTER 1: Let’s Meet the Android 9

[Package Explorer &3 =0

= Ia-l AndroidHelloWorld
= src
=1} Roberts.Helloworld
= [J] AndroidHelloworldactivity.jave
=@ androidHelloWorldactiviy
@. onCreate(Bundle) : voi
+ [—I_-n gen [Generated Java Files]
+ B, Android 2.2
[—I_" asseks
+ & bin
-3 res
<1 AndroidManifest.xml
.| proguard.cfg

\=| project.properties

Figure 1-6. A closer look into a package

Source Code Area

By default, in the middle of Eclipse is the Java source code display window. Each different Java source
code or .xml file is displayed here in its own tab (see Figure 1-7).

A main.xml 3] FsMFilot. java)] GravityGridEx. java [J] HighscoreEntry.java 1J] HighScoreTable.java 53 . 74 =8

package robs.gldemo.robsgl20tutorial; fad

4 ®import java.util.Arrays:[]

public class HighScoreTable
{

// Holds Player's High Scores

Figure 1-7. Java source code area

Notice that at the end of the last tab, there is a “>»” followed by “4.” What this means is that there
are four hidden files not shown. You can access these files by clicking the “»4” region to bring up
a complete list of files. Files listed in boldface type are not shown, and you can select these for
viewing by highlighting them with your mouse pointer and left-clicking them (see Figure 1-8).

10 CHAPTER 1: Let’s Meet the Android

4 = 0| 8% outline &3

[1) airvehicle.java

[J] AndroidHelloWorldActivity.java
\J] ArenaSphere.java

J] Driver.java

1J] FSMPilot java b
1) GravityGridEx. java
\J] HighScoreEntry. java
1J] HighScoreTatle. java
1 min, xml

o=

M =T % W

Figure 1-8. Accessing hidden Java source and . xm1 files

Qutline

The Outline window in Eclipse is located by default on the right side, and it lists the variables and
functions for the class that is selected in the source code window. You can easily jump to the
corresponding class variable or class function in the source code window by clicking the variable or
function in the Outline window (see Figure 1-9).

gE Cutling &2 =08

v B[R o N T

robs.gldemo.robsgl20tutorial
+ ,‘ = import declarations
=§C] HighScoreTable
o HIGH_SCORES : String

m_BackGroundTexture : Te
m_Context : Context
m_Dirty : boolean
m_FontHeight : int
m_FortWidth : int
m_HighScoreTable : Highse
m_HighScoreTablelImage : £
m_Text : BillBoardCharacte
MAX_RANK : int
MaX_SCORES : ink
HighScoreTable(Context, B
AddItem{HighScoreEntry) :
ClearHighScoreTable() : voi
CopyHighScoreEntryToHigh
FindEmptySlot() : int
GetLowestScore() : int
LoadHighScoreTablz({String,
MaxMNumberHighScores() : |
NumberValidHighScores() :
RenderHighScoreTable(Can
RenderTitle() : void
SaveHighScoreTable(String
SortHighScoreTable() « voic
UpdateHighScoreTable(Can

o

ek PEEPEPPEPFPPEPRPPoocooD o oo ooan

Figure 1-9. Outline window in Eclipse

CHAPTER 1: Let’s Meet the Android 11

In Figure 1-9, class variables or “fields” are listed first, followed by class functions. Some examples
of class variables are HIGH_SCORES, m_BackGroundTexture, and m_Dirty. Some examples of class
functions are FindEmptySlot(), RenderTitle(), and SortHighScoreTable().

Dalvik Debug Monitor Server (DDMS)

Eclipse with the ADT plug-in also provides a way to easily interface with actual Android hardware
through the Dalvik Debug Monitor Server or DDMS. The button to access the DDMS is on the right
upper corner of the Eclipse IDE. Click this button to switch views to the DDMS (see Figure 1-10).

[| & dava | &) DDMS

Figure 1-10. The DDMS button

In the DDMS view, you can look at the actual directories and files on the Android device by using the
File Explorer tab located on the right-hand side of the view. Figure 1-11 illustrates this.

%% Threads | (8 Heap | (B allocation Tracker |15 File Explorer £2
Mame Size | Date Time | Permissions = Ir

+ [~ data 2012-05-15 04:02 drwxrwx--x
= =5 mnt 2013-09-25 16:50 drwxrwxr-x
+ (= asec 2013-09-25 16:50 drwxr-xr-x

= = sdcard 1969-12-31 19:00 d---rwxr-x

+ (= Android 2012-01-17 19:00 d---rwxr-x

+ = DCIM 2013-09-20 12:46 d---rwxr-x

+ (= Eyeqlasses 2013-08-18 11:06 d---rwxr-x

+ (= LOST.DIR 2012-01-17 19:00 d---rwxr-x

+ = Music 2012-05-09 18:01 d---rwxr-x

+ (= bluetooth 2012-05-09 11:48 d---rwxr-x

+ (= data 2012-05-25 00:03 d---rwxr-x

+ (= download 2013-07-28 19:30 d---rwxr-x

| droneqrid.apk 591188 2013-08-16 21:46 ----rwxr-x

| droneqrid10.apk 591141 2013-08-18 01:06 ----rwxr-x

| startappdroneqridl0.apk 687806 2013-09-20 12:44 ----rwxr-x

| startappexitbannerdroneq 687116 2013-09-22 15:25 ----rwxr-x

+ (= where 2013-02-12 O7:37 d---rwxr-x

[+ = secure 2013-09-25 16:50 drwx------

=) (= system 2011-03-16 01:17 drwsxr-xr-x
¥ (2% ann 2011-N3-16 0117 drisvr-vr-v

Figure 1-11. Exploring files on your Android device

On the left side, if you have an actual physical Android device connected via the USB port, the

device is displayed in the Devices tab, as shown in Figure 1-12.

12 CHAPTER 1: Let’s Meet the Android

@ Devices 2 & G0 B2 @ @YTO
MName
= Q A000003129D322 Online PRPL
com.google.android. apps.uploader 450 8600
com.example. android. apis 15706 8601
robs.demo. TestDemoComplete 25131 §602
com.android.glzjni 31255 8603

Figure 1-12. Devices tab on DDMS

Also notice the camera icon at the upper right-hand corner of the Devices window. If you click this
button, then you capture a screenshot of what is currently on the Android device (see Figure 1-13).

Device Screen Capture
i Refresh] [Rotate] [Save] ’ Copy] [Done I
Captured image:

0 5:35 pu

Compiled Camcorder Camera

»

Messaging - Voice Sear

pa————

Figure 1-13. Device Screen Capture in DDMS

From this pop-up window, you can rotate the image and save the image, if you so desire. This is a good
way to get screenshots for promotional images when it is time to market your application to end users.

CHAPTER 1: Let’s Meet the Android 13

LogCat Window

At the bottom of the Eclipse IDE there are by default a few rectangular windows. One of the more
important ones is called the LogCat window, and this window displays debug and error messages
that are directly coming from a program that is running on the Android device that is attached to your
computer via a USB cable (see Figure 1-14).

= console | = Progress | ¥ LogCat i1

Saved Fiters verbose | H Bl D| 4
Al messages (no filkers)
Level Time: PID Apphcation Tag Text o]
I A 2
I 272 went: DUN EVENT USE UNPLUG C
E 73 i Reply Functions [DUN STATE USE UMm
<] >

Figure 1-14. LogCat debugging tab

Launching the SDK Manager and AVD Manager from Eclipse

To launch the Android SDK Manager and the AVD Manager from within the Eclipse IDE, click “Window”
in the top menu bar and use the menu items near the bottom of the list. The SDK Manager enables
you to download new versions of the Android platform and other tools to develop with. The AVD
Manager allows you to create and manage virtual Android devices for the Android device emulator
(see Figure 1-15).

Window Help
New Window
New Editor
Open Perspective 4
Show View L4

Customize Perspective. ..
Save Perspective As...
Reset Perspective...
Close Perspective

Close all Perspectives

Mavigation L4

Fq Android SDK Manager

; AYD Manaqer

Run Android Link
Preferences

Figure 1-15. Launching SDK and AVD Managers from Eclipse

14 CHAPTER 1: Let’s Meet the Android

Hands-on Example: Non—0OpenGL ES Text “Hello World”
Program

In this hands-on example, we will create a new Android project that will output a simple “Hello World”
text string. Start up the Eclipse IDE.

The first thing to do is to specify a work space where you will put this new project. Select

File » SwitchWorkSpace » Other from the main Eclipse menu to bring up a pop-up window in
which you can select a directory that will serve as the current work space where new projects will be
stored. Use the Browse button on the pop-up window to navigate to the folder you want to use as
the work space, then hit the OK button to set this folder as your current work space.

Creating a New Android Project

To create a new Android project, select “Android Application Project” under the File » New menu
(see Figure 1-16).

® Java - DemoActivity/src/com/example/SanAngeles/DemoActivity. java - ADT

5N Edt Run Source Refactor MNavigate Search Project ‘Window Help

New G N (24 Java Project

Close Chrl+w [Project...
Close all Chrl+Shift+4 &5 Package ic
(& Class
5 Save As... € Interface o=
(G Enum
(@ Annotation ds
&Y Source Folder e
457 Java Working Set s
2| Refresh FS (% Folder fs
Convert Line Delimiters To » | ¥ File :
=" Untitled Text File
P curl+? & Android XML Fie
Switch Workspace P [£¥ JUnit Test Case
Restart
[Example...
g2y Import...
53 Export... [Other... Crl+h

H

Figure 1-16. Creating a new Android project in Eclipse

This will bring up a pop-up window in which you can specify your application name, project name,
package name, and SDK information (see Figure 1-17).

CHAPTER 1: Let’s Meet the Android 15

® New Android Application

New Android Application ; '
Creates a new Android Application

Application Name: ﬁ: RobsHelloWorld

Project Name: © ._ RobsHellowWorld

Package Name: © com.robsexample.robshelloworld

Minimurn Required SDK: © _API 8: Android 2.2 (Froyo) v
Target SDK: 0_. API 16: Android 4.1 (Jelly Bean) v:

Compile With: O'API 17: Android 4.2 (Jelly Bean) v

Theme: 6| Holo Light with Dark Action Bar v

The package name must be a unique identifier For your application.

It is typically not shown ko users, but it *must™ stay the same for the lifetime of your application; it is how multiple
versions of the same application are considered the "same app”.

This is typically the reverse domain name of your organization plus one or more application identifiers, and it must be a

Figure 1-17. Entering project and SDK info

In the Application Name edit box, enter “RobsHelloWorld,” which is the name of your application that
will appear to users of your program. In the Project Name edit box, enter “RobsHelloWorld,” which is
the name of the project that is displayed in the Eclipse IDE. Enter “com.robsexample.robshelloworld”
as the package name associated with this new Android project. This package hame must be unique.

For the Minimum Required SDK select Android 2.2 (Froyo), because this is the lowest Android
platform that supports OpenGL ES 2.0. For the Target SDK, select the highest Android platform API
that you anticipate to have successfully tested your application against. For the Compile With list
box, select the API version that you wish to compile your application for. You can leave the Theme
list box at the default value. Click the Next button to move to the next screen.

The next thing to do is to configure the project. For this example, just accept the default values and
click the Next button (see Figure 1-18).

16 CHAPTER 1: Let’s Meet the Android

® New Android Application

New Android Application
Configure Project

Create custom launcher icon
Create activity

[C]Mark this project as a library

Create Project in Workspace

Working sets

[[] add project to working sets

@ [<Back [mext>

Figure 1-18. Configuring a new project

In the next screen, you can configure the launcher icon, if you wish. However, for this example, you can
just accept the defaults (see Figure 1-19).

CHAPTER 1: Let’s Meet the Android 17

® New Android Application E @@
Configure Launcher Icon K
Configure the attributes of the icon set
Image File: | launcher _ican | la‘
mdpi:
Trim Surrounding Blank Space 'a
Additional Padding: hdpi:
< 3 0% 4
Foreground Scaling: |
she it
Background Cnbr::I l l

® T e

Figure 1-19. Configure Launcher Icon

Click the Next button. The next screen allows you to select the type of activity you want to create.
Select the Blank Activity and click the Next button (see Figure 1-20).

18 CHAPTER 1: Let’s Meet the Android

® New Android Application

Create Activity

Select whether to create an activity, and if 50, what kind of activity. @

Create Activity

BlankActiity . . |
Fullscreenactivity
| LoginActivity
| MasterDetailFlow
| SettingsActivity

New Blank Activity

Creates a new blank activity, with optional inner navigation.

©)

(oot Jtoz)| o

Figure 1-20. Select activity type and Create Activity

Accept the defaults for the blank activity. The default activity name is “MainActivity.” The default

Layout Name is “activity_main,” and the default Navigation Type is “None.” Click the Finish button to
create the new Android application (see Figure 1-21).

CHAPTER 1: Let’s Meet the Android

® New Android Application |- .@@

New Blank Activity

Creates a new blank activity, with optional inner navigation.

Activity Name©| MainActivity]
Layout NameOZ activity _main

Mavigation Type© Mone

., The name of the activity class to create

o~

I Finish I[Cancel

Figure 1-21. Creating a New Blank Activity

On the left-hand side of the Eclipse IDE in the Package Explorer window, you should see a new
entry called “RobsHelloWorld,” which is our new example program. The key directories are the
“src” directory, where the Java source code is stored; the “libs” directory, where external libraries
are stored; and the “res” directory, where resources such as graphics, 3D models, and layouts are
stored. Under the “res” directory, the “layout” directory stores the application’s graphical layout
specifications; the “menu” directory stores the applications menu-related layout information; and
the “values” directory stores the actual “Hello World” string that is displayed. Finally, a key file is
the AndroidManifest.xml file, which contains information about permissions and other application
specific information. (See Figure 1-22 for the layout of the “RobsHelloWorld” project.)

19

20 CHAPTER 1: Let’s Meet the Android

= [gj RobsHelloWorld

= src

=} com.robsexample.robshelloworld
+-[J) MainActivity.java

28 gen [Generated Java Files)
| =, Android 4.2
| B\ Android Dependencies
\._3 assets
&= bin

R

= drawable-hdpi
= drawable-Idpi
= drawable-mdpi
= drawable-xhdpi
== layout
<1 activity_main.xml
== menu
<1 activity_main,xml
== values
<1 strings.xml
Cl o styles,xml
(= values-vi1
= values-v14
AndroidManifest. xml
*] ic_launcher-web.png
[5] proguard-project.txt
[E) project.properties

+
cl

Figure 1-22. “RobsHelloWorld” Android project

Running on an Android Emulator

Before we run our example on the emulator, we must first set up an Android Virtual Device. Select
Window » Android Virtual Device Manager from the Eclipse menu to start up the Virtual Device
Manager. Click the New button. Another window should pop up with the heading “Create new
Android Virtual Device (AVD).” Enter a name for your virtual device in the “AVD Name:” field. Select a
device to emulate and Target, as shown in Figure 1-23. Accept the default values for the rest of the
inputs. Click the OK button.

CHAPTER 1: Let’s Meet the Android

® Create new Android Virtual Device (AVD) X

AYD Name:
Device:
Target:
CPUJABI:

Keyboard:

Front Camera:

Back Camera:

Memory Options:

Internal Storage:

SD Card:

Emulstion Options:

MyEmulator|
3.2° QVGA (ADP2) (320 = 480: mdpi) v
Android 4.2 - API Level 17 v

Hardware keyboard present
Display & skin with hardware controls

None v
RAM: 512 ¥M Heap: | 16

200 MiB W
@) size: MB v
O File:

[1Snapshot [Juse Hast GPU

Figure 1-23. Creating a new Android Virtual Device

21

Next, we have to run our example. If you are running this for the first time, you will have to specify how
to run this application. Make sure the “RobsHelloWorld” project is highlighted. Select Run » Run from

the Eclipse main menu.

When the pop-up window appears, select “Android Application” and click the OK button to run the
example. If you do not have an actual Android device attached to your computer via USB cable,

Eclipse will run the program on the Android emulator (see Figure 1-24).

22 CHAPTER 1: Let’s Meet the Android

@® Run As E @@
Select a way to run RobsHelloWorld':
il Android Application
Ji Android JUnik Test
%5 Java Applet

[T Java Application
JU JUnik Test

Description
Runs an Android Application
@ [ok [cancel

Figure 1-24. Running your “HelloWorld” example

The Android emulator should start by default and run our sample program. The actual code for this
program is shown later in this chapter (see Figure 1-25).

M 5554:CheapAndroidPHone =3
Basic Controls

Hardware Buttons

1®! RobsHelloWorld

Hello world!

Figure 1-25. “RobsHelloWorld” example running on the Android emulator

CHAPTER 1: Let’s Meet the Android 23

Running on an Actual Android Device

In order to download and run the program on an actual Android device, the device must be put
into USB Debugging mode. Press the Menu key, which is the left-most key on the bottom portion
of an Android phone. Click the Settings button, then click the Applications button and then the
Development button. Click the “USB Debugging” option. After doing so, the item should be
checked, as in Figure 1-26.

USB Debugging

Debug mode when

Stay Awake

screen will neve

Allow Mock Locations

Allow ns

Figure 1-26. Setting USB Debugging mode

Note On Android 4.0 and newer models, the USB Debugging option is under the Settings » Developer
options. On Android 4.2 and newer models, the Developer options are hidden by default. To make it available,
go to Settings » About Phone and tap the Build number seven times. Return to the previous screen to find
Developer options.

Next, you have to install the appropriate USB software driver for your model of Android phone onto
your development system. Try to connect your Android device to your computer first, to see if it
automatically installs the correct drivers. If you can’t run the program on your device, then you will
have to install a device driver from the manufacturer. Usually the manufacturer of your phone has

a web site with downloadable drivers. After doing this, connect your phone to your development
system, using a USB cable, which most likely was included with your mobile phone.

24 CHAPTER 1: Let’s Meet the Android

Now you are ready to start using the device. Select Run » Run from the main Eclipse menu.
A window should appear in which you can choose to run the program on an actual Android device or
an Android Virtual Device (see Figure 1-27). Select the hardware device and click the OK button.

® Android Device Chooser @

Select a device with min API level 8.

0SE & running evice

Cho ing Android devi
Serial Number AVD Name Target Debug State
Ige-ym670-A000003129D322 4222 | fodine |

(O Launch a new Android Virtual Device

AYD Name Target Name Platform API Level CPUJABI

[Juse same device for future launches [ok | I Cancel

Figure 1-27. Choose a device on which to run your program

The program running on the device should be the same as depicted in Figure 1-25. Press the Back
key to exit the program.

The Main Source Code

When you create a new program within the Android development framework, what you are actually
doing in terms of coding is creating a new activity. What you need to do is derive a new class from
the existing Activity class that is part of the standard Android code base (see Listing 1-1).

Listing 1-1. MainActivity. java Source Code for “RobsHelloWorld” Example

package com.robsexample.robshelloworld;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

public class MainActivity extends Activity {
@verride

CHAPTER 1: Let’s Meet the Android 25

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}

@0verride

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.activity_main, menu);
return true;

}

For example, our “HelloWorld” program consists of a new class MainActivity, which is derived from
the Activity class.

The onCreate() function is called when this new activity is created. It first calls the onCreate()
function in its parent class through the super.onCreate() statement. It then sets the activity’s view to
the layout specified in the activity main.xml file located in the “res/layout” directory for the project.
The R class is a generated class located in the “gen” directory and reflects the current files in the
resources, or “res,” directory (see Figure 1-2x2).

The OnCreateOptionsMenu() function creates the options menu for the program. The menu
specifications are located in the activity main.xml file located in the “res/menu” directory.

The Graphical Layout

The graphical layout .xml file for this example is referenced by the code R.layout.activity main,
which refers to the activity main.xml file located in the “res/layout” directory for this project
(see Listing 1-2.)

Listing 1-2. Graphical Layout for “RobsHelloWorld”

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"”
android:layout_height="match_parent"
tools:context=".MainActivity" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/hello_woxrld" />

</Relativelayout>

This graphical layout specification is a Relative Layout type with one TextView component, inside which
static alphanumeric text can be displayed.

The code android:text sets the text to be displayed.

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

26 CHAPTER 1: Let’s Meet the Android

The text to be displayed is set to a string variable named “hello_world,” located in the file strings.xml,
which is located in the “res/values” directory.

You can hard-code a string value by removing the “@string/” portion and just have the text you want
to display enclosed in quotes, such as

android:text="Hello World EveryBODY!!!"

However, this is not recommended.

You can also preview and edit the layout inside of Eclipse by selecting the layout file and clicking the
Graphical Layout tab located at the bottom left of the file view (see Figure 1-28.)

‘1) Mainactivityjava () activty mainaml £3

4 ‘ Palette -

i Palette -4
=" Form Widgets

Textview Large Medium smat Button

Small OFF + CheckBox
® RadioButton CheckedTextView

Spinner

Sub ltem

—

* 7

(] Text Fields

(] Layouts

[j_ Coml_msite

(] Images & Media

L] Time & Date

[Transitions

() Advanced

) Other

() Custom & Library Views

i v [Dnewsore * [~ rappTheme ~ (@ ManActivity -

Er aE- @ c

® RobsHelloWorld

Hello world!

[=] Graphical Layout || =] activity_main.xml

Figure 1-28. Graphical layout preview in Eclipse

CHAPTER 1: Let’s Meet the Android 27

The Actual “Hello World” Data

Finally, the file that has the actual “Hello World” data to display is the strings.xml file and is shown
in Listing 1-3.

Listing 1-3. Data for “Hello World”

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="app_name">RobsHelloWorld</string>
<string name="hello world"sHello world!</string»
<string name="menu_settings">Settings</string>

</resources>

The key variable that is used to display the text is “hello_world” and the associated text data is
“Hello world!”

Summary

In this chapter, | gave overviews of the key components in Android game development. | first
discussed the major components of the Android Software Development Kit, or SDK. | discussed the
Eclipse IDE, Android SDK Manager, Android Virtual Device Manger, and the actual Android device
emulator. Next, | explained how you would set up your development system to create and deploy
Android programs. | discussed key components of the Eclipse IDE, such as the Project Explorer
window, Source Code window, Outline window, and LogCat window. Next, | took you step by step
through a hands-on example involving the creation of a “Hello World” program that was run on both
the Android emulator and an actual Android device. Finally, | discussed exactly how this sample
“Hello World” program is constructed.

Chapter

Java for Android

In this chapter, | will cover the Java language component in Android 3D games development. | will
start with a brief overview and review of the basic Java language on Android. Then | cover the basic
Java program framework on Android for all applications. Next, | cover the basic Java program
framework on Android for applications that specifically utilize OpenGL ES graphics. Finally, | provide
a hands-on example of a 3D Android OpenGL ES program.

Overview of the Java Language

This section on the Java language is intended as a quick-start guide for someone who has

some knowledge of computer programming as well as some knowledge about object-oriented
programming. This section is not intended to be a Java reference manual. It is also not intended to
cover every feature of the Java programming language.

The Java language for Android is run on a Java virtual machine. This means that the same compiled
Java Android program can run on many different Android phones with different central processing
unit (CPU) types. This is a key feature in terms of future expandability to faster processing units,
including those that will be specifically designed to enhance 3D games. The trade-off to this is
speed. Java programs run slower than programs compiled for a CPU in its native machine language,
because a Java virtual machine must interpret the code and then execute it on the native processor.
A program that is already compiled for a specific native processor does not have to be interpreted
and can save execution time by skipping this step.

However, you can compile C/C++ code for a specific Android processor type using the Android
Native Development Kit or NDK. You can also call native C/C++ functions from within the Java
programming framework. Thus, for key functions that require the speed of natively compiled code,
you can put these functions into C/C++ functions that are compiled using the NDK and called from
Java code in your main program.

29

30 CHAPTER 2: Java for Android

Java Comments

Java comments can consist of single-line comments and multiline comments.
Single-line comments start with two slash characters (//).
// This is a single-line Java comment

Multiline comments start with a slash followed by an asterisk (/*) and end with
an asterisk followed by a slash (*/).

/*
This is
a multiline
comment

*/

Java Basic Data Types

Java data types can be numeric, character, or Boolean in nature.
byte: An 8-bit number with values from -128 to 127, inclusive
short: A 16-bit number with values from -32,768 to 32,767, inclusive
int: A 32-bit number with values from -2,147,483,648 to 2,147,483,647, inclusive

long: A 64-bit number with values from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807, inclusive

float: A single-precision 32-bit IEEE 754 floating-point number
double: A double-precision 64-bit IEEE 754 floating-point number

char: A single 16-bit Unicode character that has a range of '\u0000"' (or 0) to '\
uffff' (or 65,535, inclusive)

Boolean: Having a value of either true or false

Arrays

In Java, you can create arrays of elements from the basic Java data types listed in the preceding section.
The following statement creates an array of 16 elements of type float called m_ProjectionMatrix.

float[] m ProjectionMatrix = new float[16];

CHAPTER 2: Java for Android 31

Data Modifiers

Data modifiers allow the programmer to control how variables are accessed and stored.
They include the following:

private: Variables that are private are only accessible from within the class they
are declared in. The following declares m_ProjectionMatrix to be private and
only accessible from within its own class:

private float[] m ProjectionMatrix = new float[16];

public: Variables that are public can be accessed from any class. The following
variable is public:

public float[] m ProjectionMatrix = new float[16];

static: Variables that are declared static have only one copy associated with
the class they are declared in. The following static array is declared static and
resides in the Cube class. This array defines the graphics data for a 3D cube.
This 3D cube is the same for all instances of the Cube class, so it makes sense
to make the CubeData array static.

static float CubeData[] =
{

/! x, Y, z, u, v nx, ny, nz

-0.5f, o.5f, o.5f, o.of, o.of, -1, 1, 1, // front top left
-0.5f, -o0.5f, o.5f, o.of, 1.0f, -1, -1, 1, // front bottom left
o0.5f, -0.5f, 0.5f, 1.0f, 1.0f, 1, -1, 1, // front bottom right
0.5f, o.5f, o.5f, 1.0f, o.0f, 1, 1, 1, // front top right

-0.5f, o.5f, -0.5f, o.of, o.of, -1, 1, -1, // back top left
-0.5f, -0.5f, -0.5f, o.of, 1.0f, -1, -1, -1, // back bottom left
0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 1, -1, -1, // back bottom right
0.5f, o0.5f, -0.5f, 1.0f, o0.0f, 1, 1, -1 // back top right

b

final: The final modifier indicates that the variable will not change. For example,
the following declares the variable TAG is of type String and is private, static,
and cannot be changed.

private static final String TAG = "MyActivity";

Java Operators

In this section, we cover arithmetic, unary, conditional, bitwise, and bit shift operators.

32 CHAPTER 2: Java for Android

Arithmetic Operators
+ Additive operator (also used for String concatenation)

- Subtraction operator

* Multiplication operator
/ Division operator
% Remainder operator

Unary Operators
+ Unary plus operator
- Negates an expression
+ Increments a value by 1
- Decrements a value by 1

1 Inverts the value of a Boolean

Conditional Operators
&& Conditional-AND
1 Conditional-OR

Assignment operator

== Equal to

1= Not equal to

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to

CHAPTER 2: Java for Android 33

Bitwise and Bit Shift Operators
~ Unary bitwise complement
<< Signed left shift
» Signed right shift
»»> Unsigned right shift
& Bitwise AND
" Bitwise exclusive OR

| Bitwise inclusive OR

Java Flow Control Statements

if then statement
if (expression)

// execute statements here if expression evaluates to true

}
if then else statement
if (expression)
// execute statements here if expression evaluates to true

}

else

{
}

switch statement

// execute statements here if expression evaluates to false

switch(expression)

case label1:
// Statements to execute if expression evaluates to
// label1:

break;

case label2:
// Statements to execute if expression evaluates to
// label2:
break;

34 CHAPTER 2: Java for Android

while statement

while (expression)

{

// Statements here execute as long as expression evaluates // to true;

}
for statement

for (variable counter initialization;
expression;
variable counter increment/decrement)

{
// variable counter initialized when for loop is first
// executed

// Statements here execute as long as expression is true

// counter variable is updated

Java Classes

Java is an object-oriented language. What this means is that you can derive or extend existing
classes to form new customized classes of the existing classes. The derived class will have all the
functionality of the parent class, in addition to any new functions that you may want to add in.

The following class is a customized version of the parent class from which it derives, which is the
Activity class.

public class MainActivity extends Activity

{
}

// Body of class

Packages and Classes

Packages are a way in Java to group together classes and interfaces that are related in some way.
For example, a package can represent a game or other single application. The following is the
package designation for the “Hello Droid” Android project that | cover at the end of this chapter.

package com.robsexample.glhelloworld;

Accessing Classes in Packages

In order to access classes that are located in other packages, you have to bring them into view using
the “import” statement. For example, in order to use the GLSurfaceView class that is located inside
the android.opengl.GLSurfaceView package, you have to import it with the following statement:

import android.opengl.GLSurfaceView;

CHAPTER 2: Java for Android 35

Then, you can use the class definition without the full package name, such as
private GLSurfaceView m_GLView;

Refer to the main Android developer’s web site to find out more information about Android’s built-in
classes, as well as the exact import you need to specify to use these classes in your own programs.

Java Interfaces

The purpose of a Java interface is to provide a standard way for programmers to implement the
actual functions in an interface in code in a derived class. An interface does not contain any actual
code, only the function definitions. The function bodies with the actual code must be defined by
other classes that implement that interface. A good example of a class that implements an interface
is the render class that is used for rendering graphics in OpenGL on the Android platform.

public class MyGLRenderer implements GLSurfaceView.Renderer

{

// This class implements the functions defined in the
// GLSurfaceView.Renderer interface

// Custom code
private Pointlight m_Light;
public PointlLight m_Publiclight;
void SetupLights()

// Function Body
}

// Other code that implements the interface

}

Accessing Class Variables and Functions

You can access a class’s variables and functions through the “.” operator, just as in C++. See the
following examples:

MyGLRenderer m _Renderer;

m_Renderer.m PublicLight = null; // ok
m_Renderer.SetupLights(); /1 ok
m_Renderer.m_Light = null; // error private member

Java Functions

The general format for Java functions is the same as in other languages, such as C/C++. The
function heading starts with optional modifiers, such as private, public, or static. Next is a return
value that can be void, if there is no return value or a basic data type or class. This is followed by the
function name and then the parameter list.

36 CHAPTER 2: Java for Android

Modifiers Return value FunctionName(ParameterTypel Parameteri, ...)

{
}

// Code Body

An example of a function from our Vector3 class in our “Hello Droid” example at the end of this chapter is:

static Vector3 CrossProduct(Vector3 a, Vector3 b)

{
Vector3 result = new Vector3(0,0,0);
result.x= (a.y*b.z) - (a.z*b.y);
result.y= (a.z*b.x) - (a.x*b.z);
result.z= (a.x*b.y) - (a.y*b.x);
return result;

}

Also in Java, all parameters that are objects are passed by reference.

Calling the Parent Function

A function in a derived class can override the function in the parent or superclass, using the @verride
annotation. This is not required but helps to prevent programming errors. If the intention is to override a
parent function but the function does not in fact do this, then a compiler error will be generated.

In order for the function in a derived class to actually call its corresponding function in the parent
class, you use the super prefix as seen below.

@0verride
public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

// Create a MyGLSurfaceView instance and set it
// as the ContentView for this Activity

m GLView = new MyGLSurfaceView(this);
setContentView(m GLView);

Note Additional Java tutorials can be found on http://docs.oracle.com/javase/tutorial/.

The Basic Android Java Program Framework

In this section, | cover the basic Android Java program framework. This framework applies to all
Android programs, not just Android 3D games or games in general. | start off with an overview of the
activity life cycle. Then | cover key cases in the life cycle and follow up by code additions where you
can see for yourself the changes in the Activity’s life cycle through the use of debug statements.

http://docs.oracle.com/javase/tutorial/

CHAPTER 2: Java for Android

Android Activity Life Cycle Overview

The Activity class is the main entry point within the Android framework where a programmer is
able to create new Android applications and games. In order to effectively code within this
framework, you must understand the Activity class life cycle. See Figure 2-1 for a graphical
flowchart style overview.

onCreate() called &£

v
onStart() called —— onRestart() called
‘_ A
onResume() called
v
.. : Pawer Button
Activity Running Tumed Back
ON
Power Button Tumed Off L
Phone Orientation Change —gg?ntgesrt'g‘gg’:g e ‘
Back Button Pressed 9 User Returns to
Home Button Pressed v Activity
onPausel) called —— Home Buttan
I Previously
Activity no longer Pressed
Visible User Returns to
v Activity
onStop() called J
|
Activity is finishing or
being destroyed by system
v
Change Orientation Complete |
onDestroy() called —— Noy Activitry with new
Orientation Started
Activity Shutdown

Figure 2-1. Activity class callback life cycle

38 CHAPTER 2: Java for Android

Key Activity Life Cycle Cases

There are some key situations that you have to consider when programming your Activity class.

Another activity comes to the foreground: The current Activity is paused; that is, the
Activity’s onPause() function is called.

The Power key is turned off: The current Activity’s onPause() function is called; the
Power key is turned back on; and then the Activity’s onResume() function is called,
followed by a return to resumption of the activity.

Phone orientation changes: The current Activity’s onPause() function is called. The
Activity’s onStop() function is called. The Activity’s onDestroy() function is called.
Finally, a new instance of the previous Activity is created with the new Orientation

and onCreate() is called.

Back key is pressed: The current Activity’s onPause() function is called. The Activity’s
onStop() function is called. Finally, the Activity’s onDestroy() function is called. The
Activity is no longer active.

Home key is pressed: The current Activity’s onPause() function is called. The
onStop() function is called, and the user is taken to the home screen where other
activities can be started. If the user tries to begin the previously stopped Activity
by clicking its icon, the previous Activity’s onRestart() function is called. Next, the
onStart() function is called. The onResume() function is then called. The Activity
becomes active again and is running.

The important concept to take away from Figure 2-1 is that you should save the game state
whenever onPause() is called.

Seeing the Activity Life Cycle in Action

Listing 2-1 shows how these callback functions look inside our new MainActivity class that we
created in Chapter 1. The log statements added into each callback output error log messages to the
LogCat window indicating which callback is being executed. Try to type in the extra code and run
the program and see for yourself the life cycle callbacks being executed.

Listing 2-1. “RobsHelloWorld” Example with Life Cycle Callbacks Added

package com.robsexample.robshelloworld;

import android.os.Bundle;
import android.app.Activity;
import android.util.Log;
import android.view.Menu;

public class MainActivity extends Activity {
private static final String TAG = "MyActivity";
@0verride

CHAPTER 2: Java for Android

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
Log.e(TAG, "onCreate() called!");

}

@0verride

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.activity main, menu);
return true;

}

@Override

protected void onStart() {
super.onStart();
Log.e(TAG, "onStart() called!");

}

@Override

protected void onRestart() {
super.onRestart();
Log.e(TAG, "onRestart() called!");

@Override

protected void onStop() {
super.onStop();
Log.e(TAG, "onStop() called!");

@0Override
protected void onResume() {
// Ideally a game should implement onResume() and onPause()
// to take appropriate action when the activity looses focus
super .onResume() ;
Log.e(TAG, "onResume() called!");
}
@0verride
protected void onPause() {
// Ideally a game should implement onResume() and onPause()
// to take appropriate action when the activity looses focus
super .onPause();
Log.e(TAG, "onPause() called!");
}
@0verride
protected void onDestroy()
{
// Implement onDestroy() to release objects and free up memory when
// an Activity is terminated.
super.onDestroy();
Log.e(TAG , "onDestroy() called!");

39

40 CHAPTER 2: Java for Android

The Basic Android Java OpenGL Framework

In this section, | cover the basic Android Java OpenGL framework that is the basis for all OpenGL

related applications, including games. | first cover the basic framework for a program with a single
OpenGL view. Next, | cover a framework that contains multiple views that include an OpenGL view
as part of the user interface.

Basic Android OpenGL ES Framework for a Single-View OpenGL
ES Application

In this section, | will discuss how to create an OpenGL ES 2.0 Android application where there is
only a single OpenGL ES 2.0 view. | first discuss a customized GLSurfaceView class. Then | discuss
the custom renderer we need to do the actual drawing of the 3D OpenGL ES objects.

The Custom GLSurfaceView

In order to create your own custom OpenGL ES-based games, you have to create a custom
GLSurfaceView, a custom Renderer that draws this custom GLSurfaceView, and then set this new
custom GLSurfaceView as the main view through the setContentView() function in your custom
Activity class.

The custom GLSurfaceView object must be notified when the Activity is paused or resumed. This
means that the onPause() and onResume() functions in the GLSurfaceView object must be called
when onPause() or onResume() is called in the Activity.

In the custom MyGLSurfaceView class below, which is derived from the GLSurfaceView class, you also
have to set the OpenGL ES version to use to 2.0 by calling setEGLContextClientVersion(2) inside the
constructor. You must also set your custom renderer, which is MyGLRenderer in the example below,
using the setRenderer(new MyGLRenderer()) statement, also in the constructor. See Listing 2-2.

Listing 2-2. Activity Class for a Single OpenGL ES View Application

package robs.demo.robssimplegldemo;

import android.app.Activity;

import android.content.Context;
import android.opengl.GLSurfaceView;
import android.os.Bundle;

public class RobsSimpleOpenGLDemoActivity extends Activity

{

private GLSurfaceView m_GLView;

@0verride
public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

CHAPTER 2: Java for Android a1

// Create a MyGLSurfaceView instance and set it
// as the ContentView for this Activity
m_GLView = new MyGLSurfaceView(this);
setContentView(m_GLView);

}

@0verride
protected void onPause()

{

super.onPause();
m_GLView.onPause();

}

@0verride
protected void onResume()

{
super.onResume();
m_GLView.onResume();
}
}

LILITIITIILTI0007100777707710707717717710717777177771777117711177171771711771
class MyGLSurfaceView extends GLSurfaceView {
public MyGLSurfaceView(Context context) {
super(context);

// Create an OpenGL ES 2.0 context.
setEGLContextClientVersion(2);

// Set the Renderer for drawing on the GLSurfaceView
setRenderer(new MyGLRenderer());

}

The Custom Renderer

The custom MyGLRenderer class implements the interface for GLSurfaceView.Renderer. This means
that this class needs to implement the functions onSurfaceCreated(), onSurfaceChanged(),
and onDrawFrame().

The function onSurfaceCreated() is called when an OpenGL surface is created or when the EGL
context that is used for OpenGL ES rendering is lost. Put the creation and initialization of any
OpenGL objects and resources you need for your game here.

The onSurfaceChanged() function is called whenever the OpenGL surface changes size or a new
surface is created.

The onDrawFrame() function is called when it’s time to render the OpenGL surface to the Android
screen. Put code to actually render your 3D objects here.

See Listing 2-3 for the full custom renderer class implementation.

42 CHAPTER 2: Java for Android

Listing 2-3. MyGLRenderer Custom Renderer Class

package robs.demo.robssimplegldemo;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.nio.FloatBuffer;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLES20;

import android.opengl.GLSurfaceView;

public class MyGLRenderer implements GLSurfaceView.Renderer
{
@0verride
public void onSurfaceCreated(GL10 unused, EGLConfig config)
{
// Called when an new surface has been created
// Create OpenGL resources here

}

@0verride
public void onSurfaceChanged(GL10 unused, int width, int height)

{

// Called when new GL Surface has been created or changes size
// Set the OpenglES camera viewport here

}

@0verride
public void onDrawFrame(GL10 unused)

{
}

// Put code to draw 3d objects to screen here

}

Basic Android OpenGL ES Framework for a Multiple View OpenGL
ES Application

In this section, we will cover the basic framework for an OpenGL program that contains multiple
View objects inside your user interface or layout, such as those including Text views, Edit Box views,
as well as having an OpenGL view. For example, you can have a portion of your screen with an
EditBox view where the user can enter his name using the standard virtual Android keyboard that is
already built into software and another portion of the screen running an OpenGL animation.

The XML Layout File

The following XML layout file is a linear layout with three view components: a TextView component,
an EditText component, and a custom GLSurfaceView component called MyGLSurfaceView.

CHAPTER 2: Java for Android 43

The custom GLSurfaceView class to use in this view is specified by the following statement, which is
the complete name of the class that includes the package that it is in:

robs.demo.TestDemoComplete.MyGLSurfaceView
The id for this view is specified by the following statement:
android:id="@+id/MyGLSurfaceView"

The “@” symbol tells the compiler to parse and expand the rest of the string as an identity resource.
The “+” tells the compiler that this new id must be added to the resources file located in the gen/R.
java file. “MyGLSurfaceView” is the actual id (see Listing 2-4).

Listing 2-4. XML Layout for Multiple View OpenGL ES Application

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/layout"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical">

<TextView
android:id="@+id/Text1"
android:layout width="fill parent"”
android:layout_height="wrap_content"
android:text="@string/hello"/>

<EditText
android:id="@+id/EditTextBox1"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello"/>

<xobs.demo.TestDemoComplete.MyGLSurfaceView
android:id="@+id/MyGLSurfaceView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/»

</LinearlLayout>

The Activity Class and GLSurfaceView Class

The XML layout in the preceding section is set to be the user interface by the statement
setContentView() located in our Activity class.

Within the Activity class, we use the findViewById() function to get a reference to the newly created
MyGLSurfaceView object, so we can reference it in our Activity class.

A new constructor is added to the MyGLSurfaceView class. This is needed because of our addition
of the MyGLSurfaceView class into the XML layout (see Listing 2-5).

44

CHAPTER 2: Java for Android

Listing 2-5. Multiple View OpenGL ES Activity

package robs.demo.TestDemoComplete;

import
import
import
import
import
import

public
{

}

android.app.Activity;
android.os.Bundle;
android.content.Context;
android.opengl.GLSurfaceView;
android.view.MotionEvent;
android.util.AttributeSet;

class OpenGLDemoActivity extends Activity

private GLSurfaceView m_GLView;
@0verride
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
MyGLSurfaceView V = (MyGLSurfaceView)this.findViewById (R.id.MyGLSurfaceView);
m_GLView = V;

}

@0verride

protected void onPause()

{
super.onPause();
m_GLView.onPause();

}

@0verride
protected void onResume()
{
super.onResume();
m GLView.onResume();
}

LILITTTII007000717707707717710070771177170777117717777717711771171111177171117
class MyGLSurfaceView extends GLSurfaceView

{

private final MyGLRenderer m Renderer;

// Constructor that is called when MyGLSurfaceView is created
// from within an Activity with the new statement.
public MyGLSurfaceView(Context context)
{
super(context);
// Create an OpenGL ES 2.0 context.
setEGLContextClientVersion(2);

CHAPTER 2: Java for Android 45

// Set the Renderer for drawing on the GLSurfaceView
m Renderer = new MyGLRenderer();
setRenderer(m Renderer);

}
// Constructor that is called when MyGLSurfaceView is created in the XML

// layout file
public MyGLSurfaceView(Context context, AttributeSet attrs)

{

super(context, attrs);

// Cxeate an OpenGL ES 2.0 context.
setEGLContextClientVersion(2);

// Set the Renderer for drawing on the GLSurfaceView
m_Renderer = new MyGLRenderer();
setRenderer(m_Renderer);

Hands-on Example: A 3D OpenGL “Hello Droid” Example

In this hands-on exercise, | cover a simple 3D OpenGL example that gives you a preview of the kind
of things | will be covering later in this book.

Importing Project Examples into Eclipse

In order to run the project examples from this book, you will need to import them into the current
Eclipse work space. Under the main Eclipse menu, select File » Import. This should bring up another
window. Select Android » Existing Android Code Into Workspace to start the process of importing
existing code into your current work space. Follow the directions in the next window to select a root
directory. Select the projects you want to import and if you want to copy the code to the existing
work space or not. Click the Finish button when done.

Start up the Eclipse IDE. Import the Chapter 2 projects into your current work space, if you haven’t
done so already. Select the GLHelloWorld project and bring up the source code listing into the
Package Explorer window area of the Eclipse IDE.

The MainActivity and MyGLSurfaceView Classes

Double-click the MainActivity Java file in the Package Explorer window to bring it up in the source
code area. This file defines the new program or Activity and follows the same format for the single
OpenGL view layout discussed earlier (see Listing 2-6.)

Listing 2-6. MainActivity and MyGLSurfaceView Classes
package com.robsexample.glhelloworld;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

46 CHAPTER 2: Java for Android

import android.opengl.GLSurfaceView;
import android.content.Context;

public class MainActivity extends Activity {
private GLSurfaceView m_GLView;

@0verride

public void onCreate(Bundle savedInstanceState)

{
super.onCreate(savedInstanceState);
// Create a MyGLSurfaceView instance and set it
// as the ContentView for this Activity
m GLView = new MyGLSurfaceView(this);
setContentView(m GLView);

}

@0verride

protected void onPause()

{
super.onPause();
m_GLView.onPause();

}

@0verride

protected void onResume()

{
super.onResume();
m_GLView.onResume();

}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.activity main, menu);
return true;
}
}
LILIITTII00000077777077717777777777777777177777777117777777111117777111117117
class MyGLSurfaceView extends GLSurfaceView

{

public MyGLSurfaceView(Context context)

{
super(context);
// Create an OpenGL ES 2.0 context.
setEGLContextClientVersion(2);
// Set the Renderer for drawing on the GLSurfaceView
setRenderer(new MyGLRenderer(context));

}

CHAPTER 2: Java for Android

The MyGLRenderer Class

Double-click the MyGLRenderer source code file in the Package Explorer window to bring it up in
the Eclipse IDE source code window area (see Listing 2-7).

Listing 2-7. MyGLRenderer

package com.robsexample.glhelloworld;

import
import

import
import
import

public
{

javax.microedition.khronos.egl.EGLConfig;
javax.microedition.khronos.opengles.GL10;

android.opengl.GLES20;
android.opengl.GLSurfaceView;
android.content.Context;

class MyGLRenderer implements GLSurfaceView.Renderer

private Context m_Context;
private PointLight m PointlLight;
private Camera m_Camera;

private int m_ViewPortWidth;
private int m_ViewPortHeight;
private Cube m_Cube;

public MyGLRenderer(Context context)
{

}

void SetupLights()

m_Context = context;

// Set Light Characteristics
Vector3 LightPosition = new Vector3(0,125,125);

float[] AmbientColor = new float [3];
AmbientColox[0] = 0.0f;
AmbientColox[1] = 0.0f;
AmbientColox[2] = 0.0f;

float[] DiffuseColor = new float[3];
DiffuseColox[0] = 1.0f;
DiffuseColox[1] = 1.0f;
DiffuseColox[2] = 1.0f;

float[] SpecularColor = new float[3];
SpecularColox[0] = 1.0f;
SpecularColox[1] = 1.0f;
SpecularColor[2] = 1.0f;

47

48 CHAPTER 2: Java for Android

m_PointLight.SetPosition(LightPosition);
m_PointLight.SetAmbientColor (AmbientColor);
m_PointLight.SetDiffuseColor(DiffuseColor);
m_PointLight.SetSpecularColor(SpecularColor);

}
void SetupCamera()
{
// Set Camera View
Vector3 Eye = new Vector3(0,0,8);
Vector3 Center = new Vector3(0,0,-1);
Vector3 Up = new Vector3(0,1,0);
float ratio = (float) m_ViewPortWidth / m_ViewPortHeight;
float Projleft = -ratio;
float Projright = ratio;
float Projbottom = -1;
float Projtop = 1;
float Projnear = 3;
float Projfar = 50; //100;
m_Camera = new Camera(m Context,
Eye,
Center,
Up,
Projleft, Projright,
Projbottom,Projtop,
Projnear, Projfar);
}

void CreateCube(Context iContext)

{
//Create Cube Shader
Shader Shader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelight); //

//MeshEx(int CoordsPerVertex,

// int MeshVerticesDataPosOffset,
// int MeshVerticesUVOffset,

// int MeshVerticesNormalOffset,
// float[] Vertices,

// short[] DrawOrder

MeshEx CubeMesh = new MeshEx(8,0,3,5,Cube.CubeData, Cube.CubeDrawOrder);

// Create Material for this object
Material Materiall = new Material();
//Materiali.SetEmissive(0.0f, 0, 0.25f);

// Create Texture

Texture TexAndroid = new Texture(iContext,R.drawable.ic_launcher);
Texture[] CubeTex new Texture[1];

CubeTex[0] = TexAndroid;

CHAPTER 2: Java for Android 49

m_Cube = new Cube(iContext,
CubeMesh,
CubeTex,
Materiali,
Shader);

// Set Intial Position and Orientation

Vector3 Axis = new Vector3(0,1,0);

Vector3 Position = new Vector3(0.0f, 0.0f, 0.0f);
Vector3 Scale = new Vector3(1.0f,1.0f,1.0f);

m_Cube.m Orientation.SetPosition(Position);
m_Cube.m Orientation.SetRotationAxis(Axis);

m_Cube.m Orientation.SetScale(Scale);

//m_Cube.m_Orientation.AddRotation(45);

}
@0verride
public void onSurfaceCreated(GL10 unused, EGLConfig config)
{
m_PointLight = new PointLight(m_Context);
SetupLights();
CreateCube(m_Context);
}
@0verride
public void onSurfaceChanged(GL10 unused, int width, int height)
{
// Ignore the passed-in GL10 interface, and use the GLES20
// class's static methods instead.
GLES20.glViewport(0, 0, width, height);
m_ViewPortWidth = width;
m_ViewPortHeight = height;
SetupCamera();
}
@0verride
public void onDrawFrame(GL10 unused)
{
GLES20.glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
GLESZO.glClear(GLES20.GL_DEPTH_BUFFER_BIT | GLESZO.GL_COLOR_BUFFER_BIT);
m_Camera.UpdateCamera();
m_Cube.m Orientation.AddRotation(1);
m_Cube.DrawObject(m Camera, m PointLight);
}

}

First the onSurfaceCreated() function is called. In this function, a new light is created and initialized
and the 3D cube object is also created.

50 CHAPTER 2: Java for Android

Next, the onSurfaceChanged() function is called. In this function, the camera is created and initialized.
The camera’s properties, such as position, orientation, and camera lens qualities, are defined.

In the onDrawFrame() function, the background is cleared to the color white. The camera is then
updated. Next, the cube is rotated by one degree, and finally, the cube object is drawn.

Class Overview

In this book, the base class for 3D objects is the Object3d class. Other 3D objects, such as the Cube
class, derive or extend directly or indirectly from the Object3d class.

The Object3d class contains other key classes, such as the Orientation class, MeshEx class, Texture
class, Material class, and Shader class.

The Orientation class holds a 3D object’s position, rotation, and scaling data.
The MeshEx class defines one type of OpenGL 3D mesh that is used to represent a 3D object.

The Texture class defines a texture that consists of a bitmap image that can be applied across a
3D object.

The Material class defines an object’s Material properties, which define the color and lighting
properties of an object. The properties are Emissive, Ambient, Diffuse, Specular, Specular_Shininess,
and Alpha.

Emissive refers to the light emitted by the object itself.

Ambient refers to the color the material reflects when hit with ambient light. Ambient
light is constant all over the object and is not affected by the light’s position or the
viewer’s position.

The Diffuse property refers to the color the material reflects when hit with diffuse
light. The intensity of diffuse light across an object depends on the angle the object’s
vertex normals make with the light direction.

The Specular property refers to the specular color the material reflects. The
specular color depends on the viewer’s position, the light’s position, as well as the
object’s vertex normals.

The Specular_Shininess property refers to how intense specular light reflections on
the object will be.

The Alpha value is the object’s transparency.

The Shader class defines how a 3D object will be drawn and lighted. It consists of vertex shaders
and pixel or fragment shaders. Vertex shaders determine where the object’s vertices are located in
the 3D world. Fragment shaders determine the color of the object being shaded.

The Camera class represents the view into the OpenGL 3D world. Position, orientation, and the
camera lens properties are all contained within this class.

The Cube class contains vertex position data, vertex texture data, and vertex normal data that are
needed to render a 3D cube with textures and lighting.

CHAPTER 2: Java for Android 51

The PointLight class represents our light source. This light is modeled after a point light source, such
as the sun. This kind of light is located at a single point in space, with light radiating in all directions.
Light characteristics include ambient color, diffuse color, and specular color.

The Vector3 class holds data for a 3D vector consisting of x, y, and z components, as well as 3D
vector math functions.

| cover the classes mentioned above in more detail in later chapters, so don’t worry if you don’t
completely understand all the concepts. The purpose of this chapter is to give you a brief overview of
some of the key classes contained in this book and show you how they are used in an actual program.

Experimenting with “Hello Droid”

Let’s do some hands-on experimentation and play around with the lighting. Run the “GLHelloWorld”
program on your Android phone that has version 2.2 or more recent versions of the operating
system. Figure 2-2 shows what you should see by default. You should be seeing a 3D rotating cube
with a texture of the Android robot placed on two sides of it.

B0 @ 12:08em

'GLHelloWorld

Figure 2-2. Default output

Stop the cube rotation by commenting out the statement in the onDrawFrame() function that rotates
the cube, as follows:

//m_Cube.m_Orientation.AddRotation(1);

52 CHAPTER 2: Java for Android

Change the color of the background to black by changing the statement
GLES20.glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

to

GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

It is located in the onDrawFrame() function as well. Figure 2-3 shows what you should see now.

B0 B @ 12:04pm

Figure 2-3. Light positioned in front of and above cube

Next, let’s change the light position so that it is to the right side of the droid. We are looking down
the negative z axis, and the positive x axis is pointing to the right, and the negative x axis is pointing
left, and the positive y axis is up. The droid is located at the origin, which is location (0,0,0). Change
the light position in SetupLights() to the following:

Vector3 LightPosition = new Vector3(125,0,0);

This will move the light to the right of the droid. Run the program (see Figure 2-4). You can clearly
see that the left arm is darkened, since most of the light is falling on the right side of the cube.

CHAPTER 2: Java for Android 53

ﬂ Q 10:33 am
.

Figure 2-4. Light positioned on right side of cube
Next, change the light position so that the light is on the left side of the cube.
Vector3 LightPosition = new Vector3(-125,0,0);

Run the program. You should see something like Figure 2-5.

54 CHAPTER 2: Java for Android

ﬂ Q 10:31 am
.

Figure 2-5. Light positioned on left side of cube

Next, change the light position so that the light is high above the cube. Change the light position to
the following:

Vector3 LightPosition = new Vector3(0,125,0);

You should see something like Figure 2-6. Note that the android’s legs are darkened.

CHAPTER 2: Java for Android 55

ﬂ 'D 10:35 am

Figure 2-6. Light positioned high above cube

Next, position the light far below the cube (see Figure 2-7).

ﬂ 'D 10:38 am

Figure 2-7. Light positioned far below cube

56 CHAPTER 2: Java for Android

Vector3 LightPosition = new Vector3(0,-125,0);

Run the program. You should see something similar to Figure 2-7.

Feel free to experiment more with light properties in the SetupLights() function. For example, try to
change the values of the diffuse, ambient, and specular values to see what effect they will have on
the object.

Summary

In this chapter, | covered the Java programming language as it relates to Android programming. First
| covered the basics of Java, such as data types, functions, classes, and operators. Then we looked
at the basic Java program framework that applies to all Android applications. Next, | covered the
specific Java program framework that applies specifically to OpenGL ES applications. Finally,

| presented a “Hello Droid” project that gave you a preview of how the rest of the code in this book
will be structured.

Chapter

3D Math Review

In this chapter, | cover vectors and matrices. Vectors and matrices are key to 3D game programming
in terms of such things as determining the placement of 3D objects in the scene and how a 3D object
is projected onto a 2D screen. Vectors can also be used for defining properties such as velocity and
force. | start by discussing vectors and operations that can be performed with vectors. | then cover
matrices and the essential operations related to 3D graphics that can be performed with matrices.
Finally, | present a hands-on example that will demonstrate how vectors and matrices are actually
used in a real 3D graphics program on an Android device.

Vectors and Vector Operations

Vectors are an essential topic related to 3D graphics. In this section, | will cover what vectors are
and what they are used for. | also cover important vector functions, such as dot products and
cross products.

What Is a Vector?

A vector is a quantity that has direction and magnitude. For the purposes of this book, vectors will
be 3D vectors, with components in the x, y, and z direction in the 3D world. Vectors can represent
things such as position, velocity, direction, an object’s rotation axis, an object’s local axes, and
forces acting on an object. On Android in OpenGL ES, the coordinate system consists of the

x and z axes forming the ground plane and the y axis indicating height (see Figure 3-1).

57

58 CHAPTER 3: 3D Math Review

Figure 3-1. 3D vectors and the Android OpenGL ES coordinate system

Vector Representing Position

A vector can represent an object’s position in the Android 3D OpenGL ES world. In fact, in the
Orientation class from the example in Chapter 2, the object’s position is a 3D vector represented by
the Vector3 class.

private Vector3 m_Position;

Graphically, you can see a vector representing an object’s position in the 3D world in Figure 3-2.

Figure 3-2. Vector representing a position

CHAPTER 3: 3D Math Review

Vector Representing Direction

A vector can also represent a direction. A vector that is of length or magnitude 1 is called a unit
vector (see Figure 3-3). Unit vectors are important because you can set properties such as an
object’s velocity or the force acting on an object by first finding the unit vector of the direction
vector you want the object to move in, then multiplying this unit vector by a number. This humber
represents the magnitude of the speed of the object or the force you want to apply to the object.
The final vector would contain both the direction of the object or direction of the force and also the
speed of the object or amount of force to apply to the object.

y This vector is a unit
vector of length 1

Figure 3-3. Unit vector representing a direction

Vector Representing Rotation Axis

A vector can also represent the axis of rotation of an object. The axis of rotation is the line about
which an object rotates. In the Orientation class in Chapter 2, the variable m_RotationAxis is the
local axis about which the object rotates.

private Vector3 m_RotationAxis;

See Figure 3-4 for a graphical representation of the local rotation axis.

Figure 3-4. Vector representing a rotation axis of an object

60 CHAPTER 3: 3D Math Review

Vector Representing Force

Vectors can also represent a force. A force has a direction and magnitude, so it is a good fit for
representation by vectors. In Figure 3-5, you see a force vector acting on a ball. The direction of the
force is in the negative x direction. | will discuss forces acting on 3D objects in more depth later in
the book. More specifically, forces will be discussed in Chapter 5, “Motion and Collision.”

Force Vector

(-3,0,0)
O—=

Ball

Figure 3-5. Vector representing force

Vectors Representing Local Axes

Vectors can also represent an object’s local axes. Figure 3-6 shows the local x, y, and z axes of a
3D cube object. Local axes are important because they define an object’s orientation. That is, they
define which side of the object is considered up, which part of the object is the right side, and which
part of the object is considered the front or forward part. For example, if a 3D object represents a
vehicle such as a tank or car, then it would be good to know which part of the object is the front.

If you want to move the tank or car forward, for example, you would need the front or forward vector
in world coordinates as part of the calculation of the next position. The Orientation class defines an
object’s local axes as m_Right, m_Up, and m_Forward.

// Local Axes

private Vector3 m Right;
private Vector3 m_Up;
private Vector3 m_Forward;

Figure 3-6. Vectors representing local axes

CHAPTER 3: 3D Math Review 61

Our Vector Class

In terms of our code for this book, the vectors are represented in the Vector3 class (see Listing 3-1).

Listing 3-1. The Vector3 Class

class Vector3

{
public float x;

public float y;
public float z;

// Vector3 constructor
public Vector3(float x, float _y, float z)

X = _X;

y =
z= _z;

In the Vector3 class, the x, y, and z components of the vector are represented by floats. The constructor
accepts three float values that represent a 3D vector. For example:

Vector3 m MyVector = new Vector3(1,2,3);

declares a new Vector3 class called m_MyVector, initialized with the values x =1,y =2, and z = 3.

The Vector Magnitude

The magnitude of the vector is the scalar value of a vector and is the length of the vector. Recall that
a scalar value is a numerical value that has no direction associated with it. A velocity of an object
can be represented by a vector and has the components of direction and speed. The speed is the
scalar component and is calculated by finding the magnitude of the vector. The magnitude of a
vector is found by squaring the X, y, and z components, adding them together, and then taking the
square root (see Figure 3-7).

Vector V = (Vx, Vy, V2)
—_ 2 2 2
IVI= /vy +vy+v;,

Figure 3-7. Vector magnitude calculation

62 CHAPTER 3: 3D Math Review

In code, the magnitude of a vector is calculated by the Length() function in the Vector3 class, as shown
in Listing 3-2.

Listing 3-2. Length or Magnitude Function

float Length()

return FloatMath.sqrt(x*x + y*y + z*z);

}

Vector Normalization

Normalization in terms of vectors means that the length or magnitude of the vector is changed

to 1, while maintaining the vector’s direction. Normalization is a good way to set vector quantities,
such as velocity and force. First, you would find a vector in the desired direction, then you would
normalize it to change its length to 1. Finally, you would multiply the vector by the magnitude you
want to assign to it, such as speed or the amount of force. In order to normalize a vector, you divide
each of the vector’s components by the length of the vector (see Figure 3-8).

Normalized V= f Vx, Vy, Vz
(IVIEIVITIVII

Figure 3-8. Normalizing a vector

In code, the Normalize() function in the Vector3 class performs normalization (see Listing 3-3).

Listing 3-3. Normalize() Function

void Normalize()

{
float 1 = Length();
X = x/1;
y =y/1;
z = z/1;
}
Vector Addition

Vectors can be added together to produce a resultant vector that is the combination of the effects
of all the individual vectors combined. You can add vectors graphically by putting them head to
tail. The resultant vector, VR, is the one drawn from the tail of the starting vector to the head of the
preceding vector (see Figure 3-9).

CHAPTER 3: 3D Math Review 63

VR=V1+V2+V3

Figure 3-9. Adding vectors together

In terms of code, the Add() function in the Vector3 class adds two vectors and returns the resultant
vector. Each component x, y, and z of the vectors is added together to form the new components of
the resultant vector (see Listing 3-4).

Listing 3-4. The Add Function Adds Two Vectors

static Vector3 Add(Vector3 veci, Vector3 vec2)

{
Vector3 result = new Vector3(0,0,0);
result.x = vecl.x + vec2.x;
result.y = vecl.y + vec2.y;
result.z = vecl.z + vec2.z;
return result;

}

Vector Multiplication

You can also multiply a scalar value by a vector. For example, if you want to set an object’s velocity,
which is a combination of direction and speed, you would find a vector that points to the desired
direction, normalize the vector so that the vector length would be 1, and then multiply that vector
by the speed. The final resultant vector, VR, would be pointing in the desired direction and have a
magnitude value of the speed (see Figure 3-10).

64 CHAPTER 3: 3D Math Review

V = length of 1

Figure 3-10. Multiplying a unit vector of length 1 with a scalar value

In terms of code, the Multiply() function in the Vector3 class multiplies a scalar value by the vector.
Each component x, y, and z of the vector is multiplied by the scalar value (see Listing 3-5).
Listing 3-5. Multiply Function
void Multiply(float v)
X *= v;

*_ .
y = v,
z *= v;

Vector Negation

Vector negation means that you multiply the vector by -1, which means you multiply every
component of the vector by —1. Basically, the direction of the vector is reversed. Look at Figure 3-11,
to see what this looks like graphically.

Figure 3-11. Vector negation

CHAPTER 3: 3D Math Review 65

In terms of code, the Negate() function in the Vector3 class performs negation (see Listing 3-6).

Listing 3-6. The Negate Function
void Negate()

=
} -)
The Right Triangle

The right triangle comes in handy when trying to break up vectors into components. For example,

if you know the speed of a tank shell and the angle the shell’s path makes with the ground, then

you can get the horizontal and vertical speeds of the tank shell. The horizontal speed would be
calculated using the formula for the adjacent side of the right triangle. The vertical speed would be
calculated using the formula for the opposite side of the triangle. Let’s review the basic trigonometric
identities related to the right triangle, as depicted in Figure 3-12.

Hypotenuse

Opposite

S -

Adjacent

Figure 3-12. The right triangle

The following is a list of standard trigonometric identities that describe how the lengths of the sides
of a right triangle relate to one another and the angle theta shown in Figure 3-12:

Sin(Theta) = Opposite/Hypotenuse
Cos(Theta) = Adjacent/Hypotenuse
Opposite = Hypotenuse * Sin(Theta)
Adjacent = Hypotenuse * Cos(Theta)

Vector Dot Product

The vector dot product of two vectors is the magnitude of vector A multiplied by the magnitude of
vector B multiplied by the cosine of the angle between them. The dot product is commonly used to
find the angle between two vectors. One application of the dot product is in billboarding, where a
2D rectangle with a complex image on it, such as a tree, is turned to face the camera. This is a way

66 CHAPTER 3: 3D Math Review

to achieve a 3D-like effect, by having an image face the camera at all times. If done with a complex
background image, such as a tree, the viewer may not notice that it is the same image when viewed
from different angles (see Figure 3-13).

A dot B = [|A]|IBllcos()

Figure 3-13. Dot product formula

You can also find the angle between two vectors using the dot product. The angle between two
vectors is the angle whose cosine is given by the dot product of vector A and vector B, divided by
the magnitude of vector A, multiplied by the magnitude of vector B (see Figure 3-14).

AdotB
6 = arccos
IIAIIIIBII)

Figure 3-14. Finding angle from dot product

You can simplify the above equation by normalizing both vectors, then taking the dot product.
The denominator becomes 1, and the angle is the arc cosine of the dot product of vector A
and vector B.

You can get the dot product directly from the vectors by multiplying each component in vector A by
the corresponding component in vector B and adding the results together. Such as

Dot Product = (Ax * Bx) + (Ay * By) + (Az * Bz)
See Listing 3-7 for the Java code to do this.

Listing 3-7. DotProduct Function

float DotProduct(Vector3 vec)

{
}

return (x * vec.x) + (y * vec.y) + (z * vec.z);

Vector Cross Product

The cross product of two vectors A and B is a third vector that is perpendicular to both A and B
(see Figure 3-15). Cross products can be used in applications such as billboarding, where you need
to find a rotation axis and know the vector that represents the front of the image and the vector that
points toward the object you want to turn toward. The cross product is calculated in code in Listing 3-8.

CHAPTER 3: 3D Math Review 67

y

(Vector A) cross (Vector B)
Y4

Vector A

Figure 3-15. Cross product

Listing 3-8. Cross Product Function

void crossProduct(Vector3 b)

{
Set((y*b.z) - (z*b.y),
(z*b.x) - (x*b.z),
} (x*b.y) - (y*b.x));

Matrices and Matrix Operations

In this section, | cover matrices and matrix operations. | first discuss the definition of a matrix. | then
cover various key topics related to matrix math and the key properties of matrices as they relate to
3D computer graphics needed to develop a 3D game on the Android mobile platform. This section is
not meant to cover every aspect of matrices but is a quick-start guide to matrices and matrix math
operations that are essential to 3D game programming.

What Is a Matrix?

Matrices are key in 3D graphics. They are used to determine properties such as the final position of
3D objects, the rotation of 3D objects, and the scaling of 3D objects. A matrix is defined in Figure 3-16.
A matrix consists of columns and rows of numbers. The general notation we will use is that of Amn.
The subscript m refers to the row number, and the n refers to the column number. For example, the
notation A23 refers to the number at row 2, column 3.

n Celumns
A11 A12 A13 Aln
A21 A22 A23 . AZn
A31 A32 A33 ... A3n
m Rows
Am1 Am2 Am3 Amn

Figure 3-16. Definition of a matrix

68 CHAPTER 3: 3D Math Review

In terms of code, we represent matrices as a float array of 16 elements. This translates to a 4-by-4
matrix; that is, a matrix that has four rows and four columns. The following declares a 4-by-4 matrix
(total 16 elements) of type float that is private to the class that it is located in:

private float[] m OrientationMatrix = new float[16];

Built-in Android Matrix Class

There is a Matrix class available in the standard Android class library that provides many matrix
functions. You can access this class by using the following import statement:

import android.opengl.Matrix;

The Identity Matrix

The identity matrix is a square matrix that has an equal number of rows and columns that contain a

1 diagonally, with the rest of the values set to 0. The identity matrix can be used to initialize or reset
the value of a matrix variable. A matrix multiplied by the identity matrix returns the original matrix.
This is the equivalent of multiplying a number by 1. For example, let’s say you have a matrix that
keeps track of an object’s rotation. In order to reset the object back to its original rotation, you would
set the matrix to the identity matrix (see Figure 3-17).

n Columns
100 ...0
010 ...0

.= 001 ..0 n Rows
000... 1
Figure 3-17. The identity matrix

In terms of code, you can set a matrix to the identity matrix, using the following statement:

//static void setIdentityM(float[] sm, int smOffset)
Matrix.setIdentityM(m OrientationMatrix, 0);

The matrix contained in the float array m_OrientationMatrix will be set to the identity matrix. There is
0 offset into the array to the start of the matrix data.

Matrix Transpose

The transpose of a matrix is created by rewriting the rows of the matrix as columns. You will have
to use the matrix transpose to calculate the value of the normal matrix, which is used in lighting
(see Figure 3-18).

CHAPTER 3: 3D Math Review

Figure 3-18. Matrix transpose

[A11 A12 A13 ... Aln |
A21 A22 A23 ... A2n
A31 A32 A33 .. A3n
A= . . .
Am1 Am2 Am3 Amn
A11| A21 A1 - Am1
A12| a22 A32 - Am2
t A13 .
A= ‘ A:23 A?a A:ms
Aln| A2n A3n - Amn

The following code statement transposes a 4-by-4 matrix m_NormalMatrixInvert and puts the result
in m_NormalMatrix. The offsets into the data of both matrices are 0.

//static void transposeM(float[] mTrans, int mTransOffset,
float[] m, int mOffset)
Matrix.transposeM(m NormalMatrix, 0, m NormalMatrixInvert, 0);

//

Matrix Multiplication

Matrix multiplication of matrix A and matrix B is done by multiplying elements in the rows of A into
the corresponding elements in the columns of B and adding the products. Matrix multiplication is
essential in translating objects, rotating objects, scaling objects, and displaying 3D objects on a 2D
screen. For example, in Figure 3-19, matrix A is being multiplied by matrix B, and the result is put

B11) + (A12
B12) + (A12
B11) + (A22

into matrix C.
C11 = (A11 *
€12 = (A11 *
21 = (A21 *
22 = (A21 *

B12) + (A22

* ¥ ¥ ¥

B21) + (A13
B22) + (A13
B21) + (A23
B22) + (A23

B31)
B32)
B31)
B32)

70 CHAPTER 3: 3D Math Review

p Columns

B11| B12
n Rows | [B21| B22
B31| B32

n Columns —

c11 C12

m Rows A21 A22 21 22 m Rows

p Columns

Figure 3-19. Matrix multiplication

In code you, use the multiplyMM() function located in the standard Android built-in Matrix class.
This function multiplies two 4-by-4 matrices together and stores the result in a third 4-by-4 matrix.
The following statement multiplies m_PositionMatrix by m RotationMatrix and puts the result in
TempMatrix. All of the array offsets to the matrix data are 0.

//static void multiplyMM(float[] result, int resultOffset,

// float[] lhs, int lhsOffset,

// float[] rhs, int rhsOffset)
Matrix.multiplyMM(TempMatrix, 0, m_PositionMatrix, 0, m RotationMatrix, 0);

Matrix Inverse

If a matrix A is n rows by n columns and there exists another matrix B that is also n rows by n
columns, such that AB = the identity matrix and BA = the identity matrix, then B is the inverse of A.
This is the definition of the matrix inverse.

In code, you can use the function invertM() to find the inverse of a 4-by-4 matrix. You will have
to use the matrix inverse to calculate the value of the normal matrix that is used for calculating the
lighting of the 3D objects. The following code inverts the m_NormalMatrix and stores the result in
m_NormalMatrixInvert.

//static boolean invertM(float[] mInv, int mInvOffset,
// float[] m, int mOffset)
Matrix.invertM(m_NormalMatrixInvert, 0, m_NormalMatrix, 0);

Homogeneous Coordinates

Homogeneous coordinates are a coordinate system used in projective geometry. They specify
points in a 3D world. Homogeneous coordinates are important because they are used in building
the matrices that are sent to the vertex shader to translate, rotate, and scale the 3D object’s vertices.
OpenGL represents all coordinates internally as 3D homogeneous coordinates. The coordinate
system we have been using previously in this chapter to specify points had Cartesian coordinates in
the Euclidean system.

CHAPTER 3: 3D Math Review 7

The general form of homogeneous coordinates is (x,y,z,w). A point in homogeneous coordinates
can be converted to normal 3D Euclidean space coordinates by dividing all the coordinates by the
w coordinate. For example, given the point in homogeneous coordinates (x,y,z,w), the point in 3D
Euclidean space is (x/w,y/w,z/w).

A point in 3D Euclidean space denoted by (x,y,z) can be represented in homogeneous space by (x,y,z,1).

We will discuss OpenGL ES 2.0 vertex and fragment shaders in more depth in Chapter 4,
“3D Graphics Using OpenGL ES 2.0.”

Using Matrices to Move Objects

Matrices can be used to do many things, such as translating objects, rotating objects, scaling
objects, and projecting a 3D object onto a 2D screen. The matrix used to move objects in the 3D
world is called the translation matrix. In Figure 3-20, the new position is calculated by converting the
old position into homogeneous coordinates, creating a matrix from this homogeneous coordinate,
and then multiplying it by the translation matrix. The values Tx, Ty, Tz indicate the amount to move
the object in the x, y, and z direction on the plane. Using matrix multiplication to find the new x, vy,
and z coordinates results in the following:

x" = x + Tx

y+Ty
z+ Tz

<
1}

N
"

0
0
1

N = = =]

1 0
v dl=fy 2 o o
T

Tx Ty Tz

Figure 3-20. Translating an object

In terms of code, we use the translateM() function to translate the input matrix in place by x, y,
and z values.

For example, the following translates the m_PositionMatrix matrix in place:

//static void translateM(float[] m, int mOffset, float x, float y, float z)
//Translates matrix m by x, y, and z in place.
Matrix.translateM(m PositionMatrix, 0, position.x, position.y, position.z);

Using Matrices to Rotate Objects

Matrices are also used to rotate 3D objects. One example of how to build a rotation matrix that
rotates around the x axis is shown in Figure 3-21.

72 CHAPTER 3: 3D Math Review

0 0
cos(8) sin (9)
-sin(8) cos(8)

0 0

Rx =

(== =R
=000

Figure 3-21. Rotation matrix

In terms of code, there is a built-in function in the Matrix class in which you can rotate a matrix in
place around an arbitrary rotation axis you specify by an angle that is specified in degrees.

The rotateM() function rotates the matrix m by angle a in degrees around the axis (x,y,z). You can
also specify and offset to where the matrix data begins.

//rotateM(float[] m, int mOffset, float a, float x, float y, float z)
//Rotates matrix m in place by angle a (in degrees) around the axis (x, y, z)
Matrix.rotateM(m_RotationMatrix, o,

AngleIncrementDegrees,

m_RotationAxis.x,

m_RotationAxis.y,

m RotationAxis.z);

Using Matrices to Scale Objects

You can also use a matrix to scale objects. The diagonal of the square 4-by-4 matrix contains the
scaling factors in the X, y, and z directions (see Figure 3-22).

coow
cowo
B
cwhwoo
200Cc0o

Figure 3-22. Scale matrix

In terms of code, the scaleM() function in the Matrix class scales a matrix in place in the x, y,
and z directions.

//static void scaleM(float[] m, int mOffset, float x, float y, float z)
//Scales matrix m in place by sx, sy, and sz
Matrix.scaleM(m ScaleMatrix, 0, Scale.x, Scale.y, Scale.z);

Combining Matrices

By multiplying matrices together, you can combine the effects of translation, rotation, and scaling on
an object. One key combination matrix we will need in order to render 3D objects in our game will be
the ModelMatrix. The ModelMatrix is a combination of the translation matrix, rotation matrix, and the
scale matrix multiplied together to form a single final matrix (see Figure 3-23).

CHAPTER 3: 3D Math Review 73

Translation Rotation Scale

Matrix Matrix Matrix
1 0 0 O 1 0 0 0 Sx 0 0 0
. _1/0 1 0 O 0 cos(8) sin(8) 0 0 sy 0 0
ModelMatrix =g o 1 g || 0 -sin(8) cos(8) 0 || 0 0 Sz 0
Tx Ty Tz 1 0 0 0 1 0o 0 o0 1

Figure 3-23. Model matrix

The important thing to understand about matrix multiplication is that the order of multiplication
matters. That is, matrix multiplication is not commutative. Thus, AB does not equal BA.

For example, if you want to rotate an object around an axis then translate it, you need to have the
rotation matrix on the right-hand side and the translation matrix on the left-hand side. In code, this
would look like the following:

// Rotates object around Axis then translates it
// public static void multiplyMM (float[] result, int resultOffset,

// float[] lhs, int lhsOffset,
// float[] rhs, int rhsOffset)
// Matrix A Matrix B

Matrix.multiplyMM(TempMatrix, 0, m PositionMatrix, 0, m RotationMatrix, 0);

The multiplyMM() function multiplies two matrices A and B. In terms of effects, the matrix B is
applied first then matrix A is applied. Thus, the above code first rotates the object around its rotation
axis and then translates it to a new position.

Thus, the ModelMatrix in Figure 3-23 is set up to first scale an object, then rotate the object around
its axis of rotation, and then translate the object.

Hands-on Example: Manipulating Objects in 3D Space

In this hands-on example, we will concentrate on manipulating a 3D object’s position, rotation, and
scaling to demonstrate the concepts of vectors and matrices covered in this chapter.

This example uses some vector functions like Negate(), presented earlier. Please make sure to
add these functions, as well as other functions you wish to experiment with, into the Vector3 class
from Chapter 2. You can also find the code for this example in the Source Code/Download area of
apress.com.

Building a 3D Object’s Model Matrix

The Orientation class holds data for a 3D object’s position, rotation, and scaling. It also calculates
the object’s model matrix, which contains the object’s position, rotation, and scaling information
(refer to the preceding Figure 3-23).

http://apress.com/

74 CHAPTER 3: 3D Math Review

The model matrix is called the m_OrientationMatrix in our code. The m_PositionMatrix is the
translation matrix; the m_RotationMatrix is our rotation matrix; and the m_ScaleMatrix is our scale
matrix. We also have a TempMatrix for use for the temporary storage of matrices.

The SetPositionMatrix() function creates the translation matrix by first initializing the matrix to
the identity matrix, by calling setIdentity() and then creating the translation matrix by calling
translateM() in the default Matrix class that is part of the standard Android library.

The SetScaleMatrix() function creates the scale matrix by first initializing the matrix to the identity
matrix and then calling scaleM() from the Matrix class library to create the scale matrix.

The UpdateOrientation() function actually builds the model matrix.
1. It first creates the translation matrix by calling SetPositionMatrix().
2. Next, SetScaleMatrix() is called to create the Scale Matrix.

3. Then, the final model matrix starts to be built by calling Matrix.multiplyMM()
to multiply the translation matrix by the rotation matrix.

4. Finally, the result matrix from step 3 is multiplied by the scale matrix and then
returned to the caller of the function. The net result is that a matrix is created
that first scales a 3D object, then rotates it around its axis of rotation, and
then finally puts it into the 3D world at a location specified by m_Position
(see Listing 3-9).

Listing 3-9. Building the Model Matrix in the Orientation Class

// Orientation Matrices

private float[] m OrientationMatrix = new float[16];
private float[] m PositionMatrix = new float[16];
private float[] m RotationMatrix = new float[16];
private float[] m ScaleMatrix = new float[16];
private float[] TempMatrix = new float[16];

// Set Orientation Matrices
void SetPositionMatrix(Vector3 position)

{
// Build Translation Matrix
Matrix.setIdentityM(m_PositionMatrix, 0);
Matrix.translateM(m PositionMatrix, 0, position.x, position.y, position.z);
}
void SetScaleMatrix(Vector3 Scale)
{

// Build Scale Matrix
Matrix.setIdentityM(m_ScaleMatrix, 0);
Matrix.scaleM(m ScaleMatrix, 0, Scale.x, Scale.y, Scale.z);

CHAPTER 3: 3D Math Review 75

float[] UpdateOrientation()

{
// Build Translation Matrix
SetPositionMatrix(m_Position);

// Build Scale Matrix
SetScaleMatrix(m_Scale);

// Then Rotate object around Axis then translate
Matrix.multiplyMM(TempMatrix, 0, m PositionMatrix, 0, m_RotationMatrix, 0);

// Scale Object first
Matrix.multiplyMM(m OrientationMatrix, 0, TempMatrix, 0, m ScaleMatrix, 0);

return m_OrientationMatrix;

Adding a Rotation to an Object

Using the “Hello Droid” project from Chapter 2, let’s play around with the code to demonstrate how
vectors and matrices work on OpenGL ES 2.0 for Android.

In the onDrawFrame() function in the MyGLRenderer class, make sure the
m_Cube.m_Orientation.AddRotation(1)

statement is uncommented. This will add a rotation of 1 degree every time onDrawFrame() is executed,
which will be continuously (see Listing 3-10).

Listing 3-10. onDrawFrame() Function in MyGLRenderer

@0verride
public void onDrawFrame(GL10 unused)

{
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLESZO.glCleaI(GLES20.GL_DEPTH_BUFFER_BIT | GLESZO.GL_COLOR_BUFFER_BIT),'

m_Camera.UpdateCamera();

m_Cube.m_Orientation.AddRotation(1);
m_Cube.DrawObject(m Camera, m PointLight);

}
The AddRotation() function is part of the Orientation class and is shown in Listing 3-11.

Listing 3-11. AddRotation() Function in the Orientation Class

void AddRotation(float AngleIncrementDegrees)
{

m_RotationAngle += AngleIncrementDegrees;

76 CHAPTER 3: 3D Math Review

//rotateM(float[] m, int mOffset, float a, float x, float y, float z)
//Rotates matrix m in place by angle a (in degrees) around the axis (x, y, z)
Matrix.rotateM(m RotationMatrix, o,

AngleIncrementDegrees,

m_RotationAxis.x,

m_RotationAxis.y,

m RotationAxis.z);

}

What occurs here is the angle for the object to be rotated is added to the m_RotationAngle variable,
which holds the current angle of rotation of the object. The rotation matrix, which is m_RotationMatrix,
is then modified to reflect the addition of the new angle delta. Run the program and you see the
cube rotating as in Figure 3-24.

B0 4:04 am
%

Figure 3-24. Cube rotating

Moving an Object in 3D Space

Now, we will guide you through moving the cube back and forth along the z axis. Because the z axis
is facing toward you, the cube will be getting larger and smaller.

First, we should stop the cube from rotating. Comment out the AddRotation() function, as shown in
Listing 3-12.

CHAPTER 3: 3D Math Review 77

Next, add in the m_CubePositionDelta variable to the MyGLRenderer class. This variable holds
the direction and magnitude of the position change that will be applied to the cube each time
onDrawFrame() is called.

The key part of the new code performs the actual position update, the testing of boundaries, and the
change in direction of the m_CubePositionDelta variable.

That code does the following:
1. Gets the current position of the cube.

2. Tests the position to see if it is within the z position 4 to —4. If the cube is
outside these boundaries, then the cube’s direction is reversed. That is, the
m_CubePositionDelta vector is negated.

3. The current position vector of the cube is added to the m_CubePositionDelta
vector and then set as the new position of the cube.

Add in this new code that is highlighted in Listing 3-10 and run the program.

Listing 3-12. Adding Code to Move the Cube Along the Z Axis

private Vector3 m_CubePositionDelta = new Vector3(0.0f,0,0.1f);

@0verride

public void onDrawFrame(GL10 unused)

{
GLES20.glClearColor(0.0f, o.0f, 0.0f, 1.0f);
GLES20.glClear(GLES20.GL _DEPTH BUFFER_BIT | GLESZO.GL_COLOR_BUFFER_BIT);
m_Camera.UpdateCamera();

// Add Rotation to Cube
//m_Cube.m_Orientation.AddRotation(1);

// Add Translation to Cube
Vector3 Position = m_Cube.m_Orientation.GetPosition();
if ((Position.z » 4) || (Position.z < -3))

{
}

Vector3 NewPosition = Vector3.Add(Position, m_CubePositionDelta);
Position.Set(NewPosition.x, NewPosition.y, NewPosition.z);

m_CubePositionDelta.Negate();

m_Cube.DrawObject(m Camera, m PointLight);
}

You should see the android image moving toward and away from you in a loop (see Figure 3-25).

78 CHAPTER 3: 3D Math Review

B0 B @ 2:20em
Toworia

Figure 3-25. Translating an object on z axis

Scaling an Object

Here | will cover scaling objects. First add the following statement under the entry for the
m_CubePositionDelta variable that you added previously.

private Vector3 m CubeScale = new Vector3(4,1,1);

The m_CubeScale variable represents the amount to scale the object in the x, y, and z directions. In this
example, the cube scales by four times the normal size in the local x axis direction and scales by the
normal size, which is 1, in the y and z directions.

The following statement sets the scale for the cube. Type this into the onDrawFrame() function after
the previous code you have added.

// Set Scale
m_Cube.m Orientation.SetScale(m CubeScale);

Run the program, and you should see what is in Figure 3-26.

CHAPTER 3: 3D Math Review 79

B0 B @ 4:04pm

Figure 3-26. Scaling in the x direction

Experiment with the code. | made some modifications that change the background color as well as
the direction of the translation (to move diagonally back and forth) and scaling (see Figure 3-27).

&g @ a:495m

Figure 3-27. Experimenting with the code

See if you can replicate these changes.

80 CHAPTER 3: 3D Math Review

Summary

In this chapter, | covered the basics of 3D math relating to vectors and matrices. | first covered
vectors and the operations relating to vectors, such as addition, multiplication, dot products, and
cross products. Next, | covered matrices and the operations involving matrices, such as matrix
multiplication, that are essential to 3D game programming. Finally, | presented a hands-on example
that demonstrated the practical use of vectors and matrices in translating, rotating, and scaling a
3D object.

Chapter

3D Graphics Using OpenGL ES 2.0

In this chapter, we will take a look at 3D graphics for OpenGL ES 2.0 for Android. | first give you a
general overview of how OpenGL renders 3D objects. Next, | go into more detail on how this is done,
using matrix math, matrix transformations, and vertex and fragment shaders. | then offer a look at
the shader language used for the vertex and fragment shaders and give you a quick review of the
language and some examples.

Next, | cover the custom classes that demonstrate OpenGL ES 2.0 concepts that are essential to
rendering 3D graphics, which are the

Shader class
Camera class
MeshEx class
PointLight class
Materials class

Texture class

Overview of OpenGL ES 2.0 on Android

In this section, | first cover the general concepts behind rendering 3D objects in OpenGL. Then | get
into more specifics, involving the exact steps required to transform a 3D object from our 3D virtual
world to a 2D image on a flat screen.

81

82 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

General Overview of OpenGL Object Rendering

The general procedure to render a 3D object in OpenGL is discussed in this section. The following
general steps are used to render a 3D object in OpenGL to the final viewing window.

1. Put 3D objects in the world: Place the 3D objects you are going to use in the
3D world (see Figure 4-1).

Ay

-4 z

| 3D Object Models

T o [
<+ttt tt+t+t+t+++>

T X

7 1
Y

Figure 4-1. Putting 3D objects into the world

2. Place camera into the world: Place the viewer, which you can think of as a
camera or as a human eye, into the 3D world (see Figure 4-2).

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 83

Figure 4-2. Placing the camera or viewer into the world

3. Project the 3D view onto a 2D surface using a specific camera lens: For the
examples in this book, we use a frustrum, in which objects that are farther
away are smaller than objects that are closer to the viewer. A frustrum is
basically a pyramid with the top capstone cut off (see the section entitled
“Building the Projection Matrix” later in this chapter for a more detailed
description). The frustrum also defines which objects are included in the final
view. In Figure 4-3, only the pyramid is included in the final view, because it is
the only object included in the frustrum volume.

84 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

1 Frustrum

—1_ Eyeor Camera

Figure 4-3. Using a frustrum to project the 3D view onto a 2D surface

4. Transfer the projected view onto the final viewport for viewing: Take the 2D
image generated from the projection shown in Figure 4-3 and resize it to fit
the final viewport (see Figure 4-4).

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 85

Viewport

\
O

—1_ Eyeor Camera

Figure 4-4. Viewport transformation

Specific Overview of the Rendering Procedure

Let’s discuss in greater detail how a 3D object is rendered onscreen using OpenGL ES 2.0
specifically. Matrix transformations and vertex and fragment shaders are covered.

Transforming the 3D Object’s Vertices

In this section, | will discuss in detail how to put a 3D object on the screen. In order to put a 3D
object onscreen, we must transform each of the object’s vertex coordinates, taking into account
the object’s position in the world, the camera position and orientation, the projection type, and the
viewport specifications (see Figure 4-5). Remember that the coordinates are in (x,y,z) format but are
internally represented in homogeneous vertex format, which is (x,y,z,1). This is why 4-by-4 matrices
are needed to transform a vertex in OpenGL.

86 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

3d Object With Vertex
Coordinates In (x, y, z,w)
Format

Vertex

Local Object Coordinates Vertex

!

Model Matrix
Transformation

Vertex Coordinate is
Translated, Rotated
and Scaled

World Coordinates

(_

View Matrix
Transformation

Vertex Coordinate is
Adjusted With Respect To The
Camera’s Position and Rotation

Eye Coordinates

<

Projection Matrix
Transformation

3D Vertex Coordinate is
Projected Onto a 2D Screen

Clipping Coordinates

<

Viewport
Transformation

Final 2D Image is Stretched
To Fit Into The Viewing
Window

Windows Coordinate

<_

Figure 4-5. Vertex transformation procedure

Building the Model Matrix

The first thing that you need to build is the model matrix that puts the 3D object into the 3D world;
that is, transform the model from local object coordinates that originally define the object into world
coordinates. You do this by setting up translation, rotation, and scaling matrices and then multiplying
them with the original vertex in object coordinates. This translates the object to where you want to
put it in the world. It also rotates and scales the matrix if you so desire.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 87

As mentioned previously in Chapter 3, the order of multiplication of matrices is key. Matrix
multiplication is not commutative, and the order of multiplication does matter. For example, let’s say
we want to rotate the object first, then translate it along the x axis, as shown in Figure 4-6.

)

Initial Position

®

Rotate Around Fixed
Coordinate System

Translate

Figure 4-6. Rotate then translate object

The model matrix for this would be of the form as in Figure 4-7.

. Translation Rotation
ModelMatrix = | matrix Matrix

Figure 4-7. Model matrix form for rotating then translating an object

88 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Note that the order of multiplication in which the rotation matrix is applied first to the object’s
vertices then the translation matrix is applied.

Take another example where you want to translate then rotate the object around an axis (see Figure 4-8).

@

Initial Position

Translate

Rotate Around Fixed - ‘
Coordiante System K

Figure 4-8. Object is translated and then rotated around the rotation axis

The general format for the model matrix for this situation is shown in Figure 4-9.

- Rotation Translation
ModelMatrix Matrix Matrix

Figure 4-9. Model matrix for object that is translated then rotated

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 89

Building the View Matrix

By default, the camera view for OpenGL is located at the origin, with the lens pointed down the
negative z axis. The camera can be moved and rotated anywhere in the 3D world. What this actually
means is that the camera is stationary, but the object vertices are translated and rotated to simulate
the movement of the camera. The matrix that does this is called the view matrix. The resulting
coordinates are called the eye coordinates.

There is an easy way to do this in Android, and that is by using the Matrix.setLookAtM() function,
which generates a view matrix based on the camera or eye position; center of the camera, where the
view is focused; and the up direction of the camera. The Camera class represents our camera, and
Figure 4-10 shows the up, center, and right vectors that specify the camera’s orientation.

T Up Vector

Right Vector &
<«
N

Center Vector

Figure 4-10. Camera or eye

Listing 4-1 shows in code how the view matrix is created in our Camera class in the SetCameraView()
function.

Listing 4-1. Setting the View Matrix in the Camera Class

void SetCameraView(Vector3 Eye,
Vector3 Center,
Vector3 Up)

{
// Create Matrix
Matrix.setLookAtM(m ViewMatrix,o,
Eye.x, Eye.y, Eye.z,
Center.x, Center.y, Center.z,
} Up.x, Up.y, Up.z);

Building the Projection Matrix

The projection matrix transforms the 3D object vertices onto a 2D viewing surface. For 3D game
programming, we need to use the frustrum to project a 3D image onto a 2D surface. As noted
previously, a frustrum is a viewing area similar in shape to a pyramid with the top capstone cut off.
It is defined by six clip planes, which are named top, bottom, right, left, near, and far, as indicated

in Figure 4-11. By using a frustrum, objects that are closer to the viewer are larger than objects that
are farther away. A frustrum also limits the viewing area to the area within the frustrum and excludes
vertices outside of the frustrum. The vertices are transformed from world coordinates into clip
coordinates.

90 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Top

Left

Eye or Camera

Figure 4-11. The projection frustrum

In terms of code, the function SetCameraProjection() in the Camera class creates the projection
matrix and puts it in the m_ProjectionMatrix variable. See Listing 4-2.

Listing 4-2. Building the Projection Matrix in the Camera Class

void SetCameraProjection(float Projleft,
float Projright,
float Projbottom,
float Projtop,
float Projnear,
float Projfar)

{
m_Projleft = Projleft;
m_Projright = Projright;
m_Projbottom = Projbottom;
m_Projtop = Projtop;
m_Projnear = Projnear;
m_Projfar = Projfar;
Matrix.frustumM(m_ProjectionMatrix, 0,
m_Projleft, m Projright,
m_Projbottom, m_Projtop,
m_Projnear, m_Projfar);
}
Setting the Viewport

The viewport transformation maps the 2D image generated from the projection matrix to the actual
viewing window. It stretches the image horizontally or vertically to make it fit into the viewport. The
glviewport() function sets the viewport specifications. It is located in the onSurfacedChanged()

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 91

function in the Renderer class. In our example from Chapter 3, that would be the MyGLRenderer
class. On Android, the exact statement to set the final viewport specifications is as follows:

GLES20.g1Viewport(0, 0, width, height);

The first two parameters specify the lower left coordinates of the viewport. The next two parameters
specify the width and the height of the viewport.

Sending the Matrices and Lighting Information to the Vertex and
Fragment Shaders

Next, you have to actually send the matrices to the vertex and fragment shaders that OpenGL ES 2.0
uses to render 3D objects.

Vertex shaders place the object’s vertices into the 3D world using the model, view, and projection
matrix transforms that were mentioned in the preceding few sections. They also can determine the
diffuse and specular lighting at a vertex and pass this information along to the fragment shader.

Fragment or pixel shaders actually determine the final color at the vertex. In the fragment shader,
the texture, lighting, and material properties of the object all can provide input as to the final color.
The color of the entire object can then be interpolated from these vertex colors.

In our code framework, both vertex and fragment shaders are represented in the Shader class.

Within the Shader class, the GLES20.glUniformXXXX() series of functions actually are responsible for
sending the matrix, lighting, and material property data to the vertex and fragment shaders.

| discuss lighting and materials later in this chapter.

Rendering the Scene

Next, we have to actually render the scene. We render the scene in the onDrawFrame() function in our
Renderer class MyGLRenderer. The code statement that actually does the rendering is

m_Cube.DrawObject(m Camera, m PointLight);

DrawObject() is located in the Object3d class and takes two parameters as input: the camera and
the point light that is used to illuminate the scene.

Later in this chapter, | will go into more detail as to the OpenGL specific functions that draw an object.

Overview of the OpenGL ES 2.0 Shading Language

This section lists the basics of the shader language used for vertex and pixel shaders in OpenGL ES
2.0. It is not meant to be a full reference guide to every aspect of the language but a quick overview.
The purpose of this section is to familiarize you with the fundamentals of the language. If you wish to
learn more details about the shader language, see the web site at www.khronos.org/registry/gles/.

http://www.khronos.org/registry/gles/

92 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Basic Data Types

The basic data types for the OpenGL ES 2.0 shader language are:
void: No function return value
bool: Boolean
int: Signed integer
float: Floating scalar
vec2, vec3, vec4: 2, 3, and 4 component floating-point vector
bvec2, bvec3, bvec4: 2, 3, and 4 component Boolean vector
ivec2, ivec3, ivec4: 2, 3, and 4 component signed integer vector
mat2, mat3, mat4: 2-by-2, 3-by-3, and 4-by-4 float matrices
sampler2D: Used to represent and access a 2D texture
samplerCube: Used to represent and access a cube mapped texture

float floatarray[3]: One-dimensional arrays; can be of types such as floats, vectors,
and integers

Vector Components

In the vertex and fragment shader language, you can refer to vector components in different ways.
For example, you can address components in a vec4 type in the following ways:

{x, y, z, w}: You can use this representation when accessing vectors that
represent points or normals.

vec3 position;
position.x = 1.0f;

{r, g, b, a}: You can use this representation when accessing vectors that
represent colors.

vec4 color;
color.r = 1.0f;

{s, t, p, g} You can use this representation when accessing vectors that
represent texture coordinates.

vec2 texcoord;
texcoord.s = 1.0f;

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Operators and Expressions

Some of the important operators involved in statements and expressions in the vertex and
fragment shader language are specified in the following list. The operators are basically similar to
corresponding operators in the Java and C++ languages.

++ Increment operator

-- Decrement operator

+ Addition operator
- Subtraction operator
! Not operator

* Multiply operator

/ Divide by operator

< Less than relational operator

> Greater than relational operator

<= Less than or equal to relational operator
>= Greater than or equal to relational operator

== Conditional equals operator

I= Not equal to conditional operator
&& Logical and operator

an Logical exclusive or operator

1 Logical inclusive or operator

= Assignment operator

+= Addition and assignment operator
-= Subtraction and assignment operator
*= Multiplication and assignment operator

/= Division and assignment operator

94 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Program Flow Control Statements
The important program flow control statements for the OpenGL ES 2.0 shader language follow.

for loop: To use a for loop, initialize the counter value before starting the loop;
execute the loop, if the expression evaluates to true; at the end of the loop, update
the counter value; and repeat the loop, if the expression in the for loop evaluates
to true.

for(Initial counter value;
Expression to be evaluated;
Counter increment/decrement value)

{
}

// Statements to be executed.

while loop: Execute the statements in the while loop, as long as the expression to
be evaluated is true.

while(Expression to evaluate)

{

// Statement to be executed

}

if statement: If the expression evaluates to true, then the statements within the if
block are executed.

if (Expression to evaluate)

{
}

// Statements to execute
if else statement: Execute the statements in the if block; if expression evaluates
to true else, execute the statements in the else block.
if (Expression to evaluate)

{

// Statement to execute if expression is true

// Statement to execute if expression is false

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 95

Storage Qualifiers

Storage qualifiers indicate how variables will be used in the shader program. From this information,
the compiler can more efficiently process and store the shader variables.

Const: The const qualifier specifies a compile time constant or a read-only function
parameter.

Const int NumberLights = 3;

Attribute: The attribute qualifier specifies a linkage between a vertex shader and
the main OpenGL ES 2.0 program for per-vertex data. Some examples of the types
of variables where the attribute qualifier can be used are vertex position, vertex
textures, and vertex normal.

attribute vec3 aPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;

Uniform: The uniform qualifier specifies that the value does not change across the
primitive being processed. Uniform variables form the linkage between a vertex

or fragment shader and the main OpenGL ES 2.0 application. Some examples

of variables where the uniform qualifier would be appropriate are lighting values,
material values, and matrices.

uniform vec3 ulLightAmbient;
uniform vec3 ulightDiffuse;
uniform vec3 ulightSpecular;

Varying: The varying qualifier specifies a variable that occurs both in the vertex
shader and fragment shader. This creates the linkage between a vertex shader and
fragment shader for interpolated data. These are usually values for the diffuse and
the specular lighting that will be passed from the vertex shader to the fragment
shader. Texture coordinates, if present, are also varying. The values of the diffuse and
specular lighting, as well as textures, are interpolated or “varying” across the object
the shader is rendering. Some examples of varying variables are the vertex texture
coordinate, the diffuse color of the vertex, and the specular color of the vertex.

varying vec2 vTextureCoord;
varying float vDiffuse;
varying float vSpecular;

96 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Reserved Variables

The main important reserved variable names within the OpenGL ES 2.0 shader language that we will
be using in this book are specified in the following list.

vec4 gl_Position: Reserved variable within the vertex shader that holds the final
transformed vertex to be displayed on the screen

vec4 gl_FragColor: Reserved variable within the fragment shader that holds the
color of the vertex that has just been processed by the vertex shader

Built-in Functions

This list provides some of the important built-in functions in the shading language.
float radians(float degrees): Converts degrees to radians and returns radians
float degrees(float radians): Converts radians to degrees and returns degrees
float sin(float angle): Returns the sine of an angle measured in radians
float cos(float angle): Returns the cosine of an angle measured in radians
float tan(float angle): Returns the tangent of an angle measured in radians
float asin(float x): Returns the angle whose sine is x
float acos(float x): Returns the angle whose cosine is x

float atan(float y, float x): Returns the angle whose tangent is specified by the
slope y/x

float atan(float slope): Returns the angle whose tangent is slope
float abs(float x): Returns the absolute value of x
float length(vec3 x): Returns the length of vector x

float distance(vec3 point0, vec3 point1): Returns the distance between point0
and point1

float dot(vec3 x, vec3 y): Returns the dot product between two vectors x and y
vec3 cross(vec3 x, vec3 y): Returns the cross product of two vectors x and y
vec3 normalize(vec3 x): Normalizes the vector to a length of 1 and then returns it
float pow(float x, float y): Calculates x to the power of y and return it

float min(float x, float y): Returns the minimum value between x and y

float max(float x, float y): Returns the maximum value between x and y

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 97

Overview of Vertex Shaders

In OpenGL ES 2.0, vertex shaders and fragment shaders are required to render 3D objects. The
general purpose of the vertex shader is to position vertices in the 3D world and to determine vertex
properties such as diffuse and specular lighting at that vertex. A simple vertex shader example is
given in Listing 4-3.

Listing 4-3. Simple Vertex Shader

// Vertex Shader
uniform mat4 uMVPMatrix;
attribute vec3 aPosition;

uniform vec3 vColor;
varying vec3 Color;

void main()

{
gl Position = uMVPMatrix * vec4(aPosition,1);
Color = vColor;

}

The variable uMVPMatrix holds the 4-by-4 ModelViewProjection matrix that will be used to transform
the vertex. The ModelViewProjection matrix is simply the multiplication of the model matrix, the view
matrix, and the projection matrix into one single matrix. The uniform qualifier is used, because this
matrix does not change when the object is rendered. That is, that same matrix is used for all the
vertices on the object being rendered.

The aPosition variable is a vector that holds the (x,y,z) position of the vertex of the object in its initial
local object coordinates. The attribute qualifier indicates that this variable will receive input from the
main OpenGL ES 2.0 application. This is how a vertex shader program is sent vertex data.

The vColor variable is a vector that holds the (r,g,b) input color values of the object to be rendered.

The vColor is copied into the Color variable and is sent to the fragment shader for processing.
Variables that are linked to the fragment shader must be declared varying.

The main code itself is located within a main() block. The gl Position variable is a reserved variable
that transforms the vertex by multiplying its position by the uMVPMatrix (ModelViewProjection
Matrix). This produces the projection of the 3D vertex on a 2D surface and puts the vertex in

clip coordinates. Also, note how a vec3 is converted to a vec4 by using the vec4(aPosition,1)
constructor.

A Complex Vertex Shader

The preceding vertex example shader is very simple. A more complex vertex shader is shown in
Figure 4-12.

98 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Matrices Vertex Point Light Viewer
Model Matrix Position t‘i’ﬂ’]'tds'-l:?n“&:;’:""’“ Eye Position
View Matrix Texture Coordiante 9
ModelView Matrix Normal
*ModelViewProjection Matrix / @
\/,

3455 ~0O'—

6631 e I

4588

1245

Vertex Shader

To Fragment Shader

Texture Coordinate
Diffuse Lighting for Vertex
Specular Lighting for Vertex

Figure 4-12. Complex vertex shader

The vertex data being sent to the vertex shader now includes the texture coordinates and the vertex
normals, as well as the vertex position.

There is also new data in the form of lighting. The world position of the light and the light’s shininess are
input to the vertex shader. The location of the viewer or eye position is also input to the vertex shader.

The lighting and viewer information is used to determine the diffuse and specular colors at each vertex.

The output to the fragment shader includes the texture coordinate, the diffuse and specular lighting
for the vertex. | will discuss lighting, including the vertex and fragment shaders that are needed to
perform this lighting, later in this chapter.

Finally, in this book, we store the actual individual vertex and fragment shaders files in the res/raw
directory.

Overview of Fragment or Pixel Shaders

Fragment shaders are used to determine the color of the pixels on the screen of a rendered 3D
object. Listing 4-4 outputs the color passed in from the vertex shader in the previous section through
the varying vector variable Color.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 99

Listing 4-4. Simple Fragment Shader

// Fragment Shader
varying vec3 Color;

void main()

{
}

gl FragColor = vec4(Color,1);

The gl _FragColor variable is a reserved variable that outputs the actual color of the fragment.

An example of a more complex fragment shader is shown graphically in Figure 4-13. Here a texture,
texture coordinate, diffuse lighting, specular lighting, a light source, and an object material all
contribute to the final color of the object being rendered. | discuss these subjects in more detail later
in this chapter.

From Vertex Shader Light Material
Texture - .
Texture Coordinate Ambient Emissive
Diffuse Lighting for Vertex Diffuse Ambient
Specular Lighting for Vertex Specular Diffuse
\\ / / Specular

g

\\\\\

Fragment Shader

Color (gl_FragColor)

Figure 4-13. Complex fragment shader

Overview of the Shader Class

The Shader class holds the vertex and fragment shaders, as well as functions that are used to send
data from the main application to the shader programs (see Figure 4-14).

100 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Shader Program

Vertex Shader Pixel Shader

Figure 4-14. Shader program overview

The Shader class holds a handle to the fragment shader in m_FragmentShader. The handle to the
vertex shader is in m_VertexShader. The handle to the main shader program that the vertex shader
and fragment or pixel shader is attached to is m_ShaderProgram. Finally, the m_Context holds a
reference to the activity that this shader object belongs to (see Listing 4-5). These variables are

all private and cannot be accessed outside the class. Only class member functions may access
these variables.

Listing 4-5. Shader Class Data

private Context m_Context;

private int m_FragmentShader;
private int m_VertexShader;
private int m_ShaderProgram;

The Shader class’s constructor initializes the vertex, fragment, and main shader program handles to
0. It also takes as input the vertex and fragment shader resource ids that represent the actual shader
source text files. It then calls the InitShaderProgram() function with these shader resource ids

(see Listing 4-6).

Listing 4-6. Shader Class Constructor

public Shader(Context context, int VSResourceld, int FSResourceld)
{

// Shader Variables

m_FragmentShader = 0;

m_VertexShader 0;

m_ShaderProgram 0;

m_Context = context;
InitShaderProgram(VSResourceId, FSResourceld);

}

The InitShaderProgram() function receives the vertex and fragment shader resource ids and creates
the actual main shader program.

First, the main shader program is created through the GLES20.glCreateProgram() function.

Next, InitVertexShader() is called to create the vertex shader, and InitFragmentShader() is called
to create the fragment shader.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 101

After both shaders are created, they are linked using the GLES20.glLinkProgram(m_ShaderProgram)
statement (see Listing 4-7).

Listing 4-7. InitShaderProgram Function

void InitShaderProgram(int VSResourceld, int FSResourceld)

{
m_ShaderProgram = GLES20.glCreateProgram();

InitVertexShader (VSResourceld);
InitFragmentShader(FSResourceld);
GLES20.glLinkProgram(m_ShaderProgram);

String DebugInfo = GLES20.glGetProgramInfolLog(m ShaderProgram);
Log.d("DEBUG - SHADER LINK INFO ", DebugInfo);

}

Finally, the log file for the link operation is retrieved and displayed by calling glGetProgramInfolog()
to get the log information and then displaying it to the Android Log window through the Log()
statement.

Note The GLES20 prefix indicates that the function is from the standard implementation of the OpenGL
ES 2.0 specification for Android.

The InitVertexShader() function is called from the InitShaderProgram() function in Listing 4-7.
The vertex shader source code is read into a temporary string buffer called tempBuffer.

An empty vertex shader is then created using the glCreateShader() function.

Next, the tempBuffer that holds the source code is associated with the vertex shader using the
glShaderSource() function.

Then, the vertex shader itself is compiled using the glCompileShader () function.

Next, the compile error status is checked by calling the glGetShaderiv() function. If there is no error,
the vertex shader is attached to the main shader program (see Listing 4-8).

Listing 4-8. InitVertexShader() Function

void InitVertexShader(int Resourceld)

{

StringBuffer tempBuffer = ReadInShader(Resourceld);

m_VertexShader= GLES20.glCreateShader (GLES20.GL_VERTEX_SHADER);
GLES20.glShaderSource(m VertexShader,tempBuffer.toString());
GLES20.glCompileShader(m VertexShader);

102

}

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

IntBuffer CompileErrorStatus = IntBuffer.allocate(1);

GLES20.glGetShaderiv(m_VertexShader,
GLES20.GL_COMPILE_STATUS,
CompileErrorStatus);

if (CompileErrorStatus.get(0) == 0)

Log.e("ERROR - VERTEX SHADER ",
"Could not compile Vertex shader!! " +
String.valueOf(Resourceld));
Log.e("ERROR - VERTEX SHADER ",
GLES20.glGetShaderInfolLog(m VertexShader));
GLES20.glDeleteShader(m VertexShader);
m_VertexShader = 0;

}
else
{
GLES20.glAttachShader (m_ShaderProgram,m VertexShader);
Log.d("DEBUG - VERTEX SHADER ATTACHED ", "In InitVertexShader()");
}

The InitFragmentShader() function is called from the InitShaderProgram(), shown in Listing 4-7.

First the fragment shader source code is read in and stored in the tempBuffer string buffer.

Then, an empty fragment shader is created. The source code in the tempBuffer variable is then
linked to the fragment shader that was just created. Next, the shader is compiled then attached to
the main shader program, if there are no errors (see Listing 4-9).

Listing 4-9. InitFragmentShader() Function

void InitFragmentShader(int Resourceld)

{

StringBuffer tempBuffer = ReadInShader(Resourceld);

m_FragmentShader= GLES20.glCreateShader(GLES20.GL_FRAGMENT SHADER);
GLES20.glShaderSource(m FragmentShader,tempBuffer.toString());
GLES20.glCompileShader(m FragmentShader);

IntBuffer CompileErrorStatus = IntBuffer.allocate(1);

GLES20.glGetShaderiv(m_FragmentShader,
GLES20.GL_COMPILE_STATUS,
CompileErrorStatus);

if (CompileErrorStatus.get(0) == 0)

Log.e("ERROR - FRAGMENT SHADER ",
"Could not compile Fragment shader file = " +
String.valueOf(Resourceld));
Log.e("ERROR - FRAGMENT SHADER ",
GLES20.glGetShaderInfolLog(m_FragmentShader));
GLES20.glDeleteShader (m_FragmentShader);
m_FragmentShader = 0;

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

}

else
{
GLES20.glAttachShader(m_ShaderProgram,m FragmentShader);
Log.d("DEBUG - FRAGMENT SHADER ATTACHED ",
"In InitFragmentShader()");
}

The ReadInShader () function is called by the InitFragmentShader() and InitVertexShader()
functions (see Listing 4-10).

Listing 4-10. ReadInShader() Function

StringBuffer ReadInShader(int Resourceld)

{

}

StringBuffer TempBuffer = new StringBuffer();
InputStream inputStream = m_Context.getResources().openRawResource(Resourceld);
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));

try
{
String read = in.readLine();
while (read != null)
{
TempBuffer.append(read + "\n");
read = in.readlLine();
}
}

catch (Exception e)

//Send a ERROR log message and log the exception.
Log.e("ERROR - SHADER READ ERROR",
"Error in ReadInShader(): " +
e.getlocalizedMessage());
}

return TempBuffer;

First, a new string buffer object is created, called TempBuffer.

Next, a new InputStream object is created from the shader source file, using the file’s resource

id. This input stream is then used to create an InputStreamReader, which is then used to create a

BufferedReader object called “in.” The in object is then used to read in the shader source code
line by line, and each line is added to the TempBuffer string buffer that was created first. If any error
occurs, an error message is printed out in the Android LogCat window within the Eclipse IDE.

Finally, the shader source code is returned in a StringBuffer object.

The imports that bring BufferedReader, InputStreamReader, and InputStream into the current
namespace are as follows:

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;

103

104 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Note These classes are standard in the Android development library, and you can learn more about them on
the official Android web site at http://developer.android.com.

Once the shader has been successfully created, it is activated just before use by calling the
ActivateShader() function (see Listing 4-11). This is actually a wrapper function that just calls the
glUseProgram() function, which is a standard OpenGL 2.0 call. Again, note that the GLES20 prefix
denotes standard OpenGL 2.0 calls located in the standard Android library.

Listing 4-11. Activating the Shader

void ActivateShader()

{
}

GLES20.glUseProgram(m_ShaderProgram);

You can also call DeActivateShader() to deactivate a shader from functioning. This function calls
the glUseProgram() function with an input of 0 to indicate that no shader program should be used in
rendering an object. This will set the rendering pipeline to the fixed rendering pipeline of OpenGL
ES 1.0. (see Listing 4-12).

Listing 4-12. Deactivating the Shader

void DeActivateShader()

{
}

GLES20.glUseProgram(0);

The function GetShaderVertexAttributeVariableLocation() shown in Listing 4-13 is used to retrieve
the location of user-defined vertex shader variables, such as those used for the vertex position,
texture coordinates, and normals. These locations will be tied to the actual vertex data streams
through the glVertexAttribPointer() function. | will discuss this function that is used to draw 3D
meshes later. This function calls the standard OpenGL ES 2.0 function glGetAttribLocation().

Listing 4-13. Get Vertex Attribute Variable Location

int GetShaderVertexAttributeVariablelocation(String variable)
{

}

return (GLES20.glGetAttribLocation(m_ShaderProgram, variable));

To set a uniform variable in a vertex or fragment shader, you can use the glUniformXXX series of
functions included in the standard GLES20 library. First, you would get the uniform variable location
index with the glGetUniformLocation() function, and then set it using the gluniformXXX() function
specific to the type of variable you want to set.

http://developer.android.com/

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 105

For example, in Listing 4-14 a uniform variable that has a value of type float is set using the
glUniform1f() function.

Listing 4-14. Setting a Float Uniform Shader Variable

void SetShaderUniformVariableValue(String variable, float value)

{

int loc = GLES20.glGetUniformLocation(m_ShaderProgram,variable);
GLES20.glUniformif(loc, value);

}

The SetShaderUniformVariableValue() function in Listing 4-15 that follows sets a uniform shader
vec3 variable, taking as input a Vector3 object and using a gluniform3f() function to set the actual
shader variable. As before, the glGetUniformLocation() function gets the index of the desired
variable from the shader program.

Listing 4-15. Setting a Vector3 Uniform Shader Variable Using a Vector3 Object

void SetShaderUniformVariableValue(String variable, Vector3 value)

{

int loc = GLES20.glGetUniformLocation(m_ShaderProgram,variable);
GLES20.glUniform3f(loc, value.x, value.y, value.z);

}

The following SetShaderUniformvariableValue() function in Listing 4-16 sets a vec3 shader variable,
taking as input a float array. The function sets the vec3 shader variable using the first three values of
the float array.

Listing 4-16. Setting a vec3 Uniform Shader Variable Using a Float Array

void SetShaderUniformVariableValue(String variable, float[] value)
{

int loc = GLES20.glGetUniformLocation(m_ShaderProgram,variable);
GLES20.gluniform3f(loc, value[0], value[1], value[2]);
}

Function SetShaderVariableValueFloatMatrix4Array() in Listing 4-17 sets a uniform 4-by-4 matrix
shader variable or array. The following code sets a mat4 shader variable called uModelViewMatrix to
the data from the float array ModelViewMatrix. The count variable is set to 1, because there is only
one 4-by-4 matrix. Transpose is set to false, to indicate that the default OpenGL matrix format will be
used. Offset is the offset into ModelViewMatrix, where the matrix data starts.

m_Shader.SetShaderVariableValueFloatMatrix4Array("uModelViewMatrix", 1, false, ModelViewMatrix, 0);

Listing 4-17. Setting a Uniform Mat4 Shader Variable

void SetShaderVariableValueFloatMatrix4Array(String variable,
int count,
boolean transpose,
float[] value,
int offset)

106 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

{
int loc = GLES20.glGetUniformLocation(m_ShaderProgram,variable);
GLES20.glUniformMatrix4fv (loc, count, transpose, value, offset);
}
The Camera

The camera that provides our view into the 3D world is represented by the Camera class and was
previously illustrated in Figure 4-10.

The camera’s position and raw orientation are held in the variable m_Orientation, which is an object
of the Orientation class. The final camera position is held in m_Eye. The final look at the point where

the camera is pointing at is held in m_Center. The final up vector that denotes the top of the camera
is held in m_Up (see Listing 4-18).

Listing 4-18. Camera Orientation

// Camera Location and Orientation

private Vector3 m Eye = new Vector3(0,0,0);
private Vector3 m Center= new Vector3(0,0,0);
private Vector3 m Up = new Vector3(0,0,0);
private Orientation m Orientation = null;

The viewing frustrum data for the camera is defined by six clipping planes, indicated in Listing 4-19.

Listing 4-19. Viewing Frustrum Variables

// Viewing Frustrum
private float m_Projleft
private float m_Projright
private float m_Projbottom
private float m_Projtop
private float m_Projnear
private float m_Projfar

o
-

-

-

)

I
O O O O OO
T e e e

)

The key variables for this Camera class are the matrices that hold the camera’s projection matrix and
the camera’s view matrix. These are 4-by-4 matrices of type float, allocated as a one-dimensional
array of 16 elements (4 times 4 elements in the matrix;. see Listing 4-20). Remember: These are two
of the key matrices that you need to transform an object’s vertex, so that it can be displayed on

the screen.

Listing 4-20. The Camera’s Matrices

private float[] m_ProjectionMatrix = new float[16];
private float[] m ViewMatrix new float[16];

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

107

The Camera class’s constructor is shown in Listing 4-21. The constructor initializes the camera with
the input parameters and performs the following functions:

Creates a new Orientation class object called m_Orientation.

Sets the camera projection frustrum using the user specified input parameters

Projleft, Projright, Projbottom, Projtop, Projnear, and Projfar.

Sets the camera’s local coordinate axis and position. Sets the forward local axis
(z axis), up local axis (y axis), and the right local axis (x axis). The right local axis

is calculated from the cross product of the Center and Up vectors.

Listing 4-21. The Camera Class’s Constructor

Camera(Context context,

}

Vector3 Eye, Vector3 Center, Vector3 Up,
float Projleft, float Projright,

float Projbottom, float Projtop,

float Projnear, float Projfar)

m Orientation = new Orientation(context);

// Set Camera Projection
SetCameraProjection(Projleft, Projright, Projbottom, Projtop, Projnear,

// Set Orientation

m Orientation.GetForward().Set(Center.x, Center.y, Center.z);
m Orientation.GetUp().Set(Up.x, Up.y, Up.z);

m Orientation.GetPosition().Set(Eye.x, Eye.y, Eye.z);

// Calculate Right Local Vector

Vector3 CameraRight = Vector3.CrossProduct(Center, Up);
CameraRight.Normalize();

m Orientation.SetRight(CameraRight);

Projfar);

The SetCameraProjection() function actually sets the projection matrix, using the Matrix.

frustumM() function to generate the matrix, and puts it in m_ProjectionMatrix (see Listing 4-22).

Listing 4-22. Setting the Camera Frustrum

void SetCameraProjection(float Projleft,

float Projright,
float Projbottom,
float Projtop,
float Projnear,
float Projfar)

m_Projleft = Projleft;
m_Projright = Projright;
m_Projbottom = Projbottom;
m_Projtop = Projtop;
m_Projnear = Projnear;

108 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

m_Projfar = Projfar;

Matrix.frustumM(m_ProjectionMatrix, o,
m_Projleft, m _Projright,
m_Projbottom, m_Projtop,
m_Projnear, m_Projfar);

}

The function to actually create and set the camera’s view matrix is the SetCameraView() function
(see Listing 4-23). The function calls the setLookAtM() function, which is part of the standard
Android Matrix class, to create the actual matrix that is put into m_ViewMatrix. The function takes
as parameters the location of the camera or eye, the center or focus point of the camera, and the
vector that points in the up direction with respect to the camera.

Listing 4-23. Setting the Camera View Matrix

void SetCameraView(Vector3 Eye,
Vector3 Center,
Vector3 Up)

{
// Create Matrix
Matrix.setLookAtM(m ViewMatrix,o,
Eye.x, Eye.y, Eye.z,
Center.x, Center.y, Center.z,
} Up.x, Up.y, Up.z);

In order to produce accurate camera views, you must have accurate camera Center, or LookAt,
and Up, and Eye vectors in world coordinates, not just local coordinates. In the function
CalculatelLookAtVector()(see Listing 4-24), you find the Center, or LookAt, vector by

1. Finding the Forward camera vector that represents the direction the camera
lens is pointing in world coordinates, which is how the Forward vector is
pointing with respect to the world coordinate system. The Forward vector will
be returned normalized with length 1.

Note In order to convert an object’s local axis orientation from local object coordinates to world coordinates,
you must multiply the local axis by the rotation matrix, using the Matrix.multiplyMv() function. This is
done in the GetForwardWorldCoords () function in the Orientation class.

2. Lengthening the Forward vector by how far you wish to look into the scene.
In this case, we chose 5.

3. Adding your camera’s current position to the lengthened Forward vector
you calculated in the previous step to determine the final Center, or LookAt,
vector. This result is stored in m_Center.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 109

Listing 4-24. Calculate Camera LookAt Vector
void CalculatelLookAtVector()

{
m_Center.Set(m_Orientation.GetForwardWorldCoords().x,
m_Orientation.GetForwardWorldCoords().y,
m Orientation.GetForwardWorldCoords().z);
m_Center.Multiply(5);
m_Center = Vector3.Add(m Orientation.GetPosition(), m Center);
}

The CalculateUpVector() function sets the Camera’s Up vector in world coordinates (see Listing 4-25).

Listing 4-25. Calculating the Camera Up Vector

void CalculateUpVector()

{
m_Up.Set(m Orientation.GetUpWorldCoords().x,
m_Orientation.GetUpWorldCoords().y,
m_Orientation.GetUpWorldCoords().z);
}

The way you convert the camera’s Up vector local coordinates into world coordinates is the same as
with the Forward vector in Listing 4-24 that we covered in the previous example. To see this visually,
let’s take a look at Figure 4-15 and Figure 4-16.

Local up Axis = (0,1,0)
World Coordinates Local Up Axis = (0,1,0)

/69

Figure 4-15. Camera local y axis before rotation

110 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Local up Axis = (0,1,0)

World Coordinates Local Up Axis =
Local Up Axis *Rotation Matrix

Figure 4-16. Camera local y axis after rotation

Figure 4-15 shows the camera before rotation, where the local up axis and the world coordinates of
the local up axis are the same, which is pointing 1 unit along the positive y axis.

Figure 4-16 shows the camera after rotation. The local axis still points 1 unit along the y axis;
however, the world coordinates of the local axis has now changed. You can clearly see from the
figure that the Up camera vector is no longer pointing straight up along the positive y axis. The new
world coordinates for the local axis is found by multiplying the local up axis vector (0,1,0) by the
rotation matrix for the object which in this case is the camera.

Next, the CalculatePosition() function sets the current camera position held in the m_Orientation
variables into the m_Eye variable (see Listing 4-26).

Listing 4-26. Calculate Position() function

void CalculatePosition()

{
m_Eye.Set(m _Orientation.GetPosition().x,
m Orientation.GetPosition().y,
m Orientation.GetPosition().z);
}

The UpdateCamera() function is called continuously to update the player’s viewpoint. It calculates the
Center (LookAt) vector, the Up vector, and the Eye (Position) vector and then sets the camera view by
setting the m_ViewMatrix (see Listing 4-27).

Listing 4-27. UpdateCamera() Function

void UpdateCamera()
{

CalculatelookAtVector();
CalculateUpVector();
CalculatePosition();

SetCameraView(m_Eye, m Center, m Up);

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 111

The Camera class also provides functions to retrieve the frustrum width, height, and depth (see
Listing 4-28).

Listing 4-28. Gamera Frustrum Parameters

// Camera Dimensions

float GetCameraViewportWidth() {return (Math.abs(m Projleft-m Projright));}
float GetCameraViewportHeight(){return (Math.abs(m_Projtop-m_Projbottom));}
float GetCameraViewportDepth(){return (Math.abs(m_Projfar-m Projnear));}

There are also many functions to access private variables within the Camera class, such as variables
related to orientation, camera vectors, camera frustrum information, and the camera’s projection and
view matrices (see Listing 4-29).

Listing 4-29. Functions to Access Private Variables

// Get Orientation
Orientation GetOrientation() {return m Orientation;}

// Camera Vectors

Vector3 GetCameraEye() {return m_Eye;}

Vector3 GetCameralLookAtCenter() {return m_Center;}
Vector3 GetCameraUp(){return m Up;}

// Camera Frustrum
float GetProjLeft(){return m Projleft;}
float GetProjRight(){return m_Projright;}
float GetProjBottom() {return m_Projbottom;}
float GetProjTop(){return m_Projtop;}
float GetProjNear(){return m Projnear;}
float GetProjFar(){return m_Projfar;}

// Camera Matrices

float[] GetProjectionMatrix(){return m ProjectionMatrix;}
float[] GetViewMatrix(){return m_ ViewMatrix;}

The 3D Object Mesh

In this section, | discuss in detail the individual components of a 3D object, such as an object’s
vertices, and how exactly these vertices are rendered using OpenGL ES for Android.

Mesh Vertex Data

A 3D object in OpenGL is composed of vertices. Each vertex can have various attributes, such as
vertex position, vertex texture coordinates, and a vertex normal (see Figure 4-17).

112 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Vertex Vertex Vertex
Position Texture Normal
Xz u,v nx, ny, nz

Figure 4-17. Vertex data format

The cube 3D model with the Android Texture on it from our program in Chapter 3 has the following
mesh data in Listing 4-30:

Listing 4-30. Cube Mesh Data
static float CubeData[] =

{
/! X, Y, zZ, u, % nx, ny, nz
-0.5f, o.5f, o.5f, o.of, o.of, -1, 1, 1, // front top left
-0.5f, -o0.5f, o.5f, o.of, 1.0f, -1, -1, 1, // front bottom left
0.5f, -0.5f, 0.5f, 1.0f, 1.0f, 1, -1, 1, // front bottom right
0.5f, o0.5f, 0.5f, 1.0f, 0.0f, 1, 1, 1, // front top right
-0.5f, o.5f, -0.5f, o.0f, o.0f, -1, 1, -1, // back top left
-0.5f, -0.5f, -0.5f, o.of, 1.0f, -1, -1, -1, // back bottom left
0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 1, -1, -1, // back bottom right
0.5f, o0.5f, -0.5f, 1.0f, o0.0f, 1, 1, -1 // back top right

b

In terms of vertex data, it has three coordinates for position, two coordinates for vertex texture
coordinates, as well as three coordinates for vertex normals. Position coordinates are the location
of the object’s vertices in local model or object space coordinates. Texture coordinates allow you to
place an image on a 3D object and range from 0 to 1. Normal coordinates allow you to use diffuse
lighting effects to render the object and simulate the effects of a light and shadows.

The MeshEx Class

The MeshEx class holds the graphics data and related functions for a 3D object. Here, | give you an
overview of this class, as well as details on key class functions.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 113

MeshEx Class Overview

The MeshEx class uses the glDrawElements() function to actually render the mesh. This function
uses the index method of rendering vertices, where a list of vertices is stored in the m_VertexBuffer
FloatBuffer variable along with an index list into these vertices of the triangles that need to be drawn
that are stored in the m_DrawlListBuffer ShortBuffer variable.

The m_VertexBuffer holds a list of vertex data. Each vertex can have values for the position
coordinates, texture coordinates, and the vertex normal coordinates. Also, there are offsets into the
vertex data that indicate where the data actually starts for position, texture coordinates, and vertex
normals (see Figure 4-18). The figure also shows the vertex stride, which is the length in bytes of the
data of a single vertex.

m_VertexBuffer

Vertex 1 Vertex 2

m_MeshVerticesDataUVOffset

— L

| |x,y,z| u,v | nx, ny, nz x,y,z| uv | nx, ny, nz
|

& m_MeshVerticesDataNormalOffset

m_MeshVerticesDataPosOffset

m_MeshVerticesDataStrideBytes

Figure 4-18. The vertex buffer

The m_DrawListBuffer holds an array of numbers that map into a vertex in the m_VertexBuffer array
(see Figure 4-19).

114 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

m_DrawListBuffer

[of3f1]s]2]1]

|v0|v1|v2|v3|v4|v5|v6|

m_VertexBuffer

Figure 4-19. Them_DrawlistBuffer

An example of a vertex index list is provided in Listing 4-31.

Listing 4-31. Vertex Draw Order Index List

static final short CubeDrawOrder[] =

{
0, 3,1, 3, 2, 1, // Front panel
4, 7, 5, 7, 6, 5, // Back panel
4, 0, 5, 0, 1, 5, // Side
7, 3, 6, 3, 2, 6, // Side
4, 7, 0, 7, 3, 0, // Top
5, 61 1, 6: 2, 1 // Bottom

}; // order to draw vertices

MeshEx Class Constructor

The MeshEx constructor is shown in Listing 4-32. An example of this constructor in use is from the
hands-on example from Chapter 3. The following code creates a new MeshEx object with

Eight (8) coordinates per vertex: 3 position coords, 2 texture coords, and 3
vertex normal coords

Zero (0) offset to the position coordinates

Three (3) coordinate offset to the texture uv coordinates
Five (5) coordinate offset to the vertex normal
Cube.CubeData for the vertex data

Cube.CubeDrawOrder for the index list of vertices to use for drawing the mesh
triangles

MeshEx CubeMesh = new MeshEx(8,0,3,5,Cube.CubeData, Cube.CubeDrawOrder);

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 115

The constructor takes the input vertices in the form of a float array and creates a FloatBuffer. The
FloatBuffer is originally created as a ByteBuffer. A ShortBuffer is created from the input short array
vertex index list.

If the UV texture offset is negative, there are no texture coordinates. If it is O or greater, there are
texture coordinates. If the Normal offset is negative, there are no vertex normals. If it is greater or
equal to 0, there are vertex normals. Thus, you can have a vertex with or without texture or lighting
information.

Note FloatBuffer, ShortBuffer, and ByteBuffer are standard Android classes. You can find out more about
them on the official Android developer’s web site.

Listing 4-32. The MeshEx Constructor

public MeshEx(int CoordsPerVertex,
int MeshVerticesDataPosOffset,
int MeshVerticesUVOffset,
int MeshVerticesNormalOffset,
float[] Vertices,
short[] DrawOrder)

m_CoordsPerVertex CoordsPerVertex;
m_MeshVerticesDataStrideBytes m_CoordsPerVertex * FLOAT_SIZE_BYTES;
m_MeshVerticesDataPosOffset = MeshVerticesDataPosOffset;
m_MeshVerticesDataUVOffset MeshVerticesUVOffset ;
m_MeshVerticesDataNormalOffset MeshVerticesNormalOffset;

if (m_MeshVerticesDataUVOffset >= 0)

{
m_MeshHasUV = true;
}
if (m_MeshVerticesDataNormalOffset >=0)
{
m_MeshHasNormals = true;
}

// Allocate Vertex Buffer
ByteBuffer bb = ByteBuffer.allocateDirect(
// (Number of coordinate values * 4 bytes per float)
Vertices.length * FLOAT SIZE BYTES);
bb.order(ByteOrder.nativeOrder());
m VertexBuffer = bb.asFloatBuffer();

116 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

if (Vertices != null)

{
m_VertexBuffer.put(Vertices);
m_VertexBuffer.position(0);
m_VertexCount = Vertices.length / m_CoordsPerVertex;
}

// Initialize DrawlList Buffer
m DrawListBuffer = ShortBuffer.wrap(DrawOrder);

}

MeshEx Class Error Debug Function

The function CheckGLError () checks for errors that occur after an OpenGL operation by calling the
GLES20.glGetError () function and by throwing an exception that stops the program and displays an
error (see Listing 4-33).

Listing 4-33. Class Error Debug Function

public static void CheckGLError(String glOperation)

{
int error;
while ((error = GLES20.glGetError()) != GLES20.GL_NO ERROR)
{
Log.e("ERROR IN MESHEX", glOperation + " IN CHECKGLERROR() : glError - " + error);
throw new RuntimeException(glOperation + ": glError " + error);
}
}

MeshEx Class Mesh Draw Function

The MeshEx class’s function to actually draw the 3D object is called DrawMesh(). The function to
perform the required set up is done in SetUpMeshArrays (). What actually happens is that triangles
are drawn based on the vertex indices in the m_DrawListBuffer variable.

For example, the m_VertexBuffer contains eight vertices for the cube in Figure 4-20.

The m_DrawListBuffer contains the values 0, 3, 1, 3, 2, 1. Then the two triangles drawn would
contain v0, v3, v1 for the first triangle and v3, v2, v1 for the second. Together, these would form the
front solid face of the cube.

V4 v7
v0

v6

vi
v2

Figure 4-20. Drawing triangles

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 117

Note Quad primitives are not supported in OpenGL ES as they are in regular OpenGL. Thus, you will need
two triangles to replace the 1 quad that would have covered all four vertices.

In the SetUpMeshArrays() function there are basically three preparation steps for setting up the
vertex position data, vertex texture coordinates (if any), and the vertex normal data (if any). They are
as follows:

1. Setting the starting position in the m_VertexBuffer for the vertex property
being activated using the position() function.

2. Linking the vertex attribute data to a variable in the vertex shader that
handles that vertex attribute by using the glVertexAttribPointer() function.
The parameters to this function are

a. the attribute handle, which is the link to the shader variable;
b. the size of the attribute in number of coordinates;

c. the type of the coordinate;

d. whether the data is normalized, which is false;

e. the stride in bytes, that is, the length of a single vertex;

f. the vertex buffer that holds the vertex data.

3. Enabling the sending of that vertex attribute to the shader by calling
glEnableVertexAttribArray() with the handle to that shader variable (see
Listing 4-34).

Listing 4-34. Setting Up the Mesh for Drawing

void SetUpMeshArrays(int PosHandle, int TexHandle, int NormalHandle)

{
// Set up stream to position variable in shader
m_VertexBuffer.position(m MeshVerticesDataPosOffset);
GLES20.glVertexAttribPointer(PosHandle, 3, GLES20.GL_FLOAT, false,

m_MeshVerticesDataStrideBytes, m_VertexBuffer);
GLES20.glEnableVertexAttribArray(PosHandle);

if (m_MeshHasuv)

{
// Set up Vertex Texture Data stream to shader
m VertexBuffer.position(m MeshVerticesDataUVOffset);
GLES20.glVertexAttribPointer(TexHandle, 2, GLES20.GL_FLOAT, false,

m_MeshVerticesDataStrideBytes, m VertexBuffer);

GLES20.glEnableVertexAttribArray(TexHandle);

}

118 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

if (m_MeshHasNormals)

{

// Set up Vertex Texture Data stream to shader
m_VertexBuffer.position(m MeshVerticesDataNormalOffset);
GLES20.glVertexAttribPointer(NormalHandle, 3, GLES20.GL_FLOAT, false,
m MeshVerticesDataStrideBytes, m VertexBuffer);
GLES20.glEnableVertexAttribArray(NormalHandle);
}

}

The DrawMesh() function in Listing 4-35 first calls the SetUpMeshArrays() function to prepare the
vertex attributes for sending to the shader.

Listing 4-35. Main Drawing Function DrawMesh

void DrawMesh(int PosHandle, int TexHandle, int NormalHandle)

{

SetUpMeshArrays(PosHandle, TexHandle, NormalHandle);
GLES20.glDrawElements(GLES20.GL_TRIANGLES, m_DrawListBuffer.capacity(),
GLES20.GL_UNSIGNED SHORT, m DrawlListBuffer);

// Disable vertex array
GLES20.glDisableVertexAttribArray(PosHandle);
CheckGLError("glDisableVertexAttribArray ERROR - PosHandle");

if (m_MeshHasUV)

{
GLES20.glDisableVertexAttribArray(TexHandle);

CheckGLError("glDisableVertexAttribArray ERROR - TexHandle");

if (m_MeshHasNormals)

{
GLES20.glDisableVertexAttribArray(NormalHandle);
CheckGLError("glDisableVertexAttribArray ERROR - NormalHandle");

}

Next, the glDrawElements() function is called with the following parameters:
1. Primitive drawing type, which is GL_TRIANGLES

The number of vertex indices to be processed

The type of the vertex index, which is GL_UNSIGNED_ SHORT

> L™

The buffer that contains the vertex indices to process, which is
m_DrawlListBuffer

Finally, each vertex attribute that was activated is now disabled with the glDisableVertexAttribArray()
function. The CheckGLError () function is also called to check to see if any OpenGL errors have
occurred.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 119

DrawMesh() is called from the DrawObject() function in the Object3d class. The GetVertexAttribInfo()
function gets the vertex attribute handles that are needed for the DrawMesh() call.

The DrawObject() function in the Object3d class will be the main entry point where 3D objects are
rendered throughout this book.

Lighting

In this section, | cover OpenGL ES 2.0 lighting in depth. | start off with an overview of lighting.
Then | discuss our custom PointLight class and how lighting is performed in the vertex and fragment
shaders.

Overview of Lighting
You can model lighting by dividing lighting into three separate types:

Ambient Lighting: This type of lighting models the lighting on an object that is
constant at all object vertices and does not depend on the position of the light.

Diffuse Lighting: This type of lighting models the lighting on an object that depends
on the angle that the object’s vertex normals make with the light source.

Specular Lighting: This type of lighting models the lighting on an object that
depends on the angle that the object’s vertex normals make with the light source
and also the position of the viewer or camera.

The key components in determining lighting are shown in Figure 4-21, which are

Light Vector: The vector that represents the direction from the object’s vertex to the
light source.

Normal Vector: The vector that is assigned to an object’s vertex that is used to
determine that vertex’s lighting from a diffuse light source. Normal vectors are also
vectors perpendicular to surfaces.

Eye Vector: The vector that represents the direction from the object’s vertex to the
location of the viewer or camera. This is used in specular lighting calculations.

Point Light: A light source that radiates light in all directions and has a position in
3D space. A point light contains ambient, diffuse, and specular lighting components.

120 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

PointLight

A/ Eye
=0Z
V2 , \\ @
Normal
LightVec

Figure 4-21. Important lighting vectors

In OpenGL ES 2.0, the lighting calculations are carried out in the programmable vertex and fragment
shaders. | discuss these shaders later in this section; however, first let’s go over the class that
represents our point light.

The PointLight Class

The PointLight class will provide the lighting for our 3D scenes. The data contained in this class is
shown in Listing 4-36.

Listing 4-36. Point Light Data

private float[] m_light ambient = new float[3];
private float[] m light diffuse = new float[3];
private float[] m light specular = new float[3];
private float m_specular_shininess = 5;

[E——

private Vector3 m_Position;

The array variable m_light _ambient holds the color value of the ambient light emitted from this light.
The array variable m_light_diffuse holds the color value of the diffuse light emitted from this light.
The array variable m_light_specular holds the color value of the specular light emitted from this light.

For all of the preceding variable arrays, the first array element is the red value, the second element is
the green value, and the third element is the blue value. These values range from 0 to 1. A value of all
1’s for the r, g, b color would represent white, and a value of all 0’s would represent black.

The m_specular_shininess variable sets the level of specular shininess caused by m_light specular.
The m_Position variable holds the position of the light in 3D space.

The PointLight constructor is shown in Listing 4-37. By default, the PointLight object is initialized by
the constructor to emit a light that has a maximum intensity of white light (red, green, blue values are
all 1.0) for ambient, diffuse, and specular light. The default position of the light is at the origin.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 121

Listing 4-37. PointLight Constructor
public PointLight(Context context)

{
m_light_ambient[0] = 1.0f;
m light ambient[1] = 1.0f;
m_light ambient[2] = 1.0f;
m_light diffuse[0] = 1.0f;
m light diffuse[1] = 1.0f;
m_light diffuse[2] = 1.0f;
m light specular[o] = 1.0f;
m light specular[1] = 1.0f;
m_light specular[2] = 1.0f;
m Position = new Vector3(0,0,0);

}

The SetAmbientColor() function sets the ambient color of the light taking a float array as input.
The SetDiffuseColor() function sets the diffuse color of the light taking a float array as input.
The SetSpecularColor() function sets the specular color of the light taking a float array as input
(see Listing 4-38).

Listing 4-38. Set Light Functions

void SetAmbientColor(float[] ambient)

{
m light ambient[0] = ambient[0];
m light ambient[1] = ambient[1];
m light ambient[2] = ambient[2];
}
void SetDiffuseColor(float[] diffuse)
{
m light diffuse[0] = diffuse[0];
m light diffuse[1] = diffuse[1];
m light diffuse[2] = diffuse[2];
}
void SetSpecularColor(float[] spec)
{
m_light specular[o] = spec[0];
m light specular[1] = spec[1];
m light specular[2] = spec[2];
}

The input float array holds the red, green, and blue values in the array position 0, 1, and 2, respectively.

122 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

There are two SetPosition() functions that set the light’s position in the 3D world. One function
takes x, y, and z float values for the light position, and the other function takes a Vector3 object
(see Listing 4-39).

Listing 4-39. SetPosition Functions

void SetPosition(float x, float y, float z)

{
m_Position.x = x;
m_Position.y = y;
m_Position.z = z;
}
void SetPosition(Vector3 Pos)
{
m_Position.x = Pos.x;
m_Position.y = Pos.y;
m_Position.z = Pos.z;
}

Finally, the PointLight class has functions that allow you to retrieve private data contained within the
class (see Listing 4-40).
Listing 4-40. Accessor Functions

Vector3 GetPosition(){return m_Position;}

float[] GetAmbientColor(){return m light ambient;}

float[] GetDiffuseColor(){return m light diffuse;}

float[] GetSpecularColor(){return m_light specular;}

float GetSpecularShininess(){return m_specular shininess;}

Building the Normal Matrix

In order to determine diffuse and specular lighting for an object, you need to transform the vertex
normals that are sent into the vertex shader into eye space coordinates. In order to do so, you must
use the Normal Matrix.

The Normal Matrix is created by
1. Finding the matrix inverse of the ModelView Matrix.
2. Finding the matrix transpose of the matrix inverse calculated in step 1.

Listing 4-41 shows how building a normal matrix is done in code in the GenerateMatrices() function
in the Object3d class. Here are the steps:

1. The Model Matrix is multiplied by the View Matrix to generate the ModelView
Matrix, which is placed in the m_NormalMatrix variable.

2. This ModelView Matrix is inverted using the Matrix.invertM() function.

3. The transpose of this inverted ModelView Matrix is taken and put in
m_NormalMatrix.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 123

Listing 4-41. Building the Normal Matrix in the GenerateMatrices() Function

// Create Normal Matrix for lighting

Matrix.multiplyMM(m NormalMatrix, 0, Cam.GetViewMatrix(), 0, m ModelMatrix, 0);
Matrix.invertM(m_NormalMatrixInvert, 0, m _NormalMatrix, 0);
Matrix.transposeM(m NormalMatrix, 0, m NormalMatrixInvert, 0);

This normal matrix is then sent to the vertex shader and is placed in the NormalMatrix shader
variable, which is a 4-by-4 matrix (see Listing 4-42).

Listing 4-42. Using the Normal Matrix in the Vertex Shader

uniform mat4 NormalMatrix; // Normal Matrix
attribute vec3 aNormal;

// Put Vertex Normal Into Eye Coords
vec3 EcNormal = normalize(vec3(NormalMatrix * vec4(aNormal,1)));

The eye coordinates of the vertex normal is then calculated by multiplying the input vertex normal
aNormal by NormalMatrix, then converting it to a vec3 vector and then normalizing the resulting
vector to length 1. The variable EcNormal, which now contains the vertex normal in eye coordinates,
can now be used to calculate diffuse and specular lighting.

Lighting in the Vertex Shader

I will now turn to how lighting is done in the vertex shader. For the purposes of our simulation, light
will be composed of ambient, diffuse, and specular components.

Ambient

Ambient lighting is the same across the entire object and, thus, the same at all vertices. Because the
lighting is the same for all of the object’s vertices, ambient lighting can be handled in the fragment
shader. There is no unique value that has to be calculated for a specific vertex for ambient lighting in
the vertex shader.

Diffuse

The value of the diffuse lighting for the vertex is the maximum value of either 0 or the Vertex Normal
Vector dot product with the Light Vector.

Recall that the value of the dot product of two vectors is the product of their magnitudes times the
cosine of the angle between them. If the vectors have been normalized to length 1, the dot product
is just the cosine of the angle between the vectors.

If the Normal Vector and the Light Vector are perpendicular, the cosine between the vectors is 0, and
thus the dot product and the diffuse lighting is O (see Figure 4-22).

124 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Normal Vector

J
-0
/\

Light Vector

N

Vertex

//

Light Source

(Normal Vector) Dot (Light Vector) = 0

Figure 4-22. Diffuse light value is 0

If the angle between the Normal Vector and the Light Vector is 0, the cosine of the angle between the
vectors is 1, and the dot product and diffuse lighting are at the maximum, which is 1 (see Figure 4-23).

N4
-

— Light Source
7N

Light Vector

Normal Vector

(Normal Vector) Dot (Light Vector) = 1

Figure 4-23. Diffuse light value is 1

In code, we find the diffuse lighting by

1. Finding the world coordinates of the Vertex Position, by multiplying the
incoming vertex position by the ModelMatrix

vec3 WcVertexPos = vec3(uModelMatrix * vec4(aPosition,1));

2. Finding the world coordinates of the Light Vector which is from the vertex to
the light source through standard vector math by subtracting the vertex world
position from the light source world position

vec3 WclightDir = uWorldLightPos - WcVertexPos;

3. Finding the Light Vector in eye coordinates by multiplying the Light Vector in
world coordinates by the ViewMatrix

vec3 EclLightDir = normalize(vec3(uViewMatrix * vec4(WclLightDir,1)));

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

4. Finding the diffuse light amount by taking the dot product between the Vertex
Normal in eye coordinates and the Light Vector in eye coordinates or 0,
whichever is greater

vDiffuse = max(dot(EcLightDir, EcNormal), 0.0);
Listing 4-43 is the full shader code.

Listing 4-43. Diffuse Calculations in the Vertex Shader

// Calculate Diffuse Lighting for vertex

// maximum of (N dot L, 0)

vec3 WcVertexPos = vec3(uModelMatrix * vec4(aPosition,1));

vec3 WclightDir = uWorldLightPos - WcVertexPos;

vec3 EclLightDir = normalize(vec3(uViewMatrix * vec4(WclLightDir,1)));
vDiffuse = max(dot(EcLightDir, EcNormal), 0.0);

The vDiffuse shader variable is then passed into the fragment shader as a varying float variable:

varying float vDiffuse;

Specular

The specular value of light is meant to simulate the shine an object gives off when viewed from a

125

certain angle when being illuminated by a light source —for example, the shine on a chrome bumper

on a car when being hit by the sun’s rays and viewed at a certain angle.

The specular light amount for a vertex is calculated by

1. Calculating the vector S, which is the sum of the Light Vector and the Eye
Vector (see Figure 4-24).

EyeVec
S = LightVector + EyeVector

PointLight
N
;,' v~

Eye

LightVec

Figure 4-24. Specular lighting

126 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

2. Calculating the dot product of the S value and the Vertex Normal value. If this
value is less than or equal to zero, the value of the specular color amount is
0. Otherwise, raise this value to the power of the light shininess level. The
result is the final specular light value for that vertex.

The code in Listing 4-44 implements the following steps in order to find the specular value for the vertex.

1. The EyeVec or EyeDir from the vertex to the viewer or eye position is
determined by subtracting the vertex position in world coordinates from the
Eye or Viewer position in world coordinates.

vec3 EyeDir = uEyePosition - WcVertexPos;

2. The S vector is determined by adding the light vector or WcLightDir and the
eye vector or EyeDir using vector addition.

vec3 S = WclLightDir + EyeDir;

3. The S vector is converted from world coordinates to eye coordinates by
multiplying it by the ViewMatrix.

vec3 EcS = normalize(vec3(uViewMatrix * vec4(S,1)));

4. The specular lighting for the vertex is calculated by taking the dot product
between S and the Vertex Normal, taking the greater value between 0 and
the dot product to filter out negative results and raising the result to the
power of uLightShininess. ulightShininess is input to the vertex shader as
a uniform float variable that is defined by the programmer.

vSpecular = pow(max(dot(EcS, EcNormal), 0.0), uLightShininess);

Listing 4-44. Calculating the Specular Term in the Vertex Shader

//'S = LightVector + EyeVector

// N = Vertex Normal

// max (S dot N, 0) * Shininess

vec3 EyeDir = uEyePosition - WcVertexPos;

vec3 S = WclightDir + EyeDir;

vec3 EcS = normalize(vec3(uViewMatrix * vec4(S,1)));

vSpecular = pow(max(dot(EcS, EcNormal), 0.0), ulLightShininess);

The vSpecular variable is then passed into the fragment shader as a varying variable:

varying float vSpecular;

Lighting in the Fragment Shader

I will now discuss the lighting in the fragment shader. Lighting will be divided into ambient, diffuse,
and specular components.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 127

Ambient Lighting

Ambient lighting is sent to the fragment shader through the uniform vector variable uLightAmbient.

uniform vec3 ulightAmbient;

This can be directly sent to the AmbientTerm, which is one of the components that determine the final
color of the fragment produced from the fragment shader.

vec3 AmbientTerm = ulightAmbient;

Diffuse Lighting

The color of the diffuse portion of the light source is sent directly to the uLightDiffuse uniform
vector variable.

uniform vec3 ulLightDiffuse;

The Diffuse vertex value vDiffuse is received from the vertex shader, as indicated by the varying
qualifier. Remember: Varying variables provide the link from the vertex shader to the fragment shader.

varying float vDiffuse;

The Diffuse component of the final fragment color is determined by multiplying the Diffuse value
calculated from the vertex shader by the color of the diffuse light source. Remember that the
vDiffuse term ranges from 0 to 1. If it is 1, the diffuse light color will be at full strength. If it is 0, the
diffuse light color will be black and, thus, not contributing to the final color of the fragment.

vec3 DiffuseTerm = vDiffuse * ulLightDiffuse;

Specular Lighting

The specular color of the light source is input as a uniform vector variable called uLightSpecular.
uniform vec3 ulightSpecular;

The vSpecular variable holds the value of the specular light from the vertex shader.

varying float vSpecular;

The Specular term of the final fragment color is calculated by multiplying the amount of specular light
at the current vertex calculated from the vertex shader times the specular color of the light source.

vec3 SpecularTerm = vSpecular * ulightSpecular;

128 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Final Fragment Color

The final fragment color is the sum of the AmbientTerm, DiffuseTerm, and SpecularTerm. The

gl FragColor is a reserved variable within the fragment shader that returns the fragment color.

The final color vector values are in (r, g, b, alpha) format. Alpha is the transparency level that is active
if blending is enabled.

vec4 tempColor = (vec4(DiffuseTerm,1) + vec4(SpecularTerm,1) + vec4(AmbientTerm,1));
gl FragColor = vec4(tempColor.r,tempColor.g, tempColor.b, 1);

Materials

The materials that an object is made of affect the color that it reflects and any color that it emits.
Here, | cover the Material class, along with how materials are used in the fragment shader.

The Material Class

An object can also have a material, which is represented by the Material class. This material has the
color components of

Emissive Color: Color of the light that is emitted from the object

Ambient Color: Color of the ambient light that is reflected by the material
Diffuse Color: Color of the diffuse light that is reflected by the material
Specular Color: Color of the specular light that is reflected by the material

Alpha: The degree of opaqueness of the material, with 1 being fully opaque and 0
being completely transparent

See Listing 4-45 for the implementation of the preceding list of color components.

Listing 4-45. Material Class’s Data

private float[] m Emissive = new float[3]
private float[] m Ambient = new float[3]
private float[] m Diffuse new float[3];
private float[] m Specular = new float[3];
private float m_Alpha = 1.0f;

)
)

The Material class also has functions to set and retrieve these private data items. Please refer to the
actual code from the Chapter 3 example for more details.

Materials in the Fragment Shader

Listing 4-46 shows the additions you have to make to the fragment shader code to add in an
object’s material. The key additions are in bold. A new term, the EmissiveTerm, is used to derive the
final output color. The material’s ambient, diffuse, and specular properties are used to calculate the
ambient, diffuse, and specular components of the final color. The material alpha value is used for the
alpha value of the final color.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 129

Listing 4-46. Fragment Shader with Object Materials Added

uniform vec3 uMatEmissive;
uniform vec3 uMatAmbient;
uniform vec3 uMatDiffuse;
uniform vec3 uMatSpecular;
uniform float uMatAlpha;

vec3 EmissiveTerm = uMatEmissive;

vec3 AmbientTerm uMatAmbient * ulightAmbient;

vec3 DiffuseTerm = vDiffuse * ulLightDiffuse * uMatDiffuse;

vec3 SpecularTerm = vSpecular * ulightSpecular * uMatSpecular;

vec4 tempColor = vec4(DiffuseTerm,1) + vec4(SpecularTerm,1) + vec4(AmbientTerm,1) +
vec4(EmissiveTerm,1);

gl FragColor = vec4(tempColor.r,tempColor.g, tempColor.b, uMatAlpha);

Textures

A 3D object can have an image or texture mapped onto it. A texture has texture coordinates along
the U or S horizontal direction and the V or T vertical direction. A texture can be mapped using these
coordinates to an object whose vertices match these coordinates. Basically, the texture is wrapped
around the 3D object according to the vertex UV texture coordinates (see Figure 4-25).

Vertex UV Coordinates

\ \ (1,0

\

\
0,1) 1,1)

UV Texture Coordinates

Figure 4-25. Texture UV coordinate mapping

130 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Texture Magnification and Minification

Texture mapping of fixed size textures to 3D objects that can be scaled, rotated, and translated out
to variable distances from the viewer require that individual texels (pixels of the texture) be mapped to
individual pixels on the final viewing screen. If the texels are enlarged when they are displayed, texture
magnification has occurred. If texels are shrunk when they are displayed on the screen, texture
minification has occurred (see Figure 4-26).

Texture (2 by 2 Texels) Texture (2 by 2 Texels)

!

On Screen (2 by 2 Pixels) On Screen (2 by 2 Pixels)

Texture Magnification Texture Minification

Figure 4-26. Texture magnification and minification

In both cases, the textures will have to be filtered to map the color from the texture to the final color
displayed on the screen. Two of the ways to do this are the following:

GLES20.GL_NEAREST: A filtering method that finds the closest texel to the pixel of
that texture that is being displayed on screen.

GLES20.GL_LINEAR: A filtering method that uses a weighted average of the
closest 2-by-2 group of texels to the pixel of that texture that is being displayed
on the screen.

Texture Clamping and Repeating

Texture coordinates are generally 0 through 1, inclusive. However, you can assign texture coordinates
outside this range to vertices and have the textures clamped or repeated (see Figure 4-27). Texture
clamping uses 1.0 for texture coordinates that are greater than 1 and 0 for texture coordinates that
are less than 0. Texture repeating tries to fit multiple copies of the texture into texture coordinates
that are greater than 1 or less than 0.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 131

(0,0) (1,0) (2,0)
(0,1)

Texture Clamp
(0,0 (1,0 (2,0)

©0,)

Texture Repeat

Figure 4-27. Texture clamping and repeating

The Texture Class

In our Texture class, we use a bitmap variable to hold the actual texture image that is read in

(see Listing 4-47). In addition, the m_TextureId holds a handle to the created texture, and m_Context
holds a reference to the activity that this Texture class object belongs to.

Listing 4-47. Texture Class’s Data

private Context m_Context;
private int m_Textureld;
Bitmap m_Bitmap;

The Texture class constructor is shown in Listing 4-48. This constructor creates and initializes a
Texture object by

1. First calling the InitTexture() function to load in the Texture from a resource
using the Resourceld that is supplied an input parameter to the constructor

2. Setting the filter type for texture minification, which is set to GL_NEAREST
3. Setting the filter type for texture magnification, which is set to GL_LINEAR

4. Setting the way textures are mapped in the U or S (horizontal) and V or T
(vertical) to clamping

132 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Listing 4-48. Texture Class Constructor

public Texture(Context context, int Resourceld)

{

// Create new Texture resource from Resourceld
m_Context = context;
InitTexture(Resourceld);

// Setup Default Texture Parameters
SetTextureWRAP_MIN FILTER(GLES20.GL_NEAREST);
SetTextureWRAP_MAG FILTER(GLES20.GL_LINEAR);
SetTextureWRAP_S(GLES20.GL_CLAMP_TO_EDGE);
SetTextureWRAP_T(GLES20.GL_CLAMP_TO EDGE);

}

The InitTexture() function loads in the texture and initializes it to be a 2D texture object
(see Listing 4-49).

Listing 4-49. Initializing the Texture

boolean InitTexture(int Resourceld)

{

int[] textures = new int[1];
GLES20.glGenTextures(1, textures, 0);

m_Textureld = textures[0];
GLES20.glBindTexture(GLES20.GL_TEXTURE 2D, m_Textureld);

// Loads in Texture from Resource File
LoadTexture(Resourceld);

GLUtils.texImage2D(GLES20.GL_TEXTURE 2D, 0, m_Bitmap, 0);
return true;

}
The function initializes the texture by

1. Calling glGenTextures() to get an unused texture name from OpenGL

2. Calling nexgt glBindTexture() to create a new texture object of 2 dimensions
that has length and width

3. Calling next LoadTexture() to read in the texture from a resource file and
store it in our bitmap variable m_Bitmap

4. Calling finally the GLUtils.texImage2D() function to define the 2D texture as
that data in our m_Bitmap variable that holds our texture data that we loaded
in from the LoadTexture() function

The LoadTexture() function does the actual work of loading in the texture image from a file. The resource
image file is opened for reading and is attached to an InputStream. BitmapFactory.decodeStream() is
then used to read in the file and convert the data into bitmap form. See Listing 4-50.

CHAPTER 4: 3D Graphics Using OpenGL ES 2.0 133

Listing 4-50. LoadTexture Function

void LoadTexture(int Resourceld)

{ InputStream is = m_Context.getResources()
.openRawResource(Resourceld);
try
{
m Bitmap = BitmapFactory.decodeStream(is);
iinally
{
try
{
is.close();
iatch(IOException e)
Log.e("ERROR - Texture ERROR", "Error in LoadTexture()! ");
}
}
}

You must also set the active texture unit where all the texture-related functions operate. This is done
with the glActiveTexture() function in the SetActiveTextureUnit() function. For our purposes in
this book, the active texture unit will always be 0 (see Listing 4-51).

Listing 4-51. Setting the Active Texture Unit

static void SetActiveTextureUnit(int UnitNumber)

{
}

GLES20.glActiveTexture(UnitNumber);

In order to select this texture object as the current one, you have to active it by calling
ActivateTexture(). The glBindTexture() is called with the m_Textureld to activate it
(see Listing 4-52).

Listing 4-52. Activating the Texture

void ActivateTexture()

{

// Activate Texture
if (m_Textureld != 0)

{
GLES20.glBindTexture (GLES20.GL_TEXTURE_2D, m_Textureld);
}
else
{
Log.e("ERROR - Texture ERROR- m_Textureld = 0", "Error in ActivateTexture()! ");
}

134 CHAPTER 4: 3D Graphics Using OpenGL ES 2.0

Textures in the Vertex Shader

Texture information in the vertex shader is basically passed through to the fragment shader for our
basic lighting method. The aTextureCoord receives input vertex texture coordinates.

attribute vec2 aTextureCoord;

The vTextureCoord variable passes through this texture coordinate information into the fragment shader.

varying vec2 vTextureCoord;
vTextureCoord = aTextureCoord;

Textures in the Fragment Shader

Texture information in the fragment shader is used in combination with the diffuse, specular, ambient,
and emissive light produced by the object to find its final color. The color from the currently active
texture that matches the texture coordinates in vTextureCoord is found through the texture2D()
function. That color is then modified by the total combined light from the diffuse, specular, ambient,
and emissive light colors for that vertex.

uniform sampler2D sTexture;

varying vec2 vTextureCoord;

vecd color = texture2D(sTexture, vTextureCoord);

vec4 tempColor = color * (vec4(DiffuseTerm,1) + vec4(SpecularTerm,1) + vec4(AmbientTerm,1) +
vec4(EmissiveTerm,1));

Summary

In this chapter, | covered the basic concepts of programming graphics in OpenGL ES 2.0 for
Android. | started with a general description of how OpenGL rendering works, then moved on to

a more specific explanation, discussing the 3D math, transformations, and vertex and fragment
shaders involved. Next, | gave an overview of the shader language used for vertex and fragment
shaders, as well as some examples. Then | covered core custom classes that relate to fundamental
concepts in OpenGL ES 2.0 that are essential to creating not only 3D games but any OpenGL ES 2.0
graphics application.

Chapter

Motion and Collision

In this chapter, | will discuss motion and collision. In terms of motion, | will discuss the basics of

an object’s linear velocity, linear acceleration, angular velocity, and angular acceleration. | cover
Newton’s three laws of motion and the new Physics class we have created to implement these
laws of motion. | then discuss a hands-on example that demonstrates with a bouncing and rotating
cube how to apply linear and angular acceleration to objects. Next, | cover collision detection and
collision response and add code to our Physics class to implement this collision detection and
collision response. | then go through a hands-on example where we add in another cube on top

of the one from the previous hands-on example and demonstrate our new collision detection and
response code. Finally, we create a gravity grid and then demonstrate its use by adding this grid to
the previous hands-on example with the two colliding cubes.

Overview of Motion

| will start by covering linear and angular velocity and acceleration, as well as Newton’s three laws of
motion, and then put all of these to use in the hands-on examples.

Linear Velocity and Linear Acceleration

Linear velocity is a vector quantity that has direction and magnitude. For example, let’s say that a car
is heading northeast on a street at 35 miles per hour. This can be represented by a vector pointing

in the northeasterly direction and with a magnitude that would represent 35 miles an hour. Let’s say
the driver presses down on the brake. This produces an acceleration in the opposite direction to the
velocity, which has the result of slowing the car down. After the car stops, the driver then puts the
car into reverse and drives down the street backward. The resulting velocity and acceleration vectors
are now back in alignment. (See Figure 5-1.)

135

136 CHAPTER 5: Motion and Collision

Velocity
Start

Velocity

Reversing Direction
<«

Acceleration

Velocity

Moving In Opposite Direction

Acceleration

Figure 5-1. Car reversing then moving backward

Figure 5-1 shows the velocity and acceleration vectors for this car as it moves down the street,
slows down, and then reverses direction.

Average velocity is the change in distance divided by the change in time. Figure 5-2 shows this
definition, with the variable x representing the position and t representing time.

Ax _ *final ~*initial
VAverage = At - t t
final ~ " initial

Figure 5-2. Average velocity definition

The average velocity may be a good representation, if the car maintains a constant speed
throughout the time interval. However, if during the time interval the car’s speed is extremely high
during one portion and extremely low during another, the average speed would not be a good
representation of the car’s behavior.

The instantaneous velocity is the change in position of an object divided by the change in time when
the time interval approaches 0. If you are given a function that represents the position of an object
with respect to time x(t), then the first derivative of that function, or x’(t), is the velocity function.

(See Figure 5-3.)

CHAPTER 5: Motion and Collision

limit A X dx

© At>0 At dt

Figure 5-3. Instantaneous velocity definition

The average acceleration of an object is the change in velocity divided by the change in time.
(See Figure 5-4.)

_ Av _ Viinal " Vinitial
aAverage At

ttinal * Linitial

Figure 5-4. Average acceleration definition

The instantaneous acceleration is the change in velocity divided by the change in time as the time

interval goes to 0. (See Figure 5-5.)

a = limit AV _ dv

At->0 At dt

Figure 5-5. Instantaneous acceleration definition

Newton’s Laws of Motion

In order for an object to change its velocity, an external force must be applied to that object.
Newton’s laws of motion are used to describe this force in terms of the object’s mass and
acceleration. There are three laws of motion, and they are described as follows:

Newton’s first law: Consider a body on which no net force acts. If the body is
at rest, it will remain at rest. If the body is moving with a constant velocity, it will
continue to do so.

Newton’s second law: The sum of the external forces acting on an object are equal
to that object’s mass, multiplied by its acceleration. Figure 5-6 shows the vector

form of this law. Figure 5-7 shows the scalar version of this law, with forces grouped
along the x, y, and z axes.

_)
SF=ma

Figure 5-6. Newton’s second law vector equation

137

138 CHAPTER 5: Motion and Collision

EFX= ma,
§FZ =ma,

Figure 5-7. Newton’s second law scalar equations

Newton’s third law: External forces on objects occur in pairs. That is, if body 1
collides with body 2, it exerts a force on body 2. Body 2 also exerts an equal but
opposite force on body 1. (See Figure 5-8.)

Body 1

Body 2

Figure 5-8. Newton’s third law demonstrated by colliding spheres

Gravity

The earth’s gravity is also a force that can act on objects. For example, Newton’s second law can be
altered to refer to the earth’s gravity. The weight of an object on the earth is actually a force that is
equal to the mass of the object, multiplied by the gravitational acceleration or free fall acceleration at
the location of the object. (See Figure 5-9.)

Weight = Mass * Free Fall Acceleration
= >

W=mg

Figure 5-9. Force of gravity

CHAPTER 5: Motion and Collision 139

Angular Velocity and Angular Acceleration

An object can also have a velocity and acceleration in terms of its angular movement. The distance
an object rotates about its rotation axis is measured in radians or degrees. In Figure 5-10, you see
an object that is rotating about its rotation axis. The initial starting point is the angle thetal, and the
ending angle is theta2. The change, or delta angle amount, is theta2 - theta1.

Rotation Axis

Figure 5-10. Rotating an object

The average angular velocity is the change in the angular position, divided by the change in time.
The instantaneous angular velocity is the first derivative of the angular position with respect to time.
(See Figure 5-11.)

Figure 5-11. Angular velocity

The average angular acceleration is the change in the angular velocity, divided by the change in time.
The instantaneous angular acceleration is the first derivative of the angular velocity. (See Figure 5-12.)

A® 02 - ol

U~;!h'rerage - F = 2 - 11
= dO
&=

Figure 5-12. Angular acceleration

140 CHAPTER 5: Motion and Collision

Rotational Forces

A change in angular velocity of an object is caused by a force that, when applied to the object,
changes its rate of rotation around its rotation axis. This force that causes a change in the rotation
of the object is called torque. Torque can be measured as the product of the force that causes the
torque and the perpendicular distance of the force to the rotational axis. (See Figure 5-13.)

Rotational Axis

Forcs A
/
/

t=Force *r

Figure 5-13. Torque

There is also an angular equivalent of Newton’s second law, which is that the torque force applied
to the object is equal to the inertia of the object being rotated, times the angular acceleration of the
object. (See Figure 5-14.)

T=lo
Figure 5-14. Torque equation
The inertia of the object depends on the shape of the object and how exactly the rotation axis is

oriented. For example, Figure 5-15 shows the rotational inertia for a hoop for a rotation axis that
goes through the center of the hoop.

Figure 5-15. Inertia of a hoop

CHAPTER 5: Motion and Collision 141

The Physics Class

Our Physics class contains code related to updating the object’s position and rotation, based on
linear and rotational forces that are applied to the object. The Object3d class contains a Physics
class variable called m_Physics. All of the object’s physics-related data, such as velocity and
acceleration, and physics functions, such as applying a force to the 3D object, are contained in this
variable. This section covers our Physics class.

Listing 5-1 shows some useful constants that are used in our Physics class. PI is defined in radians
and is equivalent to 180 degrees, or a half circle. TWO_PI is defined as twice the value of PI in radians
and is 360 degrees, or a full circle. HALF_PI is defined as PI/2, which is 90 degrees, or a right angle.
A QUARTER PI is defined as PI1/4, which is 45 degrees.

Listing 5-1. Static Physics Constants

static float PI (float)(3.14159265358979323846264338327950288419716939937511);
static float TWO PI = (float)(2.0*PI);
static float HALF_PI (float)(PI/2.0);
static float QUARTER PI = (float)(PI/4.0);

In Listing 5-2, | define variables related to linear velocity and acceleration. The variable m Velocity
holds the object’s linear velocity in the x, y, and z directions and is created and initialized to (0,0,0).
The variable m_Acceleration holds the object’s linear acceleration in the x, y, and z directions and

is created and initialized to (0,0,0). The variable m_MaxVelocity holds the maximum absolute linear
velocity in the x, y, z directions that the object can achieve. The m_MaxAcceleration variable holds
the maximum absolute linear acceleration in the X, y, and z directions that the object can achieve.

Listing 5-2. Linear-Related Physics Variables

private Vector3 m Velocity new Vector3(0,0,0);

private Vector3 m_Acceleration = new Vector3(0,0,0);

private Vector3 m MaxVelocity new Vector3(1.25f, 1.25f, 1.25f);
private Vector3 m MaxAcceleration = new Vector3(1.0f,1.0f,1.0f);

The code in Listing 5-3 deals with angular velocity and acceleration. The m_AngularVelocity variable
holds the angular velocity of an object around its rotational axis. The m_AngularAcceleration variable
holds the angular acceleration of an object around its rotational axis. The m_MaxAngularVelocity
variable holds the maximum absolute value of the angular velocity. The m_MaxAngularAcceleration
variable holds the maximum absolute value of the angular acceleration for the object.

Listing 5-3. Angular Velocity and Acceleration Variables

private float m_AngularVelocity = 0;
private float m_AngularAcceleration = 0;
private float m MaxAngularVelocity = 4 * PI;

private float m_MaxAngularAcceleration = HALF_PI;

Listing 5-4 shows the gravity-related variables in the Physics class. The m_ApplyGravity variable is
true if gravity is to be applied to the object, and by default it is false. The variable m_Gravity specifies
the gravitational acceleration acting on the object. The m_GroundLevel variable specifies the height
of the ground. The m_JustHitGround variable is true if the object has just hit the ground level. The
m_Mass variable holds the mass of the object.

142 CHAPTER 5: Motion and Collision

Listing 5-4. Gravity-Related Variables

private boolean m_ApplyGravity = false;
private float m_Gravity = 0.010f;
private float m_GroundLevel = 0;

private boolean m JustHitGround = false;
private float m Mass 100.0f;

The ApplyTranslationalForce() function takes a force vector as an input and converts this
force into a linear acceleration value that is added to the total linear acceleration for the object.
Basically, this function adds a new translational force to the object. The acceleration value is
calculated from Newton’s second law, which is F = ma. The acceleration based on this formula is
a = F/m, or linear acceleration is equal to the force applied to the object divided by the mass of
the object. (See Listing 5-5.)

Listing 5-5. Applying the Translational Force

void ApplyTranslationalForce(Vector3 Force)

// Apply a force to the object

// F =ma

// F/m = a

// 1. Calculate translational acceleration on object due to new force and add this
// to the current acceleration for this object.

Vector3 a = new Vector3(Force);

if (m_Mass != 0)

{
}

m_Acceleration.Add(a);

a.Divide(m_Mass);

}

The ApplyRotationalForce() function applies a new rotational force to the object. The function
takes a force and the perpendicular length from the application of this force to the object’s rotation
axis as input.

The force is converted to angular acceleration using the formula
AngularAcceleration = (Force * r) / Rotational Inertia.

This new angular acceleration is then added to the total angular acceleration to be applied to this
object. The rotational inertia is simplified to a hoop with a radius of 1, so that the rotational inertia is
just the mass of the object. (See Listing 5-6.)

Listing 5-6. Applying Rotation Forces to an Object
void ApplyRotationalForce(float Force, float r)

// 1. Torque = 1 X F;

// T = I * AngularAcceleration;
// T/I = AngularAccleration;

//

CHAPTER 5: Motion and Collision 143

// I = mr*2 = approximate with hoop inertia with r = 1 so that I = mass;

float Torque = r * Force;
float aangular = 0;

float I = m_Mass;

if (I !=0)

{

aangular = Torque/I;

}

m_AngularAcceleration += aangular;

}

The function UpdateValueWithinlLimit updates the input value by increment, according to the limit
parameter. That is, the function returns the incremented value within the range -limit and limit.
(See Listing 5-7.)

Listing 5-7. UpdateValueWithinLimit Function

float UpdateValueWithinLimit(float value, float increment, float limit)

{
float retvalue = 0;
// Increments the value by the increment if the result
// is within +- limit value
float tempv = value + increment;
if (tempv > limit)
retvalue = limit;
}
else if (tempv < -limit)
{
retvalue = -limit;
}
else
{
retvalue += increment;
}
return retvalue;
}

The TestSetLimitValue() function clamps the value of the input parameter value to -limit to limit.
(See Listing 5-8.)

Listing 5-8. TestSetLimitValue Function

float TestSetlLimitValue(float value, float limit)
{

float retvalue = value;

// If value is greater than limit then set value = limit
// If value is less than -limit then set value = -limit
if (value > limit)

144 CHAPTER 5: Motion and Collision

{

retvalue = limit;
}
else if (value < -limit)
{

retvalue = -limit;
}

return retvalue;

}

The ApplyGravityToObject() function applies the force of the gravitational acceleration to the y
component of the object’s acceleration. (See Listing 5-9.)

Listing 5-9. Applying Gravity to an Object
void ApplyGravityToObject()
{

// Apply gravity to object - Assume standard OpenGL axis orientation of positive y being up
m_Acceleration.y = m_Acceleration.y - m Gravity;

}

The UpdatePhysicsObject() function is the main update function where the position, velocity, and
acceleration of the object is updated, based on the linear and angular accelerations to the object
caused by external forces that have been applied. (See Listing 5-10.)

The function does the following:

1. Adds the acceleration caused by the force of gravity to the object,
if m_ApplyGravity is true

2. Updates the linear acceleration of the object and clamps the values to within
the range -m_MaxAcceleration to m_MaxAcceleration. Updates the linear
velocity of the object, based on the linear acceleration, and clamps the value
to within the range -m_MaxVelocity tom MaxVelocity

3. Updates the angular acceleration and clamps the value to within the range
-m_MaxAngularAcceleration to m_MaxAngularAcceleration. Updates the
angular velocity, based on the angular acceleration, and clamps the value to
-m_MaxAngularVelocity to m_MaxAngularVelocity

4. Sets the linear and angular accelerations to 0. All linear and angular
accelerations caused by external forces acting on this object have been
accounted for and processed.

5. Updates the linear position and takes gravity and the height of the
ground into account, if applicable. If the object has just hit the ground,
m_JustHitGround is set to true. The y component of the object’s velocity is
set to 0, and the position of the object is set to the ground level specified by
m_GroundLevel, if the object is below the ground level and falling.

6. Updates the angular position of the object

CHAPTER 5: Motion and Collision 145

Listing 5-10. Updating the Object’s Physics

void UpdatePhysicsObject(Orientation orientation)
{

// 0. Apply Gravity if needed

if (m_ApplyGravity)

{

ApplyGravityToObject();
}

// 1. Update Linear Velocity

IITTILLIII00T 17007 17707707077777177777777177771177771771717717177171171171117
m Acceleration.x = TestSetLimitValue(m Acceleration.x, m MaxAcceleration.x);
m_Acceleration.y = TestSetLimitValue(m Acceleration.y, m MaxAcceleration.y);
m_Acceleration.z = TestSetLimitValue(m Acceleration.z, m MaxAcceleration.z);

m Velocity.Add(m Acceleration);

m Velocity.x = TestSetLimitValue(m Velocity.x, m MaxVelocity.x);
m Velocity.y = TestSetLimitValue(m Velocity.y, m MaxVelocity.y);
m Velocity.z = TestSetLimitValue(m Velocity.z, m MaxVelocity.z);

// 2. Update Angular Velocity
LILTTLITITLITII0 1100000701007 1 7077170071707 717077177711771717717177111771171117
m_AngularAcceleration = TestSetLimitValue(m AngularAcceleration, m MaxAngularAcceleration);

m_AngularVelocity += m_AngularAcceleration;
m_AngularVelocity = TestSetLimitValue(m AngularVelocity,m MaxAngularVelocity);

// 3. Reset Forces acting on Object

// Rebuild forces acting on object for each update

TITTTIITIIIITIIL 0TI 0 001007717777 777771077717717177171771717711711117111771
m_Acceleration.Clear();

m_AngularAcceleration = 0;

//4. Update Object Linear Position

LIIITTIITLL00 1770007077 7000077777700777717770777711717777771111777111111771711
Vector3 pos = orientation.GetPosition();

pos.Add(m Velocity);

// Check for object hitting ground if gravity is on.
if (m ApplyGravity)
{

if ((pos.y < m_GroundLevel)8& (m_Velocity.y < 0))
{

if (Math.abs(m_Velocity.y) > Math.abs(m_Gravity))
{

}

pos.y = m_GroundLevel;
m_Velocity.y = 0;

m_JustHitGround = true;

146 CHAPTER 5: Motion and Collision

//5. Update Object Angular Position

IITTILITTTTTT70007 707770770777 7770777777777077777777707777777777777177777117711777777
// Add Rotation to Rotation Matrix

orientation.AddRotation(m_AngularVelocity);

Hands-on Example: Linear Motion and Angular Motion
Using Forces

Here | guide you through a hands-on example demonstrating the use of forces to create linear and
angular movement in 3D objects. To follow along with this exercise, the best thing to do is to create a
new work space on your development system, download the code for this chapter from apress. com,
and then import the project into your new work space.

Creating a Four-Sided Textured Cube

In our previous examples, we used a cube with a texture on two sides. Because we are
demonstrating angular rotation here, it would be easier to see the effect if the cube had a texture
on all four sides facing the viewer. The code in Listing 5-11 has been added to the Cube class to
produce a cube with a texture mapped on four sides.

Listing 5-11. Cube with Four-Sided Texture in Cube Class
static float CubeData4Sided[] =

{
/!l X, Y, z, u, % nx, ny, nz
-0.5f, o.5f, o.5f, o.of, o.of, -1, 1, 1, // front top left 0
-0.5f, -o0.5f, o.5f, o.0f, 1.0f, -1, -1, 1, // front bottom left 1
o.5f, -o0.5f, o0.5f, 1.0f, 1.0f, 1, -1, 1, // front bottom right 2
o.5f, o0.5f, o0.5f, 1.0f, o0.o0f, 1, 1, 1, // front top right 3
-0.5f, o0.5f, -0.5f, 1.0f, o0.0f, -1, 1, -1, // back top left 4
-0.5f, -0.5f, -0.5f, 1.0f, 1.0f, -1, -1, -1, // back bottom left 5
0.5f, -o.5f, -0.5f, o.of, 1.0f, 1, -1, -1, // back bottom right 6
o0.5f, o0.5f, -0.5f, o0.0f, o0.0f, 1, 1, -1 // back top right 7
b

Modifying the Object3d Class

The Object3d class has to be modified to add functionality from our Physics class. First, we have to
add two new variables. The m_Physics variable is our interface to the object’s physics properties.

private Physics m Physics;

Another variable we must add is the m_Visible variable that is true if we want that object to be
visible and thus drawn to the screen.

http:\\apress.com

CHAPTER 5: Motion and Collision 147

private boolean m Visible = true;
In the Object3d class’s constructor, we have to create a new Physics object.
m_Physics = new Physics(iContext);

We then have to add functions that set and test the visibility. The SetVisibility() function sets if
the object is visible or not.

void SetVisibility(boolean value) { m Visible = value; }
The IsVisible() function returns true if the object is visible false otherwise.
boolean IsVisible() { return m Visible; }

We also have to add in the GetObjectPhysics() function that allows access to the m_Physics object
from outside the class.

Physics GetObjectPhysics() { return m_Physics; }

The UpdateObjectPhysics() function calls the UpdatePhysicsObject() function with the orientation of
the object to do the actual physics update.

The UpdateObject3d() is the main entry point for updating the physics of our object. If the object is
visible, the physics of that object are updated. (See Listing 5-12.)

Listing 5-12. The Physics Update Entry Point in the Object3d Class
void UpdateObjectPhysics()

{

m_Physics.UpdatePhysicsObject(m Orientation);
}
void UpdateObject3d()
{

if (m_Visible)

{

UpdateObjectPhysics();

}

}

Finally, the DrawObject () function draws the object if the object is visible. The additions to this
function from previous examples are shown in bold in Listing 5-13.

Listing 5-13. Drawing an Object If It’s Visible

void DrawObject(Camera Cam, PointlLight light)

{
if (m_Visible)

DrawObject(Cam,
light,

148 CHAPTER 5: Motion and Collision

m Orientation.GetPosition(),
m Orientation.GetRotationAxis(),
m Orientation.GetScale());

Modifying the MyGLRenderer Class

The MyGLRenderer class must also be modified, because the final program will consist of a cube
that is affected by gravity. A linear upward force is applied to the cube, and a rotational force is
applied to the cube when it hits the ground. The net result is that the cube appears to jump when it
hits the ground and starts spinning faster and faster.

The variable m_Force1 is the linear force that is applied to the cube when it hits the ground level.
private Vector3 m Forcel = new Vector3(0,20,0);

The m_RotationalForce variable is the rotational force that is applied to the cube every time it hits
the ground.

private float m RotationalForce = 3;

In the CreateCube() function, Cube.CubeData4Sided is used to provide texture mapping on four sides
of the cube instead of two.

MeshEx CubeMesh = new MeshEx(8,0,3,5,Cube.CubeDatasSided, Cube.CubeDrawOrder);
The gravity for m_Cube is set to true, so that the cube will fall until it hits the ground level.
m_Cube.GetObjectPhysics().SetGravity(true);

In the onDrawFrame() function (see Listing 5-14), new code in bold has been added, which
1. Updates the cube physics by calling UpdateObject3d()
2. Tests if the cube has just hit the ground by calling GetHitGroundStatus()

3. Applies, the upward translational force m_Force1 and the rotational force
m_RotationalForce to the cube, if the cube has just hit the ground

4. Resets the just-hit-ground status
This is the key code that creates the bouncing/rotating cube effect. (See Figure 5-16.)

Listing 5-14. Modifying the onDrawFrame () Function

@0verride
public void onDrawFrame(GL10 unused)
{
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLES20.glClear(GLES20.GL_DEPTH_BUFFER BIT | GLES20.GL_COLOR BUFFER BIT);

CHAPTER 5: Motion and Collision 149

m_Camera.UpdateCamera();

[1117111711111711777777/// Update Object Physics

// Cube1

m_Cube.UpdateObject3d();

boolean HitGround = m_Cube.GetObjectPhysics().GetHitGroundStatus();
if (HitGround)

m_Cube.GetObjectPhysics().ApplyTranslationalForce(m_Force1);
m_Cube.GetObjectPhysics().ApplyRotationalForce(m_RotationalForce, 10.0f);
m_Cube.GetObjectPhysics().ClearHitGroundStatus();

}
[1111111111171171111117117777 Draw Object
m_Cube.DrawObject(m Camera, m PointLight);

ﬂ & 10:06pm
EEIEIDIEH

Figure 5-16. The jumping rotating cube

Overview of Collisions

In this overview of collisions, | will cover collision detection and the actual application of the action
and reaction forces on both colliding objects.

150 CHAPTER 5: Motion and Collision

Collision Detection

The type of collision detection we will use in this book is based on a sphere where the entire 3D
object fits within the boundaries of a collision sphere. The two objects involved in a collision have
initial velocities of V1lInitial and V2Initial and final velocities after the collision of V1Final and V2Final.
The center of mass of Body1 and Body2 are both assumed to be at the center of the bounding or
collision sphere. The collision normal is a vector that passes through the center of masses of both
objects and is key in determining the final collision velocities and direction of the objects. The forces
acting on the objects when they collide will act along the collision normal and will be equal and
opposite in direction, according to Newton'’s third law of motion. (See Figure 5-17.)

Center of Mass
Body 1

V2 Einal

Collision Normal

V1 jnitial

Center of Mass
Body 2

v Initial

Figure 5-17. Collision between two 3D objects represented by bounding spheres

Modifying the MeshEx Class

First, we must be able to calculate the radius of the collision sphere for a 3D object. In order to do
this, we have to add some code to our MeshEx class.

The following variables have been added. The m_Size variable measures the largest size of the 3D
object mesh in the x, y, and z directions.

private Vector3 m Size = new Vector3(0,0,0);
The m_Radius variable holds the radius of the collision sphere that holds the entire object.
private float m Radius = 0;

The m_RadiusAverage variable holds the average of the biggest parts of the object in the X, y, and z
axes directions. This radius may not enclose the entire object and is not used for our collision detecti
on method discussed later.

private float m_RadiusAverage = 0;

CHAPTER 5: Motion and Collision 151

In the MeshEx constructor, we call the function that calculates the bounding sphere of the mesh being
created, which is CalculateRadius(). (See Listing 5-15.)

The CalculateRadius() function calculates the bounding sphere radius for a 3D object by doing the

following:
1.

Searching through all the object’s vertices and determining the smallest and
largest x, y, and z coordinates.

Finding the size of the object along its x, y, and z axes, based on the
minimum and maximum values of the X, y, and z coordinates found in the
step above.

Calculating the collision radius from the largest portion of the object in
the x, y, or z axes direction. Assuming the object is centered at the origin,
the largest size values in either the X, y, or z direction would represent the
object’s diameter. The collision radius would be half of that diameter.

Calculating the average radius based on the average of the object’s x, y, and
z lengths as the diameter. The final average radius is half of this diameter.

Listing 5-15. Calculating the Radius of an Object’s Mesh

void CalculateRadius()

{

float XMin = 100000000;
float YMin = 100000000;
float ZMin = 100000000;

float XMax = -100000000;
float YMax = -100000000;
float ZMax = -100000000;

int ElementPos = m_MeshVerticesDataPosOffset;

// Loop through all vertices and find min and max values of x,y,z
for (int i = 0; i < m_VertexCount; i++)

{

float x = m_VertexBuffer.get(ElementPos);
float y = m_VertexBuffer.get(ElementPos+1);
float z = m_VertexBuffer.get(ElementPos+2);

// Test for Min
if (x < XMin)
{

}

if (y < YMin)

XMin = x;

YMin = y;

152 CHAPTER 5: Motion and Collision

if (z < ZMin)
{

}

// Test for Max
if (x > XMax)

{

}

if (y > YMax)

ZMin = z;

XMax = Xx;

YMax = y;
}

if (z > ZMax)

IMax = z;
}

ElementPos = ElementPos + m_CoordsPerVertex;

}

// Calculate Size of Mesh in the x,y,z directions
m Size.x = Math.abs(XMax - XMin);
m Size.y = Math.abs(YMax - YMin);
m Size.z = Math.abs(ZMax - ZMin);

// Calculate Radius
float LargestSize = -1;
if (m_Size.x > LargestSize)

{

LargestSize = m_Size.x;
}
if (m_Size.y > LargestSize)
{

LargestSize = m_Size.y;
}
if (m_Size.z > LargestSize)
{

LargestSize = m Size.z;
}

m_Radius = LargestSize/2.0f;

// Calculate Average Radius;
m RadiusAverage = (m_Size.x + m_Size.y + m Size.z) / 3.0f;
m_RadiusAverage = m RadiusAverage/2.0f;

CHAPTER 5: Motion and Collision 153

Modifying the Object3d Class

The GetRadius() function has been added to the Object3d class. This function returns the collision
radius of the object’s mesh. (See Listing 5-16.)

Listing 5-16. The GetRadius () Function
float GetRadius()

{
if (m_MeshEx != null)
{
return m MeshEx.GetRadius();
}
return -1;
}

The GetScaledRadius() function returns the radius of the bounding/collision sphere of the object
scaled by the object’s scale factor. (See Listing 5-17.) Thus, an object that has been scaled twice the
size of the original mesh will have a radius twice that of the original mesh.

Listing 5-17. Getting the Scaled Object3d Mesh Radius

float GetScaledRadius()
{

float LargestScaleFactor = 0;

float ScaledRadius = 0;

float RawRadius = GetRadius();

Vector3 ObjectScale = m Orientation.GetScale();
if (ObjectScale.x > LargestScaleFactor)

LargestScaleFactor = ObjectScale.x;

}
if (ObjectScale.y > LargestScaleFactor)
{
LargestScaleFactor = ObjectScale.y;
}

if (ObjectScale.z > LargestScaleFactor)
LargestScaleFactor = ObjectScale.z;

ScaledRadius = RawRadius * LargestScaleFactor;
return ScaledRadius;

154 CHAPTER 5: Motion and Collision

Types of Collisions

The two types of collisions that we will consider in this section are a normal collision and a
penetrating collision. A normal collision is where the two objects’ bounding spheres collide at their
boundaries within the collision tolerance level. (See Figure 5-18.)

CollisionDistance = 0

m_CollisionNormal

/

m_RelativeVelocity

RelativeVelocityNormal < 0.0
COLLISION

Figure 5-18. Collision

A penetrating collision is where the two objects’ boundary spheres are overlapping and both spheres
are moving toward each other. The two spheres are moving toward each other because the collision
normal and the relative velocity between the two spheres point in different directions. That is, their
dot product is less than 0. (See Figure 5-19.)

CollisionDistance < -m_CollisionTolerance

m_CollisionNormal

e

m_RelativeVelocity

RelativeVelocityNormal < 0.0
PENETRATING_COLLISION

Figure 5-19. Penetrating collision

CHAPTER 5: Motion and Collision 155

Another case that you have to consider is when the two bounding spheres overlap but are headed
away from each other. When the objects are moving away from each other, the dot product between
the collision normal and the relative velocity is greater or equal to 0. This case is not considered a
collision, because the objects are heading away from each other (see Figure 5-20). We will get into
more detail into these cases later in this section.

CollisionDistance < -m_CollisionTolerance

m_CollisionNormal

m_RelativeVelocity

RelativeVelocityNormal > 0.0
PENETRATING

Figure 5-20. Penetrating

Modifying the Physics Class

The Physics class holds the main implementation for collision detection. We have to add some
variables and a function to this class.

We added an enumeration called CollisionStatus that holds the outcome of our collision detection
testing. The values are the following:

COLLISION: A collision has occurred.
NOCOLLISION: The bodies tested are not touching at all.

PENETRATING: The bodies tested are penetrating each other but are moving away
from each other and thus not colliding.

PENETRATING COLLISION: The bodies tested are penetrating each other and are
moving toward each other and, thus, are colliding.

enum CollisionStatus

{
COLLISION,
NOCOLLISION,
PENETRATING,
PENETRATING_COLLISION
}

Next, we add in variables for the collision tolerance. If the collision distance is within the range
-COLLISIONTOLERANCE to COLLISIONTOLERANCE, the two bodies would be considered to be colliding
with each other, and the value COLLISION is returned.

156 CHAPTER 5: Motion and Collision

private float COLLISIONTOLERANCE = 0.1f;
private float m CollisionTolerance = COLLISIONTOLERANCE;

The m_CollisionNormal vector is the vector from the center of mass of one object to the center of
mass of the other object.

private Vector3 m_CollisionNormal;

The m_RelativeVelocity vector is a vector that represents the relative velocity of one object to the
other object that is being tested for collision.

private Vector3 m RelativeVelocity;

The CheckForCollisionSphereBounding() is the function that actually does the collision detection for
two 3D objects. It accepts two objects as input and returns a value of the type CollisionStatus. The
following steps are performed by the function in order to determine the collision status.

1. Calculate the collision distance between the two objects.
Calculate the collision normal between the two objects.

Calculate the relative velocity of the two objects along the collision normal.

> L™

Determine the collision status based on the collision distance and the relative
velocity along the collision normal.

The ImpactRadiusSum variable is the sum of the radius of object1 and radius of object2. If the
collision were exactly at the boundary of the collision spheres, then the CollisionDistance between
the two objects would be zero, and the distance between the center of the masses of the objects
would be just ImpactRadiusSum, as seen in Figure 5-21.

Center of Mass Body 1

ApactRadiusSum

Center of Mass Body 2
Figure 5-21. The perfect collision
The CollisionDistance measures the distance between the boundaries of the collision spheres of

the two objects. It is calculated by subtracting the ImpactRadiusSum from the distance between the
objects’ center of mass. (See Figure 5-22.)

CHAPTER 5: Motion and Collision 157

Center of Mass Body 1

CollisionDistance

Center of Mass Body 2

Figure 5-22. The collision distance
The CollisionNormal is calculated by normalizing the distance vector between the two centers
of mass calculated in the previous step. The relative velocity between the two objects is also

calculated. By taking the dot product between the relative velocity vector and the collision normal
vector, the magnitude of the relative velocity along the collision normal is found. (See Figure 5-23.)

Body 1

m_RelativeVelocity m_CollisionNormal

(Unit Vector of Length 1)

Body 2

RelativeVelocityNormal

Figure 5-23. Calculating the collision direction

Now that you know the collision distance and the relative velocity along the collision normal, you
have the all the information you need to find out if the objects are colliding. You know if they are
touching each other, based on the collision distance, and if they are moving toward each other,
based on the relative velocity of the objects along the collision normal. See Listing 5-18 to see the
actual code.

Listing 5-18. Collision Detection Function

CollisionStatus CheckForCollisionSphereBounding(Object3d body1, Object3d body2)
{

Float ImpactRadiusSum = 0;
float RelativeVelocityNormal = 0;
float CollisionDistance =0;

Vector3 Body1Velocity;
Vector3 Body2Velocity;
CollisionStatus retval;

158 CHAPTER 5: Motion and Collision

// 1. Calculate Separation
ImpactRadiusSum = body1.GetScaledRadius() + body2.GetScaledRadius();

Vector3 Positionl = bodyi.m Orientation.GetPosition();
Vector3 Position2 =body2.m Orientation.GetPosition();

Vector3 DistanceVec = Vector3.Subtract(Positioni, Position2);
CollisionDistance = DistanceVec.Length() - ImpactRadiusSum;

// 2. Set Collision Normal Vector
DistanceVec.Normalize();
m_CollisionNormal = DistanceVec;

// 3. Calculate Relative Normal Velocity:
Body1Velocity = body1.GetObjectPhysics().GetVelocity();
Body2Velocity = body2.GetObjectPhysics().GetVelocity();

m RelativeVelocity = Vector3.Subtract(BodyiVelocity , Body2Velocity);
RelativeVelocityNormal = m RelativeVelocity.DotProduct(m CollisionNormal);

// 4. Test for collision
if((Math.abs(CollisionDistance) <= m CollisionTolerance) &% (RelativeVelocityNormal < 0.0))

retval = CollisionStatus.COLLISION,
}

else
if ((CollisionDistance < -m CollisionTolerance) &% (RelativeVelocityNormal < 0.0))

{
}

else
if (CollisionDistance < -m CollisionTolerance)

{

retval = CollisionStatus.PENETRATING COLLISION;

retval

CollisionStatus.PENETRATING;

retval = CollisionStatus.NOCOLLISION;

return retval;

Calculating Collisions

Now we will derive the formula used to calculate the force acting on the two colliding objects after
impact. The forces acting on the objects will be equal and opposite, according to Newton’s third law
of motion.

The three equations we will need are listed below. The first two equations are Newton’s second law
applied to both objects, with the force on one object the opposite of the other. The third equation
is the coefficient of restitution or “e,” which determines how elastic the collision is. A fully elastic

CHAPTER 5: Motion and Collision 159

collision will produce a collision where kinetic energy is preserved and e = 1. A fully inelastic collision
will produce a collision where kinetic energy is completely lost with e = 0. The e in our equation

is calculated from a ratio of the final relative velocities of our objects after collision to the relative
velocities before the collision. This gives a good idea of how much kinetic energy is preserved after
the collision.

Force = mass1 * acceleration1
-Force = mass2 * acceleration2
E = -(ViFinal - V2Final) / (ViInitial - V2Initial);

Replace acceleration with variables for the change in velocity. We have three equations and three
unknowns. The unknowns are V1Final, V2Final, and Force generated by the collision of these two
objects.

Force = mass1 * (ViFinal - ViInitial)
-Force = mass2 * (V2Final - V2Initial)
e = -(ViFinal - V2Final) / (ViInitial - V2Initial);

Solve the first equation for V1Final.

Force/massl = massl * (ViFinal - ViInitial)/massi
Force/mass1 = ViFinal - ViInitial
Force/mass1 + ViInitial = ViFinal

Solve the second equation for V2Final.

-Force/mass2 = mass2 * (V2Final - V2Initial) / mass2
-Force/mass2 = V2Final - V2Initial
-Force/mass2 + V2Initial = V2Final

Plug Vi1Final and V2Final into the equation for the coefficient of restitution, or e.

e = -(ViFinal - V2Final) / (ViInitial - V2Initial);

-e(ViInitial - V2Initial) = ViFinal - V2Final

-e(VaInitial - V2Initial) = Force/massi + ViInitial - (-Force/mass2 + V2Initial)
-e(ViInitial - V2Initial) - ViInitial = Force/massl + Force/mass2 - V2Initial
-e(ViInitial - V2Initial) - ViInitial + V2Initial = Force/massl + Force/mass2
-e(ViInitial - V2Initial) - VilInitial + V2Initial = (1/massl + 1/mass2) Force

Substitute VRelative = Viinitial - V2Initial.

-e(VRelative) - VRelative = (1/massi + 1/mass2) Force
VRelative(-e -1) = (1/massl + 1/mass2) Force
-VRelative(e + 1) = (1/massl + 1/mass2) Force
-VRelative(e + 1) / (1/massl + 1/mass2) = Force

Thus, the final forces that act on the objects are

ForceAction = -VRelative(e + 1) / (1/massl + 1/mass2)
ForceReaction = - ForceAction

160 CHAPTER 5: Motion and Collision

Modifying the Physics Class

Next, we have to add code, to process a collision.

The ApplyLinearImpulse() function (see Listing 5-19) in the Physics class actually implements the
collision action and reaction forces. This function has three main components, which

1. Calculate the force generated by the collision along the collision normal of the
two objects.

2. Find the vector form of the action force, by taking that magnitude of the
collision force found in step 1 and putting this along the collision normal
between the objects. The reaction force is found by taking the negative of the
action force.

3. Add the forces acting on both objects to each of the objects, by using the
ApplyTranslationalForce() function.

Listing 5-19. The ApplylLinearImpulse() Function
void ApplylLinearImpulse(Object3d body1, Object3d body2)
{

float m_Impulse;

// 1. Calculate the impulse along the line of action of the Collision Normal
m_Impulse = (-(1+m_CoefficientOfRestitution) * (m_RelativeVelocity.DotProduct
(m_CollisionNormal))) / ((1/bodyi.GetObjectPhysics().GetMass() + 1/body2.GetObjectPhysics().

GetMass()));

// 2. Apply Translational Force to bodies

// £ = ma;

// f/m = a;

Vector3 Forcel Vector3.Multiply(m_Impulse, m_CollisionNormal);
Vector3 Force2 = Vector3.Multiply(-m Impulse, m CollisionNormal);

body1.GetObjectPhysics().ApplyTranslationalForce(Forcel);
body2.GetObjectPhysics().ApplyTranslationalForce(Force2);

Hands-on Example: Collisions

In this exercise, we will create another cube above the cube created in the previous hands-on
example. This cube will fall and collide with the first cube. The net effect will be to have two cubes
continuously colliding with each other.

Modifying the MyGLRenderer Class

We need to make some modifications to the MyGLRenderer class in our project. The modifications
involve adding code to create a second cube and adding code to process the collision between this
new cube and old cube from the previous hands-on example.

CHAPTER 5: Motion and Collision 161

First, we have to add the variable for the new cube, which is m_Cube2.
private Cube m_Cube2;

Next, we have to create the new cube. The creation of the new cube is similar to the creation of the
first cube. (See Listing 5-20.)

Listing 5-20. Creating the New Cube

void CreateCube2(Context iContext)
{
//Create Cube Shader
Shader Shader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelight); // ok

MeshEx CubeMesh = new MeshEx(8,0,3,5,Cube.CubeDatasSided, Cube.CubeDrawOrder);

// Create Material for this object
Material Materiall = new Material();

// Create Texture

Texture TexAndroid = new Texture(iContext,R.drawable.ic_launcher);
Texture[] CubeTex = new Texture[1];

CubeTex[0] = TexAndroid;

m_Cube2 = new Cube(iContext,
CubeMesh,
CubeTex,
Materiali,
Shader);

// Set Intial Position and Orientation

Vector3 Axis = new Vector3(0,1,0);

Vector3 Position = new Vector3(0.0f, 4.0f, 0.0f);
Vector3 Scale = new Vector3(1.0f,1.0f,1.0f);

m_Cube2.m_Orientation.SetPosition(Position);
m_Cube2.m_Orientation.SetRotationAxis(Axis);
m_Cube2.m_Orientation.SetScale(Scale);

// Gravity
m_Cube2.GetObjectPhysics().SetGravity(true);

}

The onSurfaceCreated() function has to be modified to create the new cube. The changes needed
are listed in bold in Listing 5-21.

Listing 5-21. onSurfaceCreated() Function Changes

@0verride
public void onSurfaceCreated(GL10 unused, EGLConfig config)
{
m_PointLight = new PointLight(m_Context);
SetupLights();

162 CHAPTER 5: Motion and Collision

// Create a 3d Cube
CreateCube(m_Context);

// Create a Second Cube
CreateCube2(m_Context);

}

In the onDrawFrame() function, the physics properties of the second cube are updated through the
UpdateObject3d() function. The two spheres are checked for a valid collision type, and if true, then
appropriate linear forces are applied to each object. (See Listing 5-22.)

Listing 5-22. onDrawFrame () Modifications

@0verride
public void onDrawFrame(GL10 unused)
{
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLES20.glClear(GLES20.GL_DEPTH BUFFER BIT | GLES20.GL_COLOR BUFFER BIT);

m_Camera.UpdateCamera();

/1111111111111111111/17/// Update Object Physics
// Cubel
m_Cube.UpdateObject3d();
boolean HitGround = m_Cube.GetObjectPhysics().GetHitGroundStatus();
if (HitGround)

{
m_Cube.GetObjectPhysics().ApplyTranslationalForce(m Forcel);
m_Cube.GetObjectPhysics().ApplyRotationalForce(m RotationalForce, 10.0f);
m_Cube.GetObjectPhysics().ClearHitGroundStatus();

}

/1 Cube2

m_Cube2.UpdateObject3d();

// Process Collisions
Physics.CollisionStatus TypeCollision = m_Cube.GetObjectPhysics().
CheckForCollisionSphereBounding(m_Cube, m_Cube2);

if ((TypeCollision == Physics.CollisionStatus.COLLISION) ||
(TypeCollision == Physics.CollisionStatus.PENETRATING_COLLISION))

m_Cube.GetObjectPhysics().ApplyLinearImpulse(m_Cube, m_Cube2);
}

1111111111111111111711/7/7//// Draw Objects

m_Cube.DrawObject(m Camera, m PointLight);

m_Cube2.DrawObject(m_Camera, m_PointLight);
}

Figure 5-24 shows the final result, with two cubes continuously colliding with each other along the
vertical y axis.

CHAPTER 5: Motion and Collision 163

P& @ 5:43am
%

Figure 5-24. The two colliding cubes

Newton’s Law of Gravity

Newton’s law of gravity states that every body in the universe attracts every other body in the
universe. For example, assume you have two masses that are separated by the distance R. Mass2
exerts a force of Force on Mass1, and Mass1 exerts a force -Force on Mass2 that is equal and
opposite. (See Figure 5-25.)

Mass 1

Force Mass 2
-Force :
)R\i

Figure 5-25. Two masses attracting each other

Force is equal to the product of the masses of the two objects, divided by the distance between
them, squared and multiplied by the gravitational constant. (See Figure 5-26.)

164 CHAPTER 5: Motion and Collision

Mass1 * Mass2

Force =G
R2

Figure 5-26. Newton’s law of gravity

For the purposes of this book, we will use a general modified form of the equation in Figure 5-26 for
a gravity grid that will react in a similar way according to that of Newton’s law of gravity. The main
purpose of the gravity grid will be to produce some visually impressive effects.

Drone Grid Case Study: Creating a Gravity Grid Using a
Vertex Shader

In this case study, we will add a gravity grid to the previous hands-on example of the two colliding
cubes bouncing on top of each other. The gravity grid consists of a grid of points that behave
according to Newton’s law of gravity. That is, the grid points are simulated as masses that are
attracted to other masses that are placed on the grid. The purpose of our gravity grid in this example
will be to illustrate how the movement of the cubes can change the shape of the gravity grid to
produce some visually interesting effects. In addition, a spotlight will be placed on the grid under

the masses that are added onto it. The purpose of the spotlight is to highlight and enhance the
deformations caused by the masses on the gravity grid.

Modifying the Physics Class

The Physics class needs to be modified to hold the radius of the spotlight that is shown on the grid
below an object that is added on to the grid. The variable m_MassEffectiveRadius is the radius for
the spotlight on the grid.

private float m MassEffectiveRadius = 10; // Radius for mass effect on gravity grid

The functions GetMassEffectiveRadius () and SetMassEffectiveRadius() retrieve and set the radius
for the spotlight.

float GetMassEffectiveRadius() {return m_MassEffectiveRadius;}
void SetMassEffectiveRadius(float value) { m_MassEffectiveRadius = value;}

Modifying the MeshEx Class

Next, we have to add some code to the MeshEx class. This new code will be used to draw lines
instead of triangles.

MeshType is a new enumeration that has the values of Triangles and Lines.

enum MeshType

{
Triangles,
Lines

CHAPTER 5: Motion and Collision 165

A new variable is also added of MeshType called m_MeshType.

private MeshType m_MeshType;

In the MeshEx () constructor, the type of mesh to draw is defaulted to triangles.
m_MeshType = MeshType.Triangles;

Functions to set and retrieve the type of mesh being drawn are also added.

void SetMeshType(MeshType Type){m MeshType = Type;}
MeshType GetMeshType() {return m MeshType;}

In the DrawMesh() function, we add and change the code to actually draw the mesh. We draw either
triangles or lines, based on the value of m_MeshType. (See Listing 5-23.)

Listing 5-23. Code to Draw Either Triangles or Lines

if (m_MeshType == MeshType.Triangles)

GLES20.glDrawElements(GLES20.GL_TRIANGLES,
m_DrawListBuffer.capacity(),
GLES20.GL_UNSIGNED_SHORT,
m_DrawListBuffer);

}

else
if (m_MeshType == MeshType.Lines)

GLES20.glDrawElements(GLES20.GL_LINES,
m_DrawListBuffer.capacity(),

GLES20.GL_UNSIGNED SHORT,
m DrawListBuffer);

The GravityGridEx Class

Next, we create a new class called GravityGridEx. This is the class that represents the gravity grid
that our objects will be placed on.

The actual grid object is of type MeshEx and is called m_LineMeshGrid.
private MeshEx m_LineMeshGrid;

The vertex data for the grid has to be defined. The number of coordinates per vertex is 3, which are
the x, y, and z values of the point location for the grid.

private int m CoordsPerVertex = 3;
The offset into the vertex array to the vertex position data is 0.

private int m_MeshVerticesDataPosOffset = 0;

166 CHAPTER 5: Motion and Collision

The offset into the vertex array to the uv texture is -1, meaning there is no texture for this grid.
private int m_MeshVerticesUVOffset = -1;

The offset into the vertex array to the vertex normal is -1, meaning there are no vertex normals for
this grid.

private int m_MeshVerticesNormalOffset = -1;

The m_Vertices array holds the vertex data for the grid.

private float[] m Vertices;

The m_DrawOrder array stores the order that the vertices held in m_Vertices are rendered.
private short[] m_DrawOrder;

The number of masses on the grid is held in m_NumberMasses.

private int m_NumberMasses = 0;

The index into the array data for the masses is held in MassesIndex.

private int MassesIndex = 0;

The maximum number of masses allowed on the grid is held in MAX_MASSES.

private int MAX_MASSES = 30;

The values of each of the masses on the grid are held in an array called m_MassValues.
private float[] m_MassValues = new float[MAX_MASSES];

The values of the locations of the masses on the grid are held in an array called m_MassLocations in
the format x, y, z for each mass. So every three float elements in the array represent one mass.

private float[] m MassLocations = new float[MAX MASSES*3];
The values for the radius in which to draw the spotlight are stored in m_MassEffectiveRadius.
private float[] m_MassEffectiveRadius = new float[MAX_MASSES];

The spotlight color to place on the grid for each of the masses is stored in m_MassSpotLightColor in
r, g, b format. So, every three float array elements represent data for a single mass.

private float[] m_MassSpotLightColor = new float[MAX_MASSES*3]; // 3 r,g,b values per mass
The shader for this grid is held in m_Shader.

private Shader m_Shader;

CHAPTER 5: Motion and Collision 167

The link to the vertex position variable in the shader is held in m_PositionHandle.

private int m_PositionHandle;

The color of the grid is held in m_GridColor.

private Vector3 m GridColor;

The value to send to the modelviewprojection matrix in the shader is located in m_MVPMatrix.
private float[] m MVPMatrix = new float[16];

The grid location boundaries along the x axis are held in the following variables:

private float m_XMinBoundary;
private float m XMaxBoundary;

The grid location boundaries along the z axis are held in the following variables:

private float m_ZMinBoundary;
private float m_ZMaxBoundary;

The GravityGridEx constructor creates the grid, based on the input parameters to the constructor.
The following steps are performed in the creation of the gravity grid in the constructor:

1. The array that holds the vertex datam Vertices is initialized by allocating
enough memory to hold all the vertex data.

2. Two nested for loops, the outer loop running the length of the z axis of the
grid and the other inner loop running the length of the x axis of the grid,
create the points of the grid and puts them into the m_Vertices array.

3. The array m_DrawOrder, which holds the indices into m_Vertices for the actual
method of how to draw the mesh, is initialized by allocating enough memory
to hold each line to be drawn.

4, The m DrawOrder array is filled with the indices of the vertices that need to
have lines drawn between them. Because we are drawing lines, each two
entries of m_DrawOrder would represent one line. This is done in two loops,
one for the horizontal lines, and the other for vertical lines of the grid.

5. The actual grid is created using the m_Vertices and the m_DrawOrder arrays
created in the previous steps and stored in the m_LineMeshGrid variable.

6. The mesh type to draw is set to lines.

7. The call to the ClearMasses() function sets the mass value of all the objects
on the grid to 0.

See Listing 5-24 for details of the code that executes the preceding steps.

168 CHAPTER 5: Motion and Collision

Listing 5-24. GravityGridEx Constructor

// Creates a grid of lines on the XZ plane at GridHeight height
// of size GridSizeZ by GridSizeX in number of grid points
GravityGridex(Context iContext,

Vector3 GridColor,

float GridHeight,

float GridStartzValue, float GridStartXValue,

float GridSpacing,

int GridSizeZ, int GridSizeX,

Shader iShader)

m_Context = iContext;
m_Shader = iShader;
m_GridColor = GridColor;

// Set Grid Boundaries
float NumberCellsX = GridSizeX - 1;
float NumberCellsZ = GridSizeZ - 1;

m_XMinBoundary = GridStartXValue;
m_XMaxBoundary = GridStartXValue + (NumberCellsX * GridSpacing);

m_ZMinBoundary = GridStartzValue;

m_ZMaxBoundary = GridStartZValue + (NumberCellsZ * GridSpacing);
int NumberVertices = GridSizeZ * GridSizeX;

int TotalNumberCoords = m_CoordsPerVertex * NumberVertices;

Log.e("GRAVITYGRIDEX" , "TotalNumberCoords = " + TotalNumberCoords);
m Vertices = new float[TotalNumberCoords];

// Create Vertices for Grid
int index = 0;
for (float z = 0; z < GridSizeZ; z++)
{
for (float x = 0; x < GridSizeX; x++)
{
// Determine World Position of Vertex
float xpos = GridStartXValue + (x * GridSpacing);
float zpos = GridStartzValue + (z * GridSpacing);

if (index >

{

TotalNumberCoords)

Log.e("GRAVITYGRIDEX" , "Array Out of Bounds ERRROR, Index >=
TotalNumberCoords");

}
// Assign Vertex to array
m Vertices[index] = Xpos; //x coord

m Vertices[index + 1] = GridHeight; // y coord
m Vertices[index + 2] = zpos;
// z coord

CHAPTER 5: Motion and Collision 169

// Increment index counter for next vertex
index = index + 3;

}

// Create DrawlList for Grid

int DrawListEntriesX = (GridSizeX-1) * 2;

int TotalDrawlListEntriesX = GridSizeZ * DrawlListEntriesX;

int DrawlListEntriesZ = (GridSizeZ-1) * 2;
int TotalDrawlListEntriesZ = GridSizeX * DrawlListEntriesZ;

int TotalDrawlListEntries = TotalDrawlListEntriesX + TotalDrawlListEntriesZ;

Log.e("GRAVITYGRIDEX" , "TotalDrawlListEntries = " + TotalDrawlListEntries);
m DrawOrder = new short[TotalDrawlListEntries];

index = 0;
for (int z = 0; z < GridSizeZ; z++)
{

// Create Draw List for Horizontal Lines
for (int x = 0; x < (GridSizeX-1);x++)
{

if (index »>= TotalDrawListEntries)

{
Log.e("GRAVITYGRIDEX" , "Array Out of Bounds ERRROR- Horizontal,

Index >= TotalDrawlListEntries");

}

int CurrentVertexIndex = (z*GridSizeX) + x;
m DrawOrder[index] = (short)CurrentVertexIndex;
m DrawOrder[index + 1]= (short)(CurrentVertexIndex + 1);

index = index + 2;

}

for (int z = 0; z < (GridSizeZ-1); z++)

{
// Create Draw List for Vertical Lines
for (int x = 0; x < (GridSizeX);x++)
{

if (index »>= TotalDrawlListEntries)

{
Log.e("GRAVITYGRIDEX" , "Array Out of Bounds ERRROR-Vertical, Index

>= TotalDrawListEntries");

}

int CurrentVertexIndex (z*GridSizeX) + x;
int VertexIndexBelowCurrent = CurrentVertexIndex + GridSizeX;

m_DrawOrder[index] (short)CurrentVertexIndex;

170 CHAPTER 5: Motion and Collision

m DrawOrder[index + 1] = (short)VertexIndexBelowCurrent;

index = index + 2;
}
}
// Create Mesh
m_LineMeshGrid = new MeshEx(m CoordsPerVertex, m MeshVerticesDataPosOffset, m_

MeshVerticesUVOffset, m MeshVerticesNormalOffset,m Vertices,m DrawOrder);
m_LineMeshGrid.SetMeshType(MeshType.Lines);

// Clear Value of Masses
ClearMasses();

}

The function ClearMasses() does the actual job of clearing the grid of all the masses from the
m_MassValues array. Clearing all the masses from the grid has to be done for each frame update,
because a mass such as an enemy object can be destroyed and thus will need to be removed from
the gravity grid. For every frame update, only masses that are currently active will be added to the
gravity grid. (See Listing 5-25.)

Listing 5-25. Clearing the Grid

void ClearMasses()

{
for (int i = 0; i < MAX_MASSES; i++)
{
m MassValues[i] = 0;
}
}

The ResetGrid() function clears the grid of all masses and all other related variables that are needed
to keep track of the number of masses. (See Listing 5-26.)

Listing 5-26. Resetting the Grid
void ResetGrid()

{
// Clears Grid of All Masses
MassesIndex = 0;
m_NumberMasses = 0;
ClearMasses();

}

The code in Listing 5-27 provides access to key grid data, including the following:
1. The maximum number of masses allowed on the gravity grid
The current number of masses on the gravity grid

The x boundaries of the gravity grid

> LN

The z boundaries of the gravity grid

CHAPTER 5: Motion and Collision

Listing 5-27. Accessing Key Grid Data

int GetMaxMasses(){return MAX_MASSES;}

int GetNumberMassesOnGrid(){return m NumberMasses;}
float GetXMinBoundary(){return m_XMinBoundary;}
float GetXMaxBoundary() {return m XMaxBoundary;}
float GetZMinBoundary(){return m_ZMinBoundary;}
float GetZMaxBoundary(){return m_ZMaxBoundary;}

The function AddMass () in Listing 5-28 adds an object to the gravity grid. This function has to be
used with the ClearMasses() function, in order to make sure all the masses currently on the gravity
grid are up to date.

The function does the following:

1.
2.

Calculates the indices for the location and spotlight arrays for this new object

Checks to see if the gravity grid is already full. If it is, then it returns with a
false value

Places the value of the new object’s mass in the m_MassValues array

Places the x, y, z position of the new object in the m_MassLocations array
using the index calculated from step 1

Places the radius of the spotlight for the object in the m_MassEffectiveRadius
array

Places the spotlight color for the object in the m_MassSpotLightColor array
using the index calculated in step 1

Listing 5-28. Adding a Mass to the Gravity Grid

boolean AddMass(Object3d Mass)

{

boolean result = true;

int MasslLocationIndex
int SpotlightlLocationIndex

MassesIndex * 3; // each mass has 3 components x,y,z
MassesIndex * 3; // each spotlight has 3 components r,g,b

if (m_NumberMasses >= MAX_MASSES)
{

result = false;
return result;

}

float[] Color;

// Add Value of the Mass
m_MassValues[MassesIndex] = Mass.GetObjectPhysics().GetMass();

// Add the x,y,z location of the Mass
m_MassLocations[MassLocationIndex] = Mass.m _Orientation.GetPosition().x;
m_MassLocations[MassLocationIndex + 1]= Mass.m Orientation.GetPosition().y;

1m

172 CHAPTER 5: Motion and Collision

m MassLocations[MassLocationIndex + 2]= Mass.m Orientation.GetPosition().z;
MassLocationIndex = MassLocationIndex + 3;

// Add the Radius of the Spotlight for the Mass
m_MassEffectiveRadius[MassesIndex] = Mass.GetObjectPhysics().GetMassEffectiveRadius();

// Add the SpotLight Color for the mass

Color = Mass.GetGridSpotLightColox();

m MassSpotLightColor[SpotlLightLocationIndex] = Color[0];
m_MassSpotLightColor[SpotLightLocationIndex + 1] = Color[1];
m_MassSpotLightColor[SpotLightLocationIndex + 2] = Color[2];
SpotLightlocationIndex = SpotlLightlLocationIndex + 3;

MassesIndex++;
m_NumberMasses++;

return result;

}

The AddMasses () function shown in Listing 5-29 adds in iNumberMasses objects from the Masses
array to the gravity grid. This is basically the same function as in Listing 5-28, except that instead of
reading in the data for one object, multiple objects are read in from an array.

Listing 5-29. Adding Multiple Masses from an Array

boolean AddMasses(int iNumberMasses, Object3d[] Masses)
{

boolean result = true;

int MasslLocationIndex = MassesIndex * 3; // each mass has 3 components x,y,z
int SpotlLightlLocationIndex = MassesIndex * 3; // each spotlight has 3 components r,g,b

float[] Color;
for (int i = 0; i < iNumberMasses; i++)

{
if (m_NumberMasses >= MAX MASSES)
{
return false;
}

// Add Value of the Mass
m_MassValues[MassesIndex] = Masses[i].GetObjectPhysics().GetMass();

// Add the x,y,z location of the Mass

m_MassLocations[MassLocationIndex] = Masses[i].m Orientation.GetPosition().x;
m_MassLocations[MassLocationIndex + 1]= Masses[i].m Orientation.GetPosition().y;
m_MassLocations[MassLocationIndex + 2]= Masses[i].m Orientation.GetPosition().z;
MassLocationIndex = MassLocationIndex + 3;

// Add the Radius of the Spotlight for the Mass
m_MassEffectiveRadius[MassesIndex] = Masses[i].GetObjectPhysics().
GetMassEffectiveRadius();

CHAPTER 5: Motion and Collision 173

// Add the SpotlLight Color for the mass

Color = Masses[i].GetGridSpotLightColox();

m MassSpotLightColor[SpotlLightLocationIndex] = Color[0];
m_MassSpotLightColor[SpotLightLocationIndex + 1] = Color[1];
m_MassSpotLightColor[SpotLightLocationIndex + 2] = Color[2];
SpotLightlocationIndex = SpotlLightlLocationIndex + 3;

MassesIndex++;
m_NumberMasses++;

}

return result;

}

The SetUpShader () function prepares the vertex shader to render the gravity grid.
The function does the following:
1. Activates the shader

2. Gets the position handle that serves to link the vertex position variable in the
shader to the main program that will send the vertex data to the shader

3. Sets the specific values of the masses that are on the grid, such as the mass
value, radius of the spotlight, mass location, and the color of the spotlight

4. Sets the color of the gravity grid in the shader
5. Sets the value of the modelviewprojection matrix in the shader

See Listing 5-30 for the actual code details.

Listing 5-30. Setting Up the Vertex Shader for the Gravity Grid

void SetUpShader()

{
// Add program to OpenGL environment
m_Shader.ActivateShader();

// get handle to vertex shader's vPosition member
m_PositionHandle = m_Shader.GetShaderVertexAttributeVariableLocation("aPosition");

// Set Gravity Line Variables
m_Shader.SetShaderUniformVariableValueInt("NumberMasses", m_NumberMasses);
m_Shader.SetShaderVariableValueFloatVectoriArray("MassValues", MAX MASSES, m MassValues, 0);
m_Shader.SetShaderVariableValueFloatVector3Array("MassLocations", MAX_ MASSES,
m MassLocations, 0);
m_Shader.SetShaderVariableValueFloatVectoriArray("MassEffectiveRadius", MAX_MASSES,
m_MassEffectiveRadius, 0);
m_Shader.SetShaderVariableValueFloatVector3Array("SpotLightColor",MAX_MASSES,
m_MassSpotLightColor, 0);

174 CHAPTER 5: Motion and Collision

// Set Color of Line
m_Shader.SetShaderUniformVariableValue("vColor", m_GridColor);

// Set View Proj Matrix
m_Shader.SetShaderVariableValueFloatMatrix4Array("uMvPMatrix", 1, false, m _MVPMatrix, 0);

}

The function GenerateMatrices() builds the modelviewprojection matrix from the view matrix and
the projection matrix. The grid does not need to be moved or rotated anywhere, so we can skip the
step where the model is translated and rotated into the world space. (See Listing 5-31.)

Listing 5-31. Generating the modelviewprojection Matrix

void GenerateMatrices(Camera Cam)

{
}

Matrix.multiplyMM(m MVPMatrix, 0, Cam.GetProjectionMatrix(), 0, Cam.GetViewMatrix(), 0);
The DrawGrid() function creates the needed matrices, sets up the vertex shader for rendering, and
then draws the actual gravity grid mesh. (See Listing 5-32.)

Listing 5-32. Drawing the Gravity Grid Mesh

void DrawGrid(Camera Cam)

{
// Set up Shader
GenerateMatrices(Cam);
SetUpShader();
// Draw Mesh
m_LineMeshGrid.DrawMesh(m_PositionHandle, -1, -1);
}

Creating the New Vertex Shader

A new vertex shader needs to be created in order to change the way vertices are placed in the 3D
world for the grid mesh object. The basic idea of this new vertex shader is that each vertex or point
on the gravity grid will have all the attractive gravitational forces from all the masses on the grid
calculated, and the sum of these forces will help determine the final position of each grid point. The
spotlight color contribution from all the objects on the grid are also calculated for each grid point and
added to the original color. (See Figure 5-27.)

CHAPTER 5: Motion and Collision

Figure 5-27. The gravity grid

Object
Grid Points O
Force Force
Force / f Force

Mass1 * Mass2
R2

Force = G

Next, I’ll discuss what code is in the actual gravity grid vertex shader. The modelviewprojection

matrix is held in uMVPMatrix.

uniform mat4 uMVPMatrix;

The grid vertex locations are sent from the main program to the aPosition variable.

attribute vec3 aPosition;

The code in Listing 5-33 creates shader variables that deal with the following:

1. The number of masses currently on the grid

o g ~ w D

Listing 5-33. Grid Object Information

uniform int NumberMasses;
const int MAX_MASSES = 30;

uniform float MassValues[MAX MASSES];

The maximum number of masses on the grid
The mass values of all the objects on the grid
The locations of all the objects on the grid

The radius of the grid spotlight under the object

uniform vec3 MassLocations[MAX MASSES];
uniform float MassEffectiveRadius[MAX_ MASSES];
uniform vec3 SpotLightColor[MAX MASSES];

The color of the vertex that is input to the shader is held in vColor.

uniform vec3 vColor;

The spotlight color related to the object that is displayed on the grid

175

176 CHAPTER 5: Motion and Collision

The final color of the vertex, including colors contributed from spotlights, is sent to the fragment
shader by the Color variable.

varying vec3 Color;

The function IntensityCircle() returns an intensity value from 0 to 1 that is most intense in the
center of the circle and 0 when Radius = MaxRadius. (See Listing 5-34.)

Listing 5-34. The Intensity Circle for the Spotlights
float IntensityCircle(float Radius, float MaxRadius)

{
float retval;
retval = 1.0 - (Radius/MaxRadius);
return retval;

}

Main() Function of Shader

In the main() function of the shader, where the actual shader code starts to execute, we first create a
NewPos vector variable, to hold the incoming vertex locations.

vec3 NewPos;
NewPos = aPosition;

The part of the shader code shown in Listing 5-35 is the main loop that processes all the objects
on the grid and determines the net force acting on the current grid vertex by all the objects on the
grid. It also determines the final color of the vertex, based on the original color and the total of the
spotlight colors from the objects.

The code in Listing 5-35 does the following:
1. Sets a maximum force through the ForceMax variable

2. Initializes the cumulative spotlight color from all the objects on the grid to
black (0,0,0)

3. Initializes the cumulative spotlight color for each of the active objects on the
grid (Mass > 0)
4. Calculates the direction to the object from the vertex

5. Calculates the distance from the object to the vertex

6. Calculates the gravitational force attraction, using the formula Force =
(MassValues[i] * (2.0)) / (R * R), which roughly approximates Newton’s
law of gravity, where both objects’ masses are the same and the gravitational
constant is 1

7. Uses the IntensityCircle function to determine the vertex’s spotlight color
for that object, if the distance to the object from the vertex is within the
object’s spotlight distance

CHAPTER 5: Motion and Collision

8. Choses from Newton’s law of gravity and ForceMax the minimum force from
the current force calculated

9. Adds the displacement that this force causes the grid vertex by adding this
force to the current vertex position

Listing 5-35. Calculating the Forces and Colors for a Grid Point

// F =G *(ML *M2)/ (R*R)

// F=m*a

// F/m = a

// Force = (MassOnGravityGrid * MassVertex) / (RadiusBetweenMasses * RadiusBetweenMasses);
float Force;

float ForceMax = 0.6; //0.5;

vec3 VertexPos = NewPos;

vec3 MassSpotLightColor = vec3(0,0,0);

for (int i = 0; i < MAX_MASSES; i++)

{
// If mass value is valid then process this mass for the grid
if (MassValues[i] > 0.0)
{
vec3 Mass2Vertex = VertexPos - MasslLocations[i];
vec3 DirectionToVertex = normalize(Mass2Vertex);
vec3 DirectionToMass = -DirectionToVertex;
float R = length(Mass2Vertex);
Force = (MassValues[i] * (2.0)) / (R * R);
if (R < MassEffectiveRadius[i])
{
float Intensity = IntensityCircle(R, MassEffectiveRadius[i]);
MassSpotLightColor = MassSpotLightColor + (SpotLightColor[i] * Intensity);
}
Force = min(Force, ForceMax);
VertexPos = VertexPos + (Force * DirectionToMass);
}
}

177

The final vertex position saved in gl Position is calculated by multiplying the modelviewprojection

matrix by the vertex location in VertexPos.

gl Position = uMVPMatrix * vec4(VertexPos,1);

The final color of the vertex Color is derived from the original color vColor of the vertex, added to the

sum of the spotlight colors from all the objects on the gravity grid.

Color = vColor + MassSpotlLightColor;

178 CHAPTER 5: Motion and Collision

Modifying the MyGLRenderer Class

Next, we have to add more code to our MyGLRenderer class. This code creates and updates the
gravity grid.

The actual gravity grid is held in the variable m_Grid, which is a GravityGridEx class.
private GravityGridEx m_Grid;

The CreateGrid() function actually creates the gravity grid of size 33 by 33 blocks, with grid lines
that are dark blue in color. (See Listing 5-36.)

Listing 5-36. Creating the Gravity Grid

void CreateGrid(Context iContext)

{
Vector3 GridColor = new Vector3(0,0.0f,0.3f);
float GridHeight = -0.5f;
float GridStartzZValue = -15;
float GridStartXValue = -15;
float GridSpacing = 1.0f;
int GridSizez = 33; // grid vertex points in the z direction
int GridSizeX = 33; // grid vertex point in the x direction
Shader iShader = new Shader(iContext, R.raw.vsgrid, R.raw.fslocalaxis);
m_Grid = new GravityGridEx(iContext,
GridColor,
GridHeight,
GridStartzvalue,
GridStartXvalue,
GridSpacing,
GridSizez,
GridSizeX,
iShader);
}

In the CreateCube() function, you have to set the grid spotlight color that your object will produce
and set the spotlight radius or mass effective radius for this spotlight. In the case of our first cube,
the spotlight color will be red, and the spotlight radius will be 6. (See Listing 5-37.)

Listing 5-37. Adding to the CreateCube() Function

Vector3 GridColor = new Vector3(1,0,0);
m_Cube.SetGridSpotLightColor(GridColor);
m_Cube.GetObjectPhysics().SetMassEffectiveRadius(6);

In the CreateCube2() function, we add code to set the grid spotlight color to green and the spotlight
radius to 6 of object m_Cube2. (See Listing 5-38.)

CHAPTER 5: Motion and Collision 179

Listing 5-38. Adding to the CreateCube2() Function

Vector3 GridColor = new Vector3(0,1,0);
m_Cube2.SetGridSpotLightColor(GridColor);
m_Cube2.GetObjectPhysics().SetMassEffectiveRadius(6);

We add a function UpdateGravityGrid(), which updates our gravity grid by resetting the grid to clear
out all the masses. Then we add the masses we want to appear on the grid. Let’s add our first cube
with the red spotlight. (See Listing 5-39.)

Listing 5-39. Updating the Gravity Grid
void UpdateGravityGrid()

{
// Clear Masses from Grid from Previous Update
m_Grid.ResetGrid();
// Add Cubes to Grid
m_Grid.AddMass(m_Cube);
}

In the onSurfaceCreated() function, we add a call to the CreateGrid() function to create our new
gravity grid when our GL surface has been created. (See Listing 5-40.)

Listing 5-40. Modifying the onSurfaceCreated() Function

@0verride
public void onSurfaceCreated(GL10 unused, EGLConfig config)

{
m_PointLight = new PointLight(m Context);

SetupLights();

// Create a 3d Cube
CreateCube(m_Context);

// Create a Second Cube
CreateCube2(m _Context);

// Create a new gravity grid
CreateGrid(m_Context);

}

The onDrawFrame() function has to be modified to update and draw the gravity grid. The changes are
in bold print. (See Listing 5-41.)

Listing 5-41. Modifying the onDxrawFrame () Function

@0verride
public void onDrawFrame(GL10 unused)
{
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLES20.glClear(GLES20.GL_DEPTH_BUFFER BIT | GLES20.GL_COLOR BUFFER BIT);

180 CHAPTER 5: Motion and Collision

m_Camera.UpdateCamera();

1111111111117111117/771777/] Update Object Physics

// Cubel

m_Cube.UpdateObject3d();

boolean HitGround = m_Cube.GetObjectPhysics().GetHitGroundStatus();
if (HitGround)

{
m_Cube.GetObjectPhysics().ApplyTranslationalForce(m Forcel);
m_Cube.GetObjectPhysics().ApplyRotationalForce(m RotationalForce, 10.0f);
m_Cube.GetObjectPhysics().ClearHitGroundStatus();

}

// Cube2

m_Cube2.UpdateObject3d();

// Process Collisions
Physics.CollisionStatus TypeCollision = m Cube.GetObjectPhysics()
.CheckForCollisionSphereBounding(m_Cube, m_Cube2);

if ((TypeCollision == Physics.CollisionStatus.COLLISION) ||
(TypeCollision == Physics.CollisionStatus.PENETRATING COLLISION))

{
}

111111111711171177111/7///7/// Draw Objects
m_Cube.DrawObject(m Camera, m PointLight);
m_Cube2.DrawObject(m Camera, m_PointLight);

m_Cube.GetObjectPhysics().ApplyLinearImpulse(m Cube, m_Cube2);

11111111111111111111111117 Update and Draw Grid
UpdateGravityGrid();
m_Grid.DrawGrid(m_Camera);

}

Now run the application. You should see something that resembles Figure 5-28.

CHAPTER 5: Motion and Collision 181

@ 12:56 am

Figure 5-28. Gravity grid with one cube added

Now, let’s add the other cube to the gravity grid. Go to the UpdateGravityGrid() function and add
the following line:

m_Grid.AddMass(m_Cube2);

This adds the second cube to the gravity grid. You should see something similar to Figure 5-29. Note
that the color of the spotlight under the grid has changed, and the grid generally seems to be higher
because of the addition of the new mass.

B @ 6:09 am

Figure 5-29. Gravity grid with two cubes added

182 CHAPTER 5: Motion and Collision

Summary

In this chapter, | discussed motion and collision. | started with linear and angular velocity and
acceleration and Newton'’s three laws of motion. Then | covered our custom Physics class that
implemented motion for our objects. | then presented a hands-on example in which we demonstrated
the application of linear and angular force on an object. Next, | covered collision detection and
collision response. We added to our previous hands-on example by adding another cube that
continuously collided with the first cube. Then we designed a gravity grid that obeyed Newton’s law
of gravity. Finally, we implemented and demonstrated this gravity grid in a hands-on example.

Chapter

Game Environment

In this chapter, | will cover the game environment. | start off by covering the creation of sound
on Android. | cover our custom Sound class and then modifications we will need to make to
other class objects to integrate sounds into them. | then go through a hands-on example in
which we play explosion sounds when two cubes collide with each other. | then cover how to
create a heads-up display, or HUD. The new classes needed to implement the HUD are covered,
followed by a case study in which a heads-up display is created for a game. Next, | cover saving
and loading data and show how you can add code into your classes to save and load class
data. Finally, | discuss a hands-on example in which we modify our case study to preserve the
HUD item data and the orientation and physics state of the two cubes that are colliding with
each other.

Overview of Sounds on Android

In this section, | discuss the Sound class and other changes in the Object3d class that have to be
made in order to add sounds to our 3D objects.

The Sound Class

The Sound class uses the existing Android SoundPool class to play and manage sounds.
A reference to the existing SoundPool object that holds the main pool of sounds is held in
m_SoundPool.

private SoundPool m SoundPool;
The index to the specific sound in the sound pool is held in m_SoundIndex.
private int m_SoundIndex = -1;

The Sound constructor creates a new sound. The sound is loaded from the resource ResourcelD
into the SoundPool object Pool. An index is returned to the newly created sound within this sound
pool. (See Listing 6-1.)

183

184 CHAPTER 6: Game Environment

Listing 6-1. Sound Constructor

Sound(Context iContext, SoundPool Pool, int ResourcelD)

{
m_SoundPool = Pool;
m_SoundIndex = m_SoundPool.load(iContext, ResourceID, 1);

}

In terms of playing back a sound, the left speaker volume output m_LeftVolume accepts the range
Oto1.

float m_LeftVolume = 1;
The right speaker volume level m_RightVolume also accepts the range 0 to 1.
float m_RightVolume = 1;

In terms of the priority level for playback m_Priority (required if resources are limited), the higher the
number, the greater the priority.

int m_Priority = 1;

The variable m_Loop determines if the sound is looped or not. A negative value means the sound will
be looped forever. A positive number specifies the number of times to loop the sound. A 0 indicates
that there is no looping.

int m_Loop = 0;

The variable m_Rate determines the rate at which to play back the sound. A 1.0 would play the
sound back normally. A 2.0 would play back the sound at twice the rate as normal. The range
is 0.5 to 2.0.

float m Rate = 1;

The PlaySound() function plays back the sound by calling the associated sound pool’s play()
function with the index of the sound m_SoundIndex, along with parameters describing how you
should play the sound. By default, we play back the sound at full volume on the left and right
speakers at the normal rate, without any looping of the sound. (See Listing 6-2.)

Listing 6-2. Playing Back a Sound
void PlaySound()
{

/*

* soundID a soundID returned by the load() function
leftVolume left volume value (range = 0.0 to 1.0)
rightVolume right volume value (range = 0.0 to 1.0)

priority stream priority (0 = lowest priority)

CHAPTER 6: Game Environment 185

loop loop mode (0 = no loop, -1 = loop forever)
rate playback rate (1.0 = normal playback, range 0.5 to 2.0)

*
*/
m_SoundPool.play(m_SoundIndex, m_LeftVolume, m_RightVolume, m Priority, m_Loop, m_Rate);

}
Modifying the Object3d Class

Next, the Object3d class has to be modified to use our new Sound class.
First, new sound-related variables have to be added.

The maximum number of sounds for a single Object3d class is held in MAX_SOUNDS.
private int MAX_SOUNDS = 5;

The current number of sounds available is held in m_NumberSounds.

private int m_NumberSounds = 0;

The sound effects are actually held in the array m_SoundEffects, and each element is of type Sound.
Refer to “The Sound Class” section (preceding) for more information on the Sound class.

private Sound[] m SoundEffects = new Sound[MAX SOUNDS];
The m_SoundEffectsOn array holds booleans that allow you to turn the sound effects on or off.
private boolean[] m_SoundEffectsOn = new boolean[MAX SOUNDS];

The AddSound() function adds a Sound object to the m_SoundEffects array at the next available
slot. The slot number the object is stored in is returned if the operation is successful. If there are no
available slots, a -1 is returned. (See Listing 6-3.)

Listing 6-3. Adding a Sound Object

int AddSound(Sound iSound)
{

int Index = m_NumberSounds;

if (m_NumberSounds >= MAX_SOUNDS)
{

}

m_SoundEffects[Index] = iSound;
m_NumberSounds++;

return -1;

return Index;

186 CHAPTER 6: Game Environment

The SetSFX0n0ff() function turns on or off all the sounds associated with this Object3d class.
(See Listing 6-4.)

Listing 6-4. Turning the SFX On or Off
void SetSFXOnOff(boolean Value)

{
for (int i = 0; i < m_NumberSounds;i++)
{
m_SoundEffectsOn[i] = Value;
}
}

The AddSound() function creates a new Sound class object from a resource ResourceID and the
sound pool Pool and adds the sound to the m_SoundEffects array that holds the sound effects for
this class. (See Listing 6-5.)

Listing 6-5. Creating a New Sound from a Resource

int AddSound(SoundPool Pool, int ResourceID)

{
int SoundIndex = -1;
Sound SFX = new Sound(m_Context, Pool, ResourceID);
SoundIndex = AddSound(SFX);
return SoundIndex;
}

The PlaySound() function plays the sound effect that is associated with the SoundIndex input
parameter for this class. Recall that each time a new sound is added to this Object3d class, an index
handle is returned. You must use this index handle as input to the PlaySound() function, if you want
to play the sound back. (See Listing 6-6.)

Listing 6-6. Playing the Sound

void PlaySound(int SoundIndex)

{
if ((SoundIndex < m_NumberSounds) &&
(m_SoundEffectsOn[SoundIndex]))

{
// Play Sound
m_SoundEffects[SoundIndex].PlaySound();
}
else
{
Log.e("OB]ECT3D", "ERROR IN PLAYING SOUND, SOUNDINDEX = " + SoundIndex);
}

CHAPTER 6: Game Environment 187

Hands-on Example: Sounds

In this section, we will add the playing of explosive sounds every time our two cubes from our
previous chapters collide. Each cube will have its own explosive sound, which will be played every
time the cubes collide. For this hands-on example, you will have to download the source code from
the Source Code/Download area of apress.com and install it on your development system to a new
work space. Two sound effects in the form of .wav files have been added to the project and are
located in the res/raw directory.

Modifying the MyGLRenderer Class

For this hands-on example, we will need to add some code to the MyGLRenderer class.

The sound pool we will use to store and play back the sound from is located in m_SoundPool.
private SoundPool m_SoundPool;

The sound index of the explosive sound for our first cube is stored in m_SoundIndexi.

private int m_SoundIndexi;

The sound index of the explosive sound for our second cube is stored in m_SoundIndex2.

private int m_SoundIndex2;

The m_SFXOn variable determines if the sound effects are set to on or off.

private boolean m_SFXOn = true;

The CreateSoundPool() function creates the sound pool that is used to create and store sounds for
our cube collisions. (See Listing 6-7.)

The SoundPool constructor accepts the following parameters:

MaxStreams: This is the maximum number of simultaneous streams for this
SoundPool object, which is set to 10.

StreamType: The audio stream type and that for games will normally be
STREAM MUSIC.

SrcQuality: This is the sample-rate converter quality that currently has no effect
and is set to 0 for the default.

Listing 6-7. Creating the Sound Pool

void CreateSoundPool()

{

int maxStreams = 10;
int streamType = AudioManager.STREAM_MUSIC;
int srcQuality = o;

http:\\apress.com

188 CHAPTER 6: Game Environment

m_SoundPool = new SoundPool(maxStreams, streamType, srcQuality);

if (m_SoundPool == null)

{
Log.e("RENDERER " , "m_SoundPool creation

}
}

The CreateSound() function creates and adds a sound to our cubes, using as input the sound pool
and the resource id of the specific sound effect. The sound effects for each cube are also turned on.
(See Listing 6-8.)

Listing 6-8. Creating the Sounds for Our Cubes

void CreateSound(Context iContext)

{
m_SoundIndexl = m_Cube.AddSound(m SoundPool, R.raw.explosion2);
m_Cube.SetSFXOnOff(m _SFXOn);
m_SoundIndex2 = m_Cube2.AddSound(m_SoundPool, R.raw.explosion5);
m_Cube2.SetSFXOnOff(m_SFXOn);

}

We create the sound pool and the sound effects for each of the cubes by calling CreateSoundPool()
and CreateSound() from the onSurfaceCreated() function, which is called when our OpenGL surface
is created. (See Listing 6-9.)

Listing 6-9. Creating the Sound Pool and Sound Effects for Our Cubes

@0verride
public void onSurfaceCreated(GL10 unused, EGLConfig config)
{
m_PointLight = new PointLight(m_Context);
SetupLights();

// Create a 3d Cube
CreateCube(m_Context);

// Create a Second Cube
CreateCube2(m Context);

// Create a new gravity grid
CreateGrid(m_Context);

// Create SFX
CreateSoundPool();
CreateSound(m_Context);

CHAPTER 6: Game Environment 189

Next, we must modify the onDrawFrame() function, to play the collision sounds associated with each
of the cubes. Each cube plays its own explosion sound through the PlaySound() function, using the
sound index associated with the sound. See the highlighted code in Listing 6-10.

Listing 6-10. Modifying the onDxawFrame () function

@0verride
public void onDrawFrame(GL10 unused)
{
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLES20.glClear(GLES20.GL_DEPTH BUFFER BIT | GLES20.GL_COLOR BUFFER BIT);

m_Camera.UpdateCamera();

[11111711117177111111771777/] Update Object Physics

// Cubel

m_Cube.UpdateObject3d();

boolean HitGround = m_Cube.GetObjectPhysics().GetHitGroundStatus();
if (HitGround)

{
m_Cube.GetObjectPhysics().ApplyTranslationalForce(m Forcel);
m_Cube.GetObjectPhysics().ApplyRotationalForce(m RotationalForce, 10.0f);
m_Cube.GetObjectPhysics().ClearHitGroundStatus();
}
// Cube2

m_Cube2.UpdateObject3d();

// Process Collisions
Physics.CollisionStatus TypeCollision =
m_Cube.GetObjectPhysics().CheckForCollisionSphereBounding(m_Cube, m Cube2);

if ((TypeCollision == Physics.CollisionStatus.COLLISION) ||
(TypeCollision == Physics.CollisionStatus.PENETRATING COLLISION))

{
m_Cube.GetObjectPhysics().ApplyLinearImpulse(m Cube, m_Cube2);
// SFX
m_Cube.PlaySound(m_SoundIndex1);
m_Cube2.PlaySound(m_SoundIndex2);

}

[1111111111111171111717117/// Draw Objects
m_Cube.DrawObject(m Camera, m PointLight);
m_Cube2.DrawObject(m Camera, m_PointLight);

[11117711111777/77/7//7/7//7 Update and Draw Grid
UpdateGravityGrid();
m_Grid.DrawGrid(m_Camera);

}

The final task is to run our project. You should hear the collision sounds play each time the cubes
hit each other.

190 CHAPTER 6: Game Environment

Overview of a Heads-Up Display

In this section, | will cover the basic features of our heads-up display, as well as the necessary
classes that we will need to create to support the HUD.

Overview of Our HUD

Our HUD is composed of components of the HUDItem class. The actual graphic images for each
HUD item are a BillBoard class that implements a 2D billboarding system. In billboarding, a flat
rectangle with the image of the items we want to display on the HUD, such as scores and the
player’s health, are placed in front of the camera and turned toward the camera, so that the images
appear flat (see Figure 6-1). HUD items are updated by directly copying the new graphics data to the
texture associated with the HUD item.

B0 @ 6:10am

Figure 6-1. HUD diagram

Creating the BillBoard Class

In billboarding, the basic idea is to take a 2D rectangular image and turn it, so that it faces the
camera. Generally, this is used as a cheap way to make a 2D image look three-dimensional.
Billboarding is accomplished in our BillBoard class, which | cover in this section.

The BillBoard class is derived from the Cube class, which is derived from the Object3d class.

public class BillBoard extends Cube

CHAPTER 6: Game Environment 191

The constructor for the BillBoard class is shown in Listing 6-11. The constructor first calls the
constructor for the superclass Cube. Next, the scale for the billboard is set to normal along the x and
y local axes and minimized on the z axis, to make the billboard as thin as possible.

Listing 6-11. The BillBoard Class Constructor

BillBoard(Context iContext,

}

MeshEx iMeshEx,
Texture[] iTextures,
Material iMaterial,
Shader iShader)

super(iContext, iMeshEx, iTextures, iMaterial, iShader);
Vector3 Scale = new Vector3(1.0f,1.0f,0.1f);
m_Orientation.SetScale(Scale);

The SetBillBoardTowardCamera() function is where the billboard is actually turned toward the
camera or viewer.

The process of implementing billboarding is as follows:

1.

7.

Get the front vector of the billboard object and project it onto the xz plane,
which is ForwardVecProj.

Get the billboard position and project it onto the xz plane, which is
BillBoardPositionProj.

Get the position of the camera and project it onto the xz plane, which is
CameraPositionProj.

Calculate the vector from the billboard to the camera, which is
Bill2CameraVecProj.

Find the angle between the forward or front vector of the billboard object and
the camera, which is Theta.

Calculate the rotation axis by calculating the cross-product of the billboard’s
front vector and the billboard to camera vector to form the rotation axis.

Rotate the billboard toward the camera.

See Figure 6-2 for a visual depiction of the preceding steps, and see Listing 6-12 for the code that
implements the billboarding procedure.

192 CHAPTER 6: Game Environment

BillBoard

Score:1234 Camera

I
|
|
ForwardVecProj I
Cross
Bill2CameraVecProj

/
I BillBoardPositionProj

Bill2CameraVecProj

ForwardVecProj

CameraPositionProj

Figure 6-2. Billboarding

Listing 6-12. Billboarding Procedure

void SetBillBoardTowardCamera(Camera Cam)
{
// 1. Get Front Vector of Billboard Object projected on xz plane
Vector3 ForwardVecProj = new Vector3(m Orientation.GetForwardWorldCoords().x, O,
m_Orientation.GetForwardWorldCoords().z);
// 2. Get The BillBoard Position projected on xz plane
Vector3 BillBoardPositionProj = new Vector3(m_Orientation.GetPosition().x, 0,
m Orientation.GetPosition().z);
// 3. Get Position of Camera on 2d XZ Plane
Vector3 CameraPositionProj = new Vector3(Cam.CGetCamerakye().x, 0, Cam.GetCamerakye().z);

// 4. Calculate Vector from Billboard to Camera
Vector3 Bill2CameraVecProj = Vector3.Subtract(CameraPositionProj , BillBoardPositionProj);
Bill2CameraVecProj.Normalize();

// 5. Find Angle between forward of Billboard object and camera
// P = forwardxy

// Q = Vec_Bill Camera

// P and Q are normalized Vectors

// P.Q = P*Q*cos(theta)

// P.Q/P*Q = cos(theta)

// acos(P.Q/P*Q) = theta;

/1 P.
//
// P.

0 then angle between vectors is less than 90 deg
0 then angle between vectors is greater than 90 deg.
0 then angle between vector is exactly 90 degs.

o
10 .10 /O
n A v

CHAPTER 6: Game Environment 193

// Get current theta

// returns 0-PI radians

float Theta = (float)Math.acos(ForwardVecProj.DotProduct(Bill2CameraVecProj));
float DegreeTheta = Theta * 180.0f/Physics.PI;

// 6. Cross Product to form rotation axis
Vector3 RotAxis = Vector3.CrossProduct(ForwardVecProj, Bill2CameraVecProj);

// 7. Rotate BillBoard Toward Camera
// cos in radians
if ((Math.cos(Theta) < 0.9999) &% (Math.cos(Theta) > -0.9999))

m Orientation.SetRotationAxis(RotAxis);
m_Orientation.AddRotation(DegreeTheta);

else

//Log.e("BILLBOARD", "No Cylindrical Rotation!! , Theta = " + Theta);

}

Finally, the UpdateObject3d() function is called continuously to update the orientation of the billboard
object by calling the SetBillBoardTowardCamera() function discussed in Listing 6-13.

Listing 6-13. Updating the Billboard

void UpdateObject3d(Camera Cam)

{
super.UpdateObject3d();
SetBillBoardTowardCamera(Cam);

}

Creating the BillBoardFont Class
The BillBoardFont class is used to associate a specific character with the billboard texture image.

The BillBoardFont class is derived from the BillBoard class.
public class BillBoardFont extends BillBoard

The variable m_Character is used to hold the alphanumeric value that represents the billboard texture
for this class.

private char m_Character;

The BillBoardFont() constructor is shown in Listing 6-14. First, the constructor of the superclass is
called, which would be the constructor for the BillBoard class. Then, the character that this billboard
represents is set in the variable m_Character.

194 CHAPTER 6: Game Environment

Listing 6-14. BillBoardFont() Constructor

BillBoardFont(Context iContext, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial, Shader
iShader, char Character)

{

super(iContext, iMeshEx, iTextures, iMaterial, iShader);
m_Character = Character;
}
The GetCharacter() function returns the character that this billboard is associated with.
char GetCharacter() {return m_Character;}
The SetCharacter() function sets the character that will be associated with this billboard.

void SetCharacter(char value) { m Character = value;}

The IsFontCharacter() function returns true if the input parameter value is the alphanumeric
character that this billboard texture represents and false otherwise. (See Listing 6-15.)

Listing 6-15. Testing for a Character Value

boolean IsFontCharacter(char value)

{
if (m _Character == value)
{
return true;
}
else
{
return false;
}
}

Modifying the Texture Class
Next, we have to modify the Texture class to add a new function.

The CopySubTextureToTexture() function copies the texture in the input parameter BitmapImage to
the bitmap associated with the Texture object. The main purpose in using this function is to update
the data on the HUD, such as score, health, etc. Each letter and number that is displayed on the
HUD has a separate graphic bitmap associated with it. For example, the HUD item for score has a
billboard texture associated with it. When the score has to be updated, individual bitmaps are copied
to the billboard texture using the CopySubTextureToTexture() function and placed at XOffset, YOffset
location on the bitmap. (See Listing 6-16.)

CHAPTER 6: Game Environment 195

Listing 6-16. Copying Over a Texture

void CopySubTextureToTexture(int Level, int XOffset, int YOffset, Bitmap BitmapImage)
{
// Copies the texture in BitmapImage to the bitmap associated with this Texture object
/*
public static void texSubImage2D (int target, int level, int xoffset, int yoffset,
Bitmap bitmap)
Added in API level 1
Calls glTexSubImage2D() on the current OpenGL context. If no context is current the
behavior is the same as calling glTexSubImage2D() with no current context, that is,
eglGetError()
will return the appropriate error. Unlike glTexSubImage2D() bitmap cannot be null and will

raise
an exception in that case. All other parameters are identical to those used for
glTexSubImage2D().
*/
ActivateTexture();
GLUtils.texSubImage2D(GLES20.GL_TEXTURE 2D, Level, XOffset, YOffset, BitmapImage);
CheckGLError ("GLUtils.texSubImage2D");
}

Creating the BillBoardCharacterSet Class

The BillBoardCharacterSet class holds the character fonts for use with the HUD. The Settext()
function sets the text you want to display, then you use the RenderToBillBoard() function to put this
text on the input BillBoard object’s texture.

The maximum number of characters in this set is specified by MAX_CHARACTERS.
static int MAX_CHARACTERS = 50;

The number of characters actually in the character set is held in m_NumberCharacters.
private int m_NumberCharacters = 0; // Number characters in the character set

The character set itself is made up of an array of BillBoardFonts.

private BillBoardFont[] m_CharacterSet = new BillBoardFont[MAX CHARACTERS];

The text to be placed on the billboard when the Settext() function is called is stored in m_Text,
which is a character array of MAX_CHARACTERS_TEXT in length.

private int MAX_CHARACTERS_TEXT = 100;
private char[] m Text = new char[MAX CHARACTERS TEXT];

The BillBoardFont objects that correspond to the characters in m_Text are stored inm_TextBillBoard.

private BillBoardFont[] m TextBillBoard = new BillBoardFont[MAX_ CHARACTERS TEXT];

196 CHAPTER 6: Game Environment

The GetNumberCharactersInSet() function returns the current number of characters in the
character set.

int GetNumberCharactersInSet() {return m NumberCharacters;}

The GetCharacter() function returns the BillBoardFont object associated with this character set
located at place index. (See Listing 6-17.)

Listing 6-17. GetCharacter Function

BillBoardFont GetCharacter(int index)

{ BillBoardFont Font = null;
if (index < m_NumberCharacters)
{ Font = m_CharacterSet[index];
}
return Font;
}

The GetFontWidth() function gets the width of the bitmap that represents a character for this
character set. (See Listing 6-18.)

Listing 6-18. Getting the Width of the Font
int GetFontWidth()

{
int Width = o;
if (m_NumberCharacters > 0)
{
BillBoardFont Character = m CharacterSet[0];
Texture Tex = Character.GetTexture(0);
Bitmap Image = Tex.GetTextureBitMap();
Width = Image.getWidth();
}
return Width;
}

The GetFontHeight() function returns the height of the bitmap that represents a character for this
character set. (See Listing 6-19.)

Listing 6-19. Getting the Font Height

int GetFontHeight()

{
int Height = 0;
if (m_NumberCharacters > 0)

{

BillBoardFont Character = m_CharacterSet[0];
Texture Tex = Character.GetTexture(0);

CHAPTER 6: Game Environment 197

Bitmap Image = Tex.GetTextureBitMap();
Height = Image.getHeight();
}

return Height;

}

The AddToCharacterSet() function adds a BillBoardFont object to the character set. The function
returns true if it is successfully added or false if there is not enough room. (See Listing 6-20.)

Listing 6-20. Adding BillBoardFont Object to the Character Set
boolean AddToCharacterSet(BillBoardFont Character)

{
if (m_NumberCharacters < MAX_CHARACTERS)
{
m_CharacterSet[m NumberCharacters] = Character;
m_NumberCharacters++;
return true;
}
else
{
Log.e("BILLBOARD CHARACTER SET" , "NOT ENOUGH ROOM TO ADD ANOTHER CHARACTER TO
CHARACTER SET");
return false;
}
}

The FindBillBoardCharacter() function searches for the input character within the character set.
If it is found, then the corresponding BillBoardFont object is returned. Null is returned otherwise.
(See Listing 6-21.)

Listing 6-21. Searching the Character Set

BillBoardFont FindBillBoardCharacter(char character)

{
BillBoardFont Font = null;
for (int i = 0; i < m_NumberCharacters; i++)
{
if (m_CharacterSet[i].IsFontCharacter(character))
{
Font = m_CharacterSet[i];
}
}
return Font;
}

The SetText() function converts an array of characters to the corresponding array of BillBoardFont
objects stored in the m_TextBillBoard array. (See Listing 6-22.)

198 CHAPTER 6: Game Environment

Listing 6-22. Setting the Text for Rendering
void SetText(char[] Text)

{
String TextStr = new String(Text);
TextStr = TextStr.tolLowerCase();
m Text = TextStr.toCharArray();
for (int i = 0; i < m_Text.length; i++)
{
BillBoardFont Character = FindBillBoardCharacter(m Text[i]);
if (Character != null)
{
m TextBillBoard[i] = Character;
}
else
{
Log.e("CHARACTER SET ERROR" , "SETTEXT ERROR , " + m Text[i] + "
NOT FOUND!!!III™);
}
}
}

The DrawFontToComposite() function copies the bitmap image in the BillBoardFont object 0bj into
the bitmap image on the BillBoard object Composite, starting at location X, Y. The width of the
destination texture in the Composite variable is also tested to make sure that the source texture fits
into the destination texture. (See Listing 6-23.)

Listing 6-23. Drawing a Font from the Character Set to a BillBoard Object

void DrawFontToComposite(BillBoardFont Obj, int X, int Y, BillBoard Composite)
{

Texture TexSource = Obj.GetTexture(0);

Bitmap BitmapSource = TexSource.GetTextureBitMap();

int BitmapSourceWidth = BitmapSource.getWidth();

Texture TexDest = Composite.GetTexture(0);
Bitmap BitmapDest = TexDest.GetTextureBitMap();
int BitmapDestWidth = BitmapDest.getWidth();

// Put Sub Image on Composite
int XEndTexture = X + BitmapSourceWidth;
if (XEndTexture >= BitmapDestWidth)

{
Log.e("BillBoardCharacterSet: :DrawFontToComposite" , "ERROR Overwriting Dest Texture,
Last X Position To Write = " + XEndTexture + ", Max Destination Width = " + BitmapDestWidth);
}

else

{
}

TexDest.CopySubTextureToTexture(0, X, Y, BitmapSource);

CHAPTER 6: Game Environment 199

The RenderToBillBoard() function renders the text that is set by the SetText() function to the
bitmap texture in the Composite input variable at location XOffset, YOffset on the bitmap, with
0,0 indicating the upper left-hand corner of the texture. Each character graphic is drawn on the
Composite using the DrawFontToComposite() function. (See Listing 6-24.)

Listing 6-24. Rendering the Text to a BillBoard
void RenderToBillBoard(BillBoard Composite, int XOffset, int YOffset)

{
int Length = m_Text.length;
for (int i = 0; i < Length; i++)
{
BillBoardFont Character = m_TextBillBoard[i];
if (Character != null)
{
// Draw this font to the composite by copying the bitmap image data
Texture Tex = Character.GetTexture(0);
Bitmap Image = Tex.GetTextureBitMap();
int Width = Image.getWidth();
int XCompositeOffset = XOffset + (Width * i);
DrawFontToComposite(Character, XCompositeOffset, YOffset, Composite);
}
}
}

Creating the HUDItem Class

The HUDItem class holds the data for an individual HUD item, such as a score or health statistic.

If this HUDItem is in use and valid, then m_ItemValid is true; otherwise, it is false.

private boolean m_ItemValid;

The name that is used to reference this HUD item is held in m_ItemName.

private String m_ItemName;

The numeric value associated with this HUD item, if there is one, is held in m_NumericalValue.
private int m_NumericalValue;

The text value associated with this HUD item, if any, is held in m_TextValue.

private String m TextValue = null;

The position of the HUD item in local HUD coordinates with x = 0 and y = 0 being the center of the
camera view.

private Vector3 m_ScreenPosition;

200 CHAPTER 6: Game Environment

The m_Text variable holds the text and text character graphics associated with the HUD item, if any.
private BillBoardCharacterSet m_Text;

The m_Icon variable holds an icon associated with the HUD item, if any. A heart graphic for health
statistics is an example.

private Texture m_Icon;

The m_HUDImage variable stores the actual full graphic image for a HUD item. Alphanumeric
characters and graphic icons are copied to this billboard for final display on the HUD.

private BillBoard m_HUDImage;

If m_Dirty is true, then the m_HUDImage billboard must be updated, because the item has changed
value. For example, the player’s score has changed.

private boolean m Dirty = false;
If the HUD item is visible, then m_IsVisible is true. It is false otherwise.
private boolean m_IsVisible = true;

There are also functions to provide access to the preceding private variables from outside the
class. Please refer to the actual code from the Source Code/Download area of apress.com for more
information.

The constructor for the HUDItem class is shown in Listing 6-25.

Listing 6-25. HUDItem Constructor

HUDItem(String ItemName,
int NumericalValue,
Vector3 ScreenPosition,
BillBoardCharacterSet Text,
Texture Icon,
BillBoard HUDImage)

m_ItemName = ItemName;
m_NumericalValue= NumericalValue;
m_ScreenPosition= ScreenPosition;
m_Text = Text;
m_Icon = Icon;
m_HUDImage= HUDImage;

}

Creating the HUD Class

Now, we need to create the actual HUD class that will represent our HUD.

The variable MAX_HUDITEMS holds the maximum number of items that can be in the HUD, which is
set to 10.

private int MAX HUDITEMS = 10;

http:\\apress.com

CHAPTER 6: Game Environment

The m_HUDItems array holds the items for this HUD.
private HUDItem[] m HUDItems = new HUDItem[MAX HUDITEMS];

A blank texture consisting of a black background is held in m_BlankTexture.

private Texture m_BlankTexture;

The HUD constructor is shown in Listing 6-26. The constructor creates and loads a new blank
texture from the R.drawable.blankhud resource and assigns it to m_BlankTexture. All the slots for
HUD items are initialized with an empty item and set to invalid.

Listing 6-26. HUD Constructor

HUD(Context iContext)
{

m_BlankTexture = new Texture(iContext, R.drawable.blankhud);

String TItemName = "NONE";
int NumericalValue= 0;
Vector3 ScreenPosition= null;

BillBoardCharacterSet CharacterSet = null;
Texture Icon = null;
BillBoard HUDImage = null;

// Initialize m_HUDItems
for (int i = 0; i < MAX_HUDITEMS; i++)
{
m HUDItems[i] = new HUDItem(ItemName, NumericalValue, ScreenPosition,
CharacterSet,Icon, HUDImage);
m_HUDItems[i].SetItemValidState(false);
}

}

201

The FindEmptyHUDItemSlot () function finds and returns the index of an empty HUD item slot or -1 if

no slots are available. (See Listing 6-27.)

Listing 6-27. Finding an Empty HUD Item Slot
int FindEmptyHUDItemSlot()

int EmptySlot = -1;
for (int i = 0; i < MAX_HUDITEMS; i++)

{
if (m_HUDItems[i].IsValid() == false)
{
return i;
}
}

return EmptySlot;

202 CHAPTER 6: Game Environment

The AddHUDItem() function adds a new item into the HUD. The item is set to be a valid HUD item and
is also set to be dirty, because we must have this new item rendered onto the HUD after it is added.
(See Listing 6-28.)

Listing 6-28. Adding a New HUD ltem

boolean AddHUDItem(HUDItem Item)

{
boolean result = false;
int EmptySlot = FindEmptyHUDItemSlot();
if (EmptySlot >= 0)
m_HUDItems[EmptySlot] = Item;
m_HUDItems[EmptySlot].SetItemvalidState(true);
m_HUDItems[EmptySlot].SetDirty(true);
result = true;
}
return result;
}

The FindHUDItem() function returns the index of the HUD item that has ID as a name or -1, if there is
no such item. (See Listing 6-29.)

Listing 6-29. Finding an Item on the HUD Using an ID
int FindHUDItem(String ID)

{
int Slot = -1;
for (int i = 0; i < MAX_HUDITEMS; i++)
if ((m_HUDItems[i].GetName() == ID) 8&
(m_HUDItems[i].IsValid()))
{
Slot = i;
}
}
return Slot;
}

The GetHUDItem() function returns a HUDItem object if there is an item with the name ItemID in the
HUD. If there is no such item in the HUD, then a null pointer is returned. (See Listing 6-30.)

Listing 6-30. Retrieving a HUD Item by the Iltem’s ID

HUDItem GetHUDItem(String ItemID)

{
HUDItem Item = null;

int Slot = FindHUDItem(ItemID);

CHAPTER 6: Game Environment 203

if (Slot »= 0)
{

}

return Item;

Item = m_HUDItems[Slot];

}

The DeleteHUDItem() function deletes a HUD item named ItemName from the HUD, if it exists, by
setting its state to invalid. It then returns true. If the HUD item could not be found, the function
returns false. (See Listing 6-31.)

Listing 6-31. Deleting an Item in the HUD

boolean DeleteHUDItem(String ItemName)

{
boolean result = false;
int Slot = FindHUDItem(ItemName);
if (Slot »= 0)
{
m_HUDItems[Slot].SetItemValidState(false);
result = true;
}
return result;
}

The UpdateHUDItemNumericalValue() function finds and updates the numerical value of the HUD
item that matches ID. It also sets the dirty status to true, so that the updated graphics data will be
copied to the m_HUDImage billboard texture associated with the HUD item. (See Listing 6-32.)

Listing 6-32. Updating Numerical HUD Items

void UpdateHUDItemNumericalValue(String ID, int NumericalValue)
{

int Slot = FindHUDItem(ID);

HUDItem HItem = m _HUDItems[Slot];

if (HItem != null)

{
// Update Key fields in HUDItem
HItem.SetNumericalValue(NumericalValue);
HItem.SetDirty(true);

}

204 CHAPTER 6: Game Environment

The UpdateHUDItem() function updates the HUD item Item using the camera Cam. What this means
is that

1. The position in the world for this HUD item is calculated based on the
camera’s position, orientation, and the local HUD coordinates of the HUD
item. In local HUD coordinates, the x = 0 and y = 0 means the center of
the camera viewpoint. So, local coordinates of (1,2) mean that the HUD
item is placed 1 unit to the right of center and 2 units up above the center.
When z = 0, this means the HUD item is placed at the position of the near
projection plane, which would probably make the item unviewable, so you
require a positive value here, such as 0.5.

2. If the HUD item is dirty, its billboard texture is updated. That is the billboard
texture associated with the HUDItem object, which is m_HUDImage updated.

First m_HUDImage is cleared by copying a blank texture over it.
If there is an icon associated with this HUD item, it is copied to m_HUDImage.

The numerical value of the HUD item is rendered to m_HUDImage.

o g ~ ©»

If there is a string value associated with the HUD item, then it is rendered to
m_HUDImage.

7. The HUD item has been updated as “cleaned,” so it is no longer set
to “dirty.”

8. The HUD item is positioned in the world using the location calculated in the
first step.

9. Them_HUDImage’s UpdateObject3d() function is then called, so that the
billboard is turned to face the camera.

See Listing 6-33 for the source code.

Listing 6-33. Updating the HUD Item

void UpdateHUDItem(Camera Cam, HUDItem Item)

{
// Update HUDItem position and rotation in the 3d world
// to face the camera.
Vector3 PositionlLocal = Item.GetlLocalScreenPosition();
Vector3 PositionWorld = new Vector3(0,0,0);

Vector3 CamPos = new Vector3(Cam.GetCameraEye().x, Cam.GetCamerakye().y, Cam.GetCameraEye().z);
Vector3 CameraForward = Cam.GetOrientation().GetForwardWorldCoords();

Vector3 CameraUp = Cam.GetOrientation().GetUpWorldCoords();

Vector3 CameraRight = Cam.GetOrientation().GetRightWorldCoords();

CHAPTER 6: Game Environment

// Local Camera Offsets
Vector3 CamHorizontalOffset = Vector3.Multiply(PositionLocal.x, CameraRight);
Vector3 CamVerticalOffset = Vector3.Multiply(PositionLocal.y, CameraUp);

float ZOffset = Cam.GetProjNear() + PositionlLocal.z;
Vector3 CamDepthOffset = Vector3.Multiply(ZOffset, CameraForward);

// Create Final PositionWorld Vector

PositionWorld = Vector3.Add(CamPos, CamHorizontalOffset);
PositionWorld = Vector3.Add(PositionWorld, CamVerticalOffset);
PositionWorld = Vector3.Add(PositionWorld, CamDepthOffset);

// Put images from icon and numerical data onto the composite hud texture
BillBoard HUDComposite = Item.GetHUDImage();

Texture HUDCompositeTexture = HUDComposite.GetTexture(0);

Bitmap HUDCompositeBitmap = HUDCompositeTexture.GetTextureBitMap();

BillBoardCharacterSet Text

Item.GetText();

int FontWidth = Text.GetFontWidth();
Texture Icon = Item.GetIcon();
int IconWidth = 0;

if (Item.IsDirty())
{

// Clear Composite Texture;
Bitmap BlankBitmap = m BlankTexture.GetTextureBitMap();
HUDCompositeTexture.CopySubTextureToTexture(0, 0, 0, BlankBitmap);

if (Icon != null)

{
// Draw Icon on composite
Bitmap HealthBitmap = Icon.GetTextureBitMap();
IconWidth = HealthBitmap.getWidth();
HUDCompositeTexture.CopySubTextureToTexture(0,0,0, HealthBitmap);
}

// Update Numerical Value and render to composite billboard
String text = String.valueOf(Item.GetNumbericalValue());
Text.SetText(text.toCharArray());
Text.RenderToBillBoard(HUDComposite, IconWidth, 0);

// Update Text Value and render to composite billboard
String TextValue = Item.GetTextValue();
if (TextValue != null)

{
int XPosText = IconWidth + (text.length() * FontWidth);
Text.SetText(TextValue.toCharArray());
Text.RenderToBillBoard(HUDComposite, XPosText, 0);

}

Ttem.SetDirty(false);

205

206 CHAPTER 6: Game Environment

HUDComposite.m Orientation.GetPosition().Set(PositionWorld.x, PositionWorld.y,
PositionWorld.z);

// Update BillBoard orientation
HUDComposite.UpdateObject3d(Cam);

}

The UpdateHUD() function updates every HUD item that is visible and valid by calling the
UpdateHUDItem() function. (See Listing 6-34.)

Listing 6-34. Updating the HUD
void UpdateHUD(Camera Cam)

for (int i = 0; i < MAX_HUDITEMS; i++)

{
if (m_HUDItems[i].IsValid() && m HUDItems[i].IsVisible())
{
UpdateHUDItem(Cam,m HUDItems[i]);
}
}

}

The RenderHUD() function renders the m_HUDImage BillBoard object for each HUD item that is visible
and valid. (See Listing 6-35.)

Listing 6-35. Rendering the HUD
void RenderHUD(Camera Cam, PointLight light)

{
for (int i = 0; i < MAX_HUDITEMS; i++)
{
if (m_HUDItems[i].IsValid()8& m HUDItems[i].IsVisible())
{
HUDItem Item = m HUDItems[i];
BillBoard HUDComposite = Item.GetHUDImage();
HUDComposite.DrawObject(Cam, light);
}
}
}

Modifying the Object3d Class

Next, we need to add some code to the Object3d class, so that the black portions of our HUD items
are transparent when displayed on the screen with other objects.

The m_Blend variable is set to true if we intend to combine colors from an object being rendered with
colors already in the background and false otherwise.

private boolean m Blend = false;

CHAPTER 6: Game Environment 207

The GetMaterial() function returns a reference to the object’s material.
Material GetMaterial() {return m Material;}

The SetBlend() function sets the m_Blend variable.

void SetBlend(boolean value) { m Blend = value; }

The DrawObject() function code is added to enable blending if m_Blend is true and disable blending
after the object is rendered. See the code in bold in Listing 6-36.

Listing 6-36. Modifying the DrawObject () Function

void DrawObject(Camera Cam, PointlLight light)

{
if (m_Blend)

{
GLES20.glEnable(GLES20.GL_BLEND);

GLES20.g1BlendFunc(GLES20.GL_SRC_ALPHA, GLES20.GL_ONE);
}

if (m_visible)

{
DrawObject(Cam, light, m_Orientation.GetPosition(), m_Orientation.GetRotationAxis(),
m Orientation.GetScale());

}
if (m_Blend)

GLES20.glDisable(GLES20.GL_BLEND);

Drone Grid Case Study: Creating the HUD

In this section, we will create the HUD for our Drone Grid case-study game. The HUD will consist
of two HUD items. One item will be the player’s score, and the other item will be the player’s health.
You will need to download the Android project for this chapter, if you haven’t done so already, and
install it into a new work space. The project will contain graphics for the fonts and an icon for the
player’s health.

Modifying the MyGLRenderer Class

We will have to alter the MyGLRenderer class from the previous hands-on example dealing with
sound.

The m_CharacterSetTextures array holds the character set textures for our HUD, which consist of
letters, numbers, and extra characters.

private Texture[] m CharacterSetTextures = new Texture[BillBoardCharacterSet.MAX CHARACTERS];

208 CHAPTER 6: Game Environment

The m_CharacterSet variable holds the character set we will use for the HUD.
private BillBoardCharacterSet m_CharacterSet = null;

The m_HUDTexture holds a texture used for a HUD item.

private Texture m HUDTexture = null;

The m_HUDComposite holds a reference to a BillBoard that will be used for a HUD item.
private BillBoard m HUDComposite = null;

The HUD is m_HUD.

private HUD m_HUD = null;

The player’s health is stored in m_Health.

private int m_Health = 100;

The player’s score is stored in m_Score.

private int m_Score = 0;

The textures needed for m_CharacterSet are initialized in the CreateCharacterSetTextures() function
and placed in m_CharacterSetTextures. (See Listing 6-37.)

Listing 6-37. Creating the Textures for the Character Set

void CreateCharacterSetTextures(Context iContext)
{

// Numeric
m_CharacterSetTextures[0]
m_CharacterSetTextures[1]
m_CharacterSetTextures[2]
m_CharacterSetTextures[3]
m_CharacterSetTextures[4]
m_CharacterSetTextures[5]
m_CharacterSetTextures[6]
m_CharacterSetTextures[7] = new Texture(iContext,
m_CharacterSetTextures[8] = new Texture(iContext,
m_CharacterSetTextures[9] = new Texture(iContext,

new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,

.drawable.charset1);
.drawable.charset2);
.drawable.charset3);
.drawable.charset4);
.drawable.charsets);
.drawable.charset6);
.drawable.charset7);
.drawable.charset8);
.drawable.charset9);
.drawable.charseto0);

A0 AW AOAXAO AN ANA

// Alphabet
m_CharacterSetTextures[10] = new Texture(iContext, R.drawable.charseta);
m_CharacterSetTextures[11] = new Texture(iContext, R.drawable.charsetb);
m_CharacterSetTextures[12] = new Texture(iContext, R.drawable.charsetc);
m_CharacterSetTextures[13] = new Texture(iContext, R.drawable.charsetd);
m_CharacterSetTextures[14] = new Texture(iContext, R.drawable.charsete);
m_CharacterSetTextures[15] = new Texture(iContext, R.drawable.charsetf);
R

m_CharacterSetTextures[16] = new Texture(iContext, R.drawable.charsetg);

CHAPTER 6: Game Environment

m_CharacterSetTextures[17]
m_CharacterSetTextures[18]
m_CharacterSetTextures[19]
m_CharacterSetTextures[20]
m_CharacterSetTextures[21]
m_CharacterSetTextures[22]
m_CharacterSetTextures[23]
m_CharacterSetTextures[24]
m_CharacterSetTextures[25]
m_CharacterSetTextures[26]
m_CharacterSetTextures[27]
m_CharacterSetTextures[28]
m_CharacterSetTextures[29]
m_CharacterSetTextures[30]
m_CharacterSetTextures[31]
m_CharacterSetTextures[32]
m_CharacterSetTextures[33]
m_CharacterSetTextures[34]
m_CharacterSetTextures[35]

new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,
new Texture(iContext,

// Debug Symbols

m_CharacterSetTextures[36] = new Texture(iContext,
m_CharacterSetTextures[37] = new Texture(iContext,
m_CharacterSetTextures[38] = new Texture(iContext,
m_CharacterSetTextures[39] = new Texture(iContext,
m_CharacterSetTextures[40] = new Texture(iContext,
m_CharacterSetTextures[41] = new Texture(iContext,
m_CharacterSetTextures[42] = new Texture(iContext,

}

A A0V AOAAANAOAAONANAANAOAAONANAOAANARNAORAN

.drawable.
.drawable
.drawable.
.drawable
.drawable
.drawable.
.drawable.
.drawable.
.drawable
.drawable.
.drawable.
.drawable.
.drawable
.drawable.
.drawable.
.drawable
.drawable.
.drawable.
.drawable.

.drawable
.drawable.
.drawable.
.drawable.
.drawable.
.drawable
.drawable.

charseth);

.charseti);

charsetj);

.charsetk);
.charsetl);

charsetm);
charsetn);
charseto);

.charsetp);

charsetq);
charsetr);
charsets);

.charsett);

charsetu);
charsetv);

.charsetw);

charsetx);
charsety);
charsetz);

.charsetcolon);

charsetsemicolon);
charsetcomma);
charsetequals);
charsetleftparen);

charsetdot);

.charsetrightparen);

209

The SetUpHUDComposite() function initializes m_HUDComposite as a BillBoard object that will be used
in the creation of a HUD item. The m_HUDComposite will be displaying the actual score or health level

of the player. (See Listing 6-38.)

Listing 6-38. Setting Up a BillBoard Object for Use with a HUD Item

void SetUpHUDComposite(Context iContext)
{

m_HUDTexture = new Texture(iContext, R.drawable.hud);

Shader Shader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelight);
MeshEx Mesh = new MeshEx(8,0,3,5,Cube.CubeData, Cube.CubeDrawOrder);

// Create Material for this object
Material Materiall = new Material();
Materiali.SetEmissive(1.0f, 1.0f, 1.0f);

Texture[] Tex = new Texture[1];
Tex[0] = m HUDTexture;

m_HUDComposite = new BillBoard(iContext, Mesh, Tex, Materiali, Shader);

// ok

210 CHAPTER 6: Game Environment

// Set Intial Position and Orientation
Vector3 Position = new Vector3(0.0f, 3.0f, 0.0f);
Vector3 Scale = new Vector3(1.0f,0.1f,0.01f);

m_HUDComposite.m_Orientation.SetPosition(Position);
m_HUDComposite.m_Orientation.SetScale(Scale);
m_HUDComposite.GetObjectPhysics().SetGravity(false);

// Set black portion of HUD to transparent
m_HUDComposite.GetMaterial().SetAlpha(1.0f);
m_HUDComposite.SetBlend(true);

}

The CreateCharacterSet() function creates a new BillBoardCharacterSet object for use in our HUD.
For each character, number, or other symbol we want to add to our character set, we create a new
BillBoardFont object and initialize it with the texture and text value associated with it. Then we call
AddToCharacterSet() with the newly created font to add this font into our character set. Also note
that we use a different fragment shader than normal, which is R.raw.fsonelightnodiffuse. This
fragment shader only uses the color of the texture to determine the final color of the fragment.

(See Listing 6-39.)

Listing 6-39. Creating the Character Set

void CreateCharacterSet(Context iContext)

{
//Create Shader
Shader Shader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelightnodiffuse);
// ok

// Create Debug Local Axis Shader
MeshEx Mesh = new MeshEx(8,0,3,5,Cube.CubeData, Cube.CubeDrawOrder);

// Create Material for this object
Material Materiall = new Material();
Materialil.SetEmissive(1.0f, 1.0f, 1.0f);

// Create Texture
CreateCharacterSetTextures(iContext);

// Setup HUD
SetUpHUDComposite(iContext);

m_CharacterSet = new BillBoardCharacterSet();

int NumberCharacters = 43;
char[] Characters = new char[BillBoardCharacterSet.MAX CHARACTERS];

Characters[0] = '1';
Characters[1] = '2';
Characters[2] = '3';
Characters[3] = '4';
Characters[4] = '5';
Characters[5] = '6';

CHAPTER 6: Game Environment 211

Characters[6] = '7';
Characters[7] = '8';
Characters[8] = '9';
Characters[9] 0';

// AlphaBets

Characters[10] =
Characters[11]
Characters[12] =
Characters[13]
Characters[14]
Characters[15]
Characters[16] = 'g’';
Characters[17] = 'h’;
Characters[18] = 'i';
Characters[19] = 'j';
Characters[20]
Characters[21]
Characters[22]
Characters[23]
Characters[24] = 'o'
Characters[25] = '
Characters[26] = '
Characters[27]
Characters[28] = '
Characters[29]
Characters[30] = '
Characters[31] = '
Characters[32] = '
Characters[33]
Characters[34]
Characters[35] = '

{1 | | R [N | n o
0O D QN T v
“e e Wl we we we W

n
e
-

L | A | S | B [
S =2+ X
e e we W

[}
N< X S <c +wnHODTO

Mo e We we We Wl We We we e W e

// Debug
Characters[36]
Characters[37]
Characters[38]
Characters[39] = '

]

]

]

Characters[40
Characters[41
Characters[42

1} 1]
~—~ A~ - -

for (int i = 0; i < NumberCharacters; i++)
{
Texture[] Tex = new Texture[1];
Tex[0] = m CharacterSetTextures[i];

BillBoardFont Font = new BillBoardFont(iContext, Mesh, Tex, Materiali,
Shader, Characters[i]);

Font.GetObjectPhysics().SetGravity(false);

m_CharacterSet.AddToCharacterSet(Font);

212 CHAPTER 6: Game Environment

The CreateHealthItem() function creates a new HUDItem for our player’s health and adds it to the
HUD. (See Listing 6-40.)

Listing 6-40. Creating and Adding a Health Item to the HUD

void CreateHealthItem()
{

Texture HUDTexture = new Texture(m Context, R.drawable.hud);

Shader Shader = new Shader(m Context, R.raw.vsonelight, R.raw.fsonelightnodiffuse);
// ok
MeshEx Mesh = new MeshEx(8,0,3,5,Cube.CubeData, Cube.CubeDrawOrder);

// Create Material for this object
Material Materiali = new Material();
Materialil.SetEmissive(1.0f, 1.0f, 1.0f);

Texture[] Tex = new Texture[1];
Tex[0] = HUDTexture;

BillBoard HUDHealthComposite = new BillBoard(m Context, Mesh, Tex, Materiali, Shader);

Vector3 Scale = new Vector3(1.0f,0.1f,0.01f);
HUDHealthComposite.m Orientation.SetScale(Scale);
HUDHealthComposite.GetObjectPhysics().SetGravity(false);

// Set Black portion of HUD to transparent
HUDHealthComposite.GetMaterial().SetAlpha(1.0f);
HUDHealthComposite.SetBlend(true);

// Create Health HUD
Texture HealthTexture = new Texture(m Context, R.drawable.health);

Vector3 ScreenPosition = new Vector3(0.8f, m Camera.GetCameraViewportHeight()/2, 0.5f);

HUDItem HUDHealth = new HUDItem("health", m_Health,
ScreenPosition,m_CharacterSet,HealthTexture, HUDHealthComposite);

if (m_HUD.AddHUDItem(HUDHealth) == false)
{

}

Log.e("ADDHUDITEM" , "CANNOT ADD IN NEW HUD HEALTH ITEM");

}

The CreateHUD() function creates the HUD and the two items in the HUD, which are the player’s
health and the player’s score. (See Listing 6-41.)

CHAPTER 6: Game Environment 213

Listing 6-41. Creating the HUD

void CreateHUD()
{
// Create HUD
m HUD = new HUD(m Context);

// Create Score HUD
Vector3 ScreenPosition = new Vector3(-m_Camera.GetCameraViewportWidth()/2 + 0.3f,
m_Camera.GetCameraViewportHeight()/2, 0.5f);

// Create Score Item for HUD
HUDItem HUDScore = new HUDItem("score", 0, ScreenPosition,m CharacterSet,null,m HUDComposite);
if (m_HUD.AddHUDItem(HUDScore) == false)

{

Log.e("ADDHUDITEM" , "CANNOT ADD IN NEW HUD ITEM");
}
CreateHealthItem();

}

The UpdateHUD() function updates the numerical values of the player’s health and the player’s score
in the HUD. (See Listing 6-42.)

Listing 6-42. Updating the HUD
void UpdateHUD()

m_HUD.UpdateHUDItemNumericalValue("health", m_Health);
m_HUD.UpdateHUDItemNumericalValue("score",m Score);

}

The onSurfaceCreated() function requires some modifications to initialize our HUD. First, the viewing
height and width on the actual Android device is retrieved. The camera is then modified with these
values. Next, the character set that will be used with the HUD is initialized. Finally, the HUD is
created. (See Listing 6-43.)

Listing 6-43. Modifying the onSurfaceCreated() Function

@0verride
public void onSurfaceCreated(GL10 unused, EGLConfig config)
{
m_PointLight = new PointLight(m_Context);
SetupLights();

// Create a 3d Cube
CreateCube(m_Context);

// Create a Second Cube
CreateCube2(m Context);

// Create a new gravity grid
CreateGrid(m_Context);

214 CHAPTER 6: Game Environment

// Create SFX
CreateSoundPool();
CreateSound(m Context);

// Create HUD
// Get Width and Height of surface

m_ViewPortHeight = m_Context.getResources().getDisplayMetrics().heightPixels;
m_ViewPortWidth = m_Context.getResources().getDisplayMetrics().widthPixels;

SetupCamera();

// Create Character Set
CreateCharacterSet(m_Context);

CreateHUD
}

The onDrawFrame() function has to be modified to accommodate our HUD. We have added code that
will decrease the health and increase the score on the HUD every time the two cubes collide with
each other. We have also added code to update the numeric values on the HUD, update the HUD,

and render the HUD to the screen. (See Listing 6-44.)

Listing 6-44. Modifying the onDxawFrame () Function

if ((TypeCollision == Physics.CollisionStatus.COLLISION) || (TypeCollision ==
Physics.CollisionStatus.PENETRATING COLLISION))

{
m_Cube.GetObjectPhysics().ApplyLinearImpulse(m Cube, m_Cube2);
// SFX
m_Cube.PlaySound(m_SoundIndex1);
m_Cube2.PlaySound(m SoundIndex2);
// HUD
m_Health = m_Health - 1;
if (m_Health < o)
{
m_Health = o0;
}
m_Score = m_Score + 10;
}
111110110111111111111111 WD
UpdateHUD();

m_HUD .UpdateHUD(m_Camera);
m_HUD .RenderHUD(m_Camera, m_PointLight);

Now, run the application, and you should see the HUD with the score increasing and the health
decreasing every time the two cubes collide. You should see something similar to Figure 6-1, shown

earlier in this chapter.

CHAPTER 6: Game Environment 215

Overview of Persistent Data

You may have noticed that when you change the orientation of your Android device, the program
in our previous example restarts, and the two cubes’ previous orientation and physics is lost. The
score and health items in the HUD are also lost and reset. In the Android system, you can use
SharedPreferences to save and load data to preserve the environment of your game.

To save the state of a class object, you can add in a function such as SaveState(), shown in
Listing 6-45, which:

1. Creates a SharedPreferences variable by calling getSharedPreferences() on
the context with the name of the record you want to save the data in

2. Creates a SharedPreferences.Editor editor variable that is used to store the
data from the class object

3. Puts the data into the record by calling putXXXX(“name”, value) on the editor
variable to associate the value with the “name.” The XXXX is a data type
such as Float, Int, etc.

4. Saves the data by calling the commit() function on the editor

Listing 6-45. Saving the State of an Object
void SaveState(String handle)

{
SharedPreferences settings = m_Context.getSharedPreferences(handle, 0);
SharedPreferences.Editor editor = settings.edit();
editor.putFloat("x", m Position.x);
// Commit the edits!
editor.commit();
}

To load the state of a class object, you could add a class such as LoadState(), shown in Listing 6-46,
which:

1. Creates a SharedPreferences variable by calling getSharedPreferences() on
the context with the name of the record you want to load the data from

2. Gets the data from the record by calling getXXXX(“name”, default value), in
which XXXX is the data type, such as Float, Int, etc. If “name” does not exist,
then the default value is returned.

Listing 6-46. Loading the State of an Object

void LoadState(String handle)

{
// Restore preferences
SharedPreferences settings = m_Context.getSharedPreferences(handle, 0);
float x = settings.getFloat("x", 0);

216 CHAPTER 6: Game Environment

Modifying the Orientation Class

We have added a SaveState() and LoadState() function to the Orientation class. These follow
the format of the examples in the preceding Listings 6-45 and 6-46. In order to save space,

| have decided not to include the code here. Please download the code for this chapter from
apress.com.

Modifying the Physics Class

We have added a SaveState() and LoadState() function to the Physics class. These follow the
format of the examples in the preceding Listings 6-45 and 6-46. In order to save space, | have
decided not to include the code here. Please download the code for this chapter from apress.com.

Modifying the Object3d Class

We have added in a SaveObjectState() and LoadObjectState() function to the Object3d class.
These follow the format of the examples in the preceding Listings 6-45 and 6-46. In order to save
space, | have decided not to include the code here. Please download the code for this chapter from
apress.com.

Hands-on Example: Saving Persistent Data

In this section, | cover a hands-on example in which we save the state of the two cubes’ orientation
and physics state. We also save the score and health items on the HUD. New code is added, so that
the health value rolls over back to 100 when reaching 0. This makes it easier to see it being saved
when the program is exited or the orientation of the screen changes.

Modifying the MyGLRenderer Class
The MyGLRenderer class has to be modified.

The state of the two colliding cubes are saved using the SaveCubes() function. (See Listing 6-47.)

Listing 6-47. Saving the Two Cubes’ State

void SaveCubes()

{
m_Cube.SaveObjectState("CubeiData");

m_Cube2.SaveObjectState("Cube2Data");
}

The state of the two colliding cubes is loaded back in, using the LoadCubes() function.
(See Listing 6-48.)

http:\\apress.com
http:\\apress.com

CHAPTER 6: Game Environment 217

Listing 6-48. Loading the Two Cubes’ State

void LoadCubes()

{
m_Cube.LoadObjectState("CubeiData");

m_Cube2.LoadObjectState("Cube2Data");
}

The LoadGameState() function loads the score and health HUD items, as well as the state of the two
cubes, if their state was previously saved. (See Listing 6-49.)

Listing 6-49. Loading the Game State
void LoadGameState()

{
SharedPreferences settings = m_Context.getSharedPreferences("gamestate", 0);
int StatePreviouslySaved = settings.getInt("previouslysaved", 0);
if (StatePreviouslySaved != 0)
{
// Load in previously saved state
m_Score = settings.getInt("score", 0);
m_Health = settings.getInt("health", 100);
LoadCubes();
}
}

The SaveGameState() function saves the values of the score, health, state of the cubes, and saves a
1 to “previouslysaved.” (See Listing 6-50.)

Listing 6-50. Saving the Game State

void SaveGameState()

{

// We need an Editor object to make preference changes.
SharedPreferences settings = m_Context.getSharedPreferences("gamestate", 0);
SharedPreferences.Editor editor = settings.edit();

editor.putInt("score", m Score);
editor.putInt("health", m_Health);

SaveCubes();
editor.putInt("previouslysaved", 1);

editor.commit();

}

In the onSurfaceCreated() function, we add code to call the function to load the saved game state,
if there exists one.

LoadGameState();

218 CHAPTER 6: Game Environment

Next, we need to change the code to roll over the health back to 100 when it reaches O.
(See Listing 6-51.)
Listing 6-51. Rolling over the Health

if ((TypeCollision == Physics.CollisionStatus.COLLISION) || (TypeCollision ==
Physics.CollisionStatus.PENETRATING COLLISION))

{
m_Cube.GetObjectPhysics().ApplyLinearImpulse(m Cube, m_Cube2);
// SFX
m_Cube.PlaySound(m SoundIndex1);
m_Cube2.PlaySound(m_SoundIndex2);
// HUD
m_Health = m_Health - 1;
if (m_Health < o)

m_Health = 100;

}
m_Score = m_Score + 10;

}

Modifying the MyGLSurfaceView Class
We must also modify the MyGLSurfaceView class.

Add a line that holds a reference to the Custom GLRenderer.
public MyGLRenderer CustomGLRenderer = null;
Next, we have to make some changes to the constructor. (See Listing 6-52.)

Listing 6-52. MyGLSurfaceView Constructor Modifications

public MyGLSurfaceView(Context context)
{

super(context);

// Create an OpenGL ES 2.0 context.
setEGLContextClientVersion(2);

// Set the Renderer for drawing on the GLSurfaceView
//setRenderer(new MyGLRenderer(context));

CustomGLRenderer = new MyGLRenderer(context);
setRenderer(CustomGLRenderer);

CHAPTER 6: Game Environment 219

Modifying the MainActivity Class

Next, we have to make modifications to our MainActivity class.

The m_GLView needs to be changed to:
private MyGLSurfaceView m_GLView;

The onPause() function has to be modified to save the state of the game when onPause() is called.
(See Listing 6-53.)

Listing 6-53. Modifying the onPause() Function

@0verride
protected void onPause()

{

super.onPause();
m_GLView.onPause();

// Save State
m_GLView.CustomGLRenderer.SaveGameState();

}

Finally, run the project, change orientations, and exit and reenter the program repeatedly.You should
now have a score and health that are saved when you exit the program or change orientations. You
should also see that the two cubes’ orientation and physics are saved as well.

Summary

In this chapter, | covered the game environment. We started off by creating sounds. Code was
presented that supported the creation and playback of sounds. Next, we went through a hands-on
example in which we added sound effects, applying this code to two colliding cubes. A HUD was
discussed. Then the code required to implement this HUD was discussed, followed by a case study
that implemented the HUD using the code. Finally, a way was presented to save the state of your
game environment. A hands-on example was also presented, which demonstrated how you would
save the state of your HUD as well as the state of objects in your game.

Chapter

Drone Grid Case Study: Creating
the Player

This chapter covers a case study for a 3D game called Drone Grid. The objective of the game will be
to protect your pyramid, which is located in the center of the playfield, from attacking enemies. You
will do this by touching the screen and launching projectiles toward the enemies to destroy them.

You will be in a fixed location on the edge of the playfield, and you can turn left or right 90 degrees.
First, the creation of the classes representing the player’s graphic in the game is presented. Next, we
create classes relating to the player’s viewpoint and the player’s input. This is followed by the creation
of the classes dealing with the player’s weapons and ammunition. Next, we create classes dealing
with explosions and a class dealing with game object properties. Finally, we present a hands-on
example illustrating the use of our new classes, with which you will use your weapon to hit cubes.

Creating the Player Graphic

The player graphic for the Drone Grid case study will be a pyramid. In order to create this pyramid,
several classes will have to be constructed, including a new Mesh class that will draw an object’s
vertices in a slightly different manner than in the MeshEx class that we have created previously.
Modifications to other classes, including the Object3d class, are also needed.

Creating the Mesh Class

The Mesh class is very similar to the MeshEx class you learned about in Chapter 4. The key
differences are in how an object’s vertices are defined and how they are drawn. In the MeshEx class,
an object’s vertices are listed in one array, and a list of vertices from which to draw triangles or lines
are listed in another array. In the Mesh class, there is only one array, which consists of the vertices
that make up the triangles to be drawn. Listing 7-1 shows the vertex data for a single triangle
consisting of three vertices to be used with a Mesh class. If you want to draw an additional triangle,

221

222 CHAPTER 7: Drone Grid Case Study: Creating the Player

you will have to add three more vertex data entries for this new triangle. Because more complex
graphics are made up of many triangles, you will obviously have to add more triangles to the vertex
data for a complex object.

Listing 7-1. A Triangle Defined for a Mesh Class

// Left Side u v nx, ny, nz

-1.5f, -1.5f, -1.5f, o, 1, -1, -1, -1, // vo = left, bottom, back
-1.5f, -1.5f, 1.5f, 1, 1, -1, -1, 1, // vi = left, bottom, front
o.of, 3.2f, o.of, o.5f, o, o0, 1, O, // v2 = top point

The DrawMesh() function draws the mesh and is similar to the corresponding function in the MeshEx
class. The key difference is that the OpenGL function glDrawArrays() is used to draw the mesh
instead of glDrawElements(). (See Listing 7-2.)

The glDrawArrays() function takes as parameters in sequence:
1. The graphics primitive to draw, in this case GL_TRIANGLES
2. The number of the starting vertex to draw

3. The number of vertices to draw

Listing 7-2. The DrawMesh Function

void DrawMesh(int PosHandle, int TexHandle, int NormalHandle)

{

SetUpMeshArrays(PosHandle, TexHandle, NormalHandle);

// Draw the triangle
//glDrawArrays (int mode, int first, int count)
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, m_VertexCount);

// Disable vertex array
GLES20.glDisableVertexAttribArray(PosHandle);
if (m_MeshHasUV)

GLES20.glDisableVertexAttribArray(TexHandle);

}

if (m_MeshHasNormals)
{

}

GLES20.glDisableVertexAttribArray(NormalHandle);
}
Modifying the Object3d Class

Next, the Object3d class needs to be modified to use the Mesh class.

A new Mesh class variable, m_Mesh, is added.

private Mesh m_Mesh = null;

CHAPTER 7: Drone Grid Case Study: Creating the Player 223

The constructor for the Object3d class must also be modified to account for the addition of the new
Mesh variable. See changes in bold in Listing 7-3.
Listing 7-3. Object3d Constructor

Object3d(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial,
Shader iShader)

{
m_Context = iContext;
m_Mesh = iMesh;
// REst of Code

}

The GetRadius() function is modified to return the radius of the object’s m_Mesh variable, if it exists.
(See Listing 7-4.) The object’s mesh can now be held in either a Mesh or a MeshEx.

Listing 7-4. GetRadius () Function Modifications
float GetRadius()

{
if (m_Mesh != null)
{
return m_Mesh.GetRadius();
}
if (m MeshEx != null)
{
return m_MeshEx.GetRadius();
}
return -1;
}

The DrawObject() function, which draws the actual object’s mesh, is modified to test to see if the
m_Mesh variable contains a valid object. If it does, the Mesh’s DrawMesh() function is called to do the
actual rendering of the object. (See Listing 7-5.)

Listing 7-5. Modifying the DrawObject () Function

void DrawObject(Camera Cam,PointLight light,Vector3 iPosition,Vector3 iRotationAxis,Vector3 iScale)
// Activate and set up the Shader and Draw Object's mesh

// Generate Needed Matrices for Object
GenerateMatrices(Cam, iPosition,iRotationAxis,iScale);

// Add program to OpenGL environment
m_Shader.ActivateShader();

// Get Vertex Attribute Info in preparation for drawing the mesh
GetVertexAttribInfo();

224 CHAPTER 7: Drone Grid Case Study: Creating the Player

// Sets up the lighting parameters for this object
SetLighting(Cam, light, m_ModelMatrix, Cam.GetViewMatrix(), m ModelViewMatrix,
m_NormalMatrix);

// Apply the projection and view transformation matrix to the shader
m_Shader.SetShaderVariableValueFloatMatrix4Array("uMvPMatrix", 1, false, m MVPMatrix, 0);

// Activates texture for this object
ActivateTexture();

// Enable Hidden surface removal
GLESZO.glEnable(GLESZO.GL_DEPTH_TEST);

// Draw Mesh for this Object
if (m_Mesh != null)
{

}

else
if (m_MeshEx != null)
{

m_Mesh.DrawMesh(m_PositionHandle, m_TextureHandle, m_NormalHandle);

m_MeshEx.DrawMesh(m PositionHandle, m TextureHandle, m_NormalHandle);

Log.d("class Object3d :", "No MESH in Object3d");

Modifying Other Classes That Use the Object3d Class

Other classes that use the Object3d class also will have to be modified. For example, the Cube class
that is derived from the Object3d class will have to be modified in terms of adding a Mesh input
parameter into the constructor and the call to the Object3d constructor. (See Listing 7-6.)

Listing 7-6. Modifying the Cube Class

public class Cube extends Object3d
Cube(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial,
Shader iShader)

{
}

super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);

Please download the sample project for this chapter from the Source Code/Download area of
apress.com to see other changes that have to be made to other classes.

http://apress.com/

CHAPTER 7: Drone Grid Case Study: Creating the Player

Creating the Pyramid Class

225

The Pyramid class contains the actual vertex data for our Player graphic, which will be a 3D object
in the shape of a pyramid. The Pyramid class vertex data is contained in the PyramidVertices array
and is designed to be used with a Mesh class. (See Listing 7-7.)

Listing 7-7. The Pyramid Class

public class Pyramid extends Object3d

5f,
5f,
of,

S‘F)
5f,
of,

S‘F)
5f,
of,

.5f,
.51,

of,

.5f,
.5f,

S‘F)

S-F)

.5f,

S‘F)

{

static float[] PyramidVertices

{
// Triangle Shape
// Left Side
-1.5f, -1.5f, -1.
-1.5f, -1.5f, 1.
o.of, 3.2f, o.
// Right Side
1.5f, -1.5f, 1.
1.5f, -1.5f, -1.
o.of, 3.2f, o.
// Front
-1.5f, -1.5f, 1.
1.5f, -1.5f, 1.
o.of, 3.2f, o.
// Back
-1.5f, -1.5f, -1
1.5f, -1.5f, -1
o.of, 3.2f, o.
// Bottom
-1.5f, -1.5f, -1
1.5f, -1.5f, -1
1.5f, -1.5f, 1.
// Bottom 2
-1.5f, -1.5f, -1.
-1.5f, -1.5f, 1
1.5f, -1.5f, 1.

b

Pyramid(Context iContext,

{
}

Mesh

vV nx, ny, nz

1, -1, -1, -1, //
1, -1, -1, 1, //
o, 0, 1, 0, //
1, 1, -1, 1, //
1, 1, -1, -1, //
o, 0, 1, o0, //
1, -1, -1, 1, //
1, 1, -1, 1, //
o, 0, 1, 0, //
1, -1, -1, -1, //
1, 1, -1, -1, //
0o, 0, 1, 0, //
0, -1, -1, -1, //
1, 1, -1, -1, //
1, 1, -1, 1, //
0, -1, -1, -1, //
0, -1, -1, 1, //
1, 1, -1, 1 //

VO
vl
V2

v3
v4
V2

vl
v3
v2

VO
v4
v2

vO
v4
v3

vO
vl
v3

left, bottom,
left, bottom,
top point

right, bottom,
right, bottom,
top point

left, bottom,
right, bottom,
top point

left, bottom,
right, bottom,
top point

left,
right,
right,

bottom,
bottom,
bottom,

left,
left,
right,

bottom,
bottom,
bottom,

back
front

front
back

front
front

back
back

back
back
front

back
front
front

iMesh, MeshEx iMeshEx, Texture[] iTextures, Material
iMaterial, Shader iShader, Shader LocalAxisShader)

super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);

226 CHAPTER 7: Drone Grid Case Study: Creating the Player

Creating the PowerPyramid Class

The PowerPyramid class is the class you will use to represent the player’s physical presence in
the game.

The m_ExplosionSFXIndex variable holds the index to the explosive sound played when the
pyramid is hit.

The CreateExplosionSFX() function creates the explosive sound effect for the power pyramid and
saves the index to this sound in the m_ExplosionSFXIndex variable.

The PlayExplosionSFX() function plays back the explosion that was created with the
CreateExplosionSFX() function. (See Listing 7-8.)

Listing 7-8. The Player’s PowerPyramid Class

public class PowerPyramid extends Object3d

{
private int m_ExplosionSFXIndex = -1;
PowerPyramid(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures, Material
iMaterial, Shader iShader)
{
super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);
}
// Sound Effects
void CreateExplosionSFX(SoundPool Pool, int ResourceID)
{
m_ExplosionSFXIndex = AddSound(Pool, ResourcelID);
}
void PlayExplosionSFX()
if (m_ExplosionSFXIndex >= 0)
{
PlaySound(m_ExplosionSFXIndex);
}
}
}

The player’s pyramid, which is an instance of the PowerPyramid class, is shown in Figure 7-1.

CHAPTER 7: Drone Grid Case Study: Creating the Player

B0 B @ 9:23em
Toworia

Figure 7-1. Player’s power pyramid

Creating the Player’s Viewpoint and Input

The player’s viewpoint for this game will be a first-person viewpoint, in which the player can turn

227

left and right up to 90 degrees. The player will be able to fire 3D projectiles by touching the screen.

Creating the player’s viewpoint and the player’s input requires modifications to the MyGLRenderer
class and the MyGLSurfaceview class.

Modifying the MyGLRenderer Class

The MyGLRenderer class must be modified to add code to calculate the player’s viewpoint and
player’s input.

The CameraMoved() function takes as input the change, or delta, in the rotation of the player’s view
around the x and y axes. The x and y change in angular position is altered by the ScaleFactor
variable, of which you can make the rotation greater or smaller. (See Listing 7-9.)

Listing 7-9. Calculating the Camera Movement Delta

void CameraMoved(float DeltaXAxisRotation , float DeltaYAxisRotation)
{
m_CameraMoved = true;
float ScaleFactor = 3;
m_DeltaXAxisRotation = DeltaXAxisRotation/ScaleFactor;
m_DeltaYAxisRotation = DeltaYAxisRotation/ScaleFactor;

228 CHAPTER 7: Drone Grid Case Study: Creating the Player

The ProcessCameraMove() function updates the camera’s left/right rotation around the y axis,
based on the value in m_DeltaYAxisRotation and limited by the values m_MaxCameraAngle and
m_MinCameraAngle. (See Listing 7-10.)

Listing 7-10. Processing Player’s GCamera Movement

void ProcessCameraMove()

{
Vector3 Axis = new Vector3(0,1,0);
// Test Limits
float CameraRotation = m_Camera.GetOrientation().GetRotationAngle();
float NextRotationAngle = CameraRotation + m_DeltaYAxisRotation;
if (NextRotationAngle > m_MaxCameraAngle)
{
m_DeltaYAxisRotation = m_MaxCameraAngle - CameraRotation;
}
else
if (NextRotationAngle < m_MinCameraAngle)
{
m_DeltaYAxisRotation = m_MinCameraAngle - CameraRotation;
}
// Camera Test
// Rotate Camera Around Y Axis
m_Camera.GetOrientation().SetRotationAxis(Axis);
m_Camera.GetOrientation().AddRotation(m DeltaYAxisRotation);
m_CameraMoved = false;
}

The onDrawFrame() function has to be modified to process a change in the player’s view by calling
ProcessCameraMove() if the m_CameraMoved has been set to true. (See Listing 7-11.)

Listing 7-11. Modification to onDrawFrame ()

@0verride
public void onDrawFrame(GL10 unused)

{

GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLES20.glClear(GLES20.GL_DEPTH BUFFER BIT | GLES20.GL_COLOR BUFFER BIT);

// Player Update
if (m_CameraMoved)

{
}

m_Camera.UpdateCamera();
// Rest of code

ProcessCameraMove();

CHAPTER 7: Drone Grid Case Study: Creating the Player 229

The ProcessTouch() function processes a user’s touch. The starting point (Startx, Starty), at which
the user touches the screen, and the ending point, at which the user lifts his or her finger from the
screen (x,y), are input parameters.

The ProcessTouch() function (see Listing 7-12) does the following:

1. Finds the distance between the point at which the user touches the screen
and the point at which the user lifts his or her finger

2. Sets the variable that keeps track of screen touches to true and sets the x, y
screen coordinates of the touch location (m_TouchX, m_TouchY) if this distance
is less than 10 (which means the intention of the user was to touch the
screen to fire a weapon, instead of moving the view)

Listing 7-12. Processing the User’s Touch

void ProcessTouch(float Startx, float Starty, float x, float y)

{
Vector3 DiffVec = new Vector3(Startx - x, Starty - y, 0);
float length = DiffVec.Length();
if (length < 10)
{
// Player weapon has been fired
m_ScreenTouched = true;
m_TouchX = x;
m_TouchY = y;
}
}

Modifying the MyGLSurfaceView Class

The MyGLSurfaceView class also has to be modified to provide support for the player’s view and
player’s touch input.

The m_PreviousX and m_PreviousY variables track the x and y screen locations of the last user’s
touch in the onTouchEvent() function.

private float m_PreviousX
private float m_PreviousY

0;
0;

The m_dx and m_dy variables hold the changes in x and y screen positions occurring when the user
touches the screen.

private float m dx = 0;
private float m dy = 0;

The m_Startx and m_Starty variables hold the x and y screen positions when the user first touches
the screen.

private float m_Startx
private float m Starty

non
o O
e W

230 CHAPTER 7: Drone Grid Case Study: Creating the Player

The onTouchEvent() function is the main hook into where the player’s view and player’s input are
updated.

The onTouchEvent() function (see Listing 7-13) does the following:
1. Gets the current x and y screen position and stores it into variables x and y
2. Based on the user’s action, one of the following occurs:

If the user starts a new touch, then this x, y starting location is saved in m_Startx and
m_Starty.

If the user exits a touch by lifting his/her finger, then the ProcessTouch() function in
the MyGLRenderer class is called.

If the user moves his/her finger across the screen, the CameraMoved() function in the
MyGLRenderer class is called to update the player’s view.

The current x, y screen location is saved as the previous location in anticipation of the
next onTouchEvent() call.

Listing 7-13. Adding and Modifying the onTouchEvent () Function

@0verride
public boolean onTouchEvent(MotionEvent e)
{
// MotionEvent reports input details from the touch screen
// and other input controls. In this case, you are only
// interested in events where the touch position changed.

float x = e.getX();
float y = e.getY();
switch (e.getAction())
{
case MotionEvent.ACTION_DOWN:
m_Startx = x;
m_Starty = y;
break;
case MotionEvent.ACTION UP:
CustomGLRenderer.ProcessTouch(m_Startx, m_Starty, x, y);
break;
case MotionEvent.ACTION_MOVE:
m_dx = x - m_PreviousX;
m dy =y - m_PreviousY;
CustomGLRenderer.CameraMoved(m_dy, m dx);
break;
}

m_PreviousX = x;
m_PreviousY = y;
return true;

CHAPTER 7: Drone Grid Case Study: Creating the Player 231

Creating Player Weapons and Ammunition

We need to create new classes for the player’s weapon and the ammunition that the weapon uses.

The Ammunition class derives from the Object3d class.

public class Ammunition extends Object3d

The m_FireStatus variable is true if this piece of ammunition has been fired.

private boolean m_FireStatus = false;

The m_AmmunitionSpent variable allows you to keep track if this piece of ammunition has been used up.
private boolean m_AmmunitionSpent = false;

The m_AmmunitionRange variable holds the maximum range of the ammunition, which is defaulted to
50 units in the OpenGL world.

private float m_AmmunitionRange = 50;

The m_AmmunitionStartPosition variable holds the position the ammo is fired from and is initialized
t0 0,0,0.

private Vector3 m_AmmunitionStartPosition = new Vector3(0,0,0);

The speed of the ammo in terms of OpenGL world units per update is held in m_AmmoSpeed and
defaults to 0.5.

private float m_AmmoSpeed = 0.5f;

The SFX index for the sound effect associated with this piece of ammo, if it exists, is m_FireSFXIndex.
The default, which is -1, means that there is no sound effect associated with this piece of
ammunition.

private int m_FireSFXIndex = -1;

The Ammunition constructor initializes the object by calling its base constructor and setting the
ammunition range, ammunition speed, and the mass of the ammunition, which is defaulted to 1.
(See Listing 7-14.)

Listing 7-14. Ammunition Constructor

Ammunition(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial,
Shader iShader, float AmmunitionRange,float AmmunitionSpeed)
{

super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);

m_AmmunitionRange = AmmunitionRange;

m_AmmoSpeed = AmmunitionSpeed;

GetObjectPhysics().SetMass(1.0f);

232 CHAPTER 7: Drone Grid Case Study: Creating the Player

The CreateFiringSFX() function creates a new sound effect associated with an Ammunition object.
(See Listing 7-15.)

Listing 7-15. Creating Sound Effects

void CreateFiringSFX(SoundPool Pool, int ResourceID)

{
}

m_FireSFXIndex = AddSound(Pool, ResourceID);
The PlayFiringSFX() function plays the sound effect created by the CreateFiringSFX() function.
(See Listing 7-16.)

Listing 7-16. Playing Back the Ammunition Sound Effect
void PlayFiringSFX()

{
if (m_FireSFXIndex >= 0)
{
PlaySound(m_FireSFXIndex);
}
}

The Reset () function sets the firing status of the ammunition and ammunition spent status to false,
to indicate that the ammunition has not been fired and is ready for use. It also sets the velocity to 0.
(See Listing 7-17.)

Listing 7-17. Resetting the Ammunition

void Reset()

m_FireStatus = false;
m_AmmunitionSpent = false;
GetObjectPhysics().GetVelocity().Set(0, 0, 0);

}

The RenderAmmunition() function draws the ammunition to the screen by calling the DrawObject()
function in the parent Object3d class. (See Listing 7-18.)

Listing 7-18. Rendering the Ammunition

void RenderAmmunition(Camera Cam, PointlLight light, boolean DebugOn)

{
}

DrawObject(Cam, light);

The UpdateAmmunition() function updates the ammunition object by calling the UpdateObject3d()
function in the superclass. (See Listing 7-19.)

CHAPTER 7: Drone Grid Case Study: Creating the Player

Listing 7-19. Updating the Ammunition

void UpdateAmmunition()

{

}

// 1. Update Ammunition Physics, Position, Rotation
UpdateObject3d();

The Fire() function is the key function in terms of actually firing the ammunition this class
represents.

The Fire() function (see Listing 7-20) does the following:

1.

4,

Sets the m_FireStatus to true to indicate that this piece of ammunition has
been fired and is currently moving through the 3D world

Calculates the velocity of the ammunition based on the input Direction
vector, the m_AmmoSpeed ammunition speed, and the OffsetVelocity vector,
which represents the movement of the object firing the ammunition

Sets the position of the ammunition based on the input AmmoPosition
parameter

Sets the m_AmmunitionStartPosition class member variable

Listing 7-20. Firing the Ammunition

void Fire(Vector3 Direction,

Vector3 AmmoPosition,
Vector3 OffSetVelocity)

// 1. Set Fire Status to true
m_FireStatus = true;

// 2. Set direction and speed of Ammunition

// Velocity of Ammo

Vector3 DirectionAmmo = new Vector3(Direction.x, Direction.y, Direction.z);
DirectionAmmo.Normalize();

Vector3 VelocityAmmo = Vector3.Multiply(m AmmoSpeed, DirectionAmmo);
// Velocity of Object with Weapon that has fired Ammo

// Total Velocity

Vector3 VelocityTotal = Vector3.Add(OffSetVelocity , VelocityAmmo);

GetObjectPhysics().SetVelocity(VelocityTotal);
m_Orientation.GetPosition().Set(AmmoPosition.x, AmmoPosition.y, AmmoPosition.z);

// 3. Set Ammunition Initial World Position
m_AmmunitionStartPosition.Set(AmmoPosition.x, AmmoPosition.y, AmmoPosition.z);

233

234 CHAPTER 7: Drone Grid Case Study: Creating the Player

Next, we have to create the player’s Weapon class that uses the ammunition discussed previously.
The Weapon class is derived from the Object3d class.

public class Weapon extends Object3d

The MAX_DEFAULTAMMO variable indicates the maximum number of projectiles that this weapon can
hold at one time.

private int MAX_DEFAULTAMMO = 20;

The m_WeaponClip variable array actually holds the weapon’s ammunition.

private Ammunition[] m_WeaponClip = new Ammunition[MAX DEFAULTAMMO];

The m_TimelastFired variable holds the time this weapon was last fired in milliseconds.
private long m_TimelastFired = 0;

The m_TimeReadyToFire variable is the time that this weapon will next be able to fire ammunition in
milliseconds.

private long m TimeReadyToFire = 0;

The m_FireDelay variable is the minimum time in milliseconds between the firing of projectiles.
private long m_FireDelay = 500;

The Weapon constructor calls the Object3d’s constructor. (See Listing 7-21.)

Listing 7-21. Weapon Constructor

Weapon(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial,
Shader iShader)

{
}

super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);
The TurnOnOffSFX() function turns on or off the sound effects associated with the weapon’s
ammunition. (See Listing 7-22.)

Listing 7-22. Turning On/Off Ammunition Sound Effects
void TurnOnOffSFX(boolean value)

{
for (int i = 0; i < MAX_DEFAULTAMMO; i++)
{
m_WeaponClip[i].SetSFXOnOff(value);
}

CHAPTER 7: Drone Grid Case Study: Creating the Player 235

The ResetWeapon() function resets all of the weapon’s ammunition. (See Listing 7-23.)

Listing 7-23. Resetting the Weapon

void ResetWeapon()

{
// Reset All the Ammunition in the Weapon's Magazine
for (int i = 0; i < MAX DEFAULTAMMO; i++)
{
m_WeaponClip[i].Reset();
}
}

The LoadAmmunition() function puts the Ammunition Ammo in the slot AmmoSlot in the
m_WeaponClip array. (See Listing 7-24.)

Listing 7-24. Loading the Ammunition into the Weapon

void LoadAmmunition(Ammunition Ammo, int AmmoSlot)

{
if (AmmoSlot >= MAX_DEFAULTAMMO)
{
AmmoSlot = MAX_DEFAULTAMMO - 1;
}
m_WeaponClip[AmmoSlot] = Ammo;
}

The FindReadyAmmo() function returns the index number of the first available piece of ammunition
available for firing or -1, if there is no available ammunition. (See Listing 7-25.)

Listing 7-25. Finding Spare Ammunition

int FindReadyAmmo()

{
for (int i = 0; i < MAX DEFAULTAMMO; i++)
{
// If Ammo is not Fired
if (m_WeaponClip[i].IsFired() == false)
{
return i;
}
}
return -1; // No More Ammo Available
}

The CheckAmmoCollision() function tests if the input object obj is colliding with any of the weapon’s
fired ammunition. It returns a reference to the object if there is a collision or null if there is no
collision. (See Listing 7-26.)

236 CHAPTER 7: Drone Grid Case Study: Creating the Player

Listing 7-26. Checking the Weapon’s Ammunition Collision with an Object

Object3d CheckAmmoCollision(Object3d obj)

{
Object3d ObjectCollided = null;
for (int i = 0; 1 < MAX _DEFAULTAMMO; i++)
{
if (m_WeaponClip[i].IsFired() == true)
{
//Check Collision
Physics.CollisionStatus result = m_WeaponClip[i].CheckCollision(obj);
if ((result == Physics.CollisionStatus.COLLISION) ||
(result == Physics.CollisionStatus.PENETRATING COLLISION))
{
ObjectCollided = m WeaponClip[i];
}
}
}
return ObjectCollided;
}

The GetActiveAmmo() function puts references to all of the active fired ammunition from the weapon
in the input ActiveAmmo array and returns the number of active ammunition. (See Listing 7-27.)

Listing 7-27. Getting All the Active Ammunition

int GetActiveAmmo(int StartIndex, Object3d[] ActiveAmmo)

{
// Put all active fired ammunition in ActiveAmmo array
// and return the number of fired ammunition
int AmmoNumber = StartIndex;
for (int i = 0; i < MAX_DEFAULTAMMO; i++)
{
if (m_WeaponClip[i].IsFired() == true)
ActiveAmmo[AmmoNumber] = m_WeaponClip[i];
AmmoNumber++;
}
}
return (AmmoNumber - StartIndex);
}

The Fire() function fires a projectile associated with the weapon in the direction held in the input
parameter Direction and starting at the WeaponPosition position.

The Fire() function (see Listing 7-28) does the following:

1. Continues if the weapon is ready to fire, based on a minimum time delay value
between firings; otherwise, it returns from the function

2. Finds a piece of ammunition that has not been fired yet

CHAPTER 7: Drone Grid Case Study: Creating the Player 237

3. Calls an ammunition’s Fire() function and plays any associated sound
effects associated with that ammunition, if that ammunition exists

4. Calculates the time that the weapon can be fired again and puts this in the
m_TimeReadyToFire variable

5. Returns true if the weapon could be fired and false otherwise

Listing 7-28. Firing the Weapon

boolean Fire(Vector3 Direction, Vector3 WeaponPosition)

{

boolean WeaponFired = false;

// 0. Test if this weapon is ready to fire
long CurrentTime = System.currentTimeMillis();
if (CurrentTime < m_TimeReadyToFire)

{
}

// 1. Find Ammo That is not spent
int AmmoSlot = FindReadyAmmo();

return false;

// 2. If Ammo Found then Fire Ammunition

if (AmmoSlot >= 0)

{
WeaponFired = true;
m_WeaponClip[AmmoSlot].Fire(Direction,WeaponPosition,
GetObjectPhysics().GetVelocity());

// Play SFX if available
m_WeaponClip[AmmoSlot].PlayFiringSFX();

else

Log.e("AMMUNITION ", "AMMUNITION NOT FOUND");
WeaponFired = false;

}

// 3. Firing Delay
m TimelastFired = System.currentTimeMillis();
m_TimeReadyToFire = m TimelastFired + m_FireDelay;

return WeaponFired;

}

The Renderheapon() function renders all of the weapon’s ammunition that has been fired and is
currently active. (See Listing 7-29.)

238 CHAPTER 7: Drone Grid Case Study: Creating the Player

Listing 7-29. Rendering the Weapon’s Ammunition

void RenderWeapon(Camera Cam, PointLight light, boolean DebugOn)

{
// 1. Render Each Fired Ammunition in Weapon
for (int i = 0; 1 < MAX _DEFAULTAMMO; i++)
{
if (m_WeaponClip[i].IsFired() == true)
{
m_WeaponClip[i].RenderAmmunition(Cam, light, DebugOn);
}
}
}

The Updateleapon() function updates the ammunition for the weapon. (See Listing 7-30.)
For each piece of ammunition in the weapon, the Updatelleapon() function does the following:

1. If the ammunition has been fired, it continues updating it. If not, then it checks
to see if the next piece of ammunition has been fired.

2. It adds a rotational force to the ammunition and updates the object’s physics.

3. If the distance the ammunition has traveled since it was fired is greater
than the ammunition’s range, it destroys the ammunition by calling the
ammunition’s Reset () function.

Listing 7-30. Updating the Weapon
void Updateleapon()

{
// 1. Update Each Ammunition in Weapon
for (int i = 0; i < MAX DEFAULTAMMO; i++)
{
// If Ammunition is fired then Update Ammunition and Emit More AmmoDust Trail
particles

if (m_WeaponClip[i].IsFired() == true)

// Add Spin to Ammunition
m_WeaponClip[i].GetObjectPhysics().ApplyRotationalForce(30, 1);
m_WeaponClip[i].UpdateAmmunition();

// 2. Check if Ammunition is spent

float AmmoRange = m_WeaponClip[i].GetAmmunitionRange();

Vector3 AmmoCurrentPos = m_WeaponClip[i].m Orientation.GetPosition();
Vector3 AmmoInitPos m_WeaponClip[i].GetAmmunitionStartPosition();
Vector3 DistanceVector = Vector3.Subtract(AmmoCurrentPos, AmmoInitPos);

float DistanceMag = DistanceVector.Llength();

CHAPTER 7: Drone Grid Case Study: Creating the Player 239

if (DistanceMag > AmmoRange)

{

// Ammo is Spent so Reset Ammunition to ready to use status.
m_WeaponClip[i].Reset();

}

Figure 7-2 shows the player’s weapon being fired. The green cube in the center of the picture is the
player’s ammunition from the weapon.

¢]& @ 9:22¢m

Figure 7-2. Player’s weapon fired

Creating the Explosions

The explosions for our game will consist of many triangular polygons. The key classes for our explosion
are the PolyParticleEx class, which represents the particles, and the SphericalPolygonExplosion class,
which contains the particles that will make up our explosion.

Creating the PolyParticleEx Class

The PolyParticleEx class represents the particles of the explosion we want to create, along with
functions to manage and manipulate the particle.

240 CHAPTER 7: Drone Grid Case Study: Creating the Player

The PolyParticleEx class is derived from the Object3d class.

public class PolyParticleEx extends Object3d

The PolyParticleVertices variable array holds the mesh data for a PolyParticleEx particle. The
particle is a triangle that has no texture coordinates but has lighting data in the form of vertex
normals. (See Listing 7-31.)

Listing 7-31. Particle Mesh Definition

static float[] PolyParticleVertices =

{
// Triangle Shape
// Left Side nx, ny, nz
0.of, o.of, -0.5f, o, 0, -1, // vO = Dbottom, back
0.of, o.of, o0.5f, o, 0, 1, // vi = bottom, front
0.of, o0.5f, o0.0f, o, 1, 0, // v2 = top point

};

The m_Color variable holds the current color of the polygon particle.

private Vector3 m_Color = new Vector3(0,0,0);

The m_TimeStamp variable holds the time in milliseconds that the particle is created.

private long m_TimeStamp; // Time in milliseconds that Particle is created

The m_TimeDelay variable holds the life span of the particle in milliseconds.

private float m_TimeDelay; // LifeSpan of Particle in milliseconds

The m_Locked variable is true if set to launch or in use, false if available for use.

private boolean m_Locked; // true if set to launch or in use, false if available for use
The m_Active variable is true if the particle is onscreen and has to be rendered. It is false otherwise.
private boolean m_Active; // Onscreen = Render particle if Active

The m_ColorBrightness variable holds the current brightness level of the particle color.

private float m_ColorBrightness;

The m_FadeDelta variable is the rate at which the particle fades out.

private float m_FadeDelta;

The m_OriginalColor variable is the original color of the particle when created.

private Vector3 m OriginalColor = new Vector3(0,0,0);

CHAPTER 7: Drone Grid Case Study: Creating the Player 241

The PolyParticleEx constructor calls the Object3d constructor and then initializes class member
variables. (See Listing 7-32.)

Listing 7-32. The PolyParticleEx Constructor

public PolyParticleEx(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures,
Material iMaterial, Shader iShader)

{
super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);
m Color.Clear();
m_TimeStamp = 0;
m_TimeDelay = 1000;
m_Locked = false;
m_Active = false;
m_ColorBrightness = 1;
m_OriginalColor.Clear();
m_FadeDelta = 0.0000f;
}

The SetColor() function sets the color of the particle, including the particle’s material, in terms of the
material’s ambient, diffuse, and emissive properties. (See Listing 7-33.)

Listing 7-33. Setting the Particle’s Color

void SetColor(Vector3 value)

{

m_Color.x = value.x;
m_Color.y = value.y;
m_Color.z = value.z;

GetMaterial().SetAmbient(value.x, value.y, value.z);
GetMaterial().SetDiffuse(value.x, value.y, value.z);
GetMaterial().SetEmissive(value.x, value.y, value.z);

}

The SetActiveStatus() function sets the active status of the particle and also resets the particle’s
color brightness level to 100%. (See Listing 7-34.)

Listing 7-34. Setting the Active Status

void SetActiveStatus(boolean value)

{
m_Active = value;
// Reset Brightness Level
m_ColorBrightness= 1;

}

The Destroy() function resets the particle to its initial state. (See Listing 7-35.)

242 CHAPTER 7: Drone Grid Case Study: Creating the Player

Listing 7-35. Destroying the Particle
void Destroy()
GetObjectPhysics().GetVelocity().Clear();
m_Locked = false; // Particle is now free to be used again by the Particle Manager.

m_Active = false; // Do not draw on screen
m_TimeStamp = 0;

// Restore Particle to Original Color

m_Color.x = m_OriginalColor.x;
m_Color.y = m OriginalColor.y;
m_Color.z = m OriginalColor.z;

}

The Create() function sets the color of the particle to Color and sets the m_OriginalColor variable to
Color as well. (See Listing 7-36.)

Listing 7-36. Creating a New Particle

void Create(Vector3 Color)

{

m_Color.x = Color.x;
m_Color.y = Color.y;
m_Color.z = Color.z;

m_OriginalColor.x = m_Color.x;
m_OriginalColor.y = m Color.y;
m OriginalColor.z = m Color.z;

}

The LockParticle() function can be used to set up the particle for use. (See Listing 7-37.)
The Lock Particle() function does the following:
1. Sets up the particle for use by setting m_Active to false and m_Locked to true

2. Applies a translational force taken from the input parameter Force along the
direction DirectionNormalized

3. Setsthem TimeStamp variable to the CurrentTime input parameter

4. Sets the particle color to the original color for the particle at the time of first
creation

Listing 7-37. Getting a Particle Ready for Use

void LockParticle(float Force, Vector3 DirectionNormalized, long CurrentTime)
{

// 1. Setup particle for use

m Active = false;

m_Locked = true;

CHAPTER 7: Drone Grid Case Study: Creating the Player 243

// 2. Apply Initial Force
Vector3 FVector = new Vector3(DirectionNormalized.x, DirectionNormalized.y,

DirectionNormalized.z);

}

FVector.Multiply(Force);
GetObjectPhysics().ApplyTranslationalForce(FVector);

// 3. Apply Time
m_TimeStamp = CurrentTime;

// 4. Calculate Color for Fade
m_Color.x = m_OriginalColor.x;
m_Color.y = m_OriginalColor.y;
m_Color.z = m OriginalColor.z;

The FadeColor() function takes as input a reference to a color, ColorIn, and reduces the brightness
(m_ColorBrightness) by m_FadeDelta, with a minimum value of O for m_ColorBrightness. The color is
then scaled by m_ColorBrightness. (See Listing 7-38.)

Listing 7-38. Fading the Color of the Particle

void FadeColor(Vector3 ColorIn)

{

}

// Fade Color to Black.

// Adjust Brightness Level Down from full brightness = 1 to no brightness = 0;
m_ColorBrightness -= m_FadeDelta;

if (m_ColorBrightness < 0)

{
}

// 1. Adjust Color so that everything is at the same Brightness Level
ColorIn.x *= m_ColorBrightness;
ColorIn.y *= m_ColorBrightness;
ColorIn.z *= m_ColorBrightness;

m_ColorBrightness = 0;

The FadeColor() function fades the particle’s color by calling FadeColor() and then calls SetColor()
to set the color of the particle. (See Listing 7-39.)

Listing 7-39. Fading the Particle’s Color

void FadeColor(long ElapsedTime)

{

FadeColor(m Color);
SetColor(m Color);

244 CHAPTER 7: Drone Grid Case Study: Creating the Player

The UpdateParticle() function (see Listing 7-40) updates the particle in the following way:

1. If the particle is active, that ism_Active = true, then it continues with the
update; otherwise, it returns.

2. It applies a rotational force to the particle.
3. It updates the physics of the particle.

4. |If the time that passes since the particle was created is greater than the
particle life span, which is m_TimeDelay, it destroys the particle by calling
Destroy(). Otherwise, it calls FadeColor() to fade the color of the particle
toward black.

Listing 7-40. Updating the Particle

void UpdateParticle(long current time)

{

// If particle is Active (on the screen)
if (m_Active)

// Update Particle Physics and position
GetObjectPhysics().ApplyRotationalForce(40, 1);
GetObjectPhysics().UpdatePhysicsObject(m Orientation);

long TimePassed = current_time - m_TimeStamp;
if (TimePassed > m_TimeDelay)

{

// Destroy Particle
Destroy();

FadeColor(TimePassed);

}

The Render () function draws the particle to the screen by calling DrawObject(), located in the
Object3d class. (See Listing 7-41.)

Listing 7-41. Rendering a Particle

void Render(Camera Cam, PointLight light)

{
}
Creating the SphericalPolygonExplosion Class

Next, we have to create the class that represents our explosion, which is the
SphericalPolygonExplosion class. What this class does is create a group of PolyParticleEx
polygons and uses them to create an explosion.

DrawObject(Cam, light);

CHAPTER 7: Drone Grid Case Study: Creating the Player 245

The MAX_POLYGONS variable holds the maximum number of polygons that our explosion can be
composed of.

private int MAX_POLYGONS = 1000;

The m_Particles variable holds the PolyParticleEx polygons that are used to create the explosion.
private PolyParticleEx[] m Particles = new PolyParticleEx[MAX POLYGONS];

The m_ExplosionDirection variable holds the velocity of each of the particles in m_Particles.
private Vector3[] m_ExplosionDirection = new Vector3[MAX POLYGONS];

The m_NumberParticles variable holds the number of particles that make up the explosion.

int m_NumberParticles;

The m_ParticleColor variable holds the color of the particles.

Vector3 m_ParticleColor;

The m_ParticleSize variable holds the scale of the particle, with 1 representing the normal scale of
the particle mesh.

Vector3 m_ParticleSize;

The m_ParticlelifeSpan variable holds the time in milliseconds that the particle is to be active and
displayed on the screen.

long m_ParticleLifeSpan;

The m_ExplosionCenter variable holds the starting position for all the particles in the explosion.
Vector3 m_ExplosionCenter;

The m_RandomColors variable is true if the colors of the particles are to be random.

boolean m_RandomColors; // true if Particles set to have Random colors

The m_ParticleColorAnimation variable is true if the particles in the explosion change colors
randomly for every rendering.

boolean m_ParticleColorAnimation; // true if Particles change colors during explosion

The m_ExplosionActive variable is true if the explosion is still active and has to be rendered to the
screen and updated.

boolean m_ExplosionActive;

246 CHAPTER 7: Drone Grid Case Study: Creating the Player

The m_RandNumber variable is used to generate random numbers.
private Random m_RandNumber = new Random();

The GenerateRandomColox () function generates and returns a random color using m_RandNumber. The
nextFloat() function generates and returns a random number in the range of 0-1. (See Listing 7-42.)

Listing 7-42. Generating a Random Color

Vector3 GenerateRandomColor()

{

Vector3 Color = new Vector3(0,0,0);

// 1. Generate Random RGB Colors in Range of 0-1;
Color.x = m_RandNumber.nextFloat();
Color.y = m_RandNumber.nextFloat();
Color.z = m_RandNumber.nextFloat();

return Color;

}

The GenerateRandomRotation() function generates and returns the value of a random rotation in the
range 0-MaxValue. (See Listing 7-43.)

Listing 7-43. Generating a Random Rotation

float GenerateRandomRotation(float MaxValue)

{
float Rotation;
// 1. Generate Random Rotation in Range of 0-1 * MaxValue;
Rotation = MaxValue * m_RandNumber.nextFloat();
return Rotation;
}

The GenerateRandomRotationAxis() function generates and returns a normalized randomly
generated rotation axis. (See Listing 7-44.)

Listing 7-44. Generating a Random Rotation Axis

Vector3 GenerateRandomRotationAxis()

{

Vector3 RotationAxis = new Vector3(0,0,0);

// 1. Generate Random Rotation in Range of 0-1
RotationAxis.x = m_RandNumber.nextFloat();
RotationAxis.y = m_RandNumber.nextFloat();
RotationAxis.z = m_RandNumber.nextFloat();
RotationAxis.Normalize();

return RotationAxis;

CHAPTER 7: Drone Grid Case Study: Creating the Player 247

The SphericalPolygonExplosion constructor creates and initializes a new explosion. It creates and
initializes m_NumberParticles new particles that will have random directions when the explosion is
started. (See Listing 7-45.)

Listing 7-45. SphericalPolygonExplosion() Constructor

SphericalPolygonExplosion(int NumberParticles, Vector3 Color,long ParticleLifeSpan,boolean
RandomColors, boolean ColorAnimation,float FadeDelta,Vector3 ParticleSize,Context iContext, Mesh
iMesh, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial, Shader iShader)

{

m_NumberParticles = NumberParticles;

m_ParticleColor = new Vector3(Color.x, Color.y, Color.z);

m_ParticleLifeSpan = ParticlelifeSpan;

m_RandomColors = RandomColors; // true if Particles set to have Random colors
m_ParticleColorAnimation = ColorAnimation;

m_ExplosionActive = false;

m_ParticleSize = new Vector3(ParticleSize.x, ParticleSize.y, ParticleSize.z);

if (NumberParticles > MAX_POLYGONS)
{

}

m_NumberParticles = MAX_POLYGONS;

// For each new Particle
for (int i = 0; i < m_NumberParticles; i++)

{
int signx = 1;
int signy = 1;
int signz = 1;

if (m_RandNumber.nextFloat() > 0.5f)

{
signx = -1;
}
if (m_RandNumber.nextFloat() > 0.5f)
{
signy = -1;

if (m_RandNumber.nextFloat() > 0.5f)
{

}

signz = -1;

// Find random direction for particle

float randomx = (float)signx * m_RandNumber.nextFloat();
float randomy = (float)signy * m_RandNumber.nextFloat();
float randomz = (float)signz * m_RandNumber.nextFloat();

248 CHAPTER 7: Drone Grid Case Study: Creating the Player

// Generate random x,y,z coords

Vector3 direction = new Vector3(0,0,0);
direction.x = randomx;

direction.y = randomy;

direction.z = randomz;

direction.Normalize();

// Set Particle Explosion Direction Array
m_ExplosionDirection[i] = direction;

// Create New Particle
m Particles[i] = new PolyParticleEx(iContext, iMesh, iMeshEx, iTextures,

iMaterial, iShader);

}

// Set Particle Array Information
if (RandomColors)

{
m Particles[i].SetColor(GenerateRandomColor());
}
else
{
m Particles[i].Create(m ParticleColor);
}

m Particles[i].SetTimeDelay(ParticleLifeSpan);
m _Particles[i].SetFadeDelta(FadeDelta);

// Generate Random Rotations
Vector3 Axis = GenerateRandomRotationAxis();
m Particles[i].m Orientation.SetRotationAxis(Axis);

float rot = GenerateRandomRotation(360);
m Particles[i].m _Orientation.SetRotationAngle(rot);

The GetRandomParticleVelocity() function (see Listing 7-46) creates and returns a random velocity
based on the pdirection that the particle was set when the explosion was created and a random speed.

The function does the following:

1.

Gets the normalized direction of particle ParticleNumber from the
m_ExplosionDirection array

Creates a new vector variable, ParticleVelocity, to hold the final particle
velocity and initializes it with the explosion direction found in step 1

Generates a random speed for the particle between the MinVelocity and
MaxVelocity input parameters

Calculates the final new random particle velocity by multiplying the
ParticleVelocity variable that holds the direction of the particle by the
random speed in the RandomVelocityMagnitude variable

CHAPTER 7: Drone Grid Case Study: Creating the Player

Listing 7-46. Getting a Random Particle Velocity

Vector3
{

}

GetRandomParticleVelocity(int ParticleNumber, float MaxVelocity, float MinVelocity)

Vector3 ExplosionDirection = m_ExplosionDirection[ParticleNumber];

Vector3 ParticleVelocity= new Vector3(ExplosionDirection.x, ExplosionDirection.y,
ExplosionDirection.z);

float RandomVelocityMagnitude = MinVelocity + (MaxVelocity - MinVelocity)*
m_RandNumber .nextFloat();

ParticleVelocity.Multiply(RandomVelocityMagnitude);

return ParticleVelocity;

The StartExplosion() function is called to start the actual explosion at Position location with
particles with speeds from MinVelocity to MaxVelocity.

The StartExplosion() function (see Listing 7-47) does the following:

1.

N o o &~

Sets the m_ExplosionActive variable to true to indicate the explosion is in
progress

Sets the particles in the explosion to active, which means that they will be
rendered and updated

Sets the timestamp on all the particles to the current system time, which is
the start of the explosion

Sets the position of all the particles to the input parameter Position
Sets random velocities for all the particles
Sets the scale of the particles to m_ParticleSize

Sets a random color for all the particles, if random colors for the particles are
selected, to m_RandomColors = true; otherwise, sets the color of the particle
tom ParticleColor

Sets the particle’s life span time to m_ParticleLifeSpan

Listing 7-47. Starting the Explosion

void StartExplosion(Vector3 Position,float MaxVelocity, float MinVelocity)

{

// 1. Set Position of Particles
m_ExplosionActive = true;
for (int i = 0; 1 < m NumberParticles; i++)
{
m Particles[i].SetActiveStatus(true);
m Particles[i].SetTimeStamp(System.currentTimeMillis());

m_ExplosionCenter = new Vector3(Position.x, Position.y, Position.z);
m Particles[i].m Orientation.SetPosition(m ExplosionCenter);

249

250 CHAPTER 7: Drone Grid Case Study: Creating the Player

m Particles[i].GetObjectPhysics().SetVelocity(GetRandomParticleVelocity(i,MaxVeloci

ty,MinVelocity));
m Particles[i].m Orientation.SetScale(m ParticleSize);

if (m_RandomColors)

{
m Particles[i].SetColor(GenerateRandomColor());
}
else
{
m Particles[i].SetColor(m ParticleColor);
}

m Particles[i].SetTimeDelay(m ParticleLifeSpan);

}

The RenderExplosion() function draws all the particles that make up the explosion and are active to

the screen. (See Listing 7-48.)

Listing 7-48. Rendering the Explosion

void RenderExplosion(Camera Cam, PointLight light)

{
// Render Explosion
for (int i = 0; 1 < m NumberParticles; i++)
{
if (m_Particles[i].GetActiveStatus() == true)
{
m Particles[i].Render(Cam, light);
}
}
}

The UpdateExplosion() function updates the explosion. (See Listing 7-49.)
The function does the following:
1. If the explosion is not active, then it returns.

2. For the active particles, it sets the color randomly, if particle color animation
is turned on.

3. For the active particles, it updates the particle by calling UpdateParticle().

4. If any particle is active, then the entire explosion is set to active.

Listing 7-49. Updating the Explosion

void UpdateExplosion()
{

if (!m_ExplosionActive)

{
}

return;

CHAPTER 7: Drone Grid Case Study: Creating the Player 251

boolean ExplosionFinished = true;
for (int i = 0; 1 < m NumberParticles; i++)

{
// If all Particles are not active then explosion is finished.
if (m_Particles[i].GetActiveStatus() == true)
{
// If Color Animation is on then set particle to random color
if(m ParticleColorAnimation)
{
m_Particles[i].SetColor(GenerateRandomColor());
}
// For each particle update particle
m Particles[i].UpdateParticle(System.currentTimeMillis());
ExplosionFinished = false;
}
}
if (ExplosionFinished)
{
m_ExplosionActive = false;
}

Modifying the Object3d Class

Next, we have to add some code to our Object3d class, so it can use the explosions.

The MAX_EXPLOSIONS variable holds the maximum number of explosions associated with this object.
private int MAX_EXPLOSIONS = 3;

The m_NumberExplosions variable holds the actual number of explosions associated with this object.
private int m_NumberExplosions = 0;

The m_Explosions variable holds references to the SphericalPolygonExplosion objects associated
with this object, if any.

private SphericalPolygonExplosion[] m Explosions = new SphericalPolygonExplosion[MAX EXPLOSIONS];

We also add the functions RenderExplosions(), to render explosions; UpdateExplosions(), to
update explosions; and ExplodeObject(), to start explosions. These functions are fairly simple,

so in the interest of saving space, please refer to the Source Code/Download area for this chapter
at apress.com for the full details.

The DrawObject() function must be modified to render the explosions, by calling the
RenderExplosions() function. (See Listing 7-50.)

http://apress.com/

252 CHAPTER 7: Drone Grid Case Study: Creating the Player

Listing 7-50. Modifying the DrawObject () Function to Render Explosions

void DrawObject(Camera Cam, PointlLight light)

{
RenderExplosions(Cam,light);

// Rest of Code
}

The UpdateObject3d() function has to be modified to update the explosions, by calling
UpdateExplosions(). (See Listing 7-51.)

Listing 7-51. Modifying the UpdateObject3d() Function
void UpdateObject3d()

{
if (m_Visible)
{
// Update Object3d Physics
UpdateObjectPhysics();
}
// Update Explosions associated with this object
UpdateExplosions();
}

Creating Game Object Statistics

In order to track the game-related properties, such as health, we have to create a new class that
holds these statistics.

Creating the Stats Class

The Stats class holds the game-related statistics for our game objects. The game-related properties
we will use for our Drone Grid example are health, kill value, and damage value.

The m_Health variable holds a game object’s health and is defaulted to 100 to indicate full health.
private int m_Health = 100;

The m_KillValue variable indicates the point value of this object when it is destroyed.

private int m KillValue = 50;

The m_DamageValue variable is the amount that is subtracted from the health of the player when this
object collides with the player’s power pyramid.

private int m_DamageValue = 25;

CHAPTER 7: Drone Grid Case Study: Creating the Player 253

The SaveStats() function saves the game-related statistics. For your own game, you can modify the
stats in this class as needed. For example, you could add hit points and character levels if you are
creating a role-playing game. If so, you would have to modify the SaveStats() function to save these
new stats. (See Listing 7-52.)

Listing 7-52. Saving the Stats
void SaveStats(String Handle)

{
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);
SharedPreferences.Editor editor = settings.edit();
// Health
String HealthHandle = Handle + "Health";
editor.putInt(HealthHandle, m_Health);
// Commit the edits!
editor.commit();
}

The LoadStats() function loads in the game-related stats. (See Listing 7-53.)

Listing 7-53. Loading in the Stats
void LoadStats(String Handle)

{
// Restore preferences
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);
// Health
String HealthHandle = Handle + "Health";
m_Health = settings.getInt(HealthHandle, 100);
}

The functions to retrieve and set the game-related statistics in this class are in Listing 7-54. They
consist of functions relating to damage value, health, and kill value.

Listing 7-54. Getting and Setting the Game-Related Statistics

int GetDamageValue(){return m_DamageValue;}

int GetHealth(){return m_Health;}

int GetKillValue(){return m_KillValue;}

void SetDamageValue(int value){m DamageValue = value;}
void SetHealth(int health){m Health = health;}

void SetKillValue(int value){m KillValue = value;}

254 CHAPTER 7: Drone Grid Case Study: Creating the Player

Modifying the Object3d Class

The Object3d class has to be modified to integrate in the Stats class.

The m_ObjectStats variable holds this object’s game-related statistics.

private Stats m ObjectStats;

The Object3d constructor has to be modified to create a new Stats object.

m ObjectStats = new Stats(iContext);

The m_ObjectStats variable can be accessed through the GetObjectStats() function.

Stats GetObjectStats(){return m_ObjectStats;}

The TakeDamage() function adjusts the object’s health stats by the amount of damage done by the
DamageObj input object. (See Listing 7-55.)

Listing 7-55. Taking Damage from Another Object

void TakeDamage(Object3d DamageObj)
{

int DamageAmount = DamageObj.GetObjectStats().GetDamageValue();
int Health = m_ObjectStats.GetHealth();

Health = Health - DamageAmount;
// Health can never be negative
if (Health < 0)

{

}
m ObjectStats.SetHealth(Health);

Health = 0;

}

The SaveObjectState() function has to be modified by first adding a StatsHandle variable to hold
the handle to the game object statistics to be saved.

String StatsHandle = Handle + "Stats";
Next, we need to add code to call the SaveStats() function with the StatsHandle.
m_ObjectStats.SaveStats(StatsHandle);

The LoadObjectState() function has to be modified by adding in a StatsHandle variable to hold the
handle to our game stats.

String StatsHandle = Handle + "Stats";

CHAPTER 7: Drone Grid Case Study: Creating the Player 255

Next, we add code to load in the previously saved game stats.

m_ObjectStats.LoadStats(StatsHandle);

Hands-on Example: Target Shooting!

Now, it’s time to use some of the new classes that | discussed previously in this chapter. This example
builds upon previous examples by adding the player’s power pyramid, a moveable player’s view that
you can turn left and right, and a weapon that can fire projectiles by the user touching the screen.

A cube is placed in front of the player’s pyramid, and another cube is placed behind the pyramid.

We have to make modifications to the MyGLRenderer class to add code that creates the player’s
pyramid, creates the player’s weapon, and processes the collisions between the cube in front of the
pyramid and the pyramid and between the player’s weapon’s projectiles and the cubes.

Creating the Player
In order to create the player’s power pyramid, we have to add some new variables and functions.

The player’s power pyramid is m_Pyramid.
private PowerPyramid m_Pyramid;
The textures that are used with the player’s pyramid are held in m_TexPyramidi and m_TexPyramid2.

private Texture m TexPyramidi;
private Texture m TexPyramid2;

The PyramidCreateTexture() function creates the textures for our player’s power pyramid and stores
these textures in m_TexPyramidl and m_TexPyramid2. (See Listing 7-56.)

Listing 7-56. Creating the Textures for the Pyramids

public void PyramidCreateTexture(Context context)

{

m TexPyramidl = new Texture(context,R.drawable.pyramidi);
m_TexPyramid2 = new Texture(context,R.drawable.pyramid2);

}

The CreatePyramid() function creates the player’s pyramid graphic. (See Listing 7-57.)
The function does the following:
1. Creates a shader for use in rendering the pyramid.

2. Creates a new Mesh object using the data from the PyramidVertices array in
the Pyramid class.

3. Creates a new Material object that sets the glow animation to true, so that
when the material is updated, the emissive color property cycles between the
values set with GetEmissiveMin() and GetEmissiveMax().

256 CHAPTER 7: Drone Grid Case Study: Creating the Player

4. Creates the pyramid’s textures by calling PyramidCreateTexture() and
setting them up in an array called PyramidTex for use with the player’s
pyramid.

5. Creates a new power pyramid object.

6. Sets the texture animation properties for the pyramid, so that the textures
cycle between one another.

7. Sets the initial position, rotation, and scale of the pyramid.
8. Sets the effect of gravity on the pyramid to none.
9. Sets the pyramid’s grid spotlight and spotlight radius.

10. Sets the pyramid’s mass to 2000 to indicate that this is a very large structure
compared to other enemy objects in the game that will be colliding with it.
The collisions that occur with other objects in the game will reflect this.

11. Creates the explosion sound associated with the pyramid and sets the sound
effects on for the pyramid.

12. Creates a SphericalPolygonExplosion explosion and adds it to the pyramid
using the AddExplosion() function.

Listing 7-57. Creating the Player’s Power Pyramid

void CreatePyramid(Context iContext)
{
//Create Cube Shader
Shader Shader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelight); // ok

// Create Debug Local Axis Shader
Mesh PyramidMesh = new Mesh(8,0,3,5,Pyramid.PyramidVertices);

// Create Material for this object
Material Materiall = new Material();
Materiali.SetEmissive(0.0f, 0.0f, 0.5f);

Materiali.SetGlowAnimation(true);
Materiall.GetEmissiveMax().Set(0.45f, 0.45f, 0.25f);
Materialil.GetEmissiveMin().Set(0, 0, 0);

// Create Texture
PyramidCreateTexture(iContext);
Texture[] PyramidTex = new Texture[2];
PyramidTex[0] = m_TexPyramidi;
PyramidTex[1] = m_TexPyramid2;

m_Pyramid = new PowerPyramid(iContext, PyramidMesh, null, PyramidTex, Materiali, Shader);
m_Pyramid.SetAnimateTextures(true, 0.3f, 0, 1);

CHAPTER 7: Drone Grid Case Study: Creating the Player

// Set Initial Position and Orientation

Vector3 Axis = new Vector3(0,1,0);
Vector3 Position = new Vector3(0.0f, 0.0f, 0.0f);
Vector3 Scale = new Vector3(0.25f,0.30f,0.25f);

m_Pyramid.m_Orientation.SetPosition(Position);
m_Pyramid.m Orientation.SetRotationAxis(Axis);
m_Pyramid.m Orientation.SetScale(Scale);
m_Pyramid.m _Orientation.AddRotation(45);

m_Pyramid.GetObjectPhysics().SetGravity(false);

Vector3 ColorGrid = new Vector3(1.0f, 0.0f, 0.5f);
m_Pyramid.SetGridSpotLightColor(ColorGrid);
m_Pyramid.GetObjectPhysics().SetMassEffectiveRadius(7);
m_Pyramid.GetObjectPhysics().SetMass(2000);

//SFX

m_Pyramid.CreateExplosionSFX(m_SoundPool, R.raw.explosion2);

m_Pyramid.SetSFXOnOff(true);

// Create Explosion

int NumberParticles = 20;

Vector3 Color = new Vector3(1,1,0);

long ParticlelLifeSpan = 2000;

boolean RandomColors = false;

boolean ColorAnimation = true;

float FadeDelta = 0.001f;

Vector3 ParticleSize = new Vector3(0.5f,0.5f,0.5f);

// No textures
Mesh PolyParticleMesh = new Mesh(6,0,-1,3,PolyParticleEx.PolyParticleVertices);

// Create Material for this object
Material Material2 = new Material();

Material2.SetSpecular(o, 0, 0);

//Create Cube Shader

Shader Shader2 = new Shader(iContext, R.raw.vsonelightnotexture, R.raw.fsonelightnotexture);

// ok

SphericalPolygonExplosion explosion = new SphericalPolygonExplosion(NumberParticle

s, Color, ParticlelLifeSpan, RandomColors, ColorAnimation, FadeDelta, ParticleSize, m_Context,
PolyParticleMesh, null, null, Material2, Shader2);

}

m_Pyramid.AddExplosion(explosion);

257

Finally, in the onSurfaceCreated() function, the CreatePyramid() function was added and called to
actually create the pyramid when the GL surface is created.

CreatePyramid(m_Context);

258 CHAPTER 7: Drone Grid Case Study: Creating the Player

Creating the Player’s Weapon

Next, the player’s weapon and the ammunition it uses need to be created in the MyGLRenderer

class.

The player’s weapon is m_Weapon.

private Weapon m_Weapon = null;

The sound effects for the player’s weapon are held in m_PlayerWeaponSFX.

private Sound m_PlayerWeaponSFX = null;

The player’s weapon is created in the CreateWeapon() function.

The Createleapon() function (see Listing 7-58) does the following:

1.

o~ w0 D

Creates a new shader that uses vertex shaders and fragment shaders that
require no texture. This is for the ammunition that does not use a texture.

Creates a cube mesh for use as the 3D model for the weapon’s ammunition.
Creates a new Material object and sets its emissive property to green.
Creates a new weapon and sets its ammunition range and speed.

Creates and loads in new ammunition into the weapon by calling the
weapon’s LoadAmmunition() function. These pieces of ammunition are green
cubes that are created from the cube mesh and Material object created in
previous steps.

Listing 7-58. Creating the Weapon

void CreateWeapon(Context iContext)

{

// ok

//Create Cube Shader
Shader Shader = new Shader(iContext, R.raw.vsonelightnotexture, R.raw.fsonelightnotexture);

// Create
MeshEx CubeMesh = new MeshEx(6,0,-1,3,Cube.CubeDataNoTexture, Cube.CubeDrawOrder);

// Create Material for this object
Material Materiall = new Material();
Materiali.SetEmissive(0.0f, 1.0f, 0.0f);

// Create Weapon

m_Weapon = new Weapon(iContext, null, null, null, Materiali, Shader);
float AmmunitionRange = 100;

float AmmunitionSpeed = 0.5f;

CHAPTER 7: Drone Grid Case Study: Creating the Player 259

for (int i = 0; 1 < m_Weapon.GetMaxAmmunition(); i++)

{

Ammunition Ammo = new Ammunition(iContext, null, CubeMesh, null, Materiali, Shader,
AmmunitionRange,AmmunitionSpeed);

// Set Intial Position and Orientation
Vector3 Axis = new Vector3(1,0,1);
Vector3 Scale = new Vector3(0.3f,0.3f,0.3f);

Ammo.m_Orientation.SetRotationAxis(Axis);
Ammo.m_Orientation.SetScale(Scale);

Ammo . GetObjectPhysics().SetGravity(false);
Ammo . GetObjectPhysics().SetGravitylLevel(0.003f);

Vector3 GridColor = new Vector3(1,0f,0);

Ammo. SetGridSpotLightColor(GridColor);
Ammo.GetObjectPhysics().SetMassEffectiveRadius(10);
Ammo . GetObjectPhysics().SetMass(100);
Ammo.GetObjectStats().SetDamageValue(25);

m_Weapon.LoadAmmunition(Ammo, 1i);

}

The MapWindowCoordsToWorldCoords() function uses the gluUnProject() function to translate screen
coordinates generated by user touches to world coordinates, which are returned in a float array.

Using the MapWindowCoordsToWorldCoords() function (see Listing 7-59), the following are
accomplished:

1. A new float array, ObjectCoords, is created to return in homogeneous
coordinates the 3D world coordinates that correspond to the screen
coordinates.

2. They screen position is translated from screen coordinates to the y
coordinate system that OpenGL uses, by subtracting the y location in
screen coordinates from the Android’s screen height. For example, a point
that was input as (0,0) is now sent to the gluUnProject() function as
(0, screenheight). A point that was input as (0, screenheight) would be
transformed into (0,0).

3. The GLU.gluUnProject() function is then called to convert the screen touch
coordinates into 3D world coordinates.

4. The ObjectCoords float array that holds the 3D world coordinates is returned.

260 CHAPTER 7: Drone Grid Case Study: Creating the Player

Listing 7-59. Mapping Window Coordinates to 3D World Coordinates

float[] MapWindowCoordsToWorldCoords(int[] View, float WinX, float WinY, float WinZ)
{

// Set modelview matrix to just camera view to get world coordinates

// Map window coordinates to object coordinates. gluUnProject maps the specified

// window coordinates into object coordinates using model, proj, and view. The result is
// stored in obj.

// view the current view, {x, y, width, height}

float[] ObjectCoords = new float[4];

float realy = View[3] - WinY;

int result = 0;

//public static int gluUnProject (float winX, float winY, float winZ,

// float[] model, int modelOffset,

// float[] project, int projectOffset,
// int[] view, int viewOffset,

// float[] obj, int objOffset)

result = GLU.gluUnProject (WinX, realy, WinZ, m_Camera.GetViewMatrix(), 0, m_Camera.
GetProjectionMatrix(), 0, View, 0, ObjectCoords, 0);

if (result == GLES20.GL_FALSE)

{
Log.e("class Object3d :", "ERROR = GLU.gluUnProject failed!!!");

Log.e("View = ", View[0] + "," + View[1] + ", " + View[2] + ", " + View[3]);

}

return ObjectCoords;

}

The CreatePlayerWeaponSound() function creates a new sound effect for the player’s weapon.
(See Listing 7-60.)

Listing 7-60. Creating the Player’s Weapon Sound Effects

void CreatePlayerWeaponSound(Context iContext)

{

}
The PlayPlayerWeaponSound() function plays the weapon sound effects. (See Listing 7-61.)

m_PlayerWeaponSFX = new Sound(iContext, m_SoundPool, R.raw.playershoot2);

Listing 7-61. Playing the Weapon’s Sound Effect

void PlayPlayerWeaponSound()

{
if (m_SFXOn)
{
m_PlayerWeaponSFX.PlaySound();
}
}

The CheckTouch() function (see Listing 7-62) is called when the user touches the screen and fires the
player’s weapon.

CHAPTER 7: Drone Grid Case Study: Creating the Player

The function does the following:

1.

7.

Creates an integer array View that holds the current screen view parameters of
the Android device.

Calls MapWindowCoordsToWorldCoords() function with the view parameters,

along with the x and y locations that the user has touched and a z value of

1. The 3D homogeneous world coordinates are returned in the WorldCoords
float array.

Converts the homogeneous coordinates to Cartesian coordinates by dividing
WorldCoords by the w value or fourth element in the WorldCoords array. The
result is stored in TargetLocation.

Defines the WeaponLocation variable as the location of the camera or viewer.

Defines the Direction variable, which is the direction the weapon is to be
fired, as a vector going from the WeaponLocation to the TargetLocation.

Fires the player’s weapon with the projectile starting at the WeaponLocation
location and in the direction Direction.

Plays the player’s weapon sound effect.

Listing 7-62. Checking the User’s Touch for Firing the Weapon

void CheckTouch()

{

// Player Weapon Firing
int[] View = new int[4];

View[0] = 0;
View[1] = 0;
View[2] = m ViewPortWidth;
View[3] = m_ViewPortHeight;

float[] WorldCoords = MapWindowCoordsToWorldCoords(View, m TouchX, m_TouchY, 1);

// 1 = far clipping plane

Vector3 Targetlocation = new Vector3(WorldCoords[0]/WorldCoords[3],

WorldCoords[1]/WorldCoords[3], WorldCoords[2]/WorldCoords[3]);

Vector3 WeaponLocation = m_Camera.GetCamerakye();

Vector3 Direction = Vector3.Subtract(Targetlocation, WeaponlLocation);
if ((Direction.x == 0) 8& (Direction.y == 0) &8 (Direction.z == 0))

return;
}
if (m_Weapon.Fire(Direction, WeaponLocation) == true)
{

// WeaponFired
PlayPlayerWeaponSound();

261

262 CHAPTER 7: Drone Grid Case Study: Creating the Player

Finally, new code has to be added to create the player’s weapon in the onSurfaceCreated() function.
CreateWeapon(m Context);
New code also has to be added to create the sound effects for the weapon.

CreatePlayerWeaponSound(m_Context);

Processing Collisions

The ProcessCollisions() function processes collisions between game objects.
The ProcessCollisions() function (see Listing 7-63) does the following:

1. Checks for collision between the player’'s ammunition and m_Cube2. If there
is a collision, then it applies a linear force to the two colliding objects and
increases the player’s score by the kill value of m_Cube2.

2. Checks for collision between the player’'s ammunition and m_Cube. If there is
a collision, it applies a linear force to the two colliding objects and increases
the player’s score by the kill value of m_Cube.

3. Checks for a collision between the player’s pyramid and m_Cube2, which is
the cube in front of the pyramid.

4. If there is a collision, it

a. Starts the explosion associated with the pyramid

b. Plays the explosion sound effect associated with the pyramid
c. Applies the linear impulse to both objects
d

Resets the pyramid state to eliminate any accelerations, because the
pyramid is stationary

e. Calculates the damage to the pyramid

Listing 7-63. Processing the Game Object Collisions

void ProcessCollisions()
{
Object3d CollisionObj = m_Weapon.CheckAmmoCollision(m_Cube2);
if (CollisionObj != null)
{
CollisionObj.ApplyLinearImpulse(m_Cube2);
m_Score = m_Score + m_Cube2.GetObjectStats().GetKillvalue();

CHAPTER 7: Drone Grid Case Study: Creating the Player

CollisionObj = m_Weapon.CheckAmmoCollision(m Cube);
if (CollisionObj != null)
{
CollisionObj.ApplyLinearImpulse(m_Cube);
m_Score = m_Score + m_Cube.GetObjectStats().GetKillValue();

}

float ExplosionMinVelocity
float ExplosionMaxVelocity

0.02f;
0.4f;

//Check Collision with Cube2
Physics.CollisionStatus result = m_Pyramid.CheckCollision(m Cube2);
if ((result == Physics.CollisionStatus.COLLISION) ||

(result == Physics.CollisionStatus.PENETRATING COLLISION))
{

m_Pyramid.ExplodeObject(ExplosionMaxVelocity, ExplosionMinVelocity);
m_Pyramid.PlayExplosionSFX();
m_Pyramid.ApplyLinearImpulse(m_Cube2);

// Set Pyramid Velocity and Acceleration to 0
m_Pyramid.GetObjectPhysics().ResetState();

m_Pyramid.TakeDamage(m_Cube2);

Modifying the onDrawFrame() Function

The onDrawFrame() function must also be modified in order to render and update the player’s view,
graphic, and weapons. (See Listing 7-64.)

The following modifications have to be made:

1.

5.

The collisions between the player’s ammunition and the two cubes and the
collision between the cubes and the player’s pyramid must all be processed.

If the camera has moved, this movement must be processed.
The player’s power pyramid must be updated and drawn.

If the user has touched the screen, you must process the touch and fire the
player’s weapon.

Update and draw the player’s weapon and ammunition.

Listing 7-64. Modifying the onDrawFrame () Function

@0verride

public void onDrawFrame(GL10 unused)

{

GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLES20.glClear(GLES20.GL DEPTH BUFFER BIT | GLES20.GL_COLOR BUFFER_BIT);

263

264 CHAPTER 7: Drone Grid Case Study: Creating the Player

// Player Update

// Player's Weapon
ProcessCollisions();
if (m_CameraMoved)

{
}

m_Camera.UpdateCamera();
11111111111171111171717777/ Update Object Physics
// Cubel

m_Cube.UpdateObject3d();

ProcessCameraMove();

// Cube2
m_Cube2.UpdateObject3d();

// Process Collisions
Physics.CollisionStatus TypeCollision = m Cube.GetObjectPhysics().CheckForCollisionSpher
eBounding(m_Cube, m Cube2);

if ((TypeCollision == Physics.CollisionStatus.COLLISION) ||
(TypeCollision == Physics.CollisionStatus.PENETRATING COLLISION))

m_Cube.GetObjectPhysics().ApplyLinearImpulse(m Cube, m_Cube2);

// SFX
m_Cube.PlaySound(m_SoundIndex1);
m_Cube2.PlaySound(m_SoundIndex2);

}

111171711717171717171177/7717/] Draw Objects
m_Cube.DrawObject(m Camera, m PointLight);
m_Cube2.DrawObject(m_Camera, m_PointLight);

111111111111111111111/77// Update and Draw Grid
UpdateGravityGrid();
m Grid.DrawGrid(m_Camera);

// Player's Pyramid
m_Pyramid.UpdateObject3d();
m_Pyramid.DrawObject(m_Camera, m_PointLight);

// Did usexr touch screen
if (m_ScreenTouched)

{
// Process Screen Touch
CheckTouch();
m_ScreenTouched = false;
}

m_lleapon.Updatelleapon();
m_lleapon.Renderlleapon(m_Camera, m_PointLight, false);

CHAPTER 7: Drone Grid Case Study: Creating the Player 265

111717717771777177777777/7 HUD
// Update HUD

UpdateHUD();
m_HUD.UpdateHUD(m_Camera);

// Render HUD
m_HUD.RenderHUD(m_Camera, m_PointLight);

}

Now, run the application. You should see something like Figure 7-3.

B0 B @ 9:19em

Figure 7-3. Initial screen

Touch the screen to fire your weapon. Try to knock the cube in front of the pyramid into the pyramid.
When the ammunition hits the cube, the score should be increased. When the cube hits the pyramid,
the player’s health should be decreased, an explosion graphic animation displayed, and a sound
effect played. (See Figure 7-4.)

266 CHAPTER 7: Drone Grid Case Study: Creating the Player

EY @ 7:56 em

Figure 7-4. Hitting the cube into the player’s pyramid

Summary

In this chapter, | covered how to build the player-related code for our Drone Grid case study game.

| started with creating the classes needed to build the player’s power pyramid. | then covered the
code needed to implement the player’s view and the player’s input. Next, the code to implement the
player’s weapon and the ammunition that is used in that weapon were covered. This was followed by
a discussion of explosions and managing the game-play properties of our game objects. Finally, we
went through a hands-on example in which we demonstrated how the player’s weapon can be used
to hit 3D objects and also how these 3D objects can cause damage to our pyramid.

Chapter

Drone Grid Case Study: Creating
the Enemies

This chapter will cover the creation of the enemies for the Drone Grid case study. Covered first are arena
objects, which have a relatively simple behavior. Next, | cover the tank enemy, which has much more
complex behavior. In order to understand this behavior, | cover the basics of a finite state machine. Next,
| cover the finite state machine and the related classes specific to our computer controlled tank. | then
cover other classes needed to implement the tank in our game. Finally, | discuss a hands-on example
that uses the classes | have previously covered in a working example.

Creating Arena Objects

Arena objects are simple enemy objects that move through the gravity grid area. They travel in
straight lines inside the gravity grid, until they hit a grid boundary or the player’s power pyramid.
After hitting a grid boundary or the power pyramid, they reverse direction with the same speed they
had before.

The ArenaObject3d class derives from the Object3d class.

public class ArenaObject3d extends Object3d

The m_ArenaObjectID variable can hold a string identifying an individual object in the game world.
private String m_ArenaObjectID = "None";

The m_XmaxBoundary and m_XminBoundary variables hold the maximum and minimum boundaries of
the game grid or game arena along the x axis.

private float m_XMaxBoundary
private float m_XMinBoundary

1;
0;

267

268 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The m_ZmaxBoundary and m_ZminBoundary variables hold the maximum and minimum boundaries of
the game arena along the z axis.

private float m_ZMaxBoundary = 1;
private float m_ZMinBoundary = 0;

The m_HitGroundSFXIndex variable holds the handle to the sound effect played, if any, when the
arena object hits the ground.

private int m_HitGroundSFXIndex = -1;

The m_ExplosionSFXIndex variable holds the handle to the sound effect played when the arena object
explodes.

private int m_ExplosionSFXIndex = -1;

The ArenaObject3d constructor calls the constructor of the Object3d class and then sets the game
arena boundaries for this arena object. (See Listing 8-1.)

Listing 8-1. ArenaObject3d Constructor

ArenaObject3d(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial,
Shader iShader, float XMaxBoundary,float XMinBoundary,float ZMaxBoundary,float ZMinBoundary)
{

super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);

m_XMaxBoundary = XMaxBoundary;
m_XMinBoundary = XMinBoundary;
m_ZMaxBoundary = ZMaxBoundary;
m_ZMinBoundary = ZMinBoundary;

}

The CreateExplosionSFX() creates a new explosion sound effect by calling the AddSound() function
in the Object3d class with the resource id of the sound to create and the sound pool to hold it in.
The index to the newly created sound is held in m_ExplosionSFXIndex. (See Listing 8-2.)

Listing 8-2. Creating the Explosion Sound Effect

void CreateExplosionSFX(SoundPool Pool, int ResourceID)

{
}

m_ExplosionSFXIndex = AddSound(Pool, ResourceID);

The PlayExplosionSFX() function plays the sound effect for an explosion, if there is one, by calling
the PlaySound() function in the Object3d class with the index of the explosion sound effect.
(See Listing 8-3.)

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 269

Listing 8-3. Playing the Explosion Sound Effect

void PlayExplosionSFX()

{
if (m_ExplosionSFXIndex >= 0)

PlaySound(m_ExplosionSFXIndex);

}

The CreateHitGroundSFX() function creates a new sound effect by calling the AddSound() function in
the Object3d class with the resource id of the sound effect and the sound pool in which the sound
will be stored. The index to the newly created sound is returned and put in m_HitGroundSFXIndex.
(See Listing 8-4.)

Listing 8-4. Creating the Hit Ground Sound Effect

void CreateHitGroundSFX(SoundPool Pool, int ResourcelD)

{
}

m_HitGroundSFXIndex = AddSound(Pool, ResourceID);

The PlayHitGoundSFX() function plays the sound effect for the arena object hitting the ground,
if there is one. (See Listing 8-5.)

Listing 8-5. Playing the Hit Ground Sound Effect
void PlayHitGoundSFX()

{
if (m_HitGroundSFXIndex >= 0)
{
PlaySound(m_HitGroundSFXIndex);
}
}

The RenderArenaObject() function draws the arena object to the screen. It also tests to see if the
object has just hit the ground. If it has just hit the ground, the hit ground sound effect is played, and
the hit ground status in the Physics class is reset. (See Listing 8-6.)

Listing 8-6. Rendering the Arena Object

void RenderArenaObject(Camera Cam, PointlLight light)
{
// Object hits ground
boolean ShakeCamera = GetObjectPhysics().GetHitGroundStatus();
if (ShakeCamera)
{
GetObjectPhysics().ClearHitGroundStatus();
PlayHitGoundSFX();

}
DrawObject(Cam, light);

270 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The UpdateArenaObject() function updates the arena object enemy. (See Listing 8-7.)

Listing 8-7. Updating the Arena Object

void UpdateArenaObject()

{
if (IsVisible() == true)

// Check Bounds for Z
if (m Orientation.GetPosition().z >= m_ZMaxBoundary)

{
Vector3 v = GetObjectPhysics().GetVelocity();
if (v.z > 0)
{
V.Z = -V.Z;
}
}
else
if (m_Orientation.GetPosition().z <= m_ZMinBoundary)
{
Vector3 v = GetObjectPhysics().GetVelocity();
if (v.z < 0)
{
V.Z = -V.Z;
}
}

// Check bounds for X
if (m_Orientation.GetPosition().x >= m_XMaxBoundary)

{
Vector3 v = GetObjectPhysics().GetVelocity();
if (v.x > 0)
{
V.X = -V.X;
}
}
if (m_Orientation.GetPosition().x <= m_XMinBoundary)
{
Vector3 v = GetObjectPhysics().GetVelocity();
if (v.x < 0)
{
V.X = -V.X;
}
}
}
// Update Physics for this object
UpdateObject3d();

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 2N

The function does the following:
1. If the object is visible, it continues with the update, otherwise it returns.

2. Checks the max z boundary to see if the object is outside it. If it is, and it
is going farther outside the boundary, then it reverses the z component of
the object’s velocity. Then it checks the minimum z boundary to see if the
object is outside it. If it is, and it is going farther outside the boundary, then it
reverses the z component of the object’s velocity.

3. Repeats step 2 for the x boundary and reverses the x component of the
object’s velocity instead of the z component.

Finally, an example of an arena object that we use in a later hands-on example in this chapter is
shown in Figure 8-1.

Figure 8-1. An example of an arena object

Overview of Artificial Intelligence

The way complex artificial intelligence (Al) is generally applied in video games is through the

use of the finite state machine. A finite state machine consists of a set of states that represents

the behavior of the person, entity, or vehicle you want to simulate. Each state contains code to
implement this behavior and checks to see if there is a change in the game conditions that will have
to result in a change of state. If there needs to be a change of state, then the finite state machine
sets the current executing state to the one specified by the previous state, based on the previous
state’s transition rules.

For example, let’s say you want a player to be able to control a squad of robots and have these
robots perform specific tasks according to what command the player sends the robots. The
behaviors which the player can select from are

Retreat
Patrol

Attack Enemy

272 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Using a finite state machine, each of these behaviors would be implemented in a separate state.
The initial state would process the player’s current command and transition to the corresponding
state implementing the command. Once each of these commands was completed, the finite state
machine would transition back to the state that processes the player’s commands. The process
would be repeated, and the state machine would transition to the state implementing the player’s
current command. (See Figure 8-2.)

Retreat Finished = false

Retreat
State

Command = Retreat
Retreat Finished = true

Patrol Finished = false

Process
Command
State

Command = Patrol Patrol

State

Default State

Patrol Finished = true

Attack Enemy Finished = true

Command = Attack Enemy

Attack Enemy Finished = false

Figure 8-2. The finite state machine

In terms of implementing a finite state machine in code, we have a Finite State Machine class for
the enemy type we want to control. Each of the behaviors for this type of enemy is represented by
a separate class and is loaded into the finite state machine for processing. The UpdateMachine()
function in the Finite State Machine class is called to update the state machine. See Figure 8-3 for
a diagram illustrating a general class level view of how our state machine in Figure 8-2 would be
implemented in code.

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Finite State Machine Class

UpdateMachine()

m_States

Retreat
Class

Process
Commands
Class

Patrol
Class

Figure 8-3. Implementing the finite state machine

Creating the Tank Enemy

The tank enemy consists of the tank’s graphics as well as the tank’s artificial intelligence.

Creating the Tank Graphic

The graphics for the tank are two pyramid-shaped polygons. The lower polygon representing the
tank body is identical to the top polygon representing the tank’s turret, except for being slightly

larger.

The Pyramid2 class holds the data for the tank body and tank turret in the Pyramid2Vertices array

Listing 8-8.)

Listing 8-8. The Tank Graphics

public class Pyramid2 extends Object3d
{

static float[] Pyramid2Vertices =

{
// Triangle Shape

// Left Side

u v nx, ny, nz

273

274 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

-0.5f, -0.5f, -0.5f, o, 1, -1, -1, -1, // vo = left, bottom, back
0.of, -0.5f, o0.5f, i, 1, o0, 0, 1, // vi = left, bottom, front
o.of, o.5f, -0.5f, o.5f, 0, O, 1, O, // v2 = top point

/ Right Side

0.5f, -0.5f, -0.5f, o, 1, 1, -1, -1, // v3 = right, bottom, back
0.of, -0.5f, o0.5f, 1, 1, o0, 0, 1, // v4 = right, bottom, front
o.of, o.s5f, -0.5f, o.5f, 0, O, 1, O, // v2 = top point

// Back

-0.5f, -0.5f, -0.5f, o, 1, -1, -1, -1, // vo = left, bottom, back
0.5f, -0.5f, -0.5f, 1, 1, 1, -1, -1, // v3 = right, bottom, back
o.of, o.5f, -0.5f, o.5f, 0, O, 1, O, // v2 = top point

// Bottom
-0.5f, -0.5f, -0.5f, o, 1, -1, -1, -1, // vo = left, bottom, back
0.5f, -0.5f, -0.5f, 1, 1, 1, -1, -1, // v3 = right, bottom, back
o.of, -o.5f, o.5f, 0.5f, 0, ©O, O, 1, // v4 = right, bottom, front
b
Pyramid2(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial,
Shader iShader)

{
}

super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);

}

The final composite enemy tank object with both turret and main tank body is shown in Figure 8-4.

Figure 8-4. The tank 3D object

Creating the Tank State

The tank state machine consists of two states. One is the process command state, which
processes the commands sent to the tank and selects the behavior of the tank that implements
the command. The other state is the patrol/attack state, which drives the tank around the playfield
according to waypoints while firing at the player’s power pyramid. The tank’s finite state machine is
shown in Figure 8-5.

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 275

Process
Command
State

Waypoint Reached = true Command = Patrol

Patrol/
Attack
State

Waypoint Reached = false

Figure 8-5. The tank’s finite state machine

The FSM_StatesTank enumeration identifies the different state ids used internally within the tank
state machine so that the state machine can identify and transition to the corresponding state
when needed.

The FSM_StatesTank enumeration (see Listing 8-9) consists of
FSM_STATE_NONE: This indicates no state.

FSM_STATE_STEER_WAYPOINT: This state id corresponds to the
patrol/attack state.

FSM_STATE_PROCESS_COMMAND: This state id corresponds to the
process command state.

Listing 8-9. The Tank States
enum FSM_StatesTank

{
FSM_STATE_NONE,
FSM_STATE_STEER_WAYPOINT,
FSM_STATE_PROCESS_COMMAND,
};

The StateTank class holds the base class from which all other states for the tank are derived.

The m_Parent variable holds a reference to the driver of the tank and provides access to the
commands and data given to the Al-controlled vehicle and the tank object itself.

private Driver m_Parent;

276 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The m_StatelID variable holds the id that identifies the states that the tank can be in. See Listing 8-9
for the full list.

private FSM_StatesTank m_StatelID;

The Init() function is called once, when the finite state machine that this class object is part of is
first created and reset.

void Init() {}
The Enter() function is called when the state is first entered from a different state.

void Enter() {}

The Exit() function is called before exiting the state to a different state.

void Exit() {}

The Update() function is called to update the state.
void Update() {}

The CheckTransitions() function checks for transitions to another state, based on game conditions,
and returns no state by default, unless overridden by a subclass.

The entire StateTank class is shown in Listing 8-10.

Listing 8-10. The Base Class for the Tank States

public class StateTank
{

private Driver m_Parent;
private FSM StatesTank m_StateID;

StateTank(FSM_StatesTank ID, Driver Parent)

{
m_StateID = ID;
m_Parent = Parent;

}

void Init() {}
void Enter() {}
void Exit() {}
void Update() {}

FSM_StatesTank CheckTransitions()

{
}

Driver GetParent() {return m Parent;}
FSM StatesTank GetStateID() { return m StateID;}

return FSM StatesTank.FSM_STATE_NONE;

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 277

Creating Vehicle Commands

Next, we have to create the class that will hold the commands for our tank vehicle to execute.
First, we will have to define a couple of enumerations.

The AIVehicleCommand enumeration (see Listing 8-11) holds the actual command type for the vehicle
to execute.
Listing 8-11. The Vehicle Command

enum AIVehicleCommand

{

None,
Patrol,

b
The vehicle commands can be
None: Specifies that there is no command

Patrol: Tells the tank to move toward the waypoints specified in the
VehicleCommand class object and at the same time fire at the player’s
power pyramid

The AIVehicleObjectsAffected enumeration (see Listing 8-12) holds the item that is affected by the
command, such as

None: Indicates that there are no objects affected by the command.
WayPoints: Indicates that the waypoints will be affected by the command.
PrimaryWeapon: Indicates that the primary weapon will be used.

SecondaryWeapon: Indicates that the secondary weapon will be used.

Listing 8-12. Objects Affected by the Command
enum AIVehicleObjectsAffected

{
None,
WayPoints,
PrimaryWeapon,
SecondaryWeapon
1

The VehicleCommand class represents the command that we will send to the tank.

The m_Command variable holds the actual vehicle command in the form of an AIVehicleCommand
enumeration, mentioned previously.

private AIVehicleCommand m_Command;

278 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The m_ObjectsAffected variable holds the objects affected by the command, if any, in an
AlVehicleObjectsAffected enumeration, mentioned previously.

private AIVehicleObjectsAffected m ObjectsAffected;

The m_NumberObjectsAffected variable holds the number of objects affected by the command, if any.
private int m_NumberObjectsAffected;

The m_DeltaAmount variable holds the number of rounds to fire in one burst.

private float m_DeltaAmount;

The m_DeltalIncrement variable holds the firing delay time in milliseconds between bursts of the
weapon’s fire.

private float m_DeltaIncrement;

The m_MaxValue variable holds a maximum value related to the command, if any.
private float m MaxValue;

The m_MinValue variable holds a minimum value related to the command, if any.
private float m MinValue;

The MAX_WAYPOINTS variable holds the maximum number of waypoints that can be held in this
command. Waypoints are a series of locations that are reached in sequence one after the other.

static int MAX_WAYPOINTS = 50;

The m_NumberWayPoints variables hold the number of waypoints that are actually being held in this
command.

private int m_NumberWayPoints = 0;

The m_CurrentWayPointIndex holds the index of the current waypoint that the vehicle is moving to.
private int m_CurrentWayPointIndex = 0;

The m_WayPoints array holds the values of the locations that the vehicle will move to.

private Vector3[] m WayPoints = new Vector3[MAX_WAYPOINTS];

The m_Target variable holds the location that the tank will fire at, if any.

private Vector3 m_Target;

The m_TargetObject variable holds the object that the tank will fire at, if any.

private Object3d m TargetObject;

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 279

The VehicleCommand constructor creates the vehicle command by setting the class member
variables discussed previously. (See Listing 8-13.)

Listing 8-13. Vehicle Constructor

VehicleCommand(Context iContext,AIVehicleCommand Command, AIVehicleObjectsAffected ObjectsAffected,
int NumberObjectsAffected,float DeltaAmount,float DeltaIncrement,float MaxValue,float MinValue, int
NumberWayPoints,Vector3[] WayPoints,Vector3 Target,Object3d TargetObject)

{

m_Context = iContext;

m_Command = Command;

m_ObjectsAffected =0ObjectsAffected;
m_NumberObjectsAffected= NumberObjectsAffected;
m_DeltaAmount = DeltaAmount;

m DeltaIncrement = DeltaIncrement;

m_MaxValue = MaxValue;

m_MinValue = MinValue;

m_NumberWayPoints = NumberWayPoints;
m_WayPoints = WayPoints;
m_Target =Target;
m_TargetObject= TargetObject;
}

The SaveState() function saves the VehicleCommand class member data using the input Handle
string as the main index name under which to store the vehicle command data.

The SaveState() function does the following:

1. Gets a SharedPreferences object associated with the Activity specified in
m_Context and the input Handle.

2. Sets up an editor variable from the SharedPreferences object in step 1 that is
used to put the class member data into the shared preferences file.

3. Saves the value of each class member variable. The general procedure is to

a. Create a handle to the class member variable by concatenating the Handle that is an
input parameter to the function and a string representing the variable. For example,
Handle + "Command".

b. Next, if needed, convert the variable into a form that can be written into a
SharedPreferences object such as a string or integer. For example, an enumeration
can be converted to a string by adding it to a null string "". The statement
m_Command + "" will convert the enumeration to a string.

c. Store the variable in a key value pair format using the handle specific to that class
member variable as the key and the value of the class member variable as the value.

4. Saves the changes made to all the data to the shared preferences file by
calling commit() on the editor variable created in step 2.

280 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

See Listing 8-14. In order to save space, the listing has been shortened. For the full code for this
chapter, please see the Source Code/Download area located on apress.com.

Listing 8-14. Saving the Vehicle Command
void SaveState(String Handle)

{
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);
SharedPreferences.Editor editor = settings.edit();
// Command
String CommandHandle = Handle + "Command";
String CommandStr = m_Command + "";
editor.putString(CommandHandle, CommandStr);
// Code to save reset of class member variables
// Commit the edits!
editor.commit();

}

The MatchCommand() function converts a string value to a AIVehicleCommand enumeration and returns
it. This function is used in the LoadState() function to load a saved VehicleCommand object.

(See Listing 8-15.)

Listing 8-15. Matching a String Command to an Enumeration

static AIVehicleCommand MatchCommand(String CommandStr)

{
AIVehicleCommand Command = AIVehicleCommand.None;
if (CommandStr.equalsIgnoreCase("None"))
{
Command = AIVehicleCommand.None;
}
else
if (CommandStr.equalsIgnoreCase("Patrol"))
{
Command = AIVehicleCommand.Patrol;
}
return Command;
}

The MatchObjectsAffected() function converts a string to a AIVehicleObjectsAffected
enumeration. This function is used in the LoadState() function to load a VehicleCommand object.
(See Listing 8-16.)

apress.com

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Listing 8-16. Converting a String to an AIVehicleObjectsAffected Enumeration

static AIVehicleObjectsAffected MatchObjectsAffected(String ObjectsAffectedStr)

{

}

AIVehicleObjectsAffected ObjectsAffected = AIVehicleObjectsAffected.None;

if (ObjectsAffectedStr.equalsIgnoreCase("None"))
{

}

else
if (ObjectsAffectedStr.equalsIgnoreCase("WayPoints"))

ObjectsAffected = AIVehicleObjectsAffected.None;

ObjectsAffected = AIVehicleObjectsAffected.WayPoints;
}

else
if (ObjectsAffectedStr.equalsIgnoreCase("PrimaryWeapon"))

ObjectsAffected = AIVehicleObjectsAffected.PrimaryWeapon;

}
else
if (ObjectsAffectedStr.equalsIgnoreCase("SecondaryWeapon"))
{
ObjectsAffected = AIVehicleObjectsAffected.SecondaryWeapon;
}

return ObjectsAffected;

The LoadState() function loads data from a shared preferences entry into the class member
variables.

The LoadState() function does the following:

1. Gets the shared preferences object associated with the input parameter

Handle.

2. Loads data for each of the class member variables. The general format for

doing this follows:

281

a. Create the handle specific to that class member variable by concatenating the input

Handle parameter and the string identifier for that variable.
b. Read in the data using this new handle created in step 1.

c. If necessary, convert the data into a data type that can be stored in that class
member variable.

See Listing 8-17. In order to save space, the listing has been shortened. For the full code for this
chapter, please see the Source Code/Download area located on apress.com.

http:\\apress.com

282 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Listing 8-17. Loading a Vehicle Command

void LoadState(String Handle)
{

SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);

// Command

String CommandHandle = Handle + "Command";

String CommandStr = settings.getString(CommandHandle, "None");
m_Command = MatchCommand(CommandStr);

// Rest of Code

}

The IncrementWayPointIndex() function increments the m_CurrentWayPointIndex variable, which
holds the index of the current waypoint that the vehicle is moving toward. If the last point in the
set of waypoints has already been reached, then the next waypoint is the starting waypoint.
(See Listing 8-18.)

Listing 8-18. Incrementing the WayPoint Index

void IncrementWayPointIndex()

{
int NextWayPointIndex = m_CurrentWayPointIndex + 1;
if (NextWayPointIndex < m_NumberWayPoints)
{
m_CurrentWayPointIndex = NextWayPointIndex;
}
else
{
// Loop Waypoints
m_CurrentWayPointIndex = 0;
}
}

The ClearCommand() function clears the vehicle command and the m_ObjectsAffected variable to
None. (See Listing 8-19.)

Listing 8-19. Clearing the Vehicle Command

void ClearCommand()

{

m_Command = AIVehicleCommand.None;
m_ObjectsAffected = AIVehicleObjectsAffected.None;

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 283

Creating the Tank State to Process Commands

The state that processes the tank commands is the StateTankProcessCommand class that is
derived from the StateTank class.

public class StateTankProcessCommand extends StateTank

The ProcessAIVehicleCommand() function sets the next tank state based on the command given the
tank. (See Listing 8-20.)

Listing 8-20. Processing the Al Vehicle Command

void ProcessAIVehicleCommand()

{

}

VehicleCommand CurrentOrder = GetParent().GetCurrentOrder();

if (CurrentOrder == null)

{
return;
}
if (CurrentOrder.GetCommand() == AIVehicleCommand.None)
{
return;
}

AIVehicleCommand Command = CurrentOrder.GetCommand();

// Process Commands
if (Command == AIVehicleCommand.Patrol)

{

m_NextState = FSM_StatesTank.FSM_STATE_STEER_WAYPOINT;
}
else
{

m_NextState = FSM_StatesTank.FSM_STATE_PROCESS_COMMAND;
}

The function does the following:

1. It gets the current order for this vehicle.

2. If the order is nonexistent or the command is none (AIVehicleCommand.None),
the function returns.

3. If there is a valid order, the command is retrieved. If the command is to
patrol the arena (AIVehicleCommand.Patrol), then set the tank’s state to the
patrol/attack state, which has the state id of FSM_STATE_STEER_WAYPOINT.
Otherwise, set the tank’s state to the process command state to wait for a
command that can be executed by the tank.

284 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The CheckTransitions() function calls ProcessAIVehicleCommand() to set the next state in the
m_NextState variable that is returned. (See Listing 8-21.)

Listing 8-21. Checking for a State Transition

FSM StatesTank CheckTransitions()
{

ProcessAIVehicleCommand();
return m_NextState;

}
Creating the Vehicle Steering Class

The Steering class represents the steering controls of a vehicle.

The HorizontalSteeringValues enumeration (see Listing 8-22) holds the values for the horizontal
steering of a vehicle and the values are

None: Indicates that there is no steering value
Right: Tells the vehicle to turn to the right
Left: Tells the vehicle to turn to the left

Listing 8-22. Horizontal Steering

enum HorizontalSteeringValues

{
None,
Right,
Left

}

The VerticalSteeringValues enumeration (see Listing 8-23) holds the values for the vertical steering
of a vehicle. The values are

None: Indicates that there is no vertical steering value
Up: Tells the vehicle to move upward

Down: Tells the vehicle to move downward

Listing 8-23. Vertical Steering Values

enum VerticalSteeringValues
{

None,

Up,
Down

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The SpeedSteeringValues enumeration (see Listing 8-24) holds the acceleration control values for
the vehicle. The values are

None: There is no value for the acceleration. Tells the vehicle to keep the
same speed

Accelerate: Tells the vehicle to increase its speed

Decelerate: Tells the vehicle to decrease its speed

Listing 8-24. Acceleration Values

enum SpeedSteeringValues

{
None,
Accelerate,
Deccelerate
}

The m_HoriontalSteering variable holds the left/right vehicle steering value.

private HorizontalSteeringValues m_HoriontalSteering;

The m_VerticalSteering variables hold the up/down steering values of a vehicle, if applicable.
private VerticalSteeringValues m_VerticalSteering;

The m_SpeedSteering variable holds the acceleration steering value of the vehicle.

private SpeedSteeringValues m_SpeedSteering;

The m_MaxPitch variable holds the maximum amount of tilt in degrees of the vehicle up or down,
if applicable.

private float m _MaxPitch = 45; // degrees

The m_TurnDelta variable holds the amount in degrees the vehicle turns in one update.
private float m_TurnDelta = 1; // degrees

The m_MaxSpeed variable holds the maximum speed or change in position per update.
private float m MaxSpeed = 0.1f;

The m_MinSpeed variable holds the minimum speed or change in position per update.
private float m_MinSpeed = 0.05f;

The m_SpeedDelta variable holds the amount the speed will change per vehicle update.

private float m SpeedDelta = 0.01f;

285

286 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The ClearSteering() function clears the horizontal, vertical, and speed vehicle inputs to None. This
function is called when the steering object is first constructed. (See Listing 8-25.)

Listing 8-25. Clearing the Steering
void ClearSteering()

{
m_HoriontalSteering = HorizontalSteeringValues.None;
m VerticalSteering = VerticalSteeringValues.None;
m_SpeedSteering = SpeedSteeringValues.None;

}

The SetSteeringHorizontal() function sets the horizontal value of the vehicle’s steering input and
the turn rate or turn delta per vehicle update. (See Listing 8-26.)

Listing 8-26. Setting the Vehicle’s Horizontal Steering Value

void SetSteeringHorizontal(HorizontalSteeringValues Horizontal, float TurnDelta)

{

m_HoriontalSteering = Horizontal;
m_TurnDelta = TurnDelta;

}

The SetSteeringVertical() function sets the vertical up/down value of the vehicle’s steering input
and the maximum pitch up or down the vehicle can tilt. (See Listing 8-27.)

Listing 8-27. Setting the Vertical Steering Value

void SetSteeringVertical(VerticalSteeringValues Vertical, float MaxPitch)

{

m_VerticalSteering = Vertical;
m_MaxPitch = MaxPitch;

}

The SetSteeringSpeed() function sets the acceleration or deceleration input to the vehicle, the
maximum speed of the vehicle, the minimum speed of the vehicle, and the rate of change of
the speed or speed delta. (See Listing 8-28.)

Listing 8-28. Setting the Speed of the Vehicle

void SetSteeringSpeed(SpeedSteeringValues Speed, float MaxSpeed, float MinSpeed, float SpeedDelta)
{

m_SpeedSteering = Speed;

m_MaxSpeed = MaxSpeed;

m_MinSpeed = MinSpeed;

m_SpeedDelta = SpeedDelta;

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 287

Creating the Tank’s Patrol/Attack State

The main tank state is the patrol/attack state, where the tank moves around the playfield according
to waypoints, while firing its weapon at the player’s power pyramid. More specifically, the bottom
part of the tank turns toward the current waypoint and moves toward it, while the top part of the tank
turns toward the pyramid and fires at it.

The StateTankSteerWayPoint class implements the patrol/attack state for the tank and is derived
from the StateTank class discussed previously.

public class StateTankSteerWayPoint extends StateTank
The m_WayPoint variable holds the location of the current waypoint that the vehicle is moving toward.
private Vector3 m WayPoint = new Vector3(0,0,0);

The m_WayPointRadius variable holds the radius of the waypoint. If the tank is within the area
denoted by the current waypoint and the waypoint’s radius, the tank is considered to have reached
the waypoint.

private float m WayPointRadius = 0;

The m_LastWayPoint variable holds the waypoint that was reached previously, just before the current
waypoint.

private Vector3 m_LastWayPoint = new Vector3(5000,5000,5000);

If the tank’s turret is pointing at the target plus or minus the m_TargetAngleTolerance value, the tank
will fire at the target.

private float m_TargetAngleTolerance = Physics.PI/16.0f;

The m_Target variable holds the location of the target to fire at, if any.

private Vector3 m_Target;

The m_TargetObj variable holds the target object to fire at, if any.

private Object3d m_TargetObj;

The m_WeaponType variable holds the type of weapon either primary or secondary to fire at the target.
private AIVehicleObjectsAffected m_WeaponType;

The m_RoundsToFire variable holds the number of rounds to fire in one burst.

private float m RoundsToFire = 0;

288 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The m_NumberRoundsFired variable keeps track of the number of rounds of ammunition fired for
each burst.

private int m_NumberRoundsFired = 0;

The m_TimeIntervalBetweenFiring variable sets the time interval between successive bursts of the
tank’s weapon.

private long m_TimeIntervalBetweenFiring = 0;

The m_StartTimeFiring variable holds the last time that the tank has fired its weapon.

private long m StartTimeFiring = 0;

The m_FireWeapon variable holds true if the tank’s weapon should be fired and false otherwise.
private boolean m FireWeapon = false;

The constructor for the StateTankSteerWayPoint class calls the constructor for the StateTank
superclass with the FSM_StatesTank id, which identifies which state this is to the finite state machine
and the Driver parent object that contains information about this vehicle’s commands and the tank
object. (See Listing 8-29.)

Listing 8-29. The Constructor

StateTankSteerWayPoint(FSM StatesTank ID, Driver Parent)
{

}

super(ID, Parent);

The Enter() function is called when this state is first entered by the finite state machine. The function
initializes key variables. Some data is from the parent Driver class object, such as the current
waypoint, waypoint radius, or data from the vehicle command. The Enter() function also lets the
parent Driver class object know that the currently executing command is the patrol/attack command.
(See Listing 8-30.)

Listing 8-30. Entering the State for the First Time

void Enter()

{
// Weapon is not firing when state is entered initially
m_NumberRoundsFired = 0;
m_FireWeapon = false;

// Get WayPoint Data
m_WayPoint = GetParent().GetWayPoint();
m_WayPointRadius = GetParent().GetWayPointRadius();

// Get Targeting and firing parameters
m Target = GetParent().GetCurrentOrder().GetTarget();
m TargetObj = GetParent().GetCurrentOrder().GetTargetObject();

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

}

m_WeaponType = GetParent().GetCurrentOrder().GetObjectsAffected();
m_RoundsToFire = GetParent().GetCurrentOrder().GetDeltaAmount();
m_TimeIntervalBetweenFiring = (long)GetParent().GetCurrentOrder().GetDeltaIncrement();

// Tell the Pilot class what command is actually being executed in the FSM
GetParent().SetCommandExecuting(AIVehicleCommand.Patrol);

The Exit() function is called before this state is exited by the finite state machine. This function
increments the current waypoint to the next waypoint, indicating that the current waypoint has been
reached and the tank needs to move to the next waypoint in the list. (See Listing 8-31.)

Listing 8-31. Exiting the State

void Exit()

{

}

// Update Current Waypoint to next WayPoint
GetParent().IncrementNextWayPoint();

The TurnTurretTowardTarget() function determines the horizontal or left/right steering direction

of the tank’s turret, so that the tank’s weapon turns to face the target. (See Listing 8-32 for the full

source code.)

Listing 8-32. Turning the Tank Turret Toward the Target

void TurnTurretTowardTarget(Vector3 Target)

{

// 1. Find vector from front of vehicle to target
Vector3 ForwardXZPlane = new Vector3(0,0,0);
ForwardXZPlane.x = GetParent().GetAIVehicle().GetTurret().m Orientation.

GetForwardWorldCoords().x;

)
ForwardXZPlane.z = GetParent().GetAIVehicle().GetTurret().m Orientation.

GetForwardWorldCoords().z;

Vector3 TurretPosition = new Vector3(0,0,0);
TurretPosition.x = GetParent().GetAIVehicle().GetTurret().m Orientation.GetPosition().x;
TurretPosition.z = GetParent().GetAIVehicle().GetTurret().m Orientation.GetPosition().z;

Vector3 WayPointXZPlane = new Vector3(Target.x, 0, Target.z);
Vector3 TurretToTarget = Vector3.Subtract(WayPointXZPlane, TurretPosition);

// 2. Normalize Vectors for Dot Product operation
ForwardXZPlane.Normalize();
TurretToTarget.Normalize();

// P.Q = P*Q*cos(theta)
// P.Q/P*Q = cos(theta)
// acos(P.Q/P*Q) = theta;

289

290

}

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

// 3. Get current theta
double Theta = Math.acos(ForwardXZPlane.DotProduct(TurretToTarget));

// 4. Get Theta if boat is turned to left by PI/16

Orientation NewO = new Orientation(GetParent().GetAIVehicle().GetTurret().m Orientation);

Vector3 Up = NewO.GetUp();
NewO.SetRotationAxis(Up);
New0.AddRotation(Physics.PI/16);

Vector3 NewForwardXZ = NewO.GetForwardWorldCoords();
NewForwardXZ.y = 0;
NewForwardXZ.Normalize();

double Theta2 = Math.acos(NewForwardXZ.DotProduct(TurretToTarget));

// Check if angle within tolerance for firing
float Diff = Math.abs((float)(Theta));

if (!m_FireWeapon)

{
if (Diff <= m_TargetAngleTolerance)
{
m_FirelWeapon = true;
m_StartTimeFiring = System.currentTimeMillis();
}
}

// 5. Set Steering
if (Theta2 > Theta)

{

GetParent().GetTurretSteering().SetSteeringHorizontal (HorizontalSteeringValues.Right, 1);

}

else
if (Theta2 < Theta)

{
}
else

{
}

GetParent().CGetTurretSteering().SetSteeringHorizontal(HorizontalSteeringValues.Left, 1);

GetParent().GetTurretSteering().SetSteeringHorizontal (HorizontalSteeringValues.None,0);

The TurnTurretTowardTarget() function does the following:

1. Finds the vector representing the firing direction of the tank’s weapon in
world coordinates, which is ForwardXZP1lane (see Figure 8-6).

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

NewForwardXZ

ForwardXZPlane

TurretToTarget
Target

z

Y

Figure 8-6. Turning the turret toward the target

2.

10.

Finds the vector representing the direction from the tank’s turret to the target
that the tank needs to hit, which is TurretToTarget.

Normalizes the ForwardXZPlane and TurretToTarget vectors so that the
length of the vectors is 1.

Finds the angle Theta between the ForwardXZPlane and TurretToTarget vectors.

Creates a new Orientation class object that is the same as the orientation of
the tank’s turret but turned by a small angle PI/16, which is NewO.

Finds the forward vector of this new tank turret orientation, which is
NewForwardXZ, and then normalizes it.

Finds the angle Theta2 between the NewForwardXZ and the TurretToTarget
vectors.

If the tank weapon is not firing and the tank turret is directly facing the target
plus or minus the m_TargetAngleTolerance value, set the tank weapon to fire
and set the m_StartTimeFiring variable to the current time.

If Theta2 is greater than Theta, turn the tank turret to the right.
If Theta?2 is less than Theta, turn the tank turret to the left.

291

292

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The FireTurretWeapon() function fires the tank’s primary or secondary weapon, depending on the
AIVehicleObjectsAffected value. If the weapon is successfully fired, then the m_NumberRoundsFired
variable is incremented by 1. (See Listing 8-33.)

Listing 8-33. Firing the Tank’s Turret Weapon

void FireTurretWeapon()

{

Vector3 Direction = GetParent().GetAIVehicle().GetTurret().m Orientation.

GetForwardWorldCoords();

}

boolean IsFired = false;

if (m_WeaponType == AIVehicleObjectsAffected.PrimaryWeapon)
{

}

else
if (m_WeaponType == AIVehicleObjectsAffected.SecondaryWeapon)

IsFired = GetParent().GetAIVehicle().FireWeapon(0, Direction);

IsFired = GetParent().GetAIVehicle().FireWeapon(1, Direction);

}
if (IsFired)
{
m_NumberRoundsFired++;
}

The SteerVehicleToWayPointHorizontal() function steers the main tank body left or right toward the
waypoint. (See Listing 8-34 for the full source code.)

Listing 8-34. Steering the Vehicle to the Current Waypoint

void SteerVehicleToWayPointHorizontal(Vector3 WayPoint)

{

// 1. Find vector from front of vehicle to target
Vector3 ForwardXZPlane = new Vector3(0,0,0);
ForwardXZPlane.x = GetParent().GetAIVehicle().GetMainBody().m Orientation.

GetForwardWorldCoords().x;

ForwardXZPlane.z = GetParent().GetAIVehicle().GetMainBody().m Orientation.

GetForwardWorldCoords().z;

Vector3 VehiclePosition = new Vector3(0,0,0);
VehiclePosition.x = GetParent().GetAIVehicle().GetMainBody().m Orientation.GetPosition().x;
VehiclePosition.z = GetParent().GetAIVehicle().GetMainBody().m Orientation.GetPosition().z;

Vector3 WayPointXZPlane = new Vector3(WayPoint.x, 0, WayPoint.z);
Vector3 VehicleToWayPoint = Vector3.Subtract(WayPointXZPlane, VehiclePosition);

// 2. Normalize Vectors for Dot Product operation
ForwardXZPlane.Normalize();
VehicleToWayPoint.Normalize();

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 293

// P.Q = P*Q*cos(theta)
// P.Q/P*Q = cos(theta)
// acos(P.Q/P*Q) = theta;

// 3. Get current theta
double Theta = Math.acos(ForwardXZPlane.DotProduct(VehicleToWayPoint));

// 4. Get Theta if boat is turned to left by PI/16

Orientation NewO = new Orientation(GetParent().GetAIVehicle().GetMainBody().m Orientation);
Vector3 Up = NewO.GetUp();

NewO.SetRotationAxis(Up);

NewO.AddRotation(Physics.PI/16);

Vector3 NewForwardXZ = New0.GetForwardWorldCoords();
NewForwardXZ.y = 0;
NewForwardXZ.Normalize();

double Theta2 = Math.acos(NewForwardXZ.DotProduct(VehicleToWayPoint));

// 5. Set Steering
if (Theta2 > Theta)

{
GetParent().GetAISteering().SetSteeringHorizontal(HorizontalSteeringValues.Right, 1);

}

else
if (Theta2 < Theta)

{
GetParent().GetAISteering().SetSteeringHorizontal(HorizontalSteeringValues.Left, 1);

}

else

{
GetParent().GetAISteering().SetSteeringHorizontal(HorizontalSteeringValues.None,0);

}
}

The function does the following:
1. Finds the main tank body’s forward vector, which is ForwardXZPlane.

2. Calculates the vector, which is VehicleToWayPoint, from the tank to the
waypoint.

3. Normalizes the ForwardXZPlane and VehicleToWayPoint vectors.

4. Calculates the angle Theta between the ForwardXZPlane and
VehicleToWayPoint vectors.

5. Creates a new Orientation class object that is the same as the orientation of
the tank’s main body but turned by a small angle PI/16, which is NewO.

6. Finds the forward vector of this new tank main body orientation, which is
NewForwardXZ, and then normalizes it.

294

The SteerVehicleWaypointSpeed() function decelerates the tank around the waypoints. If the tank
is within TurnArea radius of the last waypoint or the current waypoint, this function decelerates the

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

7. Finds the angle Theta2 between the NewForwardXZ and the
VehicleToWayPoint vectors.

8. If Theta2 is greater than Theta, turn the tank’s main body to the right.
9. If Theta2 is less than Theta, turn the tank’s main body to the left.

tank; otherwise, the function accelerates the tank. (See Listing 8-35.)

Listing 8-35. Changing the Speed of the Vehicle Around Waypoints

void SteerVehicleWaypointSpeed(Vector3 WayPoint)

{

0.03f,

0.037,

}

// If vehicle is close to waypoint then slow down vehicle
// else accelerate vehicle
Tank AIVehicle = GetParent().GetAIVehicle();

Vector3 VehiclePos = AIVehicle.GetMainBody().m Orientation.GetPosition();
Vector3 DistanceVeclLastWayPoint = Vector3.Subtract(VehiclePos,m LastWayPoint);
Vector3 DistanceVecCurrentWayPoint = Vector3.Subtract(VehiclePos, m WayPoint);

float TurnArea = GetParent().GetTurnArea();
float DLastWayPoint = DistanceVecLastWayPoint.Length();
float DCurrentWayPoint = DistanceVecCurrentWayPoint.Length();

if ((DLastWayPoint <= TurnArea) || (DCurrentWayPoint <= TurnArea))

// Decrease speed
GetParent().GetAISteering().SetSteeringSpeed(SpeedSteeringValues.Deccelerate, 0.04f,
0.005f);
GetParent().GetAISteering().SetTurnDelta(3.0f);
}
else
{
GetParent().GetAISteering().SetSteeringSpeed(SpeedSteeringValues.Accelerate, 0.04f,
0.005f);

}

The SteerVehicleToWayPoint () function steers the vehicle left or right toward the waypoint

location by calling SteerVehicleToWayPointHorizontal() and adjusts the tank’s speed by calling

SteerVehicleWaypointSpeed(). (See Listing 8-36.)

Listing 8-36. Steering the Vehicle to the Waypoint

void SteerVehicleToWayPoint(Vector3 WayPoint)

{

SteerVehicleToWayPointHorizontal(WayPoint);
SteerVehicleWaypointSpeed(WayPoint);

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The Update() function updates the tank’s artificial intelligence for the patrol/attack state.
(See Listing 8-37.)

Listing 8-37. Updating the Tank Patrol/Attack State

void Up

}

date()

// Steer Main Tank Body to Waypoint
SteerVehicleToWayPoint(m_WayPoint);

// Turn Tank Turret towards target and fire
if (m_Target != null)

TurnTurretTowardTarget(m Target);

}
else
if (m_TargetObj != null)
{ TurnTurretTowardTarget(m TargetObj.m Orientation.GetPosition());
}
else
{
Log.e("STATETANKSTEERWAYPOINT" , "NO TARGET FOR TANK TO SHOOT AT!!!!");
}
if (m_FireWeapon)
{ if (m_NumberRoundsFired >= m RoundsToFire)
{ m_NumberRoundsFired = 0;
m_FirelWeapon = false;
}
else
{
// Find Time Elapsed Between firing sequences
long ElapsedTime = System.currentTimeMillis() - m StartTimeFiring;
if (ElapsedTime > m_TimeIntervalBetweenFiring)
{ FireTurretWeapon();
}
}
}

The Update() function does the following:

1.

Sets the steering and acceleration for the tank by calling
SteerVehicleTolWayPoint() with the target waypoint.

2. Calls TurnTurretTowardTarget() with the target location, which turns the

tank’s turret toward the target, if a target location is in m_Target.

295

296 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

3. Calls TurnTurretTowardTarget() with m_TargetObj’s position, in order to turn
the tank’s turret toward that target, if there is no location in m_Target and
m_TargetObj is not null.

4. If m_FireWeapon is true, then either of the following occurs:

a. m_FireWeapon resets to false, if the number of rounds to fire for this burst is equal to
the number of rounds that are required to be fired.

b. The weapon is fired by calling FireTurretWeapon(), if the required time delay has
passed since the m_FirelWeapon was set to true.

The CheckTransitions() function checks for a transition to a different state, based on the game
conditions. If the tank is within m_WayPointRadius distance of the target waypoint, the current
waypoint is saved in the m_LastWayPoint variable and the state returned by the function is the
process command state. If the tank is not within m_WayPointRadius distance of the target waypoint,
there is no change in state, and the patrol/attack state is returned. (See Listing 8-38.)

Listing 8-38. Checking the Transitions

FSM StatesTank CheckTransitions()

{
Object3d AIVehicle = GetParent().GetAIVehicle().GetMainBody();
Vector3 VehiclePos = AIVehicle.m Orientation.GetPosition();
Vector3 Distance = Vector3.Subtract(VehiclePos,m WayPoint);
float D = Distance.Length();
if (D <= m_WayPointRadius)
{
m_LastWayPoint.Set(m WayPoint.x, m WayPoint.y, m WayPoint.z);
return FSM_StatesTank.FSM_STATE_PROCESS_COMMAND;
}
else
{
return FSM_StatesTank.FSM_STATE_STEER_WAYPOINT;
}
}

Creating the Tank Finite State Machine

The Finite State Machine class for the tank is the FSMDriver class. The finite state machine actually
executes the tank Al by calling the appropriate functions in each of the tank states.

The way the FSMDriver class is used is that you
1. Add new tank states with the AddState() function.

2. Set the default state that the machine starts in with the SetDefaultState()
command.

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

3. Initialize the machine by calling Reset().
4. Update the machine by calling UpdateMachine().

The MAX_STATES variable holds the maximum number of states that this machine can hold.
private int MAX_STATES = 20;

The m_NumberStates variable holds the number of states in this state machine.

private int m_NumberStates = 0;

The m_States array holds the tank states that make up the finite state machine.

protected StateTank[] m States = new StateTank[MAX STATES];

The m_CurrentState variable holds a reference to the currently executing tank state.
protected StateTank m_CurrentState = null;

The m_DefaultState variable holds a reference to the default state that the finite state
machine starts in.

protected StateTank m DefaultState = null;
The m_GoalState is the state that the finite state machine is going to transition to.
protected StateTank m_GoalState = null;

The m_GoalID is the enumeration that identifies the type of tank state to transition to either the
process command state or the patrol/attack state.

protected FSM StatesTank m GoallD;

The Reset () function initializes the finite state machine and does the following (see Listing 8-39):

1. If there is a current state being executed, it exits that state by calling Exit()
on the state object.

2. It sets the current state to the default state of the machine.

3. For all the states in the machine, it initializes them by calling each state’s
Init() function.

4. If there is a current state, it then “enters” that state by calling Enter() on
that state.

297

298 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Listing 8-39. Resetting the Finite State Machine
void Reset()

{
if(m_CurrentState != null)
{
m_CurrentState.Exit();
}
m_CurrentState = m_DefaultState;
for(int i = 0;1 < m NumberStates;i++)
{
m States[i].Init();
}
if(m CurrentState != null)
{
m_CurrentState.Enter();
}
}

The AddState() function adds a tank state State to the finite state machine. The function first checks
to see if there is room for more states and, if there is, adds them to the m_States array, increases the
number of states in the machine, and returns true. False is returned otherwise. (See Listing 8-40.)

Listing 8-40. Adding a State to the Finite State Machine
boolean AddState(StateTank State)

{
boolean result = false;
if (m_NumberStates < MAX STATES)
{
m States[m NumberStates] = State;
m_NumberStates++;
result = true;
}
return result;
}

The TransitionState() function searches through all the states in the machine and tries to match
the Goal input state id FSM_StatesTank enumeration with the id from each of the states. If a match is
found, then m_GoalState is set to that state and true is returned. Otherwise, false is returned.

(See Listing 8-41.)

Listing 8-41. Transitioning Between States

boolean TransitionState(FSM StatesTank Goal)

{
if(m_NumberStates == 0)

{
}

return false;

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

}

for(int i = 0; 1 < m NumberStates;i++)

{
if(m States[i].GetStateID() == Goal)
{
m_GoalState = m_States[i];
return true;
}
}

return false;

The UpdateMachine() function updates the finite state machine for the tank. (See Listing 8-42.)

Listing 8-42. Updating the Finite State Machine

void UpdateMachine()

{

}

if(m_NumberStates == 0)

{

return;
}
if(m CurrentState == null)
{

m_CurrentState = m_DefaultState;
}
if(m_CurrentState == null)
{

return;
}

FSM_StatesTank 0ldStateID = m_CurrentState.GetStateID();
m_GoalID = m_CurrentState.CheckTransitions();
if(m_GoalID != 0ldStateID)

{
if(TransitionState(m_GoallD))
{
m_CurrentState.Exit();
m_CurrentState = m_GoalState;
m_CurrentState.Enter();
}
}

m_CurrentState.Update();

The function does the following:

1. Returns, if there are no states in the machine.
Sets the current state to the default state, if there is no current state.
Returns, if the current state is still nonexistent.

Gets the current state’s id.

o B~ L

Checks the current state for a state transition by calling CheckTransitions().

299

300 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

6. Ifthe goal id that is returned is not the same as the id from the current state,
then a transition to a new state must be made. The TransitionState() function
is then called and, if the goal state has been found, is processed. The current
state is exited by calling Exit() on the state object. The current state is then
set to the goal state in m_GoalState that was set by the TransitionState()
function. The current state is then entered by calling the Enter() function.

7. Updates the current state by calling the state’s Update() function.

Creating the Driver for the Tank

The Driver class holds the finite state machine that serves as the tank’s brain. It also holds other key
information, such as the vehicle command that is to be executed and other game information.

The m_CurrentOrder variable holds a reference to the tank’s current VehicleCommand order that is to
be executed in the tank’s finite state machine.

private VehicleCommand m_CurrentOrder = null; // Order to be executed in the FSM
The m_LastOrder variable holds a reference to the tank’s last order that was executed.
private VehicleCommand m_LastOrder = null;

The m_CommandExecuting refers to the actual vehicle command, either None or Patrol, that is currently
executing in the finite state machine.

private AIVehicleCommand m_CommandExecuting = null; // Command that is currently being executed in
the Finite State Machine

The m_FiniteStateMachine refers to the finite state machine for the tank that implements the tank’s
artificial intelligence.

private FSMDriver m FiniteStateMachine = null;

The m_AISteer variable holds the steering input values for the tank that the finite state machine
generates.

private Steering m AISteer = new Steering();

The m_TurretSteering variable holds the turning input values for the tank’s turret that the finite state
machine generates.

private Steering m TurretSteering = new Steering();

The m_TurnArea is the area near the waypoint where the vehicle slows down for turning toward the
next waypoint.

private float m_TurnArea = 2.0f;

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The m_WayPoint variable holds the current waypoint.

private Vector3 m WayPoint = new Vector3(0,0,0);

The m_WayPointRadius variable holds the radius of the waypoint.
private float m WayPointRadius = 1.0f;

The m_AITank variable holds the tank object that is controlled by the Driver class.

private Tank m_AITank = null;

The Driver constructor (see Listing 8-43) initializes the class object by
1. Setting the reference to the tank, which is held in m_AITank.
2. Creating the tank’s finite state machine by creating a new FSMDriver object.

3. Creating the new tank states StateTankSteerWayPoint and
StateTankProcessCommand and adding them to the finite state machine by
calling the AddState() function.

4. Setting the default state of the finite state machine to the process
command state.

5. Resetting the finite state machine by calling Reset ().

Listing 8-43. The Driver Constructor

Driver(Tank Vehicle)

{
// Set Vehicle that is to be controlled
m_AITank = Vehicle;

//construct the state machine and add the necessary states
m_FiniteStateMachine = new FSMDriver();

StateTankSteerWayPoint SteerWayPoint =

new StateTankSteerWayPoint(FSM StatesTank.FSM_STATE STEER WAYPOINT, this);
StateTankProcessCommand ProcessCommand =

new StateTankProcessCommand(FSM StatesTank.FSM_STATE PROCESS COMMAND,this);

m_FiniteStateMachine.AddState(SteerWayPoint);
m_FiniteStateMachine.AddState(ProcessCommand);

m_FiniteStateMachine.SetDefaultState(ProcessCommand);
m_FiniteStateMachine.Reset();

}

The SaveDriverState() function saves key class data members from the Driver class. In order to
save space, Listing 8-44 has been abbreviated. Please refer to the Source Code/Download area
located on apress.com for the full version.

301

http:\\apress.com

302 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Listing 8-44. Saving the Driver

void SaveDriverState(String Handle)

{
SharedPreferences settings = m AITank.GetMainBody().GetContext().getSharedPreferences(Handle, 0);

SharedPreferences.Editor editor = settings.edit();

// Turn Area
String TurnAreaKey = Handle + "TurnArea";
editor.putFloat(TurnAreaKey, m_TurnArea);

. Rest of code

}

The LoadDriverState() function loads key data for the Driver class. The code in Listing 8-45 has
been abbreviated. For the full code, please see the Source Code/Download arealocated on
apress.com.

Listing 8-45. Loading the Driver State
void LoadDriverState(String Handle)

{
SharedPreferences settings =
m_AITank.GetMainBody().GetContext().getSharedPreferences(Handle, 0);

// Turn Area
String TurnAreaKey = Handle + "TurnArea";
m TurnArea = settings.getFloat(TurnAreaKey, 4.0f);

. Rest of code

}

The IncrementNextWayPoint () function sets m_WayPoint to the next waypoint for the tank, if the
current command is the Patrol command. (See Listing 8-46.)

Listing 8-46. Finding the Next Waypoint

void IncrementNextWayPoint()

{
AIVehicleCommand Command = m_CurrentOrder.GetCommand();
if (Command == AIVehicleCommand.Patrol)
{
m_CurrentOrder.IncrementWayPointIndex();
m_WayPoint = m_CurrentOrder.GetCurrentWayPoint();
}
}

The SetOrder () function saves the current command in the m_LastOrder variable and sets the
current order to the vehicle Command input parameter. If the command is the Patrol command, the
current waypoint variable m_WayPoint is set to the first waypoint. (See Listing 8-47.)

http:\\apress.com

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 303

Listing 8-47. Setting a New Order for the Tank

void SetOrder(VehicleCommand Command)

{

m_LastOrder = m_CurrentOrder;
m_CurrentOrder = Command;

if (m_CurrentOrder.GetCommand() == AIVehicleCommand.Patrol)

{

}

// Set Inital WayPoint
Vector3[] WayPoints = m_CurrentOrder.GetWayPoints();
m_WayPoint = WayPoints[0];

The Update() function clears the steering input for the tank and updates the finite state machine that
controls the tank. (See Listing 8-48.)

Listing 8-48. Updating the Driver

void Update()

// Clear AISteering
m_AISteer.ClearSteering();

// Update FSM Machine
m_FiniteStateMachine.UpdateMachine();

}

Modifying the Physics Class

The Physics class has to be modified to support our new tank vehicle.

The UpdatePhysicsObjectHeading() function must be added into the Physics class (see Listing 8-49).
The UpdatePhysicsObjectHeading() function does the following:

1.

> L™

Applies gravity to the object, if gravity is on.
Updates the linear velocity of the object.
Updates the angular velocity of the object.

Resets the forces acting on the object to 0 by setting the linear and angular
acceleration to 0.

Adjusts the velocity so that all the object’s speed is redirected along the
Heading. If the speed of the object is greater than m_MaxSpeed, set the speed
to m_MaxSpeed. If gravity is on, use the y component of the velocity from step
1 in the calculation of the object’s new velocity.

Updates the object’s linear position, taking into account the gravity and
ground floor settings in adjusting the object’s vertical position.

Updates the object’s angular position.

304 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Listing 8-49. Updating the Tank’s Physics

void UpdatePhysicsObjectHeading(Vector3 Heading, Orientation orientation)
{

// Adjust for Gravity

if (m_ApplyGravity)

{

ApplyGravityToObject();
}

// 1. Update Linear Velocity
LILITIIIII0001700717007177777077770771707717777177771177771177111771717717111717
m Acceleration.x = TestSetLimitValue(m Acceleration.x, m MaxAcceleration.x);
m_Acceleration.y = TestSetLimitValue(m Acceleration.y, m MaxAcceleration.y);
m_Acceleration.z = TestSetLimitValue(m Acceleration.z, m MaxAcceleration.z);

m Velocity.Add(m Acceleration);

m Velocity.x = TestSetLimitValue(m Velocity.x, m MaxVelocity.x);
m Velocity.y = TestSetLimitValue(m Velocity.y, m MaxVelocity.y);
m Velocity.z = TestSetLimitValue(m Velocity.z, m MaxVelocity.z);

// 2. Update Angular Velocity
LILTTIITITLIIII L1007 1000000707077 1707717007170771707777771177171771117717117717
m_AngularAcceleration = TestSetLimitValue(m AngularAcceleration, m MaxAngularAcceleration);

m_AngularVelocity += m_AngularAcceleration;
m_AngularVelocity = TestSetLimitValue(m AngularVelocity, m MaxAngularVelocity);

// 3. Reset Forces acting on Object

// Rebuild forces acting on object for each update

LILTILITIILPTIT L0 I0 00700701000 00077170771707717777777771071717717171111111111777
m_Acceleration.Clear();

m_AngularAcceleration = 0;

// 4. Adjust Velocity so that all the velocity is redirected along the heading.
LILTIIITITLITITL0TI0 0071000700701 7077 7007770777777 77107771771717717171111171171117
float VelocityMagnitude = m_Velocity.Length();

if (VelocityMagnitude > m_MaxSpeed)

VelocityMagnitude = m_MaxSpeed;
}

Vector3 NewVelocity = new Vector3(Heading);
NewVelocity.Normalize();
NewVelocity.Multiply(VelocityMagnitude);
Vector3 OldVelocity = new Vector3(m Velocity);
if (m_ApplyGravity)

{

m_Velocity.Set(NewVelocity.x, OldVelocity.y, NewVelocity.z);

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 305

else

{
}

//5. Update Object Linear Position
LI01IT700777077707710077770777777777777777777777777777717177777777771717171177171177
Vector3 pos = orientation.GetPosition();

pos.Add(m_Velocity);

orientation.SetPosition(pos);

m Velocity.Set(NewVelocity.x, NewVelocity.y, NewVelocity.z);

// Check for object hitting ground if gravity is on.
if (m_ApplyGravity)
{

if ((pos.y < m_GroundLevel)&8 (m_Velocity.y < 0))
{

if (Math.abs(m Velocity.y) > Math.abs(m_Gravity))
{

}

pos.y = m_GroundLevel;
m_Velocity.y = 0;

m_JustHitGround = true;

}

//6. Update Object Angular Position
LILITITIII000070070700077707777077177771771717717777177711777117717177171771711771
// Add Rotation to Rotation Matrix

orientation.AddRotation(m_AngularVelocity);

Modifying the Object3d Class

The UpdateObject3dToHeading() function is added to the Object3d class. The UpdateObject3dToHeading()
function updates an Object3d object with the physics model, where the object moves in the direction of
the Heading vector. This physics model is for the movement of the tank. (See Listing 8-50.)

Listing 8-50. Updating the Object Along a Heading

void UpdateObject3dToHeading(Vector3 Heading)

{
if (m_Visible)
{
// Update Object3d Physics
m_Physics.UpdatePhysicsObjectHeading(Heading, m_Orientation);
}

// Update Explosions associated with this object
UpdateExplosions();

306 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Creating the Tank Class
The Tank class represents our tank enemy.

The m_VehicleID can hold a unique id that identifies this specific vehicle or class of vehicles, such as
“lasertank03.”

private String m VehicleID = "None";

The m_Driver variable holds the Driver class object of the tank and contains the finite state machine
that implements the tank’s artificial intelligence.

private Driver m Driver;

The m_MainBody variable holds the lower 3D mesh portion of the tank that turns toward the waypoint
and controls the movement of the upper turret portion of the tank.

private Object3d m MainBody;

The m_Turret variable holds the upper 3D mesh portion of the tank that turns toward the target and
fires projectiles at it.

private Object3d m_Turret;

The m_Heading holds the direction that the tank is moving.

private Vector3 m_Heading = new Vector3(0,0,0);

The MAX_WEAPONS variable holds the maximum number of weapons that this tank can have.
private int MAX_WEAPONS = 5;

The m_NumberWeapons variable holds the number of weapons that this tank currently has.
private int m_NumberWeapons = 0;

The m_Weapons array holds the tank’s weapons.

private Weapon[] m_Weapons = new Weapon[MAX_WEAPONS];

The m_TurretOffset holds the tank turret’s offset position from the center of the tank’s main body.
private Vector3 m TurretOffset = new Vector3(0,0,0);

The m_HitGroundSFXIndex holds the index to the sound effect to be played when the tank hits the
ground.

private int m_HitGroundSFXIndex = -1;

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 307

The m_ExplosionSFXIndex holds the index to the sound effect to be played when the tank explodes
or is hit by the player’s ammunition.

private int m_ExplosionSFXIndex = -1;

The Tank constructor initializes the tank by setting the 3D meshes for the tank’s main body and the
turret, as well as setting the value of the turret offset and creating a new Driver class object
for the tank. (See Listing 8-51.)
Listing 8-51. The Tank Constructor
Tank(Object3d MainBody, Object3d Turret, Vector3 TurretOffset)
m_MainBody = MainBody;

m_Turret = Turret;
m_TurretOffset = TurretOffset;

// Create new Pilot for this vehicle
m Driver = new Driver(this);

}

The SaveTankState() function saves the state of the tank. The function saves the state of the tank’s
main body, turret, and driver. (See Listing 8-52.)

Listing 8-52. Saving the Tank State
void SaveTankState(String Handle)

{
// Main Body
String MainBodyHandle = Handle + "MainBody";
m_MainBody.SaveObjectState(MainBodyHandle);
// Turret
String TurretHandle = Handle + "Turret";
m_Turret.SaveObjectState(TurretHandle);
// Driver
String DriverHandle = Handle + "Driver";
m Driver.SaveDriverState(DriverHandle);

}

The LoadTankState() function loads in previously saved data for the tank’s main body, turret,
and the driver. (See Listing 8-53.)

Listing 8-53. Loading the Tank State

void LoadTankState(String Handle)

{
//Driver
String DriverHandle = Handle + "Driver";
m Driver.LoadDriverState(DriverHandle);

308 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

// Main Body
String MainBodyHandle = Handle + "MainBody";
m_MainBody.LoadObjectState(MainBodyHandle);

// Turret
String TurretHandle = Handle + "Turret";
m_Turret.LoadObjectState(TurretHandle);

}

The Reset () function resets the tank’s driver and the tank’s weapons. (See Listing 8-54.)

Listing 8-54. Resetting the Tank
void Reset()

{
// Reset Driver
if (m Driver != null)
{
m Driver.DriverReset();
}
// Reset Weapons
for (int i = 0; i < m_NumberWeapons; i++)
{
Weapon TempWeapon = m_Weapons[i];
TempWeapon.ResetWeapon();
}
}

The AddWeapon () function adds the weapon ileapon to the tank’s set of weapons, if there is more
room available. The function returns true if successful and false if not successful. (See Listing 8-55.)

Listing 8-55. Adding a Weapon to the Tank
boolean AddWeapon(Weapon iWeapon)

{
boolean result = false;
if (m_NumberWeapons < MAX_WEAPONS)
{
m_Weapons[m NumberWeapons] = iWeapon;
m_NumberWeapons++;
result = true;
}
return result;
}

The FirelWeapon() function fires the tank’s weapon number WeaponNumber in the direction Direction
with the weapon’s projectile starting at the tank’s turret position. The function returns true if the
weapon has been fired and false otherwise. (See Listing 8-56.)

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 309

Listing 8-56. Firing the Tank’s Weapon

boolean FirelWeapon(int WeaponNumber, Vector3 Direction)

{

boolean result = false;
if (WeaponNumber < m_NumberWeapons)

result = m_Weapons[WeaponNumber].Fire(Direction,
m_Turret.m Orientation.GetPosition());

}

return result;

}

The RenderVehicle() function draws the tank’s main body, turret, and weapon’s projectiles to the
screen and also plays a sound effect if the tank has just hit the ground. (See Listing 8-57.)

Listing 8-57. Rendering the Tank

void RenderVehicle(Camera Cam, PointLight Light, boolean DebugOn)

{
// Render Vehicle

m_MainBody.DrawObject(Cam, Light);
m Turret.DrawObject(Cam, Light);

// Render Vehicles Weapons and Ammunition if any
for (int i = 0 ; 1 < m_NumberWeapons; i++)

{
}

m_Weapons[i].RenderWeapon(Cam, Light, DebugOn);

// Shake Camera if Tank hits ground
boolean ShakeCamera = m_MainBody.GetObjectPhysics().GetHitGroundStatus();
if (ShakeCamera)

{
m_MainBody.GetObjectPhysics().ClearHitGroundStatus();

PlayHitGoundSFX();

}
The TurnTank() function turns the main body of the tank by TurnDelta degrees. (See Listing 8-58.)

Listing 8-58. Turning the Tank

void TurnTank(float TurnDelta)

{
Vector3 Axis = new Vector3(0,1,0);
m_MainBody.m Orientation.SetRotationAxis(Axis);
m MainBody.m_Orientation.AddRotation(TurnDelta);

310 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

The ProcessSteering() function (see Listing 8-59) processes the tank’s steering input values.
The function does the following:

1. Processes the horizontal or left/right steering by calling the TurnTank() to
actually turn the tank’s main body

2. Processes the tank’s acceleration by setting the maximum speed allowed
that is associated with the tank’s steering input and applying a translation
force to the tank’s main body

3. Processes the tank’s deceleration by calculating a slower speed and setting
the maximum speed of the tank to this new slower speed

Listing 8-59. Processing the Tank’s Steering

void ProcessSteering()

{

Steering DriverSteering = m Driver.GetAISteering();

HorizontalSteeringValues HorizontalTurn = DriverSteering.GetHorizontalSteering();
SpeedSteeringValues Acceleration = DriverSteering.GetSpeedSteering();

float TurnDelta = DriverSteering.GetTurnDelta();
float MaxSpeed = DriverSteering.GetMaxSpeed();
float MinSpeed = DriverSteering.GetMinSpeed();
float SpeedDelta = DriverSteering.GetSpeedDelta();

// Process Tank Steering

// Process Right/Left Turn
if (HorizontalTurn == HorizontalSteeringValues.Lleft)

{

TurnTank(TurnDelta);

else if (HorizontalTurn == HorizontalSteeringValues.Right)

{
}

// Process Acceleration
if (Acceleration == SpeedSteeringValues.Accelerate)

TurnTank(-TurnDelta);

{
m_MainBody.GetObjectPhysics().SetMaxSpeed(MaxSpeed);
Vector3 Force = new Vector3(0,0,30.0f);
m_MainBody.GetObjectPhysics().ApplyTranslationalForce(Force);
}
else
if (Acceleration == SpeedSteeringValues.Deccelerate)
{

float Speed = m_MainBody.GetObjectPhysics().GetVelocity().Length();
if (Speed > MinSpeed)

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 311

float NewSpeed = Speed - SpeedDelta;
m_MainBody.GetObjectPhysics().SetMaxSpeed(NewSpeed);

}

The TurnTurret() function turns the tank’s turret based on the TurnDelta input parameter.
(See Listing 8-60.)

Listing 8-60. Turning the Tank’s Turret

void TurnTurret(float TurnDelta)

{
Vector3 Axis = new Vector3(0,1,0);
m Turret.m Orientation.SetRotationAxis(Axis);
m_Turret.m Orientation.AddRotation(TurnDelta);
}

The ProcessTurret() function turns the tank’s turret left or right, depending on the steering input
value for the turret. (See Listing 8-61.)

Listing 8-61. Processing the Tank’s Turret Steering

void ProcessTurret()

{
Steering TurretSteering = m Driver.GetTurretSteering();
HorizontalSteeringValues HorizontalTurn = TurretSteering.GetHorizontalSteering();
float TurnDelta = TurretSteering.GetTurnDelta();
// Process Right/Left Turn
if (HorizontalTurn == HorizontalSteeringValues.Lleft)
{
TurnTurret(TurnDelta);
}
else if (HorizontalTurn == HorizontalSteeringValues.Right)
{
TurnTurret(-TurnDelta);
}
}

The UpdateVehicle() function (see Listing 8-62) updates the Tank class object. The function does
the following:

1. If the main tank body is visible, it updates the tank’s driver object, processes
the tank’s steering, and processes the tank’s turret movements.

2. Updates the tank’s physics by calling UpdateObject3dToHeading(), using the
forward vector of the tank’s main body in world coordinates as the heading.

312 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

3. If the main tank body is visible, it calculates and sets the turret’s final
position, based on the position of the main tank body and the turret offset.

4. Updates the tank’s weapons and the active ammunition that has been fired
from those weapons.

Listing 8-62. Updating the Tank

void UpdateVehicle()
{
if (m_MainBody.IsVisible())
{
// Update AIPilot
m Driver.Update();

// Update Right/Left and Up/Down Rotation of Vehicle based on AIPilot's Steering
ProcessSteering();

// Process Turret Steering
ProcessTurret();

}

// Update Vehicle Physics, Position, Rotation, and attached emitters and explosions
m Heading = m_MainBody.m Orientation.GetForwardWorldCoords();
m_MainBody.UpdateObject3dToHeading(m_Heading);

if (m_MainBody.IsVisible())
{
// Tie Turret to Main Body
Vector3 Pos = m MainBody.m_Orientation.GetPosition();
Vector3 ZOffset = Vector3.Multiply(m TurretOffset.z,
m_MainBody.m_Orientation.GetForwardWorldCoords());
Vector3 XOffset = Vector3.Multiply(m TurretOffset.x,
m_MainBody.m Orientation.GetRightWorldCoords());
Vector3 YOffset = Vector3.Multiply(m TurretOffset.y,
m_MainBody.m_Orientation.GetUpWorldCoords());

Vector3 OffsetPos = new Vector3(Pos);
OffsetPos.Add(X0ffset);
OffsetPos.Add(Y0ffset);
OffsetPos.Add(Z0ffset);

m Turret.m Orientation.GetPosition().Set(OffsetPos.x, OffsetPos.y,0ffsetPos.z);
}

// Update Weapons and Ammunition
for (int i = 0 ; 1 < m_NumberWeapons; i++)

{
}

m_Weapons[i].UpdatelWeapon();

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 313

Hands-on Example: Arena Objects and Tanks

Now, let’'s use the Arena Object class and the Tank class in a working hands-on example. We must
make some modifications to our code from Chapter 7’s hands-on example. This hands-on example
should also be available from the Source Code/Download area of apress.com.

Modifying the MyGLRenderer Class

The type for the m_Cube variable has been changed to an ArenaObject class.
private ArenaObject3d m_Cube;
In the CreateCube() function, we create a new ArenaObiject instead of a Cube object.

m_Cube = new ArenaObject3d(iContext, null,CubeMesh, CubeTex, Materiali, Shader,XMaxBoundary,XMinBou
ndary, ZMaxBoundary,ZMinBoundary);

The onDrawFrame() function now updates m_Cube with UpdateArenaObject() instead of
UpdateObject3d().

m_Cube.UpdateArenaObject();

Next, we have to add in some code for our new tank. | will discuss the key functions in this section.

The m_Tank variable is added in to represent our enemy tank.
private Tank m_Tank;

The CreateTankType1() function (see Listing 8-63) creates the tank object. The CreateTankType1()
function does the following:

1. Creates the tank’s weapon and ammunition
Creates the material for the tank’s main body

Creates the tank’s main body texture

> L™

Creates the mesh for the main tank body with data from
Pyramid2.Pyramid2Vertices

Creates the material for the tank’s turret
Creates the texture for the tank’s turret
Creates the tank’s turret mesh with data from Pyramid2.Pyramid2Vertices

Creates the tank’s turret offset

© o N o o

Creates the tank’s shader

10. Initializes the tank properties, such as the tank’s position, scale, sound
effects, color that it makes on the grid, etc.

http:\\apress.com

314

11.

12.

CHAPTER 8: Drone Grid Case Study: Creating the Enemies

projectiles

returns the tank

Listing 8-63. Creating the Tank

Tank CreateTankTypel(Context iContext)

{

//Weapon
Weapon TankWeapon = CreateTankWeaponTypel(iContext);

// Material
Material MainBodyMaterial = new Material();
MainBodyMaterial.SetEmissive(0.0f, 0.4f, 0.0f);

// Texture

Texture TexTankMainBody = new Texture(iContext,R.drawable.ship1);
int NumberMainBodyTextures = 1;

Texture[] MainBodyTexture = new Texture[NumberMainBodyTextures];
MainBodyTexture[0] = TexTankMainBody;

boolean AnimateMainBodyTex = false;

float MainBodyAnimationDelay = 0;

// Mesh
Mesh MainBodyMesh = new Mesh(8,0,3,5,Pyramid2.Pyramid2Vertices);
MeshEx MainBodyMeshEx= null;

// Turret

//Material

Material TurretMaterial=new Material();
TurretMaterial.SetEmissive(0.4f, 0.0f, 0.0f);

// Texture

Texture TexTankTurret = new Texture(iContext,R.drawable.ship1);
int NumberTurretTextures = 1;

Texture[] TurretTexture = new Texture[NumberTurretTextures];
TurretTexture[0] = TexTankTurret;

boolean AnimateTurretTex = false;

float TurretAnimationDelay = 0;

// Mesh
Mesh TurretMesh= new Mesh(8,0,3,5,Pyramid2.Pyramid2Vertices);
MeshEx TurretMeshEx = null;

// Turret Offset
Vector3 TurretOffset = new Vector3(o, 0.2f, -0.3f);

// Shaders

Shader iShader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelight); //

Creates an explosion that is used when the tank is hit by the player’s weapon

Creates the tank, sets the sound effects associated with the tank to true, and

ok

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 315

// Initilization

Vector3 Position = new Vector3(-2.0f, 7.0f, 2.0f);

Vector3 ScaleTurret = new Vector3(1.5f/2.0f, 0.5f/2.0f, 1.3f/2.0f);
Vector3 ScaleMainBody = new Vector3(1, 0.5f/2.0f, 1);

float GroundLevel = 0.0f;

Vector3 GridColor= new Vector3(0.0f,1.0f,0.0f);
float MassEffectiveRadius = 7.0f;

int HitGroundSFX =R.raw.explosion2;

int ExplosionSFX=R.raw.explosioni;

// Create Explosion

int NumberParticles = 20;

Vector3 Color = new Vector3(0,0,1);

long ParticlelifeSpan= 3000;

boolean RandomColors = false;

boolean ColorAnimation = true;

float FadeDelta = 0.001f;

Vector3 ParticleSize= new Vector3(0.5f,0.5f,0.5f);

SphericalPolygonExplosion Explosion = CreateExplosion(iContext,NumberParticles,Color,
ParticleSize, ParticlelLifeSpan,RandomColors,ColorAnimation,FadeDelta);

Tank TankTypel = CreateInitTank(iContext,TankWeapon,MainBodyMaterial,NumberMainBodyTextures,
MainBodyTexture,AnimateMainBodyTex,MainBodyAnimationDelay,MainBodyMesh, MainBodyMeshEx,
TurretMaterial, NumberTurretTextures, TurretTexture, AnimateTurretTex,TurretAnimationDelay,
TurretMesh,TurretMeshEx, TurretOffset, iShader, Explosion,Position,ScaleMainBody,ScaleTurret,
GroundLevel, GridColor, MassEffectiveRadius,HitGroundSFX, ExplosionSFX);

TankType1.GetMainBody () .SetSFXOnOff(true);

TankType1.GetTurret().SetSFXOnOff(true);

return TankTypei;

}

The GenerateTankWayPoints() function creates four waypoints for the tank and returns the number
of waypoints created. (See Listing 8-64.)

Listing 8-64. Generating the Tank’s Waypoints
int GenerateTankWayPoints(Vector3[] WayPoints)

{
int NumberWayPoints = 4;
WayPoints[0] = new Vector3(5, 0, 10);
WayPoints[1] = new Vector3(10, 0,-10);
WayPoints[2] = new Vector3(-10, 0,-10);
WayPoints[3] = new Vector3(-5, 0, 10);
return NumberWayPoints;

}

The CreatePatrolAttackTankCommand() function creates the patrol/attack vehicle command that is
sent to the enemy tank. (See Listing 8-65.)

316 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

Listing 8-65.

Creating the Patrol/Attack Command

VehicleCommand CreatePatrolAttackTankCommand(AIVehicleObjectsAffected ObjectsAffected,int
NumberWayPoints,Vector3[] WayPoints, Vector3 Target, Object3d TargetObj, int NumberRoundToFire,int
FiringDelay)

Veh

icleCommand TankCommand = null;

AIVehicleCommand Command = AIVehicleCommand.Patrol;

Int
Int
Int

Int
Int

NumberObjectsAffected = 0;
DeltaAmount = NumberRoundToFire;
DeltaIncrement = FiringDelay;

MaxValue = 0;
MinValue = 0;

TankCommand = new VehicleCommand(m Context,Command,ObjectsAffected,NumberObjectsAffected,
DeltaAmount,DeltaIncrement,MaxValue,MinValue,NumberWayPoints,WayPoints,Target,TargetObj);
return TankCommand;

}

The CreateTanks() function (see Listing 8-66) creates the enemy tank by

1.

o ~ w0 D>

Listing 8-66.

Creating the tank object and assigning it to m_Tank.
Setting the tank main body material to emit a green glow.
Setting the tank turret material to emit a red glow.
Setting the tank id to “tank1”.

Creating the patrol/attack tank command by calling the
CreatePatrolAttackTankCommand() function. The tank is ordered to fire three
rounds of projectiles at the player’s pyramid, then pause for five seconds,
then repeat the firing sequence.

Sending the Patrol/Attack command to the Driver of the tank by calling the
SetOrder() function.

Creating the Tank

void CreateTanks()

{

m_Tank= CreateTankType1(m Context);

// Set Material
m_Tank.GetMainBody().CGetMaterial().SetEmissive(0.0f, 0.5f, of);
m Tank.GetTurret().GetMaterial().SetEmissive(0.5f, 0, 0.0f);

// Tank ID
m_Tank.SetVehicleID("tank1");

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 317

// Set Patrol Order

int MAX_WAYPOINTS = 10;

Vector3[] WayPoints = new Vector3[MAX WAYPOINTS];

int NumberWayPoints = GenerateTankWayPoints(WayPoints);

AIVehicleObjectsAffected ObjectsAffected = AIVehicleObjectsAffected.PrimaryWeapon;
Vector3 Target = new Vector3(0,0,0);

Object3d TargetObj = null;

int NumberRoundToFire = 3;

int FiringDelay = 5000;

VehicleCommand Command = CreatePatrolAttackTankCommand(ObjectsAffected,NumberhWayPoints,

WayPoints, Target,TargetObj,NumberRoundToFire,FiringDelay);

m_Tank.GetDriver().SetOrder(Command);

The ProcessTankCollisions() function processes collisions between the tank and the player’s
ammunition and the tank weapon’s ammunition and the player’s power pyramid. (See Listing 8-67.)

Listing 8-67. Processing the Tank Collisions

void ProcessTankCollisions()

{

float ExplosionMinVelocity
float ExplosionMaxVelocity

0.02f;
0.4f;

if (!m_Tank.GetMainBody().IsVisible())
{

}

return;

// Check Collisions between Tank and Player's Ammunition
Object3d CollisionObj = m_Weapon.CheckAmmoCollision(m Tank.GetMainBody());
if (CollisionObj != null)
{
CollisionObj.ApplyLinearImpulse(m Tank.GetMainBody());

m_Tank.GetMainBody().ExplodeObject(ExplosionMaxVelocity, ExplosionMinVelocity);
m_Tank.PlayExplosionSFX();

// Process Damage
m_Tank.GetMainBody().TakeDamage(CollisionObj);

int Health = m_Tank.GetMainBody().GetObjectStats().GetHealth();
if (Health <= 0)

{
int KillValue = m Tank.GetMainBody().GetObjectStats().GetKillValue();
m_Score = m_Score + KillValue;
m_Tank.GetMainBody().SetVisibility(false);
m_Tank.GetTurret().SetVisibility(false);

}

318 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

// Tank Weapons and Pyramid
int NumberWeapons = m_Tank.GetNumberhWeapons();
for (int j=0; j < NumberWeapons; j++)

{
CollisionObj = m_Tank.GetWeapon(j).CheckAmmoCollision(m Pyramid);

if (CollisionObj != null)

{
CollisionObj.ApplyLinearImpulse(m Pyramid);

//Process Damage
m_Pyramid.TakeDamage(CollisionObj);

// 0bj Explosion
m_Pyramid.ExplodeObject(ExplosionMaxVelocity, ExplosionMinVelocity);
m_Pyramid.PlayExplosionSFX();

// Set Pyramid Velocity and Acceleration to 0
m_Pyramid.GetObjectPhysics().ResetState();

}

The ProcessTankCollisions() function does the following:
1. Returns, if the tank’s main body is not visible.

2. Checks for a collision with the player’s ammunition and the enemy tank’s
main body.

3. If there is a collision, it

a. Applies forces to the player’s ammunition and the tank
Starts an explosion sequence for the tank
Plays an explosion sound effect

Processes the damage caused by the player’s ammunition on the tank’s main body

® o o o

Adds the kill value of the tank to the player’s score, if the health of the tank’s main
body is less than or equal to 0. It also sets the visibility of the tank’s main body and
the tank’s turret to false.

4. Checks for a collision between the weapon’s ammunition and the player’s
power pyramid for each of the tank’s weapons.

5. If there is a collision, it

a. Applies forces to the ammunition and the pyramid
Processes the damage to the pyramid
Starts the pyramid’s explosion effect

Plays the pyramid’s explosion sound effect

® o o o

Resest the pyramid’s physics so that it does not move from the collision
with the tank’s ammunition.

CHAPTER 8: Drone Grid Case Study: Creating the Enemies 319

Next, we must make modifications to the UpdateGravityGrid() function. If the tank’s main body is
visible, we have to add the tank’s main body and the tank’s active ammunition to the gravity grid.
(See Listing 8-68.)

Listing 8-68. Modifying the UpdateGravityGrid() Function

if (m_Tank.GetMainBody().IsVisible())

{
m_Grid.AddMass(m_Tank.GetMainBody());
NumberMasses = m_Tank.GetWeapon(0).GetActiveAmmo(0, Masses);
m Grid.AddMasses(NumberMasses, Masses);

}

The onDrawFrame() function must also be modified with additional code.

The tank has to be updated by calling the UpdateVehicle() function.
m_Tank.UpdateVehicle();

The tank is rendered using the RenderVehicle() function.
m_Tank.RenderVehicle(m_Camera, m_PointLight, false);

Next, run the project, and you should see something similar to Figure 8-7 and Figure 8-8.

E] D 4:44 am

Figure 8-7. The arena object

320 CHAPTER 8: Drone Grid Case Study: Creating the Enemies

] &) B @ 4:45am

Figure 8-8. The tank

Summary

In this chapter, | covered the enemies that will be in our Drone Grid case study. First, | discussed
arena objects. Next, | went through an overview of finite state machines. | then discussed specifically
what the finite state machine for our tank will be. The classes that implemented the finite state
machine and the states for our tank were then examined. Required modifications to other classes
were also presented. Finally, a hands-on example was given to create and implement these enemies
in a working game demo.

Chapter

Drone Grid Case Study: The User
Interface

This chapter will cover the user interface for our Drone Grid case study game. The Main Menu System

is covered first, which allows the player to choose between a new game, continuing an old game, or
viewing the high score table. Next, the creation of the high score table is covered, including the class
that is used to implement it. The high score entry menu is then discussed with the class that is used to
implement that menu system. Finally, a hands-on example is given to demonstrate these user interfaces.

Creating the Main Menu System

The menu system for our game will consist of a main menu represented by a MainMenu class.
Each item in the main menu is represented by a Menultem class.

The Menultem Class

The Menultem class holds an item for a menu that also contains the actual 3D graphic.

The Menultem class is derived from the BillBoard class.
public class MenuItem extends BillBoard
The Menultem constructor calls the constructor for its parent BillBoard class. (See Listing 9-1.)

Listing 9-1. The Menultem Constructor

MenuItem(Context iContext, Mesh iMesh, MeshEx iMeshEx, Texture[] iTextures, Material iMaterial,
Shader iShader)

{
}

super(iContext, iMesh, iMeshEx, iTextures, iMaterial, iShader);

321

322 CHAPTER 9: Drone Grid Case Study: The User Interface

The GetObject3dWindowCoords () function gets the window coordinates of a point on a menu
item object that can be offset by ObjOffset and that is displayed within the viewport defined by
ViewPortWidth and ViewPortHeight input parameters. (See Listing 9-2.)

Listing 9-2. Getting the Window Coordinates for the Menultem Object

GetObject3dWindowCoords(int ViewPortWidth,int ViewPortHeight,Vector3 ObjOffset)

float[] WindowCoords;
int[] View = new int[4];

View[0] = 0;
View[1] = 0;
View[2] = ViewPortWidth;
View[3] = ViewPortHeight;

WindowCoords = MapObjectCoordsToWindowCoords(View, 0, ObjOffset);

// Flip Y starting point so that 0 is at top of window
WindowCoords[1] = ViewPortHeight - WindowCoords[1];

return WindowCoords;

The function does the following:

float[]

{

}
1.
2.
3.
4,

Creates the View variable, which is a viewport window defined by the
coordinates (0,0) and (ViewPortWidth, ViewPortHeight)

Gets the window coordinates of the menu item object at ObjOffset offset
position by calling the MapObjectCoordsToWindowCoords () function

Converts the y component of the window coordinates to screen space from
OpenGL space

Returns the window coordinates

The Touched() function returns true if the input screen touch coordinates TouchX and TouchY map to
within this menu item. (See Listing 9-3.)

Listing 9-3. Testing for the User’s Touch Input

boolean

{

Touched(float TouchX, float TouchY,int ViewPortWidth,int ViewPortHeight)
boolean result = false;

float Radius = GetRadius();

Vector3 ObjCoordsUpperLeft = new Vector3(-Radius, Radius, 0);
Vector3 ObjCoordsUpperRight = new Vector3(Radius, Radius, 0);
Vector3 ObjCoordsLowerLeft new Vector3(-Radius, -Radius, 0);

CHAPTER 9: Drone Grid Case Study: The User Interface 323

}

float[] UpperLeft = GetObject3dWindowCoords(ViewPortWidth, ViewPortHeight, ObjCoordsUpperLeft);
float[] UpperRight
float[] LowerLeft

GetObject3dWindowCoords (ViewPortWidth, ViewPortHeight, ObjCoordsUpperRight);
GetObject3dWindowCoords (ViewPortWidth, ViewPortHeight, ObjCoordsLowerLeft);

if ((TouchX >= UpperLeft[0]) && (TouchX <= UpperRight[0]) &&

(TouchY >= UpperLeft[1]) 8& (TouchY <= LowerLeft[1]))

result = true;

return result;

The following are attributes of the Touched() function:

1.

For our menu items, we will use a Cube class object that has equal lengths
on all sides. We get the radius of this cube by calling the GetRadius() function
and store it in the Radius variable.

Using the Radius value, we create the object’s upper left, upper right,
and lower left object coordinates. We store these values in the variables
ObjCoordsUpperLeft, ObjCoordsUpperRight, and ObjCoordsLowerLeft.

The function retrieves the window coordinates of the upper left,

upper right, and lower left corners of the menu item object by calling
GetObject3dWindowCoords () using the object’s upper left, upper right, and
lower left object coordinates created in step 2.

The function tests to see if the screen coordinates (TouchX, TouchY) are
within the bounds of the screen coordinates of the menu item. If they are,
then return true; otherwise, return false.

The MainMenu Class

The MainMenu class represents the actual main menu interface for our Drone Grid case study game.

The MenuStates enumeration represents the available menu selections (see Listing 9-4) for the main
menu, such as

None: Which means that no menu item is selected

NewGame: Which means that the player wants to begin playing a completely
new game

ContinueCurrentGame: Which means that the player wants to continue the last
saved game

HighScoreTable: Which means that the player wants to view the high score table

Copyright: Used in debug mode to help test the high score entry system

324 CHAPTER 9: Drone Grid Case Study: The User Interface

Listing 9-4. The Menu States

enum MenuStates

{
None,
NewGame,
ContinueCurrentGame,
HighScoreTable,
Copyright

}

The m_NewGameItem variable holds a reference to a menu item that the user touches, if he or she
wants to start a new game.

MenuItem m_NewGameItem;

The m_ContinueGameItem variable holds a reference to a menu item that the user touches if he or she
wants to continue the last saved game.

MenuItem m_ContinueGameItem;

The m_HighScoresItem variable holds a reference to a menu item that the user touches if he or she
wants to view the high score table.

MenuItem m_HighScoresItem;

The m_CopyRightItem variable holds a reference to a menu item that is used in debugging the high
score entry system.

MenuItem m_CopyRightItem;

The MainMenu constructor initializes the MainMenu class by assigning objects to each of the menu
items in the main menu. (See Listing 9-5.)

Listing 9-5. The MainMenu Constructor

MainMenu(MenuItem NewGameItem,MenuItem ContinueGameItem,MenuItem HighScoresItem,MenuItem
CopyRightItem)
{

m_NewGameItem = NewGameItem;
m_ContinueGameItem = ContinueGameItem;
m_HighScoresItem = HighScoresItem;
m_CopyRightItem = CopyRightItem;

}

The GetMainMenuStatus() function tests the main menu items to see if any has been touched at the
screen location (TouchX, TouchY). Each menu item button is tested to see if it has been touched by
calling the Touched() function on that button. The button type that is touched is returned or None is
returned if no menu buttons have been touched. (See Listing 9-6.)

CHAPTER 9: Drone Grid Case Study: The User Interface

Listing 9-6. Getting the Main Menu Status

MenuStates GetMainMenuStatus(float TouchX, float TouchY,int ViewPortWidth,int ViewPortHeight)

{

}

MenuStates Selection = MenuStates.None;

boolean Touched = false;

// New Game Menu Item

Touched = m_NewGameItem.Touched(TouchX, TouchY, ViewPortWidth, ViewPortHeight);
if (Touched)

{

}

Selection = MenuStates.NewGame;

// New ContinueGame Menu Item

Touched = m_ContinueGameItem.Touched(TouchX, TouchY, ViewPortWidth, ViewPortHeight);
if (Touched)

{

}

Selection = MenuStates.ContinueCurrentGame;

// New HighScoreTable Menu Item
Touched = m_HighScoresItem.Touched(TouchX, TouchY, ViewPortWidth, ViewPortHeight);
if (Touched)

{
}

// CopyRight Menu Item
Touched = m_CopyRightItem.Touched(TouchX, TouchY, ViewPortWidth, ViewPortHeight);
if (Touched)

Selection = MenuStates.HighScoreTable;

Selection = MenuStates.Copyright;
}

return Selection;

The RenderMenu() function draws the main menu items to the screen. (See Listing 9-7.)

Listing 9-7. Rendering the Main Menu

void RenderMenu(Camera Cam, PointlLight Light, boolean DebugOn)

{

m_NewGameItem.DrawObject(Cam, Light);
m_ContinueGameItem.DrawObject(Cam, Light);
m_HighScoresItem.DrawObject(Cam, Light);
m_CopyRightItem.DrawObject(Cam, Light);

325

326 CHAPTER 9: Drone Grid Case Study: The User Interface

The UpdateMenu() function updates each main menu item and also turns each of the items (which
are billboards) toward the camera by calling the UpdateObject3d() function. All the main menu items,
which are the new game button, the continue game button, the display high scores button, and the
copyright graphic, are processed here. (See Listing 9-8.)

Listing 9-8. Updating the Main Menu

void UpdateMenu(Camera Cam)

{
m_NewGameItem.UpdateObject3d(Cam);
m_ContinueGameItem.UpdateObject3d(Cam);
m_HighScoresItem.UpdateObject3d(Cam);
m_CopyRightItem.UpdateObject3d(Cam);

}

Creating the High Score Table

The high score table that holds the player’s highest scores for the game consists of two classes: the
HighScoreEntry class and the HighScoreTable class.

The HighScoreEntry Class

The HighScoreEntry class holds the data for a high score entry. This class implements the Comparable
public interface and defines a function that allows the high score entries to be compared and sorted.

public class HighScoreEntry implements Comparable<HighScoreEntry>

The m_ItemValid variable is set to true, if this high score entry is valid, and should be displayed in the
high score table.

private boolean m ItemValid;

The m_Initials variable holds the player’s initials.

private String m_Initials;

The m_Score variable holds the player’s score.

private int m_Score;

The HighScoreEntry constructor initializes the entry by setting the initials and score. (See Listing 9-9.)

Listing 9-9. HighScoreEntry Constructor
HighScoreEntry(String Initials,int Score)

m_Initials = Initials;
m_Score = Score;

CHAPTER 9: Drone Grid Case Study: The User Interface 327

The compareTo() function is used in combination with the Collections.sort() function to sort high
score table entries in descending order, with high scores ordered first (see Listing 9-10). Normally,
the compareTo() function sorts the entries in ascending order. Because we are sorting in descending
order, we need to make some key changes.

The function returns a negative integer if the score in this instance of the entry is
greater than the score in the input parameter variable Another’s score.

The function returns a positive integer if the score in this instance of the entry is
less than the score in the input parameter variable Another’s score.

Listing 9-10. Comparing and Sorting Entries

public int compareTo(HighScoreEntry Another)
{
/*
Normally ascending sorting - Returns
a negative integer if this instance is less than another; a positive integer if this
instance is greater than another; 0 if this instance has the same order as another.
*/
int result = 0;
if (m_Score > Another.m_Score)

{
}

else
if (m_Score < Another.m_Score)

{
}

return result;

result = -1;

result = 1;

The HighScoreTable Class

The HighScoreTable class represents the high score table containing all the player’s high
score entries.

The HIGH_SCORES string variable holds the handle for loading and saving the high score table.
private String HIGH_SCORES = "HighScores";

The MAX_RANK variable holds the maximum number of high scores to display.

private int MAX RANK = 10;

The MAX_SCORES variable holds the maximum number of scores that are stored internally for
processing and calculation purposes.

private int MAX_SCORES = 11;

328 CHAPTER 9: Drone Grid Case Study: The User Interface

The m_HighScoreTable array holds the actual high score entries.
private HighScoreEntry[] m HighScoreTable = new HighScoreEntry[MAX SCORES];

The m_Text variable holds the character set that will be used to print out the text for the high score
table graphics.

private BillBoardCharacterSet m_Text;

The m_FontWidth variable holds the width of each character in the character set that is used to print
text for the high score table.

private int m_FontWidth;

The m_FontHeight variable holds the height of each character in the character set that is used to
print text for the high score table.

private int m_FontHeight;
The m_BackGroundTexture variable holds the texture that is used to clear the high score table texture.
private Texture m_BackGroundTexture;

The m_HighScoreTableImage variable holds a reference to the BillBoard object that contains the
texture with the player’s high scores on it.

private BillBoard m_HighScoreTableImage;

The m_Dirty variable is true if the high score table has been altered since the last update and false
otherwise.

private boolean m Dirty = false;

The HighScoreTable() constructor (see Listing 9-11) creates a new high score table by
1. Creating a new background texture for the high score table

2. Initializing the high score table by creating blank high score entries in the
m_HighScoreTable array

3. Initializing other class member variables

4. Loading in the player’s previously saved high scores, if any

Listing 9-11. The HighScoreTable Constructor

HighScoreTable(Context iContext,BillBoardCharacterSet CharacterSet,BillBoard HighScoreTableImage)

m_Context = iContext;
m_BackGroundTexture = new Texture(iContext, R.drawable.background);

CHAPTER 9: Drone Grid Case Study: The User Interface

String Initials = "AAA";
int Score = 0;

// Initialize High Score Entries

for (int i = 0; i < MAX_SCORES; i++)

{
m_HighScoreTable[i] = new HighScoreEntry(Initials,Score);
m_HighScoreTable[i].SetItemValidState(false);

}

m_Text = CharacterSet;
m_FontWidth = m Text.GetFontWidth();
m_FontHeight = m_Text.GetFontHeight();

m_HighScoreTableImage = HighScoreTableImage;

// Load In Saved high Scores
LoadHighScoreTable(HIGH SCORES);
m Dirty = true;

}

The SaveHighScoreTable() function saves the player’s top MAX_RANK number high score entries
consisting of the player’s initials and the player’s score. (See Listing 9-12.)

Listing 9-12. Saving the High Score Table

void SaveHighScoreTable(String Handle)
{
// We need an Editor object to make preference changes.
// All objects are from android.context.Context
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);
SharedPreferences.Editor editor = settings.edit();
for (int i = 0; i < MAX RANK; i++)
{
editor.putString("Name" + i, m HighScoreTable[i].GetInitials());
editor.putInt("Score" + i, m HighScoreTable[i].GetScore());
}
// Commit the edits!
editor.commit();

}

The LoadHighScoreTable() function loads the player’s high score data consisting of the player’s
name or initials and the player’s score. If the player’s score is greater than 0, the entry is valid.
(See Listing 9-13.)

Listing 9-13. Loading the High Score Table

void LoadHighScoreTable(String Handle)
{

// Restore preferences
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);

329

330 CHAPTER 9: Drone Grid Case Study: The User Interface

for (int i = 0; 1 < MAX RANK; i++)
{

String Name = settings.getString("Name" + i, "...");
int Score = settings.getInt("Score" + i, 0);

m_HighScoreTable[i].SetName(Name);
m_HighScoreTable[i].SetScore(Score);

if (Score > 0)

{
}

m_HighScoreTable[i].SetItemValidState(true);

}

The NumberValidHighScores() function finds the number of valid high score entries in the high score
table. (See Listing 9-14.)

Listing 9-14. Finding the Number of Valid High Scores
int NumberValidHighScores()

{
int NumberValidScores = 0;
for (int i = 0; 1 < MAX RANK; i++)
{
if (m_HighScoreTable[i].IsValid())
{
NumberValidScores++;
}
}
return NumberValidScores;
}

The GetLowestScore() function retrieves the lowest valid player score from the high score table
m_HighScoreTable. (See Listing 9-15.)

Listing 9-15. Getting the Lowest Score

int GetlLowestScore()

{
// Get Lowest valid score
int LowestScore = 0;
int ValidScores = 0;

for (int i = 0; i < MAX RANK; i++)

{
if (m_HighScoreTable[i].IsValid())
{
ValidScores++;
}

CHAPTER 9: Drone Grid Case Study: The User Interface 331

if (ValidScores > 0)
{

}

return LowestScore;

LowestScore = m_HighScoreTable[ValidScores-1].GetScore();

}

The FindEmptySlot() function retrieves the index of an empty (meaning not valid) high score entry
slot in m_HighScoreTable. (See Listing 9-16.)

Listing 9-16. Finding an Empty Slot for the High Score Entry
int FindEmptySlot()

int EmptySlot = -1;
for (int i = 0; i < MAX_SCORES; i++)

{
if (m_HighScoreTable[i].IsValid() == false)
{
return i;
}
}

return EmptySlot;
}

The AddItem() function adds a high score entry to an empty slot in the high score table if an empty
slot is found. More specifically, if there is an empty slot, then assign the high score entry to that slot
in the m_HighScoreTable array, set the valid state of the entry to true, and set the m_Dirty value to
true to indicate that the high score table needs to be sorted and rendered. (See Listing 9-17.)

Listing 9-17. Adding an Item to the High Score Table

boolean AddItem(HighScoreEntry Item)
{

boolean result = false;

int EmptySlot = FindEmptySlot();
if (EmptySlot »>= 0)

m_HighScoreTable[EmptySlot] = Item;
m_HighScoreTable[EmptySlot].SetItemvalidState(true);
result = true;
m Dirty = true;

}

return result;

}

The SortHighScoreTable() function sorts the high score table in descending order. After sorting in
descending order the top 10 entries, the function takes the 11th high score entry and sets the status to
invalid, so that new entries to the high score table can be put at the end, if needed. (See Listing 9-18.)

332 CHAPTER 9: Drone Grid Case Study: The User Interface

Listing 9-18. Sorting the High Score Table
void SortHighScoreTable()

{
Collections.sort(Arrays.asList(m_HighScoreTable));
// Only keep top 10 and make room for another to be added to end of array
m_HighScoreTable[MAX SCORES-1].SetItemValidState(false);

}

The ClearHighScoreTable() function clears the high score table texture image held in
m_HighScoreTableImage by copying the blank texture m_BackGroundTexture over it, using the
CopySubTextureToTexture() function. (See Listing 9-19.)

Listing 9-19. Clearing the High Score Table

void ClearHighScoreTable()

{
Texture HighScoreTableTexture = m HighScoreTableImage.GetTexture(0);
// Clear Composite Texture;
Bitmap BackGroundBitmap = m BackGroundTexture.GetTextureBitMap();
HighScoreTableTexture.CopySubTextureToTexture(0, 0, 0, BackGroundBitmap);
}

The RenderTitle() function renders the text “High Scores” to m_HighScoreTableImage, which is the
billboard that holds the final composite texture for the high score table. (See Listing 9-20.)

Listing 9-20. Rendering the Title of the High Score Table
void RenderTitle()

{
m_Text.SetText("High".toCharArray());
m_Text.RenderToBillBoard(m_HighScoreTableImage, 0 , 0);
m_Text.SetText("Scores".toCharArray());
m_Text.RenderToBillBoard(m_HighScoreTableImage, 5*m FontWidth , 0);
}

The CopyHighScoreEntryToHighScoreTable() function copies a high score entry to the final
composite m_HighScoreTableImage high score billboard that is used to display the final player’s high
score. (See Listing 9-21.)

Listing 9-21. Copying the High Score Entry to the Final Composite Billboard Texture Object
void CopyHighScoreEntryToHighScoreTable(int Rank, Camera Cam, HighScoreEntry Item)

// Put HighScore Entry onto Final Composite Bitmap

// CharacterPosition

int HeightOffset = 10;

int CharPosX = 0;

int CharPosY = m_FontHeight + (Rank * (m_FontHeight + HeightOffset));

CHAPTER 9: Drone Grid Case Study: The User Interface

}

// Render Rank

String RankStr = Rank + ".";

m_Text.SetText(RankStr.toCharArray());
m_Text.RenderToBillBoard(m_HighScoreTableImage, CharPosX, CharPosY);

// Render Player Name/Initials and render to composite billboard
String Name = Item.GetInitials();
m_Text.SetText(Name.toCharArray());

CharPosX = CharPosX + m_FontWidth * 3;
m_Text.RenderToBillBoard(m HighScoreTableImage, CharPosX, CharPosY);

// Render Numerical Value and render to composite billboard
String Score = String.valueOf(Item.GetScore());
m_Text.SetText(Score.toCharArray());

int BlankSpace = 4 * m_FontWidth;
CharPosX = CharPosX + Name.length() + BlankSpace;
m_Text.RenderToBillBoard(m_HighScoreTableImage, CharPosX, CharPosY);

The function does the following:

1.

Calculates the beginning x,y position for the high score entry, based on the
height of the character font to be used, the rank of the score (1st, 2nd, 3rd, etc.),
and the HeightOffset variable

Renders the high score entry’s rank to the m_HighScoreTableImage billboard

Renders the high score entry’s player’s initials to the m_HighScoreTableImage
billboard

Renders the high score entry’s player’s score to the m_HighScoreTableImage
billboard

The UpdateHighScoreTable() function updates the high score table. (See Listing 9-22.)

Listing 9-22. Updating the High Score Table

void UpdateHighScoreTable(Camera Cam)

{

if (m_Dirty)

// Sort High Score Table in descending order for score
SortHighScoreTable();

// Clear High Score Table and set background texture
ClearHighScoreTable();

// Render Title
RenderTitle();

333

334 CHAPTER 9: Drone Grid Case Study: The User Interface

// For the Top Ranked entries copy these to the HighScore Table BillBoard
for (int i = 0; 1 < MAX RANK; i++)
{

if (m_HighScoreTable[i].IsValid())

{
CopyHighScoreEntryToHighScoreTable(i+1, Cam, m HighScoreTable[i]);

}

// Save High Scores
SaveHighScoreTable(HIGH SCORES);

m Dirty = false;
}

// Update BillBoard orientation for Score
m_HighScoreTableImage.UpdateObject3d(Cam);

}

The function does the following:

1. Ifm_Dirty is true, it adds a new high score entry and processes and renders it
to the high score table billboard.

2. Ifm_Dirty is true, it

a. Sorts the high score table in descending order, with the highest score listed first, by
calling the SortHighScoreTable() function

b. Clears the high score table by calling the ClearHighScoreTable() function
Renders the high score table’s heading by calling the RenderTitle() function

d. Renders the top 10 high scores to the high score table by calling the
CopyHighScoreEntryToHighScoreTable() function

e. Saves the high score table by calling the SaveHighScoreTable() function
f. Setsm Dirty to false to indicate that the high score table has been updated

3. Updates the high score table billboard by calling the UpdateObject3d()
function to turn the billboard toward the camera

The RenderHighScoreTable() function draws the high score table billboard and the texture containing
the player’s high scores to the screen. (See Listing 9-23.)

Listing 9-23. Rendering the High Score Table

void RenderHighScoreTable(Camera Cam, PointLight Light, boolean DebugOn)

{
// Render Final High Score Table Composite Image

m_HighScoreTableImage.DrawObject(Cam, Light);

CHAPTER 9: Drone Grid Case Study: The User Interface 335

Creating the High Score Entry System
The HighScoreEntryMenu class controls the menu for entering a player’s high score.

The EntryMenuStates enumeration holds the type of menu button that is clicked (see Listing 9-24),
which include

None: There is no button clicked.

NextCharacterPressed: The next character button is pressed to change the
character in the selection to the next character in the character set for
user selection.

PreviousCharacterPressed: The previous character button is pressed to change
the character in the selection to the previous character in the character set for
user selection.

Enter: The current character that is displayed is entered as the character for
this position.
Listing 9-24. The High Score Entry Menu Buttons

enum EntryMenuStates

{
None,
NextCharacterPressed,
PreviousCharacterPressed,
Enter

}

The MAX_ENTRY_CHARACTERS variables hold the maximum number of characters to enter for a player’s
name or initials.

private int MAX ENTRY CHARACTERS = 3;

The m_EntryIndex variable holds the current character position in the player’s name/initial selection
input. For example, 0 would indicate that the player is selecting the first initial to enter.

private int m_EntryIndex = 0;
The m_Entry variable holds the player’s name/initials.
private char[] m_Entry = new char[MAX_ENTRY_CHARACTERS];

The m_NextCharacterButton button cycles forward through the character set that is available for
entering the player’s name/initials.

private MenuItem m_NextCharacterButton;

336 CHAPTER 9: Drone Grid Case Study: The User Interface

The m_PreviousCharacterButton button cycles backward through the character set that is available
for entering the player’s name/initials.

private MenuItem m_PreviousCharacterButton;

The m_EnterButton button is pressed to select the character for the current player’s name/initial
entry position.

private MenuItem m_EnterButton;

The m_Text variable holds the character set that will be used for the player’s name/initials.

private BillBoardCharacterSet m_Text;

The m_NumberCharactersInSet variable holds the number of characters in the m_Text character set.
private int m_NumberCharactersInSet = 0;

The m_CharacterSetIndex variable is used to keep track of the current character that the user has
selected for input for his or her name/initials.

private int m_CharacterSetIndex = 0;

The m_FontWidth is the width of the character font used in the character set m_Text.
private int m_FontWidth;

The m_FontHeight is the height of the character font used in the character set m_Text.
private int m_FontHeight;

The m_HighScoreEntryMenuImage variable holds the billboard for the high score entry menu.
private BillBoard m_HighScoreEntryMenuImage;

The m_Dirty variable is true if m_HighScoreEntryMenuImage has to be updated.

private boolean m Dirty = true;

The m_StartingEntryPositionX variable holds the starting x position of the player’s name/initials
input field.

private int m_StartingEntryPositionX;

The m_StartingEntryPositionY variable holds the starting y position of the player’s name/initials
input field.

private int m_StartingEntryPositionY;

CHAPTER 9: Drone Grid Case Study: The User Interface 337

The m_CurrentEntryPositionX variable holds the current x position of the player’s name/initials
entry location.

private int m_CurrentEntryPositionX;

The m_CurrentEntryPositionY variable holds the current y position of the player’s name/initials
entry location.

private int m_CurrentEntryPositionY;
The m_EntryFinished variable is true if the user has finished entering his or her name/initials.
private boolean m_EntryFinished = false;

The HighScoreEntryMenu constructor initializes and resets the high score entry menu for use.
(See Listing 9-25.)

Listing 9-25. The HighScoreEntryMenu Constructor

HighScoreEntryMenu(MenuItem NextCharacterButton,MenuItem PreviousCharacterButton,MenuItem Ente
rButton,BillBoardCharacterSet Text,BillBoard HighScoreEntryMenuImage,int StartingEntryXPos,int
StartingEntryYPos)

m_NextCharacterButton = NextCharacterButton;
m_PreviousCharacterButton = PreviousCharacterButton;
m_EnterButton = EnterButton;

m Text = Text;

m_HighScoreEntryMenuImage = HighScoreEntryMenuImage;

m_FontWidth = m Text.GetFontWidth();
m_FontHeight = m_Text.GetFontHeight();

m_NumberCharactersInSet = m Text.GetNumberCharactersInSet();

m_CurrentEntryPositionX = StartingEntryXPos;
m_CurrentEntryPositionY = StartingEntryYPos;

m_StartingEntryPositionX = StartingEntryXPos;
m_StartingEntryPositionY = StartingEntryYPos;

ResetMenu();
}

The ResetMenu() function resets the menu to its initial state, where the user can begin entering his or
her initials, starting at the first initial. The default initial is reset to "...". (See Listing 9-26.)

338 CHAPTER 9: Drone Grid Case Study: The User Interface

Listing 9-26. Resetting the High Score Entry Menu

void ResetMenu()

{

m_CharacterSetIndex = 10;
m_EntryIndex = 0;

m_CurrentEntryPositionX = m_StartingEntryPositionX;
m_CurrentEntryPositionY = m_StartingEntryPositionY;

m Text.SetText("...".toCharArray());
m_Text.RenderToBillBoard(m_HighScoreEntryMenuImage, m CurrentEntryPositionX,
m_CurrentEntryPositionY);

m_EntryFinished = false;

The FindCurrentCharacter() function finds the character matching the user’s current initial entry
selection and returns it. (See Listing 9-27.)

Listing 9-27. Finding the Currently Selected Initial

char FindCurrentCharacter()

{
BillBoardFont Font = m_Text.GetCharacter(m_CharacterSetIndex);
return Font.CGetCharacter();

}

The ProcessEnterMenuSelection() function enters the currently selected initial as the entry for the
current player’s name/initial position and increments the entry point to the next initial entry position.
The m_Dirty variable is also set to true, indicating the need to update the menu’s billboard.

(See Listing 9-28.)

Listing 9-28. Processing the Menu Selection

void ProcessEnterMenuSelection()

{

char EnteredChar = FindCurrentCharacter();
m_Entry[m EntryIndex] = EnteredChar;

m_EntryIndex++;
if (m_EntryIndex >= MAX_ENTRY_CHARACTERS)
{

}
m_CurrentEntryPositionX = m_CurrentEntryPositionX + m_FontWidth;
m_Dirty = true;

m_EntryFinished = true;

CHAPTER 9: Drone Grid Case Study: The User Interface 339

The ProcessPreviousMenuSelection() function processes the Previous character menu button by
decrementing the index used to retrieve the current character selection from the character set held in
m_Text. If the index is less than 0, it wraps around to point to the last character in the character set.
The m_Dirty variable is also set to true. (See Listing 9-29.)

Listing 9-29. Processing the Previous Character Menu Selection Button

void ProcessPreviousMenuSelection()

{

// Go to next character
m_CharacterSetIndex--;

if (m _CharacterSetIndex < 0)

{
}

m Dirty = true;

m_CharacterSetIndex = m_NumberCharactersInSet-1;

}

The ProcessNextMenuSelection() function processes the Next character menu button by
incrementing the index used to retrieve the current character selection from the character set held in
m_Text. If the index is greater than the last element in the array, it wraps around to point to the first
character in the character set. The m_Dirty variable is also set to true. (See Listing 9-30.)

Listing 9-30. Processing the Next Menu Selection Button

void ProcessNextMenuSelection()

{

// Go to next character
m_CharacterSetIndex++;

if (m_CharacterSetIndex >= m_NumberCharactersInSet)

{
}

m Dirty = true;

m_CharacterSetIndex = 0;

}

The RenderTextToMenu() function renders the input character Character at screen position
(XPos, YPos) on the high score entry menu, which is the billboard m_HighScoreEntryMenuImage.
(See Listing 9-31.)

Listing 9-31. Rendering Text to the Entry Menu

void RenderTextToMenu(String Character, int XPos, int YPos)

{
m_Text.SetText(Character.toCharArray());

m_Text.RenderToBillBoard(m_HighScoreEntryMenuImage, XPos , YPos);

340 CHAPTER 9: Drone Grid Case Study: The User Interface

The RenderEntryToMenu() function renders the currently selected character for the player’s initials to
the entry menu. (See Listing 9-32.)

Listing 9-32. Rendering the Current Entry Selection
void RenderEntryToMenu()

{

char CurrentCharacter = FindCurrentCharacter();

String StringCharacter = CurrentCharacter + "";

RenderTextToMenu(StringCharacter, m_CurrentEntryPositionX, m CurrentEntryPositionY);
}

The GetEntryMenuStatus() function tests the input screen coordinates TouchX and TouchY to
determine if the user has pressed a high score entry menu button. If he or she has, the button type is
returned. (See Listing 9-33.)

Listing 9-33. Getting the Entry Menu Status

EntryMenuStates GetEntryMenuStatus(float TouchX, float TouchY,int ViewPortWidth,int ViewPortHeight)

{

EntryMenuStates Selection = EntryMenuStates.None;
boolean Touched = false;
// Next character Menu Item

Touched = m_NextCharacterButton.Touched(TouchX, TouchY, ViewPortWidth, ViewPortHeight);
if (Touched)

{
}

Selection = EntryMenuStates.NextCharacterPressed;

// Previous character Menu Item
Touched = m_PreviousCharacterButton.Touched(TouchX, TouchY, ViewPortWidth, ViewPortHeight);
if (Touched)

{
}

// Enter Menu Item
Touched = m_EnterButton.Touched(TouchX, TouchY, ViewPortWidth, ViewPortHeight);
if (Touched)

{
}

return Selection;

Selection = EntryMenuStates.PreviousCharacterPressed;

Selection = EntryMenuStates.Enter;

}

The UpdateHighScoreEntryMenu() function updates all the components that make up the high score
entry menu, including the input character that the user has selected, the next character button, the
previous character button, the enter button, and the high score entry menu billboard. (See Listing 9-34.)

CHAPTER 9: Drone Grid Case Study: The User Interface 341

Listing 9-34. Updating the High Score Entry Menu

void UpdateHighScoreEntryMenu(Camera Cam)

{

}

//Update Menu Texture if changed
if (m_Dirty)

// If need to alter Menu texture then render new texture data
RenderEntryToMenu();
m Dirty = false;

}

// Update Buttons
m_NextCharacterButton.UpdateObject3d(Cam);
m_PreviousCharacterButton.UpdateObject3d(Cam);
m_EnterButton.UpdateObject3d(Cam);

// Update Initial Entry Area
m_HighScoreEntryMenuImage.UpdateObject3d(Cam);

The RenderHighScoreEntryMenu() function (see Listing 9-35) renders all the components of the high
score entry menu to the screen in the following order:

1.

> LN

Renders the cycle to the Next Character button
Renders the cycle to the Previous Character button
Renders the Enter player initial selection button

Renders the m_HighScoreEntryMenuImage billboard, which contains the
player’s input and the rest of the high score entry menu graphics data

Listing 9-35. Rendering the High Score Entry Menu

void RenderHighScoreEntryMenu(Camera Cam, PointLight Light, boolean DebugOn)

{

// Render Buttons
m_NextCharacterButton.DrawObject(Cam, Light);
m_PreviousCharacterButton.DrawObject(Cam, Light);
m_EnterButton.DrawObject(Cam, Light);

// Render Billboard with Entry Menu info
m_HighScoreEntryMenuImage.DrawObject(Cam, Light);

Hands-on Example: Demonstrating the User Interface

In this hands-on example, we will hook the user interface to the hands-on example from Chapter 8.
We will construct a working main menu from which the user can select a new game or continue a
previously saved game. For the high score table, we will use a test button to input some high scores
manually, before making this feature fully functional in the final game in Chapter 10.

342 CHAPTER 9: Drone Grid Case Study: The User Interface

Modifying the MyGLRenderer Class

The MyGLRenderer class must be modified in order to integrate the main menu, high score table,
and high score entry menu.

The GameState enumeration (see Listing 9-36) holds the general state of the game, which can be one
of the following:

MainMenu: The state where the main menu is being displayed
ActiveGamePlay: The state where the game is active
HighScoreTable: The state where the high score table is being displayed

HighScoreEntry: The state where a player is entering his or her initials after making
a high score

Listing 9-36. The Game State

enum GameState

{
MainMenu,
ActiveGamePlay,
HighScoreTable,
HighScoreEntry
}

The m_GameState variable holds the state of the game.
private GameState m_GameState = GameState.MainMenu;

The m_MainMenu variable holds a reference to the MainMenu class object that implements the
main menu.

private MainMenu m_MainMenu;

The m_HighScoreEntryMenu variable holds a reference to the HighScoreEntryMenu class object that
implements the high score entry menu system.

private HighScoreEntryMenu m_HighScoreEntryMenu;

The m_HighScoreTable variable holds a reference to the class object that implements the high
score table.

private HighScoreTable m_HighScoreTable;

The m_CanContinue variable is true if there is a previously saved game that the user can
continue from.

private boolean m_CanContinue = false;

CHAPTER 9: Drone Grid Case Study: The User Interface 343

The CreateInitBillBoard() function creates and returns a new BillBoard object according to the
input Texture resource, object position, and object scale values. (See Listing 9-37.)

Listing 9-37. Creating a BillBoard Object

BillBoard CreateInitBillBoard(Context iContext,int TextureResourceID,Vector3 Position,Vector3 Scale)

{
BillBoard NewBillBoard = null;

Texture BillBoardTexture = new Texture(iContext, TextureResourcelID);

//Create Shader
Shader Shader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelight); // ok
MeshEx Mesh = new MeshEx(8,0,3,5,Cube.CubeData, Cube.CubeDrawOrder);

// Create Material for this object
Material Materiall = new Material();

// Create Texture for BillBoard
Texture[] Tex = new Texture[1];
Tex[0] = BillBoardTexture;

// Create new BillBoard
NewBillBoard = new BillBoard(iContext, null, Mesh, Tex, Materiali, Shader);

// Set Initial Position and Orientation
NewBillBoard.m Orientation.SetPosition(Position);
NewBillBoard.m Orientation.SetScale(Scale);

NewBillBoard.GetObjectPhysics().SetGravity(false);

return NewBillBoard;

}

The CreateHighScoreTable() function creates the high score table that is assigned to the
m_HighScoreTable variable. (See Listing 9-38.)

Listing 9-38. Creating the High Score Table

void CreateHighScoreTable(Context iContext)

{
int TextureResourceID = R.drawable.background;
Vector3 Position = new Vector3(0.5f, 1, 4);
Vector3 Scale = new Vector3(4.5f,5,1);
BillBoard HighScoreTableImage = CreateInitBillBoard(iContext,TextureResourcelID,Position,Scale);
m_HighScoreTable = new HighScoreTable(iContext,m CharacterSet,HighScoreTableImage);
}

The CreateHighScoreEntryMenu() function creates the high score entry menu. (See Listing 9-39.)

344

CHAPTER 9: Drone Grid Case Study: The User Interface

Listing 9-39. Creating the High Score Entry Menu

void CreateHighScoreEntryMenu(Context iContext)

{

// Create High Score Entry Menu Billboard

int TextureResourceID = R.drawable.backgroundentrymenu;
Vector3 Position = new Vector3(0.0f, 1, 4);

Vector3 Scale = new Vector3(4.5f,5,1);

BillBoard HighScoreEntryMenuImage = CreateInitBillBoard(iContext,TextureResourcelID,

Position,Scale);

// Create Menu Buttons
Shader ObjectShader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelight);

MeshEx MenultemMeshEx = new MeshEx(8,0,3,5,Cube.CubeData, Cube.CubeDrawOrder);
Mesh MenuItemMesh = null;

// Create Material for this object
Material Materiall = new Material();
Materiali.SetEmissive(0.3f, 0.3f, 0.3f);

// Create Texture
int NumberTextures = 1;

Texture TexNextButton = new Texture(iContext,R.drawable.nextbutton);

Texture[] Tex = new Texture[NumberTextures];
Tex[0] = TexNextButton;

boolean AnimateTextures = false;
float TimeDelay = 0.0f;

Position = new Vector3(-1.0f, 1.3f, 4.25f);
Scale = new Vector3(1.4f,1.0f,1.0f);

// Next Character Button

MenuItem NextCharacterButton = CreateMenuItem(iContext, MenuItemMesh,MenultemMeshEx,

Materiali,NumberTextures,Tex,AnimateTextures,TimeDelay,Position,Scale,ObjectShader);

// Previous Character Button

Position = new Vector3(0.5f, 1.3f, 4.25f);

Texture TexPreviousGameButton = new Texture(iContext,R.drawable.previousbutton);
Tex = new Texture[NumberTextures];

Tex[0] = TexPreviousGameButton;

// ok

MenuItem PreviousCharacterButton = CreateMenuItem(iContext, MenuItemMesh,MenultemMeshEx,
Materiall, NumberTextures,Tex,AnimateTextures,TimeDelay,Position,Scale,ObjectShader);

// Enter Button
Position = new Vector3(0.0f, 0.0f, 4.25f);
Texture TexEnterButton = new Texture(iContext,R.drawable.enterbutton);

CHAPTER 9: Drone Grid Case Study: The User Interface 345

Tex = new Texture[NumberTextures];

Tex[0] = TexEnterButton;

Scale = new Vector3(3.0f,1.0f,1.0f);

MenuItem EnterButton = CreateMenuItem(iContext, MenuItemMesh, MenultemMeshEx, Materiali,
NumberTextures, Tex, AnimateTextures, TimeDelay, Position, Scale, ObjectShader);

int StartingEntryXPos = 168;

int StartingEntryYPos = 100;

m_HighScoreEntryMenu = new HighScoreEntryMenu(NextCharacterButton, PreviousCharacterButton,
EnterButton, m_CharacterSet, HighScoreEntryMenuImage, StartingEntryXPos, StartingEntryYPos);

}
The CreateMenuItem() function creates a new Menultem object. (See Listing 9-40.)

Listing 9-40. Creating a Menu Item

MenuItem CreateMenultem(Context iContext, Mesh MenuItemMesh, eshEx MenultemMeshEx, Material
Materiali, int NumberTextures, Texture[] Tex, boolean AnimateTextures, float TimeDelay, Vector3
Position, Vector3 Scale, Shader ObjectShader)

{

MenuItem NewMenulItem = null;

NewMenuItem = new Menultem(iContext, MenultemMesh, MenultemMeshEx, Tex, Materiali,
ObjectShader);

NewMenuItem.SetAnimateTextures(AnimateTextures, TimeDelay, 0, NumberTextures-1);

NewMenuItem.m Orientation.SetPosition(Position);
NewMenuItem.m Orientation.SetScale(Scale);
NewMenuItem.GetObjectPhysics().SetGravity(false);

return NewMenultem;

}

The CreateMainMenu() function creates the main menu for our game. The function also creates the
individual menu items within the main menu, such as the new game menu item, the continue game
menu item, the display high score table menu item, and the copyright menu item. (See Listing 9-41.)

Listing 9-41. Creating the Main Menu

void CreateMainMenu(Context iContext)
{
// Create New Game Button
Shader ObjectShader = new Shader(iContext, R.raw.vsonelight, R.raw.fsonelight); /7 ok

MeshEx MenultemMeshEx = new MeshEx(8,0,3,5,Cube.CubeData, Cube.CubeDrawOrder);
Mesh MenuItemMesh = null;

// Create Material for this object
Material Materiall = new Material();

// Create Texture
int NumberTextures = 1;
Texture TexNewGameButton = new Texture(iContext,R.drawable.newgamebutton);

346 CHAPTER 9: Drone Grid Case Study: The User Interface

Texture[] Tex = new Texture[NumberTextures];
Tex[0] = TexNewGameButton;

boolean AnimateTextures = false;
float TimeDelay = 0.0f;

Vector3 Position = new Vector3(0.0f, 2.5f, 4.25f);
Vector3 Scale = new Vector3(3.0f,1.0f,1.0f);

MenuItem NewGameMenuItem = CreateMenuItem(iContext, MenuItemMesh,MenultemMeshEx,
Materiall, NumberTextures, Tex, AnimateTextures, TimeDelay, Position, Scale, ObjectShader);

// Continue Game

Position = new Vector3(o.of, 1.3f, 4.25f);

Texture TexContinueGameButton = new Texture(iContext, R.drawable.continuegamebutton);
Tex = new Texture[NumberTextures];

Tex[0] = TexContinueGameButton;

MenuItem ContinueGameMenuItem = CreateMenuItem(iContext, MenultemMesh, MenultemMeshEx,
Materiali, NumberTextures, Tex, AnimateTextures, TimeDelay, Position, Scale, ObjectShader);

// View High Scores

Position = new Vector3(0.0f, 0.0f, 4.25f);

Texture TexHighScoresButton = new Texture(iContext, R.drawable.highscoresbutton);
Tex = new Texture[NumberTextures];

Tex[0] = TexHighScoresButton;

MenuItem HighScoreMenuItem = CreateMenuItem(iContext, MenuItemMesh, MenuItemMeshEx,
Materiall, NumberTextures, Tex, AnimateTextures, TimeDelay, Position, Scale, ObjectShader);

// CopyRight Notice

Position = new Vector3(0.0f, -1.3f, 4.25f);

Texture TexCopyrightButton = new Texture(iContext,R.drawable.copyright);
Tex = new Texture[NumberTextures];

Tex[0] = TexCopyrightButton;

Material Material2 = new Material();

Material2.SetEmissive(0.3f, 0.3f, 0.3f);

MenuItem CopyrightMenuItem = CreateMenuItem(iContext, MenuItemMesh, MenuItemMeshEx,
Material2, NumberTextures, Tex, AnimateTextures, TimeDelay, Position, Scale, ObjectShader);
m MainMenu = new MainMenu(NewGameMenuItem, ContinueGameMenuItem,
HighScoreMenuItem, CopyrightMenuItem);

}

The CheckTouch() function has to be modified (see Listing 9-42). The CheckTouch() function is called
when the user touches the screen and is used to process user touches.

CHAPTER 9: Drone Grid Case Study: The User Interface

Listing 9-42. Modifying the CheckTouch() Function

if (m_GameState == GameState.MainMenu)
{

// Reset camera to face main menu

MenuStates result = m_MainMenu.GetMainMenuStatus(m TouchX, m_TouchY, m ViewPortWidth,

m_ViewPortHeight);

if (result == MenuStates.NewGame)

LoadContinueStatus(MainActivity.SAVE_GAME_HANDLE);

LoadGameState(MainActivity.SAVE_GAME HANDLE);

{

ResetGame();

m_GameState = GameState.ActiveGamePlay;
}
else
if (result == MenuStates.ContinueCurrentGame)
{

if (m_CanContinue)

{

}

else

{

ResetGame();

}

m_GameState = GameState.ActiveGamePlay;
}
else
if (result == MenuStates.HighScoreTable)
{

m_GameState = GameState.HighScoreTable;
}
else

if (result == MenuStates.Copyright)

{
m_GameState = GameState.HighScoreEntry;
}
return;
}
else
if (m_GameState == GameState.HighScoreTable)
{
m_GameState = GameState.MainMenu;
return;
}
else

if (m_GameState == GameState.HighScoreEntry)

{

// If User presses finished button from High Score Entry Menu
EntryMenuStates result = m _HighScoreEntryMenu.GetEntryMenuStatus(m_TouchX, m_TouchY,

m ViewPortWidth, m ViewPortHeight);

347

348 CHAPTER 9: Drone Grid Case Study: The User Interface

if (result == EntryMenuStates.NextCharacterPressed)

{
}

else
if (result == EntryMenuStates.PreviousCharacterPressed)

m_HighScoreEntryMenu.ProcessNextMenuSelection();

m_HighScoreEntryMenu.ProcessPreviousMenuSelection();

}
else
if (result == EntryMenuStates.Enter)
{
m_HighScoreEntryMenu.ProcessEnterMenuSelection();
if (m_HighScoreEntryMenu.IsEntryFinished())
{
char[] Initials = m_HighScoreEntryMenu.GetEntry();
String StrInitials = new String(Initials);
CreateHighScoreEntry(StrInitials, m_Score);
m_GameState = GameState.HighScoreTable;
m_HighScoreEntryMenu.ResetMenu();
}
}
return;

}

For the CheckTouch() function modifications

1. If the main menu is being displayed, get the main menu’s status in terms of
finding out what menu item has been pressed.

a. If the new game menu item has been pressed, reset the game and set the game state
to ActiveGamePlay.

b. If the continue current game menu item has been pressed, load the m_CanContinue
status. If the status is true, load the previously saved game; otherwise, reset the
game. Set the game state to ActiveGamePlay.

c. If the high score table menu item has been selected, set the game state to
HighScoreTable.

d. If the copyright menu item has been selected, set the game state to HighScoreEntry
to activate the high score entry menu. This is a debug button that will be commented
out in the final game. In this chapter, we use it to test the high score menu entry
system.

2. If the high score table is being displayed, set the game state to the
main menu.

CHAPTER 9: Drone Grid Case Study: The User Interface 349

3. If the high score entry menu is being displayed, process the menu item
being clicked.

a. If the next character button was clicked, call ProcessNextMenuSelection().
b. If the previous character button was clicked, call ProcessPreviousMenuSelection().

c. If the enter button was clicked, call ProcessEnterMenuSelection() to process it. If the
entry was complete, add the new high score to the high score table and set the game
state to display the high score table.

The onDrawFrame() function has to be modified to update and render the main menu, the high score
table, and the high score entry menu, based on the m_GameState variable. (See Listing 9-43.)

Listing 9-43. Modifying the onDrawFrame () Function

if (m_GameState == GameState.MainMenu)

{
m_MainMenu.UpdateMenu(m Camera);
m_MainMenu.RenderMenu(m Camera, m PointLight, false);
return;

}

// High Score Table
if (m_GameState == GameState.HighScoreTable)

{
m_HighScoreTable.UpdateHighScoreTable(m Camera);
m_HighScoreTable.RenderHighScoreTable(m Camera, m_PointLight, false);
return;
}

// High Score Entry
if (m_GameState == GameState.HighScoreEntry)

{
m_HighScoreEntryMenu.UpdateHighScoreEntryMenu(m Camera);
m_HighScoreEntryMenu.RenderHighScoreEntryMenu(m Camera, m PointLight, false);
return;

}

Now, run the program. You should see the following main menu appear. (See Figure 9-1.)

350 CHAPTER 9: Drone Grid Case Study: The User Interface

B0 B @ s5:52em

Copyright 2013 Robert Chin

Figure 9-1. The main menu

If you click the Copyright button, the high score entry menu should pop up. For this hands-on
example, try to enter some high scores manually, with entries containing different values for the
score. You can set the score (m_Score) at 93, for example, in the actual source code and then save
the file, recompile, run the program, and create a new entry in the high score table. The new entry in
the table should be the score you assigned to the m_Score value in the source code. (See Figure 9-2.)

private int m_Score = 93;

CHAPTER 9: Drone Grid Case Study: The User Interface 351

] &) B @ 5:53em

Enter Initials: A .

eyt Character |||||l I.

Figure 9-2. Entering a new high score

Enter some initials, and when you are done, you should be taken to the high score table. (See Figure 9-3.)

] &) B @ 5:53em

Figure 9-3. The high score table

352 CHAPTER 9: Drone Grid Case Study: The User Interface

Summary

In this chapter, | covered the user interfaces for our case study game. | started with a discussion of
the main menu, including the Android Java classes and code needed to implement the main menu.
Next, | covered the high score table and how to implement it in code. Then, | went over the high
score entry menu. Finally, we implemented the main menu, high score table, and high score entry
menu in a working demo.

Chapter

The Final Drone Grid Game

This chapter covers the final Drone Grid game. | start off by covering classes that are needed to help
manage enemy objects in the game. The GamePlayController class, which controls elements such
as what types of enemies are added to the playfield, is then discussed. Next, code modifications and
new functions that save and load the state of the game are covered. This is followed by a discussion
on implementing a game over graphic and game over state code into the Drone Grid game. Finally,

a hands-on example is covered that demonstrates the concepts and classes discussed previously in
the chapter.

Organizing and Controlling Groups of Enemies

For our final game, we will require some support classes that make the manipulation of our enemy
objects easier. The two classes we will need are the ArenaObjectSet class, which controls our arena
object enemies, and the TankFleet class, which controls our tank object enemies.

The ArenaObjectSet Class

The ArenaObijectSet class holds a group of arena objects and has functions that manage these
objects.

The MAX_ARENA_OBJECTS variable holds the maximum number of arena objects that this set will hold.
private int MAX_ARENA OBJECTS = 25;

The m_NumberArenaObjects variable holds the actual number of arena objects in the set.

private int m_NumberArenaObjects = 0;

The m_ArenaObjectSet variable array holds the set of arena objects that will be used in this class.

private ArenaObject3d[] m_ArenaObjectSet = new ArenaObject3d[MAX ARENA OBJECTS];

353

354 CHAPTER 10: The Final Drone Grid Game

The m_Active boolean array holds true for an element if the corresponding arena object in the
m_ArenaObjectSet is active and has to be rendered and updated.

private boolean[] m_Active = new boolean[MAX ARENA OBJECTS];

The m_ExplosionMinVelocity variable holds the minimum velocity for particles in an explosion
associated with this set of arena objects.

private float m_ExplosionMinVelocity = 0.02f;

The m_ExplosionMaxVelocity variable holds the maximum velocity for particles in an explosion
associated with this set of arena objects.

private float m ExplosionMaxVelocity = 0.4f;

The Init() function initializes all the arena objects in this class to null, and the m_Active status is set
to false, which means it is inactive and not to be rendered, updated, or processed. (See Listing 10-1.)

Listing 10-1. Initializing the Arena Objects
void Init()

{
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
m_ArenaObjectSet[i] = null;
m Active[i] = false;
}
}

The ArenaObjectSet constructor initializes the ArenaObject set by calling the Init() function.
(See Listing 10-2.)

Listing 10-2. The ArenaObjectSet Constructor

ArenaObjectSet(Context iContext)

m_Context = iContext;
Init();
}

The SaveSet() function saves the data for the ArenaObject set. (See Listing 10-3.)
The SaveSet () function does the following:

1. Retrieves a SharedPreferences object for the input parameter Handle by
calling the getSharedPreferences() function

2. Retrieves an Editor object by calling edit() on the SharedPreferences object
from Step 1

3. Saves the values of the m_Active array to the shared preferences by creating
a unique handle consisting of the input parameter Handle, the “Active”
keyword, and the index i

CHAPTER 10: The Final Drone Grid Game

4. Saves the arena objects by calling the SaveObjectState() function using
a handle composed of the input parameter Handle, the “ArenaObject”
keyword, and the index i for all the elements in the m_ArenaObjectSet array, if
there is a valid element for that array index slot

5. Saves and commits the changes to the shared preferences

Listing 10-3. Saving the ArenaObject Set

void SaveSet(String Handle)
{

SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);
SharedPreferences.Editor editor = settings.edit();

for (int i = 0; i < MAX_ARENA OBJECTS; i++)

{
// Active Status
String ActiveHandle = Handle + "Active" + i;
editor.putBoolean(ActiveHandle, m Active[i]);

if (m_ArenaObjectSet[i] != null)
{

String ArenaObjectHandle = Handle + "ArenaObject" + i;
m_ArenaObjectSet[i].SaveObjectState(ArenaObjectHandle);

}
}
// Commit the edits!
editor.commit();

}

The LoadSet () function loads in the ArenaObject set data. (See Listing 10-4.)
The LoadSet () function does the following:
1. Retrieves a SharedPreferences object based on the input parameter Handle

2. Reads in all the elements of the m_Active boolean array from the shared
preferences using a handle based on the input parameter Handle, “Active”
keyword, and the slot index

3. Reads in the saved data by calling the LoadObjectState() function for each
element in the m_ArenaObjectSet array that has a valid object

Listing 10-4. Loading the ArenaObject Set

void LoadSet(String Handle)
{

// Restore preferences
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);

355

356 CHAPTER 10: The Final Drone Grid Game

for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
// Active Status
String ActiveHandle = Handle + "Active" + i;
m Active[i] = settings.getBoolean(ActiveHandle, false);

if (m_ArenaObjectSet[i] != null)
{
String ArenaObjectHandle = Handle + "ArenaObject" + i;

m_ArenaObjectSet[i].LoadObjectState(ArenaObjectHandle);

}

The ResetSet () function resets the entire set of arena objects by changing each object’s active state
to false and setting the object’s visibility to false. (See Listing 10-5.)

Listing 10-5. Resetting the Set
void ResetSet()

{
// Sets all objects to inactive and invisible
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if (m_ArenaObjectSet[i] != null)
{
m_Active[i] = false;
m_ArenaObjectSet[1].SetVisibility(false);
}
}
}

The NumberActiveArenaObjects() function returns the number of active arena objects in the set.
(See Listing 10-6.)

Listing 10-6. Getting the Number of Active Arena Objects

int NumberActiveArenaObjects()

{

int NumberActiveVehicles = 0;
for (int i = 0; i < MAX_ARENA_OBJECTS; i++)

{
if (m_Active[i] == true)
{
NumberActiveVehicles++;
}
}

return NumberActiveVehicles;

CHAPTER 10: The Final Drone Grid Game 357

The GetAvailableArenaObject() function (see Listing 10-7) returns an available arena object by

1. Searching through the entire set of arena objects in the m_ArenaObjectSet
array and trying to find an ArenaObject3d object that is not null and not active

2. Processing a non-null object by setting the object’s visibility to true, setting
the object to active by setting the corresponding slot in the m_Active array,
and returning the object

3. Returning a null value if no available object is found

Listing 10-7. Getting an Available Arena Object
ArenaObject3d GetAvailableArenaObject()

{
ArenaObject3d temp = null;
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if (m_ArenaObjectSet[i] != null)
{
if (m_Active[i] == false)
m_ArenaObjectSet[1].SetVisibility(true);
m_Active[i] = true;
return m_ArenaObjectSet[i];
}
}
}
return temp;
}

The GetRandomAvailableArenaObject() function (see Listing 10-8) gets a random arena object from
the set of arena objects by

1. Creating a random number generator called RandomNumber

2. Creating an array that will hold the indices of available arena objects to
choose from for our random selection

3. Building a list of available arena objects and putting the indices into the
AvailableObjects array

4. Finding a random arena object based on the output of the random number
generator and the list of available arena objects

5. Returning an available object after setting the visibility and active status
to true

358 CHAPTER 10: The Final Drone Grid Game

Listing 10-8. Getting a Random Arena Object

ArenaObject3d GetRandomAvailableArenaObject()

{
ArenaObject3d Obj = null;

Random RandomNumber = new Random();
int RandomIndex = 0;

int AvailableObjectsIndex = 0;
int[] AvailableObjects = new int[MAX ARENA OBJECTS];

// Build list of available objects
for (int i = 0; i < MAX_ARENA OBJECTS; i++)

{
if (m_ArenaObjectSet[i] != null)
{
if (m_Active[i] == false)
AvailableObjects[AvailableObjectsIndex] = i;
AvailableObjectsIndex++;
}
}
}

// If there are Available Objects then choose one at random from the list of available objects
if (AvailableObjectsIndex > 0)

{
// Find Random Object from array of available objects
RandomIndex = RandomNumber.nextInt(AvailableObjectsIndex);
int ObjIndex = AvailableObjects[RandomIndex];
Obj = GetArenaObject(ObjIndex);
if (Obj != null)
{
0Obj.SetVisibility(true);
m_Active[ObjIndex] = true;
}
else
{
Log.e("ARENAOBIECTSSET", "Random Arena OBJECT = NULL ERROR!!!! ");
}
}

return Obj;

CHAPTER 10: The Final Drone Grid Game 359

The AddNewArenaObject() function (see Listing 10-9) adds a new arena object into the set of arena
objects by:

1. Finding an empty slot in the m_ArenaObjectSet array

2. If an empty slot is found, setting the new input arena object to invisible;
setting the empty slot to point to the new arena object; increasing
the number of arena objects in the set by incrementing the
m_NumberArenaObjects variable; and returning true

3. Returning false if an empty slot is not found

Listing 10-9. Adding a New Arena Object to the Set
boolean AddNewArenaObject(ArenaObject3d ArenaObj)

{
boolean result = false;
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if (m_ArenaObjectSet[i] == null)
{
ArenaObj.SetVisibility(false);
m_ArenaObjectSet[i] = ArenaObj;
m_NumberArenaObjects++;
return true;
}
}
return result;
}

The SetSoundOn0ff() function sets the sound effects for the set of arena objects to on or off, based
on the input parameter Value. For each valid arena object, the SetSFXOn0ff() function is called.
(See Listing 10-10.)

Listing 10-10. Setting the Sound Effects for the ArenaObject Set

void SetSoundOnOff(boolean Value)

{
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if (m_ArenaObjectSet[i] != null)
{
m_ArenaObjectSet[1].SetSFXOnOff(Value);
}
}
}

The ProcessCollisionsheapon() function (see Listing 10-11) processes the collision between a
weapon’s ammunition and arena objects in the set by

1. Determining the active status for each element in the ArenaObject set

2. If the element is active, checking for collisions between that arena object and
the ammunition from the input iWeapon weapon

360 CHAPTER 10: The Final Drone Grid Game

3. Ifthere is a collision, processing the collision by calling ApplyLinearImpulse() to
apply action reaction forces to the arena object and the weapon’s ammunition

4. Starting the explosion graphic and sound associated with the arena object
involved in the collision

5. Processing the damage to the arena object by calling the TakeDamage()
function

6. Checking the health of the arena object and, if it is O or less, updating the
total kill value, which is the total value of all the objects destroyed by the
weapon’s ammunition, and destroying the arena object by setting its active
status to false and its visibility to false

7. Returning the total kill value

Listing 10-11. Collision Detection Between a Weapon’s Ammunition and the ArenaObject Set

int ProcessCollisionsWeapon(Weapon iWeapon)

{

int TotalKillValue = 0;

for (int i = 0; i < MAX_ARENA OBJECTS; i++)

{
if ((m_ArenaObjectSet[i] != null) &8 (m_Active[i] == true))

Object3d CollisionObj = iWeapon.CheckAmmoCollision(m ArenaObjectSet[i]);

if (CollisionObj != null)

{
CollisionObj.ApplyLinearImpulse(m ArenaObjectSet[i]);
SphericalPolygonExplosion Exp = m_ArenaObjectSet[i].GetExplosion(0);
Exp.StartExplosion(m ArenaObjectSet[i].m Orientation.GetPosition(),

m_ExplosionMaxVelocity, m ExplosionMinVelocity);

m_ArenaObjectSet[i].PlayExplosionSFX();

// Process Damage
m_ArenaObjectSet[1i].TakeDamage(CollisionObj);

int Health = m_ArenaObjectSet[i].GetObjectStats().GetHealth();
if (Health <= 0)

{
int KillValue =
m_ArenaObjectSet[i].GetObjectStats().GetKillvalue();
TotalKillValue = TotalKillValue + KillValue;
m Active[i] = false;
m_ArenaObjectSet[i].SetVisibility(false);

}
}

return TotalKillValue;

CHAPTER 10: The Final Drone Grid Game 361

The AddArenaObjectsToGravityGrid() function adds all the arena objects in the set that are active to
the gravity grid iGrid that is the input parameter. (See Listing 10-12.)

Listing 10-12. Adding the Arena Objects in the Set to the Gravity Grid
void AddArenaObjectsToGravityGrid(GravityGridEx iGrid)

{
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if ((m_ArenaObjectSet[i] != null) &% (m_Active[i] == true))
{
// Add Mass of AirVehicle to grid
iGrid.AddMass(m_ArenaObjectSet[i]);
}
}
}

The GetArenaObject() function returns the arena object from the set of arena objects in
m_ArenaObjectSet that contains the input ID object id that is currently active. (See Listing 10-13.)

Listing 10-13. Getting an Arena Object Based on Its ID
ArenaObject3d GetArenaObject(String ID)

{
ArenaObject3d temp = null;
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if (m_ArenaObjectSet[i] != null)
if ((m_Active[i]== true) && (m_ArenaObjectSet[i].GetArenaObjectID() == ID))
return m_ArenaObjectSet[i];
}
}
}
return temp;
}

The ProcessCollisionWithObject() function (see Listing 10-14) processes the collisions between an
input object 0bj and the ArenaObject set by doing the following:

1. For each arena object in the set that is active, it checks for a collision with the
input Obj object.

2. If there is a collision, then it processes the collision by calling
ApplylLinearImpulse() to apply the action and reaction forces on both
colliding objects. It starts the explosion graphics and plays the explosion
sound effect for the arena object that is colliding. It plays the explosion
graphic for input object 0bj that is involved in the collision. It processes the
damage to the arena object and the object Obj from the collision. If the health

362 CHAPTER 10: The Final Drone Grid Game

of the arena object is less than or equal to 0, it adds the Kill value of the arena
object to the total kill value. The arena object is destroyed by setting the
active status to false and the visible status to false.

3. The total kill value that equals the total of all the kill values of the destroyed
arena objects that have just been destroyed by a collision with the input
object 0Obj is returned.

Listing 10-14. Processing Collisions Between an Object and the ArenaObject Set

int ProcessCollisionWithObject(Object3d Obj)
{
int TotalKillValue = 0;
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if ((m_ArenaObjectSet[i] != null) && (m_Active[i] == true))
{
Physics.CollisionStatus result = Obj.CheckCollision(m_ArenaObjectSet[i]);
if ((result == Physics.CollisionStatus.COLLISION) ||
(result == Physics.CollisionStatus.PENETRATING COLLISION))
{
// Process Collision
0bj.ApplyLinearImpulse(m ArenaObjectSet[i]);
// Arena Object Explosion
SphericalPolygonExplosion Exp = m_ArenaObjectSet[i].GetExplosion(0);
if (Exp != null)

Exp.StartExplosion(m_ArenaObjectSet[i].m Orientation.
GetPosition(), m_ExplosionMaxVelocity, m_ExplosionMinVelocity);
m_ArenaObjectSet[i].PlayExplosionSFX();
}

// Pyramid Explosion
Exp = Obj.GetExplosion(0);
if (Exp != null)

Exp.StartExplosion(Obj.m Orientation.GetPosition(),
m_ExplosionMaxVelocity, m_ExplosionMinVelocity);

}

// Process Damage
Obj.TakeDamage(m_ArenaObjectSet[i]);
m_ArenaObjectSet[1i].TakeDamage(Obj);
int Health = m_ArenaObjectSet[i].GetObjectStats().GetHealth();
if (Health <= 0)
{
int Killvalue = m ArenaObjectSet[i].GetObjectStats().
GetKillvalue();
TotalKillValue = TotalKillValue + KillValue;
m Active[i] = false;
m_ArenaObjectSet[1].SetVisibility(false);

CHAPTER 10: The Final Drone Grid Game 363

}
}
return TotalKillValue;
}

The RenderArenaObjects() function renders all the arena objects in the set m_ArenaObjectSet array
that are valid objects that are not null. (See Listing 10-15.)

Listing 10-15. Rendering the ArenaObject Set

void RenderArenaObjects(Camera Cam, PointLight Light, boolean DebugOn)

{
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if (m_ArenaObjectSet[i] != null)
{
m_ArenaObjectSet[i].RenderArenaObject(Cam, Light);
}
}
}

The UpdateArenaObjects() function updates all the valid arena objects in the set. (See Listing 10-16.)

Listing 10-16. Updating the ArenaObject Set
void UpdateArenaObjects()

{
for (int i = 0; i < MAX_ARENA OBJECTS; i++)
{
if (m_ArenaObjectSet[i] != null)
{
m_ArenaObjectSet[i].UpdateArenaObject();
}
}
}
The TankFleet Class

The TankFleet class holds a group of tank objects and contains functions to help manage and
manipulate the fleet of tanks. There are many similarities between the TankFleet class and the
ArenaObjectSet class, so | will only cover functions in the TankFleet class here that are substantially
different or important.

The MAX_TANKS variable holds the maximum number of tanks that can be held in this set.
private int MAX_TANKS = 5;
The m_TankFleet array holds the tank objects for this set.

private Tank[] m TankFleet = new Tank[MAX_TANKS];

364 CHAPTER 10: The Final Drone Grid Game

The m_InService variable array holds a value of true for an element if the corresponding tank in the
m_TankFleet array is active and needs to be updated and rendered.

private boolean[] m_InService = new boolean[MAX TANKS];

The TankFleet() constructor initializes the tank fleet and is similar to the way the ArenaObjectSet
class was initialized. (See Listing 10-17.)

Listing 10-17. The TankFleet Constructor

TankFleet(Context iContext)
{

m_Context = iContext;
Init();
}

The ResetSet () function (see Listing 10-18) resets the tank fleet by
1. Setting existing tanks to inactive, m_InService = false
2. Setting the main body and the turret to invisible

3. Resetting the tank’s finite state machine and weapons

Listing 10-18. Resetting the Tank Set
void ResetSet()

{
// Sets all objects to inactive and invisible
for (int i = 0; i < MAX_TANKS; i++)
{
if (m_TankFleet[i] != null)
{
m_InService[i] = false;
m_TankFleet[i].GetMainBody().SetVisibility(false);
m_TankFleet[i].GetTurret().SetVisibility(false);
m_TankFleet[i].Reset();
}
}
}

The SetSoundOnOff() function turns on/off the sound effects for the tank fleet. (See Listing 10-19.)
The sound effects are turned on or off for the components of the tank, which are

1. The tank’s main body
2. The tank’s turret

3. Thetank’s weapons

CHAPTER 10: The Final Drone Grid Game

Listing 10-19. Setting the Sound Effects for the Tanks

void SetSoundOnOff(boolean Value)

{

}

for (int i = 0; i < MAX_TANKS; i++)

{

if (m TankFleet[i] != null)

{

m_TankFleet[1].GetMainBody().SetSFXOnOff(Value);
m_TankFleet[i].GetTurret().SetSFXOnOff(Value);

int NumberWeapons = m_TankFleet[i].GetNumberWeapons();
for (int j = 0; j < NumberWeapons; j++)

m_TankFleet[1].GetWeapon(j).TurnOnOffSFX(Value);

The AddTankFleetToGravityGrid() function adds all the active tanks in the fleet to the input
parameter gravity grid iGrid. More specifically, the tank’s main body and the tank’s active
ammunition from its weapons are all added to the gravity grid. (See Listing 10-20.)

Listing 10-20. Adding the Tank Fleet to the Gravity Grid

// Add in all the Air vehicles in the fleet to the gravity grid
void AddTankFleetToGravityGrid(GravityGridEx iGrid)

{

}

Object3d[] Masses = new Object3d[50];
int NumberMasses = 0;

for (int i = 0; i < MAX_TANKS; i++)

{

if ((m_TankFleet[i] != null) &&% (m_InService[i] == true))

{

// Add Mass of AirVehicle to grid
iGrid.AddMass(m_TankFleet[i].GetMainBody());

// Add Weapons Fire from AirVehicle to grid
int NumberWeapons = m_TankFleet[i].GetNumberWeapons();
for (int j = 0; j < NumberWeapons; j++)

{

365

NumberMasses = m_TankFleet[i].GetWeapon(j).GetActiveAmmo(0, Masses);

iGrid.AddMasses(NumberMasses, Masses);

The ProcessheaponAmmoCollisionObject() function processes the collision between the live
ammunition from the tanks in the tank fleet and the input object Obj. (See Listing 10-21.)

366 CHAPTER 10: The Final Drone Grid Game

For each tank in the tank fleet that is active

1. Check for a collision between the ammunition from the tank’s weapons and
the object Obj.

2. If there is a collision, apply a linear force to the ammunition and the object by
calling the ApplyLinearImpulse() function

3. Process the damage to the object by calling TakeDamage()
4. Start the explosion graphic for the object by calling StartExplosion()

Listing 10-21. Collision Processing Between an Object and a Tank’s Live Ammunition

boolean ProcessWeaponAmmoCollisionObject(Object3d Obj)

{
Object3d CollisionObj = null;
boolean hitresult = false;

for (int i = 0; 1 < MAX_TANKS; i++)
{
if ((m_TankFleet[i] != null) && (m_InService[i] == true))

int NumberWeapons = m TankFleet[i].GetNumberWeapons();

for (int j=0; j < NumberWeapons; j++)
{
CollisionObj = m_TankFleet[i].GetWeapon(j).CheckAmmoCollision(0bj);
if (CollisionObj != null)
{
hitresult = true;
CollisionObj.ApplyLinearImpulse(0bj);

//Process Damage
Obj.TakeDamage(CollisionObj);

// 0bj Explosion

SphericalPolygonExplosion Exp = Obj.GetExplosion(0);
if (Exp !'= null)

{

Exp.StartExplosion(Obj.m Orientation.GetPosition(),
m VehicleExplosionMaxVelocity, m VehicleExplosionMinVelocity);

}
}

}
}

return hitresult;

CHAPTER 10: The Final Drone Grid Game 367

The GamePlayController Class

The GamePlayController class is used to control the game play in terms of how many enemies of
each type are allowed on the gravity grid, the location they first appear at, and at what rate they
appear.

The m_RandNumber variable holds the random number generator.

private Random m_RandNumber = new Random();

The m_ArenaObjectsSet variable holds the set of arena objects that will be used on the playfield.
private ArenaObjectSet m_ArenaObjectsSet;

The m_TankFleet variable holds the set of tanks to be used on the playfield.

private TankFleet m_TankFleet;

The m_Grid variable holds the gravity grid that marks the boundaries of the playfield.

private GravityGridEx m_Grid;

The DROP_HEIGHT variable indicates the height at which the arena objects will be dropped onto the
playfield.

private float DROP_HEIGHT = 13;

The m_TimeDeltaAddArenaObject variable holds the number of milliseconds between adding new
arena objects.

private long m_TimeDeltaAddArenaObject = 1000 * 15;

The m_TimelastArenaObjectAdded variable holds the time that the last arena object was added to the
playfield.

private long m_TimelLastArenaObjectAdded = 0;

The m_MinArenaObjectsOnPlayField variable holds the minimum number of arena objects that must
be on the playfield.

private int m_MinArenaObjectsOnPlayField = 1;
The m_MaxSpeedArenaObjects variable holds the maximum speed for the arena objects.
private float m_MaxSpeedArenaObjects = 0.1f;

The m_TimeDeltaAddTank variable holds the number of milliseconds between adding new tanks onto
the playfield.

private long m_TimeDeltaAddTank = 1000 * 25;

368 CHAPTER 10: The Final Drone Grid Game

The m_TimelLastTankOnGrid variable holds the time that a tank enemy was last added to the playfield.
private long m TimelastTankOnGrid = 0;

The m_MaxTanksOnPlayField variable holds the maximum number of tanks allowed on the playfield at
one time.

private int m_MaxTanksOnPlayField = 2;
The m_NumberTankRoutes variable holds the total number of tank routes available to select from.
private int m_NumberTankRoutes = 0;

The m_TankRouteIndex variable holds the current index into the available tank routes, which is the
m_TankRoutes array variable.

private int m_TankRouteIndex = 0;
The m_TankRoutes array variable holds the tank routes consisting of groups of waypoints.
private Route[] m TankRoutes = null;

The GamePlayController() constructor initializes the GamePlayController class by setting key class
member variables, such as the arena objects set, the tank fleet, the gravity grid, and the available
tank routes. (See Listing 10-22.)

Listing 10-22. GamePlayController Constructor

GamePlayController(Context iContext,ArenaObjectSet ArenaObjectsSet,TankFleet TankFleet,
GravityGridEx Grid,int NumberTankRoutes,Route[] TankRoutes)

{

m_Context = iContext;

m_ArenaObjectsSet = ArenaObjectsSet;
m_TankFleet = TankFleet;
m_Grid = Grid;

m_NumberTankRoutes = NumberTankRoutes;
m_TankRoutes = TankRoutes;

}

The GenerateRandomGridLocation() generates and returns a random location on the gravity grid.
(See Listing 10-23.)

The function does the following:
1. Gets the minimum x boundary for the gravity grid
2. Gets the maximum x boundary for the gravity grid

3. Finds the difference between the maximum x boundary and the minimum x
boundary

CHAPTER 10: The Final Drone Grid Game

4. Finds a random offset position based on the difference found in step 3
multiplied by a random number that ranges from 0 to 1

5. Calculates the final x position based on the minimum x value added with the
randomly generated x offset value

6. Repeats steps 1 through 5 for the z axis, in order to find a random z
coordinate

7. Returns a random location vector consisting of the random x and z values
calculated in the previous steps and the DROP_HEIGHT value as the y value

Listing 10-23. Generating a Random Grid Location

Vector3 GenerateRandomGridLocation()

{

}

Vector3 Location = new Vector3(0,0,0);

// Get Random X

float MinX = m_Grid.GetXMinBoundary();

float MaxX = m_Grid.GetXMaxBoundary();

float DiffX = MaxX - MinX;

float RandomXOffset = DiffX * m_RandNumber.nextFloat(); // DiffX * (Number from 0-1);
float PosX = MinX + RandomXOffset;

// Get Random Z

float MinZ = m_Grid.GetZMinBoundary();

float MaxZ = m_Grid.GetZMaxBoundary();

float DiffZ = MaxZ - MinZ;

float RandomZOffset = DiffZ * m_RandNumber.nextFloat(); // DiffX * (Number from 0-1);
float PosZ = MinZ + RandomZOffset;

// Y is 0 for Ground Level for Playfield
float PosY = DROP_HEIGHT,;

// Set Random Location
Location.Set(PosX, PosY, PosZ);

return Location;

369

The GenerateGridLocationRestricted() function generates a random grid location for dropping an
enemy within the boundaries of Min and Max. (See Listing 10-24.)

The function does the following:

1. The GenerateRandomGridLocation() function is called to create a random
location within the grid.

2. Then, the location is limited or clamped to the maximum location value by
taking the lesser value between Max and the randomly generated location
from step 1.

370 CHAPTER 10: The Final Drone Grid Game

3. Then the location is clamped to the minimum location value in Min by taking
the greater value between Min and the clamped location from step 2.

4. The final clamped location from step 3 is returned.

Listing 10-24. Generating a Random Grid Location Within Boundaries

Vector3 GenerateGridLocationRestricted(Vector3 Max, Vector3 Min)

{
Vector3 ClampedlLocation = new Vector3(0,0,0);
Vector3 Originallocation = null;
OriginalLocation = GenerateRandomGridLocation();
ClampedLocation.x = Math.min(Originallocation.x, Max.x);
ClampedLocation.y = Math.min(Originallocation.y, Max.y);
ClampedLocation.z = Math.min(Originallocation.z, Max.z);
ClampedLocation.x = Math.max(ClampedLocation.x, Min.x);
ClampedLocation.y = Math.max(ClampedLocation.y, Min.y);
ClampedLocation.z = Math.max(ClampedLocation.z, Min.z);
return ClampedLocation;

}

The GenerateRandomVelocityArenaObjects() function generates a random velocity for an arena
object on the xz plane. (See Listing 10-25.)

The function does the following:

1. Generates a random speed along the x axis by multiplying the maximum
speed for an arena object by a randomly generated number within the range
of 0to 1

2. Generates a random speed along the z axis by multiplying the maximum
speed for an arena object by a randomly generated number within the range
of Oto1

3. Creates the final velocity by using the x and z values from steps 1 and 2 with
ayvalue of 0

4. Returns the final random velocity

Listing 10-25. Generating a Random Velocity

Vector3 GenerateRandomVelocityArenaObjects()
{

Vector3 Velocity = new Vector3(0,0,0);

float VelX = m_MaxSpeedArenaObjects * m_RandNumber.nextFloat();
float VelZ = m MaxSpeedArenaObjects * m_RandNumber.nextFloat();

CHAPTER 10: The Final Drone Grid Game 3n

Velocity.Set(VelX, 0, VelZ);
return Velocity;

}

The AddNewArenaObject() function adds an arena object to the playfield. (See Listing 10-26.)

The function does the following:

1.

Tries to retrieve a new available arena object by calling the
GetRandomAvailableArenaObject() function

If an arena object is available, it

a.
b.

Sets its visibility to true and its health to 100

Creates a location vector called Max that holds the maximum location of the arena
object along the x and z axes

Creates a location vector called Min that holds the minimum location of the arena
object along the x and z axes

Calls the GenerateGridLocationRestricted() function with the Max and Min locations
to retrieve a random location within the bounds of Max and Min

Sets the position of the new arena object to the location generated from the
previous step

Returns true if a new arena object has been added to the game and false
otherwise

Listing 10-26. Adding a New Arena Object

boolean AddNewArenaObject()

{
boolean result = false;
ArenaObject3d A0 = m ArenaObjectsSet.GetRandomAvailableArenaObject();
if (A0 !'= null)
{
// Respawn
AO.SetVisibility(true);
AO.GetObjectStats().SetHealth(100);
Vector3 Max = new Vector3(m Grid.GetXMaxBoundary(), DROP_HEIGHT, -5.0f);
Vector3 Min = new Vector3(m_Grid.GetXMinBoundary(), DROP_HEIGHT, m_Grid.
GetZMinBoundary());
Vector3 Position = GenerateGridLocationRestricted(Max, Min);
AO.m Orientation.GetPosition().Set(Position.x, Position.y, Position.z);
result = true;
}
return result;
}

The CreatePatrolAttackTankCommand() function creates a new patrol/attack tank command and
returns it. (See Listing 10-27.)

372 CHAPTER 10: The Final Drone Grid Game

The key data fields for this command are
1. The Command variable, which is set to AIVehicleCommand.Patrol

2. The DeltaAmount variable, which is set to the number of rounds for the tank
to fire in one burst

3. The Deltalncrement variable, which is set to the time delay in milliseconds
between the tank’s bursts of fire
Listing 10-27. Creating a Patrol/Attack Tank Command

VehicleCommand CreatePatrolAttackTankCommand(AIVehicleObjectsAffected ObjectsAffected, int
NumberWayPoints, Vector3[] WayPoints, Vector3 Target, Object3d TargetObj, int NumberRoundToFire,int
FiringDelay)

VehicleCommand TankCommand = null;
AIVehicleCommand Command = AIVehicleCommand.Patrol;

int NumberObjectsAffected = 0;

int DeltaAmount = NumberRoundToFire;
int DeltaIncrement = FiringDelay;
int MaxValue = 0;

int MinValue = 0;

TankCommand = new VehicleCommand(m Context,Command, ObjectsAffected, NumberObjectsAffected,
DeltaAmount, DeltaIncrement,MaxValue, MinValue, NumberWayPoints,WayPoints, Target, TargetObj);
return TankCommand;
}

The SetTankOrder() function creates a new tank patrol/attack order and gives the order to the tank.
(See Listing 10-28.)

The SetTankOrder () function does the following:

1. Sets the tank route index to cycle through all the available routes
Retrieves the selected tank route
Retrieves the tank’s waypoints from the route

Retrieves the number of waypoints from the route

o~ w0

Sets up the tank’s patrol/attack command to fire three-round bursts of
ammunition at the target located at the origin every five seconds

6. Creates the tank’s patrol/attack command and sets this command for the
input TankVehicle

CHAPTER 10: The Final Drone Grid Game

Listing 10-28. Setting the Patrol/Attack Tank Order

void SetTankOrder(Tank TankVehicle)

{

// Set Tank Route Index to cycle through all available routes
m_TankRouteIndex++;
if (m_TankRouteIndex >= m_NumberTankRoutes)

{
}

// Set Patrol Order

Route SelectedRoute = m TankRoutes[m TankRouteIndex];
Vector3[] WayPoints = SelectedRoute.GetWayPoints();

int NumberWayPoints = SelectedRoute.GetNumberWayPoints();

m_TankRouteIndex = 0;

AIVehicleObjectsAffected ObjectsAffected = AIVehicleObjectsAffected.PrimaryWeapon;
Vector3 Target = new Vector3(0,0,0);

Object3d TargetObj = null;

int NumberRoundToFire = 3;

int FiringDelay = 5000;

VehicleCommand Command = CreatePatrolAttackTankCommand(ObjectsAffected, NumberWayPoints,

WayPoints, Target, TargetObj,NumberRoundToFire,FiringDelay);

}

TankVehicle.GetDriver().SetOrder(Command);

The AddNewTank () function adds a tank object to the playfield. (See Listing 10-29.)

The function does the following:

1. Tries to retrieve a new available tank object by calling the GetAvailableTank()
function.

2. If atank object was available, it

a. Resets the tank and its health to 100

b. Creates a location vector called Max that holds the maximum location of the tank
object along the x and z axes

c. Creates a location vector called Min that holds the minimum location of the tank
object along the x and z axes

373

d. Calls GenerateGridLocationRestricted() with the Max and Min locations to retrieve a

random location within the bounds of Max and Min

e. Sets the position of the new tank object to the location generated from the
previous step

f. Creates and sets the tank object’s order by calling SetTankOrder ()

3. Returns true if a new tank object has been added to the game and false
otherwise

374 CHAPTER 10: The Final Drone Grid Game

Listing 10-29. Adding a New Tank to the Playfield

boolean AddNewTank()
{

boolean result = false;
Tank TankVehicle = m TankFleet.GetAvailableTank();
if (TankVehicle != null)

{
TankVehicle.Reset();

TankVehicle.GetMainBody().GetObjectStats().SetHealth(100);

// Set Position

Vector3 Max = new Vector3(m Grid.GetXMaxBoundary(), DROP_HEICHT, -5.0f);

Vector3 Min = new Vector3(m Grid.GetXMinBoundary(), DROP_HEIGHT, m Grid.
GetZMinBoundary());

Vector3 Position = GenerateGridlLocationRestricted(Max, Min);
TankVehicle.GetMainBody().m Orientation.GetPosition().Set(Position.x,
Position.y, Position.z);

// Set Command
SetTankOrder(TankVehicle);
result = true;

}

return result;

}

The UpdateArenaObjects() function adds more arena objects to the playfield, if needed.
(See Listing 10-30.)

The UpdateArenaObjects() function does the following:

1. If there are fewer arena objects on the playfield than the minimum number, it
creates a new arena object by calling AddNewArenaObject().

2. If there are enough arena objects on the playfield, it checks to see if
the elapsed time since adding the last arena object is greater or equal
to m_TimeDeltaAddArenaObject. If it is, it adds another object by calling
AddNewArenaObject().

Listing 10-30. Updating the Arena Objects

void UpdateArenaObjects(long CurrentTime)

{

// Check to see if need to add in more Arena Objects
int NumberObjects = m_ArenaObjectsSet.NumberActiveArenaObjects();

if (NumberObjects < m_MinArenaObjectsOnPlayField)
{

// Add another object to meet minimum
boolean result = AddNewArenaObject();

CHAPTER 10: The Final Drone Grid Game 375

if (result == true)

{
m_TimelLastArenaObjectAdded = System.currentTimeMillis();
}
}
else
{
// Check to see if enough time has elapsed to add in another object.
long ElapsedTime = CurrentTime - m_TimelastArenaObjectAdded;
if (ElapsedTime >= m_TimeDeltaAddArenaObject)
// Add New Arena Object
boolean result = AddNewArenaObject();
if (result == true)
{
m_TimelLastArenaObjectAdded = System.currentTimeMillis();
}
}
}

}

The UpdateTanks () function adds a new tank to the playfield by calling AddNewTank() if the current
number of tanks is less than m_MaxTanksOnPlayField and the elapsed time since the last tank was
added is greater than m_TimeDeltaAddTank. (See Listing 10-31.)

Listing 10-31. Updating the Tanks
void UpdateTanks(long CurrentTime)

{
int NumberTanks = m_TankFleet.NumberActiveVehicles();
long ElapsedTime = CurrentTime - m_TimelastTankOnGrid;
if ((NumberTanks < m_MaxTanksOnPlayField)8&&
(ElapsedTime > m_TimeDeltaAddTank))
{
// Add New Tank
boolean result = AddNewTank();
if (result == true)
{
m_TimelLastTankOnGrid = System.currentTimeMillis();
}
}
}

The UpdateController() function updates the number of arena objects on the playfield, if needed,
by calling UpdateArenaObjects(), and updates the number of tank objects on the playfield, if
needed, by calling UpdateTanks (). (See Listing 10-32.)

376 CHAPTER 10: The Final Drone Grid Game

Listing 10-32. Updating the GamePlay Controller

void UpdateController(long CurrentTime)

{
UpdateArenaObjects(CurrentTime);

UpdateTanks(CurrentTime);
}

Saving and Loading the Game State

In order to save the state of the game and restore this state, new code has to be added to the
MainActivity class and the MyGLRenderer class.

Modifying the MainActivity Class

For the MainActivity class, new code is added to the onPause() function that calls the SaveGameState()
function in the MyGLRenderer class when the Android game is paused. (See Listing 10-33.)

Listing 10-33. Modifying the onPause() Function

@0verride
protected void onPause()

{

super.onPause();
m_GLView.onPause();

// Save State
m_GLView.CustomGLRenderer.SaveGameState(SAVE_GAME_HANDLE) ;

Modifying the MyGLRenderer Class

The MyGLRenderer class has to be modified by adding functions that save and load in the game state.

The SaveGameState() function saves the state by saving key game variables if the game play is
currently active (GameState.ActiveGamePlay). (See Listing 10-34.)

The key elements of the game that are saved are the
1. Player’s score
2. Player’s health

3. The m_CanContinue variable, which is true if there is a previously saved game
to load and then to continue from

4, Camera’s state
5. Arena objects

6. Tank objects

CHAPTER 10: The Final Drone Grid Game 377

Listing 10-34. Saving the Game State

void SaveGameState(String Handle)

{

}

// Only save game state when game is active and being played not at
// menu or high score table etc.
if (m_GameState != GameState.ActiveGamePlay)

{
}

return;

// Save Player's Score
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);
SharedPreferences.Editor editor = settings.edit();

// Player's Score
editor.putInt("Score", m Score);

// Player's Health
editor.putInt("Health", m_Pyramid.GetObjectStats().GetHealth());

// Can Continue Game
editor.putBoolean("CanContinue", m CanContinue);

// Commit the edits!
editor.commit();

// Camera
m_Camera.SaveCameraState("Camera");

// Arena Objects Set
m_ArenaObjectsSet.SaveSet(ARENA_OBJECTS HANDLE);

// Tank Fleet
m TankFleet.SaveSet(TANK FLEET HANDLE);

The LoadGameState() function loads the data that was saved from the SaveGameState() function.
(See Listing 10-35.)

Listing 10-35. Loading the Game State

void LoadGameState(String Handle)

{

// Load game state of last game that was interrupted during play
// Restore preferences
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);

// Load In Player Score
m_Score = settings.getInt("Score", 0);

378 CHAPTER 10: The Final Drone Grid Game

// Load in Player's Health
int Health = settings.getInt("Health", 100);
m_Pyramid.GetObjectStats().SetHealth(Health);

// Can Continue
m_CanContinue = settings.getBoolean("CanContinue", false);

// Camera
m_Camera.LoadCameraState("Camera");

// Arena Objects Set
m_ArenaObjectsSet.LoadSet (ARENA_OBJECTS_HANDLE);

// Tank Fleet
m_TankFleet.LoadSet(TANK _FLEET HANDLE);

Adding in the Game Over Game State

One of the final features we must add to the final game is a game over message. We will have to
modify the MyGLRenderer class to add new code to handle the game over graphics and game logic.

The m_GameOverBillBoard variable holds the graphic that tells the player that the game is over.

private BillBoard m_GameOverBillBoard;

The m_GameOverPauseTime variable holds the minimum time for displaying the game over graphic
before user input is to be processed for continuing the game.

private long m_GameOverPauseTime = 1000;
The m_GameOverStartTime variable holds the time the game ended.

private long m_GameOverStartTime;

The CreateGameOverBillBoard() function creates the game over billboard that contains the game
over graphic that is displayed when the player’s game ends. The billboard is actually created by
calling the function CreateInitBillBoard(). (See Listing 10-36.)

Listing 10-36. Creating the Game Over BillBoard

void CreateGameOverBillBoard(Context iContext)

{

// Put Game over Billboard in front of camera
int TextureResourceID = R.drawable.gameover;

Vector3 Position= new Vector3(0,0,0);
Vector3 Scale = new Vector3(1 , 0.5f, 0.5f);

m_GameOverBillBoard = CreateInitBillBoard(iContext,TextureResourceID, Position, Scale);

CHAPTER 10: The Final Drone Grid Game 379

The UpdateGameOverBillBoard() function calculates and positions the game over billboard in front of
the camera at a DistanceToBillBoard distance to the camera. (See Listing 10-37.)

Listing 10-37. Updating the Game Over BillBoard

void UpdateGameOverBillBoard()
{

Vector3 TempVec = new Vector3(0,0,0);

float DistanceToBillBoard = 5;

TempVec.Set(m Camera.GetOrientation().GetForwardWorldCoords().x, m Camera.GetOrientation().
GetForwardWorldCoords().y, m Camera.GetOrientation().GetForwardwWorldCoords().z);

TempVec.Multiply(DistanceToBillBoard);

Vector3 Position = Vector3.Add(m_Camera.GetOrientation().GetPosition(), TempVec);

m_GameOverBillBoard.m Orientation.SetPosition(Position);

}

The IsNewHighScore() function returns true, which means there will be a new entry in the high score
table if the player’s score is greater than the lowest score in the high score table or if the player’s
score is greater than zero and there is at least one blank slot in the top ten scores in the high score
table. The latter case handles the situation where the player’s score is equal to or less than the
lowest score currently in the table but there are blank entries left in the top ten scores in the high
score table. (See Listing 10-38.)

Listing 10-38. Testing If the Player Has a New High Score

boolean IsNewHighScore()
{
boolean result = false;
int LowestScore = m_HighScoreTable.GetlLowestScore();
int MaxScores = m HighScoreTable.MaxNumberHighScores();
int NumberValidScores = m_HighScoreTable.NumberValidHighScores();

boolean SlotAvailable = false;
if (NumberValidScores < MaxScores)

{
}

if ((m_Score > LowestScore) ||
((m_Score > 0) &8 SlotAvailable))
{

}

return result;

SlotAvailable = true;

result = true;

}

The SaveContinueStatus() function saves the m_CanContinue variable that is true if there is a
previously saved game that can be loaded and then continued. (See Listing 10-39.)

380 CHAPTER 10: The Final Drone Grid Game

Listing 10-39. Saving the Continue Status
void SaveContinueStatus(String Handle)

{
SharedPreferences settings = m_Context.getSharedPreferences(Handle, 0);
SharedPreferences.Editor editor = settings.edit();
editor.putBoolean("CanContinue", m_CanContinue);
// Commit the edits!
editor.commit();

}

The CheckTouch() function must be modified to integrate the game over function. (See Listing 10-40.)

If the user touches the screen, and the state is the game over screen, and the time that has passed
since the game ended is not yet greater or equal to m_GameOverPauseTime, the program execution
returns from the function without processing the user’s touch. This ensures that the game over
message will be displayed for at least m_GameOverPauseTime milliseconds.

If the required amount of time has passed, the IsNewHighScore() function is called to check to see
if the player has made a high score that has to be entered into the high score table. If there is a new
high score, the game state is set to GameState.HighScoreEntry, to indicate that the high score entry
menu has to be displayed. If there is no new high score, the main menu must be displayed.

The camera is then reset to its initial position and rotation. The m_CanContinue variable is set to false,
to indicate that this game is now over and cannot be continued later, and SaveContinueStatus() is
called to save the variable.

Listing 10-40. Modifying the CheckTouch() Function

if (m_GameState == GameState.GameOverScreen)

{

long CurTime = System.currentTimeMillis();
long Delay = CurTime - m_GameOverStartTime;

if (Delay < m_GameOverPauseTime)

{
}

// Test for High Score
if (IsNewHighScore())

return;

{
// Go to High Score Entry Screen
m_GameState = GameState.HighScoreEntry;
}
else
{
m_GameState = GameState.MainMenu;
}

ResetCamera();

CHAPTER 10: The Final Drone Grid Game 381

// Cannot continue further since game is now over
m_CanContinue = false;
SaveContinueStatus(MainActivity.SAVE_GAME_HANDLE);

return;

}

The UpdateScene() function has to be modified to process the game over state. (See Listing 10-41.)

If the game state is the game over screen state, the UpdateScene() function updates the position

of the game over billboard to make sure it is in front of and facing the camera. If the health of the
player’s power pyramid is less than or equal to 0, the UpdateScene() function sets the game state
to the game over screen state and sets the can continue status to false to indicate that this game is
over and cannot be continued later.

Listing 10-41. Modifying the UpdateScene() Function

if (m GameState == GameState.GameOverScreen)

{

// Update Game Over Screen Here
UpdateGameOverBillBoard();
m_GameOverBillBoard.UpdateObject3d(m_Camera);
return;

}
if (m_Pyramid.GetObjectStats().GetHealth() <= 0)

m_GameState = GameState.GameOverScreen;
m_GameOverStartTime = System.currentTimeMillis();

// Game is over cannnot continue current game.
m_CanContinue = false;

}

The RenderScene() function must be modified so that when the game state is in the game over
screen state, the game over billboard is rendered to the screen. (See Listing 10-42.)

Listing 10-42. Modifying the RendexrScene() Function

if (m_GameState == GameState.GameOverScreen)

{
// Update Game Over Screen Here
m_GameOverBillBoard.DrawObject(m Camera, m PointLight);

Hands-on Example: The Drone Grid Game

This hands-on example will demonstrate the final Drone Grid game with a fully working menu
system and using the classes discussed previously in this chapter for creating and managing groups
of arena objects and tanks. In addition, | cover code that controls the frame rate of the game,

so that it runs at a smooth constant frame rate. All these additions and changes are made in the
MyGLRenderer class.

382 CHAPTER 10: The Final Drone Grid Game

Modifying the MyGLRenderer Class

The m_GamePlayController variable holds a reference to the GamePlay Controller for this game.
private GamePlayController m GamePlayController;

The ARENA_OBJECTS_HANDLE string holds the name of the handle that the set of arena objects is
saved under.

private String ARENA OBJECTS_HANDLE = "ArenaObjectsSet";
The TANK_FLEET_HANDLE string holds the name of the handle that the fleet of tanks is saved under.
private String TANK FLEET HANDLE = "TankFleet";

The m_ArenaObjectsSet variable holds a reference to the set of arena objects that will be used in
this game.

private ArenaObjectSet m_ArenaObjectsSet;

The m_TankFleet variable holds a reference to the fleet of tanks that will be used in this game.

private TankFleet m TankFleet;

The k_SecondsPerTick variable holds the time in milliseconds for each tick or update to the game.
This variable is used to help update the game at a constant rate.

private float k_SecondsPerTick = 0.05f * 1000.0f/1.0f; // milliseconds 20 frames /sec
The m_ElapsedTime variable holds the time that has passed since the last update to the game.
private long m_ElapsedTime = 0;

The m_CurrentTime variable holds the current time in milliseconds.

private long m_CurrentTime = 0;

The m_UpdateTimeCount variable is used in keeping track of the number of updates that are needed in
the game, based on the elapsed time since the last update.

private long m_UpdateTimeCount = 0;

The m_TimeInit variable is true if the frame update timing control-related variables have been
initialized and false otherwise.

private boolean m TimeInit = false;

The CreateArenaObjectsSet() function creates the ArenaObject set for the game and fills it with two
arena objects. The new arena objects are added by calling the AddNewArenaObject() function.
(See Listing 10-43.)

CHAPTER 10: The Final Drone Grid Game 383

Listing 10-43. Creating the ArenaObject Set for the Game

void CreateArenaObjectsSet(Context iContext)
{

m_ArenaObjectsSet = new ArenaObjectSet(iContext);

// Cube 1

float MaxVelocity = 0.1f;

ArenaObject3d Obj = CreateArenaObjectCubel(iContext);
Obj.SetArenaObjectID("cube1");

Obj.GetObjectStats().SetDamageValue(10);
Obj.GetObjectPhysics().GetMaxVelocity().Set(MaxVelocity, 1, MaxVelocity);
boolean result = m ArenaObjectsSet.AddNewArenaObject(Obj);

// Cube 2

Obj = CreateArenaObjectCube2(iContext);

Obj.SetArenaObjectID("cube2");

Obj.GetObjectStats().SetDamageValue(10);
0Obj.GetObjectPhysics().GetMaxVelocity().Set(MaxVelocity, 1, MaxVelocity);
result = m_ArenaObjectsSet.AddNewArenaObject(0bj);

}

The CreateTankFleet() function creates the fleet of tanks by generating two different types of tanks
and adding them to the m_TankFleet array by calling the AddNewTankVehicle() function.
(See Listing 10-44.)

Listing 10-44. Creating the Tank Fleet

void CreateTankFleet(Context iContext)

{

m TankFleet = new TankFleet(iContext);

// Tanki
Tank TankVehicle = CreateTankTypei(iContext);

// Set Material
TankVehicle.GetMainBody().CGetMaterial().SetEmissive(0.0f, 0.5f, 0f);
TankVehicle.GetTurret().GetMaterial().SetEmissive(0.5f, 0, 0.0f);

// Tank ID
TankVehicle.SetVehicleID("tank1");

// Set Patrol Order

int MAX_WAYPOINTS = 10;

Vector3[] WayPoints = new Vector3[MAX_WAYPOINTS];

int NumberWayPoints = GenerateTankWayPoints(WayPoints);

AlIVehicleObjectsAffected ObjectsAffected = AIVehicleObjectsAffected.PrimaryWeapon;
Vector3 Target = new Vector3(0,0,0);

Object3d TargetObj = null;

int NumberRoundToFire = 2;

int FiringDelay = 5000;

384 CHAPTER 10: The Final Drone Grid Game

VehicleCommand Command = CreatePatrolAttackTankCommand(ObjectsAffected, NumberWayPoints,
WayPoints, Target,TargetObj, NumberRoundToFire,FiringDelay);

TankVehicle.GetDriver().SetOrder(Command);

boolean result = m_TankFleet.AddNewTankVehicle(TankVehicle);

// Tank 2
TankVehicle = CreateTankType2(iContext);

// Set Material
TankVehicle.GetMainBody().GetMaterial().SetEmissive(0, 0.5f, 0.5f);
TankVehicle.GetTurret().GetMaterial().SetEmissive(0.5f, 0, 0.5f);

// Tank ID
TankVehicle.SetVehicleID("tank2");

// Set Patrol Order

WayPoints = new Vector3[MAX_WAYPOINTS];
NumberWayPoints = GenerateTankWayPoints2(WayPoints);
Target = new Vector3(0,0,0);

TargetObj = null;

NumberRoundToFire = 3;

FiringDelay = 3000;

Command = CreatePatrolAttackTankCommand(ObjectsAffected, NumberWayPoints, WayPoints, Target,
TargetObj, NumberRoundToFire, FiringDelay);

TankVehicle.GetDriver().SetOrder(Command);

result = m_TankFleet.AddNewTankVehicle(TankVehicle);

}

The CreateTankRoute1() function creates a route object that consists of waypoints that the tank is
to move toward and then returns it. The Route class is very basic, and to save space here, | decided
not to include it. Please refer to the full source code in the Source Code/Download area located on
apress.com for more information on the Route class. (See Listing 10-45.)

Listing 10-45. Creating a Tank Route

Route CreateTankRoute1()
{
// Around Pyramid
Route TankRoute = null;
int NumberWayPoints = 4;
Vector3[] WayPoints = new Vector3[NumberWayPoints];

WayPoints[0] = new Vector3(7, 0, -10);
WayPoints[1] = new Vector3(-7, 0, -10);
WayPoints[2] = new Vector3(-7, 0, 5);
WayPoints[3] = new Vector3(7, 0, 5);

TankRoute = new Route(NumberWayPoints, WayPoints);

return TankRoute;

http:\\apress.com

CHAPTER 10: The Final Drone Grid Game 385

The CreateTankRoutes () function creates an array of routes and returns these routes in the
TankRoutes array, along with the number of routes in the array. (See Listing 10-46.)

Listing 10-46. Creating a List of Tank Routes
int CreateTankRoutes(Route[] TankRoutes)

{
int NumberRoutes = 6;
TankRoutes[0] = CreateTankRoute1();
TankRoutes[1] = CreateTankRoute2();
TankRoutes[2] = CreateTankRoute3();
TankRoutes[3] = CreateTankRoute4();
TankRoutes[4] = CreateTankRoute5();
TankRoutes[5] = CreateTankRoute6();
return NumberRoutes;

}

The CreateGamePlayController() function creates an array of tank routes that the game controller
uses in assigning paths to the enemy tanks and then creates the actual GamePlay Controller.
(See Listing 10-47.)

Listing 10-47. Creating the GamePlay Controller

void CreateGamePlayController(Context iContext)
{

int MaxNumberRoutes = 10;

// Tanks

int NumberTankRoutes = 0;

Route[] TankRoutes = new Route[MaxNumberRoutes];
NumberTankRoutes = CreateTankRoutes(TankRoutes);

m_GamePlayController = new GamePlayController(iContext, m ArenaObjectsSet, m TankFleet,
m Grid, NumberTankRoutes, TankRoutes);

}

Next, the code that updated and rendered the game elements that were in the onDrawFrame()
function have been separated into code in UpdateScene() and RenderScene(). This is needed to
implement the additional new code that helps run the game at a constant set frame rate and game
speed that | will discuss later in this section.

The UpdateScene() function updates the elements of the game in terms of their position, orientation,
status, etc. Some elements, such as the main menu, high score table, high score entry menu, and
game over graphic, are only updated when the game is in a certain state and then after updating
returns and does not update the rest of the elements. (See Listing 10-48.)

386 CHAPTER 10: The Final Drone Grid Game

Listing 10-48. Updating the Game

void UpdateScene()
{

m_Camera.UpdateCamera();

// Main Menu

if (m_GameState == GameState.MainMenu)

{
m_MainMenu.UpdateMenu(m Camera);
return;

}

// High Score Table

if (m_GameState == GameState.HighScoreTable)

{
m_HighScoreTable.UpdateHighScoreTable(m Camera);
return;

}

// High Score Entry
if (m_GameState == GameState.HighScoreEntry)

{
// Update HighScore Entry Table
m_HighScoreEntryMenu.UpdateHighScoreEntryMenu(m Camera);
return;

}

// Game Over Screen
if (m_GameState == GameState.GameOverScreen)

{
// Update Game Over Screen Here
UpdateGameOverBillBoard();
m_GameOverBillBoard.UpdateObject3d(m_Camera);
return;

}

// Check if Game has ended and go to
if (m_Pyramid.GetObjectStats().GetHealth() <= 0)

{
m_GameState = GameState.GameOverScreen;
m_GameOverStartTime = System.currentTimeMillis();
// Game is over cannot continue current game.
m_CanContinue = false;

}

// Process the Collisions in the Game
ProcessCollisions();

CHAPTER 10: The Final Drone Grid Game

}

[1111111171117111717/777/7/7/ Update Objects
// Arena Objects
m_ArenaObjectsSet.UpdateArenaObjects();

// Tank Objects
m_TankFleet.UpdateTankFleet();

[1111771111117/7/77177//777/7/ Update and Draw Grid
UpdateGravityGrid();

// Player's Pyramid
m_Pyramid.UpdateObject3d();

// Player's Weapon
m_Weapon.Updateleapon();

117117111111111111777777/ HUD
// Update HUD

UpdateHUD();
m_HUD.UpdateHUD(m_Camera);

// Update Game Play Controller

m_GamePlayController.UpdateController(System.currentTimeMillis());

387

The RenderScene() function renders the game elements to the screen. No updating of the elements
is done, only drawing the objects to the screen. (See Listing 10-49.)

Listing 10-49. Rendering the Game

void RenderScene()

{

// Main Menu

if (m_GameState == GameState.MainMenu)

{
m_MainMenu.RenderMenu(m Camera, m PointLight, false);
return;

}

// High Score Table

if (m_GameState == GameState.HighScoreTable)

{
m_HighScoreTable.RenderHighScoreTable(m Camera, m PointlLight, false);
return;

}

// High Score Entry
if (m_GameState == GameState.HighScoreEntry)

{

m_HighScoreEntryMenu.RenderHighScoreEntryMenu(m Camera, m PointlLight, false);

return;

388 CHAPTER 10: The Final Drone Grid Game

// Game Over Screen
if (m_GameState == GameState.GameOverScreen)
{
// Update Game Over Screen Here
m_GameOverBillBoard.DrawObject(m Camera, m PointlLight);
}
[1111171111177111117/77777//// Draw Objects
m_ArenaObjectsSet.RenderArenaObjects(m_Camera, m PointlLight,false);
m_TankFleet.RenderTankFleet(m Camera, m_PointLight,false);
1111111111111711111/77777// Update and Draw Grid
m_Grid.DrawGrid(m_Camera);

// Player's Pyramid
m_Pyramid.DrawObject(m_Camera, m_PointLight);

// Player's Weapon

m_Weapon.RenderWeapon(m Camera, m PointlLight, false);
1111177717111777117777777 HUD

// Render HUD

m_HUD.RenderHUD(m_Camera, m PointlLight);

}

The CalculateFrameUpdateElapsedTime() function calculates the elapsed time since the last frame
update and stores this value inm_ElapsedTime. (See Listing 10-50.)

Listing 10-50. Calculating the Elapsed Time for the Frame Update

void CalculateFrameUpdateElapsedTime()

{
long Oldtime;
// Elapsed Time Since Last in this function
if (!m_TimeInit)
{
m_ElapsedTime = 0;
m_CurrentTime = System.currentTimeMillis();
m_TimeInit = true;
}
else
{
Oldtime = m_CurrentTime;
m_CurrentTime = System.currentTimeMillis();
m_ElapsedTime = m_CurrentTime - Oldtime;
}
}

The FrameMove() function updates the game by calling UpdateScene() and, if needed, the
ProcessCameraMove() function. The purpose of this function is to update the game at a constant and
smooth frame rate as close to a rate of one game update every k_SecondsPerTick as possible.

(See Listing 10-51.)

CHAPTER 10: The Final Drone Grid Game

The FrameMove() function does the following:

1. The UpdateScene() and ProcessCameraMove() functions are called only if the
elapsed time since the last update is greater than k_SecondsPerTick, which is
the time for one update to occur.

2. After UpdateScene() is called, m_UpdateTimeCount is changed to reflect that
an update has happened, by subtracting k_SecondsPerTick, which is the time
for a single frame update or “tick.”

3. If more frame updates have to occur in order to meet the goal of one game
update every k_SecondsPerTick, which means that m_UpdateTimeCount »
k_SecondsPerTick, UpdateScene() is called repeatedly, until the elapsed time
since the last game update is equal to or less than k_SecondsPerTick.

Listing 10-51. Updating the Game

void FrameMove()

{

m_UpdateTimeCount += m_ElapsedTime;
if (m_UpdateTimeCount > k_SecondsPerTick)
while(m UpdateTimeCount > k_SecondsPerTick)
// Update Camera Position
if (m_CameraMoved)

{
}

ProcessCameraMove();

// update the scene
UpdateScene();

m_UpdateTimeCount -= k_SecondsPerTick;

}

The onDrawFrame() function modifications (see Listing 10-52) involve the following:

1. New code for sound control is added. If m_SFXOn is true, the sound
effects are turned on for the arena objects, tanks, and pyramid by calling
TurnSFXOnOff(). Otherwise, the sound effects are turned off for these game
elements.

2. The time that has elapsed since the last game update is calculated by calling
the CalculateFrameUpdateElapsedTime() function.

3. The game is updated by calling FrameMove().

4. The game objects are rendered to the screen by calling RenderScene().

389

390 CHAPTER 10: The Final Drone Grid Game

Listing 10-52. Modifying the onDrawFrame () Function

public void onDrawFrame(GL10 unused)
{
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLESZO.glCleaI(GLES20.GL_DEPTH_BUFFER_BIT | GLESZO.GL_COLOR_BUFFER_BIT);

// UPDATE SFX
if (m_SFXOn)
{
TurnSFXOnOff(txue);

TurnSFXOnOff(false);
}
// Did user touch screen
if (m_ScreenTouched)
{
// Process Screen Touch
CheckTouch();
m_ScreenTouched = false;
}
CalculateFrameUpdateElapsedTime();
FrameMove();
RenderScene();

}

Now, run and play the game, and you should see something as in the following Figures 10-1
through 10-4.

¢ 16| £y @ 10:02am

Figure 10-1. Heart arena object

CHAPTER 10: The Final Drone Grid Game 391

B0 B @ 2:30em

Figure 10-2. Two different tank types

B0 9:58 am

Figure 10-3. Android arena object

392 CHAPTER 10: The Final Drone Grid Game

B0 B @ 1:16em

Figure 10-4. Game over screen

Summary

In this chapter, | have discussed the final Drone Grid game. | started with a discussion of the classes
needed to manage our player’s enemies. | then covered the GamePlayController class that was
used to control important elements of how our enemies were presented. Next, | went over code and
functions that were needed to save and load the state of our final game. The game over graphic and
related game logic were then discussed. Finally, a hands-on example was presented that illustrated
the classes, code, and concepts given in this chapter.

Chapter 1 1

The Android Native Development
Kit (NDK)

This chapter covers the Android Native Development Kit, or NDK. | begin with an overview of the
NDK, discussing what the NDK actually is, then examine the system and software requirements that
must be met in order for you to use this kit in developing your Android programs. Then, the Java
Native Interface, or JNI, is discussed, including how to use it to create functions that run in native
machine code compiled from C/C++ code and can be called from Java functions from within the
default Java framework we have used throughout this book. Next, a “Hello World” example using
the JNI is presented that provides a step-by-step guide into creating a simple Android program that
uses the JNI and native code written in the C language to output a string. Finally, another hands-on
example is presented that takes pieces of existing code from our Drone Grid game and converts the
existing Java code to native code.

NDK Overview

The NDK is a set of tools designed to work with existing Android development tools, such as
Eclipse, to embed native machine code compiled from C and C++ code into Android programs. The
NDK can be used to compile C/C++ code into a library that is then used by Eclipse to compile the
final Android application. One important issue is that only Android operating system versions 1.5
(Cupcake) or higher can use the NDK to embed native code in Android applications.

NDK System Requirements

A complete Android SDK installation (including all dependencies) is required. Android 1.5 SDK or
later version is required.

393

394 CHAPTER 11: The Android Native Development Kit (NDK)

Supported operating systems include the following:
Windows XP (32-bit) or Vista (32- or 64-bit)
Mac OS X 10.4.8 or later (x86 only)

Linux (32- or 64-bit; Ubuntu 8.04, or other Linux distributions using
GLibc 2.7 or later)

Required development tools:

For all development platforms, GNU Make 3.81 or later is required. Earlier
versions of GNU Make might work but have not been tested.

A recent version of awk (either GNU Awk or Nawk) is also required.

For Windows, Cygwin 1.7 or higher is required. The NDK will not work with
Cygwin 1.5 installations.

Note The Cygwin program can be downloaded from www.cygwin. com.

Android Platform Compatibility

Native code generated by the NDK targeting a specific CPU architecture requires a minimum
Android operating system version depending on the CPU targeted.

ARM, ARM-NEON targeted code requires Android 1.5 (API Level 3) and higher.
Practically speaking, nearly 100% of current available Android devices are at
least 1.5 or greater.

x86 targeted code requires Android 2.3 (API Level 9) and higher.
MIPS targeted code requires Android 2.3 (API Level 9) and higher.

Installing the Android NDK

The main Android NDK installation file is located on the official Android web site at www.android. com.
The NDK is a zip file that you will have to download and uncompress onto your hard drive.
(See Figure 11-1.)

http://www.cygwin.com/
http://www.android.com/

CHAPTER 11: The Android Native Development Kit (NDK) 395

Downloads

S

Windows 32-bit android-ndk-r9-windows-x86.zip 485200055 8805aec43f5141212c8dac6e9f07d5a8

android-ndk-r9-windows-x86- 292738221 ae3756d3773ec068fb653ff6fad11e35
legacy-toolchains.zip

Windows 64-bit android-ndk-ro-windows- 514321606 96c725d16ace7fd487bf1bc1427af3a0
X86_64.zip
android-ndk-r9-windows-x86_64- 312340413 707d1eaa6f5d427ad439c764c8bd68d2

legacy-toolchains.zip
Mac 08 X 32-bit android-ndk-r9-darwin-x86.tar.bz2 = 446858202 781da0e6bb5b072512e67b879b56a74c

android-ndk-r9-darwin-x86-legacy- 264053696 9fd7f76a1f1f50386a34b019dcd20976
toolchains.tar.bz2

Mac 0S X 64-bit android-ndk-r9-darwin- 454408117 ff27c8b9efc8260d9f883dc42d08f651
X86_64 tar.bz2
android-ndk-r9-darwin-x86_64- 271922968 251c21defcf90a2f0e8283bab90ed861

legacy-toolchains.tar.bz2

Linux 32-bit (x86) = android-ndk-r9-linux-x86.tar.bz2 419862465 beadafdc187461c057d513c40f0ac33b

android-ndk-r9-linux-x86-legacy- 241172797 957c415de9d7cTcelc2377ec4d3d60f1
toolchains.tar.bz2
Linux 64-bit (x86) android-ndk-ro-linux- 425113267 0ccfd9960526e61d1527155fa6fg4aco

X86_64 tar.bz2

android-ndk-r9-linux-x86_64- 244427866 3976a8237d75526b8a0f275375dd68b5
legacy-toolchains.tar bz2

Figure 11-1. Android NDK downloads

If you are developing on a Windows platform, you will have to download and install Cygwin, which is
a Unix-style command-line interface that allows you to execute Unix commands on your PC.
(See Figure 11-2.)

396 CHAPTER 11: The Android Native Development Kit (NDK)

bin Cygwin.bat Cyawin-Terminal.ico etc 1ib tmp wvar
cygdrive Cyagwin.ico dewv home proc usr
Rob@rob-23a060d7aéd /

$1s -1

total 213

drwxr-xr-x+ 1 Rob None 0 Oct 25 21:57 bin

dr-xr-xr-x 1 Rob None 0 Jan 27 15:30 cygdrive

-ruwxr-xr-x 1 Rob root 57 Oct 25 21:57 Cyawin.bat
-rw-r--r-- 1 Rob root 157097 Oct 25 21:57 Cygwin.ico
-rw-r--r-- 1 Rob root 53342 Oct 25 21:57 Cygwin-Terminal.ico
drwxr-xr-x+ 1 Rob None 0 Oct 25 21:57 dev

driwxr-xr-x+ 1 Rob None 0 Oct 25 21:57 etc

drwxruwx<rwt+ 1 Rob None 0 Oct 25 21:57 home

drwxr-xr-x+ 1 Rob None D Oct 25 21:57 lib

dr-xr-xr-x 9 Rob None 0 Jan 27 15:30 proc

dricrnwcrwt+ 1 Rob None 0 Oct 26 12:03 tmp

driwxr-xr-x+ 1 Rob None 0 Oct 25 21:56 usr

drwxr-xr-x+ 1 Rob None O Oct 25 21:56 wvar
ob@rob-23a060d7aéd /

$ v

Figure 11-2. Cygwin Unix command shell for Windows

Ways to Use the Android NDK

There are two ways to use the Android NDK.

B Use the Android Java framework and use the Java Native Interface or JNI to call
native code from your Java-based Android program.

B Use the NativeActivity class provided by the Android SDK to replace normally
Java language life cycle callbacks such as onCreate(), onPause(), onResume(),
etc., with native code written in C/C++. However, native activities must be run
on Android operating system versions 2.3 (API Level 9) and higher. Also, some
Android framework services cannot be accessed natively.

In this chapter, | will cover using the JNI to access native code from the Java framework.

Java Native Interface Overview

The JNI allows Java code that runs within the Android virtual machine to operate with applications
and libraries written in other programming languages, such as C, C++, and assembly. The Java
Interface Pointer is discussed in this section. Native C/C++ coding methods are treated, including
the variable types used with the JNI, the required naming conventions for native C/C++ functions,
and the required input parameters for these functions. The procedure to integrate native functions
into Java code is given. Examples of how to use native code from Java and how to use Java
functions from native code are also presented in this section.

CHAPTER 11: The Android Native Development Kit (NDK) 397

The Java Interface Pointer

Native code in C/C++ accesses the Java Virtual Machine through JNI functions that are accessed
through the Java Interface Pointer. The JNI Interface Pointer is a pointer to an array of pointers that
point to JNI functions. (See Figure 11-3.)

JNI Interface Pointer Array of pointers
(JNIEnv* env) to JNF Functions

\ Pointer |——>| NewStringUTF(
Pointer | 3" GetObjectClass()

Pointer
GetMethodID()

An Interface Function

Figure 11-3. The Java Interface Pointer

Loading and Linking Native C/C++ Methods
In order to use native classes in your Android Java code (see Listing 11-1), you will have to
1. Load the compiled library by using the System.loadLibrary() function.

2. Declare the native class that is defined in the C/C++ source code as native in
the Android Java code by using the native keyword in a function declaration.

Listing 11-1. Loading and Linking Native C/C++ Methods from Android Java Code

package robs.gldemo.robsgl20tutorial;
class GLES20TriangleRenderer implements GLSurfaceView.Renderer
{
/* this is used to load the 'hello-jni' library on application
* startup. The library has already been unpacked into
* /data/data/com.example.hellojni/lib/1libhello-jni.so at
* installation time by the package manager.

*/

static {
System.loadLibrary("hello-jni");

}

public native String RobsstringFromINI();

398 CHAPTER 11: The Android Native Development Kit (NDK)

Naming Native Functions

The native function declared in the Java code must match the function name declared in the native
C/C++ code based on certain formatting, as follows:

1. The function starts with “Java.”

2. ltis followed by the package name “robs_gldemo robsgl2otutorial” from
the example in Listing 11-1.

3. This is followed by the class name “GLES20TriangleRenderer” from the
example in Listing 11-1.

4. Next comes the function name “RobsstringFromINI” from the example in
Listing 11-1.

See the full function name in Listing 11-2.

Listing 11-2. The Native RobsstringFromINI() Function

jstring
Java_robs_gldemo_robsgl20tutorial_GLES20TriangleRenderer_RobsstringFromINI(INIEnv* env, jobject thiz

)
{

}

return (*env)->NewStringUTF(env, "Rob’s String Text Message!");

Native Function Parameters

The parameter list for a native function always starts with a pointer to JNIEnv, which is the Java
Interface Pointer, for example, env in our native function from Listing 11-2.

INIEnv* env

The second parameter is a reference to the object, if the native function is nonstatic, for example,
thiz in our native function example from Listing 11-2.

jobject thiz

However, if the native function is static, the second parameter is a reference to its Java class.

CHAPTER 11: The Android Native Development Kit (NDK) 399

C vs. C++ Native Function Formats

The function in Listing 11-2 is the C native function that utilizes the Java Native Interface. The C++
version is slightly different, but the underlying mechanisms are the same (see Listing 11-3). The main
differences are

1. The extern "C" specification
2. The change from (*env)-> to env-> for accessing the JNI functions

3. The removal of env as the first parameter of the JNI function call

Listing 11-3. The C++ Equivalent Native Function

extern
jstring
Java_robs_gldemo_robsgl2otutorial_GLES20TriangleRenderer RobsstringFromINI(INIEnv* env, jobject thiz
)
{

}

C" /* specify the C calling convention */

return env->NewStringUTF("Rob’s String Text Message!");

Native Types
The JNI native data types and their Java equivalents include

jboolean: This native type is equivalent to the boolean Java type and is unsigned
8 bits in size.

jbyte: This native type is equivalent to the byte Java type and is signed 8 bits in size.

jchar: This native type is equivalent to the char Java type and is unsigned 16 bits
in size.

jshort: This native type is equivalent to the short Java type and is signed 16 bits
in size.

jint: This native type is equivalent to the int Java type and is signed 32 bits in size.

jlong: This native type is equivalent to the long Java type and is signed 64 bits
in size.

jfloat: This native type is equivalent to the float Java type and is 32 bits in size.

jdouble: This native type is equivalent to the double Java type and is 64 bits in size.

Reference Types

The JNI includes some reference types that correspond to various Java objects. See Figure 11-4 for
a list of these reference types in a hierarchical view.

400 CHAPTER 11: The Android Native Development Kit (NDK)

jobject

jclass jstring

jthrowable

jarray

jobjectArray

jbooleanArray

jbyteArray

jcharArray

jshortArray

jintArray

jlongArray

jfloatArray

jdoubleArray

Figure 11-4. Reference type hierarchy

JNI Signature Types

The JNI uses the Java Virtual Machine’s representation of signature types that are used to define a
specific function, including its return value type and the types of its input parameters. The signature
types are as follows:

Z boolean type
B byte type

C char type

S short type
lint type

J long type

F float type

D double type

L fully-qualified-class; fully qualified class

CHAPTER 11: The Android Native Development Kit (NDK)

[type type[] array
(arg-types) ret-type (method) return type
V void

For example, the Java method

long JavaMethod1(int number, String str, int[] intarray1);

has the following type signature:

(ILjava/lang/String;[I)]

Another example is the AddRotation() function from the Orientation class.
void AddRotation(float AngleIncrementDegrees)

The signature type for this function would be

(F)V

The F would represent the float input parameter, and the V would represent the void return type.

Calling Native Code from Java and Accessing Java Methods from
Native Code

To call a native function from Java code, you would use the native function name without the
mangled prefix with the extra identifying information. For example, to call the native function
AddRotationNative() shown in Listing 11-5, you would use the code shown in Listing 11-4.
Listing 11-4. Calling Native Code from Java

void AddRotationToObject(Orientation 0, float AngleAmount)

{

}

AddRotationNative(0, AngleAmount);

401

The native function AddRotationNative()shown in Listing 11-5 calls the AddRotation() function for

the Orientation object that is passed into the function and held in the Orient variable.
The AddRotationNative() function does the following:

1. Gets the class of the Java object Orient by calling the GetObjectClass() JNI
function and assigns it to the OrientationClass variable

2. Gets the method id of a specific function by calling the GetMethodID()
JNI function with parameters including the function name, which is
"AddRotation"; the function signature type, which is "(F)V"; and the Java
class object that contains the function, which is OrientationClass. This
method id is assigned to the MethodID variable.

402 CHAPTER 11: The Android Native Development Kit (NDK)

3. Calls the Orient Java object’s AddRotation() function with parameter
RotationAngle by calling the CallVoidMethod() JNI function

Listing 11-5. Accessing a Java Method from a Native Code

Java_robs_gldemo_robsgl20tutorial Physics_ AddRotationNative(INIEnv* env,
jobject thiz,
jobject Orient,
jfloat RotationAngle)

{
/*
GetObjectClass
jclass GetObjectClass(INIEnv *env, jobject obj);
*/
jclass OrientationClass = (*env)->GetObjectClass(env, Orient);
/*
GetMethodID
jmethodID GetMethodID(INIEnv *env, jclass clazz, const char *name, const char *sig);
*/
jmethodID MethodID = (*env)->GetMethodID(env,
OrientationClass,
"AddRotation",
"(FV);
/*
NativeType Call<type>Method(INIEnv *env, jobject obj, jmethodID methodID, ...);
*/
(*env)->CallVoidMethod(env, Orient, MethodID, RotationAngle);
}

JNI Functions

There are many more JNI functions besides those discussed in Listing 11-5. For example, if

the Java function we want to call returns a double numeric value, we would have to call the
CallDoubleMethod() function instead of the CallVoidMethod for a function that returns void.

We won’t try and discuss every JNI function here, because this is not intended to be a JNI reference
manual. If you want more information on the complete list of JNI functions supported, please go to
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/functions.html#wp9502.

Note The main web site for JNI specifications is http://docs.oracle.com/javase/6/docs/
technotes/guides/jni/spec/jniTOC. html.

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/functions.html#wp9502
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html

CHAPTER 11: The Android Native Development Kit (NDK) 403

Android JNI Makefile

The Android makefile (Android.mk) is a file that describes your native code that you want to compile
to the NDK build system.

The LOCAL_PATH variable holds the location of the source files. The value of my-dir is already defined
by the NDK build system to point to the current directory that contains the Android.mk makefile.
What you will do is put this makefile in the JNI directory, along with all the C source code files that
you want to compile.

LOCAL PATH := $(call my-dir)

The CLEAR_VARS variable is already defined by the NDK build system and points to a makefile that will
clear many of the local variables that are used in the build system.

include $(CLEAR_VARS)

The LOCAL_MODULE variable sets the library name that will be generated from the native source code
files. The library name format will be the prefix “1ib” + “hello-jni” + the “.so” suffix. However, if the
library name already begins with “1ib”, the prefix “1ib” is not added to the final file name.

LOCAL MODULE := hello-jni

The LOCAL_SRC_FILES variable holds the names of the C/C++ source files that the NDK build system
will compile and create a final library from.

LOCAL_SRC_FILES := hello-jni.c

The BUILD SHARED LIBRARY variable is defined by the NDK build system and points to a makefile that
gathers and processes all the information needed for building the final library.

include $(BUILD SHARED LIBRARY)
The complete makefile is shown in Listing 11-6.

Listing 11-6. The Android JNI Makefile
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE
LOCAL_SRC_FILES

hello-jni
hello-jni.c

include $(BUILD SHARED_LIBRARY)

Hands-on Example: “Hello World from JNI and Native Code”

In this hands-on example, a simple “Hello World” example is discussed, in which the actual string
“Hello World from JNI and Native Code” is generated from native C code and returned to the Java
caller where it is then printed out to the log window.

404 CHAPTER 11: The Android Native Development Kit (NDK)

First, we have to create the jni directory for the Android project. Select the main project directory
that you want to create the jni directory in. Go to File » New » Folder to bring up the New Folder
dialog window. Enter the file name “jni” in the Folder name edit box and click the Finish button to
create a new directory named jni. (See Figure 11-5.)

®) New Folder

Folder —

Create a new folder resource. ' g-" =

Enter or select the parent Folder:
| MainActivity
=
] b_—:'v BannerSample
B InterstitialSample
5 MainActivity
=5 RobsGL20TutorialActivity

Folder name:

Figure 11-5. New Folder window dialog

The jni directory should appear under the main project directory. (See Figure 11-6.)

CHAPTER 11: The Android Native Development Kit (NDK)

=) L,i—j- MainActivity

(&

&
&
&

B\ Android 4.2

=, Android Dependencies
(B e

(i

8 gen [Generated Java Files]
G'Lc’; assets
&= bin

W=

. ® Android.mk
Le| hello-jni.c

IR RN

Figure 11-6. Creating the jni directory

GILC"; libs

= ini o
= obj
Gl

=" res

A AndroidManifest.xml
E’ ic_launcher-web.png
D proguard-project.txt
project.properties

405

Next, create a new file under the jni directory by selecting File » New » File to bring up a New File

window dialog. (See Figure 11-7.)

406 CHAPTER 11: The Android Native Development Kit (NDK)

® New File

File
Create a new file resource.

Enter or select the parent folder:

| MainActivity/jni |

s

+

RES BannerSample
R InterstitialSample
| 5 MainActivity
= .settings
Cl& assets
&= bin
® & gen [Generated Java Files]
= jni
2= libs
#-(= obj
] &b res
= sre
® Ir_EJ’ RobsGL20TutorialActivity

A

@

+

File name: [|

%

Figure 11-7. New File window dialog

Type in “Android.mk” for the file name, and click the Finish button to create the new file. Double-click
the file in the Package Explorer window to bring up the text in the Eclipse source code area. Copy
the makefile code from Listing 11-6 to the new file and save it by selecting File » Save All.

Next, repeat the previous steps to create a new file for the C source code file, which will be named
“hello-jni.c.” Copy the source code shown in Listing 11-7 to hello-jni.c.

CHAPTER 11: The Android Native Development Kit (NDK) 407

Listing 11-7. Hello-Jni.c Source Code

#include <string.h>
#include <jni.h>

// package = com.robsexample.glhelloworld;
// class = MyGLRenderer
jstring
Java_com_robsexample glhelloworld MyGLRenderer RobsstringFromINI(INIEnv* env,
jobject thiz)
{

}

return (*env)->NewStringUTF(env, "Hello World from INI and Native Code.");

The native C function RobsstringFromINI() is shown in Listing 11-7. The function creates a new
Java string by calling the NewStringUTF() function and returns the string to the Java caller.

Next, the native code must be compiled using the NDK build system. In order to do this, we have to
start up the Cygwin Unix emulator, which allows you to run Unix commands on your Windows PC,
if you are using a PC for your Android development.

You must navigate using Unix commands to the jni directory that you created previously. Use the
“cd ..” command to change the directory to one directory level up and “cd foldername” to change
the current directory to the folder name. Use the “Is” command to list the files and folders in the
current directory. Use the “pwd” command to get the current directory path you are in.

You will have to go to the root directory and change the directory to the cygdrive/ folder. Then
change the directory to the drive your Android project is stored on, and go to the specific folder
your native source files are in. Once you are in the jni directory that contains your makefile and
the source code, you have to run the ndk-build script from the Android NDK you downloaded
and unzipped to your hard drive. For example, let’s say your files are in the /cygdrive/c/
AndroidWorkSpaces/WorkSpacel/MainActivity/jni directory. You can execute the ndk-build
script while in the current directory by typing in the full path to the script, such as /cygdrive/c/
AndroidNDK/andoird-ndk-r9/ndk-build. The build script will then execute and produce the output
shown in Figure 11-8.

‘abd Joygdrive/c/AndroidiWorkSpaces/MorkSpacel MainActivity/Jm
$ /C)gdr1VcXL/ﬁnd:D1dNDk!andro1d ndk-r9/ndk-build

Android NDK: WARNING: APP_PLATFORM android-14 1is larger than android:minsdkversi
n]:un 8 in Jcyadrive/c/Androl dworkSpacesMorkSpacel /MainActivity Androidianifest.xm

Compile thumb : hello-jni <= hello-jni.c
SharedLibrary : libhello-jni.so
Install : Tibhello-jni.so =: libs/armeabi/1ibhello-jni.so

Figure 11-8. Running the ndk-build script in the jni directory

The ndk-build script will process your native code files and package them into a shared library
called libhello-jni.so, which is placed in the 1ibs/armeabi directory. (See Figure 11-9.)

408 CHAPTER 11: The Android Native Development Kit (NDK)

35

|-\ Android 4.2

|-B%, Android Dependencies

0® sre

&8 gen [Generated Java Files]

[+

+

1:1:“ assets

& bin

6 i

"= = |ibs

= (= armeabi

.]ﬂq libhello-jni.so

%) android-support-v4.jar

(= obj

) &-, res
) AndroidManifest.xml
j ic_launcher-web.png
[_, proguard-project. txt
[] project.properties

gl

+

Figure 11-9. The shared library generated by the ndk-build script

Modifying the MyGLRenderer Class

In order to use the compiled native code, we have to make some modifications to the
MyGLRenderer class from our hands-on example from the previous chapter.

The shared library with the native code has to be loaded using the loadLibrary() function.
static {

System.loadLibrary("hello-jni");
}

The native C function in the library has to be declared with the native keyword, in order to be
recognized and used.

public native String RobsstringFromINI();

In the onDrawFrame() function, the String variable TestINIString is assigned the return value from
calling the RobsstringFromINI() function. This return value is incorporated in a debug log statement.
(See Listing 11-8.)

CHAPTER 11: The Android Native Development Kit (NDK)

Listing 11-8. Modifying the onDxrawFrame () Function

String TestINIString = RobsstringFromINI();
Log.e("RENDERER" , "INI STRING = " + TestINIString);

409

Run the program. You should see debug statements in your Log window. The final output of the log
statement is shown in Figure 11-10.

Text

JNI STRING
JNI STRING
JNI STRING

Hello
Hello
Hello

Figure 11-10. JNI test results in Log window

Hands-on Example: Adding Native Functions to the Drone

Grid Game Case Study

This hands-on example will demonstrate how to convert parts of our Drone Grid game from Java

World from JNI and
World from JNI and
WMorld from JNI and

Native Code.
Native Code.

Native Code.

code to native C code and how to call Java functions from native C code.

Calculating Gravity in Native Code

The gravity calculations can be modified in our Drone Grid game so that the actual gravity
calculation is compiled in C and executed in native code on the Android. To do this, we have to
modify the hello-jni.c file and the Physics class.

Modifying the hello-jni.c File

The hello-jni.c file must be modified to include C source code.

The Gravity variable holds the value of the acceleration of gravity for our 3D game world.

float Gravity = 0.010f;

The ApplyGravityToObjectNative() function calculates the new acceleration of an object after the
acceleration from gravity in our game is applied. This new acceleration is then returned. (See Listing 11-9.)

Listing 11-9. Calculating the New Y Acceleration of an Object

jfloat

Java_com_robsexample glhelloworld Physics ApplyGravityToObjectNative(INIEnv* env,

YAccel = YAccel - Gravity;

return YAccel;

jobject thiz,
jfloat YAccel)

410 CHAPTER 11: The Android Native Development Kit (NDK)

Modifying the Physics Class

Next, the Physics class has to be modified to call the native class.

The ApplyGravityToObjectNative() function has to be declared as a native function in the
Physics class.

native float ApplyGravityToObjectNative(float YAccel);

The ApplyGravityToObject() function calculates the new y component of the acceleration by calling
the native function ApplyGravityToObjectNative() with the current y acceleration of the object.
(See Listing 11-10.)

Listing 11-10. Calling the Native Gravity Calculation Function
void ApplyGravityToObject()
{

// Do Native Apply Gravity
float YAccel = m_Acceleration.y;

m_Acceleration.y = ApplyGravityToObjectNative(YAccel);
}

Rotating Objects from Native Code

Demonstrating the rotation of objects from native C code using Java functions requires modifications
to the hello-jni.c file, the Physics class, and the MyGLRenderer class.

Modifying the hello-jni.c File
The hello-jni.c file has to be modified to add the native class AddRotationNative().

The AddRotationNative() function is almost identical to the function we discussed in Listing
11-5. The difference is that the full function name involves a different package and class. What
AddRotationNative() does is add RotationAngle degrees to the rotation of the object whose
orientation is represented by the input Orient parameter. This is done by calling the actual Java
language method "AddRotation()". (See Listing 11-11.)

Listing 11-11. Adding a Rotation

Java_com_robsexample_glhelloworld_Physics AddRotationNative(INIEnv* env,
jobject thiz,
jobject Orient,
jfloat RotationAngle)

/*

GetObjectClass

jclass GetObjectClass(INIEnv *env, jobject obj);

*/

jclass OrientationClass = (*env)->GetObjectClass(env, Orient);

CHAPTER 11: The Android Native Development Kit (NDK) 41

/*

GetMethodID

jmethodID GetMethodID(INIEnv *env, jclass clazz, const char *name, const char *sig);

*/

jmethodID MethodID = (*env)->GetMethodID(env, OrientationClass,"AddRotation", "(F)V");
/*

NativeType Call<type>Method(INIEnv *env, jobject obj, jmethodID methodID, ...);

*/

(*env)->CallVoidMethod(env, Orient, MethodID, RotationAngle);

Modifying the Physics Class

The Physics class must also be modified to use the native rotation function.

The AddRotationNative() function has to be declared with the native keyword in the Physics class.
native void AddRotationNative(Orientation 0, float RotationAngle);

The AddRotationToObject() function calls the AddRotationNative() function to perform the rotation
on the object and serves as a Java wrapper interface for the native function. (See Listing 11-12.)
Listing 11-12. Wrapper Function for AddRotationNative()

void AddRotationToObject(Orientation 0, float AngleAmount)

{

}

The UpdatePhysicsObject() function is modified by adding the Java function AddRotationToObject()
that calls the native C function that rotates the object as part of the physics update. The old
AddRotation() function is also commented out. (See Listing 11-13.)

AddRotationNative(0, AngleAmount);

Listing 11-13. Modifying the UpdatePhysicsObject() Function

void UpdatePhysicsObject(Orientation orientation)
{

// 0. Apply Gravity if needed

if (m ApplyGravity)

{

ApplyGravityToObject();
}

// 1. Update Linear Velocity

LILITTIITLL0000 11700707777 7000077717710777771177777777177117777117111777111717
m_Acceleration.x = TestSetLimitValue(m Acceleration.x, m MaxAcceleration.x);
m_Acceleration.y = TestSetLimitValue(m Acceleration.y, m MaxAcceleration.y);
m_Acceleration.z = TestSetLimitValue(m Acceleration.z, m MaxAcceleration.z);

412 CHAPTER 11: The Android Native Development Kit (NDK)

m Velocity.Add(m Acceleration);

m Velocity.x = TestSetLimitValue(m Velocity.x, m MaxVelocity.x);
m Velocity.y = TestSetLimitValue(m Velocity.y, m MaxVelocity.y);
m Velocity.z = TestSetLimitValue(m Velocity.z, m MaxVelocity.z);

// 2. Update Angular Velocity
LILITTITTL000 001770007770 7700777777700777717770777717777777717117777111111777117
m_AngularAcceleration = TestSetLimitValue(m AngularAcceleration, m MaxAngularAcceleration);

m_AngularVelocity += m_AngularAcceleration;
m_AngularVelocity = TestSetLimitValue(m AngularVelocity,m MaxAngularVelocity);

// 3. Reset Forces acting on Object

// Rebuild forces acting on object for each update

LIIITTIII000000 177000777 1770777777711077771771777771177777777117117777111111717117
m_Acceleration.Clear();

m_AngularAcceleration = 0;

//4. Update Object Linear Position

LITTILTT01TT 77707 777770070777777770777777770777777777077777777777771777771177117777771
Vector3 pos = orientation.GetPosition();

pos.Add(m Velocity);

// Check for object hitting ground if gravity is on.
if (m_ApplyGravity)
{

if ((pos.y < m_GroundLevel)8& (m Velocity.y < 0))

if (Math.abs(m_Velocity.y) > Math.abs(m Gravity))
{

}

pos.y = m_GroundLevel;
m Velocity.y = 0;

m_JustHitGround = true;

}

//5. Update Object Angular Position
LILLTTIII0000717700007711110777777777177771177770771177177777111177711111111111
// Add Rotation to Rotation Matrix

//orientation.AddRotation(m_AngularVelocity);

// Call Native Method
AddRotationToObject(orientation, m_AngularVelocity);

}

Modifying the MyGLRenderer Class
Finally, the MyGLRenderer class has to be modified.

The CreateArenaObjectsSet() function must be modified to apply rotational forces to the arena
objects, in order to demonstrate the use of native functions in rotating objects. The value of the
rotational force to apply to the arena objects is held in the RotationalForce variable and is set to 5000.

CHAPTER 11: The Android Native Development Kit (NDK) 413

The ApplyRotationalForce() function is used to apply the actual force to the arena objects.
(See Listing 11-14.)

Listing 11-14. Modifying the Arena Objects Set Creation Function

void CreateArenaObjectsSet(Context iContext)

{
m_ArenaObjectsSet = new ArenaObjectSet(iContext);

// Cube
float RotationalForce = 5000;
float MaxVelocity = 0.1f;

ArenaObject3d Obj = CreateArenaObjectCubel(iContext);
Obj.SetArenaObjectID("cube1");

Obj.GetObjectStats().SetDamageValue(10);
Obj.GetObjectPhysics().GetMaxVelocity().Set(MaxVelocity, 1, MaxVelocity);
Obj.GetObjectPhysics().ApplyRotationalForce(RotationalForce, 1);

// Add new Object
boolean result = m_ArenaObjectsSet.AddNewArenaObject(0bj);

LI11177777717777177771777177717177117711711717171717171177

Obj = CreateArenaObjectCube2(iContext);

Obj.SetArenaObjectID("cube2");

Obj.GetObjectStats().SetDamageValue(10);
Obj.GetObjectPhysics().GetMaxVelocity().Set(MaxVelocity, 1, MaxVelocity);
0bj.GetObjectPhysics().ApplyRotationalForce(RotationalForce, 1);

// Add new Object
result = m_ArenaObjectsSet.AddNewArenaObject(0bj);
}

Calculating the Reaction Force for a Collision from Native Code

In order to calculate the reaction force for a collision, modifications must be made to the
hello-jni.c file and the Physics class.

Modifying the hello-jni.c File
The hello-jni.c file has to be modified by adding two functions.

The DotProduct() function calculates the dot product between two vectors (x1,y1,z1) and (x2,y2,z2)
and returns it. (See Listing 11-15.)

Listing 11-15. Calculating the Dot Product of Two Vectors

float DotProduct(float x1, float y1, float z1,
float x2, float y2, float z2)
{

}

return ((x1 * x2) + (y1 * y2) + (z1 * z2));

414 CHAPTER 11: The Android Native Development Kit (NDK)

The CalculateCollisionImpulseNative() function calculates the collision reaction force from two
objects colliding with each other and returns the value. (See Listing 11-16.)

Listing 11-16. Calculating the Reaction Force for a Collision

jfloat

Java_com_robsexample glhelloworld Physics CalculateCollisionImpulseNative(INIEnv* env,
jobject thiz,
jfloat CoefficientOfRestitution,
jfloat Massi,
jfloat Mass2,
jfloat RelativeVelocityX,
jfloat RelativeVelocityy,
jfloat RelativeVelocityz,
jfloat CollisionNormalX,
jfloat CollisionNormaly,
jfloat CollisionNormalZz)

// 1. Calculate the impulse along the line of action of the Collision Normal

//float Impulse = (-(1+CoefficientOfRestitution) * (RelativeVelocity.
DotProduct(CollisionNormal))) /

// (1/Mass1 + 1/Mass2);

float RelativeVelocityDotCollisionNormal = DotProduct(RelativeVelocityX, RelativeVelocityY,
RelativeVelocityZ, CollisionNormalX, CollisionNormalY, CollisionNormalZ);

float Impulse = (-(1+CoefficientOfRestitution) *
RelativeVelocityDotCollisionNormal)/(1/Mass1 + 1/Mass2);

return Impulse;
}

Modifying the Physics Class

The Physics class must also be modified to implement the reaction force calculation.

The CalculateCollisionImpulseNative() function has to be declared as native in order to be used.

native float CalculateCollisionImpulseNative(float CoefficientOfRestitution,

float Massi,float Mass2,

float RelativeVelocityX, float RelativeVelocityY, float
RelativeVelocityZ,

float CollisionNormalX, float CollisionNormalY, float
CollisionNormalZ);

The ApplyLinearImpulse() function has to be modified so that it calls the
CalculateCollisionImpulseNative() function to calculate the reaction force of the collision. The
existing calculation for the reaction force is commented out. (See Listing 11-17.)

CHAPTER 11: The Android Native Development Kit (NDK)

Listing 11-17. Modifying the ApplyLinearImpulse() Function

void ApplylLinearImpulse(Object3d body1, Object3d body2)

(m_RelativeVelocity.DotProduct(m_CollisionNormal))) / ((1/bodyi.GetObjectPhysics().GetMass() +

float m_Impulse = 0;

/*
// 1. Calculate the impulse along the line of action of the Collision Normal
m_Impulse = (-(1+m_CoefficientOfRestitution) *

1/body2.GetObjectPhysics().GetMass()));
*/

}

m_Impulse = CalculateCollisionImpulseNative(m_CoefficientOfRestitution,
body1.GetObjectPhysics().GetMass(),
body2.GetObjectPhysics().GetMass(),
m_RelativeVelocity.x,
m_RelativeVelocity.y,
m_RelativeVelocity.z,
m_CollisionNormal.x,
m_CollisionNormal.y,
m_CollisionNoxmal.z);

// 2. Apply Translational Force to bodies

// £ = ma;

// f/m = a;

Vector3 Forcel = Vector3.Multiply(m_Impulse, m CollisionNormal);
Vector3 Force2 = Vector3.Multiply(-m_Impulse, m_CollisionNormal);

body1.GetObjectPhysics().ApplyTranslationalForce(Forcel);
body2.GetObjectPhysics().ApplyTranslationalForce(Force2);

415

Run the program. The natively calculated gravity should pull toward the ground objects such as the tank

in Figure 11-11. The arena objects should rotate as in Figure 11-12. Collision forces acting on objects

after a collision should work to deflect objects away from one another, as shown in Figure 11-13.

416 CHAPTER 11: The Android Native Development Kit (NDK)

B0 B @ 1:03em

Figure 11-11. Tank falling from natively calculated gravity

P& @ 1:46em

Figure 11-12. Arena object turning from natively called rotation

CHAPTER 11: The Android Native Development Kit (NDK) 417

B0 B @ 6:10em

Figure 11-13. Collision between player’s ammunition and an arena object with reaction force calculated natively

Summary

In this chapter, | covered the Android Native Development Kit (NDK). | started with an overview of
what exactly the NDK is and what system requirements, software requirements, and actual Android
hardware requirements are needed to use the NDK. Then, the Java Native Interface, or JNI, was
covered and used to demonstrate how Java functions can call native functions written in C and
how native functions written in C can be used to call Java functions. A simple “Hello World from JNI
and Native Code” hands-on example was then introduced, and you were taken through a
step-by-step implementation of native code into an existing Java program. Finally, another
hands-on example was presented that demonstrated how to integrate native code into our existing
Drone Grid game case study.

Chapter 1 2

Publishing and Marketing Your
Final Game

In this chapter, | cover the publishing and marketing of your final game. | start with a discussion

of how to create the final game distribution file that users will install. | then cover how to test the
distribution file by copying and then installing it on an actual Android device. Next, | cover a list of
Android marketplaces in which you can upload your game distribution file for sale and/or download.
Then, numerous ad networks that support Android are presented for those who want to make money
from their game through advertisements. A list of game sites that review Android games is provided.
Finally, other helpful web sites for the Android game developer are listed.

Creating the Final Distribution File

The final distribution file that you will submit for your users to download and install is an .apk file
generated from the Eclipse program with Android Development Tools installed.

To begin creating an .apk distribution file, select File » Export from Eclipse, as shown in Figure 12-1.

419

420 CHAPTER 12: Publishing and Marketing Your Final Game

5CW Edit Run Source Refactor Mavigate Search Project

New Alt+sShift+n P
Open File. .. !
Close Chrl+W I
Close all Ctrl+Shift+W

(5] save as...

Move...
Rename.., F2
& | Refresh FS

Convert Line Delimiters To »

Switch Workspace 4
Restart

g Import...

Figure 12-1. Selecting Export from the File menu

The Export window dialog should pop up. Under the Android folder, select Export Android
Application and click the Next button. (See Figure 12-2.)

CHAPTER 12: Publishing and Marketing Your Final Game 421

(24

Select an export destination:

(= General
== android
-7
= CJC++
#- (= Install
(= Java
(= RunfDebug
#-[= Team
®- (= XML

®@

Figure 12-2. Exporting an Android application

Next, the Export Android Application window should pop up. Click the Browse button to select

an Android project to export and turn into an .apk distribution file. Once you select a project, it is
checked for any errors that might hinder the packaging of the project. Then, click the Next button to
move to the next screen. (See Figure 12-3.)

422 CHAPTER 12: Publishing and Marketing Your Final Game

® Export Android Application |: @

Project Checks
Performs a set of checks to make sure the application can be exported.

Select the project to export:

Project: | MainActivity |

Mo errors found. Click Mext.

@ [< Back J[Mext >] Finish

Figure 12-3. Select application to export

The Keystore selection window should come up. Select the Create new keystore radio button. Click
the Browse button and choose the directory you want to store the new keystore file in. Type in a
password in the Password box and confirm the password in the Confirm box. Click the Next button
to continue. (See Figure 12-4.)

CHAPTER 12: Publishing and Marketing Your Final Game 423

® Export Android Application

Keystore selection

(O Use existing keystore
() Create new keystore

Location: 'C:'I.BeqinningﬂndroideGarneslMain'l.ChapterIZIDroneGridFinai'l.dr [Bruwse...]

Password: | esesese

Confirm: | eeesese

@ = e][e

Figure 12-4. Create a new Keystore selection

The Key Creation window should now be displayed. Filling out this form will create a key that will be
used to sign your application. Fill out the form and click the Next button. (See Figure 12-5.)

424 CHAPTER 12: Publishing and Marketing Your Final Game

® Export Android Application

Key Creation

Alias: test
Password: TTTTYTY
Confirm: ecscesse
Validity (years): 25

First and Last Name: Rob
Organizational Unit: My Unit

Organization: My Organization

City or Locality: | My City

State or Province: My State

Country Code (XX): | My Country Code

@ < Back]I Next >

Figure 12-5. Key Creation window

Note It's recommended that you back up the keystore file to a safe location. You will have to use this
keystore file if you want to update the games that are currently published using this keystore file.

The Destination and key/certificate checks window should appear. Click the Browse button to enter
a directory and file name for your distribution .apk file. Click the Finish button to start creating your
final distribution .apk file. (See Figure 12-6.)

GHAPTER 12: Publishing and Marketing Your Final Game 425

@® Export Android Application

Destination and key/certificate checks

Destination APK File: C:\BeginningAndroid3dGames\Main\Chapter 12\DroneGridFinal\MainActivity. apk

Certificate expires on Fri Jan 28 17:14:12 EST 2039.

The Certificate expires in 25 years.

Make sure the certificate is valid for the planned lifetime of the product.

If the certificate expires, vou will be Forced to sign your application with a different one.

Applications cannot be upgraded if their certificate changes from one version to another, forcing a full uninstallfinstall, which will make
the user lose hisfher data.

Android Market currently requires certificates to be valid until 2033.

@ Next : fiish | [cancel |

Figure 12-6. Creating the final . apk file

Testing the Distribution .apk File

Now let’s test the distribution .apk file you just created, by installing it on an Android device.

First, the .apk file has to be copied to the actual Android device. There are many ways to do this,
depending on what version of the Android operating system you are using, what software (such

as FTP) you have installed on your Android, and what network connections you have set up. | will
demonstrate the copying method that will work on all the Android operating systems, regardless of
what file transfer software you have installed or what network connections you have set up. To do
this, we can use the Android Debug Bridge (adb) push command to put the file on the device that is
connected to your computer via USB cable. The general form of the command is as follows:

adb push Filename LocationOnAndroidDevice

The specific command to put the MainActivity.apk file on the Android device at the
location/sdcard/Download using the adb located at C:\Android\adt-bundle-windows-x86\sdk\
platform-tools and assuming we are in the same directory that the .apk is in is

C:\Android\adt-bundle-windows-x86\sdk\platform-tools\adb push MainActivity.apk /sdcard/Download

426 CHAPTER 12: Publishing and Marketing Your Final Game

The C: refers to the drive letter that your Android SDK is installed on and may differ according to
where you have stored your SDK and the specific operating system you are using. After executing
the command, the MainActivity.apk file should now be on your Android device at
/sdcard/Download, assuming this directory already exists. (See Figure 12-7.)

7% [2:40 AM

]

My Storage sdca

D | 3 400 FoLDER fSSicpecTAl =

AsusSuperNote Type Name 4 Size Date

asuswebslorage . MainActivity.apk 320K8 2/4/2014 240 AM

com.zinio.mobil...

Download

Figure 12-7. Copying MainActivity.apk on an Android device

Before you try to install the .apk file, you will have to go to the Settings » Applications section and
check the box under Unknown sources that allows the installation of apps from unknown sources,

if you are using older Android operating system versions such as 2.2. On later versions of the Android
operating system, you will have to look under Settings » Security. (See Figure 12-8.)

GHAPTER 12: Publishing and Marketing Your Final Game 427

PASSWORDS

Make passwords visible

DEVICE ADMINISTRATION

Device administrators
View or deacti ice administrators

7 Unknown sources
Allow installation of apps from unknown sources

Disallow or warn before installation of apps that may cause harm

CREDENTIAL STORAGE

Trusted credentials
Display trusted CA certificates

Install from storage

Figure 12-8. Allowing installation of . apk files from unknown sources

Go back to the Android’s file manager program and navigate back to the directory where you copied
the .apk file. Click the .apk file to start the installation process. A screen should come up asking if
you want to install this application. Click the Install button. (See Figure 12-9.)

428 CHAPTER 12: Publishing and Marketing Your Final Game

® GLHelloworld

Do you want to install this application? It does not require any
special access.

Cancel Install

@

Figure 12-9. Installing the . apk

After the installation is complete, another screen should appear, verifying that the .apk has been
successfully installed. (See Figure 12-10.)

GHAPTER 12: Publishing and Marketing Your Final Game 429

® GLHelloworld

+/ App installed.

Figure 12-10. App installed verification screen

Click the Open button to start the Drone Grid game. (See Figure 12-11.)

430 CHAPTER 12: Publishing and Marketing Your Final Game

B @ E 2:53 AM

-
I GLHelloworld

Figure 12-11. The game running from the newly installed . apk file

Now that your game is installed and running on an Android device, it is time to start marketing
your game.

List of Android Marketplaces and Policies

This section lists some of the Android marketplaces in which you can upload your application for
download by other users. Each marketplace has its own policies, which can change frequently,
depending on market conditions. For example, Google recently tightened its restrictions on what
types of ads can be used in applications sold in its Google Play market. Amazon has recently
eliminated its yearly fee for selling games and apps in its store on Amazon. com.

Google Play

Google Play is the main Android market. The link to sign up for a Google publisher account is

https://play.google.com/apps/publish

http://amazon.com/
https://play.google.com/apps/publish

GHAPTER 12: Publishing and Marketing Your Final Game 431

There is a $25 one-time registration fee that you will have to pay using Google Wallet. If you want
to sell items, you will also need a Google Wallet Merchant account. You can apply for a Google
Wallet Merchant account from within the Google Developers Console by navigating to the Financial
Reports » Set Up a Merchant Account Now tab. This should take you to the Google Wallet site to
sign up as a merchant.

You can publish and unpublish your application or game quickly through the Developers Console.
Google does not screen your Android program before it makes it publicly available.

A full description of Google’s policies is located at

http://play.google.com/about/developer-content-policy.html

Note If you decide to include ads in your game, make sure that they comply with Google Play’s ad policy,
or you risk having your games banned or your account made inactive permanently.

Amazon Appstore for Android

Amazon runs an Android application and game store in which you can sell your game or provide it
for a free download. The web link to sign up for a developer’s account is

https://developer.amazon.com/welcome.html

There is no fee for registration. If you sell programs through Amazon’s Appstore, you will receive
70% of the list price of the item.

You will be required to submit your game to Amazon for testing and verification before it is available
for download or purchase. Review usually takes a few days.

Samsung Apps Store

Samsung operates its own Android store in which you can upload your apps and games for sale or
for a free download. The web link to log in as a developer is

http://seller.samsungapps.com/login/signIn.as

There is no fee for registration. If you sell games through the store, you will receive 70% of the list
price of the item.

You will have to submit your game for review by Samsung before it is available for sale or download.
Review usually takes a week but depends on the number of devices you choose to test your game
against. Samsung tests your game specifically with different models of Samsung phones and
tablets, depending on which models you select.

http://play.google.com/about/developer-content-policy.html
https://developer.amazon.com/welcome.html
http://seller.samsungapps.com/login/signIn.as

432 CHAPTER 12: Publishing and Marketing Your Final Game

Aptoide

Aptoide is different from previously discussed stores in that each developer or publisher manages
his/her own store and the user must download the Aptoide client and install it in order to download
and install Android software from these stores. The official web site is

www.aptoide.com

Here is the official web site description: “Aptoide is a website where you can download free apps to
mobile Android devices through a software client, Aptoide. In Aptoide you can also upload Android
apps to share with others.”

Appitalism

Appitalism is an app store similar to Google Play in which the developer can sell or upload free apps
for distribution. The official site is

www.appitalism.com

There is no registration fee.

In terms of profit, 70% of the price of an item is returned to the developer.

GetJar

GetJar allows you to publish your game or app on its site for free. The main web site is
www.getjar.mobi

The developer login link is

http://developer.getjar.mobi

GetJar claims more than 3 million downloads per day from its web site. However, GetJar does not

accept paid apps.

SlideMe

SlideMe is an Android application and game store in which you can upload your free and paid
Android games for distribution and/or sale. The official web site is

http://slideme.org/

There are no developer fees.

http://www.aptoide.com/
http://www.appitalism.com/
http://www.getjar.mobi/
http://developer.getjar.mobi/
http://slideme.org/

CHAPTER 12: Publishing and Marketing Your Final Game 433

Soc.lo Mall

Soc.lo Mall is an Android application and game store that accepts free and paid apps. The official
developer web site is

https://developer.soc.io/home

There is no fee for submitting an application or game.

Your Own WebSite.Com

Remember that with Android, you can just publish your final distribution file on your own web site.
However, if you wish to receive money for it, you will probably have to rely on other entities such as
payment processors to process credit and debit card transactions or ad networks that pay for clicks
on their ads generated by the users of your programs.

List of Android Ad Networks

One way of making money from your game or app is to use an Android ad network that will pay you
based on the amount of clicks that your users make on the ads the network places in your game.
Each ad network usually has its own Software Development Kit (SDK) that you will have to integrate
into your game. The SDK usually consists of an Android library in the form of a . jar file and code
that uses the functions in this library to display ads. Different ad networks have different styles of ads
to choose from. This section first lists a few of the more prominent ones in the Android developer
community and then lists other ad networks and marketing companies that might be useful to
Android developers for monetizing and promoting their games.

AppFlood

AppFlood is an ad system from PapayaMobile that is based in Beijing, China, with offices in
San Francisco, in the United States, and London, England. It has a web site at

http://appflood.com/

It has the following types of ads available:

Interstitials: These are full screen ads that are generally displayed at a natural
break point in the game, such as the end of a level or the end of the game.
(See Figure 12-12.)

https://developer.soc.io/home
http://website.com/
http://appflood.com/

434 CHAPTER 12: Publishing and Marketing Your Final Game

Figure 12-12. AppFlood interstitial ad

B App lists: These ads mimic the look and feel of a typical Android app/game
store. (See Figure 12-13.)

m Note Trainer Lite
I'_‘I Liquid Plasma
% LC Lite

Alchemy Lords
|-

8 0DE

Figure 12-13. AppFlood app list

B More games ad: These ads display one big game ad, along with four smaller
ones. (See Figure 12-14.)

Figure 12-14. AppFlood more games ad

B Notification ads: These ad types are notifications that are pushed to the user’s
Android phone.

B Icon ads: These ad types put an icon on the screen of the user’s phone. Be
aware that this type of ad is annoying to many users and may not be compliant
with Google Play’s latest ad policies.

CHAPTER 12: Publishing and Marketing Your Final Game 435

Appwiz
Appwiz is an ad network that was founded in 2012 and has a web site at

WWW . appwiz.com

The types of ads it offers developers are

Search icon: A search icon is placed on the user’s home screen. Note, however,
that this type of ad is very annoying to many users.

Bookmark: A bookmark is placed in the user’s web browser.

Offer wall: A full-screen ad that dynamically optimizes between other subformats
that Appwiz offers, such as AppWall, SmartWall, dialog ads, video ads, and Rich
Media.

Premium ad: A shortcut placed on the home screen that links to free apps and
hot deals.

LeadBolt

LeadBolt is an ad network founded in 2010 and located in Sydney, Australia. Its web site is
www . leadbolt.com

Ad types available are
Banners
Push notifications
Home screen icons
Browser bookmarks

Interstitials

AppBucks

AppBucks is an ad network located in Fort Myers, Florida, in the United States. The company’s
web site is

www . app-bucks.com

The types of ads available from AppBucks are

Interstitial: This type of ad fills up the entire screen and is generally used at key
points in the game, to get the user’s attention, such as the end of a level. See
Figure 12-15 for an example of an interstitial ad from AppBucks.

http://www.appwiz.com/
http://www.leadbolt.com/
http://www.app-bucks.com/

436 CHAPTER 12: Publishing and Marketing Your Final Game

I8 TestAppBucksProject

Greed for Glory
Appia

Install
v

Build the strongest empire and wage epic war!

Legends Online:
Dragons
Dragon Game Studio

Here comes a whole new SLGEMMORPG experience for
mobile devices! Explore the mystical landscape of a
blisteringly realized fantasy realm! When the War tune
plays, will you stand? Solo Dungeon, Group Dungeon, Devil
City, PvP Arena, Robust Guild System. The game have
every genre! Whether you are a casual player or a hardcore
veteran, this game will keep you coming back for more!

Skout - Meet, Chat,

Figure 12-15. AppBucks interstitial ad

B Slider ad: This type of ad, which works well with wallpaper and service-orientated
apps, slides out from the side of the screen. (See Figure 12-16.)

= .l

HILUIL ol fimen d
Accept credit cards wherever you go!

Figure 12-16. AppBucks slider ad

B Banner ad: The banner ad displays a banner, usually across the top or bottom of
the screen.

GHAPTER 12: Publishing and Marketing Your Final Game 437

MobileCore

MobileCore is an ad network based in Tel Aviv, Israel, that was founded in 2009. The company’s
web site is

www.mobilecore.com

The types of ads available from MobileCore are

AppWall ad: Half-screen or full-screen ads that offer other apps or deals. The
developer will get paid for each click or install generated from the AppWall.

Slider ad: Ads that slide out from the side of the screen.

AdMob

AdMob is run by Google and is probably the safest to use if you want your apps to be compliant
with Google’s marketplace policies. Violations of those policies can get your game or app banned
and/or your account frozen. The web site for AdMob is

www . google.com/ads/admob/

AdMob has the following types of ads:

Banner ads: These ads take up a small portion of the screen and allow the
user to click through to a more detailed information page or web site.
(See Figure 12-17.)

http://www.mobilecore.com/
http://www.google.com/ads/admob/

438 CHAPTER 12: Publishing and Marketing Your Final Game

. SERNTET

Success! Now you are ready to ~
travel through the App Galaxy. 00,

Figure 12-17. AdMob banner ad

Interstitial ads: Interstitial ads are large full-screen ads that are designed to grab
attention. (See Figure 12-18.)

CHAPTER 12: Publishing and Marketing Your Final Game 439

Figure 12-18. AdMob interstitial ad

StartApp

StartApp is a mobile advertising platform started in 2010. Headquartered in the United States in
New York, the company’s web site is

www. startapp.com

Types of ads offered are

B Interstitial ads: Full-screen ads appear at any point the developer chooses.
(See Figure 12-19.)

http://www.startapp.com/

440 CHAPTER 12: Publishing and Marketing Your Final Game

Figure 12-19. StartApp interstitial ad

B Banner ads: 3D banner ads. (See Figure 12-20.)

Airport City
] ’ DOWNLOAD

Figure 12-20. StartApp 3D banner ad

B Exit ads: Show an ad that appears when the user exits the application by
clicking the back button or home button. (See Figure 12-21.)

CHAPTER 12: Publishing and Marketing Your Final Game a1

If you liked this app come and try

R

Conneet'm (FREE)

Play Connect m the addicting
connact the dois gamo now
1vaibe for androd,

Figure 12-21. StartApp exit ad

B Search box: Shows a useful sliding search box from within the app.
(See Figure 12-22.)

442 CHAPTER 12: Publishing and Marketing Your Final Game

Free Apps

T Bingo Bash - Free Bingo
On b
BASH

FREE

@ Knights & Dragons

FRE

Faith Comes by Hearing

FREE

Figure 12-22. StartApp search box

B Splash screen: Shows an ad while your program is loading. (See Figure 12-23.)

GHAPTER 12: Publishing and Marketing Your Final Game 443

Where's My Water? 2

(.

Figure 12-23. StartApp splash screen

Other Ad Network and Marketing-Related Companies

The following list covers ad networks and marketing-related companies that may be helpful both in
marketing your game and earning you money from ads placed in the game.

Aarki (http://aarki.com): Aarki is a mobile advertising provider based in Silicon
Valley, California.

AdColony (http://adcolony.com): Launched in 2011, AdColony is a leading mobile
video advertising and monetization platform that plays crystal-clear HD video at
lightning speed and drives deep engagement with content.

Adfonic (http://adfonic.com): Adfonic is a mobile advertising buying platform that
is headquartered in London.

AdIQuity (http://adiquity.com): AdIQuity is a global mobile ad platform that helps
mobile publishers and app developers to earn high revenue from their mobile
inventory. It also helps ad agencies, ad networks, and other media buyers to acquire
quality global mobile traffic.

AdMarvel (www.admarvel.com): AdMarvel is a mobile ad optimization used by the
world’s largest publishers, agencies, and carriers.

Admoda (www.admoda.com): Admoda is a mobile ad network. Its primary focus is
providing traffic to the performance-based and affiliate marketing sector.

http://aarki.com/
http://adcolony.com/
http://adfonic.com/
http://adiquity.com/
http://www.admarvel.com/
http://www.admoda.com/

444

CHAPTER 12: Publishing and Marketing Your Final Game

Applifier (www.applifier.com): Applifier helps game and app publishers of all sizes
grow their applications through cross-promotion.

Apprupt (www.apprupt.com): Apprupt consists of mobile marketing specialists.

Avocarrot (www.avocarrot.com): Avocarrot is a unique mobile ad network
specializing in high-engagement native advertising. Choose from a range of
customizable ad-units to create a seamless user experience that results in higher
revenues.

BuzzCity (www.buzzcity.com): BuzzCity is a global advertising network.

ChartBoost (www.chartboost.com): ChartBoost is a mobile game service specializing
in games.

Epom (http://epom.com): Founded in 2010, Epom specializes in ad serving and ad
management.

4th Screen Advertising (www.4th-screen. com): Established in 2006 and now part
of the Opera Software group, 4th Screen Advertising is Europe’s leading premium
mobile advertising sales agency.

Hunt Mobile Ads (www.huntmads . com): Hunt Mobile is the leading independent
mobile advertising company targeted to Spanish-speaking market, including all
Latin American and the US Hispanic market, and offers solutions to discover, build
brands, and capitalize on the mobile Internet sector.

InMobi (www.inmobi.com): InMobi is a performance-based mobile ad network backed
by Soft Bank and Kleiner Perkins Caufield & Byers. The company was founded in
2007 in India and has offices in several countries.

Inneractive (http://inner-active.com): Inneractive is a global programmatic ad
stack for mobile publishers, focusing on video, hyper-local, and in-app search
advertising.

Jampp (www. jampp . com): Jampp is a leading data-driven mobile app marketing
platform that connects to a large number of mobile ad networks and real-time
bidding exchanges.

Kiip (www.kiip.com): Kiip provides real rewards for virtual achievements.

Komli Mobile (www.komlimobile.com): Komli Mobile is a leading global mobile
advertising and publishing network.

Leanmarket (www.lean.com): Leanmarket specializes in marketing efficiency issues.

LoopMe Media (http://loopme.biz): LoopMe is the leading global pioneer in social
ad discovery on smartphones and tablets. LoopMe enables consumers to give
feedback on ads (“like,” “stop,” and “share”), which increases click interactions,
branded engagement, and value through social endorsement.

MdotM (www.mdotm.com): MdotM is a mobile marketing services company.

Medialets (http://medialets.com): Medialets is a mobile advertising company.
Medialets’s mobile and tablet ad-serving platform, Servo, provides advanced
measurement technology and analytics and simplified campaign management.

http://www.applifier.com/
http://D:\\Sharmi\\2014\\Feb\\XML\\26-02-2014\\Chin\\XML\\Chapter 12\\www.apprupt.com
http://www.avocarrot.com/
http://www.buzzcity.com/
http://www.chartboost.com/
http://epom.com/
http://www.4th-screen.com/
http://www.huntmads.com/
http://www.inmobi.com/
http://inner-active.com/
http://D:\\Sharmi\\2014\\Feb\\XML\\26-02-2014\\Chin\\XML\\Chapter 12\\www.jampp.com
http://www.kiip.com/
http://www.komlimobile.com/
http://www.lean.com/
http://loopme.biz/
http://www.mdotm.com/
http://medialets.com/

GHAPTER 12: Publishing and Marketing Your Final Game 445

Millennial Media (www.millennialmedia.com): Millennial Media is a mobile marketing
and advertising company.

MKmob (www.mkmob.com/): MKmob is a global mobile ad network.

MMedia (http://mmedia.com): MMedia is a mobile advertising and monetization
network.

Mobbnet (www.mobbnet.com): Mobbnet is a global advertising network.

Mobfox (www.mobfox.com): MobFox is a mobile advertising network that operates
across iPhone, Android, Blackberry, Windows Mobile, and mobile web sites.

Mobgold (www.mobgold.com): MobGold helps advertisers to reach targeted users on
various mobile devices and publishers to monetize their mobile traffic.

MobileFuse (www.mobilefuse.com): MobileFuse is a mobile ad network composed
of strategically selected premium sites and applications, with a reach of 85 million
uniques.

Mobile Theory (http://mobiletheory.com): Mobile Theory offers mobile advertising
and services.

Mocean Mobile (www.moceanmobile.com): Mocean Mobile Marketplace (MMM) is the
world’s largest mobile ad marketplace.

Mojiva (www.mojiva.com): Mojiva is a mobile ad network focused on smartphones
and tablets. It is most known for Mojiva tab, which is an ad network specifically
designed for tablets.

MoPub (www.mopub.com): MoPub is a hosted ad-serving solution built specifically for
mobile publishers.

Nexage (www.nexage.com): Nexage strengthens publishers’ and developers’ mobile
ad businesses with solutions that increase mobile ad revenue and decrease
operational costs.

OnMOBi (http://on-mobi.com): OnMOBI is an advertising network focusing
exclusively on games and finance.

Placeplay (www.placeplay.com): Placeplay is a mobile advertising network targeting
iOS and Android.

Playhaven (www.playhaven.com): Playhaven is a mobile advertising company
focusing on games.

Pontiflex (www.pontiflex.com): Pontiflex is a mobile advertising company
specializing in sign up-style ads.

Revmob (www.revmobmobileadnetwork.com): Revmob provides mobile advertising for
Android and iOS.

SellAring (www.sellaring.com): SellAring provides mobile advertising that specializes
in audio ads that replace existing ringtones.

SendDroid (http://senddroid.com): SendDroid is a mobile advertising company
specializing in Android push notification ads.

http://D:\\Sharmi\\2014\\Feb\\XML\\26-02-2014\\Chin\\XML\\Chapter 12\\www.millennialmedia.com
http://www.mkmob.com/
http://mmedia.com/
http://www.mobbnet.com/
http://www.mobfox.com/
http://www.mobgold.com/
http://www.mobilefuse.com/
http://mobiletheory.com/
http://www.moceanmobile.com/
http://www.mojiva.com/
http://www.mopub.com/
http://www.nexage.com/
http://on-mobi.com/
http://www.placeplay.com/
http://www.playhaven.com/
http://www.pontiflex.com/
http://www.revmobmobileadnetwork.com/
http://www.sellaring.com/
http://senddroid.com/

446

CHAPTER 12: Publishing and Marketing Your Final Game

SessionM (www.sessionm.com): SessionM is a mobile ad company focusing on games.

Smaato (www.smaato.com): Smaato is the leading global mobile advertising
exchange. Smaato’s SMX platform is the leading global mobile real-time bidding
ad exchange, helping mobile app developers and publishers increase ad revenues
worldwide.

Sofialys (www.sofialys.com): Sofialys delivers mobile advertising and marketing
solutions, including an ad server and mobile ad network.

SponsorPay (www. sponsorpay.com): SponsorPay is an ad monetization company.

StrikeAd (www.strikead. com): StrikeAd is a US- and UK-based mobile advertising
company.

Tapgage (www.tapgage.com): Tapgage is a mobile interstitial ad network that helps
app developers and publishers monetize their apps and web sites.

Taplt! (www.tapit.com): Taplt! provides mobile advertising.

Tapjoy (www.tapjoy.com): Tapjoy is a mobile advertising company that allows the
user to install an application in place of an in-game payment.

ThinkNear (www.thinknear.com): ThinkNear is a mobile advertising company that
specializes in location-based ads.

Todacell (www.todacell.com): Todacell is a premium mobile advertising company.

Trademob (www.trademob.com): Based in Europe, Trademob provides mobile app
marketing.

Vserv (www.vserv.mobi): Vserv is a mobile advertising exchange focusing on
emerging markets.

Wapstart (wapstart.ru/en): Wapstart is a Russian mobile advertising company.

Webmoblink (www.webmoblink.com): Webmoblink is a leading mobile advertising
network that targets Latin America (Spanish and Portuguese) and US Hispanic
markets.

Widespace (www.widespace.com): Widespace is a premium mobile ad network based
in Europe.

XAd (www.xad. com): XAd provides location-based mobile advertising.

Ybrant Mobile (www.ybrantmobile.com): Ybrant Mobile provides mobile advertising
with targeted ad campaigns.

YOC Mobile Advertising (http://group.yoc.com): YOC Mobile Advertising is
Europe’s largest premium mobile ad network, with a strong presence in five key
markets: UK, Germany, France, Spain, and Austria.

YOOSE (www.yoose.com): YOOSE is a mobile ad network concentrating on
location-specific ads.

Zumobi (www.zumobi.com): Zumobi is a mobile media and advertising company.

http://www.sessionm.com/
http://www.smaato.com/
http://www.sofialys.com/
http://www.sponsorpay.com/
http://www.strikead.com/
http://www.tapgage.com/
http://www.tapit.com/
http://www.tapjoy.com/
http://www.thinknear.com/
http://www.todacell.com/
http://www.trademob.com/
http://www.vserv.mobi/
http://www.webmoblink.com/
http://www.widespace.com/
http://www.xad.com/
http://www.ybrantmobile.com/
http://group.yoc.com/
http://www.yoose.com/
http://www.zumobi.com/

GHAPTER 12: Publishing and Marketing Your Final Game 447

List of Android Game Review Web Sites

This section lists web sites that review Android games. Android game-review sites are excellent
places to get free publicity for your game. Some of these sites are exclusively dedicated to Android,
and others are multi-platform with an Android section.

AndDev: www.anddev.org

Android and Me: http://androidandme.com

Android App Log: www.androidapplog.com

Android Appdictions: www.androidappdictions.com
Android Apps: http://android-apps.com

Android Apps: www.androidapps.com

Android Apps: www.androidapps.org

Android Apps Gallery: waww.androidappsgallery.com
Android Apps Reviews: www.androidapps-reviews.com
Android Authority: waw.androidauthority.com
Android Bloke: www.androidbloke.co.uk

Android Central: www.androidcentral.com

Android Community: http://androidcommunity.com
Android Encyclopedia: www.androidencyclopedia.com
Android Etvous: www.androidetvous.com

Android Forums: http://androidforums.com

Android France: http://forum.android-france.fr
Android Games: www.android-games.com

Android Games: www.android-games.fr

Android Games Review: www.androidgamesreview.com
Androidgen: waw.androidgen. fr

Android Guys: www.androidguys.com

Android Headlines: www.androidheadlines.com
Androidki: http://androidki.com

Android Lab: www.androidlab.it

Android Market Apps: www.androidmarketapps.com
Android MT: www.android-mt.com

AndroidNG: www.androidng.com

http://D:\\Sharmi\\2014\\Feb\\XML\\26-02-2014\\Chin\\XML\\Chapter 12\\www.anddev.org
http://androidandme.com/
http://www.androidapplog.com/
http://www.androidappdictions.com/
http://android-apps.com/
http://www.androidapps.com/
http://www.androidapps.org/
http://www.androidappsgallery.com/
http://www.androidapps-reviews.com/
http://www.androidauthority.com/
http://www.androidbloke.co.uk/
http://www.androidcentral.com/
http://androidcommunity.com/
http://www.androidencyclopedia.com/
http://www.androidetvous.com/
http://androidforums.com/
http://forum.android-france.fr/
http://www.android-games.com/
http://www.android-games.fr/
http://www.androidgamesreview.com/
http://www.androidgen.fr/
http://www.androidguys.com/
http://www.androidheadlines.com/
http://androidki.com/
http://www.androidlab.it/
http://www.androidmarketapps.com/
http://www.android-mt.com/
http://www.androidng.com/

448 CHAPTER 12: Publishing and Marketing Your Final Game

Android Phone Themes: www.androidphonethemes.com
Android Pimps: http://androidpimps.com

Android Pit: www.androidpit.com

Android Pit (France): www.androidpit.fr

Android Police: www.androidpolice.com

Android Preview Source: www.androidappreviewsource.com
Android RunDown: www.androidrundown.com
Android Shock: www.androidshock.com

Android Social Media: www.androidsocialmedia.com
Android Spin: http://androidspin.com

Android Tablets: www.androidtablets.net

Android Tapp: www.androidtapp.com

Android Techie: www.androidtechie.com

Android Video Reviews: www.androidvideoreview.net
Android Viral: www.androidviral.com

Android World: www.androidworld.it

Android Zoom: www.androidzoom. com

Andro Lib: www.androlib.com

Andronica: www.andronica.com

Apkfile: http://androidgamesapps.apkfile.us

App Brain: www.appbrain.com

App Eggs: www.appeggs .com

Appgefahren: www.appgefahren.de

Application Android: www.applicationandroid.com
Applorer: www.applorer.com

App Modo: www.appmodo.com

App Review Central: www.appreviewcentral.net
Apps 400: www.apps400.com

Appsplit: http://appsplit.com

App Storm: http://android.appstorm.net

Apps to Use: www.appstouse.com

Apps Zoom: www.appszoom.com

http://www.androidphonethemes.com/
http://androidpimps.com/
http://www.androidpit.com/
http://www.androidpit.fr/
http://www.androidpolice.com/
http://www.androidappreviewsource.com/
http://www.androidrundown.com/
http://www.androidshock.com/
http://www.androidsocialmedia.com/
http://androidspin.com/
http://www.androidtablets.net/
http://www.androidtapp.com/
http://www.androidtechie.com/
http://www.androidvideoreview.net/
http://www.androidviral.com/
http://www.androidworld.it/
http://www.androidzoom.com/
http://www.androlib.com/
http://www.andronica.com/
http://androidgamesapps.apkfile.us/
http://www.appbrain.com/
http://www.appeggs.com/
http://www.appgefahren.de/
http://www.applicationandroid.com/
http://www.applorer.com/
http://www.appmodo.com/
http://www.appreviewcentral.net/
http://www.apps400.com/
http://appsplit.com/
http://android.appstorm.net/
http://www.appstouse.com/
http://www.appszoom.com/

CHAPTER 12: Publishing and Marketing Your Final Game

Ask Your Android: www.askyourandroid.com
Attdroids: www.attdroids.com

Best Android Apps Review: www.bestandroidappsreview.com
Best Android Game Award: www.bestandroidgameaward.com
Best Apps: http://best-apps.t3.com

Best Droid Games: www.bestandroidgames.net
Cnet: http://reviews.cnet.com

Crazy Mikes Apps: www.crazymikesapps.com

Daily App Show: www.dailyappshow.com

Droid Android Games: www.droidandroidgames.com
Droid App of the Day: http://droidappoftheday.com
DroidForums: www.droidforums.net

DroidGamers: www.droidgamers.com

Droid Gaming: www.droidgaming.net

Droid Idol: www.droididol.com

Droid Life: www.droid-1ife.com

Droidologist: www.droidologist.com

Droid Review Central: www.droidreviewcentral.com
Droid Soft: www.droidsoft.fr

El Android Elibre: www.elandroidelibre.com

Euro Droid: www.eurodroid.com

Euro Gamer: www.eurogamer.net

Everything Android: www.everythingandroid.org
Frandroid: www.frandroid.com

Game Loft: www.gameloft.com/android-games

Game Play Today: www.gameplaytoday.com
GamePro: www.gamepro.de

Gamerpond: www.gamerpond. com

Game Spot: www.gamespot.com

GameZebo: www.gamezebo.com

Get Android Stuff: http://getandroidstuff.com
GiggleApps: www.giggleapps.com

449

http://www.askyourandroid.com/
http://www.attdroids.com/
http://www.bestandroidappsreview.com/
http://www.bestandroidgameaward.com/
http://best-apps.t3.com/
http://www.bestandroidgames.net/
http://reviews.cnet.com/
http://www.crazymikesapps.com/
http://www.dailyappshow.com/
http://www.droidandroidgames.com/
http://droidappoftheday.com/
http://www.droidforums.net/
http://www.droidgamers.com/
http://www.droidgaming.net/
http://www.droididol.com/
http://www.droid-life.com/
http://www.droidologist.com/
http://www.droidreviewcentral.com/
http://www.droidsoft.fr/
http://www.elandroidelibre.com/
http://www.eurodroid.com/
http://www.eurogamer.net/
http://www.everythingandroid.org/
http://www.frandroid.com/
http://www.gameloft.com/android-games
http://www.gameplaytoday.com/
http://www.gamepro.de/
http://www.gamerpond.com/
http://www.gamespot.com/
http://www.gamezebo.com/
http://getandroidstuff.com/
http://www.giggleapps.com/

450 CHAPTER 12: Publishing and Marketing Your Final Game

Hardcore Droid: www.hardcoredroid.com

Hooked On Android: www.hookedondroid. com

HTC Desire Games: waw.htcdesireforum.com/htc-desire-games
IGN: www.ign.com/games/reviews/android

losRPG: www.iosrpg.com

Jeuxandroid: www. jeuxandroid.org

Know Your Mobile: www.knowyourmobile.com

Kotaku: http://kotaku.com

Latest Android Apps: www.latestandroidapps.net
Life of Android: www.lifeofandroid.com

MobiFlip: www.mobiFlip.de

Mobile Apps Gallery: waw.mobileappsgallery.com
Mobiles 24: http://forum.mobiles24.com

Mobilism: www.mobilism.org

N-Droid: waww.n-droid.de

New Apps Review: www.newappsreview.com
OmgDroid: www.omgdroid.com

100 Best Android Apps: www.100bestandroidapps.com
101 Best Android Apps: www.101bestandroidapps.com
148 Apps: www.148apps.com

PhanDroid: waw.phandroid.com

PhoneDog: www.phonedog.com

Play Android: www.playandroid.com

Play Droid: http://playdroid.blogspot.com

Pocket Gamer: www.pocketgamer.co.uk

Pocket Lint: www.pocket-1lint.com

Pocket Tactics: www.pockettactics.com

Rpg Watch: www. rpgwatch.com

Samsung Galaxy S Forum: www. samsunggalaxysforum.com
Screw Attack: www.screwattack.com

Slide To Play: www.slidetoplay.com

SmartKeitai: www.smartkeitai.com

http://www.hardcoredroid.com/
http://www.hookedondroid.com/
http://www.htcdesireforum.com/htc-desire-games
http://www.ign.com/games/reviews/android
http://www.iosrpg.com/
http://www.jeuxandroid.org/
http://www.knowyourmobile.com/
http://kotaku.com/
http://www.latestandroidapps.net/
http://www.lifeofandroid.com/
http://www.mobiflip.de/
http://www.mobileappsgallery.com/
http://forum.mobiles24.com/
http://www.mobilism.org/
http://www.n-droid.de/
http://www.newappsreview.com/
http://www.omgdroid.com/
http://www.100bestandroidapps.com/
http://www.101bestandroidapps.com/
http://www.148apps.com/
http://www.phandroid.com/
http://www.phonedog.com/
http://www.playandroid.com/
http://playdroid.blogspot.com/
http://www.pocketgamer.co.uk/
http://www.pocket-lint.com/
http://www.pockettactics.com/
http://www.rpgwatch.com/
http://www.samsunggalaxysforum.com/
http://www.screwattack.com/
http://www.slidetoplay.com/
http://www.smartkeitai.com/

GHAPTER 12: Publishing and Marketing Your Final Game 451

Smart Phone Daily: www.smartphonedaily.co.uk
Tablette: http://tablette.com

Talk Android: www.talkandroid.com

Tapscape: www.tapscape.com

Tap Zone: www.tapzone.info

Tech Hive: www.techhive.com

The Android Galaxy: www.theandroidgalaxy.com
The Android Site: www.theandroidsite.com

Tips 4 Tech: waw.tips4tech.net

Top Best Free Apps: http://topbestfreeapps.com
Touch Arcade: www.toucharcade.com

24 Android: www.24android.com

List of Other Helpful Sites for Android Developers

The following list contains other helpful sites for Android developers. Among these sites are ones
that provide free graphics and graphics-related tools.

Open Clip Art (www.openclipart.org): Contains public domain and royalty-free
graphics.

Vector Open Stock (www.vectoropenstock.com): Contains free vector clip art.

Blender 3D Renderer (www.blender.org): Free 3D model builder and renderer
available for Mac OS X, Linux, and Windows.

Making Money with Android (www.makingmoneywithandroid.com): Site
concentrating on making money with Android. Has a forum with lots of
discussion on the best ad networks available for Android.

Summary

In this chapter, | discussed the publishing and marketing of your game. | started out by covering
how to create the final distribution file for your game and how to test this final distribution file on an
actual Android device. Next, | covered some of the available Android marketplaces in which you can
sell your game or provide it for a free download. Then, | presented a list of ad networks with which
you can make money by letting these ad networks place ads inside your game for users to view and
click. Next, | provided a list of game review web sites from which you might be able to receive free
publicity for your game. Finally, a list of other helpful web sites was given.

http://www.smartphonedaily.co.uk/
http://tablette.com/
http://www.talkandroid.com/
http://www.tapscape.com/
http://www.tapzone.info/
http://www.techhive.com/
http://www.theandroidgalaxy.com/
http://www.theandroidsite.com/
http://www.tips4tech.net/
http://topbestfreeapps.com/
http://www.toucharcade.com/
http://www.24android.com/
http://www.openclipart.org/
http://www.vectoropenstock.com/
http://www.blender.org/
http://www.makingmoneywithandroid.com/

Index

A

Addltem() function, 331
AddSound() function, 185-186, 268-269
AddToCharacterSet() function, 197
AdMob
banner ad, 437-438
interstitial ad, 438-439
web site, 437
Amazon Appstore for Android, 1, 431
Ambient lighting, 119, 123, 127
Android
Android SDK (see Android Software
Development Kit (SDK))
game review websites, 447-451
IDE, development tool (see Android Software
Development Kit (SDK))
operating system, 1
Ouya, 1
Android Debug Bridge (adb) push command, 425
Android NDK
downloads, 394-395
Java-based Android program, 396
JNI and native code (see Java native
interface (JNI))
machine code, 393
native activity class, 396
native functions (see Native Functions)
platform compatibility, 394
Unix commands, 395-396
Android Software Development Kit (SDK)
components
Android SDK Manager, 3-4
Android virtual device, 4-6
Eclipse, Android Development Tools
plug-ins, 2-3

development set up
ADT Bundle, 6-7
Integrated Development Environment, 7
Eclipse IDE program, 2
IDE
DDMS (see Dalvik Debug Monitor
Server (DDMS))
LogCat window, 13
Outline window, 10-11
package explorer, 7-9
SDK Manager and AVD Manager
launching, 13
source code area, 9-10
Java Development Kit, 2
operating systems, 2

Angular acceleration, 139-142, 144
Angular velocity

and angular acceleration, 139-142
description, 139
object rotation, 139

.apk file distribution

Android Debug Bridge (adb) push command, 425

Android device, 425

App installed verification screen, 428-429

copying MainActivity.apk on an Android
device, 426

Drone Grid game, 429-430

installation process, 426-429

AppBucks

banner ad, 436
interstitial ad, 435
slider ad, 436
web site, 435

AppFlood

app list, 434
description, 433

453

454 Index

AppFlood (cont.)
icon ads, 434
interstitial ad, 434
more games ad, 434
notification ads, 434
web site, 433
Appitalism, 432
ApplyGravityToObject() function, 144
ApplyRotationalForce() function, 142-143
ApplyTranslationalForce() function, 142
Appwiz, 435
Aptoide, 432
Arena objects
ArenaObject3d Constructor, 268
description, 267
example, 271
explosion sound effect, 268-269
function, 271
ground sound effect, 269
MyGLRenderer Class
CreateCube() function, 313
CreateTanks() function, 316
CreateTankType1() function, 313
onDrawFrame() function, 313, 319
patrol/attack command, 316
RenderVehicle() function, 319
tank collisions, 317
tank creation, 313-315
UpdateGravityGrid() Function, 319
waypoints, 315
rendering, 269
updation, 270
ArenaObjectSet class
active arena objects, number, 356-357
available arena object, 357
collision detection, 360
constructor, 354
gravity grid, set to, 361
initialization, 354
input ID, 361
loading, 355-356
m_Active boolean array, 354
new arena object addition, 359
processing collisions, object and, 362-363

random arena object, 358
rendering, 363

resetting, 356

saving, 354-355

sound effects setting, 359
updation, 363

Basic Android Java OpenGL framework

multiple view OpenGL ES application
activity class and GLSurfaceView
class, 43-45
XML layout file, 42-43
single-view OpenGL ES application
custom GLSurfaceView, 40-41
custom renderer, 41-42

Basic Android Java program framework

Android activity life cycle
callback functions, 38
graphical flowchart style, 37
key situations, 38

BillBoardCharacterSet Class, HUDs

AddToCharacterSet() function, 197
DrawFontToComposite() function, 198
FindBillBoardCharacter() function, 197
GetCharacter() function, 196
GetFontHeight() function, 196-197
GetFontWidth() function, 196
GetNumberCharactersinSet() function, 196
MAX_CHARACTERS, 195
RenderToBillBoard() function, 199
SetText() function, 197-198

BillBoard Class, HUDs

constructor, 191

implementation process, 191

Object3d class, 190

procedure, 191-193

SetBillBoardTowardCamera()
function, 191

UpdateObject3d() function, 193

BillBoardFont Class, HUDs

BillBoardFont() constructor, 193-194
GetCharacter() function, 194
IsFontCharacter() function, 194

Index

m_Character variable, 193
SetCharacter() function, 194
BillBoardFont() constructor, 193-194

C

Camera
access private variables, 111
class’s constructor, 107
frustrum
parameters, 111
setting, 107-108
variables, 106
local y axis after/before rotation, 109-110
LookAt Vector calculation, 109
matrices, 106
m_Orientation, 107
orientation, 106
Position() function calculation, 110
UpdateCamera() Function, 110
Up Vector calculation, 109
view matrix, 108
ClearHighScoreTable() function, 332, 334
ClearMasses() function, 167, 170
Collisions
between two 3D objects, bounding
spheres, 150
calculation, 158-159
MeshEx Class (see MeshEx Class)
MyGLRenderer Class (see MyGLRenderer
Class)
Object3d Class (see Object3d Class)
Physics class (see Physics class)
ProcessCollisions() function, 262-263
types
normal, 154
penetrating, 154-155
compareTo() function, 327
CopyHighScoreEntryToHighScoreTable()
function, 332, 334
CreateHighScoreEntryMenu() function, 343
CreateHighScoreTable() function, 343
CreatelnitBillBoard() function, 343
CreateMainMenu() function, 345
CreateMenultem() function, 345
CreateSound() function, 188

Dalvik Debug Monitor Server (DDMS)
device screen capture, 12
devices tab, 12
File Explorer tab, 11

DDMS. See Dalvik Debug Monitor

Server (DDMS)
3D graphics
matrices and matrix operations
built-in Android matrix class, 68
combination matrix, 72-73
definition, 67-68
homogeneous coordinates, 70-71
identity matrix, 68
inverse, 70
multiplication, 69-70
rotation matrix, 71-72
scale matrix, 72
translation matrix, 71
transpose, 68-69
vector
addition, 62-63
cross product, 66-67
definition, 57
direction representation, 59
force representation, 60
local axes representation, 60
magnitude, 61-62
multiplication, 63-64
negation, 64-65
normalization, 62
position representation, 58
right triangle, 65
rotation representation, 59
vector3 class, 61
dot product, 65-66
Diffuse lighting, 98, 99, 112, 119,
123-124, 127

3D object mesh

MeshEXx class
constructor, 114-116
error debug function, 116
m_DrawListBuffer, 114
mesh draw function, 116-119
vertex buffer, 113

455

Index

3D object mesh (cont.)

vertex draw order index list, 114
mesh vertex data, 111-112

3D OpenGL “Hello Droid”

class
Camera, 50
Cube, 50
Material class, 50
MeshEx, 50
Object3d class, 50
Orientation, 50
PointLight, 51
Shader, 50
Vector3, 51
default output, 51
light position, 52-56
MainActivity and MyGLSurfaceView
classes, 45-46
MyGLRenderer class, 47-50
project import in Eclipse, 45

UpdateObject3dToHeading() function, 305

physics class

UpdatePhysicsObjectHeading()
function, 303

updation, 304-305

tank class
AddWeapon() function, 308
constructor, 307
firing, 309
loading, 307
m_Driver variable, 306
m_ExplosionSFXIndex, 307
m_Heading, 306
m_MainBody variable, 306
m_NumberWeapons variable, 306
m_TurretOffset, 306
m_VehiclelD, 306
processing, tank’s turret steering, 311
ProcessSteering() function, 310
rendering, 309

DrawFontToComposite() function, 198-199 resetting, 308
DrawMesh() function, 118, 165, 222-223 saving, 307 '
Drone Grid case study steering, processing, 310

arena objects (see Arena objects)
artificial intelligence (Al)
class level view, state machine, 272
finite state machine, 271-272
driver, tank
constructor, 301
loading, driver state, 302
m_AlSteer variable, 300
m_CommandExecuting, 300
m_CurrentOrder variable, 300
m_LastOrder variable, 300
m_TurnArea, 300
m_WayPoint variable, 301
SaveDriverState() function, 301
saving, 302
setting order, 303
updation, 303
waypoint, 302
HighScoreEntry class, 326
MainMenu class, 326
Menultem class, 323

MyGLRenderer Class (see MyGLRenderer

Class)
Object3d class
heading updation, 305

tank’s turret, turning, 311
turning, 309
UpdateVehicle() function, 311-312
updating, 312
tank enemy
artificial intelligence, 273
tank graphic (see Tank graphic,
Drone grid case study)
tank finite state machine (see Tank finite
state machine)
tank state (see Tank state,
Drone Grid case study)
User Interface (see User Interface)

vehicle commands (see Vehicle commands)

vehicle steering class (see Steering class)

Drone Grid game

explosions (see Explosions)

game object statistics
Object3d Class, 254
Stats Class, 252-253

native functions
AddRotationNative() function, 410-411
gravity, native code, 410
input Orient parameter, 410
MyGLRenderer class, 413

Index 457

reaction force (see Reaction force,
native code)
UpdatePhysicsObject() function, 411
Wrapper Function, 411
onDrawFrame() function, 263-265
player graphic
Mesh Class, 221-222
Object3d Class, 222-224
PowerPyramid class, 226-227
pyramid class, 225
player’s viewpoint and input
MyGLRenderer Class
(see MyGLRenderer Class)
MyGLSurfaceView Class
(see MyGLSurfaceView Class)
player weapons and ammunition (see Player
weapons and ammunition)
processing,collisions (see Collisions)
target shooting
creating player, 255-257
player’s weapon, 258-262
3D space, objects manipulation
model matrix
m_OrientationMatrix, 74
orientation class, 74
SetPositionMatrix() function, 74
SetScaleMatrix() function, 74
UpdateQOrientation() function, 74
moving along z axis, 76-78
rotation
AddRotation() function, 75
cube rotating, 76
onDrawFrame() function, 75
scaling, 78-79

EntryMenuStates enumeration, 335
Explosions
Object3d Class, 251-252
PolyParticleEx Class
Active Status setting, 241
constructor, 241
destroying particle, 242
fading, particle color, 243
LockParticle() function, 242
new particle creation, 242
Object3d class, 240

particle’s color setting, 241

particle mesh definition, 240

ready for use, 242-243

rendering particle, 244

updating particle, 244
SphericalPolygonExplosion Class

constructor, 247-248

GenerateRandomColor() function, 246

GenerateRandomRotation() function, 246

GetRandomParticleVelocity() function, 248

MAX_POLYGONS variable, 245

m_ExplosionDirection variable, 245

m_ParticleLifeSpan variable, 245

Random Rotation Axis, 246

RenderExplosion() function, 250

StartExplosion() function, 249-250

UpdateExplosion() function, 250-251

F

Final Drone Grid game
Game Over Game State
CheckTouch() function, 380
CreateGameOverBillBoard()
function, 378
IsNewHighScore() function, 379
RenderScene() function, 381
SaveContinueStatus() function, 379-380
UpdateGameOverBillBoard() function, 379
UpdateScene() function, 381
game state
loading, 377-378
MainActivity class modification, 376
MyGLRenderer class modification, 376
saving, 377
groups of enemies
ArenaObjectSet class
(see ArenaObjectSet class)
GamePlayController Class
(see GamePlayController Class)
TankFleet class (see TankFleet class)
Final game distribution file
Ad Networks, Android
AdMob (see AdMob)
AppBucks (see AppBucks)
AppFlood (see AppFlood)
Appwiz, 435
LeadBolt, 435

458 Index

Final game distribution file (cont.)
MobileCore, 437
StartApp (see StartApp)
Android application exporting, 420-421
.apk file, final creation, 424-425
application selection to export, 421-422
Export Android Application, 419-421
Key Creation window, 423-424
keystore selection, 422-423
marketplaces, Android
Amazon Appstore, 431
Appitalism, 432
Aptoide, 432
Getdar, 432
Google Play, 430
Samsung Apps Store, 431
SlideMe, 432
Soc.lo Mall, 433
Your Own WebSite.Com, 433
testing, .apk File distribution (see .apk
file distribution)
FindBillBoardCharacter() function, 197
FindCurrentCharacter() function, 338
FindEmptySlot() function, 331
FindHUDItem() function, 202
Forces
cube with four-sided texture, cube class, 146
MyGLRenderer Class (see MyGLRenderer
Class)
Object3d Class
DrawObiject() function, 147
IsVisible() function, 147
m_Physics variable, 146
m_Visible variable, 146
SetVisibility() function, 147
UpdateObject3d(), 147
Fragment/pixel shaders, 91, 98-99

G

Game environment
Android, sounds on (see Sounds)
sounds (see MyGLRenderer Class)
GamePlayController Class
AddNewArenaObiject() function, 371
AddNewTank() function, 373-374
CreatePatrolAttackTankCommand()
function, 371-372

GamePlayController()
constructor, 368
GenerateGridLocationRestricted()
function, 369-370
GenerateRandomGridLocation(),
368-369
GenerateRandomVelocityArenaObjects()
function, 370
Patrol/Attack Tank Order, 373
SetTankOrder() function, 372
UpdateArenaObjects() function, 374
GetCharacter() function, 194, 196
GetEntryMenuStatus() function, 340
GetFontHeight() function, 196
GetFontWidth() function, 196
GetHUDItem() function, 202-203
Getdar, 432
GetLowestScore() function, 331
GetMainMenuStatus() function, 326
Google Play, main Android market, 430
Gravity
earth’s, 138
force, 138
grid
GravityGridEx Class (see GravityGridEx
Class)
MeshEx Class, 164-165
Physics class, 164
native code
ApplyGravityToObjectNative()
function, 410
hello-jni.c file, 409
variables, 142
GravityGridEx Class
accessing Key Grid Data, 171
AddMass() function, 171
ClearMasses() function, 170
constructor, 167-170
m_DrawOQOrder array, 166
m_LineMeshGrid, 165
m_MassEffectiveRadius, 166
m_MassLocations, 166
m_MVPMatrix, 167
m_PositionHandle, 167
m_Shader, 166
m_Vertices, 166
ResetGrid() function, 170

Index

Heads-Up Display (HUDs)

BillBoardCharacterSet Class
(see BillBoardCharacterSet Class)
BillBoard Class (see BillBoard Class, HUDs)
BillBoardFont Class (see BillBoardFont
Class, HUDs)
creation, class
AddHUDItem() function, 202
constructor, 201
DeleteHUDItem() function, 203
FindEmptyHUDItemSilot() function, 201
FindHUDItem() function, 202
GetHUDItem() function, 202-203
m_BlankTexture, 201
m_HUDItems array, 201
RenderHUD() function, 206
UpdateHUD() function, 206
UpdateHUDItem() function, 204-206
UpdateHUDItemNumericalValue()
function, 203
diagram, 190
Drone Grid Case Study (see Drone Grid
Case Study)
HUDItem class, 199-200
Object3d Class (see Object3d Class, HUDs)
texture class, 194

“Hello World” Program

actual Android device
selection, 24
USB Debugging mode, 23
actual data, 27
Android emulator
Android Virtual Device (AVD)
creation, 20-21
“RobsHelloWorld”, 20
running program, 22
Android project creation
activity type selection and activity
creation, 17-18
Android 2.2 (Froyo), 15
“Android Application Project”, 14
configuring, 16
Launcher Icon, 17
New Blank activity, 18-19
project and SDK info, 15
“RobsHelloWorld” Android project, 19-20

graphical layout, 25-26
source code
onCreate() function, 25
OnCreateOptionsMenu()
function, 25
“RobsHelloWorld” example, 24
HighScoreEntry class, 326
High Score Table class
adding, 331
clearing, 332
constructor, 329
description, 328
finding, 331
loading, 330
rendering, 332
saving, 329
sorting, 332

Integrated Development Environment (IDE).
See Android Software Development
Kit (SDK)

IsFontCharacter() function, 194

J,K
Java for Android

arrays, 30

classes
accessing, 34
activity class, 34
Java interfaces, 35
packages and, 34
variables and functions, 35

data modifiers
final, 31
private, 31
public, 31
static, 31

data types, 30

Java comments, 30

Java functions
function name, 35
parameters, 36
parent function, 36

Java language, 29

459

OpenGL framework. See Basic Android Java

OpenGL framework

460 Index

Java for Android (cont.)
operators
arithmetic, 32
bitwise and bit shift, 33
conditional, 32
flow control statement, 33-34
unary, 32
program framework (see Basic Android Java
program framework)
Java native interface (JNI)
AddRotationNative(), 401
Android virtual machine, 396
BUILD_SHARED_LIBRARY variable, 403
CallDoubleMethod() function, 402
C/C++ methods, 397
CLEAR_VARS variable, 403
C source code files, 403
Cygwin Unix emulator, 407
data types and Java equivalents, 399
hello-Jni.c Source Code, 407
hierarchical view, 399-400
jni directory, 404-405, 407
LOCAL_MODULE variable, 403
LOCAL_SRC_FILES variable, 403
my-dir, 403
MyGLRenderer class, 409
native functions (see Native functions)
ndk-build script, 407-408
New File window, 405-406
New Folder window, 404
NewStringUTF() function, 407
Orientation class, 401
pointers, 397
RobsstringFromdJNI(), 407
signature types, 400
JNI. See Java native interface (JNI)

L

LeadBolt, 435
Lighting
fragment shader
ambient, 127
diffuse, 127
final fragment color, 128
specular, 127
key components, 119
Normal Matrix, 122

PointLight class, 120
types, 119
vectors, 120
vertex shader
ambient, 123
diffuse, 123
specular, 125
Linear acceleration
average acceleration definition, 137
instantaneous acceleration definition, 137
Linear-related physics variables, 141
Linear velocity
average velocity definition, 136
car reversing then moving backward, 135-136
instantaneous velocity definition, 136-137
vector quantity, 135
LoadHighScoreTable() function, 329

MainActivity class modification, 219, 376
Main() function, shader, 176-177
MainMenu class, 323
Matrices and matrix operations. See 3D graphics
Menultem class, 321
Mesh Class, 221-222
MeshEx Class
CalculateRadius() function, 151-152
gravity grid, 164-165
m_RadiusAverage variable, 150
m_Radius variable, 150
m_Size variable, 150
m_LineMeshGrid, 165
MobileCore, 437
Motion
angular acceleration, 139
angular velocity, 139
gravity, 138
linear and angular motion, forces
(see Forces)
linear velocity and acceleration, 135-137
Newton’s Laws, 137-138
Physics Class (see Physics Class)
rotational forces (see Rotational forces)
m_SoundEffectsOn array, 185
MyGLRenderer Class
ApplyRotationalForce(), 413
BillBoard object, creation, 343

Index

CameraMoved() function, 227
collisions
creating New Cube, 161
onDrawFrame() modifications, 162
onSurfaceCreated() function changes, 161
two colliding cubes, 162-163
CreateArenaObijectsSet() function, 412
CreateCharacterSet() function, 210-211
CreateHealthltem() function, 212
CreateHUD() function, 212-213
forces
CreateCube() function, 148
description, 148
m_RotationalForce variable, 148
onDrawFrame() function, 148-149
loadLibrary() function, 408
Log window, 409
m_CharacterSetTextures array, 207-209
new vertex shader
CreateCube?2() function, 179
CreateCube() function, 178
CreateGrid() function, 178
gravity grid with one cube added, 181
gravity grid with two cubes added, 181
onDrawFrame() function, 179-180
onSurfaceCreated() function, 179
UpdateGravityGrid()function, 179
onDrawFrame() function, 228, 409
ProcessCameraMove() function, 228
ProcessTouch() function, 229
RobsstringFromJNI() function, 408
SetUpHUDComposite() function, 209-210
sounds
CreateSound() function, 188
CreateSoundPool() function, 187-188
m_SFXOn variable, 187
m_Soundindex1, 187
m_Soundindex2, 187
m_SoundPool, 187
onDrawFrame() function, 189
onSurfaceCreated() function, 188
UpdateHUD() function, 213

MyGLRenderer class modification, 376

CreateArenaObijectsSet() function, 382-383
CreateGamePlayController() function, 385
CreateTankFleet() function, 383
CreateTankRoute1() function, 384
CreateTankRoutes() function, 385

Creating the Tank Fleet, 383

m_GamePlayController variable, 382

RenderScene() function, 387

UpdateScene() function, 385-386
MyGLSurfaceView Class

m_dx and m_dy variables, 229

m_PreviousX and m_PreviousY

variables, 229
m_Startx and m_Starty variables, 229
onTouchEvent() function, 230

Native Development Kit (NDK)
Android (see Android NDK)
development tools, 394
native code, 393, 407
operating systems, 394

Native functions
C vs. C++, 399
Drone Grid game (see Drone

Grid games)
Java code, 398, 401
JNIEnv, 398
nonstatic and static, 398
RobsstringFromJNI() function, 398

NDK. See Native Development Kit (NDK)

Newton’s Law of gravity
description, 164
gravity grid (see Gravity)
two masses attraction, 163

Newton’s Laws of motion
first law, 137
second law

scalar equations, 137-138
vector equation, 137
third law, colliding spheres, 138

New vertex shader
aPosition variable, 175
gravity grid, 175
IntensityCircle() function, 176
Main() function, 176-177
MyGLRenderer Class (see MyGLRenderer

Class)
uMVPMatrix, 175
variables, 175
NumberValidHighScores() function, 330

461

462 Index

0

Object3d Class. See also Forces
AddSound() function, 185-186
collisions

GetRadius() function, 153

scaled mesh radius, 153
HUDs

DrawObiject() function, 207

m_Blend variable, 206

SetBlend() function, 207
MAX_SOUNDS, 185
m_NumberSounds, 185
modification, 222-224
m_SoundEffectsOn array, 185
PlaySound() function, 186
SetSFXOnOff() function, 186

onDrawFrame() function, 41, 75, 148-149, 162, 189

onSurfaceCreated() function, 161
OpenGL ES 2.0 on Android
3D object
camera placing, 83
frustrum, 84
putting in world, 82
scene rendering, 91
vertex and fragment shaders, 91
vertex transformation (see Vertex
transformation)
viewport transformation, 85
3D object mesh (see 3D Object mesh)
camera (see Camera)
fragment/pixel shaders, 98
lighting (see Lighting)
materials
class’s data, 128
color components, 128
fragment shader, 128
shader class
activation, 104
constructor, 100
create fragment shader, 100
create vertex shader, 100
data, 100
DeActivateShader(), 104
deactivation, 104
float uniform shader variable, 105
InitFragmentShader() Function, 102
InitShaderProgram Function, 101

InitVertexShader() Function, 101

ReadInShader() Function, 103

tempBuffer, 101, 103

uniform Mat4 shader variable, 105

vec3 uniform shader variable, float array, 105

vector3 uniform shader variable, vector3
object, 105

vertex attribute variable location, 104

shading language

built-in functions, 96

data types, 92

operators and expressions, 93
program flow control statements, 94
reserved variables, 96

storage qualifiers, 95

vector components, 92

texture

clamping and repeating, 130
class, 131

fragment shader, 134
magnification and minification, 130
UV coordinate mapping, 129

vertex shaders, 97, 134

PQ

Physics class
collisions

ApplyLinearlmpulse() function, 160

calculation, direction, 157

CheckForCollisionSphereBounding()
function, 156

CollisionStatus, values, 155

detection function, 157-158

distance, 157

ImpactRadiusSum variable, 156

m_CollisionNormal vector, 156

m_RelativeVelocity vector, 156

perfect collision, 156

variables, collision tolerance, 155

gravity grid, 164
motion

angular velocity and acceleration
variables, 141

applying gravity to an object, 144

applying rotation forces to an
object, 142-143

applying translational force, 142

Index 463

gravity-related variables, 142
linear-related physics variables, 141
static physics constants, 141
TestSetLimitValue function, 143-144
UpdateValueWithinLimit function, 143
updating object’s physics, 145-146
variable, m_Physics, 141
Player weapons and ammunition
CheckAmmoCaollision() function, 235
constructor, 231
CreateFiringSFX() function, 232
FindReadyAmmo() function, 235
Fire() function, 233, 236-237
GetActiveAmmo() function, 236
LoadAmmunition() function, 235
MAX_DEFAULTAMMO variable, 234
m_FireStatus variable, 231
PlayFiringSFX() function, 232
RenderAmmunition() function, 232
Reset() function, 232
ResetWeapon() function, 235
TurnOnOffSFX() function, 234
UpdateAmmunition() function, 232
Weapon Constructor, 234
PlaySound() function, 184-186
PowerPyramid Class, 226-227
ProcessEnterMenuSelection() function, 338
ProcessNextMenuSelection() function, 339
ProcessPreviousMenuSelection() function, 339
Pyramid Class, 225

Reaction force, native code
ApplyLinearlmpulse() Function, 415
Arena object turning, 415-416
CalculateCollisionlmpulseNative(), 414
collision, ammunition, 415, 417
DotProduct() function, 413
tank falling, 415-416

RenderEntryToMenu() function, 340

RenderHUD() function, 206

RenderMenu() function, 325

RenderTextToMenu() function, 339

RenderTitle() function, 332

RenderToBillBoard() function, 199

ResetGrid() function, 170

ResetMenu() function, 338

“RobsHelloWorld” Android project, 20
Rotational forces

inertia of hoop, 140

Torque, 140

S

Samsung Apps Store, 431
SaveHighScoreTable() function, 329
SetSFXOnOff()function, 186
SetText() function, 197-198
SharedPreferences
MainActivity class, 219
MyGLRenderer Class, 216-218
MyGLSurfaceView Class, 218
Object3d Class, 216
orientation class, 216
Physics class, 216
state object, loading and saving, 215
SlideMe, 432
Soc.lo Mall, 433
Software Development Kit (SDK), 433. See also
Android Software Development
Kit (SDK)
SortHighScoreTable() function, 332
Sound Class
constructor, 183-184
description, 183
m_Loop variable, 184
PlaySound() function, 184-185
Sounds
MyGLRenderer Class (see MyGLRenderer
Class)
on Android
Object3d Class (see Object3d Class)
sound class (see Sound Class)
Specular lighting, 119
StartApp
3D banner ad, 440
description, 439
exit ad, 440-441
interstitial ad, 439-440
search box, 442
splash screen, 442-443
Static physics constants, 141
Steering class
acceleration values, 285
clearing, 286

464 Index

Steering class (cont.)
horizontal, 284
horizontal steering value, 286
SetSteeringHorizontal() function, 286
setting speed, vehicle, 286
SpeedSteeringValues, 285
vertical, 284, 286

T

Tank finite state machine
adding state, 298
FSMDiriver class, 296
MAX_STATES variable, 297
m_CurrentState variable, 297
m_GoalState, 297
Reset() function, 297
resetting, 298
transitioning, 298
UpdateMachine() function, 299
updating, 299
TankFleet class
AddTankFleetToGravityGrid() function, 365
ProcessWeaponAmmoCollisionObject()
function, 365-366
ResetSet() function, 364
SetSoundOnOff() function, 364
TankFleet() constructor, 364
Tank graphic, Drone grid case study
pyramid2Vertices array, 273
tank 3D object, 274
Tank state, Drone Grid case study
base class, 276
CheckTransitions() function, 276
command state and patrol/attack state, 274
Enter() function, 276
Exit() function, 276
finite state machine, 275
FSM_StatesTank enumeration, 275
Init() function, 276
m_Parent variable, 275
m_StatelD variable, 276
patrol/attack state
constructor, 288
description, 287
entering state, 288
exiting, state, 289
FireTurretWeapon() function, 292

firing, 292
m_LastWayPoint variable, 287
m_NumberRoundsFired variable, 288
m_RoundsToFire variable, 287
m_StartTimeFiring variable, 288
m_Target variable, 287
m_TimelntervalBetweenFiring variable, 288
m_WayPointRadius variable, 287
m_WayPoint variable, 287
m_WeaponType variable, 287
speed, vehicle, 294
steering vehicle, current waypoint, 292
SteerVehicleToWayPointHorizontal()
function, 292
Turning, tank turret, 289
TurnTurretTowardTarget() function, 290
process commands, 283
Update() function, 276
TestSetLimitValue() function, 143-144
Touched() function, 323

UpdateHighScoreEntryMenu() function, 341
UpdateHighScoreTable() function, 333
UpdateHUD() function, 206
UpdateHUDItem() function, 204-205
UpdateHUDItemNumericalValue() function, 203
UpdateMenu() function, 326
UpdatePhysicsObiject() function, 144-146
UpdateValueWithinLimit function, 143
User interface
MyGLRenderer class

BillBoard object, 343

GameState, 342

High Score Entry Menu, 345

High Score Table, 343

Main Menu, 346

Menu Item, 345

m_GameState variable, 343

'}

Vectors and vector operations. See 3D
graphics
Vehicle commands
AlVehicleObjectsAffected enumeration, 277
clear, 282
ClearCommand() function, 282

Index

IncrementWayPointindex() function, 282

loading, 282

LoadState() function, 281
MatchCommand() function, 280
MAX_WAYPOINTS variable, 278
m_Command variable, 277
m_CurrentWayPointindex, 278
m_DeltaAmount variable, 278
m_Deltalncrement variable, 278
m_MaxValue variable, 278
m_MinValue variable, 278
m_NumberWayPoints variables, 278
m_ObjectsAffected variable, 278
m_TargetObject variable, 278
m_WayPoints array, 278
objects, command, 277
SaveState() function, 279

saving, 280

string command, enumeration, 280

string to AlVehicleObjectsAffected

enumeration, 281

Vehicle Constructor, 279

WayPoint Index increment, 282
Vertex shaders, 50, 91, 97, 258
Vertex transformation

model matrix building, 86

procedure, 86

projection matrix building, 89

view matrix building, 89

viewport setting, 90

WXYZ

Waypoint, next, 282, 289, 302

465

