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Preface to the Second Edition

Books attempting to serve as practical guides on the use of statistical software are always
at risk of becoming outdated as the software continues to develop, especially in an area of
statistics and data analysis that has received as much research attention as linear mixed
models. In fact, much has changed since the first publication of this book in early 2007, and
while we tried to keep pace with these changes on the web site for this book, the demand
for a second edition quickly became clear. There were also a number of topics that were
only briefly referenced in the first edition, and we wanted to provide more comprehensive
discussions of those topics in a new edition. This second edition of Linear Mized Models: A
Practical Guide Using Statistical Software aims to update the case studies presented in the
first edition using the newest versions of the various software procedures, provide coverage
of additional topics in the application of linear mixed models that we believe valuable for
data analysts from all fields, and also provide up-to-date information on the options and
features of the sofware procedures currently available for fitting linear mixed models in SAS,
SPSS, Stata, R/S-plus, and HLM.

Based on feedback from readers of the first edition, we have included coverage of the
following topics in this second edition:

e Models with crossed random effects, and software procedures capable of fitting these
models (see Chapter 8 for a new case study);

e Power analysis methods for longitudinal and clustered study designs, including software
options for power analyses and suggested approaches to writing simulations;

e Use of the lmer () function in the 1me4 package in R;
e Fitting linear mixed models to complex sample survey data;
e Bayesian approaches to making inferences based on linear mixed models; and

e Updated graphical procedures in the various software packages.

We hope that readers will find the updated coverage of these topics helpful for their
research activities.

We have substantially revised the subject index for the book to enable more efficient
reading and easier location of material on selected topics or software options. We have
also added more practical recommendations based on our experiences using the software
throughout each of the chapters presenting analysis examples. New sections discussing over-
all recommendations can be found at the end of each of these chapters. Finally, we have
created an R package named WWGbook that contains all of the data sets used in the example
chapters.

We will once again strive to keep readers updated on the web site for the book, and also
continue to provide working, up-to-date versions of the software code used for all of the
analysis examples on the web site. Readers can find the web site at the following address:
http://www.umich.edu/~bwest/almmussp.html.
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Preface to First Edition

The development of software for fitting linear mixed models was propelled by advances in
statistical methodology and computing power in the late twentieth century. These devel-
opments, while providing applied researchers with new tools, have produced a sometimes
confusing array of software choices. At the same time, parallel development of the method-
ology in different fields has resulted in different names for these models, including mixed
models, multilevel models, and hierarchical linear models. This book provides a reference
on the use of procedures for fitting linear mixed models available in five popular statis-
tical software packages (SAS, SPSS, Stata, R/S-plus, and HLM). The intended audience
includes applied statisticians and researchers who want a basic introduction to the topic
and an easy-to-navigate software reference.

Several existing texts provide excellent theoretical treatment of linear mixed models
and the analysis of variance components (e.g., McCulloch & Searle, 2001; Searle, Casella,
& McCulloch, 1992; Verbeke & Molenberghs, 2000); this book is not intended to be one
of them. Rather, we present the primary concepts and notation, and then focus on the
software implementation and model interpretation. This book is intended to be a refer-
ence for practicing statisticians and applied researchers, and could be used in an advanced
undergraduate or introductory graduate course on linear models.

Given the ongoing development and rapid improvements in software for fitting linear
mixed models, the specific syntax and available options will likely change as newer versions
of the software are released. The most up-to-date versions of selected portions of the syntax
associated with the examples in this book, in addition to many of the data sets used in
the examples, are available at the following web site: http://www.umich.edu/~bwest/
almmussp.html.
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1

Introduction

1.1 What Are Linear Mixed Models (LMMs)?

LMMs are statistical models for continuous outcome variables in which the residuals are
normally distributed but may not be independent or have constant variance. Study designs
leading to data sets that may be appropriately analyzed using LMMs include (1) studies with
clustered data, such as students in classrooms, or experimental designs with random blocks,
such as batches of raw material for an industrial process, and (2) longitudinal or repeated-
measures studies, in which subjects are measured repeatedly over time or under different
conditions. These designs arise in a variety of settings throughout the medical, biological,
physical, and social sciences. LMMs provide researchers with powerful and flexible analytic
tools for these types of data.

Although software capable of fitting LMMs has become widely available in the past
three decades, different approaches to model specification across software packages may
be confusing for statistical practitioners. The available procedures in the general-purpose
statistical software packages SAS, SPSS, R, and Stata take a similar approach to model
specification, which we describe as the “general” specification of an LMM. The hierarchical
linear model (HLM) software takes a hierarchical approach (Raudenbush & Bryk, 2002),
in which an LMM is specified explicitly in multiple levels, corresponding to the levels of
a clustered or longitudinal data set. In this book, we illustrate how the same models can
be fitted using either of these approaches. We also discuss model specification in detail in
Chapter 2 and present explicit specifications of the models fitted in each of our six example
chapters (Chapters 3 through 8).

The name linear mized models comes from the fact that these models are linear in the
parameters, and that the covariates, or independent variables, may involve a mix of fixed
and random effects. Fixed effects may be associated with continuous covariates, such as
weight, baseline test score, or socioeconomic status, which take on values from a continuous
(or sometimes a multivalued ordinal) range, or with factors, such as gender or treatment
group, which are categorical. Fixed effects are unknown constant parameters associated
with either continuous covariates or the levels of categorical factors in an LMM. Estimation
of these parameters in LMMs is generally of intrinsic interest, because they indicate the
relationships of the covariates with the continuous outcome variable. Readers familiar with
linear regression models but not LMMs specifically may know fixed effects as regression
coefficients.

When the levels of a categorical factor can be thought of as having been sampled from
a sample space, such that each particular level is not of intrinsic interest (e.g., classrooms
or clinics that are randomly sampled from a larger population of classrooms or clinics),
the effects associated with the levels of those factors can be modeled as random effects
in an LMM. In contrast to fixed effects, which are represented by constant parameters
in an LMM, random effects are represented by (unobserved) random variables, which are
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usually assumed to follow a normal distribution. We discuss the distinction between fixed
and random effects in more detail and give examples of each in Chapter 2.

With this book, we illustrate (1) a heuristic development of LMMs based on both gen-
eral and hierarchical model specifications, (2) the step-by-step development of the model-
building process, and (3) the estimation, testing, and interpretation of both fixed-effect
parameters and covariance parameters associated with random effects. We work through
examples of analyses of real data sets, using procedures designed specifically for the fitting
of LMMs in SAS, SPSS, R, Stata, and HLM. We compare output from fitted models across
the software procedures, address the similarities and differences, and give an overview of
the options and features available in each procedure.

1.1.1 Models with Random Effects for Clustered Data

Clustered data arise when observations are made on subjects within the same randomly
selected group. For example, data might be collected from students within the same class-
room, patients in the same clinic, or rat pups in the same litter. These designs involve units
of analysis nested within clusters. If the clusters can be considered to have been sampled
from a larger population of clusters, their effects can be modeled as random effects in an
LMM. In a designed experiment with blocking, such as a randomized block design, the
blocks are crossed with treatments, meaning that each treatment occurs once in each block.
Block effects are usually considered to be random. We could also think of blocks as clusters,
where treatment is a factor with levels that vary within clusters.

LMMs allow for the inclusion of both individual-level covariates (such as age and sex)
and cluster-level covariates (such as cluster size), while adjusting for the random effects
associated with each cluster. Although individual cluster-specific coefficients are not explic-
itly estimated, most LMM software produces cluster-specific “predictions” (EBLUPs, or
empirical best linear unbiased predictors) of the random cluster-specific effects. Estimates
of the variability of the random effects associated with clusters can then be obtained, and
inferences about the variability of these random effects in a greater population of clusters
can be made.

We note that traditional approaches to analysis of variance (ANOVA) models with
both fixed and random effects used expected mean squares to determine the appropriate
denominator for each F-test. Readers who learned mixed models under the expected mean
squares system will begin the study of LMMs with valuable intuition about model building,
although expected mean squares per se are now rarely mentioned.

We examine a two-level model with random cluster-specific intercepts for a two-level
clustered data set in Chapter 3 (the Rat Pup data). We then consider a three-level model
for data from a study with students nested within classrooms and classrooms nested within
schools in Chapter 4 (the Classroom data).

1.1.2 Models for Longitudinal or Repeated-Measures Data

Longitudinal data arise when multiple observations are made on the same subject or unit of
analysis over time. Repeated-measures data may involve measurements made on the same
unit over time, or under changing experimental or observational conditions. Measurements
made on the same variable for the same subject are likely to be correlated (e.g., measure-
ments of body weight for a given subject will tend to be similar over time). Models fitted
to longitudinal or repeated-measures data involve the estimation of covariance parameters
to capture this correlation.

The software procedures (e.g., the GLM, or General Linear Model, procedures in SAS
and SPSS) that were available for fitting models to longitudinal and repeated-measures
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data prior to the advent of software for fitting LMMs accommodated only a limited range
of models. These traditional repeated-measures ANOVA models assumed a multivariate
normal (MVN) distribution of the repeated measures and required either estimation of
all covariance parameters of the MVN distribution or an assumption of “sphericity” of the
covariance matrix (with corrections such as those proposed by Geisser & Greenhouse (1958)
or Huynh & Feldt (1976) to provide approximate adjustments to the test statistics to correct
for violations of this assumption). In contrast, LMM software, although assuming the MVN
distribution of the repeated measures, allows users to fit models with a broad selection
of parsimonious covariance structures, offering greater efficiency than estimating the full
variance-covariance structure of the MVN model, and more flexibility than models assuming
sphericity. Some of these covariance structures may satisfy sphericity (e.g., independence or
compound symmetry), and other structures may not (e.g., autoregressive or various types
of heterogeneous covariance structures). The LMM software procedures considered in this
book allow varying degrees of flexibility in fitting and testing covariance structures for
repeated-measures or longitudinal data.

Software for LMMs has other advantages over software procedures capable of fitting
traditional repeated-measures ANOVA models. First, LMM software procedures allow sub-
jects to have missing time points. In contrast, software for traditional repeated-measures
ANOVA drops an entire subject from the analysis if the subject has missing data for a
single time point, known as complete-case analysis (Little & Rubin, 2002). Second, LMMs
allow for the inclusion of time-varying covariates in the model (in addition to a covariate
representing time), whereas software for traditional repeated-measures ANOVA does not.
Finally, LMMs provide tools for the situation in which the trajectory of the outcome varies
over time from one subject to another. Examples of such models include growth curve
models, which can be used to make inference about the variability of growth curves in the
larger population of subjects. Growth curve models are examples of random coefficient
models (or Laird-Ware models), which will be discussed when considering the longitudinal
data in Chapter 6 (the Autism data).

In Chapter 5, we consider LMMs for a small repeated-measures data set with two within-
subject factors (the Rat Brain data). We consider models for a data set with features of both
clustered and longitudinal data in Chapter 7 (the Dental Veneer data). Finally, we consider
a unique educational data set with repeated measures on both students and teachers over
time in Chapter 8 (the SAT score data), to illustrate the fitting of models with crossed
random effects.

1.1.3 The Purpose of This Book

This book is designed to help applied researchers and statisticians use LMMs appropriately
for their data analysis problems, employing procedures available in the SAS, SPSS, Stata,
R, and HLM software packages. It has been our experience that examples are the best
teachers when learning about LMMs. By illustrating analyses of real data sets using the
different software procedures, we demonstrate the practice of fitting LMMs and highlight
the similarities and differences in the software procedures.

We present a heuristic treatment of the basic concepts underlying LMMs in Chapter
2. We believe that a clear understanding of these concepts is fundamental to formulating
an appropriate analysis strategy. We assume that readers have a general familiarity with
ordinary linear regression and ANOVA models, both of which fall under the heading of
general (or standard) linear models. We also assume that readers have a basic working
knowledge of matrix algebra, particularly for the presentation in Chapter 2.

Nonlinear mixed models and generalized LMMs (in which the dependent variable may
be a binary, ordinal, or count variable) are beyond the scope of this book. For a discussion of
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nonlinear mixed models, see Davidian & Giltinan (1995), and for references on generalized
LMDMs, see Diggle et al. (2002) or Molenberghs & Verbeke (2005). We also do not consider
spatial correlation structures; for more information on spatial data analysis, see Gregoire
et al. (1997). A general overview of current research and practice in multilevel modeling
for all types of dependent variables can be found in the recently published (2013) edited
volume entitled The Sage Handbook of Multilevel Modeling.

This book should not be substituted for the manuals of any of the software packages
discussed. Although we present aspects of the LMM procedures available in each of the five
software packages, we do not present an exhaustive coverage of all available options.

1.1.4 Outline of Book Contents

Chapter 2 presents the notation and basic concepts behind LMMs and is strongly recom-
mended for readers whose aim is to understand these models. The remaining chapters are
dedicated to case studies, illustrating some of the more common types of LMM analyses
with real data sets, most of which we have encountered in our work as statistical consul-
tants. Each chapter presenting a case study describes how to perform the analysis using
each software procedure, highlighting features in one of the statistical software packages in
particular.

In Chapter 3, we begin with an illustration of fitting an LMM to a simple two-level
clustered data set and emphasize the SAS software. Chapter 3 presents the most detailed
coverage of setting up the analyses in each software procedure; subsequent chapters do not
provide as much detail when discussing the syntax and options for each procedure. Chapter
4 introduces models for three-level data sets and illustrates the estimation of variance com-
ponents associated with nested random effects. We focus on the HLM software in Chapter 4.
Chapter 5 illustrates an LMM for repeated-measures data arising from a randomized block
design, focusing on the SPSS software. Examples in the second edition of this book were
constructed using IBM SPSS Statistics Version 21, and all SPSS syntax presented should
work in earlier versions of SPSS.

Chapter 6 illustrates the fitting of a random coefficient model (specifically, a growth
curve model), and emphasizes the R software. Regarding the R software, the examples have
been constructed using the 1me() and lmer () functions, which are available in the nlme
and 1me4 packages, respectively. Relative to the 1lme () function, the lmer () function offers
improved estimation of LMMSs with crossed random effects. More generally, each of these
functions has particular advantages depending on the data structure and the model being
fitted, and we consider these differences in our example chapters. Chapter 7 highlights
the Stata software and combines many of the concepts introduced in the earlier chapters
by introducing a model for clustered longitudinal data, which includes both random effects
and correlated residuals. Finally, Chapter 8 discusses a case study involving crossed random
effects, and highlights the use of the 1mer () function in R.

The analyses of examples in Chapters 3, 5, and 7 all consider alternative, heterogeneous
covariance structures for the residuals, which is a very important feature of LMMSs that
makes them much more flexible than alternative linear modeling tools. At the end of each
chapter presenting a case study, we consider the similarities and differences in the results
generated by the software procedures. We discuss reasons for any discrepancies, and make
recommendations for use of the various procedures in different settings.

Appendix A presents several statistical software resources. Information on the back-
ground and availability of the statistical software packages SAS (Version 9.3), IBM SPSS
Statistics (Version 21), Stata (Release 13), R (Version 3.0.2), and HLM (Version 7) is pro-
vided in addition to links to other useful mixed modeling resources, including web sites for
important materials from this book. Appendix B revisits the Rat Brain analysis from Chap-
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ter 5 to illustrate the calculation of the marginal variance-covariance matrix implied by one
of the LMMSs considered in that chapter. This appendix is designed to provide readers with
a detailed idea of how one models the covariance of dependent observations in clustered
or longitudinal data sets. Finally, Appendix C presents some commonly used abbreviations
and acronyms associated with LMMs.

1.2 A Brief History of LMMs

Some historical perspective on this topic is useful. At the very least, while LMMs might
seem difficult to grasp at first, it is comforting to know that scores of people have spent over
a hundred years sorting it all out. The following subsections highlight many (but not nearly
all) of the important historical developments that have led to the widespread use of LMMs
today. We divide the key historical developments into two categories: theory and software.
Some of the terms and concepts introduced in this timeline will be discussed in more detail
later in the book. For additional historical perspective, we refer readers to Brown & Prescott
(2006).

1.2.1 Key Theoretical Developments

The following timeline presents the evolution of the theoretical basis of LMMs:

1861: The first known formulation of a one-way random-effects model (an LMM with one
random factor and no fixed factors) is that by Airy, which was further clarified by Scheffé
in 1956. Airy made several telescopic observations on the same night (clustered data)
for several different nights and analyzed the data separating the variance of the random
night effects from the random within-night residuals.

1863: Chauvenet calculated variances of random effects in a simple random-effects model.

1925: Fisher’s book Statistical Methods for Research Workers outlined the general method
for estimating variance components, or partitioning random variation into components
from different sources, for balanced data.

1927: Yule assumed explicit dependence of the current residual on a limited number of the
preceding residuals in building pure serial correlation models.

1931: Tippett extended Fisher’s work into the linear model framework, modeling quantities
as a linear function of random variations due to multiple random factors. He also clarified
an ANOVA method of estimating the variances of random effects.

1935: Neyman, Iwaszkiewicz, and Kolodziejczyk examined the comparative efficiency of
randomized blocks and Latin squares designs and made extensive use of LMMs in their
work.

1938: The seventh edition of Fisher’s 1925 work discusses estimation of the intraclass
correlation coefficient (ICC).

1939: Jackson assumed normality for random effects and residuals in his description of
an LMM with one random factor and one fixed factor. This work introduced the term
effect in the context of LMMs. Cochran presented a one-way random-effects model for
unbalanced data.

1940: Winsor and Clarke, and also Yates, focused on estimating variances of random effects
in the case of unbalanced data. Wald considered confidence intervals for ratios of variance
components. At this point, estimates of variance components were still not unique.
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1941: Ganguli applied ANOVA estimation of variance components associated with random
effects to nested mixed models.

1946: Crump applied ANOVA estimation to mixed models with interactions. Ganguli and
Crump were the first to mention the problem that ANOVA estimation can produce
negative estimates of variance components associated with random effects. Satterthwaite
worked with approximate sampling distributions of variance component estimates and
defined a procedure for calculating approximate degrees of freedom for approximate
F-statistics in mixed models.

1947: Eisenhart introduced the “mixed model” terminology and formally distinguished
between fixed- and random-effects models.

1950: Henderson provided the equations to which the BLUPs of random effects and fixed
effects were the solutions, known as the mized model equations (MMESs).

1952: Anderson and Bancroft published Statistical Theory in Research, a book providing
a thorough coverage of the estimation of variance components from balanced data and
introducing the analysis of unbalanced data in nested random-effects models.

1953: Henderson produced the seminal paper “Estimation of Variance and Covariance
Components” in Biometrics, focusing on the use of one of three sums of squares methods
in the estimation of variance components from unbalanced data in mixed models (the
Type III method is frequently used, being based on a linear model, but all types are
available in statistical software packages). Various other papers in the late 1950s and
1960s built on these three methods for different mixed models.

1965: Rao was responsible for the systematic development of the growth curve model, a
model with a common linear time trend for all units and unit-specific random intercepts
and random slopes.

1967: Hartley and Rao showed that unique estimates of variance components could be
obtained using maximum likelihood methods, using the equations resulting from the
matrix representation of a mixed model (Searle et al., 1992). However, the estimates of
the variance components were biased downward because this method assumes that fixed
effects are known and not estimated from data.

1968: Townsend was the first to look at finding minimum variance quadratic unbiased
estimators of variance components.

1971: Restricted maximum likelihood (REML) estimation was introduced by Patterson &
Thompson (1971) as a method of estimating variance components (without assuming
that fixed effects are known) in a general linear model with unbalanced data. Likelihood-
based methods developed slowly because they were computationally intensive. Searle
described confidence intervals for estimated variance components in an LMM with one
random factor.

1972: Gabriel developed the terminology of ante-dependence of order p to describe a model
in which the conditional distribution of the current residual, given its predecessors, de-
pends only on its p predecessors. This leads to the development of the first-order autore-
gressive AR(1) process (appropriate for equally spaced measurements on an individual
over time), in which the current residual depends stochastically on the previous residual.
Rao completed work on minimum-norm quadratic unbiased equation (MINQUE) esti-
mators, which demand no distributional form for the random effects or residual terms
(Rao, 1972). Lindley and Smith introduced HLMs.

1976: Albert showed that without any distributional assumptions at all, ANOVA estima-
tors are the best quadratic unbiased estimators of variance components in LMMs, and
the best unbiased estimators under an assumption of normality.
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Mid-1970s onward: LMMs are frequently applied in agricultural settings, specifically
split-plot designs (Brown & Prescott, 2006).

1982: Laird and Ware described the theory for fitting a random coefficient model in a
single stage (Laird & Ware, 1982). Random coefficient models were previously handled
in two stages: estimating time slopes and then performing an analysis of time slopes for
individuals.

1985: Khuri and Sahai provided a comprehensive survey of work on confidence intervals
for estimated variance components.

1986: Jennrich and Schluchter described the use of different covariance pattern models
for analyzing repeated-measures data and how to choose between them (Jennrich &
Schluchter, 1986). Smith and Murray formulated variance components as covariances
and estimated them from balanced data using the ANOVA procedure based on quadratic
forms. Green would complete this formulation for unbalanced data. Goldstein introduced
iteratively reweighted generalized least squares.

1987: Results from Self & Liang (1987) and later from Stram & Lee (1994) made testing
the significance of variance components feasible.

1990: Verbyla and Cullis applied REML in a longitudinal data setting.

1994: Diggle, Liang, and Zeger distinguished between three types of random variance com-
ponents: random effects and random coefficients, serial correlation (residuals close to
each other in time are more similar than residuals farther apart), and random measure-
ment error (Diggle et al., 2002).

1990s onward: LMMs become increasingly popular in medicine (Brown & Prescott, 2006)
and in the social sciences (Raudenbush & Bryk, 2002), where they are also known as
multilevel models or hierarchical linear models (HLMs).

1.2.2 Key Software Developments

Some important landmarks are highlighted here:

1982: Bryk and Raudenbush first published the HLM computer program.

1988: Schluchter and Jennrich first introduced the BMDP5-V software routine for unbal-
anced repeated-measures models.

1992: SAS introduced proc mixed as a part of the SAS/STAT analysis package.

1995: StataCorp released Stata Release 5, which offered the xtreg procedure for fitting
models with random effects associated with a single random factor, and the xtgee
procedure for fitting models to panel data using the Generalized Estimation Equations
(GEE) methodology.

1998: Bates and Pinheiro introduced the generic linear mixed-effects modeling function
1lme () for the R software package.

2001: Rabe-Hesketh et al. collaborated to write the Stata command gllamm for fitting
LMMs (among other types of models). SPSS released the first version of the MIXED
procedure as part of SPSS version 11.0.

2005: Stata made the general LMM command xtmixed available as a part of Stata Release
9, and this would later become the mixed command in Stata Release 13. Bates introduced
the 1mer () function for the R software package.
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Linear Mixed Models: An Overview

2.1 Introduction

A linear mixed model (LMM) is a parametric linear model for clustered, longitudinal, or
repeated-measures data that quantifies the relationships between a continuous dependent
variable and various predictor variables. An LMM may include both fixed-effect parame-
ters associated with one or more continuous or categorical covariates and random effects
associated with one or more random factors. The mix of fixed and random effects gives the
linear mized model its name. Whereas fixed-effect parameters describe the relationships of
the covariates to the dependent variable for an entire population, random effects are specific
to clusters or subjects within a population. Consequently, random effects are directly used
in modeling the random variation in the dependent variable at different levels of the data.

In this chapter, we present a heuristic overview of selected concepts important for an
understanding of the application of LMMs. In Subsection 2.1.1, we describe the types and
structures of data that we analyze in the example chapters (Chapters 3 through 8). In
Subsection 2.1.2, we present basic definitions and concepts related to fixed and random
factors and their corresponding effects in an LMM. In Sections 2.2 through 2.4, we specify
LMMs in the context of longitudinal data, and discuss parameter estimation methods. In
Sections 2.5 through 2.10, we present other aspects of LMMs that are important when
fitting and evaluating models.

We assume that readers have a basic understanding of standard linear models, including
ordinary least-squares regression, analysis of variance (ANOVA), and analysis of covariance
(ANCOVA) models. For those interested in a more advanced presentation of the theory and
concepts behind LMMs, we recommend Verbeke & Molenberghs (2000).

2.1.1 Types and Structures of Data Sets
2.1.1.1 Clustered Data vs. Repeated-Measures and Longitudinal Data

In the example chapters of this book, we illustrate fitting linear mixed models to clustered,
repeated-measures, and longitudinal data. Because different definitions exist for these types
of data, we provide our definitions for the reader’s reference.

We define clustered data as data sets in which the dependent variable is measured
once for each subject (the unit of analysis), and the units of analysis are grouped into, or
nested within, clusters of units. For example, in Chapter 3 we analyze the birth weights
of rat pups (the units of analysis) nested within litters (clusters of units). We describe the
Rat Pup data as a two-level clustered data set. In Chapter 4 we analyze the math scores
of students (the units of analysis) nested within classrooms (clusters of units), which are
in turn nested within schools (clusters of clusters). We describe the Classroom data as a
three-level clustered data set.

We define repeated-measures data quite generally as data sets in which the dependent
variable is measured more than once on the same unit of analysis across levels of a repeated-

9



10 Linear Mized Models: A Practical Guide Using Statistical Software

measures factor (or factors). The repeated-measures factors, which may be time or other
experimental or observational conditions, are often referred to as within-subject factors. For
example, in the Rat Brain example in Chapter 5, we analyze the activation of a chemical
measured in response to two treatments across three brain regions within each rat (the unit
of analysis). Both brain region and treatment are repeated-measures factors. Dropout of
subjects is not usually a concern in the analysis of repeated-measures data, although there
may be missing data because of an instrument malfunction or due to other unanticipated
reasons.

By longitudinal data, we mean data sets in which the dependent variable is measured
at several points in time for each unit of analysis. We usually conceptualize longitudinal
data as involving at least two repeated measurements made over a relatively long period of
time. For example, in the Autism example in Chapter 6, we analyze the socialization scores
of a sample of autistic children (the subjects or units of analysis), who are each measured
at up to five time points (ages 2, 3, 5, 9, and 13 years). In contrast to repeated-measures
data, dropout of subjects is often a concern in the analysis of longitudinal data.

In some cases, when the dependent variable is measured over time, it may be difficult
to classify data sets as either longitudinal or repeated-measures data. In the context of
analyzing data using LMMs, this distinction is not critical. The important feature of both
of these types of data is that the dependent variable is measured more than once for each
unit of analysis, with the repeated measures likely to be correlated.

Clustered longitudinal data sets combine features of both clustered and longitudinal
data. More specifically, the units of analysis are nested within clusters, and each unit is
measured more than once. In Chapter 7 we analyze the Dental Veneer data, in which teeth

TABLE 2.1: Hierarchical Structures of the Example Data Sets Considered in Chapters 3
through 7

Clustered Repeated-Measures/
Data Type Data Longitudinal Data
Two-Level Three- Repeated- Longitu- Clustered

Level Measures dinal Longitudinal
Data set Rat Pup Classroom  Rat Brain Autism Dental Veneer
(Chap.) (Chap. 3) (Chap. 4) (Chap. 5) (Chap. 6) (Chap. 7)
Repeated/ Spanned by Age in Time in
longitudinal brain years months
measures (1) region and

treatment

Subject/unit Rat Pup | Student | | Rat | | Child | | Tooth |
of analysis (i)
Cluster of Litter Classroom Patient
units (j)
Cluster of School

clusters (k)

Note: Ttalicized terms in boxes indicate the unit of analysis for each study; (¢,1, j, k) indices
shown here are used in the model notation presented later in this book.
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(the units of analysis) are nested within a patient (a cluster of units), and each tooth is
measured at multiple time points (i.e., at 3 months and 6 months post-treatment).

We refer to clustered, repeated-measures, and longitudinal data as hierarchical data
sets, because the observations can be placed into levels of a hierarchy in the data. In Ta-
ble 2.1, we present the hierarchical structures of the example data sets. The distinction
between repeated-measures/longitudinal data and clustered data is reflected in the pres-
ence or absence of a blank cell in the row of Table 2.1 labeled “Repeated/Longitudinal
Measures.”

In Table 2.1 we also introduce the index notation used in the remainder of the book. In
particular, we use the index ¢ to denote repeated/longitudinal measurements, the index ¢
to denote subjects or units of analysis, and the index j to denote clusters. The index k is
used in models for three-level clustered data to denote “clusters of clusters.”

We note that Table 2.1 does not include the example data set from Chapter 8, which
features crossed random factors. In these cases, there is not an explicit hierarchy present in
the data. We discuss crossed random effects in more detail in Subsection 2.1.2.5.

2.1.1.2 Levels of Data

We can also think of clustered, repeated-measures, and longitudinal data sets as multilevel
data sets, as shown in Table 2.2. The concept of “levels” of data is based on ideas from the
hierarchical linear modeling (HLM) literature (Raudenbush & Bryk, 2002). All data sets
appropriate for an analysis using LMMs have at least two levels of data. We describe the
example data sets that we analyze as two-level or three-level data sets, depending on
how many levels of data are present. One notable exception is data sets with crossed random
factors (Chapter 8), which do not have an explicit hierarchy due to the fact that levels of one
random factor are not nested within levels of other random factors (see Subsection 2.1.2.5).
We consider data with at most three levels (denoted as Level 1, Level 2, or Level 3)
in the examples illustrated in this book, although data sets with additional levels may be
encountered in practice:

Level 1 denotes observations at the most detailed level of the data. In a clustered data set,
Level 1 represents the units of analysis (or subjects) in the study. In a repeated-measures
or longitudinal data set, Level 1 represents the repeated measures made on the same
unit of analysis. The continuous dependent variable is always measured at Level 1 of
the data.

Level 2 represents the next level of the hierarchy. In clustered data sets, Level 2 observa-
tions represent clusters of units. In repeated-measures and longitudinal data sets, Level
2 represents the units of analysis.

Level 3 represents the next level of the hierarchy, and generally refers to clusters of units
in clustered longitudinal data sets, or clusters of Level 2 units (clusters of clusters) in
three-level clustered data sets.

We measure continuous and categorical variables at different levels of the data, and we
refer to the variables as Level 1, Level 2, or Level 3 variables (with the exception of
models with crossed random effects, as in Chapter 8).

The idea of levels of data is explicit when using the HLM software, but it is implicit
when using the other four software packages. We have emphasized this concept because
we find it helpful to think about LMMs in terms of simple models defined at each level
of the data hierarchy (the approach to specifying LMMs in the HLM software package),
instead of only one model combining sources of variation from all levels (the approach to
LMMs used in the other software procedures). However, when using the paradigm of levels
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TABLE 2.2: Multiple Levels of the Hierarchical Data Sets Considered in Each Chapter

Clustered Repeated-Measures/
Data Type Data Longitudinal Data
Two-Level Three- Repeated- Longitu- Clustered
Level Measures dinal Longitudinal
Data set Rat Pup Classroom  Rat Brain Autism Dental Veneer
(Chap.) (Chap. 3) (Chap. 4) (Chap. 5) (Chap. 6) (Chap. 7)
Level 1 Rat Pup Student Repeated Longitudinal Longitudinal
measures measures measures
(spanned (age in (time in
by brain years) months)
region and
treatment)
Level 2 Litter Classroom | Child | | Tooth |
Level 3 School Patient

Note: Italicized terms in boxes indicate the units of analysis for each study.

of data, the distinction between clustered vs. repeated-measures/longitudinal data becomes
less obvious, as illustrated in Table 2.2.

2.1.2 Types of Factors and Their Related Effects in an LMM

The distinction between fixed and random factors and their related effects on a dependent
variable is critical in the context of LMMs. We therefore devote separate subsections to
these topics.

2.1.2.1 Fixed Factors

The concept of a fixed factor is most commonly used in the setting of a standard ANOVA
or ANCOVA model. We define a fixed factor as a categorical or classification variable,
for which the investigator has included all levels (or conditions) that are of interest in
the study. Fixed factors might include qualitative covariates, such as gender; classification
variables implied by a survey sampling design, such as region or stratum, or by a study
design, such as the treatment method in a randomized clinical trial; or ordinal classification
variables in an observational study, such as age group. Levels of a fixed factor are chosen
so that they represent specific conditions, and they can be used to define contrasts (or sets
of contrasts) of interest in the research study.

2.1.2.2 Random Factors

A random factor is a classification variable with levels that can be thought of as being
randomly sampled from a population of levels being studied. All possible levels of the
random factor are not present in the data set, but it is the researcher’s intention to make
inferences about the entire population of levels. The classification variables that identify the
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Level 2 and Level 3 units in both clustered and repeated-measures/longitudinal data sets
are often considered to be random factors. Random factors are considered in an analysis so
that variation in the dependent variable across levels of the random factors can be assessed,
and the results of the data analysis can be generalized to a greater population of levels of
the random factor.

2.1.2.3 Fixed Factors vs. Random Factors

In contrast to the levels of fixed factors, the levels of random factors do not represent
conditions chosen specifically to meet the objectives of the study. However, depending on
the goals of the study, the same factor may be considered either as a fixed factor or a
random factor, as we note in the following paragraph.

In the Dental Veneer data analyzed in Chapter 7, the dependent variable (Gingival
Crevicular Fluid, or GCF) is measured repeatedly on selected teeth within a given patient,
and the teeth are numbered according to their location in the mouth. In our analysis, we
assume that the teeth measured within a given patient represent a random sample of all
teeth within the patient, which allows us to generalize the results of the analysis to the
larger hypothetical “population” of “teeth within patients.” In other words, we consider
“tooth within patient” to be a random factor. If the research had been focused on the
specific differences between the selected teeth considered in the study, we might have treated
“tooth within patient” as a fixed factor. In this latter case, inferences would have only been
possible for the selected teeth in the study, and not for all teeth within each patient.

2.1.2.4 Fixed Effects vs. Random Effects

Fixed effects, called regression coefficients or fixed-effect parameters, describe the re-
lationships between the dependent variable and predictor variables (i.e., fixed factors or
continuous covariates) for an entire population of units of analysis, or for a relatively small
number of subpopulations defined by levels of a fixed factor. Fixed effects may describe
contrasts or differences between levels of a fixed factor (e.g., between males and females)
in terms of mean responses for the continuous dependent variable, or they may describe
the relationship of a continuous covariate with the dependent variable. Fixed effects are
assumed to be unknown fized quantities in an LMM, and we estimate them based on our
analysis of the data collected in a given research study.

Random effects are random values associated with the levels of a random factor (or
factors) in an LMM. These values, which are specific to a given level of a random factor,
usually represent random deviations from the relationships described by fixed effects. For
example, random effects associated with the levels of a random factor can enter an LMM
as random intercepts (representing random deviations for a given subject or cluster from
the overall fixed intercept), or as random coefficients (representing random deviations
for a given subject or cluster from the overall fixed effects) in the model. In contrast to fixed
effects, random effects are represented as random variables in an LMM.

In Table 2.3, we provide examples of the interpretation of fixed and random effects in an
LMM, based on the analysis of the Autism data (a longitudinal study of socialization among
autistic children) presented in Chapter 6. There are two covariates under consideration
in this example: the continuous covariate AGE, which represents a child’s age in years at
which the dependent variable was measured, and the fixed factor SICDEGP, which identifies
groups of children based on their expressive language score at baseline (age 2). The fixed
effects associated with these covariates apply to the entire population of children. The
classification variable CHILDID is a unique identifier for each child, and is considered to be
a random factor in the analysis. The random effects associated with the levels of CHILDID
apply to specific children.
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TABLE 2.3: Examples of the Interpretation of Fixed and Random Effects in an LMM Based
on the Autism Data Analyzed in Chapter 6

Effect Predictor Vari- Effect Applies to Possible Interpre-
Type ables Associated tation of Effects
with Each Effect
Fixed Variable Entire population Mean of the

corresponding to the dependent variable
intercept (i.e., equal to when all covariates are
1 for all observations) equal to zero
AGE Entire population Fixed slope for AGE

(i.e., expected change
in the dependent
variable for a 1-year
increase in AGE)

SICDEGP1, Entire population Contrasts for different

SICDEGP2 within each levels of SICDEGP

(indicators for baseline subgroup of (i.e., mean differences

expressive language SICDEGP in the dependent

groups; reference level variable for children in

is SICDEGP3) Level 1 and Level 2 of
SICDEGP, relative to
Level 3)

Random Variable CHILDID Child-specific random
corresponding to the (individual child) deviation from the
intercept fixed intercept
AGE CHILDID Child-specific random

(individual child) deviation from the

fixed slope for AGE

2.1.2.5 Nested vs. Crossed Factors and Their Corresponding Effects

When a particular level of a factor (random or fixed) can only be measured within a single
level of another factor and not across multiple levels, the levels of the first factor are said
to be nested within levels of the second factor. The effects of the nested factor on the
response are known as nested effects. For example, in the Classroom data set analyzed in
Chapter 4, both schools and classrooms within schools were randomly sampled. Levels of
classroom (one random factor) are nested within levels of school (another random factor),
because each classroom can appear within only one school.

When a given level of a factor (random or fixed) can be measured across multiple levels of
another factor, one factor is said to be crossed with another, and the effects of these factors
on the dependent variable are known as crossed effects. For example, in the analysis of
the Rat Pup data in Chapter 3, we consider two crossed fixed factors: TREATMENT and
SEX. Specifically, levels of TREATMENT are crossed with the levels of SEX, because both
male and female rat pups are studied for each level of treatment.
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We consider crossed random factors and their associated random effects in Chapter 8
of this book. In this chapter, we analyze a data set from an educational study in which
there are multiple measures collected over time on a random sample of students within a
school, and multiple students are instructed by the same randomly sampled teacher at a
given point in time. A reasonable LMM for these data would include random student effects
and random teacher effects, and the levels of the random student and teacher factors are
crossed with each other.

Software Note: Estimation of the parameters in LMMs with crossed random effects is
more computationally intensive than for LMMs with nested random effects, primarily
due to the fact that the design matrices associated with the crossed random effects
are no longer block-diagonal; see Chapter 15 of Galecki & Burzykowski (2013) for
more discussion of this point. The lmer () function in R, which is available in the
1me4 package, was designed to optimize the estimation of parameters in LMMs with
crossed random effects via the use of sparse matrices (see http://pages.cs.wisc.
edu/~bates/reports/MixedEffects.pdf, or Fellner (1987)), and we recommend its
use for such problems. SAS proc hpmixed also uses sparse matrices when fitting these
models. Each of these procedures in SAS and R can increase the efficiency of model-
fitting algorithms for larger data sets with crossed random factors; models with crossed
random effects can also be fitted using SAS proc mixed. We present examples of fitting
models with crossed random effects in the various software packages in Chapter 8.

Crossed and nested effects also apply to interactions of continuous covariates and cat-
egorical factors. For example, in the analysis of the Autism data in Chapter 6, we discuss
the crossed effects of the continuous covariate, AGE, and the categorical factor, SICDEGP
(expressive language group), on children’s socialization scores.

2.2 Specification of LMMs

The general specification of an LMM presented in this section refers to a model for a
longitudinal two-level data set, with the first index, ¢, being used to indicate a time point,
and the second index, 4, being used for subjects. We use a similar indexing convention (index
t for Level 1 units, and index ¢ for Level 2 units) in Chapters 5 through 7, which illustrate
analyses involving repeated-measures and longitudinal data.

In Chapters 3 and 4, in which we consider analyses of clustered data, we specify the
models in a similar way but follow a modified indexing convention. More specifically, we use
the first index, 4, for Level 1 units, the second index, j, for Level 2 units (in both chapters),
and the third index, k, for Level 3 units (in Chapter 4 only). Refer to Table 2.1 for more
details.

In both of these conventions, the unit of analysis is indexed by i. We define the index
notation in Table 2.1 and in each of the chapters presenting example analyses.

2.2.1 General Specification for an Individual Observation

We begin with a simple and general formula that indicates how most of the components
of an LMM can be written at the level of an individual observation in the context of a
longitudinal two-level data set. The specification of the remaining components of the LMM,
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which in general requires matrix notation, is deferred to Subsection 2.2.2. In the example
chapters we proceed in a similar manner; that is, we specify the models at the level of an
individual observation for ease of understanding, followed by elements of matrix notation.

For the sake of simplicity, we specify an LMM in (2.1) for a hypothetical two-level
longitudinal data set. In this specification, Y;; represents the measure of the continuous
response variable Y taken on the ¢-th occasion for the i-th subject.

V=P x X+ By x X+ B3 x XP 4. 48, x xXP) (fixed)
+ U X Zt(il) + o ug X Zt(f) + e (random) (2.1)

The value of t (¢t = 1,...,n;), indexes the n; longitudinal observations of the depen-
dent variable for a given subject, and @ (¢ = 1,...,m) indicates the i-th subject (unit of
analysis). We assume that the model involves two sets of covariates, namely the X and
Z covariates. The first set contains p covariates, XM, ..., X associated with the fixed
effects 31,...,B3p. The second set contains ¢ covariates, ZW .. 7@ associated with the
random effects uy;, ..., uq that are specific to subject ¢. The X and/or Z covariates may
be continuous or indicator variables. The indices for the X and Z covariates are denoted
by superscripts so that they do not interfere with the subscript indices, ¢ and 4, for the
elements in the design matrices, X; and Z;, presented in Subsection 2.2.2.! For each X co-
variate, X(1), ..., X®) the elements Xt(il), ey Xt(f) represent the ¢-th observed value of the
corresponding covariate for the i-th subject. We assume that the p covariates may be either
time-invariant characteristics of the individual subject (e.g., gender) or time-varying for
each measurement (e.g., time of measurement, or weight at each time point).

Each S parameter represents the fixed effect of a one-unit change in the corresponding
X covariate on the mean value of the dependent variable, Y, assuming that the other
covariates remain constant at some value. These 8 parameters are fixed effects that we
wish to estimate, and their linear combination with the X covariates defines the fixed
portion of the model.

The effects of the Z covariates on the response variable are represented in the random
portion of the model by the ¢ random effects, 11, ..., uq, associated with the i-th subject.
In addition, &4 represents the residual associated with the ¢-th observation on the i-th
subject. The random effects and residuals in (2.1) are random variables, with values drawn
from distributions that are defined in (2.3) and (2.4) in the next section using matrix
notation. We assume that for a given subject, the residuals are independent of the random
effects.

The individual observations for the i-th subject in (2.1) can be combined into vectors
and matrices, and the LMM can be specified more efficiently using matrix notation as shown
in the next section. Specifying an LMM in matrix notation also simplifies the presentation
of estimation and hypothesis tests in the context of LMMs.

2.2.2 General Matrix Specification

We now consider the general matrix specification of an LMM for a given subject i, by
stacking the formulas specified in Subsection 2.2.1 for individual observations indexed by ¢
into vectors and matrices.

1In Chapters 3 through 7, in which we analyze real data sets, our superscript notation for the covariates

in (2.1) is replaced by actual variable names (e.g., for the Autism data in Chapter 6, Xg) might be replaced
by AGEy;, the t-th age at which child 7 is measured).
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Yi=XiB+Zu; +¢;
—~—  ——
fixed random
(2.2)
u; ~ N(O, D)
E; ~ N(O, Rz)

In (2.2), Y; represents a vector of continuous responses for the i-th subject. We present
elements of the Y; vector as follows, drawing on the notation used for an individual obser-
vation in (2.1):

Y,

Yo,
Y; = ]
Ynzi

Note that the number of elements, n;, in the vector Y; may vary from one subject to
another.
The X; in (2.2) is an n; x p design matrix, which represents the known values of the p

covariates, XM, ..., X for each of the n; observations collected on the i-th subject:
XXy Xy
e
X0 XX

In a model including an intercept term, the first column would simply be equal to 1 for
all observations. Note that all elements in a column of the X; matrix corresponding to a
time-invariant (or subject-specific) covariate will be the same. For ease of presentation, we
assume that the X; matrices are of full rank; that is, none of the columns (or rows) is a
linear combination of the remaining ones. In general, X; matrices may not be of full rank,
and this may lead to an aliasing (or parameter identifiability) problem for the fixed effects
stored in the vector 8 (see Subsection 2.9.3).

The 3 in (2.2) is a vector of p unknown regression coefficients (or fixed-effect parameters)
associated with the p covariates used in constructing the X; matrix:

B
B2
Bp
The n; X ¢ matrix Z; in (2.2) is a design matrix that represents the known values of
the ¢ covariates, Z(), ..., Z(@ for the i-th subject. This matrix is very much like the X;

matrix in that it represents the observed values of covariates; however, it usually has fewer
columns than the X; matrix:

zy) 7 - 7y
z—| T

2 2% .. 2

n;
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The columns in the Z; matrix represent observed values for the ¢ predictor variables for
the i-th subject, which have effects on the continuous response variable that vary randomly
across subjects. In many cases, predictors with effects that vary randomly across subjects
are represented in both the X; matrix and the Z; matrix. In an LMM in which only the
intercepts are assumed to vary randomly from subject to subject, the Z; matrix would
simply be a column of 1’s.

The u; vector for the i-th subject in (2.2) represents a vector of ¢ random effects
(defined in Subsection 2.1.2.4) associated with the ¢ covariates in the Z; matrix:

U1q

U2i
u; =

Ugqi

Recall that by definition, random effects are random variables. We assume that the g
random effects in the u; vector follow a multivariate normal distribution, with mean vector
0 and a variance-covariance matrix denoted by D:

u;, ~ N(0,D) (2.3)

Elements along the main diagonal of the D matrix represent the variances of each
random effect in u;, and the off-diagonal elements represent the covariances between two
corresponding random effects. Because there are ¢ random effects in the model associated
with the i-th subject, D is a ¢ x ¢ matrix that is symmetric and positive-definite.? Elements
of this matrix are shown as follows:

Var(uy;) cov(uis, ugi) -+ cov(Uig, Ugi)
D = Var(u) cov(u1, u2;) Var(ug;) <o cou(Ugg, Ugi)
cov(uis, Ugi) cov(ugi,tg;) - Var(ug)

The elements (variances and covariances) of the D matrix are defined as functions of a
(usually) small set of covariance parameters stored in a vector denoted by 8. Note that the
vector @p imposes structure (or constraints) on the elements of the D matrix. We discuss
different structures for the D matrix in Subsection 2.2.2.1.

Finally, the €; vector in (2.2) is a vector of n; residuals, with each element in &; denoting
the residual associated with an observed response at occasion t for the i-th subject. Because
some subjects might have more observations collected than others (e.g., if data for one or
more time points are not available when a subject drops out), the €; vectors may have a
different number of elements.

In contrast to the standard linear model, the residuals associated with repeated observa-
tions on the same subject in an LMM can be correlated. We assume that the n; residuals in
the g; vector for a given subject, i, are random variables that follow a multivariate normal

2For more details on positive-definite matrices, interested readers can visit http://en.wikipedia.org/
wiki/Positive-definite_matrix.



Linear Mixed Models: An Overview 19

distribution with a mean vector 0 and a positive-definite symmetric variance-covariance
matrix R;:

We also assume that residuals associated with different subjects are independent of each
other. Further, we assume that the vectors of residuals, €1,...,&,,, and random effects,
uy, ..., W, are independent of each other. We represent the general form of the R; matrix
as shown below:

Var(ey;) cov(eri,€2i) -+ Cov(E14yEnyi)
COU(&U, 62,') VCLT‘(€21') s CO’U(&Q,’7 ami)
R, = VCLT(&,‘Z’) =
cov(eri,€nyi)  cov(€2i,Enyi) -+ Var(en,i)

The elements (variances and covariances) of the R; matrix are defined as functions of
another (usually) small set of covariance parameters stored in a vector denoted by Og.
Many different covariance structures are possible for the R; matrix; we discuss some of
these structures in Subsection 2.2.2.2.

To complete our notation for the LMM, we introduce the vector 8 used in subsequent
sections, which combines all covariance parameters contained in the vectors 8p and Og.

2.2.2.1 Covariance Structures for the D Matrix

We consider different covariance structures for the D matrix in this subsection.

A D matrix with no additional constraints on the values of its elements (aside from
positive-definiteness and symmetry) is referred to as an unstructured (or general) D
matrix. This structure is often used forrandom coefficient models (discussed in Chap-
ter 6). The symmetry in the ¢ x ¢ matrix D implies that the @p vector has ¢ x (¢ +1)/2
parameters. The following matrix is an example of an unstructured D matrix, in the case
of an LMM having two random effects associated with the i-th subject.

2
D =Var(w;) = < Tur  Oulu2 )

2
Oul,u2 042

In this case, the vector @p contains three covariance parameters:

2

Oul

eD = Oul,u2
Taa

We also define other more parsimonious structures for D by imposing certain constraints
on the structure of D. A very commonly used structure is the variance components (or
diagonal) structure, in which each random effect in u; has its own variance, and all covari-
ances in D are defined to be zero. In general, the 8p vector for the variance components
structure requires ¢ covariance parameters, defining the variances on the diagonal of the
D matrix. For example, in an LMM having two random effects associated with the i-th
subject, a variance component D matrix has the following form:

2
D =Var(w;) = < 06‘1 g )

0u2
In this case, the vector @p contains two parameters:

2
9 _ Uul
D = 2
Ou2
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The unstructured D matrix and variance components structures for the matrix are the
most commonly used in practice, although other structures are available in some software
procedures. For example, the parameters representing the variances and covariances of the
random effects in the vector 8 p could be allowed to vary across different subgroups of cases
(e.g., males and females in a longitudinal study), if greater between-subject variance in
selected effects was to be expected in one subgroup compared to another (e.g., males have
more variability in their intercepts); see Subsection 2.2.2.3. We discuss the structure of the
D matrices for specific models in the example chapters.

2.2.2.2 Covariance Structures for the R, Matrix

In this section, we discuss some of the more commonly used covariance structures for the
R, matrix.

The simplest covariance matrix for R; is the diagonal structure, in which the residuals
associated with observations on the same subject are assumed to be uncorrelated and to
have equal variance. The diagonal R; matrix for each subject ¢ has the following structure:

o2 0 0

0 o2 0
R; = Var(e;) = o*I,, =

0 0 --- o2

The diagonal structure requires one parameter in 6 g, which defines the constant variance
at each time point:

93 = (0’2)

All software procedures that we discuss use the diagonal structure as the default struc-
ture for the R; matrix.

The compound symmetry structure is frequently used for the R; matrix. The general
form of this structure for each subject ¢ is as follows:

o? + 01 o1 cee o1
o1 o2 +o1 - o1
Ri = Vm’(ei) =
2
o1 o1 e 0%+ 01

In the compound symmetry covariance structure, there are two parameters in the g
vector that define the variances and covariances in the R; matrix:

o2
=)

Note that the n; residuals associated with the observed response values for the i-th
subject are assumed to have a constant covariance, o1, and a constant variance, o2 + o7,
in the compound symmetry structure. This structure is often used when an assumption of
equal correlation of residuals is plausible (e.g., repeated trials under the same condition in
an experiment).

The first-order autoregressive structure, denoted by AR(1), is another commonly
used covariance structure for R; the matrix. The general form of the R; matrix for this
covariance structure is as follows:
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o2 o2p g2l
o2p o2 o gZpni?
R, =Var(e;) =
O'me‘_l 0.2an—2 0.2

The AR(1) structure has only two parameters in the @r vector that define all the
variances and covariances in the R; matrix: a variance parameter, o2, and a correlation

parameter, p.
2
o
o= (%)
P

Note that o2 must be positive, whereas p can range from —1 to 1. In the AR(1) covariance
structure, the variance of the residuals, o2, is assumed to be constant, and the covariance
of residuals of observations that are w units apart is assumed to be equal to o2p®. This
means that all adjacent residuals (i.e., the residuals associated with observations next to
each other in a sequence of longitudinal observations for a given subject) have a covariance
of 0?p, and residuals associated with observations two units apart in the sequence have a
covariance of 02p?, and so on.

The AR(1) structure is often used to fit models to data sets with equally spaced longi-
tudinal observations on the same units of analysis. This structure implies that observations
closer to each other in time exhibit higher correlation than observations farther apart in
time.

Other covariance structures, such as the Toeplitz structure, allow more flexibility in
the correlations, but at the expense of using more covariance parameters in the 8 vector.
In any given analysis, we try to determine the structure for the R; matrix that seems
most appropriate and parsimonious, given the observed data and knowledge about the
relationships between observations on an individual subject.

2.2.2.3 Group-Specific Covariance Parameter Values for the D and R;
Matrices

The D and R; covariance matrices can also be specified to allow heterogeneous variances
for different groups of subjects (e.g., males and females). Specifically, we might assume
the same structures for the matrices in different groups, but with different values for the
covariance parameters in the 8p and @y vectors. Examples of heterogeneous R; matrices
defined for different groups of subjects and observations are given in Chapter 3, Chapter 5,
and Chapter 7. We do not consider examples of heterogeneity in the D matrix. For a
recently published example of this type of heterogeneity (many exist in the literature),
interested readers can refer to West & Elliott (Forthcoming in 2014).

2.2.3 Alternative Matrix Specification for All Subjects

In (2.2), we presented a general matrix specification of the LMM for a given subject i. An
alternative specification, based on all subjects under study, is presented in (2.5):
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Y=XB8+Zu+e (2.5)
~

fixed random

u~N(0,G)
e~N(0,R)

In (2.5), the n x 1 vector Y, where n = ), n;, is the result of “stacking” the Y; vectors
for all subjects vertically. The n x p design matrix X is obtained by stacking all X; matrices
vertically as well. In two-level models or models with nested random effects, the Z matrix
is a block-diagonal matrix, with blocks on the diagonal defined by the Z; matrices. The
u vector stacks all u; vectors vertically, and the vector € stacks all &; vectors vertically.
The G matrix is a block-diagonal matrix representing the variance-covariance matrix for all
random effects (not just those associated with a single subject ), with blocks on the diagonal
defined by the D matrix. The n x n matrix R is a block-diagonal matrix representing the
variance-covariance matrix for all residuals, with blocks on the diagonal defined by the R;
matrices.

This “all subjects” specification is used in the documentation for SAS proc mixed and
the MIXED command in SPSS, but we primarily refer to the D and R; matrices for a single
subject (or cluster) throughout the book.

2.2.4 Hierarchical Linear Model (HLM) Specification of the LMM

It is often convenient to specify an LMM in terms of an explicitly defined hierarchy of
simpler models, which correspond to the levels of a clustered or longitudinal data set.
When LMMs are specified in such a way, they are often referred to as hierarchical linear
models (HLMs), or multilevel models (MLMs). The HLM software is the only program
discussed in this book that requires LMMSs to be specified in a hierarchical manner.

The HLM specification of an LMM is equivalent to the general LMM specification in-
troduced in Subsection 2.2.2, and may be implemented for any LMM. We do not present a
general form for the HLM specification of LMMs here, but rather introduce examples of the
HLM specification in Chapters 3 through 8. The levels of the example data sets considered
in the HLM specification of models for these data sets are displayed in Table 2.2.

2.3 The Marginal Linear Model

In Section 2.2, we specified the general LMM. In this section, we specify a closely related
marginal linear model. The key difference between the two models lies in the presence
or absence of random effects. Specifically, random effects are explicitly used in LMMs to
explain the between-subject or between-cluster variation, but they are not used in the
specification of marginal models. This difference implies that the LMM allows for subject-
specific inference, whereas the marginal model does not. For the same reason, LMMs are
often referred to as subject-specific models, and marginal models are called population-
averaged models. In Subsection 2.3.1, we specify the marginal model in general, and in
Subsection 2.3.2, we present the marginal model implied by an LMM.
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2.3.1 Specification of the Marginal Model

The general matrix specification of the marginal model for subject i is

Y, =X:B+e¢; (2.6)

where
6: ~ N(Ov V;*)

In (2.6), the n; xp design matrix X is constructed the same way as in an LMM. Similarly,
B is a vector of fixed effects. The vector €} represents a vector of marginal residual errors.
Elements in the n; x n; marginal variance-covariance matrix V;* are usually defined by a
small set of covariance parameters, which we denote as 8*. All structures used for the R;
matrix in LMMs (described in Subsection 2.2.2.2) can be used to specify a structure for
V;*. Other structures for V;*, such as those shown in Subsection 2.3.2, are also allowed.

Note that the entire random part of the marginal model is described in terms of the
marginal residuals €] only. In contrast to the LMM, the marginal model does not involve
the random effects, u;, so inferences cannot be made about them and consequently this
model is not a mized model.

Software Note: Several software procedures designed for fitting LMMs, including the
procedures in SAS, SPSS, R, and Stata, also allow users to specify a marginal model
directly. The most natural way to specify selected marginal models in these procedures
is to make sure that random effects are not included in the model, and then specify an
appropriate covariance structure for the R; matrix, which in the context of the marginal
model will be used for V;*. A marginal model of this form is not an LMM, because no
random effects are included in the model. This type of model cannot be specified using
the HLM software, because HLM generally requires the specification of at least one set
of random effects (e.g., a random intercept). Examples of fitting a marginal model by
omitting random effects and using an appropriate R; matrix are given in alternative
analyses of the Rat Brain data at the end of Chapter 5, and the Autism data at the
end of Chapter 6.

2.3.2 The Marginal Model Implied by an LMM
The LMM introduced in (2.2) implies the following marginal linear model:

Y, =X,8+¢; (2.7)

where
el ~N(0,V;)

and the variance-covariance matrix, V;, is defined as
V,=2Z,DZ + R,

A few observations are in order. First, the implied marginal model is an example of the
marginal model defined in Subsection 2.3.1. Second, the LMM in (2.2) and the corresponding
implied marginal model in (2.7) involve the same set of covariance parameters € (i.e., the
0p and Op vectors combined). The important difference is that there are more restrictions
imposed on the covariance parameter space in the LMM than in the implied marginal model.
In general, the D and R; matrices in LMMs have to be positive-definite, whereas the only
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requirement in the implied marginal model is that the V; matrix be positive-definite. Third,
interpretation of the covariance parameters in a marginal model is different from that in an
LMM, because inferences about random effects are no longer valid.

The concept of the implied marginal model is important for at least two reasons. First,
estimation of fixed-effect and covariance parameters in the LMM (see Subsection 2.4.1.2) is
carried out in the framework of the implied marginal model. Second, in the case in which a
software procedure produces a nonpositive-definite (i.e., invalid) estimate of the D matrix
in an LMM, we may be able to fit the implied marginal model, which has fewer restrictions.
Consequently, we may be able to diagnose problems with nonpositive-definiteness of the D
matrix or, even better, we may be able to answer some relevant research questions in the
context of the implied marginal model.

The implied marginal model defines the marginal distribution of the Y; vector:

Y, ~N(X:3,Z;DZ; + R)) (2.8)

The marginal mean (or expected value) and the marginal variance-covariance matrix of
the vector Y, are equal to

E(Y;) = X3 (2.9)

and

VCL’I“(YZ‘) = ‘/, = ZZDZZ/ + Ri

The off-diagonal elements in the n; X n; matrix V; represent the marginal covariances of
the Y; vector. These covariances are in general different from zero, which means that in the
case of a longitudinal data set, repeated observations on a given individual i are correlated.
We present an example of calculating the V; matrix for the marginal model implied by an
LMM fitted to the Rat Brain data (Chapter 5) in Appendix B. The marginal distribution
specified in (2.8), with mean and variance defined in (2.9), is a focal point of the likelihood
estimation in LMMs outlined in the next section.

Software Note: The software discussed in this book is primarily designed to fit LMMs.
In some cases, we may be interested in fitting the marginal model implied by a given
LMM using this software:

1. For some fairly simple LMMs, it is possible to specify the implied marginal
model directly using the software procedures in SAS, SPSS, R, and Stata,
as described in Subsection 2.3.1. As an example, consider an LMM with
random intercepts and constant residual variance. The V; matrix for the
marginal model implied by this LMM has a compound symmetry structure
(see Appendix B), which can be specified by omitting the random intercepts
from the model and choosing a compound symmetry structure for the R;
matrix.

2. Another very general method available in the LMM software procedures is
to “emulate” fitting the implied marginal model by fitting the LMM itself.
By emulation, we mean using the same syntax as for an LMM, i.e.; including
specification of random effects, but interpreting estimates and other results
as if they were obtained for the marginal model. In this approach, we simply
take advantage of the fact that estimation of the LMM and of the implied
marginal model are performed using the same algorithm (see Section 2.4).
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3. Note that the general emulation approach outlined in item 2 has some lim-
itations related to less restrictive constraints in the implied marginal model
compared to LMMs. In most software procedures that fit LMMs, it is diffi-
cult to relax the positive-definiteness constraints on the D and R; matrices
as required by the implied marginal model. The nobound option in SAS
proc mixed is the only exception among the software procedures discussed
in this book that allows users to remove the positive-definiteness constraints
on the D and R; matrices and allows user-defined constraints to be imposed
on the covariance parameters in the @p and @y vectors. An example of us-
ing the nobound option to relax the constraints on covariance parameters
applicable to the fitted linear mixed model is given in Subsection 6.4.1.

2.4 Estimation in LMMs

In the LMM, we estimate the fixed-effect parameters, 3, and the covariance parameters,
0 (i.e., Op and Op for the D and R; matrices, respectively). In this section, we discuss
maximum likelihood (ML) and restricted maximum likelihood (REML) estimation, which
are methods commonly used to estimate these parameters.

2.4.1 Maximum Likelihood (ML) Estimation

In general, maximum likelihood (ML) estimation is a method of obtaining estimates
of unknown parameters by optimizing a likelihood function. To apply ML estimation,
we first construct the likelihood as a function of the parameters in the specified model,
based on distributional assumptions. The maximum likelihood estimates (MLEs) of
the parameters are the values of the arguments that maximize the likelihood function (i.e.,
the values of the parameters that make the observed values of the dependent variable most
likely, given the distributional assumptions). See Casella & Berger (2002) for an in-depth
discussion of ML estimation.

In the context of the LMM, we construct the likelihood function of 3 and @ by referring to
the marginal distribution of the dependent variable Y, defined in (2.8). The corresponding
multivariate normal probability density function, f(Y;|3,80), is:

F(Yi]B,8) = (27) =" det(Vi) = exp(—0.5 x (Y; — XiB)'V; (Y, — Xi3)) (2.10)

where det refers to the determinant. Recall that the elements of the V; matrix are functions
of the covariance parameters in 6.

Based on the probability density function (pdf) defined in (2.10), and given the observed
data Y; = y;, the likelihood function contribution for the i-th subject is defined as follows:

Li(B,6;y:) = (2m) " det(Vi) = exp(—0.5 x (y; — Xif)' V; (vi — Xi3)) (2.11)

We write the likelihood function, L(3,0) as the product of the m independent con-
tributions defined in (2.11) for the individuals (i = 1, ..., m):
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L(B,0) = Hi Li(B,0) = Hi(%)l’; det(V;) ™ exp(—0.5 x (yi — XiB)'V; ! (ys — X))
(2.12)
The corresponding log-likelihood function, ¢(3, ), is defined using (2.12) as

((3,0) =InL(B,0) = —0.5nxIn(2r) —0.5x Y In(det(V;))
—0.5% Y (yi = XiB) Vi yi = XiB) (2.13)

where n (= >_n;) is the number of observations (rows) in the data set, and “In” refers to
the natural logarithm.

Although it is often possible to find estimates of 8 and 6 simultaneously, by optimization
of £(8, 0) with respect to both 8 and €, many computational algorithms simplify the opti-
mization by profiling out the 3 parameters from ¢(3, 8), as shown in Subsections 2.4.1.1
and 2.4.1.2.

2.4.1.1 Special Case: Assume 6 Is Known

In this section, we consider a special case of ML estimation for LMMs, in which we assume
that 0, and as a result the matrix V;, are known. Although this situation does not occur in
practice, it has important computational implications, so we present it separately.

Because we assume that 6 is known, the only parameters that we estimate are the fixed
effects, 3. The log-likelihood function, ¢(3, ), thus becomes a function of 3 only, and its
optimization is equivalent to finding a minimum of an objective function q(3), defined by
the last term in (2.13):

a(B) =05 x 3 (i = XiB) V" (vi — Xi) (2.14)

The function in (2.14) looks very much like the matrix formula for the sum of squared
errors that is minimized in the standard linear model, but with the addition of the nondi-
agonal “weighting” matrix Vi_l.

Note that optimization of q(8) with respect to 3 can be carried out by applying the
method of generalized least squares (GLS). The optimal value of 3 can be obtained
analytically:

-1
B= (Z X;‘Afilxz) XVl (2.15)
% %

The estimate ,[A’)' has the desirable statistical property of being the best linear unbiased
estimator (BLUE) of 3.

The closed-form formula in (2.15) also defines a functional relationship between the
covariance parameters, 8, and the value of 8 that maximizes ¢(3, 8). We use this relationship
in the next section to profile out the fixed-effect parameters, 3, from the log-likelihood,
and make it strictly a function of 6.

2.4.1.2 General Case: Assume 6 Is Unknown

In this section, we consider ML estimation of the covariance parameters, 8, and the fixed
effects, 3, assuming 6 is unknown.
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First, to obtain estimates for the covariance parameters in 8, we construct a profile log-
likelihood function ¢, (0). The function £;;1,(0) is derived from £(3, 8) by replacing the
(B parameters with the expression defining 3 in (2.15). The resulting function is

(arr(0) = —0.5n x In(21) — 0.5 x Zln det(V;)) — 0.5 x Zr V- (2.16)

where .
ri =yi — X; (ngvi—lxi> > XVily (2.17)

In general, maximization of ¢5;1,(6), as shown in (2.16), with respect to @ is an example
of a nonlinear optimization, with inequality constraints imposed on 6 so that positive-
definiteness requirements on the D and R; matrices are satisfied. There is no closed-form
solution for the optimal 8, so the estimate of 6 is obtained by performing computational
iterations until convergence (see Subsection 2.5.1).

After the ML estimates of the covariance parameters in 8 (and consequently, estimates of
the variances and covariances in D and R;) are obtained through an iterative computational
process, we are ready to calculate B This can be done without an iterative process, using
(2.18) and (2.19). First, we replace the D and R; matrices in (2.9) by their ML estimates,
D and 1/%1-, to calculate ‘71-, an estimate of V;:

V,=2,DZ + R, (2.18)
Then, we use the generalized least-squares formula, (2.15), for [Ai, with V; replaced by
its estimate defined in (2.18) to obtain 3:

-1
= (Z Xz(f}ilXi> S XVl (2.19)

Because we replaced V; by its estimate, ‘71-, we say that B is the empirical best linear
unbiased estimator (EBLUE) of B.

The variance of ,6', var(,ﬁ'), is a p X p variance-covariance matrix calculated as follows:

—1
var(B) = <Z X:‘A/;lX,> (2.20)
K3

We discuss issues related to the estimates of var(,@) in Subsection 2.4.3, because they
apply to both ML and REML estimation.

The ML estimates of @ are biased because they do not take into account the loss of
degrees of freedom that results from estimating the fixed-effect parameters in 3 (see Verbeke
& Molenberghs (2000) for a discussion of the bias in ML estimates of € in the context of
LMDMs). An alternative form of the maximum likelihood method known as REML estimation
is frequently used to eliminate the bias in the ML estimates of the covariance parameters.
We discuss REML estimation in Subsection 2.4.2.

2.4.2 REML Estimation

REML estimation is an alternative way of estimating the covariance parameters in 6.
REML estimation (sometimes called residual maximum likelihood estimation) was intro-
duced in the early 1970s by Patterson & Thompson (1971) as a method of estimating
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variance components in the context of unbalanced incomplete block designs. Alternative
and more general derivations of REML are given by Harville (1977), Cooper & Thompson
(1977), and Verbyla (1990).

REML is often preferred to ML estimation, because it produces unbiased estimates of
covariance parameters by taking into account the loss of degrees of freedom that results
from estimating the fixed effects in 3.

The REML estimates of @ are based on optimization of the following REML log-
likelihood function:

lrevr(0) = —0.5x(n—p)xIn(27)—0.5 X% Zln(det(‘/i))

7

—0.5x Y iV, 'r — 05 x > In(det(X[V; ' X)) (2.21)

In the function shown in (2.21), r; is defined as in (2.17). Once an estimate, V;, of
the V; matrix has been obtained, REML-based estimates of the fixed-effect parameters, ,E)',
and var(B) can be computed. In contrast to ML estimation, the REML method does not
provide a formula for the estimates. Instead, we use (2.18) and (2.19) from ML estimation
to estimate the fixed-effect parameters and their standard errors.

Although we use the same formulas in (2.18) and (2.19) for REML and ML estimation of
the fixed-effect parameters, it is important to note that the resulting ,Z\’)' and corresponding
var(B) from REML and ML estimation are different, because the V; matrix is different in
each case.

2.4.3 REML vs. ML Estimation

In general terms, we use maximum likelihood methods (either REML or ML estimation) to
obtain estimates of the covariance parameters in 6 in an LMM. We then obtain estimates
of the fixed-effect parameters in 3 using results from generalized least squares. However,
ML estimates of the covariance parameters are biased, whereas REML estimates are not.

When used to estimate the covariance parameters in @, ML and REML estimation are
computationally intensive; both involve the optimization of some objective function, which
generally requires starting values for the parameter estimates and several subsequent iter-
ations to find the values of the parameters that maximize the likelihood function (iterative
methods for optimizing the likelihood function are discussed in Subsection 2.5.1). Statis-
tical software procedures capable of fitting LMMs often provide a choice of either REML
or ML as an estimation method, with the default usually being REML. Table 2.4 provides
information on the estimation methods available in the software procedures discussed in
this book.

Note that the variances of the estimated fixed effects, i.e., the diagonal elements in
var(B) as presented in (2.20), are biased downward in both ML and REML estimation,
because they do not take into account the uncertainty introduced by replacing V; with ‘71
in (2.15). Consequently, the standard errors of the estimated fixed effects, se(3), are also
biased downward. In the case of ML estimation, this bias is compounded by the bias in the
estimation of @ and hence in the elements of V;. To take this bias into account, approximate
degrees of freedom are estimated for the ¢-tests or F-tests that are used for hypothesis
tests about the fixed-effect parameters (see Subsection 2.6.3.1). Kenward & Roger (1997)
proposed an adjustment to account for the extra variability in using ‘71 as an estimator of
V;, which has been implemented in SAS proc mixed.
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The estimated variances of the estimated fixed-effect parameters contained in var(8)
depend on how close ‘72 is to the “true” value of V;. To get the best possible estimate of
V; in practice, we often use REML estimation to fit LMMs with different structures for
the D and R; matrices and use model selection tools (discussed in Section 2.6) to find the
best estimate for V;. We illustrate the selection of appropriate structures for the D and R;
variance-covariance matrices in detail for the LMMs that we fit in the example chapters.

Although we dealt with estimation in the LMM in this section, a very similar algorithm
can be applied to the estimation of fixed effects and covariance parameters in the marginal
model specified in Section 2.3.

2.5 Computational Issues
2.5.1 Algorithms for Likelihood Function Optimization

Having defined the ML and REML estimation methods, we briefly introduce the computa-
tional algorithms used to carry out the estimation for an LMM.

The key computational difficulty in the analysis of LMMs is estimation of the covariance
parameters, using iterative numerical optimization of the log-likelihood functions intro-
duced in Subsection 2.4.1.2 for ML estimation and in Subsection 2.4.2 for REML estimation,
subject to constraints imposed on the parameters to ensure positive-definiteness of the D
and R; matrices. The most common iterative algorithms used for this optimization prob-
lem in the context of LMMs are the expectation-maximization (EM) algorithm, the
Newton—Raphson (N-R) algorithm (the preferred method), and the Fisher scoring
algorithm.

The EM algorithm is often used to maximize complicated likelihood functions or to
find good starting values of the parameters to be used in other algorithms (this latter
approach is currently used by the procedures in R, Stata, and HLM, as shown in Table 2.4).
General descriptions of the EM algorithm, which alternates between expectation (E) and
maximization (M) steps, can be found in Dempster et al. (1977) and Laird et al. (1987). For
“incomplete” data sets arising from studies with unbalanced designs, the E-step involves,
at least conceptually, creation of a “complete” data set based on a hypothetical scenario,
in which we assume that data have been obtained from a balanced design and there are no
missing observations for the dependent variable. In the context of the LMM, the complete
data set is obtained by augmenting observed values of the dependent variable with expected
values of the sum of squares and sum of products of the unobserved random effects and
residuals. The complete data are obtained using the information available at the current
iteration of the algorithm, i.e., the current values of the covariance parameter estimates and
the observed values of the dependent variable. Based on the complete data, an objective
function called the complete data log-likelihood function is constructed and maximized
in the M-step, so that the vector of estimated @ parameters is updated at each iteration. The
underlying assumption behind the EM algorithm is that optimization of the complete data
log-likelihood function is simpler than optimization of the likelihood based on the observed
data.

The main drawback of the EM algorithm is its slow rate of convergence. In addition,
the precision of estimators derived from the EM algorithm is overly optimistic, because the
estimators are based on the likelihood from the last maximization step, which uses complete
data instead of observed data. Although some solutions have been proposed to overcome
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these shortcomings, the EM algorithm is rarely used to fit LMMs, except to provide starting
values for other algorithms.

The N-R algorithm and its variations are the most commonly used algorithms in ML
and REML estimation of LMMs. The N-R algorithm minimizes an objective function de-
fined as —2 times the log-likelihood function for the covariance parameters specified in
Subsection 2.4.1.2 for ML estimation or in Subsection 2.4.2 for REML estimation. At ev-
ery iteration, the N-R algorithm requires calculation of the vector of partial derivatives
(the gradient), and the second derivative matrix with respect to the covariance param-
eters (the observed Hessian matrix). Analytical formulas for these matrices are given
in Jennrich & Schluchter (1986) and Lindstrom & Bates (1988). Owing to Hessian matrix
calculations, N-R iterations are more time consuming, but convergence is usually achieved
in fewer iterations than when using the EM algorithm. Another advantage of using the N-R
algorithm is that the Hessian matrix from the last iteration can be used to obtain an asymp-
totic variance-covariance matrix for the estimated covariance parameters in 6, allowing for
calculation of standard errors of 6.

The Fisher scoring algorithm can be considered as a modification of the N-R algorithm.
The primary difference is that Fisher scoring uses the expected Hessian matrix rather
than the observed one. Although Fisher scoring is often more stable numerically, more likely
to converge, and calculations performed at each iteration are simplified compared to the
N-R algorithm, Fisher scoring is not recommended to obtain final estimates. The primary
disadvantage of the Fisher scoring algorithm, as pointed out by Little & Rubin (2002), is
that it may be difficult to determine the expected value of the Hessian matrix because of
difficulties with identifying the appropriate sampling distribution. To avoid problems with
determining the expected Hessian matrix, use of the N-R algorithm instead of the Fisher
scoring algorithm is recommended.

To initiate optimization of the N-R algorithm, a sensible choice of starting values for
the covariance parameters is needed. One method for choosing starting values is to use a
noniterative method based on method-of-moment estimators (Rao, 1972). Alternatively, a
small number of EM iterations can be performed to obtain starting values. In other cases,
initial values may be assigned explicitly by the analyst.

The optimization algorithms used to implement ML and REML estimation need to
ensure that the estimates of the D and R; matrices are positive-definite. In general, it
is preferable to ensure that estimates of the covariance parameters in 6, updated from
one iteration of an optimization algorithm to the next, imply positive-definiteness of D
and R; at every step of the estimation process. Unfortunately, it is difficult to meet these
requirements, so software procedures set much simpler conditions that are necessary, but not
sufficient, to meet positive-definiteness constraints. Specifically, it is much simpler to ensure
that elements on the diagonal of the estimated D and R, matrices are greater than zero
during the entire iteration process, and this method is often used by software procedures
in practice. At the last iteration, estimates of the D and R; matrices are checked for being
positive-definite, and a warning message is issued if the positive-definiteness constraints are
not satisfied. See Subsection 6.4.1 for a discussion of a nonpositive-definite D matrix (called
the G matrix in SAS), in the analysis of the Autism data using proc mixed in SAS.

An alternative way to address positive-definiteness constraints is to apply a log-Cholesky
decomposition (or other transformations) to the D and/or R; matrices, which results in
substantial simplification of the optimization problem. This method changes the problem
from a constrained to an unconstrained one and ensures that the D, R;, or both matrices are
positive-definite during the entire estimation process (see Pinheiro & Bates, 1996, for more
details on the log-Cholesky decomposition method). Table 2.4 details the computational
algorithms used to implement both ML and REML estimation by the LMM procedures in
the five software packages presented in this book.
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TABLE 2.4: Computational Algorithms Used by the Software Procedures for Estimation of
the Covariance Parameters in an LMM

Software Available Esti- Computational
Procedures mation Methods, Algorithms
Default Method

SAS proc mixed ML, REML Ridge-stabilized N-R,®
Fisher scoring

SPSS MIXED ML, REML N-R, Fisher scoring

R: 1me () function ML, REML EM? algorithm,® N-R

R: lmer () function ML, REML EM? algorithm,® N-R

Stata: mixed ML, REML EM algorithm, N-R (default)

command

HLM: HLM2 ML, REML EM algorithm, Fisher scoring

(Chapters 3, 5, 6)

HLM: HLM3 (Chapter ML EM algorithm, Fisher scoring

4)

HLM: HMLM2 ML EM algorithm, Fisher scoring

(Chapter 7)

HLM: HCM2 ML EM algorithm, Fisher scoring

(Chapter 8)

*N-R denotes the Newton-Raphson algorithm (see Subsection 2.5.1).

YEM denotes the Expectation-Maximization algorithm (see Subsection 2.5.1).

“The 1me () function in R actually use the ECME (expectation conditional maximization
either) algorithm, which is a modification of the EM algorithm. For details, see Liu and
Rubin (1994).

2.5.2 Computational Problems with Estimation of Covariance
Parameters

The random effects in the u; vector in an LMM are assumed to arise from a multivari-
ate normal distribution with variances and covariances described by the positive-definite
variance-covariance matrix D. Occasionally, when one is using a software procedure to fit
an LMM, depending on (1) the nature of a clustered or longitudinal data set, (2) the degree
of similarity of observations within a given level of a random factor, or (3) model misspecifi-
cation, the iterative estimation routines converge to a value for the estimate of a covariance
parameter in @p that lies very close to or outside the boundary of the parameter space.
Consequently, the estimate of the D matrix may not be positive-definite.

Note that in the context of estimation of the D matrix, we consider positive-definiteness
in a numerical, rather than mathematical, sense. By numerical, we mean that we take into
account the finite numeric precision of a computer.

Each software procedure produces different error messages or notes when computational
problems are encountered in estimating the D matrix. In some cases, some software pro-
cedures (e.g., proc mixed in SAS, or MIXED in SPSS) stop the estimation process, assume
that an estimated variance in the D matrix lies on a boundary of the parameter space,
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and report that the estimated D matrix is not positive-definite (in a numerical sense). In
other cases, computational algorithms elude the positive-definiteness criteria and converge
to an estimate of the D matrix that is outside the allowed parameter space (a nonpositive-
definite matrix). We encounter this type of problem when fitting Model 6.1 in Chapter 6
(see Subsection 6.4.1).

In general, when fitting an LMM, analysts should be aware of warning messages indicat-
ing that the estimated D matrix is not positive-definite and interpret parameter estimates
with extreme caution when these types of messages are produced by a software procedure.

We list some alternative approaches for fitting the model when problems arise with
estimation of the covariance parameters:

1. Choose alternative starting values for covariance parameter estimates:
If a computational algorithm does not converge or converges to possibly subop-
timal values for the covariance parameter estimates, the problem may lie in the
choice of starting values for covariance parameter estimates. To remedy this prob-
lem, we may choose alternative starting values or initiate computations using a
more stable algorithm, such as the EM algorithm (see Subsection 2.5.1).

2. Rescale the covariates: In some cases, covariance parameters are very different
in magnitude and may even be several orders of magnitude apart. Joint estimation
of covariance parameters may cause one of the parameters to become extremely
small, approaching the boundary of the parameter space, and the D matrix may
become nonpositive-definite (within the numerical tolerance of the computer be-
ing used). If this occurs, one could consider rescaling the covariates associated
with the small covariance parameters. For example, if a covariate measures time
in minutes and a study is designed to last several days, the values on the covariate
could become very large and the associated variance component could be small
(because the incremental effects of time associated with different subjects will be
relatively small). Dividing the time covariate by a large number (e.g., 60, so that
time would be measured in hours instead of minutes) may enable the correspond-
ing random effects and their variances to be on a scale more similar to that of
the other covariance parameters. Such rescaling may improve numerical stability
of the optimization algorithm and may circumvent convergence problems. We do
not consider this alternative in any of the examples that we discuss.

3. Based on the design of the study, simplify the model by removing ran-
dom effects that may not be necessary: In general, we recommend removing
higher-order terms (e.g., higher-level interactions and higher-level polynomials)
from a model first for both random and fixed effects. This method helps to ensure
that the reduced model remains well formulated (Morrell et al., 1997).

However, in some cases, it may be appropriate to remove lower-order random
effects first, while retaining higher-order random effects in a model; such an ap-
proach requires thorough justification. For instance, in the analysis of the longi-
tudinal data for the Autism example in Chapter 6, we remove the random effects
associated with the intercept (which contribute to variation at all time points for
a given subject) first, while retaining random effects associated with the linear
and quadratic effects of age. By doing this, we assume that all variation between
measurements of the dependent variable at the initial time point is attributable
to residual variation (i.e., we assume that none of the overall variation at the first
time point is attributable to between-subject variation). To implement this in an
LMM, we define additional random effects (i.e., the random linear and quadratic
effects associated with age) in such a way that they do not contribute to the vari-
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ation at the initial time point, and consequently, all variation at this time point is
due to residual error. Another implication of this choice is that between-subject
variation is described using random linear and quadratic effects of age only.

4. Fit the implied marginal model: As mentioned in Section 2.3, one can some-
times fit the marginal model implied by a given LMM. The important difference
when fitting the implied marginal model is that there are fewer restrictions on
the covariance parameters being estimated. We present two examples of this ap-
proach:

(a) If one is fitting an LMM with random intercepts only and a homogeneous
residual covariance structure, one can directly fit the marginal model implied
by this LMM by fitting a model with random effects omitted, and with a
compound symmetry covariance structure for the residuals. We present an
example of this approach in the analysis of the Dental Veneer data in Sub-
section 7.11.1.

(b) Another approach is to “emulate” the fit of an implied marginal model by
fitting an LMM and, if needed, removing the positive-definiteness constraints
on the D and the R; matrices. The option of relaxing constraints on the D
and R; matrices is currently only available in SAS proc mixed, via use of
the nobound option. We consider this approach in the analysis of the Autism
data in Subsection 6.4.1.

5. Fit the marginal model with an unstructured covariance matrix: In some
cases, software procedures are not capable of fitting an implied marginal model,
which involves less restrictive constraints imposed on the covariance parameters.
If measurements are taken at a relatively small number of prespecified time points
for all subjects, one can instead fit a marginal model (without any random effects
specified) with an unstructured covariance matrix for the residuals. We consider
this alternative approach in the analysis of the Autism data in Chapter 6.

Note that none of these alternative methods guarantees convergence to the optimal and
properly constrained values of covariance parameter estimates. The methods that involve
fitting a marginal model (items 4 and 5 in the preceding text) shift a more restrictive re-
quirement for the D and R; matrices to be positive-definite to a less restrictive requirement
for the matrix V; (or V;*) to be positive-definite, but they still do not guarantee conver-
gence. In addition, methods involving marginal models do not allow for inferences about
random effects and their variances.

2.6 Tools for Model Selection

When analyzing clustered and repeated-measures/longitudinal data sets using LMMs, re-
searchers are faced with several competing models for a given data set. These competing
models describe sources of variation in the dependent variable and at the same time allow
researchers to test hypotheses of interest. It is an important task to select the “best” model,
i.e., a model that is parsimonious in terms of the number of parameters used, and at the
same time is best at predicting (or explaining variation in) the dependent variable.

In selecting the best model for a given data set, we take into account research objectives,
sampling and study design, previous knowledge about important predictors, and important
subject matter considerations. We also use analytic tools, such as the hypothesis tests
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and the information criteria discussed in this section. Before we discuss specific hypothesis
tests and information criteria in detail, we introduce the basic concepts of nested models
and hypothesis specification and testing in the context of LMMs. For readers interested in
additional details on current practice and research in model selection techniques for LMMs,
we suggest Steele (2013).

2.6.1 Basic Concepts in Model Selection
2.6.1.1 Nested Models

An important concept in the context of model selection is to establish whether, for any
given pair of models, there is a “nesting” relationship between them. Assume that we have
two competing models: Model A and Model B. We define Model A to be nested in Model
B if Model A is a “special case” of Model B. By special case, we mean that the parameter
space for the nested Model A is a subspace of that for the more general Model B. Less
formally, we can say that the parameters in the nested model can be obtained by imposing
certain constraints on the parameters in the more general model. In the context of LMMs, a
model is nested within another model if a set of fixed effects and/or covariance parameters
in a nested model can be obtained by imposing constraints on parameters in a more general
model (e.g., constraining certain parameters to be equal to zero or equal to each other).

2.6.1.2 Hypotheses: Specification and Testing

Hypotheses about parameters in an LMM are specified by providing null (Hp) and alterna-
tive (H4) hypotheses about the parameters in question. Hypotheses can also be formulated
in the context of two models that have a nesting relationship. A more general model encom-
passes both the null and alternative hypotheses, and we refer to it as a reference model.
A second simpler model satisfies the null hypothesis, and we refer to this model as a nested
(null hypothesis) model. Briefly speaking, the only difference between these two mod-
els is that the reference model contains the parameters being tested, but the nested (null)
model does not.

Hypothesis tests are useful tools for making decisions about which model (nested vs.
reference) to choose. The likelihood ratio tests presented in Subsection 2.6.2 require analysts
to fit both the reference and nested models. In contrast, the alternative tests presented in
Subsection 2.6.3 require fitting only the reference model.

We refer to nested and reference models explicitly in the example chapters when testing
various hypotheses. We also include a diagram in each of the example chapters (e.g., Fig-
ure 3.3) that indicates the nesting of models, and the choice of preferred models based on
results of formal hypothesis tests or other considerations.

2.6.2 Likelihood Ratio Tests (LRTSs)

LRTs are a class of tests that are based on comparing the values of likelihood functions for
two models (i.e., the nested and reference models) defining a hypothesis being tested. LRT's
can be employed to test hypotheses about covariance parameters or fixed-effect parameters
in the context of LMMs. In general, LRTs require that both the nested (null hypothesis)
model and reference model corresponding to a specified hypothesis are fitted to the same
subset of the data. The LRT statistic is calculated by subtracting —2 times the log-likelihood
for the reference model from that for the nested model, as shown in the following equation:

Lnes €
—21In (#) = —2In(Lnested) — (—21n(Lyeference)) ~ X3 (2.22)

reference
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In (2.22), Lyestea refers to the value of the likelihood function evaluated at the ML or
REML estimates of the parameters in the nested model, and Ly¢ference refers to the value
of the likelihood function in the reference model. Likelihood theory states that under mild
regularity conditions the LRT statistic asymptotically follows a 2 distribution, in which
the number of degrees of freedom, df, is obtained by subtracting the number of parameters
in the nested model from the number of parameters in the reference model.

Using the result in (2.22), hypotheses about the parameters in LMMs can be tested.
The significance of the likelihood ratio test statistic can be determined by referring it to a
x? distribution with the appropriate degrees of freedom. If the LRT statistic is sufficiently
large, there is evidence against the null hypothesis model and in favor of the reference model.
If the likelihood values of the two models are very close, and the resulting LRT statistic is
small, we have evidence in favor of the nested (null hypothesis) model.

2.6.2.1 Likelihood Ratio Tests for Fixed-Effect Parameters

The likelihood ratio tests that we use to test linear hypotheses about fixed-effect parameters
in an LMM are based on ML estimation; using REML estimation is not appropriate in this
context (Morrell, 1998; Pinheiro & Bates, 2000; Verbeke & Molenberghs, 2000). For LRT's of
fixed effects, the nested and reference models have the same set of covariance parameters but
different sets of fixed-effect parameters. The test statistic is calculated by subtracting the —2
ML log-likelihood for the reference model from that for the nested model. The asymptotic
null distribution of the test statistic is a x? with degrees of freedom equal to the difference
in the number of fixed-effect parameters between the two models.

2.6.2.2 Likelihood Ratio Tests for Covariance Parameters

When testing hypotheses about covariance parameters in an LMM, REML estimation should
be used for both the reference and nested models, especially in the context of small sample
size. REML estimation has been shown to reduce the bias inherent in ML estimates of
covariance parameters (Morrell, 1998). We assume that the nested and reference models
have the same set of fixed-effect parameters, but different sets of covariance parameters.

To carry out a REML-based likelihood ratio test for covariance parameters, the -2 REML
log-likelihood value for the reference model is subtracted from that for the nested model.
The null distribution of the test statistic depends on whether the null hypothesis values for
the covariance parameters lie on the boundary of the parameter space for the covariance
parameters or not.

Case 1: The covariance parameters satisfying the null hypothesis do not lie on the bound-
ary of the parameter space.

When carrying out a REML-based likelihood ratio test for covariance parameters in
which the null hypothesis does not involve testing whether any parameters lie on the bound-
ary of the parameter space (e.g., testing a model with heterogeneous residual variance vs.
a model with constant residual variance, or testing whether a covariance between two ran-
dom effects is equal to zero), the test statistic is asymptotically distributed as a x? with
degrees of freedom calculated by subtracting the number of covariance parameters in the
nested model from that in the reference model. An example of such a test is given in Sub-
section 5.5.2, in which we test a heterogeneous residual variance model vs. a model with
constant residual variance (Hypothesis 5.2 in the Rat Brain example).

Case 2: The covariance parameters satisfying the null hypothesis lie on the boundary of
the parameter space.
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Tests of null hypotheses in which covariance parameters have values that lie on the
boundary of the parameter space often arise in the context of testing whether a given
random effect should be kept in a model or not. We do not directly test hypotheses about
the random effects themselves. Instead, we test whether the corresponding variances and
covariances of the random effects are equal to zero.

In the case in which we have a single random effect in a model, we might wish to test
the null hypothesis that the random effect can be omitted. Self & Liang (1987), Stram &
Lee (1994), and Verbeke & Molenberghs (2000) have shown that the test statistic in this
case has an asymptotic null distribution that is a mixture of x2 and x? distributions, with
each having an equal weight of 0.5. Note that the 3 distribution is concentrated entirely
at zero, so calculations of p-values can be simplified and effectively are based on the 3
distribution only. An example of this type of test is given in the analysis of the Rat Pup
data, in which we test whether the variance of the random intercepts associated with litters
is equal to zero in Subsection 3.5.1 (Hypothesis 3.1).

In the case in which we have two random effects in a model and we wish to test whether
one of them can be omitted, we need to test whether the variance for the given random
effect that we wish to test and the associated covariance of the two random effects are
both equal to zero. The asymptotic null distribution of the test statistic in this case is a
mixture of x? and x3 distributions, with each having an equal weight of 0.5 (Verbeke &
Molenberghs, 2000). An example of this type of likelihood ratio test is shown in the analysis
of the Autism data in Chapter 6, in which we test whether the variance associated with the
random quadratic age effects and the associated covariance of these random effects with the
random linear age effects are both equal to zero in Subsection 6.5.1 (Hypothesis 6.1).

Because most statistical software procedures capable of fitting LMMs provide the option
of using either ML estimation or REML estimation for a given model, one can choose to
use REML estimation to fit the reference and nested models when testing hypotheses about
covariance parameters, and ML estimation when testing hypotheses about fixed effects.

Finally, we note that Crainiceanu & Ruppert (2004) have defined the exact null dis-
tribution of the likelihood ratio test statistic for a single variance component under more
general conditions (including small samples), and software is available in R implementing
exact likelihood ratio tests based on simulations from this distribution (the exactLRT()
function in the RLRsim package). Galecki & Burzykowski (2013) present examples of the
use of this function. Appropriate null distributions of likelihood ratio test statistics for mul-
tiple covariance parameters have not been derived to date, and classical likelihood ratio
tests comparing nested models with multiple variance components constrained to be 0 in
the reduced model should be considered conservative. The mixed command in Stata, for
example, makes explicit note of this when users fit models with multiple random effects (for
example, see Section 5.4.4).

2.6.3 Alternative Tests

In this section we present alternatives to likelihood ratio tests of hypotheses about the
parameters in a given LMM. Unlike the likelihood ratio tests discussed in Subsection 2.6.2,
these tests require fitting only a reference model.

2.6.3.1 Alternative Tests for Fixed-Effect Parameters

A t-test is often used for testing hypotheses about a single fixed-effect parameter (e.g.,
Hy : S =0 vs. Hy : 8 # 0) in an LMM. The corresponding ¢-statistic is calculated as
follows:
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t= BA (2.23)
se(f)

In the context of an LMM, the null distribution of the t-statistic in (2.23) does not in
general follow an exact ¢ distribution. Unlike the case of the standard linear model, the
number of degrees of freedom for the null distribution of the test statistic is not equal to
n — p (where p is the total number of fixed-effect parameters estimated). Instead, we use
approximate methods to estimate the degrees of freedom. The approximate methods for
degrees of freedom for both ¢-tests and F-tests are discussed later in this section.

Software Note: The mixed command in Stata calculates z-statistics for tests of single
fixed-effect parameters in an LMM using the same formula as specified for the ¢-test in
(2.23). These z-statistics assume large sample sizes and refer to the standard normal
distribution, and therefore do not require the calculation of degrees of freedom to derive
a p-value.

An F-test can be used to test linear hypotheses about multiple fixed effects in an LMM.
For example, we may wish to test whether any of the parameters associated with the levels
of a fixed factor are different from zero. In general, when testing a linear hypothesis of the
form

Ho: LB=0 vs. Hy: LB #0
where L is a known matrix, the F-statistic defined by

1 -1
dr L (Z X{Vi_lXZ) | L3
7

F= rank(L) (2.24)
follows an approximate F' distribution, with numerator degrees of freedom equal to the rank
of the matrix L (recall that the rank of a matrix is the number of linearly independent rows
or columns), and an approximate denominator degrees of freedom that can be estimated

using various methods (Verbeke & Molenberghs, 2000).

Similar to the case of the t-test, the F-statistic in general does not follow an exact F
distribution, with known numerator and denominator degrees of freedom. Instead, the de-
nominator degrees of freedom are approximated. The approximate methods that apply to
both t-tests and F-tests take into account the presence of random effects and correlated
residuals in an LMM. Several of these approximate methods (e.g., the Satterthwaite method,
or the “between-within” method) involve different choices for the degrees of freedom used
in the approximate t-tests and F-tests. The Kenward—Roger method goes a step further. In
addition to adjusting the degrees of freedom using the Satterthwaite method, this method
also modifies the estimated covariance matrix to reflect uncertainty in using V; as a substi-
tute for V; in (2.19) and (2.20). We discuss these approximate methods in more detail in
Subsection 3.11.6.

Different types of F-tests are often used in practice. We focus on Type I F-tests and
Type IIT F-tests. Briefly, Type III F-tests are conditional on the effects of all other terms
in a given model, whereas Type I (sequential) F-tests are conditional on just the fixed
effects listed in the model prior to the effects being tested. Type I and Type III F-tests are
therefore equivalent only for the term entered last in the model (except for certain models
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for balanced data). We compare these two types of F-tests in more detail in the example
chapters.

An omnibus Wald test can also be used to test linear hypotheses of the form Hy:
LB =0vs. Hy : LB # 0. The test statistic for a Wald test is the numerator in (2.24), and
it asymptotically follows a x2 distribution with degrees of freedom equal to the rank of the
L matrix. We consider Wald tests for fixed effects using the Stata and HLM software in the
example chapters.

2.6.3.2 Alternative Tests for Covariance Parameters

A simple test for covariance parameters is the Wald z-test. In this test, a z-statistic is
computed by dividing an estimated covariance parameter by its estimated standard error.
The p-value for the test is calculated by referring the test statistic to a standard normal
distribution. The Wald z-test is asymptotic, and requires that the random factor with which
the random effects are associated has a large number of levels. This test statistic also has
unfavorable properties when a hypothesis test about a covariance parameter involves values
on the boundary of its parameter space. Because of these drawbacks, we do not recommend
using Wald z-tests for covariance parameters, and instead recommend the use of likelihood
ratio tests, with p-values calculated using appropriate x? distributions or mixtures of x?2
distributions.

The procedures in the HLM software package by default generate alternative chi-square
tests for covariance parameters in an LMM (see Subsection 4.7.2 for an example). These
tests are described in detail in Raudenbush & Bryk (2002).

2.6.4 Information Criteria

Another set of tools useful in model selection are referred to as information criteria. The
information criteria (sometimes referred to as fit criteria) provide a way to assess the fit of a
model based on its optimum log-likelihood value, after applying a penalty for the number of
parameters that are estimated in fitting the model. A key feature of the information criteria
discussed in this section is that they provide a way to compare any two models fitted to the
same set of observations; i.e., the models do not need to be nested. We use the “smaller is
better” form for the information criteria discussed in this section; that is, a smaller value
of the criterion indicates a “better” fit.

The Akaike information criterion (AIC) may be calculated based on the (ML or
REML) log-likelihood, ¢(3, 0), of a fitted model as follows (Akaike, 1973):

AIC = -2 x £(B,0) +2p (2.25)

In (2.25), p represents the total number of parameters being estimated in the model
for both the fixed and random effects. Note that the AIC in effect “penalizes” the fit of a
model for the number of parameters being estimated by adding 2p to the —2 log-likelihood.
Some software procedures calculate the AIC using slightly different formulas, depending on
whether ML or REML estimation is being used (see Subsection 3.6.1 for a discussion of the
calculation formulas used for the AIC in the different software procedures).

The Bayes information criterion (BIC) is also commonly used and may be calcu-
lated as follows:

BIC = —2 x {(83,8) + p x In(n) (2.26)
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The BIC in (2.26) applies a greater penalty for models with more parameters than does
the AIC, because we multiply the number of parameters being estimated by the natural
logarithm of n, where n is the total number of observations used in estimation of the model.

Recent work (Steele, 2013; Gurka, 2006) suggests that no one information criterion
stands apart as the best criterion to be used when selecting LMMs, and that more work
still needs to be done in understanding the role that information criteria play in the selection
of LMMs. Consistent with Steele (2013), we recommend that analysts compute a variety of
information criteria when choosing among competing models, and identify models favored
by multiple criteria.

2.7 Model-Building Strategies

A primary goal of model selection is to choose the simplest model that provides the best
fit to the observed data. There may be several choices concerning which fixed and random
effects should be included in an LMM. There are also many possible choices of covariance
structures for the D and R; matrices. All of these considerations have an impact on both
the estimated marginal mean (X;3) and the estimated marginal variance-covariance matrix
Vi(= Z;DZ! + R;) for the observed responses in Y; based on the specified model.

The process of building an LMM for a given set of longitudinal or clustered data is an
iterative one that requires a series of model-fitting steps and investigations, and selection of
appropriate mean and covariance structures for the observed data. Model building typically
involves a balance of statistical and subject matter considerations; there is no single strategy
that applies to every application.

2.7.1 The Top-Down Strategy

The following broadly defined steps are suggested by Verbeke & Molenberghs (2000) for
building an LMM for a given data set. We refer to these steps as a top-down strategy for
model building, because they involve starting with a model that includes the maximum
number of fixed effects that we wish to consider in a model.

1. Start with a well-specified mean structure for the model: This step typ-
ically involves adding the fixed effects of as many covariates (and interactions
between the covariates) as possible to the model to make sure that the systematic
variation in the responses is well explained before investigating various covariance
structures to describe random variation in the data. In the example chapters we
refer to this as a model with a loaded mean structure.

2. Select a structure for the random effects in the model: This step involves
the selection of a set of random effects to include in the model. The need for in-
cluding the selected random effects can be tested by performing REML-based like-
lihood ratio tests for the associated covariance parameters (see Subsection 2.6.2.2
for a discussion of likelihood ratio tests for covariance parameters).

3. Select a covariance structure for the residuals in the model: Once fixed
effects and random effects have been added to the model, the remaining variation
in the observed responses is due to residual error, and an appropriate covariance
structure for the residuals should be investigated.
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4. Reduce the model: This step involves using appropriate statistical tests (see
Subsections 2.6.2.1 and 2.6.3.1) to determine whether certain fixed-effect param-
eters are needed in the model.

In general, one would iterate between Steps 2 and 4 when building a model. We use this
top-down approach to model building for the data sets that we analyze in Chapter 3, and
Chapters 5 through 7.

2.7.2 The Step-Up Strategy

An alternative approach to model building, which we refer to as the step-up strategy, has
been developed in the literature on HLMs. We use the step-up model-building strategy in the
analysis of the Classroom data in Chapter 4. This approach is outlined in both Raudenbush
& Bryk (2002) and Snijders & Bosker (1999), and is described in the following text:

1. Start with an “unconditional” (or means-only) Level 1 model for the
data: This step involves fitting an initial Level 1 model having the fixed intercept
as the only fixed-effect parameter. The model also includes random effects asso-
ciated with the Level 2 units, and Level 3 units in the case of a three-level data
set. This model allows one to assess the variation in the response values across
the different levels of the clustered or longitudinal data set without adjusting for
the effects of any covariates.

2. Build the model by adding Level 1 covariates to the Level 1 model. In
the Level 2 model, consider adding random effects to the equations for
the coefficients of the Level 1 covariates: In this step, Level 1 covariates
and their associated fixed effects are added to the Level 1 model. These Level
1 covariates may help to explain variation in the residuals associated with the
observations on the Level 1 units. The Level 2 model can also be modified by
adding random effects to the equations for the coefficients of the Level 1 covari-
ates. These random effects allow for random variation in the effects of the Level
1 covariates across Level 2 units.

3. Build the model by adding Level 2 covariates to the Level 2 model.
For three-level models, consider adding random effects to the Level 3
equations for the coefficients of the Level 2 covariates: In this step, Level
2 covariates and their associated fixed effects can be added to the Level 2 model.
These Level 2 covariates may explain some of the random variation in the effects
of the Level 1 covariates that is captured by the random effects in the Level 2
models. In the case of a three-level data set, the effects of the Level 2 covariates
in the Level 2 model might also be allowed to vary randomly across Level 3 units.
After appropriate equations for the effects of the Level 1 covariates have been
specified in the Level 2 model, one can assess assumptions about the random
effects in the Level 2 model (e.g., normality and constant variance). This process
is then repeated for the Level 3 model in the case of a three-level analysis (e.g.,
Chapter 4).

The model-building steps that we present in this section are meant to be guidelines
and are not hard-and-fast rules for model selection. In the example chapters, we illustrate
aspects of the top-down and step-up model-building strategies when fitting LMMSs to real
data sets. Our aim is to illustrate specific concepts in the analysis of longitudinal or clustered
data, rather than to construct the best LMM for a given data set.
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2.8 Checking Model Assumptions (Diagnostics)

After fitting an LMM, it is important to carry out model diagnostics to check whether
distributional assumptions for the residuals are satisfied and whether the fit of the model
is sensitive to unusual observations. The process of carrying out model diagnostics involves
several informal and formal techniques.

Diagnostic methods for standard linear models are well established in the statistics
literature. In contrast, diagnostics for LMMs are more difficult to perform and interpret,
because the model itself is more complex, due to the presence of random effects and different
covariance structures. In this section, we focus on the definitions of a selected set of terms
related to residual and influence diagnostics in LMMs. We refer readers to Claeskens (2013)
and Schabenberger (2004) for more detailed descriptions of existing diagnostic methods for
LMMs.

In general, model diagnostics should be part of the model-building process throughout
the analysis of a clustered or longitudinal data set. We consider diagnostics only for the
final model fitted in each of the example chapters for simplicity of presentation.

2.8.1 Residual Diagnostics

Informal techniques are commonly used to check residual diagnostics; these techniques rely
on the human mind and eye, and are used to decide whether or not a specific pattern exists
in the residuals. In the context of the standard linear model, the simplest example is to
decide whether a given set of residuals plotted against predicted values represents a random
pattern or not. These residual vs. fitted plots are used to verify model assumptions and to
detect outliers and potentially influential observations.

In general, residuals should be assessed for normality, constant variance, and outliers.
In the context of LMMs, we consider conditional residuals and their “studentized” versions,
as described in the following subsections.

2.8.1.1 Raw Residuals

A conditional residual is the difference between the observed value and the conditional
predicted value of the dependent variable. For example, we write an equation for the vector
of conditional residuals for a given individual 4 in a two-level longitudinal data set as follows
(refer to Subsection 2.9.1 for the calculation of ;):

In general, conditional residuals in their basic form in (2.27) are not well suited for
verifying model assumptions and detecting outliers. Even if the true model residuals are
uncorrelated and have equal variance, conditional residuals will tend to be correlated and
their variances may be different for different subgroups of individuals. The shortcomings of
raw conditional residuals apply to models other than LMMs as well. We discuss alternative
forms of the conditional residuals in Subsection 2.8.1.2.

In contrast to conditional residuals, marginal residuals are based on models that do
not include explicit random effects:

g =yi— X3 (2.28)

Although we consider diagnostic tools for conditional residuals in this section, a separate
class of diagnostic tools exists for the marginal residuals defined in (2.28) (see Galecki &
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Burzykowski, 2013, for more details). We consider examples of different covariance structures
for marginal residuals in later chapters.

2.8.1.2 Standardized and Studentized Residuals

To alleviate problems with the interpretation of conditional residuals that may have unequal
variances, we consider scaling (i.e., dividing) the residuals by their true or estimated stan-
dard deviations. Ideally, we would like to scale residuals by their true standard deviations
to obtain standardized residuals. Unfortunately, the true standard deviations are rarely
known in practice, so scaling is done using estimated standard deviations instead. Residuals
obtained in this manner are called studentized residuals.

Another method of scaling residuals is to divide them by the estimated standard de-
viation of the dependent variable. The resulting residuals are called Pearson residuals.
Pearson-type scaling is appropriate if we assume that variability of 3 can be ignored. Other
scaling choices are also possible, although we do not consider them.

The calculation of a studentized residual may also depend on whether the observation
corresponding to the residual in question is included in the estimation of the standard
deviation or not. If the corresponding observation is included, we refer to it as internal
studentization. If the observation is excluded, we refer to it as external studentization.

We discuss studentized residuals in the model diagnostics section in the analysis of the
Rat Pup data in Chapter 3. Studentized residuals are directly available in SAS proc mixed,
but are not readily available in the other software that we feature, and require additional
calculation.

2.8.2 Influence Diagnostics

Likelihood-based estimation methods (both ML and REML) are sensitive to unusual obser-
vations. Influence diagnostics are formal techniques that allow one to identify observa-
tions that heavily influence estimates of the parameters in either 3 or 6.

Influence diagnostics for LMMs is an active area of research. The idea of influence di-
agnostics for a given observation (or subset of observations) is to quantify the effect of
omission of those observations on the results of the analysis of the entire data set. Scha-
benberger discusses several influence diagnostics for LMMs in detail (Schabenberger, 2004),
and a recent review of current practice and research in this area can be found in Claeskens
(2013).

Influence diagnostics may be used to investigate various aspects of the model fit. Because
LMMs are more complicated than standard linear models, the influence of observations
on the model fit can manifest itself in more varied and complicated ways. It is generally
recommended to follow a top-down approach when carrying out influence diagnostics in
mixed models. First, check overall influence diagnostics. Assuming that there are influential
sets of observations based on the overall influence diagnostics, proceed with other diagnostics
to see what aspect of the model a given subset of observations affects: fixed effects, covariance
parameters, the precision of the parameter estimates, or predicted values.

Influence diagnostics play an important role in the interpretation of the results. If a
given subset of data has a strong influence on the estimates of covariance parameters, but
limited impact on the fixed effects, then it is appropriate to interpret the model with respect
to prediction. However, we need to keep in mind that changes in estimates of covariance
parameters may affect the precision of tests for fixed effects and, consequently, confidence
intervals.
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We focus on a selected group of influence diagnostics, which are summarized in Table 2.5.
Following Schabenberger’s notation, we use the subscript (U) to denote quantities calculated
based on the data having a subset, U, excluded from calculations. For instance, consider the
overall influence calculations for an arbitrarily chosen vector of parameters, ¥ (which can
include parameters in 3 or 8). The vector {[}u used in the calculation formulas denotes an
estimate of ¥ computed based on the reduced “leave-U-out” data. These methods include,
but are not limited to, overall influence, change in parameter estimates, change in precision
of parameter estimates, and effect on predicted values.

All methods for influence diagnostics presented in Table 2.5 clearly depend on the sub-
set, U, of observations that is being considered. The main difference between the Cook’s
distance statistic and the MDFFITS statistic shown in Table 2.5 is that the MDFFITS
statistic uses “externalized” estimates of var(8), which are based on recalculated covari-
ance estimates using the reduced data, whereas Cook’s distance does not recalculate the
covariance parameter estimates in var(3) (see (2.20)).

Calculations for influence statistics can be performed using either noniterative or iter-
ative methods. Noniterative methods are based on explicit (closed-form) updated formulas
(not shown in Table 2.5). The advantage of noniterative methods is that they are more time
efficient than iterative methods. The disadvantage is that they require the rather strong as-
sumption that all covariance parameters are known, and thus are not updated, with the
exception of the profiled residual variance. Iterative influence diagnostics require refitting
the model without the observations in question; consequently, the covariance parameters
are updated at each iteration, and computational execution time is much longer.

Software Note: All the influence diagnostic methods presented in Table 2.5 are cur-
rently supported by proc mixed in SAS. A class of leverage-based methods is also
available in proc mixed, but we do not discuss them in the example chapters. In Chap-
ter 3, we present and interpret several influence diagnostics generated by proc mixed
for the final model fitted to the Rat Pup data. Selected influence diagnostics can also
be computed when using the nlmeU and HLMdiag packages in R (see Section 20.3 of
Galecki & Burzykowski, 2013, or Loy & Hofmann, 2014, for computational details). To
our knowledge, influence diagnostic methods are not currently available in the other
software procedures. The theory behind these and other diagnostic methods is outlined
in more detail by Claeskens (2013).

2.8.3 Diagnostics for Random Effects

The natural choice to diagnose random effects is to consider the empirical Bayes (EB)
predictors defined in Subsection 2.9.1. EB predictors are also referred to as random-effects
predictors or, due to their properties, empirical best linear unbiased predictors (EBLUPs).
We recommend using standard diagnostic plots (e.g., histograms, quantile—quantile (Q-
Q) plots, and scatter-plots) to investigate EBLUPs for potential outliers that may warrant
further investigation. In general, checking EBLUPs for normality is of limited value, because
their distribution does not necessarily reflect the true distribution of the random effects.
We consider informal diagnostic plots for EBLUPs in the example chapters.



TABLE 2.5: Summary of Influence Diagnostics for LMMs

v

Group Name Par. of Formula Description®
Interest
Overall Likelihood W LD,y = 2{0(3) — £(1h ()} Change in ML log-likelihood
influence distance / for all data with 1) estimated
displacement for all data vs. reduced data
Restricted W RLDy = 2{lr(¥) — (r(¥ )} Change in REML log-likelihood
likelihood distance for all data with ) estimated
/ displacement for all data vs. reduced data
Change in Cook’s D B8 D(B) = (B — B(u))’m[ﬁ]*l(a - B(u))/nmk(X) Scaled change in entire
parameter estimated B vector
estimates
0 D(6) = (6 — E(u))’m[érl(é - é(u)) Scaled change in entire
estimated 0 vector
Multivariate B MDFFITS(B) = Scaled change in entire
DFFITS statistic (ﬁ — E(U))/W[B(u)]_l(ﬁ - ﬁ(u))/rank(X) estimated B3 vector, using
externalized estimates of var
(8)
7] MDFFITS(0) = (5 — E(u))’m[é(u)]*l(é — é(u)) Scaled change in entire

estimated @ vector, using
externalized estimates of var
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TABLE 2.5: (Continued)

Group Name Par. of Formula Description®

Interest
Change in Trace of B COVTRACE(B) = Change in precision of
precision of covariance matrix \trace(W[,@]_lﬁ[@(u)}) — rank(X)] estimated 3 vector, based on
parameter trace of var (3)
estimates

0 COVTRACE(O) = |trace(W[§]_1W[§(u)]) —¢q| Change in precision of

estimated 6 vector, based on
trace of var (0)

MUNLIN() U S]OPOJY PITUPY LDIULT

. . b _
Covariance ratio 8 COV RATIOB) = 2ot (527 [B)

Change in precision of
estimated 3 vector, based on

determinant of var (3)

9 COV RATIO(6) = 2@ l00)]) Change in precision of
det, s (var[@])
) estimated 6 vector, based on

determinant of var (0)

Effect on Sum of squared N/A PRESSq) = > (yi — xﬁfi(u)) Sum of PRESS residuals
predicted PRESS residuals icu calculated by deleting
value observations in U

2The “change” in the parameters estimates for each influence statistic is calculated by using
all data compared to the reduced “leave-U-out” data.
bdet,,s means the determinant of the nonsingular part of the matrix.

v
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2.9 Other Aspects of LMMs

In this section, we discuss additional aspects of fitting LMMs that may be considered when
analyzing clustered or longitudinal data sets.

2.9.1 Predicting Random Effects: Best Linear Unbiased Predictors

One aspect of LMMs that is different from standard linear models is the prediction of the
values in the random-effects vector, u;. The values in u; are not fixed, unknown parameters
that can be estimated, as is the case for the values of 8 in a linear model. Rather, they are
random variables that are assumed to follow some multivariate normal distribution. As a
result, we predict the values of these random effects, rather than estimate them (Carlin &
Louis, 2009).

Thus far, we have discussed the variances and covariances of the random effects in the
D matrix without being particularly interested in predicting the values that these random
effects may take. However, in some research settings, it may be useful to predict the values
of the random effects associated with specific levels of a random factor.

Unlike fixed effects, we are not interested in estimating the mean (i.e., the expected value)
of a set of random effects, because we assume that the expected value of the multivariate
normal distribution of random effects is a vector of zeroes. However, assuming that the
expected value of a random effect is zero does not make any use of the observed data. In the
context of an LMM, we take advantage of all the data collected for those observations sharing
the same level of a particular random factor and use that information to predict the values
of the random effects in the LMM. To do this, we look at the conditional expectations of the
random effects, given the observed response values, y;, in Y;. The conditional expectation
for u; is

U, = E(w|Y; =y;) = DZ/V, ' (y; — X:3) (2.29)

The predicted values in (2.29) are the expected values of the random effects, u;, associ-
ated with the i-th level of a random factor, given the observed data in y;. These conditional
expectations are known as best linear unbiased predictors (BLUPS) of the random
effects. We refer to them as EBLUPs (or empirical BLUPS), because they are based on
the estimates of the B and @ parameters.

The variance-covariance matrix of the EBLUPs can be written as follows:

Var(@;) = DZ)(V; ' - V' Xi(Y XV X)XV Y ZiD (2.30)

EBLUPs are “linear” in that they are linear functions of the observed data, y;. They are
“unbiased” in that their expectation is equal to the expectation of the random effects for a
single subject ¢. They are “best” in that they have minimum variance (see (2.30)) among
all linear unbiased estimators (i.e., they are the most precise linear unbiased estimators;
Robinson (1991)). And finally, they are “predictions” of the random effects based on the
observed data.

EBLUPs are also known as shrinkage estimators because they tend to be closer to
zero than the estimated effects would be if they were computed by treating a random factor
as if it were fixed. We include a discussion of shrinkage estimators on the web page for the
book (see Appendix A).
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2.9.2 Intraclass Correlation Coefficients (ICCs)

In general, the intraclass correlation coefficient (ICC) is a measure describing the
similarity (or homogeneity) of the responses on the dependent variable within a cluster (in
a clustered data set) or a unit of analysis (in a repeated-measures or longitudinal data set).
We consider different forms of the ICC in the analysis of a two-level clustered data set (the
Rat Pup data) in Chapter 3, and the analysis of a three-level data set (the Classroom data)
in Chapter 4.

2.9.3 Problems with Model Specification (Aliasing)

In this subsection we informally discuss aliasing (and related concepts) in general terms.
We then illustrate these concepts with two hypothetical examples. In our explanation, we
follow the work of Nelder (1977).

We can think of aliasing as an ambiguity that may occur in the specification of a para-
metric model (e.g., an LMM), in which multiple parameter sets (aliases) imply models that
are indistinguishable from each other. There are two types of aliasing:

1. Intrinsic aliasing: Aliasing attributable to the model formula specification.

2. Extrinsic aliasing: Aliasing attributable to the particular characteristics of a
given data set.

Nonidentifiability and overparameterization are other terms often used to refer to
intrinsic aliasing. In this section we use the term aliasing to mean intrinsic aliasing; however,
most of the remarks apply to both intrinsic and extrinsic aliasing.

Aliasing should be detected by the researcher at the time that a model is specified;
otherwise, if unnoticed, it may lead to difficulties in the estimation of the model parameters
and/or incorrect interpretation of the results.

Aliasing has important implications for parameter estimation. More specifically, aliasing
implies that only certain linear combinations of parameters are estimable and other combi-
nations of the parameters are not. “Nonestimability” due to aliasing is caused by the fact
that there are infinitely many sets of parameters that lead to the same set of predicted
values (i.e., imply the same model). Consequently, each value of the likelihood function
(including the maximum value) can be obtained with infinitely many sets of parameters.

To resolve a problem with aliasing so that a unique solution in a given parameter space
can be obtained, the common practice is to impose additional constraints on the parameters
in a specified model. Although constraints can be chosen arbitrarily out of infinitely many,
some choices are more natural than others. We choose constraints in such a way as to
facilitate interpretation of parameters in the model. At the same time, it is worthwhile to
point out that the choice of constraints does not affect the meaning (or interpretation) of
the model itself. It should also be noted that constraints imposed on parameters should not
be considered as part of the model specification. Rather, constraints are a convenient way
to resolve the issue of nonestimability caused by aliasing.

In the case of aliasing of the 8 parameters in standard linear models (Example 1 fol-
lowing), many software packages by default impose constraints on the parameters to avoid
aliasing, and it is the user’s responsibility to determine what constraints are used. In Ex-
ample 2, we consider aliasing of covariance parameters.

Example 1. A linear model with an intercept and a gender factor (Model E1).
Most commonly, intrinsic aliasing is encountered in linear models involving categorical fixed
factors as covariates. Consider for instance a hypothetical linear model, Model E1, with
an intercept and gender considered as a fixed factor. Suppose that this model involves three
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corresponding fixed-effect parameters: p (the intercept), pup for females, and pps for males.
The X design matrix for this model has three columns: a column containing an indicator
variable for the intercept (a column of ones), a column containing an indicator variable
for females, and a column containing an indicator variable for males. Note that this design
matrix is not of full rank.

Consider transformation T; of the fixed-effect parameters u, pp, and pps, such that
a constant C is added to p and the same constant is subtracted from both ppr and from
war- Transformation T is artificially constructed in such a way that any transformed set
of parameters u' = p+C, ps = prp — C, and py, = par — C generates predicted values that
are the same as in Model E1. In other words, the model implied by any transformed set of
parameters is indistinguishable from Model E1.

Note that the linear combinations g+ p g, p+ pas, or Cy X up~+Co X ppr, where Cp+Co =
0, are not affected by transformation T4, because p' + 'y = p+ pp, ' + pyy = o+ par, and
C1 X plp+ Co x phyy = C1 X pp 4+ Co X ppr. All linear combinations of parameters unaffected
by transformation T; are estimable. In contrast, the individual parameters p, g, and pps
are affected by transformation T; and, consequently, are not estimable.

To resolve this issue of nonestimability, we impose constraints on p, pr, and ppr. Out
of an infinite number of possibilities, we arbitrarily constrain p to be zero. This constraint
was selected so that it allows us to directly interpret pp and pys as the means of a depen-
dent variable for females and males, respectively. In SAS proc mixed, for example, such
a constraint can be accomplished by using the noint option in the model statement. By
default, using the solution option in the model statement of proc mixed would constrain
s to be equal to zero, meaning that p would be interpreted as the mean of the dependent
variable for males, and pp would represent the difference in the mean for females compared
to males.

Example 2. An LMM with aliased covariance parameters (Model E2). Consider
an LMM (Model E2) with the only fixed effect being the intercept, one random effect
associated with the intercept for each subject (resulting in a single covariance parameter,
o2.,), and a compound symmetry covariance structure for the residuals associated with re-
peated observations on the same subject (resulting in two covariance parameters, o2 and oy;
see the compound symmetry covariance structure for the R; matrix in Subsection 2.2.2.2).

In the marginal V; matrix for observations on subject ¢ that is implied by this model,
the diagonal elements (i.e., the marginal variances) are equal to 0? + o1 + 02,,, and the
off-diagonal elements (i.e., the marginal covariances) are equal to o1 + 02,,.

Consider transformation T4, such that a constant C' is added to 02,,, and the same con-
stant C' is subtracted from o;. We assume that the possible values of C' in transformation
T should be constrained to those for which the matrices D and R; remain positive-definite.
Transformation T is constructed in such a way that any transformed set of parameters
02, + C and o1 — C implies the same marginal variance-covariance matrix, V;, and con-
sequently, the marginal distribution of the dependent variable is the same as in Model E2,
which means that all these models are indistinguishable. Moreover, after applying transfor-
mation Ts, the matrix R; remains compound symmetric, as needed.

The linear combinations of covariance parameters o2 + o1 + 02, and o1 + 02, (i.e., the
elements in the V; matrix) are not affected by transformation Ts. In other words, these
linear combinations are estimable. Due to aliasing, the individual parameters o2, and oy
are not estimable.

To resolve this issue of nonestimability, we impose constraints on o2, and oj. One
possible constraint to consider, out of infinitely many, is o; = 0, which is equivalent to
assuming that the residuals are not correlated and have constant variance (o2). In other
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words, the R; matrix no longer has a compound symmetry structure, but rather has a
structure with constant variance on the diagonal and all covariances equal to zero.

If such a constraint is not defined by the user, then the corresponding likelihood function
based on all parameters has an infinite number of ML solutions. Consequently, the algorithm
used for optimization in software procedures may not converge to a solution at all, or it
may impose arbitrary constraints on the parameters and converge. In such a case, software
procedures will generally issue a warning, such as “Invalid likelihood” or “Hessian not
positive-definite” or “Convergence not achieved” (among others). In all these instances,
parameter estimates and their standard errors may be invalid and should be interpreted
with caution. We discuss aliasing of covariance parameters and illustrate how each software
procedure handles it in the analysis of the Dental Veneer data in Chapter 7.

2.9.4 Missing Data

In general, analyses using LMMs are carried out under the assumption that missing data
in clustered or longitudinal data sets are missing at random (MAR) (see Little &
Rubin, 2002, or Allison, 2001, for a more thorough discussion of missing data patterns
and mechanisms). Under the assumption that missing data are MAR, inferences based on
methods of ML estimation in LMMs are valid (Verbeke & Molenberghs, 2000).

The MAR pattern means that the probability of having missing data on a given variable
may depend on other observed information, but does not depend on the data that would
have been observed but were in fact missing. For example, if subjects in a study do not
report their weight because the actual (unobserved or missing) weights are too large or too
small, then the missing weight data are not MAR. Likewise, if a rat pup’s birth weight is
not collected because it is too small or too large for a measurement device to accurately
detect it, the information is not MAR. However, if a subject’s current weight is not related
to the probability that he or she reports it, but rather the likelihood of failing to report
it depends on other observed information (e.g., illness or previous weight), then the data
can be considered MAR. In this case, an LMM for the outcome of current weight should
consider the inclusion of covariates, such as previous weight and illness, which are related
to the nonavailability of current weight.

Missing data are quite common in longitudinal studies, often due to dropout. Multi-
variate repeated-measures ANOVA models are often used in practice to analyze repeated-
measures or longitudinal data sets, but LMMs offer two primary advantages over these
multivariate approaches when there are missing data.

First, they allow subjects being followed over time to have unequal numbers of mea-
surements (i.e., some subjects may have missing data at certain time points). If a subject
does not have data for the response variable present at all time points in a longitudinal
or repeated-measures study, the subject’s entire set of data is omitted in a multivariate
ANOVA (this is known as listwise deletion); the analysis therefore involves complete
cases only. In an LMM analysis, all observations that are available for a given subject are
used in the analysis.

Second, when analyzing longitudinal data with repeated-measures ANOVA techniques,
time is considered to be a within-subject factor, where the levels of the time factor are
assumed to be the same for all subjects. In contrast, LMMs allow the time points when
measurements are collected to vary for different subjects.

Because of these key differences, LMMSs are much more flexible analytic tools for longitu-
dinal data than repeated-measures ANOVA models, under the assumption that any missing
data are MAR. We advise readers to inspect longitudinal data sets thoroughly for problems
with missing data. If the vast majority of subjects in a longitudinal study have data present
at only a single time point, an LMM approach may not be warranted, because there may not
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be enough information present to estimate all of the desired covariance parameters in the
model. In this situation, simpler regression models should probably be considered because
issues of within-subject dependency in the data may no longer apply.

When analyzing clustered data sets (such as students nested within classrooms), clusters
may be of unequal sizes, or there may be data within clusters that are MAR. These problems
result in unbalanced data sets, in which an unequal number of observations are collected
for each cluster. LMMs can be fitted to unbalanced clustered data sets, again under the
assumption that any missing data are MAR. Quite similar to the analysis of longitudinal
data sets, multivariate techniques or techniques requiring balanced data break down when
attempting to analyze unbalanced clustered data. LMMs allow one to make valid inferences
when modeling these types of clustered data, which arise frequently in practice.

2.9.5 Centering Covariates

Centering covariates at specific values (i.e., subtracting a specific value, such as the mean,
from the observed values of a continuous covariate) has the effect of changing the intercept
in the model, so that it represents the expected value of the dependent value at a specific
value of the covariate (e.g., the mean), rather than the expected value when the covariate is
equal to zero (which is often outside the range of the observed data). This type of centering
is often known as grand mean centering. We consider grand mean centering of covariates
in the analysis of the Autism data in Chapter 6.

An alternative centering procedure is to center continuous covariates at the mean values
of the higher-level clusters or groups within which the units measured on the continuous
covariates are nested. This type of centering procedure, sometimes referred to as group
mean centering, changes the interpretation of both the intercept and the estimated fixed
effects for the centered covariates, unlike grand mean centering. This type of centering
requires an interpretation of the fixed effects associated with the centered covariates that
is relative to other units within a higher-level group (or cluster). A fixed effect in this case
now reflects the expected change in the dependent variable for a one-unit within-cluster
increase in the centered covariate.

A thorough overview of these centering options in the context of LMMs can be found
in Enders (2013). We revisit this issue in Chapter 6.

2.9.6 Fitting Linear Mixed Models to Complex Sample Survey Data

In many applied fields, scientific advances are driven by secondary analyses of large survey
data sets. Survey data are often collected from large, representative probability samples
of specified populations, where a formal sample design assigns a known probability of se-
lection to all individual elements (people, households, establishments, etc.) in the target
population. Many of the larger, nationally representative survey data sets that survey or-
ganizations make available for public consumption (e.g., the National Health and Nutrition
Examination Survey, or NHANES, in the United States; see http://www.cdc.gov/nchs/
nhanes/about_nhanes.htm) are collected from probability samples with so-called “com-
plex” designs, giving rise to the term complex sample survey data. These complex
sample designs generally have the following features (Heeringa et al., 2010):

e The sampling frame, or list of population elements (or clusters of population elements,
e.g., schools where students will be sampled and surveyed) is stratified into mutually
exclusive divisions of elements that are homogeneous within (in terms of the features
of survey interest) and heterogeneous between. This stratification serves to increase the
precision of survey estimates and ensure that the sample is adequately representative
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of the target population. Public-use survey data sets will sometimes include a variable
containing unique codes for each stratum of the population.

e To reduce the costs associated with data collection, naturally-occurring clusters of ele-
ments (e.g., schools, hospitals, neighborhoods, Census blocks, etc.) are randomly sampled
within strata, rather than randomly sampling individual elements. This is often done
because sampling frames only contain clusters, rather than the individual elements of in-
terest. This type of cluster sampling gives rise to a hierarchical structure in the data set,
where sampled elements nested within the sampled clusters tend to have similar values
on the survey features of interest (e.g., similar attitudes within a neighborhood, or similar
test performance within a school). This intracluster correlation needs to be accounted
for in analyses, so that standard errors of parameter estimates appropriately reflect this
dependency among the survey respondents. Public-use survey data sets will sometimes
include a variable containing unique codes for each sampled cluster.

e The known probabilities of selection assigned to each case in the target population need
not be equal (as in the case of a simple random sample), and these probabilities are
inverted to compute what is known as a design weight for each sampled case. These
design weights may also be adjusted to account for differential nonresponse among different
subgroups of the sample, and further calibrated to produce weighted sample distributions
that match known population distributions (Valliant et al., 2013). Public-use survey data
sets will include variables containing the final survey weight values for responding cases in
a survey, and these weights enable analysts to compute unbiased estimates of population
quantities.

Analysts of complex sample survey data are therefore faced with some decisions when
working with data sets containing variables that reflect these sampling features. When
fitting linear mixed models to complex sample survey data that recognize the hierarchical
structures of these data sets (given the cluster sampling), how exactly should these complex
design features be accounted for? Completely ignoring these design features when fitting
linear mixed models can be problematic for inference purposes, especially if the design
features are predictive of (or informative about) the dependent variable of interest. The
existing literature generally suggests two approaches that could be used to fit linear mixed
models to survey data sets, and we discuss implementation of these two approaches using
existing software in the following subsections.

2.9.6.1 Purely Model-Based Approaches

The majority of the analyses discussed in this book can be thought of as “model-based” ap-
proaches to data analysis, where a probability model is specified for a dependent variable of
interest, and one estimates the parameters defining that probability model. The probability
models in this book are defined by fixed effects and covariance parameters associated with
random effects, and the dependent variables considered have marginal normal distributions
defined by these parameters. When analyzing survey data following this framework, the key
complex sample design features outlined above are simply thought of as additional relevant
information for the dependent variable that should be accounted for in the specification of
a given probability model.

First, the sampling strata are generally thought of as categorical characteristics of the
randomly sampled clusters (which may define Level 2 or Level 3 units, depending on the
sample design), and the effects of the strata (or recoded versions of the original stratum
variable, to reduce the number of categories) are considered as fixed effects. The reason
that the effects of strata enter into linear mixed models as fized effects is that all possible
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strata (or divisions of the population) will be included in each hypothetical replication
of the sample; there is no sampling variability introduced by having different strata in
different samples. The effects associated with the different strata are therefore considered
as fixed. The fixed effects of strata can be incorporated into models by following the standard
approaches for categorical fixed factors discussed in detail in this book.

Second, the intracluster correlations in the survey data introduced by the cluster sam-
pling are generally accounted for by including random effects of the randomly sampled
clusters in the specification of a given linear mixed model. In this sense, the data hierarchy
of a given survey data set needs to be carefully considered. For example, an analyst may be
interested in modeling between-school variance when fitting a linear mixed model, but the
cluster variable in that survey data set may represent a higher-level unit of clustering (such
as a county, where multiple schools may be included in the sample from a given county).
In this example, the analyst may need to consider a three-level linear mixed model, where
students are nested within schools, and schools are nested within clusters (or counties).
Model-based approaches to fitting linear mixed models will be most powerful when the
models are correctly specified, and correctly accounting for the different possible levels of
clustering in a given data set therefore becomes quite important, so that important random
effects are not omitted from a model.

Third, when following a purely model-based approach to the analysis of complex sample
survey data using linear mixed models, the weights (or characteristics of sample units used to
form the weights, e.g., ethnicity in a survey that over-samples minority ethnic groups relative
to known population distributions) are sometimes considered as covariates associated with
the sampled units. As discussed by Gelman (2007), model-based approaches to the analysis
of survey data arising from complex samples need to account for covariates that affect sample
selection or nonresponse (and of course also potentially predict the dependent variable of
interest). Gelman (2007) proposed a model-based approach to estimating population means
and differences in population means (which can be estimated using regression) based on
the ideas of post-stratification weighting, which is a technique commonly used to adjust
for differences between samples and populations in survey data. In this approach, implicit
adjustment weights for survey respondents are based on regression models that condition
on variables defining post-stratification cells, where corresponding population distributions
across those cells are also known. Gelman (2007) called for more work to develop model-
based approaches to fitting regression models (possibly with random cluster effects) that
simultaneously adjust for these differences between samples and populations using the ideas
of post-stratification.

Other purely model-based approaches to accounting for sampling weights in multilevel
models for survey data are outlined by Korn & Graubard (1999) and Heeringa et al. (2010).
In general, these model-based approaches to accounting for survey weights can be readily
implemented using existing software capable of fitting multilevel models, given that the
weights (or features of respondents used to define the weights) can be included as covariates
in the specified models.

2.9.6.2 Hybrid Design- and Model-Based Approaches

In contrast to the purely model-based approaches discussed above, an alternative approach
is to incorporate complex sampling weights into the estimation of the parameters in a
linear mixed model. We refer to this as a “hybrid” approach, given that it includes fea-
tures of model-based approaches (where the models include random effects of sampling
clusters and fixed effects of sampling strata) and design-based approaches (incorporating
sampling weights into the likelihood functions used for estimation, in an effort to compute
design-unbiased estimates of model parameters). It is well known that if sampling weights



Linear Mixed Models: An Overview 53

informative about a dependent variable in a linear mixed model are not accounted for when
estimating that model, estimates of the parameters may be biased (Carle, 2009). These
“hybrid” approaches offer analysts an advantage over purely model-based approaches, in
that the variables used to compute sampling weights may not always be well-known (or
well-communicated by survey organizations in the documentation for their surveys) for in-
clusion in models. Incorporating the sampling weights into estimation of the parameters
in a linear mixed model will generally lead to unbiased estimates of the parameters defin-
ing the larger population model that is the objective of the estimation, even if the model
has been misspecified in some way. In this sense, unbiased estimates of the parameters in
a poorly-specified model would be preferred over biased estimates of the parameters in a
poorly-specified model.

What is critical for these “hybrid” approaches is that software be used that correctly
implements the theory of weighted estimation for multilevel models. Initial theory for param-
eter estimation and variance estimation in this context was communicated by Pfeffermann
et al. (1998), and later elaborated on by Rabe-Hesketh & Skrondal (2006), who have imple-
mented the theory in the Stata software procedure gllamm (available at www.gllamm.org).
This theory requires that conditional weights be used for estimation at lower levels of the
data hierarchy; for example, in a two-level cross-sectional data set with people nested within
clusters, the weights associated with individual people need to be conditional on their clus-
ter having been sampled. Making this more concrete, suppose that the weight provided in
a survey data set for a given individual is 100, meaning that (ignoring possible nonresponse
and post-stratification adjustments for illustration purposes), their probability of selection
into the sample was 1/100. This probability of selection was actually determined based on
the probability that their cluster was selected into the sample (say, 1/20), and then the
conditional probability that the individual was selected given that the cluster was sampled
(say, 1/5). In this sense, the appropriate “Level-1 weight” for implementing this theory for
that individual would be 5, or the inverse of their conditional selection probability. Fur-
thermore, the “Level-2 weight” of 20 for the sampled cluster is also needed in the data set;
this is because this theory requires these two components of the overall weight at different
places in the likelihood function.

There are two important issues that arise in this case. First, survey agencies seldom
release these conditional weights (or the information needed to compute them) in public-use
data files, and cluster-level weights are also seldom released; in general, only weights for the
ultimate Level-1 units accounting for the final probabilities of selection across all stages of
sampling are released. Second, these weights need to be scaled for inclusion in the likelihood
function used to estimate the model parameters. Scaling becomes most important when an
analyst only has access to final weights (as opposed to conditional weights) for Level-1 and
Level-2 units, and the final Level-1 weights (representing overall probabilities of selection)
need to be appropriately re-scaled to remove their dependence on the Level-2 weights (for
the clusters). Scaling can still be important even if the conditional Level-1 weights are in
fact provided in a data set (Rabe-Hesketh & Skrondal, 2006). Carle (2009) presents the
results of simulation studies examining the performance of the two most popular scaling
methods that have emerged in this literature, concluding that they do not tend to differ in
performance and still provide better inference than ignoring the weights entirely. Based on
this work, we recommend that analysts following these “hybrid” approaches use existing
software to examine the sensitivity of their inferences to the different scaling approaches
(and differences in inference compared to unweighted analyses).

At the time of the writing for the second edition of this book, two of the software
procedures emphasized in this book implement the appropriate theory for this hybrid type
of analysis approach: the mixed command in Stata, and the various procedures in the HLM
software package. When using the mixed command, the appropriate scaling approaches are
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only currently implemented for two-level models, and in general, conditional weights need
to be computed at each level for higher-level models. The following syntax indicates the
general setup of the mixed command, for a two-level cross-sectional survey data set with
individuals nested within sampling clusters:

. mixed depvar indvarl i.strata ... [pw = finwgt] || cluster:,
pweight (level2wgt) pwscale(size)

In this syntax, we assume that finwgt is the final weight associated with Level-1 respon-
dents, and reflects the overall probability of selection (including the conditional probability
of selection for the individuals and the cluster probability of selection). This is the type
of weight that is commonly provided in survey data sets. The pwscale(size) option is
then a tool for re-scaling these weights to remove their dependence on the cluster-level
weights, which reflect the probabilities of selection for the clusters (level2wgt). If condi-
tional Level-1 weights were available in the data set, the pwscale(gk) scaling option could
also be used. In general, all three scaling options (including pwscale(effective)) should
be considered in a given analysis, to examine the sensitivity of the results to the different
scaling approaches. We note that random cluster intercepts are included in the model to
reflect the within-cluster dependency in values on the dependent variable, and fixed effects
of the categorical strata are included as well (using i.strata).

Obviously the use of these options requires the presence of cluster weights and possibly
conditional Level-1 weights in the survey data set. In the absence of cluster weights, one
would have to assume that the weights associated with each cluster were 1 (essentially, a
simple random sample of clusters was selected). This is seldom the case in practice, and
would likely lead to biased parameter estimates.

In the HLM software, the conditional lower-level weights and the higher-level cluster
weights can be selected by clicking on the Other Settings menu, and then Estimation
Settings. Next, click on the button for Weighting, and select the appropriate weight
variables at each level. If weights are only available at Level 1 and are not conditional (the
usual case), HLM will automatically normalize the weights so that they have a mean of 1.
If Level-1 and Level-2 weights are specified, HLM will assume that the Level-1 weights are
conditional weights, and normalize these weights so that they sum to the size of the sample
within each Level-2 unit (or cluster). In this sense, HLM automatically performs scaling of
the weights. See http://www.ssicentral.com/hlm/example6-2.html for more details for
higher-level models.

Although the approaches above are described for two-level, cross-sectional, clustered
survey data sets, there are also interesting applications of these hybrid modeling approaches
for longitudinal survey data, where repeated measures are nested within individuals, and
individuals may be nested within sampling clusters. The same basic theory with regard to
weighting at each level still holds, but the longitudinal data introduce the possibility for
unique error covariance structures at Level 1. Heeringa et al. (2010) present an example of
fitting a model to data from the longitudinal Health and Retirement Study (HRS) using this
type of hybrid approach (as implemented in the gllamm procedure of Stata), and review some
of the literature that has advanced the use of these methods for longitudinal survey data.
More recently, Veiga et al. (2014) described the theory and methods required to fit multilevel
models with specific error covariance structures for the repeated measures at Level 1, and
showed how accounting for the survey weights at each level can make a difference in terms
of inferences related to trends over time. These authors also make software available that
implements this hybrid approach for this specific class of multilevel models. The analysis
of data from longitudinal surveys is a ripe area for future research, and we anticipate more
developments in this area in the near future.
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Other software packages that currently implement the theory for this hybrid approach
include Mplus (see Asparouhov, 2006, 2008), the gllamm add-on command for Stata (Rabe-
Hesketh & Skrondal, 2006; see www.gllamm.org for examples) and the MLwiN software
package (http://www.bristol.ac.uk/cmm/software/mlwin/). We are hopeful that these
approaches will become available in more of the general-purpose software packages in the
near future, and we will provide any updates in this regard on the web page for this book.

2.9.7 Bayesian Analysis of Linear Mixed Models

In general, we present a frequentist approach to the analysis of linear mixed models in
this book. These approaches involve the specification of a likelihood function corresponding
to a given linear mixed model, and subsequent application of the various numerical opti-
mization algorithms discussed earlier in this chapter to find the parameter estimates that
maximize that likelihood function. In contrast, one could also take a Bayesian approach
to the analysis of linear mixed models. Heuristically speaking, this approach makes use of
Bayes’ Theorem, and defines a posterior distribution for a parameter vector 6 given data
denoted by y, f(0]y), as a function of the product of a prior distribution for that param-
eter vector, f(@), and the likelihood function defined by the model of interest and the
observed data, f(y|@). The Bayesian approach treats the data y as fixed and the parameter
vector 6 as random, allowing analysts to ascribe uncertainty to the parameters of interest
based on previous investigations via the prior distributions. Another important distinction
between the Bayesian and frequentist approaches is that uncertainty in estimates of variance
components describing distributions of random coefficients is incorporated into inferential
procedures, as described below.

Given a prior distribution for the vector of parameters 6 (specified by the analyst)
and the likelihood function defined by the data and a given model, various computational
methods (e.g., Markov Chain Monte Carlo (MCMC) methods) can be used to simulate
draws from the resulting posterior distribution for the parameters of interest. The prior
distribution is essentially “updated” by the likelihood defined by a given data set and
model to form the posterior distribution. Inferences for the parameters are then based on
many simulated draws from the posterior distribution; for example, a 95% credible set for
a parameter of interest could be defined by the 0.025 and 0.975 percentiles of the simulated
draws from the posterior distribution for that parameter. This approach to inference is
considered by Bayesians to be much more “natural” than frequentist inferences based on
confidence intervals (which would suggest, for example, that 95% of intervals computed a
certain way will cover a true population parameters across hypothetical repeated samples).
With the Bayesian approach, which essentially treats parameters of interest as random
variables, one could suggest that the probability that a parameter takes a value between
the limits defined by a 95% credible set is actually 0.95.

Bayesian approaches also provide a natural method of inference for data sets having a
hierarchical structure, such as those analyzed in the case studies in this book, given that
the parameters of interest are treated as random variables rather than fixed constants. For
example, in a two-level cross-sectional clustered data set, observations on the dependent
variable at Level 1 (the “data”) may arise from a normal distribution governed by ran-
dom coefficients specific to a higher-level cluster; the coefficients in this model define the
likelihood function. The random cluster coefficients themselves may arise from a normal
distribution governed by mean and variance parameters. Then, these parameters may be
governed by some prior distribution, reflecting uncertainty associated with those parameters
based on prior studies. Following a Bayesian approach, one can then simulate draws from
the posterior distribution for all of the random coefficients and parameters that is defined
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by these conditional distributions, making inference about either the random coefficients or
the parameters of interest.

There is a vast literature on Bayesian approaches to fitting linear mixed models; we only
provide a summary of the approach in this section. General texts providing very accessible
overviews of this topic with many worked examples using existing software include Gelman
et al. (2004), Carlin & Louis (2009), and Jackman (2009). Gelman & Hill (2006) provide a
very practical overview of using Bayesian approaches to fit multilevel models using the R
software in combination with the BUGS software. We will aim to include additional examples
using other software on the book’s web page as the various software packages covered in
this book progress in making Bayesian approaches more available and accessible. At the
time of this writing, fully Bayesian analysis approaches are only available in proc mixed in
SAS, and we will provide examples of these approaches on the book’s web page.

2.10 Power Analysis for Linear Mixed Models

At the stage where researchers are designing studies that will produce longitudinal or clus-
tered data, a power analysis is often necessary to ensure that sample sizes at each level
of the data hierarchy will be large enough to permit detection of effects (or parameters) of
scientific interest. In this section, we review methods that can be used to perform power
analyses for linear mixed models. We focus on a priori power calculations, which would be
performed at the stage of designing a given study. We first consider direct power compu-
tations based on known analytic results. Readers interested in more details with regard to
study design considerations for LMMs should review van Breukelen & Moerbeek (2013).

2.10.1 Direct Power Computations

Methods and software for performing a priori power calculations for a study that will
employ linear mixed models are readily available, and much of the available software can
fortunately be obtained free of charge. Helms (1992) and Verbeke & Molenberghs (2000)
describe power calculations for linear mixed models based on known analytic formulas, and
Spybrook et al. (2011) provide a detailed account of power analysis methods for linear mixed
models that do not require simulations.

In terms of existing software, Galecki & Burzykowski (2013) describe the use of avail-
able tools in the freely available R software for performing a priori power calculations for
linear mixed models. Spybrook et al. (2011) have developed the freely available Optimal
Design software package, which can be downloaded from http://sitemaker.umich.edu/
group-based/optimal_design_software. The documentation for this software, which can
also be downloaded free-of-charge from the same web site, provides several detailed exam-
ples of a priori power calculations using known analytic results for linear mixed models that
are employed by this software. We find these tools to be extremely valuable for researchers
designing studies that will collect longitudinal or clustered data sets, and we urge readers
to consult these references when designing such studies.

For some study designs where closed-form results for power calculations are not readily
available, simulations will likely need to be employed. In the next section, we discuss a
general approach to the use of simulations to perform power analyses for studies that will
employ linear mixed models.
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2.10.2 Examining Power via Simulation

In general, there are three steps involved in using simulations to compute the power of a
given study design to detect specified parameters of interest in a linear mixed model:

1. Specify the model of interest, using actual values for the parameters of interest
which correspond to the values that the research team would like to be able
to detect at a specified level of significance. For example, in a simple random
intercept model for a continuous outcome variable in a two-level clustered data set
with one binary covariate at Level 1 (e.g., treatment), there are four parameters
to be estimated: the fixed intercept (or the mean for the control group), the fixed
treatment effect, the variance of the random intercepts, and the variance of the
errors at Level 1. A researcher may wish to detect a mean difference of 5 units
between the treatment and control groups, where the control group is expected
to have a mean of 50 on the continuous outcome. The researcher could also use
estimated values of the variance of the random intercepts and the variance of the
errors at Level 1 based on pilot studies or previous publications.

2. Randomly generate a predetermined number of observations based on the spec-
ified model, at each level of the data hierarchy. In the context of the two-level
data set described above, the researcher may be able afford data collection in 30
clusters, with 20 observations per cluster. This would involve randomly selecting
30 random effects from the specified distribution, and then randomly selecting
20 draws of values for the outcome variable conditional on each selected ran-
dom effect (based on the prespecified values of the fixed-effect parameters and 20
random draws of residuals from the specified distribution for the errors).

3. After generating a hypothetical data set, fit the linear mixed model of interest, and
use appropriate methods to test the hypothesis of interest or generate inference
regarding the target parameter(s). Record the result of the hypothesis test, and
repeat these last two steps several hundred (or even thousands) of times, recording
the proportion of simulated data sets where the effect of interest can be detected
at a specified level of significance. This proportion is the power of the proposed
design to detect the effect of interest.

We now present an example of a macro in SAS that illustrates this three-step simulation
methodology, in the case of a fairly simple linear mixed model. We suppose that a researcher
is interested in being able to detect a between-cluster variance component in a two-level
cross-sectional design, where individual observations on a continuous dependent variable
are nested within clusters. The research question is whether the between-cluster variance
component is greater than zero. Based on previous studies, the researcher estimates that
the dependent variable has a mean of 45, and a within-cluster variance (error variance) of
64. We do not consider any covariates in this example, meaning that 64 would be the “raw”
(or unconditional) variance of the dependent variable within a given cluster.

The researcher would like to be able to detect a between-cluster variance component of
2 as being significantly greater than zero with at least 80 percent power when using a 0.05
level of significance. This variance component corresponds to a within-cluster correlation (or
ICC) of 0.03. The 80 percent power means that if this ICC exists in the target population,
the researcher would be able to detect it 80 times out of 100 when using a significance
level of 0.05 and a likelihood ratio test based on a mixture of chi-square distributions (see
Subsection 2.6.2.2). The researcher needs to know how many clusters to sample, and how
many individuals to sample within each cluster.

We have prepared a SAS program on the book’s web page (see Appendix A) for per-
forming this simulation. We use proc glimmix in SAS to fit the linear mixed model to
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each simulated data set, which enables the appropriate likelihood ratio test of the null hy-
pothesis that the between-cluster variance is equal to zero based on a mixture of chi-square
distributions (via the covtest glm statement). We also take advantage of the ods output
functionality in SAS to save the likelihood ratio test p-values in a SAS data file (1rtresult)
that can be analyzed further. This program requests 100 simulated data sets, where 40 ob-
servations are sampled from each of 30 clusters. One run of this macro results in a computed
power value of 0.91, suggesting that these choices for the number of clusters and the number
of observations per cluster would result in sufficient power (and that the researcher may be
able to sample fewer clusters or observations, given that a power value of 0.8 was desired).
This simple example introduces the idea of using simulation for power analysis when
fitting linear mixed models and designing longitudinal studies or cluster samples. With a
small amount of SAS code, these simulations are straightforward to implement, and similar
macros can be written using other languages (SPSS, Stata, R, etc.). For additional reading
on the use of simulations to conduct power analyses for linear mixed models, we refer readers
to Gelman & Hill (2006) and Galecki & Burzykowski (2013), who provide worked examples
of writing simulations for power analysis using the freely available R software. We also refer
readers to the freely available MLPowSim software that can be used for similar types of
simulation-based power analyses (http://www.bristol.ac.uk/cmm/software/mlpowsim/).

2.11 Chapter Summary

LMMs are flexible tools for the analysis of clustered and repeated-measures/longitudinal
data that allow for subject-specific inferences. LMMs extend the capabilities of standard
linear models by allowing;:

1. Unbalanced and missing data, as long as the missing data are MAR;

2. The fixed effects of time-varying covariates to be estimated in models for repeated-
measures or longitudinal data sets;

3. Structured variance-covariance matrices for both the random effects (the D ma-
trix) and the residuals (the R; matrix).

In building an LMM for a specific data set, we aim to specify a model that is appropriate
both for the mean structure and the variance-covariance structure of the observed responses.
The variance-covariance structure in an LMM should be specified in light of the observed
data and a thorough understanding of the subject matter. From a statistical point of view,
we aim to choose a simple (or parsimonious) model with a mean and variance-covariance
structure that reflects the basic relationships among observations, and maximizes the like-
lihood of the observed data. A model with a variance-covariance structure that fits the
data well leads to more accurate estimates of the fixed-effect parameters and to appropriate
statistical tests of significance.
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T'wo-Level Models for Clustered Data:
The Rat Pup Example

3.1 Introduction

In this chapter, we illustrate the analysis of a two-level clustered data set. Such data
sets typically include randomly sampled clusters (Level 2) and units of analysis (Level
1), which are randomly selected from each cluster. Covariates can measure characteristics
of the clusters or of the units of analysis, so they can be either Level 2 or Level 1 variables.
The dependent variable, which is measured on each unit of analysis, is always a Level 1
variable.

The models fitted to clustered data sets with two or more levels of data (or to longitudinal
data) are often called multilevel models (see Subsection 2.2.4). Two-level models are
the simplest examples of multilevel models and are often used to analyze two-level data
sets. In this chapter, we consider two-level random intercept models that include only
a single random effect associated with the intercept for each cluster. We formally define an
example of a two-level random intercept model in Subsection 3.3.2.

Study designs that can result in two-level clustered data sets include observational
studies on units within clusters, in which characteristics of both the clusters and the units
are measured; cluster-randomized trials, in which a treatment is randomly assigned to
all units within a cluster; and randomized block design experiments, in which the
blocks represent clusters and treatments are assigned to units within blocks. Examples of
two-level data sets and related study designs are presented in Table 3.1.

This is the first chapter in which we illustrate the analysis of a data set using the five
software procedures discussed in this book: proc mixed in SAS, the MIXED command in
SPSS, the 1me () and lmer () functions in R, the mixed command in Stata, and the HLM2
procedure in HLM. We highlight the SAS software in this chapter. SAS is used for the initial
data summary, and for the model diagnostics at the end of the analysis. We also go into
the modeling steps in more detail in SAS.
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TABLE 3.1: Examples of Two-Level Data in Different Research Settings

Research Setting/Study Design

Level of Data Sociology Education Toxicology
Observational Cluster- Cluster-
Study Randomized Randomized
Trial Trial
Level 2  Cluster City Block Classroom Litter

(random

factor)

Covariates  Urban vs. rural Teaching method, Treatment, litter
indicator, teacher years of size
percentage experience
single-family
dwellings

Level 1  Unit of Household Student Rat Pup
analysis

Dependent  Household income Test score Birth weight

variable

Covariates Number of people Gender, age Sex
in household, own
or rent home

]

3.2 The Rat Pup Study
3.2.1 Study Description

Jose Pinheiro and Doug Bates, authors of the 1me () function in R, provide the Rat Pup data
in their book Mized-Effects Models in S and S-PLUS (2000). The data come from a study
in which 30 female rats were randomly assigned to receive one of three doses (high, low,
or control) of an experimental compound. The objective of the study was to compare the
birth weights of pups from litters born to female rats that received the high- and low-dose
treatments to the birth weights of pups from litters that received the control treatment.
Although 10 female rats were initially assigned to receive each treatment dose, three of the
female rats in the high-dose group died, so there are no data for their litters. In addition,
litter sizes varied widely, ranging from 2 to 18 pups. Because the number of litters per
treatment and the number of pups per litter were unequal, the study has an unbalanced
design.

The Rat Pup data is an example of a two-level clustered data set obtained from a
cluster-randomized trial: each litter (cluster) was randomly assigned to a specific level of
treatment, and rat pups (units of analysis) were nested within litters. The birth weights of
rat pups within the same litter are likely to be correlated because the pups shared the same
maternal environment. In models for the Rat Pup data, we include random litter effects
(which imply that observations on the same litter are correlated) and fixed effects associated
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TABLE 3.2: Sample of the Rat Pup Data Set

Litter (Level 2) Rat Pup (Level 1)
Dependent
Cluster ID Covariates Unit ID Variable Covariate
LITTER TREATMENT LITSIZE PUP_ID WEIGHT SEX
1 Control 12 1 6.60 Male
1 Control 12 2 7.40 Male
1 Control 12 3 7.15 Male
1 Control 12 4 7.24 Male
1 Control 12 5 7.10 Male
1 Control 12 6 6.04 Male
1 Control 12 7 6.98 Male
1 Control 12 8 7.05 Male
1 Control 12 9 6.95 Female
1 Control 12 10 6.29 Female
11 Low 16 132 5.65 Male
11 Low 16 133 5.78 Male
21 High 14 258 5.09 Male
21 High 14 259 5.57 Male
21 High 14 260 5.69 Male
21 High 14 261 5.50 Male

Note: “..” indicates that a portion of data is not displayed.

with treatment. Our analysis uses a two-level random intercept model to compare the mean
birth weights of rat pups from litters assigned to the three different doses, after taking into
account variation both between litters and between pups within the same litter.

A portion of the 322 observations in the Rat Pup data set is shown in Table 3.2, in the
“long”! format appropriate for a linear mixed model (LMM) analysis using the procedures
in SAS, SPSS, R, and Stata. Each data row represents the values for an individual rat pup.
The litter ID and litter-level covariates TREATMENT and LITSIZE are included, along
with the pup-level variables WEIGHT and SEX. Note that the values of TREATMENT
and LITSIZE are the same for all rat pups within a given litter, whereas SEX and WEIGHT
vary from pup to pup.

Each variable in this data set is classified as either a Level 2 or Level 1 variable, as
follows:

Litter (Level 2) Variables
e LITTER = Litter ID number

1The HLM software requires a different data setup, which will be discussed in Subsection 3.4.5.
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e TREATMENT = Dose level of the experimental compound assigned to the litter
(high, low, control)

e LITSIZE = Litter size (i.e., number of pups per litter)

Rat Pup (Level 1) Variables

e PUP_ID = Unique identifier for each rat pup

e WEIGHT = Birth weight of the rat pup (the dependent variable)

e SEX = Sex of the rat pup (male, female)

3.2.2 Data Summary

The data summary for this example was generated using SAS Release 9.3. A link to the
syntax and commands that can be used to carry out a similar data summary in the other
software packages is included on the web page for the book (see Appendix A).

We first create the ratpup data set in SAS by reading in the tab-delimited raw data
file, rat_pup.dat, assumed to be located in the C:\temp directory of a Windows machine.
Note that SAS users can optionally import the data directly from a web site (see the second
filename statement that has been “commented out”):

filename ratpup "C:\temp\rat_pup.dat";
*filename ratpup url "http://www-personal.umich.edu/ bwest/rat_pup.dat";
data ratpup;
infile ratpup firstobs = 2 dlm = "09"X;
input pup_id weight sex $ litter litsize treatment $;
if treatment = "High" then treat = 1;
if treatment "Low" then treat = 2;
if treatment = "Control" then treat = 3;
run;

We skip the first row of the raw data file, containing variable names, by using the
firstobs = 2 option in the infile statement. The dlm = "09"X option tells SAS that
tabs, having the hexadecimal code of 09, are the delimiters in the data file.

We create a new numeric variable, TREAT, that represents levels of the original charac-
ter variable, TREATMENT, recoded into numeric values (High = 1, Low = 2, and Control
= 3). This recoding is carried out to facilitate interpretation of the parameter estimates
for TREAT in the output from proc mixed in later analyses (see Subsection 3.4.1 for an
explanation of how this recoding affects the output from proc mixed).

Next we create a user-defined format, trtfmt, to label the levels of TREAT in the
output. Note that assigning a format to a variable can affect the order in which levels of the
variable are processed in different SAS procedures; we will provide notes on the ordering of
the TREAT variable in each procedure that we use.

proc format;

value trtfmt 1 = "High"
2 = "Low"
3 = "Control";

run;
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The following SAS syntax can be used to generate descriptive statistics for the birth
weights of rat pups at each level of treatment by sex. The maxdec = 2 option specifies
that values displayed in the output from proc means are to have only two digits after the
decimal.

Software Note: By default the levels of the class variable, TREAT, are sorted by
their numeric (unformatted) values in the proc means output, rather than by their
alphabetic (formatted) values. The values of SEX are ordered alphabetically, because
no format is applied.

title "Summary statistics for weight by treatment and sex";
proc means data = ratpup maxdec = 2;

class treat sex;

var weight;

format treat trtfmt.;
run;

The SAS output displaying descriptive statistics for each level of treatment and sex are
shown in the Analysis Variable: weight table below.

///’ Analysis Variable : weight ‘\\\

N
Treat Sex Obs N Mean Std Dev Minimum Maximum
High Female 32 32 5.85 0.60 4.48 7.68
Male 33 33 5.92 0.69 5.01 7.70
Low Female 65 65 5.84 0.45 4.75 7.73
Male 61 61 6.03 0.38 5.25 7.13
Control Female 54 54 6.12 0.69 3.68 7.57
\\\\ Male 7 77T 6.47 0.75 4.57 8.334///

The experimental treatments appear to have a negative effect on mean birth weight: the
sample means of birth weight for pups born in litters that received the high- and low-dose
treatments are lower than the mean birth weights of pups born in litters that received the
control dose. We note this pattern in both female and male rat pups. We also see that the
sample mean birth weights of male pups are consistently higher than those of females within
all levels of treatment.

We use box plots to compare the distributions of birth weights for each treatment by sex
combination graphically. We generate these box plots using the sgpanel procedure, creating
panels for each treatment and showing box plots for each sex within each treatment:

title "Boxplots of rat pup birth weights (Figure 3.1)";
ods listing style = journal2;
proc sgpanel data = ratpup;
panelby treat / novarname columns=3;
vbox weight / category = sex;
format treat trtfmt.;
run;
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FIGURE 3.1: Box plots of rat pup birth weights for levels of treatment by sex.

The pattern of lower birth weights for the high- and low-dose treatments compared
to the control group is apparent in Figure 3.1. Male pups appear to have higher birth
weights than females in both the low and control groups, but not in the high group. The
distribution of birth weights appears to be roughly symmetric at each level of treatment
and sex. The variances of the birth weights are similar for males and females within each
treatment but appear to differ across treatments (we will check the assumption of constant
variance across the treatment groups as part of the analysis). We also note potential outliers,
which are investigated in the model diagnostics (Section 3.10). Because each box plot pools
measurements for rat pups from several litters, the possible effects of litter-level covariates,
such as litter size, are not shown in this graph.

In Figure 3.2, we use box plots to illustrate the relationship between birth weight and
litter size. Each panel shows the distributions of birth weights for all litters ranked by size,
within a given level of treatment and sex. We first create a new variable, RANKLIT, to
order the litters by size. The smallest litter has a size of 2 pups (RANKLIT = 1), and the
largest litter has a size of 18 pups (RANKLIT = 27). After creating RANKLIT, we create
box plots as a function of RANKLIT for each combination of TREAT and SEX by using
proc sgpanel:

proc sort data=ratpup;
by litsize litter;
run;

data ratpup2;

set ratpup;

by litsize litter;

if first.litter then ranklit+1;

label ranklit = "New Litter ID (Ordered by Size)";
run;
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FIGURE 3.2: Litter-specific box plots of rat pup birth weights by treatment level and sex.
Box plots are ordered by litter size.

/* Box plots for weight by litsize, for each level of treat and sex */

proc sgpanel data=ratpup2;
panelby sex treat / novarname columns=3 ;
vbox weight / category = ranklit meanattrs=(size=6) ;
format treat trtfmt.;
colaxis display=(novalues noticks);
run;

Figure 3.2 shows a strong tendency for birth weights to decrease as a function of litter
size in all groups except males from litters in the low-dose treatment. We consider this
important relationship in our models for the Rat Pup data.

3.3 Overview of the Rat Pup Data Analysis

For the analysis of the Rat Pup data, we follow the “top-down” modeling strategy outlined
in Subsection 2.7.1. In Subsection 3.3.1 we outline the analysis steps, and informally intro-
duce related models and hypotheses to be tested. Subsection 3.3.2 presents a more formal
specification of selected models that are fitted to the Rat Pup data, and Subsection 3.3.3
details the hypotheses tested in the analysis. To follow the analysis steps outlined in this
section, we refer readers to the schematic diagram presented in Figure 3.3.
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FIGURE 3.3: Model selection and related hypotheses for the analysis of the Rat Pup data.

3.3.1 Analysis Steps
Step 1: Fit a model with a “loaded” mean structure (Model 3.1).

Fit a two-level model with a “loaded” mean structure and random litter-specific
intercepts.

Model 3.1 includes the fixed effects of treatment, sex, litter size, and the interaction
between treatment and sex. The model also includes a random effect associated with the
intercept for each litter and a residual associated with each birth weight observation. The
residuals are assumed to be independent and identically distributed, given the random and
fixed effects, with constant variance across the levels of treatment and sex.

Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A).

Decide whether to keep the random litter effects in Model 3.1.

In this step we test whether the random litter effects associated with the intercept should
be omitted from Model 3.1 (Hypothesis 3.1), by fitting a nested model omitting the random
effects (Model 3.1A) and performing a likelihood ratio test. Based on the result of this test,
we decide to retain the random litter effects in all subsequent models.
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Step 3: Select a covariance structure for the residuals (Models 3.1, 3.2A, or
3.2B).

Decide whether the model should have homogeneous residual variances (Model
3.1), heterogeneous residual variances for each of the treatment groups (Model
3.2A), or grouped heterogeneous residual variances (Model 3.2B).

We observed in Figure 3.2 that the within-litter variance in the control group appears
to be larger than the within-litter variance in the high and low treatment groups, so we
investigate heterogeneity of residual variance in this step.

In Model 3.1, we assume that the residual variance is homogeneous across all treatment
groups. In Model 3.2A, we assume a heterogeneous residual variance structure, i.e., that the
residual variance of the birth weight observations differs for each level of treatment (high,
low, and control). In Model 3.2B, we specify a common residual variance for the high and
low treatment groups, and a different residual variance for the control group.

We test Hypotheses 3.2, 3.3, and 3.4 (specified in Section 3.3) in this step to decide
which covariance structure to choose for the residual variance. Based on the results of these
tests, we choose Model 3.2B as our preferred model at this stage of the analysis.

Step 4: Reduce the model by removing nonsignificant fixed effects, test the main
effects associated with treatment, and assess model diagnostics.

Decide whether to keep the treatment by sex interaction in Model 3.2B (Model
3.2B vs. Model 3.3).

Test the significance of the treatment effects in our final model, Model 3.3
(Model 3.3 vs. Model 3.3A).

Assess the assumptions for Model 3.3.

We first test whether we wish to keep the treatment by sex interaction in Model 3.2B
(Hypothesis 3.5). Based on the result of this test, we conclude that the treatment by sex
interaction is not significant, and can be removed from the model. Our new model is Model
3.3. The model-building process is complete at this point, and Model 3.3 is our final model.

We now focus on testing the main hypothesis of the study: whether the main effects
of treatment are equal to zero (Hypothesis 3.6). We use ML estimation to refit Model 3.3
and to fit a nested model, Model 3.3A, excluding the fixed treatment effects. We then carry
out a likelihood ratio test for the fixed effects of treatment. Based on the result of the test,
we conclude that the fixed effects of treatment are significant. The estimated fixed-effect
parameters indicate that, controlling for sex and litter size, treatment lowers the mean birth
weight of rat pups in litters receiving the high and low dose of the drug compared to the
birth weight of rat pups in litters receiving the control dose.

Finally, we refit Model 3.3 using REML estimation to reduce the bias of the estimated
covariance parameters, and carry out diagnostics for Model 3.3 using SAS (see Section 3.10
for diagnostics).

Software Note: Steps 3 and 4 of the analysis are carried out using proc mixed in
SAS, the GENLINMIXED procedure in SPSS, the 1me() function in R, and the mixed
command in Stata only. The other procedures discussed in this book do not allow us
to fit models that have heterogeneous residual variance for groups defined by Level 2
(cluster-level) factors.

In Figure 3.3, we summarize the model selection process and hypotheses considered in
the analysis of the Rat Pup data. Each box corresponds to a model and contains a brief
description of the model. Each arrow corresponds to a hypothesis and connects two models



68 Linear Mized Models: A Practical Guide Using Statistical Software

involved in the specification of that hypothesis. The arrow starts at the box representing
the reference model for the hypothesis and points to the simpler (nested) model. A dashed
arrow indicates that, based on the result of the hypothesis test, we chose the reference model
as the preferred one, and a solid arrow indicates that we chose the nested (null) model. The
final model is included in a bold box.

3.3.2 Model Specification

In this section we specify selected models considered in the analysis of the Rat Pup data.
We summarize the models in Table 3.3.

3.3.2.1 General Model Specification

The general specification of Model 3.1 for an individual birth weight observation
(WEIGHT);;) on rat pup ¢ within the j-th litter is shown in (3.1). This specification corre-
sponds closely to the syntax used to fit the model using the procedures in SAS, SPSS, R,
and Stata.

WEIGHTU = [Bo+ 01X TREAT].j + Bo X TREAT2J + B3 X SEX].U

+ 64 X LITSIZE] + 55 X TREAle X SEXlU fixed
+ B¢ x TREAT2J X SEX].U
+uj + €5 } random (3.1)

In Model 3.1 WEIGHT;; is the dependent variable, and TREAT1; and TREAT2; are
Level 2 indicator variables for the high and low levels of treatment, respectively. SEX1;; is
a Level 1 indicator variable for female rat pups.

In this model, WEIGHT;; depends on the § parameters (i.e., the fixed effects) in a linear
fashion. The fixed intercept parameter, By, represents the expected value of WEIGHT}; for
the reference levels of treatment and of sex (i.e., males in the control group) when LITSIZE;
is equal to zero. We do not interpret the fixed intercept, because a litter size of zero is outside
the range of the data (alternatively, the LITSIZE variable could be centered to make the
intercept interpretable; see Subsection 2.9.5).

The parameters 51 and S, represent the fixed effects of the dummy variables (TREAT1;
and TREAT?2;) for the high and low treatment levels vs. the control level, respectively. The
Bs parameter represents the effect of SEX1;; (female vs. male), and (4 represents the fixed
effect of LITSIZE;. The two parameters, 35 and ¢, represent the fixed effects associated
with the treatment by sex interaction.

The random effect associated with the intercept for litter j is indicated by w;, which is
assumed to have a normal distribution with mean of 0 and constant variance U?mer. We
write the distribution of these random effects as:

uj ~ N(07 Ulzitter)

where o7, . represents the variance of the random litter effects.
In Model 3.1, the distribution of the residual €;;, associated with the observation on an
individual rat pup ¢ within litter j, is assumed to be the same for all levels of treatment:

ei; ~N(0,07)

In Model 3.2A, we allow the residual variances for observations at different levels of
treatment to differ:
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High Treatment: ei; ~ N(0, U;zn»gh)
Low Treatment: Eij ~ N(0, Ulzow)

Control Treatment: &;; ~ N(0,02,,1,01)

In Model 3.2B, we consider a separate residual variance for the combined high/low
treatment group and for the control group:

High/Low Treatment: &5 ~ N(0, 0701 /10u)

Control Treatment: i ~ N(0,02,,100)

In Model 3.3, we include the same residual variance structure as in Model 3.2B, but
remove the fixed effects, 85 and Bg, associated with the treatment by sex interaction from
the model. In all models, we assume that the random effects, u;, associated with the litter-
specific intercepts and the residuals, €;;, are independent.

3.3.2.2 Hierarchical Model Specification

We now present Model 3.1 in the hierarchical form used by the HLM software, with the
same notation as in (3.1). The correspondence between this notation and the HLM software
notation is defined in Table 3.3.

The hierarchical model has two components, reflecting two sources of variation: namely
variation between litters, which we attempt to explain using the Level 2 model and
variation between pups within a given litter, which we attempt to explain using the Level
1 model. We write the Level 1 model as:

Level 1 Model (Rat Pup)

WEIGHTZ] = boj + b1j X SEXlij + €45 (32)
where

Eij ~ N(O,Jz)

The Level 1 model in (3.2) assumes that WEIGHT);, i.e., the birth weight of rat pup 4
within litter j, follows a simple ANOVA-type model defined by the litter-specific intercept,
bo; and the litter-specific effect of SEX1;5, b1;.

Both bg; and by; are unobserved quantities that are defined as functions of Level 2
covariates in the Level 2 model:

Level 2 Model (Litter)

boj = ﬁo —+ 61 X TREAle —+ 62 X TREAle + 54 X LITSIZE] —+ u]‘

by, = B3 + B5 x TREAT1; + 35 x TREAT?, (3.3)

where
2
uj ~ N(O’ alitte'r)



TABLE 3.3: Selected Models Considered in the Analysis of the Rat Pup Data

Term /Variable General HLM Model
Notation Notation 3.1 3.2A* 3.2B° 3.3%
Fixed effects Intercept Bo Yoo vV Vv Vv
TREAT1
(High vs. control) B1 Y02 Vv v v
TREAT2
(Low vs. control) B2 Y03 v v v v
SEX1
(Female vs. male) B3 Y10 vV vV Vv Vv
LITSIZE B4 Yo1 v v v v
TREAT1 x SEX1 Bs Y1 v i v
TREAT2 x SEX1 Be Y12 v i v
Random  Litter (j) Intercept U U Vv Vv vV Vv
effects
Residuals Rat pup €ij T'ij v v v v
(pup i in
litter j)
Covariance Litter Variance of 02 tor T Vv Vv Vv Vv
parame- level intercepts
ters (6p)
for D
matrix

0.
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TABLE 3.3: (Continued)

. General HLM Model
Term /Variable
Notation Notation 3.1 3.2A° 3.2B¢ 3.3¢

: : 2 2 2 2 2 2

Covariance Rat pup Variances of Thigh o o Thigh Thighlow, Thigh/low,
- level residuals 2 2 2 2

paran;e Olow Tlow Ocontrol  Pcontrol
ters ( R) O control O control
for Rl
matrix

“Models 3.2A, 3.2B, and 3.3 (with heterogeneous residual variances) can only be fit using selected procedures in
SAS (proc mixed), SPSS (GENLINMIXED), R (the 1me() function), and Stata (mixed).

dwnxsg dng 10y Y T :0)D 2.4975N717) 40 $79PO 209T-0Mm
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The Level 2 model in (3.3) assumes that by, the intercept for litter j, depends on the
fixed intercept, By, and for pups in litters assigned to the high- or low-dose treatments, on
the fixed effect associated with their level of treatment vs. control (81 or fa, respectively).
The intercept also depends on the fixed effect of litter size, 54, and a random effect, u;,
associated with litter j.

The effect of SEX1 within each litter, b;;, depends on an overall fixed SEX1 effect,
denoted by (3, and an additional fixed effect of either the high or low treatment vs. control
(85 or g, respectively). Note that the effect of sex varies from litter to litter only through
the fixed effect of the treatment assigned to the litter; there is no random effect associated
with sex.

By substituting the expressions for bo; and b1; from the Level 2 model into the Level 1
model, we obtain the general LMM specified in (3.1). The fixed treatment effects, S5 and
Be, for TREAT1; and TREAT2; in the Level 2 model for the effect of SEX1 correspond to
the interaction effects for treatment by sex (TREAT1; x SEX1;; and TREAT2; x SEX1;;)
in the general model specification.

3.3.3 Hypothesis Tests

Hypothesis tests considered in the analysis of the Rat Pup data are summarized in Table
3.4.

Hypothesis 3.1. The random effects, u;, associated with the litter-specific intercepts can
be omitted from Model 3.1.

We do not directly test the significance of the random litter-specific intercepts, but
rather test a hypothesis related to the variance of the random litter effects. We write the
null and alternative hypotheses as follows:

To test Hypothesis 3.1, we use a REML-based likelihood ratio test. The test statistic
is calculated by subtracting the =2 REML log-likelihood value for Model 3.1 (the reference
model) from the value for Model 3.1A (the nested model, which omits the random litter
effects). The asymptotic null distribution of the test statistic is a mixture of x? distributions,
with 0 and 1 degrees of freedom, and equal weights of 0.5.

Hypothesis 3.2. The variance of the residuals is the same (homogeneous) for the three
treatment groups (high, low, and control).

The null and alternative hypotheses for Hypothesis 3.2 are:

2

.2 _ 2 _ 2 _
HO' Uhigh = Olow = control — 0

Hp: At least one pair of residual variances is not equal to each other

We use a REML-based likelihood ratio test for Hypothesis 3.2. The test statistic is
obtained by subtracting the -2 REML log-likelihood value for Model 3.2A (the reference
model, with heterogeneous variances) from that for Model 3.1 (the nested model). The
asymptotic null distribution of this test statistic is a x? with 2 degrees of freedom, where
the 2 degrees of freedom correspond to the 2 additional covariance parameters (i.e., the 2
additional residual variances) in Model 3.2A compared to Model 3.1.

Hypothesis 3.3. The residual variances for the high and low treatment groups are equal.



TABLE 3.4: Summary of Hypotheses Tested in the Rat Pup Analysis

Hypothesis Specification Hypothesis Test

Models Compared

Label Null (Hyg) Alternative (H 4) Test Nested Ref. Est. Test Stat.
Model Model Method Dist.
(Ho) (H a) under Hy
3.1 Drop u; Retain u; LRT Model  Model REML 0.5x3+0.5x3
(Ulzitter = 0) (o-lzitter > 0) 3.1 A 3.1
3.2  Homogeneous Residual LRT Model  Model REML X3
residual variance variances are not 3.1 3.2A
(U%igh =0}, = all equal
Ugontrol = 02)
3.3  Grouped (Thigh 7 Tiow) LRT Model Model REML b%
heterogeneous 3.2B 3.2A

residual variance
2 _ 2
(Uhigh - Ulow)

3.4  Homogeneous Grouped LRT Model Model REML %
residual variance heterogeneous 3.1 3.2B
(o}, ohlow = o2 o= residual variance
02) (O—IZLigh/low 7& O—zontrol)

3.5 Drop TREATMENT 35 #0, or s # 0 Type III N/A Model REML F(2,194)*
x SEX effects F-test 3.2B
(Bs = Bs = 0)

3.6 Drop TREATMENT B1 #0,or Bs #0 LRT Model  Model ML X3
Effects 3.3A 3.3
(B =B2=0) Type IIT N/A REML F(2,24.3)

¢Different methods for calculating denominator degrees of freedom are available in the software procedures; we
report the Satterthwaite estimate of degrees of freedom calculated by proc mixed in SAS.
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The null and alternative hypotheses are as follows:

L2 2
Hy : Ohigh = 9low

HA : OIZLigh 7& o-lzow
We test Hypothesis 3.3 using a REML-based likelihood ratio test. The test statistic is
calculated by subtracting the ~2 REML log-likelihood value for Model 3.2A (the reference
model) from the corresponding value for Model 3.2B (the nested model, with pooled residual
variance for the high and low treatment groups). The asymptotic null distribution of this test
statistic is a x2 with 1 degree of freedom, where the single degree of freedom corresponds

to the one additional covariance parameter (i.e., the one additional residual variance) in
Model 3.2A compared to Model 3.2B.

Hypothesis 3.4. The residual variance for the combined high/low treatment group is
equal to the residual variance for the control group.
In this case, the null and alternative hypotheses are:
Ho: U?u'gh/low = agont'rol =o?
: 2
Ha: Uhigh/low 7& O control
We test Hypothesis 3.4 using a REML-based likelihood ratio test. The test statistic is
obtained by subtracting the =2 REML log-likelihood value for Model 3.2B (the reference
model) from that for Model 3.1 (the nested model). The asymptotic null distribution of this

test statistic is a x? with 1 degree of freedom, corresponding to the one additional variance
parameter in Model 3.2B compared to Model 3.1.

Hypothesis 3.5. The fixed effects associated with the treatment by sex interaction are
equal to zero in Model 3.2B.

The null and alternative hypotheses are:

Hy: 85 = B =0
Ha: s #0or B # 0
We test Hypothesis 3.5 using an approximate F-test, based on the results of the REML
estimation of Model 3.2B. Because this test is not significant, we remove the treatment by
sex interaction term from Model 3.2B and obtain Model 3.3.

Hypothesis 3.6. The fixed effects associated with treatment are equal to zero in Model
3.3.

This hypothesis differs from the previous ones, in that it is not being used to select a
model, but is testing the primary research hypothesis. The null and alternative hypotheses
are:

Hy: p1=p2=0
Hp: 81 #00r B2 #0
We test Hypothesis 3.6 using an ML-based likelihood ratio test. The test statistic is cal-
culated by subtracting the —2 ML log-likelihood value for Model 3.3 (the reference model)
from that for Model 3.3A (the nested model excluding the fixed treatment effects). The
asymptotic null distribution of this test statistic is a x? with 2 degrees of freedom, cor-
responding to the two additional fixed-effect parameters in Model 3.3 compared to Model
3.3A.
Alternatively, we can test Hypothesis 3.6 using an approximate F-test for TREAT-
MENT, based on the results of the REML estimation of Model 3.3.
For the results of these hypothesis tests see Section 3.5.
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3.4 Analysis Steps in the Software Procedures

In this section, we illustrate fitting the LMMs for the Rat Pup example using the software
procedures in SAS, SPSS, R, Stata, and HLM. Because we introduce the use of the software
procedures in this chapter, we present a more detailed description of the steps and options
for fitting each model than we do in Chapters 4 through 8. We compare results for selected
models across the software procedures in Section 3.6.

3.4.1 SAS
Step 1: Fit a model with a “loaded” mean structure (Model 3.1).

We assume that the ratpup data set has been created in SAS, as illustrated in the data
summary (Subsection 3.2.2). The SAS commands used to fit Model 3.1 to the Rat Pup data
using proc mixed are as follows:

ods output fitstatistics = fitl;

title "Model 3.1";

proc mixed data = ratpup order = internal covtest;

class treat sex litter;

model weight = treat sex litsize treat*sex /
solution ddfm = sat;

random int / subject= litter;

format treat trtfmt.;

run;

The ods statement is used to create a data set, fitl, containing the -2 REML log-
likelihood and other fit statistics for Model 3.1. We will use the fitl data set later to
perform likelihood ratio tests for Hypotheses 3.1, 3.2, and 3.4.

The proc mixed statement invokes the analysis, using the default REML estimation
method. We use the covtest option to obtain the standard errors of the estimated covari-
ance parameters for comparison with the results from the other software procedures. The
covtest option also causes SAS to display a Wald z-test of whether the variance of the
random litter effects equals zero (i.e., Hypothesis 3.1), but we do not recommend using this
test (see the discussion of Wald tests for covariance parameters in Subsection 2.6.3.2). The
order = internal option requests that levels of variables declared in the class statement
be ordered based on their (unformatted) internal numeric values and not on their formatted
values.

The class statement includes the two categorical factors, TREAT and SEX, which
will be included as fixed predictors in the model statement, as well as the classification
factor, LITTER, that defines subjects in the random statement.

The model statement sets up the fixed effects. The dependent variable, WEIGHT, is
listed on the left side of the equal sign, and the covariates having fixed effects are included
on the right of the equal sign. We include the fixed effects of TREAT, SEX, LITSIZE, and
the TREAT x SEX interaction in this model. The solution option follows a slash (/), and
instructs SAS to display the fixed-effect parameter estimates in the output (they are not
displayed by default). The ddfm = option specifies the method used to estimate denominator
degrees of freedom for F-tests of the fixed effects. In this case, we use ddfm = sat for the
Satterthwaite approximation (see Subsection 3.11.6 for more details on denominator degrees
of freedom options in SAS).
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Software Note: By default, SAS generates an indicator variable for each level of a
class variable included in the model statement. This typically results in an overpa-
rameterized model, in which there are more columns in the X matrix than there are
degrees of freedom for a factor or an interaction term involving a factor. SAS then
uses a generalized inverse (denoted by ~ in the following formula) to calculate the
fixed-effect parameter estimates (see the SAS documentation for proc mixed for more
information):

B=(X'V'X)"X'Vly

In the output for the fixed-effect parameter estimates produced by requesting the
solution option as part of the model statement, the estimate for the highest level of a
class variable is by default set to zero; and the level that is considered to be the highest
level for a variable will change depending on whether there is a format associated with
the variable or not.

In the analysis of the Rat Pup data, we wish to contrast the effects of the high- and
low-dose treatments to the control dose, so we use the order = internal option to
order levels of TREAT. This results in the parameter for Level 3 of TREAT (i.e., the
control dose, which is highest numerically) being set to zero, so the parameter estimates
for the other levels of TREAT represent contrasts with TREAT = 3 (control). This
corresponds to the specification of Model 3.1 in (3.1). The value of TREAT = 3 is
labeled “Control” in the output by the user-defined format.

We refer to TREAT = 3 as the reference category throughout our discussion. In
general, we refer to the highest level of a class variable as the “reference” level when we
estimate models using proc mixed throughout the book. For example, in Model 3.1,
the “reference category” for SEX is “Male” (the highest level of SEX alphabetically),
which corresponds to our specification in (3.1).

The random statement specifies that a random intercept, int, is to be associated with
each litter, and litters are specified as subjects by using the subject = litter option.
Alternative syntax for the random statement is:

random litter ;

This syntax results in a model that is equivalent to Model 3.1, but is much less efficient
computationally. Because 1litter is specified as a random factor, we get the same block-
diagonal structure for the variance-covariance matrix for the random effects, which SAS
refers to as the G matrix, as when we used subject = litter in the previous syntax (see
Subsection 2.2.3 for a discussion of the G matrix). However, all observations are assumed to
be from one “subject,” and calculations for parameter estimation use much larger matrices
and take more time than when subject = litter is specified.

The format statement attaches the user-defined format, trtfmt., to values of the vari-
able TREAT.

Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A).

To test Hypothesis 3.1, we first fit Model 3.1A without the random effects associated with
litter, by using the same syntax as for Model 3.1 but excluding the random statement:

title "Model 3.1A";
ods output fitstatistics = fitla;
proc mixed data = ratpup order = internal covtest;



Two-Level Models for Clustered Data:The Rat Pup Example 77

class treat sex litter;

model weight = treat sex treat*sex litsize /
solution ddfm = sat;

format treat trtfmt.;

run;

The SAS code below can be used to calculate the likelihood ratio test statistic for
Hypothesis 3.1, compute the corresponding p-value, and display the resulting p-value in the
SAS log. To apply this syntax, the user has to manually extract the —2 REML log-likelihood
value for the reference model, Model 3.1 (-2 REML log-likelihood = 401.1), and for the
nested model, Model 3.1A (-2 REML log-likelihood = 490.5), from the output and include
these values in the code. Recall that the asymptotic null distribution of the test statistic
for Hypothesis 3.1 is a mixture of x2 and x? distributions, each having equal weight of 0.5.
Because the x2 has all of its mass concentrated at zero, its contribution to the p-value is
zero, so it is not included in the following code.

title "P-value for Hypothesis 3.1: Simple syntax";
data _null_;

lrtstat = 490.5 - 401.1;

df = 1;

pvalue = 0.5%(1 - probchi(lrtstat,df));

format pvalue 10.8;

put lrtstat = df = pvalue = ;

run;

Alternatively, we can use the data sets fit1l and fitla, containing the fit statistics for
Models 3.1 and 3.1A, respectively, to perform this likelihood ratio test. The information
contained in these two data sets is displayed below, along with more advanced SAS code
to merge the data sets, derive the difference of the -2 REML log-likelihoods, calculate the
appropriate degrees of freedom, and compute the p-value for the likelihood ratio test. The
results of the likelihood ratio test will be included in the SAS log.

title "Fit 1";

proc print data = fitl;

run;

title "Fit 1a";

proc print data = fitla;

run;

/ Fit 1
Obs Descr Value
1 -2 Res Log Likelihood 401.1
2 AIC (smaller is better) 405.1
3 AICC (smaller is better) 405.1
4 BIC (smaller is better) 407.7
Fit 1la

Obs Descr Value
1 -2 Res Log Likelihood 490.5

AIC (smaller is better) 492.5

3 AICC (smaller is better) 492.5
\\\§ BIC (smaller is better) 496.34///
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title "p-value for Hypothesis 3.1: Advanced syntax";
data _null_;
merge fitl(rename = (value = reference)) fitla(rename = (value = nested));
retain loglik_diff;
if descr = "-2 Res Log Likelihood" then
loglik_diff = nested - reference;
if descr = "AIC (smaller is better)" then do;
df = floor((loglik_diff - nested + reference)/2);
pvalue = 0.5%(1 - probchi(loglik_diff,df));
put loglik_diff = df = pvalue = ;
format pvalue 10.8;
end;
run;

The data _null_ statement causes SAS to execute the data step calculations without
creating a new data set. The likelihood ratio test statistic for Hypothesis 3.1 is calculated
by subtracting the ~2 REML log-likelihood value for the reference model (contained in the
data set fit1) from the corresponding value for the nested model (contained in fitla). To
calculate degrees of freedom for this test, we take advantage of the fact that SAS defines the
AIC statistic as AIC = -2 REML log-likelihood + 2 x number of covariance parameters.

Software Note: When a covariance parameter is estimated to be on the boundary of
a parameter space by proc mixed (e.g., when a variance component is estimated to be
zero), SAS will not include it when calculating the number of covariance parameters
for the AIC statistic. Therefore, the advanced SAS code presented in this section for
computing likelihood ratio tests for covariance parameters is only valid if the estimates
of the covariance parameters being tested do not lie on the boundaries of their respective
parameter spaces (see Subsection 2.5.2).

Results from the likelihood ratio test of Hypothesis 3.1 and other hypotheses are pre-
sented in detail in Subsection 3.5.1.

Step 3: Select a covariance structure for the residuals (Models 3.1, 3.2A, or
3.2B).

The following SAS commands can be used to fit Model 3.2A, which allows unequal residual
variance for each level of treatment. The only change in these commands from those used
for Model 3.1 is the addition of the repeated statement:

title "Model 3.2A";

proc mixed data = ratpup order = internal covtest;

class treat litter sex;

model weight = treat sex treat*sex litsize /
solution ddfm = sat;

random int / subject = litter;

repeated / group = treat;

format treat trtfmt.;

run;

In Model 3.2A, the option group = treat in the repeated statement allows a hetero-
geneous variance structure for the residuals, with each level of treatment having its own
residual variance.
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Software Note: In general, the repeated statement in proc mixed specifies the struc-
ture of the R; matrix, which contains the variances and covariances of the residuals for
the j-th cluster (e.g., litter). If no repeated statement is used, the default covariance
structure for the residuals is employed, i.e., R; = O'QInj, where I, is an n; x n; identity
matrix, with n; equal to the number of observations in a cluster (e.g., the number of
rat pups in litter 7). In other words, the default specification is homogeneous residual
variance. Because this default R; matrix is used for Model 3.1, we do not include a
repeated statement for this model.

To test Hypothesis 3.2, we calculate a likelihood ratio test statistic by subtracting the
value of the 2 REML log-likelihood for Model 3.2A (the reference model with heterogeneous
variance, —2 REML LL = 359.9) from that for Model 3.1 (the nested model, -2 REML LL =
401.1). The simple SAS syntax used to calculate this likelihood ratio test statistic is similar
to that used for Hypothesis 3.1. The p-value is calculated by referring the test statistic
to a x? distribution with two degrees of freedom, which correspond to the two additional
variance parameters in Model 3.2A compared to Model 3.1. We do not use a mixture of
X2 and 7 distributions, as in Hypothesis 3.1, because we are not testing a null hypothesis
with values of the variances on the boundary of the parameter space:

title "p-value for Hypothesis 3.2";
data _null_;

lrtstat = 401.1 - 359.9;

df = 2;

pvalue = 1 - probchi(lrtstat,df);
format pvalue 10.8;

put lrtstat = df = pvalue = ;
run;

The test result is significant (p < 0.001), so we choose Model 3.2A, with heterogeneous
residual variance, as our preferred model at this stage of the analysis.

Before fitting Model 3.2B, we create a new variable named TRTGRP that combines the
high and low treatment groups, to allow us to test Hypotheses 3.3 and 3.4. We also define
a new format, TGRPFMT, for the TRTGRP variable.

title "RATPUP3 dataset";

data ratpup3;

set ratpup2;

if treatment in ("High", "Low") then TRTGRP = 1;
if treatment = "Control" then TRTGRP = 2;

run;

proc format;
value tgrpfmt 1
2

"High/Low"
"Control";

run;

We now fit Model 3.2B using the new data set, ratpup3, and the new group variable
in the repeated statement (group = trtgrp). We also include TRTGRP in the class
statement so that SAS will properly include it as the grouping variable for the residual
variance.
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title "Model 3.2B";

proc mixed data = ratpup3 order = internal covtest;

class treat litter sex trtgrp;

model weight = treat sex treat*sex litsize / solution ddfm = sat;
random int / subject = litter;

repeated / group = trtgrp;

format treat trtfmt. trtgrp tgrpfmt.;

run;

We use a likelihood ratio test for Hypothesis 3.3 to decide if we can use a common
residual variance for both the high and low treatment groups (Model 3.2B) rather than
different residual variances for each treatment group (Model 3.2A). For this hypothesis
Model 3.2A is the reference model and Model 3.2B is the nested model. To calculate the
test statistic we subtract the -2 REML log-likelihood for Model 3.2A from that for Model
3.2B (-2 REML LL = 361.1). This test has 1 degree of freedom, corresponding to the one
fewer covariance parameter in Model 3.2B compared to Model 3.2A.

title "p-value for Hypothesis 3.3";
data _null_;

lrtstat = 361.1 - 359.9;

df = 1;

pvalue = 1 - probchi(lrtstat, df);
format pvalue 10.8;

put lrtstat = df = pvalue = ;

run;

The likelihood ratio test statistic for Hypothesis 3.3 is not significant (p = 0.27), so we
choose the simpler grouped residual variance model, Model 3.2B, as our preferred model at
this stage of the analysis.

To test Hypothesis 3.4, and decide whether we wish to have a grouped heterogeneous
residual variance structure vs. a homogeneous variance structure, we subtract the -2 REML
log-likelihood of Model 3.2B (= 361.1) from that of Model 3.1 (= 401.1). The test statistic
has 1 degree of freedom, corresponding to the 1 additional covariance parameter in Model
3.2B as compared to Model 3.1. The syntax for this comparison is not shown here. Based
on the significant result of this likelihood ratio test (p < 0.001), we conclude that Model
3.2B (with grouped heterogeneous variances) is our preferred model.

Step 4: Reduce the model by removing nonsignificant fixed effects (Model 3.2B
vs. 3.3, and Model 3.3 vs. 3.3A).

We test Hypothesis 3.5 to decide whether we can remove the treatment by sex interaction
term, making use of the default Type III F-test for the TREAT x SEX interaction in Model
3.2B. Because the result of this test is not significant (p = 0.73), we drop the TREAT x
SEX interaction term from Model 3.2B, which gives us Model 3.3.

We now test Hypothesis 3.6 to decide whether the fixed effects associated with treatment
are equal to zero, using a likelihood ratio test. This test is not used as a tool for possible
model reduction but as a way of assessing the impact of treatment on birth weights. To
carry out the test, we first fit the reference model, Model 3.3, using maximum likelihood
(ML) estimation:

title "Model 3.3 using ML";
proc mixed data = ratpup3 order = internal method = ml;
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class treat litter sex trtgrp;

model weight = treat sex litsize / solution ddfm = sat;
random int / subject = litter;

repeated / group = trtgrp;

format treat trtfmt.;

run;

The method = ml option in the proc mixed statement requests maximum likelihood
estimation.

To complete the likelihood ratio test for Hypothesis 3.6, we fit a nested model, Model
3.3A, without the fixed treatment effects, again requesting ML estimation, by making the
following modifications to the SAS code for Model 3.3:

title "Model 3.3A using ML";
proc mixed data = ratpup3 order = internal method = ml;

model weight = sex litsize / solution ddfm = sat;

The likelihood ratio test statistic used to test Hypothesis 3.6 is calculated by subtracting
the —2 ML log-likelihood for Model 3.3 (the reference model) from that for Model 3.3A (the
nested model without the fixed effects associated with treatment). The SAS code for this
test is not shown here.

Because the result of this test is significant (p < 0.001), we conclude that treatment has
an effect on rat pup birth weights, after adjusting for the fixed effects of sex and litter size
and the random litter effects.

We now refit Model 3.3, our final model, using the default REML estimation method
to get unbiased estimates of the covariance parameters. We also add a number of options
to the SAS syntax. We request diagnostic plots in the proc mixed statement by adding a
plots= option. We add options to the model statement to get output data sets containing
the conditional predicted and residual values (outpred = pdatl) and we get another data
set containing the marginal predicted and residual values (outpredm = pdat2). We also re-
quest that estimates of the implied marginal variance-covariance and correlation matrices,
v and vcorr, for the third litter be displayed in the output by adding the options v = 3 and
vcorr = 3 to the random statement. Post-hoc tests for all estimated differences among treat-
ment means using the Tukey—Kramer adjustment for multiple comparisons are requested
by adding the lsmeans statement. Finally, we request that the EBLUPs for the random
intercept for each litter be saved in a new file called eblupsdat, by using an ods output
statement. We first sort the ratpup3 data set by PUP_ID, because the diagnostic plots
identify individual points by row numbers in the data set, and the sorting will make the
PUP_ID variable equal to the row number in the data set for ease in reading the graphical
output.

proc sort data = ratpup3;
by pup_id;
run;

ods graphics on;

ods rtf file = "c:\temp\ratpup_diagnostics.rtf" style = journal;
ods exclude influence;

title "Model 3.3 using REML. Model diagnostics";

proc mixed data = ratpup3 order = internal covtest
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plots = (residualpanel boxplot influencestatpanel);
class treat litter sex trtgrp;
model weight = treat sex litsize / solution ddfm = sat
residual outpred = pdatl outpredm = pdat2
influence (iter = 5 effect = litter est) ;

id pup_id litter treatment trtgrp ranklit litsize;
random int / subject=litter solution v = 3 vcorr = 3 ;
repeated / group=trtgrp ;
lsmeans treat / adjust = tukey ;
format treat trtfmt. trtgrp tgrpfmt. ;
ods output solutionR = eblupsdat ;

run;

ods graphics off;

ods rtf close;

Software Note: In earlier versions of SAS, the default output mode was “Listing,”
which produced text in the Output window. ODS (Output Delivery System) graphics
were not automatically produced. However, in Version 9.3, the default output mode
has changed to HTML, and ODS graphics are automatically produced. When you
use the default HTML output, statistical tables and graphics are included together
in the Results Viewer Window. You can change these default behaviors through SAS
commands, or by going to Tools > Options > Preferences and clicking on the
Results tab. By selecting “Create listing,” you will add text output to the Output
window, as in previous versions of SAS. This will be in addition to the HTML output,
which can be turned off by deselecting “Create HTML.” To turn off ODS graphics,
which can become cumbersome when running large jobs, deselect “Use ODS graphics.”
Click “OK” to confirm these changes. These same changes can be accomplished by the
following commands:

ods listing;
ods html close;
ods graphics off;

The type of output that is produced can be modified by choosing an output type
(e.g., .rtf) and sending the output and SAS ODS graphics to that file. There are a
number of possible styles, with Journal being a black-and-white option suitable for
a manuscript. If no style is selected, the default will be used, which includes color
graphics. The .rtf file can be closed when the desired output has been captured.

ods graphics on;

ods rtf file="example.rtf" style=journal;
proc mixed ...;

run;

ods rtf close;

Any portion of the SAS output can be captured in a SAS data set, or can be excluded
from the output by using ODS statements. For example, in the SAS code for Model
3.3, we used ods exclude influence. This prevents the influence statistics for each
individual observation from being printed in the output, which can get very long if
there are a large number of cases, but it still allows the influence diagnostic plots to be
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displayed. We must also request that the influence statistics be calculated by including
an influence option as part of the model statement.

Output that we wish to save to a SAS data set can be requested by using an
ods output statement. The statement below requests that the solutions for the random
effects (the SolutionR table from the output) be output to a new data set called
eblupsdat.

ods output solutionR = eblupsdat;

To view the names of SAS output tables so that they can be captured in a data set,
use the following code, which will place the names of each portion of the output in the

SAS log.

ods trace on;
proc mixed ...;
run;

ods trace off;

The proc mixed statement for Model 3.3 has been modified by the addition of the
plots = option, with the specific ODS plots that are requested listed within parentheses:
(residualpanel boxplot influencestatpanel). The residualpanel suboption gener-
ates diagnostic plots for both conditional and marginal residuals. Although these residual
plots were requested, we do not display them here, because these plots are not broken down
by TRTGRP. Histograms and normal quantile—quantile (Q—Q) plots of residuals for each
treatment group are displayed in Figures 3.4, 3.5, and 3.6. The model statement has also
been modified by adding the residual option, to allow the generation of panels of resid-
ual diagnostic plots as part of the ODS graphics output. The boxplot suboption requests
box plots of the marginal and conditional residuals by the levels of each class variable,
including class variables specified in the subject = and group = options, to be created in
the ODS graphics output. SAS also generates box plots for levels of the “subject” vari-
able (LITTER), but only if we do not use nesting specification for litter in the random
statement (i.e., we must use subject = litter rather than subject = litter(treat)).
Box plots showing the studentized residuals for each litter are shown in Figure 3.7. The
influencestatpanel suboption requests that influence plots for the model fit (REML dis-
tance), overall model statistics, covariance parameters, and fixed effects be produced. These
plots are illustrated in Figures 3.8 through 3.11. Diagnostic plots generated for Model 3.3
are presented in Section 3.10.

The influence option has also been added to the model statement for Model 3.3 to
obtain influence plots as part of the ODS graphics output (see Subsection 3.10.2). The
inclusion of the iter = suboption is used to produce iterative updates to the model, by
removing the effect of each litter, and then re-estimating all model parameters (including
both fixed-effect and random-effect parameters). The option effect = specifies an effect
according to which observations are grouped, i.e., observations sharing the same level of the
effect are removed as a group when calculating the influence diagnostics. The effect must
contain only class variables, but these variables do not need to be contained in the model.
Without the effect = suboption, influence statistics would be created for the values for the
individual rat pups and not for litters. The influence diagnostics are discussed in Subsection
3.10.2.
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We caution readers that running proc mixed with these options (e.g., iter = 5 and
effect = litter) can cause the procedure to take considerably longer to finish running.
In our example, with 27 litters and litter-specific subset deletion, the longer execution time
is a result of the fact that proc mixed needs to fit 28 models, i.e., the initial model and the
model corresponding to each deleted litter, with up to five iterations per model. Clearly,
this can become very time-consuming if there are a large number of levels of a variable that
is being checked for influence.

The outpred = option in the model statement causes SAS to output the predicted values
and residuals conditional on the random effects in the model. In this example, we output
the conditional residuals and predicted values to a data set called pdatl by specifying
outpred = pdatl. The outpredm = option causes SAS to output the marginal predicted
and residual values to another data set. In this case, we request that these variables be
output to the pdat2 data set by specifying outpredm = pdat2. We discuss these residuals
in Subsection 3.10.1.

The id statement allows us to place variables in the output data sets, pdatl and pdat2,
that identify each observation. We specify that PUP_ID, LITTER, TREATMENT, TRT-
GRP, RANKLIT, and LITSIZE be included, so that we can use them later in the residual
diagnostics.

The random statement has been modified to include the v = and vcorr = options, so that
SAS displays the estimated marginal V; matrix and the corresponding marginal correlation
matrix implied by Model 3.3 for birth weight observations from the third litter (v = 3 and
vcorr = 3). We chose the third litter in this example because it has only four rat pups, to
keep the size of the estimated V; matrix in the output manageable (see Section 3.8 for a
discussion of the implied marginal covariance matrix). We also include the solution option,
to display the EBLUPs for the random litter effects in the output.

The lsmeans statement allows us to obtain estimates of the least-squares means of
WEIGHT for each level of treatment, based on the fixed-effect parameter estimates for
TREAT. The least-squares means are evaluated at the mean of LITSIZE, and assuming
that there are equal numbers of rat pups for each level of SEX. We also carry out post-hoc
comparisons among all pairs of the least-squares means using the Tukey—Kramer adjust-
ment for multiple comparisons by specifying adjust = tukey. Many other adjustments
for multiple comparisons can be obtained, such as Dunnett’s and Bonferroni. Refer to the
SAS documentation for proc mixed for more information on post-hoc comparison methods
available in the 1smeans statement.

Diagnostics for this final model using the REML fit for Model 3.3 are presented in
Section 3.10.

3.4.2 SPSS

Most analyses in SPSS can be performed using either the menu system or SPSS syntax. The
syntax for LMMs can be obtained by specifying a model using the menu system and then
pasting the syntax into the syntax window. We recommend pasting the syntax for any LMM
that is fitted using the menu system, and then saving the syntax file for documentation. We
present SPSS syntax throughout the example chapters for ease of presentation, although
the models were usually set up using the menu system. A link to an example of setting up
an LMM using the SPSS menus is included on the web page for this book (see Appendix A).

For the analysis of the Rat Pup data, we first read in the raw data from the tab-delimited
file rat_pup.dat (assumed to be located in the C:\temp folder) using the following syntax.
This SPSS syntax was pasted after reading in the data using the SPSS menu system.

* Read in Rat Pup data.
GET DATA
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/TYPE = TXT

/FILE = "C:\temp\rat_pup.dat"
/DELCASE = LINE

/DELIMITERS = "\t"
/ARRANGEMENT = DELIMITED
/FIRSTCASE = 2
/IMPORTCASE = ALL
/VARIABLES =

pup_id F2.1

weight F4.2

sex A6

litter F1.

litsize F2.1

treatment A7

CACHE.
EXECUTE.

Because the MIXED command in SPSS sets the fixed-effect parameter associated with
the highest-valued level of a fixed factor to 0 by default, to prevent overparameterization
of models (similar to proc mixed in SAS; see Subsection 3.4.1), the highest-valued levels
of fixed factors can be thought of as “reference categories” for the factors. As a result,
we recode TREATMENT into a new variable named TREAT, so that the control group
(TREAT = 3) will be the reference category.

* Recode TREATMENT variable .

RECODE

Treatment

("High"=1) ("Low"=2) ("Control"=3) INTO treat .
EXECUTE .

VARIABLE LABEL treat "Treatment"
VALUE LABELS treat 1 "High" 2 "Low" 3 "Control"

Step 1: Fit a model with a “loaded” mean structure (Model 3.1).
The following SPSS syntax can be used to fit Model 3.1:

* Model 3.1.

MIXED

weight BY treat sex WITH litsize

/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
SINGULAR(0.000000000001) HCONVERGE (O, ABSOLUTE)
LCONVERGE (0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
/FIXED = treat sex litsize treat*sex | SSTYPE(3)
/METHOD = REML

/PRINT = SOLUTION

/RANDOM INTERCEPT | SUBJECT(litter) COVTYPE(VC)
/SAVE = PRED RESID .

The first variable listed after invoking the MIXED command is the dependent variable,
WEIGHT. The BY keyword indicates that the TREAT and SEX variables are to be consid-
ered as categorical factors (they can be either fixed or random). Note that we do not need
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to include LITTER as a factor, because this variable is identified as a SUBJECT variable
later in the code. The WITH keyword identifies continuous covariates, and in this case, we
specify LITSIZE as a continuous covariate.

The CRITERIA subcommand specifies default settings for the convergence criteria ob-
tained by specifying the model using the menu system.

In the FIXED subcommand, we include terms that have fixed effects associated with them
in the model: TREAT, SEX, LITSIZE and the TREAT x SEX interaction. The SSTYPE(3)
option after the vertical bar indicates that the default Type III analysis is to be used when
calculating F-statistics. We also use the METHOD = REML subcommand, which requests that
the REML estimation method (the default) be used.

The SOLUTION keyword in the PRINT subcommand specifies that the estimates of the
fixed-effect parameters, covariance parameters, and their associated standard errors are to
be included in the output.

The RANDOM subcommand specifies that there is a random effect in the model associated
with the INTERCEPT for each level of the SUBJECT variable (i.e., LITTER). The information
about the “subject” variable is specified after the vertical bar (|). Note that because we
included LITTER as a “subject” variable, we did not need to list it after the BY keyword
(including LITTER after BY does not affect the analysis if LITTER is also indicated as a
SUBJECT variable). The COVTYPE (VC) option indicates that the default Variance Components
(VC) covariance structure for the random effects (the D matrix) is to be used. We did not
need to specify a COVTYPE here because only a single variance associated with the random
effects is being estimated.

Conditional predicted values and residuals are saved in the working data set by specifying
PRED and RESID in the SAVE subcommand. The keyword PRED saves litter-specific predicted
values that incorporate both the estimated fixed effects and the EBLUPs of the random
litter effects for each observation. The keyword RESID saves the conditional residuals that
represent the difference between the actual value of WEIGHT and the predicted value for
each rat pup, based on the estimated fixed effects and the EBLUP of the random effect
for each observation. The set of population-averaged predicted values, based only on the
estimated fixed-effect parameters, can be obtained by adding the FIXPRED keyword to the
SAVE subcommand, as shown later in this chapter (see Section 3.9 for more details):

/SAVE = PRED RESID FIXPRED

Software Note: There is currently no option to display or save the predicted values of
the random litter effects (EBLUPs) in the output in SPSS. However, because all models
considered for the Rat Pup data contain a single random intercept for each litter, the
EBLUPs can be calculated by simply taking the difference between the “population-
averaged” and “litter-specific” predicted values. The values of FIXPRED from the first
LMM can be stored in a variable called FIXPRED_1, and the values of PRED from
the first model can be stored as PRED_1. We can then compute the difference between
these two predicted values and store the result in a new variable that we name EBLUP:

COMPUTE eblup = pred_1 - fixpred_1 .
EXECUTE .

The values of the EBLUP variable, which are constant for each litter, can then be
displayed in the output by using this syntax:

SORT CASES BY litter.
SPLIT FILE
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LAYERED BY litter.
DESCRIPTIVES
VARIABLES = eblup
/STATISTICS=MEAN STDDEV MIN MAX.
SPLIT FILE OFF.

Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A).

‘We now use a likelihood ratio test of Hypothesis 3.1 to decide if the random effects associated
with the intercept for each litter can be omitted from Model 3.1. To carry out the likelihood
ratio test we first fit a nested model, Model 3.1A, using the same syntax as for Model 3.1
but with the RANDOM subcommand omitted:

* Model 3.1A .

MIXED

weight BY treat sex WITH litsize

/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
SINGULAR(0.000000000001) HCONVERGE(O, ABSOLUTE) LCONVERGE(O,
ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)

/FIXED = treat sex litsize treat*sex | SSTYPE(3)

/METHOD = REML

/PRINT = SOLUTION

/SAVE = PRED RESID FIXPRED .

The test statistic for Hypothesis 3.1 is calculated by subtracting the -2 REML log-
likelihood value associated with the fit of Model 3.1 (the reference model) from that for
Model 3.1A (the nested model). These values are displayed in the SPSS output for each
model. The null distribution for this test statistic is a mixture of x3 and x? distributions,
each with equal weight of 0.5 (see Subsection 3.5.1). Because the result of this test is
significant (p < 0.001), we choose to retain the random litter effects.

Step 3: Select a covariance structure for the residuals (Models 3.1, 3.2A, or
3.2B).

To fit Model 3.2A, with heterogeneous error variances as a function of the TREAT factor,
we need to use the GENLINMIXED command in IBM SPSS Statistics (Version 21). This
command can fit linear mixed models in addition to generalized linear mixed models, which
are not covered in this book. Models with heterogeneous error variances for different groups
of clusters cannot be fitted using the MIXED command.

We use the following syntax to fit Model 3.2A using the GENLINMIXED command:

* Model 3.2A.
GENLINMIXED
/DATA_STRUCTURE SUBJECTS=litter REPEATED_MEASURES=pup_id
GROUPING=treat COVARIANCE_TYPE=IDENTITY
/FIELDS TARGET=weight TRIALS=NONE OFFSET=NONE
/TARGET_OPTIONS DISTRIBUTION=NORMAL LINK=IDENTITY
/FIXED EFFECTS=sex litsize treat sex*treat USE_INTERCEPT=TRUE
/RANDOM USE_INTERCEPT=TRUE SUBJECTS=litter
COVARIANCE_TYPE=VARIANCE_COMPONENTS
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/BUILD_OPTIONS TARGET_CATEGORY_ORDER=ASCENDING
INPUTS_CATEGORY_ORDER=ASCENDING MAX_ITERATIONS=100
CONFIDENCE_LEVEL=95 DF_METHOD=SATTERTHWAITE COVB=MODEL

/EMMEANS_OPTIONS SCALE=0RIGINAL PADJUST=LSD.

There are several important notes to consider when fitting this type of model using the
GENLINMIXED command:

e First, the LITTER variable (or the random factor identifying clusters of observations, more
generally) needs to be declared as a Nominal variable in the SPSS Variable View, under the
“Measure” column. Continuous predictors with fixed effects included in the model (e.g.,
LITSIZE) need to be declared as Scale variables in Variable View, and categorical fixed
factors with fixed effects included in the model should be declared as Nominal variables.

e Second, heterogeneous error variance structures for clustered data can only be set up if
some type of repeated measures index is defined for each cluster. We arbitrarily defined
the variable PUP_ID, which has a unique value for each pup within a litter, as this index
(in the REPEATED_MEASURES option of the DATA_STRUCTURE subcommand). This index
variable should be a Scale variable.

e Third, the grouping factor that defines cases that will have different error variances is
defined in the GROUPING option (TREAT).

e Fourth, if we desire a simple error covariance structure for each TREAT group of litters,
defined only by a constant error variance, we need to use COVARIANCE_TYPE=IDENTITY.
Other error covariance structures are possible, but in models for cross-sectional clustered
data that already include random cluster effects, additional covariance among the errors
(that is not already accounted for by the random effects) is generally unlikely.

e Fifth, note that the dependent variable is identified as the TARGET variable, the marginal
distribution of the dependent variable is identified as NORMAL, and the IDENTITY link is
used (in the context of generalized linear mixed models, these options set up a linear
mixed model).

e Sixth, the RANDOM subcommand indicates random intercepts for each litter by
USE_INTERCEPT=TRUE, with SUBJECTS=litter and COVARIANCE_TYPE=VARIANCE
_COMPONENTS.

After submitting this syntax, SPSS will generate output for the model in the output
viewer. The output generated by the GENLINMIXED command is fairly unusual relative to
the other procedures. By default, most of the output appears in “graphical” format, and
users need to double-click on the “Model Viewer” portion of the output to open the full
set of output windows. To test Hypothesis 3.2, we first need to find the -2 REML log-
likelihood value for this model (Model 3.2A). This value can be found in the very first
“Model Summary” window, in the footnote (359.9). We subtract this value from the —2
REML log-likelihood value of 401.1 for Model 3.1 (with constant error variance across the
treatment groups), and compute a p-value for the resulting chi-square test statistic using
the following syntax:

COMPUTE hyp32a = SIG.CHISQ(401.1 - 359.9, 2)
EXECUTE .

We use two degrees of freedom given the two additional error variance parameters in
Model 3.2A relative to Model 3.1. The resulting p-value will be shown in the last column of
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the SPSS data set, and suggests that we reject the null hypothesis (Model 3.1, with equal
error variance across treatment groups) and proceed with Model 3.2A (p < 0.001).

Before fitting Model 3.2B, we recode the original TREAT variable into a new variable,
TRTGRP, that combines the high and low treatment groups (for testing Hypotheses 3.3
and 3.4):

RECODE treat (1 = 1) (2 = 1) (3 = 2) into trtgrp .
EXECUTE .
VALUE LABELS trtgrp 1 "High/Low" 2 "Control".

We now fit Model 3.2B using the GENLINMIXED command once again:

* Model 3.2B .
GENLINMIXED
/DATA_STRUCTURE SUBJECTS=litter REPEATED_MEASURES=pup_id
GROUPING=trtgrp COVARIANCE_TYPE=IDENTITY
/FIELDS TARGET=weight TRIALS=NONE OFFSET=NONE
/TARGET_OPTIONS DISTRIBUTION=NORMAL LINK=IDENTITY
/FIXED EFFECTS=sex litsize treat sex*treat USE_INTERCEPT=TRUE
/RANDOM USE_INTERCEPT=TRUE SUBJECTS=litter
COVARIANCE_TYPE=VARIANCE_COMPONENTS
/BUILD_OPTIONS TARGET_CATEGORY_ORDER=ASCENDING
INPUTS_CATEGORY_ORDER=ASCENDING MAX_ITERATIONS=100
CONFIDENCE_LEVEL=95 DF_METHOD=SATTERTHWAITE COVB=MODEL
/EMMEANS_OPTIONS SCALE=0RIGINAL PADJUST=LSD.

Note that the only difference from the syntax used for Model 3.2A is the use of the
newly recoded TRTGRP variable in the GROUPING option, which will define a common
error variance for the high and low treatment groups, and a different error variance for the
control group. The resulting —2 REML log-likelihood value for this model is 361.1, and we
compute a likelihood ratio test p-value to test this model against Model 3.2A:

COMPUTE hyp33 = SIG.CHISQ(361.1 - 359.9, 1)
EXECUTE .

The resulting p-value added to the data set (p = 0.27) suggests that we choose the
simpler model (Model 3.2B) moving forward. To test Hypothesis 3.4, and compare the fit
of Model 3.2B with Model 3.1, we perform another likelihood ratio test:

COMPUTE hyp34 = SIG.CHISQ(401.1 - 359.9, 1)
EXECUTE .

This test result (p < 0.001) indicates that we should reject the null hypothesis of constant
error variance across the treatment groups, and proceed with Model 3.2B, allowing for
different error variances in the high/low treatment group and the control group.

Software Note: When processing the GENLINMIXED output for Model 3.2B, SPSS
users can navigate the separate windows within the “Model Viewer” window. In win-
dows showing the tests for the fixed effects and the estimated fixed effects themselves,
we recommend changing the display style to “Table” in the lower left corner of each
window. This will show the actual tests and estimates rather than a graphical display.
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In the window showing estimates of the covariance parameters, users can change the
“Effect” being shown to examine the estimated variance of the random litter effects
or the estimates of the error variance parameters, and when examining the estimates
of the error variance parameters, users can toggle the (treatment) group being shown
in the lower left corner of the window.

Step 4: Reduce the model by removing nonsignificant fixed effects (Model 3.2B
vs. 3.3, and Model 3.3 vs. 3.3A).

We test Hypothesis 3.5 to decide whether we can remove the treatment by sex interaction
term, making use of the default Type III F-test for the TREAT x SEX interaction in Model
3.2B. The result of this test can be found in the “Model Viewer” window for Model 3.2B,
in the window entitled “Fixed Effects.” Because the result of this test is not significant
(p =0.73), we drop the TREAT x SEX interaction term from Model 3.2B, which gives us
Model 3.3.

We now test Hypothesis 3.6 to decide whether the fixed effects associated with treatment
are equal to 0 (in the model omitting the interaction term). While we illustrate the use of
likelihood ratio tests based on maximum likelihood estimation to test this hypothesis in
the other procedures, we do not have the option of fitting a model using ML estimation
when using GENLINMIXED. This is because this command takes the general approach of
using penalized quasi-likelihood (PQL) estimation, which can be used for a broad class of
generalized linear mixed models. For this reason, we simply refer to the Type III F-test for
treatment based on Model 3.3. Here is the syntax to fit Model 3.3:

* Model 3.3 .
GENLINMIXED
/DATA_STRUCTURE SUBJECTS=1litter REPEATED_MEASURES=pup_id
GROUPING=trtgrp COVARIANCE_TYPE=IDENTITY
/FIELDS TARGET=weight TRIALS=NONE OFFSET=NONE
/TARGET _OPTIONS DISTRIBUTION=NORMAL LINK=IDENTITY
/FIXED EFFECTS=sex litsize treat USE_INTERCEPT=TRUE
/RANDOM USE_INTERCEPT=TRUE SUBJECTS=litter
COVARIANCE_TYPE=VARIANCE_COMPONENTS
/BUILD_OPTIONS TARGET_CATEGORY_ORDER=ASCENDING
INPUTS_CATEGORY_ORDER=ASCENDING MAX_ITERATIONS=100
CONFIDENCE_LEVEL=95 DF_METHOD=SATTERTHWAITE COVB=MODEL
/EMMEANS_OPTIONS SCALE=0RIGINAL PADJUST=LSD.

Note that the interaction term has been dropped from the FIXED subcommand. The
resulting F-test for TREAT in the “Fixed Effects” window suggests that TREAT is strongly
significant. Pairwise comparisons of the marginal means for each treatment group along with
fitted values and residuals (for diagnostic purposes) can be generated using the following
syntax:

* Model 3.3, pairwise comparisons and diagnostics .
GENLINMIXED
/DATA_STRUCTURE SUBJECTS=1litter REPEATED_MEASURES=pup_id
GROUPING=trtgrp COVARIANCE_TYPE=IDENTITY
/FIELDS TARGET=weight TRIALS=NONE OFFSET=NONE
/TARGET_OPTIONS DISTRIBUTION=NORMAL LINK=IDENTITY
/FIXED EFFECTS=sex litsize treat USE_INTERCEPT=TRUE
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/RANDOM USE_INTERCEPT=TRUE SUBJECTS=litter
COVARIANCE_TYPE=VARIANCE_COMPONENTS
/BUILD_OPTIONS TARGET_CATEGORY_ORDER=ASCENDING
INPUTS_CATEGORY_ORDER=ASCENDING MAX_ITERATIONS=100
CONFIDENCE_LEVEL=95 DF_METHOD=SATTERTHWAITE COVB=MODEL
/EMMEANS TABLES=treat COMPARE=treat CONTRAST=PAIRWISE
/EMMEANS_OPTIONS SCALE=0RIGINAL PADJUST=SEQBONFERRONI
/SAVE PREDICTED_VALUES(PredictedValue)
PEARSON_RESIDUALS (PearsonResidual)

Note the two new EMMEANS subcommands: the first requests a table showing pairwise
comparisons of the means for TREAT, while the second indicates a sequential Bonferroni
adjustment for the multiple comparisons. The resulting comparisons can be found in the
“Estimated Means” window of the “Model Viewer” output (where we again recommend
using a Table style for the display). In addition, the new SAVE subcommand generates fitted
values and residuals based on this model in the data set, which can be used for diagnostic
purposes (see Section 3.10).

3.4.3 R

Before starting the analysis in R, we first import the tab-delimited data file, rat_pup.dat
(assumed to be located in the C:\temp directory), into a data frame object in R named
ratpup‘2

> ratpup <- read.table("c:\\temp\\rat_pup.dat", h = T)
> attach(ratpup)

The h = T argument in the read.table() function indicates that the first row (the
header) in the rat_pup.dat file contains variable names. After reading the data, we “attach”
the ratpup data frame to R’s working memory so that the columns (i.e., variables) in the
data frame can be easily accessed as separate objects. Note that we show the “>"prompt
for each command as it would appear in R, but this prompt is not typed as part of the
commands.

To facilitate comparisons with the analyses performed using the other software proce-
dures, we recode the variable SEX into SEX1, which is an indicator variable for females, so
that males will be the reference group:

> ratpup$sexi[sex == "Female"] <- 1
> ratpup$sexl[sex == "Male"] <- 0

We first consider the analysis using the 1me () function (from the nlme package), and
then replicate as many steps of the analysis as possible using the newer lmer () function
(from the 1me4 package).

3.4.3.1 Analysis Using the 1lme() Function
Step 1: Fit a model with a “loaded” mean structure (Model 3.1).

We first load the nlme package, so that the 1me () function will be available for model fitting:

> library(nlme)

2The Rat Pup data set is also available as a data frame object in the nlme package. After loading the
package, the name of the data frame object is RatPupWeight.
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We next fit the initial LMM, Model 3.1, to the Rat Pup data using the 1me () function:

> # Model 3.1.

> model3.1.fit <- lme(weight ~ treatment + sexl + litsize +
treatment:sexl, random = ~ 1 | litter,
data = ratpup, method = "REML")

We explain each part of the syntax used for the 1me () function below:
e model3.1.fit is the name of the object that will contain the results of the fitted model.

e The first argument of the function, weight ~ treatment + sexl + litsize +
treatment:sexl, defines a model formula. The response variable, WEIGHT, and the
terms that have associated fixed effects in the model (TREATMENT, SEX1, LITSIZE,
and the TREATMENT x SEXI1 interaction), are listed. The factor() function is not
necessary for the categorical variable TREATMENT, because the original treatment vari-
able has string values High, Low, and Control, and will therefore be considered as a factor
automatically. We also do not need to declare SEX1 as a factor, because it is an indicator
variable having only values of 0 and 1.

e The second argument, random = ~ 1 | litter, includes a random effect for each level
of LITTER in the model. These random effects will be associated with the intercept, as
indicated by ~ 1.

e The third argument of the function, ratpup, indicates the name of the data frame object
to be used in the analysis.

e The final argument, method = "REML", specifies that the default REML estimation
method is to be used.

By default, the 1lme() function treats the lowest level (alphabetically or numerically)
of a categorical fixed factor as the reference category. This means that “Control” will be
the reference category of TREATMENT because “Control” is the lowest level of treatment
alphabetically. The relevel () function can also be used to change the reference categories
of factors. For example, if one desired “High” to be the reference category of treatment,
they could use the following function:

> treatment <- relevel(treatment, ref = "High")
We obtain estimates from the model fit by using the summary () function:
> summary(model3.1.fit)

Additional results for the fit of Model 3.1 can be obtained by using other functions in
conjunction with the mode13.1.fit object. For example, we can obtain F-tests for the fixed
effects in the model by using the anova() function:

> anova(model3.1.fit)

The anova() function performs a series of Type I (or sequential) F-tests for the fixed
effects in the model, each of which are conditional on the preceding terms in the model
specification. For example, the F-test for SEX1 is conditional on the TREATMENT effects,
but the F-test for TREATMENT is not conditional on the SEX1 effect.

The random.effects() function can be used to display the EBLUPs for the random
litter effects:

> # Display the random effects (EBLUPs) from the model.
> random.effects(model3.1.fit)
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Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A).

We now test Hypothesis 3.1 to decide whether the random effects associated with the
intercept for each litter can be omitted from Model 3.1, using a likelihood ratio test. We do
this indirectly by testing whether the variance of the random litter effects, Ulzitter» is zero vs.
the alternative that the variance is greater than zero. We fit Model 3.1A, which is nested
within Model 3.1, by excluding the random litter effects.

Because the 1me() function requires the specification of at least one random effect,
we use the gls() function, which is also available in the nlme package, to fit Model 3.1,
excluding the random litter effects. The gls() function fits marginal linear models using
REML estimation. We fit Model 3.1A using the gls() function and then compare the —2
REML log-likelihood values for Models 3.1 and 3.1A using the anova() function:

> # Model 3.1A.

> model3.la.fit <- gls(weight ~ treatment + sexl + litsize +
treatment:sexl, data = ratpup)

> anova(model3.1.fit, model3.la.fit) # Test Hypothesis 3.1.

The anova() function performs a likelihood ratio test by subtracting the -2 REML log-
likelihood value for Model 3.1 (the reference model) from the corresponding value for Model
3.1A (the nested model) and referring the difference to a x? distribution with 1 degree of
freedom. The result of this test (p < 0.001) suggests that the random litter effects should
be retained in this model.

To get the correct p-value for Hypothesis 3.1, however, we need to divide the p-value
reported by the anova() function by 2; this is because we are testing the null hypothesis
that the variance of the random litter effects equals zero, which is on the boundary of the
parameter space for a variance. The null distribution of the likelihood ratio test statistic for
Hypothesis 3.1 follows a mixture of x2 and x? distributions, with equal weight of 0.5 (see
Subsection 3.5.1 for more details). Based on the significant result of this test (p < 0.0001),
we keep the random litter effects in this model and in all subsequent models.

Step 3: Select a covariance structure for the residuals (Models 3.1, 3.2A, or
3.2B).

We now fit Model 3.2A, with a separate residual variance for each treatment group

2 2 2
(Uhigh’ Olows and Ucontrol)‘

> # Model 3.2A.

> model3.2a.fit <- lme(weight ~ treatment + sexl + litsize

+ treatment:sexl, random = “1 | litter, ratpup, method = "REML",
weights = varIdent(form = "1 | treatment))

The arguments of the 1me () function are the same as those used to fit Model 3.1, with the
addition of the weights argument. The weights = varIdent(form = ~ 1 | treatment)
argument sets up a heterogeneous residual variance structure, with observations at differ-
ent levels of TREATMENT having different residual variance parameters. We apply the
summary () function to review the results of the model fit:

> summary(model3.2a.fit)

In the Variance function portion of the following output, note the convention used by
the 1me () function to display the heterogeneous variance parameters:
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Random effects: ‘\\\
Formula: ~1 | litter

(Intercept) Residual
StdDev: 0.3134714 0.5147866

Variance function:
Structure: Different standard deviations per stratum
Formula: ~ 1 | treatment

Parameter estimates:

Control Low High
\\\1.0000000 0.5650369 0.6393779 4///

We first note in the Random effects portion of the output that the estimated Residual
standard deviation is equal to 0.5147866. The Parameter estimates specify the values by
which the residual standard deviation should be multiplied to obtain the estimated standard
deviation of the residuals in each treatment group. This multiplier is 1.0 for the control group
(the reference group). The multipliers reported for the low and high treatment groups are
very similar (0.565 and 0.639, respectively), suggesting that the residual standard deviation
is smaller in these two treatment groups than in the control group. The estimated residual
variance for each treatment group can be obtained by squaring their respective standard
deviations.

To test Hypothesis 3.2, we subtract the -2 REML log-likelihood for the heterogeneous
residual variance model, Model 3.2A, from the corresponding value for the model with
homogeneous residual variance for all treatment groups, Model 3.1, by using the anova()
function.

> # Test Hypothesis 3.2.
> anova(model3.1.fit, model3.2a.fit)

We do not need to adjust the p-value returned by the anova() function for Hypothesis
3.2, because the null hypothesis (stating that the residual variance is identical for each
treatment group) does not set a covariance parameter equal to the boundary of its parameter
space, as in Hypothesis 3.1. Because the result of this likelihood ratio test is significant
(p < 0.001), we choose the heterogeneous variances model (Model 3.2A) as our preferred
model at this stage of the analysis.

We next test Hypothesis 3.3 to decide if we can pool the residual variances for the high
and low treatment groups. To do this, we first create a pooled treatment group variable,
TRTGRP:

> ratpup$trtgrp[treatment == "Control"] <- 1
> ratpup$trtgrp[treatment == "Low" | treatment == "High"] <- 2

We now fit Model 3.2B, using the new TRTGRP variable in the weights = argument
to specify the grouped heterogeneous residual variance structure:

> model3.2b.fit <- lme(weight ~ treatment + sexl + litsize + treatment:sexl,
random = ~ 1 | litter, ratpup, method = "REML",
weights = varIdent(form = “1 | trtgrp))

We test Hypothesis 3.3 using a likelihood ratio test, by applying the anova() function
to the objects containing the fits for Model 3.2A and Model 3.2B:
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> # Test Hypothesis 3.3.
> anova(model3.2a.fit, model3.2b.fit)

The null distribution of the test statistic in this case is a x? with one degree of freedom.
Because the test is not significant (p = 0.27), we select the nested model, Model 3.2B, as
our preferred model at this stage of the analysis.

We use a likelihood ratio test for Hypothesis 3.4 to decide whether we wish to retain
the grouped heterogeneous error variances in Model 3.2B or choose the homogeneous error
variance model, Model 3.1. The anova() function is also used for this test:

> # Test Hypothesis 3.4.
> anova(model3.1.fit, model3.2b.fit)

The result of this likelihood ratio test is significant (p < 0.001), so we choose the pooled
heterogeneous residual variances model, Model 3.2B, as our preferred model. We can view
the parameter estimates from the fit of this model using the summary () function:

> summary(model3.2b.fit)

Step 4: Reduce the model by removing nonsignificant fixed effects (Model 3.2B
vs. Model 3.3, and Model 3.3 vs. Model 3.3A).

We test Hypothesis 3.5 to decide whether the fixed effects associated with the treatment by
sex interaction are equal to zero in Model 3.2B, using a Type I F-test in R. To obtain the
results of this test (along with Type I F-tests for all of the other fixed effects in the model),
we apply the anova() function to the model3.2b.fit object:

> # Test Hypothesis 3.5.
> anova(model3.2b.fit)

Based on the nonsignificant Type I F-test (p = 0.73), we delete the TREATMENT X
SEX1 interaction term from the model and obtain our final model, Model 3.3.

We test Hypothesis 3.6 to decide whether the fixed effects associated with treatment
are equal to zero in Model 3.3, using a likelihood ratio test based on maximum likeli-
hood (ML) estimation. We first fit the reference model, Model 3.3, using ML estimation
(method = "ML"), and then fit a nested model, Model 3.3A, without the TREATMENT
term, also using ML estimation.

> model3.3.ml.fit <- Ilme(weight ~ treatment + sexl + litsize,
random = “1 | litter, ratpup, method = "ML",
weights = varIdent(form = “1 | trtgrp))
> model3.3a.ml.fit <- lme(weight ~ sexl + litsize,
random = “1 | litter, ratpup, method = "ML",
weights = varIdent(form = 1 | trtgrp))

We then use the anova() function to carry out the likelihood ratio test of Hypothesis
3.6:

> # Test Hypothesis 3.6.
> anova(model3.3.ml.fit, model3.3a.ml.fit)

The likelihood ratio test result is significant (p < 0.001), so we retain the significant
fixed treatment effects in the model. We keep the fixed effects associated with SEX1 and
LITSIZE without testing them, to adjust for these fixed effects when assessing the treatment
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effects. See Section 3.5 for a discussion of the results of all hypothesis tests for the Rat Pup
data analysis.

We now refit our final model, Model 3.3, using REML estimation to get unbiased es-
timates of the variance parameters. Note that we now specify TREATMENT as the last
term in the fixed-effects portion of the model, so the Type I F-test reported for TREAT-
MENT by the anova() function will be comparable to the Type III F-test reported by SAS
proc mixed.

> # Model 3.3: Final Model.

> model3.3.reml.fit <- Ilme(weight ~ sexl + litsize + treatment,
random = ~1 | litter, ratpup, method = "REML",
weights = varIdent(form = “1 | trtgrp))

> summary(model3.3.reml.fit)

> anova(model3.3.reml.fit)

3.4.3.2 Analysis Using the lmer() Function
Step 1: Fit a model with a “loaded” mean structure (Model 3.1).

We first load the 1me4 package, so that the lmer () function will be available for model
fitting:

> library(lme4)
We next fit the initial LMM, Model 3.1, to the Rat Pup data using the 1mer () function:

> # Model 3.1.

> model3.1.fit.Ilmer <- lmer(weight ~ treatment + sexl + litsize +
treatment:sexl + (1 | litter),
ratpup, REML = T)

We explain each part of the syntax used for the lmer () function below:

e model3.1.fit.1lmer is the name of the object that will contain the results of the fitted
model.

e The first portion of the first argument of the function, weight ~ treatment + sexl +
litsize + treatment:sexl, partly defines the model formula. The response variable,
WEIGHT, and the terms that have associated fixed effects in the model (TREATMENT,
SEX1, LITSIZE, and the TREATMENT x SEXI1 interaction), are listed. The factor ()
function is not necessary for the categorical variable TREATMENT, because the original
treatment variable has string values High, Low, and Control, and will therefore be consid-
ered as a factor automatically. We also do not need to declare SEX1 as a factor, because
it is an indicator variable having only values of 0 and 1.

e The model formula also includes the term (1 | litter), which includes a random effect
associated with the intercept (1) for each unique level of LITTER. This is a key difference
from the 1me () function, where there is a separate random argument needed to specify
the random effects in a given model.

e The third argument of the function, ratpup, indicates the name of the data frame object
to be used in the analysis.

e The final argument, REML = T, specifies that the default REML estimation method is to
be used.
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Like the 1me () function, the lmer () function treats the lowest level (alphabetically or
numerically) of a categorical fixed factor as the reference category by default. This means
that “Control” will be the reference category of TREATMENT because “Control” is the
lowest level of treatment alphabetically. The relevel () function can also be used in con-
junction with the 1mer () function to change the reference categories of factors.

We obtain estimates from the model fit by using the summary () function:

> summary(model3.1.fit.lmer)

In the resulting output, we see that the 1mer () function only produces t-statistics for the
fixed effects, with no corresponding p-values. This is primarily due to the lack of agreement
in the literature over appropriate degrees of freedom for these test statistics. The anova()
function also does not provide p-values for the F-statistics when applied to a model fit object
generated by using the lmer () function. In general, we recommend use of the lmerTest
package in R for users interested in testing hypotheses about parameters estimated using
the 1mer () function. In this chapter and others, we illustrate likelihood ratio tests using
selected functions available in the 1me4 and lmerTest packages.

The ranef () function can be used to display the EBLUPs for the random litter effects:

> # Display the random effects (EBLUPs) from the model.
> ranef (model3.1.fit.lmer)

Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A).

For this step, we first load the 1lmerTest package, which enables likelihood ratio tests of
hypotheses concerning the variances of random effects in models fitted using the lmer ()
function (including models with only a single random effect, such as Model 3.1). As an
alternative to loading the 1me4 package, R users may also simply load the 1lmerTest package
first, which includes all related packages required for its use.

> library(lmerTest)

We once again employ the 1mer () function and fit Model 3.1 to the Rat Pup data, after
loading the 1lmerTest package:

> # Model 3.1.

> model3.1.fit.lmer <- lmer(weight ~ treatment + sexl + litsize +
treatment:sexl + (1 | litter),
ratpup, REML = T)

We then apply the summary () function to this model fit object:
> summary(model3.1.fit.lmer)

We note that the lmer () function now computes p-values for all of the fixed effects
included in this model, using a Satterthwaite approximation of the degrees of freedom for
this test (similar to the MIXED command in SPSS). For testing Hypothesis 3.1 (i.e., is the
variance of the random litter effects greater than zero?), we can use the rand () function to
perform a likelihood ratio test:

> rand(model3.1.fit.lmer)

In this case, the rand () function fits Model 3.1A (without the random litter effects) and
computes the appropriate likelihood ratio test statistic, representing the positive difference
in the =2 REML log-likelihood values of the two models (89.4). The corresponding p-value
based on a mixture of chi-square distributions (p < 0.001) suggests a strong rejection of the
null hypothesis, and we therefore retain the random litter effects in all subsequent models.
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Step 3: Select a covariance structure for the residuals (Models 3.1, 3.2A, or
3.2B).

At the time of this writing, the 1lmer () function does not allow users to fit models with
heterogeneous error variance structures. We therefore do not consider Models 3.2A or 3.2B
in this analysis. The fixed effects in the model including the random litter effects and
assuming constant error variance across the treatment groups (Model 3.1) can be tested
using the lmerTest package, and the 1me () function can be used to test for the possibility
of heterogeneous error variances, as illustrated in Section 3.4.3.1.

3.4.4 Stata

We begin by importing the tab-delimited version of the Rat Pup data set into Stata, as-
suming that the rat_pup.dat data file is located in the C:\temp directory. Note that we
present the Stata commands including the prompt (.), which is not entered as part of the
commands.

. insheet using "C:\temp\rat_pup.dat", tab

Alternatively, users of web-aware Stata can import the Rat Pup data set directly from
the book’s web site:

. insheet using http://www-personal.umich.edu/ bwest/rat_pup.dat, tab

We now utilize the mixed command to fit the models for this example.

Step 1: Fit a model with a “loaded” mean structure (Model 3.1).

Because string variables cannot be used as categorical factor variables in Stata, we first
recode the TREATMENT and SEX variables into numeric format:

. gen female = (sex == "Female")

. gen treatment2 = 1 if treatment == "Control"
. replace treatment2 = 2 if treatment == "Low"
. replace treatment2 = 3 if treatment == "High"

The mixed command used to fit Model 3.1 (in Version 13+ of Stata) is then specified
as follows:

. * Model 3.1 fit .
. mixed weight ibl.treatment2 female litsize ibl.treatment2#c.female
|l litter:, covariance(identity) variance reml

The mixed command syntax has three parts. The first part specifies the dependent
variable and the fixed effects, the second part specifies the random effects, and the third
part specifies the covariance structure for the random effects, in addition to miscellaneous
options. We note that although we have split the single command onto two lines, readers
should attempt to submit the command on a single line in Stata. We discuss these parts of
the syntax in detail below.

The first variable listed after the mixed command is the continuous dependent variable,
WEIGHT. The variables following the dependent variable are the terms that will have
associated fixed effects in the model. We include fixed effects associated with TREATMENT
(where ib1. indicates that the recoded variable TREATMENT? is a categorical factor, with
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the category having value 1 (Control) as the reference, or baseline category), the FEMALE
indicator, LITSIZE, and the interaction between TREATMENT2 and FEMALE (indicated
using #). We note that even though FEMALE is a binary indicator, it needs to be specified
as “continuous” in the interaction term using c., because it has not been specified as a
categorical factor previously in the variable list using i..

The two vertical bars (||) precede the variable that defines clusters of observations
(litter:) in this two-level data set. The absence of additional variables after the colon
indicates that there will only be a single random effect associated with the intercept for
each level of LITTER in the model.

The covariance option after the comma specifies the covariance structure for the ran-
dom effects (or the D matrix). Because Model 3.1 includes only a single random effect
associated with the intercept (and therefore a single variance parameter associated with the
random effects), it has an identity covariance structure. The covariance option is actually
not necessary in this simple case.

Finally, the variance option requests that the estimated variances of the random effects
and the residuals be displayed in the output, rather than their estimated standard devia-
tions, which is the default. The mixed procedure also uses ML estimation by default, so we
also include the reml option to request REML estimation for Model 3.1.

The AIC and BIC information criteria for this model can be obtained by using the
following command after the mixed command has finished running;:

. * Information criteria.
. estat ic

By default, the mixed command does not display F-tests for the fixed effects in the
model. Instead, omnibus Wald chi-square tests for the fixed effects in the model can be
performed using the test command. For example, to test the overall significance of the
fixed treatment effects, the following command can be used:

. * Test overall significance of the fixed treatment effects.
. test 2.treatment2 3.treatment2

The two terms listed after the test command are the dummy variables automatically
generated by Stata for the fixed effects of the Low and High levels of treatment (as indicated
in the estimates of the fixed-effect parameters). The test command is testing the null
hypothesis that the two fixed effects associated with these dummy variables are both equal
to zero (i.e., the null hypothesis that the treatment means are all equal for males, given that
the interaction between TREATMENT?2 and FEMALE has been included in this model).
Similar omnibus tests may be obtained for the fixed FEMALE effect, the fixed LITSIZE
effect, and the interaction between TREATMENT2 and SEX:

. * Omnibus tests for FEMALE, LITSIZE and the

. * TREATMENT2*FEMALE interaction.

. test female

. test litsize

. test 2.treatment2#c.female 3.treatment2#c.female

Once a model has been fitted using the mixed command, EBLUPs of the random effects
associated with the levels of the random factor (LITTER) can be saved in a new variable
(named EBLUPS) using the following command:

. predict eblups, reffects

The saved EBLUPs can then be used to check for random effects that may be outliers.
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Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A).

We perform a likelihood ratio test of Hypothesis 3.1 to decide whether the random effects
associated with the intercept for each litter can be omitted from Model 3.1. In the case
of two-level models with random intercepts, the mixed command performs the appropriate
likelihood ratio test automatically. We read the following output after fitting Model 3.1:

[ LR test vs. linear regression: chibar2(01) = 89.41 Prob >= chibar2 = 0.0000 ]

Stata reports chibar2(01), indicating that it uses the correct null hypothesis distribu-
tion of the test statistic, which in this case is a mixture of x3 and x? distributions, each
with equal weight of 0.5 (see Subsection 3.5.1). The likelihood ratio test reported by the
mixed command is an overall test of the covariance parameters associated with all random
effects in the model. In models with a single random effect for each cluster, as in Model 3.1,
it is appropriate to use this test to decide if that random effect should be included in the
model. The significant result of this test (p < 0.001) suggests that the random litter effects
should be retained in Model 3.1.

Step 3: Select a covariance structure for the residuals (Models 3.1, 3.2A, or
3.2B).

We now fit Model 3.2A, with a separate residual variance for each treatment group

2 2 2
(Uhigh’ Olows and Ucontrol)‘

. * Model 3.2A.

. mixed weight ibl.treatment2 female litsize ibl.treatment2#c.female
|l litter:, covariance(identity) variance reml
residuals(independent, by(treatment2))

We use the same mixed command that was used to fit Model 3.1, with one additional op-
tion: residuals(independent, by(treatment2)). This option specifies that the residuals
in this model are independent of each other (which is reasonable for two-level clustered data
if a random effect associated with each cluster has already been included in the model), and
that residuals associated with different levels of TREATMENT?2 have different variances.
The resulting output will provide estimates of the residual variance for each treatment
group.

To test Hypothesis 3.2, we subtract the -2 REML log-likelihood for the heterogeneous
residual variance model, Model 3.2A, from the corresponding value for the model with
homogeneous residual variance for all treatment groups, Model 3.1. We can do this auto-
matically by fitting both models and saving the results from each model in new objects.
We first save the results from Model 3.2A in an object named model32Afit, refit Model 3.1
and save those results in an object named model31fit, and then use the lrtest command
to perform the likelihood ratio test using the two objects (where Model 3.1 is nested within
Model 3.2A, and listed second):

. est store model32Afit

. mixed weight ibl.treatment2 female litsize ibl.treatment2#c.female
|| litter:, covariance(identity) variance reml

. est store model31fit

. lrtest model32Afit model31fit

We do not need to modify the p-value returned by the 1rtest command for Hypothesis
3.2, because the null hypothesis (stating that the residual variance is identical for each
treatment group) does not set a covariance parameter equal to the boundary of its parameter
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space, as in Hypothesis 3.1. Because the result of this likelihood ratio test is significant
(p < 0.001), we choose the heterogeneous variances model (Model 3.2A) as our preferred
model at this stage of the analysis.

We next test Hypothesis 3.3 to decide if we can pool the residual variances for the high
and low treatment groups. To do this, we first create a pooled treatment group variable,
TRTGRP:

. gen trtgrp = 1 if treatment2 ==
. replace trtgrp = 2 if treatment2 == 2 | treatment2 ==

We now fit Model 3.2B, using the new TRTGRP variable to specify the grouped hetero-
geneous residual variance structure and saving the results in an object named model32Bfit:

. * Model 3.2B.

. mixed weight ibl.treatment2 female litsize ibl.treatment2#c.female
|l litter:, covariance(identity) variance reml
residuals(independent, by(trtgrp))

. est store model32Bfit

We test Hypothesis 3.3 using a likelihood ratio test, by applying the 1rtest command
to the objects containing the fits for Model 3.2A and Model 3.2B:

. lrtest model32Afit model32Bfit

The null distribution of the test statistic in this case is a y? with one degree of freedom.
Because the test is not significant (p = 0.27), we select the nested model, Model 3.2B, as
our preferred model at this stage of the analysis.

We use a likelihood ratio test for Hypothesis 3.4 to decide whether we wish to retain
the grouped heterogeneous error variances in Model 3.2B or choose the homogeneous error
variance model, Model 3.1. The 1rtest command is also used for this test:

. * Test Hypothesis 3.4.
. lrtest model32Bfit model31fit

The result of this likelihood ratio test is significant (p < 0.001), so we choose the pooled
heterogeneous residual variances model, Model 3.2B, as our preferred model at this stage.

Step 4: Reduce the model by removing nonsignificant fixed effects (Model 3.2B
vs. Model 3.3, and Model 3.3 vs. Model 3.3A).

We test Hypothesis 3.5 to decide whether the fixed effects associated with the treatment by
sex interaction are equal to zero in Model 3.2B, using a Type III F-test in Stata. To obtain
the results of this test, we execute the test command below after fitting Model 3.2B:

. * Test Hypothesis 3.5.
. test 2.treatment2#c.female 3.treatment2#c.female

Based on the nonsignificant Type III F-test (p = 0.73), we delete the TREATMENT?2
x FEMALE interaction term from the model and obtain our final model, Model 3.3.

We test Hypothesis 3.6 to decide whether the fixed effects associated with treatment are
equal to zero in Model 3.3, using a likelihood ratio test based on maximum likelihood (ML)
estimation. We first fit the reference model, Model 3.3, using ML estimation (the default
of the mixed command, meaning that we drop the reml option along with the interaction
term), and then fit a nested model, Model 3.3A, without the TREATMENT?2 term, also
using ML estimation. We then use the 1rtest command to carry out the likelihood ratio
test of Hypothesis 3.6:
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. * Test Hypothesis 3.6.

. mixed weight ibl.treatment2 female litsize
|| litter:, covariance(identity) variance
residuals(independent, by(trtgrp))

. est store model33fit

. mixed weight female litsize

|| litter:, covariance(identity) variance
residuals(independent, by(trtgrp))

. est store model33Afit

. lrtest model33fit model33Afit

The likelihood ratio test result is significant (p < 0.001), so we retain the significant
fixed treatment effects in the model. We keep the fixed effects associated with FEMALE
and LITSIZE without testing them, to adjust for these fixed effects when assessing the
treatment effects. See Section 3.5 for a discussion of the results of all hypothesis tests for
the Rat Pup data analysis.

We now refit our final model, Model 3.3, using REML estimation to get unbiased esti-
mates of the variance parameters:

. * Model 3.3: Final Model.

. mixed weight ibl.treatment2 female litsize
|l litter:, covariance(identity) variance reml
residuals(independent, by(trtgrp))

3.4.5 HLM
3.4.5.1 Data Set Preparation

To perform the analysis of the Rat Pup data using the HLM software package, we need to
prepare two separate data sets.

1. The Level 1 (pup-level) data set contains a single observation (row of data)
for each rat pup. This data set includes the Level 2 cluster identifier variable,
LITTER, and the variable that identifies the units of analysis, PUP_ID. The re-
sponse variable, WEIGHT, which is measured for each pup, must also be included,
along with any pup-level covariates. In this example, we have only a single pup-
level covariate, SEX. In addition, the data set must be sorted by the cluster-level
identifier, LITTER.

2. The Level 2 (litter-level) data set contains a single observation for each
LITTER. The variables in this data set remain constant for all rat pups within a
given litter. The Level 2 data set needs to include the cluster identifier, LITTER,
and the litter-level covariates, TREATMENT and LITSIZE. This data set must
also be sorted by LITTER.

Because the HLM program does not automatically create dummy variables for categor-
ical predictors, we need to create dummy variables to represent the nonreference levels of
the categorical predictors prior to importing the data into HLM. We first need to add an
indicator variable for SEX to represent female rat pups in the Level 1 data set, and we
need to create two dummy variables in the Level 2 data set for TREATMENT, to repre-
sent the high and low dose levels. If the input data files were created in SPSS, the SPSS
syntax to create these indicator variables in the Level 1 and Level 2 data files would look
like this:
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Level 1 data

COMPUTE sexl = (sex = "Female")
EXECUTE .

Level 2 data

COMPUTE treatl
EXECUTE .
COMPUTE treat2
EXECUTE .

(treatment = "High")

(treatment "Low")

3.4.5.2 Preparing the Multivariate Data Matrix (MDM) File

We create a new MDM file, using the Level 1 and Level 2 data sets described earlier. In the
main HLM menu, click File, Mlake new MDM file, and then Stat package input. In the
window that opens, select HLM2 to fit a two-level hierarchical linear model, and click OK.
In the Make MDM window that opens, select the Input File Type as SPSS/Windows.

Now, locate the Level-1 Specification area of the MDM window, and Browse to the
location of the Level 1 SPSS data set. Once the data file has been selected, click on the
Choose Variables button and select the following variables from the Level 1 file: LITTER
(check “ID” for the LITTER variable, because this variable identifies the Level 2 units),
WEIGHT (check “in MDM” for this variable, because it is the dependent variable), and
the indicator variable for females, SEX1 (check “in MDM”).

Next, locate the Level-2 Specification area of the MDM window and Browse to the
location of the Level 2 SPSS data set that has one record per litter. Click on the Choose
Variables button to include LITTER (check “ID”), TREAT1 and TREAT2 (check “in
MDM?” for each indicator variable), and finally LITSIZE (check “in MDM”).

After making these choices, check the cross sectional (persons within groups)
option for the MDM file, to indicate that the Level 1 data set contains measures on individual
rat pups (“persons” in this context), and that the Level 2 data set contains litter-level
information (the litters are the “groups”). Also, select No for Missing Data? in the Level
1 data set, because we do not have any missing data for any of the litters in this example.
Enter a name for the MDM file with an .mdm extension (e.g., ratpup.mdm) in the upper
right corner of the MDM window. Finally, save the .mdmt template file under a new name
(click Save mdmt file), and click the Make MDM button.

After HLM has processed the MDM file, click the Check Stats button to see descriptive
statistics for the variables in the Level 1 and Level 2 data sets (HLM 7+ will show these
automatically). This step, which is required prior to fitting a model, allows you to check
that the correct number of records has been read into the MDM file and that there are
no unusual values for the variables included in the MDM file (e.g., values of 999 that were
previously coded as missing data; such values would need to be set to system-missing in
SPSS prior to using the data file in HLM). Click Done to proceed to the model-building
window.

Step 1: Fit a model with a loaded mean structure (Model 3.1).

In the model-building window, select WEIGHT from the list of variables, and click Out-
come variable. The initial “unconditional” (or “means-only”) model for WEIGHT, broken
down into Level 1 and Level 2 models, is now displayed in the model-building window. The
initial Level 1 model is:
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Model 3.1: Level 1 Model (Initial)

WEIGHT = B +

To add more informative subscripts to the models (if they are not already shown), click
File and Preferences, and choose Use level subscripts. The Level 1 model now includes
the subscripts ¢ and j, where ¢ indexes individual rat pups and j indexes litters, as follows:

Model 3.1: Level 1 Model (Initial) With Subscripts

WEIGHTU = ﬂ[)j + Tij

This initial Level 1 model shows that the value of WEIGHT}; for an individual rat pup
i, within litter j, depends on the intercept, 5o, for litter j, plus a residual, 7;;, associated
with the rat pup.

The initial Level 2 model for the litter-specific intercept, Bo;, is also displayed in the
model-building window.

Model 3.1: Level 2 Model (Initial)
Boj = Yoo + uo;

This model shows that at Level 2 of the data set, the litter-specific intercept depends
on the fixed overall intercept, voo, plus a random effect, ug;, associated with litter j. In this
“unconditional” model, fy; is allowed to vary randomly from litter to litter. After clicking
the Mixed button for this model (in the lower-right corner of the model-building window),
the initial means-only mixed model is displayed.

Model 3.1: Overall Mixed Model (Initial)

WEIGHTU‘ = Y00 + Uo; + Tij

To complete the specification of Model 3.1, we add the pup-level covariate, SEX1. Click
the Level 1 button in the model-building window and then select SEX1. Choose add
variable uncentered. SEX1 is then added to the Level 1 model along with a litter-specific
coefficient, f1;, for the effect of this covariate.

Model 3.1: Level 1 Model (Final)

The Level 2 model now has equations for both the litter-specific intercept, By, and for
B1;, the litter-specific coefficient associated with SEX1.

Model 3.1: Level 2 Model (Intermediate)

Boj = Yoo + uo;
51]' = 710

The equation for the litter-specific intercept is unchanged. The value of 3;; is defined as
a constant (equal to the fixed effect v10) and does not include any random effects, because
we assume that the effect of SEX1 (i.e., the effect of being female) does not vary randomly
from litter to litter.
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To finish the specification of Model 3.1, we add the uncentered versions of the two litter-
level dummy variables for treatment, TREAT1 and TREAT?2, to the Level 2 equations for
the intercept, fy;, and for the effect of being female, 5;;. We add the effect of the uncentered
version of the LITSIZE covariate to the Level 2 equation for the intercept only, because we
do not wish to allow the effect of being female to vary as a function of litter size. Click the
Level 2 button in the model-building window. Then, click on each Level 2 equation and
click on the specific variables (uncentered) to add.

Model 3.1: Level 2 Model (Final)

Boj = Y00 + Y01 (LITSIZE;) 4+ ~02(TREAT1;) + vo3(TREAT2;) + uo;
Blj =10 + ’yll(TREATl]) + Y12 (TREATQJ)

In this final Level 2 model, the main effects of TREAT1 and TREAT2, i.e., 792 and 73,
enter the model through their effect on the litter-specific intercept, £p;. The interaction
between treatment and sex enters the model by allowing the litter-specific effect for SEX1,
B1j, to depend on fixed effects associated with TREAT1 and TREAT2 (y;; and 72, re-
spectively). The fixed effect associated with LITSIZE, 791, is only included in the equation
for the litter-specific intercept and is not allowed to vary by sex (i.e., our model does not
include a LITSIZE x SEX1 interaction).

We can view the final LMM by clicking the Mixed button in the HLM model-building
window:

Model 3.1: Overall Mixed Model (Final)

WEIGHT;; = 700 + o1 * LITSIZEj + Yo2 * TREAle
+ Yo3 * TREAT2J + Y10 * SEX].U
+ Y11 * TREAle * SEXlU + Y12 * TREATQJ * SEXlU

+ uoj + 745

The final mixed model in HLM corresponds to Model 3.1 as it was specified in (3.1),
but with somewhat different notation. Table 3.3 shows the correspondence of this notation
with the general LMM notation used in (3.1).

After specifying Model 3.1, click Basic Settings to enter a title for this analysis (such
as “Rat Pup Data: Model 3.1”7) and a name for the output (.html) file. Note that the default
outcome variable distribution is Normal (Continuous), so we do not need to specify it. The
HLM?2 procedure automatically creates two residual data files, corresponding to the two
levels of the model. The “Level-1 Residual File” contains the conditional residuals, r;;, and
the “Level-2 Residual File” contains the EBLUPs of the random litter effects, ug;. To change
the names and/or file formats of these residual files, click on either of the two buttons for
the files in the Basic Settings window. Click OK to return to the model-building window.

Click File ... Save As to save this model specification to a new .hlm file. Finally, click
Run Analysis to fit the model. HLM2 by default uses REML estimation for two-level
models such as Model 3.1. Click on File ... View Output to see the estimates for this
model.

Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A).

In this step, we test Hypothesis 3.1 to decide whether the random effects associated with
the intercept for each litter can be omitted from Model 3.1. We cannot perform a likelihood
ratio test for the variance of the random litter effects in this model because HLM does not
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allow us to remove the random effects in the Level 2 model (there must be at least one
random effect associated with each level of the data set in HLM). Because we cannot use a
likelihood ratio test for the variance of the litter-specific intercepts, we instead use the x?
tests for the covariance parameters provided by HLM2. These x? statistics are calculated
using methodology described in Raudenbush & Bryk (2002) and are displayed near the
bottom of the output file.

Step 3: Select a covariance structure for the residuals (Models 3.1, 3.2A, or
3.2B).

Models 3.2A, 3.2B and 3.3, which have heterogeneous residual variance for different levels of
treatment, cannot be fitted using HLM2, because this procedure does not allow the Level 1
variance to depend on a factor measured at Level 2 of the data. However, HLM does provide
an option labeled Test homogeneity of Level 1 variance under the Hypothesis Test-
ing settings, which can be used to obtain a test of whether the assumption of homogeneous
residual variance is met [refer to Raudenbush & Bryk (2002) for more details].

Step 4: Reduce the model by removing nonsignificant fixed effects (Model 3.2B
vs. Model 3.3, and Model 3.3 vs. Model 3.3A).

We can set up general linear hypothesis tests for the fixed effects in a model in HLM by
clicking Other Settings, and then Hypothesis Testing prior to fitting a model. In the
hypothesis-testing window, each numbered button corresponds to a test of a null hypothesis
that C~v = 0, where C is a known matrix for a given hypothesis, and ~ is a vector of fixed-
effect parameters. This specification of the linear hypothesis in HLM corresponds to the
linear hypothesis specification, L3 = 0, described in Subsection 2.6.3.1. For each hypothesis,
HLM computes a Wald-type test statistic, which has a x? null distribution, with degrees of
freedom equal to the rank of C' [see Raudenbush & Bryk (2002) for more details].

For example, to test the overall effect of treatment in Model 3.1, which has seven fixed-
effect parameters (ygp, associated with the intercept term; o1, with litter size; y92 and 73,
with the treatment dummy variables TREAT1 and TREAT?2; ~19, with sex; and 777 and
~12, with the treatment by sex interaction terms), we would need to set up the following C'
matrix and ~ vector:

This specification of C' and ~ corresponds to the null hypothesis Hy: v92 = 0 and
~03 = 0. Each row in the C' matrix corresponds to a column in the HLM Hypothesis Testing
window.

To set up this hypothesis test, click on the first numbered button under Multivariate
Hypothesis Tests in the Hypothesis Testing window. In the first column of zeroes,
corresponding to the first row of the C' matrix, enter a 1 for the fixed effect vgp2. In the
second column of zeroes, enter a 1 for the fixed effect yp3. To complete the specification
of the hypothesis, click on the third column, which will be left as all zeroes, and click
OK. Additional hypothesis tests can be obtained for the fixed effects associated with other
terms in Model 3.1 (including the interaction terms) by entering additional C' matrices
under different numbered buttons in the Hypothesis Testing window. After setting up
all hypothesis tests of interest, click OK to return to the main model-building window.
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3.5 Results of Hypothesis Tests

The hypothesis test results reported in Table 3.5 were derived from output produced by SAS
proc mixed. See Table 3.4 and Subsection 3.3.3 for more information about the specification
of each hypothesis.

3.5.1 Likelihood Ratio Tests for Random Effects

Hypothesis 3.1. The random effects, ug;, associated with the litter-specific intercepts
can be omitted from Model 3.1.

To test Hypothesis 3.1, we perform a likelihood ratio test. The test statistic is calculated
by subtracting the -2 REML log-likelihood value of the reference model, Model 3.1, from the
corresponding value for a nested model omitting the random effects, Model 3.1A. Because a
variance cannot be less than zero, the null hypothesis value of inttw = 0 is at the boundary
of the parameter space, and the asymptotic null distribution of the likelihood ratio test
statistic is a mixture of 2 and x3 distributions, each with equal weight of 0.5 (Verbeke
& Molenberghs, 2000). We illustrate calculation of the p-value for the likelihood ratio test
statistic:

p-value = 0.5 x P(x3 > 89.4) + 0.5 x P(x3 > 89.4) < 0.001

The resulting test statistic is significant (p < 0.001), so we retain the random effects
associated with the litter-specific intercepts in Model 3.1 and in all subsequent models. As
noted in Subsection 3.4.1, the x2 distribution has all of its mass concentrated at zero, so
its contribution to the p-value is zero and the first term can be omitted from the p-value
calculation.

3.5.2 Likelihood Ratio Tests for Residual Variance

Hypothesis 3.2. The variance of the residuals is the same (homogeneous) for the three
treatment groups (high, low, and control).

We use a REML-based likelihood ratio test for Hypothesis 3.2. The test statistic is calcu-
lated by subtracting the value of the —2 REML log-likelihood for Model 3.2A (the reference
model) from that for Model 3.1 (the nested model). Under the null hypothesis, the variance
parameters are not on the boundary of their parameter space (i.e., the null hypothesis does
not specify that they are equal to zero). The test statistic has a y? distribution with 2
degrees of freedom because Model 3.2A has 2 more covariance parameters (i.e., the 2 ad-
ditional residual variances) than Model 3.1. The test result is significant (p < 0.001). We
therefore reject the null hypothesis and decide that the model with heterogeneous residual
variances, Model 3.2A; is our preferred model at this stage of the analysis.

Hypothesis 3.3. The residual variances for the high and low treatment groups are equal.

To test Hypothesis 3.3, we again carry out a REML-based likelihood ratio test. The test
statistic is calculated by subtracting the value of the —2 REML log-likelihood for Model
3.2A (the reference model) from that for Model 3.2B (the nested model).

Under the null hypothesis, the test statistic has a x? distribution with 1 degree of
freedom. The nested model, Model 3.2B, has one fewer covariance parameter (i.e., one less
residual variance) than the reference model, Model 3.2A, and the null hypothesis value of
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TABLE 3.5: Summary of Hypothesis Test Results for the Rat Pup Analysis

Hypo- Test Estima- Models Test Statistic p-value
thesis tion Compared Values
Label Method (Nested vs. (Calculation)
Reference)
3.1 LRT REML  3.1A vs. 3.1 x2(0:1) =894 < .001
(490.5 — 401.1)
3.2 LRT REML 3.1 vs. 3.2A X2(2) = 41.2 < .001
(401.1 - 359.9)
3.3 LRT REML  3.2B vs. 3.2A i(1) =12 0.27
(361.1 — 359.9)
3.4 LRT REML 3.1 vs. 3.2B x2(1) = 40.0 < .001
(401.1 — 361.1)
3.5 Type III  REML 3.2B¢ F(2,194)=0.3 0.73
F-test
3.6 LRT ML 3.3A vs. 3.3 X2(2) = 18.6 < .001
(356.4 — 337.8)
Type III  REML 3.3° F(2,243)=114 < .001
F-test
Note: See Table 3.4 for null and alternative hypotheses, and distributions of test statistics
under Hy.

“We use an F-test for the fixed effects associated with TREATMENT x SEX based on the
fit of Model 3.2B only.

"We use an F-test for the fixed effects associated with TREATMENT based on the fit of
Model 3.3 only.

the parameter does not lie on the boundary of the parameter space. The test result is not
significant (p = 0.27). We therefore do not reject the null hypothesis, and decide that Model
3.2B, with pooled residual variance for the high and low treatment groups, is our preferred
model.

Hypothesis 3.4. The residual variance for the combined high/low treatment group is
equal to the residual variance for the control group.

To test Hypothesis 3.4, we carry out an additional REML-based likelihood ratio test.
The test statistic is calculated by subtracting the value of the -2 REML log-likelihood for
Model 3.2B (the reference model) from that of Model 3.1 (the nested model).

Under the null hypothesis, the test statistic has a x? distribution with 1 degree of
freedom: the reference model has 2 residual variances, and the nested model has 1. The test
result is significant (p < 0.001). We therefore reject the null hypothesis and choose Model
3.2B as our preferred model.

3.5.3 F-tests and Likelihood Ratio Tests for Fixed Effects

Hypothesis 3.5. The fixed effects, 85 and g, associated with the treatment by sex in-
teraction are equal to zero in Model 3.2B.
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We test Hypothesis 3.5 using a Type III F-test for the treatment by sex interaction in
Model 3.2B. The results of the test are not significant (p = 0.73). Therefore, we drop the
fixed effects associated with the treatment by sex interaction and select Model 3.3 as our
final model.

Hypothesis 3.6. The fixed effects associated with treatment, £; and B3, are equal to zero
in Model 3.3.

Hypothesis 3.6 is not part of the model selection process but tests the primary hypothesis
of the study. We would not remove the effect of treatment from the model even if it proved
to be nonsignificant because it is the main focus of the study.

The Type III F-test, reported by SAS for treatment in Model 3.3, is significant
(p < 0.001), and we conclude that the mean birth weights differ by treatment group, after
controlling for litter size, sex, and the random effects associated with litter.

We also carry out an ML-based likelihood ratio test for Hypothesis 3.6. To do this, we
refit Model 3.3 using ML estimation. We then fit a nested model without the fixed effects
of treatment (Model 3.3A), again using ML estimation. The test statistic is calculated by
subtracting the —2 log-likelihood value for Model 3.3 from the corresponding value for Model
3.3A. The result of this test is also significant (p < 0.001).

3.6 Comparing Results across the Software Procedures
3.6.1 Comparing Model 3.1 Results

Table 3.6 shows selected results generated using each of the six software procedures to
fit Model 3.1 to the Rat Pup data. This model is “loaded” with fixed effects, has random
effects associated with the intercept for each litter, and has a homogeneous residual variance
structure.

All five procedures agree in terms of the estimated fixed-effect parameters and their
estimated standard errors for Model 3.1. They also agree on the estimated variance compo-
nents (i.e., the estimates of intter and o?) and their respective standard errors, when they
are reported.

Portions of the model fit criteria differ across the software procedures. Reported values
of the -2 REML log-likelihood are the same for the procedures in SAS, SPSS, R, and
Stata. However, the reported value in HLM (indicated as the deviance statistic in the
HLM output) is lower than the values reported by the other four procedures. According to
correspondence with HLM technical support staff, the difference arising in this illustration
is likely due to differences in default convergence criteria between HLM and the other
procedures, or in implementation of the iterative REML procedure within HLM. This minor
difference is not critical in this case.

We also note that the values of the AIC and BIC statistics vary because of the different
computing formulas being used (the HLM2 procedure does not compute these information
criteria). SAS and SPSS compute the AIC as —2 REML log-likelihood + 2 x (# covariance
parameters in the model). Stata and R compute the AIC as —2 REML log-likelihood +
2 x (# fixed effects + # covariance parameters in the model). Although the AIC and
BIC statistics are not always comparable across procedures, they can be used to compare
the fits of models within any given procedure. For details on how the computation of the
BIC criteria varies from the presentation in Subsection 2.6.4 across the different software
procedures, refer to the documentation for each procedure.



TABLE 3.6: Comparison of Results for Model 3.1

Estimation Method

SAS: proc SPSS: R: 1me () R: 1mer () Stata: HLM2
mixed MIXED function function mixed
REML REML REML REML REML REML

Fized-Effect Parameter

Bo(Intercept)
B1(High vs. Control)
B2(Low vs. Control)
Bs(Female vs. male)
Ba(Litter size)
Bs(High x Female)
B6(Low x Female)

Estimate (SE)

8.32(0.27)
—0.91(0.19)
—0.47(0.16)
—0.41(0.07)
—0.13(0.02)
0.11(0.13)
0.08(0.11)

Estimate (SE)

8.32(0.27)
—0.91(0.19)
—0.47(0.16)
—0.41(0.07)
—0.13(0.02)
0.11(0.13)
0.08(0.11)

FEstimate (SE)

8.32(0.27)
—0.91(0.19)
—0.47(0.16)
—0.41(0.07)
—0.13(0.02)
0.11(0.13)
0.08(0.11)

Estimate (SE) FEstimate (SE) Estimate (SE)®

8.32(0.27) 8.32(0.27)
~0.91(0.19)  —0.91(0.19)
~0.47(0.16)  —0.47(0.16)
—0.41(0.07)  —0.41(0.07)
—0.13(0.02)  —0.13(0.02)
0.11(0.13) 0.11(0.13)
0.08(0.11) 0.08(0.11)

8.32(0.27)
—0.91(0.19)
—0.47(0.16)
—0.41(0.07)
—0.13(0.02)
0.11(0.13)
0.08(0.11)

Covariance Parameter

Estimate (SE)

Estimate (SE)

Estimate (n.c.)

Estimate (n.c.) Estimate (SE) FEstimate (n.c.)

02 tor 0.10(0.03) 0.10(0.03) 0.10° 0.10 0.10(0.03) 0.10
o?(Residual variance) 0.16(0.01) 0.16(0.01) 0.16 0.16 0.16(0.01) 0.16
Model Information Criteria
—2 REML log-likelihood 401.1 401.1 401.1 401.1 401.1 399.3
AIC 405.1¢ 405.1¢ 419.1¢ 419.1¢ 419.1¢ n.c.
BIC 407.7 412.6 452.9 453.1 453.1 n.c.
Tests for Fized Effects Type 111 Type 111 Type I Type I ‘Wald ‘Wald
F-Tests F-Tests F-Tests F-Tests x2-Tests x2-Tests
Intercept t(32.9) =30.5  F(1,34.0) = 1076.2 F(1,292) = 9093.8 N/A¢ Z =305 X2(1) = 927.3
p < .01 p < .01 p < .01 p < .01 p<.01
TREATMENT F(2,24.3) =11.5  F(2,24.3) =115  F(2,23.0) =5.08 F(2,xx) =5.08  x3(2) =23.7 x2(2) = 23.7
p < .01 p < .01 p=0.01 p < .01 p < .01
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TABLE 3.6: (Continued)

SAS: proc SPSS: R: 1me ) R: 1mer () Stata: HLM2
mixed MIXED function function mixed
Estimation Method REML REML REML REML REML REML
SEX F(1,303) =47.0 F(1,302.9) =47.0  F(1,292) =526 F(1,xx)=52.6° (1) =317 (1) =317
p < .01 p < .01 p < .01 p < .01 p < .01
LITSIZE F(1,31.8) =46.9 F(1,31.8) =46.9  F(1,23.0) =474 F(l,xx) =474  x*(I) = 46.9 X*(1) = 46.9
p < .01 p < .01 p < .01 p < .01 p < .01
TREATMENT x SEX  F(2,302.0) =05 F(2,302.3) =0.5  F(2,292.0) =05  F(2,xx) = 0.5° x*(2) = 0.9 x*(2) = 0.9
p=.63 p=.63 p=.63 p=.63 p > .50
EBLUPs Output Computed Can be Can be Can be Saved by
(w/sig. tests)  (Subsection 3.3.2) saved saved saved default

Note: (n.c.) = not computed

Note: 322 Rat Pups at Level 1; 27 Litters at Level 2

“HLM?2 also reports “robust” standard errors for the estimated fixed effects in the output by default. We report the model-based
standard errors here.

®Users of the 1me () function in R can use the function intervals(model3.1.ratpup) to obtain approximate 95% confidence
intervals for covariance parameters. The estimated standard deviations reported by the summary () function have been squared
to obtain variances.

¢SAS and SPSS compute the AIC as -2 REML log-likelihood + 2 x (# covariance parameters in the model).

dStata and R compute the AIC as —2 REML log-likelihood + 2 x (# fixed effects + # covariance parameters in the model).
¢Likelihood ratio tests are recommended for making inferences about fixed effects when using the 1lmer () function in R, given
that denominator degrees of freedom for the test statistics are not computed by default. Satterthwaite approximations of the
denominator degrees of freedom are computed when using the lmerTest package.

dwnxsg dng 10y Y T :0)D 2.4975N717) 40 $79PO 209T-0Mm
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TABLE 3.7: Comparison of Results for Model 3.2B

Estimation Method

SAS: proc SPSS: R: 1me () Stata:
mixed GENLINMIXED function mixed
REML REML REML REML

Fized-Effect Parameter

Bo(Intercept)
B1(High vs. control)
B2(Low vs. control)
Bs(Female vs. male)
Ba(Litter size)
Bs(High x female)
Bs(Low x female)

Estimate (SE)

8.35(0.28)
—0.90(0.19)
—0.47(0.16)
—0.41(0.09)
—0.13(0.02)
0.09(0.12)
0.08(0.11)

FEstimate (SE)

8.35(0.28)
—0.90(0.19)
—0.47(0.16)
—0.41(0.09)
—0.13(0.02)
0.09(0.12)
0.08(0.11)

Estimate (SE)

8.35(0.28)
—0.90(0.19)
—0.47(0.16)
—0.41(0.09)
—0.13(0.02)
0.09(0.12)
0.08(0.11)

Estimate (SE)

8.35(0.28)
—0.90(0.19)
—0.47(0.16)
—0.41(0.09)
—0.13(0.02)
0.09(0.12)
0.08(0.11)

Covariance Parameter

Estimate (SE)

Estimate (SE)

Estimate (n.c.)

FEstimate (SE)

O ron 0.10(0.03) 0.10(0.03) 0.10 0.10(0.03)

aiigh/low 0.09(0.01) 0.09(0.01) 0.09 0.09(0.01)

02 irol 0.27(0.03) 0.27(0.03) 0.27 0.27(0.03)

Tests for Fized Effects Type 111 Type III Type 1 Wald
F-Tests F-Tests F-Tests x2-Tests

Intercept t(34) = 30.29, t(34) = 30.29, F(1,292) = 9027.94, ¢(34) = 30.30,
p < .001 p < .001 p < .001 p < .001

TREATMENT F(2,24.4) = 11.18, F(2,24.4) =11.18,  F(2,23.0) =424,  x3(2) = 22.9,
p < .001 p < .001 p=.027 p < .01
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TABLE 3.7: (Continued)

SAS: proc SPSS: R: 1me ) Stata:
mixed GENLINMIXED function mixed
Estimation Method REML REML REML REML
SEX F(1,29.6) =59.17, F(1,296) =59.17, F(1,292)=61.57, x2(1) = 19.3,
p < .001 p < .001 p < .001 p<.01
LITSIZE F(1,31.2) = 49.33, F(1,31.0) =49.33, F(1,23.0) = 49.58, x?(1) = 49.33,
p < .001 p < .001 p < .001 p < .01
TREATMENT x SEX F(2,194) = 0.32, F(2,194) = 0.32, F(2,292) = 0.32, x2(2) = 0.63,
p=.73 p=.73 p=.73 p=.73
Model Information Criteria
—2 REML log-likelihood 361.1 361.1 361.1 361.1
AIC 367.1 367.2 381.1 381.1
BIC 371.0 378.3 418.6 418.8

Note: (n.c.) = not computed

Note: 322 Rat Pups at Level 1; 27 Litters at Level 2
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The significance tests for the fixed intercept are also different across the software pro-
cedures. SPSS and R report F-tests and t-tests for the fixed intercept, whereas SAS only
reports a t-test by default (an F-test can be obtained for the intercept in SAS by specifying
the intercept option in the model statement of proc mixed), Stata reports a z-test, and
the HLM2 procedure can optionally report a Wald chi-square test in addition to the default
t-test.

The procedures that report F-tests for fixed effects (other than the intercept) differ
in the F-statistics that they report. Type III F-tests are reported in SAS and SPSS, and
Type I (sequential) F-tests are reported in R. There are also differences in the denominator
degrees of freedom used for the F-tests (see Subsection 3.11.6 for a discussion of different
denominator degrees of freedom options in SAS). Using the test command for fixed effects
in Stata or requesting general linear hypothesis tests for fixed effects in HLM (as illustrated
in Subsection 3.4.5) results in Type III Wald chi-square tests being reported for the fixed
effects. The p-values for all tests of the fixed effects are similar for this model across the
software packages, despite differences in the tests being used.

3.6.2 Comparing Model 3.2B Results

Table 3.7 shows selected results for Model 3.2B, which has the same fixed effects as Model
3.1, random effects associated with the intercept for each litter, and heterogeneous residual
variances for the combined high/low treatment group and the control group.

We report results for Model 3.2B generated by proc mixed in SAS, GENLINMIXED in
SPSS, the 1me () function in R, and the mixed command in Stata, because these are the only
procedures that currently accommodate models with heterogeneous residual (i.e., Level 1)
variances in different groups defined by categorical Level 2 variables.

The estimated variance of the random litter effects and the estimated residual variances
for the pooled high/low treatment group and the control treatment group are the same
across these procedures. However, these parameters are displayed differently in R; R displays
multipliers of a single parameter estimate (see Subsection 3.4.3 for an example of the R
output for covariance parameters, and Table 3.7 for an illustration of how to calculate the
covariance parameters based on the R output in Subsection 3.4.3).

In terms of tests for fixed effects, only the F-statistics reported for the treatment by sex
interaction are similar in R. This is because the other procedures are using Type III tests
by default (considering all other terms in the model), and R only produces Type I F-tests.
The Type I and Type III F-test results correspond only for the last term entered into the
model formula. Type I F-tests can also be obtained in proc mixed by using the htype = 1
option in the model statement. Stata uses Wald chi-square tests when the test command
is used to perform these tests.

The values of the -2 REML log-likelihoods for the fitted models are the same across these
procedures. Again, we note that the information criteria (AIC and BIC) differ because of
different calculation formulas being used by the two procedures.

3.6.3 Comparing Model 3.3 Results

Table 3.8 shows selected results from the fit of Model 3.3 (our final model) using the pro-
cedures in SAS, SPSS, R, and Stata. This model has fixed effects associated with sex,
treatment and litter size, and heterogencous residual variances for the high/low vs. control
treatment groups.

These four procedures agree on the reported values of the estimated fixed-effect param-
eters and their standard errors, as well as the estimated covariance parameters and their
standard errors. We note the same differences between the procedures in Table 3.8 that
were discussed for Table