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Foreword

Elisabeth Noelle-Neumann, Professor of Communication Sciences at the University
of Mainz and Founder of the Institut fiir Demoskopie Allensbach, once declared:

“For me, statistics is the information source of the responsible. (...) The
sentence: ‘with statistics it is possible to prove anything’ serves only the com-
fortable, those who have no inclination to examine things more closely.”!

Examining things closely, engaging in exact analysis of circumstances as the ba-
sis for determining a course of action are what Ursula Gather is known for, and what
she passes on to future generations of scholars. Be it as Professor of Mathematical
Statistics and Applications in Industry at the Technical University of Dortmund, in
her role, since 2008, as Rector of the TU Dortmund, or as a member of numer-
ous leading scientific committees and institutions, she has dedicated herself to the
service of academia in Germany and abroad.

In her career, Ursula Gather has combined scientific excellence with active par-
ticipation in university self-administration. In doing so, she has never settled for the
easy path, but has constantly searched for new insights and challenges. Her exper-
tise, which ranges from complex statistical theory to applied research in the area of
process planning in forming technology as well as online monitoring in intensive
care in the medical sciences, is widely respected. Her reputation reaches far beyond
Germany’s borders and her research has been awarded prizes around the world.

It has been both a great pleasure and professionally enriching for me to have
been fortunate enough to cooperate with her across the boundaries of our respective
scientific disciplines, and I know that in this I am not alone. The success of the inter-
nationally renowned DFG Collaborative Research Centre 475 “Reduction of Com-
plexity for Multivariate Data Structures” was due in large part to Ursula Gather’s
leadership over its entire running time of 12 years (1997-2009). She has also given

L«Statistik ist fiir mich das Informationsmittel der Miindigen. (...) Der Satz: *Mit Statistik kann man
alles beweisen’ gilt nur fiir die Bequemen, die keine Lust haben, genau hinzusehen.” Quoted in:
Kiichenhoff, Helmut (2006), ’Statistik fiir Kommunikationswissenschaftler’, 2nd revised edition,
Konstanz: UVK-Verlags-Gesellschaft, p.14.
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her time and support to the DFG over many years: From 2004 until 2011, she was a
member of the Review Board Mathematics, taking on the role of chairperson from
2008 to 2011. During her years on the Review Board, she took part in more than
30 meetings, contributing to decision-making process that led to recommendations
on more than 1200 individual project proposals in the field of mathematics, totalling
applications for a combined sum of almost 200 million. Alongside individual project
proposals and applications to programmes supporting early-career researchers, as a
member of the Review Board she also played an exemplary role in the selection of
projects for the DFG’s coordinated research programmes.

Academic quality and excellence always underpin the work of Ursula Gather.
Above and beyond this, however, she possesses a clear sense of people as well as a
keen understanding of the fundamental questions at hand. The list of her achieve-
ments and organizational affiliations is long; too long to reproduce in its entirety
here. Nonetheless, her work as an academic manager should not go undocumented.
Since her appointment as Professor of Mathematical Statistics and Applications in
Industry in 1986, she has played a central role in the development of the Technical
University of Dortmund, not least as Dean of the Faculty of Statistics and later Pro-
Rector for Research. And, of course, as Rector of the University since 2008 she has
also had a very significant impact on its development. It is not least as a result of
her vision and leadership that the Technical University has come to shape the iden-
tity of Dortmund as a centre of academia and scientific research. The importance
of the Technical University for the city of Dortmund, for the region and for science
in Germany was also apparent during the General Assembly of the DFG in 2012,
during which we enjoyed the hospitality of the TU Dortmund. Ursula Gather can be
proud of what she has achieved. It will, however, be clear to everyone who knows
her and has had the pleasure of working with her that she is far from the end of her
achievements. I for one am happy to know that we can all look forward to many
further years of working with her.

Personalities like Ursula Gather drive science forward with enthusiasm, engage-
ment, inspiration and great personal dedication. Ursula, I would like, therefore, to
express my heartfelt thanks for your work, for your close cooperation in diverse
academic contexts and for your support personally over so many years. My thanks
go to you as a much respected colleague and trusted counsellor, but also as a friend.
Many congratulations and my best wishes on the occasion of your sixtieth birthday!

Bonn, Germany Matthias Kleiner
November 2012 President of the German
Research Foundation



Preface

Our journey towards this Festschrift started when realizing that our teacher, mentor,
and friend Ursula Gather was going to celebrate her 60th birthday soon. As a re-
searcher, lecturer, scientific advisor, board member, reviewer, editor, Ursula has had
a wide impact on Statistics in Germany and within the international community.
So we came up with the idea of following the good academic tradition of dedicat-
ing a Festschrift to her. We aimed at contributions from highly recognized fellow
researchers, former students and project partners from various periods of Ursula’s
academic career, covering a wide variety of topics from her main research interests.
We received very positive responses, and all contributors were very much delighted
to express their gratitude and sympathy to Ursula in this way. And here we are to-
day, presenting this interesting collection, divided into three main topics which are
representatives of her research areas.

Starting from questions on outliers and extreme value theory, Ursula’s research
interests spread out to cover robust methods—from Ph.D. through habilitation up
to leading her own scholars to this field, including us, robust and nonparametric
methods for high-dimensional data and time series—particularly within the collab-
orative research center SFB 475 “Reduction of Complexity in Multivariate Data
Structures”, up to investigating complex data structures—manifesting in projects
in the research centers SFB 475 and SFB 823 “Statistical Modelling of Nonlinear
Dynamic Processes”.

The three parts of this book are arranged according to these general topics. All
contributions aim at providing an insight into the research field by easy-to-read in-
troductions to the various themes. In the first part, contributions range from robust
estimation of location and scatter, over breakdown points, outlier definition and
identification, up to robustness for non-standard multivariate data structures. The
second part covers regression scenarios as well as various aspects of time series
analysis like change point detection and signal extraction, robust estimation, and
outlier detection. Finally, the analysis of complex data structures is treated. Support
vector machines, machine learning, and data mining show the link to ideas from
information science. The (lack of) relation between correlation analysis and tail
dependence or diversification effects in financial crisis is clarified. Measures of sta-

vii



viii Preface

tistical evidence are introduced, complex data structures are uncovered by graphical
models, a data mining approach on pharmacoepidemiological databases is analyzed
and meta analysis in clinical trials has to deal with complex combination of separate
studies.

We are grateful to the authors for their positive response and easy cooperation at
the various steps of developing the book. Without all of you, this would not have
been possible. We apologize to all colleagues we did not contact as our selection
is of course strongly biased by our own experiences and memories. We hope that
you enjoy reading this Festschrift nonetheless. Our special thanks go to Matthias
Borowski at TU Dortmund University for supporting the genesis of this work with
patient help in all questions of the editing process and his invaluable support in
preparing the final document, and to Alice Blanck at Springer for encouraging us to
go on this wonderful adventure and for helping us finishing it. Our biggest thanks
of course go to Ursula, who introduced us to these fascinating research fields and
the wonderful people who have contributed to this Festschrift. Without you, Ursula,
none of this would have been possible!

Halle and Dortmund, Germany Claudia Becker
April 2013 Roland Fried
Sonja Kuhnt
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Chapter 1
Multivariate Median

Hannu Oja

1.1 Introduction

Multivariate medians are robust competitors of the mean vector in estimating the
symmetry center of a multivariate distribution. Various definitions of multivariate
medians have been proposed in the literature, and their properties (efficiency, equiv-
ariance, robustness, computational convenience, estimation of their accuracy, etc.)
have been extensively investigated. The univariate median as well as the univariate
concepts of sign and rank are based on the ordering of the univariate observations.
Unfortunately, there is no natural ordering of multivariate data points. An approach
utilizing L objective functions is therefore often used to extend these concepts to
the multivariate case. In this paper, we consider three multivariate extensions of
the median, the vector of marginal medians, the spatial median, and the Oja me-
dian, based on three different multivariate L objective functions, and review their
statistical properties as found in the literature. For other reviews of the multivari-
ate median, see Small (1990), Chaudhuri and Sengupta (1993), Niinimaa and Oja
(1999), Dhar and Chauduri (2011).

A brief outline of the contents of this chapter is as follows. We trace the ideas in
the univariate case. Therefore, in Sect. 1.2 we review the univariate concepts of sign
and rank with corresponding tests and the univariate median with possible criterion
functions for its definition. The first extension based on the so called Manhattan dis-
tance is the vector of marginal medians, and its properties are discussed in Sect. 1.3.
The use of the Euclidean distance in Sect. 1.4 determines the spatial median and,
finally in Sect. 1.5, the sum of the volumes of the simplices based on data points
are used to build the objective function for the multivariate Oja median. The statis-
tical properties of these three extensions of the median are carefully reviewed and
comparisons are made between them. The chapter ends with a short conclusion in
Sect. 1.7.

H. Oja (X))
Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
e-mail: hannu.oja@utu.fi

C. Becker et al. (eds.), Robustness and Complex Data Structures, 3
DOI 10.1007/978-3-642-35494-6_1, © Springer-Verlag Berlin Heidelberg 2013
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4 H. Oja
1.2 Univariate Median

Letx = (xy, ..., X;)’ be arandom sample from a univariate distribution with cumu-
lative distribution function F. The median functional 7 (F) and the corresponding
sample statistic T (x) = T (F;) can be defined in several ways. Some possible defi-
nitions for the univariate median follow.

1. The median functional is defined as
T(F) =inf{x F(x) > %}
2. The median T (F) maximizes the function
t = min{P(x; <1), P(x; > 1)} =min{F (1), 1 — F(t—)}.
3. The median T (F') maximizes the function
t— P(min{xl, X2} <t <max{x, xz}) = 2F(t)(1 — F(t—)).
4. The median 7T (F) minimizes
E(lx;—t]) or D(t)=E{lx; —t| — |xi]}.

Note that, as [|x; — #] — |x1]| < |#[, the expectation in the definition of D(¢)
always exists.
5. The median T (F') solves the estimation equation

E[S(x1 —1]=0,

where S(¢) is the univariate sign function

+1, ifr>0,
St =140, ifr=0,
1, ifr<0.

Different definitions of the population median 7' (F) listed above all yield the
same unique value p for a distribution F' with a bounded and continuous density
f(w) at u. For the objective function D(¢), it is then true that

_ 8. Con) with § —
D) =D + 5t = +o((t—w)?) withd =21 (w).

The sample median i is associated with the univariate sign test based on the sign
function S(¢). Starting from the univariate sign function, the univariate (centered)
rank function is defined as

R 1 <&
R(t) = - Zsa —x).
i=1

Notf: that ﬁ(t) € [—1, 1] and that the estimating equation for the sample median
is R(f1) = 0. The sign test statistic for testing the null hypothesis Hy : u = 0 is
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R(0). The test statistic is strictly and asymptotically distribution-free, as for the true
median wu,
R(u) +1
n —_—_—
2

One can also show that

1 .
Bin<n, E)’ and /nR(n) —4 N(O,1).

A=p+8""R(w) +op(n'?),
where § =2 f(u), and, consequently,
Vi =) —a Np(0,672).

Computation When applied to the sample cdf F,,, different definitions above
yield different and not necessarily unique solutions. The sample median ft, which is
an estimate of the population median 7' (F) = u, is then usually defined as follows.
First, let x(1), ..., x(») be the ordered observations. (Note that in the multivariate
case there is no natural ordering of the data points.) The sample median is then

o X[m+1)/2) T X[(m+2)/2]
n= 3 ,

where [¢] denotes the integer part of 7.

Robustness It is well known that the median is a highly robust estimate with the
asymptotic breakdown point 1/2 and the bounded influence function IF(x; T, F) =
§71S(x — T(F)).

Asymptotic Efficiency If the distribution F has a finite second moment o2, then
the sample mean x = % Y, xi, that estimates the population mean p = E(x;), has
a limiting normal distribution, and

Jn(E — ) — N(0,02).

For symmetric F, the asymptotic relative efficiency (ARE) between the sample me-
dian and sample mean is then defined as the ratio of the limiting variances

ARE =4 f2(u)o>.

If F is the normal distribution N (u, 02), this ARE = 0.64 is small. However, for
heavy-tailed distributions, the asymptotic efficiency of the median is better; AREs
for a ¢-distribution with 3 degrees of freedom and for a Laplace distribution are, for
example, 1.62 and 2.

Estimation of the Variance of the Estimate Estimation of § =2 f () from the
data is difficult. For a discussion, see Example 1.5.5 in Hettmansperger and McKean
(1998) and Oja (1999). It is, however, remarkable that by inverting the sign test, it is
possible to obtain strictly distribution-free confidence intervals for w. This follows
as, for a continuous distribution F,

MR 1\ ()
P(X(i)<ﬂ<x(n+1i))=P<l§f§n—l>=Z )27

j=i
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Equivariance For a location functional, one hopes that the functional is equivari-
ant under linear transformations, that is,

T(Fyx+p)=aT(Fy)+b, forallaandb.

This is true for the median functional in the family of distributions with bounded and
continuous derivative at the median. Note also that the median is in fact equivariant
under much larger sets of transformations. If g(x) is any strictly monotone function,
then T (Fy(x)) = g(T (Fx)).

Location M-estimates The sample median is a member of the family of
M-estimates. Assume for a moment that x = (xq,...,x,) is a random sample
from a continuous distribution with density function f(x — @), where f(x) is
symmetric around zero. Assume also that the derivative function f/(x) exists,
and write [(x) = f’(x)/f (x) for a location score function. The so called location
M-functionals T (F) are often defined as u that minimizes

D(1)=E(p(x —1))
with some function p(#), or solves the estimating equation
R(w)=E(y(x — ) =0,

for an odd smooth function ¥ (t) = p’(¢). The so called M-test statistic for testing
Hp : n = 0 satisfies

1 < :
N ; Y (x;) —a NO,w) withw=E(y>(x — p)).
The M-estimate i = T (F},) solves the estimating equation
l n
=~ Y@ =) =0
s

and, under general assumptions,
V(= 1) =a Np(0, 0/8%),

where the constant § is, depending on the properties of function p(¢) and ¥ () and
density f(z) of z=x; — u, given by

§=D"(n), or §=R'(n),
or
S=E(¥'(2), or §=E(V(Ix),

or

5=/p(z)f”(z), or 5=/¢(Z)f’(Z)-

Note that the choice ¥ (x) =I(x) yields the maximum likelihood estimate with the
smallest possible limiting variance. The mean and median are the ML-estimates for
the normal distribution (¢ () = ¢) and for the double-exponential (Laplace) distri-
bution (v (¢) = S(t)), respectively.
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Other Families of Location Estimates Note also that the median is also a limit-
ing case in the set of trimmed means

Ty (F) = E(x IQF,a <x SCIF,I—oz):

where gr o is the a-quantile of F satisfying F(gr,q) = «. The so called Ly func-
tionals minimize

E(lxi—1]%), 1<a=<2,

with the mean (« = 2) and the median (o = 1) as special cases.

1.3 Vector of Marginal Medians

Our first extension of the median to the multivariate case is straightforward: It is
simply the vector of marginal medians. Let now X = (xy, ..., X;) be a random
sample from a p-variate distribution with cumulative distribution function F, and
assume that the p marginal distribution have bounded densities f1(u1), ..., fp(p)
at the uniquely defined marginal medians jt1, ..., up. Write = (i1, ..., up)" for
the vector of marginal medians.
The vector of marginal sample medians T(X) minimizes the criterion function
which is the sum of componentwise distances (Manhattan distance)
1 n
Dy® == {(Ixin =t 4+ lxip = 1pl) = (lxanl + -+ xip]) .
i=1
The corresponding population functional T (F’) for the vector of population medians
then minimizes

D) =E{(lx1 —t1| 4+ |xp — tp]) = (Ix1] 4+ - + |x, ) }-

Now we obtain
1 !
D) =D(u) + 5 (t—w'Alt— ) +o(lt— nll?),

where A is a diagonal matrix with diagonal elements 2 f1(w1), ..., 2 fp (i p).
Multivariate sign and rank functions are now given as

S(r1) . 1
Sty=1{ ... and R(t) = —Zs(t—xi),
S(ty) "o

where S(¢) is the univariate sign function. Note that ﬁ(t) e[—1,117. The multi-
variate sign test for testing the null hypothesis Hp : u = 0 is based on R(0). The
marginal distributions of ﬁ(ﬂ) are distribution-free but, unfortunately, the joint dis-
tribution of the components of R(x) depends on the dependence structure of the
components of Xx;, and, consequently,

VAR(1) —a Ny (0, 2),
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where 2 = Cov(S(x — )). As again,
A=pn+ AR+ op(n~'1?),
we get

Vi —p) —a Np(0, A7 2A71).

For the estimate, and its properties See, for example, Puri and Sen (1971), Babu and
Rao (1988). Some important properties of the spatial median are listed below.

Computation of the Estimate As in the univariate case.

Robustness of the Estimate As in the univariate case, this multivariate extension
of the median is highly robust with the asymptotic breakdown point 1/2 and the
influence function is bounded, IF(x; T, F) = A~!S(x — T(F)) where S(t) is the
vector of marginal sign functions.

Asymptotic Efficiency of the Estimate If the distribution F has a covariance ma-
trix X' (with finite second moments), then the sample mean vector X = % Z?:] X;,
a natural estimate of the population mean vector . = E(x;), has a limiting normal
distribution, and

V&= ) = Ny(@, 2).

The asymptotic relative efficiency (ARE) between the vector of sample medians and
the sample mean vector, if they estimate the same population value w, is defined as

Iz N\
ARE=| ——— .
<|A19Al|>

The ARE thus compares the geometrical means of the eigenvalues of the limiting
covariance matrices. The comparison is, however, fair only for affine equivariant
estimates and the vector of sample medians is not affine equivariant, see below. In
the case of the spherical normal distribution N, (u, UZIP), the ARE between the
vector of sample medians and the sample mean vector is as in the univariate case
and therefore does not depend on the dimension p. For dependent observations, the
efficiency of the median vector may be much smaller.

Estimation of the Covariance Matrix of the Estimate One easily finds

R 1 n A R
Q== ;(sm ~ WSk — ")
1=
but the estimation of A, i.e. the estimation of the diagonal elements 2 f1(u1), ...,
2 fp(1p), is as difficult as in the univariate case.
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Affine Equivariance of the Estimate The vector of marginal medians is not affine
equivariant: For a multivariate location functional T(F), it is often expected that
T(F) is affine equivariant, that is,

T(Fax+b) =AT(Fx) +b, forall full-rank p x p matrices A and p-vectors b.
The vector of marginal medians is not affine equivariant as the condition is true only

if A is a diagonal matrix with non-zero diagonal elements.

Transformation—Retransformation (TR) Estimate An affine equivariant ver-
sion of the vector of marginal medians is found using the so called transformation—
retransformation (TR) technique. A p x p-matrix valued functional G(F) is called
an invariant coordinate system (ICS) functional if

G(Fax+p) = G(FX)A*I, for all full-rank p x p matrices A and p-vectors b.
Then the transformation—retransformation (TR) median functional is defined as
TR (Fx) = G(F) ™ T(Fa(rw)-

For the concept of the TR median, see Chakraborty and Chaudhuri (1998). For dif-
ferent ICS transformations, we refer to Tyler et al. (2009), Ilmonen et al. (2012).

1.4 Spatial Median

The so-called spatial median T(X) minimizes the criterion function ), [|x; —t||, or

n

1
Da®) = - flixi =t = Ixill},

i=1

where ||t|| = (tl2 4+ t;) 172 denotes the Euclidean norm. The corresponding func-
tional, the spatial median 7' (F'), minimizes

D(t) = Ep{lx—t| —[x|}.
For the asymptotic results we need the assumptions

1. The spatial median p minimizing D(t) is unique.
2. The distribution F has a bounded and continuous density at (.

Again,

1 / 2
D® =D(u) + 3 (t— W' At — ) +o(lIt— ull”),

A:E( 1 [I,, 3 (X_M)(X_ZM)/D'
fIx — el X — el

The assumptions above guarantee that this expectation exists.

where now




10 H. Oja

Multivariate spatial sign and centered rank functions are now given as

t .
0, ift=0

and
1 n
Rt =~ > St —x)).
i=1
Note that the spatial sign S(t) is just a unit vector in the direction of t, t % 0. The

centered rank R(t) is lying in the unit p-ball 57.
The spatial sign test statistic for testing Hp : u = 0 is R(0) and its limiting null
distribution is given by

VAR(p) =4 Ny (0, 2),

SQ:E(@—MXX—MY)
lIx — pl?

where

Again,
fo=p+ ARG +op(n17?),
and we obtain
Vi —p) —a Np(0, A7'2A71).
For the properties of the estimate we refer to Oja (2010), Moéttonen et al. (2010).

Computation of the Estimate The spatial median is unique if the data fall in on at
least two-dimensional space. The so called Weisfeld algorithm for the computation
of the spatial median has an iteration step

-1
1 < _
M<—M+|:;Z||Xi—ﬂ|| 1} R(u).
i=1

The algorithm may fail sometimes but a modified algorithm by Vardi and Zhang
(2000) converges fast and monotonically. The estimate with estimated covariance
matrix can be obtained using the R package MNM, see Nordhausen and Oja (2011).

Robustness of the Estimate The spatial median is highly robust with the asymp-
totic breakdown point 1/2. The influence function is bounded, IF(x; T, F) =
A~IS(x — T(F)) where S(t) is the spatial sign function.

Asymptotic Efficiency of the Estimate If the covariance matrix X exists, then
the asymptotic relative efficiency (ARE) between the spatial median and the mean
vector, if they estimate the same population value pu, is

|3 1/p
ARE=| ———— .
[A—1Q2AT
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In the case of a p-variate spherical distribution of x, p > 1, this ARE reduces to

2
p—1 _
ARE, = (T) E(IIxI?) E2(Ix] ).
In the p-variate spherical normal case, one then gets, for example,
ARE; =0.785, ARE;=0.849, ARE;=0.920, and ARE;(=0.951,

and the efficiency goes to 1 as p — co. For heavy-tailed distributions, the spatial
median outperforms the sample mean vector.

Estimation of the Covariance Matrix of the Estimate In this case, one easily
finds an estimate for the approximate covariance matrix

1
—-Alea!
n
using
A_l"( ! [1 (xi—m(x,-—/z)’D
= |1, — L
n = \lxi — ] lIxi — all
and

5 1Z(Xz ﬂ)(Xi—/l)"

2=- -
n lIx; — All?

Estimation of the covariance matrix of the spatial median is implemented in the
R package MNM.

Affine Equivariance of the Estimate The spatial median is not affine equivariant
as

T(Faxtn) =AT(Fx) +b

is true only for orthogonal matrices A.

Transformation—-Retransformation (TR) Estimate An affine equivariant trans-
formation retransformation (TR) spatial median is found as follows. Let S(F') be
a scatter functional, and find a p x p-matrix valued functional G(F) = S~1/2(F)
such that

G(F)S(F)G(F)' =1,,.

Note that G(F) is not necessarily an invariant coordinate functional. Then the
transformation—retransformation (TR) median is

Trr (Fx) = G(Fx) "' T(FG(Fx)s

see Chakraborty et al. (1998), Ilmonen et al. (2012). The TR median that combines
the spatial median and Tyler’s scatter matrix was proposed in Hettmansperger and
Randles (2002) and is called the Hettmansperger—Randles median. It can be com-
puted using the R package MNM.



12 H. Oja

1.5 Oja Median

Let again X = (X, ..., X,)’ be a random sample from a p-variate distribution with
cumulative distribution function . The volume of the p-variate simplex determined

by p + 1 vertices ty, ..., tyy1 is
1
1l get I ... 1
p! tr ... tp

Note that, in the univariate case V (t1, t) is the length of the interval with endpoints
in 71 and 1, in the bivariate case V (t1, tp, t3) is the area of the triangle with corners
at ty, t, and t3, and so on.

The so called Oja median (estimate) T(X) minimizes the objective function

—1
n
D, ((t) = Vi, ..ohXi,, b).
(® () > Vi, 0

i1<-<ip

V(ty,....tp1) =

The corresponding functional T(F') minimizes
D(t) = Er{V(xi;.....x;,. O)}.

Note that the definition of this functional requires the existence of first moments.
The vector of marginal medians and the spatial median do not need that assump-
tions. For the asymptotic results, we also need the assumptions that (i) the Oja me-
dian p minimizing D(t) is unique, and that (ii) the second moments exist. One can
again write

2

atot’

1
D(t) = D(w) + 5 (t— ) At =) +o(lt = uI?)  with A=~ D(®

t=u
Consider next the corresponding multivariate sign and rank concept. To simplify
the notations, write

Q:{q:(il,...,ip_l):liil<"'<ip—15”}
and
P={p=(i1....ip): 1 <ii<---<i,<n}.

In the following, ¢ € Q and p € P are used as indices for (p — 1) and p-subsets of
observations X, . .., X,. Next define e,, do, and d,, through the equations

I ... 1

/
det(xil,...,x,-pfl,x)zeqx and det(xi x;
e

1 /
, X) = d()p +de.

The sign and rank functions are then defined as

-1 -1
S = (") Y sign(e)t)e, and R()= (”) 3 sign(dop + d,t)d,.
q
qe peP
The population (theoretical) sign and rank functions are then
S(t) = E(sign(e’qt)eq) and R(t) = E(sign(dop + d/pt)d[,),

respectively.
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The sample Oja median then solves the estimation equation ﬁ(ﬁ) = 0. The sign
test statistic for testing the null hypothesis Hy : © =0 is

1 A .
T,=- E S(x;), which is proportional to R(0).
-

Under the null hypothesis and under some weak assumptions,
VT, =4 Ny(0,82) with 2 = E(SX)S(X)').
Again, for u =0,

f=A""T, +op(n"'"?),
and we obtain, for true value of wu,
V(= p) —a Np(0, A7'2A7").

For the Oja median and its basic properties, see Oja (1983, 1999). For the asymp-
totics, we refer to Arcones et al. (1994), Shen (2008).

Computation of the Estimate The computation of the Oja median is a demand-
ing task. The Oja median may be computed using the R-package OjaNP. See also
Ronkainen et al. (2002).

Robustness of the Estimate The breakdown point of the Oja median is zero.
Howeyver, if the first moments exist, then the influence function is bounded.

Asymptotic Efficiency of the Estimate In the spherical case the asymptotic ef-
ficiencies of the Oja median and the spatial median are the same (if the second
moments exist); the Oja median outperforms the spatial median in the elliptic case
(if the second moments exist).

Estimation of the Covariance Matrix of the Estimate See Nadar et al. (2003).

Affine Equivariance of the Estimate Unlike the vector of marginal medians and
the spatial median, the Oja median is affine equivariant.

1.6 Other Medians

If in the univariate case, x| and xp are two independent observations from F, the
univariate median of F' could also be defined as a point p with highest probability
P(min{xy, x2} < u < max{xy, x2}). The sample median is the point lying in the
largest number of data based intervals (univariate simplices). The multivariate Liu
median (or simplicial depth median) of p-variate data points X, ..., X, is then the
point lying in the largest number of data based p-variate simplices. See Liu (1990)
for the definition and some basic properties. For the asymptotics of the Liu median,
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see Arcones et al. (1994). In the bivariate normal case, the Liu median and the Oja
median has the same asymptotic efficiency (if the second moments exist): The Liu
median is affine equivariant with a limiting breakdown point below 1/(p + 2).

The multivariate half-space depth function is a natural multivariate extension of
the univariate median criterion function min{ P (x; < i), P(x1 > w)}. The so called
half-space median or the Tukey median maximizes the half space depth function,
see Donoho and Gasko (1992). The half-space median is more robust than the Oja
median or Liu median in the sense that its breakdown point is 1/3. For the asymp-
totics, see Masse (2002).

1.7 Conclusions

In this chapter, we compared different extensions of multivariate medians. The
choice of the median for a practical data analysis strongly depends on the appli-
cation. The vector of marginal medians and the spatial median are highly robust but
they are not affine equivariant. The efficiency of the vector of marginal medians is
poor as compared to the spatial median and the Oja median. The spatial median
and its affine equivariant version, the Hettmansperger—Randles median, are the only
medians for which an estimate of the covariance matrix can be computed in practice
with the R package MNM. This allows statistical inference with confidence ellip-
soids, for example. The author’s favorite median is therefore the Hettmansperger—
Randles median, see Mottonen et al. (2010). For other estimators of multivariate
location, see the contribution by Rousseeuw and Hubert, Chap. 4.
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Chapter 2
Depth Statistics

Karl Mosler

2.1 Introduction

In 1975, John Tukey proposed a multivariate median which is the ‘deepest’ point in
a given data cloud in R (Tukey 1975). In measuring the depth of an arbitrary point z
with respect to the data, Donoho and Gasko (1992) considered hyperplanes through
z and determined its ‘depth’ by the smallest portion of data that are separated by
such a hyperplane. Since then, this idea has proved extremely fruitful. A rich sta-
tistical methodology has developed that is based on data depth and, more general,
nonparametric depth statistics. General notions of data depth have been introduced
as well as many special ones. These notions vary regarding their computability and
robustness and their sensitivity to reflect asymmetric shapes of the data. According
to their different properties they fit to particular applications. The upper level sets
of a depth statistic provide a family of set-valued statistics, named depth-trimmed
or central regions. They describe the distribution regarding its location, scale and
shape. The most central region serves as a median; see also the contribution by Oja,
Chap. 1. The notion of depth has been extended from data clouds, that is empirical
distributions, to general probability distributions on R?, thus allowing for laws of
large numbers and consistency results. It has also been extended from d-variate data
to data in functional spaces. The present chapter surveys the theory and methodol-
ogy of depth statistics.

Recent reviews on data depth are given in Cascos (2009) and Serfling (2006).
Liu et al. (2006) collects theoretical as well as applied work. More on the theory
of depth functions and many details are found in Zuo and Serfling (2000) and the
monograph by Mosler (2002).

The depth of a data point is reversely related to its outlyingness, and the depth-
trimmed regions can be seen as multivariate set-valued quantiles. To illustrate the
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Table 2.1 General government gross debt (% of GDP) and unemployment rate of the EU-27
countries in 2011 (Source: EUROSTAT)

Country Debt % Unempl. % Country Debt % Unempl. %
Belgium 98.0 7.2 Luxembourg 18.2 4.9
Bulgaria 16.3 11.3 Hungary 80.6 10.9
Czech Republic 41.2 6.7 Malta 72.0 6.5
Denmark 46.5 7.6 Netherlands 65.2 4.4
Germany 81.2 5.9 Austria 72.2 4.2
Estonia 6.0 12.5 Poland 56.3 9.7
Ireland 108.2 14.4 Portugal 107.8 12.9
Greece 165.3 17.7 Romania 333 7.4
Spain 68.5 21.7 Slovenia 47.6 8.2
France 85.8 9.6 Slovakia 43.3 13.6
Italy 120.1 8.4 Finland 48.6 7.8
Cyprus 71.6 7.9 Sweden 38.4 7.5
Latvia 42.6 16.2 United Kingdom 85.7 8.0
Lithuania 38.5 15.4

notions, we consider bivariate data from the EU-27 countries regarding unemploy-
ment rate and general government debt in percent of the GDP (Table 2.1). In what
follows, we are interested which countries belong to a central, rather homogeneous
group and which have to be regarded as, in some sense, outlying.

Section 2.2 introduces general depth statistics and the notions related to it. In
Sect. 2.3, various depths for d-variate data are surveyed: multivariate depths based
on distances, weighted means, halfspaces or simplices. Section 2.4 provides an ap-
proach to depth for functional data, while Sect. 2.5 treats computational issues. Sec-
tion 2.6 concludes with remarks on applications.

2.2 Basic Concepts

In this section, the basic concepts of depth statistics are introduced, together with
several related notions. First, we provide a general notion of depth functions, which
relies on a set of desirable properties; then a few variants of the properties are dis-
cussed (Sect. 2.2.1). A depth function induces an outlyingness function and a family
of central regions (Sect. 2.2.2). Further, a stochastic ordering and a probability met-
ric are generated (Sect. 2.2.3).

2.2.1 Postulates on a Depth Statistic

Let E be a Banach space, B its Borel sets in E, and P a set of probability distri-
butions on 5. To start with and in the spirit of Tukey’s approach to data analysis,
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we may regard P as the class of empirical distributions giving equal probabilities %
to n, not necessarily different, data points in £ = R,

A depth function is a function D : E x P — [0, 1], (z, P) = D(z | P), that sat-
isfies the restrictions (or ‘postulates’) D1 to D5 given below. For easier notation,
we write D(z | X) in place of D(z | P), where X is an arbitrary random variable
distributed as P. For z € E, P € P, and any random variable X having distribution
P it holds:

o D1 Translation invariant: D(z +b | X +b) = D(z | X) forallb € E.

e D2 Linear invariant: D(Az | AX) = D(z | X) for every bijective linear transfor-
mation A: E — E.

o D3 Null at infinity: lim|;j» 00 D(z | X) =0.

e D4 Monotone on rays: If a point z* has maximal depth, that is D(z* | X) =
max;cg D(z | X), then for any r in the unit sphere of E the function o
D(z* + ar | X) decreases, in the weak sense, with a > 0.

o DS Upper semicontinuous: The upper level sets Dy (X) ={z€ E: D(z| X) > o}
are closed for all «.

D1 and D2 state that a depth function is affine invariant. D3 and D4 mean that the
level sets Dy, o > 0, are bounded and starshaped about z*. If there is a point of max-
imum depth, this depth will w.l.o.g. be set to 1. DS is a useful technical restriction.
An immediate consequence of restriction D4 is the following proposition.

Proposition 2.1 If X is centrally symmetric distributed about some z* € E, then
any depth function D(- | X) is maximal at 7*.

Recall that X is centrally symmetric distributed about z* if the distributions of
X — z* and z* — X coincide.

Our definition of a depth function differs slightly from that given in Liu (1990)
and Zuo and Serfling (2000). The main difference between these postulates and
ours is that they additionally postulate Proposition 2.1 to be true and that they do
not require upper semicontinuity DS.

D4 states that the upper level set Dy (x!, ..., x") are starshaped with respect
to z*. If a depth function, in place of D4, meets the restriction

e Ddcon: D(- | X) is a quasiconcave function, that is, its upper level sets Dy (X)
are convex for all @ > 0,

the depth is mentioned as a convex depth. Obviously, as a convex set is starshaped
with respect to each of its points, D4con implies D4. In certain settings the restric-
tion D2 is weakened to

e D2iso: D(Az | AX) = D(z | X) for every isometric linear transformation A :
E— E.

Then, in case E = R4, D is called an orthogonal invariant depth in contrast to an
affine invariant depth when D2 holds. Alternatively, sometimes D2 is attenuated to
scale invariance,

e D2sca: D(Az |2 X)=D(z| X) forall A > 0.
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2.2.2 Central Regions and Outliers

For given P and 0 < o < 1, the level sets D, (P) form a nested family of depth-
trimmed or central regions. The innermost region arises at some omax < 1, which
in general depends on P. D, (P) is the set of deepest points. D1 and D2 say
that the family of central regions is affine equivariant. Central regions describe a
distribution X with respect to location, dispersion, and shape. This has many ap-
plications in multivariate data analysis. On the other hand, given a nested family
{Cq(P)}acro,1] of set-valued statistics, defined on P, that are convex, bounded and
closed, the function D,

D(z| P)=sup{a:z€Cy(P)}, z€E, PEP, 2.1)

satisfies D1 to D5 and D4con, hence is a convex depth function.

A depth function D orders data by their degree of centrality. Given a sample, it
provides a center-outward order statistic. The depth induces an outlyingness func-
tion R? — [0, oo[ by

1
D(z| X)
which is zero at the center and infinite at infinity. In turn, D(z | X) = (1 4+ Out(z |
X))~ L. Points outside a central region D, have outlyingness greater than 1/a — 1;
they can be regarded as outliers of a specified level «.

Out(z | X) =

)

2.2.3 Depth Lifts, Stochastic Orderings, and Metrics

Assume amax = 1 for P € P. By adding a real dimension to the central regions
Dy (P),a € [0, 1], we construct a set, which will be mentioned as the depth lift,

D(P) = {(cx, y)€EO, 1] x E:y=ax,x € Dy(P),a € [0, 1]}. (2.2)
The depth lift gives rise to an ordering of probability distributions in P: P <p Q

if
D(P) c D(Q). (2.3)

The restriction ﬁ(P) C ﬁ(Q) is equivalent to Dy (P) C Dy(Q) for all . Thus,
P <p QO means that each central set of Q is larger than the respective central set
of P.In this sense, Q is more dispersed than P. The depth ordering is antisymmet-
ric, hence an order, if and only if the family of central regions completely character-
izes the underlying probability. Otherwise it is a preorder only. Finally, the depth D
introduces a probability semi-metric on P by the Hausdorff distance of depth lifts,

8p(P, Q) =8 (D(P), D(Q)). (2.4)

Recall that the Hausdorff distance §g(C1, C) of two compact sets C; and C; is
the smallest ¢ such that C; plus the e-ball includes C» and vice versa. Again, the
semi-metric is a metric iff the central regions characterize the probability.
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2.3 Multivariate Depth Functions

Originally and in most existing applications depth statistics are used with data in
Euclidean space. Multivariate depth statistics are particularly suited to analyze non-
Gaussian or, more general, non-elliptical distributions in R¢. Without loss of gen-
erality, we consider distributions of full dimension d, that is, whose convex hull of
support, co(P), has affine dimension d.

A random vector X in RY has a spherical distribution if AX is distributed as
X for every orthogonal matrix A. It has an elliptical distribution if X =a + BY
for some a € RY, B € R?>*4  and spherically distributed Y; then we write X ~
Ell(a, BB', ), where ¢ is the radial distribution of Y. Actually, on an elliptical
distribution P = Ell(a, BB’, ), any depth function D(-, P) satisfying D1 and D2
has parallel elliptical level sets Dy (P), that is, level sets of a quadratic form with
scatter matrix B B'. Consequently, all affine invariant depth functions are essentially
equivalent if the distribution is elliptical. Moreover, if P is elliptical and has a uni-
modal Lebesgue-density fp, the density level sets have the same elliptical shape,
and the density is a transformation of the depth, i.e., a function ¢ exists such that
fp(z) =@(D(z | P)) for all z € R. Similarly, on a spherical distribution, any depth
satisfying postulates D1 and D2iso has analogous properties.

In the following, we consider three principal approaches to define a multivari-
ate depth statistic. The first approach is based on distances from properly defined
central points or on volumes (Sect. 2.3.1), the second on certain L-statistics (viz. de-
creasingly weighted means of order statistics; Sect. 2.3.2), the third on simplices and
halfspaces in R¢ (Sect. 2.3.3). The three approaches have different consequences on
the depths’ ability to reflect asymmetries of the distribution, on their robustness to
possible outliers, and on their computability with higher-dimensional data.

Figures 2.1, 2.2, 2.3 and 2.4 below exhibit bivariate central regions for several
depths and equidistant «. The data consist of the unemployment rate (in %) and the
GDP share of public debt for the countries of the European Union in 2011.

Most of the multivariate depths considered are convex and affine invariant, some
exhibit spherical invariance only. Some are continuous in the point z or in the dis-
tribution P (regarding weak convergence), others are not. They differ in the shape
of the depth lift and whether it uniquely determines the underlying distribution.
A basic dispersion ordering of multivariate probability distributions serving as a
benchmark is the dilation order, which says that Y spreads out more than X if
E[¢(X)] < E[¢(Y)] holds for every convex ¢ : R — R; see, e.g., Mosler (2002).
It is interesting whether or not a particular depth ordering is concordant with the
dilation order.

2.3.1 Depths Based on Distances

The outlyingness of a point, and hence its depth, can be measured by a distance
from a properly chosen center of the distribution. In the following notions, this is
done with different distances and centers.
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Ly-Depth The Lj-depth, D2, is based on the mean outlyingness of a point, as
measured by the L, distance,

D™ (z| X) = (1+Ellz— XII)~". 2.5)

It holds amax = 1. The depth lift is ﬁL2(X) ={(o,2) :E|lz—aX|| <1 — «a} and
convex. For an empirical distribution on points x*,i =1, ..., n, we obtain

—1
1 < ‘
DL2 oo =1+- — ) 2.6
(zlx' . x") <+ni§=1llz xII) (2.6)

Obviously, the L;-depth vanishes at infinity (D3), and is maximum at the spatial
median of X, i.e., at the point z € R? that minimizes E|z — X||. If the distribution
is centrally symmetric, the center is the spatial median, hence the maximum is at-
tained at the center. Monotonicity with respect to the deepest point (D4) as well as
convexity and compactness of the central regions (D4con, DS) derive immediately
from the triangle inequality. Further, the Ly-depth depends continuously on z. The
L,-depth converges also in the probability distribution: For a uniformly integrable
and weakly convergent sequence P, — P it holds lim, D(z | P,) = D(z | P).

However, the ordering induced by the L;-depth is no sensible ordering of disper-
sion, since the L,-depth contradicts the dilation order. As ||z — x|| is convex in x,
the expectation E||z — X|| increases with a dilation of P. Hence, (2.5) decreases (!)
with a dilation.

The L,-depth is invariant against rigid Euclidean motions (D1, D2iso), but not
affine invariant. An affine invariant version is constructed as follows: Given a posi-
tive definite d x d matrix M, consider the M-norm,

lzlly =vVZM~1z, zeR4, 2.7

Let Sx be a positive definite d x d matrix that depends continuously (in weak con-
vergence) on the distribution and measures the dispersion of X in an affine equiv-
ariant way. The latter means that

Sxasp = ASx A’ holds for any matrix A of full rank and any b. (2.8)

Then an affine invariant Ly-depth is given by

(1+Ellz — Xlis,) " (2.9)

Besides invariance, it has the same properties as the L,-depth. A simple choice
for Sy is the covariance matrix X'y of X (Zuo and Serfling 2000). Note that the
covariance matrix is positive definite, as the convex hull of the support, co(P), is
assumed to have full dimension. More robust choices for Sy are the minimum vol-
ume ellipsoid (MVE) or the minimum covariance determinant (MCD) estimators;
see Rousseeuw and Leroy (1987), Lopuhai and Rousseeuw (1991), and the contri-
bution by Rousseeuw and Hubert, Chap. 4.
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Fig. 2.1 Governmental debt (x-axis) and unemployment rate (y-axis); Mahalanobis regions (mo-
ment, left; MCD, right) with @« = 0.1(0.1),...,0.9

Mahalanobis Depths Let cxy be a vector that measures the location of X in a
continuous and affine equivariant way and, as before, Sy be a matrix that satisfies
(2.8) and depends continuously on the distribution. Based on the estimates cy and
Sx a simple depth statistic is constructed, the generalized Mahalanobis depth, given
by

DMz X) = (14 llz —exl},) (2.10)

Obviously, (2.10) satisfies D1 to D5 and D4con, taking its unique maximum at cx.
The depth lift is the convex set DM (X) = {(a, 2) : |z — acx I3, <o*(@—1)},and
the central regions are ellipsoids around cy. The generalized Mahalanobis depth is
continuous on z and P. In particular, with cy = E[X] and Sy = Xy the (moment)
Mahalanobis depth is obtained,

DM (2| X) = (14 (2 — EIX1) =5 (2 — EIXT)) . @11
Its sample version is
DMz = (14 -0 5 e —®) (2.12)

where X is the mean vector and Y is the empirical covariance matrix. It is eas-
ily seen that the o-central set of a sample from P converges almost surely to the
a-central set of P, for any «. Figure 2.1 shows Mahalanobis regions for the debt-
unemployment data, employing two choices of the matrix Sy, namely the usual
moment estimate X'y and the robust MCD estimate. As it is seen from the Figure,
these regions depend heavily on the choice of Sx. Hungary, e.g., is rather central
(having depth greater than 0.8) with the moment Mahalanobis depth, while it is
much more outlying (having depth below 0.5) with the MCD version.

Concerning uniqueness, the Mahalanobis depth fails in identifying the underly-
ing distribution. As only the first two moments are used, any two distributions which
have the same first two moments cannot be distinguished by their Mahalanobis depth
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functions. Similarly, the generalized Mahalanobis depth does not determine the dis-
tribution. However, within the family of nondegenerate d-variate normal distribu-
tions or, more general, within any affine family of nondegenerate d-variate distribu-
tions having finite second moments, a single contour set of the Mahalanobis depth
suffices to identify the distribution.

Projection Depth The projection depth has been proposed in Zuo and Serfling
(2000):

—1
DPI‘Oj(Z | X) — <1 + sup |(P’ Z> - med((P7 X))') , (213)

pesd-1 Dmed({p, X))

where S¢~! denotes the unit sphere in R?, (p, z) is the inner product (that is the
projection of z on the line {Ap : A € R}), med(U) is the usual median of a univariate
random variable U, and Dmed(U) = med(JU — med(U)|) is the median absolute
deviation from the median. The projection depth satisfies D1 to DS and D4con.
It has good properties, which are discussed in detail by Zuo and Serfling (2000).
For breakdown properties of the employed location and scatter statistics, see Zuo
(2000).

Oja Depth The Oja depth is not based on distances, but on average volumes of
simplices that have vertices from the data (Zuo and Serfling 2000):

. E(voly(cofz, X1, ..., Xa})\ "
Oja =(1
Dz 1X) ( + Jdet Xy ) 7

where X1, ..., X4 are random vectors independently distributed as P, co denotes
the convex hull, V; the d-dimensional volume, and Sy is defined as above. In par-
ticular, we can choose Dx = Xx. The Oja depth satisfies D1 to DS. It is continuous
on z and maximum at the Oja median (Oja 1983), which is not unique; see also the
contribution by Oja, Chap. 1. The Oja depth determines the distribution uniquely
among those measures which have compact support of full dimension.

Figure 2.2 contrasts the projection depth regions with the Oja regions for our
debt-unemployment data. The regions have different shapes, but agree in making
Spain and Greece the most outlying countries.

2.3.2 Weighted Mean Depths

A large and flexible class of depth statistics corresponds to so called weighted-mean
central regions, shortly WM regions (Dyckerhoff and Mosler 2011, 2012). These
are convex compacts in RY, whose support function is a weighted mean of order
statistics, that is, an L-statistic. Recall that a convex compact K C R? is uniquely
determined by its support function A g,

hx(p)=max{p'x:x €K}, pe sé-1
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Fig. 2.2 Governmental debt and unemployment rate; projection depth regions (left), Oja regions
(right); both with o = 0.1(0.1),...,0.9

1

To define the WM «-region of an empirical distribution on x Jx2, ... x", we con-

struct its support function as follows: For p € S¢~!, consider the line {Ap € R :
A € R}. By projecting the data on this line a linear ordering is obtained,

p/xr[p(l) Sp/-an(Z) <... Sp/xﬂp(n)’ (214)

and, by this, a permutation 7, of the indices 1,2, ..., n. Consider weights w; o for
je{l,2,...,n} and @ € [0, 1] that satisfy the following restrictions (i) to (iii):

() Yo jwje=1,wje>0forall jand .
(ii) wj q increasesin j for all o.
(iii) o < B implies Y5 wjo < Y5 wjp.k=1,....n.

Then, as it has been shown in Dyckerhoff and Mosler (2011), the function

hD[X(x',.‘.,x")’
n .
Dyt oy (P) = ) wiap X, pesih, (2.15)
j=1
is the support function of a convex body D, = Dy (xl, ..., x"),and Dy C Dg holds

whenever « > . Now we are ready to see the general definition of a family of WM
regions.

Definition 2.1 Given a weight vector wy, = W14, - .., Wy, that satisfies the restric-
tions (i) to (iii), the convex compact Dy = Dy (1, .1 having support function
(2.15) is named the WM region of x!, ..., x" atlevel o, a € [0, 1]. The correspond-
ing depth (2.1) is the WM depth with weights wy, a € [0, 1].
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It follows that the WM depth satisfies the restrictions D1 to D5 and D4con. More-
over, it holds

n
Da(xl,...,x")zconv ij,ax”(j):npermutationof{l,...,n}}. (2.16)
j=1

This explains the name by stating that a WM region is the convex hull of weighted
means of the data. Consequently, outside the convex hull of the data the WM depth
vanishes. WM depths are useful statistical tools as their central regions have attrac-
tive analytical and computational properties. Sample WM regions are consistent es-
timators for the WM region of the underlying probability. Besides being continuous
in the distribution and in v, WM regions are subadditive, that is,

Do((xl —l—yl,...,x" +y") - Da(xl, ...,x”) @Da(yl,...,y"),

and monotone: If x' < yi holds for all i (in the componentwise ordering of Rd),
then

Do(y', ..., ") CDa(xl,...,x")eaR’i and
Da(xl,...,x") CDa(yl,...,y")GaR’i,

where @ signifies the Minkowski sum of sets.

Depending on the choice of the weights w; , different notions of data depths are
obtained. For a detailed discussion of these and other special WM depths and central
regions, the reader is referred to Dyckerhoff and Mosler (2011, 2012).

Zonoid Depth For an empirical distribution P on xb ..., x"and 0 < & < 1 define
the zonoid region (Koshevoy and Mosler 1997)

n

n
. 1
D" (P) = {Zml 0=k < —, Z’\i =11}
i=1

i=1
See Fig. 2.3. The corresponding support function (2.15) employs the weights

0 if j <n—|nal,
ne—lnal - p iy — nal, (2.17)

Wi = no

e if j >n— |nal.

Many properties of zonoid regions and the zonoid depth D*°"(z | X) are discussed
in Mosler (2002). The zonoid depth lift equals the so called lift zonoid, which fully
characterizes the distribution. Therefore the zonoid depth generates an antisymmet-
ric depth order (2.3) and a probability metric (2.4). Zonoid regions are not only
invariant to affine, but to general linear transformations; specifically any marginal
projection of a zonoid region is the zonoid region of the marginal distribution. The
zonoid depth is continuous on z as well as P.
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Fig. 2.3 Governmental debt and unemployment rate; zonoid regions (left), ECH* regions (right);
both with @ =0.1(0.1),...,0.9

Expected Convex Hull Depth Another important notion of WMT depth is that
of expected convex hull (ECH*) depth (Cascos 2007). Its central region D, (see
Fig. 2.3) has a support function with weights

je—G-phe

7 (2.18)

w jo =
Figure 2.3 depicts zonoid and ECH* regions for our data. We see that the zonoid
regions are somewhat angular while the ECH* regions appear to be smoother; this
corresponds, when calculating such regions in higher dimensions, to a considerably
higher computation load of ECH*.

Geometrical Depth The weights

-« —J
1—a” o™t

0 ifa=1,

f0<a<l,
wj,O,:

yield another class of WM regions. The respective depth is the geometrically
weighted mean depth (Dyckerhoff and Mosler 2011).

2.3.3 Depths Based on Halfspaces and Simplices

The third approach concerns no distances or volumes, but the combinatorics of half-
spaces and simplices only. In this it is independent of the metric structure of R?.
While depths that are based on distances or weighted means may be addressed as
metric depths, the following ones will be mentioned as combinatorial depths. They
remain constant, as long as the compartment structure of the data does not change.
By this, they are very robust against location outliers. Outside the convex support
co(X) of the distribution every combinatorial depth attains its minimal value, which
is zero.
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Fig. 2.4 Governmental debt and unemployment rate; Tukey regions (left) with o = 2—27(%),
. %27, simplicial regions (right) with « = 0.25,0.3(0.1), ..., 0.9

Location Depth Consider the population version of the location depth,
ploe (z| X) =inf{ P(H) : H is a closed halfspace, z € H}. (2.19)

The depth is also known as halfspace or Tukey depth, its central regions as Tukey re-
gions. The location depth is affine invariant (D1, D2). Its central regions are convex
(D4con) and closed (DS); see Fig. 2.4. The maximum value of the location depth
is smaller or equal to 1 depending on the distribution. The set of all such points is
mentioned as the halfspace median set and each of its elements as a Tukey median
(Tukey 1975).

If X has an angular symmetric distribution, the location depth attains its max-
imum at the center and the center is a Tukey median; this strengthens Proposi-
tion 2.1. (A distribution is called angular (= halfspace) symmetric about z* if
P(X € H) > 1/2 for every closed halfspace H having z* on the boundary; equiva-
lently, if (X — z*)/|| X — z*|| is centrally symmetric with the convention 0/0 = 0.)

If X has a Lebesgue-density, the location depth depends continuously on z; oth-
erwise the dependence on z is noncontinuous and there can be more than one point
where the maximum is attained. As a function of P the location depth is obviously
noncontinuous. It determines the distribution in a unique way if the distribution is
either discrete (Struyf and Rousseeuw 1999; Koshevoy 2002) or continuous with
compact support. The location depth of a sample from P converges almost surely to
the location depth of P (Donoho and Gasko 1992). The next depth notion involves
simplices in R?.

Simplicial Depth Liu (1990) defines the simplicial depth as follows:
D¥™(z| X) = P(z eco({X1, ..., Xa1})), (2.20)

where X1, ..., X441 are i.i.d. by P. The sample version reads as

D™ (z|x', ... x") = (L #l{ir, ... g1}tz eco({x, .. X)L 2.21)

a)
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The simplicial depth is affine invariant (D1, D2). Its maximum is less or equal to 1,
depending on the distribution. In general, the point of maximum simplicial depth
is not unique; the simplicial median is defined as the gravity center of these points.
The sample simplicial depth converges almost surely uniformly in z to its population
version (Liu 1990; Diimbgen 1992). The simplicial depth has positive breakdown
(Chen 1995).

If the distribution is Lebesgue-continuous, the simplicial depth behaves well: It
varies continuously on z (Liu 1990, Theorem 2), is maximum at a center of angular
symmetry, and decreases monotonously from a deepest point (D4). The simplicial
central regions of a Lebesgue-continuous distribution are connected and compact
(Liu 1990).

However, if the distribution is discrete, each of these properties can fail; for coun-
terexamples see, e.g., Zuo and Serfling (2000). The simplicial depth characterizes
an empirical measure if the supporting points are in general position, that is, if no
more than d of the points lie on the same hyperplane.

As Fig. 2.4 demonstrates, Tukey regions are convex while simplicial regions are
only starshaped. The figure illustrates also that these notions are rather insensitive
to outlying data: both do not reflect how far Greece and Spain are from the center.
Whether, in an application, this kind of robustness is an advantage or not, depends
on the problem and data at hand.

Other well known combinatorial data depths are the majority depth (Liu and
Singh 1993) and the convex-hull peeling depth (Barnett 1976; Donoho and Gasko
1992). However, the latter possesses no population version.

2.4 Functional Data Depth

The analysis of functional data has become a practically important branch of statis-
tics; see Ramsay and Silverman (2005). Consider a space E of functions [0, 1] - R
with the supremum norm. Like a multivariate data depth, a functional data depth is
a real-valued functional that indicates how ‘deep’ a function z € E is located in a
given finite cloud of functions € E. Let E’ denote the set of continuous linear func-
tionals E — R, and E'? the d-fold Cartesian product of E'. Here, following Mosler
and Polyakova (2012), functional depths of a general form (2.22) are presented.
Some alternative approaches will be addressed below.

@-Depth For z € E and an empirical distribution X on x!, ..., x" € E, define a
functional data depth by

D(z|X) = q)igg D (p(2) | p(X)), (2.22)
where D? is a d-variate data depth satisfying D1 to D5, & C E’ d, and ¢(X) is the

empirical distribution on go(xl), ...,o(x™). D is called a @-depth. A population
version is similarly defined.
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Each ¢ in this definition may be regarded as a particular ‘aspect’ we are interested
in and which is represented in d-dimensional space. The depth of z is given as the
smallest multivariate depth of z under all these aspects. It implies that all aspects
are equally relevant so that the depth of z cannot be larger than its depth under any
aspect.

As the d-variate depth D7 has maximum not greater than 1, the functional data
depth D is bounded above by 1. At every point z* of maximal D-depth it holds
D(z* | X) < 1. The bound is attained with equality, D(z* | X) = 1, iff D (¢(z*) |
@(X)) =1 holds for all ¢ € &, that is, iff

e (Vo (D] (p(X))). (2.23)
ped

A @-depth (2.22) always satisfies D1, D2sca, D4, and D5.

It satisfies D3 if for every sequence (z) with ||z/|| — oo exists a ¢ in @ such that
¢(z') — oco. (For some special notions of functional data depth this postulate has to
be properly adapted.)

D4con is met if D4con holds for the underlying d-variate depth.

We now proceed with specifying the set @ of functionals and the multivariate
depth D* in (2.22). While many features of the functional data depth (2.22) resemble
those of a multivariate depth, an important difference must be pointed out: In a
general Banach space the unit ball B is not compact, and properties D3 and D5 do
not imply that the level sets of a functional data depth are compact. So, to obtain
a meaningful notion of functional data depth of type (2.22) one has to carefully
choose a set of functions @ which is not too large. On the other hand, @ should not
be too small, in order to extract sufficient information from the data.

Graph Depths For x € E denote x(t) = (x1(¢), ..., x4(¢)) and consider
&={¢" E—R: ¢ (x)= (x1(t), ..., xa(t)), t €T} (2.24)

for some T C [0, 1], which may be a subinterval or a finite set. For DY use any
multivariate depth that satisfies D1 to DS5. This results in the graph depth

GD(z|x',...,x") =tin;Dd(z(t) |x(@), ..., x"(@)). (2.25)

In particular, with the univariate halfspace depth, d =1 and T = J we obtain the
halfgraph depth (L6pez-Pintado and Romo 2005). Also, with the univariate simpli-
cial depth the band depth (Lopez-Pintado and Romo 2009) is obtained, but this, in
general, violates monotonicity D4.

Grid Depths We choose a finite number of points in J, t1, ..., t, and evaluate a
function z € E at these points. Notate t = (#1, ..., #) and z(¢) = (z1(¢), . .., zd(g))T.
That is, in place of the function z the k x d matrix z% is considered. A grid depth
RD is defined by (2.22) with the following @,

=" 10" @ =((rnz210).....[r.za@®)),r € S5}, (2.26)
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which yields
RD(Z Ix!, .. .,x") = inkf_] Dd(<r, z({)) | (r,xl(L)), e (r, x”(g))). 2.27)

res

A slight extension of the @-depth is the principal components depth (Mosler and
Polyakova 2012). However, certain approaches from the literature are no @-depths.
These are mainly of two types. The first type employs random projections of the
data: Cuesta-Albertos and Nieto-Reyes (2008b) define the depth of a function as
the univariate depth of the function values taken at a randomly chosen argument ¢.
Cuevas et al. (2007) also employ a random projection method. The other type uses
average univariate depths. Fraiman and Muniz (2001) calculate the univariate depths
of the values of a function and integrate them over the whole interval; this results
in kind of ‘average’ depth. Claeskens et al. (2012) introduce a multivariate (d > 1)
functional data depth, where they similarly compute a weighted average depth. The
weight at a point reflects the variability of the function values at this point (more
precisely: is proportional to the volume of a central region at the point).

2.5 Computation of Depths and Central Regions

The moment Mahalanobis depth and its elliptical central regions are obtained in any
dimension by calculating the mean and the sample covariance matrix, while robust
Mahalanobis depths and regions are determined with the R-procedures “cov.mcd”
and “cov.mve”. In dimension d = 2, the central regions of many depth notions can
be exactly calculated by following a circular sequence (Edelsbrunner 1987). The
R-package “depth” computes the exact location (d = 2, 3) and simplicial (d = 2)
depths, as well as the Oja depth and an approximative location depth for any di-
mension. An exact algorithm for the location depth in any dimension is developed
in Liu and Zuo (2012). Cuesta-Albertos and Nieto-Reyes (2008a) propose to cal-
culate instead the random Tukey depth, which is the minimum univariate location
depth of univariate projections in a number of randomly chosen directions. With
the algorithm of Paindaveine and Siman (2012), Tukey regions are obtained, d > 2.
The bivariate projection depth is computed by the R-package “ExPD2D”; for the
respective regions, see Liu et al. (2011). The zonoid depth can be efficiently deter-
mined in any dimension (Dyckerhoff et al. 1996). An R-package (“WMTregions”)
exists for the exact calculation of zonoid and general WM regions; see Mosler et al.
(2009), Bazovkin and Mosler (2012). The R-package “rainbow” calculates several
functional data depths.

2.6 Conclusions

Depth statistics have been used in numerous and diverse tasks of which we can
mention a few only. Liu et al. (1999) provide an introduction to some of them. In
descriptive multivariate analysis, depth functions and central regions visualize the
data regarding location, scale and shape. By bagplots and sunburst plots, outliers
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can be identified and treated in an interactive way. In k-class supervised classifi-
cation, each—possibly high-dimensional—data point is represented in [0, 1]¥ by
its values of depth in the k given classes, and classification is done in [0, l]k.
Functions of depth statistics include depth-weighted statistical functionals, such
as [paxw(D(x | P))dP/[ga w(D(x | P))dP for location. In inference, tests for
goodness of fit and homogeneity regarding location, scale and symmetry are based
on depth statistics; see, e.g., Dyckerhoff (2002), Ley and Paindaveine (2011). Ap-
plications include such diverse fields as statistical control (Liu and Singh 1993),
measurement of risk (Cascos and Molchanov 2007), and robust linear programming
(Bazovkin and Mosler 2011). Functional data depth is applied to similar tasks in
description, classification and testing; see, e.g., Lépez-Pintado and Romo (2009),
Cuevas et al. (2007).

This survey has covered the fundamentals of depth statistics for d-variate and
functional data. Several special depth functions in R? have been presented, metric
and combinatorial ones, with a focus on the recent class of WM depths. For func-
tional data, depths of infimum type have been discussed. Of course, such a survey
is necessarily incomplete and biased by the preferences of the author. Of the many
applications of depth in the literature only a few have been touched, and important
theoretical extensions like regression depth (Rousseeuw and Hubert 1999), depth
calculus (Mizera 2002), location-scale depth (Mizera and Miiller 2004), and likeli-
hood depth (Miiller 2005) have been completely omitted.

Most important for the selection of a depth statistic in applications are the ques-
tions of computability and—depending on the data situation—robustness. Maha-
lanobis depth is solely based on estimates of the mean vector and the covariance
matrix. In its classical form with moment estimates Mahalanobis depth is efficiently
calculated but highly non-robust, while with estimates like the minimum volume el-
lipsoid it becomes more robust. However, since it is constant on ellipsoids around the
center, Mahalanobis depth cannot reflect possible asymmetries of the data. Zonoid
depth can be efficiently calculated, also in larger dimensions, but has the drawback
that the deepest point is always the mean, which makes the depth non-robust. So, if
robustness is an issue, the zonoid depth has to be combined with a proper prepro-
cessing of the data to identify possible outliers. The location depth is, by construc-
tion, very robust but expensive when exactly computed in dimensions more than
two. As an efficient approach the random Tukey depth yields an upper bound on the
location depth, where the number of directions has to be somehow chosen.

A depth statistics measures the centrality of a point in the data. Besides ordering
the data it provides numerical values that, with some depth notions, have an obvi-
ous meaning; so with the location depth and all WM depths. With other depths, in
particular those based on distances, the outlyingness function has a direct interpre-
tation.
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Chapter 3
Multivariate Extremes: A Conditional Quantile
Approach

Marie-Francoise Barme-Delcroix

3.1 Introduction

Ordering multivariate data can be done in various ways and many definitions have
been proposed by, e.g., Barnett (1976), Oja (1983), Maller (1990), Heffernan and
Tawn (2004), Falk and Reiss (2005); see also the contribution by Oja, Chap. 1.
Some papers of Einmahl and Mason (1992), Abdous and Theodorescu (1992), De
Haan and Huang (1995), Berlinet et al. (2001), Serfling (2002), and more recently
Hallin et al. (2010) develop the notion of multivariate quantiles. In the classical
scheme (cartesian coordinates), the multivariate variables are ordered coordinate by
coordinate—see for example Galambos (1987) and the references therein. And in
this way the maximum value thus obtained is not a sample point. A new notion
for the order statistics of a multivariate sample has been explored in Delcroix and
Jacob (1991) by using the isobar-surfaces, that is, the level surfaces of the con-
ditional distribution function of the radius given the angle. The sample is ordered
relatively to an increasing family of isobars and the maximum value of the sample
is the point of the sample belonging to the upper level isobar. This approach is more
geometric and the maximum value is a sample point. The definition depends only on
the conditional radial distribution. The first motivation was to describe the overall
shape of a multidimensional sample, Barme-Delcroix (1993), and has given a new
interest to the notion of stability, Geffroy (1958, 1961). By a unidimensional ap-
proach, some results have been stated in this multidimensional context such almost
sure stability and strong behaviour, Barme-Delcroix and Brito (2001), or limit laws,
Barme-Delcroix and Gather (2007). In Ivankova (2010), isobars are estimated by
non-parametric regression methods and used to evaluate the efficiency of selected
markets based on returns of their stock market indices.

This contribution is concerned with the theory of isobars. First, in the next section
we recall some definitions and notations which will be useful throughout this paper.
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In Sect. 3.3, as an introduction to the isobar-surfaces ordering, we give some results
about the weak stability of this kind of multivariate extremes. This notion appears,
as in the unidimensional case, strongly related to the notion of outlier-proneness or
outlier resistance, Barme-Delcroix and Gather (2002). In Sect. 3.4, we propose a
definition for the record times and record values of a multidimensional sequence of
random variables, based on this isobar-surfaces ordering. At last in Sect. 3.5, we
provide definitions of the stability for record values of multidimensional sequences
and study the resulting probabilistic properties. The idea behind the definition is to
describe the tendency of the record values to be near a given surface. We provide
then characterizations, in term of the distribution function, for stability properties of
the record values, as available in the univariate case, Resnick (1973a,b).

3.2 Preliminaries

Let X be an R?-valued random variable defined on a probability space (£2, A, P).
Denote by || - || the Euclidean norm of R? and by S9=1 the unit sphere of R? which
is endowed with the induced topology of R¢.

Suppose that the distribution of X has a continuous density function. If || X || # 0,
define the pair (R, ®) in R x §d-1 by R=|X]| and ® = ﬁ For all 6, assume
the distribution of R given ® = 0 is defined by the continuous conditional distribu-
tion function,

Fo(ry=P{R<r|©=0}. (3.1)

Denote by F;” Uits generalized inverse.

Definition 3.1 For a given u, 0 < u < 1, the u-level isobar from the distribution of
(R, ®) is defined by:

d—1 *
S — R,

6 — Fy ' () = pu(0).

The corresponding surface is also called isobar. See Fig. 3.1.

We suppose that for u fixed, the mapping Fé,_1 is continuous and strictly positive.
So, isobars are closed surfaces included in each other for increasing levels. For bi-
variate distributions, isobars are classical curves in polar coordinates. Very different
shapes of isobars can be considered according to the choice of the distribution.

Let E, = (X1, ..., X,) be a sample of independent random variables with the
same distribution as X. For each 1 <i < n there is almost surely a unique isobar
from the distribution of R given ® = 6 which contains (R;, ®;). We define the
maximum value in E,, as the point X} = (R, ®,) which corresponds to the upper
level isobar. So, Fex(Ry) = maxi<;<, U;, with U; = Fg, (R;).

We call X} the isobar-maximum of X1, ..., X,; see Fig. 3.2.
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Fig. 3.1 u-level isobar

pu()
1—u
Fig. 3.2 Isobar-maximum
X5
X1,

Definition 3.2 The maximum value in X1, ..., X, is defined as the point X} which
belongs to the upper level surface, i.e., the surface which has a level equal to
max U;.
1<i<n

The multivariate sample X1, ..., X, is then ordered according to the increas-

ing levels, Uy, < --- < Uy, of the corresponding isobar surfaces, following the
classical notation for the order statistics of unidimensional samples, and the corre-
sponding order statistics are denoted by

T,n = ( T,n’ @ik,n)’ teto X;lk,n = (R:;’ @::) = X;:' (3-2)

Obviously, we are not able to find this maximum value of a sample from an
unknown distribution, whereas it can be done with the farthest point from the origin
or with the fictitious point having the largest coordinates of the sample. However,
this kind of extreme value and, more generally, the extreme values obtained by orde-
ring the sample according to the levels, hold more information on the conditional
distributions tails and allow a statistic survey of the isobars.!

We are well aware that the above definition depends on the underlying distribu-
tion and in contexts with just a given data set, it cannot be applied when the data

I'A paper concerning the estimation of isobars is in progress, Barme-Delcroix and Brito (2011).
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generating distribution is not known. This is usually a deficiency but in this con-
tribution, where we want to check if a given distribution is suitable for modeling a
data structure, we are able to use this natural notion of ordering since we suppose
that the distribution is known.

Remark 1 Note that the maximum value is a sample point and is defined intrin-
sically, only with the underlying distribution, taking into account the shape of the
distribution.

Remark 2 Since for all 6 and for all 0 <r <1, P(Fe(R) <r | ® =0) =
Fy (Fg_l(r)) =r, the variables U; = Fg, (R;) are independent and uniformly dis-
tributed over [0, 1].

Remark 3 We could imagine a more general way to order the sample. For example,
by considering an increasing sequence of Borelians, according to a criterion to de-
fine, and not necessarily related to the Euclidean norm. But it is not the purpose of
this contribution.

Remark 4 The definition depends of the choice of the origin and the equations of
isobars change and then the ordering completely changes if we change the origin.
For a given data set one can estimate the origin by using the barycenter of the sample
points. But for many practical situations the origin is given in a natural way (for
instance, consider a rescue center and the accidents all around).

3.3 Weak Stability of Multivariate Extremes
and Outlier-Resistance

In Barme-Delcroix and Gather (2002), we have given a framework and definitions of
the terms outlier-proneness and outlier-resistance of multivariate distributions based
on our definition of multivariate extreme values. As for the univariate case, Green
(1976), Gather and Rauhut (1990), we have classified the multivariate distributions
w.r.t. their outlier-resistance and proneness. Characterizations have been provided
in terms of the distribution functions. Let us recall the main results. We start with
defining the weak stability of the extremes. It has been shown in Delcroix and Jacob
(1991) that the conditional distribution of R given @ is F}, hence the distributions
of (R}, ®)) and (R, ®) have the same set of isobars which led to the following

n’

definition of the weak stability (or stability in probability) of the sequence (X,),,.

Definition 3.3 The sequence (X}), = (R}, ©))), of the isobar-maxima is called
stable in probability if and only if there is a sequence (g, ), of isobars satisfying

R —g.(07) 0. (3.3)
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g(6,7)

01

Fig. 3.3 Isobar containing an arbitrarily point x; = (1, 61)

Following Geffroy (1958), we will see in this section that it is possible to choose
g,(0) = Fe_l (11— %). Examples are given after Theorem 3.2.

We suppose now that Fy is one-to-one. It is convenient to fix arbitrarily a point
x1 = (1,6y), 61 in S4-1. For every point x = (r,01) , there is a unique surface
g(6,r), 0 in Sa-1 containing x, which has a level denoted by u(r) and which is
given by

8(0.1) = pur(®) = Fo~' (Fp, (). (3.4)

Note that g(61, r) = r; see Fig. 3.3. Moreover, the mapping r — u(r) from R”jr
into R is increasing and one-to-one.

The following conditions (H) and (K) will be needed.

(H) There exist 0 < & < B < oo such that for all 6 in $~! and for all r > 0:

g
oa<—(@6,r)<pB.
ar
(K) For all € > 0, there exists n > 0 such that for all » > 0:
sup{g(@,r +n) —g@,r — )} <e.
6

Clearly, (H) implies (K).

Remark 5 Condition (H) entails a regularity property of the isobars following from
the mean value theorem:
For all By > 0, there exists n = ,Bo% > 0 and for all » > 0, there exist two isobars

hgy(0,r) =86, r + %) and hig, (0,7) = g(0,r — %) such that for all 6,
g6,r)— Po < lego(Q, r)<g®,r)—n<g@r)+n<hg@,r)<g®,r)+ Po.

Note that  does not depend on .

For all i > 1, let W; be the intersection of the half axis 07% containing the
point x; = (1, 81) and the isobar-surface containing X;; W; = F(,_II(F@l. (Ri)). See
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Fig. 3.4 The order statistics
of the real sample

Wi, .., Wy X*

Gn,n (0)

Fig. 3.4. In fact, (W,), is a sequence of i.i.d. variables from the distribution Fp,. As
usual Wy , <.-- < W,_1, < W, , denotes the corresponding order statistics for the
sample (W1, ..., W,). Let g, , denote the isobar containing X' = X, , and W, ,,
and g,—1,, the isobar containing X, , and W1 ;.

The next theorem ensures that the concept of ordering multivariate data according
to the isobar surfaces yields analogous results to the univariate case, Barme-Delcroix
and Gather (2002).

Theorem 3.1

1. Under condition (K) the sequence (Xf;)n is stable in probability if (W, ), is
stable in probability.

2. Under condition (H) the sequence (W, ), is stable in probability if and only if
(X}, is stable in probability.

3. Consider for some fixed integer 1 < o < n the sequence (X,_q+y1,n),, this being
defined by ordering the sample according to increasing levels by

%
Xl,n» ey Xn—ot+l,nv ey Xn,n = Xn-

Let (H) be satisfied. Then (X:)n is stable in probability if and only if (X, —q+1,n),
is stable in probability.

As an application of the weak stability of extreme values of multivariate samples
we can now define the notion of Absolute Outlier-Resistance. Recall that Green
(1976) called a univariate distribution F absolutely outlier-resistant if for all € > 0:

lim P(Wyp,—Wy_1,>¢)=0,
n—+00
where Wi, <--- < W,_1, < Wy, are the usual univariate order statistics of
Wi, ..., W,, distributed identically according to F.

Following Green (1976), we can now propose the definition of multivariate Ab-

solute Outlier-Resistant distributions.
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Definition 3.4 The distribution of the multivariate r.v. (R, @) is absolutely outlier-
resistant (AOR), if and only if for all 6:

P
&n,n(0) — gn—1,n(0) — 0. 3.5

For areal sample Wy, ..., W, it has been shown in Geffroy (1958) and Gnedenko

(1943), that (W, ),, is stable in probability if and only if W,, , — W, _1 —P> 0. The
following theorem, Barme-Delcroix and Gather (2002), gives an analogous result
and a characterization of weak stability by the tail behaviour of the underlying dis-
tribution. Let Fy = 1 — Fp.

Theorem 3.2 Let condition (H) be satisfied. All the following statements are equiv-
alent:

. The distribution of (R, ®) is AOR.

. (X}), is stable in probability.

. For every fixed integer 1 <o <n, (X,—q41,1), is stable in probability.

. There exists 0y such that limy_, oo Fy, (x)/ Fp, (x — h) =0, for all h > 0.
. Forall 0, 1im,_, 1 Fp, (x)/Fg,(x —h) =0, for all h > 0.

Wn,n - Wn—l,n _P) 0.

. (Wq,n),, is stable in probability.

. For all 0, the distribution Fy is AOR.

. There exists 01 such that the distribution Fy, is AOR.

O 0N A WN —

Other characterizations can be found in Barme-Delcroix and Gather (2002).

Example I Tn the first example, Fp(r) = (1 — e %@ ), o), where m > 0, and &
is a continuous strictly positive function over [0, 27] such that «(0) = «(27). For
a fixed 6; and for every r > 0, the u(r)-level isobar g(6,r) is defined, according
to (3.4), by

_ (e
gw’”‘(a(@)) ;

so that (H) is fulfilled. Theorem 3.2(5) shows that (X :‘l)n is stable in probability if
and only if m > 1.

Example 2 For a bivariate Gaussian centered distribution with covariance matrix

(ffo2 9). we have g(8,r) = ré:(6) with ¢ (6) = 2~ 0?0 4 203 and the iso-
bars are the density contours. Note that condition (H) is satisfied. For c =7 =1
the distribution is spherically symmetric and the isobars are circles. Hence, in this
particular case, the ordering of the sample is the ordering of the norms of the sample
points. In this example, Fp(r) =1 — exp(—r2¢(9)). Following Theorem 3.2(5) we

conclude that the distribution is AOR.

Similarly, we can define outlier-prone multivariate distributions, that is distribu-
tions such that there exist observations far apart from the main group of the data.
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Definition 3.5 The distribution of (R, ®) is called absolutely outlier-prone, (AOP),
if and only if for all 6 there exist ¢ > 0, § > 0 and an integer ng, such that for all 6
and for all n > ny:

P(gn,n(e) - gn,n—l(e) > 8) > 4. (3.6)
That is, for all 8, the distribution Fy is AOP.

Theorem 3.3 Let condition (H) be satisfied. All the following statements are equiv-
alent:

1. The distribution of (R, ®) is AOP.
2. Forall 0, there exist o > 0, B > 0 such that for all x
Fy (_x + 8) >a
Fo(x)
3. There exist 0y, ag > 0 and Bo > 0 such that for all x
F,
ot po) o
Fy(x)
4. There exists 0y such that Fy, is AOP.

See Barme-Delcroix and Gather (2002) for more details.

3.4 Records for a Multidimensional Sequence

Let {X,, = (R,, ®,),n > 1} be a sequence of independent, identically distributed
random variables as X = (R, ®@) in the previous sections, with common condi-
tional distribution function Fy(-). According to the definitions of Sect. 3.2, we
associate the sequence of the levels, that is the sequence of the independent, uni-
formly distributed over [0, 1] variables {U, = Fg, (R,),n > 1}. As usual, Resnick
(1973a), Galambos (1987), we can define the notion of record values for the se-
quence {Uy, n > 1}. U; is arecord value for this sequence if and only if:

Uj > max(Uy,...,Uj_1),

with the convention that U is a record value.
The indices at which record values occur are given by the random variables
{L,,n > 0} defined by

and
Ly=min(j:j>L,1,U; >Ug, ).

The distribution function for a uniform variable being continuous, the variables
L,, are well defined with probability one.
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Note that Uy, = max(Uy, ..., UL,).

Now we can define the record values for the multidimensional sequence {X, =
(Ry, ©y),n > 1}, since the sequence has been ordered according to the increasing
levels.

Definition 3.6 The record values for the sequence {X,, = (R,, ®,),n > 1} are de-
fined by:

{X1, =Ry, 0L,).,n>0}. (3.7

So the definition of the record values for the sequence of the levels {U,,n > 1}
induces the definition of the record values for the sequence {X,, = (R, ©®,),n > 1}.
The definition seems relevant because it is based on the probability to be at a certain
distance from the origin, given the angle. Thus, we consider the intrinsic properties
of the multivariate distribution.

Lemma 1 Forall n > 0, The variables ®p, and © are identically distributed.

Proof The record value of the sequence {X,,, n > 1}, associated with the record time
L, is almost surely defined as the point X with polar representation

+00
(RL,.0L,) =Y (Ri,O)lg,, (3.8)

i=1
where

L,
& = {FO (R) = Uy, =max(Uy. ... Up,) = méx Fo, (Rj)}. (3.9)

J

As noticed in Remark 2, P(Fg(R) <r | ® =0) =r, and for each j > 1 the
variables ®; and U; = Fg ; (R;) are independent. It follows that {®;; j > 1} and
{F@j (Rj); j > 1} are independent. Therefore for each j > 1, ®; and / g; are in-
dependent, since the variables L; are o (U;)—measurable. Consequently, for any
Borel set C of S~ 1:

+00 ~+00
PO, €C)= P(Z O lg € c) =) P(Oi€C:&)
i=1 i=1
~+00
=Y PO €O)P(E)=PO ). (3.10)

i=1

O

Lemma 2 Any isobar from the distribution of R given © is also an isobar from the
distribution of Ry, given Oy, .
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Proof Let g(0) = Fg_l(u) be an u-level isobar from the distribution of R given
® =0 and let B be the event

B={Ry, < Fy, ).

Since B = ﬂiLz"l{F@i(Ri) <u} ={max(Uy,...,Ur,) < u}, B is independent of
{®;, j = 1}. Thus for any Borel set C of sa-1 (3.10) implies:

+00 +00
P(OL,€C:B)=) PO €C:&:B) =) PO eC)PE&:B)
i=1 i=1
= P(O1, € O)P(B).

Thus ®;, and 15 are independent; therefore,

+oo Ly
P(Re, < Fy, ) |61, =6)=P(B) = ZP(ﬂ Fo,(R)) <u; Ly =k>
k=1 i=1

+o0
=ZukP(Ln=k). O
k=1

3.5 Weak Stability of Multivariate Records

The results of the previous section state that both the distributions of R given &
and the distributions of Ry, given @, have the same set of isobars. Hence, we deal
only with the formers. In the sequel, any u-level isobar from the distribution of R
given O is labelled as u-level isobar. So we may give the following definitions.

Definition 3.7 The sequence (X,,), = ((Rg,,®p,)), of the multidimensional
records is stable in probability if and only if there is a sequence (g,), of isobars
satisfying

R1, — 24(O1,) > 0. G.11)
We can also define the relative stability for the multidimensional records.

Definition 3.8 The sequence (X.,), = ((Rr,,®r,)), of the multidimensional
records is relatively stable in probability if and only if there is a sequence (g,)n
of isobars satisfying

R
S By (3.12)
&n(®L,)

Asin Sect. 3.3, we suppose that Fy is one-to-one. In the next theorem, it is shown
that the weak stability of the sequence of the multidimensional records (X ,), =
((Rg,,©®L,)), can be investigated through the stability of the real sequence (Wp,),.
See Fig. 3.5. The conditions (H) and (K) will be useful again.
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Fig. 3.5 The sequence of
records

Theorem 3.4

1. Under condition (K) the sequence (X1, ), is stable in probability if the sequence
(WL, )n is stable in probability.

2. Under condition (H) the sequence (X, )n is stable in probability if and only if
the sequence (Wy,), is stable in probability.

Proof (1) If (Wp,), is stable in probability, then there exists a sequence (w;) such

that W, — w, —P> 0. According to (K), for € > 0 there exists n > 0 such that
supy{g@,r +n) —g@,r —n)} <e¢, forall w> 0. Let h) () = g6, w, +n) and
h,(0) = g6, w, —n) and put g(0, wy,) = h,(0). We have therefore

{IWL, —wal <0} ={h;"@01) < Wi, <hO)
C {n,"(OL,) < R, <h}(OL,)]

c{|Re, —hn(OL,)

<e}

implying that R, — h,(©L) - 0.
(2) Conversely, if there exists a sequence of surfaces g, such that R;, —

gn(@r,) £> 0, denote by w,, the intersection of the half axis 00; with g,. According
to (H), there exist & and § such that

8O, wy) +ra =g, w, +1) <gO,wy) +18
and
g0, wy) —AB < g0, w, —A) < g0, wy) — A

for all A > 0 and all . Given € > 0, it is possible to choose A =€/ and
n = e€a/B and to take

hn(0) =20, w, + 1),

hn(0) = g6, wy, — 1).
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It follows that

{|RLn - gn(@Ln)

which completes the proof. g

<n} C{ha(OL,) <R, <ha(Op,)} C {IWL, —wal <€},

Now we can use unidimensional criteria to obtain characterizations for the
weak stability or relative stability of multidimensional records. Following Resnick
(1973a,b), let us define for all # and for all > 0, the integrated hazard function

Ro(r) = —log(1 — Fy(r)).

Theorem 3.5 Under condition (H), the sequence (Xy,, ), is stable in probability if
and only if

_ P
Rr, —Rg, (1)~ 0. (3.13)
Or, equivalently, if and only if there exists 61 such that for all € > 0,

i Re, (r +€) — Ry, (r)
1m 12 =
=t R4

+00. (3.14)

Or, equivalently, if and only if for all 6 and for all € > 0,
 Ro(r+€) = Ro(r)
lim 72 =
r—+00 Rg (r + E)

+o00. (3.15)

Theorem 3.6 Under condition (H), the sequence (X|,,), is relatively stable in prob-
ability if and only if

R
L (3.16)
R@L,, (n)
Or, equivalently, if and only if there exists 01 such that for all k > 1,
. R, (kr) — R, (r)
im i
r—+oo Ry, " (kr)

= +00. (3.17)

Or, equivalently, if and only if for all 6 and for all k > 1,

Ro(kr) — R,

lim w = 400 (3.18)
r—+00 Rg (kr)

Remark 6 These theorems imply that a convenient sequence of isobars satisfying

the conditions (3.11) and (3.12) of Definitions 3.7 and 3.8 is given by g,(0) =

Ry (n) = F; ' (1 — exp (—n)).

Example 3 Recall that in the first example, Fp(r) = (1 — e~ *@™")](, ), where

m > 0, and « is a continuous strictly positive function over [0, 27 ] such that «(0) =
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a(2m). For a fixed 0 and for every r > 0, the u(r)-level isobar g(@, r) is defined,
according to (3.4), by

NI
g(e,r>—<a(9)) r,

and (H) is fulfilled. In this case Ry (r) = a(0)r™; so condition (3.14) or (3.15) of
Theorem 3.5 is satisfied for m > 2 and the sequence (X,), is stable in probability
for m > 2. Moreover, for all m > 0, condition (3.17) or (3.18) is satisfied and the
sequence (X, ), is relatively stable in probability for all m > 0.

Example 4 For a bivariate Gaussian centered distribution with covariance matrix

(77 5). we have g(6.r) = r¢(6) with ¢(6) = T cos’0 | S0) 5 We know

already that condition (H) is satisfied. In this example, Fy(r) = 1 — exp(—r2¢(0))
and Ry (r) = r’¢(0) and we can easily check the conditions of Theorem 3.5 and
conclude that the sequence (X, ), is stable in probability.

3.6 Conclusions

We have shown that, by using the isobar surfaces approach, the multivariate weak
stability properties for the extreme values and record values may be investigated in
a univariate way. We could now focus, in a future work, on finding characterizations
of the multivariate a.s. stability of the record values as it has been done for the
intermediate order statistics in Barme-Delcroix and Brito (2001).
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Chapter 4
High-Breakdown Estimators of Multivariate
Location and Scatter

Peter Rousseeuw and Mia Hubert

4.1 Introduction

In the multivariate setting, we assume that we have p-dimensional column ob-
servations x; = (x;q,..., xip)’, drawn from a p-variate random variable X =
(X1,..., X ) with distribution F on R”.

In this chapter, we will assume that the distribution F of the uncontaminated data
is elliptical. We say that F is elliptical if there exists a vector u, a positive definite
matrix ¥, and a nonnegative strictly decreasing real function 4 such that the density
of F can be written in the form

_ 1 2
100 = s h(dx . 3) (1)

in which the statistical distance d(x, p, X') is given by

Ao, 2) = (= ) =1 (x - . (42)

The matrix X is often called the scatter matrix. The multivariate normal distribu-
tion N(p, X) is a specific example of (4.1) with h(¢) = (27)~P/2¢1/2. Another
example is the elliptical p-variate Student distribution with v degrees of freedom
(0 < v < 00) for which A(t) = ¢;/(t + v)PT")/2 with ¢, a constant. The case v = 1
is called the multivariate Cauchy distribution.

Elliptical distributions have the following properties:

1. The contours of constant density are ellipsoids.
2. If the mean and variances of X exist, then Er[X] = u and Covg[X] = cX with
¢ a constant. (For normal distributions ¢ = 1.)
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3. For any nonsingular matrix A and vector b the distribution of AX + b is also
elliptical, with mean Au + b and scatter matrix AX A’.
4. The random variable X can be written as

X=AZ+p 4.3)

with A such that ¥ = AA’, and Z a random variable with a spherical distribution,

ie., f(z)=h(z|*.

Example Let us consider the animals data set (Rousseeuw and Leroy 1987), avail-
able in R within the MASS package, which contains the body and brain weight of 28
animals. A scatterplot of the logarithm of the observed values (Fig. 4.1) shows that
the majority of the data follows an elliptical distribution with a positive correlation,
whereas three animals, with large body weight, have a much smaller brain weight
than expected under this model. They correspond to the dinosaurs in the data set.
We will return to these data in later sections.

Section 4.2 reviews the classical estimators of location and scatter as well as the
notion of breakdown value. In Sect. 4.3, we describe multivariate M-estimators and
discuss their robustness properties. Section 4.4 is devoted to the highly robust MCD
estimator, followed by Sect. 4.5 which describes several other high-breakdown and
affine equivariant robust estimators. Some robust but non affine equivariant estima-
tors are summarized in Sect. 4.6, and Sect. 4.7 concludes.

4.2 Classical Estimators

One of the goals of multivariate analysis is to estimate the parameters g and X
from a sample X,, = (X1, ..., X)". (The sample is thus a matrix with n rows and p
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columns.) Under the assumption of multivariate normality, the MLE estimates of
and X are the sample mean and the (biased) sample covariance matrix:

R R B} _
X= ;X;Xi and C(X,)= ;X;(Xi —X)(x; —Xx).
1= 1=

Note that C(X},) is biased, but S(X,) = ;=7 C(X,,) is unbiased.
The estimators X and C(X,,) have an important property known as affine equiv-
ariance. In general, a pair of multivariate location and covariance estimators (jt, X')

is called affine equivariant if for any nonsingular matrix A and any constant vector
b it holds that

RAX+b)=ARX)+b and E(AX+b)=AZ(X)A' 4.4

Affine equivariance implies that the estimator transforms well under any non-
singular reparametrization of the space of the x;. The data might for instance be
rotated, translated, or rescaled (for example through a change of the measurement
units). Note that a transformation AX of the variables (X1,..., X p)’ corresponds to
the matrix product X, A’.

At the normal model the sample mean and the sample covariance matrix are con-
sistent and asymptotically normal with maximal efficiency, but they lack robustness:

e Their influence function (Hampel et al. 1986) is unbounded. Let T (F') be the sta-
tistical functional mapping a distribution F to its mean .y = Erp[X] andlet V (F)
be the statistical functional mapping F to its covariance matrix X'r = Covp[X].
Then at any z € R”

IF(z; T, F)=z— pp,
IF(z; V,F)=@—pp)z—pnp) — ZF.

Clearly, both influence functions are unbounded in z.

e The asymptotic breakdown value of the mean is zero. More precisely, let F, g =
(1 — &)F + ¢H for any distribution H, then the asymptotic breakdown value is
defined as

& (T, F)=infle > 0 sup | T(F. )| = oo} 4.5)
H

e The asymptotic breakdown value of the classical covariance matrix is zero too.
Let us denote the eigenvalues of a p.s.d. matrix by A; > --- > A, > 0. Then we
define the implosion breakdown value of a scatter functional V at F as

Emp(V, F) =inffe > 0:inf{, (V(F.m) } = 0]

imp
and the explosion breakdown value as

e (V. F) = inf[e >0 sup{hi (V(Fem))) = +oo},
H
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The breakdown value then equals the smallest of these:

e*(V, F) =min(el (V, F), &k (V, F)).

*
exp imp

For the classical covariance, the explosion breakdown value is zero.

The finite-sample breakdown value of estimators of location and scatter can be
defined accordingly. It can be proved (Lopuhai and Rousseeuw 1991) that any affine
equivariant location estimator f satisfies

R 1|n+1
5:(M7Xn)<;\‘ ) J (46)

Any affine equivariant scatter estimator ¥ satisfies the sharp bound (Davies 1987)

n—p+1
2

. 1
(2. Xn) <

4.7

if the original sample (before contamination) is in general position, which means
that no hyperplane contains more than p points. At samples that are not in general
position, the upper bound in (4.7) is lower and depends on the maximal number
of observations on a hyperplane. For affine equivariant location and scatter estima-
tors the asymptotic breakdown value is always at most 0.5. For recent discussions
about the breakdown value and equivariance, see Davies and Gather (2005) and the
contribution by Miiller, Chap. 5.

Example For the animals data set mentioned before, the classical estimates are X =
(3.77, 4.43)" and
g— 14.22 7.05
“\705 576)°

which yields an estimated correlation of r = 7.05/4/14.22 x 5.76 = 0.78. To visu-
alize these estimates, we can plot the resulting 97.5 % tolerance ellipse in Fig. 4.2.
Its boundary consists of points with constant Mahalanobis distance to the mean. In
general dimension p, the tolerance ellipsoid is defined as

[x: MDOO < /2 0,075} (4.38)

with MD(x) = d; (x, X, S) following (4.2). We expect (for large n) that about 97.5 %
of the observations belong to this ellipsoid. One could flag an observation as an
outlier if it does not belong to the classical tolerance ellipsoid, but in Fig. 4.2 we see
that the three dinosaurs do not stand out relative to the ellipse. This is because the
outliers have attracted X and, more importantly, have affected the matrix S in such a
way that the ellipse has been inflated in their direction.
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4.3 Multivariate M-Estimators

M-estimators of multivariate location and scatter (ft, ﬁ‘) were defined in Maronna
(1976) as the solution of

ZW1 )(x; — i) =0, (4.9)

- Z Wa(dF) (i = )(xi — )’ = 2 (4.10)

with d; = d(x;, ft, ¥) as in (4.2). Note that i should be a real vector and ¥ a
symmetric positive definite matrix. The functions Wy (¢) and W5 (¢) are real-valued
and defined for all ¢ > 0.
If we define 6 = (u, ), ¥ = (¥, ¥) and
) (x,6) = Wi (d*) (x — ),
W (x,60) = Wa(d*) (x — p)(x — )’ — ¥

(4.9) and (4.10) combine into the single M-equation

1 n
—ZW(X,-,@) =0
ni:l

Examples:

o If Wi(d?) = Wa(d?) = 1, we find the sample mean and sample covariance matrix.
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e For an elliptical density (4.1), one finds that the MLE estimators jt and 3 mini-
mize

n
nlog| 2| —2) "logh(d}).

i=1

Differentiating with respect to g and X ~! yields the system of equations in (4.9)
and (4.10) with W, (d?) = Wa(d?) = —2h'(d*)/h(d?). Any MLE is thus an
M-estimator.

e In Maronna (1976) several conditions on W and W, are given to ensure the exis-
tence, uniqueness and consistency of the estimators. Sufficient conditions are that
/1Wi(t) and t Wa(¢) are bounded, and that t W, (¢) is nondecreasing. A multivari-
ate M-estimator which satisfies the latter condition is called monotone. Otherwise
it is called redescending.

Some properties:

e Multivariate M-estimators are affine equivariant.
e For a monotone M-estimator (4.9) and (4.10) have a unique solution. This solu-
tion can be found by a reweighting algorithm:

1. Start with initial values py and Xy such as the coordinatewise median and the
diagonal matrix with the squared coordinatewise MAD at the diagonal.
2. Atiteration k compute dy; = d(X;, fty, X%) and

sy = YW (dlgi)xi
Y widd)

. 1 . Ay
kg1 = - Z Wz(d/i-)(xi — M) (X — fpy1) .

i=1

For a monotone M-estimator this algorithm always converges to the unique so-
lution, no matter the choice of the initial values. For a redescending M-estimator
the algorithm can convergence to a bad solution, so the initial values are more
important in that case.

e Under some regularity conditions on W; and W», multivariate M-estimators are
asymptotically normal.

e The influence function is bounded if  W>(¢) and /7 W (¢) are bounded.

e The asymptotic breakdown value of a monotone M-estimator satisfies

1

* _
Although monotone M-estimators attain the optimal value of 0.5 in the univariate
case, this is no longer true in higher dimensions.

This reveals the main weakness of M-estimators in high dimensions: monotone
M-estimators, while computationally attractive, have a rather low breakdown value.



4 High-Breakdown Estimators of Multivariate Location and Scatter 55

Redescending M-estimators can have a larger breakdown value, but are impractical
to compute.

4.4 Minimum Covariance Determinant Estimator

4.4.1 Definition and Properties

The Minimum Covariance Determinant (MCD) estimator (Rousseeuw 1984) was
one of the first affine equivariant and highly robust estimators of multivariate loca-
tion and scatter. Given the parameter # with [(n + p + 1) /2] < h < n, the raw MCD
is defined as (fi, X)) where:

1. fu is the mean of the & observations for which the determinant of the sample
covariance matrix is minimal.
2. X is the corresponding covariance matrix multiplied by a consistency factor.

Note that the MCD estimator can only be computed when & > p, otherwise the
covariance matrix of any i-subset will be singular. Since z > [(n 4+ 2) /2], this con-
dition is certainly satisfied when n > 2p. To avoid excessive noise, it is however
recommended that n > 5p. To obtain consistency at the normal distribution, we
can use the consistency factor o/ F o ( X;, o) with @ = h/n (see Croux and Haes-

broeck (1999)). For small n, we can multiply by an additional finite-sample correc-
tion factor given in Pison et al. (2002).

The parameter / controls the breakdown value. At samples in general position
¢*=min(n —h + 1, h — p)/n. The maximal breakdown value (4.7) is achieved by
setting h = [(n + p + 1)/2]. The MCD estimator with 2 = [(n + p + 1)/2] is thus
very robust, but unfortunately suffers from a low efficiency at the normal model. For
example, the asymptotic relative efficiency of the diagonal elements of the MCD
scatter matrix with respect to the sample covariance matrix is only 6 % when p = 2,
and 20.5 % when p = 10. This efficiency can be increased by considering a larger /
such as & ~ 0.75n. This yields relative efficiencies of 26.2 % for p =2 and 45.9 %
for p = 10. On the other hand, this choice of & decreases the robustness towards
possible outliers.

In order to increase the efficiency while retaining high robustness, one can add a
weighting step (Rousseeuw and Leroy 1987; Lopuhai and Rousseeuw 1991), lead-
ing to the reweighted MCD estimator (RMCD):

3. Compute d; =d(x;, fi, ). Next let
S WD,
YW@

SRMCD = (Z W (d?) (xi — frmcp) (Xi — ﬂRMCDY)/(Z W(d7) - 1)

i=1

KrMCD =
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for some weight function W(¢). This weight function should be nonincreasing,
bounded, and equal to zero from a certain value ¢ on.

Note the similarity with (4.9) and (4.10). The RMCD estimator can be seen as a
one-step M-estimator with the raw MCD estimates as initial starting values. RMCD
combines the breakdown value of the original MCD with the better efficiency of
M-estimators. A simple yet effective choice for W is to assume that the & selected
observations are approximately normally distributed hence the distribution of their
d? is close to x3, which leads to W(d?) = I(d* < x,%, g)- This is also the default
choice in the CovMcd function in the R package rrcov (with g = 0.975). If we
take i ~ (0.5n this reweighting step increases the efficiency to 45.5 % for p =2 and
to 82 % for p = 10.

The MCD estimator is affine equivariant. This property follows from the fact that
for each subset of size &, denoted as X g, the determinant of the covariance matrix
of the transformed data equals

|C(xuA)| = |AC(Xm)A| = A1P|C(Xn)|. 4.11)

Hence, the optimal 4-subset (which minimizes |C (X g A")|) remains the same as for
the original data (which minimizes |C(Xp)|), and its covariance matrix is trans-
formed appropriately. Afterward, the affine equivariance of the raw MCD location
estimator follows from the equivariance of the sample mean. Finally, we note that
the robust distances d; = d(x;, ft, Z:‘) are affine invariant, which implies that the
reweighted estimator is equivariant.

The influence functions of the MCD location vector and scatter matrix are
bounded (Croux and Haesbroeck 1999; Cator and Lopuhad 2012). At the stan-
dard Gaussian distribution, the influence function of the MCD location estimator
becomes zero for all x with ||x]||? > X;,w hence large outliers do not influence the
estimates. The same happens with the off-diagonal elements of the MCD scatter es-
timator. On the other hand, the influence function of the diagonal elements remains
constant (different from zero) when ||x||2 is sufficiently large. Therefore, the out-
liers still have a bounded influence of the estimator. All these influence functions
are smooth, except at those x with [|x||> = Xzzw' The reweighted MCD estimator

has an additional jump in Ix|12 = X;,0.975 due to the discontinuity of the weight
function.

Highly robust estimators such as MCD are often used to identify outliers, see,
e.g., Rousseeuw and van Zomeren (1990) and Becker and Gather (1999, 2001).

Example For the animals data, the RMCD estimates (for « = 0.5) are figppep =
(3.03,4.28)" and

8 _ (1886 14.16
RMCD =\ 14.16 11.03

yielding a robust correlation estimate of 0.98 which is higher and corresponds to the
correlation of the ‘good’ (non-outlying) data. The corresponding robust tolerance
ellipse, now defined as in (4.8) but with the Mahalanobis distances replaced by the
robust distances d; = d(X;, lRpMCD» SRMCD), correctly flags the outliers in Fig. 4.3.
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In dimensions p > 3, we cannot draw a scatterplot or a tolerance ellipsoid. To
explore the differences between the classical and the robust analysis, we can then
still draw a distance-distance plot which plots the robust distances versus the Ma-
halanobis distances as in Fig. 4.4. This plot reveals the differences between both
methods at a glance, as the three dinosaurs lie far from the dotted line. Note that
observation 14, which is little bit outlying, is the human species.

4.4.2 Computation

The exact MCD estimator is very hard to compute, as it requires the evaluation of
all (Z) subsets of size k. Therefore, one switches to an approximate algorithm such
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as the FAST-MCD algorithm of Rousseeuw and Van Driessen (1999) which is quite
efficient. The key component of the algorithm is the so-called C-step:

Theorem 4.1 Take X, = (X1, ...,X,) and let H C {1, ...,n} be subset of size h.
Put ji; and 2| the empirical mean and covariance matrix of the data in Hy. If
|le| # 0 define the relative distances dl.1 =d(x;, fiy, ﬁ‘l)forall i=1,...,n.

Now take Hy such that {d};i € Hp} := {(d")1:n, ..., (dYpn} where (d") 1 <
(dl)gz,, <o <K (dl)n:n are the ordered distances, and compute L, and 22 based
on Hy. Then

|21 < 121
with equality if and only if fu, = ji; and ¥, = X1.

If |ﬁ‘ 1| > 0, the C-step thus easily yields a new h-subset with lower covariance
determinant. Note that the C stands for ‘concentration’ since Z:‘z is more concen-
trated (has a lower determinant) than ﬁ’1. The condition |ﬁ‘1| # 0 in the C-step
theorem is no real restriction because if |ﬁ‘1| = 0 the minimal objective value is
already attained.

C-steps can be iterated until |ffnew| =0or |ﬁ‘new| = |f201d|. The sequence of
determinants obtained in this way must converge in a finite number of steps because
there are only finitely many /-subsets. However, there is no guarantee that the final
value | Zyew| of the iteration process is the global minimum of the MCD objective
function. Therefore, an approximate MCD solution can be obtained by taking many
initial choices of Hj, applying C-steps to each and keeping the solution with lowest
determinant.

To construct an initial subset Hy, a random (p + 1)-subset J is drawn and
fLo := ave(J) and ﬁ‘o := C(J) are computed. (If |ﬁ‘0| =0, then J can be ex-
tended by adding observations until |f]o| > 0.) Then, fori =1, ..., n the distances
all.0 =d(x;, fg, ﬁ‘o) are computed and sorted. The initial H; subset then consists
of the h observations with smallest distance d°. This method yields better initial
subsets than by drawing random /-subsets directly, because the probability of draw-
ing an outlier-free subset is much higher when drawing (p + 1)-subsets than with
h-subsets.

The FAST-MCD algorithm contains several computational improvements. Since
each C-step involves the calculation of a covariance matrix, its determinant and the
corresponding distances, using fewer C-steps considerably improves the speed of
the algorithm. It turns out that after two C-steps, many runs that will lead to the
global minimum already have a considerably smaller determinant. Therefore, the
number of C-steps is reduced by applying only two C-steps to each initial subset
and selecting the 10 different subsets with lowest determinants. Only for these 10
subsets further C-steps are taken until convergence.

This procedure is very fast for small sample sizes n, but when n grows the com-
putation time increases due to the n distances that need to be calculated in each
C-step. For large n FAST-MCD uses a partitioning of the data set, which avoids
doing all the calculations on the entire data.
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Note that the FAST-MCD algorithm is itself affine equivariant. Implementations
of the FAST-MCD algorithm are available in R (as part of the packages rrcov, ro-
bust and robustbase), in S-PLUS (as the built-in function cov.mcd) and in SAS/IML
Version 7 and SAS Version 9 (in PROC ROBUSTREG). There is also a Matlab ver-
sion in LIBRA, a Matlab LIBrary for Robust Analysis (Verboven and Hubert 2005)
which can be downloaded from wis.kuleuven.be/stat/robust. Moreover, it is avail-
able in the PLS toolbox of Eigenvector Research (www.eigenvector.com). Note that
some functions use o = 0.5 as default value, yielding a breakdown value of 50 %,
whereas other implementations use o = (.75.

4.5 Other High-Breakdown Affine Equivariant Estimators

4.5.1 The Stahel-Donoho Estimator

The first affine equivariant estimator of location and scatter with 50 % breakdown
value was the Stahel-Donoho estimator (Stahel 1981; Donoho 1982). It is con-
structed as follows. The Stahel-Donoho outlyingness of a univariate point x; is
given by

|xi —med(X,,)|

SDO; = SDOW (x;, X,,) =
i (xz n) mad(X,,)

’

whereas the outlyingness of a multivariate x; is defined as

SDO; = SDO(x;, X,,) = sup SDO (a'x;, X,a). (4.12)

aeR?

The Stahel-Donoho estimator is then defined as a weighted mean and covariance
matrix, where the weight function W (¢) is a strictly positive and nonincreasing func-
tion of SDO;. If t W (¢) and r>W (¢) are bounded, then the breakdown value is 50 %.
Note that mad(X,,) in the denominator of SDO; can be modified slightly to obtain
the best possible finite-sample breakdown value (Gather and Hilker 1997). For more
details on the Stahel-Donoho estimator see (Maronna and Yohai 1995).

To compute the Stahel-Donoho estimator, the number of directions a needs to be
restricted to a finite set. These can be obtained by subsampling: take the directions
orthogonal to hyperplanes spanned by random subsamples of size p.

In data sets with high contamination rate, it may happen that fewer than p + 1
observations obtain a weight W(SDO;) > 0 up to numerical precision, hence the
Stahel-Donoho scatter matrix becomes singular. This can be remedied as in Hubert
et al. (2005) and Debruyne and Hubert (2009) by replacing the smooth function W
by weights that are set to 1 for the & points with lowest outlyingness, and to O for the
others. This way enough data points are included to ensure nonsingularity, assuming
the uncontaminated data were in general position.
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4.5.2 The MVE Estimator

The Minimum Volume Ellipsoid (MVE) estimator (Rousseeuw 1985) of location is
defined as the center of the ellipsoid with minimal volume which contains /# obser-
vations with [(n + p + 1)/2] < h < n. The corresponding scatter estimator is given
by the matrix in the formula of this ellipsoid, multiplied by a consistency factor.
This estimator has maximal breakdown value when & = [(n + p + 1)/2], but it is
not asymptotically normal and more difficult to compute than the MCD estimator.
A FAST-MVE algorithm is described in Maronna et al. (2006, p. 199).

4.5.3 S-Estimators

S-estimators of multivariate location and scatter (Rousseeuw and Leroy 1987; Lop-
uhai 1989) are defined as the solution (jt, ) to the problem of

. 1 &
minimizing |X| subjectto — Z pdi)=546
-

with d; = d(x;, L, 3 as before and 0 < § < +00.

The MVE estimator with 50 % breakdown value can be seen as a special case, ob-
tained by taking p(¢r) = I (|t| >,/ X;.O.S) and § = 0.5. However, this discontinuous
p-function does not yield a good asymptotic behavior. Using a smooth p-function
gives much better results. More precisely, the p function should satisfy:

e (R1) p is symmetric and twice continuously differentiable, with p(0) = 0;
e (R2) p is strictly increasing on an interval [0, k] and constant on [k, +00[.

A standard choice is Tukey’s bisquare function defined as

X2 X4 X6 s

-S4+ ifx|<c

5 2 v X6,
Pc(x) = 2 2 6 )

& if |x| > c.

To obtain consistency at elliptical distributions, the constant § is taken to be
E[p(]|Z])] with Z as in (4.3).

S-estimators are asymptotically normal (Davies 1987). Their efficiency at the
normal model is somewhat better than the efficiency of the RMCD, especially in
higher dimensions. For example, the diagonal element of the bisquare S scatter ma-
trix with 50 % breakdown value has an asymptotic relative efficiency of 50.2 % for
p =2 and 92 % for p = 10. (Recall that the reweighted MCD achieves 45.5 % for
p =2 and 82 % for p = 10.) At the multivariate Student distribution the RMCD
performs better in low dimensions (Croux and Haesbroeck 1999).

If X,, is in general position, the ratio r = 6/ p (k) determines the breakdown value:
ifr <(n—p)/2n,thene*(ft, X,) = (2, Xp) = [nr]/n. The maximal breakdown
value (4.7) is attained when r = (n — p)/2n.
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To obtain a bounded influence function, it is required that o”(x) and p’(x)/x are
bounded and continuous (Lopuhaéd 1989). The influence function of S-estimators
can then be seen as a smoothed version of the MCD’s influence function (Croux and
Haesbroeck 1999).

S-estimators satisfy (4.9) and (4.10) of a non-monotone M-estimator, but they
cannot be computed in this way because non-monotone M-estimators do not have
a unique solution and there is no algorithm for them. To compute S-estimators, we
can run the FAST-S algorithm which uses techniques similar to FAST-MCD and the
FAST-S algorithm for regression (Salibian-Barrera and Yohai 2006). It is available
in the R package rrcov as the function CovSest. A Matlab implementation is
available from www.econ.kuleuven.be/public/NDBAEQ6/programs/.

4.5.4 MM-Estimators

Multivariate MM-estimators (Tatsuoka and Tyler 2000) are extensions of S-estima-
tors. They are based on two loss functions pg and p; that satisfy (R1) and (R2).
They are defined in two steps:

1. Let (jt, X) be an S-estimator with loss function pg. Denote 6 = | X|'/27.
2. The MM-estimator for location and shape (ft, ") minimizes

1 n
([ =T = w]' 1 /6)

i=1

among all p and all symmetric positive definite /" with |[I"| = 1. The MM-
estimator for the covariance matrix is then 3 = 621".

The idea is to estimate the scale by means of a very robust S-estimator, and then
to estimate the location and shape using a different p function that yields a better
efficiency. MM-estimators have the following properties:

e The location and shape estimates inherit the breakdown value of the initial scale:
if p1(s) < po(s) forall s > 0 and p;(00) = pp(c0), then

eX(f, Iy 25 X)) = €5 (1, 23 X,).

Consequently, the values § and k in the initial S-estimator can be chosen to attain
a certain breakdown value.

e The influence functions (and thus the asymptotic variance) of MM-estimators for
location i and shape r equal those of S-estimators with the function p;. (Note
that the influence function of the scatter estimator ¥ = 621" is a mixture of the
influence functions of the S-estimators with pg and p;.) Hence, the constant k{ in
(R2) can be chosen to attain a certain efficiency for . In this way MM-estimators
can have a higher efficiency than S-estimators, especially in dimensions p < 15
(Salibian-Barrera et al. 2006).
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To compute MM-estimators, one first computes an S-estimator and then applies
the iterative reweighting scheme described in Sect. 4.3. In R location-scatter MM-
estimators are available as the function CovMMest in the package rrcov. This im-
plementation uses a bisquare MM-estimator with 50 % breakdown value and 95 %
efficiency at the normal model.

4.6 Robust Non Affine Equivariant Estimators

If one is willing to give up the affine equivariance requirement, certain robust loca-
tion vectors and covariance matrices can be computed much faster.

4.6.1 Coordinatewise Median

The coordinatewise median is defined as

(medx;i, medx;2, ..., medx;,) .
1 1 1

This estimator has a 50 % breakdown value and can be computed easily. But it is not
affine equivariant, and it does not have to lie in the convex hull of the sample when
p = 3. Consider for example the three unit vectors (1,0, 0)’, (0, 1,0)" and (0,0, 1)’
whose convex hull does not contain the coordinatewise median (0, 0, 0)’.

4.6.2 Spatial Median and Spatial Sign Covariance Matrix

The L! location estimator, also known as the spatial median, is defined as

n
ji—argmin Y Ix; — .
ko

or equivalently as the u which satisfies

n
Z XiTkr (4.13)
Ix; — el

i=1

It has a nice geometrical interpretation: take a point g in R” and project all obser-

vations onto a sphere around . If the mean of these projections equals g, then p is
the spatial median.

The breakdown value of the L'-median is 50 % and its influence function is

bounded but it is not affine equivariant (Lopuhaéd and Rousseeuw 1991). However,
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the L'-median is orthogonal equivariant, i.e., it satisfies (4.4) with A any orthogonal
matrix (A’ = A~1). This implies that the L'-median transforms appropriately under
all transformations that preserve Euclidean distances (such as translations, rotations,
and reflections).

To compute the spatial median, note that (4.13) corresponds to (4.9) with
Wi(t) = 1/+4/t. We can thus use the iterative algorithm with X' = I. More refined
algorithms are discussed in Fritz et al. (2012). For more on multivariate medians,
see the contribution by Oja, Chap. 1.

The spatial sign covariance matrix (Visuri et al. 2000) is defined as the covari-
ance matrix of the data points projected on the unit sphere around the spatial median:

golyn oo ooy

~ —. (4.14)
n—= X — |l lIxi — pl

i=1

4.6.3 The OGK Estimator

Maronna and Zamar (2002) presented a method to obtain positive definite and ap-
proximately affine equivariant robust scatter matrices starting from any pairwise
robust scatter matrix. This method was applied to the robust covariance estimate
of Gnanadesikan and Kettenring (1972). The resulting multivariate location and
scatter estimates are called orthogonalized Gnanadesikan—Kettenring (OGK) esti-
mates and are calculated as follows:

1. Let m(-) and s(-) be robust univariate estimators of location and scale.
2. Construct z; = D~ !x; fori =1, ..., n with D = diag(s(X1), ..., s(Xp)).
3. Compute the ‘correlation matrix’ U of the variables of Z = (Z, ..., Z;), given
by ujk = 1/4(s(Z; + Zx)* — s(Zj — Zi)?).
4. Compute the matrix E of eigenvectors of U and
(a) project the data on these eigenvectors, i.e. V = ZE;
(b) compute ‘robust variances’ of V = (Vy,...,V,),ie L= diag(sz(Vl), e,
s2(Vp));
(c) Setthe p x 1 vector t(Z) = Em wherem = (m(Vy), ..., m(V,,))/, and com-
pute the positive definite matrix S(Z) = ELE'.
5. Transform back to X, i.e., firawogk = DA(Z) and Srawock = DS(Z)D'.

In the OGK algorithm m(-) is a weighted mean and s(-) is the t-scale of Yohai and
Zamar (1988). Step 2 makes the estimate scale equivariant, whereas the following
steps are a kind of principal components that replace the eigenvalues of U (which
may be negative) by robust variances. As in the FAST-MCD algorithm the estimate
is improved by a weighting step, where the cutoff value in the weight funf:tion is now
taken as ¢ = x» g gmed(di, ..., dn)/ X, o5 With d = d(Xi, RrawoGK ZRAWOGK)-
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4.6.4 Deterministic MCD Algorithm

As the FAST-MCD algorithm starts by drawing random subsets of size p + 1, it does
not necessarily give the same result at multiple runs of the algorithm. Moreover, it
needs to draw many initial subsets in order to obtain at least one that is outlier-free.
Recently a deterministic algorithm for robust location and scatter has been devel-
oped, called DetMCD (Hubert et al. 2012), which uses the same iteration steps as
FAST-MCD but does not draw random subsets. Unlike the FAST-MCD it is permu-
tation invariant, i.e. the result does not depend on the order of the observations in
the data set. Furthermore, DetMCD runs even faster than FAST-MCD and is less
sensitive to point contamination. Moreover, it is very close to affine equivariant.

DetMCD computes a small number of deterministic initial estimates, followed
by concentration steps. First, each variable X; is standardized by subtracting its
median and dividing by the Q, scale estimator of Rousseeuw and Croux (1993).
This standardization makes the algorithm location and scale equivariant, i.e., (4.4)
hold for any non-singular diagonal matrix A. The standardized data set is denoted
by the n x p matrix Z,, with rows z§ (i=1,...,n)andcolumns Z; (j=1,..., p).

Next, six preliminary estimates Sy are constructed (k =1, ..., 6) for the covari-
ance or correlation of Z.

1. 8y =corr(Y) with Y; =tanh(Z;) for j =1,..., p.
2. Let R; be the ranks of the column Z;, and put S = corr(R). This is the Spear-
man correlation matrix of Z.

. S3=corr(T) with T; = @~ ((R; — 1/3)/(n +1/3)).

4. The fourth scatter estimate is related to the spatial sign covariance matrix (4.14):
define k; = z; /||z; | for all i and let S4 = (1/n) Y i, kik!.

5. Ss is the covariance matrix of the [n/2] standardized observations z; with small-
est norm, which corresponds to the first step of the BACON algorithm (Billor
et al. 2000).

6. The sixth scatter estimate is the raw OGK estimator, where for m(-) and s(-) the
median and Q,, are used.

(O8]

As these Sy may have very inaccurate eigenvalues, the following steps are applied
to each S. Note that the first two steps are similar to steps 4(a) and 4(b) of the OGK
algorithm:

1. Compute the matrix E of eigenvectors of Sy and put V = ZE.
2. Estimate the scatter of Z by Xy (Z) = ELE’ where L = diag(Q,%(Vl),...,
07 (Vp)).
&—1/2

3. Estimate the center of Z by fi,(Z) = f],:ﬂ(med(ZEk ).

For all six estimates (fi;(Z), >v(Z)) the statistical distances djx = d(z;, . (2),
ﬁ‘k(Z )) are computed as in (4.2). For each initial estimate k, the ho = [n/2] obser-
vations with smallest d;; are retained and the statistical distances (denoted as dl.*k)
based on these /¢ observations are computed. Then for all six estimates the & obser-
vations x; with smallest d; are selected and C-steps are applied until convergence.
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The solution with smallest determinant is called the raw DetMCD. Then a weighting
step can be applied as in the FAST-MCD algorithm, yielding the final DetMCD.

Note that even though the OGK and DetMCD methods are not affine equivariant,
it turns out that their deviation from affine equivariance is very small.

4.7 Conclusions

The assumption underlying this chapter is that the majority of the data can be mod-
eled by an elliptical distribution, whereas there is no such restriction on any outliers
that may occur. Unlike the classical mean and covariance matrix, robust estimators
can withstand the effect of such outliers. Moreover, we saw in the example how the
robust methods allow us to detect the outliers by means of their robust distances,
which can for instance be visualized in a distance-distance plot like Fig. 4.4.

We advocate the use of robust estimators with a suitably high breakdown value,
as these are the least affected by outliers. Our recommendation is to use a high-
breakdown affine equivariant method such as MCD, S, or MM when the number
of dimensions p is rather small, say up to 10. For higher dimensions, these meth-
ods become too computationally intensive, and then we recommend either OGK or
DetMCD. The latter methods are close to affine equivariant, and can be computed
faster and in higher dimensions.
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Chapter 5
Upper and Lower Bounds for Breakdown Points

Christine H. Miiller

5.1 Introduction

The breakdown point of an estimator introduced by Hampel (1971) is a simple and
successful measure of the robustness of an estimator against changes of the ob-
servations. In particular, it is easy to understand the finite sample version of the
breakdown point. Estimators with a high breakdown point are insensitive to a high
amount of outlying observations. Moreover, they can be used to detect observations
which do not follow the majority of the data. Some estimators have a breakdown of
50 % while in other situations the highest possible breakdown point is much smaller
than 50 %. Therefore it is always important to know what is the highest possible
breakdown point. Then it can be checked whether specific estimators can reach this
upper bound. This can be done by deriving lower bounds for these estimators. Here
general upper and lower bounds for the breakdown point are discussed.

Two finite sample breakdown point concepts are given in Sect. 5.2. In Sect. 5.3,
a general upper bound is derived via the approach based on algebraic groups of
transformations introduced by Davies and Gather (2005). While Davies and Gather
(2005) develop this approach for the population version of the breakdown point, here
this approach is used at once for the finite sample version of the breakdown point.
This leads to a very simple characterization of the upper bound. Davies and Gather
(2005) apply the approach to multivariate location and scatter estimation, univariate
linear regression, logistic regression, the Michaelis—Menten model, and time series
using different groups of transformations for each case. Regarding multivariate re-
gression in Sect. 5.4, linear regression as well as multivariate location and scatter
estimation can be treated here with the same approach. In particular the same group
of transformations is used for the three cases. In Sect. 5.5, a general lower bound
for the breakdown of some estimators based on the approach of d-fullness devel-
oped by Vandev (1993) is presented. With this approach, Miiller and Neykov (2003)
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derive lower bounds for generalized linear models like logistic regression and log-
linear models and Miiller and Schéfer (2010) obtain lower bounds for some non-
linear models. This approach is used here in Sect. 5.6 to provide lower bounds for
multivariate regression and simultaneous estimation of the scale and regression pa-
rameter in univariate regression. It is shown in particular that least trimmed squares
estimators are attaining the upper bounds derived in Sect. 5.4.

5.2 Definitions of Finite Sample Breakdown Points

Let ® be a finite dimensional parameter space, Zi,...,Zy € Z a univariate or
multivariate sample in Z, and 6 : 2N — © an estimator for 8 € @. A general
definition of the finite sample breakdown point of an estimator 6 at a sample
7= (z,...,z N)T is given by the minimum relative number of observations which
must be corrupted so that the estimator breaks down. Breaking down means that the
estimator can attain arbitrary values and in particular values arbitrarily close to the
border of the parameter space.
To be more precise, let

Zy(Z):={Ze Z"; card{n; z, #Z,} < M}

be the set of contaminated samples corrupted by at most M observations. If the
estimates at samples of this set attain values arbitrarily close to the border of ®, then
we have a breakdown. If the parameter space @ is for example [0, co) as for scale
estimation, then clearly the border of this set is given by 0 and oco. If all estimates at
samples of Zy;(Z) are included in a compact interval [a, b] C (0, 00), in particular
0 < a, then these estimates do not become arbitrarily close to the border. Hence,
there is no breakdown. Since (0, 00) is the interior of [0, 00), the property of “no
breakdown” can be defined generally by the property that there exists a compact
subset ® of the interior int(@) of O so that all estimates at samples of Zy;(Z) are
included in @y. If such a compact set &y does not exist, then estimates at samples
of Z3(Z) reach the border so that we have breakdown. The smallest number M
for which this happens provides then the breakdown point. One could define this
M as breakdown point but it is better to use relative numbers, i.e., M divided by
the sample size N. Hence, a general definition of the finite sample breakdown is as
follows, see, e.g., Hampel et al. (1986, p. 97).

Definition 5.1 The breakdown point of an estimator 6:2N > O at Z =
(21, ...,zy) " € ZV is defined as

~ 1 ]
€*0,7) = N min{M ; there exists no compact set @y C int(®) with

10Z);Ze 2y(Z)} C ©).
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As soon as there exists a pseudometric d on @, then breakdown can be also de-
fined by explosion, i.e., by the property that the distance d (6(Z),H(Z)) between the
estimates at the corrupted sample Z and the original sample Z becomes arbitrarily
large. This leads to the following definition, see, e.g., Donoho and Huber (1983),
Davies and Gather (2005).

Definition 5.2
A 1 A= A
€*0,Z,d) :=—min{M; sup d(@(Z),@(Z)):oo].
N ZeZy(Z)
If ® =RP”, then the pseudometric can be chosen as the Euclidean metric || - | ,.

If ® =[0,00) C R, for example for scale parameters, then an appropriate choice
for the pseudometric is d(61, 62) = |log(6; - 6, 1)|, see Davies and Gather (2005).
This is again a metric but its extension to scatter matrices is only a pseudometric,
as is discussed in Sect. 5.4.2. This pseudometric avoids the distinction between im-
plosion breakdown point and explosion breakdown point as Rousseeuw and Hubert
do, see Chap. 4.

Davies and Gather (2005) use the population version of the breakdown point and
not the finite sample version of Definition 5.2. But they point out that the finite
sample version is obtained by using the empirical distribution. They provide a gen-
eral upper bound for the population version of Definition 5.2 using transformation
groups on the sample space Z. Here this approach is given at once in the sample
version.

5.3 A General Upper Bound

A general upper bound for the finite sample breakdown point of Definition 5.2 can
be given by the concept of equivariance. Equivariance is an important property of
an estimator @ if transformations of the data space are related to transformations
of the parameter space. Then also the estimator should be transformed in the same
way as the parameter is transformed. For example, a translation of multivariate ob-
servations zi,...,Zy to Z; + ¥, ...,Zy + y is related to the translation of a loca-
tion parameter by y. Hence a location estimator should be also translated by y.
However, a scatter parameter is not influenced by a translation of the data and this
should hold for a scatter estimator as well. Usually this property is distinguished as
translation invariance. But here this property is included in the concept of equiv-
ariance since the parameter and the estimator varies in the same way. Generally,
equivariance can be defined with respect to measurable transformations given by a

group
G:={g;g: Z—> Z}.

Recall that G is a group in algebraic sense with actions o and unit element ¢ if and
only if
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e giogreGforall g1,g €4,
e log=g=gouforallgeg,

o for each g € G there exists g~

withgog l=1=¢g71og.

Definition 5.3 An estimator 6 : Z¥ — © is called equivariant with respect to a
group G if there exists a group Hg = {hy; g € G} of transformations h, : @ — ©
such that for each g € G there exists i, € Hg with

0((g@), ... @) ) =he(B((@1, ..., 230 "))

for all samples Z = (z1, ...,zy) ' € ZV.

To derive the upper bound for the breakdown point, the following subset of G is
needed

Gr:= {g €9 klggoaig(fad(e’ g ) = OO}.

If G1 = 0, then the group G is too small to produce transformed parameters arbi-
trarily far away from the original parameter. This transferres to the estimates by
equivariance, since then the parameters and the estimator varies in the same way.
Hence in this case, a breakdown in the sense of Definition 5.2 cannot be produced
by transformations of the group G. Therefore, G| # ¢ is an important property for
deriving an upper bound for the finite sample breakdown point.

Theorem 5.1 If the estimator 6:2N > o is equivariant with respect to G and
G1 # 0, then
1

*0,Z,d) < —
€ ( )_N{

N—AZ)+1
=

forallZ e ZN where

Az, ..., zN)T) := max{card{n; g(z,) =2,}; g € G1}

and | x| is the largest integer m with m < x.

Note the more simple form of the quantity A(Z) compared with its form in the
population version given by Davies and Gather (2005).
Proof Regard an arbitrary observation vector Z. Let be M = L%J and
L = A(Z). Then there exists g € G| so that without loss of generality g(z,) = z, for
n=1,...,L. Then we also have gk(zn) = gk_l(zn) =...= gz(zn) =gog(z,) =
g(g(zy)) =g(z,) =1z, foralln=1,..., L and all integer k. Define ZF and Z* for
any integer k by

#* =z, forn=1,...,LandL+M+1,...,N,
#* =gk@,) forn=L+1,....,L+M,

and
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zﬁ:zn forn=1,...,.L+ M,
7zt =g¢%@z,) forn=L+M+1,....N

Obviously, Z* € Zy(Z). Since N — (L+ M) =N — L — [t <N — L —

NoL = NoL < | N=Ltl | we also have ZF € Z)(Z). Moreover, it holds

gk( ﬁ) g(zn)—zn—zk forn=1,...,L,
gk( ﬁ) g(Zn)_zk forn=L+1,...,.L+ M,
@) =g (g @) =g og* @) =2, =7 forn=L+M+1,...,N.

Since g € Gy and 0((g"@}). ... g* @) T) =hu (B(@EL. ... Z)T)). we obtain

Jim d(0(2").0(2')) = Jim d(3((s" (z).... 8" (24)) ). O(Z"))

g
=khm d(h k( (24)),6(Z%)) = .

Because of d((Z5), e(zk)) < dB(ZF),0(Z)) + d(B(Z),H(ZF)), at least one of
d(O(ZF),0(Z)) and d(O(Z), e(Zk)) must converge to oo for k — oo as well. [

If A(Z) = N then the upper bound for the finite breakdown point is O.
A(Z) = N means that there exists a g € G| with g(z,) =z, foralln=1,..., N.
Then there are two possibilities for the estimate 6(Z). One possibility is that
d(B(Z)., h o (0(Z))) < oo for some k and limy oo d(0(Z), h ot (9(Z))) = oo which
means that 6(Z) is not unique since /1,1 (6(2)) = 0((g*(z1), ... g"(zn))) = 0(Z)
is another estimate at Z. For example, this is the case for regression parameters as
shown below. The other possibility is that at once d (é(Z), h gk (é(Z))) = oo which

means that 6(Z) lies already at the border of the parameter space. For example, this
is the case for scale and scatter parameters, see below.

5.4 Example: Multivariate Regression

The multivariate regression model is given by
vyl =x/B+el, n=1,....N, (5.1)

where y, € R? is the observation vector, x, € R" the known regression vec-
tor, B € R"*” the unknown parameter matrix and e, € R? the error vector. Set
z=(x", yT)T € Z=R’"*P and assume that ey, . .., ey are realizations of i.i.d. ran-
dom variables E, ..., Ey with location parameter 0, and scatter matrix X', where
0, denotes the p-dimensional vector of zeros.

The interesting aspect of B shall be the linear aspect A = LB with L € R¥*".
Note that the whole matrix B is of interest if L is the r x r-identity matrix. But to be
more general, we consider also the case A = LB where L is not the identity matrix.
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An example is the case where repeated measurements of patients getting
two different drugs D1 and D2 are obtained at p days. Then we have x| =
(1p1(@n), 1p1(iy)), where i, provides the drug of the n’th patient. The matrix
B=(bij)i=12,j=1,..p € RZXP contains the drug effects at the p days. An interest-
ing aspect is then the row vector of differences (b11 — ba1, ..., b1p — byp) between
the effects of drug D1 and D2 at the p days, i.e., A =LB with L = (1, —1).

Another application is forecasting as considered by Kharin, Chap. 14. If x| =
v(t]),...,.Xxy =v(ty) witht) <fp <--- <ty € Rand v:R — R” is a known re-
gression function, then A = v(t) "B is a forecast for the expected value of an ob-
servation at T > ty.

We consider here the problem of estimating A in Sect. 5.4.1 and of estimating X
in Sect. 5.4.2. In both cases, we can use the following group of transformations

G={gaB:Z— Z;A eRP*?is regular, B R"*"}

with ga p((x",y) ") =(x",y A +x"B)". The unit element of this group is ¢ =
81,.0,,,» Wwhere 0, , is the r x p-dimensional zero matrix and I, the p-dimensional
identity matrix. The inverse of ga B is given by gx—1 _pga-1-

5.4.1 Estimation of a Linear Aspect of the Regression Parameters

Transforming y,) =x/ By +e] to §, =y, A + x| B leads to

¥.=xBoA+el A+x B=x (BoA+B)+el A (5.2)
S0 thz}t A = LBy becomes A= L(BoA + B) = AA + LB. Hence, an estimator
6=A:ZN - RSP for § = A =LB € R**? should satisfy

Al(gan@), ..., gaB@)) ) = hgy 5 (A(@))

with g, ;(A) = AA+LB forall gs g € G, i.e., it should be scatter equivariant and
translation equivariant. With G, also

Hg = {hgyp : RP — RP; A € RP*7 is regular, B e R™*7}

is a group of transformations.
If LB =05, , then A =0y, satisfies

d(A,hgy (A)) =d(05xp, 05xpA") = d (05, 05 p) =0

for any pseudometric d on R**P. Hence LB # 0y, is necessary for ga g € Gi.
Moreover, we have A = hg, 3 (A) = AA + LB if and only if LB = A(I, — A) so
that

G = {gA,B €G; LB # 0y, and LB # A(I, — A) forall A € R‘YX”}.

Set X = (x1,...,Xy) . Now we are going to show that A(Z) is the maximum num-
ber of regressors X, so that the univariate linear aspect LB with § € R is not iden-
tifiable at these regressors, i.e. A(Z) is the nonidentifiability parameter N; (X) de-
fined in Miiller (1995) for univariate regression, see also Miiller (1997).
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Definition 5.4 Lg is identifiable at D = {x,,,, ..., X,,} if forall B e R"
xT,3=O fori=1,...,1 impliesLB =0.

n;

If Xp = (Xn,,...,%y,) ", then it is well known that L is identifiable at D =
{Xn,, ..., Xy, } if and only if L = KX for some K € Rs*! gee, e.g., Miiller (1997,
p. 6).

Definition 5.5 The nonidentifiability parameter Ny (X) for estimating A = LS in
univariate regression, i.e., 8 € R’ is defined as

N3 (X) := max{card{n; x, g =0}; B € R” with A =Lp #0}
= max{card D; > = L8 is not identifiable at D}.

Theorem 5.2 For estimating the linear aspect LB of the regression parameter B in
the regression model (5.1), we have

A(Z) = N, (X).

Proof Letbe ga g € Gi and assume that there exists z,,, ..., Z,, with ga B(Zy;) =2y,
fori=1,...,1.

If A =1,, then it holds gA g(z) =z = (x",y" T if and only if x'B = 01xp
so that A(Z) > max{card{n; anﬂ = 0}; B € R? with LB # 0} since LB # 0y, for
ga.B € G1. In this case, LB # A(I,x, — A) is always satisfied for all A € R**? so
that it is no restriction.

Now consider A # I,,. Assume that LB is identifiable at D = {X,,,...,X,,}
with I = A(Z). Then there exists K € R**! such that L = KXp. Set Yp =
Ynys - .,yn,)T. Since ga B(Zy;) = Zy, if and only if X,I,B = y,—lrl_ (I, —A), we ob-
tain the contradiction

x, B o, @, —A)
LB=KXpB=K : =K : =KYp(dI, —A)
x, B Yo, @, —A)
since ga B € G1 implies LB # A(I, —A) for all A € R**?. This means that L8 can-
not be identifiable at D ={x,,, ..., X;,} so that A(Z) = I <max{card{n; x;lrﬁ =0};
B € R? with L8 # 0}. O

From the proof of Theorem 5.2, it is clear that the assertign of Theorem 5.2 holds
also without using the scatter equivariance of the estimator A. See also Sects. 5.4.1.1
and 5.4.1.2.

5.4.1.1 Location Model
A special case of multivariate regression is multivariate location with x,, = 1 for all

n=1,...,N, where B € R'*? is the parameter of interest. In this case, identifia-
bility holds always so that A(Z) = 0. Hence, the upper bound of the finite sample
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breakdown point is % L@J which is the highest possible upper bound. This result
was obtained by Davies and Gather (2005) using only the translation group

Gt ={g1,8: 2~ Z;BeR?}
so that
Gl ={s1,B€G" B#01,,}.

They wrote in their rejoinder that g]L would be empty if scatter transformations are
considered as well. But QIL becomes larger if a larger group of transformation is
regarded.

For the special case of univariate data, i.e., p = 1, with location parameter x € R,
the condition

Osxp #LB# A, —A) forall AeR"™P (5.3)
becomes
0#b#u(l—a) foralpuekR, 5.4)

where a, b € R replace A and B. Since condition (5.4) is only satisfied fora =1 we
have

Gf =a

so that indeed it does not matter if the scatter (here scale) equivariance is additionally
demanded.

For univariate data, the upper bound % LNT'HJ is attained by the median. Multi-
variate extensions of the median, which are scatter and translation equivariant, are
Tukey’s half space median and the Oja median. But the Oja median has only a finite

sample breakdown point of L see the contribution by Oja (Chap. 1), and the finite
sample breakdown point of Tukey’s half space median lies between ﬁ and %, see
Donoho and Gasko (1992). Another scatter and translation equivariant estimator is
the location estimator given by the minimum covariance determinant (MCD) esti-
mator. It has a finite sample breakdown point of % LN_g t 1, see the contribution by
Rousseeuw and Hubert, Chap. 4. As far as the author knows, there is no scatter and
translation equivariant location estimator which attains the upper bound % L%J

for p > 1.

5.4.1.2 Univariate Regression
Another special case of multivariate regression is univariate regression with p =1,
where the unknown parameter B is 8 € R". The result

A(Z) =N,.(X)

is obtained by Miiller (1995) using only the transformations a(x, ") =
x",y+x'b)Tina proof similar to that of Theorem 5.1, see also Miiller (1997).
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The special case LB = B is considered by Davies (1993) who derives the upper
bound for the population version of the breakdown point. Davies and Gather (2005)
provide this result as an example of the approach via groups.

Using the translation group

GR={gn:Z— Z;beR’}
with gp((x", y)T) = (x",y +x'b) T, as Davies and Gather (2005) propose, leads
to

Gl ={geg®b£0,}.
But since condition (5.3) becomes here
0,#b#B(1 —a) forall BeR",
with b € R” and a € R, it is again only satisfied for a = 1 so that
G =G1.

Hence as for location estimation, the restriction to translations is no real restriction
here.

5.4.2 Scatter Estimation

The transformation (5.2) of the regression model (5.1) leads to an error term of
the form eIA. If e, is a realization of a random variable E, with scatter ma-

trix X, then ATe, is a realizqtionAof a random variable AT E,, with scatter matrix
ATXA. Hence, an estimator § = ¥ : Z¥ — S of the scatter matrix ¥ € S = {A €
RP*P; A is symmetric and positive definite}, should satisfy

A T A

2((3a.B@1), ... 8AB(Zn)) ) =hg, 5 (X (2))
with hg, ,(X) = AT XA for all gAB € G, i.e., it should be scatter equivariant and
translation invariant. With G, also

Hg = {th,B =hpa:S— S;AeRP*Pis regular}
is a group of transformations. An appropriate pseudometric on S is given by
d(Z1, £5) := |log(det(Z, 2, 1))

It holds d(X, X) = 0 if and only if det(ZJlE;l) = 1. This is not only satisfied
by X1 = X, since e.g. diagonal matrices like diag(1, 1) and diag(%, 2) are satisfy-

ing this as well. Hence d is not a metric. But it is a pseudometric because it is al-
ways greater than 0 and it satisfies the triangle inequality. Since det(A T X 1AY, h=

det(¥) ;") as soon as det(A) = 1, Gy is given by
Gi = {gaB €G; det(A) # 1}.

Since ga p(z) =z if and only if x'B=y' (I, — A), we have at once the follow-
ing theorem.
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Theorem 5.3 For estimating the scatter matrix X in the regression model (5.1), we
have

A(Z) =max{card{n; X;er :y;(lp —_ A)}; BecR*P,
A € RP*P is regular with det(A) # 1}.

5.4.2.1 Location Model

In the special case of multivariate location with x, =1 foralln =1,..., N and
B € R'¥7, it holds ga B(z) =z if and only if B=y' (I, — A). Hence {y € R?;
B=y' (I, —A)} is a hyperplane in R”. Conversely, if {y € R”; ¢’ =y'C}isan
arbitrary hyperplane in R”, then it can be assumed that det(I, — C) # 1 so that
81,—C.cT € Gi. This implies that A(Z) is the maximum number of observations ly-

ing in a hyperplane. According to Theorem 5.1, the upper bound of the breakdown
point of an equivariant scatter estimator is given by the maximum number of ob-
servations in a hyperplane. If all observations are lying in a hyperplane, then the
estimated scatter matrix is not of full rank, i.e. at the border of the parameter space,
so that the finite sample breakdown point is 0. If only a subset of observations are
lying in a hyperplane, then the majority of the remaining observations determines
the estimation of the scatter matrix by any reasonable estimator. Hence, corruption
of this majority can lead to a breakdown so that the upper bound for the finite sample
breakdown point is % L%J.

This upper bound attains its highest value for observations in general position.
Per definition, observations yi, ..., yy € R” are in general position if any subset of
p + 1 observations are not lying in a hyperplane. But since p points are lying in
the hyperplane of R” spanned by these points, an upper bound for the breakdown
point is always % L%J, see also the contribution by Rousseeuw and Hubert,
Chap. 4. The population version of this result was originally given by Davies (1993)
and derived by group equivariance in Davies and Gather (2005). The upper bound
% L%J is for example attained by the minimum covariance determinant (MCD)
estimator, see the contribution by Rousseeuw and Hubert.

For the one-dimensional case (p = 1), the upper bound of the breakdown point
of a scale equivariant and translation invariant scale estimator is determined by the
maximum number of repeated observations. Note that we have here A = a € R with
a#1,B=>b¢cRsothat ga B(z,) = g4,»(Zn) =2, if and only if b =y, (1 —a) or
equivalently y, = %. Hence, A(Z) = max{card{n; y, = c}; c € R}. Here the high-
est value of the upper bound is given by pairwise different observations. This high-
est upper bound is for example attained by the median absolute deviation (MAD).
However, it can happen that the upper bound is not attained by the median absolute
deviation if observations are repeated. Davies and Gather (2007) give the following
example

1.0, 1.8, 1.3, 1.3, 1.9, 1.1, 1.3, 1.6, 1.7, 1.3, 1.3.

The median absolute deviation of this sample is 0.2. But as soon as one observation
unequal to 1.3 is replaced by 1.3, the median absolute deviation is 0. Hence the
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breakdown point of this sample is 11—1 However, since 1.3 is repeated five times, the
upper bound for the breakdown point is

1| 11-54+1| 3
11 2 ETh

5.4.2.2 Univariate Regression
In the special case of univariate regression with p =1, i.e., ¥ = o> € R*, the con-
dition
x' B=y' (I, —A)
becomes
x'p=y(l-a) = y=x'p

withf eR",1#aecRand 8 = ﬁﬂ. This means that A(Z) is the maximum num-
ber £(X) of observations satisfying an exact fit. Thereby observations yi, ..., yy are
satisfying an exact fit if there exists 8 € R” so that y, = X,T,B forallmn=1,...,N.

Definition 5.6 The exact fit parameter is defined as

EX):= max{card{n; Vn =an;3}; Be Rp}.

Hence, we have here
A(Z) = EX).

Clearly, if all observations are satisfying an exact fit, i.e., £(X) = N, then the vari-
ance o2 should be estimated by 0 which provides a finite sample breakdown point
of 0. Again, if only a subset of the observations satisfy an exact fit, then the majority
of the remaining data determines completely the behaviour of an equivariant scale
estimator and can cause breakdown.

5.5 A General Lower Bound for Some Estimators

Since there are always estimators with a breakdown point of % or even 0, a lower
bound can be only valid for some special estimators. He we consider estimators of
the form

6(Z) = ins(Z,0
(Z) :=arg gél({)ls( ,0)
with s : ZV¥ x ©® — R, where s(Z, 0) can be bounded from below and above by

some quality functions g : Z x & — R. These quality functions can be residuals
but also some negative loglikelihood functions as considered in Miiller and Neykov
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(2003). Set gn(Z,0) = q(2z,,0) forn=1,...,N and ¢1)(Z,0) < --- <qn)(Z, 0).
Then there shall exists o, 8 € R with @ 20 and & € {1, ..., N} such that

aqu(Z,0) <s(Z,0) < Bqu)(Z,0) (5.5
forall Z € ZV and § € ©. In particular, s-trimmed estimators given by

h
On(Z) := arg ggg;qm)(z, 0)

are satisfying condition (5.5). In particular least trimmed squares (LTS) estimators,
where g, (Z, 0) is the squared residuum, are of this form. But also S-estimators are
satisfying condition (5.5), see, e.g., Rousseeuw and Leroy (2003, pp. 135-139).

For deriving a lower bound for the breakdown point, Definition 5.1 for the break-
down point is used. This definition is checking whether the estimators are remaining
in a compact subset of the parameter space. Via compact sets, Vandev (1993) de-
velops the concept of d-fullness which is used by Vandev and Neykov (1998) to
estimate this breakdown point for trimmed estimators. A modification of this con-
cept, used in Miiller and Neykov (2003), bases on the following definitions.

Definition 5.7 A function y : ® — R is called sub-compact if the set {§ € ©;
y(8) < c} is contained in a compact set ®. C int(®) for all ¢ € R.

Definition 5.8 A finiteset I’ ={y,: ® — R;n=1,..., N} of functions is called
d-full if for each {ni,...,ng} C {l,..., N} the function y given by y(#) :=
max{y,, (0); k=1, ...,d} is sub-compact.

For example consider a quadratic regression model with x, = v(#,) =
(Lita, t)T € R3, 1, € [-1,1], and B = (Bo, B1,B2) " € R? and let q(z,, B) =

(yn — XT;B)2 be the quality function. If N =8, t1 =h =1 =—-1, 4 =15 =
te =0, t7 =13 =1, then {g(z,,-);n =1,...,8} is not 6-full, since y(B) =
max{q(z,, B);n = 1,...,6} is not sub-compact. To see that y(B) is not sub-

compact, consider co with \/co = max{|y,[;n=1,...,8}. Then —,/co <y, < ./co
for all y, imply
{BeR y(B) <c}
—{BeR (m—x/B) <coforn=1,...,6}
:{ﬁeR3'—\/_<y,,—xT,8<\/_f0rn:l 6}
={BeR}y, —Jao<—x,B<w+ooforn=1,...,6}
S{BeR}0<—x p<0forn=1,...,6}
={BeR’ po—Bi1+p=0and fo=0} = {B R’ p1 = 2},

which is a hyperplane in R* and thus not a compact subset in int(R*) = R3. How-
ever, {q(z,,-);n=1,...,8} is 7-full, since any subset of seven observations con-
tains the experimental conditions f, = —1, #, =0, and #, = 1, see also Lemma 5.1
below.
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Theorem 5.4 (Miiller and Neykov 2003) If the estimator 2 satisfies condition (5.5)
and {g,(Z,);n=1,..., N} is d-full, then

R 1
€@.2) = min(N —h+1.h—d +1).

The lower bound of Theorem 5.4 is maximized if the trimming factor & satisfies
LNT'HIJ <h< LN+Td+1J. A simple consequence of this fact is the following result
concerning trimmed estimators.

Theorem 5.5 Assume that {q,(Z,-);n = 1,..., N} is d-full and LNTHZJ <h<
LN+Td+1J. Then the breakdown point of any trimmed estimator [ satisfies

N—d+2
e 6n,7) > N{%J

5.6 Example: Regression

5.6.1 Multivariate Regression

Consider again multivariate regression with x € R”, y € R? and unknown matrix
B € R"*? of regression parameters. An appropriate quality function for estimating
B is given by

q(z,0)=q(x,y,B) = ”y - BU{H?7 = (y—r - XTB) (y - BTX). (5.6)

The h-trimmed estimator B for B can be determined by calculating the least squares
estimator

- -1
B/(Y)=(X/X;) X]Y,
for each subsample I = {ny,...,n,} C {l,..., N} for which the inverse of XITXI

exists, where X; = (x,ll,...,xnh)T and Y; = (yu,, ...,y,,h)T. Then l§(Y) is that
By, (Y},) with

h
I, = argmin Z lyn, — ﬁ](YI)TXn,- |
j=1

i;l:{nl,...,nh}C{l,...,N}

However, exact computation is only possible for small sample sizes N. For larger
sample sizes, a genetic algorithm with concentration step like that proposed by
Neykov and Miiller (2003) can be used, see also Rousseeuw and Driessen (2006).
Note that the inverse of XTX 1 always exists as soon as & is larger than the non-
identifiability parameter Ng (X) with A = B. The subset estimator B; is scatter and

translation equivariant so that B 1, 1s translation equivariant. However B 1, 1s only
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scatter (scale) equivariant if p = 1. Otherwise it is only scatter equivariant with
respect to orthogonal matrices A since then

q(x, ATy +B"x, B;(YA + XB))
= [ATy+B x—B;(YA+XB) x| ,
= |ATy+BTx— (ATY] +BTX))X; (X X)) 'x|,

= |ATy = ATY] X (X]X)) x|, = ATy = ATB, () x|,
=(v" —x"B;/(N))AAT(y ~ B, (W) "x) = ¢ (x.y. B (V)

forall I ={ny,...,np} C{1,..., N}

The d-fullness is given here by the nonidentifiability parameter N'g(X). This is an
extension of the result in Miiller and Neykov (2003) where it is proved for univariate
generalized linear models.

Lemma 5.1 If the quality function q is given by (5.6), then {q,(Z,-);n=1,..., N}
is d-full with d = Ng(X) + 1.

Proof Consider any I C {1, ..., N} with cardinality N/ 8(X) + 1. Then the triangle
inequality provides for any c e R

[BER’X”;maxqi(zi,B) §c}
iel
= {B eR™P;max |y, —B'x;|| < ﬁ]
iel P

C {BeR"”;max B x| —IIyzllpr/E}
iel p

c {BeR7imax|[BTx |, < v+ maxyi |

B € R"*”; max ||BTxi || < \/E]
iel p

P
2~
= e b R (0] =

clm,..., p)eR’XpN(X)+IZZb X; X 55}

iel j

_ rxp. T ~
={(by,....b,) eR N(X)+1Zb > xix'b §c}

iel
The definition of Ng(X) 1mphes that the matrix ) ;; X;x; is of full rank. Hence

the set {(by,...,b,) e R"*7; W Zj:1 bj Yier x,xi b] < ¢} is bounded and
therefore included in a compact subset of R"*7. O
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Since the upper bound for the breakdown point given by Theorems 5.1 and 5.2
holds also for estimators which are not scatter equivariant, the combination of these
theorems, Theorem 5.5 and Lemma 5.1 provides the following result. This result is
derived for univariate regression already in Miiller (1995).

N+Np(X)+1 N+Np(X)+2
-z -z

Theorem 5.6 If | I<h<|
the trimmed estimator ﬁh for B with quality function given by (5.6) satisfies

~ 1| N-— X 1
e*(Bh,Z)zﬁL#J.

1, then the breakdown point of

Miiller (1995) shows Theorem 5.6 not only for estimating § but also for general
linear aspects A = LS of univariate regression models. Thereby Ng (X) must be only
replaced by N; (X) in Theorem 5.6. However in this case the lower bound cannot
be derived via d-fullness. In Miiller (1995), the lower bound is proved directly for
trimmed estimators, see also Miiller (1997). This proof holds also for multivariate
regression so that Theorem 5.6 holds also for linear aspects A = LB of multivariate
regression.

5.6.2 Univariate Regression with Simultaneous Scale Estimation

If simultaneously the regression parameter 8 € R” and the scale parameter o € R
in a univariate regression model shall be estimated, then the following quality func-
tion can be used

1 y—XTﬂ 2
q(z,ﬂ,0)=q(x,y,ﬁ,o)=§(7) +log(o). (5.7

In Miiller and Neykov (2003), a slightly more general quality function is consid-
ered. But for simplicity, the quality function (5.7) shall be used here. The A-trimmed
estimator (,3 ,0) for (B, 0) can be determined by calculating the maximum likeli-
hood estimators

Biry) = (X[ X;) ' X]ys

and
. 1 & 5 2
51 = | 5 2 (m; =X, A1)
Jj=1
for each subsample I = {ny,...,n} C{1,..., N}, where y; = (y,,, ..., y,,h)T and
again X; = (X,,,...,Xy,) . Then (B(y), & (y)) is that (81, (y), 61, (y)) with

h

L =argmin{ " q(Xu;. yu;. B1(¥). 61(¥): I = {n1.....na} C {1..... N} {.
j=1
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B is translation equivariant and scale equivariant and &7 is translation invariant and
scale equivariant. Therefore, we have

q(x, ya+x"B, Br(ya+XB), 61(ya +Xp))

_ 1<ya +x"B—x"(B1(y)a+p)
61(y)a

2
5 ) +log(67(y)a)

=q(x, v, B1(¥), 61(y)) +log(a)

forall I ={ny,...,np} C{1,..., N} sothat 31* is translation equivariant and scale
equivariant and 67, is translation invariant and scale equivariant.

Since the simultaneous estimator (B, &) for (8, o) breaks down when one of
its components breaks down, an upper bound of the breakdown point of (,3 ,0) is
N LmeaX{Nﬁéx)’g(X)}Hj according to Sects. 5.4.1 and 5.4.2.

Deriving a lower bound for the breakdown point, Miiller and Neykov (2003)
implicitly assume that the exact fit parameter £(X) is zero. Here we extend this
result for the case that it does not necessarily need to be zero.

Theorem 5.7 If the quality function g is given by (5.7), then {q,(Z,-);
n=1,..., N} isd-full with d = max{Ng(X), EX)} + 1.

Proof We have to show that y given by
1/yi—x!B\?
y(B,0) :=max — (u> +log(o)
iel 2 log

is sub-compact for all 7 C {1,..., N} with cardinality max{Ng(X),E(X)} + 1.
Take any ¢ € R and set ,3(0) = argmin{y(8,0); 8 € R"} and &(B) =
argmin{y (8,0); 0 € RT}. Then ,3 (o) is independent of ¢ such that ,8 (o) =: B.
Setting

T
yl(U):zy(B(G),a) ma1x5< > '3) + log(o)

we see that y is a sub-compact function since / has cardinality greater than £(X).
Hence, there exists a compact set @ C int(R™) such that {o; y(c) < ¢} C Oy.
Moreover, we have that with 7(8) := max;e; |y; —x,' |

o (B)=n(B)

so that

1
nB) =y(B.6(B) = 5+ log(n(B))-

The proof of Lemma 5.1 provides that 5 is sub-compact. Since the logarithm is
monotone also y» is sub-compact so that {8; y2(8) < ¢} C &, for some compact set
®, C int(R"). Then we have
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{(B.o) eR" xR y(B,0) <c}
c{(B.0)eR" xR yi(0) <cand y2(B) <c} C O2 x O

so that y is sub-compact. d

N +max{ Nf;(X) EX)I+1

Theorem 5.8 If | | <h < MmN 0 EQON2 | oy ghe

breakdown point of the trzmmed estimator (,é , 0 for (B, o) with quality function
given by (5.7) satisfies

(B, 6m.2) =

1| N —max{NV3(X), EX)} + 1
N{ 2 J

5.7 Conclusions

The concept of equivariance provides a general upper bound for the finite sample
breakdown point. This leads in particular to upper bounds for estimators for the
location parameter, the regression parameter and the scatter matrix in multivariate
location and regression models. These upper bounds can be reached by specific
estimators for univariate models, for estimating the scatter matrix in multivariate
location models and for estimating the regression parameters in multivariate regres-
sion models. In particular, the finite sample breakdown point of trimmed estimators
are reaching this upper bound. This can be seen by a general lower bound for the
finite sample breakdown given by the concept of d-fullness. This approach can be
also applied to generalized linear models or nonlinear models where equivariance
properties cannot be used. However, up to now scatter estimation cannot be treated
with this. Another problem is correlation where the parameter space is [—1, 1]. Here
up to now, the concept of equivariance was not successfully applied to get upper
bounds for the finite sample breakdown point. The same holds for related problems
like principal component analysis, discriminant analysis and applications on com-
positional data as considered by Filzmoser and Hron, see Chap. 8.
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Chapter 6
The Concept of «-Outliers in Structured Data
Situations

Sonja Kuhnt and André Rehage

6.1 Introduction

In every statistical data analysis, somehow surprising observations can occur which
deviate strongly from the remaining observations or the assumed model. On the
one hand, these observations may contain important pieces of information about the
data-generating process. On the other hand, they might simply be measurement or
reporting errors. Regardless of which origin the observation has, it is commonly
named “outlier”. There are numerous ways to detect outliers, with no strategy out-
performing others in every situation. Besides non-parametric procedures, e.g., based
on depth measures, also model-based strategies exist.

In order to be able to detect outliers, it first needs to be specified what is meant
by an outlier. In this contribution, we discuss the notion of «-outliers as introduced
by Davies and Gather (1993). The basic idea is that there exists a pattern which
is supported by the majority of the data. Observations which are strongly deviat-
ing from this pattern are understood as outliers. Within the a-outlier concept, the
pattern is the statistical model one has in mind for the data generating mechanism.
Observations which lie in a region with low probability and are thereby surprising
are understood as outliers. The general idea of «-outliers can be applied to basically
any statistical model. The so-called outlier region usually is uniquely defined for
a given statistical distribution. However, within the analysis of observed data sets
this is often only specified up to some unknown parameters of the assumed class of
distributions, resulting in the necessity of outlier identification procedures.

This chapter is structured as follows: Sect. 6.2 reviews the general definition
of a-outlier regions. One-step approaches towards the detection of «-outliers in a
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data set are discussed in Sect. 6.3. In the remainder of this chapter, we focus on
three specific situations of structured data situations: regression models in Sect. 6.4,
contingency tables in Sect. 6.5 and graphical models in Sect. 6.6.

6.2 The Concept of «-Outliers

Besides numerous informal ways to narrow the term “outlier”, there are also mathe-
matical approaches to the concept of outliers and their detection (Barnett and Lewis
1994). We focus on so-called a-outliers, a concept which can be applied to basically
any data situation where we have a statistical model in mind.

The notion of «-outlier regions as the largest « x 100 % most improbable region
of the target distribution goes back to Davies and Gather (1993). Starting from the
univariate normal situation the treatment of «-outliers soon extends to the multivari-
ate normal case (Becker and Gather 1999, 2001), to exponential samples (Schultze
and Pawlitschko 2002) as well as more structured data situations (Wellmann and
Gather 2003; Gather et al. 2002; Boscher 1992; Kuhnt 2004; Kuhnt and Pawlitschko
2005). Gather et al. (2003) generalize the original definition to arbitrary families of
distributions.

Definition 6.1 (Gather et al. 2003) Let P be a family of distributions on a measur-
able space (X, .A) which is dominated by a o -finite measure v such that P € P has
v-density f. For P € P let supp(P) denote the support of P and set supp(P) =
U pep supp(P). For a given o € (0, 1) the a-outlier region of P € P is defined as

out(a, P) = {x esupp(P): f(x) < K(a)} 6.1)
with
K(@)=sup{K >0:P({y: f(y) <K}) <a}. (6.2)

The key element of this definition is the bound K («). It is the smallest upper bound
that yields a probability equal to or just below « if we integrate over the subset of
x-values where f(x) < K («). Figure 6.1 gives examples of outlier regions for some
classical distributions. In the case of a continuous distribution like the multivariate
normal distribution, the inequality sign in (6.2) can be replaced by the equality sign.
However, for discrete situations the outlier region often has a probability of occur-
rence below the chosen value of . For example, the 0.1 outlier region of the Poisson
distribution with mean value 6 is given by {0, 1} U {11, 12, ...}, see Fig. 6.1, and has
a joint probability of 0.066 as adding any further value from the support to the out-
lier region would increase this probability above 0.1.

Note that in Definition 6.1 the outlier region is defined as a subset of the
union of supports within the considered family of distributions. This is not im-
portant for distribution families with support R throughout, but it is highly rele-
vant for families of distributions where the support depends on unknown param-
eter(s). Take for example the shifted exponential distribution family with density
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Fig. 6.1 0.1-outlier regions 0 e
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fx) = %exp(—%)l[g)oo),e € R, A > 0, and support [0, c0). In this case, the
a-outlier region is given by the union of the two sets {x : x > 6 — Aloga} and
(—o00, 0). Adding the second set to the «-outlier region has no effect if A and 6 are
known, as (—o0, 6) has zero probability. However, within outlier detection 6§ might
not be specified correctly or estimated and then it is completely sensible to include
values in the outlier set which are possible for other 6 values.

The complement of the a-outlier region w.r.t. the support of the distribution is
called «-inlier region inl(«, P). From Definition 6.1, it follows that

P(X €inl(er, P)) > 1 —a.

When dealing with a sample of size N, often « is chosen by taking the sample size
into account, i.e., ay =1 — (1 — a)l/N. Thereby, it is ensured that for Xy, ..., Xn
ii.d. according to the model distribution the probability of all observations lying
inside the inlier region is at least | — «,

P(X; €inl(ay, P),i=1,...,N)>1—a.

Applying Definition 6.1 often yields the tails of a distribution. Gather et al.
(2003) discuss various «-outlier regions in the case of uni- or multivariate distri-
butions when (X', P) = (R?,B), p € N, where P ={Py,0 € © C Rk} is a family
of distributions and each Py € P has density f (-, #). Furthermore, 15 is the Borel-o -
algebra. W.r.t. a univariate continuous distribution Py it is feasible to check whether
its ce-outlier region coincides with its a- or 5-tail region(s) using typical properties
of Py:
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Fig. 6.2 0.1-outlier region &
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(i) symmetry:
JueR: f(u—x,0)=f(u+x,0) Vx,

(i1) strictly increasing-decreasing density: for some 1, u2 € R with 1 < us,

f (-, 0) is strictly increasing on supp(Pg) N (—oo, 1], constant on [, (2]
and strictly decreasing on supp(Py) N[z, oo),

(iii) strictly decreasing density:

f (-, 0) is strictly decreasing on supp(Pyp),
(iv) strictly increasing density:

f (-, 0) is strictly increasing on supp(Py).
Thereby we get the following lemma.

Lemma 6.1 (Cf. Gather et al. 2003)

(a) If Py has properties (1) and (i), then the corresponding o-outlier region coin-
cides with its lower and upper % -tail regions.

(b) If Py has property (iii), then the corresponding «-outlier region coincides with
its upper a-tail region.

(c) If Py has property (iv), then the corresponding a-outlier region coincides with
its lower a-tail region.

We would like to remark that Lemma 6.1 is very similar to Lemma 2 in Gather
et al. (2003), but we added property (ii) because bimodal, symmetric distributions
might have an «-outlier region in the center of the distribution, see Fig. 6.2. Further-
more, we extended Lemma 6.1 to distributions with strictly increasing density, like
the Beta(3, 1) distribution.

The a-outlier regions for other distributions (continuous ones like x> or Weibull
as well as discrete ones like Binomial and Poisson) can be derived by numerical
integration (or summation) of the densities. This procedure can also be applied to
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the multivariate counterparts of those distributions. Let us now consider the general
outlier region from (6.1) in case of the normal distribution. Then

out(a, N (e, 02)) ={x:lx —pul > o0z1-ap},

where z1_4/2 denotes the (1 — «/2)-quantile of the standard normal distribution.
The notion can easily be extended to any p-dimensional normal distribution with
the help of the relation between the «-outlier regions and certain density contours,
explicitly:

out(ar, V(. X)) = {x e R : (x — W lx—p > X,27,1—a}v (6.3)

where X12;,1— o denotes the (1 — a)-quantile of the x§ distribution. In real data
examples the parameters u, X of the given distribution are usually unknown and
need to be estimated. Clearly the threshold value xlzj‘]_ o has to be adjusted. Since

x—p)'% - (X — ft) is a Mahanalobis-type distance, for appropriate estimators i, &
one can use asymptotics to derive X;,I, «y a8 the new threshold value. Consider
Example 6.1, p. 91 as an illustration. The contribution by Becker, Liebscher and
Kirschstein (in Chap. 7) deepens the discussion of outliers in multivariate cases.
Furthermore, there exist more complex data situations than simple uni- or multi-
variate raw data tables, some of which we discuss in more detail below.

6.3 Detection of a-Outliers

Generally we can distinguish between identification rules that identify «-outliers
in one-step and stepwise rules that successively judge the outlyingness of obser-
vations. In a stepwise outward procedure, one first defines a subset of observations
taken to be free of outliers. Then the “least conspicuous” or in some sense “least out-
lying” observations are successively tested for being outliers. If not judged as too
outlying, they are added to the current subset. Note that here we may judge “least
outlyingness” with respect to a-outlier regions derived from the current subset. In-
ward procedures work similar starting from the full data set from which observations
identified as outliers are successively removed.

Although stepwise procedures have been considered within the framework of
identifying o-outliers (e.g., Davies and Gather 1993; Schultze and Pawlitschko
2000), the main interest lies within one-step rules. Roughly spoken, based on some
empirical outlier regions all observations lying within this region are identified as
outliers in a single step. Such rules have various advantages over step-wise rules,
besides the most important one of frequently showing a better performance with
respect to the task of outlier detection (see, e.g., Davies and Gather 1993; Kuhnt
2004).They are relatively easy to apply and interpret. Parameter estimates only need
to be calculated once from the full set and not successively from subsets for which
they might not exist or not be unique anymore.
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Let us consider the following outlier identification problem. Here (X{, ..., Xy)
denotes a sample with corresponding observations (Xp, ..., Xy). The data genera-
tion mechanism is assumed to follow a distribution Py from aclass P = {Py,0 € ®}
for the regular observations. Now we want to identify observations within the sam-
ple which lie in the a-outlier region of Pp.

As 0 is unknown, we naturally start by estimating 6 on the sample. With the esti-
mate @ we can build an empirical outlier region out(c(c, N), P@) = out(c(a, N), 13),
where ¢ denotes a constant usually chosen depending on « and the sample size N.
We now may identify observations in this thereby estimated outlier region as out-
liers, leading us towards a one-step outlier identification rule, next defined in more
general terms.

Definition 6.2 Let an empirical outlier region out(c(a, N), P)be given. A mapping
OIF (from the support supp(P) of the considered class of distributions to the set
{0, 1}), OIF : supp(P) — {0, 1}, given by

OIF (x| (Xi,...,Xy),a) = Loy, py®: X €supp(P),

with the interpretation

OIF(x | (X Xy). ) = 1, xis identified as outlier,
bR 0, xis not identified as outlier,

is called a one-step outlier identification rule.

As Gather et al. (2003) state: “(...) Outliers in the data may seriously affect
standard estimators of unknown distribution parameters”, it is recommended to use
robust estimators within the one-step outlier identification. Depending on the data
situation, typical robust estimators chosen within outlier detection are the median,
L1, M-estimators like Huber or Hampel or any other estimator with a higher break-
down point (see the contribution of Rousseeuw and Hubert in Chap. 4, or Schultze
and Pawlitschko 2002). One-step outlier identification rules in the sense of Defini-
tion 6.2 have for example been considered for the univariate and multivariate nor-
mal distribution (see, e.g., Becker and Gather 1999) and the exponential distribution
(see, e.g., Schultze and Pawlitschko 2002). In the case of more structured data situ-
ations like one-way random effect models (Wellmann and Gather 2003), regression
models (Boscher 1992), logistic regression (Christmann 1992), time series models
(Gather et al. 2002) as well as contingency tables (Kuhnt 2004) adjustments to this
basic one-step procedure are sometimes necessary, some of which are discussed
later.

The constant ¢ is often fixed by applying some general normalizing condition
such as

P (“no outliers identified in the sample”) =1 — o
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Fig. 6.3 .Contolur plot and & a © MODnler
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or
P (“the empirical outlier region lies within the true outlier region”) = 1 — «.

In rare cases, the normalizing constant ¢ can be calculated exactly. However,
more often it needs to be simulated and may even depend on the unknown parameter
as well as the sample size and the specific identification rule. Therefore sometimes
just c = oy or even ¢ =« is used.

The performance of outlier identification rules is typically measured by criteria
like the largest non-identifiable outlier, as well as masking and swamping break-
down points (Kuhnt 2010). Roughly spoken, breakdown points are then given by
the minimal fraction of nonregular observations needed to cause the effect. Tietjen
and Moore (1972) state that the “masking effect is the inability (...) to identify
even a single outlier in the presence of several suspected values.” The identifica-
tion procedure is manipulated by the outliers, which mask themselves. On the other
hand outliers can cause that true inliers are identified as outliers, this effect is called
swamping.

Example 6.1 (Multivariate Normal Distribution) Consider the size and weight of 30
female students, displayed in Fig. 6.3, for which we assume that the regular obser-
vations follow a multivariate normal distribution. After computing the FAST MCD
estimator (see Rousseeuw 1984; Rousseeuw and van Driessen 1999, and the contri-
bution by Rousseeuw and Hubert in Chap. 4) of mean fiycp = (170.178, 64.525)'

and covariance
$ _ (6955 6.621
MCD = 12.849 )

we compute the 0.01-outlier region and check for outliers.

The outlier bound of the FAST MCD estimator is given in Fig. 6.3. The FAST
MCD estimator identifies one value as outlying (orange triangle), a student with
high weight (72.9 kg) compared to her height (167.9 cm). Calculation of the re-

spective ML-estimates give fiyy = (170.117,65.481), Epy, = (+9% ~13%%) and

no observation lies in the 0.01-outlier region of the normal distribution with these
parameters. We observe that we get higher variance/covariance values which pre-
vent the identification of outliers, such that we might have a masking effect. Plus,
the ML-estimates yield a questionable negative correlation between these variables.
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6.4 Outliers in Regression

In the simple regression context there are three different ways to think of a-outliers:
regressor-, response- and regression-outliers (Fig. 6.4). For example, response out-
liers are presented in Boscher (1992) and regression outliers are treated generally in
Rousseeuw and Leroy (1987).

First of all, we consider the very intuitive response-outlier (see also Boscher
1992). Each response value deviating from the regression line by more than some
specific constant will turn out to be a response-a-outlier. As highlighted in the pre-
vious sections, we need assumptions w.r.t. the distribution of the response for the
calculation of «-outlier regions. Considering a simple linear regression model

Y=8+XB,+U,

it is commonly assumed that the conditional distribution of the response given the
regressor vector is normal:

Pyx =N(Bo+X'B;.0?)

for a scale parameter 02 > 0. The residuals U;,i =1,...,n, are assumed to be
normally distributed given the regressor vector X with E(U) =0 and Var(U) = o2
Hence, the corresponding response-a-outlier region can be defined as

out(e, Pyx) = {y eR:u=|y — (Bo+X'B))| > 0z1-a/2} (6.4)

This method is a neat way for regression setups where the regressors themselves are
non-random, especially if a statistical design of experiment was used. If the regres-
sors are also stochastic, a common assumption is a p-variate normal distribution

Px=N(u,X) (6.5)
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with mean g € R? and (p x p)-covariance matrix X. It is of course also possible
to calculate «-outlier regions for the regressors. The outlier region depends on the
distance between the observation and the mean and on the covariance matrix:

out(e, Px) = {x e R” : (x = )T (x — ) > x5 1, ) (6.6)

which resembles equation (6.3) because of (6.5). The notion of observations with
a high impact on the regression (Rousseeuw and van Zoomeren 1990), so-called
leverage points, can be formalized by (6.6).

The third way to define an a-outlier in the regression context is by taking the
joint distribution of Y and X into account, resulting in an elliptically shaped contour
which resembles the intersection of the two previously mentioned «-inlier regions.
This yields the regression-«-outlier region, defined as

out(c, P(Y,X)) = {(y, X/)/ [S RP+] : (y - (/30 +X/ﬂ]))2/0’2
F X)X =) > X (6.7)

We use a similar set-up as in Gather et al. (2003) to exemplify the different types of
outliers in Fig. 6.4, with u = 10, Bo = 15, B1 = 1/2,0 = /6, ¥ = /6 and N = 100
observations. Now the observed point denoted by “e” lies inside the regressor-inlier
region as well as in the response-inlier region but outside the regression-inlier region
and therefore is only a regression outlier whereas “o” is an outlier with respect to all
regions. The third point outside the regression-inlier region ¢ is a regressor-outlier
but no response-outlier as it lies very close to the regression line.

Now, a one-step outlier identification method for the regression case can easily be
derived based on robust estimators of 8, i, o and X, respectively, and the resulting

outlier regions of the thereby estimated distributions.

Example 6.2 (Thermal Spraying) Consider a thermal spraying process in the coat-
ing industry, wherein particles are sprayed onto some material. We study the effect
of the temperature and velocity of these particles on the coating property porosity.
The results of 30 runs (Table 6.1) are analyzed using a main effect quantile regres-
sion with T = 0.5: B = (52.997, —0.014, —0.035)’.

Robust estimation of the parameters of Px with the MCD (see the contribution
by Rousseeuw and Hubert in Chap. 4) yields fiyicp = (1517.650, 715.169)" and

$ _(8292.525 —1949.700
Meb = 1737.459 )°

We are interested in possible response- or regression-outliers. Application of (6.4)
using the above estimates and c(«, N) = 0.05 yields no response-outliers. We next
use (6.7) with three degrees of freedom and oo = 0.05 to estimate a regression-outlier
region. Note that we abstain from applying any standardization of the identifier w.r.t.
the null model as well as an adjustment of « to the sample size. In practice, this sim-
ple approach has turned out to be sufficient for most purposes. The one-step proce-
dure yields four «-outliers, namely run 8, 9, 13 and 30. Run 8 is represented by the
highest temperature and one of the highest velocities. From the two negative regres-
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Table 6.1 Data set: thermal spraying example

Runs 1-10 Runs 11-20 Runs 21-30

Porosity Temperature Velocity Porosity Temperature Velocity Porosity Temperature Velocity

5.86 1525.50 685.20 4.82 1563.00 715.80  10.54 1448.70 710.20
3.31 1621.50 749.60 4.91 1626.50 763.60 9.60 1485.40 727.90
6.64 1562.40 658.90 3.29 1598.60 791.50 6.54 1493.70 701.30
8.29 1605.20 645.70 6.18 1619.40 743.00 7.48 1416.50 754.90
4.18 1606.70 695.00 7.97 1498.10 673.50 8.29 1480.20 742.10
4.74 1562.20 726.40 9.46 1532.50 644.10  10.06 1455.50 753.90
5.99 1618.00 712.00 8.80 1565.20 678.30 7.40 1449.40 728.80
553 1669.70 765.60 3.96 1517.40 736.40 4.01 1511.70 792.10
3.07 1629.20 786.30  10.69 1550.20 715.70 7.13 1492.10 720.60
8.06 1548.90 721.00 7.24 1538.30 684.10 11.01 1404.20 647.60

sion coefficients given above one would expect to have one of the smallest values
for porosity, but it turns out to be quite average. The other three outliers are char-
acterized by very small or high values of porosity, especially if the velocity values
are taken into account. Taking this information into account helps us to understand
the thermal spraying process better—a possible conclusion is that the quantile re-
gression does not perform very well with extreme regressor values. In fact, Rehage
et al. (2012) show that gamma generalized linear models outperform regression in
this kind of process.

6.5 Outliers in Contingency Tables

Not all data used and analyzed by scientists are continuous. Especially in the field
of social sciences one has to deal with categorical data. Often these kind of data
are presented as contingency tables. Let XaA = (Xq,..., X ,,)/ be a p-dimensional
random vector with components Xs,§ € A ={1,..., p}. Each X; is a categor-
ical random variable with Is possible outcomes. A sample of N observations
(xll, el x[l,)/, o (xlN, e x[];/)/ is the (data) basis for a contingency table. The sup-
port of the random vector X4 is given by the set Z = ngl {1,...,Is},1Z] = 1. The
cells of a contingency table are determined by Z and contain the number of times
n; each combination occurs in the data set, i = 1, ..., I, which are understood as
realizations of random variables N;. To apply the concept of «-outliers to contin-
gency tables, we need a model for the cell counts of the table. There are two widely
used assumptions depending on whether the sample size N is fixed a priori or not.
In the first case, we can assume a multinomial distribution for the vector (N;);c7,
in the second case the N; are assumed to follow independent Poisson distributions
with parameters m;, i € Z. In both cases, loglinear models are used to model the
independence structure between the original variables X1, ..., X, (Bishop et al.
1975).
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An important issue with respect to outlier detection is whether the whole contin-
gency table is to be checked as outlying or only each cell of the contingency table.
As the presence of more than one contingency table is rather seldom, outlier detec-
tion in contingency tables mostly concentrates on single outlying cells (Simonoff
1988; Fuchs and Kenett 1980; Upton and Guillen 1995; Kuhnt 2004).

6.5.1 Outliers in Multinomial Models

In the case of a multinomial model, the concept of «-outliers would apply to the
complete table as the vector of all cell counts follows a multinomial distribution.
This might be of interest if there is a couple of contingency tables, especially if they
are collected by different authorities. The researcher can check whether one or more
of these contingency tables can be called “outlying”. This might for example be the
case if the same questionnaire has been used to interview the same number of people
in different cities, resulting in a contingency table for each city.

If we want to have an outlier definition based on the «-outlier idea for individual
cell counts, we can refer to the marginal binomial distribution.

Using the one-step outlier identifier approach a cell count n; is identified as out-
lier if it lies in out(c(ct, N), Bin(p;, N)), where p; denotes an estimate of the cell
probability. Here again the use of a robust estimator is recommendable, e.g., the so-
called Pearson least trimmed chi-squared residual estimator (LTCS, see Shane and
Simonoff (2001)). Note, however, that the product of the marginal distributions is
not consistent with the assumed distribution for the complete vector of cell counts.

6.5.2 Outliers in Poisson Models

In loglinear Poisson models the vector of parameters of the individually Pois-
son distributed random variables N; is given by a parameter space M C R/, i.e.,
mi,m7 = (m;)icz € M (Bishop et al. 1975). The unknown parameter vector is
usually estimated by the maximum-likelihood method, robust alternatives like the
L -estimator are so far rarely considered. One-step outlier identification procedures
in the sense of Definition 6.2 are then given as

OIF(n;; nz, c(at, N)) = low(e(@.Ny s ngy (i), i €L, nzeN.  (6.8)

Kuhnt (2004) compares one-step procedures and outward procedures using maxi-
mum-likelihood estimates as well as L-estimates by a simulation study. The one-
step procedure based on Li-estimates outperforms the other three procedures in
nearly all of the treated outlier situations.

Example 6.3 (Students’ Subjects) We are interested in data from 88 students col-
lected in their first statistics lesson at TU Dortmund University. They were asked
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Table 6.2 Contingency table and inlier regions of the students’ subjects example

St DA ME CS Ma Ph Ps )
within 20 km
n; 12 6 2 1 5 4 4 34
m; 16.96 6.00 2.72 2.72 4.27 4.65 4.65

inl(0.1, Poi(m;)) {10,...,23} {2,...,10} {0,...,5} {O,..., Sy AL ...,7} {L,..., 8} {1,...,8}

farther away

n; 29 7 2 2 2 6 6 54
m; 19.79 7.00 3.17 3.17 4.98 5.43 5.43

inl(0.1, Poi(m;)) {13,...,27} {3,...,11} {1,...,6} {1,...,6} {2,...,9} {2,...,9} {2,...,9}

whether their hometown is within a radius of 20 km of the university or not (X : Dis-
tance) and which subject they study (X»: Subject). Apparently, we can expect many
students of statistics (coded St) in this lesson. But also students of other subjects
attend the lesson, like data analysis (DA), mathematical economics (ME), computer
sciences (CS), mathematics (Ma), physics (Ph) and psychology (Ps), see Table 6.2.

We consider the loglinear Poisson model based on the independence assumption
of the two original variables X; and X,. Computing the «-outlier regions based
on Li-estimates yields one outlier: the students whose hometown is far away and
who study statistics now. Here, for simplicity we choose c(a, N) = o = 0.1. The
estimated «-inlier region is given by {13, ...,27}. This underlines the point that a
subject which can be studied only at a small number of universities (like statistics
in Germany) attracts potential students from a bigger radius than other subjects.

6.6 Outliers in Graphical Models

Graphical models (Lauritzen 1996) are an interesting way to visualize the depen-
dency structure of a data set with a large number of variables, especially when
both continuous and discrete variables are considered. Even moderate outliers may
contaminate the estimated dependency structure such that a reasonable interpreta-
tion becomes impossible, see Kuhnt and Becker (2003). As pointed out in Vogel
and Fried (2010), robust estimation of multivariate scatter is a very useful tool,
especially if one aims at detecting outliers. For the application to the concept of
a-outliers, we need a distributional assumption of graphical models, where we con-
centrate on observations from random vectors with continuous as well as categorical
components.

First of all, we fix some notations: Let X = (X/,, X/-)" be a (p + ¢)-dimensional
random vector with p discrete variables Xs5,8 € A and ¢ continuous variables
X,y € I'. The discrete random vector will take values from Z = X sea Is with I
as the range of values X; can take. Lauritzen and Wermuth (1989) define a distribu-
tion, where the continuous variables given the discrete variables follow a Gaussian
distribution, the so-called conditional Gaussian distribution (CG-distribution).
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Definition 6.3 (Lauritzen and Wermuth 1989) A random vector X = (X/,, X}.)’
follows a conditional Gaussian distribution, if and only if its density can be writ-
ten as

Ixaxr @ Y) = fx, @ fxrx, (v 1),
yielding
fxaxr @ y) = pi Q7)1 det(ZH) ) exp{—(y— n®) T (y — nd)/2},

where p(i) is the probability of the occurrence of i and w (i), X (i) are the conditional
mean and covariance of X given X =1i.

Given Definition 6.3 we can apply (6.1) to CG-distributions:

Definition 6.4 (Kuhnt 2006) The «-outlier region with respect to a given condi-
tional Gaussian distribution with density f(Xa =1, X =y) = p@) f(y | i) is de-
fined by

out(er, P) = {(i,y) e Z x RI": p(i) f(y 1) < K (@)}, (6.9)
where

K(a)=sup{K >0: P({(i*,y") : p(i*) F (y* |i") < K}) <}

To exemplify this definition, we derive the «-outlier region of a CG-distribution
with only one continuous random variable, i.e., ¢ = 1 from (6.9) in detail:

i) exp<_(y‘““”2
V2o (i) 20 (i)?

o=y s

Vy< —\/—ZU(i)Zln<%\/?‘(i)> + u (.

)<K(a)

The conditional probability of this event given i is:

PXpXa=i <Xr > \/—ZU(i)Zln(M> +u@ v Xp

p®
< _\/_za(i)z IH<M) + M(l)>
p®

:m(_ /_zln(m»
p()
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where @ is the standard normal distribution function. The overall probability for the
a-outlier region of the CG-distribution is therefore

> p@pe <—\/—21n<M>> <a. (6.10)

ieZ p (l)

Using this result, it is now possible to determine K () numerically given « and the
needed parameter values.

Example 6.4 (Graphical Model)

A simple case to illustrate «-outlier regions w.r.t. CG-distributions is the ap-
pearance of two discrete variables X, X» with two possible outcomes each
@ ={(1,1),(1,2),(2,1),(2,2)}) and one continuous variable X3. Let the prob-
ability vector of (X1, X»)' be given by

(p(11), p(12), p21), p(22))' = (0.2,0.01, 0.3, 0.49)’

and the parameters of the conditional densities of X3 | (X1, X2)' =iby

(n(11), n(12), w(21), n(22))" = (0,0, 1, 1)’
and
(c(1D),0(12),0(21), 0(22))/ =(1,1,4,4).
Equation (6.10) yields K(0.1) = 0.0103099 for this CG-distribution P, therefore

the outlier regions can be derived with (6.9). The calculation of the a-outlier region
of X3 | ((X1,X2) = (1,2)") is not needed because the probability of this event
(p(12) =0.01) is smaller than K (0.1). Therefore the whole support of X3 coincides
in this case with the a-outlier region. The 0.1-outlier region is given by
out(0.1, P) = {{(1, 1, y) : y < =2.023 v y > 2.023}

U{(1,2, y):y GR}

U{(Z, I,y):y<—4839vy> 6.839}

U{(2, 2,y):y<—=5.05Vy> 8.056}},

see Fig. 6.5.
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Fig. 6.5 0.l-outlier regions (shaded) of Example 6.1. Top left: p(11) = 0.2, u(11) = 0,
o2(11) = I; top right: p(12) = 0.01, u(12) = 0,02(12) = 1; bottom left: p(21) = 0.3,
w(2) =1, 02(21) = 16; bottom right: p(22) = 0.49, 1 (22) =1,02(22) = 16

6.7 Conclusions

The concept of a-outliers is an impartial way to identify observations which deviate
from the bulk of the data. The smaller the chosen «, the more conservative the outlier
detection becomes. This concept is applicable in any model-based context. Usually
the parameter vector of the assumed distribution is unknown and therefore has to be
estimated in advance. Here it is important to use robust estimators as otherwise the
estimates might be contaminated by potential outliers and might cause the effects of
masking and swamping.

We presented a number of structured data situations where «-outliers can be
applied. Of course, further situations exist where the computation of «-outliers is
feasible. The identification of outliers in online monitoring data is treated in Gather
et al. (2002). Wellmann and Gather (2003) discuss an application of «-outliers in a
one-way random effects model. The identification of @-outliers in logistic regression
is explored extensively by Christmann (1992).
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Chapter 7
Multivariate Outlier Identification Based
on Robust Estimators of Location and Scatter

Claudia Becker, Steffen Liebscher, and Thomas Kirschstein

7.1 Introduction

When dealing with real-life data, analysts and researchers are well aware that often
there are anomalies, like single observations not fitting the “main body” of the data,
clusters of deviating observations forming some different pattern than all other data,
etc. It can be assumed that on average 1 %—10 % of the observations in a data set
may be extremely deviating (Hampel et al. 1986, p. 28). Analyzing such data sets
just with standard statistical methods can yield biased results. Hence, either their
identification followed by elimination or the use of robust methods is recommended,
see, e.g., the contributions in this book by Borowski, Fried and Imhoff (Chap. 12),
Filzmoser and Hron (Chap. 8), Galeano and Pefia (Chap. 15), Huskova (Chap. 11),
Kharin (Chap. 14), Oja (Chap. 1), Rousseeuw and Hubert (Chap. 4) and Spangl and
Dutter (Chap. 13).

Moreover, the unusual observations themselves may be of a certain interest.
Sometimes they contain information on special events during the period of data
collection, or hints on valuable specialties of a certain topic. A simple but important
example is the case of the Chernobyl catastrophe, where extremely high measure-
ments of radioactivity (unusual observations within the usual plant radioactivity data
of a nuclear power plant in Sweden) were indicating that something had happened
(Mara 2011, p. 50). Hence, detecting such unusual observations can be seen as one
step within the data analysis procedure but also as an important task in itself. To
be able to fulfill this task, it is necessary to define “unusual” in a first step. There
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exist formal definitions with respect to some target distribution, where it is assumed
that the majority of the data stems from this target distribution (see the contribu-
tion by Kuhnt and Rehage, Chap. 6, for the approach of « outliers). Regions far
away from the main part of the distribution (in the sense of having low density and,
hence, low probability of being reached by observations generated from the target)
are associated as outlier regions.

Once “outliers” are well defined, there is the need to develop methods for iden-
tifying them. This is not an easy task, since outliers themselves tend to disturb sta-
tistical methods. Well-known effects in this context are masking (outliers can not be
found because they are hidden for the detection method by other outliers or by them-
selves, see, e.g., Pearson and Chandra Sekar 1936; Murphy 1951; Barnett and Lewis
1994; Becker and Gather 1999; Dang and Serfling 2010) and swamping (because
of outliers in the data observations that are no outliers at all are falsely identified
as deviating, see, e.g., Fieller 1976; Davies and Gather 1993). Often, using robust
statistical procedures within outlier identification rules can reduce these problems,
although usually assertions on bounded masking and/or swamping effects are based
on asymptotic behavior of the procedures (Davies and Gather 1993; Becker and
Gather 1999, amongst others, also see the contributions by Oja, Chap. 1, and by
Rousseeuw and Hubert, Chap. 4, for robust measures of location and scatter to use
within such procedures). In finite samples, even for “good” methods with respect
to these effects still the size of the largest non-identifiable outlier can be quite large
(Becker and Gather 2001).

However, not in all situations even exists a consensus of what constitutes an out-
lier. In particular, if the knowledge about the target distribution is rather vague, it
might not be immediately clear how to define “outlying”. In the literature, rather
vague descriptions can be found such as “An outlier can be defined to be an ab-
normal item among a group of otherwise similar items” (Choudhury and Das 1992,
p. 92), to mention just one example. In such cases instead of using some distribution
as the reference for outlyingness, some data adaptive approach is more promising.
Again, the assumption is that the majority of the observations are generated by some
target distribution, but the distribution itself is no longer specified in detail. To be
able to identify outlying observations in such a context, an appropriate concept of
distance is needed. Observations lying “far away” from the main body of the data are
called outlying, where the “main body” as well as the notion of “far away” should
be chosen from the data set itself.

The rest of this chapter is structured as follows. In Sect. 7.2, the task of identi-
fying outliers when the target distribution is only vaguely determined is described
in more detail. Sections 7.3, 7.4, and 7.5 describe three different approaches for
tackling this problem. The chapter finishes with some concluding remarks.

7.2 The Identification of Outliers

The identification of outliers in a data set is an important task in data analysis.
Often, graphical representations of the data can help in finding the unusual ones.
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For multivariate (especially high-dimensional) data, such graphical representations
are not easy to create. Hence, in this case analytical methods are needed.

7.2.1 Distance Based Outlier Identification

Among the various different approaches to multivariate outlier identification some
popular methods are simultaneous one-step rules (Hawkins 1980; Davies and Gather
1993; Gather and Becker 1997) since they yield better results with respect to avoid-
ing masking and swamping effects than e.g., sequential rules (so-called outlier
testing, see Rosner 1975 for the fundamentals; also see Hawkins 1973; Hawkins
1980, p. 63ff.). Typically, these simultaneous outlier identification procedures use
distance-based approaches.

Since often the target distribution is assumed to be the multivariate normal or at
least some elliptically contoured or convex distribution, the distance concept used is
that of Mahalanobis distance (or Euclidean distance based on a standardized version
of the data), implying that location and scatter have to be estimated. And as this
estimation has to be as less influenced by the outliers as possible, it should be done
robustly.

A general concept for simultaneous outlier identification can be given as fol-
lows: consider a data set X C R”, assuming that the majority of the N observa-
tions xi,...,Xy are generated by some elliptically contoured target distribution
with location vector g and scatter matrix X. Estimate g and X robustly by i and

¥ and calculate the robust Mahalanobis distances d, = (x, — ﬁ)Tf_l(xn -0,
n=1,..., N. Choose some appropriate critical value ¢ and identify all observa-
tions x,, with d,, > ¢ as outliers. This rather general approach can be found in many
sources (Becker and Gather 1999; Becker and Paris Scholz 2006; Hubert et al. 2008,
and the literature cited therein, amongst many others), where it may be used in the
raw version described above or with some refinements.

Although these methods work well in case of convex structures, the use of Maha-
lanobis type distances might be totally misleading if the shape of the data majority
is of some different type. In other words, if we relax the assumptions on the tar-
get distribution, allowing for applications that are not normal and not even nearly
normal at all, the established simultaneous outlier identification procedures may
fail. For a simple example, consider the data set displayed in Fig. 7.1, mimicking
the city arms of Halle (Saale) in Germany (see www.halle.de/de/Kultur-Tourismus/
Stadtgeschichte/Wappen-der-Stadt-Halle/). The main part of the data follows the
crescent-shaped form in the center, while the two point clouds lying above and be-
low can be interpreted as outlying with respect to this not at all elliptical or convex
shape. If we now apply one of the most commonly used simultaneous rules, which
is based on the minimum covariance determinant (MCD) estimators (Rousseeuw
1985) in the reweighted version (Lopuhaé and Rousseeuw 1991; Hubert et al. 2008),
the result is shown in Fig. 7.1. Here, points marked by a circle (o) stand for obser-
vations identified as outlying. Obviously, the procedure calls for the main body of
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Fig. 7.1 Halle data:

observations identified as o
outlying by the reweighted

MCD approach, marked

with o

the data being elliptically contoured and cannot cope with the real shape. Hence, for
situations like exemplified here, we call for new procedures not restricted to convex
data structures.

7.2.2 The Main Body of the Data: Robust Subset Selection

Most of the common robust location and scatter estimation approaches assume that
at least half of the data come from the target distribution, where at least the distribu-
tion class of this target is specified. From this assumption, some general approach
to robust estimation has developed: in a first step, identify some small subset of the
data which, at least with large confidence, consists only of observations stemming
from the target distribution. Based on this outlier-free subset, an initial estimation is
performed. This initial estimation is used to calculate each observation’s distance as
described above. The distances can then be used to decide whether the initial subset
may be enlarged by further observations close enough to the main body of the data.
If the initial choice of observations is enhanced, recalculate the estimators based on
this enhanced subset. The reweighted MCD estimators mentioned above (Lopuhai
and Rousseeuw 1991; Hubert et al. 2008) are the probably most prominent example
operating according to this approach.

The idea is appealing, hence, we propose to transfer it to the relaxed model as-
sumptions: assume only that slightly more than 50 % of a data set forms some main
structure of interest while the rest may be arbitrary observations. The general pro-
cess is as follows:

e Determine a subset of the observations consisting only of points reflecting the
main structure. If the only assumption is that this main structure is given by the
majority of the observations, choose a subset of size 50 %.
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e Based on this subset construct some appropriate distance measure to assess the
observations’ distances.

If indicated by these distances enhance the initial subset to form the final subset.
All observations not included in this final subset are declared to be outliers with
respect to the main data structure.

Of course, the final subset can also be used to robustly estimate characteristics of
the main data generating distribution. In the special case of elliptical or convex
distributions, the approaches lead to robust estimates of location and covariance.

In the following Sections, different methods according to this general process are
presented.

7.3 Flood Algorithm

The Flood Algorithm (Liebscher et al. 2012) is a proposal for robust estimation of
multivariate location and scatter. It utilizes a two-stage approach where in a first
step the initial data is projected into a two-dimensional space using self-organizing
maps (Kohonen 1982) which are a specific kind of artificial neural networks. The
self-organizing maps’ algorithm preserves the topology of the underlying data while
projecting it into the lower dimensional space (Kohonen 2001). Hence, one obtains a
representation which still bears the majority of the information inherent in the initial
data but at the same time is much easier to process. In particular, this dimensional-
ity reduction allows for the visualization of the (projected) data in the form of the
so-called U-landscape (Liebscher et al. 2012; Ultsch 1993). This landscape-like de-
piction gives some indication on the distance structure within the projected data and,
therefore, within the initial data, too. In this plot small distances between the obser-
vations translate into valleys and basins while large distances translate into moun-
tain ridges and plateaus. Thus, outliers—by definition featured by a large distance to
the bulk of the data—can either be found on top of mountains (single outliers) or in
small lakes/basins which are separated from the main basin by large mountain ridges
(outlier clusters). In order to identify the aforementioned main basin corresponding
to the outlier-free bulk of the data, the landscape is “flooded” in the second step of
the Flood Algorithm. The flood level is raised until a basin is found which contains
h = | (N + p+ 1)/2] observations. These observations are subsequently used to es-
timate location and scatter by calculating the classical mean and covariance matrix
of the i observations.

While the empirical results suggest that this approach gives robust estimates of
location and scatter, outlier identification using robust Mahalanobis-type distances
based on these estimates would suffer from the same deficiencies in the non-convex
setting as outlined in Sect. 7.2.1. However, outlier identification may instead be
done by using the distance information inherent in the aforementioned U-landscape
as those give an indication on the inter-point distances and are therefore suitable to
detect outliers in arbitrarily shaped data situations. To support this claim, we look at
the Halle example again.
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Fig. 7.2 U-landscape of the
Halle example
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(a) Flood-area-flood-height-curve of the Halle (b) Results obtained by the Flood Algorithm:
example non-outliers (4) and outliers (o)

Fig. 7.3 Results of the Flood Algorithm

Figure 7.2 shows the U-landscape for the Halle example. Clearly visible are two
high mountain ridges which separate the landscape into three regions (i.e., three
basins) where each one corresponds to one of the three clusters in the Halle data
set. As the projection obtained by using self-organizing maps is non-linear, the
U-shape of the main cluster (i.e., the middlemost basin) is no longer visible in the
U-landscape. If the landscape in Fig. 7.2 is flooded and for each flood level the
corresponding flooded area, measured by the number of observations in the largest
basin, is