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Preface

In the second part of the 20th century, algebraic methods have emerged as
a powerful tool to study theories of physical phenomena, especially those of
quantal systems. The framework of Lie algebras, initially introduced by So-
phus Lie in the last part of the 19th century, has been considerably expanded
to include graded Lie algebras, infinite-dimensional Lie algebras, and other
algebraic constructions. Algebras that were originally introduced to describe
certain properties of a physical system, in particular behavior under rotations
and translations, have now taken center stage in the construction of physical
theories.

This book contains a set of notes from lectures given at Yale Univer-
sity and other universities and laboratories in the last 20 years. The notes
are intended to provide an introduction to Lie algebras at the level of a
one-semester graduate course in physics. Lie algebras have been particularly
useful in spectroscopy, where they were introduced by Eugene Wigner and
Giulio Racah. Racah’s lectures were given at Princeton University in 1951
(Group Theory and Spectroscopy) and they provided the impetus for the
initial applications in atomic and nuclear physics. In the intervening years,
many other applications have been made. This book contains a brief account
of some of these applications to the fields of molecular, atomic, nuclear, and
particle physics. The application of Lie algebraic methods in Physics is so
wide that often students are overwhelmed by the sheer amount of material to
absorb. This book is intended to give a basic introduction to the method and
how it is applied in practice, with emphasis on bosonic systems as encoun-
tered in molecules (vibron model), and in nuclei (interacting boson model),
and to fermionic systems as encountered in atoms (atomic shell model), and
nuclei (nuclear shell model), and hadrons (quark model). Exactly solvable
problems in quantum mechanics are also discussed.

Associated with a Lie algebra there is a Lie group. Although the emphasis
of these lecture notes is on Lie algebras, a chapter is devoted to Lie groups
and to the relation between Lie algebras and Lie groups.

Many exhaustive books exist on the subject of Lie algebras and Lie groups.
Reference to these books is made throughout, so that the interested stu-
dent can study the subject in depth. A selected number of other books, not
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explicitly mentioned in the text, are also included in the reference list, to
serve as additional introductory material and for cross-reference.

In the early stages of preparing the notes, I benefited from many conversa-
tions with Morton Hamermesh, Brian Wybourne, Asim Barut, and Jin-Quan
Chen, who wrote books on the subject, but are no longer with us. This book
is dedicated to their memory. I also benefited from many conversations with
Robert Gilmore, who has written a book on the subject, and with Phil El-
liott, Igal Talmi, Akito Arima, Bruno Gruber, Arno Böhm, Yuval Ne’eman,
Marcos Moshinsky, and Yuri Smirnov, David Rowe, who have made major
contributions to this field.

I am very much indebted to Mark Caprio for a critical reading of the
manuscript, and for his invaluable help in preparing the final version of these
lecture notes.

New Haven Francesco Iachello
May 2006
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12.6.1 Pöschl-Teller Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



XII Contents

12.6.2 Morse Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.6.3 Lattice of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



List of Symbols

A Abelian algebra
[, ]+ anticommutator
{, } anticommutator
B basis (bosons)
F basis (fermions)
∈ belongs to
b boson annihilation operator
b† boson creation operator
〈| bra
Ci(g) Casimir operator of g
[, ] commutator
C complex
⊃ contains
⊂ contained in
≡ defined as
Der derivation
dim dimension of the representation
⊕ direct sum
DS dynamic symmetry
Xα element of an algebra
� entry in Young tableau
� equal to
〈〉 expectation value
↓ exp exponential map
a fermion annihilation operator
a† fermion creation operator
\/ Gel’fand pattern
≈ homomorphic groups
∩ intersect
IRB irreducible basis
∼ isomorphic algebras
〈|〉 isoscalar factors
|〉 ket
↓ labels of the representation



XIV List of Symbols

∇2 Laplace operator
G Lie algebra
g Lie algebra
G Lie group
V linear vector space
◦ long root
F number field
O octonion
α(+) positive root
Q quaternion
〈‖‖〉 reduced matrix elements
· scalar product
⊕s semidirect sum
• short root
SGA spectrum generating algebra
⊗ tensor product
⊕ tensor sum
|0〉 vacuum
L vector space



1 Basic Concepts

1.1 Definitions

The key notion in the definition of Lie algebras is that of the commutator
(or bracket), denoted by [, ]. The commutator of X and Y is defined as

[X,Y ] = XY − Y X . (1.1)

It satisfies the relations

[X,X] = 0; [X,Y ] = −[Y,X] . (1.2)

Another key notion is that of number field, F . The number fields of inter-
est are: Real, R, Complex, C, Quaternion, Q, and Octonion, O. Since these
lecture notes are intended primarely for applications to quantal systems,
where the basic commutation relations between coordinates and momenta
are

[

x,
1
i

∂

∂x

]

= i , (1.3)

only real and complex fields will be considered. Although formulations of
quantum mechanics in terms of quaternions and octonions have been sug-
gested, Lie algebras over the quaternion and octonion number fields will not
be discussed here.

1.2 Lie Algebras

Lie algebras are named after the Norwegian mathematician Sophus Lie (1842-
1899). Most of what we know about the original formulation comes from Lie’s
lecture notes in Leipzig, as collected by Scheffers. [S. Lie and G. Scheffers,
Vorlesungen über Kontinuerliche Gruppen, Leipzig, 1893].

A set of elements Xα(α = 1, . . . , r) is said to form a Lie algebra G , written
as Xα ∈ G, if the following axioms are satisfied:
Axiom 1 The commutator of any two elements is a linear combination of
the elements in the Lie algebra

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 1–13 (2006)
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[Xρ,Xσ] =
∑

τ

cτ
ρσXτ . (1.4)

Axiom 2. The double commutators of three elements satisfy the Jacobi iden-
tity

[Xρ, [Xσ,Xτ ]] + [Xσ, [Xτ ,Xρ]] + [Xτ , [Xρ,Xσ]] = 0 . (1.5)

The coefficients cτ
ρσ are called Lie structure constants. They define the

Lie algebra. They satisfy
cτ
ρσ = −cτ

σρ (1.6)

and
cµ
ρσ cν

µτ + cµ
στ cν

µρ + cµ
τρ cν

µσ = 0 . (1.7)

A tensor notation with covariant, Xρ..., and contravariant, Xρ..., indices has
been used in (1.4)–(1.7) and will be used in the remaining part of this chapter.
In this notation, the structure constants cτ

ρσ are rank-3 tensors with one
contravariant and two covariant indices. The outer product of two tensors,
for example two covariant vectors, Xρ and Yσ, is written XρYσ. The inner
product of two tensors, for example two vectors, is written XρY

ρ. Also, unless
otherwise specified, a summation convention over repeated indices will be
used

cτ
ρσXτ ≡

∑

τ

cτ
ρσXτ . (1.8)

Algebras are usually denoted by script (calligraphic) letters, G, or by
lowercase letters, g. The associated Lie groups, to be discussed in Chap. 3,
are usually denoted by capital letters, G. However, often no distinction is
made between groups and algebras and the same letter is used for both.
Unless otherwise specified, the notation lowercase-capital will be used in these
notes.

The r elements, Xα, span a r-dimensional linear vector space L. The
definition given above in an ‘operational’ definition. A formal definition is:

Definition 1. A vector space L over a number field F , with an operation
L×L → L, denoted [X,Y ] and called the commutator of X and Y , is called
a Lie algebra over F if the following axioms are satisfied:

(1) The operation is bilinear.
(2) [X,X] = 0 for all X in L.
(3) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (X,Y,Z ∈ L).

The properties of bilinearity, i.e., [aX + bY, Z] = a [X,Z] + b [Y,Z] and
[X, bY + cZ] = b [X,Y ]+c [X,Z], and of vanishing [X,X] = 0 together guar-
antee the antisymmetry property (1.2) of the commutator. The closure of
L under the commutator (L × L → L) gives Axiom 1 above for the gener-
ators. Property (3) gives Axiom 2 above. [J.E. Humphreys, Introduction to
Lie Algebras and Representation Theory, Graduate Texts in Mathematics,
Springer-Verlag, 1972.]
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A Lie algebra is called “real” if the field F is R, it is called “complex” if
F is C. Real Lie algebras have real structure constants, while complex Lie
algebras have structure constants which can be real or complex.

Example 1. The algebra

[X1,X2] = X3 , [X2,X3] = X1 , [X3,X1] = X2 (1.9)

is a real Lie algebra with three elements (r = 3).This is the angular momen-
tum algebra in three dimensions, so(3).

Example 2. The algebra

[X1,X2] = X3 , [X2,X3] = −X1 , [X3,X1] = X2 (1.10)

is also a real Lie algebra with three elements (r = 3). This is the Lorentz
algebra in 2 + 1 dimensions, so(2, 1).

Note the difference between the two (a sign in the commutation relations).

1.3 Change of Basis

It is possible to change the basis

X ′
σ = aρ

σ Xρ (1.11)

where aρ
σ is non-singular. The new commutation relations of the algebra are

[X ′
ρ, X ′

σ] = c′ τρσ X ′
τ . (1.12)

From (1.4) and (1.11), the new structure constants c′τρσ are obtained from the
old structure constants cκ

νλ by solving the set of equations

c′ τρσ aκ
τ = aν

ρ aλ
σ cκ

νλ . (1.13)

Particularly simple is the change of basis in which each element is multiplied
by a real number (sometimes called a normalization trasformation).

Example 3. The transformation

X ′
1 =

√
2X1 , X ′

2 =
√

2X2 , X ′
3 = X3 (1.14)

changes the commutation relations of the Lie algebra so(3) into

[X ′
1,X

′
2] = 2X ′

3 ; [X ′
2,X

′
3] = X ′

1 ; [X ′
3,X

′
1] = X ′

2 . (1.15)

Lie algebras that have the same commutation relations up to a change
of basis are called isomorphic. Isomorphism of algebras will be denoted by
the symbol ∼. Isomorphisms of Lie algebras will be discussed in Chap. 2. An
example is:

Example 4. The Lie algebras so(3) and su(2) are isomorphic

so(3) ∼ su(2) . (1.16)
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1.4 Complex Extensions

The change of basis (1.11) can be complex. An example is multiplication by
the imaginary unit on so(3),

J1 = iX1 , J2 = iX2 , J3 = iX3 . (1.17)

The commutation relations are now

[J1 , J2] = i J3 , [J2 , J3] = i J1 , [J3 , J1] = i J2 . (1.18)

The algebra composed of elements J1, J2, J3 is the ’angular momentum alge-
bra’ often quoted in quantum mechanics books.

If one takes linear combinations of elements, A,B, of a real Lie algebra
g, with complex coefficients, and defines [A + iB,C] = [A,C] + i [B,C] one
obtains the complex extension of the real Lie algebra. Starting from a real
algebra g, by making a complex change of basis, one can construct a complex
extension of g. In some cases, the complex extension of different real Lie
algebras is the same.

Example 5. The real Lie algebras so(2, 1) and so(3) have the same complex
extension.

Consider the real Lie algebra so(2, 1) of Example 2. By making the change
of basis

Y1 = X1 , Y2 = −iX2 , Y3 = −iX3 , (1.19)

one obtains

[Y1, Y2] = Y3 ; [Y2, Y3] = Y1 ; [Y3, Y1] = Y2 . (1.20)

These are the same commutation relations of the real Lie algebra so(3) of
Example 1.

1.5 Lie Subalgebras

A subset of elements, Yβ , closed with respect to commutation is called a
subalgebra

Xα ∈ g ; Yβ ∈ g′ ; g ⊃ g′ (1.21)

The symbol ⊃ is used to indicate that g′ is a subalgebra of g. The subset
satisfies the commutation relations

[Yρ, Yσ] = cτ
ρσYτ (1.22)

Example 6. The single element X3 forms a Lie subalgebra of so(3) �
X1,X2,X3, since

[X3,X3] = 0 . (1.23)

This is so(2), the angular momentum algebra in two dimensions, so(3) ⊃
so(2).
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1.6 Abelian Algebras

These are a special type of algebras, named after the Norwegian mathemati-
cian Niels Abel (1802–1829). An Abelian algebra, A, is an algebra for which
all elements commute,

[Xρ,Xσ] = 0 for any Xρ ∈ A , Xσ ∈ A . (1.24)

Example 7. The algebra so(2) � X3 is Abelian, since

[X3,X3] = 0 . (1.25)

Any algebra contains a trivial Abelian subalgebra, composed of a single el-
ement Xρ, since [Xρ,Xρ] = 0. Another non-trivial example is the translation
algebra in two dimensions, t(2) � X1,X2.

Example 8. The algebra t(2) with commutation relations

[X1,X2] = 0 , [X1,X1] = 0 , [X2,X2] = 0 , (1.26)

is Abelian.

1.7 Direct Sum

Consider two commuting algebras g1 � Xα, g2 � Yβ , satisfying

[Xρ,Xσ] = cτ
ρσXτ ,

[Yρ, Yσ] = c′τρσYτ ,

[Xρ, Yσ] = 0 . (1.27)

The commuting property is denoted by g1 ∩ g2 = 0. The set of elements
Xα, Yβ forms an algebra g, called the direct sum,

g = g1 ⊕ g2 . (1.28)

Sometimes, it is possible to rewrite a Lie algebra as a direct sum of other
Lie algebras. Consider, the algebra so(4) � X1,X2,X3, Y1, Y2, Y3, satisfying
commutation relations

[X1,X2] = X3 ; [X2,X3] = X1 ; [X3,X1] = X2

[Y1, Y2] = X3 ; [Y2, Y3] = X1 ; [Y3, Y1] = X2

[X1, Y1] = 0 ; [X2, Y2] = 0 ; [X3, Y3] = 0
[X1, Y2] = Y3 ; [X1, Y3] = −Y2

[X2, Y1] = −Y3 ; [X2, Y3] = Y1

[X3, Y1] = Y2 ; [X3, Y2] = −Y1 (1.29)
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By a change of basis

Ji =
Xi + Yi

2
, Ki =

Xi − Yi

2
(i = 1, 2, 3) (1.30)

the algebra can be brought to the form

[J1, J2] = J3 [J2, J3] = J1 [J3, J1] = J2

[K1,K2] = K3 [K2,K3] = K1 [K3,K1] = K2

[Ji,Kj ] = 0 (i, j = 1, 2, 3) . (1.31)

In the new form, one can see that the algebra so(4) is the direct sum of two
so(3) algebras.

Example 9. The algebra so(4) is isomorphic to the direct sums

so(4) ∼ so(3) ⊕ so(3) ∼ su(2) ⊕ su(2) ∼ sp(2) ⊕ sp(2) . (1.32)

The splitting is rarely possible. Consider for example, the algebra so(3, 1) �
X1,X2,X3, Y1, Y2, Y3, satisfying commutation relations

[X1,X2] = X3 ; [X2,X3] = X1 ; [X3,X1] = X2

[Y1, Y2] = −X3 ; [Y2, Y3] = −X1 ; [Y3, Y1] = −X2

[X1, Y1] = 0 ; [X2, Y2] = 0 ; [X3, Y3] = 0
[X1, Y2] = Y3 ; [X1, Y3] = −Y2

[X2, Y1] = −Y3 ; [X2, Y3] = Y1

[X3, Y1] = Y2 ; [X3, Y2] = −Y1 . (1.33)

This algebra cannot be split into a direct sum of real Lie algebras. However,
sometimes, the splitting is possible by going to the complex extension of the
algebra. For example by taking the combination

Jj =
Xj + iYj

2
, Kj =

Xj − iYj

2
(j = 1, 2, 3) (1.34)

one can show that the elements Jj ,Kj satisfy (1.31). The algebras so(4)
and so(3, 1) have the same complex extension, and can be split in the same
fashion.

1.8 Ideals (Invariant Subalgebras)

Consider an algebra g and its subalgebra g′, Xα ∈ g, Yβ ∈ g′, g ⊃ g′. Since
g′ is a subalgebra, it satisfies

[Yρ, Yσ] = c′τρσYτ . (1.35)
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If, in addition,
[Yρ,Xσ] = cτ

ρσYτ , (1.36)

then g′ is called an invariant subalgebra. As an example, consider the Euclid-
ean algebra e(2), composed of three elements, X1,X2,X3, satisfying

[X1,X2] = X3 [X1,X3] = −X2 [X2,X3] = 0 . (1.37)

Example 10. The subalgebra g′ � X2,X3 is an (Abelian) ideal of g ≡ e(2) �
X1,X2,X3.

1.9 Semisimple Algebras

An algebra which has no Abelian ideals is called semisimple.

Example 11. The algebra so(3)

[X1,X2] = X3 [X2,X3] = X1 [X3,X1] = X2 (1.38)

is semisimple.

Example 12. The algebra e(2)

[X1,X2] = X3 [X1,X3] = −X2 [X2,X3] = 0 (1.39)

is non-semisimple.

1.10 Semidirect Sum

Consider two non-commuting algebras, Xα ∈ g1, Yβ ∈ g2, satisfying

[Xρ,Xσ] = cτ
ρσXτ , [Yρ, Yσ] = c′τρσYτ . (1.40)

If g2 is an invariant subalgebra of g1,

[Xρ, Yσ] = c′′τρσYτ , (1.41)

then the algebra g
g = g1 ⊕s g2 (1.42)

is called the semidirect sum of g1 and g2.

Example 13. The Euclidean algebra e(2), composed of three elements, X1,
X2,X3, is the semidirect sum of the rotation algebra in two dimensions, so(2),
composed of the single element, X1, and the translation algebra in two dimen-
sions, t(2), composed of two commuting elements, X2,X3

e(2) = so(2) ⊕s t(2) . (1.43)
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1.11 Killing Form

With the Lie structure constants one can form a tensor, called metric tensor,
or Killing form

gσλ = gλσ = cτ
σρc

ρ
λτ (1.44)

named after Killing, who in a series of papers in the 1880’s discussed
its properties. [W. Killing, Die Zusammensetzung der Stetigen Endlichen
Transformations-gruppen, I-IV, Math. Ann. 31, 252 (1888); 33, 1 (1889);
34, 57 (1889); 36, 161 (1890).] The Killing form was used by Cartan to iden-
tify semisimple Lie algebras. Cartan’s criterion for deciding if a Lie algebra
is semisimple is:

Theorem 1. A Lie algebra g is semisimple if, and only if,

det | gσλ |�= 0 . (1.45)

In other words, an inverse gσλ of the metric tensor gσλ exists

gστgτλ = δσ
λ , (1.46)

where

δσ
λ =

{
1 if σ = λ
0 if σ �= λ

. (1.47)

Example 14. The algebra so(3) is semisimple.

The metric tensor of so(3) is

gσλ =




−2 0 0
0 −2 0
0 0 −2



 , (1.48)

also written in compact form gσλ = −2δσλ. The determinant of the metric
tensor is

det | gσλ |= −8 (1.49)

and thus the algebra so(3) is semisimple.

Example 15. The algebra so(2, 1) is semisimple.

The metric tensor of so(2, 1) is

gσλ =




−2 0 0
0 +2 0
0 0 +2



 . (1.50)

The determinant of the metric tensor is again

det | gσλ |= −8 (1.51)

and thus the algebra so(2, 1) is semisimple.
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Example 16. The algebra e(2) is non-semisimple.

Finally, consider the algebra e(2) with metric tensor

gσλ =




−2 0 0
0 0 0
0 0 0



 . (1.52)

In this case
det | gσλ |= 0 , (1.53)

and thus the algebra e(2) is non-semisimple.

1.12 Compact and Non-Compact Algebras

A real semisimple Lie algebra is compact if its metric tensor is negative
definite.

Example 17. The algebra so(3) is compact.

The metric tensor of so(3) is negative definite. In its diagonal form all
elements are negative.

Example 18. The algebra so(2, 1) is non-compact.

The metric tensor of so(2, 1) is non-negative definite. In its diagonal form
some elements are positive.

1.13 Derivations

Starting with a Lie algebra, g, with elements Xρ, it is possible to construct
other algebras, called derivations and denoted by Der g, by taking commu-
tators

g(1) = [g, g]
g(2) = [g(1), g(1)]

. . . (1.54)

For example, starting with the Euclidean algebra, e(2), with elements

g � X1,X2,X3 (1.55)

satisfying the commutation relations (1.39), one has

Der g � X2,X3

Der2 g � 0 . (1.56)

If, for some positive k,

Derk g � 0 (g(k) = 0) (1.57)

the algebra is called solvable.
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Example 19. The algebra e(2) is solvable.

From (1.55),
Der2 e(2) � 0 . (1.58)

1.14 Nilpotent Algebras

Starting with a Lie algebra, g, with elements, Xρ, it is possible to construct
powers of g as

g2 = g(1) = [g, g]
g3 = [g, g2]

. . . (1.59)

If, for some positive k,
gk = 0 (1.60)

the algebra is called nilpotent.

Example 20. The algebra e(2) is not nilpotent

Starting with
g � X1,X2,X3 , (1.61)

satisfying (1.39), one has

g2 � X2,X3

g3 � X2,X3

. . . . (1.62)

1.15 Invariant Casimir Operators

These operators play a central role in applications. They are named after
the Dutch physicist Casimir, who introduced them in 1931 for the angular
momentum algebra so(3). [H. Casimir, Über die Konstruktion einer zu den
irreduzibelen Darstellung halbeinfacher kontinuierlichen Gruppen gehörigen
Differential-gleichung, Proc. Roy. Akad. Amst. 34, 844 (1931).] An operator,
C, that commutes with all the elements of a Lie algebra g

[C,Xτ ] = 0 for all Xτ ∈ g (1.63)

is called an invariant Casimir operator. Casimir operators can be linear,
quadratic, cubic, . . . in the elements Xτ . A Casimir operator is called of
order p if it contains products of p elements Xτ ,
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Cp =
∑

α1,...,αp

fα1α2...αpXα1Xα2 . . . Xαp . (1.64)

The summation is explicitly displayed in this formula. Also, if C commutes
with g, so does aC, C2, . . . . The number of independent Casimir operators
of a Lie algebra will be discussed in Chap. 5. The quadratic (p = 2) Casimir
operator of a semisimple algebra can be simply constructed from the metric
tensor

C2 = gρσ Xρ Xσ = gρσXρXσ ≡ C . (1.65)

Proof. Evaluate the commutator of C and Xτ

[C,Xτ ] = gρσ [Xρ Xσ ,Xτ ] = gρσ Xρ[Xσ ,Xτ ] + gρσ [Xρ ,Xτ ]Xσ

= gρσ Xρ cλ
στ Xλ + gρσ cλ

ρτ Xλ Xσ

= gρσ cλ
στ Xρ Xλ + gσρ cλ

στ Xλ Xρ = gρσ cλ
στ (Xρ Xλ + Xλ Xρ)

= gρσ gλν cνστ (Xρ Xλ + Xλ Xρ) = 0 (1.66)

The last line follows from the fact that the product gσλgλν is symmetric under
λ → σ, ν → ρ, the product (XρXσ + XσXρ) is symmetric under λ → ρ, and
the structure constant cνρσ is antisymmetric under ν → σ. For a semisimple
Lie algebra, indices can be raised and lowered using the metric tensor

cλ
στ = gλν cνστ . (1.67)

Higher order Casimir operators can be constructed in a similar fashion

Cp = c
β2
α1β1

c
β3
α2β2

... c
β1
αpβp

Xα1 Xα2 ...Xαp . (1.68)

For the algebra so(3), the inverse of the metric tensor is

gσλ =




− 1

2 0 0
0 − 1

2 0
0 0 − 1

2



 (1.69)

giving

C = −1
2

(X2
1 + X2

2 + X2
3 ) . (1.70)

For the algebra so(2, 1)

C = −1
2
(
X2

1 − X2
2 − X2

3

)
. (1.71)

Note the minus signs. By multiplying C by 2 and the elements by i, one
obtains for so(3)

C ′ = 2C = J2
1 + J2

2 + J2
3 . (1.72)

This is the usual form in which the Casimir operator of the angular momen-
tum algebra so(3) appears in quantum mechanics textbooks.
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1.16 Invariant Operators for Non-Semisimple Algebras

For non-semisimple Lie algebras, Casimir operators cannot be simply con-
structed. One introduces a related notion of invariant operators that commute
will all elements.

Example 21. The invariant operator of the Euclidean algebra e(2) � X1,
X2,X3 is

C = X2
2 + X2

3 (1.73)

Proof. The commutators are
[
X2

2 ,X1

]
= X2[X2,X1] + [X2,X1] X2 = −2X2 X3

[
X2

3 ,X1

]
= X3[X3,X1] + [X3,X1] X3 = 2X2 X3 . (1.74)

Hence
[C,Xτ ] = 0 for any Xτ ∈ g . (1.75)

1.17 Structure of Lie Algebras

The structure of Lie algebras, semisimple or not, can be investigated by
inspection. A detailed account is given by Kirillov. [A.A. Kirillov, Elements
of the Theory of Representation, Nauka, Moscow, 1978.]

1.17.1 Algebras with One Element

We begin with the case r = 1. In this case there is only one element, X, and
one possibility

(a) [X,X] = 0 . (1.76)

The algebra is Abelian.

Example 22. The algebras so(2) ∼ u(1) are examples of Kirillov’s case 1a.

1.17.2 Algebras with Two Elements

Next consider the case r = 2. In this case, there are two elements, X1,X2,
and two possibilities

(a) [X1,X2] = 0 , (1.77)

and
(b) [X1, X2] = X1 . (1.78)

In case (a), the algebra is Abelian. In case (b), X1 is an Abelian ideal.

Example 23. The translation algebra t(2) is an example of Kirillov’s case
2a.
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1.17.3 Algebras with Three Elements

For r = 3, there are three elements, X1,X2,X3 and four possibilities:

(a) [X1,X2] = [X2,X3] = [X3,X1] = 0 (1.79)

(b) [X1,X2] = X3 ; [X1,X3] = [X2,X3] = 0 or
[X1,X3] = X2 ; [X1,X2] = [X2,X3] = 0 , (1.80)

(c) [X1,X2] = 0 ; [X3,X1] = αX1+βX2 ; [X3,X2] = γX1+δX2 , (1.81)

where the matrix
∣
∣
∣
∣
α β
γ δ

∣
∣
∣
∣ is non-singular, and

(d) [X1, X2] = X3 ; [X2, X3] = X1 ; [X3, X1] = X2 or
[X1, X2] = X3 ; [X2, X3] = −X1 ; [X3, X1] = X2 . (1.82)

In case (a), the algebra is Abelian.

Example 24. The translation algebra in three dimensions t(3) is an example
of Kirillov’s case 3a.

Example 25. The Euclidean algebra e(2) is Kirillov’s case 3c, with α =
0, β = 1, γ = −1, δ = 0.

Example 26. The algebras so(3) and so(2, 1) are examples of Kirillov’s case
3d.

This procedure becomes very cumbersome as the number of elements in
the algebra increases. However, it allows one to classify all Lie algebras, in-
cluding some non-semisimple algebras of physical interest, such as the Euclid-
ean algebras. It has explicitly been carried out to r = 8. A different method,
due to Cartan, provides a classification of semisimple Lie algebras for any
number of elements.



2 Semisimple Lie Algebras

2.1 Cartan-Weyl Form of a (Complex)
Semisimple Lie Algebra

In 1895, the French mathematician Cartan provided a way to classify all
semisimple Lie algebras. [Elie Cartan, Sur la Structure des Groupes de Trans-
formation Finis et Continus, Thése, Paris, 1894.] The subject was subse-
quently taken up by Weyl and van der Waerden. [Herman Weyl, Theorie der
Darstellung kontinuerlicher halbeinfacher Gruppen durch lineare Transforma-
tionen, I-IV, Math. Zeitschr. 23, 271 (1925); 24, 328, 377 (1926); B.L. van der
Waerden, Die Gruppentheoretische Methode in der Quantenmechanik, Math.
Zeitschr. 37, 446 (1933).] We begin by rewriting the algebra as

Xσ ≡ (Hi, Eα) ; (i = 1, . . . , l) . (2.1)

The elements Hi form the maximal Abelian subalgebra, often called the Car-
tan subalgebra,

[Hi,Hk] = 0 (i, k = 1, . . . , l) . (2.2)

The number of elements in the Cartan subalgebra, l, is called the rank of the
algebra. The commutation relations of Hi with Eα are

[Hi, Eα] = αi Eα (2.3)

while those of the E’s among themselves are

[Eα, Eβ ] = Nαβ Eα+β (if α + β �= 0) (2.4)

[Eα, E−α] = αiHi . (2.5)

The αi’s are called roots and Nαβ is a normalization. This form of the Lie
algebra is called the Cartan-Weyl form.

2.2 Graphical Representation of Root Vectors

One considers the αi’s (i = 1, . . . , l) as the components of a covariant vector
lying in an l-dimensional weight space with scalar product

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 15–25 (2006)
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(α, β) ≡ αi βi = αi βi . (2.6)

Van der Waerden derived a set of rules for the algebra to be a semisimple Lie
algebra.
Rule 1 If α is a root, so is −α.
Rule 2 If α, β are roots, 2(α,β)

(α,α) is an integer.

Rule 3 If α, β are roots, β − 2α (α,β)
(α,α) is a root.

From these, it follows that the angle ϕ between roots

cos ϕ =
(α, α)

√
(α, α)(β, β)

(2.7)

can take the values
cos2 ϕ = 0,

1
4
,
1
2
,
3
4
, 1

ϕ = 0◦, 30◦, 45◦, 60◦, 90◦ (2.8)

Roots can be displayed graphically in a root diagram.
For rank l = 1, the root diagram is a line, and there is only one possibility

(Fig 2.1).
The algebra, called A1 by Cartan and so(3) ∼ su(2) by physicists, has

three elements, r = 3.
For rank l = 2, the root diagram is planar. There are several possibilities

(Fig. 2.2):
(a) ϕ = 30◦

This algebra called G2 by Cartan, has 14 elements, r = 14.
(b) ϕ = 45◦

This algebra called B2 by Cartan and so(5) by physicists has 10 elements,
r = 10.

(c) ϕ = 60◦

This algebra, called A2 by Cartan and su(3) by physicists has 8 elements,
r = 8.

(d) ϕ = 90◦

This algebra, called D2 by Cartan and so(4) by physicists, has r = 6
elements. It can be seen as the direct sum of two A1 algebras, D2 ∼ A1 ⊕A1

or so(4) ∼ so(3) ⊕ so(3).
The Cartan classification of rank-2 algebras contains also the algebra C2,

called sp(4) by physicists. The root diagram of C2 is identical to that of B2

rotated by 45◦ (Fig. 2.3).

soH3L~suH2L~A1

Fig. 2.1. Root diagram of the rank l = 1 algebra
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HaL

G2

HbL

soH5L~B2

HcL

suH3L~A2

HdL

soH4L~soH3L∆soH3L

~D2

Fig. 2.2. Root diagrams of rank l = 2 algebras

spH4L~C2

Fig. 2.3. Root diagram of the algebra C2

The algebras C2 and B2 are isomorphic, sp(4) ∼ so(5).
For rank l = 3 the root diagram is three-dimensional and it will not be

drawn here.

2.3 Explicit Construction of the Cartan-Weyl Form

For applications, it is of interest to construct explicitly Lie algebras in
Cartan-Weyl form. The rank l=1 algebra, A1 (Fig. 2.4) has three elements,
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0 +1-1

Fig. 2.4. Root diagram of the algebra A1 with roots explicitly displayed

a+b

a-b

-Ha+bL

-a b

Fig. 2.5. Root diagram of the algebra A2 with roots explicitly displayed

H1, E+1, E−1, with commutation relations,

[H1,H1] = 0; [H1, E±1] = ±E±1; [E+1, E−1] = H1 (2.9)

This algebra, being the angular momentum algebra su(2) ∼ so(3), is of great
interest in quantum mechanics, where it is usually written in terms of the
physical angular momentum operators Jx, Jy, Jz. By taking the combinations

Jz = Jz , J± = Jx ± iJy (2.10)

one obtains the Cartan-Weyl form, with commutation relations

[Jz, Jz] = 0; [Jz, J±] = ±J±; [J+, J− ] = 2Jz . (2.11)

The factor of two in the last commutator is due to a different normaliza-
tion of the elements of the algebra. One can also see that, in this case, the
Abelian Cartan subalgebra is composed of only one element, Jz, while the
Weyl elements are J+ and J−. These elements are called raising and lowering
operators.

Another important construction is that of the rank l = 2 algebra, A2

(Fig. 2.5). This algebra has 8 elements,

H1 ,H2 , E±α , E±β , E±(α+β) (2.12)

with commutation relations

[H1 , E±α] = ± 1
2
√

3
E±α [H2 , E±α] = ±1

2
E±α

[H1 , E±β ] = ± 1
2
√

3
E±β [H2 , E±β ] = ±1

2
E±β

[H1 , E±(α+β)] = ± 1√
3
E±(α+β) [H2 , E±(α+β)] = 0
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[Eα, E−α] =
H1

2
√

3
+

H2

2
[Eβ , E−β ] =

H1

2
√

3
− H2

2

[E(α+β), E−(α+β)] =
H1√

3
=

H1√
3

[Eα, Eβ ] =
1√
6
Eα+β

[Eα, E(α+β)] = 0 [Eβ , E(α+β)] = 0

[Eα, E−(α+β)] = − 1√
6
E−β [Eβ , E−(α+β)] =

1√
6

E−α

[Hi,Hj ] = 0 (i, j = 1, 2) (2.13)

The algebra has two Cartan elements and six Weyl elements (raising and
lowering operators).

2.4 Dynkin Diagrams

The root diagrams for rank l ≥ 3 cannot be displayed easily. The Russian
mathematician Dynkin devised a method to display root diagrams of all semi-
simple Lie algebras. [E.B. Dynkin, The Structure of Semisimple Lie Algebras,
Usp. Mat. Nauk (N.S.), 2, 59 (1947). Transl. in Am. Math. Soc. Transl. (1),
9, 308 (1962).] We begin by introducing the notion of positive root.

Definition 1. Positive roots, α(+), are those for which, in some arbitrary
frame, its first coordinate different from zero is positive.

The number of positive roots is half of non-null roots.

Example 1. Consider the root diagram of B2 The roots are (1, 0) (1, 1) (0, 1)
(−1, 1) (−1, 0) (−1,−1) (0,−1) (1,−1). The positive roots are (1, 0) (1, 1)
(0, 1) (1,−1), with sum

∑
α(+) = (3, 1). We next introduce the notion of

simple roots.

H1,0L

H1,1LH0,1LH-1,1L

H-1,0L

H-1,-1L H0,-1L H1,-1L

Fig. 2.6. Root diagram of the algebra B2 with roots explictly displayed



20 2 Semisimple Lie Algebras

Definition 2. A simple root is a positive root which cannot be decomposed
into the sum of positive roots.

In the case of B2 (Fig. 2.6) , the two roots (1, 0) and (1, 1) can be de-
composed as (1, 0) = (1,−1) + (0, 1) and (1, 1) = (1, 0) + (0, 1). The simple
roots are thus only α ≡ (0, 1) and β ≡ (1,−1). Dynkin showed that the angle
between two simple roots can only be 90◦, 120◦, 135◦, 150◦ and the normal-
ization

(β, β)
(α, α)

=






1 ϑα,β = 120◦

2 ϑα,β = 135◦

3 ϑα,β = 150◦

undetermined ϑα,β = 90◦
(2.14)

The root α is called short and the root β is called long. When plotted as
before, the simple root diagram of B2 appears as in (Fig. 2.7). All information
on the Lie algebra can then be condensed into a Dynkin diagram. In this
diagram, the angle ϑ between roots is indicated by

ϑ = 120◦ single line
ϑ = 135◦ double line
ϑ = 150◦ triple line
ϑ = 90◦ not joined (2.15)

A short root is indicated by a filled dot • , while a long root is indicated by
an open dot ◦.

135
é

1

è!!!
2

a

b

Fig. 2.7. Simple roots of B2

B2~C2 soH5L~spH4L

A2 suH3L

D2 soH4L~soH3L∆soH3L

G2

Fig. 2.8. Dynkin diagrams of rank-2 algebras
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Example 2. Dynkin diagrams of rank two algebras

Dynkin diagrams of rank two algebras are shown in (Fig. 2.8).

2.5 Classification of (Complex) Semisimple Lie Algebras

All complex semisimple Lie algebras have been classified by Cartan and are
given in Table 2.1. Because of its importance, the non-semisimple Lie algebra
u(n) must be included as well. This algebra is of order n2 and rank n.

Table 2.1. Cartan classification of complex semisimple Lie algebras (and u(n))

Name Label Cartan Order (r) Rank (l)

Special Unitary su(n) Al n2 − 1 n − 1
[Special] Orthogonal so(n) (n odd) Bl n(n − 1)/2 (n − 1)/2
Symplectic sp(n) (n even) Cl n(n + 1)/2 n/2
[Special] Orthogonal so(n) (n even) Dl n(n − 1)/2 n/2
Exceptional G2 G2 14 2

F4 F4 52 4
E6 E6 78 6
E7 E7 133 7
E8 E8 248 8

Unitary u(n) — n2 n

There is no difference between orthogonal and special orthogonal alge-
bras and hence “special” has been put in brackets in the table. The Abelian
algebra so(2) ∼ u(1) composed of a single element is included in the Cartan
classification under so(n) n = even, although strictly speaking it is not pos-
sible to apply to it Cartan’s criterion since it does not have any subalgebra
except itself.

2.6 Real Forms of Complex Semisimple Lie Algebras

In applications, one is often interested in real forms of complex semi-simple
Lie algebras. Commonly used real forms and their notation are given in
Table 2.2.

2.7 Isomorphisms of Complex Semisimple Lie Algebras

Isomorphisms of complex Lie algebras of low rank are given in Table 2.3.
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Table 2.2. Real forms of complex semisimple Lie algebras

Cartan Real Forms

Al su(n)
su(p, q) (p + q = n)
sl(n, R)
su∗(2n)

Bl so(n) (n odd)
so(p, q) (p + q = n)

Cl sp(n) (n even)
sp(n, R)
sp(p, q) (p + q = n)

Dl so(n) (n even)
so(p, q)
so∗(n)

Table 2.3. Isomorphisms of complex semisimple Lie algebra

A1 ∼ B1 ∼ C1

B2 ∼ C2

D2 ∼ A1 ⊕ A1

A3 ∼ D3.

2.8 Isomorphisms of Real Lie Algebras

Isomorphisms of real Lie algebras of low rank are given in Table 2.4.

Table 2.4. Isomorphisms of real Lie algebras

A1 ∼ B1 ∼ C1 su(2) ∼ so(3) ∼ sp(2) ∼ su�(2)
su(1, 1) ∼ so(2, 1) ∼ sp(2, R) ∼ sl(2, R)

B2 ∼ C2 so(5) ∼ sp(4)
so(4, 1) ∼ sp(2, 2)
so(3, 2) ∼ sp(4, R)

D2 ∼ A1 ⊕ A1 so(4) ∼ su(2) ⊕ su(2) ∼ so(3) ⊕ so(3) ∼ sp(2) ⊕ sp(2)
so�(4) ∼ su(2) ⊕ sl(2, R)
so(3, 1) ∼ sl(2, C)
so(2, 2) ∼ sl(2, R) ⊕ sl(2, R)

A3 ∼ D3 su(4) ∼ so(6)
su(3, 1) ∼ so�(6)
su�(4) ∼ so(5, 1)
sl(4, R) ∼ so(3, 3)
su(2, 2) ∼ so(4, 2)
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2.9 Enveloping Algebra

Starting with a Lie algebra g � Xρ, one can form the algebra composed of
all products of elements

Xρ

Xρ Xσ

Xρ XσXτ

. . . (2.16)

This algebra is called the enveloping algebra of g. The commutation relations
of the Xρ’s among themselves define the Lie algebra g. The commutation
relations of the enveloping algebra with the Xρ’s define a tensor algebra over
g, T (g).

2.10 Realizations of Lie Algebras

Lie algebras can be realized in various ways. Three of them have been widely
used. In these realizations, elements are written in double index notation,
Eαβ .

(i) Differential realization
This is in terms of differential operators acting on functions f(x1, . . . , xn)

Eαβ = xα
∂

∂xβ
. (2.17)

Commutation relations of the algebra can be obtained from the basic
commutation relations

[
∂

∂xα
, xβ

]

= δαβ (2.18)

Differential realizations will be discusssed in Chap. 9.
(ii) Matrix realization

This is in terms of n × n matrices acting on column vectors




. . .
. . .
. . .





Eαβ =











|
|
|

− − − − 1 − −
|
|











(2.19)
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with unit entry on the β-th column and the α-th row. Commutation re-
lations of the algebra are obtained from the basic commutation relations
of matrices. Matrix realizations will be discussed in Chap. 10.

(iii) Boson creation-annihilation operator realization (often called Jordan-
Schwinger realization)
This is in terms of bilinear products of n boson creation, b†α, and anni-
hilation, bα, operators acting on a vacuum |0〉,

Eαβ = b†αbβ . (2.20)

The commutation relations of the algebra can be obtained from those of the
creation and annihilation operators

[
bα, b†β

]
= δαβ , (2.21)

called Bose commutation relations. Realizations in terms of boson creation
and annihilation operators will be discussed in Chap. 7.

For all three realizations, the commutation relations of the elements of
the algebra Eαβ are

[Eαβ , Eγδ] = δβγEαδ − δαδEγβ (2.22)

with α, β = 1, . . . , n. They define the Lie algebra of u(n). Realizations of
other algebras can be obtained by taking appropriate combinations of the
elements Eαβ , since any Lie algebra is, by Ado’s theorem, a subalgebra of
u(n).

2.11 Other Realizations of Lie Algebras

In addition to the three realizations of the previous section, others are possible
and have been used for applications in physics. Two of these, particularly
important in the description of fermionic systems, are:

(iv) Grassmann differential realization
This is in terms of Grassmann variables, θi (i = 1, . . . , n), and their

derivatives, ∂
∂θi

. The elements are

Eij = θi
∂

∂θj
. (2.23)

The commutation relations can be obtained from the basic commutation
relations [

∂

∂θi
, θj

]

+

≡ ∂

∂θi
θj + θj

∂

∂θi
= δij . (2.24)

These realizations will not be discussed in these notes. A detailed account is
given by Berezin. [F.A. Berezin, An Introduction to Superanalysis, D. Riedel
Publishing, Dordrecht, 1987.]
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(v) Fermion creation-annihilation operators realization
This is in terms of bilinear products of n fermion creation, a†

i , and anni-
hilation, ai, operators acting on a vacuum | 0〉,

Eij = a†
iaj , (2.25)

where the creation and annihilation operators, a†
i , ai, satisfy

[ai, a
†
j ]+ ≡ aia

†
j + a†

jai = δij , (2.26)

called Fermi commutation relations. These realizations will be discussed in
Chap. 8.

For both realizations (iv) and (v), the commutation relations of the ele-
ments of the algebra Eij are

[Eij , Ekm] = δjkEim − δimEkj , (2.27)

with i, j = 1, . . . n. The commutation relations (2.28) are identical those given
by (2.23). They define again the Lie algebra u(n).



3 Lie Groups

3.1 Groups of Transformations

Associated with each Lie algebra there is a Lie group. The notion of groups
of transformations precedes that of Lie algebras and is more general than
it. A set of elements A,B,C . . ., forms a group G if it satisfies the following
axioms:
Axiom 1. Among the elements there is an element I such that

AI = IA = A (3.1)

This property is called identity.
Axiom 2. The product AB gives another element C in the set

AB = C (3.2)

This property is called closure.
Axiom 3. There exists an element A−1 such that

A−1A = AA−1 = I (3.3)

This property is called inverse.
Axiom 4. The order of multiplication is immaterial

A(BC) = (AB)C (3.4)

This property is called associativity.

3.2 Groups of Matrices

Particularly important are groups of square matrices

A =




· · ·
· · ·
· · ·



 (n × n) . (3.5)

These matrices satisfy all the axioms of a Lie group:

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 27–38 (2006)
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(i) The identity I is the unit matrix

I =











1 0
1
·
·
·

0 1











(3.6)

(ii) Matrix multiplication gives closure.
(iii) If det | A |�= 0 an inverse A−1 exists.
(iv) Matrix multiplication gives associativity.

Groups of matrices can be written in terms of all number fields, R,C,Q,O.
In these notes, we shall consider only groups of real and complex matrices.
The matrix elements of the matrix A will be denoted by Aik, with i = row
index and k = column index. We shall also introduce real and complex vec-
tors in n dimensions. The components of vectors will be denoted by xi and
zi. Standard matrix notation will be used in this chapter (no covariant or
contravariant indices).

3.3 Properties of Matrices

We begin by recalling in Table 3.1 some basic properties of matrices.

Table 3.1. Matrix properties

A = At Symmetric
A = −At Skew symmetric

AtA = I Orthogonal

A = A∗ Real
A = −A∗ Imaginary

A = A† Hermitian

A = −A† Skew hermitian

A†A = I Unitary

In this table, At denotes the transpose matrix, A∗ the complex conjugate
matrix, and A† the hermitian conjugate matrix, A† = (At)∗.

A group of transformations transforms the real or complex vector x ≡
(x1, x2, . . . , xn) or z ≡ (z1, z2, . . . , zn) into the real or complex vector x′ or
z′. We shall consider both real and complex transformations



3.4 Continuous Matrix Groups 29

x′ = Ax ; x′
i =

∑

k

Aikxk

z′ = Bz ; z′i =
∑

k

Bikzk (3.7)

where Aik and Bik are the matrix elements of the real and complex n × n
matrices A and B.

3.4 Continuous Matrix Groups

(a) General linear groups
These are the most general linear transformations. They are denoted by

GL(n,C) r = 2n2

GL(n,R) r = n2 . (3.8)

The number of real parameters that characterize the transformation is
given next to its name. The number field R,C is also explicitly shown.

(b) Special linear groups
If, on the general linear trasformation, the condition

det | A |= +1 (3.9)

is imposed, the group is called special linear group, denoted by

SL(n,C) r = 2(n2 − 1)
SL(n,R) r = n2 − 1 . (3.10)

(c) Unitary groups
Imposing the condition

A†A = I (3.11)

one obtains the unitary groups

U(n,C) ≡ U(n) r = n2

U(p, q;C) ≡ U(p, q) r = n2 . (3.12)

They leave invariant the quantities

U(n) :
n∑

i=1

ziz
∗
i

U(p, q) : −
p∑

i=1

ziz
∗
i +

p+q∑

j=p+1

zjz
∗
j (3.13)

Unitary groups are over complex numbers C. It has become common
practice to delete the number field from the group notation, that is to
use U(n) instead of U(n,C).
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(d) Special unitary groups
The combination of the special condition with the unitary condition

A†A = I , det | A |= +1 (3.14)

gives the special unitary groups

SU(n,C) ≡ SU(n) r = n2 − 1
SU(p, q;C) ≡ SU(p, q) r = n2 − 1 . (3.15)

Again, the number field C is often deleted. For special unitary groups,
there is an (anomalous) case, denoted by SU∗(2n),

SU∗(2n) r = n2 − 1 (3.16)

defined by matrices

A =
(

A1 A2

−A∗
2 A∗

1

)

A1, A2 = n × n complex matrices with Tr A1 + Tr A∗
1 = 0 .(3.17)

(e) Orthogonal groups
These groups are defined by the orthogonality condition

AtA = I . (3.18)

In applications in physics, they are usually over the real number field.
The number field is often deleted in the notation and O(n,R) is often
denoted by O(n)

O(n,C) r = n(n − 1)

O(n,R) ≡ O(n) r =
1
2

n(n − 1) . (3.19)

They leave invariant the quantities

O(n,C) :
n∑

i=1

z2
i

O(n,R) ≡ O(n) :
n∑

i=1

x2
i (3.20)

In addition, one has the groups

O(p, q;C) r = n(n − 1)

O(p, q, R) r =
1
2
n(n − 1) (3.21)

which leave invariant the quantities
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O(p, q;C) : −
p∑

i=1

z2
i +

p+q∑

j=p+1

z2
j

O(p, q;R) ≡ O(p, q) : −
p∑

i=1

x2
i +

p+q∑

j=p+1

x2
j (3.22)

(f) Special orthogonal groups
The combination of the special with the orthogonal condition

AtA = I det | A |= +1 (3.23)

gives the special orthogonal groups

SO(n,C) r = n(n − 1)

SO(n,R) r =
1
2
n(n − 1)

SO(p, q;C) r = n(n − 1)

SO(p, q;R) r =
1
2
n(n − 1) . (3.24)

Also here there is an (anomalous) case, called SO∗(2n), described by
matrices

A =
(

A1 A2

−A∗
2 A1

)

A1, A2 = n × n complex matrices with A1 = −A†
1 and A2 = A†

2 . (3.25)

Real orthogonal groups are used both in quantum and in classical me-
chanics.

(g) Symplectic groups
To define these groups, the vectors x and y are divided into two
pieces, x = (x1, . . . , xn;x′

1, . . . , x
′
n),y = (y1, . . . yn; y′

1, . . . , y
′
n). Symplec-

tic groups

Sp(2n,C) r = 2n(2n + 1)

Sp(2n,R) r =
1
2
2n(2n + 1) (3.26)

are defined as those groups that leave invariant the quantity

n∑

i=1

(xiy
′
i − yix

′
i) (3.27)

where the vectors can be either real or complex. If the unitary condition
is imposed

A†A = I (3.28)



32 3 Lie Groups

the group is called unitary symplectic

USp(2n,C) ≡ Sp(2n) r =
1
2

2n(2n + 1) (3.29)

and is often denoted by Sp(2n).
Both real and complex symplectic groups are used in quantum mechanics,
while real symplectic groups are used in classical mechanics (canonical
transformations and Hamilton’s equations).

3.5 Examples of Groups of Transformations

3.5.1 The Rotation Group in Two Dimensions, SO(2)

As a first example we consider the rotation group in two dimensions SO(2) ≡
SO(2, R). Under a general linear transformation the two coordinates x, y
(used here to conform with usual physics notation) transform as

x′ = a11 x + a12 y

y′ = a21 x + a22 y (3.30)

The corresponding group, GL(2, R), is a 4 parameter group. The invariance
of x2 + y2

a2
11 x2 + a2

12 y2 + 2 a11a12 xy + a2
21x

2 + a2
21y

2 + 2 a21a22 xy = x2 + y2 (3.31)

gives 3 conditions

a2
11 + a2

21 = 1
2a11a12 + 2a21a22 = 0

a2
22 + a2

12 = 1 . (3.32)

This leaves only 1 parameter.

Example 1. The group SO(2) is a one parameter group

The parameter can be chosen as the angle of rotation, ϕ,

x′ = (cos ϕ)x − (sin ϕ) y

y′ = (sin ϕ)x + (cos ϕ) y (3.33)

as shown in Fig. 3.1.
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x

y

x £

y £

j

Fig. 3.1. The angle ϕ that parametrizes SO(2)

3.5.2 The Lorentz Group in One Plus One Dimension, SO(1, 1)

A group closely related to the rotation group is the Lorentz group SO(1, 1) ≡
SO(1, 1;R). The general linear transformation in space-time, x, t can be
written

x′ = a11x + a12t

t′ = a21x + a22t . (3.34)

Imposing the condition x2 − t2 = invariant, leaves a 1 parameter group.

Example 2. The group SO(1,1) is a one parameter group

A convenient parametrization is in term of the boost, ϑ.

x′ = (cosh ϑ)x + (sinh ϑ)t
t′ = (sinhϑ)x + (cosh ϑ)t . (3.35)

By comparing with the previous subsection, one can see that the invariant
forms are different (Fig. 3.2).

The group SO(2) which leaves invariant the form x2 + y2 is said to be
compact, while the group SO(1, 1) which leaves invariant x2− t2 is said to be
non-compact. The notation is such that the number of plus or minus signes
is indicated in SO(p, q).

HaL

SOH2L

y

x

HbL

SOH1,1L

t

x

Fig. 3.2. Invariant forms of (a) SO(2) and (b) SO(1, 1)
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3.5.3 The Rotation Group in Three Dimensions

As another example consider the rotation group in three dimensions SO(3) ≡
SO(3, R). Under a general linear transformation, GL(3, R), the coordinates
x, y, z transform as

x′ = a11 x + a12 y + a13 z

y′ = a21 x + a22 y + a23 z

z′ = a31 x + a32 y + a33 z (3.36)

This is a 9 parameter group. Orthogonality

x′ 2 + y′ 2 + z′2 = x2 + y2 + z2 (3.37)

gives 6 conditions. We thus have a three parameter group.

Example 3. The group SO(3) is a three parameter group

A convenient parametrization is in terms of Euler angles, ϕ, ϑ, ψ,



cos ϕ cos ϑ cos ψ − sin ϕ sin ψ − cos ϕ cos ϑ sinψ − sin ϕ cos ψ cos ϕ sin ϑ
sinϕ cos ϑ cos ψ + cos ϕ sin ψ − sin ϕ cos ϑ sinψ + cos ϕ cos ψ − sin ϕ sinϑ

− sin ϑ cos ψ sin ϑ sin ψ cos ϑ





(3.38)
as shown in Fig. 3.3. The rotation matrices (3.39) are usually denoted by
R(ϕ, ϑ, ψ).

3.5.4 The Special Unitary Group in Two Dimensions, SU(2)

This group is denoted by SU(2) ≡ SU(2, C). Under a general linear com-
plex transformation, GL(2, C), the complex quantites, u, v, called a spinor,
transform as

x

y

z

u

x
£

y
£

z
£

j

J

y

Fig. 3.3. The Euler angles ϕ, ϑ, ψ that parametrize SO(3)
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u′ = a11 u + a12 v

v′ = a21 u + a22 v . (3.39)

This is a 8 parameter group. Call the matrix of the transformation A

A =
(

a11 a12

a21 a22

)

A† =
(

a∗
11 a∗

21

a∗
12 a∗

22

)

(3.40)

Unitarity, A†A = 1, gives four conditions

a∗
11 a11 + a∗

21 a21 = 1
a∗
11 a12 + a∗

21 a22 = 0
a∗
12 a11 + a∗

22 a21 = 0
a∗
12 a12 + a∗

22 a22 = 1 (3.41)

The corresponding group, U(2), is a four parameter group. If one imposes a
further condition det | A |= +1, that is

a11 a22 − a12 a21 = 1 (3.42)

one obtains the three parameter group SU(2).

Example 4. The group SU(2) is a three parameter group

This group can be parametrized as

u′ = a11 u + a12 v

v′ = −a∗
12 u + a∗

11 v (3.43)

with
a11 a∗

11 + a12 a∗
12 = 1 . (3.44)

3.5.5 Relation Between SO(3) and SU(2)

Both SO(3) and SU(2) are three parameter groups. It is of importance to
find their relationship. Consider the following combination of the complex
spinor u, v

x1 = u2 ; x2 = uv ; x3 = v2 . (3.45)

These combinations transform as

x′
1 = u′2 = a2

11 x1 + 2a11 a12 x2 + a2
12x3

x′
2 = u′v′ = −a11 a∗

12 x1 + (a11 a∗
11 − a12 a∗

12)x2 + a∗
11 a12 x3

x′
3 = v′2 = a∗2

12 x1 − 2a∗
11 a∗

12 x2 + a∗2
11 x3

(3.46)

By introducing the coordinates x, y, z
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x = (x1 − x3)/2 ; y = (x1 + x3)/2i ; z = x2 (3.47)

one can see that they transform as

x′ =
1
2
(a2

11 − a∗2

12 − a2
12 + a∗2

11)x +
i

2
(a2

11 − a∗2

12 + a2
12 − a∗2

11)y

+ (a11a12 + a∗
11a

∗
12)z

y′ =
− i

2
(a2

11 − a∗2

12 − a2
12 + a∗2

11)x +
1
2
(a2

11 − a∗2

12 + a2
12 + a∗2

11)y (3.48)

−i (a11a12 − a∗
11a

∗
12)z

z′ = − (a∗
11a12 + a11 a∗

12)x + i (a∗
11 a12 − a11a

∗
12)y

+(a11 a∗
11 − a12 a∗

12)z

This is a real orthogonal transformation in three dimensions, satisfying

x′2 + y′2 + z′2 = x2 + y2 + z2 . (3.49)

Thus SU(2) and SO(3) are related by a change of variables. In order to elu-
cidate the correspondence between SU(2) and SO(3), we consider a rotation
of an angle α around the z-axis. By inserting the values a11 = eiα/2, a12 = 0
in the appropriate formulas, we see that this rotation is characterized by
matrices

SU(2) SO(3)

(
eiα/2 0

0 e−iα/2

)



cos α − sin α 0
sinα cos α 0

0 0 1




(3.50)

A generic rotation, by angles α, β, γ is instead characterized by matrices

SU(2) SO(3)

(
cos β

2 e
i
2 (α+γ) sin β

2 e−
i
2 (α−γ)

− sin β
2 e

i
2 (α−γ) cos β

2 e−
i
2 (α+γ)

)

R(α, β, γ)
(3.51)

where R(α, β, γ) is given in (3.39). For no rotation, R(0, 0, 0), the correspon-
dence is

SU(2) SO(3)

(
1 0
0 1

)



1 0 0
0 1 0
0 0 1




(3.52)

while for rotation of 2π, R(2π, 0, 0), the correspondence is

SU(2) SO(3)

(
−1 0
0 −1

)



1 0 0
0 1 0
0 0 1




(3.53)
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One can see that there is a two-to-one correspondence, called a homomorphic
mapping of SU(2) into SO(3), denoted by SU(2) ≈ SO(3). One says that
SU(2) is the universal covering group of SO(3).

3.6 Lie Algebras and Lie Groups

3.6.1 The Exponential Map

The relationship between Lie algebras and Lie groups is of great importance.
Let the Lie algebra be g and the corresponding Lie group G. The relation is

Lie algebra g � Xi (i = 1, . . . , r) (3.54)

Lie group G � exp

(
r∑

i=1

αiXi

)

(3.55)

where the αi’s are the parameters of the group and the sum goes over the
order of the group. (The αi’s here should not be confused with the αi’s in
Chap. 2 where they denote the components of a root vector). This relationship
is called an exponential map and denoted by

g
↓ exp
G

(3.56)

Example 5. The Lie group SO(3) is

A(α1, α2, α3) = eα1X1+α2X2+α3X3 (3.57)

3.6.2 Definition of Exp

The exponention is defined through a power series expansion. For rank one
algebras, with only one element X and one parameter α

eαx = 1 + αX +
α2X2

2!
+ · · · =

∞∑

p=0

(αX)p

p!
(3.58)

The infinitesimal group element is obtained by keeping only the linear term
in the expansion

eαx →
α→0

1 + αX (3.59)

For algebras of larger rank, one needs to exponentiate non-commuting ele-
ments. It is convenient to use matrices.
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3.6.3 Matrix Exponentials

Let A be a n × n matrix. Then

eA = I + A +
A2

2!
+ · · · (3.60)

Some properties of matrix exponentials are:

(i) The exponential eA converges if the matrix elements | aij | have an
upper bound, that is the group is compact.

(ii) If A and B commute, then

eA+B = eAeB . (3.61)

(iii) If B can be inverted, then

B eA B−1 = eBAB−1
(3.62)

(iv) If λ1, λ2, . . . , λn are eigenvalues of A, then

eλ1 , . . . , eλn (3.63)

are eigenvalues of eA.
(v) The exponential series satisfies

eA∗
= (eA)∗ (eAt

) = (eA)t

eA†
= (eA)† e−A = (eA)−1

(3.64)

(vi) The determinant of eA is etrA.
(vii) If A is skew symmetric, eA is orthogonal. If A is skew hermitian, eA is

unitary.
(viii) The following formula (Campbell-Hausdorff) applies

e−A B eA = B +
1
1!

[B,A] +
1
2!

[ [B,A], A] + · · · (3.65)



4 Irreducible Bases (Representations)

4.1 Definitions

An irreducible basis (IRB) is the basis for the representations of the algebra,
g, (and the associated group, G), and the basis upon which the elements of
the algebra, Xρ ∈ g, act. It will be denoted by B.

Also, if V is a linear vector space,

B : V ⊕ (V ⊕ V) ⊕ (V ⊕ V ⊕ V) ⊕ . . . (4.1)

The meaning of the term irreducible is that any element Xρ acting on B does
not lead out of B.

4.2 Abstract Characterization

Irreducible representations are characterized by a set of labels (often called
quantum numbers). For a semisimple Lie algebra g, the number of labels is
the rank of the algebra, l, which is also the number of Cartan commuting
elements. The number of labels and their notation in these lecture notes are
shown in Table 4.1.

Table 4.1. Labels of irreducible representations

Name Number of Labels Labels

u(n) n [λ1, λ2, . . . , λn]
su(n) n − 1 [λ1, λ2, . . . , λn−1]
so(n) (n odd) ν = (n − 1)/2 [µ1, µ2, . . . , µν ]
sp(n) (n even) ν = n/2 [µ1, µ2, . . . , µν ]
so(n) (n even) ν = n/2 [µ1, µ2, . . . , µν ]
G2 2 [γ1, γ2]
F4 4 [γ1, γ2, γ3, γ4]
E6 6 [γ1, γ2, γ3, γ4, γ5, γ6]
E7 7 [γ1, γ2, γ3, γ4, γ5, γ6, γ7]
E8 8 [γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8]

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 39–62 (2006)
c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-36239-8 4
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We shall consider here representations of the classical compact algebras,
su(n), so(n), sp(n). There are two types of representations: tensor represen-
tations and spinor representations.

4.3 Irreducible Tensors

4.3.1 Irreducible Tensors with Respect to GL(n)

In order to illustrate the notion of irreducible tensors we consider here two
vectors x ≡ (x1, . . . , xn) and y ≡ (y1, . . . , yn). Under GL(n) they transform
as

x′
i =

∑

k

aikxk ; y′
i =

∑

k

aikyk ; (i, k = 1, . . . , n) . (4.2)

Consider now the Kronecker product of the two vectors, Fij = xiyj . This
product has n × n components and transfoms as a second rank tensor with
respect to GL(n)

F ′
ij =

∑

k,l

aikajlFkl . (4.3)

Irreducible tensors with respect to GL(n) are obtained by taking the sym-
metric and antisymmetric parts

Sik = Ski =
1
2

(Fik + Fki) ,

Aik = −Aki =
1
2

(Fik − Fki) . (4.4)

The symmetric tensor has n(n + 1)/2 components, while the antisymmetric
tensor has n(n − 1)/2 components. In general, reducibility with respect to
GL(n) (and gl(n)) means to classify tensors according to their symmetry
under interchange of indices. Young devised a procedure how to find the
possible symmetry types of a tensor of rank t in a n dimensional space.

(i) Partition t into n integers

t = λ1 + . . . + λn (4.5)

with
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 . (4.6)

(ii) To each partition there correspond a graph (or tableau)

λ1 � � . . . �
λ2 � . . . �
. . . . . .
λn �

(4.7)
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The tensor is symmetric under interchange of the rows and antisymmetric
under interchange of columns. The tableau is often denoted by [λ1, . . . , λn]
and zeros are deleted.

Example 1. Consider a second rank tensor t = 2 in a three dimensional
space, n = 3.

The partitions are [2], [1, 1] with Young diagrams

�� ≡ [2] Symmetric tensor
�
� ≡ [1, 1] Antisymmetric tensor (4.8)

4.3.2 Irreducible Tensors with Respect to SU(n)

The irreducible representations of GL(n) remain irreducible when we go to
U(n). If we go to the unimodular groups SU(n), the representations corre-
sponding to the patterns [λ1, λ2, . . . , λn] and [λ1 + s, λ2 + s, . . . , λn + s], s =
integer, are equivalent. Thus, for SU(n), we need to consider only patterns
with one less row [λ1−λn, λ2−λn, . . . , λn−1−λn] obtained from the pattern
[λ1, λ2, . . . , λn] by subtracting the last integer λn.

4.3.3 Irreducible Tensors with Respect to O(n). Contractions

When we go from U(n) to O(n), the representations in terms of tensors of
a given symmetry are no longer irreducible. There is a new operation, called
contraction, which commutes with othogonal transformations. For O(n), the
elements of the transformation matrix aij satisfy

∑

i

aijaik = δjk . (4.9)

Contraction of a second rank tensor Fij gives

τ =
∑

i

Fii . (4.10)

In general, contraction of a rank-t tensor, gives a tensor of rank t − 2. Any
tensor can be decomposed into a traceless part, plus the rest.

Example 2. Decomposition of a rank-2 tensor in n = 3 dimensions
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GL(3) O(3) dim L

Sik − 1
3Siiδik = Σik 5 2

�

Sik

� �

Fik
1
3Siiδik = τ ik 1 0

�

Aik 3 1

(4.11)

The decomposition is thus

Fik = Aik + Σik + τ ik . (4.12)

The number of components of the tensors A,Σ, τ is shown in the column
labeled dim.

4.4 Tensor Representations
of Classical Compact Algebras

4.4.1 Unitary Algebras u(n)

Irreducible representations of u(n) are characterized by n integers, satisfying
the conditions

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 . (4.13)

A graphical representation is provided by the Young tableau introduced pre-
viously for U(n)

λ1 � � . . . �
λ2 � � . . . �

. . .
λn �

, (4.14)

also written as [λ1, λ2, . . . , λn].

4.4.2 Special Unitary Algebras su(n)

Irreducible representations of su(n) are characterized by n − 1 integers, sat-
isfying the relations

λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0 . (4.15)

Because of the special condition, S, some representations become equivalent.
Equivalence relation 1 Start from the representations of u(n) and sub-

tract the last integer [λ1, λ2, . . . , λn] ≡ [λ1 − λn, λ2 − λn, . . . , λn−1 − λn, 0].
This equivalence relation was already quoted in Sect. 4.3.2.



4.4 Tensor Representations of Classical Compact Algebras 43

Equivalence relation 2 Start from the representations of u(n) and use
[λ1, λ2, . . . , λn] ≡ [λ1 − λn, λ1 − λn−1, . . . , λ1 − λ2, 0].

This equivalence relation, when written at the level of su(n) is [λ1, λ2, . . . ,
λn] ≡ [λ1, λ1 − λn−1, . . . , λ1 − λ2] and is sometimes called particle-hole con-
jugation.

The equivalence relations 1 and 2 are used extensively.

Example 2. The first equivalence relation for su(3) gives

[4, 3, 1] ≡ [3, 2] . (4.16)

Example 3. The second equivalence relation for su(3) gives

[3, 2] ≡ [3, 1] . (4.17)

4.4.3 Orthogonal Algebras so(n), n = Odd

The irreducible representations are labeled by ν = (n − 1)/2 integers, satis-
fying

µ1 ≥ µ2 ≥ . . . ≥ µν ≥ 0 . (4.18)

4.4.4 Orthogonal Algebras so(n), n = Even

The irreducible representations are labeled by ν = n/2 integers, satisfying

µ1 ≥ µ2 ≥ . . . ≥| µν |≥ 0 . (4.19)

The last integer µν can be here positive, negative or zero. If µν �= 0, there are
two irreducible representations, called mirror conjugate, with µν = ± | µν |.

4.4.5 Symplectic Algebras sp(n), n = Even

The irreducible representations are labeled by ν = n/2 integers, satisfying

µ1 ≥ µ2 ≥ . . . ≥ µν ≥ 0 . (4.20)

Example 4. Unitary algebras

u(2) [λ1, λ2] , λ1 ≥ λ2 ≥ 0
u(3) [λ1, λ2, λ3] , λ1 ≥ λ2 ≥ λ3 ≥ 0 (4.21)

Example 5. Special unitary algebras

su(2) [λ1 − λ2] = [f1] , f1 ≥ 0
su(3) [λ1 − λ3, λ2 − λ3] ≡ [f1, f2] , f1 ≥ f2 ≥ 0 (4.22)
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Example 6. Orthogonal algebras

so(2) [µ1] ≡ M, | µ1 |≥ 0
so(3) [µ1] ≡ L, µ1 ≥ 0
so(4) [µ1, µ2] ≡ (ω1, ω2) ; µ1 ≥| µ2 |≥ 0 .
so(5) [µ1, µ2] ≡ (τ1, τ2) ; µ1 ≥ µ2 ≥ 0

(4.23)

Often, in applications, the abstract labels are replaced by letters related to
their physical interpretation, especially for orthogonal algebras and groups.
In Example 6, the letter M (z-component of the angular momentum) is used
to denote the representations of so(2), and the letter L (angular momentum)
to denote the representations of so(3).

4.5 Spinor Representations

As discussed in Chap. 3, the group SO(3) is doubly connected. It turns out
that all orthogonal groups in odd number of dimensions SO(2ν +1) are dou-
bly connected, while the orthogonal groups in even number of dimensions,
SO(2n), are four-fold connected. As a result, orthogonal groups and algebras
have another type of representations, called spinor representations, character-
ized by half-integer labels. (The additional two-fold connecteness of SO(2ν)
produces mirror conjugate representations already discussed in the previous
section.) [A.O. Barut and R. Raczka, Theory of Group Representations and
Applications, World Scientific, Singapore, 1986).]

4.5.1 Orthogonal Algebras so(n), n = Odd

Spinor representations of so(n), n = odd, are characterized by ν = (n− 1)/2
half-integers

µ1 ≥ µ2 ≥ . . . ≥ µν ≥ 1
2

. (4.24)

4.5.2 Orthogonal Algebras so(n), n = Even

Spinor representations of so(n), n = odd, are characterized by ν = n/2 half-
integers

µ1 ≥ µ2 ≥, . . . ≥| µν |≥ 1
2

. (4.25)

As in the case of tensor representations, when n = even, there are two irre-
ducible representations, called mirror conjugate, with µν = ± | µν |.

When spinor representations are included the algebras and groups are
denoted spin(n) and Spin(n) respectively.
Example 7. Spinor representations

spin(2) [µ1] ≡ MJ = ± 1
2 ,± 3

2 , . . .
spin(3) [µ1] ≡ J = 1

2 , 3
2 , . . .

. (4.26)
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4.6 Fundamental Representations

Any irreducible representation can be written as

[λ] =
l∑

i=1

fi [λi] , (4.27)

where the fi’s are non-negative integers and the [λi]’s are called fundamental
representations. Here [λ] is a short-hand notation for the Young tableau char-
acterizing the representation and

[
λi

]
is a short-hand for the Young tableau

characterizing the fundamental representations. The index i runs from 1 to
the values given in Table 4.1 under “number of labels”. The fundamental
representations of the classical Lie algebras are listed below.

4.6.1 Unitary Algebras

There are n fundamental representations here

u(n)
[1, 0, 0, . . . , 0]
[1, 1, 0, . . . , 0]

. . .
[1, 1, 1, . . . , 1]

. (4.28)

4.6.2 Special Unitary Algebras

There are n − 1 fundamental representations

su(n)
[1, 0, 0, . . . , 0]
[1, 1, 0, . . . , 0]

. . .
[1, 1, 1, . . . , 1]

. (4.29)

4.6.3 Orthogonal Algebras, n = Odd

There are ν = (n−1)/2 fundamental representations, one of which is a spinor
representation

spin(n), n = odd
[1, 0, . . . , 0]
[1, 1, . . . , 0]

. . .
[1, 1, . . . , 1, 0][
1
2 , 1

2 , . . . , 1
2 , 1

2

]

. (4.30)
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4.6.4 Orthogonal Algebras, n = Even

There are ν = n/2 fundamental representations, two of which are spinor
representations

spin(n), n = even
[1, 0, . . . , 0]
[1, 1, . . . , 0]

. . .
[1, 1, . . . 1, 0, 0][
1
2 , 1

2 , . . . , 1
2 , 1

2

]
[
1
2 , 1

2 , . . . , 1
2 ,− 1

2

]

. (4.31)

4.6.5 Symplectic Algebras

There are ν = n/2 fundamental representations.

sp(n), n = even
[1, 0, . . . , 0]
[1, 1, . . . , 0]

. . .
[1, 1, . . . , 1]

. (4.32)

4.7 Chains of Algebras

For applications, it is necessary to characterize uniquely the basis, in other
words to provide a complete set of quantum numbers (labels). This is done
by introducing a chain of algebras,

∣
∣
∣
∣
∣
∣

g ⊃ g′ ⊃ g” ⊃ . . .
↓ ↓ ↓
[λ] [λ′] [λ′′]

〉

. (4.33)

Since in applications in quantum mechanics, the representations are inter-
preted as quantum mechanical states, a notation often used is that introduced
by Dirac, called bra-ket notation. A ket is denoted by |〉 and a bra by 〈|.

A crucial problem of representation theory is to find the irreducible rep-
resentations of an algebra g′ contained in a given representation of g (often
called the branching problem).

4.8 Canonical Chains

The branching problem was solved completely by Gel’fand and Cetlin in
a series of articles in the 1950’s, for a particular chain of algebras, called
the canonical chain of unitary and orthogonal algebras. [I.M. Gel’fand and
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M.L. Cetlin, Finite-Dimensional Representations of a Group of Unimodu-
lar Matrices, Dokl. Akad. Nauk SSSR 71, 8–25, 825–828 (1950); Finite-
Dimensional Representations of Groups of Orthogonal Matrices, ibid. 71,
1017–1020 (1950).]

4.8.1 Unitary Algebras

The canonical chain is

u(n) ⊃ u(n − 1) ⊃ u(n − 2) ⊃ . . . ⊃ u(1) . (4.34)

The labels (quantum numbers) are conveniently arranged into a pattern
called Gel’fand pattern

λ1,n λ2,n λn−1,n λn,n

λ1,n−1 . . . . . . λn−1,n−1

. . . . . .
λ1,2 λ2,2

λ1,1

. (4.35)

The entries in this pattern are λi,j where i labels the entries in the Young
tableau, and j the algebra in the chain. For example, λn,n is the n-th entry
in the Young tableau of u(n).

The solution to the branching problem is that the labels must satisfy the
inequalities

λ1, n ≥ λ1, n−1 ≥ λ2, n ≥ . . . ≥ λn, n ≥ 0
. . .

λ1,2 ≥ λ1,1 ≥ λ2,2 . (4.36)

These inequalities hold for any two rows in (4.35) and are often called trian-
gular inequalities.
Example 8. Representations of u(4)

The complete basis is labelled by

λ1,4 λ2,4 λ3,4 λ4,4

λ1,3 λ2,3 λ3,3

λ1,2 λ2,2

λ1,1

(4.37)

In the applications discussed in Chap. 7, one needs the branching of the
totally symmetric representation [N ] of u(4) with ket |N1;N2;N3;N4〉 and
pattern

N4 0 0 0
N3 0 0

N2 0
N1

. (4.38)

Use of Gel’fand inequalities gives N3 = N4, N4 − 1, . . . , 0;N2 = N3, N3 −
1, . . . , 0;N1 = N2, N2 − 1, . . . , 0.
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4.8.2 Orthogonal Algebras

The canonical chain is

so(n) ⊃ so(n − 1) ⊃ so(n − 2) ⊃ . . . ⊃ so(2) . (4.39)

For n = 2k + 2 = even, the Gel’fand pattern is

µ1,2k+1 µ2,2k+1 . . . µk,2k+1 µk+1,2k+1

µ1,2k µk,2k

µ1,2k−1 µk,2k−1

. . . . . .
µ1,4 µ2,4

µ1,3 µ2,3

µ1,2

µ1,1

(4.40)

There is an alternation between even and odd algebras, ending with so(5) ⊃
so(4) ⊃ so(3) ⊃ so(2). The triangular inequalities are:

µ1, 2k+1 ≥ µ1, 2k ≥ µ2, 2k+1 ≥ . . . ≥ µk, 2k ≥| µk+1, 2k+1 |
µ1, 2k ≥ µ1, 2k−1 ≥ µ2, 2k ≥ . . . ≥ µk, 2k ≥| µk, 2k−1 |
µ1, 2k−1 ≥ µ1, 2k−2 ≥ . . . ≥ µk−1, 2k−2 ≥| µk, 2k−1 | . (4.41)

For n = 2k + 1 = odd, the Gel’fand pattern is

µ1,2k µk,2k

µ1,2k−1 µk,2k−1

µ1,2k−2 µk−1,2k−2

. . . . . .
µ1,4 µ2,4

µ1,3 µ2,3

µ1,2

µ1,1

(4.42)

There is alternation betwen odd and even algebras, still ending with so(5) ⊃
so(4) ⊃ so(3) ⊃ so(2) with inequalities

µ1, 2k ≥ µ1, 2k−1 ≥ . . . ≥ µk, 2k ≥| µk, 2k−1 |
µ1, 2k−1 ≥ µ1, 2k−2 ≥ . . . ≥ µk−1, 2k−2 ≥| µk, 2k−1 | . (4.43)

Example 9. Branching of so(4)

For the ket
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∣
∣
∣
∣
∣
∣

so(4) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓

[µ1, µ2] J M

〉

(4.44)

the Gel’fand pattern is

µ1 µ2

J
M

(4.45)

with branching

µ1 ≥ J ≥| µ2 | , +J ≥ M ≥ −J . (4.46)

4.9 Isomorphisms of Spinor Algebras

Because of the isomorphisms discussed in Chap. 2, one has

spin(2) ∼ u(1)
spin(3) ∼ su(2)

spin(4) ∼ su(2) ⊕ su(2)
spin(5) ∼ sp(4)
spin(6) ∼ su(4)

(4.47)

After spin(6), the spinor algebras are no longer isomorphic to other (non-
orthogonal) classical Lie algebras.

It is of interest to find the relation between the quantum numbers labelling
the representations of two isomorphic algebras.

Example 10. The case spin(3) ∼ su(2)

spin(3) ∼ su(2)
↓ ↓
J λ

. (4.48)

The relation in this case is simply J = λ
2 ,

su(2) :

λ
︷ ︸︸ ︷
� � . . . � ≡ spin(3) : J =

λ

2
(4.49)

Example 11. The case spin(6) ∼ su(4)

spin(6) ∼ su(4)
↓ ↓

[σ1, σ2, σ3] [λ1, λ2, λ3]
σ1 ≥ σ2 ≥| σ3 |≥ 0 λ1 ≥ λ2 ≥ λ3 ≥ 0

(4.50)
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The relation in this case is

λ1 = σ1 + σ2 , λ2 = σ1 − σ3 , λ3 = σ2 − σ3 . (4.51)

The correspondence between the fundamental representations is

spin(6) su(4)
[
1
2 , 1

2 , 1
2

]
[1, 0, 0] �

[
1
2 , 1

2 ,− 1
2

]
[1, 1, 1]

�
�
�

[1, 0, 0] [1, 1, 0]
�
�

. (4.52)

4.10 Nomenclature for u(n)

In physics textbooks, the representations of u(n) are often referred according
to the particles they describe. The totally symmetric representations

N
︷ ︸︸ ︷
� � . . . � [N, 0, 0, . . . , 0] = [N,

·
0] ≡ [N ] (4.53)

describe bosons and are often referred to as bosonic. The notation
[
N, 0̇

]
is

rarely used. The totally antisymmetric representations

�
�
. . .
�

[1, 1, . . . , 1] ≡ [
·
1] (4.54)

describe fermions and are often referred to as fermionic. The representations
with mixed symmetry

� � · · · �
� · · · �
...
�

(4.55)

describe particles with internal degrees of freedom.

4.11 Dimensions of the Representations

The dimensions of the representations are often used to check the branching
rules. A general formula was provided by Weyl and is called the Weyl formula.
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4.11.1 Dimensions of the Representations of u(n)

The dimension of the representation [λ] ≡ [λ1, λ2, . . . , λn] of u(n) is given by
the formula

dim[λ] =
∏

i<j

(�i − �j)
(�0i − �0j )

�0j = n − j , �j = λj + n − j , (4.56)

with i, j = 1, . . . , n.

Example 12. Dimensions of the representations of u(3)

For u(3),

dim[λ] =
(�1 − �2)(�1 − �3)(�2 − �3)
(�01 − �02)(�

0
1 − �03)(�

0
2 − �03)

. (4.57)

From (4.56)

dim [λ1, λ2, λ3] =
1
2

(λ1 − λ2 + 1) (λ1 − λ3 + 2) (λ2 − λ3 + 1) . (4.58)

For example, the dimension of the representation [2, 1, 0] is

dim[2, 1, 0] = 8 (4.59)

It has become customary in particle physics to denote the representation
with its dimension. This notation is ambiguous, as often there are different
representations with the same dimension. The Gel’fand patterns of the basis
states of the representation [2, 1] of u(3) and su(3) are

∣
∣
∣
∣
∣
∣

2 1 0
2 1

2

〉 ∣
∣
∣
∣
∣
∣

2 1 0
2 1

1

〉

∣
∣
∣
∣
∣
∣

2 1 0
2 0

2

〉 ∣
∣
∣
∣
∣
∣

2 1 0
2 0

1

〉 ∣
∣
∣
∣
∣
∣

2 1 0
2 0

0

〉

∣
∣
∣
∣
∣
∣

2 1 0
1 1

1

〉

∣
∣
∣
∣
∣
∣

2 1 0
1 0

1

〉 ∣
∣
∣
∣
∣
∣

2 1 0
1 0

0

〉

(4.60)

In this application, the basis states correspond to particles. The eight states
of the representation 8 for baryons correspond to particles called p, n,
Σ+, Σ0, Σ−, Ξ0, Ξ−.
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4.11.2 Dimensions of the Representations of su(n)

The dimensions of the representations of su(n) can be obtained from those of
u(n) by equivalences. Thus, for the representation [λ1, λ2, . . . , λn−1], formula
(4.56) applies with λn = 0.

4.11.3 Dimensions of the Representations of An ≡ su(n + 1)

An alternative formula for the dimensions of the representations of su(n),
which makes the connection with those of the orthogonal and symplectic
algebras given below clear, can be written for the Cartan algebras An ≡
su(n + 1). This formula can be simply derived from (4.54).

One first constructs the quantities

gi = n − i + 1 , mi = λi + gi (i = 1, . . . , n) . (4.61)

The dimensions of the representations of An are

dim [λ] =
∏

i

(
mi

gi

)∏

i<j

(
mi − mj

gi − gj

)

. (4.62)

4.11.4 Dimensions of the Representations of Bn ≡ so(2n + 1)

One constructs the quantities

gi = n − i +
1
2

, mi = µi + gi (i = 1, . . . , n) . (4.63)

The dimensions of the representations of Bn are

dim [µ] =
∏

i

(
mi

gi

)∏

i<j

(
mi − mj

gi − gj

)∏

i<j

(
mi + mj

gi + gj

)

. (4.64)

Example 13. Dimensions of the representations of so(3) and so(5)

The dimensions of the representations of so(3) and so(5) are given by

so(3) dim[µ1] = (2µ1 + 1)
so(5) dim [µ1, µ2] = 1

6 (µ1 − µ2 + 1) (µ1 + µ2 + 2) (2µ1 + 3) (2µ2 + 1) .
(4.65)
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4.11.5 Dimensions of the Representations of Cn ≡ sp(2n)

Here
gi = n − i + 1 , mi = µi + gi (i = 1, . . . , n) . (4.66)

The dimensions of the representations of Cn is

dim [µ] =
∏

i

(
mi

gi

)∏

i<j

(
mi − mj

gi − gj

)∏

i<j

(
mi + mj

gi + gj

)

. (4.67)

Example 14. Dimensions of the representations of sp(4)

The dimensions of the representations of sp(4) are given by

sp(4) dim [µ1, µ2] = 1
6 (µ1 − µ2 + 1) (µ1 + µ2 + 3) (µ1 + 2) (µ2 + 1) .

(4.68)

4.11.6 Dimensions of the Representations of Dn ≡ so(2n)

Here
gi = n − 1 , mi = µi + gi (i = 1, . . . , n) . (4.69)

The dimensions of the representations of Dn are

dim [µ] =
∏

i<j

(
mi − mj

gi − gj

)∏

i<j

(
mi + mj

gi + gj

)

. (4.70)

Example 15. Dimension of the representations of so(4)

The dimensions of the representations of so(4) are

so(4) dim [µ1, µ2] = (µ1 − µ2 + 1) (µ1 + µ2 + 1) . (4.71)

4.12 Action of the Elements of g on the Basis B

The action of the elements of g on the basis is of great interest in physics.
We consider here the case of u(n). The elements of u(n), when written in the
double index notation of Chap. 2, satisfy the commutation relations

[Eij , Ekl] = δjkEil − δilEkj i, j, k, l = 1, . . . , n . (4.72)

Consider only Ek,k , Ek,k−1 and Ek−1,k, since the action of the others can be
obtained from the commutators of these. The action is
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Ek,k | λ〉 = (rk − rk−1) | λ〉

Ek,k−1 | λ〉 =
k−1∑

j=1

aj
k−1 | λ′〉

Ek−1,k | λ〉 =
k−1∑

j=1

bj
k−1 | λ′′〉 (4.73)

where Ek,k is called the diagonal element (or operator), Ek,k−1 the lowering
element (or operator), Ek−1,k the raising element (or operator). In this equa-
tion, | λ〉 denotes a generic representation | λ1, λ2, . . . , λn〉. The coefficients
rk are given by

r0 = 0 , rk =
k∑

j=1

λj,k , k = 1, . . . , n , (4.74)

while the coefficients a and b are given by

aj
k−1 =










−

k∏

i=1

(λi,k − λj,k−1 − i + j + 1)
k−2∏

i=1

(λi,k−2 − λj,k−1 − i + j)

k−1∏

i�=j
i=1

(λi,k−1 − λj,k−1 − i + j + 1)
k−1∏

i�=j
i=1

(λi,k−1 − λj,k−1 − i + j)










1/2

bj
k−1 =










−

k∏

i=1

(λi,k − λj,k−1 − i + j)
k−2∏

i=1

(λi,k−2 − λj,k−1 − i + j − 1)

k−1∏

i�=j
i=1

(λi,k−1 − λj,k−1 − i + j)
k−1∏

i�=j
i=1

(λi,k−1 − λj,k−1 − i + j − 1)










1/2

(4.75)
The representation |λ′ 〉 is obtained from |λ 〉 by replacing λj, k−1 by λj, k−1−
1. (This is the reason why the operator Ek,k−1 is called lowering operator).
| λ′′ 〉 is obtained from | λ 〉 by replacing λj, k−1 by λj, k−1 + 1. (Ek−1,k is
called raising operator).

These results were obtained by Baird and Biederharn in the 1960’s.
[G.E. Baird and L.C. Biedenharn, On the Representations of Semisimple Lie
Groups-II, J. Math. Phys. 4, 1449 (1963).]

Example 16. The algebra u(2)

The states are ∣
∣
∣
∣
λ1,2 λ2,2

λ1,1

〉

. (4.76)

The algebra contains four elements E1,1, E1,2, E2,1, E2,2. The action of the
elements on the basis is
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E1,1

∣
∣
∣
∣
λ1,2 λ2,2

λ1,1

〉

= λ1,1

∣
∣
∣
∣
λ1,2 λ2,2

λ1,1

〉

E2,2

∣
∣
∣
∣
λ1,2 λ2,2

λ1,1

〉

= (λ1,2 + λ2,2 − λ1,1)
∣
∣
∣
∣
λ1,2 λ2,2

λ1,1

〉

E2,1

∣
∣
∣
∣
λ1,2 λ2,2

λ1,1

〉

= [(λ1,2 −λ1,1 +1) (λ1,1 −λ2,2)]
1/2

∣
∣
∣
∣
λ1,2 λ2,2

λ1,1 − 1

〉

E1,2

∣
∣
∣
∣
λ1,2 λ2,2

λ1,1

〉

= [(λ1,1 −λ1,2) (λ2,2 −λ1,1 − 1)]1/2

∣
∣
∣
∣
λ1,2 λ2,2

λ1,1 + 1

〉

(4.77)

Example 17. The algebra su(2)

In Gel’fand notation the basis states are
∣
∣
∣
∣
λ1,2 = 2J λ2,2 = 0

λ1,1 = M + J

〉

(4.78)

In the usual notation in quantum mechanics the basis states are written as
|J,M〉. The action of the elements on the basis is

E1,1 | J,M〉 = (M + J) | J,M〉
E2,2 | J,M〉 = (−M + J) | J,M〉 . (4.79)

From these one obtains

1
2

(E1,1 − E2,2) | J,M〉 = M | J,M 〉 (4.80)

The action of the raising and lowering operators is

E2,1 | J,M〉 = [J(J + 1) − M(M − 1)]1/2 | J,M − 1 〉
E1,2 | J,M〉 = [J(J + 1) − M(M + 1)]1/2 | J,M + 1 〉 . (4.81)

In quantum mechanics textbooks, the elements of the algebra are denoted by
Jz, J+, J− with

Jz =
1
2

(E1,1 − E2,2)

J− = E1,2

J+ = E2,1 (4.82)

In this notation, the action of the elements of the algebra is

Jz |J,M〉 = M |J,M〉
J− | J,M 〉 = [J(J + 1) − M(M − 1)]1/2 | J,M − 1 〉
J+ | J,M 〉 = [J(J + 1) − M(M + 1)]1/2 | J,M + 1 〉 . (4.83)
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4.13 Tensor Products

With the representations [λ1, λ2, . . . , λn] one can form tensor products. The
outer product of two tensors is denoted by

[λ′
1, λ

′
2, . . . , λ

′
n] ⊗ [λ′′

1 , λ′′
2 , . . . , λ′′

n] =
∑

⊕ [λ1, λ2, . . . , λn] . (4.84)

A crucial problem is to find what are the representations contained in the
product. For u(n) and su(n) the representations contained in the product
can be simply obtained using a set of rules, known also as Young calculus.
Rule 1 Product by a symmetric representation

Consider the product of a generic representation [λ′
1, λ

′
2, . . . , λ

′
n] by a sym-

metric representation [λ′′
1 , 0, . . . , 0], for Example

� � ⊗ � �
� (4.85)

Replace the second factor by a’s

� � ⊗ a a
� (4.86)

Place the a’s in all possible ways but no two a’s in the same column

� � a a ⊕ � � a ⊕ � � a ⊕ � �
� � a � � a

a a
(4.87)

Example 18. Product of fundamental representations

� ⊗ � = � � ⊕ �
� (4.88)

When written in the notation (4.84)

[1] ⊗ [1] = [2] ⊕ [1, 1] . (4.89)

Rule 2 Product by a generic representation
Consider the product of a generic representation [λ′

1, λ
′
2, . . . , λ

′
n] by a

generic representation [λ′′
1 , λ′′

2 , . . . , λ′′
n], for Example

� � ⊗ � �
� � (4.90)

Replace the second factor by a’s, b’s, . . .
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� � ⊗ a a
� b

(4.91)

Place the a’s in all possible ways but no two a’s in the same column. Place
the b’s in all possible ways but no two b’s in the same column. The b’s must
form with the a’s an admissible sequence when read from right to left (i.e. in
inverse order . . . , c, b, a) in the first row, then in the second row, . . .

Definition 1. A sequence of letters a,b,c,. . . is admissible if at any point in
the sequence at least as many a’s have occurred as b’s, at least as many b’s
have occurred as c’s, etc.

Thus abcd and aabcb are admissible, while baa is not.

Example 19.

� � ⊗ a a = � � a a ⊕ � � a a ⊕ � � a
� b � b � � a b

b

⊕ � � a ⊕ � � a ⊕ � �
� a � b � a
b a a b

. (4.92)

Rule 3 For su(n) use equivalences when necessary

Example 20.

u(3) [2, 1] ⊗ [2, 1] = [4, 2] ⊕ [4, 1, 1] ⊕ [3, 3] ⊕ [3, 2, 1] ⊕ [3, 2, 1] ⊕ [2, 2, 2]
su(3) (2, 1) ⊗ (2, 1) = (4, 2) ⊕ (3, 0) ⊕ (3, 3) ⊕ (2, 1) ⊕ (2, 1) ⊕ (0, 0)

(4.93)

Parentheses () have been used to denote representations of su(3) to distin-
guish them from those of u(3) denoted by brackets [].
Rule 4 Check dimensions if needed

The dimensions of the representations in the product above are

su(3) : 8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1 . (4.94)

Note that the two representations (3, 0) and (3, 3) have the same dimension,
10. A bar is usually placed above the dimension, when this situation occurs.

Multiplication rules for o(n) and sp(n) are rather complicated. Simple
rules can be obtained only by using the isomorphisms discussed in Chap. 2.

Example 21. Multiplication rules for so(3)
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Consider, for example, the product (1) ⊗ (1). Using the relation λ = 2J ,
this product can be converted to

su(2) : [2] ⊗ [2] . (4.95)

This product can be performed using the rules 1 and 3,

�� ⊗ aa = � � a a ⊕ � � a
a

⊕ � �
a a

(4.96)

that is
[2] ⊗ [2] = [4] ⊕ [2] ⊕ [0] . (4.97)

This can be converted back to so(3) using J = λ/2, with result

(1) ⊗ (1) = (2) ⊕ (1) ⊕ (0) . (4.98)

Example 22. Multiplication rules of so(6)

Consider as another example, the product (2, 0, 0) ⊗ (1, 0, 0). Using the
relations λ1 = σ1+σ2, λ2 = σ1−σ3, λ3 = σ2−σ3 given in (4.51), this product
can be converted to

su(4) : [2, 2, 0] ⊗ [1, 1, 0] . (4.99)

This product can be perfomed using the rules for su(4)

� � ⊗ a = � � a ⊕ � � a ⊕ � �
� � b � � b � � � �

b a
b

, (4.100)

that is
[2, 2, 0] ⊗ [1, 1, 0] = [3, 3, 0] ⊕ [3, 2, 1] ⊕ [1, 1, 0] . (4.101)

This can now be converted back to so(6) using σ1 = λ1+λ2−λ3
2 , σ2 = λ1−λ2+λ3

2 ,

σ3 = λ1−λ2−λ3
2 , with result

(2, 0, 0) ⊗ (1, 0, 0) = (3, 0, 0) ⊕ (2, 1, 0) ⊕ (1, 0, 0) . (4.102)

4.14 Non-Canonical Chains

Gel’fand canonical chains of unitary and orthogonal algebras provide a com-
plete solution to the branching problem for these algebras. However, in most
problems in physics, one needs to consider non-canonical chains. For example,
quite often the rotation algebra so(3) needs to be considered as a subalge-
bra of u(n). Also, the branching problem for symplectic algebras sp(n), not
addressed by Gel’fand and Cetlin, needs be considered.
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Example 23. The chain u(6) ⊃ so(6) ⊃ so(5) ⊃ so(3) ⊃ so(2)

This chain has two non-canonical steps, u(6) ⊃ so(6) and so(5) ⊃ so(3)
and illustrates two of the most important cases often encountered: u(n) ⊃
o(n);u(n) ⊃ sp(n); o(n) ⊃ o(n − 2); sp(n) ⊃ sp(n − 2). The other two cases,
u(n) ⊃ sp(n) and sp(n) ⊃ sp(n − 2), are also encountered, especially the
former, as discussed in Sect. 8.4.

The decomposition of irreducible representations of g into representations
of g′ for non-canonical chains

∣
∣
∣
∣
∣
∣

g ⊃ g′

↓ ↓
[λ] [µ]

〉

(4.103)

is one of the most difficult problems in group theory. A method often used is
the so-called building-up process. The decomposition is constructed by taking
successive products of the fundamental representations of g and g′. If one of
the algebras is su(n), equivalences are used. The method is illustrated by
considering a problem of interest in nuclear physics.

Example 24. Decomposition of representations of u(3) and su(3) into rep-
resentations of so(3)

In order to decompose representantions of u(3) and su(3) into representa-
tions of so(3) it is convenient to consider the decomposition u(3) ⊃ so(3) and
use equivalence relations to obtain su(3) ⊃ so(3). It is also convenient, for
clarity, to use Young notation to label representations of u(3) and su(3) and
angular momentum notation to label representations of so(3). In this nota-
tion, the fundamental representation [1] of u(3) has Young tableau �, while
the fundamental representation (1) of so(3) has L = 1. The representation �
of u(3) contains only the representation (1) of so(3), as one can see by noting
that dim[�] = 3 = dim(1) and that there are no other representations of so(3)
with dim = 3. (The dimensions of the representations play an important role
in the building-up process. The dimension of the representations of u(3) is
given in (4.56), while that of so(3) is given in (4.64).) The decomposition of
the fundamental representation of u(3) into representations of so(3) is thus

∣
∣
∣
∣
∣
∣

u(3) ⊃ so(3)
↓ ↓

[1] ≡ � (1)

〉

. (4.104)

Consider now the products of representations of u(3) obtained by using the
rules of Sect. 13 and of so(3) obtained either by using the rules of Sect. 13
or, equivalently, by using the angular momentum rule

| L1 − L2 |≤ L ≤| L1 + L2 | (4.105)
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which results from the isomorphism so(3) ∼ su(2), as described in Example
18. The product of the fundamental representation [1] ≡ � of u(3) with itself,
and of the fundamental representation (1) of so(3) with itself gives

u(3) : � ⊗ � = �� ⊕ �
�

so(3) : (1) ⊗ (1) = (0) ⊕ (1) ⊕ (2) . (4.106)

The representation [1, 1] of u(3) contains only the representation (1) of so(3)
as one can see by noting that dim [1, 1] = 3 = dim(1) and that there is no
other representation of so(3) with dim = 3. Thus

∣
∣
∣
∣
∣
∣

u(3) ⊃ so(3)
↓ ↓

[1, 1] (1)

〉

. (4.107)

The remaining representations (0)⊕(2) of so(3) must belong to the represen-
tation � � ≡ [2] of u(3). This is verified by a dimensional check, dim[2] = 6,
dim ((0) ⊕ (2)) = 1 + 5 = 6. Thus

∣
∣
∣
∣
∣
∣

u(3) ⊃ so(3)
↓ ↓
[2] (0) ⊕ (2)

〉

. (4.108)

When going from u(3) to su(3), by virtue of equivalence relation 2, we have
[1, 1] ≡ [1], again showing that the representation [1] of su(3) contains only
(1) of so(3).

Next, consider the products

u(3) :
�
� ⊗ � =

� �
� ⊕

�
�
�

so(3) : (1) ⊗ (1) = (0) ⊕ (1) ⊕ (2) . (4.109)

The dimension of the representation [1, 1, 1] of u(3) is 1 and therefore
∣
∣
∣
∣
∣
∣

u(3) ⊃ so(3)
↓ ↓

[1, 1, 1] (0)

〉

. (4.110)

Consequently [2, 1] must contain the remaining representations (1) ⊕ (2)
∣
∣
∣
∣
∣
∣

u(3) ⊃ so(3)
↓ ↓

[2, 1] (1) ⊕ (2)

〉

. (4.111)

The dimensional check is dim[2, 1] = 8, dim ((1) ⊕ (2)) = 3 + 5 = 8. When
going from u(3) to su(3), use of the equivalence relation 1 gives
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�
�
�

≡ [1, 1, 1] ≡ [0] . (4.112)

A tedious but straightforward procedure, sometimes called plethism, gives
then Table 4.2. In this table, for clarity, both the representations of u(3) and
of su(3) (with their equivalences) are given. Also the number t, the rank of
the tensor in (4.5), is given. This number is important in applications since
it denotes the total number of particles

t = λ1 + . . . + λn . (4.113)

Consider now the representation [4, 2] of su(3). From the table, one can see
that it contains two L = 2 representations of so(3). Thus the decomposition
is not unique and one needs an additional quantum number to distinguish
the two L = 2 representations. The identification and use of this quantum
number (missing label) is one of the most subtle points of representation

Table 4.2. Decomposition of representations of u(3) and su(3) into representations
of so(3)

t u(3) su(3) so(3)

0 [0] [0] 0
1 [1] [1] 1
2 [2] [2] 0, 2

[1, 1] [1, 1] ≡ [1] 1
3 [3] [3] 1, 3

[2, 1] [2, 1] 1, 2
[1, 1, 1] [1, 1, 1] ≡ [0] 0

4 [4] [4] 0, 2, 4
[3, 1] [3, 1] 1, 2, 3
[2, 2] [2, 2] ≡ [2] 0, 2
[2, 1, 1] [2, 1, 1] ≡ [1] 1

5 [5] [5] 1, 3, 5
[4, 1] [4, 1] 1, 2, 3, 4
[3, 2] [3, 2] ≡ [3, 1] 1, 2, 3
[3, 1, 1] [3, 1, 1] ≡ [2] 0, 2
[2, 2, 1] [2, 2, 1] ≡ [1, 1] 1

6 [6] [6] 0, 2, 4, 6
[5, 1] [5, 1] 1, 2, 3, 4, 5
[4, 2] [4, 2] 0, 22, 3, 4
[4, 1, 1] [4, 1, 1] ≡ [3] 1, 3
[3, 3] [3, 3] ≡ [3] 1, 3
[3, 2, 1] [3, 2, 1] ≡ [2, 1] 1, 2
[2, 2, 2] [2, 2, 2] ≡ [0] 0
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theory. To find how many missing labels there are in a given problem, go to
the canonical chain (which has no missing labels) and count the total number
of labels.

Example 25. Missing labels for su(3) ⊃ so(3)

Consider the non-canonical chain
∣
∣
∣
∣
∣
∣

su(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓

[λ1, λ2] L M

〉

(4.114)

and its associated canonical chain
∣
∣
∣
∣
∣
∣

su(3) ⊃ u(2) ⊃ u(1)
↓ ↓ ↓

[λ1,3, λ2,3, 0] [λ1,2, λ2,3] [λ1,1]

〉

. (4.115)

The non-canonical chain has 4 labels, while the canonical chain has 5. There
is thus one missing label in the non-canonical chain.

Extensive tables for the non-canonical reductions





u(7) ⊃ so(7)
u(5) ⊃ so(5)
u(3) ⊃ so(3)






u(8) ⊃ sp(8)
u(6) ⊃ sp(6)
u(4) ⊃ sp(4)

{
u(6) ⊃ so(6)
u(4) ⊃ so(4)

(4.116)

exist. [M. Hamermesh, Group Theory and Application to Physical Problems,
Addison-Wesley, Reading (1962).] Tables are also available for the reduction
so(5) ⊃ so(3). [F. Iachello and A. Arima, The Interacting Boson Model,
Cambridge University Press, 1987.]

Although not of the type mentioned at the beginning of the section, it is
worth noting that tables of non-canonical reductions sp(8) ⊃ spin(3), sp(6) ⊃
spin(3), sp(4) ⊃ spin(3) are also available. [R.H. Flowers, Studies in j-j cou-
pling. I. Classification of nuclear and atomic states, Proc. Roy. Soc. A212,
248 (1952).]



5 Casimir Operators and Their Eigenvalues

5.1 Definitions

An operator which commutes with all the elements of a Lie algebra, g, is
called an invariant, or Casimir operator, C

[C,Xρ] = 0 for any Xρ ∈ g . (5.1)

The operator is called of order p, if it is built from products of p elements

Cp =
∑

α1,α2,...,αp

fα1α2...αpXα1Xα2 . . . Xαp . (5.2)

It lies in the enveloping algebra of g, T (g).

5.2 Independent Casimir Operators

The number of independent Casimir operators, C, of a Lie algebra g, is equal
to the rank l of g, and hence equal to the number of labels that characterize
the irreducible representations of g. As mentioned in Chap. 1, if C is a Casimir
operator, so is aC, C2, . . .

5.2.1 Casimir Operators of u(n)

The algebra of u(n) has n independent Casimir operators of order 1, 2, . . . , n

C1, C2, . . . , Cn . (5.3)

A construction of these operators was given in Chap. 1 in terms of the struc-
ture constants cγ

αβ . For the algebra u(n), if the elements are denoted by
Eij(i, j = 1, . . . , n), that is if the algebra is realized as in Chap. 2, Sect. 10,
the Casimir operators of order p can be written as

Cp = Ei1i2Ei2i3 . . . Eip−1ip
Eipi1 p = 1, 2, . . . , n (5.4)

(summation over repeated indices). In particular

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 63–74 (2006)
c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-36239-8 5
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C1 = Ei1i1 , (5.5)

or, displaying explicitly the summation

C1 =
n∑

i=1

Eii . (5.6)

Using the form (5.4), one can show that the Casimir operators so defined are
independent. [A.O. Barut and R. Raczka, Theory of Group Representations
and Applications, World Scientific, Singapore, 1986.]

5.2.2 Casimir Operators of su(n)

The independent Casimir operators of su(n) are of order 2, 3, . . . , n

C2, C3, . . . , Cn (5.7)

that is the same as u(n) but with C1 omitted. The elements of su(n) are
obtained from those of u(n) by keeping the off-diagonal elements the same,
replacing the diagonal ones with

Ẽii = Eii −
1
n

n∑

j=1

Ejj . (5.8)

and deleting Ẽnn. The linear Casimir operator of su(n) is

C1 =
n∑

i=1

Ẽii = 0 , (5.9)

and can thus be omitted.

5.2.3 Casimir Operators of so(n), n = Odd

The independent Casimir operators of so(n), n = odd are

C2, C4, C6, . . . , C2ν−2, C2ν ; ν =
n − 1

2
. (5.10)

These operators are all of even order.

5.2.4 Casimir Operators of so(n), n = Even

The independent Casimir operators of so(n), n = even are

C2, C4, C6, . . . , C2ν−2, C
′
ν ; ν =

n

2
. (5.11)
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The operators C are of even order, while C ′ is of even or odd order depending
on whether ν is even or odd. Comparing with the previous case (5.10) one can
see that there is a peculiarity here, since the operator of order 2ν is replaced
by an operator of order ν. The operator C ′

ν is needed to distinguish between
the mirror conjugate representations [λ1, λ2, . . . ,+λν ] and [λ1, λ2, . . . , −λν ].

Example 1. Casimir operators of so(4) and so(6)

The Casimir operators of so(4) are of order

C2, C
′
2 . (5.12)

The Casimir operators of so(6) are of order

C2, C4, C
′
3 . (5.13)

5.2.5 Casimir Operators of sp(n), n = Even

The independent Casimir operators of sp(n), n = even are

C2, C4, C6, . . . , C2ν−2, C2ν ; ν =
n

2
. (5.14)

These operators are all of even order.

5.2.6 Casimir Operators of the Exceptional Algebras

The independent Casimir operators of the exceptional algebras are of order

G2 C2, C6

F4 C2, C6, C8, C12

E6 C2, C5, C6, C8, C9, C12

E7 C2, C6, C8, C10, C12, C14, C18

E8 C2, C8, C12, C14, C18, C20, C24, C30

(5.15)

5.3 Complete Set of Commuting Operators

For any given Lie algebra g, one is often interested in constructing a complete
set of commuting operators. This is done by considering the decomposition
into subalgebras g ⊃ g′ ⊃ g′′ ⊃ . . .. In view of problems connected with
missing labels, the construction of a complete set of commuting operators is
straightforward only for canonical chains. The construction parallels that of
the labels given Chap. 4 (Gel’fand construction) and applies to the canonical
chains u(n) ⊃ u(n − 1) ⊃ . . . ⊃ u(2) ⊃ u(1) and so(n) ⊃ so(n − 1) ⊃ . . . ⊃
so(2). The construction for the symplectic algebras sp(n) is more complex
and it will not be discussed here.
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5.3.1 The Unitary Algebra u(n)

The commuting Casimir operators can be arranged into a triangular pattern

C1,n C2,n Cn−1,n Cn,n

C1,n−1 Cn−1,n−1

. . . . . .
C1,2 C2,2

C1,1

(5.16)

where C1,n denotes C1(u(n)), . . ..

5.3.2 The Orthogonal Algebra so(n), n = Odd

The complete set of commuting operators is, for n = 2k + 1,

C2,2k+1 C4,2k+1 C2k−2,2k+1 C2k,2k+1

C2,2k C4,2k C2k−2,2k C ′
k,2k

. . . . . .
C2,4 C ′

2,4

C2,3

C ′
1,2

(5.17)

5.3.3 The Orthogonal Algebra so(n), n = Even

The complete set of commuting operators is for n = 2k + 2,

C2,2k+2 C4,2k+2 C2k,2k+2 C ′
k+1,2k+2

C2,2k+1 C2k,2k+1

. . . . . .
C2,4 C ′

2,4

C2,3

C ′
1,2

(5.18)

5.4 Eigenvalues of Casimir Operators

The eigenvalues of the Casimir operators of all classical Lie algebras in a
representation | λ〉, denoted in short by

〈λ1, . . . , λn | Cp | λ1, . . . , λn〉 = 〈Cp〉 (5.19)

were worked out in a series of papers by Perelomov and Popov in the 1960’s.
[A.M. Perelomov and V.S. Popov, Casimir Operators for u(n) and su(n), Sov.
J. of Nucl. Phys. 3, 676–680 (1966); Casimir Operators of Orthogonal and
Symplectic Groups, Sov. J. of Nucl. Phys. 3, 819–824 (1966).] The algorithm
to obtain the eigenvalues is described below.
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5.4.1 The Algebras u(n) and su(n)

To find the eigenvalues of the Casimir operators, Cp, construct the quantities

Sk =
n∑

i=1

(�k
i − ρk

i ) , ρi = n − i , �i = mi + n − i (5.20)

with

mi =
{

λi for u(n)
λi − λ

n for su(n)
, λ =

n∑

i=1

λi . (5.21)

Construct the function

ϕ(z) =
∞∑

k=2

ak zk , ak =
k−1∑

j=1

(k − 1)!
j!(k − j)!

Sj . (5.22)

Define the quantities Bp by

exp {−ϕ(z)} = 1 −
∞∑

p−0
zp+1 , B0 = 0 . (5.23)

Then, the eigenvalue of Cp in the representation [λ1, λ2, . . . , λn] is 〈Cp〉 =
Bp − n Bp−1. This algorithm gives the following eigenvalues of Casimir op-
erators of order, p ≤ 3. For u(n)

〈C1〉 = S1

〈C2〉 = S2 − (n − 1)S1

〈C3〉 = S3 −
(

n − 3
2

)

S2 −
1
2
S2

1 − (n − 1)S1

. . . (5.24)

and for su(n)

〈C1〉 = 0
〈C2〉 = S2

〈C3〉 = S3 −
(

n − 3
2

)

S2

. . . (5.25)

Example 2. Eigenvalue of the quadratic Casimir operator of su(2) in the
representation [λ1]

From

S2 =
2∑

i=1

(�2i − ρ2
1)
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ρ1 = 1, ρ2 = 0
�1 = m1 + 1, �2 = m2

m1 = λ1 −
λ1

2
,m2 = −λ1

2
(5.26)

one obtains
〈C2〉 =

1
2
λ1(λ1 + 2) . (5.27)

Example 3. Eigenvalue of the quadratic Casimir operator of su(3) in the
representation [λ1, λ2]

From

S2 =
3∑

i=1

(
�2i − ρ2

i

)

ρ1 = 2, ρ2 = 1, ρ3 = 0
�1 = m1 + 2, �2 = m2 + 1, �3 = m3

m1 = λ1 −
λ1 + λ2

3
,m2 = λ2 −

λ1 + λ2

3
,m3 = −λ1 + λ2

3
(5.28)

one obtains
〈C2〉 =

6
9
[
λ2

1 + λ2
2 − λ1λ2 + 3λ1

]
. (5.29)

The coefficient 6
9 is usually omitted, since Casimir operators are defined up

to a multiplicative constant.

Example 4. Eigenvalue of the quadratic Casimir operator of su(5) in the
representation [λ1, λ2, λ3, λ4]

From

S2 =
5∑

i=1

(
�2i − ρ2

i

)

ρ1 = 4, ρ2 = 3, ρ3 = 2, ρ4 = 1, ρ5 = 0
�1 = m1 + 4, �2 = m2 + 3, �3 = m3 + 2, �4 = m4 + 1, �5 = m5

m1 = λ1 −
λ

5
,m2 = λ2 −

λ

5
,m3 = λ3 −

λ

5
,m4 = λ4 −

λ

5
,m5 = −λ

5
(5.30)

one obtains

〈C2〉 = λ2
1 + λ2

2 + λ2
3 + λ2

4 −
λ2

5
+ 8λ1 + 6λ2 + 4λ3 + 2λ4 − 4λ , (5.31)

with
λ = λ1 + λ2 + λ3 + λ4 . (5.32)
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Example 5. Eigenvalue of the linear and quadratic Casimir operators of u(5)
in the representation [λ1, λ2, λ3, λ4, λ5]

Straightforward application of the formulas above give

〈C1〉 = S1 = λ (5.33)

〈C2〉 = S2 − 4S1

= λ2
1 + λ2

2 + λ2
3 + λ2

4 + λ2
5 + 4λ1 + 2λ2 − 2λ4 . (5.34)

For example, for the symmetric representation [N, 0, 0, 0, 0],

〈C2〉 = N(N + 4) . (5.35)

5.4.2 The Orthogonal Algebra so(2n + 1)

To find the eigenvalues, construct the quantities

Sk =
+n∑

i=−n

(�k
i − ρk

i ); ρi = �i − fi






�i = fi + n + i − ϑ0i

�−i = −�i + 2n − 1 (i �= 0)
�0 = n

ϑji =
{

1 j < i
0 j ≥ i

f−i = −fi , f0 = 0

S0 = S1 = 0 . (5.36)

Construct the function

ϕ(z) =
∞∑

k=3

ak zk , ak =
k−1∑

j=2

(k − 1)!
j!(k − j)!

Sj . (5.37)

Define the quantities Bp by

exp(−ϕ(z)) = 1 −
∞∑

p=2
Bp zp+1 , B0 = B1 = 0 . (5.38)

Then, the expectation value of Cp in the representation [fn, fn−1, . . . , f1]
(note the inverse order of the labels) is

〈Cp〉=(2n + 1) δp0 + Bp−
(

n +
1
2

)

Bp−1−
p−1∑

q=1

[

Bq −
(

n +
1
2

)

Bq−1

]

np−q .

(5.39)
Finally, convert [fn, fn−1, . . . , f1] to the standard notation [µ1, µ2, . . . ,

µn] . This algorithm gives
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〈C0〉 = 2n + 1
〈C1〉 = 0
〈C2〉 = S2

. . . (5.40)

Example 6. Eigenvalue of the quadratic Casimir operator of so(3) in the
representation [µ1]

From

〈C2〉 = S2 =
+1∑

i=−1

[�2i − (�i − fi)2]






�1 = f1 + 1 + 1 − 1 = f1 + 1
�−1 = −f1 − 1 + 2 − 1 = −f1

�0 = 1
,

f−1 = −f1

f0 = 0 (5.41)

one obtains
〈C2〉 = 2f1(f1 + 1) (5.42)

Converting to the standard notation [µ1]

〈C2〉 = 2µ1(µ1 + 1) (5.43)

Note that these constructions are consistent with the isomorphisms of Chap. 4.
Example 4.10 gives for the isomorphism su(2) ∼ so(3), the relation µ1 = λ1

2 .
Inserting this relation into (5.43) gives

〈C2(su(2))〉 =
1
2
λ1(λ1 + 2) (5.44)

as in (5.27). The additional normalization factor of two in (5.43) is usually
omitted and the label µ1 is called J in quantum mechanics textbooks. The
eigenvalues of the quadratic Casimir operator of the rotation algebra (and
group) is then written as

〈C2(so(3))〉 = J(J + 1) . (5.45)

Example 7. Eigenvalue of the quadratic Casimir operator of so(5) in the
representation [µ1, µ2]

From

〈C2〉 = S2 =
+2∑

i=−2

(2�i fi − f2
i ) .
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�2 = f + 3
�1 = f1 + 1

�0 = 2
�−2 = −f2

�−1 = −f1






f−2 = −f2

f−1 = f1

f0 = 0
(5.46)

one obtains

〈C2〉 = 2 f2(f2 + 3) + 2 f1(f1 + 1) . (5.47)

Converting to the standard notation [µ1, µ2]

〈C2〉 = 2[µ1(µ1 + 3) + µ2(µ2 + 1)] . (5.48)

5.4.3 The Symplectic Algebra sp(2n)

For sp(2n), construct the quantities

Sk =
+n∑

i=−n,i �=0

(�k
i − ρk

i ) , ρi = �i − fi

{
�i = fi + n + i
�−i = −�i + 2n

(5.49)

f−i = −fi , S0 = S1 = 0

and the function ϕ(z) as before. Then

〈Cp〉 = 2n δp0 + (Bp − n Bp−1) −
p−1∑

q=1
(Bq − n Bq−1)

(

n +
1
2

)p−q

. (5.50)

Finally, convert [fn, fn−1, . . . , f1] to the standard notation [µ1, µ2, . . . , µν ].
The Casimir operators of lowest order, p ≤ 2, are

〈C0〉 = 2n

〈C1〉 = 0
〈C2〉 = S2

. . . (5.51)

The constant 2n does no count as an idependent Casimir operator.

Example 8. Eigenvalue of the quadratic Casimir operator of sp(2) in the
representation [µ1]
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From

〈C2〉 = S2 =
1∑

i=−1,i �=0

(f2
i − 2�ifi)

�1 = f1 + 2, �−1 = −f1, f−1 = −f1 (5.52)

one obtains
〈C2〉 = −2f1(f1 + 2) . (5.53)

Converting to the standard notation [µ1]

〈C2〉 = −2µ1(µ1 + 2) . (5.54)

Note once more the consistency with the isomorphisms sp(2) ∼ su(2) apart
from an overall minus sign.

5.4.4 The Orthogonal Algebra so(2n)

For these algebras, construct the quantities

Sk =
+n∑

i=−n,i �=0

(�k
i − ρk

i ) , ρi = �i − fi

{
�i = fi + n + i − (1 + εi)
�−i = −�i + 2n − 2 εi =






1 i > 0
−1 i < 0
0 i = 0

f−i = −fi , S0 = S1 = 0 (5.55)

and the function ϕ(z) as before. Then

〈Cp〉 = 2n δp0 + (Bp − n Bp−1) −
p−1∑

q=1
(Bq − n Bq−1)

(

n − 1
2

)p−q

. (5.56)

Finally, convert [fn, fn−1, . . . , f1] to [µ1, µ2, . . . , µn]. The eigenvalues of
Casimir operators of lowest order, p ≤ 2, are

〈C0〉 = 2n

〈C1〉 = 0
〈C2〉 = S2

. . . (5.57)

Example 9. Eigenvalue of the quadratic Casimir operator of so(2) in the
representation [µ1]
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From

S2 =
+ 1∑

i =−1,i �=0

(2 li fi − f2
i )

{
�1 = f1

�−1 = −f1
f−1 = −f1 (5.58)

one obtains
〈C2〉 = 2 f2

1 . (5.59)

Converting to standard notation [µ1]

〈C2〉 = 2µ2
1 . (5.60)

Since so(2) is Abelian it has also a linear invariant. The quadratic invariant
C2, is the square of the linear invariant C1. In quantum mechanics textbooks,
the label µ1 = M and the factor of two is omitted.

Example 10. Eigenvalue of the quadratic Casimir operator of so(4) in the
representation [µ1, µ2]

From

S2 =
+ 2∑

i =−2,i �=0

(2 li fi − f2
i )

{
�2 = f2 + 2
�−2 = −f2

{
�1 = f1 + 1

�−1 = −f1 + 1

{
f−1 = −f1

f−2 = −f2
(5.61)

one obtains
〈C2〉 = 2 f2(f2 + 2) + 2f2

1 . (5.62)

Converting to standard notation [µ1, µ2]

〈C2〉 = 2 [µ1(µ1 + 2) + µ2
2] . (5.63)

Example 11. Eigenvalue of the quadratic Casimir operator of so(6) in the
representation [µ1, µ2, µ3]

In this case one has

〈C2〉 = 2 f3(f3 + 4) + 2 f2(f2 + 2) + 2f2
1 (5.64)

and, in standard notation, [µ1, µ2, µ3],

〈C2〉 = 2 [µ1(µ1 + 4) + µ2(µ2 + 2) + µ2
3] . (5.65)

Note that for all algebras so(2n) the dependence on the last quantum number
µν is always quadratic, so that the eigenvalue for +µν is the same as for −µν .
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5.5 Eigenvalues of Casimir Operators of Order One
and Two

The eigenvalues of Casimir operators of order p ≤ 2 of all classical Lie algebras
are summarized in Table 5.1. In this table, all labels are denoted by λi.

Table 5.1. Eigenvalues of Casimir operators of order p ≤ 2 of all classical Lie
algebras

Algebra Labels Order 〈C2〉

u(n) [λ1, λ2, . . . , λn] 1
n∑

i=1

λi = λ

u(n) [λ1, λ2, . . . , λn] 2
n∑

i=1

λi (λi + n + 1 − 2i)

su(n) [λ1, λ2, . . . , λn−1, 0] 2
n∑

i=1

(λi − λ
n
) (λi − λ

n
+ 2n − 2i)

so(2n + 1) [λ1, λ2, . . . , λn] 2
n∑

i=1

2 λi (λi + 2n + 1 − 2i)

so(2n) [λ1, λ2, . . . , λn] 2
n∑

i=1

2 λi (λi + 2n − 2i)

sp(2n) [λ1, λ2, . . . , λn] 2
n∑

i=1

2 λi (λi + 2n + 2 − 2i)



6 Tensor Operators

6.1 Definitions

We introduce an irreducible basis B and write it generically as | Λλ 〉, where
Λ are the labels of g and λ those of the subalgebra g′

∣
∣
∣
∣
∣
∣

g ⊃ g′

↓ ↓
Λ λ

〉

. (6.1)

The elements of g, Xσ, when acting on B, do not lead out of B. Thus, when
acting on the basis, we obtain a linear combination of the components

Xσ |Λλ〉 =
∑

λ′

〈 Λλ′ | Xσ | Λλ 〉 | Λλ′〉 . (6.2)

Example 1. The action of the elements of so(3) on its irreducible basis

From Sect. 4.12 we have

Jz |J,M〉 = M |J,M〉
J± |J,M〉 =

√
J(J + 1) − M(M ± 1) |J,M ± 1〉 . (6.3)

Definition 1. Tensor operators with respect to g

A tensor operator TΛ
λ , sometimes written as T (Λλ), is an operator that

satisfies the commutation relations

[Xσ, TΛ
λ ] =

∑

λ′

〈 Λλ′ | Xσ | Λλ〉 TΛ
λ′ (6.4)

with the elements of g.

Example 2. Tensor operators with respect to so(3)

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 75–89 (2006)
c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-36239-8 6
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Tensor operators with respect to so(3), T k
κ , k = integer, κ = integer =

−k, . . . ,+k satisfy commutation relations
[
Jz, T

k
κ

]
= κT k

κ
[
J±, T k

κ

]
=

√
k(k + 1) − κ(κ ± 1)T k

κ±1 . (6.5)

The label k is called the rank of the tensor (not to be confused with the rank
of the algebra). For k = 0, the tensor is called a scalar, for k = 1 a vector,
for k = 2 a quadrupole tensor, etc.. A coordinate realization is

T k
κ =

√
4π

2k + 1
Y k

κ (ϑ, ϕ) . (6.6)

6.2 Coupling Coefficients

The elements of the basis are themselves tensors. One can then form tensor
products in the sense of Chap. 4. For the basis, the tensor product is denoted
by

| Λ1 Λ2; a Λ12 λ12 〉 =
∑

λ1,λ2

〈 Λ1 λ1 Λ2 λ2 | a Λ12 λ12 〉 | Λ1 λ1 〉 | Λ2 λ2 〉 .

(6.7)
The coefficients in the sum are called coupling coefficients or Clebsch-Gordan
coefficients. Sometimes, the tensor product contains the same representation
more than once. A multiplicity label, a, is introduced in these cases. The
notation in (6.7) is the ket notation. The corresponding bra notation is

〈Λ1Λ2; aΛ12λ12| =
∑

λ1,λ2

〈Λ1λ1| 〈Λ2λ1| 〈aΛ12λ12 | Λ1λ1Λ2λ2〉∗ . (6.8)

The coefficients are in general complex and satisfy the orthogonality relations
∑

λ1,λ2

〈aΛ12 λ12 | Λ1λ1Λ2λ2 〉∗〈Λ1λ1Λ2λ2 | a′Λ′
12λ

′
12〉= δaa′δΛ12Λ′

12
δλ12λ′

12

∑

a,Λ12,λ12

〈Λ1λ1Λ2λ2 | aΛ12λ12 〉∗〈 aΛ12λ12 | Λ1λ
′
1Λ2λ

′
2〉= δλ1λ′

1
δλ2λ′

2
. (6.9)

Multiplying (6.7) by 〈aΛ12λ12 | Λ1λ1Λ2λ1〉∗, summing over a, Λ12, λ12, and
using the second orthogonality relation, one obtains

|Λ1λ1〉 |Λ2λ2〉 =
∑

a,Λ12,λ12

〈aΛ12λ12 | Λ1λ1Λ2λ2〉∗ |Λ1Λ2; aΛ12λ12〉 , (6.10)

called the inverse relation.
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Example 3. Clebsch-Gordan coefficients of so(3)

It is convenient here to use the notation found in most textbooks in quan-
tum mechanics. The basis states are labelled by

∣
∣
∣
∣
∣
∣

so(3) ⊃ so(2)
↓ ↓
J M

〉

. (6.11)

There are no multiplicity labels in this case and the tensor product is written
as

| J1 J2; J12 M12 〉 =
∑

M1 ,M2

〈 J1 M1 J2 M2 | J12 M12 〉 | J1 M1 〉 | J2 M2 〉

(6.12)
Coupling coefficients are defined up to a phase. For the coefficients of so(3),
the Condon-Shortley phase convention is almost always used. In this conven-
tion, the coefficient with maximum M12 = J12 is taken positive and real

〈 J1 M1 J2 M2 | J12, M12 = J12 〉 ≥ 0 . (6.13)

All coefficients are then real. Instead of the Clebsch-Gordan coefficients, an-
other coupling coefficient is often used, called Wigner 3-j symbol, related to
the Clebsch-Gordan coefficient by

(
J1 J2 J3

M1 M2 M3

)

=
(−)J1−J2−M3
√

2J3 + 1
〈 J1 M1 J2 M2 | J3,−M3 〉 . (6.14)

6.3 Wigner-Eckart Theorem

In the evaluation of the matrix elements of a tensor operator, it is convenient
to make use of a theorem, called Wigner-Eckart theorem, that states that
all matrix elements can be obtained from a single one, called reduced matrix
element and denoted by a double bar ‖ TΛ ‖,

〈Λ1 λ1 | TΛ
λ | Λ2 λ2 〉=

∑

a

〈a Λ1 λ1 | Λ λ Λ2 λ2 〉∗ 〈 a Λ1 ‖ TΛ ‖ Λ2 〉 . (6.15)

Here a is the multiplicity label (if any). Note that different authors have often
different definitions (up to a constant) of the reduced matrix elements. The
inverse relation is

〈aΛ1 ‖ TΛ ‖ Λ2〉 =
∑

λ1,λ2

〈ΛλΛ2λ2 | aΛ1λ1〉〈Λ1λ1 | TΛ
λ | Λ2λ2〉 . (6.16)
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Example 4. Wigner-Eckart theorem for so(3)

In the notation of Example 3, the Wigner-Eckart theorem is written as

〈 J1 M1 | T k
κ | J2 M2 〉

= 〈 J2 M2 k κ | J1 M1 〉 〈 J1 ‖ T k ‖ J2 〉
1√

2J1 + 1
. (6.17)

Note the extra factor of (2 J1 + 1)−
1
2 . With this definition

〈 J1 M1 | T k
κ | J2 M2 〉 = (−)J1−M1

(
J1 k J2

−M1 κ M2

)

〈 J1 ‖ T k ‖ J2 〉 .

(6.18)
The inverse relation is

〈 J1 ‖ T k ‖ J2 〉 =
√

2 J1 + 1
∑

M1,M2

〈 J2 M2 k κ | J1 M1 〉 〈 J1 M1 | T k
κ | J2 M2 〉 .

(6.19)

Matrix elements of tensor operators satisfy selection rules

λ ⊗ λ2 ⊃ λ1

Λ ⊗ Λ2 ⊃ Λ1 (6.20)

that is the representation λ1 must be contained in the tensor product λ⊗λ2,
and the representation Λ1 must be contained in the tensor product Λ ⊗ Λ2.

Example 5. Selection rules for so(3)

The matrix elements of the tensor operator T k
κ vanish

〈
J1,M1 | T k

κ | J1M2

〉
= 0 (6.21)

unless
M1 = M2 + κ, | J2 + k |≥ J1 ≥| J2 − k | . (6.22)

By making use of the Wigner-Eckart theorem, from the knowledge of one
matrix element, one can compute all others.

Example 6. Use of the Wigner-Eckart theorem for so(3)

Consider the problem of computing 〈 J M | J+ | J M ′ 〉 from the knowl-
edge of 〈JM | Jz | JM ′〉. To solve this problem, write down the Wigner-
Eckart theorem for Jz

〈 J M | Jz | J M〉 = (−)J−M

(
J 1 J

−M 0 M

)

〈 J ‖ J (1) ‖ J〉

=
M

√
J(J + 1)(2J + 1)

〈 J ‖ J (1) ‖ J〉 = M , (6.23)
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and obtain
〈J ‖ J (1) ‖ J〉 =

√
J(J + 1)(2J + 1) . (6.24)

In writing (6.23), use has been made of the tensorial character, k = 1, of the
angular momentum and its z-component, κ = 0, under so(3).

Next, write down the Wigner-Eckart theorem for J+

〈J M | J+ | J M ′〉 = (−)J−M

(
J 1 J

−M 1 M ′

)

〈J ‖ J (1) ‖ J〉 . (6.25)

Insert now the reduced matrix element obtained previously to find

〈J M | J+ | J M ′〉 =
√

J(J + 1) − M ′(M ′ + 1) . (6.26)

The matrix element has selection rules M = M ′ + 1.

6.4 Nested Algebras. Racah’s Factorization Lemma

In the previous sections, starting with
∣
∣
∣
∣
∣
∣

g ⊃ g′

↓ ↓
Λ λ

〉

(6.27)

a basis for the coupled algebras
∣
∣
∣
∣
∣
∣

g1 ⊕ g2 ⊃ g12 ⊃ g′12
↓ ↓ ↓ ↓
Λ1 Λ2 aΛ12 λ12

〉

(6.28)

has been constructed

|Λ1 Λ2; a Λ12 λ12〉 =
∑

λ1,λ2

〈Λ1 λ1 Λ2 λ2 | a Λ12 λ12 〉 | Λ1 λ1 〉 | Λ2 λ2〉 .

(6.29)
Quite often, one needs to consider a further decomposition into representa-
tions of another algebra g′′

∣
∣
∣
∣
∣
∣

g ⊃ g′ ⊃ g′′

↓ ↓ ↓
Λ λ µ

〉

. (6.30)

The algebras g, g′, g′′ are called nested. The basis for coupled nested algebras
∣
∣
∣
∣
∣
∣

g1 ⊕ g2 ⊃ g12 ⊃ g′12 ⊃ g′′12
↓ ↓ ↓ ↓ ↓
Λ1 Λ2 aΛ12 λ12 µ12

〉

, (6.31)
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can be written as

| Λ1 Λ2; a Λ12 ; λ12; µ12 〉
=

∑

λ1,λ2
µ1,µ2

〈Λ1 λ1 µ1; Λ2 λ2 µ2 | a Λ12 λ12 µ12 〉 | Λ1 λ1 µ1 〉 | Λ2 λ2 µ2〉 ,

(6.32)

where the coefficients in the sum are called nested coupling coefficients. Their
calculation is rather complex. However, Racah showed in the 1940’s that
nested coefficients can be split into two pieces, one for each reduction, g ⊃
g′, and g′ ⊃ g′′, called Racah’s factorization lemma. [G. Racah, Theory of
Complex Spectra IV, Phys. Rev. 76, 1352 (1949).]

Lemma 1. Factorization of coupling coefficients

〈 Λ1 λ1 µ1; Λ2 λ2 µ2 | a Λ12 λ12 µ12 〉
= 〈 Λ1 λ1 Λ2 λ2 | a Λ12 λ12 〉 〈 λ1 µ1 λ2 µ2 | λ12 µ12 〉 . (6.33)

The coupling coefficients for algebras of rank � > 1 are often called isoscalar
factors.

Example 7. Isoscalar factors of so(4)

Consider the nested chain
∣
∣
∣
∣
∣
∣

so(4) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓

(ω1, ω2) J M

〉

(6.34)

The coupled basis is
∣
∣
∣
∣
∣
∣

so(4)1 ⊕ so(4)2 ⊃ so(4)12 ⊃ so(3)12 ⊃ so(2)12
↓ ↓ ↓ ↓ ↓

(σ1, σ2) (ζ1, ζ2) (ω1, ω2) J12 M12

〉

(6.35)

that is
∑

J1,J2
M1,M2

〈(σ1, σ2) J1 (ζ1, ζ2) J2 | (ω1, ω2) J12〉〈J1M1J2M2 | J12M12〉

× |(σ1, σ2) J1M1〉 |(ζ1, ζ2) J2M2〉 . (6.36)

The first factor in (6.36) is the isoscalar factor for so(4) ⊃ so(3), while the
second is the isoscalar factor for so(3) ⊃ so(2). The isoscalar factors are
sometimes written as

〈
(σ1, σ2) (ζ1, ζ2)

J1 J2

∣
∣
∣
∣
(ω1, ω2)

J12

〉 〈
J1 J2

M1 M2

∣
∣
∣
∣
J12

M12

〉

, (6.37)

called Wigner notation. Note again that isoscalar coefficients are defined up
to an arbitrary phase.
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Example 8. Coupling coefficients of su(3)

For applications to particle physics, one needs to consider the coupling
coefficients of su(3) in the basis

∣
∣
∣
∣
∣
∣

su(3) ⊃ su(2) ⊕ u(1) ⊃ spin(2)
↓ ↓ ↓ ↓

(λ, µ) I Y Iz

〉

. (6.38)

The coupled basis is
∣
∣
∣
∣
∣
∣

su(3)1 ⊕ su(3)2 ⊃ su(3)12 ⊃ [su(2) ⊕ u(1)]12 ⊃ [spin(2)]12
↓ ↓ ↓ ↓ ↓

(λ1, µ1) (λ2, µ2) (λ, µ) I, Y Iz

〉

. (6.39)

Using Racah’s factorization lemma this can be written as
∑

I1,Y1,Iz1
I2,Y2,Iz2

〈(λ1, µ1) I1, Y1; (λ2, µ2) I2, Y2 | (λ, µ) I, Y 〉 × 〈I1Iz1 ; I2Iz2 | I, Iz〉

× |(λ1, µ1) I1Y1Iz1〉 |(λ2, µ2) I2Y2, Iz2〉 ,

(6.40)

where the first factor is the su(3) ⊃ su(2) ⊕ u(1) coefficient and the sec-
ond factor is the su(2) ⊃ spin(2) coefficient, called isospin Clebsch-Gordan
coefficient. The su(3) ⊃ su(2) ⊕ u(1) coupling coefficients have been tabu-
lated by de Swart. [J.J. de Swart, The Octet Model and its Clebsch-Gordan
Coefficients, Rev. Mod. Phys. 35, 916 (1963).]

6.5 Adjoint Operators

Consider the matrix elements of the Hermitian conjugate of the tensor oper-
ator TΛ

λ

〈Λ1λ1 | (TΛ
λ )† | Λ2λ2 〉 = 〈Λ2λ2 | TΛ

λ | Λ1λ1〉∗ . (6.41)

If TΛ
λ is a tensor operator, (TΛ

λ )† is not. But one can show that the following
operator is a tensor operator

adj
(
TΛ

λ

)
= (−1)f(Λ,λ) (

TΛ∗
−λ

)†
. (6.42)

In this expression, written generically for tensor operators with respect to
∣
∣
∣
∣
∣
∣

g ⊃ g′

↓ ↓
Λ λ

〉

, (6.43)

the labels Λ∗ and −λ denote the representations of g and g′ such that
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Λ ⊗ Λ∗ = [0]
λ ⊗−λ = (0) , (6.44)

where [0] denotes the identity representation of g and (0) the identity rep-
resentation of g′. The phase f (Λ, λ) is obtained from the commutation rela-
tions with the elements of g. For all representations of so(2n+1) and sp(2n),
Λ∗ = Λ. For su(n), the representations Λ∗ and Λ are related by the equiv-
alence relation 2, given in Chap. 4. Also, for so(2n), −λ is the conjugate
representation [λ1, λ2, . . . ,−λn].

The operator adj
(
TΛ

λ

)
is called the adjoint. It transforms under the op-

erations of g in the same manner as T . If adj (T ) = T the operator is called
self-adjoint. The condition for self-adjointness is

adj
(
TΛ

λ

)
= (−1)f(Λ,λ) (TΛ∗

−λ)† = TΛ
λ . (6.45)

Example 9. Adjoint operators of so(3)

The tensor operator of
∣
∣
∣
∣
∣
∣

so(3) ⊃ so(2)
↓ ↓
k κ

〉

(6.46)

adjoint to T k
κ , k = integer, κ = integer, will be defined in these lecture notes

as
adj

(
T k

κ

)
= (−1)k−κ (T k

−κ)† adj(T ) = T̃ † . (6.47)

An alternative definition and notation is often used in quantum mechanics
textbooks [A. Messiah, Quantum Mechanics, J. Wiley and Sons, New York,
p. 572]. The adjoint of T k

κ is denoted by

Sk
κ = (−1)κ (

T k
−κ

)†
. (6.48)

The notation of Wybourne is yet different with a dagger inside the indices
[B.G. Wybourne, Classical Groups for Physicists, J. Wiley and Sons, New
York, 1974]. The definition (6.47) will be used in Chap. 7, Sect. 7 to define
annihilation operators, b̃l,m = (−)l−m

bl,−m, that transform in the same way
as the creation operators, b†l,m, under so(3). Note that the creation operators
are not self-adjoint. With products of creation and annihilation operators
one can form tensor operators that are self-adjoint, in particular the angu-
lar momentum operator, L1

κ. The situation is similar for fermion operators
which transform as representations of spin(3) ∼ su(2) and have half-integer
quantum numbers j,m

∣
∣
∣
∣
∣
∣

spin(3) ∼ su(2) ⊃ spin(2)
↓ ↓
j m

〉

. (6.49)
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The adjoint operator of the fermion creation operator a†
j,m will be defined in

Chap. 8 as ãj,m = (−)j−m
aj,−m. While for boson operators the two defini-

tions (6.47) and (6.48) are both possible, for fermion operators the definition
(6.48) gives rise to complex phases.

6.6 Recoupling Coefficients

In treating physical systems composed of more than two particles, one needs
to couple three or more representations of g. Consider three representations
|Λ1, λ1〉 , |Λ2, λ2〉 , |Λ3, λ3〉. The coupled state can be written as

| (Λ1Λ2)a12 Λ12, Λ3; aΛλ〉
=

∑

a′, a23,Λ23

〈Λ1(Λ2Λ3) a23, Λ23; a′Λ | (Λ1Λ2) a12 Λ12 Λ3; aΛ 〉

× | Λ1(Λ2Λ3) a23 Λ23; a′Λ λ 〉 , (6.50)

where the coefficient in the sum is called recoupling (or Wigner) coefficient.

Example 10. Recoupling coefficients of so(3)

For the rotation algebra so(3), the recoupling coefficient is written as

| J1, (J2, J3)J23 ; JM 〉 =
∑

J12

〈 (J1J2)J12, J3, J | J1, (J2, J3)J23 , J 〉

× | (J1J2)J12, J3; JM 〉 . (6.51)

It is called recoupling coefficient because it relates two possible coupling
schemes, that is first couple J1 to J2 to give J12, which is then coupled
to J3 to give the final J , or first couple J2 and J3 to give J23 which is then
coupled to J1 to give the final J . These different coupling schemes are dis-
played graphically in Fig. 6.1. The recoupling coefficient of so(3) is usually
written as

J
1

J
2

J
3

J

J
2
1

J
1

J
2

J
3

J

J
3
2

Fig. 6.1. Coupling schemes of three angular momentum vectors, J1, J2, and J3
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〈 (J1J2)J12, J3, J | J1, (J2, J3)J23 , J 〉

= (−)J1+J2+J3+J
√

(2J12 + 1)(2J23 + 1)
{

J1 J2 J12

J3 J J23

}

.

(6.52)

The symbol in brackets is called a Wigner 6-j symbol.

Example 11. Recoupling coefficients of so(4)

These coefficients can be written as

| [ (η1, η2) (ϑ1, ϑ2)] (ξ1, ξ2); (ω1, ω2); (ζ1, ζ2) 〉
=

∑

τ1,τ2

〈 [ (ω1, ω2) (η1, η2)] (τ1, τ2); (ϑ1, ϑ2); (ζ1, ζ2) |

[ (η1, η2)(ϑ1, ϑ2)] (ξ1, ξ2); (ω1, ω2); (ζ1, ζ2) 〉
× | [(ω1, ω2) (η1, η2)] (τ1, τ2); (ϑ1, ϑ2); (ζ1, ζ2) 〉 . (6.53)

6.7 Symmetry Properties of Coupling Coefficients

It is of interest to list the symmetry properties of coupling coefficients. The
most important property is the symmetry under interchange of the indices 1
and 2.

〈 Λ1 λ1 Λ2 λ2 | a Λλ 〉 = ϕ1 〈 Λ2 λ2 Λ1 λ1 | a Λλ 〉 , (6.54)

where ϕ1 is a phase. Other symmetry properties can be derived from consid-
eration of the 3-j symbols for arbitrary Lie algebras

UΛ1Λ2; a3Λ3
λ1,λ2,λ3

= [Λ3]1/2

(
Λ1 Λ2 Λ3

λ1 λ2 λ3

)

a3

. (6.55)

Example 12. Symmetry properties for coupling coefficients of so(3)

The Clebsch-Gordan coefficients satisfy

〈J1M1J2M2 | JM〉 = (−1)J1+J2−J 〈J2M2J1M1 | JM〉 . (6.56)

In order to display the symmetry properties of the coupling coefficients in
full, it is convenient to introduce the Wigner 3-j symbols

(
J1 J2 J3

M1 M2 M3

)

=
(−)J1−J2−M3

√
2J3 + 1

〈J1M1J2M2 | J3,−M3〉 . (6.57)

In terms of these symbols, the symmetry properties are
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(
J1 J2 J3

M1 M2 M3

)

=
(

J2 J3 J1

M2 M3 M1

)

=
(

J3 J1 J2

M3 M1 M2

)

= (−)J1+J2+J3

(
J1 J3 J2

M1 M3 M2

)

(6.58)

and (
J1 J2 J3

−M1 −M2 −M3

)

= (−)J1+J2+J3

(
J1 J2 J3

M1 M2 M3

)

. (6.59)

6.8 How to Compute Coupling Coefficients

Explicit formulas derived by Racah are available for so(3) ∼ su(2). The
Wigner 3-j symbol is given by the Racah formula

(
j1 j2 j3
m1 m2 m3

)

= δ(m1 + m2 + m3)

×
√

(j1 + j2 − i3)!(j2 + j3 − j1)!(j3 + j1 − j2)!
(j1 + j2 + j3 + 1)!

×
√

(j1 + m1)!(j1 − m1)!(j2 + m2)!(j2 − m2)!

×
√

(j3 + m3)! (j3 − m3)!

×
∑

t

(−)j1−j2−m3+t 1
t!

1
(j1 + j2 − j3 − t)!

× 1
(j3 − j2 + m1 + t)!(j3 − j1 − m2 + t)!

× 1
(j1 − m1 − t)!(j2 + m2 − t)!

. (6.60)

Here (−m)! = ∞ when m > 0, t = integer, 0! = 1 and

t ≥ 0, j1 + j2 − j3 ≥ t, −j3 + j2 − m1 ≤ t,
−j3 + j1 + m2 ≤ t, j1 − m1 ≥ t, j2 + m2 ≥ t .

(6.61)

Since so(4) ∼ so(3) ⊕ so(3) ∼ su(2) ⊕ su(2), coupling coefficients for so(4)
can be obtained from those of so(3).

For larger algebras one has two cases: canonical and non-canonical chains.
For canonical chains the construction is simple but rarely useful. For non-
canonical chains it is difficult but important. The building-up principle is of-
ten used to construct coupling coefficients (isoscalar factors) for non-canonical
chains. This makes use of

a. Branching rules
b. Kronecker products
c. Simple isoscalar factors (those that are zero or one)
d. Symmetry and reciprocity
e. Building-up process (start from simple and build more complex).
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6.9 How to Compute Recoupling Coefficients

Explicit formulas derived by Racah are available for so(3) ∼ su(2). The
Wigner 6-j symbol is given by

{
j1 j2 j3
l1 l2 l3

}

= ∆ (j1 j2 j3)∆ (j1 l2 l3)∆ (l1 j2 l3)∆ (l1 l2 j3)

×
∑

t

(−)t (t + 1)!
1

[t − (j1 + j2 + j3)]![t − (l1 + l2 + j3)]!

× 1
[t − (j1 + l2 + l3)] ! [t − (l1 + j2 + l3)] !

× 1
(j1 + j2 + l1 + l2 − t) ! (j2 + j3 + l2 + l3 − t) !

× 1
(j3 + j1 + l3 + l1 − t)!

, (6.62)

where

∆(abc) =

√
(a + b − c) !(b + c − a) !(c + a − b) !

(a + b + c + 1) !
(6.63)

and

t ≥ j1 + j2 + j3 , t ≥ j1 + l2 + l3 , t ≥ l1 + j2 + l3

t ≥ l1 + l2 + j3 , j1 + j2 + l1 + l2 ≥ t , j2 + j3 + l2 + l3 ≥ t .
j3 + j1 + l3 + l1 ≥ t

(6.64)

For other algebras, recoupling coefficients are obtained by the buiding-up
process.

6.10 Properties of Recoupling Coefficients

The recoupling coefficients have several interesting properties. The coefficient
vanishes {

j1 j2 j3
l1 l2 l3

}

= 0 (6.65)

unless (j1, j2, l3) , (j1, l2, l3) , (l1, j2, l3) , (l1, l2, j3) satisfy the triangular condi-
tion for (a, b, c), that is | a + b |≥ c ≥| a − b |.

They have the symmetry properties
{

j1 j2 j3
l1 l2 l3

}

=
{

j2 j1 j3
l2 l1 l3

}

=
{

j1 j3 j2
l1 l3 l2

}

=
{

l1 l2 l3
j1 j2 l3

}

=
{

j1 l2 l3
l1 j2 j3

}

. (6.66)
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They satisfy the orthogonality relation

∑

j

(2j + 1)
{

j1 j2 j
j3 j4 j′

}{
j1 j2 j
j3 j4 j′′

}

=
δj′j′′

2j′ + 1
. (6.67)

When one of the j’s is zero, they have the special value
{

j1 j′2 j3
j2 j′1 0

}

=
(−1) j1+j2+j3

√
(2j1 + 1)(2j2 + 1)

δj1 j′
1

δj2 j′
2

. (6.68)

The 6-j symbols are related to the 3-j symbols by
{

j1 j2 j3
l1 l2 l3

}

=
∑

m1m2m3
m′

1m′
2m′

3

(−1)j1+j2+j3+l1+l2+l3+m1+m2+m3+m′
1+m′

2+m′
3

×
(

j1 j2 j3
m1 m2 m3

)(
j1 l2 l3

−m1 m′
2 −m′

3

)

×
(

l1 j2 l3
−m′

1 −m2 m′
3

)(
l1 l2 j3
m′

1 −m′
2 −m3

)

. (6.69)

6.11 Double Recoupling Coefficients

In treating physical systems composed of four particles, one needs dou-
ble recoupling coefficients (9 -j symbols). Introducing four representations
| Λ1λ1 〉, | Λ2λ2 〉, | Λ3λ3 〉, | Λ4λ4 〉, one defines the double recoupling coeffi-
cients as

|(Λ1Λ3) a13Λ13 (Λ2Λ4) a24Λ24 ; aΛλ 〉
=

∑

a′, a12 J12, a34 J34

〈 (Λ1Λ2) a12Λ12 (Λ3Λ4) a34Λ34 ; a′Λλ |

|(Λ1Λ3) a13Λ13 (Λ2Λ4) a24Λ24 ; aΛλ 〉
× |(Λ1Λ2) a12Λ12 (Λ3Λ4) a34Λ34 ; a′Λλ 〉 . (6.70)

Example 13. Double recoupling coeffcients of so(3)

The double recoupling coefficients of so(3) are written as

| J1J3 (J13)J2J4 (J24)J M 〉

=
∑

J12J34

√
(2J13 + 1)(2J24 + 1)(2J12 + 1)(2J34 + 1)






J1 J2 J12

J3 J4 J34

J13 J24 J






× | J1J2 (J12)J3J4 (J34)J M 〉 . (6.71)
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Fig. 6.2. Coupling schemes of four angular momentum vectors, J1, J2, J3, and J4

The quantity in curly bracket is called a 9-j symbol. The recoupling is shown
graphically in Fig. 6.2. The 9-j symbols are related to the 6-j symbols by

{
j1 j2 J
j4 j3 k

}

= (−)j2+J+j3+k
√

(2J + 1) (2k + 1)






j1 j2 J
j3 j4 J
k k 0





. (6.72)

6.12 Coupled Tensor Operators

In the same way in which one couples representations, one can also couple
tensors [

TΛ′ ⊗ UΛ′′
]αΛ

λ
=

∑

λ′λ′′

〈Λ′λ′Λ′′λ′′ | αΛλ 〉TΛ′

λ′ UΛ′′

λ′′ . (6.73)

also called tensor product.

Example 14. Tensor product for so(3)

The tensor product of two tensors is written here as

[
T k′ × Uk′′

]k

q
=

∑

q′q′′

〈 k′q′k′′q′′ | k q 〉T k′

q′ Uk′′

q′′ , (6.74)

where the coefficient in the sum is an ordinary Clebsch-Gordan coefficient.
The symbol × is commonly used to denote tensor products with respect to
so(3). (A better notation would be ⊗.)

6.13 Reduction Formula of the First Kind

The tensor product often involves operators acting separately on system 1
and 2.

T k
q (1, 2) = [T k1(1) × T k2(2)]kq . (6.75)
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Using properties of the tensor product it is possible to express the matrix
elements of the product in terms of matrix elements of system 1 and 2 sepa-
rately

〈
α1 j1 α2 j2 J ‖ T k ‖ α′

1 j′1 α′
2 j′2 J ′ 〉 =

√
(2J + 1)(2k + 1)(2J ′ + 1)

×






j1 j2 J
j′1 j′2 J ′

k1 k2 k






〈
α1 j1 ‖ T k1 ‖ α′

1 j′1
〉 〈

α2 j2 ‖ T k2 ‖ α′
2 j′2

〉
. (6.76)

Here the α’s denote any additional quantum number (label). A special case
is the scalar product

Tκ · Uκ = (−1)κ
√

2k + 1 [T k × Uk]00
=

∑

q

(−)q T k
q Uk

−q . (6.77)

In this case, the formula simplifies to

〈α1 j1 α2 j2 J ‖ T k(1) · T k(2) ‖ α′
1 j′1 α′

2 j′2 J ′〉

= (−1)j2+J+j′
1
√

2J + 1
{

j1 j2 J
j′2 j′1 k

}

×
〈
α1 j1 ‖ T k ‖ α′

1 j′1
〉 〈

α2 j2 ‖ T k ‖ α′
2 j′2

〉
δJJ ′ . (6.78)

Another simple case is that in which one of the tensor operators is the identity
operator. Using (6.76), one obtains

〈
α1j1α2j2J ‖ T (k)(1) ‖ α′

1j
′
1α

′
2j

′
2J

′
〉

= (−1)j1+J ′+j′
2+k

√
(2J + 1) (2J ′ + 1)

{
J j1 j2
j′1 J ′ k

}

〈
α1j1 ‖ T (k)(1) ‖ α′

1j
′
1

〉
δα2α′

2
δj2j′

2
. (6.79)

6.14 Reduction Formula of the Second Kind

This is the situation when the tensor operator involves only system 1

T k
q (1) = [T k1(1) × T k2(1)]kq . (6.80)

In this case one obtains

〈
α j ‖ T k ‖ α′ j′

〉
= (−) j + k + j′√

(2k + 1)

×
∑

α′′j′′

〈
α j ‖ T k1 ‖ α′′ j′′

〉 〈
α′′ j′′ ‖ T k2 ‖ α′ j′

〉
{

k1 k2 k
j′ j j′′

}

, (6.81)

called reduction formula of the second kind.



7 Boson Realizations

7.1 Boson Operators

Realizations of Lie algebras in terms of boson operators are of great interest
for applications to a variety of problems in physics, most notably to oscillator
problems in quantum mechanics and to algebraic models of rotation-vibration
spectra of molecules (vibron model) and nuclei (interaction boson model).

Let bα(α = 1, . . . , n) be a set of boson operators, satisfying the commu-
tation relations

[bα, b†α′ ] = δαα′ [bα, bα′ ] = [b†α, b†α′ ] = 0 . (7.1)

The operators bα are often called annihilation (or destruction) operators,
while their hermitian conjugates b†α are called creation operators. The unitary
algebra u(n) can be constructed by taking bilinear products of creation and
annihilation operators

g � Gαβ = b†αbβ α, β = 1, . . . , n . (7.2)

The algebra is composed of n2 elements satisfying

[Gαβ , Gγδ] = δβγGαδ − δαδ Gγβ . (7.3)

(When written in this form the algebra is the real form gl(n,R) ∼ u(n).) A
basis for the representations of u(n) is

B :
1
N b†α b†α′ · · ·

︸ ︷︷ ︸
| 0 〉 ≡ |N〉

N times (7.4)

Here |0〉 denotes a vacuum state, such that

bα |0〉 = 0 , (7.5)

and N is a normalization. In this construction, the basis states all belong to
the totally symmetric irreducible representation

[N ] ≡ �� . . . �︸ ︷︷ ︸

N (7.6)

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 91–130 (2006)
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of u(n) written in (7.4) as |N〉. The dimension of the basis is the dimension
of the representation [N ], given in Chap. 4,

dim[N ] =
∏

j=2,...,n

(
N + j − 1

j − 1

)

. (7.7)

Thus, with boson operators it is possible to construct the Lie algebra u(n),
but only its symmetric representations (Bose-Einstein basis).

Any classical Lie algebra is a subalgebra of u(n) (Ado’s theorem) and thus
can be written as a linear combination of the elements Gαβ . In the following
sections an explicit construction of the Lie algebras u(1), u(2), u(3), u(4), u(5),
u(6) and u(7) and their subalgebras will be given.

7.2 The Unitary Algebra u(1)

This algebra can be simply constructed with one boson operator b, satisfying

[b, b†] = 1 [b, b] = [b†, b†] = 0 . (7.8)

The algebra is Abelian and composed of the single element

g � b†b . (7.9)

This operator is called the number operator, N̂ . (A hat will be placed above
the operators to distinguish them from their eigenvalues.) The basis, written
as ∣

∣
∣
∣
∣
∣

u(1)
↓
N

〉

(7.10)

is
B :

1√
N !

b†N | 0 〉 ≡| N 〉 . (7.11)

(The capital letter N is used here, rather than the commonly used lowercase
letter n, not to confuse it with the number of dimensions in u(n).) In the
case of u(1), all representations are symmetric and thus can be constructed
with boson operators. The boson operators satisfy

b† |N〉 =
√

N + 1 |N + 1〉 ; b |N〉 =
√

N |N − 1〉 ; b |0〉 = 0 . (7.12)

Example 1. The one dimensional harmonic oscillator in quantum mechan-
ics
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The algebra u(1) can be used to describe the one-dimensional harmonic
oscillator. The boson operators are related to the dimensionless coordinate,
x, and momentum, px = −i d

dx , by

b =
1√
2

(x + ipx) , b† =
1√
2

(x − ipx) . (7.13)

The quantum mechanical Hamiltonian is

H =
1
2
(
p2

x + x2
)

=
1
2

(

− d2

dx2
+ x2

)

. (7.14)

When written in terms of elements of the Lie algebra u(1), it reads

H = b†b +
1
2

= N̂ +
1
2

. (7.15)

The representations of u(1) are labelled by the integer N = 0, 1, . . . . The
eigenvalues of H are thus

E(N) = N +
1
2

, N = 0, 1, . . . (7.16)

The basis states are
|N〉 =

1√
N !

b†N |0〉 . (7.17)

7.3 The Algebras u(2) and su(2)

In this case, the index α = 1, 2. The algebra u(2) has four elements

g � b†1b1, b†1b2, b†2b1, b†2b2 . (7.18)

Beginning with u(2), the study of the algebraic structure of u(n) requires
several steps:

1. The enumeration of all possible subalgebra chains and their branchings
2. The construction of the basis B for all chains
3. The construction of all invariant operators and their eigenvalues

7.3.1 Subalgebra Chains

There are two possible subalgebra chains:
Subalgebra I: u(2) ⊃ u(1)
This is the trivial Abelian subalgebra u(1)

g′ � b†1b1 , (7.19)
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leading to the canonical chain
∣
∣
∣
∣
∣
∣

u(2) ⊃ u(1)
↓ ↓
N n1

〉

, (7.20)

with Gel’fand pattern ∖
N 0

n1

/

. (7.21)

Here the labels of the representations are written under the algebras. Two
notations are often used for canonical chains: a bra-ket notation in which
only non-zero quantum numbers are displayed, and the Gel’fand notation of
Chap. 4 where all quantum numbers, including zeros, are displayed. The zero
in the latter notation arises from the fact that only symmetric representations
can be constructed with boson operators. Using the rules of Chap. 4, one can
find easily the branching

n1 = 0, 1, . . . , N . (7.22)

The operator
N̂ = b†1b1 + b†2b2 = n̂1 + n̂2 (7.23)

commutes with all elements of the algebra g and thus is an invariant operator
of u(2)

C1(u(2)) = N̂ . (7.24)

Powers of N̂ also commute with all elements of g and are thus also invariant
operators. The quadratic Casimir operator is usually defined as

C2 (u(2)) = N̂
(
N̂ + 2

)
. (7.25)

The basis is
B :

1√
n1!n2!

(b†2)
n2 (b†1)

n1 | 0 〉 ≡ |n1, n2〉 . (7.26)

Since n2 = N − n1, this can be rewritten as

1
√

n1!(N − n1)!

(
b†2

)N−n1
(
b†1

)n1

|0〉 . (7.27)

The dimension of the irreducible representations is N + 1.

Example 2. The two dimensional harmonic oscillator in quantum mechan-
ics

The algebra u(2) can be used to describe the two-dimensional harmonic
oscillator in (dimensionless) Cartesian coordinates, x and y. The creation and
annihilation operators are related to coordinates and momenta by
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b1 =
1√
2

(x + ipx) , b†2 =
1√
2

(x − ipx)

b2 =
1√
2

(y + ipy) , b†2 =
1√
2

(y − ipy) . (7.28)

The Hamiltonian of the isotropic oscillator is

H =
1
2
(
p2

x + x2 + p2
y + y2

)
. (7.29)

It can be rewritten in terms of elements of u(2) as

H = N̂ + 1 (7.30)

with eigenvalues
E(N) = N + 1, N = 0, 1, . . . (7.31)

Because of these properties, the algebra u(2) is called the degeneracy algebra
of the two dimensional harmonic oscillator.

Subalgebra II: u(2) ⊃ so(2)
It is convenient to introduce the operators

F̂+ = b†1b2 , F̂− = b†2b1 ,

so(2)
︷ ︸︸ ︷

F̂z =
1
2

(b†2b2 − b†1b1)
︸ ︷︷ ︸

su(2)

, N̂ = b†2b2 + b†1b1 . (7.32)

The operators F̂+, F̂−, F̂z satisfy the commutation relations of su(2) in the
Cartan-Weyl form

[
F̂+, F̂−

]
= 2 F̂z ;

[
F̂z, F̂±

]
= ± F̂± . (7.33)

To make connection with the usual form, introduce

F̂x =
1
2

[b†1b2 + b†2b1] ; F̂y =
1
2i

[b†1b2 − b†2b1] . (7.34)

The operators F̂x, F̂y, F̂z satisfy the usual commutation relations
[
F̂x, F̂y

]
= iF̂z;

[
F̂y, F̂z

]
= iF̂x;

[
F̂z, F̂x

]
= iF̂y . (7.35)

The invariant Casimir operator is

F̂ 2 = F̂ 2
x + F̂ 2

y + F̂ 2
z =

1
2
(F̂+F̂−+ F̂−F̂+)+ F̂ 2

z = F̂−F̂+ + F̂z (F̂z +1) . (7.36)

This operator commutes with all elements
[
F̂ 2, F̂±

]
=

[
F̂ 2, F̂z

]
= 0 (7.37)
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and thus
F̂ 2 = C2(su(2)) . (7.38)

When written in terms of boson operators

F̂ 2 =
1
4
N̂(N̂ + 2) =

1
4
(b†2b2 + b†1b1)(b

†
2b2 + b†1b1 + 2) . (7.39)

The invariant F̂ 2 is related to that introduced previously in (7.25) by multi-
plication by 1

4 . This factor is due to the definition of the operators F̂ .
The basis is written in bra-ket notation as

∣
∣
∣
∣
∣
∣

u(2) ⊃ so(2)
↓ ↓
N M

〉

. (7.40)

The intermediate step su(2) in the chain u(2) ⊃ su(2) ⊃ so(2) may or may
not be written down, since, for totally symmetric (bosonic) representations,
no additional label (quantum number) is required when going from u(n) to
su(n). Since one goes from a unitary to an orthogonal algebra, the chain
u(2) ⊃ so(2) is non-canonical. The rules of Chap. 4 give the branching

M = ±N, ±(N − 2), . . . , ±1 or 0, N = odd or even . (7.41)

Note the ± sign, which arises from the fact that so(2) is an orthogonal algebra
in an even number of dimensions. The dimension of the representation is
N + 1 (as in Chain I). The basis can be converted to the standard form by
introducing the quantum numbers

F =
N

2
, Fz =

M

2
. (7.42)

In this form the branching is the familiar quantum mechanics result

Fz = −F, −F + 1, . . . , F − 1, F . (7.43)

The dimension of the representation is (2F + 1). The basis is written as
∣
∣
∣
∣
∣
∣

su(2) ⊃ so(2)
↓ ↓
F Fz

〉

(7.44)

and can be constructed with boson operators as

|F, Fz〉 =

√
1

(F + Fz)!(F − Fz)!
(b†2)

F+Fz (b†1)
F−Fz |0〉 . (7.45)

This construction of su(2) is called the Jordan-Schwinger construction. [J.
Schwinger, in Quantum Theory of Angular Momentum, L.C. Biedenharn and
H. van Dam, eds., Academic Press, New York, 1965, p. 229].
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Note that, since u(1) ∼ so(2), there is no difference between subalgebra
chains I and II. They can be converted into each other by

F̂z =
1
2

(n̂2 − n̂1) =
N̂

2
− n̂1 ; Fz =

N

2
− n1

Fz =
N

2
,
N

2
− 1, . . . ,−N

2
= F, F − 1, . . . , −F . (7.46)

The situation is summarized in the graph

u(2)
|

u(1) ∼ so(2)
(7.47)

called a lattice of algebras, a concept which will become clear in the following
sections.

The algebras u(2) and su(2) constructed with boson operators play a
crucial role in applications to problems in physics: (i) u(2) is the degeneracy
algebra of the two dimensional harmonic oscillator; (ii) su(2) ∼ so(3) is the
angular momentum algebra.

7.4 The Algebras u(n), n ≥ 3

Starting with u(3), the possibility arises to have the angular momentum
algebra as subalgebra of u(n). For applications to problems with rotational
invariance, it is convenient to introduce another form of the Lie algebra u(n),
called the Racah form. This is obtained from the Lie algebra of (7.2) by a
change of basis. The Racah form can be constructed by introducing boson
operators that transform as tensor operators under so(3). Since this is a
generic method, it is of interest to provide a general definition.

7.4.1 Racah Form

Introduce boson creation b†l,m and annihilation bl,m operators satisfying com-
mutation relations

[
bl,m, b†l′,m′

]
= δll′δmm′

[bl,m, bl′,m′ ] =
[
b†l,m, b†l′,m′

]
= 0 (7.48)

If the operators b†l,m satisfy the commutation relations (6.5) with the elements
of the algebra so(3), the explicit expression of which is defined below, they
transform as spherical tensors of rank l under so(3) rotations. In order to
construct adjoint operators that transform as spherical tensors under so(3),
one must use the results of Chap. 6, Example 9. The operators b†l,m and b̃l,m,
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b†l,m ; b̃l,m = (−1)l−m
bl,−m (7.49)

transform as spherical tensors.
The coupled bilinear products

G(k)
κ (l, l′) ≡

[
b†l × b̃l′

](k)

κ

=
∑

m,m′

〈lml′m′ | kκ〉 b†l,mb̃l′,m′ , (7.50)

with |l + l′| ≥ k ≥ |l − l′| generate the Lie algebra u(n). Here n =∑
i (2li + 1), where li are the values of l used in the construction of the

Lie algebra. The commutation relations of the operators Gk
κ are

[
G(k)

κ (l, l′) , G
(k′)
κ′ (l′′, l′′′)

]
=

∑

k′′,κ′′

(2k + 1)1/2 (2k′ + 1)1/2 〈kκk′κ′ | k′′κ′′〉

×
[

(−)l+l′′′+k′′
{

l′ l′′′ k′

k′′ k l

}

δl′l′′G
(k′′)
κ′′ (l, l′′′)

−(−)l′+l′′+k+k′
{

l′′ l k′

k k′′ l′

}

δll′′′G
(k′′)
κ′′ (l′′, l′)

]

.

(7.51)

This form of the algebra and of the commutation relations is known as
Racah’s form. [G. Racah, Group Theory and Spectroscopy, Lecture Notes
in Physics, Princeton University, 1951.]

7.4.2 Tensor Coupled Form of the Commutators

In deriving the preceding formula (7.51) and the corresponding formula for
fermions, discussed in Chap. 8, it is useful to introduce a tensor coupled form
of the commutators of the Lie algebras u(n). The tensor commutator of two
tensor operators G(e) and G(f) is defined by

[
G(e), G(f)

](g)

ξ
=

∑

ε,ϕ

〈eεfϕ | gξ〉
[
G(e)

ε , G(f)
ϕ

]
. (7.52)

This
[
G(e), G(f)

](g)
is itself a tensor operator and, at the tensor level, can be

written as
[
G(e), G(f)

](g)

= (G(e) × G(f))(g) − (−)g−e−f (G(f) × G(e))(g) . (7.53)

The tensor coupled form of the commutator was introduced in [J.B. French,
Multipole and Sum-rule Methods in Spectroscopy in Proceedings of the In-
ternational School of Physics “Enrico Fermi”, Course XXXVI, C. Bloch ed.,
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Academic Press, New York, 1966, p. 278] and developed in [J.-Q. Chen, B.-Q.
Chen, and A. Klein, Factorization of Commutators: The Wick Theorem for
Coupled Operators, Nucl. Phys. A554, 61 (1993)].

The commutator formula for the generators of u(n) can be written as

[
G(e)(a, b), G(f)(c, d)

](g)

ξ
= (−)a+d+g (−)2a+2d+2g êf̂

{
b d f
g e a

}

δbcG
(g)
ξ (a, d)

− (−)b+c+e+f (−)2c+2d+2g êf̂

{
c a f
e g b

}

δadG
(g)
ξ (c, b) ,

(7.54)

where ̂ = (2j + 1)1/2, valid for a, b, c and d all integer (bosonic) or all half-
integer (fermionic). For the bosonic case (−)2a+2d+2g = (−)2c+2d+2g = +1,
while for the fermionic case, to be discussed in Chap. 8, (−)2a+2d+2g =
(−)2c+2d+2g = −1. The uncoupled commutators (7.51) can be obtained from
(7.52) by multiplying by the Clebsch-Gordan coefficient of so(3), 〈eεfϕ | gξ〉,
and summing over g and ξ

[
G(e)

ε , G(f)
ϕ

]
=

∑

g,ξ

〈eεfϕ | gξ〉
[
G(e), G(f)

](g)

ξ
. (7.55)

7.4.3 Subalgebra Chains Containing so(3)

A generic subalgebra chain (called a classification scheme) for u(2l + 1) con-
structed with boson operators can be obtained as follows:

(i) Exclude the element with k = 0, κ = 0; this gives su(2l + 1).
(ii) Retain only elements with k = odd; this gives the Lie algebra so(2l+1).
(iii) Retain the elements with k = 1; this gives the algebra so(3).
(iv) Retain the element with k = 1, κ = 0; this gives the algebra so(2).

A generic subalgebra chain for a single value of l is

u(2l + 1) ⊃ su(2l + 1) ⊃ so(2l + 1)
⊃ . . . ⊃ so(3) ⊃ so(2) . (7.56)

Dots have been inserted between so(2l + 1) and so(3) since, for large l, there
may be intermediate steps.

7.5 The Algebras u(3) and su(3)

To construct these algebras, one needs three boson operators bα(α = 1, 2, 3).
The 9 elements of u(3) are

g � b†αbβ (α, β = 1, 2, 3) . (7.57)



100 7 Boson Realizations

The algebraic analysis of u(3) encounters a new feature, namely that there
are here two subalgebra chains that are distinct (non-isomorphic), in contrast
with the previous case in which the subalgebra chains were isomorphic. While
the first of these chains, the canonical chain, can be studied as in Sect. 3,
the second chain, which includes the angular momentum algebra so(3) as a
subalgebra, is best studied by introducing Racah form. In addition, several
constructions of the same chain are possible. We begin with the constructions
mostly used in quantum mechanical applications.

7.5.1 Subalgebra Chains

The Canonical Chain

Subalgebra I: u(3) ⊃ u(2) ⊃ u(1)
The canonical chain can be constructed by introducing three (singlet)

boson operators b1, b2, b3. The elements of the algebras in the chain are

u(3) u(2) u(1)
b†1b1 b†1b1 b†1b1

b†1b2, b†2b1 b†1b2, b†2b1

b†1b3, b†3b1

b†2b2 b†2b2

b†2b3, b†3b2

b†3b3 .

(7.58)

The elements of u(2) and u(1) are obtained from u(3) by deleting successively
the boson operators b3 and b2. The basis is

B :
1√

n1!n2!n3!
(b†1)

n1 (b†2)
n2(b†3)

n3 | 0 〉 ≡ |n1, n2, n3 〉 , (7.59)

with
n1 + n2 + n3 = N . (7.60)

The labels can be arranged in the usual Dirac ket-notation
∣
∣
∣
∣
∣
∣

u(3) ⊃ u(2) ⊃ u(1)
↓ ↓ ↓
N n n1

〉

, (7.61)

with branching
n = 0, . . . , N,

n1 = 0, . . . , n . (7.62)

The Gel’fand pattern is
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∖N 0 0
n 0

n1

/

≡
∖n1 + n2 + n3 0 0

n1 + n2 0
n1

/

. (7.63)

The algebra has a linear invariant

C1(u(3)) = N̂ = b†1b1 + b†2b2 + b†3b3 , (7.64)

and higher order invariants, C2(u(3)) and C3(u(3)), which are combinations
of powers of N̂ .

Example 3. The harmonic oscillator in three dimensions in Cartesian co-
ordinates

The algebra of u(3) and its canonical chain describe the harmonic oscil-
lator in three dimensions and in Cartesian coordinates. The dimensionless
coordinates, x, y, z, and momenta, px, py, pz, are related to the creation and
annihilation operators by

b1 =
1√
2

(x + ipx) , b†1 =
1√
2

(x − ipx)

b2 =
1√
2

(y + ipy) , b†2 =
1√
2

(y − ipy)

b3 =
1√
2

(z + ipz) , b†3 =
1√
2

(z − ipz) . (7.65)

The Hamiltonian of the isotropic oscillator is

H =
1
2
(
p2

x + p2
y + p2

z + x2 + y2 + z2
)

. (7.66)

Its algebraic form is

H =
3∑

i=1

b†i bi +
3
2

= N̂ +
3
2

, (7.67)

with eigenvalues

E(N) = N +
3
2
, N = 0, 1, . . . . (7.68)

The eigenvalues depend only on the quantum number N = n3 + n2 + n1 and
not on the other quantum numbers n = n2 + n1 and n1. The canonical chain
is also useful to describe the anisotropic oscillator, with Hamiltonian

H =
1
2
(
p2

x + p2
y + p2

z + ω2
xx2 + ω2

yy2 + ω2
zz

2
)

(7.69)

and eigenvalues

E(n1, n2, n3) = ωxn1 + ωyn2 + ωzn3 +
3
2
,

n1, n2, n3 = 0, 1, . . . (7.70)

The algebra u(3) is the degeneracy algebra of the three dimensional harmonic
oscillator.
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The Non-Canonical Chain and its Racah Form

Subalgebra II: u(3) ⊃ so(3) ⊃ so(2)
In order to construct the non-canonical chain u(3) ⊃ so(3) ⊃ so(2), it

is convenient to introduce spherical boson operators (tensor operators with
respect to so(3))

p†±1 = ∓ 1√
2

(b†1 ± i b†2) , p†0 = b†3 (7.71)

denoted by p†µ(µ = 0,±1) and their adjoint p̃µ = (−1)1−µ p−µ. The three
boson operators p†µ(µ = ±1, 0) transform as the representation l = 1 of
so(3). In the generic construction of the elements of the algebra given in the
preceding section, there is thus only one value of l.

The elements of u(3) in Racah form are

G
(0)
0 (pp) = (p† × p̃)(0)0 1

G
(1)
κ (pp) = (p† × p̃)(1)κ 3

G
(2)
κ (pp) = (p† × p̃)(2)κ 5

(7.72)

for a total of nine elements. The number of elements (2k + 1) is written next
to them.

Subalgebras of u(3) can be then constructed as follows: (i) Deleting the
element G

(0)
0 gives su(3). (ii) Keeping only the elements with k = 1 gives

so(3). (iii) Keeping only G
(1)
0 gives so(2).

u(3) su(3) so(3) so(2)

(p† × p̃)(0)0

(p† × p̃)(1)κ (p† × p̃)(1)κ (p† × p̃)(1)κ (p† × p̃)(1)0

(p† × p̃)(2)0 (p† × p̃)(2)0

. (7.73)

The basis can be written as
∣
∣
∣
∣
∣
∣

u(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓
N L ML

〉

. (7.74)

Using the rules of Chap. 4, one obtains the branching

L = N,N − 2, . . . , 1 or 0 (N = odd or even)
ML = −L, . . . ,+L

. (7.75)

Again the intermediate step su(3) in u(3) ⊃ su(3) ⊃ so(3) ⊃ so(2) may
or may not be written down, since for symmetric representations no new
quantum number is needed when going from u(3) to su(3).
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Example 4. The three dimensional harmonic oscillator in spherical coordi-
nates

The chain u(3) ⊃ so(3) ⊃ so(2) can be used to describe the harmonic
oscillator in spherical coordinates, r, ϑ, ϕ. These coordinates are related to
the Cartesian coordinates by the familiar relations x = r cos ϕ sinϑ, y =
r sin ϕ sinϑ, z = r cos ϑ. The Hamiltonian is still given by (7.66), written now
as

H =
1
2
(
p2 + r2

)
. (7.76)

The algebraic form of this Hamiltonian is still

H = N̂ +
3
2

, (7.77)

with eigenvalues

E(N) = N +
3
2
, N = 0, 1, . . . (7.78)

The eigenstates, given in (7.74), can be written in the form

|N,L,ML〉 =
1
N

(
p†

)N

L,ML
|0〉 (7.79)

where the product of N operators p† is coupled to L and ML, and N is a
normalization constant.

7.5.2 Lattice of Algebras

The situation for the branchings of u(3) can be summarized in the following
lattice of algebras

u(3)
� �

u(2) so(3)
� �

u(1) ∼ so(2)

A2

� �

A1 B1

� �

D1

, (7.80)

where Cartan’s notation is used on the right-hand side. The lattice must be
read from top to bottom.

7.5.3 Boson Calculus of u(3) ⊃ so(3)

Spherical boson operators are extensively used in physics. It is therefore of
interest to develop a boson calculus, for manipulations of tensor operators
with respect to so(3). The basic commutation relations are

[pµ, p†µ′ ] = δµ µ′ [p̃µ, p†µ′ ] = (−1)1−µ δµ′,−µ . (7.81)
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The elements of the Lie algebra u(3) can be explicitly constructed using
(7.50). The element

[
p† × p̃

](0)
0

is

[p† × p̃](0)0 =
∑

µ, µ′

〈1 µ 1 µ′ | 00 〉 p†µ p̃µ′

=
∑

µ,µ′

(−1)1−µ 1√
3

δµ,−µ′ p†µ p̃µ′ =
∑

µ

(−)1−µ 1√
3

p†µ p̃−µ

=
1√
3

∑

µ

p†µ pµ =
1√
3

N̂ . (7.82)

This element is thus proportional to the number operator N̂ that counts the
number of bosons. The other elements are

[
p† × p̃

](k)

κ
=

∑

µ,µ′

〈1µ1µ′ | kκ〉p†µp̃µ′ . (7.83)

An important ingredient is often the tensor product of two creation or annihi-
lation operators. The tensor product of two creation or annihilation operators
can only have even rank, λ = even.

Proof. Consider the product

[p† × p†](λ)
µ =

∑

µ1µ2

〈1µ1 1µ2 | λµ 〉 p†µ1
p†µ2

=
∑

µ1µ2

〈1µ1 1µ2 | λµ 〉 p†µ2
p†µ1

=
∑

µ1µ2

〈1µ2 1µ1 | λµ 〉 p†µ1
p†µ2

=
∑

µ1µ2

(−)2−λ 〈1µ1 1µ2 | λµ 〉 p†µ1
p†µ2

. (7.84)

Equating the first and last term one finds

(−)2−λ = 1; λ = even = 0, 2 . (7.85)

The elements of the algebra u(3) ⊃ so(3) are often denoted by

N̂ =
√

3[p† × p̃](0)0

L̂κ =
√

2[p† × p̃](1)κ

Q̂κ = [p† × p̃](2)κ

. (7.86)

In applications to the harmonic oscillator problem in quantum mechanics,
N̂ represents the number operator that counts the oscillator quanta. The
explicit expression for the components L̂κ is
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L̂0 =
(
p†+1p̃−1 − p†−1p̃+1

)
,

L̂−1 =
(
p†1p̃0 − p†0p̃+1

)
,

L̂+1 =
(
p†0p̃+1 − p†+1p̃0

)
. (7.87)

With the normalization (7.86), the three components L̂κ of the operator L̂
satisfy the commutation relations of angular momentum

[L̂0, L̂±1] = ± L̂±1 , [L̂−1, L̂+1] = L̂0 . (7.88)

Proof. The commutator
[
L̂−1, L̂+1

]
is

2[(p† × p̃)](1)−1, (p† × p̃)(1)+1] = −[p†−1 p̃0 + p†0 p̃−1, p†0 p̃+1 + p†+1 p̃0]

= −(p†−1 p̃+1 − p†+1 p̃−1)

=
√

2(p† × p̃)(1)0 = L̂0 . (7.89)

The last operator, Q̂, is a tensor operator of rank 2 (quadrupole tensor).

7.5.4 Matrix Elements of Operators in u(3) ⊃ so(3)

Boson calculus is used to evaluate matrix elements of operators. The basis is
written as

B : |N,L,ML〉 =
1
N (p†)N

L,ML
| 0〉 , (7.90)

where the N boson operators have been coupled to L,ML. There are no
missing labels here. An explicit expression in terms of solid harmonics in p†

is also available. [O.S. van Roosmalen, Algebraic Description of Nuclear and
Molecular Rotation-Vibration Spectra, Ph.D. Thesis, University of Groningen,
The Netherlands, 1982.]

Reduced matrix elements of the boson operators in this basis are
〈
N + 1, L − 1 ‖ p† ‖ N,L

〉
= [(N − L + 2)L]1/2

〈
N + 1, L + 1 ‖ p† ‖ N,L

〉
= [(N + L + 3)(L + 1)]1/2

. (7.91)

The reduced matrix elements of the annihilation operators can be obtained
by using the relation

〈α′, L′ ‖ b̃l ‖ α,L〉 = (−1)L−L′+l 〈α,L ‖ b†l ‖ α′, L′〉 , (7.92)

where α denotes additional labels. The matrix elements of the elements of
the algebra are 〈

N,L,ML | N̂ | N,L,ML

〉
= N (7.93)
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and
〈
N,L ‖ L̂ ‖ N,L

〉
= [L (L + 1) (2L + 1)]1/2

〈
N,L ‖ Q̂ ‖ N,L

〉
= (2N + 3)

[
L(L + 1) (2L + 1)
6(2L − 1)(2L + 3)

]1/2

〈
N,L + 2 ‖ Q̂ ‖ N,L

〉
=

[
(N − L) (N + L + 3)(L + 1)(L + 2)

(2L + 3)

]1/2

. (7.94)

Matrix elements of polynomials in the elements of the algebra can be obtained
by using the reduction formulas of Chap. 6.

7.5.5 Tensor Calculus of u(3) ⊃ so(3)

An alternative way to calculate matrix elements of operators is making use of
tensor calculus. The three boson creation operators p†±1, p0 transform under
u(3) as the 3-dimensional representation [1, 0, 0] (or (1, 0) of su(3)). They
also transform as the representation L = 1 under so(3), with component
κ = ±1, 0. A commonly used notation for these tensors is

T
[1,0,0]
1,κ ≡ � , (7.95)

that is the creation operator transform as the fundamental representation of
u(3), often denoted as a particle. The boson annihilation operators p̃±1, p̃0

transform instead as the 3-dimensional conjugate representation [1, 1, 0] (or
(1, 1) of su(3)),

T
[1,1,0]
1,κ ≡ �

� . (7.96)

This is often denoted as an antiparticle (or hole).
The elements of the algebra, that is the bilinear products (p† × p̃)(k)

κ , can
be simply obtained by taking tensor products, as in Chap. 4,

� ⊗ �
� =

� �
� ⊕

�
�
�

. (7.97)

The representations on the right hand side contain

[2, 1, 0] ⊕ [1, 1, 1]
↓ ↓

(
p† × p̃

)(1)

κ

(
p† × p̃

)(0)

κ

(
p† × p̃

)(2)

κ

. (7.98)

The dimensions are: dim [2, 1, 0] = 8,dim[1, 1, 1] = 1 for a total of 9 elements.
Note that the elements of the algebra do not transform as its fundamental
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representation. Under reduction of u(3) to su(3), the representation [2, 1, 0]
becomes (2, 1) with dim (2, 1) = 8, while the representation [1, 1, 1] becomes
(0, 0) with dim (0, 0) = 1.

The calculation of matrix elements of a generic tensor T

〈
[n′, 0, 0], L′, M ′

L | T
[n1,n2,n3]
k, κ | [n, 0, 0], L, ML

〉
(7.99)

is done using the techniques of Chap. 6.
The algebra u(3) (and its subalgebra su(3)) constructed with boson op-

erators occupy a special role in physics since u(3) is the degeneracy algebra
of the three-dimensional harmonic oscillator.

7.5.6 Other Boson Constructions of u(3)

In addition to the construction in terms of boson operators b1, b2, b3 (canon-
ical chain) and in terms of vector bosons, pµ(µ = ±1, 0), there is another
boson construction of u(3) of practical interest. This construction is in terms
of a singlet boson, σ, and a doublet τx, τy. The doublet can be rewritten as

τ± =
1√
2

(τx ± iτy)

τ †
± =

1√
2

(
τ †

x ∓ iτ †
y

)
. (7.100)

The boson operators τ± are called circular boson operators. The algebra u(3)
is composed of nine elements:

n̂ =
(
τ †

+τ+ + τ †
−τ−

)

l̂ =
(
τ †

+τ+ − τ †
−τ−

)

Q̂+ =
√

2
(
τ †

+τ−
)

Q̂− =
√

2
(
τ †
−τ+

)

n̂s =
(
σ†σ

)

D̂+ =
√

2
(
τ †

+σ − σ†τ−
)

D̂− =
√

2
(
−τ †

−σ + σ†τ+

)

R̂+ =
√

2
(
τ †

+σ + σ†τ−
)

R̂− =
√

2
(
τ †
−σ + σ†τ+

)
. (7.101)

This construction has two possible subalgebra chains (as before).
Subalgebra chain I: u(3) ⊃ u(2) ⊃ so(2)
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The subalgebra u(2) is composed by the four operators

u(2) � n̂, l̂, Q̂+, Q̂− . (7.102)

The subalgebra so(2) is composed of a single operator

so(2) � l̂ . (7.103)

The basis states in this chain are characterized by the quantum numbers
∣
∣
∣
∣
∣
∣

u(3) ⊃ u(2) ⊃ so(2)
↓ ↓ ↓
N n l

〉

, (7.104)

with branching rules

n = N,N − 1, . . . , 0;
l = ±n,±(n − 2), . . . ,±1 or 0 (n = odd or even) . (7.105)

Subalgebra chain II: u(3) ⊃ so(3) ⊃ so(2)
The subalgebra so(3) is composed by the three operators

so(3) � D̂+, D̂−, l̂ . (7.106)

The subalgebra so(2) is composed by the single operator l̂ as in (7.101).
The basis states in this chain are characterized by the quantum numbers

∣
∣
∣
∣
∣
∣

u(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓
N ω l

〉

, (7.107)

with branchings

ω = N,N − 2, . . . , 1 or 0 (N = odd or even);
−ω ≤ l ≤ +ω . (7.108)

In view of the isomorphism so(2) ∼ u(1), the lattice of algebras for this
construction is identical to that given previously in Sect. 4.2.

The construction of u(3) in terms of a singlet and a doublet has practical
applications in the study of vibration-rotation spectra of molecules in two-
dimensions (bending vibrations). [F. Iachello and S. Oss, Algebraic Approach
to Molecular Spectra: Two-dimensional Problems, J. Chem. Phys. 104, 6956
(1996).]

7.6 The Unitary Algebra u(4)

This algebra can be constructed by considering four boson operators, bα,
α = 1, 2, 3, 4. The 16 elements of the algebra are

Gαβ � b†αbβ . (7.109)
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7.6.1 Subalgebra Chains not Containing so(3)

The Canonical Chain

The canonical chain u(4) ⊃ u(3) ⊃ u(2) ⊃ u(1) can be constructed trivially
as before in terms of four boson operators b1, b2, b3, b4. No more will be said
about this chain.

The Doublet Chain

Another chain that can be constructed simply is that in which the boson op-
erators are divided into two doublets, b1, b2 and b3, b4. The bilinear products
of creation and annihilation operators of each doublet generate a u(2) alge-
bra (Jordan-Schwinger construction), Sect. 2. Denoting by u1(2) and u2(2)
the two u(2) algebras, one has the chain u(4) ⊃ u1(2) ⊕ u2(2). From there
on, one can use the results of Sect. 2. The complete subalgebra chain is
u(4) ⊃ u1(2) ⊕ u2(2) ⊃ so1(2) ⊕ so2(2).

The situation can be summarized in the lattice of algebras

u(4)
� �

u(3) u1(2) ⊕ u2(2)
| |

u(2) so1(2) ⊕ so2(2)
|

u(1)

. (7.110)

7.6.2 Subalgebra Chains Containing so(3)

We consider here explicitly non-canonical chains that contain the angular
momentum algebra so(3) as a subalgebra. These are particularly impor-
tant in problems with rotational invariance and will be discussed here in
detail. These chains can be constructed by introducing scalar, s†, and vector,
p†µ (µ = 0,±1), boson operators that transform as l = 0 and l = 1 under
so(3),

l = 0 : s†

l = 1 : p†µ (µ = 0,±1) . (7.111)

(Although not necessary for the construction of the algebra, in applications
in molecular physics the parity of these operators is chosen to be P = (−1)l.)
The elements of u(4) are, in Racah form,



110 7 Boson Realizations

G
(0)
0 (ss) = (s† × s̃)(0)0 1

G
(0)
0 (pp) = (p† × p̃)(0)0 1

G(1)
κ (pp) = (p† × p̃)(1)κ 3

G(2)
κ (pp) = (p† × p̃)(2)κ 5

G(1)
κ (ps) = (p† × s̃)(1)κ 3

G(1)
κ (sp) = (s† × p̃)(1)κ 3 , (7.112)

for a total of 16 elements. To this algebra the standard procedure of (i)
constructing all possible subalgebra chains; (ii) constructing the Casimir in-
variants and their eigenvalues; (iii) constructing the basis B; is then applied.

Subalgebras

There are two subalgebra chains that contain so(3):
Subalgebra I : u(4) ⊃ u(3) ⊃ so(3) ⊃ so(2)
The elements of the subalgebras and their numbers are

u(3) :
(p† × p̃)(0)0 1
(p† × p̃)(1)κ 3
(p† × p̃)(2)κ 5

so(3) :
(p† × p̃)(1)κ 3

so(2) :
(p† × p̃)(1)0 1

(7.113)

Subalgebra II : u(4) ⊃ so(4) ⊃ so(3) ⊃ so(2)
The elements of the subalgebras and their number are

so(4) :
(p† × p̃)(1)κ 3
(p† × s̃)(1)κ + (s† × p̃)(1)κ 3

so(3) :
(p† × p̃)(1)κ 3

so(2) :
(p† × p̃)(1)0 1

. (7.114)

For this subalgebra chain, a difficulty arises, as there are two so(4) algebras
that can be constructed with the bilinear products of s and p boson operators.
The second so(4) algebra, denoted by so(4) is composed of the following
operators
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so(4) :
(
p† × p̃

)(1)

κ
3

i
[(

p† × s̃
)(1)

κ
−

(
s† × p̃

)(1)

κ

]
3

so(3) :
(
p† × p̃

)(1)

κ
3

so(2) :
(
p† × p̃

)(1)

0
1

. (7.115)

These two possibilities are due to an inner automorphism of the Lie algebra
so(4).

Invariant Operators

In addition to the algebras, it is of interest to construct also its invariant
(Casimir) operators. In Racah form, the invariant operators satisfy

[C,G(k)
κ ] = 0 for any k, κ . (7.116)

The explicit form of some of the invariant operators is:

(a) Linear operators
Only unitary u(n) algebras have linear invariants. They are, for u(4),

C1(u(4)) = G
(0)
0 (ss) +

√
3 G

(0)
0 (pp) = n̂s + n̂p = N̂ . (7.117)

and, for u(3),
C1(u(3)) =

√
3 G

(0)
0 (pp) = n̂p . (7.118)

(b) Quadratic operators

The quadratic Casimir operators of u(n) can be simply constructed as the
square of the linear invariants. It has become customary to use as invariant
operators

C2(u(4)) = N̂(N̂ + 3) (7.119)

and
C2(u(3)) = n̂p(n̂p + 2) (7.120)

which also commute with all elements of their respective algebras.
The quadratic invariants of so(n), n = 3 and 4, can be written in terms

of the elements G(k) as

C2(so(3)) = G(1)(pp) · G(1)(pp) . (7.121)

and

C2(so(4))=G(1)(pp)·G(1)(pp)+
(
G(1)(ps) + G(1)(sp)

)
·
(
G(1)(ps) + G(1)(sp)

)
.

(7.122)
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The dot product denotes scalar products with respect to so(3), defined in
Chap. 6, Sect. 13. A short-hand notation, often used, is

n̂s = (s† × s̃)(0)0

n̂p =
√

3(p† × p̃)(0)0

L̂ =
√

2(p† × p̃)(1)κ

Q̂ = (p† × p̃)(2)κ

D̂ = (p† × s̃ + s† × p̃)(1)κ

D̂′ = i(p† × s̃ − s† × p̃)(1)κ . (7.123)

In addition to the number operators n̂s and n̂p, there are the angular mo-
mentum operator L̂, the quadrupole operator Q̂ and two (hermitian) dipole
operators D̂ and D̂′. (In quantum mechanical applications these operators are
related to the coordinate and momentum vectors.) In the notation (7.123),
the invariants take a simple and familiar form

C2(so(3)) = L̂ · L̂ C2(so(4)) = L̂ · L̂ + D̂ · D̂ . (7.124)

Branchings

A crucial problem for application of Lie algebraic methods to problems in
physics and chemistry is the classification (or branching) problem. This prob-
lem is solved using the techniques developed in Chap. 4.

Branching I
The branching of the totally symmetric representations of u(4) for the

chain u(4) ⊃ u(3) ⊃ so(3) ⊃ so(2) is

u(4) [f1, f2, f3, f4] [N ] =

N−times
︷ ︸︸ ︷
� . . . � ≡ [N, 0, 0, 0]

u(3) [f ′
1, f

′
2, f

′
3] [np] =

np−times
︷ ︸︸ ︷
� . . . � ≡ [np, 0, 0]

np = 0, 1, . . . , N

so(3) (µ′
1) (L)

L = np, np − 2, . . . , 1 or 0 (N = odd or even)

so(2) (µ′′
1) (ML)

ML = −L, . . . ,+L . (7.125)

The abstract characterization of the representations of the algebras u(n),
so(n), of Chap. 4, has been replaced here by quantum numbers with physical
meaning: N is the total boson number, np is the number of p bosons, L is
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the angular momentum and ML is its z-component. This branching is in
part canonical, u(4) ⊃ u(3) and so(3) ⊃ so(2) and in part non-canonical,
u(3) ⊃ so(3). The basis is labelled by the quantum numbers

∣
∣
∣
∣
∣
∣

u(4) ⊃ u(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓
N np L ML

〉

. (7.126)

Branching II
For the chain u(4) ⊃ so(4) ⊃ so(3) ⊃ so(2), the branching is

u(4) [f1, f2, f3, f4] [N ] =

N−times
︷ ︸︸ ︷
� . . . � ≡ [N, 0, 0, 0]

so(4) (µ1, µ2) (ω, 0)
ω = N, N − 2, . . . , 1 or 0 (N = odd or even)

so(3) (µ′
1) (L)

L = ω, ω − 1, . . . , 1, 0

so(2) (µ′′
1) (ML)

ML = −L, . . . ,+L

. (7.127)

The basis is labelled by the quantum numbers
∣
∣
∣
∣
∣
∣

u(4) ⊃ so(4) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓
N ω L ML

〉

. (7.128)

The branching u(4) ⊃ so(4) is non-canonical while the branching so(4) ⊃
so(3) ⊃ so(2) is canonical.

Eigenvalues of Casimir Operators

The eigenvalues of the Casimir operators in the appropriate irreducible rep-
resentations can be obtained using the rules of Chap. 5. For the unitary
algebras u(4) and u(3) they are trivially given by

〈[N ] | C1(u(4)) | [N ]〉 = N

〈[N ] | C2(u(4)) | [N ]〉 = N(N + 3)

〈[np] | C1(u(3)) | [np]〉 = np

〈[np] | C2(u(3)) | [np]〉 = np(np + 2) . (7.129)

For the orthogonal algebras so(4) and so(3) they are given by

〈(ω, 0) | C2(so(4)) | (ω, 0)〉 = ω(ω + 2)
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〈(L) | C2(so(3)) | (L)〉 = L(L + 1) . (7.130)

These eigenvalues differ from those of Table 5.1 by a factor of 2, due to the
different definition of C given above. Also, note that the eigenvalues of the
Casimir operators of an algebra g depend only on the labels of g and not on
those of the subalgebra chain g ⊃ g′ ⊃ g′′ ⊃ . . ..

Lattice of Algebras

The non-canonical chains discussed above can be depicted into a lattice of
algebras

u(4)
� �

u(3) so(4)
� �

so(3)
|

so(2)

A3

� �

A2 D2

� �

B1

|
D1

. (7.131)

Cartan’s notation is used on the right hand side. The portion of the branching
which ends at so(3) ∼ B1

A3

� �

A2 D2

� �

B1

, (7.132)

for the representation [N ] = [4] is displayed in Fig. 7.1, route I (left) and route
II (right). The algebra u(4) constructed wih s and p bosons is known as the

0 1 2 3 4

L

0

1

2

3

4

n
p

HaL

0 1 2 3 4

L

0

1

2

3

4

w

HbL

Fig. 7.1. Branchings of the representation [4] of u(4). (a) Branching u(4) ⊃ u(3) ⊃
so(3) with labels np and L. (b) Branching u(4) ⊃ so(4) ⊃ so(3) with labels ω and
L. The total number of states on the left is equal to the total number on the right
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vibron algebra. [F. Iachello and R.D. Levine, Algebraic Theory of Molecules,
Oxford University Press, Oxford, England, 1995]. An account of the vibron
algebra is also given in [A. Frank and P. van Isacker, Algebraic Methods in
Molecular and Nuclear Structure Physics, J. Wiley an Sons, New York, 1994].

7.7 The Unitary Algebra u(6)

This algebra can be constructed by means of six boson operators, bα, α =
1, . . . , 6. The 36 elements of the algebra are

Gαβ � b†αbβ α, β = 1, . . . , 6 . (7.133)

7.7.1 Subalgebra Chains not Containing so(3)

The Canonical Chain

The canonical chain u(6) ⊃ u(5) ⊃ u(4) ⊃ u(3) ⊃ u(2) ⊃ u(1) is trivial.

The Vector Chain

The algebra u(6) can be constructed with two vector boson operators, p†1µ

and p†2µ, leading to the chain u(6) ⊃ u1(3) ⊕ u2(3). The algebras u1(3) and
u2(3) can then be decomposed as in Sect. 4.

7.7.2 Subalgebra Chains Containing so(3)

Of particular interest for applications are the chains that can be constructed
with a scalar and a quadrupole boson operator. These chains contain the
angular momentum algebra so(3). The boson operators s† and d†µ transform
as the representation l = 0 and l = 2 of so(3)

l = 0 : s†

l = 2 : d†µ(µ = 0,±1,±2) . (7.134)

The elements of the algebra u(6) in Racah form are

G
(0)
0 (ss) = (s† × s̃)(0)0 1

G
(0)
0 (dd) = (d† × d̃)(0)0 1

G
(1)
κ (dd) = (d† × d̃)(1)κ 3

G
(2)
κ (dd) = (d† × d̃)(2)κ 5

G
(3)
κ (dd) = (d† × d̃)(3)κ 7

G
(4)
κ (dd) = (d† × d̃)(4)κ 9

G
(2)
κ (ds) = (d† × s̃)(2)κ 5

G
(2)
κ (sd) = (s† × d̃)(2)κ 5

(7.135)
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for a total of 36 operators. The standard procedure is then applied to this
algebra.

Subalgebras

The algebra of u(6) has three subalgebra chains that contain the angular
momentum algebra so(3).

Subalgebra I : u(6) ⊃ u(5) ⊃ so(5) ⊃ so(3) ⊃ so(2)
The elements of the subalgebras are

u(5) :
(d† × d̃)(0)0 1
(d† × d̃)(1)κ 3
(d† × d̃)(2)κ 5
(d† × d̃)(3)κ 7
(d† × d̃)(4)κ 9

(7.136)

so(5) :
(d† × d̃)(1)κ 3
(d† × d̃)(3)κ 7

so(3) :
(d† × d̃)(1)κ 3

so(2) :
(d† × d̃)(1)0 1

. (7.137)

Subalgebra II : u(6) ⊃ su(3) ⊃ so(3) ⊃ so(2)
The elements of the subalgebras are

u(3) :
(s† × s̃)(0)0 +

√
5(d† × d̃)(0)0 1

(d† × d̃)(1)κ 3
(d† × s̃ + s† × d̃)(2)κ +

√
7

2 (d† × d̃)(2)κ 5
su(3) :

(d† × d̃)(1)κ 3
(d† × s̃ + s† × d̃)(2)κ +

√
7

2 (d† × d̃)(2)κ 5
so(3) :

(d† × d̃)(1)κ 3
so(2) :

(d† × d̃)(1)0 1

. (7.138)

This chain is doubled by the inner automorphism of u(3), with u(3) given by
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u(3) :
(
s† × s̃

)(0)

0
+
√

5
(
d† × d̃

)(0)

0
1

(
d† × d̃

)(1)

κ
3

(
d† × s̃ + s† × d̃

)(2)

κ
−

√
7

2

(
d† × d̃

)(2)

κ
5

. (7.139)

In applications to nuclear physics, the algebras u(3) and u(3) are usually
called the prolate and oblate algebras.

Subalgebra III : u(6) ⊃ so(6) ⊃ so(5) ⊃ so(3) ⊃ so(2)
The elements of the subalgebras are

so(6) :
(d† × d̃)(1)κ 3
(d† × d̃)(3)κ 7
(d† × s̃ + s† × d̃)(2)κ 5

so(5) :
(d† × d̃)(1)κ 3
(d† × d̃)(3)κ 7

so(3) :
(d† × d̃)(1)κ 3

so(2) :
(d† × d̃)(1)0 1

(7.140)

Again this chain is doubled by the inner automorphism of so(6), with so(6)
given by

so(6) :
(
d† × d̃

)(1)

κ
3

(
d† × d̃

)(3)

κ
7

i
(
d† × s̃ − s† × d̃

)(2)

κ
5

. (7.141)

Invariant Operators

Invariant Casimir operators for all algebras included in the chains of the
previous subsection can be constructed explicitly.

(a) Linear operators
(i) u(6)

C1(u(6)) = G
(0)
0 (ss) +

√
5G

(0)
0 (dd) = (s† × s)(0)0 +

√
5(d† × d̃)(0)0

= n̂s + n̂d ≡ N̂ (7.142)
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(ii) u(5)
C1(u(5)) =

√
5(d† × d̃)(0)0 = n̂d (7.143)

(iii) u(3)
C1(u(3)) = N̂ . (7.144)

(b) Quadratic operators
For the unitary algebras u(6), u(5) and u(3) the quadratic Casimir oper-
ators can be taken to be

C2(u(6)) = N̂(N̂ + 5)
C2(u(5)) = n̂d(n̂d + 4)
C2(u(3)) = N̂(N̂ + 2) . (7.145)

For the orthogonal algebras appearing in the branchings of u(6) described
in this section, they are
(i) so(3)

C2(so(3)) = G(1) · G(1) (7.146)

with G
(1)
κ ≡ G

(1)
κ (dd). Introducing the angular momentum operator

L̂κ =
√

10G
(1)
κ , this can be rewritten as C2(so(3)) = L̂ · L̂. (The dot

denotes scalar products.)
(ii) so(5)

C2(so(5)) = G(1) · G(1) + G(3) · G(3) (7.147)

with G
(1)
κ as before and G

(3)
κ ≡ G

(3)
κ (dd).

(iii) su(3)
Introducing the operator

G̃(2)
κ = G(2)

κ (ds) + G(2)
κ (sd) ∓

√
7

2
G(2)

κ (dd) , (7.148)

the quadratic Casimir operator of su(3) can be written as

C2(su(3)) = G(1) · G(1) +
4
15

G̃(2) · G̃(2) . (7.149)

If, in addition to the angular momentum operator L̂, one introduces the
quadrupole operator Q̂ =

√
8G̃(2), the Casimir operator of su(3) can be

rewritten as

C2(su(3)) =
1
30

[
3L̂ · L̂ + Q̂ · Q̂

]
. (7.150)
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Branchings

Branching I
The branching of representations of u(6) into representations of its subal-

gebra present a challenge not encountered when dealing with u(n), n ≤ 4. One
needs a hidden quantum number to characterize uniquely the basis. Finding
this quantum number is one of the most difficult problems in algebraic theory.
The branching u(6) ⊃ u(5) ⊃ so(5) ⊃ so(3) ⊃ so(2) is

u(6) [N ] ≡
N−times
︷ ︸︸ ︷
�� . . . � ≡ [N, 0, 0, 0, 0, 0]

u(5) [nd] ≡
nd−times
︷ ︸︸ ︷
�� . . . � ≡ [nd, 0, 0, 0, 0] nd = N,N − 1, . . . , 0

so(5) (v) ≡ (v, 0) v = nd, nd − 2, . . . , 1 or 0
(nd = odd or even)

so(3) L Algorithm 1

so(2) ML −L ≤ ML ≤ +L

(7.151)

The step from so(5) to so(3) is non-canonical and thus requires the develop-
ment of an algorithm to find the values of L contained in each representation
nd.
Algorithm 1

Partition nd as
nd = 2nβ + 3n∆ + λ (7.152)

where

nβ = (nd − v)/2 ; nβ = 0, 1, . . . ,
nd

2
or

nd − 1
2

. (7.153)

Then
L = λ, λ + 1, λ + 2, . . . , 2λ − 2, 2λ . (7.154)

[Note that 2λ−1 is missing!]. The additional quantum number n∆ = 0, 1, . . .
is a missing label (hidden quantum number) needed to characterize uniquely
the decompositions of representations of so(5) into representations of so(3).
This gives Table 7.1.

The complete classification for branching I is
∣
∣
∣
∣
∣
∣

u(6) ⊃ u(5) ⊃ so(5) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓ ↓
N nd v, n∆ L ML

〉

. (7.155)

The total number of labels, including the missing label n∆, is six.
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Table 7.1. Decomposition of totally symmetric representations of u(5) into repre-
sentations of so(3)

u(5) ⊃ so(5) ⊃ so(3)
nd v n∆ L

0 0 0 0
1 1 0 2
2 2 0 4, 2

0 0 0
3 3 0 6, 4, 3

1 0
1 0 0

Branching II
The branching u(6) ⊃ su(3) ⊃ so(3) ⊃ so(2) is

u(6) [N ] ≡
N−times
︷ ︸︸ ︷
�� . . . � ≡ [N, 0, 0, 0, 0, 0]

su(3) (λ , µ) Algorithm 2

so(3) L Algorithm 3

so(2) ML −L ≤ ML ≤ +L

. (7.156)

Here, the so-called Elliott quantum numbers, λ = f1 − f2, µ = f2, are used
instead of the entries in the Young tableau (f1, f2) in order to conform with
commonly used notation. Both steps from u(6) to su(3) and from su(3) to
so(3) are non-canonical. The step from su(3) to so(3) is not fully reducible.
Algorithm 2

The algorithm to find the values of (λ, µ) contained in [N ] is

(2N, 0) ⊕ (2N − 4, 2) ⊕ . . . ⊕
{

(0, N)
(2, N − 1)

N = even
N = odd

}

⊕

⊕(2N − 6) ⊕ (2N − 10, 2) ⊕ . . . ⊕
{

(0, N − 3)
(2, N − 4)

N − 3 = even
N − 3 = odd

}

⊕

⊕(2N − 12, 0) ⊕ (2N − 16, 2) ⊕ . . . ⊕
{

(0, N − 6)
(2, N − 7)

N − 6 = even
N − 6 = odd

}

⊕
⊕ . . .

.

(7.157)
Algorithm 3

The algorithm to find the values of L contained in (λ, µ) is

L = K,K + 1,K + 2, . . . , (K + max {λ, µ}) (7.158)
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where

K = integer = min{λ, µ},min{λ, µ} − 2, . . . , 1 or 0 (7.159)

with exception of K = 0 for which

L = max{λ, µ},max{λ, µ} − 2, . . . , 1 or 0 . (7.160)

Here K is the missing label. This gives Table 7.2.

Table 7.2. Decomposition of totally symmetric representations of u(6) ⊃ su(3)
into representations of so(3)

u(6) ⊃ su(3) ⊃ so(3)
N (λ, µ) K L

0 (0, 0) 0 0
1 (2, 0) 0 2, 0
2 (4, 0) 0 4, 2, 0

(0, 2) 0 2, 0
3 (6, 0) 0 6, 4, 2, 0

(2, 2) 0 2, 0
2 2, 3, 4

(0, 0) 0 0

The complete classification for branching II is
∣
∣
∣
∣
∣
∣

u(6) ⊃ su(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓
N (λ, µ) K L ML

〉

. (7.161)

Again, a total of six labels is needed.
Branching III
The branching u(6) ⊃ so(6) ⊃ so(5) ⊃ so(3) ⊃ so(2) is

u(6) [N ] ≡
N−times
︷ ︸︸ ︷
�� . . . � ≡ [N, 0, 0, 0, 0, 0]

so(6) σ ≡ (σ, 0, 0) σ = N,N − 2, . . . , 1 or 0
(N = odd or even)

so(5) τ ≡ (τ , 0) τ = σ, σ − 1, . . . , 0

so(3) L Algorithm 4

so(2) ML −L ≤ ML ≤ +L

. (7.162)
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Algorithm 4
The algorithm to find the values of L contained in each representation τ

is: Partition τ as
τ = 3ν∆ + λ, ν∆ = 0, 1, . . . (7.163)

and take
L = 2λ, 2λ − 2, . . . , λ + 1, λ . (7.164)

[Note again that 2λ − 1 is missing!]. The missing label is here ν∆.
This gives Table 7.3.

Table 7.3. Decomposition of totally symmetric representations of u(6) ⊃ so(6)
into representations of so(3)

u(6) ⊃ so(6) ⊃ so(5) ⊃ so(3)
N σ τ ν∆ L

0 0 0 0 0
1 1 1 0 2

0 0 0
2 2 2 0 4, 2

1 0 2
0 0 0

0 0 0 0
3 3 3 0 6, 4, 3

1 0
2 0 4, 2
1 0 2
0 0 0

1 1 0 2
0 0 0

The complete classification for branching III is
∣
∣
∣
∣
∣
∣

u(6) ⊃ so(6) ⊃ so(5) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓ ↓
N σ τ, v∆ L ML

〉

(7.165)

with six quantum numbers as before.
In all three chains, the total number of labels needed to characterize

uniquely the totally symmetric representations of u(6) is six, as one can see
by considering the Gel’fand pattern

n1 0 0 0 0 0
n2 0 0 0 0

n3 0 0 0
n4 0 0

n5 0
n6

. (7.166)
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Eigenvalues of Casimir Operators

The eigenvalues of Casimir operators in the representations labeled by the
quantum numbers of the previous subsection are

〈[N ] | C1(u(6)) | [N ]〉 = N

〈[N ] | C2(u(6)) | [N ]〉 = N(N + 5)
〈[nd] | C1(u(5)) | [nd]〉 = nd

〈[nd] | C2(u(5)) | [nd]〉 = nd(nd + 4)

〈(λ, µ) | C2(su(3)) | (λ, µ)〉 = λ2 + µ2 + λ µ + 3λ + 3µ

〈(σ, 0, 0) | C2(so(6)) | (σ, 0, 0)〉 = σ(σ + 4)
〈(τ , 0) | C2(so(5)) | (τ , 0)〉 = τ(τ + 3)

〈(L) | C2(so(3)) | (L)〉 = L(L + 1) .

(7.167)

Lattice of Algebras

The lattice of algebras is

u(6)
� | �

u(5) so(6) su(3)
� �

so(5) �

�

so(3)
|

so(2)

A5

� | �

A4 D3 A2

� �

B2 �

�

B1

|
D1

. (7.168)

The algebra of u(6) constructed with s and d bosons is known as the in-
teracting boson model algebra. [F. Iachello and A. Arima, The Interacting
Boson Model, Cambridge University Press, Cambridge, 1987]. An account of
the interacting boson model algebra is also given in [A. Frank and P. van
Isacker, Algebraic Methods in Molecular and Nuclear Structure Physics, J.
Wiley and Sons, New York, 1994].

7.8 The Unitary Algebra u(7)

In the previous sections, the unitary algebras u(1), u(2), . . . , u(6) have been
constructed with bilinear products of boson operators b†αbβ . Unitary algebras
u(n) with n > 6 can be constructed in a similar way. In this section, as
a last example of an explicit boson construction, the algebra u(7) will be
considered. This algebra is composed of the 49 elements
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Gαβ � b†αbβ (α, β = 1, 2, . . . , 7) . (7.169)

The algebra u(7) is interesting for two reasons: (i) It is the unitary algebra of
lowest rank that contains as a subalgebra one of the exceptional algebras, g2,
and (ii) it has applications to the three-body problem in quantum mechanics.
The subalgebra chains that describe these two situations are discussed in the
following subsections.

7.8.1 Subalgebra Chain Containing g2

This chain can be constructed by introducing an octupole boson f† that
transforms as the representation l = 3 of so(3)

l = 3: f†
µ (µ = 0,±1,±2,±3) . (7.170)

The elements of the algebra u(7) in Racah form are

G
(0)
0 (ff) =

(
f† × f̃

)(0)

0
1

G
(1)
κ (ff) =

(
f† × f̃

)(1)

κ
3

G
(2)
κ (ff) =

(
f† × f̃

)(2)

κ
5

G
(3)
κ (ff) =

(
f† × f̃

)(3)

κ
7

G
(4)
κ (ff) =

(
f† × f̃

)(4)

κ
9

G
(5)
κ (ff) =

(
f† × f̃

)(5)

κ
11

G
(6)
κ (ff) =

(
f† × f̃

)(6)

κ
13

, (7.171)

for a total of 49 elements.
Subalgebra I : u(7) ⊃ so(7) ⊃ g2 ⊃ so(3) ⊃ so(2)
The elements are:

so(7) :
(
f† × f̃

)(k)

κ
k = 1, 3, 5 21

g2;
(
f† × f̃

)(k)

κ
k = 1, 5 14

so(3) :
(
f† × f̃

)(1)

κ
3

so(2) :
(
f† × f̃

)(1)

0
1

. (7.172)
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Table 7.4. Decomposition of totally symmetric representations of u(7) ⊃ so(7)
into representations of so(3)

u(7) ⊃ so(7) ⊃ g2 ⊃ so(3)
N ω γ L

0 0 0 0
1 1 1 3
2 2 2 6, 4, 2

0 0 0
3 3 3 9, 7, 6, 5, 4, 3, 1

1 1 3
4 4 4 12, 10, 9, 82, 7, 62, 52, 4, 32, 2, 1

2 2 6, 4, 2
0 0 0

Branching

The branching of representations [N ] of u(7) is

u(7) [N ] ≡ [N, 0, 0, 0, 0, 0, 0]

so(7) ω ≡ (ω, 0, 0) ω = N,N − 2, . . . , 1 or 0 (N = odd or even)

g2 γ ≡ (γ, 0) Racah algorithm

so(3) L Racah algorithm

so(2) ML −L ≤ ML ≤ +L

. (7.173)

The steps so(7) ⊃ g2 and g2 ⊃ so(3) are non-canonical and involve the
exceptional group g2. The Racah algorithm gives Table 7.4. The algorithm
can be found in [G. Racah, Theory of Complex Spectra-IV, Phys. Rev. 76,
1352 (1949).] Note that for bosonic representations the algebra g2 does not
provide any new label and the multiplicities must be resolved by additional
missing labels. (The algebra g2 will be also discussed in Chap. 8 for fermionic
systems for which it provides new labels.)

7.8.2 The Triplet Chains

These chains can be constructed with two three-dimensional vector bosons,
b†ρ,m (m = 0 ± 1) , b†λ,m (m = 0,±1) and a scalar boson s†, generically denoted
c†α (α = 1, . . . , 7)

l = 1 : b†ρ,m (m = 0,±1)

l = 1 : b†λ,m (m = 0,±1) (7.174)

l = 0 : s†
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together with the corresponding annihilation operators cα (α = 1, . . . , 7).
These chains are important in the study of the three-body problem in quan-
tum mechanics. The subscript ρ, λ that distinguishes the two vector bosons
is used to indicate that these vector bosons represent the second quantized
form of the Jacobi variables ρ,λ that characterize the geometric configu-
ration of a three-body system. The Jacobi variables are defined in terms
of the coordinates of the three particles r1, r2, r3 as ρ = 1√

2
(r1 − r2) and

λ = 1√
6

(r1 + r2 − 2r3). The bilinear products

Gαα′ � c†αcα′ (α, α′ = 1, . . . , 7) (7.175)

generate u(7). The basis states are written as

B :
1
N

(
b†ρ
)nρ

(
b†λ

)nλ (
s†
)N−nρ−nλ |0〉 , (7.176)

where N is a normalization constant. The Racah form of u(7) is obtained by
introducing the operators

b̃ρ,m = (−1)1−m
bρ,−m

b̃λ,m = (−1)1−m
bλ,−m

s̃ = s . (7.177)

It can be written as

n̂s =
(
s† × s̃

)
1

D̂ρ,µ =
(
b†ρ × s̃ − s† × b̃ρ

)(1)

µ
3

D̂λ,µ =
(
b†λ × s̃ − s† × b̃λ

)(1)

µ
3

Âρ,µ = i
(
b†ρ × s̃ + s† × b̃ρ

)(1)

µ
3

Âλ,µ = i
(
b†λ × s̃ + s† × b̃λ

)(1)

µ
3

Ĝ
(�)
S,µ =

(
b†ρ × b̃ρ + b†λ × b̃λ

)(�)

µ
9

Ĝ
(�)
A,µ = i

(
b†ρ × b̃λ − b†λ × b̃ρ

)(�)

µ
9

Ĝ
(�)
Mρ,µ =

(
b†ρ × b̃λ + b†λ × b̃ρ

)(�)

µ
9

Ĝ
(�)
Mλ,µ =

(
b†ρ × b̃ρ − b†λ × b̃λ

)(�)

µ
9

(7.178)

with � = 0, 1, 2. This form is not the usual Racah form of the algebra in
which the bilinear products are only angular momentum coupled. In appli-
cations to the many-body problem, especially in quantum chemistry, it is
useful to assign to the creation and annihilation operators properties under
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transformations of a discrete group. The most important property is parity,
where the transformation is inversion of the coordinates ri → −ri. The two
boson operators b†ρ and b†λ are assumed to be odd under parity, while the
operator s† is assumed to be even. (In general, in this chapter, the parity
P of the boson operators b†l,m is assumed to be (−1)l.) For applications to
the three-body problem, it is convenient to assign to the elements of the
algebra definite transformation properties under permutation of the three-
bodies. The boson operators s†, b†ρ,m, b†λ,m are assumed to transform under
the transposition P (12) as

P (12)




s†

b†ρ,m

b†λ,m



 =




1 0 0
0 −1 0
0 0 1








s†

b†ρ,m

b†λ,m



 , (7.179)

and under the cyclic permutation P (123) as

P (123)




s†

b†ρ,m

b†λ,m



 =




1 0 0
0 cos (2π/3) sin (2π/3)
0 − sin (2π/3) cos (2π/3)








s†

b†ρ,m

b†λ,m



 . (7.180)

The permutation group S3 is a six element discrete group which is isomor-
phic to the dihedral group D3. In order to characterize the transformation
properties of the elements of the algebra (and of the states) one can use the
label of either group, given by

S3 D3

S ≡ � � � A1

M ≡ � �
� E

A ≡
�
�
�

A2

. (7.181)

This notation is used in (7.178). The construction of bosonic algebras with
definite transformation properties under discrete groups is discussed in [R.
Bijker and A. Leviatan, Algebraic Treatment of Collective Excitations in
Baryon Spectroscopy in Symmetries in Science VII: Spectrum Generating
Algebras and Dynamic Symmetries in Physics, Edited by B. Gruber and T.
Otsuka, Plenum Press, New York, 1994].

Subalgebras II

Since the number of elements of u(7) is relatively large, there are several
possible subalgebra chains, four of which are included here.
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Subalgebra II.1
This is the chain

u(7) ⊃ u(6) ⊃ so(6) ⊃ soρ(3) ⊕ soλ(3) ⊃ so(3) ⊃ so(2) . (7.182)

States in this chain are characterized by the quantum numbers
∣
∣
∣
∣
∣
∣

u(7) ⊃ u(6) ⊃ so(6) ⊃ soρ(3) ⊕ soλ(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓ ↓ ↓ ↓
N n γ Lρ Lλ L ML

〉

(7.183)

with branching

u(7) N ≡ [N, 0, 0, 0, 0, 0, 0]

u(6) n ≡ [n, 0, 0, 0, 0, 0] n = N,N − 1, . . . , 0

so(6) γ ≡ (γ, 0, 0) γ = n, n − 2, . . . , 1 or 0
(n = odd or even)

soρ(3) ⊕ soλ(3) Lρ, Lλ Algorithm 5

so(3) L |Lρ − Lλ| ≤ L ≤ |Lρ + Lλ|
so(2) ML −L ≤ ML ≤ +L

. (7.184)

Algorithm 5
The values of Lρ and Lλ are obtained by partitioning γ as

γ = 2ν + Lρ + Lλ with ν = 0, 1, . . . (7.185)

Subalgebra II.2
This is the chain

u(7) ⊃ so(7) ⊃ so(6) ⊃ soρ(3) ⊕ soλ(3) ⊃ so(3) ⊃ so(2) . (7.186)

States in this chain are characterized by
∣
∣
∣
∣
∣
∣

u(7) ⊃ so(7) ⊃ so(6) ⊃ soρ(3) ⊕ soλ(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓ ↓ ↓ ↓
N ω γ Lρ Lλ L ML

〉

, (7.187)

with branching

u(7) N ≡ [N, 0, 0, 0, 0, 0, 0]

so(7) ω ≡ (ω, 0, 0) ω = N,N − 2, . . . , 1 or 0

so(6) γ ≡ (γ, 0, 0) γ = ω, ω − 1, . . . , 0
soρ(3) ⊕ soλ(3) Lρ, Lλ Algorithm 1

so(3) L |Lρ − Lλ| ≤ L ≤ |Lρ + Lλ|
so(2) ML −L ≤ ML ≤ +L

. (7.188)
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Subalgebras III

Two other subalgebra chains have been used extensively in hadronic physics
(three-quark system). [R. Bijker, F. Iachello and A. Leviatan, Algebraic Mod-
els of Hadronic Structure. I. Nonstrange Baryons, Ann. Phys. (NY) 236, 69
(1994).]

Subalgebra III.1
This is the chain

u(7) ⊃ uρ(3) ⊕ uλ(4) ⊃ uρ(3) ⊕ uλ(3) ⊃ soρ(3) ⊕ soλ(3) ⊃ so(3) ⊃ so(2) .
(7.189)

States in this chain are characterized by the quantum numbers
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u(7) ⊃ uρ(3) ⊕ uλ(4) ⊃ uρ(3) ⊕ uλ(3) ⊃ soρ(3) ⊕ soλ(3)
↓ ↓ ↓ ↓ ↓
N nρ nλ Lρ Lλ

⊃ so(3) ⊃ so(2)
↓ ↓
L ML

〉

, (7.190)

with branching

u(7) N ≡ [N, 0, 0, 0, 0, 0, 0]

uρ(3) ⊕ uλ(3)
nρ ≡ (nρ, 0, 0)
nλ ≡ (nλ, 0, 0)

nρ = 0, 1, . . . , N
nλ = 0, 1, . . . , N − nρ

soρ(3) ⊕ soλ(3)
Lρ

Lλ

Lρ = nρ, nρ − 2, . . . , 1 or 0
Lλ = nλ, nλ − 2, . . . , 1 or 0

so(3) L |Lρ − Lλ| ≤ L ≤ |Lρ + Lλ|
so(2) ML −L ≤ ML ≤ +L

.

(7.191)
Subalgebra III.2
This is the chain

u(7) ⊃ uρ(3) ⊕ uλ(4) ⊃ uρ(3) ⊕ soλ(4) ⊃ soρ(3) ⊕ soλ(3) ⊃ so(3) ⊃ so(2) .
(7.192)

States in this chain are characterized by the quantum numbers
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u(7) ⊃ uρ(3) ⊕ uλ(4) ⊃ uρ(3) ⊕ soλ(4) ⊃ soρ(3) ⊕ soλ(3)
↓ ↓ ↓ ↓ ↓
N nρ ω Lρ Lλ

⊃ so(3) ⊃ so(2)
↓ ↓
L ML

〉

, (7.193)
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with branching

u(7) N ≡ [N, 0, 0, 0, 0, 0, 0]

uρ(3) ⊕ soλ(4)
nρ ≡ (nρ, 0, 0)

ω ≡ (ω, 0)
nρ = 0, 1, . . . , N

ω = N − nρ, N − nρ − 2, . . . , 1 or 0

soρ(3) ⊕ soλ(3)
Lρ

Lλ

Lρ = nρ, nρ − 2, . . . , 1 or 0
Lλ = 0, 1, . . . , ω

so(3) L |Lρ − Lλ| ≤ L ≤ |Lρ + Lλ|
so(2) ML −L ≤ ML ≤ +L

.

(7.194)

Lattice of Algebras

The lattice of algebras for the chains discussed above is

u(7)
� �

so(7) u(6)
� �

so(6)
|

soρ(3) ⊕ soλ(3)
|

so(3)
|

so(2)

and
u(7)
|

uρ(3) ⊕ uλ(4)
� �

uρ(3) ⊕ uλ(3) uρ(3) ⊕ soλ(4)
� �

soρ(3) ⊕ soλ(3)
|

so(3)
|

so(2)

. (7.195)

Note that the two lattices merge at the level of soρ(3) ⊕ soλ(3). [F. Iachello,
Algebraic Theory of the Three-body Problem, in Symmetries in Science VIII,
Edited by B. Gruber, Plenum Press, New York, 1995.]



8 Fermion Realizations

8.1 Fermion Operators

In Chap. 7 a realization of Lie algebras in terms of boson operators has been
given. These operators have been used either in connection with coordinates
and momenta, as in harmonic oscillator problems, see Chap. 7, Examples
1, 2 and 6, or as operators which create or annihilate particles with integer
values of the angular momentum l = 0, 1, . . .. In the 1920’s, it became evi-
dent that particles exist with half-integer values of the angular momentum,
j = 1

2 , 3
2 , . . .. These particles are called fermions. For applications to physics,

it is of interest to consider realizations of Lie algebras in terms of fermion
operators. In view of the pervasive presence in physics of particles with half-
integer spin, most notably electrons and nucleons, fermion realizations have
become an important part of Lie algebraic methods. These will be discussed
in this chapter.

We begin by introducing an operation called anticommutator, denoted by
a curly bracket, {, }. The anticommutator of two quantities X,Y is

{X,Y } = XY + Y X . (8.1)

The anticommutator is sometimes denoted by [, ]+. In this book, the curly
bracket notation will be used. We then introduce fermion creation, a†

i , and
annihilation, ai, operators, satisfying anticommutation relations,

{
ai, a†

i′

}
= δii′ ; {ai, ai′} =

{
a†

i , a
†
i′

}
= 0 . (8.2)

These operators are the key ingredient in the construction.

8.2 Lie Algebras Constructed with Fermion Operators

Lie algebras can be constructed from bilinear products of fermion creation
and annihilation operators

g � Aik = a†
iak (i, k = 1, . . . , n) , (8.3)

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 131–146 (2006)
c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-36239-8 8
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as in the previous case of boson operators. The elements Aik satisfy the
commutation relations of the unitary algebra u(n) [and gl(n)]

[Aik, Ast] = Ait δks − Ask δit . (8.4)

A basis can be constructed by acting with the creation operators on a vacuum
state |0〉. This basis will be denoted by F .

F :
1
N a†

ia
†
i′ . . . |0〉 . (8.5)

In contrast with the case of boson operators which generate totally symmetric
representations, the irreducible representations of u(n) generated by acting
with fermion operators on |0〉 are the totally antisymmetric representations,
with Young tableau

�
�
...
�






NF . (8.6)

For u(n) the Young tableau has n entries. The totally antisymmetric repre-
sentations have NF entries 1 and n − NF entries 0

n

{NF } ≡ [
︷ ︸︸ ︷
1, 1, . . . , 1
︸ ︷︷ ︸

, 0, .., 0] . (8.7)

NF

The short-hand notation {NF } is often used to denote these representations.
The zeros are usually not written, except for the identity representation
[0, 0, . . . , 0] ≡ [0]. The basis F is often called a Fermi-Dirac basis. Since
any Lie algebra is a subalgebra of gl(n) it can be constructed with bilinear
products of fermion operators.

8.3 Racah Form

While in the case of bosons both the uncoupled and coupled (Racah) form
of the Lie algebra have been extensively used, in the case of fermions
only the Racah form has been to a large extent used, and will be con-
sidered in this book. The Racah form of the Lie algebra can be obtained
by introducing fermion operators that transform as representations |j,m〉 of
spin(3) ⊃ spin(2), with j = half-integer. We use here spin(3) and spin(2)
instead of so(3) and so(2), since we need to consider explicitly spinor rep-
resentations. The corresponding creation and annihilation operators will be
denoted by
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a†
j,m m = ± 1

2 ,± 3
2 , . . . ,±j

aj,m m = ± 1
2 ,± 3

2 , . . . ,±j
. (8.8)

These operators satisfy anticommutation relations
{

aj,m, a†
j′,m′

}
= δjj′ δmm′

{aj,m, aj′,m′} =
{

a†
j,m, a†

j′,m′

}
= 0 .

(8.9)

In constructing the Lie algebra it is convenient to introduce the operators

ãj,m = (−1)j−m
aj,−m (8.10)

that transform as tensors under spin(3) ⊃ spin(2). (An alternative definition
is with a phase (−1)j+m. This alternative definition introduces minus signs
in some formulas, but it does not alter the algebraic structure. Operators
with physical meaning constructed with creation and annihilation operators
must be defined acccordingly. This problem does not arise for Racah boson
realizations, since l and m are integers.)

The Racah form of u(n) is

g � A(λ)
µ (j, j′) = [a†

j × ãj′ ](λ)
µ , (8.11)

with |j + j′| ≥ λ ≥ |j − j′| and n =
∑

i (2ji + 1). The commutation relations
are
[
A(λ)

µ (j, j′), A(λ′)
µ′ (j′′, j′′′)

]
= −

∑

λ′′µ′′

[
(2λ + 1)(2λ′ + 1)

]1/2 〈
λµλ′µ′ | λ′′µ′′〉

×
[

(−)λ′′+j+j′′′
{

λλ′λ′′

j′′′jj′

}

× δj′j′′A
(λ′′)
µ′′ (j, j′′′)

−(−)λ+λ′+j′+j′′
{

λλ′λ′′

j′′j′j

}

δjj′′′A
(λ′′)
µ′′ (j′′, j′)

]

.

(8.12)

Note that, since j is half-integer, one can construct with fermion operators
that transform as representations of spin(3) ⊃ spin(2) only unitary algebras
in an even number of dimensions, a peculiarity of these realizations.

8.4 The Algebras u(2j + 1)

Consider a single value of j. There are (2j + 1) values of m. Thus n = 2j +1.
With this single value of j, we can construct the algebra u(2j +1). There are
(2j + 1)2 elements in the algebra

A(λ)
µ (j, j) = [a†

j × ãj ](λ)
µ . (8.13)

To the algebra u(2j + 1) we can now apply the general procedure of con-
structing subalgebras.



134 8 Fermion Realizations

8.4.1 Subalgebra Chain Containing spin(3)

A generic subalgebra chain (called a classification scheme) for u(2j + 1) con-
structed with fermion operators can be obtained as follows:

(i) Exclude the element with λ = 0, µ = 0; this gives su(2j + 1).
(ii) Retain only terms with λ = odd; this gives the Lie algebra sp(2j +

1, C) ≡ sp(2j + 1). Note that this situation is different from that of
Lie algebras constructed in terms of boson operators, since in that case,
retaining terms with λ = odd generates the orthogonal Lie algebras,
so(2l + 1).

(iii) Retain the term with λ = 1; this gives the algebra spin(3).
(iv) Retain the term with λ = 1, µ = 0; this gives the algebra spin(2). A

generic subalgebra chain for single j is thus

u(2j + 1) ⊃ su(2j + 1) ⊃ sp(2j + 1) ⊃ . . . ⊃ spin(3) ⊃ spin(2) . (8.14)

Dots have been inserted between sp(2j + 1) and spin(3), since, for large
j, there may be intermediate steps. [R.H. Flowers, Studies in j-j Coupling.
I. Classification of Nuclear and Atomic States, Proc. Roy. Soc. A212, 248
(1952).]

8.4.2 The Algebras u(2) and su(2). Spinors

Because of the pervasive presence in physics of particles with angular momen-
tum 1

2 , it is of great interest to construct explicitly the Lie algebra u(2) in
terms of fermion operators with j = 1

2 , called spinors. The fermion creation
operators are written as

a†
1
2 ,+ 1

2
, a†

1
2 ,− 1

2
. (8.15)

An alternative notation, often found in books in condensed matter physics,
is a†

↑ , a†
↓, called spin up, and spin down notation.

The 4 elements of u(2) are

A
(1)
µ ( 1

2 , 1
2 ) =

[
a†

1
2
× ã 1

2

](1)

µ
3

A
(0)
0 ( 1

2 , 1
2 ) =

[
a†

1
2
× ã 1

2

](0)

0
1

. (8.16)

By deleting the element A
(0)
0 one obtains the subalgebra su(2) ∼ sp(2) ∼

spin(3). By considering only the element A
(1)
0 , one obtains the subalgebra

spin(2). The basis is
∣
∣
∣
∣
∣
∣

u(2) ⊃ su(2) ⊃ spin(2)
↓ ↓

NF MJ

〉

. (8.17)
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Note that, for totally antisymmetric representations, no new quantum num-
ber is introduced when going from u(2) to su(2) ∼ sp(2). The elements of the
Lie algebra u(2) constructed with spin 1

2 fermion operators have a straightfor-
ward physical meaning. They are the total spin operator, Ŝ, and the number
operator for fermions, N̂F ,

Ŝµ = −
√

1
2

[
a†
1/2 × ã1/2

](1)

µ

N̂F = −
√

2
[
a†
1/2 × ã1/2

](0)

0

. (8.18)

(The minus sign arises from the choice of phases in (8.10).) The only states
of u(2) that can be constructed with fermion operators are

� ≡ [1] NF = 1

�
� ≡ [1, 1] NF = 2

, (8.19)

in addition to the vacuum |0〉 that transforms as the identity representation
[0]. This property is known to physicists as Pauli principle. The classifica-
tion of antisymmetric states is rewritten, for comparison with the subse-
quent sections, as in Table 8.1. The algebra of u(2) constructed with fermion

Table 8.1. Classification of antisymmetric states of u(2)

j = 1/2 u(2) su(2)

[0] 0
[1] 1/2
[1, 1] 0

operators has had many applications in physics, and hence many different
notations have been used to label the states. Antisymmetric states of u(2)
have been labeled either by {NF } or by [λ1, λ2]. The number of fermions,
NF , is related to the labels [λ1, λ2] by

NF = λ1 + λ2 . (8.20)

Also, in this case, in the general classification scheme of (8.14), all steps,
except the last one, coincide, since su(2) ∼ sp(2) ∼ spin(3). Finally, either
u(2) or su(2) can be used to classify the states, and the use of both the labels
[λ1, λ2] of u(2) and the label J of su(2) is redundant.



136 8 Fermion Realizations

8.4.3 The Algebra u(4)

Another case of considerable interest is the case of j = 3
2 , n = 4. The 16

elements of the algebra are

A
(3)
µ ( 3

2 , 3
2 ) =

[
a†
3/2 × ã3/2

](3)

µ
7

A
(2)
µ ( 3

2 , 3
2 ) =

[
a†
3/2 × ã3/2

](2)

µ
5

A
(1)
µ ( 3

2 , 3
2 ) =

[
a†
3/2 × ã3/2

](1)

µ
3

A
(0)
0 ( 3

2 , 3
2 ) =

[
a†
3/2 × ã3/2

](0)

0
1

. (8.21)

By deleting the element A
(0)
0 ( 3

2 , 3
2 ) one obtains the subalgebra su(4). By

retaining the 10 elements with λ = odd

A
(3)
µ ( 3

2 , 3
2 ) =

[
a†
3/2 × ã3/2

](3)

µ
7

A
(1)
µ ( 3

2 , 3
2 ) =

[
a†
3/2 × ã3/2

](1)

µ
3

, (8.22)

one obtains the algebra of sp(4). By retaining only the elements with λ = 1

A
(1)
µ ( 3

2 , 3
2 ) =

[
a†
3/2 × ã3/2

](1)

µ
3 (8.23)

one obtains the algebra of spin(3) ∼ su(2). Finally by retaining only

A
(1)
0 ( 3

2 ,32 ) =
[
a†
3/2 × ã3/2

](1)

0
1 (8.24)

one obtains spin(2). A basis for fermions with spin 3
2 is then

∣
∣
∣
∣
∣
∣

u(4) ⊃ sp(4) ⊃ su(2) ⊃ spin(2)
↓ ↓ ↓ ↓

NF (n1, n2) J MJ

〉

. (8.25)

The values of n1, n2 are restricted by the branching rules and only one quan-
tum number is actually needed. The allowed states are
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� ≡ [1] NF = 1

�
� ≡ [1, 1] NF = 2

�
�
�

≡ [1, 1, 1] NF = 3

�
�
�
�

≡ [1, 1, 1, 1] NF = 4

. (8.26)

The classification of antisymmetric states is given in Table 8.2. The number

Table 8.2. Classification of antisymmetric states of u(4)

j = 3/2 u(4) sp(4) su(2)

[0] (0, 0) 0
[1] (1, 0) 3/2
[1, 1] (0, 0) 0

(1, 1) 2
[1, 1, 1] (1, 0) 3/2
[1, 1, 1, 1] (0, 0) 0

NF is here

NF =
4∑

i=1

λi . (8.27)

8.4.4 The Algebra u(6)

This algebra can be constructed with j = 5
2 . The 36 elements have the form

A
(5)
µ

(
5
2 , 5

2

)
=

[
a†
3/2 × ã3/2

](5)

µ
11

A
(4)
µ

(
5
2 , 5

2

)
=

[
a†
3/2 × ã3/2

](4)

µ
9

A
(3)
µ

(
5
2 , 5

2

)
=

[
a†
3/2 × ã3/2

](3)

µ
7

A
(2)
µ

(
5
2 , 5

2

)
=

[
a†
3/2 × ã3/2

](2)

µ
5

A
(1)
µ

(
5
2 , 5

2

)
=

[
a†
3/2 × ã3/2

](1)

µ
3

A
(0)
0

(
5
2 , 5

2

)
=

[
a†
3/2 × ã3/2

](0)

0
1

. (8.28)
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Table 8.3. Classification of antisymmetric states of u(6)

j = 5/2 u(6) sp(6) su(2)

[0] (0, 0, 0) 0
[1] (1, 0, 0) 5/2
[1, 1] (0, 0, 0) 0

(1, 1, 0) 2, 4
[1, 1, 1] (1, 0, 0) 5/2

(1, 1, 1) 3/2, 9/2
[1, 1, 1, 1] (0, 0, 0) 0

(1, 1, 0) 2, 4
[1, 1, 1, 1, 1] (1, 0, 0) 5/2
[1, 1, 1, 1, 1, 1] (0, 0, 0) 0

The basis F can be labeled by
∣
∣
∣
∣
∣
∣

u(6) ⊃ sp(6) ⊃ su(2) ⊃ spin(2)
↓ ↓ ↓ ↓

NF (n1, n2, n3) J MJ

〉

. (8.29)

The representations (n1, n2, n3) of sp(6) are restricted and only one quantum
number is needed to classify uniquely the states. The classification scheme
is given in Table 8.3. The representations of u(6) are labelled here by their
Young tableau [λ1, λ2, λ3, λ4, λ5, λ6]. The number of fermions NF is

NF =
6∑

i=1

λi . (8.30)

Algebras with j > 5
2 and their classification scheme can be constructed in a

similar way. [M. Hamermesh, Group Theory and its Applications to Physical
Problems, Addison-Wesley, Reading, Massachusetts, 1962.]

8.5 The Algebra u (
∑

i (2ji + 1))

A generalization of the construction given in the previous section, is the case
when there are several values of j. These situations occur in atomic and
nuclear physics where they are called mixed configurations. The construction
is straightforward and it produces the Lie algebra u(n), with n =

∑
i(2ji+1).

Note, however, once more, that with fermion operators that transform as
representations of spin(3) ⊃ spin(2) it is possible to construct only unitary
algebras in an even number of dimensions.

Example 1. The algebras u(6) and u(12).
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In the study of the spectroscopy of nuclei, one encounters situations in
which the values of j are j = 1

2 , 3
2 or j = 1

2 , 3
2 , 5

2 . The algebras constructed
with these values are u(6) and u(12). [F. Iachello and P. van Isacker, The
Interacting Boson-Fermion Model, Cambridge University Press, 1991].

8.6 Internal Degrees of Freedom (Different Spaces)

8.6.1 The Algebras u(4) and su(4)

One often encounters in physics particles with internal degrees of freedom.
These objects transform as representation |j,m〉 under spin(3) ⊃ spin(2),
and as representations of some internal symmetry group, G. A particularly
interesting case is that of protons and neutrons. These particles transform
as j = 1

2 under spin(3) and as t = 1
2 under another group called isospin(3).

The fermion creation operators are, in a double index notation:

a†
1
2 ,+ 1

2 , 1
2 ,+ 1

2
p↑

a†
1
2 ,− 1

2 , 1
2 ,+ 1

2
p↓

a†
1
2 ,+ 1

2 , 1
2 ,− 1

2
n↑

a†
1
2 ,− 1

2 , 1
2 ,− 1

2
n↓

, (8.31)

generically denoted a†
s,ms,t,mt

. The annihilation operators are as,ms,t,mt
. The

16 bilinear products of creation and annihilation operators form an algebra,
called Wigner u(4). It is convenient to introduce the adjoint operators

ãs, ms, t, mt
= (−)s−ms+t−mt as,−ms, t,−mt

, (8.32)

that transform as tensors under spin and isospin rotations. The Racah form
of Wigner u(4) is obtained in terms of double tensors

[
a†

1
2 , 1

2
× ã 1

2 , 1
2

](S,T )

(MS ,MT )
=

∑

m,m′
mt,mt′

〈
1
2
,ms,

1
2
,m′

s | S,MS

〉

×
〈

1
2
,mt,

1
2
,mt′ | T,MT

〉

a†
1
2 ,ms, 1

2 ,mt
ã 1

2 ,m′
s, 1

2 ,m′
t

(8.33)

with S = 0, 1 and T = 0, 1.

Subalgebra Chain

Although a given algebra can be decomposed into several subalgebra chains,
as shown in the previous chapter for bosonic realizations, in practice physical
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considerations dictate what subalgebra chains are of interest. For algebras
with internal degrees of freedom, the construction of subalgebra chains splits
into two categories: different spaces and same spaces. For different spaces, the
internal degrees of freedom are separated from the outset and not combined
at any stage, while for same spaces, they are combined at some stage into
a single algebra, whose elements are the sum of the elements of the two
algebras. This procedure is elucidated in the paragraphs below.

In the case of Wigner u(4), spin and isospin live on different spaces, the
physical space and a fictitious isotopic spin space. It is assumed, on physical
grounds, that they cannot be combined, and the appropriate chain is u(4) ⊃
su(4) ⊃ suS(2) ⊕ suT (2) ⊃ spinS(2) ⊕ spinT (2). Here suS(2) ∼ spin(3),
suT (2) ∼ isospin(3) and the subscript S, T has been added to distinguish
spin from isospin. The basis F for Wigner u(4) can then be written as

∣
∣
∣
∣
∣
∣

u(4) ⊃ suS(2) ⊕ suT (2) ⊃ spinS(2) ⊕ spinT (2)
↓ ↓ ↓

[λ1, λ2, λ3, λ4] S, T MS ,MT

〉

. (8.34)

The full notation for the representations of u(4) has been restored and the
intermediate step su(4) has been omitted, since no new quantum number
appears. For a given representation of u(4), the branching problem can be
solved using the techniques of Chap. 4. The chain is non-canonical and re-
quires a building-up process. It has become customary to introduce another
notation, called Wigner notation. In this notation, one first goes from u(4)
to su(4), using the rules of Chap. 4. The representations of su(4) are labeled
by

[
λ′

1, λ
′
2, λ

′
3

]
with

λ′
1 = λ1 − λ4, λ

′
2 = λ2 − λ4, λ

′
3 = λ3 − λ4 . (8.35)

The Wigner quantum numbers (P,P ′, P ′′) are defined as

(P,P ′, P ′′) =
(

λ′
1 + λ′

2 − λ′
3

2
,
λ′

1 − λ′
2 + λ′

3

2
,
λ′

1 − λ′
2 − λ′

3

2

)

. (8.36)

The branching of representations of su(4) into representations of suS(2) ⊕
suT (2) can then be constructed. [M. Hamermesh, Group Theory and its Ap-
plications to Physical Problems, Addison-Wesley, Reading, Massachusetts,

Table 8.4. Branching su(4) ⊃ suS(2) ⊕ suT (2)

su(4) ⊃ suS(2) ⊕ suT (2)
(P, P ′, P ′′) (S, T ) dim(P, P ′, P ′′)

(0, 0, 0) (0, 0) 1(
1
2
, 1

2
, 1

2

) (
1
2
, 1

2

)
4

(1, 1, 1) (0, 0), (1, 1) 10(
3
2
, 3

2
, 3

2

) (
1
2
, 1

2

)
,
(

3
2
, 3

2

)
20
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1962).] A portion of this branching is given in Table 8.4. In the last column
the dimension of the representations of su(4) is shown.

8.6.2 The Algebras u(6) and su(6)

In this case, particles still transform as j = 1
2 under spin(3), but they

now transform as the fundamental representation [1] of an internal group
suF (3), called the flavor group. The creation operators are denoted by
a†

u↑, a
†
d↑, a

†
s↑, a

†
u↓, a

†
d↓, a

†
s↓. The index u, d, s stands for u, d, s quarks. The bi-

linear product of creation and annihilation operators form a u(6) algebra,
called the Gürsey-Radicati algebra.

Subalgebra Chain

The breaking of u(6) first proceeds to suF (3) ⊕ suS(2). The algebra su(3)
can be broken in various ways. The breaking appropriate to the physical
situation described by the Gürsey-Radicati algebra is suF (3) ⊃ suT (2) ⊕
uY (1), where T denotes the isospin as before, and uY (1) is an Abelian algebra
called hypercharge (Y) algebra. The subalgebra chain is thus u(6) ⊃ su(6) ⊃
suF (3)⊕ suS(2) ⊃ suT (2)⊕ uY (1)⊕ suS(2) ⊃ spinT (2)⊕ uY (1)⊕ spinS(2).
The basis is labelled by

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u (6) ⊃ suF (3) ⊕ suS(2) ⊃ suT (2) ⊕ uY (1) ⊕ suS(2)
↓ ↓ ↓ ↓ ↓
[λ] [µ1, µ2] S T Y

⊃ spinT (2) ⊕ uY (1) ⊕ spinS(2)
↓ ↓
T3 S3

〉

. (8.37)

Here [λ] = [λ1, λ2, λ3, λ4, λ5, λ6]. It has become customary to label the repre-
sentations of suF (3) not by their Young labels [µ1, µ2] but by the dimension
of the representations, dim [0, 0] = 1,dim [2, 1] = 8, etc. and the representa-
tions of suS(2) by their dimensions dimS = 2S + 1, put as a superscript,
that is 28 denotes the representation [2, 1], S = 1

2 of suF (3) ⊕ sus(2). The
branching of representations of u(6) into representations of suF (3) ⊕ suS(2)
can be constructed. [F. Gürsey and L.A. Radicati, Spin and unitary spin in-
dependence of strong interactions, Phys. Rev. Lett. 13, 173 (1964).] A portion
of this branching is given in Table 8.5. The conversion between this notation
and the standard notation for su(3) representations used in the preceding
chapters is 1 ≡ [0, 0], 3 ≡ [1, 0], 3̄ ≡ [1, 1], 6 ≡ [2, 0], 8 ≡ [2, 1], 10 ≡ [3, 0].
The general formula for the dimension of the representations of u(n) is given
in Chap. 4, Sect. 12. It is worth noting that with fermions with internal de-
grees of freedom, it is possible to construct algebras in both even and odd
number of dimensions, in the present case suF (3).
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Table 8.5. Branching su(6) ⊃ suF (3) ⊕ suT (2)

su(6) ⊃ suF (3) ⊕ suS(2)
[λ1, λ2, λ3, λ4, λ5] (dim [µ1, µ2] , dim S) dim [λ]

[0, 0, 0, 0, 0] (1, 1) 1
[1, 0, 0, 0, 0] (3, 2) 6
[1, 1, 1, 1, 1] (3̄, 2) 6
[1, 1, 0, 0, 0] (3̄, 3), (6, 1) 15
[1, 1, 1, 0, 0] (8, 2), (1, 4) 20
[2, 0, 0, 0, 0] (6, 3), (3̄, 1) 21
[2, 1, 1, 1, 1] (8, 3), (8, 1), (1, 3) 35
[3, 0, 0, 0, 0] (10, 4), (8, 2) 56
[2, 1, 0, 0, 0] (10, 2), (8, 4), (8, 2), (1, 2) 70

8.7 Internal Degrees of Freedom (Same Space)

8.7.1 The Algebra u((2l + 1)(2s + 1)): L-S Coupling

Another case of interest is that of particles with both orbital, l = integer, and
spin, s = half-integer, angular momentum. (The spin angular momentum is
the internal degree of freedom.) The corresponding creation and annihilation
operators are

a†
l ,ml, s, ms

ãl ,ml, s, ms
= (−1)l−ml+s−ms al,−ml, s,−ms

. (8.38)

The bilinear products
a†

l,ml,s,ms
ãl,m′

l,s,m′
s

(8.39)

generate the Lie algebra u ((2l + 1) (2s + 1)).

Racah Form

The Racah form of the orbital-spin algebra is constructed with double tensors
as in the preceding section,

[
a†

l,s × ãl,s

](L,S)

ML,MS

=
∑

ms,m′
s

ml,m
′
l

〈l,ml, l,m
′
l | L,ML〉〈s,ms, s,m

′
s | S,MS〉

×a†
l,ml,s,ms

ãl,m′
l,s,m′

s
. (8.40)

The classification scheme for this algebra is

u ((2l + 1) (2s + 1)) ⊃ uL(2l + 1) ⊕ suS(2s + 1) ⊃ . . .

⊃ soL(3) ⊕ suS(2) ⊃ spinJ (3) ⊃ spinJ (2) , (8.41)
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called L-S coupling. Since orbital and spin angular momentum are assumed
to act on the same space, they can be combined. Here spinJ(3) denotes the
algebra whose elements are the sum of the elements of soL(3) and suS(2),
sometimes called the diagonal algebra. For large l, some intermediate steps
are needed between uL(2l + 1) and soL(3) and the problem of missing labels
becomes particularly acute since the representations of uL(2l+1) that appear
in (8.41) are not just one-row representations as in the case of bosons. For
this reason, dots have been inserted in (8.41) between uL(2l +1) and soL(3).

The representations of u((2l + 1)(2s + 1)) that describe fermions are the
totally antisymmetric representations {NF } of (8.7) (one-column representa-
tions). Racah showed that, in order to obtain totally antisymmetric represen-
tations of u((2l+1)(2s+1)), the representations of uL(2l+1) and suS(2s+1)
must be dual (sometimes called conjugate), that is obtained from each other
by interchaging columns with rows. Particularly interesting is the case of
s = 1

2 that describes electrons in atoms and nucleons in nuclei. In this case,
the algebra is u(2(2l + 1)) ⊃ uL(2l + 1) ⊕ suS(2). The representations of
suS(2) are characterized by the quantum numbers S,MS , and thus described
by a Young tableau with two rows of length (N/2) + S and (N/2) − S. The
representations of uL(2l + 1) which arise in the reduction of representations
{NF } of u(2(2l + 1)) must then be described by a Young tableau with two
columns of these lengths.

Example 2. p electrons in atoms

In this case, l = 1, leading to the Lie algebra u(6). The classification
scheme is

u(6) ⊃ uL(3) ⊕ suS(2) ⊃ soL(3) ⊕ suS(2) ⊃ spinJ(3) ⊃ spinJ (2) . (8.42)

The branching of the representations of uL(3) into those of soL(3) has been
discussed in Chap. 4, Sect. 14. No additional subalgebra is needed.

Example 3. f electrons in atoms

In this case, l = 3, and the appropriate algebra is u(14). This algebra has
196 elements. The classification scheme of (8.41) is

u(14) ⊃ uL(7) ⊕ suS(2) ⊃ . . . ⊃ soL(3) ⊕ suS(2) ⊃ spinJ(3) ⊃ spinJ (2) .
(8.43)

The classification scheme for the step uL(7) ⊃ soL(3) is incomplete. A com-
plete classification scheme was found by Racah and it is

uL(7) ⊃ soL(7) ⊃ g2 ⊃ soL(3) ⊃ soL(2) . (8.44)

This classification scheme occupies a special role in Lie algebraic methods
in physics since it was the first case in which an exceptional algebra, g2,
appeared. The elements of the algebras in (8.44) can be written easily in the
double tensor notation of (8.40). They are
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u(7) :
[
a† × ã

](L,0)

ML,0
L = 0, 1, 2, 3, 4, 5, 6 49

su(7) :
[
a† × ã

](L,0)

ML,0
L = 1, 2, 3, 4, 5, 6 48

so(7) :
[
a† × ã

](L,0)

ML,0
L = 1, 3, 5 21

g2 :
[
a† × ã

](L,0)

ML,0
L = 1, 5 14

so(3) :
[
a† × ã

](L,0)

ML,0
L = 1 3

so(2) :
[
a† × ã

](1,0)

ML,0
1

, (8.45)

where the indices l = 3, s = 1
2 have been omitted. States are characterized by

∣
∣
∣
∣
∣
∣

u(7) ⊃ so(7) ⊃ g2 ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓ ↓

[λ1, . . . , λ7] [µ1, µ2, µ3] [γ1, γ2] L ML

〉

. (8.46)

For the application described in this example, the representations of u(14) are
characterized by the number of electrons NF . The representations of suS(2)
are characterized by the total spin S. For each NF and S the representations
of u(7) are two-column representations with length (NF /2)+S and(NF /2)−S.
Tables of reduction for u(7) ⊃ so(7), so(7) ⊃ g2, g2 ⊃ so(3) can be found
in Racah. Note that the reduction u(7) ⊃ so(7) for fermionic representations
is different from that of bosonic representations given in Chap. 7. The same
remark applies for the reduction so(7) ⊃ g2 and g2 ⊃ so(3). The reduction
so(7) ⊃ g2 is given in Table 8.6. The reduction g2 ⊃ so(3) is given in Table 8.7.

Table 8.6. Reduction so(7) ⊃ g2

so(7) ⊃ g2

[µ1, µ2, µ3] [γ1, γ2]

[0, 0, 0] [0, 0]
[1, 0, 0] [1, 0]
[1, 1, 0] [1, 0], [1, 1]
[2, 0, 0] [2, 0]
[1, 1, 1] [0, 0], [1, 0], [2, 0]
[2, 1, 0] [1, 1], [2, 0], [2, 1]
[2, 1, 1] [1, 0], [1, 1], [2, 0], [2, 1], [3, 0]
[2, 2, 0] [2, 0], [2, 1], [2, 2]
[2, 2, 1] [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1]
[2, 2, 2] [0, 0], [1, 0], [2, 0], [3, 0], [4, 0]
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Table 8.7. Reduction g2 ⊃ so(3)

g2 ⊃ so(3)
[γ1, γ2] L

[0, 0] 0
[1, 0] 3
[1, 1] 1, 5
[2, 0] 2, 4, 6
[2, 1] 2, 3, 4, 5, 7, 8
[3, 0] 1, 3, 4, 5, 6, 7, 9
[2, 2] 0, 2, 4, 5, 6, 8, 10
[3, 1] 1, 2, 32, 4, 52, 62, 72, 8, 9, 10, 11
[4, 0] 0, 2, 3, 42, 5, 62, 7, 82, 9, 10, 12

To complete the study of this chain, one needs also to construct the Casimir
invariants and their eigenvalues. The construction is given in Racah. The
general expression for the eigenvalues in the representation [γ1, γ2] are

〈C2(g2)〉 =
(
γ2

1 + γ1γ2 + γ2
2 + 5γ1 + 4γ2

)
/12 . (8.47)

(The factor of 12 comes from the definition of C2(g2).) A detailed account
is given in [G. Racah, Theory of Complex Spectra. IV, Phys. Rev. 76, 1352
(1949).] Also, note again that with fermions with internal degrees of freedom
it is possible to construct unitary algebras in odd number of dimensions, here
u(7). Finally, L−S coupling plays a major role in the spectroscopy of atoms.

8.7.2 The Algebra u
(∑

j (2j + 1)
)
: j-j Coupling

The orbital and spin angular momenta can be coupled from the outset. The
corresponding creation and annihilation fermion operators are

a†
l,s,j,mj

; ãl,,s,j,mj
= (−1)j−mj al,s,j,−mj

, (8.48)

with |l + s| ≥ j ≥ |l − s|. The bilinear products

a†
l,s,j,mj

ãl,s,j′,m′
j

form the Lie algebra u(n) with n =
∑

j (2j + 1), as in Chap. 5. The Racah
form of the algebra and its branchings can be constructed. [F. Iachello and P.
Van Isacker, The Interacting Boson-Fermion Model, Cambridge University
Press, 1991.] Again here the case of interest is that in which s = 1

2 .

Example 4. p nucleons in nuclei

In this case, l = 1, and j = 1
2 , 3

2 , leading to the Lie algebra u(6). The
classification scheme is

u(6) ⊃ sp(6) ⊃ spinJ (3) ⊃ spinJ(2) . (8.49)

j-j coupling plays a major role in the spectroscopy of nuclei.
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8.7.3 The Algebra u ((
∑

l(2l + 1)) (2s + 1)):
Mixed L-S Configurations

In this case the orbital angular momentum l takes several values l1, l2, . . ..
The creation and annihilation operators are still given by (8.48), but the
elements of the Lie algebra are the bilinear products

a†
l,ml,s,ms

ãl′,m′
l,s,m′

s
(8.50)

where l, l′ take the vaules l1, l2, . . .. A particularly important case described
by this algebra is that of fermions with spin s = 1

2 moving in a harmonic
oscillator potential in three dimensions. As discussed in Chap. 7, Sect. 4.1.2,
for N ≥ 2 states of the three dimensional harmonic oscillator are degenerate
with respect to the angular momentum. For N = 2 the values of the orbital
angular momentum are l = 0, 2, for N = 3 they are l = 1, 3, etc. The
algebra that describes fermions in a given degenerate shell (a given value of
N), called Elliott algebra, is u ((

∑
l(2l + 1)) (2s + 1)). [J.P. Elliott, Collective

Motion in the Nuclear Shell Model. I.Classification Schemes for States of
Mixed Configurations, Proc. Roy. Soc. A 245, 128 (1958).] .

Example 5. s-d nucleons in nuclei

In this case l = 0, 2 leading to the Lie algebra u(12). The classification
scheme is

u(12) ⊃ uL(6) ⊕ suS(2) ⊃ suL(3) ⊕ suS(2) ⊃ soL(3) ⊕ suS(2)
⊃ spinJ (3) ⊃ spinJ (2) . (8.51)

Mixed L-S configurations play a major role in the spectroscopy of light
nuclei.
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9.1 Differential Operators

Lie algebras can also be constructed with differential operators acting on a
space of derivable functions f(x) of the coordinate x. The basic commutation
relations are [

x,
d

dx

]

= x
d

dx
− d

dx
x = −1 . (9.1)

9.2 Unitary Algebras u(n)

The bilinear products of coordinates, xi(i = 1, .., n), and their derivatives,
∂

∂xj
(j = 1, . . . , n) generate u(n)

u(n) � xi
∂

∂xj
. (9.2)

Introducing the double index notation of the previous chapters

Xik = xi
∂

∂xk
i, k = 1, . . . , n (9.3)

one obtains the commutation relations

[Xik,Xmn] = δkmXin − δinXmk . (9.4)

For su(n), one subtracts
∑

j Xjj from the diagonal elements

X ′
ii = Xii −

1
n

∑

j

Xjj . (9.5)

and deletes X ′
nn. (The n elements X ′

ii are not linear independent since∑
i X ′

ii = 0.) The n2 − 1 elements Xik(i �= k = 1, . . . , n) and X ′
ii(i =

1, . . . , n − 1) generate su(n).

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 147–153 (2006)
c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-36239-8 9
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Example 1. Differential realization of u(2)

Introduce two coordinates x, y. The differential realization is

X11 = x
∂

∂x
,X12 = x

∂

∂y
,X21 = y

∂

∂x
,X22 = y

∂

∂y
. (9.6)

Example 2. Differential realization of su(2)

From the preceding example, one obtains

X ′
11 =

1
2

(

x
∂

∂x
− y

∂

∂y

)

,X12 = x
∂

∂y
,X21 = y

∂

∂x
. (9.7)

9.3 Orthogonal Algebras so(n)

Differential realization are often used to construct orthogonal Lie algebras.
Introduce n real coordinates, x1, x2, . . . , xn. A construction of the Lie algebra
so(n) is

so(n) � xi
∂

∂xj
− xj

∂

∂xi
. (9.8)

Introducing the notation

Lij = xi
∂

∂xj
− xj

∂

∂xi
, i < j = 1, . . . , n . (9.9)

one obtains the commutation relations

[Lij , Lkl] = δjkLil + δilLjk − δjlLik − δikLjl . (9.10)

The n(n−1)
2 elements Lij are called angular momentum operators.

Example 3. The Lie algebra so(2)

We introduce here two coordinates, x, y, as in part (a) of Fig. 9.1.
The single element of so(2) is

X1 = y
∂

∂x
− x

∂

∂y
. (9.11)

This element acts on functions f(x, y).

Example 4. The Lie algebra so(3)
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x

y

z

P

j

q

HaL

x

y

j

P

HbL

Fig. 9.1. Coordinates for differential realizations of (a) so(2) and (b) so(3)

We introduce here three coordinates, x, y, z, as in part (b) of Fig. 9.1. The
three elements of so(3) are, in a single index notation,

X1 = z
∂

∂y
− y

∂

∂z

X2 = x
∂

∂z
− z

∂

∂x

X3 = y
∂

∂x
− x

∂

∂y
(9.12)

acting of f(x, y, z). The elements satisfy the commutation relations

[X1,X2] = X3 ; [X2,X3] = X1 ; [X3,X1] = X2 . (9.13)

Example 5. The Lie algebra so(4)

We introduce here four coordinates, x, y, z, t. The six elements of so(4)
are

A1 = z
∂

∂y
− y

∂

∂z
,A2 = x

∂

∂z
− z

∂

∂x
,A3 = y

∂

∂x
− x

∂

∂y
,

B1 = x
∂

∂t
− t

∂

∂z
,B2 = y

∂

∂t
− t

∂

∂y
,B3 = z

∂

∂t
− t

∂

∂z
. (9.14)

acting on f(x, y, z, t).
The realization (9.8) is in n variables x1, x2, . . . , xn. Another realiza-

ton is in terms of n − 1 angle variables ϕ1, ϕ2, . . . , ϕn−1. This realization
is obtained by introducing hyperspherical coordinates, (x1, x2, . . . , xn) →(
r, ϕn−1, ϕn−2, ϕn−3, . . . , ϕ1

)
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x1 = r sin ϕn−1 sin ϕn−2 . . . sinϕ2 sinϕ1

x2 = r sin ϕn−1 sin ϕn−2 . . . sinϕ2 cos ϕ1

. . .

xn−1 = r sin ϕn−1 cos ϕn−2

xn = r cos ϕn−1 (9.15)

and setting r = 1 (realization on the unit n dimensional sphere.)

Example 6. so(2) in polar coordinates

Introducing
x = r cos ϕ
y = r sin ϕ

(9.16)

one has
X1 =

∂

∂ϕ
. (9.17)

Example 7. so(3) in spherical coordinates

Introducing
x = r sin ϑ cos ϕ
y = r sin ϑ sinϕ
z = r cos ϑ

, (9.18)

one has
X1 = cos ϕ

∂

∂ϑ
+ sinϕ ctg ϑ

∂

∂ϕ

X2 = − sin ϕ
∂

∂ϑ
− cos ϕ ctg ϑ

∂

∂ϕ

X3 =
∂

∂ϕ

. (9.19)

Example 8. so(4) in hyperspherical coordinates

One needs here three angles, ϑ, ϕ, ψ. The corresponding form of the Lie
algebra is called Pauli form.

9.3.1 Casimir Operators. Laplace-Beltrami Form

All operators are constructed in terms of differential operators. The differ-
ential form of the Casimir operators is often referred to as Laplace-Beltrami
form.

Example 9. The Laplace-Beltrami form of so(2)
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We have here trivially

C1(so(2)) =
∂

∂ϕ
, C2(so(2)) =

∂2

∂ϕ2
. (9.20)

Example 10. The Laplace-Beltrami form of so(3)

We have here

C2(so(3)) =
1

sin2 ϑ

∂2

∂ϕ2
+

1
sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

. (9.21)

9.3.2 Basis for the Representations

One also needs to construct the basis for the representations. In the realiza-
tion in terms of angles, the basis is constructed using the canonical chain

so(n) ⊃ so(n − 1) ⊃ . . . ⊃ so(2) . (9.22)

Example 11. Basis for so(3)

In this case one seeks simultaneous eigenfunctions of C2(so(3)) and
C2(so(2))

C2(so(2)) Φ(ϕ) = −m2 Φ(ϕ)
C2(so(3)) Θ(ϑ) = −l(l + 1) Θ(ϑ) . (9.23)

The eigenfunctions are the spherical harmonics

Y m
l (ϑ, ϕ) =

√
2l + 1

4π

(l − m)!
(l + m)!

(−1)m eimϕPm
l (cos ϑ) . (9.24)

It has become customary in physical applications to introduce the elements
Lx, Ly, Lz obtained from those previously given by multiplication with (1/i)






Lx =
1
i

(

cos ϕ
∂

∂ϑ
− sinϕctgϑ

∂

∂ϕ

)

Ly =
1
i

(

− sin ϕ
∂

∂ϑ
− cos ϕ ctg ϑ

∂

∂ϕ

)

Lz =
1
i

∂

∂ϕ

(9.25)

From these one can also construct the elements in Cartan-Weyl form,
Lz, L± = Lx ± iLy. The action of those elements on the basis is
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Lz Y m
l (ϑ, ϕ) = mY m

l (ϑ, ϕ)

L+ Y m
l (ϑ, ϕ) =

√
(l − m)(l + m + 1) Y m+1

l (ϑ, ϕ)

L− Y m
l (ϑ, ϕ) =

√
(l + m)(l − m + 1) Y m−1

l (ϑ, ϕ)

. (9.26)

The abstract notation is
∣
∣
∣
∣
∣
∣

so(3) ⊃ so(2)
↓ ↓
l m

〉

≡ Y m
l (ϑ, ϕ) . (9.27)

Note that with differential realizations it is possible to construct only tensor
representations of the orthogonal algebras. The construction of spinor rep-
resentations requires the introduction of another mathematical framework,
either that of spinors [E. Cartan, The Theory of Spinors, Hermann, Paris,
1966] or that of Grassmann variables [F.A. Berezin, Introduction to Super-
analysis, D. Reidel, Dordrecht, 1987 ].

9.4 Orthogonal Algebras so(n, m)

Although the discussion in the preceding chapters has been devoted to com-
pact Lie algebras, it is of interest to consider here non-compact Lie algebras,
so(n,m). A construction of the Lie algebra so(n,m) is

so(n,m) � δixi
∂

∂xj
− δjxj

∂

∂xi
, (9.28)

where

δi =
{

1 i = 1, . . . , n
−1 i = n + 1, . . . , n + m

(9.29)

Example 12. The Lorentz algebra so(3, 1)

Introducing coordinates x, y, z, t, the elements are

A1 = x
∂

∂y
− y

∂

∂x
,A2 = y

∂

∂z
− z

∂

∂y
,A3 = z

∂

∂x
− x

∂

∂z
,

B1 = x
∂

∂t
+ t

∂

∂x
,B2 = y

∂

∂t
+ t

∂

∂y
,B3 = z

∂

∂t
+ t

∂

∂z
. (9.30)
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9.5 Symplectic Algebras sp(2n)

A differential realization of sp(2n) is obtained by introducing 2n coordinates
divided into x1, . . . , xn;x′

1, . . . , x
′
n. A construction of sp(2n) is

xi
∂

∂x′
i

i = 1, . . . , n n

x′
i

∂

∂xi
i = 1, . . . , n n

xi
∂

∂xj
− x′

j

∂

∂x′
i

i, j = 1, . . . , n n2

xi
∂

∂x′
j

+ xj
∂

∂x′
i

i < j = 1, . . . , n n(n−1)
2

x′
i

∂

∂xj
+ x′

j

∂

∂xi
i < j = 1, . . . , n n(n−1)

2

. (9.31)

The number of elements is written to their right. There are in total n(2n+1)
elements.

Example 13. The Lie algebra sp(2)

Introducing coordinates x1, x
′
1 one has

X1 = x1
∂

∂x′
1

,X2 = x′
1

∂

∂x1
,X3 = x1

∂

∂x1
− x′

1

∂

∂x′
1

. (9.32)

All the differential realizations discussed above are real forms. [Jin-Qan Chen,
Group Representation Theory for Physicists, World Scientific, Singapore,
1989.]
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10.1 Matrices

Lie algebras can be constructed with n × n square matrices

A =




· · ·
· · ·
· · ·



 (10.1)

acting on the right on column vectors with n rows

χ =




·
·
·



 , (10.2)

and on the left on row vectors with n columns

χ̃ =
(
· · ·

)
. (10.3)

Properties of matrices have been given in Chap. 3.

10.2 Unitary Algebras u(n)

The matrices

Ekm =











0
0

0 0 0 1 0 0
0
0
0











(10.4)

with 1 in the k-th row and m-th column and zero otherwise, satisfy the
commutation relations of u(n) [and gl(n)]

[Ekm, Est] = δsmEkt − δktEsm . (10.5)

For su(n), one subtracts the unit matrix, I, divided by n,

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 155–162 (2006)
c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-36239-8 10



156 10 Matrix Realizations

I =









1 0
1
· · ·

1
0 1









(10.6)

from Ekk

E′
kk = Ekk − 1

n
I (10.7)

and deletes E′
nn. The remaining n2 − 1 matrices are the elements of su(n).

This procedure provides real forms of u(n) and su(n).

Example 1. Matrix realization of u(2)

A real matrix realization of u(2) is

E11 =
(

1 0
0 0

)

, E12 =
(

0 1
0 0

)

,

E21 =
(

0 0
1 0

)

, E22 =
(

0 0
0 1

)

. (10.8)

Example 2. Matrix realization of su(2)

A real matrix realization of su(2) is

E′
11 =

1
2

(
1 0
0 −1

)

, E12 =
(

0 1
0 0

)

,

E21 =
(

0 0
1 0

)

. (10.9)

It is of interest in physics to introduce also complex forms of the algebras u(n)
and su(n). A common construction is: (i) Retain Ekk for u(n) and E′

kk for
su(n) for the elements with k = m. (ii) Take the combinations (Ekm + Emk) ,
−i (Ekm − Emk) for the elements with k �= m. This gives the complex form
of u(n)

Ekk k = 1, . . . , n n

E+,km = Ekm + Emk k < m = 1, . . . , n
n(n − 1)

2
E−,km = −i (Ekm − Emk) k < m = 1, . . . , n

n(n − 1)
2

. (10.10)

The number of elements of each type is written to the far right.

Example 3. Complex form of u(2)

The complex form of u(2) is
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E11 =
(

1 0
0 0

)

, E22 =
(

0 0
0 1

)

,

E+,12 =
(

0 1
1 0

)

, E−,12 =
(

0 −i
i 0

)

. (10.11)

Example 4. Complex form of su(2)

This algebra is composed of three elements

E+,12 = E12 + E21

E−,12 = −i (E12 − E21)

E′
11 = E11 −

1
2
I . (10.12)

The corresponding matrices, denoted by σx, σy, σz, are

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

. (10.13)

The last matrix, E′
11, has been multiplied by 2 to conform with the usual

normalization of σz. They are called Pauli matrices and are widely used in
quantum mechanics. The Pauli matrices, together with the unit matrix, I,

I =
(

1 0
0 1

)

, (10.14)

that is the matrices of u(2), form also another algebra, not discussed here,
called a Clifford algebra.

Example 5. Complex form of u(3)

The complex form of u(3) is

E+,12 =




0 1 0
1 0 0
0 0 0



 , E−,12 =




0 −i 0
i 0 0
0 0 0



 , E+,13 =




0 0 1
0 0 0
1 0 0



 ,

E−,13 =




0 0 −i
0 0 0
i 0 0



 , E+,23 =




0 0 0
0 0 1
0 1 0



 , E−,13 =




0 0 0
0 0 −i
0 i 0



 ,

E11 =




1 0 0
0 0 0
0 0 0



 , E22 =




0 0 0
0 1 0
0 0 0



 , E33 =




0 0 0
0 0 0
0 0 1



 . (10.15)

Example 6. Complex form of su(3)
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In the complex form of su(3) the first six matrices remain the same

X1 =




0 1 0
0 0 0
0 0 0



 ,X2 =




0 −i 0
i 0 0
0 0 0



 ,X3 =




0 0 1
0 0 0
1 0 0



 ,

X4 =




0 0 −i
0 0 0
i 0 0



 ,X5 =




0 0 0
0 0 1
0 1 0



 ,X6 =




0 0 0
0 0 −i
0 i 0



 . (10.16)

The last three matrices are replaced by the two matrices

X7 =
1
3




2 0 0
0 −1 0
0 0 −1



 ,X8 =
1
3




−1 0 0
0 2 0
0 0 −1



 . (10.17)

Note that the choice of the traceless matrices is not unique. In applications,
often different choices are made. A commonly used choice is

X7 =




1 0 0
0 −1 0
0 0 0



 ,X8 =

√
1
3




1 0 0
0 1 0
0 0 −2



 . (10.18)

The corresponding matrices are called Gell-Mann matrices.

10.3 Orthogonal Algebras so(n)

A real matrix realization of the algebras so(n) with square n× n matrices is

Lkm = Ekm − Emk k < m , (10.19)

where the matrices Ekm are given above.

Example 7. Matrix realization of so(2)

A real matrix realization of so(2) is

L12 = E12 − E21 =
(

0 1
−1 0

)

. (10.20)

This algebra is Abelian, and can be written in many ways.

Example 8. Matrix realization of so(3)

A real matrix realization of so(3) is

L12 =




0 1 0
−1 0 0
0 0 0



 , L13 =




0 0 1
0 0 0
−1 0 0



 , L23 =




0 0 0
0 0 1
0 −1 0



 . (10.21)

In applications in quantum mechanics, the complex form iLkm is used. How-
ever, matrix realizations of so(n) are rarely used.
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10.4 Symplectic Algebras sp(2n)

The construction of symplectic algebras is more involved. It is necessary here
to introduce 2n × 2n matrices

Ek,m =













0
0

0 0 · · · 0 1 0 0
0
· · ·
0
0













. (10.22)

The rows and columns are labelled by the indices k,m = 1, . . . , n;n +
1, . . . , 2n. A real matrix realization of sp(2n) is

Ek,n+k k = 1, .., n n
En+k,k k = 1, . . . , n n

Ek,m − En+m,n+k k,m = 1, . . . , n n2

Ek,n+m + Em,n+k k < m = 1, . . . , n n(n−1)
2

En+k,m + En+m,k k < m = 1, . . . , n n(n−1)
2

. (10.23)

The number of elements of each type is shown to the right.

Example 9. The algebra sp(2)

In this case n = 1. The construction gives

E12 =
(

0 1
0 0

)

;E21 =
(

0 0
1 0

)

;E11 − E22 =
(

1 0
0 −1

)

. (10.24)

Note that sp(2) ∼ su(2). The matrix realization of sp(2) is identical to that
of su(2) given in (10.9), apart from a normalization of the element E′

11 =
1
2 (E11 − E22).

Example 10. The algebra sp(4)

In this case n = 2. The construction gives the ten elements

E13;E24;E31;E42 4
(E11 − E33) ; (E12 − E43) ; (E21 − E34) ; (E22 − E44) 4

(E14 + E23) ; (E32 + E41) 2
. (10.25)

where

E13 =







0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0





 , etc. (10.26)

This provides a real form of sp(2n).
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10.5 Basis for the Representation

A basis for the fundamental n dimensional representation of u(n) and su(n)
is provided by n-columns vectors

B :









1
0
· · ·
0
0









,









0
1
· · ·
0
0









, . . . ,









0
0
· · ·
0
1









. (10.27)

Example 11. The basis for su(2)

The basis for the 2-dimensional representation of su(2) is formed by two
columns vectors, often denoted by α, β

α =
(

1
0

)

, β =
(

0
1

)

. (10.28)

The matrix realization of the algebra can be re-written in Cartan-Weyl form,
introducing the matrices σ± = 1

2 (σx ± iσy),

σ+ =
(

0 1
0 0

)

, σ− =
(

0 0
1 0

)

, σz =
(

1 0
0 −1

)

. (10.29)

The action of the elements on the basis is

σ+α = 0 σ−α = β σzα = α
σ+β = α σ−β = 0 σzβ = −β

. (10.30)

One of the most important applications of su(2) in physics is in the descrip-
tion of particles with spin S = 1

2 . The three spin operators, Sx, Sy, Sz can be
simply be written as Sk = 1

2σk. The “spin” basis was discussed in Chap. 8
where it was denoted by

∣
∣
∣
∣
∣
∣

su(2) ⊃ spin(2)
↓ ↓

S = 1
2 MS = ± 1

2

〉

. (10.31)

The relation between the basis here and that discussed in Chap. 8 is

α ≡
∣
∣
∣
∣
1
2
,+

1
2

〉

, β ≡
∣
∣
∣
∣
1
2
,−1

2

〉

. (10.32)
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Example 12. The basis for su(3)

The basis for the fundamental representation of su(3) is formed by three
column vectors

α1 =




1
0
0



 , α2 =




0
1
0



 , α3 =




0
0
1



 . (10.33)

The matrix realization of su(3) was given in Example 6. In applications to
particle physics the Gell-Mann matrices were used. This basis was discussed
in Chap. 8, where it was denoted by

∣
∣
∣
∣
∣
∣

su(3) ⊃ su(2) ⊃ spin(2)
↓ ↓ ↓

[λ1, λ2] ≡ [1] T = 0, 1
2 MT = 0,± 1

2

〉

. (10.34)

The relation between the basis (10.33) and that discussed in Chap. 8 is

α1 =
∣
∣
∣
∣[1] ,

1
2
,+

1
2

〉

≡ u, α2 =
∣
∣
∣
∣[1],

1
2
,−1

2

〉

≡ d, α3 = |[1] , 0, 0〉 ≡ s , (10.35)

where the notation u, d, s used in particle physics has also been included.
For representations of u(n) and su(n) other than the fundamental repre-

sention, matrix realizations are seldom used.

10.6 Casimir Operators

The Casimir operators can be constructed from matrices. For the algebras
u(n) and su(n), the unit matrix I commutes with all elements and thus is a
Casimir operator.

Example 13. The Casimir operator of su(2)

For applications to physics it is of particular interest to construct the
Casimir operator of su(2). This algebra has only one invariant, C2(su(2)). It
can be easily shown that the invariant is

C2(su(2)) = σ2
x + σ2

y + σ2
z = 3I . (10.36)

(The condition σ2
i = I is one of the axioms defining a Clifford algebra.) The

eigenvalues of the Casimir operator in the basis are

〈α|
∑

k

σ2
k |α〉 = 3, 〈β|

∑

k

σ2
k |β〉 = 3 . (10.37)

In application in physics, the algebra su(2) often describes spin 1
2 particles.

The eigenvalues of the Casimir invariant in the 2-dimensional representation
of su(2) is
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〈C2(su(2))〉 =
3
4

. (10.38)

This value agrees with the eigenvalues of the Casimir operator in the generic
representation |J,M〉 of su(2) given in Chap. 8,

〈C2(su(2))〉 = J(J + 1) , (10.39)

since here J = S = 1
2 .



11 Spectrum Generating Algebras
and Dynamic Symmetries

11.1 Spectrum Generating Algebras (SGA)

One of the most important applications of Lie algebras has been to the study
of physical systems for which the Hamiltonian H and other operators of
physical interest T can be written in terms of elements Gα of a Lie algebra
g,

H = f(Gα) Gα ∈ g (11.1)

and
T = t(Gα) Gα ∈ g . (11.2)

The Lie algebra g is then called the Spectrum Generating Algebra (SGA) of
the problem. The functionals f and t are usually polynomials in the elements
Gα, although cases have been studied in which 1/H rather than H is a
polynomial in the elements of the algebra (the so-called Coulomb problem
discussed in Chap. 12). It turns out that most many-body problems, that is
Hamiltonian problems for many interacting particles, can be cast in the form
of a polynomial expansion in Gα. The method is thus particularly important
for this case. It is convenient to use the double index notation, Gαβ , of Chaps.
7 and 8. The expansion can then be written as

H = E0 +
∑

αβ

εαβGαβ +
1
2

∑

αβγδ

uαβγδGαβGγδ + · · · . (11.3)

The term linear in the elements is called one-body term, the term quadratic in
the elements is called two-body term, etc.. Most theories stop the expansion
at two-body terms, although in some cases three- and higher-body terms have
been considered. The term E0 is an overall constant, which sets the zero of
the energy, and the coefficients εαβ , uαβγδ, . . . depend on the physical system
under consideration.

11.2 Dynamic Symmetries (DS)

A particularly interesting situation occurs when the Hamiltonian H does not
contain all elements of g, but only those combinations which form the Casimir
operators of a chain of algebras originating from g ⊃ g′ ⊃ g′′ ⊃ . . .

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 163–172 (2006)
c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-36239-8 11
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H = f(Ci) . (11.4)

For these situations, called dynamic symmetries (DS), the eigenvalue problem
for H can be solved in explicit analytic form, since the Casimir operators are
diagonal in the basis provided by g ⊃ g′ ⊃ g′′ ⊃ . . .. The energy eigenvalues
are given by a formula called energy formula in terms of the quantum num-
bers that characterize the representations of g ⊃ g′ ⊃ . . ., while the matrix
elements of the transition operators T are given in terms of isoscalar factor
of the chain g ⊃ g′ ⊃ g′′ ⊃ . . .. When the Hamiltonian H is linear in the
Casimir operators

H = E0 + αC(g) + α′C(g′) + α′′C(g′′) + · · · (11.5)

the energy formula is simply

E = 〈H〉 = E0 + α 〈C(g)〉 + α′ 〈C(g′)〉 + α′′ 〈C(g′′)〉 + · · · , (11.6)

where 〈〉 denotes expectation value in the appropriate representation. Several
examples will be discussed in the following sections. In these examples, taken
from the fields of molecular physics, nuclear physics and hadronic physics,
the Hamiltonian H is at most quadratic in the elements of the algebra g, and
hence the Hamiltonian with dynamic symmetry contains at most Casimir
operators of order 2. Systems for which the Hamiltonian has a dynamic sym-
metry are also called exactly solvable problems. Dynamic symmetries were
introduced in [A.O. Barut and A. Böhm, Dynamical Groups and Mass For-
mula, Phys. Rev. B139, 1107 (1965)] and [Y. Dothan, M. Gell-Mann, and
Y. Ne’eman, Series of Hadron Levels as Representations of Non-compact
Groups, Phys. Lett. 17, 148 (1965)] and subsequently exploited in nuclear
physics [F. Iachello, Dynamical Symmetries in Nuclei, in Group Theoretical
Methods in Physics, Ed. A. Böhm, Lange Springer, Berlin, 1979, p.420] and
other areas.

11.3 Bosonic Systems

Consider a system composed of N bosons bα(α = 1, 2, . . . , n). The (number
conserving) Hamiltonian operator for this system can be written as

H = E0 +
∑

αβ

ε̃αβb†αbβ +
1
2

∑

αβγδ

uαβγδb
†
αb†βbγbδ + · · · . (11.7)

After rearrangement of some of the boson operators, this Hamiltonian can
be written as above with Gαβ = b†αbβ and

εαβ = ε̃αβ − 1
2

∑

γ

uαγγβ . (11.8)
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The bilinear products b†αbβ are the elements of the Lie algebra u(n). Hence
u(n) is the spectrum generating algebra of this problem. The transition op-
erators

T =
∑

αβ

tαβb†αbβ + · · · (11.9)

can also be written in terms of the elements of the Lie algebra u(n). A
physical system is characterized by a set of parameters ε̃αβ , uαβγδ and tαβ .
The methods of the previous chapters can then be used to solve the eigenvalue
problem for H, that is to find the energy spectrum of the system under
consideration, and to calculate matrix elements of operators.

Dynamic symmetries of this system can be studied by breaking u(n) in
all possible ways. Often additional conditions are imposed on the breaking of
the algebra g into its subalgebras g′. In most applications, the system under
study is rotationally invariant. Hence the algebra so(3) must be included in
the chain g ⊃ g′ ⊃ g′′ ⊃ . . .. The breakings of u(n) into its subalgebras
containing so(3) were enumerated in Chap. 7. Knowing these breakings one
can construct the corresponding dynamic symmetries. Two examples of boson
dynamic symmetries will be given here.

11.3.1 Dynamic Symmetries of u(4)

Consider the algebra g ≡ u(4) discussed in Chap. 7. This algebra has two
subalgebra chains containing so(3)

u(3) ⊃ so(3) ⊃ so(2) (I)

u(4)
�

�

so(4) ⊃ so(3) ⊃ so(2) (II)

(11.10)

and correspondingly two possible dynamic symmetries.
Dynamic symmetry I
The Hamiltonian in this case can be written as

H(I) = E0 + εC1(u(3)) + αC2(u(3)) + βC2(so(3)) . (11.11)

The Casimir operator of so(2) could be added to this Hamiltonian. However,
this corresponds physically to placing the system in an external field that
splits the degeneracy of the angular momentum. In the absence of exter-
nal fields, the Casimir operator of so(2) can be deleted. Also the invariant
operators of u(4) could be included in the overall constant E0,

E0 = E00 + E01C1(u(4)) + E02C2(u(4)) . (11.12)

In the representation [N ] of u(4) appropriate to bosons,

E0 = E00 + E01N + E02N(N + 3) (11.13)

is a constant for all states in the basis.
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Fig. 11.1. The energy level diagram of the dynamic symmetries of u(4): (a) u(4) ⊃
u(3) ⊃ so(3) ⊃ so(2); (b) u(4) ⊃ so(4) ⊃ so(3) ⊃ so(2). The representation [4] is
shown

The eigenvalues of H(I) in the basis |N,np, L,ML〉 can simply be found
from the eigenvalues of the Casimir operators given in Chap. 5,

E(I)(N,np, L,ML) = E0 + εnp + αnp(np + 2) + βL(L + 1) . (11.14)

Usually, a hierarchy of couplings occurs, in such a way that successive split-
tings are smaller and smaller, |ε| � |α| � |β|. It is customary to show
the spectrum in an energy level diagram. The energy level diagram of
the dynamic symmetry I of u(4), with ε > 0, is shown in the top part of
Fig. 11.1. This is the spectrum of a truncated three dimensional anharmonic
oscillator. When α = β = 0, the spectrum is called harmonic. The spectrum
is truncated, since according to the branching rules of Chap. 7, np ≤ N .

Dynamic symmetry II
The Hamiltonian for this case is

H(II) = E0 + AC2(so(4)) + BC2(so(3)) , (11.15)

where again the Casimir operator of so(2) has been deleted. The eigenvalues
of H(II) in the basis |N,ω,L,ML〉 are

E(II)(N,ω,L,ML) = E0 + Aω(ω + 2) + BL(L + 1) . (11.16)
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Fig. 11.2. A diatomic molecule is shown as an example of a truncated three-
dimensional rotovibrator

Usually |A| � |B|. The energy level diagram of this dynamic symmetry, when
A < 0, is shown in the bottom portion of Fig. 11.1. It represents the spec-
trum of the truncated three dimensional rotovibrator. In the figure, the usual
vibrational quantum number is also shown. A three-dimensional rotovibra-
tor is an object, such as a diatomic molecule, which can vibrate and rotate
around an axis perpendicular to the line joining the two atoms, as shown in
Fig. 11.2. This spectrum is characterized by a set of states belonging to the
same representation of so(4), called a rotational band. Different representa-
tions of so(4) correspond to different vibrational excitations. The spectrum
is truncated since, according to the branching rules of Chap. 7, ω ≤ N .

The two dynamic symmetries represent special situations. In general, the
Hamiltonian H will contain Casimir operators of both chains

H = E0 + εC1(u(3)) + αC2(u(3)) + AC2(so(4)) + BC2(so(3)) . (11.17)

The eigenvalues must be obtained numerically. For this most general case, Lie
algebraic methods provide a basis upon which the numerical diagonalization
is done. In the case of u(4), there are two such bases, corresponding to the
two dynamic symmetries (I) and (II).

Models based on the algebra of u(4) and its dynamic symmetries have
found many applications in molecular physics. [F. Iachello and R.D. Levine,
Algebraic Theory of Molecules, Oxford University Press, Oxford, 1995.]

11.3.2 Dynamic Symmetries of u(6)

For g ≡ u(6), the subalgebra chains containing so(3) are

u(5) ⊃ so(5) ⊃ so(3) ⊃ so(2) (I)
�

u(6) − su(3) ⊃ so(3) ⊃ so(2) (II)
�

so(6) ⊃ so(5) ⊃ so(3) ⊃ so(2) (III)

(11.18)

and correspondingly there are three possible dynamic symmetries.
Dynamic symmetry I
The Hamilonian is

H(I) = E0 + εC1(u(5)) + αC2(u(5)) + βC2(so(5)) + γC2(so(3)) , (11.19)
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where again the Casimir operator of so(2) has been omitted. The eigenvalues
in the basis |N,nd, v, n∆, L,ML〉 are

E(I)(N,nd, v, n∆, L,ML) = E0 + εnd + αnd(nd + 4)
+βv(v + 3) + γL(L + 1) . (11.20)

Usually |ε| � |α| � |β| � |γ|. The energy level diagram, when ε > 0, is
shown in Fig. 11.3 (top panel). It represents the spectrum of the truncated
five-dimensional anharmonic oscillator. If α = β = γ = 0, the spectrum is
called harmonic.

Dynamic symmetry II
The Hamiltonian is

H(II) = E0 + κC2(su(3)) + κ′C2(so(3)) . (11.21)

Its eigenvalues in the basis |N,λ, µ,K,L,ML〉 are
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Fig. 11.3. The energy level diagram of the dynamic symmetries of u(6): (a) u(6) ⊃
u(5) ⊃ so(5) ⊃ so(3) ⊃ so(2); (b) u(6) ⊃ su(3) ⊃ so(3) ⊃ so(2); (c) u(6) ⊃ so(6) ⊃
so(5) ⊃ so(3) ⊃ so(2). The representation [3] is shown
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Fig. 11.4. A nucleus deformed in the shape of an ellispoid is shown as an example
of a truncated five-dimensional rotovibrator

E(II)(N,λ, µ,K,L,ML) = E0 + κ(λ2 + µ2 + λµ + 3λ + 3µ) + κ′L(L + 1) .
(11.22)

Usually |κ| � |κ′|. The corresponding energy level diagram, when κ < 0,
is shown in Fig. 11.3 (middle panel). This is the spectrum of the truncated
five-dimensional rotovibrator. A five-dimensional rotovibrator is an object,
such as an atomic nucleus deformed in the shape of a quadrupole, which
can vibrate and rotate around an axis perpendicular to the symmetry axis of
the quadrupole, as shown in Fig. 11.4. Each representation (λ, µ) represents a
rotational band. Different representations (λ, µ) label vibrational excitations.

Dynamic symmetry III
The Hamiltonian is

H(III) = E0 + AC2(so(6)) + BC2(so(5)) + CC2(so(3)) . (11.23)

Its eigenvalues in the basis |N,σ, τ , ν∆, L,ML〉 are

E(III)(N,σ, τ , ν∆, L,ML) = E0+Aσ(σ+4)+Bτ(τ+3)+CL(L+1) . (11.24)

Usually |A| � |B| � |C|. The energy level diagram when A < 0 is shown
in Fig. 11.3 (bottom panel). It is called the five dimensional γ− unstable
rotovibrator.

The three dynamic symmetries represent special situations. In general,
the Hamiltonian contains Casimir operators of all three chains

H = E0 + εC1(u(5)) + αC2(u(5)) + βC2(so(5)) + γC2(so(3))
+κC2(su(3)) + AC2(so(6)) (11.25)

and must be diagonalized numerically. Models based on the algebra u(6) and
its dynamic symmetries have had many applications in nuclear physics. [F.
Iachello and A. Arima, The Interacting Boson Model, Cambridge University
Press, Cambridge, 1987.]
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11.4 Fermionic Systems

Spectrum generating algebras and dynamic symmetries can also be used for
fermions. Consider a system composed of NF fermions ai(i = 1, 2, . . . , n).
The number conserving Hamiltonian operator for this system can be written
as

H = E0 +
∑

ii′

η̃ii′a
†
iai′ +

1
2

∑

ii′kk′

vii′kk′a†
ia

†
i′akak′ + · · · . (11.26)

After rearrangement of some of the fermion operators, the Hamiltonian can
be rewritten as

H = E0 +
∑

ii′

ηii′Gii′ +
1
2

∑

iki′k′

vii′kk′GikGi′k′ + · · · . (11.27)

The elements Gii′ span the Lie algebra u(n). Hence u(n) is the spectrum gen-
erating algebra of this problem. All operators can be expanded into elements
of this algebra. The transition operators

T =
∑

ii′

tii′a
†
iai′ + · · · (11.28)

are written as
T =

∑

ii′

tii′Gii′ + · · · . (11.29)

A physical system is characterized by a set of parameters ηii′ , vii′kk′ and
tii′ . One can use the methods of the previous chaps. to solve the eigenvalue
problem for H and to calculate the matrix elements of operators.

Dynamic symmetries of these systems can be studied by breaking u(n) in
all possible ways. There are two types of problems, the atomic and nuclear
many body problem in which the Hamiltonian is rotationally invariant and
thus so(3) must be included in the chain g ⊃ g′ ⊃ g′ ⊃ . . ., and other
problems in which one treats internal degrees of freedom and thus rotationally
invariance need not to be imposed. The former problem is identically to that
discussed in Chap. 3. In the following subsections two examples will be given
of the latter problem.

11.4.1 Dynamic Symmetry of u(4)

The Wigner algebra u(4) is described by the chain

u(4) ⊃ su(4) ⊃ suT (2) ⊕ suS(2) ⊃ spinT (2) ⊕ spinS(2) . (11.30)

The basis states can be denoted by |(P,P ′, P ′′);T, S;MT ,MS〉. The Hamil-
tonian with dynamic symmetry is
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H = E0+aC2(su(4))+bC2(suT (2))+cC2(suS(2))+dC1(spinT (2)) . (11.31)

In this Hamiltonian, the Casimir operator of spinS(2) is not included, unless
the system is placed in an external field that splits the suS(2) degeneracy, but
the Casimir operator of spinT (2) is included. This group acts on an abstract
isotopic spin space. In this space, there are interactions (for example the elec-
tromagnetic interaction) that split the suT (2) degeneracy. The eigenvalues of
the Hamiltonian are

E(P,P ′, P ′′;T, S;MT ,MS) = E0 + a(P 2 + 4P + P ′2 + P ′′2)
+bT (T + 1) + cS(S + 1) + dMT . (11.32)

A simple case is when b = c = d = 0. [P. Franzini and L.A. Radicati, On the
Validity of the Supermultiplet Model, Phys. Lett. 6, 32 (1963)].

11.4.2 Dynamic Symmetry of u(6)

The Gürsey-Radicati u(6) is described by the chain

u(6) ⊃ su(6) ⊃ suF (3) ⊕ suS(2) ⊃ suT (2) ⊕ uY (1) ⊕ suS(2)
⊃ spinT (2) ⊕ uY (1) ⊕ spinS(2) . (11.33)

The basis states are denoted by
∣
∣dim[λ];dim S dim[µ1, µ2];T, Y, S;MT ,MS

〉
.

For applications to elementary particle physics, the mass operator M rather
than the Hamiltonian H is expanded into the elements of a Lie algebra.
The mass operator with dynamic symmetry is written in terms of Casimir
invariants as

M = M0 + aC1(uY (1)) + b

[

C2(suT (2)) − 1
4
C1(uY (1))

]

+ cC2(suS(2)) + dC1(spinT (2)) , (11.34)

with eigenvalues

M([λ], [µ1, µ2];T, Y, S;MT ,MS) = M0 + aY + b

[

T (T + 1) − 1
4
Y 2

]

+ cS(S + 1) + dMT . (11.35)

This formula is called a mass formula as it gives the masses of the particles.
The mass level diagram for the representation [λ] = [3, 0, 0, 0, 0] with dim[λ] =
56 is shown in Fig. 11.5. [F. Gürsey and L.A. Radicati, Spin and Unitary
Spin Dependence of Strong Interactions, Phys. Rev. Lett. 13, 173 (1964).]
The suF (3) flavor part of this formula, called the Gell-Mann-Okubo mass
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Fig. 11.5. The mass level diagram of the representation [3] of u(6) with dimension
56. States are labeled by quantum numbers and by names of particles to which they
correspond

formula was the first explicit example of dynamic symmetry in physics [M.
Gell-Mann, Symmetries of Baryons and Mesons, Phys. Rev. 125, 1067 (1962);
S. Okubo, Note on Unitary Symmetry in Strong Interactions, Progr. Theor.
Phys. 27, 222 (1962)].



12 Degeneracy Algebras
and Dynamical Algebras

12.1 Degeneracy Algebras

Another important application of algebraic methods in physics is to the study
of exactly solvable problems in quantum mechanics. Consider quantum me-
chanics in ν dimensions described by the Hamiltonian

H = − �2

2m
∇2 + V (r) (12.1)

where ∇2 is the Laplace operator and r ≡ (x1, x2, . . . , xν) denotes a vector in
ν dimensions with components x1, x2, . . . , xν . This Hamiltonian is obtained
from the classical Hamiltonian

H =
p2

2m
+ V (r) (12.2)

by the usual quantization procedure p → �

i ∇. If the Hamiltonian (12.1) can
be written in terms of the Casimir operator C of an algebra g,

H = f(C) (12.3)

the eigenvalue problem for H can be solved in explicit analytic form,

E = 〈f(C)〉 . (12.4)

This situation is a dynamic symmetry, Sect. 11.2, except that only the
Casimir operator of g and not those of the subalgebra chain g ⊃ g′ ⊃ g′′ ⊃ . . .
appears in (12.3). The representations [λ] of g still label the eigenstates of
the Hamiltonian and the symbol 〈〉 denotes expectation value in the repre-
sentation [λ]. If dim[λ] �= 1, more than one state has energy E. The state is
said to be degenerate and the algebra g is called the degeneracy algebra, gc,
of the problem.

12.2 Degeneracy Algebras in ν ≥ 2 Dimensions

A particularly interesting class of problems is that of quantum mechanics in
ν ≥ 2 dimensions with rotationally invariant potentials, V = V (r). Here

Francesco Iachello: Lie Algebras and Applications, Lect. Notes Phys. 708, 173–188 (2006)
c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-36239-8 12
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r = (x2
1 + x2

2 + . . . + x2
ν)1/2 . (12.5)

This problem admits two and only two exactly solvable cases, the isotropic
harmonic oscillator with V (r) = 1

2kr2, and the Coulomb (or Kepler) problem
with V (r) = k

r .

12.2.1 The Isotropic Harmonic Oscillator

The Hamiltonian operator, in units where � = m = 1 and k = 1, is

H =
1
2
(p2 + r2) =

1
2
(−∇2 + r2) . (12.6)

Introducing the bosonic realization of Chap. 7 written in differential form
and generalizing the results of Example 3 one can write the linear Casimir
operator of u(ν) as

C1(u(ν)) =
1
2

ν∑

j=1

(

xj −
∂

∂xj

)(

xj +
∂

∂xj

)

. (12.7)

The basic commutation relations
[

xi,
∂

∂xj

]

= −δij (12.8)

give
H = C1(u(ν)) +

ν

2
. (12.9)

The degeneracy algebra of the ν-dimensional harmonic oscillator is thus u(ν).
[J.M. Jauch and E.H. Hill, On the Problem of Degeneracy in Quantum Me-
chanics, Phys. Rev. 57, 641 (1940).] States are characterized by the totally
symmetric irreducible representations [n, 0, . . . , 0] ≡ [n] of u(ν), with eigen-
values

E(n) = n +
ν

2
n = 0, 1, . . . ,∞ . (12.10)

Although harmonic oscillator problems are best attacked by bosonic real-
izations of Lie algebras, it is still of interest to consider differential realiza-
tions in terms of coordinates r ≡ (x1, x2, . . . , xν) and momenta p = 1

i ∇ ≡
1
i

(
∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xν

)
.

Example 1. Isotropic harmonic oscillator in three dimensions

As discussed in Chap. 7, this problem is best solved in spherical coordi-
nates r, ϑ, ϕ. The Hamiltonian (12.2) is

H =
p2

2
+

r2

2
, (12.11)

where r and p are here three-dimensional vectors. The nine operators
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H =
1
2
(
r2 + p2

)

L = −i
√

2[r × p](1)

Q = [r × r + p × p](2) , (12.12)

where L and Q are the angular momentum vector and quadrupole (rank-2)
tensor in three dimensions, satisfy commutation relations isomorphic to those
of u(3). (The notation used here is that of [A. deShalit and I. Talmi, Nuclear
Shell Theory, Academic Press, 1963], where r and p are rank-1 tensors, and
the superscript denotes tensor couplings. The operator Q has an additional
factor, often

√
8, in other definitions.) The algebra u(3) has three invariant

Casimir operators, C1, C2 and C3. The Hamiltonian H of (12.11) can be
rewritten as

H = C1(u(3)) +
3
2

. (12.13)

(Note that H commutes with the eight elements of the algebra su(3), L and
Q.) The eigenstates are labelled by the irreducible representations [n, 0, 0] ≡
[n] of u(3). A complete labelling is |n, l,m〉 with

∣
∣
∣
∣
∣
∣

u(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓
n l m

〉

. (12.14)

The branching of the representations [n] of u(3) into representations of
so(3) ⊃ so(2) has been discussed in Chap. 7. The values of l for each n
are given by l = n, n − 2, . . . , 1 or 0 (n = odd or even). The values of m
are m = −l, . . . ,+l. The quantum number n = 0, . . . ,∞. The energy level
diagram

E(n) = n +
3
2

(12.15)

for this case is shown in Fig. 12.1. The three dimensional harmonic oscillator
finds useful applications in a variety of problems in physics.

0n=0

1n=1

02n=2

13n=3

024n=4

L

∞

Fig. 12.1. The spectrum of the three-dimensional harmonic oscillator. States up
to n = 4 are shown
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Example 2. Isotropic harmonic oscillator in five dimensions

This problem is of interest in nuclear physics, in the study of quadru-
pole oscillations of a liquid drop. The problem is best solved by introducing
coordinates αµ(µ = 0,±1,±2) and momenta πµ(µ = 0,±1,±2), called Bohr
variables. The coordinates αµ are the five components of a quadrupole (rank-
2) tensor with respect to rotations. The Hamiltonian in dimensionless units
is

H =
1
2

(
∑

µ

π2
µ +

∑

µ

α2
µ

)

. (12.16)

This Hamiltonian can be rewritten as

H = C1(u(5)) +
5
2

. (12.17)

The basis states are labelled by the totally symmetric representations [n, 0, 0,
0, 0] ≡ [n] of u(5). The complete labelling is |n, τ , ν∆, l,m〉 with

∣
∣
∣
∣
∣
∣

u(5) ⊃ so(5) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓
n τ, ν∆ l m

〉

. (12.18)

The branching of the representations [n] of u(5) is given in Chap. 7, Sect. 6.
The energy level diagram for this case

E(n) = n +
5
2

(12.19)

is given in Fig. 12.2.

0n=0

2n=1

024n=2

02346n=3

02244568n=4

L

∞

Fig. 12.2. The spectrum of the five-dimensional harmonic oscillator. States up to
n = 4 are shown
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12.2.2 The Coulomb Problem

The Hamiltonian operator for this problem, when � = m = 1 and k = 1, is

H =
p2

2
− 1

r
= −∇2

2
− 1

r
. (12.20)

While the derivation of (12.13) is straightforward, the rewriting of H in terms
of Casimir operators is more involved (see Examples 3 and 4). For bound
states, where E = 〈H〉 < 0, the Hamiltonian H can be rewritten as

H = − 1

2
[
C2(so(ν + 1)) +

(
ν−1
2

)2
] . (12.21)

The degeneracy algebra of the ν-dimensional Coulomb problem is thus
so(ν + 1). (The Coulomb problem is a case in which the Hamiltonian H
is not linear in the Casimir operators, but rather its inverse, 1/H, is.) The
eigenstates are characterized by the totally symmetric irreducible represen-
tations [ω, 0, 0, . . . , 0] ≡ [ω] of so(ν + 1) with eigenvalues

E(ω) = − 1

2
[
ω(ω + ν − 1) +

(
ν−1
2

)2
] ω = 0, 1, . . . ,∞ . (12.22)

Example 3. Coulomb problem in three dimensions

The Coulomb problem in three dimensions (also called the Kepler prob-
lem) was the first problem for which degeneracy algebras were introduced,
initially by Pauli [W. Pauli, Über das Wasserstoffspektrum von Standpunkt
der neuen Quantenmechanik, Z. Phys. 36, 336 (1926)] following the classical
treatment of Runge and Lenz, and subsequently by Fock [V.A. Fock, Zur
Theorie des Wasserstoffatoms, Z. Phys. 98, 145 (1935)] and Bargmann [V.
Bargmann, Zur Theorie des Wasserstoffatoms, Z. Phys. 99, 576 (1936)].

The problem is best solved in the familiar spherical coordinates, r, ϑ, ϕ.
In order to derive (12.21), one begins by introducing the angular momentum
operator L and the so-called normalized Runge-Lenz vector A

L = r × p

A =
1√
−2H

[
1
2

(p × L − L × p) − r
r

]

. (12.23)

Using the commutation relations of r and p = 1
i ∇, one can show that the

six components Li (i = 1, 2, 3) and Ai(i = 1, 2, 3) satisfy, when E < 0, the
commutation relations of the Lie algebra so(4)

[Li, Lj ] = iεijkLk

[Li, Aj ] = iεijkAk

[Ai, Aj ] = iεijkLk , (12.24)
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while when E > 0 they satisfy the commutation relations of the non-compact
algebra so(3, 1)

[Li, Li] = iεijkLk

[Li, Ak] = iεijkAk

[Ai, Aj ] = −iεijkLk . (12.25)

The components of the angular momentum and Runge-Lenz vector are thus,
when E < 0, elements of the Lie algebra so(4). This algebra has two quadratic
Casimir operators, C2 and C ′

2 that can be written as

C2(so(4)) =
(
L2 + A2

)

C ′
2(so(4)) = L · A . (12.26)

After lengthy manipulations, the Hamiltonian operator can be written as

H = − 1
2 (C2(so(4)) + 1)

. (12.27)

As one can see from the definition (12.23) of the Runge-Lenz vector, the scalar
product of L and A vanishes, L · A = 0. The second invarariant operator
does not appear therefore in H. The basis states of so(4) are labelled by
two quantum numbers [ω1, ω2]. However, due to the vanishing of C ′

2(so(4)),
only the totally symmetric representations [ω] ≡ [ω, 0] appear. The energy
eigenvalues can be obtained from the eigenvalues of the Casimir operators in
Chap. 5. They are given by

E(ω) = − 1
2(ω(ω + 2) + 1)

ω = 0, 1, . . . ,∞ . (12.28)

In order to label completely the states one needs to consider the branch-
ing so(4) ⊃ so(3) ⊃ so(2). This branching was considered in Chap. 7. The
complete labelling of states is |ω, l,m〉, with branching l = ω, ω − 1, . . . , 0
and m = −l, . . . ,+l. It is customary to introduce the “principal quantum
number” n = ω + 1. In terms of this quantum number the energy levels are

E(n, l,m) = − 1
2n2

. (12.29)

This is the celebrated Bohr formula that gives the energy levels of the non-
relativistic hydrogen atom. The corresponding energy level diagram is shown
in Fig. 12.3. The states |n, l,m〉 are degenerate with total degeneracy n2.
Therefore so(4) is the degeneracy algebra of the Coulomb problem in ν = 3
dimensions. A detailed account is given in [B.G. Wybourne, Classical Groups
for Physicists, J. Wiley and Sons, New York (1974), Chap. 21.]

Example 4. Coulomb problem in six dimensions



12.2 Degeneracy Algebras in ν ≥ 2 Dimensions 179

0w=0

01w=1

012w=2

0123w=3

L

∞

Fig. 12.3. The spectrum of the three-dimensional Coulomb problem. States up to
ω = 3 are shown. The principal quantum number is n = ω + 1

This problem and its application to the three-body problem is best solved
in hyperspherical Jacobi coordinates. One first introduces two vectors ρ and λ
or equivalently ρ, ϑρ, ϕρ and λ, ϑλ, ϕλ. The Jacobi hyperspherical coordinates
are r, ξ, ϑρ, ϕρ, ϑλ, ϕλ with

r =
(
ρ2 + λ2

)1/2
ξ = arctan (ρ/λ) . (12.30)

Introducing the notation

qi ≡ (ρ,λ) pi ≡ (pρ,pλ) i = 1, . . . , 6 , (12.31)

one can construct the 15 elements of the Lie algebra so(6) by

Lij = qipj − qjpi, i, j = 1, . . . , 6 i < j . (12.32)

To these, one can add the six components of the normalized Runge-Lenz
vector

Ai =
1√
−2H

[
1
2

(Lijpj − pjLji) −
qi

r

]

i = 1, . . . , 6 . (12.33)

The 21 elements Lij ,Ai satisfy the commutation relations

[Lij , Lkl] = i (δikLjl + δjlLik − δilLjk − δjkLil)
[Ai, Aj ] = iLij

[Lij , Ak] = i (δikAj − δjkAi) . (12.34)

These commutation relations are isomorphic to those of so(7). The 21 ele-
ments also commute with the Hamiltonian H

[Lij ,H] = [Ai,H] = 0 (12.35)

where
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H =
1
2
(
p2

ρ + p2
λ

)
− 1

r
. (12.36)

The algebra so(7) possesses three Casimir operators C2, C4, C6. The quadratic
operator is

C2(so(7)) =
6∑

i<j

L2
ij +

6∑

i

A2
i . (12.37)

After some lengthy manipulations the Hamiltonian can be written as

H = − 1
2
[
C2(so(7)) + 25

4

] . (12.38)

The expectation value of this Haniltonian in the representation [ω] ≡ [ω, 0, 0]
is

E(ω) = − 1
2
[
ω(ω + 5) + 25

4

] , ω = 0, 1, . . . ,∞ . (12.39)

The representations of so(7) that appear are the totally symmetric represen-
tations [ω], in view of conditions analogous to L · A = 0 in the three dimen-
sional case. In order to label completely the states, one needs to study the
branching of representations of so(7). This can be done using the techniques
of Chap. 4. The labelling of states appropriate for the choice of coordinates
in this example is so(7) ⊃ so(6) ⊃ soρ(3) ⊕ soλ(3) ⊃ so(3) ⊃ so(2) with
quantum numbers

∣
∣
∣
∣
∣
∣

so(7) ⊃ so(6) ⊃ so(3) ⊕ so(3) ⊃ so(3) ⊃ so(2)
↓ ↓ ↓ ↓ ↓
ω γ lρ, lλ L M

〉

. (12.40)

Here γ = ω, ω − 1, . . . , 1, 0, and the values of lρ, lλ are obtained by partition-
ing γ as γ = 2nγ + lρ + lλ, nγ = 0, 1, . . .. The values of L are obtained from
|lρ + lλ| ≥ L ≥ |lρ − lλ| and M = −L, . . . ,+L as usual. The energy level
diagram of the six dimensional Coulomb problem is shown in Fig. 12.4. The

0w=0

011w=1

000111222w=2

L

∞

Fig. 12.4. The spectrum of the six-dimensional Coulomb problem. States up to
ω = 2 are shown
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spectrum is degenerate and so(7) is the degeneracy algebra. The Coulomb
problem in six dimensions is of interest in the three-body problem, in particu-
lar the three quark system in hadronic physics. [E. Santopinto, M. Giannini,
and F. Iachello, Algebraic Approach to the HyperCoulomb Problem, in Sym-
metry in Science VII, Edited by B. Gruber, Plenum Press, New York, 1995.]

12.3 Degeneracy Algebra in ν = 1 Dimension

The case ν = 1 is a special case, since the degeneracy algebra of the one-
dimensional Hamiltonian, in units � = m = 1,

H = −1
2

d2

dx2
+ V (x) (12.41)

is always the trivial algebra u(1) ∼ so(2). Because in one dimension there is
no rotational invariance to impose, the class of exactly solvable problems in
ν = 1 dimension, that is of problems that can be written in terms of Casimir
operators of an algebra g, is much wider than that in ν ≥ 2 dimensions. A
partial list is given in Table 12.1. The Hamiltonian for these problems is either
linear, case IV, or quadratic, cases I–III, in the Casimir operators and hence
the eigenvalues, E(n), are either linear or quadratic in the quantum number
n. The strength of the potential is given in the table either by κ(κ − 1) or
by κ2.

Example 5. The one dimensional harmonic oscillator

The one dimensional harmonic oscillator, V (x) = 1
2kx2, in units k = 1,

has been treated in Chap. 7. Its Hamiltonian can be written as

H = C1(u(1)) +
1
2

(12.42)

with eigenvalues

E(n) = n +
1
2

n = 0, 1, . . . ,∞ . (12.43)

Table 12.1. Exactly solvable quantum mechanical problems in one dimension

Case V (x) E(n)

(I)
1

2

κ (κ − 1)

sin2 x

1

2
(κ + 2n)2

(II) −1

2

κ (κ − 1)

cosh2 x
−1

2
(κ − 1 − n)2

(III) κ2
(
e−2x − 2e−x

)
−κ2 +

1

2

[

2
√

2κ

(

n +
1

2

)

−
(

n +
1

2

)2
]

(IV )
1

2
κ2x2 κ

(

n +
1

2

)



182 12 Degeneracy Algebras and Dynamical Algebras

12.4 Dynamical Algebras

The degeneracy algebra gd allows one to solve the eigenvalue problem and
thus classify the degenerate multiplets. However, in the cases discussed in the
previous Chap. 11 all states of the system were assigned to an irreducible rep-
resentation of an algebra g, and all operators H,T, .. were written in terms
of elements of g. It is of interest to do the same for quantum mechanical
problems. This problem is often called the embedding problem. The algebra
g that contains the degeneracy algebra g ⊃ gd is called the dynamical algebra.
Included in the dynamical algebra g there are now raising and lowering oper-
ators that relate the different representations of g. The embedding problem
does not have a unique solution. An additional complication is that often the
quantum mechanical problem has an infinite number of bound (E < 0) eigen-
states, as in the two cases of Chap. 2. The dynamical algebra must therefore
be either a non-compact algebra or obtained by a limiting process (called
contraction) from a compact algebra. Both of these problems are outside the
scope of this book and will therefore be only mentioned here.

12.5 Dynamical Algebras in ν ≥ 2 Dimensions

12.5.1 Harmonic Oscillator

The degeneracy algebra is u(ν). A commonly used dynamical algebra is the
symplectic algebra sp(2ν,R) ⊃ u(ν). [R.C. Hwa and T. Nuyts, Group Em-
bedding for the Harmonic Oscillator, Phys. Rev. 145, 1188 (1966).] However,
this embedding has the disadvantage that two irreducible representations are
needed to accomodate all the states of the harmonic oscillator. A simpler
embedding is obtained by drawing on the results of Chap. 7. Introducing a
fictitious coordinate, s, and momentum, ps = 1

i
d
ds , one can construct the

algebra u(ν + 1). The algebra u(ν + 1) ⊃ u(ν) can be used as a dynamical
algebra of the harmonic oscillator. All states are assigned to the representa-
tion [N ] of u(ν + 1) with N → ∞. The degenerate multiplets are labelled by
n = 0, 1, . . . , N → ∞.

12.5.2 Coulomb Problem

The degeneracy algebra is so(ν +1). The non-compact algebras so(ν +1, 2) ⊃
so(ν + 1, 1) ⊃ so(ν + 1) have been used as dynamical algebras [H. Bacry,
The de Sitter Group L4,1 and the Bound States of the Hydrogen Atom,
Nuovo Cimento 41A, 222 (1966)], [E.C.G. Sudarshan, N. Mukunda, and L.
O’Raifeartaigh, Group Theory of the Kepler problem, Phys. Lett. 19, 322
(1965)], [A.O. Barut, Dynamical Groups and their Currents, Springer Tracts
Mod. Phys. 50, 1 (1969).] However, the representation theory of non-compact
algebras is rather complicated and requires special attention. Again, a simpler
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embedding is obtained by introducing a fictitious coordinate s and momen-
tum 1

i
d
ds , and constructing the algebra so(ν + 2). This algebra, instead of

so(ν + 1, 1), can be used as dynamical algebra of the Coulomb problem in
ν ≥ 2 dimensions. All states are assigned to a representation [Γ ] of so(ν + 2)
with Γ → ∞. The degenerate multiplets are labelled by ω = 0, 1, . . . , Γ → ∞.

12.6 Dynamical Algebra in ν = 1 Dimension

The algebra u(2) has been used extensively as a dynamical algebra in ν = 1
dimension. In particular, this algebra has been used in the study of two
quantum mechanical problems of practical interest, already listed in Chap. 3,
V (x) = − k

cosh2 x
(called the Pöschl-Teller potential) and V (x) = k(e−2x −

2e−x) (called the Morse potential).

12.6.1 Pöschl-Teller Potential

The Hamiltonian operator for this problem in units � = m = 1 is

H = −1
2

d2

dx2
− k

cosh2 x
, (12.44)

where x is a dimensionless coordinate. In order to construct the dynamical
algebra u(2) ⊃ su(2), introduce two variables ϑ and ϕ and consider the
differential realization of su(2) ∼ so(3) on the sphere, given in Chap. 9,

Iz = −i
∂

∂ϕ

I± = −ie∓iϕ

(
∂

∂ϑ
∓ i cot ϑ

∂

∂ϕ

)

(12.45)

and

I2 = −
[

1
sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

+
1

sin2 ϑ

∂2

∂ϕ2

]

. (12.46)

The simultaneous eigenfunctions of I2 and Iz

I2χm
j = j(j + 1)χm

j

Izχ
m
j = mχm

j (12.47)

with j and m integer, are

χm
j (ϑ, ϕ) = um

j (ϑ) eimϕ (12.48)

where um
j (ϑ) satisfies the equation

[

− 1
sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

+
m2

sin2 ϑ

]

um
j (ϑ) = j(j + 1)um

j (ϑ) . (12.49)
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The solutions of (12.50) are the associated Legendre functions Pm
j (cos ϑ)

and the functions χm
j (ϑ, ϕ) are just the spherical harmonics Yjm(ϑ, ϕ). The

substitution
cos ϑ = tanh x −∞ < x < +∞ (12.50)

brings (12.49) to the form
[

− d2

dx2
− j(j + 1)

cosh2 x

]

um
j (x) = −m2um

j (x) . (12.51)

This is, apart from a factor 2, the Schrödinger equation with Pöschl-Teller
potential. The strength of the potential k is related to the eigenvalue of the
Casimir operator of su(2) ∼ so(3), j(j+1), by k = 1

2j(j+1). The Hamiltonian
operator can be written as

H = −1
2
I2
z (12.52)

with eigenvalues

E(m) = −1
2
m2 . (12.53)

In the bra-ket notation, the eigenfunctions can be written as
∣
∣
∣
∣
∣
∣

u(2) ⊃ so(2)
↓ ↓
j m

〉

. (12.54)

All eigenstates are assigned to the representation j of u(2). This algebra is
the dynamical algebra of the problem. The Hamiltonian is written in terms
of elements of this algebra, in fact in terms of the Casimir operator Iz of the
subalgebra so(2), which is the degeneracy algebra of the problem. There is a
peculiarity in this case due to the fact that the algebra so(2) is an orthogonal
algebra in an even number of dimensions and thus m = −j, . . . ,+j. Since the
eigenvalues depend only on m2, they are double degenerate. They correspond
to the eigenvalues of the potential and its reflection. The algebra u(2) should
therefore be used as dynamical algebra with the proviso that only states with
m ≥ 0 should be considered. The spectrum of the Pöschl-Teller potential with
this proviso is shown in Fig. 12.5. The Pöschl-Teller potential is of interest
in molecular physics. [F. Iachello and S. Oss, Algebraic Model of Bending
Vibrations of Complex Molecules, Chem. Phys. Lett. 205, 285 (1993).] In
applications in molecular physics, often the quantum number m = j, j −
1, . . . , 1, 0 is replaced by the so-called vibrational quantum number n = j −
m,n = 0, 1, . . . , j. In contrast with the harmonic oscillator of Example 6, the
Pöschl-Teller potential has a finite number of bound states. Thus j = finite,
and the representations of u(2) that appear in this problem are the usual
finite dimensional representations.
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V
Hx
L

x

m=0

m=1

m=2

m=3

m=4

Fig. 12.5. The spectrum of the one-dimensional Pöschl-Teller potential superim-
posed to the potential. The strength of the potential is characterized by j = 4

12.6.2 Morse Potential

The Hamiltonian for this problem in units � = m = 1 is

H = −1
2

d2

dx2
+ k

[
e−2x − 2e−x

]
. (12.55)

In order to construct the spectrum generating algebra, introduce again two
variables s and t. A realization of u(2) in terms of differential operators
s ∂

∂s , s ∂
∂t , t

∂
∂s , t ∂

∂t is

F̂x =
1
2

(

st − ∂2

∂s∂t

)

F̂y =
1
2i

(

s
∂

∂t
− t

∂

∂s

)

F̂z =
1
4

(

s2 − t2 − ∂2

∂s2
+

∂2

∂t2

)

N̂ =
1
2

(

s2 + t2 − ∂2

∂s2
− ∂2

∂t2
− 2

)

. (12.56)

This realization is the oscillator realization of Sect. 7.3 written in terms of
differential operators. A hat is put in (12.56) to distinguish an operator from
its eigenvalue. Consider now the simultaneous eigenstates of N̂ and F̂y. In-
troducing polar coordinates

s = r cos ϕ 0 ≤ r < ∞
t = r sinϕ 0 ≤ ϕ < 2π , (12.57)

the two operators can be rewritten as
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F̂y = − i

2
∂

∂ϕ

N̂ =
1
2

(

r2 − 1
r

∂

∂r
r

∂

∂r
− 1

r2

∂2

∂ϕ2

)

− 1 . (12.58)

The simulatenous eigenstates of N̂ and F̂y can be written as

ψN,my
(r, ϕ) = RN,my

(r)e2imyϕ (12.59)

where 2my = integer since ψ should be periodic in ϕ with period 2π, and
RN,my

(r) satisfies

1
2

(

−1
r

∂

∂r
r

∂

∂r
+

4m2
y

r2
+ r2

)

RN,my
(r) = (N + 1)RN,my

(r) . (12.60)

By the change of variable

r =
√

N + 1e−x/2 (12.61)

this equation can be brought to the form
[

− d2

dx2
+

(
N + 1

2

)2 (
e−2x − 2e−x

)
]

RN,my
(x) = −m2

yRN,my
(x) . (12.62)

This is, apart from a factor 2, the Schrödinger equation with Morse potential.
The strength of the potential k is related to the eigenvalue of the Casimir
operator of su(2) by

k =
1
2

(
N + 1

2

)2

. (12.63)

The Hamiltonian operator can be written as

H = −1
2
F̂ 2

y (12.64)

with eigenvalues

E(my) = −1
2
m2

y . (12.65)

In bra-ket notation, the eigenfunctions can be written as
∣
∣
∣
∣
∣
∣

u(2) ⊃ u(1)
↓ ↓
F my

〉

, (12.66)

where, as discussed in Chap. 7, Sect. 3, F = N
2 . The values of my are

my = −N
2 , . . . ,+N

2 = −F, . . . ,+F , but, for reasons given above, only my ≥ 0
need be considered. The spectrum of the Morse potential is shown in Fig. 12.6.
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Fig. 12.6. The spectrum of the one-dimensional Morse potential. The strength of
the potential is characterized by F = N

2
= 4

The Morse potential is of great interest in molecular physics. [Y. Alhassid, F.
Iachello and F. Gürsey, Group Theory of the Morse Oscillator, Chem. Phys.
Lett. 99, 27 (1983).] Here also it is customary to introduce a vibrational
quantum number v = N

2 − my, v = 0, 1, . . . , N
2 or N−1

2 (N =even or odd),
and the number of bound states is finite. The Morse potential problem in
one dimension is soluble not only for the values such that N integer, but for
any strength k. The general solution requires however the use of projective
representations of u(2) rather than tensor representations. Projective repre-
sentations of u(2) [V. Bargmann, Irreducible Unitary Representations of the
Lorentz Group, Ann. Math. 48, 568 (1947)] are outside the scope of these
lectures note and will not be discussed.

The Morse potential has also been associated with representations of the
non-compact algebra su(1, 1) [P. Cordero and S. Hojman, Algebraic Solution
of a Short-Range Potential Problem, Lett. Nuovo Cimento 4, 1123 (1970)].

12.6.3 Lattice of Algebras

The concept of lattice of algebras introduced in Chap. 7, can be used here
as well. One dimensional exactly solvable problems are characterized by the
lattice of algebras

u(2)
|

u(1) ∼ so(2)
(12.67)

Here u(2) is the dynamical algebra and u(1) ∼ so(2) is the degeneracy alge-
bra. Because of the isomorphism u(1) ∼ so(2), all exactly solvable problems
in ν = 1 dimension have the same structure. In particular, the two problems
discussed in Sects. 6.1 and 6.2 have the same bound state spectrum

E(m) = −1
2
m2 . (12.68)
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Problems with the same bound (E < 0) spectrum are called isospectral. (They
differ, however, in the scattering (E > 0) spectrum, not discussed here.)

The algebra u(2) can also be used as a dynamical algebra of the harmonic
oscillator of Chap. 3. The Hamiltonian is now linear in the Casimir operator
C1 of u(1) with eigenvalue

E(n) = n +
1
2

. (12.69)

The harmonic oscillator has an infinite number of bound states and thus
N → ∞ and n = 0, 1, . . . ,∞.
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