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Preface

My interest in mathematics began at school. I am originally of Sikh descent, and as a young child
often found English difficult to comprehend, but I discovered an affinity with mathematics, a universal
language that I could begin to learn from the same start point as my peers.

Linear algebra is a fundamental area of mathematics, and is arguably themost powerful mathematical
tool ever developed. It is a core topic of study within fields as diverse as business, economics, engineer-
ing, physics, computer science, ecology, sociology, demography and genetics. For an example of linear
algebra at work, one need look no further than the Google search engine, which relies on linear algebra
to rank the results of a search with respect to relevance.

My passion has always been to teach, and I have held the position of Senior Lecturer in Mathematics
at the University of Hertfordshire for over twenty years, where I teach linear algebra to entry level
undergraduates. I am also the author of Engineering Mathematics Through Applications, a book that I
am proud to say is used widely as the basis for undergraduate studies in many different countries. I also
host and regularly update a website dedicated to mathematics.

At the University of Hertfordshire we have over one hundred mathematics undergraduates. In the
past we have based our linear algebra courses on various existing textbooks, but in general students
have found them hard to digest; one of my primary concerns has been in finding rigorous, yet accessible
textbooks to recommend to my students. Because of the popularity of my previously published book, I
have felt compelled to construct a book on linear algebra that bridges the considerable divide between
school and undergraduate mathematics.

I am somewhat fortunate in that I have had so many students to assist me in evaluating each chapter.
In response to their reactions, I have modified, expanded and added sections to ensure that its content
entirely encompasses the ability of students with a limited mathematical background, as well as the
more advanced scholars under my tutelage. I believe that this has allowed me to create a book that is
unparalleled in the simplicity of its explanation, yet comprehensive in its approach to even the most
challenging aspects of this topic.

Level

This book is intended for first- and second-year undergraduates arriving with average mathematics
grades. Many students find the transition between school and undergraduate mathematics difficult,
and this book specifically addresses that gap and allows seamless progression. It assumes limited prior
mathematical knowledge, yet also covers difficult material and answers tough questions through the use
of clear explanation and a wealth of illustrations. The emphasis of the book is on students learning for
themselves by gradually absorbing clearly presented text, supported by patterns, graphs and associated
questions. The text allows the student to gradually develop an understanding of a topic, without the
need for constant additional support from a tutor.

Pedagogical Issues

The strength of the text is in the large number of examples and the step-by-step explanation of each topic
as it is introduced. It is compiled in a way that allows distance learning, with explicit solutions to all of
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the set problems freely available online <http://www.oup.co.uk/companion/singh>. The miscellaneous
exercises at the end of each chapter comprise questions from past exam papers from various universities,
helping to reinforce the reader’s confidence. Also included are short historical biographies of the leading
players in the field of linear algebra. These are generally placed at the beginning of a section to engage
the interest of the student from the outset.

Published textbooks on this subject tend to be rather static in their presentation. By contrast, my book
strives to be significantly more dynamic, and encourages the engagement of the reader with frequent
question and answer sections. The question–answer element is sprinkled liberally throughout the text,
consistently testing the student’s understanding of the methods introduced, rather than requiring them
to remember by rote.

The simple yet concise nature of its content is specifically designed to aid the weaker student, but
its rigorous approach and comprehensive manner make it entirely appropriate reference material for
mathematicians at every level. Included in the online resource will be a selection of MATLAB scripts,
provided for those students who wish to process their work using a computer.

Finally, it must be acknowledged that linear algebra can appear abstract when first encountered by
a student. To show off some of its possibilities and potential, interviews with leading academics and
practitioners have been placed between chapters, giving readers a taste of what may be to come once
they have mastered this powerful mathematical tool.
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SECTION 1.1 Systems of Linear Equations

By the end of this section you will be able to

● solve a linear system of equations

● plot linear graphs and determine the type of solutions

1.1.1 Introduction to linear algebra

We are all familiar with simple one-line equations. An equation is where two mathematical
expressions are defined as being equal. Given 3x = 6, we can almost intuitively see that x
must equal 2.

However, the solution isn’t always this easy to find, and the following example demon-
strates how we can extract information embedded in more than one line of information.

Imagine for a moment that John has bought two ice creams and two drinks for £3.00.

How much did John pay for each item?
Let x = cost of ice cream and y = cost of drink, then the problem can be written as

2x+ 2y = 3

At this point, it is impossible to find a unique value for the cost of each item. However, you are
then told that Jane bought two ice creams and one drink for £2.50. With this additional informa-
tion, we can model the problem as a system of equations and look for unique values for the cost
of ice creams and drinks. The problem can now be written as

2x+ 2y = 3

2x+ y = 2.5

Using a bit of guesswork, we can see that the only sensible values for x and y that satisfy both
equations are x = 1 and y = 0.5. Therefore an ice cream must have cost £1.00 and a drink £0.50.

Of course, this is an extremely simple example, the solution to which can be found with
a minimum of calculation, but larger systems of equations occur in areas like engineering,
science and finance. In order to reliably extract information frommultiple linear equations,
we need linear algebra. Generally, the complex scientific, or engineering problem can be
solved by using linear algebra on linear equations.
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What does the term linear equation mean?
An equation is where two mathematical expressions are defined as being equal.

A linear equation is one where all the variables such as x, y, z have index (power) of 1 or
0 only, for example

x + 2y+ z = 5

is a linear equation. The following are also linear equations:

x = 3; x+ 2y = 5; 3x+ y+ z + w = −8
The following are not linear equations:

1. x2 − 1 = 0
2. x+ y4 +√z = 9
3. sin(x)− y+ z = 3

Why not?
In equation (1) the index (power) of the variable x is 2, so this is actually a quadratic equation.
In equation (2) the index of y is 4 and z is 1/2. Remember,

√
z = z1/2 .

In equation (3) the variable x is an argument of the trigonometric function sine.

Note that if an equation contains an argument of trigonometric, exponential, logarithmic
or hyperbolic functions then the equation is not linear.

A set of linear equations is called a linear system.
In this first course on linear algebra we examine the following questions regarding linear

systems:

● Are there any solutions?
● Does the system have no solution, a unique solution or an infinite number of

solutions?
● How can we find all the solutions, if they exist?
● Is there some sort of structure to the solutions?

Linear algebra is a systematic exploration of linear equations and is related to ‘a new kind
of arithmetic’ called the arithmetic of matrices which we will discuss later in the chapter.

However, linear algebra isn’t exclusively about solving linear systems. The tools of matri-
ces and vectors have a whole wealth of applications in the fields of functional analysis and
quantummechanics, where inner product spaces are important. Other applications include
optimization and approximation where the critical questions are:

1. Given a set of points, what’s the best linear model for them?
2. Given a function, what’s the best polynomial approximation to it?

To solve these problems we need to use the concepts of eigenvalues and eigenvectors and
orthonormal bases which are discussed in later chapters.

In all of mathematics, the concept of linearization is critical because linear problems are
very well understood and we can say a lot about them. For this reason we try to convert
many areas of mathematics to linear problems so that we can solve them.
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1.1.2 System of linear equations

We can plot linear equations on a graph. Figure 1.1 shows the example of the two linear
equations we discussed earlier.

2   + 2   = 3

x

y

Point of intersection

3

2

1

–1
–1 1 2 3

–2

x y

2   +   = 2.5x y

Figure 1.1

Figure 1.2 is an example of the linear equation, x + y+ 2z = 0, in a 3d coordinate
system.

4

3

2

1

0

-1

-2

-3

-4
-4-3

-2-1
0 1

2
3

4

-4 -3 -2 -1 0 1 2 3 4

y

x

z

x + y + 2z = 0

Figure 1.2

What do you notice about the graphs of linear equations?
They are straight lines in 2d and a plane in 3d. This is why they are called linear equations and the
study of such equations is called linear algebra.

What does the term system of linear equations mean?
Generally a finite number of linear equations with a finite number of unknowns x, y, z, w, . . . is
called a system of linear equations or just a linear system.
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For example, the following is a linear system of three simultaneous equations with three
unknowns x, y and z:

x+ 2y− 3z = 3

2x− y− z = 11

3x+ 2y+ z = −5

In general, a linear system of m equations in n unknowns x1, x2, x3, . . . , xn is written
mathematically as

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm

(∗)

where the coefficients aij and bj represent real numbers. The unknowns x1, x2, . . . , xn are
placeholders for real numbers.

Linear algebra involves using a variety of methods for finding solutions to linear systems
such as (∗).

Example 1.1

Solve the equations about the cost of ice creams and drinks by algebraic means

2x + 2y = 3 (1)

2x + y = 2.5 (2)

Solution
How do we solve these linear simultaneous equations, (1) and (2)?
Let’s think about the information contained in these equations. The x in the first line represents the cost
of an ice cream, so must have the same value as the x in the second line. Similarly, the y in the first line
that represents the cost of a drink must have the same value as the y in the second line.

It follows that we can combine the two equations to see if together they offer any useful information.
How?
In this case, we subtract equation (2) from equation (1):

2x + 2y = 3 (1)

−(2x+ y = 2.5) (2)

0+ y = 0.5

Note that the unknown x is eliminated in the last line which leaves y = 0.5.
What else do we need to find?
The other unknown x.
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How?
By substituting y = 0.5 into equation (1):

2x + 2 (0.5) = 3 implies that 2x+ 1 = 3 gives x = 1

Hence the cost of an ice cream is £1 because x = 1 and the cost of a drink is £0.50 because y = 0.5;
this is the solution to the given simultaneous equations (1) and (2).

This is also the point of intersection, (1, 0.5), of the graphs in Fig. 1.1. The procedure outlined in
Example 1.1 is called the method of elimination. The values x = 1 and y = 0.5 is the solution of
equations (1) and (2). In general, values which satisfy the above linear system are called the solution or
the solution set of the linear system. Here is another example.

Example 1.2

Solve
9x + 3y = 6 (1)

2x − 7y = 9 (2)

Solution
We need to find the values of x and y which satisfy both equations.
How?
Taking one equation from the other doesn’t help us here, but we can multiply through either or both
equations by a non-zero constant.

If we multiply equation (1) by 2 and (2) by 9 then in both cases the x coefficient becomes 18. Carrying
out this operation we have

18x + 6y = 12
[
multiplying equation (1) by 2

]
18x− 63y = 81

[
multiplying equation (2) by 9

]
How do we eliminate x from these equations?
To eliminate the unknown x we subtract these equations:

18x + 6y = 12
−(18x− 63y = 81)

0+ [6− (−63)] y = 12− 81
[
subtracting

]
69y = −69 which gives y = −1

We have y = −1.
What else do we need to find?
The value of the placeholder x.
How?
By substituting y = −1 into the given equation 9x+ 3y = 6:

9x + 3 (−1) = 6
9x− 3 = 6

9x = 9 which gives x = 1

(continued...)
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Hence our solution to the linear system of (1) and (2) is

x = 1 and y = −1

We can check that this is the solution to the given system, (1) and (2), by substituting these values,
x = 1 and y = −1, into the equations (1) and (2).

Note that we can carry out the following operations on a linear system of equations:

1. Interchange any pair of equations.
2. Multiply an equation by a non-zero constant.
3. Add or subtract one equation from another.

By carrying out these steps 1, 2 and 3 we end up with a simpler linear system to solve,
but with the same solution set as the original linear system. In the above case we had

9x + 3y = 6
2x − 7y = 9

9x+ 3y = 6
69y = −69

Of course, the system on the right hand side was much easier to solve. We can also
use this method of elimination to solve three simultaneous linear equations with three
unknowns, such as the one in the next example.

Example 1.3

Solve the linear system

x + 2y + 4z = 7 (1)
3x + 7y + 2z = −11 (2)
2x + 3y + 3z = 1 (3)

Solution
What are we trying to find?
The values of x, y and z that satisfy all three equations (1), (2) and (3).
How do we find the values of x, y and z?
By elimination. To eliminate one of these unknowns, we first need to make the coefficients of x (or y or z)
equal.
Which one?
There are three choices but we select so that the arithmetic is made easier, in this case it is x. Multiply
equation (1) by 2 and then subtract the bottom equation (3):

2x + 4y + 8z = 14
[
multiplying (1) by 2

]
−(2x + 3y + 3z = 1) (3)

0 + y + 5z = 13
[
subtracting

]
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Note that we have eliminated x and have the equation y+ 5z = 13.
How can we determine the values of y and z from this equation?
We need another equation with only y and z.
How can we get this?
Multiply equation (1) by 3 and then subtract the second equation (2):

3x+ 6y+ 12z = 21
[
multiplying (1) by 3

]
−(3x + 7y+ 2z = −11) (2)

0− y+ 10z = 32
[
subtracting

]
Again there is no x and we have the equation−y+ 10z = 32.

How can we find y and z?
We now solve the two simultaneous equations that we have obtained

y+ 5z = 13 (4)
−y+ 10z = 32 (5)

We add equations (4) and (5), because y+ (−y) = 0, which eliminates y.

0+ 15z = 45 gives z = 45
15
= 3

Hence z = 3, but how do we find the other two unknowns x and y?
We first determine y by substituting z = 3 into equation (4) y+ 5z = 13:

y+ (5× 3) = 13
y+ 15 = 13 which gives y = −2

We have y = −2 and z = 3. We still need to find the value of last unknown x.
How do we find the value of x?
By substituting the values we have already found, y = −2 and z = 3, into the given equation
x + 2y+ 4z = 7 (1) :

x + (2×−2)+ (4× 3) = 7 gives x = −1

Hence the solution of the given three linear equations is x = −1, y = −2 and z = 3.
We can illustrate the given equations in a three-dimensional coordinate system as shown in Fig. 1.3.

x + 2y + 4z = 7

2x + 3y + 3z = 13x + 7y + 2z = –11

x

y

z

3.5

3

2.5

2

1.5

1
-1.5

-3

-1

-2

-0.5

Solution 
x = −1, y = −2, z = 3

Figure 1.3
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Each of the equations (1), (2) and (3) are represented by a plane in a three-dimensional
system. The computer generated image above allows us to see where these planes lie with
respect to each other. The coordinates of these planes is the solution of the system.

The aim of the above problem was to convert the given system into something simpler
that could be solved. We had

x + 2y + 4z = 7
3x + 7y + 2z = −11
2x + 3y + 3z = 1

x+ 2y+ 4z = 7
−y+ 2z = 32

15z = 45

We will examine in detail m equations with n unknowns and develop a more efficient
way of solving these later in this chapter.

1.1.3 Types of solutions

We now go back to evaluating a simple system of two linear simultaneous equations and
discuss the case where we have no, or an infinite number of solutions. As stated earlier, one
of the fundamental questions of linear algebra is how many solutions do we have of a given
linear system.

Example 1.4

Solve the linear system

2x + 3y = 6 (1)
4x + 6y = 9 (2)

Solution
How do we solve these equations?
Multiply (1) by 2 and then subtract equation (2):

4x + 6y = 12
[
Multiplying (1) by 2

]
−(4x + 6y = 9) (2)

0 + 0 = 3
But how can we have 0 = 3?
A plot of the graphs of the given equations is shown in Fig. 1.4.

4   + 6   = 9x y

2   + 3   = 6x y

Y

x

–1

–1

1

1 2 3

These equations have no solutions. 

4

2

3

Figure 1.4
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Can you see why there is no common solution to these equations?
The solution of the given equations would be the intersection of the lines shown in Fig. 1.4, but these
lines are parallel so there is no intersection, therefore no solution.

By examining the given equations,

2x + 3y = 6 (1)
4x + 6y = 9 (2)

can you see why there is no solution?
If you multiply the first equation (1) by 2 we have

4x+ 6y = 12

This is a contradiction.
Why?
Because we have

4x+ 6y = 12
4x+ 6y = 9 (2)

that is, 4x+ 6y equals both 9 and 12. This is clearly impossible. Hence the given linear system has no
solution.

A system that has no solution is called inconsistent. If the linear system has at least one
solution then we say the system is consistent.

Can we have more than one solution?
Consider the following example.

Example 1.5

Graph the equations and determine the solution of this system:

2x+ 3y = 6 (1)
4x+ 6y = 12 (2)

Solution
The graph of the given equations is shown in Fig. 1.5.

4   + 6   = 12x y
2   + 3   = 6x y

Y

x

–1

–1

1

1 2 3 4

2

3

Figure 1.5

(continued...)
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What do you notice?
Both the given equations produce exactly the same line; that is they coincide.
How many solutions do these equations have?
An infinite number of solutions, as you can see on the graph of Fig. 1.5. Any point on the line is a solution,
and since there are an infinite number of points on the line we have an infinite number of solutions.
How can we write these solutions?
Let x = a – where a is any real number – be a solution.
What then is y equal to?
Substituting x = a into the given equation (1) yields

2a + 3y = 6 [2x + 3y = 6]

3y = 6− 2a

y = 6− 2a
3

= 6
3
− 2

3
a = 2− 2

3
a

Hence if x = a then y = 2− 2
3 a.

The solution of the given linear system, (1) and (2), is x = a and y = 2− 2a/3 where a is any real
number. You can check this by substituting various values of a. For example, if a = 1 then

x = 1, y = 2− 2(1)/3 = 4/3

We can check that this answer is correct by substituting these values, x = 1 and y = 4/3, into
equations (1) and (2):

2 (1)+ 3 (4/3) = 2+ 4 = 6

4 (1)+ 6 (4/3) = 4+ 8 = 12

⎡⎣ 2x+ 3y = 6 (1)

4x+ 6y = 12 (2)

⎤⎦
Hence our solution works. This solution x = a and y = 2− 2a/3 will satisfy the given equations for

any real value of a.

The graphs in Fig. 1.6 represent the three possible solutions to a linear system with two
unknowns.

xx
—4 —2 2 4

yy

—4

—2

2

4

—4

—2 2 4
—2

2

4

Solution 

x
—10 —8 —6 —4 —2 2 4

y

—10

—5

5

10

(a) No solution (b) Unique solution (c) Infinite number of solutions

—4

Figure 1.6
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The graphs in Fig. 1.7 illustrate solutions arising from three linear equations and three
unknowns.

Every point on this 
line is a solution
because all three 
planes meet here.

Unique
solution

(a) No solution

(c) Infinite number of solutions

(b) Unique solution

Figure 1.7

Fig. 1.7(a) shows three planes (equations) which have no point in common, hence no
solution.

Fig. 1.7(b) shows the three planes (equations) with a unique point in common.
Fig. 1.7(c) shows three planes (equations) with a line in common. Every point on this

line is a solution, which means we have an infinite number of solutions.

i Summary

A linear equation is an equation in which the unknowns have an index of 1 or 0.
The procedure outlined in this section to solve such systems is the method of elimination.

EXERCISES 1.1

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Which of the following equations are linear equations in x, y and z? If they are not linear
explain why not.
(a) x− y− z = 3 (b)

√
x+ y+ z = 6 (c) cos (x)+ sin

(
y
) = 1

(d) ex+y+z = 1 (e) x− 2y+ 5z = √3 (f) x = −3y

(g) x = −b±√b2 − 4ac
2a

(h) πx+ y+ ez = 5 (i)
√
2x+ 1

2
y + z = 0

(j) sinh−1 (x) = ln
∣∣∣x +√x2 + 1

∣∣∣ (k)
π

2
x −√2y+ z sin (π) = 0

(l) x20 + y30 + z30 = 0 (m) ycos2(x)+sin2(x) + x − z = 9
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2. Solve the following linear system by the elimination process discussed in this section.

(a)
x + y = 2
x − y = 0 (b)

2x− 3y = 5
x− y = 2 (c)

2x− 3y = 35
x− y = 2

(d)
5x − 7y = 2
9x − 3y = 6 (e)

πx− 5y = 2
πx − y = 1 (f)

ex− ey = 2
ex+ ey = 0

(In part (f), e is the irrational number e = 2.71828182846 · · · )
3. Solve the following linear systems by the elimination process discussed in this section.

(a)
x + y+ z = 3
x − y− z = −1

2x + y+ 5z = 8
(b)

x+ 2y− 2z = 6
2x− 3y+ z = −10
3x− y+ 3z = −16

(c)
3x+ y− 2z = 4

5x− 3y+ 10z = 32
7x+ 4y+ 16z = 13

(d)
6x− 3y+ 2z = 31
5x+ y+ 12z = 36
8x+ 5y+ z = 11

4. Plot the graphs of these linear equations and decide on the number of solutions of each
linear system. If there are any solutions, find them.

(a)
2x + y = 3
x − y = 7

(b)
2x+ y = 3
8x + 4y = 12

(c)
2x+ y = 3
2x+ y = 5

(d)
3x − 2y = 3
3x − 2y = 6

(e)
3x − 2y − 3 = 0
3x − 2y − 5 = 0

(f)
5x − 2y − 5 = 0
3x − 2y − 3 = 0

5. Without evaluating, decide on the number of solutions of each of these linear systems.

(a)
7x + y = 10
x− y = 7

(b)
12x + 4y = 16
8x + 4y = 16

(c)
2x − y− z = 3

4x− 2y− 2z = 3

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 1.2 Gaussian Elimination

By the end of this section you will be able to

● understand what is meant by a matrix and an augmented matrix

● solve a linear system using Gaussian elimination

● extend row operations so that the solution can be found by inspection
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In the previous section we solved a linear system by a process of elimination and substitu-
tion. In this section we define this process in a systematic way. In order to do this we need
to describe what is meant by a matrix and reduced row echelon form. Just by examining
the matrix of a given linear system in reduced row echelon form we can say a lot of things
about the solutions:

1. Are there any solutions?
2. Is the solution unique?
3. Are there an infinite number of solutions?

1.2.1 Introduction to matrices

In our introductory example from the previous section, we formed two equations that
described the cost of ice creams x and drinks y:

2x+ 2y = 3
2x + y = 2.5

Note that the first column of values only contains coefficients of x, and the second
column only contains coefficients of y. So we can write

x y(
2 2
2 1

)
,
(

3
2.5

)
The brackets on the left contain the coefficients from the problem, and is referred to as

the matrix of coefficients. The brackets on the right hand side contain the total cost in a
single column, and is referred to as a vector.

Matrices are used in various fields of engineering, science and economics to solve real-
life problems such as those in control theory, electrical principles, structural analysis, string
theory, quantitative finance and many others. Problems in these areas can often be writ-
ten as a set of linear simultaneous equations. It is easier to solve these equations by using
matrices.

Table 1.1 shows the sales of three different ice cream flavours during the week.

Table 1.1 Ice cream sales

Monday Tuesday Wednesday Thursday Friday

Strawberry 12 15 10 16 12
Vanilla 5 9 14 7 10
Chocolate 8 12 10 9 15

We can represent the information in the table in matrix form as⎛⎝ 12 15 10 16 12
5 9 14 7 10
8 12 10 9 15

⎞⎠



14 1 LINEAR EQUATIONS AND MATRICES

The first column represents the ice cream sales for Monday, second column for Tuesday,
. . . and the last column for Friday.

Matrices are an efficient way of storing data. In the next section we look formally at the
methods used to extract information from the data.

1.2.2 Elementary row operations

Suppose we have a general linear system of m equations with n unknowns labelled
x1, x2, x3, . . . and xn given by:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm

where the coefficients aij, bi are real numbers and x1, x2, x3, . . . and xn are placeholders for
real numbers that satisfy the equations. This general system can be stored in matrix form as

⎛⎜⎜⎝
a11 . . . a1n
...

. . .
...

am1 · · · amn

∣∣∣∣∣∣∣∣
b1

bm

⎞⎟⎟⎠
This is an augmented matrix, which is a matrix containing the coefficients of the

unknowns x1, x2, x3, . . . , xn and the constant values on the right hand side of the
equations. In everyday English language, augmented means ‘to increase’. Augmenting
a matrix means adding one or more columns to the original matrix. In this case, we
have added the b’s column to the matrix. These are divided by a vertical line as shown
above.

Example 1.6

Consider Example 1.3 section 1.1, where we had to solve the following linear system:

x + 2y + 4z = 7

3x + 7y + 2z = −11
2x + 3y + 3z = 1

Write the augmented matrix of this linear system.
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Solution
An augmented matrix is simply a shorthand way of representing a linear system of equations. Rather than
write x, y and z after each coefficient, recognize that the first column contains the coefficients of x, the
second column the coefficients of y and so on. Placing the coefficients of x, y and z on the left hand side
of the vertical line in the augmented matrix and the constant values 7,−11 and 1 on the right hand side
we have ⎛⎝ 1 2 4

3 7 2
2 3 3

∣∣∣∣∣∣
7

−11
1

⎞⎠

In the previous section 1.1 we solved these equations by an elimination process which
involved carrying out the following operations:

1. Multiply an equation by a non-zero constant.
2. Add or subtract a multiple of one equation to another.
3. Interchange equations.

Because each row of the augmented matrix corresponds to one equation of the linear
system, we can carry out analogous operations such as:

1. Multiply a row by a non-zero constant.
2. Add or subtract a multiple of one row to another.
3. Interchange rows.

We refer to these operations as elementary row operations.

1.2.3 Gaussian elimination

Figure 1.8

Gauss (1777–1855) (Fig. 1.8) is widely regarded as one
of the three greatest mathematicians of all time, the
others being Archimedes and Newton. By the age of
11, Gauss could prove that

√
2 is irrational. At the age

of 18, he constructed a regular 17-sided polygon with
a compass and unmarked straight edge only. Gauss
went as a student to the world-renowned centre for
mathematics – Göttingen. Later in life, Gauss took up a
post at Göttingen and published papers in number
theory, infinite series, algebra, astronomy and optics.
The unit of magnetic induction is named after Gauss.
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A linear system of equations is solved by carrying out the above elementary row oper-
ations 1, 2 and 3 to find the values of the unknowns x, y, z,w . . . This method saves time
because we do not need to write out the unknowns x, y, z,w . . . each time, and it is more
methodical. In general, you will find there is less likelihood of making a mistake by using
this Gaussian elimination process.

Example 1.7

Solve the following linear system by using the Gaussian elimination procedure:

x − 3y+ 5z = −9
2x− y− 3z = 19

3x+ y+ 4z = −13

Solution
What is the augmented matrix in this case?
Let R1, R2 and R3 represent rows 1, 2 and 3 respectively. We have

x − 3y+ 5z = −9
2x− y− 3z = 19

3x+ y+ 4z = −13
and

Row 1

Row 2

Row 3

R1

R2

R3

⎛⎜⎜⎝
1 −3 5

2 −1 −3
3 1 4

∣∣∣∣∣∣∣∣
−9
19

−13

⎞⎟⎟⎠
Note that each row represents an equation.

How can we find the unknowns x, y and z?
The columns in the matrix represent the x, y and z coefficients respectively. If we can transform this
augmented matrix into

x y z

↓ ↓ ↓

Final row

⎛⎝ ∗ ∗ ∗
0 ∗ ∗
0 0 A

∣∣∣∣∣∣
∗
∗
B

⎞⎠ where A, B and ∗ represents any real number

then we can find z.
How?
Look at the final row.
What does this represent?
(0× x)+ (0× y

)+ (A× z) = B

Az = B which gives z = B
A

provided A �= 0
Hence we have a value for z = B/A.
But how do we find the other two unknowns x and y?
Now we can use a method called back substitution. Examine the second row of the above matrix:

x y z

Second row

⎛⎝ ∗ ∗ ∗
0 ∗ ∗
0 0 A

∣∣∣∣∣∣
∗
∗
B

⎞⎠
By expanding the second row we get an equation in terms of y and z. From above we already know the

value of z = B/A, so we can substitute z = B/A and obtain y. Similarly from the first row we can find x
by substituting the values of y and z.
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We need to perform row operations on the augmented matrix to transform it from:

R1
R2
R3

⎛⎜⎝ 1 −3 5
2 −1 −3
3 1 4

∣∣∣∣∣∣∣
−9
19
−13

⎞⎟⎠ to

⎛⎜⎝ ∗ ∗ ∗
0 ∗ ∗
0 0 A

∣∣∣∣∣∣∣
∗
∗
B

⎞⎟⎠
We need to convert this augmented matrix to an equivalent matrix with zeros in the bottom left hand

corner. That is 0 in place of 2, 3 and 1.
How do we get 0 in place of 2?
Remember, we can multiply an equation by a non-zero constant, and take one equation away from
another. In terms of matrices, this means that we can multiply a row and take one row away from another
because each row represents an equation.

To get 0 in place of 2 we multiple row 1, R1 , by 2 and subtract the result from row 2, R2 ; that is, we
carry out the row operation R2 − 2R1:

R1
R∗2 = R2 − 2R1

R3

⎛⎜⎝ 1 −3 5
2− 2 (1) −1− (2× (−3)) −3− (2× 5)

3 1 4

∣∣∣∣∣∣∣
−9

19− (2× (−9))
−13

⎞⎟⎠
We call the new middle row R∗2 . Completing the arithmetic, the middle row becomes

R1
R∗2
R3

⎛⎝ 1 −3 5
0 5 −13
3 1 4

∣∣∣∣∣∣
−9
37
−13

⎞⎠
Where else do we need a zero?
Need to get a 0 in place of 3 in the bottom row.
How?
We multiply the top row R1 by 3 and subtract the result from the bottom row R3; that is, we carry out the
row operation, R3 − 3R1 :

R1
R∗2

R∗3 = R3 − 3R1

⎛⎝ 1 −3 5
0 5 −13

3− 3 (1) 1− (3× (−3)) 4− (3× 5)

∣∣∣∣∣∣
−9
37

−13− (3× (−9))

⎞⎠
We can call R∗3 the new bottom row of this matrix. Simplifying the arithmetic in the entries gives:

R1
R∗2
R∗3

⎛⎝ 1 −3 5
0 5 −13
0 10 −11

∣∣∣∣∣∣
−9
37
14

⎞⎠
Note that we now only need to convert the 10 into zero in the bottom row.

How do we get a zero in place of 10?
We can only make use of the bottom two rows, R∗2 and R∗3 .
Why?
Looking at the first column, it is clear that taking any multiple of R1 away from R3 will interfere with the
zero that we have just worked to establish.

(continued...)
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We execute R∗3 − 2R∗2 because

10− (2× 5) = 0 (gives a 0 in place of 10)

Therefore we have

R1

R∗2
R∗∗3 = R∗3 − 2R∗2

⎛⎜⎝ 1 −3 5
0 5 −13

0− (2× 0) 10− (2× 5) −11− [2× (−13)]

∣∣∣∣∣∣∣
−9
37

14− (2× 37)

⎞⎟⎠
which simplifies to

x y z

R1

R∗2
R∗∗3

⎛⎜⎝ 1 −3 5
0 5 −13
0 0 15

∣∣∣∣∣∣∣
−9
37
−60

⎞⎟⎠ (†)

From the bottom row R∗∗3 we have

15z = −60 which gives z = − 60
15
= −4

How do we find the other two unknowns x and y?
By expanding the middle row R∗2 of (†) we have:

5y− 13z = 37

We can find y by substituting z = −4 into this

5y− 13 (−4) = 37
[
Substituting z = −4]

5y+ 52 = 37 which implies 5y = −15 therefore y = − 15
5
= −3

How can we find the last unknown x?
By expanding the first row R1 of (†) we have:

x− 3y+ 5z = −9

Substituting y = −3 and z = −4 into this:

x− (3× (−3))+ (5× (−4)) = −9
x + 9− 20 = −9 which gives x = 2

Hence our solution to the linear system is x = 2, y = −3 and z = −4.
Remember, each of the given equations can also be graphically represented by planes in a 3d

coordinate system.
The solution is where all three planes (equations) meet. The equations are illustrated in Fig. 1.9.
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2–3

0

–1

–2

–3z
–4

–5
–6

0

1

2

x

–4

Solution
x = 2, y = −3, z = −4

3x + y + 4z = −13

2x − y − 3z = 19

x − 3y + 5z = −9

Figure 1.9

In the above example we transformed the given system:
x− 3y+ 5z = −9
2x − y− 3z = 19
3x + y+ 4z = −13

x − 3y+ 5z = −9
5y− 13z = 37

15z = −60
The system on the right hand side is much easier to solve.
The above process is called Gaussian elimination with back substitution. The aim of

Gaussian elimination is to produce a ‘triangular’ matrix with zeros in the bottom left corner
of the matrix. This is achieved by the elementary row operations:

1. Multiply a row by a non-zero constant.
2. Add or subtract a multiple of one row from another.
3. Interchange rows.

We say two matrices are row equivalent if one matrix is derived from the other by using
these three operations.

If augmented matrices of two linear systems are row equivalent then the two systems
have the same solution set. You may like to check this for the above Example 1.7, to see that
the solution x = 2, y = −3 and z = −4 satisfies the given equations.

In summary, the given linear system of equations is written in an augmented matrix,
which is then transformed into a much simpler equivalent augmented matrix, which then
allows us to use back substitution to find the solution of the linear system.

Example 1.8

Solve the linear system:

x + 3y+ 2z = 13
4x + 4y− 3z = 3
5x + y+ 2z = 13

(continued...)
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Solution
How can we find the unknowns x, y and z?
We use Gaussian elimination with back substitution.

The augmented matrix is:

Row 1 R1 1 3 2 13

Row 2 R2 4 4 3

Row 3 R3 5 1 2 13

⎛ ⎞
⎜ ⎟−3⎜ ⎟
⎜ ⎟
⎝ ⎠

Need to convert the
entries in this 
triangle to zeros.

Our aim is to convert this augmented matrix so that there are 0’s in the bottom left hand corner, that is;
the first 4 in the second row reduces to zero, and the 5 and 1 from the bottom row reduce to zero. Hence
4→ 0, 5→ 0 and 1→ 0.

To get 0 in place of the first 4 in the middle row we multiply row 1, R1 , by 4 and take the result away
from row 2, R2, that is R2 − 4R1. To get 0 in place of 5 in the bottom row we multiply row 1, R1, by 5 and
take the result away from row 3, R3 , that is R3 − 5R1 . Combining the two row operations, R2 − 4R1 and
R3 − 5R1 , we have

R1
R†
2 = R2 − 4R1

R†
3 = R3 − 5R1

⎛⎜⎝ 1 3 2
4− (4× 1) 4− (4× 3) −3− (4× 2)
5− (5× 1) 1− (5× 3) 2− (5× 2)

∣∣∣∣∣∣∣
13

3− (4× 13)
13− (5× 13)

⎞⎟⎠
We call the new row 2 and 3− R†2 and R†3 respectively. This simplifies to:

R1

R†
2

R†
3

⎛⎜⎝ 1 3 2
0 −8 −11
0 −14 −8

∣∣∣∣∣∣∣
13
−49
−52

⎞⎟⎠
We have nearly obtained the required matrix with zeros in the bottom left hand corner. We need a 0 in

place of−14 in the new bottom row, R†
3 . We can only use the second and third rows, R†2 and R†

3 .
Why?
Because if we use first row, R1, we will get a non-zero number in place of the zero already established
in R†

3 .
How can we obtain a 0 in place of −14?

R†
3 −

14
8
R†2 because−14−

[
14
8
× (−8)

]
= 0 (gives 0 in place of−14)

Therefore

R1
R†
2

R††
3 = R†

3 −
14
8
R†
2

⎛⎜⎜⎝
1 3 2
0 −8 −11
0 −14−

[
14
8
× (−8)

]
−8−

[
14
8
× (−11)

]
∣∣∣∣∣∣∣∣

13
−49

−52−
(
14
8
× (−49)

)
⎞⎟⎟⎠

which simplifies to

x y z

R1

R†2
R3††

⎛⎝ 1 3 2
0 −8 −11
0 0 45/4

∣∣∣∣∣∣
13
−49
135/4

⎞⎠ (∗)
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This time we have called the bottom row R††
3 . From this row, R††

3 , we have

45
4
z = 135

4
which gives z = 135

45
= 3

How can we find the unknown, y?
By expanding the second row R†2 in (∗) we have

−8y− 11z = −49

We know from above that z = 3, therefore, substituting z = 3 gives

−8y− 11 (3) = −49
−8y− 33 = −49

−8y = −49+ 33 = −16 which yields y = (−16)/(−8) = 2

So far we have y = 2 and z = 3.
How can we find the last unknown, x?
By expanding the first row, R1, of (∗) we have

x + 3y+ 2z = 13

Substituting our values already found, y = 2 and z = 3, we have

x + (3× 2)+ (2× 3) = 13

x + 6+ 6 = 13 which gives x = 1

Hence x = 1, y = 2 and z = 3 is our solution. We can illustrate these equations as shown in Fig. 1.10.

x + 3y + 2z = 13

Solution
x = 1, y = 2, z = 3

4

3

2
z

1

0
0

1
2x

0

4x + 4y – 3z = 3

5x + y + 2z = 13

Figure 1.10

We can check that this solution is correct by substituting these x = 1, y = 2 and z = 3 into the given
equations.



22 1 LINEAR EQUATIONS AND MATRICES

In the above example we carried out row operations so that:

x+ 3y+ 2z = 13
4x + 4y− 3z = 3
5x + y+ 2z = 13

x + 3y + 2z = 13
−8y − 11z = −49

45z/4 = 135/4

Note that the right hand system is much easier to solve.

1.2.4 Extending row operations

The Gaussian elimination process can be extended in the above example so that the first
non-zero number in the bottom row of (∗) is 1, that is

R1

R†2
R††
3

⎛⎜⎜⎝
1 3 2 13

0 −8 −11 −49
0 0 45/4 135/4

⎞⎟⎟⎠
Convert this into 1

How do we convert 45/4 into 1?
Multiply the bottom row R††3 by 4

45 .

R1
R†2

R′3 =
4R††3
45

⎛⎜⎜⎝
1 3 2
0 −8 −11
0 0

4
45

(
45
4

)
∣∣∣∣∣∣∣∣

13
−49

4
45

(
135
4

)
⎞⎟⎟⎠

which simplifies to

R1

R†2

R′3

⎛⎜⎜⎜⎜⎝
1 3 2 13

0 −8 −11 −49
0 0 1 3

⎞⎟⎟⎟⎟⎠
The advantage of this is that we get the z value directly. From the bottom row, R′3, we

have z = 3. We can extend these row operations further and obtain the following matrix:⎛⎝ 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
∗
∗
∗

⎞⎠ (∗)

Why would we want to achieve this sort of augmented matrix?
Because we can read off the x, y and z values directly from this augmented matrix. The only
problem is in doing the arithmetic, because achieving this sort of matrix can be a laborious
process.

This augmented matrix (∗) is said to be in reduced row echelon form.
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i A matrix is in reduced row echelon form, normally abbreviated to rref, if it satisfies all the
following conditions:

1. If there are any rows containing only zero entries then they are located in the bottom part
of the matrix.

2. If a row contains non-zero entries then the first non-zero entry is a 1. This 1 is called a
leading 1.

3. The leading 1’s of two consecutive non-zero rows go strictly from top left to bottom right
of the matrix.

4. The only non-zero entry in a column containing a leading 1 is the leading 1.

If condition (4) is not satisfied then we say that the matrix is in row echelon form
and drop the qualification ‘reduced’. In some linear algebra literature the leading 1 con-
dition is relaxed and it is enough to say that any non-zero number is the leading
coefficient.

For example, the following are all in reduced row echelon form:

⎛⎜⎜⎝
0 1 0 8 0
0 0 1 0 4
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎠,
⎛⎜⎝ 1 0 0 5

0 1 0 −6
0 0 1 9

⎞⎟⎠ and

⎛⎜⎜⎝
0 1 3 0 4 0 6
0 0 0 1 5 0 −1
0 0 0 0 0 1 9
0 0 0 0 0 0 0

⎞⎟⎟⎠

The following matrices are not in reduced row echelon form:

A =

⎛⎜⎜⎜⎝
0 1 5 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠, B =
⎛⎜⎝ 1 0 0

0 1 0
1 0 0

⎞⎟⎠ andC =

⎛⎜⎜⎝
0 0 0 0 0 0 0
0 0 0 1 5 8 −1
0 0 0 0 0 1 9
0 0 0 0 0 0 0

⎞⎟⎟⎠

Why not?
In matrix A the third column contains a leading one but has a non-zero entry, 5.
In matrix B the leading ones do not go from top left to bottom right.
In matrix C the top row of zeros should be relegated to the bottom of the matrix as stated in
condition (1) above.

However, matrixA is in row echelon form but not in reduced row echelon form.Matrices
B and C are not in row echelon form.

The procedure which places an augmented matrix into row echelon form is called
Gaussian elimination and the algorithm which places an augmented matrix into a reduced
row echelon form is called Gauss–Jordan elimination.



24 1 LINEAR EQUATIONS AND MATRICES

Example 1.9

Place the augmented matrix

x y z⎛⎜⎝ 1 5 −3
0 −13 5
0 0 5

∣∣∣∣∣∣∣
−9
37
−15

⎞⎟⎠ into reduced row echelon form.

Solution
Why should we want to place this matrix into reduced row echelon form?
In a nutshell, it’s to avoid back substitution. If we look at the bottom row of the given augmented matrix
we have 5z = −15.

We need to divide by 5 in order to find the z value.
The reduced row echelon form, rref, gives us the values of the unknowns directly, and we do not need

to carry out further manipulation or elimination.
What does reduced row echelon form mean in this case?
It means convert the given augmented matrix

R1
R2
R3

⎛⎜⎝ 1 5 −3
0 −13 5
0 0 5

∣∣∣∣∣∣∣
−9
37
−15

⎞⎟⎠ into something like

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
∗
∗
∗

⎞⎟⎠
This means that we need to get 0 in place of the 5 in the second row, and 0’s in place of the 5 and−3 in

the first row. We also need a 1 in place of−13 in the middle row and 1 in place of the 5 in the bottom
row.
How do we convert the 5 in the bottom row into 1?
Divide the last row by 5 (remember, this is the same as multiplying by 1/5):

R1

R2

R′3 = R3/ 5

⎛⎜⎝ 1 5 −3
0 −13 5
0 0 1

∣∣∣∣∣∣∣
−9
37
−3

⎞⎟⎠
How do we get 0 in place of −3 in the first row and the 5 in the second row?
We execute the row operations R1 + 3R′3 and R2 − 5R′3 :

R∗1 = R1 + 3R′3
R∗2 = R2 − 5R′3

R3′

⎛⎜⎝ 1+ 3 (0) 5+ 3 (0) −3+ 3 (1)
0− 5 (0) −13− 5 (0) 5− 5 (1)

0 0 1

∣∣∣∣∣∣∣
−9+ 3 (−3)
37− 5 (−3)

−3

⎞⎟⎠
Simplifying the entries gives

R∗1
R∗2
R′3

⎛⎜⎝ 1 5 0
0 −13 0
0 0 1

∣∣∣∣∣∣∣
−18
52
−3

⎞⎟⎠
How do we get a 1 in place of −13?
Divide the middle row by−13 (remember, this is the same as multiplying by−1/13):
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R∗1
R∗∗2 = R∗2/(−13)

R′3

⎛⎜⎝ 1 5 0
0 −13/(−13) 0
0 0 1

∣∣∣∣∣∣∣
−18
52/(−13)
−3

⎞⎟⎠
Simplifying the second row gives

R∗1
R∗∗2
R′3

⎛⎜⎝ 1 5 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
−18
−4
−3

⎞⎟⎠
This matrix is now in row echelon form but not in reduced row echelon form. We need to convert the 5

in the top row into 0 to get it into reduced row echelon form.
How?
We carry out the row operation, R∗1 − 5R∗∗2 :

R∗∗1 = R∗1 − 5R∗∗2
R∗∗2
R′3

⎛⎜⎝ 1− 5 (0) 5− 5 (1) 0− 5 (0)
0 1 0
0 0 1

∣∣∣∣∣∣∣
−18− 5 (−4)
−4
−3

⎞⎟⎠
Simplifying the top row entries gives

x y z
R∗∗1
R∗∗2
R′3

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
2
−4
−3

⎞⎟⎠
Hence we have placed the given augmented matrix into reduced row echelon form.

Now we can read off the x, y and z values, that is x = 2, y = −4 and z = −3.
Wewill prove later on that thematrix in reduced row echelon form is unique. Thismeans

that however we vary our row operations we will always end up with the same matrix in
reduced row echelon form. However, the matrix in row echelon form is not unique.

i Summary

To find the solution to a linear system of m equations by n unknowns we aim to produce:

a11x1 + · · · + a1nxn = b1
a21x1 + · · · + a2nxn = b2

...
... =

...
am1x1 + · · · + amnxn = bm

a11x1 + a12x2 + · · · + a1nxn = b1
a′21x2 + · · · + a′2nxn = b′2

...
...

...
a′mnxn = b′m
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EXERCISES 1.2

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Solve the following linear system by applying Gaussian elimination with back substitu-
tion:

(a)
x+ y = 7
x− 2y = 4

(b)
x+ 2y− 3z = 3
2x− y− z = 11
3x+ 2y+ z = −5

(c)
2x+ 2y+ z = 10
x− 3y+ 4z = 0
3x− y+ 6z = 12

(d)
x+ 2y+ z = 1

2x+ 2y+ 3z = 2
5x+ 8y+ 2z = 4

(e)
10x+ y− 5z = 18

−20x+ 3y+ 20z = 14
5x + 3y+ 5z = 9

2. Solve the following linear system by placing the augmented matrix in row echelon form.

(a)
x+ 2y+ 3z = 12
2x − y+ 5z = 3
3x + 3y+ 6z = 21

(b)
2x− y− 4z = 0
3x+ 5y+ 2z = 5
4x− 3y+ 6z = −16

(c)
3x− y+ 7z = 9
5x+ 3y+ 2z = 10
9x+ 2y− 5z = 6

3. Solve the following linear system by placing the augmented matrix in reduced row
echelon form.

(a)
x + y+ 2z = 9

4x + 4y− 3z = 3
5x + y+ 2z = 13

(b)
x+ y+ z = −2
2x− y− z = −4
4x+ 2y− 3z = −3

(c)
2x+ y− z = 2

4x+ 3y+ 2z = −3
6x− 5y+ 3z = −14

(d)
−2x+ 3y− 2z = 8
−x+ 2y− 10z = 0
5x− 7y+ 4z = −20

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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SECTION 1.3 Vector Arithmetic

By the end of this section you will be able to
● understand what is meant by vectors and scalars

● use vector arithmetic such as addition, scalar multiplication and dot

product

As shown in the previous section, matrix notation provides a systematic way of both
analysing and solving linear systems. In section 1.2 we came across a single column matrix
that we referred to as a vector. Vectors, being the simplest of matrices, are also the most
frequently used.

However, to understand the ‘how and why’ of matrices we need to grasp the underlying
concept of vectors. Vectors are the gateway to comprehending matrices. By analysing the
properties of vectors we shall come to a fuller understanding of matrices in general.

Well, what are vectors?
In many situations answering the question ‘how much?’ is enough. Sometimes, one needs to know
not only ‘how much’, but also ‘in which direction?’ Vectors are the natural type of thing to answer
such questions with, for they are capable of expressing geometry, not just ‘size’.

For instance, physicists rely upon vectors to mathematically express the motion of an
object in terms of its direction, as well as the rate that it is travelling. Engineers will
use a vector to express the magnitude of a force and the direction in which it is act-
ing. Each additional component to a problem simply requires an additional entry in the
vector that describes it. Using two- and three-dimensional vectors to express physical
problems also allows for a geometric interpretation, so data can be plotted and visually
compared.

In more abstract problems, many more dimensions might be employed, meaning that
the resultant vector is impossible to plot in more than three-dimensions but astonishingly
the mathematics works in this space too, and the resulting solutions are no less valid.

First we need to formalize some of the mathematics so that we can work with vectors.

1.3.1 Vectors and Scalars

The physical interpretation of a vector is a quantity that has size (magnitude) and direction.
The instruction ‘walk due north for 5 kilometres’ can be expressed as a vector; its magnitude
is 5 km and its direction is due north.

Velocity, acceleration, force and displacement are all vector quantities.
The instruction ‘Go on a 5 km walk’ is not a vector because it has no direction; all that is

specified is the length of the walk, but we don’t know where to start or where to head.
We shall now start referring to this as a scalar.

So what are scalars?
A scalar is a number that measures the size of a particular quantity.

Length, area, volume, mass and temperature are all scalar quantities.
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How do we write down vectors and scalars and how can we distinguish between them?
A vector from O to A is denoted by

−→
OA, or written in bold typeface a and can be represented

geometrically as shown in Fig. 1.11.

O

A

a

Figure 1.11

A scalar is denoted by a, not in bold, so that we can distinguish between vectors and
scalars.

Two vectors are equivalent if they have the same direction and magnitude. For example,
the vectors d and e in Fig. 1.12 are equivalent, that is d = e.

C

D

A

B

e
d

Figure 1.12

The vectors d and e have the same direction and magnitude but only differ in position.
There are many examples of vectors in the real world:

(a) A displacement of 20 m to the horizontal, right of an object from O to A (Fig. 1.13).

20 m
O A Figure 1.13

(b) A force on an object acting vertically downwards (Fig. 1.14).

Object

20
 N

Figure 1.14

(c) The velocity and acceleration of a ball thrown vertically upwards are vectors
(Fig. 1.15).
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Velocity

Acceleration due to gravity 

Figure 1.15

1.3.2 Vector addition and scalar multiplication

The result of adding two vectors such as a and b in Fig. 1.16 is the diagonal of the
parallelogram, a+ b, as shown.

a

a + b

O

b

Figure 1.16

The multiplication ka of a real number k with a vector a is the product of the size of a
with the number k. For example, 2a is the vector in the same direction as vector a but the
magnitude is twice as long (Fig. 1.17).

2a
a

Figure 1.17

What does the vector 1
2 a look like?

1
2

aa

Figure 1.18

It’s the same direction as vector a but half the magnitude (Fig. 1.18).

What effect does a negative k have on a vector such as ka?
If k = −2 then −2a is the vector a but in the opposite direction and the magnitude is multiplied
by 2 (Fig. 1.19):

–2a a

Figure 1.19
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A vector−a is the vector a but in the opposite direction. We can define this as

−a = (−1) a

We call the product ka scalar multiplication.
We can also subtract vectors as shown in Fig. 1.20.

O
a 

– 
b–b

b

a

Figure 1.20

The vector subtraction of two vectors a and b is defined by

(1.1) a− b = a+ (−b)

1.3.3 Vectors in RRR2

What is meant by R2?
R2 is the x− y plane representing the Cartesian coordinate system named after the French
mathematician and philosopher Rene Descartes.

Figure 1.21 Rene Descartes
1596–1650

Rene Descartes (Fig. 1.21) was a French philosopher
born in 1596. He attended a Jesuit college and,
because of his poor health, he was allowed to remain
in bed until 11 o’clock in the morning, a habit he
continued until his death in 1650.

After graduating in 1618, he went to Holland to
study mathematics. Here Descartes lived a solitary life,
concentrating only on mathematics and philosophy.
His main contribution to mathematics was analytical
geometry, which includes our present x-y plane and
the three-dimensional space with x, y and z axes.

This coordinate system cemented algebra with
geometry. Prior to the coordinate system, geometry
and algebra were two different subjects.

In 1649, Descartes left Holland to tutor Queen
Christina of Sweden. However, she wanted to study
mathematics at dawn, which did not suit Descartes

who never rose before 11 am. As a combination of the early starts and the harsh Swedish
winter, Descartes died of pneumonia in 1650.
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The points in the Cartesian plane are ordered pairs with reference to the origin, which is
denoted by O.

What does the term ‘ordered pair’ mean?
The order of the entries matters, that is the coordinate

(
a, b
)

is different from
(
b, a
)
, provided

a �= b.

The coordinate
(
a, b
)
can be written as a column

(
a
b

)
and is called a column vector or

simply a vector. For example, the following are all vectors in the plane R2 (Fig. 1.22):

5
−1

−3
−6

3
2

5

7

−6 −4 −2

−2

2

4

6

−4

2 4 6 8
x

y

Figure 1.22

These are examples of vectors with two entries,
(−6
−3
)
,
(
7
5

)
,
(
2
3

)
and

(−1
5

)
.

The set of all vectors with two entries is denoted by R2 and pronounced ‘r two’. The R
indicates that the entries are real numbers.

We can add and subtract vectors in R2 as stated above, that is we apply the parallelogram
law on the vectors (Fig. 1.23).

u

v u   v+

Figure 1.23
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Example 1.10

Let u =
(

3
−1
)

and v =
(−2

3

)
. Plot u+ v and write down u+ v as a column vector.

Solution

−2

−2 −1 1 2

u + v

3
x

y

−1

1

2

3

    = (3, −1) u

    = (−2, 3) v

Figure 1.24

By examining Fig. 1.24 we see that the coordinates of u+ v are (1, 2) and this is written as a column

vector

(
1
2

)
.

What do you notice about your result?
If we add x and y coordinates in the vectors separately then we obtain the resultant vector.

That is, we evaluate u+ v =
(

3
−1
)
+
(−2

3

)
=
(

3− 2
−1+ 3

)
=
(
1
2

)
, which means that we can

simply add the corresponding entries of the vector to find u+ v.

In general, if u =
(
a
b

)
and v =

(
c
d

)
then we add corresponding entries:

u+ v =
(
a
b

)
+
(
c
d

)
=
(
a+ c
b+ d

)

Example 1.11

Let v =
(
3
1

)
. Plot the vectors 1

2 v, 2v, 3v and−v on the same axes.

Solution
Plotting each of these vectors on R2 is shown in Fig. 1.25.
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−2 2 4 6 8 10

−1

1
2

−v

v1

2

3

v
2v

3v

Figure 1.25

Note that by reading off the coordinates of each vector:

1
2
v = 1

2

(
3
1

)
=
(
1.5
0.5

)
, 2v = 2

(
3
1

)
=
(
6
2

)
, 3v = 3

(
3
1

)
=
(
9
3

)
and

−v = −
(
3
1

)
=
(−3
−1
)

Remember, the product kv is called scalar multiplication. The term scalar comes from
the Latin word scalameaning ladder. Scalar multiplication changes the length or the scale
of the vector as you can see in Fig. 1.25.

In general, if v =
(
a
b

)
then the scalar multiplication

kv = k
(
a
b

)
=
(
ka
kb

)

1.3.4 Vectors in RRR3

What does the notation R3 mean?
R3 is the set of all ordered triples of real numbers and is also called 3-space.

We can extend the vector properties in R2 mentioned above to three dimensions R3 pro-
nounced ‘r three’.

The x − y plane can be extended to cover three dimensions by including a third axis
called the z axis. This axis is at right angles to the other two, x and y, axes. The position of
a vector in three dimensions is given by three coordinates (x, y, z).

For example, the following vector

⎛⎝ 1
2
5

⎞⎠ in R3 is represented geometrically in Fig. 1.26:
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1

5

4

3

2

1

0
0

0.5
1

1.5

1

x

y

z

2 3
0

2

5

Figure 1.26

Vector addition and scalar multiplication are carried out the same way as in the plane

R2. That is, if u =
⎛⎝a
b
c

⎞⎠ and v =
⎛⎝ d

e
f

⎞⎠ then vector addition and scalar multiplication are

defined as

u+ v =
⎛⎝ a
b
c

⎞⎠+
⎛⎝ d

e
f

⎞⎠ =
⎛⎝ a+ d

b+ e
c+ f

⎞⎠, ku = k

⎛⎝a
b
c

⎞⎠ =
⎛⎝ ka
kb
kc

⎞⎠
1.3.5 Vectors in RRRn

What does Rn represent?

In the 17th century Rene Descartes used ordered pairs of real numbers, v =
(
a
b

)
, to describe

vectors in a plane and extended it to ordered triples of real numbers, v =
⎛⎜⎝ a

b
c

⎞⎟⎠, to describe

vectors in three-dimensional space.

Can we extend this to an ordered quadruple of real numbers, v =

⎛⎜⎜⎜⎝
a
b
c
d

⎞⎟⎟⎟⎠, or n-tuples of real numbers,

v =

⎛⎜⎜⎜⎜⎝
v1
v2
...
vn

⎞⎟⎟⎟⎟⎠?
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Yes. In the 17th century vectors were defined as geometric objects and there was no geometric
interpretation of Rn for n greater than three dimensions. However, in the 19th century vectors
began to be seen as mathematical objects that can be added, subtracted and scalar multiplied
that allowed us to extend the vector definition.

There are many real life situations where more than three variables are involved. For
example

1. weather conditions
2. performance of companies in a stock market
3. mortality rates in a population

In 1905 the great German mathematician Hilbert (1862–1943) produced his famous
theory of a vector space of infinitely many variables known as Hilbert space.

A vector v =

⎛⎜⎜⎜⎜⎝
v1
v2
...
vn

⎞⎟⎟⎟⎟⎠ is called an n-dimensional vector. An example is v =

⎛⎜⎜⎜⎜⎝
1

−2
...
8

⎞⎟⎟⎟⎟⎠where

8 is the nth entry.
Hence Rn is the set of all n-dimensional vectors where R signifies that the entries of the

vector are real numbers, that is, v1, v2, v3, . . . and vn are all real numbers. The real num-
ber vj of the vector v is called the component or more precisely the jth component of the
vector v.

This Rn is also called n-space or the vector space of n-tuples.
Note that the vectors are ordered n-tuples.

What does this mean?

The vector v =

⎛⎜⎜⎜⎜⎜⎝
1

−2
...

8

⎞⎟⎟⎟⎟⎟⎠ is different from

⎛⎜⎜⎜⎜⎜⎝
−2
1
...

8

⎞⎟⎟⎟⎟⎟⎠; that is, the order of the entries matters.

How do we draw vectors in Rn for n ≥ 4?
We cannot draw pictures of vectors in R4,R5,R6 . . . but we can carry out arithmetic in this
multidimensional space.

Two vectors u and v are equal if they have the same number of components and all the
corresponding components are equal.

How can we write this in mathematical notation?

Let u =

⎛⎜⎜⎝
u1
...
un

⎞⎟⎟⎠ and v =

⎛⎜⎜⎝
v1
...
vn

⎞⎟⎟⎠ then

(1.2) u = v if and only if entries uj = vj for j = 1, 2, 3, . . . , n.
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For example, the vectors

⎛⎝ 1
5
7

⎞⎠ and

⎛⎝ 1
7
5

⎞⎠ are not equal because the corresponding

components are not equal.

Example 1.12

Let u =
⎛⎝ x− 3
y+ 1
z + x

⎞⎠ and v =
⎛⎝ 1
2
3

⎞⎠. If u = v then determine the real numbers x, y and z.

Solution
Since u = v we have

x − 3 = 1 gives x = 4
y+ 1 = 2 gives y = 1
z + x = 3 gives z + 4 = 3 implies z = −1

Our solution is x = 4, y = 1 and z = −1.

Vector addition in Rn is defined as

(1.3) u+ v =
⎛⎜⎝ u1

...
un

⎞⎟⎠+
⎛⎜⎝ v1

...
vn

⎞⎟⎠ =
⎛⎜⎝ u1 + v1

...
un + vn

⎞⎟⎠

The sum of the vectors u and v is calculated by adding the corresponding components.
Note that u+ v is also a vector in Rn.
Scalar multiplication kv is carried out by multiplying each component of the vector v by

the scalar k:

(1.4) kv = k

⎛⎜⎝ v1
...
vn

⎞⎟⎠ =
⎛⎜⎝ kv1

...
kvn

⎞⎟⎠

Again kv is a vector in Rn. This Rn is called Euclidean space.
Euclidean space is the space of all n-tuples of real numbers. Here n is any natural number

1, 2, 3, 4, . . . and is called the dimension of Rn.

1.3.6 Introduction to the dot (inner) product

So far we have looked at the two fundamental operations of linear algebra – vector addition
and scalar multiplication of vectors in Rn.
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How do we multiply vectors?
One way is to take the dot product which we define next.

Let u =

⎛⎜⎜⎜⎝
u1
u2
...
un

⎞⎟⎟⎟⎠ and v =

⎛⎜⎜⎜⎝
v1
v2
...
vn

⎞⎟⎟⎟⎠ be vectors in Rn, then the dot product of u and v which

is denoted by u · v is the quantity given by

(1.5) u · v = u1v1 + u2v2 + u3v3 + · · · + unvn

This multiplication is called the dot or inner product of the vectors u and v.
Also note that the dot product of two vectors u and v is obtained by multiplying each

component uj with its corresponding component vj and then adding the results.

Example 1.13

Let u =
⎛⎝−31

7

⎞⎠ and v =
⎛⎝ 9

2
−4

⎞⎠. Find u · v.

Solution
Applying the above formula (1.5) gives

u · v =
⎛⎝−31

7

⎞⎠ ·
⎛⎝ 9

2
−4

⎞⎠ = (−3× 9)+ (1× 2)+ (7× (−4)) = −27+ 2− 28 = −53

Hence u · v = −53.

1.3.7 Linear combination of vectors

Let v1, v2, . . . , vn be vectors in Rn and k1, k2, . . . , kn be scalars, then the dot product

(1.6)

⎛⎜⎝ k1
...
kn

⎞⎟⎠ ·
⎛⎜⎝ v1

...
vn

⎞⎟⎠ = k1v1 + k2v2 + k3v3 + · · · + knvn is a linear combination

The entries in one of the vectors in formula (1.6) is another set of vectors v1, . . . , vn, so the
dot product is a linear combination of vectors.

The dot product combines the fundamental operations – scalarmultiplication and vector
addition by linear combination.
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Example 1.14

Let u =
(−3

1

)
and v =

(
1
3

)
. Find the following linear combinations:

(a) u+ v (b) 3u+ 2v (c) u− u

(d) Determine the values of scalars x and y such that the linear combination xu+ yv = O.

Solution

(a) By adding the corresponding entries we have

u+ v =
(−3

1

)
+
(
1
3

)
=
(−2

4

)

(b) By applying the rules of scalar multiplication and vector addition we have

3u+ 2v = 3
(−3

1

)
+ 2

(
1
3

)
=
(−3× 3

1× 3

)
+
(
2× 1
2× 3

)
=
(−9+ 2

3+ 6

)
=
(−7

9

)

(c) We have

u− u =
(−3

1

)
−
(−3

1

)
=
(−3+ 3

1− 1

)
=
(
0
0

)
= O

Hence u− u gives the zero vector O.

(d) We have the linear combination xu+ yv = O:

x u+ y v = x
(−3

1

)
+ y

(
1
3

)
=
(−3x + y

x + 3y

)
=
(
0
0

)

We need to solve the simultaneous equations:

−3x+ y = 0
x + 3y = 0

}
implies that x = y = 0

Hence the linear combination 0u+ 0v gives the zero vector, that is 0u+ 0v = O.

Linear combinations are sprinkled throughout this book so it is important that you
understand that it combines scalars and vectors.

Note that for any vector v we have

v− v = O where O =
(
0
...

)

The zero vector in Rn is denoted by O and is defined as being ‘non-empty’, although all
entries are zero.
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i Summary

Physically, vectors express magnitude as well as direction. Scalars only define magnitude.
Rn is n-space where n is a natural number such as 1, 2, 3, 4, 5, . . . Vectors in Rn are denoted by

v =

⎛⎜⎜⎝
v1
...
vn

⎞⎟⎟⎠.

We can linearly combine vectors by applying the two fundamental operations of linear algebra –
scalar multiplication and vector addition.

EXERCISES 1.3

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Consider the following vectors a and b as shown in Fig. 1.27.

b

a

Figure 1.27

Sketch the following vectors:

(a) a+ b (b) a− b (c) 3a (d) −1
2
b (e) 3a− 1

2
b

2. Let u =
(

1
−1
)
and v =

(
2
1

)
. Plot the following vectors on the same axes in R2:

(a) u (b) v (c) u+ v (d) u− v

Determine

(e) u · v (f) v · u (g) u · u (h) v · v

3. Let u =
⎛⎝ 2

3
−1

⎞⎠ and v =
⎛⎝ 5

1
−2

⎞⎠ be vectors in R3. Evaluate the following:

(a) u · v (b) v · u (c) u · u (d) v · v
4. Let u =

(
2

−1
)
. Plot the following vectors on the same axes in R2:

(a) u (b)−u (c) 2u (d) 3u (e)−2u



40 1 LINEAR EQUATIONS AND MATRICES

5. Let u =
(−1

1

)
and v =

(
3
−1
)
. Let w be the linear combination w =

(
1
λ

)
·
(
u
v

)
where λ is a scalar. Find the linear combination for the following values of λ:

(a) λ = 1 (b) λ = −1 (c) λ = 1
2 (d) λ = − 1

2 (e) λ = 1
3

Sketch on the same axes the vectors w obtained in parts (a), (b), (c), (d) and (e).

6. Let u =
(−2

2

)
, v =

(
2
1

)
and w =

(
k
c

)
·
(
u
v

)
where k and c are scalars.

Write out the vector w as a linear combination for the following values of k and c:

(a) k = 1, c = 1 (b) k = 1
2 , c = 1

2 (c) k = − 1
2 , c = 1

2 (d) k = 1
2 , c = − 1

2

Sketch on the same axes the vectors w obtained in parts (a), (b), (c) and (d).

7. Let u =
(
x+ 3
y− 2

)
and v =

(
x − 2
y+ 11

)
. Given that u+ v = O determine the values of

the real numbers x and y.

8. Let u =
(
1
0

)
, v =

(
0
1

)
and w =

(
x
y

)
be vectors in R2. Show that xu+ yv = w.

9. Let u =
⎛⎝−35

8

⎞⎠ and v =
⎛⎝ 7
−1
2

⎞⎠. Find the linear combinations:

(a) u+ v (b) 5u (c) 2u+ 6v (d) u− 3v (e)−5u− 4v

10. Let u =
⎛⎝−92

4

⎞⎠, v =
⎛⎝−21

3

⎞⎠ and w =
⎛⎝ 1
−2
5

⎞⎠. Find the linear combinations:

(a) u+ v+ w (b) u− v− w (c) 2u+ v− w (d)−2u+ 3v+ 5w

11. Let u =
⎛⎝ 1
0
0

⎞⎠, v =
⎛⎝ 0
1
0

⎞⎠,w =
⎛⎝ 0
0
1

⎞⎠ and x =
⎛⎝ x
y
z

⎞⎠ be vectors in R3. Show that

xu+ yv+ zw = x

12. Find the real numbers x, y and z, if

x

⎛⎝ 1
2
0

⎞⎠+ y

⎛⎝ 0
1

−1

⎞⎠+ z

⎛⎝−20
6

⎞⎠ =
⎛⎝ 5

3
17

⎞⎠
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13. Let u =

⎛⎜⎜⎝
−1
3
2
0

⎞⎟⎟⎠, v =
⎛⎜⎜⎝

3
−2
5
1

⎞⎟⎟⎠,w =
⎛⎜⎜⎝

0
−1
1
2

⎞⎟⎟⎠ and x =

⎛⎜⎜⎝
x
y
z
a

⎞⎟⎟⎠ be vectors in R4.

Determine the following linear combinations:

(a) u+ v+ w (b) u− v− w (c) u− 2v+ 3w (d) u− 3w+ x

If u+ v+ w+ x = O determine the values of x, y, z and a.
14. Let ek be a vector in Rn which has a 1 in the kth component and zeros elsewhere, that

is:

e1 =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠, e2 =
⎛⎜⎜⎜⎜⎜⎝
0
1
0
...
0

⎞⎟⎟⎟⎟⎟⎠, . . . , ek =
⎛⎜⎜⎜⎜⎜⎜⎝

0
...
1
0
...

⎞⎟⎟⎟⎟⎟⎟⎠, . . . , en =
⎛⎜⎜⎜⎜⎜⎝
0
0
...
0
1

⎞⎟⎟⎟⎟⎟⎠

Let u be a vector given by u =

⎛⎜⎜⎜⎜⎜⎜⎝

x1
...
xk
...
xn

⎞⎟⎟⎟⎟⎟⎟⎠. Show that

u = x1e1 + x2e2 + · · · + xkek + · · · + xnen

15. Let u and v be vectors in Rn.Disprove the following proposition:
If u · v = 0 then u = O or v = O.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 1.4 Arithmetic of Matrices

By the end of this section you will be able to

● execute arithmetic operations with matrices

● use matrix theory to perform transformations

1.4.1 Matrices revisited

What does the term matrix mean?
A matrix is an array of numbers enclosed in brackets. The numbers in the array are called the
entries or the elements of the matrix. The term matrices is the plural of matrix.
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Figure 1.28 Arthur Cayley,
1821–1895.

Arthur Cayley (Fig. 1.28), an English lawyer who
became a mathematician, was the first person to
develop matrices as we know them today. He
graduated from Trinity College, Cambridge, in 1842
and taught there for four years. In 1849, he took up the
profession of lawyer and worked at the courts of
Lincoln’s Inn in London for 14 years. He returned to
mathematics in 1863 and was appointed Professor of
Pure Mathematics at Cambridge, with a substantial
decrease in salary but was nonetheless happy to
pursue his interest in mathematics. In 1858, he
published ‘Memoir on the Theory of Matrices’ which
contained the definition of a matrix. Cayley thought
that matrices were of no practical use whatsoever, just
a convenient mathematical notation. He could not
have been more wrong. Linear algebra is used today in
engineering, the sciences, medicine, statistics and
economics.

The size of amatrix is given by the number of rows and columns. For example,
(
12 6
3 7

)
is a 2× 2matrix (2 rows by 2 columns) and is called a squarematrix. The size of this matrix
is verbally stated as being ‘2 by 2’.⎛⎜⎜⎝

3 2
7 6
5 9
2 1

⎞⎟⎟⎠ is a 4× 2 matrix (4 rows by 2 columns) and is not a square matrix. An example

of a 2× 4 matrix is
(
1 2 3 4
5 6 7 8

)
. The size of this matrix is ‘2 by 4’.

Note that we state the number of rows first and then the number of columns. Hence
2× 4 and 4× 2 are different size matrices.

A common notation for general matrices is:

Column 1 Column 2

Row 1
Row 2

(
a11
a21

a12
a22

)

where a12 is the entry in the first row and second column.

What row and column is the element a21 in?
Element a21 is in the second row and first column. Note that the subscript of each element states
row number first and then the column number. The position of a12 in a matrix is different from a21.

What is the position of an element a23 in a 3 by 4 matrix?
Element a23 is in the second row and third column of a 3 by 4 matrix:
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Col. 3

A =
⎛⎜⎝ a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34

⎞⎟⎠ Row 2

Generally lowercase letters represent the elements (or entries) of the matrices and bold
capital represent the matrix itself.

The columns of a matrix are called the column vectors of the matrix. The rows of a matrix are called the
row vectors of the matrix.

1.4.2 Transformation and scalar multiplication

Computer graphics are essentially created using high-speed transformations. For example,
a computer animated sequence is based on modelling surfaces of connecting triangles. The
computer stores the vertices of the triangle in its memory and then certain operations such
as rotations, translations, reflections and enlargements are carried out by (transformation)
matrices.

In this context, we apply a (transformation) matrix in order to perform a function such
as rotation, reflection or translation, as shown in Fig. 1.29:

Rotation Reflection Translation

Figure 1.29

First we examine scalar multiplication of matrices.

What does the term scalar mean?
A scalar is a number which is used to multiply the entries of a matrix.

What does scalar multiplication mean?
Let A be a matrix and k be a scalar, then the scalar multiplication kA is the matrix constructed by
multiplying each entry of A by k.

(1.7) If A =

⎛⎜⎜⎝
a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎟⎠ then kA =

⎛⎜⎜⎝
ka11 · · · ka1n
...

...
...

kam1 · · · kamn

⎞⎟⎟⎠
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Note that scalar multiplication of a matrix results in a matrix of the same size. Next we
show what scalar multiplication means in terms of transformations.

Example 1.15

Consider the vertices of a triangle (Fig. 1.30) given by P(2, 0),Q(2, 3) and R(0, 0):

0.5 1 1.5 2 2.5 3

1

2

3

4

Q

   (0,0)R
P (2,0)

(2,3)

Figure 1.30

P Q R

A =
(

2 2 0
0 3 0

)
This can be represented in matrix form A with the coordinates of the point P as the entries in the first

column, the coordinates of the point Q as entries in the second column and the coordinates of the point
R as entries in the last column. Each of these vertices is represented by a column vector in the matrix A.

Determine the image of the triangle under the transformation performed by 2A.

Solution
Carrying out the scalar multiplication we have

P Q R P′ Q′ R′

2A = 2
(

2 2 0
0 3 0

)
=
(

4 4 0
0 6 0

) [Doubling each vector]

Plotting the given triangle PQR (Fig. 1.31), and the transformed triangle P′Q′R′ we get:

x1 2 3 4 5

y

1

2

3

4

5

6

Q

R and R'
P′P

Q′

Figure 1.31

What effect does scalar multiplication 2A have on the initial triangle PQR?
This scalar multiplication increases the length of sides of the triangle by a factor of 2. This means that 2A
doubles the length of each side of the initial triangle.
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What would be the image of the triangle PQR under the scalar multiplication of 1
2A?

It would scale each side of the triangle to half its initial size.

Example 1.16

Determine the following:

(a) 10
(

1 2
3 4

)
(b)

1
2

(
1 2 5 6 1
7 9 11 6 3

)
Solution

(a) Multiplying each entry of the matrix by 10 gives

10
(

1 2
3 4

)
=
(

1× 10 2× 10
3× 10 4× 10

)
=
(

10 20
30 40

)
(b) Multiplying each element in the second matrix by 1/2 (or dividing by 2) gives

1
2

(
1 2 5 6 1
7 9 11 6 3

)
=
(

0.5 1 2.5 3 0.5
3.5 4.5 5.5 3 1.5

)

We can also go the other way, that is factorize out a common term. For example

(
10 15
35 40

)
=
(
5× 2 5× 3
5× 7 5× 8

)
= 5

(
2 3
7 8

)

1.4.3 Matrix addition

We add matrices in the same way that we add vectors. To add or subtract two matrices we
add or subtract the corresponding locations in each matrix respectively. For example

(
2 9
4 1

)
+
(
3 8
5 7

)
=
(
2+ 3 9+ 8
4+ 5 1+ 7

)
=
(
5 17
9 8

)

Also (
2 9
4 1

)
−
(
3 8
5 7

)
=
(
2− 3 9− 8
4− 5 1− 7

)
=
( −1 1
−1 −6

)

The sum of matrices of sizem by n (m rows by n columns) is defined by:

(1.8)

⎛⎜⎝ a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎠+
⎛⎜⎝ b11 · · · b1n

...
...

...
bm1 · · · bmn

⎞⎟⎠ =
⎛⎜⎝ a11 + b11 · · · a1n + b1n

...
...

...
am1 + bm1 · · · amn + bmn

⎞⎟⎠
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Similarly the subtraction of these matrices is:

(1.9)

⎛⎜⎝ a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎠−
⎛⎜⎝ b11 · · · b1n

...
...

...
bm1 · · · bmn

⎞⎟⎠ =
⎛⎜⎝ a11 − b11 · · · a1n − b1n

...
...

...
am1 − bm1 · · · amn − bmn

⎞⎟⎠
Note that for addition (or subtraction) we add (or subtract) the elements in corre-

sponding locations. The result of this is another matrix of the same size as the initial
matrices.

Example 1.17

Determine the following:

(a)

(
1 2
3 4

)
+
(

5 6
7 8

)
(b)

(
1 2 5 6 1
7 9 11 6 3

)
+
(

9 8 5 7 6
2 13 7 2 3

)

(c)

⎛⎝ 1 2 3
4 5 6
7 8 9

⎞⎠−
⎛⎝ 1 1 1

3 3 3
4 4 4

⎞⎠ (d)

(
2 3
5 4

)
−
(

1 2 4
8 4 0

)

Solution

(a) Adding the corresponding elements of each matrix gives(
1 2
3 4

)
+
(

5 6
7 8

)
=
(

1+ 5 2+ 6
3+ 7 4+ 8

)
=
(

6 8
10 12

)
(b) Again adding the corresponding entries of the given matrices we have(

1 2 5 6 1
7 9 11 6 3

)
+
(

9 8 5 7 6
2 13 7 2 3

)
=
(

10 10 10 13 7
9 22 18 8 6

)
(c) Similarly we have⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠−
⎛⎝ 1 1 1

3 3 3
4 4 4

⎞⎠ =
⎛⎝ 1− 1 2− 1 3− 1

4− 3 5− 3 6− 3
7− 4 8− 4 9− 4

⎞⎠ =
⎛⎝ 0 1 2

1 2 3
3 4 5

⎞⎠
(d) We cannot evaluate the given matrices

(
2 3
5 4

)
−
(

1 2 4
8 4 0

)
.

Why not?

Because they are of different size. The first matrix,

(
2 3
5 4

)
, is a 2 by 2 matrix and the second matrix,(

1 2 4
8 4 0

)
, is a 2 by 3 matrix, therefore we cannot subtract these matrices.

Remember, when we add or subtract matrices the resulting matrix is always the same
size as the given matrices. This is also the case for vector addition and subtraction, because
a vector is simply a particular type of matrix.
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1.4.4 Matrix vector product

Let us reconsider our example of simultaneous equations from section 1.1. We formed two
equations that described the cost of ice creams x and drinks y:

2x+ 2y = 3
2x + y = 2.5

We can write these equations as a linear combination of the vectors:(
2
2

)
x +

(
2
1

)
y =

(
3
2.5

)
We can separate out the coefficients and the unknowns x and y of the left hand side:(

2 2
2 1

)(
x
y

)
This is a matrix times a vector. In order to use this method, we need to define matrix

times a vector as the product of row by column:(
Row 1
Row 2

)
× (Column

) = ( (Row 1)× (Column
)

(Row 2)× (Column
) )

We have

(Row 1)× (Col) = ( 2 2
) ( x

y

)
= 2x+ 2y

(Row 2)× (Col) = ( 2 1
) ( x

y

)
= 2x+ y

Hence the above equations can be written in matrix form as(
2 2
2 1

)(
x
y

)
=
(
3
2.5

)
We can write any m by n linear equations in matrix form. The following simultaneous

equations:

x+ y+ 3z = 5
−2x− y+ 5z = 6

are written in matrix form as Ax = b, where

A =
(

1 1 3
−2 −1 5

)
, x =

⎛⎝ x
y
z

⎞⎠ and b =
(
5
6

)



48 1 LINEAR EQUATIONS AND MATRICES

Linear equations are generally written in compact form asAx = b, whereA is the matrix
of coefficients of the unknowns, x is a vector of the unknowns and b is the vector containing
the constant values.

Clearly working with two or three simple simultaneous equations does not require
matrix intervention, but mathematicians, scientists and engineers frequently work with
much more complex systems, which would be virtually impossible to solve without
matrices.

Matrices are a much more efficient and systematic way of solving linear equations.
We can examine the geometric interpretation of systems of equations by looking at

transformations. For example

x − 3y = −1
x+ y = 2

These equations can be written as Ax = b where A =
(
1 −3
1 1

)
, x =

(
x
y

)
and

b =
( −1

2

)
, which means the matrix A transforms the vector x =

(
x
y

)
to
(−1

2

)
as

shown in Fig. 1.32.

−1

2

x

y
x

Ax

Figure 1.32

We say that the matrix A transforms the vector x to another vector b, say A acts on x to
give b. This Ax = b is like a function f acting on the argument x to give a value f (x) = y.
A acts on x to give b.

In general, if matrix A = (v1 v2 . . . vn
)
where v1, v2, . . . , vn are the column vectors

of matrix A and x is the vector of the unknowns x1, x2, . . . , xn then we define matrix vector
product Ax as the following linear combination:

(1.10) Ax = (v1 v2 · · · vn)

⎛⎜⎝ x1
...
xn

⎞⎟⎠ = x1v1 + x2v2 + · · · + xnvn

Note that the number of columns of matrix A must equal the number of entries of the
vector x. The product Ax is the linear combination of the column vectors of matrix A.
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Example 1.18

Calculate Ax for the following:

(a) A =
(

2 3
−1 5

)
, x =

(
2
1

)
(b) A =

⎛⎝ 1 2
3 4
5 6

⎞⎠, x = ( 3
4

)
(c) A = ( 1 0

)
, x =

(
3
4

)

Solution

(a) Writing this as the linear combination of columns of the matrix:

Ax =
(

2 3
−1 5

)(
2
1

)
= 2

(
2
−1

)
+ 1

(
3
5

)
=
(

4+ 3
−2+ 5

)
=
(

7
3

)

The given matrix A acting on the vector

(
2
1

)
yields the vector

(
7
3

)
.

(b) Similarly we have

Ax =
⎛⎝ 1 2

3 4
5 6

⎞⎠( 3
4

)
= 3

⎛⎝ 1
3
5

⎞⎠+ 4

⎛⎝ 2
4
6

⎞⎠ =
⎛⎝ 3+ 8

9+ 16
15+ 24

⎞⎠ =
⎛⎝ 11

25
39

⎞⎠
(c) We have

Ax = ( 1 0
) ( 3

4

)
= (3 (1)+ 4 (0)) = (3) = 3

Note that a 1× 1 matrix such as (3) does not require brackets.

It is important to note that Axmeans the matrix A acts on the vector x.

1.4.5 Matrix times matrix

Multiplication of matrices is not quite as straightforward as addition and subtraction, but
the method is not difficult to grasp. However, matrix multiplication is the most important
arithmetic operation.

How do we define a matrix times a matrix?
Exactly as we defined a matrix times a vector. Consider the matrix multiplication AB where

c1 c2 c3

A =
(

1 −3
1 0

)
and B =

(
1 2 3
4 5 6

)

We denote the columns of matrix B as vectors c1, c2 and c3. Next we see how matrix A
acts on each of these vectors c1, c2 and c3:

Ac1 =
(
1 −3
1 0

)(
1
4

)
= 1

(
1
1

)
+ 4

( −3
0

)
=
( −11

1

)
Ac2 =

(
1 −3
1 0

)(
2
5

)
= 2

(
1
1

)
+ 5

( −3
0

)
=
( −13

2

)
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Ac3 =
(
1 −3
1 0

)(
3
6

)
= 3

(
1
1

)
+ 6

( −3
0

)
=
( −15

3

)
We define matrix multiplication AB as

c1 c2 c3 Ac1 Ac2 Ac3

AB =
(
1 −3
1 0

)(
1 2 3
4 5 6

)
=
( −11 −13 −15

1 2 3

) [
From above

]
Generally, matrix multiplication is carried out as follows:
Matrix multiplication of matrix A with n columns, and matrix B = (c1 c2 · · · ck) with

n rows and k columns, is defined as

(1.11) AB = A(c1 c2 · · · ck) = (Ac1 Ac2 · · · Ack)

Matrix multiplication AB means that the matrix A acts on each of the column vectors
of B.

For AB we must have

Number of columns of matrix A = Number of rows of matrix B.

We can only multiply matrices if the number of columns of the left hand matrix equals
the number of rows of the right hand matrix.

Remember, we defined a matrix times a vector as row by column multiplication.
Applying this to two lots of 2 by 2 matrices gives:(

a b
c d

)
×
(

e f
g h

)
=
(
ae+ bg af + bh
ce+ dg cf + dh

)
For example, applying this to the matrices:(

2 1
3 7

)
×
(
4 9
5 8

)
=
(

(2× 4)+ (1× 5) (2× 9)+ (1× 8)
(3× 4)+ (7× 5) (3× 9)+ (7× 8)

)
=
(
13 26
47 83

)
Matrix multiplication can be carried out row by column:

Col. 1 Col. 2
Row 1
Row 2

(
2 1
3 7

)
×
(

4
5

9
8

)
=
(

Row 1 × Col. 1 Row 1 × Col. 2
Row 2 × Col. 1 Row 2 × Col. 2

)
We can only multiply matrices if the number of columns of the left hand matrix equals

the number of rows of the right hand matrix.

In general, if A is a m× r (m rows by r columns) matrix and B is a r × n (r rows by n columns) matrix
then the multiplication AB results in a m× n matrix.
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We can illustrate the size of the matrix multiplication as shown in Fig. 1.33.

X

r rows by n cols

m rows by r cols m rows by n cols=

Figure 1.33

Example 1.19

Calculate the following, if possible:

(a) (3 4)
(

2 3
−1 5

)
(b)

(
2 3 6
1 5 7

)⎛⎝ 3 7
4 2
1 3

⎞⎠ (c)

(
2 3 6
1 5 7

)(
3 7
4 2

)
(d)

(
1
2

)
(x y)

Solution

(a) Row by column multiplication gives:

(3 4)
(

2 3
−1 5

)
= (

(3× 2)+ (4×−1) (3× 3)+ (4× 5)
)

= (2 29)

(b) Again using row by column gives:(
2 3 6
1 5 7

)⎛⎝ 3 7
4 2
1 3

⎞⎠ =
(

(2× 3)+ (3× 4)+ (6× 1) (2× 7)+ (3× 2)+ (6× 3)

(1× 3)+ (5× 4)+ (7× 1) (1× 7)+ (5× 2)+ (7× 3)

)

=
(

24 38
30 38

)

(c)

(
2 3 6
1 5 7

)(
3 7
4 2

)
. Since the number of columns in the left hand matrix is three and the

number of rows in the right hand matrix is two, we cannot multiply these matrices together.

(d) Applying the row by column technique we have(
1
2

)
(x y) =

(
1× x 1× y
2× x 2× y

)
=
(

x y
2x 2y

)
Note, the size of this matrix multiplication is 2 by 2.

A matrix with just one row such as (3 4) is called a row matrix or row vector. In general,
a matrix of size 1× n (one row by n columns) is called a row vector.

Are there any other row vectors in Example 1.19?
Yes, (x y).
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What do you think the term column matrix means?

A matrix with just one column such as

(
1
2

)
. Again, a matrix of size n× 1 (n rows by one column)

is generally called a column vector.

The following example demonstrates the practical application of matrix multiplication.
A local shop sells three types of ice cream flavours: strawberry, vanilla and chocolate.

Strawberry costs £2 each, vanilla £1 each and chocolate £3 each. The sales of each ice cream
are as shown in Table 1.2.

Table 1.2

Monday Tuesday Wednesday Thursday Friday

Strawberry (S) 12 15 10 16 12
Vanilla (V) 5 9 14 7 10
Chocolate (C) 8 12 10 9 15

What are the sales takings for each of these days?
Of course, you can solve this problem without matrices, but using matrix notation provides a
systematic way of evaluating the sales for each day.

Let S = Strawberry, V = Vanilla and C = Chocolate. Writing out the matrices and
carrying out the matrix multiplication row by column gives:

M T W TH F
S V C(
2 1 3

) ⎛⎝ 12 15 10 16 12
5 9 14 7 10
8 12 10 9 15

⎞⎠ = (53 75 64 66 79)

Hence the takings for Monday are:

(2× 12)+ (1× 5)+ (3× 8) = £53

Similarly for the other days, we have Tuesday £75, Wednesday £64, Thursday £66 and
Friday £79. The matrix on the right hand side gives the takings for each weekday.

1.4.6 Computation of matrices

We can write the computation of matrices in compact form. For example, let A and B be
matrices thenA+ Bmeans add thematricesA andB. The computation 2Ameansmultiply
every entry of the matrix A by 2.

A software package such as MATLAB can be used for computing matrices. In fact,
MATLAB is short for ‘Matrix Laboratory’. It is a very useful tool which can be used to
eliminate the drudgery from lengthy calculations.

There are manymathematical software packages such asMAPLE andMATHEMATICA,
but MATLAB is particularly useful for linear algebra. MATLAB commands and other
details are given on the website. In the present release of MATLAB, the matrices are entered
with square brackets rather than round ones.
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For example, in MATLAB to write the matrix A =
(
1 2
3 4

)
we enter A=[1 2; 3 4] after

the command prompt
. The semicolon indicates the end of the row.

Example 1.20

Let A =
(

1 2 5
4 6 9

)
,B =

⎛⎝ 2 5 6
1 7 2
9 6 1

⎞⎠ and C =
⎛⎝ 5 4 9

7 4 0
6 9 8

⎞⎠
Compute the following:

(a) B+ C (b) A+ B (c) 3B+2C (d) AB (e) BA

What do you notice about your results to parts (d) and (e)?

Solution

(a) Adding the corresponding entries by hand gives

B+ C =
⎛⎝ 2 5 6

1 7 2
9 6 1

⎞⎠+
⎛⎝ 5 4 9

7 4 0
6 9 8

⎞⎠ =
⎛⎝ 2+ 5 5+ 4 6+ 9

1+ 7 7+ 4 2+ 0
9+ 6 6+ 9 1+ 8

⎞⎠ =
⎛⎝ 7 9 15

8 11 2
15 15 9

⎞⎠
To use MATLAB, enter the matrices B and C after the command prompt >>. Separate each matrix by

a comma. Then enter B+ C and the output should give the same result as above.

(b) A+ B is impossible because matrices are of different size.
What sizes are matrix A and matrix B?
A is a 2× 3 matrix and B is a 3× 3 matrix, so we cannot add (or subtract) these matrices.

If we try this in MATLAB, we receive a message saying ‘Matrix dimensions must agree’.

(c) We have

3B+ 2C = 3

⎛⎝ 2 5 6
1 7 2
9 6 1

⎞⎠+ 2

⎛⎝ 5 4 9
7 4 0
6 9 8

⎞⎠
=
⎛⎝ 6 15 18

3 21 6
27 18 3

⎞⎠+
⎛⎝ 10 8 18

14 8 0
12 18 16

⎞⎠ =
⎛⎝ 16 23 36

17 29 6
39 36 19

⎞⎠⎡⎣Adding the
corresponding
entries

⎤⎦
In MATLAB, multiplication is carried out by using the command *. Once the matrices B and

C have been entered, you do not need to enter them again. Enter 3∗B+ 2∗C to check the above
evaluation.

(d) Using row by column multiplication we have

AB =
(

1 2 5
4 6 9

)
×
⎛⎝ 2 5 6

1 7 2
9 6 1

⎞⎠
=
(

(1× 2)+ (2× 1)+ (5× 9) (1× 5)+ (2× 7)+ (5× 6) (1× 6)+ (2× 2)+ (5× 1)
(4× 2)+ (6× 1)+ (9× 9) (4× 5)+ (6× 7)+ (9× 6) (4× 6)+ (6× 2)+ (9× 1)

)
=
(

2+ 2+ 45 5+ 14+ 30 6+ 4+ 5
8+ 6+ 81 20+ 42+ 54 24+ 12+ 9

)
=
(

49 49 15
95 116 45

)
(continued...)
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(e) BA is impossible to calculate because the number of columns in the left hand matrix, B, is not
equal to the number of rows in the right hand matrix, A.

How many columns does the matrix B have?
Matrix B has three columns but matrix A has two rows. Since the number of columns of matrix B, three,
does not match the number of rows of matrix A, two, we cannot evaluate BA.

Notice that the matrix multiplication AB does not equal the matrix multiplication BA. In fact we have
just demonstrated that BA cannot be evaluated while AB is computed, as shown in part (d) above.

It is important to note that matrix multiplication is not the same as multiplying two real numbers. In
matrix multiplication the order of the multiplication does matter.

We will discuss important arithmetic properties of matrices in the next section but next
we apply this matrix multiplication to transformations.

The six vertices of the letter L shown in Fig. 1.34 can be represented by the matrix L
given by:

1 2 3 4 5

1

2

3

4

5

p

q r

s t

u

p q r s t u

L =
(
1 1 1.5 1.5 2 2
2 4 4 2.5 2.5 2

)

Figure 1.34

Example 1.21

Let A =
(

1 0.5
0 1

)
and L =

(
1 1 1.5 1.5 2 2
2 4 4 2.5 2.5 2

)
be the matrix representing the points pqrstu

shown in Fig. 1.34. Determine the image of the letter L under the transformation carried out by the matrix
multiplication AL.

Solution
Let the image of the corners p, q, r, s, t and u be denoted by p′, q′ , r′ , s′, t′ and u′ respectively. The six
vertices p, q, r, s, t and u of letter L are vectors, and the matrix A transforms each of these to new vectors
p′ , q′, r′, s′, t′ and u′ respectively.
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Carrying out the matrix multiplication AL:

p q r s t u p′ q′ r′ s′ t′ u′

AL =
(

1 0.5
0 1

)(
1 1 1.5 1.5 2 2
2 4 4 2.5 2.5 2

)
=
(

2 3 3.5 2.75 3.25 3
2 4 4 2.5 2.5 2

)
Plotting the transformed letter p′q′r′s′t′u′ as shown in Fig. 1.35.

1 2 3 4 5

1

2

3

4

5

p'

q' r'

s' t'

u'

Figure 1.35

The transformation represented by matrix multiplication AL italicizes the letter L. The columns of our
transformed matrix are the coordinates of the italicized letter L.

How does matrix A in Example 1.21 produce this italics of the letter L?

The matrix A =
(

1 0.5
0 1

)
shifts the coordinates p, q, r, s, t and u horizontally by half or 0.5 of

their height because of the 0.5 entry in the first row. Matrix A transforms vectors as follows:(
1
2

)
→
(
2
2

)
,

(
1
4

)
→
(
3
4

)
,

(
1.5
4

)
→
(
3.5
4

)
, . . . ,

(
2
2

)
→
(
3
2

)

i Summary

A matrix is an array of numbers. We can add or subtract matrices of the same size.
Scalar multiplication scales the matrix.
Matrix multiplication AB is carried out by multiplying the column vectors of matrix B by the matrix
A. AB means that the matrix A acts on each of the column vectors of matrix B.

EXERCISES 1.4

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

You may like to check your numerical solutions by using MATLAB.

1. For A =
(
1 2
3 −1

)
, B =

(
6 −1
5 3

)
and C =

( −1
1

)
, (uppercase C is a vector) eval-

uate, where possible, the following:
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(a) A+ B (b) B+ A (c) B+ B+ B (d) 3B
(e) 3A+ 2B (f) A+ C (g) B+ C (h) AC
(i) BC (j) 5A− 7BC (k) 3AC− 2BC
What do you notice about your answers to parts (c) and (d)?

2. Consider the following matrices:

A =
(
1 −1 7
2 9 6

)
,B =

⎛⎝ 5 1 4
8 2 7
1 4 9

⎞⎠,C =
⎛⎝ 2

4
7

⎞⎠ and D =
⎛⎝ 7 9 4

1 3 −5
2 −1 −3

⎞⎠
Compute the following where possible:

(a) A− A (b) 3A− 2A (c) BC (d) CB (e) B+D (f)D+ B

(g) A− C (h)
1
2
C (i) BD (j)DB (k) BD−DB (l) CD

3. Evaluate the following (a, b, c and d are any real numbers):

(a)
(
2 4
3 9

)(
1 0
0 1

)
(b)
(
6 7
2 3

)(
1 0
0 1

)
(c)
(
a b
c d

)(
1 0
0 1

)

(d)

⎛⎝ 2 3 6
1 4 5
0 9 7

⎞⎠⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
What do you notice about your results?

4. Determine the following:

(a)
(
3 7
2 5

)(
5 −7

−2 3

)
(b)

1
5

(
3 −4

−7 11

)(
11 4
7 3

)
(c)

1
4

(
7 −9

−5 7

)(
7 9
5 7

)
5. Let A =

(
1 −1
1 −1

)
and find A2 = A× A. [A2 in MATLAB is evaluated by the

command A∧2]. Comment upon your result.

6. Evaluate

⎛⎝ 5 −1 −2
10 −2 −4
15 −3 −6

⎞⎠⎛⎝ 1 1 3
1 −1 −1
2 3 8

⎞⎠. Comment upon your result.

7. Complete the subscript numbers in the following matrix:

(
a� a� a� a�
a� a� a� a�

)

8. Determine A2 = A× A, A3 = A× A× A and A4 = A× A× A× A for

(a) A =
(
1 0
0 1

)
(b) A =

(
0 1

−1 0

)
(c) A =

(
1/2 1/2
1/2 1/2

)
(The matrix in part (c) is called aMarkov matrix because the numbers in the columns
total 1.)
∗A discrete dynamical system is described by the formula xn = Anx. Write down

the formula for xn = Anx with the matrices in parts (a), (b) and (c).
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9. Let the top of a table be given by the coordinates P(1, 2), Q(2, 2), R(2, 4) and S(1, 4).
Write down the matrix A which represents this table top PQRS.

Let

B =
(
4 4 4 4
0 0 0 0

)
, C =

(
0 1

−1 0

)
andD =

( −1 0
0 1

)
Determine the image of the table top under the following transformation and

illustrate what effect each transformation has.
(a) A− B (b) 3A (c) CA (d) DA

10. Determine the image of the matrix F under the transformation AF where

A =
(
1 0.2
0 1

)
and F =

(
1 1 2 2 1.4 1.4 2 2 1.4 1.4
1 3 3 2.6 2.6 2 2 1.6 1.6 1

)
Plot your image.

11. Determine the vector x =
(
x
y

)
such that Ax = O whereO =

(
0
0

)
for:

(a) A =
(
1 2
3 5

)
(b) A =

(
2 7
3 15

)
∗(c) A =

(
1 4
3 12

)
12. ∗Determine whether the vector w is a linear combination of vectors u and v for:

(i) w =
(
1
0

)
; u =

(
5
8

)
and v =

(
2
4

)
(ii) w =

(
0
1

)
; u =

(
5
8

)
and v =

(
2
4

)

(iii) w =
⎛⎝ 1

2
3

⎞⎠; u =
⎛⎝ 1

0
0

⎞⎠ and v =
⎛⎝ 0

1
0

⎞⎠
(iv) w =

⎛⎝ 1
2
3

⎞⎠; u =
⎛⎝ 4

8
0

⎞⎠ and v =
⎛⎝ 1

2
−3/7

⎞⎠
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 1.5 Matrix Algebra

By the end of this section you will be able to

● simplify matrices using algebra

● prove and use results of matrix arithmetic

● compare and contrast between matrix and real number algebra

This section is a little different from previous sections in that it requires us to provide
justification for the solutions we arrive at.
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Why do we need to prove results?

Figure 1.36 Andrew Wiles
1953–present c© C. J. Mozzochi,
Princeton, NJ.

When the British mathematician Sir Andrew Wiles
(born 11 April 1953) – see Fig. 1.36 – was a young boy,
he stumbled upon one of the most enduring
mathematics problems in history.

In 1637, lawyer and amateur mathematician Pierre
de Fermat stated that ‘there are no positive integers a, b
and c, that satisfy the equation an + bn = cn, for any
integer value of n greater than two.’ Unfortunately, the
truth of this statement is not self-evident, even if it was
to Fermat. If we start by trying n = 3, there are an
infinite number of values to try for a, b and c. Because
Fermat left no proof to back up his claim, the
statement could never be verified, although huge
prizes were offered for a solution.

Wiles dedicated most of his life to the seemingly
unfathomable problem, and after 32 years of studying,
finally struck upon a series of complicated steps that
unquestionably underpinned Fermat’s claim.

From this example, it is easy to see why getting into the habit of proving your results is a
good idea. We want to prove our results because:

1. We want to make sure that our mathematical statements are logically correct.
2. Proofs lead to a deeper understanding of concepts.
3. Proofs explain not only ‘how’, but ‘why’ a particular statement is unquestionably true.
4. Proofs generalize mathematical concepts.

Mathematical proof is a lot more powerful than a scientific proof because it is not subject
to experimental data, so once we have carried out a mathematical proof we know that our
result is absolutely correct and permanent. Pythagoras’ theorem is as true today as it was
over two thousand years ago. Pythagoras died knowing that no one could ever dispute his
theorem, because it was developed on absolute truth.

For example, we often use the identity (x + y)2 = x2 + 2xy+ y2 but this is not true sim-
ply because it works for every example we try but because we can prove this result. Once
you have proven the general result (x+ y)2 = x2 + 2xy+ y2 then you don’t need to worry
about trying it for particular numbers because you have no doubt that the result is correct.

A lot of students have difficulties with this abstract mathematics of proving statements
because it is initially very hard to understand what is going on. If you can push yourself to
think logically then after a while you will enjoy this kind of mathematics a lot more than
the techniques or methods of approach that we have been using up to now. It is better to
understand mathematics rather than just learn to follow certain rules.

Proofs are a critical part of the mathematical thought process but it does take time to
digest and understand proofs.
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1.5.1 Properties of matrix addition

First, we discuss the zero matrix.

What do you think the term zero matrix means?
A zero matrix is a matrix which has all zero entries and it is denoted byO. The 2× 2, 2× 4 and 3× 3
zero matrices are (

0 0
0 0

)
,

(
0 0 0 0
0 0 0 0

)
and

⎛⎜⎝ 0 0 0
0 0 0
0 0 0

⎞⎟⎠ respectively.

Sometimes the zero matrix is denoted by Omn, meaning that it is a zero matrix of
size m× n (m rows by n columns). The above matrices are denoted O22, O24 and O33
respectively.

In Exercises 1.4, question 1 (a) and (b), we showed that for particular matrices A and B

A+ B = B+ A.

This is true for all matrices that can be added.
In Exercises 1.4, question 1 (c) and (d) we also showed that for the particular matrix B,

B+ B+ B = 3B. In general,

B+ B+ B+ · · · + B︸ ︷︷ ︸
n copies

= nB

Most of the laws of algebra of real numbers can also be extended to algebra of matrices.
These laws, and the above properties, are summarized in the next theorem.

Theorem (1.12). Properties of Matrix Addition.
Let A, B and C be matrices of the same sizem× n (m rows by n columns). Then

(a) A+ B = B+ A
(b) (A+ B)+ C = A+ (B+ C) (Associative law for addition)
(c) A+ A+ A+ · · · + A︸ ︷︷ ︸

k copies
= kA

(d) There is anm× nmatrix called the zero matrix, denotedO, which has the property

A+O = A

(e) There is a matrix denoted−A such that

A+ (−A) = A− A = O

This matrix−A is called the additive inverse of A.

Of course, having worked through the previous sections, we feel that the statements
above must be true. But we need to prove these statements for all matrices and not only
the ones in the previous sections.
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Proof.
We will prove parts (a) and (c) only. The rest are left as questions in Exercises 1.5.

Let A =
⎛⎜⎝ a11 · · · a1n

...
...

...
am1 · · · amn

⎞⎟⎠ and B =
⎛⎜⎝ b11 · · · b1n

...
...

...
bm1 · · · bmn

⎞⎟⎠.
(a) Remember, the order of adding real numbers does not matter, that is for real

numbers a and b we have a+ b = b+ a.
Adding the matrices A and B given above yields

A+ B =
⎛⎜⎝ a11 · · · a1n

...
...

...
am1 · · · amn

⎞⎟⎠+
⎛⎜⎝ b11 · · · b1n

...
...

...
bm1 · · · bmn

⎞⎟⎠

=
⎛⎜⎝ a11 + b11 · · · a1n + b1n

...
...

...
am1 + bm1 · · · amn + bmn

⎞⎟⎠
⎡⎣Adding the
corresponding
entries

⎤⎦

=
⎛⎜⎝ b11 + a11 · · · b1n + a1n

...
...

...
bm1 + am1 · · · bmn + amn

⎞⎟⎠
⎡⎣Changing the
order of
addition

⎤⎦

=
⎛⎜⎝ b11 · · · b1n

...
...

...
bm1 · · · bmn

⎞⎟⎠
︸ ︷︷ ︸

=B

+
⎛⎜⎝ a11 · · · a1n

...
...

...
am1 · · · amn

⎞⎟⎠
︸ ︷︷ ︸

=A
= B+ A

Hence we have proved the statement, A+ B = B+ A.
(c) Here we are required to prove that A+ A+ A+ · · · + A︸ ︷︷ ︸

k copies

= kA. We have

A+ A+ A+ · · · + A︸ ︷︷ ︸
k copies

=
⎛⎜⎝ a11 · · · a1n

...
...

...
am1 · · · amn

⎞⎟⎠+
⎛⎜⎝ a11 · · · a1n

...
...

...
am1 · · · amn

⎞⎟⎠+ · · · +
⎛⎜⎝ a11 · · · a1n

...
...

...
am1 · · · amn

⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

a11 + a11 + · · · + a11︸ ︷︷ ︸
k copies

· · · a1n + a1n + · · · + a1n︸ ︷︷ ︸
k copies

...
...

...
am1 + am1 + · · · + am1︸ ︷︷ ︸

k copies

· · · amn + amn + · · · + amn︸ ︷︷ ︸
k copies

⎞⎟⎟⎟⎟⎟⎟⎠

=
⎛⎜⎝ ka11 · · · ka1n

...
...

...
kam1 · · · kamn

⎞⎟⎠ = k {

factorizing
out k

⎛⎜⎝ a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎠
︸ ︷︷ ︸

=A

= kA
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Hence we have proved that A+ A+ A+ · · · + A︸ ︷︷ ︸
k copies

= kA.

The symbol signifies the end of a proof. We will use this symbol throughout the
book.

We can use these results to simplify matrices as the next example demonstrates.

Example 1.22

Let A =
(

1 −1 3 7
2 9 5 −6

)
,B =

(
7 6 −3 2
1 4 5 3

)
and C =

( −2 −7 8 6
3 −9 2 1

)
. Determine

(a) A+ B (b) B+ A (c) (A+ B)+ C (d) A+ (B+ C)

(e) A+O (f) A+ A+ A+ A+ A (g) C+ (−C)

Solution

(a) We have

A+ B =
(

1 −1 3 7
2 9 5 −6

)
+
(

7 6 −3 2
1 4 5 3

)

=
(

1+ 7 −1+ 6 3+ (−3) 7+ 2
2+ 1 9+ 4 5+ 5 −6+ 3

)
=
(

8 5 0 9
3 13 10 −3

)

(b) Clearly by Theorem (1.12) (a) we have

B+ A = A+ B =
(

8 5 0 9
3 13 10 −3

)
[By part (a)]

(c) We have already evaluated A+ B in part (a). Therefore we have

(A+ B)+ C =
(

8 5 0 9
3 13 10 −3

)
︸ ︷︷ ︸

By Part (a)

+
(
−2 −7 8 6
3 −9 2 1

)

=
(

8− 2 5− 7 0+ 8 9+ 6
3+ 3 13− 9 10+ 2 −3+ 1

)
=
(

6 −2 8 15
6 4 12 −2

)

(d) By Theorem (1.12) (b) we have

A+ (B+ C) = (A+ B)+ C ={

By Part (c)

(
6 −2 8 15
6 4 12 −2

)

(e) By Theorem (1.12) (d) we have A+O = A =
(

1 −1 3 7
2 9 5 −6

)
.

(continued...)
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(f) By Theorem (1.12) (c) we have

A+ A+ A+ A+ A︸ ︷︷ ︸
=5A

= 5A = 5
(

1 −1 3 7
2 9 5 −6

)

=
(

5 −5 15 35
10 45 25 −30

) [
Multiplying each
entry by 5

]

(g) By Theorem (1.12) (e) we have C+ (−C) = C− C =
(

0 0 0 0
0 0 0 0

)
= O24.

1.5.2 Properties of scalar multiplication

We now examine some properties of another fundamental linear algebra operation – scalar
multiplication.

Theorem (1.13). Let A and B both be m× n (m rows by n columns) matrices and c, k be
scalars. Then

(a)
(
ck
)
A = c

(
kA
)

(b) k (A+ B) = kA+ kB
(c)

(
c+ k

)
A = cA+ kA

Proof.
We will only prove part (c) here. You are asked to prove the remaining results in
Exercises 1.5.

Let A =
⎛⎜⎝ a11 · · · a1n

...
...

...
am1 · · · amn

⎞⎟⎠ then

(
c+ k

)
A = (c+ k

)⎛⎜⎝ a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎠

=
⎛⎜⎝
(
c+ k

)
a11 · · · (c+ k

)
a1n

...
...

...(
c+ k

)
am1 · · ·

(
c+ k

)
amn

⎞⎟⎠ [
Multiplying each entry
by
(
c+ k

) ]

=
⎛⎜⎝ ca11 + ka11 · · · ca1n + ka1n

...
...

...
cam1 + kam1 · · · camn + kamn

⎞⎟⎠ [
Opening up the
brackets

]
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=
⎛⎜⎝ ca11 · · · ca1n

...
...

...
cam1 · · · camn

⎞⎟⎠+
⎛⎜⎝ ka11 · · · ka1n

...
...

...
kam1 · · · kamn

⎞⎟⎠ [
Separating out
terms into c’s and k’s

]

= c︸︷︷︸
Factorizing
out c

⎛⎜⎝ a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎠
︸ ︷︷ ︸

=A

+ k︸︷︷︸
Factorizing
out k

⎛⎜⎝ a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎠
︸ ︷︷ ︸

=A

= cA+ kA

Example 1.23

Let A =
( −1 3 4

9 6 1

)
, B =

(
1 5 8

−2 3 2

)
, c = −2, k = 5 and x =

⎛⎝ x
y
z

⎞⎠. Determine:

(a)
(
c+ k

)
B (b) cB+ kB (c)−10A (d) c

(
kA
)

(e) k (A+ B) x
(f) Write the following linear system in terms of A, B, c, k, x and O:

14x + 14y+ 28z = 0
−77x− 21y+ 7z = 0

Solution

(a) We first evaluate
(
c+ k

)
and then scalar multiply this result by matrix B:(

c+ k
)
B = (−2+ 5)B

[
Substituting c = −2 and k = 5

]
= 3B = 3

(
1 5 8
−2 3 2

)
=
(

3 15 24
−6 9 6

) [
Multiplying each
entry by 3

]
(b) By Theorem (1.13) (c) we have

(
c+ k

)
B = cB+ kB, therefore we have the same solution as

part (a).

(c) How do we evaluate −10A?
Multiply each entry of matrix A by−10:

−10A = −10
( −1 3 4

9 6 1

)
=
(

10 −30 −40
−90 −60 −10

)
(d) What is c

(
kA
)

equal to?
By Theorem (1.13) (a) we have

(
ck
)
A = c

(
kA
)

and ck = −2× 5 = −10, therefore
c
(
kA
) = (ck)A = −10A. The evaluation of−10A was done in part (c) above.

(e) Adding the matrices A and B and multiplying the result by k = 5 and x we have

k (A+ B) x = 5
[( −1 3 4

9 6 1

)
+
(

1 5 8
−2 3 2

)]
x

= 5
(

0 8 12
7 9 3

)⎛⎝ x
y
z

⎞⎠ = ( 0 40 60
35 45 15

)⎛⎝ x
y
z

⎞⎠ = ( 40y+ 60z
35x + 45y+ 15z

)
(continued...)
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(f) We can write the linear system as

14x+ 14y+ 28z = 0
−77x − 21y+ 7z = 0

(
14 14 28
−77 −21 7

)⎛⎝ x
y
z

⎞⎠ = ( 0
0

)

The 2 by 3 matrix has a common factor of 7. Taking this out, we have

7
(

2 2 4
−11 −3 1

)
(∗)

Since we are given c = −2, k = 5, we can write 7 = 5− (−2) = k− c.

Can we find any relationship between the matrix in (∗) and the given matrices A =
( −1 3 4

9 6 1

)
and B =

(
1 5 8
−2 3 2

)
?

Adding matrices A and B does not give us the coefficients in (∗). However, B− A works:

B− A =
(

1 5 8
−2 3 2

)
−
( −1 3 4

9 6 1

)
=
(

2 2 4
−11 −3 1

) [
Subtracting the
corresponding entries

]
Hence we can write the given linear system as(

k− c
)
(B− A) x = O

1.5.3 Properties of matrix multiplication

The algebraic rules of matrices are closely related to the algebraic rules of real numbers, but
there are some differences which you need to be aware of.

Can you remember one difference between matrix and real number algebraic rules from the previous
section?
Matrix multiplication is not commutative, which means that the order in which we multiply
matrices matters. If A and B are matrices then in general

(1.14) AB �= BA
[
Not equal

]
In Example 1.20 from the previous section we were given the matrices

A =
(
1 2 5
4 6 9

)
and B =

⎛⎝ 2 5 6
1 7 2
9 6 1

⎞⎠
and we found thatAB =

(
49 49 15
95 116 45

)
, butBA could not be evaluated because the num-

ber of columns (3) of the left hand matrix, B, is not equal to the number of rows (2) of the
right hand matrix, A; that is, we cannot evaluate BA while AB is as given above.
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You need to remember this important difference between matrix multiplication and
multiplication of real numbers. We say that matrix multiplication is not commutative.

Consider the following matrix multiplication AB:

ith row

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1r
a21 a22 a2r
...

...
...

...
ai1 ai2 · · ·air
...

...
...

...
am1 am2 · · · amr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 · · · b1j · · · b1n
b21 · · · b2j · · · b2n
...

...
...

...

br1 · · · brj brn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(AB)11 · · · (AB)1j · · · (AB)1n
(AB)12 · · · (AB)2j · · · (AB)2n

...
...

...
...

(AB)i1 · · · (AB)ij · · · (AB)in
...

...
...

...
(AB)m1 · · · (AB)mj · · · (AB)mn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

jth column

We can calculate specific entries of the matrix multiplication AB by using the notation
(AB)ij. Applying the row by column multiplication to the ith row and jth column yields:

ai1b1j + ai2b2j + · · · + airbrj = (AB)ij

The entry in the ith row and jth column of a matrix AB is denoted by (AB)ij. Hence

(AB)ij = Rowi (A)× Columnj (B)

where i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n.
Writing out the complete row and column gives

(AB)ij =
(
ai1 ai2 ai3 · · · air

)
⎛⎜⎜⎜⎝

b1j
b2j
...
brj

⎞⎟⎟⎟⎠(1.15)

= (ai1b1j)+ (ai2b2j)+ (ai3b3j)+ · · · + (airbrj) = r∑
K=1

aiKbKj

The sigma notation
r∑

K=1
aiKbKj means summing the term aiKbKj from K = 1 to K = r.

For example, (i)
10∑
k=1

k = 1+ 2+ 3+ 4+ · · · + 10 = 55

(ii)
10∑
k=1

2k = 21 + 22 + 23 + · · · + 210 = 2046

This sigma notation can be difficult to get accustomed to but this compact way
of writing a sum is common in mathematics so you will see this in mathematical
literature.

Note, that (AB)ij is the ij entry of matrix AB. We can evaluate specific entries of the
matrix multiplication AB by using this formula as the next example demonstrates.
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Example 1.24

Let A =
⎛⎝ 1 3 6

4 7 −1
5 3 2

⎞⎠ and B =
⎛⎝ −1 3 −5 −6

2 1 −7 2
6 4 9 1

⎞⎠.

Determine the following elements (AB)12, (AB)23, (AB)31, (AB)43 and (AB)34.

Solution
What does the notation (AB)12 mean?
(AB)12 is the entry in the first row and the second column of matrix AB which is equal to

(AB)12 = (1 3 6)

⎛⎝ 3
1
4

⎞⎠ = (1× 3)+ (3× 1)+ (6× 4) = 30

What does the notation (AB)23 mean?
(AB)23 is the entry in the second row and the third column of matrix AB which is equal to

(AB)23 = (4 7 −1)
⎛⎝ −5−7

9

⎞⎠ = (4× (−5))+ (7× (−7))+ (−1× 9) = −78

Similarly, we have (AB)31 is the third row of matrix A times the first column of matrix B.

(AB)31 = (5 3 2)

⎛⎝ −12
6

⎞⎠ = (5× (−1))+ (3× 2)+ (2× 6) = 13

What does the notation (AB)43 mean?
(AB)43 is the fourth row of matrix A times the third column of matrix B, but matrix A only has three rows
so we cannot evaluate (AB)43.

(AB)34 is the third row of matrix A times the fourth column of matrix B

(AB)34 = (5 3 2)

⎛⎝ −62
1

⎞⎠ = (5× (−6))+ (3× 2)+ (2× 1) = −22

Hence in summary we have (AB)12 = 30, (AB)23 = −78, (AB)31 = 13, (AB)34 = −22
but we cannot evaluate (AB)43 because matrix A does not have four rows.

Note, that we can work out (AB)34 = −22 but not (AB)43. Be careful in evaluating
(AB)ij because the orders of the row i and column jmatters; that is, for a general matrix C
we have Cij �= Cji [not equal].

Let us examine other properties of matrix multiplication.

Example 1.25

Let A =
⎛⎝ 2 3

6 7
1 2

⎞⎠,B = ( 1 2
3 4

)
and C =

(
5 6
7 8

)
. Determine A (B+ C) and AB+ AC.
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Solution

First we find B+ C =
(

1 2
3 4

)
+
(

5 6
7 8

)
=
(

6 8
10 12

)
. Next we left multiply this by matrix A:

A (B+ C) =
⎛⎝ 2 3

6 7
1 2

⎞⎠( 6 8
10 12

)
=
⎛⎝ 42 52

106 132
26 32

⎞⎠
Similarly, we can show AB+ AC gives the same result. In this case, we have

A (B+ C) = AB+ AC

Proposition (1.16). Properties of matrix multiplication.
LetA, B andC be matrices of an appropriate size so that the following arithmetic operation
can be carried out. Then

(a) (AB)C = A (BC) (associative law for multiplication).
(b) A (B+ C) = AB+ AC (left distributive law).
(c) (B+ C)A = BA+ CA (right distributive law).
(d) A×O = O× A = O. Note that multiplication is commutative in this case.

Here we only prove part (b). You are asked to prove the remaining parts in Exercises 1.5.
The proof of part (b) might be challenging to follow because of the notation involved.

In fact, it is a lot less complicated than it appears at first. All we are really doing is looking
at the individual elements of the matrix formed by A (B+ C), and comparing them to the
individual elements of the matrix formed by AB+ AC.

Proof of (b).
Let A be a matrix of sizem× r (m rows by r columns), B and C be matrices of size r × n (r
rows by n columns). Also let the entries in matrices A,B and C be denoted by aij, bjk and
cjk respectively. [The subscripts ij and jk gives the position of the entry.]

If we can prove this result for an arbitrary row and column then we can apply our result
to all the rows and columns.

We need to prove A (B+ C) = AB+ AC. First we look at the left hand side of this
identity and then we examine the right and show that they are equal.

Adding the two matrices inside the brackets on the left hand side gives:

B+ C =

⎛⎜⎜⎜⎜⎝
b11 + c11 b12 + c12 · · · b1j + c1j · · · b1n + c1n
b21 + c21 b22 + c22 · · · b2j + c2j · · · b2n + c2n

...
...

...
...

br1 + cr1 br2 + cr2 · · · brj + crj · · · brn + crn

⎞⎟⎟⎟⎟⎠
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Writing out the left hand side A (B+ C) we have

ith Row

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1r
a21 a22 a2r
...

...
...

...
ai1 ai2 · · · air
...

...
...

...
am1 am2 · · · amr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
b11 + c11 b12 + c12 · · · b1j + c1j · · · b1n + c1n
b21 + c21 b22 + c22 · · · b2j + c2j · · · b2n + c2n

...
...

...
...

br1 + cr1 br2 + cr2 · · · brj + crj · · · brn + crn

⎞⎟⎟⎟⎟⎠

jth Col

Expanding the ith row and jth column entry of [A (B+ C)]ij we have

[A (B+ C)]ij = ai1
(
b1j + c1j

)+ ai2
(
b2j + c2j

)+ · · · + air
(
brj + crj

)
(†)

Now we examine the right hand side, AB+ AC. By using the previous formula (1.15):

(AB)ij =
(
ai1b1j

)+ (ai2b2j)+ (ai3b3j)+ · · · + (airbrj)
For the ith row and jth column entry we have

(AB)ij = ai1b1j + ai2b2j + · · · + airbrj

Similarly

(AC)ij = ai1c1j + ai2c2j + · · · + aircrj

Adding these gives

(AB)ij + (AC)ij = ai1b1j + ai1c1j + ai2b2j + ai2c2j + · · · + airbrj + aircrj

= ai1
(
b1j + c1j

)+ ai2
(
b2j + c2j

)+ · · · + air
(
brj + crj

) [
Factorizing
out the a’s

]
= [A (B+ C)]ij

[
By (†)

]
Since (AB)ij + (AC)ij = [A (B+ C)]ij for an arbitrary row and column entry, we have

our general result, AB+ AC = A (B+ C).

Example 1.26

Let A =
(

1 2
9 7

)
,B =

(
2 3 −1
5 −7 6

)
,C =

⎛⎝ 2
−5
9

⎞⎠ and O be the zero matrix. Evaluate:

(a) (AB)C (b) A (BC) (c) A (B+ C) (d) AB+ AC

(e) (B+ C)A (f) AO22 (g) BO33 (h) CO13
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Solution

(a) Multiplying the bracket term first:

(AB) =
(

1 2
9 7

)(
2 3 −1
5 −7 6

)
=
(

12 −11 11
53 −22 33

)

(AB)C =
(

12 −11 11
53 −22 33

)⎛⎝ 2
−5
9

⎞⎠ = ( 178
513

)

(b) By Theorem (1.16) (a) we have (AB)C = A (BC), therefore we have the answer of part (a).

(c) Matrices B and C are of different size, therefore we cannot add them. That is we cannot evaluate
B+ C which means A (B+ C) is impossible.

(d) By Theorem (1.16) (b) we have AB+ AC = A (B+ C), therefore we also cannot evaluate
AB+ AC because we cannot add B and C.

(e) As part (c) above, we cannot add matrices B and C. Hence we cannot evaluate (B+ C)A.
For the remaining parts, we use Theorem (1.16) (d) which says that

A×O = O× A = O

For parts (f) and (g) we have

AO22 =
(

1 2
9 7

)(
0 0
0 0

)
=
(

0 0
0 0

)
,

BO33 =
(

2 3 −1
5 −7 6

)⎛⎝ 0 0 0
0
0

0
0

0
0

⎞⎠ = ( 0 0 0
0 0 0

)

(h) We have CO13 =
⎛⎝ 2
−5
9

⎞⎠( 0 0 0
) = (0) = 0.

1.5.4 Matrix powers

Matrix powers are particularly useful inMarkov chains – these are based onmatrices whose
entries are probabilities. Many real life systems have an element of uncertainty and develop
over time and this can be explained through Markov chains.

A Markov chain is a sequence of random variables with the property that given the
present state, the future and past states are independent. For example, the game Monopoly
where the states are determined entirely by dice is a Markov chain. However, games like
poker are not a Markov chain because what is displayed depends on past moves.

See question 10 of Exercises 1.5 for a concrete example.
We define matrix powers for square matrices only.
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What is a square matrix?
A square matrix has an equal number of rows and columns, so any n by n matrix is a square matrix.

Let A be a square matrix then we define

(1.17) Ak = A× A× A× · · · × A︸ ︷︷ ︸
k copies

where k is a positive integer

Why can’t we define Ak for non-square matrices?
Suppose matrix A is m× n (m rows by n columns) and m does not equal n (m �= n).

What is A2 equal to?

n columns

A2 =

⎛⎜⎜⎝
a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎟⎠
⎛⎜⎜⎝

a11 · · · a1n
...

...
...

am1 · · · amn

⎞⎟⎟⎠m rows

Well, we cannot carry out this matrix multiplication because the number of columns of
the left hand matrix is n but the number of rows of the right hand matrix ism and these are
not equal (m �= n), therefore we cannot multiply. If we cannot find A2 then it follows that
we cannot evaluate Ak for k ≥ 2. Hence formula (1.17) is only valid if A is a square matrix,
that ism = n.

A square matrix to the power 0 is the identity matrix (to be defined in the next section),
that is:

A0 = I (identity matrix)

Example 1.27

Let A =
( −3 7

1 8

)
and B =

(
5 9
2 3

)
. Determine:

(a) A2 (b) B2 (c) 2AB (d) (A+ B)2 (e) A2 + 2AB+ B2

(f) Why is the following result not valid (A+ B)2 = A2 + 2AB+ B2?
(g) What does (A+ B)2 equal?

Solution

(a) Remember, A2 = A× A so we have

A2 =
( −3 7

1 8

)
×
( −3 7

1 8

)
=
(

16 35
5 71

)
(b) Similarly we have

B2 =
(

5 9
2 3

)
×
(

5 9
2 3

)
=
(

43 72
16 27

)
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(c) How do we work out 2AB?
Multiply the matrices A and B and then multiply our result by 2:

2AB = 2

(
−3 7
1 8

)(
5 9
2 3

)
= 2

(
−1 −6
21 33

)
=
(
−2 −12
42 66

)

(d) How do we find (A+ B)2?
Remember, (A+ B)2 = (A+ B)× (A+ B). First, we add the matrices A and B and then
square the result:

A+ B =
(
−3 7
1 8

)
+
(

5 9
2 3

)
=
(

2 16
3 11

)

(A+ B)2 =
(

2 16
3 11

)
×
(

2 16
3 11

)
=
(

52 208
39 169

)

(e) To find A2 + 2AB+ B2 we add the above parts (a), (b) and (c):

A2 + 2AB+ B2 =
(

16 35
5 71

)
︸ ︷︷ ︸

=A2

+
(
−2 −12
42 66

)
︸ ︷︷ ︸

=2AB

+
(

43 72
16 27

)
︸ ︷︷ ︸

=B2

=
(

16− 2+ 43 35− 12+ 72
5+ 42+ 16 71+ 66+ 27

)
=
(

57 95
63 164

)

Note, that parts (d) and (e) are not equal. That is

(A+ B)2 �= A2 + 2AB+ B2 [
not equal

]
Why not?

(f) Because matrix multiplication is not commutative that means order of multiplication matters.
Remember, the matrix multiplication AB does not equal BA.

What is (A+ B)2 equal to?

(A+ B)2 = (A+ B)× (A+ B)

= A2 + AB+ BA+ B2

AB �= BA [not equal], therefore AB+ BA �= 2AB [not equal].
Let’s check the result for this particular example.

We know what AB is by part (c) above but what is BA equal to?

BA =
(

5 9
2 3

)(
−3 7
1 8

)
=
(
−6 107
−3 38

)
(continued...)
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(g) Next we work out A2 + AB+ BA+ B2 . By the above parts we have

A2 + AB+ BA+ B2 =
(

16 35
5 71

)
︸ ︷︷ ︸

=A2

+
( −1 −6

21 33

)
︸ ︷︷ ︸

=AB

+
( −6 107
−3 38

)
︸ ︷︷ ︸

=BA

+
(

43 72
16 27

)
︸ ︷︷ ︸

=B2

=
(

16− 1− 6+ 43 35− 6+ 107+ 72
5+ 21− 3+ 16 71+ 33+ 38+ 27

)

=
(

52 208
39 169

)

This is the same answer as to part (d). Therefore we have (A+ B)2 = A2 + AB+ BA+ B2.

As seen in the last example, we need to be very careful in carrying over our real number
algebra to matrix algebra. It does not always work. We can prove the general rule:

(A+ B)2 = A2 + AB+ BA+ B2

provided A and B are square matrices of the same size.
In mathematics, if you are asked to show a result is false then you only need to produce

one counter example to the result.

Example 1.28

Show the following result is false by giving an example:

(A− B)2 = O implies A = B

Solution
We need to give an example for which this result does not work.

Since we have A− B, both matrices A and B must be of the same size. Let’s take the simplest case of

size 2 by 2. We need (A− B)2 = O so let (A− B) =
(

a b
c d

)
then

(A− B)2 =
(

a b
c d

)(
a b
c d

)
=
(

a2 + bc ab+ bd
ca+ dc bc+ d2

)
=
(

0 0
0 0

)
Equating the first entry gives

a2 + bc = 0⇒ a2 = −bc
We can select any numbers which satisfy this a2 = −bc. We like to deal with whole numbers because

they are easier, so let b = −1 and c = 4 then a = √4 = ±2. Choose a to be the positive root, so let
a = 2. We need to find a value for d so that the above is satisfied.
How?
Equating the last entry

bc+ d2 = 0⇒ d2 = −bc
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We already have b = −1 and c = 4 so d = √4 = ±2. This time select d = −2. Hence

(A− B) =
(

a b
c d

)
=
(

2 −1
4 −2

) [
because a = 2, b = −1, c = 4, d = −2]

Check that (A− B)2 = O. Now we just need to find matrices A and B such that

A− B =
(

2 −1
4 −2

)
(∗)

There are an infinite number of matrices A and B which give the above result (∗). Here is one choice,
but you may have chosen others:

A =
(

3 −1
2 1

)
and B =

(
1 0
−2 3

)
Hence we have found matrices A and B such that

(A− B)2 = O does not imply A = B

i Summary

Generally, if A and B are matrices for which multiplication is a valid operation then

AB �= BA
[
not equal

]
We cannot blindly apply the properties of real number algebra to matrix algebra.
Let A be a square matrix then

(1.17) Ak = A× A× A× · · · × A︸ ︷︷ ︸
k copies

EXERCISES 1.5

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

You may like to check your numerical solutions by using MATLAB.

1. Let A =
(
2 −2 5
0 −1 7

)
,B =

( −1 3 7
2 −9 6

)
and C =

(
9 5 8

−6 −1 6

)
. Determine

(a) A+ B (b) (A+ B)+ C (c) A+ (B+ C) (d) B+ (C+ A)

(e) C+O (f) B+ B+ B+ B+ B (g) 5B (h) C+ (−C)
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2. Let A =
(
5 −1 −2
1 −3 2

)
.

(a) Find a matrix B such that A+ B = O where O is the 2× 3 zero matrix.

(b) Let C =
(
1 2 3
4 5 6

)
. Determine A+ (−C) and A− C.

(c) Determine A− B− C and A− (B− C).

3. Let A =
(
1 5 −2
3 7 −9

)
,B =

⎛⎝ −1 0 7
−3 2 1
−4 1 6

⎞⎠,C =
⎛⎝ 7 8 −1
−8 6 −6
6 −3 5

⎞⎠ andO = O33.

Determine, if possible, the following:
(a) AB (b) BA (c) A (B+ C) (d) AB+ AC
(e) (B+ C)A (f) BA+ CA (g) CO (h) BO+ CO
(i)OB+OC (j) (A+ B)C (k) AC+ BC

4. Let A =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠ and I =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠. Determine (a) AI (b) IA

What do you notice about your results?

5. Let A =
(
1 2 3
4 5 6

)
and B =

⎛⎝ 2 −1
2 8
7 5

⎞⎠. Evaluate the following:
(AB)11, (AB)12, (AB)21, (AB)22 and AB

6. For A =
( −1 3 5

4 1 −7
)
, B =

(
1 −3 −5

−4 −1 7

)
, c = −9 and k = 8 determine

(a)
(
ck
)
A (b) c

(
kA
)

(c) k (A+ B) (d) kA+ kB
(e)
(
c+ k

)
A (f) cA+ kA (g)

(
c+ k

)
B (h) cB+ kB

7. Determine the scalar λ (Greek letter ‘lambda’) which satisfies Ax = λx where

A =
(
2 1
1 2

)
and x =

(
1
1

)

8. Let A =
⎛⎝ 1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3

⎞⎠. Find A2,A3 and A4.

What do you think An will be for any natural number n?
A discrete dynamical system is described by the formula xn = Anx. Write the

formula for the given matrix xn = Anx for the given matrix A.
9. Prove that the following results are false:

(a) AB = O⇒ A = O or B = O.
(b) AB− BA = O⇒ A = B.
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10. Let T be a (transition) matrix of a Markov chain and p be a probability vector. Then
the probability that the chain is in a particular state after k steps is given by the vector
pk:

pk = Tkp

Determine pk by using MATLAB or any appropriate software for

T =
(
0.6 0.7
0.4 0.3

)
, p =

(
0.5
0.5

)
and k = 1, 2, 10, 100 and 100 000

What do you notice about your results?
11. Prove property (d) of Proposition (1.16).
12. Prove properties (b), (d) and (e) of Theorem (1.12).
13. Prove properties (a) and (b) of Theorem (1.13).
∗15. Prove property (a) of Theorem (1.16).

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 1.6 The Transpose and Inverse of a Matrix

By the end of this section you will be able to

● prove properties of the matrix transpose

● define and prove properties of the inverse matrix

We should now be familiar with matrix operations such as addition, subtraction and
multiplication.

What about division of matrices?
You cannot divide matrices. The nearest operation to division of matrices is the inverse matrix
which we discuss in this section. We can use the inverse matrix to find solutions of linear systems.

There are other important operations of matrices such as transpose.

1.6.1 Transpose of a matrix

What do you think the transpose of a matrix might be?
It is a new matrix which is made by rotating the rows of the given matrix. For example, if⎛⎜⎝ 1 2

3 4
5 6

⎞⎟⎠ then the transpose of this matrix is

(
1 3 5
2 4 6

)
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Column 1 becomes row 1 and column 2 becomes row 2. If A is the given matrix then the

transpose of A is denoted by AT . In the above case, we have AT =
(

1 3 5
2 4 6

)
.

In general, the entry aij (ith row by jth column) of matrix A is transposed to aji (jth row
by ith column) in AT . We define the transpose of a matrix as

(1.18) A = (aij) implies AT = (aji) [The subscript ij changes to ji]

Example 1.29

Find the transpose of the following matrices:

(i) A =
⎛⎝ −9 2 3

7 −2 9
6 −1 5

⎞⎠ (ii) B =
⎛⎝ 1 0 0

0 2 0
0 0 3

⎞⎠ (iii) C =
( −1 3 4

7 9 0

)
(iv) D =

⎛⎝ 1
2
3

⎞⎠
Solution

(i) Swapping rows and columns we have

AT =
⎛⎝ −9 7 6

2 −2 −1
3 9 5

⎞⎠

(ii) Transposing B =
⎛⎝ 1 0 0

0 2 0
0 0 3

⎞⎠ gives the same matrix, that is BT =
⎛⎝ 1 0 0

0 2 0
0 0 3

⎞⎠.

Transposing this matrix does not change the matrix, that is BT = B.

(iii) We have

CT =
⎛⎝ −1 7

3 9
4 0

⎞⎠ [
because C =

( −1 3 4
7 9 0

)]

(iv) What sort of matrix is D =
⎛⎝ 1

2
3

⎞⎠?

D is a column matrix (vector) and transposing makes it into a row matrix DT = (1 2 3).

A column vector such as x =
⎛⎜⎝x1

...
xn

⎞⎟⎠ can be written as the transpose of a row vector, that

is x = ( x1 · · · xn
)T . This approach of writing a column vector x as the transpose of a row

vector saves space. In this case, column vector x takes up n lines while x = (x1 · · · xn)T

can be written on a single line.
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Note, that transposing a matrix of size m× n (m rows by n columns) gives a matrix of
size n×m (n rows by m columns). If m �= n then transposing changes the shape of the
matrix.

James Sylvester and Arthur Cayley are considered by many to be the fathers of linear
algebra.

Figure 1.37 James Sylvester 1814 to
1897.

James Sylvester (Fig. 1.37) was born to a London
Jewish family in 1814. He went to school in London
and in 1837 took the Mathematical Tripos exam at
Cambridge. The Mathematical Tripos is an
undergraduate mathematics exam which used to
distinguish students by ranking them in order of merit.
The word tripos is derived from a three-legged stool
which students used to sit on in order to take the
examination.

Sylvester did not graduate until 1841 and even then
from Trinity College, Dublin rather than Cambridge
because he refused to take the oath of the Church of
England.

In 1841, aged 27, he become Professor of
Mathematics at the University of Virginia, USA, for six
months. He resigned his post in March 1842 because
of the lenient attitude of the university towards
disruptive students.

He returned to England in 1843 and began to study
law and met Arthur Cayley, also a mathematics graduate studying law. During this time,
they made a significant contribution to what would became matrix theory.

In 1877 he went back to America to become Professor of Mathematics at the new Johns
Hopkins University. A year later he founded the American Journal of Mathematics, the first
mathematics journal to be distributed in the USA.

In 1883, he returned to England to become Professor of Geometry at Oxford University,
where he remained until his death in 1897.

Sylvester gave us the term matrix. He also adopted other mathematical terms such as
invariant (something that does not vary) and discriminant.

1.6.2 Properties of matrix transpose

Next we prove some of the results concerning the transpose of a matrix.

Theorem (1.19). Properties of matrix transpose.
Let A and B be matrices of appropriate size so that the operations below can be carried

out. We have the following properties (k is a scalar):
(a)
(
AT)T = A (b)

(
kA
)T = kAT

(c) (A+ B)T = AT + BT (d) (AB)T = BTAT

We only prove properties (a) and (c). You are asked to prove the remaining in
Exercises 1.6.
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(a) What does
(
AT
)T = A mean?

=A= , A = , ⎝⎜
⎛
A ⎠⎟

⎞
= AT T T

It means that the transpose of a transposed matrix is the matrix you started with. You
could think of it as flipping the matrix across the diagonal from top left to bottom right and
then flipping it again which gets you back to where you started.

Proof of (a).
Let aij be the entry in the ith row and jth column of the matrix A. Then

AT = (aij)T = (aji)
Executing another transpose on this yields

(
AT)T = (aji)T = (aij) = A.

Notice that the entries have swapped twice, for example a21 → a12 → a21, a31 → a13 →
a31, and so on. Hence

(
AT)T = A.

Proof of (c).

(A+ B)T =

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bm1 bm2 · · · bmn

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
T

=

⎛⎜⎜⎜⎝
a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

...
...

am1 + bm1 am2 + bm2 · · · amn + bmn

⎞⎟⎟⎟⎠
T ⎡⎣ adding the

corresponding
entries

⎤⎦

=

⎛⎜⎜⎜⎝
a11 + b11 a21 + b21 · · · am1 + bm1
a12 + b12 a22 + b22 · · · am2 + bm2

...
...

...
...

a1n + b1n a2n + b2n · · · amn + bmn

⎞⎟⎟⎟⎠
⎡⎣ taking the transpose,
that is interchanging
rows and columns

⎤⎦

=

⎛⎜⎜⎜⎝
a11 a21 · · · am1
a12 a22 · · · am2
...

...
...

...
a1n a2n · · · amn

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=AT

+

⎛⎜⎜⎜⎝
b11 b21 · · · bm1
b12 b22 · · · bm2
...

...
...

...
b1n b2n · · · bmn

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=BT

= AT + BT

Hence we have our result (A+ B)T = AT + BT .
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The MATLAB command for transpose is an apostrophe. For example, to find the

transpose of
(
1 2 3
4 5 6

)
we enter the following command [1 2 3; 4 5 6]′ after the

prompt >>.

Example 1.30

Let A =
(

3 −4 1
5 2 6

)
and B =

( −2 7 5
1 3 −9

)
. Determine

(a)
(
AT)T (b) (2A)T − (3B)T (c) (A+ B)T (d) AT + BT (e) (AB)T

Solution

(a) By Theorem (1.19) property (a) we have
(
AT)T = A =

(
3 −4 1
5 2 6

)
.

(b) Applying the same theorem property (b) we have

(2A)T − (3B)T = 2AT − 3BT
[
by Theorem (1.19) (b)

(
kA
)T = kAT

]
= 2

(
3 −4 1
5 2 6

)T
− 3

( −2 7 5
1 3 −9

)T

= 2

⎛⎝ 3 5
−4 2
1 6

⎞⎠− 3

⎛⎝ −2 1
7 3
5 −9

⎞⎠ ={

multiplying
by scalars

⎛⎝ 6 10
−8 4
2 12

⎞⎠−
⎛⎝ −6 3

21 9
15 −27

⎞⎠

=
⎛⎝ 12 7
−29 −5
−13 39

⎞⎠
(c) Substituting matrices A and B we have

(A+ B)T =
[(

3 −4 1
5 2 6

)
+
( −2 7 5

1 3 −9
)]T

={

adding the
entries

(
1 3 6
6 5 −3

)T
={

taking transpose

⎛⎝ 1 6
3 5
6 −3

⎞⎠

(d) What is AT + BT equal to?
By Theorem (1.19) property (c) we have AT + BT = (A+ B)T . This was evaluated in part (c)
above.

(e) What is (AB)T equal to?
We cannot evaluate (AB)T because we cannot work out AB. Matrix multiplication AB is
impossible because the number of columns of matrix A does not equal the number of rows of
matrix B.

It is not enough that matrices A, B are of the same size in order to execute matrix
multiplication as you can observe in the final part of the above example.
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1.6.3 Identity matrix

What does the term identity matrix mean?
The identity matrix is a matrix denoted by I such that

(1.20) AI = A for any matrix A

This is similar to real numbers where the number 1 is the identity element which satisfies
x1 = x for any real number x.

What does the identity matrix look like?
It is a matrix with 1’s along the leading diagonal (top left to bottom right) and zeros elsewhere.

For example,
(
1 0
0 1

)
,

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ and

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ are all identity matrices.

How can we distinguish between these 2 by 2, 3 by 3 and 4 by 4 identity matrices?
We can denote the size in the subscript of I as I2, I3 and I4 respectively.

Is the identity matrix, I, a square matrix?
Yes the identity must be a square matrix.

How can we write the formal definition of the identity matrix?

Definition (1.21). An identity matrix is a square matrix denoted by I and defined by

I = (ikj) = { 1 if k = j
0 if k �= j

What does definition (1.21) mean?
All the entries in the leading diagonal (top left to bottom right) of a matrix I are 1, that is

i11 = i22 = i33 = i44 = · · · = 1

and all the other entries away from the leading diagonal are zero.

For a 2 by 2 matrix we have:(
a b
c d

)(
1 0
0 1

)
=
(
a b
c d

)
where a, b, c and d are real numbers.

The identity matrix is illustrated in the next example.

Example 1.31

Let P (1, 1),Q (3, 1), R (1, 3) and matrix A represent the vertices of this triangle. Determine the image of
the triangle PQR under the transformation IA.
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Solution
Carrying out the matrix multiplication IA gives

P Q R P′ Q′ R′

IA =
(

1 0
0 1

)(
1 3 1
1 1 3

)
=
(

1 3 1
1 1 3

)

We can plot this as shown in Fig. 1.38.

0.5 1 1.5 2 2.5 3

1

2

3

4

P and P' Q and Q'

R and R'

Figure 1.38

The transformation given by the matrix multiplication IA does not change the given triangle PQR. This
means that the triangle PQR remains fixed under this transformation IA.

Note the different size identity matrices required for the following matrix multiplication:

( −1 4 7
3 −6 9

)⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ = ( −1 4 7
3 −6 9

)
(
1 0
0 1

)( −1 4 7
3 −6 9

)
=
( −1 4 7

3 −6 9

)

If A is not a square matrix then the identity matrix is of different size, depending on pre-
or post-multiplying by the identity matrix.

What does pre-multiplying by I mean?
It means the left hand matrix in a matrix multiplication is I.

What does post-multiplying by I mean?
It means the right hand matrix in a matrix multiplication is I.

If we post-multiply matrix A =
( −1 4 7

3 −6 9

)
by the identity matrix we use a 3 by 3

identity matrix I3, that is A× I3 = A. If we pre-multiply A by the identity matrix we use
the 2 by 2 identity matrix, that is I2 × A = A.

In general, if A is am by n (m rows by n columns) matrix then ImA = AIn.
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A property of the identity is:

Proposition (1.22). Let I be the identity matrix. Then IT = I

Proof – See Exercises 1.6.

What use is the identity matrix if the transformation remains fixed?
We need the identity matrix in order to define and explain the inverse matrix.

1.6.4 Inverse matrix

Let x �= 0 be a real number then the inverse of x is a real number x−1 such that

x
(
x−1

) = 1

1 is the identity element of real numbers.

What do you think an inverse matrix is?
Given a square matrix A then the inverse of A is a square matrix B such that

AB = I

where I is the identity matrix defined earlier.

The inverse matrix of A is denoted by A−1 where A−1 = B in the above case. Note, that

A−1 �= 1
A

The inverse matrix is not equal to 1 over A. Actually 1 over A is not defined for a
matrix A.

We will define the process of finding A−1 later in this chapter.
Graphically, the inverse matrix A−1 performs the transformation shown in Fig. 1.39.

A

A-1

Figure 1.39
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If a transformationA is applied to an object as shown in Fig. 1.39 then the transformation
A−1 undoes A so the net result of A−1A = I is to leave the object unchanged.

Definition (1.23). A square matrix A is said to be invertible or non-singular if there is
a matrix B of the same size such that

AB = BA = I

Matrix B is called the (multiplicative) inverse of A and is denoted by A−1.

Normally we say matricesA and B are the inverse of each other. If matrixA is the inverse
of matrix B then B is the inverse of A.

If matrices A and B are of the same size then it can be shown that AB = I if and only if
BA = I. In this case, matrix multiplication is commutative, which means it does not matter
about the order of multiplication.

If BA = I then we call matrix B the left inverse ofA. Also, ifAC = I then we call matrix
C the right inverse of A. We will show in Exercises 1.6 that the left inverse is equal to the
right inverse of an invertible matrix, that is B = C.

Example 1.32

Show that matrices A and B are the inverse of each other, where

A =
(

3 7
2 5

)
and B =

(
5 −7
−2 3

)

Solution
What do we need to show?
Need to show that the matrix multiplications AB and BA give the identity matrix I.

AB =
(

3 7
2 5

)(
5 −7
−2 3

)
=
(

1 0
0 1

)
= I

Similarly, we have BA = I. Therefore, matrices A and B are the inverse of each other.

Example 1.33

Show that matrix B is the inverse of matrix A given that

A =
⎛⎝ 1 2 0

2 5 −1
4 10 −1

⎞⎠ and B =
⎛⎝ 5 2 −2
−2 −1 1
0 −2 1

⎞⎠
(continued...)



84 1 LINEAR EQUATIONS AND MATRICES

Solution
Similar to Example 1.32 but the size of the matrix is 3 by 3. Multiplying the matrices:

AB =
⎛⎝ 1 2 0

2 5 −1
4 10 −1

⎞⎠⎛⎝ 5 2 −2
−2 −1 1
0 −2 1

⎞⎠ =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ = I

Hence the matrix B is the inverse of matrix A because AB = I. You can also show that A is the inverse
matrix of B by proving BA is also equal to I.

Why is the inverse matrix important?
Remember, we want to use matrices to solve a system of linear equations which we can generally
write as Ax = b where x is the vector of unknowns that we need to find. If we multiply both sides
of this Ax = b by the inverse matrix A−1 we obtain:

A−1 (Ax) = A−1b(
A−1A

)
︸ ︷︷ ︸

I

x = Ix = x = A−1b

Hence we can find the unknowns by finding the inverse matrix, because x = A−1b.

Example 1.34

Solve the following linear system:

x+ 2y = 1
2x+ 5y − z = 2
4x+ 10y− z = 3

Solution
Let A be the matrix of coefficients and x be the vector of unknowns. Then the above system can be
written as Ax = b where

A =
⎛⎝ 1 2 0

2 5 −1
4 10 −1

⎞⎠, x =
⎛⎝ x

y
z

⎞⎠ and b =
⎛⎝ 1

2
3

⎞⎠
By the above we have x = A−1b.

What is A−1 equal to?

A−1 = B =
⎛⎝ 5 2 −2
−2 −1 1
0 −2 1

⎞⎠ which we found in Example 1.33 above. Therefore

x = A−1b =
⎛⎝ 5 2 −2
−2 −1 1
0 −2 1

⎞⎠⎛⎝ 1
2
3

⎞⎠ =
⎛⎝ 3
−1
−1

⎞⎠ =
⎛⎝ x

y
z

⎞⎠
Hence x = 3, y = −1 and z = −1. Check that this solution satisfies the given linear system.
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However, not all matrices have an inverse as we describe next.

Example 1.35

Show that matrix A does not have an inverse, where A =
(

3 2
6 4

)
.

Solution

Let B =
(

a b
c d

)
be a general 2 by 2 matrix. If we multiply out AB we have

AB =
(

3 2
6 4

)(
a b
c d

)
=
(

3a+ 2c 3b+ 2d
6a+ 4c 6b+ 4d

)
=
(

1 0
0 1

)
Equating the entries of the first column gives:

3a + 2c = 1

6a + 4c = 0

(1)

(2)

These equations are inconsistent because equation (2) is double the first on the left hand side but is not
doubled on the right. There are no real numbers a, b, c and d which satisfy both equations (1) and (2).
Hence the matrix A does not have an inverse.

Definition (1.24). A square matrix A is said to be non-invertible or singular if there is no
matrix B such that AB = BA = I.

The zero matrixO has no inverse. We say the zero matrix is non-invertible.

1.6.5 Properties of the inverse matrix

In this subsection, we discuss various properties of the inverse matrix.
You may find the remaining parts of this section challenging to follow because they deal

with proving results. Generally, if not universally, students find understanding and con-
structing their own proofs very demanding. This is because a thorough understanding of
each step is needed. However, you will thoroughly enjoy linear algebra if you can follow
and construct your own proofs.

For the remainder of this section you will need to know the definition of an invertible
matrix, which is definition (1.23).

Proposition (1.25). The inverse of an invertible (non-singular) matrix is unique.

What does this proposition mean?
There is only one inverse matrix of an invertible matrix, or mathematically there is only one matrix
B, such that AB = BA = I.
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Proof.

How can we prove this proposition?
We suppose there are two inverse matrices associated with an invertible matrix A, and then show
that these are in fact equal. Let’s nominate these inverse matrices as B and C and show that B = C.
These matrices, B and C, must satisfy AB = I and AC = I (because B and C are inverses of A).

Since both, AB and AC, are equal to the identity matrix I we can equate them:

AB = AC

Left multiply this equation AB = AC by matrix B:

B (AB) = B (AC)

(BA)︸︷︷︸
=I

B = (BA)︸︷︷︸
=I

C
[
Since matrices A and B are inverse
of each other, BA = AB = I

]
IB = IC
B = C

[
Remember IB = B and IC = C

]
Hence we have proven our proposition that the inverse matrix is unique.

Proposition (1.26). If A is an invertible matrix then A−1 is invertible and
(
A−1

)−1 = A.

This proposition means that the inverse of the inverse matrix is the matrix we started
with.

A AA–1

Inverse Inverse

This is like taking an ice cube, melting it, and then refreezing it into an ice cube again.

Proof.
Let B = A−1 then by definition of the inverse matrix (1.23):

A is said to be invertible if there is a B such that AB = BA = I.
We know that B is an invertible matrix because BA = I. Required to prove B−1 = A.

Why?
Because at the beginning of the proof we stated B = A−1.

By the definition of the inverse matrix we have

BB−1 = I and BA = I

Equating these gives

BB−1 = BA
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Left multiplying both sides by B−1 yields:

B−1
(
BB−1

) = B−1 (BA)(
B−1B

)
B−1 = (B−1B)A
IB−1 = IA

[
remember B−1B = I

]
B−1 = A

[
because IX = X for any matrix X

]
Hence B−1 = A, which means

(
A−1

)−1 = A because B = A−1. Thus we have our result.

Proposition (1.27). Let A and B be invertible matrices, then AB is invertible and
(AB)−1 = B−1A−1

What does this proposition mean?
It means that the product of two invertible matrices is also invertible. Note that the inverse of
A× B is equal to the inverse of B multiplied by the inverse of A. You undo the last operation first.
Compare this with putting on your shirt and then your tie. You remove your tie first and then your
shirt.

We can illustrate this by means of a flow chart:

A B AB

AB1−B1−A

( ) 1 1 1− − −=AB B A

Proof.
The inverse of AB is given by (AB)−1.

What do we need to show?
Required to prove B−1A−1 is the inverse of AB; that is, we need to show

(AB)B−1A−1 = I and B−1A−1 (AB) = I

Let’s consider the first of these, (AB)B−1A−1:

(AB)B−1A−1 = A
(
BB−1

)︸ ︷︷ ︸
=I

A−1

= AIA−1 = AA−1 = I

Similarly we have B−1A−1 (AB) = I.
Hence by definition of the inverse matrix (1.23), we conclude that B−1A−1 is the inverse

of AB which is denoted by (AB)−1. We have our result (AB)−1 = B−1A−1.
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Proposition (1.28). LetA be an invertible (non-singular) matrix and k be a non-zero scalar
then

(
kA
)−1 is invertible (non-singular) and (kA)−1 = 1

kA
−1.

Proof – See Exercises 1.6 question 5.

Proposition (1.29). Let A be an invertible (non-singular) matrix then the transpose of the
matrix, AT , is also invertible and

(
AT)−1 = (A−1)T .

What does this proposition mean?
For an invertible matrix, you can change the order of the inverse and transpose.

Proof.
Similar to the proof of Proposition (1.26).

The inverse matrix of AT is denoted by
(
AT)−1. We need to show that

(
A−1

)T is equal
to the inverse of AT ; that is, we need to show that(

A−1
)T AT = I and AT (A−1)T = I

Examining the first of these
(
A−1

)T AT we have

(
A−1

)T AT = (AA−1)T [
using Theorem (1.12) (d) YTXT = (XY)T

]
= IT

[
remember AA−1 = I

]
= I

[
remember IT = I because I is the identity

]
Similarly we have AT (A−1)T = I.
In summary we have

(
A−1

)T AT = AT (A−1)T = I. Hence
(
A−1

)T is the inverse matrix
of AT . We have our required result

(
AT)−1 = (A−1)T .

In Exercises 1.6, there are questions on proof by induction. The method is fully
explained on the book’s website. Normally if a statement to be proved is valid for positive
integers n then we can apply mathematical induction. For example, say we want to prove

1+ 2+ 3+ · · · + n = n (n+ 1)
2

(†)

then we would use proof by induction. Let P (n) represent this statement (†). The three
steps of mathematical induction are:

Step 1 Check the result is true for some base case such as n = 1.
Step 2 Assume the result is true for n = k.
Step 3 Prove the result for n = k+ 1 by using steps 1 and 2.
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If you are not familiar with proof by induction then it is important that you go over
the relevant material on the website. Some examples of proof by induction are also on the
website.

i Summary

The properties of the transpose matrices are given by:(
AT
)T = A;

(
kA
)T = kAT ; (A+ B)T = AT + BT ; (AB)T = BTAT

A square matrix A is said to be invertible if there is a matrix B of the same size such that

AB = BA = I

If A and B are invertible matrices then we have(
A−1

)−1 = A; (AB)−1 = B−1A−1;
(
AT
)−1 = (A−1)T

EXERCISES 1.6

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.
uk/companion/singh>.)

1. Find AT in each of the following cases:

(a) A =
(
1 2
3 4

)
(b) A =

(
1 2 3

−1 −2 −3
)

(c) A = ( −1 5 9 100
)

(d) A =
(
a b
c d

)
(e) A =

⎛⎝ 0 0
0 0
0 0

⎞⎠ (f) A =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠
2. Let A =

( −1 4 8
−9 1 2

)
,B =

⎛⎝ 5 8
0 −6
5 6

⎞⎠,C = ( −4 1
6 5

)
and

D =
⎛⎝ −6 3 1

8 9 −2
6 −1 5

⎞⎠
Compute the following, if possible. (You can check your answers using MATLAB.)

(a) (AB)T (b) (BC)T (c) C− CT (d) D−DT (e)
(
DT)T

(f) (2C)T (g) AT + B (h) A+ BT (i)
(
AT + B

)T (j)
(
2AT − 5B

)T
(k) (−D)T (l)− (DT) (m)

(
C2)T (n)

(
CT)2
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3. Let u =
⎛⎝ 1

2
3

⎞⎠ and v =
⎛⎝ 4

5
6

⎞⎠. Determine (a) uTv (b) vTu (c) u · v

4. Prove IT = I where I is the identity matrix.
5. Prove Proposition (1.28).

6. Let A be any matrix and k be a scalar. Prove that
(
kA
)T = kAT .

7. Let A be a square matrix. Prove that
(
A2)T = (AT)2.

8. Prove the following:
If an invertible matrix A has a left inverse B and a right inverse C, then B = C.

9. Let matrices A and B be invertible. Prove that A+ Bmay not be invertible.
10. ∗ Prove Proposition (1.19) part (d). (This is a difficult result to establish, but try to

prove this without looking at the solutions. It will bring you great pleasure if you can
prove this result.)

11. LetA, B and C be matrices of the appropriate size so that they can be multiplied. Prove
that (ABC)T = CTBTAT .

12. ∗ (If you do not know the method of proof by induction then you will need to read up
on ‘Proof by Induction’ on the web to do the following question.)
Let A1,A2, . . . ,An−1 and An be matrices of the appropriate size so that the matrix

multiplication, A1 × A2 × · · · × An−1 × An, is valid.
Prove that for any natural number n (a positive integer) we have

(A1A2 · · ·An−1An)
T = AT

nA
T
n−1 · · ·AT

2A
T
1 .

13. Let A be a square matrix. Prove that (An)T = (AT)n, where n is a natural number.

14. LetA =
(
0 0
0 0

)
, B =

(
1 1
1 1

)
andC =

(
1 3
2 6

)
. Show that matricesA, B andC are

singular, that is non-invertible.
15. Show that matrices A and B are inverses of each other:

(a) A =
(

9 2
13 3

)
, B =

(
3 −2

−13 9

)
(b) A =

⎛⎝ 1 2 3
0 1 4
0 0 1

⎞⎠, B =
⎛⎝ 1 −2 5

0 1 −4
0 0 1

⎞⎠
(c) A =

⎛⎝ 1 0 2
2 −1 3
4 1 8

⎞⎠, B =
⎛⎝ −11 2 2

−4 0 1
6 −1 −1

⎞⎠
Hence, or otherwise, solve the following linear system:

x + 2z = 1
2x− y+ 3z = 2
4x+ y+ 8z = 3

16. Let A =
(

sin (θ) cos (θ)

− cos (θ) sin (θ)

)
and B =

(
sin (θ) − cos (θ)

cos (θ) sin (θ)

)
. Show that A and B are

the inverse of each other. Solve the linear system
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sin (θ) x + cos (θ) y = 1
− cos (θ) x+ sin (θ) y = −1

17. Explain why an invertible matrix A has to be a square matrix.
18. Let A and B be invertible matrices of the appropriate size so that matrix multiplication

is a valid operation. Prove that
(
(AB)−1

)T = (AT)−1 (BT)−1.
19. Let A, B and C be invertible matrices of the appropriate size so that the following

matrix multiplication is valid: ABC. Prove that (ABC)−1 = C−1B−1A−1.
20. ∗ (You will need to read up on ‘Proof by Induction’ on the web to do the following

question.)
Let A1,A2, . . . ,An−1 and An be matrices of the appropriate size so that

A1 × A2 × · · · × An−1 × An

is a valid operation. Prove that

(A1 × A2 × · · · × An−1 × An)
−1 = A−1n × A−1n−1 × · · · × A−12 × A−11

21. In matrix algebra we define the negative indices of an invertible (non-singular) square
matrix A by

A−n = (A−1)n where n is a natural number (positive integer)

By using this definition prove that A−n = (An)−1.
22. LetC be an invertible matrix andA and B bematrices of appropriate size so that matrix

multiplications below are valid. Prove the following:

(a) If AC = BC then A = B. (This is called the right cancellation property.)
(b) If CA = CB then A = B. (This is called the left cancellation property.)

23. Prove that if A is an invertible (non-singular) matrix then AB = O⇒ B = O.
24. Let P andA be square matrices and matrix P be invertible. Prove the following results:

(a)
(
P−1AP

)2 = P−1A2P (b)
(
P−1AP

)3 = P−1A3P (c)
(
P−1AP

)n = P−1AnP
(Hint: Use mathematical induction.)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 1.7 Types of Solutions

By the end of this section you will be able to

● find a unique solution, infinitely many solutions or establish no solutions

to a linear system

● solve homogeneous and non-homogeneous linear systems

Remember, linear algebra is the study of linear systems of equations.
In this section, we examine more complex linear systems which involve many equations

in many variables. We try to reduce these linear systems to their simplest possible form by
breaking them down to reduced row echelon form.

Here, we apply row operations to determine if there are no, unique or an infinite number
of solutions to a linear system.
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1.7.1 Equivalent systems

In section 1.2 we found the solutions to simultaneous equations by writing them in matrix
form, and then converting to a row equivalent matrix.

What does row equivalent mean?
Two matrices are row equivalent if one is derived from the other by applying elementary row
operations as described on page 19.

Proposition (1.30). If a linear system is described by the augmented matrix (A | b ) and it
is row equivalent to

(
R
∣∣ b′ ) then both linear systems have the same solution set.

Proof.
This follows from section 1.1 because the augmentedmatrix

(
R
∣∣ b′ ) is derived from (A | b )

by elementary row operations which are:

1. Multiply a row by a non-zero constant.
2. Add a multiple of one row to another.
3. Interchange rows.

These are equivalent to:

1. Multiply an equation by a non-zero constant.
2. Add a multiple of one equation to another.
3. Interchange equations.

From section 1.1, we know that carrying out the bottom three operations on a linear
system yields the same solution as the initial linear system. The two sets of operations are
equivalent, therefore (A | b ) and

(
R
∣∣ b′ ) have the same solution set.

This proposition means that when solving a linear system Ax = b, it can be simplified to
an easier problem Rx = b′ which has the same solution as Ax = b.

1.7.2 Types of solutions

As discussed in section 1.1 there are three types of solutions to a linear system:

1. No solution
2. Unique solution
3. Infinite number of solutions

All the examples of section 1.2 had unique solutions. If the system has no solution, we
say it is inconsistent. We can show that a system is inconsistent by using the above row
operations, as the next example illustrates.
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Example 1.36

Show that the following linear system is inconsistent:

x + y+ 2z = 3
−x + 3y− 5z = 7
2x − 2y+ 7z = 1

Solution
The augmented matrix with each row labelled is given by

R1
R2
R3

⎛⎝ 1 1 2
−1 3 −5
2 −2 7

∣∣∣∣∣∣
3
7
1

⎞⎠
We use Gaussian elimination to simplify the problem. To get a 0 in place of−1 in the second row and

the 2 in the bottom row we execute operations, R2 + R1 and R3 − 2R1, respectively.

R1
R∗2 = R2 + R1
R∗3 = R3 − 2R1

⎛⎝ 1 1 2
−1+ 1 3+ 1 −5+ 2

2− (2× 1) −2− (2× 1) 7− (2× 2)

∣∣∣∣∣∣
3

7+ 3
1− (2× 3)

⎞⎠
Simplifying the arithmetic in the entries gives

R1
R∗2
R∗3

⎛⎝ 1 1 2
0 4 −3
0 −4 3

∣∣∣∣∣∣
3
10
−5

⎞⎠
Adding the bottom two rows, R∗3 + R∗2 , and simplifying gives:

x y z
R1
R∗2

R∗∗3 = R∗3 + R∗2

⎛⎝ 1 1 2
0 4 −3
0 0 0

∣∣∣∣∣∣
3
10
5

⎞⎠
Expanding the bottom row, R∗∗3 , we have 0x + 0y+ 0z = 5 which means that 0 = 5.
Clearly 0 cannot equal 5, therefore the given linear system is inconsistent.
The given equations can be illustrated as shown in Fig. 1.40.

x + y + 2z = 3

2x − 2y + 7z = 1

−x + 3y − 5z = 7

0
z

y4 3 21 0–1–2
–3

–4

–2

–1

x

0

1

1 2
–1

–2

Figure 1.40

(continued...)
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These equations are inconsistent because the three planes (equations) do not meet, which means there
is no point common to all three. There is no solution to the equations.

For a 3 by 3 linear system Fig. 1.41 illustrates situations where there are no solutions.

Equations with three
parallel planes.

Equations with two
parallel planes.

Three equations
form a prism.

cba

Figure 1.41

In each of these cases there is no point which is common to all three planes, and this
means that there is no solution to the linear system.

In general, if a linear system leads to

0x1 + 0x2 + 0x3 + · · · 0xn = b

where b �= 0 (b is not zero) then the system is inconsistent and does not have a solution.
A linear system (A | b ) has no solution if and only if the row equivalent

(
R
∣∣ b′ ) has no

solution.

1.7.3 Homogeneous systems

A homogeneous linear system is defined as Ax = O where A is an m by n matrix and x is
a vector.

Example 1.37

Solve the following homogeneous linear system:

−x + 2y+ 3z = 0
x − 4y− 13z = 0
−3x + 5y+ 4z = 0

which can be written as

⎛⎝ −1 2 3
1 −4 −13
−3 5 4

⎞⎠⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 0

0
0

⎞⎠
Solution
What is the augmented matrix equal to?

R1
R2
R3

⎛⎝ −1 2 3
1 −4 −13
−3 5 4

∣∣∣∣∣∣
0
0
0

⎞⎠
We need to get 0’s in the bottom left hand corner of the matrix, that is in place of 1,−3 and 5.
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How?
The row operations R2 + R1 and R3 − 3R1 give 0 in place of 1 and−3 respectively:

R1
R∗2 = R2 + R1
R∗3 = R3 − 3R1

⎛⎝ −1 2 3
1− 1 −4+ 2 −13+ 3

−3− 3 (−1) 5− 3 (2) 4− 3 (3)

∣∣∣∣∣∣
0

0+ 0
0− 3 (0)

⎞⎠
Simplifying the entries gives

R1
R∗2
R∗3

⎛⎝ −1 2 3
0 −2 −10
0 −1 −5

∣∣∣∣∣∣
0
0
0

⎞⎠
Executing the row operation 2R∗3 − R∗2 , and simplifying, yields:

R1
R∗2

R∗∗3 = 2R∗3 − R∗2

⎛⎝ −1 2 3
0 −2 −10
0 0 0

∣∣∣∣∣∣
0
0
0

⎞⎠
Multiplying the first row by−1 and the second row by−1/2 we have

x y z
R∗1 = −R1

R∗∗2 = −R∗2/2
R∗∗3

⎛⎝ 1 −2 −3
0 1 5
0 0 0

∣∣∣∣∣∣
0
0
0

⎞⎠ (†)

This augmented matrix is now in row echelon form.
By expanding the middle row, R∗∗2 , of (†) we have

y+ 5z = 0 which gives y = −5z

How can we find x?
Expanding the first row R∗1 of (†):

x − 2y− 3z = 0 which gives x = 2y+ 3z (∗)

As long as these equations, y = −5z and x = 2y+ 3z, are satisfied, we conclude that we have a
solution to the given linear system. In fact, there are an infinite number of solutions to this system
because we can let z be any real number and then write x and y in terms of z. Let z = t, where t is any
real number, then y = −5z = −5t. Rewriting (∗) using these values:

x = 2y+ 3z = 2 (−5t)+ 3t

= −10t + 3t = −7t

Hence our solution is x = −7t, y = −5t and z = t where t is any real number. This means that we
have an infinite number of solutions, which are in the proportion; x is−7 times z, y is−5 times z and z
can take any value t.

(continued...)
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The given equations are illustrated in Fig. 1.42

−3x + 5y + 4z = 0−1
−2

−2

−1

0z

1

2

−4 −3 −2 −1 0 1 2 3 4

y

0

1
x

This line represents 
the solution to the
given equations.

x − 4y − 13z = 0
−x + 2y + 3z = 0

Figure 1.42

In this case the three given equations have a line in common, and any point on this line
is a solution; that is why we have an infinite number of solutions.

As shown above, we can write the general solution as x = −7t, y = −5t and z = t, where
t is an arbitrary number called a parameter. A parameter is something that can be varied
to give a family of solutions.

Particular solutions are given by substituting real numbers for the parameter t. For exam-
ple, substituting t = 1 gives the particular solution x = −7t = −7, y = −5t = −5 and
z = t = 1. Check that this is actually a solution to the above linear system.

What is the particular solution if t = 2?

x = −7t = −14, y = −5t = −10 and z = t = 2

The solution for t = π is x = −7t = −7π , y = −5t = −5π and z = t = π .

What is the particular solution if t = 0?

x = 0, y = 0 and z = 0

All these solutions:

(−7,−5, 1), (−14,−10, 2), (−7π ,−5π ,π), (0, 0, 0)

lie on the straight line shown in Fig. 1.42.
The solution x = 0, y = 0 and z = 0 is called the trivial solution to the homogeneous

system.
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What does the term homogeneous mean?
A linear system is called homogeneous if all the constant terms on the right hand side are zero;
that is, Ax = O:

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = 0

In general, if a linear system of equations contains

0x1 + 0x2 + 0x3 + · · · + 0xn = 0 (∗)

then this equation can be removedwithout affecting the solution. A rowwith all zero entries
is called a zero row.

Note, that carrying out elementary row operations on zero rows gives another zero row.
You can verify this by applying the three elementary row operations on a zero row.

To understand the proof of the next Proposition (1.31) you will need to be sure that you
can recall the definition of reduced row echelon form, which was given in section 1.2.

Proposition (1.31). Let the above homogeneous linear system Ax = O, whose augmented
matrix is (A |O ), be row equivalent to (R |O ), where R is an equivalent matrix in reduced
row echelon form. Let there be n unknowns and r non-zero rows inR. If r < n (the number
of non-zero equations (rows) in R is less than the number of unknowns) then the linear
system (A |O ) has an infinite number of solutions.

By the above Proposition (1.30), (A |O ) and (R |O ) have the same solution set, therefore
in the following proof we consider the augmented matrix in reduced row echelon form
(R |O ).

Proof.
(This might be a bit hard to grasp on first reading.)

We are given that the number of non-zero equations (rows) r is less than the number of
unknowns n. The non-zero equations of R is rectangular in shape (Fig. 1.43):

Non-zero equations of R
Number of non-zero
equations (rows) = r

Number of unknowns = n

Figure 1.43

The reduced row echelon form matrix R has r non-zero rows. This means that there are
exactly r leading 1’s.
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Why?
Because R is in reduced row echelon form, which means that every non-zero row has a leading
1. However, because the matrix is rectangular, r < n, there must be at least one column, call it xj
(free variable), which has no leading 1:

1 1

1 0

  Row 0 0 1 0

0

j j n

jn

x x x x

jth a

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

jth Column

This means that the variable xj can take any value:

xj = 1, 2, 3,π ,−1, . . . which we can write as xj = s where s is any real number.

Hence we have infinite number of solutions.

Proposition (1.31) means that if a homogeneous linear system Ax = O has more
unknowns than (non-zero) equations then this system has an infinite number of solutions.

In Example 1.37 the row echelon form was given by (†) on page 95.

Non-zero
equations of R.

x y z ← 3 unknowns

R∗1
R∗∗2
R∗∗3

⎛⎜⎝ 1 −2 −3 0
0 1 5 0
0 0 0 0

⎞⎟⎠
We had three unknowns (n = 3) but only two non-zero rows (r = 2) in row echelon

form therefore there must be an infinite number of solutions because r = 2 < 3 = n.
If the number of unknowns n is greater than the number of non-zero equations in row

echelon form, n > r, then we say that there are n− r free variables. We normally assign
parameters such as s, t etc. to these free variables. In Example 1.37 we had 3− 2 = 1 free
variable which was z and we assigned the parameter t to it. The free variables are the
unknowns which do not start any equation (row) in row echelon form. In the above,
none of the equations (rows) begin with a value for z, therefore z is the free variable;
that is z = t, where t is any real number and we can find x and y in terms of t, x = −7t,
y = −5t.

Applying Proposition (1.31) to a general 3 by 3 (three equations with three unknowns)
system we can state the following:

Case I If there are three non-zero equations (rows) in row echelon form, then we have a
unique solution x = 0, y = 0 and z = 0 – Fig. 1.44(a).

Case II If there are less than three non-zero equations (rows) in row echelon form then
the solution is not unique and forms a line or a plane – Fig. 1.44(b) and (c).
Note, that for Fig. 1.44(b) and (c) we have an infinite number of solutions.
Since we have a homogeneous system, we must have a solution even if it is only the

trivial solution x = 0, y = 0 and z = 0.



TYPES OF SOLUTIONS 99

(0,0,0)

r = 2

Solution

r = 3 r = 1

Unique solution The whole line is a solution The whole plane is a solution

Solution

(a) No free variables (b) 1 free variable (c) 2 free variables

Figure 1.44

1.7.4 Non-homogeneous systems

A non-homogeneous linear system is defined as Ax = b where b �= O:

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm

Here, at least one of the b’s must take a value other than zero.

Proposition (1.32). Let a consistent non-homogeneous linear system, Ax = b where
b �= O, be row equivalent to the augmented matrix

(
R
∣∣ b′ ) where R is in reduced row

echelon form and there are n unknowns and r non-zero rows in R.
If r < n then the linear system Ax = b has an infinite number of solutions.

Proof – See Exercises 1.7.

Proposition (1.32) means that if the consistent linear systemAx = b hasmore unknowns
than non-zero equations in reduced row echelon form then this system has an infinite
number of solutions. Again, the non-zero equations of R form a rectangular matrix (more
columns than rows):

R

Example 1.38

Solve the following non-homogeneous linear system using Gaussian elimination:

x −y +2z +3u = 1
−x +y +2w −5u = 5
x −y +4z +2w +4u = 13

−2x +2y −5z −w −3u = −1
(continued...)
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Solution
The augmented matrix is

R1
R2
R3
R4

⎛⎜⎜⎝
1 −1 2 0 3
−1 1 0 2 −5
1 −1 4 2 4
−2 2 −5 −1 −3

∣∣∣∣∣∣∣∣
1
5
13
−1

⎞⎟⎟⎠
Note, that when a particular unknown does not exist in the equation, we place a 0 in the coefficient

part. To transform this matrix into (reduced) row echelon form, we execute the following elementary row
operations:

R1
R∗2 = R2 + R1
R∗3 = R3 − R1
R∗4 = R4 + 2R1

⎛⎜⎜⎝
1 −1 2 0 3

−1+ 1 1− 1 0+ 2 2+ 0 −5+ 3
1− 1 −1− (−1) 4− 2 2− 0 4− 3

−2+ 2 (1) 2+ 2 (−1) −5+ 2 (2) −1+ 2 (0) −3+ 2 (3)

∣∣∣∣∣∣∣∣
1

5+ 1
13− 1

−1+ 2 (1)

⎞⎟⎟⎠
Simplifying this gives

R1
R∗2
R∗3
R∗4

⎛⎜⎜⎝
1 −1 2 0 3
0 0 2 2 −2
0 0 2 2 1
0 0 −1 −1 3

∣∣∣∣∣∣∣∣
1
6
12
1

⎞⎟⎟⎠
To obtain 0’s in the bottom rows we have to carry out the following row operations:

R1
R∗2

R∗∗3 = R∗3 − R∗2
R∗∗4 = 2R∗4 + R∗2

⎛⎜⎜⎝
1 −1 2 0 3
0 0 2 2 −2

0− 0 0− 0 2− 2 2− 2 1− (−2)
2 (0)+ 0 2 (0)+ 0 2 (−1)+ 2 2 (−1)+ 2 2 (3)+ (−2)

∣∣∣∣∣∣∣∣
1
6

12− 6
2 (1)+ 6

⎞⎟⎟⎠
Simplifying the entries gives

R1
R∗2
R∗∗3
R∗∗4

⎛⎜⎜⎝
1 −1 2 0 3
0 0 2 2 −2
0 0 0 0 3
0 0 0 0 4

∣∣∣∣∣∣∣∣
1
6
6
8

⎞⎟⎟⎠
Dividing the third row by 3 and the fourth row by 4 (or multiplying by 1/3 and 1/4 respectively) gives

R1
R∗2

R†
3 = R∗∗3 /3

R†
4 = R∗∗4 /4

⎛⎜⎜⎝
1 −1 2 0 3
0 0 2 2 −2
0 0 0 0 1
0 0 0 0 1

∣∣∣∣∣∣∣∣
1
6
2
2

⎞⎟⎟⎠
Subtracting the last two rows from each other and dividing the second row R∗2 by 2 we have

x y z w u

R1
R∗2/2
R†
3

R†
4 − R†3

⎛⎜⎜⎜⎜⎜⎝
1 −1 2 0 3
0 0 1 1 −1
0 0 0 0 1

0 0 0 0 0

∣∣∣∣∣∣∣
1
3
2

0

⎞⎟⎟⎟⎟⎟⎠
(††)
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This matrix is now in row echelon form. We have three non-zero rows with five unknowns, therefore
by the above Proposition (1.32) we conclude that we have an infinite number of solutions and there are
5− 3 = 2 free variables. In (††) none of the equations (rows) start with y and w, therefore these are the
free variables.

From the third row R†
3 we have u = 2. By expanding the second row R∗2/2 we have

z + w− u = 3
z + w− 2 = 3

[
substituting u = 2

]
z + w = 5 which gives z = 5− w

Let w = t where t is an arbitrary real number then z = 5− t.
From the first row R1 we have

x − y+ 2z + 3u = 1

x− y+ 2 (5− t)+ 3 (2) = 1
[
substituting z = 5− t and u = 2

]
x − y+ 10− 2t + 6 = 1

[
simplifying

]
x = y+ 2t − 15

Let y = s, where s is an any real number, then

x = s+ 2t − 15

Hence our solution to the given linear system is

x = s+ 2t − 15, y = s, z = 5− t, w = t and u = 2

This is the general solution and you can find particular values by substituting any real numbers for s
and t. We have an infinite number of solutions.

1.7.5 Applications to puzzles

We can use Gaussian elimination to solve puzzles. We can solve Sudoku puzzles by using
this technique. Many of these have an infinite number of solutions but the puzzles in
national newspapers are for the general audience, so the answers are generally limited to
the positive whole numbers below 10 or 25.

Most people think that they have no choice but to solve these puzzles by trial and error,
but applying Gaussian elimination provides a general solution and is done systematically.

Example 1.39

In the following puzzle the row and columns add up to the numbers which are in the bold font. Find all
the unknowns x’s. (This is a much tougher example than you would find in a national newspaper.)

x1 x2 x3 15

x4 x5 x6 6

8 7 6

(continued...)
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Solution
Forming the equations by summing up the rows and columns we have

x1 +x2 +x3 = 15
x4 + x5 + x6 = 6

x1 +x4 = 8
x2 + x5 = 7

x3 + x6 = 6

⎡⎢⎢⎢⎢⎣
first row

second row
first column

second column
third column

⎤⎥⎥⎥⎥⎦
As long as this system is consistent, we can be sure that we have an infinite number of solutions,

because we have more unknowns (6) than equations (5).
The augmented matrix and reduced row echelon form which is evaluated by using mathematical

software such as MAPLE or MATLAB is given by:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

15

6

8

7

6

⎞⎟⎟⎟⎟⎟⎟⎟⎠

x1 x2 x3 x4 x5 x6

row 1

row 2

row 3

row 4

row 5

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −1 −1
0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

7

6

6

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
In reduced row echelon form we have four non-zero equations and six unknowns, therefore there are

6− 4 = 2 free variables. None of the equations start with x5 and x6, so these are our free variables. Let
x5 = s and x6 = t, where s and t are any real numbers.

Expanding row 4, we have x4 + x5 + x6 = 6 implies x4 = 6− x5 − x6 = 6− s− t
Expanding row 3, we have x3 + x6 = 6 implies x3 = 6− x6 = 6− t.
Expanding row 2, we have x2 + x5 = 7 implies x2 = 7− x5 = 7− s.
Expanding row 1, we have x1 − x5 − x6 = 2 implies x1 = 2+ x5 + x6 = 2+ s+ t.
Our solution is

x1 = 2+ s+ t, x2 = 7− s, x3 = 6− t, x4 = 6− s− t, x5 = s and x6 = t (∗)

where s and t are any real numbers. A particular solution can be found by letting s and t take on
particular values. For instance, let s = 1, t = 2, choosing these values so that they are different values
which might be one of the requirements of the puzzle and the numbers are nice and easy. Substituting
s = 1, t = 2 into (∗) gives

x1 = 5, x2 = 6, x3 = 4, x4 = 3, x5 = 1 and x6 = 2

Check that this is actually a solution to the above puzzle.
Of course, there are an infinite number of solutions to above puzzle – you could take

s = 1, t = 1 or s = −1, t = 5 or s = π , t = √2

and then feed these numbers into (∗), which will give other values for the unknowns.

In the above example, the solution:

x1 = 2+ s+ t, x2 = 7− s, x3 = 6− t, x4 = 6− s− t, x5 = s and x6 = t (∗)



TYPES OF SOLUTIONS 103

is the general solution, and can be written in vector form as

x =

⎛⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝

2+ s+ t
7− s
6− t

6− s− t
s
t

⎞⎟⎟⎟⎟⎟⎟⎠ = s

⎛⎜⎜⎜⎜⎜⎜⎝

1
−1
0

−1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎜⎜⎝

1
0
−1
−1
0
1

⎞⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎝

2
7
6
6
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
Another application of Gaussian elimination is analysing a mechanical device such as a

robotic arm. In an engineering context degrees of freedom are important.
If there are d free variables in a linear system then we have d degrees of freedom.

i Summary

Let (A | b ) and
(
R
∣∣ b′ ) be row equivalent where R is in reduced row echelon form.

Let n be the number of unknowns and r be the number of non-zero equations in R.
If r < n then the linear system (A | b ) has an infinite number of solutions.

EXERCISES 1.7

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Determine whether the following linear systems have a unique, infinitely many or no
solutions. Also determine the solutions in the case of the system consisting of infinitely
many and unique solutions.

(a)
x+ 3y+ 2z = 5
2x − y− z = 1

−x+ 2y+ z = 3
(b)

−x + y+ z = 0
3x− 2y+ 5z = 0
4x− y− 2z = 0

(c)
−x + y+ z = 2

2x+ 2y+ 3z = 5
6x+ 6y+ 9z = 7

(d)
x+ y− z = 2
x+ 2y+ z = 4

3x+ 3y− 3z = 6

(e)

3x− 3y− z + 2w = 0
6x− 7y+ z + w = 0
x− y− 2z − w = 0

2x− 2y+ 6z + 8w = 0

(f)

2x+ 3y+ 5z + 2w = 6
2x+ 3y+ 2z + 2w = 7

8x+ 12y+ 20z + 8w = 24
x+ 2y+ 4z + 5w = 6

(g)
−10y + 38z = 6

5x+ 6y− 8w+ 4z = 3
10x+ 7y+ 3w+ 8z = 9

(h)

−y + 5u = 3
3x− 4y + z + 6w+ 7u = 5
15x− 20y+ 2z + 30w+ 3u = −1
12x− 16y+ 7z + 24w+ 60u = 10
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(i)

−y + 5u = 3
3x− 4y + z + 6w + 7u = 5
15x− 20y+ 2z + 30w+ 3u = −1
12x − 16y+ 7z + 24w+ 60u = 46

(j)

2x− y + 3z + 5w + 5u = 1
x+ 7y+ 6z − 11w+ 7u = −8
x− 2y+ 6z + 4w + u = 5

2x− 6y + 14w+ 2u = 20
3

2. The reduced row echelon form of the corresponding equations have been evaluated
using software. Determine the solutions in vector form:

(a)
x+ y− 2z + 4w = 5
2x+ 2y− 3z + w = 3
3x+ 3y− 4z − 2w = 1

⎛⎝ 1 1 0 −10
0 0 1 −7
0 0 0 0

∣∣∣∣∣∣
−9
−7
0

⎞⎠

(b)
x1 + x2 + x3 + x4 + 2x5 + 3x6 = 0

2x1 + 2x2 + 2x3 + 2x4 + 4x5 + 5x6 = 0
3x1 + 3x2 + 3x3 + 3x4 + 6x5 + 7x6 = 0

⎛⎝ 1 1 1 1 2 0
0 0 0 0 1 0
0 0 0 0 0 0

∣∣∣∣∣∣
0
0
0

⎞⎠

(c)

x1 + 3x2 − 2x3 + x4 + 2x6 = 0
2x1 + 6x2 − 5x3 − 2x4 − 3x5 + 4x6 = −1

x3 + 2x4 + 3x5 = 1
x1 + 3x2 + 4x4 + 6x5 + 2x6 = 3

⎛⎜⎜⎝
1 3 0 0 6 2
0 0 1 0 3 0
0 0 0 1 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣
2
1
0
0

⎞⎟⎟⎠
3. Determine the value of k in the following, so that the system is consistent, and solve it:

2x − y − 4z = k
−x + y + 2z = k
−x + y + kz = k

4. Let u and v be solutions of a linear homogeneous system Ax = O. Prove that for any
scalars such as k and c the vector ku+ cv is also a solution ofAx = O. This means that
Ax = O has an infinite number of solutions, provided u and v are solutions.

5. Consider the non-homogeneous linear system Ax = b where b �= O. If xp is a particu-
lar solution to thisAx = b and xh is the solution to the associated homogeneous system
Ax = O, then prove that xp + xh is a solution to Ax = b.

6. Prove Proposition (1.32).
7. ∗Prove that the reduced row echelon form (rref) of an n by n matrix either is the

identity matrix I or contains at least one row of zeros.
You may use software for the remaining questions.

8. The numbers highlighted with bold are totals for each column and row. Solve the
following puzzle and write the general solution in vector form:

x1 x2 x3 6

x4 x5 x6 15

5 7 9
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9. Solve the following puzzle and write the general solution in vector form:

x1 x2 x3 16

x4 x5 x6 21

x7 x8 x9 8

17 15 13

10. The number in each circle is the sum of the numbers in the four squares surrounding
it. Solve the following Sujiko puzzle and write the general solution in vector form:

x1 x2 x3

x4 x5 x6

x7 x8 x9

19 18

28 25

11. Global positioning system (GPS) is used to find our location. Satellites send signals to a
receiver on earth with information about the location of the satellite in xyz- coordinate
system and the time t when the signal was transmitted. After some calculations we
obtain the following three linear equations. Solve these equations.

2x− 4y+ 4z + 0.077t = 3.86
−2y+ 2z − 0.056t = −3.47

2x− 2y = 0

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 1.8 The Inverse Matrix Method

By the end of this section you will be able to

● understand what is meant by an elementary matrix

● determine the inverse of a given matrix

● apply the inverse matrix method to encryption of messages

Another way to solve the linear system Ax = b where A is invertible is to use the inverse
matrix, because x = A−1b. However, finding the inverse of a matrix is a long process and
we can often solve linear systems quickly using Gaussian elimination.
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So why do we want to find the inverse matrix?
The inverse matrix is not useful for solving a single linear system Ax = b, but it is useful if one
needs to solve many systems that have the same coefficient matrix A. For example, suppose you
have 100 linear systems Axk = bk, where the coefficients are fixed but the right hand side vector
bk varies and you want to solve these. In this case, you would invert the coefficient matrix A only
once and then find xk = A−1bk for each bk.

There are many real life applications where you might need to solve the linear system,
Ax = b, in which matrix A remains the same while vector b changes. In that case, it is
more efficient to solve for the inverse of A once, then multiply that inverse by the various b
vectors. This is because matrix A is generally a common property but vector b a particular
property of the system.

In order to evaluate the inverse matrix we need to first describe elementary matrices and
show how they are related to row operations.

1.8.1 Elementary matrices

An elementary matrix is a matrix obtained by a single row operation on the identity
matrix I.

For example,

⎛⎝ 1 0 0
0
√
2 0

0 0 1

⎞⎠ is an elementary matrix because we have multiplied the

middle row of the identity matrix

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ by
√
2. We carried out a single row

operation.

Example 1.40

Which of the following are elementary matrices?

A =
⎛⎝ 1 0 0

0 1 0
0 0 23

⎞⎠, B =

⎛⎜⎜⎝
1 0 −5 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠, C =
⎛⎝ 1 0 3

0 4 0
0 0 1

⎞⎠ andD =
(

0 1
1 0

)

Solution
A, B and D are elementary matrices.
Why?
Matrix A is an elementary matrix because we can obtain this matrix by multiplying the bottom row of the
identity matrix by 23. Matrix B is an elementary matrix because we can obtain this matrix by adding−5
times the third row to the first row of the identity matrix I4. Matrix D is clearly an elementary matrix

because we have just interchanged the rows of the identity matrix

(
1 0
0 1

)
. Remember, swapping rows

is a single row operation.
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Matrix C is not an elementary matrix because we cannot obtain the matrix C by a single row operation
on the identity matrix. Two row operations on the identity matrix are required to obtain matrix C. The
two row operations are:

1. Add 3 times the bottom row of the identity matrix to the top row.

2. Multiply the middle row of the identity matrix by 4.

If an elementary matrix, E, is obtained from the identity matrix by a certain row opera-
tion then the matrix multiplication EA produces the same operation on the matrix A. For
example, consider the general 3 by 3 matrix and the elementary matrix obtained from the
identity matrix by interchanging the bottom two rows:

A =
⎛⎝ a b c

d e f
g h i

⎞⎠ and E =
⎛⎝ 1 0 0

0 0 1
0 1 0

⎞⎠
interchanged

Then the matrix multiplication EA =
⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠⎛⎝a b c
d e f
g h i

⎞⎠=
⎛⎝a b c
g h i
d e f

⎞⎠ interchanged

What does the given elementary matrix E do to the matrix A?
It performs the same row operation of interchanging the bottom two rows.

What effect does the matrix multiplication EA, where E =
⎛⎜⎝ 1 0 0

0 −2 0
0 0 1

⎞⎟⎠, have on the general 3 by

3 matrix A?
The elementary matrix E in this case is obtained from the identity matrix by multiplying the middle
row by −2. Carrying out the matrix multiplication EA gives

EA =
⎛⎜⎝ 1 0 0

0 −2 0
0 0 1

⎞⎟⎠
⎛⎜⎝ a b c

d e f
g h i

⎞⎟⎠ =
⎛⎜⎝ a b c
−2d −2e −2f
g h i

⎞⎟⎠
Hence the matrix multiplication EA performs the same elementary row operation of

multiplying the middle row by−2.
In general, if E is a n by n elementary matrix obtained by performing a particular row

operation on the identity matrix In andA is an n by rmatrix then the matrix multiplication
EA performs the same row operation onA.We can usematrix E to execute a row operation.

Can you remember what is meant by the term row equivalent from the previous section?
Matrices that are obtained from one another by a finite number of elementary row operations are
said to be row equivalent.

Definition (1.33). Amatrix B is row equivalent to a matrixA if and only if there are a finite
number of elementary matrices E1, E2,E3, . . . and En such that B = EnEn−1 · · ·E2E1A.
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This definition means that the matrix B can be obtained from matrix A by a finite
number of row operations. Note, that A is pre-multiplied (left multiplied) by elementary
matrices.

Note, that if matrix B is row equivalent to matrix A then the reverse is also true, matrix
A is row equivalent to matrix B. You are asked to show this result in Exercises 1.8.

Proposition (1.34). An elementarymatrix is invertible (non-singular) and its inverse is also
an elementary matrix.

Proof – See Exercises 1.8.

1.8.2 Equivalent statements

You will need to look up what is meant by reduced row echelon form (rref), which was
defined in subsection 1.2.4 to understand this subsection.

In the remaining subsections, we find the inverse matrix by placing the given matrix
into reduced row echelon form, but first we establish an important theorem showing
equivalence.

What does the term equivalence mean?
Two statements P and Q are equivalent if both P and Q are true or both are false. Another way of
saying this is ‘P if and only if Q’ denoted by P⇔ Q. This means that P implies Q and Q implies P, –
it goes both ways, P⇒ Q and Q⇒ P.

We prove propositions of the form P⇒ Q by assuming statement P to be true and then
deduce Q.

In general, we say four statements P,Q, R and S are equivalent if P⇒ Q⇒ R⇒ S⇒ P.

P

Q

R

S

Next we prove an important theorem regarding invertible matrices.

Why do we bother with proofs?
One of the fundamental aims of a linear algebra course is to learn reasoning. Many people see
mathematics as just a tool used by engineers and scientists, but this misses the depth of reasoning
and the inherent beauty of it. Proofs explain why mathematics works and not just how.

Theorem (1.35). Let A be a n by n matrix, then the following 4 statements are
equivalent:

(a) The matrix A is invertible (non-singular).
(b) The linear system Ax = O only has the trivial solution x = O.
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(c) The reduced row echelon form of the matrix A is the identity matrix I.
(d) A is a product of elementary matrices.

Proof – How can we prove this theorem?
We show (a) implies (b) and (b) implies (c) and (c) implies (d) and (d) implies (a). In symbolic
notation, this is (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a). We first prove (a) implies (b).

For (a) ⇒ (b) :
We assume statement (a) to be true and deduce statement (b).
By assuming A is an invertible matrix we need to show that the linear system

Ax = O only has the trivial solution x = O. Consider the linear system Ax = O, becauseA
is invertible, therefore there is a unique matrix A−1 such that A−1A = I. Multiplying both
sides of Ax = O by A−1 yields

A−1A︸ ︷︷ ︸
=I

x = A−1O

Ix = A−1O = O
Ix = O which gives x = O

[
because Ix = x

]
The answer x = O means that we only have the trivial solution x = O. Hence we have

shown (a)⇒ (b). Next we prove (b) implies (c).
For (b) ⇒ (c):

The procedure to prove (b)⇒ (c) is to assume statement (b) and deduce (c). This time
we assume that Ax = O only has the trivial solution x = O and, by using this, prove that
the reduced row echelon form of the matrix A is the identity matrix I.

The reduced row echelon form of matrixA cannot have a row (equation) of zeros, other-
wise we would have n unknowns but less than n non-zero rows (equations), which means
that by Proposition (1.31): if r < n then the linear system Ax = O has an infinite number
of solutions.

Wewould have an infinite number of solutions. However, we only have a unique solution
to Ax = O, therefore there are no zero rows.

Question (7) of Exercises 1.7 claims: the reduced row echelon form of a matrix is either
the identity I or it contains a row of zeros.

Hence the reduced row echelon form of A is the identity matrix. We have (b)⇒ (c).
For (c) ⇒ (d):

In this case, we assume part (c), that is ‘the reduced row echelon form of the matrix A
is the identity matrix I’, which means that the matrix A is row equivalent to the identity
matrix I. By definition (1.33):

B is row equivalent to a matrix A if and only if B = EnEn−1 · · ·E2E1A.
There are elementary matrices E1,E2,E3, . . . and Ek such that

A = EkEk−1 · · ·E2E1I
[
because A is row equivalent to I

]
= EkEk−1 · · ·E2E1

[
because I is the identity matrix

]
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This shows that matrix A is a product of elementary matrices. We have (c) ⇒ (
d
)
.

For (d ) ⇒ (a):
In this last case, we assume that matrixA is a product of elementary matrices and deduce

that matrix A is invertible. By Proposition (1.34): an elementary matrix is invertible.
We know that elementary matrices are invertible (have an inverse) and therefore the

matrix multiplication EkEk−1 · · ·E2E1 is invertible. In fact, we have

A−1 = (EkEk−1 · · ·E2E1)−1
= E−11 E−12 · · ·E−1k−1E

−1
k

[
because (XYZ)−1 = Z−1Y−1X−1

]
Hence the matrix A is invertible, which means that we have proven (d)⇒ (a).
We have shown (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a) which means that the four statements (a),

(b), (c) and (d) are equivalent.

1.8.3 Determining the inverse matrix

Any two statements out of four in the above Theorem (1.35) are equivalent. That is, (a)⇒
(b) and (b)⇒ (a), which is normally written as (a)⇔ (b).

By the above Theorem (1.35), we also have (a) ⇔ (c) which means that the (n by n)
matrix A is invertible⇔ A is row equivalent to the identity matrix I. There are elementary
matrices E1,E2,E3, . . . and Ek such that

I = EkEk−1 · · ·E2E1A (∗)

Right multiplying both sides of (∗) by A−1 gives

IA−1︸ ︷︷ ︸
=A−1

= EkEk−1 · · ·E2E1 AA−1︸ ︷︷ ︸
=I

A−1 = EkEk−1 · · ·E2E1I

Hence from I = EkEk−1 · · ·E2E1A we deduced that A−1 = EkEk−1 · · ·E2E1I.
What does this mean?
It means that the same elementary matrices E1 , E2, E3, . . . and Ek transform the identity matrix I
into the invertible matrix A−1 . This actually implies that we have to perform the same row opera-
tions that transform the matrix A to the identity matrix I and also transform I to the inverse matrix
A−1. Summarizing this:

(A | I )× A−1 =
(
I
∣∣∣ A−1 )

Thismeans that we convert (A | I ) to (I ∣∣ A−1 ). Hence the row operations that transform
matrix A into I, also transform I into A−1.



THE INVERSE MATRIX METHOD 111

Example 1.41

Determine the inverse matrix A−1 given that A =
⎛⎝ 1 0 2

2 −1 3
4 1 8

⎞⎠.

Solution
Above we established that the row operations for transforming A into the identity matrix I are the same
as for transforming the identity matrix I into the inverse matrix A−1, therefore we carry out the row
operations simultaneously. This is achieved by transforming the augmented matrix (A | I ) into the
augmented matrix

(
I
∣∣ A−1 ). Labelling the rows:

R1
R2
R3

⎛⎝ 1 0 2
2 −1 3
4 1 8

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎞⎠ = (A | I )

Remember that R1 , R2 and R3 represent the first, second and third rows respectively.
Our aim is to convert the given matrix A (left) into the identity matrix I.

How?
Need to convert the 2 and 4 in the bottom two rows into zeros by executing the following row operations:

R1
R′2 = R2 − 2R1
R′3 = R3 − 4R1

⎛⎝ 1 0 2
2− 2 (1) −1− 2 (0) 3− 2 (2)
4− 4 (1) 1− 4 (0) 8− 4 (2)

∣∣∣∣∣∣
1 0 0

0− 2 (1) 1− 2 (0) 0− 2 (0)
0− 4 (1) 0− 4 (0) 1− 4 (0)

⎞⎠
Simplifying the entries gives

R1
R′2
R′3

⎛⎝ 1 0 2
0 −1 −1
0 1 0

∣∣∣∣∣∣
1 0 0
−2 1 0
−4 0 1

⎞⎠
We interchange the bottom two rows, R′2 and R′3:

R1
R∗2 = R′3
R∗3 = R′2

⎛⎝ 1 0 2
0 1 0
0 −1 −1

∣∣∣∣∣∣
1 0 0
−4 0 1
−2 1 0

⎞⎠
Note that we have swapped the rows around so that the second row is in the correct format for the

identity matrix on the left hand side of the vertical line.
What else do we need for the identity matrix?
Convert the first−1 in the bottom row into zero.
How?
Add the bottom two rows and simplify the entries:

R1
R∗2

R∗∗3 = R∗3 + R∗2

⎛⎝ 1 0 2
0 1 0
0 0 −1

∣∣∣∣∣∣
1 0 0
−4 0 1
−6 1 1

⎞⎠
The−1 in the bottom row needs to be+1. Multiplying the bottom row by−1 yields

R1
R∗2

R†
3 = −R∗∗3

⎛⎝ 1 0 2
0 1 0
0 0 1

∣∣∣∣∣∣
1 0 0
−4 0 1
6 −1 −1

⎞⎠
We have nearly arrived at our destination, which is the identity matrix on the left.

(continued...)
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We only need to convert the 2 in the top row into 0. Carry out the row operation R1 − 2R†3 :

R∗1 = R1 − 2R†3
R∗2
R†
3

⎛⎝ 1− 2 (0) 0− 2 (0) 2− 2 (1)
0 1 0
0 0 1

∣∣∣∣∣∣
1− 2 (6) 0− 2 (−1) 0− 2 (−1)
−4 0 1
6 −1 −1

⎞⎠
Simplifying the arithmetic in the top row gives the identity on the left:

R∗1
R∗2
R†
3

⎛⎝ 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
−11 2 2
−4 0 1
6 −1 −1

⎞⎠ = (I ∣∣∣A−1 )

Hence the inverse matrix, A−1, is the matrix with the entries on the right hand side of the vertical line,

A−1 =
⎛⎝ −11 2 2

−4 0 1
6 −1 −1

⎞⎠.

This might seem like a tedious way of finding the inverse of a 3× 3 matrix, but there is
no easy method to find A−1 (if it exists) for any given 3× 3 or larger matrix A.

1.8.4 Solving linear equations

Consider a general linear system which is written in matrix form as

Ax = b [A is invertible]

Multiplying this by the inverse matrix A−1 gives

A−1A︸ ︷︷ ︸
=I

x = A−1b

Ix = A−1b implies x = A−1b
[
because Ix = x

]
Hence the solution of a linear system Ax = b where A is invertible is given by

(1.36) x = A−1b

This is why we need to determine the inverse matrix A−1. The next example demon-
strates how this works for particular linear systems of equations.

Example 1.42

Solve both the linear systems:

(a)
x + 2z = 5
2x − y+ 3z = 7
4x + y+ 8z = 10

(b)
x + 2z = 1
2x − y+ 3z = 2
4x + y+ 8z = 3
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Solution

(a) Writing this in matrix form Ax = b where

A =
⎛⎝ 1 0 2

2 −1 3
4 1 8

⎞⎠, x =
⎛⎝ x

y
z

⎞⎠ and b =
⎛⎝ 5

7
10

⎞⎠
By the above result (1.36) we have x = A−1b, provided A is invertible.

What is the inverse matrix A−1 equal to?
The matrix A is the same matrix as the previous example, therefore the inverse matrix is already
evaluated:

A−1 =
⎛⎝ −11 2 2

−4 0 1
6 −1 −1

⎞⎠
Hence

x =
⎛⎝ x

y
z

⎞⎠ =
⎛⎝ −11 2 2

−4 0 1
6 −1 −1

⎞⎠⎛⎝ 5
7
10

⎞⎠ [
x = A−1b

]

=
⎛⎝ − (11× 5)+ (2× 7)+ (2× 10)

− (4× 5)+ (0× 7)+ (1× 10)
(6× 5)− (1× 7)− (1× 10)

⎞⎠ =
⎛⎝ −21−10

13

⎞⎠
We have x = −21, y = −10 and z = 13. You can check this is the solution to the given linear system

by substituting these values into the system.

(b) The coefficient matrix is the same and we have only changed the vector b. Hence

x =
⎛⎝ x

y
z

⎞⎠ =
⎛⎝ −11 2 2

−4 0 1
6 −1 −1

⎞⎠⎛⎝ 1
2
3

⎞⎠ =
⎛⎝ −1
−1
1

⎞⎠[because x = A−1b
]

We have x = −1, y = −1 and z = 1.

In the above example, we have solved two linear systems in one go because we had A−1.
Once we have the inverse matrix A−1, we can solve a whole sequence of systems such as

Ax1 = b1, Ax2 = b2, Ax3 = b3, . . . , Axk = bk by using xj = A−1bj.

Proposition (1.37). The linear system Ax = b has a unique solution⇔ A is invertible.

Proof – Exercises 1.8.
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We can add this statement (1.37) to the main Theorem (1.35) to get:

Theorem (1.38). Let A be an n by n matrix, then the following five statements are
equivalent:

(a) The matrix A is invertible (non-singular).
(b) The linear system Ax = O only has the trivial solution x = O.
(c) The reduced row echelon form of the matrix A is the identity matrix I.
(d) A is a product of elementary matrices.
(e) Ax = b has a unique solution.

1.8.5 Non-invertible (singular) matrices

If the above approach of trying to convert (A | I ) into the augmented matrix
(
I
∣∣ A−1 ) can-

not be achieved then the matrix A is non-invertible (singular). This means that the matrix
A does not have an inverse. By Theorem (1.38), we know that the matrix A is invertible
(has an inverse)⇔ the reduced row echelon form of A is the identity matrix I. Remember,
the reduced row echelon form of an n by nmatrix can only: (1) be an identity matrix or (2)
have a row of zeros.

If we end up with a row of zeros then the given matrix is non-invertible.

Proposition (1.39). Let A be a square matrix and R be the reduced row echelon form of A.
Then R has at least one row of zeros⇔ A is non-invertible (singular).

Proof.
See Exercises 1.8.

The proof of this result can be made a lot easier if we understand some mathematical
logic. Generally to prove a statement of the type P⇔ Q we assume P to be true and then
deduce Q. Then we assume Q to be true and deduce P.

However, in mathematical logic this can also be proven by showing:

(Not P)⇔ (Not Q)

Means that (Not P) ⇒ (Not Q) and (Not Q) ⇒ (Not P). This is because statements
P⇔ Q and (Not P)⇔ (Not Q) are equivalent. See website for more details.
The following demonstrates this proposition.

Example 1.43

Show that the matrix A is non-invertible where

A =

⎛⎜⎜⎝
1 −2 3 5
2 5 6 9
−3 1 2 3
1 13 −30 −49

⎞⎟⎟⎠
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Solution
Writing this in the augmented matrix form (A | I ) we have

R1
R2
R3
R4

⎛⎜⎜⎝
1 −2 3 5
2 5 6 9
−3 1 2 3
1 13 −30 −49

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
We need to convert the 2,−3 and 1 (bottom row) in the first column into 0’s.

How?
By executing the following row operations:

R1
R∗2 = R2 − 2R1
R∗3 = R3 + 3R1
R∗4 = R4 − R1

⎛⎜⎜⎝
1 −2 3 5

2− 2 (1) 5− 2 (−2) 6− 2 (3) 9− 2 (5)
−3+ 3 (1) 1+ 3 (−2) 2+ 3 (3) 3+ 3 (5)

1− 1 13− (−2) −30− 3 −49− 5

∣∣∣∣∣∣∣∣
1 0 0 0
−2 1 0 0
3 0 1 0
−1 0 0 1

⎞⎟⎟⎠
Simplifying the arithmetic gives

R1
R∗2
R∗3
R∗4

⎛⎜⎜⎝
1 −2 3 5
0 9 0 −1
0 −5 11 18
0 15 −33 −54

∣∣∣∣∣∣∣∣
1 0 0 0
−2 1 0 0
3 0 1 0
−1 0 0 1

⎞⎟⎟⎠
Note, that the bottom row is−3 times the third row on the left. Executing R∗4 + 3R∗3 :

R1
R∗2
R∗3

R∗∗4 = R∗4 + 3R∗3

⎛⎜⎜⎝
1 −2 3 5
0 9 0 −1
0 −5 11 18
0 0 0 0

∣∣∣∣∣∣∣∣
1 0 0 0
−2 1 0 0
3 0 1 0
8 0 3 1

⎞⎟⎟⎠
Since we have a zero row on the left hand side of the vertical line, therefore the reduced row echelon

form will have a zero row. We conclude by Proposition (1.37):

rref (A) = R has at least one row of zeros ⇔ A is non-invertible.

The matrix A is non-invertible (singular). That is the matrix A does not have an inverse.

If the matrix A does not have an inverse then the linear system Ax = b cannot have a
unique solution. We must have an infinite number or no solution.

We normally use the compact notation rref (A) = R to mean that the reduced row ech-
elon form of A is R. This notation rref (A) is the command in MATLAB to find the rref
of A.

1.8.6 Applications to cryptography

Cryptography is the study of communication by stealth. It involves the coding and decod-
ing of messages. This is a growing area of linear algebra applications because agencies such
as the CIA use cryptography to encode and decode information.

One way to code a message is to use matrices.
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For example, let A be an invertible matrix. The message is encrypted into a matrix B such
that the matrix multiplication AB is a valid operation. Send the message generated by the
matrix multiplication AB. At the other end, they will need to know the inverse matrix
A−1 in order to decode the message because A−1 (AB) = B. Remember that the matrix
B contains the message.

A simple way of encoding messages is to represent each letter of the alphabet by its
position in the alphabet and then add 3 to this. For example, we can create Table 1.3.

Table 1.3

Alphabet A B C D . . . W X Y Z

Position 1 2 3 4 . . . 23 24 25 26 27
Position +3 4 5 6 7 . . . 26 27 28 29 30

The final column represents space and we nominate this by a value of 27+ 3 = 30.
To eliminate tedium from calculations, we use appropriate software to carry out the

following example.

Example 1.44

Encode the message ‘OPERATION BLUESTAR’ by using matrix A where

A =
⎛⎝ 1 2 3

2 1 2
3 2 4

⎞⎠
Solution
Using the above table we have the numerical values as shown in Table 1.4.

Table 1.4

O P E R A T I O N B L U E S T A R

18 19 8 21 4 23 12 18 17 30 5 15 24 8 22 23 4 21

Since the matrix A is a 3 by 3 matrix, we write these numbers in 3 by 1 vectors so that matrix
multiplication is a valid operation. Hence⎛⎝ 18

19
8

⎞⎠,
⎛⎝ 21

4
23

⎞⎠,
⎛⎝ 12
18
17

⎞⎠,
⎛⎝ 30

5
15

⎞⎠,
⎛⎝ 24

8
22

⎞⎠ and

⎛⎝ 23
4
21

⎞⎠
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Putting these together as column vectors of matrix B so that we can multiply by A in one go:

B =
⎛⎝ 18 21 12 30 24 23

19 4 18 5 8 4
8 23 17 15 22 21

⎞⎠
Multiplying this matrix by A (use software to do this):

AB =
⎛⎝ 1 2 3

2 1 2
3 2 4

⎞⎠⎛⎝ 18 21 12 30 24 23
19 4 18 5 8 4
8 23 17 15 22 21

⎞⎠ =
⎛⎝ 80 98 99 85 106 94

71 92 76 95 100 92
124 163 140 160 176 161

⎞⎠
These numbers in the columns of matrix AB are transmitted, that is the encoded message is:

80, 71, 124, 98, 92, 163, 99, 76, 140, 85, 95, 160, 106, 100, 176, 94, 92, 161

By examining these numbers you cannot say they are related to the alphabet.
How do we decode this message?
We need to multiply by the inverse matrix. By using software the inverse matrix A−1 is

A−1 =
⎛⎝ 0 2 −1

2 5 −4
−1 −4 3

⎞⎠
To decode the message we need to find A−1 (AB), which is evaluated by using software:

A−1 (AB) =
⎛⎝ 0 2 −1

2 5 −4
−1 −4 3

⎞⎠⎛⎝ 80 98 99 85 106 94
71 92 76 95 100 92
124 163 140 160 176 161

⎞⎠ =
⎛⎝ 18 21 12 30 24 23

19 4 18 5 8 4
8 23 17 15 22 21

⎞⎠
The columns of this matrix A−1 (AB) are the entries:

18, 19, 8, 21, 4, 23, 12, 18, 17, 30, 5, 15, 24, 8, 22, 23, 4, 21

Using the above Table 1.3 backwards, we can read the message as ‘OPERATION BLUESTAR’.

We use cryptography all the time. For example, emails, websites, ATM cards and digital
passwords are all protected by encryption.

i Summary

You can find the inverse matrix of A by transforming the augmented matrix (A | I ) into the
augmented matrix

(
I
∣∣ A−1 ) by elementary row operations.

If in the process of this you get a row of zeros then the matrix A is non-invertible.
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EXERCISES 1.8

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Which of the following are elementary matrices?
For thematrices which are elementary, state the row operation on the identitymatrix

which produced them.

A =
⎛⎝ 3 0 0

0 3 0
0 0 3

⎞⎠, B =
⎛⎝ −1 0 0

0 1 0
0 0 1

⎞⎠, C =
⎛⎝ 0 1 0

1 0 0
0 0 1

⎞⎠, D =
⎛⎝ 1 0 0

3 1 0
0 0 1

⎞⎠,

E =
⎛⎝ 0 1 0

1 0 0
0 0 2

⎞⎠, F =
⎛⎝−1 0 −1

0 1 0
0 0 1

⎞⎠, G =
⎛⎜⎜⎝
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎠ andH =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠
2. Find the inverse of the following elementary matrices:

(a) E1 =
( −1 0

0 1

)
(b) E2 =

(
0 1
1 0

)
(c) E3 =

(
1 0
0 −2

)

(d) E4 =
⎛⎝ −5 0 0

0 1 0
0 0 1

⎞⎠ (e) E5 =
⎛⎝ 1 0 0

0 −√2 0
0 0 1

⎞⎠ (f) E6 =
⎛⎝ 1 0 0

0 1 0
0 0 π

⎞⎠
Also describe the inverse operation.

3. Find the matrix multiplication EA (matrix A is the general 3× 3 matrix) for the
following elementary matrices (k �= 0).
What effect, if any, does the elementary matrix E have on the matrix A?

(a) E =
⎛⎝ 1 0 0

0 −1 0
0 0 1

⎞⎠ (b) E =
⎛⎝ 0 0 1

0 1 0
1 0 0

⎞⎠ (c) E =
⎛⎝ k 0 0

0 1 0
0 0 1

⎞⎠
(d) E =

⎛⎝ 1 0 0
0 1 0
0 0 −1/k

⎞⎠
4. Find the inverse matrix, if it exists, by using row operations:

(a) A =
(

1 2
−1 4

)
(b) B =

(
2 −5
−6 1

)
(c) C =

⎛⎝ 1 0 2
2 3 1
3 6 0

⎞⎠
(d) D =

⎛⎝ 1 −1 1
1 0 −1
0 0 −1

⎞⎠ (e) E =
⎛⎝ 2 −1 0
−1 2 −1
0 −1 2

⎞⎠

(f) F =
⎛⎝ 1 3 4
−1 1 1
2 1 −2

⎞⎠ (g) G =

⎛⎜⎜⎝
−2 5 3 1
−9 2 −5 6
2 4 8 16
4 8 16 32

⎞⎟⎟⎠
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(h)H =

⎛⎜⎜⎝
1 2 −2 3

−2 1 −5 −6
−5 −10 9 −15
−6 −12 27 −18

⎞⎟⎟⎠ (i) J =

⎛⎜⎜⎝
1 2 −2 3

−2 1 −5 −6
−5 −10 9 −15
−6 −12 12 −19

⎞⎟⎟⎠
5. Determine whether the following linear systems have a unique solution by using the

inverse matrix method. Also find the solutions in the unique case.

(a) x+ 2y = 3
−x+ 4y = 5 (b) 2x− 5y = 3

−6x + y = −1

(c)
x + 2z = −1
2x+ 3y+ z = 1
3x+ 6y = 9

(d)
x− y+ z = 10
x − z = 3

−z = 5

(e)
2x− y = 5
−x+ 2y− z = 7
− y+ 2z = 3

(f)
x+ 3y+ 4z = −2
−x+ y+ z = 3
2x+ y− 2z = 6

(g)

x+ 2y− 2z + 3w = 8
−2x+ y− 5z − 6w = 1

−5x− 10y+ 9z − 15w = −1
−6x− 12y+ 12z − 19w = 5

For the next two questions use any appropriate software to carry out the evaluations.
6. By using Table 1.3 on page 116 encode the following messages using the matrix

A =
⎛⎝ 3 4 5

1 3 1
1 1 2

⎞⎠
(a) ATTACK (b) IS YOUR PARTNER HOME

7. Leontief input-output model. The Leontief model represents the economy as a lin-
ear system. Consider a particular economy which depends on oil (O), energy (E) and
services (S). The input-output matrix A of such an economy is given by:

O E S
O
E
S

⎛⎝ 0.25 0.15 0.1
0.4 0.15 0.2
0.15 0.2 0.2

⎞⎠ = A

The numbers in the first row are produced as follows:
To produce one unit of oil the oil industry uses 0.25 units of oil, 0.15 units of energy

and 0.1 units of services. Similarly the numbers in the other rows are established. The
production vector p and the demand vector d satisfies p = Ap+ d.

Determine the production (the production needed) vector p if d =
(100 100 100)T .

8. Let A be an invertible matrix. Show that ATx = b has a unique solution.
9. Consider the linear systems Ax = b and Bx = c where both A and B are invertible.

Show that (A+ B) x = b+ cmay have an infinite number of solutions.
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10. Prove Proposition (1.34).
11. Prove that if a matrix B is row equivalent to matrix A then there exists an invertible

matrix P such that B = PA.
12. (a) Prove that if a matrix B is row equivalent to matrix A then matrix A is row

equivalent to matrix B.
(b) Prove that if matrixA is row equivalent to matrix B andmatrix B is row equivalent

to matrix C then A is row equivalent to C.
13. Prove Proposition (1.37).
14. ∗Prove Proposition (1.39).
15. Explain why there are only three types of elementary matrices.
16. Prove that the transpose of an elementary matrix is an elementary matrix.

MISCELLANEOUS EXERCISES 1

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

In this exercise you may check your numerical answers using MATLAB.

1.1. Let A =
(
1 2
3 4

)
and B =

(
5 6
7 8

)
. Determine (a) (A− B) (A+ B) (b) A2 − B2

Explain why A2 − B2 �= (A− B) (A+ B).
University of Hertfordshire, UK

1.2. Let A and B be invertible (non-singular) n by n matrices. Find the errors, if any, in
the following derivation:

AB (AB)−1 = ABA−1B−1

= AA−1BB−1

= I× I = I

You need to explain why you think there is an error.
University of Hertfordshire, UK

1.3. Given the matrix

A = 1
7

⎛⎝ 3 −2 −6
−2 6 −3
−6 −3 −2

⎞⎠
(a) Compute A2 and A3.
(b) Based on these results, determine the matrices A−1 and A2004.

University of Wisconsin, USA
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1.4. Let A, B and C be matrices defined by

A =
⎛⎝ 1 0 −1
1 1 1
1 2 3

⎞⎠, B =

⎛⎜⎜⎝
1 1
1 2
0 −1
0 1

⎞⎟⎟⎠, C =
(

1 −1 1 0
−2 1 2 3

)

Which of the following are defined?

At, AB, B+ C, A− B, CB, BCt, A2

Compute those matrices which are defined.
Jacobs University, Germany

(part question)

1.5. Show that ATA is symmetric for all matrices A.
Memorial University, Canada

1.6. Find conditions on a, b, c, d, such that the matrix
[
a b
c d

]
commutes with the matrix[

1 2
3 0

]
.

Memorial University, Canada

1.7. Give an example of the following, or state that no such example exists: 2× 2 matrix
A and 2× 1 non-zero vectors u and v such that Au = Av yet u �= v.

Illinois State University, USA
(part question)

1.8. (a) If A =
(
1 2
3 4

)
and B =

(
0 1
−1 0

)
, compute A2, B2, AB and BA.

(b) If A =
(
a b
c d

)
and B =

(
e f
g h

)
, compute AB− BA.

Queen Mary, University of London, UK

1.9. Let M =
(
1 1
1 1

)
. Compute Mn for n = 2, 3, 4. Find a function c(n) such that

Mn = c (n)M for all n ∈ Z, n ≥1. (You are not required to prove any of your results.)
Queen Mary, University of London, UK

(part question)

1.10. Let A =
⎛⎜⎝ 1

3
1
3

1
3

1
3

⎞⎟⎠. Determine (i) A2 (ii) A3

Prove that An = 1
2

(
2
3

)n
A.

University of Hertfordshire, UK

1.11. How many rows does B have if BC is a 4× 6 matrix? Explain.
Washington State University, USA
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1.12. Determine, with explanation, if the following matrices are invertible.

(a)

⎡⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤⎦
(b) The n× nmatrix B if ABC = In and A and C are n× n invertible matrices.

Illinois State University, USA

1.13. (a) What is meant by saying that the n× nmatrix A is invertible?
(b) Find the inverse of the matrix,

A =
⎡⎣ 2 6 6

2 7 6
2 7 7

⎤⎦
Check your answer.

University of Sussex, UK

1.14. Obtain a Gaussian array from the following set of equations and transform it to
reduced row echelon form to obtain any solutions:

x+ y+ 2z = 8
−x − 2y+ 3z = 1
3x − 7y+ 4z = 10

Check your answer!
Any other method will not gain full marks.

University of Sussex, UK

1.15. Let A =
⎡⎣ 1 2 7
−2 5 4
−5 6 −3

⎤⎦, and let b =
⎡⎣ 3
3
1

⎤⎦.
(a) Reduce the augmented matrix for the system Ax = b to reduced echelon form.
(b) Write the solution set for the system Ax = b in parametric vector form.

University of South Carolina, USA
(part question)

1.16. Find the general solution in vector form to

x1 − x2 − 2x3 − 8x4 = −3
−2x1 + x2 + 2x3 + 9x4 = 5
3x1 − 2x2 − 3x3 − 15x4 = −9

using the Gaussian elimination algorithm. (Note: This means that you are allowed
to use your calculator only as a check.)

Illinois State University, USA
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1.17. Solve the following system of linear equations by Gauss–Jordan elimination:

x1 + 2x2 + x3 − 4x4 = 1
x1 + 3x2 + 7x3 + 2x4 = 2

x1 − 11x3 − 16x4 = −1
McGill University, Canada

1.18. Reduce the following augmented matrix to its (i) echelon form, (ii) row echelon form
and (iii) reduced row echelon form:⎡⎣ 1 2 5 6

3 7 3 2
2 5 11 22

⎤⎦
National University of Singapore

(part question)

1.19. Show that the following system of linear equations is inconsistent.

x1 + 2x2 − 3x3 − 5x4 = −13
3x1 + x2 + 4x3 − 4x4 = 5

2x1 − 2x2 + 3x3 − 10x4 = 7
x1 + x2 + 2x3 + 2x4 = 0

National University of Ireland, Galway
(part question)

1.20. Let A be the 3× 3 matrix determined by

A

⎡⎣ 0
1
1

⎤⎦ =
⎡⎣−10

2

⎤⎦ , A

⎡⎣ 1
0
1

⎤⎦ =
⎡⎣ 0
−1
2

⎤⎦ , A

⎡⎣ 1
1
0

⎤⎦ =
⎡⎣ 1
1
2

⎤⎦
Find A.

Columbia University, New York, USA

1.21. Consider the matrix A =

⎛⎜⎜⎝
2 2 0 2
−1 −1 2 1
2 2 −1 1
−1 −1 1 0

⎞⎟⎟⎠. Find rref(A).

Johns Hopkins University, USA
(part question)

1.22. Find all the solutions to the following system of linear equations.

2x1 + 3x2 + x3 + 4x4 − 9x5 = 17
x1 + x2 + x3 + x4 − 3x5 = 6
x1 + x2 + x3 + 2x4 − 5x5 = 8

2x1 + 2x2 + 2x3 + 3x4 − 8x5 = 14

RWTH Aachen University, Germany
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1.23. Let A =
[

1 0
−5 2

]
.

(a) Write A−1 as a product of two elementary matrices.
(b) Write A as a product of two elementary matrices.

McGill University, Canada

1.24. Write down the elementary matrix E that satisfies EA = B where

A =

⎡⎢⎢⎣
5 1 9
2 4 0
1 1 0

−1 3 −2

⎤⎥⎥⎦ and B =

⎡⎢⎢⎣
1 1 0
2 4 0
5 1 9

−1 3 −2

⎤⎥⎥⎦
University of Western Ontario, Canada

1.25. If (
AT − 3

[
1 2

−1 3

])−1
=
[
2 1
1 1

]
then A=

A.
[
5 5
1 0

]
B.
[
7 8
0 10

]
C.
[ −1 5

7 9

]
D.
[
4 −4
5 11

]
E.
[

2 −3
−6 8

]
F.
[
8 2
7 −5

]
University of Ottawa, Canada

1.26. Suppose that

B =
⎡⎣ 1 3 5

0 1 2
1 3 6

⎤⎦ , C =
⎡⎣ 3 0 1

0 2 0
5 0 −2

⎤⎦ , D =
⎡⎣ −3 1 2

1 0 −1
0 −2 0

⎤⎦
and that the 3× 3 matrix X satisfies B (X+ C) = D. Find X.

University of Western Ontario, Canada

1.27. (a) Use Gaussian elimination with back substitution or Gauss–Jordan to solve:

x+ y+ z = 5
−x+ 3y+ 2z = −2

2x+ y+ z = 1

(b) Check your answer using the inverse matrix method.
(c) Can you change the coefficient of the z variable in the third equation so that the

resulting system has no solutions? Find the value of the coefficient or explain
why such a change would be impossible.

Saint Michael’s College Vermont, USA
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1.28. Prove (give a clear reason): If A is a symmetric invertible matrix then A−1 is also
symmetric.

Massachusetts Institute of Technology USA

1.29. If A is a matrix such that A2 − A+ I = O show that A is invertible with inverse
I− A.

McGill University Canada 2007
(part question)

1.30. (a) Define what is meant by a square matrix A being invertible. Show that the
inverse of A, if it exists, is unique.

(b) Show that the product of any finite number of invertible matrices is invertible.
(c) Find the inverse of the matrix

A =
⎡⎣ 1 0 1
−1 1 1
0 1 0

⎤⎦
University of Sussex, UK

1.31. Let A and B be n× n invertible matrices, with AXA−1 = B. Explain why X is
invertible and calculate X−1 in terms of A and B.

University of South Carolina, USA
(part question)

1.32. What is the set of all solutions to the following system of equations?

⎡⎣ 0 1 1 0 2 0 4
0 0 0 1 3 0 5
0 1 1 0 2 1 10

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
e
f
g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎣ 7

8
16

⎤⎦

Columbia University, New York, USA

Sample Questions

1.33. Show that

AB = I⇔ BA = I

1.34. Prove that: If AB are square matrices and AB is invertible (non-singular) then both
A and B are invertible with (AB)−1 = B−1A−1.

1.35. LetD be the following n by nmatrix

D =

⎛⎜⎜⎜⎜⎜⎝
a11 0 · · · 0

0 a22 0
...

... 0
. . . 0

0
... 0 ann

⎞⎟⎟⎟⎟⎟⎠
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(i) Prove thatDp =

⎛⎜⎜⎜⎜⎜⎝
ap11 0 · · · 0

0 ap22 0
...

... 0
. . . 0

0
... 0 apnn

⎞⎟⎟⎟⎟⎟⎠ where p is a positive integer.

(ii) Prove that the inverse matrixD−1 =

⎛⎜⎜⎜⎜⎜⎝
a−111 0 · · · 0

0 a−122 0
...

... 0
. . . 0

0
... 0 a−1nn

⎞⎟⎟⎟⎟⎟⎠.



Des Higham
is the 1966 Professor of Numerical Analysis in
the Department of Mathematics and Statistics
at the University of Strathclyde in Glasgow, UK.

Tell us about yourself and your work.

I develop and apply mathematical models and computational algorithms. As a
mathematician, I am mostly interested in proving results, for example, showing that a
model can reproduce known behaviour of a physical system and then using it to make
predictions that can be tested experimentally. On the algorithmic side, I aim to prove
that a computational technique solves the required problem accurately and effectively.
However, I like to work alongside colleagues from other areas, including the life sciences
and e-business. This is a great way for me to get hold of realistic data sets, and it often
throws up challenges that inspire new mathematical ideas. So I find it very rewarding to
have my research stimulated and stress-tested by outside applications.

How do you use linear algebra in your job?

A good example is my research in network science. Here we are typically given data
about pairwise interactions (who phoned who, who emailed who, who follows who on
Twitter). This type of information is naturally represented by a matrix, and many of the
interesting questions (who are the key players, where are the bottlenecks, where is the
best place to learn the latest rumour, and can we categorize people into groups?) can be
thought of as problems in linear algebra.

How important is linear algebra?

Tasks such as solving linear systems and linear least squares problems and computing
eigenvalues/eigenvectors are the nuts and bolts that go into most of the algorithms used
in scientific computing.

What are the challenges connected with the subject?

In today’s high-tech digital world, we are being swamped with data. In fact, a lot of it is
about us! There is behavioural information about our on-line activities, our digital
communication patterns and our supermarket spending habits, and new experimental
techniques are generating more fundamental biological information about our DNA



sequences and the behaviour of our genes and our neurons. We need bigger computers
and smarter algorithms to keep up with the data deluge.

What are the key issues in your area of linear algebra research?

At the moment, I am focusing on two aspects. First, modelling issues for networks: what
‘laws of motion’ are responsible for the patterns of interactions that we see in digital
social media; i.e. how do matrix entries change over time? Second, what can we usefully
do with large scale interaction data; i.e. how do we summarize a giant matrix?

Have you any particular messages that you would like to give to students
starting off studying linear algebra?

You only have to look at the success of Google, and its underlying PageRank algorithm,
to get a feel for the relevance and power of linear algebra. If you want to understand
ideas in mathematics and statistics, and develop a useful set of skills, linear algebra is the
place to start.
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SECTION 2.1 Properties of Vectors

By the end of this section you will be able to

● prove some properties of vectors in Rn

● understand what is meant by the dot product and norm

● prove dot product and norm properties of vectors

In chapter 1 we looked at Rn or Euclidean n-space, named after the Greek mathematician
Euclid.

Figure 2.1 Euclid lived around
300 BC c© Fondazione Cariplo.

Euclid (Fig. 2.1) is famously known for his work ‘The
Elements’ which is also called ‘Euclid’s Elements’. This
work has been used in mathematics teaching for over
two thousand years and was first published as a book
in 1482. Only the Bible has been printed more times
than ‘Euclid’s Elements’.

Up until the 1970s, school mathematics in the UK
consisted of learning various parts of Euclid’s Elements.
The concept of mathematical proof and logical
reasoning is what made this work survive for so long.

Any element of Rn is a vector as we discussed in chapter 1.

What are the two attributes of a vector?
Length and direction. For example, navigating in the air is impossible without knowing both length
and direction of a vector (Fig. 2.2).
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Figure 2.2

We discuss the length and direction of a vector in these next two sections.
Remember, a vector is represented by components. For example, suppose your journey

home requires the following directions:

1. 3 blocks east
2. 2 blocks north
3. 4 floors up

We can specify this in three directions:

1. east/west – x axis
2. north/south – y axis
3. up/down – z axis

If we have three independent variables such as x, y and z, we can use R3 to view a prob-
lem geometrically. In fact, we don’t have to stop at three, we can consider any number of
independent variables, although clearly these do not represent a geometric interpretation
that we can plot.

Linear algebra is directly related to the geometry of Rn because in Rn we can convert
between geometry and algebra.

2.1.1 Vector addition and scalar multiplication properties

Remember, R2 forms a plane, and R3 is three-dimensional space.
Recall that a column vector in Rn is just a special matrix of size n (number of rows) by

one (number of columns), therefore all the properties of matrices that we looked at in the
last chapter also hold for a vector in Rn.

Next we define the two fundamental operations of linear algebra – vector addition and
scalar multiplication.

Proposition (2.1). Let u, v andw be vectors inRn and k, c be real numbers (or real scalars).
We have the following results:

(i) u+ v = v+ u (commutative law)
(ii) (u+ v)+ w = u+ (v+ w) (associative law)
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(iii) There exists a zero vectorO such that u+O = u (neutral element)
(iv) For every vector u there is a vector−u such that

u+ (−u) = O (additive inverse)

(v) k(u+ v) = ku+ kv (distributive law)
(vi) (k+ c)u = ku+ cu (distributive law)

(vii) (kc)u = k(cu) (associative law)
(viii) For every vector u we have 1u = u (neutral element)

Proof.
All of these properties follow from the matrix properties that were discussed in chapter 1.

We can use this proposition (2.1) to prove other properties of vectors in Rn.

Proposition (2.2). Let u be a vector in Rn. Then the vector−u which satisfies property (iv)
in the above Proposition (2.1) is unique:

u+ (−u) = O

Proof.
Let v be a vector in Rn such that

u+ v = O (∗)

What do we need to show?
Show that v = −u. Adding −u to both sides of (∗) gives

−u+ (u+ v) = (−u)+ O

(−u+ u)+ v = (−u)+ O

(u+ (−u))︸ ︷︷ ︸
=O

+v = −u

O+ v = −u

v = −u

What does Proposition (2.2) mean?
It means that for every vector u in Rn there is only one vector−u in Rn such that

u+ (−u) = O

Proposition (2.3). Let u be a vector in Rn then (−1)u = −u.
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Proof.

Let u =
⎛⎜⎝ u1

...
un

⎞⎟⎠. We first show that u+ (−1)u = O and then use the above Proposition

(2.2) which says −u is unique to deduce (−1)u = −u:

u+ (−1) u =
⎛⎜⎝ u1

...
un

⎞⎟⎠+ (−1)
⎛⎜⎝ u1

...
un

⎞⎟⎠ =
⎛⎜⎝ u1

...
un

⎞⎟⎠+
⎛⎜⎝−u1...
−un

⎞⎟⎠ [
scalar multiplication

]

=
⎛⎜⎝ u1

...
un

−u1
...
−un

⎞⎟⎠ =
⎛⎜⎝ 0

...
0

⎞⎟⎠ = O

We have u+ (−1)u = O and by the above Proposition (2.2) the vector −u which
satisfies u+ (−u) = O is unique, hence

(−1)u = −u

So far, we have looked at the two fundamental operations of linear algebra – vector
addition and scalar multiplication of vectors in Rn.

Next we look in more detail at the product of two vectors, covered in chapter 1.

2.1.2 Dot (inner) product revisited

Let u =
⎛⎜⎝ u1

...
un

⎞⎟⎠ and v =
⎛⎜⎝ v1

...
vn

⎞⎟⎠ be vectors in Rn then the dot product of u and v denoted

by u · v was defined in section 1.3.6 of the last chapter as

(1.5) u · v = u1v1 + u2v2 + u3v3 + · · · + unvn

This is the same as matrix multiplication of the transpose of u by the column vector v:

u · v = uTv =
⎛⎜⎝ u1

...
un

⎞⎟⎠
T ⎛⎜⎝ v1

...
vn

⎞⎟⎠

= (u1 u2 · · · un
)⎛⎜⎝ v1

...
vn

⎞⎟⎠ = u1v1 + u2v2 + u3v3 + · · · + unvn

Note, that this is how we multiply matrices – row by column. Recall that a vector is
simply a single column matrix. We transpose the left hand vector u because we can only
carry out matrix multiplication if the number of columns of the left handmatrix, u, is equal
to the number of rows of the right handmatrix, v.
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This matrix multiplication is called the dot or inner product of the vectors u and v and

(2.4) u · v = uTv = u1v1 + u2v2 + u3v3 + · · · + unvn

What do you notice about your answer?
The result of the dot product of two vectors in Rn is a real number; that is, carrying out the dot
product operation on two vectors gives us a scalar not a vector.

Also, note that the dot product of two vectors u and v is obtained by multiplying each
component uj with its corresponding component vj and adding the results.

Example 2.1

Let u = (−3 1 7 −5)T and v = (9 2 −4 1)T . Find u · v.

Solution
The given vectors u = (−3 1 7 −5)T and v = (9 2 −4 1)T were written in terms of the transpose
of the vector so that we can save space.

Applying the above formula (2.4) gives

u · v =

⎛⎜⎜⎝
−3
1
7
−5

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

9
2
−4
1

⎞⎟⎟⎠ = (−3× 9)+ (1× 2)+ (7× (−4))+ ((−5)× 1)

= −27+ 2− 28− 5 = −58
Hence u · v = −58.

You can check this answer, u · v = −58, by using the numerical software MATLAB. The
MATLAB command for the dot product of two vectors u and v is dot (u, v).

We can use dot product to write an equation. For example

3x+ 4y = 11 can be written as
(
3
4

)
·
(
x
y

)
= (3 4)

(
x
y

)
= 11

To solve this equation means ‘to determine the vector whose dot product with the vector
(3, 4) equals 11’.

The dot product also gives information about the angle between the two vectors but we
will discuss this in the next section.

Example 2.2

Let u =
(
2
5

)
and v =

(
5
−2
)

. Plot these vectors u and v in R2 and find u · v.

(continued...)



134 2 EUCLIDEAN SPACE

Solution
Plotting the vectors u and v in R2 gives (see Fig. 2.3).

90°

Figure 2.3

u · v =
(
2
5

)
·
(

5
−2
)
= (2× 5)+ (5× (−2)) = 10− 10 = 0

What do you notice about your answer?
Dot product is zero. Also note that the vectors u and v are perpendicular to each other.

Vectors u and v are perpendicular or orthogonal if and only if their dot product is zero.
Two vectors u and v in Rn are said to be perpendicular or orthogonal⇔

(2.5) u · v = 0

In linear algebra the concept of orthogonality is very important.

Example 2.3

Let u =
(
a
b

)
and v =

(
b

−a
)

be vectors in R2 . Prove that these vectors are orthogonal.

Solution
Carrying out the dot product of the given two vectors by applying the above formula (2.4):

u · v =
(
a
b

)
·
(

b
−a
)
= (a× b

)+ (b× (−a)) = ab− ba = 0

The dot product u · v is zero, therefore by the above formula (2.5) we conclude that the vectors u and v
are orthogonal (perpendicular) as shown in Fig. 2.4.
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90°

Figure 2.4

We can also apply the above formula (2.5), and use the dot product to solve equations
such as 3x+ 4y = 0.

Here, we need to find all the vectors (x y)T such that(
3
4

)
·
(
x
y

)
= 0

[
remember

(
3
4

)
·
(
x
y

)
= 3x + 4y

]
We know from the above formula (2.5), that if u · v = 0, then the vectors u and v are

perpendicular to each other.

We need to find the vectors which are perpendicular (orthogonal) to the vector
(
3
4

)
.

We can illustrate this (Fig. 2.5).

Figure 2.5

By examining Fig. 2.5 we see that every vector on the dashed line is perpendicular to the

vector
(
3
4

)
so we have an infinite number of solutions to the given equation 3x+ 4y = 0:

x = 4, y = −3 or x = −4, y = 3 or x = 0, y = 0 . . .
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We are given one equation, 3x+ 4y = 0, and two unknowns; x and y. From chapter 1
(Proposition (1.31)) we know that there are an infinite number of solutions to this equation,
because we have fewer equations (1) than unknowns (2).

2.1.3 Properties of dot (inner) product

Next we state some basic properties of the dot product in Rn.

Proposition (2.6). Let u, v and w be vectors in Rn and k be a real scalar (real number). We
have the following:

(i) (u+ v) · w = u · w+ v · w [distributive law]
(ii) u · v = v · u [commutative law]

(iii) (ku) · v = k (u · v) = (u · kv)
(iv) u · u ≥ 0 and we have u · u = 0⇔ u = O

(u · u is the square of the length of the vector u.)

Proof.

Let u = (u1 · · · un)T =
⎛⎜⎝ u1

...
un

⎞⎟⎠ and v = (v1 · · · vn)T =
⎛⎜⎝ v1

...
vn

⎞⎟⎠ be vectors in Rn.

(i) See Exercises 2.1.
(ii) Required to prove u · v = v · u:

u · v = u1v1 + u2v2 + u3v3 + · · · + unvn [applying (2.4)]
= v1u1 + v2u2 + v3u3 + · · · + vnun [because uj and vj are real so ujvj=vjuj]
= v · u

Note that matrix multiplication is not commutative but the dot product is.

(iii) How do we prove (ku) · v = k(u · v)?
By expanding the left hand side and showing that it is equivalent to the right:

(ku) · v =

⎡⎢⎢⎣k
⎛⎜⎜⎝
u1
...
un

⎞⎟⎟⎠
⎤⎥⎥⎦ ·
⎛⎜⎜⎝
v1
...
vn

⎞⎟⎟⎠ =
⎛⎜⎜⎝
ku1
...

kun

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
v1
...
vn

⎞⎟⎟⎠
[

scalar multiplication
of the vector u by k

]

= ku1v1 + ku2v2 + ku3v3 + · · · + kunvn
[
applying (2.4)

]
= k(u1v1 + u2v2 + u3v3 + · · · + unvn)

[
factorizing

]
= k (u · v) [because u1v1 + · · · + unvn = u · v]

Hence we have shown that (ku) · v = k (u · v).

Similarly we can show k(u · v) = (u · kv).
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(iv) What does u · u ≥ 0 mean?
As a real number u satisfies u× u ≥ 0 so similarly for vector u we have u · u ≥ 0.

How do we prove this result?

Substitute u =

⎛⎜⎜⎝
u1
...
un

⎞⎟⎟⎠ and then evaluate u · u:

u · u =

⎛⎜⎜⎝
u1
...
un

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
u1
...
un

⎞⎟⎟⎠ = u1u1 + u2u2 + u3u3 + · · · + unun
[
applying (2.4)

]

= (u1)2 + (u2)2 + (u3)2 + · · · + (un)2 ≥ 0

Since all the u’s are real numbers then each (uj)2 ≥ 0. Hence we have shown u · u ≥ 0.

How do we show the last part: u · u = 0⇔ u = O?
From above, we have u · u = (u1)2 + (u2)2 + (u3)2 + · · · + (un)2, therefore

u · u = 0⇔ (u1)2 + (u2)2 + (u3)2 + · · · + (un)2 = 0

⇔ u1 = u2 = u3 = · · · = un = 0

Remember that, from the definition of the zero vector u1 = u2 = u3 = · · · = un = 0, we
have u = O. Hence we have our result u · u = 0⇔ u = O.

2.1.4 The norm or length of a vector

Let u be a vector in Rn. The length or norm of a vector u is denoted by ‖u‖. We can use
Pythagoras’ theorem to find a way to define the norm of a vector. Consider a vector u in R2

(Fig. 2.6):

x

y

Figure 2.6

The length or norm of a vector u = (x y)T in R2 is given by:

‖u‖ =
√
x2 + y2
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Consider a vector v in R3 (Fig. 2.7):

z

y

x

x
y
z

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠

v

v

Figure 2.7

The length or norm of a vector v = (x y z)T in R3 is given by

‖v‖ =
√
x2 + y2 + z2

Pythagoras’ Theorem. Let u be a vector in Rn then the length of u =
⎛⎜⎝ u1

...
un

⎞⎟⎠ is given by:

(2.7) ‖u‖ =
√
(u1)2 + (u2)2 + (u3)2 + · · · + (un)2

The norm of a vector u is a real number which gives the length of the vector u.

Example 2.4

Let u =
(−7
−2
)

and v =
(
8
3

)
. Plot these vectors u and v in R2 and evaluate the norms ‖u‖ and ‖v‖.

Solution
Using Pythagoras’ theorem (2.7) gives the lengths:

‖u‖ =
√

(−7)2 + (−2)2 = √53 = 7.280 [3 dp]

‖v‖ =
√
82 + 32 = √73 = 8.544 [3 dp]

Plotting the vectors u =
(−7
−2
)

and v =
(
8
3

)
and labelling ‖u‖ and ‖v‖ in R2 gives (Fig. 2.8):
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–2

Figure 2.8

We can also write the length of the vector in terms of the dot product:
Let u be in Rn then

(2.8) ‖u‖ = √u · u [positive root]

Proof.
First, by applying formula (2.4) u · v = u1v1 + u2v2 + · · · + unvn we can find u · u:

u · u = u1u1 + u2u2 + u3u3 + · · · + unun

= (u1)2 + (u2)2 + (u3)2 + · · · + (un)2

Second, by taking the square root of this

√
u · u =

√
(u1)2 + (u2)2 + (u3)2 + · · · + (un)2 ={

By (2.7)

‖u‖

which is our required result.

This ‖u‖ = √u · u is called the Euclidean norm. There are other types of norms which
we will discuss in the next chapter.

The distance function (also called themetric) written as d(u, v) is the distance between
vectors u = (u1 u2 · · · un)T and v = (v1 v2 · · · vn)T in Rn and is defined as

(2.9) d (u, v) = ‖u− v‖

We can use this distance function to find the distance between various satellites for a
GPS system.
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Example 2.5

Let s1 = (1 2 3)T , s2 = (7 4 3)T and s3 = (2 1 9)T be the positions of three satellites as shown in
Fig. 2.9. Find the distances between the satellites.

s1

s2

s3

Figure 2.9

Solution
Using the above formula (2.9) we have d(s1, s2) = ‖s1 − s2‖.
What is s1 − s2 equal to?

s1 − s2 =
⎛⎝ 1
2
3

⎞⎠−
⎛⎝ 7
4
3

⎞⎠ =
⎛⎝ 1− 7
2− 4
3− 3

⎞⎠ =
⎛⎝−6−2

0

⎞⎠
By applying (2.9) we have

d(s1, s2) = ‖s1 − s2‖ =
√
(−6)2 + (−2)2 + 02 = √40 = 6.32 (2dp)

Similarly, the distance between other satellites is

d(s1, s3) = 6.16 (2dp) and d(s2, s3) = 8.37 (2dp)

Next we state and prove certain properties of the Euclidean norm of a vector.

2.1.5 Properties of the norm of a vector

For a scalar k we define the modulus of k denoted |k| as
|k| =

√
k2

Proposition (2.10). Let u be a vector inRn and k be a real scalar.We have the following:

(i) ‖u‖ ≥ 0 [positive] and ‖u‖ = 0⇔ u = O.
(ii) ‖ku‖ = |k|‖u‖
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Proof.
Let u be a vector in Rn; therefore we can write this as u = (u1 · · · un)T .

(i) Required to prove ‖u‖ ≥ 0. By Pythagoras’ theorem (2.7), we have the length of u:

‖u‖ =
√
(u1)2 + (u2)2 + (u3)2 + · · · + (un)2

Since the square root is positive, ‖u‖ ≥ 0.
Next we prove the equality; that is ‖u‖ = 0⇔ u = O. We have ‖u‖ = 0, which

means that

‖u‖ = √u · u = 0⇔ u · u = 0

By Proposition (2.6) part (iv), we have u · u = 0⇔ u = O. We have proven our
equality.

(ii) Expanding the left hand side of ‖ku‖ = |k|‖u‖ by applying definition;
(2.8) ‖v‖ = √v · v gives

‖ku‖ = √ku · ku =
√
k2(u · u)

=
√
k2
√
u · u [because k2 and u · u are real, so

√
ab = √a

√
b]

= |k|‖u‖ [from above we have
√
k2 = |k|]

Normally, to obtain the length (norm) of a given vector v you will find it easier to
determine ‖v‖2 = v · v and then take the square root of your result to find ‖v‖.

i Summary

Let u and v be vectors in Rn then the dot product u · v is given by (2.4)

u · v = u1v1 + u2v2 + u3v3 + · · · + unvn

The vectors u and v are orthogonal or perpendicular⇔ u · v = 0
The norm or length of a vector u in Rn is defined as

‖u‖ = √u · u =
√
(u1)2 + (u2)2 + (u3)2 + · · · + (un)2

EXERCISES 2.1

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

You may like to check your answers using the numerical software MATLAB.
The MATLAB command for norm of a vector u is norm(u).
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1. Let u =
(−1

3

)
and v =

(
2
1

)
be vectors in R2. Evaluate the following:

(a) u · v (b) v · u (c) u · u (d) v · v (e) ‖u‖2
(f) ‖v‖2 (g) ‖u‖ (h) ‖v‖ (i) ‖u+ v‖2 (j) d(u, v)

2. Let u = (2 3 −1)T and v = (5 1 −2)T be vectors in R3. Evaluate
(a) u · v (b) v · u (c) u · u (d) v · v (e) ‖u‖2
(f) ‖v‖2 (g) ‖u‖ (h) ‖v‖ (i) ‖u+ v‖2 (j) d(u, v)

3. Let u = (−1 2 5 −3)T and v = (2 −3 −1 5)T be vectors in R4. Evaluate
(a) u · v (b) v · u (c) u · u (d) v · v (e) ‖u‖2
(f) ‖v‖2 (g) ‖u‖ (h) ‖v‖ (i) ‖u+ v‖2 (j) d(u, v)

4. Let i =
⎛⎝ 1
0
0

⎞⎠ , j =
⎛⎝ 0
1
0

⎞⎠ and k =
⎛⎝ 0
0
1

⎞⎠. Show that

(a) i · i = 1 (b) j · j = 1 (c) k · k = 1 (d) i · j = 0 (e) i · k = 0 (f) j · k = 0
If u = ai+ bj+ ck and v = di+ ej+ f k show that u · v = ad + be+ cf .

5. Let u =
(−3

2

)
and v =

(−2
−3
)
be vectors in R2. Plot these vectors in R2 and show

that the vectors are orthogonal. Hence solve the equation−3x + 2y = 0.

6. Let u =
(

7
−2
)
and v =

(−5
3

)
. Determine the following norms and plot your result

on the same axes:
(a) ‖u+ v‖ (b) d(u, v ) = ‖u− v‖

7. Prove properties (ii), (v) and (vii) of Proposition (2.1).

8. Prove property (i) of Proposition (2.6).

9. Determine
1
‖u‖u for the following vectors in Rn:

(a) u = (2 −7)T (b) u = (−9 3 7)T (c) u = (−3 5 8 6)T

(d) u = (−6 2 8 3 5)T

Determine
∥∥∥∥ 1
‖u‖u

∥∥∥∥ in each case.

What do you notice about your results?

10. Show that, for any non-zero vector u in Rn , we have

∥∥∥∥ 1
‖u‖u

∥∥∥∥ = 1.

11. Let u and v be vectors in Rn. Disprove the following propositions:
(a) If u · v = 0 then u = O or v = O.
(b) ‖u+ v‖ = ‖u‖ + ‖v‖

12. Let u1, u2, u3, . . . , un be orthogonal vectors in Rn. Prove
(i) ‖u1 + u2‖2 = ‖u1‖2 + ‖u2‖2

∗(ii) ‖u1 + u2 + · · · + un‖2 = ‖u1‖2 + ‖u2‖2 + · · · + ‖un‖2
For part (ii) use mathematical induction.
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13. Let u and v be vectors in Rn. Prove that
(a) ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 (b) ‖u+ v‖2 − ‖u− v‖2 = 4 (u · v)

14. This question is on the properties of the distance function d(u v) where u and v are
vectors in n-space.

(i) Show that d (u, v) =
√

(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2.
(ii) Prove that d (u, v) = d (v, u).
(iii) Prove that d (u, v) ≥ 0 and d (u, v) = 0⇔ u = v.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 2.2 Further Properties of Vectors

By the end of this section you will be able to

● evaluate the angle between two vectors in Rn

● prove inequalities associated with the inner product and norm

In the last section we mentioned that the dot product has a geometric significance in R2

and R3, explained in subsection 2.2.2. In this section, we discuss the angle between two
vectors. Additionally, we examine normalization, a process that standardizes the length of
the vectors, while retaining information about their direction. This simplification is useful
when we are interested primarily in the direction of vectors.

Subsection 2.2.3, which deals with inequalities and proofs, requires you to recall some of
the properties of dot products and norms of vectors.

2.2.1 Revision of norm and dot product

We first do a numerical example of norms (lengths) and dot product. Remember, the norm
or length of a vector v is denoted by ‖v‖ and the dot product with a dot · between the two
vectors.

Example 2.6

Let u =
(
1
5

)
and v =

(
4
1

)
be in R2. Determine the following:

(i) |u · v| (ii) ‖u‖‖v‖ (iii) ‖u‖ + ‖v‖ (iv) ‖u+ v‖

Solution

(i) We have u · v =
(
1
5

)
·
(
4
1

)
= (1× 4)+ (5× 1) = 9 so |u · v| = |9| = 9.

(continued...)
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(ii) Remember, the symbol ‖‖means the length of the vector. By Pythagoras (2.7) we have

‖u‖ =
√
12 + 52 = √26 and ‖v‖ =

√
42 + 12 = √17

Multiplying these we have ‖u‖ ‖v‖ = √26×√17 = 21.02 (2dp).

(iii) Adding both the above results in part (ii) we have

‖u‖ + ‖v‖ = √26+√17 = 9.22 (2dp)

(iv) Similarly, by using Pythagoras:

‖u+ v‖ =
∥∥∥∥( 1

5

)
+
(
4
1

)∥∥∥∥ = ∥∥∥∥( 5
6

)∥∥∥∥ = √52 + 62 = √61 = 7.81 (2 dp)

We can illustrate these in R2 (Fig. 2.10):

(a) (b) 

26=u

17=v

7.81+ =u v
u

v

Figure 2.10

2.2.2 Angle between two vectors

d
θ

|F |cos(θ)

F

Figure 2.11 shows a constant force F applied to an object and, as a result, the object moves a distance ‖d‖.
The work done by the force is the product of the magnitude of the force in the line of action, ‖F‖ cos(θ ), and
the distance an object has moved ‖d‖. Hence

Work done = ‖F‖ cos(θ )× ‖d‖

Work is defined as the product of the force applied in a particular direction and the
distance it moves in that direction.

A real-world example of this is to imagine a rope tied to an object, perhaps a barge. You
need to move the barge by pulling the rope (Fig. 2.12).
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direction of travel
θ

Figure 2.12

If you could stand directly behind the barge and push, then all your force would be in
the direction of movement.

In this case, F and d are parallel and the angle between them is 0◦ so we have

Work done = ‖F‖ cos(0◦)× ‖d‖ = ‖F‖ × ‖d‖ [because cos(0◦) = 1]

This is the least possible force used to push the object because we are pushing in the same
direction as we would like the object to move.

If you push the barge in a direction perpendicular (orthogonal) to the canal, it would not
move forward at all, so you would do no work because

Work done = ‖F‖ cos(90◦)× ‖d‖ = 0 [because cos(90◦) = 0]

The actual amount of work done in moving the barge along the canal is a value some-
where between these two possibilities, and is given by the angle the rope makes with the
direction of the canal.

How can we find the angle θ between two vectors in the above diagrams?
To find the angle between two vectors we need to use the cosine rule from trigonometry (Fig. 2.13):

A B

C

ab

θ
c Figure 2.13

With reference to Fig. 2.13, the cosine rule from trigonometry states that

a2 = b2 + c2 − 2bc cos(θ)

Consider two non-zero vectors u = (u1, u2) and v = (v1, v2) inR2 with an angle θ between
them (Fig. 2.14):

||u||

||v || ||v
 –

 u||

θ

(u1, u2)

(v1, v2)

Figure 2.14
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By applying the above cosine rule to this triangle we have

‖v− u‖2 = ‖v‖2 + ‖u‖2 − 2‖v‖‖u‖ cos(θ)

Rearranging this:

‖v‖‖u‖ cos(θ) = 1
2
(‖v‖2 + ‖u‖2 − ‖v− u‖2)

= 1
2
[
v21 + v22 + u21 + u22 − (v1 − u1)2 − (v2 − u2)2

]
= 1

2
[
v21 + v22 + u21 + u22 −

(
v21 − 2u1v1 + u21

)− (v22 − 2u2v2 + u22
)]

= 1
2
[2u1v1 + 2u2v2] = u1v1 + u2v2

‖v‖‖u‖ cos(θ) = u1v1 + u2v2 ={
By (2.4)

u · v

Therefore the dot product is

(2.11) u · v = ‖u‖‖v‖ cos(θ)

What does this formula mean?
It means that the dot (inner) product of two vectors u and v is the length of vector u times the
length of vector v times the cosine of the angle θ between them.

In the example of pulling a barge, the work done, W = ‖F‖‖d‖ cos(θ), in moving the
barge a distance ‖d‖ is given by the dot product:

W = ‖F‖ ‖d‖ cos(θ) = F · d

where F is the constant (pulling) force applied to the barge. Hence, the work done is given
by the dot product of force F and distance d.

In physical terms, we can define the dot product of two vectors u and v as the work done
by v in moving the object a distance of ‖u‖ in the direction of u (Fig. 2.15).

Figure 2.15

Note the following:

(a) If two vectors u and v are pointing in same directions then the dot product is
positive. The two vectors are working (pushing or pulling) in the same direction
(Fig. 2.16(a)).
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Figure 2.16(a)

(b) If two vectors u and v are perpendicular (orthogonal) then the dot product is 0
because cos(90◦) = 0. (The force applied in the direction of the vector u contributes
nothing to the motion in the direction of vector v.) (Fig. 2.16(b))

u

v

Figure 2.16(b)

(c) If two vectors u and v are pointing in opposite directions then the dot product is
negative (Fig. 2.16(c)).

Figure 2.16(c)

The two vectors are working (pulling) in opposite directions.
When we talk about the angle θ between two vectors we mean the angle which lies

between 0◦ and 180◦ (or 0 to π radians), as shown in Fig. 2.17:

u

v

θ
θv

u

u
vθv

u

θ

Not this angle

Figure 2.17

Making cos(θ) the subject of formula (2.11) we have

(2.12) cos(θ) = u · v
‖u‖‖v‖ provided u and v are non-zero vectors.

For the above Example 2.6 the angle θ between the vectors u =
(
1
5

)
and v =

(
4
1

)
is

cos(θ) = u · v
‖u‖‖v‖ =

9
21.02

⎡⎣because u · v ={

By part (i)

9 and ‖u‖‖v‖ ={

By part (ii)

21.02

⎤⎦
Taking the inverse cosine of both sides gives θ = cos−1

(
9

21.02

)
= 64.88◦ (see

Fig. 2.10(a)).
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Example 2.7

Let u =
(−5
−1
)

and v =
(
4
2

)
be vectors in R2 . Determine the angle between these vectors and label

the angle and the vectors u and v in R2.

Solution
How do we find the angle between the given vectors?

By using formula (2.12) cos(θ) = u · v
‖u‖‖v‖ .

We need to find u · v, which is the dot product, and lengths ‖u‖, ‖v‖ of vectors u and v.
What is u · v equal to?
Using formula (2.4) u · v = u1v1 + u2v2 + · · · + unvn we have

u · v =
(−5
−1
)
·
(
4
2

)
= (−5× 4)+ (−1× 2) = −22

(The negative dot product means the two vectors are working in opposite directions.)
How can we determine the norm (length) of the vectors u and v?
By applying Pythagoras’ theorem (2.7) from the last section:

‖u‖ =
∥∥∥∥(−5−1

)∥∥∥∥ = √(−5)2 + (−1)2 = √26

‖v‖ =
∥∥∥∥( 4

2

)∥∥∥∥ = √42 + 22 = √20

Substituting u · v = −22, ‖u‖ = √26 and ‖v‖ = √20 into cos(θ) = u · v
‖u‖‖v‖ gives

cos(θ) = −22√
26
√
20
= − 22√

26× 20
= −0.965

What is the angle θ equal to?

θ = cos−1(−0.965) = 164.74◦ [Taking inverse cos]

Plotting these vectors and labelling the angle between them in R2 gives (Fig. 2.18):

Figure 2.18

(Note, the two vectors are pulling in opposite directions.)
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The formula for the angle between two non-zero vectors can be extended to any n-space,
that is let u and v be any non-zero vectors in Rn then

(2.13) cos(θ) = u · v
‖u‖‖v‖ where 0 ≤ θ ≤ π (radians)

In the exercises, we show that this angle, θ , between the vectors is unique.

Example 2.8

Let u =
⎛⎝ 3
−1
7

⎞⎠ and v =
⎛⎝−21

9

⎞⎠ be vectors in R3 . Determine the angle between these vectors.

Solution
The procedure is very similar to Example 2.7. We need to use the above formula (2.13):

cos(θ) = u · v
‖u‖‖v‖ .

What are the dot product u · v and the norms ‖u‖ and ‖v‖ equal to?
Applying dot product formula (2.4) we have

u · v =
⎛⎝ 3
−1
7

⎞⎠ ·
⎛⎝−21

9

⎞⎠ = (3× (−2))+ (−1× 1)+ (7× 9) = 56

To evaluate the lengths we use Pythagoras’ theorem (2.7):

‖u‖ =
√
32 + (−1)2 + 72 = √59 and ‖v‖ =

√
(−2)2 + 12 + 92 = √86

Substituting u · v = 56, ‖u‖ = √59 and ‖v‖ = √86 into cos(θ) = u · v
‖u‖‖v‖ gives

cos(θ) = 56√
59
√
86
= 56√

59× 86
= 0.786

How do we find the angle θ?

θ = cos−1(0.786) = 38.19◦ [inverse cos]

2.2.3 Inequalities

Next, we prove some inequalities in relation to the dot product and norm (length) of
vectors.

Cauchy–Schwarz inequality (2.14). Let u and v be vectors in Rn then

|u · v| ≤ ‖u‖‖v‖
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For the above Example 2.6 we had

|u · v| ={

By part (i)
9 ≤ 21.02 ={

By part (ii)
‖u‖‖v‖

Proof.

How can we prove this inequality for any vectors in Rn?
If the vectors u and v are non-zero then we can use the above formula:

(2.11) u · v = ‖u‖‖v‖ cos(θ)

Taking the modulus of both sides we have

|u · v| = |‖u‖‖v‖ cos(θ )|

The lengths are positive or zero, ‖u‖ ≥ 0 and ‖v‖ ≥ 0, therefore the modulus of these is just
‖u‖ and ‖v‖ respectively.

Why?
Because if x ≥ 0 then |x| = x. Hence we have |u · v| = ‖u‖‖v‖ |cos(θ)|.
What can we say about the size of |cos(θ)| for any real angle θ?
From trigonometry we know that the cosine of any real angle cannot be greater than 1:

0 ≤ |cos(θ )| ≤ 1 [Lies between 0 and 1]

By substituting the right hand inequality |cos(θ)| ≤ 1 into the above derived equation
|u · v| = ‖u‖‖v‖ |cos(θ)| we have

|u · v| ≤ ‖u‖‖v‖ (1) = ‖u‖‖v‖

Hence we have proven the Cauchy–Schwarz inequality, |u · v| ≤ ‖u‖‖v‖, for non-zero
vectors u and v.

If u = O or v = O then

u · v = 0 and therefore |u · v| = 0 and ‖u‖‖v‖ = 0

Cauchy–Schwarz inequality, |u · v| ≤ ‖u‖‖v‖, holds in this case as well because 0 ≤ 0.

The Cauchy–Schwarz inequality claims that the dot product is less than or equal to the
multiplication of lengths of the vectors.
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Figure 2.19 (a) Cauchy 1789–1857.

Augustin Cauchy (Fig. 2.19(a)) was born in 1789 in
Paris, France. He took the entrance exam for the
prestigious Ecole Polytechnique in 1805 and
graduated in 1807. For the next eight years he had
various posts in the field of engineering but he was
persuaded by Lagrange and Laplace to convert to
mathematics. In 1815, he became Assistant Professor
of Mathematics Analysis at the Ecole Polytechnique
and he was the first person to make analysis rigorous.

Figure 2.19 (b) Schwarz 1843–1921.

Hermann Schwarz (Fig. 2.19(b)) was born in 1843 in
Poland and wanted to study chemistry at university.
However, Weierstrass and Kummer convinced him to
study mathematics at the Technical University of
Berlin.

In 1864, he received his doctorate under the
supervision of Weierstrass and completed a teaching
qualification in 1867. Schwarz held various posts at
the University of Halle, and in 1875 he managed to
secure the post of Chair of Mathematics at Göttingen
University. At that time, Göttingen University was
building a prolific reputation in the field of
mathematics but in 1892 he left Göttingen to take up
a professorship at the University of Berlin.

Next we prove an inequality dealing with addition of lengths of vectors rather than
multiplication.

To establish the next inequality we need to use the following results of inequalities from
real numbers:

|x+ y+ z| ≤ |x| + |y| + |z| (∗)

x ≤ y⇔√
x ≤ √y provided x ≥ 0, y ≥ 0 (∗∗)
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Minkowski (triangular) inequality (2.15). Let u and v be vectors in Rn then

‖u+ v‖ ≤ ‖u‖ + ‖v‖
What does this mean in R2?

||u||

||v
||||u + v||

A

C

B Figure 2.20

The length (norm) ‖u+ v‖ is less than or equal to the other two lengths (norms) added together
(Fig. 2.20). (If a donkey is at station A and the food is located at station C then the donkey would
travel the shortest distance along AC not AB and then BC, because the route AB–BC would always
be at least as long, or greater.)

In the above Example 2.6 for Fig. 2.10(b) we had:

‖u+ v‖ ={

By part (iv)
7.81 ≤ 9.22 ={

By part (iii)
‖u‖ + ‖v‖

Proof.

How can we prove this inequality?
We examine ‖u+ v‖2 and show that this is less than or equal to (‖u‖ + ‖v‖)2 and then take the
square root of both sides to get our inequality.

What is ‖u+ v‖2 equal to?

‖u+ v‖2 = (u+ v) · (u+ v)
[
By (2.8) ‖u‖ = √u · u ]

= (u · u)+ u · v+ v · u︸ ︷︷ ︸
=2u·v

+ (v · v)

= ‖u‖2 + 2 (u · v)+ ‖v‖2
[
Because u · u = ‖u‖2 and v · v = ‖v‖2

]
We can take the modulus of both sides. Since ‖u+ v‖2 ≥ 0, the modulus of this is the

same, that is |‖u+ v‖2| = ‖u+ v‖2. We have

‖u+ v‖2 = |‖u‖2 + 2 (u · v)+ ‖v‖2|
≤ |‖u‖2| + |2u · v| + |‖v‖2| [

applying |x+ y+ z| ≤ |x| + |y| + |z| (∗)
]

Because ‖u‖2 ≥ 0 and ‖v‖2 ≥ 0, the modulus of these is the same, that is

|‖u‖2| = ‖u‖2 and |‖v‖2| = ‖v‖2

The middle term on the right hand side is |2u · v| = 2|u · v|. Hence we have

‖u+ v‖2 ≤ ‖u‖2 + 2|u · v| + ‖v‖2
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By applying the above Cauchy–Schwarz inequality (2.14) |u · v| ≤ ‖u‖ ‖v‖ to this
middle term in the last line we have

‖u+ v‖2 ≤ ‖u‖2 + 2|u · v| + ‖v‖2
≤ ‖u‖2 + 2‖u‖ ‖v‖ + ‖v‖2 [

applying Cauchy–Schwarz |u · v| ≤ ‖u‖‖v‖]
= (‖u‖ + ‖v‖)2 [

using a2 + 2ab+ b2 = (a+ b)2
]

Taking the square root of this ‖u+ v‖2 ≤ (‖u‖ + ‖v‖)2 gives our required inequality

‖u+ v‖ ≤ ‖u‖ + ‖v‖ [By (∗∗)]

Next we give a brief biography of Minkowski (pronounced ‘Minkofski’).

Figure 2.21 Minkowski.

Hermann Minkowski (Fig. 2.21) was born in 1864 to
Jewish parents in Lithuania, but received his education
in Germany at the University of Königsberg.

At the age of 19, while still a student, Minkowski
won a prize from the French Academy of Sciences. In
1885, he received his doctorate under the supervision
of Lindemann. (Lindemann was the first to prove the
transcendence of π , in 1882.)

Minkowski taught at the universities of Bonn,
Königsberg, Zurich and finally settled in Göttingen in
1902, where he secured a post in the Mathematics
Department. He become a close friend of David
Hilbert.

Minkowski died at the young age of 44.

Note, that the Cauchy–Schwarz inequality is about the lengths of products of vectors:

|u · v| ≤ ‖u‖‖v‖

while the Minkowski inequality is about the lengths of addition of vectors:

‖u+ v‖ ≤ ‖u‖ + ‖v‖

2.2.4 Unit vectors

A vector of length 1 is called a unit vector. In Exercises 2.1, we showed that for any non-zero

vector u in Rn we have
∥∥∥∥ 1
‖u‖u

∥∥∥∥ = 1.
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What does this mean?
It means that we can always find a unit vector in the direction of any non-zero vector u by dividing
the given vector by its length ‖u‖ (Fig. 2.22).

1 u
u

u

Figure 2.22

For example, a vector in a particular direction of length 5 can be divided by 5 to give a
vector in the same direction but length 1 (unit vector).

The process of finding a unit vector in the direction of the given vector u is called
normalizing. The unit vector in the direction of the vector u is normally denoted by û
(pronounced as ‘u hat’) meaning it is a vector of length 1, that is

(2.16) û = 1
‖u‖u

Later on in this chapter we will see that normalizing vectors simplifies calculations.
Examples of unit vectors are shown in Fig. 2.23.

x

z

y

y

x

e1

e2

e3

 3

 2

e2 =
0
1

e1 =
1
0

Figure 2.23

The vectors shown in Fig. 2.23, e1 =
(
1
0

)
and e2 =

(
0
1

)
, are unit vectors in R2, and

e1 = (1 0 0)T , e2 = (0 1 0)T and e3 = (0 0 1)T are unit vectors inR3. These are
normally called the standard unit vectors.

For any n space, Rn, the standard unit vectors are defined by

e1 =

⎛⎜⎜⎜⎜⎜⎝
1
0
...

0

⎞⎟⎟⎟⎟⎟⎠ , e2 =

⎛⎜⎜⎜⎜⎜⎝
0
1
0
...
0

⎞⎟⎟⎟⎟⎟⎠ , . . . ek =

⎛⎜⎜⎜⎜⎜⎜⎝

0
...
1
0
...

⎞⎟⎟⎟⎟⎟⎟⎠ , · · · , en =

⎛⎜⎜⎜⎜⎜⎝
0
...
0
0
1

⎞⎟⎟⎟⎟⎟⎠
That is, we have 1 in the kth position of the vector ek and zeros everywhere else.
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Actually these are examples of perpendicular unit vectors called orthonormal vectors,
whichmeans that they are normalized and they are orthogonal. Hence orthonormal vectors
have two properties:

1. All the vectors are orthogonal to each other (perpendicular to each other).
2. All vectors are normalized, that is they have a norm or length of 1 (unit vectors).

Orthonormal (perpendicular unit) vectors are important in linear algebra.

2.2.5 Application of vectors

An application of vectors is the support vector machine, which is a computer algorithm.
The algorithm produces the best hyperplane which separates data groups (or vectors).
Hyperplanes are general planes in Rn. In support vector machines, we are interested in
finding the shortest distance between the hyperplane and the vectors.

A hyperplane is a general plane in n-space. In two-space it is a line, as shown in Fig. 2.24.

Figure 2.24

The shortest distance from a vector u to any point on the hyperplane v · x+ c = 0 where

x = (x y · · · )T in n-space can be shown to equal,
|u · v+ c|
‖v‖ .

Example 2.9

Determine the shortest distance from the vector (1 2 3)T and plane x + y+ z = −1. This is the
distance of the thick line shown in Fig. 2.25.

Solution
We can write the plane x + y+ z = −1 as x + y+ z + 1 = 0, and in dot product form:⎛⎝ 1

1
1

⎞⎠ ·
⎛⎝ x
y
z

⎞⎠+ 1 = 0 [This is of the form v · x+ c = 0]

(continued...)
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1

2

3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

x + y + z = −1
4

3

2

1

0

–1

–2

–3
–4
–4–3

–2
–1

0
1

2

–3 –2 –1 0 1 2 3

y

x

z

–4

Figure 2.25

Using the above formula with u =
⎛⎝ 1
2
3

⎞⎠ , v =
⎛⎝ 1
1
1

⎞⎠ and c = 1:

|u · v+ c|
‖v‖ = |(1× 1)+ (2× 1)+ (3× 1)+ 1|√

(1)2 + 12 + 12
= 7√

3
= 4.04 (2dp)

The shortest distance between the plane x + y+ z = −1 and the vector (1 2 3)T is 4.04.

i Summary

Let u and v be non-zero vectors in Rn and if θ is the angle between the vectors then

cos(θ) = u · v
‖u‖‖v‖

A unit vector in the direction of the non-zero vector u is denoted by û.
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EXERCISES 2.2

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

You may like to check your numerical answers using the numerical software MATLAB.
To find the angle between two vectors u and v in MATLAB enter the command:

dot(u,v)/(norm(u)∗norm(v)), acosd(ans).

1. Let u and v be vectors in R2. For the following u and v determine the angle between
the vectors and label this angle and the vectors u and v in R2.

(a) u =
(
1
1

)
, v =

(
0
1

)
(b) u =

(
1
0

)
, v =

(
0
1

)
(c) u =

(−2
3

)
, v =

(
1/2
−1/2

)
2. For the following vectors u and v in R3 determine the angle between them.

(a) u =
⎛⎝−11

3

⎞⎠, v =
⎛⎝ 3
−1
5

⎞⎠ (b) u =
⎛⎝ 1
0
0

⎞⎠, v =
⎛⎝ 0

0
15

⎞⎠
(c) u =

⎛⎝−12
3

⎞⎠, v =
⎛⎝
√
2

1/
√
2

−1

⎞⎠
3. Find the angle between the following vectors in R4:

(a) u = (2 3 −8 1)T , v = (−1 2 −5 −3)T
(b) u = (−2 −3 −1 −1)T , v = (1 2 3 4)T

(c) u =
(
π

√
2 0 1

)T
, v =

(
1/π

√
2 −1 1

)T
4. Determine the value of k so that the following vectors are orthogonal to each other:

(a) u =
⎛⎝−15

k

⎞⎠ , v =
⎛⎝−32

7

⎞⎠ (b) u =
⎛⎝ 2
−1
3

⎞⎠ , v =
⎛⎝ 3
1
k

⎞⎠
(c) u =

⎛⎜⎝ 0
−k√
2

⎞⎟⎠ , v =
⎛⎝−75

k

⎞⎠
5. Determine the unit vector û for each of the following vectors. (Normalize these

vectors.)
(a) u = (2 3)T (b) u = (1 2 3)T

(c) u = (1/2 −1/2 1/4)T (d) u =
(√

2 2 −√2
√
2
)T

(e) u = (−π/5 π −π π/10 0)T

6. Determine the value(s) of k so that û =
⎛⎝ 1/

√
2

1/2
k

⎞⎠ is a unit vector.
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7. (a) Show that u =
(
cos(θ)
sin(θ)

)
is a unit vector.

(b) Plot this vector u in R2 for θ = π

4
.

(c) Let v =
(

cos(θ)
− sin(θ)

)
be a vector in R2. On the same axes plot v for θ = π

4
.

(d) Determine the angle between the vectors u and v.

8. Show that the vectors u =
(
a
b

)
and v =

(−b
a

)
in R2 are orthogonal.

9. Let vectors u =
(
cos (A)

sin (A)

)
and v =

(
cos (B)

sin (B)

)
be in R2. Show that

u · v = cos (A− B)

10. Prove that the angle between a non-zero vector u and −u in any n-space, Rn, is π

radians or 180◦.
11. Find a vector which is orthogonal to u = (1 1 1)T . Determine all the vectors

orthogonal to u.
12. Find the shortest distance, correct to 2dp, between the vectors and the corresponding

hyperplanes:
(a) (1 1)T and y = x+ 1 (b) (0.5 2)T and y = 2x− 1
(c) (−1 −3 3)T and 2x+ y− z = 7
(d) (1 2 3 4)T and x+ 2y+ z + w = 10

13. Prove the Cauchy–Schwarz inequality by the following procedure:
(a) Show that the dot product (ku+ v) · (ku+ v) ≥ 0 where u and v are vectors inRn.
(b) Show that (ku+ v) · (ku+ v) = k2(u · u)+ 2k (u · v)+ (v · v).
(c) Equate the right hand side in part (b) to the general quadratic

ak2 + bk+ c

(d) Assuming that ak2 + bk+ c ≥ 0 if and only if b2 ≤ 4ac, show the Cauchy–
Schwarz inequality |u · v| ≤ ‖u‖ ‖v‖.
[Also assume the following inequality from the main text

x ≤ y⇔√
x ≤ √y provided x ≥ 0, y ≥ 0

and
√
x2 = |x|.]

14. By applying the Cauchy–Schwarz inequality, prove that −1 ≤ cos(θ) ≤ 1, where θ is
the angle between two given vectors u and v in any n-space Rn.

15. Let u and v be non-zero vectors in Rn. Prove that the angle θ between the two vectors
u and v is unique in the range [0, π].
[Hint: Consider cos(θ) = u · v

‖u‖‖v‖ and cos (β) = u · v
‖u‖‖v‖ . Use the identity

cos(A)− cos(B) = −2 sin
(
A+ B
2

)
sin
(
A− B
2

)
.
]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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SECTION 2.3 Linear Independence

By the end of this section you will be able to

● understand what is meant by linear independence

● test vectors for linear independence

● prove properties about linear independence

2.3.1 Standard unit vectors in RRRn

What does the term standard unit vector mean?
Recall from the last section that unit vectors are of length 1, and standard unit vectors in Rn are
column vectors with 1 in the kth position of the vector ek and zeros everywhere else (Fig. 2.26).

x

y

=
⎝
⎜
⎛ 1
0⎠

⎟
⎞

e = ⎝
⎜
⎛ 0

1 ⎠
⎟
⎞

x

z

y

e1

e2

e3

Standard unit
vector

...
...

0

1

0

ek =

kth position
Standard unit vectors

2

e 1

Figure 2.26

Why are these standard unit vectors important?
Because we can write any vector u of Rn in terms of scalars and standard unit vectors as we
showed in Exercises 1.3, question 14. We proved the following important result:

Proposition (2.17). Let u = ( x1 · · · xk · · · xn )T be any vector in Rn then

u = x1{

scalar

e1{

unit vector

+ x2{

scalar

e2{

unit vector

+ · · · + xk{

scalar

ek{

unit vector

+ · · · + xn{

scalar

en{

unit vector

The position of vector u can be described (uniquely) by these scalars and unit vectors
e1, e2, . . . and en.

For example, the vector u =
(
2
3

)
in R2 can be written as

(
2
3

)
= 2

(
1
0

)
+ 3

(
0
1

)
= 2e1 + 3e2 [In this case the scalars x1 = 2 and x2 = 3.]

Note that the scalars x1 = 2 and x2 = 3 are the coordinates of the vector u.
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This representation

u =
⎛⎜⎝ x1

...
xn

⎞⎟⎠ = x1e1 + x2e2 + · · · + xnen

is a linear combination of the scalars and standard unit vectors e1, e2, . . . and en. We can
write this u = x1e1 + x2e2 + · · · + xnen in matrix form as

u = (e1 e2 e3 · · · en)
⎛⎜⎝ x1

...
xn

⎞⎟⎠ where e1 =
⎛⎜⎝ 1
0
...

⎞⎟⎠ , . . . , en =
⎛⎜⎝ 0
...
1

⎞⎟⎠
The matrix (e1 e2 e3 · · · en) = I where I is the identity matrix.

Proposition (2.18). Let u be any vector in Rn then the linear combination

u = x1e1 + x2e2 + · · · + xkek + · · · + xnen

is unique.

What does this proposition mean?
It means for any vector u the scalars in the above linear combination are unique.

Proof.
Let the vector u be written as another linear combination:

u = y1e1 + y2e2 + · · · + ykek + · · · + ynen

What do we need to show?
We must show that, in fact, all the scalars are equal: y1 = x1, y2 = x2, · · · and yn = xn.

Equate the two linear combinations because both are equal to u:

x1e1 + x2e2 + · · · + xnen = y1e1 + y2e2 + · · · + ynen = u
x1e1 + x2e2 + · · · + xnen − y1e1 − y2e2 − · · · − ynen = u − u = O(
x1 − y1

)
e1 +

(
x2 − y2

)
e2 + · · · +

(
xn − yn

)
en = O

[
factorizing

]
Writing out e1, e2, . . . , en and O as column vectors in the last line we have

(
x1 − y1

)
⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠+ (x2 − y2
)
⎛⎜⎜⎜⎝
0
1
0
...

⎞⎟⎟⎟⎠+ · · · + (xn − yn
)
⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎣remember ek =

⎛⎜⎜⎜⎜⎜⎝
...
}
zeros

1
0
...

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
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Scalar multiplying and adding these vectors gives

⎛⎜⎜⎜⎝
x1 − y1
x2 − y2

...
xn − yn

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠
Hence we have x1 − y1 = 0, x2 − y2 = 0, x3 − y3 = 0, . . . and xn − yn = 0 which

gives:

x1 = y1, x2 = y2, x3 = y3, . . . and xn = yn

Therefore, the given linear combination, u = x1e1 + x2e2 + · · · + xnen, is unique.

2.3.2 Linear independence

Example 2.10

Find the values of the scalars x1, x2, x3, . . . and xn in the following:

x1e1 + x2e2 + · · · + xkek + · · · + xnen = O

Solution
Substituting e1, e2, . . . and en we have

x1

⎛⎜⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎟⎠+ x2

⎛⎜⎜⎜⎜⎝
0
1
0
...

⎞⎟⎟⎟⎟⎠+ · · · + xn

⎛⎜⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎟⎠
We can write this in matrix form as⎛⎜⎜⎝

1 0
. . .

0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

x1
...
xn

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0
...
0

⎞⎟⎟⎠ [This is Ix = O]

In compact form, we have Ix = O where I is the identity matrix. Ix = O gives x = O.
The zero vector x = O has entries x1 = 0, x2 = 0, x3 = 0, . . . and xn = 0.

We say that the standard unit vectors e1, e2, . . . and en are linearly independent, when
any one of the vectors ek cannot be made by a linear combination of the others.

One of the reasons we can write any vector of Rn in terms of e1, e2, . . . and en is because
these vectors are linearly independent.
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Definition (2.19). We say vectors v1, v2, v3, . . . and vn in Rn are linearly independent
⇔ the only real scalars k1, k2, k3, . . . and kn which satisfy:

k1v1 + k2v2 + k3v3 + · · · + knvn = O are k1 = k2 = k3 = · · · = kn = 0

What does this mean?
The only solution to the linear combination k1v1 + k2v2 + · · · + knvn = O occurs when all the
scalars k1, k2, k3, . . . and kn are equal to zero. In other words you cannot make any one of the
vectors vj, say, by a linear combination of the others.

We can write the linear combination k1v1 + k2v2 + k3v3 + · · · + knvn = O in matrix
form as

(
v1 v2 · · · vn

)⎛⎜⎝ k1
...
kn

⎞⎟⎠ =
⎛⎜⎝ 0

...
0

⎞⎟⎠
The first column of the matrix (v1 v2 · · · vn) is given by the entries in v1, the second

column is given by the entries in v2 and the nth column by entries in vn.
The standard unit vectors are not the only vectors in Rn which are linearly independent.

In the following example, we show another set of linearly independent vectors.

Example 2.11

Show that u =
(−1

1

)
and v =

(
2
3

)
are linearly independent in R2 and plot them.

Solution
Consider the linear combination:

ku + cv = O [using k and c as scalars]

Substituting the given vectors u and v into this ku + c v = O :

k
(−1

1

)
+ c

(
2
3

)
=
(
0
0

)

Let A = (u v) =
(−1 2

1 3

)
and x =

(
k
c

)
. We need to solve Ax = O where O =

(
0
0

)
.

Carrying out row operations on the augmented matrix (A | O):

k c
R1
R2

( −1 2 0
1 3 0

) k c
R1

R2 + R1

( −1 2 0
0 5 0

)

From the bottom row, R2 + R1 , we have 5c = 0, which gives c = 0. Substituting this into the first row
yields k = 0. This means that the only values of the scalars are k = 0 and c = 0.

Hence the linear combination ku+ cv = O yields k = 0 and c = 0, therefore the given vectors u and
v are linearly independent, because all the scalars, k and c, are equal to zero. The plot of the given vectors
is shown in Fig. 2.27.
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2

3

⎛ ⎞
⎜ ⎟
⎝ ⎠

v =

1

1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

u =

3
2.5

2
1.5

1
0.5

-0.5 0.5 1 1.5 2-1 Figure 2.27

When the vectors u and v are linearly independent, it means that they are not scalar multi-
ples of each other. Arbitrary linear independent vectors u and v in R2 can be illustrated as
shown in Fig. 2.28:

Linearly independent
vectors u and vu

v

Figure 2.28

Linearly independent vectors u and v have different directions.

2.3.3 Linear dependence

What does linear dependence mean?

Definition (2.20). Conversely we have: the vectors v1, v2, v3, . . . and vn in Rn are
linearly dependent⇔ the scalars k1, k2, k3, . . . and kn are not all zero and satisfy

k1v1 + k2v2 + k3v3 + · · · + knvn = O

Linear dependence of vectors v1, v2, v3, . . . and vn means that there are non-zero scalars
k’s which satisfy

k1v1 + k2v2 + k3v3 + · · · + knvn = O

Example 2.12

Show that u =
(−3

1

)
and v =

(
1

−1/3
)

are linearly dependent in R2 and plot them.

Solution
Consider the linear combination:

ku + cv = O [k and c are scalars]

(continued...)
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Substituting the given vectors

ku + cv = k
(−3

1

)
+ c

(
1

−1/3
)
=
(
0
0

)
The augmented matrix for this is given by

R1
R2

( −3 1 0
1 −1/3 0

) [
because (u v | O)

]
Carrying out the row operation 3R2 + R1 :

k c
R1

3R2 + R1

( −3 1 0
0 0 0

)
From the top row we have−3k+ c = 0, which implies c = 3k. Let k = 1 (for ease of arithmetic) then

c = 3k = 3× 1 = 3

Substituting our values k = 1 and c = 3 into ku+ cv = O gives

u+ 3v = O or u = −3v
We have found non-zero scalars, k = 1 and c = 3, which satisfy ku+ cv = O, therefore the given

vectors u and v are linearly dependent, and u = −3v.
Plotting the given vectors u and v we have (Fig. 2.29):

3
3

1

−⎛ ⎞= = −⎜ ⎟
⎝ ⎠

u v

1

1/ 3

⎛ ⎞
⎜ ⎟−⎝ ⎠

v =

1
0.8
0.6
0.4
0.2

-0.2-1-2-3 1

y

-0.4

x

Figure 2.29

Note that u = −3v means that the vector u is a scalar multiple (−3) of the vector v.
Hence the size of vector u is three times the size of vector v, but in the opposite direction.
If vectors u and v in R2 are linearly dependent then we have

ku + cv = O where k �= 0 or c �= 0

That is, at least one of scalars is not zero. Suppose k �= 0 then

ku = −cv [transposing ku+ cv = O]
u = − c

k
v

[
dividing by k

]
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This means that the vector u is a scalar multiple of the other vector v, which suggests that
u is in the same (or opposite) direction as vector v. Plotting these we have (Fig. 2.30):

v Linearly dependent vectors u and v
u

Figure 2.30

Of course, in the previous Example 2.12, we could have let k = 2, 3,π , 666 . . . . Any non-
zero number will do. Generally, it makes the arithmetic easier if we use k = 1.

Example 2.13

Determine whether the vectors u =
⎛⎝−31

0

⎞⎠ , v =
⎛⎝ 0

1
−1

⎞⎠ and w =
⎛⎝ 2
0
0

⎞⎠ in R3 are linearly dependent

or independent.

Solution
Consider the following linear combination

k1u + k2v + k3w = O

where k’s are scalars.

Let A = (u v w) =
⎛⎝ −3 0 2

1 1 0
0 −1 0

⎞⎠ and x =
⎛⎝ k1
k2
k3

⎞⎠. We need to solve Ax = O.

Carrying out row operations on the augmented matrix:

k1 k2 k3
R1
R2
R3

⎛⎝ −3 0 2 0
1 1 0 0
0 −1 0 0

⎞⎠
k1 k2 k3

R1
R2 + R3

R3

⎛⎝ −3 0 2 0
1 0 0 0
0 −1 0 0

⎞⎠
From the right hand matrix we have k1 = k2 = k3 = 0 , that is all the scalars are zero:

k1u + k2v + k3w = O implies k1 = k2 = k3 = 0

Hence the given vectors u, v and w are linearly independent.

2.3.4 Properties of linear dependence

In this subsection we describe easier ways of testing for independence.

Example 2.14

Test the following vectors for linear independence:

u =
⎛⎝ 2
3
7

⎞⎠, v =
⎛⎝−419
−5

⎞⎠, w =
⎛⎝ 0
0
0

⎞⎠
(continued...)



166 2 EUCLIDEAN SPACE

Solution
Consider the linear combination:

k1u + k2v + k3w = O (†)

Let k1 = k2 = 0 and k3 �= 0, then for these values of scalars, the above linear combination (†) is
satisfied. Hence we have non-zero scalar(s), k3 �= 0, which implies that the given vectors are linearly
dependent.

The presence of the zero vector ensures that the vectors are linearly dependent. We don’t
need to find the values of the scalars in the case where we have the zero vector.

Proposition (2.21). Let v1, v2, . . . and vn be vectors in Rn. If at least one of these vectors, vj
say, is the zero vector then the vectors v1, v2, . . . and vn are linearly dependent.

Proof.
Consider the linear combination

k1v1 + k2v2 + · · · + kjvj + · · · + knvn = O (∗)

In (∗) take kj �= 0 [non-zero number] and all the other scalars equal to zero, that is

k1 = k2 = · · · = kj−1 = kj+1 = · · · = kn = 0

Since vj = O we have kjvj = O, which means that all scalars in (∗) are not zero (kj �= 0).
By Definition (2.20) in section 2.3.3:

If non-zero k’s satisfy k1v1 + k2v2 + · · · + knvn = O then vectors v’s are dependent.

We have that vectors v1, v2, . . . and vn are linearly dependent because kj �= 0.

What does Proposition (2.21) mean?
If among the vectors v1, v2, v3, . . . and vn , one of these is the zero vector then they are linearly
dependent.

Example 2.15

Test the vectors u =
⎛⎝−31

0

⎞⎠ , v =
⎛⎝ 0

1
−1

⎞⎠ ,w =
⎛⎝ 2
0
0

⎞⎠ and x =
⎛⎝ 1
2
3

⎞⎠ in R3 for linear

independence.

Solution
Consider the linear combination

k1u + k2v + k3w + k4x = O
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What do we need to find?
We need to determine the values of the scalars, k’s.

Substituting the given vectors into this linear combination:

k1u + k2v + k3w + k4x = k1

⎛⎝−31
0

⎞⎠+ k2

⎛⎝ 0
1
−1

⎞⎠+ k3

⎛⎝ 2
0
0

⎞⎠+ k4

⎛⎝ 1
2
3

⎞⎠ =
⎛⎝ 0
0
0

⎞⎠
The augmented matrix of this is given by

R1
R2
R3

⎛⎝ −3 0 2 1 0
1 1 0 2 0
0 −1 0 3 0

⎞⎠ [
Using

(
u v w x | O

)]

Carrying out the row operation R2 + R3 gives one extra zero in the middle row:

k1 k2 k3 k4
R1

R2 + R3
R3

⎛⎝ −3 0 2 1 0
1 0 0 5 0
0 −1 0 3 0

⎞⎠
From the bottom row, we have −k2 + 3k4 = 0 which gives k2 = 3k4 . Let k4 = 1:

k2 = 3k4 = 3× 1 = 3

From the middle row we have k1 + 5k4 = 0 implies that k1 = −5k4 = −5× 1 = −5.
The top row gives −3k1 + 2k3 + k4 = 0 . Substituting k1 = −5 and k4 = 1 into this:

−3 (−5) + 2k3 + 1 = 0 implies k3 = −8

Our scalars are k1 = −5, k2 = 3, k3 = −8 and k4 = 1. Substituting these into the above linear
combination k1u + k2v + k3w + k4x = O gives the relationship between the vectors:

−5u + 3v − 8w + x = O or x = 5u − 3v + 8w

Since we have non-zero scalars (k’s) the given vectors are linearly dependent.
The linear combination x = 5u − 3v + 8w means that we can make the vector x out of the vectors

u, v and w.

In the next proposition we will prove that if there are more vectors than the value of n in
the n-space then the vectors are linearly dependent. In the above Example 2.19 we had four
vectors u, v,w and x inR3 and 4 > 3, therefore the given vectors u, v,w and xwere linearly
dependent.

Proposition (2.22). Let v1, v2, v3, . . . and vm be different vectors inRn. If n < m, that is the
value of n in the n-space is less than the numberm of vectors, then the vectors v1, v2, v3, . . .
and vm are linearly dependent.
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Proof.
Consider the linear combination of the given vectors v1, v2, v3, . . . and vm:

k1v1 + k2v2 + · · · + knvn + kn+1vn+1 + · · · + kmvm = O (∗)

The number of equations is n because each vector belongs to the n-space Rn but the
number of unknowns k1, k2, k3, . . . , kn, kn+1, . . . , km ism. Writing this out we have

k1

⎛⎜⎜⎜⎝
v11
v12
...

v1n

⎞⎟⎟⎟⎠+ k2

⎛⎜⎜⎜⎝
v21
v22
...

v2n

⎞⎟⎟⎟⎠+ · · · + kn

⎛⎜⎜⎜⎝
vn1
vn2
...

vnn

⎞⎟⎟⎟⎠+ kn+1

⎛⎜⎜⎜⎝
v(n+1)1
v(n+1)2

...
v(n+1)n

⎞⎟⎟⎟⎠+ · · · + km

⎛⎜⎜⎜⎝
vm1
vm2
...

vmn

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

m unknowns

=

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ n equations

By Proposition (1.31) of chapter 1:
In a linear systemAx = O, if the number of equations is less than the number unknowns

then the system has an infinite number of solutions.
In our linear system the number of equations n is less than the number of unknowns m

because we are given n < m. Therefore we have an infinite number of k’s which satisfy (∗)
and this means all the k’s are not zero. By Definition (2.20) in section 2.3.3:

If non-zero k’s satisfy k1v1 + k2v2 + · · · + knvn = O then vectors v’s are dependent.
Hence the given vectors v1, v2, v3, . . . and vm are dependent.

Normally, we write the vectors as a collection in a set. A set is denoted by { } and is a
collection of objects. The objects are called elements or members of the set.

We can write the set of vectors v1, v2, v3, . . . and vn as

S = {v1, v2, v3, . . . , vn}
We use the symbol S for a set.
The following is an important test for linear independence.

Proposition (2.23). Let S = {v1, v2, v3, . . . , vn} be n vectors in the n-space Rn. Let A be the
n by nmatrix whose columns are given by the vectors v1, v2, v3, . . . and vn:

A = (v1 v2 · · · vn)

Then vectors v1, v2, . . . , vn are linearly independent⇔matrix A is invertible.

Proof – See Exercises 2.3.
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This proposition means that the columns of matrix A are linearly independent⇔ A is
invertible. We can add this to the main theorem of the last chapter – Theorem (1.38):

Theorem (2.24). Let A be a n by n matrix, then the following six statements are
equivalent:

(a) The matrix A is invertible (non-singular).
(b) The linear system Ax = O only has the trivial solution x = O.
(c) The reduced row echelon form of the matrix A is the identity matrix I.
(d) A is a product of elementary matrices.
(e) Ax = b has a unique solution.
(f) Columns of matrix A are linearly independent.

i Summary

Consider the following linear combination:

k1v1 + k2v2 + k3v3 + · · · + knvn = O

If the only solution to this k1 = k2 = k3 = · · · = kn = 0 (all scalars are zero) then the vectors
v1, v2, v3, . . . and vn are linearly independent. Otherwise the vectors are linearly dependent.

EXERCISES 2.3

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Determine whether the following vectors are linearly dependent in R2:

(a) e1 =
(
1
0

)
, e2 =

(
0
1

)
(b) u =

(
3
4

)
, v =

(−6
−8
)

(c) u =
(

6
10

)
, v =

(−3
−5
)

(d) u =
(

π

−2π
)
, v =

(−1
2

)
(e) u =

(
0
0

)
, v =

(−1
1

)
2. Determine whether the following vectors are linearly dependent in R3:

(a) e1 =
⎛⎝ 1
0
0

⎞⎠, e2 =
⎛⎝ 0
1
0

⎞⎠, e3 =
⎛⎝ 0
0
1

⎞⎠
(b) u =

⎛⎝ 2
2
2

⎞⎠, v =
⎛⎝ 1

2
−1

⎞⎠, w =
⎛⎝ 0
0
1

⎞⎠ (c) u =
⎛⎝ 1
1
1

⎞⎠, v =
⎛⎝−2−2
−2

⎞⎠
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(d) u =
⎛⎝−12
−3

⎞⎠, v =
⎛⎝ 0
−4
6

⎞⎠ , w =
⎛⎝ 2
0
6

⎞⎠
3. Determine whether the following vectors are linearly dependent in R4:

(a) u = (0 −1 0 3)T , v = (1 0 5 0)T , w = (2 1 0 0)T ,
x = (0 1 0 −4)T

(b) u = (1 −1 3 3)T , v = (0 1 5 0)T , w = (−3 − 6 − 9 − 4)T ,
x = (−5 5 −15 −15)T

(c) u = (−2 2 3 4)T , v = (0 3 −2 −3)T , w = (2 −2 −1 0)T ,
x = (0 3 0 1)T

4. Let u and v be non-zero vectors inRn. Prove that if u = k v where k is a real scalar then
the vectors u and v are linearly dependent. (Vectors u and v are scalar multiples of each
other.)

5. Let u, v and w be any vectors in Rn. Prove that the vectors u+ v, v+ w and u− w are
linearly dependent.

6. Let e1 and e2 be the standard unit vectors in R2. Prove that e1 and e1 + e2 are linearly
independent.

7. Let e1, e2 and e3 be the standard unit vectors in R3. Prove that e1, e1 + e2 and
e1 + e2 + e3 are linearly independent.

8. Let u, v, w and x be linearly independent vectors in Rn. Prove that

u+ v, v+ w, w+ x and u+ x

are linearly dependent vectors in Rn.
9. Let u, v and w be linearly independent vectors in Rn. Let the vector x be in Rn such

that x = k1u+ k2v+ k3w, where the k’s are real scalars. Prove that this representation
of the vector x is unique.

10. Let S = {v1, v2, v3, . . . , vn} be a set of linear independent vectors in Rn. Prove that
T = {c1v1, c2v2, c3v3, . . . , cnvn}, where the c’s are real non-zero scalars, is also a set of
linear independent vectors.

11. Prove that if S = {v1, v2, v3, . . . , vn} is linearly independent then any subset
T = {v1, v2, v3, . . . , vm}, wherem < n, is also linearly independent.

12. Determine the real values of t in the following vectors which form linear independence
in R3:

u =
⎛⎝ t
1
1

⎞⎠ , v =
⎛⎝−1t

1

⎞⎠ and w =
⎛⎝ 1
1
t

⎞⎠
13. Prove Proposition (2.23).

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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SECTION 2.4 Basis and Spanning Set

By the end of this section you will be able to

● show that given vectors span Rn

● test whether given vectors are a basis for Rn

● prove properties of basis

To describe a vector in Rn we need a coordinate system. A basis is a coordinate system or
framework which describes the Euclidean n-space.

For example, there are infinitely many vectors in the plane R2, but we can describe all of
these by using the standard unit vectors e1 = (1 0)T in the x direction and e2 = (0 1)T in
the y direction.

We can write a vector

(
2
3

)
, but what does 2 and 3 represent?

It indicates two units in the x direction and three units in the y direction which can be written as

2e1 + 3e2 .

2.4.1 Spanning sets

From the last section we know that we can write any vector in Rn in terms of the standard
unit vectors e1, e2, . . . and en.

Example 2.16

Let v = (a b c)T be any vector in R3. Write this vector v in terms of the unit vectors:

e1 = (1 0 0)T , e2 = (0 1 0)T and e3 = (0 0 1)T

Vectors e1, e2 and e3 specify x, y and z directions respectively. (Illustrated in Fig. 2.26.)

Solution
We have ⎛⎝ a

b
c

⎞⎠ = a

⎛⎝ 1
0
0

⎞⎠ + b

⎛⎝ 0
1
0

⎞⎠ + c

⎛⎝ 0
0
1

⎞⎠ = ae1 + be2 + ce3

That is, we can write the vector v as a linear combination of vectors e1, e2 and e3.

We say that the vectors e1, e2 and e3 span or generate R3, because the linear
combination:

ae1 + be2 + ce3
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produces any vector in R3. We define the term ‘span’ as follows:

Definition (2.25). Consider the n vectors in the set S = {v1, v2, v3, . . . , vn} in the n-
space,Rn. If every vector inRn can be produced by a linear combination of these vectors
v1, v2, v3, . . . and vn then we say these vectors span or generate the n-space, Rn.

This set S = {v1, v2, v3, . . . , vn} is called the spanning set. We also say that the set S spans
the n-space or S spans Rn.

For example, the standard unit vectors e1 =
(
1
0

)
and e2 =

(
0
1

)
span R2 because ke1

spans the x axis and ce2 spans the y axis. Hence, by introducing scalars, k and c, the linear
combination, ke1 + ce2 , of these vectors e1 and e2 can produce any vector in R2.

To check that given vectors {v1, v2, v3, . . . , vn} span Rn, we carry out the following:
We show that an arbitrary vector w = (w1 · · · wn

)T is a linear combination of these
vectors:

w = k1v1 + k2v2 + · · · + knvn where k’s are scalars.

The unit vectors are not the only vectors which span R2, there are other vectors which
also span R2, as the next example demonstrates.

Example 2.17

Consider the vectors u =
(
1
2

)
and v =

(−1
1

)
in R2:

(i) Show that the vectors u and v span R2.

(ii) Write the vector (3 2)T in terms of the given vectors u and v.

Solution

(i) Let w =
(
a
b

)
be an arbitrary vector in R2. Consider the linear combination:

ku + cv = w where k and c are scalars

ku specifies vectors in the

(
1
2

)
direction and cv specifies vectors in the

(−1
1

)
direction. We need to

show that we can make any vector w out of u and v.
We can write this ku + cv = w in matrix form as

u v w(
1 −1
2 1

)(
k
c

)
=
(
a
b

)
Writing this as an augmented matrix, we have

R1
R2

(
1 −1 a
2 1 b

)
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We execute row operations so that we can find the values for scalars k and c:

k c
R1

R2 − 2R1

(
1 −1 a
0 3 b− 2a

)
From the bottom row we have

3c = b− 2a implies c = b− 2a
3

Substituting this c = (b− 2a
)/

3 into the top row gives:

k − b− 2a
3

= a implies k = b− 2a
3

+ a = b− 2a+ 3a
3

= b+ a
3

We have found the scalars k = a+ b
3

and c = b− 2a
3

. Therefore w = ku + cv , which means that

these vectors u and v span or generate R2 . We can illustrate these vectors as shown in Fig. 2.31.

w

1
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

u =

1
1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

v =

-0.5
-0.5

0.5

1

1.5

2

b

a
1 1.5-1

y

x

Figure 2.31

Any vector in R2 can be written as:(
a
b

)
=
(

a+ b
3

)
u+

(
b− 2a

3

)
v

(ii) How do we write the vector

(
3
2

)
in terms of u =

(
1
2

)
and v =

(−1
1

)
?

We can use part (i) with a = 3 and b = 2, because we have shown above that any vector in R2

can be generated by the vectors u and v. Substituting these, a = 3 and b = 2, into(
a
b

)
=
(
a+ b
3

)
u+

(
b− 2a

3

)
v gives

(
3
2

)
=
(
3+ 2
3

)
u +

(
2− 2 (3)

3

)
v = 5

3
u − 4

3
v

(continued...)
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This is illustrated in Fig. 2.32.

5
3

u

4
3

− v

3
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

4

3

2

1

-1

-2

1 2 3 4

Figure 2.32

The vector

(
3
2

)
is made by adding

5
3
u and−4

3
v.

You may like to check this by arithmetic means:
5
3
u− 4

3
v =

(
3
2

)

If we cannot write an arbitrary vector w as a linear combination of vectors {v1, . . . , vn}
then these vectors do not span Rn.

Example 2.18

Show that the vectors u =
(

1
−2
)

and v =
(
0
0

)
do not span R2. (Columns of

(
1 0
−2 0

)
do not

span R2.)

Solution

Let w =
(
a
b

)
be an arbitrary vector in R2. Consider the linear combination

ku + cv = w

where k and c are real scalars
This linear combination can be written in matrix form as

(
1 0
−2 0

)(
k
c

)
=
(
a
b

) (
k

−2k
)
=
(
a
b

)

We have the simultaneous equations

k = a

−2k = b or b = −2a [
because k = a

]
This case only works if b = −2a, that is for the vector w =

(
a
b

)
=
(

a
−2a

)
= a

(
1
−2
)

.

Vectors u and v only span (generate) vectors in the direction of

(
1
−2
)

.
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The given vectors
u and v only span 
vectors along this 
line (1-space).   

10

5

-5

-10

-2 2 4-4

y

Figure 2.33

Any vector away from the dashed line in Fig. 2.33 cannot be made by a linear combination of the given
vectors u and v.

We conclude that the vectors u and v do not span R2 .

2.4.2 Basis

We want a simple way to write down our vectors.

How can we do this?
Given some vectors we can generate others by a linear combination. We need just enough vectors
to build all other vectors from them through linear combination. This set of just enough vectors is
called a basis.

An example is the standard unit vectors e1 = (1 0)T , e2 = (0 1)T for R2. This is the
basis which forms the x and y axes of R2 because e1 = (1 0)T specifies the x direction and
e2 = (0 1)T specifies the y direction.

Each additional basis vector introduces a new direction.

Definition (2.26). Consider the n vectors v1, v2, v3, . . . and vn in the n space, Rn.
These vectors form a basis for Rn ⇔

(i) v1, v2, v3, . . . and vn span Rn and
(ii) v1, v2, v3, . . . and vn are linearly independent

We can write the vectors v1, v2, v3, . . . and vn as a set B = {v1, v2, v3, . . . , vn}. These are
called the basis vectors – independent vectors which span Rn. Any vector in Rn can be
constructed from the basis vectors.

Bases (plural of basis) are the most efficient spanning sets. There are many sets of vec-
tors that can span a space. However, in these sets some of the vectors might be redundant
in spanning the space (because they can be ‘made’ from the other vectors in the set).
A basis has no redundant vectors. This is exactly what is captured by demanding linear
independence in the definition.
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Example 2.19

Show that the vectors u =
(
1
1

)
and v =

(
1
−1
)

form a basis for R2.

Solution
We are required to show two things: that u and v (i) span R2 and (ii) are linearly independent.

(i) How do we verify that vectors u and v span R2?

Let w =
(
a
b

)
be an arbitrary vector in R2 and consider the linear combination:

ku + cv = w

Substituting the given vectors u, v and w yields:

k
(
1
1

)
+ c

(
1
−1
)
=
(
a
b

)
with the augmented matrix

R1
R2

(
1 1 a
1 −1 b

)
Carrying out the row operation R2 + R1 :

k c
R1

R2 + R1

(
1 1 a
2 0 b+ a

)
Solving this for scalars gives k = 1

2
(
a+ b

)
and c = 1

2
(
a− b

)
. Since w = ku + cv we can

write any vector w in R2 as

w =
(
a
b

)
= 1

2
(
a+ b

) ( 1
1

)
+ 1

2
(
a− b

) ( 1
−1
)

Therefore we conclude that the vectors u and v span R2.

(ii) What else do we need to show for vectors u and v to be a basis?
We need to verify that they are linearly independent. To show linearly independence of two
vectors we just need to check that they are not scalar multiples of each other. (See question (4) of
Exercises 2.3.)

The given vectors

(
1
1

)
�= m

(
1
−1
)

(m is scalar) are not scalar multiplies of each other,

therefore they are linearly independent.
Vectors u and v both span R2 and are linearly independent so they are a basis for R2.
Equivalently we can say that the columns of matrix A = (u v) form a basis for R2.

The standard unit vectors e1 and e2 (illustrated in Fig. 2.34(b) on the next page) are
another basis for R2. This is generally called the natural or standard basis for R2.

Figure 2.34(a) shows some scalar multiplies of the vectors u and v of the above example.
These basis vectors u and v form another coordinate system forR2 as shown. Figure 2.34(b)
shows the natural basis e1 and e2, which form our normal x-y coordinate system for R2.

Why use non-standard basis such as the vectors u and v shown in Fig. 2.34(a)?
Examining a vector in a different basis (coordinate system) may bring out structure related to that
basis, which is hidden in the standard representation. It may be a relevant and useful structure.
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(b) 

(a)

4
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2
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–2–4 2v
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4
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4

y

x

2
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–2–4 2

e(
2)

e(1) 4

–4

Figure 2.34

For example, looking at a force applied to an object on an inclined plane, the components parallel
and perpendicular to the plane are far more useful than the horizontal and vertical components.
Choosing a basis wisely can greatly reduce the amount of arithmetic we have to do.

In general, the standard unit vectors {e1, e2, e3, . . . , en} form a natural basis for Rn. Try
proving this by showing linear independence and span.

This agrees with our usual Cartesian coordinate system on Rn. For example, the vector
u = (−1 7 2 −4 9)T in R5 can be written as

u = (−1) e1 + 7e2 + 2e3 + (−4) e4 + 9e5

Each vector x in Rn is denoted by x = (x1 x2 · · · xn)T which can be written as

x = x1e1 + x2e2 + · · · + xnen

in the standard basis {e1, e2, e3, . . . , en} for Rn.
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2.4.3 Properties of bases

Proposition (2.27). Any n linearly independent vectors in Rn form a basis for Rn.

Proof – Exercises 2.4.

Note that this is an important result because it means that given n vectors in the n-space,
Rn, it is enough to show that they are linearly independent to form a basis. We don’t need
to show that they span Rn as well. For example, we only need:

(i) 3 linearly independent vectors in R3 to form a basis for R3.
(ii) 103 linearly independent vectors in R103 to form a basis for R103.

Proposition (2.28). Any n vectors which span Rn form a basis for Rn.

Proof – Exercises 2.4.

Again, we only need to show that n vectors span Rn to prove that they are a basis for Rn.
For example, we need 666 vectors that span R666 to form a basis for R666.
Both these results, (2.27) and (2.28), make life a lot easier because if we have n vectors in

Rn then we only need to check one of the conditions, either independence or span.

Example 2.20

Show that the vectors u =
⎛⎝ 1
0
1

⎞⎠ , v =
⎛⎝ 0

1
−1

⎞⎠ and w =
⎛⎝−23

0

⎞⎠ form a basis for R3 .

Solution
What do we need to show?
Required to prove that the given vectors are linearly independent in R3.
Why don’t we also have to prove that these vectors span R3?
Because by the above Proposition (2.27):

Any n linearly independent vectors in Rn form a basis for Rn.
It is enough to show that three vectors are linearly independent for them to be a basis for the 3-space,

R3 . Consider the linear combination:

k1u + k2v + k3w = O

Using row operations on the augmented matrix (A|O) with A = (u v w):

k1 k2 k3
R1
R2
R3

⎛⎝ 1 0 −2 0
0 1 3 0
1 −1 0 0

⎞⎠ gives k1 = k2 = k3 = 0

The given vectors u, v and w are linearly independent because all the scalars are zero.
By the above Proposition (2.27) the given three vectors u, v and w form a basis for R3.
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Figure 2.35 shows vectors produced by u, v and w.

k1uk2v

k3w

4

3

2

1

0

–1

–2

–3

–4 –4 –3
–2

–1
0 1 2

3 4

y

–4
–3

–2
–1

0
1x

z

Figure 2.35

By linearly combining these vectors, we can make any vector x in R3:

x = k1 u + k2 v + k3 w (k’s are scalars)

We can measure vectors such as x with reference to these basis vectors { u, v, w }.

Example 2.21

Determine whether the following vectors form a basis for R4 :

v1 = (1 4 − 3 6)T , v2 = (9 3 − 1 − 6)T , v3 = (5 2 11 − 1)T and v4 = (0 0 0 0)T

Solution
Since v4 = (0 0 0 0)T = O is the zero vector, by Proposition (2.21) of the last section:

If at least one of vectors is O then the vectors are dependent.
Therefore the vectors {v1, v2, v3, v4} form a linearly dependent set which means that these vectors

cannot form a basis for R4. Remember that for a basis, we need the vectors to be linearly independent.

The remaining work in this section is a little more difficult than the above. You will need
to be sure that you understand the definitions of spanning set, linear independence and
basis of Rn.

Proposition (2.29). Let the vectors {v1, v2, v3, . . . , vn} be a basis for Rn. Every vector in Rn

can be written uniquely as a linear combination of the vectors in this basis.

What does this proposition mean?
There is only one way of writing any vector as a linear combination of the basis vectors.



180 2 EUCLIDEAN SPACE

We have already proven this result for the standard basis in Proposition (2.18) of the last
section.

Proof.
Let u be an arbitrary vector inRn. We are given that the vectors {v1, v2, . . . , vn} form a basis,
so they span Rn which means that we can write the vector u in Rn as a linear combination
of {v1, v2, . . . , vn}. There exist scalars k1, k2, k3, . . . and kn which satisfy

u = k1v1 + k2v2 + k3v3 + · · · + knvn

Suppose we can write this vector u as another linear combination of the basis vectors

u = c1v1 + c2v2 + c3v3 + · · · + cnvn

where the c’s are scalars.

What do we need to prove?
We need to prove that the two sets of scalars are equal: k1 = c1, k2 = c2, . . . and kn = cn.
Equating the two linear combinations because both are equal to u gives

k1v1 + k2v2 + · · · + knvn = c1v1 + c2v2 + · · · + cnvn = u
k1v1 + k2v2 + · · · + knvn − c1v1 − c2v2 − · · · − cnvn = u− u = O(
k1 − c1

)
v1 +

(
k2 − c2

)
v2 + · · · +

(
kn − cn

)
vn = O

[
factorizing

]
The basis vectors {v1, v2, v3, . . . , vn} are linearly independent, therefore all the scalars are

equal to zero.

Why?
Because this is the definition of linear independence given in the last section (2.19):

Vectors v1, v2, v3, . . . and vn in Rn are linearly independent⇔

m1v1 + m2v2 + m3v3 + · · · + mnvn = O gives m1 = m2 = m3 = · · · = mn = 0

Applying this to the above derivation:

(
k1 − c1

)
v1 +

(
k2 − c2

)
v2 + · · · +

(
kn − cn

)
vn = O

we have

k1 − c1 = 0, k2 − c2 = 0, k3 − c3 = 0, . . . and kn − cn = 0

k1 = c1, k2 = c2, k3 = c3, . . . and kn = cn

Hence any arbitrary vector u can be written uniquely as a linear combination of the basis
vectors {v1, v2, v3, . . . , vn}.
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Next we prove a lemma. A lemma is a proposition or theorem, the proof of which is used
as a stepping stone towards proving something of greater interest. However, there are many
lemmas in mathematics which have become important results in themselves, such as Zorn’s
lemma, Euclid’s lemma and Gauss’s lemma.

Lemma (2.30). Let T = {w1,w2,w3, . . . ,wm} be a set of m vectors that are linearly
independent in Rn thenm ≤ n.

What does this lemma mean?
There can be at most n independent vectors in Rn. For example, there can only be three or less
independent vectors in R3.

What is the largest number of linearly independent vectors in R10?
10

Proof.
By Proposition (2.22): In Rn if n < m, then the vectors v1, v2, . . . and vm are dependent.

We are given that T is a set of vectors that are linearly independent. Therefore n ≥ m
which is our required result.

The maximum number of independent vectors in Rn form a basis for Rn.
The next proof is a ‘proof by contradiction’. Here the procedure to prove that a

statement P implies a statement Q (denoted P⇒ Q) is to suppose that P does not
imply Q, and then prove that this can’t be the case. Proof by contradiction is a com-
mon technique in mathematics and is a powerful mathematical tool often used to prove
results.

For example, show that
x2 + 2

x
= x has no solution.

Proof – Suppose that the given equation does have a solution, call it a:

a2 + 2
a

= a implies a2 + 2 = a2 implies 2 = 0

but 2 cannot equal 0, therefore we have arrived at a contradiction. This means that there
is something wrong. Since all our derivations are correct, our supposition that there is a
solution is incorrect.

Another example of proof by contradiction is in the field of number theory: to prove that
there are an infinite number of prime numbers, we first suppose that there are only a finite
number of primes numbers, and then arrive at a contradiction.

Proposition (2.31). Every basis of Rn contains exactly n vectors.
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Proof.
Let B = {v1, v2, v3, . . . , vm} be a basis for Rn. By the above Lemma (2.30) we have

m ≤ n [because the vectors are linearly independent]

Suppose m < n. Let T = {e1, e2, e3, . . . , en} be the natural basis for Rn. We can write
each of these vectors in the set T in terms of the basis vectors B = {v1, v2, . . . , vm}:

e1 = a11v1 + a21v2 + · · · + am1vm
e2 = a12v1 + a22v2 + · · · + am2vm
...

...
...

...
...

...
en = a1nv1 + a2nv2 + · · · + amnvm

Consider the linear combination

c1e1 + c2e2 + · · · + cnen = O (∗)

Substituting the above for the vectors e1, e2, e3, . . . , en into this and rearranging:

c1 (a11v1 + · · · + am1vm)+ c2 (a12v1 + · · · + am2vm)+ · · ·
+ cn (a1nv1 + · · · + amnvm) = O

(c1a11 + c2a12 + · · · + cna1n) v1 + (c1a21 + c2a22 + · · · + cna2n) v2 + · · ·
+ (c1am1 + c2am2 + · · · + cnamn) vm = O

The vectors in B = {v1, v2, v3, . . . vm} are linearly independent because they are a basis,
so all the scalars (bracketed terms) in the above must be equal to zero:

c1a11 + c2a12 + · · · + cna1n = 0
(
Equation 1

)
c1a21 + c2a22 + · · · + cna2n = 0

(
Equation 2

)
...

...
...

...
c1am1 + c2am2 + · · · + cnamn = 0

(
Equationm

)
We can write this in matrix form as Ax = O where

A =
⎛⎜⎝ a11 . . . a1n

...
. . .

...
am1 · · · amn

⎞⎟⎠ , x =
⎛⎜⎝ c1

...
cn

⎞⎟⎠ and O =
⎛⎜⎝ 0

...
0

⎞⎟⎠
We have m equations and n unknowns. Our supposition is that m < n, therefore there

are fewer (m) equations than the number (n) of unknowns (c’s). By Proposition (1.31):
If the number of equations is less than the number of unknowns then the linear system

Ax = O has an infinite number of solutions.
We have an infinite number of solutions which means that Ax = O has non-trivial

solutions, so all the c’s are not zero.
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By the linear combination in (∗) we conclude that the vectors T = {e1, e2, e3, . . . , en} are
linear dependent because all the c’s are not zero. This cannot be the case because this set T
is the standard basis for Rn, which means that these vectors are linearly independent. We
have a contradiction, so our supposition thatm < nmust be wrong, thereforem = n.

Hence every basis of Rn has exactly n vectors.

This result means that in a basis, there are enough vectors to span (generate) the whole
n-space, Rn, but not too many so that the vectors become dependent. Hence we need
exactly n vectors to form a basis for Rn.

Proposition (2.32). Any n non-zero orthogonal vectors in Rn form a basis for Rn.

Proof – Exercises 2.4.

i Summary

The set S is a basis for Rn ⇔
(i) S = {v1, v2, v3, . . . , vn} spans Rn and

(ii) S = {v1, v2, v3, . . . , vn} is linearly independent

Every basis of Rn contains exactly n vectors.

EXERCISES 2.4

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Determine whether the following vectors span R2:

(a) e1 =
(
1
0

)
and e2 =

(
0
1

)
(b) u =

(
1
1

)
and v =

(−1
1

)
(c) u =

(
2
2

)
and v =

(−1
−1
)

(d) u =
(
1
2

)
and v =

(−1
10

)
2. Determine whether the following vectors span R3:

(a) u =
⎛⎝ 2
0
0

⎞⎠ , v =
⎛⎝ 0
2
0

⎞⎠ and w =
⎛⎝ 0
0
2

⎞⎠
(b) u =

⎛⎝ 1
1
1

⎞⎠ , v =
⎛⎝ 2
2
2

⎞⎠ and w =
⎛⎝ 1
2
3

⎞⎠
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(c) u =
⎛⎝ 1
1
1

⎞⎠ , v =
⎛⎝ 1
1
0

⎞⎠ and w =
⎛⎝ 1
0
0

⎞⎠
(d) u =

⎛⎝ 1
2
1

⎞⎠ , v =
⎛⎝ 2
4
0

⎞⎠ and w =
⎛⎝−2−2

3

⎞⎠
3. Determine whether the following vectors form a basis for R2:

(a) u = (1 2)T , v = (0 1)T (b) u = (−2 − 4)T , v = (1 2)T

(c) u = (4 1)T , v = (1 3)T (d) u = (3 5)T , v = (2 3)T

4. Explain why the following vectors do not form a basis for the indicated Euclidean
space:

(a) u = (1 2)T , v = (0 1)T , w = (1 0)T for R2

(b) u = (1 1 1)T , v = (1 1 0)T , w = (0 0 0)T for R3

(c) u = (1 1 1 1)T , v = (1 1 0 − 1)T , w = (−1 − 2 − 3 4)T ,
x = (2 2 2 2)T for R4

(d) u = (1 2 3 4 5)T , v = (1 5 0 2 4)T , w = (3 2 − 5 4 − 9)T ,
x = (2 9 2 7 7)T for R5

5. Determine whether vector b is in the space spanned by the columns of matrix A:

(a) A =
⎛⎝ 1 1 0

2 5 0
3 4 9

⎞⎠, b =
⎛⎝ 1
3
4

⎞⎠ (b) A =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠, b =
⎛⎝ 1
3
4

⎞⎠
6. Show that the following vectors form a basis for R3:

(a) u = (5 0 0)T , v = (0 6 0)T , w = (0 0 7)T

(b) u = (α 0 0)T , v = (0 β 0)T , w = (0 0 λ)T , where α, β and λ are any non-
zero real numbers.

7. Show that the vectors u = (1 1 2)T , v = (−1 1 − 2)T , w = (1 − 5 2)T do not
form a basis for R3.

8. Show that the vectors

u = (1 1 1 1)T , v = (0 1 1 1)T , w = (0 0 1 1)T , x = (0 0 0 1)T

form a basis for R4.
9. Let u = (1 5 0)T , v = (0 1 0)T .

(a) Determine the dependency of u and v.
(b) Find the space spanned by {u, v}.
(c) Write down a general vector w such that {u, v,w} form a basis for R3.

10. Let v1, v2, v3, . . . , vn span Rn. Show that v1, v2, v3, . . . , vn and w also span Rn.
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11. Let S = {v1, v2, v3, . . . , vn} be a basis for Rn. Prove that

T = {k1v1, k2v2, k3v3, . . . , knvn}
where none of the k’s are zero, is also a basis for Rn.

12. Let matrix A = (v1 v2 · · · vn). Prove that A is invertible⇔ {v1, . . . , vn} form a basis
for Rn.

13. Prove Proposition (2.27).
14. Prove Proposition (2.28).
15. Prove Proposition (2.32).
16. ∗Let {v1, v2, v3, . . . , vn} be a basis for Rn and A be an invertible matrix. Prove that

{Av1,Av2,Av3, . . . ,Avn} is also a basis for Rn.

MISCELLANEOUS EXERCISES 2

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

2.1. Determine whether the following vectors are linearly independent in the vector
space V (show your working).

V = R3,

⎧⎨⎩
⎡⎣ 1
0
0

⎤⎦ ,

⎡⎣ 1
1
1

⎤⎦ ,

⎡⎣ 1
0
0

⎤⎦⎫⎬⎭
Purdue University, USA

(part question)

2.2. Give an example or state that no such example exists of :
A set S containing two vectors from R3 such that Span S = R3.

Illinois State University, USA
(part question)

2.3. Let v1 = (1, 1, 1), v2 = (1, 0, −1) and v3 = (0, 1, 1).

(a) Are v1 and v2 linearly independent? Explain why or why not.
(b) Is (3, 2, 1) in the span of v1 and v2? Explain why or why not.
(c) Is {v1, v2, v3} a basis for R3?

Mount Holyoke College, Massachusetts, USA

2.4. Can the vector (3, 1, 1) be expressed as a linear combination of the vectors
(2, 5, −1), (1, 6, 0), (5, 2, −4)? Justify your answer.

University of Western Ontario, Canada
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2.5. (a) Define what is meant by stating that a set of vectors {v1, v2, . . . , vk} in Rn is
linearly dependent.

(b) Prove that the following set of vectors in R3 are linearly dependent.

⎧⎨⎩
⎡⎣ 1

2
−1

⎤⎦ ,

⎡⎣ 2
−1
3

⎤⎦ ,

⎡⎣ 1
7
−6

⎤⎦⎫⎬⎭
University of Manchester, UK

2.6. (a) Find two different bases for the real vector space R2.
(b) Do the following sets form a basis for R3? If not, determine whether they are

linearly independent, a spanning set for R3 or neither.

i.
{
(0, 0, 1), (0, 2, 1), (3, 2, 1), (4, 5, 6)

}
ii.
{
(1, 0, 1), (4, 3, −1), (5, 3, −4)}

City University, London, UK
(part question)

2.7. Find a Basis for the following subspace S of the given vector space V . (Do not show
it is a subspace.)

V = R5, S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
a+ b
b
c
0

c+ b

⎤⎥⎥⎥⎥⎦ | a, b, c ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Purdue University, USA

(part question)

2.8. Find the largest possible number of linearly independent vectors among

v1 =

⎡⎢⎢⎣
1
−1
0
0

⎤⎥⎥⎦ v2 =

⎡⎢⎢⎣
1
0

−1
0

⎤⎥⎥⎦ v3 =

⎡⎢⎢⎣
1
0
0

−1

⎤⎥⎥⎦ v4 =

⎡⎢⎢⎣
0
1
−1
0

⎤⎥⎥⎦ v5 =

⎡⎢⎢⎣
0
1
0

−1

⎤⎥⎥⎦ v6 =

⎡⎢⎢⎣
0
0
1

−1

⎤⎥⎥⎦
Illinois State University, USA

2.9. (a) Let v1 =

⎛⎜⎜⎝
3
−1
1
0

⎞⎟⎟⎠ , v2 =

⎛⎜⎜⎝
4
−7
3
2

⎞⎟⎟⎠ , v3 =

⎛⎜⎜⎝
3
7
−2
−6

⎞⎟⎟⎠.
Show that {v1, v2, v3} are linearly independent.
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(b) For what value(s) of λ is

⎧⎨⎩
⎛⎝ 1
1
2

⎞⎠ ,

⎛⎝ 1
0
−1

⎞⎠ ,

⎛⎝ 1
−1
λ

⎞⎠⎫⎬⎭ a basis for R3?

Provide your reasoning.
King’s College London, UK

(part question)

2.10. Find a real number c such that the vectors

⎛⎝ 1
2
4

⎞⎠ ,

⎛⎝ 2
3
5

⎞⎠ ,

⎛⎝ 2
7
c

⎞⎠ do not form a basis

of R3.
University of California Berkeley, USA

(part question)

2.11. Suppose that {v1, v2} are linearly independent set in Rm. Show that {v1, v1 + v2} is
also linearly independent.

University of Maryland, Baltimore County, USA
(part question)

2.12. Which of the following form a basis for R3? Why?

(a)

⎧⎨⎩
⎛⎝ 1
2
3

⎞⎠ ,

⎛⎝ 2
−1
5

⎞⎠⎫⎬⎭ (b)

⎧⎨⎩
⎛⎝ 1
2
3

⎞⎠ ,

⎛⎝ 4
5
6

⎞⎠ ,

⎛⎝ 6
9
12

⎞⎠⎫⎬⎭
(c)

⎧⎨⎩
⎛⎝ 1
2
3

⎞⎠ ,

⎛⎝ 4
5
6

⎞⎠ ,

⎛⎝ 7
8
9

⎞⎠ ,

⎛⎝ 10
11
12

⎞⎠⎫⎬⎭
University of Maryland, Baltimore County, USA

(part question)

2.13. Consider the three vectors u = (1, 3, 1), v = (4, 2, −1) and w = (−3, 1, 2).
(a) Either prove that the u is in the span of the vectors v andw, or prove that it is not.
(b) Are the three vectors u, v and w linearly dependent, or linearly independent?

Clark University, USA

2.14. Let u1 =
⎡⎣ 1
0
1

⎤⎦ , u2 =
⎡⎣−14

1

⎤⎦ , u3 =
⎡⎣ 2

1
−2

⎤⎦ and x =
⎡⎣ 8
−4
−3

⎤⎦.
(a) Determine if the set {u1,u2,u3} is orthogonal.
(b) Is {u1,u2,u3} a basis for R3? If yes, express x as a linear combination of u1,u2

and u3.

Washington State University, USA

2.15. Let u =
⎡⎣ 2
0
3

⎤⎦ , v =
⎡⎣ 6

2
−4

⎤⎦ and x =
⎡⎣ 2
4
0

⎤⎦. Find the following:

(a) u · u
(b) ‖u‖
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(c) A unit vector in the direction of u.
(d) u · v
(e) Are u and v orthogonal? Explain.
(f) The distance between v and x.

Washington State University, USA

2.16. (a) Define the scalar product of x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn.
(b) Define the norm of x = (x1, . . . , xn) in Rn.
(c) In Rn, describe what is meant by the angle θ between the two vectors u and v.

Use this to find the angle between the vectors u, v∈ R5 given by

u = (−1, 1, 1, −1, 0), v = (0, 2, 1, 0, 2)

University of Sussex, UK
(part question)

2.17. (a) Define the standard inner product and the Euclidean norm on the three-
dimensional Euclidean vector space R3, i.e. 〈x, y〉 and ‖x‖ for x, y ∈ R3.

(b) Define an orthonormal set of vectors.
(c) InR3, let u = (1, 1, 1). By finding the condition for the general vector (x, y, z)

to be orthogonal to u, find a vector v that is orthogonal to u. Then, by finding the
condition for the general vector (x, y, z) to be orthogonal to v, find a vector w
that is orthogonal to both u and v. Hence construct an orthonormal set of vectors
that contains a scalar multiple of (1, 1, 1).

Queen Mary, University of London, UK

2.18. (a) Let u = (2, 2, −1, 3), v = (1, 3, 2, −2), w = (3, 1, 3, 1) be vectors
in R4. Compute the following dot products u · v, (u− v) · (u− w) and
(2u− 3v) · (u+ 4w).

(b) Verify the Cauchy–Schwarz inequality for u = (1, 1, 1) and v = (−1, 1, 2).
Jacobs University, Germany

(part question)

2.19. Let v1, v2, v3 ∈ R3 be an orthogonal set of non-zero vectors. Prove that they are
linearly independent.

University of Southampton, UK
(part question)

2.20. Let {u1,u2, . . . ,un} be a basis for Rn, and let A be an invertible n× n matrix. Prove
that {Au1,Au2, . . . ,Aun} is a basis for Rn.

Illinois State University, USA

Sample Questions

2.21. Let u and v be vectors in Rn. Prove that

u · v = 0 ⇔ ‖u+ v‖ = ‖u− v‖
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2.22. Prove that if for all non-zero vectors u in Rn we have u · v = u · w then v = w.

2.23. Let u =
(
a
b

)
and v =

(
c
d

)
be vectors in R2. Prove that vectors u and v are linearly

independent⇔ ad − bc �= 0.
2.24. Prove that a set ofm vectors wherem < n cannot span Rn.
2.25. Prove that any n vectors which span Rn form a basis for Rn.
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Tell us about yourself and your work.

I have been working on numerical linear algebra since graduate school (Rice University).
My expertise is in solving large-scale eigenvalue problems. At LBNL, I work on a number
of interesting science projects. All of them require using linear algebra to obtain
desirable solutions.

How do you use linear algebra in your job?

I use linear algebra to solve quantum mechanics problems. One of the fundamental
problems in chemistry and material science is to understand the electronic structure of
atoms, molecules and solids. This problem can be solved by computing the solutions to
Schrödinger’s equation, which is an eigenvalue problem. There are various ways to
obtain approximations to the solution. All of them ultimately result in solving a large
sparse matrix eigenvalue problem.

How important is linear algebra?

Linear algebra is indispensable in my research. Every problem eventually boils down to a
linear algebra problem.

What are the challenges connected with the subject?

The main challenge is the size of the problem, which nowadays can be in the order of
millions or even billions. However, these large problems often have structures (e.g.
sparsity). Therefore, to solve these problems, one has to take advantage of the structure.

What are the key issues in your area of linear algebra research?

Convergence of iterative solvers for linear equations, least squares problems and
eigenvalue problems, methods that can take advantage of the sparsity or other structures
of matrices.
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SECTION 3.1 Introduction to General Vector Spaces

By the end of this section you will be able to

● understand what is meant by a vector space

● give examples of vector spaces

● prove properties of vector spaces

In the last chapter we used vectors to represent a quantity with ‘magnitude and direction’.
In fact, this ‘magnitude–direction’ definition relates to a specific application of vectors,
which is used in the fields of science and engineering. However, vectors have a much
broader range of applications, and they are more generally defined as ‘elements of a
vector space’. In this chapter we describe what is meant by a vector space and how it is
mathematically defined.

We discuss the vector spaces that accommodate matrices, functions and polynomials.
You may find this chapter more abstract than the previous chapters, because for Euclidean
spaces R2 and R3 we were able to visualize and even plot the vectors. It is clearly impossible
to draw a vector in four dimensions, but that doesn’t make the mathematics carried out in
that vector space any less valid.

First, we define what is meant by a general vector space in terms of a set of axioms.

What does the term axiom mean?
An axiom is a statement which is self-evidently true and doesn’t have a proof.

We define vector space with 10 axioms, based on the two fundamental operations of linear
algebra – vector addition and scalar multiplication.

3.1.1 Vector space

Let V be a non-empty set of elements called vectors. We define two operations on the set
V– vector addition and scalar multiplication. Scalars are real numbers.

Let u, v and w be vectors in the set V . The set V is called a vector space if it satisfies the
following 10 axioms.

1. The vector addition u+ v is also in the vector space V. Generally in mathematics
we say that we have closure under vector addition if this property holds.

2. Commutative law: u+ v = v+ u.
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3. Associative law: (u+ v)+ w = u+ (v+ w).
4. Neutral element. There is a vector called the zero vector in V denoted by O which

satisfies

u+O = u for every vector u in V

5. Additive inverse. For every vector u there is a vector −u (minus u) which satisfies
the following:

u+ (−u) = O

6. Let k be a real scalar then ku is also in V . We say that we have closure under scalar
multiplication if this axiom is satisfied.

7. Associative law for scalar multiplication. Let k and c be real scalars then

k(cu) = (kc)u

8. Distributive law for vectors. Let k be a real scalar then

k(u+ v) = ku+ k v

9. Distributive law for scalars. Let k and c be real scalars then

(k+ c)u = ku+ cu

10. Identity element. For every vector u in V we have

1u = u

We say that if the elements of the set V satisfy the above 10 axioms then V is called a
vector space and the elements are known as vectors. This might seem like a long list to
digest, so don’t worry if it seems a little intimidating at this point. We will use these axioms
frequently in the next few sections, and you will soon become familiar with them.

3.1.2 Examples of vector spaces

Can you think of any examples of vector spaces?
The Euclidean spaces of the last chapter – V = R2,R3, . . . ,Rn – are all examples of vector spaces.

Are there any other examples of a vector space?
The set of matrices M22 that are all matrices of size 2 by 2 where matrix addition and scalar
multiplication is defined as in chapter 1 form their own vector space.

Let u =
(
a b
c d

)
, v =

(
e f
g h

)
and w =

(
i j
k l

)
be matrices inM22.

What is the zero vector in M22?

The zero vector is the zero matrix of size 2 by 2 which is given by

(
0 0
0 0

)
= O.
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The rules of matrix algebra established in chapter 1 ensure that all 10 axioms are satisfied,
definingM22 as an example of a vector space. You are asked to check this in Exercises 3.1.

We can show that the set M23, which is the set of matrices of size 2 by 3, also forms a
vector space. You are asked to do this in Exercises 3.1.

There also exists vector space which is neither Euclidean space nor formed by a set of
matrices. For example, the set of polynomials denoted P(t) whose elements take the form:

p(t)= c0 + c1t+ c2t2 + · · · + cntn

where c0, c1, c2, . . . and cn are real numbers called the coefficients, form a vector space.
The following are examples of polynomials

p(t) = t2 − 1, q(t) = 1+ 2t + 7t2 + 12t3 − 3t4 and r(t) = 7

The degree of a polynomial is the highest index (power) which has a non-zero coefficient,
that is the maximum n for which cn �= 0.

What is the degree of p(t), q(t) and r(t)?
p(t) = t2 − 1 is of degree 2, q(t) = 1+ 2t + 7t2 + 12t3 − 3t4 is of degree 4 and r(t) = 7 is of
degree 0. Note that the last polynomial r(t) = 7 = 7t0 is of degree 0 because 0 is the highest
index with a non-zero coefficient (c0).

How do we define the zero polynomial?
The zero polynomial, denoted by O, is given by

O= 0+ 0t + 0t2 + · · · + 0tn

All the coefficient c’s are zero. We say that the zero polynomial has no degree.
Let P(t) be the set of polynomials of degree less than or equal to n where n is a positive

or zero integer. The zero polynomial O is also in the set P(t).
We define the two operations of vector addition and scalar multiplication as:

1. Vector addition p(t)+ q(t) is the normal addition of polynomials.
2. Scalar multiplication kp(t) is the normal multiplication of a constant, k, with the

polynomial, p(t).

In the next example we show that P(t) is also a vector space.

Example 3.1

Show that P(t), the set of polynomials of degree n or less, is indeed a vector space.

Solution
We need to check all 10 axioms with the elements or vectors (polynomials) of this space which have the
general polynomial form:

p(t) = c0 + c1t + c2t2 + · · · + cntn, q(t) = d0 + d1t + d2t2 + · · · + dntn and

r(t) = e0 + e1t + e2t2 + · · · + entn

(continued...)
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1. Adding two vectors (two polynomials):

p(t)+ q(t) = c0 + c1t + c2t2 + · · · + cntn︸ ︷︷ ︸
=p(t)

+ d0 + d1t + d2t2 + · · · + dntn︸ ︷︷ ︸
=q(t)

= (c0 + d0)+ (c1 + d1)t + (c2 + d2)t2 + · · · + (cn + dn)tn

Hence p(t)+ q(t) is in P(t) which means that we have closure under addition.

2. Commutative law:
We are required to show that p(t)+ q(t) = q(t)+ p(t):

p(t)+ q(t) = c0 + c1t + c2t2 + · · · + cntn + d0 + d1t + d2t2 + · · · + dntn

= d0 + d1t + d2t2 + · · · + dntn︸ ︷︷ ︸
=q(t)

+ c0 + c1t + c2t2 + · · · + cntn︸ ︷︷ ︸
=p(t)

= q(t)+ p(t)

3. Associative law:
We need to show that [p(t)+ q(t)]+ r(t) = p(t)+ [q(t)+ r(t)]. Substituting the above

polynomials into this yields:

[
p(t)+ q(t)

]+ r(t) =
⎡⎢⎣c0 + c1t + c2t2 + · · · + cntn︸ ︷︷ ︸

=p(t)
+ d0 + d1t + d2t2 + · · · + dntn︸ ︷︷ ︸

=q(t)

⎤⎥⎦
+ e0 + e1t + e2t2 + · · · + entn︸ ︷︷ ︸

=r(t)

= c0 + c1t + c2t2 + · · · + cntn + d0 + d1t + d2t2 + · · · + dntn

+ e0 + e1t + e2t2 + · · · + entn

= c0 + c1t + c2t2 + · · · + cntn︸ ︷︷ ︸
=p(t)

+
⎛⎜⎝d0 + d1t + d2t2 + · · · + dntn︸ ︷︷ ︸

=q(t)
+ e0 + e1t + e2t2 + · · · + entn︸ ︷︷ ︸

=r(t)

⎞⎟⎠
= p(t)+ [q(t)+ r(t)

]
4. What is the zero vector in this case?

The zero polynomial O is the real number 0 and is in the set P(t). Clearly

p(t)+O = c0 + c1t + c2t2 + · · · + cntn︸ ︷︷ ︸
=p(t)

+ 0 = p(t)
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5. Additive inverse. For the polynomial p(t) we have the inverse as−p(t) and

p(t)− p(t) = c0 + c1t + c2t2 + · · · + cntn − (c0 + c1t + c2t2 + · · · + cntn)

= c0 + c1t + c2t2 + · · · + cntn − c0 − c1t − c2t2 − · · · − cntn

= (c0 − c0)+ (c1 − c1)t + (c2 − c2)t2 + · · · + (cn − cn)tn

= 0+ 0+ 0+ · · · + 0 = 0 = O

6. Let k be a real scalar then

kp(t) = k(c0 + c1t + c2t2 + · · · + cntn)

= kc0 + kc1t + kc2t2 + · · · + kcntn

Hence kp(t) is also in the space P(t) because it is a polynomial of degree less than or equal to n.

7. Associative law for scalar multiplication. Let k1 and k2 be real scalars:

k1(k2p(t)) = k1(k2[c0 + c1t + c2t2 + · · · + cntn])

= k1(k2c0 + k2c1t + k2c2t2 + · · · + k2cntn)

= k1k2c0 + k1k2c1t + k1k2c2t2 + · · · + k1k2cntn

= k1k2 (c0 + c1t + c2t2 + · · · + cntn)︸ ︷︷ ︸
=p(t)

[factorizing]

= (k1k2)p(t)

8. Distributive law. Let k be a real scalar, then we have:

k[p(t)+ q(t)] = k

⎡⎢⎣c0 + c1t + c2t2 + · · · + cntn︸ ︷︷ ︸
=p(t)

+ d0 + d1t + d2t2 + · · · + dntn︸ ︷︷ ︸
=q(t)

⎤⎥⎦
= kc0 + kc1t + kc2t2 + · · · + kcntn + kd0 + kd1t + kd2t2 + · · · + kdntn

={

Factorising

k (c0 + c1t + c2t2 + · · · + cntn)︸ ︷︷ ︸
=p(t)

+ k (d0 + d1t + d2t2 + · · · + dntn)︸ ︷︷ ︸
=q(t)

= kp(t)+ kq(t)

9. Distributive law for scalars. Let k1 and k2 be real scalars:

(k1 + k2)p(t) = (k1 + k2)(c0 + c1t + c2t2 + · · · + cntn)

= k1(c0 + c1t + · · · + cntn)+ k2(c0 + c1t + · · · + cntn)

= k1p(t)+ k2p(t)

10. The identity element is the real number 1. We have

1p(t) = 1(c0 + c1t + c2t2 + · · · + cntn)

= (1× c0)+ (1× c1t)+ (1× c2t2)+ · · · + (1× cntn)

= c0 + c1t + c2t2 + · · · + cntn = p(t)

All 10 axioms are satisfied, therefore the set P(t) of polynomials of degree n or less is a vector
space.
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Example 3.2

Let P(t) be the set of polynomials of degree equal to n where n is a positive integer. Show that this set
P(t) is not a vector space.

Remark Note the difference between Example 3.1 and this example. Here the polynomial is of degree n
exactly. In Example 3.1 the degree of the polynomial was less than or equal to n.

Solution
If we check the first axiom, that is if we add any two vectors in the set P(t), then their addition should also
be in the set. Let

p(t) = 4+ 5tn and q(t) = 3− 5tn

We have p(t)+ q(t) = 4+ 5tn + 3− 5tn = 7. This result is not inside the set P(t).
Why not?
Because P(t) is the set of polynomials of degree n, but p(t)+ q(t) = 7 is of degree 0, which means that it
cannot be a member of this set P(t).

Hence P(t) is not a vector space because axiom 1 fails, that is we do not have closure under vector
addition.

Example 3.3

Let V be the set of integers Z. Let vector addition be defined as the normal addition of integers, and
scalar multiplication by the usual multiplication of integers by a real scalar, which is any real number.

Show that this set is not a vector space with respect to this definition of vector addition and scalar
multiplication.

Solution
The set of integers Z is not a vector space because when we multiply an integer by a real scalar, which is
any real number, then the result may not be an integer.

For example, if we consider the integer 2 and multiply this by the scalar 1/3 then the result is
1
3
(2) = 2

3
which is not an integer. Our result after scalar multiplication is not in the set of integers Z. Hence the set
of integers fails axiom 6.

We do not have closure under scalar multiplication, therefore the set of integers Z is not a vector space
with respect to vector addition and scalar multiplication as defined above.

In general if a set forms a vector space with the scalars being real numbers then we say we
have a vector space over the real numbers.

Another example of vector space is that which contains real-valued functions. You
should be familiar with functions.

Examples of functions are f (x) = x, f (x) = x2 + 1, f (x) = sin(x) and f (x) = ex.
Let a and b be real numbers where a ≤ b, then the notation [a, b] is called the interval

and is graphically displayed as shown in Fig. 3.1.
We use square brackets to indicate that [a, b] is inclusive of the end points a and b.

(]a, b[ contains every value between the end points, but does not contain the end points a
and b.)
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a b
Figure 3.1
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Figure 3.2

The functions in Fig. 3.2 are defined for the interval [−2, 2].
Let F[a, b] be the set of all functions defined in the interval [a, b]. Let f and g be functions

in F[a, b]. Normally f and g (being vectors) would be in bold but since we are used to seeing
functions without bold symbols we will sometimes write these as f and g respectively. We
define:

(i) Vector addition. The sum f + g is also in F[a, b] and

( f + g)(x) = f (x)+ g(x)

(ii) Scalar multiplication. Let k be a real scalar then for all x in [a, b]

(kf )(x) = kf (x)

The zero vector in F[a, b] is the zero function 0(x) which is equal to zero for all x in the
interval [a, b], that is

0(x) = 0 for all x ∈ [a, b]

For any function f there is a function −f (minus f ) for all x in the interval [a, b] which
satisfies

(−f )(x) = −f (x)
You are asked to prove that F[a, b] is a vector space with respect to these definitions in

Exercises 3.1.
Next we go on to prove some basic properties of general vector spaces, using the 10

axioms given in subsection 3.1.1.
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3.1.3 Basic properties of general vector spaces

Proposition (3.1). Let V be a vector space and k be a real scalar. Then we have:

(a) For any real scalar k we have kO = O where O is the zero vector.
(b) For the real number 0 and any vector u in V we have 0u = O.
(c) For the real number−1 and any vector u in V we have (−1)u = −u.
(d) If ku = O, where k is a real scalar and u in V , then k = 0 or u = O.

We use the above 10 axioms given in subsection 3.1.1, to prove these properties.

(a) Proof.
Need to prove kO = O. By applying the above axiom 4, u+O = u, we have

kO = k(O+O)
= kO+ kO [applying axiom 8 which is k(u+ v) = ku+ kv]

Adding−kO to both sides of this, kO = kO+ kO, gives

kO+ (−kO)︸ ︷︷ ︸
=O

= kO+ kO+ (−kO)︸ ︷︷ ︸
=O

[By axiom 5 u+ (−u) = O]

O = kO

Hence we have our required result, kO = O.

(b) Proof.
Required to prove 0u = O. For real numbers 0 = 0+ 0 we have

0u = (0+ 0)u
= 0u+ 0u [by axiom 9 (k+ c)u = ku+ cu]

Adding−0u to both sides of this, 0u = 0u+ 0u, gives

0u+ (−0u)︸ ︷︷ ︸
=O

= 0u+ 0u+ (−0u)︸ ︷︷ ︸
=O

O = 0u

We have result (b), that is 0u = O.

(c) Proof.
Required to prove (−1)u = −u. Adding u to (−1)u gives

u+ (−1)u = 1u+ (−1)u
= (1− 1)u = 0u ={

by part (b)
O
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By axiom 5 we have u+ (−u) = O. Equating this with the above, u+ (−1)u = O, we
have

u+ (−1)u = u+ (−u)
Adding−u to both sides of this gives:

−u + u︸ ︷︷ ︸
=O

+ (−1)u = −u + u︸ ︷︷ ︸
=O

+(−u)

O+ (−1)u = O+ (−u)
(−1)u = −u

Hence we have our result, (−1)u = −u.

(d) Proof.
Need to prove that ku = O implies k = 0 or u = O.

If k �= 0 (non-zero) then

ku = O
1
k
(ku) = 1

k
O︸︷︷︸
=O

[
multiplying both sides by

1
k

]
(
1
k
k
)
u = O gives 1u = O

Since 1u = u, therefore u = O which is our required result.
If k = 0 then clearly the result holds because 0u = O by part (b).

Proposition (3.2). Let V be a vector space. The zero vector O (neutral element) of V is
unique.

What does this proposition mean?
There is only one zero vector in the vector space V . Remember, by axiom 4 there is a vector called
the zero vector denoted by O which satisfies

u+O = u for every vector u

Proof.
Suppose there is another vector, say w, which also satisfies

u+ w = u

What do we need to prove?
Required to prove that w = O. Equating these two, u+O = u and u+ w = u, gives

u+O = u+ w
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Adding −u to both sides of this yields:

−u+ (u+O) = −u+ (u+ w)

(−u+ u)︸ ︷︷ ︸
=O

+ O = (−u+ u)︸ ︷︷ ︸
=O

+ w

O+O = O+ w gives O = w

Hence w = O, which means that the zero vector is unique.

Proposition (3.3). Let V be a vector space and k be a real scalar. The vector −u which
satisfies axiom 5 is unique:

u+ (−u) = O

Proof.
Suppose the vector w also satisfies this;

u+ w = O

What do we need to prove?
Required to prove that w = −u. Equating these two, u+ (−u) = O and u+ w = O, gives

u+ (−u) = u+ w

Adding −u to both sides yields:

−u+ (u+ (−u)) = −u+ (u+ w)

(−u+ u)︸ ︷︷ ︸
=O

+ (−u) = (−u+ u)︸ ︷︷ ︸
=O

+ w

O+ (−u) = O+ w ⇒ −u = w

Hence the vector−u is unique.

i Summary

A vector space is formed by a non-empty set within which the operation of vector addition and
scalar multiplication satisfies the above 10 axioms.

Examples of vector spaces include the sets of matrices, polynomials and functions.
Some properties of vector spaces are:

(a) kO = O

(b) 0u = O

(c) (−1)u = −u
(d) If ku = O then k = 0 or u = O
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The zero vector O and the vector−u have the following properties

u+ (−u) = O and u+O = u

and are unique.

EXERCISES 3.1

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)
Throughout this exercise assume the usual operations of vector addition and scalar multipli-
cation as defined in early chapters or in section 3.1.

1. Show that R2 is a vector space.
2. Show that R3 is a vector space.
3. Show that the setM22 of 2 by 2 matrices is a vector space.
4. Show that the setM23 of 2 by 3 matrices is a vector space.
5. Show that the set F[a, b] which is the set of all functions defined on the interval [a, b]

is a vector space.
6. Show that the following set of matrices does not form a vector space:(

1 0
0 a

)

7. Show that matrices
(
a 0
0 b

)
form a vector space.

8. Show that the set of 2 by 2 non-invertible matrices do not form a vector space.
9. Let P2 be the set of polynomials of degree 2 or less and

p(x) = ax2 + bx + c and q(x) = dx2 + ex+ f

be members of P2.
Show that the set P2 is a vector space with respect to the usual vector addition and

scalar multiplication.
10. Consider the set R2 with the normal vector addition, but scalar multiplication

defined by

k
(
a
b

)
=
(
0
kb

)
Show that the set R2 with this scalar multiplication definition is not a vector space.
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11. Let V be the set
(
a
b

)
in R2 where a ≥ 0 and b ≥ 0. Show that with respect to normal

vector addition and scalar multiplication, the given set is not a vector space.
12. Let V be the set of rationals (fractions) Q. Let vector addition be defined as the normal

addition of rationals and scalar multiplication by the usual multiplication of rationals
by a scalar, which is any real number.

Show that this set is not a vector space with respect to this definition of vector
addition and scalar multiplication.

13. Let V be the set of real numbers R. Show that this set is a vector space with respect to
the usual definition of vector addition and scalar multiplication.

14. Let V be the set of positive real numbers R+. Show that this set is not a vector space
with respect to the usual definition of vector addition and scalar multiplication.

15. Prove that if the vector u is in the vector space V then the vector−u is also in V .
16. Let V be a vector space and u be a vector in V . Prove that

(−k)u = −(ku) = k(−u)
17. Let V be a vector space and u and w be vectors in V . Let k �= 0 be a scalar. Prove that if

ku = kw then u = w.
18. Let V be a vector space with a non-zero vector u (�= O) and scalars k1 and k2. Prove

that if k1u = k2u then k1 = k2.
19. Let u and w be vectors in a vector space V . Prove that

−(u+ w) = −u− w

20. Let u be a vector in a vector space V. Prove that

u+ u+ u+ · · · + u︸ ︷︷ ︸
n copies

= nu

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 3.2 Subspace of a Vector Space

By the end of this section you will be able to

● prove some properties of subspaces

● understand what is meant by a linear combination and spanning set

In section 3.1 we discussed the whole vector space V. In this section we show that parts
of the whole vector space also form a vector space in their own right. We will show that a
non-empty set within V , which is closed under the basic operations of vector addition and
scalar multiplication, is also a legitimate vector space.



SUBSPACE OF A VECTOR SPACE 203

3.2.1 Examples of vector subspaces

Let V be a vector space and S be a non-empty subset of V. If the set S satisfies all 10 axioms
of a vector space with respect to the same vector addition and scalar multiplication as V
then S is also a vector space. We say S is a subspace of V.

Definition (3.4). A non-empty subset S of a vector space V is called a subspace of V if it is
also a vector space with respect to the same vector addition and scalar multiplication as V.

We illustrate this in Fig. 3.3.

VS

Figure 3.3

Note the difference between subspace and subset. A subset is merely a specific set of
elements chosen from V . A subset must also satisfy the 10 axioms of vector space to be
called a subspace.

Example 3.4

Let V be the set R2 and vector addition and scalar multiplication be defined as normal. Let the set S be
the single element O which in this case is the origin. Show that S is a subspace of V .

Solution
We know from the last section that R2 is a vector space and also that it contains the origin O. This means
that the given set S containing the single element O is a non-empty subset of V .

Vector addition and scalar multiplication in this set is defined as

O+O = O and kO = O, where k is a scalar.

By checking all 10 axioms of the last section, we can show that the set S is also a vector space. You are
asked to do this in Exercises 3.2.

Hence by definition (3.4) we conclude that S is a subspace of V = R2.
We can represent this graphically in Fig. 3.4.

5

–5

–5 5 10–10

–10

10
y

x
O

V =     2

The set S with the single
element O is a subspace of    2.

Figure 3.4
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A set with a single element is called a singleton set.
More generally, we will use the following proposition to check if a given subset qualifies

as a subspace.
(You will need to look again at the 10 axioms to understand the proof below.)

Proposition (3.5). Let S be a non-empty subset of a vector space V. Then S is subspace
of V ⇔:

(a) If u and v are vectors in the set S then the vector addition u+ v is also in S.
(b) If u is a vector in S then for every scalar k we have, ku is also in S.

Note that this proposition means that we must have closure under both vector addition
and scalar multiplication. This means that S is a subspace of V ⇔ both the following are
satisfied, as shown in Fig. 3.5.

u v
(a)

V

S

Vector addition

(b)

V

k
S

u u

Scalar multiplication

u + v

Figure 3.5

How do we prove this proposition?
(⇒). We first assume that S is a subspace of the vector space V , and from this we deduce
conditions (a) and (b) [show that we have closure under vector addition and scalar multiplication].

(⇐). Then we assume conditions (a) and (b) are satisfied, and from this we deduce that the
set S is a subspace of the vector space V .

Proof.
Let u and v be vectors in the set S.

(⇒). Let S be a subspace of the vector space V. By the above definition (3.4) we have
closure under vector addition and scalar multiplication because the set S is itself a vector
space. [Remember, axioms 1 and 6 state that we have closure under vector addition and
scalar multiplication]. Hence conditions (a) and (b) hold.

(⇐). Assume conditions (a) and (b) are satisfied, that is we have closure under vector
addition and scalar multiplication.

Required to prove that all 10 axioms of the last section are satisfied.
We have closure, therefore axioms 1 and 6 are satisfied. Axioms 2, 3, 7, 8, 9 and 10 are

satisfied because these axioms are true for all vectors in the vector space V and vectors u
and v are vectors in the vector space V .

For the set S we need to prove axioms 4 and 5 which are:

4. There is a zero vectorO in V which satisfies

u+O = u for every vector u in V
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5. For every vector u there is a vector−u which satisfies the following:

u+ (−u) = O

We have to show (Fig. 3.6) that the zero vector,O, and−u are also in S for any u in S.

u –u

O S Figure 3.6

We are assuming closure under scalar multiplication (part (b)), which means that if u is
in S then ku is also in S for any real scalar k. Substituting k = 0 gives

0u = O is also in S

Substituting k = −1 gives
(−1)u = −u is also in S

Hence the zero vector,O, and−u are in the set S.
Now that we have shown all 10 axioms of a vector space are satisfied, we can conclude

that S is a vector space, therefore it is a subspace of V.

What does Proposition (3.5) mean?
Proposition (3.5) makes life a lot easier because we only need to check closure under vector addi-
tion and scalar multiplication to show that a given set is a subspace. No need to check all 10
axioms.

In everyday English, closure refers to the act of closing or sealing, such as the lid for a
container. It has the same meaning here: u+ v and ku are closed inside the subspace as
shown in Fig. 3.7.

Subspace
u v

u + v

ku
Figure 3.7

If vectors u and v are in subspace S then u+ v and ku cannot escape from S.

Example 3.5

Let V be the set R2 and vector addition and scalar multiplication be defined as normal. Let S be the set

of vectors of the form

(
0
y

)
. Show that S is a subspace of V .

(continued...)
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Solution
We only need to check conditions (a) and (b) of Proposition (3.5). These are the closure conditions under
vector addition and scalar multiplication. We need to show:

(a) If u and v are vectors in the set S then the vector addition u+ v is also in S.

(b) If u is a vector in S and k is any real scalar then ku is also in S.

Let u =
(
0
a

)
and v =

(
0
b

)
be vectors in S. Then

u+ v =
(
0
a

)
+
(
0
b

)
=
(

0
a+ b

) [
closure under
vector addition

]
which is in the set S and

ku = k
(
0
a

)
=
(
0
ka

) [
closure under
scalar multiplication

]
which is in S as well.
Conditions (a) and (b) are satisfied, therefore the given set S is a subspace of the vector space R2.

Note that the set S is the y axis in the xy plane as shown in Fig. 3.8.

y

x

V =   2

2

The set S of          is a

subspace of 

0
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

Figure 3.8

Example 3.6

Let S be the subset of vectors of the form

(
x
y

)
where x ≥ 0 in the vector space R2. Show that S is not a

subspace of R2 .

Solution
How do we show that S is not a subspace of R2?
If we can show that we do not have closure under vector addition or scalar multiplication of vectors in S,

then we can conclude that S is not a subspace. Consider the scalar k = −1 and the vector u =
(
1
2

)
;

then clearly u is in the set S, but the scalar multiplication

ku = (−1)
(
1
2

)
=
(−1
−2
)

is not in S.
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Why not?

Because the first entry in the vector

(−1
−2
)

is−1 which is less than 0 and the set S only contains vectors

of the form

(
x
y

)
where the first entry x ≥ 0 (greater than or equal to zero).

Hence S is not a subspace of R2 (Fig. 3.9).

This shaded region S
is not a subspace of
    2.

–10 –5 5 10
x

y

5

–5

–10

10

Figure 3.9

Clearly S is a subset but not a subspace of R2 .

Note that by Example 3.5 the vertical axis x = 0 is a subspace of R2 but the whole region
to the right of x ≥ 0 is not.

Example 3.7

Let M22 be the set of 2 by 2 matrices. From the last section we know that this set is a vector space. Let S

be a subset of M22, containing matrices of the form

(
1 b
c d

)
.

Show that S is not a subspace of V .

Solution
We need to show that one of closure conditions (a) or (b) of Proposition (3.5) fails.

Let u =
(

1 b
c d

)
and v =

(
1 0
0 0

)
be vectors in the subset S. Then

u+ v =
(

1 b
c d

)
+
(

1 0
0 0

)
=
(

1+ 1 b+ 0
c+ 0 d + 0

)
=
(

2 b
c d

)
Hence u+ v is not a member of the set S because the elements in S are of the form(
1 b
c d

)
but u+ v =

(
2 b
c d

)
. The first entry in the matrix u+ v needs to be 1, not 2, to qualify as an

element of the subset S. Therefore S is not a subspace of the vector space M22.
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3.2.2 Revision of linear combination

Linear combination combines the two fundamental operations of linear algebra – vector
addition and scalar multiplication.

In the last chapter we introduced linear combination in Rn. For example, we had

u= k1e1 + k2e2 + · · · + knen (k’s are scalars)

which is a linear combination of the standard unit vectors e1, e2, . . . and en.
Similarly for general vector spaces we define linear combination as:

Definition (3.6). Let v1, v2, . . . and vn be vectors in a vector space. If a vector x can be
expressed as

x= k1v1 +k2v2 + k3v3 + · · · + knvn (where k’s are scalars)

then we say x is a linear combination of the vectors v1, v2, v3, . . . and vn.

Example 3.8

Let P2 be the set of all polynomials of degree less than or equal to 2.
Let v1 = t2 − 1, v2 = t2 + 3t − 5 and v3 = t be vectors in P2 .
Show that the quadratic polynomial

x = 7t2 − 15

is a linear combination of {v1, v2, v3}.

Solution
How do we show x is a linear combination of vectors v1, v2 and v3 ?
We need to find the values of the scalars k1, k2 and k3 which satisfy

k1v1 + k2v2 + k3v3 = x (∗)

How can we determine these scalars?
By substituting v1 = t2 − 1, v2 = t2 + 3t − 5, v3 = t and x = 7t2 − 15 into (∗):

k1v1 + k2v2 + k3v3 = k1(t2 − 1)+ k2(t2 + 3t − 5)+ k3t

= k1t2 − k1 + k2t2 + 3k2t − 5k2 + k3t [expanding]

= (k1 + k2)t2 + (3k2 + k3)t − (k1 + 5k2) [factorizing]

= 7t2 − 15 [remember x = 7t2 − 15]

By equating coefficients of the last two lines

(k1 + k2)t2 + (3k2 + k3)t − (k1 + 5k2)= 7t2 − 15

gives

k1 + k2 = 7 [equating t2]

3k2 + k3 = 0 [equating t]

k1 + 5k2 = 15 [equating constants]
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Solving these equations gives the values of the scalars: k1 = 5, k2 = 2 and k3 = −6.
Substituting these into k1v1 + k2v2 + k3v3 = x:

5v1 + 2v2 − 6v3 = x

This means that adding 5 lots of v1, 2 lots of v2 and−6 lots of v3 gives the vector x:

5(t2 − 1) + 2(t2 + 3t − 5) − 6t = 7t2 − 15

You may like to check the algebra.
We conclude that x is a linear combination of {v1, v2, v3}.

The next proposition allows us to check that S is a subspace, by carrying out the test for
scalar multiplication and vector addition in a single calculation.

Proposition (3.7). A non-empty subset S containing vectors u and v is a subspace of a
vector space V ⇔ any linear combination ku+ c v is also in S (k and c are scalars).

How do we prove this proposition?
Since it is a ‘⇔’ statement we need to prove it both ways.

Proof.
(⇒). Let S be a subspace ofV , then S is a vector space. If u and v are in S then ku+ cv is also
in S because the vector space S is closed under scalar multiplication and vector addition.
(⇐). Assume ku+ cv is in S.

Substituting k = c = 1 into ku+ cv we have u+ v is also in S. Similarly for c = 0 we
have ku+ cv = ku is in S.

Hence we have closure under vector addition and scalar multiplication. By Proposition
(3.5): S is subspace of V ⇔ S is closed under vector addition and scalar multiplication.

We conclude that S is a subspace.

Proposition (3.7) is another test for a subspace. Hence a subspace of a vector space V is
a non-empty subset S of V , such that for all vectors u and v in S and all scalars k and c we
have ku+ cv is also in S.

Example 3.9

Let S be the subset of vectors of the form (x y 0)T in the vector space R3. Show that S is a subspace
of R3 .

(continued...)
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Solution
How do we show that S is a subspace of R3?
We can use the above Proposition (3.7), which means we need to show that any linear combination
ku+ cv is in S for any vectors u and v in S.

Let u = (a b 0)T and v = (c d 0)T be in S. Then for real scalars k1 and k2 we have

k1u+ k2v = k1

⎛⎝ a
b
0

⎞⎠+ k2

⎛⎝ c
d
0

⎞⎠
=
⎛⎝ k1a
k1b
0

⎞⎠+
⎛⎝ k2c
k2d
0

⎞⎠ =
⎛⎝ k1a+ k2c
k1b+ k2d

0

⎞⎠
Hence k1u+ k2v is also in S.
By the above Proposition (3.7):
S is subspace of V ⇔ any linear combination ku+ cv is also in S.
We conclude that the given set S is a subspace of the vector space R3 .

You might find it easier to use this test (3.7) rather than (3.5) because you only need to
recall that the linear combination is closed in S.

Note that the given set S in the above example describes the xy plane in three-
dimensional space R3 as shown in Fig. 3.10:

Subspace of    3.

x

y

z

Figure 3.10

Sometimes we write

⎛⎝ x
y
0

⎞⎠ as the set S =
⎧⎨⎩
⎛⎝ x
y
z

⎞⎠ ∣∣∣∣∣∣ z = 0

⎫⎬⎭ where the vertical line in

the set means ‘such that’. That is, S contains the set of vectors in R3 such that the last entry
is zero.

3.2.3 Revision of spanning sets

Definition (3.8). If every vector inV can be produced by a linear combination of vectors
v1, v2, v3, . . . and vn then these vectors span or generate the vector space V . We write
this as span{v1, v2, v3, . . . , vn}.
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For example, the standard unit vectors e1 =
(
1
0

)
and e2 =

(
0
1

)
span R2 because a

linear combination of these vectors e1 and e2 can produce any vector in R2.

For example, the vector u =
(
1
1

)
spans the line y = x in R2 as Fig. 3.11(a) shows.

Any vector on this line is
an element of span{u}.

Span{u}3

y

2
= 1

1
u

1

−1

−2

−3

−3 −2 −1 1 2 3
x

Figure 3.11(a)

Proposition (3.9). Let S be a non-empty subset of a vector space V . The set span{S} is a
subspace of the vector space V.

Proof – Exercises 3.2.

For example, in the above Fig. 3.11(a) span {u} is a subspace of R2. This is illustrated in
Fig. 3.11(b).

V
Span{S} = Subspace

Figure 3.11(b)

Example 3.10

Let P3 be the vector space containing the set of polynomials of degree 3 or less. Show that the set
{1, t, t2, t3} spans {P3}.

Solution
Let at3 + bt2 + ct + d be a general polynomial in the space P3 . Then we need to show that there are
scalars k1, k2, k3 and k4 which satisfy the following:

k1t3 + k2t2 + k3t + k4 = at3 + bt2 + ct + d

Equating coefficients of t3, t2, t and constant gives k1 = a, k2 = b, k3 = c and k4 = d respectively.
We have found scalars, k1 = a, k2 = b, k3 = c and k4 = d, therefore the linear combination of

{1, t, t2, t3} can generate any vector in P3 which means {1, t, t2, t3} spans P3 .
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Example 3.11

Let P2 be the set of polynomials of degree 2 or less. Let the following vectors be in P2 :

v1 = t2 − t − 1, v2 = 6t2 + 3t − 3 and v3 = t2 + 5t + 1

Determine whether the vector u = 3t2 + 2t + 1 is spanned by {v1, v2, v3}.

Solution
How do we check that the vector u is spanned by {v1, v2, v3}?
We need to see if scalars, k1, k2 and k3 exist which satisfy the following linear combination:

k1v1 + k2v2 + k3v3 = u

Substituting v1 = t2 − t − 1, v2 = 6t2 + 3t − 3, v3 = t2 + 5t + 1 and u = 3t2 + 2t + 1 into this:

k1v1 + k2v2 + k3v3 = k1(t2 − t − 1)+ k2(6t2 + 3t − 3)+ k3(t2 + 5t + 1)

= (k1 + 6k2 + k3)t2 + (−k1 + 3k2 + 5k3)t + (−k1 − 3k2 + k3)
[
rearranging

]
= 3t2 + 2t + 1

Equating the coefficients of the last two lines gives:

k1 + 6k2 + k3 = 3 (equating t2)
−k1 + 3k2 + 5k3 = 2 (equating t)
−k1 − 3k2 + k3 = 1 (equating constants)

What are we trying to find?
We need to find values of the scalars k1, k2 and k3 which satisfy the above linear system. Writing the
above system as an augmented matrix gives:

R1
R2
R3

⎛⎝ 1 6 1 3
−1 3 5 2
−1 −3 1 1

⎞⎠
Executing row operations, R2 + R1 and R3 + R1, gives:

R1
R∗2 = R2 + R1
R∗3 = R3 + R1

⎛⎝ 1 6 1 3
0 9 6 5
0 3 2 4

⎞⎠
Carrying out the row operation 3R∗3 − R∗2 :

k1 k2 k3
R1
R∗2

3R∗3 − R∗2

⎛⎝ 1 6 1 3
0 9 6 5
0 0 0 7

⎞⎠
From the bottom row we have 0k1 + 0k2 + 0k3 = 0 = 7, which means that the linear system is

inconsistent, therefore we have no solution. There are no scalars (k′s) which satisfy the above linear
system. Hence the vector u does not exist in the span{v1, v2, v3}. This means that we cannot make u out
of a linear combination of {v1, v2, v3}.

By Proposition (3.9) we have span{v1, v2, v3} is a subspace of P2 in the above example
but u = 3t2 + 2t + 1 is not in the span{v1, v2, v3}. We can illustrate this as shown in
Fig. 3.12.
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P2

Span{v1, v2, v3}u

Figure 3.12

Example 3.12

Let F[−π , π ] be the vector space of continuous functions defined in the interval [−π , π]. Let the
functions f = cos2(x) and g = sin2(x). Determine whether 2 is in span{f, g}.

Solution
We need to find scalars k and c such that

kf + cg= k cos2(x)+ c sin2(x) = 2

From trigonometry we have the fundamental identity cos2(x)+ sin2(x) = 1. Multiplying this by 2
gives us our result 2 cos2(x)+ 2 sin2(x) = 2.

Hence with k = c = 2 we have kf+ cg = 2, therefore 2 is in the span{f, g}.

Example 3.13

Let M22 be the vector space of 2 by 2 matrices. Consider the matrices

A =
(

1 −1
1 2

)
, B =

(
0 2
0 −1

)
and C =

(
0 1
5 2

)

Determine whether the matrix D =
(

1 2
−4 −2

)
is within the span{A, B, C}.

Solution
We need to solve the linear combination

k1A+ k2B + k3C= D

for scalars k1, k2 and k3 :

k1A+ k2B+ k3C = k1
(

1 −1
1 2

)
+ k2

(
0 2
0 −1

)
+ k3

(
0 1
5 2

)
=
(

k1 −k1
k1 2k1

)
+
(

0 2k2
0 −k2

)
+
(

0 k3
5k3 2k3

)
=
(

k1 −k1 + 2k2 + k3
k1 + 5k3 2k1 − k2 + 2k3

)
=
(

1 2
−4 −2

)
[matrix D]

Equating entries of the matrix gives

k1 = 1, −k1 + 2k2 + k3 = 2, k1 + 5k3 = −4 and 2k1 − k2 + 2k3 = −2
We have k1 = 1, but how do we find k2 and k3?
Substituting k1 = 1 into the third equation k1 + 5k3 = −4 yields

1+ 5k3 = −4 gives k3 = −1
(continued...)
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Substituting k1 = 1 and k3 = −1 into the last equation 2k1 − k2 + 2k3 = −2:

2(1)− k2 + 2(−1) = −2
−k2 = −2 which gives k2 = 2

Hence we have found scalars, k1 = 1, k2 = 2 and k3 = −1, which satisfy

k1A+ k2B+ k3C = A+ 2B− C = D

Therefore D belongs to span{A, B, C} because D can be made by a linear combination of A, B and C.

i Summary

Proposition (3.5). The set S is a subspace of a vector space⇔:

(a) S is closed under vector addition.

(b) S is closed under scalar multiplication.

(3.6) If a vector x can be expressed as

x = k1v1 + k2v2 + k3v3 + · · · + knvn (where k’s are scalars)

then we say x is a linear combination of the vectors v1, v2, v3, . . . and vn.
(3.8) If every vector in V can be produced by a linear combination of vectors v1, v2, v3, . . . and vn
then we say these vectors span or generate the vector space V .

EXERCISES 3.2

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)
Throughout this exercise assume your scalars to be real numbers.

1. Consider Example 3.4. Show that S is a vector space with respect to the usual vector
addition and scalar multiplication of R2.

2. Let S be the set of vectors
(
a
0

)
in the vector space R2. Show that S is a subspace

of R2.

3. Let S be the set of vectors
(
a
a

)
in the vector space R2. Show that S is a subspace

of R2.
4. Let S be the set of vectors (0 0 c)T in the vector space R3. Show that S is a subspace

of R3.
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5. Let S be the set of vectors ( 1 b c d )T in the vector space R4. Show that S is not a
subspace of R4.

6. Let S be the set of vectors ( a b c )T where a+ b+ c = 0 in the vector space R3.
Determine whether S is a subspace of R3.

7. Let S =
{(

a
b

) ∣∣∣∣ a and b are integers} be a subset of R2. Show that S is not a subspace

of R2.

8. Let S =
⎧⎨⎩
⎛⎝ a
b
c

⎞⎠ ∣∣∣∣∣∣ a, b and c are rational numbers

⎫⎬⎭ be a subset of R3. Show that S is

not a subspace of R3.
9. LetM22 be the set of matrices of size 2 by 2. Let S be the subset of matrices of the form(

a 1
c d

)
. Show that S is not a subspace ofM22.

10. LetM22 be the set of matrices of size 2 by 2. Let

S =
{(

a b
c d

) ∣∣∣∣ a, b, c, d are all integers
}

Show that S is not a subspace ofM22.
11. Let S be the set of symmetric matrices (these are matrices A such that AT = A, that is

A transposed is equal to A). Let V be the set of all matrices. Show that S is a subspace
of V .

12. Let v1 = t2 − 1, v2 = t + 1 and v3 = 2t2 + t − 1 be vectors in P2 where P2 is the set
of polynomials of degree 2 or less. Show that x = 7t2 + 8t + 1 is a linear combination
of v1, v2 and v3.

13. Let p1 = t2 + 2t − 1, p2 = 2t + 1 and p3 = 5t2 + 2t − 3 be vectors in P2. Show that
the following are linear combinations of these vectors p1, p2 and p3:
(a) x = 4t2 − 2t − 3 (b) x = −2t2 − 2 (c) x = 6

14. Let V be the set of real valued continuous functions. Then V is a vector space. Let
v1 = sin2(t) and v2 = cos2(t). Show that the following are linear combinations of v1
and v2.
(a) x = 1 (b) x = π (c) x = cos(2t)

15. Let S be a subspace of R3 given by

⎛⎝ a
b
0

⎞⎠. Let u =
⎛⎝ 1
2
0

⎞⎠ and v =
⎛⎝−15

0

⎞⎠. Show that

the vectors u and v span S.
16. Let P2 be the set of polynomials of degree 2 or less. Let

p1 = t2 + 3, p2 = 2t2 + 5t + 6 and p3 = 5t

Determine whether the vector x = t2 + 3 is in the span
{
p1, p2, p3

}
.
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17. LetM22 be the set of 2 by 2 matrices. Consider the matrices

A =
(
1 1
1 1

)
, B =

( −1 2
5 7

)
and C =

(
2 6
8 0

)

Determine whether the matrix D =
(

7 −3
−14 −26

)
belongs to span {A, B, C}.

18. Let F[0, 2π] be the vector space of continuous functions. Let the functions f = cos(2x)
and g = sin(2x). Determine whether the following are in span {f, g}:
(a) 0 (b) sin(2x) (c) cos2(x)− sin2(x) (d) 1

19. Determine whether x+ 1 and (x+ 1)2 span P2.
20. Prove Proposition (3.9).
21. Let S be a subspace of a vector space V . Show that if T is a subset of S it may not be a

subspace of V.
22. Let S and T be subspaces of a vectors space V . Prove that

(a) S ∩ T (b) S ∪ T
are subspaces of V .
[S ∩ T is the intersection of S and T and is the set of elements which lie in both S

and T. This means if u ∈ S ∩ T then u ∈ S and u ∈ T.
S ∪ T is the union of S and T and is the set all the elements in S or T. ]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 3.3 Linear Independence and Basis

By the end of this section you will be able to

● test vectors for linear independence

● prove properties about linear independence

● determine whether given vectors are a basis for a vector space

We discussed the terms linear independence and basis during chapter 2, using examples in
Euclidean space Rn. In this section we expand these definitions to general vector spaces V .

From previous sections we know that the set of matrices, polynomials and functions
form a vector space which means that they behave the same way although they are different
objects.

A basis is a sort of coordinate system for vector space which we measure a vector against.

3.3.1 Linear independence

We extend the definition of linear independence to a general vector space V .
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Definition (3.10). We say vectors v1, v2, v3, . . . and vn inV are linearly independent
⇔ the only real scalars k1, k2, k3, . . . and kn which satisfy:

k1v1 + k2v2 + k3v3 + · · · + knvn = O are k1 = k2 = k3 = · · · = kn = 0

What does this mean?
The only solution to the linear combination k1v1 + k2v2 + k3v3 + · · · + knvn = O requires all the
scalars k1, k2, k3, . . . and kn to be equal to zero. In other words, you cannot make any one of the
vectors vj say, by a linear combination of the others.

Example 3.14

Let M22 be the vector space of size 2 by 2 matrices. Consider the matrices:

A =
(

1 0
0 1

)
and B =

(
0 2
2 0

)
Show that the matrices A and B are linearly independent.

Solution
How do we show that matrices A and B are linearly independent?
Required to show that kA+ cB = O is true only when the scalars k = c = 0.

Let k and c be scalars, then by applying the above definition (3.10) to these matrices with the zero

matrix O =
(

0 0
0 0

)
we have

kA+ cB = k
(

1 0
0 1

)
+ c

(
0 2
2 0

)
=
(

k 0
0 k

)
+
(

0 2c
2c 0

)
=
(

k 2c
2c k

)
=
(

0 0
0 0

)
= O

Equating entries gives k = 0 and 2c = 0. Since both (all) our scalars, k = 0 and c = 0, are zero, then by
definition (3.10) we conclude that the given matrices A and B are linearly independent.

Linear independence means that we cannot make any one vector out of a combination
of the others.

What does this mean in relation to Example 3.14?
It means that matrix A is not a multiple of matrix B.

Example 3.15

Let V be the vector space of continuous functions defined on the real line.
Let u = cos(x), v = sin(x) and w = 2 be vectors in V .
Show that the vectors u, v and w are linearly independent.

(continued...)
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Solution
By the above definition (3.10) we need to consider the linear combination

k1u+ k2v+ k3w = k1 cos (x)+ k2 sin(x)+ k3(2) = 0 (∗)

where k1, k2 and k3 are scalars.
What do we need to prove?
We need to show that the given vectors u, v and w are linearly independent.
How?
Required to show that all the scalars are equal to zero, that is k1 = k2 = k3 = 0.

We need three equations, so we substitute three different values of x into (∗). We choose values that
help to simplify the equations.

Substituting x = 0 (to eliminate the sine term) into (∗) gives

k1 cos(0)︸ ︷︷ ︸
=1

+ k2 sin(0)︸ ︷︷ ︸
=0

+ k3(2) = k1 + 2k3 = 0 (1)

Next we substitute x = π into (∗):

k1 cos(π )︸ ︷︷ ︸
=−1

+ k2 sin(π)︸ ︷︷ ︸
=0

+ k3(2) = −k1 + 2k3 = 0 (2)

Substituting x = π/2 into equation (∗):

k1 cos
(π

2

)
︸ ︷︷ ︸

=0

+ k2 sin
(π

2

)
︸ ︷︷ ︸
=1

+ k3(2) = k2 + 2k3 = 0 (3)

We can write these three equations – (1), (2) and (3) – in an augmented matrix and solve:

k1 k2 k3
R1
R2
R3

⎛⎝ 1 0 2 0
−1 0 2 0
0 1 2 0

⎞⎠
k1 k2 k3

R1
R2 + R1

R3

⎛⎝ 1 0 2 0
0 0 4 0
0 1 2 0

⎞⎠
By inspection we can see that k1 = k2 = k3 = 0.
Since the only solution is k1 = k2 = k3 = 0, the given vectors u = cos(x), v = sin(x) and w = 2 are

linearly independent.

In the above Example 3.15, how do we know which values of x to substitute?
Since the linear combination

k1u+ k2v+ k3w = k1 cos(x)+ k2 sin(x)+ k3(2) = 0

is valid for any real value of x, we can try any real number. Normally we choose x values which
simplify our arithmetic.
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3.3.2 Linear dependence

What does linear dependence mean?

Definition (3.11). The vectors v1, v2, v3, . . . and vn in a vector space V are linearly
dependent⇔ the scalars k1, k2, k3, . . . and kn are not all zero and satisfy

k1v1 + k2v2 + k3v3 + · · · + knvn = O

Example 3.16

Let V be the vector space of continuous functions defined on the real line.
Let u = cos2(x), v = sin2(x) and w = 2 be vectors in V .
Show that the vectors u, v and w are linearly dependent.

Solution
From our knowledge of trigonometry, we have the fundamental trigonometric identity

cos2(x)+ sin2(x) = 1

Multiplying each side by 2 gives

2 cos2(x)+ 2 sin2(x) = 2
2u+ 2v = w [because u = cos2(x), v = sin2(x) and w = 2]

2u+ 2v = w implies that we can make vector w out of a linear combination of vectors u and v, (2 lots of
u plus 2 lots of v), therefore vectors u, v and w are linearly dependent.

Example 3.17

Let P2 be the vector space of polynomials of degree 2 or less. Decide whether the following vectors in P2
are linearly independent or dependent.

(a) p = 6t2 + 8t + 2 and q = 3t2 + 4t + 1

(b) p = 2t2 + 3t + 2 and q = t2 + t + 1

(c) p = t2 + 3t − 1, q = 2t2 + 7t + 5 and r = 7

Solution

(a) What do you notice about the first two given vectors, p = 6t2 + 8t + 2 and q = 3t2 + 4t + 1?
The vector p is double vector q, that is p = 2q or p− 2q = O.

What does this mean?
p and q are linearly dependent because we can make vector p by doubling q.
Notice that the non-zero scalars are 1 and−2 because p− 2q = (1)p+ (−2) q = O.

(b) In this case the vector p = 2t2 + 3t + 2 is not a multiple of q = t2 + t + 1, which means that
they are linearly independent.

(continued...)
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(c) With three vectors it is much harder to spot any relationship between them, so we have to carry
out the general procedure for solving simultaneous equations.

Let k1, k2 and k3 be scalars. We need to find values for k1, k2 and k3, so that they satisfy

k1p+ k2q+ k3r = O (∗)

Substituting our given vectors p = t2 + 3t − 1, q = 2t2 + 7t + 5, r = 7 and O = 0 into (∗):

k1p+ k2q+ k3r = k1(t2 + 3t − 1)+ k2(2t2 + 7t + 5)+ k3(7)

= k1t2 + 3k1t − k1 + 2k2t2 + 7k2t + 5k2 + 7k3

={
collecting like terms

(k1 + 2k2)t2 + (3k1 + 7k2)t + (−k1 + 5k2 + 7k3)

= 0

Equating the coefficients of the last two lines gives

t2 : k1 + 2k2 = 0
t : 3k1 + 7k2 = 0

const : −k1 + 5k2 + 7k3 = 0

The only solution to these equations is k1 = k2 = k3 = 0.
We conclude that the given vectors p, q and r are linearly independent.

3.3.3 Properties of linear dependence and independence

Some of the properties associated with the linear independence and dependence of vectors
in Euclidean space Rn were proved during chapter 2 in subsection 2.3.4. We can extend
these results to the general vector space V . The proofs are very similar to the Euclidean
space proofs that you were asked to show in chapter 2.

Proposition (3.12). Two vectors u and v in a vector space V are linearly dependent⇔ one
of the vectors is a multiple of the other.

Proof.
(⇒). Assume vectors u and v are linearly dependent.

What do we need to prove?
We need to prove one vector is a multiple of the other. The vectors u and v are linearly dependent,
therefore by the above definition (3.11) there must be non-zero scalars k or c such that

ku+ cv = O

Suppose k �= 0 then ku = −cv which implies u = − c
kv. We have u = − c

kv, therefore the vector
u is a multiple of the vector v.
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(⇐). Now we prove it the other way. Assume that the vector u is a multiple of vector v which
means that we can write this as

u = mv (m is a scalar)

Taking −mv from both sides, we have u−mv = O. Since this linear combination
(1)u−mv = O gives the zero vector with non-zero scalars, then by definition (3.11) we conclude
that vectors u and v are linearly dependent.

Proposition (3.13). Let S = {v1, v2, v3, . . . , vn} be a set of linearly dependent vectors
in a vector space V. Then the set of vectors T = {v1, v2, . . . , vn, vn+1} are also linearly
dependent in V.

What does this proposition mean?
It means that if a set of n vectors are linearly dependent then the same n vectors plus
another vector are also linearly dependent – the addition of more vectors does not change
dependence.

Proof.
Since we are given that the vectors S = {v1, v2, v3, . . . , vn} are linearly dependent, we can
write these as

k1v1 + k2v2 + k3v3 + · · · + knvn = O (∗)

where all the k’s are not zero. Consider the linear combination

k1v1 + k2v2 + · · · + knvn + kn+1vn+1︸ ︷︷ ︸
extra vector

If we take the case where kn+1 = 0 then we have

k1v1 + k2v2 + · · · + knvn︸ ︷︷ ︸
=O by (∗)

+ kn+1vn+1︸ ︷︷ ︸
extra vector

= O

By (∗) all the scalars are not zero in the last equation, therefore by definition (3.11) we
conclude that the set of vectors T = {v1, v2, . . . , vn, vn+1} are linearly dependent.

Proposition (3.14). The vectors in the set S = {v1, v2, v3, . . . , vn} are linearly dependent
⇔ one of these vectors, say vk, is a linear combination of the preceding vectors, that is

vk = c1v1 + c2v2 + c3v3 + · · · + ck−1vk−1
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What does this proposition mean?
This means that if the vectors v1, v2, v3, . . . and vn are linearly dependent, then one of these
vectors can be written in terms of the other vectors. This proposition also goes the other way, that
is if one of the vectors can be written as a linear combination of the preceding vectors then these
vectors are linearly dependent.

Proof.
(⇒). Assume the vectors S = {v1, v2, v3, . . . , vn} are linearly dependent.We need to show
that we can write the vector vk as a linear combination of vectors v1, v2, . . . , vk−1.

By the above definition (3.11):
Dependence: If k1, k2, . . . , kn are not all zero then k1v1 + k2v2 + · · · + knvn = O
We can write the vectors in S as

c1v1 + c2v2 + c3v3 + · · · + cnvn = O

where all the scalars c’s are not zero. Let k be the largest subscript for which ck �= 0 [not
zero] then

c1v1 + c2v2 + c3v3 + · · · + ck−1vk−1 + ckvk = O

Carrying out vector algebra

ckvk = −c1v1 − c2v2 − c3v3 − · · · − ck−1vk−1 [transposing]

vk = − c1
ck
v1 − c2

ck
v2 − c3

ck
v3 − · · · − ck−1

ck
vk−1 [dividing by ck �= 0]

= d1v1 + d2v2 + d3v3 + · · · + dk−1vk−1 where dj = −
cj
ck

As can be seen, the vector vk can be written as a linear combination of the preceding
vectors.

(⇐). Now we go the other way. Assume that we can write the vector vk as a linear
combination of the preceding vectors. This means that we have

vk = c1v1 + c2v2 + c3v3 + · · · + ck−1vk−1 (c’s are scalars)

Rearranging this gives

c1v1 + c2v2 + c3v3 + · · · + ck−1vk−1 − vk = O

Hence the vectors v1, v2, v3, . . . , vk−1 and vk are linearly dependent.

Why?
Because we can write the last line as

c1v1 + c2v2 + c3v3 + · · · + ck−1vk−1 + (−1)vk = O

There is at least one non-zero scalar, −1.
By the previous Proposition (3.13):
If S = {v1, . . . , vn} are dependent then T = {v1, . . . , vn, vn+1} are also dependent.
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We conclude that the vectors v1, v2, . . . , vk, vk+1, . . . and vn (adding more vectors does not
change dependency) are linearly dependent. This completes our proof.

Note that the above proposition also implies that if none of the vectors in a set can be
written as a linear combination of the preceding vectors then the set is linearly independent.
Hence to prove linear independence it is enough to show that none of the vectors is a linear
combination of the preceding vectors.

Example 3.18

Let Pn be the vector space of polynomials of degree n or less.
Show that the set of vectors {1, t, t2, t3, . . . , tn} are linearly independent.

Solution
Note that none of polynomials can be written as a linear combination of the preceding polynomials. For
example, we cannot write the polynomial such as tk as a linear combination of {1, t, t2, t3, . . . , tk−1}
with scalars c’s:

c01+ c1t + c2t2 + c3t3 + · · · + ck−1tk−1 �= tk [not equal]

Since none of the polynomials is a linear combination of the preceding polynomials we conclude that
the given set {1, t, t2, t3, . . . , tn} is linearly independent.

3.3.4 Basis vectors

This section extends the definition of basis vectors to the general vector space V .
During chapter 2 we covered basis in section 2.4.2, but only for the Euclidean space Rn.
In this section we discuss the nature of a basis in a general vector space V .
You can think of a basis as the axes of a coordinate system that describes a vector space.

This means that every vector in a vector space V can be written in terms of the coordinate
system which is represented by the basis vectors. You can decompose each vector into its
basis vectors.

Definition (3.15). Consider the n vectors v1, v2, v3, . . . and vn in the vector space V.
These vectors form a basis of V ⇔

(i) v1, v2, v3, . . . and vn span V
(ii) v1, v2, v3, . . . and vn are linearly independent

We can write these n vectors v1, v2, v3, . . . and vn as a set

B = {v1, v2, v3, . . . , vn}
These are generally called the basis vectors.
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What does the term ‘{v1, v2, v3, . . . , vn} spans V’ mean?
If every vector in V can be produced by a linear combination of vectors {v1, v2, v3, . . . , vn}
then we say that these vectors span or generate the vector space V . This is generally proved by
considering an arbitrary vector in V and then showing that it is a linear combination of vectors
v1, v2, v3, . . . and vn.

Next we show how to prove that a set of given vectors form a basis for a general vector
space. The proofs are similar to the ones in the last chapter but we cannot visualize the
vectors because we are dealing with general vector spaces.

Example 3.19

Let Pn be the vector space of polynomials of degree n or less.
Show that the set of vectors S = {1, t, t2, . . . , tn} is a basis for Pn.

Solution
How do we prove this result?
We need to show two things for S to qualify as a basis:

1. The set of vectors S must span Pn.

2. The set of vectors S must be linearly independent.

Span: Consider an arbitrary vector c0 + c1t + c2t2 + c3t3 + . . .+ cntn in Pn. This can be written as a
linear combination of {1, t, t2, t3, . . . , tn} as follows:

k0 + k1t + k2t2 + k3t3 + · · · + kntn = c0 + c1t + c2t2 + c3t3 + · · · + cntn

where kj = cj for j = 1, 2, 3, . . . and n. Hence the vectors {1, t, t2, t3, . . . , tn} span Pn.

Linearly independent: We have already shown this in Example 3.18.

Both conditions (1 and 2) are satisfied, therefore the given vectors S = {1, t, t2, . . . , tn} form a basis
for Pn.

These basis vectors {1, t, t2, t3, . . . , tn} are generally known as the natural or standard
basis for Pn. This is not the only basis for Pn; there are an infinite number of them. For
example, you canmultiply each element in this {1, t, t2, t3, . . . , tn} by a non-zero number,
and the set would then be another basis for Pn.

We can write any vector in terms of these basis vectors. This is similar to writing vectors
in R2 in terms of e1 = (1 0)T representing the x axis and e2 = (0 1)T representing the
y axis.

Example 3.20

Let M22 be the vector space containing matrices of size 2 by 2. Show that the following matrices are not a
basis for M22:

A =
(

1 0
0 1

)
and B =

(
0 1
1 0

)
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Solution
How do we show this result?
We need to show either that the matrices A and B do not span M22 or that they are linearly dependent.

To show that matrices A and B do not span M22, we only need to select a matrix in M22 and prove that
a linear combination of A and B do not generate the selected matrix.

Consider the matrix C =
(

1 2
3 4

)
. Let k1 and k2 be scalars then

k1A+ k2B = k1
(

1 0
0 1

)
+ k2

(
0 1
1 0

)
=
(

k1 0
0 k1

)
+
(

0 k2
k2 0

)
=
(

k1 k2
k2 k1

)
=
(

1 2
3 4

)

By equating entries we have

k1 = 1, k2 = 2, k2 = 3 and k1 = 4

This is inconsistent because we have two different values for k1 , 1 and 4, which means that we cannot

obtain the matrix

(
1 2
3 4

)
. Hence the given matrices A =

(
1 0
0 1

)
and B =

(
0 1
1 0

)
do not span

M22 because we cannot generate the matrix C, therefore these matrices cannot form a basis for M22.
The scalar k2 also has two different values; 2 and 3.

[Note that matrices A and B are linearly independent but that is not enough to be a basis.]

In fact, the given matrices only produce matrices of the form

(
a b
b a

)
, which means that we cannot

obtain the matrix

(
a b
c d

)
where a �= d or b �= c.

In the study of Fourier series, we discuss periodic (one which repeats itself) continuous
functions. For example, the following is a periodic continuous function:

y = 2
π
sin(x)+ 2

3π
sin(3x)+ 2

5π
sin(5x)

Figure 3.13 illustrates that this function repeats every 2π intervals.

Figure 3.13
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As you can see, this periodic function y is made up of a linear combination of sin(x),
sin(3x) and sin(5x). Any function in the vector space of F[0, 2π] of the form

y = k1 sin(x)+ k2 sin(3x)+ k3 sin(5x)

has a basis {sin(x), sin(3x), sin(5x)}. Clearly these vectors span the space and you are
asked to show linear independence of these in Exercises 3.3.

We can represent any periodic continuous function as a linear combination of sines and
cosines. In general, a Fourier series will have the form

y = k0 + k1 cos(x)+ k2 cos(2x)+ · · · + c1 sin(x)+ c2 sin(2x)+ · · ·

where k’s and c’s are scalars. A basis for this general function is{
1, cos(x), cos(2x), cos(3x), . . . , sin(x), sin(2x), sin(3x), . . .

}
We need 1 in the basis because this will create the constant term k0 in the above. Hence

we have an infinite number of basis vectors.

3.3.5 Uniqueness

Choosing a basis for a vector space is essentially choosing a coordinate system which allows
each vector to be expressed uniquely.

Proposition (3.16). Let the set B = {v1, v2, . . . , vn} be a basis for a vector space V . Every
vector in V can be expressed uniquely as a linear combination of the basis vectors.

What does this proposition mean?
Any vector in V written as the linear combination of basis vector has unique scalars.

Proof.
Consider an arbitrary vector w in V . Since B = {v1, v2, v3, . . . , vn} is a basis for the vector
space V, there exist scalars k1, k2, k3, . . . and kn such that

k1v1 + k2v2 + k3v3 + · · · + knvn = w (†)

Suppose we can write this vector w as another linear combination

c1v1 + c2v2 + c3v3 + · · · + cnvn = w (††)

where c’s are scalars.

What do we need to prove?
Required to prove that the two sets of scalars are equal: k1 = c1, k2 = c2, . . . and kn = cn.
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Subtracting the two w vectors, (†) – (††), gives

k1v1 + k2v2 + k3v3 + · · · + knvn − c1v1 − c2v2 − c3v3 − · · · − cnvn = w− w
(k1 − c1)v1 + (k2 − c2)v2 + (k3 − c3)v3 + · · · + (kn − cn)vn = O (∗)

Since v1, v2, v3, . . . and vn are basis vectors, they are linearly independent, which means
that all the bracketed terms (scalars) in (∗) must be equal to zero (Definition (3.10)). We
have

k1 − c1 = 0, k2 − c2 = 0, k3 − c3 = 0, . . . and kn − cn = 0
k1 = c1, k2 = c2, k3 = c3, . . . and kn = cn

Hence we have proved that the basis vector representation of any vector is unique.

i Summary

Consider the linear combination:

k1v1 + k2v2 + k3v3 + · · · + knvn = O

If the only solution is k1 = k2 = k3 = · · · = kn = 0 then vectors v1, v2, · · · , vn are linearly
independent, otherwise they are dependent.

Definition (3.15). Vectors B = {v1, v2, v3, . . . , vn} of the vector space V form a basis of V ⇔
(i) {v1, v2, v3, . . . , vn} span V

(ii) {v1, v2, v3, . . . , vn} are linearly independent

EXERCISES 3.3

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Let M22 be the vector space of size 2 by 2 matrices. Decide whether the following
matrices are linearly independent or dependent:

(a) A =
(
1 0
0 1

)
and B =

(
0 1
1 0

)
(b) A =

(
1 1
1 1

)
and B =

(
2 2
2 2

)
(c) A =

(
1 2
3 4

)
and B =

(
2 2
2 2

)
(d) A =

(
1 2
3 4

)
and B =

(
2/5 4/5
6/5 8/5

)
On a course in differential equations it is important that you can test the following
functions in questions 2 and 3 for linear independence.
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2. Let V be the vector space of continuous functions defined on the real line. Test the
following vectors for linear independence:
(a) f = (x+ 1)2 and g = x2 + 2x+ 1 (b) f = 2 and g = x2

(c) f = 1 and g = ex (d) f = cos(x) and g = sin(x)
(e) f = sin(x) and g = sin(2x)

3. Let V be the vector space of continuous functions defined on the real line. Test the
following vectors for linear independence:
(a) f = cos2(x), g = sin2(x) and h = 5
(b) f = cos(2x), g = sin2(x) and h = cos2(x)
(c) f = 1, g = x and h = x2

(d) f = sin(2x), g = sin(x)cos(x) and h = cos(x)
(e) f = ex sin(2x), g = ex sin(x)cos(x) and h = ex cos(x)
(f) f = 1, g = ex and h = e−x

(g) f = ex, g = e2x and h = e3x

4. Let f = sin(x), g = sin(3x) and h = sin(5x) be in the vector space of continuous
functions F[0, 2π]. Show that these vectors are linearly independent.

5. Let M22 be the vector space of size 2 by 2 matrices. Show that the following matrices
are a basis forM22:

A =
(
1 0
0 0

)
, B =

(
0 1
0 0

)
, C =

(
0 0
1 0

)
andD =

(
0 0
0 1

)
[These are generally called the standard or natural basis forM22]

We denote the vector space of polynomials of degree ≤ 2 by P2 which is discussed in the
next two questions.

6. Show that {1, t − 1, (t − 1)2} forms a basis for the vector space P2. Write the vector
p = t2 + 1 in terms of these basis vectors.

7. Show that {1, t2 − 2t, 5(t − 1)2} does not form a basis for the vector space P2.
8. Prove that if a set of vectors {v1, v2, v3, . . . , vn} is linearly independent then the set
{kv1, kv2, kv3, . . . , kvn}, where k is a non-zero scalar, is also linearly independent.

9. Prove that any non-zero vector v on its own is a linearly independent vector in a vector
space V .

10. Prove that the zero vector,O, on its own is a linearly dependent vector in a vector space
V.

11. Consider the set of vectors {v1, v2, v3, . . . , vn}. Prove that if any two vectors vj = vm
where j �= m in the set are equal then the set is linearly dependent.

12. Consider the set of linearly independent vectors S = {v1, v2, v3, . . . , vn}. Prove that
any non-empty subset of this is also linearly independent.

13. Consider the set of vectors S = {v1, v2, v3, . . . , vn} which spans a vector space V . Let
w be a vector in V but not in the set S. Prove that {v1, v2, v3, . . . , vn, w} spans V but
is linearly dependent.
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14. Consider the set of vectors B = {v1, v2, v3, . . . , vn} in a vector space V . Prove that if
the set B is a basis for V and S = {v1, v2, v3, . . . , vm} is a set of linearly independent
vectors in V thenm ≤ n.

15. ∗Prove that if B1 = {v1, v2, v3, . . . , vn} and B2 = {u1, u2, u3, . . . , um} are bases for a
vector space V then n = m. [That is every basis of a vector space has the same number
of vectors.]

16. Prove that if the largest number of linearly independent vectors in a vector space V is
n then any n linearly independent vectors form a basis for V .

17. ∗Let S be a subspace of a vector space V. Prove that if S and V have the same basis then
S = V .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 3.4 Dimension

By the end of this section you will be able to

● understand what is meant by the dimension of a vector space

● determine the dimension of a vector space and subspace

● prove properties of finite dimensional vector spaces

We have used the word ‘dimension’ without really defining it. Our physical interpretation
of a vector space of Rn is that it has n dimensions.

How can we find the dimensions of other vector spaces such as the set of matrices Mmn or
polynomials Pn?
In this section we give the precise definition of dimension so that we can give a numerical value
to the dimension of any vector space. This is a challenging section. You may need to look back at
the definition of a basis of a vector space to understand the proofs later on in this section.

3.4.1 Introduction to dimension

What does the word ‘dimension’ mean in everyday language?
Dimension normally refers to the size of an object in a particular direction. For example, the height
and diameter of a cylinder are the dimensions of the cylinder.

What does the term dimension of a vector space mean?
The definition of dimension is the number of basis vectors or axes needed to describe the given
vector space V .

Definition (3.17). The number of vectors in a basis of a non-zero vector space V is the
dimension of the space.
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We will show later in this section that the number of vectors in a basis depends on two
things: linear independence and spanning.

We will prove that if we have too many vectors in the basis set, they become linearly
dependent and if there are too few vectors then they will not span the whole vector space.

Example 3.21

What is the dimension of R2 and R3?
Evaluate the dimension of Rn.

Solution
From the previous chapter we know that e1 = (1 0)T and e2 = (0 1)T (unit vectors on the x and y
axes respectively) form a basis for R2 .
What is the dimension of R2?
Two vectors, e1 and e2 , are needed for the basis of R2, therefore dimension of R2 is 2.
What is the dimension of R3?
Similarly, we have the unit vectors e1 = ( 1 0 0 )T , e2 = ( 0 1 0 )T and e3 = ( 0 0 1 )T in the
directions of x, y and z axes respectively, is the natural basis for R3 , therefore the dimension of R3 is 3
because we have three vectors in the basis of R3.
What is the dimension of Rn?
From the last section we have that the n vectors {e1, e2, e3, . . . , en} form a natural basis for Rn, so the
dimension of Rn is n.

The number of vectors in the basis gives the dimension of the vector space V . This is
often denoted by dim(V).

dim(R2) = 2, dim(R3) = 3 and dim(Rn) = n

Why does the above definition (3.17) say non-zero space?
Because the zero vector space {O} is linearly dependent, there are no vectors in the basis of {O},
which means that it has dimension 0. (The zero vector does not need any axes.)

3.4.2 Finite dimensional vector space

What does the term finite dimensional vector space mean?
It is a vector space V which has a finite number of vectors in its basis.

Definition (3.18). In general, if a finite number of vectors form a basis for a vector space
V then we say V is finite dimensional. Otherwise, the vector space V is known as infinite
dimensional.

If the vector space V consists only of the zero vector then it is also finite dimensional.

Can you think of any finite dimensional vector spaces?
The Euclidean spaces – R2, R3, R4, . . . , Rn.
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Are there any other examples of finite dimensional vector spaces?
The set P2 of polynomials of degree 2 or less for example, or the set of all 2 by 2 matrices M22.
(These were covered in the previous section.)

Definition (3.19). In general, if n vectors {v1, v2, v3, . . . , vn} form a basis for a vector space
V then we say that V is n-dimensional.

What is dim(M22) equal to?
The standard basis for M22 (matrices of size 2 by 2) from the Exercises 3.3 question 5 is

A =
(

1 0
0 0

)
, B =

(
0 1
0 0

)
, C =

(
0 0
1 0

)
and D =

(
0 0
0 1

)

Therefore dim(M22) = 4 because we have four matrices in {A, B, C, D} which form a
basis forM22.

What is dim(P2) equal to?
Remember that the standard basis for P2 (the set of all polynomials of degree 2 or less) is the set
{1, t, t2}, which means dim(P2) = 3 since the basis consists of three vectors.

Table 3.1 shows some vector spaces and their dimensions.

Table 3.1 Some vector spaces and their dimensions

Vector space Dimension

Rn n
Pn n+ 1
Mmn mn

The dimension does not need to be the number of vectors in the standard basis; it can
be any basis for the given vector space because the number of vectors is the same, as the
following theorem shows.

Theorem (3.20). Every basis for a finite dimensional vector space has the same number
of vectors.

Proof.
We proved this in question 15 of Exercises 3.3.

Since every basis has the same number of vectors in a finite dimensional vector space,
definition (3.17) means that:

number of vectors in any basis= dimension of vector space

Theorem (3.20) is important in linear algebra and definitely worth learning.
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There are, of course, many infinite dimensional vector spaces, such as the set of all poly-
nomials P (or P∞). However, we confine ourselves to finite dimensional vector spaces for
the remainder of this chapter.

3.4.3 Subspaces revisited

We discussed subspaces in section 3.2 of this chapter. A subspace is a non-empty subset S
in a vector space V , which forms a vector space in its own right, with respect to the same
vector addition and scalar multiplication as its parent set V . This is illustrated in Fig. 3.14.

S V

Figure 3.14

What is the dimension of a subspace of V?
That depends on the number of vectors in the basis of the subspace.

Example 3.22

Let R2 be a vector space and S be the set of vectors

(
0
a

)
. In Example 3.5 we showed that this is a

subspace of R2 . Find a basis for the subspace S and determine dim(S).

Solution

Every vector of S is of the form

(
0
a

)
, which we can express in terms of e2 =

(
0
1

)
as

(
0
a

)
= a

(
0
1

)
= ae2

This vector e2 forms a basis for S, therefore dim(S) = 1. This is shown graphically in Fig. 3.15.

2

1

y

x

S = 
e2  = 

0

a
0

1

–2

–1

–4 4

This subspace S is spanned by e2

Figure 3.15

Figure 3.15 shows that the subspace S is the vertical axis (y axis) and e2 generates any vector in S, along
this line.
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Example 3.23

Let u =
⎛⎝ 2
0
0

⎞⎠ , v =
⎛⎝−10

0

⎞⎠ and w =
⎛⎝ 0
0
1

⎞⎠ span a subspace S of R3.

What is the dimension of S?

Solution
What do you notice about the first two vectors u and v?
They are linearly dependent because u = −2v. Note that the vector w is linearly independent of u and v.
How many vectors are in the basis of the subspace S?
Two vectors u and w (or v and w).
What is dim(S) equal to?
Two because we only have two vectors in the basis of S, that is dim(S) = 2. This means that the given
vectors u, v and w span a subspace S which is a plane in R3 as demonstrated in Fig. 3.16.

Subspace S which is 
spanned by u, v and w.

2

1

0z

–1

–2
–3 –1

–2 –1 0
1

2x

–0.5
0
y

uv

w

Figure 3.16

Note: a general misconception is that the dimension of a space is how many entries are
required to specify a vector in that space. This is clearly wrong because in Example 3.23
above we require three entries to specify a vector in the subspace S but it has dimension 2.
This means the space S in Fig. 3.16 can be spanned by two basis vectors or two axes rather
than the three given vectors.

Example 3.24

Let S be a set of vectors in P2 which are of the form

ax2 + (a+ b)x + (a+ b) where a and b are scalars

Then S is a subspace of P2. Find a basis for S and determine dim(S).

Solution
We can write vectors in S as

ax2 + (a+ b)x+ (a+ b) = ax2 + ax+ bx+ (a+ b) [expanding]

= a(x2 + x + 1)+ b(x+ 1) [factorizing]
(continued...)
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Hence the vectors x2 + x+ 1 and x + 1 span S, because we have demonstrated that the original set can
be generated by these two vectors
What else do we need to show for these vectors to be a basis for S?
We need to prove that they are linearly independent. Since x2 + x + 1 and x+ 1 are not multiples of
each other, they are linearly independent.

Hence the two vectors {x2 + x + 1, x+ 1} form a basis for S, therefore dim(S) = 2.

3.4.4 Properties of finite dimensional vector spaces

In this section we show some important properties of bases and dimension. This is a
demanding section because the proofs of propositions are lengthy.

Lemma (3.21). Let V be a finite n-dimensional vector space. We have the following:

(a) Let {v1, v2, v3, . . . , vn} be a set of linearly independent vectors. Then
{v1, v2, . . . , vm} wherem > n (m is greater than n) is linearly dependent.

(b) If the n vectors {u1, u2, u3, . . . , un} spanV then {u1, u2, u3, . . . , um}wherem < n
does not span V .

What does part (a) mean?
In n-dimensional vector space, if you add additional vectors to n linearly independent vectors
then the set becomes linearly dependent.

How do we prove this result?
By using proof by contradiction.

Proof of (a).
The number of basis vectors in V is n. Suppose that {v1, v2, . . . , vm} are linearly indepen-
dent. Then we must havem ≤ n (m is less than or equal to n).

Why?
Because by question 14 of Exercises 3.3 we know that the number of vectors in a linearly
independent set must be less than or equal to n,m ≤ n (the number of basis vectors).

However, we are given that m > n (m is greater than n), therefore our supposition that
{v1, v2, . . . , vm} is a linearly independent set of vectors must be wrong, so this set is linearly
dependent.

What does part (b) mean?
If n vectors span V where V is an n-dimensional vector space, then less than n vectors cannot
span V . Again, we use proof by contradiction.

Proof of (b).
Suppose {u1, u2, u3, · · · , um} wherem < n span V , that is

span{u1, u2, u3, · · · , um} = V (∗)
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The dimension of the left hand side, dim(span{u1, u2, u3, . . . , um}) ≤ m but the dimen-
sion ofV is n. This is a contradiction because we are givenm < n and the dimension of both
sides of (∗) must be equal. Hence {u1, u2, . . . , um} wherem < n cannot span V.

Theorem (3.22). Let V be a finite n-dimensional vector space. We have the following:

(a) Any linearly independent set of n vectors {v1, v2, v3, . . . , vn} form a basis for V.
(b) Any spanning set of n vectors {u1, u2, u3, . . . , un} forms a basis for V.

How do we prove these results?
By using the definition of basis as described in the last section, that is:

Definition (3.15) A set of vectors is a basis for V ⇔ it is linearly independent and spans V .

Proof of (a).
We are given that the vectors {v1, v2, v3, . . . , vn} are linearly independent so we only need
to show that these vectors also span V . Suppose there is a vector w in V such that

w = k1v1 + k2v2 + k3v3 + · · · + knvn + kn+1vn+1 (∗)

where k’s are scalars. [We are supposing that the given vectors do not span V that is why
we have added an extra vector vn+1].

By the above Lemma (3.21) part (a):
In a n dimension space, vectors {v1, v2, · · · , vm} wherem > n are linearly dependent.
The set of vectors {v1, v2, v3, . . . , vn, vn+1} is linearly dependent so we can write the

vector vn+1 in terms of its preceding vectors, that is

vn+1 = c1v1 + c2v2 + c3v3 + · · · + cnvn where c’s are scalars

Substituting this into (∗) gives

w = k1v1 + k2v2 + · · · + knvn + kn+1vn+1
= k1v1 + k2v2 + · · · + knvn + kn+1(c1v1 + c2v2 + · · · + cnvn)
= (k1 + kn+1c1)v1 + (k2 + kn+1c2)v2 + · · · + (kn + kn+1cn)vn

Thus the vector w can be written as a linear combination of the given linearly indepen-
dent vectors {v1, v2, v3, . . . , vn}. Thus {v1, v2, v3, · · · , vn} spans V , therefore it forms a
basis for V .

Proof of (b).
We are given that {u1, u2, u3, . . . , un} spans the vector space V. Let w be an arbitrary
vector of V , then we can write

w= k1u1 + k2u2 + · · · + kn−1un−1 + knun (†)

where k’s are scalars because {u1, u2, u3, . . . , un} spans V .



236 3 GENERAL VECTOR SPACES

What do we need to show for this set of vectors to be a basis for V?
Required to prove that the set of vectors under consideration {u1, u2, u3, . . . , un} is linearly inde-
pendent. Suppose {u1, u2, u3, . . . , un} is linearly dependent then we can write the vector un in
terms of its preceding vectors, that is

un = c1u1 + c2u2 + c3u3 + · · · + cn−1un−1 where c’s are scalars

Substituting this into the above (†) gives

w = k1u1 + k2u2 + · · · + kn−1un−1 + knun
= k1u1 + k2u2 + · · · + kn−1un−1 + kn(c1u1 + c2u2 + · · · + cn−1un−1)
= (k1 + knc1)u1 + (k2 + knc2)u2 + · · · + (kn−1 + kncn−1)un−1

This shows that the above n− 1 vectors {u1, u2, u3, . . . , un−1} span V . This is impossible
because, by the above Lemma (3.21), part (b):

If n vectors {u1, u2, · · · , un} span V then {u1,u2, · · · ,um} where m < n does not span V .
Fewer than n vectors cannot span V . Thus {u1, u2, u3, . . . , un} is linearly independent which

means it is a basis for the given vector space V .

Theorem (3.22) says two things:

1. Themaximum independent set for an n-dimensional vector space is n vectors. If you
add any more vectors then it becomes linearly dependent. The basis is a maximum
linearly independent set.

2. The minimum spanning set for an n-dimensional vector space is n vectors. If you
remove any of the vectors of the spanning set then it no longer spans V. The basis is
aminimum spanning set.

Two Definitions of Basis

1. A basis for a vector space is the largest independent set of vectors.
2. A basis for a vector space is the smallest spanning set of vectors.

This means if you have n linearly independent vectors in an n-dimensional vector space
V then it is a basis for V . You do not have to check that it spans V.

Also, if you have n spanning vectors in an n-dimensional vector space V then it is a basis
for V . You do not have to check that the set is linearly independent.

A basis (axes) is the most efficient set of vectors used to describe a given vector space.
Let us apply the above theorem and see how it simplifies matters.

Example 3.25

Show that the following vectors form a basis for Pn:

S = {1, t + 1, (t + 1)2, (t + 1)3, · · · , (t + 1)n}
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Solution
We have dim(Pn) = n+ 1, and there are n+ 1 given vectors.

We need to show that the set of vectors in S are linearly independent or span the vector space Pn.
Note that none of the polynomials in the set S can be written as a linear combination of the preceding
polynomials in the set. This means that we cannot write (t + 1)m where m ≤ n in terms of the vectors
before we get to (t + 1)m .
What can you conclude about this set?
Since we cannot write any of the polynomials (vectors) in terms of the preceding polynomials (vectors),
the set S must be linearly independent. Again, by the above Theorem (3.22) part (a), we conclude that the
vectors in the set S are a basis for Pn.

Example 3.26

Let M22 be the vector space of all 2 by 2 matrices. Show that the following matrices do not form a basis
for M22 :

A =
(

1 0
0 3

)
, B =

(
0 1
2 0

)
and C =

(
2 1
1 5

)

Solution
What is the dimension of M22?
Recall from Table 3.1 in section 3.4.2 that dim(M22) = 2× 2 = 4. In the above list, we have three
matrices so they cannot form a basis for M22.
Why not?
Because dim(M22) = 4, and by Definition (3.17) we need exactly four matrices for a basis.

Example 3.27

Let F[0, 2π] be a vector space of periodic continuous functions which is spanned by

S = {sin(x) cos(x), sin(2x), cos(2x)}

Show that these vectors do not form a basis for F[0, 2π]. Also find a basis for this space.

Solution
From trigonometry we have the identity

sin(2x) = 2 sin(x) cos(x)

Hence the first two vectors in S are dependent, therefore the set S cannot be a basis.
A basis can be established if we remove one of the vectors; sin(x) cos(x) or sin(2x). A basis for the

given space is
{
sin(2x), cos(2x)

}
.
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i Summary

(3.17). The number of vectors in a basis of a non-zero space V is the dimension of the space.
(3.20). Every basis for a finite dimensional vector space has the same number of vectors.
(3.22). Let V be a finite n-dimensional vector space. We have the following:

(a) Any linearly independent set of n vectors forms a basis for V .

(b) Any spanning set of n vectors forms a basis for V .

EXERCISES 3.4

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Find the dimension of the following vector spaces and exhibit a basis for each space:
(a) R5 (b) R7 (c) R11 (d) R13 (e)M33
(f)M44 (g)M23 (h) P3 (i) P5 (j)O

2. Let R2 be a vector space and S be the subspace given by the set of vectors
(
a
0

)
. Find a

basis for S and evaluate dim(S).

3. Let u = ( 0 0 3 )T , v = ( −5 0 0
)T and w = ( 0 0 9

)T span a subspace S of R3.
Determine the dimension of S.

4. Let S be the set of vectors in P2 which are of the form

at2 + b

Then S is a subspace of V . Find a basis for S and determine dim(S).

5. Consider the subspace S which consists of matrices of the form
(
a b
b c

)
(this is the

set of symmetric matrices) of the vector spaceM22. Find a basis for S and evaluate the
dimension of S.

6. Find the dimension of the following vector spaces and subspaces:
(a)Mmn (matrices of sizem by n).
(b) The subspace S of P3 given by the cubic polynomials S = {at3 + bt2 + c

}
.

(c) Let S be the set of vectors in P3 which are of the form

S = {at3 + bt2 + ct + d
}

7. Show that the following vectors are a basis for the corresponding vector spaces:

(a) u =
(
1
5

)
and v =

(
2
1

)
for R2.

(b) u =
⎛⎝ 0
3
4

⎞⎠, v =
⎛⎝ 1

1
1

⎞⎠ and w =
⎛⎝ 1
0
1

⎞⎠ for R3.
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(c)
{
tn, tn−1, . . . , t, 1

}
for the vector space Pn.

(d)
{(

2 0
0 2

)
,
(
0 3
0 2

)
,
(
0 0
1 1

)
,
(
0 0
0 5

)}
forM22.

8. Explain why the following vectors are not a basis for the corresponding vector
spaces:

(a) {1+ t, 1+ t2, 1+ 2t + t2, 1+ 2t} for P2.
(b) {1+ t, 1+ 2t + t2} for P2.
(c) {(1+ t)2, 1+ t2, 2+ 4t + 2t2} for P2.
(d)

{
A =

(
1 0
0 1

)
, B =

(
2 0
0 2

)
, C =

(
0 0
1 1

)
, D =

(
0 0
0 5

)}
forM22.

(e)
{
A =

(
1 0
0 1

)
, B =

(
2 0
2 2

)
, C =

(
1 0
3 6

)
, D =

(
3 0
4 5

)}
forM22.

9. Show that the following set of vectors is a basis for R5:

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
1
2
1
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
−1
−5
2
1
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
−3
5
2
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
2
3
3
1
1

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
1
0
0
0
0

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

10. Let S be a subspace of an n-dimensional vector space V . Prove that dim(S) ≤ n.
11. Let S be a subspace of an n-dimensional vector space V. Prove that if dim(S) = n then

S = V .
12. Let n be the dimension of a finite dimensional vector space. Prove that n is a positive

integer or zero.
13. Let V be a one-dimensional vector space and vector v �= O be in V. Prove that v is a

basis for V .
14. Let V be an n-dimensional vector space and S = {v1, v2, v3, . . . , vn} be a set of vectors

in V such that none of the vectors is a linear combination of the preceding vectors.
Prove that the set S forms a basis for V .

15. Let P be the vector space of all polynomials. Prove that P is infinite dimensional.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 3.5 Properties of a Matrix

By the end of this section you will be able to

● understand what is meant by the row and column space of a matrix

● determine a basis for the row space of a matrix

● find the rank of a matrix
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In this section we examine the rows and columns of a matrix and define what is meant by
rank. These are important concepts in solving linear equations which will be discussed in
the next section.

You will need to know some of the work of chapter 1, such as elementary row operations
and the definition of row echelon form. In this section we will not carry out the row opera-
tions but use MATLAB to place a given matrix into row echelon form. Of course, you don’t
have to use MATLAB; any appropriate software will do or you can use hand calculations.

3.5.1 Row and column vectors

What are the ‘row vectors of a matrix’?
The row vectors of a matrix are the entries in the rows of a given matrix. For example, the row

vectors of A =
(

1 2 3
4 5 6

)
are

⎛⎜⎝ 1
2
3

⎞⎟⎠ and

⎛⎜⎝ 4
5
6

⎞⎟⎠ because the first row of matrix A has the entries

1, 2 and 3 and the second row has entries 4, 5 and 6.

What are the column vectors of A =
(

1 2 3
4 5 6

)
?

The matrix A has three columns vectors:(
1
4

)
,

(
2
5

)
and

(
3
6

)

We generalize this by considering the m by n matrix:

Col 1 Col 2 · · · Col n

A =

⎛⎜⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

⎞⎟⎟⎟⎟⎠
Row 1
Row 2

...
Row m

What are the row vectors of this matrix A?
The row vectors of A denoted r1, r2, . . . and rm are given by:

r1 =

⎛⎜⎜⎜⎜⎝
a11
a12
...

a1n

⎞⎟⎟⎟⎟⎠ , r2 =

⎛⎜⎜⎜⎜⎝
a21
a22
...

a2n

⎞⎟⎟⎟⎟⎠ , · · · and rm =

⎛⎜⎜⎜⎜⎝
am1
am2
...

amn

⎞⎟⎟⎟⎟⎠
What are the column vectors of the matrix A?
The column vectors of A denoted c1, c2, . . . and cn are given by:

c1 =

⎛⎜⎜⎜⎜⎝
a11
a21
...

am1

⎞⎟⎟⎟⎟⎠ , c2 =

⎛⎜⎜⎜⎜⎝
a12
a22
...

am2

⎞⎟⎟⎟⎟⎠ , · · · and cn =

⎛⎜⎜⎜⎜⎝
a1n
a2n
...

amn

⎞⎟⎟⎟⎟⎠
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For example, the row and column vectors of B =
⎛⎜⎝ −3 6
−5 2
−2 7

⎞⎟⎠ are

r1 =
(
−3
6

)
, r2 =

(
−5
2

)
, r3 =

(
−2
7

)
and c1 =

⎛⎜⎝−3−5
−2

⎞⎟⎠ , c2 =
⎛⎜⎝ 6
2
7

⎞⎟⎠ respectively.

3.5.2 Row and column space

The row space of a matrix A is the space spanned by the row vectors of A. Remember, the
space spanned by vectors means the space containing all the linear combinations of these
vectors.

What is the row space of the above matrix B?

It is the space, S, spanned by the vectors r1 =
(
−3
6

)
, r2 =

(
−5
2

)
and r3 =

(
−2
7

)
.

Any linear combination of these vectors, r1, r2 and r3, is in the row space S. Hence

Row Space S = span{r1, r2, r3} = k1
(−3

6

)
+ k2

(−5
2

)
+ k3

(−2
7

)
where k1, k2 and k3 are scalars. Each row vector has two entries of real numbers and we
can show that S is a subspace of R2.

The row space S is the set of vectors u such that u = k1r1 + k2r2 + k3r3. This row space
S, spanned by r1, r2 and r3, is the vector space given by

S = {u
∣∣∣ u = k1r1 + k2r2 + k3r3}

In this case, these vectors span the whole ofR2 because no two vectors in S are multiplies
of each other (they are linearly independent). The row space of the above matrix B occupies
R2. Similarly the column space of a general matrix A is the space spanned by the column
vectors of A. We formally define the row and column space as follows:

Definition (3.23). Let A be any matrix. Then

(a) The row space of the matrix A is the space spanned by the row vectors of matrix A.
(b) The column space of the matrix A is the space spanned by the column vectors of

matrix A.

What is the column space of the above matrix B?

It is the space spanned by the vectors c1 =
⎛⎜⎝−3−5
−2

⎞⎟⎠ and c2 =
⎛⎜⎝ 6
2
7

⎞⎟⎠. Any linear combination of

these vectors, c1 and c2, is in the column space of matrix B.

What sort of space is spanned by these vectors?
Each vector has three entries of real numbers and we can show that the column space is a subspace
of R3. The vector space spanned by vectors c1 and c2 is actually a plane in R3 (Fig. 3.17).
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6
2
7

=c2

This dark shaded plane in    3

is the column space 
of matrix B. (Space 
spanned by column 
vectors c1 and c2.)
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2

z

0

–2

–4

–4 –2
–5–6 –4 –3 –2 –1 0 1 2 3 4

y
0 2 4 6x

–5
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=c1

Figure 3.17

In general, we have the following proposition:

Proposition (3.24). Let A be am by nmatrix, that is we have

A =

n columns︷ ︸︸ ︷⎛⎜⎝ a11 . . . a1n
...

. . .
...

am1 · · · amn

⎞⎟⎠
⎫⎬⎭ m rows

(a) The row space of matrix A is a subspace of Rn.
(b) The column space of matrix A is a subspace of Rm.

Proof – See Exercises 3.5.

For example, the row and column space of matrix A =
(
1 4
5 9

)
is a subspace of R2.

The row space of matrix B =
( −1 3 9
−5 2 6

)
is a subspace of R3 but the column space is a

subspace of R2.

3.5.3 Basis of a row space

Why do we want to find a basis for the row space of a matrix?
Recall that a basis is formed by the least number of vectors, or axes, required to describe the space.
Our matrix may contain zero rows, or rows that are linearly dependent. By using row operations
in the row space to reduce our matrix to its simplest form (or basis), we often end up with a much
more efficient matrix, which is row equivalent to the original.
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What does row equivalent matrix mean?
Two matrices are row equivalent if one is obtained from the other by elementary row operations.
(This was discussed in chapter 1.) These operations are:

1. Multiplying a row by a non-zero constant.

2. Adding or subtracting a multiple of one row from another.

3. Interchanging rows.

Consider the matrix A with rows a1 and a2, converted using row operations, to the
matrix R:

a1
a2

(
1 2 3
4 8 12

)
= A r1 = a1

r2 = a2 − 4a1

(
1 2 3
0 0 0

)
= R

Note that the rows of matrix R, r1 and r2, are simply a linear combination of rows a1
and a2:

r1 = a1 and r2 = a2 − 4a1

The rows of matrix R are a linear combination of the rows of matrix A. This means that
the row vectors of matrix R lie in the row space of matrix A.

What can you predict about the row space of row equivalent matrices?
The space they occupy is equal.

For example, the row space S of the above matrix A is given by the vectors v in S such
that:

v = k1a1 + k2a2 = k1

⎛⎝ 1
2
3

⎞⎠+ k2

⎛⎝ 4
8
12

⎞⎠ = k1

⎛⎝ 1
2
3

⎞⎠+ 3k2

⎛⎝ 1
2
3

⎞⎠ = c

⎛⎝ 1
2
3

⎞⎠ = cr1

where c = k1 + 3k2
Hence all the vectors v are in the row space S of matrix R. In fact, you can span the row

space of matrix A with just one vector ( 1 2 3 )T which is the non-zero row in matrix R.
Actually the row space S created by matrixA is the same as the row space created by matrix
R. We have

Row space of A = Row space of R

Proposition (3.25). If matrices A and R are row equivalent then their row spaces are equal.

How do we prove this result?
By showing that

1. The row space of A is in row space of R.

2. The row space of R is in row space of A.

If both these conditions are satisfied then the row spaces of matrices A and R must be equal.
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Proof.
Let A and R be row equivalent m by n matrices. Let the row vectors of A be a1, a2,
a3, . . . , am and the row vectors of R be r1, r2, r3, . . . , rm. This means that we have

A =
⎛⎜⎝ a1

...
am

⎞⎟⎠ R =
⎛⎜⎝ r1

...
rm

⎞⎟⎠
1) Matrices A and R are row equivalent, therefore the r row vectors are obtained from

the a row vectors by elementary row operations. This means that every r row vector is a
linear combination of the a row vectors. Therefore the row space of matrix A lies in the
row space of matrix R.

2) Similarly, by considering the above argument the other way, we have that the row
space of matrix R lies in the row space of matrix A.

Hence the row space of matrices A and R are equal.

Remember, we can use elementary row operations to put amatrix into row echelon form.
Additionally, we can apply this to find a basis for the row space of a matrix as the following
proposition states:

Proposition (3.26). If a matrix R is in row echelon form then its non-zero rows form a
basis (set of axes) for the row space of matrix R.

Proof – See Exercises 3.5.

By combining the above two propositions (3.25) and (3.26) we have:

Proposition (3.27). If matrix A is row equivalent to matrix R where matrix R is in row
echelon form then the non-zero rows ofmatrixR form a basis for the row space ofmatrixA.

Proof.

Row space of A= Row space of R
Basis for row space of A

Non zero rows of R are a basis

By the above Proposition (3.26) the basis of the row space of R is given by the non-zero
rows of matrix R. By the above Proposition (3.25) we have

Row space of A = Row space of R [because R and A are row equivalent]
Thus the non-zero rows of matrix R form a basis for the row space of matrix A.
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How can we use this proposition to find a basis for the row space of a given matrix?
By carrying out elementary row operations and placing the given matrix into row echelon form.
We aim to achieve the following:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1
...
am

am+1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

r1
...
rm
O
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎬⎪⎭
These non-zero rows (vectors)
form a basis for the row
space of matrix A.

We can use MATLAB to place a matrix into row echelon form. Actually MATLAB and
the command rref places a given matrix into reduced row echelon form. In the following
examples we will use the reduced row echelon form but it is enough to find the row echelon
form.

Example 3.28

Determine a basis for the row space of the following matrices:

(a) A =
(

1 2
2 4

)
(b) B =

( −1 3 9
−5 2 6

)
(c) C =

⎛⎝ −3 6
−5 2
−2 7

⎞⎠
Solution

(a) Applying row operations we have

A =
(

1 2
2 4

)
R =

(
1 2
0 0

) ← Non-zero row

The vector

(
1
2

)
is a basis for the row space of A (Fig. 3.18).

5

4

basis vector3

2

1

-1

-2

-1 1 2 3

This line represents the 
row space of matrix A.

Figure 3.18

(b) Similarly, to find the reduced row echelon form of B we use MATLAB:

B =
( −1 3 9
−5 2 6

)
R =

(
1 0 0
0 1 3

)
(continued...)
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What is a basis for the row space of matrix B?

The vectors

⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
3

⎞⎠⎫⎬⎭ form a basis for the row space of matrix B. Hence the row space of B is a

subspace of R3 .

(c) By using MATLAB, the reduced row echelon form of matrix C is given by:

C =
⎛⎝ −3 6
−5 2
−2 7

⎞⎠ R =
⎛⎝ 1 0

0 1
0 0

⎞⎠ }
Non-zero rows

Remember, it is the non-zero rows which form a basis for the row space. Thus the vectors{(
1
0

)
,
(
0
1

)}
form a basis for the row space of matrix C. We need two vectors

{(
1
0

)
,
(
0
1

)}
to

span the row space of C rather than the three given row vectors in matrix C. Remember, this basis span
the whole of R2 , so the row space of matrix C is R2.

The above example can easily be carried out by hand calculations because of the simple
integer entries for the given matrices.

3.5.4 Basis of a spanned subspace of RRRn

Let u = ( 1 2 3
)T and v = ( 4 5 6

)T be vectors in R3. Let S be the space spanned by
these vectors which is illustrated in Fig. 3.19.

Vectors u and v 
span the dark 
shaded plane S
in    3.

1
2
3

=u

S

4
5
6

=v

7

6

5

4

3
z

2

1
0
00

1
2

3
4

x

Figure 3.19

We are generally interested in finding a simple set of axes to describe this plane, or more
formally, a basis for this space S.
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How can we find such a basis?

Writing the vectors as rows of a matrix A =
(
u
v

)
then the row space of A is the vector space

spanned by vectors u and v. By using row operations on A, we can find a basis for the row space
of a matrix A as we did in subsection 3.5.3 above.

The procedure of finding a basis for a subspace of Rn which is spanned by the vectors
{r1, r2, r3, . . . , rm} is given by:

1. Form the matrix A =
⎛⎜⎝ r1

...
rm

⎞⎟⎠. The row space of A is the space spanned by

r1, r2, . . . , rm.
2. Convert this matrix A into (reduced) row echelon form, R say.
3. The non-zero rows of matrix R form a basis for the vector space span{r1, r2, . . . , rm}.

Example 3.29

Determine a basis for the vector space S = span{u, v, w} where

u =
⎛⎝ 1
2
3

⎞⎠ , v =
⎛⎝ 4
5
6

⎞⎠ and w =
⎛⎝ 7
8
9

⎞⎠
Solution

Let A be the matrix given by A =
⎛⎝ u

v
w

⎞⎠, that is A =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠. The row space of matrix A is the

subspace spanned by vectors u, v and w. Thus

span {u, v, w} = Row space of A

What do we need to find?
The basis for the row space of the matrix A.
How?
By finding the (reduced) row echelon form matrix R of A and then the non-zero rows of R form a basis
(axes) for the row space of matrix A. By using MATLAB we obtain:

A =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠ ⎛⎝ 1 0 −1
0 1 2
0 0 0

⎞⎠ = R

The non-zero rows of the above matrix R form a basis of the row space of A:

r1 =
⎛⎝ 1

0
−1

⎞⎠ and r2 =
⎛⎝ 0
1
2

⎞⎠
Thus a basis (axes) for the given vector space S = span(u, v, w) is B = {r1, r2} where r1 and r2 are

vectors stated above. Note that S is a subspace of R3, but is actually a plane and can be spanned by two
vectors, r1 and r2 , rather than the three given vectors u, v and w.



248 3 GENERAL VECTOR SPACES

Example 3.30

Determine a basis for the vector space S = span{u, v, w} where

u =

⎛⎜⎜⎝
1
3
5
6

⎞⎟⎟⎠ , v =

⎛⎜⎜⎝
1
7
8
9

⎞⎟⎟⎠ and w =

⎛⎜⎜⎝
3
9
15
18

⎞⎟⎟⎠
Solution
By applying the above procedure we have:

Step 1 and 2: Writing the matrix A and evaluating its reduced row echelon form:

A =
⎛⎝ u

v
w

⎞⎠ =
⎛⎝ 1 3 5 6

1 7 8 9
3 9 15 18

⎞⎠ R =
⎛⎝ 1 0 2.75 3.75

0 1 0.75 0.75
0 0 0 0

⎞⎠
S = span{u, v, w} = Row space of matrix A.

Step 3:

What is a basis for S = span{u, v, w}?
It is the non-zero rows of the reduced row echelon form matrix R. We have

r1 =

⎛⎜⎜⎝
1
0

2.75
3.75

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1
0

11/4
15/4

⎞⎟⎟⎠ = 1
4

⎛⎜⎜⎝
4
0
11
15

⎞⎟⎟⎠ and r2 =

⎛⎜⎜⎝
0
1

0.75
0.75

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0
1
3/4
3/4

⎞⎟⎟⎠ = 1
4

⎛⎜⎜⎝
0
4
3
3

⎞⎟⎟⎠
Since the row space is the linear combination of vectors r1 and r2 so any non – zero scalar multiple of

r1 and r2 is also a basis for the row space. (The basis gives the directions of the two axes for the space.)
Hence, multiplying vectors r1 and r2 by 4 gives vectors:{

( 4 0 11 15 )T , ( 0 4 3 3 )T
}

which form a basis for S = span{u, v, w} and this is a subspace of R4 . This S is a plane in R4 because we
have two axes or two basis vectors for this space.

3.5.5 Rank of a matrix

Why is rank important in linear algebra?
Consider the linear system Ax = b. The augmented matrix (A | b) in row echelon form may
produce zero rows, which means 0 = 0, but these are not important in the solution of linear equa-
tions. It is the number (rank) of the non-zero rows in row echelon form which gives the solution of
a linear system of equations. We will discover in the next section that the rank of matrix A and of
the augmented matrix (A | b) tell us if there are no, a unique or an infinite number of solutions.

The rank of a matrix gives the number of linearly independent rows in a matrix which
means that all the rows that are linearly dependent are counted as one. For example, the
following matrix has a rank of 1:

R1
R2

(
1 2 3 4
2 4 6 8

)
can be transformed to R1

R2 − 2R1

(
1 2 3 4
0 0 0 0

)
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The second row is double the first, so carrying out row operations results in a single
independent row. The rank of a matrix measures the amount of important information
represented by the matrix.

An application of linear algebra is the transfer of digital data which is normally stored
as a matrix. In these fields it is important that data is transferred as fast and efficiently as
possible without losing any of it. The concept of a rank is critical here because a matrix with
a lower rank takes up less memory and time to be transferred. Low rank matrices are much
more efficient in the sense that they are much less computationally expensive to deal with.

Computer graphics rely on matrices to generate and manipulate images. The rank of

the matrix tells you the dimension of the image. For example, the matrix A =
⎛⎝ 1 1 1

4 5 6
2 2 2

⎞⎠
transforms a vector in 3D onto a 2D plane because matrix A does not have ‘full rank’ (the
top and bottom rows are linearly dependent) as shown in Fig. 3.20.

Matrix A will only transform 
vectors onto the plane shown 
and not anywhere else in    3.

3

2

1

z

0
00

1
2

3x

1 2 3 4 5 6 7
y

Figure 3.20

We define the rank in terms of dimension.

Can you recall what the term dimension of a vector space means?
It is the least number of axes needed to describe the vector space, or in other words, the number
of vectors in the basis of a vector space.

The dimension of the row space of a matrix is called row rank and the dimension of the
column space is called the column rank. Note that the row rank of a given matrix A is the
number of non-zero row vectors in row echelon form matrix R because the non-zero rows
form a basis for the row space.

A =

⎛⎜⎜⎜⎜⎜⎜⎝

a1
...
am
am+1

...

⎞⎟⎟⎟⎟⎟⎟⎠ R =

⎛⎜⎜⎜⎜⎜⎜⎝

r1
...
rm
O
...

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎬⎪⎭ m non-zero rows
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Row rank of matrix A= m
The row rank of a matrix is called the rank of a matrix.

Definition (3.28). The rank of a matrix A is the row rank of A.

The rank of matrix A is denoted by rank(A). Thus (3.28) says

rank(A) = row rank of A

What is the difference between rank and dimension?
Strictly speaking, the rank is an attribute of a matrix, while dimension is an attribute of a vector
space.

Example 3.31

Determine the rank of the matrices A, B and C given in Example 3.28.

Solution
What is rank(A) equal to?
From the solutions to Example 3.28 we have one vector in the basis of the row space of A, therefore the
row rank is equal to 1 which means that rank(A) = 1.

Similarly we have rank(B) = 2 and rank(C) = 2.

Example 3.32

Determine the rank of matrix A =

⎛⎜⎜⎜⎜⎝
1 2 3 4 5 6
27 28 29 30 31 32
15 16 17 18 19 20
31 32 33 34 35 36
45 46 47 48 49 50

⎞⎟⎟⎟⎟⎠.

Solution
What do we need to do?
Place the given matrix A into row echelon form. By using MATLAB, we can find the reduced row echelon
form matrix R:

R =

⎛⎜⎜⎜⎜⎜⎝
1 0 −1 −2 −3 −4
0 1 2 3 4 5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
← Non-zero row
← Non-zero row

What is the rank of the given matrix A equal to?
rank(A) = 2 because we have two non-zero rows. In this case the rank tells you that two rows are
important and three rows are redundant because the row space of matrix A can be spanned by the first
two rows of matrix R.

If matrix A represents a digital image then we can compress this data to a matrix with rank 2, which is
more computationally efficient than matrix A.
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Proposition (3.29). Let A be any matrix. Then

Row rank of matrix A = Column rank of matrix A
This means

rank(A) = Row rank of A = Column rank of A

Proof – Exercises 3.5.

The row and column rank of a matrix are equal.
We can also find a basis for the column space of a matrix by considering the columns

of the reduced row echelon form matrix with leading 1’s. In the above Example 3.32 the
first two columns of matrix R have leading 1’s. It can shown that the corresponding column
vectors of matrixA form a basis for the column space of A. Hence the following vectors are
a basis:

( 1 27 15 31 45 )T and ( 2 28 16 32 46 )T

for the column space of matrix A.

3.5.6 Rank and invertible matrices

In this subsection we discuss the relationships between rank and invertible matrices.

Proposition (3.30). Let A be an n by nmatrix. The matrix A is invertible⇔ rank (A) = n.

What does this mean?
Matrix is invertible⇔ it has no redundant rows. We say that the matrix A has full rank.

Proof.
(⇒). We assume matrix A is invertible. By (1.35):

Theorem (1.35). Let A be a n by nmatrix, then the following are equivalent:

(a) The matrix A is invertible.
(b) The reduced row echelon form of the matrix A is the identity matrix I.

The reduced row echelon form of the matrixA is the identity n by nmatrix I. Thus there
are n non-zero rows of I, therefore rank(A) = n.

(⇐). In this case, we assume that rank(A) = n and we need to prove that the matrix A
is invertible. Since rank(A) = n, the reduced row echelon form of A has no zero rows. By
(1.39);

Proposition (1.39). R has at least one row of zeros⇔ A is non-invertible (singular).

This means that matrix Amust be invertible.

Hence if a square matrix is not of full rank then it is non-invertible.
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i Summary

(3.23) The row space of a matrix A is the vector space spanned by the row vectors of matrix A.
(3.25). If matrices A and R are row equivalent then their row spaces are equal.
(3.27). A basis for the row space of matrix A is the non-zero rows of the equivalent row echelon form
matrix R.

The rank of a matrix is the dimension of the row or column space of the matrix.

EXERCISES 3.5

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. For the following matrices find the row and column vectors:

(a) A =
(
1 2
3 4

)
(b) B =

⎛⎝ 1 2 3 4
5 6 7 8
9 10 11 12

⎞⎠ (c) C =
⎛⎝ 1 2

3 4
5 6

⎞⎠

(d) D =
(
1 2 3
4 5 6

)
(e) E =

⎛⎝ −1 2 5
−3 7 0
−8 1 3

⎞⎠ (f) F =

⎛⎜⎜⎝
−5 2 3
7 1 0
−7 6 1
−2 5 2

⎞⎟⎟⎠
2. Determine a basis for the row space of the matrices given in question 1. Also state the

rank of the given matrix.
3. Determine a basis for the following subspace of Rn which are spanned by the vectors:

(a) u =
(
1
5

)
, v =

(
7
2

)
(b) u =

(−1
−3
)
, v =

(
4
12

)

(c) u =
⎛⎝ 3
6
5

⎞⎠ , v =
⎛⎝ 2
1
2

⎞⎠ , w =
⎛⎝ 12
15
15

⎞⎠
(d) u =

⎛⎝−1−2
−5

⎞⎠ , v =
⎛⎝ 0
1
5

⎞⎠ , w =
⎛⎝ 2
3
2

⎞⎠ , x =
⎛⎝−41
−7

⎞⎠

(e) u =

⎛⎜⎜⎝
1
2
2
2

⎞⎟⎟⎠ , v =

⎛⎜⎜⎝
−1
3
5
7

⎞⎟⎟⎠ , w =

⎛⎜⎜⎝
2
−1
−3
−5

⎞⎟⎟⎠ , x =

⎛⎜⎜⎝
0
5
7
9

⎞⎟⎟⎠
4. Find a basis for the subspace of R4 which is given by S = span(u, v, w, x, y) where

u =

⎛⎜⎜⎝
−1
1

−1
1

⎞⎟⎟⎠ , v =

⎛⎜⎜⎝
−5
−9
−7
−1

⎞⎟⎟⎠ , w =

⎛⎜⎜⎝
0
7
1
3

⎞⎟⎟⎠ , x =

⎛⎜⎜⎝
−6
−1
−7
3

⎞⎟⎟⎠ , y =

⎛⎜⎜⎝
2
5
3
1

⎞⎟⎟⎠.
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[You can convert the decimal entries of the reduced row echelon form matrix into
fractional entries by using the command rats(rref(A)) in MATLAB. In MATLAB, the
rats() command converts the argument into a rational number.]

5. Determine a basis for the column space of the matrices given in question 1 by taking
the transpose of the given matrices. Also state the rank of the given matrix.

6. Let A be any matrix. Prove that rank(A) = rank(AT).
7. Let A be an invertible matrix. Prove that rank(A) = rank(A−1).
8. Let A be a square n by nmatrix. Prove the following:

(a) A has rank n⇔ the linear system Ax = O has the trivial solution x = O.
(b) A has rank n⇔ the linear system Ax = b has a unique solution.

9. Let A be a square n by n matrix whose row vectors are given by the set of vectors,
S = {r1, r2, r3, . . . , rn}:

A =
⎛⎜⎝ r1

...
rn

⎞⎟⎠
Prove that matrix A is invertible⇔ S is a set of linearly independent vectors.

10. Let A be a square n by n matrix whose column vectors are given by the set of vectors;
S = {c1, c2, c3, . . . , cn}:

A = (c1 · · · cn)
Prove that matrix A is invertible⇔ S is a set of linearly independent vectors.

11. Prove that the row space of a matrix A is identical to the row space of k A, where k is a
non-zero scalar.

12. Let A be any matrix and k be a non-zero scalar. Show that rank(kA) = rank(A).
13. Prove Proposition (3.24).
14. Prove that if R is the reduced row echelon matrix then the non-zero rows of R are

linearly independent.
15. Prove that if A is a matrix and the reduced row echelon form matrix R of A contains

zero rows then the rows of A are linearly dependent.
16. Prove Proposition (3.26).
17. Let A be any matrix whose rows are given by the set of linear independent vectors

S = {r1, r2, r3, . . . , rn}. Prove that rank(A) = n.
18. For the following you may assume:

The columns of matrixAwith the corresponding leading 1’s in reduced row echelon
form matrix R are a basis for the column space. Prove Proposition (3.29).

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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SECTION 3.6 Linear Systems Revisited

By the end of this section you will be able to

● understand and determine the null space and nullity of a matrix

● prove some properties of null space, nullity and rank of a matrix

● determine solutions to a non-homogeneous system of linear equations

In the last section we concentrated on the row space of a matrix, but in this section we
examine the part played by the column space of a matrix in the solution of the linear system
Ax = b.

In this section we answer the critical question of linear algebra:

What conditions provide infinite, unique or no solutions to a linear system?
You will need to ensure you are familiar with the concepts of row space, column space and the
rank of a matrix to analyse solutions of linear systems.

3.6.1 Null space

We consider the homogeneous system first, which is a linear system of equations written
in matrix form as Ax = O. By using elementary row operations we solve the equivalent
system Rx = O where matrix R is row equivalent to matrix A.

Example 3.33

Solve the homogeneous system of linear equations:

x + 2y + 3z = 0
4x + 5y + 6z = 0
7x + 8y + 9z = 0

Solution
We have the linear system Ax = O where A is the coefficient matrix, x is the vector of unknowns and O
is the zero vector.
How can we find the unknowns x, y and z?
We can write out the augmented matrix and then convert this into reduced row echelon form by using
hand calculations or MATLAB with command rref(A):

(A |O) =
⎛⎝ 1 2 3 0

4 5 6 0
7 8 9 0

⎞⎠
x y z⎛⎝ 1 0 −1 0
0 1 2 0
0 0 0 0

⎞⎠
From the middle row of the matrix on the right hand side we have

y+ 2z = 0 which gives y = −2z
None of the rows start with z so z is a free variable.
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Let z = s where s is any real number then y = −2s and from the top row we have

x − z = 0 which gives x = z = s

Our solution set is x = s, y = −2s and z = s which we can write in vector form as

x =
⎛⎝ x
y
z

⎞⎠ =
⎛⎝ s
−2s
s

⎞⎠ = s

⎛⎝ 1
−2
1

⎞⎠ where s is a parameter

This free variable s is any real number and the solution is the set of all points on the axis (thick line) as
shown in Fig. 3.21:

1
2
1

−

All the points along this axis
are solutions to the given
linear system Ax = O.

3

2

1

0z

–1

–2

–3
–3–2–1

0
x 1

2
3

–4 –3 –2 –1 0
y
1 2 3 4

Figure 3.21

The solution x = s

⎛⎝ 1
−2
1

⎞⎠ is a scalar multiple of the vector u =
⎛⎝ 1
−2
1

⎞⎠, so this vector u is a basis

vector on the axis shown for the solution space. Note that this solution space is a subspace of R3.

The vector or solution space, call it N, of a homogeneous system Ax = O is called the
null space of matrix A. In general, we have:

Definition (3.31). Let A be any matrix. The set of vectors x inN (or N(A)) which satisfy the
homogeneous system Ax = O is called the null space of matrix A. The dimension of this
null space is called the nullity of matrix A and is denoted by nullity(A).

For the above Example 3.33 the null space is the set of vectors N = {su | s ∈ R} which
is shown as an axis in Fig. 3.21. In this case, nullity(A) = 1 because we have one axis or a
single vector u, which is a basis for N. Hence the null space of matrix A is of dimension 1.
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How can we write the general solution to Ax = O?⎛⎜⎜⎝
a11 . . . a1n
...

. . .
...

am1 · · · amn

⎞⎟⎟⎠
⎛⎜⎜⎝
x1
...
xn

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0
...
0

⎞⎟⎟⎠
Multiplying these matrices we have:

a11x1 + · · · + a1nxn = 0
...

...
...

...
am1x1 + · · · + amnxn = 0

We can write this in terms of the column vectors c1, c2, . . . and cn of matrix A:

c1 cn⎛⎜⎝ a11
...

am1

⎞⎟⎠ x1 + · · · +
⎛⎜⎝ a1n

...
amn

⎞⎟⎠ xn =
⎛⎜⎝ 0

...
0

⎞⎟⎠ (∗)

Note that the left hand side is a linear combination of the column vectors c1, c2, . . . and
cn of matrix A. Recall that this linear combination is the column space of the matrix A.
The null space consists of vectors x = ( x1 x2 · · · xn )T such that they satisfy the linear
combination (∗).

The null space is a non-empty set.

How do we know it is non-empty?
Because the homogeneous system Ax = O always has the trivial solution x = O
(x1 = · · · =xn = 0) so we know the null space of matrix A is not empty.

Proposition (3.32). If A is a matrix with n columns then the null space N(A) is a subspace
of Rn.

Proof – Exercises 3.6.

The null space of a matrix is a vector space.

Example 3.34

Determine the null space, nullity and rank of the matrix B =
(

1 2 3 4
5 6 7 8

)
.

Solution
How do we find the null space of the given matrix B?
The null space is the set of vectors x which satisfies the homogeneous system Bx = O:

(B |O) =
(

1 2 3 4
5 6 7 8

∣∣∣∣ 00
) x y z w(

1 0 −1 −2
0 1 2 3

∣∣∣∣ 00
)
= (R |O)
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The matrix on the right hand side R is actually the reduced row echelon form of matrix B.
Expanding out the bottom row gives:

y+ 2z + 3w = 0 yields y = −2z − 3w

None of the rows begin with z and w, so these are our free variables. Let z = s and w = t where t and s
are any real numbers. We have y = −2z − 3w = −2s− 3t.

Expanding the top row we have

x− z − 2w = 0 gives x = z + 2w

Substituting z = s and w = t into x = z + 2w gives x = s+ 2t. The solution of Bx = O is the null
space of matrix B given by the set of vectors x = ( x y z w )T which has the entries x = s+ 2t,
y = −2s− 3t, z = s and w = t:

x =

⎛⎜⎜⎝
x
y
z
w

⎞⎟⎟⎠ =
⎛⎜⎜⎝

s+ 2t
−2s− 3t

s
t

⎞⎟⎟⎠ = s

⎛⎜⎜⎝
1
−2
1
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
2
−3
0
1

⎞⎟⎟⎠
Let u = ( 1 −2 1 0 )T and v = ( 2 −3 0 1 )T then we can write the null space N as

N = {su+ tv | t ∈ R, s ∈ R}

Substituting s = t = 0 into su+ tv gives the zero vector O, which of course is in the null space N . We
can substitute any real numbers for s and t to obtain an infinite number of vectors in N .

Note that N is a subspace of R4 because vectors u and v have four real entries.
What can we say about the vectors u and v?
The vectors u and v span the null space N and they are also linearly independent.
How do we know these vectors are linearly independent?
Because u and v are not multiples of each other. This means that vectors u and v form a basis for the null
space N . (Actually the null space N is a plane in R4 because we have two axes or basis vectors, u and v.)
What is the nullity of matrix B equal to?

nullity(B) = 2

This means the set of vectors x which satisfy Bx = O is of dimension 2. Hence we require two axes or
basis vectors to describe the null space of matrix B.
What is the rank of the given matrix B equal to?
The above reduced row echelon form matrix R has two non-zero rows, therefore

rank(B) = 2

Using the procedure outlined in this Example 3.34 gives us a basis for the null space.

Example 3.35

Determine the null space, nullity and rank of the matrix C =
(

1 3
5 15

)
.

(continued...)
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Solution
The null space N is the set of vectors x which satisfy Cx = O.
How do we find this vector space?
By applying elementary row operations to convert into reduced row echelon form:

(C |O) =
(

1 3
5 15

∣∣∣∣ 00
) x y

(R |O) =
(

1 3
0 0

∣∣∣∣ 00
)

non-zero row

We only have one non-zero row in the reduced row echelon form matrix R, therefore

rank (C) = 1

Considering the equivalent homogeneous system Rx = O we have

x + 3y = 0 implies x = −3y
Let y = s then x = −3y = −3s where s is any real number. Hence

x =
(
x
y

)
=
(−3s

s

)
= s

(−3
1

)

Let u =
(−3

1

)
then the null space N = {su | s ∈ R} and the graph of this space is:

The null space N of
matrix C is all the
vectors on this axis which
are solutions to Cx = O. 

Figure 3.22

Note that the vector u spans the null space and is linearly independent so it is a basis for N .
What is the nullity of matrix C equal to?
It is the dimension of the null space N , which is 1, because it has only one basis vector u (or one free
variable – s). We have nullity(C) = 1.

We can also evaluate the nullity of a matrix by finding the number of free variables in the
system.

Proposition (3.33). The number of free variables in the system Ax = O is equal to the
nullity of the matrix A.

Proof – Exercises 3.6.
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3.6.2 Properties of rank and nullity

In the above examples 3.33, 3.34 and 3.35 we had

nullity(A)+ rank(A) = 1+ 2 = 3
nullity(B)+ rank(B) = 2+ 2 = 4
nullity(C)+ rank(C) = 1+ 1 = 2

Can you see any relationship between the nullity, rank and the number of unknowns in vector x?

Nullity+ Rank = Number of unknowns

In general, if we have a m by n matrix A:⎛⎜⎜⎝
a11 . . . a1n
...

. . .
...

am1 · · · amn

⎞⎟⎟⎠
⎛⎜⎜⎝

x1
...
xn

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0
...
0

⎞⎟⎟⎠ [Ax = O]

︸ ︷︷ ︸
n columns

Then

nullity(A)+ rank(A) = n

Note that n is the number of columns ofmatrixAwhich is the total number of unknowns
in the homogeneous system Ax = O. This result normally has the grand title of ‘The
Dimension Theorem of Matrices’.

Theorem (3.34). The dimension theorem of matrices (rank-nullity theorem):
If A is a matrix with n columns (number of unknowns) then

nullity(A)+ rank(A) = n

Proof.
Let R be the reduced row echelon form of matrixA and let it have rank r, which means that
it has r non-zero rows located at the top of the matrix. By the definition of reduced row
echelon form, we know that each of these r rows has a leading 1.

n unknows︷ ︸︸ ︷
R =

⎛⎜⎜⎜⎜⎜⎜⎝

1

0
. . .

... 1 · · ·
0 0 0 · · · · · · 0
0 0 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠
←
...
←

⎫⎪⎬⎪⎭ r non-zero rows
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There are n unknowns in total and r of these can be expressed in terms of the remaining
n− r unknowns. This means there are n− r free variables in the system. By the above
Proposition (3.33):

The number of free variables in the systemAx = O is equal to the nullity of the matrixA.
We have nullity(A) = n− r and transposing this gives us our result

nullity(A)+ r = n which is nullity(A)+ rank(A) = n

What is the nullity of a matrix A which is of full rank?
Full rank means rank(A) = n, therefore

nullity(A) = n− rank(A) = n− n = 0

Hence the dimension of the null space is 0, so null space only contains the trivial solution – zero
vector, x = O. In case of full rank, Ax = O⇒ x = O is the only solution.

Example 3.36

Determine the nullity and rank of the matrix:

A =

⎛⎜⎜⎜⎜⎝
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

⎞⎟⎟⎟⎟⎠
Solution
By using MATLAB, the reduced row echelon form matrix R of A is given by

R =

⎛⎜⎜⎜⎜⎝
1 0 −1 −2 −3 −4 −5
0 1 2 3 4 5 6
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎠
←
←

non-zero row
non-zero row

What is rank (A) equal to?
Since there are two non-zero rows in matrix R, therefore rank(A) = 2. Note that the matrix has five rows
but there are only two linearly independent rows.
What is nullity(A) equal to?
nullity(A) is the dimension of the null space and can be evaluated by:

Theorem (3.34) nullity(A)+ rank(A) = n
Substituting rank(A) = 2 and n = 7 (the number of columns of matrix A) we have

nullity(A)+ 2 = 7 gives nullity(A) = 5

This means that the set of vectors x which satisfy Ax = O is of dimension five. We need five axes or
five basis vectors to describe the vectors x in the null space of matrix A.

Sometimes it is more convenient to write nullity(A)+ rank(A) = n as

nullity(A) = n− rank(A)
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3.6.3 Non-homogeneous linear systems

Now we consider linear equations of the form Ax = b where b �= O (not zero). Equations
of the form Ax = b, where b �= O, are called non-homogeneous linear equations.
Throughout the remaining part of this section we assume b �= O.

Example 3.37

Solve the above Example 3.35 with Cx = b where b = (7 35)T :

x + 3y = 7
5x + 15y = 35

Solution
We first write out the augmented matrix and then evaluate the reduced row echelon form:

(
1 3
5 15

∣∣∣∣ 7
35

) x y(
1 3
0 0

∣∣∣∣ 70
)

Expanding the top row of this right hand matrix we have

x + 3y = 7 which gives x = 7− 3y

Let y = s, then we have x = 7− 3y = 7− 3s.
We have x = 7− 3s and y = s. The general solution x is

x =
(
x
y

)
=
(
7− 3s

s

)
= s

(−3
1

)
+
(
7
0

)
The homogeneous solution xH to Cx = O in Example 3.35 was xH = s(−3 1)T .

What do you notice?
Solving this non-homogeneous system Cx = b where b = (7 35)T gives a two-part solution:

the homogeneous solution; xH = s(−3 1)T plus an extra term, (7 0)T , called the particular solution,
which we denote by xP .

xH = s
(−3

1

)
gives us the slope− 1

3 , and

(
7
0

)
moves the line horizontally by seven units to the

solution x. We demonstrate this in Fig. 3.23.

10

x = xH + xP

xP

xP

xP

xP

xP

4

–2

–5 5–10

(7, 0)

7/3xH

Figure 3.23

(continued...)
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Hence our general solution to Cx = b is x = xH + xP where

xH = s(−3 1)T and xP = (7 0)T

Notice that in the above example we have

CxH = O and CxP = b

because xH is the homogeneous solution and xP is the particular solution.
Combining these to solve the non-homogeneous system Cx = b we have

CxH + CxP = O+ b
C(xH + xP) = b ⇒ x = xH + xP

Hence the general solution of Cx = b is given by:

x = (homogeneous solution)+ (particular solution)

In general, for non-homogeneous systems we have the following:

Proposition (3.35). Let xP be the particular solution of Ax = b and xH be the solution to
the homogeneous system Ax = O. All the solutions of Ax = b are of the form xP + xH .

What does this proposition mean?
The solution of Ax = b consists of two parts:

(homogeneous solution)+ (particular solution)

Remember, the homogeneous solution xH (vector) belongs to the null space of matrix A.

Proof.
Let x be the solution of Ax = b then

A(x− xP) = Ax− AxP
= b− b = O

Since we have A(x− xP) = O, therefore x− xP is the homogeneous solution, that is
xH = x− xP. Hence we have our result x = xP + xH .

We need to show all the solutions are of this format xP + xH .
Let x′ be a solution of Ax = O, then

A(x+ x′) = Ax+ Ax′ = Ax+O = b+O = b

Hence x+ x′ is a solution of Ax = b.
We conclude that all the solutions are of this form x = xP + xH .
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Example 3.38

Solve the non-homogeneous linear system:

x − 2y + 2z + 0.03t = 1.7
− y + z − 0.02t = −1.6

x − y 0.01t = 0

Solution
Writing the augmented matrix and evaluating the reduced row echelon form gives

⎛⎝ 1 −2 2 0.03
0 −1 1 −0.02
1 −1 0 0.01

∣∣∣∣∣∣
1.7

−1.6
0

⎞⎠
x y z t⎛⎝ 1 0 0 0.07
0 1 0 0.06
0 0 1 0.04

∣∣∣∣∣∣
4.9
4.9
3.3

⎞⎠
The general solution is

x + 0.07t = 4.9, y+ 0.06t = 4.9 and z + 0.04t = 3.3

x = 4.9− 0.07t, y = 4.9− 0.06t and z = 3.3− 0.04t

where t is our free variable. In vector form we have

x =

⎛⎜⎜⎝
x
y
z
t

⎞⎟⎟⎠ =
⎛⎜⎜⎝

4.9− 0.07t
4.9− 0.06t
3.3− 0.04t

t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
4.9
4.9
3.3
0

⎞⎟⎟⎠
︸ ︷︷ ︸

particular sol’n=xP

+

⎛⎜⎜⎝
−0.07
−0.06
−0.04

1

⎞⎟⎟⎠ t

︸ ︷︷ ︸
homogeneous sol’n=xH

This is an example of an underdetermined system: a system with more unknowns than
equations, which gives infinitely many solutions provided it is consistent. The row echelon
form matrix R of an underdetermined system has the following shape:

More unknowns︷ ︸︸ ︷
R

}
Fewer equations

An overdetermined system is a system with more equations than unknowns. The row
echelon form matrix R has the following shape:

R

}
More equations than unknowns

Fewer unknowns

3.6.4 Properties of non-homogeneous linear systems

Proposition (3.36). The linear system Ax = b has a solution⇔ b can be generated by the
column space of matrix A. (Fig. 3.24)
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b
Column space of A

Figure 3.24

Proof – Exercises 3.6.

For the homogeneous system,Ax = O, we have the zero vectorO in the column space of
matrix A. However, in the non-homogeneous case, Ax = b, we cannot guarantee that the
vector b is in the column space of matrix A. The vector b must be in the column space in
order for Ax = b to have a solution.

Proposition (3.37). LetA be am by nmatrix and b �= O then the linear systemAx = b has
a solution⇔ rank(A | b) = rank(A).

What does this proposition mean in simple English?
The ranks of augmented matrix (A | b) and A must be equal for Ax = b to have a solution. Also,
the other way, if Ax = b has a solution then the ranks of A and (A | b) are equal.

Proof.
(⇒). Let Ax = b have a solution.

How do we prove rank(A | b) = rank(A)?
We show that the following are impossible:

(a) rank(A | b) > rank(A) (b) rank(A | b) < rank(A)

(a) Suppose rank(A | b) > rank(A) where rank(A) = p say. Then we have p non-zero
rows in the row echelon form R of matrix A but more than p non-zero rows in the
augmented matrix (R | b′):

p non-zero
rows

⎧⎪⎪⎨⎪⎪⎩
x1 x2 · · · xn⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11 b′1
0

. . .
...

... rpj · · · b′

0 0 0 · · · · · · 0 b′p+1
...

...
... · · · · · · 0

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠← (p+ 1) th non-zero row

Expanding along the (p+ 1)th row we have

0x1 + 0x2 + · · · + 0xn−1 + 0xn = b′p+1 (∗)

However, b′p+1 cannot equal zero.

Why not?
Because by our supposition rank(A | b) > rank(A) = p which means (p+ 1)th row must be non-
zero, therefore b′p+1 �= 0.
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It is impossible to have the solution (∗) because the left hand side is zero but the
right hand is non-zero. We have a contradiction, which means that our supposition
rank(A | b) > rank(A) must be wrong.

(b) We cannot have rank(A | b) < rank(A) or rank(A) > rank(A | b).
Why not?
Because this would mean we have:

Same matrix as R on the left.

R =

⎛⎜⎜⎝
r11 r1n

0 . . . 0

⎞⎟⎟⎠
}

Non-zero
rows (R|b′) =

⎛⎜⎜⎜⎜⎝
r11 r1n

∣∣∣∣∣ b′1
0 . . . 0
0 . . . 0

∣∣∣∣∣ 00

⎞⎟⎟⎟⎟⎠
}

Non-zero
rows

The number of non-zero rows in matrix R is greater than the number of non-zero rows
in the augmentedmatrix (R | b′). This is impossible because the samematrixR cannot have
more non-zero rows in matrix R than (R | b′).

Since both rank(A | b) > rank(A) and rank(A | b) < rank(A) are false, we must have
rank(A) = rank(A | b)

(⇐). We assume rank(A) = rank(A | b). Writing this out we have

c1 c2 · · · cn

rank

⎛⎜⎜⎜⎝
r11 · · · r1n

0 0 · · · 0
...

...

⎞⎟⎟⎟⎠ = rank

⎛⎜⎜⎜⎜⎜⎝
r11 · · · r1n

∣∣∣∣∣ b1...
0 0 · · · 0
...

...

∣∣∣∣∣∣
0
...

⎞⎟⎟⎟⎟⎟⎠
Expanding out the augmented matrix in terms of equations, we have b is in the column

space of matrix A. By the above Proposition (3.36) the linear system Ax = b has a solution

The above Proposition (3.37) can be used as a test to see if there are any solutions to the
given linear system. Note that the above proposition is also saying:

rank(A | b) �= rank(A)⇔ No solution

But how do we test for a unique solution or an infinite number of solutions?
The next proposition gives the number of solutions to a non-homogeneous linear system.

Proposition (3.38). Consider the linear systemAx = bwhereA has n columns and b �= O.
(A has n columns means that there are n unknowns in the system.)

(a) rank(A) = rank(A | b) = n (Full rank)⇔ the linear system has a unique solution.
(b) rank(A) = rank(A | b) < n⇔ the linear system has an infinite number of solutions.
(c) rank(A) �= rank(A | b)⇔ the linear system has no solution.
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Proof – Exercises 3.6.

Example 3.39

Determine whether the following systems have infinite, unique or no solutions (you do not need to find
them):

(a)
x − y − 2z − 3w = 5
−4x + 4y + 8z + 12w = 2

(b)
x + 2y + 3z = 1
4x + 5y + 6z = 2
7x + 8y + 8z = 3

Solution

(a) Writing out the coefficient matrix, A, augmented matrix, (A | b), and placing the given matrices
into reduced row echelon form we have:

A =
(

1 −1 −2 −3
−4 4 8 12

) (
1 −1 −2 −3
0 0 0 0

) ← non-zero row

We have rank(A) = 1.

(A | b) =
(

1 −1 −2 −3
−4 4 8 12

∣∣∣∣ 52
) (

1 −1 −2 −3
0 0 0 0

∣∣∣∣ 01
) ←
←

non-zero row
non-zero row

Hence rank(A | b) = 2.
We have rank(A) = 1 but rank(A | b) = 2, so rank(A) does not equal rank(A | b). Therefore

the given system has no solution.

(b) Similarly we have

(A | b ) =
⎛⎝ 1 2 3

4 5 6
7 8 8

∣∣∣∣∣∣
1
2
3

⎞⎠ ⎛⎝ 1 0 −1
0 1 2
0 0 1

∣∣∣∣∣∣
−1/3
2/3
0

⎞⎠ ←←
←

non-zero row
non-zero row
non-zero row

What is the rank of A and (A | b) equal to?
In both cases, we have rank(A) = rank(A | b) = 3 which means it is of full rank because the matrix A
has three columns, so we have a unique solution.

The matrix A in part (b) is of full rank so by proposition (3.30):
Let A be a n by nmatrix. The matrix A is invertible⇔ rank (A) = n.
The matrix A is invertible.
We can also deduce the following results:

Proposition (3.39). Let A be an n by nmatrix then the following are equivalent:

(a) Matrix A is invertible.
(b) rank(A) = n (full rank)
(c) Null space of matrix A only contains the zero vector.
(d) nullity(A) = 0
(e) Rows of matrix A are linearly independent. (See question 9 of Exercises 3.5.)
(f) Columns of matrix A are linearly independent. (See question 10 of Exercises 3.5.)
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It can be shown that a basis for the column space of a matrix is given by the columns
containing the leading 1’s in reduced row echelon form:

Proposition (3.40). The columns which have leading 1’s of a matrix A form a basis for the
column space of A.

Proof – Website.

i Summary

(3.31) The set of vectors x which satisfy the homogeneous system Ax = O is called the null space of
A, and the dimension of this space is called the nullity of matrix A.
(3.33) If the matrix A has n columns then nullity(A)+ rank(A) = n.

A non-homogeneous system Ax = b has the general two part solution:

x = (homogeneous solution)+ (particular solution)

EXERCISES 3.6

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Determine and sketch the null space of the following matrices:

(a)
(
1 0
0 1

)
(b)
(
1 2
2 4

)
(c)

⎛⎝ 1 0
1 2
6 10

⎞⎠ (d)

⎛⎝ 1 2
3 4
5 6

⎞⎠
2. Determine the solution of the following homogeneous systems:

(a)
x − 2y − 3z = 0
4x − 5y − 6z = 0
7x − 8y − 9z = 0

(b)
2x − 2y − 2z = 0
4x − 4y − 4z = 0
8x − 8y − 8z = 0

(c)
2x + 9y − 3z = 0
5x + 6y − z = 0
9x + 8y − 9z = 0

(d)
−3x + y − z = 0
2x + 5y − 7z = 0
4x + 8y − 4z = 0

3. Determine the null space, rank and nullity of the following matrices:

(a) A =
⎛⎝ 1 −2 −3

4 −5 −6
7 −8 −9

⎞⎠ (b) B =
⎛⎝ 2 −2 −2

4 −4 −4
8 −8 −8

⎞⎠
(c) C =

⎛⎝ 2 9 −3
5 6 −1
9 8 −9

⎞⎠ (d)D =
⎛⎝ −3 1 −1

2 5 −7
4 8 −4

⎞⎠
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4. Determine the null space of the matrix:

A =

⎛⎜⎜⎜⎜⎜⎝
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

⎞⎟⎟⎟⎟⎟⎠
5. Determine bases for row, column and null space of the following matrices. Also state

their rank and nullity.

(a) A =
(
1 −4 −9
2 5 −7

)
(b) B =

⎛⎝ 1 3
2 5

−14 −37

⎞⎠ (c) C =
⎛⎝ 1 3 −9 5

2 6 7 1
1 3 −8 1

⎞⎠
6. Solve the following non-homogeneous system of linear equations:

(a)
2x + 5y + 7z + 10w = 3
x + y + 2z + 5w = 6

(b)
2x − y − 4z = 13
3x + 3y − 5z = 13
3x − 4y + 10z = −10

7. Determine whether the following systems have infinite, unique or no solutions:

(a)
2x + 8y = 12
7x + 28y = 42

(b)
2x − 3y − 6z + 12w = 2
3x − 5y − 7z + 16w = 5

(c)
x + 2y + 3z = 1
4x + 5y + 6z = 2
7x + 8y + 9z = 4

(d)

2x + 5y − 3z − 7w = 0
x + y − 4z − 8w = 9
3x + 4y + w = 6
5x + 21y − z + 3w = 2

8. Check to see if the following vectors u are in the null space of corresponding matrices:

(a) u =
⎛⎝ 1
2
3

⎞⎠, A =
⎛⎝ 1 1 −1

2 −1 0
5 2 −3

⎞⎠ (b) u =
⎛⎝ 1
1
1

⎞⎠, B = ( 1 4 −5
−7 5 2

)

(c) u =
⎛⎝ 2
1
5

⎞⎠, C = ( 1 2 3 4
5 6 7 8

)
(d) u =

⎛⎜⎜⎝
1
3
−4
7

⎞⎟⎟⎠, D =
⎛⎜⎜⎝

1 −2 6 1
3 −6 7 8
5 2 1 7
1 6 3 2

⎞⎟⎟⎠
9. Prove that a n by nmatrix A is invertible⇔ nullity (A) = 0.

10. Prove that elementary row operations do not change the null space of a matrix.
11. Let A be an m by n matrix. Prove that every vector in the null space of matrix A is

orthogonal to every vector in the row space of matrix A.
12. Prove Proposition (3.32).
13. Prove Proposition (3.36).
14. Prove Proposition (3.38).
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MISCELLANEOUS EXERCISES 3

In this exercise you may check your numerical answers using MATLAB.

3.1. Find a basis for the null space of A, where

A =
⎡⎣ 1 −2 1 1
−1 2 0 1
2 −4 1 0

⎤⎦
University of Western Ontario, Canada

3.2. Let A be a 7× 5 matrix, and suppose that the homogeneous linear system AX = O
is uniquely solvable. Answer the following questions:

(i) What is the rank of A?
(ii) If the linear system AX = B is solvable, is it then uniquely solvable?

A. rank(A) = 7; no.
B. rank(A) = 5; yes.
C. rank(A) = 7; yes.
D. rank(A) = 2; yes.
E. rank(A) = 5; no.
F. rank(A) = 2; no.

University of Ottawa, Canada

3.3. If we denote by C1, C2, C3, C4, C5 the columns of the matrix

A =

⎡⎢⎢⎣
1 3 −2 0 2
2 6 −5 −2 4
0 0 5 10 0
2 6 0 8 4

⎤⎥⎥⎦
then a basis of the column space of A is
A. C1, C2, C3
B. C1, C3, C4
C. C1, C3
D. C1, C2
E. C1, C3, C5
F. C1, C4

University of Ottawa, Canada

3.4. Let A be anm× nmatrix, let b be a vector in Rm, and suppose that v is a solution of
Ax = b.

(a) Prove that if w is a solution of Ax = O, then v+ w is a solution of Ax = b.
(b) Prove that for any solution u to Ax = b, there is a solution to Ax = O.

Illinois State University, USA
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3.5. Let A be an n× nmatrix such that Ax = b has exactly one solution for each b in Rn.
What three other things (or facts) can you say about A.

Illinois State University, USA

3.6. For each of the following situations, provide an example of the item requested, or
explain why such an example could not exist.

(a) A homogeneous linear system of equations with no solutions.
(b) Two matrices, A and B, that are not the same size but so that AB = BA.
(c) A set of four vectors that spans R4 but is not a basis for R4.
(d) A three-dimensional subspace of the vector space formed by the set of 2× 2

matrices.

Saint Michael’s College, Vermont, USA
(part question)

3.7. Which of the following are true?

(a) If V is a vector space of dimension n, then every set of n linearly independent
vectors in V is a spanning set of V .

(b) P2 contains a basis of polynomials p satisfying p (0) = 2.
(c)

{
1, sin2(x), cos2(x)

}
are linearly independent subset of F [0, 2π].

University of Ottawa, Canada

3.8. Let V be a vector space. Which of the following statements are true?

(a) If {u, v, w} is a linearly independent subset of V , then also {u, v} is linearly
independent.

(b) Every spanning set of V contains a basis of V.
(c) If dim(V) = n then every set of n linearly independent vectors of V is a basis.

University of Ottawa, Canada

3.9. It is given that A =

⎡⎢⎢⎣
1 0 −2 1 3
−1 1 5 −1 −3
0 2 6 0 1
1 1 1 1 4

⎤⎥⎥⎦ and its reduced row echelon form is

given by B =

⎡⎢⎢⎣
1 0 −2 1 0
0 1 3 0 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎦.
(a) Find the rank of A.
(b) Find the nullity of A.
(c) Find a basis for the column space of A.
(d) Find a basis for the row space of A.
(e) Find a basis for the null space of A.

Purdue University, USA
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3.10. (a) Let u1, . . . , uk be vectors in a subspace U of Rn. Define what it means

(i) for u1, . . . , uk to be linearly independent
(ii) for u1, . . . , uk to span U

(b) Determine the null space of the matrix

A =
⎛⎝ 1 3 −4

2 −1 −1
−2 −6 8

⎞⎠
(c) Determine whether the vectors

v1 =
⎡⎣−54
−6

⎤⎦ , v2 =
⎡⎣−12
−1

⎤⎦ , v3 =
⎡⎣ 0
−2
3

⎤⎦
in R3 are linearly independent or linearly dependent. If they are linearly depen-
dent, express one of the vectors as a linear combination of the other two.

University of Southampton, UK
(part question)

3.11. (a) When is a subset V of Rn a subspace? Give two distinct examples of subspaces
of Rn.

(b) What is meant by saying that the vectors v1, v2, . . . , vs in Rn are linearly
independent?

How is the linear span of the vectors v1, v2, . . . , vs defined?
(c) Show that the following vectors in R3 are linearly dependent:

v1 =
(
1, 1, 1

)
, v2 =

(
2, 3, −2 ) , v3 = ( −2 −5 10

)
What is the dimension of the linear span of v1, v2, v3?

University of Sussex, UK

3.12. Consider the following matrix A and vector �b:

A =
⎡⎣ 2 6 −4
−2 −5 4
4 11 −8

⎤⎦ , �b =
⎡⎣ 0

1
−1

⎤⎦

(a) By using row reduction, reduce the augmented matrix
[
A �b

]
.

(b) Using part (a) of this question, explain why A and
[
A �b

]
have the same rank.

(c) Find in vector form the general (or complete) solution to A�x = �b.
[Note that �b is the vector b].

University of New Brunswick, Canada
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3.13. Compute the reduced row echelon form of the matrix

A =
⎛⎝ 1 2 3 1 2 3

2 4 6 1 2 5
3 6 9 4 8 3

⎞⎠ ∈ M3×6 (R)

Determine a basis of the null space N(A).
RWTH Aachen University, Germany

3.14. (a) Define the terms null- space N(A) of A, column space C(A) of A, rank A, nullity
A, where A ∈ Mm×n(R).

(b) For the following matrix A, find the reduced row echelon form of A, a basis for
N(A) and rank A and nullity A:

A =
⎡⎣ 1 −1 2 0

2 −2 1 3
−2 2 −7 3

⎤⎦
Also explain why ( 1, 5, 1 )T and ( 0, 3, 3 )T form a basis for C(A).

University of Queensland, Australia

3.15. (a) Determine whether the following subsets are subspaces (giving reasons for your
answers).

(i) U =
{(

a b
c d

)
∈ M(2, 2)

∣∣∣ a2 = d2
}
inM(2, 2)

[M (2, 2) is the vector spaceM22].

(ii) V = {p(x) ∈ Pn
∣∣∣ p(3) = 0} in Pn

(iii) W = {(x, y, z, t) ∈ R4
∣∣∣ y = z + t} in R4

(b) Find a basis for the real vector space R3 containing the vector ( 3, 5, −4 ).
(c) Do the following sets form a basis for V? If not, determine whether they are

linearly independent, a spanning set for V , or neither.

(i) {( 1, 0, 1 ), ( 1, 1, 0 ), ( 0, 1, 1 ), ( 1 1 1 )} for V = R3.
(ii) {5, 2+ x− 3x2, 4x− 1} for V = P2

City University, London, UK

3.16. Let V andW be two subspaces of Rn. Define the set

V +W = {u ∈ Rn | u = v+ w for some v ∈ V and some w ∈W}.
Prove that V +W is a subspace of Rn.

Illinois State University, USA
(part question)

3.17. For the given set S and vector v, determine if v is in the span of S.

(a) S =
{[

1 0
−1 0

]
,
[
0 1
0 1

]
,
[
1 1
0 0

]
,
[
0 0
1 1

]}
, v =

[
3 1
−1 3

]
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(b) S = {1+ x, x+ x2, x+ x3, 1+ x + x2 + x3}, v = 2− 3x+ 4x2 + x3

Illinois State University, USA

3.18. Let B =
⎡⎣ 1 2 2 8

2 4 4 13
1 1 1 5

⎤⎦.
ReduceB to reduced row echelon form by performing appropriate elementary row

operations. Hence, or otherwise, find the following.

(a) A basis for NULL(B)
(b) A basis for Col(B)
(c) The nullity of B.
(d) The rank of B.

University of Sydney, Australia

3.19. A square matrix A is called skew-symmetric if AT = −A. Prove the set of n-by-n
skew-symmetric matrices is a subspace of all n-by-nmatrices.

Harvey Mudd College, California, USA

3.20. Consider the vectors:

v1 = ( 2 4 1 1 )
v2 = ( 4 7 2 2 )
v3 = ( 6 8 7 5 )

(a) Are these vectors linearly independent? Justify.
(b) Let these vectors span a vector space V. Find the dimension of V and a set of

basis vectors for V .
(c) Does the vector v = [ 2 1 1 1 ] belong to the vector space V . Justify.
(d) Let v1, v2 and v3 be arranged as the first, second and third rows of a 3× 4 matrix

A. Let the null space ofA be the vector spaceW. Determine the dimension ofW.
(e) Find a set of basis vectors forW.

National University of Singapore

3.21. If A is a 5× 3 matrix, show that the rows of A are linearly dependent.
Clark University, USA

3.22. Can a 4× 10 matrix A have a null space of dimension 2? Why or why not?
University of South Carolina, USA

(part question)

3.23. Start with this 2 by 4 matrix

A =
[
2 3 1 −1
6 9 3 −2

]
(a) Find all special solutions Ax = O and describe the null space of A.
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(b) Find the complete solutions – meaning all solutions ( x1, x2, x3, x4 ) – to

Ax =
[

2x1 + 3x2 + x3 − x4
6x1 + 9x2 + 3x3 − 2x4

]
=
[
1
2

]
(c) When an m by n matrix A has rank r = m, the system Ax = b can be solved for

which b(best answer)? How many special solutions to Ax = O?

Massachusetts Institute of Technology, USA

3.24. Find a real number c such that the vectors

⎛⎝ 1
2
4

⎞⎠ ,

⎛⎝ 2
3
5

⎞⎠ ,

⎛⎝ 2
7
c

⎞⎠ do not form a basis

of R3.
University of California, Berkeley, USA

(part question)

3.25. Find a 3× 3 matrix whose null space (kernel) is the span of the vector ( 1, 2, 3 ), and
whose column space (image) is the span of the vectors ( 4, 5, 6 ) and ( 7, 8, 9 ).

University of California, Berkeley, USA

3.26. (a) Show that
{
cos(x), cos (2x) , cos(3x)

}
is linearly independent.

(b) Show that (1+ x)3, (1− x)3, (1+ 2x)3, (1− 2x)3, (1+ 3x)3 are linearly depen-
dent functions. State clearly any general fact about vector spaces that you use to
justify your assertion.
Hint: First show that these functions are in the subspace spanned by 1, x, x2, x3.

McGill University, Canada

3.27. (a) Prove or disprove the following statement:
Span(( 1, 2, −1, −2 ), ( 2, 1, 2, −1 )) = Span((−1, 4, −7, −4 ), ( 8, 7, 4, −7 ))

(b) If u, v, w are linearly independent vectors in Rn for which values of k are the
vectors ku+ v, v+ kw, w+ ku are linearly independent?

McGill University, Canada

3.28. True or False? Give a complete justification for your answers.

(a) Let A be an n× nmatrix. If there is a vector y ∈ Rn so that the equation Ax = y
has more than one solution, then the columns of A span Rn.

(b) The subset H = {( x, y ) ∈ R2 | y = x2} of R2 is a vector subspace of R2.
(c) Let A be a 5× 6 matrix. Then the null space of A is a vector subspace of R5.

University of Maryland, Baltimore County, USA

3.29. Suppose that v1, . . . , vn are vectors in Rn and that A is an n× n matrix. If
Av1, . . . ,Avn form a basis of Rn, show that v1, . . . , vn form a basis of Rn and that
A is invertible.

University of California, Berkeley, USA



Janet Drew
is Professor of Astrophysics and Assistant Dean
of School (Research) at the University of
Hertfordshire, UK.

Tell us about yourself and your work.

I am a research astrophysicist and university professor who qualified via a physics
undergraduate degree and astrophysics PhD. Over the past 30 years I have worked in the
UK successively at University College London, Cambridge, Oxford and Imperial
College – moving to Hertfordshire a few years ago. For two-thirds of my research career
I have operated as a theoretical astronomer specialising in the modelling of ionised
outflows from hot stars and accretion disks in various settings. More recently the
emphasis has shifted to observational astronomy through leading the international
consortium of scientists carrying out digital optical broadband surveys, with
narrowband H-alpha, of the Milky Way (see e.g. http://www.iphas.org).

How do you use linear algebra in your job?

It was more important to me as a theoretical astrophysicist, because then the modelling
involved the numerical solution of mildly non-linear systems of simultaneous equations,
generally rendered in linear form to make them tractable. Although less important now,
it hasn’t gone away because it turns out that one of the best methods of establishing a
global uniform calibration to wide-field astronomical survey data is to set up and solve a
large system of simultaneous equations (of dimension several thousand).

How important is linear algebra?

Very. The need to obtain reliable solutions to systems of linear equations is extremely
common in the world of physical science. It’s everywhere, frankly. As I set out on my
research career, after obtaining my PhD, one of the first book purchases I needed to make
was a textbook in numerical analysis (the real-world computational application of linear
algebra, essentially) to sit by my side as I found ways to model radiation transport effects
in the statistical equilibrium of many-level hydrogen atoms. Hydrogen, incidentally, is
far and away the most abundant and therefore most important element in the Universe –
it has to be described well in understanding its gas content both in stars and in the space
in between them.



What are the challenges connected with the subject?

If I may subtly redefine the subject as numerical analysis, one of the challenges is to find
ways to test that you really are solving the system(s) of equations you want to solve in
non-trivial cases. The issue of convergence (and efficiency) arises too, for schemes that
aim to deal with non-linearity through iteration. It doesn’t usually take too long to set up
an algorithm, but it takes a whole heap longer to validate them.

Have you any particular messages that you would like to give to students
starting off studying linear algebra?

. . . Just that it really has more applications than you can even begin to imagine when you
first meet the nuts-and-bolts mathematics at school and undergraduate level. Matrices
are your friends: treat them nicely and they will do so much for you.
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SECTION 4.1 Introduction to Inner Product Spaces

By the end of this section you will be able to

● understand what is meant by an inner product space

● prove some properties of inner product spaces

● define and prove properties of the norm of a vector

In chapter 2, we introduced the idea of a dot product for a Euclidean n-space. In this
chapter, we extend the concept of a dot product to general vector spaces. The general oper-
ation that will replace the dot product in general vector spaces is called an inner product. In
fact, the dot product was an example of a specific operation more commonly referred to as
an inner product, in a Euclidean n-space.

General vector spaces such as the set of polynomials, matrices and continuous functions
are fundamentally identical in structure to the Euclidean n-space. Because of this, all of the
proofs we introduced for the dot product in Euclidean n-space hold for any inner product
space. An inner product space is a vector space with additional structure which caters for
distance, angle and projection of vectors. We need inner products to define these three
notions for general vector spaces.

So far we have only looked at the fundamental linear algebra operations of scalar mul-
tiplication and vector addition. We have not mentioned anything about an inner product
that involves multiplication of vectors with each other in the general vector space, or inner
space.

4.1.1 Definition of inner product

How did we define the inner or dot product in chapter 2?

Let u =

⎛⎜⎜⎝
u1
...
un

⎞⎟⎟⎠ and v =

⎛⎜⎜⎝
v1
...
vn

⎞⎟⎟⎠ be vectors in Rn then the inner product of u and v denoted by

u · v is

(2.4) u · v = uTv = u1v1 + u2v2 + u3v3 + · · · + unvn

Remember, the answer was a scalar not a vector. This inner product was named the dot
product (also called the scalar product) in Rn. This is the usual (or standard) inner product
in Rn but there are many other types of inner products in Rn.



278 4 INNER PRODUCT SPACES

For the general vector space, the inner product is denoted by 〈u, v〉 rather than u · v. For
the general vector space, the definition of inner product is based on Proposition (2.6) of
chapter 2 and is given by:

Definition (4.1). An inner product on a real vector space V is an operation which assigns
to each pair of vectors, u and v, a unique real number 〈u, v〉 which satisfies the following
axioms for all vectors u, v and w in V and all scalars k.

(i) 〈u, v〉 = 〈v, u〉 [commutative law]
(ii) 〈u+ v, w〉 = 〈u, w〉 + 〈v, w〉 [distributive law]

(iii)
〈
ku, v

〉 = k〈u, v〉 [taking out the scalar k]
(iv) 〈u, u〉 ≥ 0 and we have 〈u, u〉 = 0⇔ u = O [Means the inner product

between the same vectors is zero or positive.]

A real vector space which satisfies these axioms is called a real inner product space. Note
that evaluating 〈 , 〉 gives a real number (scalar) not a vector. Next we give some examples
of inner product spaces.

4.1.2 Examples of inner products

Example 4.1

Show that the Euclidean n space, Rn, with the dot product as defined in (2.4) on the previous page is
indeed an example of an inner product space.

Solution
See Proposition (2.6) of chapter 2.

The dot product is just one example of an inner product. In fact, there are an infinite
number of ways we can define an inner product. The next example demonstrates another
inner product on R2 defined by a matrix sandwiched between two vectors.

Example 4.2

Let the Euclidean 2 space, R2, be a vector space with

〈u, w〉 = uTAw where A =
(

1 2
2 5

)
Show that this is an inner product for R2 . [Similar to the dot product which is uTw, but this time we are

required to multiply the vector w by the matrix A and then carry out the dot product.]

Solution
Exercises 4.1. [This example works because A is a symmetric matrix, that is AT = A.]
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Example 4.3

Let P2 be the vector space of polynomials of degree 2 or less. Let

p = c0 + c1x+ c2x2 and q = d0 + d1x+ d2x2

be polynomials in P2. Show that the multiplication of coefficients:

〈
p, q

〉 = c0d0 + c1d1 + c2d2

defines an inner product on P2.
[For example, if p = 2+ 3x + 5x2 and q = 4− x + 7x2 then

〈
p, q

〉 = (2× 4)+ (3× (−1))+ (5× 7) = 40]

Solution
How do we show

〈
p, q

〉 = c0d0 + c1d1 + c2d2 is an inner product on P2?
Checking all four axioms of Definition (4.1).

(i) We need to check
〈
p, q

〉 = 〈q, p〉 holds for the multiplication of coefficients:

〈
p, q

〉 = c0d0 + c1d1 + c2d2

= d0c0 + d1c1 + d2c2
[
remember, the order of multiplication
does not matter

]
= 〈q, p〉

(ii) We need to check
〈
p+ q, r

〉 = 〈p, r〉+ 〈q, r〉:
Adding the two quadratics p = c0 + c1x + c2x2 and q = d0 + d1x + d2x2 gives:

p+ q = (c0 + d0
)+ (c1 + d1

)
x + (c2 + d2

)
x2

Let r = e0 + e1x + e2x2 . Finding the inner product of p+ q and r:

〈
p+ q, r

〉 = 〈(c0 + d0
)+ (c1 + d1

)
x+ (c2 + d2

)
x2, e0 + e1x+ e2x2

〉
= (c0 + d0

)
e0 +

(
c1 + d1

)
e1 +

(
c2 + d2

)
e2

[
multiplying coefficients

]
= c0e0 + d0e0 + c1e1 + d1e1 + c2e2 + d2e2

Evaluating the addition of the other inner products:

〈
p, r

〉+ 〈q, r〉 = c0e0 + c1e1 + c2e2︸ ︷︷ ︸
=〈p, r〉

+ d0e0 + d1e1 + d2e2︸ ︷︷ ︸
=〈q, r〉

= c0e0 + d0e0 + c1e1 + d1e1 + c2e2 + d2e2
[
rearranging

]
= 〈p+ q, r

〉
[from above]

Hence part (ii) is satisfied− 〈p+ q, r
〉 = 〈p, r〉+ 〈q, r〉.

(continued...)
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(iii) We need to check
〈
kp, q

〉 = k
〈
p, q

〉
[taking out the scalar k]:

〈
kp, q

〉 = 〈k (c0 + c1x + c2x2
)
, d0 + d1x + d2x2

〉
=
〈
kc0 + kc1x+ kc2x2, d0 + d1x + d2x2

〉 [
opening brackets

]
= kc0d0 + kc1d1 + kc2d2

[
multiplying coefficients

]
= k

(
c0d0 + c1d1 + c2d2

) [
taking out a common factor

]
= k

〈
p, q

〉
Hence part (iii) is satisfied.

(iv) We need to show
〈
p, p

〉 ≥ 0 and that we have
〈
p, p

〉 = 0⇔ p = O:

〈
p, p

〉 = 〈c0 + c1x + c2x2, c0 + c1x+ c2x2
〉

= c0c0 + c1c1 + c2c2 = (c0)2 + (c1)2 + (c2)2 ≥ 0

Also

〈
p, p

〉 = (c0)2 + (c1)2 + (c2)2 = 0 ⇔ c0 = c1 = c2 = 0

If c0 = c1 = c2 = 0 then p = O.
All four axioms are satisfied, therefore multiplication of coefficients:

〈
p, q

〉 = c0d0 + c1d1 + c2d2

forms an inner product on P2.

In the above example, we defined the inner product as multiplication of each coefficient
of the quadratic polynomial: 〈

p, q
〉 = c0d0 + c1d1 + c2d2

However, if we define this as the addition of the coefficients:〈
p, q

〉 = (c0 + d0
)+ (c1 + d1

)+ (c2 + d2
)

then
〈
p, q

〉
is not an inner product.

Why not?
Because axiom (iv) of Definition (4.1) fails, that is

〈
p, p

〉 ≥ 0 is false.

For example, if p = −1− x− x2 then〈
p, p

〉 = 〈−1− x− x2, −1− x − x2
〉

= (−1− 1)+ (−1− 1)+ (−1− 1) = −3 < 0
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Hence
〈
p, p

〉
�0 [not greater than or equal to zero].

Next we define an inner product on the vector space of matrices,M22. For this we need
to define what is meant by the trace of a matrix:

The trace of a matrix is the sum of its leading diagonal elements, that is

trace

(
a b
c d

)
= a+ d

One example of an inner product on the vector space of matrices is the following:
LetM22 be the vector space of 2 by 2 matrices and inner product onM22 be defined by

〈A, B〉 = tr
(
BTA

)
where tr is the trace. This is an inner product onM22 – youmay like to check all 4 axioms.
If we define the inner product as our normal matrix multiplication 〈A, B〉 = AB onM22

then this is not an inner product.

Why not?
Because the commutative law does not hold, that is

〈A, B〉 = AB �= BA = 〈B, A〉 [not equal]
There are many other examples of inner product spaces which you are asked to verify in

Exercises 4.1. Next we move onto proving properties of general inner products.

4.1.3 Properties of inner products

Proposition (4.2). Let u, v and w be vectors in a real inner product space V and k be any
real scalar. We have the following properties of inner products:
(i) 〈u, O〉 = 〈O, v〉 = 0 (ii)

〈
u, kv

〉 = k〈u, v〉
(iii) 〈u, v+ w〉 = 〈u, v〉 + 〈u, w〉

How do we prove these properties?
We use the axioms of inner products stated in Definition (4.1).

Proof of (i).
We can write the zero vector as 0(O) because 0(O) = O. Using the axioms of definition
(4.1) we have

〈u, O〉 = 〈u, 0(O)〉
= 〈0(O), u〉 [

by part (i) of (4.1) which is 〈u, v〉 = 〈v, u〉]
= 0〈O, u〉 [

by part (iii) of (4.1) which is
〈
ku, v

〉 = k〈u, v〉]
= 0

Similarly 〈O, v〉 = 0.
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Proof of (ii).
The inner product is commutative, 〈u, v〉 = 〈v, u〉, which means we can switch the vectors
around. We have

〈
u, kv

〉 = 〈kv, u〉 [
switching vectors 〈u, v〉 = 〈v, u〉]

= k〈v, u〉 [
by part (iii) of (4.1) which is

〈
ku, v

〉 = k〈u, v〉]
= k〈u, v〉 [

switching vectors 〈u, v〉 = 〈v, u〉]

Proof of (iii).
We have

〈u, v+ w〉 = 〈v+ w, u〉 [
switching vectors 〈u, v〉 = 〈v, u〉]

= 〈v, u〉 + 〈w, u〉
[
by part (ii) of (4.1) which is
〈v+ w, u〉 = 〈v, u〉 + 〈w, u〉

]

= 〈u, v〉 + 〈u, w〉 [
switching vectors 〈u, v〉 = 〈v, u〉]

4.1.4 The norm or length of a vector

From chapter 2 we know that we can find the length (norm) ‖u‖ of a vector u.
Do you remember how the (Euclidean) norm was defined?
The norm or length of a vector u in Rn was defined by Pythagoras’ Theorem: ‖u‖ = √u · u.

The norm is defined in the same manner for the general vector space V. Let u be a vector
in V then the norm denoted by ‖u‖ is defined as

(4.3) ‖u‖ = √〈u, u〉 [positive root]
Note that for the general vector space we cannot use the definition for the dot product

because that is only defined for Euclidean space, Rn, and in this chapter we are examining
inner products on general vector spaces. The norm of a vector u is a real number which
gives the size of the vector u.

Generally to find the norm ‖u‖ we find ‖u‖2 = 〈u, u〉 and then take the square root of
the result.

How do we find the norm of a function or a matrix?
The norm of a matrix A in the vector space Mmn is given by the above (4.3):
‖A‖ = √〈A, A〉 where 〈A, A〉 is the inner product of A and A.

Norm measures the magnitude of things. For example, if take our earlier inner product
defined for matrices, 〈A, B〉 = tr

(
BTA

)
, then we can evaluate the magnitude of ‖A‖ and

‖B‖ by calculating the norms.
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Let A =
(
1 2
3 4

)
and B =

(
10 20
30 40

)
, find ‖A‖ and ‖B‖.

We have

‖A‖2 = 〈A, A〉 = tr

[(
1 2
3 4

)T ( 1 2
3 4

)]

= tr
[(

1 3
2 4

)(
1 2
3 4

)]
= tr

[(
10 ∗
∗ 20

)]
= 10+ 20 = 30

Hence ‖A‖ = √30. Since the inner product is the trace of the matrix, we don’t need to
worry what the entries on the other diagonal are; that is why we have placed ∗ in those
positions.

Similarly

‖B‖ = √3000 = 10
√
30 = 10‖A‖ [because ‖A‖ = √30]

Notice that the entries in matrix B are 10 times the entries in matrix A. The norm of
matrix B is 10 times the norm of matrix A.

Why are we interested in the magnitude of a matrix?
Remember, matrices are functions applied to vectors such as x, say. We generally want to compare
the size of vectors Axwith Bx, which is given by their norms ‖Ax‖ = ‖A‖ ‖x‖ and ‖Bx‖ = ‖B‖ ‖x‖.
In the above example, the vector Bx is 10 times larger in magnitude than vector Ax.

In the following example we apply the norm to vector spaces of continuous functions.

Example 4.4

Let C [0, 1] be the vector space of continuous functions on the closed interval [0, 1]. Let f (x) = x
and g(x) = x2 − 1 be functions in C [0, 1] and their inner product be given by

〈
f, g
〉 = 1∫

0

f (x) g(x) dx

This inner product requires us to multiply two vectors and then sum them over [0, 1]. [Similar to the
dot product but in place of a finite sum we have an integral because we are dealing with continuous
functions.] Determine:

(i)
〈
f, g
〉

(ii) ‖f‖ (iii)
∥∥g∥∥ (iv)

∥∥f− g
∥∥ (v) ‖f− h‖ where h(x) = x3

Solution

(i) The inner product
〈
f, g
〉 = 1∫

0
f (x) g(x) dx with f (x) = x and g(x) = x2 − 1 gives

(continued...)
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〈
f, g
〉 = 1∫

0

f (x) g(x) dx

=
1∫

0

x
(
x2 − 1

)
dx

[
substituting f (x) = x and g(x) = x2 − 1

]

=
1∫

0

(
x3 − x

)
dx =

[
x4

4
− x2

2

]1
0
=
[
1
4
− 1

2

]
= −1

4

(ii) As stated above, to find ‖f‖ we determine ‖f‖2 = 〈f, f〉 and then take the square root of the result:

‖f‖2 = 〈f, f〉

=
1∫

0

f (x) f (x) dx ={

substituting f(x)=x

1∫
0

xx dx =
1∫

0

x2 dx =
[
x3

3

]1
0
= 1

3

[
because xx = x2

]

What is ‖f‖ equal to?
Square root of ‖f‖2 = 1

3 which is ‖f‖ = 1√
3

.

What does this ‖f‖ = 1√
3

signify?

The norm ‖f‖ =
(

1∫
0

[
f (x)

]2 )1/2

dx involves integrating (summing) the function squared, and then

taking the square root which measures an average value of the function, called the root mean
square − rms.
‖f‖ = 1/

√
3 = 0.577 (3dp) is the rms value of the function f (x) = x between 0 and 1.

(iii) Similarly we have

∥∥g∥∥2 = 〈g, g〉 = 1∫
0

g(x) g(x) dx

=
1∫

0

(
x2 − 1

) (
x2 − 1

)
dx

[
substituting g(x) = x2 − 1

]

=
1∫

0

(
x4 − 2x2 + 1

)
dx =

[
x5

5
− 2

x3

3
+ x

]1
0
= 1

5
− 2

3
+ 1 = 8

15
[
integrating

]

What is
∥∥g∥∥ equal to?

We need to take the square root of 8
15 to find

∥∥g∥∥. Hence
∥∥g∥∥ = √ 8

15 signifies the rms value, which is an

average value of the function g(x) = x2 − 1 between 0 and 1. Note that this
∥∥g∥∥ is always a positive

value, despite g(x) = x2 − 1 being negative between 0 and 1, because we have squared the function and
then taken the positive square root.
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(iv) Similarly to find
∥∥f− g

∥∥ we first determine
∥∥f− g

∥∥2 and then take the square root:∥∥f− g
∥∥2 = 〈f− g, f− g

〉
=

1∫
0

[
f (x)− g(x)

] [
f (x)− g(x)

]
dx

=
1∫

0

[
x − x2 − 1

] [
x − x2 − 1

]
dx

[
substituting

]

=
1∫

0

(
x2 − x3 − x− x3 + x4 + x2 − x + x2 + 1

)
dx

[
expanding

]

=
1∫

0

(
x4 − 2x3 + 3x2 − 2x+ 1

)
dx

[
simplifying

]
=
[
x5

5
− 2

x4

4
+ 3

x3

3
− 2

x2

2
+ x

]1
0

[
integrating

]
=
[
x5

5
− x4

2
+ x3 − x2 + x

]1
0
=
[
1
5
− 1

2
+ 1− 1+ 1

]
= 7

10

Hence
∥∥f− g

∥∥ = √7/10.

(v) Similarly ‖f− h‖ = √8/105.

∥∥f− g
∥∥ measures the distance between functions f and g and is critical in the study of

mathematical and numerical analysis. A measurement of distance between functions tells
us how close together these functions are.

The distance or metric between two vectors u and v is denoted by d (u, v) and is
defined as

(4.4) d (u, v) = ‖u− v‖
In the above Example 4.4, the distance between f and g was given by

∥∥f− g
∥∥ = √7/10

and the distance between f and h was ‖f− h‖ = √8/105. Clearly f is closer to h than g
because

√
8/105 = 0.276 is smaller than

√
7/10 = 0.837.

Remember, we have introduced f and g as vectors in a vector space of C [0, 1]. We can
view this as shown in Fig. 4.1.

Figure 4.1

We use inner products to measure how close one function is to another. This is
important in the study of numerical analysis.
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What does
∥∥f− g

∥∥ = 0 mean?
The functions f and g are equal because

∥∥f− g
∥∥ = 0 ⇒ 〈

f− g, f− g
〉 = 0 ⇒ f = g

Next we look at a norm on the set of polynomials Pn.

Example 4.5

Determine the norm ‖‖ of the quadratic (vector) in P2 , where the inner product is given by〈
p, q

〉 = c0d0 + c1d1 + c2d2 [multiplication of coefficients]

for (i) p = x2 + x+ 1 (ii) q = 2x2 + 2x + 2 (iii) r = c2x2 + c1x+ c0

Solution
We can plot these vectors in 3d space with axes labelled x2 , x and constant. These axes are not
perpendicular to each other as we will show in section 4.3.

Since p = x2 + x + 1, the x2 , x and constant coefficients for p are 1, 1 and 1 respectively. Similarly we
plot the other vectors (Fig. 4.2).

Figure 4.2

We will show in section 4.3 that the constant and x axes are, in fact, perpendicular to each other.
However, the x2 axis is not perpendicular to these.

(i) By definition (4.3) above we have
∥∥p∥∥ = √〈p, p〉 so first we find

∥∥p∥∥2 = 〈p, p〉 and then take the
square root: 〈

p, p
〉 = 〈x2 + x+ 1, x2 + x + 1

〉
= 12 + 12 + 12 = 3

Taking the square root yields
∥∥p∥∥ = √3.

(ii) Similarly we have〈
q, q

〉 = 〈2x2 + 2x + 2, 2x2 + 2x + 2
〉
= 22 + 22 + 22 = 12

Hence
∥∥q∥∥ = √12 = √4× 3 = 2

√
3.

(iii) Again, repeating this process for r = c2x2 + c1x + c0:

〈r, r〉 = c0c0 + c1c1 + c2c2 = (c0)2 + (c1)2 + (c2)2

Therefore ‖r‖ = √〈r, r〉 =
√

(c0)2 + (c1)2 + (c2)2.
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This ‖r‖ gives the size of the quadratic by applying Pythagoras to each of the coefficients
(legs), c0, c1 and c2.

Note that, for this Example 4.5, we had
∥∥p∥∥ = √3 and

∥∥q∥∥ = 2
√
3, which means that

the quadratic q = 2x2 + 2x+ 2 is twice the size of p = x2 + x+ 1, and note that q = 2p.

Some norms are not defined in terms of the inner product.
Consider the Euclidean space Rn and let x = ( x1 x2 · · · xn

)T be a vector in Rn, then
the following are important norms in this space:

‖x‖1 = |x1| + |x2| + |x3| + · · · + |xn| [This is called the one norm]

‖x‖2 =
√
|x1|2 + |x2|2 + |x3|2 + · · · + |xn|2 [This is called the two norm]

‖x‖∞ = max
(∣∣xj∣∣)where j = 1, 2, . . . , n [This is called the infinity norm]

Note that ‖x‖∞ = max
(∣∣xj∣∣)where j = 1, 2, . . . , nmeans that we select the maximum

absolute value out of x1, x2, x3, . . . and xn. This norm measures the maximum absolute
value. For example, if we have the vector x = (−1 4 −9 7

)T in R4 then

‖x‖1 = |−1| + |4| + |−9| + |7| = 21

‖x‖2 =
√
|−1|2 + |4|2 + |−9|2 + |7|2 = √147 = 12.12

(
2 dp

)
‖x‖∞ = max (|−1| , |4| , |−9| , |7|) = max (1, 4, 9, 7) = 9

Which norm should we use?
In a physical situation, you must decide which of these norms suits your problem. For example,
suppose we want to measure the noise on a signal, which means that we need a way to measure
the variation from the main signal. For the above defined norms, ‖x‖∞ would measure the largest
difference, ‖x‖2 would measure the added average variation and ‖x‖1 would measure the total
difference from the main signal. Once you have decided which measure is most appropriate then
you try to minimize this.

4.1.5 Properties of the norm of a vector

Next we state certain properties of the norm of a vector.

Proposition (4.5). Let V be an inner product space and u and v be vectors in V . If k is any
real scalar then we have the following properties of norms:

(i) ‖u‖ ≥ 0 [non-negative] (ii) ‖u‖ = 0⇔ u = O (iii)
∥∥ku∥∥ = ∣∣k∣∣ ‖u‖

[Note that for a real scalar k we have
√
k2 = ∣∣k∣∣ where ∣∣k∣∣ is the modulus of k.]

How do we prove these results?
We use the definition of the norm given above:

(4.3) ‖u‖ = √〈u, u〉
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Proof of part (i).
By the definition of a norm (4.3) ‖u‖ = √〈u, u〉 we have

‖u‖ = √〈u, u〉 ≥ 0

Proof of part (ii) which is ‖u‖ = 0⇔ u = O.
Again, by the norm definition (4.3) we have

‖u‖ = √〈u, u〉 = 0 ⇒ u = O

and

u = O ⇒ ‖u‖ = √〈O, O〉 = 0

Proof of part (iii), which is
∥∥ku∥∥ = ∣∣k∣∣ ‖u‖.

Applying the norm definition (4.3), we first find
∥∥ku∥∥2 and then we take the square root:∥∥ku∥∥2 = 〈ku, ku〉

= k
〈
u, ku

〉
= kk〈u, u〉 = k2 〈u, u〉

Taking the square root gives∥∥ku∥∥ = √k2 〈u, u〉 =
√
k2
√〈u, u〉 = ∣∣k∣∣ ‖u‖

This is our required result.

i Summary

(4.1). An inner product is a function on a vector space which satisfies the four axioms.
The norm or length of a vector denoted ‖u‖, is defined as ‖u‖ = √〈u, u〉.

EXERCISES 4.1

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Consider the inner product defined on C [0, 1] defined in Example 4.4.
If f (x) = x and g(x) = x2 then determine the following:

(a)
〈
f, g
〉

(b)
〈
g, f
〉

(c)
〈
3f, g

〉
(d) 〈f, f〉

(e) ‖f‖ (f)
〈
g, g

〉
(g)
∥∥g∥∥
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2. Let C [−1, 1] be the vector space of all the continuous functions on the interval
[−1, 1]. The following is an inner product on C [−1, 1]:

〈
f, g
〉 = 1∫

−1
f (x)g(x) dx

If f (x) = x and g(x) = x3 then determine the following:
(a)
〈
f, g
〉

(b)
〈
g, f
〉

(c)
〈
3f, g

〉
(d) 〈f, f〉

(e) ‖f‖ (f)
〈
g, g

〉
(g)
∥∥g∥∥

3. Let P2(x) be the vector space of polynomials of degree 2 or less. Consider the inner
product on this space given in Example 4.3.

If p = 2− 3x+ 5x2 and q = 7+ 5x− 4x2 then determine the following:
(a)
〈
p, q

〉
(b)
〈
q, p

〉
(c)
〈
p, −3q〉 (d)

〈
p, p

〉
(e)
∥∥p∥∥ (f)

〈
q, q

〉
(g)
∥∥q∥∥

4. Show that 〈u, w〉 = uTAw, as defined in Example 4.2, is indeed an inner product.
5. Let M22 be the vector space of 2 by 2 matrices and inner product on M22 be defined

by

〈A, B〉 = tr
(
BTA

)

where tr is the trace. For A =
(
1 2
3 4

)
, B =

(
5 6
7 8

)
and C =

( −1 1
2 5

)
determine

(a) 〈A, B〉 (b) 〈5A, B〉 (c) 〈−A, −B〉 (d) ‖A‖ (e) ‖B‖
(f) 〈A, C〉 (g) 〈B, C〉 (h) 〈A+ B, C〉 (i) 〈A, C+ B〉

6. Let V be an inner product space. Prove the following results in the inner product
space:
(a) 〈u, v− w〉 = 〈u, v〉 − 〈u, w〉
(b) 〈u− v, w〉 = 〈u, w〉 − 〈v, w〉
(c)
〈
k1u, k2v

〉 = k1k2 〈u, v〉
(d)
〈
k1u+ k2v, k3w+ k4x

〉 = k1k3 〈u, w〉 + k1k4 〈u, x〉 + k2k3 〈v, w〉 + k2k4 〈v, x〉
(e)
〈
k1u1 + k2u2 + · · · + knun, w

〉 = k1 〈u1, w〉 + k2 〈u2, w〉 + · · · + kn 〈un, w〉
7. Let C [0, 1] be the vector space of all the continuous functions on the interval [0, 1].

Consider the normal inner product of this space given in Example 4.4.
If f (x) = x+ 1, g(x) = x2 and h(x) = x− 1 then determine the following:

(a)
〈
f, g
〉

(b)
〈
g, h

〉
(c) 〈f, h〉 (d)

〈
f+ g, h

〉
(e)
〈
f, h+ g

〉
(f)
〈
f+ 3g, h

〉
(g)
〈
f− 3g, h

〉
(h)
〈
f− g, h

〉
(i)
〈
2f+ 5g, 6h

〉
(j)
〈−10f, 2h+ 5g

〉
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8. Let C [0, 1] be the vector space of all the continuous functions on the interval [0, 1].
Explain why the following is not an inner product on C [0, 1]:

〈
f, g
〉 = 1∫

0

[
f (x)− g(x)

]
dx

9. Show that 〈u, v〉 = uTAv, where A =
(
1 2
3 4

)
is not an inner product on R2.

10. Show that 〈u, v〉 = u1v1 + u2v2 + u3v3 − u4v4, where u = ( u1 u2 u3 u4
)T and

v = ( v1 v2 v3 v4
)T are vectors in R4, is not an inner product on R4.

11. Let u, v and w be vectors in an inner product space V. If

〈u, v〉 = −1, 〈u, w〉 = 5, 〈v, w〉 = 3, ‖v‖ = 2, ‖u‖ = 4 and ‖w‖ = 7,

then determine the following:
(a) 〈u, v+ w〉 (b) 〈2u+ 3v, 5v− 2w〉 (c) ‖u− v‖ (d) ‖u− v− w‖

12. In (4.4) we defined the distance function as

d (u, v) = ‖u− v‖
where u and v are vectors in V. Prove the following properties of this distance

function:
(a) d (u, v) = d (v, u) (b) d (u, v) ≥ 0 (c) d (u, v) = 0⇔ u = v
(d) d

(
ku, kv

) = ∣∣k∣∣ d (u, v)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 4.2 Inequalities and Orthogonality

By the end of this section you will be able to

● state and prove Cauchy–Schwarz and Minkowski inequalities

● understand what is meant by orthogonal, normalized and orthonormal

vectors

A common application of the inner product is to establish when two or more vectors are
orthogonal, or perpendicular to each other.

Why is orthogonality important?
For general vector spaces such as polynomials, matrices and functions, a simple basis is one where
the set of vectors are mutually orthogonal (perpendicular) and have unit length. We will discuss
the concept of a basis in the next section.

First, we do a numerical example involving the norm and the inner product in R2. In
this example, the inner product is the usual dot product for R2.
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Example 4.6

Let u =
(
1
2

)
and v =

(
3
4

)
be in R2 . Determine the following with respect to the dot product:

(i) |〈u, v〉| (ii) ‖u‖ ‖v‖ (iii) ‖u‖ + ‖v‖ (iv) ‖u+ v‖

Solution

(i) We have 〈u, v〉 = u · v =
(
1
2

)
·
(
3
4

)
= (1× 3)+ (2× 4) = 11. Hence |〈u, v〉| = |11| = 11.

(ii) Remember, the symbol ‖‖means the length of the vector. By Pythagoras we have

‖u‖ =
∥∥∥∥ ( 1

2

) ∥∥∥∥ = √12 + 22 = √5 and ‖v‖ =
∥∥∥∥ ( 3

4

) ∥∥∥∥ = √32 + 42 = 5

Multiplying these we have ‖u‖ ‖v‖ = √5× 5 = 11.1803 (4dp).

(iii) Adding both the above results in part (ii) we have

‖u‖ + ‖v‖ = √5+ 5 = 7.2361 (4dp)

(iv) Similarly by using Pythagoras we have

‖u+ v‖ =
∥∥∥∥ ( 1

2

)
+
(
3
4

) ∥∥∥∥ = ∥∥∥∥ ( 4
6

) ∥∥∥∥ = √42 + 62 = √52 = 7. 2111 (4 dp)

We can illustrate these in R2 (Fig. 4.3):

(a)

0.5

1

2

3

4

u = (1, 2)
v = (3, 4)

u

v u+v

1 1.5 2 2.5 3 1

6

5

4

3

2

1

2 3 4

(b) 

5=u 5=v = 7.2111u + v

Figure 4.3

4.2.1 Inequalities

In this subsection we prove two inequalities:

|〈u, v〉| ≤ ‖u‖ ‖v‖ Cauchy–Schwarz inequality
‖u+ v‖ ≤ ‖u‖ + ‖v‖ Minkowski inequality

First we state and prove the Cauchy–Schwarz inequality. It is an important inequality
which is used in many applications and fields of mathematics. It is a slightly more involved
proof because we apply one particular result of quadratic equations in order to prove the
Cauchy–Schwarz inequality.
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Under what conditions is the general quadratic ax2 + bx+ c ≥ 0 (greater than or equal to zero)?
Well, the graph of such a quadratic lies above (or on) the x axis, as shown in Fig. 4.4:

b2
 − 4ac ≤ 0

x

y

     2 +      +   ≥ 0ax  
 
    bx     c

Figure 4.4

For the quadratic, ax2 + bx + c, to be greater than or equal to 0 for all xmeans that either
the graph does not cross the x axis or it touches it at just one point. This is satisfied when

b2 − 4ac ≤ 0 (†)

This is where the discriminant, b2 − 4ac, is less than or equal to zero. [Remember, the
discriminant in this case means that it discriminates between real and complex roots of a
quadratic equation.]

The Cauchy–Schwarz inequality for Euclidean space Rn was covered in section 2.2.3.
It demonstrates a universal inequality between inner products and norms, and was given

by:

|u · v| ≤ ‖u‖ ‖v‖

Here we expressed the inequality in terms of the dot product, but we can extend this
definition to the general inner product:

|〈u, v〉| ≤ ‖u‖ ‖v‖

The Cauchy–Schwarz inequality (4.6). Let u and v be vectors in an inner product space,
then

|〈u, v〉| ≤ ‖u‖ ‖v‖

We can see this inequality for the above Example 4.6:

|〈u, v〉| ={

by part (i)
11 ≤ 11.1803 ={

by part (ii)
‖u‖ ‖v‖

Note that the Cauchy–Schwarz inequality connects the notion of an inner product with
the notion of length.

[Hint: Consider the inner product
〈
ku+ v, ku+ v

〉
where k is a scalar.]
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Proof.

How do we prove this result?
By the hint, expanding the given inner product

〈
ku+ v, ku+ v

〉
and by using the rules on inner

products established in the last section:〈
ku+ v, ku+ v

〉 = 〈ku, ku〉+ 〈ku, v〉+ 〈v, ku〉+ 〈v, v〉
= k2 〈u, u〉 + k〈u, v〉 + k〈v, u〉︸ ︷︷ ︸

=2k〈u, v〉 because 〈u, v〉=〈v, u〉
+ 〈v, v〉

= k2 ‖u‖2 + 2k〈u, v〉 + ‖v‖2
[
remember 〈u, u〉 = ‖u‖2

]
By Definition (4.1) Axiom (iv), we have 〈w, w〉 ≥ 0, which means that the inner product

between the same vectors is ≥ 0:〈
ku+ v, ku+ v

〉 ≥ 0 [remember ku+ v is a vector]

Substituting this into the above expansion we have

k2 ‖u‖2 + 2k〈u, v〉 + ‖v‖2 ≥ 0 (∗)

We consider this as a quadratic equation by taking k as our variable. We can write this as

ak2 + bk+ c ≥ 0 where a = ‖u‖2 , b = 2 〈u, v〉 and c = ‖v‖2

The quadratic is ≥ 0, therefore we can substitute these a = ‖u‖2 , b = 2 〈u, v〉 and
c = ‖v‖2 into (†), which is given above by; b2 − 4ac ≤ 0:

b2 − 4ac = (2 〈u, v〉)2 − 4 ‖u‖2 ‖v‖2 ≤ 0

(2 〈u, v〉)2 ≤ 4 ‖u‖2 ‖v‖2
4 (〈u, v〉)2 ≤ 4 ‖u‖2 ‖v‖2
(〈u, v〉)2 ≤ ‖u‖2 ‖v‖2 [

cancelling 4’s
]√

(〈u, v〉)2 ≤
√
‖u‖2 ‖v‖2 [

square root
]

|〈u, v〉| ≤ ‖u‖ ‖v‖
[
remember,

√
x2 = |x|

]
This is our required result, the Cauchy–Schwarz inequality.

An important inequality for addition of norms of vectors is the following:

The Minkowski (pronounced ‘Minkofski’) or triangular inequality (4.7). Let V be an inner
product space. For all vectors u and v we have

‖u+ v‖ ≤ ‖u‖ + ‖v‖
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What does this mean?
In R2 we have (Fig. 4.5):

Figure 4.5

[Remember, this is the donkey theorem: if a donkey is at station A and the food is locat-
ed at station C then the donkey would travel the shortest distance along AC not AB and
then BC.]

In the above Example 4.6 (see Fig. 4.3(b)) we had the inequality:

‖u+ v‖ ={

by part (iv)
7.2111 ≤ 7.2361 ={

by part (iii)
‖u‖ + ‖v‖

Proof – Exercises 4.2.

Note that the Cauchy–Schwarz inequality establishes an inequality connecting the multi-
plication of vectors:

|〈u, v〉| ≤ ‖u‖ ‖v‖

while the Minkowski inequality is an inequality relating addition of vectors:

‖u+ v‖ ≤ ‖u‖ + ‖v‖

4.2.2 Orthogonal vectors

Can you remember what orthogonal vectors meant in the Euclidean space Rn?
Two vectors u and v in Rn are said to be orthogonal or perpendicular⇔

(2.5) u · v = 0

Hence for the general vector space V with an inner product we have:

Definition (4.8). Two vectors u and v in the vector space V are said to be orthogonal
⇔ 〈u, v〉 = 0

This is a fundamental and very useful result in linear algebra.
If vectors u and v are orthogonal, we say that u is orthogonal to v, or vice versa that is v

is orthogonal to u because 〈u, v〉 = 〈v, u〉 = 0.
Consider the vectors u, v, w and x in R2 (Fig. 4.6):
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,   is positive

,   is negative

, = 0

u x

u w

u v

u
x

v

w
Figure 4.6

You may recall from chapter 2 that vectors acting in the same direction have a positive
dot product and vectors in opposite directions have a negative dot product. If they are
perpendicular (u and v) then the dot product is zero.

Applications such as signal processing, communication and radar systems rely on inner
products such as S =

∣∣∣〈 x
‖x‖ ,

y
‖y‖

〉∣∣∣ where x and y are non-zero signals (vectors) in an inner
product space. In the exercises, you are asked to show that this expression S lies between
0 and 1. S measures the degree to which the two signals are alike. A value of S close to 1
means that the signals are similar in nature. A value of S close to 0 means that the signals
are very different but not necessarily orthogonal.

This expression S is useful in a matched filter detector. The detector uses S to compare a
set of signals against a target signal to decide which signal is most like the target signal.

Another application of orthogonality is in information retrieval, because vector spaces
can be used to represent documents. A document and a query term can be represented by
vectors d and q respectively. If

〈
q, d

〉 = 0 then vectors q and d are orthogonal, whichmeans
that the query term does not exist in the document.

To know that two functions or a set of functions are orthogonal is of incredibly pow-
erful mathematical value, because you can use the theorems of linear algebra to develop
approximations that are as close as you like to difficult functions that may be impossible
to calculate in any other way. This is particularly true in the fields of mathematical physics
such as Fourier analysis, polynomial series approximations and Legendre polynomials.

Orthogonality signifies a certain kind of ‘independence’, or a complete absence of
interference. If the inner product is zero then one vector has no interference on the other.

Example 4.7

Show that the vectors p = x2 + x + 1 and q = −x2 − x+ 2 are orthogonal in the vector space of
polynomials of degree≤ 2, P2, where an inner product is given by〈

p, q
〉 = c2d2 + c1d1 + c0d0 [multiplying coefficients]

(p = c2x2 + c1x + c0 and q = d2x2 + d1x + d0).

Solution
For p = x2 + x + 1 and q = −x2 − x+ 2 we have〈

p, q
〉 = 〈x2 + x + 1, −x2 − x + 2

〉
=
〈
(1) x2 + (1) x + 1, (−1) x2 + (−1) x+ 2

〉
= 1 (−1)+ 1 (−1)+ 1 (2) = 0

(continued...)
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We conclude that the given vectors p and q are orthogonal because
〈
p, q

〉 = 0.
We can illustrate this as shown in Fig. 4.7.

Figure 4.7

Example 4.8

Let the vector space of matrices of size 2 by 2, M22, have an inner product defined by

〈A, B〉 = tr
(
BTA

)
where tr is trace

Show that the matrices A =
( −1 −1

1 5

)
and B =

(
1 2
3 0

)
are orthogonal with respect to each

other.
Remember, the trace of a matrix is the addition of leading diagonal entries.

Solution

〈A, B〉 = tr
(
BTA

)
= tr

[(
1 2
3 0

)T ( −1 −1
1 5

)]

={

transposing
tr
[(

1 3
2 0

)(−1 −1
1 5

)]
={

multiplying
tr
(

2 ∗
∗ −2

)
= 2− 2 = 0

Hence matrices A and B are orthogonal, because 〈A, B〉 = 0.

The structure of Euclidean vector spaces is exactly the same structure we find in other
vector spaces. In the next example you will see this structure extended to accommodate the
integrals of sine and cosine products.

Example 4.9

(Fourier series). Show that the vectors f (t) = cos (t) and g(t) = sin (t) are orthogonal in the set of
continuous functions C [0, π] with respect to the inner product given by

〈
f, g
〉 = ∫ π

0
f (t) g(t) dt
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Solution
We have

〈
f, g
〉 = 〈cos (t), sin (t)〉 =

π∫
0

cos (t) sin (t) dt (∗)

How do we integrate cos (t) sin (t)?
Use the following trigonometric identity:

cos (t) sin (t) = 1
2
sin (2t) (†)

Substituting this into the above we have

π∫
0

cos (t) sin (t) dt = 1
2

π∫
0

sin (2t) dt
[
applying the identity (†)

]

= 1
2

[
− cos (2t)

2

] π

0

[
because

∫
sin
(
kt
)
dt = − cos

(
kt
)

k

]

= − 1
4
[cos (2π)− cos (0)]

[
substituting limits and
taking out− 1 / 2

]
= − 1

4
[1− 1] = 0 [because cos (2π) = cos (0) = 1]

By (*) we conclude that
〈
f, g
〉 = 0, which means that f (t) = cos (t) and g(t) = sin (t) are orthogonal

in C [0, π]. Hence sine and cosine functions are orthogonal in C [0, π]. This is an important result in the
study of Fourier series.

Next we prove Pythagoras’ Theorem which is applicable to vectors in general vector space
with an inner product.

Pythagoras’ Theorem (4.9). Let the vectors u and v be orthogonal in an inner product space
V then

‖u+ v‖2 = ‖u‖2 + ‖v‖2

Proof.
Expanding the left hand side we have

‖u+ v‖2 = 〈u+ v, u+ v〉 [
by definition of norm, ‖w‖2 = 〈w, w〉]

= 〈u, u〉 + 〈u, v〉︸ ︷︷ ︸
=0

+ 〈v, u〉︸ ︷︷ ︸
=0

+〈v, v〉 [u, v are orthogonal so 〈u, v〉 = 〈v, u〉 = 0
]

= ‖u‖2 + ‖v‖2 [
remember, 〈w, w〉 = ‖w‖2]
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Proposition (4.10). Every vector in an inner product space V is orthogonal to the zero
vector, O.

Proof.
Let v be an arbitrary vector in V . Then

〈v, O〉 = 0 [because by (4.2) part (i) we have 〈v, O〉 = 0]

Since v was arbitrary, every vector in V is orthogonal to the zero vector,O.

4.2.3 Normalizing vectors

What is a unit vector?
A unit vector u is a vector of length 1 or a norm of 1, that is ‖u‖ = 1.

The process of converting a given vector into a unit vector is called normalizing.

Proposition (4.11). Every non-zero vector w in an inner product space V can be normal-
ized by setting u = w

‖w‖ .

Proof – Exercises 4.2.

We write the normalized vector w as ŵ, which is pronounced as ‘w hat’. We have u = ŵ.

Example 4.10

Normalize the vector p = 5x2 − 2x+ 1 in P2 with respect to the usual inner product of multiplying
coefficients.

Solution
The normalized vector p̂ is given by p̂ = p/

∥∥p∥∥, where p = 5x2 − 2x+ 1.
What is

∥∥p∥∥ equal to?

By the definition of the norm (4.3) we have
∥∥p∥∥2 = 〈p, p〉, which we can evaluate by using the given

inner product:∥∥p∥∥2 = 〈p, p〉 = 〈5x2 − 2x+ 1, 5x2 − 2x + 1
〉

= (5× 5)+ (−2× (−2))+ (1× 1) = 30
[
multiplying coefficients

]
Taking the square root of

∥∥p∥∥2 = 30 gives
∥∥p∥∥ = √30. Hence the normalized (unit) vector is

p̂ = p∥∥p∥∥ = 1∥∥p∥∥p = 1√
30

(
5x2 − 2x + 1

)
︸ ︷︷ ︸

=p
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4.2.4 Orthonormal set

A set of vectors which are orthogonal (perpendicular) to each other is called an orthogonal
set.

A set of vectors in which all the vectors have a norm or length of 1 is called a normalized
set.

A set of perpendicular unit vectors is called an orthonormal set. This is a set of vectors
which are both orthogonal and normalized.

For example, the set of vectors e1 =
(
1 0

)T and e2 =
(
0 1

)T in R2 are orthonormal
(perpendicular unit) vectors with the inner product as the dot product:

〈e1, e2〉 =
(
1
0

)
·
(
0
1

)
= (1× 0)+ (0× 1) = 0

The vectors e1 and e2 are orthogonal (perpendicular). The norms or lengths of these
vectors:

‖e1‖ = ‖e2‖ = 1

Thus the vectors e1 and e2 are orthonormal (perpendicular unit vectors) because they
are both orthogonal and normalized vectors.

Examples of orthonormal sets are shown in Fig. 4.8 for R2 and R3:

x

y

⎝
⎜
⎛ 1

0

(a) (b)

⎠
⎟
⎞

e2
 =

⎝
⎜
⎛ 0

 2  3

1⎠
⎟
⎞

x

z

y

e1

e2

e3

e1
 =

Figure 4.8

Remember that these are the standard basis vectors and they are also an orthonor-
mal (perpendicular unit) basis for R2 and R3. These perpendicular unit vectors make a
convenient basis as we will discuss in the next section.

Definition (4.12). Let V be a finite-dimensional vector space with an inner product. A set
of vectors

B = {u1, u2, u3, . . . , un}
for V is called an orthonormal set if they are
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(i) orthogonal, that is
〈
ui, uj

〉 = 0 for i �= j
(ii) normalized, that is

∥∥uj∥∥ = 1 for j = 1, 2, 3, . . . , n

Normalized vectors have a norm (or length) of 1.
Orthogonal (different) vectors are orthogonal (perpendicular) to each other.

Example 4.11

Show that B = {e1, e2, e3} forms an orthonormal (perpendicular unit) set of vectors for R3 with the
inner product given by the dot product. (See Fig. 4.8(b).)

Solution
Remember, e1 = (1 0 0)T , e2 = (0 1 0)T and e3 = (0 0 1)T . We first check for orthogonality:

〈e1, e2〉 = e1 · e2 =
⎛⎝ 1
0
0

⎞⎠ ·
⎛⎝ 0
1
0

⎞⎠ = (1× 0)+ (0× 1)+ (0× 0) = 0

Similarly 〈e1, e3〉 = 〈e2, e3〉 = 0.
We have 〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0, therefore the set B = {e1, e2, e3} is orthogonal, which

means that each of the vectors {e1, e2, e3} is perpendicular to the others.
What else do we need to prove?
The norm (or length) of each vector is 1, that is we need to show

‖e1‖ = ‖e2‖ = ‖e3‖ = 1

Verify that the length of the vectors ‖e1‖ = ‖e2‖ = ‖e3‖ = 1.
Thus B = {e1, e2, e3} forms an orthonormal (perpendicular unit) set of vectors in R3 , because each

vector is orthogonal to the others and all the vectors have a norm of 1.

This B = {e1, e2, e3} is not only an orthonormal set in R3, but actually forms an
orthonormal basis for R3. The most useful type of basis is an orthonormal basis.

An orthonormal basis turns out to be a great tool used in the fields of differential
equations and quantum mechanics.

Let’s examine an orthonormal set for the vector space of polynomials.

Example 4.12

Let P3 be the inner product space of polynomials of degree 3 or less with the usual inner product
generated by multiplying coefficients. Let

{
p, q

}
be an orthonormal set of vectors in P3. Find

∥∥p+ q
∥∥.

Solution
Since

{
p, q

}
is an orthonormal set, by definition the vectors are orthogonal and normalized (Fig. 4.9).
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Figure 4.9

Applying Pythagoras (4.9), we have

∥∥p+ q
∥∥2 = ∥∥p∥∥2 + ∥∥q∥∥2 = 1+ 1 = 2

Taking the square root gives
∥∥p+ q

∥∥ = √2.

The next example is more demanding because it relies on integration, and there are an
infinite number of vectors – we have an infinite dimensional vector space. You will study
this vector space in a subject called Fourier series. In Fourier series, a periodic function (a
function which repeats itself in a given period) can be written as a linear combination of
sines and cosines.

In the context of periodic functions, the inner product can be used to generate the
Fourier coefficients.

You might be able to evaluate most of the integrals, but since this is not a course on
calculus, the integrals are calculated for you.

Example 4.13

Let C [0, 2π ] be the vector space of continuous functions on the interval [0, 2π ] and the inner product
on this vector space be defined by 〈

fn, gn
〉 = ∫ 2π

0
fn(t) gn(t) dt

Let S be the set {1, cos (t), cos (2t), cos (3t), . . . , sin (t), sin (2t), sin (3t), . . .}. By letting
f0 = cos (0) = 1, fn = cos (nt) and gn = sin (nt) show that the set S is orthogonal and normalize these
vectors to create an orthonormal set.

[Results: for any positive integers n and m we have

(i)
∫ 2π
0 cos (nt) sin (mt) dt = 0,

(ii)
∫ 2π
0 cos (nt) dt = 0,

(iii)
∫ 2π
0 sin (nt) dt =0,

(iv)
∫ 2π
0 cos (nt) cos (mt) dt = 0 provided n �= m,

(v)
∫ 2π
0 sin (nt) sin (mt) dt = 0 provided n �= m and

(vi)
∫ 2π
0 cos2 (nt) dt = ∫ 2π

0 sin2 (nt) dt = π .]

(continued...)
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Solution
How do we show that the given set of vectors in S are orthogonal?
By using the integration results in the brackets above. First we test f0 with the other vectors:

〈f0, fn〉 =
∫ 2π

0
[1× cos (nt)] dt =

∫ 2π

0
cos (nt) dt ={

by result (ii)
0

〈
f0, gn

〉 = ∫ 2π

0
[1× sin (nt)] dt =

∫ 2π

0
sin (nt) dt ={

by result (iii)
0

Next we test fn with gm:

〈
fn, gm

〉 = ∫ 2π

0
cos (nt) sin (mt) dt ={

by result (i)
0

Lastly we test fn with fm and gn with gm where m �= n:

〈fn, fm〉 =
∫ 2π

0
cos (nt) cos (mt) dt ={

by result (iv)
0 providedm �= n

〈
gn, gm

〉 = ∫ 2π

0
sin (nt) sin (mt) dt ={

by result (v)
0 providedm �= n

Hence the inner product of all distinct vectors is zero, which means that the set
{1, cos (t), cos (2t), cos (3t), . . . , sin (t), sin (2t), sin (3t), . . .} is orthogonal.

Normalizing:
First we determine ‖f0‖2 , ‖fn‖2 and

∥∥gn∥∥2 and then we take the square root:

‖f0‖2 = 〈f0, f0〉

=
∫ 2π

0
(1× 1) dt

={

integrating
[t] 2π0 = 2π − 0 = 2π

‖fn‖2 = 〈fn, fn〉

=
∫ 2π

0
cos (nt)× cos (nt) dt =

∫ 2π

0
cos2 (nt) dt ={

by result (vi)
π

∥∥gn∥∥2 = 〈gn, gn〉
=
∫ 2π

0
sin (nt)× sin (nt) dt =

∫ 2π

0
sin2 (nt) dt ={

by result (vi)
π
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Taking the square root of these results ‖f0‖2 = 2π , ‖fn‖2 = π and
∥∥gn∥∥2 = π gives ‖f0‖ =

√
2π ,

‖fn‖ = √π and
∥∥gn∥∥ = √π respectively.

How can we normalize these (convert into unit vectors) f0, fn and gn?
By using Proposition (4.11) u = w

‖w‖ which means that we divide each vector by its norm. For all n ≥ 1
we have

f0
‖f0‖ =

1√
2π

,
fn
‖fn‖ =

cos (nt)√
π

and
gn∥∥gn∥∥ = sin (nt)√

π

Hence the set

{
1√
2π

,
cos (t)√

π
,
cos (2t)√

π
, . . . ,

sin (t)√
π

,
sin (2t)√

π
, . . .

}
is an orthonormal set of

functions.

This orthonormal set is critical in the study of Fourier series. Note that the sines and
cosines are orthogonal to each other in the vector space C [0, 2π].

i Summary

(4.8) Vectors u and v are orthogonal⇔ 〈u, v〉 = 0.
(4.12) A set of perpendicular unit vectors

B = {u1, u2, u3, . . . , un}
for vector space V is called an orthonormal set.

EXERCISES 4.2

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Show that the following vectors in R2 are orthogonal with respect to the dot product.
Also plot them on R2.

(a) u =
(
1
1

)
and v =

(−1
1

)
(b) u =

(−2
−3
)

and v =
(

3
−2
)

(c) u =
(−4

5

)
and v =

(
5
4

)
(d) u =

(
2
7

)
and v =

(−7
2

)
2. Show that the vectors u =

(
a
b

)
and v =

(−b
a

)
are orthogonal in R2 with respect to

the dot product.
3. Show that the following vectors in R3 form an orthogonal set with respect to the dot

product.
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(a) u =
⎛⎝ 5
0
0

⎞⎠, v =
⎛⎝ 0
1
0

⎞⎠ and w =
⎛⎝ 0

0
10

⎞⎠
(b) u =

⎛⎝ 0
0
0

⎞⎠, v =
⎛⎝ 1

1
−1

⎞⎠ and w =
⎛⎝−310

7

⎞⎠
4. Let the vector space of size 2 by 2 matrices M22 have an inner product defined by
〈A, B〉 = tr

(
BTA

)
where tr is the trace of the matrix.

(a) Show that the matrices A =
(
3 7
5 4

)
and B =

(
2 1
7 −12

)
are orthogonal.

(b) Determine ‖A+ B‖.
5. Determine the values of k so that the following vectors are orthogonal in R4 with

respect to the dot product.
(a) u = (1 2 3 4)T , v = (−2 3 k 5

)T (b) u = (k −1 k 1
)T , v = (2 4 k 5

)T
6. Let C [0, 1] be the vector space of continuous functions on the interval [0, 1] with an

inner product defined by

〈
f, g
〉 = ∫ 1

0
f (x)g(x) dx

Verify the Cauchy–Schwarz inequality for
(a) f (x) = x and g(x) = x− 1 (b) f (x) = 1 and g(x) = ex

7. Show that any non-zero vectors x and y in an inner product space satisfy:

0 ≤
∣∣∣∣∣
〈

x
‖x‖ ,

y∥∥y∥∥
〉∣∣∣∣∣ ≤ 1

8. Let C [−π , π] be the vector space of continuous functions with an inner product
defined by

〈
f, g
〉 = ∫ π

−π

f (x)g(x) dx

(a) Show that f and g are orthogonal for f (x) = cos (x) and g(x) = sin (x).
(b) Verify the Cauchy–Schwarz inequality for f and g given in part (a).
(c) Verify the Minkowski (triangular) inequality for f and g given in part (a).
(d) Normalize these vectors f and g.

[You may use the following result:
π∫
−π

sin2 (x) dx =
π∫
−π

cos2 (x) dx = π]

9. Let C [0, π] be the vector space of continuous functions on the interval [0, π] with an
inner product defined by
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f, gn

〉 = ∫ π

0
f (t)gn(t) dt

Let f (t) = 1 and gn(t) = sin (2nt) where n = 1, 2, 3, . . .
Show that the set {1, sin (2t), sin (4t), sin (6t), . . .} is orthogonal. Normalize this set

of vectors and write down the orthonormal set.
[You may use:

∫ π

0 sin (nt) sin (mt)dt = 0 provided n �= m and∫ π

0 sin2 (nt) dt = π
2 ]

10. Show that the following set S is an orthonormal set of 2 by 2matricesM22 with an inner
product defined by

〈A, B〉 = tr
(
BTA

)

S = {A, B, C, D} where A =
(
1 0
0 0

)
, B =

(
0 1
0 0

)
, C =

(
0 0
1 0

)
and

D =
(
0 0
0 1

)
11. Suppose a guitar string is modelled between 0 and 1 as shown in Fig. 4.10.

0 1
z(t)

z(t)
z(t)

z(t )
z(t )

z(t)

z(t)

z(t)

z(t)

z(t)

z(t)
z(t )

z(t)
z(t)

Figure 4.10

Consider a vertical force f (t) at each point of the string and a vertical displacement
of z(t) at that point. The amount of energy released is given by the inner product:

〈
f (t), z(t)

〉 = ∫ 1

0
f (t) z(t) dt

Find the energy released if f (t) = 100 sin (100t) and z (t) = cos (10t).
[Hint: 2 sin (A) cos (B) = sin (A+ B)+ sin (A− B)]

12. Prove Proposition (4.11).
13. Let u and v be orthogonal vectors in an inner product space. Prove that

‖u− v‖2 = ‖u‖2 + ‖v‖2
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14. Let u and v be orthonormal vectors in an inner product space V . Determine
(a) ‖u+ v‖ (b) ‖u− v‖

15. (i) Let {u1, u2, u3, . . . , un} be an orthogonal set of vectors in an inner product space.
Prove Pythagoras’ theorem for these vectors, that is

‖u1 + u2 + u3 + · · · + un‖2 = ‖u1‖2 + ‖u2‖2 + ‖u3‖2 + · · · + ‖un‖2

(ii) Let {f1, f2, f3, . . . , fn} be an orthonormal set of vectors in inner product space of
C [0, π]. Find the length ‖f1 + f2 + f3 + · · · + fn‖.

16. Prove that the vectors {u1, u2, . . . , un} are orthogonal⇔
{
k1u1, k2u2, . . . , knun

}
are

orthogonal, where the k’s are non-zero scalars. Is the result still valid if any of k’s are
zero?

17. Prove Minkowski inequality (4.7).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 4.3 Orthonormal Bases

By the end of this section you will be able to

● understand what is meant by an orthonormal basis

● find an orthonormal basis by using the Gram–Schmidt process

4.3.1 Introduction to an orthonormal bases

Why is an orthonormal basis important?
Generally, it is easier to work with an orthonormal basis (axes) rather than any other basis. For

example, in R2 , try working with a basis of u =
(
1
0

)
and v =

(
0.9
0.1

)
. Writing w =

(
1
1

)
in terms

of these basis (axes) vectors u and v we have (Fig. 4.11).

w = −8u + 10v

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

w = (1, 1)

v = (0.9, 0.1) u = (1, 0)

1 1.2

1

Figure 4.11
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w =
(
1
1

)
= −8

(
1
0

)
+ 10

(
0.9
0.1

)
= −8u+ 10v

Writing w = −8u+ 10v involves a lot more arithmetic than expressing this vector w
in our usual orthonormal basis e1 and e2 as w = e1 + e2 because e1 =

(
1 0

)T and e2 =(
0 1

)T are the unit vectors in the x and y directions respectively.
In an n-dimensional vector space there are n orthogonal (perpendicular) axes or basis

vectors. We will show that an orthogonal set of n vectors is automatically linearly inde-
pendent, and therefore forms a legitimate basis (normalizing is just a matter of scale).
Generally, it is easier to show that vectors are orthogonal rather than linearly independent.

For Fourier series (which is used in signal processing), an example of an orthogonal
basis is

{1, sin (nx), cos (nx)} where n is a positive integer

What do you think the term orthonormal basis means?
An orthonormal basis is a set of vectors which are normalized and are orthogonal to each other.
They form a basis (axes) for the vector space.

Examples of orthonormal (perpendicular unit) basis are shown in Fig. 4.12 for
R2 and R3:

 2  3

Figure 4.12

Note that our usual x, y and z axes are orthogonal to each other. The vectors {e1, e2}
form an orthonormal (perpendicular unit) basis for R2 and the set {e1, e2, e3} forms an
orthonormal (perpendicular unit) basis for R3.

In general, the set B = {e1, e2, e3, . . . , en} forms an orthonormal (perpendicular unit)
basis for Rn with respect to the dot product. Remember, ek =

(
0 · · · 1 0 · · · )T (1 in the

kth position and zeros everywhere else.)

Definition (4.13). Let V be a finite dimensional vector space with an inner product. A set
of basis vectors

B = {u1, u2, u3, . . . , un}
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for V is called an orthonormal basis if they are

(i) Orthogonal, that is
〈
ui, uj

〉 = 0 for i �= j
(ii) Normalized, that is

∥∥uj∥∥ = 1 for j = 1, 2, 3, . . . , n

What do you notice about this definition?
It’s the same as the definition of an orthonormal set (4.12) given in the last section, but this time
the set of vectors are the basis vectors of the vector space.

Can you remember what the term basis means?
It’s a set of vectors which represent the axes of the vector space and satisfies two conditions:

1) Span the space 2) Linearly independent

Basis is like a coordinate system of a vector space – you can write any vector in terms of
basis vectors.

For example, the normalized sine and cosine functions form an orthonormal basis
for the vector space of periodic continuous functions, C [0, 2π]. (See Example 4.13 of
section 4.2.4.)

To check that a given set of vectors form a basis for a vector space V can be tedious.

Why?
Because normally we need to check two things about a basis:

1) the vectors span V 2) the vectors are linearly independent.

From the last chapter, we know that it is enough to show that for any n-dimensional
vector space, n linearly independent vectors form a basis for this vector space. We only
need to check condition (2). Next we show that an orthogonal set is linearly independent,
that is

orthogonality⇒ linear independence

4.3.2 Properties of an orthonormal basis

In this subsection, we prove that if we have an orthogonal set of vectors then they are lin-
early independent. We use this to prove that in an n-dimensional vector space, any set of
n orthogonal non-zero vectors forms a basis for that vector space. (Generally, checking
orthogonality is easier than checking linear independence.)

Proposition (4.14). If {v1, v2, v3, . . . , vn} is an orthogonal set of non-zero vectors in an
inner product space then the elements of this set are linearly independent.

How do we prove this proposition?
We want to prove that the vectors {v1, v2, v3, . . . , vn} are linearly independent, so we consider
the linear combination:

k1v1 + k2v2 + · · · + knvn = O

and show that all the scalars are zero: k1 = 0, k2 = 0, k3 = 0, . . . and kn = 0.
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Why?
Because from chapter 3 we have:

(3.10). Vectors v1, v2, . . . , vn are linearly independent⇔ the only solution to
k1v1 + k2v2 + k3v3 + · · · + knvn = O is k1 = k2 = k3 = · · · = kn = 0

Proof.
Consider the linear combination of the vectors {v1, v2, v3, . . . , vn} and equate them to the
zero vector,O:

k1v1 + k2v2 + k3v3 + · · · + knvn = O (†)

Consider the inner product of an arbitrary vector vj in the set {v1, v2, v3, . . . , vn} with
the zero vector given in (†).
What is the inner product

〈
k1v1 + k2v2 + k3v3 + · · · + knvn, vj

〉
equal to?

0, because

〈
k1v1 + k2v2 + k3v3 + · · · + knvn, vj

〉 = 〈O, vj
〉 = 0 (∗)

We are given that {v1, v2, v3, . . . , vn} is orthogonal, this means that the inner product
between two different vectors is zero:〈

vi, vj
〉 = 0 if i �= j

Expanding (*) and using
〈
vi, vj

〉 = 0 if i �= j we have〈
k1v1 + · · · + knvn, vj

〉 = 〈k1v1, vj〉+ · · · + 〈kjvj, vj〉+ · · · + 〈knvn, vj〉
={

taking out scalars
k1
〈
v1, vj

〉+ · · · + kj
〈
vj, vj

〉+ · · · + kn
〈
vn, vj

〉
= k1

〈
v1, vj

〉︸ ︷︷ ︸
=0

+ · · ·+︸ ︷︷ ︸
=0

kj
〈
vj, vj

〉+ · · ·+︸ ︷︷ ︸
=0

kn
〈
vn, vj

〉︸ ︷︷ ︸
=0

= k1 (0)+ 0 · · · 0+ kj
∥∥vj∥∥2 + 0 · · · 0+ kn (0) = kj

∥∥vj∥∥2
The last line follows from the definition of the norm 〈u, u〉 = ‖u‖2. The only non-zero

contribution is the inner product of the vectors vj and vj. By (*) we know that all this is
equal to zero, which means that we have

kj
∥∥vj∥∥2 = 0

vj is one of the non-zero vectors among the set {v1, v2, v3, . . . , vn}, therefore∥∥vj∥∥2 �= 0
[
not equal to 0

]
. Thus to satisfy the above kj

∥∥vj∥∥2 = 0 we must have kj = 0.
Since vj was an arbitrary vector, we conclude that all the scalars k’s in (†) must be zero,
which proves that an orthogonal set of vectors is linearly independent.
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What does this proposition mean?
It means that orthogonality implies linear independence. For example, the vectors {e1, e2, e3} are
orthogonal (perpendicular), therefore linearly independent.

We can go further, as the next proposition states.

Corollary (4.15). In an n-dimensional inner product space V, any set of n orthogonal non-
zero vectors forms a basis (or axes) for V.

Which tools do we use to prove this result?
Theorem (3.22) (a) of the last chapter which says:

Any linearly independent set of n vectors {v1, v2, v3, . . . , vn} forms a basis for V .

Proof.
By the previous Proposition (4.14), we know that the set of n orthogonal vectors are linearly
independent.

By Theorem (3.22) we conclude that n orthogonal vectors form a basis for V .

What does this corollary mean?
If we have an n-dimensional vector space with an inner product then any n orthogonal
(perpendicular) non-zero vectors form a set of basis (axes) vectors for that vector space.

However, vectors which are linearly independent may not be orthogonal. For example, the
vectors u = (3 1)T and v = (1 2)T in R2 are linearly independent (we cannot make v from a scalar
multiple of u, and vice versa) but not orthogonal as you can see in Fig. 4.13.

These vectors are linearly
independent but not orthogonal
(not perpendicular).

u

v

0.5-0.5

0.5

1

1.5

2

1 1.5 2 2.5 3

Figure 4.13

Hence orthogonal vectors are independent, but independent vectors are not necessarily
orthogonal. We have

orthogonality⇒ independence but independence �⇒ orthogonality
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Example 4.14

Show that u =
(−1

1

)
and v =

(−1
−1
)

are orthogonal in R2 with respect to the dot product and write

down an orthonormal (perpendicular unit) basis (axes) for R2.

Solution
How do we show that the given vectors u and v are orthogonal (perpendicular)?
By showing the inner (dot) product of these vectors is zero:

〈u, v〉 = u · v =
(−1

1

)
·
(−1
−1
)
= (−1× (−1))+ (1× (−1)) = 0

Hence vectors u and v are orthogonal (perpendicular).
How do we normalize these vectors?
By using Proposition (4.11)

w
‖w‖ , which means dividing a vector by its length.

What is length ‖u‖ equal to?

‖u‖2 = 〈u, u〉 = u · u =
(−1

1

)
·
(−1

1

)
= (−1)2 + 12 = 2

Taking the square root gives ‖u‖ = √2. Similarly we have ‖v‖ = √2.
Thus the normalized (unit) vectors are

u
‖u‖ =

1√
2

(−1
1

)
and

v
‖v‖ =

1√
2

(−1
−1
)

An orthonormal (perpendicular unit) basis (axes) for R2 is

{
1√
2

(−1
1

)
, 1√

2

(−1
−1
)}

.

We can plot this orthonormal basis (vectors representing new axes) for R2 (Fig. 4.14).

11
12

−⎛ ⎞
⎜ ⎟
⎝ ⎠

1
2

−1⎛ ⎞
⎜ ⎟
⎝ ⎠−1

v

u

0.5

–0.5

–1

–0.5–1 0.5 1

1

Figure 4.14
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4.3.3 Generating orthogonal vectors

Consider two given vectors u and v in R2. We can project the vector v onto vector u.

What does projection mean?
Projection is the procedure, for example, of showing a film on a screen; we say the film has been
projected onto a screen. Similarly we project the vector v onto u as shown in Fig. 4.15.

p

Projection of v onto u

v

u Figure 4.15

What is the projection of v onto u equal to?
Since it is in the direction of vector u, it is a scalar multiple of u. Let’s nominate this scalar by the
letter k, so we have

Projection of v onto u = ku

Let p be the perpendicular vector shown in Fig. 4.15. Adding the vectors gives

v = ku+ p

The vector p is orthogonal (perpendicular) to the vector u, therefore
〈
u, p

〉 = 0. This
means that the projection of the perpendicular vector p onto vector u is zero.

Taking the inner product of this, v = ku+ p, with the vector u, we have

〈u, v〉 = 〈u, (ku+ p
)〉

= k〈u, u〉 + 〈u, p〉
= k‖u‖2 + 0

[
because p and u are perpendicular,
therefore

〈
u, p

〉 = 0 and 〈u, u〉 = ‖u‖2
]

= k‖u‖2

Rearranging this 〈u, v〉 = k‖u‖2 to make k the subject of the formula gives

k = 〈u, v〉
‖u‖2 (†)

Rearranging the above v = ku+ p to make p the subject:

orthogonal vector p = v− ku
[
p = v− [projection of v onto u

]]
= v− 〈u, v〉‖u‖2 u

[
by (†)

]
We have perpendicular vector p (Fig. 4.16):
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v

Projection of v onto u

Vectors u and p are
perpendicular.

p

-Projection of v onto u = -  u

u

k

Figure 4.16

Hence we have created orthogonal vectors p and u out of the given non-orthogonal
vectors u and v.

It is important to note that the projection of orthogonal vectors is zero. This is what we
were hinting at in the last section; orthogonality signifies a certain kind of independence or a
complete absence of interference.

Example 4.15

Let v1 =
(
3
0

)
and v2 =

(
1
2

)
be vectors in R2 . Construct a pair of orthogonal (perpendicular) vectors{

p1, p2
}

from this non-orthogonal set {v1, v2}.

Solution
We start with one of the given vectors, v1 say, and call this vector p1 . Hence p1 = v1. We construct a
vector which is orthogonal to p1 = v1 .

By the above formula, orthogonal vector p2= v− 〈u, v〉‖u‖2 u with u = v1 = p1 and v = v2:

orthogonal vector p2 = v2 −
〈
p1, v2

〉∥∥p1∥∥2 p1

Substituting p1 = v1 =
(
3
0

)
and v2 =

(
1
2

)
into this formula gives:

orthogonal vector p2 =
(
1
2

)
−

〈(
3
0

)
,
(
1
2

)〉
∥∥∥∥( 3

0

)∥∥∥∥2
(
3
0

)
(∗)

Evaluating each component of (*):〈(
3
0

)
,
(
1
2

)〉
=
(
3
0

)
·
(
1
2

)
= (3× 1)+ (0× 2) = 3,

∥∥∥∥( 3
0

)∥∥∥∥2 = ( 3
0

)
·
(
3
0

)
= 32 + 02 = 9

Putting these values into (*) yields

orthogonal vector p2 =
(
1
2

)
− 3

9

(
3
0

)
=
(
1
2

)
− 1

3

(
3
0

)
=
(
1− 1
2− 0

)
=
(
0
2

)
Illustrating the orthogonal vector p2 and the given vectors v1 and v2 as shown in Fig. 4.17.

(continued...)
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v2

Orthogonal
vector p2

Vectors p1 and p2
are perpendicular.

 v1 = p1

2

1.5

1

0.5

–0.5

–0.5 0.5 1 1.5 2 2.5 3

Figure 4.17

Note that we start with one of the given vectors, v1 say, then we create a vector orthogonal
(perpendicular) to it by using the other given vector v2. We have achieved the following:

{
v1 =

(
3
0

)
, v2 =

(
1
2

)} {
p1 =

(
3
0

)
, p2 =

(
0
2

)}

We can extend this procedure to any finite dimensional vector space and create an
orthogonal basis for the vector space. Suppose we have a basis {v1, v2, v3, . . . , vn}, and
from this we want create an orthogonal basis

{
p1, p2, p3, . . . , pn

}
. The procedure is:

1. Let p1 = v1, that is p1 equals one of the given vectors.
2. We create vector p2, which is orthogonal to p1 = v1, by using the second given vector

v2. Hence we apply the above stated formula p2 = v2 −
〈
v2, p1

〉∥∥p1∥∥2 p1.

3. We create vector p3, which is orthogonal to both p1 = v1 and p2, by using the third
given vector v3. The formula for this is similarly produced:

p3 = v3 −
〈
v3, p1

〉∥∥p1∥∥2 p1 −
〈
v3, p2

〉∥∥p2∥∥2 p2

4. We carry on producing vectors which are orthogonal (perpendicular) to the previous
created vectors p1, p2, . . . , pk by using the next given vector vk+1.

These steps are known as the Gram–Schmidt process.

4.3.4 The Gram–Schmidt process

Given any arbitrary basis {v1, v2, v3, . . . , vn} for a finite dimensional inner product space,
we can find an orthogonal basis

{
p1, p2, p3, . . . , pn

}
by the Gram–Schmidt process which

is described next:
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Gram–Schmidt process (4.16).
Let p1 = v1

p2 = v2 −
〈
v2, p1

〉∥∥p1∥∥2 p1

p3 = v3 −
〈
v3, p1

〉∥∥p1∥∥2 p1 −
〈
v3, p2

〉∥∥p2∥∥2 p2

p4 = v4 −
〈
v4, p1

〉∥∥p1∥∥2 p1 −
〈
v4, p2

〉∥∥p2∥∥2 p2 −
〈
v4, p3

〉∥∥p3∥∥2 p3

...
...

...
...

...

pn = vn −
〈
vn, p1

〉∥∥p1∥∥2 p1 −
〈
vn, p2

〉∥∥p2∥∥2 p2 −
〈
vn, p3

〉∥∥p3∥∥2 p3 − · · · −
〈
vn, pn−1

〉∥∥pn−1∥∥2 pn−1

These vectors p are orthogonal, therefore a basis.

What else do we need to do to form an orthonormal basis?
Normalize

{
p1, p2, p3, . . . , pn

}
by using Proposition (4.11) which is

pj∥∥pj∥∥ . [Dividing by their norms

(lengths).]

The proof of Gram–Schmidt process (4.16) for an inner product space is given on the
website <http://www.oup.co.uk/companion/singh>.

Example 4.16

Transform the basis v1 =
(
2
1

)
and v2 =

(
1
1

)
in R2 to an orthonormal (perpendicular unit) basis (axes)

for R2 with respect to the dot product. Also plot this orthonormal basis and the given basis on two
different graphs.

Solution
Using the above Gram–Schmidt process (4.16) means that we need to find vectors p1 and p2 which are
orthogonal (perpendicular) to each other.

We have p1 = v1 =
(
2
1

)
which is one of the given vectors. By the above Gram–Schmidt process

(4.16) we have

p2 = v2 −
〈
v2, p1

〉∥∥p1∥∥2 p1 (∗)

We need to evaluate each component of (*).
What is the inner product

〈
v2, p1

〉
equal to?

〈
v2, p1

〉 = v2 · p1 =
(
1
1

)
·
(
2
1

)
= (1× 2)+ (1× 1) = 3

(continued...)
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What is
∥∥p1∥∥2 equal to?

∥∥p1∥∥2 = 〈p1, p1〉 = p1 · p1

=
(
2
1

)
·
(
2
1

)
= 22 + 12 = 5 [Pythagoras]

Substituting all these, v2 =
(
1
1

)
,
〈
v2, p1

〉 = 3,
∥∥p1∥∥2 = 5 and p1 =

(
2
1

)
, into (*) gives

p2 = v2 −
〈
v2, p1

〉∥∥p1∥∥2 p1

=
(
1
1

)
− 3

5

(
2
1

)

=
(
1− 6/5
1− 3/5

)
=
(−1/5

2/5

)
= 1

5

(−1
2

)

Our vectors p1 =
(
2
1

)
and p2 = 1

5

(−1
2

)
are an orthogonal (perpendicular) basis.

But how do we make these into an orthonormal (perpendicular unit) basis?
By normalizing these vectors (converting into unit vectors), which is achieved by dividing the vectors by
their norms (lengths). Call these new unit vectors u1 and u2, and they are

u1 = p1∥∥p1∥∥ and u2 = p2∥∥p2∥∥
From above

∥∥p1∥∥2 = 5 and taking square root gives
∥∥p1∥∥ = √5. We need to normalize the other

perpendicular vector p2 , which means we need to convert it to a unit vector:

∥∥p2∥∥2 = 〈p2, p2〉 = 1
5

(−1
2

)
· 1
5

(−1
2

)
= 1

25

[
(−1)2 + 22

]
= 5

25
= 1

5

Thus
∥∥p2∥∥ = 1√

5
. Our normalized (unit) vectors are

u1 = p1∥∥p1∥∥ = 1∥∥p1∥∥p1 = 1√
5

(
2
1

)

u2 = 1∥∥p2∥∥p2 = 1
1√
5

1
5

(−1
2

)
= 1√

5

(−1
2

) [
By Law of Indices

1√
5
5 = √5

]

Our orthonormal (perpendicular unit) basis is the set {u1, u2} where these are given above:

u1 = 1√
5

(
2
1

)
and u2 = 1√

5

(−1
2

)
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Plotting these orthonormal (perpendicular unit) basis and our given basis in R2 (Fig. 4.18):

This is our given basis

u1

u2

v1

v2

1

0.8

0.6

0.4

0.2

0.5 -0.4 -0.2 0.2

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 11.5 21

This is an orthonormal basis for    2

Figure 4.18

From Fig. 4.18 you should observe that u1 is in the same direction as the given vector
v1 but has a length of 1. Remember, we start with p1 = v1, and u1 is a unit vector in that
direction.

We can generally ignore the fraction (scalars) because vectors are orthogonal indepen-
dent of scalars, as was established in question 16 of Exercises 4.2 which says:

Vectors {v1, v2, . . . , vn} are orthogonal⇔
{
k1v1, k2v2, . . . , knvn

}
are orthogonal.

For example, in the above case we have p2 = 1
5

(−1
2

)
. Ignore the scalar (fraction) 1

5 and

normalize (convert to unit) the vector
(−1

2

)
:

∥∥∥∥(−12
)∥∥∥∥2 = (−12

)
·
(−1

2

)
= (−1)2 + 22 = 5 implies

∥∥∥∥(−12
)∥∥∥∥ = √5

Normalizing this vector gives u2 = 1√
5

(−1
2

)
, which is the same unit vector u2 as in the

above Example 4.16. It makes the arithmetic a lot easier if we ignore fractions or any other
scalars.

The orthonormal basis is not unique. For instance, if you do not remove the scalar
(fraction), you could have a different orthonormal basis. Also, if we apply the Gram–
Schmidt process in reverse order, that is {v2, v1}, then the result may be a different
orthonormal basis. In question 2 of Exercises 4.3, we have switched vectors v1 and v2 of
Example 4.16. See if you obtain the same or different set of vectors for the orthonormal
basis.

We can also apply the Gram–Schmidt process to other vector spaces. Next we apply this
to vector space of polynomials.
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Example 4.17

Let P2 be the vector space of polynomials of degree 2 or less with inner product given by:〈
q, r

〉 = ∫ 1

−1
q (x) r (x) dx

Transform the standard basis
{
1, x, x2

}
, which is not orthogonal, to an orthogonal basis.

Solution
Let v1 = 1, v2 = x, and v3 = x2 .

The first vector is given p1 = v1 = 1. Next we find a vector which is orthogonal to this by using (4.16)
which is:

p2 = v2 −
〈
v2, p1

〉∥∥p1∥∥2 p1 (∗)

We need to find each of these components.
What is the inner product

〈
v2, p1

〉
equal to?

〈
v2, p1

〉 = ∫ 1

−1
x (1) dx =

∫ 1

−1
x dx =

[
x2

2

] 1

−1
= 1

2

[
12 − (−1)2

]
= 0

Since the inner product is zero, so the vectors v2 and p1 are already orthogonal. Putting this into (*)
yields

p2 = v2 − (0) p1 = v2 = x
[
because we are given v2 = x

]
What else do we need to find?
The perpendicular vector p3 by applying Gram–Schmidt process (4.16) which is

p3 = v3 −
〈
v3, p1

〉∥∥p1∥∥2 p1 −
〈
v3, p2

〉∥∥p2∥∥2 p2 (∗∗)

Evaluating each of the components gives〈
v3, p1

〉 = ∫ 1

−1
x2 (1) dx =

∫ 1

−1
x2 dx =

[
x3

3

] 1

−1
= 1

3

[
13 − (−1)3

]
= 2

3〈
v3, p2

〉 = ∫ 1

−1
x2 (x) dx =

∫ 1

−1
x3 dx =

[
x4

4

] 1

−1
= 1

4

[
14 − (−1)4

]
= 0

∥∥p1∥∥2 = 〈p1, p1〉 = ∫ 1

−1
1 (1) dx = [x] 1−1 = [1− (−1)] = 2

∥∥p2∥∥2 = 〈p2, p2〉 = ∫ 1

−1
x (x) dx =

∫ 1

−1
x2 dx = 2

3

Substituting all these,
〈
v3, p1

〉 = 2
3 ,
∥∥p1∥∥2 = 2,

〈
v3, p2

〉 = 0, and
∥∥p2∥∥2 = 2

3 into (**) yields

p3 = v3 −
〈
v3, p1

〉∥∥p1∥∥2 p1 −
〈
v3, p2

〉∥∥p2∥∥2 p2

= x2 − 2/3
2

(1)− 0
2/3

x = x2 − 1
3

Our three orthogonal polynomials (vectors) are

p1 = 1, p2 = x and p3 = x2 − 1
3
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In this example, we have transferred the standard basis to an orthogonal basis:{
1, x, x2

} {
1, x, x2 − 1/3

}
If we scale the above obtained orthogonal polynomials

p1 = 1, p2 = x and p3 = x2 − 1/3

so that at x = 1 they have a value of 1, we get

p1 = 1, p2 = x and p′3 =
1
2
(
3x2 − 1

)
These three orthogonal polynomials p1, p2 and p′3 are the first three Legendre polyno-

mials. An important property of Legendre polynomials is that they must be orthogonal
with respect to the inner product given in Example 4.17. Legendre polynomials crop up in
differential equations.

There are also other orthogonal polynomials such as Chebyshev (pronounced
‘chebishef ’) polynomials which are important in approximation theory. In approximation
theory we try to provide the ‘best’ polynomial approximation p(x) to a function f (x) with a
series expansion of orthogonal polynomials. By ‘best’ we mean that we construct a polyno-
mial p(x) so that the distance function or the error

∥∥f (x)− p(x)
∥∥ is as small as possible for

all x in
[
a, b

]
, where

[
a, b

]
is the interval our function is defined on.

This is different from a Taylor expansion, which gives the best approximation at a point.
Notice that the structure you see with dot product in Euclidean space is exactly the same

structure you have with these polynomials.
It is interesting to know: if we have two given vector spaces U and V , are they essentially

identical? We can think of U and V as identical if they have the same structure but only the
nature of their elements or points differ.We say that vector spacesU andV are isomorphic.

For example, P2 and R3 are isomorphic because they have the same structure but the
elements such as (1 2 3)T in R3 differ from 1+ 2x+ 3x2 in P2. We can plot these in three-
dimensional space with our normal orthogonal x, y and z axes in R3 and constant, x and
x2 − 1/3 orthogonal axes in P2.

In the next chapter we will prove a very important result in linear algebra:
Every n-dimensional real vector space is isomorphic to Rn.
This means that all the non-Euclidean vector spaces we have looked at in this chapter,

such as the set of polynomials Pn, matricesMmn and continuous functions on C
[
a, b

]
, are

identical in structure to Rn, provided they have the same dimension.

Proposition (4.17). Let {v1, v2, v3, . . . , vn} be an orthonormal set of vectors in an inner
product space V of dimension n. Let u be a vector in V then

u = 〈u, v1〉 v1 + 〈u, v2〉 v2 + 〈u, v3〉 v3 + · · · + 〈u, vn〉 vn
Proof – Exercises 4.3.

Note, the scalars are given by inner products.
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i Summary

(4.13). Let V be a finite dimensional vector space with an inner product. A set of basis vectors

B = {u1, u2, u3, . . . , un}

for V is called an orthonormal basis if they are both orthogonal and normalized.
The Gram–Schmidt process (4.16) produces an orthogonal basis for a finite dimensional vector

space.

EXERCISES 4.3

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Transform the following basis vectors in R2 to an orthonormal basis for R2 with respect
to the dot product. Also plot the orthonormal basis.

(a) v1 =
(
1
0

)
and v2 =

(
2
1

)
(b) v1 =

(
1
3

)
and v2 =

(
2
−1
)

(c) v1 =
(
2
3

)
and v2 =

(
4
5

)
(d) v1 =

(−2
−5
)

and v2 =
(−3
−1
)

2. Consider Example 4.16 with the vectors v1 and v2 the other way around, that is

v1 =
(
1
1

)
and v2 =

(
2
1

)

Transform these basis vectors in R2 to an orthonormal basis for R2 with respect to
the dot product.

What do you notice about your answer in relation to Example 4.16?

3. Transform the basis v1 =
(
1 1 1

)T , v2 = ( 1 1 0
)T and v3 =

(
2 0 0

)T in R3 to
an orthonormal (perpendicular unit) basis for R3 with respect to the dot product.

4. Transform the following basis vectors in R3 to an orthonormal basis for R3 with respect
to the dot product.

(a) v1 =
(
1 0 1

)T , v2 = ( 3 1 1
)T and v3 =

( −1 −1 −1 )T
(b) v1 =

(
2 2 2

)T , v2 = ( −1 0 −1 )T and v3 =
( −1 2 3

)T
(c) v1 =

(
1 2 0

)T , v2 = ( 2 0 2
)T and v3 =

(
1 0 3

)T
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5. Transform the following vectors which span a subspace of R4 to an orthonormal basis
for this subspace with respect to the dot product.

(a) v1 =
(
1 0 3 0

)T , v2 = ( 1 2 1 0
)T and v3 =

(
2 1 0 0

)T
(b) v1 =

(
1 1 5 2

)T , v2 = ( −3 3 4 −2 )T and v3 =
( −1 −2 2 5

)T
(c) v1 =

(
1 2 3 4

)T , v2 = ( 2 1 1 0
)T and v3 =

(
3 0 −1 3

)T
6. Normalize the orthogonal polynomials found in Example 4.17.
7. Transform the basis v1 = x2, v2 = x, v3 = 1 to an orthogonal basis for P2 with respect

to the inner product given in Example 4.17. Compare this with the orthogonal basis
obtained in Example 4.17.

8. Write the following polynomials in P2 as linear combinations of the Legendre polyno-
mials p1 = 1, p2 = x and p3 = 1

2
(
3x2 − 1

)
:

(a) x2 + x+ 1 (b) 2x2 − 1 (c) 3 (d) x2 (e) 5x+ 2

9. Prove Proposition (4.17).

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 4.4 Orthogonal Matrices

By the end of this section you will be able to

● understand what is meant by an orthogonal matrix

● factorize a given matrix

4.4.1 Orthogonal matrices

One of the most tedious problems in linear algebra is to find the inverse of a matrix. For
a 3 by 3 or larger matrix, it becomes a monotonous task to determine the inverse by hand
calculations. However, there is one set of matrices called orthogonal matrices where the
inverse can be obtained by transposition of the matrix. It is straightforward to find the
transpose of a matrix.

Orthogonal matrices arise naturally when working with orthonormal bases. Working
with orthonormal bases is very handy because it allows you to use a formula like Pythagoras
or it allows you to work in the field of Fourier series.

Orthogonal matrices are important in subjects such as numerical analysis because these
matrices have good numerical stability.

Definition (4.18). A square matrix Q = ( v1 v2 v3 · · · vn
)
, whose columns v1, v2,

v3, . . . , vn are orthonormal (perpendicular unit) vectors, is called an orthogonal matrix.

An example of an orthogonal matrix is the identity matrix.
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Example 4.18

Let Q = ( u1 u2 u3
)

where u1 = 1√
3

⎛⎝ 1
1
1

⎞⎠, u2 = 1√
6

⎛⎝ 1
1
−2

⎞⎠ and u3 = 1√
2

⎛⎝ 1
−1
0

⎞⎠ which is an

orthonormal basis for R3. Determine QTQ.

Solution
What does the notation QT mean?
The transpose of the matrix Q. We have

QTQ = ( u1 u2 u3
)T ( u1 u2 u3

)
=
⎛⎜⎝ uT1

uT2
uT3

⎞⎟⎠( u1 u2 u3
) ⎡⎢⎣When transposing the column

vector u1 becomes the row

vector uT1 .

⎤⎥⎦

=
⎛⎝ 1/

√
3 1/

√
3 1/

√
3

1/
√
6 1/

√
6 −2/√6

1/
√
2 −1/√2 0

⎞⎠⎛⎝ 1/
√
3 1/

√
6 1/

√
2

1/
√
3 1/

√
6 −1/√2

1/
√
3 −2/√6 0

⎞⎠
To evaluate this by hand is rather tedious, unless we can factor out some of the square roots:

1√
3
=

√
2√

2
√
3
=
√
2√
6

[
multiplying numerator
and denominator by

√
2

]
1√
2
=

√
3√

3
√
2
=
√
3√
6

[
multiplying numerator
and denominator by

√
3

]

Replacing 1/
√
3 and 1/

√
2 in terms of 1

/√
6 in the above:

QTQ =
⎛⎝
√
2/
√
6

√
2/
√
6

√
2/
√
6

1/
√
6 1/

√
6 −2/√6√

3/
√
6 −√3/

√
6 0

⎞⎠⎛⎝
√
2/
√
6 1/

√
6

√
3/
√
6√

2/
√
6 1/

√
6 −√3/

√
6√

2/
√
6 −2/√6 0

⎞⎠

= 1√
6

⎛⎝
√
2

√
2

√
2

1 1 −2√
3 −√3 0

⎞⎠ 1√
6

⎛⎝
√
2 1

√
3√

2 1 −√3√
2 −2 0

⎞⎠ ⎡⎣ taking out a
scalar multiple
1 /
√
6

⎤⎦

= 1√
6

1√
6

⎛⎝ 6 0 0
0 6 0
0 0 6

⎞⎠ = 1
6

⎛⎝ 6 0 0
0 6 0
0 0 6

⎞⎠ =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠

What do you notice about your final result in the above example?
We end up with the identity matrix I, that is QTQ = I. This is no coincidence. There is a general
result which says that if matrix Q is orthogonal then QTQ = I. We can also go the other way, that
is if QTQ = I then matrix Q is orthogonal.

Proposition (4.19). Let Q = ( v1 v2 v3 · · · vn
)
be a square matrix. Then Q is an

orthogonal matrix⇔ QTQ = I.
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How do we prove this result?
We have⇔ in the statement, so we need to prove it both ways,⇒ and⇐.

Proof.
(⇒). We assume that Q = ( v1 v2 v3 · · · vn

)
is an orthogonal matrix, which means

that v1, v2, . . . , vn is an orthonormal (perpendicular unit) set of vectors in Rn. Required to
proveQTQ = I. We carry out the matrix multiplication:

QTQ = ( v1 v2 v3 · · · vn
)T ( v1 v2 v3 · · · vn

)

=

⎛⎜⎜⎜⎜⎜⎝
vT1
vT2
...

vTn

⎞⎟⎟⎟⎟⎟⎠
(
v1 v2 v3 · · · vn

) [
transposing to convert columns
to rows

]

=

⎛⎜⎜⎜⎜⎜⎜⎝
vT1 v1 vT1 v2 · · · vT1 vn
vT2 v1 vT2 v2 · · · vT2 vn
...

...
...

vTn v1 vTnv2 · · · vTnvn

⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎣ carrying out matrix
multiplication – row by
column

⎤⎦

Remember, our destination is to show that the final matrix in the above is the identity.

What is the first entry vT1 v1 in the above matrix equal to?
This is the dot product because we defined this in chapter 2:

(2.4) u · v = uTv

Applying this to vT1 v1 we have

vT1 v1 = v1 · v1

What is v1 · v1 equal to?
By the definition of the norm (length) of chapter 2: (2.8) ‖u‖ = √u · u

Hence v1 · v1 = ‖v1‖2. Remember, v1 is an orthonormal (perpendicular unit) vector
which means it has a length of 1. Therefore v1 · v1 = ‖v1‖2 = 1. This means that the first
entry of the matrix QTQ is vT1 v1 = 1. Similarly all along the leading diagonal of QTQ, the
entries are 1 because

vT2 v2 = vT3 v3 = vT4 v4 = · · · = vTn vn = 1

What does the second entry vT1 v2 in the matrix QTQ equal to?
Again, by (2.4) we have vT1 v2 = v1 · v2 .
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What is v1 · v2 equal to?
Remember, we are assuming vectors v1 and v2 are perpendicular unit vectors because they belong
to an orthonormal set of vectors. Vectors v1 and v2 are perpendicular so v1 · v2 = 0. Similarly the
dot product of two different vectors vi and vj is zero, that is

vTi vj = vi · vj = 0 provided i does not equal j

This means that all the remaining entries are equal to zero. Hence the matrix QTQ has
1’s along the leading diagonal and 0’s everywhere else, which means that it is the identity
matrix I.

We have proved our required result QTQ = I.
(⇐) . See Exercises 4.4.

From this QTQ = I, can you deduce any other result?
Since QTQ = I, we conclude that the inverse of the matrix Q is QT .

Proposition (4.20). Q is an orthogonal matrix⇔ Q−1 = QT .

This is a powerful result because the inverse of any orthogonal matrix is the transpose
of the matrix. It is a lot easier to transpose a matrix, rather than converting to reduced row
echelon form.

Proof.
(⇒) . From the previous proposition, we have QTQ = I for an orthogonal matrix Q.
Remember, Q is a square matrix, so it has both left and right inverse and they are equal
to each other.

By the definition of the inverse matrix of chapter 1:
(1.16). A square matrix A is said to be invertible if there is a matrix B such that AB =

BA = I where B is denoted by A−1
HenceQT is the inverse of matrixQ, which means thatQ−1 = QT .
(⇐). Required to prove that Q−1 = QT implies that Q is orthogonal. Right multiplying

Q−1 = QT by Q gives Q−1Q = I = QTQ. By the above Proposition (4.19):

Q is an orthogonal matrix ⇔ QTQ = I

We already haveQTQ = I, so Q is orthogonal.

4.4.2 Properties of orthogonal matrices

Example 4.19

Let Q = 1√
2

(
1 1
1 −1

)
, u =

(
1
2

)
and w =

(
3
1

)
. Determine the dot products:

(i) Qu ·Qw (ii) u · w (iii) What do you notice about your results?
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Solution

(i) Evaluating the dot products:

Qu = 1√
2

(
1 1
1 −1

)(
1
2

)
= 1√

2

(
3
−1
)

Qw = 1√
2

(
1 1
1 −1

)(
3
1

)
= 1√

2

(
4
2

)
QuQw = 1√

2

(
3
−1
)
· 1√

2

(
4
2

)
= 1

2
[(3× 4)+ (−1× 2)] = 5

(ii) Similarly, we have

u · w =
(
1
2

)
·
(
3
1

)
= (1× 3)+ (2× 1) = 5

(iii) Note that Qu · Qw = u · w.

This result Qu ·Qw = u · w for the last example is no coincidence. This is a general
result that ifQ is an orthogonal matrix then the dot product ofQu andQw is exactly u · w.
Actually:

Proposition (4.21). Let Q be an n by nmatrix and u and v be vectors in Rn. Then

Q is an orthogonal matrix ⇔ Qu ·Qw = u · w

What does this proposition mean?
This means that an orthogonal matrix preserves the dot product, and if the dot product is
preserved then Q is an orthogonal matrix.

Proof.
(⇒). Assume matrix Q is orthogonal. Required to prove Qu ·Qw = u · w. Let us examine
the left hand side of this Qu ·Qw = u · w. We use

(2.4) u · w = uTw
Applying this formula (2.4) toQu ·Qw we have

Qu ·Qw = (Qu)T Qw

=
(
uTQT

)
Qw

[
by (1.19) (d) (AB)T = BTAT

]
= uT

(
QTQ

)
w

[
by (1.16)(a) (AB)C = A (BC)

]
= uT (I)w

[
becauseQ is orthogonal so QTQ = I

]
= uTw ={

By (2.4)
u · w
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This proves that the dot product is preserved under matrix multiplication by an
orthogonal matrix.
(⇐). Nowwe go the other way. AssumeQu ·Qw = u · w and prove thatQ is an orthogonal
matrix. We have:

Qu ·Qw = (Qu)T Qw

=
(
uTQT

)
Qw

= uT
(
QTQ

)
w = u · w [

by assumption
]

Using (2.4) u · w = uTw on the right hand side of the last line, we have

uT
(
QTQ

)
w = uTw implies that QTQ = I

By the above Proposition (4.19): Q is an orthogonal matrix⇔ QTQ = I
We conclude that Q is an orthogonal matrix because QTQ = I, which is our required

result.

Example 4.20

Let Q = 1√
2

(
1 1
1 −1

)
and u =

(
1
2

)
. Determine the lengths:

(i) ‖u‖ (ii) ‖Qu‖ (iii) Plot the vectors u and Qu on R2.

Solution
(i) Using Pythagoras, we have

‖u‖2 = u · u =
(
1
2

)
·
(
1
2

)
= 12 + 22 = 5 ⇒ ‖u‖ = √5

(ii) Similarly we have

‖Qu‖2 = Qu · Qu ={

by Example 4.19

1√
2

(
3
−1
)
· 1√

2

(
3
−1
)
= 1

2

[
32 + (−1)2

]
= 5

Hence ‖Qu‖ = √5.
(iii) A plot of u and Qu is shown in Fig. 4.19.

Note that since lengths ‖u‖ = ‖Qu‖ = √5, the vectors u and Qu lie on the circle which has a radius of√
5 from the origin.
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3

2

1

–1

–2

–3

–1 2 3

Qu

u

–2–3 1

Figure 4.19

For an orthogonal matrixQ the length of vectorsQu and u are equal.

Proposition (4.22). Let Q be an n by nmatrix and u be a vector in Rn. We have

Q is an orthogonal matrix⇔ ‖Qu‖ = ‖u‖
What does this proposition mean?
Applying an orthogonal matrix Q to a vector u may change the direction but not the length. An
orthogonal matrix Q in Qu will just rotate the vector u (Fig. 4.20).

Figure 4.20

An orthogonal matrix preserves the length of a vector and if a transformation matrix
preserves length then it is an orthogonal matrix.

Proof – Exercises 4.4.

4.4.3 Triangular matrices

What are triangular matrices?

Definition (4.23). A triangular matrix is an n by n matrix where all entries to one side of
the leading diagonal are zero.
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For example, the following are triangular matrices:

(a)
1 2 3 1

4 5   and  (b)  2 3
6 4 5 6

0 0
0 0
0 0

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

leading diagonal

(a) is an example of an upper triangular matrix.
(b) is an example of a lower triangular matrix.

Another type of matrix is a diagonal matrix.

Do you know what is meant by a diagonal matrix?

Definition (4.24). A diagonal matrix is an n by n matrix where all entries to both sides of
the leading diagonal are zero.

Can you think of an example of a diagonal matrix?

The identity matrix I =
⎛⎜⎝ 1 0 0

0 1 0
0 0 1

⎞⎟⎠. Another example is

⎛⎜⎝ 1 0 0
0 2 0
0 0 3

⎞⎟⎠.

A diagonal matrix is both an upper and lower triangular matrix.

4.4.4 QR factorization

Let A be an m by n matrix with linearly independent columns. We can factorize matrix A
into

(4.25) A = QR

where Q is an orthogonal matrix and R is an upper triangular matrix.

Why factorize the matrix A into an orthogonal matrix Q and upper triangular matrix R?

1. So that we can efficiently solve linear systems such as Ax = b. This linear system can be
written as

(QR) x = Q (Rx) = b (∗)

Left multiplying this (*) by the inverse of Q which is Q−1 = QT gives

QTQ︸ ︷︷ ︸
=I

(Rx) = Rx = QTb
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QTb is a vector c say, that is QTb = c. The given linear system Ax = b has been reduced to
solving Rx = c, where R is an upper triangular matrix. We can solve this system Rx = c by
back substitution because R is an upper triangular matrix:

Rx = c in matrix form is 
11 1 1 1n

nn n n

r x c

r x c

r
=

The advantage of this method is that once we have factorized matrix A then we can solve
Ax = b for various different vectors b in one go.

2. Factorizing a matrix is also applied in solving least squares approximation which is:

Find the vector x such that ‖Ax− b‖ is a minimum

3. Additionally QR factorization is used to find the eigenvalues and eigenvectors (to be
discussed in chapter 7) of a matrix by numerical means.

We need to find an orthogonal matrix Q and an upper triangular matrix R such that A =
QR.

How can we find such matrices?
Since Q is an orthogonal matrix, its columns are orthonormal (perpendicular unit) vectors:

Q =
(
q1 q2 q3 · · · qn

)
But how do we get these orthonormal vectors from the matrix A?
Well, let matrix A = ( a1 a2 a3 · · · an ) where the vectors a1, a2, . . . , an are linearly independent.
Then by applying the Gram–Schmidt process we can transform these a vectors into q vectors
because Gram–Schmidt produces orthonormal vectors.

Applying the Gram–Schmidt process (4.16) and normalization from the last section we
have:

Let a1 = q1‖q1‖ . Rearranging this gives a1 = r11q1 where r11 = 1‖q1‖ .
Also q2 = 1‖q2‖

[
a2 − 〈v2, q1〉‖q1‖2 q1

]
. Transposing this gives

a2 =
〈
v2, q1

〉∥∥q1∥∥2 q1 +
∥∥q2∥∥q2

We can write this as a2 = r12q1 + r22q2 where r12 = 〈v2, q1〉
‖q1‖2 and r22 =

∥∥q2∥∥.
Expanding by applying the Gram–Schmidt process we have

a1 = r11q1
a2 = r12q1 + r22q2
a3 = r13q1 + r23q2 + r33q3

...
...

...
an = r1nq1 + r2nq2 + r3nq3 + · · · + rnnqn
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We can write this in matrix form as

A = ( a1 a2 a3 · · · an )

= ( r11q1 r12q1 + r22q2 r13q1 + r23q2 + r33q3 · · · r1nq1 + r2nq2 + r3nq3 + · · · + rnnqn )

= (q1 q2 q3 · · · qn )︸ ︷︷ ︸
=Q

⎛⎜⎜⎜⎜⎝
r11 r12 · · · r1n
0 r22 · · · r2n

0 0
. . .

...

0
... · · · rnn

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=R
= QR

The problem is how do we find the upper triangular matrix R? Since Q is orthogonal we
know the inverse of matrixQ is QT . Left multiplying both sides of A = QR by QT gives

QTA = QTQ︸︷︷︸
=I

R = IR = R

Hence the upper triangular matrix R is given by

(4.26) R = QTA

Let us apply this QR factorization to a particular matrix A.

Example 4.21

Find the QR factorization of A =
⎛⎝ 1 1 2

1 1 0
1 0 0

⎞⎠.

Solution
The column vectors of A are a1 =

(
1 1 1

)T , a2 = ( 1 1 0
)T and a3 =

(
2 0 0

)T
. These are the

same vectors given in question 3 of Exercises 4.3. By applying the Gram–Schmidt process, we found the
following orthonormal vectors:

Q = ( q1 q2 q3
)
where q1 = 1√

3

⎛⎝ 1
1
1

⎞⎠, q2 = 1√
6

⎛⎝ 1
1
−2

⎞⎠ and q3 = 1√
2

⎛⎝ 1
−1
0

⎞⎠
The matrix Q and its transpose were simplified in Example 4.18:

Q = 1√
6

⎛⎝
√
2 1

√
3√

2 1 −√3√
2 −2 0

⎞⎠ andQT = 1√
6

⎛⎝
√
2

√
2

√
2

1 1 −2√
3 −√3 0

⎞⎠
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Why do we need to find the transpose of the matrix Q?
Because the upper triangular matrix R = QTA:

R = QTA = 1√
6

⎛⎝
√
2

√
2

√
2

1 1 −2√
3 −√3 0

⎞⎠⎛⎝ 1 1 2
1 1 0
1 0 0

⎞⎠

= 1√
6

⎛⎝ 3
√
2 2

√
2 2

√
2

0 2 2
0 0 2

√
3

⎞⎠
You may like to check the following by carrying out the matrix multiplication:

A =
⎛⎝ 1 1 2

1 1 0
1 0 0

⎞⎠ = QR = 1√
6

⎛⎝
√
2 1

√
3√

2 1 −√3√
2 −2 0

⎞⎠ 1√
6

⎛⎝ 3
√
2 2

√
2 2

√
2

0 2 2
0 0 2

√
3

⎞⎠

i Summary

Orthogonal matrices are square matrices whose columns are orthonormal (perpendicular unit)
vectors.

We can factorize an m by n matrix A whose column vectors are linearly independent into
A = QR where Q is an orthogonal matrix and R is an upper triangular matrix.

EXERCISES 4.4

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. In each of the following cases, show thatQTQ = I:

(a) Q = 1√
2

(
1 1
1 −1

)
(b)Q = 1

5

(
3 4
4 −3

)
(c) Q =

(
cos (θ) sin (θ)

sin (θ) − cos (θ)

)
2. DetermineQ−1 for each of the matrices in question 1.
3. Determine which of the following matrices are orthogonal. If they are orthogonal find

their inverse.
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(a) A =
⎛⎝ 1 0 0

0 2 0
0 0 3

⎞⎠ (b) B = 1
2

⎛⎜⎜⎝
1 1
1 1
1 −1
1 −1

⎞⎟⎟⎠
(c) C =

⎛⎝ 1/
√
2 1/

√
3 1/

√
6

−1/√2 1/
√
3 1/

√
6

0 1/
√
3 −2/√6

⎞⎠
4. Let A =

(
a b
c d

)
. What can you say about the size and angle between the column

vectors of A, where A is an orthogonal matrix?
5. Find the third column vector of an orthogonal matrix whose first two columns are:⎛⎝ 1/

√
3

1/
√
3

1/
√
3

⎞⎠ and

⎛⎝ 1/
√
2

0
−1/√2

⎞⎠

6. Determine Qu where Q =
(
cos (θ) sin (θ)

sin (θ) − cos (θ)

)
and u =

(
1
0

)
. Plot your result on

R2. What effect does the orthogonal matrixQ have on the vector u?

7. Let A =
⎛⎝ 2 −1 −1

2 0 2
2 −1 3

⎞⎠. The column vectors of A were the vectors given in

Exercises 4.3 question 4(b).

(a) Determine the QR factorization of matrix A.

(b) Solve the linear system Ax = b where b = ( −3 8 9
)T .

(c) Solve the linear system Ax = b where b = ( −5 12 11
)T .

8. Prove the converse of Proposition (4.19).
9. Prove Proposition (4.22).

10. Prove that if A is a square matrix with the property ‖Au‖ = 1 for all unit vectors u
then A is an orthogonal matrix.

11. If Q is orthogonal prove thatQT is also orthogonal.
12. Prove that the columns and rows of an orthogonal matrix are linearly independent.

MISCELLANEOUS EXERCISES 4

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

4.1. Decide whether the following statement is True or False. Justify your answer.
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Every linearly independent set in Rn is an orthogonal set.
Washington State University, USA

(part question)

4.2. The vectors

X1 =
[
1, 1, 1, 1

]
, X2 =

[
1, 0, 0, 1

]
, X3 =

[
0, 2, 1, −1 ]

are a basis of a subspace U of R4. Find an orthogonal basis of U.
University of Ottawa, Canada

4.3. Let S = Span

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
1
0
1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
1
2
2

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭.

(a) Find a basis for S.
(b) Find an orthonormal basis for S.

Purdue University, USA

4.4. (a) Which bases of a Euclidean space V are called orthogonal? Orthonormal?

(b) Show that f1 =
⎛⎝−10

2

⎞⎠, f2 =
⎛⎝ 0
−2
3

⎞⎠ and f3 =
⎛⎝ 1
1
4

⎞⎠ form a basis of R3.

(c) Find the orthogonal basis of R3 which is the output of the Gram–Schmidt
orthogonalization applied to the basis from part (b). (The inner product on R3

is the standard one.)
University of Dublin, Ireland

4.5. (a) Prove that an orthogonal set of non-zero vectors in Rn is linearly independent.
(b) Let B = {v1, . . . , vn} be an orthonormal basis of Rn. Show that for w ∈ Rn,

w = (v1 · w) v1 + (v2 · w) v2 + · · · + (vn · w) vn

University of Manchester, UK
(part question)

4.6. (a) Define what it means for vectors w1, w2, w3 in R3 to be orthonormal.
(b) Apply the Gram–Schmidt process to the vectors

v1 =
⎡⎣ 0
1
1

⎤⎦ , v2 =
⎡⎣ 1
1
0

⎤⎦ , v3 =
⎡⎣ 5
4
6

⎤⎦
in R3 to find an orthonormal set in R3.

University of Southampton, UK
(part question)
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4.7. Consider the real vector space R4 with real inner product given by〈
x, y

〉 = x1y1 + x2y2 + x3y3 + x4y4

for x = ( x1, x2, x3, x4
)
, y = ( y1, y2, y3, y4

) ∈ R4.

(a) Define the norm of a vector x = ( x1, x2, x3, x4
) ∈ R4 with respect to the

above inner product. What is the norm of
(
2, −3, 5, 1

)
?

(b) When do we say that two vectors x, y ∈ R4 are orthogonal? Are
(
0, 1, −1, 1

)
and

(
6, 3, 3, 27

)
orthogonal?

(c) What is an orthonormal set of vectors in R4?
Is
{(

0, 0, 1, 0
)
,
(

1√
6
, −2√

6
, 0, 1√

6

)
,
(

2√
5
, 1√

5
, 0, 0

)}
an orthonor-

mal set? Justify your answer.
(d) Use the Gram–Schmidt process to construct an orthonormal basis forR4 starting

from the basis{(
1, 0, 0, 0

)
,
(
1, 1, 0, 1

)
,
(
0, 1, 1, 1

)
,
(
0, 1, −1, 0

)}
City University, London, UK

4.8. Consider the real vector spaceM (2, 2) with real inner product given by

〈A, B〉 = tr
(
BTA

)
for all A, B ∈ M (2, 2).
[M (2, 2) is M22 which is the set of 2× 2 matrices and tr is the trace of the

matrix.]

(a) Define the norm of a matrix A ∈ M (2, 2) with respect to the above inner

product. What is the norm of
(
2 −3
5 1

)
?

(b) When do we say that two matrices A, B ∈ M (2, 2) are orthogonal (with respect

to the above inner product)? Are
(

0 1
−1 1

)
and

(
6 3
3 27

)
orthogonal?

(c) What is an orthonormal set of matrices in M (2, 2) (with respect to the above
inner product)? Is{

A1 =
(
1 0
0 0

)
, A2 =

(
0 1/

√
2

0 1/
√
2

)
, A3 =

(
0 0
1 0

)}
an orthonormal set? Justify your answer.

(d) Let B =
(

0 1
−1 0

)
. Using (c) and the fact that {A1, A2, A3, B} is a basis for

M (2, 2), find a matrix A4 such that {A1, A2, A3, A4} is an orthonormal basis
forM (2, 2).
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(e) Find λ1, λ2, λ3, λ4 ∈ R such that(
1 0
0 1

)
= λ1A1 + λ2A2 + λ3A3 + λ4A4

City University, London, UK

4.9. Suppose q1, q2, q3 are orthonormal vectors in R4 (not R3).

(a) What is the length of the vector v = 2q1 − 3q2 + 2q3?
(b) What four vectors does Gram–Schmidt produce when it orthonormalizes the

vectors q1, q2, q3, u?
(c) If u in part (b) is the vector v in part (a), why does the Gram–Schmidt break

down?

Massachusetts Institute of Technology, USA (part question)

4.10. Consider the vectors

v1 = [0, 1, 0, 1, 0] , v2 = [0, 1, 1, 0, 0] , v3 = [0, 1, 0, 1, 1]

in R5. Find w1, w2, w3 in R5 such that wi · wj = 0 for i �= j (i and j between 1 and
3), and such that Span ({w1, w2, w3}) = Span ({v1, v2, v3}) for i = 1, 2, 3.

University of California, Berkeley, USA

4.11. (a) Can you find vectors v = [ v1, v2
]
and w = [ w1, w2

]
in R2 which are

orthogonal with respect to the inner product 〈v, w〉 = 3v1w1 + 2v2w2, but not
orthonormal with respect to the usual dot product?

(b) If your answer to (a) is ‘yes’, find v and w. If your answer to (a) is ‘no’, give a
reason why you cannot find v and w.

University of Toronto, Canada

4.12. [Edited version of question.] Let P3 be the set of all polynomials with degree less
than or equal to 3. We will think of them as a subspace of C [−1, 1], the continuous
functions from the interval [−1, 1] to the reals. P3 has an inner product given by〈
f, g
〉 = 1∫

−1
f (x) g(x) dx. P3 has what we call a standard basis

{
1, x, x2, x3

}
. Let V be

the space spanned by {1, x}. Find an orthonormal basis for V.
Johns Hopkins University, USA

4.13. Define, for A and B inM2, 2 (R)

〈A, B〉 = tr
(
ATB

)
(Recall, ifM = [mij

] ∈ Mn, n (F), tr (M) =
n∑

i=1
mii.)

(a) Show that 〈A, B〉 is an inner product onM2, 2 (R).

(b) Find the distance between A =
[
1 2
1 0

]
and B =

[
3 3
1 2

]
in this inner product

space.
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(c) Find the angle between A =
[
1 2
1 0

]
and B =

[
3 3
1 2

]
in this inner product

space.

University of Toronto, Canada

4.14. Consider the linear space V of polynomials f(t) = c0 + c1t + c2t2 on 0 ≤ t ≤ 1
with inner product

〈
f, g
〉 = 1∫

0

f(t) g(t) dt

Find a basis for the subspace S of all f in V orthogonal to 1+ t satisfying the
additional restriction equation f

( 1
2
) = 0.

University of Utah, USA

4.15. Define the inner product of two polynomials f and g by the rule

〈
f, g
〉 = 1∫

0

f(x) g(1− x)dx

Using this definition of the inner product, find an orthogonal basis for the vector
space of all polynomials of degree≤ 2.

Columbia University, New York, USA
Sample questions

4.16. Explain why 〈A, B〉 = tr (AB) where A, B ∈ M22 is not an inner product.
4.17. Prove Proposition (4.17).
4.18. Let P3 be the vector space of cubic polynomials with the inner product given by

〈
f, g
〉 = 1∫

−1
f (x) g(x)dx

Convert the standard basis
{
1, x, x2, x3

}
to an orthonormal basis for P3.

[The resulting polynomials are called the Legendre (normalized) polynomials.]
4.19. Find an orthogonal basis for the column space C (A) of the matrix

A =

⎡⎢⎢⎣
1 0 2 1
0 1 3 3
2 5 1 0
0 4 0 0

⎤⎥⎥⎦
4.20. Let V be an inner product space. Prove that if the vector u is orthogonal for every

v ∈ V then u = O.
4.21. Let V be an inner product space. Prove that if the vector u is orthogonal to v then

every scalar multiple of u is also orthogonal to v.
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4.22. Let {v1, v2, v3, . . . , vn} be a set of orthonormal vectors in an inner product space V .
Prove that〈
x1v1 + x2v2 + · · · + xnvn, y1v1 + y2v2 + · · · + ynvn

〉 = x1y1 + x2y2 + · · · + xnyn

where xi and yi are scalars.
4.23. The distance function between two vectors u and v in an inner product space V is

denoted as d (u, v) and defined in (4.4) as

d (u, v) = ‖u− v‖

Prove the following results:

(a) If u �= v then d (u, v) > 0.
(b) d (u, v) ≤ d (u, w)+ d (w, v) where w ∈ V .
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Tell us about yourself and your work.

Although my background is in computer science, my work is at the confluence of
computer science and numerical linear algebra. It often involves applying computer
science techniques to develop scalable parallel algorithms and software for numerical
methods used in scientific computing and optimization.

How do you use linear algebra in your job, how important is linear algebra
and what are the challenges connected with the subject?

I both use and develop linear algebra algorithms and software. The biggest challenge that
I face is that there is no software for many numerical linear algebra algorithms that are
published in linear algebra journals, such as SIMAX, SISC, etc. The corresponding papers
typically present limited experimental evidence of the effectiveness of the proposed
techniques and a reliable comparison with competing techniques is even harder to find.

What are the key issues in your area of linear algebra research?

There are two important issues:

1) lack of resilience of linear algebra algorithms and software to soft errors on massively
parallel machines,

2) scalability limiting effects of global communication and synchronization on linear
algebra software on massively parallel machines.

Addressing both these issues requires the developing of novel algorithmic techniques.

Have you any particular messages that you would like to give to students
starting off studying linear algebra?

Always pay attention to how a linear algebra algorithm will perform on real problems on
real computers. Asymptotic bounds based on operation counts are almost obsolete when
the operations are virtually free and almost all the cost is in data transfer. Different
algorithms with similar complexities can have different spatial and temporal locality
properties, which have a huge impact on the behaviour of the algorithm in a realistic
setting.
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SECTION 5.1 Introduction to Linear Transformations

By the end of this section you will be able to

● determine what is meant by a transformation

● prove some properties of linear transformations (mappings)

In this chapter we look at functions defined on vector spaces called transformations. Most
of the theorems in linear algebra can be formulated in terms of linear transformations
which we will discuss below. Transformations also give matrices a geometric flavour. For
example, rotations, reflections and projections of vectors can be described by writing a
transformation as a matrix.

Transformations are particularly useful in computer graphics and games. Examples of
transformations which can be used to create an animation are shown in Fig. 5.1.

Sometimes linear algebra is described as the study of linear transformations on vector
spaces.

Figure 5.1
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5.1.1 Functions

What does the term function mean?
In everyday language it means the purpose of something or someone. In mathematics, a function
is a process that takes an input value, and generates a unique output value.

More formally:

Definition (5.1). A function operating from set A to set B is a rule which assigns every
element of A to one and only one element in the set B.

A function f from A to B is denoted by f : A→ B. The set where the function starts from
(A) is called the domain and where it arrives (B) is called the codomain. The function f
takes a particular value, such as x, and converts it to a value y. This is denoted by

f (x) = y

The actual values that the function f takes in the set B is called the range or image (Fig. 5.2).

A B

x y

Domain Codomain

A B

Domain Codomain

Range or
image.

f

f

f

Figure 5.2

In this chapter we discuss a function between two vector spaces such as V and W. For
example, f : R2 → R3 is a function between two vector spaces (Euclidean spaces) where
R2 is the domain and R3 the codomain.

In general, if for a function f we have f : V →W (a function fromV toW), whereV and
W are vector spaces, then the function f is called a transformation or map from V to W.
Transformation is just another word for function and works on vectors as well as numbers.
Also we tend to use the letter T for transformation, that is T : V →W.

In somemathematical literature you will see the termmap used to mean transformation.
They are both the same thing. We will use transformation.

Example 5.1

Consider T : R2 → R2 (transformation from R2 to R2) defined by T
([

x
y

])
=
(−y

x

)
.

Determine T
([

1
2

])
and plot both

[
1
2

]
and T

([
1
2

])
on R2.
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Solution

How do we find T
([

1
2

])
?

By substituting x = 1 and y = 2 into T
([

x
y

])
=
(−y

x

)
:

T
([

1
2

])
=
(−2

1

)

Plotting these on R2 we have (Fig. 5.3).

1
–2

2
1

T

–2 –1,5

1,5

–0,5 0,5
x

y

0,5

–1 1

2

1

Figure 5.3

The transformation T rotates the vector

(
1
2

)
by 90◦ in an anti-clockwise direction with centre at the

origin.

Example 5.2

Consider the transformation T : R3 → R2 defined by T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ = ( x − y
x − z

)
. Determine

(i) T

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ (ii) T

⎛⎝⎡⎣−1−2
−3

⎤⎦⎞⎠
Solution
This type of transformation is common in computer graphics because it represents something in three
dimensions

(
R3) onto a two-dimensional screen

(
R2).

(continued...)
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(i) For T

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ we substitute x = 1, y = 2 and z = 3 into T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ = ( x− y
x − z

)
:

T

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ = ( 1− 2
1− 3

)
=
(−1
−2
)

(ii) Similarly we have

T

⎛⎝⎡⎣−1−2
−3

⎤⎦⎞⎠ = (−1− (−2)
−1− (−3)

)
=
(−1+ 2
−1+ 3

)
=
(
1
2

)

Note that the transformation T maps a vector from R3 (3-space) to a vector in R2 (2-space). (Transforms
a vector in 3d onto a plane.)

5.1.2 Linear transformations (linear mappings)

What do you think the term ‘linear transformation’ means?
A linear transformation between vector spaces is a special transformation (mapping) which
preserves the fundamental linear algebra operations – scalar multiplication and vector addition.

The formal definition is:

Definition (5.2). A transformation T : V →W is called a linear transformation⇔ for all
vectors u and v in the vector space V and for any scalar k we have

(a) T (u+ v) = T (u)+ T(v) [T preserves vector addition]
(b) T (ku) = k T (u) [T preserves scalar multiplication]

For example, the transformations given in the above examples 5.1 and 5.2 are linear.
For T to be a linear transformation or a linear map it needs to satisfy both conditions, (a)
and (b).

What do these conditions mean?
They both mean that for a linear transformation it does not matter whether you carry out the
vector operation first and then transform, or vice versa.

A transformation is a function with an input and an output (Fig. 5.4).

Figure 5.4

A linear transformation is one where the output changes proportionately to the input. A
real-life example is cooking recipes – double your ingredients and you double your output.
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(a) (b) 

A

2

2 3 4 5

–3 –2 –1
–1

–2

–3

1

2

3

1 2 3
A

BC

C‛B‛

A‛
O

1

4

6

8

10

B

C

C‛

B‛

Figure 5.5

We can treat matrices as linear transformations which act on points or vectors
(Fig. 5.5).

Fig. 5.5(a) shows an example of a transformation which enlarges an object. (Triangle
ABC is enlarged to AB′C′ – doubles each side.) The matrix transformation in this case is(
2 0
0 2

)
.

Fig. 5.5(b) shows an example of a transformationwhich rotates the points of the rectangle

anti-clockwise by 180◦ about the origin. The matrix transformation is
(−1 0

0 −1
)
.

Example 5.3

Show that T : R2 → R2 defined by T(x) = Ax where A =
(
1 0
0 −1

)
is a linear transformation.

Solution
What does this transformation do?

Let x =
[
x
y

]
then T

([
x
y

])
=
(
1 0
0 −1

)(
x
y

)
=
(

x
−y
)

.

The transformation T places a negative in front of the y. The result is shown in Fig. 5.6.

Transformationx

y

Figure 5.6

(continued...)
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The given transformation reflects the vector in the horizontal axis. We need to show that this is a linear
transformation.

Let u =
[
x
y

]
and v =

[
s
t

]
be our vectors in R2.

How do we show that the given T is linear?
Show that T preserves both vector addition and scalar multiplication. This means that we need to check
that both conditions (a) and (b) of the above Definition (5.2) hold.

Checking condition (a):

T (u+ v) = T
([

x
y

]
+
[
s
t

])
= T

([
x + s
y+ t

])
={

applying the given
transformation

(
x + s

−(y+ t)

)
=
(

x+ s
−y− t

)

Now we need to show that T (u)+ T(v) is equal to this vector on the right,

(
x+ s
−y− t

)
:

T (u)+ T(v) =
(

x
−y
)
+
(

s
−t
)
=
(

x + s
−y− t

)

Thus we have shown condition (a), that is T (u+ v) = T (u)+ T(v).
In this example, linear transformation means that we can add the vectors u and v and then reflect in

the horizontal axis, or we can reflect first and then add. In either case, we end up with the same vector
because T (u+ v) = T (u)+ T(v).

Checking condition (b):
We need to demonstrate that T preserves scalar multiplication, that is T(ku) = k T (u),
where k is any scalar:

T(k u) = T
(
k
[
x
y

])
= T

([
k x
k y

])
=
(

kx
−ky

) [
applying T

([
x
y

])
=
(

x
−y
)]

What do we do next?

Show that k T (u) is equal to the above vector on the right,

(
kx
−ky

)
:

k T (u) = kT
([

x
y

])
= k

(
x
−y
)
=
(

kx
−ky

)
= T(k u) [from above]

Thus we have our result. Again, we can change the order, that is first apply scalar multiplication and
then transform, or vice versa. We end up with the same vector, T(k u) = k T (u).

This means the given transformation T satisfies both conditions (a) and (b) of definition:
(5.2) (a) T (u+ v) = T (u)+ T(v) and (b) T(ku) = k T (u).
Therefore T is a linear transformation.

Let V be a vector space. Then a linear mapping or transformation T : V → V (the domain
and codomain are the same vector space) is called a linear operator. Linear operators are
important in subjects such as functional analysis and quantum mechanics because they
preserve vector addition and scalar multiplication.
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Is the transformation T given in the above Example 5.3 a linear operator?
Yes, because the transform goes from R2 to R2 (same vector spaces), that is T : R2 → R2 .

Example 5.4

Show that the transformation T : R2 → R3 defined by T
([

x
y

])
=
⎛⎝ x + y
x − y
y

⎞⎠ is linear. This is not a

linear operator because T goes from R2 to R3 (different vector spaces). The transformation T in this case
transforms a vector in the plane onto 3d space (Fig. 5.7).

Transformation

4

3

2

1

0
0

1
2

3x

z

0 1 2 3 4

y

Figure 5.7

Solution

Let u =
(
x
y

)
and v =

(
s
t

)
. As for the above Example 5.3 we have:

T (u+ v) = T
([

x
y

]
+
[
s
t

])

= T
([

x + s
y+ t

])
={

applying the given

transformation

⎛⎝ (x + s)+ (y+ t
)

(x + s)− (y+ t
)

y+ t

⎞⎠ =
⎛⎝ x + s+ y+ t
x − y+ s− t

y+ t

⎞⎠

We need to show that T (u)+ T(v) is equal to the vector on the right hand side.

T (u)+ T(v) = T
([

x
y

])
+ T

([
s
t

])

={

applying the given

transformation

⎛⎝ x+ y
x− y
y

⎞⎠+
⎛⎝ s+ t
s− t
t

⎞⎠ =
⎛⎝ x + y+ s+ t
x − y+ s− t

y+ t

⎞⎠

This is identical to T (u+ v), therefore T (u+ v) = T (u)+ T(v), which means that T preserves
vector addition. Similarly we can check T(k u) = k T (u) for any scalar k. Therefore by

(5.2) (a) T (u+ v) = T (u)+ T(v) and (b) T(k u) = k T (u)

the given transformation T is a linear transformation.
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A square function such as f (x) = x2 is also a transformation. In this case, we have
f : R → R given by f (x) = x2.

Is f a linear transformation?
We need to check both conditions (a) and (b) of definition (5.2):

f (x+ y) = (x+ y)2 = x2 + 2xy+ y2

f (x)+ f (y) = x2 + y2

Since x2 + 2xy+ y2 �= x2 + y2 [not equal], therefore

f (x + y) �= f (x)+ f (y)

What does this mean?
It means that f is not a linear function or linear transformation because condition (a) of (5.2) fails.
[The output does not change in proportion; we have an extra 2xy with f

(
x+ y

)
.]

Example 5.5

Let V be an inner product space. Show that T : V → R defined by T (u) = ‖u‖ is not a linear
transformation. [This transformation measures the norm or length of a vector.]

Solution
How can we show that the given transformation is not linear?
If the transformation T fails one (or both) of the conditions of (5.2), that is:
(a) T (u+ v) = T (u)+ T(v) (b) T(k u) = k T (u)

then T is not a linear transformation. Checking condition (a):

T (u+ v) = ‖u+ v‖
T (u) = ‖u‖ and T(v) = ‖v‖

However, by Minkowski’s inequality of chapter 4:
(4.7) ‖u+ v‖ ≤ ‖u‖ + ‖v‖ [less than or equal to],
we have

T (u+ v) = ‖u+ v‖
≤ ‖u‖ + ‖v‖ = T (u)+ T(v)

Hence T (u+ v) ≤ T (u)+ T(v), therefore condition (a) fails because we don’t have equality and so
the given transformation is not linear. In this case, T is not a linear transformation because the length of
the vector u+ v is not equal to the length of u plus the length of v.

Example 5.6

Let V be a vector space. Show that the identity transformation T : V → V defined by T (u) = u is a
linear operator.
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Solution
This is the identity transformation because T maps a given vector u back to u (Fig. 5.8).

Figure 5.8

How do we show that this transformation is linear?
Clearly, the output is proportional to the input but intuition does not constitute a rigorous test. We use
our definition of linear transformation. Check the two conditions of (5.2):

(a) T (u+ v) = T (u)+ T(v) and (b) T
(
ku
) = k T (u)

Let u and v be arbitrary vectors in the vector space V . We have

T (u+ v) = u+ v
[
as transformation has the same input and output

]
= T (u)+ T(v)

Hence condition (a) is satisfied. Let k be any scalar, then

T(k u) = ku = k T (u)

Thus condition (b) is satisfied. Therefore by the above Definition (5.2), we conclude that the given
identity transformation, T, is a linear operator.

5.1.3 Properties of linear transformations

In this subsection, we highlight some of the properties of linear transformation.

Proposition (5.3). Let V and W be vector spaces and u and v be vectors in V . Let
T : V →W be a linear transformation, then we have the following:

(a) T(O) = O where O is the zero vector.
(b) T (−u) = −T (u)

(c) T (u− v) = T (u)− T(v)

Proof of (a).
We can write the zero vectorO as 0u:

T(O) = T (0u) = 0T (u)︸ ︷︷ ︸
because T is linear

= O

Thus T(O) = O.
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Proof of (b).
We write−u as (−1) u. We have

T (−u) = T ((−1)u) ={

because T is linear
(−1)T (u) = −T (u)

Proof of (c).
We write u− v as u+ (−v):

T (u− v) = T (u+ (−v))
= T (u)+ T (−v) [

because T is linear
]

= T (u)− T(v)
[
by part (b) T(−v) = −T (v)

]

Another important property of linear transformation is the following:

Proposition (5.4). Let V and W be vector spaces. Let T : V → W be a linear transforma-
tion and {u1, u2, u3, . . . ,un} be vectors in the vector space V such that

v = k1u1 + k2u2 + · · · + knun

where the k’s are scalars. This means that the vector v is a linear combination of the usubscript
vectors. Then

T(v) = k1T(u1)+ k2T(u2)+ · · · + knT(un)

How do we prove this proposition?
By using mathematical induction. The three steps of proof by mathematical induction are:

1. Prove the given result for some base case n = 1 or n = m0.

2. Assume that the result is true for n = m.

3. Prove the result for n = m+ 1.

Proof.

1. We can take out the scalar T(k1u1) = k1T (u1) because T is linear. The result holds
for n = 1.

2. We assume that the result is true for n = m, that is

T(k1u1 + k2u2 + · · · + kmum) = k1T(u1)+ · · · + kmT(um) (∗)
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3. Required to prove the result for n = m+ 1:

T
(
k1u1 + · · · + kmum + km+1um+1

)
= T

([
k1u1 + · · · + kmum

]+ km+1um+1
)

= T
([
k1u1 + · · · + kmum

])+ T
(
km+1um+1

) [
because T is linear

]
= k1T (u1)+ · · · + kmT (um)︸ ︷︷ ︸

By (∗)

+ km+1T (um+1)

Hence the result is true for n = m+ 1.
By mathematical induction we have our required result.

We can use both these propositions (5.3) and (5.4) to determine whether a given trans-
formation is linear or not. If any one of these properties (5.3) (a), (b), (c) or (5.4) is not
satisfied for a given transformation then we conclude that T is not a linear transformation.

In the exercises, you are asked to show that if T(O) �= O [not equal] then T is not linear.

Example 5.7

Let P2 be the vector space of polynomials of degree 2 or less. The polynomials are of the form
c2x2 + c1x+ c0 where the c’s are the coefficients.

Show that the transformation T : P2 → P2 defined by

T
(
c2x2 + c1x + c0

) = c2x2 + c1x + (c0 + 1)

is not a linear transformation.

Solution
We can try testing (5.3) (a) which says that T(O) = O.
What is the zero vector in this case?
The zero vector is the zero polynomial which means that all the coefficients, c’s, are equal to zero.

T(O) = T
(
0x2 + 0x+ 0

)
= 0x2 + 0x + (0+ 1) = 1

[
applying transformation

]
Since 1 is not the zero vector, therefore T is not a linear transformation because we have

T(O) �= O
[
not equal

]
.

Example 5.8

Consider the linear transformation T : R2 → R2 defined by

T (u) = Au where A =
(

1 1
−1 1

)
(continued...)
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(i) The five corners of a house are given by the column vectors in the matrix:

H =
(

0 0 2 4 4
0 3 5 3 0

)
Transform each of the column vectors of H under T.

(ii) Describe the effect of the transformation T on the column vectors of H.

Solution

(i) Remember, the matrix multiplication AH means matrix A acts on each column vector of H:

AH =
(

1 1
−1 1

)(
0 0 2 4 4
0 3 5 3 0

)
=
(

0 3 7 7 4
0 3 3 −1 −4

)
(ii) Plotting our results (Fig. 5.9):

Transformation T  

1

1

2

2

3

3

4

4

5

1 2

2

-2

-4

3 4

4

5 6

5

Figure 5.9

The transformation T rotates the given vectors (corners) by 45◦ in a clockwise direction.

i Summary

A transformation or mapping is a function which assigns every element in the domain (start) to a
unique element in the codomain (arrival).

A transformation between two vector spaces V and W denoted T : V →W is linear⇔
(a) T (u+ v) = T (u)+ T(v) for all vectors u and v

(b) T(k u) = kT (u) for any scalar k

EXERCISES 5.1

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Consider the transformation T : R2 → R2 given by T (u) = Au where A =
(
0 1
1 0

)
.

Determine the vector T (u) where u is given by:
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(a) u =
(
1
3

)
(b) u =

(−1
5

)
(c) u =

(√
2
1

)
(d) u =

(−2
−3
)

For each of these vectors u and T (u) plot them on the same plane R2.

2. Consider the transformation T : R3 → R2 given by T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ = ( xy
xz

)
. Determine

the vector T (u) where u is given by:

(a) u =
⎛⎝ 1
3
5

⎞⎠ (b) u =
⎛⎝−1−4

4

⎞⎠ (c) u =
⎛⎝
√
2√
8√
18

⎞⎠ (d) u =
⎛⎝−2−3
−4

⎞⎠

3. Let T : R3 → R3 be given by T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ x+ y
y+ z
z + x

⎞⎠. Find T (u) where

(a) u =
⎛⎝ 2
4
7

⎞⎠ (b) u =
⎛⎝−38
−6

⎞⎠ (c) u =
⎛⎝ π

2π
5π

⎞⎠ (d) u =
⎛⎝ 1/2
2/3
3/4

⎞⎠
4. Explain why T : U → V given by T (u) = ±√u is not a transformation.
5. Determine whether the following transformations (mappings) are linear:

(a) T : R2 → R2 given by (i) T
([

x
y

])
=
(
y
x

)
(ii) T

([
x
y

])
=
(
x2

y2

)

(b) T : R3 → R2 given by T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ = ( xy
xz

)

(c) T : R3 → R3 given by (i) T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ x+ y
y+ z
z + x

⎞⎠ (ii) T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝√x√y√

z

⎞⎠
6. Let P2 be the vector space of polynomials of degree 2 or less. Decide whether the

following transformations are linear:

(a) T : P2 → P2 given by T
(
c2x2 + c1x+ c0

) = c0x2 + c1x+ c2
(b) T : P2 → P2 given by T

(
c2x2 + c1x+ c0

) = c22x
2 + c21x+ c20

7. Let Mnn be the vector space of size n by n matrices. Decide whether the following
transformations (mappings) are linear:
(a) T : M22 → M22 given by T (A) = AT where AT is the transpose of the matrix A.
(b) T : M22 → R given by T (A) = tr (A) where tr (A) is the trace of the matrix A.

[Remember, the trace of amatrix is the addition of all the leading diagonal elements
of the matrix.]
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(c) T : Mnn → R given by T (A) = a11a22a33 · · · ann where ajj are the entries along
the leading diagonal of a n by nmatrix.

8. Show that the transpose of any square matrix is a linear transformation (mapping).

9. Let T : C [0, 1]→ R be a transformation (mapping) given by T
(
f
) = 1∫

0
f (x)dx where

f is a continuous function defined in the interval [0, 1]. Show that T is a linear
transformation.

10. Let T : V →W be a transform such that T(O) �= O. Prove that T is not a linear
transform.

11. Let T : V →W be the zero transform, that is T (v) = O for all vectors v ∈ V . Show
that T is a linear transformation (mapping).

12. Let T : V →W be a linear transformation of an n-dimensional vector space into a
vector spaceW. Let {v1, v2, v3, . . . , vn} be a basis for V. Prove that if u is any vector in
V then we can write T (u) as a linear combination of{

T(v1),T(v2),T(v3), . . . ,T(vn)
}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 5.2 Kernel and Range of a Linear Transformation

By the end of this section you will be able to

● understand what is meant by the kernel and range of a linear transform

● derive some properties of the kernel and range

This is a challenging section which will use some of the results from earlier chapters. In
particular we will need to apply some propositions from chapter 3 to prove some of the
properties of the kernel and range. Try to do the proofs on your own first, and if you get
stuck then have a look at the text. This is a good way of understanding a proof.

The next two sections have similarities with subsection 3.6.1, where we defined: null
space, nullity and rank of amatrix. In this section we describe the kernel (null space), nullity
and range of a linear transformation.

Why is the kernel and range important?
Generally the kernel and range tell you which information has been carried over in the transform
and what has been lost.
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How do we know this?
By one of the most important results in linear algebra which is:

Let T : V →W be a linear transform where V is of finite dimension (dim). Then

dim(kernel(T))+ dim(range(T)) = dim(V)

This result says that all the information is contained in these two sets – kernel and range.
This is equivalent to the dimension theorem (3.34) that we mentioned in chapter 3.

How is the kernel and range connected to a linear system of equations?
A matrix, say A, can be used to represent a linear transformation, so finding the kernel means
finding all the vectors x such that Ax = O. The linear system Ax = b has a solution if and only if
vector b is in the range (image) of the linear transformation.

5.2.1 Kernel of a linear transformation (mapping)

The notation Ax = bmeans that the matrix A transforms (maps) the vector x to the vector
b. Matrix A is a function with input x and output b (Fig. 5.10).

Figure 5.10

Generally a function f in mathematics acts on numbers, but the matrixA acts on vectors.

Example 5.9

Find v such that T(v) = O for the linear transformation T : R2 → R2 defined by

T(v) = Av where A =
(

1 1
−1 1

)
Solution
Let v = (x y)T and A be the given matrix, then

T
((

x
y

))
=
(

1 1
−1 1

)(
x
y

)
=
(
0
0

) [
Using T(v) = Av = O =

(
0
0

)]
Opening out the matrix gives the simultaneous equations:

x + y = 0
−x + y = 0

}
⇒ x = 0 and y = 0

Hence v = (x y)T = (0 0)T = O.
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The set of vectors in the starting vector space which are transformed to the zero vector is
called the kernel (pronounced ‘kur-nl’) of the transformation and is denoted by ker(T).

For the above Example 5.9 we have ker(T) = {O}, that is the kernel of T is only the zero
vector. There are no other vectors in R2 which get transformed to the zero vector under T.
(This ker(T) = {O} is the null space of the matrix A.) Note that T(v) = O is equivalent to
solving Av = O, because matrix A represents the transform T.

We will show later that if the kernel is just the zero vector, O, then we can move things
back, that is the linear transform has an inverse. It means that all the information was
carried over. In general, there may exist other vectors besides the zero vector which are also
transformed to the zero vector as Example 5.10 below demonstrates.

For a general linear transform, T : V →W, the set of vectors in the domain V which
arrive at the zero vectorO inW is called the kernel of T and is illustrated in Fig. 5.11.

V W

O

T
Kernel of Zero

vector
T

Figure 5.11

In everyday English language, kernel means softer part inside a shell. In linear algebra,
kernel represents those parts which get transformed to the zero vector.

Definition (5.5). Let T : V →W be a linear transform (map). The set of all vectors v in V
that are transformed to the zero vector inW is called the kernel of T, denoted by ker(T). It
is the set of vectors v in V such that T(v) = O.

Example 5.10

Consider the zero linear transformation T : V →W such that T (v) = O for all vectors v in V . Find
ker(T).

Solution
All the vectors in V arrive at the zero vector under T, that is T (v) = O, therefore ker(T) = V . This
means all of the input set V is the kernel of T (Fig. 5.12).

Figure 5.12
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Example 5.11

(i) Consider the linear transformation T : R3 → R3 given by T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ =
⎛⎝ x
y
0

⎞⎠. Find ker(T).

(ii) Show that u− v is in ker(T) where u = (1 2 3)T and v = (1 2 5)T .

Solution

(i) We need to find the vectors in R3 which arrive at the zero vector under T.
Which vectors are transformed (mapped) to the zero vector?

Inspecting the given transformation T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ =
⎛⎝ x
y
0

⎞⎠, we arrive at the zero vector if x = 0, y = 0

and z = r, where r is any real number. Therefore

T

⎛⎝⎛⎝ 0
0
r

⎞⎠⎞⎠ =
⎛⎝ 0
0
0

⎞⎠ = O

Thus the kernel of T in this case is

⎧⎨⎩
⎛⎝ 0
0
r

⎞⎠∣∣∣∣∣∣ r is a real number

⎫⎬⎭. The kernel of the given

transformation T is the z axis in R3 as illustrated in Fig. 5.13.

z axis  = ker(T) 

T(v) = (x  y  0)T
T 

T 

v = (x  y  z)T

Figure 5.13

The given T transforms any point in R3 to the shaded plane shown in Fig. 5.13.

(ii) We have

u− v = (1 2 3)T − (1 2 5)T = (0 0 −2)T

Transforming this vector u− v:

T(u− v) = T
(
(0 0 −2)T ) = (0 0 0)T = O

Since T (u− v) = O the vector u− v is in ker(T). Using T is linear on T (u− v) = O gives

T (u− v) = T (u)− T(v) = O implies T (u) = T(v)

(continued...)
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u− v is in ker(T) means that vectors u and v arrive at the same point under T (Fig. 5.14).

Figure 5.14

Hence the kernel detects when two points are transformed to the same point.

The linear transformation in Example 5.11 projects vectors in R3 onto a plane in R3.
This type of linear transformation crops up in computer graphics. In computer graphics
the concept of two vectors being transformed to the same point means that one object is
‘blocking’ the view of the other on the screen.

If the vector u− v is in ker(T) for a linear transformation T, which projects vectors onto
a screen, then T (u) is blocking T(v) or vice versa on the screen.

5.2.2 Properties of the kernel

Proposition (5.6). Let T : V →W be a linear transformation (mapping) between the
vector spaces V andW. Then the kernel of T is a subspace of the vector space V .

What does this mean?
The set of vectors v in V such that T(v) = O is a subspace of V which can be illustrated as shown
in Fig. 5.15.

0

Figure 5.15

How do we prove this result?
By using Proposition (3.7) of chapter 3 which states:

A non-empty subset S with vectors u and v is a subspace⇔ ku+ c v is also in S.

In this case, the set S in question is ker(T).

Proof.

How do we know that ker(T) is non-empty?
Because by Proposition (5.3) (a) of the last section we have T(O) = O for a linear transform T.
Hence the zero vector O is in ker(T) so it cannot be empty.
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What else do we need to show?
(3.7) says that if u and v are vectors in ker(T) then any linear combination ku+ c v (k and c are
scalars) is also in ker(T).

Let u and v be vectors in ker(T), consider the vector ku+ c v:

T(ku+ c v) = kT (u)+ cT(v)
[
because T is linear

]
= kO+ cO

[
T (u) = T(v) = O because
u and v are in ker(T)

]
= O

We have T(k u+ c v) = O, therefore k u+ c v is in ker(T).
Any linear combination of vectors u and v are in ker(T), therefore ker(T) is a subspace

of V .

Since ker(T) is a subspace of the vector space V we have the following definition:

Definition (5.7). Let T : V →W be a linear transform. Then ker(T) is also called the null
space of T and the dimension of ker(T) is called the nullity of T which is denoted by
nullity(T).

This definition is identical to the definition of null space of a matrix given in chapter 3.
Let T (u) = Au be a linear transformation then ker(T), or the null space of T, is the

general solution u such that Au = O. [Definition (3.31).]
This means that ker(T) is the set of input vectors u that arrive at the zero vector by

applying matrixA. Remember, this is the same as the null space of matrixA. The null space
definition given above is more generic because it applies to any linear transformation as
you will see in later examples.

Example 5.12

Let T : R3 → R2 be given by T(x) = Ax where x is in R3 and

A =
(

1 2 3
4 5 6

)
Find (i) ker(T) (ii) null space of T (iii) nullity(T)

Solution

(i) ker(T) is the solution space of

T(x) = Ax = O

Hence it is the null space of matrix A. We found null spaces of matrices in section 3.6.

(continued...)
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How?
By placing the matrix A into (reduced) row echelon form R and then solving Rx = O:

A =
(

1 2 3
4 5 6

)
R =

(
1 0 −1
0 1 2

)
Letting x = (x y z)T then Rx = O gives:

x − z = 0
y + 2z = 0

From the first equation, we have x = z and the bottom equation gives y = −2z. Let z = r,
where r is any real number, then x = r, y = −2r and z = r. This means that ker(T) is the
solution:

x =
⎛⎝ x
y
z

⎞⎠ =
⎛⎝ r
−2r

r

⎞⎠ = r

⎛⎝ 1
−2
1

⎞⎠
We have ker(T) = {ru ∣∣ u = (1 −2 1)T and r is any real number

}
.

(ii) The null space of T and matrix A is ker(T) = {ru ∣∣ u = (1 −2 1)T
}

.

(iii) What does nullity(T) mean?
It is the dimension of the null space or ker(T). The dimension is the number of vectors in the
basis of ker(T). There is only one vector in the basis of ker(T) which is u = (1 −2 1)T ,
therefore nullity(T) = 1.

The challenge is finding ker(T), the kernel of the given linear transformation (mapping).
Once we have ker(T) then the dimension of this subspace, given by nullity(T) is normally
straightforward, we only need to find the number of basis vectors for ker(T).

However, finding a basis can be more challenging.

Example 5.13

Let P2 and P3 be the vector space of polynomials of degrees less than or equal to 2 and 3 respectively.
Consider the linear transformation T : P3 → P2 given by

T(p) = p′(x)

where p(x) is a cubic polynomial and p′(x) represents the first derivative of p(x).
Determine nullity(T).

Solution
How do we find nullity(T)?
First we find ker(T).
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What is ker(T) equal to?
ker(T) is the set of polynomials that arrive at the zero vector under the given linear transform T. This
transform T differentiates a given polynomial p(x). We have

T(p) = p′(x) = 0

Which polynomials gives zero after differentiation?
The constant polynomials, that is

T (c) = c′ = 0 where c is a constant

Thus ker(T) = {c ∣∣ c is any real number
}

.
What is the dimension of this?
A basis for ker(T) is {1}, therefore dimension of ker(T) is 1 because there is only one vector in the basis.
We have

nullity(T) = 1

5.2.3 The range (image) of a linear transformation

We briefly defined what is meant by the range (image) of a function in section 5.1.

What is the range of a linear transformation T : V →W?
Figure 5.16 illustrates the meaning of the range or image of a linear transform.

T

T

Range or 
image of T

Figure 5.16

The range of a linear transformation T is the set of vectors we arrive at after applying T.

Definition (5.8). Let T : V →W be a linear transform. The range (image) of the linear
transform is the set of all the output vectors w inW for which there are input vectors v in
V such that

T(v) = w

The range is the set of output vectors in W that are images of the input vectors in V
under the transform T. We can write the range(T) of T : V → W in set theory notation as
follows:

(5.9) range(T) = {T(v)
∣∣∣ v in V}
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Note that the range(T) may not include all of the arrival vector space W as you can see
in the above Fig. 5.16.

Example 5.14

Consider the zero linear transformation T : V →W such that T (v) = O for all vectors v in V . Find
range(T) or in other words the image of T.

Solution
All vectors arrive at a single destination — the zero vector under T, therefore:

range(T) = O [zero vector]

Thus the range or image is a single element {O}. This is illustrated in Fig. 5.17.

T

T

Figure 5.17

Note that the ker(T) is the whole of the start vector space V , ker(T) = V , but range of T is just the
zero vector, O.

It is important to note the difference between kernel and range. The kernel of a
transformation lies in the domain (start) and range lies in the codomain (arrival).

A common term for range is image. We will use both.

Example 5.15

Consider the linear transformation T : P2 → R such that T(p) = ∫ 10 p(x)dx where P2 is the vector space
of polynomials of degree 2 or less. Determine range (T). [You can check that T is indeed a linear
transformation.]

Solution
Let p(x) = ax2 + bx + c because p(x) is a polynomial of degree 2 or less, then

T
(
p(x)

) = 1∫
0

(ax2 + bx + c)dx

={

integrating

[
ax3

3
+ bx2

2
+ cx

]1
0
= a

3
+ b

2
+ c

[
substituting limits
x = 1 and x = 0

]
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We have a, b and c are any real numbers, therefore T(p) = a
3 + b

2 + c can be any real number.
What is range(T) equal to?
The set of all the real numbers, that is range(T) = R. We have all of P2 being transformed to the set of
real numbers R (Fig. 5.18).

Range of  T

P2 Figure 5.18

5.2.4 Properties of the range of a linear transformation

Note that the range of a linear transform T : V →W is composed of vectors in the arrival
vector space W. (The vectors we arrive at in W after applying T to vectors in V.) Next we
show that the range of T is a subspace of the arrival vector spaceW.

Proposition (5.10). Let V and W be vector spaces and T : V →W be a linear transfor-
mation. The range or image of the transformation T is a subspace of the arrival vector
spaceW.

What does this mean?
The shaded part in W in Fig. 5.16 is a subspace of W .

How do we prove this proposition?
Again, by using Proposition (3.7) of chapter 3:

A non-empty subset S with vectors u and v is a subspace⇔ ku+ c v is also in S.

Proof.
For a linear transform we have T(O) = O, therefore O is in the set of range(T), which
means the range is non-empty.

How do we prove that range(T) is a subspace of the arrival space W?
By showing any linear combination is also in the range. Let u and w be vectors in range(T) then
we need to show that

ku+ cw is also in range(T) [k and c are scalars]

Figure 5.19
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Required to prove that the set range(T) is closed, which means that ku+ cw cannot
escape from range(T).

Since u and w are in range(T), there must exist input vectors x in V and y in V such that

T(x) = u and T(y) = w

Figure 5.20

Consider the vector k u+ cw:

k u+ cw = k T(x)+ c T(y)
= T(k x)+ T(c y)

[
because T is linear

]
= T(k x+ c y)

[
because T is linear

]
V is a vector space, therefore the linear combination k x+ c y is in V . We have

T(k x+ c y) = k u+ cw

therefore ku+ cw is in range(T). Hence by (3.7), we conclude that range(T) is a subspace
of the vector spaceW.

i Summary

Let T : V →W be a linear transformation. We have the following:

(5.5) The set of all the vectors v in V such that T(v) = O is called the kernel of T.

(5.9) The range (or image) of T in W is defined by range(T) =
{
T(v)

∣∣∣ v in V
}

.

EXERCISES 5.2

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Find the kernel of the following linear transformations:

(a) T : R2 → R2 given by T(v) = Av where A =
(
1 0
0 1

)
.
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(b) T : R2 → R2 given by T(v) = Av where A =
(
1 1
1 1

)
.

(c) T : R2 → R2 given by T
((

x
y

))
=
(
0
0

)
.

(d) T : R3 → R3 given by T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ =
⎛⎝ 0
0
x

⎞⎠.
(e) T : R3 → R2 given by T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ = ( y− z
x − z

)
.

2. Let T : Mnn → Mnn be the linear transformation given by the transpose, that is

T (A) = AT

Determine ker(T) and range(T). [Mnn is an n by n square matrix].

3. Let T : P2 → P1 be the linear transformation of differentiation

T(p) = p′(x)

Determine ker(T) and range(T).

4. Let T : V →W be a linear transformation. Show that if u ∈ ker(T) and v ∈ ker(T)
then for any scalars k and c the vector (ku+ c v) ∈ ker(T).

5. Let T : V → W be a linear transformation. Prove that if v ∈ ker(T) then−v ∈ ker(T).

6. Consider the zero linear transformation T : V →W defined by T(v) = O for all v in
the domain V. Prove that ker(T) = V .

7. Consider the identity linear transformation T : V →W defined by T(v) = v. Prove
the following results:
(a) ker(T) = {O} (b) range(T) = V

8. Let T : V →W be a linear transformation and vectors u, v be in V.
Prove that if T (u) = x and T(v) = x then (u− v) ∈ ker(T).

9. Let T : V →W be a linear transformation. Prove that if S1 = {v1, v2, . . . , vn} spans the
domain V then S2 =

{
T(v1),T(v2), . . . ,T(vn)

}
spans range (T).

10. Let T : V →W be a linear transformation. Prove that if B = {v1, v2, . . . , vn} is a basis
for the domain V then S = {T(v1),T(v2), . . . ,T(vn)} is a basis for range(T).

11. Let T : V →W be a linear transformation. Let S be a subspace of V and
T(S) =

{
T(s)

∣∣∣ s ∈ S
}
. Prove that T(S) is a subspace of range(T).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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SECTION 5.3 Rank and Nullity

By the end of this section you will be able to

● find the rank and nullity of a linear transformation

5.3.1 Rank of a linear transformation (mapping)

In chapter 3 we discussed what is meant by the rank of a matrix and why it is important.
The rank of a matrix is the maximum number of linearly independent rows in the matrix,
or the dimension of the row space of the matrix. Remember, in some matrices many of the
rows vanish because they are linear combinations of the other rows (linearly dependent).
The rank is important in transferring data because a transformation with a lower rank
takes up less memory and time to be transferred. Low rank transformations are muchmore
computationally efficient.

The rank of a linear transformation tells us how much information has been trans-
formed over and is measured as the dimension of the range. The rank also tells us whether
information has been lost by the linear transform.

Definition (5.11). Let T : V →W be a linear transform (map) and range(T) be the range.
Then the dimension of range(T) is called the rank of T denoted rank(T) (Fig. 5.21).

T

T

Range(T). 
The dimension of 
this space is the 
rank of T. 

Figure 5.21

Next we state one of the most important results of linear algebra. The proof of this the-
orem is given towards the end of the section because it is long and requires you to recall
some definitions given in previous chapters.

Dimension theorem (also called the rank-nullity theorem) (5.12). Let T : V → W be a
linear transformation from an n-dimensional vector space V to a vector spaceW. Then

rank(T)+ nullity(T) = n

What does this formula mean?
It means

dim
(
range(T)

)+ dim
(
ker(T)

) = n
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where dim represents dimension. This is same as the dimension theorem (3.34) of chap-
ter 3. This suggests that adding the dimension of the range and kernel gives the dimension
of the start vector space V. As stated earlier, this result says that all the information is
contained in these two sets – kernel and range.

Why is the rank of a linear transformation important?
The rank gives us how much information has been carried over by the transform. If the rank of
the linear transform T : V →W is equal to the dimension of the start vector space V then all the
information has been moved over and we can go back; that is, the linear transform has an inverse.
We have:

1. If rank(T) = dim(V) then all the information has been carried over by T.

2. If rank(T) < dim(V) then some information has been lost by T.

3. If rank(T) = 0 < dim(V) then virtually all the information has been lost by T.

Example 5.16

Determine the rank and nullity of the linear transformation (mapping) T : P2 → R:

T(p) =
1∫

0

p(x)dx

where P2 is the vector space of polynomials of degree 2 or less.

Solution
What do you notice about the given linear transform?
It’s the same transform as in Example 5.15 of the last section. We have already established that
range(T) = R in Example 5.15.
What is the rank of T?
By the above definition (5.11) we have

rank(T) = dim(range(T)) = dim(R)

dim (R) = 1 because of the general rule dim (Rm) = m. Thus rank(T) = 1.
We also need to find the nullity of T which is the dimension of the kernel.

How?
By using the above formula (5.12):

dim(range(T))+ dim(ker(T)) = n

What is the value of n, the dimension of P2 equal to?
From chapter 3, Table 3.1 states that dim (Pk) = k+ 1 so dim (P2) = 3.

Substituting n = dim (P2) = 3 and dim(range(T)) = 1 into

dim(range(T))+ dim(ker(T)) = n

gives

1+ dim(ker(T)) = 3 which yields dim(ker(T)) = 2

(continued...)
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Hence the nullity of T is 2 and the rank of T is 1.
Since rank(T) = 1 but dimension of the start vector space P2 is 3, some of the information has been

lost by the linear transform T.

We are given that T : P2 → R and we know that dim (P2) = 3. However, the dimension
of the arrival vector space R is 1. Clearly the given transform T has lost some information
by going from dimension 3 to 1.

Example 5.17

Find the rank and nullity of the linear transform, T : R2 → R2 defined by

T
((

x
y

))
=
(

2x − y
6x − 3y

)
Solution
Since T is linear we can find the rank and nullity of T.
How do we find these?
Apply the dimension theorem formula (5.12):

dim(range(T))+ dim(ker(T)) = n

What is n equal to?
Remember, n is the dimension of the domain (start vector space) which is R2 because we are given
T : R2 → R2 . Hence n = dim

(
R2) = 2.

We need to find the dimension of the kernel of T.
What is ker(T) equal to?
Remember, ker(T) represents those vectors in R2 which arrive at the zero vector under the
transformation T:

T
((

x
y

))
=
(

2x − y
6x − 3y

)
=
(
0
0

)
We have the simultaneous equations:

2x − y = 0
6x− 3y = 0

}
gives y = 2x

Let x = s where s is any real number, then y = 2s. Thus

ker(T) =
{
s
(
1
2

) ∣∣∣∣ s is a real number

}
What is the dimension of ker(T)?
A basis (vector representing axis) for ker(T) is

{
(1 2)T

}
, therefore dim(ker(T)) = 1 because we only

have one vector in the basis. Hence nullity (T) = 1.
To find the rank which is the dimension of the range, we substitute n = 2 and dim(ker(T)) = 1 into

the above formula (5.12):

dim(range(T))+ dim(ker(T)) = n

to get dim(range(T))+ 1 = 2. This gives dim(range(T)) = 1. Therefore rank(T) = 1.
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Hence rank(T) = nullity(T) = 1.
rank(T) = 1 means that the actual arrival space is of dimension 1. However, the dimension of the start

vector space R2 is 2, so some information has been lost by T because T transforms vectors from
dimension 2 to 1.

5.3.2 Kernel and rank of the linear transformation T(x) = Ax

Proposition (5.13). LetT : Rn → Rm be a linear transformation given byT(x) = Ax. Then
range(T) is the column space of A.

Proof.
See Exercises 5.3.

In the next example, we convert the given matrix into its (reduced) row echelon form.
The method of conversion has been covered so many times in previous chapters that we
will not detail the steps, but simply write down the final (reduced) row echelon form.

Example 5.18

Let T : R4 → R2 be given by T(x) = Ax where x is in R4 and

A =
(

1 3 4 5
2 6 −8 −6

)
Find a basis for (i) ker(T) (ii) range(T)

Solution
(i) The kernel is a subspace of R4 because R4 is the start vector space of T.
What is ker(T) equal to?
It is the null space x of matrix A.
How do we find a basis for ker(T)?
We need to place the above matrix A into (reduced) row echelon form R and then solve Rx = O. The
general solution x gives a basis (axes) for the kernel. We can use MATLAB or hand calculations to obtain
the reduced row echelon form:

A =
(

1 3 4 5
2 6 −8 −6

) (
1 3 0 1
0 0 1 1

)
= R

Let x = (x y z w)T . Expanding the rows of Rx = O gives the simultaneous equations:

x + 3y + w
z + w

= 0
= 0

(1)
(2)

(continued...)
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From the bottom equation (2) we have z = −w. Let w = s where s is any real number. We have
z = −w = −s. Substituting w = s into the top equation (1) gives

x + 3y + s= 0 implies x = −3y− s

Let y = t where t is any real number. We have x = −3y− s = −3t − s. Hence x = −3t − s, y = t,
z = −s and w = s:

x =

⎛⎜⎜⎝
x
y
z
w

⎞⎟⎟⎠ =
⎛⎜⎜⎝
−3t − s

t
−s
s

⎞⎟⎟⎠ = s

⎛⎜⎜⎝
−1
0

−1
1

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
−3
1
0
0

⎞⎟⎟⎠
Therefore a set B of basis (axes) vectors for the kernel of T is given by

B =
{
(−1 0 −1 1)T , (−3 1 0 0)T

}
Hence nullity(T) = 2 because we have two basis (axes) vectors for ker(T).

(ii) What is range(T) equal to?
By the above Proposition (5.13):
range(T) is the column space of A.
The column space of A gives range(T). We convert the columns of matrix A into rows by taking the

transpose of A.
A set B′ of basis (axes) vectors for the range of T can be found by determining the reduced row

echelon form of AT (matrix A transposed). The non-zero rows of this reduced row echelon form give a
basis for the range of T. We have

AT =

⎛⎜⎜⎜⎜⎝
1 2

3 6

4 −8
5 −6

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1 0

0 1

0 0

0 0

⎞⎟⎟⎟⎟⎠ = R′

non-zero row

non-zero row

The first two rows of the reduced row echelon form matrix R′ is a basis for the range of T:

B′ =
{
(1 0)T , (0 1)T

}
Since the range of T has two basis (axes) vectors so rank(T) = 2.

Remember, adding the rank and nullity ofT gives the dimension of the start vector space:

rank(T)+ nullity(T) = 2+ 2 = 4 = dim
(
R4)

5.3.3 Proof of the dimension theorem

Now we prove the dimension theorem which was:
(5.12). Let T : V →W be a linear transformation from an n dimensional vector space V

to a vector spaceW. Then rank(T)+ nullity(T) = n.
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Proof.
Let dim(ker(T)) = k and {v1, v2, v3, . . . , vk} be a set of basis (axes) vectors for ker(T). Since
ker(T) is a subspace of the n-dimensional space V, therefore k ≤ n. We consider the two
cases, k = n and k < n:

Case 1: k = n.

What does k = n mean?
It means that all the vectors in V are transformed to the zero vector O, that is

T(v) = O for all v in V

What is the range of T?
All the vectors arrive at the zero vector O so range(T) = {O}.
What is dimension of range(T) = {O}?
By section 3.4 of chapter 3 we have dim ({O}) = 0.

Hence we have dim(ker(T)) = n and dim(range(T)) = 0:

dim(range(T))+ dim(ker(T)) = 0+ n = n

This is our required result.
Case 2: Consider k < n. Let

{
v1, v2, . . . , vk, vk+1, . . . , vn

}
be a set of basis (axes) vectors

for the vector space V where {v1, v2, v3, . . . , vk} is a basis (axes) for ker(T) as stated above.
This is possible because we are given that the dimension of the vector space V is n and
dim(ker(T)) = k < n.

Let v be an arbitrary vector in the start vector space V, then we can write this vector v as
a linear combination of the basis (axes) vectors, that is

v = c1v1 + c2v2 + · · · + ckvk + · · · + cnvn

where the cj’s are scalars.
Thus the vector T(v) is in range(T) and we have

T(v) = T(c1v1 + c2v2 + · · · + ckvk + ck+1vk+1 + · · · + cnvn)
= T (c1v1 + c2v2 + · · · + ckvk)︸ ︷︷ ︸

is in ker(T)

+T(ck+1vk+1 + · · · + cnvn)
[
because T is linear

]
= O+ T(ck+1vk+1 + · · · + cnvn)
= ck+1T(vk+1)+ · · · + cnT(vn)

[
because T is linear

]
We have

T(v) = ck+1T(vk+1) + · · · + cnT(vn) (∗)

where v is an arbitrary vector in the start vector space V , and T(v) is in range(T). Thus
the vectors on the right hand side of (∗), that is S = {T(vk+1),T(vk+2), . . . ,T(vn)} span
(or generate) range(T). We need to show that these vectors in the set S form a basis for
range(T).
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We have already established that these vectors span range(T), but what do we need to show for these
vectors in S to form a basis for range(T)?
Show that they are linearly independent.

How?
Consider the linear combination

dk+1T(vk+1)+ dk+2T(vk+2)+ · · · + dnT(vn) = O

where the dj ’s are scalars.

How do we show linear independence?
We need to prove that all the scalars dj ’s are zero.

Since T is linear we have

dk+1T(vk+1)+ dk+2T(vk+2)+ · · · + dnT(vn) = O
T(dk+1vk+1 + dk+2vk+2 + · · · + dnvn) = O

This means that the vector dk+1vk+1 + dk+2vk+2 + · · · + dnvn is in ker(T). Since
{v1, v2, v3, · · · , vk} is a basis for ker(T), we have

c1v1 + c2v2 + c3v3 + · · · + ckvk = dk+1vk+1 + dk+2vk+2 + · · · + dnvn
c1v1 + c2v2 + c3v3 + · · · + ckvk − dk+1vk+1 − dk+2vk+2 − · · · − dnvn = O

Remember, at the start of the proof we had {v1, v2, . . . , vk, . . . , vn} as a set of basis (axes)
vectors for the vector space V , therefore they are linearly independent so we have

c1 = c2 = · · · = ck = dk+1 = dk+2 = · · · = dn = 0

All the dj’s are zero, therefore S =
{
T(vk+1),T(vk+2), . . . ,T(vn)

}
is a linearly indepen-

dent set of vectors. Thus S = {T(vk+1),T(vk+2), . . . ,T(vn)} forms a set of basis (axes)
vectors for range(T).

How many vectors are there in this basis?
There are n− k vectors in this basis. Hence the dimension of this space is given by
dim(range(T)) = n− k. We have our result

dim(range(T))+ dim(ker(T)) = (n− k)+ k = n

This completes our proof.

We can apply the dimension theorem to check whether a given transformation is linear
or not.

Example 5.19

Consider the transform T : R3 → R2 given by T

⎡⎣⎛⎝ x
y
z

⎞⎠⎤⎦ = ( xz
xy

)
. Test this transform for linearity.
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Solution
The value of n in the dimension theorem (5.12) is dimension of the start vector space:

n = dim
(
R3
)
= 3

What is the kernel equal to in this case?
It is the set of vectors in the start vector space which are transformed to the zero vector:

T

⎡⎣⎛⎝ x
y
z

⎞⎠⎤⎦ = ( xz
xy

)
=
(
0
0

)
⇒ x = 0, y = r and z = s where r, s are any real numbers

The entries of vector x such that T(x) = O gives x = 0, y = r and z = s:

x =
⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 0

r
s

⎞⎠ = r

⎛⎝ 0
1
0

⎞⎠+ s

⎛⎝ 0
0
1

⎞⎠
A set of basis (axes) vectors for the kernel of T is

{
(0 1 0)T , (0 0 1)T

}
. This means nullity(T) = 2.

The range of T is given by

(
xz
xy

)
which is R2. Hence dim(R2) = rank(T) = 2.

We have

rank(T)+ nullity(T) = 2+ 2 = 4 �= 3 = n

Since the dimension theorem fails, the given transformation cannot be linear.

i Summary

(5.11) The dimension of range(T) is called the rank of T.
(5.12) Dimension or rank-nullity theorem is

rank(T)+ nullity(T) = n

where n is the dimension of the domain V .

EXERCISES 5.3

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Determine
(i) ker(T) (ii) nullity(T) (iii) range(T) (iv) rank(T)
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for the following linear transformations without using the dimension theorem:

(a) T : R2 → R2 given by T(v) = Av where A =
(
1 2
1 2

)
.

(b) T : R3 → R3 given by T(v) = Av where A =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠.
(c) T : R3 → R3 given by T(v) = Av where A =

⎛⎝ 1 3 5
2 6 10
4 12 20

⎞⎠.
(d) T : P3 → P3 given by T(p) = xp′.
(e) T : P3 → P2 given by T(p) = p′.

(f) T : P3 → R given by T(p) =
1∫
0
p(x) dx.

(g) T : M22 → P1 given by T
((

a b
c d

))
= (a+ c) x + (b+ d)

2. For each of the examples in parts (a) to (g) in question 1 verify the dimension theorem
(5.12) which says nullity(T)+ rank(T) = n where n is the dimension of the domain of
the linear transformation T.

3. Let T : R5 → R3 be given by T (u) = Au where u is in R5 and

A =
⎛⎝ 1 3 4 2 1

2 6 −7 −2 5
4 12 6 4 6

⎞⎠
Find a basis for (i) ker(T) (ii) range(T)

4. Prove Proposition (5.13).

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 5.4 Inverse Linear Transformations

By the end of this section you will be able to

● prove properties of a one-to-one and onto transformations

● test which transforms have an inverse

● understand what is meant by isomorphism

In this section we state the conditions that allow an inverse transformation to exist. Inverse
transformations are important because we often want to be able to undo a transformation.
We need a way back from our destination to our starting point and this can only be achieved
by the inverse transformation.
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Figure 5.22

Figure 5.22 illustrates what is meant by an inverse transform.
Transformations are used in cryptography, where a message is encoded by a linear

transform T. In order to decode this message we use the inverse transform of T.
Before we examine inverse transformations we need to discuss what is meant by one-

to-one and onto because they are closely related to the inverse. Having established these
definitions we prove some properties of these concepts.

This is a challenging section because you are required to prove a number of results.
However, if you learn the definitions thoroughly and can apply these with confidence then
the proofs should be straightforward.

5.4.1 One-to-one (injective) transformations

What do you think a one-to-one linear transformation is?
It’s a linear transformation T in which every vector in the domain (start) arrives at a different vector
in the range under T (Fig. 5.23).

Figure 5.23

Fig. 5.23(a) shows a one-to-one transformation while Fig. 5.23(b) is not one-to-one (it is
actually a many-to-one) transformation. Next, we give a formal definition of one-to-one.

Definition (5.14). Let T : V →W be a linear transform, u and v be in the domain V . The
transform T is one-to-one⇔

u �= v implies T (u) �= T(v)
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What does this definition mean?
Different vectors such as u and v where u �= v have distinct images T (u) �= T(v) under the linear
transformation T. Two different start vectors arrive at different destinations.

In other literature on linear algebra, terms such as 1−1 or injective are used for one-to-
one. We will stick with one-to-one.

Example 5.20

Consider the linear identity transformation T : V →W defined by T(v) = v for all v in V . Show that this
transformation T is one-to-one (injective).

Solution
Let u and v be different vectors in V , that is u �= v. Applying the given identity transformation we have

T (u) = u and T(v) = v

We have u �= v, therefore T (u) = u �= v = T(v). Hence T (u) �= T(v), so by the above Definition
(5.14):
The transform T is one-to-one⇔ u �= v implies T (u) �= T(v)

The given transformation T is one-to-one because different vectors, u �= v, arrive at different
destinations, T (u) �= T(v).

Example 5.21

Let T : V →W be the zero linear transformation defined by T(v) = O for all v in V . Show that this
transformation is not one-to-one (not injective).

Solution
Let u and v be different vectors in V , that is u �= v. Then applying the given transformation:

T (u) = O and T(v) = O

This gives T (u) = T(v) = O. We have different vectors, u �= v, arriving at the same destination,
T (u) = T(v), therefore by (5.14) we conclude that the given zero linear transformation is not
one-to-one.

Another test for one-to-one is:
T is one-to-one⇔

(5.15) T (u) = T(v) implies u = v

[If we have arrived at the same destination T (u) = T(v) then we have started with the
same vectors u = v.]
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Example 5.22

Let T : R2 → R2 be the linear transformation defined by

T
([

x
y

])
=
(
x− y
x+ y

)
Show that this transformation is one-to-one (injective).

Solution
This time we use result (5.15) for the given T.

Let u =
[
a
b

]
and v =

[
c
d

]
. Applying the given transformation to vectors u and v we have

T (u) = T
([

a
b

])
=
(
a− b
a+ b

)
and T(v) = T

([
c
d

])
=
(
c− d
c+ d

)

If T (u) = T(v) then we have

(
a− b
a+ b

)
=
(
c− d
c+ d

)
and equating corresponding entries gives:

a− b = c− d
a+ b = c+ d

}
implies a = c and b = d

Thus the solution of the above simultaneous equations is a = c and b = d which gives

u =
[
a
b

]
=
[
c
d

]
= v

We have T (u) = T(v) implies u = v.
This means that the same arrival vectors T (u) = T(v) implies that we started with the same vectors

u = v so by the above result (5.15) the given transformation T is one-to-one.

5.4.2 Properties of one-to-one transformations

An easier check for one-to-one transformation is the following:

Proposition (5.16). Let T : V → W be a linear transformation between the vector spaces
V andW. Then T is one-to-one⇔ ker(T) = {O}.

Why do we need another test for one-to-one?
This is a much simpler test for one-to-one. The proposition means that ker(T) = {O} is equivalent
to T is one-to-one. The kernel of T measures one-to-one.

How do we prove this result?
By going both (⇒ and ⇐) ways. (⇒) First assume T is one-to-one and derive ker(T) = {O} and
then (⇐) assume ker(T) = {O} and derive T is one-to-one.

Proof.
(⇒) Assume T is one-to-one. Since T is linear, by result (5.3) part (a):

If T is linear then T(O) = O
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We have T(O) = O. Suppose there is a vector u in V such that T (u) = O then

T (u) = O = T(O) implies T (u) = T(O)

Since we are assuming T is one-to-one, by
(5.15) T (u) = T(v) implies u = v
we have

T (u) = T(O) implies u = O

Thus the only vector transformed under T to the zero vector isO, which gives

ker(T) = {O}
(⇐) Now going the other way, we assume ker(T) = {O} and we need to prove T is one-
to-one. Let u and v be vectors in V which arrive at the same destination, T (u) = T(v).
We have

T (u) = T(v)
T (u)− T(v) = O

T (u− v) = O
[
because T is Linear

]
This means that (u− v) is in ker(T) = {O}. Thus

u− v = O⇒ u = v

By statement (5.15):
T is one-to-one⇔ T (u) = T(v) implies u = v
We have T (u) = T(v) implies u = v, therefore T is a one-to-one transformation.
We have proved our result both ways, therefore T is one-to-one⇔ ker(T) = {O}.

Example 5.23

Show that the linear transformation T given in Example 5.22 is one-to-one by using proposition (5.16).

Solution
What do we need to show?
Required to prove that the kernel of T of Example 5.22 is the zero vector.
How?
Applying the given transformation and equating to zero (because we are trying to find the kernel) yields

T
((

x
y

))
=
(
x − y
x + y

)
=
(
0
0

)
implies

x − y = 0
x + y = 0

}
gives x = 0, y = 0

Thus the kernel of T is (0 0)T = O. Therefore ker(T) = {O} (is the zero vector) which means that T
is one-to-one.
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There are many examples where the kernel of a transformation T is not equal to the zero
vector. For example, if we consider the derivative transformation S of polynomials then the
kernel of S is the set of all constants which are not the zero vector.

Another test for one-to-one is the following:

Proposition (5.17). Let T : V →W be a linear transformation. T is one-to-one ⇔
nullity(T) = 0.

(Remember, the nullity of the transformation T is the dimension of the kernel of T.)

Proof – Exercises 5.4.

5.4.3 Onto (surjective) linear transformations

What do you think the term onto transformation means?
An illustration of an onto transformation is shown in Fig. 5.24.

(b)(a)

T

T

T T

T

T

 is onto is NOT onto
V W V W

Figure 5.24

An onto transformation is when all the information carried over by T fills the whole
arrival vector spaceW.

How can we write this in mathematical terms?

Definition (5.18). Let T : V →W be a linear transform. The transform T is onto⇔ for
every w in the arrival vector space W there exists at least one v in the start vector space V
such that

w = T(v)

In other words T : V →W is an onto transformation⇔ range(T) =W. This means the
arriving vectors of T fill all ofW. We can write this as a proposition:

Proposition (5.19). A linear transformation T : V →W is onto⇔ range(T) =W.

Proof – Exercises 5.4.
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In other mathematical literature, or your lecture notes, you might find the term
surjective to mean onto. We will use onto.

Example 5.24

Show that the linear transformation T : R2 → R2 given by

T(v) = Av where A =
(

1 0
0 1

)
is an onto (surjective) transformation.

Solution
How do we show that the given transformation is onto?
Show that the range of T is R2 .

Let v =
(
x
y

)
then applying the given transformation to this vector yields:

T
((

x
y

))
=
(

1 0
0 1

)(
x
y

)
=
(
x
y

)
What is the range of T?

Since T
((

x
y

))
=
(
x
y

)
we have range(T) = R2 , which means that the range of T fills the whole

arrival vector space R2 . Hence the given transformation T is onto.

Example 5.25

Show that the linear differentiation transformation T : P3 → P3 given by

T(p) = p′

is not onto (not surjective).

Solution
Let p = ax3 + bx2 + cx+ d because p is a member of P3 which is the vector space of polynomials of
degree 3 or less. Applying the given transformation to p = ax3 + bx2 + cx+ d yields:

T
(
ax3 + bx2 + cx+ d

) = (
ax3 + bx2 + cx+ d

)′
= 3ax2 + 2bx + c

[
differentiating

]
We have T(p) = 3ax2 + 2bx + c and this is a quadratic (degree 2) polynomial (not a cubic, degree 3,

polynomial) which means that it is a member of P2. (Remember, P2 is the vector space of polynomials of
degree 2 or less.) Thus the range of T is P2 and because P2 �= P3 (not equal) the given transformation is
not onto (or not surjective) (Fig. 5.25).
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P3

Not onto.

P3

P

T

T
2

Figure 5.25

The given transform T does not fill the whole of the arrival vector space P3.

5.4.4 Properties of onto (surjective) linear transformations

Proposition (5.20). Let T : V →W be a linear transformation. Then T is onto⇔

rank(T) = dim(W)

This proposition means that if the dimension of the range is equal to the dimension
of the arrival vector space then the transformation T is onto. Also, if T is onto then the
dimensions of the range and codomain are equal. (The range= codomain.)

Proof – Exercises 5.4.

Proposition (5.21). If T : V →W is a linear transformation and dim(V) = dim(W) then
T is a one-to-one transformation⇔ T is onto.

This means that if the start and arrival vector spaces are of equal dimension then a trans-
formation which is one-to-one is also onto and an onto transformation is also one-to-one.
We get both (one-to-one and onto) or neither provided the start and arrival sets have the
same dimension (Fig. 5.26).

T

TV W

If V and W are of the same size
then we either have both one
to one and onto or neither.  

Figure 5.26

How do we prove the given result?
(⇒) First we assume that T is one-to-one and deduce T is onto and then (⇐) we assume T is
onto and deduce that T is one-to-one.
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Proof.
Let the start and arrival vector spaces have the same dimension, dim(V) = dim(W) = n.
(⇒) Assume T is one-to-one. By Proposition (5.17):
T is one-to-one⇔ nullity(T) = 0

We have nullity(T) = 0. By the dimension theorem (5.12):
rank(T)+ nullity(T) = n (where n is the dimension of V)
We have rank(T) = n because nullity(T) = 0. Since dim(W) = n so

rank(T) = dim(W) = n

By the above Proposition (5.20):

T : V →W is onto ⇔ rank(T) = dim(W)

We conclude that T is onto.
(⇐) Conversely we assume that T is onto and prove it is one-to-one.

How?
We prove nullity(T) = 0 then by Proposition (5.17) we have one-to-one:
T is one-to-one⇔ nullity(T) = 0

We are assuming T is onto, thereforeW = range(T). We have

rank(T) = dim(W) = n [remember, at the start we let dim(W) = n]

We also have dim(V) = n, therefore substituting this and rank(T) = n into the dimen-
sion theorem

rank(T)+ nullity(T) = dim(V)

gives

n+ nullity(T) = n ⇒ nullity(T) = 0

Since the nullity(T) = 0 so by (5.17) we conclude that T is one-to-one.

Proposition (5.22). If T : V →W is a linear transformation and dim(V) = dim(W) then
T is both one-to-one and onto⇔ ker(T) = {O}.

Proof – Exercises 5.4.

Proposition (5.22) makes life easier.

Why?
It means that to prove a linear transformation T : V →W with dim(V) = dim(W) is both one-to-
one and onto, we only need to show ker(T) = {O}.
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Why is this important?
If the kernel is the zero vector, O, then you know that everything was carried over by the transform,
and you can move things back (i.e. your linear transformation has an inverse).

Example 5.26

Let T : R2 → R2 be a linear transformation given by T
((

x
y

))
=
(
x− y
x+ y

)
.

Show that T is both onto and one-to-one.

Solution
What is the dimension of R2?
2. Both our start and arrival vector space have the same dimension:

dim
(
R2) = dim

(
R2) = 2

We can use the above Proposition (5.22) to show that kernel of T is the zero vector, ker(T) = {O}. We
have

T
((

x
y

))
=
(
x− y
x+ y

)
=
(
0
0

)
Solving these simultaneous equations:

x − y = 0
x + y = 0

}
gives x = 0 and y = 0 implies ker(T) =

(
0
0

)
= O

Since ker(T) = {O}, by (5.22) the given transformation is both one-to-one and onto.

The above example shows a simple test for a transformation to be one-to-one and onto.
Just check ker(T) = {O} provided the dimension of start and arrival vector spaces are equal.

A transformation which is both one-to-one and onto is called a bijection, or we say the
transform is bijective.

5.4.5 Inverse linear transformations

For inverse transformations to exist we need the given transformation to be bijective (one-
to-one and onto). This is why the work on these topics preceded this subsection.

What does the term ‘inverse linear transform’ mean?
In everyday language, inverse means opposite or in reverse. An inverse linear transform undoes
the linear transform. Figure 5.27 overleaf illustrates this.

It shows a linear transformT : V →W in which T takes the vector u to T (u) and inverse
T takes T (u) back to u.

How do we denote inverse T?
T−1 denotes inverse T (recall T−1 does not equal 1/T.)
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V W

T

T

T

Inverse

u (u)

Figure 5.27

Next we give the formal definition of T−1.

Definition (5.23). Let T : V →W be a bijective linear transform. The inverse transforma-
tion T−1 : W → V is defined as

v = T−1 (w)⇔ T(v) = w

If T has an inverse transform, we refer to T as being invertible. To be invertible, T
must be both one-to-one and onto (bijective) as the above proposition states. This means
that if a given linear transform is bijective (one-to-one and onto) then it has an inverse
transform.

Example 5.27

Let T : R2 → R2 be a linear transformation given by

T
((

x
y

))
=
(
x − y
x + y

)
Find the inverse transformation T−1 .

Solution
We can only find T−1 if T is both one-to-one and onto.
How do we show this?
We have already established that the given T is one-to-one and onto in Example 5.26, because we have
the same transformation T.
How do we determine T−1?
Let our arrival points be a = x− y and b = x + y, then express our starting points x and y in terms of a
and b.
Why?
Because we have the situation shown in Fig. 5.28.

x

y

⎛ ⎞
⎜ ⎟
⎝ ⎠

x y a

x y b

−⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

Figure 5.28
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Adding these equations:

+
x− y = a
x+ y = b

2x + 0 = a+ b which gives x = a+ b
2

= 1
2
(a+ b)

Subtracting these equations:

−
x− y = a
(x+ y = b)

0− 2y = a− b which gives y = b− a
2

= 1
2
(b− a)

Thus the inverse transformation T−1 : R2 → R2 is given by

T−1
((

a
b

))
=
(
x
y

)
=
( 1

2 (a+ b)
1
2 (b− a)

)
= 1

2

(
a+ b
b− a

)

Hence we have T−1
((

a
b

))
= 1

2

(
a+ b
b− a

)
.

Example 5.28

Let T : R2 → R2 be a linear transformation given by T(x) = Ax where A =
(

1 3
2 6

)
.

Find the inverse transformation T−1 .

Solution
Since the start and arrival vector spaces are of same dimension R2, there is a chance that the given
transform is invertible.

If we can show that the kernel of T is the zero vector, O, then by (5.22) we can say T is a bijection and
so it is invertible.
How can we find the kernel of T?

Let vector x =
(
x
y

)
be in the start vector space, which arrives at the zero vector under T. We need to

find x such that T(x) = Ax = O. The augmented matrix is given by:

(
1 3 0
2 6 0

) x y(
1 3 0
0 0 0

)
We have x+ 3y = 0 implies x = −3y. Let y = r, where r is any real number, then x = −3r:

ker(T) =
(
x
y

)
=
(−3r

r

)
= r

(−3
1

)
�= O

Hence ker(T) �= O [not zero] so the given transform does not have an inverse.
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Proposition (5.24). Let T : V → W be a linear transform which is both one-to-one and
onto. Then the inverse transform T−1 : W → V is also linear.

Proof – Exercises 5.4.

5.4.6 Isomorphism

At the end of section 4.3.4 of chapter 4 we described isomorphic vector spaces, but next we
give the formal definition:

Definition (5.25). If the linear transformation T : V →W is invertible then we say that the
vector spacesV andW are isomorphic. Such a transformation T is called an isomorphism.

What does isomorphism say about the vector spaces?
An isomorphism between vector spaces means these spaces are identical from a mathematical
viewpoint, even though they are different spaces.

Well, what does this mean?
It means that isomorphic vector spaces have an identical structure. They have similar proper-
ties with respect to the fundamental linear algebra operations of vector addition and scalar
multiplication.

We can make an analogy with music. Consider a low C note on a piano or a guitar, as
an example. Although the piano and guitar have different sounds, both the low C notes on
the piano and on the guitar will be in tune and is a representation of the same vibration.
Both instruments will produce a sound vibration with the same characteristics and prop-
erties. We can think of the piano and guitar as being isomorphic on a particular range of
notes.

Why is isomorphism useful?
If we didn’t look for isomorphism then we would be reinventing the wheel each time by studying
the same things over and over again for different vector spaces. An isomorphism between two
vector spaces preserves the structure.

Example 5.29

Show that vector spaces Pn and Rn+1 are isomorphic.

Solution
Remember, Pn is the vector space of polynomials of degree n or less and Rn+1 is the n+ 1 Euclidean
space. We need to create a linear transformation between Pn and Rn+1.
How?
We can write every polynomial p in Pn as

p = p(x) = c0 + c1x + c2x2 + · · · + cnxn
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The set of standard basis (axes) vectors for Pn is
{
1, x, x2, . . . , xn

}
. We can describe this vector p by

writing it in terms of the coordinates (c0, c1, c2, . . . , cn). This coordinate can also correspond to our
Euclidean space Rn+1 . Hence, we write the transformation as T : Pn → Rn+1 given by

T
(
c0 + c1x+ c2x2 + · · · + cnxn

) =
⎛⎜⎜⎜⎜⎝
c0
c1
...
cn

⎞⎟⎟⎟⎟⎠
Verify that this transformation is indeed linear.
In order to show Pn and Rn+1 are isomorphic we need to prove T is invertible.

How?
Since the dimensions of the two vector spaces are equal, dim (Pn) = dim

(
Rn+1) = n+ 1, we only

need to prove that kernel of T is the zero vector, that is ker(T) = {O}.
Remember, the kernel of T are those vectors in Pn which arrive at the zero vector under T. The zero

vector in the arrival vector space Rn+1 is given by

(
c0 c1 · · · cn

)T = (0 0 · · · 0
)T = O

Hence all the coefficient c’s are equal to zero:

T
(
c0 + c1x+ c2x2 + · · · + cnxn

) =
⎛⎜⎜⎜⎜⎝
c0
c1
...
cn

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎟⎠
c0 = 0
c1 = 0
...

...
...

cn = 0

This gives p = 0+ 0x + 0x2 + · · · + 0xn = O. Hence ker(T) = {O}, so T is one-to-one and onto
which means it is invertible.

Since T is invertible, the vector spaces connecting T are isomorphic. Hence Pn and Rn+1 are
isomorphic.

Lemma (5.26). Let V and W be finite-dimensional real vector spaces of equal dimension
and T : V →W be an isomorphism. If {v1, v2, . . . , vn} is a basis (axes) for V then

{T (v1) ,T (v2) , . . . ,T (vn)}
is a basis (axes) forW.

Proof – Exercises 5.4.

Next we prove a powerful result.

Theorem (5.27). Let V and W be finite-dimensional real vector spaces. Then V is
isomorphic toW ⇔

dim(V) = dim(W)
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Why is this result important?
Because it says that any two vector spaces of the same dimension are identical in structure. Given
two vector spaces V and W then are they essentially the same. We can think of V and W as
identical if they have the same structure and only the nature of their elements differs.

Proof.
If V and W are of dimension 0 then clearly the result holds. Assume the dimensions of V
andW are not zero.

(⇐). Let T : V →W be a transformation. Required to prove V and W are isomorphic
which means that we have to show that T is invertible.

How do we show that T is invertible?
Prove that ker(T) = {O}.

Since both the vector spaces are of same dimension, n say, they have the same number of
vectors in a basis (axes). Let {v1, v2, v3, . . . , vn} be a basis for V. By the above Lemma (5.27)
we have

{
T(v1),T(v2),T(v3), . . . ,T(vn)

}
is a basis (axes) forW.

Let T : V →W be the transformation:

T(k1v1 + k2v2 + k3v3 + · · · + knvn) = k1T (v1)+ k2T (v2)+ · · · + knT (vn)

where k’s are scalars.
Verify that this transformation is linear.
Let u be a vector in vector space V which is transformed to the zero vector under T, that

is T (u) = O. Required to prove u = O because we need ker(T) = {O}.
We can write the vector u as a linear combination of the basis (axes) vectors of V:

u = k1v1 + k2v2 + k3v3 + · · · + knvn (∗)

We have

T (u) = T
(
k1v1 + k2v2 + k3v3 + · · · + knvn

)
= k1T (v1)+ k2T (v2)+ · · · + knT (vn)
= O

[
because T (u) = O

]
Since

{
T(v1),T(v2),T(v3), . . . ,T(vn)

}
is a basis for W, these vectors are linearly inde-

pendent, which means that all the scalars are equal to zero:

k1 = k2 = k3 = · · · = kn = 0

Substituting these scalars into (∗) gives

u = k1v1 + k2v2 + k3v3 + · · · + knvn = O

Hence ker(T) = {O}, so the transformation is invertible, which implies that start V and
arrivalW vector spaces are isomorphic.
(⇒). Exercises 5.4 question 19(c).
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By the above Theorem (5.27) we have:

Proposition (5.28). Every n-dimensional real vector space is isomorphic to Rn.

This means that all the non-Euclidean vector spaces we have looked at in previous chap-
ters, such as the set of polynomials Pn, matrices Mmn and continuous functions C[a, b],
are identical in structure to Rn, provided they have the same dimension. This is the most
useful isomorphism in linear algebra, because any n-dimensional vector space can be recast
in terms of the familiar Euclidean space Rn.

For example, the vector spaceM22 is isomorphic to R4. However,M23 is not isomorphic
to R5 becauseM23 is of dimension 6 but R5 is of dimension 5.

i Summary

Let T : V →W .
The transform T is one-to-one⇔ ker(T) = {O}.
The transform T is onto⇔ range(T) =W.
(5.23) If T is bijective then the inverse transformation T−1 : W → V is defined as

v = T−1 (w)⇔ T(v) = w

Vector spaces V and W are isomorphic if there is an invertible linear transformation between V
and W .

EXERCISES 5.4

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Show that the following linear transformations are one-to-one by using Propositions
(5.14) or (5.15):

(a) T : R2 → R2 given by T(v) = Iv where I =
(
1 0
0 1

)
.

(b) T : R2 → R2 given by T
((

x
y

))
=
(
y
x

)
.

(c) T : R2 → R2 given by T
((

x
y

))
=
(
x+ y
x− y

)
.

2. Let Mmn be the vector space of m by n matrices. Consider the linear transformation
T : Mmn → Mnm defined by T (A) = AT . Show that T is one-to-one. (Remember, AT

is the transpose of the matrix A).
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3. Determine whether the following linear transformations are one-to-one and/or
onto:

(a) T : R2 → R2 given by T
((

x
y

))
=
(
x
x

)
.

(b) T : R3 → R3 given by T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ =
⎛⎝ 0

y
z

⎞⎠.
(c) T : R3 → R3 given by T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ =
⎛⎝ z

y
x

⎞⎠.
(d) T : R2 → R3 given by T

((
x
y

))
=
⎛⎝ 2x+ 3y

x+ y
0

⎞⎠.
4. Let T : R3 → R3 be the linear transformation defined by

T (u) = Au where A =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠
Show that T is one-to-one and onto.

5. Show that the linear transformation T : P3 → P2 given by T(p) = p′ where p′ is the
derivative of p, is not one-to-one but is onto.

6. Show that the linear transformation T : Pn → Pn given by T(p) = p′′ where p′′ is the
second derivative of p is not one-to-one nor onto.

7. Let T : R3 → R2 be the linear transformation defined by T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ = ( y
z

)
.

Show that T is not one-to-one but is onto.
8. Show that the linear transformation T : P2 → P3 given by

T(ax2 + bx + c) = ax+ (b+ c)

is neither one-to-one nor onto.
9. Show that the linear transformation T : Pn → Pn given by

T(p) = p′

is neither one-to-one nor onto.
10. Prove Proposition (5.17).
11. Prove the following:

If T : V → W is a linear one-to-one transformation then for every vector w in
range(T) there exists a unique vector v in V such that T(v) = w.

12. Prove Proposition (5.19).
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13. Prove Proposition (5.20).
14. Prove Proposition (5.22).
15. Prove Proposition (5.24).
16. Prove Lemma (5.26).
17. Let T : R2 → R2 be a linear transformation given by

T
((

x
y

))
=
(
2x+ y
x− y

)
Find the inverse linear transformation.

18. Show that T : M22 → R4, given by

T
([

a b
c d

])
= (a b c d)T

is an isomorphism.
19. Prove the following properties of isomorphism.

(a) A linear transform T : V → W is an isomorphism⇔ ker(T) = {O}.
(b) If T : V →W is an isomorphism then T−1 : W → V is also an isomorphism.
(c) If vector spaces V andW are isomorphic then dim(V) = dim(W).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 5.5 The Matrix of a Linear Transformation

By the end of this section you will be able to

● find the standard matrix of a linear transformation

● determine the transformation matrix for non-standard bases

● apply the transformation matrix

Two of the most powerful tools in mathematics are linear algebra and calculus. In this
section we establish a link between them by representing a derivative in terms of a matrix.

We start by showing that any linear transformation can be written in matrix form. This
simply requires us to write our linear transform equations in the form Au, where the vari-
ables x, y, z . . . are stored in the vector u, leaving behind their coefficients in the matrix A.
Writing a linear transformation in this way has untold benefits. With the numerical com-
ponents of the transformation held in isolation, we can use some conventional arithmetic
to manipulate them.
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For example, if the matrix of coefficients performs a rotation and a number of rotations
need to be performed in succession to create an animation, then you can just multiply by
the matrix as many times as required. Each application of the matrix performs another
rotation.

Using the transformation equations or using the matrix alternative are equivalent. You
won’t lose information if you use the matrix, and in many cases, using the matrix is simply
much more efficient

In the next section we cover composition of transformations. We find that if trans-
formations are written as matrices, then this radically reduces the work involved in the
composition of linear transformations.

5.5.1 The standard matrix for a linear transformation (mapping)

We can describe a linear transformation T : Rn → Rm by a matrix as the following
example demonstrates.

Example 5.30

Let T : R2 → R2 be the linear operator (start and arrival spaces are identical) given by

T
((

x
y

))
=
(
2x − y
x+ 3y

)
Write this transformation as T (u) = Au where u = (x y)T .

Solution

Writing

(
2x − y
x+ 3y

)
in the form Au where u =

(
x
y

)
is given by

(
2x − y
x+ 3y

)
=
(

2 −1
1 3

)(
x
y

)
= Au where A =

(
2 −1
1 3

)
Thus T (u) = Au. Since T : R2 → R2 so the matrix A is of size 2 by 2.

In this section we write a general linear transformation T : Rn → Rm as T (u) = Au. We
say that A is the matrix representation of the linear transformation T. The transformation
T acts on the vector u. Similarly the matrix A acts on the vector u to give Au.

Is it always going to be possible to write any linear transformation in matrix representation?
Yes, provided we have finite-dimensional vector spaces.

How are we going to show this?
Consider a general linear transformation T : V →W. We examine the basis (axes) vectors in V
and look at the images of these under the given transformation T. To find T(v) for any v in V we
only need to know how T behaves towards these basis (axes) vectors because v can be written as
a linear combination of the basis (axes) vectors.
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First we consider a linear transformation with respect to the standard basis for Rn;
{e1, e2, e3, . . . , en} which represents our normal x, y, z, . . . axes in Rn. Remember, e1 is the
unit vector in the x direction, e2 is the unit vector in the y direction. . . .

Proposition (5.29). Let T : Rn → Rm be a linear transformation and {e1, e2, e3, . . . , en} be
the standard basis for Rn. If

T (e1) =

⎛⎜⎜⎜⎝
c11
c21
...

cm1

⎞⎟⎟⎟⎠ , T (e2) =

⎛⎜⎜⎜⎝
c12
c22
...

cm2

⎞⎟⎟⎟⎠ , · · · and T (en) =

⎛⎜⎜⎜⎝
c1n
c2n
...

cmn

⎞⎟⎟⎟⎠
then we can write the transformation T (u) as

T (u) = Au

where A = (T (e1) T (e2) · · · T (en)
) =

⎛⎜⎜⎜⎝
c11
c21
...

cm1

c12
c22
...

cm2

· · ·
c1n
c2n
...

cmn

⎞⎟⎟⎟⎠ and u is in Rn.

A is called the standard matrix and is of sizem by n.

Note that the first column of matrixA is the column vector T (e1), the second column of
matrix A is the column vector T (e2), . . . and the last column is the column vector T (en).

Proof.
Let u be an arbitrary vector in Rn and {e1, e2, . . . , en} be the standard basis (axes) vectors
of the n-dimensional vector space Rn. By the definition of standard basis we can write

u =

⎛⎜⎜⎜⎝
u1
u2
...
un

⎞⎟⎟⎟⎠ = u1

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠
︸ ︷︷ ︸
=e1

+ u2

⎛⎜⎜⎜⎝
0
1
0
...

⎞⎟⎟⎟⎠
︸ ︷︷ ︸
=e2

+ · · · + un

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸
=en

= u1e1 + u2e2 + · · · + unen

where uj’s are scalars and are the coordinates of uwith respect to the standard basis (axes)
{e1, e2, e3, . . . , en}. Applying the linear transformation T we have

T (u) = T (u1e1 + u2e2 + · · · + unen)
[
because u = u1e1 + u2e2 + · · · + unen

]
= u1T (e1)+ u2T (e2)+ · · · + unT (en)

[
because T is linear

]

={

Given in
Proposition

u1

⎛⎜⎜⎜⎝
c11
c21
...

cm1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸
=T(e1)

+ u2

⎛⎜⎜⎜⎝
c12
c22
...

cm2

⎞⎟⎟⎟⎠
︸ ︷︷ ︸
=T(e2)

+ · · · + un

⎛⎜⎜⎜⎝
c1n
c2n
...

cmn

⎞⎟⎟⎟⎠
︸ ︷︷ ︸
=T(en)

(1)
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Let the matrix A = (T (e1) T (e2) · · · T (en)
) =

⎛⎜⎜⎜⎜⎝
c11 c12 c1n
c21 c22 . . . c2n
...

...
...

cm1 cm2 cmn

⎞⎟⎟⎟⎟⎠ .

Applying the matrix A to the vector u gives Au, which is the linear combination of the
column vectors of A:

Au =

⎛⎜⎜⎜⎜⎝
c11 c12 c1n
c21 c22 · · · c2n
...

...
...

cm1 cm2 cmn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
u1
u2
...
un

⎞⎟⎟⎟⎟⎠ = u1

⎛⎜⎜⎜⎜⎝
c11
c21
...

cm1

⎞⎟⎟⎟⎟⎠+ u2

⎛⎜⎜⎜⎜⎝
c12
c22
...

cm2

⎞⎟⎟⎟⎟⎠+ · · · + un

⎛⎜⎜⎜⎜⎝
c1n
c2n
...

cmn

⎞⎟⎟⎟⎟⎠ (2)

The right hand sides of (1) and (2) are identical, so we have our result T (u) = Au.

Example 5.31

Let T : R2 → R2 be the linear operator given by

T
([

x
y

])
=
(
2x − y
x+ 3y

)

Determine the standard matrix A which represents T.

Solution
What is the standard basis for R2?
e1 = (1 0)T is the unit vector in the x direction and e2 = (0 1)T is the unit vector in the y direction.
Applying the given linear operator to these basis (axes) vectors {e1, e2} yields:

T (e1) = T
([

1
0

])
=
(
2 (1)− 0
1+ 3 (0)

)
=
(
2
1

) [
using T

([
x
y

])
=
(
2x − y
x + 3y

)]

T (e2) = T
([

0
1

])
=
(
2 (0)− 1
0+ 3 (1)

)
=
(−1

3

) [
using T

([
x
y

])
=
(
2x − y
x + 3y

)]

Note, T (e1) gives the x coefficients and T (e2) gives the y coefficients, because e1 and e2 are the unit
vectors in these directions respectively.
What is the standard matrix A equal to in this case?

By the above Proposition (5.29) we have A = (T (e1) T (e2)
) = ( 2 −1

1 3

)
.

Note that we have the same matrix as in Example 5.30, which represents the given transformation T.
We have T (u) = Au where u = (x y)T .
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Example 5.32

Let T : R3 → R2 be the linear transformation given by

T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ = ( 3x+ y+ z
x − 3y− z

)
Determine the standard matrix A which represents T.

Solution
What is the standard basis for R3?

e1 =
[
1 0 0

]T , e2 = [ 0 1 0
]T

and e3 =
[
0 0 1

]T
where e1 , e2 and e3 are unit vectors in the x, y and z directions respectively.

We first examine how T acts on these basis (axes) vectors. Applying the given linear transformation to
the basis (axis) vector e1 yields:

T (e1) = T

⎛⎝⎡⎣ 1
0
0

⎤⎦⎞⎠ = ( 3 (1)+ 0+ 0
1− 3 (0)− 0

)
=
(
3
1

) ⎡⎣because T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ = ( 3x + y+ z
x − 3y− z

)⎤⎦
Similarly, applying T to e2 and e3 gives T (e2) =

(
1
−3
)

and T (e3) =
(

1
−1
)

respectively.

What is the standard matrix A equal to?
By (5.29) which says A = (T (e1) T (e2) · · · T (en)), we write these vectors as the first, second and
last columns of matrix A:

A = (T (e1) T (e2) T (e3)
) = ( 3 1 1

1 −3 −1
)

We can check this result by evaluating Au, where u = (x y z
)T

:

Au =
(
3 1 1
1 −3 −1

)⎛⎝ x
y
z

⎞⎠ = ( 3x + y+ z
x − 3y− z

)
This is the given transformation, therefore matrix A represents transformation T.

Normally the standard matrix can be found by inspection.

How?
From Example 5.32, we have the transformation and standard matrix as

T

⎛⎜⎝
⎡⎢⎣ x
y
z

⎤⎥⎦
⎞⎟⎠ = ( 3x+ y+ z

x− 3y− z

)
and standard matrix is A =

x y z(
3 1 1
1 −3 −1

)

A is the standard matrix because we use the standard basis to write A.
In the above example T : R3 → R2 so the matrix A is of size 2 by 3.
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5.5.2 Transformation matrix for non-standard bases

Why use non-standard bases?
Examining a vector in a different basis (axes) may bring out structure related to that basis, which is
hidden in the standard representation. It may be a relevant and useful structure. For example, we
used to measure the motion of the planets in a basis (axes) with the earth at the centre. Then we
discovered that putting the sun at the centre made life simpler – orbits were measured against a
basis with the sun at the focus.

For some motions, such as projectiles, our standard basis (xy axes) may be the most
suitable, but for studying other kinds of motions, such as orbits, a polar basis (r, θ) may
work better.

If we use latitudes and longitudes to work out a map then we have been effectively using
spherical polar coordinates (r, θ , ϕ) rather than our standard xyz axes.

Another example is trying to find the forces on an aeroplane as shown in Fig. 5.29. The
components parallel and perpendicular to the aeroplane are a lot more useful than the
horizontal and vertical components.

Transform
basis 

Figure 5.29

In computer games and 3D design software we often want to rotate our xyz axes (basis)
to obtain new axes (basis) which are a lot more useful. (See question 7 of Exercises 5.5.)

In crystal structures, we need to use a basis which gives a cleaner set of coordinates
called Miller indices. The Miller indices are coordinates used to specify direction and
planes in a crystal or lattice. A vector from the origin to the lattice point is normally writ-
ten in appropriate basis (axes) vectors and then the coordinates are given by the Miller
indices.

Many problems in physics can be simplified due to their symmetrical properties if the
right basis (axes) is chosen. Choosing a basis (axes) wisely can greatly reduce the amount
of arithmetic you have to do.

For the remaining part of this section we will need to use the notation [u]B, which means
the coordinates of the vector u with respect to a basis (axes) B.

Example 5.33

Write the vector u =
(
3
9

)
of R2 in terms of new basis (axes) vectors B =

{
b1 =

(
1
1

)
, b2 =

(
1
4

)}
.
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Solution
This means find [u]B. Let k and c be scalars, then we write the linear combination

k
(
1
1

)
+ c

(
1
4

)
=
(
3
9

)
Solving the simultaneous equations

k + c = 3
k + 4c = 9

}
gives k = 1, c = 2

We have u =
(
3
9

)
= 1b1 + 2b2 = 1

(
1
1

)
+ 2

(
1
4

)
or coordinates with respect to basis B is[

3
9

]
B
=
(
1
2

)
The coordinates of the vector

(
3
9

)
is

(
1
2

)
with respect to the basis B =

{
b1 =

(
1
1

)
, b2 =

(
1
4

)}
(Fig. 5.30).

New axis in the
direction of  b2

12

10

8

6

4

2

1 2 3 4 5 6 7
x

y

b1

2b2
u = b1 + 2b2

New axis in the
direction of  b1

Figure 5.30

Note that u = (3 9)T coordinates are calculated with respect to a standard basis {e1, e2}
or our normal xy axes, but the coordinates with respect to the new basis B = {b1, b2} is
(1 2)T .

We assume that if we have the vector k1 u1 + k2 u2 + · · · + kn un where k’s are scalars,
then

(5.30)
[
k1 u1 + k2 u2 + · · · + kn un

]
B = k1 [u1]B + k2 [u2]B + · · · + kn [un]B

Proposition (5.31). Let T : V →W be a linear transformation and V and W be
finite-dimensional vector spaces with basis B = {v1, v2, . . . , vn} and C = {w1,w2, . . . ,wm}
respectively. Then we can write the transformation as

[T (u)]C = A [u]B
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where [T (u)]C are the coordinates of T (u) with respect to the basis (axes) C, [u]B are the
coordinates of u with respect to the basis (axes) B and A is a matrix given by

A = ([T (v1)]C [T (v2)]C · · · [T (vn)]C
)

What does this notation mean?
Figure 5.31 illustrates this:

u [u]B

T (u) [T(u)]C = A[u]B

Transformation 

Writing vector
u in basis B.

Writing vector
T(u) in basis C. 

Multiplying by A.

Figure 5.31

Proof.
Let u be an arbitrary vector in the n-dimensional vector space V with basis {v1, v2, . . . , vn}.
By the definition of basis we can write u as a linear combination of basis (axes) vectors:

u = k1v1 + k2v2 + · · · + knvn

where k’s are scalars.
The coordinates of vector u with respect to basis (axes) B = {v1, . . . , vn} is

[u]B =
⎛⎜⎝ k1

...
kn

⎞⎟⎠.
Applying the rules of linear transformation we have

T (u) = T
(
k1v1 + k2v2 + · · · + knvn

) [
because u = k1v1 + k2v2 + · · · + knvn

]
={

because T is linear

k1T (v1)+ k2T (v2)+ · · · + knT (vn)
(∗)

Note that T (v1), T (v2) , . . ., and T (vn) are all in the arrival vector space W. Let
C = {w1,w2, . . . ,wm} be a set of basis (axes) vectors forW then we can write

T (v1)= c11w1 + c21w2 + · · · + cm1wm
T (v2)= c12w1 + c22w2 + · · · + cm2wm

...
...

...
... · · · ...

T (vn)= c1nw1 + c2nw2 + · · · + cmnwm
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where the c’s are scalars. We can write these as coordinates with respect to the basis
(axes) C:

[T (v1)]C =

⎛⎜⎜⎜⎝
c11
c21
...

cm1

⎞⎟⎟⎟⎠ , [T (v2)]C =

⎛⎜⎜⎜⎝
c12
c22
...

cm2

⎞⎟⎟⎟⎠ , . . . and [T (vn)]C =

⎛⎜⎜⎜⎝
c1n
c2n
...

cmn

⎞⎟⎟⎟⎠ (†)

Let A =

⎛⎜⎜⎜⎝
c11 c12 c1n
c21 c22 . . . c2n
...

...
...

cm1 cm2 cmn

⎞⎟⎟⎟⎠ and from above [u]B =

⎛⎜⎜⎜⎝
k1
k2
...
kn

⎞⎟⎟⎟⎠ then A [u]B is given by

A [u]B =

⎛⎜⎜⎜⎝
c11 c12 c1n
c21 c22 . . . c2n
...

...
...

cm1 cm2 cmn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
k1
k2
...
kn

⎞⎟⎟⎟⎠ (∗∗)

Examining [T (u)]C we have

[T (u)]C =
[
k1T (v1)+ k2T (v2)+ · · · + knT (vn)

]
C

[
from

(∗)]
={

by (5.30)

k1 [T (v1)]C + k2 [T (v2)]C + · · · + kn [T (vn)]C

= k1

⎛⎜⎜⎜⎝
c11
c21
...

cm1

⎞⎟⎟⎟⎠+ k2

⎛⎜⎜⎜⎝
c12
c22
...

cm2

⎞⎟⎟⎟⎠+ · · · + kn

⎛⎜⎜⎜⎝
c1n
c2n
...

cmn

⎞⎟⎟⎟⎠ [
by (†)

]

=

⎛⎜⎜⎜⎝
c11 c12 c1n
c21 c22 . . . c2n
...

...
...

cm1 cm2 cmn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
k1
k2
...
kn

⎞⎟⎟⎟⎠ ={

by (∗∗)
A [u]B

Hence we have our result [T (u)]C = A [u]B.

Example 5.34

Let T : R3 → R2 be the linear transformation defined by

T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ = ( 3x+ y+ z
x − 3y− z

)

(continued...)
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Find the transformation matrix A with respect to the bases for R3 and R2 given by:

B =
⎧⎨⎩v1 =

⎛⎝ 1
1
1

⎞⎠ , v2 =
⎛⎝−10

1

⎞⎠ , v3 =
⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ and C =
{
w1 =

(
1
2

)
, w2 =

(−1
1

)}
respectively

Note that B is a set of basis (axes) vectors for the start vector space R3 while C is a set of basis (axes)
vectors for the arrival vector space R2.

Solution
Applying the given linear transformation T to each of the basis (axes) vectors B = {v1, v2, v3}:

T (v1) = T

⎛⎝⎛⎝ 1
1
1

⎞⎠⎞⎠ = ( 3 (1)+ 1+ 1
1− 3 (1)− 1

)
=
(

5
−3
) ⎡⎣because T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ = ( 3x + y+ z
x− 3y− z

)⎤⎦
Similarly (verify this) we have

T (v2) =
(−2
−2
)

and T (v3) =
(

1
−1
)

What else do we need to find?
We need to write each of these arriving vectors, T (v1) ,T (v2) and T (v3), as the coordinates of the basis

(axes) C =
{
w1 =

(
1
2

)
,w2 =

(−1
1

)}
:

T (v1) =
(

5
−3
)
= aw1 + bw2 = a

(
1
2

)
+ b

(−1
1

)
(1)

T (v2) =
(−2
−2
)
= cw1 + dw2 = c

(
1
2

)
+ d

(−1
1

)
(2)

T (v3) =
(

1
−1
)
= ew1 + f w2 = e

(
1
2

)
+ f

(−1
1

)
(3)

How can we find the matrix A?
By the above Proposition (5.31) we have A = ([T (v1)]C [T (v2)]C [T (v3)]C

)
which in this case is

A =
(

a c e
b d f

)
.

Why?
Because by (1), (2) and (3) we have

[T (v1)]C =
(
a
b

)
, [T (v2)]C =

(
c
d

)
and [T (v3)]C =

(
e
f

)

Remember, the scalars in the linear combination of w1 and w2 give the coordinates of vectors
T (v1) ,T (v2) and T (v3) with respect to basis (axes) C.
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How can we determine the unknowns a, b, c, . . . , f ?
We need to solve the three pairs of simultaneous equations (1), (2) and (3) in the above. Consider the first
pair (1): (

5
−3
)
= a

(
1
2

)
+ b

(−1
1

)
=
(

a
2a

)
+
(−b

b

)
=
(

a− b
2a+ b

)
What is the solution to this pair of simultaneous equations?

a− b = 5
2a+ b = −3

}
gives a = 2

3
and b = −13

3

Similarly, we can find the solutions of the other two simultaneous equations. They are

(2)
c− d = −2
2c+ d = −2

}
gives c = − 4

3
and d = 2

3

(3)
e− f = 1

2e+ f = −1
}

gives e = 0 and f = −1

What is the matrix A equal to?

A =
(

a c e
b d f

)
=
(

2/3 −4/3 0
−13/3 2/3 −1

)

This means that [T (u)]C = A [u]B which is

[T (u)]C =
(

2/3 −4/3 0
−13/3 2/3 −1

)
[u]B

To write the vector T (u) in terms of basis (axes) C, denoted [T (u)]C , we multiply the
vector u written in basis (axes) B, denoted [u]B, by the matrix A.

Example 5.35

For the linear transformation given in the above Example 5.34, use the matrix A to find T(u) where
u = (1 0 2)T with respect to the same bases

B =
⎧⎨⎩v1 =

⎛⎝ 1
1
1

⎞⎠, v2 =
⎛⎝−10

1

⎞⎠, v3 =
⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ and C =
{
w1 =

(
1
2

)
,w2 =

(−1
1

)}

Solution
We need to find [T (u)]C = A [u]B . First we determine [u]B.
What does [u]B represent?
Remember, the entries in the given vector u = (1 0 2)T are the coordinates with respect to the
standard basis (xyz axes). However, we need to write u with respect to the given basis B because [u]B is
the coordinates of the vector u with respect to the basis (axes) vectors B.

(continued...)
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u =
⎛⎝ 1
0
2

⎞⎠ = a v1 + b v2 + c v3 = a

⎛⎝ 1
1
1

⎞⎠+ b

⎛⎝−10
1

⎞⎠+ c

⎛⎝ 0
0
1

⎞⎠ (∗)

These a, b and c are not the same values as for Example 5.34.
How can we find these?
Solve the simultaneous equations by expanding (∗):

a− b = 1
a = 0
a+ b+ c = 2

⎫⎪⎬⎪⎭ gives a = 0, b = −1 and c = 3

What are the coordinates of u with respect to the basis (axes) B, [u]B , equal to?

[u]B =
⎛⎜⎝ a
b
c

⎞⎟⎠ =
⎛⎜⎝ 0
−1
3

⎞⎟⎠
Note that u = (1 0 2)T gives the coordinates of u with respect to our standard basis (xyz axes) but

[u]B = (0 −1 3)T gives the coordinates of u with respect to the given basis B = {v1, v2, v3}.
From the above Proposition (5.31): [T (u)]C = A [u]B
We found matrix A in the previous example, so using this A we have

[T (u)]C = A [u]B =
(

2/3 −4/3 0
−13/3 2/3 −1

)
[u]B

and evaluating this right hand side gives

[T (u)]C =
(

2/3 −4/3 0
−13/3 2/3 −1

)⎛⎝ 0
−1
3

⎞⎠ = ( 4/3
−11/3

)

We can illustrate the above process as shown in Fig. 5.32.

Transformation 

Writing vector
u in basis B.

Writing vector
T(u) in basis C. 

Multiplying by A.

T

1
0
2

⎛ ⎞⎛   ⎞
⎜ ⎟⎜   ⎟
⎜ ⎟⎜   ⎟
⎝ ⎠⎝   ⎠

[u]B =

0
–1
3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

1
0
2

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎝ ⎠

u

[T(u)]C = A[u]B =
4 / 3

11/ 3

⎛ ⎞
⎜ ⎟−⎝ ⎠

Figure 5.32
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The coordinates of T (u) where u = (1 0 2)T with respect to the given basis C are

(
4/3
−11/3

)
.

We have measured the vector T (u) against the new axes represented by w1 and w2 :

T (u) = 4
3
w1 − 11

3
w2

This is illustrated in Fig. 5.33.

1

−1
w2 = 2

1⎛ ⎞
⎜ ⎟
⎝ ⎠

w1 =

New axis in the direction of w1

New axis in the
direction of w2

4
3

w1

11
3

− w2

T(u)
–2

2

4

6

–4

–1 1 2 3 4 5 6

Figure 5.33

However, the coordinates of T (u) with respect to our standard basis (xy axes) are given by:

T

⎛⎝⎛⎝ 1
0
2

⎞⎠⎞⎠ = 4
3
w1 − 11

3
w2 = 4

3

(
1
2

)
− 11

3

(−1
1

) [
because w1 and w2
are vectors in basis C

]

=
(
4/3
8/3

)
−
(−11/3

11/3

)
=
(

5
−1
)

You can check this T (u) =
(

5
−1
)

by applying the given transformation directly with

u = (1 0 2)T .

5.5.3 A matrix for the derivative

Example 5.36

Let the linear transformation T : P2 → P1 be defined by

T(p) = p′

(continued...)
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where p′ is the derivative of p. Determine the matrix A which represents the given transformation with
respect to the ordered bases

B = [1, x, x2] and C = [1, x]

for P2 and P1 respectively. Find T
(
2x2 + 3x + 1

)
by using this matrix A.

Solution
First we look at how T behaves towards the basis (axes) vectors. Applying the given linear transformation
to the vectors in basis (axes) B = [1, x, x2] we have

T (1) = 1′ = 0 [differentiating]

T(x) = x′ = 1 [differentiating]

T
(
x2
) = (x2)′ = 2x [differentiating]

We need to write each of these as the coordinates of the basis (axes) C = [1, x]:

T (1) = 0 = a (1)+ b(x) gives a = 0 and b = 0

T(x) = 1 = c (1)+ d(x) gives c = 1 and d = 0

T
(
x2
) = 2x = e (1)+ f (x) gives e = 0 and f = 2

What is our matrix A equal to?

A = ([T (1)]C
[
T(x)

]
C
[
T
(
x2
)]

C
) = ( a c e

b d f

)
=
(

0 1 0
0 0 2

)

For T
(
2x2 + 3x + 1

)
we have p = 2x2 + 3x + 1 so [p]B =

⎛⎝ 1
3
2

⎞⎠ (coefficients of 1, x and x2 , and it

must be in this order, because the given basis is ordered, B = [1, x, x2]. Remember, a basis is a set of
vectors which represent axes, so the order of the basis vectors matters.):

[
T(p)

]
C = A[p]B =

(
0 1 0
0 0 2

)⎛⎝ 1
3
2

⎞⎠ = ( 3
4

)

The entries 3 and 4 in the right hand column vector are the coefficients of the basis C = [1, x], which
means that we have

T
(
2x2 + 3x+ 1

) = 3 (1)+ 4(x) = 3+ 4x

Checking this result by differentiating the quadratic:

T
(
2x2 + 3x + 1

) = (2x2 + 3x + 1
)′ = 4x+ 3.

Thus the matrix A does give the derivative of the quadratic polynomial 2x2 + 3x + 1.
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We can find the derivative of any quadratic polynomial by using the matrix A. For
example, to find

(
3x2 + 5x+ 7

)′ we use the above matrix A as follows:

(
0 1 0
0 0 2

)⎛⎝ 7
5
3

⎞⎠ = ( 5
6

)

Hence
(
3x2 + 5x+ 7

)′ = 5+ 6x.
If we consider the derivative of the general quadratic

(
ax2 + bx + c

)′ then
(
0 1 0
0 0 2

)⎛⎝ c
b
a

⎞⎠ = ( b
2a

)
implies

(
ax2 + bx+ c

)′ = b+ 2ax

There is another advantage of using matrix form: we can write a matrix for a different
non-standard basis such as B = [1, 1− x, (1− x)2

]
. You are asked to find such a matrix in

Exercises 5.5. It is not clear what happens using calculus, whereas the matrix form makes it
transparent.

Note that a problem in differentiation can be converted to a problem in arithmetic of
matrices. This is always going to be the case as long as we have a linear transformation T
between two vector spaces U and V because by Proposition (5.31) we have

[T (u)]C = A [u]B

where B and C are bases for U and V respectively.

i Summary

(5.31) Let T : V →W be a linear transformation and V and W be finite-dimensional vector spaces
with bases B = {v1, v2, v3, . . . , vn} and C = {w1,w2,w3, . . . ,wm} respectively. Then

[T (u)]C = A [u]B

where u is a vector in V and A = ([T (v1)]C [T (v2)]C · · · [T (vn)]C
)
.

EXERCISES 5.5

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Determine the standard matrix for the following linear transformations:

(a) T
((

x
y

))
=
(

x+ y
2x+ 2y

)
(b) T

((
x
y

))
=
(

x+ y
−x− y

)
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(c) T
((

x
y

))
=
(
2x+ 3y
x− 5y

)
(d) T

(
(x y z)T

) = (x+ y+ z x− y− z 2x+ y− z)T

(e) T
(
(x y z)T

) = (2x− y 4x − y+ 3z 7x− y− z)T

(f)T
(
(x y z w)T

) = (x− y+ z − 3w −x+ 3y− 7z − w 9x+ 5y+ 6z + 12w x)T

(g) T
(
(x y z w)T

) = O
2. Determine the standardmatrix of the following linear transformationswithout reading

off the coefficients of x, y, z.

(a) T
((

x
y

))
=
(

x− y
x+ 2y

)
(b) T

((
x
y

))
=
(
3x− 2y
5y− x

)
(c) T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ = ( x− y− z
x+ y+ z

)
(d) T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ =
⎛⎝ 0
0
0

⎞⎠
(e) T

⎛⎝⎛⎝ x
y
z

⎞⎠⎞⎠ =
⎛⎝−3x− 5y− 6z
−2x+ 7y+ 5z

0

⎞⎠
3. The linear transform T : R2 → R3 satisfies the following:

T
(
[1 0]T

)
= (1 2 3)T and T

(
[0 1]T

)
= (4 5 6)T

Determine the matrix A which represents this transformation T.
4. For the linear transformation T : P2 → P1 given by

T(p) = p′

where p′ is the derivative of p, determine the matrix A which represents the given
transformation with respect to the ordered bases

B = [1, 1− x, (1− x)2
]
and C = [1, x]

for P2 and P1 respectively. Find T
(
2x2 + 3x+ 1

)
by using this matrix A.

5. For the linear transformation T : P3 → P2 given by

T(p) = p′

where p′ is the derivative of p. Determine the matrix A which represents the given
transformation with respect to the ordered bases in each of the following cases:

(i) B = [1, x, x2, x3] and C = [1, x, x2] for P3 and P2 respectively.
(ii) B = [1, x, x2, x3] and C = [x2, x, 1] for P3 and P2 respectively.
(iii) B = [x3, x2, x, 1] and C = [1, x, x2] for P3 and P2 respectively.
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What do you notice about the matrix A for parts (i), (ii) and (iii)?
In each case find T

(−1+ 3x− 7x2 − 2x3
)

by using this matrix A.

6. Let T : R2 → R2 be the linear operator defined by T
((

x
y

))
=
(
x+ y
x− y

)
.

Find the transformation matrix A with respect to the basis

B =
{
v1 =

(
1
2

)
, v2 =

(
0

−1
)}

Find T
((−3

1

))
by using this matrix A and directly by using the given transfor-

mation.
7. In a computer game we want to change our standard basis {e1, e2} by a rotation of 45◦

anti-clockwise which is given by the matrix A =
(
cos (45◦) − sin (45◦)
sin (45◦) cos (45◦)

)
.

Determine the new basis and write the coordinates of the vector v = (2 1)T in terms
of the new basis. Sketch the new basis and the vector v.

8. Let T : R2 → R3 be defined by

T
(
[ x y ]T

)
= (−x −y x+ 3y)T

Determine the transformation matrix A with respect to the bases

B =
{
v1 = (1 2)T, v2 = (1 1)T

}
and

C =
{
w1 = (1 0 1)T, w2 = (1 2 0)T, w3 = (0 1 1)T

}
for R2 and R3 respectively. Find T

(
[ 2 1 ]T

)
by using this matrix A.

9. Let T : M22 → M22 be defined by

T (X) = XT (where XT is the transpose of the matrix X)

Determine the transformation matrix A with respect to the bases

B = C =
{
m1 =

(
1 0
0 0

)
,m2 =

(
0 1
0 0

)
,m3 =

(
0 0
1 0

)
,m4 =

(
0 0
0 1

)}

forM22 whereM22 is the 2 by 2 matrices. Find T
((

1 2
3 4

))
by using this matrix A.

10. LetV be vector space spanned by the set
{
sin(x), cos(x)

}
. Let T be the differential linear

operator T : V → V given by

T (f) = f ′ where f ′ is the derivative of f
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Determine the transformation matrix A with respect to the ordered bases

B = [sin(x), cos(x)]
By using this transformation matrix A find T(g) where
(i) g = 5 sin(x)+ 2 cos(x) (ii) g = m sin(x)+ n cos(x)

11. Let T : P2 → P2 be the linear operator given by

T(p) = p (x+ 3)

This means that T
(
ax2 + bx + c

) = a (x+ 3)2 + b (x+ 3)+ c. Determine the
transformation matrix A with respect to the ordered basis B = [1, x, x2].
Find T

(
q+ nx+mx2

)
by using this matrix A and directly by applying the given

transformation.
12. Let V be a vector space spanned by the set

{
sin(x), cos(x), ex

}
. Let T be the differential

linear operator T : V → V given by

T(f) = f ′ where f ′ is the derivative of f

Determine the transformation matrix A with respect to the ordered basis:

B = [sin(x), cos(x), ex
]

By using this transformation matrix A, find T(g) where
(i) g = − sin(x)+ 4 cos(x)− 2ex (ii) g = m sin(x)+ n cos(x)+ pex

13. Let V be a vector space spanned by the set
{
e2x, xe2x, x2e2x

}
. Let T be the differential

linear operator T : V → V given by

T (f) = f ′ where f ′ is the derivative of f

Determine the transformation matrix A with respect to the ordered basis:

B = [e2x, xe2x, x2e2x]
By using this matrix find T

(
ae2x + bxe2x + cx2e2x

)
.

14. Let T : V → V be the identity linear operator on an n-dimensional vector space V
which is given by

T(v) = v for all vectors v in V

Prove that the matrix A for the linear transformation T with respect to any basis B is the
identity matrix In.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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SECTION 5.6 Composition and Inverse Linear Transformations

By the end of this section you will be able to

● understand what is meant by composition of linear transforms

● prove some properties of composition of transformations

● prove that the inverse matrix represents the inverse transform T−1

5.6.1 Composition of linear transformations (mappings)

Remember that linear transforms are functions and you should be familiar with the concept
of a function.

What does composition mean?
Composition means making something by combining parts.

What do you think composition of linear transformation means?
It is the linear transformation created by putting together two or more linear transformations.

Figure 5.34

Fig. 5.34 shows a linear transformation T : U → V which takes the vector u to T (u) and
then the linear transformation S : V →W takes T (u) to S (T (u)). This composition of T
and S is denoted by S ◦ T. The formal definition is the following:

Definition (5.32). Let T : U → V and S : V →W be linear transforms and u and T (u) be
in the domain (start vector spaces) ofU and V respectively. Then the composition of these
two transforms, S and T, denoted by S ◦ T is defined by S ◦ T : U →W (from U to W)
and

(S ◦ T) (u) = S (T (u))

What does S (T (u)) mean?
Means first apply the transform T to the vector u to get T (u) and then apply the transform S to
this vector to give S (T (u)).
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Example 5.37

Let T : R2 → R2 and S : R2 → R2 be linear operators given by

T
([

x
y

])
=
(
x− y
x+ y

)
and S

([
x
y

])
=
(
2x+ 3y
x − 5y

)

Determine (S ◦ T)

([
2
3

])
and (T ◦ S)

([
2
3

])
.

Solution

(S ◦ T)

([
2
3

])
means apply the transform T to the vector

[
2
3

]
and then apply transform S to this

result. By using the above Definition (5.32) we have

(S ◦ T)

([
2
3

])
= S

(
T
([

2
3

]))
= S

([
2− 3
2+ 3

]) [
applying T

([
x
y

])
=
(
x− y
x+ y

)]
= S

([−1
5

])
=
(
2 (−1)+ 3 (5)
−1− 5 (5)

) [
applying S

([
x
y

])
=
(
2x+ 3y
x − 5y

)]
=
(

13
−26

)

Similarly, carrying out the transformations the other way, first S then T, we have [verify this]:

(T ◦ S)
([

2
3

])
= T

(
S
([

2
3

]))
=
(
26
0

)
These vectors are illustrated in Fig. 5.35.

3

2
u =

Figure 5.35

Note that (S ◦ T)

([
2
3

])
=
(

13
−26

)
does not equal (T ◦ S)

([
2
3

])
=
(
26
0

)
.
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In general, (S ◦ T) �= (T ◦ S) [not equal]. This means that changing the order of trans-
formation gives a different result.

Next, we prove that if S and T are linear transformations then the composite of these
S ◦ T is also a linear transformation.

Proposition (5.33). Let T : U → V and S : V →W be linear transforms. Then the compo-
sition transformation S ◦ T : U →W is also linear.

Remember, linear transformations preserve the fundamental linear algebra operations
of vector addition and scalar multiplication. This proposition means that combining two
linear transformations preserves scalar multiplication and vector addition. This is a useful
property to have because we don’t have to worry about the order of doing things.

How do we prove this result?
To prove that S ◦ T is a linear transformation we need to show two things:

1. (S ◦ T) (u+ v) = (S ◦ T) (u)+ (S ◦ T) (v) [vector addition]

2. (S ◦ T)
(
k u
) = k (S ◦ T) (u) [scalar multiplication]

where u and v are in the start vector space U of transform T and k is a scalar.

Proof.

1) Let u and v be vectors in U. Then by the above definition of composition (5.32) we
have

(S ◦ T) (u+ v) = S [T (u+ v)]
= S

[
T (u)+ T(v)

] [
because T is linear

]
= S [T (u)]+ S

[
T(v)

] [
because S is linear

]
= (S ◦ T) (u)+ (S ◦ T) (v)

[
because S (T (u)) = (S ◦ T) (u)

]
2) Similarly we have

(S ◦ T)(ku) = S(T(ku))
= S(k T(u))

[
because T is linear

]
= k S(T(u))

[
because S is linear

]
= k (S ◦ T)(u) [

because S(T(u)) = (S ◦ T)(u)]
Since both the above conditions, 1 and 2, are satisfied, S ◦ T is a linear transformation.

5.6.2 Matrix of composition linear transformations

In the last section we showed that we can write a linear transformation as a matrix. In this
section we prove that the matrix of the composite transformation is themultiplication of the
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matrices that represent each transformation. Multiplying matrices is painless compared to
combining linear transformations by using the given formula.

The next proposition is complicated because of the different bases used. If we used stan-
dard bases then the result would be a lot simpler – (S ◦ T) (u) = BA (u). However, we want
to have the flexibility of using any bases.

Proposition (5.34). Let T : U → V and S : V → W be linear transforms and U, V andW
be finite-dimensional vector spaces with bases B, C and D respectively. If

[T (u)]C = A [u]B and
[
S(v)

]
D = B [v]C

where u is a vector in U and v is a vector in V then

[(S ◦ T) (u)]D = BA [u]B

Here the bold B is a matrix and italic B is a basis. We could remove all the subscripts if
we used the standard bases and the proposition would be (S ◦ T) (u) = BA (u).

( )( ) D
S T⎡ ⎤uo

[ ]Bu

( ) C
T⎣ ⎦u

Matrix A Matrix B

V

WU

Figure 5.36

This means that the matrix multiplication BA represents the composite transform S ◦ T.

Proof.
Let u be an arbitrary vector in the start vector space U. Then by assumption we have

[T (u)]C = A [u]B (∗)

Let the vector v = T (u) be in the vector space V . Then by the other assumption we have

[S (T (u))]D = B [T (u)]C (∗∗)

Note that S (T (u)) = (S ◦ T) (u) by the definition of composition. We have

[(S ◦ T) (u)]D = [S (T (u))]D
= B [T (u)]C

[
by (∗∗)

]
= B (A [u]B) = BA [u]B

[
by (∗)

]
Hence this proves our required result that the composite transformation S ◦ T can be

represented by the matrix multiplication BA.
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Example 5.38

Let T : R2 → R2 and S : R2 → R2 be linear operators given by:

T
([

x
y

])
=
(
x− y
x+ y

)
and S

([
x
y

])
=
(
2x + 3y
x − 5y

)
Determine the standard matrices for the compositions (S ◦ T) and (T ◦ S).

Also, find how the composite transforms act on vector u =
(
2
3

)
, (S ◦ T) (u) and (T ◦ S) (u).

Solution
How do we find the standard matrix for the given transformation T?
Read off the coefficients of x and y. Let A be this matrix then

A =
(
1 −1
1 1

) [
because T

([
x
y

])
=
(
x − y
x + y

)]
Let B be the standard matrix for the other given linear transformation S:

B =
(
2 3
1 −5

) [
because S

([
x
y

])
=
(
2x + 3y
x − 5y

)]
By the above Proposition (5.34) and using the standard basis we have

(S ◦ T) (u) = BA [u]

=
(
2 3
1 −5

)(
1 −1
1 1

)
[u] =

(
5 1
−4 −6

)
[u]

The composite transform S ◦ T on vector u =
[
2
3

]
is given by (S ◦ T)

([
2
3

])
:

(S ◦ T)

([
2
3

])
=
(

5 1
−4 −6

)(
2
3

)
=
(

13
−26

)
Similarly, applying the composite transform T ◦ S on vector u gives

(T ◦ S) (u) = AB [u]

=
(
1 −1
1 1

)(
2 3
1 −5

)
[u] =

(
1 8
3 −2

)
[u]

Also in the above manner we have

(T ◦ S)
([

2
3

])
=
(
1 8
3 −2

)(
2
3

)
=
(
26
0

)
Note that these answers agree with the previous Example 5.37 because we have the same

transformations.

The calculations in this example are easier than Example 5.37 because we have reduced
the combining of linear transformations to a matrix arithmetic problem.

If a linear transformation represented a rotation, then a number of rotations can be eval-
uated by multiplying matrices. This is a much smoother task than applying the formula to
the composition of many linear transformations.
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Figure 5.37

For example, consider the rotation transformations S1, S2 and S3 on vector u (Fig. 5.37).
If the transformation Sj is represented by the matrix Aj then

(S3 ◦ S2 ◦ S1) (u) = A3A2A1︸ ︷︷ ︸
multiplication of matrices

(u)

Multiplying the matrices on the right hand side is a lot simpler than evaluation of
S3 ◦ S2 ◦ S1.

Since matrix multiplication is not commutative so the composition of transforms is not
commutative:

BA �= AB [not equal], therefore (T ◦ S) �= (S ◦ T)

Changing the order of the transformations changes the resulting vector as you should
have noticed for the above examples.

Example 5.39

Let V be the space spanned by B = {ex , xex, x2ex
}

. Let T : V → V and S : V → V be defined by

T(p) = p′ (differential operator) and S(p) = p (identity operator)

where p = aex + bxex + cx2ex. Determine the matrix for the composite transform S ◦ T and find
(S ◦ T)

(
ex + 2xex + 3x2ex

)
.

Solution
We need to find the matrix which represents the given differential operator T.
How?
By finding the transformation of each vector in

{
ex , xex , x2ex

}
:

T
(
ex
) = (ex)′ = ex [differentiating]

T
(
xex
) = (xex)′ = ex + xex [differentiating by product rule]

T
(
x2ex

) = (x2ex)′ = 2xex + x2ex [differentiating by product rule]
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We need to write these in terms of the vectors
{
ex , xex, x2ex

}
:

T
(
ex
) = ex = 1

(
ex
)+ 0

(
xex
)+ 0

(
x2ex

)
T
(
xex
) = ex + xex = 1

(
ex
)+ 1

(
xex
)+ 0

(
x2ex

)
T
(
x2ex

) = 2xex + x2ex = 0
(
ex
)+ 2

(
xex
)+ 1

(
x2ex

)
What is the matrix that represents the transform T equal to?
We use (5.31) of the last section: A = ([T (v1)]C [T (v2)]C · · · [T (vn)]C

)

A = (T (ex) T (xex) T
(
x2ex

)) =
⎛⎜⎝ 1 1 0

0 1 2

0 0 1

⎞⎟⎠

What is the matrix for the identity transformation S(p) = p?
Let B be the matrix for this transformation S. By question 14 of Exercises 5.5:

If S is an identity linear operator then the matrix for S is the identity matrix In.

B = I [Identity matrix]

Thus the matrix for composite transform S ◦ T is BA which is

BA = IA = A

We need to evaluate (S ◦ T)
(
ex + 2xex + 3x2ex

)
. Rewriting

ex + 2xex + 3x2ex = 1
(
ex
)+ 2

(
xex
)+ 3

(
x2ex

) = p

Hence [p]B = (1 2 3)T :

(S ◦ T)
(
1
(
ex
)+ 2

(
xex
)+ 3

(
x2ex

)) = BA[p]B ={

because BA=A
A[p]B =

⎛⎜⎝ 1 1 0

0 1 2

0 0 1

⎞⎟⎠
⎛⎜⎝ 1

2

3

⎞⎟⎠ =
⎛⎜⎝ 3

8

3

⎞⎟⎠

Hence using these values gives

(S ◦ T)
(
ex + 2xex + 3x2ex

) = 3ex + 8xex + 3x2ex

Verify this result by applying the differential operator T to the vector ex + 2xex + 3x2ex and then the
identity, and you should end up with the above result 3ex + 8xex + 3x2ex .
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5.6.3 Invertible linear transformations

What is an invertible linear transformation?
From section 5.4.5 we have

Figure 5.38

Fig. 5.38 shows a linear transformation T : V →W (from V to W) which takes u to T (u). The
inverse transformation denoted by T−1 : W → V (from W to V) takes T (u) back to u.

Definition (5.35). LetT : V →W be a linear transform. Then T is invertible⇔ there exists
a transformation T−1 such that

(a)
(
T−1 ◦ T) = IV where IV is the identity transformation on the start vector space V

(b)
(
T ◦ T−1) = IW where IW is the identity transformation on the arrival vector
spaceW

If a linear transform T is invertible we say it is an invertible linear transform.

Proposition (5.36). Let T : V →W be a linear transform of finite-dimensional spaces V
and W. Then T is invertible ⇔ the matrix A which represents the transformation T is
invertible.

Proof – Exercises 5.6.

We found an inverse transformation in section 5.4.5. We use the same technique estab-
lished in that section to find the matrix for T−1 in the following example.

Example 5.40

Let T : R2 → R2 be the linear operator given by T
([

x
y

])
=
(
x− y
x+ y

)
.

(i) Determine the matrix for the linear operator T−1 : R2 → R2 .

(ii) Show that the identity matrix I represents the composite function T ◦ T−1 .

T is the same transform given in Example 5.27 of section 5.4.5. (continued...)
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Solution

(i) By Example 5.27 we have the inverse transformation T−1:

T−1
([

x
y

])
= 1

2

(
x + y
−x + y

)

What is the standard matrix, call it A, which represents T−1?

It is the coefficients of x and y, which means the matrix is A = 1
2

(
1 1
−1 1

)
.

What is the matrix, call it B, which represents the given transformation T
([

x
y

])
=
(
x − y
x + y

)
?

Again, this is the coefficients of x and y as column vectors. We have B =
(
1 −1
1 1

)
.

(ii) How do we show that the identity matrix I represents the composite transform T ◦ T−1?
By showing BA = I because BA represents the composite transform T ◦ T−1 . We have

BA = 1
2

(
1 −1
1 1

)(
1 1
−1 1

)
= 1

2

(
2 0
0 2

)
=
(
1 0
0 1

)
= I

In the next proposition, we state and prove that we can find the inverse transformation
of a given transform by determining the inversematrix A−1.

Proposition (5.37). LetT : V → V be an invertible linear transform (actually a linear oper-
ator) of finite-dimensional space V. Let A be a matrix representing the transform T with
respect to a basis for V. Then A−1 is the matrix representing the inverse transform T−1
with respect to the same basis.

How do we prove this result?
We use the above Proposition (5.36) which says:

T is invertible⇔ the matrix A which represents the transformation T is invertible.

Proof.
By (5.36) we know that the matrix A is invertible. Since T is invertible we have

T−1 ◦ T = IV

This means that T−1 ◦ T is the identity transformation. Let B be the matrix representing
T−1 then we need to show B = A−1.

By Proposition (5.35) we have that the matrix multiplication BA represents the compos-
ite transform T−1 ◦ T which is the identity. Thus by the result of question 14 of the last
Exercises 5.5 which says:

If T is an identity linear operator then the matrix for T is the identity matrix In
We have BA = I, because T−1 ◦ T is the identity transformation.
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What is the matrix B equal to?
Because BA = I, therefore B = A−1 which is our required result.

Example 5.41

Let T : R3 → R3 be the linear operator given by T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ x + 5y+ 3z
2x + 3y+ z
3x + 4y+ z

⎞⎠.

Determine the inverse transformation T−1 : R3 → R3.

Solution
How do we find the inverse transformation T−1 ?
First we write out the standard matrix for T and then we find the inverse of this matrix. The standard
matrix for T is given by reading the coefficients of x, y and z:

A =
⎛⎝ 1 5 3
2 3 1
3 4 1

⎞⎠ ⎡⎣Because T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ x+ 5y+ 3z
2x+ 3y+ z
3x+ 4y+ z

⎞⎠⎤⎦
For the inverse transformation T−1 we need to find the inverse matrix A−1 .

How?
We can use row operations or apply MATLAB. You can verify (in your own time) that the following is the
inverse matrix A−1 :

A−1 =
⎛⎝ −1 7 −4

1 −8 5
−1 11 −7

⎞⎠
What is the inverse transformation T−1 equal to?
The entries of the first column of this matrix A−1 are the x coefficients, the entries in the second column
are the y coefficients and the entries in the last column are the z coefficients:

T−1
⎛⎝⎡⎣ x

y
z

⎤⎦⎞⎠ =
⎛⎝ −x+ 7y− 4z

x− 8y+ 5z
−x + 11y− 7z

⎞⎠ ⎡⎣because A−1 =
⎛⎝ −1 7 −4

1 −8 5
−1 11 −7

⎞⎠⎤⎦

Finding the inverse matrix is no easy task but it is still simpler than trying to find the
inverse transformation by transposing formulae.

Example 5.42

Let T : P2 → P2 be the linear operator given by

T(p) = (px)′ where p = ax2 + bx+ c

and B = [x2, x, 1] be an ordered basis (axes) for P2. Determine an expression for the inverse
transformation T−1(p) with respect to the same basis B.
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Solution
What do we need to find first?
The matrix which represents the given transformation T.
How can we locate this matrix?
By finding the transformation T(p) = (px)′ of each basis (axes) vector in B = [x2, x, 1]:

T
(
x2
) = (x2x)′ = (x3)′ = 3x2

T(x) = (xx)′ = (x2)′ = 2x

T (1) = (1x)′ = (x)′ = 1

We need to write these in terms of the basis vectors B = [x2, x, 1]:
T
(
x2
) = 3x2 = 3

(
x2
)+ 0(x)+ 0 (1)

T(x) = 2x = 0
(
x2
)+ 2(x)+ 0 (1)

T (1) = 1 = 0
(
x2
)+ 0(x)+ 1 (1)

What is the matrix A which represents the given transformation T equal to?

A =
⎛⎝ 3 0 0

0 2 0
0 0 1

⎞⎠
To find the inverse transformation T−1 we need to find A−1. By using row operations we have:

A−1 =
⎛⎝ 1/3 0 0

0 1/2 0
0 0 1

⎞⎠
With p = ax2 + bx + c we can evaluate the coefficients of x2, x and constants of the inverse

transformation T−1 as follows:

⎛⎝ 1/3 0 0
0 1/2 0
0 0 1

⎞⎠⎛⎝ a
b
c

⎞⎠ =
⎛⎝ a/3

b/2
c

⎞⎠
The entries in the right hand vector are the coefficients of x2, x and constants respectively.
This means that the inverse transformation is given by

T−1(p) = T−1
(
ax2 + bx+ c

) = a
3
x2 + b

2
x + c

Note that in the above Example 5.42 we were given the transformation

T(p) = (px)′ = ([ax2 + bx + c
]
x
)′

= (ax3 + bx2 + cx
)′ = 3ax2 + 2bx + c
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In this transformation we have multiplied a general quadratic ax2 + bx + c by x and
then found the derivative of this result. The inverse transformation is

T−1(p) = T−1
(
ax2 + bx + c

) = a
3
x2 + b

2
x + c

This is the same as integrating a general quadratic ax2 + bx + c which gives
a
3x

3 + b
2x

2 + cx and then dividing this result by x which yields a
3x

2 + b
2x+ c = T−1(p).

Note that this is the reverse process of the given transformation T. We can illustrate this as
shown in Fig. 5.39.

Multiply by x Differentiatep T(p)

pT—1(p) IntegrateDivide by x

Figure 5.39

5.6.4 Operations of invertible linear operators

Proposition (5.38). Let T : V → V and S : V → V be invertible linear operators of finite-
dimensional space V. Then S ◦ T is invertible and

(S ◦ T)−1 = T−1 ◦ S−1

Remember, inverses undo the last operation first as illustrated in Fig. 5.39 above.

How do we prove this result?
We use the above propositions and the matrix result of chapter 1:

(1.27) (BA)−1 = A−1B−1

Proof.
Let the matrices A and B represent the given linear transformations T and S respectively.
By Proposition (5.34)

(S ◦ T) (u) = BA (u)

We know that the matrix multiplication BA represents the composite transform S ◦ T. By
applying the above Proposition (5.37):

If matrix A represents the transform T then A−1 represents the inverse T−1
We have that the matrix representation of (S ◦ T)−1 is (BA)−1. By the above (1.27) we have

(BA)−1 = A−1B−1
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The matrix A−1 represents the transform T−1 and B−1 represents the transform S−1.
ThusA−1B−1 represents the composite transform T−1 ◦ S−1. This means that we have our
required result

(S ◦ T)−1 = T−1 ◦ S−1

i Summary

The composite transform denoted S ◦ T is defined as

(5.32) (S ◦ T) (u) = S (T (u))

(5.37) Let A be a matrix representing the transform T then A−1 is the matrix representing the
inverse transform T−1.

EXERCISES 5.6

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Consider the linear operators T : R2 → R2 and S : R2 → R2 given by

T
([

x
y

])
=
(
y
x

)
and S

([
x
y

])
=
(
y
0

)

(i) Determine the vector (S ◦ T)

([
1
2

])
and (T ◦ S)

([
1
2

])
.

(ii) Determine the vector (S ◦ T)

([
1
1

])
and (T ◦ S)

([
1
1

])
.

2. Let T : P2 → P1 and S : P2 → P2 be defined by

T(p) = p′ and S(p) = ax2 + bx where p = ax2 + bx+ c

Determine (a) (T ◦ S) (p) (b) (S ◦ T) (p) (c) (T ◦ T) (p) (d) (S ◦ S) (p)
3. Let the linear operators T : R2 → R2 and S : R2 → R2 be given by

T
([

x
y

])
=
(
x+ 2y
x− 3y

)
and S

([
x
y

])
=
(

2x+ y
−x− y

)
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Determine the standard matrices for the compositions S ◦ T and T ◦ S. Also find
(i) (S ◦ T)

([
1
5

])
(ii) (T ◦ S)

([
1
5

])
(iii) (T ◦ T)

([
1
5

])
(iv) (S ◦ S)

([
1
5

])
4. Let the linear transformations T : R3 → R3 and S : R3 → R3 be given by

T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ 2x− y+ 10z

3x− 5y+ 6z
x+ 3y− 9z

⎞⎠ and S

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ −x− y− z

x+ y+ 2z
x+ 2y+ 3z

⎞⎠
Determine the standard matrices for the compositions S ◦ T and T ◦ S. Also find

(i) (S ◦ T)

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ (ii) (T ◦ S)
⎛⎝⎡⎣ 1

2
3

⎤⎦⎞⎠ (iii) (T ◦ T)

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠
(iv) (S ◦ S)

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠
5. (a) Let V be the space spanned by

{
ex, xex, x2ex

}
. Let T : V → V and S : V → V be

linear operators defined by

T(p) = p′ and S(p) = cex + bxex + ax2ex where p = aex + bxex + cx2ex

Determine the matrix for
(i) S ◦ T (ii) T ◦ S (iii) T ◦ T (iv) S ◦ S
What do you notice about the transformation S ◦ S? Find S−1(p).

(b) Show that the linear operator T is invertible and find T−1. Use T−1 to determine∫
x2exdx

6. Let T : P2 → P2 and S : P2 → P2 be linear operators defined by

T
(
ax2 + bx + c

) = −ax2 − bx − c and S
(
ax2 + bx + c

) = −bx− c

and B = [1, x, x2
]
be an ordered basis for P2.

Determine the matrix which represents the following transformations.
(i) S ◦ T (ii) T ◦ S (iii) T ◦ T (iv) S ◦ S
Also find (S ◦ T)

(
1+ 2x+ 3x2

)
, (T ◦ S) (1+ 2x + 3x2

)
, (T ◦ T)

(
1+ 2x + 3x2

)
and (S ◦ S) (1+ 2x+ 3x2

)
.

7. Let T : R2 → R2 be the linear operator given by T
([

x
y

])
=
(
x− y
x+ y

)
.

Determine the standard matrices for transformations T and T−1 : R2 → R2.

8. Let T : R3 → R3 be the linear operator given by T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ x+ y+ z
x+ y− z
x− y− z

⎞⎠. Find
the inverse transformation T−1 : R3 → R3. [Use MATLAB to find the inverse.]



COMPOSITION AND INVERSE LINEAR TRANSFORMATIONS 421

9. Let T : P3 → P3 be the linear operator defined by

T(p) = (px)′ where p = ax3 + bx2 + cx + d

and B = [x3, x2, x, 1] be an ordered basis for P3. Determine an expression for T−1(p)
with respect to the same basis B.

10. Let T : R3 → R3 be the linear operator given by

T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ x + y+ z
2x + 2y+ z

y+ z

⎞⎠
Find T−1 : R3 → R3.

11. Determine which of the following transformations are invertible. If they are invertible
then find the inverse transformation.

(a) T : R3 → R2 given by T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ = ( x− z
x+ y+ z

)

(b) T : R3 → R3 given by T

⎛⎝⎡⎣ x
y
z

⎤⎦⎞⎠ =
⎛⎝ 0
x+ y+ z
x− y− z

⎞⎠
(c) T : P3 → P3 given by T(p) = p where p = ax3 + bx2 + cx + d.

In computer graphics, each pixel on a screen can be viewed as a point or a vector. The
following matrices carry out the corresponding operations on the vector or point:

Rθ =
(
cos (θ) − sin (θ)

sin (θ) cos (θ)

)
rotates a vector by an angle of θ anti-clockwise about

the origin.

RFx =
(
1 0
0 −1

)
reflects a vector in the x axis.

12. Let T,Q : R2 → R2 be the linear operators acting on x = (x y)T be given by

T(x) = Rθx and Q(x) = RFxx

(i) What is the net effect of (Q ◦ Q) (x)?
(ii) Show that if we apply the linear operator Q an odd number of times on the vector

x then the net effect is reflection in the x axis.
(ii) Show that the composite transform T ◦ T rotates the vector x by an angle of 2θ .

13. The probabilities of injury (I) and death (D) on urban roads (U) and motorways (M)
are given by the matrix A:

I D

A =
(
1/3 2/3
2/3 1/3

)
M
U
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A linear operator T : R2 → R2 is given by T(x) = Ax. The nth vector xn is defined
as

xn = T ◦ T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n copies

(x0) where x0 = (1 0)T

(i) Use MATLAB or some other software to find x1, x2, x3, x4 and x5 correct to 4dp.
(ii) By using MATLAB, or otherwise, predict a value for xn for large n.

14. Let T : V →W be a linear transformation. Let IV and IW be the identity linear
transformations on V andW respectively. Prove that
(i) T ◦ IV = T (ii) IW ◦ T = T

15. Let T : U → V and S : V →W be linear transformations and U, Vand W be finite-
dimensional vector spaces. Prove that (S ◦ T) �= (T ◦ S).

16. Let T : U → V and S : V →W be linear transformations, and U, V and W be finite-
dimensional vector spaces. Prove that

k (S ◦ T) = (kS) ◦ T = S ◦ (kT) where k is any scalar.
17. Let T : V → V be an invertible linear operator. Prove that T−1 is linear.
18. Let T : V → V be an invertible linear operator. Prove that

(
T−1

)−1 = T.
19. Let T : V →W be an invertible linear transformation. Prove that the inverse transfor-

mation T−1 : W → V is unique.
20. Prove Proposition (5.36).

MISCELLANEOUS EXERCISES 5

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

[In chapter 5 we used the term transformation to mean map.]

5.1. Show that the function T : R2 → R3 is a linear transformation.

T
[
x1
x2

]
=
⎡⎣ x1 + 5x2

0
2x1 − 3x2

⎤⎦
University of Puget Sound, USA

5.2. Let T : R3 → R2 be the map defined by

T[ x1, x2, x3 ]T = [ 2x1 − 3x2 + 4x3, −x1 + x2 ]T

Show that T is a linear map and find its standard matrix.
University of Ottawa, Canada
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5.3. Give an example or state no such example exists of:
A function f : R2 → R2 that is not a linear transformation.

Illinois State University, USA
(part question)

5.4. Let T(x1, x2, x3) = (3x2 + 2x3, 3x1 − 4x2).

(a) Find the standard matrix for T.
(b) Is T one-to-one?
(c) Is T onto?

University of South Carolina, USA

5.5. (a) Let S denote the subset of all vectors −→x in R2 for which −→x · −→u = 0 for some
fixed−→u ∈ R2. Is S a subspace of R2 or not? Give reasons for your answer.

(b) Let−→u =
[

1
−1
]
and−→v =

[
0

−1
]
be two vectors of R2, and let T : R2 → R2 be

a linear transformation for which T
(−→u ) = [ 21

]
and T

(−→v ) = [ 13
]
.

(i) Find T
(−→e1 ) and T

(−→e2 ).
(ii) Find the matrix representation of T with respect to the standard basis{−→e1 ,−→e2 }.
(iii) For what vector−→w of R2 is T

(−→w ) = [ 18
]
?

University of New Brunswick, Canada

5.6. Let the operator S : R3 → R4 be defined by

S(x1, x2, x3) = (x1 − 4x2 + 2x3, 2x1 + 7x2 − x3, −x1 − 8x2 + 2x3, 2x1 + x2 + x3)

(a) Find the standard matrix of S.
(b) Find a basis for the range of S.

University of Western Ontario, Canada

5.7. (a) Given the vector spaces, V,W, over the field K, state what is meant by a linear
transformation T : V →W.

(b) What is meant by the kernel of T, ker T?
(c) Show that T is injective if and only if kerT = {O}.
(d) If T : R3 → R2 is given by the formula,

T(x, y, z) = (x+ y, x+ y+ z),

find ker T.
University of Sussex, UK
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5.8. Let T : R4 → R3 be a linear transformation defined by

T

⎛⎜⎜⎝
⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦
⎞⎟⎟⎠ =

⎛⎝ 1 1 1 0
1 1 −1 1
0 0 2 1

⎞⎠
⎛⎜⎜⎝
x1
x2
x3
x4

⎞⎟⎟⎠
(a) Find a basis for the set of vectors in R3 that are in the image of T.

Do the columns of the matrix associated with T span R3?
(b) Is T onto? Explain clearly why or why not.
(c) Find a basis for the null space of T.
(d) Is T one-to-one? Explain why or why not.

Mount Holyoke College, Massachusetts, USA

5.9. Suppose T : R2 → R3 is a linear transformation such that T
[

3
−5
]
=
⎡⎣ 1
−1
2

⎤⎦ and

T
[−1

2

]
=
⎡⎣ 3

0
−2

⎤⎦. Determine T
[

7
−11

]
.

University of Puget Sound, USA

5.10. Let L : R3 → R3 be a linear transformation such that

L

⎛⎝⎡⎣−21
−2

⎤⎦⎞⎠ =
⎡⎣−31

2

⎤⎦ , L

⎛⎝⎡⎣ 3
2

−1

⎤⎦⎞⎠ =
⎡⎣ 2
−2
1

⎤⎦ , L

⎛⎝⎡⎣−1−1
1

⎤⎦⎞⎠ =
⎡⎣−12

4

⎤⎦

Find L

⎛⎝⎡⎣ 1
1

−1

⎤⎦⎞⎠.
Purdue University, USA

5.11. Let A be a 6× 5 matrix such that the nullity of A is 0. Let T : Rn → Rm be the linear
transformation defined by T(x) = Ax. Answer each of the following questions.
Be sure to justify your answers.

(a) What is the value ofm? What is the value of n?
(b) What is the maximum number of linearly independent vectors in the range of T?
(c) Is T onto?
(d) Is T one-to-one?

Illinois State University, USA

5.12. The images of the unit vectors in R2 under the linear transformation T : R2 → R3

are given as T (e1) =
⎡⎣ 2
1
h

⎤⎦, and T (e2) =
⎡⎣ 3
k
0

⎤⎦. Determine all the values of the

parameters h and k for which T is one-to-one.
Washington State University, USA
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5.13. Let C1[ 0, 1 ] represent the vector space of continuously differentiable functions
defined on the interval [ 0, 1 ] and let C[ 0, 1 ] be the vector space of continuous
functions on [ 0, 1 ]. Define the transformation T : C1[ 0, 1 ]→ C[ 0, 1 ] by

f → Tf where
(
Tf
)
(x) = df

dx
(x)− 2f (x) for 0 ≤ x ≤ 1

Thus, T (ex) = d(ex)
dx − 2ex = −ex, i.e, ex T→ −ex.

(a) What is the zero vector in the space C[0, 1]?
(b) Show that T is a linear transformation.
(c) Determine the kernel of T. What is dim ker T?

Harvey Mudd College, California, USA

5.14. If T : V → W is a linear mapping, show that

(a) ker(T) is a subspace of V.
(b) im(T) is a subspace ofW.
(c) For the linear transformation T given below, find the dimensions of the kernel

and the image respectively.

T : R3 → R3 given by T(x, y, z) = (x+ 2y− z, y+ z, x+ y− 2z);

University of Sussex, UK

5.15. Let T : V → W be a linear transformation from the vector spaces V to the vector
spaceW. Let S = {v1, v2, . . . , vn} be a set of vectors in V . Suppose that the set of vec-
tors {T (v1) ,T (v2) , . . . ,T (vn)} is a linearly independent set of vectors in W. Prove
that S must be a linearly independent set in V . Produce a counter-example to show
that the converse is generally false.

Harvey Mudd College, California, USA

5.16. Let T : P2 → P3 be defined by

T
(
a0 + a1t + a2t2

)
:= 3a1 + 2a2t + a0t2 + (a1 + a2) t3

(a) This is a linear mapping. What are the two conditions that one has to check in
order to prove this? Check one of them.

(b) Equip these two spaces P2 and P3 with the bases B = { 1, t, t2 } and
C = { 1, t, t2, t3 }, respectively. Compute the matrix A that represents T with
respect to these two bases.

(c) Demonstrate how to work with this matrix by computing T
(
2+ 5t − t2

)
,

using A.
(d) Is it possible to do the same with T(p) := t3 + p (t)? (If yes, don’t do it!)

University of New York, USA
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5.17. (a) Give the definition of a linear transformation T from Rn → Rk.
(b) (i) Show that T : R3 → R4 given by

T
([
x, y, z

]) = [ x+ 2y, 2y− 3z, z + x, x
]

is a linear transformation.
(ii) Find the standard matrix representation of T.

(c) Let T : Rn → Rk be a linear transformation and let β = {b1, b2, . . . , bn } be a
basis of Rn. Show that, for any v ∈ Rn, the vector T(v) is uniquely determined
by the vectors T (b1) ,T (b2) , . . . ,T (bn).

University of Toronto, Canada

5.18. Consider the subspace V of C (R) spanned by the set

β = {1+ x, 1− x, ex, (1+ x) ex
}

(a) Show that β is a basis for V (by showing that it is linearly independent).
(b) Find the coordinates [u]β in the ordered basis β, where

u = 1− xex

(c) Let D : V → V be the differentiation operator D : f �→ df
dx .

Find the matrix representation [D]ββ .
(d) Verify that

[Du]β = [D]ββ [u]β

Loughborough University, UK

5.19. (a) Determine whether the following maps are linear or not. Justify your
answers.

(i) f : R2 → P5 : (a, b)→ (a+ b)x5.

(ii) f : M (2, 2)→ R2 :
(
a b
c d

)
→ (ad, bc).

(b) Let V , W be two real finite-dimensional vector spaces and let f : V →W be
a linear map. Define what is meant by the image, the kernel, the rank and the
nullity of f and state the rank-nullity theorem.

(c) Let f : P2 → R3 be a linear map with nullity f = 1. Determine whether the map
f is injective, surjective, both or neither. Justify your answer.

(d) Consider the map f : R4 → R3 given by

f (x, y, z, t) = (x+ y, 0, z + t)

for all (x, y, z, t) ∈ R4. Determine whether f is injective, surjective, both or neither
and find a basis for the kernel of f and a basis for the image of f .

City University, London, UK
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5.20. Let T1

([
x
y

])
=
[
2x+ y
−x+ y

]
and T2

([
x
y

])
=
[

x
x+ 2y

]
.

Which of the following matrices represents the composition T1 ◦ T2 with respect
to the standard basis for R2?

A.
[
3 1
0 3

]
B.
[
3 4
0 1

]
C.
[
3 2
0 2

]
D.
[
2 1
0 3

]
E.
[
2 0
1 3

]
University of Toronto, Canada

5.21. Suppose S and T are the linear transformations given by

S
(
(x1, x2, x3)

) = (3x1 + 5x2 − x3, 4x2 + 3x3, x1 − x2 + 4x3)

and T(x) = Ax, where

A =
⎛⎝ 1 0 5

2 −1 0
4 1 0

⎞⎠
Find the matrix C so that (S ◦ T) (x) = S

(
T(x)

) = Cx.
University of Maryland, Baltimore County, USA

5.22. Let φ : R4 → R4 be the mapping given by φ(x) = Ax with

A =

⎛⎜⎜⎝
1 0 −1 1
1 1 1 1
1 2 3 4

−1 5 2 2

⎞⎟⎟⎠
(a) Is φ a linear mapping? Justify your answer. Let e1 = (1, 0, 0, 0)T . What is

φ (e1)?
(b) Compute the determinant of A. [Determinants are covered in the next chapter.]
(c) Find a basis for the subspaces ker(φ) and im (φ). Is the mapping φ invertible?

Jacobs University, Germany

5.23. (a) Let V be a vector space of dimension n with a basis

B = {−→u1 , . . . ,−→un}
(i) Give definition of a linear transformation on V.
(ii) If T is a linear transformation on V, define what is meant by the matrix of T

with respect to the basis B.

(b) Let V be the vector space of all functions of the form f (x) = a sin x+ b cos x for
arbitrary real constants a and b. Select in V the basis B = {sin x, cos x}.

Find the matrix [T]B of the linear transformation

T
(
f (x)

) = f ′(x)+ f ′′(x)
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with respect to the basis B. Here, f ′(x) and f ′′(x) denote the first and the second
derivative of the function f (x),

f ′(x) = d
dx

f (x), f ′′(x) = d
dx

f ′(x) = d2

dx2
f (x)

(c) Is the operator T from part (b) invertible? If so, find the matrix of the inverse
operator T−1 in the basis B.

(d) Using the operator T−1, find a function f (x) in V such that

f ′′(x)+ f ′(x) = 2 sin x+ 3 cos x
University of Manchester, UK

5.24. Let V be a vector space over R, and let T : V → Rn be a one-to-one linear
transformation. Show that for u, v ∈ V the formula

〈u, v〉V := 〈T (u) ,T(v)
〉

defines an inner product on V. (Here 〈−,−〉 is the standard inner product on Rn.)
University of California, Berkeley, USA

5.25. Let v1 and v2 be independent vectors in V and let T : V →W be a one-to-one
linear transformation of V into W. Prove that T (v1) and T (v2) are independent
vectors inW.

University of Toronto, Canada (part question)

5.26. True or false:
If V is a vector space and T : V → V is an injective linear transformation, then T

is surjective. (Be careful.)
University of California, Berkeley, USA (part question)

5.27. Suppose A is a linear operator on a 10-dimensional space V, such that A2 = 0.

(a) Show that Im(A) ⊂ Ker (A).
(b) Show that the rank of A is at most 5. (Hint: (a) and the rank-nullity theorem

might help.)

Stanford University, USA (part question)
Sample questions

5.28. Let Mnn be the vector space of size n by n matrices. Let B be a matrix of Mnn and
T : Mnn → Mnn be a transform such that T (A) = AB+ BA where A∈ Mnn
Show that T is a linear transform.

5.29. Let T : R2 → R2 be given by T
((

x
y

))
=
(
ex

ey

)
. Show that T is not linear.
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Tell us about yourself and your work.

Linear algebra is a fundamental tool in the design and analysis of algorithms for data
mining and statistical data analysis applications: numerous modern, massive datasets are
modelled as matrices. Naturally, a solid background in linear algebra is a must if your
work will eventually involve processing large-scale data, and many highly rewarding jobs
in the future will involve the analysis of Big Data. Think, for example, of the following
data matrix: the rows of the matrix correspond to customers of your favourite online
store, and the columns correspond to the products available at the store. Let the (i,j)-th
entry of the matrix be the ‘utility’ of product j for customer i. Then, a recommender
system like the ones used by many such online stores, seeks to recommend high utility
products to customers, with the obvious hope that the customer will purchase the
product. Since it is not possible to ask every customer to reveal his or her preference for
every product, a recommender system tries to infer products of high utility for a
customer from a small sample of known entries of the matrix. A lot of my work focuses
on problems of this type: how can we reconstruct missing entries of a matrix from a
small sample of rows and/or columns and/or elements of the matrix? Solving this
problem better than the current state of the art would have made you a millionaire in the
Netflix challenge a couple of years ago!

A related question focuses on identifying influential rows and/or columns and/or
elements of a matrix. Imagine, for example, that you are interested in approximating the
product of two matrices by selecting a few rows of the first matrix and a few columns of
the second matrix. Which rows and or columns will return the best approximation? Such
problems are of particular interest when dealing with massive matrices that cannot be
easily stored in random access memory (RAM). Similar sampling-based algorithms are
very useful in approximating singular values and singular vectors of matrices. These
operations are of particular importance in data mining, since they lie at the heart of
principal components analysis (PCA), a fundamental dimensionality reduction
technique that helps visualize, denoise and interpret high-dimensional datasets.

The challenges in my line of work lie at the intersection of linear algebra and
probability theory. This ‘marriage’ of the two domains as well as the formal study of the
effects of sampling rows/columns/elements of matrices is relatively recent, and you can
trace it to a few influential papers in the late 1990s. On the one hand, probability theory



provides the fundamental tools that help quantify the ‘distance’ between the original
matrix and the sampled one. On the other hand, linear algebraic tools (for example,
matrix perturbation theory), allow us to quantify how characteristic properties (e.g.
singular values, singular vectors, etc.) of the original matrix can be approximated using
the sampled matrix.

Have you any particular messages that you would like to give to students
starting off studying linear algebra?

You need to understand singular value decomposition (SVD)! This will probably be
towards the end of an introductory linear algebra course, but it really should be the
take-home message of any such course. It lies at the heart of so many things, from
computing the rank of a matrix, to solving least-square problems and computing the
inverse or pseudoinverse of a matrix. I will quote Prof. Dianne O’Leary of the University
of Maryland: SVD is the Swiss Army knife and the Rolls Royce of numerical linear
algebra. It has numerous uses (like a Swiss Army knife), but it is computationally
expensive (like a Rolls Royce). I hope that some of my own work on randomized
algorithms for the SVD has helped make it a bit more affordable!
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SECTION 6.1 Determinant of a Matrix

By the end of this section you will be able to

● evaluate the determinant of 2 by 2 matrices

● understand the geometric interpretation of a determinant

Figure 6.1 T. Seki 1642–1708.

(Source: http://turnbull.mcs.st-
and.ac.uk/∼history/).

T. Seki (Fig. 6.1) is credited with being the first person
to study determinants in 1683. Seki taught himself
mathematics from an early age after being initially
introduced to the subject by a household servant. He
was from a family of Samurai warriors.

The famous author Lewis Carroll, better known for
his popular book Alice’s Adventures in Wonderland,
wrote a book on determinants called An Elementary
Theory of Determinants in 1867.

Lewis Carroll proposed that Oxford University set
up a mathematical institute 65 years before it was
eventually built. He also wrote to the Dean proposing
his salary be lowered from £300 to £200 per year
because his College was suffering a financial crisis.

In this chapter we will find that every square matrix has a unique value associated with it,
called the determinant.We can use this value to establish whether thematrix has an inverse
or not, as well as finding whether the linear system has a unique solution. The determinant
of a matrix A is used like a pregnancy test to see whether the linear system Ax = b has a
unique solution or not. Hence the determinant is useful whenever linear systems appear on
the scene.

6.1.1 The determinant of a 2 by 2 matrix

We find the determinant of a 2 by 2 matrix in this section and then expand to 3 by 3, . . . , n
by n size matrices in the next section.

You can only find the determinant of a squarematrix.
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The determinant of a matrixA is normally denoted by det(A) and is a scalar not a matrix.

The determinant of the general 2 by 2 matrix A =
(
a b
c d

)
is defined as:

(6.1) det(A) = ad − bc
a b

minus
d c

What does this formula (6.1) mean?
It means the determinant of a 2 by 2 matrix is the result of multiplying the entries of the leading
diagonal and subtracting the product of the other diagonal.

Example 6.1

Find the determinant of B =
(

2 0
3 4

)
.

Solution

By applying the above formula (6.1) det
(

a b
c d

)
= ad− bc we have

det(B) = det
(

2 0
3 4

)
= (2× 4)− (3× 0) = 8

Note that the determinant is a number (8), not a matrix.
Next, we look at the geometric interpretation of the determinant of matrix B.

6.1.2 Applications to transformations

Example 6.2

Let the matrix A represent the corners of the triangle PQR whose coordinates are given by
P(0, 0),Q(2, 0) and R(0, 3). Determine the image of this triangle under the transformation BA where

once again, B =
(

2 0
3 4

)
.

By illustrating this transformation, determine the areas of the triangle PQR and the transformed triangle
P′Q′R′.
How does this transformation change the size of the area?

Solution

We are given coordinates P (0, 0),Q(2, 0) and R(0, 3), therefore A =
(

0 2 0
0 0 3

)
. Evaluating the

matrix multiplication BA:

P Q R P′ Q′ R′

BA =
(

2 0
3 4

)(
0 2 0
0 0 3

)
=
(

0 4 0
0 6 12

)
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The plot of this is shown in Fig. 6.2.

14

12

10

8

6

4

2

1 2 3 4 5
x

y

R

R‛

Q‛

P and P‛ Q

Figure 6.2

The area of shaded triangle PQR = 2× 3
2

= 3 and area of large triangle P′Q′R′ = 12× 4
2

= 24.

The transformation B increases the original area by a factor of 8 because 24/3 = 8.
This ratio 8 is the area scale factor and is equal to the determinant of matrix B which was evaluated in

Example 6.1:

Determinant of matrix

(
2 0
3 4

)
= (2× 4)− (3× 0) = 8

The determinant of a 2 by 2 matrix is the area scale factor.

The points
(
0
0

)
,
(
1
0

)
,
(
0
1

)
,
(
1
1

)
form a unit square with an area of 1, as shown in

Fig. 6.3(a).

What affect does multiplying the matrix A =
(

3 1
1 4

)
have on this square?

P Q R S P′ Q′ R′ S′(
3 1
1 4

)(
0 1 0 1
0 0 1 1

)
=
(

0 3 1 3+ 1
0 1 4 1+ 4

)
=
(

0 3 1 4
0 1 4 5

)

The transformation of the unit square to the parallelogram is shown in Fig. 6.3(b).
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(a)
1 2 3 4 5

2

1

3

4

5

1

2

3

4

5

(b) 
1 2 3 4 5

Figure 6.3

The matrix A =
(
3 1
1 4

)
changes the area by a factor of 11 because

Area of P′Q′R′S′

Area of PQRS
= 11

1
= 11

Do you notice any relationship between the matrix A and the area of 11?

11 is the determinant of the matrix A because det

(
3 1
1 4

)
= (3× 4)− (1× 1) = 11. Hence the

area of the parallelogram, 11, is equal to the determinant of the matrix A.

Consider the general 2 by 2 matrix A =
(
a b
c d

)
. Transforming the above unit square

PQRS by multiplying by this matrix A gives :(
a b
c d

)(
0 1 0 1
0 0 1 1

)
=
(
0 a b a+ b
0 c d c+ d

)
We can illustrate this as shown in Fig. 6.4.

(a) (b)

2

2

1.5

1.5 (0,0)

(a,c)

(b,d)

Area = ad-bc = det(A)

Area = 1

SR

(a+b, c+d)

0.5

0.5 QP

1

1

Figure 6.4

The matrix A =
(
a b
c d

)
changes the area by a factor of ad − bc because

Area of parallelogram
Area of square

= ad − bc
1

= ad − bc
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This ad − bc is the determinant of the matrix A; depending on the values we choose for
the symbols a, b, c and d the shape may change but the area is always ad − bc. Hence
det(A) represents the shaded area shown in Fig. 6.4(b).

What does a determinant equal to 1 mean in relation to transformations?
Applying a matrix with a determinant of 1 means the total area will remain the same under the
transformation. For example, a simple rotation leaves the area unchanged, so any matrix that
achieves a pure rotation will have a determinant of 1.

What does a negative determinant mean?
It changes the area over as shown in Fig. 6.5(c).

(a)

D
D B

C
C C

B

B D

A A A

v v

v
u

u

u

(b) determinant is positive (c) determinant is negative

Figure 6.5

A negative determinant changes the orientation of the area. If matrix A = (u v) and
the determinant of matrix A = (u v) is positive then swapping vectors gives a negative
determinant, that is det(v u) is negative.

6.1.3 Inverse of a matrix

Example 6.3

Let A =
(
a b
c d

)
and B = 1

det(A)

(
d −b
−c a

)
. Evaluate the matrix multiplication AB provided

det(A) �= 0.
What do you notice about your result?

Solution

AB =
(

a b
c d

)
× 1

det(A)

(
d −b
−c a

)
= 1

det(A)

(
a b
c d

)(
d −b
−c a

) [
remember A(kB) = k (AB)

where k = 1/ det(A) is a scalar

]
= 1

det(A)

(
ad− bc 0

0 ad − bc

)
= 1

det(A)
(
ad− bc

) ( 1 0
0 1

)
= 1

det(A)
det(A)I

[
taking out the common
factor ad − bc = det(A)

]
= I

[
cancelling out det(A)

]
Note that the matrix multiplication AB = I.
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Since AB = I, what conclusions can we draw about the matrices A and B?
B is the inverse of matrix A, that is B = A−1 .

This means the inverse of the general matrix A =
(
a b
c d

)
is defined by:

(6.2) A−1 = 1
det(A)

(
d −b
−c a

)
provided det(A) �= 0

The inverse of a 2× 2 matrix is calculated by interchanging entries along the leading
diagonal and placing a negative sign next to the other entries, and then dividing this by the
scalar det(A).

What does (6.2) imply?
It means that we can find the inverse matrix A−1, such that A−1A = I. Being able to find and
use the inverse of a matrix can make solving some equations much easier. Furthermore, if a linear
transformation T(x) = Ax is applied to an object whose vertices (corners) are the vectors x then
this transformation expands the area of the object by det(A). This means that T−1(x) = A−1(x)
must reverse this expansion, so we divide by det(A) as you can see in formula (6.2).

In the above we have described what is meant by a negative determinant and a
determinant of 1.

What can we say if the determinant is zero, that is det(A) = 0?
If det(A) = 0 then the matrix A is non-invertible (singular) – it has no inverse. The geometric
significance of this can be seen by examining transformations.

Consider the image of the triangle PQR, represented by matrix A =
(

0 2 0
0 0 3

)
under the

transformation BA where B =
(

3 2
6 4

)
. Multiplying the matrices, we have (Fig. 6.6):

P Q R P′ Q′ R′

BA =
(

3 2
6 4

)(
0 2 0
0 0 3

)
=
(

0 6 6
0 12 12

)
12

10

8

6

4

2

1 2 3 4 5 6
x

y

R

Q‛ and R‛

P and P‛ Q

Figure 6.6
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Under the transformation performed byB, the triangle represented bymatrixA becomes
a straight line P′Q′R′ which means that it has no area. The transformation B collapses the
area of triangle to zero so that matrix B cannot have an inverse because there is no matrix
that can transform the one-dimensional line back to the original two-dimensional object.
The area is increased by a factor of zero, therefore we expect det(B) = 0 and we can confirm
this by using the formula:

det
(
3 2
6 4

)
= (3× 4)− (6× 2) = 0

Example 6.4

Find the inverses of the following matrices:

(a) A =
(

2 3
−1 5

)
(b) B =

( √
2 1

−1 √
2

)
(c) C =

(
π π

π π

)
Solution

(a) When finding the inverse, we should evaluate the determinant first.
Why?
Because finding the determinant of a 2 by 2 matrix is simple, and if it turns out to be 0 then the
matrix does not have an inverse and we can save ourselves a lot of unnecessary additional
calculation.

Therefore by (6.1) we have

det(A) = det
(

2 3
−1 5

)
= (2× 5)− (−1× 3) = 13

The inverse matrix A−1 is given by the above formula (6.2) with det(A) = 13:

A−1 =
(

2 3
−1 5

)−1
= 1

13

(
5 −3
1 2

) [
By (6.2)

(
a b
c d

)−1
= 1

det(A)

(
d −b
−c a

)]

(b) We adopt the same procedure as part (a) to find B−1 . Applying (6.1) det(B) = ad− bc:

det(B) = det
( √

2 1
−1 √

2

)
=
(√

2×√2
)
− (−1× 1) = 2+ 1 = 3

By substituting det(B) = 3 into the inverse formula (6.2) we have

B−1 =
( √

2 1
−1 √

2

)−1
= 1

3

( √
2 −1
1

√
2

) [
By (6.2)

(
a b
c d

)−1
= 1

det(B)

(
d −b
−c a

)]

(c) Similarly applying (6.1) det(C) = ad− bc we have

det(C) = det
(

π π

π π

)
= (π × π)− (π × π) = 0

What can we conclude about the matrix C?
Since det(C) = 0, the matrix C does not have an inverse.



438 6 DETERMINANTS AND THE INVERSE MATRIX

6.1.4 Wronskian determinant

The Wronskian determinant is used in differential equations to test whether solutions
to the differential equation are linearly independent. If the Wronskian determinant is
non-zero then the solutions are linearly independent. Let f (x) and g(x) be two solutions
to a differential equation then the WronskianW( f , g) is defined by:

W( f , g) = det

(
f (x) g(x)
f ′(x) g′(x)

)

where f ′(x) and g′(x) are the derivatives of f (x) and g(x) respectively. IfW( f , g) �= 0 then f
and g are linearly independent.

For example, the WronskianW( cos(x), sin(x) ) is given by:

W
(
cos(x), sin(x)

) = det

(
cos(x) sin(x)
− sin(x) cos(x)

) [
because

(
cos(x)

)′ = − sin(x)
and

(
sin(x)

)′ = cos(x)

]
= cos2(x)+ sin2(x) = 1 �= 0

Remember, the fundamental trigonometric identity cos2 (x)+ sin2(x) = 1. Hence sine
and cosine are linearly independent solutions becauseW

(
cos(x), sin(x)

) �= 0 [Non-zero]

i Summary

We can only find the determinant of a square matrix.

Let A =
(

a b
c d

)
then the determinant and inverse of matrix A are given by

det(A) = ad− bc and A−1 = 1
det(A)

(
d −b
−c a

)
provided det(A) �= 0

EXERCISES 6.1

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

You may like to check your numerical answers using MATLAB.

1. Compute the determinant of the following matrices.

(a) A =
(
7 9
5 7

)
(b) B =

(
9 2
13 3

)
(c) C =

(
17 7
12 5

)
(d)D =

(
7 1
14 2

)
2. Compute det(A) and det(B) for the following:

(a) A =
(
1 3
5 7

)
and B =

(
1 5
3 7

)
(b) A =

( −1 2
5 3

)
and B =

( −1 5
2 3

)
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(c) A =
(
cos (−π) cos (π)

sin (−π) sin (π)

)
and B =

(
cos (−π) sin (−π)

cos (π) sin (π)

)
What do you notice about matrices A and B and your results for det(A) and det(B)?

3. For A =
(
a b
c d

)
. Show that det(A) = det

(
AT).

4. Let A =
(
2 1
0 3

)
. Show that det(A) is the area of the parallelogram which connects the

column vectors,
(
2
0

)
and

(
1
3

)
, of matrix A.

What is det
(
1 2
3 0

)
equal to?

5. By using determinants decide whether the following linear system has a unique solution?
If so find it.

2x + 3y = −2
5x − 2y = 14

6. Let T : R2 → R2 be a linear transformation given by T (x) = Ax. Determine a formula
for det

(
A2) in terms of det(A).

7. Show that the WronskianW
(
e−x, e−3x

) �= 0.
8. Decide whether the transformation T : M22 → R given by T(A) = det(A) is linear

or not.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 6.2 Determinant of Other Matrices

By the end of this section you will be able to

● understand what is meant by the terms cofactor, minor and adjoint of a

matrix

● determine the inverse of an n by n matrix

In the last section we found the determinant of a 2 by 2 matrix, and used it to work out
the inverse matrix. However, finding the determinant and inverse of a 3 by 3 matrix is not
quite as straightforward as for a 2 by 2. First we need to examine what is meant by the
terms ‘minors’, ‘cofactors’ and ‘adjoint’. We need to define these terms before we can find
the inverse.

6.2.1 Minors and cofactors

Consider the general 3 by 3 matrix A =
⎛⎝ a b c

d e f
g h i

⎞⎠. The determinant of the remaining

matrix after deleting the row and column of an entry is called theminor of that entry.



440 6 DETERMINANTS AND THE INVERSE MATRIX

For example, in the case of the matrix A we have

det
(

e f
h i

)
is theminor of entry a

det
(
d f
g i

)
is theminor of entry b

What is the minor of entry e?⎛⎜⎜⎝
a c

e

g i

⎞⎟⎟⎠
deleting the row and column
containing the entry e

Hence det
(
a c
g i

)
is the minor of entry e.

Example 6.5

Determine the minor of−1 in

⎛⎝ 3 5 7
−1 2 3
−4 4 −9

⎞⎠
Solution
After deleting the rows and columns containing−1,

⎛⎜⎝ 5 7

−1
4 −9

⎞⎟⎠ deleting these

we obtain the matrix

(
5 7
4 −9

)
. The minor of−1 is the determinant of this matrix:

det
(

5 7
4 −9

)
= (5× (−9))− (4× 7) = −73

[
by (6.1) det

(
a b
c d

)
= ad− bc

]

Next we give the formal definition ofminor.

Definition (6.3). Consider a square matrix A. Let aij be the entry in the ith row and jth
column of matrix A. TheminorMij of entry aij is the determinant of the remaining matrix
after deleting the entries in the ith row and jth column.

jth column Mij = det

⎛⎜⎜⎝
a11 . . . a1n
... aij

...

an1 · · · ann

⎞⎟⎟⎠ ith row
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Note that when calculating the minor of an entry in a 3× 3 matrix, we need to find
the determinant of the remaining 2× 2 matrix as seen in the above Example 6.5. When
calculating the minor of an entry in a 4× 4 matrix we would need to find the determinant
of the remaining 3× 3 matrix which we have not yet stated.

Next, we define the term cofactor, which is a sign associated with the minorMij.

Definition (6.4). Consider a square matrix A. Let aij be the entry in the ith row and jth
column of matrix A. The cofactor Cij of the entry aij is defined as

Cij = (−1)i+j Mij

whereMij is the minor of entry aij.

This definition may appear at first to be a little complicated, but it simply states that for
any n by nmatrix, the cofactors are just the minors with the following place signs:⎛⎜⎜⎜⎝

+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

...

⎞⎟⎟⎟⎠
What do you notice about the place signs?
The first entry of a matrix has a positive sign and then the place signs alternate.

Example 6.6

Determine the cofactor of 5 in

⎛⎝ 3 5 7
−1 2 3
−4 4 −9

⎞⎠.

Solution
After deleting the row and column containing 5 we find that the minor of 5 is

det
( −1 3
−4 −9

)
={

by (6.1)

(−1× (−9))− (−4× 3) = 21
[

(6.1) det
(

a b
c d

)
= ad− bc

]
According to the rule, the place sign of the central entry in the top row is negative, so the cofactor of

5 is−21.
Note that the minor of 5 is 21 but the cofactor is−21 because the position of 5 in the matrix means

that the cofactor inherits a negative sign.

By the above Definition (6.4) the cofactor is given by

Cij = (−1)i+j det

⎛⎜⎜⎝
a11 . . . a1n
... aij

...

an1 · · · ann

⎞⎟⎟⎠ . This definition might seem difficult to follow
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because of the complex ij notation, but this ij simply locates the entry of a matrix. There is
no easier way to locate an entry. The cofactor is just the minor of an entry with a plus or
minus sign depending on its position in the matrix. For example, the cofactor of the first
entry a11 is equal to the minor, C11 = M11 because (−1)1+1 = (−1)2 = 1.

What is the cofactor of the entry a12?
In this case, a12 means i = 1, j = 2 and i+ j = 1+ 2 = 3, therefore C12 = (−1)3M12 = −M12.

What is the cofactor of the entry a13?
Since i+ j = 1+ 3 = 4 therefore C13 = (−1)4M13 = M13. If we carry on developing the cofac-
tors we find that they are just the minors with a place sign.

We can write the determinant of a 3 by 3 matrix in terms of its cofactors. Let

A =
⎛⎝ a b c

d e f
g h i

⎞⎠ ⎡⎣remember that place signs are

⎛⎝ + − +
− + −
+ − +

⎞⎠⎤⎦
then:

(6.5) det(A) = a
(
cofactor of a

) + b
(
cofactor of b

) + c
(
cofactor of c

)
Expanding out (6.5) gives:

(6.6) det(A) = a
[
det
(

e f
h i

)]
− b

[
det
(
d f
g i

)]
+ c

[
det
(
d e
g h

)]
Why is there a minus sign in front of the b in formula (6.6)?
This is no mistake; the minus sign comes about because the place sign for b is minus.

We can find the determinant of a matrix by expanding along any of the rows. For example, the
formula for expanding along the middle row is

det(A) = d
(
cofactor of d

) + e (cofactor of e) + f
(
cofactor of f

)
What is the formula for expanding along the bottom row?

det(A) = g
(
cofactor of g

) + h
(
cofactor of h

) + i (cofactor of i)

We can also expand along any of the columns to find the determinant of A. The formula for
expanding along the first column is

det(A) = a (cofactor of a) + d
(
cofactor of d

) + g
(
cofactor of g

)
If any of the rows or columns contain zeros then we choose to expand along that row or

column because it simplifies the arithmetic.
A transformation T : R3 → R3 means that T goes from three-dimensional space R3

to R3.
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Example 6.7

Let T : R3 → R3 be defined by T (x) = Ax where A =
⎛⎝ −1 5 −2
−6 6 0
3 −7 1

⎞⎠. Find det(A).

Solution
Since there is a 0 in the last column, it is easier to expand along this column:

det (A) = −2 (cofactor of − 2)+ 0 (cofactor of 0)+ 1 (cofactor of 1)

det

⎛⎝ −1 5 −2
−6 6 0
3 −7 1

⎞⎠ = (−2) det
(−6 6

3 −7
)
− 0 det

(−1 5
3 −7

)
+ 1 det

( −1 5
−6 6

)

expanding along
this column

= −2 (42− 18)︸ ︷︷ ︸
by (6.1)

− 0 + (−6+ 30)︸ ︷︷ ︸
by (6.1)

= −24

We can illustrate the given transformation by examining how T acts on the unit cube
determined by e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Applying T to each of
these vectors gives:

T (e1) = (−1, −6, 3) , T (e2) = (5, 6, −7) and T (e3) = (−2, 0, 1)

These coordinates are the column vectors of matrix A.

What does the determinant of −24 represent in geometric terms?
We have a 3 by 3 matrix A, and the modulus (absolute value) of the determinant, −24, is +24
which is the volume of the three-dimensional parallelogram formed by the three column vectors
of matrix A; (−1, −6, 3), (5, 6, −7) and (−2, 0, 1) (Fig. 6.7).

This three dimensional box is made
from the columns of matrix A with 
volume = det (A) = 24.

T(e3) = (−2, 0, 1)

y

x

z

Unit cube
(volume = 1)

y

z
6

4

2

0
0
2

-4

-5

-3 -2 -1

-6

1 2 3 4 5

x

e2

e3

e1

T(e1) = (−1, −6, 3)

T(e2) = (5, 6, −7)

Figure 6.7
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The volume scale factor of transformation T is
∣∣det(A)∣∣ = 24.

The determinant measures the (signed) volume. Negative determinant means the col-
umn vectors of matrix A are left handed set of vectors. This means with our left hand the
positive x axis is in the direction our forefinger, the positive y axis is in the direction of
our middle finger and the positive z axis is in the direction of our thumb. This is called the
left handed orientation – Fig. 6.8(a). Similarly we have the right handed orientation –
Fig. 6.8(b).

(a) (b)     

Right handed
orientation

Left handed
orientation

x

y

x

z z

y

Figure 6.8

The minus sign for the determinant in three dimensions means that we are changing
from a right handed set of vectors (unit cube) to a left handed set of vectors.

We can use determinants to find the area of a parallelogram or the volume of a
parallelepiped (higher dimension parallelogram) given just the coordinates.

Next we look at a more formal definition of the determinant, with respect to n by n
matrices.

The general formula for the determinant of an n by n matrix A =
⎛⎜⎝ a11 . . . a1n

...
. . .

...
an1 · · · ann

⎞⎟⎠
where n ≥ 3 is:

(6.7) det(A) = a11C11 + a12C12 + · · · + a1nC1n =
n∑

k=1
a1kC1k

where the a’s are the entries in the matrix A, and the C’s are the corresponding cofactors.
Don’t be put off by the sigma

∑
notation. This is just a shorthand way of writing the

lengthy sum (6.7), developed by the great Swiss mathematician Euler, pronounced ‘oiler’,
(1707–1783). The sigma

∑
notation is often used by mathematicians to write a sum in

compact form. For example

(a) 1+ 2+ 3+ 4+ · · · + n =
n∑

k=1
k (b) 2+ 4+ 6+ 8+ · · · + 2n =

n∑
k=1

2k

n∑
k=1

a1kC1k means summing every value of a1kC1k, from k = 1 to k = n, which has the form

given in (6.7).
(6.7) is the formula for finding the determinant by expanding along the first row of the

matrix A.
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What is the formula for expanding along the ith row?
For expanding along the ith row of the matrix, the formula is

(6.8) det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin =
n∑

k=1
aikCik

6.2.2 Cofactor matrix

Let C be the new matrix consisting of the cofactors of the general matrix A. If

A =
⎛⎝ a b c

d e f
g h i

⎞⎠ then C =
⎛⎝ A B C

D E F
G H I

⎞⎠
where A is the cofactor of entry a, B is the cofactor of entry b, C is the cofactor of entry
c . . . The matrix C is called the cofactor matrix and it is used in finding the inverse of
A. Note that bold C represents the cofactor matrix and plain C is the cofactor of the
entry c.

Example 6.8

Find the cofactor matrix C of

A =
⎛⎝ 1 −1 5

3 9 7
−2 1 0

⎞⎠ ⎡⎣remember the place signs are

⎛⎝ + − +
− + −
+ − +

⎞⎠⎤⎦
Solution
Cofactor of the first entry, 1, is

det
(

9 7
1 0

)
={

by (6.1)

[(9× 0)− (1× 7)] = −7

Cofactor of−1 is

−{

Minus
place sign

det
(

3 7
−2 0

)
={

By (6.1)

− [(3× 0)− (−2× 7)] = −14

Cofactor of 5 is

det
(

3 9
−2 1

)
={

by (6.1)

[(3× 1)− (−2× 9)] = 21

(continued...)
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Cofactor of 3 is

−{

minus
place sign

det
( −1 5

1 0

)
={

by (6.1)

− [(−1× 0)− (1× 5)] = 5

Cofactor of 9 is

det
(

1 5
−2 0

)
={

by (6.1)

[(1× 0)− (−2× 5)] = 10

Cofactor of 7 is

−{

minus
place sign

det
(

1 −1
−2 1

)
={

by (6.1)

− [(1× 1)− (−2× (−1))] = 1

Cofactor of−2 is

det
( −1 5

9 7

)
={

by (6.1)

[(−1× 7)− (9× 5)] = −52

Cofactor of 1 (the 1 on the bottom row of the given matrix) is

−{

minus
place sign

det
(

1 5
3 7

)
={

by (6.1)

− [(1× 7)− (3× 5)] = 8

Cofactor of the last entry 0 is

det
(

1 −1
3 9

)
={

by (6.1)

[(1× 9)− (3× (−1))] = 12

Hence by collecting these together and placing them in the corresponding position we form the
cofactor matrix:

C =
⎛⎜⎝ −7 −14 21

5 10 1
−52 8 12

⎞⎟⎠

As stated above, we use the cofactor matrix to find the inverse of an invertible matrix.
The final term we need to define is ‘adjoint’.
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Definition (6.9). Let A be a square matrix then the matrix consisting of the cofactors of
each entry in A is called the cofactor matrix and is normally denoted by C. The transpose
of this cofactor matrix is called the adjoint of A and is denoted by adj(A). That is

adj(A) = CT

Remember, we discussed the transpose of a matrix in chapter 1 and it simply means
swapping the rows and columns around.

Example 6.9

Find the adjoint of the matrix A given in the above Example 6.8.

Solution
We have already done all the hard work in evaluating the cofactor matrix C above. The adjoint is the
transpose of this matrix C:

adj(A) = CT =
⎛⎝ −7 5 −52
−14 10 8
21 1 12

⎞⎠ ⎡⎣because C =
⎛⎝ −7 −14 21

5 10 1
−52 8 12

⎞⎠⎤⎦

6.2.3 Inverse of a matrix

The remainder of this section might seem demanding because we use mathematical proofs
to support the propositions. If you are struggling to understand the chain of arguments in
the proof then come back and go over the proof a second time. It is not necessary that you
understand every detail on the first reading.

The statement and proofs of the next three propositions are working towards the proof
of the inverse formula given in Theorem (6.13).

Proposition (6.10). If a square matrix A consists of two identical rows then det(A) = 0.

Proof – Exercises 6.3.

This proposition may seem a bit random and out of context, but we need this (6.10) to
prove the next proposition.

Proposition (6.11). Let A be an n by n matrix. If Cjk denotes the cofactor of the entry ajk
for k = 1, 2, 3, . . . and n then

ai1Cj1 + ai2Cj2 + ai3Cj3 + · · · + ainCjn =
{

det(A) if i = j
0 if i �= j
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Proof.

How do we prove this result?
We consider the two cases i = j and i �= j then show the required result in each case.

Case 1: Let i = j then substituting this into the left hand side of the above gives:

ai1Ci1 + ai2Ci2 + ai3Ci3 + · · · + ainCin = det(A) [by (6.8)]

Case 2: Consider the case when i �= j (not equal):
Let A∗ be the matrix obtained from matrix A by copying the entries of the ith row into the
jth row of matrix A. That is the matrix A∗ is the matrix A, apart from the jth row being
replaced with a duplicate of the ith row.

ith row

jth row

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n
...

...
...

...

ai1 ai2 · · · ain
...

...
...

...

aj1 aj2 · · · ajn

an1 an2 · · · ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and A∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n
...

...
...

...

ai1 ai2 · · · ain
...

...
...

...

ai1 ai2 · · · ain

an1 an2 · · · ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ith row = jth row

We have det (A∗) = 0.

Why?
Because we have two identical rows, i and j, in A∗, therefore by the previous Proposition (6.10) the
determinant is zero, that is det

(
A∗
) = 0.

Expand along the jth row of A∗ by using (6.8) which is given by

det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin

In the right hand matrix A∗ we have

0 = det (A∗) = ai1C∗j1 + ai2C∗j2 + · · · + ainC∗jn (†)

where C∗jk is the cofactor of entry aik in the jth row of matrix A∗.
Consider the cofactor Cj1, which is the place sign multiplied by the determinant of the

remaining matrix after deleting the row and column containing the entry aj1 in the left
hand matrix A. Similarly, the cofactor C∗j1 is the place sign multiplied by the determinant
of the remaining matrix after deleting the row and column containing the entry ai1 in the
right hand matrix A∗. We have
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Cj1 = (−1)j+1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a12 · · · a1n
...

...
...

ai2 · · · ain
...

...
...

aj1
an2 · · · ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and C∗j1 = (−1)j+1 det

jth row

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a12 · · · a1n
...

...
...

ai2 · · · ain
...

...
...

ai1
an2 · · · ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

What can you conclude about Cj1 and C∗j1?
C∗j1 = Cj1 because the cofactor is made up of the same entries of matrix A and A∗. In both
cases we delete the jth row and first column. Similarly, we have C∗j2 = Cj2 , C∗j3 = Cj3, . . . and
C∗jn = Cjn. Substituting these, C∗j1 = Cj1 , C∗j2 = Cj2, . . . and C∗jn = Cjn, into (†) gives

0 = det
(
A∗
) = ai1C∗j1 + ai2C∗j2 + · · · + ainC∗jn

= ai1Cj1 + ai2Cj2 + · · · + ainCjn

Hence in the case where i �= j we have

ai1Cj1 + ai2Cj2 + · · · + ainCjn = 0

which is our required result.

The final piece of jigsaw we need for finding the inverse matrix is the following:

Proposition (6.12). Let A be a square matrix. Then

A adj(A) = det(A)I

Proof.
Writing out the entries of the general n by n matrix A and the transpose of the cor-
responding cofactors of each entry, because adj(A) is the transpose of the cofactors,
gives

ith row
A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...

ai1 ai2 · · · ain
...

...
...

...
an1 an2 · · · ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and adj(A) =

⎛⎜⎜⎜⎜⎝
C11 C21 · · · Cj1 · · · Cn1
C12 C22 · · · Cj2 · · · Cn2
...

...
...

...
...

...
C1n C2n · · · Cjn · · · Cnn

⎞⎟⎟⎟⎟⎠
jth column

Consider the ij entry of the left hand matrix multiplication in A adj(A).
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How do we evaluate the ij entry in the matrix multiplication A adj(A)?
Remember, matrix multiplication is row by column. So the ij entry of A adj(A) is the ith row times
the jth column. For an ij entry we have[

A adj(A)
]
ij = ai1Cj1 + ai2Cj2 + · · · + ainCjn

=
{

det(A) if i = j
0 if i �= j

[
by the above
proposition (6.11)

]

Repeating this for each ij entry and writing out the matrix A adj(A) means that we have
det(A) when i = j, along the leading diagonal, and 0 everywhere else in the matrixA adj(A):

A adj(A) =

⎛⎜⎜⎜⎜⎜⎝
det(A) 0 · · · 0

0 det(A) · · · 0
... 0

. . .
...

0
... · · · det(A)

⎞⎟⎟⎟⎟⎟⎠

={

taking out the
common factor

det(A)

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
... 0

. . .
...

0
... · · · 1

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=I

= det(A)I

⎡⎢⎢⎢⎣
Remember I is the identity
matrix, which has 1’s along
the leading diagonal and
0’s everywhere else.

⎤⎥⎥⎥⎦

Hence we have A adj(A) = det(A)I.

All the above propositions are an aid in proving the next result, which is an important
theorem in linear algebra.

Theorem (6.13). If det(A) �= 0 (not zero) then

A−1 = 1
det(A)

adj(A)

Proof.
This follows from the previous Proposition (6.12). Since det(A) �= 0 we can divide the
above formula given in Proposition (6.12) A adj(A) = det(A)I by det(A):

A
[

1
det(A)

adj(A)
]
= I (†)

As we have A times another matrix gives I, therefore A−1 = 1
det(A)adj(A) provided

det(A) �= 0.
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What does Theorem (6.13) mean?
The inverse of an invertible matrix A is given by the formula A−1 = 1

det(A)adj(A). To determine
the inverse of a matrix you need to find the cofactors and the determinant of the given matrix.

What is the point of finding the inverse of a matrix?
We need the inverse to solve linear system of equations, although it is more efficient to use the
elimination process discussed in chapter 1 for large systems. For example, to find the determinant
of a 10 by 10 matrix requires 10! = 3,628,800 operations. From a computational point of view, a
determinant is expensive so we try not to compute it for large matrices. However, determinants
play an important role in many areas of mathematics.

Example 6.10

Find the inverse of the matrix given in Example 6.8 which is

A =
⎛⎝ 1 −1 5

3 9 7
−2 1 0

⎞⎠
Solution
We need to find A−1 which is given by the above Proposition: A−1 = 1

det(A) adj(A)
What is adj(A) equal to?
Remember, adj(A) is the cofactor matrix transposed, and was found in Example 6.9 above:

adj(A) = CT =
⎛⎝ −7 5 −52
−14 10 8
21 1 12

⎞⎠
We only need to find det(A). Expanding along the bottom row of the given matrix A, because it

contains a 0:

det (A) = det

⎛⎜⎝ 1 −1 5
3 9 7
−2 1 0

⎞⎟⎠ = −2 det( −1 5
9 7

)
− 1 det

(
1 5
3 7

)
+ 0

expanding along
this row

= −2 (−7− 45)− (7− 15) = 112

Substituting these into formula (6.13) gives

A−1 = 1
det(A)

adj(A) = 1
112

⎛⎝ −7 5 −52
−14 10 8
21 1 12

⎞⎠

Normally, we would find the determinant first and then the adjoint of thematrix, because
if the determinant is zero, this tells us that the matrix has no inverse or is non-invertible
(singular).

Check that the matrix found in Example 6.10 is indeed the inverse of A.
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How?
Check the matrix multiplication A× A−1 = I.

i Summary

If we expand along the ith row of a matrix A, then the formula for determinant is

(6.8) det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin

If a row or column vector of a matrix contains zero(s) then expand along that row or column.
The inverse of a square matrix is defined as

(6.13) A−1 = 1
det(A)

adj(A) provided det(A) �= 0.

EXERCISES 6.2

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

You may like to check your numerical answers using MATLAB.

1. Calculate the determinants of the following matrices:

(a) A =
⎛⎝ 1 3 −1

2 0 5
−6 3 1

⎞⎠ (b) B =
⎛⎝ 2 −10 11

5 3 −4
7 9 12

⎞⎠ (c) C =
⎛⎝ −12 9 −5

3 9 1
−7 2 −2

⎞⎠
2. Show that det

⎛⎝ i j k
7 3 −2
4 2 7

⎞⎠ = 25i− 57j+ 2k.

3. Find the values of x so that det

⎛⎝ 1 0 −3
5 x −7
3 9 x − 1

⎞⎠ = 0.

4. Find the cofactor matrices C and CT of A =
⎛⎝ 1 0 5
−2 3 7
6 −1 0

⎞⎠. Also determine A−1.

5. Determine the inverse of the following matrices:

(a) A =
(

9 2
13 3

)
(b) B =

(
17 7
12 5

)
(c) C =

(
5 4
3 1

)
(d)D =

⎛⎝ 3 −5 3
2 1 −7
−10 4 5

⎞⎠



DETERMINANT OF OTHER MATRICES 453

6. Find the determinants of the following:

(a) A =
⎛⎝ 2 3 5

0 0 6
1 5 3

⎞⎠ (b) B =
⎛⎝ 6 7 1

1 3 2
0 1 5

⎞⎠
(c) C =

⎛⎝ 1 5 1
0 3 7
0 2 9

⎞⎠ (d)D =
⎛⎝ 9 5 1

13 0 2
11 0 3

⎞⎠
7. The formula for the area of a triangle with coordinates (x1, y1), (x2, y2), (x3, y3) is

given by Area = 1
2

∣∣∣∣∣∣det
⎛⎝ x1 y1 1

x2 y2 1
x3 y3 1

⎞⎠∣∣∣∣∣∣. Determine the areas of triangles connecting:

(a) (0, 0), (3, 2), (7, −4)
(b) (−3, 2), (2, 6), (8, −3)
(c) (−2, −1), (1, 5) (0.5, 4). What do you notice about this result?

8. Let P1 = (x1, y1) and P2 = (x2, y2) be two points in a plane. The equation of the line
going through these two points is given by

det

⎛⎝ x y 1
x1 y1 1
x2 y2 1

⎞⎠ = 0

Find the equation of the line through the points:
(a) (1, 2) and (5, 6) (b) (−3, 7) and (10, 10)
(c) (−3, 7) and (9, −21)

9. In a 6 by 6 matrix A, decide the place sign of the following entries:

a31, a56, a62, a65 and a71

10. Show that in an n by nmatrix the place sign of amn is equal to that of anm.

11. Find det(A) where A =

⎛⎜⎜⎝
a b c d
0 0 0 0
e f g h
i j k l

⎞⎟⎟⎠.
12. Find the values of k for which the following matrix is invertible:

A =
⎛⎝ k 1 2

0 k 2
5 −5 k

⎞⎠
13. Show that the 3 by 3 Vandermonde determinant is written as

det

⎛⎜⎝ 1 1 1
x y z
x2 y2 z2

⎞⎟⎠ = (x− y)(y− z)(z − x)
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14. The volume of a parallelepiped (three-dimensional parallelogram) which is spanned
by the vectors u, v and w is given by

∣∣det ( u v w
)∣∣.

Find the volume of the parallelepiped generated by the vectors

u = (1 2 1)T , v = (2 3 5)T and w = (7 10 −1)T

15. Show that the determinant of the following rotational matrix R is 1.

R =
⎛⎝ cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

⎞⎠
What does determinant equal to 1 mean in this context?

16. In multivariable calculus we have to transform from rectangular coordinates (x, y)
to polar coordinates (r, θ). The Jacobian matrix J given below is used for such a
transformation. Show that det (J) = r.

J =
(
cos (θ) −r sin (θ)

sin (θ) r cos (θ)

)
17. The Jacobian determinant J is defined as

J =
∣∣∣∣∣∣det

⎛⎝ cos (θ) sin (φ) −ρ sin (θ) sin (φ) ρ cos (θ) cos (φ)

sin (θ) sin (φ) ρ cos (θ) sin (φ) ρ sin (θ) cos (φ)

cos (φ) 0 −ρ sin (φ)

⎞⎠∣∣∣∣∣∣
This determinant is used in change-of-variable formulae when studying multi-

variable calculus. This is used to transform from (x, y, z) coordinates to spherical
coordinates (ρ, θ , φ). Show that J = ρ2 sin (φ).

18. The WronskianW( f , g, h) = det

⎛⎝ f (x) g(x) h(x)
f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

⎞⎠. Determine

W(1, cos(x), sin(x))

19. Show that for an n by n identity matrix In we have det (In) = 1 for every natural
number n.

20. Prove that det
(
AA−1

) = 1 where A is an invertible matrix.
21. Prove that if a square matrix A contains a zero row or zero column then

det(A) = 0.
22. Let A be an n by nmatrix. Prove that det

(
AT) = det(A).

23. LetB be an n by nmatrix obtained from amatrixA bymultiplying one row (or column)
by a scalar k. Prove that det(B) = k det(A).

24. Prove that det
(
kA
) = kn det(A) where A is an n by nmatrix.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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SECTION 6.3 Properties of Determinants

By the end of this section you will be able to

● find the determinant of a triangular and diagonal matrix

● convert a given matrix into a triangular matrix

● establish certain properties of determinants of matrices

To calculate the determinant of matrices of size 4 by 4 or larger is a lengthy process. In this
section we establish some properties of determinants that make evaluating such determi-
nants a lot simpler. You will need to remember the definition of a determinant of a matrix
and the technique to evaluate it by using cofactors. This is a challenging section because
you will need to understand the abstract mathematics and recall some of the definitions of
chapter 1 to prove certain results.

6.3.1 Revision of properties of a determinant

You have proved certain properties of the determinant of a matrix in Exercises 6.2 such as

Proposition (6.14). Let A be a square matrix then det
(
AT) = det(A).

What does this mean?
The determinant of a transposed matrix is equal to the determinant of the initial matrix. Since

det
(
AT
)
= det(A), we can expand along a row or a column and achieve the same result.

Propositions about the determinant of the matrix with the word row can be swapped with the
word column because of this result. Another important property is:

Proposition (6.15). Let B be a matrix obtained from matrix A by multiplying one row (or
column) of A by a non-zero scalar k then

det(B) = k det(A)

We can visualize this proposition by looking at transformations. Multiplying one row of
a matrix by kmeans one of the row vectors has its length multiplied by a factor of k.

For example, the unit square in Fig. 6.9(a) is transformed to the rectangle shown in
Fig. 6.9(b):

(a)

1

1
(b)

1 0

0 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

0

0 1

k⎛ ⎞
⎜ ⎟
⎝ ⎠det(A) = Area = 1

det(B) = Area = k

1

0.8

0.6
0.4

0.2

Figure 6.9
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y

x

z

1

1

y

x

z

k

k
Unit
Cube

Figure 6.10

Proposition (6.16). Let A be any n by nmatrix and k be a scalar then

det
(
kA
) = kn det(A)

What does this mean?
The scalar multiplication kA means that each column vector of A has been multiplied by k. For a
2 by 2 matrix, kA means the length of each side of a parallelogram has been changed by k so the
area has changed by a factor of k× k = k2 .

For a 3 by 3matrix, kAmeans the length of each side of a three-dimensional box has been
multiplied by k so the volume has changed by k× k× k = k3. If we double each column
vector of a 3 by 3 matrix then the volume increase will be 2× 2× 2 = 23. Fig. 6.10 shows
the transformation from a unit cube with volume 1 to k3.

For an n by nmatrix the length of each side of the n-dimensional box has beenmultiplied
by k for the scalar multiplication kA which means that the volume has changed by kn.
For example, if we double every side of an n-dimensional box or parallelepiped (higher-
dimension version of a parallelogram) then the volume will increase by a factor of 2n.

In general, we have det
(
kA
) = kn det(A).

6.3.2 Determinant properties of particular matrices

We can easily find determinants of particular matrices such as triangular matrices.

What are triangular matrices?

Definition (6.17). A triangular matrix is an n by n matrix where all entries to one side of
the leading diagonal are zero.

For example, the following are triangular matrices:

(a)

⎛⎜⎝ 1 2 3
0 4 5
0 0 6

⎞⎟⎠ and (b)

⎛⎜⎝ 1 0 0
2 3 0
4 5 6

⎞⎟⎠
leading diagonal
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(a) is an example of an upper triangular matrix.
(b) is an example of a lower triangular matrix.

Another type of matrix is a diagonal matrix.

Definition (6.18). A diagonal matrix is an n by n matrix where all entries to both sides of
the leading diagonal are zero.

Can you think of an example of a diagonal matrix?

The identity matrix I =
⎛⎜⎝ 1 0 0

0 1 0
0 0 1

⎞⎟⎠. Another example is

⎛⎜⎝ 1 0 0
0 2 0
0 0 3

⎞⎟⎠.

A diagonal matrix is both an upper and lower triangular matrix.
Triangular and diagonal matrices have the following useful property.

Proposition (6.19). The determinant of a triangular or diagonal matrix is the product of
the entries along the leading diagonal.

What does this proposition mean?
Let A be an upper triangle matrix then

leading
diagonal

det (A) = det

⎛⎜⎜⎜⎝
a11 a1n

0
. . .

... 0 . . . ann

⎞⎟⎟⎟⎠ = a11a22a33 × · · · × ann

This is a useful result because finding the determinant of such matrices is just a matter
of multiplying the entries on the leading diagonal.

We prove this for an upper triangular matrix; the proof for the lower triangular matrix
is similar. The diagonal matrix is a special case of an upper (or lower) triangular matrix,
therefore the proof of the diagonal matrix follows from the upper triangular result.

Proof.
In each of the steps belowwe expand along the first column of the remainingmatrix because
only the first entry makes a contribution to the determinant as the remaining entries are
zero.

Expanding along the first column of the above matrix A we have

det (A) = det

⎛⎜⎜⎝
a11 a1n

0
. . .

... 0 . . . ann

⎞⎟⎟⎠ = (a11) det

⎛⎜⎜⎝
a22 . . . a2n

0
. . .

...
... 0 . . . ann

⎞⎟⎟⎠
(continued)
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={

expanding along the
first column with a22 entry

(a11a22) det

⎛⎜⎜⎝
a33 . . . a3n

0
. . .

...
... 0 · · · ann

⎞⎟⎟⎠

={

taking out a33 and
deleting the rows
and columns containing a33

(a11a22a33) det

⎛⎜⎜⎝
a44 . . . a4n

0
. . .

...
... 0 · · · ann

⎞⎟⎟⎠

= (a11a22a33 · · · a(n−2)(n−2)
)
det
(
a(n−1)(n−1) a(n−1)n

0 ann

)
= a11a22a33 · · · a(n−2)(n−2)a(n−1)(n−1)ann

Hence the determinant of an upper triangular matrix is the product of the entries along
the leading diagonal. This completes our proof.

Example 6.11

Find the determinants of the following matrices:

(a) U =

⎛⎜⎜⎝
1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

⎞⎟⎟⎠ (b) L =

⎛⎜⎜⎝
1 0 0 0
3 −2 0 0

−11 8 5 0
89 9 3 2

⎞⎟⎟⎠ (c) D =

⎛⎜⎜⎜⎜⎝
−2 0 0 0 0
0 −6 0 0 0
0 0 4 0 0
0 0 0 3 0
0 0 0 0 10

⎞⎟⎟⎟⎟⎠
Solution
We use the above result, Proposition (6.19), because the three matrices are upper triangular, lower
triangular and diagonal respectively.

In each case the determinant is the product of the leading diagonal entries.

(a) det (U) = 1× 5× 8× 10 = 400

(b) det (L) = 1× (−2)× 5× 2 = −20
(c) det (D) = (−2)× (−6)× 4× 3× 10 = 1440

You may like to check these answers by using MATLAB – the command is det(A) where
A is the matrix you have to enter.

6.3.3 Determinant properties of elementary matrices

Do you remember what an elementary matrix is?
An elementary matrix is a matrix obtained by a single row operation on the identity matrix.
Examples of 2 by 2 elementary matrices are



PROPERTIES OF DETERMINANTS 459

E1 =
(

5 0
0 1

)
, E2 =

(
1 0
0.5 1

)
and E3 =

(
0 1
1 0

)

Recall from chapter 1 that there are three different types of elementary matrices:

1. An elementary matrix E obtained from the identity matrix, I, by multiplying a row
by a non-zero scalar k. For example, E1.

2. An elementary matrix E obtained from the identity matrix, I, by adding (or subtract-
ing) a multiple of one row to another. For example, E2.

3. An elementary matrix E obtained from the identity matrix, I, by interchanging two
rows (or columns). For example, E3.

Since E1 and E2 are triangular matrices we have det (E1) = 5× 1 = 5 and
det (E2) = 1× 1 = 1. The row vectors of matrix E3 have swapped over so
det (E3) = (0× 0)− (1× 1) = −1, see Fig. 6.11(c).

Applying these transformation matrices E1,E2 and E3 to the unit square we have:

(a)

1 C

1.5

D
C B

1 C

D1A

B

A 1

1

A B
(b) (c)

det(E1) = 5 det(E2) = 1 det(E3) = −1
5

D

Figure 6.11

Example 6.12

Find the determinants of the following elementary matrices:

(a) A =
⎛⎝ 1 0 0

0 −5 0
0 0 1

⎞⎠ (b) B =
⎛⎝ 0 0 1

0 1 0
1 0 0

⎞⎠ (c) C =
⎛⎝ 1 0 −5

0 1 0
0 0 1

⎞⎠
Solution

(a) Matrix A is obtained from the identity matrix by multiplying the middle row by−5.
Since A is a diagonal matrix we have det(A) = 1× (−5)× 1 = −5.

(b) How is matrix B obtained from the identity matrix?
By swapping top and bottom rows. Expanding along the top row gives det(B) = −1.

(c) We have added−5 times the bottom row to the top row to get matrix C from the identity.
Since C is an upper triangular matrix, det(C) = 1× 1× 1 = 1.

We can write all these operations and their determinants in general terms.
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Proposition (6.20). Let E be an elementary matrix.

(a) If the elementary matrix E is obtained from the identity matrix I by multiplying a
row by a non-zero scalar k then det (E) = k. (Matrix A in Example 6.12)

(b) If the elementarymatrix E is obtained from the identitymatrix I by adding amultiple
of one row to another then det (E) = 1. (Matrix C in Example 6.12)

(c) If the elementary matrix E is obtained from the identity matrix I by interchang-
ing two rows then det (E) = −1. (Two row vectors have swapped over, matrix B in
Example 6.12.)

Proof.

(a) With one row of the identity matrix multiplied by non-zero k we have a diagonal
matrix with one entry equal to k on the leading diagonal and the remaining entries
being 1. Hence

det (E) = 1× 1× · · · × k× 1 · · · × 1 = k

(b) If we add a multiple of one row of the identity matrix to another then we

have a triangular matrix E =
⎛⎜⎝ 1 k 0

0
. . .

...
0 · · · 1

⎞⎟⎠ or E =

⎛⎜⎜⎝
1 0 0

0
. . .

...
... k 1

⎞⎟⎟⎠. By (6.19):

Determinant of a triangular matrix is a product of entries along the leading diagonal.
We have det (E) = 1 because E is a triangular matrix with 1’s along the leading

diagonal so

det (E) = 1× 1× 1× · · · × 1 = 1

(c) We have to prove it for the case when two rows (or columns) have been inter-
changed. This is a more complex proof and is by induction. Recall the three steps
of induction:

1. Prove it for the simplest case, n = 1 or n = 2 (or for some other base n = k0).
2. Assume that it is true for n = k.
3. Prove it for n = k+ 1.

Step 1: We first prove the result for n = 2 which means a 2 by 2 elementary matrix:

det (E) = det
(
0 1
1 0

) [
rows of I2 have
been interchanged

]
= 0− 1 = −1

Hence if we swap the two rows of the 2 by 2 identity matrix then the determinant is−1.
Step 2: Assume that the result is true for n = k, that is, for a k by k elementary matrix Ek
with rows i and j interchanged:

det (Ek) = −1 (†)



PROPERTIES OF DETERMINANTS 461

Step 3: We need to prove the result for n = k+ 1. Let Ek+1 be the k+ 1 by k+ 1
elementary matrix with rows i and j of the identity matrix interchanged.

Ek+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 · · · 1 0
...

...
... 0 1 0

...
...

0 · · · 1 0 0
...

...
...

... 0
...

... 1
...

0 · · · · · · · · · · · · · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ith row

jth row

To find the determinant of this matrix we can expand along the kth row where the kth
row is not one of ith or jth row. Note that in the kth row all the entries should be 0’s apart
from the diagonal item ekk which is 1. Therefore the determinant of this matrix Ek+1 is

det
(
Ek+1

) = (−1)k+k det (Ek) (∗)

Why?
Because if you delete the elements containing the row and column containing the entry ekk then
the remaining matrix is the k by k elementary matrix with rows i and j interchanged, which is Ek.

What is the determinant of Ek?
By (†) we have det

(
Ek
) = −1. Substituting this into (∗) gives

det
(
Ek+1

) = (−1)k+k (−1)
= (−1)2k (−1) = −1

[
because (−1)2k = 1

]
Hence we have proved that the determinant of an elementary matrix of size k+ 1 by

k+ 1 which has two rows interchanged is−1.
Therefore by mathematical induction we have our result that if the elementary matrix E

is obtained from the identity matrix I by swapping two rows then det (E) = −1.

Note that we can use this Proposition (6.20) to find the determinants of elemen-
tary matrices. Summarizing this Proposition (6.20) we have that the determinant of an
elementary matrix E is given by:

(6.21) det (E) =
⎧⎨⎩

1 if a multiple of one row is added to another
−1 if two rows have been interchanged
k if a row has been multiplied by non-zero k

Hence the determinant of an elementary matrix can only have values 1, −1 or k
(non-zero).
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6.3.4 Determinant properties of other matrices

In the above, we restricted ourselves to elementary matrices. However, in this section we
deal with general matrices and find that they have identical results.

We can extend Proposition (6.20) or result (6.21) to any squarematrixA as the following:

Proposition (6.22). Let B be a matrix obtained from the square matrix A by:

(i) adding (or subtracting) a multiple of one row to another; we have det(B) = det(A)
(ii) interchanging two rows; in this case det(B) = − det(A)

(iii) multiplying a row by a non-zero scalar k; in this case det(B) = k det(A).

Proof.
Part (iii) is Proposition (6.15) stated earlier in this section. See Exercises 6.3 for proofs of
parts (i) and (ii).

We can summarize this into the following result.

(6.23) det(B) =
⎧⎨⎩
(i) det(A) if a multiple of one row is added to another
(ii) − det(A) if two rows have been interchanged
(iii) k det(A) if a row has been multiplied by non-zero k

We use this result (6.23) to cut down on the arithmetic required to evaluate a determi-
nant as the next example illustrates.

Example 6.13

Find the determinant of the following matrix:

A =
⎛⎜⎝ 1/23 −2/23 1

1/2 1/6 5/6
1/11 3/11 −1/11

⎞⎟⎠
Solution
How can we find the determinant of this matrix?
Expanding along a row would be a very tedious task because of the fractions involved. We can create a
simpler matrix, which is matrix B, with the top row multiplied by 23, second row multiplied by 6 and
bottom row multiplied by 11.
How is the determinant of this new matrix, B, related to the determinant of matrix A?
By part (iii) of result (6.23), if a row has been multiplied by a non-zero scalar k, then det(B) = k det(A):

Taking out the multiple of each row (23, 6 and 11):

(23× 6× 11) det(A) = det(B) = det

⎛⎜⎝ 1 −2 23
3 1 5
1 3 −1

⎞⎟⎠ (†)
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We can find the determinant of matrix B:

det(B) = det

⎛⎝ 1 −2 23
3 1 5
1 3 −1

⎞⎠ = det
(

1 5
3 −1

)
− (−2) det

(
3 5
1 −1

)
+ 23 det

(
3 1
1 3

)
= (−1− 15)+ 2 (−3− 5)+ 23 (9− 1)

= −16− 16+ 23 (8) = 152

Note that evaluating the determinant of matrix B is much easier than trying to find the determinant of
matrix A, because of the simple integer values of matrix B. We would prefer to work with integers rather
than fractions.

Substituting this, det(B) = 152, into (†) gives

(23× 6× 11) det(A) = 152

det(A) = 152
(23× 6× 11)

= 152
1518

= 76
759

Hence det(A) = 76
759

. Note that we don’t have to involve fractions until the end, which makes the

evaluation a lot easier.

6.3.5 The determinant of larger matrices

Proposition (6.19) stated that: Determinant of a triangular matrix is the product of the
entries along the leading diagonal.

This implies that if we can use row operations to convert a large matrix to a triangular or
diagonal matrix, then evaluating its determinant is simply a case of finding the product of
the entries along its leading diagonal. The next two examples demonstrate this.

Example 6.14

Find the determinant of the following 4 by 4 matrix by using row operations:

A =

⎛⎜⎜⎜⎝
1 2 2 4
7 8 3 0
3 2 0 0
1 0 0 0

⎞⎟⎟⎟⎠
Solution
Can we convert this matrix A into a triangular matrix?
Yes, by using row operations. Note that the given matrix A is not a triangular matrix because both sides of
the leading diagonal contain non-zero entries. You will need to recall your work from chapter 1 on row
operations.

(continued...)
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How can we convert the matrix A into a triangular matrix?
First we label the rows of matrix A and then we apply row operations:

R1
R2
R3
R4

⎛⎜⎜⎝
1 2 2 4
7 8 3 0
3 2 0 0
1 0 0 0

⎞⎟⎟⎠
Swapping top and bottom rows R1 and R4, and middle rows R2 and R3 we have

R4
R3
R2
R1

⎛⎜⎜⎜⎝
1 0 0 0
3 2 0 0
7 8 3 0
1 2 2 4

⎞⎟⎟⎟⎠
What is the determinant of this matrix?
We have a lower triangular matrix, so the determinant is the product of the entries on the leading
diagonal, that is 1× 2× 3× 4 = 24.
What is the determinant of the given matrix A?
The bottom matrix is obtained from matrix A by interchanging rows R1 and R4 , R2 and R3 .
How does interchanging rows affect the determinant of the matrix?
By result (6.23) part (ii):

det(B) = − det(A) if two rows have been interchanged

Interchanging rows multiplies the determinant by−1. We have two interchanges, therefore the
determinant of the matrix A is given by

(−1) (−1) det(A) = 24 which gives det(A) = 24

Each time an interchange is made, the determinant is multiplied by −1. This is much
simpler than trying to expand along a row or column of the 4 by 4 matrix A.

Example 6.15

Find the determinant of the following matrix:

A =

⎛⎜⎜⎜⎜⎝
5 1 1 1 1
1 5 1 1 1
5 1 5 1 1
1 5 1 5 1
5 1 5 1 5

⎞⎟⎟⎟⎟⎠
Solution
Expanding along a row or column to find the determinant of this 5 by 5 matrix would be a tedious task.
We aim to convert this into a triangular matrix and then find the determinant.
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Labelling the rows of this matrix we have

R1
R2
R3
R4
R5

⎛⎜⎜⎜⎜⎝
5 1 1 1 1
1 5 1 1 1
5 1 5 1 1
1 5 1 5 1
5 1 5 1 5

⎞⎟⎟⎟⎟⎠
Executing the following row operations:

R1
R∗2 = R2 − R1
R∗3 = R3 − R1
R∗4 = R4 − R2
R∗5 = R5 − R3

⎛⎜⎜⎜⎜⎝
5 1 1 1 1
−4 4 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 4

⎞⎟⎟⎟⎟⎠
Carrying out the row operation 5R∗2 gives

R1

R**
2 = 5R*

2

R*
3

R*
4

R*
5

⎛⎜⎜⎜⎜⎜⎜⎜⎝

5 1 1 1 1

−20 20 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Executing the row operation R∗∗2 + 4R1 yields

R1

R**
2 + 4R1

R*
3

R*
4

R*
5

⎛⎜⎜⎜⎜⎜⎜⎜⎝

5 1 1 1 1

0 24 4 4 4

0 0 4 0 0

0 0 0 4 0

0 0 0 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= B

What is the determinant of this last matrix B?
We have an upper triangular matrix so that the determinant is the product of all the entries on the
leading diagonal, that is det(B) = 5× 24× 4× 4× 4 = 7680.
What is the determinant of the given matrix A?
All the above row operations apart from 5R∗2 makes no difference to the determinant.
Why not?
Because by (6.23) (i) adding a multiple of one row to another has the same determinant:
det(B) = det(A) if a multiple of one row is added to another.

How does the row operation 5R∗2 change the determinant?
By (6.23) (iii) det(B) = k det(A) if a row has been multiplied by non-zero k.

We have the above determinant det(B) = 7680 is equal to 5× det(A), that is

5 det(A) = 7680 which gives det(A) = 7680
5

= 1536
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Generally, to find the determinant of matrices of size 4 by 4 or larger it is a lot easier to
try to convert these into a triangular matrix. To do this, we apply the row operations as
discussed above.

6.3.6 Further properties of matrices

Proposition (6.24). Let E be an elementary matrix. For any square matrix A we have

det (EA) = det (E) det(A) where EA is a valid operation

What does this proposition mean?
It means that we can find the determinant of each individual matrix, E and A, and then multiply
the scalars det (E) and det(A) to give det (EA).

Proof.
We consider the three different cases of elementary matrices separately.

Case 1. Let E be the elementary matrix obtained from the identity matrix by adding a
multiple of one row to another. Then from chapter 1 we have EA performs the same row
operation of adding one row to another of matrix A. By result (6.23) (i):

det(B) = det(A) if a row has been multiplied by non-zero k.
We have

det (EA) = det(A)

By the first line of result (6.21):
det (E) = 1 if a multiple of one row is added to another. We have det (E) = 1 therefore

det (EA) = det(A)
= 1× det(A) = det (E)× det(A)

Hence for this case we have det (EA) = det (E) det(A).
Case 2. Let E be the elementary matrix obtained from the identity matrix by multiplying

a row by a non-zero scalar k. By the bottom line of result (6.21):
det (E) = k if a row has been multiplied by non-zero k

We have det (E) = k. The matrix multiplication EA performs the same row operation of
multiplying a row by a scalar k on matrix A. By

(6.23) (iii): det(B) = k det(A) if a row has been multiplied by non-zero k
We have det (EA) = k det(A).

det (EA) = k︸︷︷︸
=det(E)

det(A) = det (E) det(A)

We have proved det (EA) = det (E) det(A) for the second case.
Case 3. See website.
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Proposition (6.25). Let E1,E2, . . . and Ek be elementary matrices and B be a square matrix
of the same size. Then

det (E1E2 · · ·EkB) = det (E1)× det (E2)× · · · × det (Ek)× det(B)

Proof – Exercises 6.3.

Next we prove an important test to identify invertible (non-singular) matrices.

Theorem (6.26). A square matrix A is invertible (has an inverse)⇔ det(A) �= 0.

What does this proposition mean?
It means that if matrix A is invertible then the determinant of A does not equal zero. Also if the
determinant is not equal to zero then the matrix A is invertible (non-singular). This result works
both ways.

How do we prove this result?
(⇒). First we assume matrix A is invertible and show that this leads to det(A) �= 0.
(⇐). Then we assume that det(A) �= 0 and prove that matrix A is invertible.

Proof.
(⇒). Assume the matrix A is invertible. By Theorem (1.29) part (d):

A is invertible⇔ A is a product of elementary matrices
We have matrix A is a product of elementary matrices. We can write the matrix A as

A = E1E2E3 · · ·Ek

where E1,E2,E3, . . . and Ek are elementary matrices. By the above Proposition (6.25):
det (E1E2E3 · · ·EkB) = det (E1) det (E2) det (E3) · · · det (Ek) det(B)

We have

det(A) = det (E1E2E3 · · ·Ek)
= det (E1) det (E2) det (E3) · · · det (Ek)

By (6.21):

det (E) =
⎧⎨⎩

1 if a multiple of one row is added to another
−1 if two rows have been interchanged
k if a row has been multiplied by non-zero k

The determinant of an elementary matrix can only be 1, −1 or the non-zero k.
Multiplying these non-zero real numbers, det (E1)× det (E2)× · · · × det (Ek), cannot give
0. Therefore det(A) �= 0.

Now we go the other way (⇐). Assume det(A) �= 0 then by Proposition (6.13) A−1 =
1

det(A)adj(A) which means that matrix A has an inverse so it is invertible.
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This result says that invertiblematrix A is equivalent to det(A) �= 0.
We can add this to the test for unique solutions of linear systems described in chap-

ter 1: Proposition (1.37). The linear systemAx = b has a unique solution⇔ A is invertible.
Hence we have:

Proposition (6.27). The linear system Ax = b has a unique solution⇔ det(A) �= 0.

We can extend Proposition (6.24) to any two square matrices of the same size as the next
proposition states.

Proposition (6.28). If A and B are square matrices of the same size then

det (AB) = det(A) det(B)

We can see this result by examining transformations.
Consider the transformations T (x) = Ax and S (x) = Bx. The transformation S changes

the volume (area for 2 by 2) by det(B) and T changes the volume (or area) by det(A). The
composite transform (T ◦ S) (x) = AB (x)must change the volume first by det(B) and then
by det(A) so the overall volume change is det(B)× det(A). Hence

det (AB) = det(A) det(B)

Proof.
We consider the two cases of matrix A. Case 1 is where the matrix A is invertible (has an
inverse) and case 2 is where matrix A is non-invertible.

Case 1. Assume the matrix A is invertible. Then by Theorem (1.29) part (d):
A is invertible⇔ A is a product of elementary matrices
We have matrix A is a product of elementary matrices. We can write

A = E1E2E3 · · ·Ek

where E1,E2,E3, . . . and Ek are elementary matrices. We have

det (AB) = det (E1E2E3 · · ·EkB)

= det (E1) det (E2) det (E3) · · · det (Ek) det(B)
[
by (6.25)

]
= det

⎛⎝E1E2E3 · · ·Ek︸ ︷︷ ︸
=A

⎞⎠ det(B) = det(A) det(B)

Case 2. Assume matrixA is non-invertible. By the above Proposition (6.26) we conclude
that det(A) = 0.MatrixA is non-invertible, thereforematrix multiplicationAB is also non-
invertible.

Why?
Because Proposition (1.27) says: (AB)−1 = B−1A−1
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Since AB is also non-invertible, we have det (AB) = 0. Hence we have our result

det (AB) = det(A) det(B) because det(A) = 0 and det (AB) = 0

Again, we can extend the result of Proposition (6.28) to n square matrices as the next
proposition states.

Proposition (6.29). If A1,A2,A3, . . . and An are square matrices of the same size then

det (A1A2 · · ·An) = det (A1)× det (A2)× · · · × det (An)

Proof – Exercises 6.3.

What use is this result?
Knowing that

det (A1A2 · · ·An) = det (A1)× det (A2)× · · · × det (An)

allows us to test whether the matrix A1A2 · · ·An is invertible or not. This is much faster than
multiplying A1,A2, . . . ,An and then testing for invertibility.

Generally a function in mathematics which has the properties of Proposition (6.28) is
called amultiplicative function.

In mathematics, we say a function f is multiplicative if

f (xy) = f (x)f (y)

The determinant is an example of a multiplicative function. Another example is the
square root function, because

√
ab = √a

√
b.

Proposition (6.30). If A is an invertible (non-singular) matrix then det
(
A−1

) = 1
det(A)

.

Proof – Exercises 6.3.

i Summary

The determinant of a triangular or diagonal matrix is the product of the entries along the leading
diagonal.

(6.23) det(B) =
⎧⎨⎩

(i) det(A) if a multiple of one row is added to another
(ii) − det(A) if two rows have been interchanged
(iii) k det(A) if a row has been multiplied by non-zero k

If A and B are square matrices of the same size then det (AB) = det(A) det(B).
A square matrix A is invertible⇔ the determinant of A does not equal zero.
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EXERCISES 6.3

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Compute the determinants of the following matrices:

(a) A =
⎛⎝ 1 0 0

0 −10 0
0 0 1

⎞⎠ (b) B =
⎛⎝ 1 0 0

0 0 1
0 1 0

⎞⎠ (c) C =
⎛⎝ 1 0 0

0 1 1
0 0 1

⎞⎠
(d) D =

⎛⎜⎜⎝
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞⎟⎟⎠ (e) E =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −0.6 0
0 0 0 1

⎞⎟⎟⎠ (f) F =

⎛⎜⎜⎝
1 0 0 0
0 1 −7 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
2. Find the determinants of the following matrices:

(a) A =
⎛⎝ 1 0 0

0 2 0
0 0 3

⎞⎠ (b) B =
⎛⎝ 1 −1 7

0 2 9
0 0 3

⎞⎠ (c) C =
⎛⎝ −2 0 0
−98 −3 0
67 17 1

⎞⎠
(d) D =

⎛⎜⎜⎝
1 −3 5 9
0 −3 67 9
0 0 8 90
0 0 0 3

⎞⎟⎟⎠ (e) E =

⎛⎜⎜⎝
10 0 0 0
0 20 0 0
0 0 30 0
0 0 0 40

⎞⎟⎟⎠
(f) F =

⎛⎜⎜⎝
−9 0 0 0
67 3 0 0
67 57 7 0
23 78 6 5

⎞⎟⎟⎠ (g) G =

⎛⎜⎜⎝
1 0 0
2 2 0
−5 3 4
9 −8 1

⎞⎟⎟⎠
3. Compute the determinants of the following matrices:

(a) A =
⎛⎝ α −β δ

0 β −α

0 0 γ

⎞⎠ (b) B =
⎛⎝ sin (θ) 0 0

1 cos (θ) 0
−2 sin (θ) 2

⎞⎠ (c) C =
⎛⎝ x y z

0 y 0
0 0 z

⎞⎠
4. Find the value(s) of x which make the following matrix non-invertible (singular):

A =
⎛⎝ 1 2 x

3 x 4
5 5 x

⎞⎠
5. Find the determinant of the following matrices:

(a) A =

⎛⎜⎜⎝
0 0 0 9
0 1 4 5
0 0 3 5
1 2 3 4

⎞⎟⎟⎠ (b) A =

⎛⎜⎜⎝
1 2 3 4
1 3 5 6
1 4 3 7
1 6 1 9

⎞⎟⎟⎠ (c) A =

⎛⎜⎜⎝
1 2 5 7
3 6 2 8
−1 −2 8 7
−4 −5 1 2

⎞⎟⎟⎠
6. Evaluate the determinant of the following matrices:

(a) A =

⎛⎜⎜⎜⎜⎝
1 1 0 0 1
−1 2 0 0 0
0 0 1 4 16
0 0 1 5 25
0 0 1 2 4

⎞⎟⎟⎟⎟⎠ (b) A =

⎛⎜⎜⎜⎜⎝
1 2 3 4 5
2 5 8 11 1
7 6 1 9 8
4 10 16 22 2
2 3 7 9 5

⎞⎟⎟⎟⎟⎠
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7. (a) Show that det (A+ B) �= det(A)+ det(B).
(b) Show that det(u v w) �= det(v u w).
(c) Show that det

(
kA
) �= k det(A) where A is an n by nmatrix and n ≥ 2.

8. Evaluate the determinants of the following matrices:

(a) A =
⎛⎝ 1/2 1/2 −1/2

2 3 4
1 −1 1

⎞⎠ (b) B =
⎛⎜⎝ 1/2 1/3 1

1/7 2/21 1/21
2/3 1/3 −4/3

⎞⎟⎠
(c) C =

⎛⎝ 10 20 −30
−4 5 −6
−70 80 −90

⎞⎠
9. Let A, B be 3 by 3 matrices with det(A) = 3, det(B) = −4. Determine

(a) det (−2AB) (b) det
(
A5B6) (Hint: See question 19 below.)

(c) det
(
A−1AT)

10. Let A =
(
1 2
3 4

)
, B =

(
5 6
7 8

)
and C =

(
9 10
11 12

)
. Decide whether the matrix

A× B× C is invertible.
11. Without evaluating the determinants of the following matrices, decide whether they

are positive, negative or zero:

(a)

⎛⎜⎜⎝
0 0 0 61
0 89 0 0
0 0 98 0
21 0 0 0

⎞⎟⎟⎠ (b)

⎛⎜⎜⎝
2 5 7 8
7 8 3 1
12 30 42 48
10 51 41 44

⎞⎟⎟⎠ (c)

⎛⎜⎜⎝
0 0 25 1
0 0 −5 0
0 2 0 0
23 0 0 0

⎞⎟⎟⎠
12. Prove that the determinant of a lower triangular matrix is the product of the entries

along the leading diagonal.
13. Prove that the determinant of a diagonal matrix is the product of the entries along the

leading diagonal
(a) by using induction (b) without using induction

14. Prove parts (i) and (ii) of Proposition (6.22).
15. Prove Proposition (6.30).
16. Prove that the matrix A is invertible (non-singular) if and only if the matrix multipli-

cation ATA is invertible (non-singular).
17. Prove Proposition (6.25).
18. Prove Proposition (6.29).
19. Prove that det (An) = [det(A)]n where A is a square matrix.
20. Let A and B be square matrices. Prove that det (AB) = det (BA).
21. If a square matrix A satisfies ATA = I (A is an orthogonal matrix) where I is the

identity matrix, show that det(A) = ±1.
22. Let A be an invertible matrix. Show that det

((
AT)−1) = 1

det(A)
.
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23. Let A be a matrix which contains a multiple of a row within the matrix. Show that
det(A) = 0.

24. We say matrices A and B are similar if there exists an invertible matrix P such that
B = P−1AP. Prove that if A and B are similar matrices then det(B) = det(A).

25. Prove that det
(
adj(A)

) = [det(A)]n−1 where matrix A is an n by n invertible matrix.
26. The linear system Ax = 0 has an infinite number of solutions⇔ det(A) = 0. Prove

this proposition.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 6.4 LU Factorization

By the end of this section you will be able to

● find the LU factorization or decomposition of a matrix

● solve linear equations

6.4.1 Introduction to LU factorization

(L is a lower triangular matrix and U is an upper triangular matrix.)
Solving a system of equations of the form Ax = b, where A is a 4 by 4 or larger matrix,

can be a tedious task. For example, to calculate the inverse of such a matrix is a lengthy
process. We are interested in finding the inverse of matrix A because we may want to solve
Ax = b for various different b vectors.

In this section we establish a new numerical method to solve such linear systems.

Example 6.16

(i) Convert A =
(

1 1
3 2

)
into an upper triangular matrix U by using row operations.

(ii) Find a lower triangular matrix L such that LU = A.

Solution

(i) What is an upper triangular matrix?
All the entries below the leading diagonal are zero. This means that we need to convert the 3 in
the bottom row of matrix A into zero.
How?
By applying row operations. Subtracting three times the top row from the bottom, R2 − 3R1 :

R1
R2

(
1 1
3 2

)
R1

R2 − 3R1

(
1 1
0 −1

)
= U
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(ii) A lower triangular matrix has the form L =
(

a 0
b c

)
where all the entries above the leading

diagonal are zero. Substituting this L and U into LU = A gives:

LU =
(

a 0
b c

)(
1 1
0 −1

)
={

matrix multiplication

(
a a
b b− c

)
=
(

1 1
3 2

)
= A implies a = 1, b = 3 and c = 1

Hence L =
(

a 0
b c

)
=
(

1 0
3 1

)
. We can check this by multiplying out the matrices:

LU =
(

1 0
3 1

)(
1 1
0 −1

)
=
(

1 1
3 2

)
= A

This result means that we can factorize the matrix A into LU where L and U are lower
and upper triangular matrices respectively.

Why do we want to break a matrix into LU?
As mentioned above, finding the inverse of a matrix by using cofactors is very slow and cum-
bersome. If we wanted to invert a 30 by 30 matrix by using cofactors it would take more than
the lifetime of the universe. We can use the LU factorization of a matrix A to solve linear sys-
tems Ax = b and also to find the inverse of an invertible matrix A because it is a lot more
efficient.

Solving linear systems of equations of the form Ax = b is the fundamental concept of
linear algebra. If the linear system is not too large, we can solve it by using a direct method
such as Gaussian elimination which was described in chapter 1. This Gaussian elimination
procedure gives us an upper triangular matrix, but computer software tends to use the LU
factorization method, which is one of the fastest ways that computers can solve Ax = b.
The numerical software MATLAB uses LU factorization.

This factorization is particularly useful if we need to solve many linear systems of the
form Ax = b for different b vectors but the same coefficient matrix A.

But why don’t we use Gaussian elimination?
We do use the Gaussian elimination procedure to get the upper triangular matrix U, but this is not
sufficient.

Why not?
We would have to repeat all the steps of Gaussian elimination for every different b vector, which
would be tedious, especially if we had 100 or more different b vectors.

In this section, our aim is to factorize a given matrix A into LU where L is a lower tri-
angular matrix and U is an upper triangular matrix. We can illustrate this as shown in
Fig. 6.12
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Figure 6.12

6.4.2 LU factorization procedure

Given a matrix A, can we form an upper triangular matrix U by using the following two row
operations?

1. Multiplying a row by a non-zero constant.

2. Adding a multiple of one row to another.

If the answer to this question is yes then we can form an LU factorization of thematrix A.
Suppose these row operations are represented by the elementary matrices:

E1, E2, E3, . . . , Ek

Remember, an elementary matrix is a matrix with one row operation applied to an
identity matrix. These are all examples of 2 by 2 elementary matrices:(

2 0
0 1

)
,
(
1 2
0 1

)
,
(
0 1
1 0

)
For LU factorization we do not allow the row operation of swapping rows. By

applying Gaussian elimination with only the above two operations (1 and 2) we have(
EkEk−1 · · · E2E1

)
A = U. Taking the inverse of

(
EkEk−1 · · · E2E1

)
gives

A = (EkEk−1 · · · E2E1
)−1U

If we do not allow the third row operation of swapping rows then this(
EkEk−1 · · · E2E1

)−1 is a lower triangular matrix L; thus

L = (EkEk−1 · · · E2E1
)−1

= E−11 E−12 · · · E−1k−1E
−1
k

[
by (1.27) (ABC)−1 = C−1B−1A−1

]
=
(
E−11 E−12 · · · E−1k−1E

−1
k

)
I

This means that if a given matrix A can be converted into an upper triangular matrix U
by only using the above row operations (1 and 2) then we can factorize matrix A into LU
where L is a lower triangular matrix. This matrix L is obtained from the identity I by using
the reverse row operations used to find U.

In the above Example 6.16 we carried out the single row operation of R2 − 3R1 to find
the upper triangular matrix U. To find the lower triangular matrix L we carry out the
reverse row operation of R2 + 3R1 on the identity I to give us the lower triangular matrix

L =
(
1 0
3 1

)
.



LU FACTORIZATION 475

Figure 6.13

The flow chart in Fig. 6.13 shows how to obtain the upper U and lower L triangular
matrices of a given matrix A by applying the above two row operations (1 and 2). We can
apply these operations as many times as we want.

We obtain the matrix L by using the reverse row operations that were applied to A in
finding U. Also we reverse the order as you can observe from the flow chart above. (Go
back from U to A, or if we start with the identity I then we obtain the matrix L.)

Example 6.17

Find an LU factorization of A =
⎛⎝ 1 2 3

4 5 6
3 −3 5

⎞⎠.

Solution
We apply row operations to find an upper triangular matrix U, which means all the entries below the
leading diagonal are zero. Labelling rows

R1
R2
R3

⎛⎝ 1 2 3
4 5 6
3 −3 5

⎞⎠
Steps 1 and 2: Executing the row operations R2 − 4R1 and R3 − 3R1 gives

R1
R∗2 = R2 − 4R1
R∗3 = R3 − 3R1

⎛⎝ 1 2 3
0 −3 −6
0 −9 −4

⎞⎠
Step 3: Carrying out the row operation R∗3 − 3R∗2 yields

R1
R∗2

R∗3 − 3R∗2

⎛⎝ 1 2 3
0 −3 −6
0 0 14

⎞⎠ = U

We have got our upper triangular matrix U.
How do we obtain the lower triangular matrix L?
Starting with the identity matrix I we reverse the above row operations and the order:

R1
R2
R3

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ = I

The reverse row operation of step 3 above is R3 + 3R2. Executing R3 + 3R2 on the identity matrix:

R1
R2

R†3 = R3 + 3R2

⎛⎝ 1 0 0
0 1 0
0 3 1

⎞⎠
(continued...)
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The reverse row operation of steps 2 and 1 are R†3 + 3R1 and R2 + 4R1 . Carrying out these row
operations R†3 + 3R1 and R2 + 4R1 gives

R1
R2 + 4R1
R†3 + 3R1

⎛⎝ 1 0 0
4 1 0
3 3 1

⎞⎠ = L

Hence we have our lower triangular matrix L.
By multiplying matrices we can check that LU = A, that is

LU =
⎛⎝ 1 0 0

4 1 0
3 3 1

⎞⎠⎛⎝ 1 2 3
0 −3 −6
0 0 14

⎞⎠ =
⎛⎝ 1 2 3

4 5 6
3 −3 5

⎞⎠ = A

There is a slightly easier way of finding the lower triangular matrix L which is described
next.

If we carry out the row operation Row k + c
(
Row j

)
then c is called themultiplier. The

negative multiplier of+c is−c which is used for obtaining matrix L.
Observe in Example 6.17 that the entries in the lower triangularmatrix L are the negatives

of themultipliers used in the row operations to obtain the upper triangular matrix U.
Here are the steps carried out above in the derivation of the upper triangular matrix U

and the resulting operations on the identity matrix I to get the lower triangular matrix L:

Step 1
The first row operation was, R2 − 4R1, so our multiplier is−4. We replace the zero in (2, 1)
(second row, first column) position of the identity by +4.

Step 2
Our second row operation was R3 − 3R1 which means our multiplier is−3. We replace the
zero in the (3, 1) (third row, first column) position of the identity matrix with +3.

Step 3
Our third step was R∗3 − 3R∗2. We replace the zero in the (3, 2) (third row, second column)
position of the identity matrix with+3.

Carrying out these three steps we have our lower triangular matrix L:

I =
⎛⎜⎝ 1 0 0

0 1 0
0 0 1

⎞⎟⎠
(3, 1) position

⎛⎜⎝ 1 0 0
4 1 0
3 3 1

⎞⎟⎠ = L

(2, 1) position

(3, 2) position

The general row operation Row k+ c(Row j) means that we add c times row j to row k. The
reverse of this operation is Row k − c(Row j). In order to find matrix L we carry out the
reverse row operations on the identity matrix I, as shown in Fig. 6.14.

If we carry out the row operation Row k+ c(Row j) on the given matrix A to get the
upper triangular matrix U, then in the identity matrix I we replace the zero in the (k, j)
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(k, j ) position

j1

jth column jth column

Row j

Row k + c (Row j) k1+c(j1) kj+c(jj)

jj 0 1

0+c(0)=0

Row j

Row k-c(Row j) 0-c(1)=-c

Identify matrixGiven matrix A

kth row

Figure 6.14

position which is row k and column j by the negative multiplier, −c. If we continue to do
this then we obtain the lower triangular matrix L from the identity.

If we carry out the row operation c× (Row k) to produce a 1 on the leading diagonal in
matrix U then we place the reciprocal 1/c in the same position on the leading diagonal in
the matrix L.

This is the easiest way to find the lower triangular matrix L because all the work is done
in finding the upper triangular matrixU. We do not need to carry out extra row operations
to find L. However, we need to record the row operations executed in evaluating U.

Example 6.18

Find an LU factorization of A =

⎛⎜⎜⎝
1 4 5 3
5 22 27 11
6 19 27 31
5 28 35 −8

⎞⎟⎟⎠.

Solution
We record our row operations to find the upper triangular matrix U, and we use the negatives of the
multipliers to get the lower triangular matrix L from the identity.

R1
R2
R3
R4

⎛⎜⎜⎝
1 4 5 3
5 22 27 11
6 19 27 31
5 28 35 −8

⎞⎟⎟⎠ = A

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ = I

Carrying out R2 − 5R1, R3 − 6R1 and R4 − 5R1 on matrix A and the negative multipliers (+5, +6 and +5)
on the identity gives:

R1
R*
2 = R2 − 5R1

R*
3 = R3 − 6R1

R*
4 = R4 − 5R1

⎛⎜⎜⎜⎝
1 4 5 3

0 2 2 −4
0 −5 −3 13
0 8 10 −23

⎞⎟⎟⎟⎠ multiplier = −5
multiplier = −6
multiplier = −5

⎛⎜⎜⎝
1 0 0 0
5 1 0 0
6 0 1 0
5 0 0 1

⎞⎟⎟⎠
Carrying out R∗2/2 and 1/(1/2) = 2 in position (2, 2) in the right hand matrix:

R1
R†
2 = R∗2/2

R*
3

R*
4

⎛⎜⎜⎝
1 4 5 3
0 1 1 −2
0 −5 −3 13
0 8 10 −23

⎞⎟⎟⎠ multiplier = 1/2

⎛⎜⎜⎝
1 0 0 0
5 2 0 0
6 0 1 0
5 0 0 1

⎞⎟⎟⎠
(continued...)
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Executing R∗3 + 5R†2 and R∗4 − 8R†2 gives

R1

R†
2

R†
3 = R∗3 + 5R†

2
R†
4 = R∗4 − 8R†

2

⎛⎜⎜⎝
1 4 5 3
0 1 1 −2
0 0 2 3
0 0 2 −7

⎞⎟⎟⎠ multiplier = +5
multiplier = −8

⎛⎜⎜⎝
1 0 0 0
5 2 0 0
6 −5 1 0
5 8 0 1

⎞⎟⎟⎠

Executing R†4 − R†3 gives

R1

R†
2

R†
3

R†
4 − R†

3

⎛⎜⎜⎝
1 4 5 3
0 1 1 −2
0 0 2 3
0 0 0 −10

⎞⎟⎟⎠ = U

multiplier = −1

⎛⎜⎜⎝
1 0 0 0
5 2 0 0
6 −5 1 0
5 8 1 1

⎞⎟⎟⎠ = L

Oncewe can place linear systems into triangular forms, such as L andU, the linear system
becomes easy to solve. Doing this involves throwing away a lot of the matrix, as you can see
in the above example.

6.4.3 Solving linear systems

We want to solve a linear system Ax = b and assume that we can break matrix A into LU.
The linear system Ax = b becomes

(LU) x = b implies L (Ux) = b

Suppose applying the upper triangular matrixU to the vector x gives the vector y, that is
Ux = y. Substituting this into the above gives

L (Ux) = b implies Ly = b

We illustrate this in Fig. 6.15.

Figure 6.15

This factorization of the matrix A in the linear system Ax = b into LU means that we
need to solve two equations; Ux = y and Ly = b.
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Why should we solve two equations rather than just the given one?
Because both these Ux = y and Ly = b are much easier to solve than the given Ax = b.

Why is this?
Because Ly = b means that we have a lower triangular matrix L times the given vector b.

We can use a method called forward substitution because we have

Ly =
⎛⎜⎝ a11

...
. . .

am1 · · · amn

⎞⎟⎠
⎛⎜⎝ y1

...
ym

⎞⎟⎠ =
⎛⎜⎝ b1

...
bm

⎞⎟⎠ = b (†)

Expanding the top row of (†) gives

a11y1 = b1 which implies y1 = b1
a11

provided a11 �= 0

Similarly we can find y2 from the second row, and so on for the rest of the y values. By
applying this we find all the entries in the vector y.

Now we use this vector y to find our unknown vector x from Ux = y.

How can we do this?
Since U is an upper triangular matrix, writing out Ux = y we have

Ux =

⎛⎜⎜⎝
a11 · · · a1n

. . .
amn

⎞⎟⎟⎠
⎛⎜⎜⎝

x1
...
xm

⎞⎟⎟⎠ =
⎛⎜⎜⎝

y1
...
ym

⎞⎟⎟⎠ = y (∗)

This time, we use back substitution to find our unknowns x1, x2, . . . , xm.
Expanding the bottom row of (∗) gives

amnxm = ym implies xm = ym
amn

provided amn �= 0

Substituting these xm into the penultimate row of (∗) will produce the value for xm−1.
Repeating this process we can find all the unknown x’s, which is what we were looking for.

Example 6.19

Solve the linear system Ax = b where A is the matrix of Example 6.18 and b = (7 13 106 −94)T .

Solution
We first need to find the vector y such that Ly = b where L is the lower triangular matrix that we
evaluated in the previous example. Substituting this L and the given b into Ly = b:

Ly =

⎛⎜⎜⎝
1 0 0 0
5 2 0 0
6 −5 1 0
5 8 1 1

⎞⎟⎟⎠
⎛⎜⎜⎝

y1
y2
y3
y4

⎞⎟⎟⎠ =
⎛⎜⎜⎝

7
13
106
−94

⎞⎟⎟⎠ (†)

(continued...)
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From the first row we have y1 = 7. Substituting this y1 = 7 into the second row gives

5y1 + 2y2 = 13
5 (7) + 2y2 = 13 gives y2 = −11

Using these values y1 = 7 and y2 = −11 in the third row of (†) yields

6y1 − 5y2 + y3 = 106
6 (7) − 5 (−11) + y3 = 106 ⇒ y3 = 9

Repeating this process with y1 = 7, y2 = −11 and y3 = 9 on the bottom row of (†) gives

5y1 + 8y2 + y3 + y4 = −94
5 (7) + 8 (−11) + 9 + y4 = −94 ⇒ y4 = −50

We have y1 = 7, y2 = −11, y3 = 9 and y4 = −50, or in vector form:

y = (7 −11 9 −50)T

Now we use our upper triangular matrix U to find the required unknown x’s from Ux = y. We found
the upper triangular matrix U in the above Example 6.18. Substituting that matrix U and the above vector
y into Ux = y gives ⎛⎜⎜⎝

1 4 5 3
0 1 1 −2
0 0 2 3
0 0 0 −10

⎞⎟⎟⎠
⎛⎜⎜⎝

x1
x2
x3
x4

⎞⎟⎟⎠ =
⎛⎜⎜⎝

7
−11
9

−50

⎞⎟⎟⎠ (∗)

From the bottom row of (∗) we have x4 = 5. Substituting this x4 = 5 into the penultimate row of (∗)
gives

2x3 + 3x4 = 9
2x3 + 3(5) = 9 ⇒ x3 = −3

Using the second row and x values already found, x3 = −3 and x4 = 5 gives

x2 + x3 − 2x4 = −11
x2 − 3 − 2(5) = −11 ⇒ x2 = 2

Using these values x2 = 2, x3 = −3 and x4 = 5 in the top row of (∗) yields

x1 + 4x2 + 5x3 + 3x4 = 7
x1 + 4(2) + 5(−3) + 3(5) = 7 ⇒ x1 = −1

Hence our unknowns are x1 = −1, x2 = 2, x3 = −3 and x4 = 5.

Remember, we apply this LU factorization method if we want to solve a linear system
Ax = b for different b vectors.

This LU factorization method is especially useful if you have a lot of b’s for which you
want to find solutions, because once you have found L and U, then the remaining work is
pretty straightforward.
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We can also use LU factorization to find the determinant of a matrix, as the next example
demonstrates.

Example 6.20

Find the determinant of A where A is the matrix of Example 6.18.

Solution
From Example 6.18 we have

A = LU where L =

⎛⎜⎜⎝
1 0 0 0
5 2 0 0
6 −5 1 0
5 8 1 1

⎞⎟⎟⎠ , U =

⎛⎜⎜⎝
1 4 5 3
0 1 1 −2
0 0 2 3
0 0 0 −10

⎞⎟⎟⎠
Since we have a lower triangular L and an upper triangular matrix U, the determinant is the product of
the diagonal entries, because we have the following proposition from the last section: Proposition (6.19).
The determinant of a triangular matrix is the product of the entries along the leading diagonal.

Using this proposition we have

det (L) = 1× 2× 1× 1 = 2 and det (U) = 1× 1× 2× (−10) = −20
By the multiplicative property of determinants: Proposition (6.28). det (AB) = det(A)× det(B).

We have

det(A) = det (LU) = det (L)× det (U)

= 2× (−20) = −40
Hence det(A) = −40.

Once we have an LU factorization then evaluating the determinant is simple multiplica-
tion.

We can also use LU factorization of an invertible matrix A to find the inverse of A.

How?
We have A = LU so taking the inverse of both sides gives

A−1 = (LU)−1 = U−1L−1
[
By (1.27) (XY)−1 = Y−1X−1

]
Since L andU are triangular matrices, their inverses are a lot less demanding to find. We

use row operations to find the inverse rather than using cofactors – see Exercises 6.4.

i Summary

We can break a given matrix A into a lower triangular matrix L and an upper triangular matrix U
such that A = LU. This approach is used by computers to solve linear systems Ax = b for the same
coefficient matrix A but many different vectors b because it is much less computationally expensive.
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EXERCISES 6.4

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Solve the following linear systems Ax = b by using LU factorization for:

(a) A =
⎛⎝ 1 2 2

3 −3 −2
4 −1 −5

⎞⎠ , b =
⎛⎝ 5

0
−10

⎞⎠
(b) A =

⎛⎝ 1 5 6
2 11 19
3 19 47

⎞⎠ , b =
⎛⎝ 1

−4
−22

⎞⎠
(c) A =

⎛⎝ 2 1 3
4 −1 0
10 12 34

⎞⎠ , b =
⎛⎝ 5
−11
84

⎞⎠
(d) A =

⎛⎝ 1 2 3
3 −9 −12

−1 8 18

⎞⎠ , b =
⎛⎝ −59
−4

⎞⎠
2. Solve the following linear system Ax = b by using LU factorization:

A =

⎛⎜⎜⎝
1 2 3 4
17 22 27 8
77 44 47 −494

−10 1 7 63

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
−10
22

2106
−243

⎞⎟⎟⎠
3. Find the determinant of the matrix A given in question 2.

4. Decompose the matrix A =
⎛⎝ 1 2 3

0 4 5
0 0 6

⎞⎠ into LU.

5. Let A =
⎛⎝ 1 2 3

3 7 14
4 13 38

⎞⎠.
(a) Convert the matrix A into LU form.
(b) Find A−1.
(c) Solve Ax = b for: (i) b = (1 2 3)T (ii) b = (−1 3 1)T

6. Explain why we cannot convert the following
(
0 1
2 3

)
into LU factorization.

MISCELLANEOUS EXERCISES 6

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

In this exercise you may check your numerical answers using MATLAB.
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Cramer’s Method is described on the book’s website.

6.1. The determinant of the matrix

A =
⎡⎣ 0 1 5
3 −6 9
2 6 1

⎤⎦
is
A. 165 B. 0 C.−35 D.−75 E. 68

University of Ottawa, Canada

6.2. Let E =
⎛⎝ −1 7 8

0 5 6
0 0 4

⎞⎠ and F =
⎛⎝ 3 0 0
−1 −5 0
0 1 −2

⎞⎠.
Find det (E) , det (F), det (EF) and det (E+ F).

University of Western Ontario, Canada

6.3. Evaluate the determinant of ⎡⎢⎢⎢⎢⎣
3 1 1 1 1
1 3 1 1 1
3 1 3 1 1
1 3 1 3 1
3 1 3 1 3

⎤⎥⎥⎥⎥⎦
University of Western Ontario, Canada

6.4. Let A and B be n× n matrices. Complete the following formulas with the simplest
possible expressions. If a formula does not exist, write ‘No Formula’.

(a) det (AB) =
(b) det

(
A−1

) =
(c) det (A+ B) =
(d) det (3A) =
(e) det

(
AT) =

Mount Holyoke College, Massachusetts, USA

6.5. Consider the matrix B =

⎛⎜⎜⎝
1 2 0 0
0 1 2 0
0 0 1 2

−3 4 −5 6

⎞⎟⎟⎠.
Use row operations or straightforward calculation to find det(B).

Mount Holyoke College, Massachusetts, USA

6.6. Suppose

2x1 + x2 + x3 = 8
3x1 − 2x2 − x3 = 1
4x1 − 7x2 + 3x3 = 10
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By Cramer’s rule we find (fill in determinants without doing the computation):

x2 =
Mount Holyoke College, Massachusetts, USA

6.7. Let A =
⎡⎣2 123 −1
1 456 1
2 789 1

⎤⎦. If you know that det(A) = −420, then find the value of x2

in the solution of the linear system A

⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 1
0
1

⎤⎦.
Purdue University, USA

6.8. Using Cramer’s method, solve the system

5x2 + x3 = −8
x1 − 2x2 − x3 = 2
6x1 + x2 − 3x3 = −8

University of Wisconsin, USA (part question)

6.9. Calculate the determinant of the matrix⎛⎜⎜⎝
2 1 3 1
0 8 −2 5
−6 −3 −5 −5
2 5 3 −4

⎞⎟⎟⎠
National University of Ireland, Galway (part question)

6.10. Compute the determinant of the following matrix

A =

⎛⎜⎜⎝
10 −2 3 16
1 1 1 1
9 −3 2 15

110 23 12 −15

⎞⎟⎟⎠
RWTH Aachen University, Germany

6.11. Let A be the 3× 3 matrix

A =
⎛⎝ 0 1 3

1 2 0
4 5 1

⎞⎠

(a) Calculate det(A) using the cofactor expansion.
(b) Calculate A−1 using elementary row operations.
(c) Use the calculation you performed in (b) to find det(A).

University of Maryland, Baltimore County, USA
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6.12. (i) Compute the inverse of the matrix

A =
⎡⎣ 2 −1 −4
−1 1 2
−1 1 3

⎤⎦
(ii) Use the result of part (i) to find the inverses of the three matrices At, 3A and A2.

University of New Brunswick, Canada

6.13. Let A be an upper triangular n× n matrix with determinant equal to 3. Multiply
by 5 all terms in the matrix above and to the right of the diagonal (but not on the
diagonal). What is the determinant of the new matrix?

Johns Hopkins University, USA

6.14. Find adjA, detA and hence A−1 when

A =
[

1 −1
−1 1

]
and when

A =
⎡⎣ 3 −4 1

1 −1 3
2 −2 5

⎤⎦
University of Sussex, UK (part question)

6.15. Let A =

⎡⎢⎢⎣
2 0 0 0
1 −7 −5 0
3 8 6 0
0 7 5 4

⎤⎥⎥⎦.
(a) Use determinants to decide if A is invertible or not.
(b) What is det

(
AT)?

(c) What is det
(
A−1

)
?

Washington State University, USA (part question)

6.16. Consider the following determinants:

D1 =

∣∣∣∣∣∣∣∣
1 0 2 0
0 2 0 −1
2 0 3 0
0 −1 0 4

∣∣∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣∣∣
1 0 2 0
2 0 3 0
0 2 0 −1
0 −1 0 4

∣∣∣∣∣∣∣∣ , D3 =

∣∣∣∣∣∣∣∣
1 0 2 0
0 2 0 −1
2 0 3 0
3 2 5 −1

∣∣∣∣∣∣∣∣
Evaluate D1 by direct expansion. Evaluate D2 by relating it to D1. Evaluate D3 by

using standard properties of determinants. In each case, explain your method briefly.
Queen Mary, University of London, UK
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6.17. Find the value of the determinant of each of the following matrices.

(a) A =

⎡⎢⎢⎣
3 0 0 0
x −2 0 0
17 y 1 0
π 42 −6 4

⎤⎥⎥⎦ (b) B =

⎡⎢⎢⎢⎢⎣
1 2 3 4 5
4 6 1 −9 8
12 10 2 7 0
4 6 1 −9 8
1 5 2 4 3

⎤⎥⎥⎥⎥⎦
(c) C =

⎡⎢⎢⎣
4 −2 1 5
2 9 0 3
0 2 0 0
5 8 0 7

⎤⎥⎥⎦
Memorial University, Canada

6.18. (a) Consider the matrices

A =

⎛⎜⎜⎝
−1 −2 −3 1
1 −2 0 3
2 −3 1 −1
0 1 0 0

⎞⎟⎟⎠ and B =

⎛⎜⎜⎝
2 0 0 0
5 1 0 0

−1 1 2 0
2 −3 1 −3

⎞⎟⎟⎠
Find the determinants of A, B, AB and A3.

(b) Let A be an invertible n× nmatrix. Prove that det(A) �= 0.
University of Southampton, UK (part question)

6.19. (a) By elimination or otherwise, find the determinant of A:

A =

⎡⎢⎢⎣
1 0 0 u1
0 1 0 u2
0 0 1 u3
v1 v2 v3 0

⎤⎥⎥⎦
(b) If that zero in the lower right hand corner ofA changes to 100, what is the change
(if any) in the determinant of A? (You can consider its cofactors.)

Massachusetts Institute of Technology, USA (part question)

6.20. Use row operations to calculate the determinant∣∣∣∣∣∣
1 a2 b+ c
1 b2 a+ c
1 c2 a+ b

∣∣∣∣∣∣
University of Maryland, Baltimore County, USA

6.21. Let A be an invertible 3× 3 matrix. Suppose it is known that

A =
⎡⎣ u v w

3 3 −2
x y z

⎤⎦ and that adj(A) =
⎡⎣ a 3 b
−1 1 2
c −2 d

⎤⎦
Find det(A). (Give an answer not involving any of the unknown variables.)

McGill University, Canada (part question)

6.22. Evaluate det
(
(2A)−1 (3A)T

)
, where A is any invertible (2× 2) matrix.

Memorial University, Canada



LU FACTORIZATION 487

6.23. (a) Evaluate the determinants:

(i)

∣∣∣∣∣∣
1 2 2
3 1 3
1 3 1

∣∣∣∣∣∣ ; (ii)

∣∣∣∣∣∣∣∣
3 0 0 2
0 0 3 0
0 0 2 2
3 1 0 0

∣∣∣∣∣∣∣∣
(b) Assume that A, B and C are 4× 4 matrices with determinants

det(A) = 2, det(B) = −3 and det(C) = 5
Find the following determinants:
(i) det (3A); (ii) det

(
C−1B

)
; (iii) det

(
A2C−1BT)

University of Manchester, UK

6.24. (a) Evaluate the determinants:

(i)

∣∣∣∣∣∣∣∣
0 0 1 3
0 0 3 1
0 1 a b
3 1 c d

∣∣∣∣∣∣∣∣ (ii)

∣∣∣∣∣∣∣∣∣∣

0 0 a 0 0
0 b 0 0 0
c 0 0 0 0
0 0 0 0 1
0 0 0 2 0

∣∣∣∣∣∣∣∣∣∣
(iii)

∣∣∣∣∣∣∣∣∣∣

0 0 3 0 0
0 2 4 0 0
1 0 5 0 0
0 0 6 0 9
0 0 7 8 0

∣∣∣∣∣∣∣∣∣∣
(b) Assume that A and B are 3× 3 matrices with determinants detA = 3 and
detB = −2. Find the following determinants:
(i) det

(
BBT) (ii) det

(
A−1BA

)
(iii) det

(
AB−1

)
University of Manchester, UK

6.25. (a) Let A, B be 2× 2 matrices with det(A) = 2, det(B) = 3. Find
(i) det

(−A3B−2
)

(ii) det
(
2A−1BA

)
(iii) det

(
A−1AT)

(b) If

∣∣∣∣∣∣
a d g
b e h
c f i

∣∣∣∣∣∣ = 1 find

∣∣∣∣∣∣
a+ d d + g g + a
b+ e e+ h h+ b
c+ f f + i i+ c

∣∣∣∣∣∣.
McGill University, Canada

6.26. We have a 3× 3 matrix A =
⎡⎣ a 1 2

b 3 4
c 5 6

⎤⎦ with det(A) = 3. Compute the determi-

nants of the following matrices:

(a)

⎡⎣ a− 2 1 2
b− 4 3 4
c− 6 5 6

⎤⎦ (b)

⎡⎣ 7a 7 14
b 3 4
c 5 6

⎤⎦ (c) 2A−1AT (d)

⎡⎣ a− 2 1 2
b 3 4
c 5 6

⎤⎦
Purdue University, USA 2006

In the following question, consider the field F to be a set of real numbers.
6.27. Let F be a field, and a, b, c, d, e, f , p, q, r, s, t, u ∈ F. Consider thematrix

A =
⎛⎝ a b c

0 d e
0 0 f

⎞⎠⎛⎝ p 0 0
q r 0
s t u

⎞⎠
Find det(A). (Advice: you can do this the hard way, by multiplying out and

calculating, or more easily, using facts about determinants.)
University of California, Berkeley, USA
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6.28. Use Cramer’s rule to solve for x in the system of equations⎡⎣ a 1 1
1 2 3
1 3 6

⎤⎦⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 1
1
1

⎤⎦
Columbia University, New York, USA

6.29. Supply a short proof for the following statement:
If A is a n× nmatrix satisfying A5 = O, then det(A) = 0.

University of California, Berkeley, USA (part question)

6.30. Let An denote the following n× nmatrix.

An =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 · · · n

−1 0 3 4 · · · n
−1 −2 0 4 · · · n

...
...

...
...

. . .
...

−1 −2 −3 −4 · · · 0

⎤⎥⎥⎥⎥⎥⎦
(a) Determine A2,A3 and A4. Use elementary row operations and properties of

determinants to compute the determinants of these matrices.
(b) Based on your work on part (a), use elementary row operations and properties

of determinants to compute An, the determinant of the matrix An for an integer
n ≥ 2.

Illinois State University, USA

6.31. What is the formula for the inverse to the following matrix?⎡⎣ A B D
0 C E
0 0 F

⎤⎦
Columbia University, New York, USA

6.32. Using Cramer’s rule, solve for y in the following system of equations:⎡⎣ A B D
0 C E
0 0 F

⎤⎦⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 1

1
0

⎤⎦
Columbia University, New York, USA

6.33. Evaluate the determinant of the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 2 4 6 8
0 1 0 5 12 13 9
0 0 1 −1 31 5 23
0 0 0 4 2 7 1
0 0 0 −2 1 3 −2
0 0 0 0 1 0 0
0 0 0 −1 2 5 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

University of California, Berkeley, USA
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6.34. For which real numbers k is the following matrix invertible?⎛⎜⎜⎜⎜⎝
1 1 0 0 1

−1 k 0 0 0
0 0 1 3 9
0 0 1 4 16
0 0 1 k k2

⎞⎟⎟⎟⎟⎠
Stanford University, USA

6.35. Let B be the invertible matrix given below, where ? means that the value of the entry
does not affect the answer to this problem. The second matrix C is the adjoint of B.
Find the value of det

(
2B−1

(
CT)−2).

B =

⎛⎜⎜⎝
? ? ? 0
0 −1 2 0
1 1 0 0
? ? ? −3

⎞⎟⎟⎠ , C =

⎛⎜⎜⎝
6 3 9 0

−6 −3 6 0
−3 6 3 0
2 1 3 −5

⎞⎟⎟⎠
University of Utah, USA

Sample questions

6.36. Find the determinant of

A =
(
1 2 3
4 5 6

)
6.37. Let P be an invertible n by nmatrix and A be a n by nmatrix. Show that

det
(
P−1AP

) = det(A)

6.38. Let A be a n by nmatrix given by A =

⎛⎜⎜⎜⎝
0 0 · · · a1n
0 · · · a2(n−1) a2n
... . . . . . .

...
an1 an2 · · · ann

⎞⎟⎟⎟⎠.
Prove that det(A) = (−1)�n/2� a1n · · · a2(n−1)an1 where � � is the floor function.
[The floor function � � is defined on the set of real numbers. Let x be a real number

such that x = n+ y where 0 ≤ y < 1
We define the floor function to be �x� = n
That is �x� = n gives the largest integer less than or equal to x. For example

�2.4� = 2, �6.99� = 6, �10� = 10, �π� = 3, �−3.4� = −4]
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Tell us about yourself and your work.

I am a numerical analyst specializing in numerical linear algebra. My work spans the full
range from developing fundamental theory to deriving algorithms and implementing
them in software.

I am particularly interested in the theory and numerical solution of algebraic
eigenvalue problems, that is, to find scalars λ and non-zero vectors x and y satisfying
N(λ)x = 0, where N : � → Cnxn is an analytic function on an open set � ⊆ C, the
standard eigenvalue problem (A− λI)x = 0 studied in Chapter 7 being the simplest
case. However, in practical applications, such as in the dynamic analysis of mechanical
systems (where the eigenvalues represent vibrational frequencies), in the linear stability
of flows in fluid mechanics, or in the stability analysis of time-delay systems, the
elements of N(λ) can be polynomial, rational or exponential functions of λ and the
corresponding non-linear eigenvalue problems can be very difficult to solve.

I am also interested in tropical algebra (also known as max-plus algebra), where
matrices and vectors have entries in R ∪ {−∞} and where the addition a+ b is replaced
by a maximization max(a, b) and the multiplication ab is replaced by an addition a+ b.
As in section 1.4 of this book, we can add two tropical matrices and also multiply them.
In fact, many of the tools of linear algebra described in this book are available in tropical
algebra. A major difference with classical linear algebra is that the maximum operation
lacks inverses. Tropical algebra allows us to describe, in a linear way, a phenomenon that
is non-linear in the conventional algebra. These include, for example, parallel
computation, transportation networks and scheduling.

What are the challenges connected with the subject?

Non-linear eigenvalue problems present many mathematical challenges. For some there
is a lack of underlying theory. For others, numerical methods struggle to provide any
accuracy or to solve very large problems in a reasonable time.
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SECTION 7.1 Introduction to Eigenvalues and Eigenvectors

By the end of this section you will be able to

● determine eigenvalues and eigenvectors

● prove properties of eigenvalues and eigenvectors

Eigenvector/value problems crop up frequently in the physical sciences and engineering.
They take the formAv = (scalar)× vwhere v is a non-zero vector andA is a squarematrix.
By knowing the eigenvalues and eigenvectors of a matrix we can easily find its determinant,
decide whether the matrix has an inverse and determine the powers of the matrix. For an
example of linear algebra at work, one needs to look no further than Google’s search engine,
which relies upon eigenvalues and eigenvectors to rank pages with respect to relevance.

7.1.1 Definition of eigenvalues and eigenvectors

Before we define what is meant by an eigenvalue and an eigenvector let’s do an example
which involves them.

Example 7.1

Let A =
(

4 −2
1 1

)
and u =

(
2
1

)
then evaluate Au.

Solution
Multiplying the matrix A and vector u we have

Au =
(

4 −2
1 1

)(
2
1

)
=
(
6
3

)
= 3

(
2
1

)

What do you notice about the result?
We have Au = 3u. The matrix A scalar multiplies the vector u by 3, as shown in Fig. 7.1.

In general terms, this can be written as

(7.1) Au = λu (matrix A scalar multiplies vector u)

where A is a square matrix, u is a vector and the Greek letter λ (lambda) is a scalar.
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2
3

32

u

1

-1

1

2

3

4 5 6

1

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
Au

Figure 7.1

This is an important result which is used throughout this chapter and well worth
becoming familiar with.

Why is formula (7.1) important?
Because the matrix A transforms the vector u by scalar multiplying it, which means that the trans-
formation only changes the length of the vector u unless λ = ±1 (in which case the length remains
unchanged). Note that (7.1) says that the matrix A applied to u gives a vector in the same or
opposite (negative λ) direction of u.

Can you think of a vector, u, which satisfies equation (7.1)?
The zero vector u = O because AO = λO = O. In this case we say that we have the trivial solution
u = O. In this chapter we consider the non-trivial solutions, u �= O (not zero), and these solutions
are powerful tools in linear algebra.

For a non-zero vector u the scalar λ is called an eigenvalue of the matrixA and the vector
u is called an eigenvector belonging to or corresponding to λ, which satisfies Au = λu.

In most linear algebra literature the Greek letter lambda, λ, is used for eigenvalues. These
terms eigenvalue and eigenvector are derived from the German word ‘Eigenwert’ which
means ‘proper value’. The word eigen is pronounced ‘i-gun’.

Eigenvalues were initially developed in the field of differential equations by Jean d’
Alembert.

Figure 7.2 Jean d’Alembert 1717 to
1783.

Jean d’Alembert 1717–1783 (Fig. 7.2) was a French
mathematician and the illegitimate son of Madam
Tencin and an army officer, Louis Destouches. His
mother left him on the steps of a local church and he
was consequently sent to a home for orphans. His
father recognised his son’s difficulties and placed him
under the care of Madam Rousseau, wife of a wealthy
architect.

However, d’Alembert’s father died when he was only
nine years old and his father’s family looked after his
financial situation so that he could continue his
education.

In 1735, Alembert graduated, and he thought that a
career in law would suit him, but his real thirst and
enthusiasm was for mathematics, and he studied this
in his spare time. For most of his life he worked for the
Paris Academy of Science and the French Academy.
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Example 7.2

Let A =
(

1 1

−2 4

)
. Verify the following:

(a) u =
(
1

1

)
is an eigenvector of matrix A belonging to the eigenvalue λ1 = 2.

(b) v =
(
1

2

)
is an eigenvector of matrix A belonging to the eigenvalue λ2 = 3.

Solution

(a) Multiplying the given matrix A and vector u we have

Au =
(

1 1

−2 4

)(
1

1

)
=
(
2

2

)
= 2

(
1

1

)

Thus u = (1 1)T is an eigenvector of the matrix A belonging to λ1 = 2 because Au = 2u.
Matrix A doubles the vector u.

(b) Similarly we have

Av =
(

1 1

−2 4

)(
1

2

)
=
(
3

6

)
= 3

(
1

2

)

Thus v = (1 2)T is an eigenvector of the matrix A belonging to λ2 = 3 because Av = 3v.
This Av = 3v means matrix A triples the vector v.

What do you notice about your results?
A 2 by 2 matrix can have more than one eigenvalue and eigenvector.

We have eigenvalues λ and eigenvectors u for any squarematrix A such that Au = λu.

Example 7.3

Let A =

⎛⎜⎜⎝
5 0 0

−9 4 −1
−6 2 1

⎞⎟⎟⎠ and u =

⎛⎜⎜⎝
0

1

2

⎞⎟⎟⎠. Show that the matrix A scalar multiplies the vector u and find

the value of this scalar, λ, the eigenvalue.
(continued...)
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Solution
Applying the matrix A to the vector u we have

Au =
⎛⎝ 5 0 0
−9 4 −1
−6 2 1

⎞⎠⎛⎝ 0
1
2

⎞⎠ =
⎛⎝ 0
2
4

⎞⎠ = 2

⎛⎝ 0
1
2

⎞⎠
We have Au = 2u so λ = 2. Hence λ = 2 is an eigenvalue of the matrix A with an eigenvector u.

Matrix A transforms the vector u by a scalar multiple of 2 because Au = 2u.

7.1.2 Characteristic equation

From the above formula (7.1) Au = λu we have

Au = λIu

[λIu = λu – multiplying by the identity keeps it the same]
where I is the identity matrix. We can rewrite this as

Au− λIu = O
(A− λI)u = O

Under what condition is the non-zero vector u a solution of this equation?
By question 26 of Exercises 6.3:

Ax = O has an infinite number of solutions ⇔ det (A) = 0.

Applying this result to (A− λI)u = O means that we must have a non-zero vector u
(because there are an infinite number of solutions which satisfy this equation)⇔

det(A− λI) = 0

This is an important equation because we use this to find the eigenvalues and it is called
the characteristic equation:

(7.2) det(A− λI) = 0

The procedure for determining eigenvalues and eigenvectors is:

1. Solve the characteristic equation (7.2) for the scalar λ.
2. For the eigenvalue λ determine the corresponding eigenvector u by solving the

system (A− λI)u = O.

Let’s follow this procedure for the next example.
Note that eigenvalues and eigenvectors come in pairs. You cannot have one without

the other. It is a relationship like mother and child because eigenvalues give birth to
eigenvectors.
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Example 7.4

Determine the eigenvalues and corresponding eigenvectors of A =
(

2 0
1 3

)
. Also sketch the effect of

multiplying the eigenvectors by matrix A.

Solution
What do we find first, the eigenvalues or eigenvectors?
Eigenvalues, because they produce eigenvectors.

We carry out the above procedure:

Step 1.
We need to find the values of λ which satisfy det(A− λI) = 0. First we obtain A− λI:

A− λI =
(

2 0
1 3

)
− λ

(
1 0
0 1

)
=
(

2 0
1 3

)
−
(

λ 0
0 λ

)
=
(

2− λ 0
1 3− λ

)
Substituting this into det(A− λI) gives

det(A− λI) = det
(

2− λ 0
1 3− λ

)

To find the determinant, we use formula (6.1), det
(

a b
c d

)
= ad − bc, thus:

det(A− λI) = det
(

2− λ 0
1 3− λ

)
= (2− λ) (3− λ)− 0

For eigenvalues we equate this determinant to zero:

(2− λ) (3− λ) = 0 implies λ1 = 2 or λ2 = 3

Step 2.
For each eigenvalue, λ determine the corresponding eigenvector u by solving the system (A− λI)u = O.

Let u be the eigenvector corresponding to λ1 = 2. Substituting A =
(

2 0
1 3

)
and λ1 = λ = 2 into

(A− λI)u = O gives

(A− λI)u =
[(

2 0
1 3

)
−
(

2 0
0 2

)]
u = O(

0 0
1 1

)
u = O

Remember, O =
(
0
0

)
and let u =

(
x
y

)
, so we have

(
0 0
1 1

)(
x
y

)
=
(
0
0

)
Multiplying out gives

0+ 0 = 0
x+ y = 0

(continued...)



496 7 EIGENVALUES AND EIGENVECTORS

Remember, the eigenvector cannot be the zero vector, therefore at least one of the values, x or y, must
be non-zero. From the bottom equation we have x = −y.

The simplest solution is x = 1, y = −1 but we could have

(
2
−2
)
,
(−3

3

)
,
(

π

−π

)
,
(

5
−5
)
, . . .

Hence we have an infinite number of eigenvectors belonging to λ = 2. We can write down the general
eigenvector u.
How?
Let x = s then y = −s where s �= 0 and is a real number. Thus the eigenvectors belonging to λ = 2 are

u =
(

s
−s
)
= s

(
1
−1
)

where s �= 0
[(

1
−1
)

is one of the simplest eigenvectors

]

Similarly, we find the general eigenvector v belonging to the other eigenvalue λ2 = 3. Putting
λ2 = λ = 3 into [A− λI] v = O gives

(A− λI)v =
[(

2 0
1 3

)
−
(

3 0
0 3

)]
v = O simplifies to

( −1 0
1 0

)
v = O

By writing v =
(
x
y

)
[different x and y from those above] and O =

(
0
0

)
we obtain

( −1 0
1 0

)(
x
y

)
=
(
0
0

)

Multiplying out:

−x+ 0 = 0, x+ 0 = 0

From these equations we must have x = 0.
What is y equal to?
We can choose y to be any real number apart from zero because the eigenvector cannot be zero. Thus

y = s where s �= 0

The general eigenvector belonging to λ2 = 3 is

v =
(
x
y

)
=
(
0
s

)
= s

(
0
1

)
where s �= 0

[(
0
1

)
is one of the simplest eigenvectors

]

Summarizing the above we have:

Eigenvector u = s
(

1
−1
)

belonging to λ1 = 2 and eigenvector v = s
(
0
1

)
belonging to λ2 = 3.

What does all this mean?
The given matrix A scalar multiplies the eigenvector u by 2 and v by 3 because

Au = 2u and Av = 3v
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Plotting these eigenvectors, the effect of multiplying by the matrix A is shown in Fig. 7.3.

0

1

⎛ ⎞

3

2

1

–1

0.5 1 1.5 2

–2

= ⎜ ⎟
⎝ ⎠

v

Av       v

u

= 3

Au       u= 2= 
1
-1

Figure 7.3

Matrix A doubles (λ1 = 2) the eigenvector u and triples (λ2 = 3) the eigenvector v as you can see in
Fig. 7.3. Matrix A does not change the direction of the eigenvectors.

Eigenvectors are non-zero vectors which are transformed by the matrix A to a scalar
multiple λ of itself.

Next, we find the eigenvalues and eigenvectors of a 3 by 3 matrix. Follow the algebra
carefully because you will have to expand brackets like (1− λ) (−3− λ).

To expand this it is usually easier to take out two minus signs and then expand, that is:

(1− λ) (−3− λ) = −− (−1+ λ) (3+ λ) = (λ− 1) (3+ λ) [Because −− = +]

Example 7.5

Determine the eigenvalues of A =
⎛⎝ 1 0 4

0 4 0
3 5 −3

⎞⎠
Solution
We have

A− λI =
⎛⎝ 1 0 4

0 4 0
3 5 −3

⎞⎠−
⎛⎝ λ 0 0

0 λ 0
0 0 λ

⎞⎠ =
⎛⎝ 1− λ 0 4

0 4− λ 0
3 5 −3− λ

⎞⎠
It is easier to remember that A− λI is actually matrix A with−λ along the leading diagonal (from top

left to bottom right). We need to evaluate det(A− λI).
What is the simplest way to find det(A− λI)?
From the properties of determinants of the last chapter, we know that it will be easier to evaluate the
determinant along the middle row, containing the elements 0, 4− λ and 0.
Why?
Because it has two zeros we do not have to evaluate the 2 by 2 determinants associated with these zeros.
[Spending a second or two in choosing an easy way forward can really help save on the arithmetic later
on.] From above we have

(continued...)
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det (A− λI) = det

⎛⎝ 1− λ 0 4
0 4− λ 0
3 5 −3− λ

⎞⎠ middle row

= (4− λ)

[
det
(

1− λ 4
3 −3− λ

)] [
expanding the
middle Row

]
= (4− λ)

[
(1− λ) (−3− λ)− (3× 4)

] [
by determinant of 2 by 2

]
= (4− λ)

[
(λ− 1) (3+ λ)− 12

] [
taking out minus signs

]
= (4− λ)

[
3λ+ λ2 − 3− λ− 12

] [
opening brackets

]
= (4− λ)

[
λ2 + 2λ− 15

] [
simplifying

]
= (4− λ) (λ+ 5) (λ− 3)

[
factorizing

]
By the characteristic equation (7.2), det(A− λI) = 0, we equate all the above to zero:

(4− λ) (λ+ 5) (λ− 3) = 0

Solving this equation gives the eigenvalues λ1 = 4, λ2 = −5 and λ3 = 3.

Example 7.6

Determine the eigenvectors associated with λ3 = 3 for the matrix A given in Example 7.5.

Solution

Substituting the eigenvalue λ3 = λ = 3 and the matrix A =
⎛⎝ 1 0 4

0 4 0
3 5 −3

⎞⎠ into (A− λI)u = O

(subtract 3 from the leading diagonal) gives:

(A− 3I)u =
⎛⎝ 1− 3 0 4

0 4− 3 0
3 5 −3− 3

⎞⎠ u = O

where u is the eigenvector corresponding to λ3 = 3.
What is the zero vector, O, equal to?

Remember, this zero vector is O =
⎛⎝ 0
0
0

⎞⎠. Let u =
⎛⎝ x
y
z

⎞⎠. Substituting these into the above and

simplifying gives ⎛⎝ −2 0 4
0 1 0
3 5 −6

⎞⎠⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 0
0
0

⎞⎠
Expanding this yields the linear system

−2x + 0 + 4z = 0 (1)
0 + y + 0 = 0 (2)
3x + 5y − 6z = 0 (3)
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From the middle equation (2) we have y = 0. From the top equation (1) we have

2x = 4z which gives x = 2z

If z = 1 then x = 2; or more generally if z = s then x = 2s where s �= 0 [not zero].

The general eigenvector u =
⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 2s

0
s

⎞⎠ = s

⎛⎝ 2
0
1

⎞⎠ where s �= 0 and corresponds to λ3 = 3.

The given matrix A triples the eigenvector u because Au = 3u.

You are asked to find the eigenvectors belonging to λ1 = 4 and λ2 = −5 in Exercises 7.1.

7.1.3 Eigenspace

Note that for λ3 = 3 in the above Example 7.6 we have an infinite number of eigenvectors
by substituting various non-zero values of s:

u =
⎛⎝ 2
0
1

⎞⎠ or u =
⎛⎝ 4
0
2

⎞⎠ or u =
⎛⎝ 1

0
1/2

⎞⎠ or u =
⎛⎝−40
−2

⎞⎠ . . .

Check that the matrix A triples each of these eigenvectors by verifying Au = 3u. The
above solutions u are given by all the points (apart from x = y = z = 0) on the line shown
in Fig. 7.4:
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⎜ ⎟
⎜ ⎟
⎝ ⎠

4

0

2

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

Figure 7.4

In general, if A is a square matrix and λ is an eigenvalue of A with an eigenvector u then
every scalar multiple (apart from 0) of the vector u is also an eigenvector belonging to the
eigenvalue λ. For example, if we have Au = 3u then 666u is also an eigenvector because
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A(666u) = 666(Au) = 666 (3u)︸︷︷︸
becauseAu=3u

= 3(666u)

Since the matrix A triples the vector 666u so 666u is an eigenvector with eigenvalue 3.
Thus we have the general proposition:

Proposition (7.3). If λ is an eigenvalue of a square matrix A with an eigenvector u then
every non-zero scalar multiplication of u, such as ku, is also an eigenvector belonging to λ.

This means that if u is an eigenvector belonging to λ then so is 2u, 0.53u,−666u, . . . .

Proof.
Consider an arbitrary non-zero scalar k, then

A(ku) = k(Au)
[
by rules of matrices

]
= k(λu)

[
by (7.1) Au = λu

]
= λ(ku)

Thus we have A(ku) = λ(ku), which means that the matrix A acting on the vector ku
produces a scalar multiple λ of ku. Hence ku is an eigenvector belonging to the eigenvalue
λ. Since k was arbitrary, every non-zero scalar multiple of u is an eigenvector of the matrix
A belonging to the eigenvalue λ.

Hence the scalar λ produces an infinite number of eigenvectors.

Proposition (7.4). If A is an n by n matrix with an eigenvalue of λ, then the set S of all
eigenvectors of A belonging to λ together with the zero vector,O, is a subspace of Rn:

S = {O} ∪ {u ∣∣ u is an eigenvector belonging to λ
}

How do we prove the given set is a subspace of Rn?
We can use result (3.7) of chapter 3:

Proposition (3.7). A non-empty subset S containing vectors u and v is a subspace of a
vector space V ⇔ any linear combination ku+ cv is also in S (k and c are scalars).

This means that we need to show:
If vectors u and v are in S then for any scalars k and c we have ku+ cv is also in S. This

means that S is a subspace ⇔ S is closed so the vector ku+ cv cannot escape from S, as
shown in Fig. 7.5.

S

u

v
u + vk    c 

Figure 7.5
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Proof.

What do we need to prove?
Required to prove that if u and v are eigenvectors belonging to the eigenvalue λ then ku+ cv is
also an eigenvector belonging to λ.

Let u and v be eigenvectors belonging to the same eigenvalue λ, and k and c be any
non-zero scalars. Then by the above Proposition (7.3):

If λ is an eigenvalue of a square matrix A with an eigenvector u then ku is also an
eigenvector belonging to λ.

We have ku and cv are eigenvectors belonging to λ, therefore by (7.1):

A(ku) = λ(ku) and A(cv) = λ(cv) (∗)

We need to show that A(ku+ cv) = λ(ku+ cv):

A(ku+ cv) = A(ku)+ A(cv)
[
applying the rules of matrices

]
= λ(ku)+ λ(cv)

[
by the above (∗)

]
= λ(ku+ cv)

[
factorizing

]
Since A(ku+ cv) = λ(ku+ cv) so the matrix A scalar (λ) multiplies the vector ku+ cv

so it is an eigenvector belonging to λwhichmeans it is amember of the set S. By Proposition
(3.7) we conclude that the set S is a subspace of Rn.

This subspace S of Proposition (7.4)

S = {O} ∪ {u ∣∣ u is an eigenvector belonging to λ
}

is called an eigenspace of λ and is denoted by Eλ, that is Eλ = S.
For example, the eigenspace associated with Example 7.4 for the eigenvalue λ1 = 2 is the

eigenvector u = s
(

1
−1
)
and for λ2 = 3 the eigenvector v = s

(
0
1

)
which are shown in

Fig. 7.6.

1

1

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

u

0
1

v =

The eigenspace E2 is this line.  

The eigenspace E3 is this 
vertical line.

–3 –2 –1 1 2 3
x

y

–1

1

2

3

–2

–3

Figure 7.6
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E2 and E3 denote the eigenspaces given by λ = 2 and λ = 3 respectively.

Note that the vector
(
0
1

)
is a basis (axis) for the eigenspace E3 and

(
1

−1
)
is a basis

(axis) for the eigenspace E2. These eigenvectors are a basis (axis) for each eigenspace.

We can also use the numerical software MATLAB to find eigenvalues and eigenvectors:

As an example, we’ll find consider the matrix in Example 7.6: A =
⎛⎝ 1 0 4

0 4 0
3 5 −3

⎞⎠ .

In MATLAB, we enter the matrix A by typing: A=[1 0 4 ; 0 4 0 ; 3 5 -3]
where the semicolon denotes the start of the new row. We’ll let the matrix containing the
eigenvectors be called V and the matrix containing the eigenvalues as d. We then use
the following MATLAB command. [V,d]=eig(A,’nobalance’). The ‘nobalance’
prevents MATLAB from normalizing the vector. The result of this command is:
V =
1.0000 0.6667 −1.0000

0 0 −0.4500
0.5000 −1.0000 −0.7500

Reading down each column gives
the eigenvectors.

d =
3 0 0
0 −5 0
0 0 4

The leading diagonal entries give
the eigenvalues.

By reading the above MATLAB output, the eigenvectors are⎛⎝ 1
0
1/2

⎞⎠ ,

⎛⎝ 2/3
0

−1

⎞⎠ ,

⎛⎝ 1
9/20
3/4

⎞⎠
So the general eigenvectors are

u = r

⎛⎝ 2
0
1

⎞⎠ , v = s

⎛⎝ 2
0

−3

⎞⎠ , w = t

⎛⎝ 20
9
15

⎞⎠
where r, s, t �= 0. Note that the eigenvector u is the eigenvector found in Example 7.6. You
are asked to verify the other two by hand in Exercises 7.1.

i Summary

The eigenvector u belonging to eigenvalue λ satisfies:

(7.1) Au = λu (matrix A scalar multiplies eigenvector u by λ)

The following equation is used to find the eigenvalues:

(7.2) det(A− λI) = 0

Eigenvectors u are found using (A− λI)u = O.
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EXERCISES 7.1

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

In this exercise you may check your numerical answers using MATLAB.

1. Find the eigenvalues and particular eigenvectors of the following matrices:

(a) A =
(
7 3
0 −4

)
(b) A =

(
5 −2
4 −1

)
(c) A =

( −1 4
2 1

)
2. Obtain the general eigenvectors of λ1 = 4 and λ2 = −5 for the matrix in Example 7.5.

3. Find the eigenvalues and eigenvectors of A =
(
3 1
1 3

)
. Plot the eigenspaces Eλ.

4. Find the eigenvalues and eigenvectors of A =
(
5 −2
7 −4

)
. State the effect of multiplying

the eigenvector by the matrix A. Plot the eigenspaces Eλ and write down a basis vector
for each of the eigenspaces.

5. Let A =
( −2 8

5 1

)
and B =

( −4 16
10 2

)
.

(a) Determine the eigenvalues of A.
(b) Determine the eigenvalues of B.
(c) State a relationship between the eigenvalues of A and B and predict a general

relationship.

6. Let A be a square matrix and B = rA, where r is a real number. Prove that if λ is the
eigenvalue of matrix A then the eigenvalue of B is rλ.

7. Prove that the zero n× nmatrix,O =
⎛⎜⎝ 0 . . . 0

...
. . .

...
0 · · · 0

⎞⎟⎠, only has zero eigenvalues.
[Hint: Use the Proposition of chapter 6 which gives the determinant of a diagonal

matrix.]

8. Determine the eigenvalues and eigenvectors of A =
⎛⎝ 1 2 1

2 1 1
1 1 2

⎞⎠. By using appropriate
software plot the eigenspaces and write down a basis for each eigenspace.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 7.2 Properties of Eigenvalues and Eigenvectors

By the end of this section you will be able to

● determine eigenvalues and eigenvectors of particular matrices

● prove some properties of eigenvalues and eigenvectors

● apply the Cayley–Hamilton theorem
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As we discovered in chapter 6, finding the inverse of a matrix can be a lengthy process.
In this section we will show an easier way to find the inverse. We will also show that
the Cayley–Hamilton theorem significantly reduces the workload in finding the powers
of matrices.

It is worth reminding ourselves that eigenvalues and eigenvectors always come in pairs.
You cannot have an eigenvalue on its own; it must have an associated eigenvector. But they
are like chalk and cheese because an eigenvalue is a scalar and an eigenvector is a vector.

First we look at multiple eigenvalues and their corresponding eigenvectors.

7.2.1 Multiple eigenvalues

What is the characteristic equation of a square matrix A?
The characteristic equation was defined in the last section 7.1 as:

(7.2) det(A− λI) = 0 where A is a square matrix, I is the identity matrix and λ is the eigenvalue
which is a scalar. By expanding this we have

det(A− λI) = det

⎡⎢⎢⎣
⎛⎜⎜⎝

a11 . . . a1n
...

. . .
...

an1 · · · ann

⎞⎟⎟⎠−
⎛⎜⎜⎝

λ 0 · · ·
0

. . . 0
0 · · · λ

⎞⎟⎟⎠
⎤⎥⎥⎦

= det

⎛⎜⎜⎝
a11 − λ . . . a1n

...
. . .

...
an1 · · · ann − λ

⎞⎟⎟⎠ = 0

[
taking away λ along
the leading diagonal

]

Evaluating the determinant of this matrix results in a polynomial equation of degree n.
An example of a polynomial p(λ) of degree 3 is

5λ3 − 2λ2 + 3λ + 69

An example of a polynomial p(λ) of degree 4 is

7λ4 − 5λ3 − 0.1λ2 + 34λ + 5

An example of a polynomial p(λ) of degree n is

333λn + 2λn−1 + · · · + 6λ2 + λ + 2.7 1828

In general terms, we can write a polynomial p(λ) of degree n as

p(λ) = cnλn + cn−1λn−1 + · · · + c1λ + c0

where the c’s are the coefficients.

What is the difference between a characteristic polynomial and an equation?
A characteristic polynomial is an expression p(λ) while an equation is p (λ) = 0.
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How many roots does the equation p(λ) = 0 have?
The impressively titled ‘Fundamental Theorem of Algebra’ tells us that the polynomial equation
p(λ) = 0 of degree n has exactly n roots. Don’t worry if you have not heard of the ‘Fundamental
Theorem of Algebra’. It is a known theorem in algebra which claims that a polynomial equation
of degree n has exactly n roots. For example, x2 − 2x+ 1 = 0 has exactly two roots because it is a
polynomial equation of degree 2 (quadratic equation).

Other examples are:

Equation Number of roots

x5 − 1 = 0 5
2x12 − 2x3 + 1 = 0 12

−5x101 − x100 − · · · − 1 = 0 101

We will not prove the fundamental theorem of algebra but assume it is true. Thus by the
fundamental theorem of algebra we conclude that

p (λ) = cnλn + cn−1λn−1 + cn−2λn−2 + · · · + c2λ2 + c1λ + c0 = 0

has n eigenvalues (roots). There might be n distinct eigenvalues or they might be repeated
such as

(λ− 1)3 (λ− 2) = 0 which gives λ1 = 1, λ2 = 1, λ3 = 1 and λ4 = 2

Normally we write the first three roots in compact form as λ1, 2, 3 = 1 rather than as
above.

We distinguish between simple and multiple eigenvalues in the next definition.

Definition (7.5). Let A be an n by n matrix and have the eigenvalues λ1, λ2, λ3, . . . and
λn. If λ occurs only once then we say λ is a simple eigenvalue, otherwise it is called a
multiple eigenvalue. If λ occursm times where m > 1 then we say λ is an eigenvalue with
multiplicity ofm or λ hasmultiplicity m.

In the above equation (λ− 1)3 (λ− 2) = 0 we have λ1, 2, 3 = 1 is an eigenvalue of
multiplicity 3 and λ4 = 2 is a simple eigenvalue.

Example 7.7

Determine the eigenvalues and eigenspaces of A =
⎛⎝ 2 1 3

0 2 0
0 0 2

⎞⎠.

Solution
What do we determine first?
The eigenvalues, because they produce the eigenvectors. Using the characteristic equation (7.2)
det(A− λI) = 0 we have

(continued...)
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det(A− λI) = det

⎛⎝ 2− λ 1 3
0 2− λ 0
0 0 2− λ

⎞⎠
= (2− λ) det

(
2− λ 0
0 2− λ

) [
expanding along
the first column

]
= (2− λ)

[
(2− λ) (2− λ)− 0

]
= (2− λ)3 = 0

Thus we only have one repeated eigenvalue λ = λ1, 2, 3 = 2. We say that λ = 2 has multiplicity 3.
How do we find the corresponding eigenvector?
By substituting this, λ = 2, into (A− λI)u = O where u is the eigenvector:

(A− 2I)u =
⎛⎝ 2− 2 1 3

0 2− 2 0
0 0 2− 2

⎞⎠ u = O

Simplifying this and substituting unknowns x, y, z for the eigenvector u and zeros into the zero vector,
O, gives ⎛⎝ 0 1 3

0 0 0
0 0 0

⎞⎠⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 0
0
0

⎞⎠
Note that this matrix is already in reduced row echelon form (rref). There is only one non-zero

equation and three unknowns, therefore there are 3− 1 = 2 free variables (x and z, because none of the
equations begin with these). The term ‘free variables’ was defined in chapter 1.

By expanding the first row we have y+ 3z = 0, which gives y = −3z. Let z = s where s �= 0 then
y = −3s. Clearly x can be any real number, that is x = t. Hence, we write the eigenvector (x = t,
y = −3s and z = s) in terms of two separate vectors which are a basis for the eigenspace E2 :

u =
⎛⎝ x
y
z

⎞⎠ =
⎛⎝ t
−3s
s

⎞⎠ =
⎛⎝ t
0
0

⎞⎠+
⎛⎝ 0
−3s
s

⎞⎠ = t

⎛⎝ 1
0
0

⎞⎠+ s

⎛⎝ 0
−3
1

⎞⎠
where s and t are not both zero. If s and t were both zero then u would be the zero vector but u is an

eigenvector so �= O. This u is our general eigenvector and we can write our eigenspace as

E2 =
⎧⎨⎩t
⎛⎝ 1
0
0

⎞⎠+ s

⎛⎝ 0
−3
1

⎞⎠⎫⎬⎭ and plot this in R3 as shown in Fig. 7.7.
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Note that we have a plane rather than just a line because we have two basis vectors (as shown above)
which span a plane. A set of basis (axes) vectors B of the eigenspace E2 are given by

B =
⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
−3
1

⎞⎠⎫⎬⎭

The matrix given in the above example is a type of matrix called a triangular matrix
which was defined in the previous chapter. A smarter way to evaluate the eigenvalues of
such matrices is described next.

7.2.2 Eigenvalues of diagonal and triangular matrices

In Exercises 7.1 you proved that the eigenvalues of the zero matrix,O, are 0.

What sort matrix is the zero matrix?
A diagonal matrix.

What is a diagonal or triangular matrix?
By definition (6.17), a triangular matrix is an n by n matrix where all the entries to one side of the
leading diagonal are zero.

By definition (6.18) we have a diagonalmatrix is an n by nmatrix where all the entries to
both sides of the leading diagonal are zero.

The following are examples:

A =

⎛⎜⎜⎝
1 0 0 0
0 2 0 0
0 0 5 0
0 0 0 4

⎞⎟⎟⎠
︸ ︷︷ ︸

diagonal matrix

,B =

⎛⎜⎜⎝
8 −1 5 9
0 −8 3 −6
0 0 5 7
0 0 0 4

⎞⎟⎟⎠
︸ ︷︷ ︸

triangular matrix

and C =

⎛⎜⎜⎝
−9 0 0 0
−8 3 0 0
−2 4 −1 0
1 0 5 10

⎞⎟⎟⎠
︸ ︷︷ ︸

triangular matrix

B is actually called an upper triangular matrix and C a lower triangular matrix.
We prove that for a diagonal or triangular matrix the eigenvalues are given by the entries

along the leading diagonal which goes from top left to bottom right of the matrix. For
example, the above diagonal matrix A has eigenvalues 1, 2, 5 and 4.

What are the eigenvalues of the triangular matrices B and C?
B has eigenvalues 8,− 8, 5 and 4. C has eigenvalues −9, 3,−1 and 10.

Proposition (7.6). If an n by n matrix A is a diagonal or triangular matrix then the
eigenvalues of A are the entries along the leading diagonal.

How do we prove this?
We apply Proposition (6.19) to the matrix A: The determinant of a triangular or diagonal matrix is
the product of the entries along the leading diagonal.
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The proofs for the three different cases of upper, lower triangular and diagonal are very
similar, so we only proof this for one case. In mathematical proof, we say ‘without loss of
generality (WLOG)’ meaning that we prove it for one case, and the proof for the other case
is identical.

Proof of (7.6).

Without loss of generality (WLOG), let A =

⎛⎜⎜⎜⎜⎝
a11 a12 · · · a1n
0 a22 · · · a2n
... 0

. . .
...

0
... 0 ann

⎞⎟⎟⎟⎟⎠ be an upper triangular

matrix. The characteristic equation det(A− λI) = 0 is given by

det(A− λI) = det

⎛⎜⎜⎜⎜⎝
a11 − λ a12 · · · a1n

0 a22 − λ · · · a2n
... 0

. . .
...

0
... 0 ann − λ

⎞⎟⎟⎟⎟⎠
={

multiplying the leading
diagonal entries.
(by Proposition (6.19))

(a11− λ)(a22− λ) · · · (ann− λ) = 0 implies λ1= a11,λ2= a22, . . . ,λn= ann

The roots or eigenvalues of this equation are a11, a22, a33, . . . and ann which are the
leading diagonal entries of the given matrix A. This completes our proof.

Example 7.8

Determine the eigenvalues of A =

⎛⎜⎜⎝
5 3 5 8
0 9 7 −9
0 0 6 −5
0 0 0 −17

⎞⎟⎟⎠.

Solution
What do you notice about matrix A?
Matrix A is an (upper) triangular matrix, therefore we can apply the above Proposition (7.6) to find the
eigenvalues of matrix A.
What are the eigenvalues of A?
The eigenvalues are the entries on the leading diagonal which runs from top left to bottom right. Thus the
eigenvalues are

λ1 = 5, λ2 = 9, λ3 = 6 and λ4 = −17

Note that the eigenvalues of the matrix A given in Example 7.7 are

λ 1, 2, 3 = 2

because all the entries along the leading diagonal of the triangular matrix A are 2.
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7.2.3 Properties of eigenvalues and eigenvectors

Proposition (7.7). A square matrix A is invertible (has an inverse) ⇔ λ = 0 is not an
eigenvalue of the matrix A.

Proof – Exercises 7.2.

This proposition means that if λ = 0 is an eigenvalue of matrix A then A has no inverse.

Proposition (7.8). Let A be a square matrix with eigenvector u belonging to
eigenvalue λ.

(a) If m is a natural number then λm is an eigenvalue of the matrix Am with the same
eigenvector u.

(b) If thematrixA is invertible (has an inverse) then the eigenvalue of the inverse matrix

A−1 is 1
λ
= λ−1 with the same eigenvector u.

What does this proposition mean?

Matrix Eigenvector Eigenvalue

A u λ

(a) Am (power) u λm

(b) A−1 (inverse) u λ−1

We illustrate this for λ = 2 (the matrixA doubles the eigenvector u) as shown in Fig. 7.8.

1
2

uA−1u =

u

Amu = 2mu

Au = 2u

Figure 7.8

How do we prove proposition (a)?
By using mathematical induction. The three steps of mathematical induction are:

Step 1: Check the result for some base case m = m0.

Step 2: Assume that the result is true for m = k.

Step 3: Prove the result for m = k+ 1.
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Proof.
Step 1: Using the definition of eigenvalues and eigenvectors (7.1) we have Au = λu which
means the result holds form = 1:

Au = λu (∗)

Step 2: Assume that the result is true form = k:

Aku = λku (†)

Step 3: Required to prove the casem = k+ 1; that is, we need to prove

Ak+1u = λk+1u

Expanding the left hand side:

Ak+1u = A
(
Aku

) [
writing Ak+1 = AAk

]
= A

(
λku

)︸ ︷︷ ︸
by (†)

= λk(Au) = λk (λu)︸︷︷︸
by (∗)

= λkλ︸︷︷︸
=λk+1

u = λk+1u

Thus Ak+1u = λk+1u, therefore by mathematical induction we have our result that λm

is an eigenvalue of the matrix Am with the eigenvector u.

Proof of (b).
Using formula (7.1) we have Au = λu. Left multiplying both sides of this by A−1 gives

(
A−1A

)︸ ︷︷ ︸
=I

u = A−1 (λu) = λA−1u

Remember, multiplying by the identity I keeps it the same, that is Iu = u, so we have

u = λA−1u

Dividing both sides by λ gives

1
λ
u = A−1u or writing this the other way, we have A−1u = 1

λ
u

Since A−1 scalar multiplies u by 1
λ
so the eigenvalue of A−1 is 1

λ
with the eigenvector u.
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Example 7.9

Find the eigenvalues of A7 where A =
⎛⎝ 1 4 5

0 2 6
0 0 3

⎞⎠.

Solution
Because A is an upper triangular matrix, the eigenvalues are the entries on the leading diagonal, that is
λ1 = 1, λ2 = 2 and λ3 = 3. By the above Proposition (7.8) (a) we can see that the eigenvalues of A7 are

λ71 = 17 = 1, λ 7
2 = 27 = 128 and λ73 = 37 = 2187

Proposition (7.9). Let A be any n by n matrix with eigenvalues λ1, λ2, λ3, . . . λn. We
have:

(a) The determinant of the matrix A is given by det (A) = λ1 × λ2 × λ3 × · · · × λn.
(b) The trace of the matrix A is given by tr(A) = λ1 + λ2 + λ3 + · · · + λn.

What is the trace of a matrix?
The trace (tr) of a matrix is the addition of all the entries on the leading diagonal:

tr

⎛⎜⎜⎜⎜⎝
a11 . . . a1n
...

. . .
...

an1 · · · ann

⎞⎟⎟⎟⎟⎠ = a11 + a22 + a33 + · · · + ann

What does part (b) mean?
Adding all the eigenvalues of a matrix is equal to the trace of the matrix.

Can you see any use for part (b)?
We can use part (b) as a rough check to see if we have the correct eigenvalues.

Why is (b) a rough rather than an exact check for eigenvalues?
Because there are so many different ways of adding to the same value.

What does the first part (a) mean?
It means that we can find the determinant of a matrix by multiplying all the eigenvalues of that
matrix.

How do we prove part (a)?
By using the characteristic equation det(A− λI) = 0.

Proof of (a).
We are given that matrix A has eigenvalues λ1, λ2, λ3, . . . and λn.
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What does this mean?
It means that these, λ1, λ2, . . . and λn, are roots of the characteristic equation, det(A− λI) = 0,
which implies that we have

det(A− λI) = (λ1 − λ) (λ2 − λ) (λ3 − λ) · · · (λn − λ) (†)

[For example, if the eigenvalues of a matrix B are λ1 = 2, λ2 = 4 and λ3 = 5 then the
characteristic equation would be given by det (B− λI) = (2− λ) (4− λ) (5− λ).]

If we substitute λ = 0 into (†) we get
det (A) = (λ1 − 0) (λ2 − 0) (λ3 − 0) · · · (λn − 0)

= (λ1) (λ2) (λ3) · · · (λn) = λ1 × λ2 × λ3 × · · · × λn

This is our required result.

Proof of (b) – See website.

Summarizing this proposition we have:

Matrix A λ1, λ2, λ3, . . ., λn Eigenvalues

Determinant of A λ1 × λ2 × λ3 × · · · × λn Product of eigenvalues

Trace of A λ1 + λ2 + λ3 + · · · + λn Addition of eigenvalues

The above proposition states that we can evaluate the determinant (or trace) of any n by n
matrix by finding the eigenvalues and multiplying (or adding) them.

Example 7.10

Find the determinant and trace of A =
⎛⎝ 1 2 1

2 1 1
1 1 2

⎞⎠ given that the eigenvalues of A are 1, 4 and−1.

Solution
By the above Proposition (7.9) we have

det(A) = 1× 4× (−1) = −4 [multiplying the eigenvalues]

Tr(A) = 1+ 4− 1 = 4 [adding all eigenvalues]

Remember, the trace of the matrix is found by adding all the entries in the leading diagonal

Tr(A) = 1+ 1+ 2 = 4

Hence we have illustrated for matrix A that the trace of the matrix is the same as the sum of the
eigenvalues.
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Proposition (7.10). Let A be an n by n matrix with distinct eigenvalues λ1, λ2, λ3, . . ., λm
and corresponding eigenvectors u1, u2, u3, . . ., um where 1 ≤ m ≤ n. Then these eigenvec-
tors u1, u2, u3, . . . and um are linearly independent.

We need this proposition to prove the Cayley–Hamilton theorem which is given in the
next subsection.

Proof – Exercises 7.2.

7.2.4 Cayley–Hamilton theorem

The biography of Arthur Cayley was given in section 1.4.1. Here we give a brief profile of
Sir William Rowan Hamilton.

Figure 7.9

William Hamilton (Fig. 7.9) was born in Dublin,
Ireland in 1805 and became one of the greatest Irish
mathematicians. Initially he took an interest in
languages, but during his early school days he found
an affection for mathematics. At the age of 18 he
entered Trinity College, Dublin and spent the rest of
his life there. In 1827, Hamilton was appointed
Professor of Astronomy at Trinity College, but he did
not take much interest in astronomy and devoted all
his time to mathematics. Hamilton is best known for
his work on quaternions which is a vector space of four
dimensions. In fact, in 1843 while he was walking
along the local canal in Dublin with his wife he had a
flash of inspiration and discovered the formula for
quaternion multiplication.

At present there is plaque at the bridge stating this
formula. He also invented the dot and cross product
of vectors.

Throughout his life he had problems with alcohol and love. He fell in love with
Catherine but due to unfortunate circumstances he ended up marrying Helen which he
regretted for the rest of his life.

In general, we have not evaluated powers of matrices such as A3, A4, . . . . This is because
trying to determine An is a tedious task for almost all matrices. Finding A2 by A× A is
simple enough for small size matrices but A3 is not so elementary. The Cayley–Hamilton
theorem simplifies evaluation of An for a given matrix A.

The statement of the Cayley–Hamilton theorem is straightforward.

Cayley–Hamilton (7.11). Every square matrixA is a root of the characteristic equation, that
is p(A) = O where p represents the characteristic polynomial.

Proof – This is a difficult proof and is on the book’s website.
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Example 7.11

Find the characteristic polynomial p(λ) of the matrix A =
(

3 2
3 4

)
and illustrate the Cayley–Hamilton

theorem for this matrix A.

Solution
We use p(λ) = det(A− λI) and substitute the given matrix A into this:

p(λ) = det(A− λI) = det

(
3− λ 2

3 4− λ

) [
taking away λ along

the leading diagonal

]
= (3− λ) ( 4− λ)− 6

= 12− 7λ+ λ2 − 6 = λ2 − 7λ+ 6

Thus the characteristic polynomial is p(λ) = λ2 − 7λ+ 6.
What is p(A) equal to?
Substituting matrix A into this equation yields:

p (A) = A2 − 7A+ 6I

=
(

3 2

3 4

)2

− 7

(
3 2

3 4

)
+ 6

(
1 0

0 1

) [
substituting A and I

]

=
(

3 2

3 4

)(
3 2

3 4

)
−
(

21 14

21 28

)
+
(

6 0

0 6

) [
carrying out scalar

multiplication

]

=
(

15 14

21 22

)
−
(

21 14

21 28

)
+
(

6 0

0 6

)

=
(

15− 21+ 6 14− 14+ 0

21− 21+ 0 22− 28+ 6

)
=
(

0 0

0 0

)
= O

Thus p(A) = O.
What does this mean?
This means that matrix A satisfies its characteristic equation p(A) = A2 − 7A+ 6I = O which is what
the Cayley–Hamilton theorem states.

We can use this result A2 − 7A+ 6I = O to find higher powers of matrix A.

We can apply the Cayley–Hamilton theorem to find powers of matrices. For example, if

A =
(
0.9 0.2
0.3 0.6

)
then A100 =

(
29.4 13.5
20.2 9.2

)
(1dp)

A100 is not evaluated bymultiplying 100 copies of matrixA. The evaluation ofA100 is found
by using the eigenvalues of matrix A. Calculating A100 is a very tedious task which can be
significantly reduced by applying the Cayley–Hamilton theorem. The powers of a matrix
can be written in terms of a polynomial of lower degree in matrix A. This is illustrated in
the next example.
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Example 7.12

Let A =
( −2 −4

1 3

)
. Determine A4 .

Solution
Working out the determinant of A− λI gives

det(A− λI) = det
( −2− λ −4

1 3− λ

)
= (−2− λ) (3− λ)+ 4

= (λ+ 2) (λ− 3)+ 4

= λ2 − λ− 2 = p(λ)

By the Cayley–Hamilton theorem we have p(A) = A2 − A− 2I = O. Transposing this gives

A2 = A+ 2I (†)

A3 = A2 + 2A
[
multiplying by A

]
= A+ 2I︸ ︷︷ ︸
=A2 by above (†)

+ 2A = 3A+ 2I

Multiplying the last equation A3 = 3A+ 2I by A gives

A4 = 3A2 + 2A

= 3
[
A+ 2I

]
︸ ︷︷ ︸

=A2 by above (†)

+ 2A = 5A+ 6I

Thus A4 = 5A+ 6I = 5
( −2 −4

1 3

)
+ 6

(
1 0
0 1

)
=
( −4 −20

5 21

)
.

Note that we can evaluate A4 without working out A3 and A2 because A4 = 5A+ 6I is a polynomial
of degree 1 in matrix A.

InMATLABwe can find the characteristic polynomial of a matrixA by using the command
poly(A). We can also use the Cayley–Hamilton theorem to find the inverse of a matrix as
the next example demonstrates. Remember, determining the inverse of a 3 by 3 or larger
matrix is a laborious job. However, by applying the Cayley–Hamilton theorem we find it
becomes much simpler.

Example 7.13

Determine A−1 where A =
⎛⎝ 10 15 0

2 4 0
3 6 6

⎞⎠ given that the characteristic polynomial of this matrix is:

p(λ) = λ3 − 20λ2 + 94λ− 60

Solution
By the Cayley–Hamilton theorem (7.11) we have

p(A) = A3 − 20A2 + 94A− 60I = O
[

because p(λ) = λ3 − 20λ2 + 94λ− 60
]

(continued...)
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Adding 60I to both sides gives

A3 − 20A2 + 94A = 60I

A
(
A2 − 20A+ 94I

) = 60I
[
factorizing out the matrix A

]
By the definition of the inverse matrix we have AA−1 = I, which means that dividing both sides by 60

in the above gives

A
1
60

(
A2 − 20A+ 94I

)
︸ ︷︷ ︸

=A−1

= I

Hence A−1 = 1
60
(
A2 − 20A+ 94I

)
. Evaluating the components of this yields

A2 =
⎛⎝ 10 15 0

2 4 0
3 6 6

⎞⎠⎛⎝ 10 15 0
2 4 0
3 6 6

⎞⎠ =
⎛⎝ 130 210 0

28 46 0
60 105 36

⎞⎠
20A = 20

⎛⎝ 10 15 0
2 4 0
3 6 6

⎞⎠ =
⎛⎝ 200 300 0

40 80 0
60 120 120

⎞⎠ and 94I =
⎛⎝ 94 0 0

0 94 0
0 0 94

⎞⎠

Putting these into A−1 = 1
60
(
A2 − 20A+ 94I

)
gives

A−1 = 1
60

(
A2 − 20A+ 94I

)
= 1

60

⎡⎣⎛⎝ 130 210 0
28 46 0
60 105 36

⎞⎠−
⎛⎝ 200 300 0

40 80 0
60 120 120

⎞⎠+
⎛⎝ 94 0 0

0 94 0
0 0 94

⎞⎠⎤⎦

= 1
60

⎛⎝ 130− 200+ 94 210− 300+ 0 0− 0+ 0
28− 40+ 0 46− 80+ 94 0− 0+ 0
60− 60+ 0 105− 120+ 0 36− 120+ 94

⎞⎠

= 1
60

⎛⎝ 24 −90 0
−12 60 0

0 −15 10

⎞⎠

FindingA−1 still involves a fair amount of calculation but is generally easier than finding
the cofactors of each entry.

i Summary

Proposition (7.6). If A is a diagonal or triangular matrix then the eigenvalues of A are the entries
along the leading diagonal.

Let A be a square matrix with an eigenvalue λ and eigenvector u belonging to λ.
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Then we have the following:

Matrix Eigenvector Eigenvalue

(7.8) (a) Am u λm

(7.8) (b) A−1 u λ−1

Cayley–Hamilton theorem (7.11). Every square matrix A is a root of the characteristic equation, that
is p(A) = O.

EXERCISES 7.2

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

In this exercise check your numerical answers using any appropriate software.

1. Determine the eigenvalues and eigenvectors ofA =
(

5 2
−2 1

)
and plot the eigenspace

Eλ and write down a set of basis vectors for Eλ.

2. Determine the eigenvalues and eigenvectors of A =
( −12 7
−7 2

)
and plot the

eigenspace Eλ and write down a set of basis vectors for Eλ.
3. Let A be a 2 by 2 matrix. Show that the characteristic polynomial p(λ) is given by

p(λ) = λ2 − tr(A)λ+ det(A)

where tr(A) is the trace of the matrix A.
4. Let A be a 2 by 2 matrix with tr(A) = 2a and det(A) = a2 where a is a real number.

Show that this matrix has an eigenvalue of a withmultiplicity of 2.

5. Determine the eigenvalues and eigenvectors of A =
⎛⎝ 1 0 0
−3 1 0
7 9 1

⎞⎠. By using appropri-
ate software or otherwise, plot the eigenspace Eλ and write down a set of basis vectors
for this eigenspace.

6. Determine the eigenvalues and eigenvectors of the following matrices and write down
a set of basis vectors for the eigenspace Eλ.

(a) A =
⎛⎝ 5 0 0

0 5 0
0 0 2

⎞⎠ (b) B =
⎛⎝ 1 2 3

0 5 1
0 0 9

⎞⎠ (c) C =
⎛⎝ −2 0 0

2 −2 0
4 10 −2

⎞⎠
7. Determine the eigenvalues and eigenvectors of the following matrices:

(a) A =

⎛⎜⎜⎝
7 0 2 3
0 7 4 6
0 0 5 −3
0 0 0 5

⎞⎟⎟⎠ (b) B =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

⎞⎟⎟⎠ (c) C =

⎛⎜⎜⎝
3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

⎞⎟⎟⎠
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8. Prove Proposition (7.7), which says a matrix is invertible⇔ λ = 0 is not an eigenvalue.
9. Let A be a square matrix and λ be an eigenvalue with the corresponding eigenvector u.

Prove that the eigenvalue λ is unique for the eigenvector u.
10. LetA be a 2 by 2 matrix. By using the result of question 3, the characteristic polynomial

p(λ) is given by

p(λ) = λ2 − tr(A)λ+ det(A)

Show that if
[
tr(A)

]2
> 4 det(A) then A has distinct eigenvalues.

State under what conditions we have equal and complex eigenvalues.
11. For each of the following matrices

(a) A =

⎛⎜⎜⎝
1 0 0 0
3 2 0 0
5 2 3 0
9 8 1 4

⎞⎟⎟⎠ (b) A =

⎛⎜⎜⎝
−1 3 4 7
0 6 −3 5
0 0 −8 9
0 0 0 3

⎞⎟⎟⎠ (c) A =

⎛⎜⎜⎝
2 0 0 0
0 −4 0 0
0 0 −7 0
0 0 0 0

⎞⎟⎟⎠
Determine

(i) eigenvalues of A (ii) eigenvalues of A5 (iii) eigenvalues of A−1
(iv) det(A) (v) tr(A)

12. Find the characteristic polynomial p(λ) of the matrix A =
(

2 1
−2 1

)
and determine

the inverse of this matrix by using the Cayley–Hamilton theorem.

13. Let A =
(
6 5
3 4

)
. By using the Cayley–Hamilton theorem determine A2 and A3.

14. Let A =
⎛⎝ 1 2 1

2 1 1
1 1 2

⎞⎠ and the characteristic polynomial of this matrix be given by

p(λ) = λ3 − 4λ2 − λ+ 4

Determine expressions for A−1 and A4 in terms of the matrices A, I and A2.
15. Prove Proposition (7.10).
16. Prove that the eigenvalues of the transposed matrix, AT , are exactly the eigenvalues of

the matrix A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 7.3 Diagonalization

By the end of this section you will be able to

● understand what is meant by similar matrices

● diagonalize a matrix

● find powers of matrices
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If A =
(

1 2
3 4

)
then how do we find A100?

We could apply the Cayley–Hamilton theorem of the last section. However, using Cayley–
Hamilton requires us to find a formula for A2 , A3, . . . , A99 and then use this to determine A100.
Clearly this is a very laborious way of finding A100 . In this section, we examine an easier method
to find powers of matrices such as A100. We factorize a given matrix A into three matrices, one
of which is a diagonal matrix. It is a lot simpler to deal with a diagonal matrix because any matrix
calculation is easier with diagonal matrices. For example, it is easy to find the inverse of a diagonal
matrix. Also, proving results about diagonal matrices is simpler than proving results about general
matrices.

In this section we aim to answer the following question:

For a square matrix A, is there an invertible matrix P (has an inverse) such that P−1AP produces a
diagonal matrix?
The goal of this section is to convert an n by n matrix into a diagonal matrix. The process of
converting any n by n matrix into a diagonal matrix is called diagonalization (Fig. 7.10).

n by n matrix Diagonal matrix Figure 7.10

What has this got to do with eigenvalues and eigenvectors?
This section explores how to diagonalize a matrix, for which we need to find the eigenvalues and
the corresponding eigenvectors. These eigenvalues are the leading diagonal entries in the diagonal
matrix.

First, we define similarmatrices and some of their properties.

7.3.1 Similar matrices

Example 7.14

Let A =
(

1 0
1 2

)
and P =

(
0 −1
1 1

)
. Determine P−1AP.

Solution
We first find the inverse of the matrix P, denoted P−1 :

P−1 =
(

0 −1
1 1

)−1
= 1

0− (−1)
(

1 1
−1 0

)
=
(

1 1
−1 0

) [(
a b
c d

)−1
= 1

ad− bc

(
d −b
−c a

)]
Carrying out the matrix multiplication

P−1AP =
(

1 1
−1 0

)(
1 0
1 2

)(
0 −1
1 1

)
=
(

2 2
−1 0

)(
0 −1
1 1

)
=
(

2 0
0 1

) [
first multiplying the
left and centre matrices.

]
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Definition (7.12). A square matrix B is similar to a matrix A if there exists an invertible
matrix P such that P−1AP = B.

In Example 7.14, the final matrix
(
2 0
0 1

)
is similar to matrix A because

P−1AP =
(
2 0
0 1

)
.

Similar matrices have the following properties (equivalence relation):

Proposition (7.13). Let A, B and C be square matrices. Then

(a) Matrix A is similar to matrix A.
(b) If matrix B is similar to matrixA then the other way round is also true, that is matrix

A is similar to matrix B.
(c) If matrix A is similar to B and B is similar to matrix C then matrix A is similar to

matrix C.

Proof – Exercises 7.3.

By property (b) we can say matricesA and B are similar. The following proposition gives
another important property of similar matrices.

Proposition (7.14). Let A and B be similar matrices. The eigenvalues of these matrices are
identical.

Proof.
We are given that matrices A and B are similar.

What does this mean?
By (7.12) there exists an invertible matrix P such that P−1AP = B. Let det (B− λI) be the char-
acteristic polynomial for the matrix B and det(A− λI) be the characteristic polynomial for the
matrix A.

Required to prove that the polynomials given by these determinants are equal:

det (B− λI) = det(A− λI)

We have

det (B− λI) = det
(
P−1AP− λI

) [
replacing B = P−1AP

]
= det

(
P−1AP− λP−1P

) [
substituting I = P−1P

]
= det

(
P−1AP− P−1λP

) [
moving the scalar λ

]
= det

(
P−1AP− P−1λIP

) [
rewriting λP = λIP

]
= det

[
P−1(A− λI)P

] [
factorizing out P−1 and P

]
= det

(
P−1

)
det(A− λI) det(P)

[
using det (ABC) = det (A) det (B) det (C)

]
= det(A− λI)

[
because det

(
P−1

)
det(P) = 1

]
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Similar matrices A and B have the same eigenvalues λ because λ satisfies the equation:

det (B− λI) = det(A− λI) = 0

Proposition (7.14) means that similar matrices carry out an identical transformation – they
scalar multiply each eigenvector by the same scalar λ.

7.3.2 Introduction to diagonalization

What do we mean when we say that a matrix is diagonalizable?

Definition (7.15). An n by n matrix A is diagonalizable if it is similar to a diagonal
matrixD.

The matrixA =
(
1 0
1 2

)
in the above Example 7.14 is diagonalizable because the matrix

P =
(
0 −1
1 1

)
gives P−1AP = D where D =

(
2 0
0 1

)
is a diagonalmatrix.

What does this definition (7.15) mean?
P−1AP = D which means that we can convert a matrix A into a diagonal matrix by left multiplying
by P−1 and right multiplying by P. We say the matrix P diagonalizes the matrix A.

Why diagonalize a matrix?
In general, a diagonal matrix is easier to work with because if you are multiplying, solving a system
of equations or finding eigenvalues, it is always preferable to have a diagonal matrix. The diagonal
matrix significantly reduces the amount of numerical calculations needed to find powers of a
matrix, for example. We will show later in this section that it is easy to evaluate the 100th power
of a diagonal matrix. Remember, we aim to convert a given matrix into a diagonal matrix.

Next, we give a trivial example of a matrix which is diagonalizable.

Example 7.15

Show that a diagonal matrix A =
(

3 0
0 2

)
is diagonalizable.

Solution
We need to find a matrix P such that P−1AP = D where D is a diagonal matrix.
What matrix P should we consider?
The identity matrix P = I because the given matrix A is already a diagonal matrix:

I−1AI = A

Thus the given matrix A is diagonalizable.
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Example 7.16

Show that any diagonal matrix is diagonalizable.

Solution
Let D be any diagonal matrix. The diagonalizing matrix is the identity matrix P = I because I−1DI = D.

How do we know which matrices are diagonalizable?
The next theorem states a test for establishing whether a matrix is diagonalizable or not.

Theorem (7.16). An n by n matrix A is diagonalizable ⇔ it has n linearly independent
eigenvectors.

Proof – Exercises 7.3.

We must have n linearly independent eigenvectors for the matrix to be diagonalizable.
The procedure for diagonalizing an n by nmatrixA can be derived from the proof of (7.16).
In a nutshell it is the following procedure:

1. Using det(A− λI)u = O for each eigenvalue λ1, λ2, . . ., λn, we find the eigenvec-
tors belonging to these λ1, λ2, . . ., λn. Call these eigenvectors p1, p2, p3, . . . and
pn. If matrix A does not have n linearly independent eigenvectors then it is not
diagonalizable.

2. Form the matrix P by having these eigenvectors p1, p2, . . . and pn, as its columns.
That is matrix P contains the eigenvectors:

P = (p1 p2 p3 · · · pn)

3. The diagonal matrix D = P−1AP will have the eigenvalues λ1, λ2, . . . and λn of A
along its leading diagonal, that is

D =
⎛⎜⎝ λ1

. . .
λn

⎞⎟⎠ eigenvalues of A

The eigenvector pj belongs to the eigenvalue λj.
4. It is good practice to check that matrices P and D actually work. For matrices of

size greater than 2 by 2, the evaluation of the inverse matrix P−1 can be lengthy so
prone to calculation errors. To bypass this evaluation of the inverse, simply check
that PD = AP.
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Why?
Because left multiplying the above D = P−1AP by P gives

PD = P
(
P−1AP

)
= (

PP−1
)
AP = IAP = AP

[
remember PP−1 = I

]
Hence it is enough to check that PD = AP.

Note that since matrices A and D are similar, they have the same eigenvalues.
The matrix P is called the eigenvector matrix and the diagonal matrixD the eigenvalue

matrix.

Example 7.17

Determine the eigenvector matrix P which diagonalizes the matrix A =
(

1 4
2 3

)
given that the

eigenvalues of this matrix are λ1 = −1 and λ2 = 5 with corresponding eigenvectors u =
(−2

1

)
and

v =
(
1
1

)
respectively.

Solution
Steps 1 and 2.
We have been given the eigenvectors, u and v, of matrix A so the eigenvector matrix P is

P = (u v) =
(−2 1

1 1

)
Step 3.

Since matrices A and D are similar, so our diagonal matrix D contains the eigenvalues of A, λ1 = −1 and

λ2 = 5:

D =
( −1 0

0 5

)
eigenvalues of A

Step 4.
We need to confirm that this matrix P does indeed diagonalize the given matrix A.
How?
By checking that PD = AP:

PD =
( −2 1

1 1

)( −1 0
0 5

)
=
(

2 5
−1 5

)
AP =

(
1 4
2 3

)( −2 1
1 1

)
=
(

2 5
−1 5

)
Thus the eigenvector matrix P does indeed diagonalize the given matrix A.

Notice that the eigenvalues, λ1 = −1 and λ2 = 5, of the given matrix A (and D) are
entries along the leading diagonal in the matrix D. They occur in the order λ1 and then λ2
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because the matrix P is created by P = (u v) where u is the eigenvector belonging to λ1
and v is the eigenvector belonging to the other eigenvalue λ2.

What would be the diagonal matrix if the matrix P was created by swapping u and v, that is
P = (v u)?

Our diagonal matrix would be D′ =
(

5 0
0 −1

)
. [See Exercises 7.3].

Note that the diagonal eigenvalue matrix D contains the eigenvalues, the eigenvector
matrix P contains the corresponding eigenvectors.

Example 7.18

Show that the matrix A =
⎛⎝ 1 −2 3

0 2 5
0 0 2

⎞⎠ with eigenvalues and eigenvectors given by

λ1 = 1,u =
⎛⎝ 1
0
0

⎞⎠ ; λ2 = 2, v =
⎛⎝−21

0

⎞⎠ and λ3 = 2,w =
⎛⎝ 2
−1
0

⎞⎠
is not diagonalizable.

Solution
Why can’t we diagonalize the given matrix A?
According to the procedure outlined above we cannot diagonlize matrix A if the three eigenvectors are
linearly dependent. (Linear dependency occurs when we can write one vector in terms of the others.)

Note that vectors v and w are linearly dependent because v = −w or v+ w = O. Thus the matrix A is
not diagonalizable.

7.3.3 Distinct eigenvalues

Next, we state a proposition that if an n by n matrix has n distinct eigenvalues then the
eigenvectors belonging to these are linearly independent.

Proposition (7.17). LetA be an n by nmatrix with n distinct eigenvalues, λ1, λ2 , . . . and λn
with the corresponding eigenvectors u1, u2, u3, . . . and un. These eigenvectors are linearly
independent.

Proof.
By Proposition (7.10):

Let A have distinct eigenvalues λ1, λ2, . . . ,λm with corresponding eigenvectors
u1, u2, . . . , um where 1 ≤ m ≤ n. Then these eigenvectors are linearly independent.

Using (7.10) with n = m gives us our required result.
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Proposition (7.18). If an n by n matrix A has n distinct eigenvalues then the matrix A is
diagonalizable.

Proof.
The n by n matrix A has n distinct eigenvalues, therefore by the above proposition (7.17)
the corresponding n eigenvectors are linearly independent. Thus by the above result (7.16):

An n by nmatrix A is diagonalizable⇔ it has n independent eigenvectors.
We conclude that the matrix A is diagonalizable.

Example 7.19

Determine whether the matrix A =
⎛⎝ 1 −6 2

0 4 25
0 0 9

⎞⎠ is diagonalizable.

Solution
What type of matrix is A?
Matrix A is an upper triangular matrix, therefore by Proposition (7.6): If an n by n matrix A is a diagonal
or triangular matrix then the eigenvalues of A are the entries along the leading diagonal.

The eigenvalues are the entries along the leading diagonal; λ1 = 1, λ2 = 4 and λ3 = 9.
How do we determine whether the given matrix A is diagonalizable or not?
A is a 3 by 3 matrix and it has three distinct eigenvalues; λ1 = 1, λ2 = 4 and λ3 = 9,

Therefore by Proposition (7.18) the matrix A is diagonalizable.

An n by nmatrix might be diagonalizable even if it does not have n distinct eigenvalues.
For example, the identity matrix I is diagonalizable even though it has n copies of the

same eigenvalue 1. (If we have n distinct eigenvalues for an n by n matrix then we are
guaranteed that the matrix is diagonalizable.)

The process of finding the eigenvalues, eigenvectors and the matrix Pwhich diagonalizes
a given matrix can be a tedious task if you are not given the eigenvalues and eigenvectors;
you have to go through the whole process.

Example 7.20

For the matrix A =
⎛⎝ 1 −6 2

0 4 25
0 0 9

⎞⎠, determine the eigenvector matrix P which diagonalizes matrix A

given that the eigenvalues of A are λ1 = 1, λ2 = 4 and λ3 = 9 with corresponding eigenvectors

u =
⎛⎝ 1
0
0

⎞⎠, v =
⎛⎝−21

0

⎞⎠ and w =
⎛⎝−710

2

⎞⎠ respectively.

Check that P does indeed diagonalize the given matrix A.

Solution
Step 1 and Step 2:
We have been given the eigenvalues and corresponding eigenvectors of the matrix A.

(continued...)
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What is our eigenvector matrix P equal to?
Eigenvector matrix P contains the eigenvectors:

P =
(
u v w

)
=
⎛⎜⎝ 1 −2 −7

0 1 10

0 0 2

⎞⎟⎠
⎡⎣ given u =

⎛⎝ 1
0
0

⎞⎠ , v =
⎛⎝ −2

1
0

⎞⎠ ,w =
⎛⎝ −7

10
2

⎞⎠⎤⎦
Step 3:

The diagonal eigenvalue matrix D has the eigenvalues λ1 = 1, λ2 = 4 and λ3 = 9 along the leading

diagonal, that is

P−1AP = D =

⎛⎜⎜⎝
1 0 0

0 4 0

0 0 9

⎞⎟⎟⎠ eigenvalues of matrix A.

Step 4:
Checking that we have the correct P and D matrices by showing PD = AP:

PD =
⎛⎝ 1 −2 −7

0 1 10
0 0 2

⎞⎠⎛⎝ 1 0 0
0 4 0
0 0 9

⎞⎠ =
⎛⎝ 1 −8 −63

0 4 90
0 0 18

⎞⎠
AP =

⎛⎝ 1 −6 2
0 4 25
0 0 9

⎞⎠⎛⎝ 1 −2 −7
0 1 10
0 0 2

⎞⎠ =
⎛⎝ 1 −8 −63

0 4 90
0 0 18

⎞⎠
Hence, this confirms that the matrix P does indeed diagonalize the given matrix A.

7.3.4 Powers of matrices

We discussed the above diagonalization process so that we can find powers of matrices. For
example, to find A100 is a difficult task.

What does diagonalization have to do with powers of matrices?
If A is a square matrix which is diagonalizable, so that there exists a matrix P such that P−1AP = D
where D is a diagonal matrix then

Am = PDmP−1 where m is any real number

We will show this result in the next proposition.
In the meantime, using this formula, we can find the inverse of matrix A by substituting

m = −1. To find A100 it is much easier to use this formula, Am = PDmP−1, rather than
multiplying a 100 copies of the matrix A. We can use this formula to find Am if we first
determine Dm.

How?
The matrix Dm is simply a diagonal matrix with its leading diagonal entries raised to the power m,
that is
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If D =

⎛⎜⎜⎝
d1

. . .
dn

⎞⎟⎟⎠ then Dm =

⎛⎜⎜⎝
d1m

. . .
dmn

⎞⎟⎟⎠

You are asked to show this result in Exercises 7.3. Am might be hard to calculate but
because D is a diagonal matrix, Dm is simply D with the entries on the leading diagonal
raised to the powerm.

The eigenvalue matrix D consists of the eigenvalues on the leading diagonal, therefore
Dm has these eigenvalues to the power m on the leading diagonal.

Proposition (7.19). If an n by n matrix A is diagonalizable with P−1AP = D where D is a
diagonal matrix then

Am = PDmP−1

How do we prove this result?
By using mathematical induction.

What is the mathematical induction procedure?

Step 1: Check for m = 1.

Step 2: Assume that the result is true for m = k.

Step 3: Prove it for m = k+ 1.

Proof.
Step 1: Check form = 1, that is we need to show PDP−1 = A.

We haveD = P−1AP. Left multiplying this by matrix P and right multiplying it by P−1:

PDP−1 = P
(
P−1AP

)︸ ︷︷ ︸
=D

P−1

= (PP−1)A (PP−1) = IAI = A

Thus we have our result for m = 1 which is A = PDP−1. This means that we can
factorize matrix A into three matrices P,D and P−1.
Step 2: Assume that the result is true form = k, that is

Ak = PDkP−1 (∗)

Step 3: We need to prove the result form = k+ 1, that is we need to prove

Ak+1 = PDk+1P−1
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Starting with the left hand side of this we have

Ak+1 = AkA
[
applying the rules of indices

]
=
(
PDkP−1

)
︸ ︷︷ ︸
=Ak by (∗)

(
PDP−1

)︸ ︷︷ ︸
=A by Step 1

= PDk (P−1P)DP−1
[
using the rules of matrices (AB)C = A(BC)

]
= PDk (I)D︸ ︷︷ ︸

=DkD

P−1
[
because P−1P = I

]
= PDkDP−1 = PDk+1P−1

[
becauseDkD = Dk+1]

This is our required result. Hence by mathematical induction we have Am = PDmP−1.

In general, to find Am we have to multiplym copies of the matrix A which is a laborious
task. It is much easier if we factorize Am into Am = PDmP−1 (even though we need to
find P, P−1 and D, which is no easy task in itself). This formula means that if you want
to evaluate Am without working out lower powers then using the diagonal matrix is more
efficient than the Cayley–Hamilton method discussed in the previous section.

Note that in the above subsection when we diagonalized a matrix we could avoid the
calculation of P−1AP.

Why?
Because we check that PD = AP. This means that P−1AP = D is the diagonal eigenvalue matrix.
However, in evaluating Am we need to find P−1 because Am = PDmP−1 .

Example 7.21

Let A =
⎛⎜⎝ 1 −2 3

0 2 5
0 0 3

⎞⎟⎠. Find A5 given that P =
⎛⎜⎝ 1 −2 −7

0 1 10
0 0 2

⎞⎟⎠ and P−1 = 1
2

⎛⎜⎝ 2 4 −13
0 2 −10
0 0 1

⎞⎟⎠.

Solution

The diagonal matrix D = P−1AP =

⎛⎜⎜⎝
1 0 0

0 2 0

0 0 3

⎞⎟⎟⎠. Because A is an upper triangular matrix, its

eigenvalues are the entries on the leading diagonal of A, that is λ 1 = 1, λ 2 = 2 and λ 3 = 3.
How do we find A5?
By applying the above result (7.19), Am factorizes into Am = PDmP−1 with m = 5:

A5 = PD5P−1



DIAGONALIZATION 529

Substituting matrices P, D and P−1 into this A5 = PD5P−1 gives

A5 = PD5P−1

=
⎛⎜⎝ 1 −2 −7

0 1 10

0 0 2

⎞⎟⎠
⎛⎜⎝ 1 0 0

0 2 0

0 0 3

⎞⎟⎠
5

1
2

⎛⎝ 2 4 −13
0 2 −10
0 0 1

⎞⎠
eigenvalues of A.

= 1
2

⎛⎝ 1 −2 −7
0 1 10
0 0 2

⎞⎠⎛⎝ 15 0 0
0 25 0
0 0 35

⎞⎠⎛⎝ 2 4 −13
0 2 −10
0 0 1

⎞⎠ ⎡⎣ taking
1
2

to the front and

e.values to the power 5

⎤⎦
= 1

2

⎛⎝ 1 −2 −7
0 1 10
0 0 2

⎞⎠⎛⎝ 1 0 0
0 32 0
0 0 243

⎞⎠⎛⎝ 2 4 −13
0 2 −10
0 0 1

⎞⎠ [
replacing the e.values

15 = 1, 25 = 32 and 35 = 243

]

= 1
2

⎛⎝ 1 −64 −1701
0 32 2430
0 0 486

⎞⎠⎛⎝ 2 4 −13
0 2 −10
0 0 1

⎞⎠ [
multiplying the first

two matrices on the left

]

= 1
2

⎛⎝ 2 −124 −1074
0 64 2110
0 0 486

⎞⎠ =
⎛⎝ 1 −62 −537

0 32 1055
0 0 243

⎞⎠ [
multiplying by the

scalar 1/2

]

You may wish to check this final result by using appropriate software.

Note that in the above example the diagonal matrix D has eigenvalues 1, 2 and 3 on the
leading diagonal, and D5 has 15, 25 and 35 on the leading diagonal. 15, 25 and 35 are the
eigenvalues of A5.

7.3.5 Application of powers of matrices

Matrix powers are particularly useful in Markov chains – these are based on matrices
whose entries are probabilities. Many real life systems have an element of uncertainty which
develops over time, and this can be explained through Markov chains.

Example 7.22

The transition matrix T below gives the percentage of people involved in accidents who were either
injured (I) or were killed (K) on urban (U) and rural (R) roads. The entries in the first column of matrix T
indicate that 60% of road injuries on urban roads and 40% on rural roads. The second column of T
represents 50% of road accident deaths occured on urban roads and 50% on rural roads. Out of a sample
of 100 accidents this year the number of accidents on urban roads was 90 and rural roads 10 and this is
represented by the vector x.

I K

T =
(

0.6 0.5
0.4 0.5

)
U
R

and x =
(
90
10

)
The vector xn given by xn = Tnx gives us the number of accidents on urban and rural roads out of a

sample of 100 accidents after n number of years. Determine to 2sf
(i) xn for n = 10. (ii) xn as n→∞

(continued...)
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(This gives us our long term number of injuries and deaths on urban and rural roads out of a sample of
100 accidents.) For a Markov chain, we are interested in the long-term behaviour of xn.

Solution

(i) This means that we need to find xn = Tnx when n = 10, that is x10 = T10x. To evaluate T10, we
diagonalize the matrix T by finding the eigenvalue D and eigenvector P matrices. Verify that the
eigenvalues and the corresponding eigenvectors are given by

λ1 = 1, u =
(
5
4

)
and λ2 = 0.1, v =

(−1
1

)

Our eigenvector matrix P = (u v) =
(

5 −1
4 1

)
and eigenvalue matrix D =

(
1 0
0 0.1

)
.

By result (7.19) Am = PDmP−1 with m = 10 and A = T we have

T10 = PD10P−1 (†)

To evaluate T10 we need to find P−1 , which is given by

P−1 = 1
9

(
1 1
−4 5

)

Substituting P =
(

5 −1
4 1

)
, D =

(
1 0
0 0.1

)
and P−1 = 1

9

(
1 1
−4 5

)
into (†) gives

T10 = PD10P−1 =
(
5 −1
4 1

)(
1 0
0 0.1

)10 1
9

(
1 1
−4 5

)
= 1

9

(
5 −1
4 1

)(
1 0
0 0

)(
1 1
−4 5

) [
because 110 = 1 and
0.110 = 1× 10−10 = 0(3dp)

]
= 1

9

(
5 0
4 0

)(
1 1

−4 5

)
= 1

9

(
5 5
4 4

)

Substituting T10 = 1
9

(
5 5
4 4

)
and x =

(
90
10

)
into x10 = T10x gives

x10 = 1
9

(
5 5
4 4

)(
90
10

)
={

taking out a
factor of 10

10
9

(
5 5
4 4

)(
9
1

)
= 10

9

(
50
40

)
=
(
55.5
44.4

)
U
R

This means that after 10 years the number of people likely to be injured or killed on an urban
road is 56 (2sf) and on a rural road is 44 (2sf) out of a sample of 100 accidents.

(ii) We have Dn =
(

1 0
0 0.1

)n
=
(

1n 0
0 0.1n

)
.

How does this change as n→∞?
As n→∞ we have 1n → 1 and 0.1n → 0. This means that Dn = D10 correct to 2sf which gives the
same results as part (i).
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i Summary

If A is diagonalizable then we can convert A into a diagonal matrix D.
If an n by n matrix A is diagonalizable with P−1AP = D where D is a diagonal matrix then

Am = PDmP−1

EXERCISES 7.3

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)
In this exercise check your numerical answers using MATLAB.

1. For the following matrices find:

(i) The eigenvalues and corresponding eigenvectors.
(ii) Eigenvector matrix P and eigenvalue matrixD.

(a) A =
(
1 0
0 2

)
(b) A =

(
1 1
1 1

)
(c) A =

(
3 0
4 4

)
(d) A =

(
2 2
1 3

)
2. (i) For the matrices in question 1 find A5.

(ii) For the matrix in question 1 part (c) find A−1/2.
3. For the following matrices find:

(i) The eigenvalues and corresponding eigenvectors.
(ii) Matrices P andDwhere P is the invertible (non-singular) matrix andD = P−1AP

is the diagonal matrix. To find P−1 you may use MATLAB.
(iii) Determine A4 in each case by using the results of parts (i) and (ii).

(a) A =
⎛⎝ 1 0 0

0 2 0
0 0 3

⎞⎠ (b) A =
⎛⎝ −1 4 0

0 4 3
0 0 5

⎞⎠ (c) A =
⎛⎝ 2 0 0

1 5 0
1 2 6

⎞⎠
4. For the following matrices determine whether they are diagonalizable.

(a) A =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ (b) A =
⎛⎝ −1 2 3

0 2 5
0 0 8

⎞⎠ (c) A =

⎛⎜⎜⎜⎝
√
2 0 0 0
1
√
3 0 0

6 7 1/2 0
2 9 7 −5

⎞⎟⎟⎟⎠
5. In Example 7.17 take P = (v u) and determine the diagonal matrix D given by

P−1AP where A =
(
1 4
2 3

)
.

What do you notice about your diagonal matrix D?
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6. Let A be a 3 by 3 matrix with the following eigenvalues and eigenvectors:

λ1 = −2, u =
⎛⎝ 1
2
0

⎞⎠ , λ2 = −5, v =
⎛⎝ 5
4
0

⎞⎠ and λ3 = −1, w =
⎛⎝ 0
0
1

⎞⎠
Is the matrix A diagonalizable? If it is then find the diagonal eigenvalue matrix D

which is similar to the matrix A and also determine the invertible matrix P such that
P−1AP = D.
Find A3. [Note that you do not need to know the elements of matrix A.]

7. Show that the following matrices are not diagonalizable:

(a) A =
(
2 −1
1 4

)
(b) A =

( −2 4
−1 −6

)
(c) A =

⎛⎝ 1 2 3
0 1 3
0 0 1

⎞⎠
8. Let A =

( −4 2
−9 5

)
. Determine (i) A11 (ii) A−1

9. Prove that if D is a diagonal matrix then the matrix Dm is simply a diagonal matrix
with its leading diagonal entries raised to the powerm.

10. Prove Proposition (7.13).
11. Prove that if A is diagonalizable then the transpose of A, that is AT , is also diagonaliz-

able.
12. In a differential equations course, the matrix exp (At) is defined as

exp (At) = I + At + A2 t
2

2! + A3 t
3

3! + A4 t
4

4! + · · ·

Let A =
(
3 5
0 2

)
and find an expression for exp (At) up to and including the term

t4 by diagonalizing matrix A.

13. Let F =
(
1 1
1 0

)
[F is known as the Fibonacci matrix]. Evaluate the matrices P, P−1

andD, where P is an invertible matrix and D = P−1AP is a diagonal matrix.

14. Let A be a 2 by 2 matrix with
[
tr(A)

]2
> 4 det(A) where tr represents the trace of the

matrix. Show that A is diagonalizable.
15. Let A be an invertible matrix which is diagonalizable. Prove that A−1 is also diagonal-

izable.

16. Prove that if A is diagonalizable then Am (wherem ∈ N) is diagonalizable.

17. Let A and B be invertible matrices. Prove that AB is similar to BA.

18. If matrices A and B are similar, prove that

(i) tr (A) = tr (B) where tr is trace.
(ii) det (A) = det (B).
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19. Let A be a diagonal matrix such that the modulus of each eigenvalue is less than 1.
Evaluate the matrix Am asm→∞.

[You may assume that if |x| < 1 then lim
m→∞ (xm) = 0.]

20. Let A be a diagonalizable matrix with eigenvalues λ1, λ2, . . . and λn. Prove that the
eigenvalues of Am are (λ1)

m, (λ2)m, . . . and (λn)
m.

21. Prove Theorem (7.16).

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 7.4 Diagonalization of Symmetric Matrices

By the end of this section you will be able to

● prove properties of symmetric matrices

● orthogonally diagonalize symmetric matrices

In this section we continue the diagonalization process. Diagonalization was described in
the previous section – we found a matrix P which diagonalized a given matrix; this allowed
us to find the matrixD:

P−1AP = D where D is a diagonal matrix.

Left multiplying this by P and right multiplying by P−1 gives the factorization of
matrix A:

A = PDP−1

Eigenvector matrix P contains the eigenvectors of A, and D contains the eigenvalues
of A.

From this we deduced (result (7.19)) that the powers of matrix A can be found by
factorizing Am into three matrices:

Am = PDmP−1

If you want to find A10 then A10 = PD10P−1. This can still be a tedious task even for a
small size matrix such as 3 by 3.

Why?
Because we need to find the inverse matrix P−1 , which will involve putting the matrix P into
reduced row echelon form or using cofactors. Either way, a cumbersome task.
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Is there a type of matrix for which we can easily find the inverse?
Yes, the orthogonal matrix Q, described in chapter 4, for which Q−1 = QT .

What is an orthogonal matrix?
It’s a square matrix whose columns are orthonormal (perpendicular unit) vectors.

In this section we aim to find a diagonalizing matrix Q which is an orthogonal matrix.
Eigenvector matrix Q is the diagonalizing matrix which is made up by writing its columns as the
eigenvectors of the given matrix A.

However, when we find eigenvectors, they are usually not perpendicular (orthogonal)
to each other. In this section we obtain eigenvectors which are perpendicular and nor-
malized. We aim to get orthonormal (perpendicular unit) eigenvectors as columns of the
diagonalizing matrix. Once we have achieved unit perpendicular eigenvectors as columns
of the diagonalizing matrix then we will find working with the diagonal matrix even
easier than the previous section. The columns of Q are also an orthonormal basis for
the eigenspace Eλ. Remember, orthonormal bases (axes) are one of the simplest bases to
work with.

We cannot guarantee that the diagonalizing matrix will be an orthogonal matrix.
However, in this section we will show that if the given matrix is symmetric then we can
always find an orthogonal diagonalizing matrix.

7.4.1 Symmetric matrices

Can you recall what a symmetric matrix is?
A square matrix A is a symmetric matrix if AT = A (A transpose equals A).

Examples are

A =
(

1 0
0 1

)
, B =

(
1

√
2√

2 3

)
, C =

⎛⎜⎝ 1 −1 √
5

−1 2 π√
5 π 3

⎞⎟⎠ , D =

⎛⎜⎜⎜⎝ aij
aji

⎞⎟⎟⎟⎠
What do you notice?
We get a reflection of the entries by placing a mirror on the leading diagonal as highlighted.

Why are symmetric matrices important?
We will show later in this section that all symmetric matrices are diagonalizable by an orthogonal
matrix. This is not the case for non-symmetric matrices.

Example 7.23

Let A =
( −3 4

4 3

)
. Diagonalize matrix A.
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Solution
The characteristic equation is given by

det(A− λI) = det
( −3− λ 4

4 3− λ

)
= λ2 − 25 = 0 which gives λ1 = 5 and λ2 = −5

The corresponding eigenvectors are u =
(
1
2

)
for λ1 = 5 and v =

(
2
−1
)

for λ2 = −5.

The eigenvectors u and v are linearly independent (not multiples of each other) therefore

P = (u v) =
(
1 2
2 −1

)
and D = P−1AP =

(
5 0
0 −5

)

The eigenvector matrix P = (u v) contains the eigenvectors of A and the eigenvalue matrix D
contains the eigenvalues of A.

Remember, matrices A and D are similar, so they have the same eigenvalues.

What do you notice about the eigenvectors u =
(
1
2

)
and v =

(
2

−1

)
?

The inner (dot) product of eigenvectors u and v is zero:

u · v =
(
1
2

)
·
(

2
−1

)
= (1× 2)+ (2× (−1)) = 0

What does u · v = 0 mean?
Eigenvectors u and v are orthogonal which means that they are perpendicular to each other. (See
Fig. 7.11 overleaf.) We can normalize these eigenvectors (that is make their length 1).

How?
By dividing by its length : (2.16) û = 1‖u‖u where û is the normalized (unit) vector and ‖u‖ is the
norm (length) of u.

For the eigenvector u what is length ‖u‖ equal to?

‖u‖2 = u · u =
(
1
2

)
·
(
1
2

)
= 12 + 22 = 5 [by Pythagoras]

We have ‖u‖2 = 5, therefore taking the square root gives ‖u‖ = √5. Thus the normal-

ized eigenvector û = 1
‖u‖u =

1√
5

(
1
2

)
.

Similarly, the other normalized eigenvector v̂ = 1
‖v‖v =

1√
5

(
2

−1
)
.

Note that û and v̂ are unit eigenvectors, which means that they have norm (length) of 1.
Plotting these in R2 is shown in Fig. 7.11.
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$u

$v

u

v

21.510.5

–1

–2

1

2

Figure 7.11

These vectors û and v̂ form an orthonormal (perpendicular unit) basis for R2.
In the above Example 7.23 the diagonalizing matrix for A was P = (u v). However, we

can show that the matrix Q = (̂u v̂) also diagonalizes the matrix A because û and v̂ are
the same vectors u and v but normalized, which means that they have the same direction
as u and v but have length 1-see Fig. 7.11.

Example 7.24

Show that Q = (̂u v̂) diagonalizes the matrix A of Example 7.23.

Solution
What is the matrix Q equal to?

Q = (̂u v̂) =
(

1√
5

(
1
2

)
1√
5

(
2
−1

) ) [
because û = 1√

5

(
1
2

)
and v̂ = 1√

5

(
2
−1
)]

= 1√
5

(
1 2
2 −1

)
= 1√

5
P

[
because P =

(
1 2
2 −1

)]
How do we show that matrix Q diagonalizes matrix A?
We need to verify that Q−1AQ = D, where D is the diagonal eigenvalue matrix. From the above we
have Q = 1√

5
P, and taking the inverse of this gives

Q−1 =
(

1√
5
P
)−1

=
(

1√
5

)−1
P−1 = √5P−1

[
because

(
kA
)−1 = k−1A−1

]
Substituting these into Q−1AQ yields

Q−1AQ =
(√

5P−1
)
A
(

1√
5
P
)

={

cancelling
√
5

P−1AP ={

by Example 7.23

D

Thus matrix Q diagonalizes the matrix A because Q−1AQ = D.
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7.4.2 Orthogonal matrices

The matrix Q which diagonalizes A in the above Example 7.24 is an orthogonalmatrix.

Can you remember what an orthogonal matrix is?
By chapter 4 Definition (4.18): A square matrix Q = ( v1 v2 . . . vn ) the columns of which
v1, v2, . . . , vn are orthonormal (perpendicular unit) vectors is called an orthogonal matrix.

Why is Q an orthogonal matrix in the above Example 7.24?
That’s because the columns of Q = (̂u v̂) are perpendicular unit vectors, û and v̂, as illustrated
in Fig. 7.11 above.

We use an orthogonal matrixQ to diagonalize a given matrix A. One critical application
of diagonalization is the evaluation of powers of a matrix, which we found in the previous
section and was given by formula (7.19): Am = PDmP−1

From chapter 4, Proposition (4.20) we have: If Q is an orthogonal matrix then
Q−1 = QT .

In this case, the diagonalizing matrix is the orthogonal matrix Q therefore

Am = QDmQ−1 = QDmQT
[
because for an orthogonal matrixQ−1 = QT

]
This means that calculating the power of a matrix is even simpler because we don’t have

to evaluate the inverse of matrix Q by some tedious method but just transpose matrix
Q. This is the great advantage of using an orthogonal matrix to diagonalize a matrix
because

(7.20) Am = QDmQT

Evaluation of all the matrices on the right hand side; Q,Dm and QT , is straightforward.

Example 7.25

Find A6 for the matrix A given in Example 7.23.

Solution
To find A6, we use the above formula Am = QDmQT with m = 6:

A6 = QD6QT (∗)

By Examples 7.23 and 7.24 we have

D =
(

5 0
0 −5

)
, Q = 1√

5

(
1 2
2 −1

)
and taking the transpose QT = 1√

5

(
1 2
2 −1

)
= Q

(continued...)
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Substituting these into (∗) yields

A6 = QD6QT = 1√
5

(
1 2
2 −1

)(
5 0
0 −5

)6 1√
5

(
1 2
2 −1

)
= 1√

5
1√
5

(
1 2
2 −1

)(
56 0
0 (−5)6

)(
1 2
2 −1

)
= 56

5

(
1 2
2 −1

)(
1 0
0 1

)(
1 2
2 −1

) [
because (−5)6 = 56

]
= 55

(
1 2
2 −1

)(
1 2
2 −1

)
= 55

(
5 0
0 5

)
= 56

(
1 0
0 1

)
= 56I

7.4.3 Properties of symmetric matrices

Proposition (7.21). LetA be a real symmetric matrix. Then all the eigenvalues ofA are real.

Proof.
We omit the proof because we need to use complex numbers, which are not covered.

Proposition (7.22). Let A be a symmetric matrix. If λ1 and λ2 are distinct eigenvalues
of matrix A then their corresponding eigenvectors u and v respectively are orthogonal
(perpendicular).

How do we prove this result?
We use the dot product result of chapter 2:

u · v = uTv, and show that u · v = uTv = 0.

Proof.
Let u and v be eigenvectors belonging to distinct eigenvalues λ1 and λ2 respectively.

What do we need to prove?
Required to prove that the eigenvectors are orthogonal, which means that we need to show
u · v = 0. Since u and v are eigenvectors belonging to distinct eigenvalues λ1 and λ2 , matrix A
scalar multiplies each of the eigenvectors by λ1 and λ2 respectively:

Au = λ1u and Av = λ2v (∗)

Taking the transpose of both sides of λ1u = Au gives

(λ1u)T = (Au)T

λ1uT = uTAT
[
by (1.19) (b)

(
kC
)T = kCT and (d) (AB)T = BTAT

]
= uTA

[
because A is symmetric therefore AT = A

]
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Right-multiplying the last line λ1uT = uTA by the eigenvector v gives

λ1uTv = uTAv

= uTλ2v
[
by (∗)

]
λ1uTv− λ2uTv = 0

(λ1 − λ2) uTv = 0
[
factorizing

]
λ1 and λ2 are distinct eigenvalues therefore λ1 − λ2 �= 0 [not zero] so we have

uTv = 0 which means that u · v = 0

The dot product of the eigenvectors u and v is zero, therefore they are orthogonal.

We can extend Proposition (7.22) to n distinct eigenvalues:

Proposition (7.23). Let A be a symmetric matrix with distinct eigenvalues λ1, λ2, . . ., λn
and corresponding eigenvectors v1, v2, . . . and vn. Then these eigenvectors are orthogonal.

Proof – Exercises 7.3.

The next two examples show applications of this Proposition (7.23).

Example 7.26

Show that the eigenvectors of matrix A =
⎛⎝ 1 2 1

2 1 1
1 1 2

⎞⎠ are orthogonal.

Solution
If you have reached this point then you should be able to find the eigenvalues and eigenvectors of the
given matrix. Verify that the characteristic equation p(λ) is given by

p(λ) = λ3 − 4λ2 − λ+ 4 = 0

(λ+ 1) (λ− 1) (λ− 4) = 0 yields λ1 = −1, λ2 = 1 and λ3 = 4

Let u, v and w be the eigenvectors belonging to λ1 = −1, λ2 = 1 and λ3 = 4 respectively. We have
(verify)

u =
⎛⎝ 1
−1
0

⎞⎠ , v =
⎛⎝ 1

1
−2

⎞⎠ and w =
⎛⎝ 1
1
1

⎞⎠
(continued...)
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How do we check that the eigenvectors u, v and w are orthogonal to each other?
We need to confirm that the dot product is zero: u · v = 0, u · w = 0 and v · w = 0.

u · v =
⎛⎝ 1
−1
0

⎞⎠ ·
⎛⎝ 1

1
−2

⎞⎠ = (1× 1)+ ((−1)× 1)+ (0× (−2)) = 0

u · w =
⎛⎝ 1
−1
0

⎞⎠ ·
⎛⎝ 1
1
1

⎞⎠ = 0 and v · w =
⎛⎝ 1

1
−2

⎞⎠ ·
⎛⎝ 1
1
1

⎞⎠ = 0

Thus the eigenvectors u, v and w are orthogonal (perpendicular) to each other.

Example 7.27

Show that the eigenvectors belonging to distinct eigenvalues of A =
⎛⎝ 2 2 −2

2 −1 4
−2 4 −1

⎞⎠ are orthogonal.

Solution
By solving the determinant you can verify that the characteristic equation p(λ) is

p(λ) = λ3 − 27λ+ 54 = 0

(λ− 3)2 (λ+ 6) = 0 gives λ1 = 3, λ2 = 3 and λ3 = −6

Let u, v be the eigenvectors belonging to λ1 = 3, λ2 = 3 and w be the eigenvector belonging to
λ3 = −6. You can verify the following in your own time:⎧⎨⎩u =

⎛⎝ 2
1
0

⎞⎠ , v =
⎛⎝−20

1

⎞⎠⎫⎬⎭ belong to the same e.value λ1 = 3, λ2 = 3 and w =
⎛⎝−12
−2

⎞⎠ to λ3 = −6

We need to check that eigenvectors u, w and v, w are orthogonal (dot product is zero):

u · w =
⎛⎝ 2
1
0

⎞⎠ ·
⎛⎝−12
−2

⎞⎠ = 0 and v · w =
⎛⎝−20

1

⎞⎠ ·
⎛⎝−12
−2

⎞⎠ = 0

However, note that the eigenvectors u and v belonging to the same eigenvalue λ1 = 3 and λ2 = 3
need not be orthogonal to each other. Actually

u · v =
⎛⎝ 2
1
0

⎞⎠ ·
⎛⎝−20

1

⎞⎠ = (2× (−2))+ (1× 0)+ (0× 1) = −4 (†)

Thus the eigenvectors u and v belonging to the same eigenvalue λ1 = 3 and λ2 = 3 are not
orthogonal because u · v = −4 �= 0 [not zero].
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7.4.4 Orthogonal diagonalization

Definition (7.24). In general, a matrix A is orthogonally diagonalizable if there is an
orthogonal matrixQ such that

Q−1AQ = QTAQ = D where D is a diagonal matrix.

Eigenvector matrix Q contains the eigenvectors of A and eigenvalue matrix D contains
the eigenvalues of A.

In the above Examples 7.23 and 7.24, the matrix A =
( −3 4

4 3

)
is orthogonally

diagonalizable because with Q = 1√
5

(
1 2
2 −1

)
we have Q−1AQ =

(
5 0
0 −5

)
which is a

diagonal matrix.

Theorem (7.25). Let A be a square matrix. If the matrix A is orthogonally diagonalizable
then A is a symmetric matrix.

How do we prove this result?
We assume that A is orthogonally diagonalizable and deduce that A is symmetric, which means
that we need to show that AT = A.

Why?
Because AT = A means that the matrix A is symmetric.

Proof.
Assume that the matrix A is orthogonally diagonalizable. This means that there is an
orthogonal matrixQ such thatQ−1AQ = D, whereD is a diagonal matrix. Left multiplying
this Q−1AQ = D by Q and right multiplying by Q−1 gives

A = QDQ−1 (†)

Taking the transpose of both sides gives

AT = (QDQ−1
)T = (Q−1)T DTQT

[
by (ABC)T = CTBTAT

]
= (QT)−1DQT

[
using

(
A−1

)T = (AT)−1 and DT = D
]

= (Q−1)−1DQ−1
[
becauseQ is orthogonal,QT = Q−1

]
= QDQ−1

[
because

(
Q−1

)−1 = Q
]

We have AT = QDQ−1.
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What do you notice?
By (†) we can see that this is equal to matrix A. Thus

AT = QDQ−1 = A which means we have AT = A

Hence A is a symmetric matrix because AT = A, which is our required result.

Now we will show that the other way round is also true.

What does this mean?
If A is a symmetric matrix then A is orthogonally diagonalizable. This means that there is at least
one type of matrix, symmetric matrices, which can be diagonalized orthogonally.

Lemma (7.26). If A is a real symmetric matrix with an eigenvalue λ of multiplicitym then
λ hasm linearly independent eigenvectors.

Proof – See <http://www.oup.co.uk/companion/singh>.

Theorem (7.27). If A is an n by n symmetric matrix then A is orthogonally diagonalizable.

How do we prove this?
We consider two cases:

(i) A has distinct eigenvalues (ii) A does not have distinct eigenvalues

Proof.
Case (i): Let the symmetric matrix A have distinct eigenvalues λ1, λ2, . . . and λn. Then by
Proposition (7.23): Let A be a symmetric matrix with distinct eigenvalues λ1, λ2, . . ., λn
and eigenvectors v1, v2, . . . and vn. Then these eigenvectors are orthogonal.

So the eigenvectors v1, v2, . . . and vn belonging to distinct eigenvalues λ1, λ2, . . . and λn
are orthogonal. Because they are orthogonal, they are linearly independent and so we have
n linearly independent eigenvectors. By Theorem (7.16):

An n by nmatrix A is diagonalizable⇔ it has n independent eigenvectors.
We have that the matrix A is diagonalizable. Let Q = (v̂1 v̂2 · · · v̂n), then the

columns of the matrix Q are orthonormal, which means it is an orthogonal matrix. Thus
we have Q−1AQ = D, so matrix A is orthogonally diagonalizable.

Case (ii): Let the symmetric matrix A have an eigenvalue λ with multiplicity m > 1. By
the above Lemma (7.26) λ has m linearly independent eigenvectors u1, u2, . . . and um.
These are a basis for the eigenspace Eλ. By the Gram–Schmidt process we can convert these
m vectors into orthonormal basis vectors for Eλ.

We can repeat this process for any other eigenvectors belonging to eigenvalues of A
which have a multiplicity of more than 1.

All the remaining eigenvalues are distinct, so the eigenvectors are orthogonal.
Thus all the vectors are orthogonal. By repeating the procedure outlined in case (i), we

conclude that matrix A is orthogonally diagonalizable.
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By combining Theorems (7.25) and (7.27) what can we conclude?
If A is orthogonally diagonalizable then A is a symmetric matrix and the other way round; that
is, if A is symmetric matrix then A is orthogonally diagonalizable. We have the main result of this
section which has a special name − spectral theorem:

Spectral theorem (7.28). Matrix A is orthogonally diagonalizable ⇔ A is a symmetric
matrix.

Proof – By the above Theorems (7.25) and (7.27).

This means that if we have a symmetric matrix then we can orthogonally diagonalize it.
This is the spectral theorem for real matrices.

Example 7.28

Determine an orthogonal matrix Q which orthogonally diagonalizes A =
(

3 2
2 0

)
.

Solution
Since matrix A is symmetric, we can find an orthogonal matrix Q which diagonalizes A. Verify that the
characteristic polynomial is given by:

λ2 − 3λ− 4 = 0⇒ (λ+ 1) (λ− 4) = 0

λ1 = −1 and λ2 = 4

Let u and v be eigenvectors (verify) belonging to λ1 = −1 and λ2 = 4 respectively:

u =
(

1
−2
)

and v =
(
2
1

)
The given matrix A is symmetric and we have distinct eigenvalues, therefore u and v are orthogonal

(that is u · v = 0). Remember, the question says that we have to find an orthogonal matrix Q.
What is an orthogonal matrix?
A square matrix the columns of which form an orthonormal set.
What is an orthonormal set?
A set that is orthogonal and normalized. The eigenvectors u and v are orthogonal but we need to
normalize them, which means make their norm (length) to be 1.
How?
Divide by the norm (length) of the eigenvector, which in both cases is

√
5 because

‖u‖ =
√
12 + (−2)2 = √5 and ‖v‖ =

√
12 + 22 = √5

Normalizing gives

û = 1
‖u‖u =

1√
5

(
1
−2
)

and v̂ = 1
‖v‖ v =

1√
5

(
2
1

)
(continued...)
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Thus our orthogonal matrix Q is given by

Q = (̂u v̂) = 1√
5

(
1 2
−2 1

)

Q is an orthogonal matrix, therefore Q−1 = QT . Verify that QTAQ = D or QD = AQ where D is a
diagonal matrix with eigenvalues along the leading diagonal:

QTAQ = D =
( −1 0

0 4

) [−1, 4 are the eigenvalues
of the given matrix A

]

7.4.5 Procedure for orthogonal diagonalization

We can work through a procedure to find an orthogonal matrix which diagonalizes a given
matrix.

The procedure for orthogonal diagonalization of a symmetric matrix A is as follows:

1. Determine the eigenvalues of A.
2. Find the corresponding eigenvectors.
3. If any of the eigenvalues are repeated then check that the associated eigenvectors are

orthogonal. If they are not orthogonal then place them into an orthogonal set by
using the Gram–Schmidt process described in chapter 4.

4. Normalize all the eigenvectors.
5. Form the orthogonal matrix Q whose columns are the orthonormal eigenvectors.
6. Check that QD = AQ, where D is the diagonal matrix whose entries along the

leading diagonal are the eigenvalues of matrix A.

Example 7.29

Determine an orthogonal matrix Q which diagonalizes A =
⎛⎝ 2 2 −2

2 −1 4
−2 4 −1

⎞⎠.

Solution
Steps 1 and 2:
This is the same matrix as Example 7.27. Thus we have⎧⎨⎩u =

⎛⎝ 2
1
0

⎞⎠ , v =
⎛⎝−20

1

⎞⎠⎫⎬⎭ belong to λ1, 2 = 3 and w =
⎛⎝−12
−2

⎞⎠ to λ3 = −6

Step 3:
We need to check that eigenvectors u and v belonging to repeated eigenvalue λ1, 2 = 3 are orthogonal.
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Remember that in Example 7.27 we showed that u · v = −4, therefore eigenvectors u and v are not
orthogonal. We need to convert these u and v into an orthogonal set, say q1 and q2 respectively.
How do we convert u and v into the orthogonal set q1 and q2?
By using the Gram−Schmidt process (4.16):

q1 = u and q2 = v− v · q1∥∥q1∥∥2 q1 (∗)

How do we evaluate q1 and q2?
By substituting u and v and evaluating v · q1 and

∥∥q1∥∥2 . We have

q1 = u =
⎛⎝ 2
1
0

⎞⎠ and v · q1 = v · u = u · v = −4 [already evaluated]

∥∥q1∥∥2 =
∥∥∥∥∥∥
⎛⎝ 2
1
0

⎞⎠∥∥∥∥∥∥
2

=
⎛⎝ 2
1
0

⎞⎠ ·
⎛⎝ 2
1
0

⎞⎠ = 22 + 12 + 02 = 5 (∗∗)

Substituting the above v =
⎛⎝−20

1

⎞⎠, q1 =
⎛⎝ 2
1
0

⎞⎠, v · q1 = −4 and
∥∥q1∥∥2 = 5 into

q2 = v− v · q1∥∥q1∥∥2 q1 :

q2 = v− v · q1∥∥q1∥∥2 q1 =
⎛⎝−20

1

⎞⎠− (−4)
5

⎛⎝ 2
1
0

⎞⎠
=
⎛⎝−2+ 8/5

0+ 4/5
1− 0

⎞⎠ =
⎛⎝−2/54/5

1

⎞⎠ = 1
5

⎛⎝−24
5

⎞⎠ = q2

Thus we have q1 =
⎛⎝ 2
1
0

⎞⎠, q2 = 1
5

⎛⎝−24
5

⎞⎠ and w =
⎛⎝−12
−2

⎞⎠, which are orthogonal to each other.

What else do we need to do?
Step 4:
We need to normalize these eigenvectors by dividing by the norm (length) of each. We have already
established above in (∗∗) that

∥∥q1∥∥2 = 5. Taking the square root gives
∥∥q1∥∥ = √5.

Remember, we can ignore any fractions (scalars) because vectors are orthogonal independent of
scalars. Thus for the eigenvector q2 , we can ignore the fraction 1/5 and call this q∗2 :

∥∥q∗2∥∥2 =
⎛⎝−24

5

⎞⎠ ·
⎛⎝−24

5

⎞⎠ = (−2)2 + 42 + 52 = 45

Taking the square root gives
∥∥q∗2∥∥ = √45 = 3

√
5. Similarly we have

‖w‖2 =
⎛⎝−12
−2

⎞⎠ ·
⎛⎝−12
−2

⎞⎠ = (−1)2 + 22 + (−2)2 = 9

(continued...)
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Taking the square root gives the norm ‖w‖ = 3. Normalizing means we divide each vector by its norm
(length):

q̂1 = 1√
5

⎛⎝ 2
1
0

⎞⎠ , q̂∗2 =
1

3
√
5

⎛⎝−24
5

⎞⎠ and ŵ = 1
3

⎛⎝−12
−2

⎞⎠
Step 5:
What is the orthogonal matrix Q equal to?

Q =
(
q̂1 q̂∗2 ŵ

)
=
⎛⎝ 2/

√
5 −2/3√5 −1/3

1/
√
5 4/3

√
5 2/3

0 5/3
√
5 −2/3

⎞⎠
Step 6:
Check QD = AQ, where D is a diagonal matrix with entries on the leading diagonal given by the
eigenvalues of the matrix A.
What is D equal to?

D =
⎛⎝ 3 0 0

0 3 0
0 0 −6

⎞⎠ [
eigenvalues of the given matrix
A are λ1 = λ2 = 3 and λ3 = −6

]

i Summary

Definition (7.23). In general, a matrix A is orthogonally diagonalizable if there is an orthogonal matrix
Q such that Q−1AQ = QTAQ = D, where D is a diagonal matrix.

Spectral Theorem (7.28).
Matrix A is orthogonally diagonalizable⇔ A is a symmetric matrix.

EXERCISES 7.4

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

In this exercise check your numerical answers using MATLAB.

1. For the following matrices find an orthogonal matrix Q which diagonalizes the given
matrix. Also check that QTAQ = D where D is a diagonal matrix.

(a) A =
(
1 0
0 2

)
(b) A =

(
1 1
1 1

)
(c) A =

(
2 1
1 2

)
(d) A =

(
5 12
12 −5

)
2. For the following matrices find an orthogonal matrix Q which diagonalizes the given

matrix. Also check that QTAQ = D where D is a diagonal matrix.

(a) A =
(
9 3
3 1

)
(b) A =

(
3
√
2√

2 2

)
(c) A =

( −5 √
3√

3 −3
)

(d) A =
(

5
√
12√

12 1

)
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3. For the following matrices find an orthogonal matrix Q which diagonalizes the given
matrix. By using MATLAB or otherwise check that QTAQ = D where D is a diagonal
matrix.

(a) A =
⎛⎝ 1 0 0

0 2 0
0 0 3

⎞⎠ (b) A =
⎛⎝ 2 2 2

2 2 2
2 2 2

⎞⎠ (c) A =
⎛⎝ 0 0 0

0 1 1
0 1 1

⎞⎠
4. For the following matrices find an orthogonal matrix Q which diagonalizes the given

matrix. By using MATLAB or otherwise check that QTAQ = D.

(a) A =
⎛⎝ 1 2 2

2 1 2
2 2 1

⎞⎠ (b) A =
⎛⎝ 2 1 1

1 2 1
1 1 2

⎞⎠ (c) A =
⎛⎝ −5 4 2

4 −5 2
2 2 −8

⎞⎠
5. Let A =

(
1 1
1 1

)
. Show that A10 = 29A. Also prove that Am = 2m−1A where m is a

positive integer.
6. Show that if A is a diagonal matrix then orthogonal diagonalising matrix Q = I.
7. Prove that (a) the zero matrix O and (b) the identity matrix I are orthogonally

diagonalisable.

8. Prove that A =
(
a b
b c

)
�= O is orthogonally diagonalisable and find the orthogonal

matrixQ which diagonalizes the matrix A.
[Hint: If the quadratic x2 + px+ q = 0 has roots a and b then a+ b = −p.]

9. Let A be a symmetric invertible matrix. If Q orthogonally diagonalizes the matrix A
show that Q also diagonalizes the matrix A−1.

10. Prove Proposition (7.23).

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SECTION 7.5 Singular Value Decomposition

By the end of this section you will be able to

● understand what is meant by SVD

● find a triple factorization of any matrix

The singular value decomposition (SVD) is one of the most important factorizations of
a matrix. SVD factorization breaks the matrix down into useful parts such as orthogonal
matrices, and the method can be applied to any matrix; it does not need to be a square or
symmetric matrix.

The SVD of a matrix gives us an orthogonal basis (axes) for the row and column space
of the matrix. If we consider a matrix as a transformation then SVD factorization gives an
orthogonal basis (axes) for the start and arrival vector spaces (Fig. 7.12).
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Figure 7.12

A very good application of SVD is given in the article by David Austin in the Monthly
Essays on Mathematical Topics of August 2009:

Netflix, the online movie rental company, is currently offering a $1 million prize for anyone
who can improve the accuracy of its movie recommendation system by 10%. Surprisingly,
this seemingly modest problem turns out to be quite challenging, and the groups involved are
now using rather sophisticated techniques. At the heart of all of them is the singular value
decomposition.

First, we look at the geometric significance of SVD factorization.

7.5.1 Geometric interpretation of
singular value decomposition (SVD)

To find the SVD of any matrix A we use the matrix ATA because ATA is a symmet-
ric matrix, as we will show later in this section. Remember, symmetric matrices can be
orthogonally diagonalized.

First we define the singular values of a matrix A.

Definition (7.29). LetA be anym by nmatrix and λ1, λ2, . . ., λn be the eigenvalues ofATA,
then the singular values of A denoted by σ1, σ2, . . ., σn are the numbers:

σ1 =
√

λ1, σ2 =
√

λ2, . . . , σn =
√

λn [positive root only]

Example 7.30

Find the eigenvalues and eigenvectors of ATA where A =
(

2 1
1 2

)
.

Solution
Since the given matrix A is a symmetric matrix so AT = A. We have ATA = AA = A2.

We found the eigenvalues t1 and t2 with the normalized eigenvectors v1 and v2 of this matrix A in
Exercises 7.4 question 1(c):

t1 = 3, v1 = 1√
2

(
1
1

)
and t2 = 1, v2 = 1√

2

(
1
−1
)

What are the eigenvalues and eigenvectors of matrix A2?
By Proposition (7.8)(a): If m is a natural number then λm is an eigenvalue of the matrix Am with the same
eigenvector u.
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Let λ1 and λ2 be the eigenvalues of matrix A2, then by using this proposition we have

λ1 = 32 = 9, v1 = 1√
2

(
1
1

)
and λ2 = 12 = 1, v2 = 1√

2

(
1
−1
)

Example 7.31

(i) Find the singular values σ1 = √λ1 and σ2 = √λ2 of the matrix A given in the above
Example 7.30.

(ii) Determine σ1u1 = Av1 and σ2u2 = Av2 , where v1 and v2 are the normalized eigenvectors
belonging to the eigenvalues of matrix ATA.

Solution

(i) From Example 7.30 we have the eigenvalues λ1 = 9 and λ2 = 1. Taking the square root:

σ1 =
√
9 = 3 and σ2 =

√
1 = 1 [positive root only]

The singular values of matrix A are 3 and 1. Since A is a symmetric matrix, the singular values
of A are the eigenvalues of A. This would not be the case if A was a non-symmetric matrix.

(ii) Substituting A =
(

2 1
1 2

)
, v1 = 1√

2

(
1
1

)
and σ1 = 3 into σ1u1 = Av1 gives

3u1 = Av1 =
(

2 1
1 2

)
1√
2

(
1
1

)
= 1√

2

(
3
3

)
Similarly σ2u2 = Av2 is

(1)u2 = Av2 =
(

2 1
1 2

)
1√
2

(
1
−1
)
= 1√

2

(
1
−1
)

We have

Av1 = 3u1 and Av2 = u2

What does this mean?
It means that the transformation T : R2 → R2 given by T (v) = Av transforms the vector v1 to 3
times the vector u1 in the same direction. The vector v2 is transformed under the matrix A to the
same vector, v2 = u2 (Fig. 7.13).

The unit circle in Fig. 7.13(a) is transformed to an ellipse in Fig. 7.13(b) under the matrix
A. Note that the unit circle in Fig. 7.13(a) is stretched by the factors σ1 = 3 and σ2 = 1
in the direction of u1 and u2 respectively. Remember, these factors σ1 = 3 and σ2 = 1 are
the singular values of matrix A. Also observe that vectors u1 and u2 are orthogonal (per-
pendicular) and normalized (length equals 1). In SVD factorization, orthogonal vectors get
transformed to orthogonal vectors – this is why this factorization is the most useful.
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(a) (b)

11

1

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

11

12

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
v1 3u1

3

2

1

–10.5 1–0.5

–0.5

–1

0.5

1

–1

–1

–2

–3

1 2 3–2–3

2
v2

T (v) = Av
u2

Figure 7.13

Actually the vectors u1 and u2 form an orthonormal (perpendicular unit) basis (axes)
for the arrival vector space R2, similarly v1 and v2 form an orthonormal basis (axes) for the
start vector space R2.

The eigenvectors u1 and u2 give us the direction of the semi-axes and the singular values
σ1 and σ2 give us the length of the semi-axes.

What do we mean by semi-axes?
We illustrate the semi-axes for an ellipse in Fig. 7.14.

Figure 7.14

We can write Av1 = 3u1 and Av2 = u2 in matrix form as

A(v1 v2) = (3u1 u2) = (u1 u2)
(
3 0
0 1

)
(∗)

If we let V = (v1 v2), U = (u1 u2) and D =
(
3 0
0 1

)
then (∗) can be written as

AV = UD (†)

Matrices U and V are orthogonal because V = (v1 v2) and U = (u1 u2) contain the
orthonormal vectors v1, v2, u1 and u2 which are illustrated in the above Fig. 7.13.
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Right multiplying (†) by the inverse of V (remember for an orthogonal matrix
V−1 = VT) which is VT :

(AV)VT = A
(
VVT

)
︸ ︷︷ ︸
=I

= A = UDVT

Hence we have factorized matrix A = UDVT . Matrix A is broken into a triple matrix
with the diagonal matrix D sandwiched between the two orthogonal matrices U and VT .

This is a singular value decomposition (SVD) of matrix A.

Example 7.32

Check that A = UDVT for A of Example 7.30, that is the matrix A =
(

2 1
1 2

)
.

Solution
What are the orthogonal matrices U , V and the diagonal matrix D equal to?

By the results of Example 7.31 we have u1 = 1
3
√
2

(
3
3

)
= 1√

2

(
1
1

)
, u2 = 1√

2

(
1
−1
)

,

v1 = 1√
2

(
1
1

)
, v2 = 1√

2

(
1
−1
)

, σ1 = 3 and σ2 = 1:

U = ( u1 u2 ) = 1√
2

(
1 1
1 −1

)
,D =

(
σ1 0
0 σ2

)
=
(
3 0
0 1

)
and V = ( v1 v2 ) = 1√

2

(
1 1
1 −1

)
Carrying out the matrix multiplication U×D× VT :

UDVT = 1√
2

(
1 1
1 −1

)(
3 0
0 1

)
1√
2

(
1 1
1 −1

)T
= 1

2

(
3 1
3 −1

)(
1 1
1 −1

)
= 1

2

(
4 2
2 4

)
=
(
2 1
1 2

)
= A

Note, the similarity to orthogonal diagonalization from the last section, A = QDQT . As
the given matrix A is a symmetric matrix, then U = Q, D = D andQT = VT .

What use is this section on SVD if we can simply apply the orthogonal diagonalization technique of
the last section?
Well, for SVD you do not need square or symmetric matrix. (Recall that symmetric matrices must
be square matrices because if the number of rows does not equal the number of columns then
transposing changes the shape of the matrix.) SVD can be applied any matrix.

7.5.2 Introduction to singular value decomposition (SVD)

In the previous section, and again above, we factorized only symmetric matrices. In this
section we extend the factorization or decomposition to anymatrix.We factorize thematrix
A where A is m by n and m ≥ n. The results in this section are also true if m < n but we
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have chosenm ≥ n for convenience. Note that the results in this section are valid for ANY
matrix A.

Singular value decomposition theorem (7.30).
We can decompose any given matrix A of size m by n with positive singular values

σ1 ≥ σ2 ≥ · · · ≥ σk > 0 where k ≤ n, into UDVT , that is

A = UDVT

where U is an m by m orthogonal matrix, D is an m by n matrix and V is an n by
n orthogonal matrix. The values of m (rows) and n (columns) is the size of the given
matrix A.

We have the situation shown in Fig. 7.15.

Figure 7.15

The matrix D looks a bit odd but it is a diagonal-like matrix. The matrix D has the pos-
itive singular values σ1 ≥ σ2 ≥ · · · ≥ σk > 0 of matrix A starting from the top left hand
corner of the matrix and working diagonally towards the bottom right. The symbol O
represents the zero matrix of an appropriate size. Matrix D is of shape (Fig. 7.16).

m−k  rows 

n−k  columns 

D =
O O

O
σ1σ2

σk

...

Figure 7.16

We need to be careful with the size of the matrices in Theorem (7.30).

If the given matrix A is a 3 by 2 then what size are the matrices U, D and V in the above formula
(7.30)?
U is a 3 by 3 matrix, D is a 3 by 2 matrix and V is a 2 by 2 matrix.

Example 7.33

Find the eigenvalues and eigenvectors of ATA where A =
⎛⎝ 1 1

1 1
−2 1

⎞⎠.
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Solution
First, we carry out the matrix multiplication:

ATA =
(
1 1 −2
1 1 1

)⎛⎝ 1 1
1 1
−2 1

⎞⎠ = ( 6 0
0 3

)

Since ATA is a diagonal matrix, the entries on the leading diagonal are the eigenvalues

λ1 = 6 and λ2 = 3.

Verify that the eigenvectors v1 and v2 belonging to these eigenvalues λ1 = 6 and λ2 = 3 are

v1 =
(
1
0

)
and v2 =

(
0
1

)
Note that we cannot find eigenvalues of matrix A because A is a non-square matrix. This is why the

question says find the eigenvalues of ATA.

Note that in the above example ATA is a symmetric matrix.

Is this always the case?
Yes.

Proposition (7.30). Let A be any matrix. Then ATA is a symmetric matrix.

Proof.
Remember, a matrix X is symmetric if XT = X.

To show that ATA is a symmetric matrix, we need to prove
(
ATA

)T = ATA:(
ATA

)T = AT(AT)T [
by (1.19) (d) (XY)T = YTXT

]
= ATA

[
by (1.19) (a)

(
XT)T = X

]

Hence ATA is a symmetric matrix.

What do we know about diagonalizing a symmetric matrix?
From the previous section, we have the spectral theorem (7.28):

Matrix A is orthogonally diagonalizable⇔ A is a symmetric matrix.

This means that we can orthogonally diagonalize the matrix ATA because it is a sym-
metric matrix. This is why we examine the matrix ATA for the purposes of finding the
SVD of A.

We show that the eigenvalues of this matrix ATA are positive or zero:

Proposition (7.31). Let A be any matrix. Then the eigenvalues of ATA are positive or zero.
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Proof – Exercises 7.5.

Example 7.34

(i) Find the singular values σ1 = √λ1 and σ2 = √λ2 of the matrix A given in the above
Example 7.33.

(ii) Determine σ1u1 = Av1 and σ2u2 = Av2 , where v1 and v2 are the normalized eigenvectors
belonging to the eigenvalues of matrix ATA.

Solution

(i) From Example 7.33 we have the eigenvalues λ1 = 6 and λ2 = 3. Taking the square root:

σ1 =
√
6 and σ2 =

√
3

The singular values of matrix A are
√
6 and

√
3. Note that matrix A does not have eigenvalues

because it is a non-square matrix but has singular values which are the square roots of the
eigenvalues of ATA.

(ii) Substituting A =
⎛⎝ 1 1

1 1
−2 1

⎞⎠, eigenvector v1 =
(
1
0

)
and σ1 =

√
6 into σ1u1 = Av1 :

√
6u1 = Av1 =

⎛⎝ 1 1
1 1
−2 1

⎞⎠( 1
0

)
=
⎛⎝ 1

1
−2

⎞⎠
Similarly for σ2u2 = Av2 we have

√
3u2 = Av2 =

⎛⎝ 1 1
1 1
−2 1

⎞⎠( 0
1

)
=
⎛⎝ 1
1
1

⎞⎠

The matrix A transforms the two-dimensional eigenvectors v1 =
(
1
0

)
and v2 =

(
0
1

)
to three-dimensional vectors (1 1 −2)T and (1 1 1)T respectively. This transformation is
T : R2 → R3, such that T(v) = Av where A is the given 3 by 2 matrix.

(a) (b)

0

1

⎛ ⎞
⎜ ⎟
⎝ ⎠

v2 =

1

0

⎛ ⎞
⎜ ⎟
⎝ ⎠

–1 0 1 2–20
2

–2

–1

0

0.5 1–0.5

–0.5

–1

0.5

1

–1

1

2

xy

z

1

6u1 = 1

2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

1

3u2 = 1

1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

v1 =

Figure 7.17
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The transformation of the unit circle in Fig. 7.17(a) under the given matrix A is a two-
dimensional ellipse in 3d space R3, but not illustrated above because of the limitation of
software available.

Since the given A is a 3 by 2 matrix, by using the above formula (7.30) we find that U is
a 3 by 3 matrix. This means that U = (u1 u2 u3).

In the above Example 7.34 we have found u1 and u2 but what is u3 equal to?
The vector u3 needs to be orthogonal (perpendicular) to both vectors u1 and u2 because U is
an orthogonal matrix. This means vector u3 must satisfy both u1 · u3 = 0 and u2 · u3 = 0. Let
u3 = (x y z)T . We can ignore the scalars because the vectors will be orthogonal (perpendicular)
independently of their scalars. We need to solve⎛⎜⎝ 1

1
−2

⎞⎟⎠ ·
⎛⎜⎝ x
y
z

⎞⎟⎠ = 0 and

⎛⎜⎝ 1
1
1

⎞⎟⎠ ·
⎛⎜⎝ x
y
z

⎞⎟⎠ = 0
[Remember, for orthogonal
(perpendicular) vectors, the dot
product is zero]

In matrix form, and solving by inspection, yields

(
1 1 −2
1 1 1

)⎛⎝ x
y
z

⎞⎠ = ( 0
0

)
gives x = 1, y = −1 and z = 0

Normalizing the vector gives u3 = 1√
2
(1 −1 0)T . Hence

U = ( u1 u2 u3
) =

⎛⎝ 1/
√
6 1/

√
3 1/

√
2

1/
√
6 1/

√
3 −1/√2

−2/√6 1/
√
3 0

⎞⎠
Note that the column vectors

{
u1, u2, u3

}
of matrixU is a basis (axes) forR3 (Fig. 7.18).

u1

u2

u3

2

1

0

–1

–2
–2

–1

0
x

–2

–1
0

y

1
2

z

Figure 7.18
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Example 7.35

Check that A = UDVT for the matrix A =
⎛⎝ 1 1

1 1
−2 1

⎞⎠ given in the above Example 7.33.

Solution
We need to break the given matrix A into A = UDVT where U is 3 by 3, D is 3 by 2 and V is 2 by 2.
What are the matrices U, D and V equal to?
By the results of Example 7.34 and above we have:

U = (u1 u2 u3) =
⎛⎝ 1/

√
6 1/

√
3 1/

√
2

1/
√
6 1/

√
3 −1/√2

−2/√6 1/
√
3 0

⎞⎠ ,D =
⎛⎝ σ1 0

0 σ2
0 0

⎞⎠ =
⎛⎝
√
6 0
0

√
3

0 0

⎞⎠
and V = (v1 v2) =

(
1 0
0 1

)
= I

[
identity matrix

]
By transposing the last matrix VT = IT = I, let us check that this triple factorization actually works;

that is UDVT = UDI = UD = A:

UDVT = UD =
⎛⎝ 1/

√
6 1/

√
3 1/

√
2

1/
√
6 1/

√
3 −1/√2

−2/√6 1/
√
3 0

⎞⎠×
⎛⎝
√
6 0
0
√
3

0 0

⎞⎠ =
⎛⎝ 1 1

1 1
−2 1

⎞⎠ = A

Hence a non-square matrix such as A can be broken into UDVT .

7.5.3 Proof of the singular value decomposition (SVD)

Singular value decomposition can be applied to any matrix A.

Proposition (7.32). Let v1, v2, . . ., vk be the eigenvectors of ATA such that they belong to
the positive eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λk > 0. Then

(i) for j = 1, 2, 3, . . ., k we have
∥∥Avj∥∥ = σj where σj = √λj is the singular value of A.

(ii) {Av1,Av2, . . . ,Avk} is an orthogonal set of vectors.

Note, the following:

(i) σj gives the size of the vector Avj, or the length of the semi-axis (uj) of the ellipse.
(ii) This part means that orthogonal (perpendicular) vectors {v1, v2, . . . , vk} are

transformed to orthogonal (perpendicular) vectors {Av1,Av2, . . . ,Avk} under the
matrix A.

Proof of (i).
By the above proposition (7.30): Let A be any matrix. Then ATA is a symmetric matrix.

ATA is a symmetric matrix, so we can orthogonally diagonalize this because of the
spectral theorem (7.28): A is orthogonally diagonalizable⇔ A is a symmetric matrix.
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This means that the eigenvectors belonging to the positive eigenvalues of ATA, given by
v1, v2, . . ., vk are orthonormal (perpendicular unit) vectors. Consider ‖Av1‖2. Then
‖Av1‖2 = Av1 · Av1 = (Av1)T Av1

[
by (2.4) u · v = uTv

]
= vT1A

TAv1
[
because (XY)T = YTXT

]
= vT1 (λ1v1)

[
λ1 and v1 are e.values and e.vectors of ATA

so ATAv1 = λ1v1
]

= λ1vT1 v1
= λ1 (v1 · v1) = λ1

[
because v1 is normalized so (v1 · v1)=‖v1‖2=1

]
Taking the square root of this result ‖Av1‖2 = λ1 gives

‖Av1‖ =
√

λ1 = σ1

Similarly for j = 2, 3, . . . , n we have
∥∥Avj∥∥ = σj. This completes our proof for part (i).

Proof of (ii).
Required to prove that the vectors in the set {Av1,Av2, . . . ,Avk} are orthogonal (perpen-
dicular). We prove that any two arbitrary different vectors Avi and Avj where i �= j in the
set are orthogonal, which means that we need to show that Avi · Avj = 0:

Avi · Avj = (Avi)T Avj = vTi A
TAvj

= vTi λjvj
[
λj and vj are e.values and e.vectors of ATA

so ATAvj = λjvj
]

= λj

(
vTi vj

)
= λj

(
vi · vj

) = 0
[
vi and vj are orthogonal so

vi · vj = 0
]

We have Avi · Avj = 0, therefore Avi andAvj are orthogonal (perpendicular). Hence the
set of vectors {Av1,Av2, . . . ,Avk} are orthogonal to each other.

Next we prove the main result in this section, which was stated above and also repeated
here:

Singular Value Decomposition Theorem (7.30).
We can decompose any given matrix A of size m by n with positive singular values

σ1 ≥ σ2 ≥ · · · ≥ σk > 0 where k ≤ n, into UDVT , that is

A = UDVT

whereU is anm bymorthogonalmatrix,D is anm by nmatrix andV is an n by n orthogonal
matrix.
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Proof.
The size of matrix A is m by n. This means that the transformation T given by matrix A is
T : Rn → Rm such that T (v) = Av (Fig. 7.19).

T(v) = Avv2

v3

vn

v1
u1

u2

u3

un

n

m

Figure 7.19

Let v1, v2, . . . , vk be the eigenvectors of ATA belonging to the positive eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λk > 0 respectively. Then by the above Proposition (7.32) part (ii)

Av1,Av2, . . . ,Avk (∗)

is an orthogonal set of vectors. We want to convert this into an orthonormal set which
means we need to normalize each of the vectors in the list (∗). Convert the first vector Av1
into a unit vector u1 say, (length of 1):

u1 = 1
‖Av1‖Av1 =

1
σ1

Av1
[
by (7.32) part(i)

∥∥Avj∥∥ = σj
]

Similarly converting the remaining vectors Av2, . . . ,Avk into unit vectors we have

uj = 1
σj
Avj for j = 2, 3, 4, . . . , k

The vectors in S = {u1,u2, . . . , uk} constitute an orthonormal set of vectors. We need
to produce a matrix U which is of size m by m. If k < m then the vectors in this set
S = {u1,u2, . . . ,uk} are the first k vectors of the matrix U. However, we need m vectors
because

U = (u1 u2 · · · uk uk+1 · · · um )

We extend the above set S to an orthonormal set S′ = {u1, u2, . . . ,uk,uk+1, . . . ,um}.
This S′ is an orthonormal (perpendicular unit) basis for Rm. Let

U = (u1 u2 · · · um)

Multiplying the above result uj = 1
σj
Avj by σj for j = 1, 2, 3, . . . , k gives

σjuj = Avj (†)
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The remaining singular values are zero, that is σk+1 = σk+2 = · · · = σn = 0. We have

Avj = σjuj = 0uj for j = k+ 1, . . . , n (††)

Collecting all these together we have

Av1 = σ1u1, Av2 = σ2u2, . . . , Avk = σkuk, Avk+1 = 0uk+1, . . . ,Avn = 0un

In matrix form we have

AV = A
(
v1 · · · vk vk+1 · · · vn

) [
V is an n by n orthogonal matrix

]
= (Av1 · · ·Avk Avk+1 · · ·Avn

)
= (σ1u1 · · · σkuk 0uk+1 · · · 0un

) [
by (†) and (††)

]
The scalars σ1, σ2, . . . in front of the u’s can be placed in the diagonal-like matrix D and

the vectors u’s into the above matrix U = (u1 u2 · · · um ).
Hence the above derivation

AV = ( σ1u1 · · · σkuk 0uk+1 · · · 0un )

can be written as:

(
σ1u1 · · · σkuk 0uk+1 · · · 0un

) = (u1 u2 · · · um)︸ ︷︷ ︸
=U

⎛⎜⎜⎜⎜⎜⎝
σ1

. . .

σk

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=D
= UD = AV

SinceV is an orthogonal matrix soV−1 = VT . Right multiplying both sides ofUD = AV
by VT gives us our required result UDVT = A.

Proposition (7.33). Let A be anm by nmatrix with factorization given by A = UDVT . Let
matrix A have k ≤ n positive singular values. Then we have the following:

(a) The set of vectors {u1, u2, . . . ,uk} form an orthonormal basis for the column space
of matrix A.

(b) The set of vectors {v1, v2, . . . , vk} form an orthonormal basis for the row space of
matrix A.

(c) The set of vectors
{
vk+1, vk+2, . . . , vn

}
form an orthonormal basis for the null space

of matrix A.

Proof – Exercises 7.5.
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i Summary

We can break any matrix A into a triple factorization A = U×D× VT .

EXERCISES 7.5

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

1. Determine the matrices U, D and V such that A = UDVT for the following:

(a) A =
(
1 0
0 2

)
(b) A =

(
1 4
4 7

)
(c) A =

⎛⎝ 1 0
0 1
1 2

⎞⎠
(d) A =

(
1 0 1
0 1 2

)
(e) A =

(
1 1
3 3

)
(f) A =

(
1 1 1
3 3 3

)
2. Prove Proposition (7.31).
3. Let matrix A have k positive singular values. Show that the rank of matrix A is k.

Hint: You may use the following result:
If matrix X is invertible then rank(XA) = rank(A) and rank(AX) = rank(A).

4. Prove Proposition (7.33).
5. Prove that the singular values σ1, σ2, . . . , σn of anm by nmatrix A are unique.
6. Prove that the column vectors of the orthogonal matrix U in A = UDVT are the

eigenvectors of AAT .
7. Prove that the singular values of A and AT are identical.
8. Let T : Rn → Rm be a linear transformation given by T (x) = Ax, where A is an m by

nmatrix. Let the singular value decompositionA = UDVT with k ≤ n positive singular
values of matrix A. Prove the following results:

(a) The set of vectors {u1, u2, . . . ,uk} form an orthonormal basis for the range of T.
(b) The set of vectors

{
vk+1, vk+2, . . . , vn

}
form an orthonormal basis for the kernel

of T.

MISCELLANEOUS EXERCISES 7

(Brief solutions at end of book. Full solutions available at <http://www.oup.co.uk/
companion/singh>.)

In this exercise you may check your numerical answers using MATLAB.

7.1. If A =
(
1 1
0 3

)
.

(a) Find all the eigenvalues of A.
(b) Find a non-singular matrix Q and a diagonal matrix D such that Q−1AQ = D

(that is A = QDQ−1).
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(c) For the matrix A find A5.

Purdue University, USA

7.2. Let A =
(

4 5
−3 −4

)
. Compute A1 000 001.

Harvey Mudd College, California, USA

7.3. Find the eigenvalues and bases for the corresponding eigenspaces for the matrix

A =
⎛⎝ 0 2 2

2 0 2
2 2 0

⎞⎠
Harvey Mudd College, California, USA

7.4. Answer each of the following by filling in the blank. No explanation is necessary.

(a) Let A be an invertible n× n matrix with eigenvalue λ. Then _____ is an
eigenvalue of A−1.

(b) An n× nmatrix A is diagonalizable if and only if A has n _ _ _.

Illinois State University, USA

7.5. Let A be the matrix (
7 5
3 −7

)
(a) Find matrices S and � such that A has factorization of the form

A = S�S−1

where S is invertible and � is diagonal: � = diag (λ1,λ2).
(b) Find a matrix B such that B3 = A: (Hint: first find such a matrix for�. Then use

the formula above.)

Massachusetts Institute of Technology, USA
7.6. (a) Consider the matrix

A =
(
4 −3
1 0

)
(i) Find the eigenvalues and eigenvectors of A.
(ii) Find a matrix P such that P−1AP is diagonal.
(iii) Find the eigenvalues and the determinant of A2008.

(b) Consider the matrix

B =
⎛⎝ 1 1 0

0 1 0
0 0 0

⎞⎠
Is B diagonalisable? Justify your answer.

Loughborough University, UK
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7.7. Do one of the following.

(a) Is the matrix A =
[

1 0
10 2

]
diagonalizable? If not, explain why not. If so, find an

invertible matrix S for which S−1AS is diagonal.

(b) The matrices A =
[
2 0
0 3

]
and B =

[
3 0
0 2

]
are similar. Exhibit a matrix S for

which B = S−1AS.

University of Puget Sound, USA

7.8. Consider the matrix

B =
(
1 1
1 −1

)
Do there exist matrices P and D such that B = PDPT where P−1 = PT and D is a

diagonal matrix? Why? If these matrices exist then write down a possible P and the
correspondingD.

New York University, USA

7.9. Consider the 3× 3 matrix A =
⎛⎝ 4 2 −2

0 3 1
0 1 3

⎞⎠.
Already computed are the eigenpairs

⎛⎝2,
⎛⎝ 2
−1
1

⎞⎠⎞⎠ ,

⎛⎝4,
⎛⎝ 1
0
0

⎞⎠⎞⎠ .

(a) Find the remaining eigenpairs of A.
(b) Display an invertible matrix P and a diagonal matrix D such that AP = PD.

University of Utah, USA (part question)

7.10. Prove that, if λ1 and λ2 are distinct eigenvalues of a symmetric matrix A, then the
corresponding eigenspaces are orthogonal.

Harvey Mudd College, California, USA

7.11. (a) Find the eigenvalues and corresponding eigenvectors of A =
[
6 2
2 3

]
.

(b) Determine which of the following vectors

�v =

⎡⎢⎢⎣
1
1
1

−1

⎤⎥⎥⎦ , �w =

⎡⎢⎢⎣
1
−1
−1
2

⎤⎥⎥⎦

is an eigenvector of the matrix

⎡⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎦ and find the corresponding

eigenvalue.
University of New Brunswick, Canada
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7.12. (a) Find the eigenvalues and corresponding eigenvectors for

A =
⎡⎣ 1 1 −1

1 1 1
1 1 1

⎤⎦
(b) Is A diagonalizable? Give reasons for your answer.

University of New Brunswick, Canada

7.13. (a) (i) Show that the eigenvalues and corresponding eigenvectors of

A =
⎛⎝ 1 1 1

1 1 1
1 1 1

⎞⎠
are given by

λ1 = 0,u =
⎛⎝ 1

1
−2

⎞⎠ ,λ2 = 0, v =
⎛⎝ 1
−1
0

⎞⎠ and λ3 = 3,w =
⎛⎝ 1
1
1

⎞⎠
(ii) Find an orthogonal matrixQ which diagonalises the matrix A.
(iii) Use the Cayley–Hamilton theorem or otherwise to find A3.

(b) Let B be an n by n real matrix. Prove that B and BT have the same eigenvalues.
University of Hertfordshire, UK

7.14. (a) Define what is meant by an eigenvector and an eigenvalue for a real n× nmatrix.

(b) Let A =
⎛⎝ 0 2 1

1 1 1
1 2 0

⎞⎠. Show that the vector

⎛⎝ 1
1
1

⎞⎠ is an eigenvector for A. What

is the corresponding eigenvalue?
(c) Show that the matrixA given in (b) is diagonalizable and hence find an invertible

3× 3 matrix P (and P−1) such that P−1AP is diagonal.
City University, London, UK

7.15. (a) Let A be the matrix

A =
⎛⎝ 1 −2 2

8 11 −8
4 4 −1

⎞⎠
By finding a basis of eigenvectors, determine an invertible matrix P and its

inverse P−1 such that P−1AP is diagonal.
(b) State the Cayley–Hamilton theorem and verify it for the above matrix.

City University, London, UK
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7.16. Let A ∈ M4 (R) be the following matrix

A =

⎛⎜⎜⎝
0 −3 0 0
1 −1 0 0
1 −1 0 −9
1 −1 1 10

⎞⎟⎟⎠
(a) Show that the characteristic polynomial of A is given by

PA (t) = (t2 + t + 3
) (
t2 − 10t + 9

)
(b) Compute all real eigenvalues of A. Choose one real eigenvalue λ of A and find a

basis of its eigenspace Eλ.

Jacobs University, Germany

7.17. Find the eigenvalues of the matrixA =

⎛⎜⎜⎜⎜⎝
0 1 2 0 0

−1 −1 1 0 1
0 0 1 0 0
0 0 2 −3 0
1 2 3 4 0

⎞⎟⎟⎟⎟⎠. To save time, do not

find the eigenvectors.
University of Utah, USA

7.18. (Calculators are not allowed for this question). Let A =
⎛⎝ 1 1 0

1 2 1
0 1 1

⎞⎠.
(a) Find the eigenvalues for A.
(b) ForA, find an eigenvector for each of the eigenvalues. To make it easier to grade,

choose eigenvectors with integer coordinates where the integers are as small as
possible.

(c) Use your eigenvectors to make a basis of R3. Choose the first basis vector to be
the eigenvector associated with the largest eigenvalue and the third basis vector
to be the eigenvector associated with the smallest eigenvalue. Call this basis β.
We have a linear transformation given to us by A. What is the matrix D when
we use coordinates from this new basis,D : [x]β → [Ax]β?

(d) We know that there is a matrix S such that S−1AS = D. Find S.
(e) Find S−1.
(f) Modify the basis β so that you can orthogonally diagonalize A.
(g) Find the new S needed to orthogonally diagonalize A.
(h) Find the inverse of this last S.

Johns Hopkins University, USA

7.19. (a) If a �= c, find the eigenvalue matrix � and eigenvector matrix S in

A =
[
a b
0 c

]
= S�S−1
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(b) Find the four entries in the matrix A1000.
Massachusetts Institute of Technology, USA

7.20. (a) Define what is meant by saying that an n× nmatrix A is diagonalizable.
(b) Define what is meant by an eigenvector and an eigenvalue of an n× nmatrix A.
(c) Define the algebraic multiplicity and the geometric multiplicity of an eigenvalue

λ0 of a matrix A.
[Note that geometric multiplicity of an eigenvalue is not discussed in this book

but have a look at other sources to find the definition of this.]
(d) Suppose that a 3×3 matrix A has characteristic polynomial (λ− 1) (λ− 2)2.

What is the algebraic multiplicity of each eigenvalue of A? State a necessary and
sufficient condition for the diagonalizability of A using geometric multiplicity.

(e) Each of the following matrices has characteristic polynomial (λ− 1) (λ− 2)2.

(i)

⎡⎣ 1 −2 1
1 1 2
1 0 3

⎤⎦ (ii)

⎡⎣ 1 −1 1
−1 1 1
−1 −1 3

⎤⎦
Determine whether each of the matrices is diagonalizable. In each case, if the

matrix is diagonalizable, find a diagonalizing matrix.
University of Manchester, UK

7.21. (a) Define what it means for vectors w1,w2,w3 in R3 to be orthonormal.
(b) Apply the Gram–Schmidt process to the vectors

v1 =
⎡⎣ 0
1
1

⎤⎦ , v2 =
⎡⎣ 1
1
0

⎤⎦ , v3 =
⎡⎣ 5
4
6

⎤⎦
in R3 to find an orthonormal set in R3.

(c) Consider the matrix

A =
⎛⎝ 3 2 4

2 0 2
4 2 3

⎞⎠
(i) Obtain the characteristic polynomial and find the eigenvalues of A.
(ii) Find a complete set of linearly independent eigenvectors corresponding to

each eigenvalue.

(d) Let the non-zero vectors v1, v2, v3 ∈ R3 be an orthogonal set. Prove that they are
linearly independent.

University of Southampton, UK

7.22. (a) Define the terms orthogonal and orthonormal applied to a set of vectors in a
vector space on which an inner product is defined.

(b) State the relationship between an orthogonal matrix and its transpose. Prove that
the set of columns of an orthogonal matrix forms an orthonormal set of vectors.
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(c) (i) Show that (1, 0, 1, 0) and (1, 0,−1, 0) are eigenvectors of the matrix

A =

⎛⎜⎜⎝
5 0 −1 0
0 1 0 −1

−1 0 5 0
0 −1 0 1

⎞⎟⎟⎠
and find the corresponding eigenvalues.

(ii) Find the two other eigenvalues and corresponding eigenvectors of A.
(iii) Find matrices P,Q,� such that PQ = I and PAQ = � is diagonal.

Queen Mary, University of London, UK

[The wording has been modified for the next two questions so that it is compatible with
the main text. You will need to look at the website material for chapter 7 to attempt
these questions.]

7.23. Express the following quadratic in its diagonal form:

3x2 + 4xy+ 6y2 = aX2 + bY2

Write X and Y in terms of x and y.
Columbia University, USA

7.24. Express the following quadratic in its diagonal form:

2xy+ 4xz + 4yz + 3z2 = aX2 + bY2 + cZ2

Write X, Y and Z in terms of x, y and z.
Columbia University, USA



Brief Solutions

� SOLUTIONS TO EXERCISES 1.1

1. (a) Linear (b) Not linear (c) Not linear (d) Not linear
(e) Linear (f) Linear (g) Linear (h) Linear
(i) Linear (j) Not linear (k) Linear (l) Linear
(m) Linear

2. (a) x = 1, y = 1 (b) x = 1, y = −1 (c) x = −29, y = −31
(d) x = 3

4
, y = 1

4
(e) x = 3

4π
, y = −1

4
(f) x = 1

e
, y = −1

e
3. (a) x = y = z = 1 (b) x = −2, y = 1 and z = −3

(c) x = 3, y = −4 and z = 1
2

(d) x = 3, y = −3 and z = 2

4. (a) Unique (b) Infinite (c) No solution (d) No solution
(e) No solution (f) Unique

5. (a) Unique (b) Unique (c) No solution

� SOLUTIONS TO EXERCISES 1.2

1. (a) x = 6 and y = 1 (b) x = 2, y = −4 and z = −3
(c) x = 1, y = 3 and z = 2 (d) x = 1/2, y = 1/8 and z = 1/4
(e) x = −6.2, y = 30 and z = −10

2. (a) x = 1, y = 4, z = 1 (b) x = −1, y = 2, z = −1 (c) x = y = z = 1

3. (a) x = 1, y = 2 and z = 3 (b) x = −2, y = 1 and z = −1
(c) x = −1/2, y = 1 and z = −2 (d) x = −3, y = 1 and z = 1/2

� SOLUTIONS TO EXERCISES 1.3

2. (e) 1 (f) 1 (g) 2 (h) 5
3. (a) 15 (b) 15 (c) 14 (d) 30

5. (a)
(
2
0

)
(b)
(−4

2

)
(c)
(
1/2
1/2

)
(d)
(−5/2

3/2

)
(e)
(

0
2/3

)
6. (a)

(
0
3

)
(b)
(

0
3/2

)
(c)
(

2
−1/2

)
(d)
( −2
1/2

)
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7. x = −1
2
, y = −9

2

9. (a)

⎛⎝ 4
4
10

⎞⎠ (b)

⎛⎝−1525
40

⎞⎠ (c)

⎛⎝ 36
4
28

⎞⎠ (d)

⎛⎝−248
2

⎞⎠ (e)

⎛⎝−13−21
−48

⎞⎠
10. (a)

⎛⎝−101
12

⎞⎠ (b)

⎛⎝−83
−4

⎞⎠ (c)

⎛⎝−217
6

⎞⎠ (d)

⎛⎝ 17
−11
26

⎞⎠
11. x = 7, y = −11 and z = 1

13. (a)

⎛⎜⎜⎝
2
0
8
3

⎞⎟⎟⎠ (b)

⎛⎜⎜⎝
−4
6

−4
−3

⎞⎟⎟⎠ (c)

⎛⎜⎜⎝
−7
4

−5
4

⎞⎟⎟⎠ (d)

⎛⎜⎜⎝
x− 1
y+ 6
z − 1
a− 6

⎞⎟⎟⎠
x = −2, y = 0, z = −8 and a = −3

� SOLUTIONS TO EXERCISES 1.4

1. (a)
(
7 1
8 2

)
(b)
(
7 1
8 2

)
(c)
(
18 −3
15 9

)
(d)
(
18 −3
15 9

)
(e)
(
15 4
19 3

)
(h)
(

1
−4
)

(i)
(−7
−2
)

(k)
(

17
−8
)
. Parts (f), (g) and (j) cannot be evaluated.

2. (a)
(
0 0 0
0 0 0

)
(b) A (c)

⎛⎝ 42
73
81

⎞⎠
(e)

⎛⎝ 12 10 8
9 5 2
3 3 6

⎞⎠ (f)

⎛⎝ 12 10 8
9 5 2
3 3 6

⎞⎠ (h)

⎛⎝ 1
2
3.5

⎞⎠
(i)

⎛⎝ 44 44 3
72 71 1
29 12 −43

⎞⎠ (j)

⎛⎝ 111 41 127
24 −13 −20
−1 −12 −26

⎞⎠ (k)

⎛⎝ −67 3 −124
48 84 21
30 24 −17

⎞⎠
(d) (g) and (l) Impossible

3. (a)
(
2 4
3 9

)
(b)
(
6 7
2 3

)
(c)
(
a b
c d

)
(d)

⎛⎝ 2 3 6
1 4 5
0 9 7

⎞⎠
The result is always the first (or left hand) matrix.

4. (a)
(
1 0
0 1

)
(b)
(
1 0
0 1

)
(c)
(
1 0
0 1

)

5. and 6.
(
0 0
0 0

)
and

⎛⎝ 0 0 0
0 0 0
0 0 0

⎞⎠. Multiplying two non-zero matrices gives a zero

matrix.
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7.

(
a 11 a 12 a 13 a 14
a 21 a 22 a 23 a 24

)

8. (a) A2 = A3 = A4 =
(
1 0
0 1

)
and xn =

(
1 0
0 1

)
x = x

(b) A2 =
( −1 0

0 −1
)
, A3 =

(
0 −1
1 0

)
, A4 =

(
1 0
0 1

)
and xn = Arx where r is the

reminder after dividing n by 4. If the reminder r = 0 then Arx = x.
(c) A2 = A3 = A4 = A and xn = Ax.

9. A =
(
1 2 2 1
2 2 4 4

)
(a)
( −3 −2 −2 −3

2 2 4 4

)
(b)
(
3 6 6 3
6 6 12 12

)
(c)
(

2 2 4 4
−1 −2 −2 −1

)
(d)
( −1 −2 −2 −1

2 2 4 4

)
10. AF =

(
1.2 1.6 2.6 2.52 1.92 1.8 2.4 2.32 1.72 1.6
1 3 3 2.6 2.6 2 2 1.6 1.6 1

)
11. (a) x = 0, y = 0 (b) x = 0, y = 0

(c) x = −4r, y = r where r is any real number.

12. (i) u− 2v (ii)
1
4

(5v− 2u) (iii) No (iv) 2u− 7v

� SOLUTIONS TO EXERCISES 1.5

1. (a)
(
1 1 12
2 −10 13

)
(b)
(

10 6 20
−4 −11 19

)
(c)
(

10 6 20
−4 −11 19

)
(d)
(

10 6 20
−4 −11 19

)
(e)
(

9 5 8
−6 −1 6

)
(f)
( −5 15 35

10 −45 30

)
(g) Same as part (f). (h)

(
0 0 0
0 0 0

)
2. (a)

( −5 1 2
−1 3 −2

)
(b)
(

4 −3 −5
−3 −8 −4

)
(c)
(

9 −4 −7
−2 −11 −2

)
and

(
11 0 −1
6 −1 10

)
3. (a)

( −8 8 0
12 5 −26

)
(b) Impossible (c)

( −53 52 −41
−77 98 −116

)
(d)
( −53 52 −41
−77 98 −116

)
(e) Impossible (f) Impossible (g) O33 (h)O33

(i)O33 (j) Impossible (k) Impossible

4. We have AI = IA =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠. Note, that AI = IA = A.
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5. (AB)11 = 27, (AB)12 = 30, (AB)21 = 60, (AB)22 = 66 and AB =
(
27 30
60 66

)
.

6. (a)
(

72 −216 −360
−288 −72 504

)
(b)
(

72 −216 −360
−288 −72 504

)
(c)O23 (d)O23 (e) B (f) B (g) A (h) A

7. λ = 3

8. A = A2 = A3 = A4 = 1
3

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠, An = A. Also xn = Ax.

9. (a) A =
(
1 1
1 1

)
, B =

(
1 2

−1 −2
)
; (b) A = O, B �= O

10.
(
0.65
0.35

)
,
(
0.635
0.365

)
,
(
0.636
0.364

)
,
(
0.636
0.364

)
, and

(
0.636
0.364

)
.

For large k we have pk = Tkp =
(
0.636
0.364

)
.

� SOLUTIONS TO EXERCISES 1.6

1. (a)
(
1 3
2 4

)
(b)

⎛⎝ 1 −1
2 −2
3 −3

⎞⎠ (c)

⎛⎜⎜⎝
−1
5
9

100

⎞⎟⎟⎠

(d)
(
a c
b d

)
(e)
(
0 0 0
0 0 0

)
(f)

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠
2. (a)

(
35 −35
16 −66

)
(b)
(
28 −36 16
45 −30 35

)
(c)
(
0 −5
5 0

)

(d)

⎛⎝ 0 −5 −5
5 0 −1
5 1 0

⎞⎠ (e)

⎛⎝ −6 3 1
8 9 −2
6 −1 5

⎞⎠ (f)
( −8 12

2 10

)

(g)

⎛⎝ 4 −1
4 −5
13 8

⎞⎠ (h)
(

4 4 13
−1 −5 8

)
(i)
(

4 4 13
−1 −5 8

)

(j)
( −27 8 −9
−58 32 −26

)
(k)

⎛⎝ 6 −8 −6
−3 −9 1
−1 2 −5

⎞⎠ (l)

⎛⎝ 6 −8 −6
−3 −9 1
−1 2 −5

⎞⎠
(m)

(
22 6
1 31

)
(n)

(
22 6
1 31

)
3. (a) 32 (b) 32 (c) 32
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15. x = −1, y = −1 and z = 1
16. x = sin (θ)+ cos (θ), y = cos (θ)− sin (θ)

� SOLUTIONS TO EXERCISES 1.7

1. (a) x = 3/4, y = 13/4 and z = −11/4
(b) x = 0, y = 0 and z = 0
(c) No Solution (d) x = 3t, y = 2− 2t and z = t
(e) x = −7t, y = −6t, z = −t, w = t
(f) x = 11t − 20/3, y = 7− 8t, z = −1/3, w = t

(g) x = 1
20

(33− 144t − 20s), y = 1
5

(19t − 3), z = t and w = s.
(h) No Solution

(i) x = 1
9

(71t − 18s− 47), y = 5t − 3, z = 1
3

(26− 32t), w = s and u = t

(j) x = − (1+ 2t + 3s), y = 1
9

(15t − 6s− 13), z = 1
27

(14+ 6t + 3s),
w = t and u = s.

2. (a) x = −9+ 10t − s, y = s, z = −7+ 7t and w = t
(b) x1 = −p− q− r, x2 = p, x3 = q, x4 = r, x5 = 0 and x6 = s
(c) x1 = 2− 3r − 6s− 2t, x2 = r, x3 = 1− 3s, x4 = 0, x5 = s, x6 = t

3. x = 4+ 2s, y = 6 and z = s
8. x1 = −10+ s+ t, x2 = 7− s, x3 = 9− t, x4 = 15− s− t, x5 = s and x6 = t
9. x1 = −10+ s+ t, x2 = 7− s, x3 = 9− t, x4 = 15− s− t, x5 = s and x6 = t,

x7 = 8− s− t, x8 = s and x9 = t.
10. x1 = −2+ p+ r − t, x2 = −7− p+ s+ t, x3 = p, x4 = 3+ q− r + t,

x5 = 25− q− s− t, x6 = q, x7 = r, x8 = s and x9 = t
11. x = 5.41− 0.095t, y = 5.41− 0.095t, z = 3.67− 0.067t and t is free.

� SOLUTIONS TO EXERCISES 1.8

1. Matrices B, C, D and G are elementary matrices.

2. (a) E−11 =
( −1 0

0 1

)
(b) E−12 =

(
0 1
1 0

)

(c) E−13 =
(
1 0
0 −1/2

)
(d) E−14 =

⎛⎝ −1/5 0 0
0 1 0
0 0 1

⎞⎠
(e) E−15 =

⎛⎜⎝ 1 0 0
0 −1

/√
2 0

0 0 1

⎞⎟⎠ (f) E−16 =
⎛⎝ 1 0 0

0 1 0
0 0 1/π

⎞⎠
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3. (a)

⎛⎝ a b c
−d −e −f
g h i

⎞⎠ (b)

⎛⎝ g h i
d e f
a b c

⎞⎠

(c)

⎛⎝ ka kb kc
d e f
g h i

⎞⎠ (d)

⎛⎜⎝ a b c
d e f

−g
k
−h
k
− i
k

⎞⎟⎠
4. (a)

1
6

(
4 −2
1 1

)
(b) − 1

28

(
1 5
6 2

)

(d)

⎛⎝ 0 1 −1
−1 1 −2
0 0 −1

⎞⎠ (e)
1
4

⎛⎝ 3 2 1
2 4 2
1 2 3

⎞⎠

(f)
1
15

⎛⎝ 3 −10 1
0 10 5
3 −5 −4

⎞⎠ (i)
1
5

⎛⎜⎜⎝
131 −2 8 15
−43 1 −9 0
−25 0 −5 0
−30 0 0 −5

⎞⎟⎟⎠
(c) Non-invertible (g) Non-invertible
(h) Non-invertible

5. (a) x = 1/3, y = 4/3 (b) x = 1/14 and y = −4/7
(c) No unique solution (d) x = −2, y = −17 and z = −5
(e) x = 8, y = 11 and z = 7 (f) x = −2, y = 4 and z = −3
(g) x = 222.6, y = −66.8, z = −39 and w = −53

7. p = (220.04 277.58 235.40)T

� SOLUTIONS TO MISCELLANEOUS EXERCISES 1

1.1. (a) −16
(
4 5
4 5

)
(b)−4

(
15 17
19 21

)
This is because AB does not equal BA.

1.2. Error in first line because (AB)−1 �= A−1B−1 and error in line 2 because matrix
multiplication is not commutative.

1.3. (a) A2 = I and A3 = A (b) A−1 = A and A2004 = I

1.4. At =
⎛⎝ 1 1 1

0 1 2
−1 1 3

⎞⎠. The operations AB, B+ C, A− B and BCt are not valid.

CB =
(

0 −2
−1 1

)
, A2 =

⎛⎝ 0 −2 −4
3 3 3
6 8 10

⎞⎠
1.5. Prove that

(
ATA

)T = ATA using (XY)T = YTXT and
(
XT)T = X.

1.6. a = c and b = d = 2
3
c
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1.7. An example is Au = Av =
(
0
0

)
= O with A =

(
1 2
2 4

)
and

u =
(−2

1

)
�=
(

2
−1
)
= v.

1.8. (a) A2 =
(

7 10
15 22

)
, B2 =

( −1 0
0 −1

)
, AB =

( −2 1
−4 3

)
and BA =

(
3 4

−1 −2
)

(b) AB− BA =
(

bg − cf af + bh− be− df
ce+ dg − ag − ch cf − bg

)
1.9. M2 = 2M,M3 = 4M andM4 = 8M. c (n) = 2n−1.

1.10. (i) A2 = 1
2

(
2
3

)2
A (ii) A3 = 1

2

(
2
3

)3
A

To prove the required result use mathematical induction.
1.11. Matrix B has four rows.
1.12. (a) The given matrix is non-invertible (singular).

(b) B−1 = CA so the matrix B is invertible.

1.13. (b) A−1 =
⎡⎣ 7/2 0 −3
−1 1 0
0 −1 1

⎤⎦
1.14. x = 3, y = 1 and z = 2.

1.15. (a) Reduced row echelon form is

⎡⎣ 1 0 3 1
0 1 2 1
0 0 0 0

⎤⎦.
(b)

⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 1− 3t
1− 2t

t

⎤⎦ =
⎡⎣ 1
1
0

⎤⎦+ t

⎡⎣−3−2
1

⎤⎦

1.16.

⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2+ t
3− 3t
−1− 2t

t

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2
3
−1
0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
1
−3
−2
1

⎤⎥⎥⎦

1.17.

⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−1+ 11s+ 16t
1− 6s− 6t

s
t

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−1
1
0
0

⎤⎥⎥⎦+ s

⎡⎢⎢⎣
11
−6
1
0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
16
−6
0
1

⎤⎥⎥⎦
1.18. (i)

⎡⎣ 1 2 5 6
0 1 −12 −16
0 0 13 26

⎤⎦ (ii)

⎡⎣ 1 2 5 6
0 1 −12 −16
0 0 1 2

⎤⎦ (iii)

⎡⎣ 1 0 0 −20
0 1 0 8
0 0 1 2

⎤⎦
1.19. The system is inconsistent because if you carry our row operations you end up with

something like 0x1 + 0x2 + 0x3 + 0x4 = −33 which means that 0 = −33

1.20. A =
⎛⎝ 1 0 −1

0 1 −1
1 1 1

⎞⎠
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1.21. rref (A) =

⎛⎜⎜⎝
1 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠

1.22.

⎛⎜⎜⎜⎜⎝
x1
x2
x3
x4
x5

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
3+ 2t − 2s
1+ s− t

s
2t + 2

t

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
3
1
0
2
0

⎞⎟⎟⎟⎟⎠+ s

⎛⎜⎜⎜⎜⎝
−2
1
1
0
0

⎞⎟⎟⎟⎟⎠+ t

⎛⎜⎜⎜⎜⎝
2

−1
0
2
1

⎞⎟⎟⎟⎟⎠
1.23. (a) E2E1 =

(
1 0
0 1/2

)(
1 0
5 1

)
=
(

1 0
5/2 1/2

)
= A−1

(b) E−11 E−12 =
(

1 0
−5 1

)(
1 0
0 2

)
=
(

1 0
−5 2

)
= A

1.24. E =

⎡⎢⎢⎣
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤⎥⎥⎦
1.25. Option D which is

[
4 −4
5 11

]
.

1.26. X =
⎡⎣ −6 −2 2
−5 4 3
−2 −3 0

⎤⎦
1.27. (a) x = −4, y = −24 and z = 33 (b) Inverse matrix is

⎛⎝ −1 0 1
−5 1 3
7 −1 −4

⎞⎠.
(c) If our z coefficient is 5/4 then the linear system has no solutions.

1.28. Prove
(
A−1

)T = A−1 using matrix operations.
1.29. Pre- and post-multiply A by I− A and in each case the result should be I.
1.30. (a) To show uniqueness, assume that we have two matrices which are inverses of a

matrix A and then show that they are equal.
(b) Use mathematical induction.

(c) A−1 = 1
2

⎡⎣ 1 −1 1
0 0 2
1 1 −1

⎤⎦
1.31. Pre-multiply AXA−1 = B by A−1 and post-multiply by A. You should get

X = A−1BA. Take the inverse of both sides to find X−1 = A−1B−1A.

1.32.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
e
f
g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
7− q− 2r − 4t

q
8− 3r − 5t

r
9− 6t

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
7
0
8
0
9
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−2
0

−3
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−4
0

−5
0

−6
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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1.33. Go both ways (⇒) and (⇐) to show the required result.
1.34. Prove (AB)

(
B−1A−1

) = I by using matrix operations and then apply result of
question (33) to show that B−1A−1 is the inverse of AB.

1.35. (i) Use mathematical induction to show the required result.
(ii) Multiply out the two matrices to show that DD−1 = I.

� SOLUTIONS TO EXERCISES 2.1

1. (a) 1 (b) 1 (c) 10 (d) 5 (e) 10 (f) 5
(g) 3.16 (2 dp) (h) 2.24 (2dp) (i) 17 (j) 3.61 (2dp)

2. (a) 15 (b) 15 (c) 14 (d) 30 (e) 14 (f) 30
(g) 3.74 (2dp) (h) 5.48 (2dp) (i) 74 (j) 3.74 (2dp)

3. (a)−28 (b)−28 (c) 39 (d) 39 (e) 39 (f) 39
(g) 6.25 (2dp) (h) 6.25 (2dp) (i) 22 (j) 11.58 (2dp)

5. x = 2s, y = 3s where s is any real number

6. (a)
√
5 (b) 13

9. (a)
1√
53

(2 −7)T (b)
1√
139

(−9 3 7)T (c)
1√
134

(−3 5 8 6)T

(d)
1√
138

(−6 2 8 3 5)T

� SOLUTIONS TO EXERCISES 2.2

1. (a) θ = 45◦ (b) θ = 90◦ (c) θ = 168.69◦

2. (a) θ = 55.90◦ (b) θ = 90◦ (c) θ = 115.38◦

3. (a) θ = 41.98◦ (b) θ = 135◦ (c) θ = 56.56◦

4. (a) k = −13/7 (b) k = −5/3 (c) k = 0

5. (a) û = 1√
13

(
2
3

)
(b) û = 1√

14

⎛⎝ 1
2
3

⎞⎠ (c) û = 1
3

⎛⎝ 2
−2
1

⎞⎠
(d) û = 1√

5
(1
√
2 −1 1)T (e) û = 1√

205
(−2 10 −10 1 0)T

6. k = 1
2
or k = −1

2
7. (d) θ = 90◦

11. (1 1 −2) and (−s− t s t)T

12. (a) 0.71 (b) 0.89 (c) 6.12 (d) 0.76
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� SOLUTIONS TO EXERCISES 2.3

1. (a) independent. (b), (c), (d), (e) dependent
2. (a), (b) and (d) independent (c) dependent
3. (a) independent (b) and (c) dependent

� SOLUTIONS TO EXERCISES 2.4

1. (a) Span R2 (b) Span R2 (c) Does not span R2 (d) Span R2

2. (a) Span R3 (b) Does not span R3 (c) Span R3 (d) Span R3

3. (a) Forms a basis (b) No basis (c) Forms a basis (d) Forms a basis
5. (a) b is in the space spanned by columns of A.

(b) b is not spanned by the columns of A.
9. (a) independent. (b) (x y 0)T (c) w = (0 0 z)T (z �= 0)

� SOLUTIONS TO MISCELLANEOUS EXERCISES 2

2.1. Linearly dependent.
2.2. No such example exists because to span R3 you need three vectors.
2.3. (a) Linearly independent (b) 2v1 + v2 = (3, 2, 1) (c) Yes

2.4. (3, 1, 1) cannot be expressed as a linear combination of the vectors (2, 5, −1),
(1, 6, 0), (5, 2, −4).

2.5. (b) −3
⎡⎣ 1

2
−1

⎤⎦+
⎡⎣ 2
−1
3

⎤⎦+
⎡⎣ 1

7
−6

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦
2.6. (a)

{(
1
0

)
,
(
0
1

)}
and

{(
1
0

)
,
(
1
1

)}
(b) (i) No because the set is linearly dependent but it does span R3.

(ii) Yes the given set of vectors is a basis for R3.

2.7. A basis is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
a
0
0
0
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
b
b
0
0
b

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
0
0
c
0
c

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.

2.8. The first three vectors are linearly independent.
2.9. (a) Use definition (3.22) and show that all scalars are equal to zero.

(b) For all real values of λ providing λ �= −4.
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2.10. c = 17
2.11. By showing c1v1 + c2 (v1 + v2) = O⇒ c1 = c2 = 0
2.12. None of the given sets form a basis for R3.

(a) We only have two vectors. (b) Linear dependence 2

⎛⎝ 1
2
3

⎞⎠+
⎛⎝ 4
5
6

⎞⎠ =
⎛⎝ 6

9
12

⎞⎠
(c) We are given four vectors.

2.13. a. v+ w = u b. Yes, they are linearly dependent because v+ w = u.
2.14. (a) Since the dot product is zero therefore {u1, u2, u3} is orthogonal.

(b)
5
2
u1 − 3

2
u2 + 2u3 = x

2.15. (a) u · u = 13 (b) ‖u‖ = √13 (c) û = 1√
13

⎡⎣ 2
0
3

⎤⎦ (d) u · v = 0 (e) Yes

(f) ‖v− x‖ = 6

2.16. (c) θ = cos−1
(
1
2

)
= π

3

2.17. (c) v =
⎛⎝ x
y
z

⎞⎠ = s

⎛⎝−10
1

⎞⎠+ t

⎛⎝−11
0

⎞⎠ where s, t ∈ R. A particular v =
⎛⎝−21

1

⎞⎠.
w =

⎛⎝ 0
−1
1

⎞⎠ . Also û = 1√
3

⎛⎝ 1
1
1

⎞⎠, v̂ = 1√
6

⎛⎝−21
1

⎞⎠ and ŵ = 1√
2

⎛⎝ 0
−1
1

⎞⎠ where

{̂u, v̂, ŵ} is an orthonormal set of vectors in R3.
2.18. (a) u · v = 0, (u− v) · (u− w) = 20 and (2u− 3v) · (u+ 4w) = −20.

(b) |u · v| = 2, ‖u‖ ‖v‖ = 3
√
2 therefore |u · v| = 2 ≤ 3

√
2 = ‖u‖ ‖v‖

2.19. Consider the linear combination k1v1 + k2v2 + k3v3 = O then show that the dot
product of O · v1 = O · v2 = O · v3 gives k1 = k2 = k3 = 0.

2.20. Show that k1 (Au1)+ k2 (Au2)+ · · · + kn (Aun) = O implies k1 = k2 = · · · kn = 0.
2.21. Prove that ‖u+ v‖2 = ‖u− v‖2.
2.22. From u · (v− w) = 0 we have

u1 (v1 − w1)+ u2 (v2 − w2)+ · · · + un (vn − wn) = 0

Thus v1 = w1, v2 = w2, . . . , vn = wn.
2.23. (⇐). Show that k1u+ k2v = O ⇒ k1 = k2 = 0.

(⇒) . By assuming k1u+ k2v = O and k1 = k2 = 0 show that ad − bc �= 0.
2.24. Use proof by contradiction. Supposem linearly independent vectors span Rn.
2.25. Consider k1v1 + k2v2 + k3v3 + · · · + knvn = O and prove that

k1 = k2 = k3 = · · · = kn = 0

Then {v1, v2, v3, . . . , vn} are linearly independent which means they form a basis
for Rn.
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� SOLUTIONS TO EXERCISES 3.2

7. S is a subspace of R3.
18. (a), (b) and (c) are in span

{
f, g
}
but part (d) is not in the span

{
f, g
}
.

19. Does not span.

� SOLUTIONS TO EXERCISES 3.3

1. (a) and (c) independent (b) and (d) dependent
2. (a) dependent (b), (c), (d) and (e) independent
3. (a), (b), (d) and (e) dependent. Others independent.
6. 2+ 2 (t − 1)+ (t − 1)2.

� SOLUTIONS TO EXERCISES 3.4

1. (a) 5 (b) 7 (c) 11 (d) 13 (e) 9 (f) 16 (g) 6 (h) 4 (i) 6 (j) 0
2. dim (S) = 1
3. dim (S) = 2
4. dim (S) = 2
5. dim (S) = 3
6. (a)mn (b) 3 (c) 4

� SOLUTIONS TO EXERCISES 3.5

1. (a) Row vectors –
(
1
2

)
,
(
3
4

)
and column vectors –

(
1
3

)
and

(
2
4

)
.

(b) Row vectors (1 2 3 4)T , (5 6 7 8)T and (9 10 11 12)T .
Column vectors (1 5 9)T , (2 6 10)T , (3 7 11)T and (4 8 12)T .

(c) Row vectors (1 2)T , (3 4)T , (5 6)T . Column vectors (1 3 5)T and (2 4 6)T .
(d) Row vectors (1 2 3)T and (4 5 6)T . Column vectors (1 4)T , (2 5)T and (3 6)T .

(e) Row vectors

⎛⎝−12
5

⎞⎠ ,

⎛⎝−37
0

⎞⎠ and

⎛⎝−81
3

⎞⎠.
Column vectors

⎛⎝−1−3
−8

⎞⎠ ,

⎛⎝ 2
7
1

⎞⎠ and

⎛⎝ 5
0
3

⎞⎠.
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(f) Row vectors

⎛⎝−52
3

⎞⎠ ,

⎛⎝ 7
1
0

⎞⎠ ,

⎛⎝−76
1

⎞⎠ and

⎛⎝−25
2

⎞⎠.
Column vectors

⎛⎜⎜⎝
−5
7

−7
−2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
1
6
5

⎞⎟⎟⎠ and

⎛⎜⎜⎝
3
0
1
2

⎞⎟⎟⎠.

2. (a)
{(

1
0

)
,
(
0
1

)}
, rank (A) = 2 (b)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
−1
−2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
2
3

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, rank (B) = 2

(c)
{(

1
0

)
,
(
0
1

)}
, rank (C) = 2 (d)

⎧⎨⎩
⎛⎝ 1

0
−1

⎞⎠ ,

⎛⎝ 0
1
2

⎞⎠⎫⎬⎭, rank (D) = 2

(e) and (f)

⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ with rank (E) = 3 and rank (F) = 3

3. (a)
{(

1
0

)
,
(
0
1

)}
(b)
{(

1
3

)}

(c) and (d)

⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ (e)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0

−0.8
−1.6

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
1.4
1.8

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

4.

⎧⎪⎪⎨⎪⎪⎩
1
7

⎛⎜⎜⎝
7
0
8

−4

⎞⎟⎟⎠ ,
1
7

⎛⎜⎜⎝
0
7
1
3

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

5. For rank, see solution to question 2.

(a)
{(

1
0

)
,
(
0
1

)}
(b)

⎧⎨⎩
⎛⎝ 1

0
−1

⎞⎠ ,

⎛⎝ 0
1
2

⎞⎠⎫⎬⎭
(c)

⎧⎨⎩
⎛⎝ 1

0
−1

⎞⎠ ,

⎛⎝ 0
1
2

⎞⎠⎫⎬⎭ (d)
{(

1
0

)
,
(
0
1

)}

(e)

⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ (f)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
128
0
0
61

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0

128
0
80

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0

128
73

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
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� SOLUTIONS TO EXERCISES 3.6

1. (a) {O} (b)
{
s
(−2

1

) ∣∣∣∣ s ∈ R

}
(c) {O}

(d) {O}

2. (a)

⎛⎝ x
y
z

⎞⎠ = s

⎛⎝−1−2
1

⎞⎠ (b)

⎛⎝ x
y
z

⎞⎠ = s

⎛⎝ 1
1
0

⎞⎠+ t

⎛⎝ 1
0
1

⎞⎠
(c) and (d) x = O

3. (a) s

⎛⎝−1−2
1

⎞⎠, rank (A) = 2, nullity (A) = 1

(b) s

⎛⎝ 1
1
0

⎞⎠+ t

⎛⎝ 1
0
1

⎞⎠, rank (B) = 1, nullity (B) = 2

(c) and (d) {O}, rank (C) = rank (D) = 3, nullity (C) = nullity (D) = 0
4. (s+ 2t + 3p+ 4q+ 5r −2s− 3t − 4p− 5q− 6r s t p q r)T

5. (a)

⎧⎨⎩
⎛⎝ 13

0
−73

⎞⎠ ,

⎛⎝ 0
13
11

⎞⎠⎫⎬⎭,
{(

1
0

)
,
(
0
1

)}
,

⎧⎨⎩
⎛⎝ 73
−11
13

⎞⎠⎫⎬⎭, rank (A) = 2, nullity (A) = 1

(b)
{(

1
0

)
,
(
0
1

)}
,

⎧⎨⎩
⎛⎝ 1

0
−4

⎞⎠ ,

⎛⎝ 0
1
−5

⎞⎠⎫⎬⎭, {O}, rank (B) = 2, nullity (B) = 0

(c)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1
3
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭,

⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭,
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
−3
1
0
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, rank (C) = 3,

nullity (C) = 1

6. (a)

⎛⎜⎜⎝
x
y
z
w

⎞⎟⎟⎠ = s

⎛⎜⎜⎝
−1
−3
1
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
−5
0
0
1

⎞⎟⎟⎠
︸ ︷︷ ︸

=xH

+

⎛⎜⎜⎝
9

−3
0
0

⎞⎟⎟⎠
︸ ︷︷ ︸
=xP

(b)

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 2
−1
−2

⎞⎠
7. (a) infinite (b) infinite (c) no solution (d) unique solution
8. (a) and (b) in the null space. (c) and (d) not in the null space.



BRIEF SOLUTIONS 581

� SOLUTIONS TO MISCELLANEOUS EXERCISES 3

3.1. N =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
2
1
0
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
0
−2
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

3.2. B
3.3. F
3.4. (a) Use Av = b and Aw = O (b) Au = b and Ax = b
3.5. (a) Matrix A is invertible (non-singular) (b) linear independent rows

(c) rank (A) = n
3.6. (a) false (b) true (c) false (d) true
3.7. (a) true (b) true (c) false
3.8. All three statements are true.
3.9. (a) rank (A) = 3 (b) nullity (A) = 2

(c)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
0

−1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
1
0

−2
1
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0
1
3
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0
0
0
0
1

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(e)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
2
−3
1
0
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
−1
0
0
1
0

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

3.10. (b)

⎧⎨⎩ s

⎛⎝ 1
1
1

⎞⎠ ∣∣∣∣∣∣ s ∈ R

⎫⎬⎭ (c) v1, v2 and v3 are linearly independent.

3.11. (a) {O} and the space Rn (c)−4v1 + 3v2 + v3 = O and dimension is 2.

3.12. (a)

⎡⎣ 1 0 −2
0 1 0
0 0 0

∣∣∣∣∣∣
−3
1
0

⎤⎦ = R (b) The system is consistent. (c) �x = s

⎡⎣ 2
0
1

⎤⎦
︸ ︷︷ ︸
=xH

+
⎡⎣−31

0

⎤⎦
︸ ︷︷ ︸
=xP

3.13.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0
−2
1
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

−2
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

−3
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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3.14. (b)

⎡⎣ 1 −1 0 2
0 0 1 −1
0 0 0 0

⎤⎦ = R,

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
1
1
0
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
−2
0
1
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭, nullity and rank of matrix A is 2.

Two linearly independent and linear combination of first and last columns of the
matrix A.

3.15. (a) (i) Not a subspace (ii) Subspace (iii) Subspace (b)

⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 3
5
−4

⎞⎠
(c) (i) Not a basis, linearly dependent, span R3. (ii) Is a basis

3.16. Apply the definition of subspace.
3.17. (a) v is in the span of S (b) v is in the span of S

3.18.

⎡⎣ 1 0 0 0
0 1 1 0
0 0 0 1

⎤⎦ = R (a)

⎡⎢⎢⎣
0
−1
1
0

⎤⎥⎥⎦ (b)

⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭
(c) Nullity (B) = 1 (d) rank (B) = 3

3.19. Use the definition of subspace.
3.20. (a) Yes (b) Dim is 3 and a set of basis vectors are u1 = (2 0 5 3)T ,

u2 = (0 1 0 0)T and u3 = (0 0 2 1)T

(c) Yes is in V . (d) 1 (e)

⎛⎜⎜⎝
−0.25
0

−0.5
1

⎞⎟⎟⎠
3.21. Use Proposition (4.34).
3.22. Use Proposition (4.34).

3.23. (a) N =

⎧⎪⎪⎨⎪⎪⎩ t

⎡⎢⎢⎣
−3
2
0
0

⎤⎥⎥⎦+ s

⎡⎢⎢⎣
−1
0
2
0

⎤⎥⎥⎦
∣∣∣∣∣∣∣∣ s, t ∈ R

⎫⎪⎪⎬⎪⎪⎭
(b) x = xP + xH =

⎡⎢⎢⎣
0
0
0

−1

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
−3
2
0
0

⎤⎥⎥⎦+ s

⎡⎢⎢⎣
−1
0
2
0

⎤⎥⎥⎦
︸ ︷︷ ︸
xH solution of part (a)

(c) n−m solutions.

3.24. c = 17

3.25. A =
⎛⎝ 4 7 −6

5 8 −7
6 9 −8

⎞⎠
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3.26. (a) Use the trigonometric identities of cos (x) , cos (2x) , cos (3x).
(b) Expand each of these to show that they are in the span

{
1, x, x2, x3

}
.

3.27. (a) Write two matrices whose rows are each of the given vectors and then show that
they have the same basis which means they are equal.

(b) k = 0, k = −1
3.28. All three statements (a), (b) and (c) are false.
3.29. Suppose v1, . . . , vn are linearly dependent and derive a contradiction. Because these

are n linearly independent vectors and dimension of Rn is n therefore they form a
basis.
To show that A is invertible write an arbitrary vector u uniquely as

c1Av1 + c2Av2 + · · · + cnAvn = u

Rewrite this as Ax = u where x is unique then A is invertible.

� SOLUTIONS TO EXERCISES 4.1

1. (a) 1/4 (b) 1/4 (c) 3/4 (d) 1/3 (e) 1/
√
3 (f) 1/5 (g) 1/

√
5

2. (a) 2/5 (b) 2/5 (c) 6/5 (d) 2/3 (e)
√
2/3 (f) 2/7 (g)

√
2/7

3. (a)−21 (b)−21 (c) 63 (d) 38 (e)
√
38 (f) 90 (g)

√
90

5. (a) 70 (b) 350 (c) 70 (d)
√
30 (e)

√
174 (f) 27 (g) 55 (h) 82 (i) 97

7. (a)
7
12

(b)− 1
12

(c)−2
3

(d)−3
4

(e)− 1
12

(f)−11
12

(g)− 5
12

(h)− 7
12

(i)−101
2

(j)−155
6

11. (a) 4 (b) 12 (c)
√
22 (d)

√
67

� SOLUTIONS TO EXERCISES 4.2

4. (b) 17.23 (2dp)
5. (a) k = −8 (b) k = −1
8. (d)

f
‖f‖ =

cos (x)√
π

and
g∥∥g∥∥ = sin (x)√

π

9. The orthonormal set is

{
1√
π
,
√

2
π
sin (2t) ,

√
2
π
sin (4t) ,

√
2
π
sin (6t) , · · ·

}
11. 1.713
14. (a) ‖u+ v‖ = √2 (b) ‖u− v‖ = √2
15. (ii)

√
n
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� SOLUTIONS TO EXERCISES 4.3

1. (a) w1 =
(
1
0

)
,w2 =

(
0
1

)
(b) u1 = 1√

10

(
1
3

)
and u2 = 1√

10

(
3
−1
)

(c) u1 = 1√
13

(
2
3

)
and u2 = 1√

13

(
3

−2
)

(d) u1 = 1√
29

(−2
−5
)
and u2 = 1√

29

(−5
2

)
2. u1 = 1√

2

(
1
1

)
and u2 = 1√

2

(
1

−1
)

3. u1 = 1√
3

⎛⎝ 1
1
1

⎞⎠, u2 = 1√
6

⎛⎝ 1
1

−2

⎞⎠ and u3 = 1√
2

⎛⎝ 1
−1
0

⎞⎠
4. (a) u1 = 1√

2

⎛⎝ 1
0
1

⎞⎠, u2 = 1√
3

⎛⎝ 1
1

−1

⎞⎠ and u3 = 1√
6

⎛⎝ 1
−2
−1

⎞⎠
(b) u1 = 1√

3

⎛⎝ 1
1
1

⎞⎠, u2 = 1√
6

⎛⎝ 1
−2
1

⎞⎠ and u3 = 1√
2

⎛⎝−10
1

⎞⎠
(c) u1 = 1√

5

⎛⎝ 1
2
0

⎞⎠ , u2 = 1√
45

⎛⎝ 4
−2
5

⎞⎠, and u3 = 1
3

⎛⎝−21
2

⎞⎠

5. (a) u1 = 1√
10

⎛⎜⎜⎝
1
0
3
0

⎞⎟⎟⎠ , u2 = 1√
110

⎛⎜⎜⎝
3
10
−1
0

⎞⎟⎟⎠ and u3 = 1√
11

⎛⎜⎜⎝
3

−1
−1
0

⎞⎟⎟⎠

(b) w1 = 1√
31

⎛⎜⎜⎝
1
1
5
2

⎞⎟⎟⎠ , w′2 =
1√

28582

⎛⎜⎜⎝
−109

77
44

−94

⎞⎟⎟⎠ and w′3 =
1√

15555062

⎛⎜⎜⎝
−2929
−1289
−78
2304

⎞⎟⎟⎠

(c) u1 = 1√
30

⎛⎜⎜⎝
1
2
3
4

⎞⎟⎟⎠, u2 = 1√
3930

⎛⎜⎜⎝
53
16
9

−28

⎞⎟⎟⎠ and u3 = 1√
224665

⎛⎜⎜⎝
224

−140
−308
245

⎞⎟⎟⎠
6. p̂1 =

1√
2
, p̂2 =

√
3
2
x and p̂3 =

√
45
8

(
x2 − 1

3

)
7. p1 = x2, p2 = x and p3 = 1− 5

3
x2

8. (a)
4
3
p1 + p2 +

2
3
p3 (b)−1

3
p1 +

4
3
p3 (c) 3p1 (d)

1
3
p1 +

2
3
p3

(e) 2p1 + 5p2
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� SOLUTIONS TO EXERCISES 4.4

2. In each caseQ−1 = Q.
3. (a) and (b) not orthogonal.

(c) Orthogonal and inverse is

⎛⎝ 1/
√
2 −1/√2 0

1/
√
3 1/

√
3 1/

√
3

1/
√
6 1/

√
6 −2/√6

⎞⎠.
4. Lie on the unit circle and perpendicular.

5. Two matrices

⎛⎝ 1/
√
3 1/

√
2 1/

√
6

1/
√
3 0 −2/√6

1/
√
3 −1/√2 1/

√
6

⎞⎠ or

⎛⎝ 1/
√
3 1/

√
2 −1/√6

1/
√
3 0 2/

√
6

1/
√
3 −1/√2 −1/√6

⎞⎠.
6.
(
cos (θ)

sin (θ)

)
. MatrixQ rotates the vector.

7. (a)Q = 1√
6

⎛⎝
√
2 1 −√3√
2 −2 0√
2 1

√
3

⎞⎠ , R = 1√
6

⎛⎝ 6
√
2 −2√2 4

√
2

0 −2 −2
0 0 4

√
3

⎞⎠
(b) x = 1, y = 2, z = 3 (c) x = 2, y = 5 and z = 4

� SOLUTIONS TO MISCELLANEOUS EXERCISES 4

4.1. False.

4.2. w1 =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦, w′2 =
⎡⎢⎢⎣

1
−1
−1
1

⎤⎥⎥⎦ and w′3 =

⎡⎢⎢⎣
1
1

−1
−1

⎤⎥⎥⎦

4.3. (a)

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
1
0
1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
1
2
2

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (b)

⎧⎪⎪⎨⎪⎪⎩
1√
2

⎡⎢⎢⎣
1
0
1
0

⎤⎥⎥⎦ ,
1√
10

⎡⎢⎢⎣
−1
2
1
2

⎤⎥⎥⎦ ,
1√
15

⎡⎢⎢⎣
1

−2
−1
3

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

4.4. (b) Show f1, f2 and f3 are linearly independent. (c)

⎧⎨⎩
⎛⎝−10

2

⎞⎠ ,

⎛⎝ 6
−10

3

⎞⎠ ,

⎛⎝ 4
3
2

⎞⎠⎫⎬⎭
4.5. (a) Expanding 〈v1, O〉 = 〈v2, O〉 = 〈v3, O〉 = · · · = 〈vm, O〉 = 0.

(b) Consider w = k1v1 + k2v2 + · · · + knvn and show that k1 = (v1 · w) , . . . ,
kn = (vn · w)

4.6. (b)

⎧⎨⎩ 1√
2

⎡⎣ 0
1
1

⎤⎦ ,
1√
6

⎡⎣ 2
1
−1

⎤⎦ ,
1√
3

⎡⎣ 1
−1
1

⎤⎦⎫⎬⎭
4.7. (a)

√
39 (b) No
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(c) Yes (d)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ ,
1√
2

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ,
1√
2

⎛⎜⎜⎝
0
1
0

−1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

4.8. (a)
√
39 (b) No (c) Yes (d)

1√
2

(
0 1
0 −1

)
(e) λ1 = 1, λ2 = 1√

2
, λ3 = 0, λ4 = − 1√

2

4.9. (a)
√
17

(b) ŵ = w
‖w‖ where w = u− 〈u, q1〉 q1 − 〈u, q2〉q2 − 〈u, q3〉 q3

(c) Because u is linearly dependent on q1, q2, q3.

4.10. w1 =

⎡⎢⎢⎢⎢⎣
0
1
0
1
0

⎤⎥⎥⎥⎥⎦, w′2 =
⎡⎢⎢⎢⎢⎣

0
1
2

−1
0

⎤⎥⎥⎥⎥⎦ and w3 =

⎡⎢⎢⎢⎢⎣
0
0
0
0
1

⎤⎥⎥⎥⎥⎦
4.11. (a) and (b). We have v = [ 2, −1 ] and w = [ 1, 3

]
.

4.12.

{
1√
2
,
√
3x√
2

}
4.13. Check definitions (i) to (iv) of (4.1). (b) ‖A− B‖ = √9 = 3 (c) 31.65◦

4.14.
{
4− 10t + 4t2

}
4.15.

{
1, x− 1

2
, x2 − x+ 1

6

}
4.16. Show that condition (iv) of definition (4.1) fails.
4.17. Let u ∈ V where u = k1v1 + k2v2 + k3v3 + · · · + knvn. Show that kj =

〈
u, vj

〉
for

j = 1, 2, 3, . . . , n.

4.18.

{
1√
2
,
√
3
2
x,

√
5
8
(
3x2 − 1

)
,
√
7
8
(
5x3 − 3x

)}

4.19.

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1
0
2
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−2
1
1
4

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
5

−1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−4
2
2
−3

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

4.20. Let u = v then 〈u, v〉 = 〈u, u〉 = 0 gives u = O.
4.21.

〈
ku, v

〉 = k 〈u, v〉 = 0
4.22. Use the definition of orthonormal vectors.
4.23. (a) Use Proposition (4.5).

(b) Apply Minkowski’s inequality (4.7).
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� SOLUTIONS TO EXERCISES 5.1

1. (a) (3 1)T (b) (5 −1)T (c) (1
√
2)T (d) (−3 −2)T

2. (a) (3 5)T (b) (4 −4)T (c) (4 6)T (d) (6 8)T

3. (a)

⎛⎝ 6
11
9

⎞⎠ (b)

⎛⎝ 5
2

−9

⎞⎠ (c)

⎛⎝ 3π
7π
6π

⎞⎠ (d)

⎛⎝ 7/6
17/12
5/4

⎞⎠
5. (a) and (d) linear (b), (c) and (e) not linear
6. (a) linear (b) not linear
7. (a) linear (b) linear (c) not linear

� SOLUTIONS TO EXERCISES 5.2

1. (a) {O} (b)
{
r
(−1

1

) ∣∣∣∣ r ∈ R

}
(c) R2

(d)

⎧⎨⎩
⎛⎝ 0
a
b

⎞⎠ ∣∣∣∣∣∣ a ∈ R, b ∈ R

⎫⎬⎭ (e)

⎧⎨⎩ r

⎛⎝ 1
1
1

⎞⎠ ∣∣∣∣∣∣ r ∈ R

⎫⎬⎭
2. ker (T) = {O} and range(T) = Mnn

3. ker (T) = { c | c ∈ R} = P0 and range(T) = P1

� SOLUTIONS TO EXERCISES 5.3

1. (a) (i)
{
r
(−2

1

) ∣∣∣∣ r ∈ R

}
(ii) 1 (iii)

{(
a
a

) ∣∣∣∣ a ∈ R

}
(iv) 1

(b) (i) {O} (ii) 0 (iii) R3 (iv) 3

(c) (i)

⎧⎨⎩ s

⎛⎝−31
0

⎞⎠+ t

⎛⎝−50
1

⎞⎠ ∣∣∣∣∣∣ s ∈ R and t ∈ R

⎫⎬⎭ (ii) 2 (iii) R (iv) 1

(d) (i) P0 (ii) 1 (iii)
{
dx3 + ex2 + fx

∣∣ d, e and f ∈ R
}

(iv) 3
(e) {c | c ∈ R } = P0 (ii) 1 (iii) P2 (iv) 3

(f) (i)
{
ax3 + bx2 + cx+ d

∣∣∣∣ a = −4
3
b− 2c− 4d

}
(ii) 3 (iii) R (iv) 1

(g) (i) ker (T) =
{(

a b
−a −b

)}
(ii) 2 (iii) P1 (iv) 2
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2. Substitute the values obtained in question 1 into nullity (T)+ rank (T) = n.
The values of n for each part are as follows:
(a) n = 2 (b) n = 3 (c) n = 3 (d) n = 4 (e) n = 4 (f) n = 4
(g) n = 4

3. (i) B = {(−3 1 0 0 0)T , (3.2 0 −0.4 1 0)T , (−3.6 0 0.2 0 1)T
}

(ii) B′ = {(1 0 8/3)T , (0 1 2/3)T
}

� SOLUTIONS TO EXERCISES 5.4

3. (a) and (b) T is not one-to-one nor onto.
(c) T is one-to-one and onto.
(d) T is one-to-one but not onto.

17. T−1
[(

a
b

)]
= 1

3

(
a+ b
a− 2b

)

� SOLUTIONS TO EXERCISES 5.5

1. (a) A =
(
1 1
2 2

)
(b) A =

(
1 1

−1 −1
)

(c) A =
(
2 3
1 −5

)
(d) A =

⎛⎝ 1 1 1
1 −1 −1
2 1 −1

⎞⎠

(e) A =
⎛⎝ 2 −1 0

4 −1 3
7 −1 −1

⎞⎠ (f) A =

⎛⎜⎜⎝
1 −1 1 −3

−1 3 −7 −1
9 5 6 12
1 0 0 0

⎞⎟⎟⎠
(g) A = O4

2. (a) A =
(
1 −1
1 2

)
(b) A =

(
3 −2

−1 5

)
(c) A =

(
1 −1 −1
1 1 1

)
(d) A = O3

(e) A =
⎛⎝ −3 −5 −6−2 7 5

0 0 0

⎞⎠
3. A =

⎛⎝ 1 4
2 5
3 6

⎞⎠
4. A =

(
0 −1 −2
0 0 2

)
and T

(
2x2 + 3x+ 1

) = 3+ 4x
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5. (i) A =
⎛⎝ 0 1 0 0

0 0 2 0
0 0 0 3

⎞⎠ (ii) A =
⎛⎝ 0 0 0 3

0 0 2 0
0 1 0 0

⎞⎠ (iii) A =
⎛⎝ 0 0 1 0

0 2 0 0
3 0 0 0

⎞⎠
T
(−1+ 3x− 7x2 − 2x3

) = 3− 14x− 6x2.

6. A =
(
3 −1
7 −3

)
and T

((−3
1

))
=
(−2
−4
)

7.
{
v1 =

(
1/
√
2

1/
√
2

)
, v2 =

(−1/√2
1/
√
2

)}
and

1√
2

(
3
−1
)

8. A =
⎛⎝ 7/3 1
−10/3 −2
14/3 3

⎞⎠ and T
((

2
1

))
=
⎛⎝−2−1

5

⎞⎠

9. A =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ and
(
1 3
2 4

)

10. A =
(
0 −1
1 0

)
(i)−2 sin (x)+ 5 cos (x) (ii)−n sin (x)+m cos (x)

11. A =
⎛⎝ 1 3 9

0 1 6
0 0 1

⎞⎠ and T
(
q+ nx+mx2

) = q+ 3n+ 9m+ (n+ 6m) x+mx2

12. A =
⎛⎝ 0 −1 0

1 0 0
0 0 1

⎞⎠ (i) T (− sin (x)+ 4 cos (x)− 2ex) = −4 sin (x)− cos (x)− 2ex

(ii) T
(
m sin (x)+ n cos (x)+ pex

) = −n sin (x)+m cos (x)+ pex

13. A =
⎛⎝ 2 1 0

0 2 2
0 0 2

⎞⎠ and

T
(
ae2x + bxe2x + cx2e2x

) = (2a+ b
)
e2x + (2b+ 2c

)
xe2x + 2cx2e2x

� SOLUTIONS TO EXERCISES 5.6

1. (i)
(
1
0

)
and

(
0
2

)
(ii)
(
1
0

)
and

(
0
1

)
2. (a) 2ax+ b (b) 2ax (c) 2a (d) ax2 + bx

3.
(

3 1
−2 1

)
and

(
0 −1
5 4

)
.

(i)
(
8
3

)
(ii)
(−5

25

)
(iii)

(−17
53

)
(iv)

(
8

−1
)
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4.

⎛⎝ −6 3 −7
7 0 −2
11 −2 −5

⎞⎠ and

⎛⎝ 7 17 26
−2 4 5
−7 −16 −22

⎞⎠
(i)

⎛⎝−211
−8

⎞⎠ (ii)

⎛⎝ 119
21

−105

⎞⎠ (iii)

⎛⎝−151−85
243

⎞⎠ (iv)

⎛⎝−1731
54

⎞⎠
5. (a) (i)

⎛⎝ 0 2 1
1 1 0
1 0 0

⎞⎠ (ii)

⎛⎝ 0 0 1
0 1 1
1 2 0

⎞⎠ (iii)

⎛⎝ 1 0 0
2 1 0
2 4 1

⎞⎠ (iv)

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
S−1

(
p
) = S

(
p
) = cex + bxex + ax2ex (b) 2ex − 2xex + x2ex + C

6. (i)

⎛⎝ 1 0 0
0 1 0
0 0 0

⎞⎠ (ii)

⎛⎝ 1 0 0
0 1 0
0 0 0

⎞⎠ (iii)

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ (iv)

⎛⎝ 1 0 0
0 1 0
0 0 0

⎞⎠
(S ◦ T)

(
1+ 2x+ 3x2

) = 1+ 2x, (T ◦ S) (1+ 2x+ 3x2
) = 1+ 2x,

(T ◦ T)
(
1+ 2x+ 3x2

) = 1+ 2x + 3x2 and (S ◦ S) (1+ 2x+ 3x2
) = 1+ 2x

7. A =
(
1 −1
1 1

)
and A−1 = 1

2

(
1 1

−1 1

)
.

8. T−1
⎛⎝⎡⎣ x

y
z

⎤⎦⎞⎠ = 1
2

⎛⎝ x+ z
y− z
x− y

⎞⎠
9. T−1

(
p
) = T−1

(
ax3 + bx2 + cx+ d

) = a
4
x3 + b

3
x2 + c

2
x+ d

10. T−1
⎛⎝⎡⎣ x

y
z

⎤⎦⎞⎠ =
⎛⎝ x− z
2x+ y+ z
2x− y

⎞⎠
11. (a) Not Invertible (b) Not Invertible (c) Invertible, T−1

(
p
) = p

12. (i) No change.

13. (i) x1 =
(
0.3333
0.6667

)
, x2 =

(
0.5556
0.4444

)
, x3 =

(
0.4815
0.5185

)
, x4 =

(
0.5062
0.4938

)
and x5 =

(
0.4979
0.5021

)
.

(ii)
(
0.5
0.5

)

� SOLUTIONS TO MISCELLANEOUS EXERCISES 5

5.2. S =
[

2 −3 4
−1 1 0

]
5.3. f

([
x
y

])
=
(
x2

xy

)



BRIEF SOLUTIONS 591

5.4. (a) S =
(
0 3 2
3 −4 0

)
(b) T is not one-to-one. (c) T is onto

5.5. (a) S is a subspace of R2.

(b) (i) T ( �e1) =
[

1
−2
]
, T ( �e2) =

[−1
−3
]

(ii) A =
[

1 −1
−2 −3

]
(iii) w =

[−1
−2
]

5.6. (a) A =

⎛⎜⎜⎝
1
2

−1
2

−4
7
−8
1

2
−1
2
1

⎞⎟⎟⎠ (b)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
2

−1
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
5

−4
3

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

5.7. (d) ker T = t

⎛⎝−11
0

⎞⎠
5.8. (a) B =

⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ (b) T is onto

(c)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
−1
0
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (d) T is not one-to-one

5.9.

⎡⎣ 9
−3
2

⎤⎦
5.10.

⎡⎣ 1
−2
−4

⎤⎦
5.11. (a) We have T : R5 → R6 which givesm = 6 and n = 5. (b) 6

(c) T is not onto (d) T is one-to-one

5.12. For all real h and k provided h �= 0 and k �= 3
2
.

5.13. (a) zero function (c) ker (T) = Ae2x and dim is 1.
5.14. (c) dim

(
ker (T)

) = 1 and dim
(
image (T)

) = 2

5.15. Consider T
([

x
y

])
=
(
x− y
x− y

)
with v1 =

(
1
1

)
and v2 =

(
2
1

)
.

5.16. (b) A =

⎛⎜⎜⎝
0 3 0
0 0 2
1 0 0
0 1 1

⎞⎟⎟⎠ (c) 15− 2t + 2t2 + 4t3 (d) yes

5.17. (b) (ii) S =

⎡⎢⎢⎣
1 2 0
0 2 −3
1 0 1
1 0 0

⎤⎥⎥⎦
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5.18. (b)

⎡⎢⎢⎣
1/2
1/2
1
−1

⎤⎥⎥⎦ (c)

⎡⎢⎢⎣
1/2
1/2
0
0

−1/2
−1/2
0
0

0
0
1
0

0
0
1
1

⎤⎥⎥⎦ (d)

⎡⎢⎢⎣
0
0
0

−1

⎤⎥⎥⎦
5.19. (a) (i) f is a linear map (ii) f is not a linear map

(b) Rank
(
f
)+ Nullity

(
f
) = n

(c) f is not injective nor surjective
(d) f is not injective nor surjective.

A basis for ker
(
f
)
is

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
−1
1
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0

−1
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ and basis for image is

⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭.
5.20. Option C.

5.21. C = BA =
⎛⎝ 9 −6 15

20 −1 0
15 5 5

⎞⎠

5.22. (a)

⎛⎜⎜⎝
1
1
1

−1

⎞⎟⎟⎠ (b) det (A) = 27

(c) A basis for Im(φ) is

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭. No basis for ker (φ).

(d) φ is invertible since det (A) = 27 �= 0

5.23. (b) [T]B =
( −1 −1

1 −1
)

(c) [T]−1B = 1
2

( −1 1
−1 −1

)
(d) f (x) = 1

2
sin x− 5

2
cos x

5.26. True.

� SOLUTIONS TO EXERCISES 6.1

1. (a) 4 (b) 1 (c) 1 (d) 0
2. (a)−8 and−8 (b)−13 and−13 (c) det (A) = 0 and det (B) = 0
3. In both cases det (A) = det (B) = ad − bc.
4. 6 and−6.
5. x = 2, y = −2.
6. det

(
A2) = det (A)× det (A).

8. not linear
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� SOLUTIONS TO EXERCISES 6.2

1. (a)−117 (b) 1288 (c)−114
3. x = −13.38, 5.38

4. C =
⎛⎝ 7 42 −16

−5 −30 1
−15 −17 3

⎞⎠ , CT =
⎛⎝ 7 −5 −15

42 −30 −17
−16 1 3

⎞⎠,
A−1 = − 1

73

⎛⎝ 7 −5 −15
42 −30 −17

−16 1 3

⎞⎠
5. (a) A−1 =

(
3 −2

−13 9

)
(b) B−1 =

(
5 −7

−12 17

)

(c) C−1 = −1
7

(
1 −4

−3 5

)
(d)D−1 = − 1

147

⎛⎝ 33 37 32
60 45 27
18 38 13

⎞⎠
6. (a)−42 (b) 44 (c) 13 (d)−85
7. (a) 13 (b) 34.5 (c) 0
8. The place sign for a31, a56, a62 and a65 is 1,−1, 1 and−1 respectively. There is no a71

entry in a 6 by 6 matrix.
10. det (A) = 0
11. All real values of k provided k �= 3√−10.
14. 7
18. 1

� SOLUTIONS TO EXERCISES 6.3

1. (a) det (A) = −10 (b) det (B) = −1 (c) det (C) = 1 (d) det (D) = −1
(e) det (E) = −0.6 (f) det (F) = 1

2. (a) 6 (b) 6 (c) 6 (d)−72 (e) 240 000 (f)−945
(g) impossible

3. (a) det (A) = αβγ (b) det (B) = sin (2θ) (c) det (C) = xyz
4. −1.38(2 dp) and 3.63 (2 dp).
5. (a)−27 (b) 2 (c)−39
6. (a) 18 (b) 0
8. (a) 7 (b)−5/378 (c) 600
9. (a) 96 (b) 995 328 (c) 1
10. invertible
11. (a) and (c) are negative. (b) is zero.
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� SOLUTIONS TO EXERCISES 6.4

1. (a) x1 = 1, x2 = −1 and x3 = 3 (b) x1 = 2, x2 = 1 and x3 = −1
(c) x1 = −2, x2 = 3 and x3 = 2 (d) x1 = −2, x2 = −3, x3 = 1

2. x1 = 1, x2 = −2, x3 = 3, x4 = −4
3. 15 984
4. L = I, U = A.

5. (a) L =
⎛⎝ 1 0 0

3 1 0
4 5 1

⎞⎠ , U =
⎛⎝ 1 2 3

0 1 5
0 0 1

⎞⎠ (b) A−1 =
⎛⎝ 84 −37 7
−58 26 −5
11 −5 1

⎞⎠
(c) (i) x1 = 31, x2 = −21 and x3 = 4 (ii) x1 = −181, x2 = 131 and x3 = −25

� SOLUTIONS TO MISCELLANEOUS EXERCISES 6

6.1. det (A) = 165
6.2. det (E) = −20, det (F) = 30, det (EF) = −600 and det (E+ F) = −6
6.3. 64

6.4. (a) det (AB) = det (A) det (B) (b) det
(
A−1

) = 1
det (A)

provided det (A) �= 0

(c) det (A+ B) = No Formula (d) det (3A) = 3n det (A)

(e) det
(
AT) = det (A)

6.5. 56

6.6. x2 = det

⎛⎝ 2 8 1
3 1 −1
4 10 3

⎞⎠/det

⎛⎝ 2 1 1
3 −2 −1
4 −7 3

⎞⎠
6.7. x2 = 1

210
6.8. x1 = 0, x2 = −2 and x3 = 2
6.9. −448
6.10. 0

6.11. (a) det (A) = −10 (b) A−1 = 1
10

⎛⎝ −2 −14 6
1 12 −3
3 −4 1

⎞⎠
(c) det (A) = −10

6.12. (i) A−1 =
⎛⎝ 1 −1 2

1 2 0
0 −1 1

⎞⎠
(ii)
(
At)−1 =

⎛⎝ 1 1 0
−1 2 −1
2 0 1

⎞⎠, (3A)−1 = 1
3

⎛⎝ 1 −1 2
1 2 0
0 −1 1

⎞⎠, (A2)−1 =
⎛⎝ 0 −5 4

3 3 2
−1 −3 1

⎞⎠
6.13. 3
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6.14. For the 2 by 2 matrix: adjA =
[
1 1
1 1

]
, det (A) = 0 which means that A−1

does not exist. 3 by 3 gives adjA =
⎛⎝ 1 18 −11

1 13 −8
0 −2 1

⎞⎠, detA = −1 and

A−1 =
⎛⎝ −1 −18 11
−1 −13 8
0 2 −1

⎞⎠.
6.15. (a)−16 means that A is invertible. (b) det

(
AT) = −16 (c) det

(
A−1

) = − 1
16

6.16. D1 = −7, D2 = 7, D3 = 0
6.17. (a) det (A) = −24 (b) det (B) = 0 (c) det (C) = −2
6.18. (a) det(A) = −17, det (B) = −12 , det (AB) = 204, det

(
A3) = −4913

(b) Take the determinants of AA−1 = I to show the required result.
6.19. (a) − (u1v1 + u2v2 + u3v3) (b) 100− (u1v1 + u2v2 + u3v3)
6.20.

(
a− b

)
(a− c)

(
c− b

)
6.21. 16

6.22.
9
4

6.23. (a) (i) 8 (ii) 18 (b) (i) 162 (ii)−3
5

(iii)−12
5

6.24. (a) (i) 24 (ii) 2abc (iii) 432 (b) (i) 4 (ii)−2 (iii)−3
2

6.25. (a) (i) 8/9 (ii) 12 (iii) 1 (b) 2
6.26. (a) 3 (b) 21 (c) 8 (d) 7
6.27. adfpru

6.28. x = 1
3a− 2

, y = 3a− 3
3a− 2

, z = 1− a
3a− 2

6.29. Apply this det (A1A2A3 · · ·An) = det (A1) det (A2) det (A3) · · · det (An) to get
det
(
A5) = det (A) det (A) · · ·det (A) = 0

6.30. (a) det (A2) = 2!, det (A3) = 3! = 6 and det (A4) = 4! = 24 (b) det (An) = n!

6.31. X−1 = 1
ACF

⎡⎣CF −BF BE− CD
0 AF −AE
0 0 AC

⎤⎦
6.32. y = 1

C
6.33. −125
6.34. k �= 3, k �= 4 or k �= −1
6.35. 24/157

6.36. Not possible
6.37. Use properties of determinants.
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6.38. Convert the given matrix into an upper triangular matrix by swapping rows. The
number of swaps is �n/2�, whichmeans wemultiply the resulting determinant which
is the product of the leading diagonal by (−1)�n/2�.

� SOLUTIONS TO EXERCISES 7.1

1. (a) λ1 = −4, u =
(−3/11

1

)
and λ2 = 7, v =

(
1
0

)
(b) λ1 = 1, u =

(
1
2

)
and λ2 = 3, v =

(
1
1

)
(c) λ1 = −3, u =

(−2
1

)
and λ2 = 3, v =

(
1
1

)

2. (a) λ1 = 4, u = s

⎛⎝ 20
9
15

⎞⎠ and λ2 = −5, v = s

⎛⎝−2/30
1

⎞⎠
3. λ1 = 2, u = s

(−1
1

)
, E2 =

{
s
(−1

1

) }
and λ2 = 4 v = s

(
1
1

)
, E4 =

{
s
(
1
1

)}
.

4. λ1 = −2, u = s
(
2
7

)
, E−2 =

{
s
(
2
7

) }
and λ2 = 3, v = s

(
1
1

)
, E3 =

{
s
(
1
1

)}
A basis vector for E−2 is

(
2
7

)
and a basis vector for E3 is

(
1
1

)
.

5. (a) The eigenvalues of A are λ1 = −7, λ2 = 6.
(b) The eigenvalues of B are λ3 = −14, λ4 = 12.
(c) If t is the eigenvalue of matrix B and λ is the eigenvalue of matrix A then t = 2λ.

8. λ1 = 1, u = s

⎛⎝ 1
1

−2

⎞⎠, basis vector is
⎛⎝ 1

1
−2

⎞⎠. λ2 = 4, v = s

⎛⎝ 1
1
1

⎞⎠,
basis vector is

⎛⎝ 1
1
1

⎞⎠. λ3 = −1, w = s

⎛⎝−11
0

⎞⎠, basis vector is
⎛⎝−11

0

⎞⎠.

� SOLUTIONS TO EXERCISES 7.2

The variables are non-zero in the following answers.

1. A basis vector for E3 is
(

1
−1
)
which corresponds to λ1, 2 = 3.

2. A basis vector for E−5 is
(
1
1

)
which corresponds to λ1, 2 = −5.
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5. A basis vector for E1 is

⎛⎝ 0
0
1

⎞⎠ which correspond to λ1, 2, 3 = 1.

6. (a) Basis vectors for E5 is B =
⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠⎫⎬⎭ which corresponds to λ1, 2 = 5 and a

basis vector for E2 is B =
⎧⎨⎩
⎛⎝ 0
0
1

⎞⎠⎫⎬⎭ which corresponds to λ3 = 2.

(b) For λ1 = 1, B =
⎧⎨⎩
⎛⎝ 1
0
0

⎞⎠⎫⎬⎭. For λ2 = 5, B =
⎧⎨⎩
⎛⎝ 1
2
0

⎞⎠⎫⎬⎭ and for λ3 = 9,

B =
⎧⎨⎩
⎛⎝ 7
4
16

⎞⎠⎫⎬⎭
(c) For λ1, 2, 3 = −2 and a basis is B =

⎧⎨⎩
⎛⎝ 0
0
1

⎞⎠⎫⎬⎭
7. (a) λ1, 2 = 7, u = s

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ and λ3, 4 = 5, v = s

⎛⎜⎜⎝
−1
−2
1
0

⎞⎟⎟⎠

(b) λ1, 2, 3 = 1, u =

⎛⎜⎜⎝
s
t
r
0

⎞⎟⎟⎠ = s

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠+ r

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ and λ4 = 3, v = s

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠

(c) λ1, 2, 3, 4 = 3, u = s

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠+ r

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠+ q

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠
11. (a) (i) Eigenvalues λ1 = 1, λ2 = 2, λ3 = 3 and λ4 = 4.

(ii) Eigenvalues of A5 are (λ1)
5 = 1, (λ2)

5 = 32, (λ3)
5 = 243 and (λ4)

5 = 1024

(iii) Eigenvalues of A−1 are (λ1)
−1 = 1, (λ2)

−1 = 1
2
, (λ3)

−1 = 1
3
and

(λ4)
−1 = 1

4
(iv) det (A) = 24 (v) tr (A) = 10
(b) (i) λ1 = −1, λ2 = 6, λ3 = −8 and λ4 = 3.
(ii) (λ1)

5 = −1, (λ2)
5 = 7776, (λ3)

5 = −32768 and (λ4)
5 = 243

(iii) Eigenvalues of A−1 are (λ1)
−1 = −1, (λ2)

−1 = 1
6
, (λ3)

−1 = −1
8

and (λ4)
−1 = 1

3
(iv) det (A) = 144 (v) tr (A) = 0
(c) (i) λ1 = 2, λ2 = −4, λ3 = −7 and λ4 = 0.
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(ii) Eigenvalues of A5 (λ1)
5 = 32, (λ2)

5 = −1024, (λ3)
5 = −16807

and (λ4)
5 = 0

(iii) A−1 does not exist.
(iv) det (A) = 0 (v) tr (A) = −9

12. p (A) = A2 − 3A+ 4I = O and A−1 = 1
4

(
1 −1
2 2

)
13. A2 =

(
51 50
30 31

)
and A3 =

(
456 455
273 274

)
14. A−1 = −1

4
(
A2 − 4A− I

)
and A4 = 17A2 − 16I

� SOLUTIONS TO EXERCISES 7.3

1. (i) λ1 = 1, u =
(
1
0

)
and λ2 = 2, v =

(
0
1

)
(ii) P =

(
1 0
0 1

)
= I,D =

(
1 0
0 2

)
= A

(b) (i) λ1 = 0, u =
(−1

1

)
and λ2 = 2, v =

(
1
1

)
(ii) P =

( −1 1
1 1

)
,D =

(
0 0
0 2

)
(c) (i) λ1 = 3, u =

(
1

−4
)
and λ2 = 4, v =

(
0
1

)
(ii) P =

(
1 0

−4 1

)
, D =

(
3 0
0 4

)
(d) (i) λ1 = 1, u =

(
2

−1
)
and λ2 = 4, v =

(
1
1

)
(ii) P =

(
2 1
−1 1

)
,D =

(
1 0
0 4

)
2. (i) (a)

(
1 0
0 32

)
(b)
(
16 16
16 16

)
(c)
(

243 0
3124 1024

)
(d)
(
342 682
341 683

)
(ii)
(

1/
√
3 0

2− 4/
√
3 1/2

)

3. (a) (i) λ1 = 1, u =
⎛⎝ 1
0
0

⎞⎠, λ2 = 2, v =
⎛⎝ 0
1
0

⎞⎠ and λ3 = 3, w =
⎛⎝ 0
0
1

⎞⎠
(ii) P = I, D =

⎛⎝ 1 0 0
0 2 0
0 0 3

⎞⎠ (iii) A4 =
⎛⎝ 1 0 0

0 16 0
0 0 81

⎞⎠
(b) (i) λ1 = −1, u =

⎛⎝ 1
0
0

⎞⎠, λ2 = 4, v =
⎛⎝ 4
5
0

⎞⎠ and λ3 = 5, w =
⎛⎝ 2
3
1

⎞⎠
(ii) P =

⎛⎝ 1 4 2
0 5 3
0 0 1

⎞⎠,D =
⎛⎝ −1 0 0

0 4 0
0 0 5

⎞⎠ (iii) A4 =
⎛⎝ 1 204 636

0 256 1107
0 0 625

⎞⎠
(c) (i) λ1 = 2, u =

⎛⎝−124
1

⎞⎠, λ2 = 5, v =
⎛⎝ 0

1
−2

⎞⎠ and λ3 = 6, w =
⎛⎝ 0
0
1

⎞⎠
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(ii) P =
⎛⎝ −12 0 0

4 1 0
1 −2 1

⎞⎠,D =
⎛⎝ 2 0 0

0 5 0
0 0 6

⎞⎠ (iii) A4 =
⎛⎝ 16 0 0

203 625 0
554 1342 1296

⎞⎠
4. All (a) (b) and (c) are diagonalizable.

5. D = P−1AP =
(
5 0
0 −1

)

6. A is diagonalizable,D =
⎛⎝ −2 0 0

0 −5 0
0 0 −1

⎞⎠, P =
⎛⎝ 1 5 0

2 4 0
0 0 1

⎞⎠,
A3 =

⎛⎝ −203 97.5 0
−156 70 0

0 0 −1

⎞⎠
7. (a) Only one eigenvalue λ = 3 and one independent eigenvector u =

(
1

−1
)
.

(b) Only one independent e.vector u =
(−2

1

)
to the only eigenvalue λ = −4.

(c) Only 1 linearly independent eigenvector
(
1 0 0

)T
8. (i) A11 =

( −2050 1366
−6147 4097

)
(ii)

1
2

( −5 2
−9 4

)
12.

(
1 0
0 1

)
+
(
3 5
0 2

)
t +

(
9 25
0 4

)
t2

2! +
(
27 95
0 8

)
t3

3! +
(
81 325
0 16

)
t4

4! + · · ·

13. P =
(

λ1
1

λ2
1

)
, P−1 = 1

λ1 − λ2

(
1 −λ2
−1 λ1

)
,D =

(
λ1 0
0 λ2

)
where λ1 = 1+√5

2
and λ2 = 1−√5

2
.

19. O

� SOLUTIONS TO EXERCISES 7.4

1. (a)Q = I andD = A (b)Q = 1√
2

(
1 1
−1 1

)
,D =

(
0 0
0 2

)
(c)Q = 1√

2

(
1 1
−1 1

)
,D =

(
1 0
0 3

)
(d) Q = 1√

13

(
3 −2
2 3

)
,D =

(
13 0
0 −13

)
2. (a)Q = 1√

10

( −1 3
3 1

)
, D =

(
0 0
0 10

)
(b)Q = 1√

6

(
2
√
2√

2 −2
)
,D =

(
4 0
0 1

)
(c)Q = 1√

12

( −3 √
3√

3 3

)
,D =

( −6 0
0 −2

)
(d) Q = 1

2

( −1 √
3√

3 1

)
,

D =
( −1 0

0 7

)
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3. (a)Q = I andD = A (b)Q =
⎛⎝ 1/

√
6 1/

√
2 1/

√
3

1/
√
6 −1/√2 1/

√
3

−2/√6 0 1/
√
3

⎞⎠,D =
⎛⎝ 0 0 0

0 0 0
0 0 6

⎞⎠
(c)Q = 1√

2

⎛⎝ √2 0 0
0 1 1
0 −1 1

⎞⎠,D =
⎛⎝ 0 0 0

0 0 0
0 0 2

⎞⎠
4. (a)Q =

⎛⎝ −2/
√
6 0 1/

√
3

1/
√
6 −1/√2 1/

√
3

1/
√
6 1/

√
2 1/

√
3

⎞⎠,D =
⎛⎝ −1 0 0

0 −1 0
0 0 5

⎞⎠
(b)Q =

⎛⎝ −1/
√
2 −1/√6 1/

√
3

1/
√
2 −1/√6 1/

√
3

0 2/
√
6 1/

√
3

⎞⎠, D =
⎛⎝ 1 0 0

0 1 0
0 0 4

⎞⎠
(c)Q =

⎛⎝ −1/
√
2 1/3

√
2 2/3

1/
√
2 1/3

√
2 2/3

0 −4/3√2 1/3

⎞⎠, D =
⎛⎝ −9 0 0

0 −9 0
0 0 0

⎞⎠

8. Q =

⎛⎜⎜⎜⎝
b√

b2 + (λ1 − a)2
λ2 − c√

(λ2 − c)2 + b2

λ1 − a√
b2 + (λ1 − a)2

b√
(λ2 − c)2 + b2

⎞⎟⎟⎟⎠ where λ1 and λ2 are eigenvalues of A.

9. By taking the inverse of QTAQ = D show thatD−1 = Q−1A−1Q.

� SOLUTIONS TO EXERCISES 7.5

1. (a) U = I, D =
(
1 0
0 2

)
, V = I (b) U = 1√

5

(
1 2
2 −1

)
, D =

(
9 0
0 1

)
,

VT = 1√
5

(
1 2

−2 1

)

(c) U =
⎛⎝ 1/

√
30 −2/√5 1/

√
6

2/
√
30 1/

√
5 2/

√
6

5/
√
30 0 −1/√6

⎞⎠, D =
⎛⎝ √6 0

0 1
0 0

⎞⎠, VT = 1√
5

(
1 2

−2 1

)

(d) U =
(

6/
√
180 −2/√5

12/
√
180 1/

√
5

)
, D =

( √
6 0 0
0 1 0

)
,

VT =
⎛⎝ 1/

√
30 2/

√
30 5/

√
30

−2/√5 1/
√
5 0

1/
√
6 2/

√
6 −1/√6

⎞⎠
(e) U = 1√

10

(
1 3
3 −1

)
, D =

( √
20 0
0 0

)
, VT = 1√

2

(
1 1
1 −1

)

(f) U = 1√
10

(
1 3
3 −1

)
, D =

( √
30 0 0
0 0 0

)
, VT =

⎛⎝ 1/
√
3 1/

√
3 1/

√
3

1/
√
2 −1/√2 0

1/
√
6 1/

√
6 −2/√6

⎞⎠
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� SOLUTIONS TO MISCELLANEOUS EXERCISES 7

7.1. (a) λ 1 = 1 and λ2 = 3 (b) Q =
(
1 1
0 2

)
, D =

(
1 0
0 3

)
(c) A5 =

(
1 121
0 243

)
7.2. A =

(
4 5
−3 −4

)

7.3. λ 1, 2 = −2 and λ3 = 4, E−2 is

⎧⎨⎩
⎛⎝−10

1

⎞⎠ ,

⎛⎝−11
0

⎞⎠⎫⎬⎭, E4 is
⎧⎨⎩
⎛⎝ 1
1
1

⎞⎠⎫⎬⎭
7.4. λ−1 and linearly independent eigenvectors.

7.5. (a) S =
(
5 1
1 −3

)
, � =

(
8 0
0 −8

)
(b) B = 1

4

(
7 5
3 −7

)
= 1

4
A

7.6. (a) (i) λ1 = 3, u =
(
3
1

)
and λ2 = 1, v =

(
1
1

)
(ii) P =

(
3 1
1 1

)
(iii) The eigenvalues of A2008 are λ1 = 1, λ2 = 32008 and det

(
A2008) = 32008.

(b) We have three linearly independent eigenvectors for a 3 by 3 matrix so the matrix
is diagonalisable.

7.7. (a) S =
( −1 0

10 1

)
(b) S =

(
0 1
1 0

)
7.8. Eigenvalues are distinct λ1 =

√
2 and λ2 = −

√
2 therefore the matrix B is diagonal-

isable. The matrix P =
(
1+√2 1−√2

1 1

)
and D =

( √
2 0
0 −√2

)
.

7.9. (a)

⎛⎝4,
⎛⎝ 0
1
1

⎞⎠⎞⎠ (b) P =
⎛⎝ 2 1 0
−1 0 1
1 0 1

⎞⎠ and D =
⎛⎝ 2 0 0

0 4 0
0 0 4

⎞⎠
7.10. Show that uTv = 0 by taking the transpose of Au = λ1u.

7.11. (a) λ1 = 2, u =
(

1
−2
)
and λ2 = 7, v =

(
2
1

)
(b)

⎡⎢⎢⎣
1
1
1

−1

⎤⎥⎥⎦ with eigenvalue 2

7.12. (a) λ1 = 1, u =
⎛⎝−11

1

⎞⎠ , λ2 = 2, v =
⎛⎝ 0
1
1

⎞⎠ and λ3 = 0, w =
⎛⎝ 1
−1
0

⎞⎠
(b) We have distinct eigenvalues therefore A is diagonalizable.

7.13. (a) (i) Substitute these into Ax = λx. (ii)Q =
⎛⎝ 1/

√
6 1/

√
2 1/

√
3

1/
√
6 −1/√2 1/

√
3

−2/√6 0 1/
√
3

⎞⎠
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(iii) A3 =
⎛⎝ 9 9 9

9 9 9
9 9 9

⎞⎠
(b) Show that they have the same pBT (λ) = pB (λ).

7.14. (b) λ1 = 3 (c) P =
⎛⎝ 1 −1 −2

1 0 1
1 1 0

⎞⎠, P−1 = 1
4

⎛⎝ 1 2 1
−1 −2 3
−1 2 −1

⎞⎠
7.15. (a) P =

⎛⎝−14
2

1
0
1

−1
1
0

⎞⎠, P−1 =
⎛⎝ 1 1 −1
−2 −2 3
−4 −3 4

⎞⎠ , P−1AP =
⎛⎝ 5 0 0

0 3 0
0 0 3

⎞⎠
(b) Check p (A) = (A− 5I) (A− 3I)2 = O

7.16. (b) Real eigenvalues of A are t1 = 1 and t2 = 9. A basis for E1 is

⎛⎜⎜⎝
0
0
9
−1

⎞⎟⎟⎠.
7.17. λ1, 2 = 1, λ3, 4 = −1 and λ5 = −3
7.18. (a) λ1 = 0, λ2 = 1 and λ3 = 3

(b) u =
⎛⎝−11
−1

⎞⎠ , v =
⎛⎝ 1

0
−1

⎞⎠ , w =
⎛⎝ 1
2
1

⎞⎠
(c) β =

⎧⎨⎩
⎛⎝ 1
2
1

⎞⎠ ,

⎛⎝ 1
0

−1

⎞⎠ ,

⎛⎝−11
−1

⎞⎠⎫⎬⎭, D =
⎛⎝ 3 0 0

0 1 0
0 0 0

⎞⎠
(d) S = (w v u) =

⎛⎝ 1 1 −1
2 0 1
1 −1 −1

⎞⎠
(e) S−1 = 1

6

⎛⎝ 1 2 1
3 0 −3

−2 2 −2

⎞⎠
(f) β ′ =

⎧⎨⎩ 1√
6

⎛⎝ 1
2
1

⎞⎠ ,
1√
2

⎛⎝ 1
0

−1

⎞⎠ ,
1√
3

⎛⎝−11
−1

⎞⎠⎫⎬⎭
(g) S′ =

⎛⎝ 1/
√
6 1/

√
2 −1/√3

2/
√
6 0 1/

√
3

1/
√
6 −1/√2 −1/√3

⎞⎠
(h)
(
S′
)−1 =

⎛⎝ 1/
√
6 2/

√
6 1/

√
6

1/
√
2 0 −1/√2

−1/√3 1/
√
3 −1/√3

⎞⎠
7.19. (a) S =

(
1 b
0 c− a

)
, � =

(
a 0
0 c

)
(b) A1000 =

(
a1000 b

(
c999 + c998a+ c997a2 + · · · + ca998 + a999

)
0 c1000

)
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7.20. (d) The algebraic multiplicity of λ1 = 1 is one and λ2, 3 = 2 is two.
Matrix A is diagonalizable if and only if λ1 = 1 has geometric multiplicity of 1
and λ2, 3 = 2 has geometric multiplicity of 2.

(e) (i) is not diagonalizable (ii) P =
⎛⎝ 1 1 −1

1 0 1
1 1 0

⎞⎠
7.21. (b) ŵ1 = 1√

2

⎡⎣ 0
1
1

⎤⎦, ŵ′2 = 1√
6

⎡⎣ 2
1

−1

⎤⎦ and ŵ′3 = 1√
3

⎡⎣ 1
−1
1

⎤⎦
(c) (i) λ3 − 6λ2 − 15λ− 8 = (λ+ 1)2 (λ− 8) = 0. The eigenvalues are λ1, 2 = −1

and λ3 = 8.

(ii)

⎧⎨⎩
⎛⎝ 1
−4
1

⎞⎠ ,

⎛⎝ 1
0

−1

⎞⎠ ,

⎛⎝ 2
1
2

⎞⎠⎫⎬⎭
(c) Consider k1v1 + k2v2 + k3v3 = O. Prove that k1 = k2 = k3 = 0.

7.22. (b) See chapter 4.

(c) (i) λ1 = 4 and λ2 = 6 (ii) λ3 = 0, w =

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠ and λ4 = 2, x =

⎛⎜⎜⎝
0
1
0

−1

⎞⎟⎟⎠

(iii) P = 1√
2

⎛⎜⎜⎝
1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎞⎟⎟⎠, Q = PT = 1√
2

⎛⎜⎜⎝
1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

⎞⎟⎟⎠,

� =

⎛⎜⎜⎝
4 0 0 0
0 6 0 0
0 0 0 0
0 0 0 2

⎞⎟⎟⎠
7.23. X = 1√

5

(
2x− y

)
and Y = 1√

5

(
x+ 2y

)
. The diagonal form is

3x2 + 4xy+ 6y2 = 2X2 + 7Y2

7.24. X = 1√
3

(
x+ y− z

)
, Y = 1√

2

(
y− x

)
and Z = 1√

6

(
x + y+ 2z

)
.

The diagonal form is 2xy+ 4xz + 4yz + 3z2 = −X2 − Y2 + 5Z2.
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