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Preface

This volume contains a substantial number of the papers presented at the MODA 10
workshop in Łagów Lubuski, Poland, in June 2013; MODA here stands for Model
Oriented Data Analysis and Optimal Design. Design of experiments (DOE) con-
stitutes a powerful statistics-based methodology playing a major role in the knowl-
edge discovery process in science and engineering. Data collection issues, including
DOE, are at least as important as data analysis since they determine how much in-
formation data contain. No statistical modelling or analysis methods can extract
information which the data do not contain, whereas a poor analysis can always be
corrected later. Thus, haphazard experimentation may be very wasteful of resources,
lead to needless repetition, poor inference and, where human subjects are concerned,
may be ethically unsound.

The subject began in an agricultural context, but the theory and practice of DOE
have become important in many scientific and technological fields, ranging from
optimal designs for dynamical models in pharmacological research, to designs for
industrial experimentation, to designs of simulation experiments in environmental
risk management, to name but a few. DOE has become even more important in
recent years, because of the increased speed of scientific developments, the com-
plexity of the systems currently under investigation and the continuously increasing
pressure on businesses, industries and scientific researchers to reduce product and
process development times. This increased competition requires ever increasing ef-
ficiency in experimentation, thus necessitating new statistical designs.

A model-oriented view on DOE, which is the pivot of the MODA meetings, as-
sumes some knowledge of the form of the data-generating process. It naturally leads
to the so-called optimum design of experiments. This approach has the potential
to revolutionize experimental programs of drug development and testing. Standard
methods of DOE are no longer adequate and research into new ways of planning
clinical and non-clinical trials for dose-finding is receiving close attention. In turn,
applications of DOE in engineering often deal with large scale and highly complex
systems where time and/or space are inevitable components. These applications may
involve models in the form of ordinary differential, differential algebraic or partial
differential equations. The underlying design space can be a class of input sequences
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(time-domain analysis), a range of frequencies (frequency domain), a range of sam-
pling intervals (sampling strategies), or a set of spatial sensor locations. As a result,
factors continuously changing in time and/or space (e.g., temperature, pressure) can
be taken into account. Relevant application areas are as diverse as control engi-
neering, analytical chemistry, air sampling, atmospheric science and geophysical
surveys.

Surprisingly, for a long time, the resources devoted to research on DOE have
been rather limited. Partly, this was because the developments in different applica-
tion areas and in different branches of mathematics had led to a fragmentation of
the theory and practice of DOE. Leading European experts on DOE therefore de-
cided to form the MODA group to bring together the different approaches, primarily
through organizing special workshops. The initiative was a success and the scope of
MODA rapidly expanded to countries far beyond Europe, including the USA, South
Africa and India. MODA meetings are known for their friendly atmosphere, leading
to fruitful discussions and collaboration. Since the beginning, they have also been
aimed at giving junior researchers the opportunity of establishing personal contacts
and work together with leading researchers. In order to guarantee a high-scientific
level, participation is only by invitation of the board and meetings take place every
third year. The proceedings are always published before the date of the meeting, to
allow detailed and intelligent discussion.

Here is the list of previous MODA conferences:

1. Eisenach, former GDR, 1987
2. St. Kyrik monastery, Bulgaria, 1990
3. Petrodvorets, Russia, 1992
4. Spetses, Greece, 1995
5. Marseilles, France, 1998

6. Puchberg/Schneeberg, Austria, 2001
7. Heeze, The Netherlands, 2004
8. Almagro, Spain, 2007
9. Bertinoro, Italy, 2010

Organization of the 10-th anniversary edition of the workshop has been conferred to
the University of Zielona Góra in Poland, which hosts an active group of researchers
at the Institute of Control and Computation Engineering, who are concerned with
optimum experimental design for spatiotemporal processes. The workshop itself
takes place in Łagów Lubuski, a small, picturesque town with much charm and
atmosphere attracting artists and intellectuals. It is a long tradition of MODA work-
shops that they are organized in such relatively isolated places, far from the hus-
tle and bustle of big cities. As this book clearly demonstrates, the present meeting
once more brings together researchers from all over the world. These papers have
undergone a complete review to ensure that contributions were significant and the
manuscripts remain of high quality and clarity.

The papers presented in this volume cover a large spectrum of topics that are
all well aligned with the scope of the workshop. They have been arranged in al-
phabetical order of author, but some patterns of topics emerge. A breakdown is as
follows:

1. The most common theme is that of clinical trials. This arises both in the papers
by Biswas, Banerjee and Mandal and, in the form of dose finding studies, in
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the papers by Flournoy, Galbete, Moler and Plo, by Magnusdottir, by Gao and
Rosenberger and by Dragalin, as well as that by Ghiglietti and Paganoni.

2. Designs for linear and non-linear mixed-effects models are developed in the pa-
pers by Prus and Schwabe, and by Mielke and Schwabe, while an approximation
of the information matrix in a similar setting is advanced by Leonov.

3. Lifetime experiments with exponential distribution and censoring feature in
the contribution by Müller. Calibration designs for an extended Rasch-Poisson
counts model are outlined by Graßhoff, Holling and Schwabe. Optimal de-
signs for log-linear regression test models are refined by Wang, Pepelyshev and
Flournoy.

4. The papers by Ginsbourger, Durrande, and Roustant, as well as by Chevalier,
Ginsbourger, Bect and Molchanov describe improved designs for computer ex-
periments.

5. The topic of the paper by Atkinson and Bogacka is discrimination between mod-
els. Designs for model selection are also considered by Skubalska-Rafajłowicz
and Rafajłowicz.

6. The paper by Pázman and Pronzato deals with regularized optimality criteria for
experimental design. In turn, some new information criteria are proposed in the
paper by Ferrari and Borrotti.

7. Algorithmic issues are thoroughly treated in the context of the KL-optimality
criterion by Aletti, May and Tommasi, or in the more general case of minimax
criteria by Nyquist. A related problem of numerically constructing optimal de-
signs using the functional approach is studied by Melas, Krylova and Uciński.
A new technique of generating optimal designs by means of simulation tapping
into approximate Bayesian computation is proposed by Hainy, Müller and Wynn.

8. Finally, a number of papers are strongly application-driven. Thus, Bischoff fo-
cuses on checking linear regression models taking time into account. Fackle-
Fornius and Wänström construct minimax designs for contingent valuation ex-
periments. Choice experiments for measuring how the attributes of goods or
services influence preference judgments are studied by Großmann. Coetzer and
Haines put forward designs for response surface models involving multiple mix-
ture and process variables. Rafajłowicz and Rafajłowicz determine optimum in-
put signals for processes modelled by partial differential equations. Designs for
correlated observations in spatial models are exposed by Pepelyshev.

In our personal opinion, the papers in this volume make notable contributions
to the state of the art in the field of model-based optimum experimental design.
We hope the reader will share our point of view and find this volume very useful.
We would like to acknowledge all the authors for their efforts in submitting high-
quality papers. Last, but not least, we are also very grateful to the reviewers for their
thorough and critical reviews of the papers within the short stipulated time.

Dariusz Uciński
Anthony C. Atkinson

Maciej Patan

Zielona Góra, Poland
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A Convergent Algorithm for Finding
KL-Optimum Designs and Related Properties

Giacomo Aletti, Caterina May, and Chiara Tommasi

Abstract Among optimality criteria adopted to select best experimental designs
to discriminate between different models, the KL-optimality criterion is very gen-
eral. A KL-optimum design is obtained from a minimax optimization problem
on an infinite-dimensional space. In this paper some important properties of the
KL-optimality criterion function are highlighted and an algorithm to construct a
KL-optimum design is proposed. It is analytically proved that a sequence of designs
obtained by iteratively applying this algorithm converges to the set of KL-optimum
designs, provided that the designs are regular. Furthermore a regularization proce-
dure is discussed.

1 Introduction

One of the goals of optimum experimental design theory is the selection of the
best experimental conditions to discriminate between competitive models. Among
the optimality criteria proposed in the literature for discrimination purposes, the
KL-optimality criterion (introduced in López-Fidalgo et al. 2007) is very general.
Actually, it can be applied to any distribution and includes as a particular case the
optimality criterion introduced by Uciński and Bogacka (2004) when models are
Gaussian, which is in turn a generalization of the T-optimality criterion for ho-
moscedastic errors given in Atkinson and Fedorov (1975a, 1975b). A KL-optimum
design maximizes the power function for a discrimination test in the worst case (see
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López-Fidalgo et al. 2007, for details). Furthermore, the KL-criterion has been ex-
tended to discriminate between several models (Tommasi 2007) and has been used
in compound criteria for the double goal of discrimination and estimation of models
(Tommasi 2009; May and Tommasi 2012).

The analytical construction of KL-optimum designs is possible only in a few
cases. In practice, KL-optimum designs are obtained through iterative procedures
(Fedorov and Hackl 1997). In this paper the first-order algorithm to find a KL-
optimum design is presented in more detail than in López-Fidalgo et al. (2007) and
its convergence is proved in the setting of probability measures, that is, in an infinite-
dimensional space. To this end, some classical results of the minimax literature (see,
e.g., Polak 1997) are adapted to the infinite-dimensional case.

The paper is organized as follows. In Sect. 2 some important properties of KL-
optimum designs are given, together with the notational setting and the main defi-
nitions. Section 3 is devoted to presenting the algorithm and a proof of its conver-
gence for regular designs is given. In Sect. 4 a regularization problem is discussed
to include the cases when the minimum (in the maximin problem related to the
KL-criterion) is not unique. Final comments in Sect. 5 conclude the work.

2 Notation and Some Properties of the KL-Optimum Designs

Let an experimental design ξ be a probability distribution having support on a com-
pact experimental domain X in R

q , q ≥ 1. Consider two statistical models, that
is, two parametric families of conditional distributions f1(y|x;β1) and f2(y|x;β2),
where β1 ∈Θ1, β2 ∈Θ2, and Θi are open subsets of Rdi , i = 1,2. Denote by

I (x,β1, β2)=
∫
Y

log
f1(y|x;β1)

f2(y|x;β2)
f1(y|x;β1)dy (1)

the Kullback-Leibler divergence between f1(y|x;β1) and f2(y|x;β2), assuming
that f1(y|x;β1) is the “true” model. In order to discriminate between f1(y|x;β1)

and f2(y|x;β2), the design ξ may be selected by maximizing the KL-optimality
criterion function (López-Fidalgo et al. 2007),

I2,1(ξ ;β1)= inf
β2∈Θ2

∫
X

I (x,β1, β2)dξ(x). (2)

For a given value β1 ∈Θ1, the criterion (2) is the minimum Kullback-Leibler dis-
tance between the two models averaged on the experimental design ξ . Equivalently,
the criterion function (2) is the minimum Kullback-Leibler distance between the
two joint distributions associated with a response variable Y and an experimental
condition X, that is f1(y|x;β1)ξ(x) and f2(y|x;β2)ξ(x).

From now on, the value of the parameter of the first model β1 ∈Θ1 is assumed
to be known and therefore it is omitted in the notation.
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A design ξ is regular if the set

Ω2(ξ)=
{
β̃2 : β̃2(ξ)= arg min

β2∈Θ2

∫
X

I (x,β2) ξ(dx)

}
(3)

is a singleton. Otherwise ξ is called singular.
The KL-criterion function I2,1(ξ) defined in (2) has the following properties:

Concavity The KL-criterion function I2,1(ξ) is concave, as proved in Tommasi
(2007).

Upper Semi-continuity Assume that the Kullback-Leibler divergence I (x,β2)

defined in (1) is continuous with respect to x. Endow the set Ξ of probability dis-
tributions ξ with support X ⊂ R

q with a metric dw which metrizes the weak con-
vergence on X . Since X is compact, the metric space (Ξ,dw), which is an infinite-
dimensional space, is complete and compact, as a consequence of Prokhorov’s The-
orem. In May and Tommasi (2012) it is proved that the KL-criterion function

I2,1 : (Ξ,dw)→[0,+∞)
is upper semi-continuous. This property guarantees the existence of a KL-optimum
design

ξ∗ ∈ arg max
ξ
I2,1(ξ). (4)

Continuity (Under Suitable Conditions) The KL-criterion function is not con-
tinuous in general (a counter-example is provided in Aletti et al. 2012). Despite this
fact, Aletti et al. prove that, under mild conditions, I2,1 : (Ξ,dw)→[0,+∞) is also
continuous.

3 Convergent Algorithm

In this section an iterative procedure generated by an ascendant algorithm is pro-
posed to construct a KL-optimum design ξ∗. Following Luenberger and Ye (2008),
an algorithm Alg is a map defined on a space S that assigns to every point s ∈ S a
subset of S. It is clear that, unlike the case where Alg is a point-to-point mapping,
a sequence generated by the algorithm Alg cannot, in general, be predicted solely
from knowledge of the initial point s0.

Let Γ be the set that we wish to reach with an algorithm Alg. A continuous
real-valued function Z on S is said to be an ascendant function for Γ and Alg if it
satisfies

(i) if s /∈ Γ and t ∈Alg(s), then Z(t) > Z(s);
(ii) if s ∈ Γ and t ∈Alg(s), then Z(t)≥ Z(s).
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When there is such a function, the algorithm is said to be ascendant.
The algorithm AlgKL here proposed to construct the KL-optimum design is ob-

tained by composing the following point-to-set maps:

Map1: Ξ ↪→Ξ ×Θ2, defined by Map1(ξ)= (ξ,Ω2(ξ)), where Ω2(ξ) is defined
in (3);1

MapX : Θ ↪→X , defined by MapX (β)= {x ∈X : x = arg maxs∈X I (s, β)};
Mapξ : (Ξ × X ) ↪→ Ξ , defined by Mapξ (ξ, x) = {ξ ′ ∈ Ξ : ξ ′ = (1 − α)ξ +
αδx for some 0 ≤ α ≤ 1 such that I2,1(ξ ′) = maxα∈[0,1] I2,1[(1 − α)ξ + αδx]},
where δx denotes the distribution which concentrates the whole mass at x.

Referring to the natural definition of point-to-set mapping obtained by compos-
ing two point-to-set mappings (Luenberger and Ye 2008), let Map2 :Ξ ×Θ2 ↪→Ξ

be defined by

Map2(ξ,β)=Mapξ

[
ξ,MapX (β)

]
.

The algorithm AlgKL :Ξ ↪→Ξ is finally given by

AlgKL(ξ)=Map2
[
Map1(ξ)

]
.

Assume that I (x,β2) defined in (1) is continuous with respect to (x,β2) and
I2,1(ξ) is continuous (see Sect. 2). Provided that the algorithm explores regular
designs, a sequence of designs obtained by iteratively applying AlgKL converges
to the set of KL-optimum designs, as stated in the following theorem.

Theorem 1 Let ξ0 ∈ Ξ such that its sub-level {ξ ∈ Ξ : I2,1(ξ) ≥ I2,1(ξ0)} is com-
pact. For any n, let ξn+1 ∈ AlgKL(ξn). If ξn is a sequence of regular designs, then
the limit of any converging subsequence of ξn is a KL-optimum design. In particular,
if the optimum ξ∗ is unique, ξn→ ξ∗.

To prove the result, the fundamental idea is that, as a consequence of Theorem 1
of López-Fidalgo et al. (2007), I2,1(ξ) is an ascendant function for the set of KL-
optimal designs and AlgKL. Hence it is possible to apply the Global Convergent
Theorem for ascendant algorithms. A detailed proof is provided in the Appendix.

Note that the algorithm proposed here coincides with the first-order algorithm
described in López-Fidalgo et al. (2007) except for the choice of the sequence
{αn}, which is not fixed in advance, but is instead obtained by maximizing the
KL-criterion function in Mapξ .

4 Regularization

The numerical procedure described in Sect. 3 converges provided that the designs
ξn where the algorithm moves are regular. If this is not the case, Fedorov and Hackl

1WhenΩ2(ξ) is empty, replace it with {β̃2 :
∫
X I (x, β̃2) ξ(dx)≤ infβ2∈Θ2

∫
X I (x,β2) ξ(dx)+

ε}, for an arbitrary ε > 0.
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(1997) suggest to regularize the problem, i.e., using the function

Iγ (ξ)= I2,1
[
(1− γ )ξ + γ ξ̃]

instead of I2,1(ξ), where 0< γ < 1 and ξ̃ is a regular design. Let ξ1 = (1− γ )ξ +
γ ξ̃ . Then Iγ (ξ)= I21(ξ1). It is straightforward to prove that the new criterion func-
tion Iγ (ξ) is also concave and continuous.

The algorithm described in Sect. 3 may be then readapted to Iγ (ξ) instead of
I2,1(ξ) in the following way:

1. Map1 :Ξ ↪→Ξ ×Θ2 is now replaced by Map1(ξ)= (ξ,Ω2(ξ1));
2. Mapξ : (Ξ × X ) ↪→ Ξ is now replaced by Mapξ (ξ, x) = {ξ ′ ∈ Ξ : ξ ′ =
(1−α)ξ +αδx for some 0≤ α ≤ 1 such that Iγ (ξ ′)=maxα∈[0,1] Iγ [(1−α)ξ +
αδx]}.
Note that, at least in the class of generalized linear models, any design with a

non-singular Fisher information matrix is regular according to the definition given
in Sect. 2. Therefore, if ξ̃ is regular, then so is ξ1 (the proof is available from the
authors). For these models, it is then guaranteed that the readapted algorithm moves
on regular designs. In addition, Theorem 1 may be specialized for this algorithm,
obtaining a sequence ξn converging to the set of optimum designs for Iγ (ξ)

ξ∗γ ∈ arg max
ξ
Iγ (ξ),

instead of the set of KL-optimum designs ξ∗. The following derivations show that
I2,1(ξ

∗
γ ) approximates I2,1(ξ∗), justifying the regularization procedure.

For any given ξ̃ and γ , let

Ξγ =
{
η : η= (1− γ )ξ + γ ξ̃ , ξ ∈Ξ}⊆Ξ

and Iγ :Ξ→R is equivalent to I2,1 :Ξγ →R. Thus

max
ξ∈Ξ Iγ (ξ)= max

η∈Ξγ
I2,1(η)≤max

ξ∈Ξ I2,1(ξ)

and so I2,1(ξ∗)≥ Iγ (ξ∗γ ).

From the concavity of I2,1(ξ), we get

Iγ
(
ξ∗

)= I2,1[(1− γ )ξ∗ + γ ξ̃]≥ (1− γ )I2,1(ξ∗)+ γ I2,1(ξ̃ ).
Thus

I2,1
(
ξ∗

)− Iγ (ξ∗)≤ γ [I2,1(ξ∗)− I2,1(ξ̃ )].
Since ξ∗γ is the maximum of Iγ (ξ), I2,1(ξ∗)− Iγ (ξ∗γ )≤ I2,1(ξ∗)− Iγ (ξ∗) and so

I2,1
(
ξ∗

)− Iγ (ξ∗γ )≤ γ [I2,1(ξ∗)− I2,1(ξ̃ )].
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From the definition of Iγ (ξ) the last inequality can be rewritten as

0≤ I2,1
(
ξ∗

)− I2,1[(1− γ )ξ∗γ + γ ξ̃]≤ γ [I2,1(ξ∗)− I2,1(ξ̃ )].
Thus, if γ is a small value, the design (1− γ )ξ∗γ + γ ξ̃ is almost KL-optimum and
therefore ξ∗γ is almost KL-optimum since I2,1(ξ) is continuous. This result moti-
vates the use of a regularization procedure.

5 Final Comments

In the present work an iterative procedure to find KL-optimum designs is proposed.
A detailed proof is provided of the convergence of a sequence generated by the
algorithm to the set of KL-optimum designs. This analytical result holds when the
algorithm moves on regular designs. Introduction of the regularization procedure
ensures that the algorithm can be always successfully applied.

When an algorithm is used in practice, a finite number of iterations are generated
to approximate an optimum design. A stopping rule may be developed for the algo-
rithm described here, following the method proposed in López-Fidalgo et al. (2007).
The stopping rule may also be extended from the regular case to the general case by
means of the discussed regularization.

Appendix

The convergence of the algorithm is studied by means of the property of closeness
of point-to-set maps (Luenberger and Ye 2008), which is a generalization of the
classical concept of continuity.

Lemma 1
∫
X I (x,β2)dξ(x) is continuous in (ξ,β2).

Proof Take (ξn,βn)→ (ξ,β). We have
∣∣∣∣
∫
X

I (x,β)dξ(x)−
∫
X

I (x,βn)dξn(x)

∣∣∣∣
≤

∣∣∣∣
∫
X

I (x,β)dξ(x)−
∫
X

I (x,β)dξn(x)

∣∣∣∣
+

∣∣∣∣
∫
X

I (x,β)dξn(x)−
∫
X

I (x,βn)dξn(x)

∣∣∣∣
≤

∣∣∣∣
∫
X

I (x,β)
[
dξ(x)− dξn(x)

]∣∣∣∣+
∫
X

∣∣I (x,β)−I (x,βn)
∣∣dξn(x)

≤A+ max
x∈X

∣∣I (x,β)−I (x,βn)
∣∣.



A Convergent Algorithm for KL-Optimum Designs 7

From the definition of weak convergence, it follows that A→ 0 as ξn→ ξ , since
I is continuous in x and X is compact. To prove that maxx∈X |I (x,β) −
I (x,βn)| → 0 as ξn → ξ , take a converging sequence βn → β and define the
function hn(x) = maxx∈X |I (x,βn) − I (x,β)|. Let x̂n be a maximum point:
x̂n ∈ argx∈X maxhn(x). Since X is compact, from any subsequence of (x̂n)n, we
can extract a converging subsequence x̂nk → x̂. Hence

hnk (x̂nk )=
∣∣I (x̂nk , βnk )−I (x̂nk , β)

∣∣
≤ ∣∣I (x̂nk , βnk )−I (x̂, β)

∣∣+ ∣∣I (x̂, β)−I (x̂nk , β)
∣∣.

The continuity of I with respect to both the variables concludes the proof. �

Corollary 1 The map Map1 is closed.

Proof Let ξn→ ξ , βn ∈Ω2(ξn) and βn→ β . We must prove that β ∈Ω2(ξ). By
Lemma 1, we have that, for n sufficiently large,

∫
X

I (x,βn)dξn(x)≤ ε+
∫
X

I (x,β)dξ(x).

Moreover, since I2,1 is a continuous function, then I2,1(ξ)≤ ε+ I2,1(ξn) (again for
n sufficiently large). Therefore, since I2,1(ξn)=

∫
X I (x,βn)dξn(x), we get

I2,1(ξ)≤ ε+ I2,1(ξn)= ε+
∫
X

I (x,βn)dξn(x)≤ 2ε+
∫
X

I (x,β)dξ(x).

The arbitrary choice of ε ensures that I2,1(ξ)=
∫
X I (x,β)dξ(x). �

Lemma 2 The map MapX is closed.

Proof First note that MapX (β) �= ∅ for any β , since X is compact and I
is continuous. Now, let βn → β , xn ∈ MapX (βn) and xn → x. By definition,
I (xn,βn) ≥I (s, βn) for any n and s. The desired result is a consequence of the
continuity of I . �

The following lemma extends the closedness of line search algorithms in an
infinite-dimensional space.

Lemma 3 The map Mapξ is closed.

Proof Let (ξn, xn)→ (ξ, x), ξ ′n ∈Mapξ (ξn, xn) and ξ ′n→ ξ ′. We need to prove that
ξ ′ ∈Mapξ (ξ, x). For any n, define

Kn =
{
(1− α)ξn + αδxn for some 0≤ α ≤ 1

}
.
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Since

d
[
(1− α)ξn + αδxn, (1− α)ξ + αδx

]≤ (1− α)d(ξn, ξ)+ α|xn − x|,
we have that d(Kn,K)→ 0, where K = {(1− α)ξ + αδx for some 0≤ α ≤ 1}.

Since ξ ′n ∈Kn, it follows that

d
(
ξ ′,K

)≤ d(ξ ′, ξ ′n)+ d(ξ ′n,Kn)+ d(Kn,K)→ 0,

which implies ξ ′ ∈K , that is, ξ ′ = (1− α′)ξ + α′δx for some α′ ∈ [0,1].
By the definition of ξ ′n, we have that I2,1(ξ ′n) ≥ I2,1[(1− α)ξn + αδxn ] for any

α ∈ [0,1]. Letting n→∞, we get

I2,1
(
ξ ′
)≥ I2,1[(1− α)ξ + αδx].

Thus I2,1(ξ ′)≥maxα∈[0,1] I2,1[(1− α)ξ + αδx], and hence ξ ′ ∈Mapξ (ξ, x). �

Corollary 2 The map Map2 is closed.

Proof By Lemmas 2 and 3, the maps (ξ,β)
(Id,MapX )−−−−−−−→ (ξ,MapX (β)) and

(ξ,MapX (β))
Mapξ−−−→Map2(ξ,β) are closed. Since Ξ ×X is compact, the com-

position of the closed point-to-set mappings

(ξ,β)
(Id,MapX )−−−−−−−→ (

ξ,MapX (β)
) Mapξ−−−→Map2(ξ,β)

is closed (see Luenberger and Ye 2008, p. 205, Cor. 1). �

Proof of Theorem 1 From Lemma 1, Lemma 2 and Luenberger and Ye (2008, Cor. 2,
p. 205), it follows that AlgKL is closed. Moreover, as a consequence of Theorem 1
of López-Fidalgo et al. (2007), it is simple to prove that I2,1(ξ) is an ascent function
for the set of KL-optimal designs and AlgKL. Finally, it is sufficient to apply the
Global Convergence Theorem for ascendant algorithms in Luenberger and Ye (2008,
p. 206). �
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Robust Experimental Design for Choosing
Between Models of Enzyme Inhibition

Anthony C. Atkinson and Barbara Bogacka

Abstract Models for enzyme inhibition form a family of extensions of the
Michaelis-Menten model to two explanatory variables. We present four-point
locally Ds-optimum designs for discriminating between competitive and non-
competitive models of inhibition and explore the sensitivity of the designs to the
values of the two nonlinear parameters in the model. We evaluate combinations of
pairs of locally optimum designs. A robust design is found with six support points
that has high minimum and average efficiencies over all considered parameter val-
ues.

1 Introduction

Enzymes are organic catalysts. In a typical enzyme kinetics reaction enzymes bind
substrates and turn them into products. In the absence of inhibition the reaction
rate is represented by the standard Michaelis-Menten model v = V [S]/(Km + [S]),
where V denotes the maximum velocity of the reaction, [S] is the concentration of
the substrate and Km is the Michaelis-Menten constant—the value of [S] at which
half of the maximum velocity V is reached (Michaelis and Menten 1913).

Enzyme inhibitors are molecules that decrease the activity of enzymes. In order
to model such behaviour, the Michaelis-Menten model is extended to include the
effect of inhibitor concentration [I ]. Two important mechanisms are competitive
and non-competitive inhibition; see, for example, Segel (1993). Our paper presents
a method of constructing robust experimental designs for discriminating between
the mechanisms.

The two models, which have a similar structure, are introduced in Sect. 2. They
may be combined in a single four-parameter model with parameter of combination λ
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(Atkinson 2011). The locally Ds-optimum designs of Atkinson (2012) yield efficient
estimates of λ and provide a method of discriminating between the models. How-
ever, these locally optimum designs depend on the values of two of the parameters
in the combined model. In Sect. 3 we find the minimum and average efficiencies of
these designs over a set Θ of parameter values. The combination of pairs of locally
optimum designs in Sect. 4 yields our robust design with an increased number of
support points that has greatly improved minimum efficiency over Θ .

2 Models for Enzyme Inhibition and the Design Criterion

The velocity equation for Competitive Inhibition is

v = V [S]/{Km(1+ [I ]/Kic)+ [S]}. (1)

For Non-competitive Inhibition the model is

v = V [S]/{(Km + [S])(1+ [I ]/Kin)}, (2)

where Kic and Kin are the inhibition constants.
The nonlinear models (1) and (2) have some structure in common. Atkinson

(2011) suggests combining the two models into the single four-parameter model

v = V [S]/[Km{1+ [I ]/Kλ
}+ [S]{1+ (1− λ)[I ]/Kλ

}]
. (3)

When λ= 1 the model is that for competitive inhibition andKλ =Kic, whereas, for
λ= 0, Kλ =Kin and we obtain non-competitive inhibition.

An experimental design involves the choice of substrate and inhibitor concentra-
tions xi = ([S]i , [I ]i )T at which measurements are to be taken. Interest is in precise
estimation of λ, with the other three parameters being treated as nuisance parame-
ters. We use Ds-optimality and investigate the robustness of designs to the values of
the nuisance parameters. The linearized model in partitioned form is

yi =ψTf (xi)+ εi =ψT
1 f1(xi)+ψT

2 f2(xi)+ εi, (4)

where ψT = (ψT
1 ψ

T
2 ) is a p-dimensional vector of all parameters and ψ1 is s × 1.

We assume εi ∼N (0, σ 2). For the design measure ξ putting weight wi at the de-
sign point xi in the design region X , the information matrix for ψ for a design with
n support points can be written in the partitioned form, with blocks given by

Mjk(ξ)=
n∑
i=1

wifj (xi)f
T
k (xi), j, k = 1,2. (5)

The covariance matrix for the estimator of ψ1 is then

A−1(ξ)= {
M11(ξ)−M12(ξ)M

−1
22 (ξ)M

T
12(ξ)

}−1
. (6)
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The Ds-optimum design for ψ1 in the linear model (4) maximizes the determinant
|A(ξ)|.

We linearize the model by Taylor series expansion. The information matrix is
now a function of the vector of partial derivatives

f
(
xi,ψ

0)= ∂v(xi,ψ)
∂ψ

∣∣∣∣
ψ0

(7)

of the response function with respect to the parameters ψ , often called the parameter
sensitivities, where ψ0 is a prior point estimate of the parameters. Optimum designs
for this linearized model are called locally-optimum and depend, often strongly, on
the value of ψ0.

In our example the model is nonlinear, ψ1 = λ and s = 1, so that the locally Ds-
optimum design maximizes A(ξ,ψ0). Throughout we will be interested in approx-
imate designs in which the weights wi are not constrained to be ratios of integers.

3 Design Sensitivity

Bogacka et al. (2011) find analytical expressions for locally D-optimum designs
for several enzyme inhibition models including (1) and (2). However, Ds-optimum
designs have to be found numerically. We base our numerical results on those for
the system Dextrometorphan-Sertraline used by Bogacka et al. (2011) in which the
rectangular design region is X = [0, [S]max] × [0, [I ]max], with [S]max = 30 and
[I ]max = 40. Bogacka et al. (2011) took parameter values K0

m = 4.36 and K0
ic =

2.58 with the value of V arbitrary. Our value of λ0 was 0.8, since Atkinson (2012)
demonstrates that this provides efficient locally optimum designs whether λ = 0
or 1. In (3) the inhibition coefficient is written as a general value Kλ. Atkinson
(2011) argues that it is necessary to choose parameter values which are appropriate
for modelling the same physical phenomenon, whichever component model is used.
This is achieved by taking Kλ in (3) equal to (2 − λ)Kic , so that K0

λ = 1.2K0
ic .

Since V occurs linearly in (3), we take the arbitrary value V 0 = 10. The parameter
sensitivities required in the calculations are given by Atkinson (2011).

We calculated the optimum designs by numerical optimization using an uncon-
strained Quasi-Newton method with parameter transformation to satisfy the con-
straints on the design points and weights required for experimental designs (Atkin-
son et al. 2007, Sect. 9.5). For the design region used in this paper, and for all
parameter values considered, the Ds-optimum designs for λ have the form

ξ∗ =
{
([S]max, [I ]min) (s2, [I ]min) ([S]max, i3) (s4, i4)

w1 w2 w3 w4

}
, (8)

so that they can be found by a seven-dimensional numerical search, provided this
structure holds. That this structure holds and that the optimum design had been
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Fig. 1 90 locally Ds-optimum designs for elements of Θ . Left-hand panel, clustering of support
points in X ; symbols ◦, �, + and × respectively denote x1, x2, x3 and x4. Right-hand panel,
design weights

found for each case was checked by using the equivalence theorem (Atkinson et al.
2007, Sect. 10.3) over a grid of 81 × 81 points in X .

To investigate the dependence of designs on the values of the two parameters in
(3) let θT = (Kic,Km). We take a grid of values θj ∈ Θ defining the set Θ at all
pairs such that

Kic = (0.5,1.0, . . . ,5) and Km = (2,3, . . . ,10). (9)

There are therefore ten values of K0
ic and nine of K0

m. The scatter of design points
in X for the 90 locally optimum designs is shown in the left-hand panel of Fig. 1.

There is an appreciable structure in these designs which follows in part from (8).
All designs have the same first support point ([S]max, [I ]min)= (30,0). There are 9
values of s2 and of s4, the variations in both of which therefore depend only on the
value ofK0

m. The 90 values of i3 range from 2.12 to 33.94 whereas those for i4 have
a maximum of 14.83.

The design weights in the right-hand panel are less dependent on the prior val-
ues θ0

j . The minimum value is 0.048, so that, in this example, the Ds-optimum
designs are not singular. However, Youdim et al. (2010) show that the Ds-optimum
design forKic in (1) has only two points of support. Such singular designs are useful
in calculating the efficiencies of practically useful designs.

To assess the designs requires the efficiency of ξ is, the optimum design found for
prior θ0

i , evaluated at parameter θj ∈Θ . Since s = 1, we define the efficiency as

Effs(i, j)=A
(
ξ is, θj

)
/A

(
ξ
j
s , θj

)
. (10)

To assess each design we look at the minimum and average value of Effs(i, j).
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Fig. 2 Left-hand panel: Minimum and average efficiencies (×) over Θ for the 90 locally Ds-op-
timum designs. Right-hand panel: the same with the addition of efficiencies for selected pairs of
locally optimum designs (•)

Table 1 Average and
minimum efficiencies of six
of the locally Ds-optimum
designs shown in Fig. 2.
Kminic and Kminm are the
parameter values at which
each design has its minimum
efficiency

Design K0
ic K0

m Efficiency % Kminic Kminm

Average Minimum

1 2.5 5.0 76.03 17.86 0.5 10.0

2 2.5 6.0 75.87 20.16 0.5 10.0

3 1.5 4.0 68.65 31.58 0.5 10.0

4 1.5 5.0 69.11 31.58 5.0 2.0

5 0.5 10.0 28.25 3.01 5.0 2.0

6 5.0 2.0 45.14 2.32 0.5 10.0

These efficiencies are plotted in the left-hand panel of Fig. 2 with properties
of six selected designs displayed in Table 1. Again there is some structure in the
plot reflecting the grid of parameter values. Desirable designs will have both a high
average efficiency and a high minimum efficiency. It is clear from the figure that
there is a trade off, amongst the locally-optimum designs in the top right-hand corner
of the figure, between average and minimum efficiency over Θ .

Some numerical details are in Table 1. The first two designs, for priors in the
centre of the parameter range, are those with the highest average efficiency, 76.03
and 75.87 %. The second two designs, for smaller values of K0

ic , have lower aver-
age efficiencies, 68.65 and 69.11 %, but higher minimum efficiencies; 31.58 % for
both designs, rather than 17.86 and 20.16 %. The last two designs in the table, for
parameter prior values on the boundary of Θ , have the lowest minimum efficiencies
of those in Fig. 2.
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Table 2 Six-point robust
Ds-optimum design; a
combination of locally
optimum designs for
parameter values (3.5, 4.0)
and (0.5, 4.0). Left-hand
panel, numerical; right-hand
panel, notational from (8)

[S] [I ] w

30.000 0.000 0.083

2.304 0.000 0.207

30.000 20.195 0.133

30.000 2.885 0.133

4.414 9.738 0.222

4.414 1.391 0.222

[S] [I ]

[S]max [I ]min

s2 [I ]min

[S]max i31

[S]max i32

s4 i41

s4 i42

The designs considered can be extended by including Bayesian-optimum designs
over suitable prior distributions. For example, for a uniform distribution over the
nine-point prior [1,2.5,4] × [3,6,9] which almost spans Θ , the design has four
support points with the structure of (8); the average efficiency for this design is
75.12 %, similar to those of Designs 1 and 2 in Table 1, although the minimum
is higher at 24.07. To find designs with higher minimum efficiencies we generate
designs with more support points.

4 Robust Designs

The last two columns of Table 1 given the parameter values for which the minimum
efficiency occurs for each locally optimum design. For four of the designs, these
are (0.5, 10) and for the other two (5.0 and 2.0). Both are extreme points of Θ ,
yielding designs 5 and 6 in the table for which the minimum efficiency is smallest.
The designs with high efficiencies are locally optimum for more central values of the
prior values of the parameters. This suggests that a combination of locally optimum
designs for central and extreme points in Θ will have a relatively high minimum
efficiency.

The right hand-panel of Fig. 2 repeats the plot of minimum and average efficien-
cies of the 90 locally optimum designs and adds the efficiencies for all those pairs
of locally optimum designs for which the minimum efficiency is greater than 30 %.
As the plot shows, there are numerous designs with a minimum efficiency higher
than the maximum value of 31.58 in Table 1. The design with the highest minimum
efficiency, 47.78 %, has an average efficiency of 56.43. The numerical results for
the design are given in the left-hand panel of Table 2 with notational expressions in
the right-hand panel.

Because of the structure of the locally optimum designs shown in (8), the equally
weighted combination of two designs only has six points of support. Points 1 and
2 have full weight whereas points 3 and 4 in (8) are divided between two points,
although the values of s4 are the same for the two parts of the two divided support
points. The design is the combination of those for prior parameter values (3.5, 4.0)
and (0.5, 4.0), not as extreme as those giving the minimum efficiencies in Table 1.
However the three values of efficiency below 48 % for this design all occur at ex-
tremes of Θ : (5.0, 10.0), (5.0, 2.0) and (0.5, 10.0).
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Fig. 3 The six support points
of the robust design, •, and
the points, ◦, of the 90 locally
Ds-optimum designs for
elements of Θ

5 Discussion

The combination of two locally optimum designs has led to a design with increased
minimum efficiency. If a design with higher average efficiency but lower minimum
efficiency is required, another design from the boundary in Fig. 2 could be used.

It is informative to look at the robust design points in the context of the locally
optimum designs (8). Figure 3 repeats the left-hand panel of Fig. 1 with the addition
of the points of the robust design. We see that the value of s2 lies in the centre of the
range of values for the locally optimum designs, the two values of i3 almost span
the range of locally optimum values and that there is a medium and extreme value
of i4, but not of s4.

Intuitively some of the properties of the robust design are clear, such as an in-
crease in the number of support points relative to the locally-optimum design. How-
ever it is not immediate from Fig. 1 which points should be divided. Dror and Stein-
berg (2006) find robust designs through the clustering of the support points of locally
optimum designs, a procedure echoed in Fig. 3. D-optimality is used by Woods et al.
(2006) to find robust designs for generalized linear models over link functions and
parameters.

We have found designs which provide a compromise between the value of the
average and minimum efficiencies. Calculation of the maximin design that maxi-
mizes the minimum efficiency is complicated by the non-convexity of the objective
function. Recent results are given by Biedermann et al. (2011) for additive models.
Dette et al. (2007) provide an equivalence theorem for maximin designs and apply
it to a one parameter problem. King and Wong (2000) provide an algorithm for the
construction of maximin designs.

Finally, we note that if only one model is of interest, T-optimum designs (Atkin-
son and Fedorov 1975) maximize the non-centrality parameter of the F-test for
departures from that model. See Wiens (2009) for recent developments. However,
since either model may be true, compound T-optimum designs are required (Atkin-
son 2008, Sect. 4) which maximize a function of the non-centrality parameters for
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departures from each model. Atkinson (2012) finds, for the parameter values of Bo-
gacka et al. (2011), that the individual T-efficiencies for the T-optimum design are
3–4 % higher than those for the Ds-optimum design. In some cases T-optimum de-
signs can be difficult to compute (but see Dette and Titoff 2008) so that Ds-optimum
designs may be a useful surrogate.
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Checking Linear Regression Models Taking
Time into Account

Wolfgang Bischoff

Abstract Linear regression models are usually checked by a lack-of-fit (LOF) test
to be sure that the model is at least approximately true. In many practical cases
data can only be sampled sequentially. Such a situation can appear in industrial
production when goods are produced one after the other. So as time goes by, the
mean may also depend on time, i.e., the mean is not only a function of the covariates,
but it may be also a function of time. This dependence over time is difficult to
detect by a conventional LOF test. Tests based on the residual partial sum process
are then more suitable. Therefore, in such a situation we suggest applying both an
LOF test, e.g., the F-test, and a test based on the residual partial sum process, e.g.,
a test of Kolmogorov type. When the linear regression model is not rejected by
either test, least squares estimation can be used to estimate the parameters of the
linear regression model. For the situation just discussed, we are here interested in
a design with which we can efficiently run the two tests and estimate the linear
model. Usually, classical optimal designs and LOF-optimal designs do not have
these properties.

1 Introduction

It is popular to describe input-output relationships by linear regression models.
There are at least two reasons to sample data for such models: (i) in order to es-
timate the linear regression model and (ii) in order to check the linear regression
model by a lack-of-fit (LOF) test. In many cases data cannot be sampled at the same
time. They are sampled one after the other. Therefore time can exert an influence on
the observations, i.e., on the output. Hence, the i-th output (observation) yi may not
depend on only the input variable (covariate) xi ∈ [a, b] ⊆ R. The i-th observation
yi may also depend on the time point ti ∈ [0,1] at which the observation is taken. An
example of such a situation is industrial production when goods are produced one
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after another. There it is of strong interest to understand the input-output relation-
ship of the production process. Production processes, however, deteriorate as time
goes by. Usually, at what time point the process begins getting worse is unknown.
Therefore the production process of goods is controlled continuously over time. In
this paper we assume that only the mean of the observations may depend on time.
Accordingly, the variances and covariances do not depend on time.

A deviation of the mean function over time is difficult to detect by a lack-of-
fit (LOF) test. Therefore we suggest applying a second test that is able to detect
changes occurring over time. Such tests are based on the residual partial sum pro-
cess. In this paper we consider the F-test as the LOF test and as the second test a test
of Kolmogorov type based on the residual partial sum process. If neither test rejects
the model, then the linear regression model can be estimated by least squares.

Classical optimal designs for estimating parameters of a linear model, such as
D-optimal designs, are often unsuitable for checking the fit of the model, unless
extra terms are included in the model specifically for model testing. On the other
hand, uniform designs are LOF-optimal under certain assumptions described below.
But they are not very efficient for estimating the parameters of a linear regression
model. Moreover, as opposed to D-optimal designs, uniform designs cannot detect
some interesting deviations over time. Therefore, we are looking for a design that
does not have the disadvantages ofD-optimal designs and uniform designs. Loosely
speaking, we are looking for designs which are efficient to:

(i) Check the linear regression model (input-output model) by the F-test;
(ii) Check the constancy of the mean function (of the input-output model) over

time by a test of Kolmogorov type based on the residual partial sum process
and

(iii) Estimate the parameters of the linear regression model by least squares.

The next section contains some preliminaries. Then in Sect. 3 the problems just
mentioned are discussed in more detail. In the last section a simulation study is
presented illustrating our discussion.

2 Preliminaries

We consider n+ 1 observations, n ∈N. So input variables (covariates) x1, . . . , xn+1
can be arbitrarily chosen from the experimental region [a, b], a real compact inter-
val. Then according to the time point ti of the observation yi , we have n+ 1 design
points (xi, ti) ∈ [a, b] × [0,1]. We assume that the observations are taken equidis-
tantly over time, i.e., t1 = 0, t2 = 1/n, t3 = 2/n, . . . , tn = 1. Therefore the general
model for the observations can be formulated by

yi = y
(
xi,
i − 1

n

)
= f (xi)+ g

(
i − 1

n

)
+ εi, i = 1, . . . , n+ 1, (1)

where xi ∈ [a, b], f : [a, b] → R is the unknown input-output regression function
and g : [0,1] → [0,∞) describes deviations of the mean over time with g(0)= 0.
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We assume that g does not depend on the covariate x. In the example of the produc-
tion process, for instance, g describes how the production is getting worse. If larger
values of g correspond to deteriorated production, then it is appropriate to assume
additionally that g is non-decreasing when the product is not improved during the
whole time of production [0,1].

Furthermore, let εi, i = 0,1, . . . , n, be independent with E(εi)= 0,Var(εi)= σ 2.
Under the null-hypothesis we assume a linear regression model without deviations
of the mean over time

H0 : f =
d∑
j=1

fjβj , g ≡ 0, (2)

where f1, . . . , fd : [a, b] → R are d linearly independent known regression func-
tions, and β1, . . . , βd ∈R are unknown parameters.

3 Good Designs

Our goal is to find efficient designs for the three claims stated in Sect. 1. Let us
discuss these three claims in detail.

3.1 Lack-of-Fit (LOF) Test

It is well-known that the F-test is the most powerful invariant test for testing linear
alternatives under normally distributed errors. Therefore it is also popular to use
the F-test as a lack-of-fit test for linear regression models against arbitrary alterna-
tives. Let λ̃ be the uniform distribution on [a, b], i.e., λ̃= 1

λ([a,b])λ, where λ is the
Lebesgue measure, let BV([a, b])= {h : [a, b] → R | h has bounded variation} and
let c > 0. Then a meaningful set of alternatives for the mean of the input-output
linear regression model can be expressed by

Fc :=
{
d∑
i=1

fiβi + h
∣∣ h ∈ BVc

([a, b]), βi ∈R, i = 1, . . . , d

}
, (3)

where BVc([a, b]) = {h ∈ BV([a, b])| ∫[a,b] h2 dλ̃ ≥ c, ∫[a,b] fihdλ̃ = 0, i = 1,
. . . , d}. Note that the following considerations and results do not depend on the con-
stant c > 0. Wiens (1991) showed that the uniform design λ̃ is LOF-optimal, which
means that, given the F-test, the uniform design maximizes the smallest power in a
certain class Fc of alternatives. Biedermann and Dette (2001) generalized this result
and proved Wiens’ result for other LOF tests. Bischoff (2010) showed that the class
of alternatives (considered in both papers) must be restricted to, for instance, Fc.

We shall use the F-test as a lack of fit test in our simulation study in Sect. 4.
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3.2 Test for g = 0

Residual partial sum processes are useful to detect changes over time. Let

r

(
xi,
i − 1

n

)
:= y

(
xi,
i − 1

n

)
−

d∑
j=1

fj (xi)β̂j , 1≤ i ≤ n+ 1, (4)

be the i-th least squares residual given the linear regression model under H0, where
β̂1, . . . , β̂d are the least squares estimates of the mean parameters of the linear re-
gression model. Let rn+1 = (r(x1,0), r(x2,1/n), . . . , r(xn+1,1))� ∈ R

n+1 be the
vector of least squares residuals. Here rn+1 is embedded in the space C[0,1] of
continuous functions on [0,1] by the partial sum operator

Tn+1 :Rn+1 −→ C[0,1],
a= (a1, . . . , an+1)

� �→ Tn+1(a)(z)

=
[(n+1)z]∑
i=1

ai +
(
(n+ 1)z− [

(n+ 1)z
])
a[(n+1)z]+1, z ∈ [0,1],

where [s] =max{m ∈N0 |m≤ s} and
∑0
i=1 ai = 0.

The stochastic process 1
σ̂
√
n+1
Tn+1(rn+1) is called the residual partial sum pro-

cess, where σ̂ is a consistent estimator of σ . MacNeill (1978a, 1978b) showed that
the residual partial sum process converges weakly in C[0,1] to a Gaussian process
as n→∞ and derived its asymptotic distribution if xi = ti = (i − 1)/n ∈ [0,1], i =
1, . . . , n+ 1. Bischoff (1998), see also (Bischoff 2002) for a geometrical approach,
generalized this result to an arbitrary design xi = ti ∈ [0,1], i = 1, . . . , n+ 1, i.e.,
when it is not assumed that t1, . . . , tn+1 are chosen equidistantly. The limit process
is useful to develop asymptotic tests for detecting changes over time by using, e.g.,
tests of Kolmogorov(-Smirnov) or Cramér-von Mises types.

In Sect. 4 we use a test of Kolmogorov type based on the partial sum process to
check whether deviations over time occur.

3.3 Estimation of the Parameters β1, . . . ,βd

We estimate the mean parameter vector β = (β1, . . . , βd)
� of the linear regression

model by the least squares estimates β̂ = (β̂1, . . . , β̂d)
� under H0. A good design

should be used for the input variables x1, . . . , xn to get an efficient estimator of β . In
this paper we consider D-optimal designs. Classical optimal designs for estimating
the parameters of a linear model, however, are often unsuitable for applying an LOF
test. This is true, for example, for polynomial regression. Therefore uniform designs
which are LOF-optimal are more popular. On the other hand, uniform designs are
not very efficient for estimating the unknown parameters.
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To take into consideration these concerns, Bischoff and Miller (2006a, 2006b,
2006c, 2010) suggest taking one part of the design points to enable an LOF test for
checking the assumed model with a given power, see Sect. 3.1. Then the remaining
design points are determined in such a way that the whole design is as good as
possible (according to a specific criterion) for estimating the unknown parameters
of interest. We call such designs optimally p-LOF-test-efficient, where p gives the
percentage of the input variables x1, . . . , xn+1 ∈ [a, b] chosen as an LOF-optimal
design, i.e., in our context as the uniform design. In Bischoff and Miller (2010) the
general form ofD-optimally p-LOF-test-efficient designs for polynomial regression
models is determined. But note that such designs for polynomial regression of order
greater than 2 are difficult to determine. Bischoff (2008) constructs easy to calculate
p-LOF-test-efficient designs that are highly efficient for estimation of the unknown
parameters.

In Sect. 4 we compare D-optimal, LOF-optimal (i.e., uniform) and D-optimally
p-LOF-test-efficient designs for p = 1/2 in a simulation study when H0 is a
straight-line regression model.

4 Comparison of the Three Designs

By a simulation study we compare the designs discussed above for the input val-
ues x1, . . . , xn ∈ [a, b] when the linear model under H0 is a straight-line regression
model. Accordingly, our null-hypothesis is given by

H0 : f (x)= β0 + β1x, x ∈ [a, b]; β0, β1 ∈R arbitrary but fixed;g ≡ 0.
(5)

To simplify the notation, we assume that the number n + 1 of observations is
n+ 1= 4m, m ∈N. Moreover, the problem is simplified by assuming x1 ≤ · · · ≤ xn
which is in some practical situations a necessary assumption. Thus we consider the
following three designs:

1. D-optimal design for the straight-line regression model:

(x1, t1)= (a,0), . . . , (x2m, t2m)=
(
a,

2m− 1

n− 1

)
,

(x2m+1, t2m+1)=
(
b,

2m

n− 1

)
, . . . , (xn, tn)= (b,1).

2. LOF-optimal design: uniform design with two observations at each design point
in order to be able to use the F-test as the lack-of-fit test, i.e.,

(x1, t1)= (a,0), (x2, t2)=
(
a,

1

n− 1

)
,

(x3, t3)=
(
a + b− a

2m− 1
,

2

n− 1

)
,
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(x4, t4)=
(
a + b− a

2m− 1
,

3

n− 1

)
, (x5, t5)=

(
a + 2(b− a)

2m− 1
,

4

n− 1

)
,

(x6, t6)=
(
a + 2(b− a)

2m− 1
,

5

n− 1

)
, . . . ,

(xn−3, tn−3)=
(
a + (2m− 2)(b− a)

2m− 1
,
n− 4

n− 1

)
,

(xn−2, tn−2)=
(
a + (2m− 2)(b− a)

2m− 1
,
n− 3

n− 1

)
,

(xn−1, tn−1)=
(
b,
n− 2

n− 1

)
, (xn, tn)= (b,1).

3. D-optimally 1/2-LOF-efficient design for the straight-line regression model:

(x1, t1)= (a,0), . . . , (xm, tm)=
(
a,
m− 1

n− 1

)
,

(xm+1, tm+1)=
(
a,

m

n− 1

)
, (xm+2, tm+2)=

(
a + b− a

2m− 1
,
m+ 1

n− 1

)
,

(xm+3, tm+3)=
(
a + 2(b− a)

2m− 1
,
m+ 2

n− 1

)
, . . . ,

(x3m−3, t3m−3)=
(
a + (2m− 4)(b− a)

2m− 1
,

3m− 4

n− 1

)
,

(x3m−2, t3m−2)=
(
a + (2m− 3)(b− a)

2m− 1
,

3m− 3

n− 1

)
,

(x3m−1, t3m−1)=
(
a + (2m− 2)(b− a)

2m− 1
,

3m− 2

n− 1

)
,

(x3m, t3m)=
(
b,

3m− 1

n− 1

)
,

(x3m+1, t3m+1)=
(
b,

3m

n− 1

)
, . . . , (xn, tn)= (b,1).

4.1 Basis of Our Simulation

In our simulation we consider two alternatives:

K1 : f (x)+ g1(t)= 1

2
+ 1

2
x + 1(1/3,1](t), x, t ∈ [0,1],
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Table 1 Power of the F-test
for two alternatives and three
designs

Alternative K1 Alternative K2

D-optimal – –

LOF-optimal 0.44 0.05

D-optimal 1/2-LOF-efficient 0.39 0.05

Table 2 Power of the
Kolmogorov-type test for two
alternatives and three designs

Alternative K1 Alternative K2

D-optimal 0.99 0.54

LOF-optimal 0.94 0.05

D-optimal 1/2-LOF-efficient 0.87 0.17

where f (x)= 1
2 + 1

2x, x ∈ [0,1] is a straight line, 1(1/3,1] is the indicator function
of (1/3,1], i.e., 1(1/3,1](t) is 1 if t ∈ (1/3,1] and 0 otherwise, and

K2 : f (x)+ g2(t)= 1

2
+ 1

2
x + 1

2
t, x, t ∈ [0,1].

Both alternatives have deviations of the mean over time and there is no deviation
of the mean with respect to the input variable x. Furthermore, for the error variables
εi we took normally distributed random variables with zero mean and standard de-
viation σ = 0,2. We chose m = 10, i.e., n = 40 observations. All tests were con-
structed for the null hypothesis H0 given by (5) with a significance level of 0.05.
We took 10000 repetitions for each observation.

4.2 Simulation Results for the F-Test

We consider the F-test for the null hypothesis H0 given in (5). Table 1 shows the
power of the F-test for the two alternatives K1 and K2 and the three designs under
the null-hypothesisH0. For the straight-line regression theD-optimal design cannot
detect any deviation from the model. The two other designs can detect a certain part
of the alternative K1. The alternative K2 has a deviation in the form of a straight
line over time. Therefore it is impossible to detect it by a lack-of-fit test. Recall that
the significance level is 0.05.

4.3 Simulation Results for the Kolmogorov-Type Test

Table 2 shows the power of the test of Kolmogorov type based on the residual par-
tial sum process for the two alternatives K1 and K2 and the three designs under
the null-hypothesis of straight-line regression. The D-optimal design is best for
detecting these deviations. The uniform (LOF-optimal) design cannot detect the
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alternative K2. (Note again that the significance level is 0.05.) The D-optimally
1/2-LOF-efficient design can detect both alternatives with less power than the D-
optimal design. This power can, of course, be increased by using a larger number
of observations and putting these at the design points of the D-optimal design. It is
impossible to increase the power for the uniform design when the alternative K2 is
specified.

4.4 Conclusion

The D-optimally 1/2-LOF-efficient design is the only one of the three investigated
designs that can detect all deviations considered in this paper. Additionally, it is
much more efficient for estimating β than the uniform design. Its power can be
improved if the design points at a and at b can be uniformly distributed on the time
interval [0,1]. In that case it can be shown that each deviation g(t) can be detected
if the number n of observations is large enough.

By checking the model using two tests we get an inflation of the significance
level. For the D-optimally 1/2-LOF-efficient design we then have an overall signif-
icance level of 0.08.
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Optimal Sample Proportion
for a Two-Treatment Clinical Trial
in the Presence of Surrogate Endpoints

Atanu Biswas, Buddhananda Banerjee, and Saumen Mandal

Abstract The use of surrogate endpoints is a very popular practice in medical re-
search when true endpoints are expensive or only available after a long time. Here
we obtain an optimal proportion of allocation among two competing treatments
based on both true and surrogate endpoints. As the optimum true-surrogate sample
proportion obtained by minimizing the variance of the estimated parametric func-
tion, e.g., the treatment difference, lies on a boundary in parameter space, we obtain
cost optimized choices for these parameters. These are further used in a two-stage
optimization for the proportion of allocation to the two treatments.

1 Introduction

Many clinical outcomes are such that the response variables are often difficult or
highly expensive to measure, or the responses are delayed, whilst short-term mea-
surements are needed for inferential and administrative purposes. Consequently, in
medical studies to evaluate the effects of treatments or exposures on the true end-
point, a closely related variable with lower cost and/or available earlier can be used
as a surrogate response. Surrogate endpoints are increasingly used in medical sci-
ence and, consequently, statistical procedures are needed for their efficient use.

In a trial of treatments for osteoporosis, reduction in the fracture rate is the true
endpoint, whereas the bone mineral density is treated as the surrogate endpoint.
A change in the CD4 cell count in a randomized trial is considered as a surrogate for
survival time in a study of HIV. Again, damage to the heart muscle due to myocardial
infarction can be accurately assessed by arterioscintography, which is an expensive

A. Biswas (B) · B. Banerjee
Applied Statistics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
e-mail: atanu@isical.ac.in

B. Banerjee
e-mail: buddhananda_r@isical.ac.in

S. Mandal
Department of Statistics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
e-mail: saumen_mandal@umanitoba.ca
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procedure. Consequently, the peak cardiac enzyme level in the blood stream, which
is more easily obtainable, is used as a surrogate measure of heart vascular damage
(Wittes et al. 1989).

A statistical definition of, and validation criteria for, surrogate endpoints, were
first introduced by Prentice (1989). If a test based on surrogate endpoints to compare
the treatments is equivalent to the test constructed by true endpoints, then the surro-
gate is a valid surrogate. See Banerjee and Biswas (2011) and the references therein
for a detailed discussion. In the present paper we are not trying to judge the validity
of a surrogate. We assume that the surrogates considered are already validated.

We consider two treatments A and B , with both the true and surrogate endpoints
being binary. It has been observed by many authors that the proportion of valida-
tion samples (i.e., true endpoints) relative to the surrogate endpoints, say ρ, plays
a crucial role in the associated inference. Quite often the experimenter can control
this proportion by controlling the cost or time (which is also measured in terms of
cost). In particular, with two treatments, we need two such proportions ρA and ρB
for the two treatments, where ρA is the proportion of the true response to the total
number of surrogate responses from A-treated patients and ρB is similarly defined
for B-treated patients. The optimal choice of ρA and ρB may be a key design issue.
Note that if we consider ρA = ρB , we will have one less parameter, but only a re-
stricted set up. Here we study the more general case where ρA and ρB are allowed to
be different. This may be justified as the success probabilities (and hence variances)
of the two treatments are different. In addition, with two treatments, the proportion
of patients treated by a particular treatment, say treatment A, denoted by η, is an-
other important design parameter. The best value of η is widely studied in optimal
response-adaptive design literature, but without any surrogate. This is another im-
portant design issue in the surrogate-augmented set up. Thus, the design problem is
the simultaneous choice of the three parameters, (η,ρA,ρB). In the present paper,
our objective is to address this issue.

The rest of the paper is organized as follows. In Sect. 2, we discuss the structure
of the problem and the notation. Section 3 describes the improvement of variance
by using surrogate endpoints. The optimization problem is discussed in Sect. 4.
Section 5 concludes the paper.

2 Genesis and Structure of Surrogate Endpoints

We consider two treatments with binary true endpoints and also binary surrogate
endpoints. Begg and Leung (2000) pointed out that, for binary endpoints, the prob-
ability of concordance is an indicator of association between true and surrogate
endpoints. Banerjee and Biswas (2011, 2012a, 2012b) explored and established this
fact more formally. Suppose nA and nB patients are allotted to treatments A and B ,
respectively, but we get only mA and mB true endpoints along with all surrogate
endpoints within the stipulated time frame or cost limit, where mt � nt , t = A,B .
Let Z be the indicator variable equal to 1 or 0 according to whether or not treatment
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Table 1 True-surrogate
frequency table True Surrogate Total

Wt = 1 Wt = 0

Yt = 1 mt11 mt10 YtT

Yt = 0 mt01 mt00 mt − YtT
Total WtT mt −WtT mt

A is allocated to the patient. Denote by Yt and Wt the true and surrogate endpoints
for treatment t , t =A or B . All these endpoints are either 1 or 0 for success or fail-
ure, respectively. Let pt = P(Yt = 1) be the success probability by the true endpoint
for treatment t . Furthermore, set

P(Wt = 1|Yt = 1)= πt1, P (Wt = 0|Yt = 0)= πt0, (1)

which are the sensitivity and specificity of the 2 × 2 table for treatment t where
the true and surrogate responses are in the two margins. Consequently, the success
probabilities by the surrogate responses for the treatments are,

rt = P(Wt = 1)= (1− πt0)+ (πt1 + πt0 − 1)pt .

The data corresponding to treatment t can be represented as in Table 1, where
YtT =∑mt

i=1 Yt,i and WtT =∑mt
i=1Wt,i . We also write WtS =∑nt

i=mt+1Wt,i . If any
marginal total is zero, it is customary to add 0.5 to each of the marginals. Banerjee
and Biswas (2011, 2012a, 2012b) considered similar data structures.

In order to compare the two competing treatments, we focus on a function of their
success probabilities (pA,pB). Moreover, to estimate pA and pB , we first estimate
the sensitivity and the specificity between the true and the surrogate endpoints for
individual treatments. This helps to capture the dependence between the true and
the surrogate endpoints. So, typically we have a six-parameter set up.

3 Estimators and Their Variances

Consider the likelihood for treatment t ,

L(ξt )=
(
mt

ytT

)
p
ytT
t q

mt−ytT
t

(
ytT

mt11

)
π
mt11
t1 (1− πt1)ytT−mt11

×
(
mt − ytT
mt01

)
(1− πt0)mt01π

mt00
t0

(
nt −mt
wtS

)
r
wtS
t (1− rt )nt−mt−wtS , (2)

where ξt = (pt ,πt1,πt0) and qt = 1−pt . The Fisher information matrix is I(ξt ) and
the (1,1)-th element of [I(ξt )]−1, denoted by [I(ξt )]−1

11 , gives the asymptotic vari-
ance of p̂t . Furthermore, write mt/nt = ρt ∈ (0,1]. But ρt = 0 only when mt = 0,
indicating no true response is available. This is of no statistical interest. Using
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mt = ρtnt , we get I(ξt ) = ntI ξt (ρt ) and hence Var(p̂t ) = Vξt (ρt ), the variance in
the presence of surrogate endpoints, is given by

Vξt (ρt ) = n−1
t

[
I ξt (ρt )

]−1
11

= m−1
t ρt

[
I ξt (ρt )

]−1
11

= m−1
t ptqt

{
ut + (1− ut )ρt

}

= m−1
t ptqtGξt (ρt ), (3)

where

ut = qtπt0(1− πt0)+ ptπt1(1− πt1)
rt (1− rt )

and

Gξt (ρt )= ut + (1− ut )ρt = ρt + (1− ρt )ut . (4)

The proportion of the reduced variance using surrogate endpoints to estimate
pA − pB , the treatment difference (TD), is a plane in three dimensions given by

GTD(ρA,ρB)= m
−1
A pAqAGξA(ρA)+m−1

B pBqBGξB (ρB)

m−1
A pAqA +m−1

B pBqB
, (5)

and, for ρA = ρB = ρ we get the line along the diagonal of that plane given by

GTD(ρ)= ρ + (1− ρ)
{
n−1
A pAqAuA + n−1

B pBqBuB

n−1
A pAqA + n−1

B pBqB

}
. (6)

This has been studied in detail by Banerjee and Biswas (2012b). In the present
paper we use this expression to find optimal sample proportions. A plot of G(·)
against common ρ is given in Fig. 1 for ξA = (pA,πA1,πA0)= (0.7,0.2,0.3) and
ξB = (pB,πB1,πB0)= (0.8,0.2,0.5) (we follow the same parameter specification
for next diagrams as well). ML can be used for estimation, which is iterative for
the problem under consideration. For a practical implementation of the surrogate-
augmented procedure, Banerjee and Biswas (2011) used EM-based estimates of pA
and pB . Alternative estimates based on conditional expectations are (Banerjee and
Biswas 2012a)

p̂t = Ŷt /nt = n−1
t

{
YtT + mt11

WtT
WtS + mt10

mt −WtT (nt −mt −WtS)
}
.

Here the three terms within the brace on the right-hand side correspond to the ob-
served number of successes from the true responses, the estimate of the true suc-
cesses out of WtS surrogate successes for which the true responses are unobserved,
and the estimate of true successes out of (nt−mt−WtS) surrogate failures for which
the true responses are unobserved. The expression is the same as the E-step of the
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Fig. 1 GξA(ρ),GξB (ρ) and
GTD(ρ) against common ρ

EM algorithm. Detailed simulation studies show that the behavior of this estimator
is almost similar to the MLE (Banerjee and Biswas 2012a).

4 Optimal Proportion of Allocation

Note that we have assumed that the true endpoints are much more expensive than
the surrogate endpoints. Accordingly, we want to minimize some function of true
endpoints, in general, say

mAΨA +mBΨB = nAρAΨA + nBρBΨB =
{
ηρAΨA + (1− η)ρBΨB

}
n, (7)

to estimate the treatment difference, pA−pB , for a fixed variance, where n= nA+
nB and η= nA/n, the proportion of patients allocated to treatment A. Here ΨA and
ΨB are suitable weights assigned to the observed true endpoints. We consider a set
up where we can control η and also ρA,ρB . In fact, the choice of ρA,ρB is a matter
of cost. Thus the optimization problem involves an optimal choice of (η,ρA,ρB).
If ΨA = ΨB = 1 in the objective function (7), we minimize the total number of
observed true samples. On the other hand, if ΨA = qA,ΨB = qB , we minimize the
total number of expected failures from the available true responses. Again, if ΨA =
qA/ρA,ΨB = qB/ρB , we minimize the total number of expected failures from all of
the patients although we may not observe all of them. The variance of the estimator
of treatment difference, pA−pB , in the surrogate augmented set up is kept equal to
some preassigned positive quantity V , i.e.,

m−1
A pAqAGξA(ρA)+m−1

B pBqBGξB (ρB)= V. (8)

Then the optimal proportion of allocation to treatment A is given by

ηopt,1 = ρB
√
pAqAGξA(ρA)/ΨA

ρB
√
pAqAGξA(ρA)/ΨA + ρA

√
pBqBGξB (ρB)/ΨB

. (9)
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Fig. 2 Dependence of ηopt,1 (a), and fopt (b) on ρA and ρB

See Rosenberger et al. (2001) for the derivation of the solution to such an optimiza-
tion problem. The plot of ηopt against (ρA,ρB) is shown in Fig. 2(a) for pA = 0.7,
pB = 0.8, and ΨA = ΨB . It is immediate that the optimal number of true endpoints
required is

mopt = mA(ηopt,1)+mB(ηopt,1)

= nρAρB
√
pAqAGξA(ρA)/ΨA +

√
pBqBGξB (ρB)/ΨB

ρB
√
pAqAGξA(ρA)/ΨA + ρA

√
pBqBGξB (ρB)/ΨB

= nfopt(ρA,ρB), (10)

which is a symmetric function of (ρA,ρB). Moreover, it attains its optimal value at
the vertices of a unit square. A plot of fopt against (ρA,ρB) is given in Fig. 2(b),
with the same parameter values as for Fig. 2(a). Thus, no more optimization of fopt
is possible except at boundary values.

Optimization with respect to the cost constraint to obtain ρt , t = A,B , is dis-
cussed by Banerjee and Biswas (2012b) as follows. Assume that the cost per surro-
gate sample is c1 and that of the true endpoint is c2. For any treatment t =A,B , the
total cost C is constant, and it can be written as C = c1nt + c2mt . Consequently,

m−1
t = C−1{c1ρ

−1
t + c2

}
. (11)

The variance in the presence of surrogate endpoints is

Vξt (ρt ) = m−1
t ptqt

{
ut + (1− ut )ρt

}

= ptqt
C

{
c1ρ

−1
t + c2

}{
ut + (1− ut )ρt

}

=
{
ptqt

C

}{
utc1 + [utc2 + (1− ut )c1]ρt + (1− ut )c2ρ

2
t

ρt

}
. (12)
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Fig. 3 Dependence of ηopt,2
after the second stage of
optimization on pA and pB

This gives ρopt
t =

√
ut c1

(1−ut )c2 if and only if ρopt
t ∈ (0,1). Hence, in that case,

V
opt
ξt
(ρt )= ptqt

C

(√
utc2 +

√
(1− ut )c1

)2
.

Studying the function Vξt (ρt ) when c1 = 0 is equivalent to studyingGξt (ρt ) over
ρt ; the minimum is attained as ρt → 0, which is easy to observe. When ρopt

t > 1,
the minimum is attained at the extreme bound 1. Note that here we assume the same
cost C for each of the two treatments. We could easily consider the situation when
the costs for the two treatments are different, say CA for treatment A and CB for
treatment B . The procedure would be similar. Here no attention was paid to the
choice of η. However, we suggest to plug-in these cost-optimized choices of ρA,ρB
in (9) to obtain the cost-optimized optimal choice of η as

ηopt,2 =
(

1+
√
uBc2 +√(1− uB)c1√
uAc2 +√(1− uA)c1

√
pBqBΨA

pAqAΨB

)−1

. (13)

This is a two-fold optimized value of η. A plot of such two-fold optimal ηopt,2
against (pA,pB) is given in Fig. 3 for ΨA = ΨB .

5 Conclusion

Optimal allocation design for a two-treatment problem is well studied in the litera-
ture, but assuming only true endpoints. Here we discussed a scenario where surro-
gate endpoints are present along with true endpoints. Our objective was to compare
the competing treatments when both the true and surrogate endpoints are binary.
First, we obtained the optimal allocation proportion for both of the treatments as a
function of treatment parameters as well as the true-surrogate sample ratio. We then
obtained the optimum true-surrogate sample ratio in the cost constraint setup and
used it for further second stage optimization for the proportion of allocations to the
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treatments. This approach should be extended to other types of true and surrogate
responses (categorical, continuous) and also to the presence of covariates. These
may be topics of further research.
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Estimating and Quantifying Uncertainties
on Level Sets Using the Vorob’ev Expectation
and Deviation with Gaussian Process Models

Clément Chevalier, David Ginsbourger, Julien Bect, and Ilya Molchanov

Abstract Several methods based on Kriging have recently been proposed for cal-
culating a probability of failure involving costly-to-evaluate functions. A closely
related problem is to estimate the set of inputs leading to a response exceeding a
given threshold. Now, estimating such a level set—and not solely its volume—and
quantifying uncertainties on it are not straightforward. Here we use notions from
random set theory to obtain an estimate of the level set, together with a quantifi-
cation of estimation uncertainty. We give explicit formulae in the Gaussian process
set-up and provide a consistency result. We then illustrate how space-filling versus
adaptive design strategies may sequentially reduce level set estimation uncertainty.

1 Introduction

Reliability studies increasingly depend on complex deterministic simulations.
A problem that is often at stake is to identify, from a limited number of evalua-
tions of f : D ⊂ R

d �→ R, the level set of “dangerous” configurations Γf = {x ∈
D : f (x)≥ T }, where T is a given threshold. In such a context, it is commonplace
to predict quantities of interest relying on a surrogate model for f . This approach
was popularized in the design and analysis of computer experiments (Santner et al.
2003; Rasmussen and Williams 2006; Forrester et al. 2008). In the Kriging frame-
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Fig. 1 Conditional simulations of level sets. Left: the Kriging model obtained from five evaluations
of a 1d function. Right: three GP conditional simulations, leading to three different level sets. Here
the threshold is fixed as T = 0.8

work, several works have already been proposed for reliability problems (see, e.g.,
Bect et al. 2012; Picheny et al. 2010; Ranjan et al. 2008; Dubourg 2011, and the
references therein). However, the quantity of interest is usually the volume of Γf ,
and none of the methods explicitly reconstructs Γf itself.

An illustrative example for this issue is given in Fig. 1. A Kriging model is built
from five evaluations of a 1d function (left panel). Three level set realisations (with
T = 0.8) are obtained from conditional simulations of a Gaussian process (GP). The
focus here is on summarizing the conditional distribution of excursion sets using
ad hoc notions of expectation and deviation from the theory of random sets. We
address this issue using an approach based on the Vorob’ev expectation (Baddeley
and Molchanov 1998; Molchanov 2005).

In Sect. 2 we present the Vorob’ev expectation and deviation for a closed random
set. In Sect. 3 we then give analytical expressions for these quantities in the GP
framework. In addition, we give a consistency result regarding the convergence of
the Vorob’ev expectation to the actual level set. To the best of our knowledge, this
is the first Kriging-based approach focusing on the level set itself, and not solely, its
volume. Our results are illustrated on a test case in Sect. 4.

2 The Vorob’ev Expectation and Deviation in Random Set
Theory

Random variables are usually defined as measurable maps from a probability space
(Ω,G ,P) to some measurable space, such as (R,B(R)) or (Rd ,B(Rd)). However,
in the last decades there has been a growing interest in set-valued random elements
and, in particular, in random closed sets (Molchanov 2005).

Definition 1 Let F be the family of all closed subsets of D. A map X :Ω �→F is
called a random closed set if, for every compact set K in D,

{
ω :X(ω)∩K �= ∅} ∈ G . (1)
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As mentioned in Molchanov (2005), this definition basically means that, for any
compact K , one can always say, when observing X, whether or not it hits K . Defin-
ing the expectation of a random set is far from being straightforward. Different
candidate notions of expectation from the random set literature are documented in
Molchanov (2005, Chap. 2), with a major development on the selection expectation.
Some alternative expectations mentioned in Molchanov (2005) include the lineari-
sation approach, the Vorob’ev expectation, the distance average, the Fréchet expec-
tation, and the Doss and Herer expectations.

In the present work we focus on the Vorob’ev expectation, which is based on the
intuitive notion of a coverage probability function. Given a random closed setX over
a space D with a σ -finite measure μ (D ⊂R

d and μ= Lebd , say), X is associated
with a random field (1X(x))x∈D . The coverage function is defined as the expectation
of this binary random field:

Definition 2 (Coverage function and α-quantiles of a random set) The function

pX : x ∈D �→ P(x ∈X)= E
[
1X(x)

]
(2)

is called the coverage function of X. The α-quantiles of X are the level sets of pX ,

Qα :=
{
x ∈D : pX(x)≥ α

}
, α ∈ (0,1]. (3)

Note that in (2), the expectation is taken with respect to the set X and not to
the point x. In Fig. 1 (right panel) we plotted three conditional realizations of the
random set X := {x ∈ [0,1], ξ(x)≥ T }, where ξ is a GP. The α-quantile of Defini-
tion 2 can be seen as the set of points having a (conditional, in Fig. 1) probability of
belonging to X greater than or equal to α. This definition is particularly useful here
as, now, the so-called Vorob’ev expectation of the random set X will be defined as
a “well-chosen” α-quantile of X.

Definition 3 (Vorob’ev expectation) Assuming that E[μ(X)] <∞, the Vorob’ev
expectation of X is defined as the α∗-quantile of X, where α∗ is determined from

E
[
μ(X)

]= μ(Qα∗) (4)

if this equation has a solution, or in general, from the condition

μ(Qβ)≤ E
[
μ(X)

]≤ μ(Qα∗) for all β > α∗. (5)

Throughout this paper, an α∗ satisfying the condition of Definition 3 will be
referred to as a Vorob’ev threshold.

Property 1 For any measurable setM with μ(M)= E[μ(X)], we have

E
[
μ(Qα∗�X)

]≤ E
[
μ(M�X)

]
, (6)

where A�B denotes the symmetric difference between sets A and B . The quantity
E[μ(Qα∗�X)] is called Vorob’ev deviation.
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The Vorob’ev expectation thus appears as a global minimizer of the deviation,
among all closed sets with volume equal to the average volume ofX. A proof can be
found in Molchanov (2005, p. 193). In the next section, we shall use these definitions
and properties for our concrete problem, where the considered random set is a level
set of a GP.

3 Conditional Vorob’ev Expectation for Level Sets of a GP

In this section, we focus on the particular case where the random set (denoted by X
in the previous section) is a level set

Γ := {
x ∈D : ξ(x)≥ T } (7)

of a GP ξ above a given threshold T ∈ R. Once n evaluation results An :=
([x1, ξ(x1)], . . . , [xn, ξ(xn)]) are known, the main object of interest is then the con-
ditional distribution of the level set Γ given An. We propose to use the Vorob’ev
expectation and deviation to capture and quantify the variability of the level set Γ
conditionally on the available observations An.

3.1 Conditional Vorob’ev Expectation and Deviation

In the simple Kriging GP set-up (see, e.g., Chilès and Delfiner 1999), we know the
marginal conditional distributions of ξ(x)|An:

L
(
ξ(x)|An

)=N
[
mn(x), s

2
n(x)

]
, (8)

where mn(x) = E(ξ(x)|An) and s2
n(x) = var(ξ(x)|An) are respectively the simple

Kriging mean and variance functions. The coverage probability function and any
α-quantile of Γ can be straightforwardly calculated (given An) as follows.

Property 2 (i) The coverage probability function of Γ is

pn(x) : = P(x ∈ Γ |An)= P
(
ξ(x)≥ T |An

)=Φ
(
mn(x)− T
sn(x)

)
, (9)

where Φ(·) denotes the c.d.f. of the standard Gaussian distribution.
(ii) For any α ∈ (0,1], the α-quantile of Γ (conditional on An) is

Qn,α =
{
x ∈D :mn(x)−Φ−1(α)sn(x)≥ T

}
. (10)

(iii) For any α ∈ (0,1], the α-quantile of Γ can also be seen as the excursion set
above T of the Kriging quantile with level 1− α.
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From Property 2, one can see that the Vorob’ev expectation is in fact the ex-
cursion set above T of a certain Kriging quantile. In applications, an adequate
Vorob’ev threshold value can be determined by tuning α to a level α∗n such that
μ(Qn,α∗n )= E(μ(Γ )|An)=

∫
D
pn(x)μ(dx). This can be done through a simple di-

chotomy.
Once the Vorob’ev expectation is calculated, the computation of the Vorob’ev

deviation E(μ(Qn,α∗n�Γ )|An) does not require simulation of Γ . Indeed,

E
(
μ(Qn,α∗n�Γ )|An

)= E

(∫
D

(1x∈Qn,α∗n ,x /∈Γ + 1x /∈Qn,α∗n ,x∈Γ )μ(dx)|An
)

=
∫
Qn,α∗n

E(1x /∈Γ |An)μ(dx)+
∫
Qc
n,α∗n

E(1x∈Γ |An)μ(dx)

=
∫
Qn,α∗n

[
1− pn(x)

]
μ(dx)+

∫
Qc
n,α∗n

pn(x)μ(dx). (11)

In Sect. 4 we present an example of computation of the Vorob’ev expectation and
deviation. Before that, in the next subsection, we provide a consistency result for the
case where observations of ξ progressively fill the space D.

3.2 Consistency Result

Let us consider a (zero-mean, stationary) GP Z and a deterministic sequence of
sampling points x1, x2, . . . , such that smax

n � supx∈D sn→ 0 (this holds, e.g., for any
space-filling sequence, assuming that the covariance function is merely continuous).
We denote by α∗n the Vorob’ev threshold selected for the first n sampling points,
and by κn =Φ−1(α∗n) and Qn,α∗n ⊂D the corresponding quantile and Vorob’ev ex-
pectation. Our goal here is to prove that the Vorob’ev expectation is a consistent
estimator of the true excursion set Γ , in the sense that μ(Qn,α∗n�Γ )→ 0 for some
appropriate convergence mode. To this end, we shall consider a slightly modified es-
timatorQn,α∗n , where the choice of the Vorob’ev threshold α∗n is constrained in such
a way that |κn| ≤ κmax

n , for some deterministic sequence of positive constants κmax
n .

Proposition 1 Assume that μ(D) <+∞ and κmax
n =O(√| log smax

n |). Then

E
(
μ(Qn,α∗n�Γ )

)=O(
smax
n

√∣∣log smax
n

∣∣).
As a consequence, μ(Qn,α∗n�Γ )→ 0 for the convergence in mean.

Proof The result has been proven in Vazquez and Piera-Martinez (2006, 2007) in
the special case κmax

n = 0 (i.e., with α∗n = 1/2). We follow their proof very closely.
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Let us first rewrite the probability of misclassification at x ∈D as

E
(
1Qn,α∗n�Γ (x)

)= E
(
1pn(x)≥α∗n

[
1− pn(x)

]+ 1pn(x)<α∗npn(x)
)
, (12)

and consider the events

E+n =
{
mn(x)≥ T +wn(x)

}
, E−n =

{
mn(x)≥ T −wn(x)

}
,

where wn(x) is a deterministic sequence that will be specified later. Let us assume
that κmax

n sn(x)=O[wn(x)], uniformly in x. Then we have

|κn|sn(x)≤ κmax
n sn(x)≤ Cwn(x)

for some C > 1 (without loss of generality), and thus

1pn(x)≥α∗n = 1mn(x)≥T+κnsn(x) ≤ 1|mn(x)−T |≤Cwn(x) + 1E+n .

As a consequence, noting that [mn(x)− T ]/sn(x)≥wn(x)/sn(x)on E+n , we ob-
tain

1pn(x)≥α∗n
[
1− pn(x)

]≤ 1|mn(x)−T |≤Cwn(x) + 1E+n
[
1− pn(x)

]

≤ 1|mn(x)−T |≤Cwn(x) +Ψ
(
wn(x)

sn(x)

)
,

where Ψ denotes the standard normal complementary c.d.f. Proceeding similarly
with the second term in (12), we get

E
(
1Qn,α∗n�Γ (x)

)≤ 2

(
Ψ

(
wn(x)

sn(x)

)
+ P

[∣∣mn(x)− T ∣∣≤ Cwn(x)]
)
.

Using the tail inequalityΨ (u)≤ 1
u
√

2π
exp(− 1

2u
2), and observing that var[mn(x)] ≥

s2
0 − (smax

n )2 ≥ s2
0/4 for n larger than some n0 that does not depend on x, we have

E
(
1Qn,α∗n�Γ (x)

)≤
√

2

π

[
sn(x)

wn(x)
exp

(
−1

2

w2
n(x)

s2
n(x)

)
+ 4C

wn(x)

s0

]
. (13)

Finally, taking wn(x) =
√

2sn(x)
√| log sn(x)| as in Vazquez and Piera-Martinez

(2006), we have indeed κmax
n sn(x) = O[wn(x)] uniformly in x, and from (13) we

deduce that

E
(
1Qn,α∗n�Γ (x)

)=O(
smax
n

√∣∣log smax
n

∣∣)

uniformly in x. The result follows by integrating with respect to μ over D. �
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Fig. 2 Top left: level set of a 2d function. Middle: coverage probability function after 10 evalua-
tions of f . Top right: E(1Qn,α∗n�Γ (·)). Bottom left: decrease in the Vorob’ev deviation when new
points are added (2 strategies). Middle: evolution of α∗. Bottom right: new Vorob’ev expectation
(SUR strategy)

4 Application to Adaptive Design for Level Set Estimation

Here we present a two-dimensional example on the foregoing notions and results.
We consider the Branin-Hoo function, with variables normalised so that the domain
D is [0,1]2. We multiply the function by a factor of −1 and we are interested in the
set {x ∈ D : f (x) ≥ −10}. Figure 2 (top) gives the real level set and the coverage
probability function obtained from n = 10 observations. The covariance parame-
ters of the Gaussian process used for Kriging are assumed to be known. The mea-
sure μ is the uniform measure on D = [0,1]2 and the current Vorob’ev deviation
is E(μ(Qn,α∗n�Γ )|An) ≈ 0.148. All the integrals are calculated using the KrigInv
R package (Chevalier et al. 2012b) with a Sobol’ Quasi Monte-Carlo sequence of
10000 points.

In Fig. 2 (bottom plots) one can see the evolution of the Vorob’ev deviation and
threshold when new points are added. Two different strategies are tested: a simple
space filling strategy (with, again, the Sobol’ sequence) and a so-called Stepwise
Uncertainty Reduction (SUR) strategy, aiming at reducing the variance of μ(Γ )
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(see, Bect et al. 2012, criterion J SUR
4,n , or Chevalier et al. 2012a for more details).

We observe that the SUR strategy manages to reduce quickly the Vorob’ev devi-
ation (bottom left plot) and that the Vorob’ev expectation obtained after the new
evaluations matches with the true level set. However, note that the consistency of
the adaptive approach is not guaranteed by Proposition 1 as the latter only holds
for a deterministic space filling sequence. Further research is needed to establish an
extension of Proposition 1 to adaptive settings.

5 Conclusion

In this paper we proposed the use of random set theory notions, the Vorob’ev ex-
pectation and deviation, to estimate and quantify uncertainties on a level set of a
real-valued function. This approach has the originality of focusing on the set itself,
rather than solely on its volume. When the function is actually a GP realization, we
proved that the Vorob’ev deviation converges to zero under infill asymptotics, with
some mild conditions. However, the final example illustrates that a space-filling ap-
proach based on a Sobol’ sequence may not be optimal for level set estimation, as it
clearly was outperformed by an adaptive strategy dedicated to volume of excursion
estimation. In future work, we plan to investigate sampling criteria and adaptive
strategies dedicated to uncertainty reduction in the particular context of set estima-
tion.
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Optimal Designs for Multiple-Mixture
by Process Variable Experiments

Roelof L.J. Coetzer and Linda M. Haines

Abstract In industry many processes include mixture components some or all of
which are themselves made up of other sub-components and typically these vari-
ables are subject to lower and upper constraints. Process variables which may
change the effect of the blending properties of the mixture components on the
response of interest may also be involved. In this paper response surface models
in more than two sets of mixture variables, including multiple-mixtures and sub-
compositions, in combination with process variables are developed and attendant
D-optimal designs are constructed. The work is motivated by an industrial problem
involving the modelling of a coal gasification process.

1 Introduction

Experiments for mixtures have been extensively researched and models and atten-
dant designs for settings involving crossed mixtures and, separately, mixture-of-
mixtures are well documented (Cornell 2002). However experiments involving mul-
tiple mixtures, i.e., both crossed mixtures and mixtures-of-mixtures, together with
process variables have received little, if any, attention in the literature. In the present
study an example of such a multiple mixture-process variable experiment taken from
industry is introduced and the issues relating to model building and design construc-
tion are investigated.

2 Problem Setting

The amount of gas produced in a coal gasification plant depends crucially on the
distribution of the size of the coal particles, on the composition of the coal feed and
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of the ash, which is a sub-component of the coal, and on a number of process vari-
ables. To be specific, the particle size distribution (PSD) is specified by proportions
of fine, medium and coarse particles (Coetzer and Keyser 2003). The coal properties
are characterized by a mixture of carbon, ash and small amounts of other elements,
including nitrogen and sulphur, and inherent moisture. In the present preliminary
study interest is restricted to a mixture of the three key components of the coal,
namely carbon, ash and the remainder, termed “other”. The ash comprises a mix-
ture of metal and other oxides which can be broadly and conveniently classified into
three groups, namely acid, base and the rest. Finally, the process variables comprise
the oxygen load and the amount of carbon dioxide in the raw gas which is fed into
the plant. All the mixture and process variables so identified are constrained to lie
in restricted ranges which can be inferred from historical data. The challenge is to
formulate a model for the amount of gas produced based on the mixture and process
variables and to recommend designs which can be implemented in order to estimate
the parameters of the proposed model as precisely as possible.

3 Model Building

The proportions of fine, medium and coarse particles in the coal are denoted by
x1, x2 and x3 respectively with

∑3
i=1 xi = 1, the proportions of carbon, other and

ash in the coal by c1, c2 and c3 respectively with
∑3
j=1 cj = 1 and the proportions

of acid, base and the rest in the sub-component ash by a1, a2 and a3, respectively,
with

∑3
k=1 ak = 1. Feasible regions for the PSD and the coal and ash mixtures are

given by

Dpsd =
{
(x1, x2, x3) : 0.106< x1 < 0.54,0.393< x2 < 0.882,

0.011< x3 < 0.206
}
,

Dcoal =
{
(c1, c2, c3) : 0.5035< c1 < 0.6285,0.12883< c2 < 0.2382,

0.189< c3 < 0.3090
}
,

Dash =
{
(a1, a2, a3) : 0.602< a1 < 0.917,0.096< a2 < 0.238,

0.066< a3 < 0.181
}

and are displayed as polytopes in the 3-dimensional simplex in Figs. 1(a), (b) and
(c), respectively. The two process variables, oxygen and carbon dioxide, are denoted
by z1 and z2 respectively and are coded to lie between 0 and 1 to give the design
region Dz = [0,1] × [0,1].

The response surface model for the amount of gas produced in the plant can be
formulated broadly as

y = F(x, c, a, z)+ e,
where y denotes the yield, F(·) is a deterministic function of the vectors of pro-
portions x = (x1, x2, x3), c = (c1, c2, c3) and a = (a1, a2, a3) and of the process
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Fig. 1 Feasible regions for the mixtures (a) particle size, (b) coal composition and (c) ash

variables z = (z1, z2) and e represents an independent error term with mean 0 and
variance σ 2. The component of the model involving the mixtures is built up from
the three linear Scheffé polynomials

f (x) = β1x1 + β2x2 + β3x3 =
3∑
i=1

βixi,

g(c) = γ1c1 + γ2c2 + γ3c3 =
3∑
j=1

γj cj ,

h(a) = δ1a1 + δ2a2 + δ3a3 =
3∑
k=1

δkak,

relating to the PSD, coal and ash, respectively, and the process variables are then
introduced into the resultant multiple mixture model. Note that βi, γj and δkwith
i, j, k = 1,2,3 represent unknown parameters.

The component of the global model which incorporates PSD and coal can be
formulated immediately as a mixture-by-mixture or crossed mixture (Didier et al.
2007; Borges et al. 2007) and is specified by the product of the appropriate linear
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Scheffé polynomials, that is by f (x)g(c). The formulation of a combined model
for the coal and its sub-component ash is however a little more delicate. Thus it is
possible to invoke the mixture-of-mixtures setting of Cornell and Ramsey (1998)
and to introduce a coal-ash building block as the multiple Scheffé model specified
by g(c)h(a) with 9 unknown parameters. However it is also possible to invoke the
major-minor model for mixtures with subcomponents which was introduced into
the literature recently by Kang et al. (2011) and which circumvents the issue of
crossed terms involving the subcomponent being present in the model when the
sub-component itself is absent. The major-minor model for coal and ash can then be
formulated as

γ1c1 + γ2c2 + γ3c3h(a)= γ1c1 + γ2c2 + c3(δ31a1 + δ32a2 + δ33a3)

and involves the five unknown parameters, γ1, γ2 and δ3k, k = 1,2,3. Two models
for the PSD and the coal and ash mixtures can now be built. Specifically, the multiple
Scheffé model for coal and its subcomponent ash can be crossed with that for PSD
to give the model specified by

FXCA(MS)(x, c, a)= f (x)g(c)h(a)=
3∑
i=1

3∑
j=1

3∑
k=1

γijkxicj ak

with 27 unknown parameters, γijk, i, j, k = 1,2,3. Alternatively the major-minor
model for coal and ash can be crossed with the PSD mixture model to give the
formulation

FXCA(MM)(x, c, a)=
3∑
i=1

2∑
j=1

βij xicj + c3

3∑
i=1

xi(δi31a1 + δi32a2 + δi33a3)

with 15 unknown parameters, βij , i = 1,2,3, j = 1,2 and δi3k, i, k = 1,2,3. Both
these models can now be incorporated into multiple mixture models involving the
process variables of the form

Fm(x, c, a, z)= F (0)XCA(m)(x, c, a)+
2∑
l=1

zlF
(l)
XCA(m)(x, c, a) for m=MS,MM

with a total of 81 parameters for the crossed coal-ash model and 45 for the coal-ash
major-minor model. The notation for the identifiable parameters in these models is
specified by the superscripts 0 and l = 1,2 in the formulations for FXCA(m).

4 D-Optimal Designs

Designs, both approximate and exact, which maximize the information matrix as-
sociated with the parameters of the full response surface models, that is D-optimal
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Table 1 Extreme vertices of the polytopesDpsd ,Dcoal andDash are numbered in accord with the
numbering in Figs. 1(a), (b) and (c), respectively

x1 x2 x3

v
(x)
1 0.540 0.449 0.011

v
(x)
2 0.540 0.393 0.067

v
(x)
3 0.401 0.393 0.206

v
(x)
4 0.106 0.688 0.206

v
(x)
5 0.106 0.882 0.012

v
(x)
6 0.107 0.882 0.011

c1 c2 c3

v
(c)
1 0.5728 0.2382 0.1890

v
(c)
2 0.5035 0.2382 0.2583

v
(c)
3 0.5035 0.1875 0.3090

v
(c)
4 0.56217 0.12883 0.3090

v
(c)
5 0.6285 0.12883 0.24267

v
(c)
6 0.6285 0.1825 0.1890

a1 a2 a3

v
(a)
1 0.238 0.696 0.066

v
(a)
2 0.238 0.602 0.160

v
(a)
3 0.217 0.602 0.181

v
(a)
4 0.096 0.723 0.181

v
(a)
5 0.096 0.838 0.066

designs, are now sought. For ease of construction, and since only linear Scheffé
polynomials are invoked in the mixture components of the separate models, the de-
signs are assumed to be based on the extreme vertices and centroids of the feasible
regions for PSD, coal and ash together with appropriate points (z1, z2) in the design
region for the process variables,Dz. The extreme vertices of the feasible regions for
the mixtures are conveniently summarized in Table 1.

4.1 Approximate Designs

The construction of approximate D-optimal designs which allocate weights wu to
the distinct support points (xu, cu, au, zu), u = 1, . . . , d , where 0 < wu < 1 with∑d
u=1wu = 1 is now discussed. Such designs, while not of immediate practical

use, provide valuable pointers to the nature and benchmarks for the efficiency of
their exactD-optimal counterparts. Design construction is based on a proposition of
Kang et al. (2011) for the formulation of approximateD-optimal designs for crossed
mixtures and proceeds stepwise, mirroring the building of the model as described in
Sect. 3.

Building blockD-optimal designs for the PSD and for the coal and ash mixtures,
taken separately and specified by the linear Scheffé polynomials f (x), g(c) and
h(a) respectively, are first introduced. Thus the approximate D-optimal design for
the model for PSD alone is based on four of the extreme vertices of the feasible
region Dpsd and is given by

ξ�X =
{
v
(x)
1 v

(x)
3 v

(x)
4 v

(x)
6

0.2919 0.2081 0.2081 0.2919

}

and, similarly, that for ash alone is based on four of the extreme vertices of Dash
and is specified by

ξ�A =
{
v
(a)
1 v

(a)
3 v

(a)
4 v

(a)
5

0.2695 0.2305 0.2305 0.2695

}
.
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In contrast, D-optimal designs for the coal mixture alone were somewhat un-
usual. Specifically, two D-optimal designs, each based on five of the six extreme
vertices of the feasible region Dcoal , were obtained, namely

ξ�C1 =
{
v
(c)
1 v

(c)
2 v

(c)
3 v

(c)
4 v

(c)
5

0.3099 0.0446 0.2802 0.0629 0.3024

}

and

ξ�C2 =
{
v
(c)
1 v

(c)
2 v

(c)
4 v

(c)
5 v

(c)
6

0.0632 0.3049 0.3076 0.0455 0.2788

}
.

Clearly, designs with weights on the support points which are a convex combination
of the weights for ξ�C1 and ξ�C2, as, e.g., the near-equireplicate design

ξ�CE =
{
v
(c)
1 v

(c)
2 v

(c)
3 v

(c)
4 v

(c)
5 v

(c)
6

0.1864 0.1749 0.1399 0.1854 0.1738 0.1396

}
,

are also D-optimal.
Approximate D-optimal designs for the PSD-coal-ash crossed mixture model

with deterministic component FXCA(MS)(x, c, a) now follow immediately. Specifi-
cally, following a proposition of Kang et al. (2011), an approximate D-optimal de-
sign for a crossed mixture model is a crossed design, that is a design which crosses
the D-optimal designs of the individual mixtures. Thus, in the present case, the req-
uisite designs for the crossed mixture model, denoted by ξ�X ⊗ ξ�C ⊗ ξ�A, comprise

support points (v(x)r , v
(c)
s , v

(a)
t ) with the corresponding weights being products of

the weights w(x)r ,w
(c)
s and w(a)t associated with the extreme vertices v(x)r , v

(c)
s and

v
(a)
t of the individual D-optimal designs for PSD, coal and ash respectively, that is

with weights wrst =w(x)r ×w(c)s ×w(a)t where r, s = 1, . . . ,6, t = 1, . . . ,5. A suite
of approximate D-optimal designs based on 80 and on 96 support points can thus
be constructed.

The construction of approximate D-optimal designs for the multiple mixture
model for which PSD is crossed with coal and ash as major-minor components, that
is for the model specified by FXCA(MM)(x, c, a), is not straightforward. In particu-
lar D-optimal designs for the major-minor mixture model comprising coal and ash
alone do not follow immediately from the individual D-optimal designs for those
components and must be constructed independently. A careful algorithmic search
over all designs with points taken from the crossed extreme vertices of the feasi-
ble regions Dcoal and Dash, that is from the 30 points of the form (v

(c)
r , v

(a)
t ) for

r = 1, . . . ,6 and t = 1, . . . ,5, yielded approximate D-optimal designs for the coal-
ash major-minor mixture model with a minimum support of 12 points. Two of these
designs are presented in Table 2. Note again that designs with weights which are
a convex combination of the weights of the 12-point D-optimal designs, denoted
generically by ξ�CA(MM), are also D-optimal. It now follows immediately from the
proposition of Kang et al. (2011) that approximate D-optimal designs for the com-
plete PSD crossed coal-ash major-minor mixture model are crossed designs of the
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Table 2 Approximate
D-optimal designs for the
coal-ash major-minor mixture
model based on 12 support
points specified by the pairs
of vertices (v(c)r , v

(x)
t ) with

attendant weight wrt

v
(c)
r v

(x)
t wrt

1 1 0.0575

2 3 0.0464

2 4 0.1115

2 5 0.0646

3 1 0.1418

4 3 0.1159

4 4 0.0884

4 5 0.1312

5 1 0.0679

6 3 0.0728

6 4 0.0246

6 5 0.0774

and

v
(c)
r v

(x)
t wrt

1 1 0.1331

1 3 0.0199

1 5 0.0592

2 4 0.0593

3 3 0.1555

3 4 0.0299

3 5 0.1320

4 1 0.1310

4 5 0.0511

5 1 0.0396

5 3 0.0204

5 4 0.1690

general form ξ�X ⊗ ξ�CA(MM). It should be noted here that the D-optimality of all
of the above designs was confirmed, albeit numerically, by invoking the appropriate
equivalence theorem.

The construction of approximate D-optimal designs for models which include
both mixture and process variables is now addressed. A small scale investigation for
the PSD-process variable setting was undertaken and the design which puts equal
weights on the basic approximate D-optimal design ξ�X replicated at the factorial
points of the process variable region Dz, that is at (0,0), (1,0), (0,1), (1,1), was
found to be D-optimal. It is therefore tempting to extend this notion to the more
general case and to take crossed multiple mixture-with-process variable D-optimal
designs to be D-optimal. This somewhat opportunistic strategy is adopted here.
However, it should be emphasized that numerical confirmation of the construction
proved to be computationally intensive and was not performed.

4.2 Exact Designs

ExactD-optimal designs for multiple mixture and process variable models with ob-
servations taken at small numbers of support points are required in practice (Atkin-
son et al. 2007). The construction of such designs can be expedited, albeit in a some-
what ad hoc manner, by drawing on the results for the corresponding approximate
D-optimal designs. Specifically near-optimal exact designs for the complete models
are assumed to comprise exact designs for the multiple mixture models alone, that
is for the models specified either by FXCA(MS)(x, c, a) or by FXCA(MM)(x, c, a),
repeated the same number of times at the four factorial points of Dz. In addition,
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Table 3 Percentage D-efficiencies, denoted by DEMS and DEMM , for the multiple mixture mod-
els specified by FXCA(MS)(x, c, a) and FXCA(MM)(x, c, a) with numbers of parameters 15 and 27,
respectively, for a range of n values (a indicates too few points for estimation)

n 15 20 25 30 35 40 45 50 75 100

DEMS a a a 3.7 14.1 37.1 59.9 65.1 74.2 84.7

DEMM 18.8 58.3 75.4 81.1 87.1 89.8 92.6 93.2 97.6 98.5

the support points of exact designs for the mixture models alone are assumed to
come from the crossed support points of the individual approximate D-optimal de-
signs for the PSD and the coal and ash mixtures, giving a total of 6× 4× 4 = 96
candidate points. Near-exact n-point designs for the multiple mixture models with
n ≤ 100 can then be obtained by implementing a Fedorov exchange procedure at
surprisingly reasonable computational cost.

The near-optimal designs for the models with coal and ash crossed and with coal
and ash as major-minor components have very different patterns but, for brevity,
details are not given here. The D-efficiency of the near-optimal exact designs rel-
ative to the corresponding approximate D-optimal designs is of more immediate
interest and results for a representative range of n values are summarized in Table 3.
It is clear that designs with minimal support are not efficient but that D-efficiency
increases rapidly with increasing n. Thus designs for the coal-ash major-minor com-
ponent model based on 50 points are highly efficient whereas for models incorporat-
ing the multiple Scheffé component for coal and ash at least 75 points are required
for the efficiency to be considered acceptable.

5 Conclusions

Models for an experiment involving multiple mixture and process variables have
been developed and the attendant approximateD-optimal and exact near-D-optimal
designs constructed. Model building proceeds stepwise and is mirrored in design
construction. The approach can be readily extended to large-scale industrial experi-
ments but some care is clearly required in obtaining designs for individual mixtures,
as for example the mixture of coal in the present study, and, more importantly, for
the major-minor mixture model components in the overall model.
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Optimal Design of Experiments for Delayed
Responses in Clinical Trials

Vladimir Dragalin

Abstract The efficiency of optimal experimental designs when the primary end-
point is immediate is well documented. Often, however, in the practice of clinical
trials there will be a delay in the response of clinical interest. Since few patients will
have experienced the endpoint in the early stages of a trial, there may be little infor-
mation that can be used in making a decision to modify the trial’s course. But almost
always, the clinical efficacy endpoint will be measured at early time points and these
measurements might be correlated with, and predictive for, the primary long-term
endpoint. The focus of the definitive analysis is still the primary clinical endpoint
and not these short-term endpoints. The latter may be used just as an estimate of
potential treatment effect and can enhance the interim decision of dropping a treat-
ment arm or changing the treatment allocation. The research questions are: what
is the optimal number of measurements per patient and what are the optimal time
intervals between these measurements? A major benefit of modeling relationships
between early and late endpoints is that it makes for stronger interim assessments
of long-term endpoints and therefore improves the efficiency of adaptive designs.

1 Motivating Study

A motivation for this research was a dose ranging study in subjects with mild to
moderate Alzheimer’s disease. The primary objective of this study was to investigate
the dose response relationship of a new drug as assessed at 12 months after initiation
of treatment on the primary endpoint, the Alzheimer Disease Assessment Scale-
Cognitive sub-score (ADAS-Cog).

For 80 % power, a conventional parallel group design would require 64 subjects
per group to detect a difference of 3 units in the mean change from baseline in the
primary endpoint with a standard deviation of 6 units. Instead of running a conven-
tional dose ranging study with a total of 256 patients equally randomized to three
doses (Low, Medium, and High) of the new drug and placebo, we considered an
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adaptive dose ranging study in which up to eight doses of the new drug could be
investigated for better estimation of the dose response relationship, but using the
same total of 256 patients. The efficiency was expected from using an adaptive de-
sign at several interim analyses during the enrollment period in order to change the
patient allocation ratios according to the D-optimality criterion. The challenge was
that the time to the primary endpoint—a change from baseline in ADAS-Cog at
52 weeks—was too long and in the planned 36 month enrollment period very few
patients would have the completed treatment period at the interim analyses. To im-
plement the adaptations using a shorter-term endpoints, let us say, the change from
baseline on ADAS-Cog at 12 weeks, is also risky because different doses may have
different time profiles of the mean change from baseline in ADAS-Cog.

The research questions are: (i) How to use these short-term measurements to
improve the estimation of mean dose response parameters at interim analyses and
improve the adaptive design efficiency? (ii) By how much this efficiency can be
improved? (iii) How many short-term endpoints are optimal, if an additional cost
per observation is considered? (iv) What are the optimal time locations for these
observations to be taken?

In Sect. 2, we introduce the model for the primary endpoint as a parsimonious
sigmoid Emax dose-response model. This model has been used in many publica-
tions on adaptive dose ranging designs, see, e.g., Thomas (2006), Dragalin et al.
(2007), Leonov and Miller (2009), Padmanabhan and Dragalin (2009), Dragalin
et al. (2010). We consider also a parametric model for the time-profile of the re-
peated measurements per patient. Such a model was introduced recently by Fu and
Manner (2010); see also Li and Fu (2011). Locally optimal designs and information
matrices for these special non-linear mixed effects models are defined in Sect. 3.
A cost for repeated measurements is proposed by Gagnon and Leonov (2005) and
the optimality criterion is maximized taking into account both the cost for patient
recruitment and the cost incurred in taking a single measurement. Additional techni-
cal details in implementing adaptive versions of the optimal designs in this situation
are presented in Sect. 4.

2 Model for the Primary Efficacy Endpoint

Let Y be a continuous primary efficacy endpoint. Patients have a staggered entry
in the trial and can be allocated to one of the available doses from a set of doses
D = {d1, d2, . . . , dD}. The density function of the efficacy endpoint Y for a patient
allocated to dose d depends on d and θ , where θ = (θ1, . . . , θp) is the vector of
unknown parameters. It is often assumed that the dose-response relationship will
be sigmoid in nature. This is a highly flexible nonlinear model that captures the
essential features of many dose-response relationships such as an apparent threshold
dose below which little, if any, treatment effect is observed, an approximately log-
linear dose versus mean treatment effect at higher doses, and sometimes a plateau
or ceiling effect at relatively high doses.
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The mean of the response, Eθ(Y |d), at a given dose d for the sigmoid Emax
model is

f (d, θ)= θ1 + (θ2 − θ1)
dθ4

dθ4 + θθ43

, (1)

where θ1 denotes the mean response at the zero dose, θ2 is the asymptote of the
mean response at the infinite dose, θ3 is the dose that corresponds to a mean re-
sponse halfway between the minimum and maximum treatment effect (sometimes
called also ED50), and θ4 is the slope parameter controlling the steepness of the
curve. Note that by changing the values of θ1 and θ2 and the sign of θ4, the same
model can be used to describe both monotonically increasing and decreasing dose-
response curves. The model provides adequate approximation for many families of
parametric monotone dose-response models (see, e.g., Thomas 2006; Dragalin et al.
2010).

In many clinical trials there will be a delay before obtaining the primary efficacy
response; in our motivating example of Alzheimer disease ADAS-Cog or Clinical
Dementia Rating scale Sum of Boxes (CDR-SB) score are typically measured after
12 months on treatment. Other examples with similar delays include the Disease
Activity Score (DAS28) in Rheumatoid Arthritis, glycated hemoglobin (HbA1c) in
Diabetes, CD4 counts or viral load in HIV, etc. However, the patients can be mea-
sured for the same endpoint at several time points before the end of treatment, for
example at month 3 and month 6. These measurements will hopefully be correlated
with, and predictive of, the primary long-term endpoint.

Therefore, we assume that each patient j can provide measurements at time
points tjk taken from the time interval [0, T ], where 0≤ tj1 < tj2 < · · ·< tjkj ≤ T .
We further assume that the efficacy response at time tjk for patient j allocated to
dose di has the form

Yijk =
[
f (di, θ)+ sij + εijk

]1− eβtjk

1− eβT
, (2)

where f (di, θ) is the underlying mean dose response (the primary long-term) from
(1) and sij is the subject j random effect. We can rewrite (2) and set γk = {1 −
eβtjk }/{1 − eβT }, the mean proportional improvement from time point tjk to the
final time point T that depends on the single unknown parameter β , with εijk the
measurement error associated with the observation at time tjk . Furthermore, it is
assumed that sij ∼ N (0, τ 2), εijk ∼ N (0, σ 2), Cov(εijk, sij ) = Cov(εijk, εij ′k′)
= 0. Notice that the coefficient of variation for Yijk is constant over time tjk , which
is common in biological experiments (Shargel et al. 2004; Fu and Manner 2010).

3 Designs and Information Matrices

An individual design ζK for a patient with K repeated measurements can be nat-
urally defined as a K-dimensional vector of time points (t1, t2, . . . , tK), such that
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0≤ t1 < · · ·< tK = T . Then the vector of observations for patient j on dose di with
the individual design ζK ,

Yij = (Yij1, Yij2, . . . , YijK),

has a multivariate normal distribution with mean

ηi(ζK, θ,β)= f (di, θ)γ (ζK,β) (3)

and covariance

Cov(Yij )=Σ(ζ,β)= τ 2Γ �K ΓK + σ 2diag
{
γ 2

1 , γ
2
2 , . . . , γ

2
K

}
,

where ΓK = γ (ζK,β)= (γ1, γ2, . . . , γK).
A closed-form solution for the Fisher information matrix μ(ζ,ϑ) for ϑ =

(θ1, θ2, θ3, θ4, β) of an individual design ζ exists (see, e.g., Muirhead 1982, Chap. 1)
with elements

μab(ζ,ϑ) = ∂η(ζ,ϑ)
∂ϑa

Σ−1(ζ,β)
∂η�(ζ,ϑ)
∂ϑb

+ 1

2
tr

[
Σ−1(ζ,β)

∂Σ(ζ,β)

∂ϑa
Σ−1(ζ,β)

∂Σ(ζ,β)

∂ϑb

]
, a, b= 1, . . . ,5.

(4)

If τ 2 and σ 2 are also unknown, (4) remains valid with the addition of partial deriva-
tives with respect to the variance components. Of course, μ(ζ,ϑ) depends on d but,
for notational simplicity, d is dropped here.

Consider now a population design ξ with m different doses x1, . . . , xm ∈D

ξ =
{
x1, . . . , xm
w1, . . . ,wm

}
,

with 0 < wi < 1 and
∑
wi = 1. This means that according to the population de-

sign ξ , patients are randomized to m design doses proportionally to the weights
w1, . . . ,wm.

Patients on each dose may be allocated to R distinct individual designs
ζ1, . . . , ζR , with relative allocation ratios v1, . . . , vR , such that

∑R
r=1 vr = 1. We

will denote such an allocation scheme as Ξ . Because of the usual double-blinding
requirements in clinical trials, patients at different doses should be allocated to
the individual designs ζr for their repeated measurements according to the same
scheme. For example, if the allocation scheme to the individual designs consists of
two (R = 2) such designs, say, ζ1 = (0, t11, T ) and ζ2 = (0, t21, t22, T ), with 3- and
4-time points, respectively, and v1 = 0.6 and v2 = 0.4, then 60 % of patients will
be measured at baseline (t = 0), final time point (t = T ), and one intermediate time
0< t11 < T , while the other 40 % will be measured at baseline, final time point, and
two intermediate time points 0 < t21 < t22 < T . However, this allocation scheme
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should be applied for all doses. Otherwise, it will be known at what dose a patient
is treated.

The normalized information matrix for such a scheme at dose xi is

Ii(Ξ,ϑ)=
R∑
r=1

vrμi(ζr ,ϑ), (5)

where the index i for μ stands for the information matrix calculated for dose xi .
In this setting we will call the pair (ξ,Ξ) a combined design. The normalized

information matrix for the combined design (ξ,Ξ) is then defined as

M(ξ,Ξ,ϑ)=
m∑
i=1

wiIi(Ξ,ϑ). (6)

It is rather straightforward to define optimization criteria depending on the nor-
malized information matrix, in particular the D-optimality criterion

Ψ
(
M(ξ,Ξ,ϑ)

)= log det
[
M(ξ,Ξ,ϑ)

]
, (7)

to construct numerical algorithms for the optimal designs, and to derive their prop-
erties (see, e.g., Atkinson et al. 2007; Fedorov and Hackl 1997).

For example, a design (ξ∗,Ξ∗) is D-optimal if and only if

tr
[
Ii(Ξ,ϑ)M

−1(ξ∗,Ξ∗, ϑ)]≤ p (8)

for all doses xi and all individual designs Ξ , where p = dim(ϑ). Moreover, the
equality in (8) is attained at all support points of the optimal design.

As an illustration, let us consider the example of a sigmoid Emax model from
Dragalin et al. (2007) with parameters ϑ = (3,15,400,4,−2) and the dose space
D = {0(100)1000}. We assume τ = 0.5 and σ = 1. The D-optimal design with a
single post-baseline measurement at week 52, i.e., ζ0 = (0,52) has support points
at doses 0, 300, 500, 1000 with equal weights w = 1/4. We will use this design
as a benchmark in comparison with D-optimal designs with the individual designs
ζ1 = (0,12,52) and ζ2 = (0,12,26,52). The relative D-efficiency in estimating
(θ1, . . . , θ4), defined as the scaled (1/4) ratio of the determinants of the inverse in-
formation matrix of ζ0 versus ζ1 and ζ2 is 1.18 and 1.61, respectively.

3.1 Cost-Constrained Designs

Obviously, taking more measurements per patient provides additional information
and increases the precision of parameter estimators. However, the number of mea-
surements per patient usually needs to be restricted because of monetary cost and
other logistical reasons. Therefore, it is reasonable to take the cost of repeated mea-
surements into account at the trial design stage. Suppose that the cost of recruiting
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a patient in the study is c1 and the cost of obtaining a measurement per patient at a
given time point is c2. Then the cost for an individual design ζr with Kr time points
is c1 +Krc2. The total cost for a trial with N patients randomized according to a
combined design (ξ,Ξ) is

CN(ξ,Ξ)=N
(
c1 + c2

R∑
r=1

vrKr

)
.

If we denote by MN(ξ,Ξ,ϑ)= N ×M(ξ,Ξ,ϑ) the total information about ϑ
in such a trial, then the cost-normalized information matrix can be defined as

M̃C(ξ,Ξ,ϑ) =MN(ξ,Ξ,ϑ)/CN(ξ,Ξ)=
m∑
i=1

wi

R∑
r=1

ṽr μ̃i(ζr , ϑ)

=
m∑
i=1

wiĨi(Ξ,ϑ),

where Ĩi (Ξ,ϑ) is the cost-normalized information matrix for ϑ under the allocation
strategy Ξ with

ṽr = vr c1 + c2Kr

C(Ξ)
, μ̃i(ζr ,ϑ)= μi(ζr ,ϑ)

c1 + c2Kr
,

C(Ξ)= c1 + c2
∑R
r=1 vrKr .

Then the cost-constrained D-optimal design is the pair (ξ̃∗, Ξ̃∗) maximizing

log det
[
M(ξ,Ξ,ϑ)/C(Ξ)

]
(9)

and (8) in the above equivalence statement should be replaced by

tr
[
Ii(Ξ,ϑ)M

−1(ξ̃∗, Ξ̃∗, ϑ)]≤ p C(Ξ)
C(Ξ̃∗)

. (10)

Note that while (7) can be viewed as maximization of information per one obser-
vation, the optimization problem (9) provides the maximization of information per
cost unit. A similar approach was considered by Dragalin and Fedorov (2006) for
penalized optimal designs with a more general non-linear cost (penalty) function.

As an illustration, let us consider again the example before (5): assume that the
optimal allocation scheme Ξ∗ assigns 60 % of patients to an individual design with
3-time points and 40 % to a design with 4-time points when there are no extra costs
incurred in taking a measurement and in recruiting a patient. Therefore, the number
of patients n1 and n2 allocated to the individual designs ζ1 and ζ2, respectively,
should satisfy n1/n2 = 0.6/0.4 = 1.5. Now suppose that c1 = 5 and c2 = 0.5 and
the optimal cost-based design Ξ̃∗ also has ṽ1 = 0.6 for a 3-time point individual
design and ṽ2 = 0.4 for a 4-time point design. However, now the number of patients
n1 and n2 allocated to the individual design ζ̃1 and ζ̃2, respectively, should satisfy
n1/n2 = {0.6× (5+ 3× 0.5)}/{0.4× (5+ 4× 0.5)} = 1.39.
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4 Adaptive Designs

The designs considered in the previous section are locally optimal designs, i.e., they
depend on the unknown parameter ϑ . For practical use, we apply their adaptive im-
plementation (see, e.g., Dragalin and Fedorov 2006; Dragalin et al. 2007, 2010). The
steps are: (i) we start with an initial design randomizing the first N0 patients; (ii) an
interim analysis is conducted after N0 patients have been enrolled and the unknown
parameter is estimated as ϑ̂0 using all available data; (iii) the design for the next
N1 patients is derived using the augmented locally optimal design [ξ(ϑ̂0),Ξ(ϑ̂0)];
(iv) these iterative steps are repeated in several stages until the total number of pa-
tients N are enrolled. Applying the methodology developed in Pronzato (2010), we
can show that the information matrix evaluated at the current estimated value of the
parameter strongly converges to the matrix of the D-optimal design for the unknown
true value of the parameter.
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Construction of Minimax Designs
for the Trinomial Spike Model in Contingent
Valuation Experiments

Ellinor Fackle-Fornius and Linda Wänström

Abstract This paper concerns design of contingent valuation experiments when
interest is in knowing whether respondents have positive willingness to pay and, if
so, if they are willing to pay a certain amount for a specified good. A trinomial spike
model is used to model the response. Locally D- and c-optimal designs are derived
and it is shown that any locally optimal design can be deduced from the locally
optimal design for the case when one of the model parameters is standardized. It
is demonstrated how information about the parameters, e.g., from pilot studies, can
be used to construct minimax and maximin efficient designs, for which the best
guaranteed value of the criterion function or the efficiency function is sought under
the assumption that the parameter values are within certain regions. The proposed
methodology is illustrated on an application where the value of the environmentally
friendly production of clothes is evaluated.

1 Introduction

Contingent valuation experiments (CVEs) are frequently used to estimate the value
of non-market goods and services, such as environmental resources. The assessment
of the willingness to pay (WTP) in the population is a primary objective when con-
ducting a CVE. In the CVE respondents are presented with a hypothetical scenario
under which a good or a service is to be offered and then exposed to a bidding
scenario, consisting of one or more bids (Hanemann 1984; Hanemann and Kanni-
nen 1999). Standard models for binary data, e.g., the logistic model, are often used.
However, a major drawback with these models is that negative WTP is allowed for,
which is often implausible. Also, a large proportion of individuals may have zero
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WTP. The trinomial spike model specifically accounts for this possibility. The tri-
nomial response falls into one of three categories depending whether the respondent
rejects any positive cost, has positive WTP but rejects the bid, or accepts the bid.
The spike model is basically a truncated version of the logistic model with sup-
port only for positive bid values, with a discrete probability at zero that models the
probability that an individual has zero WTP. Various spike models are described in
Kriström (1997).

The design issues, when planning a CVE, involve selecting the number of bids
(design points), the sizes of the bids (support of the design), as well as the allocation
of respondents to each bid (design weights). We consider here the theory of contin-
uous designs (Kiefer 1974; Silvey 1980; Fedorov and Hackl 1997; Atkinson et al.
2007) such that the number allocated to each design point is not restricted to be an
integer. If required, the actual number of respondents is approximated in proportion
to the optimal design weights. A suitable optimality criterion corresponding to the
objectives of the CVE has to be chosen. For the objective to determine the distri-
bution of the WTP in the population, D-optimality is reasonable. The c-optimality
criterion is better suited for estimation of a function of the model parameters, e.g.,
median WTP.

A problem with optimal designs for non-linear models is the parameter-depen-
dence issue. One could use a single best guess of the true parameter values yielding
a locally optimal design. However, such designs are rarely robust to departures from
this guess. Another approach would be to specify a prior distribution over the pa-
rameter space and use it to derive an optimal on-the-average (or Bayesian) design
(Chaloner and Verdinelli 1995). However, it may be difficult to decide on the prior
distribution. Sequential methods (Wu 1985) are also a possibility but sometimes
unrealistic for practical reasons.

For the application to CVEs we propose to use a minimax approach. It is partic-
ularly suitable when there is information available from pilot studies. The first step
is to construct a region of plausible parameter values, on the basis of the available
information, and then seek a design that is robust within this region. The minimax
design protects against a worst-case scenario as the parameters are varied in the
specified region. The worst case may be defined directly by any of the standard
criteria, to achieve, e.g., minimax D-optimality or minimax c-optimality (King and
Wong 2000; Berger et al. 2000). Another alternative is to use the efficiency of the
design in relation to the locally optimal design as the criterion. The resulting design
will then be maximin efficient (Dette 1997; Imhof 2001; Dette et al. 2006). How-
ever, except for some special cases, numerical methods are needed to derive those
designs. Moreover, there are often computational difficulties involved. This is a rea-
son why minimax/maximin efficient designs have seen a limited use in practice so
far. We implement the H-algorithm described in Nyquist (2013) which facilitates
the construction of the designs.

The outline of the paper is as follows. Section 2 describes the trinomial spike
model and Sect. 3 presents locally optimal designs. The minimax approach is de-
scribed in Sect. 4 and we demonstrate how minimax and maximin efficient designs
are derived based on data from a CVE to estimate WTP for the environmentally
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friendly production of clothes. Some concluding remarks are given in the final sec-
tion.

2 The Trinomial Spike Model

In the setup described in Kriström et al. (1992), two questions are asked: if the
respondent accepts any positive cost and if the respondent accepts a bid A. The
bids are allowed to be any positive real number. Thus the design space is R

+. The
trinomial response Y = (Y0, Y1, Y2) is classified either as “zero WTP”, “positive
WTP less than A” or “positive WTP at least A”. The probability that a randomly
selected individual accepts a bid A is modelled via the logistic function as π2(A)=
P(WTP ≥ A) = eβ0+β1A/(1 + eβ0+β1A), β1 < 0. The probability that a randomly
selected individual has zero WTP is not related to the bid size and is defined as
π0 = P(WTP= 0)= (1+ eβ0)−1. The mean WTP for the trinomial spike model is
μ = − ln(1 + eβ0)/β1 and the median of the WTP is ρ = −β0/β1 if β0 > 0, and
zero otherwise.

Let π(A)= [π0,π2(A)]� and θ=(β0, β1)
�. Then we have

D = ∂π(A)
∂θ

=
( −π0(1− π0) 0
π2(A)[1− π2(A)] Aπ2(A)[1− π2(A)]

)

and

V = cov

(
Y0
Y2

)
=

(
π0(1− π0) −π0π2(A)

−π0π2(A) π2(A)[1− π2(A)]
)
.

For a continuous design ξ with n support points A1, . . . ,An and weights ξ(Ai), i =
1, . . . , n the 2× 2 information matrix is

M(ξ, θ)

=
n∑
i=1

ξ(Ai)D
�
i V

−1
i Di

=
n∑
i=1

ξ(Ai)(1− π0)

( [1− π2(Ai)][π0 + π2(Ai)] Aiπ2(Ai)[1− π2(Ai)]
Aiπ2(Ai)[1− π2(Ai)] A2

i π2(Ai)[1−π2(Ai)]2
1−π0−π2(Ai)

)

(1)

M−1(ξ, θ) is proportional to the asymptotic covariance matrix of the maximum
likelihood estimator of θ . A measure of the variability of a prediction at a point A
is given by the standardized predictor variance function

d(A, ξ, θ)= tr
[
m(A,θ)M(ξ, θ)−1],

where m(A,θ) is the information from a design with unit mass at A.
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Table 1 Locally D-optimal
(ξ∗D) and c-optimal designs
(ξ∗c ) for different values of β0

β0 π0 ξ∗D β0 π0 ξ∗D ξ∗c

−4 0.98 1.609 (1) 1 0.27 2.652 (1) 1.656 (1)

−2 0.88 1.703 (1) 2 0.12 3.292 (1) 2.425 (1)

−1 0.73 1.858 (1) 4 0.02
3.133 (0.331)

5.310 (0.669)
4.124 (1)

0 0.5 2.165 (1)

3 Locally Optimal Designs

A D-optimal design yields a minimal generalized variance, and thereby the smallest
possible asymptotic confidence region for the parameters by minimization of the
criterion function ln detM(ξ, θ)−1. By the General Equivalence Theorem of Kiefer
and Wolfowitz (1960) a D-optimal design ξ∗ satisfies d(A, ξ∗, θ)≤ 2 for all A> 0,
with equality at the support points.

Assume that the design ξ̃∗ with support points {A∗i } is locally D-optimal for the
parameter vector θ̃ = (β0,−1)�. Let ξ∗ be as ξ̃∗ with support points {−A∗i /β1}.
Observing that π2(−A/β1) for θ is equal to π2(A) for θ̃ , from (1) it can be deduced
that

det
[
M

(̃
ξ∗, θ̃

)−1]= β2
1 det

[
M

(
ξ∗, θ

)−1]
.

This implies that ξ∗ is locally D-optimal for θ . Thus, once the optimal design is
found for θ̃ = (β0,−1)�, the optimal design for any value of β1 can easily be de-
termined.

D-optimal designs for selected values of β0 with β1 =−1 are shown in Table 1.
These were obtained numerically and verified using the general equivalence theo-
rem. In most cases the D-optimal design consists of just one point. Note however
that all respondents are asked if they are willing to accept any positive cost in addi-
tion to being asked if they accept the bid A. That is, there are effectively two design
points in these designs. Therefore, singularity is not an issue with the one-point
designs here. When the probability of zero WTP, π0, is close to zero, not much in-
formation is gained from the zero point and the D-optimal design consists of two
design points.

Sometimes the objective is to estimate some function g(θ) of the parameters
as precisely as possible, for instance when the primary interest is to estimate the
median of the WTP, rather than the complete response curve. A c-optimal design
minimizes the approximate variance of g(θ̂): c�M(ξ, θ)−1c, where c is a p-vector.
For nonlinear g(θ), c= ∂g(θ)/∂θ and so for estimation of ρ, c� = (−1/β1, β0/β

2
1 )

if β0 > 0. The standardized predictor variance is then

dc(A, ξ, θ)= tr
[
m(A,θ)M(ξ, θ)−1c

(
c�M(ξ, θ)−1c

)
c�M(ξ, θ)−1]

and analogous conditions for c-optimality are obtained from the general equivalence
theorem. As in the D-optimal case, it can be shown that the criterion function for
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θ̃ is proportional to the criterion function for θ after the transformation to −A/β1.
Table 1 gives examples of c-optimal designs for estimation of ρ. We consider here
only cases where β0 > 0, that is, where ρ > 0, in order for the variance approxima-
tion to be justified. The support points of the c-optimal designs differ from those of
the corresponding D-optimal designs.

Application: Environmentally Friendly Clothes Data A pilot CVE in which
the purpose was to estimate WTP for environmentally friendly clothes was con-
ducted in Levinson (2010). The data obtained from this study can be used to esti-
mate the model parameters which in turn can be used as a basis for the design of
the experiment. For a more detailed description of the application, but with not so
much focus on theoretical issues, see Fornius and Wänström (2012). For the data
from this pilot study the maximum likelihood parameter estimates were found to
be θ̂ = (1.4899,−0.0242)�. Assuming these estimates are the true model parame-
ters, the one point design at A= 122 SEK is locally D-optimal, while the one point
design at A= 84 SEK is locally c-optimal for estimation of ρ. However, there is un-
certainty in these parameter values and there is no guarantee that the locally optimal
design is robust for other values. Instead, we examine the minimax and maximin
efficient designs.

4 Minimax and Maximin Efficient Designs

To construct a minimax or maximin efficient design, a parameter subset Θ0 ⊂ Θ
containing plausible values of θ needs to be specified. Θ0 is here defined as a rect-
angular region Θ0 = [βL0 , βU0 ] × [βL1 , βU1 ], where βL/U0 and βL/U1 are selected by
the experimenter. These values can, e.g., be based on confidence intervals for the
parameters from a pilot study, expert knowledge or theoretical considerations. The
minimax design is then found as the minimum over the set of all designs of

max
θ∈Θ0

ψ
[
M(ξ, θ)−1],

where ψ[·] is the chosen criterion function. The efficiency of a design with respect
to the locally optimally design ξ∗ is defined as

eff(ξ, θ)=
(
ψ[M(ξ, θ)]
ψ[M(ξ∗, θ)]

) 1
p

,

where p is the number of parameters and the maximin efficient design maximizes
minθ∈Θ0 eff(ξ, θ).

The H-Algorithm The H-algorithm given in Nyquist (2013) builds on a re-
lation between minimax designs and optimum on-the-average designs. Let γ be
a prior distribution for θ . A design ξγ is optimum on-the-average with respect
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Fig. 1 Panel (a) displays ψ[M(ξ(1), θ)] plotted over β0 for β1 =−0.028; B(ξ(1), π(1))=−5.58
is indicated by the horizontal line. Panel (b) displays ψ[M(ξ(2), θ)] plotted over Θ0, with the
maximum value B(ξ(2), π(2))=−5.57

to γ if it minimizes B(ξ, γ ) = Eθ {ψ[M(ξ, θ)−1]} over all possible designs. It is
shown in Nyquist (2013) that if γ0 is a distribution with support only for points
θ ∈Θ0, and if ξ0 is an optimum on-the-average design with respect to γ0 such that
ψ[M(ξ0, θ)−1] ≤ B(ξ0, γ0) for all θ ∈Θ0, then under general regularity conditions,
ξ0 is a minimax design with respect to Θ0. This changes the problem of finding a
minimax design to the problem of finding a prior distribution γ0, which is the least
favourable distribution (l.f.d.), and the associated optimum on-the-average design.
An l.f.d. γ0 has support only for θ , where ψ[M(ξ0, θ)−1] = B(ξ0, γ0).

To construct a minimax design, begin by setting k = 1, and generate an initial
distribution γ (k). Determine the design ξ (k) which is optimal on-the-average with
respect to γ (k). Check if ψ{M(ξ(k), θ)−1} ≤ B(ξ(k), γ (k)) holds for all θ ∈ Θ0. If
the condition is met, stop and conclude that γ (k) is the l.f.d. and that ξ (k)is the
minimax design. Otherwise, add mass to γ (k) where ψ[M(ξ(k), θ)−1] is maximized,
and decrease mass accordingly elsewhere. The amount of mass to be added to this
point should be such that B(·) is increased. Then set k to k+ 1 and determine a new
optimum on-the-average design and so on; see Nyquist (2013) for details.

To obtain a maximin efficient design, seek instead an l.f.d. γ0 with the as-
sociated optimum on-the-average design ξ0 such that eff(ξ0, θ) ≥ B(ξ0, γ0) =
Eθ [eff(ξ0, θ)] for all θ ∈Θ0.

On the basis of the parameter estimates for the data presented in Sect. 3, ap-
proximate 95 percent confidence intervals for the parameters (separately) are given
by (1.24,1.74) for β0, and (−0.028,−0.020) for β1. Therefore, let the region of
plausible parameter values be Θ0 = [1.24,1.74] × [−0.028,−0.02]. Take as γ (1)

a distribution with unit mass at θ = (1.24,−0.028). For D-optimality, the opti-
mum on-the-average design ξ (1) consists of one point at A = 98. But the check-
ing condition is not met, see Fig. 1(a). Also note that mass should be added to
θ = (1.74,−0.028). For γ (2) = {(1.24,−0.028) , (1.74,−0.028);0.5,0.5} the one
point design at A= 107 is optimum on the average. The checking condition is now
met, see Fig. 1(b). Therefore we conclude that γ (2) is the l.f.d. and the minimax
D-optimal design is found. By following analogous steps, the maximin D-efficient
design is found to be a one-point design at A= 125, see Table 2. Other examples of
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Θ0 are also given in the table as well as the minimum efficiency and the maximum
value of the criterion of the designs within Θ0. Table 3 shows corresponding re-
sults for c-optimality, all having different design points compared with D-optimality,
while the structures of the designs and l.f.d.s are similar. Comparing the minimax
and maximin efficient designs, the support points are different. In addition, the lat-
ter may have more support points. Also, the l.f.d.s differ. The minimum efficiency
is always higher for the maximin efficient designs and sometimes by a remarkable
amount. On the other hand, the maximum value of the criterion is always worse for
the maximin efficient designs.

5 Concluding Remarks

Locally optimal designs for the trinomial spike model have been derived and consist
of one point in most of the cases. The locally optimal design for any parameter β1 is
shown to be easily transformed from the locally optimal design for β1 =−1. Con-
struction of minimax and maximin efficient designs via the H-algorithm has been
demonstrated based on pilot data for a CVE. The minimax designs consist of one
point for each of the considered parameter subsets while the maximin efficient de-
signs sometimes have more support points. The associated l.f.d.s have support on the
boundary of the rectangular parameter regions. The minimum efficiency and maxi-
mum value of the criterion within the region of plausible parameters were examined.
The results show considerable advantage of the maximin efficient designs when it
comes to efficiency while the opposite applies when comparing the maximum cri-
terion values. Choosing between the two types of criteria, one has to decide which
is most important, to protect against a low efficiency or against a high (generalized)
variance.
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Maximum Entropy Design in High Dimensions
by Composite Likelihood Modelling

Davide Ferrari and Matteo Borrotti

Abstract In maximum entropy sampling (MES), a design is chosen by maximiz-
ing the joint Shannon entropy of parameters and observations. However, when the
conditional parametric model of the response contains a large number of covariates,
the posterior calculations in MES can be challenging or infeasible. In this work, we
consider the use of composite likelihood modelling to break down the complexity
of the full likelihood and code the original optimization problem into a set of sim-
ple partial likelihood problems. We study the optimality behaviour of the composite
likelihood sampling approach as the number of design variables grows using both
asymptotic analysis and numerical simulations.

1 Introduction

Let Ξ be a set of possible experiments and ξ = (x1, . . . , xp) ∈ Ξ denote an ex-
periment. The experimental response is an n-dimensional random vector Y in Y .
The distribution of the response, denoted by p(y|ξ, θ), depends on the possible ex-
periment ξ and the value of a parameter vector θ ∈ θ = Θ in Ω . The parameter
θ has a prior distribution p(θ) which is assumed to be independent of the exper-
iment ξ . In maximum entropy sampling (MES), the optimal experiment is chosen
from the set of experiments Ξ , by maximizing the amount of information mea-
sured as the negative Shannon entropy. For a random vector X with pdf or pmf
p(x), the Shannon entropy is defined by H(X)=−EX{logp(X)}. Lindley (1956)
proposed choosing the experiment ξ by maximizing the expected information gain,
EY H(Θ|Y, ξ)−H(Θ), where the first term represents the average information on
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the parameter, given the experiment ξ . Since the second term does not depend on ξ ,
the above task is equivalent to maximizing

EY H(Θ|Y, ξ)=
∫
Y

∫
Ω

p(θ |y, ξ) logp(θ |y, ξ)f (y)dθ dy. (1)

Computation of the posterior distribution poses well-known issues when the
complexity of the sampling distribution Y given Θ is high. Traditional approaches
to MES often rely on asymptotic approximations of the posterior near the Max-
imum Likelihood Estimate (MLE) θ̂ of θ . The posterior can be approximated as
Θ|y, ξ ∼ N{θ̂ , I (θ̂ , ξ)−1}, where the covariance matrix is given by the inverse of
the expected Fisher information matrix I (θ̂ , ξ)=−EY ∇2

θ logp(y|θ, ξ). For a mul-
tivariate normal variable Z ∼ N(μ,Σ), the entropy is H(Z) = log detΣ , which
depends only on the covariance Σ . Therefore, for large samples, (1) can be approx-
imated by the criterion function

L(ξ)=−EY log det I (θ̂ , ξ)=−EΘ log det I (Θ, ξ), (2)

where the second equality follows from consistency of the MLE and expectation is
now over the prior distribution of Θ . Another approach to asymptotically approx-
imating Shannon entropy maximization is the minimax distance design (Johnson
et al. 1990). The two designs are equivalent only under a specific condition on Σ .

In this paper, we propose a new criterion to compute optimal designs called pair-
wise maximum entropy sampling (P-MES). We consider partial likelihoods for the
data, p(y|θi, xi), i = 1, . . . , p, and p(y|θij , xi, xj ), i > j , depending only on one
and two predictors, respectively. The parameters θi ∈Ωi and θij ∈Ωij are subsets
of the original parameter vector and typically Ωi ⊂Ωij ⊂Ω . The P-MES criterion
is defined by the maximization of

EY Hc(Θ|Y, ξ)=
∑
i<j

EY H2(Θ|Y,xi, xj )− (p− 1)
∑
i

EY H1(Θ|Y,xi), (3)

where H2 and H1 are entropy functions depending on the partial posterior distri-
butions p(θij |y, xi, xj ) and p(θi |y, xi). Similarly to MES, a consistent asymptotic
approximation to (3) is given by

L(P)(ξ)=
∑
i<j

EΘ log det Iij (Θ,xi, xj )− (p− 1)
∑
i

EΘ log det Ii(Θ,xi), (4)

where Ii and Iij denote the expected Fisher information for marginal and pairwise
models. Further, we show that when p increases, L(P)(ξ) converges to L(ξ). This
implies that, in large problems with many variables, the designs selected by P-MES
tend to coincide with those provided by MES.
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2 Hoeffding Scores and P-MES

The second-order Hoeffding projection of Y onto Z1, . . . ,Zp is defined by

P ∗Y =
∑
i<j

PijY −
p∑
i=1

PiY, (5)

where PiY = E(Y |Zi) and PijY = E(Y |Zi,Zj ) − E(Y |Zi) − E(Y |Zj ). Such a
decomposition gives the best approximation of sums of functions of two variables
at a time (Van der Vaart 1998). In this paper, we use the Hoeffding decomposition
to project the parameter vector Θ onto the covariate space Ξ . In particular,

P ∗ logp(Θ|y)=
∑
i<j

logp(Θ|y, xi, xk)− (p− 1)
∑
i

logp(Θ|y, xi).

Taking the expectation of the above quantity with respect to Θ gives (3). It rep-
resents a special case of the composite likelihood function studied by Cox and Reid
(2004), with their parameter a set to be equal to 1. Formula (5) is common in com-
posite likelihood approaches (Varin et al. 2011). Lindsey et al. (2011) and Varin
et al. (2011) describe the use of pairwise Hoeffding scores to define composite
likelihood objects. In the context of parameter estimation, Lindsey et al. (2011)
show the optimality of (5) under independence conditions on the parameter vec-
tor.

Next, we study the relationship between MES and P-MES under sparsity condi-
tions. Given a random vector Z, let Z−j denote the vector without the j -th compo-
nent and define

Sp(Z)= 1

p

p∑
j=1

M(Zj ,Z−j )= 1

p

p∑
j=1

EZ

{
log

p(Z)
p(Zj )p(Z−j )

}
, (6)

where M denotes the mutual information between Zj and Z−j . The quantity Sp
is interpreted as a measure of sparsity as it computes the average information loss
when breaking the dependence with respect to each individual component. We have
Sp(Z)= 0 if all the components are mutually independent. Next, we show the equiv-
alence of MES and P-MES, when the sparsity of the parameter vector increases with
the number of variables.

Proposition 1 Let Θ = (θ1, . . . , θp)
� and assume that given Y the elements of

Θ depend only on elements of ξ with the same index. If EY [Sp(Θ|Y, ξ)] → 0, as
p→∞, uniformly on Ξ , then supξ∈Ξ |L(ξ)−L(P)(ξ)| → 0, as p→∞.

If the sparsity increases, the difference between the MES and P-MES criteria
becomes negligible. This property turns out to be useful when the number of pa-
rameters is large and calculations involved in MES can be challenging. In practice,
optimization of MES is usually feasible only in relatively small problems where p
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is not too large. When p, n and the complexity of the likelihood model are large,
then the calculations become challenging because of the large size of the design
space and non-linearity of the objective function. In fact, the objective function (3)
is separable with respect to pairs (xi, xj ) and maximization can be achieved by the
following set of quasi-Newton updates:

x̂
(s+1)
i = x̂(s)i − Ĥ−1

i

{∇xiLij (x̂(s)i , x̂(s)j
)}
, i = 1, . . . , p, (7)

where

L
(p)
ij (xi, xj )=

p∑
j=1

EY H2(Θ|Y,xi, xj )

− (p− 1)
{
EY H1(Θ|Y,xi)+ EY H1(Θ|Y,xj )

}

and Hi is a suitable approximation of the n× n Hessian Hi = ∇2
xi
L
(p)
ij (xi, xj ). In

the preliminary numerical comparisons in the next sections, when xi , i = 1, . . . , p,
are discrete and the size of the design space is small, we employ exact enumera-
tion of the design space. When the size of the design space is moderate or large,
maximization is achieved by a genetic algorithm (GA) (Goldberg 1989). The GA
is an optimization method inspired by the process of natural evolution and gener-
ates solutions using particular techniques such as selection, crossover and mutation.
Currently, we are developing an exact enumeration algorithm for high-dimensional
problems by a branch-and-bound approach (Ko et al. 1995).

3 Numerical Analysis

In this section, we compare MES and P-MES approaches by a numerical study
based on an example proposed by Sebastiani and Wynn (2000). We consider the
normal regression model Y |(ξ, θ)∼Nn(Xθ,Σ1), where Σ1 is a known matrix. We
assume that Θ ∼Np(θ0,R

−1) with θ0 and R known and independent of the design
ξ . The goal is to find an optimal design point ξ , i.e., a design matrix that maximize
EY H(Θ|Y, ξ).

To measure the difference between the MES and P-MES solutions, we employ
two measures of discrepancy. The first measure is the Hamming distance, i.e., the
number of different entries in the two design matrices. The second measure is the
number of identical vectors.

We compare the two approaches for various choices of p and n. Particularly, we
consider n = 1,2,3 and p = 3,6,9. The order of the correlation among variables,
r , is set as p/3. If p = 3, then r = 1 and R is set as the identity matrix. If p = 6
then r = 2, meaning that only two variables are correlated with correlation ρ, where
ρ = 0.1 or 0.9.
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Table 1 Minimum Hamming
distance between optimal
P-MES and MES solutions.
The brackets contain the
number of equal vectors
(experimental points)

p = 3 p = 6 p = 9

no correlation ρ = 0.1 ρ = 0.9 ρ = 0.1 ρ = 0.9

n= 1 0 (1) 0 (1) 0 (1) 0 (1) 0 (1)

n= 2 0 (2) 1 (1) 0 (2) – –

n= 3 0 (3) – – – –

Fig. 1 Single-point experiment for n= 1 and p = 6: (a) ρ = 0.1 and (b) ρ = 0.9. Bottom horizon-
tal line reports the ordered design point according to the value of MES. Top horizontal line reports
the ordered design point according to the value of P-MES

In almost all cases P-MES and MES find the same optimal design matrix but
with different neighbouring solutions (see Table 1). An example is shown in Fig. 1
where the experimental points are ordered according to the value L(ξ) calculated by
P-MES and MES in the case of n= 1, p = 6 with ρ = 0.1 and ρ = 0.9. In only one
case do the two approaches find different optimal solutions with a common design
point (row) and Hamming distance equal to 1 (n= 2, p = 6 and ρ = 0.1).

4 Case of p Greater than n

We investigate the efficiency of P-MES when p is larger than n, for both discrete
and continuous covariates.
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Fig. 2 Behaviour of the
response optimized by the
quasi-Newton approach based
on P-MES principles

4.1 Discrete Covariates

We consider p = 12 and n= 4 and the worst case when all the parameters are cor-
related with r = p = 12 and ρ = 0.1,0.9. To optimize the response surface we im-
plemented a genetic algorithm. We computed 20 Monte-Carlo runs using randomly
chosen starting points for the optimization. A run was stopped after the censoring
time T = 30.

Our genetic algorithm is based on tournament selection, one-point crossover and
a mutation operator with probability p = 0.05. In the selection operator the size of
the tournament is 4. There are two tournaments and in each tournament we select the
design matrix with the highest response. A one-point crossover is randomly selected
and then the new children are created in accordance with this point and the selected
parents.

In 20 runs, the largest value of MES is obtained twice resulting in two different
design matrices. In this case (p = 12, n = 4 and ρ = 0.1) MES has two optimal
solutions. P-MES reaches the same maximum value in 14 runs out of 20. In the case
of ρ = 0.9 MES proposes 20 different design matrices with the same value of MES.
P-MES reaches the same maximum value but it proposes different design matrices.

4.2 Continuous Covariates

We set n and p equal to 4 and 12, respectively. The correlation matrix R has ele-
ments 0.7|i−j |, i, j = 1, . . . , p. We apply a quasi-Newton approach where the design
matrix is selected using the P-MES criterion, and carry out Monte-Carlo simula-
tions, using different initial matrices. At each step the algorithm improves signifi-
cantly on the previous solution, and the optimization procedure moves consistently
towards the optimal region of the search space. Figure 2 shows the behaviour of
P-MES iteration by iteration.

The design matrices selected at each step of the optimization procedure are also
evaluated with MES. We observe that while increasing the P-MES values, we also
obtain increasingly larger values for the MES criterion. This suggests that, if the
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complexity of the problem increases, the MES and P-MES criteria could find a
similar path towards regions of optimality.

Appendix

Proof of Proposition 1. Let Z = (Z1, . . . ,Zp) be a p-dimensional random vector
with distribution p(z). Singer (2004) shows that if Zj is independent of Zk for any
j �= k, then p(z)= p̃(z)(p) =∏

|E|<p pE(zE)qE , where E is a set in the power set
of indexes P = {1,2, . . . , {1,2}, . . . , {1, . . . , p}}, |E| is the cardinality of the set
E, qE = (−1)p+1−|E|, and pE denotes the distribution of ZE ⊂ Z. Without loss of
generality, we start from θ1, θ2 and θ3 and write

logp(θ1, θ2, θ3|y, ξ)= log p̃(Θ|y, ξ)(2)+ logp(θ1|θ2, θ3, y, ξ)− logp(θ1|θ2, y, ξ).

Recursively applying the formula by Singer (2004) for 3≤ k ≤ p, gives

logp(Θ|y, ξ)= log p̃(Θ|y, ξ)(p) + log

{
p(Θ|, y, ξ)

p(Θ−p|y, ξ)p(θp|y, ξ)
}
. (8)

By summing over all such decompositions and taking the expectation with respect
to Θ|Y, ξ , we obtain

pH(Θ|y, ξ)= pEΘ log p̃(Θ|y, ξ)(p) +
p∑
j=1

EΘ log

{
p(Θ|, y, ξ)

p(Θ−j |y, ξ)p(θp|y, ξ)
}
,

which implies L(ξ)= EY H(Θ|Y, ξ)= L(p)(ξ)+ Sp(Θ|Y, ξ). Finally, by our spar-
sity assumption, the last summand converges to zero as p→∞.
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Randomization Based Inference
for the Drop-The-Loser Rule

Nancy Flournoy, Arkaitz Galbete, José Antonio Moler, and Fernando Plo

Abstract In the framework of clinical trials, legal and ethical restrictions make a
population model unrealistic for sampling. Randomization tests are a viable alterna-
tive to classical inference. Their theoretical properties depend heavily on the random
rule used to allocate patients to treatments, so that Ad-Hoc theoretical studies are
necessary for each allocation design. In this paper, we obtain theoretical results for
randomization tests when the drop-the-loser rule is used.

1 Introduction

Consider establishing the superiority of one treatment with respect to another.
A treatment can be an industrial procedure, a new surgical procedure, a new phar-
maceutical product, etc. Herein randomization refers to the random allocation of in-
dividuals participating in a controlled clinical trial where the efficacy of a treatment,
say treatment 1, is compared with a control treatment, say treatment 2. We assume
also that the responses are immediate and dichotomous with success probabilities
p1 and p2, respectively.

The use of randomization in the context of clinical trials is studied and vindi-
cated in Rosenberger and Lachin (2002). However, it has been a controversial topic
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among statisticians as can be seen in Kempthorne (1977) and the references therein.
Nowadays, the use of randomization is firmly established in protocols for designing
clinical trials and this is accepted even by non-randomizers; see, for instance Aickin
(2001).

A controversial topic now is the use of randomization tests as the inferential pro-
cedure to be applied under randomized allocations; see Basu (1980) and the com-
ments that follow that paper. In Rosenberger and Lachin (2002, Chap. 7), random-
ization based inference (RBI) is considered more adequate than a population model
for analyzing clinical trials because, among other reasons, random sampling of pa-
tients from a target population is hard to accept. Randomization tests are also known
as permutation tests, rerandomization tests and exact tests (Good 1993). They were
first proposed in a pioneering work by Fisher (1935). The experiment is known in
the statistical literature as The Lady Tasting Tea.

Pesarin and Salmaso (2010, Chap. 1), discuss classical criticisms about the use
of permutation tests and present their adequacy under different conditions. They
also provide an updated revision on permutation tests. In Sect. 1.3, they claim that
a heuristic approach to constructing permutation tests, based on intuitive reasoning,
is the most commonly adopted approach for non-complex statistical designs (Edg-
ington 1987; Good 1993). The heuristic approach is also followed in our paper, as
in Pesarin and Salmaso (2010, Sect. 1.8), for a similar problem.

Edgington (1987, p. 1), describes RBI as follows: Given the experimental data,
x, a statistic T (x) is computed. Then, the data are permuted repeatedly in a manner
consistent with the random assignment procedure, and the statistic is computed for
each of the resulting data permutations. Suppose that a one-sided significance test
with significance level α is applied to accept or reject a null hypothesis. As usual, the
null hypothesis for a randomization test is that there is no difference in the observed
outcomes whatever the allocation. RBI proceeds by computing the probability that
the random assignment procedure provides a permutation for which the test statis-
tic is greater than the observed value T (x). In other words, the p-value associated
with T (x) is computed. If this probability is smaller than α, the null hypothesis is
rejected.

RBI is conditional on the responses obtained and requires calculating the value
of the test statistic for each permutation of the assignments that is consistent with
the allocation procedure, and also, with the probability of each assignment. De-
pending on the sample size and on the allocation method, complete enumeration
of all the permutations can be infeasible. This is one of the principal drawbacks
of RBI. However, several procedures allow one to avoid complete enumeration for
small-to-moderate samples. For instance, in Hollander and Peña (1988) and Mehta
et al. (1988), an algorithm shortens the calculations and both Plamadeala and Rosen-
berger (2012, Sect. 1.6) and Pesarin and Salmaso (2010) use Monte-Carlo tech-
niques to approximate the exact p-values. For large sample sizes, a central limit
theorem for the test statistic T is one way to approximate the p-value; see, for in-
stance, Rosenberger and Lachin (2002, Chap. 14). Asymptotic results are also useful
in sequential monitoring techniques (Zhang et al. 2007).

Another important statistical issue when randomization tests are used concerns
the use of conditional or unconditional tests. Assume that n individuals participate
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in the trial. Let Nn1 be the number of patients randomly allocated to treatment A
and assume that Nn1 = n1. When a conditional randomization-based test is applied,
the p-value of T (·) is obtained under the condition that Nn1 = n1. Otherwise, we
say that an unconditional test has been applied.

Observe that n1 can reach 0 or n, or be close to them, specially when n is small.
The use of conditional tests is advised by Cox (1982) when the number of patients
allocated to each treatment is ancillary. This is the case for Efron’s design (Efron
1971) where the present allocation depends only on the previous allocations of pa-
tients. More precisely, by tossing a biased-coin with a fixed probability p0 > 1/2,
the patient is allocated to the underrepresented treatment. Allocation is random
when there is balance between treatments. However, with response-driven adaptive
designs, the distribution of Nn1 depends on the success probabilities and, so, it is
not ancillary and the use of a conditional test is not justified with Cox’s arguments.

There exists a wide catalogue of response-driven designs in the literature (Hu and
Rosenberger 2006). Primary classes are the biased-coin designs and the urn designs.
In Rosenberger and Lachin (2002, Sect. 11.4), an overview of RBI for response-
driven designs is provided but most of the references focus on the randomized play-
the-winner rule. As can be observed in a comparative study of several response-
adaptive designs in Rosenberger and Hu (2004), the play-the-winner rule is not com-
petitive among them. There, two designs are outstanding due to their good compro-
mise between ethics and inference. One of them is the biased coin design presented
in Hu and Zhang (2004) for γ = 2. The other one is the urn design introduced in
Ivanova (2003) which is named drop the loser rule (DTL design in the sequel).

In a comparative study with a wider range of response-adaptive designs
(Flournoy et al. 2012), both designs remain advantageous for their ethical and in-
ferential properties. In Flournoy et al. (2012), graphics are used to position at once
several response-adaptive designs with respect to an ethical and an inferential crite-
ria.

In this paper, for space limitations, we will focus only on permutation test statis-
tics based on the sum of responses when the DTL design is used to allocate patients.
Our principal target is to calculate p-values for those test statistics. For this purpose,
we provide an efficient algorithm which makes it computationally feasible to obtain
p-values for the test statistic that provides the difference of successes between both
treatments.

In Sect. 2, the DTL design is described. Notation and asymptotic results under
the population model are also given for the DTL design. In Sect. 3 necessary math-
ematical formalisms are given for handling the DTL design when patient responses
are assumed known. Then, an algorithm to obtain exact p-values for a basic test
statistic is provided. The paper closes with some final comments.

2 Response Adaptive Designs. DTL Rule

In a randomized clinical trial, patients arrive sequentially and are randomly allocated
to a treatment. In order to allocate the presenting patient randomly, several rules can
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be applied. Three kinds of allocation designs can be distinguished depending on
the previous information that is used to determine the allocation of the patient. If no
previous information is used, we have a completely randomized design, for instance,
allocation by tossing a coin. If the dependence is only on the previous allocations,
the rule is adaptive, as in Efron (1971). Finally, if the dependence also includes
the previous responses the rule is response-adaptive, as is the DTL rule that was
introduced in Ivanova (2003).

The DTL rule is an urn design that works as follows. Initially the urn contains w
balls of each type 1 and type 2 and one ball of type 0, which in the literature is also
called an immigration ball. When a patient arrives, extract a ball from the urn. If the
ball is of type 0, no treatment is assigned and one ball of type 1 and one ball type
2 are added into the urn. If the ball is not of type 0, the treatment associated with
the ball drawn is assigned. If the treatment is successful, the ball is replaced in the
urn; otherwise, the ball is not replaced. The number of type 1 balls in the urn after
them-th replacement and the total number of balls are denoted, respectively, byWm
and Tm. So W0 =w and T0 = 2w+ 1. Observe that, due to the presence of a type 0
ball, the number of replacements is not necessarily equal to the number of patients.

In order to express the model mathematically, we need to introduce some nota-
tion. For extraction m, m= 1,2, . . . , ϕm is a random variable which equals 1 when
a ball of type 1 is drawn, −1 when the ball is of type 2 and 0 when the ball is of
type 0.

Let {τm}m≥0 be a sequence of stopping times which represent, for each m, the
number of patients allocated up to them-th replacement. Observe that if τ0 = 0 then,
for m≥ 1, τm =∑m

i=1 ϕ
2
i .

The responses of the k-th patient to treatment j = 1,2 are denoted by Zkj . We
assume that these responses are immediate. Obviously, this is a mathematical for-
malism because only one response is observed. But this notation will be useful to
establish the following assumption which is needed in this section:

(A1) For each j , j = 1,2, and k = 1,2, . . . , we assume that {Zkj } is a sequence of
independent and identically distributed random variables.

Finally, let Fm = σ(ϕi,Zτi1,Zτi2 : i = 1, . . . ,m) denote the natural sigma alge-
bra generated by all the previous allocations and responses up to the m-th replace-
ment. Then

P(ϕm+1 = 1|Fm)=Wm/Tm, P (ϕm+1 = 0|Fm)= 1/Tm. (1)

Let Δm =∑m
i=1 ϕi represent the imbalance between the number of patients al-

located to each treatment at the m-th replacement. Observe that Nm1 and Nm2,
the number of patients allocated to treatment 1 and treatment 2 up to and in-
cluding the m-th replacement, can be expressed as Nm1 =∑m

i=1(ϕi + ϕ2
i )/2 and

Nm2 =∑m
i=1(ϕ

2
i − ϕi)/2. So, the number of type 0 balls drawn up to the m-th re-

placement is Nm0 =m−Nm1 −Nm2.
Zhang et al. (2011) have recently presented theoretical properties for a wide

range of urn models under a unified approach called immigrated urn models. In
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addition to this, applications of immigrated urn models in clinical trials are also
studied under the assumption of a population model. The DTL design is a particular
immigrated urn model for which the expected number of added balls in each step,
according to the outcome of a treatment, is less than the number of drawn balls,
which is 1. Then, from Zhang et al. (2011), among many more theoretical prop-
erties for some stochastic processes associated with the DTL design, central limit
theorems for the success proportions in each treatment are obtained. These establish
the theoretical basis for using classical test statistics for the equality of treatments.

In the following section we assume that the patients’ responses are known. In
such a situation, the population model which must be assumed for direct application
of the results in Zhang et al. (2011), no longer holds.

3 Randomization Based Inference for the DTL Design

The underlying idea in RBI is that given the responses of the patients, under the
null hypothesis of no difference between treatments, the only randomness in the
process is due to the allocation of patients. So that, in order to make inferences
we must obtain the conditional probability distribution of the test statistic given the
responses for any allocation that can possibly be made with the DTL design. We
introduce some notation in order to give a formal presentation of RBI tools.

Let an := (a1, a2, . . . , an) contain the responses of n patients participating in
the experiment. In this section we assume that this vector is known. To reflect this
dependence, we include a superscript a in the notation of Sect. 2. Then, ϕa

m is the
random variable which points to the type of ball of the m-th extraction, given the
responses available up to the (m−1)-th replacement. The number of patients treated
up to the m-th replacement is equal to the number of times that a type 0 ball has not
been drawn.

Observe that variables τm, Δm, Nm1 and Nm2 are obtained using the random
variable ϕm. We add the superscript a to these random variables to mark their de-
pendence on a.

Let Sn be the difference between the number of successes in the two treatments
once n patients have responded under the DTL rule. Observe that a type 0 ball can
be extracted in each step and this implies that the number of extractions of type 0
balls between two allocations is an unbounded random variable. It will be helpful to
define S∗m, the difference between the number of successes up to and including the
m-th extraction: S∗m :=

∑m
i=1 aτi ϕ

a
i .

We are going to take Sn to be the permutation test statistic for studying the equal-
ity of treatments. This choice responds to the arguments given in Sect. 2.5 in Pesarin
and Salmaso (2010) where test statistics based on sums of responses are advised.
Our target now is to obtain an algorithm for finding the exact value of P(Sn = s) for
any s in the interval [−n, n].
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Observe that the event {Sn = s} is equal to a union of disjoint events indexed by
m≥ n:

P(Sn = s)=
∞∑
m=n

P
(
S∗m = s, τ a

m = n,ϕa
m �= 0

)
. (2)

The following technical proposition will be crucial for computing the exact p-
values of the randomization test based on the Sn statistic for the DTL design.

Proposition 1 Assume that the DTL design is applied and that n patients have been
allocated to two treatments by means of the DTL design. Let a := (a1, a2, . . . , an)

�
denote the sequence of responses. Consider for each replacementm≥ 1 the random
variables ϕam, Δa

m and τ a
m defined as before. Then,

P
(
S∗m = s, τ a

m = n,ϕa
m �= 0

)
, −n≤ s ≤ n,

can be calculated with a recursion formula with initial values

P
(
S∗1 = 0, τ a

1 = 0,Δa
1 = 0

) = 1

2w+ 1
,

P
(
S∗1 = 0, τ a

1 = 1,Δa
1 =−1

)= P (
S∗1 = 0, τ a

1 = 1,Δa
1 = 1

) = (1− a1)
w

2w+ 1
,

P
(
S∗1 =−1, τ a

1 = 1,Δa
1 =−1

)= P (
S∗1 = 1, τ a

1 = 1,Δa
1 = 1

) = a1
w

2w+ 1
.

Proof Observe that for each extraction m≥ 1 we have

P
(
S∗m = s, τ a

m = k,Δa
m = i, ϕa

m = r
)

= P (
ϕa
m = r|S∗m−1 = s − akr, τ a

m−1 = k − r2,Δa
m−1 = i − r

)

× P (
S∗m−1 = s − akr, τ a

m−1 = k − r2,Δa
m−1 = i − r

)
. (3)

On the other hand, from the dynamics of the urn, for each extraction m, we have
that

T a
m = 2w+ 1+ 2m− 3τ a

m +
τ a
m∑
j=1

aj , 2W a
m = T a

m − 1+ S∗m −Δa
m.

Consequently, for r = 1, r = 0 or r =−1 we can explicitly express

P
(
ϕa
m = r|S∗m−1 = l1, τ a

m−1 = l2,Δa
m−1 = l3

)= r
2(l1 − l3)+ r(T a

m−1 − 1)+ 2

2T a
m−1

.

(4)
Finally, a recursion is obtained by plugging (4) into (3) and observing that

P
(
S∗m = s, τ a

m = n,ϕa
m = r

)=
n∑

i=−n
P
(
S∗m = s, τ a

m = n,Δa
m = i, ϕa

m = r
)
.

�
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Table 1 Proportion of times
that the null hypothesis is
rejected with the test statistic
Sn in a randomization test in
10000 replications of the
DTL rule

p1 p2 n

25 50 100

0.9 0.3 0.679 0.986 1

0.9 0.5 0.347 0.759 0.987

0.9 0.7 0.096 0.306 0.607

0.7 0.3 0.323 0.728 0.971

0.7 0.7 0.018 0.017 0.017

When randomization is made with the DTL design, Proposition 1 and Eq. (2)
allow us to obtain exact calculations of p-values when RBI is used with the test
statistic Sn.

Remark 1 Proposition 6 in Sect. 2.5 of Pesarin and Salmaso (2010) gives a for-
mal argument, based on asymptotic tools, for choosing a permutation test as an
alternative to the classical parametric test. Assuming the population model, when
a response-adaptive design is used for allocations, and Sni is the total number of
successes with treatment i, i = 1,2 then (Sn1, Sn2,Nn1) are jointly sufficient for es-
timating p1 and p2 (Rosenberger and Lachin 2002, p. 193), where n is the sample
size. So a good estimator of p1 − p2 is Tn := Sn1/Nn1 − Sn2/Nn2. Let T a

n be the
difference between success proportions for each treatment when the n patients have
been allocated with the DTL rule. Reasoning as in (2), it follows that if T ∗a

m is the
difference of success proportions up to and including extraction of the m-th ball,
then

P
(
T a
n = t

) =
∞∑
m=n

n∑
k=0

P
(
T ∗a
m = t,Δa

m = 2k− n, τ a
m = n,ϕa

m �= 0
)

=
∞∑
m=n

n∑
k=0

P
(
S∗m = r(k),Δa

m = 2k− n, τ a
m = n,ϕa

m �= 0
)
, (5)

where r(k)= (2t × k × (n− k)− (n− 2k)
∑n
i=1 ai)/n. Now, using Proposition 1,

any p-value for the distribution of T a
n can be obtained.

In Table 1, a simulation study of the power of the permutation test with Sn is
presented. The distribution of Sn changes with the sequence of responses. So, in
each replication of the clinical trial, we obtain a p-value which indicates if the null
hypothesis must be rejected and, finally, we obtain the proportion of simulations
in which the null has been rejected. This is not exactly the power function that is
well established in the parametric setting. But it is the usual procedure used to study
power in RBI studies Good (1993, e.g., Sect. 13.7).
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4 Final Comments

Sections 2 and 3 can be replicated for other response-adaptive designs. However,
Proposition 1 should be adapted to the adaptive-response allocation rule because,
in this case, its proof heavily relies on the dynamics of the DTL design. If the long
run distribution of the permutation test statistic is deemed reliable, it is more prac-
tical to use it than the exact distribution to characterize the randomization test. This
motivates interest in obtaining central limit theorems. These kind of studies follow
the paradigmatic results on central limit theorems that were obtained in this context
in the seminal paper of Smythe and Wei (1983). Conditions on the set of responses
that appear in Smythe and Wei can be quite stringent for any vector a.
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Adaptive Bayesian Design with Penalty Based
on Toxicity-Efficacy Response

Lei Gao and William F. Rosenberger

Abstract The penalized local D-optimal design is introduced by Dragalin and Fe-
dorov (J. Stat. Plan. Inference 136:1800–1823, 2006). We extend the method to the
Bayesian realm for the bivariate Gumbel model. Then we conduct a simulation study
to compare our method with the trade-off methods of Thall and Cook (Biometrics
60:684–693, 2004). Various measures are employed to present a thorough under-
standing of both the methods. Our method is more favorable in terms of consistency
across simulations and information gain.

1 Introduction

The ultimate goal of dose finding studies is to understand the relationship between
doses and responses. The relationship, sometimes nonlinear, can be discovered by
parametric and nonparametric methods. The parametric approach is preferred when
the relation can be approximated by a parametric model and the sample size is small,
such as early phase clinical trials. For parametric models, statisticians have control
over how much information can be gained, in terms of the precision of parameter
estimation. An ideal goal is to maximize the parameter estimation precision even on
a limited sample. Examples of designs that optimize the dose-response information
are introduced by Perevozskaya et al. (2003) and Dragalin and Fedorov (2006),
among others. In these designs, doses are allocated in such a way that a function of
the Fisher information matrix is optimized.

Univariate models are appropriate for modeling toxicity or efficacy, separately
as in phase I or II trials. However, sometimes there are both toxicity and efficacy
responses, which can be accommodated by bivariate response modeling. Two can-
didate bivariate models are the Cox model and Gumbel model as illustrated by Dra-
galin and Fedorov (2006). The common thread to designing experiments under all
these models is the optimization of a function of the Fisher information matrix.
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In addition to maximizing the information gain, a difficulty arises from ethical
considerations. A design may be optimal for efficiency or precision, but it may also
allocate participants at a high dose level with high toxicity. Therefore, achieving a
balance between the information gain and participants’ protection becomes impor-
tant in these designs. There are some methods to address this problem: the restricted
dose space method (Mats et al. 1998) sets an upper bound for the dose; the local
penalty function method (Dragalin and Fedorov 2006) penalizes high doses with
high toxicity and low doses with low efficacy through a penalty function. The phi-
losophy in the constrained and penalized methods is to maximize the information
gain over a restricted space. From a different point of view, Thall and Cook (2004)
consider desirability contours as trade-offs between efficacy and toxicity to protect
patients. The doses with high desirabilities are those with low toxicity and high effi-
cacy. Their philosophy is to maximize the desirability by sequentially assigning pa-
tients to the most desirable dose. Therefore, an interesting question is which design
philosophy has better performance with respect to important outcome measures.

To answer the question, we extend the penalized method to the Bayesian realm
and carry out a simulation study of our penalized approach and the trade-off ap-
proach in a setting similar to that used by Thall and Cook (2004). The two methods
are compared on various measures with respect to desirability and information gain.
The paper is organized as follows. In Sect. 2, we introduce the bivariate Gumbel
model and present the Bayesian D-optimality criterion. In Sect. 3, we introduce the
adaptive design in a clinical setting. Then we include the simulation study details,
discuss measures, and present the results in Sect. 4.

2 Bivariate Gumbel Model

The Gumbel model is a bivariate extension of the logistic model. In a Gumbel
model, we have a pair of binary responses (Y,Z), where Y = 1 indicates efficacy
and Z = 1 indicates toxicity. They equal zero otherwise. Let x denote a transformed
dose level in some dose space X and α a parameter to characterize the correlation
between toxicity and efficacy. We define the function (Dragalin and Fedorov 2006)

G(y, z)= F(y)F (z){1+ α[1−F(y)][1−F(z)]}, −∞< y,z <+∞, |α|< 1,

and F(y) is the logistic function F(y) = 1/(1+ e−y). We follow Thall and Cook
(2004) by assuming a quadratic dose efficacy effect xE = μE + βE1x+ βE2x

2, and
a linear dose toxicity effect xT = μT + βT x. Then the cell probabilities, pyz = Pr
(Y = y,Z = z), form a multinomial distribution given by

p11 =G(xE,xT ), p10 = F(xE)−G(xE,xT ),
p01 = F(xT )−G(xE,xT ), p00 = 1−G(xE,+∞)−G(+∞, xT )

+G(xE,xT ).
The Fisher information matrix I (x; θ) can be obtained in the same fashion as in
Dragalin and Fedorov (2006).
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In clinical trials, a design is a discrete measure on a dose space X :

ξ =
(
x1 x2 · · · xn−1 xn
w1 w2 · · · wn−1 wn

)
, (1)

where xi ’s are doses and wi ’s are corresponding weights with sum one. The single
point design at x is denoted by δx . The Fisher information matrix for the design ξ
in (1) is M(ξ ; θ)=∑

i wiI (xi; θ).
To gain maximal information, the locally D-optimal design minimizes the vol-

ume of the asymptotic variance ellipsoid, which is inversely proportional to the de-
terminant of the Fisher information matrix,

Φ(ξ, θ)= ∣∣M−1(ξ ; θ)∣∣, (2)

over a design space Ξ . Chaloner and Larntz (1989) extended the two parameter
local optimal designs to the Bayesian realm, where the model parameters are al-
lowed to vary according to prior distributions. Assume that θ follows a prior distri-
bution Θ(η) and π(θ |D;η) is a posterior distribution given data D . The Bayesian
D-optimality criterion maximizes

Ψ (ξ)= Eθ |π logΦ(ξ, θ)=
∫

logΦ(ξ, θ)π(θ |D;η)dθ. (3)

We use “Eθ |π ” to denote the conditional expectation under the posterior distribution
π throughout the paper.

To protect patients from being assigned to too high or too low doses, Dragalin
and Fedorov (2006) introduce the penalty function c(x; θ) = [p10(x, θ)]−1[1 −
p01(x, θ) − p11(x, θ)]−1, to encourage efficacious doses and penalize toxic ones.
The total cost is C(ξ ; θ)=∑

i wic(xi; θ).
To incorporate Dragalin and Fedorov’s penalized method into the Bayesian

realm, we observe that the penalty function cannot be arbitrary. The extension can
be made when the penalty function can be factored as the product of functions of
doses x and functions of the local parameter θ , or when it does not depend on the
local parameter. In our design, we choose the penalty function to be c(x; θπ ), by
substituting the mean of the posterior distribution θπ for θ .

As in Dragalin and Fedorov (2006), the penalized Bayesian D-optimality solves
the following equation:

ξ∗ = arg min
ξ
Eθ |π logΦ

{
M(ξ ; θ)
C(ξ ; θπ )

}
. (4)

If we consider the derivative of Φ along a single point design δx , then we can define
the directional derivative φ by φ(x, ξ ; θ)= tr[I (x; θ)M−1(ξ ; θ)].

The generalized equivalence theorem can be modified as the equivalence of the
following three conditions:

1. ξ∗ = arg minξ Eθ |π logΦ[M(ξ ; θ)/C(ξ ; θπ )];
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2. ξ∗ = arg minξ maxx Eθ |π [φ(x, ξ ; θ)− c(x;θπ )
C(x;θπ )p];

3. Eθ |π C(x;θπ )c(x;θπ ) φ(x, ξ
∗; θ)≤ p,∀x ∈X . Equality is attained at the design points.

Atkinson et al. (2007) included a comprehensive treatment of the generalized equiv-
alence theorem for local cases. Chaloner and Larntz (1989) considered Bayesian
cases. Dragalin and Fedorov (2006) considered penalized cases.

3 Bayesian Adaptive Design with Penalty Function

In practice, we do not have accurate information on the true parameter values. There-
fore we have to implement a design wisely so that we can estimate the parameter
efficiently. Adaptive designs can serve this purpose well. Instead of assigning all
patients at the same time, we assign them one by one as we maximize the optimality
criterion (2) at each step.

Suppose our dose space is X , either discrete or continuous. We identify the op-
timal weights of doses based on the prior information. To do this, we implement the
penalized method and substitute the mean of the priors as the local parameter. After
the initial n0 doses are allocated, we need a sequential procedure to approximate the
optimality in (4). Instead of using the first-order algorithm (Dragalin and Fedorov
2006), we use the idea proposed by Haines et al. (2003). Specifically, suppose the
posterior distribution πn can be inferred through previous responses at step n. Then
we choose the next dose as

xn+1 = arg min
x
Eθ |πnΦ

(∑n
i=1 I (xi; θ)+ I (x; θ)

n+ 1

1∑n
i=1 c(xi; θπn)+ c(x; θπn)

)
.

(5)
As the above steps are iteratively processed, the adaptive design is expected to con-
verge to its corresponding optimum design (not the one in (4)) and give precise
parameter estimation. Roy et al. (2003) proved the convergence of the Bayesian
sequential procedure for the location-scale family, in both unconstrained and con-
strained cases. However, the convergence of (5), as a “best intention design”, is yet
to be determined.

Thall and Cook (2004) proposed a different Bayesian adaptive design by in-
troducing a desirability function that measures the distance between any toxicity-
efficacy probability pair (p01 + p11,p10 + p11) to the pair (0,1). The algorithm
starts from the lowest dose and escalates through steps. At each step, a cohort of
three patients is assigned to the dose with the highest desirability according to the
posterior information. If the expected toxicity is higher than a critical value, the
algorithm stops. Thall and Cook (2004) show that the trade-off algorithm assigns
the most patients to the most desirable dose. However, because the efficiency of
estimation is not their primary concern, yet their algorithm does rely on parameter
estimation, the trade-off method may not be robust to model misspecification. As a
result, the algorithm may not be efficient compared with our algorithm with respect
to participant protection.
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Fig. 1 Probability of efficacy (left) and toxicity (right), over the design region for Scenarios 1
and 2. The probability of efficacy increases rapidly in Scenario 1. The probability of toxicity in-
creases at similar rates in both the scenarios

4 Monte Carlo Simulation and Results

In this Monte Carlo study, we compare our penalized method with the trade-off
method. We choose a similar setting to Thall and Cook (2004) in which the design
sample size is 36 and the initial sample size is 3. We assume the dose-response curve
follows a Gumbel model with true parameter θ0 = (−1.5,3,0.5,−0.5,0.5,0.5)
in Scenario 1 and (−1,1,0.5,−1,1,0.5) in Scenario 2. The prior distribution
is chosen almost the same as in Thall and Cook (2004): μE,βE1, βE2,μT
and βT are independently normally distributed with means and standard devi-
ations (−1.496,1.113) for μE , (1.180,0.069) for βE1, (0.149,1.192) for βE2,
(−0.619,0.941) for μT and (0.587,1.659) for βT . The different setting is the cor-
relation parameter α, which is assumed to follow a uniform distribution on [−1,1].
All parameters are independently distributed. Because there are six parameters,
it is computationally infeasible to compute six-dimensional integrations over the
posterior distribution. Thus we employ Monte Carlo methods to approximate the
expectations in a six-dimensional space. Specifically, we generate two chains, each
with 5000 θ ’s, and approximate the expectation by the average.

The raw dose d is transformed to x in the same way as in Thall and Cook (2004):
xi = log(di) − mean(d). Therefore, the dose space X consists of −0.79, −0.10,
0.30 and 0.59 instead of the four raw doses, 0.25, 0.5, 0.75 and 1. We use the
same desirability function as that defined by Thall and Cook (2004) and obtain
their desirabilities as −0.194, −0.137, 0.021 and 0.161 in Scenario 1 and 0.002,
0.031, 0.080 and 0.109 in Scenario 2. Their probabilities of efficacy and toxicity
are (0.027,0.290), (0.142,0.366), (0.368,0.414) and (0.611,0.449) in Scenario 1
and (0.186,0.143),(0.250,0.249),(0.343,0.332) and (0.442,0.399) in Scenario 2.
The true parameters are chosen so that the efficacy increases faster than toxicity in
Scenario 1, and they have comparable increasing rate in Scenario 2, as shown in
Fig. 1.



96 L. Gao and W.F. Rosenberger

We implement 5000 simulations for each scenario. As shown in Sect. 3, one
simulation of the penalized algorithm starts by assigning 3 patients to the lowest
dose for a fair comparison. Then we begin the iteration after a few steps. Specifically,
we estimate the posterior distribution based on the responses and the prior using
MCMC. Then we assign the next patient to an optimal dose as in (5). Also we obtain
the bivariate response for each patient according to the true model. We continue the
iterations until all 36 patients are assigned. The trade-off algorithm is implemented
in the same manner as in Thall and Cook (2004).

The two algorithms will be compared on measures from two categories, one re-
lated to information gain and the other related to toxicity and efficacy trade-off de-
sirability. Because there are incomplete trials in the trade-off algorithm when the
algorithm stops before all patients are assigned, we simulate 5000 complete trials
and compare them with the penalized method on the following measures:

1. Expected number of toxicities, i.e., events of Z = 1, denoted by “Toxicity”;
2. Expected number of efficacies, i.e., events of Y = 1, denoted by “Efficacy”;
3. Expected number of efficacies but not toxicities, i.e., events of Y = 1 and Z = 0,

denoted by “Eff-Tox”;
4. Expected average desirabilities across four doses, denoted by “Desirability”

(larger is better);
5. Expected number of patients assigned to the dose with the highest desirability,

denoted by “DesHigh”;
6. Expected precision, log |M(ξ, θ0)|−1/6, denoted by “Precision” (smaller is bet-

ter);
7. Expected total cost, C(ξ, θ0), denoted by “Cost” (smaller is better);
8. Expected information loss per unit cost, |M(ξ, θ0)|1/6/C(ξ, θ0), denoted by

“Info/Cost” (larger is better).

Note that desirability is defined in Thall and Cook (2004). Also, the last three mea-
sures are used in Dragalin and Fedorov (2006). The trade-off design (Thall and
Cook 2004) is expected to assign most participants to the most desirable dose. On
the other hand, the penalized design (Dragalin and Fedorov 2006) is expected to
achieve a high Info/Cost ratio, which balances the parameter estimation precision
and the ethical cost.

As for the simulation results, we have 5498 simulations in Scenario 1 and 5271
simulations in Scenario 2 until the trade-off algorithm produces 5000 complete tri-
als in each scenario. Table 1 includes the results of the two methods for Scenario 1
and Table 2 for Scenario 2. They perform similarly with respect to protecting the
patients, since they yield similar values for Toxicity, Efficacy and Eff-Tox. For desir-
ability considerations, the trade-off method is expected to outperform the penalized
method. However, the penalized method performs better by putting more patients
on the dose with highest desirability in both scenarios. The penalized method also
achieves a higher average desirability than the trade-off method in Scenario 1. When
it comes to the precision measure, the penalized method performs better with more
estimation information (or a low Precision value) and less cost as expected. As a
result, the penalized method has larger and better Info/Cost ratios. Note that our pe-
nalized method has smaller Monte-Carlo variation and performs more consistently
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Table 1 Summary of
Monte-Carlo simulations for
Scenario 1. The mean and
standard deviation of the
measures defined in Sect. 4
across the 5000 complete
trials are listed for each
method

Measure Penalized Trade-off

mean (sd) mean (sd)

Toxicity 14.69 (2.80) 14.51 (2.61)

Efficacy 15.36 (3.33) 14.40 (4.89)

Eff-Tox 7.78 (2.92) 7.24 (2.58)

Desirability 0.012 (0.005) 0.0079 (0.019)

DesHigh 22.04 (5.16) 17.55 (10.03)

Precision 29.48 (2.68) 33.78 (3.57)

Cost 14.13 (0.198) 18.83 (9.12)

Info/Cost 0.0024 (0.0002) 0.0018 (0.0005)

Table 2 Summary of
Monte-Carlo simulations for
Scenario 2. The mean and
standard deviation of the
measures defined in Sect. 4
across the 5000 complete
trials are listed for each
method

Measure Penalized Trade-off

mean (sd) mean (sd)

Toxicity 10.68 (2.47) 11.03 (2.69)

Efficacy 11.85 (2.96) 12.07 (3.37)

Eff-Tox 7.1 (2.44) 7.34 (3.54)

Desirability 0.016 (0.004) 0.017 (0.006)

DesHigh 16.40 (6.49) 14.9 (10.30)

Precision 57.46 (4.56) 68.83 (7.01)

Cost 7.17 (1.11) 7.40 (0.20)

Info/Cost 0.0025 (0.0004) 0.0020 (0.0002)

due to more efficient parameter estimation. Overall, the penalized method performs
more stably and provides more information than the trade-off method. The effect is
amplified when efficacy increases faster than toxicity.

5 Conclusion

We propose a Bayesian version of the adaptive design of Dragalin and Fedorov
(2006) to penalize doses with too high toxicity or too low efficacy. The penalized
method is compared with the trade-off method in Thall and Cook (2004) in two
simulation scenarios. The penalized method performs better when it comes to infor-
mation gain. It also assigns more patients to the most desirable dose. The penalized
method performs more consistently by having a smaller Monte-Carlo simulation
variation. The advantage is pronounced when the efficacy increases at a higher rate
than toxicity.
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There are some limitations to our study. First, we assume the true toxicity-
efficacy relation arises from a Gumbel model. However, such a parametric model
may fail to represent the toxicity-efficacy relationship. Also, most of the measures
are only applicable to complete trials. Here, a portion of incomplete trials due to the
trade-off algorithm stopping rules are excluded from the comparison. In addition,
we do not have a scenario in which the toxicity increases at a high rate, because the
stopping rule would generate too many incomplete trials leading to an inappropriate
comparison.

Future work may include flexible modeling which can handle complex toxicity-
efficacy relations. Also, the penalized method can be incorporated with a stopping
rule to improve the protection of participants. Next, measures that are applicable to
incomplete cases should be introduced for the evaluation. With these added features,
simulations of more scenarios would be tested.

Acknowledgements The authors thank the referees for constructive comments. Dr. Rosen-
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Recovery and Reinvestment Act of 2009.
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Randomly Reinforced Urn Designs Whose
Allocation Proportions Converge to Arbitrary
Prespecified Values

Andrea Ghiglietti and Anna Maria Paganoni

Abstract There are many randomization procedures in clinical trials in which the
proportion of patients allocated to treatments converges to a fixed value. Many of
these procedures, like those targeting the optimal Neyman allocation, are not adap-
tive designs and the limiting proportion of allocations is independent of the treat-
ment behavior. In this work we construct a response adaptive design, described in
terms of a two-colour urn model, targeting fixed asymptotic allocations that are a
function of treatment performances. We prove some asymptotic results for the pro-
cess of colours generated by the urn and for the process of its composition. Applica-
tions to sequential clinical trials and connections with response-adaptive design of
experiments are considered. Additionally, we report simulation studies concerning
the power function of a hypothesis testing procedure that naturally arises from this
statistical framework.

1 Introduction

Consider a clinical trial with two competing treatments R and W , say. We intro-
duce a new response adaptive design, described in terms of an urn model, targeting
any asymptotic allocation fixed in advance (Aletti et al. 2013). In a clinical set-
ting, adaptive designs are attractive because they aim to achieve two simultaneous
goals, concerning both statistical and ethical points of view: (a) collecting evidence
to determine the superior treatment, and (b) increasing the allocation of units to the
superior treatment. For a complete literature review on response adaptive designs,
see Hu and Rosenberger (2006).

A wide class of response-adaptive randomized designs is based on urn mod-
els, because it is a classical tool to guarantee a randomized device (Cheung et al.
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2006; Rosenberger 2002), to balance the allocations (Baldi Antognini and Gianner-
ini 2007) or to construct designs which asymptotically assign all subjects to the best
treatment (Muliere et al. 2006; Flournoy and May 2009). In general, these designs
model the experiment with an urn containing balls of different colours, each one as-
sociated with a specific treatment. The urn is sampled sequentially and the patients
are assigned to the treatments according to the sampled colours. In the two-colour
Randomly Reinforced Urn (RRU) studied in Muliere et al. (2006), after any alloca-
tion the urn is reinforced by a random quantity of balls having the same colour as
the sampled one. In Muliere et al. (2006) it was proved that RRU design is a ran-
domized device able to target the optimal treatment (i.e., the urn proportion of the
colour related to the superior treatment converges almost surely to one). Because
of its degenerate limit, the traditional asymptotic theory cannot be applied straight-
forwardly to the RRU. Specific asymptotic results for the RRU design are studied
in Flournoy and May (2009). We present the Modified Randomly Reinforced Urn
design (MRRU) introduced in Aletti et al. (2013). This model changes the rein-
forcement scheme of the RRU model in order asymptotically to target any allocation
proportion in (0,1). In Ghiglietti and Paganoni (2012) we compare statistical prop-
erties of the MRRU design with the RRU design. Other papers have described urn
models that can target any desired allocation. For instance, in Cheung et al. (2011)
a general class of immigrated urn models with this feature is presented and some
related asymptotic results are detailed.

In Sect. 2 the MRRU model introduced in Aletti et al. (2013) is described. Then,
in Sect. 3 we conduct an analysis of the statistical properties of a usual hypothesis
test in the MRRU setting. We end the paper with a short conclusion.

2 The Modified Randomly Reinforced Urn Model

We consider two probability distributions μR and μW with supports contained in
[α,β], where 0 ≤ α ≤ β < +∞ and a sequence (Un)n of independent uniform
random variables on (0,1). We will interpret μR and μW as the laws of the re-
sponses to treatments R and W , respectively. We assume that both the means
mR =

∫ β
α
x μR(dx) and mW =

∫ β
α
x μW(dx) are strictly positive. Visualize an urn

initially containing r0 balls of colour R and w0 balls of colourW . Set

R0 = r0, W0 =w0, Z0 = R0

D0
.

At time n = 1, a ball is sampled from the urn. Its colour is X1 = 1[0,Z0](U1),
a random variable with Bernoulli (Z0) distribution. Let M1 and N1 be two inde-
pendent random variables with distributions μR and μW, respectively. Assume that
X1,M1 and N1 are independent. Next, if the sampled ball is R, it is replaced in
the urn together with X1M1 balls of the same colour if Z0 < η, where η ∈ (0,1) is
a suitable parameter. Otherwise, the urn composition does not change. If the sam-
pled ball is W , it is replaced in the urn together with (1−X1)N1 balls of the same
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colour if Z0 > δ, where δ < η ∈ (0,1) is a suitable parameter. Otherwise, the urn
composition does not change. Consequently, we can update the urn composition in
the following way:

R1 =R0 +X1M11[Z0<η], W1 =W0 + (1−X1)N11[Z0>δ], Z1 = R1

D1
.

Now iterate this sampling scheme. Thus, at time n+ 1, given the sigma-field Fn

generated by X1, . . . ,Xn,M1, . . . ,Mn and N1, . . . ,Nn, let Xn+1 = 1[0,Zn](Un+1)

be a Bernoulli(Zn) random variable and, independently of Fn and Xn+1, assume
that Mn+1 and Nn+1 are two independent random variables with distributions μR
and μW , respectively. Set

Rn+1 =Rn +Xn+1Mn+11[Zn<η],

Wn+1 =Wn + (1−Xn+1)Nn+11[Zn>δ],

Zn+1 = Rn+1

Dn+1
.

We thus generate two infinite sequences (Xn)n∈N and (Zn)n∈N of random variables,
representing the colour of the ball sampled from the urn and the proportion of balls
of colour R, respectively.

In Aletti et al. (2013, Theorem 3.1) the following asymptotic convergence result
is proved:

Theorem 1 The sequence of proportions (Zn)n∈N of the urn process converges al-
most surely to the following limit:

lim
n→∞Zn =

{
η if

∫ β
α
x μR(dx) >

∫ β
α
x μW(dx),

δ if
∫ β
α
x μR(dx) <

∫ β
α
x μW(dx).

(1)

The urn proportion process (Zn)n∈N converges to a value which depends on the
unknown means of the reinforcement distributions. This aspect characterizes the
adaptive nature of the design based on the urn model. In particular, this modified
urn model generates a process (Zn)n∈N that converges to one of the values {δ, η},
according to which reinforcement presents the distribution with the greater mean.
When mR =mW we do not have an explicit form for the asymptotic distribution of
the urn proportion Zn. Nevertheless, we know that (Zn)n∈N converges to a random
variable Z∞ whose distribution has no atoms and its support is S∞ = [δ, η].

3 Response-Adaptive Designs and Classical Statistical Tools

We introduce a classical hypothesis test to compare the response means of two treat-
ments using data accrued during the trial. The aim of this section is to discuss the
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statistical properties obtained by applying a response-adaptive design (such as the
urn model described in Sect. 2), in comparison with a classical procedure. We deal
with the statistical hypothesis test

H0 :mR −mW = 0 vs. H1 :mR −mW �= 0. (2)

In a classical framework we can compute the critical region and the power curve
of the test. Let us fix some parameters:

• n0,R and n0,W : sample sizes of patient responses to treatments R and W , respec-
tively;

• α: significance level;
• Δ0: smallest mean difference detected with high power;
• β0: minimum power for the mean difference of ±Δ0.

Once we have defined the proportion p0 of patients allocated to treatment R, it is
easy to find the correct sample size n0 which allows the test to satisfy the properties
required by the parameters. We have the following critical region:

Rα =
{
|Mn0,R −Nn0,W |>

√
σ 2
R

n0,R
+ σ 2

W

n0,W
zα

2

}
, (3)

where Mn0,R =
∑n0,R
i=1 Mi/n0,R and Nn0,W =

∑n0,W
i=1 Ni/n0,W . The region intro-

duced in (3) defines a test with level α that is exact in the case of Gaussian rein-
forcements, and asymptotic in the case of continuous reinforcement, not necessarily
Gaussian. Moreover, we obtain the power of the test (3) as a function of the real
mean difference Δ=mR −mW (see Fig. 1 in the case of equal variances),

β(Δ)= P
(
Z <−z α

2
− Δ√

σ 2
R

n0,R
+ σ 2

W

n0,W

)
+ P

(
Z > zα

2
− Δ√

σ 2
R

n0,R
+ σ 2

W

n0,W

)
. (4)

Define n0 as the total sample size of the classical test T0 and p0 as the corre-
sponding proportion of patients allocated to the treatment R, i.e., n0 = n0,R + n0,W

and p0 = n0,R/n0. If we want a test with same features (the level α and the mini-
mum power β0 for the mean difference of±Δ0), but of better performance, we could
modify the proportion of assignments or the sample size. The test T0 can be iden-
tified in the space ((0,1)× N), that we will call the proportion-sample size space,
by the couple (p0, n0). Any other test T will be represented by a point (ρ,n) in the
same space. The goal of this section is to point out regions in this space character-
izing tests with performances better than T0. A test T will be considered strictly
better than T0 if it satisfies two conditions:

(a) T has a power function uniformly higher than the power function of T0;
(b) T assigns to the worst treatment fewer patients than T0 does.
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Fig. 1 The power function
β :R→[0,1] of the test
defined in (3) in the case of
α = 0.05 and β0 = 0.9

Let βT0 and βT respectively be the power functions of tests T0 and T . To
achieve the condition (a), we impose

βT (Δ)≥ βT0(Δ), ∀Δ ∈R ⇔ σ 2
M

nρ
+ σ 2

N

n(1− ρ) ≤
σ 2
M

n0p0
+ σ 2

N

n0(1− p0)
. (5)

If we denote by popt the optimal allocation proportion σM/(σM + σN), we can
rewrite the previous inequality in a more suitable form:

popt
2

nρ
+ (1− popt)

2

n(1− ρ) ≤
popt

2

n0p0
+ (1− popt)

2

n0(1− p0)
. (6)

The above condition divides the proportion-sample size space into two regions.
The boundary is computed by imposing equality and expressing the sample size n
as a function of the proportion ρ:

nβ(ρ) =
(
p2

opt

ρ
+ (1− popt)

2

1− ρ
)(

p2
opt

n0p0
+ (1− popt)

2

n0(1− p0)

)−1

. (7)

We refer to this function as nβ , since it is defined by imposing the condition related
to the power of the tests. This relationship between ρ and n is visualized in Fig. 2
by a dashed line. Every point upon this line identifies a test T having a power
higher than T0. On the other hand, points behind the dashed line represent tests
with a power lower than T0. It is easy to see that the function nβ : (0,1)→ (0,∞)
is unbounded for proportions close to zero and to one, and it has a global mini-
mum for ρ = popt. This seems reasonable because popt is the allocation proportion
which requires fewest patients to get any fixed value of power. Besides, the further
the proportion ρ from popt is, the more patients are necessary to attain this power.
Specifically, the minimum lies on a very interesting curve, which is uniquely iden-
tified by the parameters of the classical test. Define gmin : (0,1)→ (0,∞) as the
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function associated with that curve. Then, we are able to express it in analytic form

gmin(x) = n0

(
x2

p0
+ (1− x)

2

1− p0

)−1

, ∀x ∈ (0,1). (8)

The curve is represented in Fig. 2 by a dotted line. The functions nβ and gmin
intersect at two points (in general, they are different) denoted byM andQ. The point
M is the minimum of the function nβ and it corresponds to the optimal allocation
proportion

M =
(
popt, n0

(
p2

opt

p0
+ (1− popt)

2

1− p0

)−1)
. (9)

The point Q is the maximum of the function gmin and it corresponds to the fea-
tures of the classical test T0: Q = (p0, n0). The points M and Q coincide when
p0 = popt, i.e., when the test T0 uses the optimal allocation proportion. In this case,
the curves are tangent at M (or Q). Moreover, there are other relevant points high-
lighted by the function gmin. In fact, the curve starts at XW,0 = (0, n0(1− p0)) and
ends at XR,0 = (1, n0p0). The ordinates of points XW,0 and XR,0 tell us how many
patients have been allocated by the test T0 to the treatmentsW and R, respectively.

For the condition (b) we have to distinguish two different cases:

• If mR >mW then the superior treatment is R and the condition to be imposed is

n(1− ρ) < n0(1− p0) ⇒ ρ > 1− n0

n
(1− p0). (10)

• If mR <mW then the superior treatment is W and the condition to be imposed is

nρ < n0p0 ⇒ ρ <
n0

n
p0. (11)

Both of these relationships are marked with bold solid lines in the plane (ρ,n). Un-
der each one of these lines, alternatively, the first or the second condition is verified.
In conclusion, we divide the space (ρ,n) into three regions:

• Region A: tests T having greater power and fewer patients allocated to treatment
R than T0.

• Region B: tests T having greater power and more patients allocated to both the
treatments.

• Region C: tests T having greater power and fewer patients allocated to treatment
W than T0.

A good way to design a better test could be to choose new parameters (ρ,n) in the
region A if mR <mW , or otherwise, in the region C if mR >mW . Naturally, which
mean is greater constitutes information which is not available before the experiment
begins. This is the purpose of the trial and so is unknown at the design stage. For this
reason, it may be useful to adopt an adaptive response design to construct the test. In
particular, when we apply the urn model described in Sect. 2, we have to assign the
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Fig. 2 The regions A, B and C, in the proportion-sample size plane, for a particular choice
of parameters. The dashed line represents the function nβ . It separates the test T with power
βT (Δ) > βT0 (Δ) from the test with power βT (Δ) < βT0 (Δ). Solid lines separate the tests ac-
cording on the number of patients allocated to the treatments R and W , with respect of n0,R and
n0,W , the sample sizes of T0. The dotted line represents the function gmin

parameters δ and η some values such that (δ, n) ∈A and (η,n) ∈ C, with n denoting
the total number of draws by the urn. Define the quantities NR(n)=∑n

i=1Xi and
NW(n)=∑n

i=1(1−Xi), representing the numbers of patients allocated by the urn
to the treatments R and W , respectively. Note that, in this case, the sample sizes
are random variables. Proposition 3.1 in Aletti et al. (2013) implies that the critical
region (12) defines a test with the asymptotic level α

Rα =
{
|MNR(n) −NNW(n)|>

√
σ 2
R

NR(n)
+ σ 2

W

NW(n)
zα

2

}
. (12)

4 Conclusion

In this work, we have made a statistical study of the classical hypothesis test that
compares the mean responses of two competing treatments. These analyses concern
the performance of different tests, in terms of power and in terms of the number
of subjects assigned to the inferior treatment. As mentioned in Sect. 1, both these
aspects are very important in a clinical setting. Given any test T0, identified by a
point (p0, n0) in the proportion-sample size space, we studied how to construct a
test T that provides greater power and assigns fewer patients to the worse treat-
ment. Hence, assuming the knowledge of which treatment is superior, we identified
the region in which it is more convenient to choose the new test T . Naturally, the
knowledge of which treatment has the greater mean response is the purpose of the
trial, so we suggest adopting an adaptive response design, like the MRRU design.
An ongoing project is to exploit the asymptotic results reported in Ghiglietti and
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Paganoni (2012) in order to compute the probability of detecting a point T in the
right region.
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gence theorem.
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Kernels and Designs for Modelling Invariant
Functions: From Group Invariance to Additivity

David Ginsbourger, Nicolas Durrande, and Olivier Roustant

Abstract We focus on kernels incorporating different kinds of prior knowledge on
functions to be approximated by Kriging. A recent result on random fields with paths
invariant under a group action is generalised to combinations of composition oper-
ators, and a characterisation of kernels leading to random fields with additive paths
is obtained as a corollary. A discussion follows on some implications on design of
experiments, and it is shown in the case of additive kernels that the so-called class
of “axis designs” outperforms Latin hypercubes in terms of the IMSE criterion.

1 Introduction

Models based on Random Fields (RFs), and especially on Gaussian RFs, have
been increasingly used in the last decades for designing and analysing costly de-
terministic experiments (Santner et al. 2003; Rasmussen and Williams 2006). In
most popular implementations of such models, a constant or linear trend and a sta-
tionary covariance kernel are assumed. However, there seems to be an enormous
potential in designing kernels reflecting different kinds of prior knowledge. Re-
cently, classes of kernels leading to RFs with additive paths have been considered
in Durrande et al. (2012) and Duvenaud et al. (2011). Calling f ∈R

D [D =∏d
i Di

where Di ⊂ R (1 ≤ i ≤ d)] additive when there exists fi ∈ R
Di (1 ≤ i ≤ d) such
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that ∀x = (x1, . . . , xd) ∈D, f (x)=∑d
i=1 fi(xi), it was shown by Durrande et al.

(2012) that

Proposition 1 If a centred RF Z possesses a kernel of the form

k
(
x,x′

)=
d∑
i=1

ki
(
xi, x

′
i

)
, (1)

where the ki ’s are arbitrary positive definite kernels over theDi ’s, then Z is additive
up to a modification, i.e., there exists a random field A with paths which are additive
functions and such that ∀x ∈D,P(Zx =Ax)= 1.

Are the kernels of the form k(x,x′)=∑d
i=1 ki(xi, x

′
i ) the only ones giving birth

to RFs with additive paths? For a different question, Ginsbourger et al. (2012) pro-
posed a characterization of kernels which associated centred RFs have their trajec-
tories invariant under the action of a finite group. Let G be a finite group acting on
D via

Φ : (x, g) ∈D×G−→Φ(x, g)= g · x ∈D.

Proposition 2 Z has invariant paths under Φ (up to a modification) if and only if
k is argumentwise invariant: ∀x ∈D,∀g ∈G,k(g · x, ·)= k(x, ·).

In Sect. 2 we show that both Propositions 1 and 2 are subcases of a general
result on RFs invariant under the class of combination of composition operators,
defined below. As a corollary, a characterization of kernels leading to RFs with
additive paths is given in Sect. 3, and it is shown that having the form of Eq. (1)
is not necessary. Sections 4 and 5 are dedicated to a discussion on the design of
experiments for RF models with invariant kernels, with examples in the additive
case.

2 Invariances and Combinations of Composition Operators

2.1 Composition Operators and Their Combinations

Definition 1 Let us consider an arbitrary function v : x ∈ D −→ v(x) ∈ D. The
composition operator Tv with symbol v is defined as

Tv : f ∈R
D −→ Tv(f ) := f ◦ v ∈R

D.

Remark 1 Such operators can be extended naturally to random fields indexed byD:

Tv(Z)x := Zv(x), ∀x ∈D.
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Definition 2 We call a combination of composition operators with symbols vi ∈DD
and weights αi ∈R (1≤ i ≤ q) the operator

T =
q∑
i=1

αiTvi .

2.2 Invariance Under a Combination of Composition Operators

Proposition 3 Let Z be a centred RF with kernel k. Then k is T-invariant, i.e.,

T
[
k
(·,x′)]= k(·,x′), ∀x′ ∈D (2)

if and only if Z equals T (Z) up to a modification, i.e.,

P
[
Zx = T (Z)x

]= 1, ∀x ∈D.
Proof (Sufficiency) Let us fix arbitrary x and x′. Since Zx is a modification
of T (Z)x, we have cov(Zx,Zx′) = cov[T (Z)x,Zx′ ] = cov(

∑q

i=1 αiZvi(x),Zx′), so
that

k
(
x,x′

)=
q∑
i=1

αik
(
vi(x),x′

)= T [k(·,x′)](x).

(Necessity) Using T [k(·,x′)] = k(·,x′), ∀x′ ∈ D, and var[T (Z)x] =
cov[Zx, T (Z)x] = var(Zx), we get var[Zx − T (Z)x] = 0. Since Z is centred, so
is T (Z), and hence Zx

a.s.= T (Z)x. �

Example 1 (Case of group-invariance) T (f )(x) = ∑#G
i=1

1
#Gf [vi(x)] with

vi(x) := gi.x (1≤ i ≤ #G) leads to Φ-invariant Z if and only if k is argumentwise
invariant.

3 Kernels Characterizing Centered Fields with Additive Paths

3.1 Additivity as Invariance Under a Combination of Compositions

Proposition 4 Assuming a ∈D, a function f :D→ R is additive if and only if f
is invariant under the following combination of composition operators:

T (f )(x)=
d∑
i=1

f
[
vi(x)

]− (d − 1)f
[
vd+1(x)

]
(x ∈D), (3)

where vi(x) := (a1, . . . , ai−1, xi︸︷︷︸
i-th coordinate

, ai+1, . . . , ad), and vd+1(x) := a.
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Proof (Sufficiency) This follows from T (f ) = f , f (x) = ∑d
j=1 fj (xj ) with

fj (xj ) := f [vj (x)] − d−1
d
f (a).

(Necessity) f (x)=∑d
j=1 fj (xj ) implies f [vi(x)] = fi(xi)+∑d

j=1,j �=i fj (aj ),
and so

T (f )(x)=
d∑
i=1

f
[
vi(x)

]− (d − 1)f (a)

=
d∑
i=1

fi(xi)+
d∑
i=1

d∑
j=1
j �=i

fj (aj )− (d − 1)f (a)

︸ ︷︷ ︸
0

= f (x).

�

3.2 Kernels Characterizing Centred Fields with Additive Paths

Corollary 1 A centred RF Z possessing a covariance kernel k has additive paths
(up to a modification) if and only if k is a positive definite kernel of the form

k
(
x,x′

)=
d∑
i=1

d∑
j=1

kij
(
xi, x

′
j

)
. (4)

Proof If Z has additive paths up to a modification, there exists an RF (Ax)x∈D with
additive paths such that P(Zx = Ax) = 1, ∀x ∈D, and so Z and A have the same
covariance kernel. Now, A having additive paths, Proposition 4 implies that Ax =∑d
i=1Avi(x) − (d − 1)Avd+1(x) =

∑d
i=1A

i
xi

, where Aixi := Avi(x) − (d−1)
d
Avd+1(x),

so (4) holds with kij (xi, x′j ) := cov(Aixi ,A
j

x′j
). Conversely, from Proposition 3, we

know that it suffices for Z to have additive paths that k(·,x′) is additive ∀x′ ∈ D.
For a kernel k such as in Eq. (4) and an arbitrary x′ ∈D, setting

∀xi ∈Di, k̃i
(
xi,x′

) :=
d∑
j=1

kij
(
xi, x

′
j

)
(1≤ i ≤ d),

we get k(x,x′)=∑d
i=1 k̃i (xi,x

′), ∀x ∈D, and so k(·,x′) is additive. �

4 Kriging-Equivalent Designs: Generalities and Invariant Case

We now focus on cases where two designs, X ∈Dn and X′ ∈Dn′ , bring the same
information on Z. We first give general results, and then specialize to invariant RFs.
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Definition 3 X′ and X are said to be Kriging-equivalent, which is denoted by
X′ ≡ X, iff the Kriging mean and variance of Z based on {Zx,x ∈ X} or
{Zx′ ,x′ ∈X′} coincide.

In particular two equivalent designs lead to the same Integrated Mean Squared
Error (IMSE). We now give a sufficient condition for two designs to be equivalent.

Proposition 5 If span(Zx′ ,x′ ∈X′)= span(Zx,x ∈X), then X′ ≡X.

Proof Kriging is characterized by the linear conditional expectations EL(Zu|Zx,

x ∈ X) and EL(ZuZv|Zx,x ∈ X) (u,v in D), and hence depends only on
span(Zx,x ∈X). �

Remark 2 If Z is also Gaussian, the equality of the two linear spans guarantees
that the whole conditional processes Z|Zx,x ∈X and Z|Zx′ ,x′ ∈X′ have the same
distribution. In particular, conditional simulations performed withX orX′ coincide.

Corollary 2 (Exchangeability condition) Assume that ∃x′ /∈X,Zx′ =∑
x∈X αxZx,

with αx �= 0,∀x ∈X. Then ∀x ∈X,X− {x} + {x′} ≡X ≡X+ {x′}.

Remark 3 The condition “αx �= 0,∀x ∈X” is one way to guarantee that the dimen-
sion of span(Zx,x ∈X) does not decrease when exchanging Zx for Zx′ .

Corollary 3 (Invariant kernels) Let us consider a combination of composition
operators T = ∑q

j=1 αjTvj , with ∀j = 1, . . . , q,αj �= 0, and assume that k is
T -invariant. For x ∈D, write Xv(x) := (v1(x), . . . , vq(x)). Then for j = 1, . . . , q ,
we have

Xv(x)≡Xv(x)−
{
vj (x)

}+ {x} ≡Xv(x)+ {x}.
Proof This results from the fact that T (Z)= Z (Proposition 3) and Corollary 2. �

Example 2 (Equivalent designs for additive kernels) Let us assume that Z is
2-dimensional, with an additive kernel k, and consider a rectangle design:

X = {
x(1) = (a1, a2),x(2) = (b1, a2),x(3) = (a1, b2),x(4) = (b1, b2)

}
,

with a,b ∈ D,a �= b. Then, all three-point designs contained in X are equivalent
to X:

(
x(1),x(2),x(3)

)≡ (
x(1),x(2),x(4)

)≡ (
x(1),x(3),x(4)

)≡ (
x(2),x(3),x(4)

)≡X.
Indeed, consider the operator T defined by T (f )(x)= f (a1, x2)+ f (x1, a2)−

f (a1, a2), as in Proposition 4 (d = 2). Relying on this proposition, k is T -invariant.
The result follows by applying Corollary 3 with q = 3 (α1 = α2 = 1, α3 =−1) and
x= (b1, b2).
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Fig. 1 MSE for two nine-point designs: (a) nine-point LHS design, (b) nine-point axis design.
The univariate kernels are Matérn 5/2 with parameters σ 2 = 1, θ = 0.2. For the (scrambled) LHS,
the IMSE is I = 0.196 whereas for the axis design I = 0.116

Example 3 (Equivalent designs for a group-invariant kernel) The case whereZ is in-
variant under the action of a group G is degenerate since the condition T (Z)x = Zx
is equivalent to: ∀g ∈G,Zx = Zg.x. Then it follows directly from Definition 3 that
replacing one point in X by any other point of its orbit gives an equivalent design:

(
x(1), . . . ,x(n)

)≡ (
g1 · x(1), . . . , gn · x(n)

)
, ∀g1, . . . , gn ∈G.

5 On Choosing Designs for RF Models with an Additive Kernel

Example 2 shows that additive kernels may lead to points with zero variance outside
the design. For LHS designs, such a configuration cannot occur (assuming, e.g.,
strict positive definiteness for at least one of the underlying univariate kernels) since
points of the design are never aligned vertically, nor horizontally. On the other hand,
designs where points are distributed parallel to the axis with a shared point at the
intersection, hereafter called “axis designs”, take advantage of this property since
they imply zero variance on a whole grid. This property is illustrated in Fig. 1.

Figure 2 compares, for different values of the number of points n, the IMSE of all
possible LHS designs with that of an axis design. In all cases, the space is divided
into an appropriate number of square cells (n2 for the LHS and ( n−1

2 + 1)2 for the
axis design) and the design points are located at the centres of some cells. It appears
that, except for n = 3, the tested configurations are always in favour of the axis
design. As the total number of possible LHS is n! for d = 2, it was practically in-
feasible to run the exhaustive comparison for more than 9 points. However, the right
panel of Fig. 2 shows the comparison between 100 maximin LHS designs generated
with the lhs R package (Carnell 2009) and the axis designs for various values of the
dimension d . As advocated in Loeppky et al. (2009), the number of points is taken
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Fig. 2 Comparisons of the IMSE of LH designs and axis designs: (a) influence of n for d = 2;
all possible LHS are enumerated and the integral in the IMSE expression is approximated by a
Riemann sum based on 512 points; the crosses represent the IMSE of axis designs; (b) influence of
d with n= 10×d+1; 100 maximin-LHS (upper series) are compared with the axis design (bottom
series). The variability in the IMSE of axis designs is due to the use of Monte Carlo methods for
integration. In both cases, the settings of the covariance are the same as in Fig. 1

of the order of 10 times the dimension: n= 10× d + 1. The graph suggests that the
axis designs become more and more superior to LHS as the dimension increases.
These numerical investigations show that axis designs seem particularly adapted for
fitting additive Kriging models.

However, axis designs are likely to perform poorly for nonadditive functions
since they do not fill the space. Fortunately, a direct application of Corollary 2 shows
that any design point can be moved to any other point where it induces a zero vari-
ance without introducing any change in the resulting Kriging equations. A straight-
forward application of this property is that the points distributed over one axis can
be scattered in an LHS fashion without modifying the IMSE. This approach is illus-
trated in Fig. 3. If the function to be approximated has an additive component but
also some interaction terms, the design presented in the right panel may efficiently
capture not only the additive component but also the interaction terms.

6 Concluding Remarks and Perspectives

Although (generalized) additive models (Hastie and Tibshirani 1990) and related
sparsity assumptions for high-dimensional data seem to have reached a golden age,
the science of designing kernels adapted for high-dimensional Kriging is still in its
infancy. In a recent article, Durrande et al. (2012) proposed a particular kind of ker-
nel leading to centred RFs with additive paths. Following their lead, we give here a
complete characterization of such kernels. This characterization appears in fact as
a particular case of a property involving so-called combinations of composition op-
erators. This property also generalizes another recent characterization of covariance
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Fig. 3 Example of Kriging-equivalent modifications of a design in the additive case. The axis
design is transformed into the sum of a five-point LHS design and another five-point LHS design
deprived of one point. These three designs lead to identical Kriging models when using a kernel
satisfying Eq. (4)

kernels leading to RFs with paths invariant under the action of a finite group on the
index set (Ginsbourger et al. 2012).

Some implications concerning the design of experiments are discussed, and it is
illustrated with an empirical study that the so-called class of axis designs outper-
forms Latin hypercubes in terms of the IMSE for most configurations (for n > 3)
in the case of an additive kernel. Furthermore, thanks to a proven exchangeabil-
ity property in the case of Kriging modelling with an invariant kernel, axis designs
can be modified so as to lead to better performance when interactions exist, while
preserving exactly the same features as the axis design in the additive case.

Future work includes an extended study of optimal designs for Kriging with an
invariant kernel. In addition, further generalisations of the present result on combi-
nation of composition operators may be worth looking at for better understanding
what kind of prior knowledge can (or cannot) be injected into an RF model (in the
Gaussian or in the general case), and how to practically implement kernels (Rous-
tant et al. 2012) incorporating given functional properties, with adapted parameter
estimation procedures.

References

Carnell, R.: lhs: Latin Hypercube Samples. R package version 0.5 (2009)
Durrande, N., Ginsbourger, D., Roustant, O.: Additive covariance kernels for high-dimensional

Gaussian process modeling. Ann. Fac. Sci. Toulouse 21, 481–499 (2012). http://hal.inria.fr/
hal-00446520/en

Duvenaud, D., Nickisch, H., Rasmussen, C.: Additive Gaussian processes. In: Proc. 25th Annual
Conference on Neural Information Processing Systems 2011 (2011). http://nips.cc/Conferences/
2011/

Ginsbourger, D., Bay, X., Roustant, O., Carraro, L.: Argumentwise invariant kernels for the ap-
proximation of invariant functions. Ann. Fac. Sci. Toulouse 21, 501–527 (2012). http://hal.
archives-ouvertes.fr/hal-00632815/

Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall/CRC, Boca Raton
(1990)

http://hal.inria.fr/hal-00446520/en
http://hal.inria.fr/hal-00446520/en
http://nips.cc/Conferences/2011/
http://nips.cc/Conferences/2011/
http://hal.archives-ouvertes.fr/hal-00632815/
http://hal.archives-ouvertes.fr/hal-00632815/


Kernels and Designs for Modelling Invariant Functions 115

Loeppky, J., Sacks, J., Welch, W.: Choosing the sample size of a computer experiment: a practical
guide. Technometrics 51, 366–376 (2009)

Rasmussen, C.R., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cam-
bridge (2006)

Roustant, O., Ginsbourger, D., Deville, Y.: Two R packages for the analysis of computer experi-
ments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51, 1–55 (2012). http://
www.jstatsoft.org/v51/i01

Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Experiments. Springer,
New York (2003)

http://www.jstatsoft.org/v51/i01
http://www.jstatsoft.org/v51/i01


Optimal Design for Count Data with Binary
Predictors in Item Response Theory

Ulrike Graßhoff, Heinz Holling, and Rainer Schwabe

Abstract The Rasch Poisson counts model (RPCM) allows for the analysis of men-
tal speed which represents a basic component of human intelligence. An extended
version of the RPCM, which incorporates covariates in order to explain the diffi-
culty, provides a means for modern rule-based item generation. After a short intro-
duction to the extended RPCM we develop locally D-optimal calibration designs
for this model. To this end the RPCM is embedded in a particular generalized linear
model. Finally, the robustness of the derived designs is investigated.

1 Introduction

Reasoning, memory, creativity and mental speed are among the most important fac-
tors of human intelligence (Jäger 1984). Mental speed refers to the human ability to
carry out mental processes, required for the solution of a cognitive task, at variable
rates or increments of time. Usually, mental speed is measured by elementary tasks
with low cognitive demands in which the speed of response is primary. As Rasch
(1960) already showed in his classical monograph, elementary cognitive tasks can
be analyzed by the so-called Rasch Poisson counts model. Other successful appli-
cations of this model have been published by, e.g., Jansen (1997) and Verhelst and
Kamphuis (2009).
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Typical items measuring mental speed can be differentiated by task characteris-
tics or rules that correspond to cognitive operations to solve an item. The kind and
amount of task characteristics influence the difficulty of the items. The task char-
acteristics can be used to predict the task difficulty analogously to linear logistic
models for reasoning items (Graßhoff et al. 2010).

2 Poisson Model for Count Data

According to the Rasch Poisson count model, the number of correct answers is as-
sumed to follow a Poisson distribution with intensity λ= θσ , where θ is the ability
of the test person and σ is the easiness of the test item. Obviously, the (expected)
number of correct answers will increase simultaneously with the ability of the per-
son and the easiness of the task.

In the following, we consider the calibration step for the test items, when the
ability of the test person is assumed to be known. The dependence of the easiness
of an item on the rules may then be specified by a Poisson regression (Poisson
ANOVA) model with exponential link.

More formally, the number of correct answers Y(x) is Poisson distributed with
intensity λ(x;β) = θ exp(f(x)�β), where x is the experimental setting (“rules”),
which may be chosen from a specific experimental region X , σ = exp(f(x)�β) is
the easiness of the item, f= (f1, . . . , fp)

� is a vector of known regression functions,
and β ∈R

p the vector of unknown parameters to be estimated.
As rules may be applied or not, we will focus on the situation of a K-way lay-

out with binary explanatory variables xk , where xk = 1, if the k-th rule is applied,
and xk = 0 otherwise. In particular, if xk = 0 for all rules k, a basic item is pre-
sented. The experimental setting is then x= (x1, . . . , xk) ∈ {0,1}K . As we assume
no interactions, the vector of regression functions is f(x)= (1, x1, x2, . . . , xk)

�, and
the parameter vector β consists of a constant term β0 and K main effects βk . Thus
p = K + 1 and the expected response equals the intensity λ(x;β) = θ exp(β0 +∑K
k=1 βkxk).

3 Information and Design

For a single observation the Fisher information is M(x;β) = λ(x;β)f(x)f(x)�,
which depends on the particular setting x and additionally on β through the
intensity. Consequently, the normalized information matrix equals M(ξ ;β) =
1
N

∑N
i=1 M(xi;β) for an exact design ξ consisting of N design points x1, . . . ,xN .

For analytical ease we shall make use of approximate designs ξ with mutually dif-
ferent design points x1, . . . ,xn, say, and the corresponding (real valued) weights
wi = ξ({xi}) ≥ 0 with

∑n
i=1wi = 1 in the spirit of Kiefer (1974). This ap-

proach seems appropriate, as typically the number N of items presented may be
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quite large. The information matrix is then more generally defined as M(ξ ;β) =∑n
i=1wiλ(xi;β)f(xi )f(xi )�.
As is common in generalized linear models, the information matrix and, hence,

optimal designs will depend on the parameter vector β . For measuring the quality
of a design, we will use the popular D-criterion. More precisely, a design ξ will
be called locally D-optimal at β if it maximizes the determinant of the information
matrix M(ξ ;β).

In the present situation the intensity and, hence, the information is proportional
to θ and exp(β0) such that M(ξ ;β) = θ exp(β0)M0(ξ ;β), where M0(ξ ;β) is the
information matrix in the standardized situation θ = 1 and β0 = 0. Thus for a fixed
person only det(M0(ξ ;β)) has to be optimized. Throughout the remainder of the
paper, and without loss of generality, we will assume the standardized case (θ = 1,
β0 = 0). If more than one test person is involved, then the same optimal design has
to be applied to each of them. When the choice of the test persons is at the disposal
of the examiner, the person with the highest ability provides the most information.

4 Two Way-Layout with Binary Predictors

Before starting the case of a two-way layout we notice that for the situation of only
one rule (K = 1) the D-optimal design assigns equal weights w∗i = 1/2 to the only
two possible settings x1 = 1 of application of the rule and x2 = 0 of the basic item
independently of β , as all (regular) designs are saturated.

Our main focus, however, is on K = 2 binary explanatory variables, where the
number of parameters equals p = 3. Here the four possible settings are x1 = (1,1),
where both the rules are applied, x2 = (1,0) and x3 = (0,1), where either only
the first or the second rule is used, respectively, and x4 = (0,0) for the basic
item. Hence, any design ξ is completely determined by the corresponding weights
w1, . . . ,w4. In what follows, we denote by λi = λ(xi;β) the related intensities.
Then the information matrix of a design ξ results in

M(ξ ;β)=
⎛
⎝

∑4
i=1wiλi w1λ1 +w2λ2 w1λ1 +w3λ3

w1λ1 +w2λ2 w1λ1 +w2λ2 w1λ1
w1λ1 +w3λ3 w1λ1 w1λ1 +w3λ3

⎞
⎠

with the determinant equal to

det
(
M(ξ ;β))=w1w2w3λ1λ2λ3 +w1w2w4λ1λ2λ4

+w1w3w4λ1λ3λ4 +w2w3w4λ2λ3λ4.

Candidates for optimal designs will be either saturated designs on any three of
these settings with the corresponding weights wi = 1/3 or “true” four-point de-
signs with suitable positive weights for all four settings. As we will see later, all
these cases may occur depending on the values of the effect sizes β1 and β2 of the
two rules. For the saturated designs denote by ξij the equally weighted three-point
design on the setting (i, j) and its two adjacent settings (i,1 − j) and (1 − i, j)
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Fig. 1 Dependence of locally
D-optimal designs on
(β1, β2)

for i, j = 0,1. For example ξ00 is the equally weighted design on (0,0), (0,1)
and (1,0).

In the present application it is reasonable to investigate the case β1 ≤ 0 and
β2 ≤ 0, as it is to be expected that the application of a rule increases the difficulty
and, hence, decreases the easiness of an item. Other parameter constellations can be
treated by symmetry considerations.

Russell et al. (2009) treated the situation of continuous predictors. From their
result we may conclude that in our setting the design ξ00, which avoids the most
difficult item, is locally D-optimal for β1 = β2 =−2.

For other non-positive values of β1 and β2 we can derive that the design ξ00 is
locally D-optimal if and only if λ2λ3λ4 − λ1λ2λ4 − λ1λ3λ4 − λ1λ2λ3 ≥ 0 by the
celebrated equivalence theorem, see, e.g., Silvey (1980). This condition is fulfilled
if and only if β2 ≤ log((1−exp(β1))/(1+exp(β1))). Otherwise, a “true” four-point
design will be optimal.

By considerations of equivariance, similar conditions can be derived for the other
sign combinations in β , and we can state that some saturated design is locally
D-optimal if and only if β1 �= 0 and |β2| ≥ log((exp(|β1|)+ 1)/(exp(|β1|)− 1)).

In Fig. 1 the parameter regions of β1 and β2 are depicted, where the saturated de-
signs are locally D-optimal. From this picture it can be seen that saturated designs
are optimal if the effect sizes are large, and then that level combination is avoided,
which results in the lowest intensity. Conversely, for the interior diamond shaped
region, where |β2| < log((exp(|β1|)+ 1)/(exp(|β1|)− 1)), a “true” four-point de-
sign will be locally D-optimal. Similar results have been obtained by Yang et al.
(2012) for binary response. In the case of vanishing effects, β1 = β2 = 0, the infor-
mation matrix coincides with the corresponding linear model of a two-way layout,
and the equally weighted design is optimal with weights wi = 1/4 on all four level
combinations x1, . . . ,x4 (Cox 1988).

Next we consider two particular parameter constellations, where either one of
the effect sizes vanishes or where the two effect sizes are equal. For the first case
we assume β1 = 0, which corresponds to the vertical axis in Fig. 1. The intensity
λ(x;β) is constant in the first component, λ1 = λ3 = exp(β2) and λ2 = λ4 = 1.
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Fig. 2 Left panel: optimal weights w∗1 = w∗3 (solid line) and w∗2 = w∗4 (dashed line) for β1 = 0.
Right panel: w∗1 (solid line), w∗2 =w∗3 (dashed line) and w∗4 (dotted line) for β1 = β2 = β

According to Theorem 1 in Graßhoff et al. (2004) we obtain an optimal product-
type design ξ∗ defined by ξ∗(x) = ξ∗2 (x2)/2 and the marginal weight v∗ = ξ∗2 (1)
maximizes v(1 − v)(1+ (λ1 − 1)v). If, additionally, β2 = 0, then λ1 = 1 and the
optimal marginal weight equals v∗ = 1/2, from which we recover the optimality
of the equally weighted four-point design. If β2 �= 0, then λ1 �= 1 and the optimal
weight can be calculated as

v∗ = 1

2
+ τ − 2

√
τ 2 − 3

6(exp(β2/2)− exp(−β2/2)
,

where τ = exp(β2/2)+ exp(−β2/2). Note that 1/3< v∗ < 2/3. Consequently, we
get 1/6 < w∗i < 1/3 as w∗1 = w∗3 = v∗/2 and w∗2 = w∗4 = (1 − v∗)/2. The left
panel of Fig. 2 exhibits these weights as functions of β2. The weights w∗1 =w∗3 for
x1 = (1,1) and x3 = (0,1) decrease as β2 →−∞, i.e., if these items become more
difficult. Hence, more observations should be allocated to the other items x2 = (1,0)
and x4 = (0,0) with lower difficulty. The case β2 = 0 can be treated analogously.

Another parameter constellation where we can explicitly determine the optimal
weights is the situation of equally sized effect sizes, |β2| = |β1|. In particular, we
consider the case β2 = β1 = β , which is relevant for our application and which
corresponds to the dashed line in Fig. 1. Here the intensities are λ1 = exp(2β),
λ2 = λ3 = exp(β) and λ4 = 1. Owing to symmetry considerations with respect to
swapping the factors, we can conclude that the optimal weights satisfy w∗2 = w∗3 .
The saturation condition above leads to |β| ≥ log(

√
2 + 1) ≈ 0.881. Hence, for

β ≤− log(1+√2) the design ξ00 is locally D-optimal, while for β ≥ log(1+√2)
this is true for the design ξ11. For the intermediate case, |β| < log(1 + √2), the
determinant is optimized by

w∗2 =w∗3 =
4γ + 2

√
γ 2 + 12

3(4− γ 2)
,
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where γ = exp(β)+ exp(−β)− 4, and

w∗1,4 =
1

2
−w∗2 ±

1

4

(
exp(β)− exp(−β))w∗2 .

The right panel of Fig. 2 presents the dependence of the weights of the locally
D-optimal designs on β . The passage from an optimal design with four points to
an optimal saturated design takes place continuously in the weights at the critical
values β =±log(1+√2), and the symmetry properties of the optimal weights be-
come evident from the picture. Again the equally weighted four-point design can be
recovered to be optimal for the case of vanishing effects (β = 0). The case β2 =−β1

can again be treated analogously by symmetry considerations.

5 Robustness

Locally D-optimal designs may show poor performance if false initial values are
specified for the parameters. Therefore, a sensitivity analysis has to be performed,
and we shall compare the efficiency of a saturated design with that of the equally
weighted four-point design, which is optimal for β1 = β2 = 0. The D-efficiency of
a design ξ is defined by eff(ξ ;β) = (det(M(ξ ;β))/det(M(ξ∗β ;β)))1/p , where ξ∗β
denotes the locally D-optimal design at β and p is the dimension of the parameter
vector (here p = 3).

In particular, we consider again the saturated design ξ00. In the left panel of Fig. 3
the efficiency is exhibited for the situation of one vanishing effect (β1 = 0). The effi-
ciency of the saturated design ξ00 (solid line) tends to 1 as β2 →−∞ and tends to 0
as β2 →+∞. The efficiency of the equally weighted four-point design (dashed line)
drops from 1 for β2 = 0, where this design is locally optimal, to (27/32)1/3 ≈ 0.945,
when |β2| tends to infinity. In the right panel of Fig. 3 the efficiency is plotted for
equal effect sizes (β2 = β1 = β). The saturated design ξ00 is locally D-optimal
and, hence, has the efficiency 1 for β ≤− log(1+√2). If β increases beyond this
critical value, the efficiency of ξ00 decreases, and for β ≥ log(1 + √2) the effi-
ciency equals exp(−2β)1/3, which finally drops down to 0. For the efficiency of the
equally weighted four-point design we observe again the value of 1 at β = 0 and a
lower bound of 3/4, which is approached for |β| →∞. Thus the equally weighted
four-point design seems to be essentially more robust to misspecifications of the
parameter values than the saturated designs.

Finally, we note that the equally weighted four-point design is maximin effi-
cient for symmetric parameter regions, which follows from a corresponding result
in Graßhoff and Schwabe (2008), as this design is the only invariant design with
respect to permutations of the levels. Similar arguments may also establish that the
equally weighted four-point design is also optimal for weighted (“Bayesian”) crite-
ria, when the weight function is symmetric in the parameters.
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Fig. 3 Efficiencies of the saturated design ξ00 (solid line) and the equally weighted four-point
design (dashed line). Left panel: β1 = 0. Right panel: β1 = β2 = β

6 Conclusion

In this article we developed locallyD-optimal designs for the Rasch Poisson counts
model including two binary explanatory variables. If the effect sizes are large, satu-
rated designs proved to be optimal. However, this condition implies, at least, a ratio
of (1+√2)2 ≈ 5.83 between the highest and the lowest intensity. Such a ratio is
quite unrealistic in our applications of the RPCM for rule-based testing of men-
tal speed. Hence, four-point designs will mostly be required for the corresponding
calibration studies.

For two particular parameter constellations optimal weights have been derived.
For these cases it has been shown that uniform four-point designs are very robust.
Since rule-based tests of mental speed often include more than two task characteris-
tics, we will, as a next step, develop locally D-optimal designs for the RPCM with
K > 2 binary explanatory variables.
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Differences between Analytic and Algorithmic
Choice Designs for Pairs of Partial Profiles

Heiko Großmann

Abstract Choice experiments are widely used for measuring how the attributes
of goods or services influence preference judgments. To this end, a suitable ex-
perimental design is used to combine attribute levels into options or profiles and
to further arrange these into choice sets. Often incomplete descriptions of the op-
tions, which are known as partial profiles, are used in order to reduce the amount
of information respondents need to process. For the situation where the choice sets
are pairs, where only the main effects of the attributes are of interest and where
the attributes fall into two groups such that all attributes within a group have the
same number of levels, optimal designs which were obtained analytically are com-
pared with algorithmically generated designs. For the situations considered, there
are sometimes substantial differences between the efficiencies of the two types of
design.

1 Introduction

Choice experiments mimic situations where individuals face a decision between a
number of competing real or, more frequently, hypothetical options. The goal is to
find out why, for example, certain products are preferred over others and to quantify
the influence of the dimensions or attributes which characterize the choice alterna-
tives. Individuals are asked to consider several choice sets and to pick the, usually,
most preferred option from each choice set. More details about this type of exper-
iment, methods of analysis and examples of applications can be found in Louviere
et al. (2000) and Train (2003).

After identifying the attributes and levels which are deemed to represent the most
important characteristics of the, say, products of interest, an integral part of a choice
experiment is the design of the choice sets. This amounts to generating so-called
profiles or, more technically, vectors of attribute level combinations which repre-
sent the choice options and to arranging the profiles into choice sets of a, typically,
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fixed size. Usually the two steps are interrelated and the profiles and choice sets
are created simultaneously. Choice sets of size two, three or four appear to be most
commonly used in practice. In this paper, only paired comparisons are considered,
that is choice experiments with choice sets of size two. General results about the de-
sign of these experiments have been presented by Graßhoff et al. (2004) and Street
and Burgess (2007), among others.

The number of attributes is one of the dimensions which have an effect on the
complexity of the choice task (Caussade et al. 2005). High task complexity is as-
sociated with a greater amount of information that needs to be processed. If the
task is too demanding, individuals may resort to simplifying response strategies
when making their preference judgments, such as considering only the most im-
portant attributes. The assumption common to many choice models that the effects
of the attributes combine linearly becomes questionable when such strategies are
applied.

One approach which attempts to avoid the possibly detrimental effects of high
task complexity uses so-called partial profiles (Chrzan 2010) where, within ev-
ery choice set, only the levels of a few of the attributes are allowed to change.
For example, in a choice experiment with five attributes, the partial profiles in
every given choice set may differ in only three of the attributes, while the lev-
els of the remaining two attributes are held constant across all the alternatives
in the set. In practice, often then only the attributes which are not fixed are
shown.

Although the name ‘partial profiles’ was only coined later, designs for ex-
periments involving such profiles appear to have been considered first in Green
(1974). That paper presents some general ideas, but does not consider the ef-
ficiency of the designs. Optimality results and constructions for pairs of par-
tial profiles when all attributes have the same number of levels and only the
main effects are to be estimated are given in Graßhoff et al. (2004). Extensions
to situations with different numbers of levels are presented in Großmann et al.
(2006, 2009). The first of these papers derives the general form of the informa-
tion matrix of optimal designs and proves a sufficient condition for optimality,
while the second paper gives constructions of exact optimal designs for the case
where there are two groups of attributes such that within each group the num-
ber of levels is constant. An optimal design algorithm for generating partial pro-
file choice designs with choice sets of any size is described in Kessels et al.
(2011). A version of this algorithm is implemented in the JMP10 software (JMP
2012).

In what follows, some simple experiments are considered, where the choice sets
are pairs of partial profiles. As in Großmann et al. (2009) it is assumed that only the
main effects of the attributes are to be estimated and, moreover, that the attributes fall
into two groups with the same number of levels within each group. In this setting,
optimal designs which were obtained analytically are compared with designs that
were generated algorithmically by using the JMP10 software.
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2 Designs for Pairs of Partial Profiles

2.1 Model and Information Matrix

A common model for choice experiments is the multinomial logit or, in short, MNL
model. For an experiment with N choice sets Cn, n= 1, . . . ,N , each of which con-
tains m options xn,1, . . . ,xn,m, this model assumes that the probability of choosing
xn,i from Cn is given by

P(xn,i;Cn)= exp[f(xn,i)�β]∑m
j=1 exp[f(xn,j )�β] , (1)

where f is a vector of known regression functions and β a vector of unknown param-
eters. Every option xn,i is a vector whose components are the levels of K attributes,
which here are assumed to be qualitative factors with a finite number of levels. The
levels of an attribute with u levels are represented by the integers 1,2, . . . , u. For an
exact design ξ with N choice sets C1, . . . ,CN the information matrix, normalized
by the number of choice sets, is equal to

M(ξ,β)= 1

N

N∑
n=1

X�n
(
Diag(pn)− pnp�n

)
Xn, (2)

where Xn is a matrix with rows f(xn,1)�, . . . , f(xn,m)�. Further, pn is a column
vector with elements P(xn,1;Cn), . . . ,P (xn,m;Cn). In what follows, designs are
compared in terms of theD-optimality criterion, which aims to maximize the deter-
minant of the information matrix.

Only choice sets of size m = 2, that is pairs, are considered. In this case the
probability in (1) of choosing the first option xn,1 from the pair Cn can be writ-
ten as P(xn,1;Cn) = exp[(f(xn,1)− f(xn,2))�β]/(1+ exp[(f(xn,1)− f(xn,2))�β]),
which shows that standard logistic regression with appropriately coded explanatory
variables can be used to estimate the model parameters.

The information matrix in (2) depends on the unknown parameter vector β . How-
ever, for the purpose of deriving optimal or efficient designs, the assumption β = 0
is frequently made, which means that every option has the same probability of being
chosen from a choice set. Sometimes the corresponding designs are called utility-
neutral (Kessels et al. 2011). Under this assumption, for every exact design ξ where
C1, . . . ,CN are pairs of alternatives it follows that

M(ξ,0)= 1

4N
X�X= 1

4
M(ξ),

where X with rows (f(xn,1)− f(xn,2))� is the design matrix and M(ξ) the normal-
ized information matrix for the linear paired comparison model

Y(xn,1,xn,2)=
(
f(xn,1)− f(xn,2)

)�
β + ε. (3)

Thus designs which are D-optimal for the model (3) are also optimal for the MNL
model with choice sets of size m= 2.
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For experiments which use partial profiles, the number S < K of attributes for
which the options in a choice set can have different levels and which is also known
as the profile strength (Graßhoff et al. 2004) is determined prior to generating the
design. For pairs of partial profiles the design region X ∗(S) for the model (3) is
then the set of all ordered pairs (xn,1,xn,2) which have different levels for exactly S
of the attributes.

2.2 Two Groups of Factors

In applications, several of the K attributes often share the same number of levels.
In the simplest case, after a possible reordering, each of the first 1 ≤ K1 < K at-
tributes possesses u1 levels and each of the remaining K2 =K −K1 attributes has
u2 levels, where u1 < u2. If the levels of these attributes are effects-coded, then
the vector of regression functions for option xn,i can be represented as f(xn,i) =
(f1(xn,i)�, . . . , fK(xn,i)�)�, where for k = 1, . . . ,K1 and i = 1,2 the component
fk(xn,i) is a column vector of length q1 = u1− 1. If the k-th element xn,i,k of xn,i is
smaller than u1, then fk(xn,i) has a 1 in position xn,i,k and all other components are
equal to zero. Otherwise, if xn,i,k = u1, then fk(xn,i)=−1q1 , that is all components
of the vector are equal to −1. The K2 attributes with u2 levels are coded similarly.
There are then p =K1q1 +K2q2 model parameters in total, where q2 = u2 − 1.

The pairs in X ∗(S) can be classified according to their type. More precisely,
for a given profile strength S < K a set of pairs is of type (n1, n2), where n1 +
n2 = S, if for every pair (x1,x2) in the set the profiles have different levels for n1
attributes with u1 levels and for n2 attributes with u2 levels. For the case of two
groups of factors it can be shown (Großmann et al. 2009) that there exist D-optimal
designs which use at most two different types of pairs. Table 1 distinguishes five
cases (a)–(e) and gives the types of pairs which form the support of a D-optimal
approximate design ξ in each case. The corresponding weights can be found in
Großmann et al. (2009). The information matrix in the model (3) of such an optimal
design ξ is block-diagonal and under effects-coding equal to

M(ξ)=
(
c1(IK1 ⊗Mu1) 0

0 c2(IK2 ⊗Mu2)

)
, (4)

where Mui = 2
ui−1 (Iui−1 + 1ui−11�ui−1) for i = 1,2. In the cases (a)–(d) of Table 1

the constants c1 and c2 in (4) are equal to c1 = q1S/p and c2 = q2S/p, respectively,
whereas in case (e) the constants are c1 = 1− (K − S)/K1 and c2 = 1.

By using Hadamard and weighing matrices,D-optimal exact designs with practi-
cal numbers of pairs can be constructed which use only the types of pairs in Table 1.
For each of the above cases (a)–(e) several constructions are presented in Groß-
mann et al. (2009). An example of an optimal design with N = 24 pairs for K1 = 3,
K2 = 2, u1 = 2, u2 = 4 and S = 3, which provides an illustration of case (e), is
shown in the left panel of Table 2. In the table, an asterisk (∗) indicates an attribute
level that is held constant in a pair. Since the constant levels have no effect on the
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Table 1 Types (n1, n2) of pairs used by D-optimal partial profile designs for two groups

Case Conditions Pair type

(a) K1,K2 ≥ S (S,0) and (0, S)

(b) K2 ≥ S >K1 (K1, S −K1) and (0, S)

(c) K1 ≥ S >K2 and q2S < p (S −K2,K2) and (S,0)

(d) S >K1,K2 and q2S < p (K1, S −K1) and (S −K2,K2)

(e) S >K2 and q2S ≥ p (S −K2,K2)

Table 2 Partial profile designs with N = 24 pairs for K1 = 3, K2 = 2, u1 = 2, u2 = 4 and S = 3

Pair Optimal design Pair JMP10 design

1 ((2,∗,∗,2,2), (1,∗,∗,1,1)) 1 ((1,1,2,2,4), (2,1,2,3,2))

2 ((2,∗,∗,3,3), (1,∗,∗,1,1)) 2 ((1,2,1,1,3), (1,1,2,1,3))

3 ((∗,2,∗,4,4), (∗,1,∗,1,1)) 3 ((1,2,1,4,4), (2,2,1,1,4))

4 ((∗,2,∗,3,3), (∗,1,∗,2,2)) 4 ((1,1,1,2,3), (1,2,2,1,3))

5 ((∗,∗,2,4,4), (∗,∗,1,2,2)) 5 ((2,2,1,2,2), (1,2,1,3,1))

6 ((∗,∗,2,4,4), (∗,∗,1,3,3)) 6 ((2,2,2,4,1), (1,1,2,3,1))

7 ((1,∗,∗,2,1), (2,∗,∗,1,2)) 7 ((2,2,2,3,2), (2,2,1,1,1))

8 ((1,∗,∗,3,1), (2,∗,∗,1,3)) 8 ((2,2,2,2,4), (2,2,1,1,2))

9 ((∗,1,∗,4,1), (∗,2,∗,1,4)) 9 ((1,1,2,1,3), (1,2,2,2,1))

10 ((∗,1,∗,3,2), (∗,2,∗,2,3)) 10 ((1,1,2,2,2), (2,2,2,2,1))

11 ((∗,∗,1,4,2), (∗,∗,2,2,4)) 11 ((2,2,1,3,3), (1,1,2,3,3))

12 ((∗,∗,1,4,3), (∗,∗,2,3,4)) 12 ((1,1,2,3,1), (2,1,1,3,4))

13 ((1,∗,∗,1,2), (2,∗,∗,2,1)) 13 ((1,1,1,2,3), (2,2,1,2,1))

14 ((1,∗,∗,1,3), (2,∗,∗,3,1)) 14 ((2,1,1,4,1), (2,2,1,1,3))

15 ((∗,1,∗,1,4), (∗,2,∗,4,1)) 15 ((2,2,1,1,4), (1,2,2,1,1))

16 ((∗,1,∗,2,3), (∗,2,∗,3,2)) 16 ((2,1,2,1,3), (1,2,1,1,3))

17 ((∗,∗,1,2,4), (∗,∗,2,4,2)) 17 ((2,1,1,3,1), (1,1,1,3,1))

18 ((∗,∗,1,3,4), (∗,∗,2,4,3)) 18 ((2,2,2,1,3), (1,1,2,1,4))

19 ((2,∗,∗,1,1), (1,∗,∗,2,2)) 19 ((2,1,2,1,4), (2,1,1,3,3))

20 ((2,∗,∗,1,1), (1,∗,∗,3,3)) 20 ((2,1,2,4,3), (2,2,1,4,2))

21 ((∗,2,∗,1,1), (∗,1,∗,4,4)) 21 ((2,2,1,2,2), (1,2,2,3,2))

22 ((∗,2,∗,2,2), (∗,1,∗,3,3)) 22 ((1,1,1,1,4), (1,2,2,2,4))

23 ((∗,∗,2,2,2), (∗,∗,1,4,4)) 23 ((2,2,1,3,4), (2,1,2,3,3))

24 ((∗,∗,2,3,3), (∗,∗,1,4,4)) 24 ((2,2,2,4,2), (1,2,1,2,2))

optimality of the designs, the ‘∗’ symbols which occur in the same position in the
two options of a pair can be replaced with any of the levels of the corresponding
attribute.
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Großmann et al. (2009) also report the parameters needed for constructing op-
timal partial profile designs with at most N = 100 pairs for all situations with
4 ≤ K ≤ 6 attributes in two groups with 2 ≤ u1 ≤ 4 and u1 < u2 ≤ 5 levels and
profile strength S = 2 or S = 3. The corresponding designs are available on the
Internet at http://www.maths.qmul.ac.uk/~hg/PP2G/.

3 Efficiency Comparison

Optimal design algorithms for generating partial profile designs for experiments
with choice sets of any size, for any number of attributes and levels, and arbitrary
profile strength are presented in Kessels et al. (2011). These can be used to generate
utility-neutral designs, that is under the assumption β = 0, but also allow the speci-
fication of a distribution for the model parameters at the design stage. In this section
only designs for β = 0 are considered.

The algorithms generalize ideas of Green (1974) and proceed in two stages. First,
the attributes that are held constant in the choice sets are determined and, secondly,
the levels of the attributes that can change are computed. When the so-called unre-
stricted algorithm (Kessels et al. 2011) is used, then in some choice sets the number
of attributes that do change can be smaller than the intended profile strength. A ver-
sion of this unrestricted algorithm is implemented in the JMP10 software and in this
section for the case of two groups of attributes we compare the designs in Groß-
mann et al. (2009) with the corresponding utility-neutral designs generated by the
software. The second design in Table 2 is one example. It should be noted that in-
stead of using asterisks to indicate constant levels, the software produces designs
which have levels for all attributes.

For all designs in Table 2 of Großmann et al. (2009) with K = 4 or K = 5 at-
tributes, the corresponding utility-neutral JMP10 designs were generated by select-
ing the options to ignore the prior information and to ignore the prior variance.
Moreover, the number of randomly chosen starting designs was set to thirty in all
cases. Since in some of the examples in Kessels et al. (2011) two thousand random
starts were used, this number appears to be very small. The reason for choosing a
small number of random starts is, however, that although for small designs the al-
gorithm runs very quickly, for some larger examples several hours were needed to
generate the designs.

Table 3 reports D-efficiency values of the JMP10 designs, which are computed
in the usual way as the p-th root, where p =K1q1 +K2q2 is the number of model
parameters, of the ratio of the determinant of the information matrix of the algo-
rithmic design divided by the determinant of the information matrix of the optimal
design. The latter matrix is the one in (4) with constants c1 and c2 given earlier. For
convenience, in the table the efficiency values are reported as percentages. It should
be noted that the software does not appear to routinely provide the efficiency of the
designs and that all values in Table 3 were computed outside JMP10. The ‘ID’ col-
umn gives the name of the construction in Table 1 of Großmann et al. (2009) that

http://www.maths.qmul.ac.uk/~hg/PP2G/
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Table 3 Efficiency of
designs generated by JMP10
software

K K1 K2 u1 u2 S ID Pairs D-Efficiency (%)

4 1 3 2 3 3 b4 42 92.60

4 2 2 2 3 2 a1 18 89.44

4 2 2 2 3 3 e1 12 85.17

4 2 2 2 4 2 a1 16 75.45

4 2 2 2 4 3 e1 24 83.32

4 2 2 2 5 2 a1 50 77.15

4 2 2 2 5 3 e1 40 78.93

4 2 2 3 4 2 a1 60 93.76

4 2 2 3 5 2 a1 90 90.26

4 3 1 2 3 2 c2 30 93.36

4 3 1 2 3 3 e2 36 93.51

4 3 1 2 4 2 e1 12 76.56

4 3 1 2 4 3 e2 72 90.42

4 3 1 2 5 2 e1 60 73.38

4 3 1 3 4 2 c2 54 94.27

5 1 4 2 3 3 b3 36 90.94

5 2 3 2 3 2 a2 24 82.69

5 2 3 2 3 3 b2 96 93.00

5 2 3 2 4 2 a2 44 78.97

5 2 3 2 5 2 a2 70 75.53

5 3 2 2 3 2 a3 42 88.89

5 3 2 2 3 3 c2 28 89.49

5 3 2 2 4 2 a3 18 70.21

5 3 2 2 4 3 e1 24 74.28

5 3 2 3 4 2 a3 72 92.62

5 3 2 3 4 3 c2 96 93.71

5 4 1 2 3 2 c1 36 92.27

5 4 1 2 3 3 e1 24 89.81

5 4 1 2 4 2 c1 28 78.28

5 4 1 2 4 3 e1 24 84.21

5 4 1 2 5 2 e1 40 68.89

5 4 1 2 5 3 e1 40 78.97

was used to generate the optimal design. A letter in a name, such as b3, refers to the
corresponding case in Table 1 and the number to one of the available constructions
for that case.

The highest efficiency in the table is 94.27 %, but there are several cases where
the efficiency of the algorithmic design is well below 80 %. One referee pointed
out that in all such cases the difference between u2 and u1 is greater than or equal
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to two. There are, however, also situations where u2 − u1 ≥ 2 and the efficiency is
greater than 90 %. When the optimal design uses construction e1, the efficiency
of the JMP10 design tends to be relatively low. This is of some interest, since the
constants c1 and c2 in (4) for case (e) in Table 1 are different from the corresponding
values in the other cases (a)–(d).

The results in Table 3 may be explained in part by the fact that the algorithm
tries to achieve ‘attribute balance’ (Kessels et al. 2011, 2012) when choosing the
attributes whose levels are held constant, without taking into account the numbers
of levels, whereas the optimal designs in Großmann et al. (2009) do not possess this
property. Kessels et al. (2012) therefore suggest selecting the constant attributes by
means of a weighted criterion, where the weights depend on the numbers of levels
and their form is motivated by the results of Graßhoff et al. (2004) and Großmann
et al. (2009).

4 Concluding Remarks

The efficiency comparison in the current paper appears to indicate that there is still
scope for improving design algorithms for choice experiments involving partial pro-
files. It should be emphasized however that the findings reported here should not be
overgeneralized. The comparisons are only for the very specific situation of pairs
and two groups of attributes with different numbers of levels. Moreover, the num-
ber of starting designs for the algorithm was relatively small and increasing that
number will probably give more efficient designs. Both reviewers of the paper rec-
ommended at least 1000 random starts. While this is possible for small examples,
it does not seem to be practical when there are, say, about eighty choice sets. Here
for reasons of uniformity thirty random starts were used in all examples, despite
which the program sometimes ran for several hours. It should also be noted that the
default number of starting designs in the JMP10 software appears to be even smaller
than thirty, so that users who stick to the default option will only use a few starting
designs.

The optimal designs used in the comparison require very specific numbers of
pairs and hence are much less widely applicable than those that can be provided
by algorithms such as the JMP10 implementation of the method in Kessels et al.
(2011). Still, it appears that these designs provide a useful benchmark for as-
sessing the performance of design algorithms. The constructions in Großmann
et al. (2009) can be modified to generate smaller designs which still possess a
block-diagonal information matrix giving rise to a type of algorithm which is
quite different from standard approaches. It is hoped to report these ideas else-
where.
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Differences between Analytic and Algorithmic Choice Designs for Partial Profiles 133

References

Caussade, S., Ortúzar, J.de D., Rizzi, L.I., Hensher, D.A.: Assessing the influence of design dimen-
sions on stated choice experiments. Transp. Res. 39B, 621–640 (2005)

Chrzan, K.: Using partial profile choice experiments to handle large numbers of attributes. Int. J.
Mark. Res. 52, 827–840 (2010)

Graßhoff, U., Großmann, H., Holling, H., Schwabe, R.: Optimal designs for main effects in linear
paired comparison models. J. Stat. Plan. Inference 126, 361–376 (2004)

Green, P.E.: On the design of choice experiments involving multifactor alternatives. J. Consum.
Res. 1, 61–68 (1974)

Großmann, H., Holling, H., Graßhoff, U., Schwabe, R.: Optimal designs for asymmetric linear
paired comparisons with a profile strength constraint. Metrika 64, 109–119 (2006)

Großmann, H., Graßhoff, U., Schwabe, R.: Approximate and exact optimal designs for paired
comparisons of partial profiles when there are two groups of factors. J. Stat. Plan. Inference
139, 1171–1179 (2009)

JMP, Version 10. SAS Institute Inc., Cary, NC (1989–2012)
Kessels, R., Jones, B., Goos, P.: Bayesian optimal designs for discrete choice experiments with

partial profiles. J. Choice Model. 4, 52–74 (2011)
Kessels, R., Jones, B., Goos, P.: A comparison of partial profile designs for discrete choice exper-

iments with an application in software development. Research Paper 2012-004, University of
Antwerp, Faculty of Applied Economics (2012)

Louviere, J.J., Hensher, D.A., Swait, J.D.: Stated Choice Methods: Analysis and Application. Cam-
bridge University Press, Cambridge (2000)

Street, D.J., Burgess, L.: The Construction of Optimal Stated Choice Experiments: Theory and
Methods. Wiley, Hoboken (2007)

Train, K.E.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge
(2003)



Approximate Bayesian Computation Design
(ABCD), an Introduction

Markus Hainy, Werner G. Müller, and Henry P. Wynn

Abstract In this paper we propose a new technique of generating optimal designs
by means of simulation. The method combines ideas from approximate Bayesian
computation and optimal design of experiments and allows great flexibility in the
employed criteria and models. We illustrate the idea by a simple expository example.

1 Introduction

We are concerned with improving data collecting schemes where one has at least
part control over the experimental conditions by methods of optimum experimental
design. Furthermore, we focus on cases where a probability model for the investi-
gated phenomenon is not easily available and the situation lends itself naturally to a
recently popularized simulation technique called approximate Bayesian computing
(ABC). This is not the only way in which our method should be distinguished from
the seminal work on simulation-based design by Peter Müller (Müller 1999; Müller
et al. 2004).

In Bayesian experimental design it is natural to deal with a design criterion by av-
eraging it over the parameter values with respect to the prior distribution (Chaloner
and Verdinelli 1995). However, the perspective can be reversed by computing the
criterion with respect to the posterior distribution of the parameters and then aver-
aging the criterion over the marginal distribution of the data. The posterior distribu-
tion summarizes the knowledge about the parameters after observing the data. Thus,
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if the average criterion with respect to the posterior distribution is at least as large
as the criterion with respect to the prior distribution, this reflects some notion of
learning from the observations.

2 Bayesian Learning and Simulation Based Design

Let π(θ) be the probability density function (pdf) of the prior distribution of the
parameters θ ∈Θ and π(y|θ, ξ) denote the pdf of the probability model of the data
y ∈ Y for some given design ξ ∈ Ξ , which can be chosen by the experimenter. It
is usually assumed that the prior of θ does not depend on the design. The pdf of
the marginal distribution of y follows from π(y|ξ) = ∫

θ∈Θ π(y|θ, ξ)π(θ)dθ . The
corresponding posterior distribution of θ is denoted by π(θ |y, ξ).

The aim of Bayesian optimal design is to maximize the design criterion

U(ξ)= Ey|ξ
{
Φ
[
π(θ |y, ξ)]}=

∫
y∈Y

Φ
[
π(θ |y, ξ)]π(y|ξ)dy (1)

with respect to ξ ; Φ[π(θ |y, ξ)] denotes a functional of the posterior distribution
of θ . Examples of general functionals Φ(·) are, e.g., quantiles (probability regions)
or the mode of the posterior π(θ |y, ξ). If

Φ
[
π(θ |y, ξ)]=

∫
θ∈Θ

u(y, θ, ξ)π(θ |y, ξ)dθ, (2)

and u(·) is regarded as a utility function (here for the simplicity of the posterior),
then U(ξ) is called the expected utility function. In this case the problem of finding
ξ∗ = arg maxξ U(ξ) is referred to as a problem of expected utility maximization (cf.,
e.g., Müller 1999).

From, e.g., Ginebra (2007), it follows that the class of functionals Φ such that,
for all π(θ) and π(y|θ, ξ),

U(ξ)≥Φ[
π(θ)

]
(3)

is the class of convex functionals: Φ[(1− α)π1+ απ2] ≤ (1− α)Φ(π1)+ αΦ(π2).
Convex functionals can be interpreted as measures of dispersion because they take
on their largest values over outlying regions. For highly informative experiments, the
posterior distributions are very peaked. Moreover, the peak and therefore the form
of the posterior distribution change considerably if y changes by a non-negligible
amount. Convex functionals tend to attribute higher values to “extreme” posterior
distributions, which provide a lot of information about θ . Thus the expectation
U(ξ) = Ey|ξ {Φ[π(θ |y, ξ)]}, where Φ(·) is any convex functional, is a measure of
the experiment’s average information about θ , see Ginebra (2007). The most com-
mon measure of information is Fisher information. Therefore, (3) states that the
expected information of the experiment is at least as high as the prior information.

If it is feasible to compute U(ξ) for all possible designs ξ , a standard maxi-
mization algorithm can be employed to find ξ∗ = arg maxξU(ξ). This computation,
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however, can be a challenging task. Usually it involves the evaluation of integrals or
sums. If the integrals are analytically intractable and numerical integration routines
do not work, Monte Carlo simulation strategies can be applied in a framework of
stochastic optimization.

For a range of standard problems Φ[π(θ |y, ξ)] can be evaluated explicitly. How-
ever, for cases where π(θ |y, ξ) is hard to evaluate or, at least, the integral over y in
(1) is expensive to compute, more refined simulation-based methods are needed. If
it is possible to calculate Φ[π(θ |y, ξ)] or estimate it by Φ̂[π(θ |y, ξ)] for all values
of y, one can perform Monte Carlo integration over the draws {y(i), i = 1, . . . ,G}:

Û (ξ)= 1

G

G∑
i=1

Φ̂
[
π
(
θ |y(i), ξ)] (4)

and proceed by some maximization of Û (ξ). For the estimation of Φ̂[π(θ |y, ξ)] we
propose to employ a recently popularized special simulation-based technique called
approximate Bayesian computing.

3 ABCD

ABC, sometimes referred to as likelihood-free methods, can be applied if simulating
the data from the probability model is feasible for every parameter θ . For instances
where it has been successfully applied, see Sisson and Fan (2011).

The simplest case is likelihood-free rejection sampling. The goal is to sample
from the posterior distribution π(θ |y). This is done by drawing the parameters from
the prior distribution, θ ∼ π(θ), drawing a variable y′ from the probability model,
y′ ∼ π(y|θ), and accepting θ if y′ ≈ y. Thus, direct sampling from the posterior dis-
tribution is replaced by sampling from the prior distribution. The efficiency of this
approach depends crucially on the similarity between the posterior and the prior
distribution, i.e., the information gain of the posterior compared with the prior dis-
tribution.

More generally, the original posterior target distribution π(θ |y) is replaced by
the marginal of the augmented distribution

πABC
(
θ, y′|y)∝ πε(y|y′, θ)π(y′|θ)π(θ).

The variable y′, which is sampled together with θ , is added to the posterior argu-
ments. Integrating over y′ leads to the original posterior distribution if πε(y|y′, θ)
is a point mass at the point y′ = y. Since this event has a very small probability for
higher-dimensional discrete distributions and probability zero in the case of contin-
uous distributions, a compromise has to be found between exactness and practicality
by adjusting the “narrowness” of πε(y|y′, θ). In this case πε(y|y′, θ) is usually as-
sumed to be a smoothing kernel density function: πε(y|y′, θ)= (1/ε)K{[|T (y′)−
T (y)|]/ε}, where T (·) is some low-dimensional statistic of y and y′, respectively.
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If the statistic is a sufficient statistic for the parameters of the probability model, we
obtain the same distribution if we integrate out T (y′) as if we integrate out y′ itself.
The parameter ε controls the tightness of πε(y|y′, θ). Popular choices for K(·) are
uniform, Gaussian, or Epanechnikov kernels.

Linear functionals of the form (2) are the most common class of functionals and
thus deserve particular attention. In this case (1) can be written as

U(ξ)=
∫
y∈Y

∫
θ∈Θ

u(y, θ, ξ)π(y|θ, ξ)π(θ)dθ dy. (5)

As in the general case (1), the explicit evaluation or numerical integration of
the linear functional expression (5) may not be possible. However, in most prac-
tical cases there is some effective way to sample from the prior distribution π(θ)
and from the probability model for the data π(y|θ, ξ). If a sample {y(i), θ (i), i =
1, . . . ,G} can be obtained with little computational effort, one straightforward way
to compute U(ξ) is to perform Monte Carlo integration:

Û (ξ)= 1

G

G∑
i=1

u
(
y(i), θ (i), ξ

)
.

Practical applications of simulation-based optimal design have mainly focused on
linear functionals because it is relatively simple to sample the data and the parame-
ters and to compute the design criterion via Monte Carlo integration.

In the linear functional case, it is also possible to pursue the simulation based
optimal design approach originally proposed by Müller (1999); the integrand in (5)
is regarded as a joint distribution of the variables y, θ , and ξ . MCMC methods are
used to estimate this joint distribution. The mode of the marginal distribution of ξ
gives the optimal design. Therefore this approach jointly addresses the estimation as
well as the optimization problem. An MCMC-based variant of design optimization
without likelihoods is alluded to in Hainy et al. (2012). A comprehensive account
of ABC methods for MCMC is given in Sisson and Fan (2011).

In contrast, our ABCD method (4) does not employ an MCMC step, and therefore
allows simple and effective treatment of complex models and nonlinear optimality
criteria. It presents two major challenges. First, one needs draws from the marginal
distribution of y, which may not be directly available. Second, Φ[π(θ |y, ξ)] is
a functional of the posterior distribution, so one needs an innovative method for
fast evaluation of criteria based on the posterior distribution. ABC methods, how-
ever, suggest a way of dealing with both problems. A sample S = {(y′(i), θ (i)), i =
1, . . . ,G} can be obtained in the usual way of first drawing θ(i) from the prior dis-
tribution and then drawing y′(i) from the probability model. Draws of the posterior
distribution of θ for a particular y′ = y are obtained by retaining those elements of
S where the draws of y′ are close to y, i.e., y′(i) ∈Nε(y), where Nε(y) denotes an
ε-neighbourhood around y.

We summarize ABCD in abbreviated form:

1. Choose a design ξ .
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2. Draw {θ} values from the prior distribution π(θ).
3. For every sample parameter value draw from π(y|θ, ξ) hence producing a sample
{y′} from the joint distribution of y and θ .

4. For every y from the marginal distribution π(y|ξ) collect the θ for which y′ lies
in a neighbourhood Nε(y).

5. Approximate the criterion Φ using these neighbourhood θ values.
6. Approximate U(ξ) by Monte-Carlo integration (Eq. (4)).
7. Repeat Steps 1–6 for each ξ during an optimization procedure.

4 An Expository Example

We apply the standard linear regression model, so we assume that

π(y|θ,X)=N
(
Xθ,σ 2IN

)
.

That is, the expected value of the dependent variable is a linear combination of the
parameter values θ ∈Θ ⊆R

k and depends on the design through the design matrix
X = [f (x1), . . . , f (xN)]T , where f (·) is a k-dimensional function of the design
variables xi ∈ [−1,1]. The N observations are assumed to be normally distributed,
independent, and homoscedastic with known variance σ 2. Furthermore, the param-
eters θ follow the prior normal distribution

π(θ)=N
(
θ0, σ

2R−1).
DefineM =XTX. Then the posterior distribution of the parameters θ is

π(θ |y,X)=N
[
(M +R)−1(XT y +Rθ0

)
, σ 2(M +R)−1].

We take

Φ
[
π(θ |y,X)]=

∫
θ∈Θ

log

[
π(θ |y,X)
π(θ)

]
π(θ |y,X)dθ,

so we have a linear functional of the posterior with utility function u(y, θ,X) =
log[π(θ |y,X)] − log[π(θ)]. The expected utility for a specific design X is the ex-
pected gain in Shannon information (Chaloner and Verdinelli 1995):

U(X) =
∫
y∈Y

{∫
θ∈Θ

log

[
π(θ |y,X)
π(θ)

]
π(θ |y,X)dθ

}
π(y|X)dy

Since
∫∫

log[π(θ)]π(θ |y,X)π(y|X)dθdy = ∫
log[π(θ)]π(θ)[∫ π(y|θ,X)dy]dθ

does not depend on X, it is sufficient to compute

U∗(X)=
∫
y∈Y

{∫
θ∈Θ

log
[
π(θ |y,X)]π(θ |y,X)dθ

}
π(y|X)dy. (6)
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For our particular model, the integral can be computed analytically. It is

U∗(X)=−k
2

log(2π)− k
2
+ 1

2
log det

[
σ−2(M +R)],

which has the same maximum as the criterion for DB optimality, Ψ (X) =
det[M + R] (Atkinson et al. 2007). Note that the DB -optimal design depends nei-
ther on σ 2 nor on the prior mean θ0. We examine the performance of the ABCD
algorithm on our toy example. This little exercise is meant to assess the usefulness
and limitations of the algorithm. It is not difficult to obtain the exact solution for our
example, making it easy to check the results.

The following setting was used: the predictor is a quadratic in one factor, i.e.

X =
⎛
⎜⎝

1 x1 x2
1

...
...

...

1 xN x2
N

⎞
⎟⎠ .

The continuous optimal design for this problem puts equal weights of 1/3 on the
three design points−1, 0, and 1, see Atkinson et al. (2007). Likewise, if the number
of trials of an exact design is divisible by three, then at the optimal design 1/3 of
the trials are set to −1, 0, and 1, respectively. Therefore, if we want to select N = 1
trial and if the prior information matrix R is chosen to represent prior information
equivalent to two observations taken at the design points −1 and 1, respectively,
i.e., R = f (−1)f T (−1)+f (1)f T (1)= (1,−1,1)T (1,−1,1)+ (1,1,1)T (1,1,1),
then it is optimal to set the trial to 0.

We solve this example following our general ABCD algorithm. Thus, for every
design point x that we investigate we independently generate a sample {y(i), i =
1, . . . ,G} from the marginal distribution of y and a sample S = {y′(j), θ (j), j =
1, . . . ,H } from the joint distribution of y and θ . Let Jε(i) = {j ∈ {1, . . . ,H } :
y′(j) ∈ Nε(y(i))} be the subset of indices of those elements of S for which y′(j)
lies in a neighbourhood of y(i). For every y(i) we compute

Φ̂
[
π
(
θ |y(i),X)]= 1

|Jε(i)|
∑
j∈Jε(i)

log
[
π
(
θ(j)|y(i),X)]

to estimate the inner integral in (6). In the one-dimensional case the neighbourhood
is defined to be Nε(y) = [y − ε/2, y + ε/2]. In our simple example we know the
analytical form of π(θ |y,X), so we can just plug θ(j) and y(i) into

log
[
π(θ |y,X)] = −1

2
log(2π)+ 1

2
log det

[
σ−2(M +R)]

− 1

2σ 2
(θ − θ̃ )T (M +R)(θ − θ̃ ),

where θ̃ = (M +R)−1(XT y +Rθ0).
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Fig. 1 Û (x) (dots) and U(x) (solid line) for baseline setting with G = 1000, H = 10000, and
small ε (a); setting with high ε (b); setting with H = 1000 (c); setting with G= 100 (d)

Finally, the outer integral is computed by averaging Φ̂[π(θ |y(i),X)] over the
draws {y(i)} as stated in (4).

The results are shown for four settings. The first setting, which gives rather
accurate approximations, uses G = 1000, H = 10000, and ε = (maxj {y′(j)} −
minj {y′(j)})/1000. The other three settings are meant to display the effects of de-
creasing the simulation numbers and expanding the neighbourhood. In the second
setting, ε is increased to ε = (maxj {y′(j)} −minj {y′(j)})/100 while G and H have
the same values as in the first setting. In the third setting,H is changed toH = 1000,
all other parameters being equal to the first setting. Finally, in the fourth setting G
is reduced to G = 100 while the other parameters are the same as in the first set-
ting. The approximate criterion values Û (x) were computed over a regular grid on
the line segment [−1,1] with a spacing of 0.1 in order to assess the goodness of
the approximations in the different parts of the design space. Figure 1 shows the
approximated criterion values (dots) along with the true criterion values for all pos-
sible x ∈ [−1,1] (solid line) for all settings.
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The first setting clearly succeeds in delivering reasonably accurate approxima-
tions to U(x). When ε is too large, such that the approximation is too imprecise,
this has a much more severe effect on the accuracy of the results than using sim-
ulation numbers which are too small. In all three suboptimal settings, the random
variation of the approximations around the true value is increased compared to the
first setting. The large neighbourhood additionally introduces a considerable down-
ward bias to the approximations. This example illustrates the paramount importance
of high simulation numbers and, in particular, of small neighbourhoods for the ac-
curacy of the ABCD results. There is a need to develop algorithms which provide
accurate results while keeping the computational costs manageable.

5 Outlook

All these considerations demonstrate that approximate Bayesian computing offers
a wide range of new opportunities for solving general optimum design problems.
Particularly, for complicated models with non-evaluable and intractable likelihood
functions such as models in population genetics (Marjoram et al. 2003) or models
for spatial extremes, where there is no closed-form version of the multivariate ex-
treme value distribution for dimensions greater than two (Erhardt and Smith 2012),
there is a need to employ likelihood-free methods. Also, up to now, there have been
no satisfying solution concepts for adaptive design problems for non-trivial models.
ABCD promises to provide a universally applicable way to solve such problems.
The basic ideas sketched above are still in an early stage of development and there
are many possibilities for further refinements, which we intend to address in future
papers.

Simulation-based approaches can be of great value to optimal experimental de-
sign whenever other methods fail to deliver useful results or are too inefficient, par-
ticularly when the design criterion is nonlinear. The use of ABC techniques further
expands the range of possible applications to design problems that were intractable
before. ABCD could thus become a standard solution method whenever circum-
stances require it.

Acknowledgements We thank Helga Wagner for fruitful discussions on MCMC methods and
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valuable suggestions.
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Approximation of the Fisher Information Matrix
for Nonlinear Mixed Effects Models
in Population PK/PD Studies

Sergei Leonov and Alexander Aliev

Abstract We discuss different types of approximations of the individual Fisher in-
formation matrix used in population optimal design software tools and describe
a Monte-Carlo option in the PkStaMp library which constructs optimal sampling
schemes for population pharmacokinetic (PK) and pharmacodynamic (PD) studies.

1 Introduction

Optimal design of experiments for population PK/PD studies has received consid-
erable attention in the statistical literature and software development over the last
decade. Starting from 2007, various population optimal design software tools were
discussed and compared at the annual PODE workshop (Population Optimum De-
sign of Experiments). Details on the software comparison were presented by Mentré
et al. (2007, 2011); see also Leonov and Aliev (2012).

Aliev et al. (2012) described the PkStaMp library for constructing locally D-
optimal designs for population compartmental PK and PK/PD models. The focus of
this paper is on the Monte-Carlo option for the calculation of the individual Fisher
information matrices which are of essential interest for designing population studies.

2 Model and Fisher Information Matrix

The model of observations used in the PkStaMp library is given by

yij = η(xij , γi)+ εij , i = 1, . . . ,N, j = 1, . . . , ki , (1)
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where {xij } are times of taking PK or PD measurements {yij } for patient i; ki is
the number of measurements for patient i; N is the total number of patients in the
study; η(x, γ ) is the response function (e.g., drug concentration at time x) which
is assumed to be known up to the unknown parameters γ . Individual response pa-
rameters γi (rate constants, clearances, volumes) are assumed to be independently
sampled from a given population distribution, either normal, γi ∼N (γ 0,Ω), or
log-normal,

γil = γ 0
l eζil , γ0 =

(
γ 0

1 , . . . , γ
0
mγ

)�
, ζi = (ζi1, . . . , ζimγ )� ∼N (0,Ω),

(2)
where mγ is the dimension of the vector of response parameters; l = 1, . . . ,mγ .
Residual errors εij have additive and proportional components of variability,

εij = ε1,ij + ε2,ij η(xij , γi), (3)

where ε1,ij , ε2,ij are random variables with zero mean, such that vectors ε1,i =
(ε1,i , . . . , ε1,iki )

� and ε2,i′ = (ε1,i′ , . . . , ε1,i′ki′ )
� are mutually independent for all

i, i′, and

E
(
ε1,iε

�
1,i

)= σ 2
AIki , E

(
ε2,iε

�
2,i

)= σ 2
P Iki ,

where Ik denotes a (k × k)-identity matrix. By θ = (γ 0,Ω;σ 2
A,σ

2
P ) we denote the

combined vector of model parameters, and by m its length.
Let μ(x, θ) be the Fisher information matrix of a (k× 1)-sequence x of sampling

times, and let M(ξ, θ) be the normalized Fisher information matrix of the continu-
ous design ξ = {(xu,wu)},

M(ξ, θ)=
∑
u

wuμ(xu, θ), (4)

where
∑
u wu = 1. In the PkStaMp library we minimize the D-optimality criterion,

ξ∗ = arg min
ξ

∣∣M−1(ξ, θ)
∣∣, (5)

where sequences xu in (4) belong to a pre-specified design region X. We implement
the first-order optimization algorithm with forward and backward steps; for details,
see Fedorov and Hackl (1997, Chap. 3), Fedorov et al. (2007) and Leonov and Aliev
(2012), formulae (9)–(12).

The individual Fisher information matrix μ(x, θ) for nonlinear mixed models
like (1) does not have a closed-form expression. To approximate μ(x, θ), we use the
following formula which is exact for normally distributed random variables with
mean η0 and variance S:

μ̃αβ(x, θ)= ∂η
�
0

∂θα
S−1 ∂η0

∂θβ
+ 1

2
tr

[
S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]
, α,β = 1, . . . ,m; (6)

see Magnus and Neudecker (1988). To approximate η0 and S in the above formula,
the first-order Taylor expansion is utilized. In particular, the mean response of the
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observations {yij } is approximated by η0 = Eε,γ (yij ) ≈ η(xij , θ), where Eε,γ de-
notes the expectation with respect to the distribution of εij and γi , and the formula
(3) leads to the following presentation for normally distributed γi :

S(x, θ) FΩF� + σ 2
P diag

[
η(x, θ)η�(x, θ)+ FΩF�

]+ σ 2
AIk, (7)

where η(x, θ)= [η(x1, θ), . . . , η(xk, θ)]�, and F= F(x, γ 0)= [∂η(x, θ)/∂γα]|γ=γ 0

is a (k × mγ ) matrix of partial derivatives of η(x, θ) with respect to response pa-
rameters γ 0. Note that while in (7) we use the notation η(x, θ), under the first-order
approximation the mean response depends only on response parameters γ 0 and does
not depend on the variance parameters {Ω,σ 2}. This explains the dimension of the
matrix F (Aliev et al. 2012, Sect. 2.5). For log-normally distributed γi as in (2), the
matrix Ω on the right-hand side of (7) has to be replaced with

Ω̃ = diag
(
γ 0)Ω diag

(
γ 0), (8)

where diag(a) denotes a diagonal matrix with diagonal elements equal to either all
when a is a square matrix, or al when a is a vector.

As described by Aliev et al. (2012) and Leonov and Aliev (2012), the design re-
gion X in the PkStaMp library is a discrete set of candidate sampling sequences xs .
Therefore, the forward step of the first-order optimization algorithm presents a fi-
nite optimization problem. Note also that the calculation of individual information
matrices (via the first-order approximation or any other option) is performed only
once, prior to running the optimal design algorithm and, therefore, does not affect
the algorithm’s running time.

3 Approximation Options

In 2009–2011 participants of PODE workshop used a one-compartment model with
first-order absorption and linear elimination as a benchmark test to compare differ-
ent software tools:

η(x, γ )= DKa

V (Ka −Ke)
(
e−Kex − e−Kax

)
, (9)

where D is a single dose administered at time x = 0; Ka and Ke are absorption
and elimination rate constants, respectively; V is the volume of distribution, and
γ = (Ka,Ke,V )� is the vector of response parameters. The model was parameter-
ized via clearance CL, so that Ke = CL/V . It was assumed that the individual re-
sponse parameters γi = (Kai,CLi , Vi) are log-normally distributed as in (2) with the
population mean γ 0 = (1,0.15,8) and the diagonal population variance-covariance
matrix Ω = diag(ω2

r ) = diag(0.6,0.07,0.02), and σ 2
A = 0, σ 2

P = 0.01 in (3). The
combined vector of parameters for this example was

θ = (
K0
a ,CL0,V 0;ω2

Ka
,ω2
CL,ω

2
V ;σ 2

P

)� = (1,0.15,8;0.6,0.07,0.02;0.01).
(10)
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The goal was to compare the coefficients of variation CVs =
√[μ−1(x, θ)]ss/N/θs ,

for the 8-sample sequence x = (0.5,1,2,6,24,36,72,120) hours, where N = 32
was the number of patients in the earlier study.

To validate approximate formulae, Monte-Carlo simulations were performed by
members of the PODE community using two software packages for parameter es-
timation: NONMEM (Beal and Sheiner 1992) and MONOLIX (Laveille and Men-
tré 2006; Lixoft 2011). Specifically, sample estimates of the coefficients of varia-
tion were reported for the one-compartment model (9) and a more complex exam-
ple of the combined PK/PD model of hepatitis C viral dynamics; for details, see
Mentré et al. (2011). After the first round of comparisons for the model (9), (10),
all population design tools produced similar coefficients of variation for all model
parameters except the absorption rate Ka : CV(Ka) = 0.052 for PkStaMp, while
CV(Ka)= 0.139 for most other tools. Simulations in both NONMEM and MONO-
LIX resulted in estimates CV(Ka) ∈ [0.12,0.13]. The observed differences required
a closer look at how calculations have been implemented in different tools, and the
following explanation was found.

The matrix μ̃ in (6) can be partitioned as

μ̃(x, θ)=
{

A C
C� B

}
, A=A1 +A2,A1 = F�S−1F, (11)

A2,αβ = 1

2
tr

[
S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]
, α,β = 1, . . . ,mγ ; (12)

Cαβ = 1

2
tr

[
S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]
, α = 1, . . . ,mγ ,β =mγ + 1, . . . ,m; (13)

Bαβ = 1

2
tr

[
S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]
, α,β =mγ + 1, . . . ,m,

see, e.g., Retout and Mentré (2003). Thus block A represents partial derivatives
with respect to response parameters (“typical values” in NONMEM nomencla-
ture), block B represents partial derivatives with respect to variance parameters,
and block C contains mixed derivatives. Several software developers used a so-
called “reduced” option by making A2 = 0 and C = 0 in (11), while in PkStaMp
we used the first-order approximation (7), (8) and a so-called “full option”, i.e., the
full matrix μ̃(x, θ) in (11). These differences led to quite visible differences in the
elements of the information matrix μ̃ which correspond to the absorption rate Ka .
Once the initial settings were made identical, the output results coincided for all
software tools. However, questions remained about which approximation option is
preferable.

As noted in Leonov and Aliev (2012), the use of the first-order approximation
for log-normally distributed random variables may lead to a substantial distortion
of the distribution, in particular when elements of the variance-covariance matrixΩ
are not small. This was exactly the case for the absorption rate Ka in the model (9)
where ω2

Ka
= 0.6: the first-order approximation led to E(Kai)≈ 1, Var(Ka,i)≈ 0.6,
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while the exact mean and variance of log-normally distributed random variable
γi =Ka,i were 1.35 and 1.5, respectively. For more discussion on linearization op-
tions, see Mielke and Schwabe (2010).

Obviously, one can use higher-order approximation for the response η and vari-
ance S. In particular, if one uses the second-order approximation of the response
function η(x, γi) in the vicinity of γ 0, then for normally distributed γi

Eε,γ
[
η(x, γi)

]≈ η(x, γ 0)+ 1

2
tr
[
H
(
x, γ 0)Ω]

, (14)

where H(x, γ 0) is the matrix of second-order partial derivatives of the response
function, H(x, γ 0) = [∂2η(x, γ )/∂γα∂γβ ]|γ=γ 0 . The first-order approximation (7)
for the variance matrix S utilizes first-order derivatives F of the response η, so cal-
culation of the derivatives of S in (6) requires second-order derivatives of η. Thus,
with the second-order approximation (14), one will require fourth-order derivatives
of the response function η which numerically is rather cumbersome.

3.1 Monte-Carlo Option

One of the possible ways of avoiding numerical approximation as in (7), (8) or (14),
is to calculate the mean η0 and variance S via Monte-Carlo simulations at each
candidate sampling sequence x:

• Generate L independent realizations of response parameters γi from a given dis-
tribution, i = 1, . . . ,L.

• Generate values Yi = {yij } according to (1) and (3).
• Calculate the empirical mean and variance

η̂0 = η̂(x, θ)= Êθ (Y)= 1

L

L∑
i=1

Yi ,

Ŝ= Ŝ(x, θ)= V̂arθ (Y)= 1

L− 1

L∑
i=1

(Yi − η̂0)(Yi − η̂0)
�.

(15)

• Use the formula (6) to calculate μ̃(x, θ) with values {̂η0, Ŝ} from (15).

The described Monte-Carlo approach eliminates the need to calculate second-
and higher-order derivatives of the response and variance functions. Note, however,
that this approach still relies on the normal approximation (6).

3.2 Stepsize for Numerical Differentiation

To calculate partial derivatives in (6), we use central difference approximations: for
the function g(θ) of scalar argument θ ,
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Table 1 Coefficients of
variation (%), model (9),
(10); various approximation
options

Parameters Ka CL V ω2
Ka

ω2
CL ω2

V σ

From PODE 2009–2011 comparison

Reduced version 13.9 4.74 2.76 25.8 25.6 30.3 5.58

NONMEM, FOCE 13.6 4.93 2.72 26.6 26.1 32.4

MONOLIX 13.8 4.76 2.76 28.1 26.5 30.8 5.52

Monte-Carlo option

h= 0.015,L= 106 10.7 4.23 2.86 21.3 24.9 35.7 7.10

h= 0.019,L= 106 10.6 4.16 2.76 20.2 24.7 34.9 7.18

h= 0.001,L= 106 3.21 4.28 0.54 6.66 24.7 36.3 6.78

g′(θ)= g(θ + h)− g(θ − h)
2h

+O(
h2)+ rg(θ)

h
, (16)

where r is a round-off error of order 10−16 for double precision. The best approxi-
mation is obtained when the second and the third terms on the right-hand side of (16)
have the same order of magnitude, i.e. h∼ r1/3. For the implementation of the first-
order approximation in PkStaMp library, we traditionally used h ∈ [10−4,10−3].
This selection worked well because the third term on the right-hand side of (16) was
negligible.

For the Monte-Carlo option, rather small values of the stepsize h may lead to
substantial distortion due to the stochastic error which is introduced in the calcu-
lation of η̂0 and Ŝ in (15). Indeed, consider the model (1), (3) with σ 2

A = 0, as in
the example (9), (10). Then the standard deviation of η̂ is of order σP η(x, θ)/

√
L.

Thus, the optimal stepsize h can be obtained from the balance relation

h2 ∼ σP η(x, θ)
h
√
L

, or h∼ [
σP η(x, θ)

]1/3
L−1/6. (17)

Note now that σP = 0.1 for our example of the one-compartment model, and η(x, θ)
is within the range [0,8] for the majority of parameter values; cf. Fig. 1 in Leonov
and Aliev (2012). Therefore if L= 106, reasonable values of h ∈ [0.05,0.1]. Note
also that the stepsize h may need adjustment depending on parameter values. For
our example, in order to make h not too small, we parameterized the model (3) via
the standard deviation σP (not variance σ 2

P ) which allowed us to use values of h
close to 0.02. Another option is to take different values of h for different parameters
to calculate partial derivatives.

Table 1 and Fig. 1 present coefficients of variation, in % (or relative standard
errors RSE) for the model (9), (10) where we used L= 106 for the three scenarios of
Monte-Carlo simulations. Also shown are results for the reduced and full versions
of the approximation of the matrix μ̃(x, θ) in (11), and results of the simulations
in NONMEM and MONOLIX; see Mentré et al. (2011). The Monte-Carlo option
with modestly sized h (0.015 or 0.019) produce RSEs of the parameter Ka which
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Fig. 1 Coefficients of variation in % (relative standard errors, RSE). Order of bars, from left to
right: reduced, NONMEM, MONOLIX; h= {0.015,0.019,0.001}; full

are closer to the results of the simulations in NONMEM and MONOLIX than for
the full option. On the other hand, a traditionally “small” value h= 0.001 leads to
significant distortion of the results; see values highlighted in boldface in Table 1 and
the corresponding bars in Fig. 1 (the sixth bar from the left for Ka , V and Var(Ka)).

4 Discussion

The Monte-Carlo option described in this paper is straightforward to implement and
takes seconds to compute for L= 106. The reduced option for the approximation of
the Fisher information matrix performed well in the examples considered. Mielke
and Schwabe (2010) in their Sect. 4 provide an example where taking into account
the second term on the right-hand side of the approximation (6)—or, equivalently,
the term A2 in (11)—leads to overestimation of the information and underestimation
of the variance. However, the reduced option also disregards the submatrix C in (11)
for which we do not have an explanation (formal or heuristic). Still more work is
needed for better understanding of the advantages and disadvantages of the various
approximation options.

Acknowledgements The authors would like to thank two anonymous referees for valuable com-
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results.
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c-Optimal Designs for the Bivariate Emax Model

Bergrun Tinna Magnusdottir

Abstract This paper explores c-optimal design problems for non-linear, bivariate
response models. The focus is on bivariate dose response models, one response
being a primary efficacy variable and the other a primary safety variable. The aim
is to construct designs that are optimal for estimating the dose that gives the best
possible combination of effects and side-effects.

1 The Bivariate Emax Model

Understanding of the dose-response relationship is among the most important and
challenging problems in drug development. In dose finding studies a primary re-
sponse variable is usually defined and modelled. Various dose-response models have
been suggested. Among the most successful models for modeling a continuous re-
sponse variable is the Emax model. It is of the form

Response(dose)=E0 +Emax
dose

dose+ ED50
+ ε, (1)

where ε ∼N (0, σ 2). For a detailed discussion of this model and its mechanistic
properties see, e.g., Holford and Sheiner (1981) and Goutelle et al. (2008). When
interest is not in the placebo response, it might be reasonable to assume E0 = 0. The
model used in this paper is the Emax model including only the two parameters ED50
and Emax. The problem of deriving optimal designs for the two parameter Emax
model has been investigated by several authors see, for example, López-Fidalgo
and Wong (2002).

In the early phases of drug development (Phase I) the focus is on safety and the
primary response variable is a safety variable. In later phases (Phases II and III) the
focus is shifted towards efficacy and the primary response variable is an efficacy
variable. In spite of this traditional division into safety and efficacy studies, it is
often useful to study efficacy and safety simultaneously. Examples are found in, e.g.,
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Thall and Russell (1998) or Ouellet et al. (2009). Several authors have discussed the
construction of optimal designs when simultaneously considering binary efficacy
and safety variables (Li et al. 1995; Dragalin and Fedorov 2006). Here the focus
is on continuous efficacy and safety variables. Dragalin et al. (2008) also discuss
the construction of optimal designs when both the efficacy and safety variables are
continuous, but both their model and the aim of their study are different from what
is assumed here.

The idea in this paper is to consider both efficacy and safety simultaneously and
extend the Emax model to two dimensions, one for a primary efficacy variable, Z1,
and one for a primary safety variable, Z2. High values of Z1 are here assumed to
indicate a positive effect while high values of Z2 indicate a negative effect. An ex-
ample of a primary efficacy variable is the decrease (from a baseline) in systolic
blood pressure, measured in millimeters of mercury (mmHg). An example of a pri-
mary safety variable is increased sleep latency from baseline, measured in minutes.
The bivariate Emax model is hereby defined as follows:

Z1 =Emax
x

x + ED50
+ ε1, Z2 = Smax

x

x + SD50
+ ε2 (2)

where (ε1, ε2) ∼ N2[0,Σ(σ1, σ2, ρ)]. Further, let θ = (ED50,Emax,SD50, Smax)

and Ω = (σ1, σ2, ρ). In this paper Σ is assumed to be known while θ needs to
be estimated. Note that x represents the dose of a drug, so naturally it is assumed
that x ∈ χ = [0,∞[. Emax represents the maximal achievable effect from the drug
and Smax the maximal realizable side-effect. ED50 and SD50 represent the doses that
give half of the maximal effect and side-effect, respectively. Hence ED50,SD50 > 0.
For explicitness it is also assumed here that Emax, Smax > 0. In this paper a simpli-
fied version of the bivariate Emax model, referred to as the simple bivariate model,
is also explored. There it is assumed that the maximal effect and side-effect equal
one so that

Z1 = x

x + ED50
+ ε1, Z2 = x

x + SD50
+ ε2,

where (ε1, ε2)∼N2(0,Σ), θ = (ED50,SD50), and ED50,SD50 > 0 as before.

2 The Clinical Utility Index (CUI)

The Clinical Utility Index (CUI) is a tool for multiattribute decision making in drug
development. The term and the use of the CUI are relatively new, but its application
is steadily growing. For a good historical overview of the CUI see, e.g., Carrothers
et al. (2011). The CUI combines different aspects regarding the quality of the new
drug. After receiving the drug, the patient might experience several different effects
and side-effects. These are measured on different scales and are of different impor-
tance to the patient. The CUI combines these multidimensional aspects into a single
metric. Each possible scenario is given a CUI value for ranking; the higher the CUI,
the better. A patient taking an anti-diabetic drug might prefer his normal dose to a
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new, higher, dose that would lead to an 0.5 % extra reduction in HbA1c but with
an increased risk for hypoglycemia. The normal dose would then be assigned to a
higher CUI value than the new dose. In this paper we consider only one primary
efficacy variable, Z1, and one primary safety variable, Z2, but it is straightforward
to generalize and include more efficacy, safety and possible other variables of im-
portance such as an increased cost for a higher dose.

The form and derivation of the CUI should be considered separately for each
drug under investigation. The most common approach is however to use a linear
combination of the different response variables. This is the approach discussed by
Carrothers et al. (2011) and the one that is covered here. For the dose-response
models in this paper the CUI is defined as

CUI(x)= k1Z1 − k2Z2. (3)

A negative sign is here assigned to the side-effect because high values of Z2 in-
dicate a negative effect. Since the response variables are usually measured on dif-
ferent scales, Carrothers et al. (2011) suggest that all response variables be first
transformed onto the same scale, which they call utility, with range from 0 to 1.
Then weights, here k1 and k2, are assigned to the response variables depending on
their relative importance. For a detailed example of how a linear CUI has been used
in practice see Ouellet et al. (2009). The most desirable dose for a population of
patients is the one that maximizes E[CUI]. It is straightforward to show that if such
a positive dose exists then, for the bivariate Emax model, it is

g(θ) :=max
x>0

E
[
CUI(x)

]

=
√
k1ED50Emaxk2SD50Smax(ED50 − SD50)− ED50SD50(k1Emax − k2Smax)

k1ED50Emax − k2SD50Smax
.

(4)

For the simple bivariate model this simplifies to

g(θ) :=max
x>0

E
[
CUI(x)

]=
√
k1ED50k2SD50(ED50 − SD50)− ED50SD50(k1 − k2)

k1ED50 − k2SD50
.

(5)

3 Locally c-Optimal Designs

A design is denoted here by ξ = {x1, x2, . . . , xn;w1,w2, . . . ,wn}. For dose finding
studies the xi ’s represent the doses, i.e., the amount of the drug (in mg) and wi de-
notes the proportion of the participants that receive dose xi . Here n is the number of
different study groups and N denotes the number of participants. Finally, χ denotes
the design space. The design that allocates all observations to one design point, x,



156 B.T. Magnusdottir

is denoted by ξx and the standardized information matrix is denoted by M . For the
bivariate Emax model the one-point standardized information matrix is

M(ξx)

= 1

(1− ρ2)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

1
σ 2

1

E2
maxx

2

(x+ED50)
4

1
σ 2

1

−Emaxx
2

(x+ED50)
3

ρ
σ1σ2

−EmaxSmaxx
2

(x+ED50)
2(x+SD50)

2
ρ
σ1σ2

Emaxx
2

(x+ED50)
2(x+SD50)

∗ 1
σ 2

1

x2

(x+ED50)
2

ρ
σ1σ2

Smaxx
2

(x+ED50)(x+SD50)
2

ρ
σ1σ2

−x2

(x+ED50)(x+SD50)

∗ ∗ 1
σ 2

2

S2
maxx

2

(x+SD50)
4

1
σ 2

2

−Smaxx
2

(x+SD50)
3

∗ ∗ ∗ 1
σ 2

2

x2

(x+SD50)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

and for the simple bivariate model it is

M(ξx)= 1

(1− ρ2)

⎛
⎝

1
σ 2

1

x2

(x+ED50)
4

ρ
σ1σ2

−x2

(x+ED50)
2(x+SD50)

2

∗ 1
σ 2

2

x2

(x+SD50)
4

⎞
⎠ .

In what follows, it is assumed thatM is an invertible matrix.
In this paper, the focus is on c-optimal designs which are appropriate when the

objective of the study is to estimate some function, g(θ), of the parameters in the
model. Let θ̂ denote the maximum likelihood estimator of the parameters in a non-
linear, bivariate response model such as the bivariate Emax model (2). For a non-
linear function, g(θ), a design is c-optimal if it minimizes the asymptotic variance
of g(θ̂), which equals

Ψ =∇g(θ)�M(ξ)−1∇g(θ). (6)

Ψ is referred to as the criterion function. A general problem with optimal designs
for non-linear models is that they depend on the true value of the unknown pa-
rameters, θ . The optimal designs constructed in this paper are locally optimal and
assume prior values for θ . For dose finding studies, the prior is based on data from
preclinical and early clinical trials as well as data from competitor drugs.

Theorem 1 (General Equivalence Theorem, GET) Suppose ξ is a design such that
M(ξ)−1 exists. Then ξ is locally c-optimal with respect to a non-linear function of
the model parameters, g(θ) if, and only if,

∇g�M(ξ)−1M(ξx)M(ξ)
−1∇g ≤∇g�M(ξ)−1∇g, ∀x ∈ χ. (7)

Further, equality holds the design points x ∈ {x1, . . . , xn}.

The proof is given in the Appendix. Note that Ψ in (6) is a special case of the
linear criterion, Ψ = tr{AM−1}. Fedorov (1972) sets up the framework for optimal
designs that minimize the linear criterion in the multi-response setting.
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4 Designs for Estimating the Most Desirable Dose of a Drug

The designs derived in this section are optimal for estimating the most desirable
dose of a drug, provided that such a positive dose exists and that the models and
the CUI, introduced in Sects. 1 and 2, are reasonable assumptions. Specifically, the
designs are locally c-optimal with respect to the functions in (4) and (5) and depend
on the parameter vector (θ,Ω,k1, k2). First note that, without loss of generality, one
of the variance parameters σ1, say, can be set to one. This is true for all bivariate
models with error terms following the bivariate normal distribution.

Theorem 2 Assume that ξ = {x1, . . . , xn;w1, . . . ,wn} is locally c-optimal for the
bivariate Emax model with parameters θ = (ED50,Emax,SD50, Smax) , k = (k1, k2)

andΩ = (σ1, σ2, ρ), i.e., ξ minimizes Ψ =∇g�M−1∇g. If a, b, c, d ∈R\{0}, then

1. ξ is locally c-optimal for the same model but with one or more of the following
changes for the parameters

(i) k = (ak1, ak2),
(ii) Ω = (bσ1, bσ2, ρ),

(iii) θ = (ED50, cEmax,SD50, cSmax).
2. ξ∗ = {dx1, . . . , dxn;w1, . . . ,wn} is locally c-optimal for the same model but

with
(iv) θ = (dED50,Emax, dSD50, Smax).

Proof

(i) ∇g(θ, k1, k2)=∇g(θ, ak1, ak2) andM does not depend on k.
(ii) M(ξ,σ1, σ2)= b2M(ξ,bσ1, bσ2) and ∇g does not depend on Ω .

(iii) Ψ (ξ,ED50,Emax,SD50, Smax)= c2Ψ (ξ,ED50, cEmax,SD50, cSmax).
(iv) Ψ (ξ,ED50,Emax,SD50, Smax)= 1

d2Ψ (ξ
∗, dED50,Emax, dSD50, Smax). �

Theorem 2 implies that, without loss of generality, 4 out of 9 parameters for
the bivariate Emax model can be set equal to one. If ξ is known to be locally c-
optimal for the model with parameters θ = (ED50,1,SD50, Smax/Emax) then The-
orem 2(iii) yields that ξ is also locally c-optimal for the model with parameters
θ = (ED50,Emax,SD50, Smax). For the simple bivariate model it can analogously
be assumed that σ1 = k1 = ED50 = 1. Below are formulae for deriving some lo-
cally c-optimal designs for the simple bivariate model. The proof is provided in
the Appendix. Note that if k1 = k2 then the restriction SD50 > ED50 is necessary.
Otherwise, the side-effects would always outweigh the effects.

Corollary 1 Let σ 2
1 = σ 2

2 , k1 = k2 and ρ = 0. Then, for the simple bivariate model,

(i) ξ = {√ED50SD50;1} is locally c-optimal when SD50/ED50 ∈]1, (5+
√

21 )/2].
(ii) ξ = {ED50,SD50;0.5,0.5} is locally c-optimal as SD50/ED50 →∞.

For the bivariate Emax model the design space, χ , needs to be restricted or some
design weight is necessarily assigned to an infinitely high dose. Some locally c-
optimal designs for the design space χ = [0,500] are provided in Tables 1 and 2.
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Table 1 Locally c-optimal designs ξ = {x1,500;w1,1−w1} for the bivariate Emax model with
respect to g(θ) in (4). Here χ = [0,500], ED50 = 1, SD50 = 2, σ 2

1 = σ 2
2 and ρ = 0

Smax
Emax

( k2
k1
= 1) 1 0.9 0.8 0.7 0.6

x1 1.1078 0.7436 0.8234 0.9701 1.1030

w1 0.3944 0.4074 0.4713 0.5285 0.5720

k2
k1
( Smax
Emax

= 1) 1 0.9 0.8 0.7 0.6

x1 1.1078 0.7374 0.7871 0.8719 0.9423

w1 0.3944 0.4157 0.4845 0.5387 0.5774

Table 2 Locally c-optimal designs ξ = {x1, x2,500;w1,w2,1−w1−w2} for the bivariate Emax
model with respect to g(θ) in (4). Here χ = [0,500], ED50 = 1, k1 = k2 and Emax = Smax. If the
design point x2 is not specified then x1 and 500 are the only design points

SD50 ρ (
σ 2

2
σ 2

1
= 1)

σ 2
2
σ 2

1
(ρ = 0)

−0.5 0 0.5 0.9 0.5 1.5 3

2 x1 1.0793 1.1078 1.0972 0.4985 0.8437 1.3875 2.1699

w1 0.2800 0.3944 0.5118 0.4883 0.3702 0.4160 0.4670

x2 4.9811

w2 0.3639

3 x1 1.2704 1.2833 0.8407 0.4626 0.9356 1.6057 1.7091

w1 0.3723 0.4903 0.4736 0.5111 0.4555 0.5197 0.3929

x2 6.0010 5.6854 6.3070

w2 0.2220 0.4213 0.2684

4 x1 1.4553 1.1358 0.7026 0.4815 1.0312 1.1128 1.0766

w1 0.4188 0.4582 0.4704 0.5197 0.4956 0.4124 0.3433

x2 6.5538 7.6651 6.3468 7.2480 8.9210

w2 0.1282 0.3411 0.4305 0.2700 0.5557

5 x1 1.3371 0.9347 0.6662 0.5040 0.9375 0.9327 0.9287

w1 0.3933 0.4353 0.4767 0.5232 0.4831 0.4016 0.3420

x2 7.2388 8.7514 8.6498 7.0101 8.5842 8.8849 9.1612

w2 0.0889 0.2548 0.3853 0.4343 0.0786 0.3833 0.6213

These designs are derived by informative guessing and numerical minimization of
Ψ in (6). It is easy to use Theorem 1 to verify that the designs in Tables 1 and 2 are
indeed locally c-optimal.
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5 Discussion

Table 2 indicates that two design points are sufficient as long as 1< SD50/ED50 < c,
where c is some constant. Otherwise, if SD50/ED50 > c then an additional design
point is needed. Table 2 also indicates how the variance-covariance parameters in-
fluence the designs. The larger ρ and σ 2

2 /σ
2
1 , the smaller c for which the statement

above holds. A study where the two responses are negatively correlated (for a fixed
dose) needs, in this setting, fewer or as many design points as when the two re-
sponses are positively correlated. Moreover, a study where the variance for the pri-
mary safety variable is large compared with the variance for the primary efficacy
variable needs as many or more design points than if this were the other way round.
In the present paper the variance-covariance parameters are assumed to be known.
It is of interest to analyze further the impact of these parameters and the uncertainty
that arises when they are unknown. The work in this paper is part of a larger study
(Magnusdottir 2012).
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Appendix

Lemma 1 (Pázman 1986) Let φ(x, ξ) stand for the derivative of Ψ in the direction
ξx and let Ψ be a general criterion function to be minimized. A design, ξ , is locally
optimal with respect to Ψ if and only if φ(x, ξ) ≥ 0, ∀x ∈ χ . This further implies
that φ(x, ξ)= 0 for x ∈ {x1, . . . , xn}.

Proof of Theorem 1 First note that the directional derivative can be written of the
form φ(x, ξ)= tr( ∂Ψ

∂M(ξ)
(M(ξx)−M(ξ))) (Pázman 1986). We have

∂Ψ

∂M(ξ)
= ∂

∂M(ξ)

(∇g(θ)�M(ξ)−1∇g(θ))=−M(ξ)−1∇g(θ)∇g(θ)�M(ξ)−1.

From the above we get

φ(x, ξ)= tr
(−M(ξ)−1∇g(θ)∇g(θ)�M(ξ)−1(M(ξx)−M(ξ)))

=∇g(θ)�M(ξ)−1∇g(θ)−∇g(θ)�M(ξ)−1M(ξx)M(ξ)
−1∇g(θ).

Now

φ(x, ξ)≥ 0 ⇔ ∇g(θ)�M(ξ)−1M(ξx)M(ξ)
−1∇g(θ)

≤∇g(θ)�M(ξ)−1∇g(θ). �
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Proof of Corollary 1 (i) Let s := SD50/ED50 > 1, θs = (1, s) and ξs = {√s;1}.
Theorem 1 gives that ξ2 is locally c-optimal iff f (x) := x2( 1

s(x+1)4
+ s

(x+s)4 ) ≤
2

(
√
s+1)4

, ∀x ∈ χ . Equality holds when x =√s and it is easy to show that this point is

a local maximum given that s ∈]1, 7+3
√

5
2 [ (f ′(

√
s)= 0 ∀s ∈ χ and f ′′(

√
s) < 0⇔

s ∈] 7−3
√

5
2 , 7+3

√
5

2 [). Now f ′(x) = 2x(x −√s)(x +√s)g(x)/((x + s)5(x + 1)5),

where g(x) is a polynomial of degree 4. If s ∈]1, 5+√21
2 ] then all coefficients of g(x)

are negative and hence x =√s is a global maximum. This means that ξs is locally
c-optimal for this interval and thus ξ = {ED50

√
s;1} = {√ED50SD50;1} is locally

c-optimal for the model with θ = ED50θs = (ED50,SD50) given that SD50/ED50 ∈
]1, 5+√21

2 ]. (ii) Let s := SD50/ED50, θs = (1, s) and ξs = {1, s;0.5,0.5}. Theorem 1
implies that ξ2 is locally c-optimal iff

(
32(s + 1)4

16s2 + (s + 1)4

)2
sx2

4

(
1

(x + 1)4
+ s2

(x + s)4
)
≤ 16s(s + 1)4

16s2 + (s + 1)4
, ∀x ∈ χ,

which is equivalent to

16(s + 1)4

16s2 + (s + 1)4
x2

(
1

(x + 1)4
+ s2

(x + s)4
)
≤ 1, ∀x ∈ χ. (8)

The left-hand side of (8) tends to 16x2/(x + 1)4 as s→∞. Finally, 16x2/(x + 1)4

≤ 1,∀x ∈ χ . This gives that ξs is locally c-optimal and thus ξ = {ED50,ED50s;
0.5,0.5} = {ED50,SD50;0.5,0.5} is locally c-optimal for the model with θ =
(ED50,ED50s) =(ED50,SD50) as SD50/ED50 →∞. �
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On the Functional Approach to Locally
D-Optimum Design for Multiresponse Models

Viatcheslav B. Melas, Lyudmila A. Krylova, and Dariusz Uciński

Abstract D-optimum experimental designs are investigated for a multiresponse ki-
netic model of two consecutive first-order reactions. The model is nonlinear and
consists of a set of ordinary differential equations. We demonstrate how the func-
tional approach can be adapted to numerically construct optimal designs in this set-
ting.

1 Introduction

Optimal designs are usually found either in closed form or, more often, using well-
known numerical algorithms (Atkinson et al. 2007). An effective alternative could
be the so-called “functional approach” developed and refined by Melas (2006). Its
basic idea is to treat the support points and weights of the optimal design as implicit
functions of some judiciously selected auxiliary parameters. These functions can be
represented by means of power series and then the problem reduces to numerical
computation of a sufficiently large number of their most significant terms.

The functional approach has been successfully applied to linear and nonlinear re-
gression models and various design criteria, including minimax and Bayesian ones.
This paper makes a start on its use in the design of optimal experiments for mul-
tiresponse dynamic models whose evolution is described by systems of ordinary
differential equations. We motivate our work by an example drawn from chemical
kinetics, which also serves as a device to illustrate the effectiveness of the approach.
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2 Problem Formulation

Consider a simple chemical reaction which is, however, sufficiently rich to illustrate

our ideas. In the model for two consecutive first-order reactions A
θ1→ B

θ2→ C, we
start, at t = 0, with concentrations [A](0; θ) = 1 and [B](0; θ) = [C](0; θ) = 0 of
three reactants. The change over time of these is governed by the kinetic ordinary
differential equations (Atkinson et al. 2007, p. 270) which have the closed-form
solution ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[A](t; θ)= e−θ1t ,

[B](t; θ)=
(
−θ1e−(θ1−θ2)t

θ1 − θ2
+ θ1

θ1 − θ2

)
e−θ2t ,

[C](t; θ)= 1− [A](t; θ)− [B](t; θ).
(1)

We assume that the observations in a given time interval T = [0, tf ] consist of
simultaneous measurements of the three components, i.e.,

yi = η(ti , θ)+ εi, ti = 1, . . . ,N,

where η(t; θ)= ([A](t; θ), [B](t; θ), [C](t; θ))T, ti ∈ T , i = 1, . . . ,N , εi stands for
measurement noise, E{εi} = 0, E{εiεT

j } =Rδij , δij is the Kronecker delta,R ∈R
3×3

is assumed to be known. This means that the observations at different time moments
are not correlated, but there may be correlations between individual response com-
ponents for the same time moment.

Allowing replicated measurements, we consider continuous designs of the form

ξ =
{
t1, . . . , tk
w1, . . . , wk

}
, (2)

where the support points ti do not coincide, and wi denote the corresponding
weights, with k not being fixed. Then the corresponding information matrix can
be written as

M(ξ ; θ)=
k∑
i=1

wi

(
∂η

∂θ
(ti , θ)

)T

R−1 ∂η

∂θ
(ti , θ). (3)

Our goal is to determine locally D-optimum designs for the regression function
η(t, θ). To this end, the functional approach (Melas 2006) is going to be exploited.

3 Main Analytical Results

We start by partitioning the matrix R−1 as

R−1 =
(
Q h

hT q

)
,
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where Q ∈R
2×2, h ∈R

2, q ∈R. We then define W as the matrix function

W(R)=Q− hdT − dhT + qddT,

with d = (1,1)T.
For notational simplicity, the derivatives of the responses with respect to param-

eters will be denoted by

f1(t; θ)= ∂η1(t, θ)

∂θ1
, f2(t; θ)= ∂η2(t, θ)

∂θ1
, f3(t; θ)= ∂η2(t, θ)

∂θ2
. (4)

For similar reasons, we set

X̃(t)=
(
f1(t) f2(t) −f1(t)− f2(t)

0 f3(t) −f3(t)

)
, X(t)=

(
f1(t) f2(t)

0 f3(t)

)
.

It is easy to check that

X̃(t)R−1X̃T(t)=X(t)WXT(t).

The matrix product on the right-hand side thus produces a positive-definite matrix.
For any design ξ of the form (2) the Fisher information matrix (3) becomes

M(ξ)=
k∑
i=1

wiX̃(ti)R
−1X̃T(ti)=

k∑
i=1

wiX(ti)WX
T(ti).

Observe that for k = 1, i.e., for a one-point design ξ = δt0 = { t01 }, we get

det
[
M(δt0)

]= det(W)
{
det

[
X(t0)

]}2 = det(W)f 2
1 (t0)f

2
3 (t0). (5)

Lemma 1 (Equivalence Theorem) A design ξ� is a D-optimum one for the consid-
ered model iff ϕ(t, ξ∗)≤ 2, ∀t ∈ T , where

ϕ(t, ξ)= tr
[
WXT(t)M−1(ξ)X(t)

]
.

The proof is standard (see, e.g., Uciński 2005) and is therefore omitted.
It is easily seen that D-optimum designs depend on the unknown values of θ1

and θ2. Therefore, we focus on construction of a locally D-optimum design using
their prior point estimates. By abuse of notation, we use the same letters θ1 and θ2
for these arbitrarily selected values.

Observe that if we multiply both θ1 and θ2 by a constant and scale the time
variable by dividing it by the same constant, the model (1) does not change.
Therefore, without loss of generality, we can assume that θ1 + θ2 = 2. Whenever
θ1 + θ2 = c �= 2, the support points of the optimal designs which are going to be
determined in what follows should be simply multiplied by 2/c.

Introduce the parameter Δ= 1− θ1, which yields θ1 = 1−Δ and θ2 = 1+Δ.
The support points and the corresponding weights of the D-optimum design ξ will
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thus be treated as functions of Δ. The idea is to study the problem for Δ= 0, which
is less complicated, and then expand the solution in a power series for arbitrary Δ.

Observe that, as Δ→ 0, we have

f1(t)→−te−t , f2(t)→
(
t − t

2

2

)
e−t , f3(t)→− t

2

2
e−t .

Therefore,M(ξ) has a continuous extension to the case of θ1 = θ2 = 1.
Set

X̄(t)= lim
Δ→0

X(t; θ)∣∣θ1=1−Δ
θ2=1+Δ

=
(−te−t (t − t2

2 )e
−t

0 − t22 e−t

)
,

M̄(ξ)=
k∑
i=1

wiX̄(t)WX̄
T(ti).

Furthermore, define

W =
(
a b

b c

)
, γ = γ (R)= ac+ c

2 − 2bc

ac− b2
,

Ψ (t;γ ) = e−2t+3[γ (y2 − y)2 + 2y3], where y = 2

3
t,

t1,2(γ ) = 7

4
− 3

2γ
±

√(
7

4
− 3

2γ

)2

− 3

2
.

Let γ � denote any solution of the equation

max
i=1,2

Ψ
[
ti (γ );γ

]= 2 (6)

subject to

γ > γ̄ = 3

2

(
7

4
−

√
3

2

)−1

. (7)

Theorem 1 Assume that tf ≥ 3/2 and Δ = 0. Equation (6) has a unique solution
γ � satisfying (7). What is more, the D-optimum design has only one support point
iff

γ (R)≤ γ �. (8)

It then has the form δt0 =
{ t0

1

}
, where t0 = 3/2. For γ (R) > γ � the optimal design

has two support points.

Note that the numerical solution of (6) subject to (7) gives γ � ≈ 2.872.
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Table 1 Optimal designs
ξopt determined numerically
for various Δ: t1 and t2 are
optimal support points with
optimal weights w and 1−w,
respectively

Δ t1 t2 w det[M(ξopt)]

0.01 1.50504 1.50504 1 0.02118

0.10 1.55456 1.55456 1 0.02114

0.50 1.93755 1.93755 1 0.01944

0.80 2.99853 2.99853 1 0.01356

0.85 3.60919 3.60919 1 0.01170

0.90 3.11325 7.61392 0.48351 0.00994

0.99 3.61443 85.92849 0.41614 0.00919

Proof By definition, a one-point D-optimum design δt0 =
{ t0

1

}
must maximize (5),

which implies t0 = 3/2. In this case we see that ϕ(t, δt0)= Ψ (t;γ ).
The derivative of Ψ (t;γ ) with respect to t is

dΨ (t;γ )
dt

=−32

81
e−2t+3t

(
t − 3

2

)[
γ

(
t2 − 7

2
t + 3

2

)
+ 3t

]
. (9)

For γ not satisfying (7) it becomes zero for t > 0 only at t = t0 = 3/2, where t �→
ϕ(t, δt0) attains its maximum equal to 2. From Lemma 1 it then follows that the
one-point design δ3/2 is the unique D-optimal design.

If (7) is satisfied, then the derivative (9) becomes zero at points t0, t1(γ ) and t2(γ )
and it can be verified that the function γ �→maxi=1,2Ψ [ti (γ );γ ] is monotonically
increasing. Accordingly, Eq. (6) has a unique solution γ ∗ and for γ > γ ∗ we have
ϕ(t, ξt0) > 2 for t = t1(γ ) or t = t2(γ ).

By Lemma 1 the optimal design in this case cannot be one-point. On the other
hand, that the number of support points of the optimal design in this case must not
exceed two results from the Chebyshev property of the system of functions defined
as products of exponentials and monomials, cf. Dette and Melas (2011). �

4 Computational Results

Consider first the case when R is the identity matrix. Theorem 1 implies that for
Δ= 0 the optimal design has one support point and is of the form δ3/2. For Δ> 0
it may have two or even three support points; Carathéodory’s Theorem makes it
possible to restrict attention to designs with no more than three support points.

The results of a numerical search for D-optimum designs using Maple are re-
ported in Table 1 (optimal designs are denoted by ξopt). For Δ ∈ [0,0.85] the opti-
mal design has only one support point. From (5) we see that the determinant of the
corresponding information matrix is 3(f1f3)

2, where f1 and f3 are given by (4).
Substituting θ1 = 1−Δ and θ2 = 1+Δ, we obtain

f1 =−te(Δ−1)t , f3 = (1−Δ)e−(1+Δ)t
(

1− e2Δt

4Δ2
+ t

2Δ

)
.
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In order to find a D-optimal design for this case, it is enough to solve the equation

g(t,Δ)= 0, (10)

where g(t,Δ)= ∂ detM(t,Δ)/∂t . This gives

(1− 2t + 2Δt)e2Δt − 1− 4Δt + 2t + 4Δt2 = 0. (11)

We shall consider the optimal support point t� as a function of Δ. Equation (11)
makes it possible to determine the coefficients of the expansion of t�(Δ) in the
Taylor series about Δ= 0. Denote by t�(i) the i-th coefficient of this expansion, i.e.,

t�(Δ)=
∞∑
i=0

t�(i)Δ
i.

From Theorem 1, we see that t�(0)= t�(0) = 3/2.
Consider now the Jacobi matrix of Eq. (10) (here it reduces to a scalar):

J (t,Δ)= ∂2

∂t2
detM(t,Δ).

Expanding J (t,Δ) in a series of Δ up to the sixth order, we get

J (t,Δ)= 12e−4t t6 + 45

2
e−4t t4 − 36e−4t t5 + (. . . )Δ+O(

Δ2).
Substituting t�(0) = 3/2, we obtain the limit of J [t (Δ),Δ] as Δ→ 0:

J(0) =−729

32
e−6.

Exploiting the recurrence formulae from Melas (2006), it may be concluded that

t(s) =−J−1
(0)

{
g
[
t〈s−1〉(Δ),Δ

]}
(s)
, s = 1,2, . . . ,

where t〈n〉(Δ)=∑n
i=0 t(i)Δ

i , g[t (Δ),Δ](s) being the s-th coefficient in the expan-
sion of g[t (Δ),Δ] in the Taylor series about Δ = 0. Implementing this in Maple,
we get

t�(Δ)= 3

2
+ 1

2
Δ+ 5

12
Δ2 + 16

45
Δ3 + 697

2160
Δ4 + 173

567
Δ5 + · · · .

As Δ→ 0, the determinant of the information matrix for the design ξ = {
t�

1

}
tends to 2187

256 e−6 ≈ 0.0211759 (this agrees with the numerical results of Table 1).
Let us investigate how the quality of the above approximation to the D-optimum

design ξ� depends on the number of expansion coefficients. Let ξ 〈n〉 be the ap-
proximate design constructed based on n coefficients of the expansion. Set t� =
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Table 2 Accuracy of designs
constructed by the functional
approach

Δ n t 〈n〉 detM(t 〈n〉) t� ϕ(t�, ξ 〈n〉) detM(t�)

0.1 1 1.5500 0.0211 1.5566 2.0000 0.0211

0.1 2 1.5541 0.0211 1.5547 2.0000 0.0211

0.5 5 1.9283 0.0194 1.9386 2.0000 0.0194

0.5 7 1.9352 0.0194 1.9378 2.0000 0.0194

0.8 15 2.9347 0.0135 3.0893 2.0019 0.0135

0.8 25 2.9877 0.0135 3.0130 2.0000 0.0135

0.8 30 2.9941 0.0135 3.0043 2.0000 0.0135

0.85 10 3.1610 0.0114 5.6376 2.1450 0.0087

0.85 30 3.5692 0.0117 3.9830 2.0016 0.0115

0.85 40 3.5989 0.0117 3.6841 2.0000 0.0117

0.9 30 4.7017 0.0095 8.5400 2.1238 0.0068

arg maxt ϕ(t, ξ 〈n〉). For comparison, the last row of Table 2 contains the results for
Δ= 0.9. In this case, the one-point design is not D-optimal. The reason for the ob-
served change in the number of support points is that for Δ≈ 1 the multiresponse
model behaves much like a single-response model.

For the designs found for Δ= 0.87,0.88, . . . ,0.999 the condition ϕ(t, ξopt)≤ 2
is satisfied with great accuracy for any two-point design from Table 1. The maxi-
mum of the function ϕ(t, ξopt) is attained at points t̃1 and t̃2 such that t̃1 ≈ t1, t̃2 ≈ t2.
Note that the one-point design δ3/2 which is locally D-optimum for Δ= 0 has effi-
ciency 0.998 for Δ= 0.1, efficiency 0.919 for Δ= 0.5 and 0.662 for Δ= 0.

Consider now the case where for Δ = 0 the optimal design has two support
points. To this end, assume that R is such that

W(R)=
(

102 10
10 1

)
. (12)

It is easy to see that γ (R)= 83/2 does not satisfy (8).
For Δ→ 0 we numerically find the limit optimal two-point design with

t
opt
1 = 0.6490, t

opt
2 = 2.3295, wopt = 0.4936.

Treating the support points t1, t2 and the weight w as functions of Δ, we re-
currently find the respective coefficients of the expansion of these functions in the
Taylor series about Δ= 0 (several of them are included in Table 3).

Using 20 coefficients of the expansion around Δ= 0, we find the design at point
Δ= 0.2:

t
〈20〉
1 (0.2)= 0.5874, t

〈20〉
2 (0.2)= 2.1088, w〈20〉(0.2)= 0.4639.

The optimal design found numerically has the form

t
opt
1 = 0.5861, t

opt
2 = 2.1097, wopt = 0.4651.
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Table 3 Several coefficients
of the expansions about
Δ= 0 for R satisfying (12):
t1(i) and t2(i) signify
coefficients for the optimal
support points; w(i) are
coefficients for the weight of
the support point t1

i t1(i) t2(i) w(i)

0 0.6490 2.3295 0.4936

1 −0.1988 −0.9830 −0.0612

2 −0.5395 −0.3998 −0.2424

3 −0.2033 −1.6464 −0.6302

4 0.5075 1.9346 −1.2363

In turn, at point Δ= 0.4 we get the following design:

t
〈20〉
1 (0.4)= 0.4944, t

〈20〉
2 (0.4)= 1.8880, w〈20〉(0.4)= 0.3191.

The optimal design found numerically has the form

t
opt
1 = 0.4942, t

opt
2 = 1.8874, wopt = 0.3190.

Thus the achieved accuracies are at least 5× 10−3.

5 Conclusion

The obtained theoretical and numerical results demonstrate that the functional ap-
proach combined with the equivalence theorem makes it possible to approximate
locally optimal designs for the nonlinear model considered with quite high accu-
racy. We intend to continue this line of research towards models described by sys-
tems of ordinary differential equations which do not have closed-form solutions for
responses.
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Sample Size Calculation for Diagnostic Tests
in Generalized Linear Mixed Models

Tobias Mielke and Rainer Schwabe

Abstract Intra-cluster correlations have to be taken into account for calculating the
stochastic behaviour of estimators in diagnostic studies with repeated measurements
on individuals. One approach of inducing the intra-cluster correlation is provided by
generalized linear mixed models. In these models the inverse of the Fisher informa-
tion matrix is important as the asymptotic covariance of the maximum likelihood
estimator which is necessary for determining the required sample size of statistical
tests. We illustrate the dependence of the sample size on different approximations
of the Fisher information matrix through an example of the proof of non-inferiority
in medical diagnostic studies.

1 Introduction

Generalized linear mixed effects models can be applied in diagnostic studies to take
account of possible intra-individual dependencies. The observations within one indi-
vidual are assumed to follow a common response structure, which is described by an
individual parametric model. The individual parameters specifying these models are
assumed to vary across the whole population with some distribution defined by pop-
ulation parameters. These parameters, or functions thereof, are of interest in clinical
studies. However, the likelihood function in mixed effects models generally contains
integrals which cannot be simplified into a closed form. As a consequence, estima-
tors of the population parameters are also not obtainable as closed-form expressions,
nor is the inverse of the Fisher information matrix. This inverse is customarily used
in designing experiments as the asymptotic covariance matrix of the maximum like-
lihood estimator. Approximations to the Fisher information are therefore needed.
Experimental designs based on such approximations (Waterhouse 2005; Niaparast

T. Mielke (B) · R. Schwabe
Institute for Mathematical Stochastics, Otto-von-Guericke University, Universitätsplatz 2,
39106 Magdeburg, Germany
e-mail: tobias.mielke@ovgu.de

R. Schwabe
e-mail: rainer.schwabe@ovgu.de
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2010; Waite et al. 2012) may however be of limited efficiency with respect to the
true model.

In Sect. 2 we introduce the binomial response model considered here with sub-
ject specific success probabilities. A related testing problem is presented in Sect. 3
and an example on the impact of different information approximations on the re-
quired sample size in diagnostic studies is given in Sect. 4. Section 5 summarizes
our findings and proposes further areas of study.

2 Model

Diagnostic methods are applied in order to study the presence of certain diseases
in individuals. For N individuals let xij ∈ {0,1}, j = 1, . . . ,m and i = 1, . . . ,N ,
describe the presence of a particular disease in component j of the i-th individual,
where the value xij = 1 indicates an existing disease. The values of xij are unknown
at the planning stage of the study and might be considered as realizations of bino-
mial random variables Xij with success probabilities p, such that the proportion of
individuals with exactly l diseased objects is given by

ωl :=
(
m

l

)
pl(1− p)m−l .

The exact determination of the disease status xij in the objects is generally im-
possible. Diagnostic methods yield insights into the disease status, but include some
errors. Diagnostic test results are modelled as realizations of zero-one valued ran-
dom variables Ykij , which describe the judgments in the k-th study group for the
j -th component in individual i. Measures for the appropriateness of diagnostic tests
are given by the sensitivity and the specificity. The sensitivity describes the proba-
bility of declaring a diseased object as diseased:

πk := P(Ykij = 1|Xij = 1),

whereas the specificity denotes the probability of declaring a non-diseased object as
non-diseased:

τk := P(Ykij = 0|Xij = 0).

The sensitivity and specificity will generally depend on the treatment group k and
the individual i, but are assumed to be independent of the compartment j . One way
to model the dependence of sensitivity and specificity on the individual is provided
by including individual effects in the model for the probability of observing positive
diagnostic test results. It is common to employ a generalized linear model with the
logit link function:

logit
(
P(Ykij = 1|Xij = xij )

)= f (xij )�θi;k = θ1;i;k + θ2;i;kxij ,
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where f (xij ) = (1, xij )�. The parameter vectors θi;k are assumed to be normally
distributed random variables with uncorrelated components:

θi;k ∼N (θk,D), (1)

where D = diag(d1, d2), d1 > 0, d2 > 0, i = 1, . . . ,N .
The model for the observations Yki = (Yki1, . . . , Ykim) is hence a generalized

linear mixed model. The log-likelihood results for individual i and realizations yki =
(yki1, . . . , ykim), given values of the disease status xi = (xi1, . . . , xim) and a design
matrix Fi := (f (xi1), . . . , f (xim))� in

l(θ;yki, xi)= ln

(∫
R2

exp

[
y�kiFiθi −

m∑
j=1

ln
(
1+ exp

[
f (xij )

�θi
])]
φθi;k (θi)dθi

)
,

where φθi;k is the corresponding normal density to (1) for the individual parameter
vector.

A closed-form representation of the likelihood function for the present model is
not obtainable. Approaches in statistical programs aim at optimizing the true likeli-
hood by maximizing an approximated likelihood with the use of Laplace approxi-
mations or MCMC-methods. These provide estimators of the population parameters
θk that behave similar to the maximum likelihood estimator θ̂k , which is under some
regularity conditions asymptotically normally distributed as

√
N(θ̂k − θk) L−→N

(
0,M−1

θk

)
, (N→∞)

with the inverse of the standardized Fisher information Mθk as the asymptotic co-
variance. The problem of the missing formula for the likelihood function carries
forward to the calculation of the Fisher information matrix, which is defined as the
covariance of the score function (Mielke 2011)

Mθk :=
m∑
j=0

ωjE

(
∂l(θk;Yki, xj )

∂θk

∂l(θk;Yki, xj )
∂θ�k

)

=D−1 −D−1E
(
Var(θi;k|Yki)

)
D−1,

where here and in the following xj = (xj1, . . . , xjm) is defined with xjl = 1, l ≤ j
and xjl = 0 otherwise. The dependence of the Fisher information on the prevalence
of the disease is contained in the weights ωj .

Various approaches to approximating the Fisher information matrix might be
applied based on this representation. Approximations of the conditional density of
θi;k for given realizations yki and fixed numbers of diseased objects xi :

fθi;k |Yki=yki (θi)=
exp(y�kiFiθi −

∑m
j=1 ln(1+ exp[f (xij )�θi]))φθi (θi)∫

R2 exp(y�kiFiθi −
∑m
j=1 ln(1+ exp[f (xij )�θi]))φθi (θi)dθi

(2)



174 T. Mielke and R. Schwabe

can be derived by applying a Laplace approximation to the denominator integral and
a second order Taylor approximation to the exponents in the numerator term. The
application of the same support point θ̃i;k for the approximations of the denominator
and the numerator results in a normal density as an approximation of the conditional
distribution (Mielke 2011). We are here only interested in the approximation of the
conditional variance, which is approximated with the described approach on the
conditional density by

Var(θi;k|Yki = yki)≈
(
D−1 + F�i Cθ̃i;kFi

)−1
,

where

Cθ̃i;k := diag

(
exp(f (xi1)�θ̃i;k)

(1+ exp(f (xi1)�θ̃i;k))2
, . . . ,

exp(f (xim)�θ̃i;k)
(1+ exp(f (xim)�θ̃i;k))2

)
.

Different approximations of the conditional variance result in a dependence of
this approach on the support point θ̃i;k . Approximations of the Fisher information
matrix can be computed by

Mθk =D−1 −D−1E
(
Var(θi;k|Yki)

)
D−1

≈ E(
D−1 −D−1(D−1 + F�i Cθ̃i;kFi

)−1
D−1)=E(

F�i
(
C−1
θ̃i;k
+ FiDF�i

)−1
Fi

)
.

A frequently applied approximation of the Fisher information matrix in mixed
effects models is obtained by the application of the mean θk of the individual param-
eter vectors as a support point of the approximation and corresponds to the Longford
approximation (Waterhouse 2005):

M1;θ :=
m∑
j=0

ωjF
�
j

(
C−1
θk
+ FjDF�j

)−1
Fj .

This approximation does not depend in any way on the possible outcomes yki .
A more refined approximation of the conditional density is given by applying the
complete Laplace approximation, which approximates the conditional mean by the
mode of the joint density for given observations yki . This was proposed by Bres-
low and Clayton (1993) and, in much the same manner, in nonlinear mixed effects
models by Nyberg (2011). The limited number of possible outcomes yi ∈ {0,1}m in
the generalized linear mixed model considered here allows the computation of the
modes θ∗

i;k of the expression (2) and hence the approximation of the Fisher infor-
mation using these support points:

M2;θ :=
m∑
j=0

ωj

2m∑
l=1

F�j
(
C−1
θ∗
i;k
+ FjDF�j

)−1
FjP (Yki = yl |Xi = xj ),
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where the values of

P(Yki = yl |Xi = xj )

=
∫
R2

exp

[
y�l Fj θi −

m∑
i′=1

ln
(
1+ exp

[
f (xji′)

�θi
])]
φθi;k (θi)dθi

are approximated using Laplace approximations.
A third alternative for approximating the Fisher information based on the above

approximation of the conditional variance was presented by Mielke (2011) for non-
linear mixed effects models. The individual parameter vectors θi;k are applied as
support points of the Laplace approximation in this approach and the Fisher infor-
mation is approximated by the mean of the resulting matrices:

M3;θ :=
m∑
j=0

ωjEθi;k
(
F�j

(
C−1
θi;k + FjDF�j

)−1
Fj

)
.

Waite et al. (2012) state that for large numbers N of individuals the approxima-
tion M3;θ will coincide with the approximation M2;θ . This result does not hold in
general, as the distribution of support points θ∗

i;k will not coincide with the distribu-
tion of the individual parameters θi;k .

An alternative approach for estimating θk is given by the Quasi-likelihood esti-
mator θ̂QL, minimizing the least squares function for observed y = (yk1, . . . , ykN):

LQL(θ;y) :=
N∑
i=1

(
yki −Eθ(Yki)

)�Covθ0(Yki)
−1(yki −Eθ(Yki))→ min

θ∈Rp.

Here θ0 is an iteratively updated guess of θk . The theory of least-squares estimation
provides the asymptotic normality of the estimator θ̂QL:

√
N(θ̂QL − θk) L−→N

(
0,M−1

4;θ
)

with the quasi-information

M4;θ :=
m∑
j=0

ωj
∂E(Yki |Xi = xj )�

∂θk
Covθ (Yki |Xi = xj )−1 ∂E(Yki |Xi = xj )

∂θ�k
.

The quasi information provides a lower bound to the Fisher information matrix and
might be used for designing experiments in generalized linear mixed models (Nia-
parast 2010).

Note that in the present example the Fisher information matrix can be computed
numerically due to a limited number of possibly different outcomes.



176 T. Mielke and R. Schwabe

3 Statistical Testing Problem

Aim of diagnostic studies might be the proof of non-inferiority in the sensitivity and
specificity of the endpoints. A treatment k is called non-inferior to a treatment k′ if
the following inequalities are fulfilled for given non-inferiority margins δπ and δτ :

πk > πk′ − δπ and τk > τk′ − δτ .
The intersection-union test can be applied to prove the non-inferiority with the
global null-hypotheses:

H0 : πk ≤ πk′ − δπ or τk ≤ τk′ − δτ ,
which is rejected at a level of α if the two hypotheses

H01 : πk ≤ πk′ − δπ and H02 : τk ≤ τk′ − δτ
are both rejected by level α-tests (Berger 1982). Our aim is the calculation of the
minimal sample size for attaining a power of 1−β in the case of the equality of both
the endpoints in the two-treatment groups. TheΔ-Method is applied for deriving the
asymptotic statistical model of the estimators of sensitivity and specificity.

Write

π̂k := exp(θ̂1;k + θ̂2;k)
1+ exp(θ̂1;k + θ̂2;k)

, τ̂k := 1

1+ exp(θ̂1;k)
.

Then the asymptotic normality of the maximum likelihood estimator follows:

√
Nk

((
π̂k
τ̂k

)
−

(
πk
τk

))
L−→N

(
0,ΛθkM

−1
θk
Λ�θk

)
, (Nk→∞)

where

Λθk :=
⎛
⎝

exp(θ1;k+θ2;k)
(1+exp(θ1;k+θ2;k))2

exp(θ1;k+θ2;k)
(1+exp(θ1;k+θ2;k))2

− exp(θ1;k)
(1+exp(θ1;k))2

0

⎞
⎠ .

We assume that each individual is assigned to exactly one treatment group. The
estimators for θk and θk′ are hence independent. The non-inferiority is asymptot-
ically proven if, with c1=(1,0)�and c2=(0,1)�and group sizes Nk and Nk′ , we
get

Ti :=
c�i

(((
π̂k
τ̂k

))− ((π̂k′
τ̂k′

))+ ((
δπ
δτ

)))
√
c�i (

1
Nk
Λθ̂kM

−1
θ̂k
Λ�̂
θk
+ 1
Nk′
Λθ̂k′M

−1
θ̂k′
Λ�̂
θk′
)ci

> z1−α for both i = 1,2.

The group sizes Nk and Nk′ are supposed to coincide for equal parameters
θk = θk′ and the minimal N fulfilling

1− β ≤ Pθk=θk′ (T1 > z1−α ∩ T2 > z1−α)
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Fig. 1 Sample sizes. Grey: Mθ ; dotted: M1,θ ; dashed: M2,θ ; long-dash: M3,θ ; solid: M4,θ

can be calculated numerically to determine the required treatment group sizes.

4 Example

We consider the particular example of a diagnostic study for a contrast agent in
medical imaging. Each observed individual has m = 8 liver segments, which are
assumed either to be diseased (xij = 1) or non-diseased (xij = 0). The prevalence
was assumed to be given by P(Xij = 1) = 0.1. Per individual only one contrast
agent is administered and computer tomography results by one reader are obtained
yki = (yki1, . . . , yki8) for each individual. For planning purposes, we assume for
both treatment groups the same sensitivity and specificity. The non-inferiority mar-
gins were given as δπ = 0.1 and δτ = 0.05. The individual parameters are consid-
ered to be normally distributed with specified means θk = θk′ = (−1.75,2.35)�.
The parameters θ1;i;k are assumed to vary within the population with a variance d1,
whereas θ2;i;k is considered not to vary (d2 = 0).

Figure 1 presents the required sample sizes for proving non-inferiority in depen-
dence on the variance parameter d1 with a given power 1− β = 0.9. The required
sample size was computed for different values of the ratio

ρd = d1

1+ d1
∈ (0,1),

such that all possible values of the inter-individual variance are mapped on the inter-
val (0,1). The required sample size for proving non-inferiority strongly depends in
the observed scenarios on the inter-individual variances. The frequently applied ap-
proach to approximating the Fisher information matrix with the use of the mean of
the individual parameter vectors (M1;θ ) might provide non-sufficient sample sizes.
For large inter-individual variances d1 extreme individual parameter values are more
likely and are not sufficiently taken into account when computing the matrix M1;θ .
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The expected information M3;θ and the quasi-information M4;θ provide good
approximations to the true Fisher information matrix and the required sample size
in the present example.

5 Discussion

Various approaches to approximating the Fisher information in generalized linear
mixed effects models were shortly presented and their influence on the required
sample size for proving non-inferiority in a diagnostic study was examined in an
example. The frequently applied information approximation M1;θ provided non-
sufficient sample sizes for the desired power. The computationally harder approx-
imations M2;θ , M3;θ and M4;θ suggested sample sizes which were much closer
to the one computed by numerically evaluating the Fisher information. The results
can be generalized to multivariate equivalence tests and relative non-inferiority mar-
gins. Further considerations are needed for studying the dependence of the treatment
group sizes on potential inter-individual variance.
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D-Optimal Designs for Lifetime Experiments
with Exponential Distribution and Censoring

Christine H. Müller

Abstract The Kiefer-Wolfowitz approach is used to construct D-optimal designs
for lifetime experiments with exponential distribution and censoring. If the expected
lifetime is simply the reciprocal of the stress, then the optimal design does not de-
pend on the unknown parameter and the censoring. However, the situation is more
complicated for the more frequent assumption that the logarithm of the expected
lifetime is linear in the stress. Conditions are given here where the locally D-optimal
designs for experiments with censoring coincide with those in the classical approach
of normally distributed errors. In particular, this is the case when the censoring vari-
able is not too small and the slope of the regression is not too large.

1 Introduction

Often the expected lifetime E(T (s)) of a product depends on the stress s via a given
link function. Here it is assumed that this function is known up to a parameter vec-
tor θ . We assume that N lifetime experiments at different stress levels sn ∈S for
n= 1, . . . ,N are executed and that the lifetime Tn of the product will be observed
in each lifetime experiment. However, if the stress is too low, then often the lifetime
cannot be observed since the time up to the event, the ‘death’, is too long. There-
fore usually a time c is fixed at which the lifetime experiment is stopped. Then the
only information is that the product has survived the time c. Such observations are
the so-called censored observations. It is clear that the censored observations should
also be used in an analysis of lifetime data. Therefore define

Yn :=
{
Tn if Tn ≤ c,
c if Tn > c,

and Dn :=
{

1 if Tn ≤ c,
0 if Tn > c.

Then (Y1,D1, s1), . . . , (YN ,DN, sN) constitutes the available information, where
Dn is the censoring variable. Let tn, yn, and dn be the realizations of Tn, Yn and Dn
respectively and y∗ = (y1, . . . , yN)

�, d∗ = (d1, . . . , dN)
�, s∗ = (s1, . . . , sN )�. The
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likelihood function is then given by (see, e.g., Klein and Moeschberger 2003, p. 75)

Lθ(y∗, d∗, s∗) :=
N∏
n=1

fθ,sn(yn)
dnSθ,sn(yn)

1−dn ,

where fθ,s is the lifetime distribution density at stress s and

Sθ,s(t) :=
∫ ∞

t

fθ,s(u)du

is the survival function at time t and stress s.
There is a large body of literature on planning and analysis of lifetime exper-

iments due to their importance in practice. Often the planning concerns only the
construction of sampling plans (Liang et al. 2012) or the censoring mechanism by
removing units after some failure events (Park and Ng 2012; Tsai and Lin 2010; Wu
and Huang 2010). In other cases (Barriga et al. 2008), the planning concerns the
analysis of a specific lifetime experiment. Only a few papers deal with the optimal
planning of the stress variables. Bai and Chung (1991) consider the construction
of optimal two-point designs for experiments where the number of failures up to a
given time point is observed. They use the Poisson distribution to model the num-
ber of failures. Ahmad et al. (2006) numerically determine locally optimal designs
αes1 + (1 − α)es2 with s1 ∈ (s0, s2), where s0 and s2 are given, if the lifetime is
modelled by the exponential Weibull distribution. However, they assume that only
the scale parameter of the exponential Weibull distribution is unknown and that the
lifetime is measured in k units. Bai and Chung (1991) as well Ahmad et al. (2006)
do not use equivalence theorems (Kiefer and Wolfowitz 1960; Fedorov 1971) for
constructing D- and A-optimal designs. D-optimal designs for lifetime experiments
are developed by Das and Lin (2011). But they assume a lognormal distribution for
the lifetime and taking the logarithm of the lifetime they can use the usual theory
for normally distributed observations. Their new contribution is the assumption of
correlated errors.

To the best of the author’s knowledge, there are only a very few papers using the
Kiefer and Wolfowitz (1960) or Fedorov (1971) equivalence theorems for construct-
ing D- and A-optimal designs for censored observations or lifetime experiments.
López-Fidalgo and Garcet-Rodríguez (2011) derive optimal designs when the in-
dependent variable is censored. But in lifetime experiments, as considered in this
paper, the dependent variable is censored. Pal and Mandal (2009) construct optimal
designs for the stress strength reliability P(X < Y |Z) where both the stress X and
the strength Y have an exponential distribution. The approach most similar to that
of this paper is given by López-Fidalgo et al. (2009), who consider the case where
the censoring variable varies in an interval and the design space is {0,1}.

As in López-Fidalgo and Garcet-Rodríguez (2011), López-Fidalgo et al. (2009)
and Pal and Mandal (2009), we consider here the exponential distribution which is
the simplest lifetime distribution so that

fθ,s(t)= λθ (s) exp
(−λθ (s)t)
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is the lifetime density. Here the link function λθ :S → (0,∞) is known up to the
parameter vector θ . The expected lifetime is then

Eθ(Tn)= 1

λθ (sn)
.

Simple reasonable functions for λθ are the following:

λθ (s) = θs, θ ∈ (0,∞), (1)

λθ (s) = exp(θ0 + θ1s), θ = (θ0, θ1)
� ∈R× (0,∞). (2)

Both functions ensure that the expected lifetime is decreasing with increasing
stress s. The function given by (1) provides an infinite lifetime if there is no stress
while the function (2) is more flexible with a finite expected lifetime for no stress.
The function (2), also used in Ahmad et al. (2006), means that the logarithm of the
expected lifetime is linear which is an assumption often used by engineers (see, e.g.,
Haibach 2006, p. 25).

We consider here the problem of constructing optimal designs of the stress levels
for the maximum likelihood estimator of θ ,

θ̂ := arg max
θ
Lθ (y∗, d∗, s∗).

In Sect. 2, the information matrix for this estimator is given. Section 3 deals then
with the optimal design for λθ given by (1) and Sect. 4 provides locally D-optimal
designs for λθ given by (2).

2 The Information Matrix

Since the survival function for the exponential distribution satisfies Sθ,s(t) =
exp(−λθ (s)t), the loglikelihood function has the form

logLθ(y∗, d∗, s∗)=
∑
dn=1

(
logλθ (sn)− λθ (sn)yn

)+ ∑
dn=0

(−λθ (sn)c)

=
N∑
n=1

l(θ, tn, sn)

with

l(θ, t, s) := (
logλθ (s)− λθ (s)t

)
1[0,c](t)− λθ (s)c1(c,∞)(t).

The maximum likelihood estimator θ̂ is a solution to
N∑
n=1

l̇(θ̂ , tn, sn)= 0,
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where

l̇(θ, t, s) := ∂

∂θ
l(θ, t, s)= ∂

∂θ
λθ (s)

[(
1

λθ (s)
− t

)
1[0,c](t)− c1(c,∞)(t)

]
.

Also set

l̈(θ, t, s) := ∂

∂θ
l̇(θ, t, s)

= ∂2

∂2θ
λθ (s)

[(
1

λθ (s)
− t

)
1[0,c](t)− c1(c,∞)(t)

]

+ ∂

∂θ
λθ (s)

∂

∂θ
λθ (s)

�
(
− 1

λθ (s)2

)
1[0,c](t).

Note that for any λ > 0 we have

∫ c

0

(
1

λ
− t

)
λ e−λt dt − c

∫ ∞

c

λ e−λt dt = 0, (3)

∫ c

0

(
1

λ
− t

)2

λ e−λt dt + c2
∫ ∞

c

λ e−λt dt = 1

λ2

(
1− e−λc

)
. (4)

Equation (3) implies Eθ [l̇(θ, Tn, sn)] = 0 for all stress levels sn so that the maxi-
mum likelihood estimator is not biased. If the stress is a random variable S with
distribution δ and the conditional distribution of the lifetime T given S = s is an
exponential distribution with parameter λθ (s), then (3) and (4) imply

Eθ
(
l̇(θ, T , S)l̇(θ, T ,S)�

)

=
∫

1

λθ (s)2

(
1− e−λθ (s)c

) ∂
∂θ
λθ (s)

∂

∂θ
λθ (s)

�δ(ds)=−Eθ
[
l̈(θ, T , S)

]
.

If the design measure δN =∑N
n=1 esn , where es is the Dirac measure at s, con-

verges to the design measure δ then the maximum likelihood estimator has an
asymptotic normal distribution with variance Eθ [l̇(θ, Tn, sn)l̇(θ, Tn, sn)�]−1, i.e.,

√
N(θ̂ − θ) N→∞−→ N

(
0, Iθ (δ)

−1),
where

Iθ (δ) :=
∫

1

λθ (s)2

(
1− e−λθ (s)c

) ∂
∂θ
λθ (s)

∂

∂θ
λθ (s)

�δ(ds)

is the information matrix at the design δ (see, e.g., Schervish 1995, p. 421–428).
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3 Optimal Designs if λθ(s) = θs

Here the information is

Iθ (δ)=
∫

1

θ2

(
1− e−θsc

)
δ(ds).

Since 1−e−θsc is strictly increasing in s, the information is maximized if the design
puts all its mass on the largest possible value for the stress, i.e., the optimal design
on a design region S = [Sl, Su] uses only the upper value Su. However, as soon as
there is no censoring, i.e., c=∞ it does not matter which stress levels are used.

4 Locally D-Optimal Designs if λθ(s) = exp(θ0 + θ1s)

Setting

xθ (s) :=
√

1− e− exp(θ0+θ1s)c
(

1
s

)
=

√
1− e−k exp(θ1s)

(
1
s

)

with k := c exp(θ0), the information matrix can be expressed here by

Iθ (δ)=
∫ (

1− e−k exp(θ1s)
)(1 s

s s2

)
δ(ds)=

∫
xθ (s)xθ (s)

�δ(ds).

To derive locally D-optimal two-point designs on [0, Su], let 0 ≤ s1 < s2 ≤ Su
and set Xθ := (xθ (s1), xθ (s2))�. Then δs1,s2 := 1

2es1 + 1
2es2 , where es is the Dirac

measure at s, is D-optimal within all designs with support s1 and s2 since with the
equivalence theorem for D-optimality (Kiefer and Wolfowitz 1960) we have

xθ (si)
�Iθ (δs1,s2)−1xθ (si)= u�i Xθ

(
1

2
X�θ Xθ

)−1

X�θ ui = 2

for i = 1,2 (here ui denotes the i-th unit vector in R
2). The determinant of the

information matrix for a design δs1,s2 is given by

det
(
Iθ (δs1,s2)

)= 1

4

(
1− e−k exp(θ1s1)

)(
1− e−k exp(θ1s2)

)[s2 − s1]2.

Theorem 1 Let k := c exp(θ0) > 0. Then δ0,Su = 1
2e0 + 1

2eSu is a D-optimal design
within all two-point designs on S = [0, Su] if and only if θ1 ≤ 2

kSu
(ek−1).

Proof Since 1− e−k exp(θ1s) is strictly increasing in s, det(Iθ (δs1,s2)) is maximized
with respect to s2 ∈ (s1, Su] for any given s1 ∈ [0, Su] if and only if s2 = Su. There-
fore we have only to determine s ∈ [0, Su] so that det(Iθ (δs,Su)) is maximized. This
is equivalent to maximizing

g(s)= (
1− e−k exp(θ1s)

)[Su − s]2.
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Since we have

g′(s)= e−k exp(θ1s) kθ1 exp(θ1s)[Su − s]2 − 2
(
1− e−k exp(θ1s)

)[Su − s],
δ0,Su can be D-optimal only if

0≥ g′(0)= e−k kθ1S
2
u − 2

(
1− e−k

)
Su ⇐⇒ e−k kθ1Su ≤ 2

(
1− e−k

)
.

This is equivalent to θ1 ≤ 2
kSu

ek(1 − e−k) = 2
kSu
(ek−1). Hence δ0,Su is not

D-optimal if θ1 >
2
kSu
(ek−1). To prove that δ0,Su is indeed a D-optimal two-point

design for θ1 ≤ 2
kSu
(ek−1), it is sufficient to prove that g is strictly decreasing on

[0, Su]. To show g′(s) < 0, we need the monotonicity of some auxiliary functions:
(a) For h1(k) := 1− ek+k ek−k2 ek we have

h′1(k)=− ek+ ek+k ek−2k ek−k2 ek =−k ek−k2 ek < 0,

so that h1 is strictly decreasing for k > 0. Since obviously h1(0) = 0, we get
h1(k) < 0 for all k > 0.

(b) Now consider h2(k) := 2
k
(ek−1) − 1 − 2 ek . The l’Hôpital rule yields

limk↓0 h2(k)=−1. Then h2(k) < 0 for all k ≥ 0 follows with (a) from

h′2(k)=−
2

k2

(
ek−1

)+ 2

k
ek−2 ek = 2k2h1(k) < 0.

(c) θ1 ≤ 2
kSu
(ek−1) and (b) imply for g1(s) := θ1[Su − s] − 1− 2 ek exp(θ1s)

g1(0)= θ1Su − 1− 2 ek

≤ 2

kSu

(
ek−1

)
Su − 1− 2 ek = 2

k

(
ek−1

)− 1− 2 ek = h2(k) < 0

for all k ≥ 0. Owing to

g′1(s)=−θ1 − 2 ek exp(θ1s) kθ1 exp(θ1s) < 0,

we have g1(s) < 0 for all k ≥ 0, s ≥ 0.
(d) θ1 ≤ 2

kSu
(ek−1) implies for g2(s) := kθ1 exp(θ1s)[Su − s] + 2− 2 ek exp(θ1s)

g2(0)= kθ1Su + 2− 2 ek ≤ k 2

kSu

(
ek−1

)
Su + 2− 2 ek = 2 ek−2+ 2− 2 ek = 0.

Moreover, with (c) we obtain

g′2(s)= kθ2
1 exp(θ1s)[Su − s] − kθ1 exp(θ1s)− 2 ek exp(θ1s) kθ1 exp(θ1s)

= kθ1 exp(θ1s)
[
θ1[Su − s] − 1− 2 ek exp(θ1s)

]= kθ1 exp(θ1s)g1(s) < 0

so that g2 is strictly decreasing starting from a value g2(0) ≤ 0, which implies
g2(s) < 0 for all k > 0, s > 0.
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Fig. 1 Lower points s(θ1, k)

of the D-optimal two-point
designs on [0,1]

(e) Finally, we have

g′(s)= [Su − s] e−k exp(θ1s)
[
kθ1 exp(θ1s)[Su − s] + 2

]− 2[Su − s]< 0

⇐⇒ e−k exp(θ1s)
[
kθ1 exp(θ1s)[Su − s] + 2

]
< 2

⇐⇒ kθ1 exp(θ1s)[Su − s] + 2< 2 ek exp(θ1s) ⇐⇒ g2(s) < 0,

so that (d) proves the assertion. �

To prove that δ0,Su is D-optimal within all designs on S = [0, Su], the property

2 ≥ xθ (s)�Iθ (δ0,Su)−1xθ (s)

= 2

S2
u

(
1− e−k exp(θ1s)

)( (Su − s)2
1− e−k

+ s2

1− e−k exp(θ1Su)

)
(5)

must be shown for all s ∈ [0, Su] according to Kiefer and Wolfowitz (1960) where
equality holds for s = 0 and s = Su. The equality is indeed always met for s = 0 and
s = Su. Set

q(s) := (
1− e−k exp(θ1s)

)( (Su − s)2
1− e−k

+ s2

1− e−k exp(θ1Su)

)
.

A necessary condition for the D-optimality of δ0,Su is then q ′(0)≤ 0.

Lemma 1 We have q ′(0)≤ 0 if and only if θ1 ≤ 2
kSu
(ek−1).

Hence the condition θ1 ≤ 2
kSu
(ek−1) implies not only that δ0,Su is a locally

D-optimal design within all two-point designs on [0, Su], but also the necessary
condition for the D-optimality of δ0,Su within all designs on [0,1]. Several plots of
q(s) for different values of θ1 and k with θ1 ≤ 2

kSu
(ek−1) showed that q is first

decreasing and then increasing on [0, Su] so that (5) should be satisfied. However,
the author has not been able to prove it so far.
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As soon as θ1 >
2
kSu
(ek−1), the locally D-optimal two-point design is of the

form δs(θ1,k),Su with 0 < s(θ1, k) < Su. The lower points s(θ1, k) depending on θ1

are shown in Fig. 1 for k = 0.5,1,2,3 and Su = 1. The condition θ1 >
2
kSu
(ek−1)

is in particular satisfied if k is small. The quantity k := c exp(θ0) is small if the
censoring variable c or the regression parameter θ0 is small. A small θ0 means a
high expected lifetime at s = 0, which provides a high probability of censoring.
Then it is reasonable to make observations at higher stress levels s(θ1, k) > 0 so that
the probability of censoring is smaller. But since 2

kSu
(ek−1)≥ 2

Su
for all k ≥ 0, the

censoring variable as well as θ0 have no influence on the D-optimal design as soon
as θ1 ≤ 2

Su
. The condition θ1 >

2
kSu
(ek−1) is also satisfied if θ1 is large. In this case,

the expected lifetime decreases so rapidly with growing stress that observations at
s(θ1, k) > 0 provide more information than at 0 where observations are censored
with higher probability.
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Convergence of an Algorithm for Constructing
Minimax Designs

Hans Nyquist

Abstract In nonlinear regression, optimal designs of experiments generally depend
on unknown parameters. One approach to deal with this problem is to use the min-
imax criterion for choosing a design. However, constructing minimax designs has
shown to be numerically intractable in many applications. The H-algorithm is a new
iterative algorithm that utilizes the relation between minimax designs and optimum
on-the-average designs based on a least favorable distribution. It is also fairly easy
to apply this algorithm in applications. In this paper, the H-algorithm is described
and its convergence properties are discussed.

1 Introduction

An optimum design of an experiment is defined as a design that minimizes some
function of the information matrix. This ensures that the inferences drawn from
the experiment are made as precise as possible. A common difficulty with nonlin-
ear models is that the information matrix depends on unknown parameters of the
model. Therefore, the criterion function may in general depend on unknown quanti-
ties. There are a number of approaches to deal with the parameter dependence. One
alternative, known as the minimax approach, is defined by minimizing the maximum
of the criterion function, where the maximum is taken as the parameters are varied
over a specified subset of the parameter space. Minimax procedures are, however,
known to be numerically intractable and difficult to construct. Consequently, they
have not been used in practice except in a few cases (Sitter 1992; Müller 1995; King
and Wong 1998, 2004; Müller and Pazman 1998; Noubiap and Seidel 2000; Imhof
2001; Dette et al. 2006; Fackle-Fornius and Nyquist 2012).

A new algorithm for construction of minimax designs is indicated in Nyquist
(2012). The aim of this paper is to describe this algorithm in more detail and to
discuss its convergence properties. Notation and the design problem are introduced
in the next section while the algorithm and its convergence are presented in Sect. 3.
Numerical examples and some concluding remarks are given in two final sections.
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2 The Statistical Problem

Let Y be the response variable from an experiment with a probability density func-
tion f (y;x, θ), x being a q vector of known explanatory variables representing the
experimental conditions and θ a p vector of unknown parameters. Assume that x
belongs to a design region χ such that

A1 χ is a compact subset of Rq , x ∈ χ ⊂R
q .

A design ξ is defined as a discrete probability measure on χ . With n support
points, a design is written as

ξ =
{
x1 x2 · · · xn
ω1 ω2 · · · ωn

}
,

where ωj , j = 1,2, . . . , n, are design weights such that
∑
x∈χ ξ(x)=

∑n
j=1ωj = 1,

0 ≤ ωj ≤ 1. Furthermore, ωjN independent observations are to be taken on Y at
the conditions xj , N being the total number of observations. The focus here is on
continuous designs, originally proposed by Kiefer (see, e.g., Kiefer 1974) for which
the number of observations at a specific experimental condition is not restricted to
be an integer. The set of all possible designs is denoted by Ξ . Thus, Ξ is the convex
set of all probability measures with supporting sets belonging to χ . Furthermore, it
is assumed that θ belongs to a parameter space Θ ⊂R

p .
The usual regularity conditions on inference are assumed. In particular, the stan-

dardized information matrix is defined as

M(ξ, θ)=
∑
x∈χ
ξ(x)m(x, θ), (1)

where m(x, θ) is the contribution to the information matrix from one observation,
i.e., the expectation of the squared score function.

A criterion ψ(M) for assessing the quality of a design is defined such that better
designs are represented by smaller values of the criterion and an optimal design
minimizes the criterion. In general, it is assumed that

A2 ψ is a strictly convex and differentiable real-valued function defined on the set
of symmetric p× p matrices and bounded from below.

Since the standardized information matrix in general depends on the design ψ
and the parameters θ , ψ can be considered as a mapping from the design space as
well as from the parameter space into the set of real numbers, ψ :Ξ ×Θ �R. In
the sequel, the simplified notation ψ(ξ, θ)=ψ(M(ξ, θ)) is used. Furthermore, it is
assumed that

A3 ψ(ξ, θ) is continuous as a function of θ .

In many cases where the criterion depends on unknown parameters, an optimal
design cannot be used in practice. If a particular value of θ is plausible, a locally
optimal design ξθ can be constructed so that it minimizes the criterion function
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for this particular value on θ . A design that is optimal for one value of θ can be
reasonably good also for some other values on θ but may as well show a severe
non-robustness to departures from the specified value of θ . If a set of possible values
of θ is available, the optimum on-the-average approach (Fedorov and Hackl 1997)
can be applied. In this approach the criterion is evaluated at plausible parameter
values and weighted by a probability measure π , the measure having support in the
parameter space Θ . The resulting weighted criterion is thus

B(ξ,π)=
∫
Θ

ψ(ξ, θ)dπ(θ). (2)

A design ξπ is optimum on the average with respect to the prior π if it minimizes
B over the set of all possible designs

B
(
ξπ ,π

)=min
ξ∈Ξ B(ξ,π). (3)

It is convenient to use the notation B(π)= B(ξπ ,π). Note that B(π) is concave.
Assumptions A1 and A2 ensure that there exist locally optimal designs and op-

timum on-the-average designs. Also, there exist a number of algorithms for con-
struction of these designs, although they are known to be slow in some applications
(Atkinson et al. 2007; Berger and Wong 2009).

The minimax approach to design construction offers another possibility to take
care of the problem of dependence on unknown parameters (Fedorov and Hackl
1997). A minimax design is constructed so that it avoids a bad performance as long
as the parameter vector is in a specified subset Θ0 of the parameter space, Θ0 ⊂Θ .
It is assumed that

A4 Θ0 is a compact subspace of Θ .

A design ξ0 is minimax with respect to Θ0 if it minimizes maxθ∈Θ0 ψ(ξ, θ),

max
θ∈Θ0

ψ
(
ξ0, θ

)=min
ξ∈Ξ max

θ∈Θ0
ψ(ξ, θ). (4)

DefineΠ0 as the set of distributions with support only on points inΘ0. It is possible
to show that maxθ∈Θ0 ψ(ξ, θ)=maxπ∈Π0 B(ξ,π) and, hence, (4) is equivalent to

max
π∈Π0

B
(
ξ0,π

)=min
ξ∈Ξ max

π∈Π0
B(ξ,π) (5)

(see, e.g., Nyquist 2012). A prior distribution π0 with the property that

min
ξ∈ΞB(ξ,π0)= max

π∈Π0
min
ξ∈ΞB(ξ,π) (6)

is called a least favorable distribution with respect to Π0.

Theorem 1 Suppose that ξ0 is an optimum on-the-average design with respect to
π0 ∈Π0 and that ψ(ξ0, θ)≤ B(π0) for all θ ∈Θ0. Then
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(i) minξ∈Ξmaxπ∈Π0B(ξ,π)=maxπ∈Π0 minξ∈ΞB(ξ,π)= B(π0),
(ii) π0 is a least favorable distribution with respect to Π0, and

(iii) ξ0 is a minimax design with respect to Θ0.

Proof From the inequality

max
π∗∈Π0

B
(
ξ,π∗

)≥ min
ξ∗∈ΞB

(
ξ∗,π

)
, ∀ξ ∈Ξ, ∀π ∈Π0, (7)

it follows that

min
ξ∈Ξ max

π∈Π0
B(ξ,π)≥ max

π∈Π0
min
ξ∈ΞB(ξ,π). (8)

On the other hand, from the assumptions of the theorem, we have

min
ξ∈Ξ max

π∈Π0
B(ξ,π)≤ max

π∈Π0
B
(
ξ0,π

)= max
θ∈Θ0

ψ
(
ξ0, θ

)≤ B(π0)

=min
ξ∈Ξ B(ξ,π0)≤ max

π∈Π0
min
ξ∈Ξ B(ξ,π), (9)

and hence, there are just equalities in (8) and (9) and the theorem follows. �

The theorem indicates that, under some conditions, a design that is optimum on-
the-average with respect to a least favorable distribution is also a minimax design.
This is utilized in the H-algorithm for constructing minimax designs, which is de-
scribed in the next section. Furthermore, it can be shown (Nyquist 2012) that if π0
is a least favorable distribution, ξ0 is an associated optimum on-the-average design,
and

min
ξ∈Ξ max

π∈Π0
B(ξ,π)= max

π∈Π0
min
ξ∈Ξ B(ξ,π)= B(π0),

then π0 has support only at points θ such that ψ(ξ0, θ)= B(π0). It is therefore rea-
sonable to assume that π0 is a discrete measure. Thus, throughout the paper only dis-
crete measures are considered so that 0≤ π(θ)≤ 1 and B(ξ,π)=∑

θ π(θ)ψ(ξ, θ).
In particular, it is assumed that

A5 A least favorable distribution with respect to Π0 is discrete.

3 The H-Algorithm

The H-algorithm for construction of minimax designs is proposed by Nyquist
(2012). The algorithm is iterative and utilizes the relations between a minimax de-
sign and an optimum on-the-average design for a least favorable distribution. Given
an initial prior distribution, an optimum on-the-average design is constructed. At
each subsequent iteration of the algorithm, the prior distribution is updated and the
associated optimum on-the-average design is constructed. This is continued until
the prior distribution can be confirmed to be a least favorable distribution and the
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associated optimum on-the-average design is a minimax design. The iterations of
the algorithm can be described as follows:

Step 0: Set initial values as %= 1 and B(π(0))=−∞. Define a grid of step lengths
H = {ht ;0= h0 < h1 < · · ·< hT ≤ 1}. Generate an initial prior distribution π(1),
construct an optimum on-the-average design with respect to π(1), ξ (1), and evaluate
B(π(1)).

Step 1: Check if

ψ
(
ξ (%), θ

)≤ B(π(%)), ∀θ ∈Θ0. (10)

If the condition is met, stop and conclude that π(%) is a least favorable distribution
and that ξ (%) is a minimax design. Otherwise, continue to Step 2.

Step 2: Let θ(%) maximize ψ(ξ(%), θ) over Θ0 and let δ(%) be the probability distri-
bution that assigns unit mass to θ(%).

Step 3: Generate T new priors as π(%+1)
t = (1 − ht )π(%) + htδ(%). For each new

prior, construct an optimum on-the-average design with respect to π(%+1)
t , ξ (%+1)

t ,
and evaluate B(π(%+1)

t ), t = 1, . . . , T . Define ξ (%+1) as the design associated with
the largest B(π(%+1)

t ).
Step 4: Check if

B
(
π(%+1))≥ B(π(%)). (11)

If the condition is not met, then make the grid of step lengths H denser and repeat
Step 3. Otherwise, set % as %+ 1 and go to Step 1.

Theorem 2 The sequence {B(π(%))} defined by the H-algorithm converges. Denote
the limit by B(π0). If, in addition, ψ(ξ0, θ) ≤ B(π0) for all θ ∈ Θ0, then the se-
quence {ξ (%)} converges to a minimax design ξ0 and the sequence {π(%)} converges
to a least favorable distribution π0.

Proof Let π(%) be a prior distribution and ξ (%) an associated optimum on-the-
average design. Since ψ(ξ(%), θ) as a function of θ is assumed to be continuous (A3)
andΘ0 is assumed to be compact (A4), there exists a θ(%) that maximizesψ(ξ(%), θ).
Now, the set of prior distributions π(%+1)

t = (1− ht )π(%) + htδ(%), ht ∈H , yield

B
(
ξ,π

(%+1)
t

)= ∑
θ∈Θ0

π
(%+1)
t (θ)ψ(ξ, θ)

= (1− ht )
∑
θ∈Θ0

π
(%)
t (θ)ψ(ξ, θ)+ htδ(%)(θ)ψ(ξ, θ).

For each ht there exists an optimum on-the-average design, ξ (%+1)
t , that mini-

mizes B(ξ,π(%+1)
t ) and there exists a ht ∈H that maximizes B(π(%+1)

t ). Denote by
π(%+1) and ξ (%+1) the prior and the associated design that maximizes B(π(%+1)

t ),
respectively. Obviously, B(π(%+1)) ≥ B(π(%+1)

h=0 ) = B(π(%)), so that the sequence
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{B(π(%))} is non-decreasing. Since B(π) is concave, the sequence attains a maxi-
mum at B(π0), say. If, in addition, as is assumed by the theorem, ψ(ξ0, θ)≤ B(π0)

for all θ ∈Θ0, then the conditions in Theorem 1 are satisfied. Hence, it is concluded
that ξ0 is a minimax design with respect to Θ0 and that π0 is a least favorable dis-
tribution with respect to Π0. �

4 Numerical Examples

Example 1 (Non-linear model with additive error term) Consider the one parameter
Michaelis-Menten model for describing the velocity of an enzymatic reaction

y = x

θ + x + ε. (12)

The information for θ is the scalar

M(ξ, θ)=
n∑
j=1

ωj
x2
j

(θ + xj )4 (13)

and a suitable criterion is the asymptotic variance ψ(ξ, θ) =M−1(ξ, θ). Assume
thatΘ0 = {θ;1≤ θ ≤ 2}. For construction of a minimax design a grid of step lengths
is set to h1 = 0.25, h2 = 0.5, h3 = 0.75, and h4 = 1.0. The initial prior distribution,
π(1), assigns unit mass to θ = 1. The associated optimum on-the-average design,
ξ (1), is equivalent to the locally optimal design with θ = 1 and is the one point
design that assigns all design weight to x = 1. In the first step of the H-algorithm,
it is found that B(π(1))= 16 and the maximum of the criterion function ψ(ξ(1), θ)
is 81, which appears to θ(1) = 2. Hence, the maximum value of ψ(ξ(1), θ) exceeds
B(π(1)) and it is concluded that ξ (1) is not a minimax design.

In the third step of the H-algorithm, a set of new priors is generated. π(2)1 assigns

mass 0.75 to θ = 1 and mass 0.25 to θ = 2, π(2)2 assigns mass 0.5 to both these

points, π(2)3 assigns mass 0.25 to θ = 1 and mass 0.75 to θ = 2, and π(2)4 assigns

unit mass to θ = 2. The associated optimum on-the-average designs, ξ (2)t , and the
values B(π(2)t ) are reported in Table 1. As can be seen, B(π(2)t ) is maximized for
t = 4, and ξ (2) is defined as the design that assigns all design weight to x = 2. In the
first step of next iteration, it is found that the maximum of ψ(ξ(2), θ) as a function of
θ is 64, which equals B(π(2)). Since the condition in Step 1 is satisfied, the iteration
stops and Theorem 1 is used to verify that π(2) is a least favorable distribution and
that ξ (2) is a minimax design.

Example 2 (Logistic regression) Consider the logistic regression model with linear
predictor

η= θ2(x − θ1) (14)
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Table 1 Results from the
first iteration in Example 1 t π

(2)
t (1) π

(2)
t (2) x

(2)
t B(π

(2)
t )

0 1.00 0.00 1.0000 16.0000

1 0.75 0.25 1.0435 19.9979

2 0.50 0.50 1.1271 26.5465

3 0.25 0.75 1.3355 38.7690

4 0.00 1.00 2.0000 64.0000

and assume it is believed that the true parameter values are in the setΘ0 = {(θ1, θ2) |
0.5≤ θ1 ≤ 1.5, 4≤ θ2 ≤ 5}. Using the H-algorithm, a minimax design based on the
D-criterion will now be constructed. The H-algorithm is initialized by setting the
grid of step lengths as h1 = 0.2, h2 = 0.4, h3 = 0.6, h4 = 0.8, and h5 = 1.0, and
the initial prior distribution, π(1), assigns mass 0.25 to the four corners of Θ0. The
resulting optimum on-the-average design is the three-point design

ξ (1) =
{

0.26 1.00 1.74
0.275 0.450 0.275

}

with B(π(1)) = 3.691 and the maximum of the criterion function ψ(ξ(1), θ) is
3.806, appearing at θ(1) = (1,5). It is therefore concluded that ξ (1) is not a minimax
design and that the prior should be modified by adding mass at (θ1, θ2) = (1,5),
the amount of which being determined by the step lengths. The step length that
results in the largest value on B is h1 that assigns equal mass to points (0.5,4),
(0.5,5), (1.5,4), (1.5,5), and (1,5), and the optimum on-the-average design is the
four-point design

ξ (2) =
{

0.31 0.90 1.10 1.69
0.272 0.228 0.228 0.272

}
,

with a modest increase in the B-value, B(π(2))= 3.695.
The maximum of the criterion function ψ(ξ(2), θ) is 3.79 so that ξ (2) is not a

minimax design. The maximum appears at two points, θ(2) = (0.5,5) and θ(2) =
(1.5,5), respectively. This suggests that mass in the prior distribution should be
added to these two points. The prior is therefore updated as

π
(3)
t = (1− ht )π(2) + ht (δ(0.5,5) + δ(1.5,5))/2. (15)

The step length h5 = 1.0 maximizes the B-value, resulting in the prior that
assigns mass 0.5 to points (0.5,5) and (1.5,5). The associated optimum on-the-
average design is the three-point design

ξ (3) =
{

0.287 1.00 1.713
0.2675 0.4650 0.2675

}
.

This time the maximum of ψ(ξ(3), θ) equals B(π(3))= 3.773 so that it is concluded
that ξ (3) is a minimax design and the iteration stops.
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5 Conclusions

An algorithm for constructing minimax designs has been presented and its conver-
gence properties have been discussed. A proof of convergence to a minimax design
is based on the assumption of a discrete least favorable prior distribution. With some
more regularity assumptions it would be possible to relax this assumption. However,
since the least favorable distribution has support only at points where the criterion
as a function of the model parameters has maxima, it is reasonable to assume a
discrete prior. Two numerical examples illustrate the application of the algorithm.
While these examples are fairly simple, the algorithm has successfully been used for
constructing designs for more complicated models (Fackle-Fornius and Wänström
2012) and design criteria, including a maximin criterion of estimation efficiency.
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Extended Optimality Criteria for Optimum
Design in Nonlinear Regression

Andrej Pázman and Luc Pronzato

Abstract Among the major difficulties that one may encounter when estimating
parameters in a nonlinear regression model are the non-uniqueness of the estima-
tor, its instability with respect to small perturbations of the observations and the
presence of local optimizers of the estimation criterion. We show that these estima-
bility issues can be taken into account at the design stage, through the definition of
suitable design criteria. Extensions of E, c and G-optimality criteria will be con-
sidered, which, when evaluated at a given θ0 (locally optimal design), account for
the behavior of the model response η(θ) for θ far from θ0. In particular, they ensure
some protection against close-to-overlapping situations where ‖η(θ) − η(θ0)‖ is
small for some θ far from θ0. These extended criteria are concave, their directional
derivative can be computed, and necessary and sufficient conditions for optimality
(Equivalence Theorems) can be formulated. They are not differentiable, but a relax-
ation based on maximum-entropy regularization is proposed to obtain concave and
differentiable alternatives. When the design space is finite and the set of admissible
θ is discretized, their optimization forms a linear programming problem.

1 Introduction

We consider a nonlinear regression model with observations

yi = y(xi)= η(xi, θ̄ )+ εi, i = 1, . . . ,N,

where the errors εi satisfy E(εi) = 0, var(εi) = σ 2 and cov(εi, εj ) = 0 for i �= j ,
i, j = 1, . . . ,N , and θ̄ ∈ Θ , a compact subset of R

p such that Θ ⊂ int(Θ), the

A. Pázman (B)
Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and
Informatics, Comenius University, Bratislava, Slovakia
e-mail: pazman@fmph.uniba.sk

L. Pronzato
Laboratoire I3S, CNRS/Université de Nice–Sophia Antipolis, Sophia Antipolis, France
e-mail: pronzato@i3s.unice.fr
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closure of int(Θ). In a vector notation, we write

y= η(θ̄)+ ε, with E(ε)= 0,var(ε)= σ 2IN, (1)

where η(θ)= ηX(θ)= (η(x1, θ), . . . , η(xN , θ))
�, y= (y1, . . . , yN)

�, ε = (ε1, . . . ,

εN)
� and X is the exact design (x1, . . . , xN). We suppose that η(x, θ) is twice

continuously differentiable with respect to θ ∈ int(Θ) for any x ∈X compact. We
shall consider design measures ξ , which correspond to probability measures on X .
The information matrix for the design X at θ is

Mθ (X)=
N∑
i=1

∂η(xi, θ)

∂θ

∂η(xi, θ)

∂θ�

and we have Mθ (ξ)=
∫
X [∂η(x, θ)/∂θ ][∂η(x, θ)/∂θ�]ξ(dx). Denoting by ξN the

empirical design measure associated withX, ξN = (1/N)∑N
i=1 δxi with δx the delta

measure at x, we have Mθ (X)=NMθ (ξN).
The set of all hypothetical means of the observed vectors y in the sample space

R
N forms the expectation surface Sη = {η(θ) : θ ∈ Θ}. Since η(θ) is supposed to

have continuous first and second-order derivatives in int(Θ), Sη is a smooth surface
in R

N with a (local) dimension given by r = rank[∂η(θ)/∂θ�]. If r = p (which
means full rank), the model (1) is called regular. In regular models with no overlap-
ping of Sη , i.e., when η(θ)= η(θ ′) implies θ = θ ′, the LS estimator

θ̂ = θ̂NLS = arg min
θ∈Θ

∥∥y− η(θ)∥∥2

is uniquely defined, since as soon as the distributions of errors εi have probability
densities (in the standard sense) it can be proven that η[θ̂NLS(y)] is unique with prob-
ability one, see Pázman (1984) and Pázman (1993, p. 107). However, there is still a
positive probability that the function θ −→ ‖y− η(θ)‖2 has a local minimizer dif-
ferent from the global one when the regression model is intrinsically curved in the
sense of Bates and Watts (1980), i.e., when Sη is a curved surface in R

N , see Demi-
denko (1989, 2000). Moreover, a curved surface can “almost overlap”; that is, there
may exist points θ , θ ′ such that ‖θ ′ −θ‖ is large but ‖η(θ ′)−η(θ)‖ is small (or even
equals zero in the case of strict overlapping). This phenomenon may cause serious
difficulties in parameter estimation, leading to instabilities of the estimator, and one
should thus attempt to reduce its effects by choosing an adequate experimental de-
sign. Note that putting restrictions on curvature measures is not enough: consider
the case dim(θ)= 1 with the overlapping Sη formed by a circle of arbitrarily large
radius and thus arbitrarily small curvature.

Important and precise results are available concerning the construction of sub-
sets of Θ where such effects are guaranteed not to occur, see, e.g., Chavent (1983,
1990, 1991). However, their exploitation for choosing adequate designs is far from
straightforward. Also, the construction of designs with restricted curvature, as pro-
posed by Clyde and Chaloner (2002), is based on the curvature measures of Bates
and Watts (1980) and uses derivatives of η(θ) at a certain θ . This local approach
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is unable to catch the problem of overlapping for two points that are distant in the
parameter space.

The aim of this paper is to present new optimality criteria for optimum design in
nonlinear regression models that may reduce such effects, especially overlapping,
and are at the same time closely related to classical optimality criteria like E, c or
G-optimality (in fact, they coincide with those criteria when the regression model is
linear).

2 Extended (Globalized) E-Optimality

2.1 Extended E-Optimality Criterion

Consider the design criterion

φeE(ξ)= φeE(ξ ; θ)= min
θ ′∈Θ

{∥∥η(·, θ ′)− η(·, θ)∥∥2
ξ

(
K + ∥∥θ ′ − θ∥∥−2)}

to be maximized with respect to the design measure ξ , where K is some positive
tuning constant (to be chosen in advance) and ‖ · ‖ξ denotes the norm in L2(ξ); that
is, ‖φ‖ξ = [

∫
X φ2(x)ξ(dx)]1/2 for any φ ∈L2(ξ).

Notice that in a nonlinear regression model φeE(·) depends on the value chosen
for θ and can thus be considered as a local optimality criterion. On the other hand,
the criterion is global in the sense that it depends on the behaviour of η(·, θ ′) for
θ ′ far from θ . We could remove this (limited) locality by considering φMeE(ξ) =
minθ∈Θ φeE(ξ), but this will not be considered in what follows.

For a linear regression model with η(θ)= F(X)θ + v(X) and Θ =R
p , we have

minθ ′∈Θ,‖θ ′−θ‖2=δ ‖η(θ ′) − η(θ)‖2 = minθ ′∈Θ,‖θ ′−θ‖2=δ(θ ′ − θ)�[NM(ξN)](θ ′ −
θ) = Nδλmin[M(ξN)], so that φeE(ξ) = λmin[M(ξ)] for any K ≥ 0, which cor-
responds to the E-optimality criterion. For a nonlinear regression model with no
overlapping φeE(ξ ; θ) can be made arbitrarily close to λmin[Mθ (ξ)] by choosing
K large enough; φeE(·) can thus be considered as an extended E-optimality crite-
rion. At the same time, choosing K not too large ensures some protection against
‖η(θ ′)− η(θ)‖ being small for some θ ′ far from θ for a φeE-optimum design ξ∗eE .
Note that ξ∗eE is necessarily non-degenerate, i.e., M(ξ∗eE) is nonsingular.

2.2 Properties of φeE(·)
The criterion φeE(·) is the minimum of linear functions of ξ and is thus concave:
for all ξ, ν ∈Ξ , the set of design measures on X , for all α ∈ [0,1], for all θ ∈Θ ,
φeE[(1−α)ξ +αν] ≥ (1−α)φeE(ξ)+αφeE(ν). It is also positively homogeneous:
φeE(aξ) = aφeE(ξ) for all ξ ∈ Ξ , θ ∈ Θ and a > 0. Its concavity implies the ex-
istence of directional derivatives and we have the following, see, e.g., Dem’yanov
and Malozemov (1974):
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Theorem 1 For any ξ, ν ∈Ξ , the directional derivative of the criterion φeE(·) at ξ
in the direction ν is given by

FφeE (ξ ;ν)= min
θ ′∈Θθ (ξ)

{∥∥η(·, θ ′)− η(·, θ)∥∥2
ν

(
K + ∥∥θ ′ − θ∥∥−2)}− φeE(ξ),

where

Θθ(ξ)=
{
θ ′ ∈Θ : ∥∥η(·, θ ′)− η(·, θ)∥∥2

ξ

(
K + ∥∥θ ′ − θ∥∥−2)= φeE(ξ)}.

We can write FφeE (ξ ;ν)=minθ ′∈Θθ (ξ)
∫
X ΨeE(x, θ

′, ξ)ν(dx), where

ΨeE
(
x, θ ′, ξ

) = (
K + ∥∥θ ′ − θ∥∥−2)

× {[
η
(
x, θ ′

)− η(x, θ)]2 − ∥∥η(·, θ ′)− η(·, θ)∥∥2
ξ

}
, (2)

and a necessary and sufficient condition for the optimality of a design measure
ξ∗eE for the criterion φeE(·) is that supν∈Ξ FφeE (ξ∗;ν) ≤ 0. One should notice that
supν∈Ξ FφeE (ξ∗;ν) is not generally obtained for ν equal to a one-point (delta) mea-
sure, which prohibits the usage of classical vertex-direction algorithms for optimiz-
ing φeE(·). This is why a regularized version φeE,λ(·) of φeE(·) is considered below,
with the property that supν∈Ξ FφeE,λ(ξ ;ν) is obtained when ν is the delta measure
δx∗ at some x∗ ∈X (depending on ξ ).

2.3 Maximum-Entropy Regularization of φeE(·)

The criterion φeE(·) can be equivalently defined by

φeE(ξ)= min
μ∈M (Θ)

∫
Θ

{∥∥η(·, θ ′)− η(·, θ)∥∥2
ξ

(
K + ∥∥θ ′ − θ∥∥−2)}

μ
(
dθ ′

)
,

where M (Θ) denotes the set of probability measures on Θ . We use the approach
of Li and Fang (1997) and regularize φeE(ξ) through a penalization of measures μ
having small (Shannon) entropy, with a penalty coefficient 1/λ that sets the amount
of regularization introduced. We then obtain the regularized criterion

φeE,λ(ξ)=−1

λ
log

∫
Θ

exp
{−λHE(ξ, θ ′)}dθ ′, (3)

where

HE
(
ξ, θ ′

)= ∥∥η(·, θ ′)− η(·, θ)∥∥2
ξ

(
K + ∥∥θ ′ − θ∥∥−2)

. (4)

This criterion satisfies limλ→∞ φeE,λ(ξ)= φeE(ξ) for any ξ ∈Ξ and convergence
is uniform when Θ is a finite set. Moreover, φeE,λ(·) is concave. Its directional
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derivative at ξ in the direction ν is

FφeE,λ(ξ ;ν)=
∫
X

∫
Θ

exp{−λHE(ξ, θ ′)}ΨeE(x, θ ′, ξ)dθ ′ν(dx)∫
Θ

exp{−λHE(ξ, θ ′)}dθ ′ , (5)

with ΨeE(x, θ ′, ξ) given by (2). It is also differentiable (unlike φeE(·)) and a nec-
essary and sufficient condition for the optimality of ξ∗ maximizing φeE,λ(·) is that
supx∈X

∫
Θ

exp{−λHE(ξ∗, θ ′)}ΨeE(x, θ ′, ξ∗)dθ ′ ≤ 0. In order to facilitate compu-
tations, the integrals on θ ′ in (3, 5) can be replaced by finite sums.

2.4 A Solution via Linear Programming

WhenΘ is finite, i.e.,Θ = {θ(1), θ (2), . . . , θ (m)}, φeE(ξ) can be written as φeE(ξ)=
minj=1,...,m HE(ξ, θ

(j)), with HE(ξ, θ ′) given by (4). If the design space X is fi-
nite too, X = {x(1), x(2), . . . , x(q)}, then the determination of an optimal design
measure for φeE(·) amounts to the determination of a scalar γ and of a vec-
tor of weights w = (w1,w2, . . . ,wq)

� such that c�[w�, γ ]� is maximized, with
c= (0,0, . . . ,0,1)� and w and γ satisfying the constraints

q∑
i=1

wi = 1,

wi ≥ 0, i = 1, . . . , q,
q∑
i=1

wi
[
η
(
x(i), θ (j)

)− η(x(i), θ)]2(
K + ∥∥θ(j) − θ∥∥−2)≥ γ, j = 1, . . . ,m.

3 Extended (Globalized) c-Optimality

Define φec(ξ)=minθ ′∈Θ{‖η(·, θ ′)− η(·, θ)‖2
ξ (K + |h(θ ′)− h(θ)|−2)}, with K be-

ing some positive constant. When η(x, θ) and the scalar function h(θ) are both
linear in θ , we get

φec(ξ)= min
θ ′∈Θ,c�(θ ′−θ)�=0

(θ ′ − θ)�M(ξ)(θ ′ − θ)
[c�(θ ′ − θ)]2

and therefore φec(ξ) = [c�M−(ξ)c]−1, which justifies consideration of φec(ξ) as
an extended c-optimality criterion. Again, for large K , φec(ξ) can be approximated
by [c�M−1(ξ, θ)c]−1, whereas choosing K not too large ensures some protection
against ‖η(·, θ ′)− η(·, θ)‖2

ξ being small for some θ ′ such that h(θ ′) is significantly
different from h(θ). The criterion φec(·) is concave and positively homogeneous. Its
concavity implies the existence of directional derivatives.
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Theorem 2 For any ξ, ν ∈Ξ , the directional derivative of the criterion φec(·) at ξ
in the direction ν is given by

Fφec (ξ ;ν)= min
θ ′∈Θθ,c(ξ)

{∥∥η(·, θ ′)− η(·, θ)∥∥2
ν

(
K + ∣∣h(θ ′)− h(θ)∣∣−2)}− φec(ξ),

where

Θθ,c(ξ)=
{
θ ′ ∈Θ : ∥∥η(·, θ ′)− η(·, θ)∥∥2

ξ

(
K + ∣∣h(θ ′)− h(θ)∣∣−2)= φec(ξ)}.

A necessary and sufficient condition for the optimality of ξ∗ maximizing φec(·) is
that supν∈Ξ Fφec (ξ∗;ν)≤ 0. A regularized version of φec(·) can be obtained through
maximum-entropy regularization

φec,λ(ξ)=−1

λ
log

∫
Θ

exp
{−λHc(ξ, θ ′)}dθ ′, (6)

where Hc(ξ, θ ′)= ‖η(·, θ ′)− η(·, θ)‖2
ξ (K +|h(θ ′)−h(θ)|−2). The regularized cri-

terion φec,λ(·) is concave and differentiable with respect to ξ . Its directional deriva-
tive at ξ in the direction ν is

Fφec,λ(ξ ;ν)=
∫
X

∫
Θ

exp{−λHc(ξ, θ ′)}Ψec(x, θ ′, ξ)dθ ′ν(dx)∫
Θ

exp{−λHc(ξ, θ ′)}dθ ′ , (7)

where

Ψec
(
x, θ ′, ξ

) = (
K + ∣∣h(θ ′)− h(θ)∣∣−2)

×{[
η
(
x, θ ′

)− η(x, θ)]2 − ∥∥η(·, θ ′)− η(·, θ)∥∥2
ξ

}
.

A necessary and sufficient condition for the optimality of ξ∗ maximizing φec,λ(·) is
that supx∈X

∫
Θ

exp{−λHc(ξ∗, θ ′)}Ψec(x, θ ′, ξ∗)dθ ′ ≤ 0. Again, in order to facili-
tate computation, the integrals in (6) and (7) can be replaced by finite sums. A linear
programming solution can be obtained when both Θ and X are finite, following an
approach similar to that in Sect. 2.

4 Extended (Globalized) G-Optimality

Following the same lines as above, we can also define an extended G-optimality
criterion by

φGG(ξ)= min
θ ′∈Θ

[∥∥η(·, θ ′)− η(·, θ)∥∥2
ξ

{
K + 1

maxx∈X [η(x, θ ′)− η(x, θ)]2
}]

with K some positive constant. The fact that this corresponds to the G-optimality
criterion for a linear model can easily be seen, noticing that in the model (1) with
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η(x, θ)= f�(x)θ + v(x) we have

{
sup
x∈X

N

σ 2
var

[
f�(x)θ̂NLS

]}−1

= inf
x∈X

inf
u∈Rp,u�f(x)�=0

u�M(X)u
[f�(x)u]2

= inf
u∈Rp,u�f(x)�=0

[
u�M(X)u

{
K + 1

maxx∈X [f�(x)u]2
}]
.

Directional derivatives can be computed and a regularized version can be con-
structed similarly to the cases of extended E and c-optimality. An optimal design
can be obtained by linear programming when Θ and X are both finite.

5 Example

The model response is given by

η(x, θ)= θ1{x}1 + θ3
1

(
1− {x}1

)+ θ2{x}2 + θ2
2

(
1− {x}2

)
, θ = (θ1, θ2)

�,

with x ∈X = [0,1]2 and {x}i denoting the i-th component of x. We consider local
designs for θ0 = (1/8,1/8)�. The classicalD and E-optimal designs are supported
on three and two points respectively,

ξ∗D
(
θ0) 

⎧⎨
⎩

(
0
1

) (
1
0

) (
1
1

)

0.4134 0.3184 0.2682

⎫⎬
⎭ , ξ∗E

(
θ0) 

⎧⎨
⎩

(
0
1

) (
1
0

)

0.5113 0.4887

⎫⎬
⎭ .

We replace integrals by finite sums in (3) and (5), and consider regular grids
G (ρ,M) formed of M points uniformly distributed on a circle centered at θ0 with
radius ρ. When Θ =⋃20

i=1 G (0.1i,100), K = 0.01 and λ= 103, the optimal design
for φeE,λ is

ξ∗eE
(
θ0) 

⎧⎨
⎩

(
0
0

) (
1
0

) (
1
1

)

0.2600 0.3575 0.3825

⎫⎬
⎭ .

Figure 1 presents a plot of the function

δ ∈R
+ −→E

ξ

η,θ0(δ)= min
θ ′∈Θ,‖θ ′−θ0‖2=δ

∥∥η(·, θ ′)− η(·, θ0)∥∥2
ξ

for the three designs ξ∗D , ξ∗E and ξ∗eE . The minimum of ‖η(·, θ ′) − η(·, θ0)‖ξ , say
for ‖θ ′ − θ0‖> 1, is 0.131 for ξ∗eE and only 0.082 for ξ∗D . It is zero for ξ∗E since the
parameters are only locally estimable for this design.
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Fig. 1 Plot of the function
E
ξ

η,θ0 (·) for the three designs

ξ∗D (dashed line), ξ∗E (dotted
line) and ξ∗eE (solid line)
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Optimal Design for Multivariate Models
with Correlated Observations

Andrey Pepelyshev

Abstract The methodology proposed in Zhigljavsky et al. (J. Am. Stat. Assoc.
105:1093–1103, 2010) is studied in the case of multivariate models with correlated
observations. A numerical procedure for constructing asymptotically optimal and
exact designs is proposed. It is shown that exact n-point designs generated from
these asymptotic designs for any desired n have very good efficiency. The perfor-
mance of the procedure is illustrated in the case of spatial models.

1 The Statement of the Problem

Consider the common linear regression model

y(x)= θ1f1(x)+ · · · + θmfm(x)+ ε(x), x ∈X⊂R
d, (1)

where the functions f1(x), . . . , fm(x) are linearly independent and continuous, the
random error field ε(x) has the zero mean with the covariance kernel K(x,x′) =
E[ε(x)ε(x′)], the parameters θ1, . . . , θm are unknown and the explanatory variable
x varies in a compact design space X. Suppose that N observations y1, . . . , yN can
be taken at experimental conditions x1, . . . , xN to estimate the parameters in the
model (1). The problem of experimental design for this model has been studied
amongst others by Bickel and Herzberg (1979), Müller (2000), Näther (1985), Páz-
man (2010), Sacks and Ylvisaker (1966, 1968) and by Zhigljavsky et al. (2010).

If the covariance kernel is known, then the vector of parameters can be estimated
by the weighted least-squares method as

θ̂ = (
X�Σ−1X

)−1X�Σ−1Y,

where X = (fi(xj ))i=1,...,m
j=1,...,N , Y = (y1, . . . , yN)

�, and Σ = (K(xi, xj ))i,j=1,...,N .

Note that θ̂ is the best linear unbiased estimate (BLUE) of θ = (θ1, . . . , θm)
�. The
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covariance matrix of the BLUE is given by

Var(θ̂)= (
X�Σ−1X

)−1
.

An exact experimental design ξN = {x1, . . . , xN } is a collection of N points from
the design space X. A design ξN is calledD-optimal if it minimizes the determinant
of the covariance matrix. Since it is difficult to find optimal designs explicitly (Dette
et al. 2008a; Harman and Štulajter 2010; Kiseľák and Stehlík 2008), several algo-
rithms have been proposed for the numerical construction of exact optimal designs
(see Brimkulov et al. 1980; Fedorov and Müller 2007; Müller and Pázman 1999,
2003; Uciński and Atkinson 2004).

Although the optimal exact N -point designs for different N typically contain
different points, these designs have a unified pattern of the location of points. This
pattern can be identified through an asymptotic consideration as follows. We rewrite
the design as a probability measure ξn = {x1, . . . , xn;1/n, . . . ,1/n}. Then we ex-
pect that the sequence of designs ξn converges to some limiting probability measure
ξ , which, as n increases, can be treated as the density pattern of the location of the
points.

Interpretation of the design ξ and the method of generating exact designs from
ξ differ from classical ones for uncorrelated observations because, if one realiza-
tion of a stochastic field is observed, then no replication of design points is allowed.
For the model (1) exact designs are obtained from ξ as a collection of quantiles
Q(0),Q(1/(N − 1)),Q(2/(N − 1)), . . . ,Q(1), where Q(x) is the quantile func-
tion of ξ (see Näther 1985; Zhigljavsky et al. 2010). If d > 1, a rough way of ob-
taining exact designs is by independent sampling from the distribution of ξ and an
accurate way is by the procedure proposed in Sect. 3. We also note that the asymp-
totically optimal design ξ is a convenient tool for identifying regions of the design
space that are preferable for observation and those that are not.

2 Asymptotically Optimal Design

Finding an asymptotically optimal design that minimizes the covariance matrix of
the BLUE is an extremely difficult problem. Therefore, we consider the ordinary
least squares estimate (LSE) which has a covariance matrix allowing a simple for-
mulation in terms of a probability measure (see Dette et al. 2011; Näther 1985).
Note that we can consider the design problem for the LSE, rather than the one for
the BLUE because the optimal design for the LSE is sufficiently efficient relative to
that for the BLUE. This efficiency can then be verified numerically.

The covariance matrix for the LSE has the form

D(ξ)=M−1(ξ)B(ξ, ξ)M−1(ξ),

where ξ is either an exact design or a probability measure and

M(ξ) =
∫
X

f (u)f�(u)ξ(du), (2)
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B(ξ, ξ) =
∫
X

∫
X

K(u,v)f (u)f�(v)ξ(du)ξ(dv). (3)

The asymptotically D-optimal design for the LSE minimizes the determinant of
D(ξ) among the class of probability measures such that the matrix M(ξ) is not
singular.

The necessary condition for D-optimality can be derived from the positivity of
the directional derivative in an explicit way as follows (see Dette et al. 2011 for
details).

Theorem 1 Let ξ∗ be any D-optimal design. Then for all x ∈X we have

d
(
x, ξ∗

)≤ b(x, ξ∗), (4)

where

d(x, ξ)= f�(x)M−1(ξ)f (x)

and

b(x, ξ)= tr
(
B−1(ξ, ξ)B(ξ, ξx)

)= f�(x)B−1(ξ, ξ)

∫
K(u,x)f (u)ξ(du),

with ξx = {x,1} the Dirac measure. Moreover, there is equality in (4) for ξ∗ for
almost all x.

Numerical computation of optimal designs for a common linear regression model
(1) with a given correlation function can be performed by an extension of the mul-
tiplicative algorithm proposed in Dette et al. (2008b) for the case of non-correlated
observations. Note that the proposed algorithm constructs a discrete design which
can be considered as an approximation to a design which satisfies the necessary op-
timality conditions of Theorem 1. By choosing a fine discretization {x1, . . . , xn} of
the design space X and running the algorithm long enough, the approximation error
can be made rather small.

Let ξ (r) = {x1, . . . , xn;w(r)1 , . . . ,w
(r)
n } denote the design at the r-th iteration.

Then the updating rule for the weights has the form

w
(r+1)
i = w

(r)
i (ψ(xi, ξ

(r))− βr)∑n
j=1w

(r)
j (ψ(xj , ξ

(r))− βr)
, i = 1, . . . , n, (5)

where βr is a tuning parameter, 0 ≤ βr < mini ψ(xi, ξ (r)), ψ(x, ξ) = d(x, ξ)/
b(x, ξ), that leads to the so-called multiplicative algorithm for the case of corre-
lated observations. The condition (4) takes the form ψ(x, ξ∗)≤ 1 for all x ∈X. The
rule (5) means that at the next iteration the weight of a point x = xj increases if the
condition (4) does not hold at this point. Numerical experience shows that 20 itera-
tions of the multiplicative algorithm are sufficient for finding a good approximation
to the optimal design.
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Fig. 1 The Südliche Tullnerfeld in Lower Austria and the monitoring network

3 Computing Exact Designs from Asymptotically Optimal
Designs

An exact N -point design can be obtained by independent sampling from the asymp-
totically optimal design ξ . However, such exact designs could be not very good due
to randomness, especially for small N . Therefore, we propose the following proce-
dure of approximating the probability measure ξ by N points.

For given N , we choose a discretization x1, . . . , xn such that n is much larger
than N . Let ξ = {x1, . . . , xn;w1(1), . . . ,wn(1)} be the asymptotically optimal design
calculated by the multiplicative algorithm. Then we compute N points x′1, . . . , x′N
of the exact design in N iterations where the k-th iteration has the following form:

• Find an index τ such that wτ(k) is maximal, i.e., wτ(k) =maxj wj(k).
• Set x′k = xτ + ε, where ε is a random variable with zero mean and very small

variance.
• Define wτ(k+1) =wτ(k) − 1/N and wj(k+1) =wj(k) for all j �= τ .
• If wτ(k+1) < 0, then set wτ(k+1) = 0. The weights of points in a neighborhood of
xτ should then be decreased so that

∑n
j=1wj(k+1) = (N−k)/N . That is, we take

the points that are nearest to xτ and decrease the weights at them.

4 Application to Spatial Models

As an example, we consider the design problem for a water-quality monitoring net-
work in the Südliche Tullnerfeld in Lower Austria, which was previously studied in
Müller (2000, 2005), Müller and Pázman (1999). The network existed in the period
1992–1997 and consisted of 36 measurement stations represented by the points in
Fig. 1. The intersection of the grid with the Südliche Tullnerfeld is shown in Fig. 1
by crosses, giving 485 crosses in total.

We consider the linear regression model given by f (x)= (1, x[1], x[2])�, where
x = (x[1], x[2]) ∈ R

2. We also consider two correlation functions: the isotropic
spherical correlation function

K1
(
x, x′; θ)=

⎧⎪⎨
⎪⎩
θ1 + θ2, ‖x − x′‖ = 0,

θ2(1− 1.5‖x − x′‖/θ3 + 0.5‖x − x′‖3/θ3
3 ), 0< ‖x − x′‖< θ3,

0, ‖x − x′‖> θ3
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Fig. 2 The design ξ (20) obtained by the multiplicative algorithm for the linear model and the
spherical correlation function with θ = (4.89,1.86,0.81). The size of points is proportional to
weights

Fig. 3 The design ξ (20) obtained by the multiplicative algorithm for the linear model and the
Gaussian correlation function with θ = (4.89,1.86,0.5)

Fig. 4 The design ξ (20) obtained by the multiplicative algorithm for the linear model and the
spherical correlation function with θ = (4.89,1.86,0.4)

and the Gaussian correlation functionK2(x, x
′; θ)= θ1δ0(‖x−x′‖)+θ2 exp(−‖x−

x′‖2/θ2
3 ), where δ0 is the delta-function. We depict the design ξ (20) computed by the

multiplicative algorithm for these correlation functions in Figs. 2 and 3. We can see
that these designs have the same pattern when the correlation functions are rather
similar in the sense that maxx,x′ |K1(x, x

′)−K2(x, x
′)| is small. We also note that

the positive weights are for points mostly near the boundary of the design space.
In Figs. 2, 4 and 5 we depict designs ξ (20) computed for the spherical corre-

lation function with different parameters. We can see that the optimal design for
θ = (4.89,1.86,0.4) is more uniform near the boundary while the optimal design
for θ = (4.89,1.86,1.6) has several strict modes.

We now study exact designs generated by the asymptotically optimal design in
terms of Ψ (ξN)= [Var(θ̂)]1/3 = 3

√
(X�Σ−1X)−1. In Fig. 6 we depict exactN -point

designs ξN for N = 20,25,30 and 36. We find that Ψ (ξ20)= 5.39, Ψ (ξ25)= 4.56,
Ψ (ξ30)= 4.15 and Ψ (ξ36)= 3.67.
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Fig. 5 The design ξ (20) obtained by the multiplicative algorithm for the linear model and the
spherical correlation function with θ = (4.89,1.86,1.6)

Fig. 6 The exact designs ξ20, ξ25, ξ30 and ξ36 generated by the design ξ (20) for the linear model
and the spherical correlation function with θ = (4.89,1.86,0.81)

Fig. 7 The exact designs ξ∗D,36,r (left) and ξ∗D,36,a (right) computed by the Brimkulov algorithm
when the initial design is random and one generated from the asymptotically optimal density,
respectively, for the linear model and the spherical correlation function with θ = (4.89,1.86,0.81)

Exact designs generated from the asymptotically optimal design can be opti-
mized by the Brimkulov algorithm (Brimkulov et al. 1980). In Fig. 7 we show
two designs obtained by this algorithm. Let ξ∗D,36,r denote the design computed
by the Brimkulov algorithm when the initial design is random. The design ξ∗D,36,r
is shown in Müller (2005) for which Ψ (ξ∗D,36,r )= 3.55, that is just slightly smaller
than Ψ (ξ36) = 3.67. Let ξ∗D,36,a denote the design computed by the Brimkulov al-
gorithm when the initial design is generated from the asymptotically optimal den-
sity. We obtain Ψ (ξ∗D,36,a)= 3.39 that is smaller than Ψ (ξ∗D,36,r ). Finally, we note
Ψ (ξm.n.) = 6.93 where ξm.n. corresponds to the real monitoring network depicted
in Fig. 1. Thus, optimal location of measurement stations can double the estimation
accuracy.
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5 Conclusion

In the present paper we studied asymptotically optimal designs which can be useful
in several ways. First, practitioners can more easily identify the general pattern of
optimal allocation of points using the optimal density rather than using some exact
designs. Second, the weights of points indirectly show how informative observa-
tions at these points can be. As a result, points with small weights can be removed
from further consideration. Note that the problem of detection of points giving zero
information for the BLUE is investigated in Pázman (2010). Third, algorithms for
computing exact designs often converge to a better design when starting from an
exact design computed from the asymptotically optimal design, rather than when
starting from an arbitrary exact design.

Acknowledgements The work was partly supported by the Russian Foundation of Basic Re-
search, project 12-01-00747.
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Optimal Designs for the Prediction of Individual
Effects in Random Coefficient Regression

Maryna Prus and Rainer Schwabe

Abstract In this note we propose optimal designs for (i) the prediction of the in-
dividual responses as well as for (ii) the individual deviations from the population
mean response in random coefficient models. If the mean population parameters are
unknown, which is typically the case, the mean squared errors for (i) and (ii) do
not coincide and the design optimization leads to substantially different results. For
simplicity, we consider the case where all individuals are treated in the same way. If
the population parameters were known, Bayesian optimal designs would be optimal
(Gladitz and Pilz in Statistics 13:371–385, 1982). While the optimal design for the
prediction of the individual responses differ from the Bayesian optimal design pro-
posed in the literature (see Prus and Schwabe in Optimal Design of Experiments—
Theory and Application: Proceedings of the International Conference in Honor of
the Late Jagdish Srivastava, 2011), the latter designs remain optimal if only the in-
dividual deviations from the mean response are of interest.

1 Introduction

Random coefficient regression models, which incorporate variations between indi-
viduals, are becoming more and more popular in many fields of application, espe-
cially in biosciences. The problem of optimal designs for estimation of the mean
population parameters in these models has been widely considered and many the-
oretical and practical solutions are available in the literature. More recently, pre-
diction of the individual response as well as of the individual deviations from the
population mean response has attracted greater interest in order, for example, to cre-
ate individualized medication and individualized medical diagnostics or to provide
information for individual selection in animal breeding. The frequently applied the-
ory developed by Gladitz and Pilz (1982) requires prior knowledge of the population
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parameters and can be useful when pilot experiments are available. In this note we
consider the practically more relevant situation where the population parameters are
unknown.

The paper is organized as follows: In Sect. 2 the model is specified and the predic-
tion of individual effects is introduced. Section 3 provides some theoretical results
for the determination of optimal designs, which are illustrated in Sect. 4 by a simple
example. The final section contains some discussion and presents conclusions.

2 Model Specification and Prediction

In the general case of random coefficient regression models the observations are
assumed to result from a hierarchical (linear) model. At the individual level the j th
observation of individual i is given by

Yij = f(xij )�β i + εij , xij ∈X , j = 1, . . . ,mi, i = 1, . . . , n, (1)

where n denotes the number of individuals, mi is the number of observations on
individual i, f = (f1, . . . , fp)

� is the vector of known regression functions, and
βi = (βi1, . . . , βip)� is the individual parameter vector specifying the individual re-
sponse. The experimental settings xij may be chosen from a given experimental re-
gion X . Within an individual the observations are assumed to be uncorrelated given
the individual parameters. The observational errors εij have zero mean, E(εij )= 0,
and are homoscedastic with common variance Var(εij )= σ 2.

At the population level the individual parameters βi are assumed to have an un-
known population mean E(β i )= β and a given covariance matrix Cov(β i )= σ 2D.
All individual parameters and all observational errors are assumed to be uncorre-
lated.

The model can be alternatively represented in the following form:

Yij = f(xj )�β + f(xj )�bi + εij (2)

by separation of the random individual deviations bi = β i − β from the mean re-
sponse β . Here these individual deviations bi have zero mean E(bi ) = 0 and the
same covariance matrix Cov(bi )= σ 2D as the individual parameters.

We consider the particular case where the number of observations as well as
the experimental settings are the same for all individuals (mi = m and xij = xj ).
Moreover, for simplicity, we assume that the covariance matrix D is regular. The
singular case is briefly addressed in the discussion.

In the following we investigate both the predictors of the individual parameters
β1, . . . ,βn and of the individual deviations b1, . . . ,bn. These predictors are also
sometimes called estimators of the random parameters or deviations, respectively.
In particular, the prediction of βi can be viewed as an empirical Bayes estimation
problem.
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As shown by Prus and Schwabe (2011), the best linear unbiased predictor β̂ i
of the individual parameter βi is a weighted average of the individualized estimate
β̂i;ind = (F�F)−1F�Yi , based on the observations at individual i, and the estimator

of the population mean β̂ = (F�F)−1F�Ȳ,

β̂ i = D
((

F�F
)−1 +D

)−1
β̂ i;ind +

(
F�F

)−1((F�F
)−1 +D

)−1
β̂. (3)

Here F= (f(x1), . . . , f(xm))� denotes the individual design matrix, which is equal
for all individuals, Yi = (Yi1, . . . ,Yim)� is the observation vector for individual i,
and Ȳ= 1

n

∑n
i=1 Yi is the average response across all individuals.

It is worthwhile mentioning that the estimator of the population mean may be
represented as the average β̂ = 1

n

∑n
i=1 β̂ i;ind of the individualized estimates and

hence does not require the knowledge of the dispersion matrix D, whereas the pre-
dictor of the individual parameter βi does.

The performance of the prediction (3) may be measured in terms of the mean

squared error matrix of (β̂
�
1 , . . . , β̂

�
n )
�. Using results of Henderson (1975) it can be

shown that this mean squared error matrix is a weighted average of the correspond-
ing covariance matrix in the fixed effects model and the Bayesian one,

MSE β = σ 2
((

In − 1

n
1n1�n

)
⊗ (

F�F+D−1)−1 +
(

1

n
1n1�n

)
⊗ (

F�F
)−1

)
, (4)

where In is the n×n identity matrix, 1n is an n-dimensional vector of ones and “⊗”
as usual denotes the Kronecker product of matrices. Note that this representation
differs from that given by Fedorov and Hackl (1997, Sect. 5.2).

Similarly, the best linear unbiased predictor b̂i = β̂ i − β̂ of the individual devia-
tion bi can be alternatively represented as a scaled difference

b̂i = D
((

F�F
)−1 +D

)−1
(β̂ i;ind − β̂) (5)

of the individualized estimate β̂ i;ind from the estimated population mean β̂ . The
corresponding mean squared error matrix of the prediction of individual deviations
(b̂�1 , . . . , b̂�n )� can be written as a weighted average of the covariance matrix of
the prediction in the Bayesian model and the dispersion matrix D of the individual
effects

MSE b = σ 2
((

In − 1

n
1n1�n

)
⊗ (

F�F+D−1)−1 +
(

1

n
1n1�n

)
⊗D

)
. (6)

Note that in the case of a known population mean β , which was considered by
Gladitz and Pilz (1982), the mean squared error matrix for the prediction of indi-
vidual parameters coincides with that for the prediction of individual deviations and
equals σ 2 In ⊗ (F�F+D−1)−1.
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3 Optimal Design

The mean squared error matrix of a prediction depends crucially on the choice of the
observational settings x1, . . . , xm, which can be chosen by the experimenter to min-
imize the mean squared error matrix and which constitute an exact design. Typically
the optimal settings will not necessarily all be distinct. Then a design

ξ =
(
x1, . . . , xk
w1, . . . ,wk

)
(7)

can be specified by its distinct settings x1, . . . , xk , k ≤m, say, and the corresponding
numbers of replications m1, . . . ,mk or the corresponding proportions wj =mj/m.

For analytical purposes we make use of approximate designs in the sense of
Kiefer (see, e.g., Kiefer 1974) for which the integer condition on mwj is dropped
and the weights wj ≥ 0 may be any real numbers satisfying

∑k
j=1mj = m. For

these approximate designs the standardized information matrix for the model with-
out individual effects (βi ≡ β , i.e. D= 0) is defined as

M(ξ)=
k∑
j=1

wj f(xj )f(xj )� = 1

m
F�F. (8)

Further, for notational convenience, we introduce the standardized covariance ma-
trix of the random effects Δ=mD. With this notation we may define the standard-
ized mean squared error matrices as

MSE β(ξ)=
(

In − 1

n
1n1�n

)
⊗ (

M(ξ)+Δ−1)−1 +
(

1

n
1n1�n

)
⊗M(ξ)−1 (9)

for the prediction of the individual parameters and

MSE b(ξ)=
(

In − 1

n
1n1�n

)
⊗ (

M(ξ)+Δ−1)−1 +
(

1

n
1n1�n

)
⊗Δ (10)

for the prediction of the individual deviations. For any exact design ξ all mwj are
integers. Then the matrices MSE β(ξ) and MSE b(ξ) coincide with the mean squared
error matrices (4) and (6), respectively, up to a multiplicative factor σ 2/m.

In this paper we focus on the criterion of integrated mean squared error (IMSE)
of prediction, which is defined as

IMSE β =
∫
X

E

[
n∑
i=1

(
μ̂i(x)−μi(x)

)2

]
ν(dx) (11)

for individual parameters, where μ̂i(x) = f(x)�β̂i and μi(x) = f(x)�β i respec-
tively denote the predicted and true individual response and the integration is with
respect to a given weight distribution ν (typically uniform) on the design region X .
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Using (9), the standardized IMSE-criterion Φβ = m

σ 2 IMSE β can be represented
as

Φβ(ξ)= (n− 1) tr
[(

M(ξ)+Δ−1)−1V
]+ tr

[
M(ξ)−1V

]
, (12)

which is a weighted sum of the IMSE-criterion in the fixed effects model and the
Bayesian IMSE-criterion, where V = ∫

X f(x)f(x)�ν(dx) is the “information” of
the weight distribution ν and “tr” denotes the trace of a matrix.

With the general equivalence theorem (see, e.g., Silvey 1980) we may obtain the
following characterization of an optimal design.

Theorem 1 The approximate design ξ∗ is IMSE-optimal for the prediction of indi-
vidual parameters if and only if

f(x)�
[
(n− 1)

(
M

(
ξ∗

)+Δ−1)−1V
(
M

(
ξ∗

)+Δ−1)−1 +M
(
ξ∗

)−1VM
(
ξ∗

)−1] f(x)

≤ tr
[(
(n− 1)

(
M

(
ξ∗

)+Δ−1)−1M
(
ξ∗

)(
M

(
ξ∗

)+Δ−1)−1 +M
(
ξ∗

)−1)V]
(13)

for all x ∈X .
For any experimental setting xj of ξ∗ with wj > 0 equality holds in (13).

The IMSE-criterion of prediction for the individual deviations is given by

IMSE b(ξ)=
∫
X

E

[
n∑
i=1

(
μ̂bi (x)−μbi (x)

)2

]
ν(dx), (14)

where μ̂bi (x) = f(x)�b̂i and μbi (x) = f(x)�bi denote the predicted and the true
individual response deviation from the population mean, respectively. Using (10),
the standardized IMSE-criterion Φb = m

σ 2 IMSE b can be written as

Φb(ξ)= (n− 1) tr
[(

M(ξ)+Δ−1)−1V
]+ tr [ΔV]. (15)

The first term in (15) coincides with the criterion function of the Bayesian IMSE-
criterion and the second term is constant. Hence, Bayesian IMSE-optimal designs
are also IMSE-optimal for the prediction of individual deviations. The characteri-
zation of IMSE-optimal designs is given by the corresponding equivalence theorem
for Bayes optimality.

Theorem 2 The approximate design ξ∗ is IMSE-optimal for the prediction of indi-
vidual deviations if and only if

f(x)�
(
M

(
ξ∗

)+Δ−1)−1V
(
M

(
ξ∗

)+Δ−1)−1f(x)

≤ tr
[(

M
(
ξ∗

)+Δ−1)−1M
(
ξ∗

)(
M

(
ξ∗

)+Δ−1)−1V
]

(16)

for all x ∈X .
For any experimental setting xj of ξ∗ with wj > 0 equality holds in (16).
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4 Example

To illustrate our results, we consider the model Yij = βi1+ βi2xj + εij of a straight
line regression on the experimental region X = [0,1], where the settings xj can
be interpreted as time or dosage. We assume uncorrelated components such that the
covariance matrix D = diag (d1, d2) of the random effects is diagonal with entries
d1 and d2 for the variance of the intercept and slope, respectively. To exhibit the
differences in the design criteria, the variance of the intercept is assumed to be small,
d1 < 1/m.

According to Theorems 1 and 2, the IMSE-optimal designs only take observa-
tions at the endpoints x = 0 and x = 1 of the design region, as the sensitivity func-
tions, given by the left-hand sides of inequalities (13) and (16), are polynomials of
degree 2 in x. Hence, the optimal design ξ∗ is of the form

ξw =
(

0 1
1−w w

)
, (17)

and only the optimal weight w∗ has to be determined. For designs ξw the criteria
(12) and (15) are evaluated with δk =mdk to get

Φβ(ξw) = 1

3

(
(n− 1)(3δ1 + δ2 + δ1δ2)
(δ1 + 1)(wδ2 + 1)−w2δ1δ2

+ 1

w(1−w)
)
, (18)

Φb(ξw) = 1

3

(
(n− 1)(3δ1 + δ2 + δ1δ2)
(δ1 + 1)(wδ2 + 1)−w2δ1δ2

+ 3δ1 + δ2
)
. (19)

To obtain numerical results, the number of individuals and the number of ob-
servations at each individual are fixed as n= 100 and m= 10. For the variance d1
of the intercept we use the value 0.001. Figure 1 illustrates the dependence of the
optimal weight w∗ on the rescaled variance parameter ρ = d2/(1+ d2), which in a
way mimics the intraclass correlation and has the advantage of being bounded, so
that the whole range of slope variances d2 can be shown. The optimal weight for the
prediction of individual parameters increases with the slope variance d2 from 0.5
for d2 → 0 to about 0.91 for d2 →∞. For d1 < 1/m the Bayesian optimal design,
which is also optimal for the prediction of individual deviations, has optimal weight
w∗ = 1 for all positive values of d2 and is thus singular.

In Fig. 2 the efficiencies eff (ξ) = Φ(ξw∗)/Φ(ξ) are plotted for the optimal de-
sign ξ0.5 in the fixed effects model without individual effects and for the naive
equidistant design ξ̄ , which assigns weights 1/m tom settings xj = (j−1)/(m−1).
For the prediction of individual parameters the efficiency of the design ξ0.5 decreases
from 1 for d2 → 0 to approximately 0.60 for d2 →∞, whereas ξ̄ shows an overall
lower performance going down to 0.42 for large d2.

For the prediction of individual deviations the efficiency of both designs reveals
a bathtub shaped behavior with limiting efficiency of 1 for d2 → 0 or d2 →∞. This
is due to the fact that all regular designs are equally good for small d2 and equally
bad for large d2, since the criterion function (15) behaves like tr(ΔV) for d2 →∞
independently of ξ . The minimal efficiencies are 0.57 for ξ0.5 and 0.43 for ξ̄ .
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Fig. 1 Optimal weights w∗
for the prediction of
individual parameters (solid
line) and for the prediction of
individual deviations (dashed
line) as functions of
ρ = d2/(1+ d2)

Fig. 2 Efficiency of ξ0.5 (left panel) and ξ̄ (right panel) for the prediction of individual parameters
(solid line), individual deviations (dashed line) and for the Bayesian IMSE-criterion (dotted line)
as functions of ρ = d2/(1+ d2)

It is worthwhile mentioning that, although the design optimization seems to be
the same for the prediction of the deviations and for the Bayesian criterion, the
corresponding efficiencies may differ. For the sake of completeness these are also
plotted in Fig. 2. This difference is due to the second (constant) term in (15), which
is added to the Bayesian criterion.

It should also be noted that the present efficiencies cannot be interpreted as sav-
ings or additional needs in terms of sample sizes as in fixed effect models.

5 Discussion and Conclusions

We have pointed out similarities and differences between the mean squared error, the
IMSE-criterion and the corresponding optimal designs for the prediction of individ-
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ual responses and individual deviations compared with that for Bayesian estimation.
The IMSE-criterion is seen to be a weighted average of its Bayesian and standard
counterparts in the case of prediction of individual parameters and hence it defines
a compound criterion. For the prediction of individual deviations, Bayesian optimal
designs retain optimality but the criteria differ by an additive constant.

A generalization of the present results to singular dispersion matrices D is
straightforward, although there is no Bayesian counterpart in that case and the for-
mulae become less appealing. Such singular dispersion matrices occur naturally if
only parts of the parameter vector are random and some linear combinations are con-
stant across the population. In particular, in the case of a random intercept model,
when all other parameters are fixed, an optimal design for the prediction of the in-
dividual response curves can be obtained as the optimal one in the corresponding
model without individual effects (Prus and Schwabe 2011), while for prediction of
the individual deviations any design will be optimal.

The method proposed can be directly extended to other linear design criteria as
well as to the class of Φq -criteria based on the eigenvalues of the mean squared
error matrix. The design optimality presented here is formulated for approximate
designs, which in general cannot be exactly realized. However, these optimal ap-
proximate designs can serve as a benchmark for candidate exact designs, obtained
for instance by appropriate rounding of the optimal weights. Constructions, which
allow different individual designs, will be a subject of future research. In particular,
the case of sparse sampling where the number of observations per individual is less
than the number of parameters is going to be investigated.
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D-Optimum Input Signals for Systems
with Spatio-Temporal Dynamics

Ewaryst Rafajłowicz and Wojciech Rafajłowicz

Abstract Our aim is to provide optimality conditions for D-optimum input signal
design in linear systems described by partial differential equations. They are derived
using the variational approach. We also reveal the space-time structure of optimal
input signals. As a by-product, we derive optimality conditions for input signals in
systems described by ordinary differential equations.

1 Introduction

The old paradigms concerning parameter estimation of systems described by partial
differential equations (PDEs) assumed that input signals can act at a finite num-
ber of spatial points only and that one can observe system states at another finite
set of spatial points. They have become obsolete in recent years, since industrial
and infra-red cameras, MRI and CT provide information which can be considered
as observations that are continuous in space. High energy lasers, acting as mov-
ing sources, microwave heating and shape changing materials (e.g., piezo-electric
bonds) can be modelled as spatially distributed sources. For these reasons, we con-
sider the problem of selecting spatio-temporal input signals for parameter estimation
in PDEs from observations that are available at each point of a spatial domain. Even
if we are not able to provide observations and actuation at each spatial point, our
results provide a lower bound for the attainable estimation accuracy.

The related problem of sensor allocation has received much attention (Rafajłow-
icz 1978, 1981) including results on moving sensor trajectories (Uciński 2005; Patan
2012). Results on topics similar to those considered here can be found in Rafajłow-
icz (1983, 2011), where mainly frequency-domain synthesis is discussed. Partial
results on the time-domain synthesis can be found in Rafajłowicz (1989) and Rafa-
jłowicz and Skubalska-Rafajłowicz (2011). In this paper we provide results that
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differ from those above since we obtain the optimality conditions directly, using the
variational approach. As a result, we provide a simple algorithm for input signal
design when one parameter is estimated.

2 Problem Statement

Denote by q(x, t) the system state1 at time t and at spatial point x ∈ Ω ⊂ R
d ,

where Ω is a bounded and open spatial domain with smooth boundary Γ . Consider
the following class of PDEs:

κq̈(x, t)+μq̇(x, t)=Ax(ā) q(x, t)+U(x, t), x ∈Ω, (1)

where q̇(x, t)= ∂q(x, t)/∂t , Ax(ā) is an elliptic operator that depends on a vector
of unknown2 constant parameters. When κ = 1, we have a hyperbolic PDE. For
κ = 0, (1) is parabolic. The boundary conditions for (1) on Γ are included in the
definition of Ax(ā). We assume zero initial conditions q(x, 0) = 0, x ∈ Ω and,
additionally, q̇(x,0) = 0, if the term q̈(x, t) is present. U(x, t) is an input signal.
Observations for estimating ā are made over the interval (0, T ] and have the form
Y(x, t) = q(x, t; ā)+ ε(x, t), x ∈Ω, t ∈ [0, T ], where ε(x, t) is a spatiotemporal
white noise process with unit variance. The Fisher information matrix (FIM) is given
by

MT (U)=
∫
Ω

∫ T

0
∇aq(x, t; ā)∇�a q(x, t; ā)dt dx.

Our main problem is to find a D-optimal control with constrained energy, i.e.,

U∗ = arg min
U

det
[
M
−1
T (U)

]
subject to

∫
Ω

∫ T

0
U2(x, t)dt dx ≤ 1, (2)

where the admissible U are elements of the space of continuous functions C{(Ω ∪
Γ )×[0, T ]} that are also square integrable. The problem of the existence of optimal
solutions is solved in Sect. 3 for a wide class of PDEs.

3 Auxiliary Problem: Optimal Input Signal for ODE Parameter
Estimation

Formulation Consider the system described by the Ordinary Differential Equa-
tion (ODE)

dr y(t)

d t r
+ ar−1

dr−1 y(t)

d t r−1
+ · · · + a0 y(t)= ar u(t), t ∈ (0, T ], (3)

1We shall also write q(x, t; ā) to indicate its dependence on unknown parameters ā.
2Here we treat μ as a known parameter, but it can also be included as an unknown parameter.
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with zero initial conditions, where y(t) is the output and u(t) is the input signal.
The solution y(t; ā) of (3) depends on the vector ā = [a0, a1, . . . , ar ]� of unknown
parameters. The observations have the form Υ (t)= y(t; ā)+ε(t), t ∈ [0, T ], where
ε(t) is zero-mean and uncorrelated Gaussian white noise.

It can be shown (Goodwin and Payne 1977), that the FIM MT (u) for estimating
ā has the form MT (u) =

∫ T
0 ∇ay(t; ā) [∇ay(t; ā)]� dt , where ∇ay(t; ā) depends

on u(·) through (3). Define U0 = {u :
∫ T

0 u
2(t)dt ≤ 1, det[MT (u)]> 0}. Our aux-

iliary problem is to find u∗ ∈ U0 ∩ C[0, T ] for which minu∈U0 det[M−1
T (u)] is

attained, where C[0, T ] is the space of continuous functions in the closed inter-
val [0, T ]. The linearity of (3) implies MT (u)=

∫ T
0

∫ T
0 H(τ, ν; ā) u(τ )u(ν)dτ dν,

where H(τ, ν; ā) def= ∫ T
0 k̄(t − τ ; ā) k̄�(t − ν; ā)dt , while the r × 1 vector of sen-

sitivities k̄(t; ā) def= ∇ag(t; ā) is defined through the impulse response of the ODE
(3), denoted by g(t; ā). We have g(t; ā) = 0 for t < 0. In our problem, the exis-
tence of feedback is not explicitly allowed, but one can incorporate its presence by
modifying the definition of k̄(t; ā) as shown in Rafajłowicz and Rafajłowicz (2011).

Gâteaux Differential Note that MT (ς u) = ς2 MT (u) for arbitrary ς ∈ R and
log[det(·)] is strictly convex. Hence,

∫ T
0 (u

∗)2(t)dt = 1. For γ ∈ R being the La-

grange multiplier, defineL(u,γ )= log[det(MT (u))]−γ (
∫ T

0 u
2(t)dt−1). Let u∗ ∈

U0 ∩ C[0, T ] be a solution to the auxiliary problem and let uε(t)= u(t)+ ε f (t),
where f ∈ C[0, T ] is arbitrary. Then, equating the Gâteaux differential of L to zero
we obtain

∂L(uε, γ )

∂ ε

∣∣∣∣
ε=0

= 2
∫ T

0
f (ν)

[∫ T

0
ker

(
τ, ν, u∗

)
u∗(τ )dτ − γ u∗(ν)

]
dν = 0 ,

where, for u ∈U0, we define the kernel ker(τ, ν, u)
def= trace[M−1

T (u)H(τ, ν, ā)].
This condition holds for any f ∈ C[0, T ]. Thus, the fundamental lemma of the
calculus of variations implies that u∗ is an eigenfunction of the following integral
operator:

∫ T

0
ker

(
τ, ν, u∗

)
u∗(τ )dτ = γ u∗(ν). (4)

This equation is nonlinear with respect to u∗, but it is expedient to consider a
family of associated linear eigenvalue problems. Specifically, for any fixed u ∈U0,
we seek eigenfunctions φ(ν,u) and eigenvalues μ(u) that depend on a selected u
and satisfy

∫ T

0
ker(τ, ν, u)φ(ν,u)dν = μ(u)φ(τ,u). (5)

The kernel ker(τ, ν, u) is symmetric and nonnegative definite. There exists a se-
quence of orthonormal eigenfunctions φk(τ,u) and nonnegative eigenvalues μk(u),
k = 1, 2, . . . for which (5) holds (Yosida 1981). From (4) we know that for
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k = 1, 2, . . . we have u∗(τ ) = φk(τ,u∗) and μk(u∗) = γ . We note that ‖u∗‖ =∫ T
0 (u

∗(τ ))2 dτ = 1. Multiplying both the sides of (4) by u∗ and integrating, we ob-
tain γ = (r + 1)= dim(ā). Additionally, for any fixed u ∈U0 such that ‖u‖ = 1,

r + 1= trace
[
M−1
T (u)MT (u)

]=
∫ T

0

∫ T

0
ker(τ, ν,u)u(τ)u(ν)dτ dν ≤ μmax(u),

where μmax(u) denotes the largest eigenvalue among μk(u), k = 1, 2, . . . . This im-
plies that also infu∈U0 μmax(u)≥ (r + 1) and we know that the infimum is attained
for u= u∗, since for some k, μk(u∗)= γ = (r + 1).

Corollary 1 If u∗ ∈ U0 ∩ C[0, T ] is a solution to the auxiliary problem, then
(i) γ = μmax(u

∗) = (r + 1) and u∗ is the eigenfunction of (4) that corresponds
to this eigenvalue, and (ii) infu∈U0 maxk=1,2,... μk(u)= (r + 1).

Remark 1 The above conditions are necessary for the optimality of u∗. If T <
2
√
γ −1= 2

√
r + 1−1, then these conditions are also sufficient for the optimality

of u∗. The proof is based on the second variation of L(u, γ ).

Example 1 Consider the system ÿ(t)+ 2 ξ ẏ(t)+ ω2
0 y(t)= ω0 u(t) with a known

resonance frequency ω0 and estimated damping parameter ξ , ẏ(0)= 0, y(0)= 0. Its
sensitivity has the form k(t; ξ)=−t exp(−ξ t) sin(ω0 t), t > 0. The eigenfunction
corresponding to the largest eigenvalue of H(τ, ν; ξ) was calculated numerically
and depicted in Fig. 1 (left) for T = 2.5 and grid step size 0.005.

4 Input Signals for Estimating Parameters in PDEs

Assumptions We need additional assumptions concerning the class of considered
PDEs:

κq̈(x, t)+μq̇(x, t)=Ax(ā) q(x, t)+U(x, t), x ∈Ω, (6)

which should be accompanied by boundary conditions that are included in the de-
scription of the domain of Ax(ā), denoted by D(Ax)⊂ L2(Ω), where L2(Ω) is the
class of square-integrable functions with inner product 〈f,g〉 = ∫

Ω
f (x)g(x)dx.

We admit operators Ax of the form

Ax(ā) q(x, t)=
R∑
i=1

ai P
(i)
x q(x, t),

where P (i)x , i = 1, . . . ,R are differential operators with respect to spatial variables
such that

(A1) Ax is symmetric, i.e., ∀f, g ∈ L2(Ω): 〈Ax(ā) f, g〉 = 〈f, Ax(ā) g〉 and is
positive definite, i.e., ∀f,∈ L2(Ω) f �= 0 ⇒ 〈f, Ax(ā)f 〉 > 0.
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(A2) The eigenfunctions v1(x), v2(x), . . . of Ax(ā) do not depend on ā (it suf-
fices that each vk is simultaneously the eigenfunction of all P (i)x ). Then the
eigenvalues λk(ā) of Ax(ā) are linear functions of ā, i.e., λk(ā) = b̄�k ā,
Ax(ā) vk =−λk(ā) vk for some known vectors b̄k , k = 1,2, . . . .

(A3) vk , k = 1,2, . . . , form a complete orthonormal basis of L2(Ω). If multiple
eigenvalues appear, then the eigenfunctions having the same eigenvalue can
be orthonormalized (Yosida 1981) and in all formulas below we assume that
this was done.

Partial Modal Decomposition In order to characterize the solution, we express
the solution of (6) as q(x, t, ā) =∑∞

k=1 vk(x) yk(t, ā), where the yk(t)’s are the
solutions of

κÿk(t, ā)+μẏk(t, ā)=−λk(ā) yk(t, ā)+ ũk(t), (7)

ũk(t)
def= ∫

Ω
U(x, t) vk(x)dx, ẏk(0) = yk(0) = 0. Thus, the eigenfunctions vk’s of

Ax play the role of spatial modes. The completeness in L2(Ω) and orthogonality of
eigenfunctions vk allow us to reformulate our problem. Define ũk(t)= 〈U(·, t), vk〉.
Then the constraint (2) reads as

∑∞
k=1

∫ T
0 ũ

2
k(t)dt ≤ 1, while the FIM is MT (U)=∑∞

k=1

∫ T
0 ∇ayk(t, ā)∇�a yk(t, ā)dt . Denote by Ik(t, ā) the impulse response of (7).

Then ∇ayk(t, ā) =
∫ T

0 ∇aIk(t − τ, ā) ũk(τ )dτ . Summarizing, the FIM can be ex-
pressed as

MT (U)=
∞∑
k=1

∫ T

0

∫ T

0
Hk(τ, ν, ā) ũk(τ ) ũk(ν)dτ dν, (8)

where Hk(τ, ν, ā)
def= ∫ T

0 ∇aIk(t − τ, ā)∇�a Ik(t − ν, ā)dt , k = 1, 2, . . . . We can
explore the structure of the FIM even further. Note that ∇aIk(t, ā) = b̄k ρk(t, ā).
Hence, Hk(τ, ν, ā)= b̄k b̄�k ck(τ, ν, ā), where ck(τ, ν, ā)

def= ∫ T
0 ρk(t − τ, ā) ρk(t −

ν, ā)dt , while for δ(t) denoting the Dirac delta we get

Ïk(t, ā)+μ İk(t, ā)=−λk(ā) Ik(t, ā)+ δ(t),

ρ̈k(t, ā)+μρ̇k(t, ā)=−λk(ā) ρk(t, ā)− Ik(t),
with zero initial conditions. Note that we cannot select one mode and optimize its
input signal. The reason is that Hk(τ, ν, ā)= b̄k b̄�k ck(τ, ν, ā) is a rank-one matrix.

Proposition 1 The necessary condition forMT (U) to be nonsingular is that at least
R of ũk(t)= 〈U(·, t), vk〉 �= 0 on subintervals of (0, T ) having nonzero lengths.

Thus, we are forced to consider (8) as a whole. However, we can partition the
energy of input signals among modes and select their excitations. To this end, define
uk(t)= ũk(t)/√αk , where αk = ‖ũk‖2.
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Proposition 2 Under (A1)–(A3), the problem (1)–(2) is equivalent to finding
αk > 0,

∑∞
k=1 αk ≤ 1 and uk(t), k = 1, 2, . . ., which maximize the determinant of

MT (U)=
∞∑
k=1

∫ T

0

∫ T

0
αk Hk(τ, ν, ā) uk(τ )uk(ν)dτ dν, ‖uk(·)‖2 = 1.

Denote by α∗k and u∗k , k = 1, 2, . . ., the solution of the above problem. Then the
solution of problem (2) can be expressed as

U∗(x, t)=
∞∑
k=1

√
α∗k vk(x)u

∗
k(t). (9)

Note that log{det[MT (U)]} is convex with respect to the αk’s. Our aim is to pro-
vide conditions for the optimality of α∗k and u∗k , k = 1, 2, . . . . Assume that U∗ is an
optimal solution and Uε(x, t)= U∗(x, t)+ ε u(t) vj (x) for some j = 1, 2, . . . and
u ∈ C[0, T ]. Define L (U, γ̄ )= log{det[MT (U)]} −∑∞

k=1 αk γk (‖uk(·)‖2 − 1).
Then

∂L (Uε, γ̄ )

∂ ε

∣∣∣∣
ε=0

= 2α∗j
∫ T

0
u(ν)

[∫ T

0
kerj

(
τ, ν, U∗

)
u∗j (τ )dτ − γj u∗j (ν)

]
dν,

(10)
where α∗j u∗j (t)= 〈U∗(·, t), vj 〉,

kerj
(
τ, ν, u∗j

) def= trace
[
M−1
T

(
U∗

)
Hj(τ, ν, ā)

]= ζj (U∗, T ) cj (τ, ν, ā),

and ζj (U∗, T )
def= b̄�j M

−1
T (U

∗) b̄j . The expression in (10) is zero for every u ∈
C[0, T ] and for every j = 1, 2, . . .. Hence, if U∗ is optimal, then the excitation u∗j
of the j -th mode is an eigenfunction of the integral equation

ζj
(
U∗, T

) ∫ T

0
cj (τ, ν, ā) u

∗
j (τ )dτ = γj u∗j (ν) (j = 1, 2, . . .). (11)

From (i) in Corollary 1 it follows that u∗j corresponds to the largest eigenvalue of

(11), denoted by γ (j)max, when it is considered as the linear eigenvalue problem with
treated ζj (U∗, T ) as a constant.

The kernel kerj is symmetric and positive definite. It depends on U∗ only
through the constant ζj (U∗, T ) > 0. This fact is crucial, since we are able to
determine the eigenfunctions of (11) without knowing U∗. Furthermore, given
j we can determine its largest eigenvalue and the corresponding eigenfunction.
To this end, it suffices to find the largest eigenvalue η(j)max and the corresponding
eigenfunction φ(j)max(t), (‖φ(j)max‖ = 1), of

∫ T
0 cj (τ, ν, ā) ϕ(τ )dτ = ηϕ(ν). Note that

γ
(j)
max = ζj (U∗, T )η(j)max, j = 1,2, . . . .
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Fig. 1 Left panel—excitation of the first mode by the optimal input signal, right
panel—space-time optimal input wave in Example 2

Proposition 3 Under (A1)–(A3), if U∗ is a D-optimal input signal, then it can be
expressed in the modal form (9) with u∗k(t)= φ(k)max(t) and α∗k selected in such a way
that they are maximizers, over all αk ≥ 0’s,

∑∞
k=1 αk ≤ 1, of the criterion

max
α1,α2,...

log det

[ ∞∑
k=1

αk ζk
(
U∗, T

)
η(k)max b̄k b̄

�
k

]
. (12)

This result almost completely characterizes the spatio-temporal structure of the
optimal input signal, including excitations of each spatial mode. The only ingredi-
ents that are not explicitly stated are the α∗k ’s indicating allocation of energy between
modes. For fixed U∗ one can repeat the proof of the Kiefer-Wolfowitz theorem.

Corollary 2 If U∗ is optimal, then the following condition holds:

max
k=1,2,...

η(k)max

[
b̄�k M

−1
T

(
U∗

)
b̄k

]2 =R = dim(ā). (13)

Proposition 3 and Corollary 2 provide necessary optimality conditions. Under
the same additional assumption as in Remark 1, they are also sufficient.

As for a numerical procedure to solve (13), applying the Carathēodory theorem,
we infer that in (12) it suffices to select at most R (R + 1)/2 terms (we cannot
say which of them, since ζk(U∗, T )’s depend on U∗). The eigenvalues of PDEs
decay very rapidly, so we can consider only several first modes. The condition
(13) looks familiar (except raising b̄�k M

−1
T (U

∗)b̄k to a power of 2). Formally, the
Wynn-Fedorov algorithm applies (Wynn 1970; Fedorov 1972), but this deserves
more study.

Example 2 (Hyperbolic case) Consider damped vibrations described by

∂2 q(x, t)

∂ t2
+ 2 ξ

∂ q(x, t)

∂ t
+ a ∂

2 q(x, t)

∂ x2
=U(x, t),

x ∈ (0,1), q(0, t) = q(1, t) = 0, where a is an unknown parameter. In this case it
suffices to excite the first mode of the system v1(x) = sin(π x)/

√
π by a signal

which is proportional to t exp(ξ t) sin(
√
a t). Its structure is shown in Fig. 1.
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Example 3 (Parabolic case) Consider the heat equation with unknown parameters
a1 and a2:

∂ q(x, t)

∂ t
+ a1

∂2 q(x, t)

∂ x2
+ a2 q(x, t)=U(x, t),

x ∈ (0,1), q(0, t)= q(1, t)= 0. The structure of the optimal input signal involves
two modes, v1(x)= sin(π x)/

√
π and v2(x)= sin(2π x)/

√
π , each excited by an

exponentially growing function of time, but the influence of the second one is rather
weak.

5 Conclusions

Under several simplifying assumptions we have established that optimal input sig-
nals are sums of excitations, which are products of natural modes in space and ex-
ponentials or exponentially growing sinusoids with natural system frequencies in
time. As in optimum experimental design for regression models nonlinear in the pa-
rameters, here the optimal u∗ also depends on estimated parameters. There are well
known ways of circumventing this difficulty (Atkinson et al. 2007).

The results are presented for the D-optimality criterion, but they can readily be
generalized to the A-optimality, general L-optimality and Lp-optimality criteria.
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Random Projections in Model Selection
and Related Experimental Design Problems

Ewa Skubalska-Rafajłowicz and Ewaryst Rafajłowicz

Abstract We propose a method for selecting terms to be included into a regression
model, when a part of the primary candidates is specified (e.g., the main effects),
and discuss related experimental design problems. A distinctive feature here is a
deficit in the admissible number of experiments in comparison with a much larger
number of candidate terms. We apply a large number of random projections of can-
didate terms to eliminate spurious terms. The design problem is solved for a linear
regression with a very large number of interactions.

1 Introduction and Problem Statement

Unlike those in the present paper, most of the methods for selecting terms to be
included into a regression function, including backward stepwise rejection and all
subset regression as well as the Lasso (Tibshirani 1996) require more observations
than candidate terms. Methods that are based on penalizing too many terms, such
as information criteria, cross-validation or the bootstrap (see Konishi and Kitagawa
2008 for these and other criteria) either require candidate models to be nested or lead
to the need for comparing all the subsets of candidate terms. A rarely considered
aspect is experimental design for model selection. Exceptions include Du Mouchel
and Jones (1994), Dette and Kwiecien (2005), Titterington (2000), Atkinson et al.
(2007) and Dean and Lewis (2006) and communications on model discrimination
(Uciński and Bogacka 2005; Lopez-Fidalgo et al. 2005; Agboto et al. 2010). Our
problem statement is closest in spirit to the one by Atkinson et al. (2007, Chap. 20).
There are also some relationships with group testing (Lewis and Dean 2001) (see
also Morris 2006 for a survey of group testing approaches). Notice, however, that in
Lewis and Dean (2001) the grouping is done according to factor levels, while here
we propose grouping by random mixing of regression terms.
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It is worth noticing that random projections of a large number of regression terms
considered here are also quite different from the deterministic projections of design
points that are considered in Tsai et al. (2000). We also point out that, unlike Sat-
terthwaite (1959), we randomize model terms, but not the experimental design itself.
Clearly, our approach does not preclude the randomization of run order.

We assume that, for given design points xi ∈ R
d , i = 1,2, . . . , n, the observa-

tions are yi = (a0)�v(xi )+∑K
j=1 bjwk(j)(xi )+ εi , i = 1,2, . . . , n, where a0 ∈R

r

is a vector of unknown parameters and v(x) = [v1(x), v2(x), . . . , vr (x)]� a vector
of known functions vl : Rd → R, l = 1,2, . . . , r that are linearly independent in a
certain compact set X ⊂ R

d . We let wk : Rd → R, k = 1,2, . . . , K̃ be a collection
of given, linearly independent functions in X that form the vector w : Rd → R

K̃ ,
w(x) = [w1(x),w2(x), . . . ,wK̃ ]�, but we know neither which, nor how many of
them, appear in our regression function. Thus, bj ’s and K are also unknown, but
we expect that K is essentially smaller than the length K̃ of w. The observations
yi contain additive i.i.d. random errors εi , i = 1,2, . . . , n. For formal derivations
we assume that εi ∼N (0, σ 2

ε ), although some parts of the results concerning the
experimental design do not rely on this assumption.

Let V denote the r × n matrix [v(x1),v(x2), . . . ,v(xn)]. As is frequently appro-
priate in practice, we assume that n is (much) smaller than r + K̃ . Our aim is to
propose a method of selecting terms from w(x) to be included in the regression
function, assuming that the terms contained in v(x) are prime candidates, e.g., the
main effects in a linear model. Simultaneously, our primary aim is to propose an ap-
proach to selecting experimental designs that are well suited to our model selection
approach.

2 Randomly Projected Regression and Experimental Design

2.1 Random Projections of Model Terms and Their Selection

Details of the proposed method are presented in Skubalska-Rafajłowicz and Rafaj-
łowicz (2012). Due to space limitations, we here provide only the main ideas. Our
starting point is the model1

ȳ(x,a, β, s)= a�v(x)+ βs�w(x), (1)

where a ∈ R
r , β ∈ R, s ∈ R

K̃ is drawn at random by the experimenter: s ∼
N (0, σ 2

s IK̃ ), σs > 0, IK̃ is the K̃ × K̃ identity matrix. For fixed s, estimates â

1The model (1) resembles a model that was proposed by Cook and Weisberg (2004). A fundamental
difference is that here s is selected at random and only β is estimated, while in Cook and Weisberg
(2004) both β and s are estimated. See Skubalska-Rafajłowicz and Rafajłowicz (2012) for further
discussion and references.
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and β̂ of the parameters a and β are obtained by ordinary least squares (OLS), i.e.,

min
a,β

n∑
i=1

[
yi − ȳ(x,a, β, s)

]2
. (2)

Then we test H0 : β = 0 using the t-test, a new s ∼ N (0, σ 2
s IK̃ ) is drawn, and

(2) and the test are repeated q times, say. If H0 were rejected a sufficient number
of times (0.2q , say, cf. Donoho and Jin 2004, for explanation) we would conclude
that w(x) may contain terms that are worth introducing into the model (otherwise,
STOP). In order to identify such terms, w(x)will be repeatedly partitioned (roughly)
in half in further derivations. The corresponding left and right parts will be denoted
by wL(x), wR(x), wLL(x), wLR(x), wRL(x), wRR(x) etc. In subsequent steps the
following models will be used:

¯̄y(x,a, βL,βR,S)= a�v(x)+ βLs�LwL(x)+ βRs�RwR(x), (3)

¯̄̄y(x,a, βLL,βLR, . . .)= a�v(x)+ βLLs�LLwLL(x)+ βLRs�LRwLR(x), (4)

where a ∈ R
r , βL,βR ∈ R, sL, sR ∈ R

K̃//2, S
def= [sL, sR], w1(x),w2(x) ∈ R

K̃//2

and K̃//2= K̃/2 if K̃ is even, and otherwise, K̃//2 is the largest integer less than
K̃/2 for wL(x) vectors and the smallest integer larger than K̃/2 for wR(x) vectors.
The same convention is used for further subdivisions wLL(x), wLR(x), etc., and for
random vectors sL, sR ∼N (0, σ 2

s IK̃//2), assuming that they have the same dimen-
sions as the corresponding vectors wL(x), wR(x), wLL(x), wLR(x). Furthermore,
we assume that random vectors sL, sR , sLL, sLR , etc., are mutually independent.

To fix ideas, consider the model (3). We formulate the hypotheses H0L : βL = 0
and H0R : βR = 0. For fixed sL and sR , we find â, β̂L and β̂R by OLS mina,βI ,βR∑n
i=1[yi − ¯̄y(xi ,a, βL,βR,S)]2 and the t test is applied for β̂L and β̂R . Again, sL

and sR are drawn at random and the above OLS and t tests are repeated 100 times,
say. Simultaneously, we increment counters, denoted by cL (resp. cR), each time
when H0L : βL = 0 (resp. H0R : βR = 0), is rejected. If, for a preselected threshold
0 < θ < 1, we have cL < θq and cR < θq , then STOP—there are no additional
terms to be introduced into the model. Otherwise, if cL ≥ θq and cL > cR , we split
wL(x) in half and repeat the above steps for the model (4) (or its ‘right’ counterpart).
Simultaneously, if also cR ≥ θq , we keep wR(x) terms as prospective for further
consideration, otherwise we skip wR(x) in further steps. If our algorithm reaches
the stage that wLR,...,RL(x) contains only one element, we add it, after the t test, to
the list of candidates to be introduced to our model. If the list of prospective terms
is not empty, we enter it as a new w(x) list and repeat the entire procedure. Finally,
we have a list of candidates that is used as the extension of v(x). The parameters of
the extended regression are re-estimated and undergo t tests and/or other standard
procedures for model validation.
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2.2 Experimental Design

The matrix of normal equations corresponding to (3) has the form

MS =
⎡
⎢⎣

VV� mL(S) mR(S)

m�
L(S) mLL(S) mLR(S)

m�
R(S) mLR(S) mRR(S)

⎤
⎥⎦ , (5)

where mLL(S)
def= ∑n

i=1 w�L(xi )sLs�LwL(xi ), mL(S)
def= ∑n

i=1 s�LwL(xi )v(xi ),

mRR(S)
def= ∑n

i=1 w�R(xi )sRs�RwR(xi ), mR(S)
def= ∑n

i=1 s�RwR(xi )v(xi ), while for

the mixed element we have mLR(S)
def=∑n

i=1 s�LwL(xi )s�RwR(xi ).
From now on, ES[MS], i.e. the expectation of MS with respect to S, plays the

role of the information matrix.2 The assumed properties of sL and sR immediately
imply that

ES[MS] =
⎡
⎣VV� 0 0

0� σ 2
s

∑n
i=1 ‖wL(xi )‖2 0

0� 0 σ 2
s

∑n
i=1 ‖wR(xi )‖2

⎤
⎦ ,

where ‖ · ‖ is the Euclidean norm. For simplicity, in what follows we set σs = 1. As
is customary in experimental design (Atkinson et al. 2007), we pass from discrete
designs xi , i = 1,2, . . . , n to approximate designs ξ(x), which are probability mea-
sures on a compact set X⊂ R

d . The class of all such measures will be denoted by
Ξ(X). For ξ ∈Ξ(X), we shall denote by M(ξ) the counterpart of ES[MS] that can
expressed as:

M(ξ)=
⎡
⎣
∫
X

v(x)v�(x)ξ(dx) 0 0
0� WL(ξ) 0
0� 0 WR(ξ)

⎤
⎦ , (6)

where WL(ξ)
def= ∫

X
‖wL(x)‖2ξ(dx), WR(ξ)

def= ∫
X
‖wR(x)‖2ξ(dx).

We consider the D-optimum experimental design problem (Atkinson et al. 2007),
i.e., finding a design ξ∗ ∈ Ξ(x) that maximizes the determinant of M(ξ) over
ξ ∈ Ξ(x). It is well known that for v(x) and w(x) continuous in X it suffices to
look for optimal designs in the class of all probability measures with finite supports
κ1, κ2, . . . , κm and attached nonnegative weights p1,p2, . . . , pm,

∑m
j=1 pj = 1, in-

terpreted as frequencies of applying input κj ’s. Note that m is also a decision vari-
able and we do not require the npj to be integers. As a direct consequence of the
equivalence theorem (Atkinson et al. 2007) we obtain

2Strictly speaking, MS is the Fisher information matrix for fixed S subject to the hypothesis that
b0
j = 0, j = 1,2, . . . ,K .
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Corollary 1 A design ξ∗ ∈Ξ(X) is D-optimal for estimating parameters a, βL, βR
in the model (3) if, and only if, for

φ
(
x, ξ∗

) def= v�(x)M−1
v

(
ξ∗

)
v(x)+ ‖wL(x)‖

2

WL(ξ∗)
+ ‖wR(x)‖

2

WR(ξ∗)
,

we have

sup
x∈X
φ
(
x, ξ∗

)= r + 2, (7)

where Mv(ξ)
def= ∫

X
v(x)v�(x)ξ(dx). The supremum in (7) is attained at the support

points of ξ∗.

To determine such designs numerically, we can apply the Wynn-Fedorov algo-
rithm (Atkinson et al. 2007). Designs that are optimal in the above sense may cause
problems in our case for the following reasons:

• from the theory of D-optimal designs we know that there exists a D-optimal de-
sign with no more than (r + 2)(r + 3)/2 support points, but this number can be
prohibitively large (e.g., 153 points for r = 15),

• there is no guarantee that a parameter corresponding to each individual term in
w(x) is identifiable in conjunction with a, which is a prerequisite for their selec-
tion.

Below we describe how these difficulties can be alleviated with a minor loss in
design efficiency. Details are presented for linear regression with possible interac-
tions, but the idea can be extended to more complicated cases.

2.3 Design for Linear Regression with Possible Interactions

Consider a regression linear in the factors with possible interactions. In our con-
vention v(x) = [1, x(1), x(2), . . . , x(d)]�, r = d + 1 and we treat the main effects
as prime candidates to be present in the model. Let us assume the need for the
presence of the second-order or higher-order interactions is not established and
therefore we place them in the vector w(x) = [x(1)x(2), x(2)x(3), . . . , x(d−1)x(d)]�
of length K̃ . We halve this vector into wL(x) and wR(x) with lengths K̃L = K̃//2
and K̃R = K̃//2, respectively, such that K̃L + K̃R = K̃ . As a candidate for the ex-
perimental design in X = [−1,1]d we take designs with support at the points of a
fractional factorial design 2d−f with f ≥ 1 selected in such a way that

• 2d−f is the smallest integer larger than r + 2= d + 3, if this design is expected
to be applied directly in the experiment,

• in the absence of any two-factor or higher-order interactions, the estimates of
a (main effects) are unbiased, i.e., we select the so-called main-effect design
(Atkinson et al. 2007, p. 79). As pj ’s we take 1/2d−f and denote such a design
by ξ̃ .
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Corollary 2 If v(x) contains only main effects, and possibly a constant term, and
w(x) contains only interactions of two or more factors (but not necessarily all of
them), then the optimality condition (7) holds for the design ξ̃ .

The proof is provided in Skubalska-Rafajłowicz and Rafajłowicz (2012). Note
that the optimality condition for ξ̃ also holds for further subdivisions of wL(x)
and/or wR(x), with obvious changes in the lengths K̃L and K̃R . This design, al-
though formally D-optimal, is not sufficient for our purposes. The reason is that a
large number of interaction terms are not identifiable, because—by construction of
ξ̃—they are all equal to +1 (or all equal to −1) for all the support points,3 which
precludes the possibility of their estimation when they appear as single terms in the
last stage of subdivisions of wL(x) or wR(x).

As the next step in constructing an acceptable design, we consider the de-
sign ξmix, which is a convex combination of ξ̃ and the design ξu(x)= 1/2d that is
uniform in X= [−1,1]d , i.e., ξmix = (1− γ )ξ̃ + γ ξu, where 0< γ < 1 is selected
by the experimenter.

Corollary 3 For simplicity, let us assume, that w(x) contains only second-order
interactions. Then, under the same assumptions as in Corollary 2, M(ξmix) is a
diagonal matrix with (d+ 3) diagonal entries, where the first is 1, the next d entries
have the form (1− γ )+ γ /3= 1− 2γ /3 and the last two are equal to (1− γ )K̃L+
γ K̃L/34 and (1− γ )K̃R + γ K̃R/34, respectively.

The D-efficiency with respect to a D-optimal, but not satisfactory, design ξ̃ is

Deff(d, γ )
def=

{ |M(ξmix|
|M(ξ̃)|

} 1
(d+3) = (1− γ 80/81)

2
d+3 (1− 2γ /3)

d
d+3 , (8)

where limd→∞Deff(d, γ )= 1− 2γ /3 and the dependence on γ is almost linear for
moderate d .

The proof is based on direct calculations using the fact that M(ξu) is also di-
agonal (Skubalska-Rafajłowicz and Rafajłowicz 2012). The result also holds when
higher-order interactions are involved, but then other multipliers of γ in (8) appear.
It is worth noticing that, even for problems of a moderate size, the D-efficiency of
ξmix is large, e.g., for d = 10 and γ = 0.25 the D-efficiency of ξmix is at least 0.83.

The final step in constructing designs suitable for our purposes is to approximate
the uniform design in [0,1]d by an implementable one. To this end, one can select
a design from a large variety of so-called quasi-random sequences. We propose
to approximate ξu by Hammersley sequences (see Niederreiter 1992) since they
are well known and already proved their usefulness as experimental designs for
nonparametric regression (Rafajłowicz and Schwabe 2006).

3One can consider the Plackett and Burman designs for estimating main effects, but in our opinion
they share the same drawback.
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Table 1 Left panel: results of testing our algorithm when two terms should be entered into the
model. Right panel: the results of testing the forward stepwise regression when the same two
terms should be entered into the model. Heading codes: 2 OK—two proper terms were included,
2 OK+—two proper terms were included plus spurious terms (maximum 4 in 100 runs), 1 OK—
one proper term was found, None—neither of the two proper terms was included

σε 2 OK 2 OK+ 1 OK None Total

0.75 41 8 44 7 100

0.5 77 12 11 0 100

σε 2 OK 2 OK+ 1 OK None Total

0.75 0 6 81 6 100

0.5 0 6 92 2 100

As for a suggested experimental design, consider model selection by random pro-
jections when the regression is linear in its main effects, plus possible interactions.
An experimental design that we suggest is the convex combination of ξ̃ and points
generated by the Hammersley method with equal weights. Select γ near 0.5, if we
expect many interaction terms and γ closer to 0.25, if the number of interaction
terms is expected to be smaller. Such designs are highly D-efficient, e.g., for the
design used in our simulations for γ = 0.25 we have Deff = 0.92, while for γ = 0.5
drops to Deff = 0.73, assuming σs = 1.

2.4 Simulations

We consider a linear model with main effects and possible interactions of all pairs
and triples of factors, d = 10, r = dim[v(x)] = d + 1= 11, K̃ = dim[w(x)] = 165
and we have only n = 50 observations at our disposal that are obtained using a
210−5 fractional factorial design plus 18 elements of the Hammersley sequence
σs = 3, σε = 0.5 or 0.75 (see Table 1, left panel). Two terms, contained in w(x),
have to be included in the regression, namely, x(2)x(7) and x(3)x(6) with coeffi-
cients 2.5, while (a0)� = [1,1, . . . ,1]. The results seem to be satisfactory, since we
had three and a half times more terms to be considered than observations. Note that
for σε = 0.5 the proper two terms were found in 89 % of cases, while for larger er-
rors (σε = 0.75), at least one proper term was identified in 93 % of cases. The same
simulations were repeated using the classical forward stepwise regression method.
The results are much worse (Table 1, right panel). The same pattern (or even worse
for the stepwise forward method) appears, when pairs other than x(2)x(7) and
x(3)x(6) are selected for inclusion in the model. On the other hand, the time of
calculation for the stepwise regression was much less than for the proposed method
(2 seconds vs. 30), but our method is much more reliable in detecting proper terms.

3 Concluding Remarks

An important feature of the proposed approach is the dimensionality reduction that
comes from random projections of candidate regression terms. The idea of using
random projections for this purpose was introduced by the first author in Skubalska-
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Rafajłowicz (2011) in the context of the usually even larger models arising in the
identification of nonlinear time series. This aspect, as well as bounds on the proba-
bilities of properly selecting all necessary terms, while avoiding introducing spuri-
ous ones, are beyond the scope of the present paper.
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Optimal Design for the Bounded Log-Linear
Regression Model

HaiYing Wang, Andrey Pepelyshev, and Nancy Flournoy

Abstract Wang and Flournoy (2012) developed estimation procedures for the
bounded log-linear regression model, an alternative to the four parameter logis-
tic model which has a bounded response with non-homogeneous variance. In the
present paper, we prove that an optimal design that minimizes an information-based
criterion requires at most five design points including the two boundary points of
the design space. TheD-optimal design does not depend on the two parameters rep-
resenting the boundaries of the response, but it does depend on the variance of the
error. Furthermore, if the error variance is known and bigger than a certain constant,
we prove that the D-optimal design is the two-point design supported at boundary
points with equal weights. Numerical examples are provided.

1 The Statement of the Problem

Consider the bounded log-linear regression model defined by

log

(
B − Y
Y −A

)
= a + bx + ε, (1)

or equivalently,

Y = B − B −A
1+ e−(a+bx+ε)

, (2)
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where ε ∼N(0, σ 2), a, b, σ , A and B are unknown parameters, x is a non-random
covariate, x ∈ X and Y is the response. Note that model (1) is closely related to
the four parameter logistic (4PL) model. The inferential procedure for model (1),
together with a discussion of its advantages over the 4PL model can be found in
Wang and Flournoy (2012).

For estimating θ = (a, b, σ,A,B) by the local maximum likelihood method, the
Fisher information matrix based on a single observation at x is

I (θ, x)=
⎡
⎣
I11 0 I13
0 I22 I23

I�13 I�23 I33

⎤
⎦ ,

where

I11 = 1

σ 2

[
1 x

x x2

]
, I13 =− 1

σ 2(B −A)
[

1+ δ ec 1+ δ e−c
(1+ δ ec)x (1+ δ e−c)x

]
,

I22 = 2

σ 2
, I23 = 2δ

σ (B −A)
[− ec, e−c

]
,

I33 =
⎡
⎣

δ4 e2c

(B−A)2 + 1+2δ ec+δ4 e2c

σ 2(B−A)2 − 1
(B−A)2 + 2+δ ec+δ e−c

σ 2(B−A)2
− 1
(B−A)2 + 2+δ ec+δ e−c

σ 2(B−A)2
δ4 e2c

(B−A)2 + 1+2δ e−c+δ4 e−2c

σ 2(B−A)2

⎤
⎦ ,

c= a + bx and δ = eσ
2/2; see Wang and Flournoy (2012) for derivation of I (θ, x).

Denote by ξ = {xi,wi}K1 an approximate design, where wi > 0 is the design

weight at the point xi and
∑K
i=1wi = 1. Under the design ξ , the average information

matrix for θ is

Mξ(θ)=
K∑
i=1

wiI (θ, xi). (3)

We consider optimality criteria that minimize a statistically meaningful convex
functional of this information matrix. In the rest of the paper we assume that the
design space is defined such that c= a + bx ∈ [l, u].

2 Main Results

2.1 The Case of Unknown σ

In the following theorem we obtain an upper bound for the number of support
points of optimal designs that improves on the classical upper bound based on
Carathéorody’s theorem (Carathéodory 1911; Steinitz 1913).
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Theorem 1 An optimal design that minimizes an information based criterion for
model (1) is supported at no more than 5 design points. In addition, the optimal
design is always supported at the boundary points of the design space.

Proof Reformulating the design problem in terms of c, rather than x, we rewrite the
design as ξ = {ci,wi}K1 . By matrix manipulation, the matrix I (θ, x) has the form
I (θ, c)= PθCcP�θ , where

Cc =

⎡
⎢⎢⎢⎢⎢⎣

1 c 0 ec e−c
c c2 0 c ec c e−c
0 0 1

2σ 2 ec − e−c

ec c ec ec (σ 2 + 1)δ2 e2c 1−σ 2

δ2

e−c c e−c − e−c 1−σ 2

δ2 (σ 2 + 1)δ2 e−2c

⎤
⎥⎥⎥⎥⎥⎦

and

Pθ = 1

σ

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
−a
b

1
b

0 0 0

0 0 2σ 0 0
−1
B−A 0 0 −δ

B−A 0
−1
B−A 0 0 0 −δ

B−A

⎤
⎥⎥⎥⎥⎥⎦
.

Using the notation from Yang (2010), we define Ψ1(c) = e−2c , Ψ2(c) = e−c ,
Ψ3(c) = c e−c, Ψ4(c) = c, Ψ5(c) = ec , Ψ6(c) = c2, Ψ7(c) = c ec and Ψ8(c) = e2c .
As described by Yang (2010), we find f1,1 =−2 e−2c , f2,2 = ec /2, f3,3 = 1, f4,4 =
−2 ec, f5,5 = 6 ec, f6,6 =− e−c /3, f7,7 =−3 ec, f8,8 = 24 ec and F =∏8

i=1 fi,i =
288 e2c > 0. Therefore, by Theorem 2 in Yang (2010), any optimal design based
on the Fisher information matrix is supported at no more than 8/2+ 1 = 5 points
including two boundary points. �

Note thatCc is independent of the boundary parametersA andB , and Pθ does not
involve c. Thus, the D-optimal design does not depend on the boundary parameters
A and B .

We now study numerically the sharpness of the derived upper bound. We
focus on D-optimality for all our numerical studies. Since the D-optimal de-
sign does not depend on A and B , without loss of generality we define A = 0
and B = 10. We assume that the design interval is X = [−2,2]. Suppose that
a = 0 and b = 1. Straightforward calculus gives the D-optimal designs: ξ∗2p =
{(−2,0.5), (2,0.5)} for σ = 1; ξ∗3p = { (−2,0.41) , (0,0.18) , (2,0.41)} for σ =
0.4 ξ∗4p = { (−2,0.26) , (−0.94,0.24) , (0.94,0.24), (2,0.26)} for σ = 0.1. In

Fig. 1 the sensitivity function d(x, ξ∗, θ) = tr{I (θ, x)Mξ∗(θ)−1} is depicted for
these three designs. Note that the D-optimality of the computed designs is con-
firmed by the equivalence theorem. We have not found cases when the D-optimal
design is supported at 5 points.
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Fig. 1 The sensitivity function d(x, ξ∗, θ) for the model (1) with unknown σ in three cases. Left:
σ = 1; middle: σ = 0.4; right: σ = 0.1

Fig. 2 Values of
{detMξ(θ)/detMξD (θ)}1/5
(the D-efficiency of design ξ )
for the model (1) with
unknown σ as a function of σ
when ξ is ξ∗2p , ξ∗3p , ξ∗4p and
ξunif, A= 0, B = 10

Now we evaluate the asymptotic efficiency of designs ξ∗2p , ξ∗3p , ξ∗4p , the uniform
design ξunif = {(−2,0.2), (−1,0.2), (0,0.2), (1,0.2), (2,0.2)} and the D-optimal
designs under different values of σ . Figure 2 displays the asymptotic efficiency of
ξ∗2p , ξ∗3p , ξ∗4p and ξunif relative to the D-optimal design. It is seen that ξ∗2p is optimal
when σ is large, whereas ξ∗3p and ξ∗4p are each optimal only at one value of σ . Note
that the D-efficiency of ξunif is about 0.9 for small σ and 0.7 for large σ .

For finite sample sizes, we compare the mean squared error (MSE) for each
parameter estimate under different designs by simulation. When sample sizes are
small, the MLE may not exist, see Wang and Flournoy (2012). For these cases,
the smallest and largest observations are used as estimators of A and B . We con-
sider the two-point design, the uniform design and a design in which design points
are randomly taken from a continuous uniform distribution on X = [−2,2]. The
last we call the random design. Table 1 presents the relative MSE of each parame-
ter estimate calculated from 1000 repetitions of the simulation. The two-point de-
sign outperforms the other two designs for most scenarios. It does not perform well
for estimating σ when σ = 0.5. The two-point design is not optimal in this sce-
nario.
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Table 1 Values of MSE(e�k θ̂ |ξ∗2p)/MSE(e�k θ̂ |ξ) × 100, the relative performance for estimating
individual parameters in the model (1) with unknown σ in cases when ξ is the uniform design and
the random design of size n, K = 5. “NS” is the number of cases where a consistent solution to the
likelihood equation cannot be found for the given design and “NST” is the number of cases with
no consistent solution for the two-point design among 1000 repetitions of the simulation

Design a b σ A B NS NST

σ = 1.0

Uniform n= 20 98.5 44.6 105.2 39.8 40.8 252 263

n= 40 98.3 50.6 113.5 39.2 44.7 11 16

n= 80 96.3 53.7 117.9 45.7 43.2 0 0

Random n= 20 76.5 29.9 86.0 21.7 19.3 293 263

n= 40 74.5 31.9 89.3 22.2 21.4 10 16

n= 80 89.0 30.7 100.6 22.6 20.7 0 0

σ = 0.5

Uniform n= 20 139.3 88.4 270.6 74.6 77.0 66 175

n= 40 131.4 108.6 283.4 87.2 92.8 4 27

n= 80 120.1 114.2 249.8 90.6 101.8 0 0

Random n= 20 79.0 47.6 174.2 33.5 32.0 108 175

n= 40 83.5 55.4 181.8 40.5 43.2 16 27

n= 80 94.5 57.8 182.4 44.4 43.0 0 0

2.2 The Case of Known σ

When σ is known, there are four unknown parameters and the matrix Cc in the
Fisher information matrix reduces to

Cc =
[
Cc11 Cc12
Cc21 Σc

]
,

where

Cc11 =
[

1 c

c c2

]
, Cc21 = C�c12 = (Zc, cZc), Zc = (ec, e−c)�,

Σc =
[
(σ 2 + 1)δ2 e2c (1− σ 2)/δ2

(1− σ 2)/δ2 (σ 2 + 1)δ2 e−2c

]
.

Using arguments from the proof of Theorem 1, we can show that an optimal design
that minimizes an information based criterion for this model is also supported at no
more than 5 points.

In the following theorem we explicitly derive D-optimal designs in some cases.



242 H. Wang et al.

Theorem 2 For model (1) with known σ , there exists a constant ζ < 9 such that if
(σ 2 + 1) eσ

2
> ζ the D-optimal design ξ∗ is the two-point design supported at the

boundary points with equal weights.

Proof From the extended general equivalence theorem in White (1973), it suffices
to show that supc∈[l,u] d(c, ξ∗, θ)= 4. Note that

tr
{
Ic(θ)Mξ∗(θ)

−1}= tr
{
PθCcP

�
θ

(
PθAP

�
θ

)−1}= tr
(
A−1Cc

)
,

where A= (Cl + Cu)/2, and Cl and Cu have the same form as Cc with c replaced
by l and u, respectively. Thus, we need to prove that supc∈[l,u] tr(A−1Cc) = 4. By
tedious calculation, we have tr{(Cl − Cu)(Cl + Cu)−1} = 0, which implies that
tr(A−1Cl)= tr(A−1Cu)= 4.

Now we will prove that tr(A−1Cc) reaches its maximum at the boundary points
l and u. By direct calculation, we obtain

tr
(
A−1Cc

)= 2
(c− l)2 + (c− u)2

(l − u)2 + tr
(
D−1Γc

)

+ tr(D−1{(u− c)(Zl −Zc)− (c− l)(Zu −Zc)}⊗2)

(l − u)2
≤ 2+ tr

(
D−1Γc

)+ tr
(
D−1κ

)
,

where κ = {2(u− c)2(Zl − Zc)⊗2 + 2(c − l)2(Zu − Zc)⊗2}/(l − u)2, Γc = Σc −
ZcZ�c , D = (Γl + Γu)/2, Γl and Γu has the same form as Γc with c replaced by l
and u, respectively, andM⊗2 =MM� for any matrixM .

Note that tr(D−1κ) + tr(D−1Γc) = 2 at the boundary l or u. Consequently,
we need to show that tr(D−1κ)+ tr(D−1Γc) or, equivalently, tr(D∗κ)+ tr(D∗Γc)
achieves its maximum at boundary points l or u, where

D∗ = 1

2

[
φ(e−2l+ e−2u) 2ψ

2ψ φ(e2l+ e2u)

]

is the co-factor matrix ofD, and φ = (σ 2+1)δ2−1 and ψ = {1+ δ2−σ 2}/δ2 > 0.
By direct calculation, it follows that

tr
(
D∗κ

)≤ 2φ
(u− c)2
(l − u)2

(
e2l+ e2u)(e−c− e−l

)2

+ 2φ
(c− l)2
(l − u)2

(
e−2l+ e−2u)(ec− eu

)2

=Δ1 +Δ2

and

tr
(
D∗Γc

)= φ2

2

{(
e−2l+ e−2u) e2c+(

e2l+ e2u) e−2c}− 2ψ2.
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Fig. 3 The sensitivity function d(x, ξ∗, θ) for the model (1) with known σ in three cases. Left:
σ = 1. Middle: σ = 0.2. Right: σ = 0.1

Fig. 4 Values of
{detMξ(θ)/detMξD (θ)}1/4
(the D-efficiency of design ξ )
for the model (1) with known
σ , different σ and cases when
ξ is ξ∗2p , ζ ∗3p , ζ ∗4p and ξunif,
A= 0, B = 10

Note that if Δi < tr(D∗Γl)/2− tr(D∗Γc)/2 for c ∈ (l, u), i = 1,2, then it follows
that tr(D∗κ) + tr(D∗Γc) achieves its maximum at c = l. This is true because Δi
vanishes at the two boundary points, i = 1,2.

By direct calculation, we obtain

1

2

{
tr
(
D∗Γl

)− tr
(
D∗Γc

)}= φ2

4

(
e2l+ e2u){1− e2(x−u)}(e−2l− e−2x). (4)

Thus, assuming φ ≥ 8, to prove that Δ1 < tr(D∗Γl)/2− tr(D∗Γc)/2, we need

(u− c)2
(l − u)2 ≤

{
1− e2(c−u)}1+ el−c

1− el−c
. (5)

The inequality (5) is true if {1− e2(c−u)}(1+ el−c)/(1− el−c) > 1. Otherwise,
we have 2 el−c < e2(c−u)+ el+c−2u < 2 e2(c−u), which implies (l + 2u)/3 < c.
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Table 2 Values of MSE(e�k θ̂ |ξ∗2p)/MSE(e�k θ̂ |ξ) × 100, the relative performance of estimating
individual parameters for the model (1) with known σ in cases when ξ is the uniform design and
the random design of size n, K = 5. “NS” is the number of cases where a consistent solution to the
likelihood equation cannot be found for the given design and “NST” is the number of cases of no
consistent solution for the two-point design among 1000 repetitions of simulation

Design a b A B NS NST

σ = 1.0

Uniform n= 20 96.5 40.6 35.3 35.3 0 0

n= 40 98.6 45.2 33.7 37.3 0 0

n= 80 96.3 48.5 40.7 38.6 0 0

Random n= 20 74.2 28.5 19.6 17.6 4 0

n= 40 75.4 31.2 20.8 19.7 0 0

n= 80 90.3 30.9 21.9 21.1 0 0

σ = 0.5

Uniform n= 20 120.9 42.4 47.4 44.0 20 13

n= 40 129.0 49.0 46.2 49.1 0 1

n= 80 118.4 53.6 50.8 53.0 0 0

Random n= 20 75.0 32.0 21.9 19.3 23 13

n= 40 81.6 33.5 24.5 23.4 0 1

n= 80 94.6 34.9 27.4 26.4 0 0

Thus, if u− l < 1, by the mean-value theorem we then have

{
1− e2(c−u)}ec−l+1

ec−l−1
> 2(u− c) e

2(l−u)
3

2

e(c− l) >
4(u− c)
e2(c− l)

>
1

3

(u− c)
(u− l) >

(u− c)2
(l − u)2 .

If u− l ≥ 1, we obtain {1−e2(c−u)}(ec−l+1)/(ec−l−1) > {1−e2(c−u)}. Let h(c)=
{1−e2(c−u)}−(u− c)/{3(l−u)}. Then h′′(c)=−4 e2(c−u) < 0 and, therefore, h(x)
is convex. Note that h(u)= 0 and h{(l+2u)/3} = 8/9−e2(l−u)/3 ≥ 8/9−e−2/3 > 0
and, thus, h(c) > 0 for c ∈ [(l + 2u)/3, u]. �

We now investigate the dependence of the D-optimal design on σ . As pre-
viously, we suppose that A = 0, B = 10, X = [−2,2], a = 0 and b = 1. Then
we obtain the D-optimal designs: ξ∗2p = {(−2,0.5), (2,0.5)} for σ = 1; ζ ∗3p =
{(−2,0.425), (0,0.15), (2,0.425)} for σ = 0.2 and ζ ∗4p = {(−2,0.33), (−0.86,
0.17), (0.86,0.17), (2,0.33)} for σ = 0.1. In Fig. 3 we depict the sensitivity func-
tion d(x, ξ∗, θ) for these three designs. We observe that d(x, ξ∗, θ)≤ 4 for all x ∈X

which proves the D-optimality. Note that the D-optimal design is a two-point de-
sign if σ > 0.31 (for a = 0 and b = 1). The relative asymptotic efficiency graphs
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given in Fig. 4 for the case of known σ are similar to the case when σ is unknown.
However, the design ξ∗2p is D-optimal for a larger range of σ .

Table 2 reports finite sample comparisons. The two point design dominates the
other designs when σ = 1.0. When σ = 0.5, the uniform design provides better
accuracy for estimating only the parameter a and the two point design is preferable
for estimating the other parameters.

References

Carathéodory, C.: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven har-
monischen Funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)

Steinitz, E.: Bedingt konvergente Reihen und konvexe Systeme. J. Reine Angew. Math. 143, 128–
175 (1913)

Wang, H., Flournoy, N.: Inference on a new sigmoid regression model with unknown sup-
port and unbounded likelihood function. NI12001-DAE, http://www.newton.ac.uk/preprints/
NI12001.pdf (2012)

White, L.V.: An extension of the general equivalence theorem to nonlinear models. Biometrika 60,
345–348 (1973)

Yang, M.: On the de la Garza phenomenon. Ann. Stat. 38, 2499–2524 (2010)

http://www.newton.ac.uk/preprints/


Index

A
ABC method, 137
ABCD method, 137
Adaptive design, 94, 99

dose ranging, 56
Alzheimer’s disease, 55
Approximate design, 13, 238
Ascendant function, 3
Asymptotic test, 22
Axis design, 112

B
Bayesian

approximate computing, 137
D-optimality, 93
IMSE-criterion, 215
optimal design, 16, 136

Bernoulli distribution, 100
Best linear unbiased predictor, 213
Binary

responses, 92
surrogate endpoints, 28

Bivariate Emax model, 154
Boundary points, 239

C
C-optimal design, 66
Carathéorody’s theorem, 238
Censored observations, 179
Choice experiments, 125
Clinical Utility Index (CUI), 154
Cohort, 94
Competing treatments, 29, 99
Competitive inhibition, 12
Composition operator, 108
Compound criterion, 218
Contingent valuation experiments, 63

Covariance kernel, 203
Coverage function, 37
Crossed mixture, 47

D
D-efficiency, 122, 240
D-optimal design, 22, 49, 93
D-optimality, 59, 66, 119, 127, 205, 239
DB-optimal design, 140
Ds-optimality, 12
Delta method, 176
Design

efficiency, 240
points, 239

Directional derivative, 93
Dose

finding, 91
ranging, 55

Dose-response relationship, 153
Drop the loser rule, 83

E
Efficacy, 92, 153

response, 57
Efficiency, 14, 67
EM algorithm, 31
Emax model, 153
Epanechnikov kernel, 138
Equivalence theorem, 14, 51, 120, 215
Estimator

instabilities, 196
least-squares, 196

Estimators of random parameters, 212
Ethical considerations, 92
Exact experimental design, 51, 204
Expectation surface, 196
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