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PREFACE

The incessant development of quantum chemistry since the appearance of the
Schrödinger equation has turned this area into a respectable branch of science with
unprecedented capabilities. It is now a well-recognized field of research with predic-
tive power that is an important component in physical–chemical laboratories. Very
important developments were conducted in the early days by bright theoretical sci-
entists that were ready to absorb the incredible and unpredicted computer revolution
which was only just beginning. Isolated medium-size molecular systems can now be
accurately studied theoretically by quantum chemical methods. However, it was also
long recognized that all biomolecular phenomena necessary to obtain and sustain
living systems take place in solution, as well as the vast majority of chemical pro-
cesses. Indeed solvent and liquid systems are germane in chemistry experiments. In
physics, a constant concern is the description of the role played by the environment in
modifying the properties of the system as compared to the isolated situation. Hence,
the importance of studying atoms, molecules and biomolecules in the solvent envi-
ronment can hardly be denied. The quantum chemical studies of molecular systems
affected by the interaction with a solvent had its own turning point before the end
of the 1970s, when some pioneering work was done, including the dielectric prop-
erties of the medium in an effective nonlinear Hamiltonian. This naturally led to the
development of the so-called continuum models that are important and now popular.
Continuum models can be implemented from the simplest to the most sophisticated
quantum chemical methods.

The same computer revolution that started in the middle of the last century also
plays an important, in fact crucial, role in the development of methods and algorithms
to study solvation problems. Dealing, for instance, with a liquid system means the
inclusion of explicit molecules, in different thermodynamic conditions. The number
of possible arrangements of atoms or molecules is enormous, demanding the use
of statistical mechanics. Here is where computer simulation, Monte Carlo (MC)
or molecular dynamics (MD), makes its entry to treat liquid systems. Computer
simulation is now an important, if not central, tool to study solvation phenomena.
The last two decades have seen a remarkable development of methods, techniques
and algorithms to study solvation problems. Most of the recent developments have
focused on combining quantum mechanics and statistical mechanics using MC or
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MD simulations. This led naturally to the so-called QM/MM methods that com-
bine quantum mechanics and molecular mechanics. In the original idea, a part of
the system is treated by quantum mechanics and the remaining part by molecular
mechanics. Variants of the QM/MM have also been developed adopting the central
idea to the particular interest of studies. It is perhaps correct to say that the study of
solvation effects in general is the area of physical chemistry research that has recently
seen the most spectacular and constant advancements. As such, there is a need for
a source material where the important developments and applications are described
and directed not only to the specialists, but also for those beginning in this field.

This is the aim of this book. In 18 separate chapters different aspects of the
solvation effects in molecules and biomolecules are presented and discussed and
applications are shown. Some of the most internationally prominent groups in this
field have joined in this project to produce this book that describes some of the impor-
tant developments that are underway, as well as the achievements that have already
been made. Different aspects of the solvation problem are presented, the theoretical
methods to solve them are discussed and some perspectives are outlined.

I warmly thank all contributing authors for enthusiastically adhering to the effort
to make this book a reality.

Prof. Sylvio Canuto
Instituto de Fı́sica, Universidade de São Paulo, Brazil

January 2008



CHAPTER 1

SOLVATION MODELS FOR MOLECULAR PROPERTIES:
CONTINUUM VERSUS DISCRETE APPROACHES

BENEDETTA MENNUCCI
Dipartimento di Chimica e Chimica Industriale, via Risorgimento 35, 56126 Pisa, Italy,
e-mail: bene@dcci.unipi.it; web: http:// benedetta.dcci.unipi.it

Abstract: A comparative description of two different hybrid solvation models is presented, both of
them describe the solute at quantum-mechanical level while the solvent is treated either
through a polarizable molecular mechanics force field or as a polarizable continuum di-
electric. The theoretical framework of the two methods is analyzed in terms of common
features as well as of eventual differences. An application to the study of solvent effects
on NMR properties of solvated molecular systems is used to analyze the relative perfor-
mances as well as to underline the differences in the corresponding descriptions

1.1. INTRODUCTION

The importance of understanding environment effects on chemical systems is evident
in almost all the most active fields of research, such as condensed phase chemistry,
biochemistry or material chemistry just to quote a few.

It is thus not strange that, in the years, many different phenomenological ap-
proaches and theoretical models aimed at describing the effects of a given surround-
ing medium on the properties of a selected system have been formulated. However,
only with the recent progress achieved in the computational technology, a real step
forward has been done in the modelization of the phenomenon giving origin to such
effects (which in the following we shall indicate as solvation or embedding). In par-
ticular, two have been the successful strategies; on the one hand the availability of
fast computers has suggested to try to get a detailed microscopic description of a
representative sample of the whole system. This first strategy has led to molecular
dynamics (MD) or Monte Carlo (MC) simulations in which a necessarily simplified
description of the intra- and intermolecular interactions is introduced in terms of the
selected force field.

On the other hand, the development of computers with increasing memory (be-
sides speed) has allowed to increase the realism and the accuracy of the description
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2 B. Mennucci

in spite of the dimension of the studied system which now is reduced to a by
far smaller part of the whole system, generally called the “solute” even when
formed by distinct molecular units. Within this second strategy (which we shall
indicate as focussed), the surrounding molecules become the secondary subsystem
(“the solvent”) and they will be modeled using a less accurate description, in most
cases also completely neglecting their microscopic nature. Examples of this second
strategy are the hybrid approaches using a quantum-mechanical (QM) description for
the solute and a simplified (either Molecular Mechanics, MM [1,2,3,4,5,6] or contin-
uum [7,8,9,10,11]) description for the solvent. In the latter case, the secondary sys-
tem completely disappears and it is substituted by a macroscopic continuum medium
having suitable properties.

It is obvious that the two strategies have different advantages and limits and that
their applications are necessarily of different nature. In particular, the first strategy is
preferable if a statistically representative picture of the whole system (including its
dynamic) is required while the second strategy is necessary if an accurate description
of the electronic nature of the solute and how it is changed by the environment is
important. The present chapter, devoted to the study of the effects the environment
has on the response properties of solvated molecular systems, will thus mainly be
focussed on the second strategy even if the importance of an interplay between the
two will be made evident.

1.2. FOCUSSED MODELS

There are several approaches to be classified in the family of focussed models. The
common characteristic of all of them is that the system is divided into two (or even
more) parts (or layers) which are described at different levels of accuracy. The target
layer (the solute) is generally described at QM level (either ab initio or semiempir-
ical) while the rest (the solvent) is approximated using an MM description as that
used in force fields or a continuum description or both of them in case of more than
two layers.

In all cases, the formalism of the in vacuo QM molecular calculations is main-
tained, including in the solute Hamiltonian an explicit expression of the solute–
solvent potential. What distinguishes the different approaches is exactly the form
of this potential.

In standard QM/MM approaches, the solvent is treated by assigning partial point
charges to the atomic sites and the potential due to these point charges is then in-
troduced into the solute Hamiltonian. However, in such a procedure polarization of
the solvent is neglected, i.e., only the solute is polarized. This may be refined, for
example, by assigning polarizable sites to the solvent giving rise to induced electrical
moments and including their effects in the solute Hamiltonian as a further solvent
term.

In the continuum models the solvent is also polarizable and its effect on the solute
is again represented by the so-called reaction potential part of the Hamiltonian.
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In both cases we can introduce a similar picture in terms of an effective
Hamiltonian giving rise to an effective Schrödinger equation for the solvated solute.
Introducing the standard Born–Oppenheimer approximation, the solute electronic
wavefunction |�〉 will satisfy the following equation:

Ĥeff |�〉 = (Ĥ0 + Ĥenv
) |�〉 = E |�〉 (1-1)

where Ĥ 0 is the Hamiltonian of the solute system when in absence of the rest, and
the operator Ĥ env introduces the coupling between the solute and the solvent.

The form of the operator Ĥ env depends on the particular method used, here, in
particular, two alternative schemes are analyzed:

Ĥenv =
{

ĤQM/MM + ĤMM QM/MM

Vcont QM/continuum
(1-2)

The details on the operators introduced in the two schemes will be given below,
here we only want to add that the addition of Ĥ env to the solute Hamiltonian auto-
matically leads to a modification of the solute wavefunction which has now to be
determined by solving the effective Eq. (1-1). This can be done using exactly the
same methods used for isolated molecules; here in particular we shall mainly focus
on the standard self-consistent field (SCF) approach (either in its Hartree–Fock or
DFT formulation). Due to the presence of Ĥ env the modified SCF scheme is gener-
ally known as self-consistent reaction field (SCRF). Historically the term SCRF has
been coined for the QM/continuum approach but here, due the parallelism between
the two schemes which will be made clear in the following sections, it will be used
indistinctly for both.

1.2.1. QM/MM

In QM/MM approaches, the MM system is represented through atomic point charges
and (if a polarizable force field is used) atomic or molecular polarizabilities at se-
lected points in the solvent molecules, we thus have

ĤQM/MM = Ĥ el + Ĥ pol (1-3)

We note that the Ĥ MM introduced in Eq. (1-2) is the classical MM energy, this
term, however, is a contribution only to the energy and not to the wavefunction.

The first term in Eq. (1-3) is the electrostatic interaction between the QM system
and the point charges in the MM part of the system, namely

Ĥ el =
∑

m

qm(rm)V̂(rm) (1-4)

where V̂(rm) is the electrostatic potential operator due to solute electrons and nuclei
at the MM charges qm . This term is directly included in the one-electron part of the
vacuum Hamiltonian.
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The second term in Eq. (1-3) is the polarization interaction between the induced
dipole moments and the electric field from the QM system. In the following expo-
sition, the approach proposed by Mikkelsen, Kongsted and coworkers will be used
[12,13,14]; for such a version of the polarizable QM/MM scheme the acronym DPM
(discrete polarizable method) has been introduced and will be used here. In the DPM

Ĥ
pol

can be expressed as

Ĥ pol = 1

2

∑

a

μind
a Êsolute

a (1-5)

μind
a = αa

(
Esolute

a + Esolvent
a

{
q; μind

})
(1-6)

where the summation runs over all the selected polarizability points of the MM
molecules and Êsolute is the electric field from the electrons and the nuclei in the
QM system at those points. To define the induced dipole moments, μind

a , in Eq. (1-6)
we have assumed a linear approximation, neglected any contribution of magnetic
character related to the total electric field and used an isotropic polarizability (αa) for
each selected point in the MM part of the system. Distributed polarizabilities should
be introduced, however, for small solvent molecules with low anisotropies in the
molecular polarizability, the use of monocenter polarizabilities is usually sufficient;
here, for the sake of simplicity we have used a single point for each MM molecule,
its center of mass.

In Eq. (1-6), Esolvent
a refers to the total solvent electric field and it contains a sum

of contributions from the point charges and the induced dipole moments in the MM
part of the system. Such a field (and hence the induced dipole) depends on all other
induced dipole moments in the solvent. This means that Eq. (1-6) must be solved it-
eratively within each SCF iteration. As an alternative, Eq. (1-6) may be reformulated
into a matrix equation

μind = BE (1-7)

where the matrix B is of dimension 3N ⊗ 3N, N being the number of polarizable sites,
and the vector E collects the electric field from the solute and the solvent permanent
charge distribution,

(
Esolute + Esolvent{q}). The form of matrix B will be determined

uniquely by the position of the polarizable sites and the polarizability values.

1.2.2. QM/continuum

Moving now to QM/continuum approaches, we shall limit our exposition to the so-
called apparent surface charges (ASC) version of such approaches, and in particular
to the family known with the acronym PCM (polarizable continuum model) [11]. In
this family of methods, the reaction potential Vcont defined in Eq. (1-2) has a form
completely equivalent to the Ĥ el part of the ĤQM/MM operator defined in Eq. (1-4),
namely:
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Vcont → V̂ PCM =
∑

s

qPCM
s (rs)V̂(rs) (1-8)

Now, however, the point charges qPCM
s are no longer centered on the solvent nu-

clei as in the MM description but they are placed on selected points placed on the
surface of the molecular cavity containing the solute. In addition, such charges are
not fixed but they are “apparent” in the sense that they exist only when the solute
exists. As the induced dipoles of the polarizable MM description, the PCM charges
are determined by total field acting at the selected points on the surface (i.e., the
field due to the solute and the charges themselves) but now they also depend on the
dielectric properties of the solvent, on the geometry of the cavity and on the number
and position of the points chosen to map the cavity surface. In general, these points
are determined by partitioning the surface into finite elements (called tesserae) and
identifying a representative point for each tessera. The equations giving the charges
can be solved iteratively within each SCF cycle or similar to what is done for the
induced dipoles (see Eq. 1-7), a single matrix equation can be solved instead:

qPCM = −Kf solute (1-9)

where now the field is only that due to the solute. The effect of the self-polarization,
in fact, has been reformulated into the matrix K exactly as done before in Eq. (1-7)
introducing the B matrix for the MM-induced dipoles.

Once again, K is a square matrix (the dimension being equal to Nts ⊗ Nts where
Nts is the number of tesserae) and it depends on the geometrical cavity parameters
and the dielectric constant of the solvent. It is to be noted that in Eq. (1-9) we have
substituted the electric field Esolute with the more general vector f solute; in fact differ-
ent versions of the PCM approach use different electrostatic quantities to define the
charges (and correspondingly different forms of the K matrix) [11], namely the nor-
mal component of the electronic field in its original version (now called DPCM) or
the electrostatic potential in its reformulation known as integral equation formalism
(IEFPCM) [15,16].

As for the QM/MM description also for PCM, non-electrostatic (or van der Walls)
terms can be added to the Vcont operator; in this case, besides the dispersion and
repulsion terms, a new term has to be considered, namely the energy required to
build a cavity of the proper shape and dimension in the continuum dielectric. This
further continuum-specific term is generally indicated as cavitation. Generally all
the non-electrostatic terms are expressed using empirical expressions and thus their
effect is only on the energy and not on the solute wavefunction. As a matter of fact,
dispersion and repulsion effects can be (and have been) described at a PCM-QM
level and included in the solute-effective Hamiltonian Ĥeff as two new operators
modifying the SCRF scheme. Their definition can be found in Ref. [17] while a
recent systematic comparison of these contributions determined either using the QM
or the classical methods is reported in Ref. [18]
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The brief descriptions given here for QM/MM(pol) (in its DPM formulation) and
QM/continuum (in its PCM formulation) should make clear the parallelism of the
two formulations both from a quantum-mechanical and a computational point of
view. There are, however, fundamental differences which are worth being recalled
here.

The picture given by a QM/MM approach automatically includes a microscopic
description of all the components of the system (solute + solvent) even if with
different levels of accuracy (a QM charge distribution for the solute and a set of clas-
sical charges and dipole moments for the solvent). A preliminary knowledge of the
position in the space of all these components (i.e., the configuration) is thus required.
A liquid solution, however, is a very dynamic system which cannot be properly rep-
resented in terms of a single (or few) configuration: many different configurations
obtained from a correct statistical analysis should thus be introduced and used to get
the final averaged picture. These configurations can be obtained as snapshots of a
MD (or MC) simulation.

By contrast, the description given by a continuum description does not require any
knowledge of the solvent configuration around the solute as a structureless contin-
uum dielectric is introduced instead. The response of such a dielectric to the presence
of the solute is determined by its macroscopic properties (namely the dielectric con-
stant and the refractive index) and thus it will be implicitly averaged. Contrary to
what happens in a QM/MM approach, here a single calculation on a given solute
contained within the continuum dielectric will be sufficient to get the correct picture
of the solvated system.

It is evident, however, that this enormous gain in terms of computational time
(and simplicity of the protocol) will involve some disadvantages. The main one is the
loss of the microscopic nature of the solvent molecules. This issue becomes particu-
larly delicate when solute–solvent specific interactions such as hydrogen bonds are
present in the liquid solution: in these cases, the picture obtained using a continuum-
only description will be incomplete as it misses an important part of the solute–
solvent interactions.

In the following section we shall show how all these specificities of the QM/MM
and QM/continuum approaches will affect the quality of the description one can
obtain applying them to the study of solvent effects on molecular response properties.

1.3. MODELING SOLVENT EFFECTS ON PROPERTIES

In the previous sections we have briefly summarized the basic theory of QM/MM
and QM/continuum methods showing their differences and similarities, now we can
move on to describe their applications to the calculation of molecular response prop-
erties and the related spectroscopies for a generic solvated system.

As shown above, in both DPM and PCM versions of these schemes, an appropriate
interaction operator between the solute and solvent is added to the Hamiltonian of
the isolated molecule. Such an operator is the term Ĥenv defined in Eq. (1-2) which
is obtained by combining one-electron operators and thus no significant increase in
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computational effort is introduced. The electronic density is obtained by including
self-consistently the polarization of the solvent. Along the same lines as for an iso-
lated molecule, the use of response theory may in the context of solvation be used
to study a variety of molecular properties other than the molecular energy. Intro-
ducing the concepts of response theory into the PCM or DPM approach leads to a
compact and powerful method to calculate molecular properties of a molecule sub-
jected to an environment. In particular, both properties related to external or internal
perturbations may be considered. In addition to this, the specific properties may be
of either electric or magnetic origin.

Within the DPM the specific contributions due to the polarizable and structured
environment will lead to two different sorts of corrections: (i) contributions due to
the static multipole moments (here partial charges) and (ii) contributions due to the
induced polarization in the environment. In contrast, for the PCM only contributions
due to the induced polarization in the solvent are relevant.

The different characteristics of the two solvation models make it interesting to
compare their performances when describing the effects of the solvent on given
molecular response properties. A very good candidate for such a comparative anal-
ysis is the NMR spectroscopy. This is in fact one of the most important techniques
available for investigating molecular structures, molecular interactions and the solva-
tion problems. Most NMR measurements are performed on liquid samples and they
yield isotropic chemical shifts (related to the nuclear magnetic shielding constants)
and scalar spin–spin coupling constants modified by the solvent. NMR parameters
(in particular NMR chemical shifts) are, in fact, extremely sensitive to the molecular
environment, and especially hydrogen-bonding effects.

1.3.1. QM Evaluation of NMR Nuclear Shieldings

The effects of solvent on nuclear magnetic shielding parameters derived from NMR
spectroscopy have been of great interest for a long time. In 1960 Buckingham et al
[19] suggested a possible classification in terms of various additive corrections to
the shielding arising from (i) the bulk magnetic susceptibility of the solvent, (ii) the
magnetic anisotropy of the solvent molecules, (iii) van der Waals interactions and (iv)
long-range electrostatic interactions. In the original scheme, strong specific interac-
tions, such as those acting in intermolecular hydrogen bonds, were not specifically
dealt with but just mentioned as a possible extreme form of the electrostatic, or, more
generally “polar”, effect; in the numerous applications that followed Buckingham’s
classification, however, this further effect has been always included as a separate
contribution.

On the basis of such a classification an empirical approach based on the so-
called solvent empirical parameters was formulated to evaluate solvent effects on
nuclear shieldings. In brief, this approach, originally proposed by Kamlet, Taft and
co-workers [20] for electronic excitations, does not involve QM or other types of
calculations but introduces a numerical treatment of experimental data obtained for a
given reference system to obtain an estimate of solvent effects on various properties.
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An extensive study of this type was conducted by Witanowski et al. to interpret the
solvent effects on the nitrogen shielding in a large set of compounds (see Ref. [21]
and references cited therein).

In the last years, these semiclassical analyses have been substituted by (or sup-
ported with) explicit descriptions of the electronic aspects of the solvent effects
on NMR properties and in particular on the nuclear shielding. This change of
perspective has been made possible by the large development of QM solvation
models which have been coupled to QM methodologies initially formulated for iso-
lated systems.

The QM theory of chemical shielding was originally developed many years ago
[22,23], but only later have ab initio methods and density functional theories (DFT)
been reliably used for the prediction of NMR properties of isolated molecular sys-
tems, and finally of solvated systems. The latter step has been achieved by extending
the gas-phase theoretical methods to continuum solvation models (see Ref. [11] for
a sufficiently updated list of papers).

Here we shall focus on a specific NMR property, namely the nuclear shielding
tensor, defined as the second derivatives of the energy with respect to the Cartesian
components of the magnetic induction B and of the nuclear magnetic moment mX

of nucleus X . Using a SCF description of the solute wavefunction with molecular
orbitals (MO) expressed as a linear combination of atomic orbitals (AO) and treating
the magnetic field perturbation in an analogous way to the perturbation produced by
changes in the nuclear coordinates, the components of the nuclear magnetic shielding
tensor are obtained as

σ X
i j =

∑

μν

Pμν

�2hμν

�Bi �m X j

+
∑

μν

�Pμν

�Bi

�hμν

�m X j

(1-10)

where Pμν is an element of the density matrix in the AO basis and hμν is a matrix
element of the effective one-electron Hamiltonian. The second term in Eq. (1-10)
(the paramagnetic contribution) is determined by solving a set of response equa-
tions for the three components of the magnetic induction. In order to ensure origin-
independent results for the nuclear magnetic shielding constants, gauge including
atomic orbitals(GIAOs)[24,25,26,27] are generally used, that is, the AO basis func-
tions depend explicitly on the magnetic induction through

χμ(B) = exp [(−i/2)(B × Rμ) · r]χμ(0)

where Rμ is the vector giving the position of the nucleus to which the field-dependent
basis function is attached relative to the global gauge origin, and χμ(0) indicates a
conventional AO basis function not depending on B.

Equation (1-10) applies both to the case of a molecule in vacuo and in solution.
The (polarizable) environment makes contributions both through the density matrix,
which is obtained self-consistently including the perturbation from the surroundings,
and through the derivative of the density matrix with respect to the magnetic induc-
tion, i.e., both terms in Eq. (1-10) contain the effect of the environment.
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The first derivative of the density matrix with respect to the magnetic induction
(�Pμν/�Bi ) is obtained by solving the coupled-perturbed Hartree–Fock (or Kohn–
Sham) equations to which the first derivative of the effective Fock (or Kohn–Sham)
operator with respect to the magnetic induction contributes. Due to the use of GIAOs,
specific corrections arising from the effective operator Ĥ env describing the environ-
ment effects will appear. We refer to Ref. [28] for the PCM model and to Ref. [29]
for the DPM within either a HF or DFT description of the solute molecule.

1.3.2. An Application to Solvated Systems: N Nuclear Shieldings
of Diazines

In this section we shall present and compare different computational strategies one
can adopt to simulate the effect of the environment on spectroscopic properties of
solvated systems. In particular, as a representative example, we shall summarize the
results of two studies [30,31] we have published in the last years on the environment
effects on the nitrogen nuclear shieldings of a specific class of molecular systems
containing sp2-type nitrogens: three diazines, also known as pyridazine (1,2-diazine),
pyrimidine (1,3-diazine) and pyrazine (1,4-diazine).

We have selected these specific studies among the many others we have performed
in the years on the effects of the solvent on molecular properties (see for example
Ref. [32] for a review published in 2002 and Ref. [33,34,35] for a selection of more
recent papers) as they allow to present and discuss all the most important aspects
which contribute to define the complex phenomenon of solvation.

Important solvent effects have been observed on the nuclear shielding of diazine
nitrogens, for which an increase of up to 40–50 ppm has been measured passing
from an apolar solvent to water [36]; we note that this is one of the largest solvent-
induced shifts so far observed in nitrogen NMR. Such a sensitivity to the polarity
and possible H-bonding properties of the solvent can be easily explained by look-
ing at the electronic charge distribution of diazines in which very polarizable (and
H-bonding acceptor) sites are available for the solvent to strongly interact with (see
also Figure 1-1 in which the electron density surface painted according to the value
of the electrostatic potential is reported for the three diazines).

To try to reproduce the solvent effects on nitrogen nuclear shieldings of diazines
and understand the physics beyond them we have applied the QM/continuum (PCM)
and QM/MM(pol) (DPM) approaches described in the previous sections.

All QM calculations both in vacuo and in the various solvents have been per-
formed on the basis of the density functional theory (DFT) using the hybrid func-
tional which mixes the Lee, Yang and Parr functional for the correlation part and
Becke’s three-parameter functional for the exchange (B3LYP) [37,38]. Calculations
of nuclear shieldings have been performed exploiting the GIAO method. Within the
PCM, the cavities of all the diazines have been obtained in terms of interlocking
spheres: in particular, a united atom approach in which hydrogen atoms are inside
the sphere centered on the linked carbon atom has been used; the corresponding radii
are 1.9 Å for CH and 1.6 Å for N. A cavity scaling factor (f) is introduced to enlarge
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Figure 1-1. Graphical representation of the three diazines, pyridazine (1,2-diazine), pyrimidine (1,3-
diazine) and pyrazine (1,4-diazine), in terms of their structure and the electron density surface colored
according to the value of the electrostatic potential

the basic radii before the individual spheres are defined; when not explicitly indicated
the standard value of 1.2 has been used for f.

All calculations on the isolated and the PCM solvated systems have been per-
formed using the Gaussian code [39] while the DPM calculations have been per-
formed using the development version of the Dalton Quantum Chemistry Program
[40].

1.3.2.1. QM/continuum: Polarity Versus H-bond

A preliminary description of solvent effects on the nitrogen nuclear shielding of di-
azines can be obtained by applying a continuum-only description and thus assuming
that each diazine is contained in a proper cavity inside an infinite polarizable contin-
uum dielectric. As a result, both the geometry and the electronic charge distribution
of each diazine will be modified with respect to the gas-phase case, as well as its
response equations determining the NMR properties will be changed. These three
effects will give rise to the net solvent effect on the property of interest, namely the
nitrogen nuclear shielding. These effects are evaluated here by applying the PCM as
described above.

In Figure 1-2 we summarize in a graphical way the results obtained in three
different environments, namely cyclohexane, acetone, dimethyl-sulfoxide (DMSO),
and water. The data are reported here as a correlation plot between calculated and
experimental isotropic nuclear shieldings.

From the plot it is evident that for non-protic solvents, PCM gives gas-to-solution
shifts in very good agreement with experiments for all molecules (the regression line
presents a R2 value of 0.998). In contrast, for water such an agreement significantly
worsens: in this case, specific H-bonds between water hydrogens and diazine nitro-
gens are clearly present while the continuum description cannot properly take into
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Figure 1-2. Correlation plot between calculated and experimental N nuclear shieldings of diazines
obtained in three different environments, namely cyclohexane, acetone, DMSO and water. Calculated
shieldings have been obtained at B3LYP/GIAO/6-311+G(d,p) while the geometries were optimized at
B3LYP/6-31+G(d,p) in all phases

account their possible effects on the property. To test this analysis, we have optimized
H-bonded clusters containing one and two water molecules, without and with an ex-
ternal continuum dielectric; in the latter case an enlarged cavity also containing the
water molecules has been introduced using radii equal to 1.2 Å for H and 1.53 Å for O
(an example of the cluster structure and of the corresponding PCM cavity is shown in
Figure 1-3 for pyridazine). On such optimized geometries we have computed nuclear
shieldings at the same level used for the single diazines.

In Figure 1-4 we report the same correlation presented in Figure 1-2 but this time
limited to water as a solvent: both isolated and “solvated” (i.e., PCM) diazine–2 w
clusters are reported.

Figure 1-3. Example of diazine–water cluster: pyrimidazine+2 w and the corresponding PCM cavity
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Figure 1-4. Correlation plot between calculated and experimental N nuclear shieldings of diazines in
water. Calculated shieldings refer to diazine–2 w clusters in gas-phase and within a PCM continuum. All
calculations are at B3LYP/GIAO/6-311+G(d,p) level

From the results obtained for the isolated clusters, it seems evident that even by
taking into account the two H-bonds, an important portion of the observed shift is still
missing. For all molecules, in fact, the isolated “diazine + 2 waters” clusters seem
unable to describe the complete effect due to the whole liquid. Only by adding an
external continuum, i.e., including also long-range non-specific polarization effects,
the missing gap is filled and a very good agreement with experiments is obtained.

The data reported in Figures 1-2 and 1-4 suggest a possible interpretation of the
physics beyond the observed solvent effect on nitrogen nuclear shielding but they
still prevent a detailed explanation of the competitive/synergic action of short-range
and specific interactions on one side, and long-range and mediated effects on the
other side. To do that it is useful to recall that the nuclear magnetic shielding can be
partitioned into diamagnetic and paramagnetic terms. This partition is here achieved
by considering an NBO analysis [41] and relating the changes in the two contri-
butions to increase or depletion of the population in the nitrogen lone pair due to
H-bond and polar effects.

In Table 1-1 we thus report the N nuclear shielding (with its paramagnetic and
diamagnetic contributions) and nitrogen lone pair natural population (NP(lp)) for the
diazine showing the largest solvent effect, i.e., pyridazine, and its clusters in vacuo
(VAC) and in the presence of an external PCM continuum.

To first investigate the effects of H-bonding, we compare lone pair occupancies
of monomers and clusters in gas phase: a significant decrease is found passing from
the “free” pyridazine to either the one-water or the two-water cluster. This decrease,
which indicates that electron population has been removed from the lone pair orbital,
is accompanied by an increase of the diamagnetic contribution.
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Table 1-1. Nitrogen lone pair natural population (NP(lp)), nuclear shielding (with its paramagnetic and
diamagnetic contributions) (ppm) and absorption energies (eV) for pyridazine and water–pyridazine clus-
ters in vacuo (VAC) and in the presence of an external continuum (PCM). For 2 w clusters two values cor-
responding to the two nonequivalent nitrogens are reported. Calculations are at B3LYP/6-311++G(2d,2p)
level for populations and nuclear shielding and at TDB3LYP/6-31+G(d,p) level for absorption energies

VAC PCM

Free +1 w +2 w Free +1 w +2 w

NP(lp) 1.939 1.921 1.922 1.933 1.943 1.912 1.912 1.924

σ par

σ dia

–513.52

296.58

–513.09

325.07

–496.41

318.31

–504.49

313.2

–482.44

296.9

–487.2

324.8

–474.83

319.33

–475.21

313.95

σ –216.94 –188.02 –178.1 –191.29 –185.54 –162.4 –155.5 –161.26

nπ∗ 3.58 3.74 3.85 3.87 4.00 4.13

A different analysis involves the comparison between isolated and “solvated”
(PCM) systems. For the monomer, the inclusion of a continuum dielectric induces
a significant increase in the nitrogen lone pair population, which, however, does
not lead to significant changes in the diamagnetic term but instead lead to a less
negative σ par. A similar change in the paramagnetic contributions is obtained passing
from isolated to solvated clusters, but what is different now is that the introduction of
the continuum reduces the lone pair population (indicating a stronger charge transfer
from nitrogen lone pair to H-bonded waters). This apparently opposite correlation
between orbital population and paramagnetic term reveals that a complex combi-
nation of different factors is occurring. Going back to the Ramsey formulation we
have that the paramagnetic contributions depend on both ground state and excited
states while the diamagnetic contributions are determined by the ground state only.
Thus, on passing from isolated to solvated clusters, we can assume that the dominant
term in determining σ par is not the lone pair population but the low-lying excited
states. If we assume that all other electronic transition energies are much larger than
�E(nπ∗) and therefore make a negligible contribution, the observed decrease in the
paramagnetic shielding in the presence of the external continuum can be explained in
terms of the parallel changes in the nπ∗ transition energy. In particular, an increase
in the transition energy should lead to a less negative σ par the latter being inversely
proportional to the former according to the Karplus and Pople model [42].

The nπ∗ transition is a well-known example of H-bond-sensitive property. In
such transitions, the electronic density on the heteroatom (either oxygen or nitrogen)
decreases upon excitation. This results in a decrease in the capability of this het-
eroatom to form hydrogen bonds. The effect on absorption should then be similar to
that resulting from a decrease in dipole moment upon excitation, and a blue shift of
the absorption spectrum is expected; the higher the strength of hydrogen bonding,
the larger the shift. From the TDB3LYP results reported in the table an increasing
blue shift with respect to the gas-phase-free diazines is observed passing from the
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isolated to the solvated clusters; this increase is reflected in a significant decrease in
the absolute value of σ par as predicted.

To conclude this first part of the analysis, all the results presented show that
H-bond effects and long-range non-specific interactions can combine and give rise to
a synergic (or cooperative) action and that the complete picture can only be obtained
by taking into account both of them introducing solvated clusters.

It is now interesting to check if this picture is either confirmed or modified by
changing the description of the solvent. This check is here realized introducing
diazine–water clusters extracted from classical MD simulations and comparing their
NMR properties calculated once again with PCM or with the QM/MM(pol) model
we have introduced in the previous section with the acronym DPM.

1.3.2.2. QM/MM Versus QM/continuum

In order to generate an appropriate number of solute–solvent clusters to be used in
the NMR calculations a series of classical MD simulations of pyrazine, pyrimidine
or pyridazine in aqueous solution has been carried out. All the details of the force
fields used for the diazines and water as well as computational details of the MD
simulation can be found in Ref. [31]. Every 1 ps an MD configuration was dumped so
as to obtain 600 different molecular configurations. Then, a spherical cut-off distance
equal to 12 Å was applied so as to obtain the final cluster including ∼ 230–240 water
molecules together with the solute.

In the following electronic calculations, the solute (and potentially a number of
the closest water molecules) is treated using DFT/B3LYP while the rest of the sol-
vent is treated either using the same polarizable potential as in the MD simulations
(DPM) or introducing an external continuum (PCM). Acronyms like DFT(X)/DPM
or DFT(X)/PCM are used here to indicate calculations where X water molecules
have been included into the part of the system treated using DFT. The final molecu-
lar property in solution is evaluated as a statistical average over all these molecular
clusters.

A preliminary necessary check in this kind of calculations is on the convergence
of the calculated properties with respect to the number of solute–solvent configura-
tions included in the statistical procedure. Canuto and coworkers have extensively
made use of the autocorrelation function of the energy in order to extract uncor-
related solute–solvent configurations to be used in combined QM/MM calculations
[43]. The minimum number of solute–solvent configurations to be included in the
statistical analysis may, however, depend on the nature of the molecular property in
question. The NMR shielding appears to be converged based on around 100 con-
figurations. In this study we have chosen to use 200 configurations in the statistical
averaging since this number of configurations clearly provides statistically converged
molecular properties. Also, the effect of using a larger number of configurations is
to obtain a smaller statistical error in the mean values.

Before moving to the comparison between QM/continuum and QM/MM(pol)
results, we briefly comment on differences between the previously QM-optimized
clusters and the present MD-derived clusters. The hydrogen coordination number to
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the nitrogen site for each solute is almost constant for all the three diazines and is,
by spherical integration of the RDFs, found to be around 2: this can be considered
as a confirmation of the previous analysis in terms of the diazine–2 w QM clusters.
However, in contrast to the QM results, the hydrogen bond distances between the
nitrogen site of the solute and the hydrogen of water are all longer in MD-derived
configurations. This is not surprising since the outcome from the geometry optimiza-
tions are equilibrium structures at T=0 K representing the lowest energies on the
potential energy surfaces which physically might be different from the true liquid
at finite temperatures. These differences can also be due to possible deficiencies
in the underlying force field used in the MD simulations to accurately describe the
effect of hydrogen bonding. Due to these geometrical differences, the H-bond effects
we shall obtain in the nuclear shielding will be different in the two descriptions.
One could thus be suggested to use the comparison between the results presented
in the previous section, the present ones obtained from MD-derived clusters and
experiments to select the best description. Unfortunately, this is not possible as in
all calculations we have neglected other aspects, such as rovibrational averaging,
which may be important for accurate evaluation of the solvent-induced shifts and
thus represent a potential source of intrinsic uncertainty.

On the basis of these considerations, in the following analysis we shall mainly
focus on an internal comparison between the continuum (PCM) and the polarizable
MM (DPM) descriptions, so as to explore in more detail their similarities and differ-
ences when applied to the evaluation of solvent effects on molecular properties.

The comparison begins with the reaction field produced by either models at spe-
cific atomic sites. Both models in fact produce at the solute an electric field which
perturbs the solute electronic density and thereby change the properties of the solute.
In the case of PCM, the reaction field at site Rn is a true mean field produced by the
ASC distribution represented by point charges, i.e.,

ERF
PCM(Rn) =

Nts∑

k=1

qPCM
k (Rn − rk)

|Rn − rk |3 (1-11)

On the other hand, for the DPM model the reaction field is calculated by the
expression

ERF
DPM(Rn) =

∑

s

qDPM
s (Rn − rs)

|Rn − rs |3 +
∑

a

μind
a Tna (1-12)

where the first contribution in Eq. (1-12) is due to the point charges representing the
permanent charge distribution of the solvent molecules and the second term repre-
sents the contribution from the induced dipoles at the polarizable sites in the solvent
region. The symbol T is the dipole interaction tensor. The reaction field in Eq. (1-12)
is calculated for each solute–solvent configuration and thus the MM(pol) includes
directly the fluctuations in the reaction field and the consequences this might have
for the calculated properties.
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Table 1-2. Nonzero components of the reaction field
at the nitrogen nuclei in pyrimidine calculated using ei-
ther DPM or PCM. All calculations are at B3LYP/6-
311++G(2d,2p) level. Results are in 103 au

Method ERF
y ERF

z

DPM –8.7 ± 0.4 7.3 ± 0.3
PCM (f = 1.1) –7.6 8.6
PCM (f =1.2) –5.5 6.8
PCM (f =1.4) –2.9 4.3

In Table 1-2 we report the reaction field at the nitrogen sites of a selected di-
azine, here pyrimidine, calculated using either DPM or PCM. In the first case the
results refer to averaging over 200 solute–solvent configurations; in the second case
the reaction field has been calculated for different cavity dimensions obtained us-
ing different scaling factors. The molecular coordinate system is defined so that the
pyrimidine molecule is confined to the yz plane with the internal C2 axis along the
z-axis (the two nitrogen sites are indistinguishable).

As seen from Table 1-2 the PCM reaction field depends quite drastically on the
cavity scaling factor. Choosing this to be equal to 1.4, which in the literature has
been recommended in case of less polar solvents [44,45], clearly underestimates the
reaction field as compared to the DPM. This is also expected since water is to be
considered as a high dielectric. Choosing the cavity scaling factor to be equal to 1.2
(the standard value) improves very much the results but on average a scaling factor
of 1.1 gives the best results. We note, however, that it is not possible to obtain a
common scaling factor that reproduces all the DPM reaction field components.

These results provide some information between the differences/similarities in
the physics within the PCM and DPM models. Since the bare radii of the nitrogen
atom is ∼1.5 Å the solvent will in case of the PCM be placed either 1.65 (f = 1.1)
or 1.80 (f =1.2) Å away from the nitrogen site. In contrast, in the MD simulations,
and therefore also in the DPM calculations, the solvent is on average placed 1.96 Å
from the nitrogen site as inferred from the nitrogen–hydrogen RDF in pyrimidine.
Furthermore, the oxygen site of water will be placed on average around 0.96 Å (the
OH bond length in water) even further from the nitrogen site. This means that on
average the solvent is placed (much) further away from the solute within the DPM
as compared to the PCM. Choosing the cavity dimensions so as to reproduce the
structural data from the MD simulation would lead to very underestimated results
for the solvent shifts in the NMR shielding constants as compared to either the DPM
or experimental data. Thereby, the PCM properly works by effectively placing the
solvent closer to the solute as compared to MD data.

An underestimation of the reaction field should lead to an underestimation of the
solvent shift in the NMR shielding. In fact, the relation between the reaction field
and σ N is in this regime linear. Thereby, choosing the cavity scaling factor to be 1.1
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Table 1-3. Diagonal components, and the corresponding isotropic value, of the
nitrogen nuclear shielding tensor in pyrimidine calculated using either DPM or
PCM. All calculations are at B3LYP/6-311++G(2d,2p) level. Results are in ppm

Method xx yy zz iso

PCM (f = 1.4) 275.3 –221.8 –250.6 –65.7
PCM (f = 1.2) 275.5 –216.1 –239.0 –59.9
PCM (f = 1.1) 275.9 –212.2 –230.7 –55.7
DFT(2)/PCM 274.2 –211.3 –235.1 –57.4
DPM 273.6 –211.5 –231.3 –56.4
DFT(2)/DPM 273.2 –212 –236.3 –58.4

should result in an improved agreement between the DPM and PCM results. This pre-
diction is confirmed by the data reported in Table 1-3 in which the three components
of the NMR shielding tensor and the corresponding isotropic values are reported for
the two different solvation models. As for the analysis of the reaction field, in the
PCM we have used three different cavity scaling factors (f = 1.1, 1.2 or 1.4).

From the first three entries in Table 1-3 we observe that changing the cavity scal-
ing factor has quite different outcome for the three diagonal components of the NMR
shielding tensor. The xx component (out of plane) is almost unchanged whereas the
magnitudes of the yy or zz components increases around 10 or 20 ppm, respectively,
by changing the cavity scaling factor from 1.1 to 1.4. As already predicted on the
bases of the reaction field data in Table 1-2, we find that using f =1.1 gives the best
results for the shielding components as compared to DPM. If we also introduce two
explicitly treated water molecules (the DFT(2)/PCM entry) the agreement becomes
even closer.

Turning to the DPM results we find that introducing two water molecules into the
DFT-treated region leads to an average change in each tensor components of around
2 ppm. More evidently than with PCM, the origin of this change is to be found almost
entirely due to changes in the zz component (along the C2 axis in pyrimidine). Thus
within the DPM model a faster convergence is observed with respect to the number
of solvent molecules treated using DFT for both the isotropic value and diagonal
components of the NMR shielding tensor.

It is evident that for both the isotropic and each tensor component the DFT(2)/MM
results are better reproduced by DFT(2)/PCM than DFT/MM. This clearly illustrates
that special (QM) treatment of the solvent molecules very close to the solute may be
important whereas the bulk solvent is described equally well using either a PCM or a
DPM. It is also interesting to observe that a good agreement is found instead between
DFT/PCM (f =1.1) and DFT/MM. Such an agreement might be related to the fact
that both models introduce “artificial” short-range solute–solvent interactions (one
in terms of a smaller cavity and the other in terms of purely classical dipoles) while
an important part of these interactions (charge-transfer, dispersion and other QM
effects) is not taken into account.
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Figure 1-5. QM/continuum and QM/MM(pol) errors with respect to experiments for the N nuclear
shielding of the three diazines

We now move to consider the comparison between QM/continuum and
QM/MM(pol) results. The results are presented in Figure 1-5 for the error with
respect to experiments.

As already observed in the previous section, by combining the explicit consider-
ation of the hydrogen bonded water molecules using the DFT(2) approach, in which
the two nearest water molecules are included in the system, with an external PCM
(the DFT(2)/PCM entry) a very good agreement with experimental data is found.
This shows that for chemical shieldings, both specific and bulk effects are impor-
tant. Moving to the DPM model, the obtained results are of comparable accuracy
as the DFT(2)/PCM model. It also has to be noted that small changes are generally
observed passing from completely classical water molecules (DPM) to a description
in which explicit water molecules are introduced into the region treated using DFT
(DFT(2)/DPM).

1.4. CONCLUSIONS

We have presented and compared different solvation models (continuum, discrete,
continuum + discrete) to study solvent effects on molecular properties. In particular,
the nitrogen nuclear shielding, which is known to be very sensitive to even small
modifications of electronic and/or nuclear charge distributions, has been analyzed.
Such alternation/combination of different models has been required to study the
complex nature of solute–solvent interactions when both long-range “polar” and
shorter-range specific H-bond effects are active.

The study can be summarized as a two-step procedure. The first step is an anal-
ysis of the solvent-induced modifications on the property of interest, when obtained
through a solvation continuum model. At this level it is fundamental that the con-
tinuum model is as accurate as possible: in our case this is realized through the
PCM approach. On the basis of the results obtained in this continuum framework



Solvation Models for Molecular Properties 19

(and, in particular, of possible failures), the following step is defined so as to in-
clude all those aspects of the solvation phenomenon which are missing (or are only
partially accounted for). In the numerical practice, this means to introduce different
approaches and to combine them in order to get an accurate evaluation of the solute
response properties and of the way these are modified by the environment.

A single protocol cannot be found. However, some general rules seem to come
out: (1) solute–solvent systems not showing strong specific interactions can be reli-
ably described introducing QM/continuum approaches; (2) strongly interacting (and
especially H-bonding) solute–solvent systems require a combination of different sol-
vation approaches which has to be chosen in relation to the nature of the interactions
on one hand, and to the type of analysis to be done on the other hand; (3) if this
analysis is focussed on molecular response properties, then the solute system has to
be described at an accurate electronic level, otherwise a complete confidence in the
results cannot be obtained; (4) the solvent (or a part of it) can be treated at a lower
level but only if all the interactions have been included in the model in a balanced way
and including polarization effects; (5) H-bonding effects, to be correctly described,
need the inclusion of the long-range interactions due to solvent molecules far beyond
the first solvation shells (i.e., the bulk).

An approach which satisfies all these rules is a statistical analysis based on
QM/MM(pol) calculations on large clusters obtained through MD simulations. An
evident disadvantage is, however, present: the method is quite computationally ex-
pensive requiring first a MD simulation and successively many QM calculations on
different configurations so as to obtain a statistically reliable result. Here, we have
shown that two simplifications are possible.

The first simplification can be introduced any time we have strongly interacting
solute–solvents systems (like diazines in water); in these cases in fact, an alterna-
tive and still accurate description can be obtained with a single set of small clus-
ters (namely the solute plus the few solvent molecules forming the first solvation
shell) obtained in terms of QM geometry optimizations. The second simplification,
by contrast, is valid in all cases (i.e., for strongly or weakly interacting systems)
and it implies to simulate the bulk effect through a polarizable continuum model.
In such a way, the long-range effects of the solvent will be taken into account in an
automatically averaged way using a single calculation.
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CHAPTER 2

THE MULTIPOLE MOMENT EXPANSION SOLVENT
CONTINUUM MODEL: A BRIEF REVIEW
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Abstract: The multipole moment expansion solvent continuum model is being developed by our
group for more than 30 years. A pioneer paper by Rinaldi and Rivail in 1973 provided
the first self-consistent reaction field model, allowing incorporation of solvation effects in
quantum mechanical calculations. It is not the aim of this chapter to make an exhaustive
review of the method and its applications, but rather to summarize the main developments
achieved during the last three decades and to discuss some particularities of the approach
and its potentialities. The question of the solvation energy convergence will be discussed
in some detail. Comparison with other polarizable continuum models will be presented
too.

Keywords: Solvent Effects, Self-consistent Reaction Field, Continuum, Cavity, Polarizable Contin-
uum model, Multipole Expansion.

2.1. INTRODUCTION

Solvent continuum models are now routinely used in quantum mechanical (QM)
studies to calculate solvation effects on molecular properties and reactivity. In these
models, the solvent is represented by a dielectric continuum that in the presence
of electronic and nuclear charges of the solute polarizes, creating an electrostatic
potential, the so-called “reaction field”. The concept goes back to classical elec-
trostatic schemes by Martin [1], Bell [2] and Onsager [3] who made fundamental
contributions to the theory of solutions. Scholte [4] and Kirkwood [5] introduced the
use of multipole moment distributions. The first implementation in QM calculations
was reported in a pioneer work by Rivail and Rinaldi [6,7]. Other fundamental inves-
tigations were carried out by Tapia and Goscinski [8], Hilton-McCreery et al. [9] and
Miertus et al. [10]. Many improvements have been made since then (for a review,
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see for instance [11,16]). The differences between the methods lie, principally, in the
way the reaction field and the solute–solvent interaction energy are computed. This
brief review will focus on the model originally proposed by Rivail and Rinaldi [7]
that uses multipole moment developments to obtain an analytical expression of the
reaction field. Hereafter, the acronym MPE will be employed to design this model
(for multipole moment expansion). Such an acronym was proposed by Tomasi and
co-workers [11] but has not been systematically used in the literature. The model is
sometimes referred to as the “continuum model of Nancy” or simply as the SCRF
(self-consistent reaction field) model, though the latter acronym is used for other
similar approaches too. Main papers and basic equations will be summarized. A dis-
cussion on questions related to the convergence of the multipole moment expansion
will be done. Comparison with other models will then be presented.

2.2. DEVELOPMENT OF THE MODEL: MAIN CONTRIBUTIONS

In the earliest version of the model (1973), an extension of the Onsager’s formula to a
spheroidal cavity for the solvation energy of a polar molecule was incorporated into
a semiempirical Hamiltonian to achieve self-consistent reaction field calculations
[6]. In that work, modifications of the geometry and dipole moment of the water
molecule and water dimers in liquid water were analyzed. Extension to multipole
moment distributions was reported in 1976 using spherical cavities and semiempiri-
cal approaches [7]. The accuracy of the model was significantly improved by the use
of three-axes ellipsoidal cavities together with ab initio Hamiltonians (1982–1983).
[17,18] These constant coordinate cavities (sphere, spheroid, ellipsoid) have the ad-
vantage of leading to analytical expressions for the solvation energy and the corre-
sponding first and second derivatives with respect to nuclear coordinates [19]. The
method was implemented in the Gaussian series of programs [18,20] and in the de-
Mon code [21]. The latter allowed us to perform the first density functional theory
calculations with inclusion of solvation effects [22]. However, molecular-shaped
cavities are necessary for a proper description of the solute–solvent boundary in
most cases and this extension was achieved in the early 1990s [23,24]. As explained
below, some quantities that only depend on the cavity shape and solvent dielectric
constant have now to be computed numerically, but it is still possible to obtain the
first and second derivatives of the energy analytically [25]. The most recent devel-
opments of the MPE approach concern the generalization to multicentric multipolar
developments in general cavities: the procedure to compute energy and first energy
derivatives has been reported in 2004 [26] while second energy derivatives has been
reported very recently [27].

The development of the MPE method opened an avenue to the theoretical analysis
of solvent effects on chemical and physico-chemical properties. The method was
intensively applied to spectroscopical properties in the 1980s [28] including NMR
nuclear quadrupole coupling [29,30], spin–spin coupling constants [31], IR spectra
[28,32–34] vibrational polarizabilities [35], as well as UV–V and circular dichroism
spectra [36–38].
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The possibility to investigate chemical reactions in solution strongly contributed
to the popularization of continuum models. Experimentally, solvent effects on chem-
ical reactions were well known [39] but their interpretation was usually restricted
to modifications of the activation barrier (kinetic constants) through differential sol-
vation between the reactants and the transition structure (TS). Former applications
of the MPE method on reactivity focused on modifications of the frontier orbitals
[40,41]. The SN2 reaction [42] and the abnormal basicity order of amines in water
constituted very interesting test cases for continuum model calculations [43,44]. A
key achievement was the development of analytical algorithms to compute solvation
energy derivatives since direct location of TSs in solution became possible. The first
work describing a fully optimized TS in solution was reported in the early 1990s for
the isomerization of push–pull ethylene derivatives [45,46] and was followed by an-
other application to the Diels–Alder reaction [47,48]. These and other investigations
were decisive to demonstrate that solvation effects can induce large changes on the
geometry of the TS that do not necessarily occur along the gas-phase reaction coor-
dinate. For instance, in the Diels–Alder reaction, the TS geometry changes along an
orthogonal coordinate [49]. Moreover, in processes exhibiting large polarity changes,
the nature of the reaction mechanism itself may change. Stepwise vs concerted 2+2
cycloadditions [50–55] and alkene halogenation [56] illustrated this situation. In an-
other paper, the hydrolysis mechanism of the amide bond was analyzed and water
assistance vs long-range electrostatic solvation effects were analyzed in detail [57].
The MPE model has also been adapted to deal with non-equilibrium solvation on
chemical reactions [58].

2.3. BASIC EQUATIONS

The electrostatic equations for a molecule in a cavity surrounded by a dielectric
continuum are solved by considering the conditions the potential must fulfill [59].
The electrostatic potential must obey Poisson’s equation inside the cavity:

�Vint = −4πρ (2-1)

and Laplace’s equation outside (no charge assumed):

�Vext = 0 (2-2)

Limit conditions at the cavity boundary are defined by

Vint(S) = Vext(S) (2-3)

[∇Vint(S)]n = ε[∇Vext(S)]n (2-4)

where n means the normal component to the surface and ε is the static dielectric
constant of the continuum. Finally, the external potential must also verify:
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Vext(r) → 0 for r → ∞ (2-5)

The general solution of Laplace’s equation is given by

V (r ) =
∑

l

∑

m

(
Am

l r l + Bm
l

r l+1

)
Pm

l (cos θ )eimϕ (2-6)

where A and B are constants and Pm
l stand for associated Legendre polynomials. In

all these equations, l is assumed to vary from 0 to infinity and m from –l to +l. In
the following, we assume a multicentric multipole moment expansion of the solute’s
electrostatic potential, which corresponds to the implementation in current versions
of the MPE model [26].

Because of the required behavior at infinity, the general expression for the external
potential is

Vext(P) =
∑

I

∑

l

∑

m

√
4π

2l + 1

(

γ m
l (I )

1

rl+1
I

)

Y m
l (θI , ϕI ) (2-7)

The sum over I runs over all the centers chosen for the development, usually, all
the atomic nuclei. The internal potential is conveniently written by separating the
contributions coming from the solute and from the polarized dielectric:

Vint(P) = Vint,solute(P) + Vint,dielectric(P) (2-8)

Vint,solute(P) =
∑

I

∑

l

∑

m

√
4π

2l + 1

(

Mm
l (I )

1

rl+1
I

)

Y m
l (θI , ϕI ) (2-9)

Vint,dielectric(P) =
∑

I,J

∑

l,l ′

∑

m,m ′

√
4π

2l + 1
f mm ′
ll ′ (I, J )Mm ′

l ′ (I )rl
J Y m

l (θJ , ϕJ ) (2-10)

where Mm
l (I ) stand for the solute multipole moments computed at center I. There is

no unique way to define these distributed multipoles and some possibilities will be
mentioned below. In the previous equations, γ m

l and f mm ′
ll ′ are unknowns that must be

determined from the limit conditions. These quantities do not depend on the charge
distribution but only on the cavity definition and the solvent dielectric constant. To
obtain them, the following steps are considered [26]:

1) Define a grid of points at the cavity surface. This can be done using the Gepol
program for van der Waals-type surfaces (see below) [60,61].

2) Define a series of probe multipole moments (values and positions are arbitrary,
usually unit values at nuclei positions).

3) For each multipole, set down Poisson’s and Laplace’s equations at each point of
the grid using the expressions for the internal and external potentials above.
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4) Solve the corresponding overdimensioned system of linear equations. The un-
knowns can be separated, i.e., one may compute a set of (l, m) quantities for fixed
I, J, l′ and m′.

Once the reaction field potential Vint,dielectric has been obtained, the total energy of the
solvated solute is computed according to the expression

Es = 〈ψ s
∣
∣ H o

∣
∣ψ s
〉+ 1

2

[
∑

nuclei

zi Vint,dielectric(Ri ) − 〈ψ s
∣
∣ Vint,dielectric

∣
∣ψ s
〉
]

(2-11)

where ψ s is the polarized wavefunction in solution and zi is the nuclear charge of
atom i placed at Ri. The factor 1/2 comes from the fact that the energy cost to polarize
the solvent (positive value) is exactly one half the solute–solvent interaction energy
(negative value) [59]. In terms of the solute’s multipole moments, the total energy is
simply rewritten:

Es = 〈ψ s
∣
∣ H o

∣
∣ψ s
〉− 1

2

∑

I,J

∑

l,l ′

∑

m,m ′
f mm ′
ll ′ (I, J )Mm ′

l ′ (I )Mm
l (J ) (2-12)

In order to compute the wavefunction of the solute, the standard SCF equations
must be modified to minimize this energy and the corresponding Fock operator is

Fμυ = Fo
μυ −

∑

I,J

∑

l,l ′

∑

m,m ′
f mm ′
ll ′ (I, J )Mm ′

l ′ (I )
〈
μ
∣∣Mm

l (J )
∣∣ ν
〉

(2-13)

A similar expression is obtained for the Kohn–Sham operator in density func-
tional. One should note that because of the quadratic nature of these SCRF equations
on the molecular orbital coefficients, the 1/2 factor in the total energy is not present in
the Fock operator.

2.4. CAVITY DEFINITION

The definition of the cavity (shape and size) is an intricate and delicate question that
may have a considerable influence on the results (even qualitatively). In the original
Onsager’s theory, the molecular cavity was defined as a sphere and the volume was
taken equal to the partial molecular volume of the solute in the solution. In practice,
this volume can be assumed to be equal to the average volume in the pure liquid.
Experimental values are then easily deduced from the experimental density of the
liquid at 20◦C when this quantity is available. Obviously, in SCRF applications, it
became rapidly necessary to achieve a theoretical definition of the cavity applicable
to any molecular structure. In former works carried out by our group [28,62], it was
shown that a simple linear relationship exists between the experimental volume de-
rived from the liquid density (Onsager’s recipe) and the van der Waals volume, i.e.,
the volume enclosed by a set of overlapping atomic spheres with Bondi radii [63].
Roughly, this relationship is
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Vexp ≈ 1.7VvdW (2-14)

This equation provides a way to estimate the molecular cavity volume for any
system but the shape of the cavity has also to be defined. Constant coordinate cav-
ities such as the sphere or the ellipsoid are obviously not appropriate for most sys-
tems and they have been almost definitively abandoned in favor of molecular-shaped
cavities. The majority of current continuum methods, and MPE as well, use van
der Waals-type molecular surfaces. Atomic radii are in general larger than standard
Bondi radii so that the obtained surface is close to the so-called solvent-excluding
surface [64,65]. Consistent with the expression for the volume given above, the order
of magnitude of atomic radii should be

R ≈ (1.7)1/3 RvdW ≈ 1.2 RvdW (2-15)

This corresponds to the standard definition for atomic radii in MPE applications
(some previous versions used values close to 1.3). The factor 1.2 is also used in PCM,
where it was introduced empirically on the basis of different tests and considerations
[15].

The atomic radii may be further refined to improve the agreement between ex-
perimental and theoretical solvation free energies. Work on this direction has been
done by Luque and Orozco (see [66] and references cited therein) while Barone
et al. [67] defined a set of rules to estimate atomic radii. Further discussion on this
point can be found in the review by Tomasi and co-workers [15]. It must be noted
that the parameterization of atomic radii on the basis of a good experiment–theory
agreement of solvation energies is problematic because of the difficulty to separate
electrostatic and non-electrostatic terms. The comparison of continuum calculations
with statistical simulations provides another way to check the validity of cavity defi-
nition. A comparison between continuum and classical Monte Carlo simulations was
reported by Costa-Cabral et al. [68] in the early 1980s and more recently, molecular
dynamics simulations using combined quantum mechanics and molecular mechanics
(QM/MM) force-fields have been carried out to analyze the case of water molecule
in liquid water [69].

An interesting alternative to van der Waals cavities is the use of isodensity or
isopotential surfaces. Rivail et al. [70] demonstrated that for a given cavity volume,
the electron isopotential surface is the one containing the largest electronic density,
thus giving a physical meaning to this surface. Nevertheless, isodensity and isopoten-
tial cavities are computationally demanding, as they have to be recomputed at each
SCF iteration, and are not quite used in practice.

2.5. DISTRIBUTED MULTIPOLES

As said above, there is no unique way to represent the solute’s charge distribution by
a multicentric multipole expansion. This point has been discussed by Stone [71] in
the general case and by Rinaldi et al. [26] in the context of the MPE method. The
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authors proposed to use the definition given by Vigné-Maeder and Claverie [72] and
Sokalski and Poirier [73] when the centers of the expansion are the nuclei. In the
later case, the components of the multipole moments Mm

l (I ) are given by

Mm
l (I ) =

∑

μ∈I

∑

ν

Pμν

〈
μ
∣∣Mm

l (I )
∣∣ ν
〉

(2-16)

where Mm
l (I ) is the multipole moment operator centered on I. The sum runs over

all atomic orbitals centered on atom I. The zeroth-order moment M0
0 (I ) represents

the Mulliken net atomic charge of the atom so that this distribution is called [26]
Mulliken–Sokalski–Poirier. A similar definition but using symmetrically orthogo-
nalized orbitals [74], instead of canonical orbitals, was proposed and referred to as
the Lowdin–Sokalski–Poirier distribution [26]. Distributed multipoles based on a
fitting procedure of the electrostatic potential, as that proposed in the OPEP code
[75], would be quite efficient to obtain a faster convergence of the solvation energy
but they would be much more time consuming in SCRF calculations. Work is in
progress, however, to develop a method in which the multipole distribution is limited
to first-order terms, i.e., to point charges, fitting the electrostatic potential [76].

2.6. SOLVATION ENERGY CONVERGENCE

Based on well-known problems in the description of intermolecular interactions
though multipole moment expansions, it has been sometimes argued in the literature
that the MPE solvation energy converges slowly, creating some confusion about the
performances of the model. This point is discussed now but we advance that, in
practice, convergence is quite fast provided one applies the model in a proper way. It
will be shown that monocentric multipole expansions for the solvation energy may
be safely used for small to medium size molecules while multicentric expressions
are more adequate for larger systems.

Thanks to efficient recurrence formulae, multipole moments and multipole mo-
ment derivatives can be calculated at very high order with a low computational cost.
The calculation of reaction field factors, however, may become computationally ex-
pensive at high order due to the increasing number of linear equations to be solved.
Thus, in practice, the multipole moment expansion is cut off at a maximum value of
l (lmax), usually taken around 6. In order to get an order of magnitude of the error
introduced by the truncation, let us consider Kirkwood’s equations [5] for the free
energy of a charge distribution of charges qi and ri in a spherical cavity of radius a:

�Gelec,solv = −1

2

∞∑

�=0

�∑

m=−�

(� + 1)(ε − 1)

(� + 1)ε + �

Mm2
l

a2�+1
(2-17)

where the multipole moments

Mm
l =

∑

i

qi Sm
l (ri ) (2-18)
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Sm
l (ri ) =

√
4π

2l + 1
rl

i Y m
l (θi , ϕi ) (2-19)

are computed at the cavity center. Since the charges are assumed to be inside the
cavity, ri < a, and the series is convergent. Convergence will be fast for ri <<< a
and will become slower for ri values approaching a. In other terms, the solvation
energy can always be obtained at a desired accuracy using sufficiently high values
of l. To further exploit this model, let us consider the case of a single off-centered
point charge q placed along the z-axis at a distance r from the cavity center (see
Figure 2-1) and a very high dielectric constant. The corresponding solvation energy
may be approximated by

�Gsolv ≈ − q2

2a

∞∑

�=0

( r

a

)2l
(2-20)

where we have used

Mm
l = qr � (2-21)

Since

ρ =
( r

a

)2
< 1 (2-22)

one may sum the series
∑∞

�=0 ρl and write

�Gsolv ≈ − q2

2a (1 − ρ)
(2-23)

Figure 2-1. Simple model to evaluate convergence speed in multipole expansion of the solvation energy
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This expression may be interpreted as a generalized Born formula for an off-
centered charge in a spherical cavity. Accordingly, for a development up to the lmax

order, the percentual error in total energy may easily be shown to be

error ≈ 100ρ(lmax+1) (2-24)

(note that it does not depend on q). In Figure 2-2, this error is represented as a
function of r/a and lmax. As shown, for a typical lmax value of 6, the energy error
is small (below 5%) provided r/a does not exceed 0.8. One may roughly estimate the
largest molecular size that would satisfy such a condition. Assuming arbitrarily that q
represents a hydrogen atom placed at a distance 1.44 Å from the cavity surface (i.e.,
1.2∗Rvdw with Rvdw = 1.2 Å for H), one obtains a = 7.2 Å and r = 5.8 Å. Therefore, the
largest distance of an atom to the cavity center should be slightly smaller than 6 Å.
For larger molecules, r/a becomes closer to one for peripheral atomic nuclei and the
convergence of monocentric developments will require larger values of lmax. In that
case, multicentric approaches should be more efficient. The right plot in Figure 2-2
illustrates this. It gives the lmax value required to obtain a predetermined error for
a charge at a distance r from the center of the development. One should note that
lmax varies almost linearly with r and that reasonably good results (5% error) may be
obtained with lmax ≈ r with r expressed in Å.

The convergence of the solvation energy in the MPE method has been discussed in
previous papers from other points of view. Chalmet and Ruiz-López [69] focused on
the convergence of the reaction field for the water molecule in liquid water. Curutchet
et al. [77] showed that the error in solvation energy for a series of 18 polar molecules
in cyclohexane was smaller than 3% when the multicentric multipole moment de-
velopment was carried out at lmax = 6. The system considered were CH3F, CHCl3,

(a) (b)

Figure 2-2. Analysis of electrostatic solvation energy error for an off-centered charge in a spherical cavity
according to a monocentric multipole moment development. Left: error as a function of the ratio r/a and
lmax. Right: required lmax value as a function of the charge distance to the cavity center (r) assuming
a = r +1.44 Å



32 M.F. Ruiz-López

C6H5SH, CH3COOCH3, CH3CH2NO2, CO(CH3)2, CH3CN, C6H5CHO, CH3NH2,
C6H5N, CH3OH, H2O, C6H5OH, CH3COOH, CH3CONH2, PO(OH(OCH3)2), cyto-
sine and guanine. In Figure 2-3, we have detailed the convergence of the electrostatic
solvation energy for these systems (HF/6-31 G∗ calculations). Rinaldi et al. [26] dis-
cussed the convergence when different multipole moment distribution types are used
in comparison with monocentric expansions.

Before closing this section, a final comment is necessary. In QM calculations,
some charge is always present outside the cavity due to electronic density tails, so
that the basic hypothesis of the continuum approach is not formally verified. Never-
theless, this “escaped” or “outlying” electronic charge density is usually small and
does not introduce specific convergence problems (though there is always an error
associated to it). Modifications of the standard PCM continuum model to account for
the external density have been proposed using either charge normalization techniques

Figure 2-3. Convergence of electrostatic solvation energy in the MPE method for a series of 18 polar
molecules in cyclohexane
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or the integral equation formalism (see Discussion and References in reference [78]).
In the MPE method, no correction for the external charge is in principle necessary
since the reaction field factors are independent of the solute charge. One simply
assumes that the reaction field computed using the full molecular moments of the
solute is valid in all the space [79]. This approximation could become unsuitable for
systems exhibiting a large outlying electron density. Such cases may be considered
as “pathologic” in SCRF calculations using either MPE or PCM and may require
specific adaptations of the model or, alternatively, a discrete-continuum approach.

2.7. NON-ELECTROSTATIC CONTRIBUTIONS

The electrostatic solvation energy is only a part of the total solvation energy. Cav-
itation, dispersion and repulsion terms must be added. We show below that the
MPE method leads to similar electrostatic energies than the polarizable continuum
model (PCM) of Tomasi and co-workers [10], provided the same cavities are used.
Therefore, non-electrostatic terms in these methods may be computed using the same
computational strategies [15]. We emphasize the fact that accurate non-electrostatic
contributions are often difficult to compute since they are based on parameterized
formulae that cannot be directly compared to experiment. The obtained data must
therefore be used with prudence, especially if they are expected to play a major role
in the process under study. Fortunately, in many circumstances, non-electrostatic
terms are small and/or vary little, so that they can be neglected. Tuñón et al. [80]
developed a parameterized expression for the MPE method using an expression of
the type

�GNE
sol =

∑

i

γi Si (2-25)

where Si is the solvent-accessible surface area contribution for the solute’s atom i
and γ i is an atom-type parameter obtained from fitting calculations to experimental
solvation energies. Parameters were reported for several atom types and for solvation
in liquid water.

2.8. COMPARISON WITH OTHER SOLVENT MODELS

Curutchet et al. [77] compared the result obtained by the PCM method, the SM5
method of Cramer, Truhlar and co-workers [81–85] and the MPE method. Calcula-
tions with the PCM method were carried out using the MST program (for Miertus–
Scrocco–Tomasi) developed by Luque, Orozco and co-workers [66,86–89]. Main
conclusion was that the three methods lead to comparable solvation energies. Cavi-
ties parameterized for the MST (PCM) model are largely transferable to MPE model.
In other words, both methods predict very close solvation energies when they assume
identical cavities. The SM5 method must use smaller cavities in order to obtain
comparable electrostatic energies, as is the case in the current implementation of
this generalized-Born method. Figure 2-4 illustrates the excellent agreement between
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Figure 2-4 Comparison of electrostatic solvation energies obtained with the PCM and MPE methods for
18 polar molecules in aqueous solution (see text). Left: self-consistent reaction field calculations at the
HF-6-31 G∗ level. Right: calculations using gas-phase CM2 net atomic charges

PCM and MPE calculations for the list of molecules given above. The agreement is
especially good when net atomic point charges (gas-phase class IV CM2 [90] values)
are used instead of doing a full SCF calculation. This is easily explained by the fact
that the external electronic density plays a different role in both methods. When point
charges are used, the whole charge distribution is inside the cavity and both methods
are formally equivalent.

Further comparison between PCM and MPE was reported in the paper by Rinaldi
et al. [26] using several multipole moment distribution types. Again, an excellent
agreement was obtained. The authors reported examples for which the computa-
tional time with the MPE method represents only 30% of the time required for the
equivalent computation with PCM (for details on code versions, see that paper). MPE
and PCM results are also found comparable for IR properties [91] as well as for UV
spectra [91,92] of substituted coumarins and chromones at the TD-DFT level.

2.9. CONCLUSIONS AND PERSPECTIVES

Continuum models are very useful to evaluate solvent effect on physico-chemical
properties and chemical phenomena at a low computational cost. The principles of
the MPE and PCM methods are similar and not surprisingly, very close results are
obtained when the same cavity definition is used. Probably, the main advantage of the
MPE method lies in the independence of the reaction field factors with respect to the
charge distribution, which makes SCRF calculations faster (the factors are computed
only once for a given geometry) and solvation energy derivatives easier (analytical
expressions are obtained). Besides, the use of a multipole moment expansion of the
energy allows interpretation of the solvent effect on the basis of quantities that are
familiar to the experimental chemist (point charges, local dipoles, etc.). Moreover,
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the use of a multicentric expansion allows the application to large molecules without
the necessity of using high-order expansions. Difficulties may arise in both MPE
and PCM methods when the outlying charge is significant. Thus, particular atten-
tion has to be paid when dealing with anions, for which a cavity definition is not
trivial: solvent molecules should be closer to the solute sharing the excess electronic
charge. Some works have also shown that a continuum representation of the medium
may be inaccurate to estimate solvent effects on hydrated zwitterions [93–95]. In all
these cases, including a few explicit solvent molecules interacting with the solute
represents a straightforward solution. To further reduce the computational time, a
three-layer QM/MM/continuum approach [96] in which the solvent molecules are
described at the molecular mechanics level might be employed.

Current developments of the MPE continuum model focus on the combination
of a multicentric multipole moment expansion of the reaction field combined with a
discrete charge representation of the solute charge distribution fitting the electrostatic
potential. This scheme leads to a simple formulation that parallels generalized-Born
(GB) methods, though in the MPE-GB approach, the only parameter that needs to be
defined is the cavity surface [76].

LIST OF ABBREVIATIONS

CM2 Charge model 2
DFT Density functional theory
GB Generalized-Born
MM Molecular mechanics
MPE Multipole expansion
MST Miertus–Scrocco–Tomasi model
PCM Polarizable continuum model
QM Quantum mechanical
SCRF Self-consistent reaction field
SM5 Solvation model 5
TD Time dependent
TS Transition structure
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16. Luque FJ, Curutchet C, Muñoz-Muriedas J, Bidon-Chanal A, Soteras I, Morreale A, Gelpi JL,

Orozco M (2003) Phys Chem Chem Phys 5:3827
17. Rivail JL, Terryn B (1982) J Chim Phys Phys Chim Biol 79:1
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37. Ruiz-López MF, Rinaldi D (1984) Chem Phys 86:367
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46. Pappalardo RR, Sánchez-Marcos E, Ruiz-López MF, Rinaldi D, Rivail JL (1993) J Am Chem Soc

115:3722
47. Cativiela C, Garcı́a JI, Mayoral JA, Royo AJ, Salvatella L, Assfeld X, Ruiz-López MF (1992) J Phys
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72. Vigné-Maeder F, Claverie P (1988) J Chem Phys 88:4934
73. Sokalski WA, Poirier RA (1983) Chem Phys Lett 98:86
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Abstract: We present here the discrete reaction field (DRF) approach, which is an accurate and
efficient model for studying solvent effects on spectra, chemical reactions, solute prop-
erties, etc. The DRF approach uses a polarizable force field, which is (apart from the
short-range repulsion) based entirely on second-order perturbation theory, and therefore
ensures the correct analytical form of model potentials. The individual interaction compo-
nents are modeled independently from each other, in a rigorous and straightforward way.
The required force field parameters result as much as possible from quantum-chemical
calculations and on monomer properties, thereby avoiding undesired fitting of these pa-
rameters to empirical data.

Because the physical description is correct and consistent, the method allows for ar-
bitrary division of a system into different subsystems, which may be described either
on the quantum-mechanical (QM) or the molecular mechanics (MM) level, without sig-
nificant loss of accuracy. This allows for performing fully MM molecular simulations
(Monte Carlo, molecular dynamics), which can subsequently be followed by performing
QM/MM calculations on a selected number of representative snapshots from these simu-
lations. These QM/MM calculations then give directly the solvent effects on emission or
absorption spectra, molecular properties, organic reactions, etc

3.1. INTRODUCTION

Ballhausen said once, starting his lecture on the Jahn–Teller effect: ‘The Jahn–Teller
effect does not exist’ [1]. J–T, relativistic and quantum effects exist by the grace of
incomplete descriptions of systems under study. In contrast, solvent effects are real
and part of everyday life of the majority of chemists.

Hence accounting for solvent effects in computational chemistry—or in general,
the modeling of molecular properties in the condensed phase—is of paramount
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importance because chemistry overwhelmingly takes place in solution, and molec-
ular properties differ in that environment often considerably in comparison with
the gas phase. From a computational chemical point of view, the focus will be on
a single molecule (or a molecular system) while the solvent effects are treated as
perturbations of the molecular system. The latter (the solute) is then treated with
some quantum-mechanical (QM) method while the rest is treated by a much simpler,
usually classical, method [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].

The classical descriptions can in general be divided into two groups depending
on the detail in which the solvent is considered. The first group consists of the con-
tinuum models [7,9,14,15] in which the solvent is treated as a continuous medium
characterized only by its dielectric constant. Because of their efficiency in terms
of computer demands, these methods still dominate the field of computing solvent
effects. However, the microscopic structure of the solvent and specific interactions
are here completely neglected and therefore provide a poor description of short-range
interactions. Moreover, the size and the shape of the cavity in which the solute is em-
bedded affect the results [19]. An ab initio approach for choosing the solvent radius
(taking it from the macroscopic density and molecular mass of the solvent) [20] has
been suggested recently to avoid ambiguities with empirically adapted solvent radii.
However, since the boundary is in principle arbitrary the charge distribution of the so-
lute in all practical cases will extend into the continuum. In particular Chipman [21]
but also Mennucci [22] and Cossi [23] discuss this charge penetration and describe
methods to account for it. These improvements will make the straight continuum
approaches less dependent on the actual size and shape of the cavity. Nevertheless
some formal problems will remain. (See Figure 3-1) First, a dielectric continuum
can only stabilize a charge distribution and the more so the closer the charges are
to the cavity boundary (or it does nothing: for an infinite large cavity, or for ε = 1).
This means that the interactions of the electrons of a solute will be larger than that of
the nuclei because the former are on average closer to that boundary. The electronic
charge distribution will therefore be inflated with respect to the gas phase situation,
an effect that is not without consequences [24]. Next, in general the continuum is

Figure 3-1. Schematic representation of atom in dielectric continuum. �: wave function in vacuo (solid
line) and solvated (dashed line); ε: dielectric constant ; a: cavity radius; g(r): radial distribution of solvent
molecules
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assumed homogeneous, which should force the cavity to go beyond the second max-
imum of g(r). Finally, the dielectric constant is a macroscopic property connected
with the polarization of the solvent, i.e., with the time- and space-averaged (induced)
dipoles. The solute–solvent interaction then will be of type <ρsolute> ⇔ <Msolvent>,
i.e., the average charge density (ρ) interacts with the averaged dipoles (M) of the
environment, while in actual experiments results are obtained as (averaged) instan-
taneous interactions, i.e., of type <ρsolute ⇔ Msolvent> which are in general different
from the former.

An extension of the continuum model is the inclusion of explicit solvent
molecules in the cavity—treated fully quantum-mechanically together with the
solute—in order to get a better grip on specific interactions like hydrogen bonding.
The best approach to this is to take two or three solvation shells. Of course, some
statistical mechanics procedure is needed in order to obtain a reasonable solvent dis-
tribution g(r), and that puts this approach into the field of mixed quantum-classical
mechanical (QM/MM) models. An early application of this model [25] revealed that
only the interaction between the solute and the continuum survives statistically. By
adding sufficient solvent shells and increasing the cavity size accordingly, this in-
teraction can be made arbitrarily small, thus making the presence of the continuum
superfluous [24,26].

To the second group belong the discrete solvent models in which one or more
solvent molecules are treated explicitly. Among these are the supermolecular model
[27], the frozen density functional approach [28], ab initio molecular dynamics
(AIMD) [29] and the combined quantum and molecular mechanics (QM/MM)
models [2,3,4,5,6,8,10,13,18,30,31,32]. In both the supermolecular and the AIMD
models all molecules are treated on the same level of theory. This can give highly
accurate descriptions of the solute–solvent interactions but due to the computational
demands it becomes rapidly impractical so that either only a few of the (small) sol-
vent molecules can be included or the actual level—QM method, basis sets—has to
be reduced. Moreover, the definition of the molecular properties requires an arbi-
trary partitioning of the wave function or the density among the molecules, much in
the same way as is necessary for defining atomic charges. Due to this arbitrariness
molecular properties cannot be defined for individual molecules [33,34,35] and will
depend on the particular partitioning employed. This is for instance shown in an
AIMD study of ice Ih [33], where it was found that the average dipole moment ranges
from 2.3 to 3.1 D.

In the QM/MM method the system is usually a priori divided into QM (the solute)
and classical (MM, the solvent) parts, and an effective operator describes the interac-
tion between the two subsystems. The solvent molecules are treated with a ‘classical’
force field (‘classical’ meaning that there are no elementary particles or quantum ‘ef-
fects’) that opens the possibility to take a much larger number of solvent molecules
into account. Optionally, the whole system can be embedded in a continuum, e.g., for
taking large-range interactions into account. Similar to the continuum approach, the
solute is separated from the solvent and its molecular properties are therefore well
defined. The remaining problem is to find an accurate approximate representation of
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the solvent molecules, the solute–solvent and the solvent–solvent interactions [36].
The discrete representation of the solvent molecules requires sampling of the de-
grees of freedom of the solvent. This is typically done using Monte Carlo (MC) or
molecular dynamics (MD) techniques to generate a large number of possible solvent
configurations. This leads to many QM/MM calculations for the solute’s properties
which must be averaged or represented in another way. Hence the QM/MM method
is often employed at a semi-empirical level of the QM theory.

The force fields used in the QM/MM methods are typically adopted from fully
classical force fields. While this is in general suitable for the solvent–solvent in-
teractions it is not clear how to model, e.g., the van der Waals interaction between
the solute and the solvent. The van der Waals interactions are typically treated as
Lennard-Jones (LJ) potentials with parameters for the quantum atoms taken from
the classical force field or optimized for the particular QM/MM method for some
molecular complexes. However, it is not certain that optimizing the (dispersion and
short-range repulsion) parameters on small complexes will improve the results in a
QM/MM simulation of liquids [37].

Classical force fields that take polarization into account explicitly, the so-called
polarizable force fields [2,3,11,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,51,
52,53], were originally not popular. The arguments against using them are mostly
based on ‘efficiency’ in terms of computing times. Energy contributions of about
10% to the interaction of (up to) trimers [40,41] were considered of no consequence:
instead, polarization in simulations of, e.g., liquid water was taken care of by increas-
ing the monomer dipole moment from the experimental gas phase value of 1.86 D
to its condensed phase value of about 2.7 D [40]. Refining this in order to get better
agreement with details of the radial distribution led, e.g., to the TIP4P model [54].
Recently the trend is to use (ab initio) QM calculations as a guide, instead of fitting
force field parameters (of total energy expressions) to experimental results.

Nowadays, the interest in polarizable force fields has regained ground, both for
purely classical and QM/MM simulations. It was shown that it is important to con-
sider also the polarization of the solvent molecules [40,55,56]. Since the inclusion
of the solvent polarization leads naturally to an increase in computational time, most
studies still ignore this contribution and use the more simple ‘effective’ pair po-
tentials. If the solvent polarization is included it is usually treated using either an
isotropic molecular polarizability [11,39,52] or using distributed atomic polarizabil-
ities [31,32,46,49,53] according to the Applequist scheme [57,58,59]. However, at
short distances the Applequist scheme leads to the so-called ‘polarization catastro-
phe’ due to the use of a classical description in the bonding regions. Thole [59]
avoided this problem by introducing smeared out dipoles, which mimic the over-
lapping of charge distributions at short distances. Thole’s model, which will be dis-
cussed in detail later, has been shown to be quite successful in reproducing molecular
polarizability tensors using model atomic polarizability parameters independent of
the chemical environment of the atoms [59,60]. Karlström et al. [18,36] have a dif-
ferent approach in which solute–solvent and solvent–solvent interactions—including
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polarization, dispersion and short-range repulsion—are modeled based on specific
QM calculations by keeping a large amount of ‘orbital’ information.

Recently, we have seen a renewed interest in the development and application
of polarizable force fields [61,62,63,64,65,66]. Although these studies are all con-
cerned with a proper description of polarization effects in chemical systems, the
philosophy behind the approaches is sometimes substantially different from Thole’s.
In the paper by Mooij et al. [61], the separate energy terms have a well-defined
physical meaning, which enhances transferability to other molecules. Moreover, the
parameters were obtained from ab initio calculations on the level of Møller–Plesset
second-order perturbation theory (MP2) [67] using large basis sets and corrected
for the basis set superposition error (BSSE). In contrast Kaminski et al. [62] fitted
atomic polarizabilities either to the change in electrostatic potential (ESP) at a set
of grid points outside the van der Waals surface of the molecule or to three-body
energies of five small molecules [64]. The use of fitting on a grid, in their first
study, makes the polarizabilities depend on the choice of the grid, a similar prob-
lem met with ESP charges [48,68,69,70]. In their second paper [64] it is unclear
which method has been used to obtain the ‘three-body’ energies and whether the
results have been corrected for BSSE. More importantly, their ‘three-body’ energies
are obtained from intramolecular polarization only, while three-body energies usu-
ally concern intermolecular interactions [71], and the polarizabilities will be used to
describe intermolecular interactions. One of the main objections to studies such as
those by Kaminski et al. [62,64] is that the polarizability enters as a fitting parameter,
thereby ignoring the fact that the polarizability is an intrinsic property of an atom or
molecule. This is in contrast to the two other papers [61,63], as well as previous work
in our group [59].

Without any doubt the most advanced force field is the water potential of
Bukowski et al. [72] containing pairwise and many-body interactions and describing
the interactions with an accuracy < 0.07 kcal/mol and predicting the properties of
the water dimer and of liquid water in excellent agreement with experiments. But it
requires 2510 grid points and clusters of up to 32 monomers, CCSD(T) calculations
in quadruple-zeta basis (QZ++) to fit all the parameters, and it is highly specific.
This is obviously beyond practical use for the large (bio-)organic molecules we have
in mind, and for that purpose it is more advantageous to use the transferable model
potentials like the polarizable force field used in our group.

In general, the interaction between two systems, having a geometry symbolically
represented by R, is written as

�U int
QS(R) = UQS(R) − (U 0

Q + U 0
S ) = �U elst

QS (R) + �U pol
QS(R)

+ �U disp
QS (R) + �U rep

QS(R)
(3-1)

with UQS the total energy of the QS system, U 0
X the ground state energy of sys-

tem X, �U elst
QS , �U pol

QS, �U disp
QS and �U rep

QS , respectively the electrostatic, polarization,
dispersion and (short-range) repulsion energies between two subsystems Q and S.
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For multi-molecular assemblies one has to consider whether the total interaction en-
ergy can be written as the sum of pairwise interactions. The first-order electrostatic
interaction is exactly pairwise additive, the dispersion only up to second order (in
third order a generally small three-body Axilrod–Teller term appears [73]) while the
induction is not at all pairwise: it is non-linearly additive due to the interference of
electric fields from different sources. Moreover, for polar systems the inducing fields
are strong enough to change the molecular wave functions significantly.

Fitting of model potentials to supermolecular interactions like in Eq. (3-1) has
its disadvantages: the calculations have to be repeated many times and a predefined
analytical expression of the model potentials in terms of atomic parameters is re-
quired. These parameters are not easily transferred to other situations. The internal
state of, e.g., system A depends on the presence of another system X, and this will
be different near system Y. Furthermore, the chosen analytical form of the potential
may give rise to problems and errors. For example, Hartree–Fock (HF) calculations
fitted to a power series in 1/r suggest that the 1/r6 terms have to do with dispersion,
which is not part of the HF energy. Finally, such empirical potentials are best for
describing situations close to those to which the parameters are fitted. Whenever the
situation is very different from that, the results will be doubtful.

Our QM/MM model—the discrete (or direct) reaction field (DRF) model—treats
the various terms in Eq. (3-1) separately and on the basis of their own intrinsic
physical meaning [3,10,31,32,38,59,74]. Historically, DRF was developed to study
biochemical problems, in particular for unraveling the reaction mechanism of pa-
pain. For that we went stepwise from a model active site [75] to a model active
site plus a point charge representation of an �-helix [76,77,78], then to a model
with a polarizable helix [78,79], and finally to an all-atom treatment of the enzyme
[41]. Furthermore, we extended these studies with an exercise—with the continuum
version—to show that a solvent-exposed residue has no effect on the reaction mech-
anism [80]. Up to then we considered the protein as a peculiar solvent; the ‘real’
solvents, requiring extensive MC or MD simulations, came later.

In most cases we apply now the method—coined by Coutinho and Canuto [81,82]
as sequential MC (SMC) or sequential MD (SMD)—in which an all-classical simu-
lation is performed from which, after equilibration, a relative small number of snap-
shots of uncorrelated solute–solvent configurations are collected. In Ref. [81] these
authors show that a relatively small number of configurations—small with respect to
the total number generated in the simulation—contains all statistically relevant in-
formation. Then from QM or QM/MM calculations on the snapshots the (electronic)
molecular properties in solution are obtained by averaging, or otherwise collected.
In the original paper the saved solute–solvent configurations were subjected to an
all-QM calculation. We apply this technique generally with only the solute as QM
part for reasons already mentioned above.

The total Hamiltonian in QM/MM is as usual written as

Ĥ (rq ) = Ĥ 0(rq ) + ĤQM/M M (rq , rs) + ĤM M (rs) (3-2)
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with Ĥ 0(rq ) the vacuum Hamiltonian of the QM part, ĤM M (rs) the Hamiltonian of
the MM part and ĤQM/M M (rq , rs) the operator describing the interaction between
the QM and MM particles. We note that the last two operators contain electrostatic,
many-body polarization, short-range repulsion and dispersion terms. Electrostatic
potentials are modeled with point charges on atoms (or, if necessary, on additional
points, obtained from QM calculations), while polarization and dispersion are de-
scribed in terms of (model) atomic polarizabilities resulting from calculations or
experiment. We want the parameters in the model Hamiltonians to be transferable,
and requiring no fitting to energies, structures or thermodynamical properties of the
system under study. The parameters of DRF are therefore based on properties of
monomers or, if monomers are too large, of model subsystems, and on second-order
perturbation theory. The only term so far not coming from perturbation theory is the
short-range repulsion, which we have borrowed from other force fields.

The QM/MM version of DRF has been implemented in HONDO [83], ZINDO
[84], GAMESS [85] and ADF [86] while DRF90 [87] is our classical statistical
mechanics package.

In Section 2 we give the theoretical background and implementation of DRF and
in Section 3 some examples to validate the model. Section 4 is dedicated to applica-
tions where we address a wide variety of solvent effects.

3.2. THEORY

3.2.1. Perturbation Theory

In a quantum-chemical description of the two subsystems Q and S of the preceding
section the total wave function—in the long-range approximation—can be written as

�QS(rq , rs) = �Q(rq ) ⊗ �S(rs) (3-3)

where �X is the wave function and rX the coordinates of particles of system X. Since
the short-range repulsion (�U rep

QS , cf. Eq. 3-1) in this approximation vanishes, and the
total energy of the system is obtained as

UQ+S = 〈�Q�S

∣∣ Ĥ 0
Q + Ĥ 0

S + V̂QS

∣∣�Q�S
〉

(3-4)

where Ĥ 0
Q(rq ) and Ĥ 0

S (rs) are the Hamiltonians of the isolated systems and

V̂QS =
∑

q∈Q
s∈S

zq zs

|rq − rs | . (3-5)

the interaction operator, with {z} the charges (electrons, nuclei) in the system. Be-
cause the overlap is negligible, the integrations involved in Eq. (3-4) can be evaluated
locally, e.g.,
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�Uint =
〈

�Q(rq )

∣∣∣∣
∣∣

∑

q∈Q

zq 〈�S(rs)|
∑

s∈S

zs∣∣rq − rs

∣∣ |�S(rs)〉S

∣∣∣∣
∣∣
�Q(rq )

〉

Q

=
〈

�Q(rq )

∣
∣∣∣∣∣

∑

q∈Q

zq V̂S(rq )

∣
∣∣∣∣∣
�Q(rq )

〉

Q

(3-6)

so that the problem of Eq. (3-4) is partitioned into smaller ones, for which the equa-
tions can be written as

UQS = 〈�Q(rq )
∣∣Ĥ 0

Q(rq ) + V̂ 0
S (rq )

∣∣�Q(rq )
〉 = U 0

Q + �Uint (3-7)

which is equivalent to solving a Schrödinger equation for system Q in an external
potential. The result, �Q , can obviously be used to define an effective potential on S,

V̂Q(rs) = 〈�Q(rq )
∣
∣
∑

s∈S

zq

|rq − rs |
∣
∣�Q(rq )

〉
Q

(3-8)

leading to a new �′
S(rs), etc., a process that can be repeated until self-consistency.

This is a simplified sketch of the group function approach originally described by
McWeeny [88] and reformulated for non-orthogonal groups by Mehler [89,90,91].

It is better to analyze the interaction energy by means of perturbation theory
(PT) [92,93,94,95,96] not only because �Uint is in general much smaller than the
intramolecular U 0

X , but mainly because PT sets the correct analytical form of possible
model potentials. Up to second order we have

�U (1)
int = 〈�0

Q�0
S

∣∣VQS

∣∣�0
Q�0

S

〉
(3-9)

�U (2)
ind =

∑

k �=0

∣∣〈�0
Q�0

S

∣∣ VQS

∣∣�k
Q�0

S

〉∣∣2

U 0
Q − U k

Q

+
∑

l �=0

∣∣〈�0
Q�0

S

∣∣ VQS

∣∣�0
Q�l

S

〉∣∣2

U 0
S − Ul

S

(3-10)

�U (2)
disp =

∑

k,l �=0

∣∣〈�0
Q�0

S

∣∣ VQS

∣∣�k
Q�l

S

〉∣∣2

U 0
Q − U k

Q + U 0
S − Ul

S

(3-11)

where U n
X is the nth excited state of system X. Introducing the multipole expansion

about a center x of the Coulomb potential of X at y:

1

|ry − rx | =
∑

n

(
1

n!

)
T (n)

yx,�1,�2,···,�n
(3-12)
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with T (n)
xy,�1,�2,···,�n

= ∇xy,�1 . . . ∇yx,�n

(
1/Rxy

)

T (0)
y X = 1

|ry − x| ; T (1)
yX,� = −

(
ry − x

)
�

|ry − x|3 ;

T (2)
y X,�ϑ =

3
(
ry − x

)
�

(
ry − x

)
ϑ

|ry − x|5 − ��ϑ

|ry − x|3

(3-13)

Inserting the expansion in the second term in Eq. (3-10) leads to

∑

l �=0

∣∣〈�0
Q�0

S|VQS|�0
Q�l

S

〉∣∣2

U 0
S − Ul

S

=
∑

l �=0

∣∣∣
〈
�0

Q�0
S|T(1)

s Q(rq − q)|�0
Q�l

S

〉∣∣∣
2

U 0
S − Ul

S

=
∣∣∣
∣

〈
�0

Q |
(

(rq − s)

|rq − s|3
)

|�0
Q

〉∣∣∣
∣

2∑

l �=0

∣∣〈�0
S|(rq − q)|�l

〉∣∣2

U 0
S − Ul

S

= −1

2

〈
eQ(s)

〉2
�S

(3-14)

and, hence,

ΔU (2)
ind = −1

2
〈eS(q)〉2 �Q(q) − 1

2

〈
eQ(s)

〉2
�s(s) (3-15)

where eX (y) is the electric field at y due to the charge distribution of system X, and
�X (x) the polarizability of X centered at x.

The dispersion interaction arises from fluctuations in the charge distribution of
Q, leading to transient induction in S and vice versa. By applying the multipole
expansion in the dipole approximation in both Q and S, �U (2)

disp is reduced to

�U (2)
disp =

∑

k,l �=0

∣∣∣
〈
�0

Q�0
S|T(2)

sS T(2)
q Q(rs − s)(rq − q)|�k

Q�l
S

〉∣∣∣
2

U 0
Q − U k

Q + U 0
S − Ul

S

= 1

|s − q|6
{

3 (s − q) (s − q)

|s − q|2 + I
}

×
∑

k,l �=0

∣
∣〈�0

Q |(rq − q)|�k
Q

〉 |2| 〈�0
S|(rs − s)|�l

S

〉∣∣2

U 0
Q − U k

Q + U 0
S − Ul

S

(3-16)

Due to the excitation energies of both S and Q in the denominator the local
integrations do not lead directly to monomer factors, but by invoking the Unsöld
approximation [97] it is possible to split the denominator into a product:
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1

U 0
Q − U k

Q + U 0
S − Ul

S

=
(

�S�Q

�S + �Q

)

×
[

−1
(
U 0

Q − U k
Q

) (
U 0

S − Ul
S

)

]

{1 + �kl}

(3-17)

where �S and �Q are chosen so as to minimize the error �kl. The expression for the
dispersion can hence again be expressed in terms of the polarizabilities of Q and S,
leading to the well-known London approximation [98]:

ΔU (2)
disp ≈ 1

|s − q|6 ×
(

ΔSΔQ

ΔS + ΔQ

)
× 1

2
�Q

{
3 (s − q) (s − q)

|s − q|2 + I
}

1

2
�S

(3-18)

where I is the 3×3 unit matrix. Another way to write the dispersion energy is the
Casimir–Polder integral [99]

ΔU (2)
disp = Tsq,ητ Tsq,ξθ lim

x→∞

∫
αQ,ηξ (iu)αS,τθ (iu)du+higher order terms

(3-19)

where α(iu) is the frequency-dependent dipole polarizability at imaginary frequency
ω = iu. By inserting α(ω) ≈ nv (0)

nv−ω2 , where nv the number of valence electrons, in
Eq. (3-19) and averaging rotationally, the Slater–Kirkwood approximation [96] is
obtained:

ΔU Slater−K irkwood
disp = −3

2

1

|s − q|6
αSαQ√

(αS/nS,v) +√(αQ/nQ,v)
(3-20)

A semi-classical estimate is obtained by dropping the excitation energy of one
of the systems in the denominator in Eq. (3-11), assuming instantaneous instead of
frequency-dependent interaction. Then, by means of the closure relation, it is easy to
show that in the dipole approximation Eq. (3-11) transforms into [3,38]

ΔU sc
disp = −1

2

{
eQ�SeQ 〉 − 〈eQ

〉
�S
〈
eQ
〉}

(3-21)

which has indeed the form of a variation.
At distances between S and Q where the charge distributions overlap the analysis

of the interaction energy becomes much more complicated [27,95,100] because the
total wave function must obey the Pauli principle:
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�0
QS = Âas

QS�0
Q ⊗ �0

S (3-22)

with Âas
QS the antisymmetrizing operator, generating a form of �U (2)

disp that cannot
be separated into fragment wave functions. Starting, e.g., from a Hartree–Fock cal-
culation to get the total energy of the superimposed fragments, corrected for basis
set superposition errors (BSSE) [101,102], the first physically meaningful interac-
tion energy can be defined only after satisfying the Pauli principle. This is achieved
by orthogonalizing the fragment wave functions, which contributes �U H F

orth to the
interaction energy that can therefore best be written as

�Uint = U H F
Q+S −(U H F

Q + U H F
Q

)+�Uorth ≈ �U (1)
int +�Urep +�Uresponse

(3-23)

Alternatively, one can calculate energies of overlapping charge distributions with
symmetry-adapted perturbation theory (SAPT) [95,100], the intermolecular Møller–
Plesset (I-MP) perturbation theory [27] or apply schemes as defined by Karlström
et al. [36]. However, these procedures require many calculations on specific molec-
ular aggregates which are for systems we have in mind—large (bio)molecules in
various solvents—impractical. Because of this the short-range repulsion, which is
formally part of V̂ response

S , is modeled with ad hoc potentials which in general do
not affect the electrons. Hence the QM/MM part of our approach is finding a self-
consistent solution for

UQ+S = 〈�Q(rq )
∣∣Ĥ 0

Q(rq ) + V̂S(rq )
∣∣�Q(rq )

〉 = U 0
Q + �Uint (3-24)

with

V̈S(rq ) =
∑

q∈Q
s∈S

zs

|rq − rs | + V̈ response
S (�S, rq ) (3-25)

in which V̈ response
S contains the many-body polarization and dispersion contributions

to the interaction energy. Provided one has a good model for the charge distribution
and the polarizability of S, V̈ response

S can be constructed and used directly for the MM
part of the system, while in the QM/MM problem it has to be expressed in terms
useful in QM calculations. In the following sections we discuss the modeling of
electrostatic potentials and the many-body polarization.

3.2.2. Electrostatic Potentials: The Point Charges

Electrostatic potentials and fields of classical molecules are generated by a collec-
tion of point charges—generally on atoms—obtained from QM calculations and de-
fined such that they at least reproduce the vacuum dipole moment [103], or also the
quadrupole moment [69], i.e., the first- and second-order sources of the electric field
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of neutral molecules. The methods referred to are internal in the sense that no fitting
to calculated potentials or fields is necessary. The first one is just an extension of
the Mulliken population analysis [104], in which the overlap and dipole integrals are
contracted with the density matrix (D) to give Mulliken atomic charges and dipoles:

q Mul
A = Z A −

⎧
⎪⎨

⎪⎩

∑

i, j on A

Di j 〈χi |χ j > +1

2

∑

i on A
j on B �=A

Di j 〈χi |χ j >

⎫
⎪⎬

⎪⎭

�Mul
A = Z ArA −

⎧
⎪⎨

⎪⎩

∑

i, j on A

Di j 〈χi |r|χ j > +1

2

∑

i on A
j on B �=A

Di j 〈χi |r|χ j >

⎫
⎪⎬

⎪⎭

(3-26)

with {χ} the basis functions in which the wave function and operators are expanded,
and ZA the atomic number of A. The next step is to redefine the atomic charges such
that the total charge (Q) and the dipole moment of the molecule (�mol) are preserved:

∑

A

qA = Qmol ;
∑

A

qArA = �mol (3-27)

We note that (�Mul
A –qMul

A rA) in Eq. (3-27) is the induced (Mulliken) dipole on atom
A which is ‘charge free’ and hence can be moved or reconstructed in any way one
wishes. Additional expansion centers may be defined if required, e.g., by symmetry.
Equations (3-27) can be satisfied in many ways. We choose to take the smallest
possible charges, placed on the nearest atoms, compatible with Eq. (3-27). This can
be achieved by minimizing

∑

A

q2
A/2wA (3-28)

with wA a weighting function that decreases more or less rapidly with the distance
relative to the position of A. Thole and van Duijnen [103] took Gaussians with
interatomic distances as parameter for defining the weights. Swart et al. [70] ap-
plied the same technique—implemented so far only in the Amsterdam density func-
tional theory (ADF) package [86]—for representing the atomic multipoles up to the
quadrupole moment. These moments result directly from the numerical integrations
in ADF and they obviously add up to the molecular moments. These atomic mo-
ments are used also for generating the electric potential inside a molecule accurately
and hence are even better for generating the external potential. For obtaining the
redistributed charges that reproduce as well as possible the total charge (Q), dipole
(�M

i,A) and quadrupole (	M
jk,A) moment components Swart et al. [70] minimize the

function
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gA =
∑

s

q2
s,A

2ws,A
+ 
A

(
q M

A − qrepr
A

)

+
∑

i

τi,A
(
�M

i,A − �
repr
i,A

)+
∑

j,k

� jk,A

(
	M

jk,A − 	
repr
jk,A

)
· · ·

(3-29)

with ξA, τ i,A and ηjk,A Lagrange multipliers, {i,j,k ∈ x,y,z} and ws,A the weight factor
defined by

ws,A = exp

(−ζ (|rs − rA|)
dA

)
(3-30)

with dA the distance between center A and its nearest neighbor, and ζ an exponential
prefactor. The redistributed charges then are

qs,A = ws,A

⎛

⎝
A +
∑

i

τi,Ars A,i +
∑

j,k

� jk,A

{
3

2
rs A, j rs A,k − 1

2
� jkr2

s A

}
+ · · ·

⎞

⎠

(3-31)

For each site in the set there is a set of linear equations which are solved by a
standard Ax=b routine. The prefactor ζ in Eq. (3-30) must in principle be large for
the reproduced multipoles to be as local as possible, but if it is very large the weight
function approaches a delta function, leading to the loss of freedom to distribute the
charges over other atoms. The ‘optimal’ value was chosen such as to make the errors
in the represented multipoles (due to machine precision and numerical accuracy)
smaller than the accuracy required for the numerical integration of some typical cases
(a set of amino acid residues). The best choice turned out to be 3.0. The resulting
MDC-q charges is for a number of small molecules given in Table 3-1.

These internal procedures for obtaining point charges are preferred over, e.g.,
potential-derived charges [105,106,107] since the latter require the definition of a
grid of points where the quantum-chemical potential is fitted to the static potential of
the point charges. The drawbacks are manifold: strong dependence on the size and
form of the grid, the fitting method, numerical instability, etc. Furthermore, there
are uncertainties in assigning charges to buried atoms, because the atoms near the
grid mainly determine the potential outside of the molecule. Finally, these methods
are very CPU intensive because of the many times that the inverse distance (1/r)
between grid points and charges has to be evaluated. In contrast, the internal methods
described above are almost trivial in terms of CPU costs: they take slightly more than
the usual Mulliken analysis and can be done ‘on the fly’, e.g., inside SCF iterations
whenever needed.

3.2.3. The Many-Body Polarization

For a collection of (atomic) polarizabilities in an electric field, assuming linear re-
sponse, the induced dipole moment at site s is
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Table 3-1. MDC-q charges for some molecules

Molecule

Benzene

Charges Molecule

Hexafluorobenzene

Charges

qC −0.123 qC 0.094
qH 0.123 qF −0.094

Ethylene Ammonia
qC −0.250 qN −0.444
qH 0.125 qH 0.148

Carbondioxide Carbondisulfide
qC 0.574 qC −0.351
qO −0.287 qS 0.185

Methylcyanide Thiophene
qC-Me 0.692 qS 0.051
qH −0.157 qC’ −0.229
qC 0.203 qH’ 0.206
qN −0.425 qC’’ −0.176

qH’’ 0.173

�ind
s,i = �s,i j

⎡

⎣einit
s,i +

∑

i, j

T (2)
st,i j �

ind
t, j

⎤

⎦ ; i, j ∈ x, y, z (3-32)

where �s,i j is a component of the polarizability tensor at site s, which for an isotropic
atom is �s,i j = �i j �s . In Eq. (3-32) einit is the initial field at site s and the last term
is the field from the induced dipoles at the other sites. The self-consistent solution of
Eq. (3-32) for all induced dipoles M can be written as a matrix equation:

M = E B (3-33)

where B is the relay matrix defined in supermatrix notation as

B = [A−1 − T(2)]−1
(3-34)

in which A–1 is the block-diagonal matrix of the site-inverse polarizabilities, and T(2)

the off-diagonal interaction tensors, M the supervector of all induced dipoles in the
system and E the vector of all initial local fields. Equation (3-33) can be solved by
means of an exact inversion constructing B explicitly, or by iteration using MB–1 = E.
We note that B in Eq. (3-33) behaves as a ‘normal’ (but many-center) polarizability.
We note that the polarization energy is given by

�Uind = −1
/

2
(
E0)T

BEo = −1
/

2
∑

i

(e0
i )T �i = −1

/
2
∑

i

(e0
i )T �i ei

(3-35)
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which, due to the self-consistency, is quadratic neither in the permanent fields ei
0nor

in the total fields ei.
The matrix B can be reduced to smaller dimensions by summing over (groups of)

atoms:

�G
i j =

N G∑

p,q

(Bpq )i j ; i, j ∈ {x, y, z} (3-36)

resulting in a 3×3 molecular polarization if the summation comprises all the atoms
in the group.

The polarizabilities parallel (α// ) and perpendicular (α⊥) to the axis connecting
two interacting atoms p and q—are given by Silberstein’s equations [58] which are
the exact solutions of Eq. (3-34):

�// = �p + �q + 4�p�q/r3

1 − 4�p�q/r6
; �⊥ = �p + �q − 2�p�q/r3

1 − �p�q/r6
(3-37)

Even for the case of isotropic polarizabilities, where �p = �q = �̄, it follows
from Eq. (3-36) that the total polarizability will be anisotropic. If we want to de-
fine effective polarizabilities from Eq. (3-37) for the members, we must (arbitrarily!)
distribute the interaction term. For �p = �q equipartitioning could work, leading to
local anisotropy with �// (local)>�̄ and �⊥ (local)<�̄ , but for �p �= �q no scheme
is obvious.

One possibility is weighting the partitioning with the original polarizabilities
[108]. This may work better in the general case, but it is just as arbitrary. What
will happen to local (anisotropic) polarizabilities in the condensed phases is hard to
estimate without calculations. Some typical model systems can be found in Ref. [24].
It is also demonstrated by the work of Augspurger and Dykstra [109] on acetylene
clusters where for linear complexes an increase of the axial components of the linear
and second hyperpolarizabilities are found, while van Duijnen et al. [110] for parallel
clusters of butadienes and Kirtman et al. [111] for hexatrienes obtained a decrease
in the same properties. These authors also show that well-constructed fully classical
electrostatic models are able to reproduce these results.

Here we note that only a single polarizability or susceptibility exists for any sys-
tem. The reconstruction from local contributions is in fact an abstraction, the result
of which depends on the detail wanted: macroscopic with local susceptibilities or mi-
croscopic with local polarizabilities and—more importantly—on the partitioning of
such properties. However, experimental chemists are used to such procedures: from
well-chosen series of compounds they derive ‘bond energies’ as ‘local’ contributions
to heats of formation and ‘ionic radii’ from crystal structures. Theoretical chemists
obtain ‘atomic charges’ from, e.g., a Mulliken analysis of their wave functions. We
are able, following similar reasoning, to construct molecular polarizabilities from
atomic ones [38,60], although there is formally no connection between them. In an
opposite direction we can ‘decompose’ a molecular polarizability into a many-center
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matrix of effective local contributions, in which a one-to-one assignment of the in-
teraction blocks to the corresponding diagonal ‘local’ blocks looks like the Mulliken
scheme. A weighted assignment, e.g., with the traces of the diagonal blocks [108],
will look like the Löwdin scheme for a population analysis. In this sense we can
at least assess the local contributions to the system’s polarizability, although only
within an arbitrary but well-defined framework.

From Eq. (3-36) we learn that for r approaching (4αpαq)1/6, �// goes to infinity and
becomes negative for smaller distances. In order to avoid this unphysical situation,
Thole [59] introduced a damping scheme by rewriting the interaction tensor in terms
of a reduced distance upq=Rpq /(αpαq)1/6 as

T (2)
pq,i j = (�p�q )1/2 �2�(u pq )

�u pq,i �u pq, j
(3-38)

with Φ(u) the potential of a point charge at u.
The screened dipole interaction tensor (taking r = Rpq for clarity) then becomes

T (2)
pq,i j = 3 fT rir j

r5
− fEri �i j

r2
(3-39)

with fT and fE damping functions depending on the particular form of ρ. Thole tried
a number of forms for ρ, but in practice only an exponentially decaying charge dis-
tribution

�(u) = a3

8π
exp(−au) (3-40)

survived, with a the screening length. The following expressions define consistently
the damped potential, field, field gradient and gradient-of-the-gradient of a point
charge:

v = au

V = fV /r ; fV = 1 −
(

1

2
v + 1

)
e−v

Ei = fEri/r3; fE = fV −
(

1

2
v2 + 1

2
v

)
e−v

Ti j = 3rir j fT − �i j r2 fE

r5
; fT = fE − 1

6
v3e−v

Di jk = 3r2(ri � jk + r j �ik + rk�i j ) fT − 15rir jrk fD

r7
;

fD = fT − 1

30
v4e−v

(3-41)
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With this method, Thole fitted isotropic model polarizabilities for H, C, N and
O to 16 experimental molecular polarizabilities, using a single screening length and
only one polarizability for each atom type, regardless of the chemical environment.

With the parameters thus obtained, the polarizabilities of six other molecules—
not in the training set—containing these atoms were calculated within experimental
accuracy. Van Duijnen and Swart [60] re-parameterized the same atomic polariz-
abilities using restricted Hartree–Fock (RHF)-optimized geometries, extended the
training set to 52 molecules, the control set to 18 molecules and the set of atoms with
sulfur and the halogens. Also computed molecular polarizabilities were parameter-
ized for enabling comparison with fully quantum-chemical calculations.

The resulting atom polarizabilities fitted to experiment are summarized in
Table 3-2 together with numerical Hartree–Fock results for the free atoms [112].

Comparing the fitted values with the HF results it appears that the former have
more physical contents than one can expect from mere fitting parameters. The dif-
ferences with the HF values are obviously related to the fact that the fitted values
hold for atoms bound in molecules, which is conspicuous for H with its short bond
lengths, and for C, which is in most compounds bonded to (up to four) other atoms.
In Table 3-3 the polarizabilities of the control set (resulting from the fit to 52 experi-
mental values) are listed.

In appraising the average accuracy one must bear in mind that experimentally the
mean polarizabilities are usually obtained from the refractive index n (at 5893 Å,
the sodium D-line) and the Lorenz–Lorentz equation (with M molecular weight, ρ

macroscopic density, Nav Avogadro’s number):

n2 − 1

n2 + 2

M

ρ
= 4π

3
Nav�̄ (3-42)

Table 3-2. Effective atomic polarizabilities (Bohr3) from various fits

Atom Fit to 16 molecules Fit to 52 moleculesa

Tholeb Geom. optimizeda Num. HFc

H 2.8815 3.0588 2.7927 4.52d

C 8.6716 8.7939 8.6959 11.7
N 6.5256 6.6704 6.5565 6.75
O 5.3042 5.6480 5.7494 4.93
F – – 3.0013 3.58
S – – 16.6984 23.2
Cl – – 16.1979 17.6
Br – – 23.5714 25.6
I – – 36.9880 42.6

a 2.089 1.9088 2.1304 –

Data from: aRef. [60], bRef. [59], cRef. [112], dexact.
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Table 3-3. Experimental and calculated polarizabilities for compounds not in the 52-membered
training set of moleculesa

Molecule Exp Calculated Dev (%)

Cyclohexanol C6H11OH 78.01 77.97 0.0
Dodecane C12H26 153.86 157.76 2.4
Neopentane C(CH3)4 68.83 65.49 4.8
Acetylene C2H2 23.55 21.90 8.3
m-Dichlorobenzene C6H4Cl2 96.03 89.65 6.6
o-Dichlorobenzene C6H4Cl2 95.62 89.03 6.9
N, N-dimethylformamide HCON(CH3)2 52.70 51.77 1.8
N-methylacetamide CH3CONHCH3 52.77 51.95 1.8
Carbonylchloride COCl2 45.75 44.30 3.2
Chloromethylcyanide CH2ClCN 41.16 42.87 4.2
Isopropylcyanide (CH3)2CHCN 54.32 54.54 0.4
Trichloromethylcanide CCl3CN 70.32 69.56 1.1
Dichloromethane CH2Cl2 46.02 43.55 5.4
Difluoromethane CH2F2 18.42 18.56 0.8
Tribromomethane CHBr3 79.90 75.99 3.8
Trichlorofluoromethane CFCl3 55.61 56.45 1.5
Triiodomethane CHI3 121.74 111.74 8.2
Nitrous oxide N2O 20.24 17.81 12.0

Average 4.0

aData from Ref. [60].

This equation is accurate in the gas phase but the refractive index should first be
extrapolated to infinite wavelength (or zero frequency) to obtain the static polariz-
ability:

n(λ) = n∗
∞ + a

λ2
+ b

λ4
+ · · · (3-43)

The polarizabilities decrease in this extrapolation by about 2–4% [113] which
gives an estimate of the uncertainty in the experimental values. From Kerr constants
[113] for small, symmetric molecules also the anisotropy and the frequency depen-
dence can be determined, but the assumptions about the geometry add an uncer-
tainty of 5–10%, giving a total uncertainty of 6–14%. Hence, an average deviation
of 4% in Table 3-3 is considered to be within experimental error. From this table we
also learn that the effective atomic polarizabilities work fine within Thole’s model
for predicting polarizabilities of virtually any system comprising these atoms. If
no experimental data are available, one may predict molecular polarizabilities. In
Table 3-4 polarizabilities of various molecules are collected as obtained from dif-
ferent computational approaches together with the experimental values. Calculation
of polarizabilities is based on a Taylor expansion of the total energy (or the dipole

moment) of a system in an external field:
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Table 3-4. Some experimental and calculated molecular polarizabilitiesa

Molecule αexp αDRF αCPHF(TZP) αDFT(TZ2P++)

Acetamide 40.5 38.6 31.1 43.1
Acetylene 22.4 21.9 18.0 23.1
Benzene 70.1 61.9 61.9 72.6
Chlorine 31.1 31.2 18.7 31.7
Cyclohexane 80.0 78.0 69.2 82.7
Dimethylether 79.9 35.4 27.6 36.3
Formaldehyde 16.5 18.3 13.5 18.3
Hydrogen 5.33 4.90 2.62 5.76
Methylcyanide 29.7 29.8 24.6 31.1
Neopentane 69.0 655 59.0 1.3
Propane 42.4 42.2 35.9 44.1
TCFM 57.5 56.5 40.0 60.9
TCMC 70.5 68.3 54.0 75.2
TFM 19.0 19.0 13.1 18.9
Water 9.94 10.1 5.56 9.38

Deviation – ±4.8% ±12% ±3%

Time – < 1 s 57 h 80 h

aData from Ref. [60].

U = U (0) − �(0)
i ei − 1

2!
�i j ei e j − 1

3!
i jkei e j ek − 1

4!
�i jklei e j ekel

or

�i = �(0)
i ei − �i j e j − 1

2!
i jke j ek − 1

3!
�i jkle j ekel ; i, j, k, l ∈ {x, y, z}

(3-44)

with U (0)the unperturbed total energy, μ(0) the permanent dipole moment and α, β

and γ the linear polarizability and the first and second hyperpolarizabilities. For
molecules with closed-shell ground states the coupled perturbative Hartree–Fock
(CPHF) equations [83] can be used. However, RHF results give an average dif-
ference with experiment of about 25% for small- to medium-sized basis sets [60].
It is known that specially constructed [114,115,116] or very large basis sets (in-
cluding very diffuse functions) [117] are needed, in particular for planar and linear
molecules. Furthermore, taking electron correlation into account is essential in order
to get results comparable with the experimental values. Configuration interaction
(CI), multi-configuration SCF (MCSCF), coupled cluster (CC) or Møller–Plesset
(MP) methods, combined with the required large basis sets, are computationally very
demanding. Promising and accurate are density functional theory (DFT) results. De-
pending on the exchange–correlation (XC) potentials and the basis set, a deviation
of 3% can be obtained, which is about the experimental accuracy, although DFT
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polarizabilities of conjugated systems [118,119] and systems with large charge trans-
fer character [120,121] tend to be too large. Table 3-4 is clear: one has to spend a fair
amount of computing time by doing high-quality QM calculations for gaining about
0.6% accuracy for relatively small molecules. For large (bio-)organic molecules QM
calculations of this quality are obviously beyond practical possibilities and therefore
methods like Thole’s are the best approach.

There are other parameterizations possible. Thole noted, in his original paper, that
it would be more elegant to describe the interaction—between induced dipoles—in
terms of two interacting charge distributions instead of his ‘one-particle’ ansatz.
Jensen et al. [35] took up this suggestion in order to arrive at traceless interaction
tensors. He started from the interaction between two isotropic Gaussian charge dis-
tributions on a distance r:

V =
∫ ∫

�(r1)�(r2)

r12
dr1dr2 = erf(r

√
b)

r
(3-45)

Here is b the reduced exponent b = ap aq / (ap + aq) and erf
(

r
√

b
)

the regular error

function which tends to unity when the argument goes to infinity, and hence the usual
potential between two point charges is obtained. The results with the Gaussians are
only slightly better [66] than that of Thole’s original method. Another approach is
that of Pircaud et al. [122] who start from partial charges for water reproducing
the vacuum dipole moment that are ‘inflated’ by Gaussians and used together with
the experimental polarizability. This amounts to the use of the screened potential of
Eq. (3-41).

Concluding this section, we are confident that the present treatment of the many-
body polarization gives transferable and reliable effective polarizabilities and screen-
ing factors.

3.2.4. Bulk Effects: The Dielectric Continuum

The collective properties of bulk material typically reflect the behavior of tens of
thousands of molecules in a volume of at least 106 Å3 [123]. The description of the
electrostatic and response properties of such volumes is obviously beyond any dis-
crete approach and one has to resort to experimental information, i.e., the dielectric
constant. In the Introduction we argued that if sufficient solvation shells are included
in a calculation, the effect of an enveloping continuum can be neglected. Nevertheless
we give here, for completeness’ sake, an explicit formulation of the coupling between
a set of point charges and polarizabilities and a dielectric continuum.

The extension of Eq. (3-32) is straightforward: for a discretized enveloping sur-
face (S) with the boundary element method (BEM) the final result can be expressed
in a set of linear equations [124]:

[
Mp

�I

]
= B′

⎡

⎣
ep

vI

2�(� + 1)

⎤

⎦ (3-46)
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where in the lhs vector M represents the induced dipoles at the polarizable points and
� a set of induced dipoles on the surface S. In the rhs e and v are, respectively, the
source fields at the polarizable points and the potentials at the NBEM representative
points of S. The matrix B′ is given by

B′ =

⎡

⎢
⎣

�−1
p − T(2)

pq ∇KI p SI

−epI

2π (� + 1)
1 − KI J

2π (� + 1)

⎤

⎥
⎦

−1

(3-47)

with ε the dielectric constant of the continuum. In Eqs. (3-46) and (3-47) we have
added (redundant) indices for clarity: lower case indices for discrete polarizable
points and capitals for boundary elements. In the top left of Eq. (3-47) the matrix
of Eq. (3-34) will be recognized, while K and ∇K are more or less complicated
potential and field-like kernels, depending on ε and the geometry of S,while 1 is
the unit matrix of dimension NBEM [10,124]. Hence, leaving out the continuum Eq.
(3-34) alone remains, while for the continuum only, just the right bottom part of Eq.
(3-47) remains and we are left with a method like the polarizable continuum model
(PCM) [9,17]. Like M in Eq. (3-33) the lhs of Eq. (3-46) is a self-consistent solution
and all information about the reaction potentials is contained in a single relay matrix.

3.2.5. Implementations

In the preceding sections, we have shown that our point charges and polarizabilities
can generate trustworthy electrostatic and response properties for any system. The
working expression for the DRF/QM/MM method is

Ĥ (r ) = ĤQM + ĤQM/M M + ĤM M (3-48)

The interaction operator at any point ri is given by

ĤQM/M M (ri ) =
∑

i

v̂DRF (ri , ω) =
∑

i

v̂elst (ri )

+
∑

i

v̂ pol (ri , ω) +
[
∑

i

v̂disp(ri )

] (3-49)

where velst is the electrostatic operator, which describes the Coulombic interac-
tion between the QM system and the permanent charge distribution of the solvent
molecules. The polarization operator describes the many-body polarization of the
solvent molecules, i.e., the change in the charge distribution of the solvent molecules
due to interaction with the QM part and other solvent molecules. The dispersion
operator vdisp is bracketed in Eq. (3-47) because it may optionally be made part of
HQM/MM or not.

The charge distribution of the solvent is represented by the atomic point charges
(zs), hence the electrostatic operator is given by
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v̂elst (ri ) =
∑

s

zs

Rsi
=
∑

s

zs T̂ (0)
si (3-50)

with Rsi the distance between points s and i, and T(0) the zeroth order interaction
of Eq. (3-12). Depending on the particular QM method the operator v̂elst for the
electrostatic interaction energy

�U elst =
∫

�(ri )v̂
elst (ri )dri (3-51)

has to be evaluated, e.g., in ADF [86] in all integration points, or leads to additional
‘nuclear attraction’-type integrals in conventional wave function methods where the
operators are expanded in basis functions {χ}:

(
velst

)
kl =

∑

s

∫
�k(ri )

fV zs

|ri − rs |χl(ri )dri =
∑

s

<χk | fV zs

Rsi
|�l >

(3-52)

The atom pairs determining the screening factor fV of Eq. (3-52) are taken as the
atoms at rs and the atom(s) on which χk and χl are centered. In ADF the screening
is achieved by scaling the distance between grid points and classical atoms Rpq:

Spq = cpq Rpq = f (Rpq ) (3-53)

where cpq is a factor and f(Rpq) an appropriately chosen function of Rpq. Furthermore,
each component of Rpq is also scaled by cpq, so the reduced distance becomes

Spq = √Spq,κ Spq,κ = cpq

√
Rpq,κ Rpq,κ = cpq Rpq ; κ ∈ {x, y, z} (3-54)

i.e., consistent with the definition in Eq. (3-53). For Greek indices the Einstein sum-
mation convention is employed. The damped operator can thus be obtained by mod-
ifying the interaction tensors in Eqs. (3-19), which is equivalent to replacing Rpq by
Spq and Ri j,κ by Si j,κ in the regular formulae for the interaction tensors:

T (n)
pq,�1,�2,....,�n

= ∇yx,�1 . . . ∇yx,�n

(
1/Spq

)
(3-55)

The particular form of the scaling function employed here is

f (rpq ) = rpq

erf(rpq )
(3-56)

which was obtained by considering the interaction between two Gaussian charge
distributions with unit exponents. The damping ensures that the quantum part is not
overpolarized due to the interactions.
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The damping depends on the width of the Gaussian charge distribution, which in
this work was taken to be unit (a.u.). However, both a slightly smaller width [125]
and a slightly larger width [126] have been suggested.

For v̂ pol a similar route is followed:

v̂ pol (ri , ω) = −
∑

s

�ind
s (ω)T(1)

si (3-57)

with �ind
s (ω) the induced dipole moment at atom s, obtained from Eqs. (3-33) and

(3-34):

M(ω) = Einit(ω)B (3-58)

The initial field consists of four terms:

einit
s (ω) = eQM,el

s (ω) + eQM,nuc
s + eMM

s + emac
s (ω) (3-59)

where eQM,el
s (ω) is the electric field arising from the electronic charge distribution of

the QM part:

eQM,el
s (ω) = −

∫
ρ(ri , ω)T(1)

si dri (3-60)

and eQM,nuc
s is the field arising from the QM nuclei,

eQM,nuc
s = −

∑

n

ZnT(1)
ns (3-61)

and eMM
s is the field arising from the point charges of the solvent molecules,

eMM
s = −

∑

t

′qsT(1)
st (3-62)

The prime in Eq. (3-62) indicates that the sum is restricted to sites that do not
belong to the same molecule. Depending on the specific implementation the ten-
sors T(1) are multiplied with appropriate fE factors for the associated atoms. The
last term in Eq. (3-59), emac

s (ω), is the macroscopic electric field. This completes
the most usual form of v̂ pol , i.e., the potential of the dipoles due to the total field
at the polarizable sites is made a part of the effective Hamiltonian and Eq.(3-24) is
solved self-consistently. Since the induced dipoles M in the solvent (MM) part are
self-consistent for any field E, i.e., also for intermediate fields during the iterative
process for solving Eq. (3-24), in this way we obtain an overall self-consistent solu-
tion, similar to, e.g., the HF or Kohn–Sham procedure. Extension to post-HF methods
are straightforward because the reaction potential (RP) is formally a one-particle
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operator and in, e.g., the configuration interaction (CI) method only the diagonal
CI-matrix elements are affected which can be evaluated by calculating eQM,el

s for the
various determinants. The final CI states thus obtained are not strictly self-consistent
but for a small number of solutions one may recalculate the RP and reiterate.

The electronic contribution to �Uint is �U int
el = −1

/
2 (EQM,el) BEQM,el and in

its earliest form of DRF (the direct reaction field approach [3,38]) vDRF was of the
form

v̈ pol = −1
/

2
∑

i, j

Ëi BË j (3-63)

where the summation runs over all particles in QM. If i or j is related with an electron,
the integral of Eq. (3-52) appears naturally, but in addition integrals for the screened
self-interaction appears:

I sel f
km = −1

2

∫ ∫
χk(r1)

[
T̈(1)(r1)BT̈

(1)
(r1)
]
χm(r1)dr1 (3-64)

and, if i and j both refer to electrons, screened 2-electron integrals are

I two
klmn = −1

2

∫ ∫
χk(r1)χl(r2)T̈(1)(r1)BT̈

(1)
(r2)χm(r1)χn(r2)dr1dr2

= −1

2

{∫
χk(r1)T̈(1)(r1)χm(r1)dr1

}
×
{∫

χl(r2)BT̈
(1)

(r2)χn(r2)dr2

}

(3-65)

They may be added to the standard integrals used in, e.g., a standard HF calcu-
lation and, after contracting the integrals in Eq. (3-65) with the density matrix, this
gives the following contributions to the energy in terms of MOs:

<self>= −1

2

∑

Kocc

<K
∣∣[T(1)(r1)BT(1)(r1)

]∣∣ K > (3-66)

and

<scoul> = a
∑

K ,L=1,nocc

−1

2
<K (1)L(2)

∣
∣∣
∣
1

2

[
T(1)(r1)BT(1)(r2)

]
∣
∣∣
∣ K (1)L(2) >

<sexch> = −b
∑

K ,L=1,nocc

−1

2
<K (1)L(2)

∣
∣
∣∣
1

2

[
T(1)(r1)BT(1)(r2)

]
∣
∣
∣∣ K (2)L(1) >

(3-67)

where a/b = 2.0 for a closed-shell determinant but varies for open shells. It is clear
that <scoul> is just the electronic reaction field contribution obtained above. The
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presence of <sexch>, missing in the molecular field approach from which we started
above, is correct because it removes energy contributions that violate the Pauli prin-
ciple. The new one is <self> that describes the stabilization of an electron in its own
reaction field . The operator in Eq. (3-64) can always be rewritten as

[
T̂(r1)B̂T(r1)

] = Ĝ2(r1) (3-68)

and by applying the closure rule we obtain

〈self〉 = −1

2

∑

K=1,nocc

〈
K | [G2(r1)

] |K 〉

= −1

2

∑

K=1,nocc
L=1,∞

〈K | [G(r1)] |L〉 〈L| [G(r1)] |K 〉
(3-69)

so that in the total energy the sum of the screened self-energy and the exchange
becomes

〈self〉 + 〈sexch〉 = −1

2

∑

K=1,nocc
L=nocc+1,∞

〈K |G(r)1|L 〉〈 L|G(r)1|K 〉 (3-70)

We note that G is associated with the polarizability of the classical system, for
which we may write � = |〈0|r|n〉|2

U (0)−U (n) , i.e., a sum of matrix elements connecting
singly excited states. In Eq. (3-70) we see similar matrix elements connecting ground
state and singly excited states of the quantum system, and hence formally the self-
consistent result there is a representation of second-order terms of perturbation the-
ory (cf. Eq. 3-16) up to third order. However, in Eq. (3-70) the energy denominators
are absent and, hence, this is only an upper bound for the dispersion. Moreover, inte-
grals that appear in 〈self〉 are divergent: the quadratic operator is of type f(r)/r4, with
r the distance between a source and a polarizability, while the integrating volume is
only ∼r3. There are several methods to cure this problem. In one the reaction field is
expanded, e.g., to second order, so that all integrals can be expressed in combinations
of overlap and dipole integrals [3,10,38]. In another, a small region around the center
of the polarizabilities is excluded [127]. In order to repair the absence of the energy
denominators of the QM part of the system in Eq. (3-70) we use the factor

� = US

UQ + US
(3-71)

with US and UQ the experimental or computed ionization energies, respectively, to
arrive at a London-like ground state dispersion energy:

�U two-el
int = 〈scoul〉 + γ {〈self〉 + 〈sexch〉} (3-72)
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If γ = 0, the procedure is equivalent to the molecular or average reaction field (ARF)
according to Eq. (3-57).

The direct approach looks at first sight complicated, but it is in fact very efficient
because by incorporating reaction field integrals in the standard set of integrals no
‘external’ cycles for computing fields, etc., are necessary: the whole process de-
scribed in Eq. (3-52) is gone through once to obtain the necessary integrals and
afterward the programs do not know the difference. The direct reaction field op-
erator can always be used after an ARF calculation in order to get an estimate of the
dispersion. The direct and average methods are available in HONDO [83], ZINDO
[84] and GAMESS [85] while in ADF [86] only ARF is possible.

The MM Hamiltonian contains obviously the same v̂elst and v̂ pol but acting on
classical sites:

v̂elst (rp) =
∑

s

′ zs

Rsp
fVsp =

∑

s

′zs fV,sp T̂ (0)
sp (3-73)

v̂ pol (rp, �) = −
∑

s

′�ind
s (�) fE,spT(1)

sp (3-74)

where the prime indicates that interactions between sites belonging to the same
molecule or group are excluded.

For the classical dispersion interaction we use the Slater–Kirkwood expression of
Eq. (3-20):

�U disp
sp = −1

4

Trace[�pT(2)
sp T(2)

sp �p]√
αs/ns +√αp/ns

(3-75)

with α the average polarizability. This interaction can be between two atomic or
group polarizabilities, which may be treated as isotropic or anisotropic. In the
isotropic case, Eq. (3-75) reduces to a simpler form:

�U disp
sp = −6

4

αsαp√
αs/ns +√αp/ns

3
2 f 2

T,sp − fT,sp fE,sp − 1
2 f 2

E,sp

R6
sp

(3-76)

while in the anisotropic case the expression is slightly more complicated [87].
The expression for the short-range repulsion is closely connected to Eq. (3-75):

�Urep
sp = −1

2
�U disp

sp

(
Rvdw,s + Rvdw,p

)6

R6
sp

(3-77)

that can be taken either as isotropic or anisotropic. Furthermore, the dispersion term
within Eq. (3-77) may include screening factors that account for overlapping charge
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densities (consistent with Eqs. (2.4.28) and (2.4.29)), or without these factors as done
typically in standard force fields such as CHARMM, and our early work).

When taken together with dispersion, the short-range repulsion is thus modeled
by the Lennard-Jones potential:

ULJ = D0
[
ρ−12 − 2ρ−6

]
(3-78)

with ρ = r/R0. In this representation, the potential has a minimum with well depth D0

and equilibrium distance R0 (ρ = 1). It can easily be transformed into an X6-form,
which uses a more realistic exponential short-range repulsion:

UX6 = D0

[
6

ζ − 6
eζ (1−ρ) − ζ

ζ − 6
ρ−6

]
(3-79)

By choosing a value of ζ=12, the long-range dispersion does not change with
respect to the LJ formula of (3-78), while a value of ζ = 13.772 results in a second
derivative at the equilibrium distance R0 that is equal to the LJ value (72·D0). Hence,
the latter value (13.772) does not change the shape of the energy curve around the
equilibrium and is therefore chosen as default in DRF90 [87], since we are interested
in the condensed phase, i.e., the region around the equilibrium. Note that the well
depth and equilibrium distance are equal to that of the LJ form, irrespective of the
choice for ζ .

For the atomic radii needed in Eq. (2.4.30), there exist many options but the de-
fault in DRF90 [87] is to use charge-dependent atomic radii using Frecer’s model
[128] in which a polynomial of third order is used to describe the change in atomic
radii due to the atomic charge. If the atomic charge is positive, it means that less elec-
trons are surrounding this atom, and therefore the radius is smaller. When negative,
the radius increases following the same reasoning.

Both dispersion and repulsion contributions—although basically belonging to
ĤM M —should of course be added to the QM/MM interactions when doing QM/MM
geometry optimizations or MD simulations, using the same parameters for the QM
atoms. However, in single-point energy calculations they add only to the total energy
since the operators do not affect the electrons. Since the effective atomic charges can
be obtained ‘on the fly’ during any QM calculation it is possible to let them have
influence on the results, e.g., in calculations of spectra (if total energies are used) or
in structure optimizations.

For MD and/or QM/MM geometry optimizations gradients of the energies are
needed. They follow naturally from the energy expressions by replacing electrostatic
potential and field operators by, respectively, the corresponding field and field gradi-
ent operators.

3.2.6. Macroscopic and Microscopic Properties

It is obviously useful to compare calculated and experimental values for response
properties like (frequency-dependent) polarizabilities α, and hyperpolarizabilities β
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and γ . This comparison is not without problems—in particular for β and γ —because
of the many different conventions and experimental techniques that are used [129].
The linear polarizabilities, α, are experimentally usually obtained from refractive
indices applying the Lorenz–Lorentz equation (3-42). For the hyperpolarizabilities
different conventions used in calculations and experiments can lead to differences up
to 300%, and that apart from different references used experimentally. All this can
be avoided by clearly stating the convention used. In a macroscopic electric field

Fmac
J (t) = Fmac

0,J + Fmac
�,J cos(�t) (3-80)

the polarization, i.e., the dipoles averaged over a macroscopic volume, is usually
expressed as a power series in the field strength:

P�s
I = ��s ,0 P0

I + χ
(1)
I J (−�s ; �s)Fmac

�s ,J

+ C(−�s ; �a, �b)χ (2)
I J K (−�s ; �a, �b)Fmac

�a ,J Fmac
�b,K

+ C(−�s ; �a, �b, �b)χ (3)
I J K L (−�s ; −�s ; �a, �b, �b)Fmac

�a ,J Fmac
�b,K Fmac

�c,L

(3-81)

where the output frequency ωs = ∑

a
ωaand χ (n) is the nth order susceptibility. The

numerical coefficients C(–ωs; ωa,. . .) arise from the Fourier expansion of the field
and ensure that all susceptibilities of the same order have the same static limit. A
tabulation can be found in Ref. [130]. Each of the susceptibilities corresponds to
different physical processes: χ (1) governs the refractive index, χ (2)(–2ω;ω,ω) the
second harmonic generation (SHG), χ (3)(–3ω;ω,ω,ω) the third harmonic generation
(THG) and χ (3)(–ω;ω,ω, –ω) the degenerate four-wave mixing (DFWN) or the in-
tensity dependency of the refractive index.

The microscopic polarization of a molecule in an external field (or the dipole mo-
ment, i.e., the positions of the charges in the molecules averaged over the molecular
volume) can be expanded in a Taylor series:

��s
i = ��s ,0�0

i + �i j (−�s ; �s)Ftot
�s , j

+ 1

2
C(−�s ; �a, �b)i jk(−�s ; �a, �b)Ftot

�a , j F tot
�b,k

+ 1

6
C(−�s ; �a, �c)�i jkl (−�s ; �a, ωb, �c)Ftot

�b, j F tot
�b,k Ftot

�c,l

(3-82)

where the numerical coefficients C are the same as for the macroscopic polarization.
For extracting microscopic properties from experiment the so-called local field

factors are needed [131], and, vice versa, also to obtain macroscopic values from
computed (microscopic) results. The concept of relating the macroscopic field and
the actual (or local) field experienced by a molecule goes back to Lorentz [113,132].
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The idea is that only the field from molecules near to the solute has to be considered,
so that the complete system can be separated into microscopic and macroscopic
regions. The molecules in the latter can be described by the average macroscopic
properties. Lorentz derived a simple relation between the local field and the macro-
scopic polarization, which is still in use [113,133,134,135].

DRF has been implemented such that all necessary information is available. To
that end, we distinguish between ‘solute’ and ‘effective’ properties. The first coming
from the action of a field solely on the solute in a cluster, but embedded in its clas-
sical environment. For the latter, the field acts on the whole discrete system, hence
generating the field of dipoles induced by the field that counteract the inducing field.

From the effective properties the macroscopic polarization can be calculated as

Pωs
I = Ndδωs ,0

〈
μeff

i

〉
I (3-83)

with Nd the number density, and from there the local field factors, the refractive index
and the susceptibilities. For details the reader is referred to Ref. [136].

3.3. SOME VALIDATION

Many applications of new force fields and new QM/MM methods of necessity focus
on ‘agreement’ with experimental or otherwise calculated results. Also in this section
we will first show that DRF indeed gives a reliable model for static and response
potentials and can lead to QM/MM—or even completely MM calculations—that are
as good as, e.g., SCF calculations. To that end we point at some results for simple
systems like the water and benzene dimers, and the three- and four-body interactions
in several systems.

3.3.1. The Water Dimer

The hydrogen-bonded water dimer is without any doubt the most used sys-
tem to study intermolecular interactions, be it from the QM [34,72] QM/MM
[13,26,31,32,40,52,108], or MM [25,42,45,48,50,72] perspective. In the past we
have also used it to show that the DRF model indeed gives static and response poten-
tials that are as good as, e.g., SCF calculations [74,137]. Of course, if this is the case,
it allows for arbitrary separation of the total system into different subsystems, which
can then be arbitrarily described at the QM or MM level; e.g., for a simple system
like the water dimer, one may treat both monomers at the QM level, one monomer
at QM and the other at MM, or both monomers at MM. Hence, we may go from
the computationally expensive fully QM to QM/MM and to MM, without significant
loss of accuracy. Alternatively, we can do MD simulations at the MM level, take
snapshots from them and submit these to QM/MM (or QM) calculations to obtain
UV-Vis spectra, excitation energies, NLO properties, etc., for the solute in solvent,
i.e., sequential MD.

In order to show that this interchangeability is indeed feasible, we focus on the
hydrogen-bonded water dimer (see Figure 3-2). We treated it first completely with
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Figure 3-2. The hydrogen-bonded water dimer. The x-axis coincides with O–H–O

QM at the RHF level with Dunning’s DZP basis set [138], and corrected for basis
set superposition errors (BSSE) [102]. Next we treated it at the fully classical MM
level, using the force field parameters as obtained from the RHF/DZP calculations on
the monomer. Hence, we used atomic polarizability values (3.3791 a.u. for oxygen,
1.3333 a.u. for hydrogen) and an a-factor of 2.445 that result directly from polariz-
abilities calculated at the same level of theory (see, e.g., Table 4 in Ref. [60]). The
partial charges on the atoms (–0.7886 on oxygen, 0.3943 on hydrogen) reproduce the
dipole moment of the monomer at RHF/DZP calculation (2.28 D). Finally, the atomic
radii (3.5587 a.u. for oxygen, 0.9637 a.u. for hydrogen), needed for the short-range
repulsion (cf., Eq. 3-77), were taken from the atomic quadrupole moments (or rather,
the expectation values of R2) also from the RHF/DZP calculation.

With these force field parameters we calculated the potential energy surfaces for
the water dimer (without taking dispersion into account since this is absent in RHF
calculations) at the MM level using three different choices for the short-range repul-
sion. As already mentioned in the Section 3.2.5, the latter term is the only energy
term that does not result directly from second-order perturbation theory. So far, we
have been using the CHARMM expression Eq. (3-77) that takes the expression for
the dispersion energy and ‘corrects’ it to give the Lennard-Jones repulsion term that
goes as R–12. In our early work, we took the CHARMM expression directly, i.e., with-
out including the screening factors in the dispersion part that account for overlapping
charge densities. More recently, we have moved on to including the screening factors
to make it consistent with the other energy terms. Here, we explore for the first time
also exponential repulsion, which should be more appropriate for the short-distance
range.

In Figure 3-3 the excellent agreement between the fully QM and the fully MM
data is seen, having minima at the same O–O distance with the same well depth. As
anticipated, screening the repulsion for overlapping charge densities improves the
agreement with the reference RHF/DZP data to some extent, but not much. The use
of exponential repulsion does not play a major role here, but this may be resulting
from using RHF as a method for obtaining the force field parameters.

In Figure 3-4 the experimental radial distribution [139] of water is plotted together
with the one obtained with a 257 molecules MD simulation (with the same parame-
ters as above) in which the central water molecule is the solute. The comparison is
not bad: the first maxima for MM and experiment are almost at the same position.
The second maximum (MM) is too far out, and the third maximum is virtually not
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Figure 3-3. Potential energy surface for the water dimer obtained at RHF/DZP and fully classical MM
levels with various repulsion models. Solid line: RHF. Repulsion; dashed line: unscreened LJ; dotted:
screened LJ ; bold dotted: unscreened X6

Figure 3-4. Radial distribution of 126 water molecules around the central water molecule from a MD
simulation at 298 K with parameters from RHF/DZP calculation (dashed line) and experimental g(r) (solid
line) from Ref. [139]
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Figure 3-5. Potential energy surface for the water dimer obtained at RHF/DZP and QM/MM levels. Solid
line: RHF; dotted: donor QM; dashed: acceptor QM

present. All these differences have to do with the parameterization based on the RHF
results, and the size of the sample.

With this good agreement between the fully QM and fully MM results in mind, we
went a step further and performed QM/MM calculations for the water dimer. There
are two ways for separating the water dimer, i.e., either with the hydrogen-bond
donor or the H-bond acceptor in the QM part. We calculated the PES for either
QM/MM option, using the same force field parameters as before, and the ‘exact’
version of HONDO/DRF, i.e., (reaction) potentials and fields, were obtained as ex-
pectation values of the appropriated operators. In Figure 3-5 the QM/MM potential
energy curves are plotted, together with the fully QM one.

The excellent agreement between the MM, QM/MM and QM PES results directly
from the consistent and consequent screening of the interactions for overlapping
charge densities. Therefore, as was already shown previously [74,137], our model
gives static and response potentials that are as good as SCF calculations (and better
if the dispersion is accounted for) which let us separate the total system into different
subsystems.

3.3.2. Benzene Dimer

While the water dimer serves as the prototype system for studying hydrogen-bonding
interactions, the benzene dimer serves this same purpose for �–� stacking. The latter
may also be relevant for technological applications, but it is mainly associated with
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biological systems such as deoxyribonucleic acid (DNA) or proteins. The benzene
dimer proved to be a challenge for quantum-chemical methodologies. On the one
hand, the system was too large for treatment with highly sophisticated ab initio
methods such as CCSD(T) with large basis sets (which are necessarily large be-
cause the BSE is of the same order of magnitude or larger than the interaction itself),
while more efficient QM methods (RHF, DFT) had intrinsic problems in describing
accurately the dispersion interaction which is the major component of the interac-
tion energy [140]. More recently, with improvements in computational power and
DFT functionals, it has become possible to study these complexes more accurately
[141,142].

Many different structures can be envisaged for the benzene dimer, but three stand
out: parallel (P), parallel-displaced (PD) and T-shaped perpendicular (T) while for
PD and T there are various orientations possible (See Figure 3-6).

We have studied the benzene dimer several times previously [74,87]. In the first
one [74] only two structures (P1 and T2) were investigated, for which the geometry
was taken directly from another study, with force field parameters obtained from a
RHF/DZP calculation on the monomer. In the second, we studied five structures from
Figure 3-6 [143], taking force field parameters from a DFT (BP86/TZ2P) calculation
of the monomer, and performed a PES-scan for each of them. The dimer was investi-
gated at the MM level in both studies, using different choices for the atomic charges
and atomic polarizabilities.

The first non-vanishing multipole moment of the benzene molecule is the
quadrupole moment, so the charges used within the MM calculations should give
a good representation of it. The dipole-preserving charges (DPC) resulting from
RHF/DZP, as used in the first study, give a molecular quadrupole moment of –2.82
a.u. (reported here is �zz; because of symmetry �xx = �yy = – 1/2 �zz). This is
a significant underestimation of the expectation value of the quadrupole at the same
level, which amounts to –7.10 a.u. On the other hand, the multipole-derived (MDC-q)
charges used in the second study represent by construction the computed molecular
quadrupole moment (–5.59 a.u.), which is only slightly lower than the experimental
value of –6.46 a.u. [143].

Because dispersion is an important component of the intermolecular interaction—
in fact the most important for the relative stability of benzene dimers [140]—the
value of the (molecular) polarizability is most likely very important for the stability

Figure 3-6. Structures of the various benzene dimers. For symbols used, see text
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Table 3-5. Interaction of the benzene dimers (kcal/mol)

method monomer properties energies

α θ P P1 P2 P3 T1 T2

DPC-a 61.5 –4.66 – −2.20 – – – –1.92
EE 70.1 –6.64 – −3.18 – – – –3.38

SMDC vDS 70.1 –5.59 −1.63 −2.49 –2.56 – –2.28 –2.26
CCSD(T) – – −1.70 – – –2.63 – –2.61
exp 70.1 –6.64 1.67±0.24a,b

aRef. [144]; b+ZPE: 1.87 kcal/mol.

of the isomers. The benzene molecule is a special molecule (like any other arene)
in that the nuclear framework is planar, but an important portion of the electron
density resides outside this plane. One-electron basis sets tied to the nuclei provide
insufficient opportunity to distribute electrons in the regions above and below the
molecular plane. The same holds for Thole’s model, in which polarizabilities too
are centered on atoms. This deficiency may lead to the underestimation of the out-
of-plane component of the molecular polarizability tensor. The importance for the
benzene dimer, and the relative stability of the different structures is, a priori, unclear.
Therefore, in the first study, a set of polarizabilities outside of the nuclear plane was
used, together with point charges fitted to give the experimental values. In Table 3-5
the results for the various choices are summarized.

The computed interaction energies for the different structures of the benzene
dimer varies from ca. –1.6 to –3.4 kcal/mol, depending on the particular form and
model used. From Table 3-5 we learn also that ‘simply’ choosing parameters that
match experimental values (EE) does not work: these values are beyond any other
results. Better are those of good QM calculations generating values for polarizabil-
ities and charges being close to experiment, i.e., with the charges of Ref. [69] and
the polarizabilities of Ref. [60] (SMC-vdDS) being in the range of high-quality ab
initio calculations. Surprisingly, the most simple approximation (DPC) is closest to
experiment: a dissociation energy of 1.92 kcal/mol at 5.03 Å, to be compared with
1.67 kcal/mol [140]—or rather 1.87 kcal/mol after correcting it for the zero point en-
ergy (ZPE) of 0.2 kcal/mol—for a T-shaped dimer at a distance of 4.96 Å [144]. The
ZPE was obtained by fitting the CCSD(T) curve for the T-shaped dimer in Figure 4
of Ref. [141] to a Morse potential. The DPC result may be a fluke, but if so, and
if we have to put more confidence in the numbers coming from, e.g., the CCSD(T)
calculations, that would not be the first time that good ab initio calculations suggesta
re-interpretation of the experimental findings [145]. More support for the DPC pa-
rameterization is collected in Table 3-6, where the results of MC-PESs are compared
with experimental dissociation energies [140] of various benzene derivatives. Even if
the numbers in Table 3-6 are corrected with ca. 0.2 for the ZPE, they are reasonably
good.
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Table 3-6. Interaction energies of benzene and derivative
dimers (kcal/mol)

System Structure UMC
a Experimentb

B–B T2 −1.92 −1.67±0.24
B–T P1 −3.35 −3.11±0.48
T–T P1 −3.58 −3.35±0.48
T–X P1 −4.18 −4.06±0.72
X–X P1 −4.86 −5.02±0.72
F–F P1 −3.66

aMinimum of MC from Ref. [74] PES; bfrom Ref. [140].

3.3.3. Many-Body Interactions

Reacting on a remark of Chalasinski and Szczesniak [146] that classical polarization
is a ‘too poor model’ to describe many-body effects, Grozema et al. [71] performed
SCF and classical DRF calculations which showed that this insufficiency has prob-
ably more to do with particular polarization models than with classical models in
general. The following partitioning of the total interaction energy was used:

�Utot = U (abc) − U (abc)(a) − U (abc)(b) − U (abc)(c) (3-84)

with U(abc)(a) the energy of component a in the trimer (abc) basis set. All interac-
tions were corrected for the BSSE applying the Boys–Bernardi counterpoise scheme
[101,102]. The correlation-consistent basis set of Dunning [147] was used. For the
classical calculations point charges giving the monomer dipoles and polarizabilities
obtained from monomers with the same basis sets were used. For details, see Ref.
[71]. Here some results are summarized in Table 3-7.

Extending this to a HF tetramer, the three- and four-body interactions were
calculated, respectively, as –2.109 and –0.090 kcal/mol with SCF, and 2.055 and
0.126 kcal/mol with DRF. The relative success of the DRF model is most likely due
to the fact that we always use self-consistent solutions of the expression in Eq. (3-47).

Table 3-7. Three-body interactions in some trimers
(kcal/mol)

Method HF H2O Urea

SCF −0.951 −0.987 −0.467
DRF −0.920 −1.131 −0.498
Diff. 3% 15% 7%
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3.3.4. Concluding the Validation

In the foregoing sections we have shown that the parameterization of DRF, based on
good quality QM calculations (large basis set, correlated wave functions, multipole
derived charges and polarizabilities fitted to experiment) on monomers, gives for
two difficult and extreme examples, i.e., the water and benzene dimers, results good
enough to define it as ‘default’ for QM/MM and MM calculations.

3.4. APPLICATIONS

In this section we present summaries of the DRF approach in various fields of com-
putational chemistry, ranging from spectra and (hyper-)polarizabilities to chemical
reactions in solution.

3.4.1. Sudden Polarization in Excited States of Symmetric Ethylenes

An interesting phenomenon is the so-called ‘sudden polarization’ in low-lying ex-
cited states of symmetric alkenes like (substituted) ethylenes. One aspect of the
behavior of the excited states of these systems is the existence of a polarized (or
charge separated) state in which two electrons are localized at one side of the
molecules—as opposed to the initial ‘biradical’ state in which the unpaired electrons
are distributed—and thus leading to a considerable dipole moment. Direct and in-
direct experimental evidence of such a ‘phantom’ state comes from time-resolved
photo-induced excitation experiments on tetraphenylethylene (TPE) [148]. Other
studies on TPE have revealed a strong correlation between the lifetime of this po-
larized excited state and solvent polarity. Schilling and Hilinsky [149] observed a
dramatic drop in TPE excited state lifetime from several nanoseconds in non-polar
solvents to only a few hundreds of picoseconds in (di)polar solvents. Picosecond
optical calorimetric studies by Ma and Zimmt [150] showed a decrease of the energy
gap between the ground and excited states of several (para-substituted) TPEs with
increasing solvent polarity, which has led to the suggestion that the energy differ-
ence between ground and excited states is a measure of the coupling between the
two states, thus explaining the decrease in lifetime of CT states in polar solvents.

After the vertical excitation of an electron from the D2h ground state of ethylene,
the C–C bond length will increase and a twist around this bond will be initiated. On
progressing twisting, three low-lying excited singlet states arise, which at the per-
pendicular D2d geometry are denoted as N(1B1;ab), V(1B2;a2–b2) and Z(1A1;a2+b2)
and are very sensitive to the twist angle. The N state is destabilized in going from the
D2h to the D2d geometry, while in this process the V and Z states are stabilized,
coming close together and—in the Born–Oppenheimer approximation—cross for
θ≈80◦. Around the near perpendicular geometry the V and Z are (nearly) degenerate
and linear combinations of V and Z like V±Z are equally acceptable solutions of
the Schrödinger equation leading to localized states of type a2 or b2 which have a
considerable dipole moment.
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As a first effort to investigate the influence of solvents on the properties of these
states, we prepared non-symmetrical reaction potentials in a continuum with various
dielectric constants generated by putting a localized charge distribution for θ≈90◦,
obtained from a RHF procedure from which an a2 solution was obtained with a dipole
moment of about 4.0 D. This was done for dielectric constants ε = 2.0, 4.0, 6.0
and 10.0, which are typical for a range of organic solvents with increasing polar-
ity. Configuration interaction with single and double excitations (CISD) in vacuo
calculations on all valence electrons with the ROHF wave function as reference
lead to perfectly zero dipoles for all states. With the polarized continuum present
and starting from the localized RHF wave function at the D2d geometry, a dipole
moment of about 3.2 D was obtained, the strong polarization occurring near the
crossing between the ‘pure’ V and Z states. It was found that a weak dielectric is
unable to maintain a large dipole on progressive twisting beyond the θ≈80◦ point,
and we concluded that relatively strongly polar solvents are needed to trap polarized
states in the near perpendicular geometry. Next we used DRF with ethylene in six
different solvents [151]. First we calculated the polarizability of ethylene in its first
excited state in the 70–90◦ twist angle area with the finite field method. From this
we learned that an electric field of about 5×10–5 a.u. is sufficient for a full charge
separation. The polarizability increases almost stepwise from ‘normal’ to about the
unphysical value of 80,000 a.u. around the 81◦ twist. For other twist angles the dipole
moment was linear in the applied field. Solvation effects were investigated by SMC
calculations on ethylene embedded in 50 solvent molecules, followed by QM/MM,
as before, with CISD. In Table 3-8 the average solvent-induced dipole moments are
listed.

Table 3-8 shows that, as expected, only polar solvents are capable of breaking
the symmetry of the ethylene excited states. This led to new experimental work on
TPE in which the dynamics of the charge separation was studied [152]. A similar
theoretical study on the solvent effect on the formation of charge transfer states in
9,9’-bianthryl [153] led to similar results and conclusions.

Table 3-8. Average solvent-induced dipole moments in
the N, Z and V states for 81◦ twist angle

Solvent |μz|/ D
N-state Z-state V-state

Ethane 0.0 0.09 0.08
Tetrachloromethane 0.01 0.72 0.70
Chloroform 0.05 2.07 1.93
Carbon dioxide 0.09 2.62 2.37
Acetone 0.10 2.61 2.38
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3.4.2. Spectra

Spectra are in most cases calculated as help by the interpretation of experiments,
like by assigning (orbital) transitions. On the other hand, computed spectra are obvi-
ously an excellent way to validate QM and QM/MM procedures. Calculated vertical
transitions may be convoluted to bands, thus mimicking the internal movements in
a molecule. Sometimes solvent effects are accounted for by adding a single or a
few solvent molecules, thus missing any ‘bulk’ effects. Also in this field the con-
tinuum approach is popular, then, however, only a single set of vertical transitions is
obtained, which may be broadened, now to mimic also the band structure usually ob-
tained for spectra in the condensed phases. Applying the SMC or SMD and QM/MM
techniques one may average the excitations and oscillator strengths and use standard
deviations in either to indicate the margins.

In several cases DRF has been successfully applied for calculating spectra of
molecules in solution. Of late, we add the oscillator strengths of all transitions in
equal-width energy intervals, the width depending on the required resolution, and—if
different conformers of the solute are present—scaled with appropriate Boltzmann
factors. The individual transitions may be convoluted for the vibrations. In this way
the bands appear ‘naturally’ and this is about the closest one can come to simulate a
real spectrometer. Here we summarize some results.

3.4.2.1. The n→ �∗ transition in acetone

Our first effort to compute a spectrum was on the solvent shift of the n→�∗ transition
in acetone [154] in various solvents by calculating the ground state and first excited
state as restricted and open shell Hartree–Fock (RHF and ROHF) single determinant
wave functions. The solvent was for comparison modeled by both the dielectric con-
tinuum and by discrete solvent molecules in which the solute/solvent configurations
were obtained from Monte Carlo (MC) simulations. This was done the ‘hard way’
by using the DRF-QM/MM ground state energy in the MC procedure, i.e., for each
accepted step also a ROHF calculation was done on the excited state. Due to the
extremely high CPU demands of this procedure only a limited number of solvents
(water, acetonitrile (MeCN) and tetrachloromethane (CCl4)), solvent molecules (ca.
30) and MC steps (ca. 7000) were possible with a minimum basis (STO-3 G) [138]
for the solute. In Table 3-9 some of the results are collected.

From Table 3-9 one learns that the continuum-only results are only for water
in reasonable agreement with experiment. In contrast, the discrete solvent model
leads, even in this very limited version, to shifts that compare well with experiment.
Notice also that going from water to MeCN and CCl4, the dispersion is of increasing
importance: MeCN has an appreciable dipole moment but is also more polarizable
than water, especially along the CN triple bond, while for CCl4 the polarizability is
the only parameter of importance.

In the next effort [187] to compute the same n→�∗ excitation in acetone
we applied the SMC technique: completely classical MC calculations produced
100 solvent-solute configurations that were afterwards subjected to DRF-QM/MM
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Table 3-9. Computed excitation shifts (cm–1) of acetonea relative to the gas-phase result in
water, MeCN and CCl4

Solvent model Shift in H2Ob Shift in MeCNb Shift in CCl4b

Continuumc −1803 (+1624) –1848 (+1579) −2403 (+675)
Discreted +1639 (+2788) +620 (+1597) −216 (+411)
Discrete, MC average +1821 ± 330 + 922 ±310 −381 ±75
Experimentale +1700 ± 200 + 400 ±200 −350 ±200

aVacuum excitation energy 26,962 cm–1 (exp. 36, 100 ±100 cm–1, [180]).
bA negative value indicates a red shift. The values in parentheses are without dispersion.
cBoundary at 1.2 times the van der Waals radii.
dAt lowest energy solute–solvent configuration from an all-classical MC run.
eFrom [181,180,182].

calculations. The advantages are clear: more solvents (eight), more solvent layers
(about two, i.e., 40–52 solvent molecules), more MC steps (50,000) and a better
basis set (DZP instead of STO). The results are depicted in Figure 3-7.

Although the still relatively small basis and the use of HF wave functions result
in absolute excitations far away from the experimental value, the solvent shifts are
very well reproduced. The need for dispersion is probably disputable, because it
might only be connected with the uncorrelated wave functions. Wave functions that

Figure 3-7. Calculated shifts of the n→�∗ transition of acetone in various solvents. The solid lines
indicate the experimental margins. The arrows indicate the standard deviations from the MC simulations.
Data from Ref. [187]
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do not violate the Pauli principle for the part in which there is overlap with charge
distributions of solvent molecules, and in which electron correlation is accounted for,
are more tight and lead possibly to less dispersion interaction. The most important
issue here is the fact that all calculations were done with a single set of parameters,
i.e., without reparameterization for, e.g., the excited state. The only difference was
the adaptation of γ of Eq. (3-71), in which in the denominator the ionization energy
of the solute was reduced by subtracting the calculated excitation energy, for use in
the dispersion contribution of the excited state.

3.4.2.2. Absorption and emission spectra of N-(1-pyrenyl)-methyluracil-
5-carboxamide-1-aminopyrene (PAUMe)

A more recent application is the calculation of the absorption and emission spectrum
of a pyrenyldeoxyuridine nucleoside model [155] (see Figure 3-8). The interest was
here to find an explanation for the stronger pyrenyl emission quenching in the polar
solvents (MeCN and MeOH) than in the less polar solvent tetrahydrofuran (THF)
[156]. This is consistent with the formation of intramolecular Py•+/dU– charge trans-
fer (CT) states.

The absorption and emission spectra of N-acetyl-1-aminopyrene (PAAc) and
PAUMe immersed in 200 MeCN molecules were calculated using ZINDOs/CIS [84]
and DRF [157] for the QM/MM parts. Eight conformers of both molecules were
used, for PAAc obtained ‘by hand’ by rotating the Ac moiety, for PAUMe as local
minima in a classical MC calculation [156]. Each of the conformers was treated in
a SMD simulation equilibrated to the vacuum ground state charge distribution as
modeled by the ZDO [84] charges that reproduce the dipole moment, and a simula-
tion equilibrated to the charge distribution of the first (vacuum) CT state. For each
conformer 20 vertical transitions were calculated. The oscillator strengths were then
scaled by appropriate Boltzmann factors, based on ground state energies calculated
with the Amsterdam density functional package (ADF) [86], and then the ca. 15,000
transitions were collected in 200 equal-width energy intervals, leading to Figure 3-9
(PAAc) and Figure 3-10 (PAUMe) in which we compare the calculated and exper-
imental spectra. From Figure 3-9 we see that the combination ZINDO/DRF does
reasonably well for PAAc, which made us going on with PAUMe. Comparing the two
spectra we see that the absorption bands for PAUMe are much broader than for PAAc,
which agrees with the experimental findings [156].

Both absorption and emission spectra are somewhat blue shifted, which we
attributed to the difference between the spectroscopic model (PAUMe) and the
compound actually used in the experiments (PAdU). Furthermore, the dispersion
interaction was neglected, mainly because the choice of the scaling parameter γ

Eq. (3-71) for states beyond the first excited state is cumbersome. Reducing the
ionization energy of the solute by the excitation energy leads rapidly to a value
smaller than zero, and hence to a positive dispersion interaction. In order to avoid
this unphysical situation it is better to neglect the dispersion completely. More-
over, it is sometimes assumed that in semi-empirical wave functions electron cor-
relation is accounted for because the parameters come from experiment. (The CIS
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Figure 3-8. Structural drawings of N-acetyl-1-aminopyrene (PAAc), 5-(N-carboxyl-1-aminopyrenyl)-
2’-deoxyuridine (PAdU) and N-(1-pyrenyl)-1-methyluracyl-5-carboxamide (PAUMe)

procedure of course, considering only single electron excitations, does not contribute
to this). Reproduction of experimental spectra was not the main goal of this study,
however satisfactory the results of Figure 3-10 may be. The events in the fem-
tosecond experiments in Ref. [156] were rationalized as schematically pictured in
Figure 3-11.

The left side of Figure 3-11 gives a qualitative impression of the computed spec-
trum for the solvent being equilibrated with the solute’s ground state charge distribu-
tion. A relatively high-lying excited state is present with a very large dipole moment.
The left side relates to a calculation for which the solvent is first equilibrated with the
CT1 state (in the gas phase). The effects are twofold: first the ground state shifts up,
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Figure 3-9. (Normalized) calculated (solid), experimental (dashed) absorption, and calculated (dash-dot)
and experimental (fine dash) emission spectra of PAAc in MeCN

Figure 3-10. (Normalized) experimental (PAdU) and calculated (PAUMe) absorption and emission spectra
in MeCN. Dashed line: experimental absorption; dash-dot: experimental emission. Solid line: calculated
absorption; dotted line: experimental emission
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S3; CT1 ; μ = 30 D 

S2 ; μ  ≈3 D

S1 ; μ ≈3 D

solvent eq.CT1

}

solvent eq. GS

Solvent relaxation

Emission

S0 ; μ≈3 D (GS)

S0 ; μ ≈2 D (GS)

S3 ; μ ≈10 D

S2 ; μ ≈10 D

S1 ; CT1; μ ≈36 D

Figure 3-11. Schematic representation of two transition energy manifolds, showing some low-energy
electronic states (Sn) of PAUMe in MeCN. Left: solvent equilibrated with ground state charge distribution.
Right: solvent equilibrated with charge distribution of (vacuum) CT1 state

because it is not in equilibrium with the solvent. The other states may go up or down,
depending on how much they ‘like’ their new environment. However, the CT1 state
is stabilized by almost 1 eV and actually ends up as the first excited state. This state
lies very close to the (new) ground state, thus explaining the emission quenching of
such states. For the details we refer the reader to Ref. [155].

3.4.2.3. The visible spectrum of Fe-(PyPepS)2
–

Another numerical experiment involved a model active site of Fe-dependent nitrile-
hydratase (Nhase), a non-heme FeIII enzyme that catalyzes the hydration of nitriles
to amides. The mechanism is as yet unknown and computational chemistry may be
important to help unraveling it, provided the methods used are adequate, and the idea
was that calculating the spectrum is a good check on the computational method. Of
the model compound, [FeIII(PyPepS)2]– (see Figure 3-12) the spectrum in aqueous
solution is known.

The spectrum is very similar to that of the native enzyme, showing strong ab-
sorption in the 400–500 nm region and a weaker band around 700–800 nm. An
early effort to calculate it from a combination of time-dependent density theory
TDDFT and MM (geometry optimization of the complex surrounded by 50 water
molecules), followed by ZINDOs/CIS in which the whole sample was treated
quantum-mechanically, failed for several reasons. Semi-empirical methods like
INDO are minimal basis set approaches that are unable to describe negative ions.
In the analysis of the charge distribution of the resulting SCF wave function all
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Figure 3-12. Structural drawings of PyPepSH2 (left) and [FeIII(PyPepS)2]–

water molecules were slightly negative to the extent that the complex ‘lost’ about
two electrons and, hence, the calculated spectrum was that of a positive ion, rather
than the original negative one. We turned to DRF that has been implemented in
ZINDO for open shell ground states within the Rumer-CI scheme [158,159]. In the
usual SMD/ZINDO/DRF procedure the spectrum was calculated for the complex
immersed in 200 water molecules. The result was half satisfying: the 400–500 nm
band was in perfect agreement with experiment but beyond 500 nm the spectrum
was empty. This is probably due to the use of a minimal basis set for a negative ion,
and the parameterization for Fe. Then we turned to TDDFT, using a DZ basis of
Slater-type orbitals and arrived at the spectra in Figures 3-13 and 3-14 [160].

Figure 3-13. Gas phase spectrum (solid line) and spectrum of a single solute–solvent configuration
(dashed line). Vertical transitions are convoluted by Gaussians with a width of 0.14 eV. Data from
Ref. [160]



The Discrete Reaction Field Approach 83

Figure 3-14. Experimental (solid line) and calculated (dashed line) spectra of [FeIII(PyPepS)2]– in water.
Calculated spectrum obtained by collecting the vertical transitions of 25 solute–solvent configurations in
60 equal energy intervals, then convoluted with Gaussians with width of 0.3 eV. The dotted spectrum is
collected in 200 intervals without convoluting

In Figure 3-13 the vacuum spectrum, comprising 100 vertical transitions, is su-
perimposed on that of a single solute–solvent configuration. The latter shows the
expected blue shift with respect to the gas phase: the excited state charge distribu-
tion sees a solvent polarization belonging to the ground state. In Figure 3-14 the
spectrum is collected from 25 solute–solvent configurations and is compared with
the experimental spectrum. It shows an overall red shift of about 70–120 nm. This
means errors of ca. 0.3 eV in the high-energy part of the spectrum and ca. 0.1 eV in
the low-energy region. This is more or less normal in spectra calculated with TDDFT
[161,162,163]. The overall agreement with the experimental spectrum is satisfactory,
and our conclusion is that this combination of TDDFT and DRF is promising for
further investigations on the actual enzyme.

3.4.2.4. Circular dichroism spectrum of [Co(en)3]3+ in water

Chirality is an important topic in chemistry and biochemistry, due to the natural
occurrence of chiral molecules in living organisms. In circular dichroism (CD) one
measures the differential absorption of left- and right-handed circularly polarized
light, which for chiral species are different. Therefore, CD has turned out to be a
powerful tool which provides information on the electronic and geometric structure
of chiral molecules. Since most CD spectra are measured in solution we extended our
DRF/TDDFT method to also calculate such properties. As a first example we studied
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the CD spectrum of a transition metal complex, [Co(en)3]3+, in aqueous solution
[164]. Transition metal complexes are often chiral, so CD is used experimentally to
characterize the compounds. The complex [Co(en)3]3+ represents a good benchmark
system since there are several theoretical and experimental studies and since the CD
spectrum of the complex is dominated by a single conformer.

The CD spectrum of the complex in aqueous solution was obtained by averag-
ing over several snapshot configurations obtained from classical polarizable MD
simulations. The convergence of the CD spectrum was shown to be quick with a
required number of snapshots of the order of 50. It was demonstrated that by us-
ing mixed coarse/fine grained parallel computation this kind of averaging can be
obtained within a few hours of turnaround time in a routine fashion.

Although, the DRF model predicts a blue shift of the CD bands above
35×103 cm–1, a perfect agreement with experiment was not obtained since all the
calculated intensities are much larger than what is found experimentally. Also, the
DRF method predicts a weak band around 40×103 cm–1 which is not visible ex-
perimentally. The DRF results were compared with results obtained from the much
simpler COSMO model, which showed very similar trends although larger shifts
were found with the COSMO model. It was suggested that the weak band around
40×103 cm–1 was very sensitive to the local structure of the solvent, but this could
be ruled out since the DRF results did not show a significant lowering of this band.

Although, the agreement with experiments did not show a significant improve-
ment over the simpler COSMO model we are still confident that the combination
of DRF with TDDFT is computationally an attractive solution for calculating chiro-
optical properties of molecules in solution when the explicit solvent structure is of
interest.

3.4.3. (Hyper-)polarizabilities and Macroscopic Properties in Solution

Non-linear optical (NLO) properties of molecules are very sensitive to solvent effects
and it is therefore essential to include these effects directly in the calculations in
order to accurately describe NLO properties. This makes the accurate prediction of
molecular response properties in the condensed phase of great interest, both from a
theoretical and a technological point of view, since materials exhibiting NLO effects
are of fundamental technological importance for use in future application within
electronics and photonics. Accurate calculations of NLO properties of molecules are
difficult due to the strict requirements of the level of theory used, i.e., correlation
and basis set with many diffuse functions are required. Attempts to calculate effec-
tive static (hyper)polarizabilities in the condensed phase go, in our group, 10 years
back [110] in which we showed that it is to be expected that such properties are
smaller than in the gas phase. The next one describes the static (hyper)polarizability
of acetone in 11 different solvents, modeled with both the continuum and the dis-
crete approach [24]. The conclusion was that in the continuum approach all values
are larger, e.g., like in the work of Cammi et al. [165], Luo et al. [166] and Dehu
et al. [167]. The latter two even suggest a strong correlation between the (non-)linear
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Table 3-10. Comparison of the molecular properties of water
in the gas phase. All results are in a.u.

Method μ α β γ

CCSD (gas) 0.73 9.52 −19.26 1942
DFT (gas) 0.71 9.97 −20.41 2021.3
Exp. (gas) 0.73 9.83 −19.2±5% 1800±8%
CCSD/MM 1.07 10.04 12.21 2169
DFT/DRF 1.04 10.13 8.57 2117.6

Data from Refs. [26,31,32].

properties and the dielectric constant of the solvent. This is a consequence of the
inflation of density in a stabilizing-only environment, and the neglect of the role of
the local fields. Wortmann and Bishop [131] pointed out that errors in the local field
factors can lead to significant errors, both in calculated and experimental values. In
contrast with the continuum approach, with discrete solvents [24,168] all effective
static properties appeared to be smaller than in the gas phase for all solvents, and
virtually independent of the dielectric constant. For example, αsol is expected to be
larger than αvac for the reason given above: for a real solution the molecular charge
distribution is stabilized. In contrast, αeff < αvac due to the field from the dipoles
induced in the immediate environment. At the time, in Ref. [24], a small basis set
was used and all interaction (reaction) potentials and fields were expanded around
the solute’s nuclei [10]. With a single calculation using a large basis set and ‘exact’
potentials and fields, i.e., expectation values of the appropriate QM operators, the
difference with the gas phase was much smaller.

Next, DRF was introduced in the response module of ADF [32] and the local field
problem was reformulated and used to study solvent effects on the NLO properties
of water, acetonitrile [26], p-nitroaniline (pNA) [169] and fullerene clusters. Here we
summarize results for water and pNA since they are representative of the method.

3.4.3.1. Response properties of liquid water

Although water is not the first material that springs to mind when talking about NLO
properties it has certain interesting properties. First, the size of the molecule is small,
so that large basis sets and high-level theory can be used which provides a means
of benchmarking new methods, a feature particularly important when dealing with
TDDFT. In addition to this, water exhibits a sign change in the first hyperpolariz-
ability upon solvation [170], a trend not reproduced with simple continuum models.
As a benchmark of the DRF model we compared the results with coupled cluster
(CCSD) results obtained both in the gas phase and for a single average water struc-
ture obtained from MD simulations [16]. The experimental and calculated results are
summarized in Table 3-10.

From Table 3-10 it is clear that the DRF model compares extremely well with
the results obtained from the more computational demanding CCSD method, both
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in the gas phase and for the average liquid structure. The only exception seems to
be the first hyperpolarizability where the DFT/DRF result is smaller than that of
CCSD/MM. However, this difference probably arises from the short-range damping
of the many-body polarization operator which is not included in the CCSD/MM
model. The good agreement indicates that one needs only to benchmark the DFT in
the gas phase. Although the small water cluster did not provide a realistic model of
liquid water, it did provide a benchmark for the DRF model.

To go beyond a single average water structure, and capture the dynamic fluc-
tuations of the properties of water molecules in liquid water, we selected 101 dif-
ferent water structures from a 50-ps SMD simulation of 256 water molecules. By
comparing results from different configurations, information is obtained about the
sensitivity of different response properties due to the dynamic fluctuations in the
local molecular environment. This is illustrated in Figure 3-15 where the calculated
linear polarizability, first hyperpolarizability and second hyperpolarizability are plot-
ted as a function of the different configurations. All the properties show significant
fluctuations, illustrating the importance of sampling over several molecular configu-
rations in order to describe the solvent effect. This is particularly clear when consid-
ering the first hyperpolarizability that shows particularly large fluctuations. In fact,
only on average does the first hyperpolarizability show the experimentally observed
sign change [170], whereas many of the individual configurations retain a negative
value.

While the above discussion clearly highlights the importance of including solvent
effects in the calculations , the calculated properties cannot be compared directly
with experimental results. This is mainly caused by the many different conventions
used for representing hyperpolarizabilities and susceptibilities. However, the calcu-
lated properties can be combined with appropriate, calculated Lorentz/Onsager local
field factors to obtain macroscopic susceptibilities that can be compared with exper-
imental results. For water, we used this to calculate the refractive index and the third
harmonic generation (THG) and the electric field-induced second harmonic (EFISH)
non-linear susceptibilities. The results are collected in Table 3-11.

In order to make possible the comparison presented in Table 3-11 we converted
the experimental values to match the conventions used in this work. Due to a myr-
iad of different conventions used in defining the NLO properties this conversion is
rather complicated but necessary when comparing with literature values. In addition
to correcting for differences in conventions [129], we also adopted a different refer-
ence value for THG experiments on fused silica and EFISH experiments on quartz
[171,172]. The combined effects of these, clearly makes a comparison between the-
ory and experiments more difficult, since differences in convention and accuracy of
reference values can obscure any agreement.

The agreement between the TDDFT/DRF results and experiment is very good
for the refractive index and for the THG susceptibility. However, for EFISH we find
that the theoretical results are smaller by almost a factor of three as compared with
thewill be reflected in the snapshots and, therefore, hopefully describe the rotational
contribution to the susceptibility.
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(a) (b) 

(c) 

Figure 3-15. Fluctuations in effective linear polarizability (a), first (b) and second (c) hyperpolarizability
as function of simulation time from 50 ps MD runs. Vacuum values (dashed lines) and average values
(solid lines) are included

Table 3-11. Macroscopic response properties of liquid water. The
frequency is � = 0.0428 a.u. �(3) is in units of 10−14 esu

n(ω) n(2ω) χ (3)
THG χ (3)

EFISH

DFT/DRFa 1.334 1.342 1.07 4.1
Exp. 1.326b 1.333c 1.29b 10.5d

aRef. [26]; bRef. [183]; cRef. [184]; dRef. [185].
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3.4.3.2. The first hyperpolarizability of pNA in 1,4-dioxane solution

Molecules which contain donor and acceptor groups connected by some conjugated
bridge (so-called push–pull molecules) are important candidates for new materials
based on their strong NLO properties, particularly as SHG material. The prototypical
push–pull molecule is p-nitroaniline (pNA) and it is therefore no surprise that there
are numerous studies, both experimentally and theoretically, of its NLO properties.
The molecular quantity that governs the SHG properties of materials is the first hy-
perpolarizability, β(–2ω; ω, ω), a quantity which can be measured using either with
EFISH or hyper-Rayleigh scattering (HRS) techniques. In the gas phase the experi-
mental value for the first hyperpolarizability of pNA is found to be 1072 ± 44 a.u.
using the EFISH technique. In 1,4-dioxane solution values are found between 1359
and 1482 a.u. at 1064 nm using both HRS and EFISH measurements [129,171,173].
The increase in the first hyperpolarizability upon solvation in 1,4-dioxane is there-
fore found experimentally to be around 30%. We were therefore interested in seeing
whether the DFT/DRF method can accurately describe the NLO properties of pNA
and the increase due to solvation. Again, we performed SMD simulations of pNA
in 1,4-dioxane solution, where 100 different solvent configurations, well separated
in time, were selected. The results of the QM/MM calculations are presented in
Table 3-12.

From Table 3-12 we see that the calculated solvent shift for β is calculated to be
30%, which is in excellent agreement with the experimental data. It is also evident
that the calculated β is larger by a factor of two, both in the gas phase and in the
solution. Several different possible causes of the differences between theory and
experiments were explored. Calculations of β of a series of small molecules were
all found to be in good agreement with experiments in the gas phase, indicating that
the TDDFT method used can accurately describe the NLO properties [169]. To test
the TDDFT/DRF model we also calculated the refractive index of 1,4-dioxane which
shows good agreement with the experimental value. In the calculations we assumed
that the structure of pNA is close to being planar which could explain some of the
discrepancy between theory and experiment. Calculating β as an average over many
pNA conformations is possibly the solution to this problem. On the other hand, this
may also have to do with the problems TDDFT has with pull–push systems: in the

Table 3-12. Static and frequency-dependent properties of pNA in
gas phase and 1,4-dioxane solution

Method μ/D βSHG

DFT(gas) 7.73 2127
Exp(gas) 6.87 1072±44
DFT/DRF(1,4-dioxane) 10.62±0.06 2771±26
Exp. (1,4-dioxane)a – 1359a, 1409a, 1482b

aRef. [173]; bRef. [186].
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series of test calculations nitro-benzene also showed a β value from DFT that is more
than twice the experimental one.

3.4.4. Chemistry in Solution

DRF is also used for modeling chemical events in solution. One example was used
as a test to see if it could describe the simple dissociation of ter-butyl-chloride in
water. The other is a numerical experiment on tautomerism of biologically important
compounds, done because experiments are difficult or impossible.

3.4.4.1. The dissociation of ter-butyl-chloride in water

For describing the dissociation of ter-butyl-chloride (tButCl), we performed MC
calculations on tBut+, Cl– and tetramethylammonium, (CH3)4N+ (TMA+). TMA+ is
used as a benchmark because the experimental hydration energy of tBut+ is unknown.
We calculated the ‘solvated’ minimal energy reaction path (MERP) as obtained from
the gas phase, i.e., the Cl atom is stepwise removed from the central carbon atom,
while the geometry of the tBut group was optimized.

First Cl–, tBut+ and TMA+ were solvated by 62 water molecules, the temperature
was 298 K, for equilibration 5×105 steps and for sampling 1×106 steps were used.
This was repeated for the waters without solute, as reference. We used the Metropolis
scheme without any sophistication. The charges on water were taken from ab initio
calculations, the polarizabilities were set at the experimental values [60]. For the
long-range interactions we added—for a number of accepted MC configurations—a
dielectric continuum with ε≈80. As boundary we took the solvent-accessible Con-
nolly surface [174]. The free energy of cavitation was estimated from Pierotti’s ex-
pression [175]. The results are given in Table 3-13.

The parameterization for Cl– is apparently not perfect, most likely because the
size is somewhat off. Noting that the experimental entropy change �Ssolv(Cl–) =
–18.4 cal/(mol K) [176] the experimental change in enthalpy will—at 298 K—be
�Usolv(Cl–) = –81.4 kcal/mol, a number that must be compared with the –74 kcal/mol
in Table 3-13.

The calculated free energy of TMA+ is in good agreement with experiment,
and therefore we had confidence in that for tBut+ as well. Next, we solvated 15
points along the vacuum MERP of the dissociation of ter-ButCl. We applied the MC

Table 3-13. Solvation energies (kcal/mol)

�Uint
a �Gsolv

a �Gsolv
b �Gtot �Gexp

tBut+ −43 −30 −15 −45 –
Cl– −74 –62 −19 −81 −76.0
TMA+ −40 −34 −17 −51 −50.4

aFrom the MC calculations on the discrete system.
bContinuum contribution: �Gsolv= �Ges +�Gcav.
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Figure 3-16. Minimum energy reaction path (MERP) for hydrolysis of ter-butyl-chloride (tBut) in water.
Calculated was the potential of mean force for 15 points along the vacuum MERP of tBut immersed in
124 water molecules. For symbols see text

sampling again, now with 124 water molecules, adding the solvation energies to the
corresponding values of the MERP energies, to arrive at the potential of mean force
in solution by equilibrating each point on the MERP. Figure 3-16 gives an impression
of the results.

From Figure 3-16, the four stages of Winstein [177] emerge clearly: the reac-
tants (R), the intimate ion pair (IIP) at a longer C–Cl distance without water yet
inserted, the solvent-separated IP with about a single water molecule between tBut
and the chloride ion, the solvent-separated IP (SSIP) and the separated IP(SIP)
where both ions are solvated, but still strongly interacting, and, finally, the disso-
ciated IP at infinite dilution. The calculated energy of activation (20 kcal/mol) for
the rate-determining step, R→IIP, is in good agreement with the experimental value
of Winstein et al. [176]. Even with this modest simulation the results are satisfactory,
in particular because no specific parameterization was used. A similar study on the
structure and stability of Li- and Na-carboxylate, -sulfate and -phosphate complexes
is reported in Ref. [178].

3.4.4.2. Tautomerism of substituted cyclic imidazoline

The amidine group, –NH–C(R)=N– , occurs in numerous biologically active com-
pounds, which include amino acids, antivirial, antibacterial, antifungal, antihyper-
tensive drugs, and pesticides. Prototropic tautomerism in compounds containing this
group is exceptionally difficult to study using the current experimental physicochem-
ical methods because the proton transfer from the amino to the imino nitrogen is very
fast and separation of individual tautomers is impossible. 2-Amino-2-imidazoline,
2-amino-2-oxazoline and 2-amino-2-thiazoline moieties are part of many important
drugs (e.g., agonists and antagonists of �-adrenoreceptors, drugs binding to imi-
dazoline receptors and inhibitors of neuronal Na+ channels) and could be present
in two tautomeric forms (amino and imino species). The absence of experimen-
tal energetic and structural data of amino–imino tautomeric equilibrium presents a
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Figure 3-17. Scheme of amino–imino tautomerism, X=N, O; R=CH3, Phenyl

challenge to quantum-chemical methods to obtain some insight into the reactivity of
these compounds.

Here we summarize the results of a systematic theoretical examination of amino
and imino tautomers in the systems schematically shown in Figure 3-17 based on
DFT model chemistry in the gas phase and in water. In particular the equilibrium
constant KT = [amino tautomer]/[imino tautomer] for the process of Figure 3-17
was studied. The imino tautomers exhibit in general larger dipole moments and,
hence are expected to have greater affinity to water and therefore a smaller KT. In
Table 3-14 the KT values in the gas phase and in aqueous solution, obtained applying
the MD module of DRF90 [87] for the solutes in 100 water molecules, are listed.

The values support the expectations on the shift of the equilibrium toward the
imino form going from vacuum to solution with the exception of methyl deriva-
tives of oxazoline and thiazoline of which the amino tautomers appear to be most

Table 3-14. Gas phase Gibbs energies and equilibrium constantsa

System �G (kJ/mol) KT

1 Gas phase −6 10
Solution 30 6 × 10−6

2 Gas phase 15 445
Solution 3 4

3 Gas phase −9 39
Solution −73 6 × 1012

4 Gas phase 10 0
Solution 70 6 × 10−13

5 Gas phase −9 44
Solution 54 4 × 10–10

6 Gas phase 8 23
Solution 74 7 × 10–33

aData from Ref. [179].
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stable in water. Probably the strong intramolecular hydrogen bonds of the N—H. . .O
and N—H. . .S type, not present in the imino forms, play an important role. More
information can be found in Ref. [179].

3.5. SUMMARY AND CONCLUSION

In this chapter we described the discrete reaction field (DRF) approach for handling
condensed phase problems in computational chemistry. DRF focuses on a quantum-
chemical treatment of the system of interest (the solute) while the rest of the (large)
system is represented by discrete molecules or groups of atoms (the solvent) which
are treated classically (QM/MM approach). The discrete parts are modeled by point
charges and explicit polarizabilities obtained from high-level quantum-mechanical
calculations on monomers without (or with minimal) fitting to experimental or to
otherwise obtained results. This makes the parameters very transferable. Degrees of
freedom of the solvent (MM) are treated by statistical mechanics techniques (e.g.,
molecular dynamics) with a force field that is parameterized in the same way. Al-
though resulting in reasonable results, the least satisfying part of the force field used
lies in the ad hoc short-range repulsion potentials needed to keep molecules suffi-
ciently apart in (half) classical simulations. Because such potentials do not affect the
electrons in QM/MM calculations, the electronic charge distributions are most likely
too diffuse. This is a matter of further development.

We discussed DRF in perspective with other methods, gave the theoretical back-
ground and addressed the implementation. In a short section on the validation of
DRF we showed that we can treat a system with QM, MM or QM/MM without
significant loss of accuracy. A set of examples of its application ranges from simple
solvation energies, spectra to (hyper)polarizabilities and processes of excited states
of molecules in solution. These examples employ DRF in combination with—ab
initio or semi-empirical—conventional wave function and DFT techniques.

We conclude that DRF is a flexible and reliable method for the treatment of
condensed phase systems in computational chemistry.

ABBREVIATIONS

a.u. atomic units
energy: 1 a.u. = 1 Hartree = 627.5 kcal/mol = 2625.5 kJ/mol
length: 1 a.u. = 1 Bohr = 52.917726 10−12 m
charge: 1 a.u. = 1e = 1.60217733 10−19 C

ADF Amsterdam density functional
AIMD Ab initio molecular dynamics
ARF Average reaction field
BSSE Basis set superposition error
CT Charge transfer
CCSD(T) Coupled cluster with singles and doubles (+ perturbative triplets)
CD Circular dichroism
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CISD Configuration interaction with singles and doubles
DFT Density functional theory
DRF Discrete (or direct) reaction field
DZP Double-zeta + polarization functions
EFISH Electric field induced second harmonic generation
ESP Electrostatic potential
e.s.u Electrostatic units
HF Hartree-Fock
lhs left hand side
MC Monte Carlo
MCSCF Multi-configurational self consistent field
MD Molecular dynamics
MM Molecular mechanics
MPn Møller Plesset n-order perturbation
PCM Polarizable continuum model
PES Potential energy surface
PT Perturbation theory
QM/MM Quantum mechanics/molecular mechanics
RHF Restricted Hartree-Fock
rhs right hand side
ROHF Restricted open shell Hartree-Fock
RP Reaction potential
SAPT Symmetry adapted perturbation theory
SCF Self consistent field
SMC Sequential Monte Carlo
SMD Sequential molecular dynamics
TDDFT Time dependent density functional theory
TZP Triple zeta + polarization basis set
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Abstract: The enthalpic and entropic contributions to the free energy of hydration of a series of
neutral solutes are analyzed by means of continuum solvation methods based on the
Miertus–Scrocco–Tomasi (MST) method. Particular attention is paid to the partitioning
of the enthalpic and entropic components of the hydration free energy into its electrostatic
and non-electrostatic terms. The results provide a basis to design further refinements of
continuum solvation models

4.1. INTRODUCTION

The solvation of a solute reflects the subtle balance between two opposite
components. First, the interaction between solute and solvent molecules, which is
a favorable contribution arising from the different intermolecular forces that can
be formed depending on the chemical nature of both solute and solvent. Second,
the interaction between solvent molecules, which is an unfavorable term due to the
disruption of the internal structure of the bulk solvent caused by the presence of the
solute. The key magnitude to characterize the transfer of solute from gas phase to
solution is the free energy of solvation, �Gsol, which can be defined as the reversible
work required to transfer the solute from the ideal gas phase to solution at a given
temperature, pressure and chemical composition [1]. This definition allows us to
compute �Gsol as the difference in the reversible works necessary to “build up” the
solute both in solution and in the gas phase.

To determine the coupling work between solute and solvent, it is convenient to
decompose �Gsol into separate, more manageable terms, which typically involves
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electrostatic (�Gele) and non-electrostatic (�Gn-ele) contributions (Eq. 4-1). The for-
mer accounts for the work required to assemble the electric charge distribution of
the solute in solution, while the latter is typically used to account for van der Waals
interactions (�GvW) between solute and solvent molecules, as well as for cavitation
(�Gcav), i.e., the work required to create the cavity that accommodates the solute:

�Gsol = �Gele + �Gn-ele = �Gele + �Gcav + �GvW (4-1)

The partitioning scheme shown in Eq. 4-1 has been widely adopted by theoretical
chemists to face the challenging question of determining �Gsol [2,3,4,5,6]. In
particular, the adoption of such scheme has been extremely fruitful in the framework
of quantum mechanical (QM) self-consistent reaction field (SCRF) continuum
models, [7,8,9,10,11] where the solvent is treated as a continuum polarizable medium
characterized by suitable macroscopic properties. After a careful parametrization,
QM-SCRF models are able to predict with a remarkable accuracy the solvation
free energy of a large variety of solutes in different solvents, including water
[12,13,14,15,16]. Unfortunately, high accuracy in the total �Gsol does not necessarily
imply the same level of accuracy in the different free energy components, due to the
neglect of mutual coupling between the different solvation components [17,18].

An alternative procedure to gain deeper insight into the physico-chemical basis
of solvation consists of the partitioning of �Gsol into its enthalpic, �Hsol, and en-
tropic, �Ssol, components. Taken together, these quantities represent a substantial
reservoir of information about the interactions between solute and solvent molecules.
Moreover, these quantities are state functions and can be rigorously derived by using
standard thermodynamic relationships, as noted in Eqs. 4-2 and 4-3. Finally, the
availability of experimentally measured data for the enthalpy and entropy of solva-
tion makes it possible to calibrate the reliability of theoretical models to predict those
thermodynamic quantities.

�Gsol = �Hsol − T �Ssol (4-2)

�Hsol = �Gsol − T

(
�Gsol

�T

)

P

(4-3)

It can be anticipated that the computation of �Hsol and �Ssol is more delicate than
the prediction of �Gsol, which benefits from the enthalpy–entropy compensation.
Accordingly, the suitability of the QM-SCRF models to predict the enthalpic and
entropic components of the free energy of solvation is a challenging issue, which
could serve to refine current solvation continuum models. This contribution reports
the results obtained in the framework of the MST solvation model [15] to estimate
the enthalpy (and entropy) of hydration for a set of neutral compounds. To this end,
we will first describe the formalism used to determine the MST solvation free energy
and its enthalpic component. Then, solvation free energies and enthalpies for a series
of typical neutral solutes will be presented and analyzed in light of the available ex-
perimental data. Finally, collected data will be used to discuss the differential trends
of the solvation in water.
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4.2. THE MST-PCM CONTINUUM METHOD

Following the formalism of the polarizable continuum model originally developed
by Miertus, Scrocco and Tomasi, [19,20] the electrostatic component (�Gele) of the
total solvation free energy (Eq. 4-1) is determined by using a set of apparent charges
spread over the cavity surface (Eq. 4-4), which account for the reaction field created
in the solvent by the presence of the solute’s charge distribution. Such charges are
obtained by solving the Laplace equation with suitable boundary conditions, as noted
in Eq. 4-5, where VT is the total electrostatic potential, which includes both solute
and solvent contributions, n is the unit vector normal to the surface element j, Sj is
the area of the surface element j and ε is the solvent dielectric constant:

VR =
M∑

j=1

q j∣∣r j − r
∣∣ (4-4)

where VR is the perturbation operator used to couple the solute’s charge distribution
and the solvent reaction field, M is the total number of surface elements, j, into which
the solute/solvent boundary is divided and qj is the apparent charge at the j surface
element, which is centered at rj:

q j = −� − 1

4π�
Sj

(
�VT

�n

)

j

(4-5)

The cavitation contribution is determined following Pierotti’s scaled particle the-
ory, where �Gcav is expressed as an expansion series in powers of the radius of
the sphere which excludes the centers of the solute molecules from the solute, RMS

(i.e., the sum of the solute and solvent radii; Eq. 4-6). The expansion coefficients Ki

(i = 0–3) are expressed in terms of properties of the solvent (the radius of the solvent
molecule and the numeral density) and of the solution (temperature and pressure):

�Gcav = K0 + K1 RMS + K2 R2
MS + K3 R3

MS (4-6)

Since Pierotti’s theory was developed for solutes with spherical shape, its imple-
mentation to molecular-shaped cavities is performed by using the procedure pro-
posed by Claverie (Eq. 4-7), [21] where the cavitation free energy of a given atom
i is determined from the contribution of the isolated atom, �Gcav,i , and a weighting
factor, wi , determined from the ratio between the surface of such an atom and the
total surface of the sphere generated by that atom:

�Gcav =
N∑

i=1

wi �Gcav,i (4-7)

where N is the number of atoms.
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Finally, the van der Waals term (GvW) is computed using a linear relationship
to the solvent-exposed surface of each atom, as noted in Eq. 4-8, where the atomic
surface tensions, ξi , are determined by fitting to the experimental free energies of
solvation for large series of solutes. Note then that those surface tensions not only
account for dispersion–repulsion interactions between solute and solvent, but also
correct for the implicit assumptions introduced in the evaluation of the remaining
components of �Gsol:

�GvW =
N∑

i=1


i Si (4-8)

Molecular-shaped GEPOL cavities [22,23] are used to define the solute/solvent
interface for the calculations of electrostatic and non-electrostatic (cavitation, van der
Waals) terms. In the last parametrization of the MST-PCM model, a dual-cavity strat-
egy was used, [24] so that non-electrostatic contributions are determined by using a
van der Waals surface mainly built up from Pauling’s radii (in Å; polar hydrogen: 0.9,
apolar hydrogen: 1.2, C and N: 1.5, O: 1.4, F: 1.35, S: 1.75 and Cl: 1.80), whereas
the electrostatic term is determined by using a solvent-exposed surface created by
scaling the atomic radii by a solvent-dependent factor, which for neutral molecules
adopts values of 1.25, 1.50, 1.60 and 1.80 for the solvation of neutral compounds in
water, octanol, chloroform and carbon tetrachloride [15].

4.3. THE ENTHALPY OF SOLVATION

By analogy with free energy, the solvation enthalpy can be represented by the addi-
tion of the corresponding enthalpy components, as noted in Eq. 4-9, where each term
might be determined a priori by using the Gibbs–Helmholtz relationship (Eq. 4-3):

�Hsol = �Hele + �Hn-ele = �Hele + �Hcav + �HvW (4-9)

Since the electrostatic component of �Gsol depends on the permittivity of the
solvent, ε, and on the cavity size (represented by means of the vector normal to the
cavity surface, n), the electrostatic contribution to the enthalpy of solvation, �Hele,
can be determined as indicated in Eq. 4-10:

�Hele = �Gele−T

[(
�Gele

�ε

)

λ

(
�ε

�T

)

P

+
(

�Gele

�n

)

ε

(
�n
�T

)

P

]
(4-10)

The temperature dependence of the solvent permittivity, (�ε/�T )P , and of the
cavity size, (�n/�T )P , for water were approximated by empirical values equal
to –0.3554 and 2.56 10–4 K–1,respectively [25]. The values of (�Gele/��) and
(�Gele/�n) were estimated numerically from the �Gele values calculated by varying
both ε and κ (i.e., the scaling factor used to modulate the size of the cavity;
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see above). Numerical derivatives were performed by using increments of ±0.5 and
±1.0 for ε and of ±0.01 and ±0.05 for κ , but the calculated �Hele values were little
affected by the magnitude of those increments.

Finally, the non-electrostatic components of the hydration enthalpy (�Hn-ele) and
entropy (−T �Sn-ele) can be determined by subtracting the electrostatic enthalpy,
�Hele, and entropy −T �Sele from the known experimental quantities.

4.4. EXPERIMENTAL DATA AND COMPUTATIONAL DETAILS

A series of 16 molecules, which include different monofunctional compounds, were
chosen to determine the enthalpy of solvation in water. Besides four hydrocarbons
(hexane, heptane, octane and cyclohexane) and water, the series of molecules in-
clude alcohols (2-methylpropan-2-ol, 1-butanol and 2-butanol), ethers (diethylether,
tetrahydrofuran and tetrahydropyran), amines (propylamine, butylamine, diethy-
lamine and dibutylamine) and piperidine. This choice allows us to examine the differ-
ences between different functional groups, as well as the influence of the molecular
size on the enthalpic contributions for a given series of monofunctional compounds.
Free energies of hydration as well as the corresponding enthalpies taken from the
data compiled by Cabani and coworkers [26] are shown in Table 4-1.

All MST-PCM calculations were performed at the HF/6-31 G(d) level. As usual in
MST calculations the gas phase geometry of the molecules was fully optimized and
subsequently used for calculations in solution. Calculations were performed using a
locally modified version of Monstergauss [27].

Table 4-1. Experimental free energy, enthalpy and entropy of hydration
(kcal/mol) for the series of neutral molecules considered in this study

Compound �Gexp �Hexp −T�Sexp

Hexane 2.5 −7.6 10.1
Heptane 2.6 −8.1 10.7
Octane 2.9 −9.5 12.4
Cyclohexane 1.2 −7.9 9.2
Water −6.3 −8.9 2.6
2-Methylpropan-2-ol −4.5 −15.3 10.8
1-Butanol −4.7 −14.7 10.0
2-Butanol −4.6 −15.0 10.4
Diethylether −1.6 −11.2 9.6
Tetrahydrofuran −3.5 −11.3 7.8
Tetrahydropyran −3.1 −11.7 8.6
Propylamine −4.4 −13.3 8.9
Butylamine −4.3 −14.1 9.8
Diethylamine −4.1 −15.6 11.5
Dibutylamine −3.3 −18.2 14.9
Piperidine −5.1 −15.6 10.5
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To further check the magnitude of the electrostatic enthalpy determined from
MST calculations, a series of Monte Carlo (MC) free energy perturbations (FEP)
were performed in explicit solvent to determine the dependence of solvation free
energy (minus the reversible work needed to annihilate solute charge distribution)
on the temperature. For this purpose, MC-FEP estimates of the electrostatic com-
ponent of the hydration free energy of a small series of solutes were determined at
273, 298 and 323 K. The electrostatic enthalpy, �Hele, at 298 K was calculated using
the Gibbs–Helmholtz relationship, where the temperature dependence of �Gele was
estimated numerically from the free energy values obtained at 273 and 323 K. The
simulated systems contained a single solute immersed in a cubic box containing
around 500 TIP3P water molecules [28,29]. Electrostatic potential-derived atomic
charges computed at the HF/6-31 G(d) level were used with standard OPLS van der
Waals parameters. A residue-based non-bonded cutoff of 9 Å was used to evaluate
intermolecular interactions. The internal geometry of the solute was kept fixed in
all simulations. Rotations and translations of the solute and solvent molecules were
adjusted to give 40–50% acceptance. MC simulations were run considering 6 million
configurations for equilibration of the solute–solvent system. The final structure was
used as the starting point in MC-FEP simulations. All simulations were done in the
isothermal–isobaric ensemble.

MC-FEP simulations were performed in 21 windows where charges were gradu-
ally annealed using the double-wide sampling technique. For each window the sys-
tem was equilibrated over at least 10 million configurations, and the average was
done for 10 million configurations. In all cases the hysteresis and the standard devi-
ations were small, which lends confidence to the protocol of the simulation.

4.5. THERMOCHEMICAL ANALYSIS OF THE HYDRATION

Table 4-2 reports the electrostatic and non-electrostatic components of �Gsol in water
for the series of compounds included in the study computed from MST calculations.
The deviation between experimental and calculated free energies of hydration is in
general small, as noted in a mean signed errors (mse) close to zero and a root-mean
square deviation around 0.9 kcal/mol, which compares with the statistical parameters
obtained in the parametrization of the MST model [15].

Inspection of the free energy components points out the dominant role of �Gele

in water, which amounts to around 145% of the experimental hydration free energy
(Table 4-1). In turn, the non-electrostatic term, �Gn-ele, gives rise to an unfavorable
contribution to the hydration of these compounds, which reflects the larger magni-
tude of the cavitation term compared to the van der Waals one in water [15]. Overall,
except for hydrocarbons, the transfer of polar solutes from the gas phase to water
is a favorable process, which mainly originates from the electrostatic interactions
between solute and water molecules.

Experimental values indicate that hydration is enthalpically favored, even for hy-
drocarbons (see Table 4-1). For these compounds, the hydration enthalpy must be
ascribed to the dispersion forces between alkanes and water molecules, which do
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Table 4-2. Electrostatic and non-electrostatic components of the free energy of solvation in water
(kcal/mol) determined at the HF/6-31 G(d) level from MST-PCM calculations

Compound �Gele �Gn-ele �Gcav �GvW �Gsol

Hexane 0.0 2.5 24.1 –21.6 2.5
Heptane –0.1 2.8 27.6 –24.7 2.7
Octane –0.1 3.1 30.9 –27.8 3.0
Cyclohexane 0.0 1.7 20.6 –19.0 1.7
Water –6.4 –0.3 4.6 –4.9 –6.7
2-Methylpropan-2-ol –6.0 2.1 18.1 –16.0 –3.9
1-Butanol –6.4 1.6 18.3 –16.7 –4.8
2-Butanol –6.0 2.0 18.2 –16.2 –4.1
Diethylether –3.9 3.2 18.5 –15.3 –0.6
Tetrahydrofuran –5.0 2.4 15.6 –13.2 –2.6
Tetrahydropyran –4.6 2.7 4.6 –4.9 –1.9
Propylamine –6.2 1.5 15.4 –13.9 –4.7
Butylamine –6.4 1.7 18.8 –17.1 –4.6
Diethylamine –4.7 2.2 19.2 –17.0 –2.6
Dibutylamine –5.9 3.2 32.8 –29.6 –2.6
Piperidine –4.8 1.5 19.0 –17.5 –3.3
msea –0.5
Rmsd 0.9

aMean-signed error (mse) and root-mean square deviation (rmsd) between experimental and
calculated free energies of hydration.

not suffice to compensate the change in entropy, leading to an unfavorable hydration
free energy. For polar solutes, nevertheless, the electrostatic interactions with wa-
ter molecules increase the magnitude (in absolute value) of the hydration enthalpy,
which thus counterbalances the entropic term and makes the transfer from gas phase
to water solution to be a favorable process.

Table 4-3 shows the enthalpic and entropic components of the electrostatic term
of the hydration free energy computed by using Eq. 4-10. The �Hele values deter-
mined from MST-PCM calculations are similar to the corresponding data derived
from MC-FEP calculations for the subset of molecules representative of the differ-
ent functional groups (2-butanol, tetrahydropyran, dibutylamine and piperidine; see
above), thus giving strong support to the reliability of the values reported here. For
polar compounds, the electrostatic term plays a significant contribution to the hydra-
tion enthalpy, since it accounts on average for ∼ 60% of �Hexp. Nevertheless, it is
clear that even for these compounds the non-electrostatic enthalpy plays a significant
stabilizing contribution, as can be noted in the �Hn-ele values obtained by subtracting
�Hele from �Hexp (see Table 4-3).

Table 4-3 also shows that the electrostatic entropy term (expressed as −T �Sele)
has a destabilizing contribution, thus reflecting the decrease in the configurational
flexibility of the water molecules arising from the electrostatic forces exerted by
the polar solute. This term, however, is notably smaller than the non-electrostatic
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Table 4-3. Enthalpic and entropic components of the electrostatic and non-electrostatic terms of
the hydration free energy (kcal/mol). The non-electrostatic enthalpy and entropy were determined
by subtracting the electrostatic enthalpy and entropy from the corresponding experimental data

Compound �Hele MST �Hele MC-FEP –T�Sele �Hn-ele –T�Sn-ele

Hexane 0.0 – 0.0 –7.6 10.1
Heptane 0.0 – –0.1 –8.1 10.8
Octane 0.0 – –0.1 –9.5 12.4
Cyclohexane –0.1 – 0.1 –7.8 9.1
Water –7.9 – 1.5 –1.0 1.0
2-Methylpropan-2-ol –7.8 – 1.8 –7.5 9.0
1-Butanol –8.3 – 1.9 –6.4 8.1
2-Butanol –7.8 –8.4 1.8 –7.2 8.6
Diethylether –5.6 – 1.7 –5.6 7.9
Tetrahydrofuran –6.6 – 1.7 –4.7 6.2
Tetrahydropyran –6.0 –4.7 1.5 –5.7 7.1
Propylamine –8.1 – 2.0 –5.2 6.9
Butylamine –8.6 – 2.1 –5.5 7.7
Diethylamine –6.5 – 1.8 –9.1 9.7
Dibutylamine –8.1 –7.3 2.2 –10.1 12.7
Piperidine –6.8 –5.5 2.0 –8.8 8.6

entropic term, −T �Sn-ele, which can be mainly attributed to the rearrangement of
the water molecules originated from the creation of the solute cavity.

Previous studies have shown that there is a correlation between the enthalpy of
hydration of alkanes and their accessible surface area [30,31] or related magnitudes.
Moreover, relationships between the hydration numbers calculated from discrete
simulations for hydrocarbons and both the free energy and enthalpy of hydration
of these molecules have also been reported [32] and have been often used to evalu-
ate solvation enthalpies. Analysis of our results, illustrates the existence of a linear
relationship between �Hn-ele and the surface of the van der Waals cavity, SvW, de-
fined in MST computations for the calculation of the non-electrostatic contributions
(Figure 4-1). In contrast, no relationship was found for the electrostatic component
of the hydration enthalpy (�Hele; data not shown). Clearly, in a first approximation,
one can assume that the electrostatic interactions between solute and solvent can
be decoupled from the interactions formed between uncharged solutes and solvent
molecules.

As noted above for the non-electrostatic component of the hydration enthalpy,
a linear relationship between the non-electrostatic component of the entropy,
−T �Sn-ele, and the van der Waals surface is also found (see Figure 4-1), indicat-
ing that this term increases with the size of the compounds. Again, no similar rela-
tionship was found for the electrostatic component of the hydration enthalpy. This
finding suggests that the entropic reorganization of the water molecules associated
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Figure 4-1. Representation of the change in the non-electrostatic component (kcal/mol) of the hydration
enthalpy (�Hn-ele) and entropy (−T �Sn-ele) versus the surface (Å) of the van der Waals cavity used in
MST computations

with the hydration of the uncharged solutes is largely decoupled from the entropic
contribution due to the charging up of the polar compounds in water.

4.6. CONCLUDING REMARKS

The availability of computational procedures to determine the electrostatic and non-
electrostatic components of the thermodynamic quantities is necessary to gain a
deeper understanding of the processes associated with the transfer of solutes from the
gas phase into the bulk solvent. In this work we have examined the partitioning of the
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free energy of hydration into its enthalpic and entropic components, paying particular
attention to the balance between the electrostatic and non-electrostatic contributions
to both enthalpy and entropy.

The results point out the relevant contribution played by electrostatic interac-
tions to the hydration enthalpy of polar solutes. Nevertheless, even for these com-
pounds the non-electrostatic term plays a significant contribution to the hydration
enthalpy. The entropic contribution to the hydration is mainly associated with the
non-electrostatic terms, which can be mainly attributed to the reorganization of the
solvent molecules around the solute cavity, as van der Waals terms are assumed to
be essentially enthalpic [31,33].

Interestingly, the results point out that the non-electrostatic enthalpic and entropic
components of the hydration process are linearly related with the size of the solutes,
and that this relationship holds for both the alkane compounds as well as for the
uncharged polar molecules examined here. Since only the total free energy of sol-
vation (and its enthalpic and entropic contributions) is experimentally measurable,
this finding gives support to the widely used strategy of partitioning the solvation
free energy into electrostatic and non-electrostatic components, which is convenient
from a practical point of view, but necessarily neglects the coupling between the
various components of the solute-solvent interaction potential.

Finally, present results suggest that calibration of solvation models by using not
only solvation free energies, but also their enthalpic and entropic components would
yield to better balanced and more accurate models, which will be extremely useful to
provide a more comprehensive understanding of the forces that mediate the solvation
of solutes in diverse solvents.
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01/BQU) the Centre de Supercomputació de Catalunya and the Barcelona Super-
computing Center.

REFERENCES
1. Ben-Naim A (1987) Solvation thermodynamics, Plenum Press, New York
2. Jorgensen WL (1989) Acc Chem Res 22:184
3. Warshel A (1991) Computer modeling of chemical reactions in enzymes and solutions, Wiley,

New York
4. Kollman PA (1993) Chem Rev 93:2395
5. Tomasi J, Mennucci B, Cammi R, Cossi M (1997) In: Náray-Szabó G, Warshel A (eds) Computa-
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24. Colominas C, Luque FJ, Teixidó J, Orozco M (1999) Chem Phys 240:253
25. Lide DR (ed) (1999) CRC handbook of chemistry and physics, 80th edn. CRC Press, Boca Raton
26. Cabani S, Gianni P, Mollica V, Lepori L (1981) J Solut Chem 10:563
27. Peterson M, Poirier R (1986) MonsterGauss; Department of Biochemistry, Univ. of Toronto,

Canada. Version modified by Cammi R, Tomasi J (1987); and by Curutchet C, Orozco M, Luque FJ
(2003)

28. Jorgensen WL, Maxwell DS, Tirado. Rives J (1996) J Am Chem Soc 118:11225
29. Jorgensen WL (1999) BOSS 4.2, Yale University, New Haven, CT
30. Rashin AA, Young L, Topol IA (1994) Biophys Chem 51:359
31. Gallichio E, Kubo MM, Levy R M (2000) J Phys Chem B 104:6271
32. Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3450
33. Amovili C, Mennucci B (1997) J Phys Chem B 101:1051



CHAPTER 5

ELECTRONIC PROPERTIES OF HYDROGEN BOND
NETWORKS: IMPLICATIONS FOR SOLVENT EFFECTS
IN POLAR LIQUIDS
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Abstract: The electronic properties of polar liquids where the structures are characterized by hydro-
gen bond networks are reviewed. Emphasis is placed on theoretical predictions of liquid
state electronic properties such as the electric dipole moment, electron binding energies,
and electronic density of states. A discussion on the relationship between the structure of
the hydrogen bond (HB) network and the electronic properties of water is presented. Born–
Oppenheimer molecular dynamics results for proton transfer (PT) in ionized phenol–water
clusters illustrate the link between charge fluctuations of the HB network and the PT
dynamics

5.1. INTRODUCTION

Chemical reactions in solution are, in general, processes assisted by the solvent. The
reaction mechanisms and kinetics are dependent on structural and energetic fluctua-
tions of the solvent. The classical example is proton transfer in liquid water, which
is a fluctuation-induced chemical reaction [1,2]. Several polar solvents are charac-
terized by hydrogen bond (HB) networks and in these cases, solvent effects on the
chemical reactivity are strongly dependent on the structure and electronic properties
of the network. The water HB network has been the subject of several investigations,
which were mainly focused on topological aspects [3,4,5,6]. The HB network is a
complex system, characterized by a rich dynamics involving breaking and forming
of hydrogen bonds, specific vibrational and diffusion dynamics, which are controlled
by collective motions [2,7,8]. The dynamics of the HB network controls reactiv-
ity in solution. The slowdown of the water dynamics confined in supramolecular
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assemblies may retard reactions in confined water [9]. Cooperative effects associated
with many-body interactions [10] are, in the case of water, the possible explanation
for the value of its effective dipole moment in the liquid phase (∼2.6–3.1 D), which
corresponds to an increase of ∼40–67% in comparison to the gas phase value (1.855
D). Another relevant feature that illustrates the ability of the HB network of water to
reorganize around charged species is that hydrated electrons can be produced by pho-
toabsorption at ∼6.5 eV [11]. This energy is significantly lower than the threshold
energy for photoelectron emission by liquid water (10.06 eV) [12]. It is also ∼6 eV
below the first ionization potential of the gas phase water molecule (12.62 eV) [13].
The understanding of hydration effects, or solvent effects in water, should rely on the
correct description of the electronic properties of the HB network.

Specifically, it should be expected that chemical reactivity in HB solvents is de-
pendent on fluctuations of the HB network [1,14]. Moreover, the ability of water to
reorganize about charged species is associated with the dynamics of the HB network,
which seems to be controlled by thermal-induced fluctuations [2,8].

Relevant structural information based on first principles molecular dynamics
have been reported for water [15,16,17,18,19,20] and ammonia, [21,22] and sev-
eral recent works were dedicated to the study of the water electronic properties
[23,24,25,26,27,28]. On the other hand, the relationship between the local structure
of the HB network and electronic properties such as the effective dipole moment
in solution or electron binding energies is not well understood and deserves further
investigation. The effective molecular dipole moment in solution is related to polar-
ization effects and charge transfer. Electron binding energies are important because
they reflect the ability of the HB network to stabilize an excess charge and it is known
that electron attachment to polar clusters depends on the total electric multipole mo-
ments of the aggregates [29,30].

In this chapter we review recent investigations on the electronic properties of HB
liquids, with emphasis on the calculation of the dipole moment and electron bind-
ing energies (EBEs) in liquid phase. For liquid water an analysis of the relationship
between the local environment of the HB network and the electronic properties is
presented. Most of the present results are based on sequential statistical mechanics
simulations/quantum mechanics calculations [31,32]. We are also reporting Born–
Oppenheimer molecular dynamics [33,34,35] results for neutral phenol–water clus-
ters as well as for the corresponding ionized structures, which are model systems
of acid–base reactions. The proton transfer (PT) dynamics in ionized phenol–water
clusters and its dependence on charge and energy fluctuations of the water molecules
were investigated.

5.2. POLARIZATION EFFECTS AND CHARGE FLUCTUATIONS
IN POLAR HYDROGEN BONDING LIQUIDS

5.2.1. Electronic Polarization and the Dipole Moment in Liquid Phase

The increase of the dipole moment in the liquid relative to the gas phase value
is related to electronic polarization effects. The experimental dipole moment of
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a molecule in the liquid phase is usually based on dielectric measurements [36].
More recently, the electronic density distribution relative to the nuclear positions
determined by x-ray diffraction was used to estimate the dipole in liquid water [37].
However, the theoretical estimate of the dipole moment in liquid phase remains a
controversial subject [38]. In the specific case of pure water, values in the 2.3–3.1
D range were reported [38]. Different approaches were used to calculate the dipole
moment in liquid phase: sequential statistical mechanics/quantum mechanics calcu-
lations, [39,40] quantum mechanics/molecular mechanics (QM/MM), [41,42] first
principles molecular dynamics, [43] and cluster calculations [44,45,46,47].

One fundamental issue concerns the partitioning of the electronic density and the
estimation of the charges associated with a specific molecular unit because differ-
ent partitioning schemes of the electronic density lead to different values of electric
multipoles [48]. This is still a matter of debate and has been discussed by different
authors [38].

Sequential statistical mechanics/quantum mechanics (SM/QM) calculations are
usually based on the assumption that the structure of the liquid phase is correctly
reproduced by the simulation. Therefore, supermolecular structures extracted from
the simulation can be used for the QM calculations of the electronic properties.
However, when a sequential SM/QM approach is adopted, some issues should be
addressed. How does the results depend on the size of the supermolecular structures
used in the QM calculations? When a supermolecular structure is defined, an outer
surface is introduced and if we are interested in bulk properties it is important to
discuss how surface effects can be minimized. This can be carried out by embedding
the quantum supermolecular system in the electrostatic field of the surrounding sol-
vent molecules. Usually, the charges representing the liquid environment are those
that describe the electrostatic interactions for a given intermolecular potential model
[24,25]. Recently, an alternative approach where the embedding charges are deter-
mined through an iterative self-consistent procedure has been proposed [49].

It is known that first principles molecular dynamics may overcome the limitations
related to the use of an intermolecular interaction model. However, it is not clear that
the results for the structure of hydrogen bonding liquids predicted by first principles
molecular dynamics simulations are necessarily in better agreement with experiment
than those relying on classical simulations, and recent first principles molecular
dynamics simulations of liquid water indicated that the results are dependent on
the choice of different approximations for the exchange–correlation functional [50].
Cluster calculations are an interesting alternative, although surface effects can be
important and extrapolation to bulk phase remains a controversial issue.

The previous discussion pointed out some well-known limitations of the different
theoretical approaches currently used to analyse polarization effects and estimate the
dipole moment in the liquid phase. We will focus the present analysis of polarization
effects in HB liquids on results obtained by using the sequential statistical mechan-
ics/quantum mechanics approach.

Recent sequential molecular dynamics/quantum mechanics (MD/QM) calcula-
tions of the water dipole moment [51] using a polarizable model for water [52]
indicate that the average dipole moment in the liquid is not dependent on the number
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of molecules used in the QM system. On the other hand, this property is more depen-
dent on embedding or inclusion of long-ranged polarization effects of the liquid envi-
ronment. These conclusions are supported by results for the average dipole moment
in liquid water using supermolecular structures (quantum system) with a different
number of water molecules. The quantum system can be isolated (non-embedded)
or embedded in the charge distribution of the surrounding water molecules. The de-
pendence of the average dipole moment of water on the number of water molecules
explicitly included in the quantum system and on the presence of embedding charges
is illustrated in Figure 5-1.

In comparison with water, studies on polarization effects in liquid ammonia are
scarce [53,54]. Recent sequential molecular dynamics/QM calculations [54] predict
that the average dipole moment in liquid ammonia is 2.05 ± 0.09 D, which cor-
responds to an increase of 27% compared to the gas phase value for the isolated
molecule (1.57 D). The dependence of the ammonia dipole moment on the num-
ber of ammonia molecules in the supermolecular structures and on the presence of
embedding charges representing the liquid environment is illustrated in Figure 5-1
and follows the same trends observed for liquid water. Although polarization effects
in liquid ammonia are less important than those observed in liquid water, they are
significant enough to be taken into consideration. In conclusion, sequential statistical
mechanics/quantum mechanics calculations suggest that the electric dipole moment
of liquid water and ammonia can be estimated as a local property and that it is essen-
tially dependent on the adequate treatment of long-ranged polarization effects.

Another very important hydrogen bond solvent is acetonitrile that is characterized
by a strong gas phase dipole moment (3.92 D), which may lead to the formation of

Figure 5-1. Dependence of the average dipole moment (in D) of the water and ammonia molecule on
the number of molecules (n) included in the quantum mechanics calculations. Circles (diamonds) are for
non-embedded (embedded) clusters
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dipole-bound states and charge transfer to solvent (CTTS) in excited states of anionic
species solvated in acetonitrile [55]. In contrast with water and ammonia that can
play the role of hydrogen donor and acceptor species, the ability of acetonitrile as
a proton donor is a controversial issue [56]. Polarization effects in acetonitrile were
investigated by using cluster calculations [47] and sequential Monte Carlo/quantum
mechanics simulations [40]. These studies indicate that the average dipole moment
of acetonitrile in liquid phase (4.65 ± 0.19 D) is increased by ∼16–18% relative
to the gas phase value. The theoretical estimates are in good agreement with an
experimental value of 4.5 ± 0.1 D [57].

5.2.2. Charge Fluctuations in Hydrogen Bonding Liquids

The importance of charge fluctuations coupled to rearrangements of the HB network
can be assessed through the calculation of the average total dipole moment of clusters
with different number (n) of molecules. Results for this property in liquid water and
ammonia are reported in Figure 5-2, where strong fluctuations that increase with the
cluster size can be observed. Long-range polarization effects which are included for
the embedded clusters contribute, as expected, to increase the average total dipole
of the clusters. The magnitude of the fluctuations is similar for embedded and non-
embedded aggregates. These fluctuations are related to structural and electronic den-
sity reorganization of the HB network and can be of relevance for understanding

Figure 5-2. Dependence of the average total dipole moment (in D) of the water and ammonia clusters on
the number of molecules (n) included in the quantum mechanics calculations. Circles (diamonds) are for
non-embedded (embedded) clusters
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Figure 5-3. Dependence of the vertical electron affinity (VEA in eV) of ammonia and water on the
average total dipole moment (μT in D) for clusters with different number of molecules (n). The dashed
lines are fitting to the raw data with correlation coefficients r = 0.99 (water) and r = 0.98 (ammonia)

chemical reactivity in solution. For example, strong local multipole moments of the
aggregates in the liquid can contribute to the stabilization of an excess charge through
the formation of multipole-bound anionic states [58]. The relationship between the
vertical electronic affinity (VEA) and the average total dipole moment (μT) of hydro-
gen bond systems is illustrated in Figure 5-3. For small water and ammonia clusters
of different size (n) the ability of the HB network to vertically stabilize an excess
electron correlates with μT. These results are for clusters embedded in the charge
distribution of the liquid environment and indicate that the VEA of ammonia is
negative for small aggregates. In contrast with ammonia, the VEA of water clusters
become positive for n≥10. Another closely related problem of interest, where sol-
vent fluctuations contribute to stabilize an specific charge distribution, concerns the
zwitterion formation in hydrated amino acids, [59] where it is expected that charge
fluctuations of the HB network play a relevant role for the energetic stabilization of
the polar zwitterionic structures.

5.3. STRUCTURE OF THE HYDROGEN BOND NETWORK
AND ELECTRONIC PROPERTIES OF WATER

5.3.1. Hydrogen Bonding and the Dipole Moment of Liquid Water

The structure of water is characterized by hydrogen bonding. Therefore, it should
be expected that its electronic properties are dependent on the topological features
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of the HB network, [60] which are related to the definition of hydrogen bond.
To investigate this dependence, 1000 uncorrelated configurations corresponding to
each different possibility of coordination in clusters with five water molecules were
extracted from a NpT Monte Carlo (N = 512) simulation at normal conditions
(T = 298 K; p = 1 atm). The simulation was carried out with the DICE program [32]
and the TIP5P intermolecular potential [61] was used.

There are different criteria for defining a hydrogen bond [6,62]. Usually, for water,
the definition relies on energetic [63,64,65] and geometric parameters [66,67]. A
mixed criterion (energetic and geometric) was defined by Sutmann and Vallauri [68]
and we have adopted a very similar one. Two water molecules are considered to be
hydrogen bonded when (a) the interaction energy is ≤ 0.1 eV; (b) the distance O. . .O
is ≤ 3.5 Å; and (c) the O–H. . .O angle is ≤ 35◦.

By using the present criterion, the hydrogen bond distribution per water molecule
is shown in Figure 5-4, and the results indicate that three and fourfold coordination
are dominant with a total average relative frequency of ∼0.7. The presence of “HB
defects” (zero coordination) has a very small average relative frequency (less than
1%). The calculated average number of H bonds per molecule is 3, which is lower
than recent predictions (3.2–3.7) based on different criteria using the SPC/E model
for liquid water [62]. A given water molecule can accept (a) or donate (d) a hydrogen.
Then, for each configuration with five water molecules, the central molecule can
form zero, one (a;d), two (aa;ad;dd), three (aad;add), or four (aadd) hydrogen bonds
with the other four molecules. For the quantum mechanical calculations (over the
9000 selected configurations) only the central molecule is explicitly included. The
surrounding molecules, including not only the hydrogen bonded ones, are repre-
sented by their charge distribution, which corresponds to the charges of the TIP5P

Figure 5-4. Distribution of H bonds per water molecule for the TIP5P intermolecular potential of liquid
water at T = 298 K
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interaction model. Thus, the central molecule is embedded in the electrostatic field
of the surrounding water molecules (204 in total).

The average values of the dipole moment (μ in D) for a central water molecule
forming different number of HB are reported in Table 5-1. As it should be expected,
the smaller value (2.37 ± 0.02 D) corresponds to a “HB defect” or to zero H bonds.
On the other hand, μ in liquid water increases with the number of H bonds and
this trend is in keeping with a recent study of water clusters reported by McGrath
et al. [69]. For a given number of H bonds, no significant differences are observed
between the role played by the central water molecules as hydrogen acceptor (a)
or donor (d). If the average dipole moment is calculated for all the configura-
tions without any restriction on the number of H bonds, then μ is 2.59 ± 0.01 D,
which practically coincides with the average value for a central molecule with 3
H bonds.

5.3.2. Hydrogen Bonding and Electron Binding Energies

Results for the average electron binding energies (EBE) of a central water molecule
hydrogen bonded to the surrounding ones are reported in Table 5-2. The energy of
the highest occupied molecular orbital (1b1) is more dependent on the role played
by the water molecule as acceptor (a) or donor (d) of hydrogen. This can be illus-
trated by analysing the 1b1 EBE when the central molecule is hydrogen bonded to
one water molecule. In this case, the 1b1 EBE is 11.66 ± 0.02 eV when the cen-
tral molecule is a hydrogen donor (d) and 11.98 ± 0.01 eV when it is a hydrogen
acceptor (a). The same trend can be observed for all the other cases with a larger

Table 5-1. Dependence of the average (a) dipole moment
(μ in D) of a central water molecule on the number of hydrogen
bonds (nHB)

nHB Type of HB M

0 2.37 ± 0.02
1 a 2.44 ± 0.01

d 2.43 ± 0.01
2 aa 2.53 ± 0.01

ad 2.52 ± 0.01
dd 2.53 ± 0.01

3 aad 2.59 ± 0.01
add 2.59 ± 0.01

4 aadd 2.67 ± 0.01

(a) Averages were calculated with a re-parametrized [25]
MPW1PW91 hybrid functional and the aug-cc-pVDZ basis set.
One thousand uncorrelated structures from Monte Carlo simu-
lations were used for averaging.
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Table 5-2. Dependence of the electron binding energies (in eV) (a) of a central water molecule on the
number of hydrogen bonds (nHB)

nHB Type 4a1 1b1 3a1 1b2 1b1–4a1 gap

0 –0.67 ± 0.02 11.80 ± 0.02 13.95 ± 0.03 17.52 ± 0.03 12.47 ± 0.01
1 a –0.64 ± 0.01 11.98 ± 0.01 14.15 ± 0.01 17.66 ± 0.01 12.61 ± 0.01

d –0.79 ± 0.02 11.66 ± 0.02 13.80 ± 0.02 17.33 ± 0.02 12.37 ± 0.01
2 aa –0.62 ± 0.02 12.18 ± 0.03 14.37 ± 0.03 17.80 ± 0.03 12.80 ± 0.02

ad –0.68 ± 0.01 11.83 ± 0.03 13.99 ±0.04 17.46 ± 0.04 12.50 ± 0.03
dd –0.70 ± 0.01 11.54 ± 0.03 13.66 ± 0.03 17.16 ± 0.03 12.25 ± 0.02

3 aad –0.66 ± 0.02 12.03 ± 0.02 14.21 ± 0.02 17.61 ± 0.02 12.69 ± 0.02
add –0.70 ± 0.02 11.69 ± 0.03 13.84 ± 0.03 17.27 ± 0.03 12.39 ± 0.02

4 aadd –0.67 ± 0.02 11.89 ± 0.02 14.06 ± 0.02 17.43 ± 0.02 12.57 ± 0.01

(a) Averages were calculated with a re-parametrized [25] MPW1PW91 hybrid functional and the aug-cc-
pVDZ basis set. One thousand uncorrelated structures from Monte Carlo simulations were used.

number of H bonds and reflects the stabilization of 1b1 orbital when the interac-
tion with the surrounding molecules involves directly the oxygen atom of the central
molecule.

The 4a1 EBE is not significantly dependent on the number of H bonds nor on the
role played by the central water molecule as a hydrogen donor (d) or acceptor (a).
There is some stabilization of the 4a1 EBE when the central molecule is accepting a
hydrogen atom, but this effect is rather small (less than 0.1 eV). We are also reporting
in Table 5-2 the 1b1–4a1 (HOMO–LUMO) energy gap. The gap increases with the
hydrogen acceptor character of the H bond and this tendency simply reflects the
stabilization of the 1b1 orbital.

For a molecule in liquid water, the dependence of the electronic density of states
(DOS) on hydrogen bonding is illustrated in Figure 5-5. In keeping with the stabi-
lization of the 1b1 orbital previously discussed, when the central water molecule is
hydrogen bonded to two water molecules, the valence DOS corresponding to (aa)
configurations is shifted to lower energies in comparison with (ad) or (dd) configu-
rations. Moreover, a slight shift to higher energies of the 1b1 band can be observed
for (dd) configurations indicating a small reduction of the 1b1–4a1 (HOMO–LUMO)
gap for a water molecule playing the role of double hydrogen bond donor. The DOS
for virtual orbitals is not dependent on the number of H bonds nor on the role played
by the central water molecule as hydrogen bond donor or acceptor. However, this
is possibly related to the fact that in the present approach only polarization effects
are being taken into account. No charge transfer to virtual orbitals is possible, and
it is known that the EBEs of virtual orbitals cannot be estimated as a local property
[25,54].
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Figure 5-5. Dependence of the electronic density of states (DOS) on the number of H bonds for a water
molecule in liquid water

5.4. CHARGE FLUCTUATIONS OF THE HYDROGEN BOND
NETWORK AND PROTON TRANSFER ASSISTED
BY THE SOLVENT IN PHENOL–WATER CLUSTERS

5.4.1. Born–Oppenheimer Molecular Dynamics of Proton Transfer
in Phenol–Water Clusters

The acidity of some aromatic molecules may exhibit significant changes upon excita-
tion or ionization [70]. This behaviour, known as photoacidity, has been the subject
of several investigations [70,71]. The change of the acidity of a given species is
related to its ability to transfer a proton to the nearby solvent molecules and the PT
mechanism is triggered by the electronic density reorganization coupled to the sol-
vent fluctuations. Small hydrogen bonded solute–solvent clusters are model systems
for investigating acid–base reactions [72,73]. One interesting system is phenol–water
clusters, where phenol is a weak acid in the ground state but may exhibit an increased
acidity when it is excited or ionized. Therefore, several works on proton transfer in
phenol–water aggregates were reported [74,75,76,77,78] and provided evidence that
no proton transfer from phenol to water occurs in small neutral phenol–water clus-
ters [77,78]. However, proton transfer to water takes place in [C6H5OH−(H2O)n]•+

clusters for n ≥ 3 [72,73,77,78,79].
The proton transfer in ionized phenol–water clusters is strongly dependent on

the number of water molecules and their specific organization, i.e., the PT is a
process assisted by the solvent [72]. Most of the theoretical studies of PT in
[C6H5OH−(H2O)n]•+ clusters were focused on the structure, vibrational, [79,80,81]
and energetic aspects [77,78]. However, much less is known on the dynamics of PT.
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Moreover, the PT mechanism, specifically the role played by the water molecules,
is not well understood from the microscopic point of view and deserves further
analysis.

With the purpose of investigating proton transfer in the phenol–water sys-
tem we have carried out Born–Oppenheimer molecular dynamics (BOMD) of
[C6H5OD−(H2O)4] clusters. Several applications of first principles molecular dy-
namics to the study of PT reactions were reported [81,82,83,84,85,86,87]. By adopt-
ing this approach polarization effects and charge transfer are implicitly taken into
account. Although this system is small to model solvation, it should be expected
that some of the basic features that control PT in solution are correctly represented.
Quantum effects on the proton dynamics [84,88,89] were not included. To reduce
their importance on the PT dynamics the hydrogen of the phenol OH group has
been deuterated (we will use, however, PT for describing the charge migration of the
deuterium in the aggregates).

Initially, we carried out BOMD for the neutral [C6H5OD−(H2O)4] system.
BOMD simulations were carried out with a velocity-Verlet integration scheme cou-
pled to the Gaussian-03 package [90]. Velocity scaling was used to equilibrate the
system to the desired temperature of 298 K during 6000 steps of 0.5 fs, which corre-
spond to a total time of 3 ps. After this time, scaling was turned off and the dynam-
ics of the system in the microcanonical ensemble was propagated through another
2 ps. In a second phase, the system has been ionized at different time-steps (A–H in
Figure 5-6) of the equilibrium trajectory. Then, starting from these different configu-
rations, the dynamics of the [C6H5OD−(H2O)4]•+ cluster was followed during 3 ps.

The quantum mechanical calculations (energies and forces on each atom) were
carried out with the B3LYP functional [91,92] and the 6-31 G(d) basis set [93].

5.4.2. Dynamics of PT in Phenol–Water Clusters

The time evolution of the phenol O−D distance between the phenolic oxygen and
the deuterium and the D−Ow distance between the deuterium and the oxygen of the
nearest water molecule in the neutral (left panel at the bottom) and ionized clusters
(right panels) is shown in Figure 5-6.

In agreement with previous studies [78], no PT is observed in the neutral system,
where very small changes of the O−D distance are observed. The time evolution
of the D−Ow distance reflects the reorganization of the water molecules around the
phenol O−D group. The average O−D and D−Ow distances are 0.98 ± 0.14 and
2.00 ± 0.14 Å, respectively.

The time evolution of the O−D and D−Ow distances in the ionized clusters is
also shown in Figure 5-6 (A–H right panels). In contrast with the neutral system,
significant changes of the distances can be observed. These variations describe the
occurrence of proton transfer from the phenolic moiety to water and also recombina-
tion of the transferred proton with the phenoxy moiety. As expected, the PT dynamics
is dependent on the initial configuration.
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Figure 5-6. Time evolution of the O−D distance (full lines) between the phenol oxygen and the deu-
terium and the D−Ow distance (dotted lines) between the PhOD deuterium and the oxygen of the nearest
water molecule in the neutral (left panel at the bottom) and ionized clusters (A–H right panels). The
t = 0 time corresponds to the ionization of the [C6H5OD−(H2O)4] cluster at different (A–H) equilibrium
configurations. The snapshots show for each trajectory the structure of the [C6H5OD−(H2O)4]•+ cluster
corresponding to the configuration where the O−D and D−Ow distances are the same before the first PT
following ionization
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For the set of trajectories (A–H) shown in Figure 5-6, the time for the first PT from
phenol to water after ionization is defined in a 100–400 fs window. Snapshots for the
configurations where the O−D and D−Ow distances are the same before the first
PT following ionization are represented in Figure 5-6. For most of the trajectories,
a significant number of PT from phenol to water as well as migration of the proton
from water to the phenoxyl radical are observed. Therefore, the results indicate that
the dynamics of PT in [C6H5OD−(H2O)4]•+ is described by a bidirectional kinetics
scheme, [94,95] where PT from phenol to water is reversible and competes with PT
from the H3O+ moiety to the phenoxyl radical. However, the PT dynamics should
be dependent on the number of water molecules in the cluster, and proton propaga-
tion along the HB network [20,70] may significantly modify the kinetics of proton
transfer/recombination mechanisms.

5.4.3. Proton (Deuterium) Transfer in Phenol–Water Clusters
and Fluctuations of the HB Network

It should be expected that PT is dependent on the electrostatic field at the proton
position [41,96,97,98]. This field can be created by the phenoxy moiety and by the
water molecules and these two contributions were calculated by using charges fitted
to the electrostatic potential [99,100]. Figure 5-7 shows the time evolution of the
electrostatic field (in a.u.) at the proton position due to the phenoxy radical moiety
(full lines) and water molecules (dotted lines). In the ionized clusters (panels A–H)
the electrostatic field due to water is characterized by strong fluctuations. A quali-
tative relationship between these fluctuations and the number of proton transfer and
recombination can be established by comparing the different trajectories shown in
Figure 5-6, and it appears that thermal-induced fluctuations play a relevant role on
the PT dynamics [2]. This issue can be further addressed by calculating the fluc-
tuations of the electrostatic field �E(t) = [(E(t) − < E >)2]

1
2 due to the charge

distributions of the phenoxy moiety and water. The time evolution of δE(t) is shown
in Figure 5-8. The fluctuations of the electrostatic field due to the water molecules
are significantly higher than those corresponding to the electrostatic field of the phe-
noxy moiety and are related to the reorganization of the HB network. The kinetics of
PT/recombination seems to reflect, at least qualitatively, the magnitude of the fluc-
tuations, which are smaller for trajectories C and D (see Figure 5-8). Interestingly, C
and D also exhibit, in comparison with the other trajectories, the smaller number of
PT/recombination (Figure 5-6). The role played by charge fluctuations in water on
the PT dynamics in [C6H5OD−(H2O)4]•+ clusters seems to be in keeping with the
view that relates the specific and anomalous behaviour of water to the nature of their
energy fluctuations [2,8]. In our case, it is important to investigate the time evolution
of the deuterium kinetic energy, which is illustrated in Figure 5-9. In agreement
with the analysis of Ohmine and collaborators for the fluctuations of the total en-
ergy in liquid water, [2,8] the deuterium kinetic energy exhibits strong fluctuations.
Although PT in ionized phenol–water clusters can be related to fluctuations of the
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Figure 5-7. Time evolution of the electrostatic field E(t) (in a.u.) at the deuterium position in the neutral
[C6H5OD−(H2O)4] (bottom panel) and [C6H5OD−(H2O)4]•+ (panels A–H) clusters due to the phenoxy
moiety (full lines) and water molecules (dotted lines)
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Figure 5-8. Time evolution of the electrostatic field fluctuation �E(t) = [
(E(t)− < E >)2

] 1
2 (in a.u.)

at the deuterium position in [C6H5OD−(H2O)4]•+ clusters (panels A–H) due to the phenoxy moiety (full
lines) and water molecules (dotted lines)
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Figure 5-9. Time evolution of the deuterium kinetic energy ED
k (t) (a.u.) in [C6H5OD−(H2O)4] (bottom

panel) and [C6H5OD−(H2O)4]•+ clusters (panels A–H)
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water HB network, the interplay between energy and charge fluctuations as well as
their relationship with the kinetics of PT deserves further attention.

5.5. CONCLUSIONS

The electronic properties of polar liquids including water and ammonia, whose
structures are characterized by HB networks were reviewed. Emphasis was placed
on the analysis of polarization effects, charge fluctuations, and electron binding
energies.

Polarization effects in liquid water and ammonia are very important and lead to
a significant increase of the average dipole moment relative to the gas phase values.
Moreover, polarization effects are related to fluctuations of the electronic density of
the HB network and a strong correlation between the total dipole moment of small
water and ammonia clusters and the vertical electron affinity can be established.

The relationship between the local structure of the HB network and electronic
properties was investigated and it was concluded that the water dipole moment
and electron binding energies exhibit some dependence on the local environment
of the network. Specifically, the dipole moment in liquid water increases with the
number of H bonds, although it is not dependent on the role played by the wa-
ter molecule as H donor or acceptor. On the other hand, the 1b1 EBE increases
when the interaction with the surrounding water molecules involves directly the
oxygen atom of the central water molecule, which then plays the role of H bond
acceptor.

Born–Oppenheimer molecular dynamics simulations for neutral and ionized
phenol–water clusters are reported. The results for [C6H5OD−(H2O)4]•+ illustrate
how the PT dynamics is coupled to fluctuations of the solvent. The kinetics of
PT/recombination in [C6H5OD−(H2O)4]•+ clusters is related to strong fluctuations
of the electrostatic field of the water molecules and this relationship points out the
relevance of investigating the electronic properties of the HB network for under-
standing chemical reaction in solution.
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CHAPTER 6

SOLVENT EFFECTS ON RADIATIVE AND NON-RADIATIVE
EXCITED STATE DECAYS

AURORA MUÑOZ LOSA, IGNACIO FDEZ. GALVÁN, M. ELENA MARTÍN,
AND MANUEL A. AGUILAR
Quı́mica Fı́sica, Universidad de Extremadura, Avda. de Elvas s/n. 06071 Badajoz (Spain)

Abstract: An extended version of the ASEP/MD method that permits the unified treatment of solvent
effects on both radiative and non-radiative excited state decays is presented. The method
combines a high-level quantum-mechanic description of the ground and excited states of
the solute molecule with molecular dynamics simulations of the solvent. De-excitations
are intrinsically dynamic processes where there exists an interplay between electronic
structure and nuclear dynamics. We have undertaken this problem by establishing two
limit situations, which we have characterized as equilibrium and non-equilibrium solva-
tion regimes. In the former, we suppose decay times long enough to allow a complete
relaxation of the solute and the solvent structure. In the latter, we suppose the decay pro-
cess is fast enough to prevent the solvent equilibration. As an example of application of
the methodology the solvent effects on radiative and non-radiative de-excitation processes
in acrolein are studied

6.1. INTRODUCTION

The study of solvent effects on the appearance of UV-vis absorption spectra has
a long history [1]. From the first qualitative (classical) description based on the
changes in the dipole moment and polarizability during the excitation until the cur-
rent quantitative models where the solute charge distribution is described through
high-level quantum-mechanics techniques, a great number of theoretical models have
been proposed [2,3,4,5] in such a way that, at present, the chemists have at their
disposition a wide range of methods that permit the prediction of the position and
intensity of the absorption bands of chromophores in solution. Comparatively, less
attention has been paid to the study of solvent effects on emission spectra (fluo-
rescence and phosphorescence) [6,7] where only recently we have begun to have
available accurate methods that permit to optimize the geometry and charge dis-
tribution of excited states and to describe its interaction with the solvent. Solvent
effects on emission spectra follow qualitative rules similar to those applied to ab-
sorption spectra [8,9]: a band in the fluorescence or phosphorescence spectrum will
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shift to higher frequencies (blue shift) if the dipole moment of the excited state is
smaller than the ground state dipole moment and it will be red shifted if the dipole
moment of the excited state is larger than the ground state dipole moment. In gen-
eral, the magnitude of the solvent shift will increase with the solvent polarity and
with the variation of the dipole moment during the transition. However, even when
one has the dipole moment values for the solute molecule in the different states
(something not always easy because they must be calculated at the excited state
optimized geometry) these approximate rules could fail when applied to molecules
with complex charge distributions or when specific solute–solvent interactions are
involved.

Unlike UV-vis absorption spectra where all molecules display one or more ac-
tive bands, many molecules do not present emission spectra or if they do, they
exhibit exceedingly small quantum yield values. To understand this behaviour, one
must realize that radiative decay always competes with non-radiative decay path-
ways, mainly internal conversion (IC), intersystem crossing (ISC) and quenching.
Solvents can favour the activation of non-radiation pathways, consequently, they
can have a dramatic influence on the fluorescence quantum yields. So, for in-
stance, molecules can display fluorescence spectra in some solvent but not in an-
other [10]. Despite the proved importance of the molecular environment, the the-
oretical study of solvent effects on IC and ISC (quenching is a phenomenon that
depends on the presence in the solvent of certain type of molecules, oxygen for
instance and not on the characteristics of the excited state) has received little at-
tention [11,12,13,14,15,16,17,18]. The reasons are obvious: to the difficulties in-
herent to the study of non-adiabatic processes (processes that imply more than one
potential energy surface) in vacuo one must add the complications associated to
the presence of a solvent, that is, the great number of surrounding molecules that
interact with the solute molecule and the existence of a manifold of configura-
tions thermally accessible that must be included to obtain statistically significant
results.

Furthermore, when one studies emission spectra it is necessary to take into ac-
count the subtle interplay between the time evolution of the excited state and the
dynamics of the solvent, something that does not occur in the study of UV-vis ab-
sorption spectra. A photophysical or photochemical process usually begins with the
excitation from the minimum energy configuration of the ground state to the Franck–
Condon (FC) point on the excited state free energy surface. The classical formulation
of this principle establishes that in the time required for a radiative process to occur
(≈ 10–15 s), the geometry of the molecule, and of the solvent around it, remains
fixed. This means that, at the FC point, the solvent is in a non-equilibrium situation
whose structure corresponds to the equilibrium with the solute in its ground state.
After the absorption process, and as time goes on, the solvent modifies its structure
and after a long enough time it becomes equilibrated with the charge distribution
of the solute excited state. The time scale of the different processes involved in
the evolution of an excited state can be very different. For instance, the lifetimes
of most emitting states are sufficiently long (1 ns or larger) to permit a complete
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relaxation of the solute and the solvent. Only when the emission involves excited
states characterized by very short lifetimes or solvents with high viscosity must we
expect an incomplete relaxation of the solvent. Radiationless processes are usually
faster, they can take place on the femtosecond time scale, a scale in which, in gen-
eral, the solvent equilibration will not be complete. However, in systems where the
geometry of the surface crossing points is very different from the FC point the de-
excitation will take place only after a great part of the solvent reorganization has
occurred.

We can hence define two limit cases depending on whether the solvent is in an
equilibrium or non-equilibrium situation. In a real system, and depending on the
specific characteristics of the process, we can find the solvent structure at any point
between these two limits. It is important to stress that, actually, the solvent dynamics
is characterized by different response times, associated to different solvent degrees of
freedom. Traditionally, it has become usual to distinguish between an inertial compo-
nent, associated to nuclear movements (vibrations, rotations and translations) and an
inertialess or electronic component, associated to the response of the electronic de-
grees of freedom of the solvent (although more complex classifications are possible)
[6,19,20]. In general it is supposed that the electronic response is fast enough so as to
be always in equilibrium with the solute charge distribution even in the FC point. In
dielectric continuum models [19,21] these two types of response have been usually
characterized by the square of the index of refraction in the case of the electronic
component or by the dielectric constant at zero frequency in the case of the com-
plete response (inertial plus electronic). In molecular solvent models, the electronic
component can be conveniently represented through electronic polarizabilities on the
individual solvent molecules.

In the following, we present a sequential quantum mechanics/molecular mechan-
ics (QM/MM) method, known as ASEP/MD [22,23,24,25,26], oriented to the study
of solvent effects on absorption and emission spectra and on non-radiative excited
state decay. The method combines a high-level quantum-mechanic description of
the ground and excited states of the solute molecule with a molecular mechanics
description of the solvent and allows the mutual equilibration of the solute charge
distribution and the solvent structure around it. Furthermore, it permits the study
of electron transitions in equilibrium and non-equilibrium conditions. The rest of
the chapter is organized as follows: Section 2 details the main characteristics of the
method, paying special attention to the evaluation of the gradients (ground and ex-
cited state gradients, gradient difference, derivative coupling) used in the search of
minima and surface crossing points. In Section 3, and taking the acrolein molecule
in aqueous solution as a model, we show how the ASEP/MD method permits the
study of solvent shifts in absorption and emission spectra as well as the character-
ization of the competitive radiationless de-excitation pathways. Special attention is
dedicated to the comparison between the results obtained assuming equilibrium and
non-equilibrium solvation.
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6.2. METHOD

6.2.1. Fundament of the ASEP/MD Method

ASEP/MD, acronym for average solvent electrostatic potential obtained from molec-
ular dynamics data, is a sequential QM/MM method that makes extensive use of
the mean field approximation (MFA) [24]. In solution, any static property A of the
system must be calculated by averaging over the configurational space {X} defined
by all the configurations thermally accessible to the system:

〈A〉 =
∑

i exp(−Ei/kT ) 〈�i | â |�i 〉∑
i exp(−Ei/kT )

(6-1)

where â is the quantum-mechanic operator for the property A and �i represents the
quantum state i. This means that, in principle, hundreds or thousands of quantum
calculations are necessary to obtain results that are statistically significant. In the
mean field approximation this average is replaced by the value obtained in the pres-
ence of an average perturbation or configuration. The main advantage of MFA is that
it greatly reduces the number of quantum calculations needed, the cost that has to
be paid is the neglect of the correlation between the motion of the solvent nuclei
and the response of the solute electron polarizability, i.e., the MFA does not allow
the solute to polarize in response to instantaneous changes in the solvent nuclear
configurations as consequence of the thermal fluctuations. It has been shown, both
theoretically [24] and experimentally [27] that this correlation energy, usually known
as Stark component [28,29], does not contribute significantly to the solvent shift.
Many of the most frequently used methods for the study of solvent effects make use
of the MFA: the different quantum versions of dielectric continuum models (SCRF
[30], PCM [2], multipole expansions [3,4], etc.), the methods based on Langevin
dipoles [31] or more elaborated methods such as RISM/SCF [32] are representative
examples of this.

In the MFA the average value, 〈A〉, of any quantity is approximated as

〈A〉 ≈ Ā =
∫

�̄∗â�̄ dr (6-2)

where �̄ is the solute wavefunction perturbed by the solvent and calculated by solv-
ing the following effective Schrödinger equation:

(
ĤQM + 〈Ĥ elect

int

〉) ∣∣�̄
〉 = Ē

∣∣�̄
〉

(6-3)

ĤQM being the “in vacuo” solute molecular Hamiltonian and where the solute–
solvent electrostatic interaction energy reads

〈
Ĥ elect

int

〉 =
∫

dr · ρ̂ · 〈VS(r ; ρ)〉{X} (6-4)
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here ρ̂ is the solute charge density operator and the term 〈VS(r ; ρ)〉{X} is the average
solvent electrostatic potential (ASEP) or reaction potential generated by the solvent
at the r position. The brackets denote an average on the configurational space {X}. In
general, the ASEP depends on ρ, the solute charge density, consequently, Eqs. (6-3)
and (6-4) must be solved iteratively. In defining (6-4) only the electrostatic compo-
nent was considered, although other components of the solute–solvent interaction
energies, dispersion or repulsion terms for instance, can also be included.

Different solvation methods can be obtained depending on the way the
〈VS(r ; ρ)〉{X} term is calculated. So, for instance, in dielectric continuum models
〈VS(r ; ρ)〉{X} is a function of the solvent dielectric constant and of the geometric
parameters that define the molecular cavity where the solute molecule is placed.
In ASEP/MD, the information necessary to calculate 〈VS(r ; ρ)〉{X} is obtained from
molecular dynamics calculations. In this way 〈VS(r ; ρ)〉{X} incorporates information
about the microscopic structure of the solvent around the solute, furthermore, spe-
cific solute–solvent interactions can be properly accounted for. For computational
convenience, the potential 〈VS(r ; ρ)〉{X} is discretized and represented by a set of
point charges {qi} that simulate the electrostatic potential generated by the solvent
distribution. The set of charges {qi} is obtained in three steps [26]:

(1) Each selected solute–solvent configuration is translated and rotated in such a
way that all of the solvent coordinates are referred to a reference system centred on
the centre of mass of the solute with the coordinate axes parallel to the principal axes
of inertia of the solute.

(2) Next, one explicitly includes in the ASEP the charges belonging to solvent
molecules that, in any of the molecular dynamics (MD) configurations selected, lie
inside a sphere of radius a and that includes at least the first solvation shell. The value
of every charge is then divided by the number of solvent configurations included in
the determination of the ASEP. Next, in order to reduce the number of charges, one
adds together all the charges separated from each other by less than a certain distance.
This distance is generally taken as 0.5 a.u.

(3) Finally, one includes a second set of charges representing the effect of the
solvent molecules lying outside the first solvation shell. These charges are obtained
by a least squares fit to the values of the ASEP originated by the outer solvent
molecules in a three-dimensional grid defined inside the volume occupied by the
solute molecule. The solute volume is defined through a set of interlocking spheres
of radius f·Rvdw, where f is a numerical factor close to one and Rvdw are the Bondi
radii [33]. The total number of charges introduced into the perturbation Hamiltonian
is generally between 25 000 and 35 000.

The basic scheme of ASEP/MD is displayed in Figure 6-1. ASEP/MD alternates
high-level quantum calculations and MD simulations in an iterative procedure. Dur-
ing the MD simulations the internal geometry and charge distribution of the solute
molecule, as well as those of the solvent molecules, are considered as fixed. From
the MD data one obtains the average solvent electrostatic potential, 〈VS(r, ρ)〉 that
is introduced as a perturbation into the solute molecular Hamiltonian. By solving
the associated Schrödinger equation, one gets a new solute charge distribution that
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Figure 6-1. Scheme of the ASEP/MD method

serves as input for a new MD calculation. The process is repeated until convergence
in the solute charges and in the solute energy is reached. At the end of this process the
solute charge distribution and the solvent structure around it become mutually equi-
librated. The charges that represent the solute molecule during the MD simulation
can be obtained from the in solution molecular wavefunction by using the CHELPG
method [34,35] or any of the many methods currently available.

In ASEP/MD, the MD simulations can be performed using polarizable or non-
polarizable solvents. However, it is known that simulations employing effective
charges can reproduce adequately the solvent structure and are more effective from
a computational point of view than those using polarizable force fields. Because of
this, in ASEP/MD the solvent polarization is made a posteriori. The determination
of the solvent electron polarization with the ASEP/MD method involves two steps
[36]. During the first step the solvent structure around the solute is equilibrated, but
it is supposed that the charge distribution of every solvent molecule remains fixed,
that is, during the simulations one considers a non-polarizable solvent. In the second
step, the solvent structure is kept fixed but now the electron degrees of freedom
of the solvent polarize in response to the changes in the solute charge distribution
originated, for instance, by an electron transition in the solute. That is, using the
solvent structure and solute geometry obtained in the first step, in the second one
the quantum-mechanical solute and the solvent electron polarization are coupled.
To this end, we assign a molecular polarizability to every solvent molecule and,
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simultaneously, replace the effective solvent charge distribution used in the MD cal-
culation (TIP3P [37] for instance, if the solvent is water) with the gas phase charge
distribution. This is necessary because effective charges include a certain degree of
implicit solvent polarization; when one considers a polarizable model it is necessary
to use the in vacuo charges of the solvent molecules in order to avoid accounting
twice for this effect.

6.2.2. Ground and Excited State Gradients

Any method dedicated to the study of solvent effects on electron spectra must per-
mit the geometry optimization of the solute both in the ground and excited states
in presence of the perturbation originated by the solvent. ASEP/MD uses a variant
of the free energy gradient method [38,39,40] for the calculation of the gradients
that drive the optimization process. The bases of the method are the following: Let
G = −kT ln ZNVT be the Helmholtz free energy of a system formed by one solute
molecule and N–1 solvent molecules. ZNVT is the quasi-classical canonical partition
function defined by:

ZNVT = 1

N !

1

h3N

∫
dRN dpN exp

[
− E(pN , r N )

kT

]
(6-5)

where E is the energy of the system, which, by convenience, can be split into three
terms:

E = EQM + Eint + Esolv (6-6)

corresponding to the solute, EQM, the solvent, Esolv, and the interaction between
them, Eint. The force, F, on the free energy surface (the force felt by the solute
molecule) is

F(R) = −�G

�R
= −

〈
�E

�R

〉
= −

〈
�EQM

�R

〉
−
〈

�Eint

�R

〉
(6-7)

R being the nuclear coordinates of the solute and where we have assumed that Esolv

does not explicitly depend on the nuclear solute coordinates. The brackets denote a
configurational average.

In the same way the Hessian reads

H (R, R′) =
〈

�2 E

�R�R′

〉
− β

〈
�E

�R

〉 〈
�E

�R

〉T

+ β

〈
�E

�R

〉 〈
�E

�R

〉T

(6-8)

=
〈

�2 E

�R�R′

〉
− β

[〈
F2
〉− 〈F〉2

]

where the superscript T denotes the transposition and β=1/kT. The last term in
Eq. (6-8) is related to the thermal fluctuations of the force.
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Next, we use the MFA to simplify the gradient and Hessian expressions. Thus,
we replace the configurational average of the derivatives with the derivative of the
average configuration, furthermore we neglect the force fluctuation terms (given that
the Hessian is used only to accelerate the optimization procedure, this approximation
has no effect on the optimized geometries but it can affect the harmonic frequencies
evaluation). The validity of these approximations has been checked elsewhere [41].
The force and Hessian now read

F(R) = −
〈

�E

�R

〉
≈ −�Ē

�R
= −�ĒQM

�R
− �Ēint

�R
(6-9)

H (R, R′) ≈ �2 Ē

�R�R′ = �2 ĒQM

�R�R′ + �2 Ēint

�R�R′ (6-10)

where Ē and its components are calculated as the solution of the Eq. (6-3).
From a computational point of view, it is convenient to split the interaction term

into two components, one associated to the electrostatic interaction and the other to
the van der Waals contribution:

Ĥint = Ĥ elect
int + Ĥ vdw

int (6-11)

The Ĥ elect
int term is calculated using Eq. (6-4), while the Ĥ vdw

int term is represented by a
Lennard-Jones (LJ) potential. This last term depends only on the nuclear coordinates
and hence has no effect on the solute wavefunction but it contributes to the final value
of the gradient and Hessian. The final expression for the force is

F(R) = −�ĒQM

�R
− �Ēelect

int

�R
−
〈

�Evdw
int

�R

〉
(6-12)

with an equivalent expression for the Hessian. As we can see, electrostatic and van
der Waals contributions are calculated in a different way. In the case of the electro-
static term the gradient is calculated quantum-mechanically as the gradient of the
average solvent configuration, however, the van der Waals contribution is calculated
with a classical force field during the MD simulation as the average value of the
gradient over all solvent configurations selected.

When one supposes equilibrium solvation, the different terms appearing in
Eq. (6-12) are calculated using the configurational space of each state. For instance,
for an excited state we have

Fex(R)=−∇ Ē(R)=−�ĒQM(ρex)

�R
−�Ēelect

int (ρex, {X ex})
�R

−
〈

�Evdw
int

�R

〉

{X ex}
(6-13)
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where we have made explicit the functional dependence of the energy with the so-
lute charge density and where {X ex} indicates that the average solvent structure is
calculated using the solvent configurations in equilibrium with the charge distribu-
tion of the solute excited state, ρex. However, in FC points, characterized by a non-
equilibrium solvation situation, the configurational space used is that of the ground
state (for an absorption process), and the force can then be written as

FFC(R)=−∇ Ē(R)=−�ĒQM(ρex)

�R
− �Ēelect

int (ρex, {Xgr})
�R

−
〈

�Evdw
int

�R

〉

{Xgr}
(6-14)

where now {Xgr} is the solvent configuration in equilibrium with the charge distri-
bution of the solute ground state.

6.2.3. Location of Conical Intersections and Singlet–Triplet Crossing
Points in Solution

To locate a minimal energy conical intersection (MECI) between two electronic
states K and L we combine the ASEP/MD method with an algorithm due to Bearpark
et al. [42]. The algorithm simultaneously minimizes the in solution energy difference
between the two intersecting states and the energy of the crossing seam between
the two potential energy surfaces. The final form taken by the gradient used in the
location algorithm is

fK L =2(EK −EL )ĝK L +[∇EK −(∇EK · ĝK L ) ĝK L −(∇EK · ĥK L
)

ĥK L
]

(6-15)

here EK and EL are the energies of the intersecting surfaces, ∇EK is the gradient of
the upper state and ĝK L and ĥK L are the two versors that define the branching space
or g–h plane [43], i.e., the subspace of nuclear coordinates in which the degeneracy
between the two intersecting surfaces is lifted linearly in displacements from the
intersection. When the two intersecting states have different spin symmetry as in the
case of singlet–triplet crossing (STC), the ĥK L term vanishes and only one coordinate
defines the branching space. The expression of gK L , the energy difference gradient
vector, is

gK L = ∇(EK − EL ) (6-16)

while hK L , the derivative coupling vector, reads

hK L = 〈�K |∇| �L〉 (6-17)
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where the gradient ∇ is a vector in the nuclear space and �I are the adiabatic
electronic wavefunctions, eigenfunctions of the electronic Hamiltonian, Ĥ , with
energies EI. The corresponding versors are defined as ĝK L = gK L / |gK L | and
ĥK L = hK L

/|hK L | − (hK L ĝK L
/|hK L |) ĝK L .

Equation (6-15) is valid both for in vacuo and in solution systems. Obviously, in
this last case we must include the perturbation due to the solvent in each one of the
terms: interstate energy difference, excited state gradient, energy difference gradient
and derivative coupling.

The energies of the K and L states are obtained by solving Eqs. (6-3) and (6-4),
the excited state gradient is calculated with Eq. (6-13). The same expression is used
in the calculation of the energy difference gradient, gK L , however, in this case some
simplifications are possible because we suppose that the Lennard-Jones coefficients
are the same for all the states of one molecule. Furthermore, taking into account that
the two states K and L are calculated at the same geometry we obtain

gK L = ∇(EK − EL ) = �ĒQM(ρK )

�R
− �ĒQM(ρL )

�R

+ �Ēelect
int (ρK , {X K })

�R
− Ēelect

int (ρL , {X K })
�R

(6-18)

where the van der Waals terms vanish because they depend only on nuclear coordi-
nates and hence take the same values for all the electronic states. Note that we use the
configurational space of the excited state K in the determination of the solute–solvent
interaction energy difference.

The complete scheme of the process followed to locate CI or STC of molecules
in solution using ASEP/MD is shown in Figure 6-2. We begin by equilibrating the
solvent and the solute and getting a set of point charges that represent the charge
distribution of the solute molecule in the initial state, generally the ground state.
These charges are then used as input for an MD simulation of the solute and sol-
vent molecules, the remaining parameters for the solute (LJ coefficients) and solvent
(charges and LJ coefficients) are obtained from the literature. N representative sol-
vent configurations (N usually taken between 500 and 1000) are selected from the
MD simulation. From these configurations the average solvent potential, Eq. (6-4),
generated by the solvent in the volume occupied by the solute is calculated. Next,
one solves the electronic Schrödinger equation of the solute molecule, Eq. (6-3),
in presence of the average perturbation generated by the solvent. The energies and
wavefunctions of the crossing points are calculated and the gradient fK L is obtained.
A new solute geometry, closer to the crossing point, can be obtained by using a
quasi-Newton method. In this point we have two possibilities depending on whether
the solvent is in an equilibrium or non-equilibrium situation. In the former case the
solvent must be equilibrated with the solute charge distribution of the upper state and
hence a new MD must be performed, the procedure is continued until the solvent
distribution and the charge distribution of the upper state are mutually equilibrated.
Although strictly speaking it is necessary to perform an MD calculation for each new
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Figure 6-2. Conical intersection and singlet–triplet crossing location scheme

solute geometry, this is a very inefficient procedure. It has been verified [44] that it is
computationally more efficient to perform several steps of the crossing point search
procedure before equilibrating the solvent again. We update the solvent structure
only after 10–20 iterations of the crossing point search procedure.

In the case of non-equilibrium conditions, the crossing point is located for a frozen
solvent structure. During an electron transition the Franck–Condon principle is ap-
plicable and the solvent nuclei remain fixed during the transition. Consequently, the
solvent structure is in equilibrium with the charge distribution of the solute in its
ground state. The crossing point search procedure is performed in presence of this
solvent structure.
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Figure 6-3. Evolution during the search procedure of the S0 and S1 energies of acrolein (in Hartree) in
vacuum (thin lines, continuous and dotted, respectively), and in water solution (thick lines, continuous and
dotted, respectively)

Figure 6-3 displays the evolution of the total energy in vacuo and in solution of
the S0 and S1 acrolein states as a function of the number of cycles of the search
procedure. In the first steps the energy difference between the two crossing states
decreases until the system is close to the CI seam. Then the energy decreases until
the MECI is reached. Each time a new ASEP/MD is performed the solvent structure
is recalculated. If this change is important the position of the crossing seam changes
and the energies begin to fluctuate until they are again stabilized in a new plateau.
The final in solution values (energies, geometries, dipoles, etc.) are calculated by
averaging over the results obtained with the last few cycles of ASEP/MD.

6.2.4. Free Energy Differences

Once the different minima, MECI and MESTC points have been located, it is neces-
sary to determine their relative stabilities. For in solution systems the relevant quan-
tity is the free energy difference. The standard free energy difference between two
states, i and f, in solution can be written as the sum of two terms [45]

�Gdiff = �Gsolute + �G int (6-19)

where �Gint is the difference in the solute–solvent interaction free energy between
the two QM states, and

�Gsolute = �Esolute + �Vsolute (6-20)

where
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�Esolute = E f
QM − Ei

QM = 〈�̄ f
∣∣ ĤQM

∣∣�̄ f
〉− 〈�̄i

∣∣ ĤQM

∣∣�̄i
〉

(6-21)

is the ab initio difference between the two QM states calculated using the in vacuo
solute molecular Hamiltonian, ĤQM, and the in solution wavefunctions. �Vsolute is
the solute’s vibrational and thermal contribution to the free energy (usually evaluated
with the harmonic approximation).

In order to clarify the role played by the solvent in the stabilization of the different
structures it is useful to split the �Gint term into two terms: �Eint and �Gsolv. The last
term, �Gsolv, provides the solvent distortion energy, i.e., the energy spent in changing
the solvent structure from the initial to the final state. The term �Eint accounts for
the difference in the solute–solvent interaction energy between the final and initial
states. For a non-polarizable solvent this term reads

�Eint = E f
int − Ei

int = 〈�̄ f
∣∣ Ĥint

∣∣�̄ f
〉− 〈�̄i

∣∣ Ĥint

∣∣�̄i
〉

(6-22)

If one wants to consider explicitly the electron polarization of the solvent it is nec-
essary to add to Eq. (6-22) the energy spent in polarizing the solvent dipoles. In a
previous work [36], we have shown that for a polarizable solvent, the final expression
that the solute–solvent interaction energy takes is

�Epol
int = 1

2
�Eqμ + �Eρq + 1

2
�Eρμ (6-23)

Here, q refers to the permanent charges of solvent molecules, μ the induced dipoles
on the solvent and ρ the solute charge density.

In solvent effect studies, a fundamental quantity is the solvent shift, δ, on the
energy, defined as the difference between the energy gap values calculated in solution
and in vacuo:

δ = �Gdiff − �G0
solute (6-24)

If we suppose, as it is usually the case, that the solvent has only a small influence
on the solute’s thermal contribution, �Vsolute, then, using Eqs. (6-19) and (6-20),
Eq. (6-24) can be simplified to

δ = �G int + (�Esolute − �E0
solute) (6-25)

where the term in parentheses is the distortion energy of the solute: the energy spent
in the solute polarization during the solvation process. Splitting the different contri-
butions to �G int one obtain the following expression for the solvent shift on a solute
embedded in a polarizable solvent:

δ = 1

2
�Eμq + �Eρq + 1

2
�Eρμ + (�Esolute − �E0

solute) + �Gsolv (6-26)
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In the case of vertical transitions the term �Gsolv cancels out because the Franck–
Condon approximation is applicable and the solvent structure is the same in both the
ground and excited states. For non-vertical transition, �Gsolv must be explicitly cal-
culated. We calculate this term as difference between �Gint and �Eint. This last term
is calculated quantum-mechanically using Eq. (6-22). The �Gint can be calculated
using free energy perturbation method [46]. The solute geometry is assumed to be
rigid and a function of the perturbation parameter (λ) while the solvent is allowed
to move freely. When λ=0 the solute geometry and charges and the solute–solvent
interaction parameters correspond to the initial state. When λ=1 the charges and
geometry are those of the final state. For intermediate values a linear interpolation is
applied.

6.3. DE-EXCITATION PATHWAYS IN ACROLEIN

As an example of application of the ASEP/MD method described in the previous
section, in this section we proceed to the discussion of solvent effects on radiative
and non-radiative processes in acrolein. Acrolein or propenal is the smallest �,-
unsaturated carbonyl compound. The presence of the carbonyl group and the C=C
double bond makes it a compound of marked interest from a spectroscopic and pho-
tochemical points of view. In solution, acrolein displays a strong absorption band
corresponding to a 1(�→�∗) transition and a weak band, at lower frequencies asso-
ciated to a dipole forbidden 1(n→�∗) transition. The fluorescence spectrum shows a
band, which overlaps the first absorption peak, and which is assigned as originating
from the S1 state. The molecule presents also a phosphorescence spectrum, but the
assignation of the observed band to one specific transition is not clear. Finally, the
small values of the quantum yields for both fluorescence and phosphorescence (0.007
and 0.00004, respectively [47]) point to the existence of important non-radiative de-
cay pathways.

In what follows, the ground and excited states of acrolein have been described us-
ing CASSCF and CASPT2 levels of theory. In previous papers [36,48] it was shown
that the inclusion of the dynamic correlation component through CASPT2 calcula-
tions is compulsory if one desires to reproduce the transition energy. However, in the
acrolein case this component does not appreciably modify the solvent shift and, in
general, a good description of the solvent effects can be obtained at CASSCF level.
The complete active space was spanned by all the configurations arising from six
valence electrons in five orbitals (6e/5o). The quantum calculations were performed
using two basis sets: the 6-31 G∗ basis set and an atomic natural orbitals (ANO)
[49] basis set (the contraction scheme used was C,O [4s3p1d]/H [2s1p]). The initial
geometry for acrolein was obtained by CASSCF optimization both in vacuum and
in solution with the aforementioned basis sets. A total of one acrolein molecule and
250 TIP3P water molecules [37] were simulated with fixed intramolecular geometry
by combining LJ interatomic interactions with electrostatic interactions in a cubic
box of 18.7 Å side. Periodic boundary conditions were applied, and spherical cut-
offs were used to truncate the molecular interactions at 9.0 Å. A time step of 0.5 fs
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was used. The electrostatic interaction was calculated with the Ewald method. The
temperature was fixed at 298 K by using a Nosé-Hoover thermostat. Each MD cal-
culation simulation was run for 75 ps (25 ps equilibration, 50 ps production). Solvent
effects were treated with the ASEP/MD program [26,41] using the data provided
by Gaussian 98 [50] (quantum calculations) and MOLDY [51] (MD simulations).
CASPT2 calculations were performed with the Molcas [52] program.

6.3.1. Absorption Spectra

To understand the nature of the solvent shift in the absorption process it is interesting
to analyse first the solvent structure around the acrolein molecule. The radial distri-
bution functions (rdf) O(water)–O(acrolein) and H(water)–O(acrolein) for S0 and S1

states are shown in Figures 6-4 and 6-5, respectively. They were obtained as average
values over the last 10 ASEP/MD cycles. For the S0 state, the H(w)–O(a) rdf displays
a well-defined peak at 1.85 Å, indicating a strong hydrogen bond between acrolein
and a water molecule. The first peak of the O(w)–O(a) rdf appears at 2.75 Å, and
given that the H–O distance in water is 0.957 Å, one can conclude that the hydrogen
bond is almost linear. In Figure 6-4, it can also be observed that the radial distri-
bution function has several peaks at long distances, indicating that acrolein imposes
a considerable order on the water structure. The calculated coordination number is
2.1. The two electron lone pairs of the acrolein oxygen seem to be involved in the
formation of hydrogen bonds.

Table 6-1 lists the solvent shift on the 1(n→�∗) transition and its different con-
tributions (see Eq. (6-26)). The first column corresponds to the solvent shift due to

Figure 6-4. Oxygen (water)–oxygen (acrolein) radial pair distribution function of the S0 (continuous line)
and S1 (dotted line) states of acrolein
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Figure 6-5. Hydrogen (water)–oxygen (acrolein) radial pair distribution function of the S0 (continuous
line) and S1 (dotted line) states of acrolein

the electrostatic interaction between the solute charge distribution and the permanent
charges of the solvent. The second and third columns correspond to the interaction
between the induced solvent dipoles (μ) and the solute charge distribution (ρ) and
permanent solvent charges (q). The fourth column is the contribution of the solute
distortion energy. The total solvent shift is given in the last two columns. Given that
the dipole moment, and hence the solute–solvent interaction energy, decreases in
about 2.2 D during the excitation, the band position is blue shifted in 5.0 kcal/mol
(6-31 G∗ basis set), very close to the value, 4.5 kcal/mol, obtained at CASPT2 level
and using ANO basis sets and to the experimental value [53], 4.4 kcal/mol. The
largest contribution to the solvent shift comes from the interaction between the solute
and the permanent charges of the solvent. However, the contribution from the solvent
polarization (components associated to the induced dipoles) is also important, repre-
senting about 26% of the total solvent shift.

In solution, the strongest band of the absorption spectrum is associated with the
1(�→�∗) transition. During this transition the dipole moment increases in about
2.0 D, and the position of the band is red shifted by 6.2 kcal/mol.

Table 6-1. Solvent shift values and its components in kcal/mol

δ�q
1
2 δq�

1
2 δ�� δdist

sol δ δC AS PT 2

Absorption 5.9±0.4 0.04±0.02 1.1±0.1 –2.7±0.4 4.3±0.2 4.5±0.2
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6.3.2. Emission Spectra

As was indicated above the fluorescence band overlaps the 1(n→�∗) absorption
band, this fact and the very low value of the fluorescence quantum yield allows
the assignation of the band to the de-excitation from the S1 state. The charge flux
that accompanies the electron transition has an influence on the solvent structure
around the excited state of the acrolein molecule. Figures 6-4 and 6-5 display the
O(water)–O(acrolein) and H(water)–O(acrolein) radial pair distribution function in
the S1 excited state with dotted lines. In the O(w)–O(a) rdf the height of the first peak
decreases with the excitation and its position is shifted to longer distances, the same
is valid for the rest of the peaks, the solvent is less structured around the excited state
than around the ground state. The number of solvent molecules included in the first
solvation shell (calculated by integration until the first minimum of the ground state
rdf) are 2.1 and 1.2 for the ground and excited states, respectively. The behaviour of
the H(w)–O(a) rdf is even more striking, the solvent structure found around the solute
ground state is completely lost in the solute excited state. One can conclude that the
1(n→�∗) excitation produces the partial desolvation of acrolein. This desolvation
determines the energetic features of the emission process in solution.

Compared to the corresponding in vacuo transition, the solvent originates a blue
shift in the fluorescence band of 1.8 kcal/mol (polarizable solvent). The results ob-
tained with polarizable solvent are similar to that obtained with an effective charges
model, the computational cost being notably lower in the latter case. The difference
in solvent shift values found for the absorption and emission processes is related to
the different strengths of the solute–solvent interaction in the ground and first excited
states. As it was indicated above, the charge flux that accompanies the excitation
yields a lower dipole moment, weaker solvent structure around the solute and as a
consequence lower solute–solvent interaction energy (and energy differences) when
the solvent is in equilibrium with the excited state. The inclusion of dynamic electron
correlation increases the solvent shift by only 0.2 kcal/mol for the absorption process
but by 0.6 kcal/mol for the emission process. On a percentage basis, the contribution
of the dynamic electron correlation to the solvent shift represents 33% of the total
solvent shift in the emission process but less than 5% of the total solvent shift in the
absorption process.

The phosphorescence band is more complicated to assign. Table 6-2 displays the
energy of the singlet and triplet states both in vacuo and in solution. In both cases, the
most stable triplet is the T��∗ state. This state has in its minimum a geometry twisted
90◦ around the C=C bond. At this geometry the T��∗ state crosses the ground state
and hence it relaxes non-radiatively through an intersystem crossing. Consequently,
the phosphorescence emission must be associated to the de-excitation from the Tnπ∗

state. Experimentally, the maximum of the phosphorescence band appears at 2.46 eV,
our calculations places the emission from the Tnπ∗ state at 2.24 eV. The solvent orig-
inates a blue shift of about 0.73 kcal/mol. The solvent structure around the Tnπ∗ is
similar to that of S1. Like for the S1 state, the Tnπ∗ state is characterized by a charge
flux from the oxygen to the carbon skeleton, this charge flux decreases the dipole
moment of the excited triplet state with respect to the ground state value. At the
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Table 6-2. Energy results in a.u. �E and �G in kcal/mol

Vacuum Solution

E �E �G eq �E non-eq Geometry

S1 FC –190.6788 0.0 0.0 0.0
S0 Min –190.8235 –90.8 –95.8 Planar
S1 Min –190.7081 –18.4 –20.7 Planar
Tn�∗ Min –190.7131 –21.5 –22.3 Planar
T��∗ Min –190.7278 –35.7 –36.4 Twisted
S1/T��∗ STC –190.7044 –16.1 –19.2 –17.7 Planar
Tn�∗ /T��∗ CI –190.7055 –16.7 –19.1 –18.4 Planar
T��∗ /S0 STC –190.7275 –30.5 –33.7 –34.2 Twisted
S1/S0 CI –190.6762 +1.6 –1.4 +6.4 Twisted

same time it produces a partial desolvation of the excited state. These two effects
destabilize the excited state with respect to the ground state and explain the blue
shift.

6.3.3. Non-radiative Excited State Decay

In the radiationless relaxation of acrolein there are at least four states involved [54],
the ground state, S0, the first singlet excited state, S1, and two triplet states, T��∗

and Tnπ∗ . Two paths have been proposed in order to explain the radiationless de-
excitation of acrolein in gas phase: (1) a direct de-excitation through a S1/S0 IC
and (2) an indirect path starting with a S1/ T��∗ ISC. From here we have several
possibilities: (a) the system can return to the ground state through a T��∗ /S0 ISC,
(b) the system can pass to Tnπ∗ through a Tππ∗/Tnπ∗ IC. From Tnπ∗ acrolein relaxes
non-radiatively to T��∗ and from here it returns to S0 through a T��∗ /S0 ISC. When
the system is in Tnπ∗ state it can relax radiatively originating the phosphorescence
band.

Table 6-2 provides the relative stability of the different minima, MECI and
MESTC points, calculated in vacuo and in solution, and in the latter case, in equi-
librium and non-equilibrium conditions. Figure 6-6 displays the geometries of the
minima, and minimal energy CI and STC points.

We first analyse the influence of the solvent on the different geometries suppos-
ing solvent equilibrium conditions. In all the cases analysed – minima, MECI and
MESTC – the solvent increases the C–O distance and decreases the two C–C dis-
tances. This behaviour can be explained by the formation of hydrogen bonds between
the carbonyl oxygen and the hydrogen of the water molecules. The larger distance
variations appear in the S0/ T��∗ STC and Tππ∗/Tnπ∗ CI. In order to understand the
variation of the geometrical parameters it is necessary to consider two variables:
the bond order of the carbonyl group and the in vacuo dipole moment value. The
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Figure 6-6. (a) S1/S0 CI geometry in vacuo and in solution (in parentheses). (b) The T��∗ /S0 STC ge-
ometry in vacuo and in solution (in parentheses). (c) S1/T��∗ STC geometry in vacuo and in solution
(in parentheses). (d) Tn�∗ /T��∗ CI geometry in vacuo and in solution (in parentheses). (e) FC geome-
try in vacuo and in solution (in parentheses). (f) T��∗ minimum geometry in vacuo and in solution (in
parentheses) Distances in Å

larger variations of distances appear in those structures where the C–O bond has a
single bond character and the dipole moment is high. In these conditions the bond
is more labile and hence easier to elongate. In twisted structures, the solvent affects
the C1C2C3H6 torsion angle value, which, in the S0/S1 CI structure, for instance,
increases from 100◦ to 103◦.
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The solvent has also effects on the relative energies of the minima and crossing
points. In Table 6-2, all data have been referred to the FC points (in vacuo and in
solution), being the points where the de-excitation process initiates. As a general
rule and when compared with the in vacuo values, the solvent stabilizes the energy
of all the minima and crossing points of acrolein. In the FC point the solvent is in
a non-equilibrium situation, however, in the rest of points, minima, CI and STC,
the solvent is in equilibrium with the corresponding solute charge distribution. The
relaxation of the solvent from a non-equilibrium situation to an equilibrium situation
explains the additional stability obtained in solution.

The main conclusion that one can obtain from Table 6-2 is that, in solution, the ra-
diationless relaxation can follow the same path as in vacuo. The direct de-excitation,
path 1, through the S0/S1 CI is improbable but possible, it is 1.6 kcal/mol above
the gas phase FC point but 1.3 kcal/mol below the FC point in solution. However,
this path involves an appreciable reorganization of the solvent structure. As for the
gas phase process the most probable path passes through the S1/ T��∗ STC. This
de-excitation path supposing an equilibrium solvent situation implies also a large
reorganization of the solvent structure around acrolein and hence one can expect that
it will be slower in solution than in vacuo.

The different crossing points have also been located for a non-equilibrium sol-
vation situation. Depending on the case, the search procedure can be more compli-
cated than in the equilibrium solvation situation, see Figure 6-7. In non-equilibrium
solvation all the crossing points are less stable than the corresponding equilibrium
points. For instance, the S0/S1 CI is 3.2 kcal/mol above the FC point. However,

Figure 6-7. Evolution during the search procedure of the S0 and S1 energies (in Hartree) in non-
equilibrium conditions (thin lines, continuous and dotted, respectively), and in equilibrium conditions
(thick lines, continuous and dotted, respectively)
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the path that involves the S1/ T��∗ and T��∗ /S0 STC is still energetically possible.
This path does not imply solvent reorganization, only solute movements and hence
can take place, in principle, at practically the same speed as in vacuo. In conclu-
sion, the radiationless relaxation of acrolein in aqueous solution can follow the
same path as that of the in vacuo system and must proceed with almost the same
speed.

6.4. CONCLUDING REMARKS

In the last decades, the theoretical study of solvent effects has known a great develop-
ment. New and improved models have been proposed that have permitted to extend
the range of problems treated and improve the accuracy of the predictions made. The
new models are characterized by a quantum-mechanics high-level description of the
solute molecule and a detailed description of the microscopic structure of the sol-
vent. Among this trend is placed the method proposed by our group, the ASEP/MD
method: a sequential QM/MM method that has as a distinct feature the use of the
mean field approximation. ASEP/MD has been successfully applied to the study of
solvent effects on chemical reactions, conformational equilibrium and absorption
spectra. In this chapter, we have presented an extended version that permits a first
approximation to the study of solvent effects on the radiative and non-radiative decay
of excited states. These are intrinsically dynamic processes where it is necessary to
take into account the interplay between electronic structure and nuclear dynamics.
We have undertaken this problem by establishing two limit situations, which we have
characterized as equilibrium and non-equilibrium solvation regimes. In the former,
we suppose decay times long enough to allow a complete relaxation of the solute and
the solvent structures. In the latter, we suppose the decay process is fast enough to
prevent the solvent equilibration (although we assume a complete relaxation of the
solute). In some situations the solvent behaviour will be halfway between these two
limits and an adequate treatment would require the use of more advanced techniques
such as ab initio molecular dynamics. We believe, however, that in many cases, the
two limits indicated above would be a good approximation to the real situation and
valid and interesting information about the solvent effects on the decay processes
could be obtained.

As an example of application of the method we have considered the case of the
acrolein molecule in aqueous solution. We have shown how ASEP/MD permits a uni-
fied treatment of the absorption, fluorescence, phosphorescence, internal conversion
and intersystem crossing processes. Although, in principle, electrostatic, polariza-
tion, dispersion and exchange components of the solute–solvent interaction energy
are taken into account, only the firsts two terms are included into the molecular
Hamiltonian and, hence, affect the solute wavefunction. Dispersion and exchange
components are represented through a Lennard-Jones potential that depends only on
the nuclear coordinates. The inclusion of the effect of these components on the solute
wavefunction is important in order to understand the solvent effect on the red shift
of the bands of absorption spectra of non-polar molecules or the disappearance of
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the Rydberg bands of chromophores in solution. Furthermore, it is supposed that the
LJ parameters are the same for all the electron states. Consequently, in our model,
LJ components do not contribute to the transition energies. These approximations
constitute a limitation of the method that we will try to overcome in the near future.

REFERENCES

1. Bayliss NS, McRae EG (1954) J Phys Chem 58:1002
2. Tomasi J, Persico M (1994) Chem Rev 94:2027
3. Rivail JL, Rinaldi D (1995) In: Leszczynski J (ed) Computational chemistry: review of current

trends, World Scientific Publishing, Singapore
4. Cramer CJ, Truhlar DG (1995) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chem-

istry, vol VI. VCH Publishers, New York, p 1
5. Martı́n ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2000) J Chem Phys 113:6308
6. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) J Chem Phys

124:124520
7. Improta R, Barone V, Santoro F (2007) Angew Chem Int Ed 46:405
8. Lippert E (1957) Z Elektrochem Ber Bunsenges Phys Chem 61:962
9. Lippert E (1961) Angew Chem 73:695

10. Whery EL (1990) In: Guilbault GG (ed) Practical fluorescence, 2 nd edn. Marcel Dekker, Inc., New
York, p 127

11. Toniolo A, Ben-Nun M, Martı́nez TJ (2002) J Phys Chem A 106:4679
12. Toniolo A, Granucci G, Martı́nez TJ (2003) J Phys Chem A 107:3822
13. Burghardt I, Cederbaum L, Hynes JT (2004) Faraday Discuss 127:395
14. Spezia R, Burghardt I, Hynes JT (2006) Mol Phys 104:903
15. Garavelli M, Rugen F, Ogliano F, Bearpark MJ, Bernardi F, Olivucci M, Robb MA (2003) J Comput

Chem 24:1357
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48. Muñoz Losa A, Fdez. Galván I, Martı́n ME, Aguilar MA (2006) J Phys Chem B 110:18064
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Abstract: The combination of molecular mechanics and quantum mechanics (QM/MM) is gaining
increasing application in solvation problems. One possibility that has been explored is
to use the MM and QM sequentially. This has the advantage that statistically converged
results can be ensured. In addition, convergence with the size (number of explicit solvent
molecules) can also be easily explored. The disadvantage is that uncoupling the QM and
the MM imposes special consideration for including the solute polarization. These as-
pects are considered here, where a detailed analysis is made of the statistical correlation
and the statistical inefficiency. An iterative procedure to include the solute polarization is
discussed and examples are presented. Examples are also given to illustrate the different
aspects, especially the size and statistical convergence. Finally, the possibility and imple-
mentation of using just one average configuration to obtain, from a single QM calculation,
the same average of the statistically converged value is discussed

7.1. INTRODUCTION

The study of atomic and molecular properties in a liquid environment is a problem
deserving increasing theoretical interest. The modifications of the atomic or molec-
ular properties are a sensitive probe of the interaction between the reference system
and the environment. Interesting examples of this are found in the analysis of liquid
helium [1,2,3] and physical–chemical solvation problems [4]. In the past decade we
have seen an enormous increase in the theoretical possibilities to study solvation
and solvent effects in general. This is a consequence of persistent and systematic
improvements since the early pioneering days of Onsager [5] and Kirkwood [6].
This is the origin of the continuum methods that found an interesting development
in the self-consistent reaction field [7,8,9,10]. An important extension has been de-
veloped by the Pisa group that led to the polarizable continuum model [11,12,13],
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termed as PCM, and later also extended to include isodensity PCM [14]. Because
of its simplicity PCM is one of the most used theoretical methods to study solvent
effects. Continuum methods can now be used with the most sophisticated quantum
chemistry methods [15,16] and a discrete reaction field method has also been de-
veloped [17,18]. An interesting variant of the continuum approach is the conductor-
like screening model (COSMO) developed by Klamt and Schüürmann [19] which
can now be used with the multi-reference configuration interaction method [20].
Further progress can be achieved by considering the inclusion of explicit solvent
molecules, a procedure that normally requires the use of statistical mechanics com-
puter simulation. An influent work has been made nearly 20 years ago by Blair and
co-workers [21] where they performed a spectroscopic analysis of formaldehyde in
water combining quantum mechanics (QM) and molecular simulation (MM). An-
other well-recognized work is that of Warshell and Levitt [22] that is considered to
be in the origin of the QM/MM methods [23,24]. By combining quantum mechanics
and molecular mechanics with a proper partition they have laid the foundation to
systematic theoretical studies of biological systems. The combined use of statistical
mechanics computer simulation with quantum mechanics is perhaps the theoretical
tool that has seen the most spectacular recent advances. These have been the sub-
jects of some recent reviews [10,23,25,26,27]. The use of computer simulation is
the natural way to obtain the diversity of configurations that characterizes a liquid
system [28]. A liquid is statistical by nature and its properties should be obtained
by statistical averages. As such only statistically converged average values are of any
significance. All properties of a liquid are represented by a statistical distribution that
reflects the simple fact that temperature imposes structural fluctuations.

The sequential QM/MM (S-QM/MM) is a variant of the conventional QM/MM
approach that aims at obtaining statistically converged values for all properties of
interest. This is particularly interesting because it uses a very efficient sampling
procedure, thus reducing considerably the number of QM calculations to obtain
proper statistically converged average values. It thus consists of two steps. In the
first one, computer simulations are made to generate the configurations and, in the
second one, QM calculations are made on these configurations. Of course the use of
separate computer simulation and quantum mechanics is a natural idea and in fact
it has been used already in the pioneering work of Blair and co-authors [21] and in
the early works of Zeng and co-authors [29,30]. One of the greatest advantages of
using the two-step procedure is that between them, after concluding the MM part,
a statistical analysis can be made to select configurations that are of relevance to
the final average value. This can be done in two, technically, different ways, either
by analyzing the statistical correlation interval from the auto-correlation function of
the energy or from the statistical inefficiency. These are in fact related but they are
obtained by using different computational procedures. Both will be discussed later
in this chapter. In this sense, the S-QM/MM methodology was proposed by Canuto
and Coutinho [31,32] to study solvent effects in electronic and structural properties
of solutes. In this type of study, two important ingredients are necessary. First, as
the electronic properties are of interest, it is necessary to use quantum mechanics to
describe the solute and its interactions with the solvent. Second, as the whole system
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is a solution, usually studied in a given condition of temperature and pressure, it
is also necessary to include the thermodynamic effects on the solute–solvent and
solvent–solvent interactions. This is the recognition that a liquid system is statistical
in essence and that all of its properties, classical or quantum (spectroscopic, for in-
stance) are derived from a statistical distribution. These effects of temperature and
pressure are frequently obtained using computer simulations of molecular systems in
liquid phase or in solutions. Therefore, the commonly used QM/MM hybrid method
[22,23,33,34] joins together quantum mechanics and computer simulation to study
solvent effects on electronic properties of molecules. In this method, one part of
the simulated system uses a quantum Hamiltonian and the remainder uses classical
force fields. Usually the classical part interacts with the quantum part by the inclu-
sion of an electrostatic field – generated by the atomic point charges of the solvent
molecules not included in the quantum part – in the quantum Hamiltonian. Thus, in
each step of the simulation, one quantum calculation should be performed and, even
at a semiempirical level, this method may be computationally very demanding for
a large quantum part, because thousands of quantum calculations may be needed.
Another important aspect is that the separation between the classical (MM) and the
quantum (QM) parts may not be so clear. In the case of considering the active site of
an enzyme it seems justifiable that the separation should include the active site as the
QM part. However, in a liquid considering different properties of the solute this is a
subtle problem. The NMR shielding of an atom in the solute is a more localized prop-
erty than a solvatochromic shift of a polar molecule in a polar environment. For the
chemical shielding the solute and the nearest neighbors are very likely to be enough
to characterize the solvent contribution. On the other hand, the n–�∗ transition of
a polar organic molecule in a liquid environment seems to be affected by solvent
molecules located well beyond the first solvation shell. Hence, making the QM/MM
in a two-step procedure, avoiding a previous partition may be a more flexible proce-
dure. Different properties may require a different partition and the number of explicit
solvent molecules to be considered in a S-QM/MM will be extracted from the same
simulation. The MM part has mostly been made using Monte Carlo simulation but
molecular dynamics can, of course, also be used [35]. The QM model is also flexible
and different methods may be used for different properties. An application of the
sequential QM/MM has used the TDDFT QM model to obtain excitation energies
within a subset of the orbitals to save on computation time [36]. Finally, we should
also mention that an important ingredient to ensure statistical convergence is the
calculation of the correlation interval, and that is obtained after a long simulation
(normally after concluding the simulation). These aspects will be considered in this
chapter that includes several illustrative examples.

7.2. METHODOLOGY

The idea of the sequential QM/MM method is thus to join the quantum calcula-
tions and the computer simulations in an efficient way to reduce the number of QM
calculations and hence the computational cost. Therefore, in the two-stage proce-
dure the system is first simulated using classical force fields for all interactions,



162 K. Coutinho et al.

solute–solvent and solvent–solvent. Then, a statistical analysis is performed and two
important analyses are made. One is related to the statistical correlation between
successive configurations of the system generated by the simulation and the other
is related with the structural distribution of the solvent around the solute. Taking
this information into account, the second stage is to perform the quantum calcu-
lations in a few sampled statistically important configurations (typically less than
100) composed of the solute surrounded by some solvent molecules. In this proce-
dure, the computer simulations are performed by using the Monte Carlo Metropolis
[28] method, where the configurations are generated taking into account the Boltz-
mann factor so that having the results of the QM calculations on these structures,
a simple average is performed and the electronic property of interest is obtained.
It is important to note that with this two-step procedure, proposed in the sequen-
tial QM/MM method, the effects of temperature and pressure, which show up in
the configurations generated by the simulations, are automatically included in the
QM calculation through the diversity of configurations. Another important aspect to
be noted is that once the quantum calculations are performed in a supermolecular
system composed of the solute and some solvent molecules, all the interactions in
these sub-systems are in principle considered. This includes electrostatic, induction,
dispersion, charge transfer, etc. Therefore, this method provides a realistic treatment
of the system including all the important aspects of the solute–solvent interactions
in the liquid phase. However, there are two points that need special consideration.
One is that by uncoupling the classical simulation and the quantum treatment one
suppresses the mutual polarization between the solute and the solvent. In particular,
the polarization of the solute by the solvent is important for a proper treatment of
the solute properties. This point will be considered below in this chapter. We will
show that it is possible to include the solute polarization in some average way. The
second drawback is a little more delicate and subtle and it refers to the consistency
of the configuration space that is sampled by a classical and a quantum simulation. It
is still an open question whether the energy surface generated by the classical force
field and sampled by the computer simulation properly describes the true systems in
their microscopic states. It is acceptable that classical force fields may well describe
the real systems, on the average, once they can reproduce the experimental thermo-
dynamic data such as density, heat of vaporization, specific heat, etc. Also, structural
properties such as the radial distribution function and structure factor are important
properties that have been used to gauge the quality of force field parameters. But,
rigorously it is still unknown whether the microscopic states are equivalent. This is a
topic that needs special consideration.

7.2.1. Description of the Statistical Analyses

In this section we present in some detailed form the statistical correlation between
the values of a property in a chain of successive values generated by computer sim-
ulation. Two concepts are used, the statistical correlation and the statistical ineffi-
ciency. Although these two concepts are related they are obtained by using different
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computational strategies that are analyzed in the following. Additionally, we discuss
the use of the radial distribution function (RDF) and the minimum-distance distribu-
tion function (MDDF) to determine the structural distribution of the solvent around
the solute.

7.2.1.1. Statistical correlation or statistical inefficiency

After performing a computer simulation of a system composed of several entities
(atoms or molecules) in a given ensemble, thousands or millions of configurations are
generated. Each configuration is a set of coordinates for all atoms. The instantaneous
value of a property, f, is calculated using these configurations, which generates a
chain of successive values, {fi}. The average, 〈 f 〉, and the variance of the average,
〈� f 2〉, are obtained by

〈 f 〉L = 1

L

L∑

i=1

fi (7-1)

and

var(〈 f 〉L ) = 〈� f 2〉L = 1

L

L∑

i=1

( fi − 〈 f 〉L )2 = 〈 f 2〉L − 〈 f 〉2
L , (7-2)

where L is the size of the chain, {fi} = f1, f2, ···, fL. The statistical error due to the
finite size of the chain {fi}, generated by the simulation, is obtained as

err(〈 f 〉L ) =
√

〈δ f 2〉
L

. (7-3)

The variance of the average tends to a constant when the size of the chain {fi}
tends to infinity and it is easy to see that, on the same condition, the error tends
to zero. However, Eq. (7-3) is correct only when the successive values of the chain
{fi} are independent, or statistically uncorrelated. If there exists statistical correlation
between the values this equation changes to

err(〈 f 〉L ) =
√

〈δ f 2〉
(L/s)

, (7-4)

where s is the interval necessary to obtain statistically uncorrelated configurations.
As discussed before [31,37], two methods can be used to calculate the interval to
obtain statistically uncorrelated configurations: the statistical correlation and the sta-
tistical inefficiency.

The statistical correlation between two different quantities can be calculated
through the correlation coefficient [38,39] and this concept is usually extended by
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considering these two quantities as the same property evaluated in different times
or, in a chain {fi} separated by an interval k, that is known as an auto-correlation
coefficient for a fixed k or an auto-correlation function, C(k), for any interval k:

C(k) = 〈δ fiδ fi+k〉L−k√
〈δ f 2

i 〉L−k〈δ f 2
i+k〉L−k

= 〈( fi − 〈 fi 〉L−k) ( fi+k − 〈 fi+k〉L−k)〉L−k√
〈( fi − 〈 fi 〉L−k)2〉L−k〈( fi+k − 〈 fi+k〉L−k)2〉L−k

,

(7-5)

where i varies from 1 to L− k. Considering that the interval k is much smaller than
the total size of the chain L (typically we vary k from 1 to 0.5% of L), the variance
of the first set of values, fi, and the second, fi+k, shown in the denominator, are ap-
proximately equal to the variance of the total chain. Thus, Eq. (7-5) can be rewritten
approximately as

C(k) ∼= 〈 fi fi+k〉L−k − 〈 fi 〉L−k〈 fi+k〉L−k

〈 f 2〉L − 〈 f 〉2
L

(7-6)

which has values below 1. Values close to 1 indicate a very high degree of correlation
(close to 100%). The correlation time, τ , is then obtained by integrating this auto-
correlation function

τ =
∞∫

0

C(k)dk. (7-7)

When successive values of the chain {fi} differ by small fluctuations, which is the
case of macroscopic properties obtained from successive configurations generated
by molecular simulations, the auto-correlation function follows an exponential decay
[38,40,41]

C(k) =
∑

i

ci e
−k/τi , (7-8)

where τ i represents characteristic correlation times of the system. For simula-
tions performed with Monte Carlo Metropolis method, it was found that the auto-
correlation function of the potential energy [32,42] and of other properties [40,43,44]
can be well represented by one or two exponential functions. Therefore, the correla-
tion time τ can be easily obtained by fitting the auto-correlation function C(k), cal-
culated by Eq. (7-6), by using a double exponential decaying function (see Eq. 7-8)
and integrating it from zero to infinity. That gives τ = c1τ 1 + c2τ 2, where typically
τ 2 >>τ 1. An example of this behavior is shown in Figure 7-1.

Rigorously, fully uncorrelated configurations (C(k) ≈ 0) require an infinite inter-
val (k→∞). In general, for an interval larger than 2τ , the statistical correlation is less
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Figure 7-1. Typical auto-correlation function of the energy. In this example it is calculated for the case of
benzophenone in water simulated with Monte Carlo Metropolis method. The calculated auto-correlation
function (circles) is fitted to the exponential decay (line) and the correlation time � is obtained using
Eq. (7-7) applied in the fitted function shown in Eq. (7-8)

than 13%, i.e., C(k) < 0.13. The values of the chain {fi} separated by this interval
can be considered as statistically uncorrelated and we call k ≈ 2τ as the correlation
interval. In our applications efficient statistical convergence has been obtained for
correlation less than 15%, i.e., C(k) < 0.15.

The second method used to calculate the necessary interval to obtain statistically
uncorrelated configurations is the statistical inefficiency. As defined by Friedberg
and Cameron [45], it is based on the variance of averages taken over blocks of a
chain {fi}. Dividing the chain into nb blocks with Lb successive values, where L = nb

Lb, then the average taken over the bth block is

〈 f 〉b = 1

Lb

bend∑

bstart

fi , (7-9)

where bstart= (b − 1)Lb + 1, bend= bLb and b can assume values from 1 to nb. The
variance of the averages taken over the blocks is

〈δ f 2〉nb = 1

nb

nb∑

b=1

(〈 f 〉b − 〈 f 〉L )2 (7-10)

and the statistical inefficiency s is given by

s = lim
Lb→∞

(
Lb〈δ f 2〉nb

〈δ f 2〉L

)
= lim

Lb→∞
S(Lb) (7-11)
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For chains of statistically correlated values, S(Lb) increases with the increasing of
Lb until it approaches a limiting value s. The limiting value of S(Lb) means that the
block size Lb has become so large that there is no correlation from block to block,
i.e., a correlation interval. Therefore, by performing a graphic of S(Lb) versus Lb the
value of s can be estimated. But as the chain is finite (L = nbLb), when the block size
Lb increases the number of blocks nb decreases and it generates an increasing error
in the calculation of S(Lb) and an imprecision in the estimate of the best value of s.
Thus, it is necessary to perform an analysis of s with respect to the size of the chain
L. An example of this analysis is shown in Figure 7-2.

For those chains {fi} where the auto-correlation function follows an exponential
decay, it is called a first-order autoregressive or Markovian chain [38] and in this case
the statistical inefficiency and the correlation time are related by s ≈ 2τ [28]. These
two methods are used independently in a complementary way to obtain the best
estimate for the interval to obtain statistically uncorrelated configurations generated
by molecular simulations, i.e., to obtain the correlation interval. Applications of this
statistical analysis to study solvent effects in molecular spectroscopy have been made
in some detailed form [42]. Numerical applications have shown that the average
obtained using all successive values of {fi} is the same as the average obtained using
only statistically uncorrelated values [37], that is, values that are separated by an
interval s ≈ 2τ , regardless of the starting value fi. This is of considerable interest
when applying to QM calculations (see, e.g., [46,47,48]).

The correlation interval s, or 2τ , gives the information of how many Monte
Carlo (MC) cycles, or molecular dynamics time steps Δt, are necessary to ob-
tain configurations that are statistically uncorrelated, i.e., with less than ∼13% of

Figure 7-2. Typical graphic of the statistical inefficiency. In this example it is calculated for the case of
benzophenone in water simulated with Monte Carlo Metropolis method. The behavior of S(Lb) versus Lb

for chains with different sizes L. The dashed line represents the asymptotic value s of uncorrelated blocks
as shown in Eq. (7-11)
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correlation. Hence, instead of selecting a total of thousands of successive configura-
tions generated by the simulations, it is possible to select only a few statistically un-
correlated configurations that are obtained considering the configurations separated
by an interval of s, where s is typically 1000 MC cycles when the solvent is water.
Typically we have been able to obtain statistically converged values after 60–80 QM
calculations (see, e.g., [32,46]). Examples will be discussed later in this chapter. In
all cases the statistical correlation has been calculated using the program Correlation,
that is available from the authors, and is part of the DICE package [49].

7.2.1.2. Structural analysis: solvent distribution

One important aspect is the distribution of the solvent molecules around the solute,
i.e., the solvation shells and the hydrogen bonds. They are usually analyzed through
the radial distribution function (RDF). The RDFs can be calculated between any
atom of the solute and any atom of the solvent [28]. It can also be obtained between
their centers of mass (CM). Among all possibilities, the RDF between the CMs,
RDF(CM), are frequently used to define the solvation shells. Figure 7-3 shows a
typical RDF(CM), which represents the distribution of water molecules around a C60

fullerene. It is possible to identify three peaks that define the solvation shells. These
can be used to obtain the coordination number. In the case of a liquid system this
coordination is the average number of molecules in any given solvation shell. Hence,
by a spherical integration of each peak, it is possible to obtain the average number of
solvent molecules in each shell. Figure 7-4 shows an illustration of one configuration
of the C60 fullerene surrounded by its first hydration shell with 63 water molecules.

Figure 7-3. RDF between the center of mass of C60 and water. Three peaks are shown indicating the
number of water molecules in the hydration shells, obtained by spherical integration of Gcm-cm(r) from
the solute center of mass up to the limit of their respective minima
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Figure 7-4. Illustration of one MC configuration of C60 surrounded by 63 water molecules that form the
first hydration shell

However, the RDF(CM) is not appropriate when the solute is an elongated
molecule, as it was discussed before, for the case of -carotene in several solvents
[47] and benzophenone in water [50]. In these cases of elongated solutes, an appro-
priate function is the minimum-distance distribution function (MDDF), where the
histogram used to calculate the distribution function is not the distance between
the CMs of solute–solvent, but the minimum distance between them. The MDDF
is defined as

G(r ) = HISTOGRAM[r−, r+]

L ρ �V
, (7-12)

where r+ = r + (�r/2), r− = r − (�r/2), L is the number of configurations used for
computing the histogram, ρ = N/V is the density of the system, �r is the width of the
bin of the histogram and �V is the normalization volume. In a RDF, �V is the volume
of the spherical shell with radius between the range [r−, r+] and is given by

�V = 4π

3
[(r+)3 − (r−)3] (7-13)

However, the MDDF is not spherical. It follows the shape of the solute and there
is no obvious choice for the normalization volume �V. One possible choice was
proposed [50] and it was used in the case of benzophenone, which is a parallelepiped
normalization, where the molecule is represented by a box of dimensions a, b, c that
characterize its size. For benzophenone, these dimensions were 11.5, 7.0 and 4.0 Å
[50], and the �V is a parallelepiped shell between [r−, r+] given by
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Figure 7-5. The RDF between the center of mass (dashed line) and the minimum-distance distribution
function (solid line) between the benzophenone (shown in the inset) and the water molecules

�V = (a +2r+)(b+2r+)(c+2r+)− (a +2r−)(b+2r−)(c+2r−). (7-14)

For illustration, Figure 7-5 shows the two distribution functions of the benzophe-
none in water. The dotted line is the RDF(CM) and the solid line is the MDDF. In
this latter case, the distribution of the water molecules around the benzophenone is
clear: (i) a small peak, ending at 2.0 Å, that characterizes the hydrogen bonds, (ii) a
large peak, between 2.0 and 4.3 Å, that characterizes the first solvation shell and (iii)
another peak, between 4.3 and 7.0 Å, that characterizes the second solvation shell.

In Figure 7-6, for comparison, two configurations of benzophenone surrounded
by 45 water molecules are shown. In Figure 7-6(a) the distribution is spherical with

Figure 7-6. Illustration of one MC configuration of the benzophenone molecule surrounded by 45 water
molecules selected with respect to (a) the center of mass distance and (b) the minimum distance
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respect to the CM distance and in Figure 7-6(b) the distribution is with respect to the
minimum distance.

In Figure7-6(b), it is possible to note a better distribution of the solvent molecules,
particularly on the edges of the solute. An important case in this direction is that of
-carotene where the solvent molecules selected using a spherical distribution is a
severe limitation [47]. On the other hand for small solutes, such as formaldehyde,
the solvation shells selected with the MDDF and the RDF(CM) are very similar.

7.3. APPLICATIONS

Since the suggestion of the sequential QM/MM hybrid method, Canuto, Coutinho
and co-authors have applied this method with success in the study of several systems
and properties: shift of the electronic absorption spectrum of benzene [42], pyrimi-
dine [51] and -carotene [47] in several solvents; shift of the ortho-betaine in water
[52]; shift of the electronic absorption and emission spectrum of formaldehyde in
water [53] and acetone in water [54]; hydrogen interaction energy of pyridine [46]
and guanine–cytosine in water [55]; differential solvation of phenol and phenoxy
radical in different solvents [56,57]; hydrated electron [58]; dipole polarizability of
F− in water [59]; tautomeric equilibrium of 2-mercaptopyridine in water [60]; NMR
chemical shifts in liquid water [61]; electron affinity and ionization potential of liquid
water [62] and liquid ammonia [35]; dipole polarizability of atomic liquids [63]; etc.

In this section, we will present some illustrative applications of the S-QM/MM
methodology in the study of solvent effects.

7.3.1. Nonpolar Solutes

Nonpolar molecules polarize less the solvent environment and generally lead to small
solvation effects, for instance, small solvatochromic shifts. The general rule is that
upon excitation a decrease in the dipole moment leads to an increase in the excitation
energy and hence a blue shift. This is the case of most n–�∗ transitions. On the other
hand, an increase in the dipole moment leads to a smaller separation of the ground
and excited states and therefore a red shift. The blue shift of the �–�∗ transition of
1H-benzotriazole in water, for instance, can be completely understood in terms of the
variation of the in-water dipole moments of the ground and first excited states [64].
However, for nonpolar molecules such as benzene where the spectrum is character-
ized by �–�∗ transitions, both the ground and the excited states have zero dipole
moments. Hence the dipole interaction that is normally the dominant contribution
cannot be sufficient in the qualitative analysis. It is expected that these excitations
are associated to small red shifts that come from the induced dipole moments rather
than from the permanent dipole moments. As the dipole polarizability of the excited
state is expected to be larger than for the ground state the induced dipole interaction
(dispersion) will solvate the excited state better than the ground state and hence will
contribute to a red shift. This is the reason why dispersion interactions are so im-
portant for describing nonpolar molecules and its contribution to solvatochromism
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normally leads to a red shift [65]. In the next two sections we will then consider the
very interesting cases of benzene and C60 in different solvents. We will also take
the opportunity to illustrate the application of the sequential QM/MM methodology
where one of the concerns is to obtain statistically converged results. In addition
we also analyze the convergence with respect to the number of solvent molecules
explicitly considered. For nonpolar molecules, as we will see, size convergence of
the solvatochromic shifts are achieved after including all solvent molecules within
the first solvation shell.

7.3.1.1. Solvent effects on the UV-vis spectra of benzene

Here, we address the solvatochromic shifts of benzene in different solvents. The
experimental results for the first absorption band of benzene in water, cyclohexane
and carbon tetrachloride and for homogeneous liquid benzene [66] show clear red
shifts as compared to the gas phase results. As benzene is a neutral molecule and
has no permanent dipole moment in the ground state and in the �–�∗ excited state,
the dipolar self-consistent reaction field is essentially zero and no spectral shift of
these bands can be expected using this model. Of course, higher moments can be
used but these give lower contribution. Using the explicit model of the solvent with
the S-QM/MM, we obtained excellent results in comparison with the experimental
data [42]. Initially, the Monte Carlo simulation was performed for four systems: liq-
uid benzene (at 0.8990 g/cm3), benzene in cyclohexane (at 0.7785 g/cm3), in carbon
tetrachloride (at 1.5867 g/cm3) and in water (at 0.9966 g/cm3). Standard procedures
were used for the Metropolis sampling in the NVT ensemble [28], with temperature
of 25

◦
C and volume of the cubic box determined by the density, considering the

system composed of one benzene molecule surrounded by 343 solvent molecules of
water and CCl4 and 124 of cyclohexane and benzene. As usual, the periodic boundary
conditions, the minimum image method and the cutoff radius, with the half-length of
the box, were used. All the simulations were performed using the DICE program
[49]. The geometry of the molecules were kept rigid during the simulations and
the intermolecular interaction was described by the Lennard-Jones plus Coulomb
potential with parameters obtained from the OPLS force field for benzene and cy-
clohexane [67], for carbon tetrachloride from McDonald and co-authors [68] and for
water we used the SPC model [69]. During the simulation, after each MC cycle, i.e.,
the attempt to move N molecules, one configuration was generated. In total, 80000
configurations were generated for each system and the statistical correlation analysis
was performed, as described in the previous section. Correlation intervals, s, of 800
and 500 were obtained, respectively, for liquid benzene and benzene in water and
for benzene in cyclohexane and in CCl4. Thus, from the 80000 successive configu-
rations (L = 80000) generated by the simulation, only 100 statistically uncorrelated
configurations (l = L/s = 100) were selected for posterior QM calculations of liquid
benzene and benzene in water and 160 for benzene in cyclohexane and CCl4.

Additionally, as each configuration generated by the simulation contains hundreds
of solvent molecules, a QM treatment of the solvent requires a reduction of the to-
tal number of solvent molecules included. Therefore, we performed an analysis of
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the saturation, or convergence, of the solvatochromic shift in the first 1B2u �–�∗

absorption transition of benzene with respect to the number of solvent molecules,
n, included in the QM calculations. The solvatochromic shift of the transition is
calculated by

〈�E〉l = 1

l

l∑

i=1

(Ei (solv) − E(gas)) = 1

l

l∑

i=1

�Ei , (7-15)

where l is the number of statistically uncorrelated configurations, Ei(solv) is the tran-
sition energy calculated for one uncorrelated configuration composed by one solute
surrounded by n solvent molecules, Ei(gas) is the transition energy calculated for
the isolated solute. In the QM calculations, first an intermediate neglect of differen-
tial overlap (INDO) self-consistent field equations with spectroscopic parametriza-
tion [70] are solved for the entire solute–solvent supermolecular configuration. This
means that the wavefunction is antisymmetric with respect to the entire function.
Then, singly excited configuration interaction (CIS) calculations are performed to
obtain the transition energies, using the program ZINDO developed by Zerner [71].

Figure 7-7 shows the convergence of the 1B2u �–�∗ transition shift obtained for
benzene in water varying the number of water molecules included in the QM cal-
culations. As it can be seen, for n larger than 18 water molecules the shift reaches
a converged value. Analyzing the radial distribution function between the carbon
atoms of the benzene and the oxygen atom of the water molecules, we observed
that the first solvation shell of benzene in water is composed of 18 water molecules.
Thus, we note that the shift in the �–�∗ transition of benzene in the presence of
water is converged with respect to the size of the solute–solvent system when the first
solvation shell is included in the QM calculations. The same behavior was found for

Figure 7-7. The convergence of the calculated shift of the first 1B2u �–�∗ transition of benzene in water
with respect to the number of solvent molecules included in the quantum mechanical calculations
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the other solvents, as reported in detail by Coutinho and co-authors [42] and also for
another nonpolar solute, the -carotene, in several solvents [47]. Then, we conclude
with these results that the solvatochromism in the absorption transitions of nonpolar
solutes is given by the first solvation shell and shows that the interactions between
them are of short range.

In Figure 7-8, the calculated values of the solvatochromic shift for each statisti-
cally uncorrelated supermolecular configuration, composed of one benzene and 18
water molecules, are shown. The average value of –122 ± 7 cm−1 and the experimen-
tal value of –143 ± 20 cm−1 are also shown for comparison. As it can be seen they
are in excellent agreement taking into account the experimental and the statistical
errors. The individual values are spread between –10 and –360 cm−1 and show that
the thermodynamic effects, such as temperature and pressure, that are considered
in the present method through the statistical distribution, produce a natural transi-
tion broadening. In the case of molecular systems it is known that the vibrational
movements also contribute to the transition broadening, but for atomic systems the
thermodynamic effects are the only contribution. Ludwig and co-authors [3] used
the S-QM/MM to study the excitation lineshift and linewidth of the principal res-
onance line of Na embedded in liquid He and obtained values that are close to the
experimental expectations.

Another statistical analysis that shows the robustness of our results was done
for the number of uncorrelated configurations selected for the QM calculations.
Figure 7-9 shows the convergence of the average value of the solvatochromic shift of
the 1B2u �–�∗ transition obtained for benzene in water when varying the number of
uncorrelated configurations sampled for the QM calculations. As it can be seen, after
40 uncorrelated configurations the average value fluctuates around the final average

Figure 7-8. The individual values of the solvatochromic shift of the first 1B2u �–�∗ transition of benzene
in water obtained for each one of the 100 statistically uncorrelated configurations, composed of benzene
surrounded by the first solvation shell of water
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Figure 7-9. The convergence of the average solvatochromic shift of the first 1B2u �–�∗ transition of
benzene in water with respect to the number of uncorrelated configurations included in the quantum
mechanical calculations. The solid line represents the final average value and the dotted lines the interval
of the statistical error (see Eq. 7-4)

within the statistical error, –122 ± 7 cm−1, and they can be considered as converged.
We performed the same analysis for benzene in the other solvents and we found that
for all studied systems around 50 uncorrelated configurations are necessary to obtain
converged averages.

In Table 7-1, we summarize the results obtained for the solvatochromic shift of the
first 1B2u �–�∗ transition of benzene in four different environments. As can be seen,
the final calculated solvatochromic shifts 〈E〉100 are in excellent agreement with the
experimental results in all cases studied. For instance, in the case of liquid benzene
100 QM calculations were performed in uncorrelated supermolecular configuration
selected in an interval of 800 successive configurations, each one composed of one
benzene surrounded by 13 nearest benzene molecules.

Table 7-1. Calculated solvatochromic shift of the first 1B2u �–�∗ transition of benzene in different sol-
vents. s is the correlation interval and 〈�E〉100 is the calculated average solvatochromic shift (in cm−1)
obtained with 100 uncorrelated configurations. The error in 〈�E〉100 is obtained from Eq. (7-4) and the
experimental results are obtained from Bayliss and Hulme [66]

System Solute+ n solvent s 〈�E〉100 �Eexp

Liquid benzene 1+13 800 −306±11 −332±30
Benzene in cyclohexane 1+11 500 −268±20 −308±20
Benzene in carbon tetrachloride 1+14 500 −456±27 −458±20
Benzene in water 1+18 800 −122±7 −143±20
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As Table 7-1 shows, the final average result for the solvatochromic shift of
the 1B2u �–�∗ transition of homogeneous liquid benzene is calculated to be –306±
11 cm−1, in excellent agreement with the experimental result of –332 ±30 cm−1 [66].

7.3.1.2. Hydration effects on the structure, band gap and UV-vis
spectrum of C60

Another nonpolar system of considerable interest is the C60 fullerene molecule.
Structural and electronic properties of C60 in liquid water are interesting cases that
have been recently investigated using the S-QM/MM [72,73]. This will now be con-
sidered. The molecular configurations of the solution were generated at room tem-
perature and atmospheric pressure by using MC simulations in the NPT ensemble
with solute–solvent interaction described by a realistic Lennard-Jones (LJ) potential
[72,74,75], and solvent–solvent interactions modeled by TIP5P potential [76]. In
this limit of very dilute solutions, containing one fullerene molecule immersed in
thousands of solvent molecules, statistically uncorrelated structures were selected
from the fullerene aqueous solution (C60FAS) using the auto-correlation function of
energy [53]. QM calculations were then performed to study the effects of solvation
on the optical properties of the hydrated C60 molecule, using the CIS and density-
functional theory (DFT) approximations.

Thus, the UV-vis spectra of C60 in water have been calculated using the
INDO/CIS method [77]. These were performed to obtain the excitation energies of
C60@{H2O}n cluster with n explicit water molecules, thus taking into account part
of the dispersion interaction [78] between the solute and solvent. Using the same
set of uncorrelated configurations of C60FAS, DFT calculations were also performed
by employing the SIESTA program [79,80]. Two approaches have been used: (a)
the local density approximation (LDA) [81,82] and (b) the gradient-corrected ap-
proximation (GGA) with the BLYP functional [83,84]. A nonlocal norm-conserving
scalar Troullier–Martins [85] pseudopotential has been included to replace the core
electrons and the Kohn–Sham (KS) eigenstates were expanded with a linear combi-
nation of numerical atomic orbitals (NAO) as the basis set [86,87,88]. An equivalent
plane-wave cutoff radius of 200 Ry for the grid integration was utilized to represent
the charge density and only the � point was sampled in these calculations [73].

In Figure 7-3 the calculated pairwise radial distribution function, Gcm–cm(r), be-
tween C60 and water is shown. This RDF(CM) is similar to those obtained using
other models for water [72,74,89]. As indicated in Figure 7-3, the first peak, corre-
sponding to the first hydration shell, starts at 6.0 Å and ends at the minimum value
of 8.3 Å. This shell is composed of an average of ca. 63 water molecules (for an
illustration of one configuration see Figure 7-4). Thus, after the MC simulation we
separated 160 statistically uncorrelated hydrated configurations of the C60@{H2O}63

type. These structures have shown that preferential interactions between water and
fullerene, such as O–H···� hydrogen bonds [90], are less probable to occur in so-
lution under ambient conditions. Indeed, according to Andrievsky and co-authors
[91] the stabilization of supramolecular C60@{H2O}n clusters should be explained
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by a weak C60–oxygen interaction, for which we have calculated, using the classical
force field, the interaction energy value of –0.65 ± 0.27 kcal/mol taking n = 63.
These configurations present sphere-like hydrated shells around the fullerene, or-
dered due to water–water hydrogen bonds formation. By considering all uncorrelated
C60@{H2O}63 configurations, we have calculated the minimum distance between
the C60 surface and water in the aqueous solution as 3.3 ± 0.5 Å.

If one considers the existence of larger hydrated clusters, Figure 7-3 also shows
a second hydration shell starting approximately at 8.3 Å and extending until 10.9 Å.
In this case, the spherical integration of Gcm–cm(r) gives a total number of 185 water
molecules on average, from the solute center of mass up to the limit of the second
shell. Also, by considering the calculated number of H-bonds in the solvent, the
second shell is less ordered around C60 than the first one. This is most expected in
C60FAS because of the short-range interaction between C60 and water. On the other
hand, the second hydration shell has a diameter that is within the predicted size [91]
for a single hydrated C60, lying in the range of 16–17 Å, as obtained experimentally.
Therefore, our prediction of larger supramolecular structures, of the C60@{H2O}185

type, seems to be in agreement with the supposed existence of highly hydrated sin-
gle fullerene configurations, as estimated by means of electron micrograph [92].
Actually, these C60@{H2O}n configurations are expected to be formed by a large
layer of water molecules [93] in comparison with the crystalline hydrates obtained
in colloidal solutions of C60 fullerene. More interesting, our results reinforce the
supposed existence of supramolecular hydrated clusters in aqueous environments,
which has more recently been proposed to be in connection with DNA damage in
human lymphocytes [94].

The transition energies calculated with INDO/CIS converge rapidly with the
number of configurations considered in the averages. For instance, taking the
C60@{H2O}60 configurations into account, we obtain average values of 268 ± 5 and
350 ± 9 nm. These transitions are in good agreement with the experimental UV-vis
absorption spectra of aqueous solutions [91,95], exhibiting peaks at 265 and 345 nm.
The intermolecular interaction between C60 and water is expected to be dominated by
dispersion interactions and this is normally responsible for red shifts in the optical
absorption spectrum [65]. This emphasizes the importance of including dispersion
interaction for a proper description of nonpolar solutes. Here, the calculated absorp-
tion spectra of the hydrated C60 seems to explain well the UV-vis spectra of C60FAS
in a wide range of concentration, because the optical absorbance of C60–water system
has a linear behavior with the concentration [91].

To better understand the influence of the aqueous environment on the ground-state
electronic properties of fullerene, we now use DFT calculations to analyze the band
gap. In our analysis we have considered the dielectric screening of the first hydration
shell on the band gap and density of states (DOS) of C60 at room temperature and
atmospheric pressure [72,73]. As obtained from the RDF(CM), given in Figure 7-3,
there are 63 water molecules present in each configuration representing the first hy-
dration shell of C60. The calculations are performed over uncorrelated configurations
composed of C60@{H2O}63 (for illustration see Figure 7-4).
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Figure 7-10. Band gap convergence of the hydrated system C60@{H2O}63 under ambient conditions: (a)
using LDA and (b) using BLYP levels of DFT. The average values are shown (dashed line) and also the
corresponding gap of the isolated C60 (solid line)

Figure 7-10 shows the convergence of the calculated band gap (Eg) of the hy-
drated fullerene as a function of the number of uncorrelated MC configurations in-
cluded in the averaging. The calculated average Eg is a mean difference between the
Kohn–Sham (KS) eigenvalues of the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) of the ground-state electronic
structure of the hydrated system over statistically uncorrelated configurations. Our
results are converged at both levels of DFT calculations (LDA and GGA) with 40
uncorrelated configurations. In a similar fashion, the DOS of the solvated system
was averaged over uncorrelated configurations up to the convergence limit. Thus,
the average band gap of the hydrated system was calculated as 1.07 ± 0.28 eV with
LDA and 1.11 ± 0.31 eV with GGA. Both levels of DFT also yielded good estimates
for the HOMO–LUMO gap of C60 in vacuum, i.e., 1.88 and 1.86 eV, respectively. For
comparison, this energy gap determined for C60 configurations from direct forbidden
optical transitions data is 1.77 eV [96].

In Figure 7-11 the charge densities related to the KS eigenstates near the
Fermi level of the hydrated C60 are shown. The HOMO of the solvated system

Figure 7-11. Top of the valence band of the hydrated fullerene. The range of –1.67 to –0.97 eV, the lone
pairs of water and the LUMO are represented from the left to the right. The dashed line represents the
Fermi level (EF)
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is localized in lone pairs of oxygen atoms of the hydrating molecules, whereas
its LUMO is qualitatively similar to the LUMO of the isolated solute [73]. This
analysis is in line with the expected high electron affinity of C60 in the pres-
ence of available oxygen and water [91,97]. This feature reveals the weak donor–
acceptor character of the interactions involving electron lone pairs of oxygen
atoms in H2O and the fullerene surface. However, taking the finite temperature
effect into account for the isolated C60, we expect that no appreciable changes
in the electronic structure may be observed due to the rigid surface of this
molecule. Thus, the calculated 0.8 eV of red shift in the band gap of the hydrated
fullerene, from that of the solute in vacuum, indicates that the disordering of wa-
ter only affects the ground-state electronic structure of the whole system at higher
temperature.

In summary, these C60FAS studies have successfully described the spectral prop-
erties of C60@{H2O}n considering only the first solvation shell around C60. We have
obtained converged averages for the transition energies at 268 ± 5 and 350 ± 9 nm
(with INDO/CIS) for the hydrated state of C60. The results for the aqueous solu-
tion are in very good agreement with previous experiments and reinforce that the
water layers cause only a mild perturbation in the absorption spectra of fullerene.
Moreover, the results show that including only the first hydration shell around C60 is
enough to analyze the spectral properties of this hydrated fullerene. At the DFT level,
we found that thermal fluctuations of the aqueous environment around the fullerene
surface are the most likely sources of the calculated 0.8 eV red shift in the band gap
of the hydrated system. On the other hand, by considering the projected DOS of
C60 in the presence of water it is clear that the influence of the first hydration shell
produces a mild polarization effect on the fullerene surface. This is in agreement with
the experimental prediction from both direct and indirect optical transitions data for
C60 in aqueous environment.

7.3.2. Including Solute Polarization

Using the S-QM/MM procedure has the disadvantage that the classical and quantum
parts are uncoupled. The solute cannot be polarized by the subsequent QM calcula-
tions. But it is clear that the mutual polarization between the solute and the solvent
can be very important [98]. In this section we consider how the solute polarization
can be considered in the context of the sequential procedure.

When a molecule is placed in a liquid environment, it is polarized, i.e., its electro-
static moments are changed giving rise to induced multipole moments. The amount
of polarization will depend on several factors including, of course, the polarizability
of the solute and the electric field provided by the environment.

In a conventional QM/MM simulation, where the quantum and classical parts are
made simultaneously, this polarization will be taken into account naturally, as the
solute will be polarized during the simulation. Furthermore the polarization fluctu-
ates in different configurations generated. In the S-QM/MM approach, on the other
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hand, the quantum and classical stages are uncoupled and the treatment of the solute
polarization is not so straightforward. It is clear that in the QM calculations of the
supermolecule (solute + solvent) such polarization will be taken into account. But the
solvent configurations have been determined by the precedent unpolarized classical
simulation.

In molecular mechanics simulations in general, a fixed set of parameters is
assumed for modeling the intermolecular interaction. Most simulations use the
Lennard-Jones plus Coulomb potential to mimic this interaction, where the Coulomb
term, consisting of point charges, takes into account the electrostatic part of the
interaction. Therefore, these point charges should somehow include the solute po-
larization. But there is a natural difficulty to establish the solute polarization. Ex-
perimentally, there is no direct way to determine the dipole moment of a specific
molecule in the liquid environment although it can be indirectly estimated by, for
instance, integrating infrared intensities [99]. Experimental reports on this, however,
are very scarce. Hence, this is a property that largely relies on theoretical estimates
and the inclusion of polarization or polarizable force fields is one of the great con-
cerns at present (see the special issue in [98,100]).

An approach that became widely used in the past has been to account for the
polarization of the solute molecule assuming an increase of ∼20% over the experi-
mental gas-phase dipole moment [101,102]. Indeed, such an “implicit polarization”
model has been very successful for simulating a wide range of systems. Such po-
larization can be achieved simply by performing HF/6-31 G(d) calculations on the
isolated molecule, as shown by Jorgensen and co-authors [103]. As for the nonpo-
lar molecules, the usual procedure is to use the gas-phase charges, since they are
not expected to suffer significant polarization. The same is generally done for polar
molecules in nonpolar environments. This approach has been successful for simulat-
ing many liquid systems (see, e.g., [104]). However, the use of fixed-charge models
for the intermolecular electrostatic potential, neglecting the actual polarization, may
lead to errors that may be significant. It has been shown, for instance, that in the case
of polar molecules in nonpolar environments, the use of fixed charges in the solvent
may lead to errors in the potential energy profile and therefore to wrong conclusions
about the conformational stability of the molecule in a medium (see, for instance
[105],). Similar problems may arise for ion solvation [106,107] and also for peptide
folding [108].

On the other hand, for polar molecules in polar environments, this approach may
lead to errors because the actual polarization of the molecule may significantly sur-
pass any modest estimate (e.g., 20%) and the extra polarization may be responsi-
ble for important differences in the solute–solvent interaction. Hence, one needs
a strategy to account more systematically for the solute polarization. It would be
especially interesting to do it in a way to preserve the main advantage of the se-
quential QM/MM methodology, that is, performing only statistically relevant QM
calculations.
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One way to do that is through an iterative use of the sequential QM/MM method-
ology. We perform a MC simulation, using some initial model for the point charges,
make the statistical analysis and select uncorrelated configurations to perform the
QM calculations, just in the usual sequential QM/MM. Next, we calculate for each
configuration the electronic density of the solute in the presence of the solvent, the
latter being represented by point charges. Then, based on the calculated electronic
density, the atomic point charges of the solute are fitted for each configuration. In
our real applications we have made use of the fit of the charges from electrostatic
potential in a grid (CHELPG) of Breneman and Wiberg [109] or the Merz–Kollman
[110] electrostatic mapping. Now, in the next simulation we use the average point
charges (representing the solute average dipole moment in the presence of the sol-
vent). Hence, we simulate the solution again, make the statistical analysis and select
configurations for the next QM calculations. The procedure is repeated until the
charge density of the solute is converged (monitored by the dipole moment). This
iterative procedure is described in detail in Georg and co-authors [111] and is similar
to that used by Martı́n and co-authors [112].

In each step we introduce in the simulation the average charge density over a
number of configurations enough to converge the induced dipole moment. This con-
vergence is achieved typically with less than 100 configurations. Note also that we
are using a solvent model – in the cases below the SPC model for water [69] – that
was developed to account for the properties of the liquid state, and therefore im-
plicitly includes some polarization effect in an averaged way. Therefore our concern
here is to describe more accurately the polarization of the solute molecule. After the
convergence of the iterative procedure the solute is in electrostatic equilibrium with
the solvent. The average polarization of the solute is used and in recent applications
this has given improved results [50,111].

Now, as experimental estimates of dipole moments of molecules in solution are
scarce, we must probe the calculated converged charge density by analyzing results
for other properties. One possibility is to analyze the solute–solvent interaction, and
that can be obtained by solvent shifts in UV-vis or NMR spectra for example.

Good test cases would be the solvent effects on the UV-vis absorption spectra of
formaldehyde and acetone that have been the subject of innumerous theoretical stud-
ies. Innovative theoretical methods have been applied to formaldehyde (see also the
compilation of results in [20,32,113,114,115,116]). Unfortunately the experimental
result for formaldehyde in water is not clear because of chemical problems mostly
associated to the aggregation and formation of oligomers. Therefore a better test case
is the UV-vis spectra of acetone, because reliable experimental solvent shifts and
several theoretical results are available (see the compilation of results in [117]). The
Stokes shift of the n–�∗ transition of acetone has been critically discussed by Öhrn
and Karlström [118]. Grozema and van Duijnen [17] studied the solvatochromic shift
of the absorption band of acetone in as much as eight different solvents. Acetone
is known to shift the maximum of the n–�∗ band by 1500–1700 cm–1 when im-
mersed in water [119,120,121]. Using the conventional HF/6-31 G(d) point charges,
Coutinho and Canuto [54] simulated acetone in water and performed INDO/CIS
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calculations for uncorrelated configurations. They obtained a blue shift of 1300 cm–1,
which is very close to the experimental range of 1500–1700 cm−1.

Now we consider the solute polarization with the charge distribution of acetone
equilibrated with the water environment, as obtained in the iterative procedure de-
scribed above. We start with the gas-phase point charges, calculated with MP2/aug-
cc-pVDZ using the Gaussian-03 program [122]. This method gives a dipole moment
of 2.98 D, which is very close to the experimental dipole moment of 2.93 D [123].
We then perform a MC simulation and after selecting 100 uncorrelated configura-
tions we obtain an average dipole moment of 4.05 D, representing an increase of
38%. These new charges can then be used in another MC simulation to obtain new
values of the electrostatic parameters. By continuing the process we reach the con-
vergence on the dipole moment at around 4.80 D, 60% larger than the gas-phase
dipole (Figure 7-12). This induction surpasses substantially the estimate of 20%,
but our equilibrated dipole moment is comparable to other theoretical estimates that
obtained 4.44, 4.52 and 4.90 D [112,117,124]. In particular the last value, obtained
with a Car–Parrinello MD simulation, is very close to our result. They also obtained
the same 60% of polarization and the same amount for the induced dipole, 1.8 D.

Note that using the polarizable continuum model (PCM) the dipole moment of
acetone is calculated as 3.98 D with the same MP2/aug-cc-pVDZ level. This is equiv-
alent to the first average dipole moment, obtained in the first step (see Figure 7-12),
and represents a polarization of 34%, about half of that obtained with the iterative
process. This case indicates that the PCM calculation could be used as a good esti-
mate of the polarization or for starting the iterative procedure.

Once the charges are equilibrated, we perform one last simulation and extract un-
correlated configurations to perform the QM calculations. The solvatochromic shift
is now calculated as 1650 ± 40 cm−1 [111]. This is a small improvement over the
previous result of 1300 cm−1, but it shows that the use of polarized solute gives a

Figure 7-12. Evolution of the dipole moment of acetone with the iteration step (see text)



182 K. Coutinho et al.

better description of the solvatochromic shift. This is corroborated by other studies
like in the case of benzophenone that will be considered next.

Benzophenone (see Figure 7-5) is another example of the importance of the solute
polarization. This molecule is more polarizable than acetone. Benzophenone has po-
larizable � clouds in the rings and larger dipole polarizability estimated as 144 ea3

0
[125], compared to 43 ea3

0 [126] for acetone.
The absorption spectrum of benzophenone is characterized by two distinct and

broad bands [127], a weak n–�∗ band and a strong �–�∗ band. The n–�∗ band
suffers a shift of around 2200 cm−1 when going from n-hexane to water, while the
�–�∗ band is shifted by nearly –1600 cm−1. The description of these distinct solva-
tochromic shifts is therefore a good theoretical challenge.

In the MC simulations of benzophenone in water we have used a previous ge-
ometry optimized with MP2/3-21 G. One important parameter is the interplanar an-
gle between the phenyl rings and that is in good agreement with the experiment,
as described elsewhere [128]. The gas-phase dipole moment of benzophenone is
calculated in the MP2/6-31++G(d,p) level as 3.11 D, in good agreement with the
experimental value of 2.98 D [125]. Using the iterative procedure we obtained a
converged dipole moment of 5.84 D for benzophenone in water (see Figure 7-13).
This represents a large polarization of nearly 90%.

Using the atomic charges obtained from a CHELPG fit of the isolated molecule
in the MC simulation results in calculated subsequent INDO/CIS solvatochromic
shifts of approximately 990 cm−1 for the n–�∗ band and –950 cm−1 for the �–�∗.
These values are disappointingly small compared to the experimental values of 2000
and –1600 cm−1, respectively. Using, in turn, the implicit polarization obtained with
the HF/6-31 G(d) we calculated a solvent shift of approximately 1400 cm−1 for the
n–�∗ band and –1200 cm−1 for the �–�∗, corresponding to an improved picture

Figure 7-13. Evolution of the dipole moment (in the MP2/6-31++G(d,p) level) of benzophenone in water
with the iteration step. The open circle corresponds to the dipole obtained with a HF/6-31 G(d) and the
open square to PCM calculations
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but still in poor comparison with experiment. Now, using finally the configurations
obtained from the simulation with the converged solute polarization we obtained
shifts of 2045 and –1790 cm−1 for the n–�∗ and �–�∗ bands, respectively, in much
better agreement with the experimental values. This shows that in this case the solute
polarization is very important for the correct description of the solvatochromic shift
and the solute–solvent interaction (see [50] for details).

As several simulations and correspondingly several QM calculations are involved
in this iterative polarization scheme it is worthwhile to discuss some simple alterna-
tive procedures. The results so far obtained seem to indicate that given the compu-
tational simplicity PCM could give a good approximation to the solute polarization
either as the final value or to start the iterative procedure (see Figures 7-12 and 7-13).
Note that for benzophenone PCM gives a very good estimate of its in-water dipole
moment (5.57 D), which is close to the value obtained with the iterative procedure
(5.84 D). Whether this is general still needs further investigation. Another simple
possibility has been developed by Couto and co-workers [129] that uses some elec-
trostatic fitting (CHELPG or Merz–Kollman, for instance) to calculate the charges
of all atoms, solute and solvent, in all statistically uncorrelated configurations and
therefrom the average value. For homogeneous ammonia liquid this has given essen-
tially the same result as the iterative procedure described above [35]. Finally, one
possibility that we discuss in the next section is to use one average configuration to
obtain the average dipole moment in the intermediate points of the iterative proce-
dure, thus using just one QM calculation for each iteration.

7.3.3. Average Solvent Electrostatic Configuration

As described in the previous sections, one of the advantages of performing the
QM/MM calculations sequentially is that after the simulation statistical information
permits an efficient protocol for the QM calculations. Hence, statistically converged
results have been obtained with a relatively small number of QM calculations. In
most cases, we have been able to obtain statistically converged averages with 60–80
QM calculations. Although this is a relatively small number, compared to conven-
tional methodologies, it is still large enough to preclude the incursion into very large
molecules. For biological molecules or for higher-level calculations, for instance,
this could still be a severe limitation. Therefore, it would be very desirable to over-
come this by reducing further the necessary number of QM calculations to obtain
any average property. In more dramatic terms it would be desirable to perform just
one QM calculation. One possibility would be to have an average solute–solvent
potential that could reproduce the collection of available configurations, even if un-
physical, but reproducing the average of any property involved. This possibility has
been developed by Sánchez and co-authors [130,131,132] in the form of an average
solvent electrostatic potential (ASEP). This has been further explored using a simpler
and efficient implementation [133] facilitated by the use of statistically uncorrelated
solute–solvent configurations. If for the QM calculations the liquid solvent around
the solute can be represented by classical point charges the applications have shown
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that the use of one average configuration alone is sufficient to obtain the average
value, although at the inevitable expense of the statistical distribution. Indeed, in
many situations we are only interested in the statistical average. This is particularly
the case if one considers the intermediate steps in the iterative procedure of the solute
polarization described above (see for instance Figure 7-13).

Because the configurations sampled from the simulations are statistically uncorre-
lated, using a relatively small number of them will give convergent results. Thus we
simply superpose the coordinates of all n solvent molecules, within a given cut-off
radius, in the l configurations, with the solute fixed. In other words, the average con-
figuration is obtained by simply superposing all the l configurations of the solvent
atomic charges, and scaling by 1/l. The scaling is important for giving the proper
normalized average configuration. We thus have one configuration composed of
the solute molecule surrounded by l × n solvent molecules represented by atomic
charges of values scaled by 1/l. Only this average configuration is used in the QM
calculations and hence in the following we shall term this as the average solvent
electrostatic configuration (ASEC). Illustrative examples are given by Coutinho and
co-authors [133] for solvatochromic shifts, NMR chemical shieldings and in-solution
dipole moments, using different quantum chemical methods. In every case consid-
ered the ASEC has given the same average as that obtained using the entire set of
statistically uncorrelated configurations. In Figure 7-14 the histogram of the statisti-
cal distribution of 100 MP2/aug-cc-pVDZ calculations of the 17O isotropic chemical
shift of acetone in water obtained from uncorrelated configurations is shown.

Figure 7-14. Comparison between the statistical distribution and the average value obtained using the
average solvent electrostatic configuration (central vertical line)
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The solvent contribution to the nuclear shielding constant is �σ = σ water– σ vacuum.
Figure 7-14 then compares the histogram of the statistical distribution of calculated
values for �σ iso(17O) and the single average value obtained with ASEC. The solvent
effect on the shielding is calculated as �σ iso(17O) = 120.3 ± 2.1 ppm. The mean value
obtained from one ASEC calculation is 120.5 ppm, in sharp agreement. This result is
in good agreement with the direct result of 121.8 ppm obtained from Car–Parrinello
molecular dynamics [134]. But it neglects the so-called indirect effects [134] and the
possible effect of nuclear vibrations, a topic that has been analyzed by Mennucci and
co-authors [135]. As the main objective here is to show the performance of the ASEC
it is clearly seen that one QM calculation using ASEC reproduces precisely the sta-
tistical average using all configurations selected. Further discussions and examples
can be found in Coutinho and co-authors [133].

As the ASEC replaces the statistical distribution by just one average configuration
it suppresses the statistical distribution. Hence one will not succeed in the study of in-
homogeneous broadening and line width of the absorption spectra of liquid systems,
for instance. But ASEC will be very efficient and accurate for obtaining average
solute properties in the electrostatic field of the solvent.

7.4. SUMMARY AND CONCLUSIONS

The sequential QM/MM methodology is a simple procedure to study solvent effects
in general taking advantage of some statistically important aspects. By performing
first the classical part to generate the liquid structures all the important statistical
information is available. After the simulation the analysis of the statistical correlation
can then be made. Hence, the sampling of configurations for subsequent QM calcu-
lations can be made in a very efficient manner. Having the liquid configurations the
convergence of the QM calculated average with respect to the size of the system can
also be easily obtained. These aspects have been analyzed here. First we reviewed
the statistical analysis where the correlation can be studied from the auto-correlation
function of the energy or from the statistical inefficiency. These two quantities are
related but computationally obtained in different procedures. Next, examples have
been given to demonstrate the feasibility and accuracy of the applications. We have
first considered the case of nonpolar solutes in different solvents. Convergence has
been analyzed with respect to both the statistical averages and the size of the solute
+ solvent system. It has been seen by explicit numerical applications that for nonpo-
lar molecules the effects are restricted to the first solvation shell of explicit solvent
molecules.

One drawback of the sequential procedure is that by adopting a two-step proce-
dure, the MM part is uncoupled from the QM part. The mutual polarization between
the solute and the solvent is thus precluded. To include the solute polarization by the
solvent we have used an iterative procedure that brings the solute to the electrostatic
equilibrium with the solvent. Using this scheme we have obtained some in-solution
dipole moments of the solute that are in very good agreement with other theoreti-
cal results. Using these polarized solutes has improved the accuracy of the solvent
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effects considered. Finally, we discussed and presented an illustrative example of
how to obtain the same average value of the statistical distribution by using just one
average configuration. This is a very efficient procedure but at present it is limited
for obtaining average values of the solute properties with the solvent represented by
point charges, i.e., the solute in the average electrostatic field of the solvent. But with
this possibility we could consider studying larger solute systems aiming at biological
molecules.
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Abstract: In this contribution it will be outlined the basic theoretical framework and two applica-
tions of a new theoretical–computational approach specifically designed for evaluating
free-energy profiles (and related observables such as equilibrium and rate constants) for
chemical reactions taking place in condensed phase. The methodology, based on the use
of molecular dynamics simulations and perturbed matrix method, if combined with basic
statistical mechanics, may represent a useful tool complementary to other approaches for
addressing chemical processes occurring in complex atomic–molecular environments

8.1. INTRODUCTION

Most of the chemical processes of biological and technological relevance take place
in condensed phase. For this reason their modeling, at atomistic level, has always
represented one of the major challenges of theoretical and computational physical
chemistry. In this respect, because of the recent advances in the theoretical modeling
of solution [1,2,3], accurate calculations of the equilibrium constants of many reac-
tions have become accessible [4], and now we are in a position of explaining why,
and sometimes to predict if, a chemical reaction in condensed phase does actually
occur. The picture becomes less optimistic as far as we are interested in elucidating,
at the atomistic detail, how a chemical reaction takes place [5,6]. Whatever “mech-
anistic” information may be obtained by relating the phenomenological analysis of
the reaction course with the theoretical prediction of the microscopic rate constants
which, beyond a physically sound modelization, requires a proper evaluation of the
reaction free-energy profile. Accurate evaluation of the reaction free energy, which
is essentially a statistical quantity, depends on the level of sampling of the system
configurational space. Hence, when dealing with the course of chemical reactions,
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one should in principle carry out statistical averages over the ensembles defined by a
huge number of trajectories connecting the reactant state to the product one. This is
obviously undoable for systems in solution because of the prohibitively large phase-
space dimensions. For this reason, in the last years, several investigators have pro-
posed different theoretical–computational methods [7,8,9,10,11,12,13]. Essentially
all the above methodologies show a common strategy based on the predefinition of
a portion of the entire system to be explicitly treated at the electronic level (quan-
tum center, QC), with the rest of the system acting as an electrostatic perturbation,
and the predefinition of a generalized (semi-classical) coordinate, within the QC,
which is called the reaction coordinate (RC). Beyond the drawbacks and limitations
characterizing the above procedures calculation of free-energy profiles requires an
accurate outline of the RC, typically provided by quantum chemical calculations,
and a proper sampling of the perturbing environment, typically obtained through
force field-based molecular dynamics (MD) or Monte Carlo (MC) simulations. Some
of the proposed methodologies provide a very accurate quantum chemical picture at
the price of reducing the statistical sampling [14] or, sometimes, to treat it as a mean
field [15,16]. Other approaches enhance the statistics of the fluctuating environment
making use of relatively cheap semi-empirical description of the QC [17,18,19]. The
necessity of maintaining a good level of electronic accuracy for QC characterization
while ensuring a proper statistical sampling of the atomistic environment inspired
us to propose the perturbed matrix method (PMM) [20,21]. Based on the very first
principles of quantum mechanics, PMM seems very promising for treating systems
where usual procedures are computationally problematic and, if combined with basic
statistical mechanics, actually provides a powerful, rigorous approach to treat chem-
ical reactions in complex systems [22,23,24,25]. In this chapter, the bases of PMM
and related theoretical procedures for evaluating the reaction free-energy surface and
kinetics for a chemical transition defined by a set of classical generalized coordinates
will be reviewed, extending and generalizing the statistical mechanical framework
and discussing in detail the approximations which may be used.

8.2. PMM BASIC DERIVATIONS

Consider a quantum center (i.e., a molecule or a subpart of a molecule) embedded in
a classical molecular environment. Defining with rn the nuclear coordinates of the
quantum center and with x the coordinates of the atoms providing the (classical) per-
turbing field we can expand [26] the perturbed Hamiltonian matrix H̃ of the quantum
center on the Born–Oppenheimer surface as

H̃ = H̃ 0 + Ĩ qTV(r0) + Z̃1(E) + Z̃2(�̃) + · · · (8-1)

[
Z̃1
]

l,l ′ = −E · 〈�0
l |�̂|�0

l ′ 〉 (8-2)

[
Z̃2
]

l,l ′ = 1

2
T r
[
�̃ Q̃l,l ′

]
(8-3)
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�k,k ′ = −
(

�Ek

�rk ′

)

r=r0

(8-4)

�̂ =
∑

j

q j
(
r j − r0

)
(8-5)

where H̃ 0 and qT are the unperturbed Hamiltonian matrix and total charge of the
quantum center, Q̃l,l ′ , is the l , l ′ transition quadrupoles matrix [21], V(r0, x) is the
perturbing electric potential at r0 position of the quantum center, E is the perturbing
electric field at r0 and �0

l the lth unperturbed electronic Hamiltonian eigenfunction
(we use these eigenfunctions as basis set). Note that we consider the total charge
as invariant in the presence of the perturbation, and hence a constant defined by the
unperturbed condition.

For a quantum center where the perturbing electric field is almost constant, at
least neglecting local atomic interactions typically described by short-range poten-
tials such as the Lennard-Jones one, we can write [26] the perturbed Hamiltonian
matrix H̃ of the quantum center on the Born–Oppenheimer (BO) surface as

H̃ (rn, x) ∼= H̃ 0(rn) + qTV(r0, x) Ĩ + Z̃1(E, rn) + �V (rn, x) Ĩ (8-6)

where �V (rn, x) approximates the perturbation due to all the terms from the
quadrupoles on, as a simple short-range potential. For more complex perturbing field
we can use a similar expression, although by inserting higher order multipole terms,
e.g., the quadrupole term Z̃2. Hence the perturbed BO Hamiltonian eigenvalues εi

are, within this approximation,

εi = ε′
i (rn, x) + qTV(r0, x) + �V (rn, x) (8-7)

where
(
H̃ 0 + Z̃1

)
ci = ε′

i ci (8-8)

and ci is the ith perturbed eigenvector. Note that from the set ci we can in principle
obtain any possible perturbed property; e.g., the perturbed (transition) dipole [26]
μi, j = 〈�i |μ̂| � j 〉 is

μi, j = c∗T
i �̃0

x c j i + c∗T
i �̃0

yc j j + c∗T
i �̃0

z c j k (8-9)

[
�̃0

x

]
l,l ′ = 〈�0

l |μ̂x | �0
l ′ 〉 (8-10)

[
�̃0

y

]
l,l ′

= 〈�0
l

∣∣μ̂y

∣∣�0
l ′ 〉 (8-11)

[
�̃0

z

]
l,l ′ = 〈�0

l |μ̂z| �0
l ′ 〉 (8-12)

where obviously � is the perturbed Hamiltonian eigenfunction and c∗T is the trans-
pose of the complex conjugate of c (typically from quantum chemical calculations
H̃ has only real elements and hence c = c∗ is a real eigenvector).
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8.3. STATISTICAL MECHANICS IN THE INFINITE
DILUTION CONDITIONS

The partition function of a solute–solvent system for a given electronic state, where
for the N solutes we use as (classical) molecular coordinates the center of mass
position rG , the eulerian angles θ, φ,ψ providing the orientation of the molecular
frame and the internal coordinates xin providing the atom positions in the molecular
frame, is [27,28]

QT =∑
l

∫ e−βKT,s e−βKT e−βUT,

(1 + γs)Ns (1 + γ )N Ns!N !h(Nd+Ns ds )
dpsdxs

N∏

i=1
| sin θi |dxi dpi

pi = M̃i x′
i

xi =

⎛

⎜⎜⎜⎜
⎝

ri,G

θi

φi

ψi

xi,in

⎞

⎟⎟⎟⎟
⎠

ẋ′
i =

⎛

⎜⎜⎜⎜
⎝

ṙi,G

ωi1

ωi2

ωi3

ẋi,in

⎞

⎟⎟⎟⎟
⎠

(8-13)

where KT,s is the kinetic energy of the Ns solvent molecules, xs and ps are the
classical coordinates and conjugated momenta of the solvent, and the kinetic energy
of the N solute molecules is

KT = 1

2

N∑

i=1

pT
i (M̃i )

−1pi (8-14)

Furthermore, xi are the classical coordinates of the ith solute molecule, rototransla-
tional ones plus a subset of the internal coordinates here defined as xi,in, UT,l is the
total potential energy including the lth quantum vibrational term and 1+γ and 1+γs

are the symmetry coefficients per molecule for the solute and solvent molecules nec-
essary to correct the partition function from the rotations and intramolecular atomic
displacements which correspond to permutations of identical particles which do not
change the physical state of the system [29,30]. Note that quantum nuclear coor-
dinates (responsible for quantum vibrations) are equivalent to classical constrained
coordinates, as shown in a previous paper [21], and hence disappear in the semi-
classical partition function. For each ith solute we used the corresponding trans-
formed momenta, given by the Jacobian | sin θi |, associated with the transformation
of the angular velocity from the time derivatives of the Eulerian angles (θ̇i , φ̇i , ψ̇i ) to
the projections of the angular velocity vector onto the molecular axes (ωi1, ωi2, ωi3),
i.e., time derivatives of the rotation angles, defined by

ωi1 = θ̇i cos ψi + φ̇i sin θi sin ψi (8-15)
ωi2 = −θ̇i sin ψi + φ̇i sin θi cos ψi (8-16)
ωi3 = φ̇i cos θi + ψ̇i (8-17)
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Note that the mass tensor M̃i, providing the kinetic energy associated to the clas-
sical degrees of freedom, is expressed in the form which is appropriate for using
ωi1, ωi2, ωi3. Finally, h is the Planck constant, d and ds are the number of classical
degrees of freedom in the solute molecules and solvent molecules, respectively Ns is
the number of solvent molecules and β = 1/kT . For a given configuration we can
solve the integral over the solutes momenta using the orthogonal transformations of
these momenta which diagonalize each (M̃i )−1 obtaining

∫
e−β 1

2 pT
i (M̃i )pi dpi = [(2πkT )d det M̃i

]1/2
(8-18)

Using this last equation we then have

QT =∑
l

∫ e−βKT,s e−βUT,l (2πkT )(Nd)/2

(1 + γs)Ns (1 + γ )N Ns!N !h(Nd+Ns ds )
dpsdxs

N∏

i=1
(det M̃i )1/2| sin θi |dxi

(8-19)

If the N solutes are in the infinite dilution condition, we can simplify the integral
in the previous equation considering that there is no interaction among the solute
molecules. Hence for the great majority of the solutes rototranslational configura-
tions, the integral on the other coordinates and solvent momenta is a constant (note
that in the solute mass tensor no elements depend on the center of mass position and
the Eulerian angles). Therefore

∫
e−β(UT,l+KT,s )dpsdxs

N∏

i=1
(det M̃i )1/2| sin θi |dxi

∼=

(V 8π2)N
∫

e−β(UT,l+KT,s )dpsdxs

N∏

i=1
(det M̃i )1/2dxi,in

(8-20)

where in this last equation we used

8π2 =
∫ π

0
| sin θ | dθ

∫ 2π

0
dφ

∫ 2π

0
dψ (8-21)

V =
∫

drG (8-22)

and UT,l is now evaluated at fixed rototranslational coordinates of the solute
molecules being homogeneously distributed in the volume V of the full system. Note
that in the special case where we deal with a linear solute molecule the integral over
the Eulerian angles must be performed at fixed ψ and hence reduces to 4π . Finally,
considering again that N/Ns is almost zero we have

∫
e−β(UT,l+KT,s )dpsdxs

N∏

i=1
(det M̃i )1/2dxi,in

∼=
Ns!

(ns!)N

(∫
e−β(Ul+Ks )(det M̃)1/2dpsdxsdxin

)N
(8-23)
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where Ul is the potential energy including the lth quantum vibrational term of a sub-
system defined by a single solute molecule with fixed rototranslational coordinates,
in the center of the subsystem, and ns solvent molecules (ns is given by the closest
integer number to Ns/N ) with Ks the corresponding solvent molecules’ kinetic en-
ergy. The right-hand integral in the last equation is taken over the volume V/N of
the subsystem, and xs and ps are now the coordinates and momenta of the ns solvent
molecules of the subsystem. Clearly xin and M̃ represent the internal coordinates
and the mass tensor of the single solute molecule. Note that the factor Ns!/(ns!)N is
a simple degeneration factor due to the number of ways we can distribute ns out of
Ns solvent molecules in N subsystems. Hence, using N ! ∼= N N e−N we can rewrite
the whole partition function as QT = (Q′V )N /N ! ∼= (eQ′V/N )N = (Q/e−1)N with
Q = Q′V/N the partition function of a single subsystem and

Q′= �
∑

l

∫
e−β(Ul+Ks )(det M̃)1/2dxsdpsdxin

∼= �Qns
v,s Qv

∫
e−β(U ′+Ks )(det M̃)1/2dxsdpsdxin

(8-24)

� = (2πkT )d/28π2

(1 + γ )(1 + γs)ns ns!h(ns ds+d)
(8-25)

Note that in Eq. 8-24 we have used the typical approximation to factorize the partition
function [28,32] and hence Qv,s, Qv are the (quantum) vibrational partition functions
of the solvent and solute molecule, respectively, and U ′ = � + �Uv,0 with � the
system potential energy (i.e., electronic ground state energy surface) and �Uv,0 the
system vibrational ground state energy shift from a reference value [28,32], typically
negligible.

This last result states that we can obtain the exact statistical mechanics for what-
ever dilute solute (including of course a reactive molecular complex), by simply
investigating a single solute at a given rototranslational configuration embedded in
the solvent (the environment).

8.4. THE FREE-ENERGY REACTION SURFACE

In order to deal with a chemical reaction it is convenient to express the energy U ′

by the perturbed Hamiltonian matrix as a function of the reaction coordinates �.
Expressing the nuclear coordinates of the quantum center (we consider it as the so-
lute or a part of the solute) as rn = {

xq, �, ζ
}

where xq are the internal quantum
vibrational coordinates, � the reaction coordinates (belonging to the solute classical
internal coordinates xin) and � the remaining classical coordinates. Defining with �
all the solute classical internal coordinates except �, i.e., xin = {�, �}, we have that
the free-energy change for a chemical transition defined by �a → �b is

�A = −kT ln

[
Qv,b

∫
e−β(Ks+U ′

b)(det M̃b)1/2d�dxsdps

Qv,a
∫

e−β(Ks+U ′
a )(det M̃a)1/2d�dxsdps

]

= −kT ln〈e−β(U ′
b−U ′

a )(det M̃b/ det M̃a)1/2〉0
a − kT ln

Qv,b

Qv,a
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where

〈e−β(U ′
b−U ′

a )(det M̃b/ det M̃a)1/2〉0
a

=
∫

e−β(U ′
b−U ′

a )e−β(Ks+U ′
a )(det M̃b/ det M̃a)1/2(det M̃a)1/2dξdxsdps∫

e−β(Ks+U ′
a )(det M̃a)1/2dξdxsdps

and the subscripts a and b mean that the property is evaluated at �a or �b.
For those molecular systems where the chemical transition considered is, as usual,

not accessible within a simulation (i.e., the Hamiltonian used provides that � fluctu-
ations are confined within a very small range around �a) the ensemble average of the
last equation can in principle be obtained by a molecular simulation taking into ac-
count only the configurations where � ∼= �a . However, such a procedure is in general
statistically not very efficient since it utilizes only a subpart of the sampling obtained
by the simulation and when Molecular Dynamics simulations are concerned, often
the use of a rather short time step is required, as � typically involve bond length
coordinates. The use of a constrained simulation where � = �a would then be very
convenient. However, it must be noted that in the previous equations M̃a and M̃b are
not in general identical to the mass tensors of a constrained system where � = �a or
� = �b [28,32] and hence we must consider with care when the ensemble average
of the previous equations can be obtained using a constrained simulation. In fact we
can rewrite the ensemble average as

〈e−β(U ′
b−U ′

a )(det M̃b/ det M̃a)1/2〉0
a

=
〈(det M̃b/ det M̃ξ ,b)1/2〉0

�b

〈(det M̃a/ det M̃ξ ,a)1/2〉0
�a

〈e−β(U ′
b−U ′

a )d(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0
�a

〈e−β.....(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0
�a

=
∫

e−β(U ′
b−U ′

a )e−β(Ks+U ′
a )(det M̃ξ ,b/ det M̃ξ ,a)1/2(det M̃ξ ,a)1/2dξdxsdps∫

e−β(Ks+U ′
a )(det M̃ξ ,a)1/2dξdxsdps

〈(det M̃b/ det M̃ξ ,b)1/2〉0
�b

=
∫

e−β(Ks+U ′
b)(det M̃b/ det M̃ξ ,b)1/2(det M̃ξ ,b)1/2dξdxsdps∫

e−β(Ks+U ′
b)(det M̃ξ ,b)1/2dξdxsdps

〈(det M̃a/ det M̃ξ ,a)1/2〉0
�a

=
∫

e−β(Ks+U ′
a )(det M̃a/ det M̃ξ ,a)1/2(det M̃ξ ,a)1/2dξdxsdps∫

e−β(Ks+U ′
a )(det M̃ξ ,a)1/2dξdxsdps

(8-26)

where det M̃ξ ,a, det M̃ξ ,b are the mass tensor (diagonal) blocks corresponding to the
ξ velocities, obtained at �a and �b. For a non-highly flexible solute (where the rota-
tional coupling can be neglected) [27] if we consider a limited range for the reaction
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coordinates such that the � transition does not alter much the solute structure and
therefore its mass tensor determinant, we may assume

〈(det M̃a/ det M̃ξ ,a)1/2〉0
�a

∼= 〈(det M̃b/ det M̃ξ ,b)1/2〉0
�b

(8-27)

and hence

�A ∼= −kT ln〈e−β(U ′
b−U ′

a )(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0

�a
− kT ln

Qv,b

Qv,a
(8-28)

where 〈e−β(U ′
b−U ′

a )(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0
�a

is evaluated in the true constrained en-
semble and so it may be obtained by a constrained molecular simulation with
� = �a .

Moreover, considering �Uv,0 as virtually independent of the � coordinates, we
have

U ′
b − U ′

a
∼= εb − εa + Uenv,b − Uenv,a (8-29)

where ε comes from Eq. 8-7 and Uenv,a,Uenv,b are the internal energies of the atomic
and molecular environment (excluding the interaction with the QC and the quantum
vibrational energy) obtained when the quantum center is at �a and �b, respectively.
Note that the QC electronic ground state energy ε at each �, � position is obtained
with energy-minimized xq coordinates. If the environment energy is basically inde-
pendent of the internal state of the quantum center, as typically in MD simulations
where the atomic polarization is neglected, then (see Eq. 8-7)

U ′
b − U ′

a
∼= εb − εa = ε′

b − ε′
a + qT (Vb − Va) + �Vb − �Va

= �(ε′ + qTV) + �Vb − �Va

Hence, we may write

〈e−β(U ′
b−U ′

a )(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0
�a

∼=
e−β�A�V 〈e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0

�a

e−β�A�V =
∫

e−β(U ′
b+Ks )(det M̃ξ ,b)1/2d�dxsdps∫

e−β(U ′
b+Ks )e−β(�Va−�Vb)(det M̃ξ ,b)1/2d�dxsdps

〈e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0
�a

=
∫

e−β(U ′
a+Ks )e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2(det M̃ξ ,a)1/2d�dxsdps∫

e−β(U ′
a+Ks )(det M̃ξ ,a)1/2d�dxsdps

(8-30)

providing

�A ∼= −kT ln〈e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0

�a
(8-31)
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−kT ln
Qv,b

Qv,a
+ �A�V

Moreover, for any electronic property χ of the quantum center, the average at �b

is

〈χb〉b =
∫

e−β(U ′
b+Ks )(det M̃b)1/2χbd�dxsdps∫

e−β(U ′
b+Ks )(det M̃b)1/2d�dxsdps

= 〈e−β(U ′
b,−U ′

a,)(det M̃b/ det M̃a)1/2χb〉0
a

〈e−β(U ′
b−U ′

a )(det M̃b/ det M̃a)1/2〉0
a

with

〈e−β(U ′
b,−U ′

a,)(det M̃b/ det M̃a)1/2χb〉0
a

=
〈(det M̃b/ det M̃ξ ,b)1/2χb〉0

�b
〈e−β(U ′

b−U ′
a )(det M̃ξ ,b/ det M̃ξ ,a)1/2χb〉0

�a

〈(det M̃a/ det M̃ξ ,a)1/2〉0
�a

〈χb〉0
�b

On the basis of the previous approximations and using derivations similar to the
ones for the free-energy change, we can write

〈e−β(U ′
b−U ′

a )(det M̃ξ ,b/ det M̃ξ ,a)1/2χb〉0
�a

∼=
〈χb〉0

�b
〈e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2χb〉0

�a

〈e−β(�Va−�Vb)χb〉0
�b

and hence

〈χb〉b
∼=

eβ�A�V 〈(det M̃b/ det M̃ξ ,b)1/2χb〉0
�b

〈e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2χb〉0
�a

〈(det M̃a/ det M̃ξ ,a)1/2〉0
�a

〈e−β(�Va−�Vb)χb〉0
�b

〈e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0
�a

The last equation can be simplified by considering that the small � transition and
the short-range nature of �V often make it possible to assume

〈(det M̃b/ det M̃ξ ,b)1/2χb〉0
�b

∼= 〈(det M̃b/ det M̃ξ ,b)1/2〉0
�b

〈χb〉0
�b

〈e−β(�Va−�Vb)χb〉0
�b

∼= 〈e−β(�Va−�Vb)〉0
�b

〈χb〉0
�b

= eβ�A�V 〈χb〉0
�b

readily providing

〈χb〉b
∼=

〈e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2χb〉0
�a

〈e−β�(ε′+qT V)(det M̃ξ ,b/ det M̃ξ ,a)1/2〉0
�a

(8-32)
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For typical solutes where the mass tensor determinant at each � position can be
considered as essentially independent of the other coordinates, we may then write

�A ∼= −kT ln〈e−β�(ε′+qT V)〉0
�a

− kT ln

(
det M̃ξ ,b

det M̃ξ ,a

)1/2

−kT ln Qv,b

Qv,a
+ �A�V

(8-33)

〈χb〉b
∼=

〈e−β�(ε′+qT V)χb〉0
�a

〈e−β�(ε′+qT V)〉0
�a

(8-34)

It is worth noting that in the free-energy change the terms −kT ln
(

det M̃ξ ,b

det M̃ξ ,a

)
−

kT ln Qv,b

Qv,a
and �A�V are typically small and for usual reactions involving the dis-

ruption/formation of a chemical bond, they should be characterized by an opposite
sign: The first term is typically negative/positive for a bond disruption/formation
as a result of the lower frequencies and larger mass tensor determinant in the QC
stretched bond state; the second term is typically positive/negative in a bond disrup-
tion/formation reaction as a consequence of the reduced available configurational
volume for the environment atoms in the QC stretched bond state. Such a fact may
often be used [23,24,25] to further simplify the free-energy change expression by

setting −kT ln
(

det M̃ξ ,b

det M̃ξ ,a

)
− kT ln Qv,b

Qv,a
+ �A�V

∼= 0 which provides

�A ∼= −kT ln〈e−β�(ε′+qT V)〉0
�a

(8-35)

Equations 8-34 and 8-35 are more suited for calculations based on simulation
data as require a constrained simulation, considering only the vibrational ground
state condition, where the energy shift does not include the short-range term which
is likely to be not properly sampled in a constrained simulation with a fixed subset
of classical coordinates.

Finally, when we deal with a reaction involving a quantum state transition, like
in a spin transition reaction, we may easily obtain the reaction free energy for the
general �ref → � transition via a simple generalization of Eq. 8-35:

�A(�) = −kT ln

[
∑

l
e−β�l A(�)

]

∼= −kT ln

[
∑

l

〈
e−β�l (ε′+qT V)

〉0
�a,lref

] (8-36)

�l A(�) = Al(�) − Alref (�ref) (8-37)

�l (ε
′ + qTV) = ε′

l(�) − ε′
lref

(�ref) + qT
[
V(r0(�)) − V(r0(�ref))

]
(8-38)

where the index l runs over all the quantum states involved in the reaction and lref and
ηref are the reference quantum state and reaction coordinates position used to define
the reference energy, free-energy and ensemble in the last equations.
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Note that the free-energy variation as defined by the previous equations exactly
corresponds to the change of the solute chemical potential along the reaction coor-
dinates for a given fixed solute density, i.e., �A(�) = �μ�(�) with μ� the solute
standard chemical potential.

8.5. MODELING THE REACTION KINETICS

In order to define proper reaction coordinates for describing the kinetics of the chem-
ical process and not only its thermodynamics, we need to use classical degrees of
freedom such that all their orthogonal coordinates are well equilibrated during the
reaction coordinates relaxation (here we do not consider reactive processes which
may relax faster or at a similar rate than the environment as they may typically occur
at very high temperature). Hence, it is possible that according to the initial condi-
tions of the kinetic relaxation (i.e., the coordinates/observables equilibrated at the
beginning of the process) and the exact definition of the reactant and product states,
different reaction coordinates should be used. This also clearly implies that a certain
variation of the reaction free-energy profile is possible, as a consequence of the dif-
ferent choice of the reaction coordinates and hence of the orthogonal planes used to
obtain the corresponding free-energy. In principle, each set of reaction coordinates, if
properly defined, should provide the correct kinetic relaxation for the corresponding
process, modeled as a diffusion along the reaction free-energy surface. Note that for
a highly diluted solute, including the QC, the reaction free energy is independent of
the solute rototranslational coordinates [22] and the solvent, provided an initial equi-
librium condition, is expected to relax instantaneously in the ensemble of reactive
trajectories at each reaction coordinate position [24].

8.5.1. The Diffusion Equation

Consider, in general, a set of reaction coordinates η providing the kinetic relaxation
of the system, i.e., all the other degrees of freedom are assumed to be fully equili-
brated along the η relaxation. The equations of motion for the η degrees of freedom
when averaging over the ensemble defined by the molecules (typically the solute
molecules) within a tiny η volume (equivalent to a numerical differential) can be
approximated as

〈�̇η(�)〉 ∼= F(�) − �̃(t, �)〈�η(�)〉 (8-39)

〈�η(�)〉 = M̃η,η(�)〈�̇(�)〉 (8-40)

where �η are the � conjugated momenta; F is the systematic, i.e., equivalent to an
external field, force in the � space; and �̃ and M̃η,η are the friction matrix and (clas-
sical) mass tensor block corresponding to the � coordinates. We assumed a virtually
fixed mass tensor for a given � position and hence M̃η,η provides the only non-zero
terms of �η after averaging, as the other degrees of freedom are considered as fully
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equilibrated with hence zero mean velocities. Within the approximation given by
the previous equations, the work due to the systematic force only should coincide
with the maximum work along the transition, i.e., the work obtained for a reversible
transition with then 〈�̇〉 = 0. Hence, for a molecule passing from a tiny volume
centered at �a to another one centered at �b we can write

�A(n) =
(

�A

�n�b

)
+
(

�A

�n�a

)(
�n�a

�n�b

)

= μ(n�b,�b) − μ(n�a ,�a ) = − ∫ �b

�a
F(�) · d�

(8-41)

providing

F(�) = −∇�μ(n�, �) (8-42)

In the last equations A(n) is the Helmholtz free energy of the total NVT system fully
defined by the vector n = n�1 , n�2 , ... providing the molecular number in each tiny
volume and μ(n�, �) is the chemical potential at a given � position, i.e., within the
corresponding tiny volume. Note that the molecular number can be used as a contin-
uous variable, given the fact that for any thermodynamic property in a macroscopic
system the variation due to a single molecule is virtually equivalent to a differential.
From the definition of the chemical potential and probability density in the � space
ρ(t, �), we readily have

μ(n�, �) = �μo(�) + kT ln
n�

n�R

+ μ(n�R , �R) (8-43)

= �μo(�) + kT ln
ρ(t, �)

ρ(t, �R)
+ μ(n�R , �R) (8-44)

which used together with 〈�̇η〉 ∼= 0 (the linear regime condition) provides

〈�̇(�)〉 ∼= − [�̃(t, �)M̃η,η(�)
]−1 ∇��μ�(�) − [�̃(t, �)M̃η,η(�)

]−1
kT

∇�ρ(t, �)

ρ(t, �)

(8-45)

Hence from the definition of the flux density vector J(�) = ρ(t, �)〈�̇(�)〉 and
setting

D̃(t, �) = kT
[
�̃(t, �)M̃η(�)

]−1
(8-46)

we obtain, via the divergence theorem,
(

�ρ

�t

)

�

= −∇� · J ∼= ∇� · [D̃(kT )−1ρ∇��μo + D̃∇�ρ
]

(8-47)

This last equation, when considering a one-dimensional � space with then D̃ = D,
provides the diffusion equation used in this chapter within the assumption
�D/�t, �D/�η ∼= 0. For the sake of simplicity and without loss of generality,
hereon we will always consider a single reaction coordinate to describe the chemical
transition.
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8.5.2. Evaluation of the Reaction Rate Constants

Using the reaction free-energy profile, �A(η) = �μ�(η), and the diffusion coeffi-
cient D of the reaction coordinate (if available), it is possible to obtain the reaction
(classical) kinetics by solving a diffusion equation (DE) in the reaction coordinate
space [33]

(
�ρ

�t

)

η

= D

kT

[
ρ

d2�μ�

dη2
+ d�μ�

dη

(
�ρ

�η

)

t

]
+ D

(
�2ρ

�(η)2

)

t

(8-48)

where ρ(t, η) is the probability density in η and we assumed �D/�t, �D/�η ∼= 0.
The time–space behavior of ρ can provide in principle all the kinetic/

thermodynamic information on the chemical reaction. Therefore, in order to schema-
tize the kinetic process, we may define three chemical states: the transition state (TS)
defined by a tiny interval [ηTS − δ, ηTS + δ] (typically about 0.1 Å centered on the
reaction free-energy maximum ηTS, the reactant (R) defined by one of the η range
neighbor to the TS (here the right one) and the product (P) defined by the other neigh-
bor η range (here the left one). Hence, within such a scheme the complete reaction
can be described by the time dependence of these three chemical state probabilities,
as obtained by

PTS(t) =
∫ ηTS+δ

ηTS−δ

ρ(t, η)dη (8-49)

PR(t) =
∫ ηU

ηTS+δ

ρ(t, η)dη (8-50)

PP(t) =
∫ ηTS−δ

ηL

ρ(t, η)dη (8-51)

where ηL, ηU are the lower and upper limits of the reaction coordinate range used
to define the complete reaction. Note that as the η range is finite �μ� used in the
diffusion equation must provide two infinite free-energy barriers at the extremes of
such a range. These infinite barriers do not correspond in general to physical free-
energy barriers, they are used simply to restrict the reaction kinetics to the chemical
step of interest. Once we obtain PTS(t), PR(t), PP(t) by the DE solution, we may
construct a kinetic model via the following procedure. Consider the general reaction
scheme for the three chemical states R, P and TS

R
k1→ TS

k−2→ P (8-52)

P
k2→ TS

k−1→ R (8-53)

and the stationary condition

ṖTS = k1 PR − k−1 PTS + k2 PP − k−2 PTS
∼= 0 (8-54)
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PTS
∼= k1 PR + k2 PP

k−1 + k−2
(8-55)

valid for t ≥ t0 (t0 is the time interval required to achieve the steady state), providing

ṖR
∼= −KR PR + KP PP (8-56)

ṖP
∼= KR PR − KP PP (8-57)

KR = k−2k1

k−1 + k−2
(8-58)

KP = k−1k2

k−1 + k−2
(8-59)

where KR and KP can be considered as the rate constants for the R → P and P → R
transitions, respectively.

From the obvious relation 1 = PR(t) + PP(t) + PTS(t), we have PP(t) =
1 − PR(t) − PTS(t) and hence ∀ t ≥ t0:

PTS(t) ∼= (k1 − k2)PR + k2

k−1 + k−2 + k2
(8-60)

ṖR
∼= −K PR + K ′ (8-61)

K = k1k−2 + k1k2 + k2k−1

k−1 + k−2 + k2
(8-62)

K ′ = k2k−1

k−1 + k−2 + k2
(8-63)

The general solution of the previous ordinary linear differential equation is, in the
time range t ≥ t0,

PR(t) ∼= PR(∞) + [PR(t0) − PR(∞)] e−K (t−t0)

PR(∞) = K ′

K
= k2k−1

k1k−2 + k1k2 + k2k−1

(8-64)

From the last expressions we readily obtain (using again PP(t) = 1 − PR(t) − PTS(t)
and the stationary condition)

PP(t) ∼= PP(∞) − k−1 + k−2 + k1

k−1 + k−2 + k2
[PR(t0) − PR(∞)] e−K (t−t0)

PP(∞) = k−1 + k−2 − (k−1 + k−2 + k1)PR(∞)

k−1 + k−2 + k2
= k1k−2

k1k−2 + k1k2 + k2k−1

(8-65)
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PTS(t) ∼= PTS(∞) + k1 − k2

k−1 + k−2 + k2
[PR(t0) − PR(∞)] e−K (t−t0)

PTS(∞) = (k1 − k2)PR(∞) + k2

k−1 + k−2 + k2
= k1k2

k1k−2 + k1k2 + k2k−1

(8-66)

It is also instructive to consider two special cases of this general model. If we deal
with a reaction where k2

∼= 0 then we have K ∼= KR = k1k−2/(k−1 + k−2) and

PTS

PR

∼= k1

k−1 + k−2
(8-67)

corresponding to a simple steady state for the R → P reaction alone. This case is
typical in systems where the free energy of the product is much lower than the reac-
tant one or the product is instantaneously removed in some way (e.g., in enzymatic
reactions). When k2, k−2

∼= 0 we obtain a further condition with K ∼= k1k−2/k−1

and PTS/PR
∼= k1/k−1 which clearly corresponds to a pre-equilibrium between the

R and TS species, as required by the Eyring theory. However, this last case is rather
unusual as k−2 is typically larger than or of the same order of k−1 when k1 � k2,
and hence Eyring theory should not be used as a general model to describe chemical
reactions.

8.6. APPLICATIONS

In the present section some applications of the previously outlined theoretical frame-
work, recently reported in literature [24,25], will be illustrated. In particular we will
focus our attention on two benchmark reactions of computational–theoretical chem-
istry, namely the carbon monoxide (CO) binding–unbinding reaction in myoglobin
(Mb) and the unimolecular tautomeric proton transfer in aqueous malonaldehyde.

8.6.1. Binding–Unbinding Reaction of CO in Myoglobin

CO–Mb reaction, extensively studied in the last decades under a variety of experi-
mental techniques [34,35,36,37,38,39,40], is characterized by CO diffusion within
Mb leading to a heme–CO geminate pair eventually interconverting to the heme–
CO covalent complex. This last step has become the most investigated biochemical
process by means of computational–theoretical methods [41,42,43,44,45,46,47] and
has been selected as a good test for appreciating the performances of the present
methodology.

First we selected, as QC, the CO–heme–histidine complex shown in Figure 8-1
with a schematic view of the Mb.

Configuration interaction calculations including single and double excitations
(CISD) were carried out on the QC using as reference state (reference Slater de-
terminant) the one obtained by the previous B3LYP/BS ground state evaluation and
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Figure 8-1. Quantum center used in our PMM calculation (reaction center), defined by the heme–CO
complex and including the proximal histidine side chain. The figure refers to the reference QC condition,
i.e., with the heme–CO distance at 1.8 Å

using the 6-311++G(p,d) atomic basis set (BS) for the four nitrogens and CO, 6-31G
BS for the remaining atoms and effective core potential from Los Alamos for iron.

The above calculations provided the electronic ground and the first nine excited
energies as well as the corresponding (transition) dipoles, at each point of the above
reaction path. Such unperturbed Hamiltonian eigenstates defined the basis set used
to construct the perturbed Hamiltonian matrix, Eq. 8-1, which was then diagonalized
at each simulation frame, leading to the reaction free energy and related properties.

At this purpose N,V,T MD simulations of 10 ns each, were performed at 300 and
293 K, constraining Mb–CO in the center of the simulation box, filled with water
molecules, at the proper liquid density. The rototranslational constraint [27] was used
to keep the Mb–CO rototranslationally fixed at the center of the simulation box.

In Figure 8-2 we show the reaction free energy for the singlet and quintet surfaces
as obtained by PMM and MD simulations as described in the previous sections.

Figure 8-2. Singlet and quintet reaction free-energy surfaces, as obtained by PMM using the 293 K MD
simulation
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Similar to the results for the isolated QC [43], the transition state of the reaction
in Mb is determined by the singlet–quintet free-energy surface crossing. The triplet
surface is, in our calculations, thermodynamically too unstable to affect the reaction
and, therefore, we omitted such a surface in our calculations. Interestingly, the per-
turbed QC free-energy absolute minimum, at about 2.0 Å, is slightly shifted from the
unperturbed one (our reference condition) indicating a corresponding slight variation
of the Fe–CO equilibrium distance.

From Table 8-1 it is evident that the protein provides a “catalytic” effect lowering
the barriers by about 10 kJ/mol with respect to the unperturbed condition. Moreover,
the free-energy barriers at the two temperatures are, within the noise, almost identical
suggesting low activation entropies.

Using the reaction free energy we are now in the position of calculating the
reaction (classical) kinetics by means of the equations outlined in Section 5.2. In
particular, for solving DE using Eq. 8-49, it is first necessary to evaluate the related
diffusion coefficient D of the reaction coordinate.

For this purpose we performed short (110 ps) MD trajectories at constant energy
(i.e., with no temperature coupling) of the overall system, utilizing unconstrained
bond lengths and a reduced time step of 0.1 fs. By using a large number of (constant
energy) trajectory subparts, starting close to the carbon–iron equilibrium distance,
we evaluated the reaction coordinate diffusion coefficient via the corresponding com-
puted carbon–iron distance mean square displacement in time. The obtained value of
D equal to 4.2 × 10−3 nm2/ps was then utilized to solve (numerically) the DE. For
addressing the DE we modeled �μ�(η) as a simple polynomial function reproduc-
ing the PMM/MD free-energy barriers and the positions of minima and transition
state. Moreover we considered that, for the system and time interval considered,
PR(t) − PR(∞) ∼= PR(t), PTS(t) − PTS(∞) ∼= PTS(t) (i.e., PR(∞), PTS(∞) are
negligible).

The result is reported in Figure 8-3 where we show the time dependence of the
reactant (the geminate complex) and transition state probabilities.

The result demonstrates that the steady-state model described in the theory section
is very accurate to provide the kinetics of the reaction in terms of a simple reactant–
TS–product scheme, as typically used to interpret experimental data. By using such
time courses as well as the reactant to TS (�A�

R = ATS − AR) and product to TS
(�A�

P = ATS − AP) free-energy differences

Table 8-1. Free-energy barriers as obtained by different MD/PMM conditions as well
as from in vacuo calculations. The noise shown corresponds to a standard deviation

Ensemble Binding barrier (kJ/mol) Unbinding barrier (kJ/mol)

MD/PMM 300 K 43.8 ± 0.6 74.1 ± 0.9
MD/PMM 293 K 41.9 ± 0.6 74.2 ± 0.9
MD/PMM 300 K 41.4 ± 0.4 76.3 ± 0.7
DFT vacuum 47.6 87.6
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Figure 8-3. Kinetics of the reactant (the geminate complex), upper panel, and transition, middle and lower
panels, states as obtained by the DE solution for the system at 293 K

�A�

R = −kT ln
PTS(∞)

PR(∞)
= −kT ln

∫ ηTS+δ

ηTS−δ
e−β�A(η)dη

∫ ηU

ηTS+δ
e−β�A(η)dη

�A�

P = −kT ln
PTS(∞)

PP(∞)
= −kT ln

∫ ηTS+δ

ηTS−δ
e−β�A(η)dη

∫ ηTS−δ

ηL
e−β�A(η)dη

it is possible to obtain all the kinetic rate constants involved in the reaction step
studied. In fact, from the overall rate constant K = 10.2 × 10−7 ps−1, evaluated by
the slope of the logarithmic reactant decay (top of Figure 8-3), the TS probability at
the beginning of the stationary condition (starting after 200–300 fs) and the relations
k−1 = k1 eβ�A�

R , k−2 = k2 eβ�A�
P , we obtain the four rate constants for the reactant–

TS–product interconversion which then provide for the reactant to product and in-
verse rate constants KR = 3.4×10−7 ps−1, KP = 9.2×10−13 ps−1 corresponding to
about 3 �s and 1 s, respectively. Note that from our calculations KR

∼= K , as expected
by the large free-energy difference between the reactant and product states, and a
rough estimate of the error of the KR and KP rate constants, essentially due to the
noise in the free-energy barriers, provides a maximal possible excursion (evaluated
using ± 4 standard deviations of the free-energy barrier) corresponding to 0.7−12.0
�s and 0.3 − 3.0 s, respectively. Such results can be compared to the experimental
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data at 293 K [48,49], considering that the R → P and the P → R transitions are
reaction steps involved in either the geminate binding kinetics (obtained after pho-
tolization of the heme–CO covalent complex) or the thermal heme–CO dissociation.
Interestingly the experimental rate constant for the dissociation process is equal to
1.9 × 10−14 ps−1, reasonably close, within the noise, to our KP value (note that only
9–10 kJ/mol variation in the unbinding barrier would account for the � 50 times
variation of KP with respect to the experimental overall dissociation constant). This
suggests that in the heme–CO thermal dissociation the P → R transition (i.e., the
Heme–CO chemical bond disruption) is probably the rate-limiting step of the whole
kinetic process and no slow conformational transitions [40,50] seem to be involved.
In fact the supposed distal histidine opening–closing side chain transition, often con-
sidered as the slow conformational change involved in the reaction, results from MD
simulation data [51] as largely equilibrated within a few nanoseconds. Note that for
the geminate binding, with an experimental rate constant of 5.6 × 10−6 ps−1 close
to our KR, no simple comparison is possible because of the complex non-sequential
reaction scheme involved.

8.6.2. Intramolecular Proton Transfer in Aqueous Malonaldehyde

Tautomeric equilibrium in aqueous cis-malonaldehyde, see reaction 1 in Figure 8-4,
is a prototypical reaction extensively studied in the gas phase but still relatively un-
known in solution. In fact, despite the large number of NMR experiments [52,53,54]
and quantum chemical calculations [55] with the polarized continuum model (PCM),
[1] the actual stability of cis-malonaldehyde is not well clarified, although the trans
isomer should be the predominant form in water. Secondly, the involvement of the
light proton in the reaction may in principle provide relevant quantum effects even
in condensed phase. All these complications did not prevent this reaction to be used
as a prototypical system for theoretical studies of intramolecular proton transfer in
condensed phase by several investigators [56,57,58,59,60] including ourselves.

Differently from the previous case (CO–Mb), the reaction path associated to such
a tautomeric process may be less intuitive. For this reason we calculated the intrinsic
reaction coordinate (IRC) [61] in vacuum which provided a linear generalized degree

Figure 8-4. Schematic picture of tautomeric intramolecular proton transfer in malonaldehyde
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of freedom (i.e., defined by a single unit vector in configurational space) [24]. This
coordinate, essentially involving the migrating proton, was selected as the proper
reaction coordinate in condensed phase also.

At this purpose we spanned reaction 1 unperturbed IRC using the CCSD(T)/
6-311++G(p,d)//B3LYP/6-311++G(p,d) level of theory.

In correspondence to each point of the IRC grid, i.e., the QC structures along
the reaction coordinate, ten states (i.e., the ground plus nine excited states) were
optimized for the unperturbed QC, using time-dependent density functional theory
shifts added to the CCSD(T) ground state energies. Such unperturbed Hamiltonian
eigenstates defined the basis set used to construct the perturbed Hamiltonian ma-
trix, Eq. 8-1, which was then diagonalized at each simulation frame, leading to the
reaction free-energy and related properties.

In this respect, MD simulations (3,000,000 of steps) were performed over a wide
temperature range (280–1200 K), constraining the Malonaldehyde in the reactant
configuration in the center of the simulation box, filled with water molecules, at
the proper liquid density.

In Figure 8-5 we report the perturbed free-energy surface, as obtained by PMM
and the MD simulation at 300 K, together with the CCSD(T) vacuum free-energy
profile and the 300 K reaction free energy as obtained by PCM using the same pro-
cedure and level of quantum chemical calculations (i.e., adding the PCM/B3LYP
free-energy shifts to the CCSD(T) curve). It is evident from PMM results that sol-
vent provides a free-energy barrier (activation free-energy) of about 2 kJ/mol lower
than the vacuum one. PCM reaction free-energy profile, although showing a simi-
lar shape to the PMM curve, presents a free-energy barrier slightly higher than the
vacuum one and predicts a local minimum in correspondence of the vacuum tran-
sition structure. Such an unphysical condition is probably due to the macroscopic

Figure 8-5. Reaction free-energy surfaces as provided by PMM and the MD simulation at 300 K (solid
line), CCSD(T) (vacuum) calculations (dotted line) and 300 K PCM calculations (dashed line)
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dielectric polarization used in PCM to model solute–solvent interaction, which may
be rather unrealistic Similar to CO–Mb reaction, using the above results within the
same theoretical–computational framework, we evaluated the kinetics of such a reac-
tion within the classical view of the diffusion along the reaction free-energy surface.
Using a value of D = 4.1×10−3±10−4 nm2/ps for the diffusion coefficient, provided
by a set of short constant energy MD simulations, we could obtain the detailed time
course of the proton transfer reaction from the reactant to the product state.

In Figure 8-6 we show the time courses of R, P and TS probabilities as obtained
by the DE solution. R and P probabilities converge to their equilibrium values within
120–150 ps, clearly indicating a rather fast kinetics. From the figure it is also clear
that the TS reaches a stationary condition within t0 = 300 fs, providing in the fol-
lowing time range a completely symmetric reactant and product kinetics (i.e., iden-
tical relaxation rates and final equilibrium values), as expected by the free-energy
symmetric shape. Interestingly, the R and P relaxations, when subtracted of the
equilibrium value, are perfectly exponential (beyond t0) for virtually the complete
reaction time course with a rate constant K = 0.038 ± 0.001 ps−1 corresponding
to the mean life τ ∼= 26 ps (the noise indicated is the error upper limit). Remark-
ably, the obtained rate constant well matches the experimentally observed kinetics of
this reaction in solution [62,63] (picoseconds range in CFCl3/CD2Cl2) and suggests
that tunneling might not be relevant in liquid-phase conditions, as also indicated
by the theoretical–computational estimate of the tunneling rate in liquid water [60]
(nanoseconds range). Our results, obtained in condensed phase, are also in agreement
with the data obtained in a previous computational attempt to investigate malonalde-
hyde proton transfer in vacuum [59], leading to similar conclusions for the gas-phase
reaction.

Figure 8-6. Time course of the reactant (solid line), product (dotted line) and transition state (inset)
probabilities as obtained by solving the diffusion equation
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CHAPTER 9

AN EXPLICIT QUANTUM CHEMICAL SOLVENT MODEL
FOR STRONGLY COUPLED SOLUTE–SOLVENT SYSTEMS
IN GROUND OR EXCITED STATE

ANDERS ÖHRN AND GUNNAR KARLSTRÖM
Department of Theoretical Chemistry, Chemical Centre, P.O.B. 124, S-221 00 Lund, Sweden,
e-mail: anders.ohrn@teokem.lu.se, gunnar.karlstrom@teokem.lu.se

Abstract: A detailed account of the explicit quantum chemical solvent model QMSTAT is given.
The model is presented in terms of three coupled aspects of relevance for all types of
quantum chemical solvent models: the quantum chemical method, the intermolecular in-
teractions and the statistical mechanical method. The quantum chemical method is either
a compact natural orbital formulation of the standard Hartree–Fock method or a compact
multiconfigurational method with a state basis. The latter method can describe excited
states apart from the ground state and is for most systems an excellent approximation
to the complete active space self-consistent field method. Both static and induced electro-
static interaction terms between the quantum chemical region and the solvent are included.
Further, a non-electrostatic term is added to describe effects which derive from the Pauli
principle. This term models both the exchange repulsion between solute and solvent and
the packing effects an environment has on a molecule, in particular on diffuse states of the
molecule. The statistical mechanical problem is solved with an exact Metropolis–Monte
Carlo simulation that requires several similar quantum chemical problems to be solved.
Since the quantum chemical problem and the statistical mechanical problem are solved as
a coupled problem, the present model is especially useful for problems where electronic
degrees of freedom of the solute strongly depend on the solvent distribution and vice
versa. Three applications are summarized, which highlight this type of coupling present
in QMSTAT and the non-electrostatic contribution. The examples are the solvation of four
monatomic ions, the solvation of para-benzoquinone and the solvation of indole and the
solvent shift to its absorption and fluorescence spectra

9.1. INTRODUCTION

Much of chemistry, as we know it, is suitably represented as a process of limited
spatial extent taking place in an environment of some sort. The molecular interac-
tions, which link the different constituents of the system together (solvent to so-
lute, enzyme to substrate, molecule to molecule), differ with respect to length scale,
strength, angular features and, consequently, relevance for the process under study.
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An outstanding toolbox for studies of these interactions has been provided to the
scientific community through the development, implementation and optimization of
the array of quantum chemical methods which exist nowadays. Our knowledge of the
interactions has thus improved greatly over the last decades and significant advance-
ments have been achieved in both scope and detail of the theory of intermolecular
forces [1,2,3,4,5,6,7,8,9]. However, this does not mean that no problems remain to be
tackled. First of all, the theory of intermolecular forces is very accurate in describing
interactions between dimers, but much more molecular matter is usually found in
chemical systems, and hence many-body terms are bound to appear. They are usu-
ally more difficult to understand and model than pair interactions. Second, with the
possible exception of crystals and solid-state cryogenic solvents, chemical processes
can significantly depend on entropy or, in other words, how the molecules distribute
in the space of possible configurations. This means that not only are interactions
in optimal intermolecular configurations (from an energetic point of view) in need
of an adequate description, out also, interactions over a greater variety of energies
and separations, as well as their interplay in defining the “volume” of available con-
figurations, require a satisfactory treatment in order to describe the free energy of
the system. Third, in a world of finite computational resources, molecular modelling
is, with very few exceptions, practically restricted to simpler and more approximate
descriptions of the relevant interactions than theoretically possible. State-of-the-art
quantum chemistry, after all, scales very unfavourably with molecular size, which
prompts the molecular modeller to develop efficient approximations to discard the
most costly features, but at the same time keep the essentials intact. Finally, the
scientific pursuit is a search for relevant causes and simple explanations of their
connections to the observed effects, according to some philosophical schools at least.
To know how something is tends to be more valued than only to know that some-
thing is. Therefore, a quantitatively less accurate, but physically more transparent
theoretical model can be of greater scientific value to many chemists than a model
of the inverse characteristics, as discussed in the context of quantum chemistry by
theoretical chemists in the past [10,11,12]. To determine the relevant causes can be
quite a challenge in terms of formulating and testing hypotheses. To conclude, these
four problems show that there is much potential for improvements, extensions and
re-evaluations of chemical models and our understanding of chemistry. Below, we
will present one particular model, called QMSTAT, which uses quantum chemistry,
the theory of intermolecular interactions and statistical mechanics to contribute to
the understanding of chemistry in a condensed environment.

QMSTAT is an effective quantum chemical solvent model with an explicit sol-
vent representation. “Effective” here means that the quantum chemical electronic
Hamiltonian only pertains to a small subset of the total system (typically the solute),
with the solvent entering as a perturbation operator to the Hamiltonian; “explicit
solvent” means that the solvent is described with a set of spatial coordinates and
parametrized physical features significantly simplified compared to a full quantum
chemical description. The explicit solvent representation implies that it is possible
to go beyond the mean-field approximation inherent in the often used continuum
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solvent models [13,14,15,16,17,18]. On the other hand, more detail in the model
also implies a greater variation of possible models: The number of model variables
subject to the previous experiences and goals of the research of the individual de-
velopers grows in going from the continuum models to the explicit solvent models
(or discrete solvent models, as they are sometimes called to clarify the contrast to
the continuum models). Therefore, different researchers have come up with differ-
ent models, all with their particular strengths as well as weaker sides. To be able
to put the different models in a bigger picture, we have previously suggested that
the models are discussed with respect to three different but connected aspects: their
quantum chemical approach, their treatment of the intermolecular interactions (both
solute–solvent and solvent–solvent) and the technique used in solving the statistical
mechanical problem [19]. Before an overview of QMSTAT is given, this three-way
picture of explicit solvent models will be reiterated. That way, we think, the meaning
of the particular model variables in QMSTAT will, on a qualitative level, become
clearer as will the advantages and limitations of the model.

The following chain of relations will establish the meaning and merit of the three-
way picture: The influence an environment has on a molecule and on properties
of that molecule is determined by the perturbation the environment exerts on the
molecule. For a given configuration of solute and solvent coordinates, the accuracy
of the description of the perturbation is determined by the accuracy of the direct
solute–solvent intermolecular interaction. If sufficient details are included, the effec-
tive solute Hamiltonian is good. This defines the Schrödinger equation to be solved.
For molecules some quantum chemical method is required to approximately solve
that equation, and the quality of the method will influence the quality of the solution.
Further, the perturbation is a function of the relative orientation of the solute and
solvent, and at temperatures around 300 K a system with weak intermolecular forces
will never adopt a single structure. Therefore, a statistical mechanical method of
certain accuracy is needed to obtain the distribution of relative orientations, i.e. the
particle distribution function. On the other hand, the particle distribution is a func-
tion of the intermolecular interactions between solute and solvent as well as solvent
and solvent, where the former also depends on the quality of the quantum chemical
method. Consequently, if one of the three aspects – quantum chemical method, de-
scription of the intermolecular interactions, statistical mechanical method – is poor
for a given system, the quality of the results obtained will be limited by the most
poorly modelled aspect, since the other two model aspects will, on account of the
established interdependence, perform below their potential. To obtain an efficient
and accurate model, balance between the three aspects is mandatory. It should be
noted that where this balance lies will depend on the properties of the system under
study and what questions are asked.

Before details of QMSTAT are formulated in the sections below, a brief overview
is given. The molecular system in QMSTAT in divided into three parts: One re-
gion described with a quantum chemical method, one region of water molecules
described with a polarizable force-field and a dielectric continuum that encompasses
the other two regions, see Figure 9-1. To refer to the discussion in the first paragraph,
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Figure 9-1. A two-dimensional projection of the modelled system in QMSTAT. The dark spherical region
represents the quantum chemical region, and two solvent molecules are shown. Around the region of
discrete molecular matter is a dielectric continuum; the explicit water molecules and the quantum chemical
region are prevented from migrating into the continuum

the limited spatial region where high accuracy is sought is the first of these three
regions, and the remaining two are regions where significant simplifications have
been made compared to a full quantum chemical description in order to focus the
computational resources on other, more relevant, aspects of the solvation phenomena.
Two quantum chemical methods are currently implemented in QMSTAT: a compact
Hartree–Fock (HF) formulation and a compact many-state model for multiconfigu-
rational problems. For the connection between the central quantum chemical region
and the solvent region, the quantum–classical intermolecular potential is formulated.
It takes into account electrostatics, induction, dispersion and repulsive interactions.
This combined quantum chemical classical mechanical potential is then used to con-
struct the particle distribution with the Monte Carlo method. Therefore, QMSTAT
uses a so-called hybrid approach to solve its statistical mechanical problem in con-
trast to the sequential approach, which first constructs the particle distribution with
a simple fully classical force-field, then substitutes the simple solute representation
with the quantum chemical solute representation. It should finally be noted that all
simulations with QMSTAT have so far taken place under constant temperature, pres-
sure and particle number conditions (the isobaric–isothermic ensemble). The second
condition is achieved by a variable radius of the dielectric cavity and a volume–
pressure term in the total energy and the third by putting a repulsive barrier between
the explicit solvent and the boundary of the cavity (vide infra).

In the next section, QMSTAT is thoroughly presented and explained. As will
be seen, we will return to the three aspects of explicit solvent models presented
above. We continue with some previously published representative results obtained
with QMSTAT. The results are mainly meant to illustrate features of the model;
other perspectives on the result are omitted and the reader is referred to the original



Explicit Quantum Chemical Solvent Model 219

publications. At the end, a short summary is given of QMSTAT in its present state of
development.

9.2. THE MODEL, QMSTAT

The combined quantum chemical statistical mechanical method QMSTAT was orig-
inally published in 1996 for Hartree–Fock (HF) quantum chemistry [20]. This for-
mulation has been applied in a number of studies, to which we will return in a later
section. In 2006, an extension of QMSTAT was published with another quantum
chemical method which enabled studies of excited states and multiconfigurational
systems [21]. The two formulations have a lot in common and the discussion below
applies to both formulations except when stated otherwise.

9.2.1. Intermolecular Interactions

An effective electronic Hamiltonian is formulated for the solute:

Ĥeff. = Ĥ0 + V̂solv. (9-1)

where Ĥ0 is the Hamiltonian for the isolated solute and V̂solv. is some operator
that characterizes how the solvent affects the electronic structure of the solute. In
QMSTAT three different terms contribute to V̂solv.: permanent electrostatics, induced
electrostatics and repulsive interactions. They are dealt with in turn below.

But before this is possible, the description of the solvent molecules and the inter-
actions with the continuum have to be summarized. So far, QMSTAT has only been
applied with water as solvent and the classical description of the water molecules
which has been used is an early version of the NEMO force-field [22]. Each water
molecule is equipped with four point-charges: one on each hydrogen atom and two
charges close to the oxygen atom, but displaced slightly along the symmetry axis
towards the hydrogen atoms and slightly off the molecular plane. This construction
was found to perform significantly better than the more intuitive construction with
three point-charges. The significant quadrupole moment of the water molecule is
the reason for this, a moment which cannot be reproduced without charges off the
molecular plane. Four-centre water models have been used before, for example in the
early and well-cited study by Stillinger and Rahman [23]. To describe the electronic
polarization of water, there is on each atom a point-polarizability α, which when
subjected to an electric field, E , generates a dipole of magnitude and orientation
μ = αE . The polarization of water molecules in aqueous solution is known to be
significant and a proper description of this effect requires a polarizable solvent; ef-
fective pair potentials that modify permanent properties to emulate the polarized
state do not perform as well [24]. The solution of the coupled polarization equa-
tions is obtained through iteration [25,26]. However, they will need to be coupled
with the polarization of the quantum chemical systems as well, which means that a
so-called generalized self-consistent reaction field (GSCRF) problem is to be solved
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(vide infra) [27,28,29]. To complete the water–water intermolecular potential, van
der Waals terms are included of the form

∑

i, j

(
ai j e

−bi j ri j +
(ci j

ri j

)20
− di j

r6
i j

S(ri j )
)

(9-2)

where ai j , bi j , ci j and di j are atom-pair parameters, ri j the separation and S(ri j ) a
function which will damp the dispersion interaction at short distances; for parameter
values, the reader is referred to the original publication [22]. Observe that this part
of the potential only pertains to the solvent–solvent interaction.

A model for bulk solvation has also to account for long-range effects. In QMSTAT
a non-periodic boundary condition is used, in contrast to the more common periodic
boundary conditions. The explicitly represented molecules are put inside a spherical
dielectric cavity. For all structures, save a few idealized ones, some approximate
method has to be used to describe the interaction between the charge distribution and
the dielectric continuum [30]. We use the image-charge approximation of Friedman
[31]. The advantages of this type of boundary condition in simulations have been
discussed by Wallqvist and more recently by Petraglio et al. [32,33]. In practice, all
charges and dipoles inside the cavity give rise to image-charges and image-dipoles
of certain location and magnitude outside the cavity. They define the reaction field.
The method is obtained by truncation of an infinite series and is hence only an
approximation to the true interaction with a dielectric continuum. The quality of
the approximation improves, however, with increasing cavity radius and dielectric
constant. Since the cavity in QMSTAT contains a lot of molecular matter, the radius
will be large, and since the solvent is water, the dielectric constant is also large, hence
the image-charge approximation is expected to perform well.

We now return to the task of formulating the solvent perturbation operator in
Eq. (9-1). To formulate ourselves in terms of matrix elements, we introduce a real
and orthogonal basis set for the quantum chemical region, {�i }i=1,···,n . When the dis-
cussion turns to the quantum chemical method, the details of this basis will be dealt
with, but for the moment the discussion is kept general. The permanent electrostatic
contribution to V̂solv., called V̂perm., comes from the interaction between the quantum
chemical charge distribution and the point-charges of the solvent. In other words,

〈�i |V̂perm.|� j 〉 =
4N∑

k=1

∫
�i (r)� j (r)

qk

|r − rk |dr (9-3)

where k counts over the 4N point-charges qk in the explicit solvent, located at rk . To
facilitate the evaluation of this integral, each density element �i (r)� j (r) is multicen-
tre multipole expanded. This means that each unique density pair �i (r)� j (r) is made
to correspond to a set of charges, {qa

i j }a , dipoles, {μa
i j }a , and Cartesian quadrupoles,

{Qa
i j }a , in nC number of centres, {ra}a in the quantum chemical region. To keep

the number of distances in need of computation minimal, the set of centres is the
same for all basis function pairs. With the quadrupole in the Buckingham convention,
Eq. (9-3) becomes [34]
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〈�i |V̂perm.|� j 〉 ≈
4N∑

k=1

nC∑

a=1

qk

(
qa

i j

1

|rk − ra| + (μa
i j )α

(
∇ 1

|rk − ra|
)

α

+1

3
(Qa

i j )αβ

(
∇∇ 1

|rk − ra|
)

αβ

)

(9-4)

where the nabla operator ∇ has been used in the differentiation of the separa-
tions. Tensors for charge–dipole and charge–quadrupole interactions of rank one
and two, respectively, are thus obtained; the Greek indices designate the elements
in the tensors and the Einstein summation convention has been used for these
indices.

The advantage of using Eq. (9-4) is that it is faster to evaluate than Eq. (9-3).
The error that the multicentre multipole expansion (MME) introduces is connected
to the degree of overlap between the solute and solvent charge distributions. A large
overlap, as for solvent molecules very close to the quantum chemical region, will
lead to a larger error than for a configuration with smaller overlap. By distributing
the multipole expansion, the range in which Eq. (9-4) is of acceptable quality is
significantly larger than if only a single-centre multipole expansion had been used.
It should be noted, though, that the error for a given separation does not necessarily
tend to zero if the order of the MME is increased. This follows from the fact that
a 1

r -expansion like this only is semi-convergent [35]. This justifies our choice to
truncate the expansion at quadrupolar order: Higher-order terms will lead to tensors
of higher rank and thus require a greater computational effort, without leading to any
certain improvement of the model. Observe also that already in Eq. (9-3) an error has
been introduced, since the charge density of the solvent is multipole expanded. The
true reference equation would involve two-electron Coulomb integrals. We therefore
argue that the use of Eq. (9-4) instead of Eq. (9-3) is a good choice with respect
to efficiency. To further develop the model with respect to its electrostatic interac-
tion would involve removing the multipole expansion for both solute and solvent.
Clearly, an efficient density-fitting method would then be required to avoid having to
evaluate all two-electron integrals. Today this is being researched by several groups
[36,37,38,39,40,41]. At this stage, however, QMSTAT uses Eq. (9-4).

Since the solvent molecules are polarizable, there will be a contribution to V̂solv.

on account of the induced dipoles, V̂pol.. The same type of equation as in Eq. (9-4)
is used, but with dipoles interacting with the charges, dipoles and quadrupoles of the
quantum chemical region. This, of course, requires additional tensors, but the prin-
ciple is the same as before. There is one important difference, however. The induced
dipoles of the solvent depend on the density of the quantum chemical region, which
in turn depends on the induced dipoles. This non-linear problem is solved by iteration
with the previously mentioned GSCRF method [27,28,29]. The practical procedure
goes like this: Some initial guess of the induced dipoles defines V̂pol., which together
with the other contributions to V̂solv. gives rise to a specific density ρ(r) for the quan-
tum chemical region; it exerts a new electric field on the solvent polarizabilities, thus
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new induced dipoles are obtained and hence a new V̂pol. is defined; the procedure is
iterated until a convergence criterion is satisfied.

This procedure suffers from the same problem as fully classical polarizable force-
fields, namely the risk of polarization catastrophe [26,42,43]. Thole introduced po-
larizability damping which for short separations removes the discontinuity which
causes the catastrophe [43,44]. For most applications, no catastrophe appears and we
manage without damping. There are a few situations when damping is introduced,
however. Since the quantum chemical system does not have any ordinary polariz-
abilities, the damping is best formulated as a damping of the electric field from the
quantum region on the polarizabilities, and, correspondingly, as a damping of the
electric potential, field and field gradient from the induced dipoles on the charges,
dipoles and quadrupoles in the quantum chemical region, respectively:

(Echarge)α(rk) = qa

(
∇ 1

|rk − ra|
)

α

· (1 − e−c|rk−ra |)m (9-5)

(Edipole)α(rk) = (μa)β

(
∇∇ 1

|rk − ra|
)

αβ

· (1 − e−c|rk−ra |)m (9-6)

(Equadr.)α(rk) = (Qa)β�

(
∇∇∇ 1

|rk − ra|
)

αβ�

· (1 − e−c|rk−ra |)m (9-7)

These equations show the damped expression for the αth component of the electric
field from the solute multipoles in ra on the solvent centre in rk where a polarizability
is located; observe that once more the Einstein summation convention has been used
with respect to the Greek indices. The parameter c determines the range of the damp-

ing, and the integer parameter m determines for how high orders n of

(
1

|rk − ra|
)n

the discontinuity is removed, as seen by Taylor-expanding the damping function.
The dielectric continuum also contributes to both V̂perm. and V̂pol.. Since we use the

image-charge approximation, one possibility to include the continuum perturbation
is by using the same equations as above, but now for image-charges and image-
dipoles. That would more than double the computational effort in evaluating matrix
elements of V̂perm. and V̂pol. since a dipole gives rise to both an image-charge and
an image-dipole. As will be seen below, the quantum chemical region will be kept
close to the centre of the cavity. This suggests that for the quantum chemical region
(but not the explicit solvent) a less demanding procedure to include the continuum
contribution can be used without appreciable loss of accuracy: The charge distri-
bution of all molecular matter inside the cavity is multipole expanded in a single
centre, then the dipole term is allowed to engender a reaction field which is added to
the perturbation on the quantum chemical region. This procedure would be poor if
the cavity was small or if the reaction field close to the boundary is sought. For the
evaluation of the aforementioned matrix elements, neither condition is fulfilled, and
the present approach will be both good and efficient.
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The last contribution to V̂solv. comes from a repulsive term, which we usu-
ally call the non-electrostatic perturbation or sometimes the pseudo-potential, V̂nel..
First the formulation of V̂nel. is given. After that, previous applications of pseudo-
potentials are reviewed, which leads to the purpose and justification of this potential
in QMSTAT. For the same general basis set as above, a matrix element of V̂nel. equals

〈�i |V̂nel.|� j 〉 = d
∑

k∈�

∑

l

εl〈�i |χ k
l 〉〈χ k

l |� j 〉 (9-8)

where χ k
l is the lth occupied orbital of the kth solvent molecule, εl is the correspond-

ing negative orbital energy, � is a subset of solvent molecules with a significant
overlap with the quantum chemical region and d is a parameter. The parameter d
always takes negative values, which means that the expectation value of V̂nel. will
always be positive. In other words, it will give a repulsive contribution to the total
energy. Observe also that the solvent orbitals are frozen: A translation and a rotation
will map the lth orbital of the kth molecule on the lth orbital of any other solvent
molecule, in any other configuration.

The concept of a pseudo-potential in quantum chemistry was first introduced by
Hellmann in connection with frozen core calculation on atoms and further elaborated
in that context over the following years [45,46,47,48,49,50,51,52,53]. A pseudo-
potential is a “quantum mechanical technique in which the Pauli exclusion principle
is replaced by operators and potential functions [50].” In the context of atoms, this is
a way to simplify the treatment of the core and only describe it as, on the one hand, a
shielding of the nuclear charge acting on the chemically active valence electrons and,
on the other hand, a constraint to keep the valence electrons out of a certain region
of space. Seijo and Barandiarán have taken the application of pseudo-potentials (or
embedding potentials) to studies of impurities in solid-state problems [54,55,56,57].
The impurity is treated as being embedded in a solid-state host. It is obvious that the
electrons of the impurity must be kept outside of the forbidden regions of the host.
If this is not done, there is a significant risk that the electrons of the impurity will
occupy the space around the nearby host charges, which usually are of large magni-
tude. The idea of pseudo-potentials has also been used for calculations on molecules,
where certain less important parts of the molecule are removed from the explicit con-
sideration and only indirectly included through a pseudo-potential [58,59,60,61,62].
The purpose of the non-electrostatic operator, or pseudo-potential, in QMSTAT is the
same as above. If electrons in the important solute part escape to the less important
parts, the electronic structure of the important part will deteriorate significantly. Fur-
ther, in the modelling of intermolecular interactions, the Pauli exclusion principle
has to be included somehow, since it is the cause of the repulsive intermolecular
interaction. It is not common, however, to explicitly couple it to the electronic struc-
ture through some potential in the Hamiltonian. Instead a phenomenological term is
usually added to the total energy. Apart from QMSTAT, there are some other models
in the literature which depart from this description [63,64,65,66,67,68]. The work
on the hydrated electron by Schnitker and Rossky as well as Wallqvist et al. is espe-
cially interesting in this respect, since without repulsive electron–water interactions
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that restrict the electron, it would remain unbound and have no spectrum, which it is
experimentally known to have [69]. It should be noted, though, that in methods which
use supermolecular clusters for their description of the intermolecular interactions,
like the Car–Parrinello method or the QM/MM method of Rode and co-workers,
the Pauli effects are included, but through the anti-symmetry requirements in the
optimization of the density or the wave function [70,71].

The expression in Eq. (9-8) can be justified in another way, using results from
symmetry-adapted perturbation theory (SAPT). In SAPT the polarization approxi-
mation in the common Rayleigh–Schrödinger perturbation theory is removed and
some partial anti-symmetry forcing between the interacting monomers is included
[5,7]. One result that the different theories share is that the leading repulsive inter-
molecular term is proportional to the wave function overlap between the monomers
raised to the power of two [1,72,73]. This observation has been used in some fully
classical force-fields to model the repulsion with some approximate overlap or with
the related, but not equivalent, charge-density overlap [74,75,76,77,78,79,80,81]. As
is seen from Eq. (9-8), each basis function has a repulsive interaction with the solvent
with a quadratic dependence on the overlap. The orbital energy, from that perspec-
tive, becomes a weight that makes stronger bound orbitals on the solvent penalize
basis functions that overlap much with them more than weaker bound orbitals. In
solving the quantum chemical problem with the effective Hamiltonian, the wave
function will thus be “pushed away” from the solvent.

To conclude the discussion of V̂nel., its purpose will be briefly addressed. The
physics that the pseudo-potential models should be clear from the discussion above.
The question is whether the coupling between the interacting molecules is of such
nature that the electronic degrees of freedom of the quantum chemical systems really
have to be directly coupled to the repulsion. For solvated anions, at least, the answer
is unambiguously affirmative. It has long been known experimentally that the polar-
izability of anions in an environment is markedly different from the polarizability in
gas phase [82,83]. The reason is that in an environment the diffuse charge distribution
of the anion is significantly restricted by the anti-symmetry requirements to the en-
vironment, which leads to less flexibility and thus less polarizability. An implication
of this is that simulations of polarizable anions which neglect the explicit coupling
between repulsion and electronic degrees of freedom have to underestimate the po-
larizability, either by assigning it a lower value or by using small basis sets that do
not reproduce the full polarizability. This problem has been analysed and highlighted
in a number of recent theoretical works, including one study with QMSTAT (vide
infra) [84,85,86,87,88]. Another instance where experiment has led to discussions of
more direct influence of repulsive forces on electronic properties is spectroscopy in
simple environments such as rare gas liquids [89,90,91,92]. The idea is that when a
molecule is electronically excited the charge distribution is instantaneously altered,
which leads to a different repulsive interaction with the surrounding, and thus a
non-electrostatic contribution to the shift of the absorption or fluorescence peak is
recorded. In a general theoretical discussion of solvent shifts to UV- and visible spec-
tra, Bayliss and McRae name this effect packing strain [93]. For the same process,
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Dobrosavljević et al. also conclude with simple models that the modification of the
repulsive interaction can contribute to spectra [94,95]. They use boundary condi-
tions to prevent the solute electrons from occupying forbidden space in the solvent.
A pseudo-potential is an alternative way to include this effect. These are some of
the physical effects a pseudo-potential is meant to model, but there are also model
defects that a pseudo-potential can alleviate or remove. Since the representation of
the solvent uses partial point-charges, there is a risk, if diffuse basis functions are
used for the quantum chemical region, that an excessive accumulation of electrons at
the point-charges occurs when the quantum chemical problem is solved [96,97]. As
a consequence, the performance of the model can deteriorate with increasing quality
of the basis set. This final point amplifies the importance of balance in solvation
models: Improving the quantum chemical description (by improving the basis set)
without simultaneously improving the intermolecular description can lead to poorer
model performance.

This concludes the formulation of V̂solv.. Two terms remain, though, in the inter-
molecular interaction potential between quantum chemical region and solvent. These
terms are only added to the total energy and therefore only indirectly influence the
electronic structure. The first term is a consequence of the finding that the pseudo-
potential in Eq. (9-8) does not lead to sufficient repulsion at short separations. With
SAPT it is shown that higher-order repulsive terms will appear, terms which have a
fourth, sixth and so forth order dependence on the overlap. In QMSTAT, these terms
are not included in V̂solv., instead terms like

ES4 = β4

(
∑

k∈�

∑

l

〈�|χ k
l 〉〈χ k

l |�〉
)2

(9-9)

are added to the total energy; � is the wave function for the quantum chemical region
described in terms of the basis set {�i }i=1,...,n , and β4 is a parameter. Second, the
dispersion interaction between solute and solvent is phenomenologically included
through a distributed 1

r6 expression:

Edisp. = −
∑

k,l

Ckl

r6
kl

fkl(rkl) (9-10)

Indices k and l count over all solvent and solute atoms, respectively; Ckl is a parame-
ter; rkl is the separation between the kth solvent atom and the lth solute atom. fkl(rkl)
is a damping function active at short separations; we use the variant derived by Tang
and Toennies [98]:

fkl(rkl) = 1 −
(

6∑

i=0

(bklrkl)i

i!

)

e−bklrkl (9-11)

The parameter bkl determines the range of the damping. Instead of fitting this param-
eter we use an empirical expression involving localized second-moments and charges
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[99]. In a note from 1942, London criticises expressions as that in Eq. (9-10) from
two perspectives: [100] First, in a molecule the dispersion interaction centres do not
have to be spherically symmetric, as they have to be in atoms for which London
originally derived his now well-known formula for the dispersion interaction or the
van der Waals attraction [101,102]. Second, the oscillations in distributed centres
in a molecule do not have to remain local. Instead of only transition dipoles in the
different centres, also transition charges between different centres can occur, which
implies that additional non-local terms (in the nomenclature of Stone and Tong) of
order 1

r2 and 1
r4 appear [7,103]. Still, the current literature is replete with expression

of the same form as that in Eq. (9-10). It is therefore reasonable to conclude that
despite its formal deficiencies, the present expression for the dispersion interaction
energy is a good compromise between simplicity and accuracy. Finally, in this con-
text, the direct reaction field (DRF) method by van Duijnen and co-workers merits
special attention [104,105,106]. In DRF the dispersion interaction is included as a
term in the solvent perturbation to the quantum chemical region, which also means
that dispersion interactions in different states can be accounted for. This method can
potentially go beyond the phenomenological description of the dispersion interac-
tion, but it should also be noted that there are indications that the DRF method tends
to overestimate the dispersion interaction [107,108].

9.2.2. The Quantum Chemical Methods

As stated in the preamble to this section, two quantum chemical methods are im-
plemented in QMSTAT. The first is the well-known HF method, the cornerstone of
ab initio quantum chemistry. For an excellent account of the HF method, see the
textbook by Szabo and Ostlund [109]. The standard way to solve the HF equations
nowadays is to use a basis set for expanding the orbitals, as first suggested by Hall
and Roothan [110,111]. The basis sets that are used in most cases are Gaussian atom-
centred basis functions, which for molecules constitute a non-orthogonal basis. The
bottleneck in HF calculations is the number of two-electron integrals. This has led
developers to construct a multitude of methods to speed up the treatment of the two-
electron integrals, with the aim of making HF calculations feasible for increasingly
larger systems. The limitations faced by QMSTAT simulations with the HF method
are similar to the gas-phase quantum chemical calculations, with one minor, but, as
will be seen, decisive difference: We have to do many repeated quantum chemical
calculations on systems with very similar effective Hamiltonians. Below we will
describe how this can be utilized in the expansion in a basis to acquire a work-saving
solution to the HF equations. The postponed discussion of how the MME practically
is performed will also be given. Then we will turn to the other quantum chemical
method.

The common atom-centred basis sets (ACBS) are designed to be applicable for
a range of different geometries, covalent bonds, environments and methods. This
generality is both their strength and weakness. The weakness becomes apparent in
QMSTAT where, on account of the statistical mechanical procedure (vide infra),
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many very similar quantum chemical problems have to be solved; the largest con-
tribution to the Hamiltonian in Eq. (9-1), the intramolecular Ĥ0, is constant in our
frozen geometry approximation while only the small intermolecular V̂solv. changes
between different configurations. Thus, the basis for the orbital expansion does not
have to be as versatile as the full ACBS since it is already known pretty well before
the nth quantum chemical calculation is done what it should be. We use the following
procedure to construct a different, less redundant basis set: A set of HF calculations
on the molecule later to be solvated with QMSTAT are done with a usual ACBS
of dimension N. The calculations differ in terms of the Hamiltonian; a calculation
with only Ĥ0 is included, but a number of calculations with generic perturbations
are added, Ĥ0 + V̂ . The different perturbations are usually homogeneous electric
fields, sometimes size penalties (see reference [112]) and inhomogeneous fields;
their purpose is to span a space of perturbations in which the full solvent perturbation
is well contained. Each calculation generates a density matrix, Da , slightly different
from the other density matrices. An average density matrix is constructed:

Daver. =
Ncalc.∑

a=1

�a Da (9-12)

where the sum of the weights, �a , is unity. The average density matrix is symmetri-
cally orthogonalized (S1/2 DS1/2, S overlap matrix) and diagonalized. This procedure
generates a set of average natural orbitals of dimension N, with some fractional oc-
cupation numbers, {ηi }i . At this point a subset of the natural orbitals is obtained
by only including orbitals with occupation numbers greater than some threshold, td.
This subset is used as the basis set, {�i }i=1,...,M (M〈N ), in the simulation. The one-
and two-electron integrals needed in the construction of matrix elements to Ĥ0 are
transformed to this basis; the expression for the effective Fock matrix becomes

〈�i |F̂eff.|� j 〉 = 〈�i |T̂ + Ĥnuc.|� j 〉 + 〈�i |V̂solv.|� j 〉

+
M∑

k,l

D̃kl

(
(�i � j |�k�l ) − 1

2
(�i �l |�k� j )

) (9-13)

where T̂ and Ĥnuc. are the kinetic and nuclear attraction operators, respectively, and
D̃kl a density matrix element. Observe that the integrals in the first and third terms
are computed once and for all before the simulation. With the reduction of the dimen-
sion of the basis the number of two-electron integrals is kept fairly small and they
can thus be kept in memory. No time-consuming input/output to disk is therefore
needed. Once the Hamiltonian is formulated, the usual self-consistent field iterations
are performed, however, with the difference that the GSCRF problem is solved at the
same time (vide supra). Since a good starting guess exists for the density matrix, the
number of iterations is generally small.

The reason this procedure is an efficient approximation is due to the fundamental
property of natural orbitals. They were introduced by Löwdin in connection with



228 A. Öhrn and G. Karlström

configuration interaction (CI) calculations [113]. Their key property is that for a
given dimension M of one-electron functions, they are the minimum to the absolute
difference integral between a density described in that basis of dimension M and the
density described in a complete basis [113,114]. The above procedure utilizes this
property in that the most compact basis possible is obtained, which is able to describe
the space spanned by the input densities with a prescribed accuracy. This property
is also used in the construction of generally contracted atomic natural orbital (ANO)
basis sets, which have been shown to be quite successful [115,116,117,118,119].
Three typical M/N are 33/104 for Sr2+, 42/204 for para-benzoquinone and 54/276
for trimethylamine-N-oxide [120,121,122].

At this stage, when the nature of the basis is known, we return to the question, how
the MME needed to evaluate 〈�i |V̂perm.|cj〉 and 〈�i |V̂pol.|cj〉 is done in practice. We use
a method that takes advantage of basic properties of Gaussian functions, which is
also very similar to the distributed multipole analysis of Stone [123,124,125]. For an
arbitrary pair of basis functions �i � j (r), we use the orbital expansion

�i � j (r) =
∑

m,n

cmi cnjθmθn(r) (9-14)

where {θm}m=1,...,N is the ACBS and {cmi } the natural orbital coefficients. Two cases
are treated: Basis functions θm and θn are centred either on the same atom or on
different atoms. To start with the former case, the multipoles to assign to this atom
centre, ra , for that specific pair of atomic basis functions are

qmn
a = 〈θm |θn〉 (9-15)

μmn
a = 〈θm |μ − ra|θn〉 (9-16)

Qmn
a = 〈θm |Q − rara|θn〉 (9-17)

In the latter case, the same integrals will give the multipoles, but the expansion
centre is no longer obvious. For a pair of primitive Gaussians, the optimal centre
is the centre for the product Gaussian. Since it would be far too costly to let each
primitive pair of basis functions have a unique centre, a weighted average of all
primitive centres is computed with the absolute value of the associated charge as
weight. This construction is meant to give a compromise centre for which low-order
multipoles are most important. Therefore, each term in Eq. (9-14) has a centre and
a magnitude, hence the contributions to the different centres are collected and the
MME is obtained. Stone has in a recent article studied how individual moments
change with basis set [126]. His observations are that these do not seem to converge,
while the electric potential that these multipoles define is more stable. See also the
study by Söderhjelm et al. for further studies of MME [127]. Based on this and our
experience with the MME defined in this way, we conclude that the MME can be
used to simplify the evaluation of the electrostatic interaction, with an acceptable
loss of accuracy for most, but certainly not all, systems.



Explicit Quantum Chemical Solvent Model 229

The HF method is limited to electronic ground states and systems which are
well described by single determinant wave functions. To overcome these limita-
tions, QMSTAT was recently augmented with a quantum chemical method that
can treat systems with a multiconfigurational wave function. The complete active
space self-consistent field (CASSCF) method would be a good choice in this re-
spect [128,129,130]. In that method an expansion of Slater determinants is achieved
by a selection of so-called active orbitals. All expansion coefficients are opti-
mized, i.e. both orbital and CI coefficients, with respect to the energy of a single
root or to the energy of an average of states. The latter procedure, called state-
average CASSCF (SA-CASSCF), is known to lead to more stable optimizations
if excited states are involved. The SA-CASSCF wave function is for a particular
state variational with respect to the CI coefficients, but not to the orbital coeffi-
cients. This makes the task of computing analytical gradients more difficult, but
Stålring et al. have formulated and implemented the relevant equations [131]. Un-
fortunately, SA-CASSCF takes too much time for a hybrid approach to the sta-
tistical mechanical problem to be feasible. Some further approximation is needed
for all but very small molecules. The most common way forward in the litera-
ture is to discard the hybrid approach [112,132,133,134,135,136]. Our choice in-
stead is to construct a quantum chemical method that approximates the CASSCF
method.

Once more the key to being able to approximate CASSCF is the similarity be-
tween the different calculations. Instead of repeating several very general calcula-
tions for a particular problem, we prepare a less general basis honed to the particular
problem under study. The following procedure is used: A number of SA-CASSCF
calculations are made for a set of slightly different Hamiltonians, in the same way as
in the construction of the natural orbital basis in the HF procedure above. In contrast
to the HF calculations, we are getting wave functions not only for the ground state,
but also for higher states; if we are making calculations on spectroscopy, the relevant
states in the electronic transitions should of course be included. Therefore, we obtain
NS · NP states, where NS is the number of relevant states and NP the number of dif-
ferent CASSCF calculations. Many of these states are overlapping significantly with
each other. We use this set of states to expand the wave function in QMSTAT, but to
simplify the mathematical treatment, an orthogonal set of states that span the same
space is preferred. The CAS state interaction (CASSI) method can make this con-
struction [137,138]. The original purpose of CASSI was to evaluate matrix elements
for CASSCF wave functions, such as transition dipole moments. A set of orthogonal
states, {�i }i = 1, . . . ,NS ·NP , are obtained with CASSI, which span the same space
as the input CASSCF states and also are eigenfunctions to the Hamiltonian. To put
it differently, a set of states that diagonalize both the overlap matrix and the Hamil-
tonian matrix are obtained. It is in terms of these eigenstates that the effective solute
wave function is linearly expanded:

�QMSTAT =
∑

i

Ci �i (9-18)
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The coefficients Ci are determined through a variational procedure. The orthogonal-
ity of the basis states leads to the coefficients being obtained through a diagonaliza-
tion of the effective Hamiltonian matrix. As described below, the eigenstates can be
slightly modified to improve performance, but the linear ansatz is fundamental.

To obtain the Hamiltonian matrix the matrix elements 〈�i |V̂solv.|� j 〉 have to be
computed. With the one-electron transition density matrix, 	, also calculated by
CASSI, this involves the following summation:

〈�i |V̂solv.|� j 〉 =
∑

k,l

�
i, j
k,l 〈�k |V̂solv.|�l〉 (9-19)

where �i is a basis function for the density matrix and �
i, j
k,l is a transition density

matrix element. Note here that �i is a general notation for a basis function; in many
cases it equals an atom-centred basis function, θi , but not always, as described further
below. Straightforward substitution of Eq. (9-8) in Eq. (9-19) gives the expression for
〈�i |V̂nel.|� j 〉. For the other two contributions to the solvent perturbation, each basis-
set pair density has to be multicentre multipole expanded. In analogy with Eq. (9-14)
the density which is expanded is

�i � j (r) =
∑

k,l

�
i, j
k,l �k�l(r) (9-20)

and each term is once more treated with the same procedure as described above for
the HF wave functions. Observe also that the diagonalization of the Hamiltonian
matrix gives rise to higher states, which are representations of solvated excited states
if excited states are included in the preceding CASSCF calculations.

As noted above there is significant overlap between the input CASSCF states.
This implies that numerical problems can occur in the construction of the orthogonal
states and states need to be deleted. Compare this with ordinary HF calculations
with large basis sets which sometimes delete orbitals on account of near-linear de-
pendencies in the non-orthogonal ACBS. In mathematical terms the procedure is
as follows: The overlap matrix for the CASSCF states is diagonalized; all eigen-
vectors that correspond to eigenvalues less than some threshold ts are deleted and
the eigenvector matrix X becomes rectangular; the subsequent diagonalization of
X†HX, where H is the Hamiltonian matrix for the CASSCF states, thus produces
a smaller number of orthogonal CASSI states than input CASSCF states and with
the near-linear dependencies removed. This procedure will reduce the range of the
index-pair (i, j) in Eq. (9-19) (and similar). Computational savings are thus obtained.
Further savings are achieved by reducing the range of the index-pair (k, l) with the
following procedure: An average density matrix is constructed with elements

Dk,l = 1

N

N∑

i=1

�i,i
k,l (9-21)
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Then the same procedure as in the construction of the natural orbital basis for the
HF calculations is used, and the truncated set of natural orbitals that is obtained
is used to expand the transition density matrix, and hence the index-pair (k, l) is
contracted. In practice this means that instead of making one large transformation
with the transition density matrix in Eq. (9-19), two smaller ones are done: first
one from the ACBS to truncated orbital basis, then to state basis. For reasonable
thresholds in the orbital construction, td, this will lead to a speed-up of the QMSTAT
calculations. Details of the two procedures described above can be found in reference
[139].

9.2.3. Statistical Mechanical Method

The approximate solution to the Schrödinger equation, defined by the effective
Hamiltonian in Eq. (9-1), with either method described in the previous section, asso-
ciates to every vector of molecule coordinates, R, together with the solvent–solvent
interaction potential, an energy E(R). From basic classical statistical mechanics an
N-particle distribution function (PDF) n(R) is thus obtained:

n(R) = N !
e−E(R)/kT

∫
e−E(R)/kT dR

(9-22)

where kT is the Boltzmann constant times the temperature. For weak interactions,
i.e. interaction energies ∼ kT , the equation above shows that the distribution will
have finite width: It cannot be approximated by a δ-function. In the single struc-
ture energy minimum approximation, where the lowest energy structure is used to
estimate averages, this is the fundamental approximation. Its merit is questionable,
unless very strong interactions dominate the system. To take the finite width into
account, or entropy in other words, a better solution to the statistical mechanical
problem is required. In QMSTAT, the well-known Metropolis–Monte Carlo (MMC)
algorithm is used, which mathematically is formalized by Hastings [140,141,142].
With an estimate of the PDF, Boltzmann averages can be computed for properties
such as excitation energies, dipoles, angles and so on. The MMC algorithm converges
to the exact solution to the statistical mechanical problem, although a statistical error
always remains in practice. There are methods available to monitor the convergence
of the MMC algorithm and the balance of the sampled space; they are described
elsewhere [122,142,143].

To solve the statistical mechanical problem this way in QMSTAT requires a quan-
tum chemical problem to be solved in each Monte Carlo step. This approach is
sometimes called a hybrid approach: quantum chemistry and statistical mechanics
are solved together. It is well known that consecutive configurations generated by
the MMC algorithm are correlated. This is the reason why most MMC algorithms
do not sample every configuration, rather with some frequency, generated configura-
tions are added to the estimate of the PDF; the other steps are only the path between
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sampled configurations. This observation has led to the formulation of an alternative
method, which requires less quantum chemical computations. It is called the sequen-
tial method and has been extensively described by Coutinho, Canuto and co-workers
and has been applied in several QM/MM studies by these and other researchers (see
for example references [144,145,146,147,148]). By first constructing the PDF for the
system under study, but with a fully classical force-field, then substituting the classi-
cal solute for the quantum chemical solute, the number of quantum chemical calcu-
lations can be reduced significantly since the generation of configurations between
the sampled ones does not require any demanding quantum chemical equations to be
solved. The advantage is obvious and the reduction of the number of quantum chem-
ical computations may be absolutely necessary if the computational effort associated
to the given quantum chemical method is high. The sequential method is, however,
not an exact solution to the statistical mechanical problem for the combined system.
Since the PDF is computed with one solute–solvent interaction, while the proper-
ties are computed with another solute–solvent interaction, it is formally necessary to
re-weigh the probability density for each sampled configuration, which for a finite
sample will worsen the quality of the statistics. How well the sequential method
approximates the hybrid method depends on how well the fully classical force-field
reproduces the forces of the combined quantum/classical system. The complicated
couplings between the solute electronic degrees of freedom with the solvent in anions
and diffuse excited states, discussed above, are two examples where fully classical
force-fields, at this stage of development, are unreliable. The hybrid approach in
QMSTAT hence means that we emphasize the statistical mechanical aspects and the
coupling between solute and solvent in the solvation problem. That this is possible
hinges on the compact quantum chemical methods.

Finally, some practical features of the simulation are noted. Since we use a non-
periodic dielectric continuum to model long-ranged electrostatics, the explicitly de-
scribed molecules have to be prevented from coming too close to the boundary where
the energy becomes discontinuous. For the water molecules a short-range repulsive
interaction is added between a given water molecule and its image-charges. This
does not model any physical interaction. The quantum chemical region should satisfy
the same condition, but since it should also be kept in the interior of the explicitly
modelled water, we add a harmonic energy term which penalizes translations away
from the cavity centre. The solute is rarely farther away from the centre than 1 Ä.

9.2.4. Parametrization and Simulation Protocol

The subsections above have presented the details of QMSTAT and described how
they fit together. In this subsection the parametrization of the intermolecular potential
is described and a typical simulation protocol is given.

Our approach to the parametrization is the same as in many other modern force-
fields, i.e. we use microscopic ab initio quantum chemical calculations on monomers
and dimers as reference instead of macroscopic experimental quantities [8]. For
simulations with the state-based quantum chemical method, the CAS second-order
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perturbation (CASPT2) interaction potential is the target [149,150,151]. The counter-
poise corrected interaction potential for a solute–solvent dimer with CASPT2 con-
tains all types of interactions, including the dispersion interaction, for both ground
and excited states [152,153]. In principle, the parameters in V̂nel., higher-order re-
pulsion, solute–solvent dispersion and possibly the parameters in the electric-field
damping can be adjusted to fit the QMSTAT solute–solvent potentials to the CASPT2
potentials. This naı̈ve way of making the parametrization has two problems: First, the
different terms are not perfectly separated in the supermolecular potential, and thus
several different set of parameters can be fitted to the limited CASPT2 data. Since
each term has a physical content, it is from a strict methodological point of view
preferable if the terms are fitted separately as far as possible. Second, the electro-
static interaction in CASPT2 differs slightly from the interaction in CASSCF. Since
QMSTAT uses CASSCF states in its description of the density, this difference can
contaminate the fitting procedure. This problem, however, is often a minor one since
CASSCF densities tend to be good.

The parametrization procedure that we have opted for in the most recent works
is as follows: (1) Compute the intermolecular dynamic correlation energy for the
ground state with a second-order Møller–Plesset (MP2) expression that only con-
tains the intermolecular part and which uses monomer orbitals. Fit the dispersion
parameters to this potential. To aid in the distribution of the parameters, a version
of the exchange-hole method by Becke and Johnson is sometimes used [154,155].
Becke and Johnson show that the molecular dispersion coefficient can be obtained
fairly well by a relation that involves the static polarizability and the exchange-hole
dipole moment:

〈d2
X 〉 =

∫
ρ(r1)d2

X (r1)dr1 (9-23)

where

d2
X (r1) =

(
1

ρ(r1)

∑

ab

[〈�a|r |�b〉�a�b(r1)] − r1

)2

(9-24)

where ρ is the electron density and �a is an occupied HF molecular orbital. The
integral has to be numerically evaluated, where we use the quadrature of Lindh et al.
[156]. To localize 〈d2

X 〉 Johnson and Becke use a Hirschfeld partitioning. We use
instead the localized basis, {θ̃i }i , obtained in the Loprop method [157]. In Loprop,
one-electron property integrals are transformed to an orthogonal and approximately
localized basis, and thus molecular properties are distributed. In this particular appli-
cation, Eq. (9-23) in this local basis is

〈d2
X 〉 =

∑

α

∑

i, j∈�α

Di j

∫
θ̃i θ̃ j (r1)d2

X (r1)dr1 (9-25)

where α runs over all molecular centres, and �α is the set of basis functions assigned
to centre α. To every centre a local exchange-hole value is obtained, and Loprop can
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also compute localized polarizabilities, hence all values needed to compute localized
dispersion coefficients according to the formula proposed by Becke and Johnson
are available. The magnitude of the values may need to be adjusted to reproduce
the total dispersion curve, but the relative values seem to work well in our limited
number of applications where this method has been used. Further work should lead
to an improved factor so that no second-order Møller–Plesset calculation is required.
(2) Compute the supermolecular interaction potential with CASSCF. Fit the repul-
sive parameters to the CASSCF curve, which contains the electrostatic and repulsive
interactions, but no (or only very little) of the dispersion interaction. In this step,
the interaction potential of not only the ground state but also the relevant excited
states, is considered. The damping is usually set to zero, unless this leads to too poor
quality of the QMSTAT interaction potential. If the subsequent simulation runs into a
polarization catastrophe, then damping is added and some reparametrization is done.

As observed in the section on how to obtain a less redundant basis set for the
QMSTAT calculations, the geometry of the quantum chemical region is frozen. This
is a limitation of the model, and only solutes for which no significant flexibilities
exist can be handled (“significant” meaning that they exist and are of quantitative
relevance for the properties under study). If the frozen geometry approximation is
tenable, a geometry has to be chosen. The most obvious choice is the optimal gas-
phase geometry. For many applications this has been found to be an approximation
of sufficient quality. In some cases, however, the solvent effects on the geometry
have been significant and sometimes even the purpose of the study. Then numerical
free-energy gradients for selected degrees of freedom are computed with free-energy
perturbation calculations. The simple method by Zwanzig has been used to compute
free-energy differences [158]:

�G = −RT ln 〈e−ΔU/kT 〉T (9-26)

This equation is exact, but since the thermal average has to be estimated by a finite
sample, statistical errors will grow along the magnitude of the perturbation �U . As
shown by Lu et al. perturbation schemes with better performance can be formulated
[159,160]. The final simulation and calculation of properties are done in the free-
energy optimal geometry thus obtained.

9.3. EXAMPLES OF APPLICATIONS

QMSTAT has to date been applied in a number of studies since its original formula-
tion [19,20,21,85,120,121,122,139,161,162,163,164,165,166]. These involve stud-
ies of ground state solvation, with geometry optimizations in a water solvent and
solvation of ions; also, solvent shift distributions have been computed for a number
of different one-photon absorption and fluorescence transitions. We will not review
all these studies, instead three noteworthy applications of QMSTAT are highlighted
below. We start with a study of the solvation of the monatomic ions Li+, Na+, F− and
Cl−, with special focus on the coupling between repulsion and the electronic degrees
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of freedom. Then the solvation of the quadrupolar para-benzoquinone is reviewed,
where we emphasize a non-trivial asymmetry in the solvation. Finally, results from a
simulation of the fluorescence of indole in aqueous solution and at a non-polar/polar
interface are summarized.

9.3.1. The Polarization and Repulsion Are Coupled
in Some Monatomic Ions

It was referred to above, in connection with the description of the non-electrostatic
operator in QMSTAT, that there is a well-known effect on the polarizability of an-
ions from the environment to the anion. Qualitatively speaking, the environment
compresses the charge distribution of the otherwise diffuse anion, on account of
the anti-symmetry restrictions between the ion and the environment. We model the
hydration of four monatomic ions (Li+, Na+, F− and Cl−) with QMSTAT to, among
other things, study how the polarization and the Pauli repulsion couple [85].

The HF version of QMSTAT is used. A compact basis set of natural orbitals is
constructed for each ion. Since the polarizability converges very slowly with increas-
ing basis set, already here some reduction of the polarizability is made [167,168].
Parametrizations are done as described in a previous subsection, followed by MMC
simulations. An estimate of the particle distribution function to each ion, n(R), is
thus obtained. Observe that the hybrid approach to the statistical mechanical problem
implies that the non-electrostatic operator is active in the determination of n(R).

An analysis of the coupling is done. Four different energies are computed for
every configuration with this aim in mind: (1) The total energy with both polarization
and repulsion active, E r

p. (2) The energy with the repulsion between water and ion
removed, Ep; this is achieved by setting the parameters to this interaction to zero.
(3) The energy with the polarization of the ion removed, E r; this is achieved by only
including the same number of natural orbitals in the basis as occupied orbitals for the
given ion, hence no relaxation from the gas-phase electronic structure is possible.
(4) The energy with both repulsion and polarization removed as above, E . If no
coupling exists, such as in fully classical force-fields, the equation

E r
p = E + (Ep − E) + (E r − E) (9-27)

should hold. Deviations from Eq. (9-27) for the actual energies is thus a quantita-
tive measure of how strongly the polarization and repulsion couple in QMSTAT. In
Figure 9-2, the distribution of the energy coupling term, that is the left-hand side
minus the right-hand side of Eq. (9-27), is shown. In Figure 9-2(c) and (d), the
distributions for the cations are shown. They are very close to zero, just slightly
shifted to negative coupling energies. The fact that repulsion and polarization are as
good as uncoupled for these systems is a result of their low polarizability. The slight
negative shift we suggest follows from cooperation between electrostatics and repul-
sion. On account of their charge, the partially negative oxygen atom from the solvent
will be close to the cation, hence the electrons on the cations are driven away from
nearby solvent molecules by the electrostatic interaction. With the non-electrostatic
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Figure 9-2. The distribution of the coupling term (left-hand side minus right-hand side of Eq. 9-27) for
(a) F−, (b) Cl−, (c) Li+ and (d) Na+

repulsion active, the electrons are driven further in that direction. The anions have
wider distributions, and the most polarizable ion, Cl−, has the broadest distribution,
see Figure 9-2(b). The configurations with positive couplings can be explained in the
opposite way to the negative couplings for the cations above. The negative couplings
for the anions, F− in particular, imply that a more complex mechanism operates as
well. Our proposal to explain this is based on the solvation structure. It is obvious
that in a given configuration there are gaps in the solvation cage to an ion. If the
polarizing field on the ion from the solvent is directed such that the polarized charge
distribution points towards these gaps, then the polarization of the ion can lower the
repulsion, compared to the situation when there is no relaxation. Hence, a negative
coupling follows.
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The magnitudes of the couplings show that for the two cations, it would involve no
significant error to use Eq. (9-27). For the anions, we see that the coupling is larger,
and for the chloride ion, it is of the order of the thermal energy at room temperature.
But as stated above, we have not reached basis-set saturation with respect to the gas-
phase polarizability, therefore the magnitudes are dependent on the basis set in the
HF calculation. A more diffuse basis set would lead to a larger coupling. To underes-
timate the polarizability of the ion, and ignore the coupling, is a way to avoid some of
the problems. However, since the repulsion is determined by the polarized effective
wave function, the spherical symmetry of the repulsion, which is usually used in
fully classical force-fields, is no longer exactly valid. This can have an influence on
the hydration structure of polarizable ions. It has already been found in a previous
simulation study that the polarizability alone lowers the symmetry of the solvation
structure of monatomic ions [169]. Couplings between polarization and repulsion
could also be of importance at interfaces. If the two media that make up the inter-
face compress the electron differently, the polarizability becomes anisotropic. The
polarization of ions at interfaces has attracted some interest recently [170,171,172].

9.3.2. Asymmetric Solvation from Many-Body Interactions

The solvation of para-benzoquinone (PBQ) in aqueous solution and its one-photon
absorption spectrum are modelled with QMSTAT. The study reveals that the many-
body nature of electronic polarization can have a complex influence on the solvation
[139]. PBQ with four water molecules is schematically presented in Figure 9-3. We
use the multiconfigurational quantum chemical method since excited states are of
interest as well. The two lowest excited states are included together with the ground
state. The excited states are near-degenerate, which is of importance for the spec-
trum; this aspect of the study is not reviewed here, though. A simulation with the
ground state interacting with the solvent is done, and the spectrum and the solvation
structure are analysed.

The analysis of the solvation structure to the ground state of PBQ reveals a note-
worthy feature of the structure around the carbonyl oxygen atoms. If the solvent is
closely coordinated to the oxygen atom on the one side of PBQ, it is more probable
for the coordination on the other side of PBQ to be farther away. In mathematical
terms, there is hence a negative correlation between the two sides of PBQ or, in other

Figure 9-3. Para-benzoquinone and four water molecules distributed at the two carbonyl oxygen atoms
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words, asymmetric solvation structures are more probable. In the original publica-
tion, this is shown by conditional distribution functions, g(r1|r2 ∈ Ii ). Given that the
distance between PBQ and the closest water molecule coordinated on one side, r2, is
within some interval Ii , the distribution for the distance to the closest water molecule
coordinated on the other side is obtained. If r1 and r2 are independent variables, then
g(r1|r2 ∈ Ii ) = g(r1). However, this is not found to be the case. To provide an
explanation based on simple properties of the molecules, two simplified models are
formulated, which together with additional extended QMSTAT simulations give the
following results [122]. The polarization of PBQ is the key to the asymmetry, or the
correlation. If we qualitatively picture PBQ interacting with water as a polarizable,
quadrupolar particle with one dipolar particle on the left-hand side and another dipo-
lar particle on the right-hand side (with their dipoles μ pointing directly at PBQ),
then one term appears in the potential energy which involves the polarizability of
PBQ, α:

Upol. = −2|μ|2α
(

1

r3
1

− 1

r3
2

)2

(9-28)

Obviously, when r1 = r2 the electric field from the dipoles perfectly cancel on PBQ,
and no favourable polarization energy is obtained. For all other relative differences
of r1 and r2, a stabilizing energy contribution is obtained. The statistical mechanical
problem for the full potential energy of this simplified system is solved exactly with
numerical integration for different polarizabilities on the central quadrupolar par-
ticle. A clear relation between magnitude of electronic polarizability and negative
correlation (and thus asymmetry) is found. It should be observed that this follows
from the many-body nature of the polarization and cannot be described by increas-
ing the permanent moments to emulate the polarized state. Neither will a mean-field
description of the solvent capture the additional contribution to the solvation from
the asymmetry, since the average solvent configuration of course is symmetric.

9.3.3. Solute–Solvent Interactions in the La and Lb Excited States of Indole

We set up to study the fluorescence of indole in aqueous solution and also at the
air–water interface [166]. Indole is a well-known chromophore, which is responsible
for the photophysics of the amino acid tryptophan. Like many other medium-sized
organic molecules, it has two low-lying excited states, known for historical reasons
as La and Lb. Different interactions with the surrounding environment of these two
states, as well as the ground state, lead to solvent (or more general environment)
shifts to the one-photon spectrum. Most notably, the fluorescence spectrum of in-
dole has long been known to be very sensitive to the polarity of the surrounding, a
fact which is used by biophysical chemists to qualitatively monitor structure mod-
ifications of proteins [173,174,175,176,177,178,179]. The protein environment is
a complex environment with many non-polar/polar interfaces. Since it is difficult
to model proteins with high accuracy, we chose instead to make generalizations
from the air–water interface simulations to the more complex protein environment.
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Since QMSTAT is easily adapted to this interface (remove the dielectric bound-
ary and allow indole to translate freely), we get the same accuracy as in the bulk
simulations.

To explain the fluorescence behaviour in aqueous bulk, an La–Lb state inversion
has been suggested. In gas phase the lowest excited state is Lb and is thus the state
which emits light. But the La state is more polar, and hence in sufficiently polar
media, La can become the state which emits light. There are other explanations in the
literature, although the state-inversion one is the most used in the current literature.
Our simulation of the aqueous bulk gives unequivocal support to the state-inversion
explanation. Since QMSTAT is a state-based approach, with the wave function con-
structed as in Eq. (9-18), it is easy to assign the identity of the lowest excited state
by a simple inspection of the expansion coefficients. The angle φ = arctan |C3

C2
| for

the first and second excited states in the simulation will tell how La-like and Lb-like
these states are, since the second state in the basis is the pure Lb state and the third
state the pure La state (observe that C2

2 + C2
3 ≈ 1). The distributions of φ for the

first and second excited states are shown in Figure 9-4 for (a) the simulation where
the ground state interacts with the solvent and (b) the simulation where the first
excited state interacts with the solvent, where the geometry of indole is the optimal
gas-phase geometry for the La state. It is seen from this figure that when the ground
state interacts with the solvent, the reaction field on indole is not sufficient to cause
a root flip, and the first excited state is best described as an Lb state. In contrast,
when the first excited state in the given geometry interacts with the solvent, the first
excited state has an identity much like an La state. Hence a root flip has occurred. In

Figure 9-4. The distribution of the mix angle for the second and third state basis function for (a) the
simulation with the ground state interacting with the solvent and (b) the simulation with the first excited
state interacting with the solvent when indole is in the La optimal geometry
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the simulation the first excited state interacts with the solvent, but in the Lb optimal
geometry, it is found that the first excited state can be either La , Lb or a mixture
(result not shown), in the ensemble of solute–solvent configurations. The conclusion
is that even if the Lb state is occupied by the absorption of a photon, the solvent will
eventually put the La state lower, and then the geometry changes and the La state
becomes the lowest excited state. An inspection of the energies of the different states
and how large their shifts are gives further support to this conclusion.

From the simulations at the air–water surface, the shift distributions given in
Figure 9-5 are obtained for absorption and fluorescence. The orientation of indole
relative to the surface is not completely optimized in the simulation, rather it is
held partially restrained is some given way. With this approach, different types of
orientations to the interface can be studied. We only report the results from the
“wedge”-initialized simulations, with indole cutting into the surface with its benzene

Figure 9-5. The solvent shift distributions for (a) the two absorption transitions and (b) the two fluores-
cence transitions in indole at the air–water interface
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side pointing towards the air. To start with the absorption transitions, S0 → Lb and
S0 → La , they have the same qualitative behaviour as the transitions in bulk, that is,
a tiny shift of S0 → Lb, on account of the similar interactions with the solvent of the
two states, and a red-shift of S0 → La , on account of the stronger interactions the
final state has with the solvent compared to the initial state. Quantitatively, the results
for the S0 → La transition are somewhat surprising: The shift for the same transi-
tion in aqueous bulk is −0.11 eV, which is smaller in magnitude than the −0.18 eV
which is the shift in the interface simulation. Since, by definition, the shift is zero
sufficiently far away from the water phase into the air, we can from these numbers
conclude that the shift does not monotonously decrease as indole approaches the
surface. For the fluorescence, the shift at the surface is more or less the same as
in the bulk: −0.57 eV for the former environment, −0.58 eV for the latter. From
an analysis of the electric potential over the molecule in the different environments
and states, it is concluded that the interactions at the surface can be understood from
two counter-acting effects: a dielectric depletion and an interface-specific effect. The
former effect is expected and originates from the fact that there is less polar media
present to respond to and interact with indole. It acts to decrease the shift. We identify
the latter effect, which hence acts to increase the shift at the surface, to derive from
stronger hydrogen bonds at the interface. In the bulk, there is a lot of water present
to bind with, and hence the hydrogen bond formed between indole and water is not
as strong as it can be, while at the surface there is a stronger bond formed since less
water is present. Both the ground and the La state are stabilized by this, although
the latter more, since it can form the strongest hydrogen bonds of the two states, as
shown by supermolecular calculations of the indole–water dimer. As a consequence,
this effect will act to increase the magnitude of the shift for both the S0 → La and
the La → S0 transitions. It should be noted that previous simulations studies, and
more recently experiment, have also shown that water at hydrophobic surfaces forms
stronger hydrogen bonds [180,181,182,183,184,185,186,181187].

As a final note, we point out two special advantages of QMSTAT for this study.
First, to study the fluorescence, the solvent configurations have to be sampled with
the solvent interacting with the excited state of indole. The sequential approach
would require classical force-field parameters valid for excited states, which are
more difficult to obtain. In QMSTAT, this is not a problem. Second, the nature of the
excited state in this study is an issue. With QMSTAT, the solute–solvent interactions,
the solvent configurations and the properties of the excited solute are coupled, and
hence the nature of the excited state is not assumed, in any instance, but follows from
the simulation.

9.4. SUMMARY

The discrete effective quantum chemical solvent model QMSTAT has been presented
in detail, in its present formulation. The presentation emphasizes the connection be-
tween the quantum chemical model, the intermolecular interactions and the statistical
mechanical description, which exists in any quantum chemical solvent model. In
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QMSTAT the redundancy of some standard quantum chemical methods is reduced
to obtain compact basis sets for both the HF method and a state-based multicon-
figurational method similar to CASSCF. This is achieved by a few calculations,
which precede the actual simulation; the subsequent simulation then proceeds with
much less computational effort compared to what had been the case without such
preparations. This enables QMSTAT to solve the statistical mechanical problem with
the hybrid approach, which is exact in the limit of infinite sampling. Consequently,
there is special focus on the statistical mechanical side of the solvation problem in
QMSTAT, and in situations where the quantum chemical solution is strongly coupled
to the statistical mechanical solution and vice versa, such as in the solvation of the
monatomic ions and indole, described above, QMSTAT is expected to be a good
choice. The use of a non-electrostatic perturbation to model the Pauli effects is also
fairly unique in this context, although it has been used in other instances of molecular
modelling. Early theory on solvochromism and simulations of simple systems has
commented on the influence the modified repulsion between solute and solvent has
upon an instantaneous transition in one-photon spectroscopy. QMSTAT is hence able
to include some of these effects.
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8. Engkvist O, Åstrand P-O et al. (2000) Chem Rev 100:4087–4108
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113. Löwdin P-O (1955) Phys Rev 97:1474–1489
114. Davidsson ER (1972) Rev Mod Phys 44:451–464
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122. Öhrn A, Karlström G (2007) J Chem Theory Comput 3:1993–2001
123. Karlström G (1981) In: VanDuijnen PT, Nieuwpoort WC (ed) Proceeding of fifth seminar on Com-

putational Methods in Quantum Chemistry, Laboratory of Chemical Physics, University of Gronin-
gen, Groningen, The Netherlands, p 353

124. Stone AJ (1981) Chem Phys Lett 83:233–239
125. Stone AJ, Alderton M (1985) Mol Phys 56:1047–1064
126. Stone AJ (2005) J Chem Theory Comput 1:1128–1132
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CHAPTER 10

MOLECULAR DYNAMICS SIMULATION METHODS
INCLUDING QUANTUM EFFECTS
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Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University
of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria, e-mail: Bernd.M.Rode@uibk.ac.at

Abstract: The progress of computational chemistry in the treatment of liquid systems is outlined,
and the combination of the statistical methods (in particular molecular dynamics) with
quantum mechanics as the main foundation of this progress is emphasised. The diffi-
culties of experimental studies of liquid systems without having obtained sophisticated
theoretical models describing the structural entities and the dynamical behaviour of these
liquids demonstrate that chemistry research is in a transition phase, where theory and high-
performance computing have not only become a valuable supplement, but an essential and
almost indispensable component to secure a correct interpretation of measured data in
solution chemistry

Keywords: Statistical simulations, Structure of liquids, Picosecond dynamics, Ab initio simulation
methods, QM/MM simulations, QMCF MD simulations

10.1. INTRODUCTION

As most chemical and virtually all biochemical processes occur in liquid state, sol-
vation of the reaction partners is one of the most prominent topics for the determina-
tion of chemical reactivity and reaction mechanisms and for the control of reaction
conditions and resulting materials. Besides an exhaustive investigation by various
experimental methods [1,2,3], theoretical approaches have gained an increasing im-
portance in the treatment of solvation effects [4,5,6,7,8]. The reason for this is not
only the need for sufficiently accurate models for a physically correct interpretation
of the experimental data (Theory determines, what we observe!), but also the lim-
itation of experimental methods in dealing with ultrafast reaction dynamics in the
pico- or even subpicosecond regime. These processes have become more and more
the domain of computational simulations and a critical evaluation of the accuracy
of simulation methods covering experimentally inaccessible systems is of utmost
importance, therefore.

On the other hand, even simulations by the relatively crude force field methods
already reveal the striking influence of solvation phenomena, for example, when
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structure and dynamical transformations of simple oligopeptides are studied in vacuo
and embedded in water: the strong differences become visible within picoseconds of
the simulations, clearly proving the necessity of considering solvent effects in the
determination of biopolymer structures. Therefore, it should also be obvious that
crystal structures of such compounds cannot be expected to reflect the structures
actually present in their biological environment.

When dealing with biological processes, ions constitute an essential foundation
of numerous vital processes, particularly in the formation of electrical and osmotic
equilibria controlling cell chemistry [9,10,11]. Numerous ions display strong toxic
effects and their similarity or difference to the biologically important ions is the basis
for understanding their noxious effects. Especially metal cations are important in
this context, and these ions show enormous differences in their solvation effects, e.g.
exchange rates varying within more than 20 orders of magnitude [3]. Most of the
biologically important metal ions’ solvent exchange rates correspond to extremely
fast processes with mean lifetimes of solvated species below the nanosecond range
and thus beyond most of the experimental capabilities and are, consequently, a real
challenge for computational theoretical methods. Such ultrafast exchange processes
cause a simultaneous presence of several solvated species with different composi-
tions and different structures, and the interpretation of the reactivity of such ions has
to consider this multispecies presence – and any experimental investigation which
can only obtain a time-averaged result might not be adequate for this interpreta-
tion. However, the subtle energetic differences between these species require a very
high methodical accuracy of the simulations. A comparison of results for solvated
ions obtained by classical pair or even three-body-corrected potential simulations
immediately reveals that even structural averages might not be correctly reflected
by these approaches, and that polarisation and charge transfer effects have to be
appropriately introduced in the methodology. Investigations in the past decade have
clearly proven that only a quantum mechanical treatment of energy and forces can
provide the required accuracy for this purpose [8,12].

Even with the best computational resources available to date a complete quan-
tum mechanical treatment of a simulation box containing a solute and a sufficient
number of solvent molecules representative of a realistic liquid state is still far from
feasibility. The subsequent chapter on simulation methods will show, which compro-
mises have been sought to overcome this problem, and demonstrate the enormous
requirements of computer capacity and central processor (CP) time for simulations
at the level including quantum mechanics. A first idea of this effort can be easily
gained by the consideration of a medium-sized solvate consisting of a solute and
only one complete solvation layer (which often is not sufficient to embrace all sol-
vation effects). Assuming as example a simple anion such as phosphate, whose first
hydration layer contains between 12 and 15 water molecules, one has to deal with a
system of one third-row element, 16–19 second-row elements and 24–30 hydrogen
atoms. This system has to be embedded then in another 500–1000 solvent molecules,
for which the quantum effects could be neglected as long as a continuous transition
of solvent molecules to and from the solvate itself is properly managed. To perform a
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Monte Carlo (MC) simulation of the previously sketched solvate with a satisfactory
statistical sampling implies the quantum mechanical energy calculation of this sys-
tem in at least a few million different configurations. For a molecular dynamics
(MD) simulation with timesteps short enough to properly describe also hydrogen
movements (∼0.2 fs), a 20 ps trajectory already requires 100,000 calculations, in
this case not only of energies but also of the forces acting on all particles. In both
cases one easily arrives at CP times of several months, even using all possibilities of
parallelising the computations. The actual computation time then still depends on the
level of accuracy employed in the quantum mechanical formalism. Simplified proce-
dures such as semiempirical molecular orbital (MO) or common density functional
methods [13,14,15] and even single-zeta ab initio Hartree–Fock (HF) calculations
[16] have, unfortunately, proven not to be accurate enough to describe solvated ions
in a proper way. On the other hand, correlated ab initio methods, even at the very sim-
ple perturbational MP/2 level, are boosting computing times to a still unaffordable
extent.

At present, ab initio simulations have to be performed, therefore, with a modest
but sufficient size of the quantum mechanical part of the system, and the basis set
as well as the employed quantum mechanical level will always be a compromise
between accuracy and computational effort. However, the continuous improvement
of computer technology and theoretical concepts are shifting these limits year by
year, and an optimistic outlook to the future of simulation work is fully justified,
therefore.

The examples of applications given in the latter part of this chapter will show
that even at the present state of the art and technology, many solvated ions could be
treated with sufficient quality to obtain reliable results not only for structural details
and species distributions, but also for the aforementioned ultrafast dynamical pro-
cesses determining the chemical behaviour of such solvates. On the other hand, the
latest improvements of the simulation methodology have opened a straightforward
access to the treatment of other arbitrary solvated systems as computational capa-
bilities increase. Therefore, simulation methods are not only becoming a valuable
research field of their own, but also an essential supplement – if not prerequisite –
for the interpretation of experimental investigations of solvates.

In the following, an overview of the methodical framework of molecular dynamics
(MD) simulations will be given, which – in contrast to MC simulations – also deliver
dynamical data including rovibrational spectra. Quality, capability and limitations of
the methods will then be illustrated by a number of representative examples.

10.2. METHODOLOGIES FOR SIMULATING LIQUID SYSTEMS

Statistical simulation methods can be basically separated into two approaches. The
Monte Carlo (MC) framework [17,18,19] utilises random structural variations of
single structural units (atoms, molecules, groups, etc.) followed by an evaluation
of energies to decide whether the resulting new arrangement of atoms is accepted
or should be discarded. Sampling of molecular dynamics (MD) employs equations
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of motion [18,19,20,21] – particles are propagated according to their respective
positions, velocities and forces. Whereas only the total energy of the system is re-
quired in a Monte Carlo simulation, the forces acting on all particles have to be
evaluated in the case of a molecular dynamics study. The evaluation of these methods
is based on statistical mechanics [22].

Besides the requirement of accurate algorithms to integrate the equation of mo-
tions in MD simulations the accuracy of the forces plays a pivotal role. Methodolo-
gies to derive intermolecular forces can be divided into two main groups – molecular
mechanics (MM) or quantum mechanics (QM).

10.2.1. Molecular Mechanics

Methods relying on parametrised potential functions for the description of energy
hypersurfaces are commonly referred to as molecular mechanics (MM) or classi-
cal mechanics and these methods have a long tradition in computational chemistry.
Entire data sets of balanced potential functions and their respective parameters are
referred to as force fields [23,24,25]. The key advantage of MM methods is the low
computational demand compared to quantum mechanical computations.

In general force fields are divided into bonding and non-bonding potential contri-
butions. Bonding potentials, containing contributions such as intramolecular bonds,
angles and torsions, are not required for the treatment of hydrated ions except for
solute molecules such as water (in this case only bonding and angle contributions are
required). Non-bonding interactions, consisting of Coulombic and non-Coulombic
contributions, are mandatory for all kinds of pair interactions including ion–solvent
interactions.

The representation of chemical systems on the basis of parametrised potential
functions is by no means trivial and endless efforts have been devoted to balance
and refine the employed parameters and functions yielding a considerable number
of force fields along with various different parameter sets. These parameter sets are
aimed at distinct classes of chemical systems, basically organic compounds, nucleic
acids or proteins, whereas the treatment of compounds involving metal atoms is more
difficult.

In many previous studies [8,12] potential functions have been newly constructed
ensuring the compatibility with the parameters (e.g. partial charges) of the solvent
potentials. The first step involves the scanning of the energy hypersurface of the
respective ion–solvent interaction at an adequate ab initio level. Figure 10-1a il-
lustrates the degrees of freedom in the scanning of ion–water interactions. After-
wards the obtained data set consisting of several thousand individual interaction
points is fitted to a suitable analytical form representing the pair interaction ener-
gies (e.g. ion–oxygen and ion–hydrogen in the case of water). The analytical rep-
resentation for ion–ligand interactions in general consists of a Coulomb term plus
a set of r−n terms with n ranging from 4 to 12 and eventually an exponential func-
tion improving the description of the non-Coulombic interactions. One of the most
common representations is the 6–12 Lennard-Jones potential consisting only of two
terms, r−6 and r−12. Other suitable potential forms than those given in Eq. (10-1)
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Figure 10-1. Scheme for the scan of an ion–water (a) two-body and (b) three-body hypersurface

could be utilised as well. The choice of the partial charges qi and q j as well as
the exponents a to d is crucial – the parameters A–F are obtained from the fitting
procedure:
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(10-1)

Not every possible combinations results in an applicable potential: artificial min-
ima in the function as well as a non-physical ‘black hole’ behaviour close to the
nucleus have to be avoided by all means and thus all obtained potential functions
have to be critically evaluated. Among the valid pair potentials those showing the
lowest root mean square deviation are to be preferred. Despite this considerable ef-
fort, the accuracy of these functions is limited. Due to the fitting procedure these
pair potentials resemble the energy hypersurface in an average way. Furthermore,
polarisation and charge transfer as well as many-body effects are not considered
in this simple pair approach. One method to account for these effects in an averaged
way are polarisable interaction models [26,27,28] which vary potential parameters as
for example the partial charges along the simulation. Another possibility is the im-
plementation of hydrated ion models – atoms residing in the close vicinity of the
ion are treated with different interaction potentials than those atoms located in the
bulk. In general particles are not allowed to exchange between the different regions,
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however, preventing the evaluation of short time dynamics such as mean residence
times.

Another frequently used possibility is the construction of three-body potentials
correcting the pair interaction potentials with respect to three-body terms. In anal-
ogy to the case of pair potentials a scan of the energy hypersurface has to be carried
out by varying degrees of freedom (see Figure 10-1b for an ion–water–water scan).
Naturally, the number of interaction points required for a representative sampling is
considerably higher than in the case of pair interactions. In general tens of thousands
of different configurations need to be calculated. The deviation between the energy
resulting from the previously constructed pair potential and the interaction energy
based on the three-body QM calculation is fitted to an adequate analytical represen-
tation. Again, the parameters A–E are obtained via the fitting procedure; rcut is a
suitable cutoff distance beyond which three-body effects become negligible:
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The construction of four-body correction potentials is even much more complex
and as four-body terms have only small contributions to the total interaction energy
are rarely performed. Therefore, only two-body potentials and eventually a three-
body correction are utilised in the majority of classical simulations.

However, it has been shown that despite the tedious effort devoted to the con-
struction of potential functions the results of classical simulations are error prone and
often fail to predict even crude properties of hydrates such as coordination numbers
and, therefore, related properties such as species distributions and geometries.

It has been shown that shell models are capable of improving the description,
but other shortcomings like the lack of exchange of ligands between the different
potential regions restrain the simulation. Polarisable models on the other hand take
into account only polarisation effects, while the non-Coulombic contributions remain
unchanged.

10.2.2. Quantum Mechanics

An alternative to the molecular mechanical approach is the quantum mechanics (QM)
framework. Much of work has been devoted in the past decades to establish and
improve QM methodologies ranging from simple semiempirical methods to high-
level correlated ab initio methods [20,21,29]. The substantial advantage of quantum
mechanical calculations is the inclusion of all n-body effects, including charge trans-
fer and polarisation. Furthermore, bonds are automatically formed and broken as
necessary along the simulation.

The main disadvantage of QM methods is the associated complexity of the the-
oretical framework: the electronic Schrödinger equation can only be solved in a
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numerical way for many-electron systems. A variety of computational methods is
available nowadays showing different levels of accuracy which are strongly cor-
related to an enormous computational demand. Non-experts are likely to get lost
among the different possibilities and instead of selecting appropriate methods, ex-
ecute computations in a black box manner implicitly assuming the results to be
reliable. Although the use of high-performance computing clusters for quantum me-
chanical computations is quite common, the number of particles and, therefore, the
treatable system size is still limited–depending on the level of accuracy–between
a few to one hundred atoms. A full ab initio treatment of even a small simulation
box with a few hundred molecules is not feasible today and compromises between
accuracy and computational effort have to be sought.

Simple studies reduce the system size to one full layer of hydration and so-called
polarisable continuum models (PCM) are utilised to model the influence of the
surrounding solvent [30]. Mostly geometry optimisations are carried out and conclu-
sions are drawn based on energetic and geometric properties of the optimised com-
plex [31]. The computational effort is considerably lower than a treatment including
explicit solvent and so is the quality of results. First, the optimised structures corre-
spond to an environment at 0 K thus neglecting all effects of entropy which is known
to be one of the most crucial parameters determining solution chemistry. Thus, the
comparison of structures showing different energies and geometries is likely to be
misleading–for example species distributions within the hydration shells of hydrated
ions cannot be discussed only on the basis of energetic data. Furthermore, polarisa-
tion effects are not incorporated in a proper way by most PCM methods as surface
effects of the electron density cannot be excluded. Considering the influence of the
nearest neighbour atoms (in this example the second hydration shell) it is obvious
that the distribution of the atoms and, therefore, the resulting potential is inhomo-
geneous, while PCM accounts for an homogeneous influence of the surrounding
solvent. Thus, the inclusion of a complete second hydration layer will improve the
overall description of the electron density, but results in a substantial increase of
the computational effort as well as in a more complicated sampling of the energy
hypersurface. Point charge embedding in combination with a PCM appears to be a
substantial improvement but will also complicate the treatment of the hypersurface.

Car–Parrinello (CP) type simulations [32] achieve the necessary compromise be-
tween effort and accuracy by reducing the number of particles as well as the simu-
lation time on the one hand and by the employment of simple generalised gradient
approximation density functionals such as PBE [33,34] or BLYP [35] on the other
hand. In the case of hydrated ions the reduction of the number of solvent molecules is
in many cases chosen too low to properly hydrate the ion and to reflect the surround-
ing bulk liquid. The reduction of the simulation time is sometimes at the expense of
a proper equilibration period.

Although CP MD are often referred to as ‘first principle’ or ab initio simulations,
this notation is highly questionable. Recent discussions [36,37,38,39] of the underly-
ing density functional theory have concluded that present implementations utilise too
many approximations and exhibit severe physical shortcomings like self-interaction
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or a wrong description of the kinetic energy, thus rather justifying the classification
as semiempirical methods and that a substantial revision of DFT methods has to be
carried out to truly claim the ab initio status for these methods.

Another frequently used approach to reduce the computational effort is the hy-
brid quantum mechanical/molecular mechanical (QM/MM) framework which will
be discussed in more detail below.

10.2.3. The Quantum Mechanical/Molecular Mechanical Scheme

In the QM/MM approach [40,41,42,43,44], the chemically most relevant subregion
is treated by quantum mechanics while the remaining part is described by molecular
mechanics potential functions. While the treatment of the subregions is straight-
forward, the coupling between the different zones is challenging, especially when
molecules are exchanged or bonds are cut by the QM/MM interface. In general, much
larger elementary boxes than in CP studies can be employed and the theoretical level
of the quantum mechanical treatment is not restricted to simple density functionals –
basically every affordable ab initio level can be applied in the treatment of the QM
region.

The evaluation of interactions between particles inside and outside the quantum
mechanical region is usually achieved on the basis of molecular mechanics, i.e.
by the application of parametrised potential functions. Thus, parameters for partial
charges and non-Coulombic interactions are required for all QM particles although
these species are treated by quantum mechanics. The construction of these func-
tions is a time-consuming and tedious task requiring the evaluation of thousands
of solute–solvent interaction points, which afterwards have to be fitted to an ana-
lytical representation in agreement with all other MM functions like the solvent–
solvent interactions. As mentioned earlier the accuracy of these functions is in many
cases insufficient for the treatment of polarisable compounds such as solvated ions
[4,5,6,7,8]. Sometimes these insufficiencies can be partially compensated by the
inclusion of correction potentials as discussed above, but the accuracy is still not
always satisfactory.

Today QM/MM methodologies are well-established tools and their applications
are versatile and flexible. This framework is utilised in a variety of computational
studies, typical examples are investigations related to solution chemistry [8] as well
as the treatment of active sites of biomolecules [45]. Although the quantum mechan-
ical effort is very high, increased accuracy and the ability to form and break chemical
bonds as needed are the key feature for the implementation of this method. A variety
of approaches have been described to realise the coupling between the high- and
low-level regions [40]. One of the most prominent approaches is the ONIOM method
(Our-own N-layered Integrated molecular Orbital and Molecular mechanics) [46,47],
which allows to divide the system into an arbitrary number of layers each treated at a
different level of theory. Typically the level of accuracy is decreasing when moving
from the inside regions to the outside ones.
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It was realised from extended QM/MM MD simulations (including first plus
second hydration shells of an individual ion) [7,48,49,50,51] that the non-Coulombic
contribution of the solute–solvent potential is negligibly small at the increased size
of the quantum mechanical region (approximately a radius of 5–6 Å) and can be
omitted, therefore. However, point charges are still required for the evaluation of
Coulombic interactions. Results of the extended QM/MM MD simulations have in-
dicated that the assignment of fixed partial charges as typically done in force field
studies might be inappropriate in the case of highly polarising ions. For example
an assignment of a +3 charge to Al(III) results in artefacts near the QM/MM bor-
der [50]. Although the QM treatment accounts properly for polarisation effects this
information is not available in the MM treatment. A distinct ‘pressure’ of the MM
particles onto the QM region occurs. The derivation of partial charges by population
analysis during the simulation based on the molecular orbitals not only accounts for
all polarisation effects but also gives the opportunity to adapt the partial charges
to all structural changes occurring as the simulation proceeds. For example in the
case of Al(III) the effective charge ranges from +2.0 to +2.5 units depending on the
respective population analysis scheme and the current geometry of the system.

Finally, the inclusion of MM data into the QM region appears desirable so that
the quantum mechanical treatment is ‘aware’ of its surrounding, i.e. the bulk of a
liquid in its momentaneous structure. These so-called electrostatic embedding tech-
niques [40,52,53] have been frequently employed in various quantum mechanical
studies. Partial charges of the MM atoms resembling the chemical surrounding can
be included as a perturbation part of the Hamiltonian, thus allowing the molecular
orbitals to adapt to the surrounding potentials – otherwise surface effects resulting
from a virtual vacuum environment are likely to cause artefacts near the QM/MM
border.

These three critical points, namely the neglect of non-Coulombic contributions for
solute atoms, a fluctuating charge distribution of the QM particles and electrostatic
embedding of MM partial charges, lead to the formulation of the quantum mechani-
cal charge field (QMCF) ansatz [54] which has been applied in molecular dynamics
studies of various hydrated systems, recently.

The details of the QMCF methodology will be outlined in the next section. The
embedding of MM partial charges will be discussed in more detail as the application
of this technique in connection with the periodic simulation environment is by no
means straightforward.

10.2.4. The Quantum Mechanical Charge Field Framework

10.2.4.1. The charge field approach

Similar as in all hybrid QM/MM methods [41,42,43,44] the system is partitioned
into two subregions, the QM region centred on the chemically most relevant region
and the MM zone containing the remaining part of the system. While the treatment
of interactions within the subregions is the standardised application of the respective
theoretical level, the coupling between the regions is rather complex.
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In order to renounce all non-Coulombic solute–solvent potentials during the
QM/MM coupling it has to be ensured that the distance between the interacting
species and thereby the distance to the QM border is sufficiently large: all non-
Coulombic interactions are beyond the non-Coulombic cutoff distance (see particle
A and B in Figure 10-2a). Therefore, the QM region should contain at least two
full layers of ligands, for example first plus second hydration shells in the case of a
hydrated ion or a composite system like [Fe(CN)6]3/4+ or PO3−

4 plus one full layer
of water. Ligands close to the QM/MM intersection (Figure 10-2a particle C) do not
fulfil this condition and, therefore the non-Coulombic potentials have to be applied
in any case which is referred to as ‘potential embedding’.

Consequently, the QM zone is split into two subregions in order to distinguish
between the respective species (cf. Figure 10-2b). The inner region has been termed
‘QM core’, the outer zone ‘QM layer’. The main difference between these regions
is the application of non-Coulombic interaction potentials–particles located in the
‘QM core’ area are not subject to potential embedding. In many cases first shell
ligands are allowed to be included in this region (particle B in Figure 10-2a) as
the cutoffs for the non-Coulombic interaction potentials are sufficiently small (e.g.
a few Ångström in the case of the BJH-CF2 water model [55,56]). The only data
required to account for the QM/MM coupling are partial charges which may be as-
signed to the different species as fixed charges at the beginning of the simulation, or
preferably on the basis of the electron density obtained from the quantum mechanical
treatment by performing a population analysis in every step of the simulation. As the
only interaction between ‘QM core’ and MM particles is represented by Coulombic
charge contributions (plus any optional long-range corrections for the Coulombic
cutoff such as Ewald summation or reaction field schemes) this feature is considered
as the ‘charge field approach’ in the framework of the ‘quantum mechanical charge
field’ ansatz [54].

Figure 10-2. (a) The non-Coulombic interactions of particles A and B may be renounced due to the size
of the QM region. Particle C is located too close to the QM/MM border, hence non-Coulombic potentials
have to be applied. (b) Definition of the “QM core” and “QM layer” region



Molecular Dynamics Simulation Methods 257

One crucial condition is that no solute species is leaving the ‘core region’, where
no non-Coulombic potential data are supplied. Otherwise the particles would come
too close to the QM/MM border and the charge field approximation will not be ful-
filled anymore.

To evaluate the Coulombic interactions between QM (i.e. core and layer) and
MM particles point charges have to be supplied and the respective energy and force
contributions are calculated according to Coulomb’s law. The simplest way is to
assign predefined partial charges to all QM species. The assignment of too high
charges like +3.0 unit charges in the case of Al(III) or +2.0 for Zn(II) resulted in an
artificial behaviour in QM/MM transition region. Alternatively, partial charges can
be derived on the basis of the electron density obtained from the QM calculation. This
latter method accounts for all charge transfer, polarisation and many-body effects as
well as for any change in geometry for example by rovibrational motion or ligand
exchange reactions. Therefore, the latter method has been chosen as standard in the
QMCF methodology.

10.2.4.2. Electrostatic embedding and the periodic box

The electrostatic embedding of MM partial charges as a perturbational potential in
the Hamilton operator is a frequently used method to account for Coulombic inter-
actions between QM atoms and MM point charges. As the respective potential con-
tributions influence the quantum mechanical calculation and by that the molecular
orbitals and the associated electron density, this approach is rated superior compared
to a Coulombic interaction model utilising fixed partial charges.

The main objective of point charge embedding is the incorporation of an external
field of partial charges (a charge field) into the quantum mechanical treatment in
order to modify the molecular orbitals accordingly. Negative point charges repel the
density while positive charges will result in an attraction. Figure 10-3b illustrates
the difference of the total electron density in an Al(III) water complex including
first plus second hydration shells with and without point charge embedding. Both
hypersurfaces utilise the same threshold value, thus the total volumes are equivalent.
In general the hypersurface of the calculation without embedded point charges (dark
hypersurface) dominates, while the density with embedding (bright hypersurface)
remains hidden except for distinct regions, demonstrating the influence of the ex-
ternal potential. For example MM partial charges of oxygen atoms with negative
values located in the vicinity of QM hydrogen atoms result in a shift of the density
away from the oxygen resulting in an improved description of hydrogen bonding –
a subsequent population analysis thus yields higher partial charges of the respective
hydrogen atoms. Thus, the description of the QM/MM coupling has been substan-
tially improved.

The inclusion of point charges is achieved by adding the contributions of all MM
point charges as a perturbational potential term V̂PC to the electronic Hamilton oper-
ator Ĥ el:

Ĥ el
PC = Ĥ el + V̂PC (10-3)
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Figure 10-3. (a) The QM region (indicated by a sphere) surrounded by MM point charges. (b) Schematic
electron density of an Al(III) water cluster with (bright surface) and without (dark surface) point charge
embedding
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with M being the number of all MM point charges, n the number of electrons and N
the number of QM nuclei. It can be deduced from Eq. (10-4) that the contributions of
the nuclei–electron interactions and the electron–point charge interactions are simi-
lar: while in the first case the respective nuclear charge is employed in the latter case
effective atomic charges are applied representing the electron population of the MM
particles. Both contributions are included together with the kinetic energy operator
in the core Hamiltonian ĥcore

PC which corresponds to the one-electron contributions:

ĥcore
PC = −1

2
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∇̂2 −
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N+M∑

J=1

qJ

ri J
(10-5)

As these contributions only involve the coordinates of one particular electron in
the operator they are less demanding with respect to the computational effort and
hence the embedding procedure does not significantly extend the computing time. A
significant shortcoming is that common implementations do not distinguish the point
charge energy contributions from the electron–nuclei energies and thus the respective
amounts cannot be directly accessed from the computations.

The evaluation of forces is straightforward as well. The forces acting on the QM
atom A are defined as the negative derivative of the energy expectation value 〈E〉
with respect to the nuclear geometry xμ for all directions of space (μ = 1, 2, 3
corresponding to the x,y,z axes):

FAμ
= −�〈E〉

�xAμ

= −�〈�|Ĥ el
PC|�〉

�xAμ

= −
�〈�| · · ·∑n

i=1
q1

ri1
· · · |�〉

�xAμ

(10-6)
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The interaction between a particular point charge (e.g. point charge q1) and the
QM atom A can be deduced by separating the respective operator from the force
expression:

FA1μ
= −F1Aμ

= −
�〈�|∑n

i=1
q1

ri1
|�〉

�xAμ

(10-7)

To obtain the total force acting on an embedded particle (i.e. an MM particle)
the sum of forces between the particular point charge and all QM atoms has to be
evaluated as implemented in many quantum chemistry program packages:

F1μ
= −

N∑

J=1

F1Jμ
= −

N∑

J=1

−�〈�|∑n
i=1

q1

ri1
|�〉

�xJμ

(10-8)

Thus, all force components resulting from the embedding technique can be ob-
tained conveniently from the quantum mechanical calculation.

Despite the promising performance of this ansatz some shortcomings were recog-
nised. Figure 10-4a demonstrates the influence of the simulation box on the distribu-
tion of the point charges. The QM region is not homogeneously surrounded by MM
particles and thus, the box shape is likely to affect the QM calculation. Furthermore,
no distinct cutoff can be applied for QM particles (see Figure 10-4b). The defini-
tion of an arbitrary cutoff region centered at a particle of choice (for instance the
QM center or particle A) will automatically result in a wrong cutoff region for all
other QM atoms. MM charges which would have been included are missing while
others that should not be taken into account are incorporated in the QM treatment.
These inconsistencies in the definition of distinct cutoff regions have some negative
consequences. Important corrections for the neglect of long-range interactions like
Ewald summation or reaction field methodologies cannot be applied because the MM
point charges acting on a particular QM atom are not restrained by a distinct cutoff
distance.

However, the treatment of forces in combination with embedding results in even
more serious errors. Figure 10-4c displays the interaction of the QM atoms A and
B with the partial charge 1. While the evaluation of forces is coherent for particle
A, the interaction is wrong for atom B. According to the minimum image conven-
tion particle B should interact with the point charge 1’, the periodic image of point
charge 1, to ensure the correct treatment of the continuum structure with respect to
the periodic boundary condition. This has a critical impact on the forces: the distance
to particle 1’ is lower than to particle 1, resulting in different values of the respective
force. The second shortcoming namely the different orientation of the forces is the
most serious error encountered in this embedding scheme, as it results in uncontrol-
lable artefacts for all occurring interactions, and discontinuities of forces will occur
whenever MM particles are imaged after moving through the simulation boundaries.
Hence, the simulation will not correspond to an equilibrium state.
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Figure 10-4. (a) Inconsistency in embedding due to the shape of the simulation box. (b) Desired regions
for the application of long-range electrostatic corrections. (c) Violation of the minimum image convention
for particle B. (d) Extended embedding region for separate treatment of QM forces. (e) Coulombic forces
for separate treatment of MM forces

One pragmatic way to deal with this problem is to separate the treatment of the
Coulombic interactions for QM and MM particles. As reaction field and Ewald
summation methods cannot be applied due to the inconsistencies encountered in
the definition of distinct cutoff regions, the inclusion of all point charges and their
respective images – thereby significantly extending the embedding region beyond
the box (see Figure 10-4d) – is a valid approach to correct the forces for the QM
particles. The resulting excess of point charges can be compared to a simplistic form
of a long-range correction – the larger the excess the better the correction. A suitable
distance to ensure that all relevant MM charges of a respective QM atom are in-
cluded is the size of the Coulombic cutoff, thus the radius criteria defining the cavity
to include point charges is rQM plus rCoulomb (see Figure 10-4d). A too large point
charge distance cutoff would include images of the QM atoms as MM point charges.
Employing a sufficiently large simulation box compared to the size of the QM region
and the Coulombic cutoff distance should prevent this situation, however. To further
improve the description of the QM forces the entire system can be treated as cavity
within a polarising field of a surrounding medium applying a polarisable continuum
model.

To obtain the interaction of the MM particles a population analysis is carried out
yielding charges for the QM atoms. The energy and force contributions are then
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calculated according to Coulomb’s law allowing the application of the minimum
image convention as well as shifted cutoffs and associated long-range correction
methods (see Figure 10-4e). Application of this scheme eliminates all inconsistencies
encountered in the derivation of forces, although at the cost of a separate treatment
of the Coulombic forces.

The application of the methodology outlined results in stable simulation trajecto-
ries, but due to the separate treatment of the Coulombic interaction for QM and MM
atoms, a violation of the conservation of momentum occurs. In general the forces
between a particular QM atom and an MM particle show different absolute values
due to the different treatment of Coulombic forces:

|F1A| �= |FA1| (10-9)

and hence, the sum of forces over all Ntotal atoms is not conserved.

Ntotal∑

i=1

Fi �= 0 (10-10)

After the execution of an MD timestep a rise of the total linear momentum occurs
and the resulting configuration has to be considered a non-equilibrium state:
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mi · vi

)

(10-11)

As the forces are in general not conserved the momentum rises along the sim-
ulation until artefacts occur (e.g. artificial diffusion effects) and the simulation has
to be aborted. The amount of total momentum required to destabilise a simulation
strongly depends on the system. While strong hydrates like Al(III)(aq.) are almost
unaffected, weakly interacting systems like pure water or hydrated monovalent ions
are very sensitive to these inconsistencies.

An alternative solution to this problem is to apply the force obtained by
Coulomb’s law to both the QM and the MM counterparts, but then the embedding
of MM charges has to be discarded as otherwise the Coulombic contributions for the
QM atoms would be treated twice. On the other hand the improved description of the
electron density makes the embedding technique a desirable feature. Therefore, an
embedding scheme has to be sought which on the one hand allows the inclusion of
the point charges to improve the quantum mechanical description, but on the other
hand does not show any inconsistencies in the derivation of forces or with respect to
momentum conservation.

10.2.4.3. A general electrostatic embedding scheme for QM/MM simulations

To derive an embedding scheme compatible with an application in a periodic envi-
ronment the properties of the embedding technique and the QM calculations have
to be recalled. Partial charges are included in the Hamiltonian as outlined in the
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previous section. Upon execution of the QM calculation the molecular orbitals are
formed according to the external potential. However, as any derivation of forces vi-
olates basic conditions of the periodic environment, embedding of partial charges
cannot be applied to molecular dynamics studies. One possibility to overcome this
limitation is to include MM point charges during the energy calculation, thereby
modifying the molecular orbitals, but to discard the embedding while computing the
forces acting on the QM nuclei. The forces are derived utilising the improved MOs,
thus retaining the advantage of the embedding technique to improve the quantum me-
chanical treatment and, thereby, the forces acting on the QM atoms and their respec-
tive partial charges. Naturally, the sum of forces equals zero for this subset of forces.

The derivation of consistent forces between QM and MM particles is performed
by calculating QM charges for the respective atoms employing a suitable population
analysis scheme and subsequent evaluation according to Coulomb’s law. Utilising
this approach all essential requirements of the periodic environment like the mini-
mum image convention and the application of suitable cutoff techniques are retained.
As the Coulombic forces are applied to both the QM and MM particles no violation
of the conservation of momentum occurs. As a further important feature of this ap-
proach the long-range corrections like Ewald summation or reaction field methods
compensating the cutoff applied to the Coulombic interactions can be easily applied
without any special modifications.

The implementation of this methodology proved to eliminate the errors associated
with the force inconsistency of the Coulombic charge interactions. One critical step
in the application of this technique is the choice of a proper population analysis
scheme. Simple test computations can indicate which of the many schemes is suitable
for a specific problem.

The only drawback of this methodology is a problem in the energy data obtained
from the quantum mechanical computation. As the initial computation of the energy
and the associated molecular orbitals is performed including the embedded partial
charges, the total energy contains electron-point charge and nuclei-point charge con-
tributions. While the latter are usually given as distinct output in various program
packages, the potential energy contribution to the one-electron energy is usually not
separated into electron-nuclei and electron–point charge interactions, but as the main
target of these computations are the internuclear forces, this shortcoming is less prob-
lematic. If, however, exact energies are mandatory an additional energy evaluation
utilising the previously generated MOs as starting guess has to be performed with-
out embedding of charges. The molecular orbitals of this final computation have to
remain unmodified – even a single SCF step would modify the orbitals according
to the vacuum surrounding the QM region. Most program packages can be forced
to calculate energies without modification of the MOs by requesting only a single
energy iteration. The thus obtained energy corresponds to the QM energy employing
the starting orbitals without the contribution of the embedded point charges. Since
even a single self-consistent field (SCF) cycle modifies the MOs this optional en-
ergy evaluation has to be carried out after the force calculation and the population
analysis.
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10.2.5. Implementation of Consistent Embedding
in the QMCF MD Approach

The implementation of the previous considerations in the quantum mechanical
charge field ansatz combines the outlined schemes of the charge field approach and
the electrostatic embedding technique. According to the classification of the different
regions (core, layer, MM region; see Figure 10-1b), different force expressions can be
defined. The force acting on the particle J in the core region Fcore

J can be derived as

Fcore
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The first contribution FQM
J correspond to the force component obtained from

the quantum mechanical treatment (with embedding of partial charges enabled in
the energy step as outlined in the previous section). The second part accounts for the
Coulombic interactions between particle J and all MM atoms (M) according to their
respective partial charges. While the partial charges of the MM particles are defined
by the employed MM model, a population analysis is utilised to derive QM point
charges as discussed above. The reaction field method was utilised in this example
to correct the error associated with the cutoff of the Coulombic interactions which
corresponds to the second part of the Coulombic expression. This method accounts
for the influence of the surrounding medium beyond the cutoff distance rc according
to the respective dielectric constant ε. Alternatively, an Ewald summation schemes
could be applied as well [57].

The force on a particle J located in the layer region is similar to that of the core
region, however, an additional force contribution resulting from the non-Coulombic
interactions FnC

I J between the layer and the MM atoms has to be taken into account:
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Finally, the forces on a particle J located in the MM region are given by the
following expression:
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The first sum corresponds to the interaction of particle J with all (M – 1) MM
atoms based on classical models. The associated force FMM

IJ is in general composed
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of Coulombic (including the long-range electrostatic corrections), non-Coulombic
and intramolecular force field contributions. The second sum corresponds to the
charge field interaction with all core (N 1) and layer (N 2) atoms. The respective
force contributions are equivalent to the Coulombic forces applied to the QM atoms
and hence, force consistency and momentum conservation of these contributions is
achieved. Finally, the non-Coulombic forces between particle J and all layer atoms
(N 2) have to be taken into account. Again, the equivalent force contributions as for
the QM atoms are employed, ensuring no violation of the total linear momentum
results from these coupling contributions.

The implementation of these force definitions in a molecular dynamics framework
is straightforward: after the identification of QM and MM particles (for example
based on the centre of mass of the respective molecules) the quantum mechanical
treatment is carried out according to the general embedding methodology. After the
derivation of QM energies, forces and partial charges, the MM and coupling contri-
butions have to be evaluated and the derived forces are applied in the integration step
of the MD framework. As solvent molecules are included entirely in either the QM
or MM region, no bonds are cut by the QM/MM boundary.

A special treatment is necessary whenever particles are to be exchanged between
the QM and MM region, however. In this case a smoothing procedure has to be
applied to ensure a continuous transition of forces upon the migration of molecules
between the QM and MM region. To ensure that no artefacts related to the molecular
geometry occur during this smoothing procedure, the MM treatment of the molecules
should account for intramolecular motions. Therefore, the application of flexible
models for solvent molecules like the BJH-CF2 water model [55,56] appears to
be mandatory in hybrid QM/MM simulations allowing the exchange of molecules
between QM and MM regions.

A small smoothing layer at the QM/MM transition region is defined. The forces
of all particles in this region are evaluated twice, first as a layer atom and once more
as if the particle were already part of the MM region:

F smooth
J = S(r ) ·

(
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J − FMM
J

)
+ FMM

J (10-15)

To ensure a continuous transition between the QM and MM region a smoothing
factor is derived for all particles of the respective molecule, based on the centre of
mass, shifting the weight continuously from the QM to the MM force component.

The smoothing factor S(r ) is defined by a continuous function gradually increas-
ing from zero to one:

S(r ) = 1, for r ≤ r1
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S(r ) = 0, for r > r0

(10-16)
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r is the distance of a given solvent molecule’s centre of mass from the centre of the
QM region, r0 the radius of the layer region and r1 the inner border of the smoothing
region. A thickness of 0.2 Å is usually employed as this value was found to be the
minimum distance to ensure smooth transitions of solvent molecules. This method is
the simplest and least demanding smoothing procedure. The forces of the exchang-
ing particles are continuously changed from the QM to the MM force, although this
treatment results in a slight violation of momentum conservation. Considering the
computational cost of a quantum mechanical simulation compared to a classical one,
this deviation is too small to have a noticeable effect within a feasible simulation
time. Too large smoothing areas (for example a thickness of 0.5 Å) have been found
to result in a significant violation of momentum conservation [58], however. In or-
der to renounce these slight inconsistencies more complex smoothing schemes have
been derived which, however, require more than one force evaluation within one
timestep. This appears to be too much effort as the quantum mechanical calculation
time is dramatically boosted without a real improvement of accuracy, at least from
the practical point of view.

The usual framework of MD simulations [18] like periodic boundary condition,
minimal image convention, shifted-cutoffs, long-range force corrections (in this case
by the reaction field method), thermostatisation and a sufficiently large number of
solvent molecules is maintained and ensured that the system corresponds to liquid
bulk. A significant number of particles has to be included in the QM region to uphold
the charge field approach for the core species, which increases the computational
effort significantly, but the continuous and rapid progress of computing facilities will
allow the broad application of this methodology to ever larger systems in solution.

Besides the improved description of the electron density associated with the point
charge embedding technique, the neglect of non-Coulombics due to the charge field
approach has a significant impact on the applicability of the QMCF MD framework
to chemical systems. The following examples demonstrate the practical aspects and
flexibility of this methodology in the treatment of composite systems, which would
require complex potential functions in conventional QM/MM methodologies.

10.3. RESULTS OF QMCF MD SIMULATIONS

The first test cases of the QMCF MD methodology focused on the re-evaluation of
hydrated ions which had already been investigated by conventional QM/MM MD
simulations. Although the data obtained from these investigations have been in good
agreement with experimental studies, a further improvement in the description of
these systems was expected upon application of the QMCF MD methodology, es-
pecially in the region close to the QM/MM border. The details of the simulation
protocol as well as the basis sets for the quantum mechanical treatment were the
same as applied in the QM/MM MD studies [50,51].

Due to the extended size of the quantum mechanical region required for an ab ini-
tio QMCF MD simulation the only presently feasible quantum mechanical treatment
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is the single determinant level, and thus the Hartree–Fock level was applied in all
simulations. Density functional theory is less appropriate in the case of hydrated
ions as the methodically inherent unphysical self-interaction is expected to be large
in the case of polarising systems like hydrated ions. On the other hand, compared to
the considerably large solute–solvent interaction energies the influence of electron
correlation can be considered minor. Simple test calculations of ionic clusters at dif-
ferent levels of theory have supported these conclusions [13,50,59,60,61,62,63,64],
and QM/MM MD simulations employing different density functionals have shown
significant deviations from experimental and ab initio data [13,14,15]. The short-
comings of DFT are visible in structural properties such as coordination numbers,
and data related to dynamics such as mean ligand residence times (MRT) have been
found to differ even more from experimental values and results of ab initio compu-
tations. For example, the mean residence time of a first shell water molecule in the
pure solvent was found to be approximately four times larger than the experimen-
tal estimation [65] and a Hartree–Fock level simulation [66,67]. A re-calibration of
the functionals leading to different parameter sets could improve the performance
of DFT methods when applied to ionic systems, but that would only underline the
semiempirical character of common DFT methods.

Conventional QM/MM MD simulations at MP/2 level [7,48,66], restricting the
QM region to a one-shell treatment due to the substantial increase of the computa-
tional effort, have indicated that an extended quantum mechanical zone (i.e. first plus
second hydration shells of an ion) at Hartree–Fock level is more important for the
quality of results than the treatment of a smaller system (i.e. an ion with its first hy-
dration shell only) at correlated level – the inclusion of many-body and polarisation
effects extending beyond the first shell is more crucial than the partial correction of
electron correlation.

Figure 10-5a and b depicts the ion–oxygen radial distribution functions (RDFs) of
Al(III) and Zn(II) in aqueous solution obtained from a conventional QM/MM [50,51]
and a QMCF MD simulation. In both cases the first and second hydration shells have
been included in the QM region, in the QMCF studies the ion and its first hydration
shell formed the ‘core region’. In general all important structural features like first
and second shell distances and coordination numbers are very similar.

In the case of hydrated Al(III) the first shell consisting of six water molecules
was shifted from 1.8 to 1.9 Å when changing from conventional QM/MM to QMCF
treatment. The second shell distances coincide showing a value of 4.1 Å, the av-
erage second shell coordination number increases slightly from 12.2 to 12.5 when
the QMCF scheme is applied. However, the third shell as well as the transition to
the bulk reveals significant changes. In the case of the conventional QM/MM MD
simulation the third shell forms a plateau whereas a distinct peak results when the
QMCF framework is applied.

In the case of Zn(II) the first and second shells show similar shapes and the max-
ima are found at 2.1 and 4.4 Å, respectively. The average second shell coordination
number decreased from 13.8 to 13.2 when changing from the QM/MM to the QMCF
scheme, whereas the first shell coordination number remains at 6. The main structural
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a) b)

Figure 10-5. Ion–oxygen radial distribution functions obtained from a QMCF (solid line) and a QM/MM
(dashed line) MD simulation of (a) Al(III) and (b) Zn(II) in aqueous solution. Fluctuation of the QM
charge for (c) Al(III) and (d) Zn(II)

difference is found in the transition region between the second shell and the bulk. In
the case of the QM/MM study the second shell is not separated from the bulk by a
minimum – a broad peak is observed which does not correspond to a distinct third
hydration layer. The QMCF framework yields a well-defined second shell peak with
a minimum before the bulk region.

The findings of these two examples clearly demonstrate the improved perfor-
mance of the QMCF ansatz. The depolarisation of the central species is not included
in conventional QM/MM coupling and due to the fixed partial charges of the ionic
species (+3 and +2 in the case of Al(III) and Zn(II), respectively) an overestima-
tion of the Coulombic interactions between QM and MM atoms results, leading to
‘pressure’ artefacts near the QM/MM transition region. The application of quan-
tum mechanically derived partial charges (in this case according to Mulliken [68]
accounts for polarisation and charge-transfer effects of the ions as well their respec-
tive ligands, and these properties are thus accounted for in the coupling of the two
regions. Figure 10-5c displays the fluctuation of the partial charges of Al(III) and
Zn(II) over a time period of 8 ps. The effective charges oscillate between +2.35 to
+2.65 in the case of Al(III) and between +1.35 and +1.55 in the case of Zn(II). The
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remaining charge contribution resulting from the difference of the formal and actual
charges is distributed to the solvent molecules in the QM region according to the
actual geometry, leading to a fluctuating polarisation of the surrounding solvent. As
shown by the radial distribution functions this treatment results in an elimination
of ‘pressure’ artefacts at the QM/MM border which at the same time leads to an
improved description of ligand exchange dynamics. The mean ligand residence time
for second shell water molecules derived employing a direct evaluation of exchanges
[69] decreased from 26 to 21 ps in the case of Al(III) and increased from 3.3 to 3.9 ps
in the case of Zn(II) when changing from the conventional QM/MM to the QMCF
treatment.

The transition artefacts found in conventional QM/MM MD studies are occurring
due to the overestimation of Coulombic forces between the QM and MM particles
resulting from too high partial charges assigned to the ions. Recent investigations
of different smoothing methodologies have concluded that artefacts occur due to
insufficiencies of the applied smoothing methodology [58]. However, it is evident
that the smoothing procedure is not related to the occurrence of these ‘pressure’
artefacts.

The studies of Al(III) and Zn(II) have served as a methodical proof of the
QMCF concept showing improvements of the accuracy resulting from the optimised
QM/MM coupling, and at the same time eliminating the requirement of potential
parameters (Coulombics and non-Coulombics) for the central species. QMCF simu-
lations of other systems like Mn(II) and Cu(II) have led to the same conclusion [54].

The capability to renounce potentials for all species located in the QM ‘core
region’ allows the convenient treatment of systems which display a non-spherical
potential surface. The first examples in this context are Pd(II) and Pt(II) in aque-
ous solution. The hydration structure of these ions was believed to be similar to
structures found in their crystals, namely square-planar. Recent experimental [70]
and theoretical investigations [71] concluded that one or two additional ligands are
present in axial positions at elongated bond distances, and hence the first shell struc-
tures should correspond to a (bi-)pyramidal configuration. Potential functions would
have to account, additionally to the radial description, for an angular dependence
to distinguish between axial and equatorial positions. Besides the problems related
to the construction of a reliable representation to properly describe this energy hy-
persurface, the implementation in an actual simulation faces some obstacles. First, a
plane (or its associated normal vector) needs to be defined during the simulation to
identify axial and equatorial ligands based on the angle relative to this plane. This
could be done arbitrarily or utilising the four nearest ligands. Marcos and cowork-
ers solved this problem by utilising different potential models for the treatment of
axial and equatorial ligands [71]. The second challenge is related to changes in the
definition of the equatorial plane whenever the associated ligands are exchanged
in the course of the simulation. Although the rate constant for these exchanges is
considerably low and hence, their occurrence during the simulation is rather improb-
able, it is difficult to give an estimation to what extent the progressing simulation
is influenced by this implicit constraint. As a consequence, the system could be
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hindered to evolve towards configurations or transition states associated with these
exchanges, which could then lead to a non-ergodic sampling of the configurational
space.

A quantum mechanical description on the other hand does not face these prob-
lems as the different interactions with respect to any position are automatically taken
into account. Based on the fact that the QM/MM coupling realised in the QMCF
framework does not require any non-Coulombic potential data for the central species
and Coulombic interactions are treated based on the fluctuating charge distribution
within the QM region, the study of these systems is straightforward provided that
the quantum mechanical region is sufficiently large. Thus, QMCF MD simulations
of Pd(II) and Pt(II) were carried out starting with the ion and four water ligands in
the ‘core region’, the ‘layer’ was defined to include the full second hydration shell.

Figure 10-6a displays the Pd(II)–oxygen and Pt(II)–oxygen RDFs obtained from
the QMCF simulations. Equatorial and axial ligands within the first shell are clearly
separated. The broad minimum between the peak originating from the axial ligands
and the second shell suggests that these molecules are a distinct feature of the first
shell. The average first shell coordination numbers deduced from the RDF’s run-
ning integration are 5.7 and 5.6 for Pd(II) and Pt(II), respectively. These non-integer
values indicate that in both cases a species distribution associated with exchange
reactions of first shell ligands exists, which interchanges on the timescale of the
simulation, i.e. the picosecond scale. The corresponding distance plots displayed in
Figure 10-3d and e reveal that none of the equatorial ligands is involved in these
exchanges within the simulation time and hence, only the axial ligands should be
considered in the determination of the mean ligand residence times, which were
evaluated according to the ‘direct’ method [69] as 2.8 and 3.2 ps for Pd(II) and
Pt(II), respectively. These values do not agree with the rate constants for Pd(II)
and Pt(II) determined by NMR measurements as 5.6×102 and 3.9×10−4 s−1 [72].
As the geometries of the aquo-complexes were described as square-planar it can
be concluded that these rate constants refer to the exchange of equatorial ligands
only as the exchange of the axial ligands is much too fast to be detected by NMR
methods. However, both experimentally determined rate constants (equatorial) and
the (axial) mean residence times obtained from the simulations indicate that Pd(II)
forms a weaker hydrate structure than the Pt(II) ion.

The occurrence of different species in a solution interchanging on the picosec-
ond timescale is a serious challenge for experimental investigations. Any measure-
ment carried out over a longer time interval will automatically average all occurring
species and thereby bond lengths and coordination numbers. Figure 10-6b and c dis-
plays the coordination number distributions obtained from the different simulations.
Five- and six-fold coordinations are dominating along the simulation trajectory. The
fit of experimental diffraction patterns in most cases is carried out assuming a distinct
coordination number, whereas in models accounting for multiple species it would be
mandatory to obtain a reliable description of these systems. Simulation data can thus
provide valuable information on how to construct such models.
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Figure 10-6. (a) Ion–oxygen radial distribution functions obtained from a QMCF MD simulation of Pd(II)
(solid line) and Pt(II) (dashed line) in aqueous solution. Coordination number distribution within the first
shell for (b) Pd(II) and (c) Pt(II) and associated exchange plots for (d) Pd(II) and (e) Pt(II)

As soon as the number of atoms of the solute species increases, the associated en-
ergy hypersurfaces become more complex due to the lower symmetry of the system.
In the case of the mercury(I) dimer Hg2+

2 ligands coordinated to one of the mercury
atoms are bound more strongly than ligands coordinating both Hg atoms at the same
time. In analogy to the case of Pd(II) and Pt(II) potential functions have to account
for the angle between the ion-ligand vector and a predefined axis, in this case the
Hg(I)–Hg(I) bond. Again the advantages of the QMCF MD methodology for a con-
venient treatment of the system are evident.

In this simulation the ion formed the ‘core region’. The centre of mass of the Hg2+
2

ion served as the centre of the quantum mechanical region, hence all water molecules
up to a radius of 6.4 Å have been included in the layer region. Figure 10-7a shows
a snapshot of the simulation showing the typical arrangement of the ligands bound
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Figure 10-7. (a) Snapshot of a QMCF MD simulation of Hg2+
2 in aqueous solution. (b) Hg(I)–oxygen

(solid line) and Hg(I)–hydrogen (dashed line) radial distribution functions. (c, d) Coordination number
distribution within the first shell for both Hg(I) atoms and associated exchange plots (e, f)

to the Hg2+
2 ion. Water molecules bound to both Hg atoms at the same time are very

rare and these configurations are very short-lived.
Figure 10-7b displays the Hg(I)–oxygen and Hg(I)–hydrogen radial distribution

functions. Two well-defined peaks representing the first and second hydration shells
are centred at 2.4 and 4.7 Å in the Hg(I)–O RDF and at 3.0 and 5.35 Å in the
Hg(I)–H RDF, respectively. The mean Hg(I)–Hg(I) bond length was found to be
2.63 Å. This structural description is in good agreement with data obtained from
diffraction experiments [73].

The average first shell coordination number of 3.7 indicates, together with the
considerable high elevation of the minimum between first and second shells, that a
considerable number of ligand exchange reactions took place within the simulation
time. Figure 10-7c–f displays the coordination number distributions and the corre-
sponding ligand distance plots for both atoms of the mercury dimer. Three- and four-
coordinated species are dominating, five-coordination occurs during about 10% of
the simulation time. The exchange plots clearly demonstrate the high exchange rate
of ligands migrating from the first to the second shell and vice versa. No favoured
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exchange mechanism can be detected and in some cases multiple ligands are involved
in the exchange process. The mean ligand residence times of the first shell ligands
were separately evaluated for the two Hg sites as 2.9 and 3.0 ps according to the direct
method [69]; 3.0 ps is only slightly larger than the MRT in the pure solvent indicating
the high lability of this hydrate. In addition to the structural and dynamical analysis,
a simulation can provide energetic data as well. The hydration energy of the Hg2+

2
ion was calculated performing free energy calculations utilising every 50th configu-
ration. The average value of −1137 kJ/mol perfectly agrees with the experimentally
estimated value of −1148 kJ/mol [74]. This good agreement is another important
indicator demonstrating the high quality of the QMCF framework.

Diatomic solute species composed of different elements such as the titanyl ion
TiO2+ further increase the system’s complexity. The properties of ligands coordi-
nated to the Ti and O atoms are significantly different and the construction of a
suitable and accurate representation of the ion–ligand energy hypersurface required
for classical and conventional QM/MM MD studies is very difficult. A recent QMCF
MD study of the TiO2+ system in aqueous solution [75] has demonstrated that the
treatment of this solute is equally feasible as that of the previous examples. The Ti
atom was selected as the centre of the QM region, the ‘core’ zone included the O
atom of the TiO2+ (Ti–O distance 1.57 Å) as well as the five first shell ligands coor-
dinated to the Ti atom. Figure 10-8b and c displays the Ti–oxygen and Ooxo–O radial
distribution functions. Five ligands are coordinated to the Ti atom at a mean distance
of 2.1 Å, whereas just a single water forms a hydrogen bond to the oxo-atom. One
particular advantage of simulation methods is the possibility to investigate the prop-
erties of singled-out molecules or atoms. Thus, a separate analysis of the first shell
water molecules revealed an elongated bond length of 2.3 Å for the water molecule in
trans-position of the oxo-atom (see Figure 10-8a) which cannot be deduced merely
from the overall Ti–O RDF, as the contribution of the ligand in trans-position is
overlapping with the contributions of the four in-plane ligands. Whereas the Ti–water
interaction was found to be strong and no exchange of these ligands occurred during

Figure 10-8. (a) Snapshot of a QMCF MD simulation of TiO+ in aqueous solution. (b) Ti–O and
(c) Ooxo–O radial distribution functions
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the simulation time of 15 ps, the water molecule bound to the O atom via weak
hydrogen bonding is mobile and exchanges on the picosecond scale (MRT: 3.6 ps).

The oxo-anions PO3−
4 and ClO−

4 serve as final examples. In this case the oxygen
atoms form a tetrahedral arrangement around the central atom (see Figure 10-9a).
These composite ions serve as the most refined example for the capabilities of the
QMCF MD methodology. As the ion is entirely included in the ‘core’ region, the
only contribution to the force between the atoms of the ions and the MM particles is
achieved via the charge field interaction. Therefore, the central atom of the ions was
chosen as the QM centre. The entire first hydration shell of the oxoions was included
in the ‘layer’ region.

Figure 10-9b and d displays the O and H radial distribution functions of the central
atoms P and Cl obtained by QMCF MD simulations (only the water oxygens are de-
picted). Whereas the well-defined first shell peaks in the case of phosphate indicate
a strong interaction with the solvent, a broad peak with low intensity is obtained
in the case of perchlorate. As the associated integration differs only slightly from
the exponential increase corresponding to the ideal distribution, it can be deduced
that the hydration shell of the perchlorate ion is highly disordered. In contrast to
the well-defined minima between first and second shells of phosphate, only weak
minima are visible in the case of perchlorate. The Cl–H RDF indicates that no second
shell structure is formed at all. The mean ligand residence times for first shell ligands
were determined as 3.9 ps for PO3−

4 and as 1.5 ps in the case of ClO−
4 utilising the

‘direct’ method [69]. Comparison of these values with the MRT of the pure solvent
of 1.5 ps clearly demonstrates the ‘structure breaking’ properties of the perchlorate
ion. The averaged radial distribution functions of the oxo-atoms lead to similar con-
clusions. While well-defined first and second shell structures are obtained in the case
of phosphate, a disordered, weakly bound first shell structure is found in the case of
perchlorate.

Figure 10-9. (a) Snapshot of a QMCF MD simulation of PO3−
4 in aqueous solution. (b) P–O (solid line)

and P–H (dashed line) and (c) Ooxo –O (solid line) and Ooxo –H (dashed line) radial distribution function
obtained from a QMCF MD simulation of PO3−

4 in aqueous solution. (d) Cl–O (solid line) and Cl–H
(dashed line) and (e) Ooxo –O (solid line) and Ooxo–H (dashed line) radial distribution functions obtained
from a QMCF MD simulation of ClO−

4 in aqueous solution
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A recent QMCF MD and LAXS (large angle X-ray scattering) study [76] of the
sulfate ion has once more demonstrated the reliability of this simulation technique for
the description of composite solutes and an accuracy equivalent to best experimental
methods. Precise predictions of vibrational spectra as well as the solvation energy
of this anion [77] have clearly indicated the ability of the QMCF MD approach to
investigate a variety of properties in a general and comprehensive way.

The simulations of these composite ions also demonstrate the enhanced capabil-
ities of the QMCF MD approach allowing the straightforward treatment of com-
posite systems without the need for solute–solvent potentials. With the electrostatic
embedding technique and the quantum mechanical point charges representing the
fluctuations of the electron density an increased accuracy compared to conventional
QM/MM methodologies is achieved, too. The continuous increase of computational
capacities as well as the improvement of ab initio methods will allow larger quantum
mechanical regions and eventually the application of correlated ab initio methods in
the QM region.

10.4. CONCLUSION AND OUTLOOK

The quantum mechanical charge field ansatz has emerged as a promising methodol-
ogy for the study of complex species in solution, also for systems with low symmetry
and/or composite compounds. The general electrostatic embedding scheme suitable
for the periodic environment in combination with the application of fluctuating quan-
tum mechanical point charges utilised in the evaluation of the Coulombic interactions
between QM and MM particles guarantees a more accurate coupling between the
two subregions than conventional QM schemes. The technique allowing to renounce
solute–solvent non-Coulombic potential functions greatly enhances the applicability
of ab initio MD simulations to a variety of chemical systems, provided that the QM
region can be chosen sufficiently large to include at least one full layer of solvent
molecules. Basically, every affordable system (with respect to size and necessary
quantum mechanical level) can be selected as solute species. The combination of the
QMCF approach with force field methods will allow the treatment of biomolecules
and applications in material sciences related to surfaces and interface phenomena
and appears a most promising methodology for various disciplines of chemistry,
therefore.
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Abstract: In this chapter the process of solvation in polymers is discussed. In the first few sections
the statistical mechanics of solvation, Flory’s theory of polymer solutions, and its compar-
ison with classical solution methods for interpretation of experimental data are discussed.
Sorption of gases in polymers and the methods of calculation of chemical potentials, and
hence calculation of Henry’s law constants and sorption isotherms of gases in polymers
are discussed in details in Section 11.6. The solvation structures as well as the effect of
solvent on equilibrium and dynamics of polymer-size change in solutions are described
with the main emphasis on molecular dynamics simulation method to obtain understand-
ing of solvation of nonpolar polymers in nonpolar solvents and that of polar polymers in
polar solvents. Finally, the dynamics of solvation with a short review of the experimental,
theoretical, and simulation methods are explained in this chapter

11.1. INTRODUCTION

The study of solvation effect is an interesting topic in polymer physical chemistry
from theoretical, experimental, and practical points of view, and has triggered a
numerous number of studies for many years. In this chapter two extreme cases,
very dilute solutions of gases in polymers and (up to) the solution of polymers in
solvents, are described in details. The equilibrium sorption of gases, vapors, and
liquids in polymers is of essential importance in many areas of polymer technology.
For example, solubilities of small molecules in polymers are required for the design
and operation of polymer plants so that residual monomers, oligomers, and poly-
merization solvents can be removed from the polymer products. Gas solubilities also
play important roles in such applications as designing polymer barrier materials for
packaging applications, developing membranes for gas separations, foaming, and
plasticization. On the other extreme, when a polymer is exposed to a solvent, the
solvent molecules diffuse into the porous structure of the polymer. If the polymer is
soluble in the solvent there is an attractive interaction between polymer and solvent
and the net interaction between polymer segments is repulsive. Therefore, the coiled
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polymer chains start swelling, and eventually the process leads to saturation where
the swelled polymer chains are in equilibrium with the solvent. In this case, under-
standing of such phenomena as polymer chain dynamics, its equilibrium structure in
the presence of solvent, and the solvation structure is important.

Although experimental and theoretical works have been successful for studying
phenomena of this type, however, for example the experimental methods cannot re-
veal the detailed solvation structures to describe the interaction between solvent and
polymer. Theoretical methods are also either not completely atomistic or they assume
a certain molecular behavior. Molecular simulation methods, on the other hand, can
produce most atomistic information about the solvation process.

In this chapter we will mostly focus on the application of molecular dynamics
simulation technique to understand solvation process in polymers. The organization
of this chapter is as follow. In the first few sections the thermodynamics and statisti-
cal mechanics of solvation are introduced. In this regards, Flory’s theory of polymer
solutions has been compared with the classical solution methods for interpretation of
experimental data. Very dilute solution of gases in polymers and the methods of cal-
culation of chemical potentials, and hence calculation of Henry’s law constants and
sorption isotherms of gases in polymers are discussed in Section 11.6.1. The solution
of polymers in solvents, solvent effect on equilibrium and dynamics of polymer-size
change in solutions, and the solvation structures are described, with the main empha-
sis on molecular dynamics simulation method to obtain understanding of solvation
of nonpolar polymers in nonpolar solvents and that of polar polymers in polar sol-
vents, in Section 11.6.2. Finally, the dynamics of solvation with a short review of the
experimental, theoretical, and simulation methods are explained in Section 11.7.

11.2. CLASSICAL THERMODYNAMICS OF SOLVATION

Generally the solvation process is defined as the process of transferring a solute
molecule, s, from a fixed position in the ideal gas state into a fixed position in the
condensed phase [1]. The process is usually performed at constant temperature, con-
stant pressure, and constant composition of the liquid phase. If the solute is a simple
spherical molecule, we need to keep its center fixed, but if it is a more complex
molecule, we need to keep the center of mass of the molecule at a fixed position. Of
course, in complex molecules the geometrical location of the center of mass might
shift upon changing the conformation of the molecule. In such cases, the processes of
solvation of a molecule at a specified conformation and an average solvation process
over all possible conformations of the molecule must be distinguished. The solvation
process may also happen at constant volume, instead of constant pressure. Defining
the process of solvation, we now introduce the corresponding thermodynamic quan-
tities such as solvation free energy, solvation entropy, and so on, each refers to the
change in the corresponding thermodynamics state function in the solvation process.
Considering two phases, gas and liquid, in equilibrium at the same temperature and
the same pressure, according to classical solution theory we have the following rela-
tions for the chemical potential of solute, s, in each phase:
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μg
s = μ0

s + kBT ln (Ps) (11-1)

and

μl
s = μ∗

s + kBT ln (xs) (11-2)

where, T is the temperature, kB is the Boltzmann constant, μ0
s and μ∗

s are the
standard-state chemical potentials of s in the gas and liquid phases, respectively,
Ps is the partial pressure of s in the gas phase, xs is the mole fraction of s in the liquid
phase and superscripts g and l indicate the gas and liquid phases, respectively.

At equilibrium μ
g
s = μl

s, therefore

μ∗
s − μ0

s = kBT ln

(
Ps

xs

)
(11-3)

This equation provides a very simple way of computing the difference in the
standard-state chemical potentials (or as it will be seen in Section 11.3, the solvation
free energy) from vapor pressure measurements.

11.3. STATISTICAL MECHANICS OF SOLVATION

The determination of solvation free energy of solutes in solvents is a problem of
primary importance, since all thermodynamic quantities can be derived from the
free energies. For a system of N particles located at r1, r2, . . . , rN, the statistical
mechanical expression for the Helmholtz free energy, A, reads as [2]

A = −kBT ln(Q) = 1

N !Λ3N

∫ ∞

0
· · ·
∫ ∞

0
exp

(−UN
(
r N
)
/kBT

)
dr N

(11-4)

where Q is the canonical partition function, �=h/(2πmkBT)1/2 is the de Broglie wave-
length, UN is the potential energy of the system, and rN stands for the whole set
of coordinates, r1, r2, . . . , rN. Assuming pairwise additivity of the potential energy
between particles, we have

UN =
N∑

i

N∑

j>i

ui j (ri j ) (11-5)

where uij is the pair potential interacting between particles i and j and rij is the inter-
particle distance. The expression for the chemical potential is obtained by taking the
logarithm of the ratios of partition functions for a system composed of N particles,
with the solute density of ρs, and a system composed of N+1 particles, which is
obtained by adding one solute particle to the previous N-particle system, i.e.,
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μs = AN+1 − AN = kBT ln
(
ρsΛ

3)−kBT ln (〈exp(−�U/kBT 〉) (11-6)

with

�U = UN+1 − UN (11-7)

and the brackets indicate the ensemble average. Equation (11-6) can be simply ar-
ranged as the sum of contributions from pure solute chemical potential and a term
related to the solute concentration, like Eqs. (11-1) or (11-2). Ben-Naim [1], however,
used another more general form to interpret various contributions to the chemical
potential as

μs = μex
s + kBT ln

(
ρs�

3
)

(11-8)

where μex
s is called the excess chemical potential of solute. The second term on the

right hand side of Eq. (11-8) is the chemical potential of the ideal gas. According
to Eq. (11-8), the chemical potential of the solute is split into two terms; a term
arising from putting the solute molecule at a fixed position in the solution, μex

s , and
a term arising from releasing the constraint, i.e., letting the solute molecule move
freely, which results in the contribution kBT ln

(
ρs�

3
)

to the chemical potential. On
releasing the constraint of keeping the solute molecule at a fixed position, it will gain
its translational kinetic energy and will wander throughout the entire volume of the
system, and hence there is a translational contribution to the chemical potential.

Considering solute molecules at the density of ρs
ig in the ideal gas phase in equi-

librium with solute molecule in the liquid phase at a density of ρs
l and considering

the fact that at equilibrium the chemical potentials of solute in both phases are equal,
we can write

�Gsol = μex,1
s − μex,ig

s = μex,1
s = kBT ln

(
ρ l

s

ρ
g
s

)
(11-9)

where �Gsol stands for the free energy change due to solvation. Equation (11-9) is
similar to Eq. (11-3), except the concentration scales in both phases are written in
Eq. (11-9) in terms of solute density, and the standard-state chemical potentials in
Eq. (11-3) are replaced by the excess chemical potentials in Eq. (11-9). On con-
verting the mole-fraction scale in Eq. (11-3) to the concentration scale, the same
expression for �G will be obtained. This means that solvation Gibbs free energy
change is equal in magnitude with the standard-state Gibbs free energy change when
the concentration scale is used. This equality holds just for the Gibbs free energy
change of the two afore-cited processes.

Therefore, according to Eq. (11-9), the Gibbs free energy change of solvation
is expressed as the change in chemical potential on transferring a solute molecule
from a fixed position in the gas phase to a fixed position in the liquid phase. The
free energy of solvation can be decomposed to several contributions including for-
mation of cavity and contributions due to the van der Waals and electrostatic forces
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[3,4,5,6]. The formation of a cavity to accommodate the solute molecules includes
breaking down the cohesive forces between solvent molecules, therefore its cor-
responding free energy is positive. On the other hand the van der Waals forces
between the solute and solvent molecules contribute favorably to solvation free
energy. Usually, these two terms, cavitation and the van der Waals interactions,
are referred to as nonelectrostatic contributions. The electrostatic contribution to
the free energy measures the work needed to build up the charge distribution of
the solute in solution and includes two components; the work necessary to cre-
ate the solute’s gas-phase charge distribution in solution and the work required to
polarize the solute charge distribution by the solvent. It is worth considering that
the electrostatic contribution includes not only the gain of the electrostatic interac-
tion energy between the solute and solvent molecules, but also the work needed to
generate the solvent reaction field induced by the solute charge distribution [3]. In
the case of polar solvents such as water, the van der Waals contribution is mod-
erate and cannot fully compensate the unfavorable effect of the cavitation term,
whereas for nonpolar solvents, the cavitation work is smaller (in absolute terms)
than the van der Waals contribution due to the weaker interactions between solvent
molecules. For nonpolar solutes, in nonpolar solvents the nonelectrostatic term can
be the main contribution to solvation. On the contrary, for most solutes of interest, in
polar solvents such as water the electrostatic term makes the dominant contribution
to the free energy of solvation, due to the strength of solute–solvent electrostatic
interactions.

Having described the solvation free energy we now focus on the solvation en-
thalpy, which is defined as

�Hsol = �Usol + P�Vsol (11-10)

where �Hsol, �Usol, and �Vsol are the changes in enthalpy, internal energy, and vol-
ume on solvation. The solvation energy is defined as the difference in the average
potential energy of solution and the average potential energy of the pure solvent.
The potential energy of solution is composed of contributions from solute–solvent
interactions and solvent–solvent interactions, i.e.,

�Usol = �Usolvent−solvent + �U (11-11)

where �U indicates the solvent–solute interaction energy. The solvent–solvent in-
teraction energy is called solvent reorganization energy, which expresses the change
in the total intermolecular solvent interaction energy induced by introducing solute
molecule. Supposing UN+1 as the potential energy of an (N+1)-molecule system, i.e.,
N solvent molecules and one solute molecule, the solvent–solvent reorganization
energy is defined as

�Usolvent−solvent = 〈UN 〉N+1 − 〈UN 〉N (11-12)
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The solvent–solvent reorganization energy and the solvent–solute interaction
energy can be calculated using simulation methods, employing the above-written
formulas as

�Usolvent-solvent = 〈UN V e−�U/kBT 〉 − 〈UN 〉〈V e−�U/kBT 〉
〈V e−�U/kBT 〉 (11-13)

and

�U =
〈
�U V e−�U/kBT

〉

〈
V e−�U/kBT

〉 (11-14)

where the brackets indicate the averages in the isothermal–isobaric ensemble.

11.4. POLYMER SOLUTIONS

The classical Raoult’s law connects the vapor pressure of the ith component, Pi, in a
mixture to its vapor pressure at pure state, P∗

i , i.e.,

Pi = P∗
i xi (11-15)

where xi is the mole fraction of the ith component in the liquid phase. In a binary so-
lution consisting of a solvent and a polymer, with molecular weight of approximately
thousand times higher than that of the solvent, the mole fraction of the solvent is close
to unity. Therefore, according to the Raoult’s law the partial pressure of the solvent
is equal to its vapor pressure. However, experiment does not confirm the validity of
Raoult’s law for such a mixture. Moreover, experiment shows that the deviation from
ideality is not strongly temperature dependent, which means that deviation in the
entropy of mixing is higher than that of the heat of mixing from their corresponding
values for ideal mixing.

Flory [7,8,9] proposed a lattice model to derive an approximation for the en-
tropy of mixing of polymers with solvents. Considering a binary solution of solvent
molecules and polymers, in such a system a molecule of one type can be exchanged
with a molecule of the other type. The entropy of mixing is related to the number
of possible arrangements in the solution. In polymer solutions a polymer molecule
is, may be thousands of time, bigger in size than a solvent molecule. The long-chain
polymer molecule is considered to consist of N chain segments, each of which equal
in size to that of the solvent molecule. Therefore, N is the ratio of the molar vol-
ume of the polymer to that of the solvent. A solvent and a segment may replace
one another in a liquid lattice. The total configurational entropy of this solution is
calculable by counting the number of possible ways of arranging the polymer and
solvent molecules as it is formulated by Flory [7,8,9], i.e.,

�S = −kB (Nsolvent ln (υsolvent) + Ns ln (υs)) (11-16)
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where N is the number of molecules and υ is the volume fraction and is defined as

υsolvent = Nsolvent

Nsolvent + NsN
(11-17)

and

υs = NsN
Nsolvent + NsN

(11-18)

Later Hildebrand [10] obtained the same result assuming that free volume avail-
able to the molecules per unit volume of liquid is the same for the polymer as for the
solvent. The heat of mixing is defined as the difference between the total interaction
energy in the mixture compared with that of pure components. Based on their lattice
theory model, Flory [7,8,9] and Huggins [11,12] obtained the following expression
for the heat of mixing:

�Hmix = kBT Nsolventυsχ (11-19)

where χ is a dimensionless quantity characterizing the interaction energy per solvent
molecule divided by kBT. This assumption shows that the difference in energy of a
solute molecule immersed in the pure polymer compared to the one surrounded by
molecules of its own, pure solvent, is kBTχ . The free energy of mixing is simply
formulated in terms of Eqs. (11-16) and (11-19) as

�Gmix = kBT (Nsolvent ln (υsolvent) + Ns ln (υs) + χ Nsolventυs) (11-20)

The chemical potential of the solvent, μsolvent, and that of solute, μs, in the solution
relative to their corresponding chemical potentials in the pure liquid is obtained by
differentiating the above expression for the free energy of mixing as

μsolvent − μ0
solvent = kBT

(
ln(1 − υs) +

(
1 − 1

N

)
υs + χυ2

s

)
(11-21)

and

μs − μ0
s = kBT

(
ln(υs) + (1 − N )(1 − υs) + χN (1 − υs)

2
)

(11-22)

The mole-fraction scale is usually used when the sizes of the solute and solvent
molecules are approximately equal, but the volume-fraction scale is used when the
sizes are different. This will be explained in the following sections.
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11.5. COMPARISON OF FLORY–HUGGINS AND CLASSICAL
SOLUTION THEORIES

So far two models have been employed to rationalize the solvation process; the clas-
sical solution model, either the mole-fraction scale or any other concentration scale,
and the Flory–Huggins model. The question is where to use which theoretical model
to interpret the results of partitioning experiments, in which solute molecules dis-
tribute between two phases, α and β. If the two phases are at equilibrium at the same
temperature and the same pressure, μα

s = μ
β
s . After rearrangement and applying

Eq. (11-8), we can write

�G
s − �G�

s = μex,
s − μex,�

s = kBT ln

(
ρ�

s

ρ

s

)

(11-23)

where ρ�
s and ρ


s are the solute densities in phase � and , respectively. Equation

(11-23) represents the difference in the solvation Gibbs free energy change in the two
phases. When one of the phases is the ideal gas, Eq. (11-23) reduces to Eq. (11-9).
When we deal with spherical molecules in spherical or near-spherical solvents, the
classical mole-fraction scale approach is a better approximation in treating the data.
It is shown [13,14,15] that the solubility of iodine in some near-spherical solvents
of different sizes is better approximated by the mole-fraction scale approach than
that of volume fraction or Flory–Huggins theory. On the other hand the solubility
of some solutes in complex solvents can be better represented by Flory–Huggins
method [16,17].

Suppose that we transfer solute s from a medium into other nonpolar media of
long-chain n-alkanes with different chain lengths. The transfer free energy should be
independent of chain length [18] because it should reflect only the chemical change
seen by the solute molecule on transferring from the initial medium to the alkane
medium. In other words, the solute should see the same nonpolar environment, in-
dependent of the chain length in alkane solvents. According to this, the theoretical
model employed to analyze the experimental results should show the independency
of the solvation free energy with respect to the chain length. The partition coeffi-
cient of benzene as the solute between n-alkanes with 8–16 carbon atoms and wa-
ter at various temperatures, as determined by de Young and Dill [17], shows that
Flory–Huggins theory better reveals the above-mentioned fact. de Young and Dill
[17] tried to describe the partitioning data by introducing the mole-fraction ratios,
Kx = xw

s /xa
s , the volume-fraction ratios, KV = υw

s /υa
s , and the Flory–Huggins

corrected volume-fraction relation, K c
V , which is expressed as

ln
(
K c

V

) = ln

(
υw

s

υa
s

)
+
(

Vs

Vw
− Vs

Va

)
(11-24)

where υ is the volume fraction, V is the molar volume, and subscripts or super-
scripts s, w, and a represent solute, water, and alkane, respectively. Figure 11-1 shows
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Figure 11-1. Temperature dependence of the partitioning of benzene (s) between water (w) and n-alkanes
(a) of different chain lengths: octane (�), decane (•), dodecane (�), tetradecane (�), and hexadecane (©).
In (C), the left vertical scale pertains when Flory–Huggins theory is applied to both the a and w phases,
whereas the right vertical scale pertains when Flory–Huggins theory is applied only to the a phase. The
figure is taken from de Young and Dill [17] with permission

that the mole-fraction scale and the volume-fraction scale partition coefficients are
dependent on the chain length of the solvent hydrocarbon, but the Flory–Huggins
partition coefficient is independent of the chain length [17]. As explained
in Section 11.4, Flory–Huggins theory uses the volume-fraction concentrations,
whereas the classical approach uses the mole fraction or molar concentrations. This
distinction is not important, as any concentration scale is convertible to any other.
The important distinction is in the second term on the right hand side of Eq. (11-24).
This term has been interpreted by Sharp et al. [19] as the size entropy since it de-
pends on the ratios of sizes of solute and solvent molecules. Sharp et al. [19] claimed
that this second term is of a very general applicability, since Flory–Huggins theory
reduces to the classical thermodynamic theory when the sizes are identical.
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11.5.1. Effect of Internal Degrees of Freedom

Chan and Dill [18,20] derived solution chemical potentials from general statistical
mechanical theory and concluded that classical thermodynamic treatments generally
assume separability of the translational and internal degrees of freedom. Under this
assumption, it follows that there should be no size entropy of the Flory–Huggins type.
They showed that when internal and translational degrees of freedom are coupled, as
in the case of polymers or complex solutes, an entropy is involved which is called
coupling entropy, instead of size entropy introduced by Sharp et al. [19]. To describe
this coupling among degrees of freedom, Chan and Dill [20] chose a dimer as a sim-
ple nonspherical molecule and tried to transfer it from a pure dimer state to a lattice.
The model is chosen because the results can be computed exactly [20,21] so that they
cannot be dismissed as artifacts of approximations. In a solution with monomeric
solvent a dimer has two possible orientations, therefore a total of only 2N different
orientations of N dimer are possible. But in a solution of dimers, the exact treatment
of Fisher [21] shows that a total of κN, with κ=1.791623 (less than 2N) is possible.
This is due to the fact that in the condensed phase the orientations of different dimers
are coupled. Therefore, each dimer is hindered and cannot rotate freely to adopt its
possible two states. Thus each dimer gains an orientational entropy of kB ln(2/κ)
upon transferring to solution. Therefore, there is a conformational contribution of
kBT ln(2/κ) to the transfer free energy, which should be added to Eq. (11-24), in
addition of the center of mass translation term kBT ln(ρ).

11.5.2. Coupling of the Center of Mass of One Molecule to the Excluded
Volume of Another (Polymer Solutions)

Chan and Dill [20] showed that the polymer coupling entropy is due to the excluded
volume in the Flory–Huggins theory. In fact each polymer segment may interact with
some other chain of the nearby chain and this diminishes the chance of the center of
mass of this molecule occupying a given spatial position. There is a difference of kBT
in the conformational entropy per monomer between the infinitely dilute and maxi-
mally condensed phases. This means that the center of mass translations are coupled
to the excluded volume of the segment of a chain. The magnitude of this coupling is
dependent on the concentration, because there is more coupling in the concentrated
solutions. Figure 11-2 shows that for spheres, without any orientational entropy, only
translational degrees of freedom contribute to the distribution of molecules. For rods,
placement of the centers of mass is not independent of the orientations or configura-
tions of the neighboring molecules. Figure 11-2a shows rod orientations or polymer
conformations that are compatible, i.e., not in steric conflict, with the relative centers
of mass. Figure 11-2b shows how the same center of mass positions are not viable
when the orientations or internal conformations would cause two different parts of
molecules to lie in the same region of space. This coupling of excluded volume
with centers of mass is treated by Flory–Huggins theory. Chan and Dill [20] applied
a general statistical mechanical treatment and a generalized Flory–Huggins theory
to show that when solutes and solvents are complex enough that they can interfere
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Figure 11-2. Steric interference. (A) To avoid steric violations in placing the centers of mass of
two spheres in space, their separation must be greater than one sphere diameter. (B) For nonspherical
molecules, steric violations are determined by a complex coupling of center of mass positions and orien-
tations (for rods) or chain conformations (for polymers). (a) and (b) show two identical center of mass
positions for two molecules. In (a) the relative orientations lead to no steric conflict, while the configura-
tions in (b) are impossible because of steric violations. The figure is taken from Chan and Dill [18] with
permission

with each other in solution there is an entropy of coupling translational freedom to
excluded volume. Their results agree well with the exact lattice enumeration results
[22] of configurations of a single chain and with the computer enumeration results
[23]. The enumeration results also show that if a polymer is not longer than 6–8
monomer units, the Flory–Huggins theory is reasonably accurate. Their results also
show that the Flory–Huggins theory approximates the coupling entropy for poly-
meric solvents or solutes, but not for other systems. According to Flory–Huggins
theory, when polymer a is transferred from its pure liquid phase into a liquid solu-
tion with polymer b, if the chain length of a is greater than that of b, polymer a will
experience less steric interference in solution with b and configurational entropy will
favor the transfer. If the chain lengths are equal the configurational entropy will not
drive the system either way, and if the chain length of b is greater than the chain
length of a the configurational entropy will oppose the transfer of a from pure liquid
a to a solution with b. The dependence on size-difference in the chemical potential
approaches zero with diminishing concentration of b. For the case of transferring
globular molecules, if either solution involves polymers, the Flory–Huggins theory
should be approximately valid, but if both solutes are also globular but not spherical,
Flory–Huggins theory is not appropriate enough and up to now there is no general
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Figure 11-3. (A) Transfer of a flexible polymer and (B) transfer of a globular molecule of the same size
from the condensed pure phase to a dilute solution. The figure is taken from Chan and Dill [20]

theory for treating such systems. Figure 11-3 compares the transfer of a polymer
from its pure liquid state to a dilute solution with that of transfer of a more globular
molecule, a large square, from its pure phase to dilute solution, to illustrate how
polymer solutions differ from simpler solutions. The figures are shown so that both
the polymer and the globular molecule have identical sizes. Upon transferring to the
solution, the polymer gains conformational freedom, because it can adopt any ster-
ically available conformation in the solution, but its conformations are constrained
by the configurations of the neighboring chains in the pure state. In contrast, there
is no internal entropy in the case of a globular molecule. Therefore it gains only the
translational entropy, but not the rotational or configurational entropies.

11.5.3. Effect of Molecular Shape and Architecture

Krukowski et al. [24] studied the effect of molecular shape in details by performing
exact enumerations on lattice models of different molecular shapes. They calculated
the entropic component of the chemical potential, i.e.,

μ(s) = kBT ln

(
�Sconfig

�N

)

T,V

(11-25)
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for inserting different geometrical shapes into a pure medium of other such
molecules. They adopted the mole-fraction scale, density scale, and Flory–Huggins
entropic component of the chemical potentials to compare these three cases. Since
in their theory, the Flory–Huggins internal partition function depends on the lattice
coordination number, z (z=4 and 6 for the square and simple cubic lattices, respec-
tively), they added a kBT ln(q) term to the Flory–Huggins in order to compare all
the treatments on an equal footing. As it is shown in Figure 11-4 at low densities,
the chemical potentials are independent of the shape of the molecule, because at low
densities there is enough space for the solute molecule to be inserted. At higher den-
sities, it is easier to insert a globular molecule into a medium of the same molecules
than inserting a more articulated molecule into a medium of similar molecules.
Krukowski et al. [24] founded that articulated molecules are more accurately treated
by the Flory–Huggins theory, while globular molecules are more accurately treated
by the classical solution theory in comparison with arbitrary distribution of the cen-
ters of mass. Therefore, configurational freedom per polymer molecule diminishes
with polymer concentration and Flory–Huggins theory applies well to these kinds of
solutions. According to the explanations and formulations by Krukowski et al. [24],
the mole-fraction scale and the Flory–Huggins entropic components of the chemical
potential treat change in total entropy, including center of mass translational entropy
and internal configurational entropy of all solutes in solution, while the density scale
accounts only for the translational entropy of the added solute, which can be lo-
cated at any viable position. Therefore, in Figure 11-4, deviations occur among the
three treatments at high densities where translations, rotations, and steric packing

Figure 11-4. Comparison of exact chemical potentials with Flory–Huggins theory (FH), mole-fraction-
based classical solution theory (CST), and density-based (ln(ρ)) approximations. The figure is taken from
Krukowski et al. [24] with permission
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are coupled to each other. In the high-density regime, the more articulated shapes,
like the crosses and angles, are better approximated by Flory–Huggins than the more
globular shapes such as the squares.

11.6. SOLVATION IN POLYMERS

Solvation is an interesting topic in polymer physical chemistry both from theoretical
and experimental points of view, and it has triggered numerous studies for many
years. When a polymer is exposed to a solvent, the solvent molecules may diffuse
into it. If the polymer is soluble in the solvent there is an attractive interaction be-
tween polymer and solvent and the net interaction between polymer segments is
repulsive. Therefore, the coiled polymer chains start swelling, and eventually the
process leads to saturation where the swollen polymer chains are in equilibrium with
the solvent. The understanding of polymer chain dynamics and its equilibrium struc-
ture in the presence of solvent is important. One of the most important phenomena
in the polymer solvation is the change in the overall size of the polymer chain upon
solvation. In fact at equilibrium the average size of isolated polymer molecules in
solution is a function of solvent quality and varies from expanded conformations in
good solvents to random walk conformations in poor solvents.

Experimental as well as theoretical methods have been widely employed to study
such phenomena as solubility, the conformational structures, size change, and so
on. Although these methods have been very successful, however, for example the
experimental methods cannot reveal the detailed solvation structures to describe the
interaction between solvent and polymer. Either theoretical methods are also not
completely atomistic or they assume a certain molecular behavior. Molecular simu-
lation methods, on the other hand, can produce most atomistic information about the
solvation process. In this section we will mostly focus on the application of molecular
dynamics simulation technique to understand solvation process in polymers.

11.6.1. Sorption of Gases in Polymers

Knowledge of the solubilities of small molecules in polymers is essential for the
design and operation of polymer plants so that residual monomers, oligomers, and
polymerization solvents can be removed from the polymer products. Gas solubilities
also play important roles in such applications as designing polymer barrier materials
for packaging applications, developing membranes for gas separations, foaming, and
plasticization. For gases in polymers, the solubility describes the concentration C of
the gas inside a polymer at equilibrium with the gas at a partial pressure P and is
often described phenomenologically by the dual-mode sorption theory [25,26]:

C = kH P + C∞
bP

1 + bP
(11-26)

where kH is Henry’s law solubility coefficient, C∞ is the saturation concentration
of the gas, and b is the affinity coefficient. This model assumes that there are two
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distinct modes by which a glassy polymer can sorb gas molecules: Henry’s law and
a Langmuir mechanism which corresponds to the sorption of gases into specific sorp-
tion sites in the polymer. Henry’s constant has the same physical meaning for glassy
polymers as it does for rubbery polymers and liquids, whereas the Langmuir-type
term is believed to account for gas sorption into interstitial spaces and microvoids,
which are consequences of local heterogeneities and are intimately related to the
slow relaxation processes associated with the glassy state of the polymer. Local
equilibrium is assumed between the two modes. The dual-mode sorption equation,
Eq. (11-26), provides a linear relationship against the pressure in the low-pressure
region, i.e.,

C = (kH + C∞b) P = S0 P (11-27)

where S0 is called the apparent solubility coefficient in the zero-pressure limit in
glassy polymers.

Considering a real gas at temperature T and pressure P in equilibrium with a
polymer phase and assuming that at equilibrium the concentration of the sorbed
gas inside the polymer is C, we can write the following expression connecting the
solubility coefficient to the excess chemical potentials:

μex
gas in polymer(T, P) − μex

gas(T, P) = −kBT ln (SkBT ) (11-28)

where S is the solubility coefficient defined as C/P. Because of the fact that gas
solubilities have been determined by means of different methods, they have been
expressed in different units. The most frequently used unit is the volume of gas (in
cm3) reduced to the standard conditions dissolved in 1 cm3 of polymer, i.e.,

S = Vg(STP)

Vp P
(11-29)

where Vg (STP) is the volume of the penetrant gas at STP conditions (T0=273.15 K
and P0=1 atm), and Vp is the volume of polymer at temperature T and pressure P.
Correspondingly, Eq. (11-28) is written as

μex
gas in polymer(T, P) − μex

gas(T, P) = −kBT ln

(
STP0

T0

)
(11-30)

At relatively low pressures the second term on the left hand side of Eq. (11-30) is
nearly zero and can be neglected.

Traditional approaches for the calculation of the phase equilibria and sorption of
penetrant molecules in polymers are based on equation-of-state models [27,28,29],
which take into account the PVT properties of both gas and polymer, and the activity
coefficient models [30], which take into account the specific interactions between
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polymer and penetrant molecules. Molecular simulations are the other attractive
methods for this type of calculation. These methods do not invoke any approxima-
tions, and predictions are based on well-defined molecular characteristics. In the
following sections we describe the application of molecular simulation methods in
the case of sorption of gases in polymers.

11.6.1.1. Molecular simulation methods for calculation of phase equilibria

There are several methods for the calculation of phase coexistence points using
molecular simulation, such as thermodynamic scaling method [31,32], histogram
reweighting method [33,34], the Gibbs–Duhem integration method [35,36], NPT
plus test-particle method [37,38], various extensions of it to other ensembles [39,40],
and the Gibbs ensemble Monte Carlo method [41]. The last technique has been
applied to coexistence properties of simple systems, such as fluids of spherical
Lennard-Jones or Yukawa particles [42,43], as well as more complex systems, such
as polyatomic hydrocarbons [44,45] and chain molecules [46]. There are also reports
on the mixed methods in which the molecular simulation approaches have been uti-
lized to calculate the chemical potentials in the condensed phase, and the results
from equations-of-state predictions are used to calculate the phase coexistence point
[47], or to calculate the interaction energy parameters of solvent and polymer, in
combination with statistical mechanical theories for the study of phase equilibria of
polymer–solvent mixtures [48].

Many computational studies of the permeation of small gas molecules through
polymers have appeared, which were designed to analyze, on an atomic scale,
diffusion mechanisms or to calculate the diffusion coefficient and the solubility
parameters. Most of these studies have dealt with flexible polymer chains of rela-
tively simple structure such as polyethylene, polypropylene, and poly-(isobutylene)
[49,50,51,52,53]. There are, however, a few reports on polymers consisting of stiff
chains. For example, Mooney and MacElroy [54] studied the diffusion of small
molecules in semicrystalline aromatic polymers and Cuthbert et al. [55] have cal-
culated the Henry’s law constant for a number of small molecules in polystyrene and
studied the effect of box size on the calculated Henry’s law constants. Most of these
reports are limited to the calculation of solubility coefficients at a single temperature
and in the zero-pressure limit. However, there are few reports on the calculation of
solubilities at higher pressures, for example the reports by de Pablo et al. [56] on
the calculation of solubilities of alkanes in polyethylene, by Abu-Shargh [53] on the
calculation of solubility of propene in polypropylene, and by Lim et al. [47] on the
sorption of methane and carbon dioxide in amorphous polyetherimide. In the former
two cases, the authors have used Gibbs ensemble Monte Carlo method [41,57] to
do the calculations, and in the latter case, the authors have used an equation-of-state
method to describe the gas phase.
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11.6.1.2. Grand equilibrium method: application to the calculation of solubility
of gases in polystyrene

In the Gibbs ensemble simulation method one specifies the thermodynamic vari-
ables temperature, global composition, and global pressure for the simulation of
both phases in separate volumes. Practically, this set of thermodynamic variables
is in many cases not convenient and simultaneous simulation of both phases has
the disadvantage that fluctuations occurring in one phase influence the other one.
Recently a new method, grand equilibrium method, has been developed by Vrabec
and Hasse [58]. This method circumvents the afore-cited problems for the study of
phase equilibria. The specified thermodynamic variables are temperature and com-
position and two independent simulations are performed for the two phases without
the need to exchange particles in the condensed phase. According to this method for
a mixture composed of several components, it is possible to do a simulation in the
isothermal–isobaric (NPT) ensemble at constant temperature, a constant composition
of the condensed phase, and at an arbitrary constant pressure, preferably close to the
pressure at the phase coexistence point, to obtain the density of the condensed phase.

In the grand equilibrium method, a simulation of the condensed phase is done to
calculate the excess chemical potentials, μi

ex, and the partial molar volumes, Vi, of
all components. One may use the test-particle insertion method [59] to calculate the
excess chemical potentials and the partial molar volumes as

μex = −kBT ln

〈
PV

NkBT
exp (−�U/kBT )

〉
(11-31)

and

Vi =
〈
V 2 exp (−�U/kBT )

〉

〈V exp (−�U/kBT )〉 − 〈V 〉 (11-32)

where �U is the potential energy of interaction between the test particle and the host
polymer, V is the volume, and N is the number of particles. Knowing the parameters
Vi and μi

ex from this simulation, the desired excess chemical potentials as functions
of pressure are obtained from a first-order Taylor series expansion, i.e.,

μex
i (P) = μex

i (P∗) + Vi

kT

(
P − P∗) (11-33)

where P∗ is the target pressure at which the NPT ensemble simulation is done. Once
the μi

ex(P) is determined from Eq. (11-33) by one NPT ensemble simulation of the
condensed phase, one vapor/gas simulation has to be performed in the pseudo-grand
canonical ensemble (pseudo-μVT). In a common grand canonical ensemble [60] the
parameters temperature, volume, and the chemical potential of all species are fixed,
while in this pseudo-μVT ensemble simulation, the parameters T and V are fixed
in the common way, but instead of fixing the chemical potentials, they are set as a
function of the instantaneous pressure in the gas phase. This procedure ensures that
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equilibrium between the condensed phase and the gas phase is imposed. In a com-
mon μVT ensemble simulation [60], the chemical potentials are set through insertion
and deletion of particles by the comparison between the resulting potential energy
change and the desired fixed chemical potential. Here, starting from a low-density
state point, the gas-phase simulation is forced to change its state to the corresponding
phase equilibrium state point.

Recently, we have applied this method for the calculation of solubilities of gases
in polystyrene over a wide range of temperatures and pressures [61]. To calculate the
excess chemical potential at infinite dilution, first molecular dynamics simulations
are performed at a specified temperature and pressure of the polymer, without any gas
molecules. After equilibration, several configurations are extracted at different times
from the dynamic simulation and used to insert the test particles. A test molecule
is repeatedly inserted into the selected configurations at random positions and in
random orientations and the energy change due to insertions is calculated. The excess
chemical potential is then calculated as the average of the Boltzmann factor of the
test-particle insertions according to Eq. (11-33). This Boltzmann factor is interpreted
as the acceptance probability in hypothetical Monte Carlo moves, which would insert
a particle into a configuration.

The variation of the infinite dilution excess chemical potentials with time for CH4

and C3H8 at 300 K over the whole 3.9 ns of simulation are shown in Figure 11-5. The
fluctuations for C3H8 are larger than that of CH4. This is reasonable, because of the
larger size of C3H8 compared to CH4. In fact, a trial insertion will be “successful” if
the particle enters a cavity, which is bigger than the particle. The number of smaller
cavities in a configuration is much larger than the number of bigger ones; there-
fore, the number of small cavities is more likely to remain essentially unchanged
between two polymer configurations than the number of bigger ones. If the cavity
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Figure 11-5. The excess chemical potential at infinite dilution for methane (©) and propane (�) in
polystyrene at 300 K and 1.0 atm calculated at 130 ps intervals. The figure is taken from Eslami and
Müller-Plathe [61]
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size is big enough, such cavities may altogether disappear and reappear between two
configurations. In a glassy polymer it takes a relatively long time for disappearance
and reappearance of big cavities. In this case calculation of free energies for bigger
molecules is less reliable. Calculating the excess chemical potentials over a 3.9 ns
run for CO2 in PS we have calculated its solubility coefficients in the zero-pressure
limit, S0, according to Eq. (11-28). The results are indicated in Figure 11-6 and are
compared with experimental measurements [62,63,64,65,66,67,68,69] compiled by
Paterson et al. [70]. As it is seen in Figure 11-6, our calculated values of S0 are higher
than the corresponding experimental values. Similar differences between experimen-
tally and computed solubility coefficient values have been observed in previous stud-
ies [47,71]. As found earlier by Knopp and Suter [72] there is an error of (2–4) kBT
commonly found in the calculation of Helmholtz energies by molecular simulations.
Moreover, the main contribution to the solubility comes from single holes in the
simulated polymer structure, which might not be present in similar proportion in real
polymers [73].

We can also compare the calculated solubility ratios with the corresponding val-
ues from experimental measurements. The ratios of solubility coefficients in the
zero-pressure limit to that of Ar are compared with the corresponding experimental
quantities in Table 11-1. As it is clear from Table 11-1, the calculated ratios are
within the experimentally obtained values. This confirms that the calculated values
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Figure 11-6. Temperature dependence of S0 for CO2 sorbed in polystyrene compared with experimental
measurements. The figure is taken from Eslami and Müller-Plathe [61]
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Table 11-1. Comparison of the calculated and experimental ratios of solubility coefficients of gases in
atactic polystyrene with respect to Ar at 300 K and zero-pressure limit. The sources of experimental data
are (a) Vieth et al. [63] (b) Odani et al. [74] (c) Sada et al. [66] (d) Vieth et al. [62] (e) Barrie et al. [146]
and (f) Yavorsky [147]. The table is taken from Eslami and Müller-Plathe [61]

Gas S0/(S0)Ar Reference

Calculated Experimental

N2 0.46 0.50 a, b
CO2 10.0 10.0 c
CH4 2.91 2.85 d
C3H8 62.4 43.6–101.2 e, f

of the solubility coefficient are higher with respect to the experimental measurements
nearly by the same factor.

To compute the sorption isotherms many simulation boxes of polystyrene and
gas molecules at the specified composition are generated and molecular dynamics
simulation at constant temperature and at a constant pressure close to the experimen-
tal coexistence point is done. The grand canonical ensemble molecular dynamics
method [60] is used to insert gas molecules in the simulation box. Here, a fractional
molecule is inserted and grown to a full molecule with the passage of time. A frac-
tional molecule is a molecule whose potential energy of interaction to the rest of the
system is scaled somehow by a fractional number, ranging between zero and one.
When the fractional molecule grows to a full molecule it will be added as an indistin-
guishable penetrant molecule to the system and then the next fractional molecule will
be inserted, until reaching the desired concentration of the gas in polystyrene. Having
an equilibrated mixture of polystyrene with gas molecules at a fixed temperature and
pressure, Widom’s test-particle method [59] is applied to compute the excess chemi-
cal potential and the partial molar volume of the sorbed gas, as described above. Then
a pseudo-grand canonical ensemble molecular dynamics simulation in the gas phase
is performed to calculate the phase coexistence point. Setting the values of chemical
potential, temperature, and volume as independent thermodynamic variables, one of
the penetrant molecules in the box is chosen as the fractional molecule. Depending
on the variation of the fractional number with time, the penetrant molecules are
exchanged with the material reservoir until reaching the equilibrium state consis-
tent with the pre-fixed values of temperature, volume, and chemical potential. More
details for performing grand canonical ensemble molecular dynamics simulation is
described elsewhere [60]. The computed sorption isotherm for carbon dioxide, as
a typical example, is plotted in Figure 11-7. From the results in Figure 11-7 it is
clear that our calculated solubilities tend to show higher slopes at low pressures in
accordance with our calculations in the zero-pressure limit. Consequently, we pre-
dict higher solubility isotherms compared to the experimental solubility isotherms.
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Figure 11-7. Sorption isotherms for CO2 in polystyrene at 298 K. The figure is taken from Eslami and
Müller-Plathe [61]

Considering the inconsistencies between experimental measurements [29,65,74], as
evident in Figures 11-6 and 11-7, our predictions are more or less within the un-
certainty range of experimental measurements. For CO2 at 373 K, our calculated
Henry’s law constant is in close agreement with experiment [65], see Figure 11-6,
therefore, the calculated solubility isotherm in Figure 11-7 is also close to the
experiment [65].

11.6.2. Concentrated Solutions of Polymers in Solvents

We now consider the second alternative, the concentrated solutions of polymers in
solvents, where the concentration of solvent can be changed over a wide range. Here
the polymer molecules will evenly distribute among the solvent molecules and a
new set of interactions between solvent and solute molecules sets up, which results
in a solvation structure. There are many interaction configurations, called solvation
structures. Specification of solvation structures is very important in such disciplines
as bioscience [75], pharmacy [76], and lavation [77]. The polymer solvation structure
has been the subject of studies in recent years. In the concept of polymer solvation,
since the overall size of polymer also changes in solution, therefore, the solvation
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structure refers to such phenomena as the interaction configurations between poly-
mer and solvent molecules, the overall size of polymer chain, local conformation of
both polymer and solvent, and even the distribution of bond lengths and bond angles,
which will be described in the following sections.

11.6.2.1. Solvation structure: mixtures of nonpolar polymers
with nonpolar solvents

Molecular simulation methods provide an acceptable picture of the solvent structure
around a solute. For small spherical solutes, the solvent structure can be represented
by the radial distribution function (RDF), g(r), defined as

g(r ) = 〈N (r, r + dr )〉
4πρr2 dr

(11-34)

where N stands for the number of solvent molecules found when sampling in the
spherical layer located between the distances r and r + dr from the solute and ρ

is the number density of the solvent. The solvation of polystyrene (PS) in benzene
[78], as an example of a nonpolar solute dissolved in a nonpolar solvent, and that of
poly(vinyl alcohol) (PVA) in water, ethanol, and water–ethanol mixtures [79], as an
example of a polar solute dissolved in a polar solvent, have been studied in details.
In the former case it is noticed that the calculated center of mass radial distribution
function for benzene–benzene does not change qualitatively with the PS content, see
Figure 11-8. In Figure 11-8 the difference in absolute peak heights only reflects dif-
ferent benzene number densities. The solvation of phenyl groups of PS, described by
the mixed benzene–phenyl RDF, is qualitatively very similar to the benzene–benzene

Figure 11-8. Center of mass radial distribution functions for aromatic groups (benzene and/or phenyl) for
two benzene–polystyrene mixtures. The normalization is chosen so that all radial distribution functions
approach 1 at infinity. The figure is taken from Müller-Plathe [78]
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RDF (Figure 11-8). The small shoulder at around 0.4 nm and the minimum following
the first peak at around 0.75 nm, in Figure 11-8, are attributed to connectivity of the
PS chain enforcing distances on pairs of phenyl groups.

The composition of the immediate surroundings of a benzene molecule or a
phenyl group for different PS–benzene solutions is analyzed [78] by integrating the
first peak of RDFs. According to the results [78], tabulated in Table 11-2, the total
number of nearest neighbors of a benzene molecule is around 12.5 and is practi-
cally independent of polymer concentration. As the polymer concentration increases,
neighboring benzene molecules are simply replaced by phenyl groups. In contrast,
the total number of nearest neighbors of a phenyl group decreases almost uniformly
from 11.9 neighbors (38.6 wt%) to 10.8 neighbors (pure PS). This means, that the
connectivity of PS causes aromatic rings to pack less tightly than they would in a
liquid. Also the results [78] in Table 11-2 reveal that there is some preference for
phenyl groups or benzene molecules to be surrounded by like groups or molecules.
For example, at a concentration of 55.7 wt% PS, a phenyl group has, on average, 4.6
benzene molecules in its first solvation shell and 7.6 other phenyl groups. At this
composition, the number of phenyl groups and benzene molecules is almost equal,
so one would expect a 1:1 ratio of both species, if solvation were purely statistical.
Because of the connectivity, a phenyl group will always have a small number of
other phenyls in its first solvation shell and the remaining coordination sites can then
be filled statistically. The number of predetermined phenyl neighbors of a phenyl
group varies from 3.09 to 1.97 for mixtures of 38.6 to 84.2 wt% PS, respectively.

Table 11-2. Composition of nearest neighbor solvent shells of benzene molecules and phenyl groups,
respectively.a The table is taken from Müller-Plathe [78]

Wt%
polystyrene

No. of
benzene
molecules

No. of phenyl
groups

Total no. of
neighbors
(benzene +
phenyl)

Benzene/phenyl
ratio (in solvation
shell)

Benzene/phenyl
ratio (overall)

(a) Nearest neighbors of benzene

0 12.6 0 12.6 ∞ ∞
38.6 9.7 2.8 12.5 3.42 2.12
55.7 8.4 4.4 12.7 1.92 1.06
72.7 5.9 6.5 12.4 0.91 0.5
84.2 4.8 7.5 12.3 0.64 0.25

(b) Nearest neighbors of phenyl

38.6 6.0 5.9 11.9 1.01 2.12
55.7 4.6 7.6 12.2 0.61 1.06
72.7 3.3 8.5 11.7 0.38 0.5
84.2 1.9 9.5 11.3 0.20 0.25
100 0 10.8 10.8 0 0

aNumbers are calculated by integrating the first peak of the appropriate center of mass radial distribution
function that is from 0 to 0.75 nm.
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Therefore it was concluded that if there are effects other than connectivity that cause
nonstatistical solvation, they must be very small [78].

Although the results discussed so far in this section show that there is no con-
siderable solvation effect in the case of PS in benzene, a similar recent study by Ji
and Yang [80] on the detailed structures and mechanism of solvation of polyethy-
lene (PE) in biphenyl, solution of a nonpolar polymer in a nonpolar solvent, shows
considerable accumulation of biphenyl in the solvation shell of PE. They observed
three set of interaction configurations between PE and biphenyl, in which the ori-
entation of biphenyl molecules with respect to chain alignment is different [80].
Moreover, we may address to the solvation of poly(oxyethylene) (POE) in benzene
studied by Tasaki [81], as an example of a system composed of a polar polymer
solute in a nonpolar solvent. Tasaki [81] analyzed the RDF functions for POE
oxygen atom and the nearby benzene carbon atom and that of POE methylene
carbon atom and the nearby benzene carbon atoms and showed that the first one
displayed a peak at 0.55 nm, while the second one showed a broad peak rang-
ing between 0.4 and 0.65 nm, with the center locating around 0.5 nm. They ob-
served the same trend for RDF of other benzene carbon atoms and reported that
the orientational preference of benzene molecule in the solvation shell with respect
to OE unit in POE is a perpendicular orientation. Their observation is in agree-
ment with NMR high-field shift of POE methylene hydrogen atom in benzene.
Also their comparison on the RDF of POE methylene carbon and the nearby ben-
zene carbon atom with that of bulk benzene showed the same trend. Therefore,
based on their reports there is a very small perturbation of the solvent structure
by POE.

The mutual orientation of aromatic rings can also be depicted by the cosine of
the angle between the plane normals u3 of two rings [78]. Since the rotation of one
ring by 180◦ leads to an indistinguishable situation from the original orientation,
one can also calculate |u3,iu3,j|. This product is 1 for two coplanar rings, 0 for a
T-shaped arrangement, and 1/2 for a random distribution of orientations. The ori-
entational distribution functions (ODFs) as a function of the average distance be-
tween the pair of rings calculated by Müller-Plathe [78] is shown in Figure 11-9.
It is seen that for all ODFs at a close distance, <0.5 nm, rings are predominantly
coplanar. Of course, there are only very few pairs at this distance, as is evident from
the RDFs. We generally observe that orientational correlation is quickly lost with
distance, little structure being visible beyond 0.9 nm, i.e., before the second peak in
the radial distribution function (Figure 11-9). Around the typical nearest neighbor
distance of 0.5 nm, we find minima (below 1/2) which confirms the dominance of
perpendicular arrangements in the first solvent shell. For the benzene–benzene and
benzene–phenyl ODFs, there is a clear tendency for this minimum to decrease with
polymer content. This means that the T-shaped packing of benzene molecules and
of benzene molecules around a phenyl group becomes more favored as the polymer
content increases. The phenyl–phenyl ODFs are different from the other two, in that
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Figure 11-9. Orientation distribution functions describing the mutual orientation of the plane normals of
aromatic rings: (a) benzene–benzene; (b) benzene–phenyl; (c) phenyl–phenyl. The figure is taken from
Müller-Plathe [78]
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there are no minima in the range of the first solvent shell. This indicates that, already
at this distance, phenyl groups are randomly oriented.

11.6.2.2. Solvation structure: mixtures of polar polymers with polar solvents

The following results in the case of solvation of poly(vinyl alcohol) (PVA) in water,
ethanol, and water–ethanol mixtures show that the situation in the case of solvation
of polar polymers in polar solvents is different from the above case of the solvation
of nonpolar polymers in nonpolar solvents. Shown in Figure 11-10 is the distribution
of solvent oxygen and carbon atoms around the PVA oxygen (OPVA) calculated by
Müller-Plathe and van Gunsteren [79]. In all solvents the first peak in the RDF is at

Figure 11-10 Solvation of the oxygen atoms of poly(vinyl alcohol). (a) Partial radial distribution functions
of PVA oxygen with solvent oxygen and (b) solvent carbon atoms. The figure is taken from Müller-Plathe
and van Gunsteren [79]
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around 0.3 nm indicating hydrogen bonding of the first solvation shell to a solvent
oxygen atom. Integrating over the first peak in Figure 11-10a to r = 0.35 nm shows
that an OPVA has on average 2.5 water oxygens (OW) in its first solvation shell if the
solvent is pure water, 1.0 OW and 0.7 ethanol oxygen (OE) if the solvent contains
equal amounts of water and ethanol, and 1.10 OE for pure ethanol as a solvent. This is
already a qualitative indication that the hydroxyl groups of PVA are more efficiently
solvated by water than by the bulkier ethanol. The valley following the first peak
in Figure 11-10a is deeper for ethanol than for water and it also deepens with the
ethanol content. This is a consequence of the relative molecular size. If an ethanol
molecule is hydrogen-bonded to a PVA hydroxyl group, its aliphatic groups will
prevent further oxygens (of water or other ethanol molecules) from approaching the
PVA causing an area of oxygen depletion at around 0.35 nm. Figure 11-10b shows
clearly that this region coincides with the first peak in the OPVA and ethanol carbon
(CE) RDF. The second peak of the RDF, Figure 11-10a, at 0.5–0.6 nm shows the
same pattern as the minimum between first and second peaks. It is more pronounced
for OE than for OW and it increases with ethanol content. For pure water, the peak
is absent since the small water molecules can sit at nearly any distance from the
hydroxyl oxygen which smears out this peak, whereas the exclusion of second-shell
OE by first-shell CE leads to enrichment of OE immediately beyond the exclusion
zone. There is a small third peak in the RDF, Figure 11-10a, at 0.65–0.85 nm for
all solvents. The small maximum before 1.0 nm and the small minimum thereafter
are residual artifacts of the spherical cut-off at this distance. The solvation situation
around the PVA carbon atoms also shows that both PVA carbon atoms, connected to
the OPVA and the adjacent carbon atom, are solvated very similarly.

11.6.2.3. Hydrogen bonding in polar polymer–solvent mixtures

In this section we study the competitive solvation of PVA in ethanol–water mixture.
For this propose the concept of local atomic fractions, defined as follow, has been
used by Müller-Plathe and van Gunsteren [79]

xAB (r ) = n AB (r )
∑

A
n AB (r )

(11-35)

where xAB(r) is the local atomic fraction of solvent atom A around a solute atom of
type B and A runs over all non-H solvent atom types (OW, OE, and CE). Normalizing
xAB(r) by xAB(∞), one arrives at a quantity which is l if the composition within the
radius r is the same as in the bulk, but which is greater (less) than 1 if the solvent
sphere contains more (less) of A than the bulk solvent. Figure 11-11a shows the
normalized local atomic fractions around OPVA. The preference for water as the
closest neighbor is clearly evident. Across the range of the first peak in the RDFs,
see Figure 11-11, there is an excess of both OW and OE at the expense of CE.
However, there is always more water than ethanol. The OE fraction drops slightly
below its bulk value between 0.38 and 0.48 nm due to the exclusion by CE. The
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Figure 11-11. Solvent competition for solvation of PVA. (a) O atoms and (b) carbon atoms in water,
water–ethanol, and ethanol. The figure is taken from Müller-Plathe and van Gunsteren [79]

excess of OW, on the other hand, persists out to 0.6 nm, possibly due to a secondary
shell of water molecules hydrogen-bonded to the first. The solvation of the PVA
carbons shows the same global pattern, Figure 11-11b, an excess of OW and OE and
a deficiency of CE at short distances which, however, decay smoothly to the bulk
values. It is interesting to note that the environment of PVA carbons is also mainly
polar. Since there is no strong interaction in the force field between the aliphatic
groups of PVA and the polar parts of the solvent, this means that the polar groups
of the solvents are attracted by the hydroxyl groups of PVA. The hydrophobic areas
of the PVA backbone are probably too small and too close to the hydroxyl groups to
show separate hydrophobic solvation (a preferred hydrophobic environment). This
confirms the picture of PVA being an entirely hydrophilic polymer.

Another criterion to analyze the solvation of PVA are hydrogen bonds formed by
the PVA hydroxyl groups. The hydrogen bonds of a PVA OH group can be classified
(i) into internal (intramolecular) or external (to solvent) and (ii) according to whether
the O acts as hydrogen donor or acceptor. This gives rise to the five hydrogen bond
types listed in Table 11-3. One notes that there appears to be a systematic decrease
in the total number of hydrogen bonds of the PVA 15-mer from 22 in aqueous solu-
tion to 16 in ethanol. This is caused by a decrease of the external hydrogen bonds;
the number of internal ones (H→O) varies unsystematically. The smaller number
of external hydrogen bonds is caused by the larger space requirement of ethanol
as compared to water which prevents further ethanol molecules from approaching
the PVA closely, as was already evident from the RDFs (Figure 11-11a). There
are 8.7 hydrogen bonds to water and only 5.4 to ethanol. It is interesting to note
that water has a preference for acting as a hydrogen donor rather than an acceptor
((H→OW)/(HW→O) = 5/11). This means that the hydroxyl group can have more
incoming (approximately 2) hydrogen bonds but only one outgoing. In particular,
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Table 11-3. Hydrogen bonds of the 15-mer poly(vinyl alcohol) hydroxyl groups. The first line for each
system gives the average number of hydrogen bonds of a given type at any time point, the second line
gives in parentheses their average life times (ps)a. The table is taken from Müller-Plathe [78]

Solvent H→O H→OW H→OE HW→O HE→O Ext.b Totalb

432 H20 4.8 5.9 11.7 17.6 22.4
(11.6) (1.7) (2.1)

648 H20 6.1 5.0 11.0 16.0 22.1
(13.0) (1.7) (3.3)

162 H20/162 EtOH 4.4 3.3 2.8 5.4 2.6 14.1 18.5
(21.6) (3.4) (3.0) (4.3) (2.9)

216 EtOH 6.5 5.1 4.6 9.7 16.2
(34.4) (4.1) (3.3)

aAtom types (columns headings): H and O denote PVA hydroxyl hydrogen and oxygen, respectively; HW
and OW denote water hydrogen and oxygen; HE and OE denote ethanol hydroxyl hydrogen and oxygen.
The arrows point from donated hydrogen to acceptor.
bExt. and total denote the number of external (to solvent) hydrogen bonds and the total number of hydro-
gen bonds (intramolecular plus external) of the PVA 15-mer.

if the H is already donated in an intramolecular H bond there can still be two in-
coming H bonds from water molecules. In the case of ethanol, the effect is much
less pronounced and, if anything, the trend is reversed. Here, the size of the ethanol
molecules prevents more than one ethanol molecule occupying H donor positions
around a PVA hydroxyl. From Table 11-3 one calculates that there are 1.07 external
H bonds per hydroxyl group in water, 0.94 in the mixture, and 0.65 in ethanol.

11.6.3. Solvent Effect on Polymer Size in the Solution

One of the most important phenomena in the polymer solvation is the change in the
overall size of the polymer chain upon solvation. In fact at equilibrium the average
size of isolated polymer molecules in solution is a function of solvent quality and
varies from expanded conformations in good solvents to random walk conformations
in poor solvents. This is referred to as collapse transition and was first predicted by
Stockmayer [82] more than 45 years ago. The phenomenon was observed by Nishio
et al. [83] and Swislow et al. [84] more than 25 years ago and is still a subject of much
experimental, computational, and theoretical research today. So far many investiga-
tors have tried to study the chain size with solvation using a variety of methods.

Experimentally the overall size of the polymer chain can be studied by light scat-
tering and neutron scattering. A great deal of theoretical work is present in the liter-
ature which tries to predict the properties of mixtures in terms of their components.
The analytical model by Rouse–Zimm [85,86] is one of the earliest works to derive
fundamental properties of polymer solutions. Advances were made subsequently in
dilute and concentrated solutions using perturbation theory [87], self-consistent field
theory [88], and scaling theory [89].
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Monte Carlo as well as molecular dynamics simulations have also been applied
widely to understand how polymers behave in solution. Most of the existing sim-
ulations are based on the Monte Carlo studies of lattice models [90,91], but the
time-dependent properties cannot be studied in stochastic Monte Carlo approach.
Therefore, there has been a gradual growth in the use of molecular dynamics sim-
ulation. The pioneering works on the molecular dynamics simulations of polymer
chains in the solution are the works, by Bishop et al. [92], which used a polymer
chain consisting repulsive spheres connecting by springs in a solvent of repulsive
spheres. Later Rapaport [93] used a hard-sphere model for both chains and solvents.
Although in both studies it has been concluded that the mean-square radius of gyra-
tion and end-to-end distance of the chain are equal both in the pure state and in the
presence of solvent, the system size was too small to explore the solvent effect.

In 1981 Bruns and Bansal [94] used a Lennard–Jones (LJ) model of polymer and
solvent and analyzed the structural properties of the chain. In contrast to previous
reports [92,93], a significant solvent effect was observed by Bruns and Bansal [94].
The study of solvent effect on the static properties of polymer was succeeded by
Khalatur et al. [95] on the static properties of a 16-bead polymer chain in a solvent.
All potentials used were of LJ type. There are many other reports in the literature
to understand the equilibrium size and shape of polymer as a function of solvent
quality [96,97,98]. Most of these studies are exploratory rather than quantitative,
probably due to the computational expense, since the large relaxation times of the
polymer chains as well as the large system sizes imply powerful computer resources.
However, with the availability of high-performance computers, the problem has been
addressed in earnest [99].

In the previous report on the solvation of PVA in water–ethanol mixtures [79],
the spatial extension of PVA chain is also studied. This is done by calculating the
radius of gyration, Rg, or the end-to-end distance (in this case the distance between
the terminal methyl group carbon atoms) of the polymer. The results shown in
Figures 11-12 and 11-13 show the time development of Rg and the end-to-end dis-
tance for PVA 15-mer in three different solvents [79]. The initial chain conformation
which is the same random coil for all systems is too compact and Rg takes several
hundred picoseconds to converge to its final value. In Figure 11-12, this is clearly
visible for the solvent mixture and pure ethanol. (The final chain conformation of
the 432 water solvent was taken as the initial conformation for the 648 water sol-
vent. Hence, for water, there is no equilibration phase visible in Figure 11-12.) The
expansion of the chain in the solvent mixture appears to go through an intermediate
step which exists for about a nanosecond before the final expansion takes place. The
end-to-end distances converge to their final range much quicker than Rg, probably
because their relative fluctuations are larger. As a result, no plateau similar to that
found in the Rg for the solvent mixture is observed for the end-to-end distance. The
ratio of end-to-end distance and Rg already tells that the 15-mer is too short to exhibit
polymer chain statistics.
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Figure 11-12. Time evolution of the radius of gyration of the poly(vinyl alcohol) 15-mer in solution.
The water curve is that of the 648-water system. The curves for the water/ethanol mixture and pure
ethanol are offset in x direction by 4 and 8 ns, respectively. The figure is taken from Müller-Plathe and
van Gunsteren [79]

11.6.4. The Solvent Effect on Dynamics of Polymer Collapse

Equilibrium properties of the collapse transition and the relationship between poly-
mer size and solvent quality are studied widely, and are addressed in the previous
section, but up to now less is known about the collapse dynamics. There has been a

Figure 11-13. Time evolution of the end-to-end distance of the poly(vinyl alcohol) 15-mer in solution.
The water curve is that of the 648-water system. The curves for the water/ethanol mixture and pure
ethanol are offset in x direction by 4 and 8 ns, respectively. The figure is taken from Müller-Plathe and
van Gunsteren [79]
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Figure 11-14. Snapshots of a collapsing N=128 chain in MD simulations with quenching depth, εLJ/kBT,
of (a) 1.00 and (b) 0.1. The time interval between snapshots is 10 τMD and the sequence is A to H. The
surrounding solvent molecules are omitted for clarity. The figure is taken from Chang and Yethiraj [106]
with permission
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number of theoretical attempts to describe the dynamics of the collapse transition.
A phenomenological theory is proposed by de Gennes [100], in which a two-stage
collapse is proposed. According to this model, following the abrupt change in solvent
quality, a single flexible chain crumples on a minimal scale along the backbone,
forming blobs or collections of collapsed monomers. Then the blobs swell laterally
and the chain contracts longitudinally to form a sausage-like conformation. The col-
lapse proceeds with a lateral expansion of the sausage accompanied by a longitudinal
shortening until the final stage of a compact globule is reached. A refined version of
the theory was presented by Grosberg et al. [101], who proposed a different two-
stage mechanism. A review of the recent works in this field is given by Polson and
Zuckermann [102].

Experimental observations of the collapse transition in synthetic polymers are
difficult due to the strong coupling of the interchain collapse with the interchain
aggregation on changing solvent quality. Recently the study of collapse dynamics in
dilute solutions of noninteracting polymers in case where the aggregation time is sig-
nificantly larger than the collapse time is done by Zhu and Napper [103], by Nakata
and Nakagawa [104], and by Kayaman et al. [105], using dynamic light scattering.

Much of the recent understanding of the collapse dynamics comes from computer
simulation studies. Chang and Yethiraj [106] studied the effect of solvent on the
collapse dynamics, performing MD simulation on a bead-spring model of polymer.
They considered the effect of the solvent as the second component in an explicit
fashion. Initial configurations are generated for a polymer in a good solvent. The
system is then quenched by a sudden decrease in temperature. The polymer molecule
is collapsed to a globule. Their studies [106] show that the collapse is more rapid for
short chains and more rapid for deeper quenches. The snapshots of collapsing 128
chains in MD simulation of Chang and Yethiraj [106] are given in Figure 11-14. In
a similar study by Polson and Gallant [107] on equilibrium properties and dynamics
of collapse, MD simulation of a single homopolymer chain in an explicit monomeric
LJ solvent is used. They [107] concluded that a faster collapse transition occurs with
increasing monomer hydrophobicity. Their results also show that increasing the sol-
vent density leads to an overall decrease of the size of polymer and that increasing
the chain length increases the collapse time.

11.7. TIME-DEPENDENT SOLVATION RESPONSE

An excited solute molecule can lose its energy by exchanging energy with the
surrounding solvent molecules or by inducing its surrounding molecules, solvent
molecules, to rearrange so that they provide a significant stabilizing influence. It is
the latter case which is important in the concept of solvation and we are going to
explain it in detail in the following sections. However, an interested reader to the
former case, called vibrational relaxation, is referred to a nice review by Elsaessar
and Kaiser [108] on vibrational and vibronic relation of large polyatomic molecules
in liquids.
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When the solute molecule in a solution is excited electronically, it will eventually
fluoresce back down to its ground electronic state. Naturally, the fastest fluorescence
corresponds to the solute molecule, emitting light of roughly the same characteristics
as had just been absorbed. However, if something about solvent–solute changes with
the evolution of time, the time profile of the subsequent fluorescence will reveal
the dynamics. In fact the solvent–solute system changes its energy as the solvation
process proceeds, which is called solvation dynamics.

11.7.1. Experimental Methods

Time-resolved fluorescence has been a useful tool to study solvation dynamics since
the original work by Bakshiev et al. [109]. Usually, an ultrafast laser pulse excites
solute molecules. The charge distribution in the excited state usually differs sub-
stantially from the ground state. If the solvent molecules are polar enough, they
will rapidly reorient depending on the magnitude of solute–solvent interactions.
Therefore, a dynamic equilibrium corresponding to the new excited-state charge
distribution of the solute is established. The process is shown schematically in
Figure 11-15.

The relaxation time for this new dynamic equilibrium varies from femtoseconds
to picoseconds. The fast reorientation of solvent molecules causes a fast solva-
tochromic shift in the fluorescence band of the organic chromophores. Solvation
dynamics is measured in terms of 〈�ν (0) �ν (t)〉, where the fluctuating frequency ν(t)
is the difference in solvation energies between the two electronic states involved, i.e.,
ν(t)=�E(t)/h [110]. In time-resolved emission spectroscopy the time dependence of
the excited-state distribution is monitored via the frequency shift of the emission

Figure 11-15. Electronic excitation of a solute with zero dipole moment in its ground state, S0, but a large
dipole in its excited electronic state, S1. Since the electronic transition is faster than nuclear motions the
initial arrangement of solvent molecules in the exited state is the same as in the ground state. Then the
solvent molecules reorganize in order to lower the solvation energy in the excited state. The figure is taken
from Stratt and Maroncelli [110] with permission
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spectrum after excitation [111]. The temporal features of the solvation are captured
in terms of the normalized response function:

Cν (t) = ν (t) − ν (∞)

ν (0) − ν (∞)
(11-36)

where Cν (t) is the normalized spectral response function, ν(0), ν(t), ν(∞), are the
optical frequencies that correspond to the maxima of the emission spectra at times
zero, t, and infinity, respectively. Within the framework of linear response theory
[112] the response of the system to the solute perturbation obeys the same dynamics
as the fluctuations of the energy gap experienced by an unperturbed solute in equilib-
rium with its solvent environment. Thus measurement of Cν(t) is equivalent to mea-
surement of solvation dynamics. In fact many types of intermolecular interactions,
including dispersion forces, dipole–dipole or higher-order multipolar interactions,
and hydrogen bonding may be involved in the process of solvation. Practically, one
can choose solutes whose electronic transitions are primarily sensitive to only one
type of interaction and thereby study the dynamics of this particular interaction. For
example, tetrazine [113], benzophenone anion [114], a number of aromatic amines
[115], and coumarin-153 have been chosen to probe the dynamics of dispersion-type
interactions, hydrogen bonding, and dipolar interactions, respectively.

In the case of polymer solutions there are reports in the literature on the solva-
tion dynamics of solvent in polar solvent–polymer solutions. For example, the water
molecules in the first hydration shell of the polymers form hydrogen bonds with
it. Dielectric relaxation methods have been applied by Shinyashiki et al. [116,117]
to study polymer–water interactions. Studies of these kinds show that the dielec-
tric relaxation time of water is 2–3 orders of magnitude higher than that of pure
water [116,117]. The slower relaxation component of polymer-bound water has im-
plications in charge transport in polymer–water systems [118]. In fact the solvation
dynamics of water have been studied in many environments such as in DNA by
[119], in reverse micelles by Willard [120], in sol–gel matrix by Pal et al. [121],
and in proteins by Pal [122]. It is observed that while solvation dynamics occurs in
around a 1-ps time scale in bulk water [123], in many confined media the solvation
dynamics of water exhibits a component in the 100–1000 ps time scale, as is reported
by Faeder and Ladanyi [124] and by Michael and Benjamin [125]. Though solvation
dynamics of water molecules in different confined environments have been exten-
sively studied, reports on the aqueous solutions of polymers are scarce. Hydrophilic
and hydrophobic interactions strongly influence conformation of water-soluble poly-
mers in aqueous solutions. Water molecules present in the hydration layer of poly-
mers are restricted and the study of dynamics in aqueous polymer solutions is of
fundamental importance to understand the behavior of biological macromolecules.
Maeda et al. [126] used Raman spectroscopy and Desbrieres et al. [127] used quasi-
elastic light scattering to study the behavior of aqueous polymer solutions. Arga-
man and Huppert [128] have studied solvation dynamics in neat liquid polyethers,
CH3(OCH2CH2)nOCH3 (n = 2–4). Apart from the major ultrafast subpicosecond
components, they detected two relatively long components in the 10 and 100 ps
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time scales, which they attributed to the motion of the polyethers. The solvation
dynamics of water in an aqueous solution of poly(vinylpyrrolidone) (PVP) using
2,6-p-toluidinonaphthalene sulfonate (TNS) as a probe is studied by Sen [129]. In
aqueous solution of PVP they found a biexponential solvation dynamics with a ma-
jor component of 60 ps and a slower component of 800 ps. The retardation of the
solvation dynamics in the dilute polymer solution compared to that in the bulk water
is attributed to the restricted movement of water molecules in the vicinity of the
polymer chains.

11.7.2. Theoretical Studies

There are many theoretical studies of nonpolar solvation dynamics in the literature,
among which we may address the theory developed by Saven and Skinner [130]
and by Stephens et al. [131], in which the dynamics of the fluctuating energy gap
is generated by a Green’s function for the relative solvent–solute motion. An alter-
native theoretical model is based on the time-dependent density functional theory
[132,133], in which the slow component of the solvation time correlation function is
directly related to the coupling between the solute motion and the solvent collective
modes. In this theory the solvation time correlation function is expressed in terms
of the wave vector and time-dependent solvent dynamics and solute self-dynamics
structure factors and wave vector-dependent vertex, which couples the solute fluc-
tuating transition frequency to the solvent collective modes. This coupling vertex
is written in terms of the solute–solvent direct correlation function. The theory has
been applied to analyze the slow decay of the solvation time correlation function in
a dense LJ fluid [134].

A mode coupling theory is recently developed [135] which goes beyond the time-
dependent density functional theory method. In this theory a projection operator
formalism is used to derive an expression for the coupling vertex projecting the fluc-
tuating transition frequency onto the subspace spanned by the product of the solvent
self-density and solvent collective density modes. The theory has been applied to
the case of nonpolar solvation dynamics of dense Lennard-Jones fluid. Also it has
been extended to the case of solvation dynamics of the LJ fluid in the supercritical
state [135].

There are also a number of theories taking into account dipolar solvation dynam-
ics. These theories use the solvent’s dielectric response function as the dynamical
input and also include effects due to the molecular nature of the solvent. The most
sophisticated of these theories, by Raineri et al. [136] and by Friedman [137], uses
fully atomistic representations for both solute and solvent and recent comparisons
have shown it to be capable of quantitatively reproducing both the static and dynamic
aspects of solvation of C153 [110]. In these cases the theoretical nature of solvation
dynamics is fully understood. However, it must be remembered that much of the
success of these theories rests on using the dynamical content of the complicated
function, dielectric response function, determined from experiment. Although there
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has been some recent progress in formulating ab initio theories of solvent’s dielectric
response function for idealized model solvents [138], we are a long way from being
able to model realistic solvents. Thus, the quantitatively successful theories to date
are ones which relate two complex phenomena, solvation dynamics and dielectric
relaxation, rather than providing an ab initio theory of either one [110]. This last point
has been explained by Stratt and Maroncelli [110] in the case of solvation dynamics
in nonpolar solvents like benzene or dioxane, as an example. While these solvents are
nondipolar, they nevertheless are still enough polar, as attested to by their position
in solvatochromically based polarity scales. Experiments with C153 have uncovered
substantial time-dependent solvation in these solvents which is in all ways analogous
to that found in dipolar solvents [139]. While the energetics of solvation can be accu-
rately modeled by fully atomistic representations of such solvents, the dynamical in-
put, solvent’s dielectric response function, needed to model solvation dynamics is not
available [110].

11.7.3. Computer Simulations and the Mechanisms of Solvation

Computer simulation methods play an important role in understanding the solvation
dynamics. Since the time resolution is much easier to achieve in computer simula-
tion, the ultrafast component of solvation in coumarine-153 (C153) was discovered
in simulations well before it was observed experimentally. In the simulation methods,
usually after equilibrating the system composed of a single solute molecule in a bath
of solvent molecules, one can monitor the temporal behavior of fluctuations in an
equilibrium simulation to calculate the correlation function. Also one may introduce
an instantaneous change in the solute–solvent interaction potential and follow the
dynamics. The former method is more directly tied to theoretical treatments of sol-
vation dynamics, while the latter one more corresponds to the time-resolved fluores-
cence experiments. In the computer simulation studies it is important to be sure that
the linear response behavior is observed. In simulations of some systems, significant
deviation from the linear response regime has been reported [140]. This is due to the
significant changes in the solute–solvent interaction energy in the two solute states
considered. Nevertheless in many cases, even when the solvent is very polar, linear
response is valid.

Early simulation studies on solvation dynamics mostly focused on the behav-
ior of small atomic or diatomic solutes in small molecule solvents [141,142]. One
of the most popular solvation probes is coumarin C153 (its scheme is given in
Figure 11-16). Due to the fact that transition from ground to excited state in C153 is
associated with a large molecular dipole moment increase, this has a measurable
effect on polar solvents and leads to time-dependent emission spectra, shown in
Figure 11-16.

Nowadays, however, molecular dynamics has been applied to study the dynamics
of solvation of C153 as the solute in some polar solvents such as 1,4-dioxane and
fluoroform. Cinacchi et al. [143] used an all-atom chemically detailed model of both
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Figure 11-16. Time-resolved emission spectra of C153 at 296 K in formamide showing the continuous
red shift with time characteristic of solvation dynamics. The times represented are 0, 0.05, 0.1, 0.2, 0.5, 1,
2, 5, and 50 ps in order of decreasing peak intensity. The figure is taken from Stratt and Maroncelli [110]
with permission

solvent and solute (in the case of solute they applied a different set of atomic charges
in the ground and excited states) in their molecular dynamics study to simulate
the dynamics of solvation. They defined the solvatochromic shift in terms of the
difference between solvent–solute electrostatic interactions. Their calculated solva-
tion response function is fitted by a combination of two exponentials. One feature of
the simulation results, not observed in fluorescence experiments, is the oscillations
that are evident in the former case, which are usually too small to be observed experi-
mentally. These oscillations are related to libration motions of the solvent. It is worth
considering that the force field used to reproduce time-dependent properties, such as
solvation response function, must be fully atomistic. Applying a united atom model
for solvent produces results substantially different from experiment, which may be
due to less accurate description of the dynamics arising from a solvent molecule in
the cage formed by its nearest neighbors. The effect of the accuracy of force-field
model is shown in the simulation of solvation dynamics of C153 in supercritical
fluoroform, by Ingrosso and Ladanyi [144]. They did their calculations with a two-
and five-site model of fluoroform and concluded that the five-site model generates
results much closer to experiment.

To our knowledge, there is no computer simulation study on the solvation dynam-
ics of polymers in solvents. However, one close study by Olender and Nitzan [145] is
the use of molecular dynamics simulation to understand solvation dynamics of a clas-
sical charge in a series of ethers of increasing molecular weight, CH3(CH2OCH2)nH
with n = 1, 2, and 4. They argued that the linear response theory did not provide a
good representation of the solvation in their studied polyethers. Their results also
showed that with increasing molecular size, the short-time solvation dynamics is
dominated by intramolecular segmental motions.
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11.8. SUMMARY

In this chapter the process of solvation in polymers is discussed with the main
emphasis on the application of molecular dynamics simulation at the atomistic level.
We have studied a wide range of concentrations, namely from a very dilute solution
of penetrant gases in polymers to very concentrated solutions of polymers in sol-
vents. In the former case, a new molecular dynamics simulation method has been
applied to calculate the solubility coefficients of gases in polymers. It is shown that
one needs to perform two separate simulations, one simulation in the NPT ensemble
of the polymer phase and one simulation in pseudo-�VT ensemble of the gas phase,
instead of doing simultaneous simulations of both phases which is usually done in
Gibbs ensemble Monte Carlo simulation method. There is no need to exchange par-
ticles between two phases. The excess chemical potentials in the polymer phase are
calculated using Widom’s test-particle insertion method. A correct trend is calculated
for the solubility coefficients of gases with temperature. Although the calculated
solubility coefficients are higher than the experimental ones, as it is often found
for solubility coefficients calculated using molecular simulation methods, the ratio of
solubility coefficients (selectivity) are quite close to the corresponding experimental
data. The overall accuracy of the calculated sorption isotherms depends on the initial
slope, S0, calculated using test-particle method.

In the case of polymer solutions, we have reported molecular dynamics simula-
tions of a realistic nonpolar polymer–solvent mixture over a wide range of compo-
sition. It has been demonstrated that molecular dynamics simulations are capable of
describing correctly the structural and dynamical properties of such systems. It is
seen that in this case no considerable solvation effect is observed and the compo-
nents are distributed statistically. The situation, however, is shown to be different in
the case of polar polymer–polar solvent mixtures (PVA in water and ethanol). The
comparison between PVA solutions in water and in ethanol shows a clear preference
for an aqueous environment, due to the smaller size of water molecules that allows
the OH groups of PVA to simultaneously form more hydrogen bonds to water than
to ethanol. The solvent effect on the static and dynamics of chain collapse is studied.
It is shown that average radius of gyration and the end-to-end distance depend on
the quality of the solvent and the collapse rate depends on the chain length and the
quench strength. Finally a short review on the experimental, theoretical, and com-
puter simulation methods to study the solvation dynamics is given.
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Abstract: The importance of hydrogen bonds and solvent effects in soil and environmental chemistry
is demonstrated in this chapter. Humic substances as one of the major soil constituents are
modeled by means of representative functional groups. Their capability to form hydro-
gen bonds is demonstrated on interactions with selected sets of polar molecules, anions
and acidic pesticides, particularly 2,4-dichlorophenoxyacetic. It was shown that anionic
species form complexes of similar strength as corresponding neutral molecules if solvent
effects are taken into account. Of all functional groups carboxyl showed the highest chem-
ical activity in the formation of complexes. The calculations demonstrate that the solvent
effect substantially lowers the complex formation energies, especially in case of charged
systems.

The soil minerals kaolinite and goethite studied in this work possess very active sur-
faces, which are formed from hydroxyl groups. These OH groups are very flexible and
able to act as a proton donor or acceptor for hydrogen bond formation. Polar molecules
(e.g., H2O, acetic acid) form strongly bound complexes via multiple hydrogen bonds. It
was shown that strong sorbent sites exist on irregular clay mineral surfaces formed on the
corner and edges of clay mineral particles

Keywords: Functional groups, Soil minerals, Solvent effect, Hydrogen bonds, DFT

12.1. INTRODUCTION

Hydrogen bonding is a key structural feature in many chemical areas ranging from
inorganic to biological chemistry [1,2,3,4,5]. Hydrogen bonds constitute the major
bonding factor in water and in aqueous solutions [6]. They have also been ascribed
the capability of sustaining the stabilization of supramolecular structures, such as
DNA or tertiary structures of proteins [7]. Another important subject is environ-
mental pollution since it is one of the major problems of our civilization. In many
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processes of the environmental pollution hydrogen bonds play a dominant role.
Produced chemical pollutants represent serious risks for the quality of air, water
sources and soils. The knowledge of the transport, fixation, accumulation and dis-
tribution of pollutants in the ecosystem is very important for the assessment of soil
contamination and for the application of protective remediation methods. The fate
of pollutants is directly connected with the adsorption processes occurring in soils
that has impact on solute transport, microbial degradation, plant uptake through roots
and, thus, the transfer of pollutants into other compartments of the ecosystem and the
food chain.

Soils are complex entities containing large portions of organic and inorganic (min-
eral) constituents. The soil organic material (SOM) is considered as a heterogeneous
entity for which humic substances (HS) [8] are generated by the biochemical trans-
formation of plant and animal residue and represent a major fraction of the dissolved
and particulate organic matter in natural ecosystems. HS are large macromolecules
with variable size, structure and chemical compositions. Their reactivity depends on
their functional group chemistry and microstructure, which are in turn influenced by
the composition of the surrounding media. HS represent important organic compo-
nents actively participating in sorption processes [9]. They act as traps for pollutants
mainly via surface functional groups or binding in cavity-like sorption sites [8]. It
was also shown that inorganic soil constituents, e.g., soil minerals (clays, oxides),
have a significant impact on the sorption properties of various species (e.g., Parker
and Rae [10], Dixon and Schulze [11]). Thus, for the improvement of the present
understanding it is necessary to consider a manifold of different chemical interfaces,
the clay minerals and pedogenic oxides being the most active inorganic components
of soils participating in sorption processes [12].

A comprehensive modeling of the just-described complex soil system at a
molecular level is not possible. Therefore, it was the goal of our work during the re-
cent years to develop and investigate microscopic sub-scenarios where (i) individual
interactions of characteristic chemical groups representing the activity of SOM
with organic substances, primarily certain classes of pesticides, and (ii) adsorption
properties of various clay mineral surfaces were investigated. The combining theme
characterizing the attractive interactions between individual molecular species is the
hydrogen bond. It is the purpose of this chapter to present a survey of the variety of
hydrogen-bonded systems occurring in soil adsorption processes and to describe the
possibilities for accurate quantum chemical calculations. Special attention is devoted
to the class of the phenoxyacetic acid (PAA) derivatives, which represent a broad
spectrum of herbicides extensively used in agriculture. Their behavior in soils (sol-
ubility, adsorption–desorption, chemical resistance and biodegradation) is governed
by their chemical structure. In the PAA derivatives mainly the polar carboxyl group
is responsible for their relatively high chemical activity and dominates in interactions
with clay mineral surfaces.

Computational modeling of hydrogen bonding scenarios represents a complex
problem. Electronic structure calculations based on quantum mechanical methods
provide undoubtedly the most fundamental and reliable framework for reliable
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calculations of molecular systems. Nevertheless, computations using quantum
chemical methods can be carried out only for relatively small systems and are not
routinely applicable to complex macromolecular surroundings encountered in soil
systems.

Hydrogen bonds have been studied in detail by a huge number of experimen-
tal and theoretical investigations. A recent overview on computational studies on
hydrogen bonds can be found in the work by Rozas [13]. The major purpose of
the quantum chemical calculations was the study of the basic bonding properties of
hydrogen bonds aiming at precise data for interaction energies, structural parameters
(interatomic distances and angles, total atomic charge, dipole moments) and vibra-
tional spectra. Most of these studies were focused on the investigation of isolated
complexes. Environmental effects were not taken into account. Nevertheless, the
environment plays an important role in the determination of properties and reac-
tivity of substances in condensed phase. The complexity of chemical phenomena in
solution has made it necessary to develop a variety of models and computational
techniques to describe molecules in solution. These techniques differ in the level
of detail used to describe the chemical system, the physical rules underlying the
process of interest, and the mathematical formalism used to implement these rules.
The final goal of all these models is the understanding of the behavior of molecules
in a variety of environmental systems. One straightforward option would be to in-
clude solvent molecules explicitly as a cluster around the solute. In this case the
whole cluster would be treated by quantum chemical methods. The applicability
of this approach, however, is limited by the size of the cluster, considering the
drastically increasing amount of computational effort with the size of the system.
Mixed quantum mechanical–molecular mechanical (QM-MM) or completely classi-
cal models (force field or molecular mechanics methods) lead to drastic speedups of
the calculations and can be used for extended molecular dynamics and Monte Carlo
simulations [14,15,16,17,18,19]. However, it is not easy to determine reliable force
field parameters describing the whole range of hydrogen bonds (weak to strong) in
sufficient accuracy. An efficient combination of QM and MM approaches have been
developed by Coutinho, Canuto and co-workers [20,21] in the form of sequential
MC-QM method (s-MC-QM). Another interesting concept for solvent effects has
been proposed by introducing the averaged solvent electrostatic potential (ASEP)
[22,23]. A combination of ASEP and the above-mentioned s-MC-QM approach
has been published recently [24]. An alternative to taking into account the solvent
molecules explicitly are methods based on polarizable continuum models (PCM)
[25,26,27,28], the conductor-like screening model (COSMO) [29,30] or the solvent
model (SM) [31,32]. In these approaches the solute is treated by quantum mechanical
methods and a modeling of the solute cavity by atom-centered overlapping spheres.
The advantage of these methods lies in much less time-consuming calculations than
corresponding quantum chemical approaches using explicit solvent molecules.

In our studies, solvent effects were included in three different ways: (i) by explicit
inclusion of water molecules, (ii) by using a continuum solvation model and (iii) by
the combination of models (i) and (ii). The first approach is called microsolvation,
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the second is denominated as global solvation. The advantage of the microsolvation
model is its capacity to describe explicitly specific local interactions as hydrogen
bonds, an aspect which is missing in the global solvation approach. The microsolva-
tion model is size-limited and long-range effects of a polar solvent are absent while
in the global solvation approach they are included. Model (iii) combines the advan-
tages of models (i) and (ii). Such calculations are also referred to as “liquid” phase
calculations here.

12.2. SIMULATON METHODS

The quantum chemical calculations are based on density functional theory (DFT)
methods in various forms. DFT methods show a good computational efficiency al-
lowing the treatment of sufficiently large molecular systems and giving reasonable
accuracy. For the investigation of adsorption processes on clay mineral surfaces two
approaches were used. The first one is a cluster approach where a certain section is
cut from the crystal surface. Dangling bonds are saturated with hydrogen atoms and
the positions of atoms not directly involved in the adsorption processes are frozen
at the values of the periodic system in order to avoid artificial restructurings of the
cluster. In many cases these clusters together with the adsorbents are embedded into a
polarizable continuum using PCM model [25,26,27,28] or COSMO [29,30] methods.

The second approach is the use of methods employing translational periodicity.
Large periodic simulation cells (supercells) are used for the description of aperiodic
cases in an effort to minimize artificial periodic effects. The periodic approach is
used here for the study of surface properties of solids where simulated models pos-
sess two-dimensional translational periodicity. DFT methods in combination with the
Car–Parinello type molecular dynamics (MD) were used as a very efficient tool for
the study of systems up to the size of several hundred atoms. Within this size of model
systems it is reasonable to run short MD simulations up to tens of picoseconds. Even
though this time scale represents relatively short dynamic simulations, valuable sta-
tistically averaged properties can be achieved, e.g., structures or energetic stabilities.
Moreover, these time lengths are satisfactory for obtaining, e.g., radial distribution
functions or power spectra (corresponding to phonon spectra).

In case of molecular and cluster calculations, programs Turbomole [33] and
Gaussian [34] were applied. Both programs offer very good possibilities to treat
larger systems by using methods to reduce the amount of work for the calculation
of the time-consuming two-electron integrals (e.g., resolution of the identity (RI)
method in TURBOMOLE [35] and layer techniques ONIOM in Gaussian [36]) for
embedding the critical part of the system in an environment for which cheaper meth-
ods can be used. Mostly the B3LYP hybrid functional [37] was used in our calcu-
lations; in some cases we used pure DFT functionals like BLYP [38,39,40]. The
RI method was used for calculations with pure DFT functionals. In special cases,
calculations based on the Møller–Plesset perturbation theory to second order (MP2)
[41] were carried out for comparison reasons. The split valence polarization (SVP)
[42] and the modified SVP+sp are the basis sets used practically in all molecular
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calculations. In several cases the TZVP [43] and TZVP+sp (similar augmentation as
in case of SVP+sp) basis sets were used for controlling the accuracy of the SVP+sp
results. The SVP+sp basis was constructed by augmenting the SVP basis with a
set of s and p functions on atoms that participated in the hydrogen bonding. The
exponents of these additional basis functions were obtained by dividing the smallest
respective exponent of the SVP basis set by a factor of three. As has been shown in
the work by Tunega et al. [44] the basis set superposition error (BSSE) is reduced
substantially using the SVP+sp basis set. The counterpoise method [45] was used to
correct the BSSE.

The program VASP [46] was used in calculations on periodic models. In the
VASP calculations, the local density approximation (LDA) [47] and the generalized
gradient approximation (GGA) [48] are used for the description of the electron
exchange–correlation interaction. The calculations were performed in a plane-wave
basis set by means of the projector-augmented wave (PAW) method [49,50]. In
case of large computational cells the Brillouin-zone sampling was restricted to the
� point, otherwise k-point testing according Monkorst–Pack scheme [51] was al-
ways performed prior to a particular calculation. The plane-wave cutoff energy in
the range of 350–400 eV was used in cases of static structural relaxations which
correspond to great precision in the calculation. In MD simulations, the plane-wave
cutoff energy was lowered to 200 eV to allow relatively long run in a reasonable
real time. The finite-temperature MD simulations were usually performed at 300 K
using a canonical ensemble with Nosé thermostat procedure [52]. The velocity-
Verlet algorithm [53] with a time step �t=1 fs was chosen in all MD calculations.
The simulation times depend on the complexity of models and ranged from 2 to
20 ps. Thermal equilibration was always performed prior to MD run used for statis-
tical analysis. In all calculations computational box volumes and shapes were kept
constant.

12.3. ORGANIC FUNCTIONAL GROUPS AS MODELS
FOR HUMIC SUBSTANCES

The selection of the molecular systems investigated in this study was based on our
interest in the properties of organic soil constituents such as humic substances and
pesticides. HS contain several relevant functional groups in an otherwise indefinable
structure. These groups are mainly carboxyl, carbonyl, alcoholic and phenolic units,
which play a major role in binding of polar molecules from a polar solvent environ-
ment. In this context we decided to investigate the hydrogen bond effect in different
media in binary complexes, having acetic acid or acetate as one of the constituents.
This choice was based considering the major role that carboxyl group plays as func-
tional group of HS. The second component of these binary complexes contained as
characteristic features carbonyl, amino and hydroxyl groups. The deprotonated form
of carboxylic acid was also considered since interactions with acetate in natural soil
environments occur, as well.



326 D. Tunega et al.

The fate of the terrestrial and aquatic pollution due to pesticide deliverances is
of great ecological concern in our days. 2,4-dichlorophenoxyacetic acid (2,4-D) is
presently amongst the most employed herbicides [54], almost ubiquitous in agricul-
ture [55]. It belongs to the class of phenoxyacetic acids having an acidic carboxyl
group (pKa=2.9) [56,57]. This is the reason why it is quite mobile in aqueous sys-
tems and exists in its anionic form over a wide pH range in natural waters. Acetic
acid often appears in soils and is a good general model for interactions with various
functional groups. Therefore, we undertook two sets of investigations. In the first one
the interaction of acetic acid and acetate with a set of selected functional groups (see
below) was studied. In the second set the interaction of 2,4-D and its deprotonated
form, respectively, with different model organic compounds was selected in order to
mimic the interactions of HS in soils.

12.3.1. Binary Complexes with Acetic Acid and Acetate

Two series of six different dimers were investigated [58]. The first series was formed
by acetic acid (HAc) as one component and HAc, acetaldehyde (AcH), methanol
(MeOH), phenol (PhOH), ammonia (NH3) and acetamide (AcNH2) as the other one.
The second series was composed of the acetate anion (Ac–) as one component in
interaction with the molecules from the first set.

The calculations were performed at the DFT/BLYP level of theory and the
SVP+sp basis set in gas phase and in solution. Three different solvents water, DMSO
and n-heptane with relative dielectric constants εr = 78.39, 46.70 and 1.92, respec-
tively, were used in the PCM approach. Full geometry optimizations were performed
in all calculations and interaction energies were BSSE corrected. Enthalpies and
Gibbs free energies were computed for the gas-phase structures within the standard
harmonic oscillator/rigid rotator/ideal gas approximation at T = 298.15 K. The Gibbs
free energies of formations of complexes in solution (�Gsol) were calculated using
earlier approaches [59,60] according to the equation:

�Gsol = �Ggas + ��Gsolv + RT ln(1/22.4) (12-1)

where �Ggas is the Gibbs free energy of formation in the gas phase, ��Gsolv is the
difference in free energy of solvation (�Gsolv) of the complex and respective compo-
nents. The last term is a correction to the change of reference state from ideal gas to
solution [61].

All of the selected neutral molecules form cyclic structures with acetic acid in
the gas phase establishing two hydrogen bonds, showing that the OH group and the
carbonyl oxygen atom of the carboxyl group of HAc participate in the hydrogen
bond formation. The strongest hydrogen bonds for neutral complexes are formed
in the acetic acid dimer with H· · ·O distances of 1.625 Å. The calculated formation
enthalpy �Hgas of –14.7 kcal/mol (Table 12-1) is in good agreement with experi-
mental gas-phase formation enthalpies ranging between –14.2 and –15.3 kcal/mol
[62,63,64,65], and with other calculations [66,67,68]. The other molecules form
weaker complexes in the gas phase with two non-equivalent hydrogen bonds
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Table 12-1. Interaction enthalpies and Gibbs free interaction energies for gas phase and
liquid phases using the BLYP/SVP+sp approach. Energies are in kcal/mol

System Gas Heptane DMSO Water

�Hgas �Ggas �Gsol �Gsol �Gsol

HAc−HAc −14.7 −1.9 −1.8 1.4 7.5
HAc−AcH −6.2 3.5 2.7 4.8 8.3
HAc−MeOH −8.0 1.8 1.6 4.3 6.7
HAc−PhOH −6.9 3.1 3.0 6.2 11.2
HAc−NH3 −8.7 0.6 −0.7 0.2 2.4
HAc−AcNH2 −12.8 −3.2 −3.1 1.9 5.9
Ac−−HAc −25.5 −15.5 −9.7 −1.2 3.1
Ac−−AcH −10.7 −2.4 2.6 9.8 6.9
Ac−−MeOH −16.6 −7.8 −3.5 2.6 6.6
Ac−−PhOH −26.5 −16.5 −9.3 1.3 3.6
Ac−−NH3 −8.0 −0.8 1.8 6.3 6.5
Ac−−AcNH2 −22.0 −12.0 −4.8 5.1 9.6

(stronger and weaker one) with distances between 1.6 and 2.5 Å (Figure 12-1). The
interaction energies (Table 12-1) correspond to the H· · · O distances in the com-
plexes. For the charged complexes only one hydrogen bond is formed and the acetate
anion acts as a very strong Brønsted base for protons from the partners in the dimers.
In cases of AcNH2, HAc, PhOH and MeOH, the formed hydrogen bond is stronger
than in neutral complexes that is also reflected in calculated formation enthalpies
shown in Table 12-1. Thermal contributions to �H amount to about 1–2 kcal/mol,
which is of the order of 10–20%. However, the entropic contribution is substantial.
For example, T�S for the formation of the acetic acid dimer in the gas phase amounts
to –12.8 kcal/mol. This is in good agreement with the experimental value of about
–10.7 kcal/mol [64,65]. This large loss of entropy is observed for all complexes and
has the origin in the transformation of translational and rotational degrees of freedom
of the monomers into vibrational ones in the complex. The unfavorable T�S factor
is the cause for all neutral complexes in the gas phase (except the HAc dimer and
HAc–AcNH2) to be unstable according to calculated �G values.

The effects of the three solvents heptane, DMSO and water on formed hydrogen
bonds are illustrated in Figure 12-1. It is observed that increasing strength of the
solvent stabilizes the strong hydrogen bonds (they become shorter than in the gas
phase). On the other hand, the weaker hydrogen bond in the neutral complexes starts
to open with increasing strength of the solvent. This phenomenon leads to a decrease
in the interaction energy but opens a possibility for improved solvation of both in-
teracting subsystems since the solvent-accessible surface increases. As expected, the
largest changes in hydrogen bond lengths are observed for the strongest solvent,
water. In conclusion, for the neutral complexes it is observed that the polar solvent
environment has a stabilization effect on the strong hydrogen bonds while the weak
hydrogen bonds can even be broken under the effect of the solvent. An analogous
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Figure 12-1. The dependence of the Y···H distance of the strong and weak hydrogen bonds in the HAc
complexes on different solvent medium

behavior was observed for formamide dimers in different solvents by Sneddon et al.
[69] using molecular mechanics simulations. On the other hand, for charged com-
plexes containing the acetate anion, the structure of the hydrogen bonds does not
change much from gas to water environment, and the solvent dependence of the
hydrogen bond distances show smaller changes than for neutral ones. The interaction
energies for the neutral and charged complexes in different solvents are collected in
Table 12-1. It is observed that these energies decrease considerably in absolute value
when the polarity of the solvent increases. The largest changes are observed for the
acetic acid dimer and acetic acid–acetamide complex in agreement with calculations
by Nakabayashi et al. [68] for the cyclic acetic acid dimer. Table 12-1 shows that the
�G values of formation calculated according to Eq. 12-1 are positive except for the
acetic acid dimer, the acetic acid–acetamide and acetic acid–ammonia complexes
in heptane. This means that only these systems in these specific environments are
thermodynamically stable. Our calculated �G value for acetic acid dimer in heptane
(–1.8 kcal/mol) is comparable with the experimental value in chloroform of about
–2.4 kcal/mol [70]. The interaction energies computed for the charged complexes
(Table 12-1) also decrease with the increase of the solvent polarity, a behavior which
can be explained similar to the neutral complexes. The reason for the destabilization
of the complexes in strongly polar solvents can be found in the balance between
the solvation energies of the separated molecules and the complexes. The separated
molecules have large solvation energy since they are either charged or possess large
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dipole moments. The solvation energy of the complexes is always smaller than the
sum of solvation energies of individual components (in absolute value). As a conse-
quence, the solvent energy contribution to �G of formation in solution is positive.
An explanation of this effect was found in the decrease of the attractive part and
an increase of the non-attractive part of the solvent-accessible surface area of the
bimolecular complexes for polar solvents in comparison with individual components
since the attractive surface area is “locked” in the formed hydrogen bonds between
molecules in complexes. This destabilizing effect of ��Gsolv is a general one for the
formation of bimolecular hydrogen-bonded complexes in polar solvents.

12.3.2. Binary Complexes of 2,4-Dichlorophenoxyacetic Acid (2,4-D)

The sorption activity of functional groups existing in humic substances with respect
to the pesticide 2,4-D were investigated by means of a set of molecular model species
(MS) – acetic acid (HAc), methanol (MeOH), acetaldehyde (AcH), methylamine
(MeNH2) and protonated methylamine (MeNH3

+) [71]. Two sets of adsorption com-
plexes were studied – with the neutral form of 2,4-D and with its deprotonated form
(2,4-D–), respectively. All calculations were performed at the B3LYP/SVP+sp level
of the theory. In comparison to the reaction schemes for the binary acetic acid com-
plexes of the previous subsection an extended solvation approach including micro-
solvation with two waters was used. The reaction energies, �E, �H and �G, were
computed according to following reaction scheme:

MS · · · xH2O + 2,4-D · · · xH2O → MS · · · 2,4-D + (H2O)2x and

MS · · · xH2O + 2,4-D− · · · xH2O → MS · · · 2,4-D− + (H2O)2x

(12-2)

In (a) the gas-phase reaction x = 0 and PCM is not used, (b) in the global solvation
reaction x = 0 and PCM is used, (c) in the microsolvation reaction x = 2 and PCM
is not used and (d) in the combined approach x = 2 and PCM is used. Results of
calculated reaction energies are collected in Table 12-2.

Neutral complexes of 2,4-D with AcH, MeOH and HAc (see structures a, b and e
in Figure 12-2) are in the form of similar cyclic structures with two types of hydrogen
bonds (stronger and weaker) as observed for the complexes of HAc in Section 3.1.
It is evident that the hydrogen bond is the driving mechanism in the formation of all
complexes. The OH group of 2,4-D forms a strong hydrogen bond acting as proton
donor, while its carbonyl group, C=O, acts as proton acceptor forming much weaker
hydrogen bonds in the complexes with AcH, MeOH and MeNH2. For the complex
with protonated methylamine (Figure 12-2d), the stronger hydrogen bond comes
from the interaction between the carbonyl group of 2,4-D and the hydrogen atom
from the NH3

+ group of the protonated amine. A weak hydrogen bond appears in this
complex coming from the interaction between the chlorine atom of the 2,4-D ring and
another hydrogen atom of the NH3

+ group of the amine. The complex 2,4-D···2 H2O
(Figure 12-2f) has also a cyclic form with three relatively strong hydrogen bonds.



Ta
bl

e
12

-2
.

C
om

pu
te

d
co

m
pl

ex
fo

rm
at

io
n

en
er

gi
es

(i
n

kc
al

/m
ol

)
fo

r
2,

4-
D

an
d

2,
4-

D
−

M
S

M
S··

·xH
2
O

+
2,

4-
D

···x
H

2
O

→
M

S··
·2,

4-
D

+
(H

2
O

) 2
x

G
as

ph
as

e
(g

)
G

lo
ba

ls
ol

va
tio

n
(g

s)
M

ic
ro

so
lv

at
io

n
(m

s)
m

s+
gs

(m
gs

)
x=

0,
no

PC
M

x
=

0,
PC

M
x

=
2,

no
PC

M
x

=
2,

PC
M

�
E

g
�

H
g

�
G

g
�

E
gs

�
H

gs
�

G
gs

�
E

m
s

�
H

m
s

�
G

m
s

�
E

m
gs

�
H

m
gs

�
G

m
gs

A
cH

−1
1.

4
−8

.6
1.

2
−2

.6
0.

2
10

.0
−2

.2
−1

.8
−1

.5
−4

.1
−3

.7
−3

.4
M

eO
H

−1
2.

5
−9

.4
0.

2
−4

.2
−1

.1
4.

1
−3

.9
−3

.6
−4

.3
−8

.9
−8

.6
−9

.3
M

eN
H

2
−1

3.
9

−1
1.

1
−2

.0
−7

.3
−4

.5
4.

6
−3

.1
−3

.1
−3

.8
−4

.7
−4

.7
−5

.4
M

eN
H

3
+

−3
3.

2
−2

9.
6

−1
8.

9
−4

.9
−1

.3
9.

4
−2

.8
−2

.2
0.

9
−0

.6
−0

.1
3.

0
H

A
c

−1
8.

0
−1

5.
1

−4
.0

−1
.6

1.
3

12
.4

−0
.8

−0
.8

−1
.5

−0
.2

−0
.2

−0
.9

M
S··

·xH
2
O

+
2,

4-
D

- ···
xH

2
O

→
M

S··
·2,

4-
D

-
+

(H
2
O

) 2
x

A
cH

−1
1.

5
−9

.4
−1

.3
1.

4
3.

5
11

.6
5.

7
5.

3
5.

1
−1

.1
−1

.5
−1

.7
M

eO
H

−1
5.

3
−1

3.
0

−4
.4

−1
.6

0.
7

9.
3

1.
2

0.
8

0.
1

−7
.4

−7
.8

−8
.5

M
eN

H
2

−8
.2

−6
.1

1.
6

2.
1

4.
2

11
.9

10
.5

10
.2

9.
2

4.
1

3.
8

2.
8

M
eN

H
3

+
−1

16
.0

−1
15

.8
−1

06
.6

−0
.6

−0
.5

8.
8

−8
8.

3
−8

9.
2

−8
6.

5
3.

1
2.

2
4.

9
H

A
c

−2
1.

2
−1

9.
6

−8
.6

−2
.4

−0
.8

10
.2

3.
9

2.
5

2.
8

−2
.3

−3
.7

−3
.4

C
a2+

(H
2
O

) 6
+

2,
4-

D
− ·

··2
H

2
O

+
A

c−
···2

H
2
O

→
2,

4-
D

–
···C

a2+
(H

2
O

) 2
···A

c−
+

2(
H

2
O

) 4
–

–
–

–
–

–
–

−2
20

.9
−2

21
.0

−2
16

.3
−1

1.
5

−1
1.

6
−6

.6



Hydrogen Bonds and Solvent Effects in Soil Processes 331

a

c d

f

1.569 1.730

1.841

1.614
1.714

1.782

1.569 1.730

1.614
1.714

b

e

1.647

1.612
1.610

1.646

1.667

2.236

1.758

2.386

1.667

2.236

1.758

2.386

1.603
1.686

2.0482.404

.653
1.697
1

1.507
1.656

Figure 12-2. B3LYP/SVP+sp optimized structures of 2,4-D hydrogen-bonded complexes.
(a) 2,4-D···Me-CHO; (b) 2,4-D···Me-OH; (c) 2,4-D···Me-NH2; (d) 2,4-D···Me-NH3

+; (e) 2,4-D···HAc;
(f) 2,4-D···(H2O)2. Inserted numbers are hydrogen bond distances for the solvent and the gas phase
(underlined)
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The negatively charged structure 2,4-D– is only a proton acceptor and the formation
of the second hydrogen bond is not found in most of the charged complexes. The
hydrogen bonds formed in the negatively charged complexes are of different lengths
and consequently of different strengths, depending on the proton donor capability of
each MS. For example, the strongest hydrogen bond was observed for the acetic acid
complex with the H···O distance of 1.419 Å and corresponding complex formation
energy of –21.2 kcal/mol in the gas phase. The global solvent effect had the same im-
pact on the hydrogen bond structures as was described in the previous section. Strong
hydrogen bonds become even stronger while weak hydrogen bond was opened under
the global solvent effect.

Table 12-2 collects the formation energies, enthalpies and Gibbs free energies
calculated under the four different solvation conditions described above. Compari-
son of the calculated formation energies with our previous results for the interaction
energies of acetic acid and similar MS (Table 12-1) shows that 2,4-D forms more
strongly bound complexes than acetic acid in the gas phase with an energy differ-
ence of about 2–4 kcal/mol. Thermal and entropic contributions for the gas phase
and global solvation are similar as in the case of HAc and Ac– interactions described
in the previous section. Especially the entropy loss is large that is typical for the
association reactions like A + B → C. This approach makes all complex formation
reactions using only global solvation unfavorable, since all respective �Ggs values
of Table 12-2 are positive. In order to assess the validity of the simple association
scheme, the microsolvation approach with explicit insertion of H2O molecules was
used as the next step and the results are shown in Table 12-2 as well. Similar to
the global solvation approach, a considerable decrease (in absolute value) of the
interaction energies in comparison to the gas-phase approach is already observed in
case of microsolvation. However, in contrast to the gas phase and global solvation,
comparison of the �H and �G values shows that the entropy loss is much smaller in
the microsolvation reactions. T�S for the formation reaction of the complex between
2,4-D and acetic acid, for instance, is –0.7 kcal/mol as compared with –11.1 kcal/mol
for the complex formation obtained for the gas-phase reaction. The reason for this
difference is that the microsolvation reaction scheme (Eq. 12-2) does not represent
a pure association but a replacement of solvent waters from the reactants. It is clear
that this scheme is still quite simple and that a final verification could be achieved
only by MD or Monte Carlo (MC) investigations preferably at a complete ab initio or
QM/MM level. The combined microsolvation and global solvation approach (ms+gs)
shows that the influence of the global solvent effect is not so important anymore as
compared to the pure global solvation. An extreme importance of global solvation
is found for cases where the reaction schemes are not charge-balanced as is the case
of the interaction of protonated methylamine with 2,4-D– (see Table 12-2). Results
of the ms+gs calculation showed that all complex formation reactions in solvent are
favorable except the cases of MeNH3

+ with neutral and anionic 2,4-D and MeNH2

with the 2,4-D– anion, respectively.
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12.4. HYDROGEN-BONDED INTERACTIONS IN SOIL MINERALS
AND THEIR SURFACES

Various chemical and physical processes (e.g., sorption, mineral dissolution) in soils
appear at mineral–water interfaces. In particular, soil minerals significantly con-
tribute to sorption of various pollutants (e.g., heavy metal cations, pesticides), which
represent a high ecological risk. The speciation of surface sites has been studied
intensively during the last 30 years by various experimental methods. However, ex-
perimental investigations usually give only an overall picture about adsorption pro-
cesses and practically no details about the mechanism of these processes. In many
cases, the dominant mechanism for adsorption of various species is the formation of
hydrogen bonds. In this part we present a characterization of surface adsorption sites
of two soil minerals (kaolinite and goethite) by means of quantum chemical density
functional theory-based simulations. Models of surface sites are investigated in their
interactions with water molecules, and structural, energetic and dynamic properties
of these sites are evaluated. The chemical activities of these sites are estimated on
the basis of calculated interaction energies for several molecules.

12.4.1. Hydrogen-Bonded Interactions of Surfaces of the Isolated
Kaolinite Layer

Cluster and periodic model approaches were used in the study of interactions of
water, acetic acid (HAc) with the (001) surfaces (octahedral, K(O), and tetrahedral,
K(T)) of the kaolinite layer [72,73]. The model of the isolated kaolinite layer is given
in Figure 12-3. In both approaches the formation of several relatively strong hy-
drogen bonds between surface hydroxyl groups on the octahedral site and adsorbed
species was found. Table 12-3 collects structural parameters for formed hydrogen
bond complex of the isolated H2O molecule on the octahedral surface of the kaolin-
ite layer, collected from three types of calculations. All three approaches used give
relatively similar results. The water molecule forms three hydrogen bonds, in two
of them water is a proton acceptor, while in the third, the strongest one, water is a
proton donor to one of the surface OH groups. A similar hydrogen-bonded scheme
was observed for HAc. The carbonyl group forms three relatively strong hydrogen
bonds with the surface OH groups while the hydroxyl of the –COOH group forms
very strong hydrogen bond (less than 1.5 Å) with the one oxygen of the surface OH
group. On the other hand, only weak hydrogen bonds with O···H distances > 2.0 Å
were observed for the tetrahedral side of the kaolinite layer and surface oxygen atoms
are found to be weak attractors for water H atoms.

In a subsequent study both surfaces of the kaolinite layer were covered by
monomolecular layers of water [74] and the structure and dynamics of both systems
were investigated using ab initio MD. Figure 12-4 represents snapshots from the MD
simulations. The arrangement and the structure of the water layer differ significantly
on both surfaces. On the octahedral side the water layer stays in a relatively sta-
ble configuration due to formation of strong hydrogen bonds with the surface OH
groups. This interaction significantly influences the layout of the water molecules
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Figure 12-3. The structural model of the isolated kaolinte layer

in this case. On the other hand, the water molecules on the tetrahedral surface have
a tendency to aggregate forming hydrogen bonds among themselves and only tem-
porarily weak hydrogen bonds with the basal oxygen atoms of the tetrahedral surface
are formed. Finally, ab initio MD was used in the simulation of the water layer con-
fined between two kaolinite surfaces (snapshot of the MD is given in Figure 12-5).
This MD confirms the results from the simulation of the monomolecular water layer.
The tetrahedral surface interacts weakly with water molecules while the octahedral
surface forms relatively strong hydrogen bonds with water molecules. Results of all
studies led to the general conclusion that the octahedral and tetrahedral surfaces are
of different chemical nature. The octahedral surface is much more chemically active
than the tetrahedral one and is able to strongly bind polar molecules. The octahedral
surface can be considered as hydrophilic while the tetrahedral as hydrophobic.

The observed structural differences between the octahedral and tetrahedral sur-
faces are also reflected in calculated interaction energies. The first row of Table 12-4
shows interaction energies obtained from static relaxations. The interaction energy
for the octahedral surface is much higher (in absolute value) than for the tetrahedral
surface. It has to be noted that these interaction energies are not corrected by thermal
contributions. We computed thermal factors from molecular dynamics simulations.
The energy of adsorption for one water molecule was calculated according to
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Table 12-3. Comparison of calculated structural parameters for the kaolinite(O)−H2O system obtained
from geometry optimizations of a cluster model (ONIOM(B3LYP/SVP:PM3 method) and the periodic
DFT(PW91) approach) (static relaxation and MD simulation) [73]. Bond lengths and interatomic dis-
tances are in Å, angles are in degrees. Superscript “w” stands for water, subscripts distinguish O and H
atoms of three different surface OH groups

Structural parameter Cluster model Static relaxation MD

H1
w–Ow 0.997 1.048 1.039

H2
w–Ow 0.965 0.987 0.989

H1
w–Ow−H2

w 105.8 110.4 109.8
H1

w···O1 1.628 1.528 1.590
Ow···H2 1.886 1.712 1.817
Ow···H3 1.957 1.732 1.816
O1–H1 0.987 0.995 0.997
O2–H2 0.973 0.997 0.998
O3–H3 0.970 0.998 1.000
Ow···O1 2.615 2.572 2.610
Ow···O2 2.917 2.699 2.778
Ow···O3 2.815 2.709 2.775
O1···H1

w–Ow 169.7 173.5 167.4
O2–H2···Ow 171.2 169.6 163.8
O3–H3···Ow 159.7 165.3 162.2

�UH = (〈U (N )〉 − (〈U (0)〉 − N · 〈U (H2O)〉))/N (12-3)

N is the number of water molecules, 〈U (N )〉 is the averaged potential energy with
N water molecules on the surface, 〈U (0)〉 is the averaged potential energy of a dry
surface and 〈U (H2 O)〉 is the averaged potential energy of water molecule. Table 12-4
collects the calculated hydration energies for systems with one water molecule and
with the water layer above both surfaces. Results for the single water molecule doc-
ument a decrease of the interaction energy (in absolute value) for both surfaces due
to the thermal motion but the clear energetic difference between both surfaces is
preserved. The calculated hydration energies for the monomolecular water layer re-
sulted in an increase of the interaction energies in absolute value for both surfaces,
more for the tetrahedral one. The strong increase for the tetrahedral surface is due to
interaction among water molecules and not between the surface and water molecules.
An increase of the hydration energy is also observed for the octahedral surface but
this increase is not as big as in case of the tetrahedral surface. Our calculated inter-
action energies are in reasonably good agreement with results computed by Wang
et al. [75] using a classical MD based on the CLAYFF force field [76] for min-
erals gibbsite (similar surface as the octahedral kaolinite surface) and talc (similar
surface as the tetrahedral kaolinite surface). For the tetrahedral surface our value of
–8.3±0.4 kcal/mol agrees well with the result of –8.8±0.3 kcal/mol for the talc sur-
face calculated by Wang et al. [75]. Also the result of –13.5±0.3 kcal/mol for gibbsite
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Figure 12-4. Models for the surface interactions of kaolinite. In case (a) atomic symbols correspond to
those used in Table 12-3. Numbers in cases (b), (c) and (d) give hydrogen bond distances obtained in the
cluster calculations at the ONIOM(B3LYP/SVP:PM3) level [73]

by Wang et al. [75] is close to our MD result of –12.1±2.2 kcal/mol for the octahedral
surface. The computed hydration energies are also in relatively good agreement with
the experimental hydration enthalpy of –10.6 kcal/mol of kaolinite [77].

12.4.2. Interactions of 2,4-D with the Octahedral Kaolinite Surface

Full optimizations and ab initio MD simulations of the adsorption of 2,4-D on the
octahedral surface of the kaolinite layer were performed in the study by Tunega
et al. [78]. Figure 12-6 displays the optimized adsorbed structure of 2,4-D on the
kaolinite layer. The polar carboxyl group forms hydrogen bonds very similar to those
described for acetic acid before [72,73]. The MD simulation provides a dynamical
picture of the 2,4-D adsorption. During the 4 ps dynamics several proton H1 jumps
between the two oxygen atoms occurred, similarly as found in the MD study of
HAc adsorption [73]. A comparison of both results showed a higher frequency of
the proton jumps for 2,4-D that correlates with easier deprotonation of this molecule
and its lower pKa value than for HAc. The analysis of the optimized geometry and
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Figure 12-5. MD snapshot of the water layer confined between two kaolinite surfaces

the molecular dynamics showed that the chlorine atoms of 2,4-D also take part in
the formation of weak hydrogen bonds with surface hydroxyl groups. We suppose
that also the benzene ring contributes partly to the interactions via dispersion forces
between the � bonds of the benzene ring and the surface OH groups. These observed
additional interactions explain why 2,4-D has larger sorption energy (–28.0 kcal/mol)
than acetic acid (–20.8 kcal/mol, [72]). The computed interaction energy is also
significantly larger (in absolute value) than the energy of –14.7 kcal/mol calculated

Table 12-4. Computed interaction energies (in kcal/mol) of a single water molecule
and a monomolecular water layer, respectively, with the two different (001) kaolinite
surfaces

Water Method Tetrahedral surface Octahedral surface

Single Relaxation −4.1 −13.1
Single MD −0.8±0.5 −8.3±3.2
Layer MD −8.3±0.4 −12.1±2.2
Layer MDa −8.8±0.3 −13.5±0.3

aResults for talc and gibbsite taken from the work by Kalinichev et al. [91]
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Figure 12-6. Two views of the optimized structure of 2,4-D interacting with the octahedral surface of the
kaolinite layer

for the water molecule [72]. This fact suggests a significantly higher affinity of 2,4-D
to the octahedral surface of kaolinite and its preferential sorption in comparison with
water. The observed sorption of the neutral form of 2,4-D onto clay minerals (includ-
ing kaolinite) at low pH (∼ 3) [79,80] or soils with high clay content [81] at low pH
is in agreement with this finding.
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12.4.3. Interaction of Broken Clay Surfaces with Water and Model
Organic Molecules

Broken surfaces are of great interest since they are expected to have significantly
higher chemical activity than regular ones. Defect sites arise when polar covalent
bonds between oxygen atoms and central cations of the octahedral/tetrahedral sheets
are cut. They can be represented schematically by the structures ≡TOH2, ≡TOH
and ≡TO groups (T is either a tetrahedral or octahedral central cation). The actual
occurrence of these species will mainly depend on pH conditions [82,83,84,85,86].
In general, sites on broken surfaces are amphoteric, being able to act as proton donor
or as proton acceptor in the hydrogen bond formation.

In the present study three basic cluster models were constructed for the tetrahe-
dral part of the broken surfaces: two one-site models, (RO)3SiO and ((RO)3AlOH)–

(R = CH3), and one two-site model (two terminal surface hydroxyl groups are
available), Si2AlO5H3(OH)2, were constructed. Details on the cluster models
can be found in the work by Aquino et al. [87]. Interactions with HAc and
N-methylacetamide (NMA) have been studied. In case of the physical defect struc-
tures (≡SiOH and Si2AlO5H3(OH)2) standard hydrogen bonds of moderate strength
with H···O distances between ∼1.68 and 1.96 Å are formed. Chemical defect struc-
tures (e.g., the negatively charged ≡SiO–) have significantly larger activity. Typical
H···O distances are about 1.45 Å that is characteristic for strong hydrogen bonds. It is
interesting to note that the ≡AlOH2 site has a higher chemical activity than ≡AlOH–.
In cases of one-site models with Al (≡AlOH2 and ≡AlOH–), HAc forms stronger
hydrogen bonds than in case of the neutral cluster ≡SiOH with O···H distances about
1.41 Å. Calculated interaction energies (Table 12-5) vary significantly with the type
of defect. As expected, for chemical defect structures (e.g., ≡SiO–) they are signif-
icantly larger in absolute value than those for the physical defects. Actual values
depend on the total charge of the complex. In some cases proton transfer has been
observed during geometry optimization (see Table 12-5). The structure and strength
of NMA complexes depend on the NMA configuration and on the type of functional
group (=N–H or C=O) involved in the hydrogen bond formation. Stronger hydrogen
bonds are formed if the C=O group acts in hydrogen bonds as a proton acceptor
(O···H distances are between 1.5 and 1.7 Å). The =N–H group is a weak proton
donor with H···O distances about 2 Å. cis-NMA forms more stable complexes than
trans-NMA (except the interaction with ≡AlOH– model) because cis configuration
is able to form hydrogen bonds with both functional groups. In all but one case
the interactions with the surface groups are such that the CN bond length decreases
that indicates an increase of the CN double bond character. Thus, the preference
for planarity of the peptide group will be enhanced in this way in comparison to
free NMA. On the other hand, if the nitrogen atom interacts with its lone pair with
a surface defect, the CN bond length is decreased and the preference for planarity
of the peptide group is reduced. These examples demonstrate that the planarity of
the peptide bond can be substantially influenced by different interaction types with
clay surfaces. In case of two-site models, calculated interaction energies for HAc and
NMA are similar (Table 12-5). Hydrogen bond lengths are similar to those formed for
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Table 12-5. Formation energies, �Eg (in gas) and �Es (in solution), calculated at the BLYP/SVP+sp
level. Energies are in kcal/mol

Complex Note �Eg �Es

≡SiOH···HAc C=O acceptor, C-OH donor −10.6 −8.3
≡SiO−···Hac Proton transfer to≡SiO− −41.9 −17.0
≡AlOH2···Hac C=O acceptor, C-OH donor −25.6 −13.0
≡AlOH−···HAc C-OH donor −20.7 −8.6
≡AlOH2···Ac− Proton transfer to Ac− −49.9 −19.8
≡SiOH···trans-NMA =N-H donor to ≡SiOH −3.8 −4.8
≡SiOH···trans-NMA C=O acceptor −7.8 −8.6
≡SiOH···cis-NMA =N-H donor, C=O acceptor −11.6 −8.3
≡SiO−···trans-NMA =N-H donor −35.2 −8.5
≡AlOH2···trans-NMA C=O acceptor −15.2 −10.0
≡AlOH2···cis-NMA C=O acceptor, =N-H donor −22.8 −11.1
≡AlOH−···cis-NMA =N-H donor −12.1 −2.1
≡AlOH−···trans-NMA =N-H donor −17.6 −4.1
Si2AlO5H3(OH)2···HAc C=O acceptor, C-OH donor −11.4 −5.6
Si2AlO5H3(OH)2···Ac− COO− donor two OH −36.1 −7.9
Si2AlO5H3(OH)2···trans-NMA C=O acceptor to two OH −10.2 −0.7
Si2AlO5H3(OH)2···cis-NMA =N-H donor, C=O acceptor −11.1 −1.6
≡SiOH···2 H2O 1. H2O donor, 2. H2O acceptor −14.1 −9.0

the neutral one–site ≡SiOH model. Figure 12-7 illustrates four complexes calculated
for the two-site models.

The inclusion of solvation effects does not change the structural situation signifi-
cantly. In case of complexes where two hydrogen bonds are formed, one is typically
somewhat shortened and the other slightly stretched. Similar effects have been ob-
served in our previous investigations (see Sections 3.1 and 3.2 and Aquino et al.
[58,71]). Formation energies are strongly reduced in absolute value by solvation ef-
fects, especially those of charged complexes. This has also been observed previously
[58,71] and has been traced back to a reduction of the solvent-accessible surface on
complex formation.

12.4.4. Hydrogen Bond Interactions of Goethite Surface

Goethite (�-FeOOH) is an iron oxo-hydroxide representing an important constituent
of soils. Goethite plays a significant role in environmental processes since it has a
strong affinity to a variety of chemicals being able to sorb large amounts of heavy
metal cations, anions, oxyanions [88] as well as organic pollutants such as polycyclic
aromatic hydrocarbons [89]. Details about the goethite structure can be found, e.g., in
the work by Hazemann et al. [90]. One of the most abundant surfaces, (110) contains
more than one type of hydroxyl groups due to cutting through Fe–O bonds and their
subsequent saturation with hydrogen atoms. Three different OH sites exist on this
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Figure 12-7. Structural models of two-site complexes of broken clay surfaces. Geometrical parameters
were obtained at the BLYP/SVP+sp level for the gas phase and in solution (underlined numbers)

surface: (a) hydroxo – OH group is bound to one Fe atom, (b) �-hydroxo – OH is
bound to two Fe atoms and (c) �3-hydroxo – OH group is bound to three iron atoms.
The arrangements of these OH types form different interaction sites for hydrogen
bonds.

Our investigations of the goethite surface have started with a study of interactions
of different hydroxo groups of molecular clusters containing four, six and eight iron
atoms. More details about the construction of clusters and cluster complexes can be
found in the works by Aquino et al. [71]. In this section we will present results for
the cluster containing six Fe atoms (denoted as Fe6OH) and all three types of the
surface OH groups. Water, HAc, Ac–, 2,4-D and 2,4-D– are selected as adsorption
partners.

Figure 12-8 represents adsorption structures of H2O, HAc, Ac–, 2,4-D and 2,4-D–,
respectively. The calculations showed that hydroxo and �-hydroxo OH groups are
flexible and can act either as a proton donor and/or proton acceptor, similar to the
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Figure 12-8. Optimized structures of the surface complexes formed between the surface cluster model of
goethite (Fe6OH) and water (a, b), acetic acid (c), acetate (d), 2,4-D (e), and 2, 4-D–(f)

case of the kaolinite surface OH groups. On the other hand, the �3-hydroxo group
is relatively rigid (the oxygen atom is fully saturated by four bonds) and acts exclu-
sively as a proton donor in the hydrogen bonds. From Figure 12-8 it can be seen that
surface OH groups are involved in the formation of usually three hydrogen bonds
with the interacting species. In all cases (except Ac–), two of them are stronger (see
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Table 12-6. Interaction energies, �E, of H2O, HAc, Ac−, 2,4-D, 2,4-D−
adsorbed on a goethite cluster using the closed shell B3LYP approach and two
basis sets. Energies are given in kcal/mol

System Figure �E (SVP) �E (SVP+sp)

Fe6OH···H2Oa 12-8a −20.1 −16.5
Fe6OH ···H2Oa 12-8b −17.5 −13.2
Fe6OH ···Hac 12-8c −23.7 −25.0
Fe6OH ···Ac− 12-8d −58.3 −50.6
Fe6OH ···2,4-D 12-8e −23.9 −25.9
Fe6OH ···2,4-D− 12-8f −37.4 −31.3

aTwo different orientations of the H2O molecule (for more details see Aquino
et al. [71]).

hydrogen bond lengths given in Figure 12-8). Calculated interaction energies for
different sites are collected in Table 12-6. They amount to ca. –20 kcal/mol for the
adsorption of a water molecule, a value which is in line with the number and type
of hydrogen bonds formed. Larger interaction energies were observed for the neu-
tral acetic acid and 2,4-D. The deprotonated, anionic form of acetic acid and 2,4-D
display even stronger interactions between –30 and –50 kcal/mol (B3LYP/SVP+sp
results). The complexes of the 2,4-D– anion differ from those of the acetate anion
since chlorine atoms are also involved in weak interactions with the surface OH
groups (Figure 12-8). The flexibility of the goethite surface OH groups is similar to
that observed for the kaolinite surface OH groups [72,73] while their chemical activ-
ity is even larger. For example, calculated interaction energy for the H2O molecule
is about –8 kcal/mol for kaolinite (cluster model and B3LYP/SVP+sp method, [72])
and about –15 kcal/mol for goethite (Table 12-6). It means that the goethite surface
OH groups are more active in hydrogen bond formation than kaolinite OH groups.

12.5. CONCLUSIONS

In this contribution we presented several examples for the important role hydrogen
bonds and solvent effect play in soil and environmental chemistry. The structurally
very complex humic substances were modeled by means of representative functional
groups. The capability of forming hydrogen bonds was demonstrated for interactions
of these groups with selected set of polar molecules, e.g., H2O, acetic acid and its re-
spective anion, Ac–. In order to investigate the capability of humic functional groups
to fix acidic pesticides in soils, the interactions of neutral and ionic forms of 2,4-D
with a selected set of molecules were investigated as well. Calculations showed that
the anionic forms (Ac– and 2,4-D–) form complexes of similar strength as corre-
sponding neutral molecules if solvent effects are taken into account. It was shown
that solvent effect substantially lowers the complex formation energies, especially in
case of charged systems. The results obtained for the 2,4-D complexes showed the
importance of the explicit inclusion of solvent molecules (microsolvation) interacting
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with the molecules involved in the complex formation. Using this approach with the
combination of the global solvation approach (polarizable continuum representing
solvent) complex formation reactions are better described than applying purely the
global solvation approach and the associative type of reactions.

The presented results showed how the surfaces of the kaolinite and goethite min-
erals interact with the polar water molecules. The octahedral surface of the kaolinite
formed from surface hydroxyl groups is hydrophilic while the tetrahedral surface
is hydrophobic. The kaolinite surface OH groups are very flexible and are able to
act as proton donor or acceptor in interactions with polar molecules capable to form
hydrogen bonds. A similar behavior was also observed for the surface OH groups
of goethite except for the �3-OH type, which is only a proton donor. Computed
interaction energies demonstrate strong hydration interactions with the octahedral
kaolinite surface but only weak hydration of the tetrahedral surface. The goethite
(110) surface is even more hydrophilic than the octahedral kaolinite surface when
comparing the computed interaction energies. We conclude that the kaolinite and
goethite surface hydroxyl groups have amphoteric character and can behave in par-
ticular circumstances as solid acid and/or solid base, respectively, depending on the
conjugate partner. Interactions of 2,4-D molecule with kaolinite and goethite sur-
faces are similar and calculated gas-phase complex formation energies are larger (in
absolute value) than those with our investigated set of organic functional groups.
This reflects the fact that the –COOH group is able to form multiple hydrogen bonds
with the surface OH groups. It was also shown that strong sorbent sites can exist
on irregular clay mineral surfaces formed on the corner and edges of clay mineral
particles.

In conclusion, we have achieved a detailed picture of the activity and the form of
interactions with polar and charged species of organic functional groups representing
reactive sites of humic substances and of two important soil minerals, kaolinite and
goethite.
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13.1. INTRODUCTION

Presently we are concerned with computational methods for calculating molecu-
lar properties of molecules interacting with a solvent, proteins, polymers or car-
bon nanotubes.We describe, using response methods, how to derive theoretical
methods for calculating molecular properties of molecules interacting with a struc-
tured environment. Generally, in our opinion, modern response theory represents
a solid theoretical approach for the determination of time-dependent electromag-
netic properties of molecules in vacuum [1,2,3,4,5,6,7]. In the context of dielec-
tric medium approaches, the procedures for performing calculations using modern
response theory for solvated molecular systems have been described within the
last couple of decades [8,9,10,11,12]. Dielectric medium models are generally not
able to describe correctly the interactions between the solvent and the solute when
the interactions are dominated by structural environments. Interactions between
molecules and structural environments are typically encountered when one inves-
tigates phenomena in biochemistry, chemistry, material science, nano-science and
physics.

Our present focus is on density functional theory and coupled cluster methods
for describing molecular systems interacting with a structured environment, and we
focus on the derivation of linear response properties and compare the expressions that
we obtain for the two different electronic structure methods. Based on linear response
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functions we are able to calculate molecular properties of molecules interacting with
structural environments and the molecular properties considered in this context are

• frequency-dependent polarizabilities,
• excitation and deexcitation energies,
• circular dichroism and optical rotation,
• transition moments,
• NMR shielding constants, and
• magnetizabilities.

The model that we utilize for describing the interactions between molecules and
structured environments is given by the combined quantum mechanical/molecular
mechanical (QM/MM) method [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]. The QM/MM
methods are based on the following division of a large system: (i) a smaller part of
the large system is treated quantum mechanically and the molecules belonging to
this part of the system are denoted the QM system. The QM system is the system
of primary interest and is the system that we wish to investigate and to determine
molecular properties for. (ii) The major part of the large system is treated by classical
mechanics and this system is denoted the MM system. The MM system is normally
obtained from classical simulations based on interaction potentials including elec-
trostatic, induction, repulsive and dispersion interactions. The interactions between
the QM and the MM systems are included in the many-body quantum mechanical
Hamiltonian and this provides methods for calculating quantum mechanically the
molecular properties of the QM system interacting with the MM system, the struc-
tured environment.

The QM/MM model and the interaction Hamiltonian can be improved by
increasing either the QM level or the parametrization of the MM force field. Here
we focus on quantum mechanical methods based on correlated coupled cluster and
density functional theory. In terms of interaction potentials we utilize pair potentials
for taking care of the couplings in the MM system and for the couplings between
the classical and quantum mechanical systems. Furthermore, we include in both the
MM/MM and QM/MM couplings an explicit term accounting for the (many-body)
polarization of the MM system. Generally, the advantages of the presented method
are (i) the use of a highly correlated wave function approach, (ii) an explicit account
of polarization effects in the MM environment and (iii) the use of response theory
[50,51] to calculate molecular properties. Overall, this procedure in conjunction with
the response theory formalism enables us to calculate dynamical molecular proper-
ties (as well as excitation energies and transition properties) without the restrictions
dictated by the finite field (FF) or few-state methods. In this presentation, we will
focus on the calculation of optical molecular properties represented by the investiga-
tions of the linear molecular properties of acetone.

This presentation is structured in the following way. The first section outlines
the procedure for the quantum mechanics and classical mechanics approach. The
following two sections contain an overview of how to establish a density functional
theory and molecular mechanics method along with the theoretical background for
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extending this method to include response theory. Sections 5 and 6 cover the coupled
cluster-molecular mechanics method and the coupled cluster-molecular mechanics
response theory. Section 7 contains results covering linear response properties of
solvated acetone and in the final section we conclude.

13.2. THE COMBINED QUANTUM MECHANICS AND MOLECULAR
MECHANICS MODEL

This section provides the fundamental equations for the quantum mechanical and
molecular mechanical approach for determining the energies of molecules interact-
ing with a structured environment. We can illustrate the QM/MM procedure as indi-
cated in Figure 13-1 for a system where one part is described by quantum mechanics
(QM) and the other part is described by classical mechanics or molecular mechan-
ics (MM). The electrons and the nuclei of the QM system are treated separately
at positions r j and Rm , respectively. We represent the particles in the MM part by
effective charges positioned at the atomic sites, Rs , and induced dipole moments
located at (Ra).

The total energy for the system is given by the following terms [14,15,16,25]

E = EQM + EQM/MM + EMM (13-1)

where EQM is the usual quantum mechanical energy described by the Born–
Oppenheimer many-body vacuum Hamiltonian, ĤQM which in first quantization and
atomic units is given by

H = − 1

2

N∑

i=1

∇2
i −

N∑

i=1

M∑

m=1

Zm

|ri − Rm | + 1

2

N∑

i, j(i �= j)

1

|ri − r j |

+ 1

2

M∑

m,n(m �=n)

Zm Zn

|Rm − Rn|

(13-2)

.

.

.
.

.O

MM

QMj

Ra

Rs
Rm

Rm –Ra

rj

a

s
m

Figure 13-1. An illustration of the QM/MM concept. The vector r j (Rm ) describes an electron (a nucleus)
in the QM part. The vectors Ra and Rs point to the positions of the induced dipole moment and the
effective point charge, respectively, in the MM part
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where the nuclear charge of the mth nucleus is given by Zm . The kinetic energy of
the electrons is given by the first term in Eq. (13-2) and the interactions between the
electrons and the nuclei are represented by the second term. The repulsion energies
arising from the electron–electron and the nuclear repulsion energy are given by the
third and fourth terms, respectively.

We will mostly use second quantization and thereby represent the molecular elec-
tronic Hamiltonian in Eq. (13-2) as

Ĥ =
∑

pq

h pq Ê pq + 1

2

∑

pqrs

gpqrs êpqrs + hnuc (13-3)

where the integrals are given by

h pq =
∫

φ∗
p(r)

(

−1

2
∇2 −

M∑

m=1

Zm

|r − Rm |

)

φq (r)dr (13-4)

gpqrs =
∫ ∫

φ∗
p(r1)φ∗

r (r2)φq (r1)φs(r2)

|r1 − r2| dr1dr2 (13-5)

We have utilized the fermion creation and annihilation operators denoted â†
pσ , and

âpσ , respectively. These operators act on the electron in the pth orbital with the pro-
jected spin σ . The set {|φp(r)〉} represents the molecular orbitals and the last term,
hnuc, in Eq. (13-3) is the nuclear repulsion energy. We use the following definitions
of the one-electron excitation operator

Ê pq =
∑

σ

â†
pσ âqσ (13-6)

and the two-electron excitation operator

êpqrs =
∑

στ

â†
pσ â†

rτ âsτ âqσ (13-7)

The interactions between the quantum mechanical and the classical subsystems
are given by the term EQM/MM, in Eq. (13-1). The last term in Eq. (13-1), EMM, pro-
vides the energy of the classically treated part of the total system and is represented
by molecular mechanics.

The interactions between the quantum mechanical and classical subsystems are
given by the following interaction operator

ĤQM/MM = Ĥ el + Ĥ vdw + Ĥ pol (13-8)

where the term Ĥ el covers electrostatic interactions and is given by
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Ĥ el = −
S∑

s=1

N̂s + Eel,nuc
S,N (13-9)

where the electronic contribution is written in terms of

N̂s =
∑

pq

〈φp| qs

|r − Rs| |φq〉Ê pq (13-10)

The electrostatic interactions between the partial charges in the classical subsystem
and the electrons and the nuclei in the QM system are described by this term. We
let the term Eel,nuc

S,N denote the interactions between the MM partial charges and the
QM nuclei and the index s runs over all the sites in the MM system. Typically, the
sites in the MM system are located at the MM atoms having the partial charge qs and
positioned according to the position vector Rs .

The interaction energy related to the induced dipole moments (μind
a ), where the

index a refers to the polarizable site of each MM molecule, is given as

E[μind
a ] = −

A∑

a=1

μind
a

(
Es(Ra) + 〈R̂ra〉 + En(Ra)

)

− 1

2

A∑

a,a′(a �=a′)

μind
a Taa′μind

a′

(13-11)

where Taa′ is the dipole interaction tensor,

Taa′ = 1

|Ra − Ra′ |3
[

3(Ra − Ra′)(Ra − Ra′)T

|Ra − Ra′ |2 − 1
]

(13-12)

and we let En(Ra) denote the electric field due to the QM nuclei at the centre a of
each MM molecule. The electric field due to the partial charges situated at the other
MM molecules is given by Es(Ra) and the QM electronic electric field operator is
written as

R̂ra =
∑

pq

〈φp| r − Ra

|r − Ra|3 |φq〉Ê pq (13-13)

where the expectation value of this operator over the electronic wave function deter-
mines the electric field at position Ra .

For each MM molecule we calculate the induced dipole moment, μind
a , as

μind
a = αaEtotal

a (13-14)

where the electric field is given by

Etotal
a (Ra) = 〈R̂ra〉 + En(Ra) + Es(Ra) + Eind(Ra) (13-15)

and αa is the polarizability tensor at each MM molecule. The individual components
in the expression for Etotal

a are the electric field strengths due to
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• the electrons in the quantum mechanical subsystem ˆRra ,
• the nuclei in the quantum mechanical subsystem En(Ra),
• the charges in the classical subsystem Es(Ra) and
• the induced dipole moments within the classical subsystem Eind(Ra).

The self-energy, Eself, due to the classical induced dipole moments [52] is
given by

Eself =
A∑

a=1

∫ μind
a

0
Etotal′

a dμind′
a =

A∑

a=1

∫ μind
a

0
μind′

a α−1
a dμind′

a

= 1

2

A∑

a=1

μind
a α−1

a μind
a

= 1

2

A∑

a=1

μind
a

(
Es(Ra) + 〈R̂ra〉 + En(Ra)

)+ 1

2

A∑

a,a′(a �=a′)

μind
a Taa′μind

a′

(13-16)

Finally, we obtain by addition of the energy contributions in Eq. (13-11) and
Eq. 13-16)

E[μind
a ] + Eself = −1

2

A∑

a=1

μind
a

(〈R̂ra〉 + En(Ra)
)− 1

2

A∑

a=1

μind
a Es(Ra).

(13-17)

The second term in Eq. (13-17) concerns particles and induced moments located in
the MM system. The polarization energy for the QM system interacting with the
MM polarization sites is given by the first term in Eq. (13-17) and it is related to the
interaction operator, Ĥ pol, as

Ĥ pol = −1

2

A∑

a=1

μind
a · (R̂ra + En(Ra)) (13-18)

where μind
a and also Ĥ pol depend on the electronic wave function as it enters in the

determination of the electronic electric field.
For the van der Waals interaction one is able to select a large number of different

types of intermolecular potentials as seen in Ref. [53]. Presently we have selected
the 6–12 Lennard–Jones potential and we model the van der Waals contributions as

Ĥ vdw =
A∑

a=1

∑

m:centre

[
Ama

|Rm − Ra|12
− Bma

|Rm − Ra|6
]

(13-19)

and the a and m denote the MM and QM sites, respectively.
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In a mean field and linear approximation, the induced dipole moments are related
to the wave function through Eq. (13-14) and we introduce the polarizability and
the electric fields in place of the induced moments by inserting this equation once
into Eq. (13-18). Taking the expectation value of Eq. (13-8) we obtain the following
expression for the QM/MM energy [24,54]

EQM/MM = Evdw + Eel + Epol

= Evdw + Eel,nuc
S,N −

S∑

s=1

〈N̂s〉

− 1

2

A∑

a=1

〈 ˆRra〉Tαa
{〈 ˆRra〉 + Ons

a (Ra)
}+ Ons

ind

(13-20)

where the vector Ons
a (Ra) and the energy term Ons

ind are defined as

Ons
a (Ra) = 2En(Ra) + Es(Ra) + Eind(Ra) (13-21)

and

Ons
ind = −1

2

A∑

a=1

[(
En(Ra)

)T
αa
{
En(Ra) + Es(Ra) + Eind(Ra)

}]

(13-22)

For the optimization of the QM system this is the important energy contribution
along with the usual vacuum-type expression 〈ĤQM〉 and the term in Eq. (13-23),
(discussed below) which depends on the induced dipole moments.

We write the total energy for the classical system in two terms: (i) an intramolecu-
lar term, E intra

M M , and (ii) an intermolecular contribution, EMM/MM. The intermolecular
MM energy is written as

EMM/MM[|�〉] = 1

2

S∑

s,s ′(s �=s ′)

qsqs ′

|Rs − Rs ′ | − 1

2

A∑

a=1

μind
a Es(Ra) + Evdw

MM/MM

(13-23)

where the term Evdw
MM/MM is the van der Waals MM/MM energy and the second term

is the MM part of the energy in Eq. (13-17). Since the total energy of the MM
system depends on the wave function of the QM system we illustrate the depen-
dence of EMM/MM on the QM system through the induced dipole moments by writing
EMM/MM as a functional of the wave function, |�〉.
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13.3. COMBINED DENSITY FUNCTIONAL THEORY
AND MOLECULAR MECHANICS MODEL

This section contains the background for the combination of density functional the-
ory and molecular mechanics. Following the basic philosophy of quantum mechan-
ics/molecular mechanics approaches we partition the total system into at least two
parts which can be treated simultaneously. The quantum mechanical subsystem is
described using DFT and the classical subsystem is given by molecular mechanics.
Based on the QM/MM approach we have that the total energy of the system is

Etot[ρ] = EDFT[ρ] + EDFT/MM[ρ] + EMM[ρ] (13-24)

where the first term is the energy of the subsystem treated using DFT

EDFT[ρ] =
∫

h(r)ρ(r)dr + 1

2

∫∫
ρ(r)ρ(r′)
|r − r′| drdr′ + Exc[ρ] + UNN

(13-25)

where we denote ρ(r) the electronic density. The vectors r and r′ are the position vec-
tors for the electrons. The four contributions in Eq. (13-25) represent the one-electron
kinetic and nuclear-attraction operators (the first term), the Hartree and exchange
energy contributions (the second and third terms, respectively) and the last term UNN

is the inter-nuclear repulsion energy. For the DFT/MM energy functional we have
the following expression [55,56,57]

EDFT/MM[ρ] = Evdw + Eel + Epol

= Evdw + Eel,nuc
S,N −

∑

s

∫
ρ(r)Ns(r)dr

− 1

2

∑

a

(∫
ρ(r)Rra(r)dr

)
αa

×
[∫

ρ(r)Rra(r)dr + Ons
a

]
+ Ons

ind

(13-26)

where the Coulomb interactions between the electrons and a MM nucleus (the sum
over s is again the sum over charge sites in the MM system) is represented by the
operator Ns(r). The term Eel,nuc

S,N takes care of the Coulomb interactions between the
nuclei in the MM and QM subsystems. The QM electric field operator at site a in the
MM system is represented by Rra(r) and αa is the polarizability tensor at the same
site. The van der Waals contribution is denoted by the term Evdw and it is given by
a 6–12 Lennard–Jones potential. The other terms, the vector Ons

a (Ra) and the energy
term Ons

ind, have been defined in Section 2. The electric field arising from the MM
charges at the polarizable site a is given by Es(Ra). The electric field due to the QM
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nuclei is described by the vector En(Ra). The electric field due to the induced dipole
moments, Eind(Ra), is determined as

Eind(Ra) =
∑

a′ �=a

Taa′μind
a′ (13-27)

where Taa′ is the dipole tensor given in Eq. (13-12). As discussed in Section 2, we
decompose the energy of the MM subsystem into an intramolecular term, E intra

MM (in-
dependent of the density), and an intermolecular contribution, EMM/MM (dependent
on the density), and the latter we write as [55]

EMM/MM[ρ] = 1

2

S∑

s,s ′(s �=s ′)

qsqs ′

|Rs − Rs ′ | − 1

2

A∑

a=1

μind
a Es(Ra) + Evdw

MM/MM

(13-28)

The expression contains the van der Waals MM/MM energy given by Evdw
MM/MM and

the polarization term is the second term in Eq. (13-28) which depends explicitly on
the induced dipole moments determined as

μind
a = αa

(∫
ρ(r)Rra(r)dr + En(Ra) + Es(Ra) + Eind(Ra)

)
(13-29)

Our next step is to minimize the energy of the total system with respect to the density
and thereby we are able to define an effective Kohn–Sham (KS) operator. In first
quantization, the KS operator is divided into a vacuum and a coupling contribution

f KS(r) = f KS
o (r) + νDFT/MM(r) (13-30)

The vacuum contribution is given as

f KS
o (r) = h(r) + j(r) + νxc(r) (13-31)

where

j(r) =
∫

ρ(r′)
|r − r′|dr′ (13-32)

is the Hartree term and

νxc(r) = δExc

δρ(r)
(13-33)

is the exchange term. We determine the DFT/MM contribution to be [57]
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νDFT/MM(r) = −
∑

s

Ns(r)−
∑

a

[∫
ρ(r′)Rra(r′)dr′ + 1

2
Ens

a

]T

αaRra(r)

(13-34)

where

Ens
a = 2En(Ra) + 2Es(Ra) + Eind(Ra) (13-35)

Accordingly, the modifications to the KS operator are twofold: (i) a static contribu-
tion through the static multipole moments (here charges) of the solvent molecules
and (ii) a dynamical contribution which depends linearly on the electronic polariz-
ability of the environment and also depends on the electronic density of the QM re-
gion. Due to the latter fact we need within each SCF iteration to update the DFT/MM
part of the KS operator with the set of induced dipole moments determined from
Eq. (13-29). We emphasize that it is the dynamical contribution that gives rise to
polarization of the MM subsystem by the QM subsystem.

It is advantageous when considering response theory to utilize a second quantiza-
tion representation of the DFT/MM method and we have for the DFT/MM potential
in Eq. (13-34)

ν̂DFT/MM =
∑

pq

(

−
∑

s

ns
pq −

∑

a

[
〈R̂ra〉 + 1

2
Ens

a

]T

αata
pq

)

Ê pq

(13-36)

which has been written in terms of the Coulomb (ns
pq ) and electric field (ta

pq )
integrals.

13.4. RESPONSE FUNCTIONS FOR THE DENSITY FUNCTIONAL
THEORY/MOLECULAR MECHANICS METHOD

This section considers how to derive the response functions for the density functional
theory molecular mechanics method and the derivation of these response functions is
similar to the procedure of obtaining density functional theory response functions for
molecules in vacuum [58]. For the method and the derivation, we utilize the adiabatic
approximation and thereby we assume that νxc[ρ](r, t) = νxc[ρ](r).

Our starting point involves the determination of the expectation value of a time-
independent operator Â. In the case of a time-dependent perturbation given by the
operator V̂ (t), the expectation value of Â is time dependent. We expand the expres-
sion for the time-dependent expectation value in orders of the perturbation and find

〈t | Â|t〉 = 〈t | Â|t〉(0) + 〈t | Â|t〉(1) + 〈t | Â|t〉(2) + · · · (13-37)
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Furthermore, if we denote V̂ ω as the Fourier transformation of V̂ (t)

V̂ (t) =
∫

V̂ ω exp(−iωt)dω (13-38)

we have that the Fourier representations of the time-dependent terms in Eq. (13-37)
are given by

〈t | Â|t〉(1) =
∫

〈〈 Â; V̂ ω〉〉ω exp(−iωt)dω (13-39)

〈t | Â|t〉(2) = 1

2

∫ ∫
〈〈 Â; V̂ ω1 , V̂ ω2〉〉ω1,ω2 exp(−i(ω1 + ω2)t)dω1dω2

(13-40)

The expressions in Eqs. (13-39) and (13-40) define the linear and quadratic response
functions implicitly.

For the Kohn–Sham reference determinant we have that it is a solution to the
time-dependent Schrödinger equation,

(Ĥ + V̂ (t))|t〉 = i
d

dt
|t〉 (13-41)

where

Ĥ =
∑

i

f KS(ri , t) (13-42)

and for the reference Kohn–Sham determinant we utilize the anti-Hermitian operator
κ̂(t) for an exponential parametrization of the time evolution. The anti-Hermitian
operator κ̂(t) is given by

κ̂(t) =
∑

rs

κrs(t)Êrs =
∑

rs

κrs(t)
∑

σ

a†
rσ asσ (13-43)

Denoting |0〉 as the unperturbed Kohn–Sham determinant, we have the following
representation for the reference Kohn–Sham determinant

|t〉 = exp [ − κ̂(t)]|0〉 (13-44)

Our next step requires a representation of the time dependence of the electron density
ρ̂(r) =∑pq φ∗

p(r)φq (r)Ê pq

ρ(r, t) = 〈t |ρ̂(r)|t〉 = 〈0| exp [κ̂(t)]ρ̂(r) exp [ − κ̂(t)]|0〉 (13-45)
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and we rewrite the time-dependent electron density through a Baker–Campbell–
Hausdorff expansion and we find the following expression in terms of the variation
parameters κ̂(t)

ρ(r, t) = ρ(r, 0) + 〈0|[κ̂(t), ρ̂(r)]|0〉

+ 1

2
〈0|[κ̂(t), [κ̂(t), ρ̂(r)]]|0〉 + O(κ̂(t)3)

(13-46)

As the perturbation is applied onto the molecular system we represent the κ̂(t)
parameters through the perturbation orders

κ̂(t) = κ̂ (1)(t) + κ̂ (2)(t) + · · · (13-47)

with the Fourier transformations

κ̂ (1)(t) =
∫

κ̂ω exp(−iωt)dω

κ̂ (2)(t) = 1

2

∫ ∫
κ̂ω1ω2 exp(−i(ω1 + ω2)t)dω1dω2

(13-48)

We write the perturbed density matrices to second order as

D(0)
pq = 〈0|Ê pq |0〉 (13-49)

D(1)
pq = 〈0|[κ̂ (1), Ê pq ]|0〉 (13-50)

D(2)
pq = 〈0|[κ̂ (2), Ê pq ]|0〉 + 1

2
〈0|[κ̂ (1), [κ̂ (1), Ê pq ]]|0〉 (13-51)

where we have used the expansions in Eqs. (13-46) and (13-47). We determine the
nth-order correction to the density as

ρ(n)(r, t) =
∑

pq

φ∗
p(r)φq (r)D(n)

pq (13-52)

The Kohn–Sham Hamiltonian is expanded similarly and we obtain

Ĥ =
∑

n

Ĥ (n) =
∑

pq

f (n) Ê pq

=
∑

pq

(
δ0nh pq + j (n)

pq + ν
(n)
QM/MM,pq + ν(n)

xc,pq

)
Ê pq

(13-53)

using the following elements:
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• h pq that contains the kinetic energy and nuclear-attraction integrals,
• j (n)

pq that denotes the electron-repulsion nth-order Coulomb interaction integrals,
• the integral over the exchange–correlation potential, ν(n)

xc,pq , and
• the nth-order contributions from the environment which are given by the integrals

ν
(n)
QM/MM,pq .

We derive the response functions using the Ehrenfest theorem for a time-
independent one-electron operator Q̂

〈
0|
[

Q̂, exp [κ̂(t)]

(
Ĥ (t) + V (t) − i

d

dt

)
exp [ − κ̂(t)]

]
|0
〉

= 0

(13-54)

and we obtain an algebraic equation for the first-order parameters

〈0|[q̂, [κ̂ω, Ĥ 0] + Ĥω]|0〉 + ω〈0|[q̂, κ̂ω]|0〉 = −〈0|[q̂, V̂ ω]|0〉 (13-55)

which is done by

• collecting the excitation operators, Ê pq , in Eq. (13-43) in the column vector q̂,
• expanding Eq. (13-54) to first order and
• transforming to the frequency domain.

The Fourier transformation of the first-order perturbed Kohn–Sham Hamiltonian is
given by

Ĥω =
∑

pq

f ω Ê pq =
∑

pq

(
jω
pq + νω

QM/MM,pq + νω
xc,pq

)
Ê pq (13-56)

The matrix elements are of the same physical origin as in Eq. (13-53). We rewrite
Eq. (13-55) as

(E − ωS) κω = Vω (13-57)

where we have used that

κ̂ω = q̂†κω (13-58)

We define the following terms

• E is

Eκω = −〈0|[q̂, [κ̂ω, Ĥ 0] + Ĥω]|0〉 (13-59)
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• S is

S = 〈0|[q̂, q̂†]|0〉 (13-60)

• and Vω is

Vω = 〈0|[q̂, V̂ ω]|0〉 (13-61)

At this point we are able to obtain from the solution of κω in Eq. (13-57) the linear
response function as

〈〈 Â; V̂ 〉〉ω = 〈0|[κ̂ω, Â]|0〉 = −A†κω = −A†
(

E − ωS
)−1

Vω (13-62)

where A is defined as

A = 〈0|[q̂, Â]|0〉 (13-63)

The explicit QM/MM contributions to the linear response function enter the E ma-
trix and in the following we investigate how the QM/MM contributions modify the
expressions. We have that

EQM/MMκω = −〈0|[q̂, [κ̂ω, ν̂0
QM/MM] + ν̂ω

QM/MM]|0〉 (13-64)

As a start, we consider the commutator between κ̂ω = ∑
mn κω

mn Êmn and a general
one-electron operator Â =∑pq Apq Ê pq and we have

[κ̂ω, Â] =
∑

pq

∑

m

(
κω

pm Amq − κω
mq Apm

)
Ê pq

≡
∑

pq

A(κω)pq Ê pq = Â(κω)
(13-65)

in terms of one-index-transformed integrals [59].
We are able to apply successively the relation in Eq. (13-66) and thereby we de-

termine the higher-order index transformed integrals, e.g.,

[κ̂ω1, [κ̂ω2, [ . . . [κ̂ωn , Â] . . . ]] =
∑

pq

A(κωn , ..., κω2 , κω1 )pq Ê pq

= Â(κωn , . . . , κω2 , κω1 ).

(13-66)

Finally, we have the QM/MM contribution for the linear transformed E matrix
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EQM/MMκω = −〈0|[q̂, Q̂ω
1 + Q̂ω

2 ]|0〉 (13-67)

where we have defined the following terms

Q̂ω
1 = [K̂ ,

ω
ν̂0

QM/MM] = ν̂0
QM/MM(K ω) (13-68)

Q̂ω
2 = ν̂ω

QM/MM

= −
∑

a

∑

rs

Dω
rsta

rsαaR̂ra

= −
∑

a

〈0|[κ̂ω, R̂ra]|0〉αaR̂ra

= −
∑

a

〈0|R̂ra(κω)|0〉αaR̂ra

(13-69)

We note that the two operators Q̂ω
1 and Q̂ω

2 contain the QM/MM contributions to the
linear response equations due to

• a frozen environment (e.g., optimized with respect to the ground state density) and
• the induced polarization in the environment as a consequence of the time-

dependent perturbation, respectively.

13.5. THE COMBINED COUPLED CLUSTER/MOLECULAR
MECHANICS METHOD

Using a cluster operator, T̂ , and an exponential ansatz [60,61], the coupled cluster
wave function is written as

|CC〉 = exp(T̂ )|HF〉 (13-70)

where the cluster operator is defined by

T̂ = T̂1 + T̂2 + T̂3 + · · · + T̂n =
n∑

i=1

∑

μi

tμi τ̂μi (13-71)

and the i-electron excitation operators and the excitation amplitudes are denoted τ̂μi

and tμi , respectively. Finally, the reference wave function is given by the Hartree–
Fock state |H F〉.

The determination of a coupled cluster wave function does not follow the con-
ventional variational procedure but a non-variational procedure where the excitation
amplitudes are determined by a projection technique. We have that the coupled clus-
ter energy for a molecule in vacuum is given by

ECC = 〈HF| exp(−T̂ )Ĥ exp(T̂ )|HF〉 (13-72)
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and we have a set of amplitude equations that we obtain by projecting onto the set of
excited Slater determinants

eμi = 〈μi | exp(−T̂ )Ĥ exp(T̂ )|HF〉 = 0 (13-73)

We have defined the following states 〈μi | = 〈HF|τ̂ †
μi

and we have that 〈μi |ν j 〉 =
δμ,νδi, j . For the calculation of molecular properties it is advantageous to introduce a
variational Lagrangian as [51,52,53,54,55,56,57,58,59,60,61,62,63,64]

LCC(t, t̄) = ECC(t) +
∑

i,μi

t̄μi eμi = ECC(t) + t̄e(t) (13-74)

where we have used the following vectors:

• the Lagrangian multipliers are contained within the vector t̄ and
• the vector e(t) contains the amplitude equations (Eq. (13-74)).

By requiring that the Lagrangian is simultaneously stationary with respect to t and
t̄ we obtain

�LCC(t, t̄)
�t̄μi

= eμi (t̄) = 〈μi | exp(−T̂ )Ĥ exp(T̂ )|HF〉 = 0 (13-75)

�LCC(t, t̄)
�tν j

= �ECC(t)
�tν j

+
∑

i,μi

t̄μi

�eμi (t)
�tν j

= ην j +
∑

i,μi

t̄μi Aμi ν j

= 〈�|[Ĥ , τ̂ν j ]|CC〉 = 0

(13-76)

where we have defined the following terms:

• the state 〈�|

〈�| = (〈HF| +
∑

i,μi

t̄μi 〈μi |) exp(−T̂ ) (13-77)

• and the vector η containing the elements

ην j = 〈HF| [Ĥ , τ̂ν j

] |CC〉 (13-78)

• as well as the coupled cluster Jacobian

Aμi ν j = 〈μi | exp (−T̂ )
[
Ĥ , τ̂ν j

] |CC〉 (13-79)
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Presently, we are able to determine the coupled cluster energy based on the vari-
ational Lagrangian and expectation values for real operators

〈X̂〉 = 〈�|X̂ |CC〉. (13-80)

For the optimization of the coupled cluster wave function in the presence of the
classical subsystem we write the CC/MM Lagrangian as [24]

LCC/MM(t, t̄) = 〈�|ĤQM|CC〉 −
S∑

s=1

〈N̂s〉

− 1

2

A∑

a=1

〈 ˆRra〉T αa
[〈 ˆRra〉 + Ons

a (Ra)
]

+ Evdw + Eel,nuc
S,N + Ons

ind + EMM(t, t)

(13-81)

and this Lagrangian is nonlinear in both the t and t̄ parameters.

To obtain an optimized coupled cluster state, we require that the Lagrangian,
LCC/MM(t, t̄), is stationary with respect to both the t and t̄ parameters. It is ad-
vantageous to define the following one-electron interaction operator, T̂ g , as

T̂ g = −
S∑

s=1

N̂s −
A∑

a=1

[
〈�| ˆRra|CC〉 + 1

2
Ens

a (Ra)

]T

αa ˆRra (13-82)

where

Ens
a (Ra) = 2En(Ra) + 2Es(Ra) + Eind(Ra) (13-83)

This gives rather compact expressions for the optimization conditions for the
CC/MM wave function

�LCC/MM(t, t)
�t̄μi

= 〈μi | exp(−T̂ )
[
ĤQM + T̂ g

]
exp(T̂ )|HF

〉 = 0 (13-84)

and

�LCC/MM(t, t)
�tνi

= 〈�|[ĤQM + T̂ g, τ̂νi ]|CC〉 = 0 (13-85)

The effective one-electron operator T̂ g depends on both the t and t̄ parameters. There-
fore we have the situation that the two equations Eq. (13-85) and Eq. (13-86) are
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Figure 13-2. A figure presenting the procedure of the CC/MM wave function optimization

coupled, and this coupling represents an additional complication compared to the
corresponding optimization conditions for a molecule in vacuum. The procedure for
solving the coupled equations is illustrated in Figure 13-2. We are able to form the
T̂ g operator based on a set of t and t̄ parameters along with the necessary integrals.
Next we solve the t equations and thereafter the t̄ equations as in the vacuum case
but with modified one-electron integrals. Having done this, we obtain a new set of
t and t̄ parameters which makes it possible to update the operator T̂ g . We continue
with this procedure until convergence is obtained, and for each iteration we update
the induced dipole moments, μind

a , calculated using Eq. (13-14). The induced dipole
moments depend on the induced electric field and therefore this equation has to be
solved iteratively.
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13.6. COUPLED CLUSTER/MOLECULAR MECHANICS
RESPONSE THEORY

In this section we outline the coupled cluster-molecular mechanics response method,
the CC/MM response method. Ref. [51] considers CC response functions for molec-
ular systems in vacuum and for further details we refer to this article. The identi-
fication of response functions is closely connected to time-dependent perturbation
theory [51,65,66,67,68,69,70]. Our starting point is the quasienergy and we identify
the response functions as simple derivatives of the quasienergy. For a molecular sys-
tem in vacuum where ĤQM is the vacuum Hamiltonian for the unperturbed molecule
and V̂ t is a time-dependent perturbation we have the following time-dependent
Hamiltonian, Ĥ ,

Ĥ = ĤQM + V̂ t (13-86)

and we write V̂ t as a Fourier expansion

V̂ t =
N∑

k=−N

exp(−iωk t)V̂ ωk

=
N∑

k=−N

exp(−iωk t)
∑

y

εy(ωk)Ŷ

(13-87)

Here we require that εy(ωk) = εk(−ωk)∗ and that the operators Ŷ are Hermitian.
Presently, we assume that we have a time-dependent wave function, |Õ(t)〉, and

that it is normalized to unity. Furthermore, we require that |Õ(t)〉 reduces to the
time-independent wave function, |O〉, in the limit of no perturbation. The time-
independent wave function, |O〉, is the solution to the time-independent Schrödinger
equation and |O〉 is normalized. Therefore, for an exact state we write the time-
dependent wave function as [50,51]

|Ō(t)〉 = exp(−iF(t))|Õ(t)〉 (13-88)

and F(t) is a real function of time. We have the following time evolution of the
system

Ĥ |Ō(t)〉 = i
�

�t
|Ō(t)〉 (13-89)

Our next step is to insert the ansatz (Eq. (13-89)) into the time-dependent
Schrödinger equation where we let a dot indicate a time derivative and �t = �

�t

exp(−iF(t))
[
Ĥ − i�t − Ḟ(t)

] |Õ(t)〉 = 0 (13-90)
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In the phase-isolated form we have

[
Ĥ − i�t − Ḟ(t)

] |Õ(t)〉 = 0 (13-91)

and we obtain an equation for Ḟ(t) by projecting Eq. (13-92) onto the time-dependent
phase-isolated wave function,

Ḟ(t) = 〈Õ(t)
∣∣[Ĥ − i�t

]∣∣ Õ(t)
〉

(13-92)

and in the absence of the perturbation we find

Ḟ(t) = E0 (13-93)

and Ḟ(t) reduces to the stationary energy. The time-dependent quasienergy [51] is
given as

Q(t) ≡ Ḟ(t) = 〈Õ(t)| [Ĥ − i�t
] |Õ(t)

〉
(13-94)

Following Refs. [51,68] we may identify the response functions as derivatives of
the time-averaged quasienergy:

〈X̂〉 = d{Q(t)}T

dεx (0)
(13-95)

〈〈X, Y 〉〉ωk1
= d2{Q(t)}T

dεx (ω0)dεy(ωk1 )
(13-96)

〈〈X, Y, Z〉〉ωk1 ,ωk2
= d3{Q(t)}T

dεx (ω0)dεy(ωk1 )dεz(ωk2 )
(13-97)

〈〈X, Y, Z . . . 〉〉ωk1 ,ωk2 ... = dn+1{Q(t)}T

dεx (ω0)dεy(ωk1 )dεz(ωk2 ) . . .
(13-98)

where

ω0 = −
n∑

i=1

ωki (13-99)

Turning now to the specific case of a coupled cluster wave function we write the
time-dependent CC wave function as
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|CC(t)〉 = exp(−iF(t))|C̃C(t)〉 = exp(−iF(t)) exp(T̂ (t))|HF〉 (13-100)

where the cluster operator is now time dependent

T̂ (t) =
n∑

i=1

T̂i (t) =
∑

i,μi

τ̂μi tμi (t) (13-101)

and the time dependence enters through the amplitudes, tμi (t). The operator τ̂μi is
the time-independent i-fold electronic excitation operator and we assume that

〈HF|τ̂μi = 0 (13-102)

Next we insert the time-dependent CC wave function (Eq. (13-101)) into the time-
dependent Schrödinger equation

(
Ĥ − i

�

�t

)
|CC(t)〉 = 0 (13-103)

and we obtain

exp(−T̂ (t))Ĥ exp(T̂ (t))|HF〉 =
⎛

⎝Ḟ(t) + i
∑

i,μ

τ̂μi ṫ(t)μi

⎞

⎠ |HF〉

(13-104)

Projection of Eq. (13-105) onto the state 〈HF| gives an equation for the time-
dependent CC quasienergy [51], Q(t),

Q(t) = Ḟ(t) = 〈HF|Ĥ exp(T̂ (t))|HF〉 = 〈HF|Ĥ |C̃C(t)〉 (13-105)

Thereafter, we construct a CC quasienergy Lagrangian, LCC(t) [51,71]

LCC(t) = Q(t) +
∑

μi ,i

t̄μi (t)(eμi (t) − i�tμi (t)/�t)

= 〈�̃|
(

Ĥ − i
�

�t

)
|C̃C〉

(13-106)

where the Lagrangian multipliers are given by the time-dependent parameters t̄μi (t)
and furthermore, we have defined the auxiliary function 〈�̃| as

〈�̃| = (〈HF| +
∑

i,μi

t̄μi (t)〈μi |) exp(−T̂ (t)) (13-107)

Furthermore, for the time-dependent case we have the following CC amplitude equa-
tion (Eq. (13-74))
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eμi (t) − i�tμi (t)/�t = 〈μi | exp(−T̂ (t))Ĥ exp(T̂ (t))|HF〉 − i�tμi (t)/�t

(13-108)

We obtain by expanding the Lagrangian in orders of the perturbation along with
the time-averaged procedure [51] the response functions as derivatives of the time-
averaged CC quasienergy {L(t)}T . Finally, we obtain the response equations from
the stationary condition. In particular, the linear response function is given by

〈〈X̂ , Ŷ 〉〉ωy = 1

2
C±ω d2{LCC(t)}T

dεx (ωx )dεy(ωy)
(13-109)

where the derivatives are taken at zero field strength. The operator C±ω is
defined as

C±ω f XY (ωx , ωy) = f XY (ωx , ωy) + ( f XY (−ωx ,−ωy)
)∗

(13-110)

and the sum of the frequencies equals zero.
We obtain the modifications to the response equations due to the coupling between

the quantum mechanical and classical mechanical subsystems by constructing the
corresponding time-dependent CC/MM energy functional [24]

LCC/MM(t) =Q(t) +
∑

μ,i

t̄μi (t)(eμi (t) − i�tμi (t)/�t)

−
S∑

s=1

〈�̃|N̂s |C̃C〉 − 1

2

A∑

a=1

〈�̃| ˆRra|C̃C〉αa

× {〈�̃| ˆRra|C̃C〉 + Ons
a (Ra)

}

+ Evdw + Eel,nuc
S,N + Ons

ind + EMM

(13-111)

where basically we have added the interaction terms to the vacuum Lagrangian. In
Table 13-1 we present the explicit expressions for the matrices and vectors that are
used in the linear CC/MM response method.

We determine the modifications to the response equations due to the interaction
terms by

• expanding the CC/MM Lagrangians in order of the perturbation,
• collecting orders of the expanded CC/MM Lagrangians,
• performing the time average and
• performing the differentiation of the time-averaged quasienergy.

Thereby, we get the expression for the linear response function
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〈〈X̂ , Ŷ 〉〉ωy = 1

2
C±ω P

(
X (ωx ), Y (ωy)

) [
ηX tY (ωy) + 1

2
FtX (ωx )tY (ωy)

− 1

2
t̄X (ωx )t̄Y (ωy)J

]

(13-112)

In these expressions we have used the definitions of the vectors and matrices given
in Table 13-1 and furthermore introduced the symmetrizer defined as (for linear re-
sponse)

P
(
X (ωx ), Y (ωy)

)
gXY (ωx , ωy) = gXY (ωx , ωy)+gY X (ωy, ωx ) (13-113)

The effective one-electron operators introduced in Table describe the CC/MM inter-
actions when determining the response equations and are defined as

T̂ g = −
S∑

s=1

N̂s −
A∑

a=1

[
〈�| ˆRra|CC〉 + 1

2
Ens

a (Ra)

]T

αa ˆRra (13-114)

where the vector Ensa (Ra) is defined as

Table 13-1. Matrices and vectors for linear and quadratic response functions

Quantity Derivative expressiona Vacuum contribution Solvent contributionb

Aμi ν j

�2{L (2)
CC/MM}T

�t̄ (1)
μi (ωx )�t (1)

ν j (ωy )
〈μ̄i |

[
ˆHQM, τ̂ν j

]
|CC〉 〈μ̄i |

[
T̂ g, τ̂ν j

]
|CC〉 + 〈μ̄i |T̂ gν j |CC〉

Fμi ν j

�2{L (2)
CC/MM}T

�t (1)
μi (ωx )�t (1)

ν j (ωy )
〈�|
[[

ĤQM, τ̂μi

]
, τ̂ν j

]
|CC〉 〈�|

[[
T̂ g, τ̂μi

]
τ̂ν j

]
|CC〉

+ 1

2
Pμi ν j 〈�|

[
T̂ gμi , τ̂ν j

]
|CC〉

ξY
μi

�2{L (2)
CC/MM}T

�εy (ωy )�t̄ (1)
μi (ωy )

〈μ̄i |Ŷ |CC〉

ηY
μi

�2{L (2)
CC/MM}T

�εy (ωy )�t (1)
μi (ωy )

〈�| [Ŷ , τ̂νi

] |CC〉

Jμi ν j

�2{L (2)
CC/MM}T

�t̄ (1)
μi (ωx )�t̄ (1)

ν j (ωy )

1

2
Pμi ν j 〈μ̄i |ν T̂ g |CC〉

aThe sum of the frequencies in the derivative expressions is zero. All vectors and matrices are defined for
zero field strength.
bFor the definitions of the effective operators T̂ gν j , ν j T̂ g and T̂ gν j σk see text.
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Ens
a (Ra) = 2En(Ra) + 2Es(Ra) + Eind(Ra) (13-115)

and

T̂ gν j = −
A∑

a=1

〈
�
∣
∣[ ˆRra, τ̂ν j

]∣∣CC
〉
αa ˆRra (13-116)

T̂ gν j σk = −
A∑

a=1

〈
�
∣∣[[ ˆRra, τ̂ν j

]
, τ̂σk

]∣∣CC
〉
αa ˆRra (13-117)

T̂ gν j σkδk = −
A∑

a=1

〈
�
∣∣[[[ ˆRra, τ̂ν j

]
, τ̂σk

]
, τ̂δk

]∣∣CC
〉
αa ˆRra (13-118)

ν j T̂ g = −
A∑

a=1

〈
ν̄ j | ˆRra|CC

〉
αa ˆRra (13-119)

ν j T̂ gσk = −
A∑

a=1

〈
ν̄ j

∣∣[ ˆRra, τ̂σk

]∣∣CC
〉
αa ˆRra (13-120)

We note that the perturbation-dependent quantities have no direct solvent contri-
butions while the J matrix have no vacuum part.

Based on the above description we note that all the interaction contributions are
described using effective one-electron operators and we only need linear transfor-
mations of trial vectors in connection to the interaction contributions to the A, F
and J matrices defined in Table 13-1. The following transformations are needed
solventρ =solvent AtC , solventσ = t̄B solventA, ζ = t̄BJ and solvent� = solventFtC where
the two vectors tC and t̄B denote a right and a left trial vectors, respectively. For the
transformations of the Jacobian we obtain

solventρμi =
∑

ν j , j

〈μi | exp(−T̂ )
[
T̂ g, τ̂ν j

] |CC〉tC
ν j

+
∑

ν j , j

〈μi | exp(−T̂ )T̂ gν j |CC〉tC
ν j

= 〈μi | exp(−T̂ )
[
T̂ g, Ĉ

] |CC〉 + 〈μi| exp(−T̂ )T̂ gC |CC〉
(13-121)
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where Ĉ =∑ν j , j τ̂ν j t
C
ν j

and

T̂ gC = −
A∑

a=1

〈�|[R̂ra, Ĉ]]|CC〉αaR̂ra = −
A∑

a=1

∑

j,ν j

ηR̂ra
ν j

tC
ν j

αaR̂ra

(13-122)

In these expressions we have used the definition of the ηX vector given in Table 13-1.
We note that

• the first term in Eq. (13-122) is calculated in the same manner as a standard one-
electron Hamiltonian contribution [72] and

• the last contribution is equivalent to the calculation of a ξ X vector with an operator
constructed by taking the sum of dot products of η

ˆRra vectors and the C trial vector
and multiplying this number and the polarizability on the ˆRra operator.

For the left transformation of the Jacobian matrix we have

solventσν j =
∑

μi ,i

t̄ B
μi

〈μi | exp(−T̂ )
[
T̂ g, τ̂ν j

] |CC〉

+
∑

μi ,i

t̄ B
μi

〈μi | exp(−T̂ )T̂ gν j |CC〉

= 〈HF|
∑

μi ,i

t̄ B
μi

τ̂ †
μi

exp(−T̂ )
[
T̂ g, τ̂ν j

] |CC〉

+ 〈HF|
∑

μi ,i

t̄ B
μi

τ̂ †
μi

exp(−T̂ )T̂ gν j |CC〉

= 〈B̄| [T̂ g, τ̂ν j

] |CC〉 + 〈B̄|T̂ gν j |CC〉

(13-123)

where 〈B̄| =
(
〈HF|∑μi ,i

t̄ B
μi

τ̂ †
μi

)
exp(−T̂ ). We observe that the first term in

Eq. (13-124) is calculated in the same manner as a standard one-electron Hamiltonian
contribution [73] and that the last term in Eq.(13-124) is given as

〈B̄|T̂ gν j |CC〉 = −
A∑

a=1

〈�| [ ˆRra, τ̂ν j

] |CC〉αa〈B̄| ˆRra|CC〉

= −
A∑

a=1

η
ˆRra

ν j
αa

∑

μi ,i

t̄ B
μi

ξ
ˆRra

μi

(13-124)

The ξ R̂ra
μi

vector elements can be evaluated using the vacuum CC linear response

code. Thereby, the operator −∑a

∑
μi ,i

t̄ B
μi

ξ
ˆRra

μi
αa ˆRra may be constructed. Finally,

performing a η-transformation of this operator we arrive at the result of equation
Eq. (13-125).
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13.7. LINEAR RESPONSE CALCULATIONS
ON SOLVATED ACETONE

In the following we utilize the response methodology presented above to the calcu-
lation of the lowest n → π∗ electronic excitation energy of acetone in aqueous solu-
tion. The n → π∗ electronic excitation energies for acetone in vacuum and in water
have been measured to be ∼ 36200 cm−1 (4.488 eV) and ∼ 37760 cm−1 (4.682 eV),
respectively. This gives a solvent shift in the excitation energy of 1500–1600 cm−1

[74,75,76]. The solvent-induced shift for the n → π∗ electronic excitation has been
investigated by a large number of research groups utilizing different solvent mod-
els: a supermolecule approach [77], a reference interaction site self-consistent field
(RISM-SCF) [78], a dielectric continuum model [79,80,107], CPMD [81,82,83,84]
and MD [85,86,112] or MC [87,88,89,90,91,109,110,111] simulations in conjunc-
tion with QM/MM or supermolecule calculations. High-level coupled cluster calcu-
lations of acetone in vacuum have also been presented [86,92].

This section contains a brief comparison between two different density functional
theory/molecular mechanics approaches and two wave function/molecular mechan-
ics methods. Our focus is on the solvent-induced shift of the n → π∗ electronic
excitation in acetone when solvated by water. We utilize the Hartree–Fock/MM,
DFT/MM and CC/MM methods that have been implemented in the Dalton program
package [93] and for the coupled cluster approach we use the coupled cluster sin-
gles and doubles (CCSD) [94] implementation whereas the DFT calculations are
performed using B3LYP and CAM-B3LYP functionals [95,96]. We use the aug-
cc-pVDZ [97,108] basis set as the one-electron basis set for the QM/MM response
calculations because this basis has been shown to provide converged results for ex-
citation energy of acetone [86]. We obtain the molecular configurations from molec-
ular dynamics simulations, and by using the MidasCpp program package [98] we
translate/rotate the configurations in such a way that the acetone molecule is placed
in the xz-plane with the oxygen atom in the origin and the C2 axis aligned with the
molecular z-axis. The final configurations form the structural input to the Dalton
QM/MM calculations.

For the MD simulations we have used the MOLSIM [99] program package and
the simulations have been performed using periodic boundary conditions and time
steps of 2 fs for a cubic box containing 511 rigid water molecules and 1 rigid acetone
molecule at the temperature of 298.15 K. We used the experimental liquid density
for water [100] (ρ298.15 = 997.0470 kg/m3) for determining the size of the cubic
box. The evaluation of the intermolecular interactions was truncated at a spheri-
cal cut-off distance given by half the box length, and long-range interactions were
described through a reaction field approach [101,102]. We used a time period of
400 ps and 1.2 ns for the equilibration and the production run, respectively, and we
dumped for every 1 ps a configuration giving us a total of 1200 configurations for
the quantum-classical calculations. For the intermolecular potentials we calculated
at the B3LYP/aug-cc-pVTZ level the atomic partial point charges using Gaussian 03
[103] with the CHelpG procedure [104] and we constrained the dipole moment to the
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ab initio value. For both water and acetone we use a potential accounting explicitly
for polarization effects. For acetone we have assigned a dipole polarizability tensor
calculated at the B3LYP/aug-cc-pVTZ level to the carbonyl carbon site, whereas
for water we use the SPCpol water model [52] which includes a polarizability at the
water oxygen site. The intermolecular interactions related to dispersion and repulsion
are modelled by a 6–12 type Lennard–Jones potential

VLJ =
∑

i j

4εi j

[(
σi j

Ri j

)12

−
(

σi j

Ri j

)6
]

(13-125)

where i and j belong to different molecules. The parameters εi j and σi j are deter-
mined using the Lorentz–Berthelot mixing rules,

• εi j = (εiε j
)1/2

and
• σi j = (σi + σ j

)
/2,

where εi and σi are atomic parameters [105,106].
We determine the excitation energy as a statistically averaged vertical excitation

energy and we obtain the shift as the difference between this excitation energy
and the vertical excitation energy in a vacuum calculation. We present the results
for the QM/MM-MD calculations in Table 13-2. The Hartree–Fock/SPCpol cal-
culations lead, compared to the three other QM/MM methods, to an overestima-
tion of the excitation energies and the same occurs for the solvent-induced shift.
The excitation energies calculated using a Hartree–Fock description are more than
0.5 eV too large compared to the three other methods and the solvent-induced shift
is about 1000 cm−1 larger than the shifts calculated by the other three methods.
For the two DFT methods and the CCSD method, we obtain excitation energies
both in vacuum and solution that are rather similar and the excitation energies dif-
fer by less than 0.15 eV. The two DFT/MM-MD simulations give solvent-induced
shifts of the excitation energies of 1438 and 1482 cm−1 for B3LYP/SPCpol and

Table 13-2. Vertical electronic n → π∗ transition energy of acetone in gas phase, Egas, and aqueous
solution, Ewat, in units of eV. Excitation energy in aqueous solution was obtained from the combined
QM/MM calculations treating acetone molecule at the quantum mechanical level of theory as indicated in
the first column and using the polarizable potential for water molecules as a statistical average over 1200
molecular configurations extracted from classical MD simulation. The solvent shift in excitation energy,
�E (in cm−1), is evaluated as a difference between excitation energies in water and in vacuum

Egas Ewat �E

HF 5.080 5.371 ± 0.003 2348 ± 24
B3LYP 4.409 4.588 ± 0.002 1438 ± 20
CAM-B3LYP 4.473 4.656 ± 0.002 1482 ± 20
CCSD 4.550 4.719 ± 0.003 1369 ± 22

Exp. 4.488 4.682 1560
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CAM-B3LYP/SCPpol, respectively. The CCSD/SPCpol calculations result in a
solvent-induced shift of 1369 cm−1. Therefore, we conclude that both DFT function-
als are capable to predict solvent-induced shifts in the n → π∗ excitation in acetone
of the CCSD quality. For the absolute magnitudes of the n → π∗ excitation energy,
especially the CAM-B3LYP method is seen to perform well compared to CCSD. We
find the HF model not to be able to describe this transition reliably.

As we compare with the experimental results for the shift in the electronic exci-
tation energy (1500–1600 cm−1), it is clear that for the three most reliable methods
we obtain a slight underestimation of the solvent-induced shifts in excitation energy.
However, the agreement between experimental and DFT- or CCSD- based solvent
shifts is overall good. The remaining discrepancies could potentially be attributed to
the possible imperfections in the force field parameters used for acetone and water
in the QM/MM calculations and, especially, in the MD simulations.

13.8. CONCLUSION

We have presented methods that enable investigations of molecules surrounded by a
structured environment and this could be a solvent, aerosols, a biological system, a
dielectric film on a metallic surface, nano-particles and membranes. We have given
a review of the theoretical background for the self-consistent polarization QM/MM
model within DFT or wave function approaches such as Hartree–Fock and coupled
cluster electronic structure theories. For the energy and response equations, we have
covered the necessary mathematical derivations of the contributions arising from
the coupling to the classical environment. The QM/MM methods are promising not
only for studying ground state solvent effects, but also for considering excited and
ionized states, calculating frequency-dependent linear and nonlinear polarizabilities,
NMR parameters, magnetizabilities transition moments and vertical excitation ener-
gies. The QM/MM response methods enable us to investigate frequency-dependent
molecular properties when investigating a molecule coupled to a structured envi-
ronment and we achieve this by treating the quantum mechanical subsystem on a
quantum mechanical level and the structured environment as a classical subsystem
described as a molecular mechanics force field. Most importantly, we ensure that the
interactions between the two subsystems are included directly in the optimization of
the quantum mechanical wave function.

We have illustrated that the derived equations have a structure where ener-
gies and molecular properties can be obtained by a simple addition of QM/MM
contributions to the conventional vacuum expressions. The actual implementations
of these methods have been performed within the framework of the Dalton pro-
gram and we have implemented QM/MM response methods that enable calcula-
tions of frequency-dependent electric and/or magnetic molecular properties up to
and including quadratic response. We consider the QM/MM models, using B3LYP,
CAM-B3LYP or CCSD as the quantum mechanical electronic structure model, as
rather cost-effective methods for calculating molecular properties of large molecular
samples.
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In order to illustrate the applicabilities and accuracies of the QM/MM-MD meth-
ods we have undertaken a study of the vertical electronic n → π∗ transition en-
ergies for acetone in aqueous solution. Based on the configurations obtained from
molecular dynamics simulations, the calculations were carried out using (i) wave
functions approaches such as HF/MM and CC/MM and (ii) DFT approaches such
as B3LYP/MM and CAM-B3LYP/MM. From these comparisons and our previous
work (17) we conclude that DFT/MM is an promising alternative to high-level
CC/MM calculations in terms of accuracy. On the other hand HF/MM calculations
are not sufficiently accurate for describing solvent-induced shifts in molecular prop-
erties.Having a hierarchy of QM/MM models both in terms of the description of
the quantum mechanical subsystem and the classical subsystem enables systematic
investigations of the importance of these specific intermolecular interactions on var-
ious molecular properties.Therefore, we have presented the theoretical framework
that enables investigations of important aspects of solvation, which are not directly
accessible from experimental observations.
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60. Čı́žek J (1966) J Chem Phys 45:4256
61. Lee TJ, Scuseria GE (1995) Quantum mechanical electronic structure calculations with chemical

accuracy, Kluwer Academic, Dordrecht
62. Arponen J (1983) Ann Phys 151:311



Linear Response Theory 379

63. Helgaker T, Jørgensen P (1989) Theor Chim Acta 75:111

64. Koch H, Jensen HJAa, Jørgensen P, Helgaker T, Scuseria GE, Schaefer HF (1990) J Chem Phys

92:4924

65. Langhoff PW, Epstein ST, Karplus M (1972) Rev Mod Phys 44:602

66. Olsen J, Jørgensen P (1995) In: David R Yarkony (eds) Modern electronic structure theory, vol 2,

chapter 13, World Scientific, Singapore, pp 857–990

67. Bishop DM (1994) Adv Quant Chem 25:2

68. Sasagane K, Aiga F, Itoh R (1993) J Chem Phys 99:3738

69. Oddershede J (1987) Adv Chem Phys 69:201

70. Hättig C, Heß BA (1995) Chem Phys Lett 233:359

71. Christiansen O, Koch H, Jørgensen P (1995) J Chem Phys 103:7429

72. Christiansen O, Koch H, Halkier A, Jørgensen P, Helgaker T, Sánchez de Meras A (1996) J Chem

Phys 105:6921

73. Christiansen O, Halkier A, Koch H, Jørgensen P, Helgaker T (1998) J Chem Phys 108:2801

74. Hayes WP, Timmons CJ (1965) Spectrochimica Acta 21:529

75. Bayliss NS, Wills-Johnson G (1968) Spectrochimica Acta A 24:551

76. Bayliss NS, McRae EG (1954) J Phys Chem 58:1006

77. Liao DW, Mebel AM, Chen YT, Lin SH (1997) J Phys Chem A 101:9925

78. Ten-no S, Hirata F, Kato S (1994) J Chem Phys 100:7443

79. Cossi M, Barone V (2000) J Chem Phys 112:2427

80. Serrano-Andrés L, Fülscher MP, Karlström G (1997) Int J Quantum Chem 65:167

81. Crescenzi O, Pavone M, De Angelis F, Barone V (2005) J Phys Chem B 109:445
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COMBINED QM/MM METHODS FOR THE SIMULATION
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Abstract: The realistic simulation of chemical processes occurring in solution and in the active
sites of biomolecules is a major challenge for theoretical chemistry since the requirement
for a high (chemical) accuracy collides with the large system sizes and long timescales
involved. In the last years much effort has been invested into the development of the-
oretical approaches that allow (i) the treatment of systems of large size with sufficient
accuracy and (ii) the simulation of longer timescales. In this chapter, we discuss sev-
eral choices to construct molecular models and the corresponding theoretical methods.
This concerns in particular the recent development of multi-scale methods, where the
approximate quantum mechanical (QM) method SCC-DFTB is coupled with molecular
mechanics (MM) force fields and continuum electrostatic methods (CM) into combined
QM/MM and QM/MM/CM approaches. Chemical events occurring on long timescales
are approached by using either direct molecular dynamics simulations, minimum energy
pathways based on geometry optimizations or free energy methods, where the potential of
mean force along selected coordinate(s) is calculated. Various possible system setups and
simulation methods are discussed for the investigation of the structure and energetics of
polypeptides in the gas phase and solution as well as proton-transfer reactions in complex
environments

14.1. INTRODUCTION

The starting point of every computer simulation in biology, chemistry or physics is
the choice of an appropriate structural and computational model. Depending on the
question of interest, simulations can consider only a part of the real-world system,
although progress in computational methods allows one to treat increasingly realistic
models.

The treatment of active site models of biomolecules in the gas phase or within
a continuum description of the environment, as often used in the past, may lead to
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useful insights in many cases. In general, however, a more accurate representation of
the environment is required. This is due to the heterogeneous and long-range nature
of the electrostatic forces emerging from the protein environment and/or solvent,
which have been shown to be a major factor governing the biological function, e.g.,
the efficiency of catalytic processes (see e.g. [1]). Furthermore, reactions may be
coupled to conformational transitions in the environment, therefore, modeling may
have to go beyond a static and/or continuum representation of the surrounding.

Combinations of quantum mechanical (QM) methods for the description of the
active site with a molecular mechanics (MM) treatment of the environment in the
so-called QM/MM methods became the method of choice within the last decade,
although already proposed in 1976 by Levitt and Warshel [2]. These methods allow
for a realistic description of condensed phase systems since they represent the mi-
croscopic environment with a QM treatment of the active site; recent comprehensive
reviews of these approaches can be found in Refs. [3,4,5,6,7].

There exists a large variety of QM/MM implementations. First of all, they dif-
fer in the QM approach chosen for the active site. While early approaches often
used semi-empirical (SE) methods like MNDO, AM1 or PM3 for the QM region,
nowadays density functional theory (DFT) or even ab initio approaches are applied
more frequently due to increased computational resources. The MM region is usually
treated using standard force field parameters for biological structures like AMBER
[8] or CHARMM [9] (implemented in various software packages), i.e., a simple point
charge representation is used and the polarization of the environment is neglected.

Many QM/MM simulations differ in the setup of the system, introducing further
approximations. Often, the active site and the surrounding protein matrix are treated
within the QM/MM scheme, neglecting the larger environment, i.e., the bulk water
solution and/or membrane. In this case, constraints at the protein surface have to be
introduced in order to keep the protein close to the crystal structure. These constraints
may be given by harmonic forces or by using a stochastic boundary potential [10].
Solvent effects can be approximately captured by using the charge scaling procedure
[11]. More elaborate models use periodic boundary conditions and treat the mem-
brane and water explicitly within the MM framework, however, in this approach
several other problems can arise: (i) the setup and equilibration is very demanding
with respect to human and computer resources, (ii) the long relaxation times of the
bulk water, i.e., the collective response of the bulk water with respect to changes
in the active site may take a very long time to sample and (iii) the calculation of
minimum energy pathways becomes more complicated, since water molecules or
residue side chains not relevant to the reaction of interest may flip in orientation and
introduce spurious energy jumps in the energy profile. Therefore, QM/MM methods
have been combined with continuum methods, in order to capture solvent effects
outside the QM/MM region in a more efficient way.

The second challenge for computational chemistry concerns the timescale acces-
sible in the simulations. Biological reactions occur on a variety of timescales, ranging
from the ultra-fast photochemical reactions occurring within several hundred fem-
toseconds up to the millisecond or even second timescale reactions found in catalysis



QM/MM Methods for Simulation of Condensed Phase Processes 383

or protein folding. Direct molecular dynamics simulations with DFT methods can be
performed up to several tens of picoseconds, while SE methods can readily approach
the nanosecond regime. The latter is sufficient to describe reactions with effective
free energy barriers of a few kcal/mol, such as the transitions between different con-
formations of the alanine dipeptide (see discussions below). The barriers for most
chemical reactions, however, are much higher and cannot be overcome during a di-
rect MD simulation. One way of dealing with this problem is to employ reaction path
techniques, i.e., to calculate the path of minimal energy between a given reactant and
product. This approach neglects the effect of thermal fluctuations, which has been
shown to be a dramatic simplification in general [12,13]. One possible solution is
to estimate the entropic contributions by using a normal mode analysis for the QM
region along the reaction path and MD simulations of the MM part by keeping the
QM part fixed [14]. Of course, these methods only work when a minimum energy
path constitutes a good zero-order approximation. Otherwise, free energy techniques
like free energy perturbation or umbrella sampling have to be applied [15], which
require the definition of a reaction coordinate and MD simulations in the nanosecond
timescale, which is not yet accessible to DFT methods. This is the reason that SE
methods became more popular again in recent years, although they show an overall
lower accuracy compared to DFT methods, thus their application to new systems
generally requires careful testing.

In the last years, we have developed an approximate SE scheme based on DFT,
called self-consistent charge density functional tight binding (SCC-DFTB) [16], and
implemented it into several QM/MM schemes [17,18,19,20,21], recently also includ-
ing an implicit solvent model [22]. We have applied the methodology in combination
with direct molecular dynamics simulations, reaction path search algorithms and
free energy sampling methods to various biological problems as discussed below
[22,23,24,25].

14.2. SCC-DFTB

The derivation of the SCC-DFTB [16] model starts by an expansion of the DFT
total energy functional up to second order around a given reference density ρ0(ρ ′

0 =
ρ0(r′),

∫ ′ = ∫ dr′ ):

E =
occ∑

i

〈φi |Ĥ 0|φi 〉 + 1

2

∫ ∫ ′ ( 1

|r − r′| + δ2 Exc

δρ δρ ′

∣∣∣∣
ρ0

)

δρ δρ ′

− 1

2

∫ ∫ ′ ρ ′
0ρ0

|r − r′| + Exc[ρ0] −
∫

Vxc[ρ0]ρ0 + Ecc

(14-1)

The specific choice of ρ0 as a superposition of the densities of neutral atoms,

ρ0 =
∑

α

ρα
0 , (14-2)
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is of central importance in the SCC-DFTB method, since it allows efficient approxi-
mations of the energy terms in Eq. (14-1):

• The effective Kohn–Sham Hamilton Ĥ 0 = Ĥ [ρ0] contains only the “neutral”,
zero-order charge density, which is the key for a transferable computational
scheme. The Kohn–Sham states φi are expanded in a (minimal) atomic orbital
(AO) basis, ημ,

φi =
∑

μ

ci
μημ, (14-3)

which allows to write the matrix elements as follows:

< φi |Ĥ 0|φi >=
∑

μν

ci
μci

ν < ημ|Ĥ 0|ην >=
∑

μν

ci
μci

ν H 0
μν (14-4)

The dependence of the AO matrix elements H 0
μν on the “neutral” charge density

only allows (after further approximations like the neglect of three-center and crys-
tal field terms [26]) to calculate and store the matrix elements into parameter ta-
bles, which are read in before a calculation of a molecular system is started. Since
no integrals have to be calculated during the program runtime and the Hamilton
matrix is represented in a minimal basis, a speedup of roughly three orders of
magnitude is achieved compared to full DFT (GGA) methods with medium-sized
basis sets. The basis functions ημ are confined atomic orbitals, calculated by solv-
ing the atomic Kohn–Sham equations in the presence of an additional harmonic
potential [27]. This makes the basis functions more compact, which is appropriate
for most molecular applications, where the atomic wave-functions would be too
diffuse. Since H 0

μν contains only the densities of the neutral atoms, the effect of
the charge transfer between the atoms in a real system is taken care of by the
second-order terms as described below.

• Also the last four terms in Eq. (14-1) depend on the reference density only. These
terms are grouped together into a single energy contribution, called the repulsive
energy term Erep. Erep can be approximated as a sum of pair potentials, which are
fitted with respect to DFT calculations (for more details, see e.g. [24,26]).

• The second-order terms contain the contributions arising from the charge density
fluctuations δρ = ρ −ρ0, which describe the deviation of the ground state density
ρ from the reference density [28]. This term is represented by a sum of atomic
contributions

δρ =
∑

α

δρα, (14-5)

and a monopole approximation of the atomic contributions allows for an efficient
approximation of the second energy derivative in the second term of Eq. (14-1) by
a function γαβ.
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With these three approximations, the SCC-DFTB total energy finally reads:

E =
occ∑

i

∑

μν

ci
μci

ν H 0
μν + Erep[ρ0] + 1

2

∑

αβ

�qα�qβγαβ (14-6)

14.2.1. Performance of SCC-DFTB

To evaluate the performance of an approximate method is a quite involved process.
First of all, there are the standard tests of small molecules, for which molecular prop-
erties like heats of formations, geometries, vibrational frequencies, dipole moments,
etc., are compared with experimental values or high-level calculations. SCC-DFTB
performs excellently for geometries and quite well for reaction energies, while es-
pecially for heats of formations of these molecules other semi-empirical methods
turned out to be superior [16,29,30,31].

A particular interesting property is the proton affinity, which is crucial for an ap-
propriate description of proton-transfer reactions and which semi-empirical methods
have problems to predict well in general [32]. In the case of SCC-DFTB, the problem
has been traced back to the second-order expansion of the DFT total energy. For
charged systems, where the charge is localized, this approximation breaks down. It
has been shown that for these cases the total energy Eq. (14-1) has to be expanded up
to the third order in the density fluctuations [24,28,33]. This is in particular crucial
for the calculation of deprotonation energies, where the inclusion of third-order terms
leads to significant improvement.

Further, a good performance for small molecules does not guarantee a good de-
scription of larger molecules. For example, the structures and relative energies of
secondary structural elements pose significant problems for semi-empirical models
like AM1 and PM3, but are well described at the SCC-DFTB level [34,35].

However, since SCC-DFTB is derived from DFT, it inherits the DFT failures and
shortcomings. On the one hand, there is the deficiency of DFT for the description
of van der Waals bonded complexes. Here, we extended SCC-DFTB by an explicit
treatment of attractive dispersion forces [36], an extension called hereafter SCC-
DFTB-D, which has been added to DFT methods in the same way later on as well
[37,38]. We have shown that this term is crucial not only for the interaction of DNA
bases [36,39,40] or DNA intercalators [41,42], but also, for example, for the structure
and stability of water on a graphite surface [43] and certain peptide configurations
[21,23,44].

Similarly, SCC-DFTB inherits the failure of DFT-GGA to describe charge transfer
excited states within the linear response formalism; for a detailed discussion, see, for
example, Refs. [24,45,46].

14.3. METHODS TO TREAT ENVIRONMENTAL EFFECTS

The quantum mechanical treatment is always limited to a small subsystem due to the
high computational cost. Semi-empirical (SE) methods can treat much larger systems
than ab initio or DFT approaches, however, they are still not able to include a part
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of the environment of sufficient size in order to capture the solvent (environmental)
effects on the solute.

In biological systems or water, the interactions of a solute with its environment
consist of the short-ranged van der Waals forces and electrostatic interactions. In
particular the latter ones pose a severe computational bottleneck due to their het-
erogeneous and long-range nature. Further, in order to account for changes in the
electrostatic interactions during a chemical reaction, a proper treatment of solvent
relaxation has to be considered. Here, two effects can be distinguished: first, the
response of the electronic degrees of freedom to the solvent (and changes therein),
which is described by the electronic polarization. More involved are the ionic de-
grees of freedom, i.e., the structural rearrangement of the environment due to the
changes of the solute, which occur on timescales that often exceed the simulation
times accessible in a molecular dynamics run.

To effectively represent the coupling between the environment and the quantum
region, quantum mechanical methods have been coupled to empirical force field
methods in the QM/MM methods. Although introduced as early as in 1977 [2], it was
not until the early 1990s that QM/MM methods became widely used in the study of
biological systems (a recent comprehensive review can be found in Ref. [7]). Several
QM/MM implementations with SCC-DFTB as the QM part have been realized up
to now, incorporating it into various empirical force field packages [17,18,19,20,21].
But even for QM/MM approaches using SE methods as QM, the collective reorgani-
zation in the environment can become a computational bottleneck. Therefore, much
effort is invested into developing so-called “multi-scale” methods, which combine
QM/MM with continuum electrostatic methods (CM) for an integrated treatment
of large systems. The DFTB QM/MM coupling to CHARMM has been combined
with a continuum approach [22,47], the generalized solvent boundary potential de-
veloped by B. Roux and coworkers [48] originally for classical simulations. The
SCC-DFTB/MM methodology [23,24] as well as the SCC-DFTB/MM/CM method-
ology [22,49] has been reviewed recently. Briefly, similar to the standard stochastic
boundary simulations, GSBP partitions the system into inner and outer regions and
the effects of the outer region on the inner, reaction region are represented implicitly
within the total effective potential (potential of mean force) [48],

WGSBP = U (ii) + U (io)
int + U (io)

LJ + �Wnp + �W (io)
elec + �W (ii)

elec, (14-7)

where U (ii) is the complete inner–inner potential energy, U (io)
int and U (io)

LJ are the inner–
outer internal (bonds, angles and dihedrals) and Lennard-Jones potential energies,
respectively, and �Wnp is the non-polar confining potential. The last two terms in
Eq. (14-7) are the core of GSBP, representing the long-range electrostatic interaction
between the outer and inner regions. The contribution from distant protein charges
(screened by the bulk solvent) in the outer region, �W (io)

elec, is represented in terms of
the corresponding electrostatic potential in the inner region, φ(o)

s (rα),

�W (io)
elec =

∑

α∈inner

qαφ(o)
s (rα) (14-8)
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The dielectric effect on the interactions among inner region atoms is represented
through a reaction field term,

�W (ii)
elec = 1

2

∑

mn

Qm Mmn Qn (14-9)

where M and Q are the generalized reaction field matrix and generalized multipole
moments, respectively, in a basis set expansion [48].

The advantage of the GSBP method lies in its ability to include these contributions
explicitly while sampling configurational space of the reaction region during a sim-
ulation at minimal additional cost. The static field potential, φ(o)

s (r), and the general-
ized reaction field matrix M are computed only once based on Poisson–Boltzmann
calculations and stored for subsequent simulations. The only quantities that need to
be updated during the simulation are the generalized multipole moments, Qn ,

Qn =
∑

α∈inner

qαbn(rα) (14-10)

where bn(rα) is the nth basis function at nuclear position rα .
As described in Ref. [50], the implementation of GSBP into a combined QM/MM

framework is straightforward and involves the QM-QM and QM-MM reaction field,
and the QM-static field terms. For the GSBP combined with SCC-DFTB, these terms
take on a simple form because ρQM(r) is expressed in terms of Mulliken charges [16].
Although the formulation of GSBP is self-consistent, the validity of the approach
depends on many factors especially the size of the inner region and the choice of the
dielectric “constant” for the outer region. Therefore, for any specific application, the
simulation protocol has to be carefully tested using relevant benchmarks such as pKa

of key residues.

14.4. SMALL POLYPEPTIDES IN AQUEOUS SOLUTION

In order to understand the formation, structure and stability of protein secondary
structural elements, small peptides have been studied extensively by many groups
in the gas phase and aqueous solution. Early peptide studies were based on geom-
etry optimization and molecular dynamics (MD) simulations using empirical force
fields (molecular mechanics: MM). The assessment of the quality of empirical force
field methods, however, is a very difficult task. Clearly, the MM methods neglect
the effects of charge transfer and polarization due to the use of simple point charge
models. However, it is not clear a priori how much this affects their performance
in specific applications. The point charges in conjunction with the van der Waals
parameters are determined to reproduce condensed phase properties, therefore, MM
cannot be expected to reproduce properties of small molecules (peptides) in the gas
phase, for which QM methods could provide accurate benchmark data (The situation
is different for polarizable force fields, which are expected to describe gas-phase
structures as well [51].). Since the peptide geometries are determined by the interplay
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of non-bonding and bonding interactions, the accuracy of the bonding interactions
cannot be accessed independently. This is a problem in particular for the backbone
� and � dihedral angles, which are the main degrees of freedom for the peptide
conformations and critical parameters for an accurate description of peptide/protein
conformations [20].

On the other hand, the application of QM methods at the DFT or ab initio level
to understand the dynamics, structure and stability of polypeptides is not straight-
forward as well. First of all, most interesting problems are not feasible due to
overwhelming computational effort. Only small systems (10–50 atoms) on short
timescales (10–50 ps) are accessible. These timescales are not sufficient to sam-
ple the conformational space since even for small polypetides at least nanosecond
simulations are required. Second, explicit solvent molecules have to be included in
the simulation, which very quickly exceeds the computational limits, a problem that
can be overcome with QM/MM implementations. Third, since these molecules form
intramolecular hydrogen bonds, the choice of the basis set is a critical issue due
to the appearance of the basis set superposition error (BSSE), which can introduce
quite significant errors. Fourth, the structure and energetics of these molecules is
determined by a subtle balance of bonding and non-bonding (electrostatic, hydrogen
bonding and van der Waals) interactions. DFT and ab initio methods describe the
bonding and hydrogen-bonding interactions quite well, while van der Waals interac-
tions are problematic, especially at the DFT-GGA level of theory. DFT-GGA meth-
ods using the popular BLYP, B3LYP or PBE (and others) functionals do not account
properly for the attractive part (dispersion) of the van der Waals interactions. We
therefore proposed to supplement DFT-GGA calculations with an empirical disper-
sion term as implemented in SCC-DFTB-D [36].

An alternative computational strategy to study peptides in solution is therefore to
benchmark a fast QM or polarizable MM model [51] with respect to accurate QM
data in the gas phase, and to apply this model for the study of peptides in solu-
tion. SCC-DFTB has been shown to reasonably reproduce higher level calculations
with respect to relative energies, structures [23,34,35] and vibrational properties of
different conformers of small polypeptides [44,52]. Since the combination of dif-
ferent amino acid residues allows for an overwhelming variety of structures with
very different properties, structures with repeated residues like N-acetyl L-alaninen

N-methylamide (Ace-Lalan-NME) constitute a good starting point for systematic
studies, which will be discussed in the following.

14.4.1. Ace-Lala-NME

Ace-Lala-NME has six stable conformers in the gas phase as described by quantum
mechanical methods, the three lowest in energy forming internal hydrogen bonds
while higher energy structures do not. Figure 14-1 shows the lowest energy con-
former Ceq

7 in the gas phase. Interestingly, ab initio and DFT approaches vary by
1–2 kcal/mol with respect to the relative stability of the six conformers [35], and
different DFT functionals like PBE [53] and B3LYP [35] differ in this range for
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Figure 14-1. The lowest energy conformation Ceq
7 of the alanine dipeptide model in gas phase

certain conformers as well. Although 1 kcal/mol accuracy is very difficult to achieve
with quantum chemical methods and usually would be considered a satisfactory ac-
curacy, errors in this order of magnitude would lead to very different populations
of these conformers when performing MD simulations. Since small basis sets lead
to BSSE errors of 2–3 kcal/mol for weakly hydrogen-bonded systems, the basis set
convergence adds an additional error; to account for this using large basis sets would
make the direct molecular dynamics simulation with DFT methods even much more
impossible. These errors may accumulate for larger systems (e.g., longer polypep-
tides), therefore, the results from DFT calculations using medium-sized basis sets
should be interpreted with some care. For longer peptides, the conformations differ
not only in the number of hydrogen bonds but also in the degree of overall com-
pactness. For more compact structures the BSSE and dispersion interactions become
more prominent. For example, in Ace-Lala2-NME the relative energies with B3LYP
and MP2 are very different [35]. To analyze this difference in more detail is difficult
[54], since BSSE is more severe for ab initio methods than for DFT, i.e., ab initio
methods would favor more compact structures than DFT due to BSSE, while DFT
describes these compact structures to be less favorable due to the missing dispersion
interactions. Therefore, it is difficult to decide which factor contributes more to the
discrepancy, the BSSE or missing dispersion. More elaborate methods and extended
basis sets have to be used to achieve a sufficient precision. However, due to the high
computational cost these methods cannot even be used for geometry optimization,
therefore, SCC-DFTB with empirical dispersion corrections has been applied to per-
form the structural pre-screening using MD simulations [55,56].

On the other hand, SCC-DFTB does not suffer from BSSE and dispersion in-
teractions can be approximately captured using the empirical correction introduced
in SCC-DFTB-D. This may allow for a balanced description of various peptide
conformations, even for large structures. Compared to the best ab initio results of
Beachy et al. [51], SCC-DFTB seems to perform quite well, in particular geome-
tries are described relatively accurately [23,35,39,57], which has been confirmed
for DNA structures as well [36,41,42]. Of course, the approximate nature of SCC-
DFTB should always be kept in mind, i.e., SCC-DFTB will not always give accuracy
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comparable to DFT or ab initio methods. It depends on the specific application,
whether a qualitative or (semi-)quantitative accuracy is achieved and, more impor-
tantly, is sufficient for the question in hand.

To simulate the effects of solvation, quantum chemistry traditionally uses im-
plicit solvation methods, modeling the effect of the polarizable environments on the
electronic structure of the solute. This works very well for rigid molecules. Here, it
allows to calculate solvation free energies or other properties very efficiently, which
depend on the electrostatic solvent response only (e.g., electronic excited states).
In cases where the interaction of solute and solvent has to be considered in molec-
ular detail, this approximation may be insufficient, in particular, when the solvent
interaction changes the molecular structure. This is definitely the case for peptides,
where solvation may change the conformations completely due to the formation of
hydrogen bonds with water molecules, stabilizing conformers not stable in the gas
phase. This effect, which depends on the detailed hydrogen bonds formed between
solvent and peptide, cannot be captured by continuum models. For an at least ap-
proximate modeling of peptide structures, a first solvation shell of water molecules
(Figure 14-2) has to be treated approximately, before augmenting with an implicit
solvent model [58]. This procedure allows to calculate spectroscopic properties using
optimized geometries and normal mode analysis. However, it relies on an insightful
placement of water molecules, which is possible only for small peptides and few wa-
ter molecules. Even then, this static approximation gives only very limited insights.
Dynamically, every conformational state (like �, , etc., conformations) occupies
an extended volume in the configurational space, i.e., a range of dihedral � and �
angles can be attributed to this state. These states may differ in entropy significantly,
which is completely neglected in the static picture. Further, the possible conforma-
tions of the solvent molecules for every state have to be sampled (averaged), which
can have different impacts on the properties of the molecule due to the electrostatic
interactions. Therefore including more water molecules in, for example, a QM/MM
simulation makes the use of optimized geometries obscure. The internal structure

Figure 14-2. The alanine dipeptide model surrounded by four water molecules from the first solvation
shell
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of the solvent can overrule the geometrical and energetic properties of the solute
[17], making optimized geometries nearly meaningless. Further, the solvent structure
around hydrophobic and hydrophilic regions of the peptide is the key to understand
the hydrophobic forces, which have a strong impact on structure and energetics of the
peptide. These arise from the differences in the structure (and hindered conformation
flexibility) of the water cage around the solute, which are only captured well in a
molecular representation of the solvent.

The sampling of the phase space of small peptides like Ace-Lala-NME with
molecular dynamics requires typically simulations over few nanoseconds. These
timescales are not yet within reach with DFT or ab initio approaches, while easily
accessible using semi-empirical methods like SCC-DFTB. A typical setup involves
a QM region consisting of the peptide, surrounded by a cubic box filled with water
molecules described with MM and periodic boundary conditions [20]. The simula-
tions show broad regions associated with main peptide conformations. Interestingly,
the distribution of the dihedral angles in the Ramachandran plot resembles the dis-
tribution of these angles as extracted from alanine (or glycine) residues in proteins
as found in protein structure databases. Further, none of the force fields at that time
could reproduce these results [20]: the force fields differed significantly in terms of
relative intensities of the conformers, between themselves and in comparison to the
SCC-DFTB description. New parametrizations seem to overcome these problems,
leading to a quite good agreement with the crystal data [59,60].

The energy differences and barriers between the different conformers are in the
order of 1–3 kcal/mol. In this case, few nanoseconds suffice to converge the statis-
tics, however, for longer peptides even SCC-DFTB will be not efficient enough. To
overcome this problem, either faster methods like polarizable force field methods or
more elaborate sampling techniques have to be applied. An interesting techniques is
the replica exchange molecular dynamics [19] methodology, where MD simulations
are performed at different temperatures, which allows for a much more efficient
sampling. An alternative are free energy methods [15], which can be applied if a
reaction coordinate can be defined describing the structural transition between two
conformers. Along this reaction coordinate, the structural transition can be driven
and free energy differences can be evaluated from the MD simulation, as discussed
in more detail below.

14.4.2. Helix Formation in Ace-Lalan-NME Peptides with n = 4–20

Interestingly, for these molecules the most common �-helical structural motive is not
stable in the gas phase. It converts into a 310 helix for small polypeptides with n<8
upon geometry optimization with DFT methods. Only for n ≥ 8, � conformations
start to form in the middle of the helix. However, these helices are energetically less
stable than the pure 310 helices [34].

The situation changes dramatically in solution. QM/MM simulations of these two
helices in solution modeled by water droplets showed that the larger helix dipole of
the �-helix leads to a stronger Coulomb interaction with the solvent [17], which leads
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to transition from the 310 to the �-helical conformation within 10 ps [18]. Therefore,
the aqueous solvent with a high dielectric constant stabilizes the �-helical conforma-
tion significantly.

On the other hand, dispersion interactions play an important role for the relative
stabilities of these conformers. Using SCC-DFTB–D instead of SCC-DFTB for opti-
mization of the helical structures in gas phase yields stable conformations beginning
with peptide lengths of n ≥4. Further, for the optimized structures αR becomes ener-
getically more stable for peptides with nine alanine residues and more [21,23], which
is in agreement with their appearance in structural databases for this size. Although
it is well known that DNA structures are stabilized to a large degree by van der
Waals stacking interactions between adjacent base pair steps, the result for peptides
was somewhat surprising, since it was believed that the stability is mainly due to
hydrogen-bonding interactions.

A particular interesting observation was made when treating an entire protein with
SCC-DFTB and only the surrounding water molecules with an empirical potential,
applying periodic boundary conditions [21]. Of course, even SCC-DFTB would be
much too costly to perform MD simulations for a protein-like Crambin with more
than 600 atoms. This becomes only possible when applying a linear scaling algorithm
for SCC-DFTB. These methods make use of the local nature of the density matrix
in real space, which allows to compute the big system part by part and then joining
the density matrices of the subsystems into the total density matrix of the entire
system. This in combination with parallelization of the algorithm allows for long
MD simulations.

Crambin has two �-helical regions, which are rapidly converted into 310 confor-
mations during the dynamics [21]. Although these helical conformations would be
stable in a high dielectric environment like water, they were found to be unstable in
the lower dielectric of a protein environment using SCC-DFTB as the QM method.
Using the van der Waals augmented SCC-DFTB-D method as described above, the
structure of Crambin remained close to the crystal structure, which shows the two
�-helices. Therefore, the stability of peptide conformations is governed by a subtle
balance of the intrinsic stability of the peptide and the interaction with the polar
environment. van der Waals forces seem to be of major importance for the intrin-
sic stability of the peptides. It can therefore be concluded that neither HF nor DFT
(GGA) methods are able to reliably describe polypeptide or protein structures, unless
weak van der Waals interactions are explicitly included or better DFT functionals
are developed. The comparison with a high-resolution crystal structure showed the
QM/MM simulation could reproduce geometrical details better than several molec-
ular mechanics force fields, which are found to produce systematic deviations for
the main-chain bond angles and critical dihedral angles. Further, the atomic charges
fluctuate around their main values, and a significant charge transfer has been found
between the terminal residues, which may have an effect on the conformational
stability.
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14.5. STUDY OF NON-NATURAL PEPTIDES: 
 AND �/
 -PEPTIDES

An interesting recent set of applications of SCC-DFTB involve non-natural
biomolecules [61, 62] such as - and �/-peptides, which are oligomers of - or of
�- and -amino acid residues, respectively. These non-natural peptides have attracted
a tremendous amount of interest in recent years due to their potential in biomedical
and materials applications [63,64]. For example, they have the advantage that there is
no mechanism in the body for their degradation and therefore can be used as antimi-
crobial materials [65,66,67,68,69,70] and gene delivery agents [71], and are possible
candidates for lung surfactant mimics. However, due to the limited amount of quan-
titative structural and dynamical information [68,72,73,74,75,76,77,78,79,80,81,82],
the sequence–structure–property relationships in these systems are not well under-
stood. For example, 3-residues that bear a side-chain branch point adjacent to the
backbone, such as 3-Val, have been suggested [83,84] to promote helix formation
although the idea has been challenged [85].

Computational studies can potentially provide key insights into such sequence–
structural relation issues, yet this is not straightforward for non-natural peptides
because there are only very limited amount of experimental data for establishing
reliable molecular models. Therefore, we have initiated a “bottom-up” approach for
simulating - and �/-peptides that starts from atomic-level models and systemat-
ically propagates to larger and coarser length scales. In particular, we use QM/MM
simulations as the reference to facilitate the development of a reliable MM force field
for peptides that contain -amino acids. In the future where larger-scale simulations
(e.g., for the study of phase behaviors) are needed, the all-atom MM simulations
can be used to parametrize an effective coarse-grained model. The reason to use a
QM/MM model is that a QM model, in contrast to a MM model, can be directly
calibrated against high-level ab initio calculations in the gas phase, which makes
QM/MM simulations a uniquely meaningful reference. Considering computational
efficiency, the QM/MM calculations are carried out at the SCC-DFTB/CHARMM
level; to make sure that this is appropriate, we first benchmarked SCC-DFTB in
the gas phase against high-level DFT and ab initio calculations. Then, the SCC-
DFTB/CHARMM results were used to guide the development of an all-atom MM
model for several  amino acids. In the following, we briefly discuss the gas-
phase benchmark results, which are followed by short discussions of the SCC-
DFTB/CHARMM results in the condensed phase.

14.5.1. Gas-Phase Benchmark

As benchmark in the gas phase, we have studied the structure, energy and dipole
moment of various conformers in a number of -dipeptides (3-GLY and 3-ALA)
and -heptapeptides. Systematic conformational searches were carried out for the
dipeptides; for the heptapeptides, the conformers of interest include the 14-helix and
two different 10/12 mixed helical structures [63]. As reference, the structures were
fully optimized at the B3LYP/6-31+G∗∗ level, and energies were evaluated at the
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Table 14-1. Rms differences in optimized dihedral angles in various -peptides compared to the standard
SCC-DFTB resultsa

Model SCC-dispersionc B3LYP LMP2f

Dipeptide 8.8 13.4d 9.9
Heptapeptideb 6.7 9.0e

aAll dihedral angles rms differences are in degrees;
bOnly the 10/12 mixed helices are included; for the 14-helix, see text;
cSCC-DFTB with the empirical dispersion interaction [86];
dB3LYP/6-31+G∗∗;
eB3LYP/6-31G∗;
fLMP2/6-31G∗∗.

LMP2/6-311G∗∗ level. At the SCC-DFTB level, the effects of an empirical dispersion
correction [86] have also been tested.

For the dipeptides, there is overall very good agreement between SCC-DFTB,
B3LYP and LMP2 structure and relative energies (Tables 14-1 and 14-2). Dispersion
has, in general, little effect on the SCC-DFTB results, although including the disper-
sion causes certain conformers to disappear as local minima, often in agreement with
the LMP2 result. The RMS errors of the various SCC-DFTB models relative to the
LMP2 results are 1.2–1.3 kcal/mol, only slightly larger than the value of 0.9 kcal/mol
for B3LYP (Table 14-2). For dipole moments, the SCC-DFTB results deviate from
the B3LYP/6-31+G∗∗ values by ∼15% and the RMS error is 0.9 Debye.

For the three heptapeptides studied, the findings are overall similar to that for the
dipeptides, which show that the standard SCC-DFTB parametrization gives rather
reliable structures (RMSD of backbone atoms is normally less than 0.2 Å) and
relative energetics (RMS error on the order of 2–3 kcal/mol) for various conformers
as compared to B3LYP and LMP2 calculations. In some cases, dispersion forces
change the geometry or energetics of the heptapeptides studied here. For example,

Table 14-2. Rms differences in relative energetics for various -peptides compared to LMP2/6-311G∗∗
single point energiesa

Model SCCd SCC-dispersione B3LYPf

Dipeptideb 1.2 1.3 0.9
Heptapeptideb 3.3 4.5 2.2
Heptapeptidec 2.0 – 2.6

aAll energies are in kcal/mol;
bWith the standard SCC-DFTB-optimized structures; for the heptapeptides, only the 10/12 mixed helices
and the fully optimized 14-helices are included;
cWith B3LYP/6-31G∗- optimized structures;
dThe standard parametrization of SCC-DFTB [87];
eSCC-DFTB with the empirical dispersion interaction [86];
fB3LYP/6-31+G∗∗.
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for the -substituted hepta–alanine, with dispersion included in the SCC-DFTB,
14-membered-ring hydrogen bonds are formed except at the C-terminus; the average
dihedral angles for the four middle residues are φ = −160.5◦, θ = 61.0◦, ψ =
−127.8◦, very close to the values in an ideal 14-helix [63]. Without dispersion,
the two hydrogen bonds close to the C-terminus are completely lost, which leads
to a structure with a RMSD value larger than 1.1 Å relative to the ideal 14-helix
(Figure 14-3).

Therefore, it seems that the standard SCC-DFTB can describe the intrinsic
structural–energy relation of -peptides to a satisfactory degree, although the effect
of dispersion should be monitored carefully.

14.5.2. Solution Results

As benchmark in solution, we have studied a series of �/-peptides that include
a cyclic -amino acid, trans-2-amino-cyclo-pentane-carboxylic acid (ACPC); these
peptides are close to those studied experimentally in the Gellman group. Here we
briefly discuss the simulation results for an octapeptide (with the sequence ACPC-
A-ACPC-A-ACPC-A-ACPC-A, see Figure 14-4) in methanol solution, where the
peptide is treated using SCC-DFTB and methanol using the MEOH model in the
CHARMM 22 all-atom force field [88]; calculations show that this methanol model
describes the bulk property rather well. The issue of interest is the relative stability
of the 14/15 and 11-helical structures. NOE data in methanol suggest that both con-
formers appear with likely similar stability [82]. Motivated by this observation, the
potential of mean force (PMF) associated with the conversion between the two he-
lical forms is calculated using umbrella sampling [89]. The reaction coordinate is

Figure 14-3. Comparison of different structures of model E from different calculations (the number
below each superposition is the backbone RMSD): (a) SCC-DFTB-optimized structure (CPK color) vs
ideal 14-helix (purple); (b) SCC-DFTB-optimized structure (CPK color) vs B3LYP/6-31G∗ -optimized
structure (yellow); (c) SCC-DFTB-optimized structure (CPK color) vs SCC-DFTB+dispersion optimized
structure (green); (d) SCC-DFTB+dispersion optimized structure (green) vs ideal 14-helix (purple)
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Figure 14-4. The �/ mixed peptide models studied here in methanol solution (n = 4)

chosen to be the end-to-end distance between the amide nitrogen in the first residue
and the carbonyl carbon in the last residue, and the sampled range is between 10.6
and 18.0 Å; the amount of simulations include approximately 4 ns.

Figure 14-5a depicts the potential of mean force for the conversion between the
14/15 helix and the 11-helix. The SCC-DFTB/MM simulations show that the 11-
helix is more stable than the 14/15 helix by about 3 kcal/mol. If we consider that
the gas-phase calculations discussed above suggest that SCC-DFTB tends to under-
estimate the stability of shorter and wider helices (e.g., the stability of 14-helix is
underestimated compared to 10/12 mixed helices for heptapeptides), the PMF re-
sult implies that the two helical forms are even closer in free energy (14/15 helix is
shorter and wider than the 11-helix) than 3 kcal/mol, which is qualitatively consistent
with the experimental NOE data [82]. There is an interesting difference in the sta-
bility of the backbone hydrogen-bonding interactions between the two helical forms
(Figure 14-5b). Although the occupancy of the backbone hydrogen bonds is rather
high (∼ 0.7) for the 11-helix, the value is substantially lower (< 0.4) for the 14/15
helix, implying a very dynamical structure for the latter.

Figure 14-5. SCC-DFTB/MM simulations for octapeptide (ACPC-A-ACPC-A-ACPC-A-ACPC-A) in
methanol solution. (a) PMF for the conversion between the 14/15 helix and 11-helix of octapeptide;
(b)hydrogen-bonding occupancy analysis (solid line: 14/15 helix; dashed line: 11-helix)
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14.6. STUDYING PROTON-TRANSFER REACTIONS
IN COMPLEX ENVIRONMENTS

Proton-transfer reactions play an important role in biological processes such as en-
zyme catalysis or bio-energetics. Especially in the latter case, protons are trans-
ported over long distances to create proton gradients across the cell membrane. Large
free energy barriers (≥ 10 kcal/mol) determine the long timescales (ns–ms) of these
chemical reactions, which cannot be studied using direct molecular dynamics simula-
tions of nanoseconds. Instead, either reaction path techniques or methods to compute
free energy differences have to be applied, which will be discussed in the following.

14.6.1. Minimum Energy Pathways (MEPs)

Bacteriorhodopsin (bR) is a transmembrane protein located in the cell membrane
of purple bacteria and contains in its ground state an all-trans retinal chromophore
that absorbs at 570 nm. After illumination, the chromophore isomerizes, and a pro-
ton is pumped in five consecutive steps from the cytoplasm to the extracellular side
of the membrane. The resulting pH gradient is then used to synthesize ATP. In the
first proton-transfer step, the proton located at the retinal chromophore Schiff base
is transferred to a nearby aspartate residue (Figure 14-6). Our studies on this first
proton-transfer step in bacteriorhodopsin (bR) after photoisomerization [90,91,92]

Figure 14-6. The bR retinal binding pocket showing the NH group at the retinal chromophore, the two
aspartates 85 and 212 and the three water molecules forming a strong hydrogen-bonded network
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is a good example that illustrates the approximations involved in many similar
studies. First of all, the active site (retinal chromophore, two aspartates, one thre-
onine side chain and water molecules) is described by a quantum method (in this
case SCC-DFTB), the remainder of the protein by an empirical force field method
(CHARMM), while no solvent effects are taken into account, i.e., the protein is
treated in vacuo. This is acceptable here because the active site is deeply buried
in the center of the protein and solvation effects on the active site are expected to be
small. A simple way to test this is to use the charge scaling procedure [11], where the
force field charges are modified according to Poisson–Boltzmann calculations for the
protein embedded in a dielectric environment. This leads to an effective downscaling
of the force field charges, especially for those charges exposed to the solvent. In the
case of the first protein transfer step in the bR photocycle, the effect of charge scaling
was negligible.

Second, the calculation of minimum energy pathways (MEPs) could be justified
by the fact that the protein environment does not change significantly during the
proton transfer and entropic effects have been shown to be marginal. The reason for
that is a very rigid binding pocket, where the proton donor and acceptor are tightly
bound by an extended hydrogen-bonding network (Figure 14-6). Although the first
proton-transfer step seems to be a simple reaction, where a proton is transferred
from a donor to a nearby acceptor, a detailed analysis showed that many protein
degrees are involved, i.e., it would be difficult to define a proper reaction coordinate.
Calculating the energy change along a certain geometrical coordinate by “coordinate
driving” can fail dramatically [92]. More elaborate approaches like the conjugate
peak refinement (CPR) [93] algorithm, which allow for an optimization of the MEP
with taking the multitude of degrees of freedom into account, are more appropriate.
CPR starts by interpolation of an initial and final structure to construct the first search
direction. This is a severe bias, inherent also in other reaction path approaches, that
can be overcome by introducing different initial conditions.

The MEPs have been determined for the first proton-transfer step, i.e., the pro-
ton transfer from the retinal chromophore to the nearby aspartate (Asp85) [91].
Several pathways have been studied by using different initial and final configura-
tions and by introducing various intermediate states. When only the initial and final
states are specified, a direct transfer mechanism is found where the proton from
the chromophore goes directly to the aspartate. Other mechanisms could be found
by introducing side-chain residues as proton-transfer intermediates (“relay groups”),
i.e., adding structures to the pathway where the proton is located on specific side
chains. For the main reaction mechanisms identified, the reaction is isoenergetic and
the barriers is between 11 and 13 kcal/mol, which are consistent with experimental
findings [91]. The good agreement with experiment is surprising at first sight, but
can be rationalized as follows: first, the MEPs are meaningful in this example due
to the negligible influence of conformational entropy changes, as discussed above.
Since DFT-GGA (all the above calculations are based on DFT-GGA or SCC-DFTB)
is known to underestimate proton-transfer barriers (see, e.g., [94]), one may ex-
pect an underestimation of the barrier height by 2–4 kcal/mol. However, zero-point
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vibrational energies have been neglected in our calculations, which have been shown
to lower the effective proton-transfer barriers to the same order of magnitude [3].
Therefore, the agreement with experimental results is due in part to error cancella-
tion. Further improving the calculations by including zero-point vibrational energy
(and potentially tunneling) would require to calculate the potential energy at at least
the MP2 level of theory, which is much more demanding computationally.

Further analysis revealed the detailed contribution of the protein environment to
this proton-transfer reaction. For example, the calculations unraveled the role of the
protein environment on the stabilization of the end states and the origin of the proton-
transfer barrier. Further, the relevant chromophore conformations consistent with a
productive photocycle have been determined, which has been difficult to resolve
experimentally. In particular, the electrostatic interaction of the chromophore with
the protein sensitively calibrates the key energetic properties. The reaction would be
grossly exergonic in the gas phase, and only the interaction with several key residues
and water molecules makes the reaction nearly isoenergetic. The reaction barrier
results from interaction with the remainder of the protein [90]. Since the reaction is
isoenergetic, the question arises as to how the reverse process, the reprotonation of
the chromophore, is prevented. Possible mechanisms for that are structural changes
in the active site after proton transfer, such as changes in the distance of the proton
acceptor to a threonine (Thr89) and relocation of water molecules. Both processes
change the proton affinity of the proton acceptor, thereby lowering the energy of the
product state and making the reverse reaction more unlikely [92].

14.6.2. Free Energy Simulations Using Multi-scale Approaches

The first proton-transfer step in bR is an example where unsolvated protein models
and minimum energy pathway methods can be applied, i.e., a deeply buried active
site which is tightly bound, leading to negligible effects from solvation and entropy.
In many other systems, however, the proton transfer (or other chemical reactions)
is coupled to significant structural response of the protein and/or the solvent, where
alternative methods have to be used. One way to do this is to use umbrella sampling
techniques, where the reaction coordinate can assume a complicated form for long-
range proton-transfer processes [47]. With these techniques, much more complex
situations can be studied [22]. A particularly excitinng direction is to study proton
translocation across the membrane, where a proper and efficient treatment of the het-
erogeneous protein/solvent/membrane environment is particularly important, such as
in aquaporin [47] and cytochrome c oxidase.

A useful example that illustrates the difference between MEP and PMF results
is the long-range proton transfer in carbonic anhydrase II (CAII), which is a zinc-
enzyme that catalyzes the interconversion of CO2 and HCO−

3 [95]. The rate-limiting
step of the catalytic cycle is a proton transfer between a zinc-bound water/hydroxide
and the neutral/protonated His64 residue close to the protein/solvent interface. Since
this proton transfer spans at least 8–10 Å depending on the orientation of the His64
sidechain (“in” vs “out”, both observed in the x-ray study [96]), the transfer is
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Figure 14-7. The active site of CAII rendered from the crystal structure (PDB ID: 2CBA [96]). All dotted
lines correspond to hydrogen-bonding interactions with distances ≤3.5 Å. E117 and E106 are in close
proximity to H119, and E106 also interacts with T199 through the presumed hydroxyl proton of T199
(not shown for clarity). H64 is resolved to partially occupy both the “in” and “out” rotameric states

believed to be mediated by the water molecules in the active site (see Figure 14-7).
As discussed extensively in the literature, there are multiple water wires of different
lengths in the active site that connect the donor/acceptor groups (zinc-bound water,
His64). A question of interest is whether specific length of water wire dominates the
proton transfer or all wires have comparable contributions. It is worth pointing out
here that since the active site of CAII is rather polar, a proper treatment of electrostat-
ics in the QM/MM simulations is important even for qualitative properties such as the
distribution of water in the active site and the propensity of His64 to adopt different
orientations; for more detailed discussions, see Refs. [50, 97]. In all the calculations
discussed below, the SCC-DFTB/MM-GSBP protocol is used, which has been val-
idated by comparing to both periodic simulations using the Ewald summation [97]
and microscopic pKa simulations [98].

As the first approach, a large number of MEPs have been collected starting
from different snapshots collected from equilibrium MD simulations at the SCC-
DFTB/MM level. Since essentially a positive charge is transferred over a long dis-
tance in the proton transfer, it was not surprising that the MEP energetics were found
to depend on the origin of the starting structure, which reflects the fact that the
active-site residues/solvent respond significantly to the proton transfer. For example,
when the starting structure came from a CHOH (zinc-bound water, neutral His64)
equilibrium simulation, the proton transfer from the zinc-water to His64 is largely
endothermic (on average by as much as ∼13 kcal/mol). By contrast, when the starting
structure came from a COHH (zinc-bound hydroxide, protonated His64) simulation,
the same proton-transfer reaction was found largely exothermic. As an attempt to
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capture the “intrinsic barrier” for the proton-transfer reaction, which is known to be
close to thermoneutral experimentally [99], we generated configurations from equi-
librium MD simulations in which protons along a specific type of water wire were
restrained to be of equal distance from nearby heavy atoms (e.g., oxygen in water
or Nε in His64). In this way, the charge distribution associated with the reactive
components is midway between the CHOH and COHH states, thus the active-site
configuration was expected to facilitate a thermoneutral proton-transfer process as
confirmed by MEP calculations using such generated configurations as the starting
structure. Interestingly, the barriers in such “TS-reorganized” MEPs showed a steep
dependence on the length of the water wire; it was small (∼6.8±2.2 kcal/mol) with
short wires but substantially higher than the experimental value (∼10 kcal/mol) with
longer water wires (e.g., 17.4±2.0 kcal/mol for four-water wires).

This steep wire-length dependence is in striking contrast with the more rigorous
PMF calculations [100,101]. In the PMF calculations, a collective coordinate [102]
is used to monitor the progress of the proton transfer without enforcing specific
sequence of events involving individual protons along the wire; the use of a collec-
tive coordinate is important because this allows averaging over different water wire
configurations, which is proper since the lifetime of various water wires is on the
picosecond timescale [50,97], much faster than the timescale of the proton transfer
(�s) [99]. In the PMF calculations, the wire-length dependence is examined by com-
paring results with different His64 orientations (“in” and “out”, which is about 8 and
11 Å from the zinc, respectively); both configurations are associated with multiple
lengths of water wires but different relative populations (clearly, longer water wires
have higher population for the “out” configuration). The two sets of PMF calcula-
tions produced barriers of very similar values, which suggests that the length of the
water wire (or orientation of the acceptor group) is unlikely an important factor in
determining the proton-transfer rate. Physically speaking, this makes sense for the
following reason. The pKa of both the donor and acceptor groups in CAII are shown
experimentally to be around 7.0 [95], thus the dominant energetic component is re-
lated to the proton exchange between water in the wire and the donor/acceptor group;
with either the conventional Grotthius mechanism [103,104] (zinc-bound water first
transfers a proton to the next water, generating a hydronium) or the “proton-hole”
mechanism we proposed recently [100] (which involves transfer of a water proton to
His64 first, generating a hydroxide), the energetics change is approximately 7 pKa

unit, which is close to the experimentally observed barrier of ∼10 kcal/mol. In other
words, once either a hydronium or a hydroxide is generated, the species can move
without a major barrier (consistent with the high mobility of hydronium and hydrox-
ide in solution [105]) over a variable distance and therefore the dependence on the
length of the water wire is not expected to be large (for more complete discussions,
see Refs. [100,101]).

Further analysis of the configurations sampled in the MEP simulations sug-
gested that the MEP results artificially favored the concerted proton transfers, which
correlate to significant distance dependence. As discussed above, to generate the
“TS-reorganized” configurations all transferring protons along the wire are
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constrained to be half-way between the neighboring heavy atoms; therefore, such
sampled protein/solvent configurations would favor a concerted over step-wise pro-
ton transfers. Although all atoms in the inner region are allowed to move in the MEP
searches, the local nature of MEPs does not allow collective reorganization of the
active-site residues/solvent molecules, thus the “memory” of the sampling procedure
is not erased.

In short, this example clearly illustrates that care must be exercised when using
MEP to probe the mechanism of chemical reactions in biomolecules, especially when
collective rearrangements in the environment are expected (e.g., reactions involving
charge transport).

14.7. CONCLUSIONS

Solvation plays a crucial role for the structure, dynamics and function of small
molecules as well as for proteins and nucleic acids. When modeling solvation effects,
especially for biomolecules, one often has to deal with large molecular systems and
long timescales. Indeed, a proper account for solvation generally requires the in-
clusion of many solvent molecules, which leads to expanded system size and long
simulation timescales required for capturing collective solvent response.

For studying chemical reactions in the condensed phase, for example, a QM/MM
setup with a QM description for a small region (active site) and a MM description
for the remainder of the system (including the biomolecule and solvent) would be,
in principle, appropriate. In practice, periodic boundary conditions can be applied,
as they have been shown to be fruitful in many applications, some of which were
also reviewed here. However, the periodic boundary approach becomes impractical
for many problems of interest. For very large biomolecules containing more than
several 10,000 atoms (e.g., the ribosome), the computational cost is overwhelming.
Even for smaller systems, the slow protein/solvent response to electronic structural
changes associated with the chemical reaction demands long sampling times, which
renders simulations difficult to converge.

Therefore, a more practical approach is to represent the most relevant part of the
protein and solvent environment at an atomistic level, which is then surrounded by a
continuum description. In this contribution, we have discussed two examples for such
a protocol: (i) for the simulation of peptides, a first solvation shell can be included
in the QM description before adding implicit solvation, which works particularly
well for predicting vibrational properties. For more reliable description of the pep-
tide dynamics, however, more advanced techniques that involve extended QM/MM
simulations, either for a direct simulation of the system or for parametrizing empir-
ical force fields, are required. (ii) For the simulation of proton-transfer processes,
in cases where the active site is shielded from the solvent by the protein, solvation
of the protein can be approximated with a charge scaling procedure; in those cases,
minimum energy path (MEP) calculations can be fruitful for mechanistic analysis. In
cases where the active site is more solvent accessible, the augmentation of QM/MM
approaches with implicit solvation models (e.g., in the generalized solvent boundary
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potential framework) is advisable; moreover, since solvent can reorganize signifi-
cantly during the proton transfer, it is important to perform proper sampling and
MEP can be misleading for those systems.

The methods discussed here merely represent the beginning of increasingly com-
plex computational architectures, where more than one QM method may be com-
bined with other QM methods, MM methods, continuum electrostatic approaches
and coarse-grained models in a coherent “multi-scale” framework. With such de-
velopments, increasingly complex chemical and biological systems can be analyzed
computationally in a routine and realistic fashion.
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CHAPTER 15

SOLVATION OF HYDROGEN BONDED SYSTEMS:
CH···O, OH···O, AND COOPERATIVITY
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Abstract: The effect of solvation upon hydrogen bonds is assessed by a number of computational
techniques. The SCRF approach and its more refined variants, which treat the solvent as
a polarizable continuum, are compared with results obtained via treatment of discrete in-
teractions with individual solvent molecules. The effect of solvation upon CH··O H-bonds
is very much like its influence upon conventional OH··O bonds. Results obtained with a
continuum model of solvent are not altered much by explicit inclusion of a first hydration
sphere. The H-bond energy arising from the C�H group of amino acids is fairly substantial
and can even exceed the NH··O H-bond energy in certain conformations of a polypeptide.
On the other hand, both H-bonds rapidly weaken when placed in an aqueous environment.
Chains composed of CH··O bonds show a comparable degree of cooperativity as do OH··O
bonds. When placed in a polarizable medium, the cooperativity lessens along with the
strength of the individual H-bonds. The functional side chains of certain amino acids, such
as histidine, can form H-bonds simultaneously at a number of sites. Multiple H-bonds fol-
low the usual patterns of positive and negative cooperativity found within one-dimensional
H-bonded chains. The calculated solvation energy of the pertinent molecule in polarizable
medium is considerably smaller than the combined interaction energy of the molecule
and its surrounding water molecules. However, this difference is much smaller when each
H-bond energy is computed not in vacuo, but rather within a polarizable medium

15.1. INTRODUCTION

The earliest applications of quantum chemistry were targeted toward molecules in
the gas phase. This was in part due to an interest in such an environment which
allows researchers to focus on the intrinsic properties of the molecule of interest.
But also, since much of practical chemistry takes place in solution of some sort,
this environment presents an important avenue of inquiry as well. However, such
solvated systems were typically out of reach of quantum calculations. For one thing,
the inclusion of a number of solvent molecules into the calculations would commonly
take the system beyond the capabilities of computers at the time. Secondly, solvent
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systems are anything but static, as the solvent molecules move very quickly from one
site to another, and rotate as well.

Over the course of time, ways were devised to treat such complex solvated sys-
tems. One direction involved dynamics calculations which followed the motions of
the molecules over the course of brief timeframes. The motions were guided by
empirical force fields that were devised to approximate the interactions between
the various molecules. Another avenue of attack employed the strategy of averag-
ing these motions in a way that also incorporated the mutual polarizations of the
solute and its surrounding solvent. The primary means of including solvation into
quantum calculations in the early years was thus via some variant of the Onsager
ideas [1] of immersing the system within a polarizable continuum, with a dielectric
constant ε. The charge distribution of the solute induces a so-called reaction field
within the medium, which then acts back upon the solute. These changes are com-
puted in a self-consistent manner, leading to their designation as the self-consistent
reaction field (SCRF) approach. The most primitive of such methods is the original
implementation of the Onsager formalism [1,2,3] wherein the only component of the
charge distribution considered is the dipole moment, and the cavity is restricted to
a simple spherical shape, even if the solute itself is far from spherical. Despite its
approximate nature, this approach found a great deal of use over the years.

Over the last decade or two, this technique has been refined in a number of ways.
Good reviews of this field have been published in the last few years, [4,5,6] to which
the reader is enthusiastically referred to for some historical perspective, as well as
more detail about the methods and their improvements.

It is one thing to consider the solvation of a relatively nonpolar system, such as
an inert gas atom or a hydrocarbon. In such a case, there will be only very weak
specific interactions with the solvent molecules, so a polarizable continuum model
seems at first blush to be a very reasonable approximation. However, if the solute is a
polar system, which can form very specific, highly directional, and relatively strong
hydrogen bonds with the solvent molecules, this sort of treatment would appear more
problematic. Nevertheless, past work has shown evidence that the approach can have
some real successes. A 1997 study of tautomerism of triazolopyrimidines [7] calcu-
lated equilibria that were in good agreement with the 15N NMR spectroscopy data.
Likewise, the equilibrium between neutral and zwitterionic forms of the amino acid
glycine was handled well [8]. Indeed, a series of calculations have demonstrated that
this treatment can work well for solvated radicals [8,9,10,11] of various sorts. And
even much larger systems, such as a protein like ubiquitin [12], have recently been
shown to be within reach of this approach.

A good deal of work over the last decade or two has brought to light the
fact that a CH group can function as a proton donor in a hydrogen bond
[13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]. This work continues to this day,
with unabated vigor [29,30,31,32,33,34,35,36,37,38,39,40,41,42]. Our own group
has been active in this field as well, considering the fundamental properties of
these CH··O interactions [43,44,45,46,47], including spectroscopic properties [48],
and their implications for biological systems [49]. The focus of the present chapter
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concerns a comparison of CH··O H-bonds with their more conventional NH··O and
OH··O cousins. In particular, we focus upon how the two sorts of H-bonds differ
with respect to their response to solvation. And in the latter respect, a good deal of
attention is paid to inclusion of specific interactions with discrete solvent molecules
as a counterpoint to a broad polarizable continuum treatment.

The review begins with a very brief summary of some early results achieved with
an overly simplified solvation approach. The next section describes a number of
variants of a more sophisticated continuum technique, and how the results differ.
Attention then shifts to larger, biologically important systems such as amino acids,
their functional side chains, and thence to dipeptides. The last major section deals
with the phenomenon of H-bond cooperativity and how this property might differ
for CH··O as compared to OH··O H-bonds. In a number of places, there is some
discussion as to how one might introduce specific interactions with a small number of
discrete solvent molecules, within the general framework of the continuum approach.

15.1.1. Early Applications of Rudimentary SCRF

As indicated above, the early considerations of solvent effects took a simplified ap-
proach, wherein the cavity in which the solute was placed was taken as spherical,
and the dipole of the solute was considered to the exclusion of higher multipoles. As
one example, this group [50] applied this method to a series of HX molecules (X = F,
Cl, Br) that formed a H-bond with each of a set of amines. HBr is the strongest of
the HX acids considered, and the various degrees of methylation of amines led to a
progression of basicity from NH3 to NMe3. The “pull” on the proton from X to N
was quantified in terms of a normalized proton affinity difference (NPAD) between
the two subunits. All the HX··amine pairs were found to be neutral pairs, but the
degree of proton transfer from X to N grew modestly as either the acidity of HX
or basicity of the amine was enhanced. On the other hand, when immersed in a
dielectric medium, the amount of proton transfer was magnified. The sensitivity of
the degree of proton transfer to dielectric constant of the medium was fairly small
for HF, larger for HCl, and quite large for HBr. Indeed, a number of the H-bonded
complexes suffered enough of a proton transfer that they would be better character-
ized as –X···HN+ ion pairs within polarizable medium. The better stabilization of the
ion pair than a neutral pair is easily predictable, based upon the much higher dipole
of the former. An interesting finding to emerge from that work was how different
the three HX acids behave with regard to their sensitivity to the polarizability of the
medium.

Another early effort in this direction [51] considered the competition for the
bridging proton within the H-bond connecting a formate HCOO– anion and an
imine base of the sort HN=CH2. In the gas phase, it was found that the neutral pair
HCOOH··NHCH2 was preferred over an ion pair. However, again as in the afore-
mentioned XH··amine complexes, the ion pair is progressively more favored as the
dielectric constant of the medium rises. More specifically, in an in vacuo situation,
the neutral pair in which the proton resides on the carboxylate rather than the imine
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is preferred by about 20 kcal/mol. Raising the dielectric constant from unity first
equalizes the energies of the neutral and ion pair states, but further growth of ε results
in preferential stabilization of the HCOO–·+HNHCH2 ion pair, i.e., proton transfer
from carboxylate to imine. An interesting conclusion of this study was the sensitivity
of the proton transfer energetics to the precise orientation of the H-bond within the
HCOOH··NHCH2 complex. In fact, the angular aspects of the H-bond were found to
couple with the medium’s polarizability so as to either facilitate or mitigate against
the transformation from neutral to ion pair.

15.2. SOLVATION OF CH··O AND OH··O H-BONDS

Over the last years, the basic concepts embedded within the SCRF formalism have
undergone some significant improvements, and there are several commonly used
variants on this idea. To exemplify the different methods and how their results differ,
one recent work from this group [52] considered the sensitivity of results to the
particular variant chosen. Due to its dependence upon only the dipole moment of the
solute, the older approach is referred to herein as the “dipole” variant. The dipole
method is also crude in the sense that the solute is placed in a spherical cavity within
the solute medium, not a very realistic shape in most cases. The polarizable contin-
uum method (PCM) [53,54,55] embeds the solute in a cavity that more accurately
mimics the shape of the molecule, created by a series of overlapping spheres. The
reaction field is represented by an apparent surface charge approach. The standard
PCM approach utilizes an integral equation formulation (IEF) [56,57]. A variant of
this method is the conductor-polarized continuum model (CPCM) [58] wherein the
apparent charges distributed on the cavity surface are such that the total electro-
static potential cancels on the surface. The self-consistent isodensity PCM procedure
[59] determines the cavity self-consistently from an isodensity surface. The UAHF
(United Atom model for Hartree–Fock/6-31 G∗) definition [60] was used for the con-
struction of the solute cavity.

This particular set of calculations focused on CH··O sorts of H-bonds, and com-
pared the data with the more conventional OH··O H-bond found in the classical water
dimer. The CH··O interactions were constructed by pairing CH4 and its fluorosub-
stituted derivatives with OH2 as proton acceptor. The solvation energies computed
for F3CH by each of several different methods are reported in the first four rows
of Table 15-1 for three different solvents, each with its own characteristic dielectric
constant ε. The next four rows refer to HOH, followed by the F3CH··OH2 complex.
Moving from left to right in Table 15-1 corresponds to progressively more polar
solvent, beginning with CCl4 with a dielectric constant of 2.2, to water with ε=78.4.
Intermediate between these two extremes lies ether, with a dielectric constant of 4.3.
In nearly all cases, the solvation energy rises (becomes more negative) as the dielec-
tric constant of the solvent increases. The values obtained with the most primitive
Dipole method tend to be smaller in magnitude than those corresponding to the other
procedures, in some cases much smaller (by a factor of 2 or 3). The PCM, CPCM,
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Table 15-1. Solvation energies (kcal/mol) computed for F3CH··OH2

and its individual subunits at the B3LYP/6-31+G∗∗ level

Species Method ε = 2.2 ε = 4.3 ε= 78.4

F3CH Dipole –0.34 –0.53 –0.78

PCM –0.61 –1.25 –2.52

CPCM –0.75 –1.41 –2.54

SCI-PCM –1.09 –1.73 –2.61

HOH Dipole –0.95 –1.48 –2.14

PCM –1.73 –3.67 –7.70

CPCM –2.17 –4.17 –7.77

SCI-PCM –2.35 –3.70 –5.45

F3CH··OH2 Dipole –1.47 –4.05 –3.40

PCM –2.05 –4.05 –8.06

CPCM –2.42 –4.47 –8.12

SCI-PCM –2.71 –4.47 –6.02

Contribution of solvation energy to binding energya

F3CH··OH2 Dipole –0.18 –2.04 –0.48

PCM 0.29 0.87 2.16

CPCM 0.50 1.11 2.19

SCI-PCM 0.73 0.97 2.05

aComputed as difference between complex and sum of subunits.

and SCIPCM methods yield generally similar solvation energies, albeit with some
residual variation from one method to the next.

Perhaps more important than the solvation energies of any of the individual
species are the differences between the complex on one hand, and the sum of its
constituents on the other. These differences correspond to the effect of each solvent
upon the interaction energy, that is the correction that must be added to the gas-phase
H-bond energy. As listed in the bottom section of Table 15-1, these quantities are
positive for the three PCM methods, indicating that the interaction energy is smaller
(less negative) in solvent compared to vacuum. Indeed, the deviations between these
three methods with regard to the all-important �Esolv are considerably smaller than
the variations in the solvation energies of the individual species. These �Esolv values
are roughly 0.5, 1.0, and 2.1 kcal/mol, in CCl4, ether, and water, respectively. In
striking contrast, the more primitive Dipole approach predicts the opposite result
that interaction energies in solvent are more negative than in vacuo, as denoted by
the negative values in the Dipole row of �Esolv.

Gas-phase interaction energies are reported in the second column of Table 15-2 for
the CH··O H-bond contained in F3CH··OH2, where the trends may be compared with
the classical H-bond of the water dimer. The two interaction energies do not differ
much, with the latter being stronger by some 23–33%, with values supplied both at
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Table 15-2. Interaction energies (kcal/mol) computed for the complexes combining F3CH and
HOH as proton donors to OH2 with the 6-31+G∗∗ basis set

System Gas phasea Method ε = 2.2 ε = 4.3 ε = 78.4

DFT HF DFT HF DFT HF

F3CH··OH2 –4.16 Dipole –4.35 –4.56 –6.20 –4.98 –4.64 –5.57
(–3.88) PCM –3.88 –3.46 –3.30 –2.76 –2.00 –1.28

CPCM –3.66 –3.22 –3.05 –2.49 –1.98 –1.25
SCIPCM –3.44 –2.92 –3.19 –2.25 –2.11 –1.28

HOH··OH2 –5.54 Dipole –6.05 –4.94 –6.43 –5.10 –6.99 –5.34
(–4.78) PCM –5.27 –4.37 –4.65 –3.64 –3.13 –1.97

CPCM –5.05 –4.13 –4.40 –3.37 –3.10 –1.94
SCIPCM –5.02 –3.96 –4.63 –3.39 –4.05 –2.58

aHF value in parentheses.

the B3LYP and HF levels. The data reported in the ensuing columns represent the
interaction energies within the indicated solvents. The interaction energies computed
for each system with the PCM, CPCM, and SCIPCM methods all tend to be quite
similar to one another, regardless of which solvent is considered. There is a tendency
for the PCM method to yield the most negative interaction energy and SCIPCM
the least negative, but again, the differences between these three methods are fairly
small. The primitive Dipole approximation, on the other hand, is frequently quite at
odds with the results of the other methods. Taking the F3CH··OH2 system in aqueous
solvent as an example, the DFT interaction energies of the former three methods lie in
the range between –2.0 and –2.1 kcal/mol, while the dipole value is more than double
the magnitude, at –4.6 kcal/mol. Due to the agreement between the PCM, CPCM, and
SCIPCM methods, and the fact that CPCM data tend to fall approximately midway
between the extremes of the other two, most of the following narrative and analysis
make use of the CPCM results.

The trends in the computed interaction, i.e., H-bond, energies may be visualized
in Figure 15-1 which plots the correlated B3LYP value of �E vs the Onsager function
Fo= (ε–1)/(ε+2) that relates ε to the permanent electric moment and polarizability of
each solvent molecule [1,2]. Note that Fo is equal to zero for the gas phase wherein
ε=1, and climbs to an asymptote of unity as the solvent becomes progressively more
polar and ε approaches ∞. The high value of ε for water leads to a Fo of 0.96, rather
close to the theoretical limit of 1.0. This figure includes data not only for F3CH··OH2,
but also for other degrees of fluorosubstitution of the methane. In all cases, the rise
in polarity of the solvent leads to a less negative value of �E, i.e., a weakening of the
H-bond. This rise is very nearly a linear function of Fo and also reasonably regular
in the sense that the energetic ordering of the various H-bonds remains the same,
regardless of the solvent. As the solvent becomes more polar, the spacing between
the energies of the systems is reduced by a certain amount. For example, F3CH··OH2

is more strongly bound than F2CH2··H2O by 1.30 kcal/mol in the gas phase, but this
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Figure 15-1. B3LYP interaction energies computed for each labeled proton donor with water as acceptor.
Onsager function Fo is equal to (ε–1)/(ε+2) where ε refers to dielectric constant of the medium

advantage is diminished to 0.81 kcal/mol in water. It is important to note that the
conventional OH··O H-bond of the water dimer behaves in very much a parallel
fashion to the four CH··O bonds illustrated in Figure 15-1, weakening at a similar
rate as ε increases.

The continuum model suffers from the obvious deficiency that it ignores spe-
cific interactions with solvent molecules. Any deficit of this approach ought to be
particularly noticeable in the case of aqueous solvation, and the strong H-bonding
interactions of neighboring water molecules. A first approximation to elucidate the
magnitude of the errors introduced by this omission might be the inclusion of a first
hydration shell around all pertinent entities. And indeed, this approach has witnessed
some real success in recent years [4,5,6,8,9,10,11,61]. The F3CH··OH2 complex was
hence surrounded by a first sphere of explicit water molecules. There are five periph-
eral atoms in F3CH··OH2, three F and two H, and one solvating water was permitted
to interact with each. Of course, the F atoms of F3CH served as proton acceptors
to these solvating molecules, and the H atoms of OH2 as donors, as illustrated in
Figure 15-2. As in the case of the complexes themselves, all H-bonds were held to
be linear (θOH··X=180◦). Following geometry optimization, the solvated complex was
then placed in the larger cavity of the SCRF water dielectric continuum that contains
not only the F3CH··OH2 complex, but also the five explicit solvent molecules. In
the next step, each of the two constituent subunits of F3CH··OH2 was permitted to
interact with the appropriate number of explicit water molecules, as pictured in the
upper part of Figure 15-2, and was likewise placed within the dielectric medium.
The H-bond energy of this complex was then calculated as the difference in energy
between the solvated complex and the sum of the two hydrated subunits.
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Figure 15-2. Geometries of partially solvated F3CH and OH2, and their complex F3CH···OH2, all em-
bedded in a dielectric continuum

In order to insure a fair comparison with the OH··O bond in the water dimer,
the HOH··OH2 complex was also surrounded by five waters, three around the pro-
ton donor and two around the acceptor. (One of the molecules solvating the donor
molecule was situated around its peripheral H, the other two donated protons to this
molecule’s lone pairs.)

The H-bond energies of the F3CH··OH2 and HOH··OH2 complexes, computed in
this manner, were –3.2 and –4.8 kcal/mol, respectively. These values are surprisingly
similar to the H-bond energies, –2.0 and –3.1 kcal/mol, obtained above in aqueous
solvent modeled as a dielectric continuum, with no explicit solvent molecules at all.
Also of some importance, the pure continuum result that HOH··OH2 is more tightly
bound than F3CH··OH2 in aqueous solvent by 1.1 kcal/mol is changed only slightly,
to 1.6 kcal/mol, upon explicit introduction of the first hydration sphere. In this case at
least, while the continuum model is certainly not absolutely accurate in a quantitative
sense, it does appear to provide very reasonable approximations to the environments
it is meant to reproduce.

15.3. BIOLOGICALLY IMPORTANT H-BONDS

The CH··O H-bonds of the foregoing section placed the CH group on a fluorosubsti-
tuted methane. Of some interest is this same CH group within the context of a system
that might occur in a protein, particularly as detailed calculations had provided some
support for the notion that a CH··O sort of H-bond might be especially important as
an element in protein structure and stability.
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15.3.1. Amino Acids

In particular, a series of various amino acids [62] were paired up with a water
molecule. The latter was positioned such that it could accept a proton from the C�H
group that is common to all amino acids. Calculations at a correlated MP2 level, with
a moderate sized 6-31+G∗∗ basis set indicated the strength of the ensuing C�H··O
H-bond to be surprisingly large, in excess of 2 kcal/mol, even after correction for
basis set superposition error. This quantity is roughly half of that of the strength
of a conventional H-bond, such as the OH··O interaction in the water dimer, at the
same level of theory. Another somewhat surprising finding was that the interaction
energy in the pairing of the amino acid with water had very low sensitivity to the
identity of the particular amino acid. For example, the latter property was computed
to be 2.1 kcal/mol for alanine and 2.0 for valine. Serine, with its hydroxyl group,
was very close to this amount at 2.3 kcal/mol, and Cys’s SH yielded a value of 1.9.
It is reiterated that the H-bond being examined here does not involve the side chain
directly, but rather the C�H group in each case. The quantum calculations of this
specific interaction had also revealed that the C�H covalent bond is contracted by
some 1–3 mÅ by the interaction, which also shifted the stretching frequency of this
bond to the blue by 20–50 cm–1.

The first entry of Table 15-3 reports the interaction energy computed for the H-
bond between the C�H group of alanine and a water molecule, at the MP2/6-31 + G∗∗

level, in vacuo, i.e., without any medium present at all. The entry immediately below
indicates that this same H-bond energy rises slightly from 2.9 to 3.6 kcal/mol when
the methyl group of Ala is replaced by the CH2OH group of serine. When the entire
dimer, consisting of amino acid (AA) plus one explicit water molecule positioned so
as to interact with the C�H, is immersed in a continuum of dielectric constant 78 so as
to simulate an aqueous environment, the interaction is no longer attractive, as noted
in the second column of Table 15-3. Specifically, the solvation energy of the amino
acid–water pair is less stabilizing than is the sum of this same quantity for the amino
acid and water molecule, each computed separately. One may thus conclude that
there is indeed an interaction between the C�H group and a water molecule acceptor
that is far from negligible, at least in the gas phase. On the other hand, this attraction
is reduced, perhaps to the point of vanishing altogether if the dimer is immersed in
aqueous solvent.

Table 15-3. C�H··O H-bond energy (kcal/mol) as computed in different ways

AA + 1 water AA–MeAAa

QM QM+CPCM CPCM CPCM-reopt

Ala 2.9 Not attractive 3.7 4.2
Ser 3.6 Not attractive 4.1 4.8

aComparison of CPCM solvation energies of AA and methylated AA.
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As above, a major doubt about this solvation model stems from the fact that the
continuum approach does not treat any individual H-bond explicitly. Another major
consideration in this case is that any H-bond involving the C�H group would clearly
be weaker than the numerous and more conventional OH··O or NH··O bonds in
which an amino acid is engaged. Might this weaker CH··O interaction be hidden
in the “wash” of a surrounding polarizable medium?

It is not a trivial task to design a set of calculations which will unambiguously
and clearly assess the strength of a particular H-bond, when the method as such
does not address individual bonds. In other words, a quantum chemical calculation
can simply add the water molecule to the amino acid, in the position of interest, as
described above. But a continuum approach places the entire molecule inside a cavity
hollowed out of the dielectric material, so in principle handles all possible H-bonds
collectively, some of which would be much stronger than the CH··O interaction of
interest. And moreover, the dielectric does not explicitly deal with all the aspects of
a H-bond, such as charge transfer.

One strategy to deal with this issue might be to consider a pair of molecules,
one with and one without the possibility of the pertinent C�H··O interaction. The
situation for the amino acid alanine is illustrated in Figure 15-3a which explicitly
indicates the C�H group. By replacing this H atom by a methyl group, as illustrated in
Figure 15-3b, the C�H is no longer available to form a H-bond, while the remainder
of the amino acid is essentially unaffected. Immersion of both of these systems in
a dielectric continuum permits the same sorts of interactions to occur between the
medium and each of the groups, most importantly COOH and NH2, leaving the only
substantive difference as the C�H group in Figure 15-3a replaced by a methyl group
in Figure 15-3b.

When Ala and Me-Ala, both fully optimized in vacuo, were placed into the po-
larizable medium, with dielectric constant 78 to simulate water, the total solvation
energies were computed to be –14.45 and –10.80 kcal/mol, respectively. One can take

a) b)

CαH

CαCH3

Figure 15-3. (a) Alanine and (b) methylalanine both fully optimized. Rectangular outline represents
cavity carved out of dielectric medium in which the two molecules are embedded. Actual cavity is more
closely akin to shape of each molecule
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the greater stabilization of the former, by 3.65 kcal/mol, to represent an approxima-
tion of the amount contributed by the C�H group, since this group is not present in
the latter molecule. This quantity is reported in the third column of Table 15-3, where
it is obviously somewhat larger in magnitude than the energy computed directly for
the specific C�H··O H-bond by quantum mechanical means. This overestimate of
the C�H··O contribution can be seen in the next row of Table 15-3 to extend also
to the serine residue. The final column of Table 15-3 indicates that a reoptimization
of the geometries of all species concerned within the framework of the aqueous di-
electric exaggerates the overestimate by another 0.5–0.7 kcal/mol. On the positive
side, this rather crude means of estimating the contribution of one particular H-bond
to the full panoply of solvation effects is surprisingly close to the full quantum
mechanical value, at least the in vacuo estimate. The overestimation is even more
severe when compared to the case of the Ala–water complex when immersed in an
aqueous dielectric continuum, wherein the interaction is in fact nonattractive. The
exaggeration of the bond strength cannot be attributed directly to the dipole moment,
as the values for Ala and Me-Ala are very close, 7.27 and 7.17 D, respectively. One
may thus conclude that the stabilizing effect of the CH··O H-bond that is formed by
the C�H group of amino acids is simulated by the replacement of the H-bond itself
by a dielectric continuum model to only a very modest level of accuracy.

15.3.2. Dipeptide

The preceding section has dealt with each amino acid without connection to another,
in which the C�H is flanked by COOH and NH2 groups. Of perhaps greater rele-
vance to a polypeptide chain would be surrounding the C�H by full peptide groups.
Calculations have been carried out of the relevant HCONHC�H2CONH2 dipeptide
system [63] which was paired with a formamide HCONH2 proton acceptor. The
dipeptide is prone to one of two conformations which represent minima on the po-
tential energy surface. The C7 and C5 conformers are named in this manner so as
to indicate the number of atoms in the H-bonded cycle. For each conformation, the
O atom of the formamide was brought up first to the NH group of the dipeptide,
and then to the C�H; geometry optimizations led to estimates of the H-bond energy.
The results, reported in Table 15-4, indicate that the strength of the C�H··O bond
amounts to some 2–4 kcal/mol, depending upon the precise level of theory. There is
a tendency for this interaction to be somewhat stronger in the C5 conformer, similar
to the structure adopted by the -sheet of proteins. The strength of the NH··O bond,
on the other hand, is highly sensitive to dipeptide conformation, being three to five
times stronger for C7 as compared to C5. This weakness leads to the even more
surprising conclusion that the NH··O H-bond is weaker than its C�H··O correlate in
the C5 geometry.

The weakness of the nominally strong NH··O bond when placed within the con-
text of the C5 conformer is indeed startling. The preceding result pertains to the in
vacuo situation, so it was deemed important to examine its sensitivity to solvation
phenomena. If the NH··O H-bond is so much weaker in the C5 structure, then one
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Table 15-4. Intermolecular H-bond energies between
dipeptide and formamidea

NH··O C�H··O

C7
MP2/6-31+G∗∗ –7.4 –2.8
B3LYP/6-31+G∗∗ –7.2 –2.4
HF/6-31+G∗∗ –7.2 –2.2
HF/6-31 G∗ –7.0 –2.0

C5
MP2/6-31+G∗∗ –2.5 –3.8
B3LYP/6-31+G∗∗ –1.6 –2.9
HF/6-31+G∗∗ –1.5 –2.8
HF/6-31 G∗ –1.3 –2.5

aIncluding counterpoise correction.

might expect the solvation energy of C5 to be correspondingly smaller than for C7.
However, this supposition was shown to be faulty: the solvation energies of the two
structures are identical to within 4%, when immersed within an aqueous polariz-
able continuum. This finding provides another indication that the neglect of specific
H-bonds by the continuum model can lead to important deficiencies. In fact, the
anomalous weakness of the NH··O H-bond in the C5 dipeptide has been traced to
the proximity of the carbonyl O to the proton-donating NH group [64]. This O atom
perturbs the electrostatic potential in the vicinity of the NH, making this group less
attractive to an oncoming proton acceptor.

Turning now to an assessment of the H-bond energies within a dielectric medium,
via explicit inclusion of both the dipeptide and the formamide, relevant data are
reported in Table 15-5 for the more stable C7 conformer. A dielectric constant of

Table 15-5. Interaction energies (kcal/mol) computed at the
B3LYP/6-31+G∗∗ level for the C7 dipeptide, using various
dielectric constants

ε NH··O C�H··O

�Ea

1 –7.5 –2.6
4.3 –2.0 +1.8
78 +1.5 +1.3
�Eunopt

b

1 –7.5 –2.6
4.3 –1.9 +2.0
78 +1.6 +4.1

aGeometry optimized in solvent; no counterpoise correction.
bGas-phase geometry, no counterpoise correction.
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4.3 is commonly considered most appropriate to the interior of a protein, while 78
refers explicitly to water. The data displayed in Table 15-5 indicate how quickly
the interaction energy is reduced as the medium becomes more polarizable. Indeed,
even when ε is as small as 4.3, the C�H··O interaction energy becomes positive,
indicating loss of its attractive nature. Both the NH··O and C�H··O bonds lose their
binding character in water, according to this formalism.

15.4. COOPERATIVITY

One of the most interesting and often overlooked aspects of hydrogen bonding is
cooperativity. By that is meant the concept [65,66] that the total interaction energy
in a trimer of the sort AH··BH··CH is typically somewhat different than the sum of
H-bond energies in AH··BH and BH··CH, when evaluated separately. When the full
trimer system is more strongly bound than the sum of dimers, this sort of cooperativ-
ity is commonly referred to as positive, in contrast to the negative cooperativity that
is associated with a weakened interaction in the full trimer.

There are several contributing causes to cooperativity, but the simplest and most
obvious rationale is that when a pair of molecules pair up as in AH··BH, the electron
distributions of each monomer are perturbed. In this example, the BH proton usually
acquires a more positive charge as electron density is drawn out of BH and deposited
on AH. The higher positive charge of the latter H makes BH a stronger proton donor
when CH is added to the growing chain, than would be the case were BH not involved
in a prior H-bond with AH. Negative cooperativity is often observed when a single
molecule acts as double donor. Taking a group of water molecules as an example,
the transfer of electron density from the second to the first molecule of HOH···OH2

would reduce the partial positive charge of the first H. Addition of a third molecule
to the left of this chain, as in H2O··HOH···OH2, would therefore result in a weaker
H-bond than if it were simply appended to a single water molecule.

15.4.1. One-Dimensional Chains

Cooperativity, in both its positive and negative manifestations, is easily assessed
in quantum chemical calculations that include all links in a chain explicitly.
And indeed, numerous calculations over the years [67,68,69,70,71,72,73,74,75,76,
77,78,79,80] have supported the notion that a series of conventional H-bonds, as
might occur in a chain of water molecules depicted in Figure 15-4a, exhibits posi-
tive cooperativity. The most prominent manifestation of this feature is that the total
binding energy of the five molecules shown, comprising four separate H-bonds, is
significantly greater than four times the H-bond energy of a water dimer. What was
considered more interesting was whether such positive cooperativity would be char-
acteristic also of the less common CH··O interactions [81,82,83,84]. This issue was
considered [85] by assembling chains of H2CO molecules which are held together
by such bonds, as in Figure 15-4b. By replacing the nonparticipating H atom of
each H2CO molecule by F, it was possible to examine how the electron-withdrawing
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a)

b)

c)

Figure 15-4. Pentameric chains of (a) HOH, (b) H2CO, and (c) HFCO molecules

nature of the latter atom might affect both the H-bond strength per se, and also the
cooperativity in Figure 15-4c.

The strengths of the H-bonds in each chain can be evaluated in a number of differ-
ent ways. There are “end” bonds which correspond to the energy required to break
off one of the terminal molecules:

�Eend(n) = E(n) − [E(n − 1) − E(1)] (15-1)

where E(m) refers to the energy of a chain of m molecules. The breaking of the chain
somewhere other than at its end is grouped into the “mid” category:

�Emid(n) = E(n) = [E(n − m) − E(m)] (15-2)

where m>1. In the case of the tetramer, this midpoint breakage would result in a
pair of dimers, while the pentamer would separate into a dimer and a trimer. The
final column of Table 15-6 contains a “mean” H-bond energy of the entire n-mer,
evaluated as the energy required to break this chain into n individual monomers,
divided by n–1, the number of H-bonds present:

�Emean(n) = [E(n) − nE(1)]/(n − 1) (15-3)

This quantity can be derived by pulling the complex apart, one unit at a time, from
the end. In other words, �Emean(n) represents the average of the �Eend quantities for
chains of length n, n–1, n–2, etc.:

�Emean(n) = [�Eend(n)+�Eend(n−1)+· · ·+�Eend(2)]/(n−1) (15-4)

so it can also be considered as the average end binding energies of the n-mer, and all
those smaller than it.
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Table 15-6. Energetics (kcal/mol) of H-bonds in chains of length
n, calculated at MP2/6-31+G∗∗ level, corrected for basis set su-
perposition error

n End Mid Mean

(a) HOH
2 4.48 – 4.48
3 5.54 – 4.99
4 5.99 7.11 5.27
5 6.21 7.76 5.46
∞ 7.43 6.09
(b) H2CO
2 1.74 – 1.74
3 1.89 – 1.82
4 1.96 2.13 1.88
5 1.99 2.25 1.91
∞ 2.17 2.02
(c) HFCO
2 2.13 – 2.13
3 2.60 – 2.35
4 2.77 3.23 2.47
5 2.83 3.46 2.55
∞ 3.35 2.82

On the grounds of positive cooperativity, it is not surprising to note that the
H-bond energy of any of the three systems increases as the chain grows longer,
whether �Eend or �Emid. The behavior of the end and mean H-bond energies are
both illustrated in Figure 15-5 as a function of (the reciprocal of) the length of the
chain. Solid lines refer to the end bonds, broken lines to the means.

As noted in a number of prior works [75,83,86], H-bond energies, and certain
other properties, grow very nearly linearly in relation to the reciprocal of the number
of monomers in the chain. It thus becomes possible to obtain a valuable estimate of
the H-bond energies when extrapolated to chains of infinite length. These values are
reported in the indicated rows of Table 15-6. For example, the H-bond energy of the
dimer of H2CO is 1.74 kcal/mol, and grows to 2.17 kcal/mol in the infinite chain, an
enhancement of 25%. These percentage increases are 57 and 66% for the HFCO and
HOH chains, respectively. It would thus appear that the energetics of cooperativity,
even on a percentage basis, are larger for those systems which have stronger H-bonds
to begin with. The cooperativity of the HFCO chain is surprisingly large in the sense
that its 57% increase is nearly as large as the 66% rise in the water chain, even though
the H-bond energy of the HFCO dimer (2.13 kcal/mol) is less than half the magnitude
of the 4.48 kcal/mol of the water dimer.

The measure of cooperativity mentioned above focuses on a single H-bond, say
the terminal one, and monitors the change in its properties as the chain elongates. An-
other measure of cooperativity might focus on a given chain length, say a pentamer,
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Figure 15-5. MP2/6-31+G∗∗ H-bond energies, corrected by counterpoise, computed for chains of n
monomer subunits. Solid lines represent energetics of end H-bonds; mean values derived by breaking
the entire chain into monomers are indicated by broken lines

and compare the properties of a terminal H-bond, wherein only one of the two par-
ticipating molecules is interacting directly with others in the chain, with a H-bond
occurring in the interior of the chain, in which case both of the partner molecules
form H-bonds with other molecules. One may note from Table 15-6 that the energies
of the latter type of H-bonds (labeled “mid”) are consistently greater than those of
the end bonds. This finding is true for CH··O and OH··O bonds alike, consistent
with prior work that indicated that H-bond energies are larger within the confines of
a chain of amides than on its ends [76]. Taking the pentamers as reference point, the
mid H-bonds are stronger than the ends by 13, 22, and 25% for the H2CO, HFCO,
and HOH systems, respectively. Thus, in either means of measuring this quantity, the
HFCO systems manifest a cooperativity disproportionately large, when compared
with its H-bond energy.

An interesting aspect of cooperativity, and one that has seldom been probed, is
how this property is affected by solvation. In order to examine this question, the
various H-bonded chains were next immersed in various solvents, each represented
by a continuum with the dielectric constant ε characteristic of that solvent. Table 15-7
reports the average H-bond energy (computed as the energy required to break the
n-mer apart into n separate monomers, divided by the number of H-bonds in the
chain) for dielectric constants varying from unity (vacuum) up to 78 to represent
aqueous solution.
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Table 15-7. Energetics (kcal/mol) of “mean” H-bonds in chains of length n,
calculated at B3LYP/6-31+G∗∗ level, corrected for basis set superposition
error, evaluated in solvents with different dielectric constants ε, by CPCM
procedure

n ε = 1 vacuum ε = 2 CCl4 ε = 4 ether ε = 78 water

(a) HOH
2 4.75 5.03 4.35 2.99
3 5.34 5.48 4.69 3.18
4 5.68 5.74 4.90 3.32
5 5.92 5.94 5.05 3.41

(b) H2CO
2 1.65 1.23 0.83 0.21
3 1.75 1.30 0.87 0.21
4 1.81 1.33 0.88 0.20
5 1.86 1.36 0.90 0.20

(c) HFCO
2 2.08 1.64 1.02 –0.02
3 2.32 1.77 1.11 0.02
4 2.46 1.85 1.15 0.02
5 2.55 1.90 1.18 0.03

Scanning the data from left to right indicates the H-bonds generally weaken as the
dielectric constant increases. This pattern is consistent with the idea that separated
monomers are more stabilized by interaction with a dielectric continuum than are the
H-bonded chains. (There is an interesting exception to this rule for the water chains,
which are more tightly bound for ε=2 than in vacuum, but the H-bonds then weaken
as ε progresses to higher values.) Placement in solvent retains the general principle
of cooperativity, in the sense that the H-bonds strengthen as each chain grows longer.

However, there is a clear lessening of the cooperative effect as the solvent be-
comes more polar. Taking the H2CO chains as an example, the mean H-bond energy
in the pentamer is greater than that in the dimer by 0.21 kcal/mol in vacuo, whereas
this difference diminishes to 0.13 in CCl4, 0.07 for ε=4, and vanishes entirely in
water. A similar reduction in cooperativity is observed in the other CH··O bonded
chains involving HFCO. Where the water chains differ is that they retain their ener-
getic cooperativity, even when ε has climbed to 78. Even at this high value of ε, the
mean H-bond energy of the water pentamer is 14% higher than that in the monomer.

In summary, the CH··O H-bond mirrors the cooperativity of the more conven-
tional H-bonds, although there are some significant differences as well. Either sort
of interaction grows stronger as the number of monomers in the chain increases.
The degree of cooperativity is roughly proportional to the strength of the H-bond.
Thus, one sees a sharper growth of H-bond strength accompanying chain elongation
in the order (H2CO)n < (HFCO)n < (H2O)n. It is estimated that the mean H-bond
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energy in an infinite chain of H2CO molecules is 25% greater than the same quantity
in a dimer, while the long water chain exhibits a 66% enhancement over (H2O)2.
Although containing substantially weaker individual H-bonds than those in water
chains, (HFCO)n manifests an energetic cooperativity that is nearly as large as the
OH··O congeners. H-bonds that occur in the interiors of each chain are stronger than
terminal H-bonds. The magnification in strength, within the context of the pentamer,
is 13, 22, and 25% for the H2CO, HFCO, and HOH systems, respectively, another
indication that the cooperativity is directly related to intrinsic H-bond energy, and
that in (HFCO)n is disproportionately large. Placement of the chains in the context
of a dielectric continuum indicates a weakening H-bond, as well as a diminishing
degree of cooperativity, with growing dielectric constant. All evidence of coopera-
tivity vanishes for the CH··O chains when ε reaches 78, whereas the OH··O H-bonds
strengthen with greater n even at this high value of ε.

15.4.2. Clusters

The preceding discussion of cooperativity had invoked a linear chain of molecules,
each link thereof serving as both single proton donor and single acceptor simulta-
neously. On the other hand, there are a number of different species, some of real
biological relevance, which are capable of forming a multiplicity of H-bonds all
at the same time. Imidazole (Im) is such a case, and its importance lies in its role
as the functional group of the histidine residue of proteins. Figure 15-6 illustrates
the primary locations at which water molecules are anticipated to attach to Im. The
numerical values in the figure refer to the H-bond energy of that particular water,
each computed for a dimeric system containing only the Im plus the pertinent wa-
ter molecule [87]. The classical H-bond energies of the NH··O and OH··N types
amount to 6.0 and 6.7 kcal/mol, respectively, a result that is typical of these sorts
of H-bonds. But it is worth noting that the CH··O bonds are far from negligible,
contributing more than 2 kcal/mol. Considering that there are three such bonds, their
total of 7.0 kcal/mol represents an important contribution to the full solvation. Also
important are the water molecules that sit right up above and below the aromatic ring.

3.1

6.7

6.0

2.3

2.4

2.3

3.1A

B

C

DE

F

F

Figure 15-6. Hydration sites around the imidazole molecule. Numbers indicate calculated H-bond energy
(kcal/mol) for each individual site [87]
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Each of these OH··� bonds contributes another 3.1 kcal/mol to the total 25.9 kcal/mol
arising from a summation of all seven interactions.

One important issue, though, is the possibility that the sum of specific interaction
energies in the first column of Table 15-8 ignores the potential effects of coopera-
tivity. This issue was addressed [88] in a series of calculations wherein imidazole
was combined with two molecules of water at a time. For example, the first row of
Table 15-8 indicates that when water molecules were placed on the two imidazole
N atoms simultaneously, one as proton acceptor and another as donor (labeled sites
A and B, respectively, in Figure 15-6), the total interaction energy was enhanced by
0.4 kcal/mol, representing a slight increase of 3% as compared to the simple sum-
ming of the two H-bond energies computed in the presence of one water molecule
at a time. Since the imidazole molecule serves in the dual capacity of proton donor
and acceptor, it is not surprising that this cooperativity is positive. The remaining
rows of Table 15-8 report the comparable results for other pairs of hydration sites.
It is clear that negative cooperativity is observed when the central imidazole acts as
double proton donor or double acceptor. Sites A and C, for example, both refer to
proton acceptor waters, and the total interaction energy is considerably less (12%)
than would be predicted from simple summation of individual H-bond energies,
computed separately for each dimer. Likewise when sites A and D are combined,
both proton acceptors, an even bigger drop of 19% is observed. Site F, hovering over
the aromatic ring, is a proton donor by nature, even if it is the �-cloud of imidazole
and not a lone pair that accepts the proton. It is therefore sensible to note positive
cooperativity when combined with proton acceptor site A, in contrast to negative
cooperativity with donor site B. The large negative cooperativity in the last row of
Table 15-8, at least on a percentage basis, corresponds to a combination of donor and
acceptor, so is puzzling and represents a topic for further exploration.

Given the fact that the cooperativity, both positive and negative, amounts to only
small amounts, and coupled with the compensatory effects of positive vs negative

Table 15-8. Energetic cooperativity (kcal/mol) of hydration sites of imidazole

Sitesa Simple sumb Explicit calculationc Percentage change

A+B 12.7 13.1 +3.1
A+C 8.4 7.4 –12.0
A+D 8.3 6.7 –19.3
B+C 9.1 9.0 –1.6
B+E 9.0 9.0 0.0
F+A 8.6 9.2 +7.2
F+B 9.3 8.9 –4.1
F+C 5.0 5.0 0.0
F+D 4.9 3.9 –21.0

aSites labeled in Figure 15-6.
bAddition of specific H-bond energies computed for dimer.
cTotal interaction energy for Im+ 2 H2O.
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cooperativity, the addition of the individual H-bond energies for the seven principal
hydration sites of imidazole probably represents a reasonably accurate estimate of
the full hydration energy that would be computed with all water molecules present
simultaneously. One may wonder then how the 25.9 kcal/mol that arises from the
above seven specific interactions compares with the solvation energy computed by
simply placing the imidazole molecule into a polarizable continuum, with dielec-
tric constant 78 so as to mimic water as a solvent. As indicated in the first row of
Table 15-9, the total solvation energy arising from this sort of calculation is only
11.0 kcal/mol, which represents less than half of the estimate from specific interac-
tions. Further entries in Table 15-9 refer to analogous quantities for other molecules.
These molecules were chosen as models of the functional components of the aro-
matic amino acids. Just as imidazole represents the functional segment of the His
residue, benzene, phenol, and indole correspond respectively to Phe, Tyr, and Trp.
The last row in Table 15-9 refers to a protonated imidazole cation, so as to provide
a point of comparison to charged species. It is clear that in all cases, the polarizable
continuum model predicts only a fraction of the total interaction energy computed
via specific interactions.

In that respect, then, the polarizable continuum estimate of hydration energy of
these entities is considerably smaller than the quantum mechanical interaction en-
ergy of the molecule plus the appropriate number of first-shell water molecules. In
this vein, then, it would be highly inaccurate to equate the interaction energy of a
molecule such as imidazole with the molecules in its first solvation shell to the entire
solvation energy when computed by a continuum approach.

However, the preceding individual H-bond energies were all computed in the gas
phase. In a parallel approach to solvation, it is of interest to examine how the solvent
surroundings affect each of the individual, discrete H-bonds. The influence of the
solvent surroundings upon the individual H-bonds at sites A–F in Figure 15-6 was
computed [88] for a variety of different dielectric constants. The H-bond energies are
plotted in Figure 15-7 as a function of the Onsager function Fo = (ε–1)/(ε+2), con-
sistent with the original formulation. The right extremity of each curve corresponds
to the water solvent, wherein ε=78 and Fo = 0.96.

It is immediately clear that the interaction energy in each case is very nearly
a linear function of the Fo function, which simplifies interpolation. Perhaps more
importantly, there is an obvious trend for the weakening of the H-bond energy as the

Table 15-9. Energetics (kcal/mol) of hydration

Sum of specificsa Polarizable continuumb

Imidazole 25.9 11.0
Benzene 10.8 1.8
Phenol 20.8 7.6
Indole 25.7 6.2
ImH+ 78.3 63.2

aAddition of specific H-bond energies computed from in vacuo dimer.
bImmersion of molecule in polarizable medium, with ε=78.
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Figure 15-7. Interaction energies (kcal/mol) between imidazole and water molecule, at each of various
sites defined in Figure 15-4, within context of solvent. Horizontal axis Fo is defined as (ε–1)/(ε+2) where
ε represents dielectric constant of medium

medium becomes more polarizable. Indeed, the F site, placing water directly above
the imidazole plane, is not attractive at all in aqueous solvent. The various CH··O
H-bond energies drop from 2–3 kcal/mol in vacuo down to less than 1 kcal/mol in
water. And the conventional H-bonds in sites A and B diminish from the 6–8 kcal/mol
range to 3–4 kcal/mol.

Summing the seven H-bond energies determined in water, i.e., the rightmost val-
ues in Figure 15-7 (taking the F site as nonbinding), leads to a total interaction energy
of some 9 kcal/mol. Unlike the sum of gas-phase H-bond energies, this quantity is
fairly similar to the value of 11.0 kcal/mol reported in the first row of Table 15-9,
which represented the full solvation energy of imidazole in water, computed in terms
of an isolated imidazole molecule within a polarizable medium, with no explicit
H-bonds present at all. In other words, the sum of first-shell H-bond energies, each
computed in a pairwise fashion for the solute plus one solvent molecule, may rea-
sonably estimate the solvation energy calculated by placing the solute alone inside
the polarizable continuum.

One last issue concerns how the cooperativity between different sites is affected
by immersion of the system within a polarizable continuum. This question is ad-
dressed by Figure 15-8, which represents the interaction energy between imidazole
and a pair of water molecules. The solid lines represent this quantity over a range
of dielectric constants, computed for the full imidazole + 2 H2O system, for vari-
ous pairs of sites. The broken curves correspond to the same pair of sites, except
that the binding energy is computed without cooperativity, i.e., as a simple sum of
the individual H-bond energies from Figure 15-7. The positive cooperativity of the
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A+B donor/acceptor sites is indicated by the greater values for the solid than for
the broken curves in the upper part of Figure 15-8. The double acceptor A+D sites
exhibit opposite behavior, wherein the lower values for the solid curve correspond to
negative cooperativity. As one looks from left to right in Figure 15-8, the spacings
between the broken and solid curves diminish. This pattern reflects a diminishing
cooperativity, be it positive or negative, as the solvent polarity grows stronger.
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Buenos Aires, Argentina

16.1. INTRODUCTION

Supercritical fluids (SCFs) comprise an important class of solvents and reaction me-
dia which have found many applications in basic and applied chemical sciences.
SCFs, especially supercritical carbon dioxide, play a key role as one of the most
important environmentally benign solvents in the so-called “green” chemistry ap-
plications. In the context of practical applications, SCFs are becoming increasingly
viable in economic terms as an alternative to conventional organic solvents for pu-
rification, fractionation, and extraction of valuable organic compounds from a wide
range of natural matrices∗ [1,2,3,4]. Academic and commercial extraction units are
available for selective extraction of organic substances based on supercritical carbon
dioxide (SC-CO2). Two of the most successful and profitable large-scale SCF-based
extraction processes are the extraction of caffeine from coffee beans and tea leaves
and nicotine from tobacco. In the case of coffee beans, at the end of the extraction
process one is left on one hand with whole taste- and aroma-preserved decaffeinated
coffee, much appreciated by an important segment of the consumers market, and, on
the other hand with high-purity caffeine which is a valuable commodity for pharma-
ceutical and food industries.

The potential for supercritical fluid extraction and purification of substances of
high aggregated economic value is enormous in Brazil due the overwhelming bio-
diversity of its forests, comprising from 55,000 to 350,000 of known species of
plants in the world [5]. Studies of the economic viability of SCF extraction of several

∗References 2–4 are excellent reviews on fundamental and applied aspects of supercritical fluids in chemistry
and physics.
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compounds of interest to pharmaceutical and food industries from Brazilian plants
are being carried out [6]. In spite of that, there is still no industrial scale unit to
produce extracts by SCF extraction in South America.

SC-CO2 is also becoming increasingly important as reaction media [7] for a great
variety of fundamental chemical reactions ranging from catalysis to polymerization,
[8,9] to synthesis and growth of inorganic materials [1,2], to nanoparticle production
and preparation processes [1,2,10,11], and to biotechnological applications such as
activation and deactivation of enzymes [12], biomass conversion, and biocatalysis
[1,2,13].

Another very important “green” chemistry solvent is supercritical water (SCW)
[14]. Water under supercritical conditions is an extremely powerful oxidizing and
cleansing agent that has been proven remarkably promising as a soil decontaminant
by efficiently degrading persistent organic toxic wastes that are difficult to eliminate
from polluted soils, and in the treatment of several types of industrial wastes such as
textile and cellulose wastewater [2].

From a more fundamental point of view, the ability of SCFs to act as a highly
selective solvent resides in the fact that their density can be markedly changed from
dilute stem- to liquid-like values by small variations of the applied pressure [1].
Therefore, solute–solvent interactions and solubility for different types of solute can
be effectively tuned by small adjustments in the solvent thermodynamic conditions
[4]. In addition, vapor-like diffusion rates and high penetrability into solid matrices,
inherent to SCFs, are also important attributes of these solvents. In this context, there
has been a long-standing interest in understanding (i) the intermolecular structure
and dynamics of SCF, (ii) solvation properties of many types of solutes, and (iii)
solvent effects on chemical reactions taking place in supercritical environments. The
most ubiquitous structural feature of SCFs is the existence of large structural inho-
mogeneities, especially near the critical point, which are well known in statistical
mechanics as critical fluctuations [1,4]. Away from criticality but not far from the
critical point, solvent molecules can also agglomerate or cluster around attractive
solutes in a supercritical solution leading to a local density augmentation effect that
is key to processes such as supercritical solvation and solubility, solute diffusion, sol-
vent effects on solute vibrational relaxation and energy transfer, solvatochromic ef-
fects, and chemical reactions in these environments [4]. Effects associated with local
solvent density augmentation often preclude reliable interpretations of experimental
measurements of physicochemical properties based solely on bulk quantities such
as pressure, solvent density, and temperature. Therefore, considerable efforts from
both experimental and computational approaches have been devoted to investigate
molecular details of solvation and density augmentation effects in supercritical fluids
covering a wide range of thermodynamic conditions [15,16,17,18,19,20,21,22,23].

In this chapter, we will review some of the work that we have been doing in recent
years in the context of solvation and dynamical properties in polar and non-polar su-
percritical solutions using molecular dynamics computer simulations. First we will
discuss solvation of alkaloids in SC-CO2 and provide detailed molecular views of the
main structural features of the local density augmentation around simple alkaloids
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and solute translational and reorientational dynamics under different pressure and
temperature conditions [24], and also describe the effects of the presence of small
fractions of ethanol as co-solvent on solvation structures and dynamics [25]. In the
second half of this chapter, we will focus on properties of polar fluids such as water
and ammonia under supercritical conditions. We will start with the dielectric behav-
ior of supercritical water (SCW) [26] and review comparisons between simulations
and experimental data, some of which remain controversial to this date. Next, we will
concentrate on solvation dynamics in SCW using a model chromophore that captures
the essential elements of a photo-excitable dye typically used in time-resolved Stokes
shift fluorescence experiments, and conclude by reviewing equilibrium structural
and dynamical aspects of excess electrons solvated in supercritical water [27] and
supercritical ammonia [28] as function of solvent density and comparisons with ex-
perimentally measured optical absorption spectra of these systems.

16.2. NON-POLAR SCF

16.2.1. Solvation of Alkaloids in SC-CO2

Several features are responsible for the popularity of CO2 as the supercritical fluid
of choice for many applications. First of all, with the critical point at mere 31.1◦C
and 78.2 bar, supercritical conditions can be easily attained and thermally unsta-
ble solutes would be safely manipulated at such temperatures. Second, CO2 is also
abundant, non-toxic and easily recoverable, and, therefore, inexpensive and environ-
mentally benign. Nevertheless, polar molecules in general have limited solubility in
SC-CO2 because CO2 lacks a dipolar moment. For gross extraction purposes, this
problem is overcome by simply adding a highly polar co-solvent such as ethanol or
water. Other applications, however, may require considerable improvement of CO2

solubility of more complex molecular systems. To this end, different strategies have
been adopted in order to design CO2-philic surfactants, polymers, and, more recently,
room-temperature ionic liquids [29,30]. The most common ones involve fluorination
and addition of carbonyl groups and branched alkyl chains.

The basic idea behind the addition of CO2-philic functionality to these complex
molecules is to enhance the overall interaction with CO2. Therefore, it is fundamental
to understand at the molecular level how CO2 molecules organize themselves around
a solute. In this context, important insights have been reached by combining molecu-
lar dynamics (MD) simulation studies and spectroscopy measurements to investigate
solvation of simple solute molecules in SC-CO2. Anderton and Kauffman have used
fluorescence spectroscopy of organic dyes (diphenylpolyenes) to investigate rotation
dynamics in supercritical fluids [31]. Maroncelli and co-workers, more recently, have
extended steady-state emission and fluorescence anisotropy techniques to quantita-
tively determine the local solvent density enhancement and its effect on the dynamics
of the fluorescence probe in SC-CO2 [20,21,32,33]. Using MD simulations, Maron-
celli also introduced effective means of determining density augmentation which are
in close agreement with experimental measurements [20,21,32].
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In our studies, we have used Maroncelli’s ideas to investigate solvation
of three purine alkaloids in SC-CO2, in addition to a few other molecules
with potential pharmaceutical applications and that can be efficiently solvated
in SC-CO2. The purine alkaloids that we have studied are caffeine (1,3,7-
trimethylxanthine), theophylline (1,3-dimethylxanthine), and theobromine (3,7-
dimethylxanthine) (Figure 16-1). Caffeine is an alkaloid found in common beverages
such as coffee, tea, and cocoa, which may present physiological effects on mam-
mals, including cardiac stimulation and arterial dilation [34]. Theophylline and theo-
bromine are two other alkaloids of pharmaceutical value that are closely related to
caffeine in terms of chemical structure and physiological effects. In contrast to caf-
feine, little is known about their supercritical extraction [35]. In a series of recent
studies, Mohamed and collaborators have reported experimental results for the su-
percritical extraction of purine alkaloids and fats from commercially important food
products using CO2, ethane, and their mixtures [35,36]. Detailed information on the
extractability of caffeine, theophylline, and theobromine from herbal maté tea leaves
(Ilex paraguariensis), as well as their individual solubilities in supercritical CO2, has
been reported for various conditions of temperature and pressure [35]. These works,
along with the earlier papers by Johannsen and Brunner [37] and by Li et al. [38]
reveal important features about the solubility properties of methylxanthines in super-
critical CO2. However, little is known about their solvation properties in molecular
terms. In the first of such studies, we have reported results from molecular dynamics
(MD) computer simulations aimed at investigating in molecular details the charac-
teristics of the solvation of caffeine, theophylline, and theobromine in CO2 under
different supercritical conditions.

In our simulations, we have used the EPM2 potential of Harris and Yung [39] for
CO2, which reproduces remarkably well the liquid–vapor coexistence curve, as well
as some thermodynamic, structural, and dynamical properties of the real fluid. The
molecular geometry and atomic charges for the alkaloids were determined from ab
initio quantum chemical calculations performed at the RHF/6-311 G(d, f) level with
the Merz–Kollman charge protocol [40]. The full interaction potential is comprised
by sums of Lennard-Jones and Coulombic terms between all pair of atoms belonging
to different molecules. The solutes’ Lennard-Jones parameters were extracted from
the OPLS all-atom force field of Jörgensen and collaborators [41]. Simulations were
performed on systems consisting of a single solute surrounded by a collection of 300

Figure 16-1. Molecular structures of caffeine (left), theophylline (center), and theobromine (right)
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CO2 molecules at an average temperature of 313 K and bulk density ranging from
0.25ρc to 2.0ρc, with ρc≈0.468 g/cm3 the critical density of CO2. The thermody-
namic states were chosen in correspondence to experimental conditions [35].

In order to determine the distribution of solvent molecules around the surface
of a solute of arbitrary shape, Maroncelli introduced the solvation shell distribution
function formally expressed as [21]
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� that are consistent with a given value of s [21]. The
gss(r) distribution is a physically very sensible indicator of the relative probability
of finding a solvent molecule within the first solvation shell of a solute of arbitrary
shape. As defined, gss(r) is the probability of finding a solvent molecule, regardless
of its relative orientation, at a distance r away from the nearest solute atom relative
to a random distribution of solvent molecules. Thus, gss(r) measures the change in
solvent density relative to the bulk at a distance r from the surface of a solute of
arbitrary shape. Figure 16-2 compares schematically the solvation shell in terms of
the usual radial pair distribution function, g(r), and gss(r).

Results for gss(r) computed for caffeine at various CO2 supercritical states are
shown in Figure 16-3. The distributions present a single peak near 3.3 Å which
increases with decreasing density, indicating an enhanced attraction of solvent
molecules by the solute in dilute steam-like environments. At the highest density
considered (0.94 g/cm3), one notices the development of a well-defined second peak
typical of dense fluids. In dense liquid solutions, the average local solvent density
near the solute is not markedly different from the bulk density because of the strongly
repulsive, packing forces that determine the microscopic structure of the solvent. In
contrast, less densely packed supercritical fluids exhibit large structural fluctuations,
which allow for a molecular agglomeration around the solute, often leading to large
increments in the local solvent density in the vicinity of attractive solutes, as seen
in Figure 16-3. Such substantial differences between local and bulk densities may
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Figure 16-2. Schematic representations of the solvation shell described in terms of the g(r) (left) and
gss(r) (right) functions
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(a) (b)

Figure 16-3. (a) Solvation shell (top) and free-energy (bottom) functions for caffeine–CO2 systems at
313 K and different densities. (b) Non-spherical first shell coordination number as function of solvent
density. The dashed line represents ideal behavior. From Ref [25]

undermine accurate theoretical treatments of the solvation properties in supercriti-
cal ambients and often preclude the interpretation of experimental data in terms of
bulk thermodynamic arguments. The lower panel of Figure 16-3a shows the function
a�(r ) = −kBT ln gss(r ) which is a measure of the solvation free-energy profile
since gss(r) stands for the solute-solvent potential of mean force [21]. The depth of
the first well of a�(r ) is a relative measure of the free-energy benefit of a solvent
particle for being in the first solvation shell around the solute [21,22]. This benefit
is greater for more dilute solvent regimes where solute–solvent interactions prevail
over solvent–solvent ones. Figure 16-3b depicts the average number N1 of molecules
contained within the (non-spherical) solvation shell of caffeine as a function of bulk
density. The dashed line connects the dilute-gas regime and a high-density reference
state (2ρc) that represents the dense liquid behavior. The straight line reflects the
expected increase in the first shell coordination number in the absence of a density
augmentation effect. It is shown that the enhancement of the solvent population in
the solvation shell with respect to the bulk passes through a maximum for densities
between 0.5ρc and 1.0ρc. Maroncelli has performed beautiful fluorescence experi-
ments to measure local enhancements.

For large polyatomic solutes, the solvent may pack differently depending on the
region of the molecule. Investigating how solvent molecules organize around the
solute may contribute with important molecular insights to the understanding of
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solvation in supercritical fluids. Details of the solvent distribution around caffeine
in SC-CO2 can be seen from the color density maps shown in Figure 16-4. The scale
is relative to the respective bulk density.

Three cross-sections for the caffeine system are shown for the lowest and highest
densities considered. At 2ρc the average solvent distribution is considerably more ho-
mogeneous, with mild concentration enhancement and depletion (light blue) around
the solute molecule. At low bulk density, the solvent packing is highly non-uniform,
with a local density around the carbonyl oxygens and above and below the plane of
the rings, which can be as high as six times the bulk density. Such an inhomogeneity
gradually decreases with increasing bulk density. Similar behavior is also observed
for theophylline and theobromine. The major difference between caffeine and the
dimethylxanthines is the substantial increase in the local density near the carbonyls
that is allowed by the absence of the third methyl group in different positions for
theophylline and theobromine (Figure 16-1), thus permitting further approximation
of the solvent molecules in the neighborhood of the oxygen atoms. The solvent den-
sity contour maps around each solute indicate an inhomogeneous distribution of CO2

molecules in the close vicinity of the alkaloids with a strong density enhancement
above and below the rings and around the carbonyl oxygens. Such a feature stems

Figure 16-4. Solvent density maps for caffeine in CO2 at 0.25ρc and 2.0ρc and 313 K. The color scale is
relative to the corresponding bulk density and the grid spans a 10×10 Å2 area
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from multipolar interactions between the solute and the solvent molecules. The dom-
ination contribution in this case is the interaction between the carbonyl local dipole
and the quadrupole moment of CO2. The main symmetry axis of CO2 and the solute
C=O groups are preferentially oriented in a T-shape fashion. Interestingly, it has
been established in the literature that the favorable interactions between CO2 and
carbonyl groups are responsible for the relatively high solubility of certain molecules
and polymers in supercritical CO2 [42,43].

16.2.2. Effects from Adding a Co-solvent

One of the drawbacks of pure CO2 as supercritical solvent is the low solubility of
polar compounds which is attributed to lack of a strong permanent dipole moment in
CO2. In order to improve solvation and extraction power, a highly polar or associative
liquid is added to SC-CO2 in small quantities as co-solvent. Ethanol is the co-solvent
of choice for a number of reasons, including its superior mixibility (compared to
water, for instance) with CO2 and its wide acceptance in pharmaceutical and food-
related supercritical extractions.

Figure 16-5. Solvent density maps for CO2+5%ethanol at 0.25ρc and 313 K
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In our studies [25], we have investigated solvation structures and dynamics of dif-
ferent types of alkaloids in SC-CO2 systems containing a small fraction (5% in mole)
of ethanol. Simulation results show the existence of a strong preferential solvation of
the purine alkaloids (caffeine, theophylline, and theobromine) by ethanol driven by
specific hydrogen bond interaction between the solute and solvent molecules. Both
translation and reorientation dynamics are significantly slowed down in the presence
of ethanol, as expected. The solvent density maps computed at low solvent density
(0.25ρc) and 313 K depicted in Figure 16-5 shows nicely the distribution of solvent
molecules around the solutes. The top panels indicate solvent distributions similar to
that observed in pure CO2, with strong density enhancement around the carbonyl and
above and below the molecular plane. The middle and bottom panels depict density
maps for CO2 and ethanol individual contributions to the total solvent density distri-
bution, respectively. The results show that some CO2 has been displaced by ethanol,
especially around the carbonyl oxygens and around the NH groups in theophylline
and theobromine. However, the overall number of CO2 molecules in the first solva-
tion layer is little affected, going from nearly 4.5 in pure CO2 to approximately 6.0 in
CO2 + 5% ethanol. Figure 16-5 also shows a remarkable build up of ethanol around
the solute. Whereas the local density of CO2 can be as high as five to six times the
density far away from the solute, that of ethanol can reach values 100 times higher
than the bulk density of ethanol in the system. Nearly 3 of the 15 ethanol molecules
present in the system are in close contact with the solute at these thermodynamic
conditions, demonstrating strong preferential solvation by ethanol.

16.3. POLAR SCFs

We now turn attention to a completely different kind of supercritical fluid: supercrit-
ical water (SCW). Supercritical states of water provide environments with special
properties where many reactive processes with important technological applications
take place. Two key aspects combine to make chemical reactivity under these con-
ditions so peculiar: the solvent high compressibility, which allows for large den-
sity variations with relatively minor changes in the applied pressure and the drastic
reduction of bulk polarity, clearly manifested in the drop of the macroscopic di-
electric constant from ε∼80 at room temperature to approximately 6 at near-critical
conditions. From a microscopic perspective, the unique features of supercritical flu-
ids as reaction media are associated with density inhomogeneities present in these
systems [1,4].

In the following subsections we will review simulation studies we have performed
aiming at investigating the dielectric behavior of SCW and solvation dynamics of
excess electrons, making a close connection to recent pulse radiolysis and time-
dependent fluorescence experiments.

16.3.1. Dielectric Behavior SC-Water

A few years ago, microwave spectroscopy measurements have been reported for
SCW at several different densities ranging from ρ = 1.0 down to 0.1 g/cm3, which
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indicated a very intriguing dynamical behavior of water molecules under super-
critical conditions at sufficiently low densities [44,45]. By fitting the measured
frequency-dependent dielectric permittivity with a single Debye dispersion relation,
it has been found that the dielectric relaxation time τD presents a non-monotonic
density dependence, with an unexpected branch for ρ < 0.4 g/cm3 showing a sharp
increase of τD with decreasing density [44,45]. This interesting feature could lead to
distinctive dynamical solvent effects on molecular or ionic probes in solution. The
slowing down of the main dielectric relaxation channel with decreasing density for
dilute regimes (far from criticality, where dynamical slowing down are well known
to take place) is a counterintuitive behavior that demanded analysis from a theoret-
ical perspective given that lowering the density one would expect less association
between molecules and, therefore, faster dipole reorientation relaxation rates.

Largely motivated by these experiments, we carried out MD simulations using
the SPC/E model for water for several thermodynamic states above the critical tem-
perature of model (Tc = 640 K) with densities ranging from 0.05 up to 1.0 g/cm3, as
indicated in Table 16-1 [26].

Table 16-1 shows results for the dielectric constant ε(0), Kirkwood g-factor gK,
and the static dipole cross-correlation parameter g0 = 〈|M(0)|2〉 /(Nμ2) − 1 where

M(t) = ∑N
i=1 μi (t) is the system’s collective dipole at time t, for a selected set of

thermodynamic states. The experimental values for ε(0) are shown within parenthe-
ses. The overall trend of these quantities with density and temperature is consistent
with the expectation of a higher degree of dipolar correlation at higher densities
and/or lower temperatures. At liquid-like densities (states 10–12), where polarizabil-
ity effects are known to be important, the simulated model underestimates ε(0), a
feature common to most non-polarizable water models. Given the error bars and
differences in thermodynamic states, our estimates for ε(0) for states 10–12 are

Table 16-1. State parameters and static dielectric properties for SPC/E water [26]

State ρ (g/cm3) T (K) ε(0)a gK g0

1 0.05 1500 1.2 1.01 0.07
2 0.05 1000 1.3 1.00 0.08
3 0.05 720 1.4 (1.2) 1.04 0.15
4 0.1 1000 1.7 (1.5) 1.02 0.17
5 0.1 720 2.0 (1.6) 1.07 0.28
6 0.2 650 3.7 (3.0) 1.18 0.56
7 0.4 650 8.2 (7.2) 1.48 1.09
8 0.6 650 13.8 (13.4) 1.71 1.47
9 0.7 650 16.3 (17.0) 1.74 1.53
10b 0.9 450 29.5 (39.4) 1.72 1.54
11b 1.0 340 48.0 (66.3) 1.92 1.85
12b 1.0 315 53.0 (73.3) 1.97 1.92

aThe errors ε(0) are roughly 8%. Experimental values are in parenthesis
bDo not correspond to a supercritical state.
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consistent with other simulations on the SPC/E model. As the density decreases,
polarizability-induced effects become less important and one finds a better agree-
ment with the experimental measurements. A closer inspection of Table 16-1 reveals
that in the dilute regime (ρ<0.4 g/cm3), our simulations actually overestimate ε(0)
because of the enhanced dipole moment (2.35 D) of SPC/E water compared to the gas
phase value (1.85 D). Nevertheless, our results for the static dielectric properties for
the supercritical states are generally in good agreement with the experimental data
and are also consistent with MD results for the fully polarizable model of Bursulaya
and Kim [46].

The analysis of the dynamics and dielectric relaxation is made by means of
the collective dipole time–correlation function �(t) = 〈M(t).M(0)〉/〈|M(0)|2〉 ,
from which one can obtain the far-infrared spectrum by a Fourier–Laplace trans-
formation and the main dielectric relaxation time by fitting �(t) by exponential or
multi-exponentials in the long-time rotational-diffusion regime. Results for �(t) and
the corresponding frequency-dependent absorption coefficient, A′′ = �

∫
�(t) cos

(ωt)dt are shown in Figure 16-6 for several simulated states. The main spectra
capture essentially the microwave region whereas the insert shows the far-infrared
spectral region.

The decay of �(t) can be divided into well-separated regimes with distinct
timescales: a fast initial Gaussian and librational decays, followed by a slower re-
laxation associated with rotational-diffusion motions. The high-frequency or fast
relaxation channels are dictated by the molecule’s inertial characteristics and the
short-range structural properties of the system, while rotational-diffusion relaxation
normally depends on long-range structural features [14]. With the exception of the
very diluted and hot states (state 1 and 2), the long-time behavior of the dipolar corre-
lations can be well described by single exponential functions, leading to Lorentzian
bands in the dielectric loss frequency spectra A′′(ω) (Figure 16-6, right). The relative

(a) (b)

Figure 16-6. Left: collective dipole time correlation for SCW states. Right: corresponding frequency-
dependent absorption coefficients [26]
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importance of the distinct relaxation channels processes depends on the thermody-
namic state considered: at normal liquid densities, rotational-diffusion motions dom-
inate the collective relaxation, whereas fast inertial rotations are responsible for most
of the relaxation in steam-like states. The difference between inertial and rotational-
diffusion timescales tends to diminish as the density is lowered. These features are
also manifested in the dielectric loss spectra A′′(ω). Going from state 9 (650 K,
0.7 g/cm3) to state 6 (650 K, 0.2 g/cm3) the low-frequency, Debye band gradually
decreases in intensity and shifts from 12 to 16 cm–1, while the high-frequency band
becomes more intense and moves toward lower frequencies. This trend continues
as the density is further lowered down to the ideal, vanishing torque limit of the
free rotor, where only a dispersion band due to fast inertial rotations remains. The
high-frequency librational behavior is better depicted in the insert. The librational
band shifts toward lower frequencies at low densities due to a less interconnected
hydrogen bond network and, hence, smaller restoring torques under these conditions.
The behavior of the Debye band, on the other hand, seems to be consistent with
the diminution of long-range structural correlations expected at lower densities and
higher temperatures. The limiting behavior seems to be that of the free rotor.

A comparison between experimental and simulated main Debye relaxation time
is presented in Figure 16-7. Simulation and experimental results show excellent
agreement for not so dilute systems (ρ > 0.4 g/cm3). However, below this density
the experimental Debye time increases with decreasing density, whereas simulation
results for this quantity keep decreasing and approaching the limiting behavior of
a collection of free rotors. The extent of the loss of dynamic correlation between

Figure 16-7. Experimental and simulated Debye times for SCW [26]
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water molecules in hot diluted supercritical environments has been further analyzed
in terms of the single-particle correlation functions for dipole reorientation using
stochastic collision and diffusion models. Such analysis indicates that there is con-
sistency with the free-rotor limit and, therefore, further theoretical and experimental
studies must be conducted in order to resolve this discrepancy.

Very recently, detailed further analyses of the translation and reorientation dy-
namics of SCW have been reported showing consistency with our results in the limit
of very low-density supercritical states for water [47]. The dynamical behavior of
SCW in this study is also compared to that of supercritical benzene showing that the
density dependence of the self-diffusion coefficient and rotational dynamics of SCW
is smaller than that of supercritical benzene because SCW is capable of maintaining
stronger degrees of structural correlations and orientational anisotropy than benzene,
which tends to lose intermolecular correlations at a much faster rate upon decreasing
density [47].

16.3.2. Excess Electrons in Polar SCFs – Equilibrium Aspects

Excess electrons dissolved in liquids and amorphous materials constitute pristine
spectroscopic probes for steady-state and time-dependent optical spectroscopies be-
cause of its large optical cross-section and the sufficiently long lifetime of the first
excited state [48]. Spectroscopic signals from solvated electrons yield valuable infor-
mation regarding the structure and ultra-fast dynamical response of the system. The
solvated electron is also the prototype system for mixed quantum-classical simula-
tions and has been extensively used in the investigation of a variety of new physical
phenomena in condensed phases and finite clusters [49]. At supercritical temper-
atures, large displacements in chemical equilibria and solvation-induced modifica-
tions in the reaction rates by several orders of magnitude are not uncommon, a fact
that reveals the importance of the reactant complex–solvent coupling as a key factor
determining the channels that drive the dynamics of the reactive processes [1,4].

Given the inherently quantum nature of the electron, its solvation normally ex-
hibits well-differentiated characteristics from what is usually encountered in cases
of simpler, classical, anionic solutes. Most notable is the existence of the electronic
localization phenomenon, reflected in the dramatic drop that appears in the electronic
drift mobility. The transition from delocalized to localized states is usually described
in terms of the spatial confinement of the electronic density within a solvent cavity,
whose average shape fluctuations can normally be inferred from the analysis of the
position and line shape of the electron absorption band. Supercritical environments
are particularly appropriate to investigate density effects on the electronic localiza-
tion, since supercritical fluids allow sweeping the whole fluid density range without
worrying about the occurrence of liquid–gas phase transitions in the host fluid, as
already mentioned. There is a long-standing interest in investigating the localization–
delocalization transition of excess electrons in supercritical water and other fluids
[50,51]. There are several indirect experimental evidence of this phenomenon in the
literature [52,53], but no accurate molecular level description of the phenomena.
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In this context, we recently examined electronic solvation in supercritical states
of water and ammonia using Feynman path integral molecular dynamics techniques
[27,28]. Our simulation experiments found that at temperatures slightly above the
critical one (Tc = 647 K), the localization transition in water, expressed in terms of
the spatial extent of the electron, takes place in a density range roughly between one-
and two-tenths of the triple point density. This value is substantially higher than that
previously estimated from mobility measurements at nearly critical conditions. We
also found that, similarly to what is found at ambient temperatures, the broad ab-
sorption spectrum at supercritical conditions comprises transitions from an s-ground
state into three p-like excited states, exhibiting a considerable redshift as one moves
to lower densities, somewhat larger than that found in experiments. For the case of
the electronic solvation in ammonia [28], we observe several differences from the
aqueous systems [27]. First, compared to what is found in water, changes in tem-
perature and density seem to promote less dramatic disruptions in the intermolecular
spatial correlations of ammonia. Second, the differences in the critical temperatures
of both fluids lead to more important quantum thermal effects on the electron sol-
vation for the case of ammonia. Our results show that the solvation properties of
excess electrons result from a complex interplay between a variety of phenomena,
including: (i) packing effects and specific intermolecular connectivity of the host
fluid, (ii) thermal quantum fluctuations, and (iii) the specific characteristics of the
coupling between the electron and the solvent response.

Our simulations are based on well-established mixed quantum-classical methods
in which the electron is described by a fully quantum-statistical mechanical approach
whereas the solvent degrees of freedom are treated classically. Details of the method
are described elsewhere [27,28]. The extent of the electron localization in different
supercritical environments can be conveniently probed by analyzing the behavior of
the correlation length R(β�/2) of the electron, represented as polymer of pseudopar-
ticles in the Feynman path integral representation of quantum mechanics. Using the
simulation trajectories, R is computed from the mean squared displacement along
the “polymer” path, R2(t − t ′) = 〈|r(t) − r(t ′)|2〉, where r(t) represents the electron
position at imaginary time t and 1/ is Boltzmann constant times the temperature.

Solvated electrons in water and ammonia in the vicinity of their corresponding
triple points are known to be localized and characterized by length scales R of sim-
ilar order of the size of a solvent molecule, i.e., intermediate between 3 and 4 Å. In
contrast, for the particular case of low-density SCW (ρw < 0.1 g/cm3), the correla-
tion function R(t) looks similar to that corresponding to a Gaussian, non-interacting
bead polymer, with the longest correlation length comparable to λDB, the electron
de Broglie thermal wavelength. In Figure 16-8 we present results for R in SCW
and supercritical ammonia (SCA), at T∗ = T/Tc = 1.10 for each fluid. To facilitate
comparison between results from the two fluids, we have scaled all temperatures and
densities by the corresponding critical (T∗=T/Tc) and triple point (ρ∗=ρ /ρ t) values,
respectively. The sharp drop to practically half of its ideal, i.e., non-interacting, ρ=0,
value within a narrow density interval along with a change in the slope of the curve
reveal that the onset of the electronic localization in SCA takes place at ρa

∗∼0.25 and
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Figure 16-8. Left: two limiting behavior of the electron correlation length: free (upper curve) and localized
(lower). Right: electron correlation lengths in SCW (circles) and SCA (squares) as function of the reduced
density. The horizontal arrows indicate the correlation lengths for solvated electrons at the corresponding
triple points of the two fluids. Change in slope indicates the onset of localization [28]

for SCW at ρw
∗∼0.15. This difference in the transition point is due to the fact that

polarization fluctuations in the latter fluid are more effective in promoting electronic
localization.

Analysis of the radial pair distribution function for the electron centroid and sol-
vent center-of-mass computed at different densities reveals some very interesting
features. At high densities, the essentially localized electron is surrounded by the sol-
vent resembling the solvation of a classical anion such as Cl– or Br–. At low densities,
however, the electron is sufficiently extended (delocalized) such that its wavefunction
tunnels through several neighboring water or ammonia molecules (Figure 16-9).

Using a plane wave representation for the electron wavefunction with 163 grid
points and approximately 800 independent electronic and molecular configurations
from the path integral molecular dynamics trajectories, we have also computed the
density of states for the electron under different supercritical conditions of the sol-
vents and the corresponding steady-state optical absorption spectra. The latter were
computed within the dipolar approximation from the following expression within the
Frank–Condon approximation:

I (E) ∝ (1 − e−βE )E

〈
∑

i>0,εi<0

| 〈ψ0|μ̂|ψi 〉 |2δ(εi − ε0 − E)

〉

where εi and ψ i represent the ith electronic eigenenergy and eigenfunction, re-
spectively, μ̂ is the dipole moment operator, and the sum extends over all bound
states. Results for the density of states reveal that the distribution of bound states
at supercritical conditions includes four states: a ground s-like state and three, non-
degenerate, somewhat more delocalized excited states, with p-like characteristics.
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Figure 16-9. Snapshots of molecular configurations for the solvated electron polymer at two supercritical
densities of water at 645 K. Left: 1.0 g/cm3; Right: 0.05 g/cm3

Similar results have also been reported for the distributions of the delocalized
LUMO (identified as possible precursor states for solvated electrons) and the
LUMO+1 Kohn–Sham orbitals of supercritical water in a recent ab initio molecular
dynamics simulation study [54]. The computed ground state absorption spectra at
four supercritical densities and at room temperature are shown in Figure 16-10. The
position of the maximum at 298 K is slightly blue-shifted compared to experimental
data, as noted elsewhere. Similar to the density of states, temperature alone does not
lead to significant changes in the absorption band. Hamiltonians that include many-
body polarizability effects yield better estimates of the room-temperature spectra
but also fail to reproduce experimental spectra in hot water. At lower densities
(0.5 g/cm3), however, where interaction-induced effects are less important, the max-
ima of our simulated spectra are in reasonable agreement with the experimental data
at similar thermodynamic conditions (see inset), being 0.2–0.3 eV below the two
experimental values at the lowest density for which the spectrum has been calculated
(0.1 g cm3). The analysis of the spectrum at even lower densities, where all energy
gaps become comparable to kBT, requires transitions from different excited states
(non-adiabatic dynamics) and such calculation has not been yet undertaken for these
systems to the best of our knowledge.

The density dependence of the spectral red shifts for both SCW and SCA at
intermediate to low densities is somewhat more pronounced than that experimen-
tally measured. Unlike some reported experimental data, there are apparently no
noticeable changes in the density dependence of the spectral band maximum as the
localization transition is crossed. At any rate, the overall quality of agreement is
comparable to that found at room temperature, which reveals a remarkable perfor-
mance of the adopted model in view of the simplicity of the interaction potentials,
the fact that there are no adjustable parameters, and the wide variety of supercritical
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(a) (b)

Figure 16-10. Left: optical absorption spectra for the solvated electron for different densities in SCW at
645 K. Solid line, 1.0 g/cm3; dotted line, 0.5 g/cm3; dashed line, 0.3 g/cm3; dot-dashed line, 0.1 g/cm3.
Empty circles are for ambient conditions. Right: same for SCA at T∗=1.1 (reduced density are as marked).
Filled circle are for the triple point of ammonia. The insert shows the density dependence of the absorption
maxima in the low-density interval investigated. SCW: diamonds, our work; squares and triangles are
from experiments. SCA: diamonds: our work; circles: experimental data. Left and right figures are from
Ref. [27] and [28], respectively

conditions examined. Better agreement with experiments will certainly require re-
finements in the pseudopotential.

16.3.3. Excess Electrons in Polar SCFs – Solvation Dynamics

Solvation dynamics refers to the solvent reorganization or relaxation that accompa-
nies the external excitation of a probe solute, usually a fluorescent organic dye or
simply an excess solvated electron [55]. Experimentally, the process of solvent reor-
ganization can be time monitored by the time evolution of the fluorescence emission
in time-dependent ultra-fast Stokes shift spectroscopy.

The basic physical picture is schematically represented in Figure 16-11. Ground
(S0) and first excited (S1) states of the solute have different charges or charge dis-
tributions. Upon solute excitation by a short-pulsed external laser, the solvent un-
dergoes structural rearrangements in order to relax around the charge distribution of
solute state S1. Individual solute probes may fluoresce at different times from the
excitation and, therefore, will emit at different wavelengths (red shifting) depending
on the degree of reorganization of the solvent in its close vicinity.

A time-resolved fluorescence measurement collects the emission spectra at regu-
lar time intervals after the excitation, defined at t = 0, from which one constructs the
normalized solvation dynamics response function, S(t) = [hν(t)−hν(∞)]/[hν(0)−
hν(∞)] [55]. In our simulations, hundreds of uncorrelated equilibrium molecular
configurations with the electron in its ground state �0 were selected as initial con-
figurations (t = 0). From each of these initial configurations, the electronic state is
adiabatically promoted to the first excited state �1, the system is then propagated in
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Figure 16-11. Representation of time-resolved spectroscopy

time over the S1 adiabatic surface potential, and the instantaneous electron energy
gap �E(t) = ε1(t) − ε0(t) is computed at each timestep of the simulation as the sol-
vent reorganizes itself around the excited electron. An ensemble of non-equilibrium
time history of �E(t) is thus obtained from which we compute the solvation dynamics
response function SE(t) = 〈�E(t) − �E(∞)〉neq

/〈�E(0) − �E(∞)〉neq [30].
Results for SE(t) at the ammonia supercritical states discussed above are shown in

Figure 16-12. The high-density curve exhibits a clear bimodal character that is typi-
cal of solvation responses of dense liquids: a Gaussian-type initial decay accounting
for a sizable fraction (∼40–50%) of the total decay, followed by a much slower,

(a) (b)

Figure 16-12. Left: normalized non-equilibrium response function for the electron energy gap in SCA at
different densities and 450 K. Right: equilibrium spatial correlations between the center of the first excited
state r1 and the nitrogen site of ammonia for the supercritical states. Solid and dashed lines correspond
to adiabatic trajectories with forces taken from the ground and first excited electronic states, respectively.
Adapted from Ref. [28]



Solvation in Supercritical Fluids 451

diffusive tail that accounts for the manifold of slow processes, mainly rotational
and spatial diffusive motions, that drive the long-time response of the solvent. This
bimodal character is much less prominent at lower densities and the response prac-
tically vanishes after a sharp decay lasting ∼100 fs. Gaussian fits for this portion of
the SE(t) response yield a relaxation rate of 25–30 fs–1 which is associated with the
ballistic inertial reorientational motions of ammonia.

The near absence of diffusional contributions at low-density supercritical states
is an important feature that seems to be unique to these environments. In order to
investigate the differences in the mechanisms through which these systems relax, we
present in Figure 16-12 (right panel) results for the two limiting, t = 0 and t = ∞,
equilibrium spatial correlations between the center of the excited electronic distri-
bution, r̄1 = 〈�1|r|�1〉, and the solvent’s nitrogen site. Although, at high densities,
one expects considerable rearrangements in the solvent spatial distribution around
the solute due to the gross symmetry changes in the electronic wavefunction, the
t = 0 distribution can be practically superimposed to that corresponding to t = ∞, by
simply operating a negative, 0.5 Å shift in the radial coordinate (upper panel). On the
other hand, at low densities, the changes in the two limiting distributions are much
less pronounced, and are to be found at long range. Given the observed differences in
the spatial correlations, we are led to believe that the slow portions of the relaxations
at high densities can be ascribed to the approaching of the solvent molecules toward
the center of the electronic charge. Finally, and more importantly, the shift toward
smaller distances in the excited gr̄1 N (r ) function indicates that the localization mech-
anism for excited electrons in SCA is mainly driven by the polarization fluctuations
that prevail in these environments, with only minor contributions from short-ranged,
excluded volume effects, arising from electron–solvent exchange forces. Analysis
of the non-equilibrium adiabatic evolution of the quantum mechanical electron spa-
tial extent during the first 1.0 ps from the excitation provides further support to this
interpretation [28].

16.4. CONCLUDING REMARKS

In this chapter, we have reviewed some of our own work on solvation properties
in supercritical fluids using molecular dynamics computer simulations. We have
presented the main aspects associated with the solvation structures of purine alka-
loids in CO2 under different supercritical conditions and in the presence of ethanol
as co-solvent, highlighting the phenomena of solvent density augmentation in the
immediate neighborhood of the solute and the effects from the strong preferential
solvation by the polar co-solvent. We have also presented a summary of our results
for the structure and dynamics of supercritical water and ammonia, focusing on the
dielectric behavior of supercritical water as functions of density and temperature and
the behavior of excess solvated electrons in aqueous and non-aqueous associative
environments.

For CO2 systems, we believe that the three most promising venues for further
theoretical investigations are (1) to gain better understanding of the intermolecular
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interactions between CO2 and group contributions of important solute types, such
as surfactant, polymers, and room-temperature ionic liquids and to correlate these
interactions with new and improved methods for computing solvation free energies in
such environments [56]; (2) to devise and apply new computer simulations methods
for studying reactive properties in supercritical fluids; and (3) to further investigate
interfacial systems containing SC-CO2, with goals set to better understand the role
of these systems in the synthesis of nanomaterials.

As for supercritical water and related systems, we believe that much effort is still
needed to understand the formation and stability of molecular clusters and dilute
conditions and their role in the fundamental solvation characteristics of these sol-
vents. Very little is known today regarding the underlying molecular mechanisms
associated with the role of supercritical water as both reaction media and reactant,
especially in connection with quantum mechanical charge transfer and bond breaking
effects. The latter is extremely important to our understanding, and, therefore, con-
trol, of supercritical water as a “green chemistry” reaction environment for practical
applications.
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Abstract: A recent development to compute free energy changes associated with chemical processes
in condensed phase has been reviewed. The methodology is based on the hybrid quantum
mechanical/molecular mechanical (QM/MM) approach combined with the novel theory
of solutions, where the electronic structure calculation in the QM subsystem is conducted
by the Kohn–Sham density functional theory (KS-DFT) utilizing the real-space grids to
represent the one-electron orbitals, while the distribution functions for MM molecules
needed to compute the free energy change of interest are constructed in terms of the
QM/MM interaction energies. The following sections are devoted to the overview of the
existing methodologies for the free energy calculation for chemical event and to the de-
tailed description of the real-space-based DFT as well as the theory of solutions. Next we
present a theory to combine the quantum mechanics with the statistical mechanics, where
an emphasis will be placed on the treatment of the many-body interaction inherent with
the quantum mechanical object. Finally, the several applications of the methodology to the
solution system are presented to demonstrate the accuracy and efficiency of the method

17.1. INTRODUCTION

It is a subject of great interest and significance in computational and theoretical
chemistry to determine possible pathways of chemical reactions in condensed matter
such as biological molecules, solutions, or materials [1]. The quantity that governs
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the reaction path in many-particle system is, of course, the free energy change
associated with the process. Hence, it is of primary importance to compute free
energy change for the chemical event in large systems. In the enzymatic reaction, for
instance, it is well known that the whole molecular structure of the protein immersed
in water fluctuates, which may play a decisive role for the protein to exhibit its elab-
orate function. Hence, analyzing the property at the global energy minimum of the
structure is obviously insufficient to understand how the aggregate of amino acid
polymers regulates the enzymatic activity. Thus, the statistical mechanical treatment
is essential for the study of the function of the protein. It can be readily recognized,
however, that the free energy calculation is a heavily demanding task even under the
state-of-the-art computational environment. The theoretical description of the chem-
ical reaction essentially necessitates the use of the quantum chemical method [2,3]
that is notorious for its large computational cost. Furthermore, the free energy calcu-
lation employing the method of the molecular simulations requires a large number of
configuration samplings for its convergence. Thus, the major difficulty we encounter
to solve the problem locates in the quantum chemical calculation combined with
the method of statistical mechanics. The present article will address the issue of the
development of an efficient methodology to compute free energy change associated
with a chemical event in a large system. In the following we will make a review for
the methodology related to quantum chemistry and statistical mechanics as well.

The quantum chemical approach [2] based on the molecular orbitals theory has
been successfully applied to various systems. However, they have been limited
mainly to the reactions of relatively small molecules in the gas phase. The difficulty
in the quantum chemical method arises from the fact that the computational cost
increases drastically as the number N of electrons in the system increases. Even at
the low level of theory that neglects the electron correlation, it scales in order N3–N4.
Indeed, it becomes practically infeasible for large system to include subsequent com-
plicated procedure to account for the electron correlations. The recent development
in the Kohn–Sham density functional theory (KS-DFT) [4] substantially alleviated
such a difficulty by projecting the non-local exchange and correlation potential onto
a local potential by a functional of the local electron density or its gradient. It al-
lows one to compute the complicated exchange–correlation energy of electrons in
comparable accuracy to the sophisticated molecular orbitals theory within a reason-
able computational cost. A lot of theoretical works are being devoted to refine the
exchange–correlation functionals. So far the method has been extensively applied to
various systems and the efficiency has been well established though it suffers from
many inherent deficiencies. Despite the success in DFT, the scope of its application
is still limited to relatively small-sized systems.

In addition to the development in the methodology to compute electronic struc-
tures, there have been several attempts to handle the simulation of a chemical event
in a system with a large number of degrees of freedom. The Car–Parrinello (CP) ap-
proach [5], often referred to as first-principles molecular dynamics (FPMD) method,
opened the way to the molecular dynamics simulations based on the first-principles
electronic structure calculations. The point of the method is to circumvent the explicit
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diagonalization of the effective Hamiltonian in DFT by propagating the one-electron
orbitals in the imaginary time. The CP approach is much less costly as compared
with the conventional FPMD where the electronic state is strictly converged to the
ground state based on the Born–Oppenheimer approximation at each MD step. How-
ever, the execution of CPMD for a system containing only a few hundreds of atoms
requires massively parallel computers. The CP approach is particularly efficient for
the reaction where whole of the system undergoes serious changes in the electronic
structure. Within the hybrid quantum mechanical/molecular mechanical (QM/MM)
approach [6], only the active site of the system is described quantum chemically
while the electronically static environment is represented by classical force fields.
The QM/MM method takes advantage of the fact that only the small part of the
system takes part in the chemical reaction in most cases. The QM/MM simulations
have been extensively applied to the reactions in solutions or biological systems.
The order-N approach [7] provides a framework to compute electronic state where
the computational cost scales linearly with respect to the number N of electrons con-
tained in the system. Such method was first initiated by Yang [8] who proposed to
divide the whole system into overlapping subsystems and the electronic structures
of the constituent domains are solved locally. Then, the domains are connected by
a common chemical potential introduced to ensure the norm conservation for the
density matrix. The underlying key concept for this approach, often referred to as
“divide and conquer”, is clearly based on the “near-sightedness principle” postulated
by Prodan and Kohn [9] and it constitutes the common framework of other order-N
approaches. Substantial efforts are being made to establish an efficient algorithm.
However, so far, we have no method of choice which can be used in practical appli-
cations with satisfying reliability.

To achieve our purpose, it is also desirable to obtain statistical mechanical prop-
erties within a modest computational cost by sampling the molecular configurations
effectively. The free energy perturbation (FEP) [10] method, that is based on the
Kirkwood charging formula, introduces a number of intermediate points on an ar-
bitrary path connecting the initial and the final states of the event of interest. Then,
the free energy change is obtained by integrating the free energy difference between
the adjacent points along the path. The FEP approach is numerically exact, however,
it requires a sufficient number of samplings in configuration space to achieve con-
vergence at each intermediate point with no physical importance. As a consequence,
FEP involves a huge number of configuration samplings along the reaction path. The
solution theory, on the other hand, describes the free energy change in terms of the
spatial distribution functions. In principle, the free energy change associated with
a chemical reaction can be obtained by the solvation free energies of the reactant
and the product. The solvation free energy can be exactly expressed in terms of the
spatial distribution function of the solvent around the solute by virtue of the fact that
one-to-one correspondence is rigorously established between the set of interaction
potentials and the resultant distribution functions. Note that the solvent distribution
is fully specified on the six-dimensional coordinate even when the rigid model is
assumed for the molecule. In practice, the method of the reference interaction site
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model (RISM) [11,12] is often utilized, where the distribution expressed in the full
coordinate is reduced to a set of radial distribution functions between the interaction
sites placed on the molecules. Then, the free energy can be obtained by solving
a set of integral equations for the site–site radial distribution functions, for which
PY or HNC approximations [13] are employed. Recently N. M. developed a novel
approach, referred to as theory of energy representation [14,15,16], where the dis-
tribution functions of the solute–solvent interaction energy play a fundamental role
to describe the solvation free energy. He demonstrated that a solution theory based
on the energy distribution functions can also be rigorously constructed in parallel
to that based on the spatial distributions. Within the framework of the theory of
energy representation, each solvent molecule is treated as a whole, and the concept
of the interaction site is no longer needed. Hence, the solvation free energy can be
exactly expressed in terms of the one-dimensional distribution functions for any pair
of solute and solvent. The details for the methodology will be given in Section 17.3.

In the preceding two paragraphs, we have briefly reviewed the independent ap-
proaches related to the quantum chemistry and the statistical mechanics. What we
have to do to accomplish the free energy calculation in a condensed phase is to com-
bine the method of quantum chemistry with that of statistical mechanics. Obviously
the combination of the CP approach with the FEP procedure is most time consuming
and will be almost intractable under an ordinary computational environment. The
most popular approach in the quantum chemistry to incorporate the effect of the sol-
vent is to combine the SCF procedure in the quantum chemistry with the polarizable
continuum model (PCM) [17]. Since PCM is not based on the molecular theory,
it suffers from the lack of the ability to describe the short-range interactions such
as hydrogen bonds. However, it has been widely utilized in the quantum chemical
calculations due mainly to the usefulness in practical applications. In the method of
RISM-SCF [18]. on the other hand, SCF calculation is coupled with the solution of
the RISM integral equations for the solvent and it allows us to construct the electronic
structure of the solute as well as its solvation free energy with the sound description
of the solvent as an aggregate of molecules. The major drawback of the method is
that the electron density of the solute, which is spatially diffuse in nature, is reduced
to a set of point charges for the construction of the site–site radial distributions.
It is, then, anticipated that serious overestimation in the free energy takes place at
the anionic sites of the solute. In our recent development [19], we combined the
QM/MM approach with the method of the energy representation (QM/MM-ER). As
noted above, the theory of energy representation is free from the concept of the in-
teraction site; it is amenable to the combination with the quantum mechanical object
in which the electron density is continuously distributed over the space. Thus, the
QM solute can be represented without the loss of information content in the free
energy calculations. However, a device has to be made to take into consideration
the many-body interaction of the QM object since the standard version of the energy
representation assumes that the solute–solvent interaction is pairwise. In Section 17.4
we provide the details of the QM/MM-ER method, where the focus will be placed
on the formulation of the many-body effects in the solute–solvent interactions.



A Quantum Chemical Approach to Free Energy Calculation 459

This review is organized as follows. In Section 17.2, the methodology of Kohn–
Sham DFT with real-space grids [20,21] and its efficiency in the parallel compu-
tation are discussed. The theory of energy representation is formulated in Section
17.3, where the FEP and RISM theories are also introduced to make comparisons. In
Section 17.4, a rigorous formulation to couple the QM/MM approach with the theory
of energy representation is given. Section 17.5 is devoted to the demonstration of the
QM/MM-ER simulation to examine the accuracy and efficiency of the method by
computing the solvation free energy and the free energy change associated with a
chemical process in aqueous solution.

17.2. REAL-SPACE GRID QM/MM APPROACH

17.2.1. Kohn–Sham Density Functional Theory

The heart of the density functional method is to express the electronic properties of
an N-electron system by formulating a functional of its total electron density n(r).
Here, we briefly review the DFT in the electronic structure calculation. The first
model based on the electron density was given by Thomas [22] and Fermi [23] who
proposed an approximate functional for the total energy, although it has a critical
drawback that it cannot realize chemical bonds due to the failure in expressing the
kinetic energy. Later, their approach had been validated by the theorem given by
Hohenberg and Kohn [24] who proved that one-to-one correspondence is established
between an external potential and the resulting electron density. This was the mile-
stone that triggered the subsequent extensive growth in DFT. A year later, Kohn and
Sham [4] developed a framework of a practical theory to compute total energy and
density by introducing one-electron orbitals in the analogous way taken by Slater
[25]. The point of their approach is to construct the density n(r) of a fully inter-
acting N-electron system by that of the non-interacting reference system. One can,
then, obtain the exact total energy provided that the true exchange and correlation
functional is known. The existence of the universal functional Exc[n] for the electron
correlation is guaranteed by the HK theorem, however, only the approximate form
can be available. Owing to the efforts by many quantum chemists or physicists de-
voted to the development of the functional, Kohn–Sham DFT can now afford almost
comparable accuracy to the sophisticated molecular orbitals theories with much less
computational costs.

The Kohn–Sham equations for one-electron orbitals {ψi } is in the form as

[
−1

2
∇2

i + veff(r)

]
ψi (r) = εiψi (r), (17-1)

where νeff(r) is the effective potential for an electron and the atomic unit is adopted.
Further, νeff(r) in Eq. (17-1) is decomposed as

νeff(r) = νps(r) + νH(r) + νxc(r), (17-2)
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where the first, second, and third terms are, respectively, sum of the atomic pseu-
dopotential, Hartree potential, and exchange–correlation potential. The accuracy of
the Kohn–Sham DFT is obviously dependent on the choice of the functional νxc(r)
in Eq. (17-2).

νxc(r) is given by the functional derivative of Exc[n] with respect to n(r). In the
local density approximation (LDA) [3], it can be written in terms of the exchange–
correlation energy �xc (n(r)) felt by an electron in a homogeneous electron gas of the
given n(r) thus,

νxc(r) = δExc[n]

δn(r)

= δ

δn(r)

∫
drn(r)�xc (n(r))

= �xc (n(r)) + n(r)
δ�xc (n(r))

δn(r)
.

(17-3)

Exc[n] in Eq. (17-3) is, further, decomposed into the contributions from the exchange
and correlation energies,

Exc[n] = Ex[n] + Ec[n]. (17-4)

The explicit form for Ex[n] was originally given by Dirac [26] as an approxima-
tion to the Hartree–Fock exchange energy,

ELDA
x [n] = −3

2

(
3

4π

)1/3∑

σ

∫
drnσ (r)4/3 (17-5)

where σ represents the up or down spin orientation. The most prevailing form for
Ec[n] is formulated by Lee, Yang, and Parr (LYP) [27] who utilized the Colle and
Salvetti [28] formula that expresses the correlation energy by a functional of the
Hartree–Fock second-order density matrix. In the LYP approach, they successfully
converted the formula given by Colle and Salvetti into a purely density functional
form.

In the present work, we employ the Kleinman and Bylander [29] separable form
for the norm-conserving pseudopotential νps(r) in Eq. (17-2):

νps(r) =
∑

a

V a
loc (|r − Ra|) +

∑

a,l,m

∣∣φa
l,m�V a

l

〉 〈
φa

l,m�V a
l

∣∣
〈
φa

l,m

∣∣�V a
l

∣∣φa
l,m

〉 , (17-6)

where Ra, φa
l,m, and �V a

l are, respectively, the position vector of atom a, atomic
pseudo-wavefunction of the angular momentum quantum number l and m, and the
difference between the l-dependent pseudopotential V a

l and the local pseudopoten-
tial V a

loc. It should be noted for later reference that the use of the pseudopotential
substantially alleviates the rapid behavior of the wavefunctions for valence electrons
at atomic core regions.
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17.2.2. Kohn–Sham DFT with Real-Space Grids

To solve the Kohn–Sham equations in Eq. (17-1), the one-electron orbitals ψi must
be represented by a set of basis functions. In the field of quantum chemistry, atomic-
orbital basis has been commonly used on the basis of the linear combination of
the atomic orbitals (LCAO) approach [2]. The use of the Gaussian-type orbitals
instead of the Slater-type orbitals makes the four-centered two-electron integrals
easy, due to the fact that a product of the two Gaussian functions that have two
different centers also becomes a Gaussian centered at another point. In practice,
a basis function in LCAO is constituted from a linear combination of primitive
Gaussian functions with fixed coefficients to mimic the behavior of a Slater-type
function. A huge amount of two-electron integrals with respect to primitive basis
functions are to be computed and stored in preparation for the self-consistent field
(SCF) calculation. A critical drawback in the LCAO approach is that the Hamiltonian
matrix has non-zero elements in the non-diagonal part, which inevitably leads to
the increase in the amount of the data communications when a parallel algorithm
is applied. Another prevailing method to expand the wavefunctions is to employ
the set of plane waves, the eigenfunctions of the kinetic energy operator. Since a
finite sum of the plane waves with discrete eigenvalues exhibits a periodicity, it
is often utilized in the first-principles calculations of crystals. The matrix element
for the kinetic energy operator appearing in Eq. (17-1) is readily computed in the
momentum space, however, the exchange–correlation term νxc(r) can be evaluated
only after the total electron density is obtained in the real space. It is, therefore,
required to transform all the one-electron wavefunction to the real-space represen-
tation from the momentum space to complete the operation of the effective Hamil-
tonian. In order to expedite the transformations of the wave functions between the
real- and momentum-space representation, the fast-Fourier transformation (FFT) is
utilized. Indeed, the procedure for the FFTs is the most time-consuming part in
the whole calculation. Though the plane wave expansion method is useful for the
single-CPU calculation, it is never suitable for parallel computing since the FFT
spoils parallel efficiency especially when the distributed memory architectures are
employed.

A recent development in the real-space formalism has been established by Che-
likowsky and coworkers [30,31,32]. Since most of the operators in Eq. (17-2) are
local in the real-space representation, it is quite natural to express the one-electron
orbitals by a set of probability amplitudes on the discrete grid points that are uni-
formly distributed over a real-space cell. In the parallel implementation, we distribute
the values such as wavefunctions or operators to the processors by dividing the cell
into subspaces. In the case that the Hamiltonian matrix has non-zero elements only
in the vicinity of its diagonal part, the data communications among the processors
can be suppressed minimally by enabling the high-performance computing on the
massively parallel computer. Figure 17-1 is a schematic illustration that shows how
to divide the real-space cell in the case of the 4-CPU parallel computation. The di-
vision of the real space is designed so that the amount of the data communication
among the CPUs becomes minimum. As shown in the figure, each CPU is required
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Figure 17-1. Schematic illustration to show how to divide the real-space QM cell in the case of the 4-CPU
parallel computation

only to maintain the one-electron wavefunctions at its own subspace except for the
boundary regions (the shaded region), which enables one to reduce the amount of
the data communication and also the memory space used. Furthermore, real-space
grid approach has several advantages: (1) local augmentation of the basis can be
implemented straightforwardly by placing the double grids near the atomic core
regions, (2) arbitrary boundary conditions (periodic or non-periodic) are available,
and (3) overlap matrix of the real-space basis is unity and the molecular integration
can be performed easily. The following paragraphs are devoted to the details for the
implementation of the real-space grid approach focusing on the parallel efficiency in
particular.

Within the real-space method, the kinetic energy operator is expressed by the
finite-difference scheme. Here, we derive the matrix elements for the kinetic energy
operator of one dimension in the first-order finite difference. By the Taylor expansion
of a wavefunction ψ (l) at the grid point l we obtain the equations,

ψ(l + 1) = ψ(l) + 1

1!
ψ ′(l) · h + 1

2!
ψ ′′(l) · h2 + O(h3),

ψ(l − 1) = ψ(l) − 1

1!
ψ ′(l) · h + 1

2!
ψ ′′(l) · h2 + O(h3),

(17-7)

where h is the grid spacing. Adding the upper and lower equations in Eq. (17-7), the
second-order derivative of the wavefunction at the grid l can be derived, thus,

ψ ′′(l) = 1

h2
{ψ(l + 1) − 2ψ(l) + ψ(l − 1)} + O(h4). (17-8)
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Higher order finite-difference scheme can be formulated with the similar manner.
The approximate matrix form of the kinetic energy operator in the first-order finite-
difference expression becomes in the form as

−1

2
∇2 = − 1

2h2

⎛

⎜⎜⎜⎜⎜
⎝

2 −1 O
−1 2 −1

−1 2 −1
. . .

. . .
. . .

O −1 2

⎞

⎟⎟⎟⎟⎟
⎠

. (17-9)

It is noteworthy that the matrix is very sparse and it is profitable for parallelization
since the non-locality of the operator is confined within the small region of the real
space. The general form of the kinetic energy operator in three dimension by the
higher order finite difference scheme is represented as

−1

2
∇2ψ(xl, ym, zn) = − 1

2h2

[
L∑

k1=−L

Ck1ψ(xl + k1h, ym, zn)

+
L∑

k2=−L

Ck2ψ(xl, ym + k2h, zn)

+
L∑

k3=−L

Ck3ψ(xl, ym, zn + k3h)

⎤

⎦ ,

(17-10)

where the number L denotes the order of the expansion and Ck1 , Ck2 , and Ck3 are the
expansion coefficients for which a table is given by Chelikowsky [31] for L = 1–6.

The classical electronic potential νH(r) in Eq. (17-2), referred to as Hartree poten-
tial, is defined by

νH(r) =
∫

n(r′)
|r − r′|dr′. (17-11)

In the periodic system Eq. (17-11) can be easily evaluated by transforming the elec-
tron density to the reciprocal space by utilizing the fast Fourier transformations
(FFT). In the non-periodic system, on the other hand, νH(r) can be determined by
the direct summation of the classical electron repulsions for all the pair of electron
densities on the grid points. However, it is computationally very demanding because
it requires twofold loop for all the grid point in the real-space cell. Furthermore, in
the parallel implementation, each CPU must be provided with the densities on all grid
points in the cell. It means that a large amount of data must be communicated among
the processors at every SCF step. Barnett and Landman [33] proposed a method that
utilizes the FFT even for non-periodic system. Unfortunately, the use of FFT spoils
the parallel efficiency on a cluster consisting of independent computers combined
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through networking as described above. For the high parallel performance we take
the approach to solve the following Poisson equation for νH(r),

∇2νH(r) = −4πn(r), (17-12)

for which the conjugated gradient (CG) procedure with an approximate boundary
condition is employed. The Laplacian operator in Eq. (17-12) can also be expressed
by the finite-difference method as represented in Eq. (17-10). This implies that the
values that must be communicated to solve the Poisson equation are common to those
used in the computation of the kinetic energy operator. It should also be noted that
the CG algorithm can achieve a rapid convergence of the Hartree potential without
any particular choice of the initial guess for the potential. As a boundary condition
for Eq. (17-12), we use the expression,

νBD
H (r) =

∑

a

Qa

|r − Ra| , (17-13)

where Qa is the fractional charges alloted to the ath atom of position Ra. Equation
(17-13) becomes a better approximation for Hartree potential when the boundary
is far enough from the atomic core regions. Qa is determined by the multicenter
numerical integration scheme proposed by Becke [34] and updated at every SCF
step.

The second term in Eq. (17-6) is the pseudopotential that is introduced to realize
the smooth behavior of the one-electron wavefunctions. It includes the non-local part
and the overlap integrals between the Kohn–Sham orbitals, and the atomic pseudopo-
tentials must be communicated between adjacent subdomains, however, it can also
be incorporated easily in the parallel computation without serious loss of efficiency.
This is due to the fact that the non-local pseudopotential is confined only within
a small region of space near the atomic core. To improve the description of the
rapid behavior of the non-local pseudopotential in the vicinity of the atomic core,
we employ the time-saving double-grid method developed by Ono and Hirose [35].
The feature of the method is to neglect the explicit computation of the Kohn–Sham
orbitals on dense-grid points and they are estimated by Lagrange interpolations of
the original coarse-grid points instead. The interpolation can be done successfully
by the benefit of the smooth behavior of the wavefunctions on the pseudopotentials.
The contribution of the dense-grid points is implicitly involved in the weight factors
defined at coarse-grid points. It is worthy to note that there is no need to recompute
the weight factors on coarse-grid points during the SCF procedure. The accuracy
of the real-space grid approach reinforced by the time-saving double-grid method
has been well established by applying the method to various systems. The detailed
explanation of the double-grid method is presented in Ono and Hirose [35]. The com-
putational accuracy is almost comparable to that of the sophisticated Gaussian basis
sets such as Dunning’s correlation-consistent basis set with polarization augmented
by diffuse functions (aug-cc-pVDZ) [36].
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We discuss here the treatment of the exchange–correlation functional Exc[n] in the
real-space approach. The evaluation of the LDA exchange potential or energy given
by Eq. (17-3) or Eq. (17-5) is obviously straightforward. In a more sophisticated
approach, the LDA exchange energy is corrected by a functional of the gradient of
the electron spin density ∇nσ (r), which is referred to as the generalized gradient
approximation (GGA). Applying Becke’s gradient correction [37] to Eq. (17-5), the
exchange energy functional is expressed by

EBecke
X [n] = ELDA

X [n] − β
∑

σ

∫
n4/3

σ

x2
σ

(1 + 6βxσ sin h−1xσ )
dr, (17-14)

where the parameter β is set at 0.0042 and the term xσ is the dimensionless ratio
defined as

xσ = |∇nσ (r)|
nσ (r)4/3

. (17-15)

xσ becomes negligible at the zero gradient limit and is regarded as an inhomogeneity
parameter. The evaluation of the LDA potential in Eq. (17-3) under a parallel archi-
tecture requires no communication because the operator given by the derivative of
Eq. (17-5) is fully local in the real space. The GGA term in Eq. (17-14) includes
the gradient of the spin density, however, it is expressed also by the finite-difference
approach as well as the kinetic energy or the Hartree potential. Hence, the data to
be communicated in the GGA are common to those used for the Hartree energy
operator and, hence no additional data throughput is required. The same is true for
the correlation energy Ec formulated by Lee, Yang, and Parr (LYP). Thus, the paral-
lelization of the exchange–correlation potential is straightforward even at the GGA
level.

As has been suggested by the discussion so far, it is essential for the parallel
computation in the real-space method to divide the Hamiltonian or wavefunctions
spatially in order to make use of the locality of the operators [38]. The parallel
efficiency was examined by carrying out the DFT calculation for the active site
of HIV-1 PR with model substrate, which contains 98 valence electrons; 80 grid
points have been used for each axis of the real-space cell. The parallel computing has
been performed on a distributed memory architecture consisting of 8 CPUs (Pentium
4/3.2 GHz) connected by a Giga-bit switch. The data communications among CPUs
have been commanded by the MPI (message passing interface). We measured the
time spent for 1 SCF step by using an MPI function (MPI WTIME) to compare
the efficiency with respect to the number of CPUs employed. We also performed a
single-CPU calculation and found that it takes 29.0 s for an SCF step. To evaluate
the parallel performance of the present approach, we define the speedup S and the
parallel efficiency P as

S = time for 1 CPU

time for n CPUs
, (17-16)
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P = S

number of CPUs
× 100. (17-17)

Figure 17-2 summarizes the speedup and the parallel efficiency with respect to
the number of CPUs employed. For the 2-CPU and 4-CPU calculations, the speedup
is excellent and the efficiencies P have reached to 90.0% and 88.5%, respectively.
However, the efficiency P is decreased to 80.5% when 8 CPUs are employed, which
is mainly attributed to the increase in the communication relative to the net com-
putational cost. The amount of the communication at the boundary scales in the
square of the cell size, while the net computational cost scales in the cube of it.
Therefore, the parallel efficiency in the 8-CPU calculation may be recovered when
one computes a larger system. Anyway, the efficiency P = 80–90% is quite satisfying
as a quantum chemical calculation where a huge number of operations is required for
data of large size. Obviously, such high efficiency is mainly due to the choice of the
real-space grids as a basis function that makes the most operators in the effective
Hamiltonian local. The present approach is readily extended to an architecture with
a larger number of CPUs and the parallel efficiency will not be spoiled seriously as
far as the balance is kept appropriately between the net computational cost and the
amount of communication. It should be stressed here that the free energy change
plays a key role in the study of the biological system and the free energy calculation
generally requires a lot of molecular configurations for ensemble averages along the
process of interest. Therefore, development to expedite the computation itself is es-
sential in addition to the invention of the methodologies for the large-scale electronic
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Figure 17-2. Speedup S and parallel efficiency P as functions of number of processors
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structure or the free energy calculation. The present demonstration has revealed that
the grid-based approach in combination with the KS-DFT is amenable to the parallel
computation and gives high efficiency on a common architecture organized by the
standard parallel interface.

17.2.3. Hybrid Quantum Mechanical/Molecular Mechanical
(QM/MM) Approach

It is often the case that only a small part of the condensed system takes part in
a chemical process such as the reactions in solution or in enzyme. The QM/MM
approach is the promising computational technique to solve such problems [6,39],
where only the chemically active site is described by quantum mechanics and the
remaining environment serves as an electrostatic field to the Hamiltonian of the QM
region. The efficiency of the approach has been well established through a variety of
calculations. In this subsection, we propose a QM/MM approach based on the DFT
that utilizes the real-space grid method in an attempt to realize the high-performance
computing in large systems.

In the QM/MM method, total energy E of the whole system is decomposed into
three terms,

E = EQM + EQM/MM + EMM (17-18)

where EQM is the electronic energy of the QM subsystem, EMM is the energy of
the MM subsystem represented by classical models, and EQM/MM is the interaction
energy between the QM and MM subsystems. In the framework of the DFT, EQM

can be obtained by solving the Kohn–Sham equations in Eq. (17-1) containing the
electrostatic field vpc(r):

[
−1

2
∇2

i + νeff(r) + νpc(r)

]
ψi (r) = εiψi (r). (17-19)

νpc(r): is the potential formed by point charges in the MM subsystem and is expressed
as,

νpc(r) =
∑

k

qk

|r − sk | , (17-20)

where the suffix k runs over the MM sites of coordinate sk with charge qk. Once the
eigenfunctions ψi are obtained, the energy EQM can be computed as

EQM =
∑

i

〈ψi | − 1

2
∇2

i + v̂eff|ψi 〉 − 1

2

∫
n(r1)n(r2)

|r1 − r2| dr1dr2 + Exc[n]

−
∫

n(r)νxc(n(r))dr +
∑

a < b

Za Zb

Rab
.

(17-21)
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Note that the first term of r.h.s. in Eq. (17-21) does not contain the electrostatic
field νpc(r). The last term in Eq. (17-21) represents the sum of the nuclear repulsion
energies. The interaction energy EQM/MM is expressed by the sum of the electrostatic
EELS and the van der Waals interaction EvdW as

EQM/MM = EELS + EvdW

=
∑

i

〈ψi |ν̂pc|ψi 〉 +
∑

a

∑

k

Zaqk

|Ra − sk | + EvdW
, (17-22)

where the first term in EELS is the interaction between one-electron wavefunctions
and the electrostatic field, and the second term is the nuclear-site interaction. EvdW

in Eq. (17-22) is, further, approximated by the equation of Lennard-Jones (LJ) with
empirical parameters (ε,σ ) as

EvdW =
∑

k,l

4εkl

((
σkl

rkl

)12

−
(

σkl

rkl

)6
)

. (17-23)

The derivatives of these energies with respect to the coordinates of the QM and
MM atoms are easily formulated. The remaining term EMM in Eq. (17-18) is com-
posed from two-body electrostatic and LJ interactions and can be computed by uti-
lizing the parameter set of potential field such as Amber, Charmm, or OPLS.

In the implementation of the QM/MM approach with the real-space method, the
QM cell that contains the real-space grids is embedded in the MM cell. One should
take care for the evaluation of the potential νpc(r) defined as Eq. (17-20). When a
point charge in MM region goes inside the QM cell, it makes a singularity in the
effective Kohn–Sham Hamiltonian, which may give rise to a numerical instability.
To circumvent the problem, we replace a point charge distribution

P(r) =
∑

i

qiδ(r − ri ) (17-24)

by a summation of the Gaussian charge distributions P ′(r),

P ′(r) =
∑

i

qi

(�

π

)3/2
exp(−α|r − si |2), (17-25)

where exponent α specifies the width of the Gaussian function. Accordingly, the
potential νpc(r) becomes,

νpc(r) =
∑

i

qi

|r − si |erf(
√

α|r − si |) . (17-26)

Equation (17-26) ensures the modest behavior of the potential near the center of
the charge and the numerical instability is substantially alleviated [40,41].
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17.3. THEORY OF SOLUTIONS IN THE ENERGY REPRESENTATION

The evaluation of the free energy is essential to quantitatively treat a chemical pro-
cess in condensed phase. In this section, we review methods of free-energy calcula-
tion within the context of classical statistical mechanics. We start with the standard
free-energy perturbation and thermodynamic integration methods. We then introduce
the method of distribution functions in solution. The method of energy representation
is described in its classical form in this section, and is combined with the QM/MM
methodology in the next section.

17.3.1. Free-Energy Perturbation and Thermodynamic
Integration Methods

The most fundamental quantity to describe a process in solution is the free energy
(change). Indeed, it governs the equilibrium and rate constants of the process. The
free-energy change corresponding to the insertion process of a solute in solution
is the chemical potential (solvation free energy). Once the chemical potentials are
known for the species present in the initial and final states of a process of interest,
the free energy change for the process can be readily evaluated. Therefore, it is of
primary importance in statistical mechanics of solutions to establish a scheme to
determine the chemical potential (solvation free energy) of a solute in solution.

Let H0 and H1 be respectively the Hamiltonians at the initial and final states of
a process in solution. When the solvation process is concerned, the initial and final
states are typically the pure solvent and solution systems of interest. The correspond-
ing free-energy change �F is given by

exp(−β�F) =
∫

d� exp(−βH1)
∫

d� exp(−βH0)
, (17-27)

where β is the inverse of the Boltzmann constant kB, T is the temperature, and � is the
(collective) coordinate for the phase space. When the classical statistical mechanics
is adopted and the Hamiltonian change between the initial and final states does not
involve the kinetic part, Eq. (17-27) reduces to

exp(−β�F) =
∫

dX exp(−βU1)
∫

dX exp(−βU0)
, (17-28)

where X is the (collective) coordinate for the configuration and U0 and U1 are the
potential energies of the system at the initial and final states, respectively. Equation
(17-28) is the starting point of our development. It should be noted that Eq. (17-28)
cannot be used when a quantum fluid is to be treated.

When U1–U0 is denoted by �U, Eq. (17-28) is rewritten as

exp(−β�F) = 〈exp(−β�U )〉0, (17-29)
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where < ... >0 is the ensemble average taken for the initial state whose configura-
tion is sampled according to the potential energy U0. Equation (17-29) shows that
the free-energy change �F can be calculated, in principle, by performing only the
simulation for the initial state and averaging the Boltzmann factor of the relevant
energy change �U. Indeed, Eq. (17-29) is the basis of the particle insertion method
for evaluating the solvation free energy (chemical potential) of a solute in solution
[13,42,43]. In the particle insertion method, the pure solvent is simulated and the
solute molecule of interest is inserted randomly into the pure solvent. The chemical
potential is then obtained from

exp(−β�F) =
∫

d(�U ) exp(−β�U ) f (�U ), (17-30)

where f(�U) is the probability distribution function of �U in the pure solvent sys-
tem. The particle insertion method is convenient and fast since only the pure solvent
configurations need to be prepared and the free energy is calculated from a one-step
insertion process of the solute. As is well documented, however, the particle insertion
method is applicable only for a small and weakly interacting solute, see Figure 17-3.
When the solute is large, it almost always overlaps with solvent molecules upon
insertion and f(�U) is well sampled only toward large (repulsive) value of �U. The
Boltzmann factor exp(–β�U) increases steeply, on the other hand, toward small (at-
tractive) �U. The small �U region, which is often ill sampled, makes a significant
contribution in Eq. (17-30). Thus, Eq. (17-30) is not computationally useful and the
particle insertion method cannot be used for most of “interesting” systems. Actu-
ally, the calculation of the average of the exponential of the energy change is often
prohibitive unless the energy change is small in magnitude.

The standard and often used methods to circumvent the difficulty associated with
the form of Eq. (17-30) are the free-energy perturbation and thermodynamic inte-
gration methods [13,42,43]. These methods are generally applicable to free-energy

ΔU

exp(–βΔU) f (ΔU)
steeply 

increasing

toward small ΔU

ill sampled 

at small ΔU

Figure 17-3. A schematic distribution of �U value in the particle insertion method
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evaluation. In the present review, we restrict our development to the solvation pro-
cess; the initial state is the pure solvent and the final state is the solution system of
interest.

The free-energy perturbation method utilizes the intermediate states connecting
the initial and final states of the process of interest. Let Vi (i = 0, . . ., N) be a se-
quence of potential energies where the initial and final onesV0 and VN are taken to
the potential functions U0 and U1 for the initial and final states, respectively. For an
arbitrary (set of) Vi, Eq. (17-28) can be expressed as

exp (−β�F) =
N−1∏

i=0

〈exp (−β (Vi+1 − Vi ))〉i , (17-31)

where < ... >i is the ensemble average taken with respect to the potential function
Vi. Equation (17-31) shows that �F is given as the sum of the free-energy change
accompanying the energy change from Vi to Vi+1 (i = 0, . . ., N–1). The states cor-
responding to Vi (i = 1, . . ., N–1) are called intermediate states. The free energy
is a state function and does not depend on the choice of the intermediate states in
principle. From the computational viewpoint, the point is to “select” the set of Vi

so that the change from Vi to Vi+1 is “small” in magnitude. When Vi and Vi+1 are
“similar” and the energy change is small, the difficulty encountered in the particle
insertion method can be circumvented and the calculation of the free-energy change
becomes feasible. The drawback is that a number of intermediate states need to be
prepared and that the computational cost is enhanced accordingly.

In the thermodynamic integration method, the intermediate states are introduced
with respect to the coupling parameter λ(0 ≤ λ ≤ 1) The potential function at the
coupling parameter of λ is denoted by Uλ and satisfies Uλ = U0 and Uλ = U1 at the
initial and final states (λ = 0 and 1), respectively. The intermediate states correspond
to 0 < λ < 1. The form of averaging-the-exponential is then avoided by rewriting
Eq. (17-28) as

�F =
1∫

0

dλ

〈
�Uλ

�λ

〉

λ

, (17-32)

where < ... >λ is the ensemble average when the potential energy is Uλ. As is the
case of the free-energy perturbation method, �F value calculated by Eq. (17-32) is
independent of the choice of the intermediate states in principle. The integrand of
Eq. (17-32) is a preferable average from the computational viewpoint. The expo-
nential average is not involved any more. In practice, the integral of Eq. (17-32) is
replaced by a discretized sum and a finite number of intermediate states are to be
treated explicitly. Since a systematic error is introduced by the discretization, a large
number of intermediate states need to be prepared and the computational demand
increases correspondingly.

In both the free-energy perturbation and thermodynamic integration methods, the
key to the computational accuracy and efficiency is the choice of the intermediate
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states as a function of the coupling parameter λ. Note that the intermediate states
adopted in the free-energy perturbation method can be considered as a finite subset
of the intermediate states introduced continuously over 0 < λ < 1. A straightforward
implementation of the intermediate states is possible by varying the system potential
energy linearly. When the solvation is concerned and the solute–solvent interaction
is expressed as the sum of Lennard-Jones and Coulombic terms, the linear variation
is realized by the intermediate solute–solvent interaction given by

λ
∑

i, j

(

4εi j

{(
σi j

ri j

)12

−
(

σi j

ri j

)6
}

+ qi q j

ri j

)

, (17-33)

where i and j refer to solute and solvent interaction sites, respectively. The first term
in the sum expresses the Lennard-Jones interaction at the distance rij between the
solute and solvent sites, and εij and σ ij are the energy and length parameters, respec-
tively. The second term in the sum corresponds to the Coulombic interaction, and qi

and qj are the charges on the solute and solvent sites, respectively. The linear scaling
of the solute–solvent interaction with Eq. (17-33) is often ill behaved numerically
around λ = 0. This is related to the appearance of r = 0 singularity at λ = 0. To
alleviate the problem, a non-linear scaling, which is obtained by replacing λ with λn

(n ≥ 2) in Eq. (17-33), can be used [44,45]. The calculation becomes more stable
near λ = 0. The r = 0 singularity is still present in the non-linear scaling, however,
and careful analysis is necessary to determine the λ values actually sampled. Another
choice of the intermediate states is provided by

4λε

((
σ 2

r2 + (1 − λ) δ

)6

−
(

σ 2

r2 + (1 − λ) δ

)3
)

, (17-34)

or similar expressions for the Lennard-Jones part [44,46]. The r = 0 singularity is
then absent and the free-energy calculation on the basis of Eq. (17-34) is numerically
stable.

Although the free-energy perturbation and thermodynamic integration methods
are exact under a given set of potential functions in principle, they are not free from
systematic errors in practice. The systematic error most often encountered in the
free-energy perturbation method is the non-coincidence of the free-energy changes
�F calculated from the forward variation of the coupling parameter λ from 0 to
1 and the backward variation from 1 to 0. The common practice is to average the
�F from the forward and backward calculations. It is pointed out, however, that the
simple averaging is itself a source of systematic error [47]. To achieve the accuracy,
the use of Bennett’s weighting function is recommended [47,48]. In the thermody-
namic integration method, a systematic error is inevitable when the integral over λ

in Eq. (17-32) is discretized. A careful examination of discretization is necessary,
especially when the integrand of Eq. (17-32) exhibits a non-monotonic dependence
on λ and/or varies steeply over some range of λ.
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17.3.2. Distribution Functions in Solution

A molecular picture of solutions is established through distribution (correlation)
functions. Correspondingly, a molecular description of the solvation free energy can
be implemented by formulating a functional which expresses the solvation free en-
ergy in terms of only distribution functions in the solution and pure solvent systems
of interest. An approximate functional needs to be constructed in practice, however,
since the exact functional involves an infinite series of many-body distribution func-
tions [49]. The theories introduced in Sections 17.3.4 and 17.3.5 are formulated to
provide the solvation free energy with simple distribution functions in closed form.
In this section, a general description of distribution functions is provided.

The system of our interest is a dilute solution containing a single solute molecule.
Even when the solute concentration is finite, our development is valid by viewing
one of the solute molecules as the “solute” and the others as part of mixed solvent.
To describe completely the configuration of a solvent molecule relative to the solute,
the position and orientation need to be specified simultaneously. The complete set of
the position and orientation is called the full coordinate and is denoted collectively
by x. If the solute and/or solvent are flexible, the intramolecular degrees of freedom
are also incorporated into x. In the full coordinate representation, the instantaneous
distribution ρ̂ f is introduced as

ρ̂ f (x) =
∑

i

δ (x − xi ), (17-35)

where xi is the full coordinate of the ith solvent molecule and the sum is taken over
all the solvent molecules. The superscript f is attached to emphasize that Eq. (17-35)
is in the full coordinate representation. The distribution functions are generated from
the averages of products of ρ̂ f in the system of interest.

When the distribution function is generated from ρ̂ f , a multidimensional descrip-
tion is inevitable. Indeed, the full coordinate x is six-dimensional (five for linear
molecule) for rigid species and involves more for flexible species. To implement the
full coordinate representation, the expansion in terms of spherical harmonics can be
employed [13]. However, the calculation of multidimensional distribution functions
is often slow in molecular simulation and the numerical realization is not straight-
forward. When the coordinate has too “fine” information content, the corresponding
distribution function needs additional methodology for handling. Too much informa-
tion is not desirable both from the computational viewpoint (large memory and slow
convergence) and the conceptual viewpoint (unclear perception in mind).

It is then useful to reduce the information content by introducing a “projected”
coordinate. With projection, some information of x is retained, while the others are
disregarded. When the projection is implemented with respect to a function P(x), the
corresponding distribution functions are generated from the instantaneous distribu-
tion given by

∑

i

δ (p − P (xi )), (17-36)

where p is the value of P(x) and serves as the coordinate for the distribution function.
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A typical choice of P(x) is the radial distance between the atomic sites (interaction
sites) of the molecule. When a pair of atomic sites in the solute and solvent molecules
is picked up, the histogram of its radial distance is averaged with an appropriate nor-
malization to give the site–site radial distribution function. For example, when the
solute and solvent is both H2O (when one of the molecule in pure water is viewed as
the “solute” and the others as the “solvent”), the O–O, O–H, and H–H radial distribu-
tion functions are generated by the projections onto O–O, O–H, and H–H distances,
respectively. It should be noted that the radial distribution functions do not represent
a simultaneous distribution of a set of site–site radial distances. In the case of water,
the O–O radial distribution function specifies only the O–O distance and the other
distance information such as those for O–H and H–H is disregarded. Similarly, the
O–H radial distribution function does not contain explicit information about the O–O
and H–H distances. In Figure 17-4, we show the O–O and O–H radial distribution
functions of water at 1 g/cm3 and 25◦C. It is seen from the O–O radial distribution
function that the neighboring water molecules stay in the distance of ∼2.8 Å. The
O–H radial distribution function shows that the intermolecular hydrogen-bonding
distance is ∼2 Å. The second peak of the O–O radial distribution function is charac-
teristic of water. Usually, the second peak appears at about twice the distance of
the first peak. In water, the second-peak position is ∼1.6 times of the first-peak
position. This provides a view that the ice-like structure remains even in liquid
water.

Another useful distribution function is for the interaction pair energy. An example
is shown in Figure 17-5 for water at 1 g/cm3 and 25◦C. The peak at ∼–6 kcal/mol
corresponds to the intermolecular hydrogen bonding of water in the liquid state. In
the high-energy regime, the distribution function vanishes. This reflects the excluded
volume effect and is consistent with the fact that radial distribution functions vanish
at short distances.

Of course, the choice of the projecting function P(x) of Eq. (17-36) is not unique.
The choice depends on the purpose. For example, when the angle of the hydrogen

Figure 17-4. The O-O radial distribution function gOO and the O-H radial distribution function gOH as
functions of the distance r of water at 1 g/cm3 and 25◦C
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Figure 17-5. The distribution function for the pair energy of water at 1 g/cm3 and 25◦C as a function of
the energy value ε. The distribution function ρe(ε) is normalized by the bulk (number) density ρn. Note
that the graduation of the ordinate is changed at 100 Å3 mol/kcal

bonding is of interest, it is most useful to adopt the hydrogen-bonding angle itself as
P(x). In general, no a priori criterion is present for preferable projection. The desir-
able form of projection can be based only upon the target quantity to be investigated.

17.3.3. Density-Functional Theory

The solvation free energy can be evaluated using the Kirkwood charging formula
[13,42,43]. It introduces a set of intermediate states connecting the initial and final
states of the gradual insertion process of the solute; the initial and final states cor-
respond to the pure solvent system without the solute and the solution system of
interest, respectively. The free energy perturbation and thermodynamic integration
methods are based on the Kirkwood charging formula, and in principle provide the
“exact” solvation free energy under a given set of potential functions. These methods
are, however, expensive in computation and practical only to small molecules. For
the purpose of analyzing the solvation free energy on the molecular level, further-
more, it is necessary to express the solvation free energy only in terms of distribution
functions in the solution and pure solvent systems of interest. Within the framework
of the Kirkwood charging formula, the intermediate states are actually arbitrary and
are employed for the convenience of formulation and computation. They are not of
physical significance since the free energy is a state function.

A molecular description of the solvation free energy can be implemented by for-
mulating a functional which expresses the solvation free energy in terms of distri-
bution functions in the solution and pure solvent systems. The exact functional is
not useful, however, since it is an infinite series of many-body distribution functions
[49]. In practice, an approximate but accurate functional needs to be constructed
which is expressed with few-body distribution functions in closed form. When such
a functional is formulated and the distribution functions constituting the approximate
functional are readily obtained by computer simulation, the solvation free energy can
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be determined and analyzed with reasonable computational load in terms of exact
microscopic information of the systems of interest.

It is a statistical-mechanical theory of solutions to express the solvation free en-
ergy as a functional of distribution functions. Traditionally, the theory of solutions
is formulated with a diagrammatic approach [13], in which an approximation is pro-
vided in a two-step procedure. In the first step, the free energy and/or distribution
function is expanded with respect to the solute–solvent interaction potential func-
tion or its related function as an infinite, perturbation series. In the second step,
a renormalization scheme is applied; a set of functions are defined through partial
summation of the series and are employed for substitution to make the infinite series
more tractable. An approximation is typically introduced by neglecting diagrams of
ill character.

We adopt an alternative route to the distribution function theory. The approach is
based on the density-functional theory. In this approach, the change of variables is
conducted through Legendre transform from the solute–solvent interaction potential
function to the solute–solvent distribution function or the solvent density around the
solute. The (solvation) free energy is then expressed approximately by expanding
the corresponding Legendre-transformed function with respect to the distribution
function to some low order.

The target quantity of the development is the solvation free energy. The solvation
free energy �μ is the free energy change corresponding to the gradual insertion
process of the solute molecule. In �μ, only the contribution from the potential energy
is involved and the ideal (kinetic) contribution is excluded. When the intramolecular
energy of the solute is �(ψ) and the total solvent–solvent interaction energy is U(X),
�μ is expressed as

exp (−β�μ) =
∫

dψdX exp
(−β

{
� (ψ) +∑i v (ψ, xi ) + U (X)

})
∫

dψdX exp (−β {� (ψ) + U (X)}) ,

(17-37)

where X represents the solvent configuration collectively and β is the inverse of the
product of the Boltzmann constant and the temperature. A restriction of attention to
a certain set of solute intramolecular state can be made simply by the corresponding
alteration of the domain of integration over ψ .

The starting point of the density-functional treatment is the Kirkwood charging
formula. When the solute–solvent interaction potential of interest is v(x), the inter-
mediate states are described as u�(x), where � is the coupling parameter to identify
the state. When � = 0, the system is the pure solvent system and u0(x) = 0 (no solute–
solvent interaction). When λ =1, the solute interacts with the solvent at full coupling
and uλ(x) = v(x). The form of uλ(x) at 0 < � <1 is arbitrary. The Kirkwood charging
formula is an integration over the coupling parameter and is expressed as

�μ =
1∫

0

dλ

∫
dx

�uλ (x)

�λ
ρ f (x; uλ) , (17-38)
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where ρ f(x;uλ) is the ensemble average of Eq. (17-35) in the presence of the solute–
solvent interaction uλ. The superscript f means that the function is represented over
the full coordinate x. The partial integration then provides

�μ =
∫

dxv (x) ρ f (x; v) −
1∫

0

dλ

∫
dxuλ (x)

�ρ f (x; uλ)

�λ

≡
∫

dxv (x) ρ f (x) − F f
[
ρ f (x)

]
,

(17-39)

where the density-functional Ff is defined in the second equation. �μ and Ff are
related to each other with Legendre transform since the map is proved to be one-to-
one from the solute–solvent interaction potential to the distribution function [13]. An
approximation can be devised by introducing the indirect part ωf of the potential of
mean force as

ρ f
λ (x) = ρ f

0 (x) exp
(−β

(
u
(
x; ρ f

λ

)+ � f
(
x; ρ f

λ

)))
. (17-40)

Actually, the dependence is now written in terms of the distribution function ρ f
λ,

instead of the potential. This is possible due to the property of one-to-one correspon-
dence. When the solvent–solvent correlation is absent (low-density limit), ωf is zero.
In other words, all the “complicated” solvent–solvent correlations are put into ω.
Equations (17-39) and (17-40) lead exactly to

F f
[
ρ f (x)

] = kBT
∫

dx

⎡

⎣(ρ f (x) − ρ f
0 (x)

)− ρ f (x) log

(
ρ f (x)

ρ f
0 (x)

)

−β
(
ρ f (x) − ρ0 (x)

)
1∫

0

dλ� f
(
x; ρ f

λ

)
⎤

⎦

(17-41)

when uλ is taken so that ρ f
λ varies linearly against λ. Equation (17-41) is exact,

and an approximation is introduced to the λ integral of ωf. When ωf is taken to
vary linearly with λ, the HNC (hypernetted-chain) approximation is obtained. When
exp(–βωf)–1 is set to be linear, it is the PY (Percus–Yevick) approximation.

The above is the brief introduction to the density-functional theory of solu-
tions. The mathematical development is quite straightforward. The numerical im-
plementation is difficult, however, in the full coordinate representation. As noted in
Section 17.3.2, the full coordinate is multidimensional; the solute–solvent distribu-
tion is a function over high-dimensional configuration space and cannot be imple-
mented in practice. To overcome the problem of dimensionality, it is necessary to
introduce a projected coordinate. In Section 17.3.5, we introduce the energy repre-
sentation and formulate the density-functional theory in the energy representation.
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17.3.4. Radial Distribution Functions and Reference Interaction
Site Model

The method of reference interaction site model (RISM) is based on the site–site radial
distribution functions. It introduces the “direct correlation functions” as the inverses
of the correlation matrices of the site–site distance and formulates an approximate
set of integral equation for the site–site radial distribution functions by adopting
“closure” relationships between the radial distribution functions and direct corre-
lation functions [11,12,13,50,51]. Compared to the molecular simulation method,
the method of integral equation is much faster. The speed is achieved by restricting
the attention only to the radial distribution functions and adopting approximate clo-
sures. Furthermore, the solvation free energy is expressed in closed form for some
types of closure relationships [50,53]. In this case, no reference to the intermediate
states of the solute-insertion process is required and the solvation free energy can be
evaluated directly from the radial distribution functions obtained from the integral
equation. When a closed-form functional for the solvation free energy is given in
terms of distribution functions, the functional not only provides an efficient route of
computation, but also sets a basis for the molecular understanding with respect to the
distribution functions.

A drawback is present, of course, in any approximate method of solutions. Under
a given set of potential functions, the molecular simulation gives the exact distribu-
tion functions when it is done long enough. In contrast, since the closure relationship
is approximate, the radial distribution function obtained from the integral equation
method is approximate. The solvation free energy calculated from the integral equa-
tion theory has two sources of errors. One is due to the approximate nature of the po-
tential functions (force field), and the other comes from the approximation involved
in the integral equation.

The drawbacks characteristic of RISM and its variants are related to the fact that
they do not treat the whole molecule as a single unit and view a molecule as a col-
lection of interaction sites. The method is thus applicable only when the potential
function is of site–site form. As a consequence, the electronic distribution cannot be
treated in the cloud-like form as implemented in quantum theories, but needs to be
contracted into a set of point charges. In addition, the integral equation is ill behaved
unless all of the interaction sites carry the repulsive core explicitly. For example,
many of the potential functions of H2O do not assign a repulsive core at the H-site.
This is simply because the repulsive core for the O-site is large enough that other
molecules cannot come too close to the H-site. The repulsive core of the H-site is
buried in the O-site core and is not necessary to be treated explicitly at the level of
potential functions. In RISM, however, a core parameter needs to be assigned to the
H-site, too. The core parameter actually dictates the resulting solvation free energy
sensitively and acts as an adjustable parameter in the method. Another, related prob-
lem is the so-called “problem of auxiliary site”. The solution to the RISM integral
equations exhibits unphysical dependence on the presence of auxiliary sites which
simply label points in a molecule and make no contribution to the intermolecular
interaction. This type of difficulty is absent when the whole molecule is treated as a
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single unit. The difficulty arises when a molecule is treated as a collection of sites.
In RISM, the correlation between a pair of sites is described at the two-body level
for both the intramolecular and intermolecular ones. Since the sites in a molecule are
tightly bound with one another, a partial incorporation of the intramolecular corre-
lation is not desirable. This point is exemplified when the density is low. The RISM
integral equations are not exact in the limit of zero solvent density and are not useful
to evaluate the solvation free energy in a low-density fluid. It is well known in this
instance, too, that the low-density limit is given exactly when the whole molecule
is treated as a single unit [13]. Finally, since the molecular structure is an input in
the RISM approach, an additional scheme needs to be devised to deal with flexible
molecules.

In the commonly used RISM approach, the solvation free energy is often ex-
pressed in closed form in terms of radial distribution functions. An improvement of
the approach may then be possible through combination with the molecular simula-
tion; the radial distribution functions are exact under the used set of potential func-
tions when they are calculated from the molecular simulation, instead of the integral
equation. This line of approach was developed by Kast and Truong [52,53,54]. The
computational efficiency is achieved compared to the free-energy perturbation and
thermodynamic integration methods, while a particular care is mentioned to handle
the ill-conditioned correlation matrices in the range of small reciprocal vector (large
distance).

The above drawbacks of RISM and its variants are well documented since their
first formulations [11,12]. They are all related to the point that a molecule is treated
as a collection of sites. In the method of energy representation introduced next, each
of the solute and solvent molecules is taken to be a single unit as a whole, and those
drawbacks vanish.

17.3.5. Method of Energy Representation

In the method of energy representation, the projecting function P(x) of Eq. (17-36)
is taken to be the solute–solvent pair interaction energy. Figure 17-5 is an example
of the distribution function in the energy representation. To introduce the energy
representation, it is necessary to specify the solute–solvent interaction potential v
of interest. Of course, v is a function of the solute configuration ψ and the solvent
configuration x. The instantaneous distribution ρ̂e is defined as

ρ̂e (�) =
∑

i

δ (v (ψ, xi ) − �), (17-42)

where the sum is taken over the solvent molecules and a superscript e is attached to
emphasize that a function is represented over the energy coordinate. The distribution
functions in the energy representation are generated from the averages of products
of ρ̂e in the system of interest.

In the energy representation, the density-functional theory can be formulated by
restricting the set of solute–solvent interaction potentials uλ(ψ ,x) to those which are
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constant over an equienergy surface of v(ψ ,x). In this case, when the value of v(ψ ,x)
is denoted as ε, the intermediate states can be written as uλ(ε). At the end points,
u0(ε) = 0 and u1(ε) = ε since v(ψ ,x) itself is the potential function in the solution
system of interest. It is then possible to show that the Kirkwood charging formula is
given by

�μ =
1∫

0

dλ

∫
d�

�uλ (�)

�λ
ρe (�; uλ) , (17-43)

where ρe(ε;uλ) is the ensemble average of Eq. (17-42) in the presence of the solute–
solvent interaction uλ. The superscript e is attached to mean the representation over
the energy coordinate ε. The Legendre transform is also possible as

�μ =
∫

d�u1 (�) ρe (�; v) −
1∫

0

dλ

∫
d�uλ (�)

�ρe (�; uλ)

�λ

≡
∫

d��ρe (�) − Fe
[
ρe (�)

]
(17-44)

and the indirect part ωe of the potential of mean force in the energy representation
can be introduced correspondingly simply by rewriting x of Eq. (17-40) with ε as

ρe
λ (�) = ρe

0 (�) exp
(−β

(
u
(
�; ρe

λ

)+ �e
(
�; ρe

λ

)))
. (17-45)

The density-functional is then expressed exactly as

Fe
[
ρe (�)

] = kBT
∫

d�

⎡

⎣(ρe (�) − ρe
0 (�)

)− ρe (�) log

(
ρe (�)

ρe
0 (�)

)

−β
(
ρe (�) − ρe

0 (�)
)

1∫

0

dλ�e
(
�; ρe

λ

)
⎤

⎦

(17-46)

when uλ is taken so that ρe
λ varies linearly against λ. Note the parallelism of Eqs.

(17-43, 17-44, 17-45, 17-46) to Eqs. (17-38, 17-39, 17-40, 17-41). In Eqs. (17-45)
and (17-46), u and ω is written to depend on the distribution function ρe

λ, instead
of the potential uλ, by virtue of the property of one-to-one correspondence [14]. In
the energy representation, the HNC-type and PY-type approximations are obtained
by assuming the linear dependencies of ωe and exp(–βωe)–1 on �, respectively.
Although Eq. (17-41) is hard to implement due to the high dimensionality of x,
Eq. (17-46) is straightforward to handle since ε is one-dimensional.
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In the currently used version of the method of energy representation [15,16,19],
the solvation free energy �μ is approximately expressed in terms of distribution
functions constructed from ρ̂e in the solution and pure solvent systems. In our treat-
ments, the solution system refers to the system in which the solute molecule interacts
with the solvent under the solute–solvent interaction v of interest at full coupling. In
the solution, the average distribution ρe of the v value is relevant in the approximate
construction of �μ and is given by

ρe (�) = 〈ρ̂e (�)
〉
, (17-47)

where 〈· · · 〉 represents the ensemble average in the solution system of interest. On
the other hand, the pure solvent system denotes the system in which no interaction
is physically present between the solute and solvent molecules. At an instantaneous
configuration of the pure solvent system, ρ̂e is constructed by placing the solute
molecule in the system as a test particle. The average distribution ρe

0 and the correla-
tion matrix χ e

0 then appear in the approximate functional for �μ and are expressed,
respectively, as

ρe
0 (�) = 〈ρ̂e (�)

〉
0 (17-48)

and

χ e
0 (�, η) = 〈ρ̂e (�) ρ̂e (η)

〉
0 − 〈ρ̂e (�)

〉
0

〈
ρ̂e (η)

〉
0 , (17-49)

where 〈· · · 〉0 represents the ensemble average in the pure solvent system. In this
case, the solute and solvent degrees of freedom are uncoupled from each other in the
probability distribution.

An approximate functional for �μ is derived in Matubayasi et al. [15,16] and
Takahashi et al. [19]. The functional is constructed by adopting the Percus–Yevick-
type approximation in the unfavorable region of the solute–solvent interaction and
the hypernetted-chain-type approximation in the favorable region. �μ is then given
by a set of equations listed as

we (�) = −kBT log

(
ρe (�)

ρe
0 (�)

)
− �, (17-50)

we
0 (�) = −kBT

∫
dη

(
δ (� − η)

ρe
0 (�)

− (χ e
0

)−1
(�, η)

) (
ρe (η) − ρe

0 (η)
)
,

(17-51)

�μ =
∫

d� �ρe (�) − kBT
∫

d�
[(

ρe (�) − ρe
0 (�)

) − ρe (�) log

(
ρe (�)

ρe
0 (�)

)

−{� (�) F (�) + (1 − � (�)) F0 (�)} (ρe (�) − ρe
0 (�)

)]
,

(17-52)
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F (�) =

⎧
⎪⎨

⎪⎩

βwe (�) + 1 + βwe (�)

exp (−βwe (�)) − 1
(when we (�) ≤ 0)

1

2
βwe (�) (when we (�) ≥ 0)

,

(17-53)

F0 (�) =

⎧
⎪⎪⎨

⎪⎪⎩

− log
(
1 − βwe

0 (�)
)+ 1 + log

(
1 − βwe

0 (�)
)

βwe
0 (�)

(when we
0 (�) ≤ 0)

1

2
βwe

0 (�) (when we
0 (�) ≥ 0)

,

(17-54)

� (�) =
⎧
⎨

⎩

1
(
when ρe (�) ≥ ρe

0 (�)
)

1 −
(

ρe (�) − ρe
0 (�)

ρe (�) + ρe
0 (�)

)2 (
(when ρe (�) ≤ ρe

0 (�)
)
.

(17-55)

When Eqs. (17-50), (17-51), (17-52), (17-53), (17-54) and (17-55) are used to evalu-
ate the solvation free energy, the inputs are the three energy distribution functions ρe,
ρe

0, χ e
0 given by Eqs. (17-47), (17-48) and (17-49), respectively. ρe is obtained from

a simulation of the solution system of interest, and ρe
0 and χ e

0 are constructed with
a simulation of the pure solvent system. The approximate scheme provided by Eqs.
(17-47), (17-48), (17-49), (17-50), (17-51), (17-52), (17-53), (17-54), and (17-55)
does not require simulations at the intermediate states of solute insertion. It should
be noted that when the solute molecule is inserted into the pure solvent system, it
often overlaps with solvent molecules. The overlapping configurations contribute to
ρe

0 and χ e
0 at large energy coordinates and account for the excluded volume effect in

the solvation free energy.
In Figure 17-6, the approximate values of the solvation free energy �μ for typ-

ical solute molecules in solvent water are compared to the corresponding exact
values obtained from the free-energy perturbation method. The (solvent) density of
1.0 g/cm3 and the temperature of 25◦C is an ambient state, and the densities of 1.0,
0.6, and 0.2 g/cm3 at 400◦C correspond to high-, medium-, and low-density super-
critical states. The good agreement is observed between the approximate and exact
values. The agreement is particularly notable at the medium- and low-density states
of 0.6 and 0.2 g/cm3 and 400◦C. When the solute is ionic, the density at the state
of 0.2 g/cm3 and 400◦C is not yet low in the sense, for example, that the hydration
number at that state is comparable to the numbers at ambient states [55,56]. Even
in this case, our approximate procedure is effective in determining the solvation free
energy. The solvation free energies of water at 1.0 g/cm3 and 400◦C and of methanol
and ethanol at 0.6 g/cm3 and 400◦C are rather small in magnitude. These behaviors
are caused by the balance between the favorable and unfavorable contributions of
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methane ethane

water methanol

ethanol

Na+ Cl–

Figure 17-6. Comparison of the solvation free energy �μ for typical solute molecules in solvent water.
The thermodynamic state is specified by the solvent density and temperature

the solute–solvent interactions, and are well reproduced by our approximate method.
Therefore, the single functional given by Eqs. (17-50), (17-51), (17-52), (17-53),
(17-54), and (17-55) provides an accurate and efficient route to the solvation free
energy for various types of solutes over a wide range of thermodynamic conditions.

By virtue of Eq. (17-37), the average sum of the solute–solvent interaction energy
in the solution system of interest is smaller than or equal to �μ. This means that
the density-functional Fe is always non-positive for any solute–solvent distribution
function. Actually, the density functional is a measure of the “difference” between
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ρe in solution and ρe
0 in the pure solvent. It is zero only when ρe = ρe

0. The
density-functional is expected to be more negative when ρe and ρe

0 appear more
differently. The first term of Eq. (17-44) is the average sum of the solute–solvent
interaction energy in solution. It is more negative when ρe is more populated in the
low-energy region of ε. A typical behavior is, on the other hand, that ρ0 reduces
monotonically toward the low-energy tail. Thus, the first term of Eq. (17-44) is more
negative when ρe and ρe

0 are more different. This shows that the first and second
terms of Eq. (17-44) fluctuate to the same direction through the variation of ρe. It
is then expected that �μ of Eq. (17-44) converges faster in molecular simulation
than its components expressed as the first and second terms of Eq. (17-44). Indeed,
usual experience is that when (an approximate form of) Eq. (17-46) is employed,
the solvation free energy �μ converges faster than the average sum <u> of the
solute–solvent interaction energy in solution. Table 17-1 lists illustrative examples
of �μ and < u> for benzene and phenol solvated in water and n-octanol at 25◦C and
1 atm.

As seen in Eq. (17-42), each of the solute and solvent molecules is taken as a
single unit in the energy representation. The molecule is treated as a whole, while the
coordinate for the distribution functions is one-dimensional. No explicit reference is
made to the detail of the molecular structure by focusing on the interaction energy.
The following advantages then emerge in the method of energy representation.

Firstly, the method is straightforwardly applicable to molecules with intramolec-
ular flexibility. The implementation is indifferent whether the molecule is rigid or
flexible. The information of structural fluctuation of the molecule is adsorbed when
the energy coordinate is introduced by Eq. (17-42). For large molecules constituting
protein, micellar, and membrane systems, it is not allowed to neglect the molecu-
lar flexibility. In the method of energy representation, an additional and/or separate
scheme is not necessary to be formulated for large, flexible species.

Secondly, the treatment of inhomogeneous system and clusters is straightforward.
So far, the formulation does not assume the system homogeneity and the thermody-
namic limit. The application to inhomogeneous and/or finite systems is then possible
without modification. The binding of a molecule to such nanoscale structures as
protein, micelle, and membrane can be viewed as a solvation in an inhomogeneous
and finite, mixed solvent [57]. The method of energy representation can thus be a

Table 17-1. Average and standard error for �� and <u> of benzene and phenol in water and n-octanol
calculated from 100-ps MD run of the solution system and 50-ps MD run of the pure solvent system. ��

and <u> are expressed in units of kcal/mol

System Solvation free energy �μ Average sum <u> of the solute–solvent interaction

Benzene in water 0.6 ± 0.2 –15.4 ± 0.4
Phenol in water –4.9 ± 0.4 –26.6 ± 0.9
Benzene in n-octanol –5.3 ± 0.2 –13.1 ± 0.3
Phenol in n-octanol –8.4 ± 0.3 –25.0 ± 0.6
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useful approach to intermolecular correlation and association important in biological
and interface sciences.

Thirdly, an accurate treatment is possible for supercritical fluid. In supercritical
fluid, the solvent density and temperature can be varied over wide range and the
solvent effect may act as a key to control a chemical process. It is well known that
supercritical fluid can be described accurately when the whole molecule is treated as
a single unit [13]. A multidimensional representation is necessary, however, in the
usual coordinate space. By introducing the energy as the coordinate for distribution
functions, the whole molecule can be taken as a single unit with keeping the descrip-
tion one-dimensional. The approximate functional given by Eqs. (17-47), (17-48),
(17-49), (17-50), (17-51), (17-52), (17-53), (17-54), and (17-55) incorporates the
intermolecular correlation at the two-body level. The solvation free energy obtained
is then exact to second order in the solvent density. Since the method is exact in
the low-density regime, a formulation of a good approximation in the high-density
regime leads to an accurate description over a wide range of solvent density.

Finally, the combination with the QM/MM methodology can be performed. In
QM/MM calculation, the many-body effect is introduced for the solute–solvent in-
teraction and is beyond the applicability of conventional theories of solutions. In the
method of energy representation, the fluctuation of the electronic state in response
to the environment is viewed as a fluctuation of intramolecular coordinates of the
QM solute. The evaluation becomes feasible for the free energy for the many-body
effect of the electronic fluctuation. In addition, Eq. (17-42) makes no reference to the
functional form of the potential function. It refers only to the value of the potential
energy, and there is no need for deterioration or modification of the electronic-state
calculation. Thus, the treatment is possible for an arbitrary distribution of charges.
The contraction to a set of point charges is not necessary, and the effect of the diffuse
(cloud-like) nature of electronic distribution can now be determined. The detail of
the combination with the QM/MM methodology is given in Section 17.4.

17.4. COMBINATION OF THE QM/MM METHOD
WITH THE THEORY OF SOLUTIONS

In Sections 17.2 and 17.3, we have reviewed the QM/MM approach based on the
real-space grids [40,41,58,59,60,61,62] and the novel theory of solutions [14,15,16],
respectively. As has been suggested, the theory of energy representation is readily
applicable to a solute that is quantum chemically described. The present section is
devoted to the details of the methodology, referred to as QM/MM-ER, developed by
combining the QM/MM approach with the theory of energy representation [19]. The
point of the method is to divide the total solvation free energy into the contributions
due to the pairwise additive interaction between the solute and the solvent and the
residual contribution due to the electron density fluctuation. A focus will be placed
on the treatment of the many-body interaction inherent in the quantum chemical
object.
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17.4.1. Division of the Total Solvation Free Energy

In the formulation of Eq. (17-42), the solute–solvent interaction was assumed to be
pairwise additive. When the QM/MM method is employed as introduced in Section
17.2.3, the electron density of the QM solute is determined through the interaction
with a number of solvent molecules. The instantaneous electrostatic interaction be-
tween the point charges and the wavefunctions in the potential EELS is expressed as

∑

i

〈ψi | v̂pc |ψi 〉 =
∫

n(r)vpc(r)dr

=
∑

k

υ (n, xk),
(17-56)

where xk specifies the position of the kth interaction site in the MM system. From the
last equality in Eq. (17-56), it seems that the solute–solvent interaction is pairwise
additive in the QM/MM approach. However, electron density n(r) is obtained by
solving Eq. (17-19) that includes the external potential formed by the MM molecules
of which coordinates are expressed collectively as X. Therefore, n(r) depends on X
and the interaction energy of Eq. (17-56) inevitably involves many-body effect (not
pairwise additive).

With the solute–solvent interaction of Eq. (17-56), it is possible to introduce the
energy coordinate ε as the value of υ (n, xk). The one-to-one correspondence be-
tween the solute–solvent interaction and the distribution function is then valid in the
energy representation with a form similar to the one presented in the Appendix of
Matubayasi and Nakahara [16] for the solute with structural flexibility. An approx-
imate functional for the excess chemical potential can thus be developed similarly.
Our strategy to couple the QM/MM calculation with the method of energy repre-
sentation is to evaluate the major part of the excess chemical potential by freezing
the electron density at its average obtained by a QM/MM simulation and compute
separately the remaining minor contribution due to the many-body effect that gives
rise to the electron density fluctuation. The formulation is as follows.

We define the distortion energy Edist as the difference between the energy of
Eq. (17-21) and that of the isolated QM molecule E0, thus,

Edist = EQM − E0 (17-57)

Note that the sum of Eqs. (17-56), (17-57), van der Waals energy EvdW and the
isolated solute energy E0 is equivalent to EQM + EQM/MM in Eq. (17-18). Then the
excess chemical potential �μ of the QM solute can be exactly given by

exp(−β�μ) =
∫

dX exp
{−β

[
Edist + EQM/MM(n, X) + EMM(X)

]}
∫

dX exp(−βEMM(X))
,

(17-58)
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where β is the inverse of the Boltzmann constant kB multiplied by T and EMM is
the energy of MM solvent. Here, we introduce an arbitrarily chosen standard energy
Ē and electron density ñ(r) fixed at an arbitrary distribution. Then, �μ− Ē can
be decomposed into the solvation free energy �μ̄ for the QM solute with the fixed
density ñ(r) and the free energy change δμ corresponding to the density fluctuation
around the distribution of ñ(r), thus,

�μ = �μ̄ + Ē + δμ, (17-59)

where

exp (−β�μ̄) =
∫

dX exp
{−β

[
EQM/MM (ñ, X) + EMM (X)

]}
∫

dX exp (−βEMM (X))
, (17-60)

exp [−β (δμ)] =
∫

dX exp
{−β

[
Edist + EQM/MM (n, X) + EMM (X)

]}

∫
dX exp

{−β
[
Ē + EQM/MM (ñ, X) + EMM (X)

]}

=
∫

dX exp
{−β

[(
Edist − Ē

)+ EQM/MM (n, X) + EMM (X)
]}

∫
dX exp

{−β
[
EQM/MM (ñ, X) + EMM (X)

]} .

(17-61)

It is easy to see that Eqs. (17-59), (17-60), and (17-61) are equivalent to Eq. (17-58).
It must be noted that Eq. (17-60) expresses the solvation free energy of a molecule
with a pairwise additive potential, hence the theory of energy representation de-
scribed in Section 17.3.4 can be applied without any further approximations. An
appropriate choice of Ē and ñ(r) will make the contribution Ē + �μ̄ major in the
total excess chemical potential. The free energy change expressed by Eq. (17-61)
directly depends on the choice of the standard energy Ē and involves many-body
effects since the solute–solvent interaction is described by EQM/MM (n, X) at the final
state

In order to determine the optimal value of Ē , we introduce a variable φ defined
by

φ = Edist − Ē (17-62)

and consider its distributions under the solute–solvent interaction of EQM/MM (ñ, X)
and EQM/MM (n, X), respectively. Then, δμ corresponding to the density fluctuation
can be evaluated by

δμ = �Ē + δμ̃ + kBT
∫

dφP(φ) ln

(
P(φ)

P0(φ)

)

δμ̃ =
∫

dφP(φ)δv(φ)

�Ē =
∫

dφφP(φ).

(17-63)
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In Eq. (17-63), δν (φ) is the conditioned free energy change where φ = Edist − Ē
is imposed and δμ̃ can be computed by using an approximate functional introduced
in the next subsection. As a result, the total excess chemical potential �μ in Eq.
(17-59) can be rewritten as

�μ = �μ̄ + Ē + �Ē + δμ̃ + kBT
∫

dφP(φ) ln

(
P(φ)

P0(φ)

)
. (17-64)

The summation of the second and third terms of Eq. (17-64) can be simplified as
follows. Since the standard energy Ē is independent of φ, a relation

Ē + �Ē = Ē +
∫

dφ(Edist − Ē)P(φ)

=
∫

dφEdist P(φ)

(17-65)

holds exactly and the change of integral variable of Eq. (17-65) leads to

Ē + �Ē =
∫

d(Edist)Edist P
′(Edist), (17-66)

where P ′ (Edist) represents the probability distribution of Edist in the solution under
the interaction of EQM/MM (n, X). Thus, it has been proved for any choice of Ē that
Ē + �Ē is the ensemble average of the distortion energy Edist of the QM solute. An
appropriate choice of Ē is to take

Ē = 〈Edist〉 =
∫

dXEdist exp
{−β

[
Edist + EQM/MM(n, X) + EMM(X)

]}

∫
dX exp

{−β
[
Edist + EQM/MM(n, X) + EMM(X)

]} ,

(17-67)

so that �Ē in Eq. (17-66) becomes zero.
Another quantity to be determined is the frozen electron density distribution ñ(r)

that appears in Eq. (17-60). Of course, the optimal distribution ñ(r) is the one that
minimizes the contribution of the density fluctuation to the free energy change ex-
pressed by Eq. (17-61). Here, we propose to take the ensemble average of the instan-
taneous distribution n(r) that fluctuates according to the solvent molecular motion as
a most natural and practical choice of ñ(r), thus,

ñ(r) =
∫

dXn(r) exp
{−β

[
Edist + EQM/MM (n, X) + EMM (X)

]}

∫
dX exp

{−β
[
Edist + EQM/MM (n, X) + EMM (X)

]} .

(17-68)

Taking the average in the form of Eq. (17-68) is quite advantageous since it can
be obtained in the same ensemble for the computation of Ē as seen in Eq. (17-67).
That is, Ē and ñ(r) can be determined through a single QM/MM simulation, which
leads to substantial reduction of computational time.
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17.4.2. Contribution of the Many-Body Effect

Here, we present a scheme to compute δμ introduced by Eq. (17-61). We first rewrite
Eq. (17-61) as

exp [−β (δμ)] =
∫ dX exp

(−β
{[

Edist (�) − Ē
]+ EQM/MM (n, X) − EQM/MM (ñ, X)

})

× exp
{−β

[
EQM/MM (ñ, X) + EMM (X)

]}

∫
dX exp

{−β
[
EQM/MM (ñ, X) + EMM (X)

]}

=
∫ dX exp

(−β
{[

Edist (�) − Ē
]+∑i [υ (n, xi ) − υ (ñ, xi )]

})

× exp
{−β

[
EQM/MM (ñ, X) + EMM (X)

]}

∫
dX exp

{−β
[
EQM/MM (ñ, X) + EMM (X)

]} .

(17-69)

According to Eq. (17-69), the “pure solvent” refers in the computation of
δμ to the pairwise additive potential system with the solute–solvent interaction
EQM/MM (ñ, X). On the other hand, the “solution” system involves the solute–solvent
interaction EQM/MM (n, X) with the QM energy term of Edist (n) − Ē . From Eq.
(17-69), the energy coordinate to formulate δμ in the energy representation is as-
sociated with the instantaneous distribution ρ̂ (ζ ) through

ρ̂ (ζ ) =
∑

i

δ (ζ − [υ (n, xi ) − υ (ñ, xi )]). (17-70)

The development presented in Section 17.3 is not applicable to Eq. (17-69), how-
ever, due to the term of Edist (n) − Ē . To deal with this term, we resort to the scheme
given in Matubayasi and Nakahara [16].

The point of the scheme is to consider the probability distribution function for the
variable φ defined by Eq. (17-62). In the solution system, the probability distribution
P(φ) is given by

P(φ) =
∫ dXδ

(
φ − [Edist (n) − Ē

])

× exp
(−β

{[
Edist (n) − Ē

]+ EQM/MM (n, X) + EMM (X)
})

∫
dX exp

(−β
{[

Edist (n) − Ē
]+ EQM/MM (n, X) + EMM (X)

}) .

(17-71)

Similarly, the probability distribution function P0 (φ) in the pure solvent system
is written as

P0 (φ) =
∫ dXδ

(
φ − [Edist (n) − Ē

])

× exp
{−β

[
EQM/MM (ñ, X) + EMM (X)

]}

∫
dX exp

{−β
[
EQM/MM (ñ, X) + EMM (X)

]} . (17-72)

It should be noted that electron density n appearing in Eq. (17-72) is determined
by solving Eq. (17-19) under a given solvent configuration X, which is sampled
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according to the solute–solvent interaction EQM/MM (ñ, X). It is then possible to show
that

P(φ) = P0 (φ) exp {−β [φ + δν (φ) − δν]} , (17-73)

where δν (φ) is given by

exp [−βδν (φ)] =
∫

dXδ
(
φ − [Edist (n) − Ē

])
exp

(−β
{

EQM/MM (n, X) + EMM (X)
})

∫
dXδ

(
φ − [Edist (n) − Ē

])
exp

(−β
{

EQM/MM (ñ, X) + EMM (X)
})

(17-74)

Equation (17-74) shows that δν (φ) is the free energy change associated with the
variation from the pure solvent to the solution where the relation φ = Edist (n) − Ē
is imposed. From Eq. (17-73), we obtain

δμ = δμ̃ + kBT
∫

dφP(φ) ln

(
P(φ)

P0 (φ)

)

δμ̃ =
∫

dφP(φ)δν (φ) .

(17-75)

The second term of Eq. (17-75) can be computed by QM/MM simulations di-
rectly. To evaluate δμ̃, we consider the distribution function over the energy coor-
dinate ζ . Indeed, it is possible to show that the correspondence is one-to-one from
the solute–solvent interaction defined over the coordinate ζ to the resultant energy
distribution function of ζ . An approximate expression for δμ̃ can be given by a set
of equations listed as

δμ̃ = − kBT
∫

dζ
{
[ρ (ζ ) − ρ̃0 (ζ )] + β�̃ (ζ ) ρ (ζ )

− F̃ (ζ ) [ρ (ζ ) − ρ̃0 (ζ )]
}
,

(17-76)

where ρ(ζ ) is the ensemble average of ρ̂(ζ ) in the solution and

ρ̃0 (ζ ) =
∫

dφP(φ)σ̃0 (ζ ; φ), (17-77)

�̃ (ζ ) = −kBT ln

(
ρ (ζ )

ρ̃0 (ζ )

)
− ζ, (17-78)

σ̃0 (ζ ; φ) =

∫ dXδ
(
φ − [Edist (n) − Ē

])∑
i δ (ζ − [υ (n, xi ) − υ (ñ, xi )])

× exp
{−β

[
EQM/MM (ñ, X) + EMM (X)

]}

∫
dXδ

(
φ − [Edist (n) − Ē

])
exp

{−β
[
EQM/MM (ñ, X) + EMM (X)

]} ,

(17-79)
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F̃ (ζ ) =

⎧
⎪⎨

⎪⎩

β�̃ (ζ ) + 1 + β�̃ (ζ )

exp [−β�̃ (ζ )] − 1
[when �̃ (ζ ) ≤ 0]

1

2
β�̃ (ζ ) [when �̃ (ζ ) ≥ 0]

.

(17-80)

In constructing Eq. (17-80) the weight factor α given by Eq. (17-55) is simply
set to unity here. This is possible because the “excluded volume region”, where
ζ is very large, is absent in the present treatment. The correlation matrix over the
energy coordinate ζ is then not necessary to be computed. Thus, the simulation
for the pure solvent system can be shortened considerably. Eqs. (17-75), (17-76),
(17-77), (17-78), and (17-79) are actually not affected by the constant shift of the
variable φ. Thus, although Eq. (17-67) states that Ē is set to the ensemble average
of the stochastic variable Edist(n), the computation of δμ with Eqs. (17-75), (17-76),
(17-77), (17-78), (17-79), and (17-80) can be carried out simply by regarding φ as
the Edist(n) value.

In this subsection, we presented an approximate scheme to evaluate the contribu-
tion δμ of the electron density fluctuation to the excess chemical potential. Although
we saw that this contribution is minor for a QM water molecule in ambient and
supercritical water, it should emphasized that δμ can be treated quantitatively in the
method of energy representation. Actually, the treatment of the electron density fluc-
tuation is not directly possible in the PCM and RISM-SCF methods. Furthermore,
the approximate δμ is exact to second order in the solvent density and in the electron
density fluctuation. Thus, when the effect of the electron density fluctuation is weak,
the calculation of δμ is expected to be accurate.

The computational procedure for the QM/MM-ER is summarized as follows.
(P1) An ordinary QM/MM simulation is carried out to obtain the average distor-

tion energy Ē and ñ(r) which are described by Eqs. (17-67) and (17-68), respectively.
(P2) The energy distribution functions ρ0 (�), χ0(�, η), and ρ (�) for pure solvent

and solution systems are computed for the QM solute with fixed density ñ(r) to
obtain �μ̄ of Eq. (17-60) that gives major contribution to the total excess chemical
potential. Note that Ē = 〈Edist〉 as indicated by Eq. (17-67).

(P3) The effect of the electron density fluctuation can be approximately estimated
by performing additional QM/MM simulations that compute distribution functions
ρ̃0 (ζ ) and ρ (ζ ) with respect to the energy coordinate ζ = υ (n, xi )−υ (ñ, xi ). These
distribution functions are used as inputs to the approximate functional.

In practical implementation of QM/MM-ER, the procedures (P1) and (P2) would
be sufficient to compute the free energies with substantial accuracy. As was demon-
strated in the previous paper [60], delocalization of electron distribution in space
significantly affects the energetics of solvation. The effect of the electron density
fluctuation can be safely neglected when one computes the free energy differences
between reactants and products in chemical reactions in solution since the cancella-
tions of the effect will take place.
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17.5. APPLICATION OF THE QM/MM-ER APPROACH

In the previous papers, we applied QM/MM-ER to various systems to examine the
efficiency of the method [19,63,64,38,65,66]. Here, we present the results of a few
applications. At first, we employ the QM/MM-ER approach to compute solvation
free energy of a QM water molecule described by DFT in an MM water solvent
[19]. Second, the method is utilized to compute free energy change associated with
a proton transfer in glycine in aqueous solution [64]. The results are compared with
those obtained by experiments and the accuracy and efficiency of the QM/MM-ER
approach is discussed.

17.5.1. Solvation Free Energy of a Water Molecule

To examine the efficiency and the accuracy of the QM/MM-ER approach we ap-
plied it to the computation of the excess chemical potential of a QM water solute
immersed in MM water solvent. The QM/MM-ER simulations were performed for
two thermodynamic conditions of water solutions; ambient water (AW: T = 300 K,
ρ = 1.0 g/cm3) and supercritical water (SCW: T = 600 K,1 ρ = 0.3 g/cm3). The solvent
was represented by 255 water molecules of TIP4P model [67] of which reliability
is well established. The electronic structure of the QM water molecule is obtained
by KS-DFT that utilizes the real-space grid and the BLYP functional. The kinetic
energy operator in the Kohn–Sham equation was expressed by the fourth-order finite
difference method (L = 4 in Eq. (17-10)) and the effective potentials for the valence
electrons were constructed from the Kleinman–Bylander non-local pseudopotentials
(Eq. (17-6)). The Hartree potential (Eq. (17-11)) of the electron was computed by
utilizing the fast Fourier transforms (FFT). The geometry of the QM water molecule
used in the QM/MM simulation was optimized by the Gaussian 98 package by means
of DFT with the BLYP functional. The basis set used is the correlation-consistent
valence double zeta with polarization (aug-cc-pVDZ). The obtained geometrical pa-
rameter is OH = 0.975 Å, and HOH = 104.2◦. The QM solute was placed at the
center of the cubic QM cell in which 32 grids with equi-intervals were placed on
each axis. The grid spacing h of the QM cell was set at 0.287 a.u. (0.152 Å), which
corresponds to a cutoff energy of 60 a.u. The atomic core regions were reinforced by
the double grids of which spacing was set at 0.2 h. Such a QM cell was embedded in
the center of an MM simulation cell with periodic boundary conditions. The molec-
ular configurations for the solvent were sampled in NVT ensemble through molec-
ular dynamics simulations where Newtonian equations of motion for each particle
were solved by the leap-frog algorithm [42] with a time step 1.0 fs and the velocity
rescaling was used for the temperature control. For the TIP4P molecule, which is
the four-site model, the Lennard-Jones (LJ) site is placed at the O atom (σ = 3.15 Å,
ε = 0.155 kcal/mol), and the negative point charge qM is placed near the O atom and
the positive point charges qH at hydrogens (qM = –1.04, qH = 0.52 in the unit of

1 The reduced temperature of 600 K for TIP4P model is estimated as Tr = 1.07.
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elementary charge). The LJ potential between MM water molecules is given in the
form of Eq. (17-23). The long-range interaction between MM charges was calculated
by the Ewald method [68] and a cutoff distance of the LJ potential was set at half of
the box length.

The average electronic distortion energy Ē and the electron density ñ(r) given,
respectively, by Eqs. (17-67) and (17-68) were obtained by the 50-ps QM/MM sim-
ulation after 5-ps equilibration. Subsequently, the QM/MM simulation for the solute
with the electron density fixed at ñ(r) was performed to construct the energy distribu-
tion functions ρ(ε), ρ0 (ε), and χ0(ε,η) given, respectively, by Eqs (17-47), (17-48),
and (17-49); 100 and 200 ps simulations were carried out for the solution and the
pure solvent systems, respectively. We note that the energy distribution functions
were constructed for the solvent molecules of which oxygen was inside a sphere of
9 Å radius centered at the oxygen of the QM water molecule. The energy distribu-
tion functions ρ(ε), ρ0(ε) for the MM water molecules in the AW and the SCW are
presented in Figures 17-7 and 17-8, respectively. ρnp(ε) is the energy distribution
functions for the solute with non-polarized electron density (electron density at the
isolation). Note that these functions are normalized with respect to the bulk number
densities. In the solution of AW, there exists a distinct peak around –5 kcal/mol in
the energy coordinate due to the hydrogen bonding. Further, it is shown that the
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Figure 17-7. Energy distribution functions for the water molecule in ambient water (AW: T = 300 K,
ρ = 1.0 g/cm3). ρ (�), ρnp (�) are for the solution, and ρ0 (�) is for the pure solvent systems. ρnp (�) is the
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Figure 17-8 Energy distribution functions for the water molecule in the supercritical water (SCW: T =
600 K, ρ = 0.3 g/cm3). Notations are synonymous with Figure 17-7

solute polarization gives significant effect on the energy distribution functions. In
the SCW, on the other hand, the peak is smeared due to the high temperature and low
density of the solution. These distribution functions were substituted in Eq. (17-52)
to compute free energy contribution �μ̄ originating from pairwise interaction in the
solute–solvent interaction (Eq. (17-60)). The additional QM/MM simulations were
also performed to compute free energy δμ described in Eq. (17-61) due to the many-
body effect in the QM object. For the computation of δμ the energy distribution was
constructed on the energy coordinate ζ = υ (n, xi )−υ (ñ, xi ) as described in Section
17.4.2.

The results of the QM/MM-ER simulations are summarized in Table 17-2. �μ̄np

is the free energy change due to the solvation of the non-polarized solute, for which

Table 17-2. Solvation free energies of water molecule and their components computed by the QM/MM-ER
method. Units are in kcal/mol

Thermodynamic states �μ

Ē �μ̄np �μ̄pol δμ �μ �μa
exp

AW 3.5 –4.5 –4.8 –1.2 –7.0 –6.3
SCW 1.0 –2.0 –0.6 –0.9 –2.5 –2.2b

a see footnote [2]
b experimental value is taken at the same reduced temperature as the TIP4P value.
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the distribution ρnp(ε) was used. It can be readily recognized that the free energy
�μ̄np makes a major contribution both in the AW and SCW. On the contrary, the
net contribution of the electron polarization, which may be given by �μ̄pol − Ē,

makes much smaller contribution to the total solvation free energy. The free energy
changes δμ due to the electron density fluctuation of the QM solute in the AW and
the SCW were estimated as –1.2 and –0.9 kcal/mol, respectively. An attention should
be paid on the fact that the free energy δμ in the SCW almost amounts to 40% of
total solvation free energy and is comparable to that in the AW despite the fact that
the distortion energy Ē in the SCW is much smaller than that in the AW. This result
can be understood in terms of the asymmetric hydration in the SCW. Absolute of δμ

becomes larger when the instantaneous electron density n(r) in the solution deviates
largely from the average distribution ñ(r). In the SCW, due to its density fluctuation,
it often takes place that only one hydrogen atom of a solute water molecule makes a
hydrogen bond with another solvent molecule. Such an asymmetric hydration gives
rise to the deviation of n(r) from ñ(r) since the average distribution ñ(r) is always
symmetric. Thus, it has been revealed that the electron density fluctuation plays a role
in the solvation free energy especially in the SCW. As a sum of these contributions,
the total excess chemical potentials of the QM water molecules in the AW and the
SCW have been obtained as –7.0 and –2.5 kcal/mol, respectively. These values are
in excellent agreement with those determined by experiments2, indicating that the
present new method is quite efficient and sufficient in accuracy.

A rational way to examine the accuracy of the present methodology is to compare
the results with those obtained by a numerically exact method to compute free energy
change. Of course, the same levels of theory of quantum chemistry and the same
potential parameters in the MM force field must be used in the computation. Such
a calculation is possible in principle, however, it is very much costly to perform
in practice. Actually, it requires two orders of magnitude more computational cost
than the QM/MM-ER to accomplish the free energy perturbation calculation along
with the QM/MM interactions. So we bypassed to compute explicit QM/MM inter-
action by reducing the electron density ñ(r) to a set of point charges placed on the
nucleus of the solute. Assuming that the set of point charges correctly reproduces
the electrostatic field formed by ñ(r), the free energy perturbation calculation using
the point charges provides the free energy change that can be compared with the
value �μ̄np + �μ̄pol obtained by the QM/MM-ER method. The set of point charges
were optimized by the least square fittings so that they reproduce the electrostatic
potentials of ñ(r) at the sample points. We obtained the charges –0.90 and +0.45 at
oxygen and hydrogen, respectively. The free energy perturbation using these point
charges gives the value of –8.8 kcal/mol for the AW, which excellently agrees with
that given by QM/MM-ER (�μ̄np + �μ̄pol = −9.3kcal/mol).

2 The International Association for the Properties of Water and Steam, 1997, IAPWS Industrial Formula-
tion 1997 for the Thermodynamic Properties of Water and Steam, Erlangen, Germany.



496 H. Takahashi et al.

17.5.2. Free Energy Change Associated with a Proton Transfer Process

The purpose of the present work is to compute the free energy change associated
with the isomerization of glycine in aqueous solution as a benchmark test of the
QM/MM-ER method. It is well known that glycine takes a neutral form (NF) at
isolation while it takes a zwitterionic form (ZW) in the aqueous solution by a proton
translocation. There has been a lot of works both in the gas phase and in aqueous
solutions [69,70,71,72,73,74,75,76]. In general the computational error in the free
energy calculation can be considered to be proportional to the magnitude of the
solute–solvent interaction energy. The affinity of NF-glycine to the polar solvent
will be much smaller than that of ZW-glycine, hence, the computation of the free
energy change for the isomerization from NF to ZW serves as a severe test. The
results will be compared with those obtained by the SCRF (self-consistent reaction
field) calculation and the classical molecular simulations.

The free energy change δGaq for the chemical reaction in solution can be de-
scribed in terms of the reaction free energy δGgas in gas phase and the solvation free
energies of the solutes at the initial and the final state of the reaction, thus,

δGaq = δGgas + �μ (ZW) − �μ (NF) . (17-81)

In Eq. (17-81), �μ (ZW) and �μ (NF) are, respectively, the solvation free energies
of the ZW and the NF form of glycine. Since the free energy difference δGgas can be
accurately computed by a sophisticated method based on the DFT or the molecular
orbitals theory, the accuracies of the solvation free energies of the solute molecules
dominate the reliability of the free energy difference δGaq.

The geometry of glycines in the form of ZW and NF were optimized by using the
Gaussian 03 package [77] with B3LYP/aug-cc-pVDZ level of theory. The presence
of the water solvent in the optimization was mimicked by the PCM with the dielec-
tric constant ε = 78.39. The schematic illustration of the molecular structure for the
NF and ZW glycines are shown in Figures 17-9(a) and 17-9(b), respectively. Sub-
sequently the frequency analyses were performed to compute zero-point vibrational
energies and also the free energies corresponding to the vibrational and the rotational
motion of the solutes. There is no need to consider the effect of the translational
molecular motion since the reaction proceeds without any associations or fragmen-
tations. The molecular geometries we obtained are in good agreement with those
identified by Tuñón et al. [73]. The energy difference between the two structures
determined by B3LYP functional was also estimated by the CCSD(T) calculation
to examine the accuracy of the DFT calculations. The basis-set dependence of the
energetics was examined by using the valence triples basis set (aug-cc-pVTZ).

The computational details for the QM/MM simulation were almost common to
those for the simulation described in Section 17.5.1. The major change was made
in the setup of the real-space grids of the QM cell. The number of grid points for
each axis was increased to 64 from 32 where the grid spacing h was set at h =
0.152 Å. The thermodynamic condition of the MM water solvent was set at T =
300 K, ρ = 1.0 g/cm3. The LJ parameters in AMBER95 force field were employed
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(a)

(b)

Figure 17-9 Ball and stick representation of the glycine (a) in the neutral form and (b) in the zwitterionic
form. The distances are in the units of angstrom and the angles are in degrees

to describe the LJ interaction of glycine. The size and energy parameters between
unlike atoms were determined by the Lorentz–Berthelot mixing rule. Other details
for the QM/MM simulation are common to those used in the calculation shown in
the previous subsection. We refer the readers to the notation given above for further
information.

The energy differences between the ZW and the NF form of glycine in the gas
phase were computed by various methods including the molecular-orbital theory.
The energy changes δEgas, the zero-point energy change δEZPE, and the free energy
change δGvibrot associated with the molecular vibration and rotation are summarized
in Table 17-3. The vibrational and rotational free energy change gives minor con-
tribution to the energy difference between the ZW and the NF glycine, however,
the effect of the zero-point vibrational energy is not negligible. The contributions
from δGvibrot and δEZPE amount to ∼1.2 kcal/mol. In accord with the general trend,
the DFT calculation with the BLYP functional underestimates the reaction en-
ergy as compared to that with the B3LYP functional that gives the close value to
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Table 17-3. Energy and free energy differences computed by various methods between
the ZW and the NF form of glycine in the gas phase. Units are in kcal/mol

B3LYP BLYP CCSD(T)

δGvibrot EZPE Egas Egas Egas

δ(NF→ZW) 0.29 0.89 21.52 19.36 22.26

CCSD(T)/aug-cc-pVDZ calculation. Note that sum of these energies gives the free
energy change δGgas in Eq. (17-81), i.e., δG = δGgas + δGZPE + δGvibrot . Hence,
δGgas is estimated to be 22.7 kcal/mol within the framework of the DFT/B3LYP cal-
culations. The basis-set dependence of the energy difference was also examined by
employing the valence-double (aug-cc-pVDZ) and triple (aug-cc-pVTZ) exponents
for the Gaussian-type orbitals in the BLYP calculations and it was found that the
difference is only about 0.1 kcal/mol. Hence, we concluded that the valence-double
basis set is adequate in accuracy for the present application. The energy difference
δEgas between the ZW and the NF was computed as 21.3 kcal/mol by our real-space-
grid package that employs the BLYP functional. The value is exceptionally closer to
that from the B3LYP functional than the BLYP calculation by Gaussian 03. Anyway
we adopted the value of B3LYP (21.5 kcal/mol) as the energy difference in Egas.

The energy distribution functions ρ(ε), and ρ0(ε) for the solutes NF and ZW
with the electron densities ñ(r) given by Eq. (17-68) are shown in Figures 17-10
and 17-11. The energy distribution functions ρnp(ε) for the solutes at isolations are
also drawn in the figures. The energy distribution functions are normalized by the
bulk number density. A notable feature is that the peak due to the hydrogen bonding
between the solute and the solvent can be found in ρ(ε) for NF (Figure 17-10) around
ε = –7 kcal/mol. The corresponding peak for the ZW is more prominent and it shifts
to lower region of the energy coordinate (Figure 17-11). On the other hand, the peaks
of the energy distribution functions ρnp(ε) for the non-polarized solutes are located
in the region of the substantially higher energy coordinate than the distributions ρ(ε),
implying that the electronic polarization of the solute plays an essential role in the in-
termolecular interactions. Especially for the ZW, the peak becomes more pronounced
by the solute polarization which may strengthen the zwitterionic character of the
solute. Actually, the dipole moment of the ZW increases from 10.4 to 15.1 Debye by
the solute insertion to the solvent. The solvation free energies and their components
for the NF and ZW forms of glycine are summarized in Table 17-4.

Electronic deformation energy Ē defined by Eq. (17-67) for the ZW is found to
be much larger than that for the NF, which clearly corresponds to the larger induced
dipole of the ZW (change of the dipole moment by 4.7 Debye). The term �μ̄np in
Table 17-3 is the solvation free energy of the solute with the electron density fixed
at its isolation and �μ̄pol(= �μ̄ − �μ̄np) is the contribution due to the electronic
polarization. It is of interest to note that �μ̄pol is comparable to or larger than �μ̄np.
Thus, the electronic polarization greatly affects the solvation. The solute polarization,
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Figure 17-10. Energy distribution functions for glycine in neutral form (NF). ρ (�), ρnp (�) are for the
solution, and ρ0 (�) for pure solvent system. ρnp (�) is the distribution function for the QM solute with
non-polarized electron density. The distribution functions are normalized by the bulk number density
ρbulk

of course, is concomitant with the destabilization in the electronic energy. Hence, the
net polarization contribution can be estimated as the sum of Ē and �μ̄pol. The net
polarization contribution of the ZW is estimated to be –10.5 kcal/mol, while that
of the NF is –4.1 kcal/mol. The contribution of the electronic fluctuation δμ for
the ZW was computed as –4.2 kcal/mol, while that for the NF as –3.0 kcal/mol. It
was demonstrated that δμ gives non-negligible contribution to the total solvation
free energy for both molecular species as revealed for the solvation free energies
of water molecules presented in the previous section. The major contribution to the
solvation free energy is found to be given by the non-polarized solute, while the
electron polarization and the fluctuation give minor but significant contributions. As
a result, the free energy difference δGaq between the ZW and the NF was computed
as –7.8 kcal/mol according to Eq. (17-81) where the values of B3LYP calculation
was adopted for the free energy difference δGgas in the gas phase. When we take
the energy difference Egas obtained by our real-space grid package, δGaq becomes
–8.0 kcal/mol. Thus, it was demonstrated that the free energy change computed by
QM/MM-ER is in quite excellent agreement with the reported experimental values,
–7.3 or –7.7 kcal/mol [75,76]. Furthermore, the other values on energetics also show
satisfying agreement with computational or experimental data obtained by other
groups. The energy difference in the solute–solvent interaction energies between the
ZW and the NF was estimated to be –80.2 kcal/mol in the present calculation, which
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Figure 17-11. Energy distribution functions for glycine in zwitterionic form (ZW). Notations are synony-
mous with the Figure 17-10

is almost comparable to the value –77.1 kcal/mol given by other QM/MM simula-
tions [72]. Another available data determined experimentally is the heat of transfer of
glycine from gaseous state to the solution. The experimental value is �H = –19.2±1
[74], while our estimation is equal to –20.4 kcal/mol. As shown in Eq. (17-81), the
calculation of a free energy change associated with a reaction in solution is given by
the subtraction of the solvation free energies between the product and the reactant.
Hence, the computational error associated with the methodology is often cancelled
due to the subtraction procedure. In the present application, however, the product
ZW largely differs from the reactant NF in the affinity to the polar solvent molecules
and the cancellation of error is considered to be small. It should also be emphasized
that the present approach requires only the LJ parameters for the solutes and the

Table 17-4. Solvation free energies for the NF and the ZW form of glycine com-
puted by the QM/MM-ER approach. Units are in kcal/mol

Species �μ

Ē �μ̄np �μ̄pol δμ �μ

NF 9.3 –8.5 –13.4 –3.0 –15.6
ZW 21.2 –31.4 –31.7 –4.2 –46.1
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solvent as empirical parameters and requires no extra parameter tunings. Thus, the
QM/MM-ER approach was found to be efficient and accurate for the calculation of
the free energy change associated with a chemical event in aqueous solution. Addi-
tionally, we also performed the polarizable continuum model (PCM) calculations by
using the Gaussian 98 package to make comparisons. The solvation free energies for
the ZW and the NF glycine were obtained as –30.8 and –9.5 kcal/mol, respectively,
from which the reaction free energy was estimated as 1.4 kcal/mol. In this estimation
the value of 22.7 kcal/mol obtained by B3LYP calculation was adopted as the free
energy difference in the gas phase. Thus, the PCM approach, which neglects the
explicit shapes of the molecules that constitutes the solvent, gives a qualitatively
incorrect result that the NF glycine is more stable in aqueous solution than the ZW
glycine. The faithful representation of the short-range interactions such as hydrogen
bondings will be crucial in describing the solvation free energies.

Here we address the issue of the effect of the simplification in the molecular
interaction on the solvation free energy. To do this the electron density of the so-
lute is reduced to a set of point charges alloted to atomic sites. Then, the classical
Monte Carlo simulation is performed to obtain the solvation free energy of the solute
represented by a set of interaction sites. The purpose of the analysis is to examine
the effect of the diffuse nature of the electronic distribution. At first, we optimized
the point charges by the least-square fittings so that they reproduce the electrostatic
potential formed by the solute with the average electron density ñ(r). The reliability
of the optimized set of charges was assessed by comparing its dipole moment with
that of the solute with the electron density ñ(r). The dipole moment of the NF with
the density ñ(r) is 8.7 Debye and that with the point charges is 8.7 Debye, showing an
excellent agreement. Similarly the dipole moment due to the point charges of the ZW
is 15.0 Debye, which agrees well with that of the solute with the realistic electron
density (15.1 Debye). Thus, the sets of fractional charges were found to realize the
important electronic property of the solute.

By employing the sets of point charges, the energy distribution functions were
constructed through classical Monte Carlo simulations. Then the solvation free en-
ergies were computed by the method of the energy representation, which can be
directly compared to the free energy �μ̄

(= �μ̄np + �μ̄pol
)

in Table 17-3 for the NF
and the ZW. The solvation free energies �μ̄ by the point charge representation were
computed as –78.9 and –29.3 kcal/mol for the ZW and the NF, respectively. It should
be noted that the electronic distortion and the fluctuation energy cannot be deter-
mined within the framework of the classical representation without polarizability.
It is very clear that the simulations with point charge model significantly overes-
timate the solvation free energies in magnitude as compared with the QM/MM-ER
approach. The discrepancy between these methodologies is ∼16 kcal/mol for the ZW
and ∼7 kcal/mol for the NF. As a result the classical simulations give the reaction free
energy in solution as –26.9 kcal/mol. As was exhibited in Figure 17-6, the method
of the energy representation with the functional used in the present application was
found to give results that agree well with those obtained by the numerically exact
method for various solutes. Therefore, the significant discrepancy in the free energy
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change can be attributed to the artificial simplification of the electron distribution
of the solute. It is obvious that the reduced set of point charges is not adequate to
reproduce the solvation free energy and hence it sometimes leads to the significant
errors in the free energy changes associated with chemical reactions in solution.

The origin of such discrepancy noted above was investigated in terms of the radial
distribution functions (RDF) around the atoms of interest in the ZW specie. The
RDFs for oxygens of water molecules around N (see Figure 17-9) of the ZW are
presented in Figure 17-12. The peak position and the height of the RDF for the
classical simulation agree well with those given by the QM/MM simulation. This
suggests that the reduced set of fractional charges successfully reproduce the local
solvation around the cationic site (NH3-group) of ZW glycine. On the contrary, as
shown in Figure 17-13, the significant disagreement between the two approaches
appears in the RDFs for water oxygen around anionic site of glycine. O4 in carboxyl
group has a large negative charge (–0.92) in the ZW. Obviously the peak height given
by the classical simulation is erroneously emphasized as compared with the QM/MM
simulation. These observations are fully consistent with the results obtained by previ-
ous QM/MM simulations where RDFs and solute–solvent interaction energies were
studied for the solutes H2O and OH– in aqueous solution [60]. It was revealed by
the simulations that the point-charge representation can faithfully realize the RDF
generated by a QM/MM method for H2O, but it fails seriously in the simulation of the
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is for the solute with a set of point charges
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Figure 17-13. Radial distribution functions (RDFs) of the oxygen of water solvent around the oxygen in
the carboxyl group in the zwitterionic glycine (ZW). Notations are synonymous with Figure 17-12

anionic molecules. This result suggests that the excess charge on the anionic system
is delocalized in space and that the neglect of the charge volume effect will give rise
to the significant discrepancy. The source of the error in the present calculation is
common to that in the system of OH anion. The excess charge on the carboxyl group
in ZW glycine flows into space, which disables the reduced set of point charges to
reproduce soundly the detailed electrostatic field formed by the continuous electron
density. Thus, we have attributed the discrepancy of the classical simulations to the
neglect of the charge volume effect for the excess electron. The reason why the de-
viation in the NF is much smaller than in the ZW is, of course, that the NF does not
undergo significant charge polarization.
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CHAPTER 18

QUANTIFYING SOLVATION EFFECTS ON PEPTIDE
CONFORMATIONS: A QM/MM REPLICA EXCHANGE
STUDY
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Abstract: We present replica exchange molecular dynamics calculations of the conformational space
of alanine dipeptide, both in the gas phase and in water using both a classical force field
potential and several commonly used semi-empirical QM/MM Hamiltonians implemented
within the latest version of the AMBER software suite. We present results comparing the
performance of each method with experimental data for Ramachandran conformational
distributions, NMR J coupling estimates and radial distribution functions for the peptide–
solvent interactions

18.1. INTRODUCTION

Small peptides are often used as model systems in investigations of conformational
properties of biological molecules. For example, recent experimental results suggest
that the backbone preferences in proteins are already present in blocked aminoacids,
with obvious important consequences to protein folding and dynamics [1,2]. Study-
ing the conformational properties of small peptides is an outstanding experimental
and theoretical challenge, since such small and flexible systems are often better de-
scribed as ensembles of fast interconverting conformers [3]. Interactions with the
environment are very important, and results from gas-phase experiments and cal-
culations can seldom be extrapolated to the more biologically relevant condensed
phase.

From a theoretical perspective, general force fields, being designed to reproduce
the properties of large biological systems, might have difficulties in the simulation
of small molecules. On the other hand, high-level ab initio calculations are possible
only for a small number of conformations in vacuum or in the presence of implicit
solvent, and prohibitively expensive for extended molecular dynamics or explicit
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solvent simulations. One more affordable alternative resides in the application of
hybrid quantum mechanics/molecular mechanics (QM/MM) methods in which a
small part of the system (for example, the peptide) is treated quantum mechanically
while the much larger environment (solvent) is explicitly considered at the molecu-
lar mechanics level. Still, the extended conformational sampling made necessary by
the molecular flexibility of the peptide restricts this methodology to the use of fast
semi-empirical methods, which require calibration and validation.

One such small molecule, alanine dipeptide (Ace-Ala-NMe, AD, Figure 18-1) has
often been used as a model system in studies of backbone conformational equilib-
rium in proteins. It is composed of an alanine unit blocked by an acetyl group at the
N-terminus (Ace) and a N-methylamide group (NMe) at the C-terminus. A num-
ber of experimental [1,3,4,5,6,7] and theoretical [8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25], studies indicate that the potential energy surface for AD in
vacuum and in solution are considerably different: while in the gas phase the global
minimum is believed to be a C7eq structure (φ∼–83◦, ψ∼73◦) [16], it has only
recently been shown that interaction with water favors the polyproline-II (PPII, φ∼
–75◦, ψ∼150◦) conformation [3,7].

AD has also been used previously to investigate the performance of the SCC-
DFTB (self-consistent field, density functional tight binding) method both in gas
phase [13] and in solution [15]. In the present work we use alanine dipeptide as
a model to investigate the performance of the widely used semi-empirical method
PM3 [26,27], as well as the effect of two different corrections to the PM3 energy
function: the peptide correction (PC), which adds an empirical force field correction
term to improve the description of planarity in peptide bonds and the addition of
the pairwise distance-directed Gaussian (PDDG) function [28], which differentiates
between a wide range of functional groups by the addition of four new parameters per
atom. These methods will be referred to in the text as PM3, PM3PC and PDDG/PM3.

We applied replica exchange molecular dynamics (REMD) calculations for con-
formational sampling of the AD in explicit water, where the AD is treated quantum
mechanically and the water molecules classically, using the TIP3P [29] model. For
comparison purposes, the same calculation is done where the AD is treated by a
classical force field, using our recently developed AMBER ff99SB [30] parameters.

Figure 18-1. Schematic of alanine dipeptide showing the dihedral angles φ and ψ and the numbering
used in the radial distribution functions of Figure 18-5
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We compute free energy surfaces in the (φ,ψ) space, 3J(HC,HN) dipolar couplings
and radial distribution functions (RDF) which show that (1) PM3 is incapable of
reproducing the conformational distribution of alanine dipeptide; (2) the peptide
correction does not improve the results; (3) the addition of the PDDG function to
PM3 can noticeably improve the energetics and (4) none of the QM methods can
reproduce the experiment better than the classical ff99SB force field.

18.2. THEORY

18.2.1. Hybrid Quantum Mechanics–Molecular Mechanics (QM/MM)

In a QM/MM calculation [31,32], the system is partitioned into two regions: a QM
region, typically consisting of a relatively small number of atoms relevant for the
specific process being studied, and a MM region with all the remaining atoms. This
scheme has been recently implemented in the Amber Molecular Dynamics package
with support for various semi-empirical Hamiltonians [33,34]. The total Hamiltonian
(Ĥ ) for such a system is written as

Ĥ = Ĥ QM + Ĥ MM + Ĥ QM/MM, (18-1)

where Ĥ QM and Ĥ MM are the Hamiltonians for the QM and MM parts of the system,
and are calculated using either the QM method chosen or the usual force field equa-
tions, respectively. The remaining term, Ĥ QM/MM, describes the interaction between
the QM and MM parts:

Ĥ QM/MM = Ĥ QM/MM
vdW + Ĥ QM/MM

elect + Ĥ QM/MM
bonds . (18-2)

The first term on the right hand side of Eq. (18-2) represents the van der Waals
interactions between QM and MM atoms and is described classically using the same
Lennard-Jones 6–12 potential used in the classical AMBER force fields:

EQM/MM
vdW =

QM∑

α

MM∑

A

[
AαA

R12
αA

− BαA

R6
αA

]
. (18-3)

It has been shown that the use of the MM parameters in this interaction does not
introduce significant errors in the calculation [35].

The second term on the right hand side of Eq. (18-2) accounts for the electrostatic
interaction between classical and quantum zones, and depends on the specifics of the
QM implementation.

The final term in Eq. (18-2) is necessary only to describe covalent bonds that cross
the boundaries of the QM and MM subsystems. The treatment of such bonds is still
the topic of active research and, since the system of study used in this work does not
involve bonds that cross the QM/MM boundary, it will not be discussed here. For fur-
ther discussion the reader is referred to the following references [33,34,36,37,38,39].
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18.2.2. Replica Exchange Molecular Dynamics

A detailed description of the replica exchange molecular dynamics algorithm
(REMD) can be found in the papers of Sugita and Okamoto [40,41]. In REMD, N
non-interacting copies (replicas) of a system are simulated at N different thermostat
target temperatures (one each). Regular molecular dynamics is run simultaneously at
each target temperature and periodically an exchange of conformation between two
adjacent temperatures is attempted. Consider replica i at temperature Tn and replica
j at temperature Tm are attempting to exchange; the following satisfies the detailed
balance condition:

Pn(i)Pm( j)ρ(i, n → j, m) = Pm(i)Pn( j)ρ( j, m → i, n). (18-4)

Here ρ(i → j) is the transition probability between two states i and j and Pn(i)
is the population of state i at temperature n (in REMD assumed Boltzmann). If the
Metropolis criterion is applied, the exchange probability is obtained as

ρ = min
(

1, exp
{

(βm − βn)
[

E
(

q[i]
)

− E
(

q[ j]
)]})

(18-5)

where positions,momenta and temperature of one replica are denoted as
{q[i], p[i], Tn}, i, n = 1, ..., N , β = 1/kB T and E(q[i]) is the potential energy
of structure i. If the exchange between two replicas is accepted, the thermostat target
temperatures of the two replicas are swapped and the velocities are rescaled to the
new temperatures by multiplying all the old velocities by the square root of new
temperature to old temperature ratio [41]:

vnew = vold

√
Tnew

Told
. (18-6)

Upon completion of a simulation, data are collected from the appropriate tem-
perature and compiled into an ensemble average. The weighted histogram analysis
method (WHAM) [42,43,44] can also be applied to collect information from all repli-
cas in order to obtain optimal ensemble averages. REMD accelerates convergence
against regular molecular dynamics since the system is able to visit high temperature
replicas and hence traverse energy barriers easier than at lower temperatures.

18.3. COMPUTATIONAL METHOD

The protocol used for the simulations was as follows. Temperature and pressure were
controlled using the Berendsen weak coupling algorithm [45] with a coupling time
constant of 1 ps for both temperature and pressure. All long-range interactions were
calculated using the particle-mesh Ewald (PME) approach [46,47], including the
newly developed QM/MM-compatible PME implementation of Walker et al. [34].
The SHAKE algorithm [48,49] was used to constrain bonds containing hydrogen in
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both the QM and MM regions, allowing a time step of 2 fs to be used. The QM/MM
calculations used PM3, PDDG/PM3 and PM3 with peptide correction (PM3PC), and
the TIP3P [29] model for the water molecules. The van der Waals parameters from
the classical force field AMBER ff99SB [30] were used for the quantum atoms in the
interaction with the classical region. For comparison purposes, similar calculations
were performed with the AD treated classically using the AMBER force field ff99SB
[30]. All simulations were performed using a pre-release development version of
AMBER v10.0.

18.3.1. System Preparation

The system was prepared using the LEaP program (part of the AMBER pack-
age). The AD solute was placed in a box with 929 water molecules for a total of
2809 atoms, with periodic boundary conditions. After initial MM minimization, the
system was heated at constant volume to 300 K over 100 ps using a classical (ff99SB)
potential on all atoms. The system was then equilibrated at 300 K for 1 ns using the
same ff99SB potential in a constant pressure environment with a pressure target of
1 atm. The structure at the end of this classical equilibration was used as the start-
ing point for each QM simulation method. The system was further equilibrated for
100 ps, for each method independently, at 300 K and 1 atm pressure, using a QM
treatment for the alanine dipeptide. Once the necessary equilibration had been com-
pleted each respective method was run for a total of 12 ns per temperature of replica
exchange.

18.3.2. REMD of Alanine Dipeptide in Explicit Water

Thirty-two replicas were used, and exchanges were attempted every 0.2 ps (100 MD
steps). The temperatures (in K) were, respectively, 292.9, 300.0, 307.3, 314.8, 322.4,
330.3, 338.3, 346.6, 355.0, 363.6, 372.5, 381.5, 390.8, 400.3, 410.1, 420.1, 430.3,
440.8, 451.5, 462.5, 473.7, 485.2, 497.1, 509.2, 521.5, 534.2, 547.2, 560.6, 574.2,
588.2, 602.4, and 616.8, chosen to provide an exchange acceptance ratio of approxi-
mately 15%. The results shown here represent the final 10 ns from the total of 12 ns
of REMD simulations.

18.3.3. Molecular Dynamics of Alanine Dipeptide in Vacuum

The alanine dipeptide in vacuum was created with the LEaP program. After initial
minimization, the system was relaxed for 100 ps at 300.0 K using the respective QM
(or MM) method, followed by 9 ns of conventional MD at 300.0 K.

18.3.4. Free Energy Surfaces

The free energy surfaces for AD at 300 K were obtained by calculating the (nor-
malized) probability P of finding the AD in a conformation at a particular region in
(φ, ψ)-space from the REMD/MD trajectories, then converting this number to free
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energies by G = −RT ln(P), where G is the Gibbs free energy, R is the general gas
constant and T is the temperature (300 K).

18.3.5. Dipolar Couplings

Dipolar couplings for each structure were calculated by following the Karplus equa-
tion:

3 J (Hα, HN ) = A cos2(φ − 60) + B cos(φ − 60) + C, (18-7)

where φ is the angle shown in Figure 18-1, and the parameters A, B and C were
taken from five different sources in the literature [50,51,52,53,54], and the results
averaged.

18.4. RESULTS AND DISCUSSIONS

18.4.1. Molecular Dynamics of Alanine Dipeptide in Vacuum

It is currently accepted that there exist at least 6 minima in the energy surface
of AD in vacuum, denoted by C7eq, C5, C7ax, �R, L and �L, ordered from
the most to the least stable structure according to ab initio and DFT calculations
[10,13,16,23,25,55,56]. Although the relative energies change slightly, the overall
ordering does not depend on the level of theory. Table 18-1 shows the dihedral angles
and relative energies for these structures, reproduced from Vargas et al. [23]. The
geometries were optimized at the MP2/aug-cc-pVTZ level, and the relative energies
extrapolated to the complete basis set limit from a series of single-point MP2/aug-
cc-pVxZ calculations (x = D,T,Q) [23].

The free energy surfaces obtained from the MD simulations in vacuum are dis-
played in Figure 18-2. The four lowest energy minima obtained by Vargas et al.
[23] are also indicated for reference as filled circles. Note that the ab initio calcu-
lations only include enthalpy, while the results presented in Figure 18-2 represent

Table 18-1. (φ,ψ) angles and relative energies for the different minima of
alanine dipeptide, from Vargas et al. [23]. Geometries were optimized at
the MP2/aug-cc-pVDZ level and energies extrapolated to MP2/CBS limit.
Angles are in degrees and energy differences in kcal/mol relative to the C7eq

minimum

Conformer φ ψ �E

C7eq −82.6 75.8 0.00
C5 −161.1 155.5 1.39
C7ax 73.7 −53.7 2.66
δR(β2) −82.3 −9.5 3.35
�L 63.8 30.2 5.19
δL (α′) −164.7 −38.3 6.80
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Figure 18-2. Free energy surfaces of alanine dipeptide in vacuum. Relative energies are in kcal/mol

free energies generated from the replica exchange molecular dynamics trajectories.
The free energy surface from the classical calculation reproduces the position of the
global minimum well and also shows a second minimum close to the C5 position as
predicted by the MP2 calculations. This force field was derived from the ff94 force
field [57] modified specifically to reproduce relative energy differences in alanine
tetrapeptide from high-level QM calculations and so it is comforting to find it does
well for our alanine dipeptide test system. Contrary to the close agreement with
high-level ab initio data seen for the classical force field none of the semi-empirical
methods were capable of locating the C7eq global minimum. This deficiency has
been shown before for the case of PM3 [13]. In vacuum, PDDG/PM3 closely fol-
lows the PM3 free energy surface suffering from the same issue of a missing C7eq

minimum. This behavior is a manifestation of the fact that, as noted by Repasky et al.,
the parameter sets of PDDG and PM3 are very similar, and some issues that derive
from the NDDO approximations used in PM3 are maintained in PDDG, noticeably
conformer energetics [28]. The addition of the peptide correction to PM3 increases
the flexibility of the backbone as compared to PM3 and PDDG/PM3, as indicated by
the wider basin in the free energy surface, but it is still not sufficient to recover from
the PM3 limitations. The relative success of the classical force field, the sole method
used here that explicitly includes peptides in the parameterization, in reproducing
features of the high-level surface stresses the importance of an appropriate training
set for the parameterization of the methods.
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18.4.2. Replica Exchange Molecular Dynamics of Alanine Dipeptide in
Explicit Water

Experimental evidence [1,2,3,4,5,7,58] indicates that interaction with the solvent
molecules stabilize a polyproline-II (PPII, φ∼–75◦, ψ∼150◦)-type structure. The
free energy surfaces for AD in explicit water at 300 K calculated from the REMD
trajectories are shown in Figure 18-3. Only the ff99SB and PDDG/PM3 surfaces
show a global minimum on the PPII region. Although there seems to be a minimum
present around the PPII region, in PM3 and PM3PC it is not the global minimum.
This was also pointed out by Hu et al. [15] in a previous study. Notice that the back-
ground color, representing the highest value of the free energy, is a direct function
of the number of snapshots observed and does not have a physical meaning in the
context of these results.

A more direct comparison with experimental data can be achieved by calculat-
ing the average dipolar couplings from the MD ensemble. Figure 18-4 shows the
dipolar couplings calculated for the alanine dipeptide as a function of simulation
time using the Karplus relation from Eq. (18-7). Also shown is the experimental
result of 6.06 Hz obtained for the AD molecule by Avbelj et al. at pH 4.9 [1]. The
low experimental value for 3J(H�,HN) is an indication of high population of basins
with φ angle around –75◦, as present in the PPII structure. The plot shows that, in
the timescale of the simulation, all calculated dipolar couplings have converged, a
signal that sufficient sampling has been achieved. However, none of the calculations

Figure 18-3. Free energy surfaces of alanine dipeptide in water. Relative energies are in kcal/mol
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.

Figure 18-4. Dipolar couplings calculated for alanine dipeptide in water

were able to reproduce the experimental value, indicating an experimental minimum
significantly deeper than suggested by the simulations. Indeed, a combination of ex-
periment and molecular dynamics calculations has suggested that, for the case of the
alanine zwitterion in water, the relative population of the PPII basin should be higher
than 99% [3]. It is interesting to note, however, that none of semi-empirical QM
results is closer to experiment than the classical force field. The PDDG correction
significantly improves the PM3 prediction while the peptide correction apparently
has no effect in improving the prediction of dipolar couplings, in par with the results
for the free energy surfaces.

18.4.3. Radial Distribution Functions

The radial distribution functions in Figure 18-5 show the distribution of water
molecules around the carbonyl oxygens and amide hydrogens, as obtained from the
REMD trajectories. All methods show a clear hydrogen bond between the carbonyl
oxygen and water. All the QM Hamiltonians predict the H-bond at about the same
distance. This interaction is stronger, however, in the classical force field, bringing
the water molecule slightly closer (1.85 Å for ff99SB versus ∼1.95 Å for QM meth-
ods). It has been suggested that the PPII structure is favored by water molecules
bridging the one carbonyl oxygen to amide hydrogen of a close residue [7]. In this
case, two distinct bridges are possible: a “short” one, linking H2 to O2, and a longer
one bridging O1 and H3. The classical force field is the only calculation that predicts
a clear persistent H-bond between a water molecule and the amide hydrogen, which
peaks at 2.05 Å for the H2 and with a broader peak between 2.15 and 2.25 for H3.
The presence of this hydrogen bond may explain the higher success of the force field
in reproducing the experimental results.
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Figure 18-5. Radial distribution functions showing the distribution of water molecules around the alanine
dipeptide

18.5. CONCLUSIONS

This chapter highlighted the use of replica exchange molecular dynamics calcula-
tions for the investigation of the performance of the PM3, PDDG/PM3 and PM3PC
Hamiltonians as applied for the conformational equilibrium of alanine dipeptide in
the gas phase and water solution, a convenient model system for the study of biolog-
ical molecules.

The results presented here stress the importance of the training set used in
the parameterization of the methods. The semi-empirical Hamiltonians, missing
appropriate parameters in the training set, are unable to properly reproduce the con-
formational equilibria of the dipeptide, both in vacuum and in water. The PDDG
correction to the PM3 Hamiltonian improves the description of hydrogen bonds and
long-distance interactions as compared to PM3 [28], resulting in a better description
of the solution structure as compared to PM3 and PM3PC. On the other hand, the
peptide correction to PM3 is unable to noticeably improve the PM3 results. Being
parameterized to reproduce the conformational energetics of polypeptides, the classi-
cal force field ff99SB is substantially better for these types of molecules. The results
from classical calculations were closer to both high-level ab initio calculations (in
the gas phase) and experiments (in water).
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There is ongoing work in this group to implement and test other QM methods as
well, such as the more recent RM1 [59], which is a reparameterization of the AM1
Hamiltonian [60], and PM6 [61], which involves modifications to the Hamiltonian
as well as to the parameterization methods and training sets. It is expected that the
newer methods should improve the QM results.
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theory, 286, 287, 288, 289, 291
volume-fraction relation, 286
vs. classical solution model, 286

coupling of center of mass of one
molecule to another, 288

effect of internal degrees of freedom,
288

effect of molecular shape and
architecture, 290

Flory’s theory, 279, 280
Fluctuation-induced chemical reaction, 115
Fluorescence band

blue shift, 151
Fluorescence spectrum, 148, 238
Flux density vector, 202
Fock matrix, 227
Fock operator, 27
Forces

acting on particle in core region, 263
acting on QM, 262
different absolute values of QM/MM, 261
on embedded particle, 259
Hessian expressions and, 142
implementation in molecular dynamics

framework, 264

interaction between particular point charge
and QM atom, 259

on solute molecule, 141
treatment in combination with embedding,

259
Fourier transformation(s), 359, 360, 361,

461, 463
Fractional molecule, 298
Franck–Condon (FC)

non-equilibrium situation of solvent, 154
principle, 145
solvent situation, 154

Free-energy
barriers, 203, 207, 208, 210
change, 196, 199, 200, 469, 470, 471, 472
differences, 207, 208, 234
of mixing, 285
reaction surface, 196

ensemble average, 197
provided by PMM and MD simulation,

206
singlet and quintet reaction, 206

Free energy of solvation (ΔGsol )
electrostatic and non-electrostatic

components in water, 108, 109, 112
Free energy perturbation (FEP)

and thermodynamic integration methods,
469, 470, 471, 472, 475, 479

Frequency dependent absorption coefficients,
443

G
Gases in polymers, very dilute solutions of, 279
Gauge including atomic orbitals (GIAOs), 8
Gaussian charge distribution, 58, 60, 61, 468
Gaussian series of programs, 24
Generalized gradient approximation (GGA),

325, 465
Generalized self-consistent reaction field

(GSCRF), 219
Geometries of partially solvated F3CH and

OH2, and complex F3CH···OH2, 414
GEPOL cavities, 106
Gibbs free energy

change in phases difference in salvation,
286

of formations of complexes in solution
(�Gsol ), 326

interaction enthalpies for gas/liquid phases
using BLYP/SVP+sp approach, 327

Gibbs–Helmholtz relationship, 106, 108
Global salvation, 324, 329, 330, 332, 344
Global solvent effect, 332



524 Index

Gradient-corrected approximation (GGA), 175
Grand equilibrium method

solubility of gases in polystyrene, 295
GSBP partitions

advantage, 387
Gss(r), 437, 438

H
Hamiltonian

Born–Oppenheimer many-body vacuum, 351
matrix, perturbed, 192, 193, 196, 206, 210

on Born–Oppenheimer (BO) surface,
192, 193

molecular electronic, 352
operator, 5, 45, 216

perturbational potential, 257
solute molecular, 138, 139, 147
of solute system, 3
standard one-electron, 373

Hartree–Fock level
simulation, 266

Hartree term, 357
Heat of mixing, 284, 285
Helmholtz free energy

statistical mechanical expression for, 281
of system, 141
of total NVT system, 202

Heme–CO thermal dissociation, 209
Henry’s law, solubility coefficient, 292
Hessian expressions

force and, 142
mean field approximation (MFA), 142

Highest occupied molecular orbital (HOMO),
122, 177

Humic substances (HS)
organic functional groups as models for, 325

binary complexes of 2,4-
dichlorophenoxyacetic acid
(2,4-D), 329

binary complexes with acetic acid and
acetate, 325, 326

Hybrid quantum mechanical/molecular
mechanical (QM/MM) approach, 455,
457, 467

Hydrated fullerene, top of valence band of, 177
Hydration

energetics of, 425, 426
enthalpy and entropy, 107

change in non-electrostatic component,
107, 110, 111

electrostatic and non-electrostatic terms
of free energy, 103, 110

free energy, 103, 108, 109, 110

non-electrostatic components of, 107
of neutral solutes, enthalpy, 103
sites, 424, 425, 426

energetic cooperativity of imidazole,
425

thermochemical analysis of, 103, 108
non-electrostatic term, 103, 108,

110, 112
Hydrogen bonded solute–solvent clusters, 124
Hydrogen bonded systems, solvation of

biologically important H-bonds, 414
alanine and methylalanine, optimized,

416
amino acids, 409
dipeptide, 409
intermolecular H-bond energies between

dipeptide and formamide, 418
CH··O and OH··O H-bonds, 409, 410

B3LYP/6-31+G level for C7 dipeptide,
418

B3LYP interaction energies, 413
dipole variant, 410
interaction energies for complexes

combining F3CH and HOH, 412
solvation energies for F3CH··OH2, 411

cooperativity
clusters, 424
energetic cooperativity of hydration

sites of imidazole, 425
energetics of H-bonds, 410, 421
energetics of hydration, 425, 426
energetics of mean H-bonds, 423
hydration sites around imidazole

molecule, 424
interaction energies between imidazole

and pairs of water molecules, 428
interaction energies between imidazole

and water molecule, 427
MP2/6-31+G∗∗ H-bond energies, 422
one-dimensional chains, 419
pentameric chains of HOH, H2CO, and

HFCO molecules, 420
early applications of rudimentary SCRF, 409

HCOOH··NHCH2 complex, orientation
of H-bond within, 410

Hydrogen bond (HB)
biologically important, 414

amino acids, 407, 409, 415, 426
dipeptide, 389, 390, 409, 417

dipole moment of water molecule, 24, 115,
120, 124

electron binding energies, 115, 116, 122,
123, 131
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energies of F3CH··OH2 and HOH··OH2

complexes, 414
of hydroxyl groups, classification, 307
networks, 115, 116, 119, 120, 121, 127, 131

chemical reactivity in, 115, 116
Hydrogen bonding

B3LYP/SVP+sp optimized structures of
2,4-D hydrogen-bonded complexes,
331

central water molecule on, dependence of,
122, 123

charge fluctuations in, liquids, 119
computational modeling of, 322
computed complex formation energies (in

kcal/mol) for 2,4-D and 2,4-D−−, 330
defined, 273
and dipole moment of liquid water, 120
distribution per water molecule, 121
effects of heptane, DMSO and water on, 327
and electron binding energies, 122
electron binding energies of central water

molecule on, dependence of, 123
electronic density of states on, dependence

of, 123, 124
and neutral complexes, 326, 327
polarization effects and charge fluctuations,

116
Hydrogen bond networks, electronic properties

charge fluctuations and proton transfer, 124
Born–Oppenheimer molecular

dynamics, 115, 116, 124, 125, 131
dynamics of PT in phenol–water

clusters, 125
proton (deuterium) transfer and

fluctuations of HB network, 127
hydrogen bond network and electronic

properties of water, 115
and dipole moment of water, 120
electron binding energies, 115, 116

polarization effects and charge fluctuations,
115, 116, 122, 123, 131

dipole moment in liquid phase, 116, 117
in hydrogen bonding liquids, 116,

117, 119
Hydrogen bonds and solvent effects in soil

processes
binary complexes of 2,4-

dichlorophenoxyacetic acid
(2,4-D), 329

models for humic substances, 325
binary complexes with acetic acid and

acetate, 326
simulation methods,324

soil minerals and their surfaces, 333
broken clay surfaces with water and

model organic molecules, 339
2,4-D with octahedral kaolinite surface,

336
goethite surface, 321, 340, 341,

343, 344
surfaces of isolated kaolinite layer,

333

I
Ideal gas, chemical potential of, 282
INDO/CIS method

transition energies calculated with, 176
Indole, fluorescence spectrum of, 238
Infinite dilution conditions, statistical

mechanics in, 194
Interaction energy

achieving, 49
between imidazole and

pairs of water molecules, 428
water molecule, 427

related to induced dipole moments, 353
structures of H2O, HAc, Ac−, 2,4-D and

2,4-D−, adsorption, 341
Interaction tensor

dipole, 15, 353
screened dipole, 54

Interface-specific effect, 241
Intermolecular forces, theory of, 216
Internal conversion (IC), 136
Internal potential, 26
Intersystem crossing (ISC), 136, 151, 155
Intramolecular proton transfer in aqueous

malonaldehyde, 209
Intrinsic reaction coordinate (IRC), 209
Ion–water interaction

degrees of freedom in scanning, 250
Isolated kaolinite layer

hydrophilic (octahedral), 334
hydrophobic (tetrahedral), 344

J
Jacobian matrix, transformation of, 373

K
Kaolinite(s)

hydrogen-bonded interactions, 333
interaction energies of single water molecule

and monomolecular water layer, 337
interactions of 2,4-D with octahedral, 336
MD snapshot of water layer confined

between two, 337
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structural model of isolated, 334
surface interactions of, 336
two views of optimized structure of 2,4-D

interacting with octahedral surface of,
338

Kohn–Sham (KS)
determinant, 359
equation(s), 9, 384, 461, 467, 492
Hamiltonian

Fourier transformation of first-order
perturbed, 361

matrix elements, 461
operator, 9, 27, 357

effective, 357
modifications to, 358

Kohn–Sham density functional theory
(KS-DFT), 455, 456, 459

L
Lagrangian

CC/MM, 365
CC quasienergy, 369
variational, 364

Langevin dipoles, 138
Langmuir mechanism, 293
Laplace’s equation

with suitable boundary conditions, 105
LCAO approach see Linear combination of

atomic orbitals (LCAO) approach
Legendre polynomials, 26
Lennard–Jones (LJ) potentials

nonpolar solvation dynamics of dense, 314
Linear combination of atomic orbitals (LCAO)

approach, 461
Linear response theory

coupled cluster/molecular mechanics, 349
response theory, 367

density functional theory/molecular
mechanics model, 349, 356, 358

response functions, 358
molecular properties, 349, 350, 364, 376, 377
quantum mechanics and molecular

mechanics model, 351
solvated acetone, calculations on, 374

transition energy in gas phase, 375
Local density approximation (LDA), 175,

325, 460
Lorenz–Lorentz equation, 55, 66
Lowdin–Sokalski–Poirier distribution, 29

M
Macroscopic electric field

power series in, 66

Macroscopic polarization, 66, 67
Many-body polarization

density functional theory (DFT) results,
accuracy, 57

point charge, 54, 58
Markovian chain, 166
MDC-q charges for some molecules, 52
Mean field approximation (MFA)

advantage of, 138
simplifying gradient and Hessian

expressions, 142
Mean ligand residence times (MRT), 266, 269,

272, 273
Metropolis–Monte Carlo (MMC) algorithm,

231
Microsolvation, 323, 324, 329, 330,

332, 343
MidasCpp program package, 374
Minimal energy conical intersection (MECI),

143
Minimum-distance distribution function

(MDDF), 163, 168
Minimum energy pathways (MEPs), 381, 382,

397, 398, 399
Mixed quantum-classical methods, 446
MM framework

approach, problems, 382
MM molecule

electric field, 4, 353
induced dipole moment for, 353

Mode coupling theory, 314
Molecular configurations for solvated electron

polymer, 448
Molecular dispersion coefficient, 233
Molecular dynamics (MD) simulations

for calculation of phase equilibria, 294
(CP) type simulations, 253
DFT(X)/PCM, 14
methodologies for simulating liquid systems,

249
implementation of consistent embedding

in QMCF MD approach, 263
molecular mechanics, 254
quantum mechanical charge field

framework, 255
quantum mechanical/molecular

mechanical scheme, 254
quantum mechanics, 254

results of QMCF MD simulations, 265
Molecular dynamics/quantum mechanics

(MD/QM)
of water dipole moment, 117

Molecular mechanics (MM)
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advantages, 250
linear response theory, 367
treatment of environment in, 382

Molecular structures
of caffeine, theophylline, and theobromine,

436
Møller–Plesset

second-order perturbation theory (MP2), 43
MOLSIM program package, 374
Monkorst–Pack scheme, 325
Monte Carlo (MC)

cycles, 166
free energy perturbations (FEP), 108
Metropolis method, 164, 165, 166
simulations

of acetone in water
of benzophenone in water, 165
See also Molecular dynamics (MD)

simulations, 249, 387
MPE approach

parameterized expression for, 33
on reactivity focused on modifications of

frontier orbitals, 25
solvent effects on chemical/physico-chemical

properties, 24, 34
MST-PCM continuum method, 105
Mulliken analysis, wave functions, 53
Mulliken population analysis, 50
Mulliken–Sokalski–Poirier, 29
Multicentre multipole expansion (MME)

introduced error, 221
Multipole(s), 7, 23, 24, 26, 27, 28, 29, 30, 31,

32, 34, 35, 46, 47, 50, 51, 71, 74, 116,
117, 120, 138, 178, 193, 220, 221, 222,
228, 230, 358, 387, 409

Multipole expansion(s), 23, 28, 29, 30, 35, 46,
47, 138, 220, 221, 222, 230

Multipole moment expansion (MPE) solvent
continuum model

accuracy, 24
basic equations, 25
cavity definition, 27
comparison with other solvent models, 33
development, 24
distributed multipoles, 28–29
non-electrostatic contributions, 33
solvation energy convergence, 29

Multipole moments
components of, 29
energy, 27
solute’s energy, 27

“Multi-scale” methods, 381, 386

N
Nitrogen nuclear shielding(s), 9, 10, 12, 17, 18

diagonal components, and corresponding
isotropic value in pyrimidine, 17

solvent effects on, 12
of diazines, 9
and nitrogen lone pair natural

population, 12
NMR spectroscopy, 7, 408
Non-adiabatic processes, 136
Non-bonding interactions, 250
Nonelectrostatic contributions, 283
Non-electrostatic perturbation, 223, 242
Non-equilibrium conditions vs. equilibrium

conditions, 137
Non-polar SCF

effects from adding co-solvent, 440
solvation of alkaloids in SC-CO2, 435

Nonpolar solutes
blue and red shifts, 170
convergence of shift, 171
hydration effects on structure, band gap and

UV-vis spectrum of C60, 175
solvent effects on the UV-vis spectra of

benzene, 171
Non-radiation pathways

IC and ISC, 136
and solvent, 136

Non-spherical first shell coordination number,
438

Normalized non-equilibrium response function
for electron energy gap in SCA, 450

N-particle distribution function (PDF), 231
NPT ensemble simulation, 295
Nπ+ transition, 77
Nuclear magnetic shielding tensor, components

of, 8
Nuclear shieldings

of diazines, nitrogen, 9
correlation between calculated and

experimental N, 11, 12
graphical representation, 10
QM/continuum and QM/MM errors, 18

QM evaluation of NMR, 7

O
Octahedral vs. tetrahedral surfaces, 334
One-electron

interaction operator, 365
operators, effective, 365, 371, 372

CC/MM interactions, 371
ONIOM in Gaussian, 324
ONIOM method, 254
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Onsager formalism, 408
Onsager function, 412, 413, 426
Onsager’s theory, 27
O–O radial distribution function gOO and O–H

radial distribution function gOH, 474
Optical absorption spectra for solvated electron,

449
Order-N approach, 457
Orientational distribution functions (ODFs)

mutual orientation of plane normals of
aromatic rings, 302

Orientational entropy, 288
Overlapping charge distributions, energies

of, 49

P
Packing strain, 224
Para-benzoquinone (PBQ)

asymmetric solvation structures in, 235
with four water molecules, 237
potential energy involving polarizability, 238
solvation in aqueous solution, 237

Parametrization, 104, 106, 108, 172, 232, 233,
235, 350, 359, 391, 394

Particle distribution function, 217, 231, 235
Particle insertion method, 470, 471
Particle-mesh Ewald (PME) approach, 510
Pauli exclusion principle

QM/MM method of Rode, 224
Pauli principle, 48, 49, 63, 78, 215
PBQ, see Para-benzoquinone (PBQ)
PCM, see Polarizable continuum model (PCM)
Pd(II), hydration structure, 268
Periodic approach, 324
Perturbation theory, 39, 43, 45, 46, 49, 63, 68,

93, 224, 307, 324, 367
Perturbed matrix method (PMM)

basic derivations, 192
singlet and quintet reaction free-energy

surfaces, 206
Phase-isolated form, time-dependent wave

function, 368
Phenol–water clusters

proton transfer (PT) dynamics in, 116
and fluctuations of HB network, 127
ionized, 115, 116, 124, 127, 131

Phenoxyacetic acid (PAA) derivatives, 322
Phosphorescence band

blue shift, 151
energy of singlet and triplet states, 151

Phosphorescence spectrum, 135, 148
Photoacidity, 124
Photophysical/photochemical process, 136

Pierotti’s scaled particle theory, 105
Point charges, 2, 3, 4, 5, 15, 29, 30, 34, 44, 45,

49, 51, 54, 58, 59, 61, 72, 73, 92, 139,
144, 161, 179, 180, 181, 183, 186, 219,
220, 225, 253, 255, 257, 258, 259, 260,
261, 262, 263, 265, 274, 351, 374, 382,
387, 458, 467, 468, 478, 485, 486, 492,
495, 501, 502, 503

Poisson’s equation, 25
Polarizability

atomic, 42
for compounds, 56
molecular, 4, 42, 53, 71, 72, 140
solvent

damping, 222
and QMSTAT, 224, 233, 235

static, 56,
Taylor expansion of total energy in external

field, 56
of water molecules in aqueous solution, 219

Polarizable continuum model (PCM)
differences/similarities with DPM, 16
dipole moment of acetone, 181
isolated and ”solvated,” comparison, 13
iterative polarization, 183
reaction field, 15, 16, 17
of surrounding solvent, 253
See also Discrete polarizable method (DPM),

4
Polarizable force fields, 42, 43, 140, 179, 387
Polarizable model, 117, 141, 443
Polarization effects

and charge fluctuations, 116
dipole moment in liquid phase, 116, 117
in hydrogen bonding liquids, 116, 119

energy, 52, 238, 354
interaction, 4

Polar SCFs
dielectric behavior SC-water, 441
excess electrons in – equilibrium aspects,

445
excess electrons in – solvation dynamics,

449
Polymers

nonpolar solute in nonpolar solvent, 283
polar solute in polar solvent, 283

poly(vinyl alcohol) (PVA), 300, 304
PVA – hydrophilic polymer, 306

solvent effect, 307, 309
collapse dynamics, 309
in solution, 307

in solvents, solution of, 279, 280, 299, 317
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hydrogen bonding in polar polymer–
solvent mixtures, 305

mixtures of nonpolar polymers with
nonpolar solvents, 300

mixtures of polar polymers with polar
solvents, 304

solvation of oxygen atoms of poly(vinyl
alcohol), 304

solvent competition for solvation of
PVA, 306

transfer of polymer vs. globular molecule,
290

volume of, 293
Polymers solvation

classical thermodynamics of salvation, 280
collapse transition, 307, 309, 311
comparison of Flory–Huggins and classical

solution theories, 286
coupling of center of mass of a molecule

to another, 288
effect of internal degrees of freedom,

288
effect of molecular shape and

architecture, 290
computer simulations and mechanisms of

salvation, 315
concentrated solutions of polymers in

solvents, 299
dynamics of polymer collapse, 309
polymer size in solution, 307
polymer solutions, 279, 280, 284, 288, 290,

307, 313, 317
sorption of gases in polymers, 279, 292, 294

grand equilibrium method, 295
statistical mechanics of salvation, 281
time-dependent solvation response, 311

experimental methods, 312
theoretical studies, 314

Polypeptides in aqueous solution
Ace-Lala-NME, 388, 391
helix formation in ace-lalan-NME peptides

with n = 4–20, 391
‘Potential embedding’, 256
Potential energy of system, 281
Programs Turbomole, 324
Projector-augmented wave (PAW), 325
Proton transfer (PT) dynamics

in aqueous malonaldehyde, intramolecular,
209

Born–Oppenheimer molecular dynamics,
116, 124

and fluctuations of HB network, 116
ionized clusters, 125, 126, 127

in phenol–water clusters, 125
and fluctuations of HB network, 124
ionized, 115, 116, 124, 127, 131

reactions in complex environments, 397
free energy simulations using

multi-scale approaches, 399
minimum energy pathways (MEPs),

397, 398
time evolution at deuterium position

of electrostatic field, 128, 129
electrostatic field fluctuation, 129

time evolution of deuterium kinetic energy,
130

time evolution of O–D and D–O distances
between phenol oxygen and
deuterium, 126

Pseudo-potential
defined, 223
purpose in QMSTAT, 223

Pt(II)
hydration structure, 268

Push–pull ethylene derivatives, 25
PVA solvation

hydrogen bonds of hydroxyl groups,
classification, 305, 306

solvent competition for, 306
spatial extension of, 308
time evolution of the radius of gyration

of, 309
Pyrazine (1,4-diazine), 9, 10
Pyridazine (1,2-diazine)

cluster structure and corresponding PCM
cavity, 11

largest solvent effect, 12
Pyrimidine (1,3-diazine)

diagonal components, and corresponding
isotropic value, of nitrogen nuclear
shielding tensor in, 17

Q
QMCF ansatz

improvement, 267
shortcomings, 258, 259

QMCF MD approach
advantages of, 272
density functional theory, 266
hydration shells, 266, 269, 271, 273
ion formed by ‘core region’, 266, 270
ion–oxygen RDFs of Al(III) and Zn(II),

266, 267
in aqueous solution, 266

and LAXS, 274
Pd(II) and Pt(II) in aqueous solution, 268
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QM/MM to, 266, 268
Al(III), hydrated, 266
Zn(III), hydrated, 266–267

re-evaluation of hydrated ions, 265
results of simulations, 265
simulation in aqueous solution

of Hg2+
2, 271

of TiO+, 272
simulation of TiO+ in aqueous solution, 272
simulations, 247, 265, 266, 268, 269, 270,

271, 272, 273
QM/continuum

approaches, 3, 4, 6, 19
errors with respect to experiments for N

nuclear shielding of diazines, 18
polarity versus H-bond, 10
versus QM/MM, 14

‘QM core’, 256
‘QM layer’, 256
QM/MM

hybrid method, 161, 170
MD simulations

Coulombic forces and, 268
ion–oxygen RDFs of Al(III) and Zn(II)

in aqueous solution, 266, 267
methodologies, 171, 179, 180, 185, 254, 265,

274, 469, 485
Coulombic interactions between, 257,

267, 274
energy, 355
Hamiltonian in, 44
illustration of, 351
interactions between molecules and

structured environments, 350
ion-oxygen radial distribution functions,

266, 267
ion-oxygen RDFs of Al(III) and Zn(II),

266, 267
linear response function, 362
separate treatment of Coulombic

interaction, 260, 261
sequential, 185
total energy of system, 356
transition region, 257, 264, 267

polarizable, 4
nuclear shielding of diazines, 10

potential energy curves, 70
versus QM/continuum, 14
semi-empirical (SE) methods, 382, 385

QM/MM-ER approach
energy and free energy differences, 498
energy distribution functions, 458, 491, 494,

499, 501

for glycine in neutral form, 499
for glycine in zwitterionic form, 500
for water molecule in ambient water,

493
for water molecule in supercritical

water, 494
free energy change associated with proton

transfer process, 496
glycine in neutral form and zwitterionic

form, 497
radial distribution functions (RDFs), 458,

474, 478, 479, 502
solvation free energy

for NF and ZW form of glycine,
496, 500

of water molecule, 496
QM/MM methods for simulation of condensed

phase processes
methods to treat environmental effects, 385
of non-natural peptides: β and α/β-peptides,

393
gas-phase benchmark, 393
solution results, 395

proton-transfer reactions in complex
environments, 397

free energy simulations using
multi-scale approaches, 399

minimum energy pathways (MEPs), 397
SCC-DFTB

performance of, 385
small polypeptides in aqueous solution, 387

Ace-Lala-NME, 388
helix formation in ace-lalan-NME

peptides with n = 4–20, 391
QM/MM method with theory of solutions,

combination of
contribution of many-body effect, 489
division of total solvation free energy, 486

QM/MM simulations, 42, 178, 247, 261, 264,
382, 390, 391, 392, 393, 400, 402, 457,
486, 487, 490, 491, 492, 493, 494, 496,
497, 500, 502

QM/MM to
QMCF MD approach, 266, 268

Al(III), hydrated, 266
Zn(III), hydrated, 266–267

QMSTAT
advantages of, 241
applications, examples of, 234

asymmetric solvation from many-body
interactions, 237

polarization and repulsion are coupled
in some monatomic ions, 235
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solute–solvent interactions in La and Lb
excited states of indole, 238

CAS state interaction (CASSI) method, 229
compact many-state model, 218
error introduced, 221
intermolecular interactions, 219
parametrization and simulation protocol, 232

solute–solvent potentials to CASPT2
potentials, fitting, 233

purpose in pseudo-potential, 223
quantum chemical methods, 226

complete active space self-consistent
field (CASSCF) method, 229

Hartree–Fock (HF) formulation, 218
simulations with the state-based, 232

statistical mechanical method, 231
two-dimensional projection of modelled

system in, 218
using Metropolis–Monte Carlo (MMC)

algorithm, 231
using non-periodic boundary condition, 220
with water as solvent, 219

QM system
electronic electric field operator, 353
polarization energy for, 354
polarization energy interacting with MM

polarization site, 354
QM theory of chemical shielding, 8
Quantifying solvation effects on peptide

conformations
alanine dipeptide, 507, 508, 509, 511, 512,

513, 514, 515, 516
computational method, 510

dipolar couplings, 512
free energy surfaces, 511
molecular dynamics of alanine dipeptide

in vacuum, 511
REMD of alanine dipeptide in explicit

water, 511
system preparation, 511

results and discussions, 512
angles and relative energies for different

minima of alanine dipeptide, 512
dipolar couplings calculated for alanine

dipeptide in water, 515
free energy surfaces of alanine dipeptide

in vacuum, 513
free energy surfaces of alanine dipeptide

in water, 514
molecular dynamics of alanine dipeptide

in vacuum, 512
radial distribution functions, 515

replica exchange molecular dynamics of
alanine dipeptide in explicit water,
514

theory
hybrid quantum mechanics–molecular

mechanics (QM/MM), 509
replica exchange molecular dynamics,

510
Quantum calculations, 138, 139, 148, 149, 161,

162, 407, 408, 415
Quantum chemical approach, 217, 323, 455,

456, 457, 459, 461, 463, 465, 467, 469,
471, 473, 475, 477, 479, 481, 483, 485,
487, 489, 491, 493, 495, 497, 499,
501, 503

Quantum chemical approach to free energy
calculation

application of QM/MM-ER approach, 492
free energy change associated with

proton transfer process, 496
solvation free energy of water molecule,

492
combination of QM/MM method with theory

of solutions
contribution of many-body effect, 489
division of total solvation free energy,

486
real-space grid QM/MM approach, 459

hybrid quantum mechanical/molecular
mechanical (QM/MM) approach,
467

Kohn–Sham density functional theory,
459

Kohn–Sham DFT with real-space grids,
461

theory of solutions in energy representation,
469

density-functional theory, 475
distribution functions in solution, 473
free-energy perturbation and

thermodynamic integration methods,
469

method of energy representation, 479
radial distribution functions and

reference interaction site mode, 478
Quantum Hamiltonian, 161
Quantum mechanical/molecular mechanical

(QM/MM) approach, see QM/MM
Quantum mechanical (QM)

charge field framework
charge field approach, 255
electrostatic embedding and periodic

box, 257



532 Index

general electrostatic embedding scheme
for QM/MM simulations, 261

and classical subsystems, interactions
between, 352

description, 261, 269
Quantum mechanics

disadvantage, 252
linear response theory and molecular

mechanics model, 351
region surrounded by MM point charges, 258

Quasi-classical canonical partition function,141
Quasienergy

time-dependent, 368
time dependent CC, 369, 370

Quenching, 78, 81, 136, 310

R
Radial distribution function (RDF)

for aromatic groups for PS–benzene
solutions, 300, 301

between center of mass of C60 and water,
RDF(CM), 167

distribution of water molecules around
alanine dipeptide, 516

energy representation theory and reference
interaction site mode, 478

Hg(I)–oxygen and Hg(I)–hydrogen, 271
ion–oxygen

of Al(III) and Zn(II) in aqueous
solution, 266, 267

QM/MM-ER approach, 502
QM/MM methodologies

ion-oxygen, 266, 267
ion-oxygen of Al(III) and Zn(II),

266, 267
Radiationless processes, 137
Radiative and non-radiative excited state

decays, solvent effects on
de-excitation pathways in acrolein, 148

absorption spectra, 149
emission spectra, 151
non-radiative excited state decay, 152

free energy differences, 146
fundament of ASEP/MD method, 138
ground and excited state gradients, 141
on IC and ISC, inattention of – reasons, 136

Radiative decay vs. non-radiative decay
pathways, 136

Raoult’s law, 284
Reaction coordinate (RC), 192
Reaction energies, 329, 385
Reaction field

nonzero components at nitrogen nuclei in
pyrimidine, 16

Reaction kinetics
calculating, using reaction free energy, 203
diffusion equation, 201
kinetics of reactant, 208
reaction rate constants, evaluation, 203

time dependence of three chemical state
probabilities and, 203

Reaction potential(s), 2, 4, 59, 61, 70, 75, 85,
93, 139

Realistic liquid state, 248
Real-space grid approach, advantages, 462
Real-space QM cell in case of 4-CPU parallel

computation, 462
Red shift, 77, 83, 136, 150, 155, 170, 171, 176,

178, 241
Reference interaction site model (RISM)

method
drawbacks, 478, 479
radial distribution functions and, 478

Relay matrix, 52, 59
Replica exchange molecular dynamics

(REMD), 508, 510, 514
RISM/SCF

method, 138
Rototranslational configurations, 195, 196

S
SCC-DFTB

energy terms, 384
performance of, 385
total energy, 383, 385

SC-CO2, 433, 434, 435, 436, 439, 440, 441,
452

SCFs, see Supercritical fluids (SCFs)
Schrödinger equation

time-dependent
from time dependent CC wave function,

369
SCRF, see Self-consistent reaction field (SCRF)
Self-consistent charge density functional tight

binding (SCC-DFTB)
energy terms, 384

Self-consistent field (SCF) approach, 3
Self-consistent reaction field (SCRF)

model, 23, 24
Self-energy, 63, 354
Semiempirical molecular orbital (MO), 249
Semi-empirical (SE) methods, 382, 385
Sequential MC-QM method, 323
Sequential MC (SMC)/sequential MD (SMD),

44
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Sequential MD, 44, 67
Sequential QM/MM (S-QM/MM)

applications, 170
average solvent electrostatic

configuration, 183
including solute polarization, 178
nonpolar solutes, 170

disadvantage, 178
methodology, 161

description of statistical analyses, 162
solvent effects in electronic and structural

properties of solutes, 159, 160
and TDDFT QM model, 161
vs. QM/MM simulation, 160

Sequential statistical mechanics/quantum
mechanics (SM/QM), 117

Simulation protocol, 232, 265, 387
Singlet–triplet crossing (STC)

energy difference gradient vector, 143
Slater–Kirkwood

approximation, 48
expression, 64

Smoothing factor, 264
Soil(s), 321, 322, 323, 325, 326, 327, 329, 331,

333, 335, 337, 338, 340, 343, 344, 434
Soil organic material (SOM), 322
Solubility coefficient

for CO2 in PS in zero-pressure, 297
to excess chemical potentials, 293
in zero-pressure limit, 293, 297

Solute
density, 201, 281, 282
distortion energy of, 147, 150
electronic wavefunction (ψ)), 3
force on, 141
molecular Hamiltonian, 138, 139, 147, 155
polarization

and acetone, 84
Benzophenone, 182
charge distribution of acetone

equilibrated with water environment,
181

Solute–solvent clusters
hydrogen bonded, 124

Solute–solvent interactions
distributions of φ for first and second excited

states, 239
electrostatic, 110, 138, 155, 221, 283, 316
energy, 24, 27, 139, 144, 147, 150, 151, 155,

266, 315, 437, 458, 483, 484, 496,
499, 502

between the final and initial states,
difference in, 147

final expression for polarizable solvent,
147

non-vertical transition, 148
vertical transitions, 148

in excited states of indole, 238
interactions at surface – counter-acting

effects, 241
intermolecular, 103, 217
in La and Lb excited states of indole, 238
shift distributions for absorption and

fluorescence, 234, 240
Solute wave function, 229
Solvated system(s), 6, 8, 9, 10, 177, 249,

407, 408
Solvation dynamics, 312, 313, 314, 315, 316,

317, 435, 441, 449, 450
Solvation effects, importance of, 247
Solvation/embedding

strategies, 1–2
Solvation energy

convergence, 29
in MPE method, 31
speed in multipole expansion of, 30

monocentric multipole moment development,
31

Solvation enthalpy, 106, 283
See also Enthalpy, of salvation, 106, 107

Solvation free energy, 486, 492
Solvation in polymers

classical thermodynamics of salvation, 280
collapse transition, 307, 309, 311
comparison of Flory–Huggins and classical

solution theories, 286
coupling of center of mass of one

molecule to another, 288
effect of internal degrees of freedom,

288
effect of molecular shape and

architecture, 290
computer simulations and mechanisms of

salvation, 315
concentrated solutions of polymers in

solvents, 299
normalized response function, 313
polymer solutions, 284
solvent effect on

dynamics of polymer collapse, 309
polymer size in solution, 307

sorption of gases in polymers, 292
grand equilibrium method, 295
molecular simulation methods for

calculation of phase equilibria, 294
statistical mechanics of salvation, 281
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time-dependent solvation response, 311
electronic excitation, 312
experimental methods, 312
theoretical studies, 314

Solvation in supercritical fluids
non-polar SCF

effects from adding co-solvent, 440
solvation of alkaloids in SC-CO2, 435

polar SCFs
dielectric behavior SC-water, 441
excess electrons in – equilibrium

aspects, 445
excess electrons in – solvation

dynamics, 449
Solvation models for molecular properties

focussed models, 2
QM/continuum, 4
QM/MM, 3

modeling solvent effects on properties, 6
application to solvated systems: N

nuclear shieldings of diazines, 9
QM/continuum: Polarity vs. H-bond, 10
QM evaluation of NMR nuclear

shieldings, 7
QM/MM vs. QM/continuum, 14

Solvation of hydrogen bonded systems
biologically important H-bonds, 414

alanine and methylalanine, optimized,
416

amino acids, 415
dipeptide, 417
intermolecular H-bond energies between

dipeptide and formamide, 418
CH··O and OH··O H-bonds

B3LYP/6-31+G level for C7 dipeptide,
418

B3LYP interaction energies, 413
dipole variant, 410
interaction energies for complexes

combining F3CH and HOH, 412
solvation energies for F3CH··OH2, 411

cooperativity
clusters, 424
energetic cooperativity of hydration

sites of imidazole, 425
energetics of H-bonds, 410, 421
energetics of hydration, 425, 426
energetics of mean H-bonds, 423
hydration sites around imidazole

molecule, 424
interaction energies between imidazole

and pairs of water molecules, 428

interaction energies between imidazole
and water molecule, 427

MP2/6-31+G H-bond energies, 422
one-dimensional chains, 419
pentameric chains of HOH, H2CO, and

HFCO molecules, 420
early applications of rudimentary SCRF, 409

HCOOH··NHCH2 complex, orientation
of H-bond within, 410

Solvation process, 147, 280, 286, 292, 312,
469, 471

Solvation shell
and free-energy functions for caffeine–CO2

systems, 438
in terms of g(r), and gss(r), 437

Solvatochromic shifts
of absorption band of acetone, 180
of transition, 172
transition of benzene in water, 173, 174

Solvent
continuum models, 23, 407
density maps for CO2+5% ethanol, 440
dynamics, 137, 314
effects, 39, 323
influence on different geometries, 152
and relative energies of minima and crossing

points, 154
role in chemical reactions in solution, 115

Solvent distortion energy (ΔGsolv), 147
Solvent effects on properties, modeling, 6

application to solvated systems: N nuclear
shieldings of diazines, 9

QM/continuum: polarity versus
H-bond, 10

QM/MM versus QM/continuum, 14
effects of H-bonding, 12
isolated and ”solvated” PCM systems,

comparison, 13
on nitrogen nuclear shielding of diazines, 10
QM evaluation of NMR nuclear shieldings, 7

additive corrections to shielding
arising, 7

Solvent electric field, 4
Solvent electrostatic configuration, 183, 184
Solvent-induced dipole moments, 75
Solvent-induced shift, 15, 374, 375, 376, 377
Solvent models, three-way picture of, 217
Solvent perturbation operator, 220
Solvent reorganization energy, 283, 284
Solvent shells

nearest neighbor of benzene molecules and
phenyl groups, 301

Solvent shift (δ)
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magnitude of, 136
on solute embedded in polarizable solvent,

147
values and its components in kcal/mol, 150

Solvent situation
equilibrium/non-equilibrium, 154
at FC point, 154

Solvent–solute
interaction energy, 24, 27, 139, 144, 147,

150, 151, 155, 266, 315, 437, 458,
483, 484, 496, 499, 502

Solvent–solvent
interactions, 42, 161, 162, 175, 217, 220,

231, 254, 283, 284, 438, 476, 477
reorganization energy, 283, 284

Solvent structure
by RDF, 300

Sorption isotherms
for CO2 in polystyrene, 299
computing, 298

Spectra
circular dichroism spectrum of [Co(en)3]3+

in water, 83
DRF for applying, 76
n→π* transition in acetone, 76
N-(1-pyrenyl)-methyluracil-5-carboxamide-

1-aminopyrene (PAUMe), 78
visible spectrum of Fe-(PyPepS)2

−−, 81
Spectroscopical properties, MPE method for

analysis of, 24
Speedup and parallel efficiency, 465
Split valence polarization (SVP), 324
Standard self-consistent field (SCF) approach, 3
State average CASSCF (SA-CASSCF), 229
State parameters and static dielectric properties

for SPC/E water, 442
Static dielectric constant, 25
Static polarizability, 56, 233
Statistical analyses, sequential QM/MM

(S-QM/MM)
statistical correlation or statistical

inefficiency, 180
Statistical inefficiency, 159, 160, 162, 163, 165,

166, 185
Statistical mechanical method, 231
Statistical mechanical modeling of chemical

reactions
applications, 205

binding–unbinding reaction of CO in
myoglobin, 205

intramolecular proton transfer in
aqueous malonaldehyde, 209

free-energy reaction surface, 196

modeling reaction kinetics
diffusion equation, 201
evaluation of reaction rate constants,

203
PMM basic derivations, 192
statistical mechanics in infinite dilution

conditions, 194
Statistical mechanics of salvation, 281
Statistical simulations

methods, 249
molecular dynamics (MD), 249
Monte Carlo (MC) framework, 249

Steric interference, 289
Subsystem treated using DFT, energy

of, 356
Sudden polarization

biradical state, 74
tetraphenylethylene (TPE), experiments

on, 74
Supercritical fluids (SCFs)

equations, 27
non-polar SCF

effects from adding co-solvent, 440
solvation of alkaloids in SC-CO2, 435

polar SCFs
dielectric behavior SC-water, 441
excess electrons in – equilibrium

aspects, 445
excess electrons in – solvation

dynamics, 449
Supercritical water (SCW), 434, 435, 441,

492, 494
Supermatrix notation, 52
Supermolecular interactions, fitting of model

potentials to
disadvantages, 44

Supermolecular model, 41
SVP, see Split valence polarization (SVP)
Symmetrizer CC/MM, 371
Symmetry-adapted perturbation theory (SAPT),

49, 224
Systems

energy of, split into three, 141
Helmholtz free energy of, 141
interaction between two, 43
polarizability, 54

T
Tautomeric equilibrium, 90, 170, 209
Tautomeric intramolecular proton transfer

schematic picture of, 209
Taylor expansion, 56, 462
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Test-particle insertion method,
295, 317

Theophylline, molecular structures,
436

Thermochemical analysis of the hydration of
neutral solutes

enthalpy of salvation, 106
experimental data and computational details,

107
MST-PCM continuum method, 105
thermochemical analysis of hydration,

108
Thermodynamic integration methods

energy representation and free-energy
perturbation, 469

Quantum chemical approach to free
energy calculation and free-energy
perturbation, 469

Thermodynamics of solvation, classical, 280
Thole’s model, 42, 56, 72
‘Three-body’ energies, 43
Three-body interactions, 73
Three-body terms

and three-body potentials, 252
Time-resolved spectroscopy, 450
Transition energy, 13, 81, 148,

172, 375
Transition structure (TS), 25
Translational entropy, 290, 291
Turbomole methods, 324

U
UV-vis spectra

absorption, 149

of C60 in water, 175
solvent effects of formaldehyde and acetone,

180

V
Van der Waals cavity, 110, 111
Van der Waals contributions

MM/MM energy, 355
Van der Waals forces, 283, 386, 392
Van der Waals interactions, 42, 104, 283, 388,

392, 509
Van der Waals term, 106
Vapor pressure, 281, 284
VASP (program), 325
Vector (CC/MM) interactions, 371
Vertical electron affinity

of ammonia and water, 120
Vibrational relaxation, 311, 434
Volume fraction, 285

W
Water dimer

experimental radial distribution of water, 68
potential energy surface for obtained at

RHF/DZP, 70
Water–water intermolecular potential, 220
Wave function

coupled cluster
time-dependant, 367

phase-isolated, time-dependent, 368
solute, 229
time-dependent, 367

Widom’s test-particle method, 298
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