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Katarzyna M. Węgrzyn-Wolska,
Piotr S. Szczepaniak (Eds.)
Advances in Intelligent Web Mastering, 2007
ISBN 978-3-540-72574-9

Emilio Corchado, Juan M. Corchado,
Ajith Abraham (Eds.)
Innovations in Hybrid Intelligent Systems, 2007
ISBN 978-3-540-74971-4

Marek Kurzynski, Edward Puchala,
Michal Wozniak, Andrzej Zolnierek (Eds.)
Computer Recognition Systems 2, 2007
ISBN 978-3-540-75174-8

Van-Nam Huynh, Yoshiteru Nakamori,
Hiroakira Ono, Jonathan Lawry,
Vladik Kreinovich, Hung T. Nguyen (Eds.)
Interval / Probabilistic Uncertainty and
Non-classical Logics, 2008
ISBN 978-3-540-77663-5



Van-Nam Huynh, Yoshiteru Nakamori,
Hiroakira Ono, Jonathan Lawry,
Vladik Kreinovich, Hung T. Nguyen (Eds.)

Interval / Probabilistic
Uncertainty and
Non-classical Logics

ABC



Editors

Van-Nam Huynh
Yoshiteru Nakamori
Hiroakira Ono

Japan Advanced Institute of Science
and Technology
1-1 Asahidai, Nomi
Ishikawa 923-1292
Japan
E-mail: {huynh,nakamori,ono}@jaist.ac.jp

Jonathan Lawry
Department of Engineering Mathematics,
University Of Bristol
Queen’s Building, University Walk
Bristol BS8 1TR
United Kingdom
E-mail: j.lawry@bristol.ac.uk

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968
USA
E-mail: vladik@utep.edu

Hung T. Nguyen
Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003-8001
USA
E-mail: hunguyen@nmsu.edu

ISBN 978-3-540-77663-5 e-ISBN 978-3-540-77664-2

DOI 10.1007/978-3-540-77664-2

Advances in Soft Computing ISSN 1615-3871

Library of Congress Control Number: 2007942801

c©2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

5 4 3 2 1 0

springer.com



Preface

Large-scale data processing is important. Most successful applications of mod-
ern science and engineering, from discovering the human genome to predicting
weather to controlling space missions, involve processing large amounts of data
and large knowledge bases. The corresponding large-scale data and knowledge
processing requires intensive use of computers.

Computers are based on processing exact data values and truth values from the
traditional 2-value logic. The ability of computers to perform fast data and
knowledge processing is based on the hardware support for super-fast elementary
computer operations, such as performing arithmetic operations with (exactly
known) numbers and performing logical operations with binary (“true”-“false”)
logical values.

In practice, we need to go beyond exact data values and truth values from the
traditional 2-value logic. In practical applications, we need to go beyond such
operations.

Input is only known with uncertainty. Let us first illustrate this need on the
example of operations with numbers. Hardware-supported computer operations
(implicitly) assume that we know the exact values of the input quantities. In
reality, the input data usually comes from measurements. Measurements are
never 100% accurate. Due to such factors as imperfection of measurement in-
struments and impossibility to reduce noise level to 0, the measured value x̃ of
each input quantity is, in general, different from the (unknown) actual value x
of this quantity. It is therefore necessary to find out how this input uncertainty
Δx

def= x̃ − x �= 0 affects the results of data processing.

Probabilistic approach to uncertainty. The need to take into account the uncer-
tainty of input data has been known for centuries. In the early 19 century,
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Gauss developed basic statistical techniques for processing such uncertainty.
These techniques are based on the assumption that we know the probabilities
of different values of the measurement error Δx. Usually, we assume that the
distribution is normal (Gaussian), with 0 mean and a known standard devia-
tion σ. Such probabilistic methods are actively used in engineering and scientific
practice.

Interval approach to uncertainty. There are practical situations in which we do
not know the probabilities of different values of the measurement error Δx.
In many such situations, we only know the upper bound Δ on the (absolute
value of the) measurement error, i.e., the value Δ for which |Δx| ≤ Δ. In such
situations, after we perform the measurement and get the measured value x̃, the
only information that we have about the actual (unknown) value x is that this
value belongs to the interval [x̃ − Δ, x̃ + Δ].

Techniques for processing data under such interval uncertainty can be traced
back to ancient scientists such as Archimedes. Their active development started
by T. Sunaga (Japan), by M. Warmus (Poland), and especially by R. Moore
(USA) in the 1950s, when the arrival of modern computers led to the practical
need for such development.

Need to combine probabilistic and interval uncertainty. At present:

• we have well-developed techniques for handling situations in which we know
the exact probability distribution for the measurement error Δx, and

• we have well-developed techniques for handling situations in which we have
no information about the probabilities – and we only know the upper bound
on the measurement error.

In real life, we often encounter intermediate situations in which we have partial
information about the probabilities.

This information is frequently described in interval-related terms: e.g., instead
of knowing the exact value p of the probability, we may only know the interval
[p, p] of possible values of this probability. To handle such situation, it is desirable
to combine probabilistic and interval approaches to uncertainty.

Several formalisms have been developed for such combination, such as impre-
cise probabilities, Dempster-Shafer approach, approaches related to rough sets,
and many others.

First objective of the workshop. One of the main objectives of this workshop was
to bring together researchers working on interval, probabilistic, and combined
methods, so as to promote collaboration and further applications.

Need for non-classical logics. Another aspect in which we need to go beyond
hardware-supported computer operations is logic.

In the computer, only operations from the traditional 2-valued (“true”-
“false”) logic are supported. However, in practice, usually, experts are not 100%
sure about the truth of the statement included in the knowledge bases.
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An important aspect of this uncertainty is that the experts’ statements can
be vague (fuzzy). For example, an expert can be 100% sure that the temperature
in a certain region will be high, but he or she is not 100% sure whether this
“high” necessarily means greater than 40◦.

Fuzzy logic and type-2 fuzzy logic. Several logical techniques have been proposed
to provide a more adequate description of expert knowledge. Historically, one of
the first such techniques was the (standard) fuzzy logic, in which we use numbers
from the interval [0, 1] to describe the expert’s degree of certainty in a statement:

• 1 means 100% certainty,
• 0 means no certainty at all, and
• intermediate values represent different grades of uncertainty.

An even more adequate representation of the expert’s uncertainty comes from
type-2 fuzzy logic, in which we take into account that just like an expert usually
cannot describe his or her knowledge about some quantity by a single number,
this same expert cannot describe his or her certainty by a single number: this cer-
tainty can be described by an interval of possible values, or, even more generally,
by a fuzzy subset of the interval [0, 1].

Probabilistic logics. In fuzzy logic, degrees from the interval [0, 1] represent sub-
jective degrees. In some cases, we can describe these degrees in a more objective
way: e.g., in the weather example, as a probability that in the past, in similar sit-
uations, the temperature was above 40◦. Such cases are handled by probabilistic
logic.

Algebraic approach to logic. Yet another alternative comes from the fact that
the most natural way for an expert to describe his/her knowledge is by using
words from natural language. So, instead of quantizing these values, we may
want to describe possible values of certainty as the set of such words and word
combinations, and define appropriate “and”- and “or”-operations on this set –
which would make it a logic.

This approach was one of the motivations behind the development of algebraic
logics, i.e., logics described not by a specific implementation but rather by the
properties of the corresponding logical operations.

Modal logics. For an individual event, such as temperature exceeding 40◦, it
is reasonable to ask whether this event will happen or not – and what is the
expert’s confidence that this event will happen. In practice, expert statements
usually refer not to individual events, but rather to repeating events. For such
events, it is also reasonable to ask whether it is possible that the event will
happen, whether it is necessary that this event will happen – and if yes, to what
degree.

Such statements about possibility and necessity form modal logic, another
non-classical logic actively used in processing knowledge.
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Other non-classical logics. There exist many other non-classical logics, e.g.,
logics used to describe induction (making generalizations based on several facts)
and abduction (making conclusions about the causes of an observed event).

Need to combine uncertainty analysis with non-classical logics. In many practical
problems, we need to process both measurement data and expert knowledge.

• We have already mentioned that to adequately process measurement data,
we need to take into account probabilistic and interval uncertainty – and
combine these two types of uncertainty.

• We have also mentioned that to adequately describe expert knowledge, we
need to use various non-classical logic techniques – and sometimes we need
to combine different non-classical logic methods.

It is therefore desirable to combine uncertainty analysis with non-classical
logic.

Such combination was the main objective of this workshop – and of these
proceedings.

Objectives of the workshop. Specifically, the main objectives of the workshop
were:

• to bring together researchers working on uncertainty formalisms in informa-
tion and knowledge systems;

• to attract researchers working in social sciences (economics, business, and
environmental sciences) who are interested in applying uncertainty-related
tools and techniques;

• to promote the cross-fertilization between the fundamental ideas connected
with various approaches used in the study of non-classical logics;

• to bring together researchers from various fields on non-classical logics and
applications in order to foster collaboration and further research, and

• to present and discuss open research problems and challenges.

Papers presented in these Proceedings describe different aspects of these
problems.

We hope that this workshop will lead to a boost in the much-needed collabo-
ration between the uncertainty analysis communities and the non-classical logic
communities.

Acknowledgments. This workshop was partially supported by the Japan Ad-
vanced Institute of Science and Technology (JAIST) International Joint Re-
search Grant 2006-08, JAIST 21st COE Program entitled “Technology Creation
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ENHI(C) #19500174], and JAIST 21st COE Program entitled “Verifiable and
Evolvable e-Society”. We are very thankful to JAIST for all the help.
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An Algebraic Approach to Substructural
Logics – An Overview

Hiroakira Ono

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
ono@jaist.ac.jp

We will give a state-of-the-art survey of the study of substructural logics. Orig-
inally, substructural logics were introduced as logics which, when formulated as
Gentzen-style systems, lack some of the three basic structural rules, i.e. contrac-
tion, weakening and exchange. For example, relevance logics and linear logic lack
the weakening rule, many-valued logics, fuzzy logics and linear logic lack the con-
traction rule, and hence all of them can be regarded as substructural logics. These
logics have been studied extensively and various theories have been developed
for their investigation. However their study has been carried out independently,
mainly due to the different motivations behind them, avoiding comparisons be-
tween different substructural logics.

On the other hand, the general study of substructural logics has a comparative
character, focusing on the absence or presence of structural rules. As such, at
least in the initial stages of research, it was a study on how structural rules affect
logical properties. This naturally led to a syntactic or proof-theoretic approach
yielding deep results about properties of particular logics, provided that they can
be formalized in systems, like cut-free Gentzen calculi. An obvious limitation of
this study comes from the fact that not all logics have such a formulation.

Semantical methods, in contrast, provide a powerful tool for analyzing sub-
structural logics from a more uniform perspective. Both Kripke-style semantics
and algebraic semantics for some particular subclasses of substructural logics,
e.g. relevant logics, were already introduced in the 70s and 80s and were studied
to a certain extent.

An algebraic study of substructural logics for the last decade, based mainly
on algebraic logic and universal algebra, has brought us a new perspective on
substructural logics, which came from the observation that these logics all share
the residuation property. Though this is usually not noticed, it is revealed ex-
plicitly in a sequent formulation by the use of extralogical symbols, denoted by
commas. Precisely speaking, consider the following equivalence, concerning im-
plication →, that holds in most of sequent systems: A formula γ follows from
formulas α and β if and only if the implication α → γ follows from β alone.

Here ‘follows from’ is given by the particular substructural logic, and is usually
denoted by ⇒. Thus, the above equivalence can be restated as:

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 3–4, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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α, β ⇒ γ is provable iff β ⇒ α → γ is provable,

where provability is taken with respect to a sequent calculus for the particular
substructural logic. If we replace the auxiliary symbol ‘comma’ by a new logical
connective ·, called fusion, we have:

α · β ⇒ γ is provable iff β ⇒ α → γ is provable.

Algebraically, this can be expressed as

a · b ≤ c iff b ≤ a → c

which is known as the law of residuation in residuated (ordered) structures.
Thus, this observation naturally leads us to the thesis that substructural logics

are exactly logics of residuated structures. This will explain why substructural
logics, especially when formulated in Gentzen-style sequent systems, encompass
most of the interesting classes of non-classical logics. For, implication, admittedly
the most important logical connective, can be understood as the residual of
fusion, a connective that behaves like a semigroup or groupoid operation. From a
mathematical point of view, it is easier to discuss the latter than the former, just
like developing a theory of multiplication of numbers is easier than developing a
theory of division.

This is a starting point of our algebraic approach to substructural logics. Due
to significant advances in the study of both residuated lattices and the abstract
algebraic logic in the recent years, the research field is developing rapidly. Recent
research reveals us that there are strong interplays between algebra and logic,
and even between algebraic methods and proof-theoretic ones. These facts will
provide us a deeper understanding of the subject and suggest us new directions
of research.

The source of the present abstract is the book [1], jointly written with Galatos,
Jipsen and Kowalski, where these topics are extensively discussed.
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Summary. This paper is about a short survey of some basic uncertainty measures in
systems analysis arising from coarse data, together with new modeling results on upper
semicontinuous random processes, viewed as random fuzzy sets. Specifically, we present
the most general mathematical framework for analyzing coarse data, such as random
fuzzy data, which arise often in information systems. Our approach is based upon the
theory of continuous lattices. This probabilistic analysis is also useful for investigating
upper semicontinuous random functions in stochastic optimization problems.

1 Introduction

Empirical data are necessary in almost all fields of science, especially in decision-
making where theoretical criteria need to be validated from observed data. A
typical situation is in mathematical finance where investment decisions are based
upon risk measures (e.g. Levy, 2006 [8]). Future returns X, Y on two different
prospects should be compared for selection. A partial order relation on random
variables is defined in the spirit of Von Neumann and Morgenstern’s expected
utility theory as X � Y (X is preferred to Y ) if and only if for all increasing
function u : R → R, Eu(X) ≥ Eu(Y ). A characterization of � turns out to be
F (·) ≤ G(·) where F , G are distribution functions of X, Y , respectively. This is a
theory for risk assessment which is based upon distribution functions of random
variables involved. But we never know these distributions! Thus, in order to make
decisions (i.e. choosing investment prospects) we need to use empirical data to
check whether this stochastic dominance order is valid. This is a hypothesis test-
ing problem. In other words, statistics is needed to support decision-making. But
statistical inference procedures depend heavily on which type of available data.
For example, if available data are only observed within bounds. Such type of
imprecise data is referred to as coarse data (i.e. data with low quality, e.g. Heit-
jan and Rubin, 1991 [7]), such as missing outcomes, censored data, partially
observed data, interval data on outcomes or covariates are available, rather than
point measurements, hidden Markov data in bioinformatics (e.g., Cappé et al.,
2005 [1]), indirect observed data (e.g., in auction theory, Paarsch and Hong,
2006 [14]).
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It is precisely the type of observed data which dictates inference procedures.
Thus, when random data are imprecise, such as only known to lie within bounds,
we face interval statistics where interval computations should be called upon, say,
to extend standard statistical procedures (e.g. estimation and testing) to the new
type of data. More generally, the theory of random sets, e.g., Matheron, 1975 [9];
Nguyen, 2006 [11], is necessary for inference with random set data. In intelligent
systems building, we encounter perception-based information (Zadeh, 2002 [17])
which is fuzzy in nature (see also e.g., Nguyen and Wu, 2006 [12]). For each type
of coarse data we need an appropriate mathematical modeling for the observed
process in order to carry out any inference procedures, such as model building
and forecasting.

In this paper, we focus on the case of coarse data which are both random and
fuzzy, as in coarsening schemes of human perception-based information gathering
processes. We provide a general and rigorous mathematical model for random
fuzzy sets, extending Matheron’s theory of random closed sets.

In analyzing coarse data, we come across various types on uncertainty, a survey
of basic aspects of modeling will be given first.

2 Some Uncertainty Measures Derived from Coarse Data

First, let’s look at a standard situation where coarse data are set-valued ob-
servations. While set-valued observations, i.e. outcomes of random experiments
or records of natural phenomena, have different interpretations, depending on
the goals of the analysis, such as tumor growth patterns in medical statistics,
shape analysis, the specific situation related to coarse data is this. Let X be a
random vector of interest. Either by performing a random experiment or observ-
ing X in a sample data X1, X2, . . . , Xn, to discover, say, the distribution of X ,
we are unable to observe or measure this sample with accuracy. Instead, what
we observe is a collection of sets S1, S2, . . . , Sn which contain the sample, i.e.
Xi ∈ Si, i = 1, 2, . . . , n. The statistical problem is the same, but instead of using
X1, X2, . . . , Xn, we only have at our disposal the coarse sample S1, S2, . . . , Sn.
This clearly is a generalization of multivariate statistical analysis. In order to
analyze the set-valued observations, we need to model the observation process.
Since probability theory provides us with a fairly general setting, namely ran-
dom elements in general measurable spaces of arbitrary nature, such as metric
spaces, we can simply view S1, S2, . . . , Sn as a random sample from a random
set S which contains X almost surely, i.e. X is an almost sure selector of S, or
the other way around, S is a coarsening of X . Random set models for coarse
data turn out to be useful in exhibiting various uncertainty measures in artificial
intelligence.

2.1 Belief Functions

Consider the case where S is a coarsening of X on a finite set U , to avoid
topological details. Let A ⊆ U be an event. A is said to occur if X(ω) ∈ A. But
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if we cannot observe X(ω), but only S(ω), then clearly we are even uncertain
about the occurrence of A. If S(ω) ⊆ A, then clearly, A occurs. So, from a
“pessimistic” viewpoint, we quantify our degrees of belief in the occurrence of
an event A by P (S ⊆ A) which is less than the actual probability that A occurs,
namely P (X ∈ A) , since X is an a.s. selector of S . This is in fact the starting
point for the now well-known Dempster-Shafer theory of evidence or of belief
functions (e.g. Shafer, 1976 [15]).

Let F : 2U → [0, 1], where 2U denotes the power set of U , be defined by
F (A) = P (S ⊆ A), which is the distribution function of the random set S, in
the sense that F determines the probability law of S. Indeed, the set-function
F satisfies the following basic properties:

(i) F (∅) = 0, F (U) = 1
(ii) For any n ≥ 1, and A1, A2, ..., An,

F (
n⋃

i=1

Ai) ≥
∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1F (

⋂

i∈I

Ai)

Clearly, (i) follows from the fact that S is a non-empty random set with values in
2U . As for (ii), this is a weakening of Poincare’s equality for probability measures.
Observe that since U is finite,

F (A) = P (S ⊆ A) =
∑

B⊆A

f(B) where we set f(B) = P (S = B)

Let J(B) = {i ∈ {1, 2, ..., n} : B ⊆ Ai}. Clearly, we have

{B : J(B) �= ∅} ⊆ {B : B ⊆ ∪n
i=1Ai}

Now

P ({B : J(B) �= ∅}) =
∑

B⊆U,J(B) �=∅

f(B)

=
∑

B⊆U,J(B) �=∅

f(B)[
∑

∅ �=I⊆J(B)

(−1)|I|+1]

=
∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1

∑

B⊆∩i∈IAi

f(B)

=
∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1F (∩i∈IAi)

To see that the axiomatic theory of belief functions is precisely the axiomati-
zation of distributions of random sets, exactly like the case of random variables,
it suffices to show the converse. Let F : 2U → [0, 1] such that

(i) F (∅) = 0, F (U) = 1
(ii) For any n ≥ 1, and A1, A2, ..., An,

F (∪n
i=1Ai) ≥

∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1F (∩i∈IAi)
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Then there exist a probability space (Ω, A, P ) and a non-empty random set
S : Ω → 2U such that F (A) = P (S ⊆ A).

Indeed, by Möbius inversion, we have

f(A) =
∑

B⊂A

(−1)|A\B|F (B)

which is a bona fide probability density function on 2U .

2.2 Possibility Measures

Again, let S be a coarsening of X on a finite set U . If S(ω)∩A �= ∅, then all we
can say is that “it is possible that A occurs”. A plausible way to quantify these
degrees of possibility is to take P (S(ω) ∩ A �= ∅).

First, this seems to be consistent with the common sense that possibilities
are larger than probabilities since possibilities tend to represent an “optimistic
attitude” as opposed to beliefs.

This is indeed the case since, as an a.s. selector, we clearly have {X ∈ A} ⊆
{S ∩ A �= ∅}, and hence P ({X ∈ A}) ≤ P ({S ∩ A �= ∅}).

Now observe that the set-function T (A) = P ({S ∩ A �= ∅}) is dual to the
belief function F via T (A) = 1 − F (Ac), the monotonicity of infinite order of F
above implies the alternating of infinite order of T , namely

T (
n⋂

i=1

Ai) ≤
∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1T (

⋃

i∈I

Ai)

which still characterizes the distribution of a random set. However, not all such T
can be used to model possibility measures, since possibility measures need to be
truth-functional. According to Zadeh [16], a subjective concept of “possibility
distributions” is primitive: π : U → [0, 1], just like a membership function of
a fuzzy concept. From π, possibilities of events could be derived. Now, in our
coarsening scheme, there exists a canonical random set which does just that!
This is completely analogous to the situation in survey sampling in applied
statistics! The canonical random set has its roots in an early work of Goodman [5]
concerning relations between fuzzy sets and random sets.

From T (A) = P ({S ∩ A �= ∅}), we see that when A = {u}, T ({u}) =
P (u ∈ S) = π(u), the covering function of the random set S, where π : U =
{u1, ..., uk} → [0, 1]. Given π, there exist many random sets S admitting π(·) as
their common covering function. Indeed, let Vi(ω) = S(ω)(ui), i = 1, 2, . . . , k,
where, again, for A ⊆ U , we write A(u) for the value of the indicator function
of the set A at u. Each Vi is a {0, 1}-valued random variable with

P (Vi = 1) = P (ui ∈ S) = π(ui)

The distribution of the random vector V = (V1, V2, . . . , Vk) is completely
determined by PS and vice versa. Indeed, for any x = (x1, x2, . . . , xk) ∈ {0, 1}k,
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we have P (V = x) = P (S = B), where B = {ui ∈ U : xi = 1}. The distribution
function of Vi is

Fi(y) =

⎧
⎨

⎩

0 if y < 0
1 − π(ui) if 0 ≤ y < 1
1 if y ≥ 1

Thus, given the marginals Fi, i = 1, 2, . . . , k, the joint distribution function
F of V is the form

F (y1, y2, . . . , yk) = C(F1(y1), F2(y2), . . . , Fk(yk))

where C is an k-copula, according to Sklar’s theorem (e.g., Nelsen, 1999 [10]).

For C(y1, y2, . . . , yk) =
k∏

i=1
yi , we obtain the well-known Poisson sampling

design (in sampling from a finite population) with density (of the random set S,
the probability sampling plan):

f(A) =
∏

j∈A

π(j)
∏

j∈Ac

(1 − π(j))

For C(y1, y2, . . . , yk) =
∧

yj, we get

f(A) =
∑

B⊆A

(−1)|A−B|[1 − max{π(j) : j ∈ Bc}]

which is the density of the following nested random set (canonical):
Let α : Ω → [0, 1] be a random variable, uniformly distributed. Define S(ω) =

{u ∈ U : π(u) ≥ α(ω)}. Then π(u) = P (u ∈ S) and moreover,

P (S ∩ B �= ∅) = P

(
ω : α(ω) ≤ max

u∈B
π(u)

)
= max

u∈B
π(u)

Thus, using this canonical random set (a coarsening scheme) we arrive at Zadeh’s
axioms for possibility measures.

3 Canonical Borel-σ Fields and Continuous Lattices

In standard statistics, we model observed data as random variables, vectors or
random functions by specifying canonical σ-fields on their range spaces. These
are measurable mappings, defined on an abstract probability space (Ω, A, P ),
with values in R, R

d, C[0, 1] (space of continuous functions defined on [0, 1]),
respectively. The canonical σ-field on R

d is taken to be the σ-field generated
by the ordinary topology of R

d, and that of C[0, 1] is the one generated by
the topology of the sup-norm. When observed data are discrete sets, closed
sets (of some topological space) or upper semicontinuous functions, it is natural
to inquire about canonical topologies on these spaces of sets, in some unified
manner, in order to consider associated Borel σ-fields to model rigorously these
random elements.
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So far, as far as we know, σ-fields on these spaces are defined in some ad-hoc
manner. Discrete random sets (e.g., on Z

2) are defined in Goutsias [6], random
closed sets are defined by using the hit-or-miss topology in Matheron [9], and
compact random fuzzy sets are defined in, e.g., Gil et al. [4]. Now observe that
these new types of observed data have natural order structures, and as such,
we should look for topologies generated by such natural order structures. It
turns out that these order structures are all of a very special types if we look
at them in the right “angle”! Specifically, they form continuous lattices, and as
such, canonical topologies on them should provide desirable σ-fields for modeling
these observed data as random elements appropriately.

For ease of reading, let us recall the essentials of continuous lattices. For fur-
ther details on continuous lattices, we refer the reader to Gierz et al. [2, 3].
It is known that there is a canonical Hausdorff and compact topology (called
the Lawson topology) on every continuous lattice, and the space of closed sets
of a Hausdorff and locally compact space is a continuous lattice. We give here
essential background details for LCHS (locally compact, Hausdorff and second
countable) space X establishing that the space F is a compact, Hausdorff and
second countable space whose Lawson topology coincides with the hit-or-miss
topology. As we will see in the next section, the space USC(X) of upper semi-
continuous functions is also a continuous lattice, and hence its Lawson topology
is a natural topology to consider.

Recall that if (L, ≤) is a poset, then x is said to be way below y, denoted
as x � y, iff for all directed sets D ⊆ L for which supD exists, the relation
y ≤ sup D always implies ∃d ∈ D such that x ≤ d. Note that in a complete
lattice, x � y iff for any A ⊆ L, y ≤ sup A implies the existence of a finite
subset B ⊆ A such that x ≤ supB.

A lattice (L, ≤) is called a continuous lattice if L is complete and satisfies the
axiom of approximation:

x = sup ⇓ x, where ⇓ x = {u ∈ L : u � x} for all x ∈ L.

On the continuous lattice L, the Lawson topology has as subbase the sets of
the form

⇑ x = {y ∈ L : x � y}
or

L\ ↑ x = {y ∈ L : x � y}, x ∈ L

The sets ⇑ x form a base for the Scott topology.

4 Discrete Random Sets

In image processing using random set approach instead of random fields (Gout-
sias, 1997 [6]), it is necessary to provide a rigorous foundation for discrete random
sets, e.g., random sets on Z

2. Now closed sets of discrete spaces, with their dis-
crete topologies, are power sets which turn out to be continuous lattices under
set inclusion. As such, there exist canonical σ-fields for defining discrete random
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sets. The σ-field proposed in Goutsias [6] for the discrete space N, for exam-
ple, is precisely the canonical σ-field generated by the Lawson topology on the
continuous lattice (2N, ⊆).

Indeed, consider the LCHS space (N, 2N) with the discrete topology where 2N

is the space of closed sets of N. We see that (2N, ⊆) is a continuous lattice. This
is so because any B ⊆ N can be written as B = ∪{A ⊆ N: A � B} which is
obvious since for any b ∈ B, {b} � B and B = ∪b∈B{b}. As such, we look at its
Lawson topology. Now observe that if A ⊆ N is an infinite subset, then

⇑ A = {B ⊆ N : A � B} = ∅

Next, if A is finite, then

⇑ A = {B ⊆ N : A ⊆ B} = ∩x∈A{B : {x} ⊆ B}

Thus, the sets of the forms {B ⊆ N : {x} ⊆ B}, x ∈ N, form a base for the
Scott topology. The other type of sets in the subbase of the Lawson topology is
{B : A � B}, A ⊆ N. The σ-field λ(2N) generated by the Lawson topology is
also generated by {B ⊆ N : A ⊆ B}, A ⊆ N, since σ-fields are closed under set
complement. Also, if A ⊆ N, we have

{B ⊆ N : A ⊆ B} = ∩x∈A{B : {x} ⊆ B}

and by closure under countable intersections, λ(2N) is seen to be generated by
{B ⊆ N : {x} ⊆ B} = {B ⊆ N : x ∈ B}, x ∈ N. Thus, λ(2N) is generated by
{B ⊆ N : F ∩ B �= ∅} (= ∪x∈F {B ⊆ N : x ∈ B}) for all finite F , i.e. λ(2N)
coincides with Goutsias’s σ-field for discrete random sets.

5 The Space of Closed Sets as a Continuous Lattice

In viewing the space F(X) of closed sets of a LCHS space X as a continuous
lattice with respect to the partial order ⊇, we show that the hit-or-miss topology
coincides with the Lawson topology on F(X). Moreover, since X is second count-
able, F(X) is a compact, Hausdorff and second countable topological space, and
hence metrizable.

First, note that (F(X), ⊆) is a complete lattice but not continuous in general,
we have

Proposition 1.
∧

{Fi : i ∈ I} =
⋂

{Fi : i ∈ I}, and
∨

{Fi : i ∈ I} = the closure
of

⋃
{Fi : i ∈ I}.

To see that, take X = R, we notice that if A � R, then for any subset B of
A, i.e B ⊆ A, we also have B � R (just use the equivalent condition of the
way-below relation). Then any singleton closed set, e.g. {0}, is not way-below
R. Indeed, ∨

n∈N

{(−∞, −1/n] ∪ [1/n, ∞)} = R



12 H.T. Nguyen

but we can not find any finite subset A of {(−∞, −1/n] ∪ [1/n, ∞)}n∈N such
that {0} ⊆

∨
A. Therefore, the only closed set that is way-below R is the empty

set. Then
sup{A ∈ F(R) : A � R} = sup{∅} = ∅ �= R

However, for locally compact X , (F(X), ⊇) is a continuous lattice. Indeed, for
any F ∈ F(X), it is enough to show that F ≤ sup{A ∈ F(X) : A � F}, i.e. F ⊇⋂

{A ∈ F(X) : A � F} or F c ⊆
⋃

{Ac ∈ F(X) : A � F}. For any x ∈ F c :
open, since X is locally compact, there exists a compact set Qx ⊆ F c such that
its interior Wx containing x. Let A = W c

x ∈ F(X), then Ac = Wx ⊆ Qx ⊆ F c.
It follows that A � F , and therefore, x ∈ ∪{Ac ∈ F(X) : A � F}. For more
details, see Nguyen and Tran [13].

The following result shows that the hit-or-miss topology coincides with the
Lawson topology on (F(X), ⊇).

Proposition 2. The Lawson topology of F(X)op, denoted by τF , has a subbase
consisting of sets of the following form

{F ∈ F(X) : F ∩ K = ∅} and {F ∈ F(X) : F ∩ U �= ∅}

where K ∈ K and U ∈ G.

Proof. We only need to verify that for any A ∈ F(X),

F(X)\ ↑ A = {F ∈ F(X) : F ∩ Ac �= ∅}

and then we just let U = Ac.
Indeed, since ↑ A = {F ∈ F(X) : A ≤ F} = {F ∈ F(X) : F ⊆ A}, we have

F(X)\ ↑ A = {F ∈ F(X) : F � A} = {F ∈ F(X) : F ∩ Ac �= ∅}

In fact, {F ∈ F(X) : F ∩ K = ∅}K∈K is closed under finite intersection, so the
Lawson topology of F(X)op has as a base the sets of the form

{F ∈ F(X) : F ∩ K = ∅ and F ∩ Ui �= ∅, i = 1, . . . , n}

where K ∈ K and Ui ∈ G.
Moreover, for a LCHS space (X, G), the space F(X)op is compact, Hausdorff

and second countable (and hence metrizable).

6 The Space of USC Functions as a Continuous Lattice

As emphasized by Zadeh [17], most of the information used by humans in control
and decisions are based upon perception. Now perception-based information are
imprecise and uncertain, and as such, can be modeled by probability theory and
fuzzy sets theory.

The process underlying human perception-based gathering can be modeled as
random fuzzy sets of a particular type, namely random fuzzy sets taking values
in some fuzzy partition of the measurement space.
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Again, X is LCHS and USC(X) is the space of all usc functions from X to
[0, 1], i.e. fuzzy subsets of X generalizing closed sets of X . The Lawson topology
on it will provide a canonical σ-field for defining random fuzzy sets as random
elements extending Matheron’s theory of random closed sets.

Similarly to the special case of closed sets, USC(X) is a complete lattice but
not continuous with the point-wise order ≤, i.e. f ≤ g iff f(x) ≤ g(x), ∀x ∈ X ,
and ∧

j∈J

fj = inf
j∈J

fj , where fj ∈ USC(X), j ∈ J

Let f = inf
j∈J

fj , to show USC(X) is a complete lattice it is enough to show

that f ∈ USC(X), i.e. for any r ∈ [0, 1], {x : f(x) < r} is open.
Indeed,

{x : f(x) < r} =
⋃

j∈J

{x : fj(x) < r}

and since each {x : fj(x) < r} is open, {x : f(x) < r} is also open.

Note 1. For any f ∈ USC(X),

f = inf
r,K (compact)

{gr,K : f(y) < r, ∀y ∈ K}

where gr,K(x) = r if x ∈
◦
K and = 1 otherwise.

The proof of the following results can be found in Nguyen and Tran [13].

Theorem 1. L = (USC(X), ≤op) is a continuous lattice, where f ≤op g iff
f(x) ≥ g(x), ∀x ∈ X.

Remark 1. For any f, g ∈ L, then g � f implies ∀x ∈ X, ∃r, K such that x ∈
◦
K

and f(y) < r ≤ g(y), ∀y ∈ K.

Theorem 2. For any r ∈ (0, 1] and K(compact) ⊆ X, we have

{f ∈ L : f(y) < r, ∀y ∈ K} =
⋃

◦
Ki⊇K

{f ∈ L : gr,Ki � f}

where gr,Ki is defined as above.

Theorem 3. The Scott topology τ(L) has as a subbase the sets {f : f(y) <
r, ∀y ∈ K}, where r ∈ (0, 1] and K(compact) ⊆ X. In other words, the Scott
topology τ(L) has as a base the sets

n⋂

i=1

{f : f(y) < ri, ∀y ∈ Ki}

where ri ∈ (0, 1], Ki(compact) ⊆ X, and n ∈ N.
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Corollary 1. The Lawson topology Λ(L) has as a subbase the sets {f : f(y) <
r, ∀y ∈ K}, where r ∈ (0, 1] and K(compact) ⊆ X together with the sets {f :
∃x ∈ X such that g(x) < f(x)}, where g ∈ L.

Remark 2. It is known that (L, σ(L)) is second countable iff (L, Λ(L)) is second
countable (Gierz et al. [3]).

Thus, to show that (L, Λ(L)) is second countable, it suffices to show that
(L, σ(L)) has a countable base. See Nguyen and Tran [13] for details.

Remark 3. In view of the above results, by a random fuzzy (closed) set on a
LCSHS space X , we mean a random element with values in the measurable space
(USC(X), σ(Λ)), where σ(Λ) is the Borel σ-field associated with the Lawson
topology of the continuous lattice USC(X) (with reverse order ≥). With the
Lawson topology, USC(X) is a compact, Hausdorff and second countable (hence
metrizable). This falls neatly in the framework of separable metric spaces in
probability theory.

7 Concluding Remarks

Empirical science is relied upon available data. Data exhibit error in a variety of
forms. Measurement error in covariates is a well-known phenomenon in classical
statistics. Research efforts are directed to providing robust statistical procedures
in the case of low quality of data such as this. In complex systems, coarse data
present several new aspects of “error” which need to be modeled for information
processing. This paper focused on modeling of uncertainties in observed coarse
data as well as the data themselves. Although data are typically modeled as
random outcomes of phenomena, different types of uncertainty arise of which
some are related to probabilistic uncertainty (belief function, possibility mea-
sures) , and others are of a different nature (e.g. fuzziness). Specifying various
uncertainty measures involved and modeling of complex observed data form a
firm step toward developing robust inference procedures for applications.
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Summary. In many areas of science and engineering, it is desirable to estimate statis-
tical characteristics (mean, variance, covariance, etc.) under interval uncertainty. For
example, we may want to use the measured values x(t) of a pollution level in a lake at
different moments of time to estimate the average pollution level; however, we do not
know the exact values x(t) – e.g., if one of the measurement results is 0, this simply
means that the actual (unknown) value of x(t) can be anywhere between 0 and the
detection limit DL. We must therefore modify the existing statistical algorithms to
process such interval data.

Such a modification is also necessary to process data from statistical databases,
where, in order to maintain privacy, we only keep interval ranges instead of the actual
numeric data (e.g., a salary range instead of the actual salary).

Most resulting computational problems are NP-hard – which means, crudely speak-
ing, that in general, no computationally efficient algorithm can solve all particular cases
of the corresponding problem. In this paper, we overview practical situations in which
computationally efficient algorithms exist: e.g., situations when measurements are very
accurate, or when all the measurements are done with one (or few) instruments.

1 Computing Statistics Is Important

In many engineering applications, we are interested in computing statistics. For
example, in environmental analysis, we observe a pollution level x(t) in a lake at
different moments of time t, and we would like to estimate standard statistical
characteristics such as mean, variance, autocorrelation, correlation with other
measurements.

For each of these characteristics C, there is an expression C(x1, . . . , xn) that
enables us to provide an estimate for C based on the observed values x1, . . . , xn.
For example:

• a reasonable statistic for estimating the mean value of a probability distri-

bution is the population average E(x1, . . . , xn) =
1
n

· (x1 + . . . + xn);
• a reasonable statistic for estimating the variance V is the population variance

V (x1, . . . , xn) =
1
n

·
n∑

i=1

(xi − E)2.

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 19–31, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Comment. The population variance is often computed by using an alternative

formula V = M − E2, where M =
1
n

·
n∑

i=1
x2

i is the population second moment.

Comment. In many practical situations, we are interested in an unbiased esti-

mate of the population variance Vu(x1, . . . , xn) =
1

n − 1
·

n∑

i=1

(xi − E)2. In this

dissertation, we will describe how to estimate V under interval uncertainty; since
Vu =

n

n − 1
· V , we can easily transform estimates for V into estimates for Vu.

2 Interval Uncertainty

In environmental measurements, we often only measure the values with interval
uncertainty. For example, if we did not detect any pollution, the pollution value v
can be anywhere between 0 and the sensor’s detection limit DL. In other words,
the only information that we have about v is that v belongs to the interval
[0, DL]; we have no information about the probability of different values from
this interval.

Another example: to study the effect of a pollutant on the fish, we check on
the fish daily; if a fish was alive on Day 5 but dead on Day 6, then the only
information about the lifetime of this fish is that it is somewhere within the
interval [5, 6]; we have no information about the distribution of different values
in this interval.

In non-destructive testing, we look for outliers as indications of possible faults.
To detect an outlier, we must know the mean and standard deviation of the
normal values – and these values can often only be measured with interval un-
certainty; see, e.g., [38]. In other words, often, we know the result x̃ of measuring
the desired characteristic x, and we know the upper bound Δ on the absolute
value |Δx| of the measurement error Δx

def= x̃ −x (this upper bound is provided
by the manufacturer of the measuring instrument), but we have no information
about the probability of different values Δx ∈ [−Δ, Δ]. In such situations, after
the measurement, the only information that we have about the true value x of
the measured quantity is that this value belongs to interval [x̃ − Δ, x̃ + Δ].

In geophysics, outliers should be identified as possible locations of minerals;
the importance of interval uncertainty for such applications was emphasized in
[34, 35]. Detecting outliers is also important in bioinformatics [41].

In bioinformatics and bioengineering applications, we must solve systems of
linear equations in which coefficients come from experts and are only known
with interval uncertainty; see, e.g., [48].

In biomedical systems, statistical analysis of the data often leads to improve-
ments in medical recommendations; however, to maintain privacy, we do not
want to use the exact values of the patient’s parameters. Instead, for each pa-
rameter, we select fixed values, and for each patient, we only keep the corre-
sponding range. For example, instead of keeping the exact age, we only record
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whether the age is between 0 and 10, 10 and 20, 20 and 30, etc. We must then
perform statistical analysis based on such interval data; see, e.g., [23].

3 Estimating Statistics under Interval Uncertainty: A
Problem

In all such cases, instead of the true values x1, . . . , xn, we only know the inter-
vals x1 = [x1, x1], . . . ,xn = [xn, xn] that contain the (unknown) true values of
the measured quantities. For different values xi ∈ xi, we get, in general, dif-
ferent values of the corresponding statistical characteristic C(x1, . . . , xn). Since
all values xi ∈ xi are possible, we conclude that all the values C(x1, . . . , xn)
corresponding to xi ∈ xi are possible estimates for the corresponding statistical
characteristic. Therefore, for the interval data x1, . . . ,xn, a reasonable estimate
for the corresponding statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn}.

We must therefore modify the existing statistical algorithms so that they com-
pute, or bound these ranges. This is the problem that we will be solving in this
dissertation.

This problem is a part of a general problem. The above range estimation
problem is a specific problem related to a combination of interval and proba-
bilistic uncertainty. Such problems – and their potential applications – have been
described, in a general context, in the monographs [30, 42]; for further develop-
ments, see, e.g., [4, 5, 6, 7, 16, 19, 32, 33, 39, 40, 43] and references therein.

4 Mean

Let us start our discussion with the simplest possible characteristic: the mean.
The arithmetic average E is a monotonically increasing function of each of its
n variables x1, . . . , xn, so its smallest possible value E is attained when each
value xi is the smallest possible (xi = xi) and its largest possible value is
attained when xi = xi for all i. In other words, the range E of E is equal

to [E(x1, . . . , xn), E(x1, . . . , xn)]. In other words, E =
1
n

· (x1 + . . . + xn) and

E =
1
n

· (x1 + . . . + xn).

5 Variance: Computing the Exact Range Is Difficult

Another widely used statistic is the variance. In contrast to the mean, the de-
pendence of the variance V on xi is not monotonic, so the above simple idea does
not work. Rather surprisingly, it turns out that the problem of computing the
exact range for the variance over interval data is, in general, NP-hard [17] which
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means, crudely speaking, that the worst-case computation time grows exponen-
tially with n. Specifically, computing the upper endpoint V of the range [V , V ]
is NP-hard. Moreover, if we want to compute the variance range or V with a
given accuracy ε, the problem is still NP-hard. (For a more detailed description
of NP-hardness in relation to interval uncertainty, see, e.g., [22].)

6 Linearization

From the practical viewpoint, often, we may not need the exact range, we can
often use approximate linearization techniques. For example, when the uncer-
tainty comes from measurement errors Δxi, and these errors are small, we can
ignore terms that are quadratic (and of higher order) in Δxi and get rea-
sonable estimates for the corresponding statistical characteristics. In general,
in order to estimate the range of the statistic C(x1, . . . , xn) on the intervals
[x1, x1], . . . , [xn, xn], we expand the function C in Taylor series at the midpoint
x̃i

def= (xi + xi)/2 and keep only linear terms in this expansion. As a result,
we replace the original statistic with its linearized version Clin(x1, . . . , xn) =

C0 −
n∑

i=1
Ci · Δxi, where C0

def= C(x̃1, . . . , x̃n), Ci
def=

∂C

∂xi
(x̃1, . . . , x̃n), and

Δxi
def= x̃i − xi. For each i, when xi ∈ [xi, xi], the difference Δxi can take all

possible values from −Δi to Δi, where Δi
def= (xi −xi)/2. Thus, in the linear ap-

proximation, we can estimate the range of the characteristic C as [C0−Δ, C0+Δ],

where Δ
def=

n∑
i=1

|Ci| · Δi.

In particular, if we take, as the statistic, the population variance C = V ,

then Ci =
∂V

∂xi
=

2
n

· (x̃i − Ẽ), where Ẽ is the average of the midpoints x̃i, and

C0 =
1
n

·
n∑

i=1

(x̃i − Ẽ)2 is the variance of the midpoint values x̃1, . . . , x̃n. So, for

the variance, Δ =
2
n

·
n∑

i=1

|x̃i − Ẽ| · Δi.

It is worth mentioning that for the variance, the ignored quadratic term is

equal to
1
n

·
n∑

i=1

(Δxi)2 − (ΔE)2, where ΔE
def=

1
n

·
n∑

i=1

Δxi, and therefore, can

be bounded by 0 from below and by Δ(2) def=
1
n

·
n∑

i=1

Δ2
i from above. Thus, the

interval [V0 − Δ, V0 + Δ + Δ(2)] is a guaranteed enclosure for V.

7 Linearization Is Not Always Acceptable

In some cases, linearized estimates are not sufficient: the intervals may be wide so
that quadratic terms can no longer be ignored, and/or we may be in a situation
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where we want to guarantee that, e.g., the variance does not exceed a certain
required threshold. In such situations, we need to get the exact range – or at
least an enclosure for the exact range.

Since, even for as simple a characteristic as variance, the problem of computing
its exact range is NP-hard, we cannot have a feasible-time algorithm that always
computes the exact range of these characteristics. Therefore, we must look for
the reasonable classes of problems for which such algorithms are possible. Let
us analyze what such classes can be.

8 First Class: Narrow Intervals

The main idea behind linearization is that if the measurement errors Δxi are
small, we can safely ignore quadratic and higher order terms in Δxi and replace
the original difficult-to-analyze expression by its easier-to-analyze linear approx-
imation. The accuracy of this techniques is determined by the size of the first
term that we ignore, i.e., is of size O(Δx2

i ). Thus, the narrower the intervals (i.e.,
the smaller the values Δxi), the more accurate is the result of this linearization.

In real life, we want to compute the range with a certain accuracy. So, when the
intervals are sufficiently accurate, the results of linearization estimation provide
the desired accuracy and thus, we have a feasible algorithm for solving our
problem. When the intervals become wider, we can no longer ignore the quadratic
terms and thus, the problem becomes more computationally complex. In other
words, when intervals are narrower, the problem of computing statistics under
interval uncertainty becomes easier. It is therefore reasonable to consider the case
of narrow intervals as the first case in which we can expect feasible algorithms
for computing statistics of interval data.

How can we describe “narrowness” formally? The very fact that we are per-
forming the statistical analysis means that we assume that the actual values
x1, . . . , xn come from a probability distribution, and we want to find the statis-
tical characteristics of this probability distribution. Usually, this distribution is
continuous: normal, uniform, etc. Formally, a continuous distribution is a one
for which a finite probability density ρ(x) exists for every x. In this case, for
every the real number a, the probability p =

∫ a+δ

a−δ
ρ(x) dx to have a random

value within an interval [a − δ, a + δ] is approximately equal to ρ(a) · 2δ and
thus, tends to 0 as δ → 0. This means that for every value a, the probability
to have a random value exactly equal to a is 0. In particular, this means that
with probability 1, all the values x1, . . . , xn randomly selected from the original
distribution are different.

The data intervals x1, . . . ,xn contain these different values x1, . . . , xn. When
the intervals xi surrounding the corresponding points xi are narrow, these in-
tervals do not intersect. When their widths becomes larger than the distance
between the original values, the intervals start intersecting.

Thus, the ideal case of “narrow intervals” can be described as the case when
no two intervals xi intersect.
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9 Second Class: Slightly Wider Intervals

Narrow intervals can be described as intervals which do not intersect at all.
Namely, we have a set of (unknown) actual values x1 < x2 < . . . < xn, and
we have intervals around each value which are so narrow that the neighboring
intervals xi and xi+1 do not intersect.

As the widths of the intervals increase, they start intersecting. At first, only
the neighboring intervals xi and xi+1 intersect, but intervals xi and xi+2 still
do not intersect. As the widths increase further, intervals xi and xi+2 start
intersecting, etc. When the intervals become very wide, all n intervals intersect.

We can therefore gauge the degree of narrowness by the number of intervals
which have a common point.

Specifically, we define the case of slightly wider intervals as the situation when
for some integer K, no set of K intervals has a common intersection. The case
of narrow intervals correspond to K = 2, the next case is K = 3, etc. – all the
way to the general case K = n.

As we have mentioned, the narrower the intervals, the easier the corresponding
computational problem. Since the parameter K is a measure of this narrowness,
it is therefore reasonable to expect that feasible algorithms exist in this case –
at least for values of K which are not too large.

10 Third Class: Single Measuring Instrument

We have already mentioned that one of the most widely used engineering tech-
niques for dealing with measurement uncertainty is linearlization. To be able
to easily compute the range C of a statistic C by using linearization, we must
make sure not only that intervals are relatively narrow, but also that they are
approximately of the same size: otherwise, if, say, Δx2

i is of the same order as
Δxj , we cannot meaningfully ignore Δx2

i and retain Δxj . In other words, the
interval data set should not combine high-accurate measurement results (with
narrow intervals) and low-accurate results (with wide intervals): all measure-
ments should have been done by a single measuring instrument (or at least by
several measuring instruments of the same type).

The traditional linearization techniques only provide us with an approximate
range. However, as we will show, for some classes of problems, these approximate
estimates can be refined into an efficient computation of the exact range. Be-
cause of this possibility, let us formulate, in precise terms, the class of problems
for which linearization is possible, i.e., the class of problem for which all the
measurements have been performed by a single measuring instrument.

How can we describe this class mathematically? A clear indication that we
have two measuring instruments (MI) of different quality is that one interval is
a proper subset of the other one: [xi, xi] ⊆ (xj , xj).

This restriction only refers to not absolutely measurement results, i.e., to
non-degenerate intervals. In addition to such interval values, we may also have
machine-represented floating point values produced by very accurate measure-
ments, so accurate that we can, for all practical purposes, consider these values



Fast Algorithms for Computing Statistics under Interval Uncertainty 25

exactly known. From this viewpoint, when we talk about measurements made
by a single measuring instrument, we may allow degenerate intervals (i.e., exact
numbers) as well.

As we will see, the absence of such pairs is a useful property that enables us
to compute interval statistics faster. We will also see that this absence happens
not only for measurements made by a single MI, but also in several other useful
practical cases. Since this property is useful, we will give it a name.

We say that a collection of intervals satisfies a subset property if [xi, xi] �⊆
(xj , xj) for all i and j for which the intervals xi and xj are non-degenerate.

11 Fourth Class: Several MI

After the single MI case, the natural next case is when we have several (m) MI,
i.e., when our intervals are divided into several subgroups each of which has the
above-described subset property.

We have already mentioned that the case of a single MI is the easiest; the
more MI we involve, the more complex the resulting problem – all the way to
the general case m = n, when each measurement is performed by a different MI.

Since the parameter m is a measure of complexity, it is therefore reasonable
to expect that feasible algorithms exist for the case of a fixed number m – at
least for the values of m which are not too large.

12 Fifth Class: Privacy Case

In the previous text, we mainly emphasized that measurement uncertainty natu-
rally leads to intervals. It is worth mentioning, however, that interval uncertainty
may also come from other sources: e.g., from the desire to protect privacy in sta-
tistical databases. Indeed, often, we collect large amounts of data about persons
– e.g., during census, or during medical experiments. Statistical analysis of this
data enables us to find useful correlations between, e.g., age and effects of a
certain drug, or between a geographic location and income level. Because of this
usefulness, it is desirable to give researchers an ability to perform a statistical
analysis of this data. However, if we simply researchers to receive answers to ar-
bitrary queries and publish the results of their analysis, then these results may
reveal the information from the databases which is private and not supposed to
be disclosed.

One way to protect privacy is not to keep the exact actual values of the
privacy-related quantities such as salary or age in the database. Instead, we fix
a finite number of thresholds, e.g., 0, 10, 20, 30 years, and for each person, we
only record the corresponding age range: from 0 to 10, or from 10 to 20, or from
20 to 30, etc. Since the actual values are not stored in the database anymore, no
queries can disclose these values.

So, this idea solves the privacy problem, but it opens up another problem: how
can perform statistical processing on this privacy-related interval data? Suppose
that we are interested in the values of a statistical characteristic C(x1, . . . , xn).
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If we knew the actual values x1, . . . , xn, then we could easily compute the value
of this characteristic. However, in case of privacy-related interval uncertainty,
all we know is intervals xi = [xi, xi] of possible values of xi. Different values
xi ∈ xi lead, in general, to different values of C(x1, . . . , xn). So, a reasonable
idea is to return the range of possible values of the characteristic C(x1, . . . , xn)
when xi ∈ xi.

From the algorithmic viewpoint, we get the same problem as with measure-
ment-related interval uncertainty: find the range of the given characteristic
C(x1, . . . , xn) on given intervals x1, . . . ,xn. The difference between this case
and the two previous cases is that, in the first two cases, we do not know the
exact values, while in this case, in principle, it is possible to get the exact value,
but we do not use the exact values, because we want to protect privacy.

From the mathematical viewpoint, privacy-related intervals have the following
property: they either coincide (if the value corresponding to the two patients
belongs to the same range) or are different, in which case they intersect in at most
point. Similarly to the above situation, we also allow exact values in addition
to ranges; these values correspond, e.g., to the exact records made in the past,
records that are already in the public domain.

We will call interval data with this property – that every two non-degenerate
intervals either coincide or intersect in at most one point – privacy case.

Comment. For the privacy case, the subset property is satisfied, so algorithms
that work for the subset property case work for the privacy case as well.

Comment. Sometimes, in the privacy-motivated situation, we must process in-
terval data in which intervals come from several different “granulation” schemes.
For example, to find the average salary in North America, we may combine US
interval records in which the salary is from 0 to 10,000 US dollars, from 10,000 to
20,000, etc., with the Canadian interval records in which the ranges are between
0 to 10,000 Canadian dollars, 10,000 to 20,000 Canadian dollars, etc. When we
transform these records to a single unit, we get two different families of intervals,
each of which satisfies the subset property. Thus, to handle such situations, we
can use algorithms developed for the several MI case.

13 Sixth Class: Non-detects

An important practical case is the case of non-detects. Namely, many sensors
are reasonably accurate, but they have a detection limit DL – so they cannot
detect any value below DL but they detect values of DL and higher with a very
good accuracy.

In this case, if a sensor returns a value x̃ ≥ DL, then this value is reasonably
accurate, so we can consider it exact (i.e., a degenerate interval [x̃, x̃]). However,
if the sensor does not return any signal at all, i.e., the measurement result x̃ = 0,
then the only thing we can conclude about the actual value of the quantity is
that this value is below the detection limit, i.e., that it lies in the interval [0, DL].
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In this case, every interval is either an exact value or a non-detect, i.e., an
interval [0, DLi] for some real number DLi (with possibly different detection
limits for different sensors). Under this assumption, the resulting non-degenerate
intervals also satisfy the subset property. Thus, algorithms that work for the
subset property case work for this “non-detects” case as well.

Also, an algorithm that works for the general privacy case also works for the
non-detects case when all sensors have the same detection limit DL.

14 Results

The main results are summarized in the following table:

Table 1. Computational complexity of statistical analysis under interval uncertainty:
an overview

Case E V L, U S

Narrow intervals O(n) O(n) O(n · log(n)) O(n2)
Slightly wider

narrow intervals O(n) O(n · log(n)) O(n · log(n)) ?
Single MI O(n) O(n) O(n · log(n)) O(n2)

Several (m) MI O(n) O(nm) O(nm) O(n2m)
New case O(n) O(nm) ? ?

Privacy case O(n) O(n) O(n · log(n)) O(n2)
Non-detects O(n) O(n) O(n · log(n)) O(n2)

General O(n) NP-hard NP-hard ?

Here, E is a population mean, V is a population variance, S
def=

1
n

·
n∑

i=1

(xi−E)3 is

the population skewness, and L
def= E−k0 ·σ and U

def= E+k0 ·σ are endpoints of
the confidence interval, where a parameter k0 is usually taken as k0 = 2, k0 = 3,
or k0 = 6.

Comment. For descriptions of the algorithms, and for proofs of the algorithm
correctness, see [18, 46] and references therein; see also [1, 3, 12, 13, 14, 20, 21,
23, 24, 25, 26, 27, 28, 29, 31, 44, 45, 47].

Applications. There are several application areas in which it is possible to take
into account interval uncertainty in statistical data processing:

• the seismic inverse problem in geophysics [2],
• the problem of estimating and decreasing the clock cycle in computer chips

[36, 37],
• the problem of separating the core from the fragments in radar data process-

ing [15], and
• the problem of inverse half-toning in image processing [11].
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15 Conclusion

In many areas of science and engineering, it is desirable to estimate statistical
characteristics (mean, variance, covariance, etc.) under interval uncertainty. Such
a modification is necessary, e.g., to process data from statistical databases, where,
in order to maintain privacy, we only keep interval ranges instead of the actual
numeric data (e.g., a salary range instead of the actual salary).

Most resulting computational problems are NP-hard – which means, crudely
speaking, that in general, no computationally efficient algorithm can solve all
particular cases of the corresponding problem.

In this paper, we overview practical situations in which computationally effi-
cient algorithms exist: e.g., situations when measurements are very accurate, or
when all the measurements are done with one (or few) instruments.
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Summary. In many practical situations, we are not satisfied with the accuracy of
the existing measurements. There are two possible ways to improve the measurement
accuracy:

• first, instead of a single measurement, we can make repeated measurements; the
additional information coming from these additional measurements can improve
the accuracy of the result of this series of measurements;

• second, we can replace the current measuring instrument with a more accurate one;
correspondingly, we can use a more accurate (and more expensive) measurement
procedure provided by a measuring lab – e.g., a procedure that includes the use of
a higher quality reagent.

In general, we can combine these two ways, and make repeated measurements with a
more accurate measuring instrument. What is the appropriate trade-off between sample
size and accuracy? This is the general problem that we address in this paper.

1 General Formulation of the Problem

We often need more accurate measurement procedures. Measurements
are never 100% accurate, there is always a measurement inaccuracy.

Manufacturers of a measuring instrument usually provide the information
about the accuracy of the corresponding measurements. In some practical situ-
ations, however, we want to know the value of the measured quantity with the
accuracy which is higher than the guaranteed accuracy of a single measurement.

Comment. Measurements are provided either by a measuring instrument or,
in situations like measuring level of pollutants in a given water sample, by a
measuring lab. Most problems related to measurement accuracy are the same,
whether we have an automatic device (measuring instrument) or operator-
supervised procedure (measuring lab). In view of this similarity, in the following
text, we will consider the term “measuring instrument” in the general sense, so
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that the measuring lab is viewed as a particular case of such (general) measuring
instrument.

Two ways to improve the measurement accuracy: increasing sample
size and improving accuracy. There are two possible ways to improve the
measurement accuracy:

• first, instead of a single measurement, we can make repeated measurements;
the additional information coming from these additional measurements can
improve the accuracy of the result of this series of measurements;

• second, we can replace the current measuring instrument with a more accu-
rate one; correspondingly, we can use a more accurate (and more expensive)
measurement procedure provided by a measuring lab – e.g., the procedure
that includes the use of a higher quality reagent.

In general, we can combine these two ways, and make repeated measurements
with a more accurate measuring instrument.

Problem: finding the best trade-off between sample size and accuracy.
What guidance shall we give to an engineer in this situation? Shall she make
repeated measurements with the original instrument? shall she instead purchase
a more accurate measuring instrument and make repeated measurements with
this new instrument? How more accurate? how many measurement should we
perform? In other words, what is the appropriate trade-off between sample size
and accuracy?

This is the general problem that we address in this paper.

2 In Different Practical Situations, This General Problem
Can Take Different Forms

There are two different situations which, crudely speaking, correspond to engi-
neering and to science.

In most practical situations – in engineering, ecology, etc. – we know what
accuracy we want to achieve. In engineering, this accuracy comes, e.g., from the
tolerance with which we need to guarantee some parameters of the manufactured
object. To make sure that these parameters fit into the tolerance intervals, we
must measure them with the accuracy that is as good as the tolerance. For
example, if we want to guarantee, e.g., the resistance of a certain wire does not
deviate from its nominal value by more than 3%, then we must measure this
resistance with an accuracy of at least 3% (or better).

In ecological measurements, we want to make sure that the measured quantity
does not exceed the required limit. For example, if we want to guarantee that
the concentration of a pollutant does not exceed 0.1 units, then we must be able
to measure this concentration with an accuracy somewhat higher than 0.1. In
such situations, our objective is to minimize the cost of achieving this accuracy.
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In science, we often face a different objective:

• we have a certain amount of funding allocated for measuring the value of a
certain quantity;

• within the given funding limits, we would like to determine the value of the
measured quantity as accurately as possible.

In other words:

• In engineering situations, we have a fixed accuracy, and we want to minimize
the measurement cost.

• In scientific situations, we have a fixed cost, and we want to maximally im-
prove the measurement accuracy.

3 A Realistic Formulation of the Trade-Off Problem

Traditional engineering approach. The traditional engineering approach to
solving the above problem is based on the following assumptions – often made
when processing uncertainty in engineering:

• that all the measurement errors are normally (Gaussian) distributed known
standard deviations σ;

• that the measurement errors corresponding to different measurement are in-
dependent random variables; and

• that the mean value Δs of the measurement error is 0.

Under these assumptions, if we repeat a measurement n times and compute the
arithmetic average of n results, then this average approximates the actual value
with a standard deviation

σ√
n

. So, under the above assumptions, by selecting

appropriate large number of iterations n, we can get make measurement errors
as small as we want.

This approach – and more general statistical approach – has been actively used
in many applications to science in engineering problems; see, e.g., [1, 2, 6, 8].

Limitations of the traditional approach. In practice, the distributions are
often Gaussian and independent; however, the mean (= systematic error) Δs

is not necessarily 0. Let us show this if we do not take systematic error into
account, we will underestimate the resulting measurement inaccuracy.

Indeed, suppose that we have a measuring instrument about which we know
that its measurement error cannot exceed 0.1: |Δx| ≤ 0.1. This means, e.g., that
if, as a result of the measurement, we got the value x̃ = 1.0, then the actual
(unknown) value x (= x̃ − Δx) of the measured quantity can take any value
from the interval [1.0 − 0.1, 1.0 + 0.1] = [0.9, 1.1].

If the mean of the measurement error (i.e., the systematic error component)
is 0, then we can repeat the measurement many times and, as a result, get more
and more accurate estimates of x. However, if – as is often the case – we do
not have any information about the systematic error, it is quite possible that
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the systematic error is actually equal to 0.07 (and the random error is negligible
in comparison with this systematic error). In this case, the measured value 1.0
means that the actual value of the measured quantity was x = 1.0−0.07 = 0.93.
In this case, we can repeat the measurement many times, and every time, the
measurement result will be equal to ≈ x + Δs = 0.93 + 0.01 = 1.0. The average
of these values will still be approximately equal to 1.0 – so, no matter how many
times we repeat the measurement, we will get the exact same measurement
error 0.07.

In other words, when we are looking for a trade-off between sample size
and accuracy, the traditional engineering assumptions can result in misleading
conclusions.

A more realistic description of measurement errors. We do not know the
actual value of the systematic error Δs – if we knew this value, we could simply
re-calibrate the measuring instrument and thus eliminate this systematic error.

What we do know are the bounds on the systematic error. Specifically, in
measurement standards (see, e.g., [7]), we are usually provided with the upper
bound Δ on the systematic error – i.e., with a value Δ for which |Δs| ≤ Δ. In
other words, the only information that we have about the systematic error Δs

is that it belongs to the interval [−Δ, Δ].

Resulting formulas for the measurement accuracy. Under these assump-
tions, what is the guaranteed accuracy of a single measurement made by the
measuring instrument?

Although formally, a normally distributed random variable can take any value
from −∞ to +∞, in reality, the probability of value which are too far away from
the average is practically negligible. In practice, it is usually assumed that the
values which differ from the average a by more than k0 ·σ are impossible – where
the value k0 is determined by how confident we want to be:

• 95% confidence corresponds to k0 = 2,
• 99.9% corresponds to k0 = 3, and
• confidence 100% − 10−6% corresponds to k0 = 6.

Thus, with selected confidence, we know that the measurement error is be-
tween Δs−k0 ·σ and Δs+k0 ·σ. Since the systematic error Δs can take any value
from −Δ to +Δ, the smallest possible value of the overall error is −Δ − k0 · σ,
and the largest possible value of the overall error is Δ + k0 · σ.

Thus, for a measuring instrument with a standard deviation σ of the random
error component and a upper bound Δ on the systematic error component, the
overall error is bounded by the value Δ+k0 ·σ, where the value k0 is determined
by the desired confidence level.

Resulting formulas for the accuracy of a repeated measurement. When
we repeat the same measurement n times and take the average of n measurement
results, the systematic error remains the same, while the standard deviation of
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the random error decreases
√

n times. Thus, after n measurements, the overall
error is bounded by the value Δ + k0 · σ√

n
.

So, we arrive at the following formulation of the trade-off problem.

Trade-off problem for engineering. In the situation when we know the over-
all accuracy Δ0, and we want to minimize the cost of the resulting measurement,
the trade-off problem takes the following form:

Minimize n · F (Δ, σ) under the constraint Δ + k0 · σ√
n

≤ Δ0, (1)

where F (Δ, σ) is the cost of a single measurement performed by a measuring
instrument whose systematic error is bounded by Δ and whose random error
has a standard deviation σ.

Trade-off problem for science. In the situation when we are given the limit
F0 on the cost, and the problem is to achieve the highest possible accuracy within
this cost, we arrive at the following problem

Minimize Δ + k0 · σ√
n

under the constraint n · F (Δ, σ) ≤ F0. (2)

4 Solving the Trade-Off Problem in the General Case

Mathematical comment. The number of measurement n is a discrete variable.
In general, optimization with respect to discrete variables requires much more
computations than continuous optimization (see, e.g., [4]). Since our formulation
is approximate anyway, we will treat n as a real-valued variable – with the idea
that in a practical implementation, we should take, as the actual sample size,
the closest integer to the corresponding real number solution nopt.

Towards resulting formulas. For both constraint optimization problems, the
Lagrange multiplier method leads to the following unconstraint optimization
problem:

n · F (Δ, σ) + λ ·
(

Δ + k0 · σ√
n

− Δ0

)
→ min

Δ,σ,n
, (3)

where λ can be determined by one of the formulas

Δ + k0 · σ√
n

= Δ0, n · F (Δ, σ) = F0. (4)

Equating the derivatives of the objective function (with respect to the unknowns
Δ, σ, and n) to 0, we conclude that

n · ∂F

∂Δ
+ λ = 0; n · ∂F

∂σ
+ λ · k0√

n
= 0; F − 1

2
· λ · k0 · σ

n3/2 = 0. (5)
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Substituting the expression for λ from the first equation into the second one, we
conclude that

n = k2
0 · (∂F/∂Δ)2

(∂F/∂σ)2
. (6)

Substituting these expression into the other equations from (5) and into the
equations (4), we get the following non-linear equations with two unknowns Δ
and σ:

F +
1
2

· σ · ∂F

∂σ
= 0; (7)

Δ +
σ · (∂F/∂σ)

∂F/∂Δ
= Δ0; k2

0 · (∂F/∂Δ)2

(∂F/∂σ)2
· F = F0. (8)

So, we arrive at the following algorithm:

General formulas: results. For each of the optimization problems (1) and (2),
to find the optimal accuracy values Δ and σ and the optimal sample size n, we
do the following:

• First, we determine the optimal accuracy, i.e., the optimal values of Δ and σ,
by solving a system of two non-linear equations with two unknowns Δ and σ:
the equation (7) and one of the equations (8) (depending on what problem
we are solving).

• After that, we determine the optimal sample size n by using the formula (6).

For practical engineering problems, we need more explicit and easy-
to-use recommendations. The above formulas provide a general theoretical
solution to the trade-off problem, but to use them in practice, we need more
easy-to-use recommendations. In practice, however, we do not have the explicit
formula F (Δ, σ) that determines how the cost of the measurement depends on
its accuracy. Therefore, to make our recommendations more practically useful,
we must also provide some guidance on how to determine this dependence – and
then use the recommended dependence to simply the above recommendations.

5 How Does the Cost of a Measurement Depend on Its
Accuracy?

Two characteristics of uncertainty: Δ and σ. In our description, we use
two parameters to characterize the measurement’s accuracy: the upper bound Δ
on the systematic error component and the standard deviation σ of the random
error component.

It is difficult to describe how the cost of a measurement depends on
σ. The standard deviation σ is determined by the noise level, so decreasing σ
requires a serious re-design of the measuring instrument. For example, to get
a standard measuring instrument, one thing designers usually do is place the
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instrument in liquid helium so as to eliminate the thermal noise as much as
possible; another idea is to place the measuring instrument into a metal cage,
to eliminate the effect of the outside electromagnetic fields on the measuring
instrument’s electronics.

Once we have eliminated the obvious sources of noise, eliminating a new source
of noise is a creative problem, requiring a lot of ingenuity, and it is difficult to
estimate how the cost of such decrease depends on σ.

The inability to easily describe the dependence of cost on σ may not
be that crucial. The inability to easily handle the characteristic σ of the ran-
dom error component may not be so bad because, as we have mentioned, the
random error component is the one that can be drastically decreased by increas-
ing the sample size – in full accordance with the traditionally used simplifying
engineering assumptions about uncertainty.

As we have mentioned, in terms of decreasing the overall accuracy, it is
much more important to decrease the systematic error component, i.e., to de-
crease the value Δ. Let us therefore analyze how the cost of a measurement
depends on Δ.

How we can reduce Δ: reminder. As we have mentioned, we can decrease the
characteristic Δ of the systematic error component by calibrating our measuring
instrument against the standard one.

After N repeated measurements, we get a systematic error Δs whose
standard deviation is ≈ σ/

√
N (and whose distribution, due to the Central

Limit Theorem, is close to Gaussian). Thus, with the same confidence level
as we use to bound the overall measurement error, we can conclude that
|Δs| ≤ k0 · σ/

√
N.

Calibration is not a one-time procedure. To properly take calibration into
account, it is important to recall that calibration is not a one-time procedure.
Indeed, most devices deteriorate with time. In particular, measuring instruments,
if not periodically maintained, become less and less accurate. Because of this, in
measurement practices, calibration is not a one-time procedure, it needs to be
done periodically.

How frequently do we need to calibrate a device? The change of Δs with time
t is slow and smooth. A smooth dependence can be represented by a Taylor
series Δs(t) = Δs(0)+k · t+c · t2 + . . . In the first approximation, we can restrict
ourselves to the main – linear – term (linear trend) in this expansion, and thus,
in effect, assume that the change of Δs with time t is linear.

Thus, if by calibrating the instrument, we guaranteed that |Δs| ≤ Δ, then
after time t, we can only guarantee that |Δs| + k · t ≤ Δ. Once the upper
bound on Δs reaches the level that we want not to exceed, this means that a
new calibration is in order. Usually (see, e.g., [7]), to guarantee the bound Δ
throughout the entire calibration cycle, we, e.g., initially calibrate it to be below
Δ/2, and then re-calibrate at a time t0 when Δ/2+k ·t0 = Δ. In such a situation,
the time t0 between calibrations is equal to t0 = Δ/(2 · k).
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How the calibration-based reduction procedure translates into the
cost of a measurement: the main case. As we have just mentioned, the
way to decrease Δ is to calibrate the measuring instrument. Thus, the resulting
additional cost of a measurement comes from the cost of this calibration (spread
over all the measurement performed between calibrations).

Each calibration procedure consists of two stages:

• first, we transport the measuring instrument to the location of a standard –
e.g., to the National Institute of Standard and Technology (NIST) or one of
the regional standardization centers – and set up the comparison measure-
ments by the tested and the standard instruments;

• second, the we perform the measurements themselves.

Correspondingly, the cost of calibration can be estimated as the sum of the costs
of there two stages.

The standard measuring instrument is usually a very expensive operation. So,
setting it up for comparison with different measuring instruments requires a lot
of time and a lot of adjustment. Once the set-up is done, the second stage is fast
and automatic – and therefore not that expensive.

As a result, usually, the cost of the first stage is the dominating factor. So,
we can reasonably assume that the cost of the calibration is just the cost of the
set-up – i.e., the cost of the first stage of the calibration procedure.

By definition, the set-up does not depend on how many times N we perform
the comparison measurements. Thus, in the first approximation, we can simply
assume that each calibration requires a flat rate f0.

The interval between time calibrations is t0 = Δ/(2 · k), then during a fixed
period of time T0 (e.g., 10 years), we need

T0

t0
=

T0

Δ/(2 · k)
=

2 · k · T0

Δ

calibrations. Multiplying this number by the cost f0 of each calibration, we get
the overall cost of all the calibrations performed during the fixed time T0 as
2 · k · T0 · f0

Δ
. Finally, dividing this cost by the estimated number N0 of mea-

surements performed during the period of time T0, we estimate the cost F (Δ)
of an individual measurement as

F (Δ) =
c

Δ
, (9)

where we denoted
c

def=
2 · k · T0 · f0

N0
. (10)

Comment. The above formula was first described, in a somewhat simplified form,
in [3].

This formula is in good accordance with chemistry-related measure-
ments. It is worth mentioning that the dependence c ∼ 1/Δ also occurs in
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measurements related to chemical analysis. Indeed, in these measurements, the
accuracy of the measurement result is largely determined by the quality of the
reagents, i.e., mainly, by the concentration level δ of the unwanted chemicals
(pollutants) in a reagent mix. Specifically, the maximum possible error Δ is
proportional to this concentration δ, i.e., Δ ≈ c0 · δ.

According to [9], the cost of reducing pollutants to a level δ is proportional
to 1/δ. Since the accuracy Δ is proportional to δ, the dependence of the cost
of the accuracy is also inverse proportional to Δ, i.e., F (Δ) = c/Δ for some
constant c.

This formula is in good accordance with actual prices of different mea-
surements. This dependence is in good agreement by the experimental data on
the cost of measurements of chemical-related measurements. For example, in
a typical pollution measurement, a measurement with the 25% accuracy costs
≈ $200, while if we want to get 7% accuracy, then we have to use a better reagent
grade in our measurements which costs between $500 and $1,000. Here, the 3–4
times increase in accuracy (i.e., 3–4 times decrease in measurement error) leads
to approximately the same (4–5) times increase in cost – which is indeed in good
accordance with the dependence F (Δ) ≈ c/Δ.

How the calibration-based reduction procedure translates into the
cost of a measurement: cases of more accurate measurements. In deriv-
ing the formula F (Δ) ≈ c/Δ, we assumed that the cost of actually performing
the measurements with the standard instrument is much smaller than the cost
of setting up the calibration experiment. This is a reasonable assumption if the
overall number of calibration-related measurement N is not too large.

How many measurement do we need? After N measurements, we get the
accuracy Δ = k0 · σ/

√
N . Thus, for a measuring instrument with standard

deviation σ, if we want to achieve the systematic error level Δ, we must use

N = k0 · σ2

Δ2 (11)

measurements.
So, if we want to use the calibration procedure to achieve higher and higher

accuracy – i.e., smaller and smaller values of Δ – we need to perform more
and more calibration-related measurements. For large N , the duration of the
calibration-related measurements exceeds the duration of the set-up. Since the
most expensive part of the calibration procedure is the use of the standard
measuring instrument, the cost of this procedure is proportional to the overall
time during which we use this instrument. When N is large, this time is roughly
proportional to N .

In this case, instead of a flat fee f0, the cost of each calibration becomes
proportional to N , i.e., equal to f1 · N , where f1 is the cost per time of using
the standard measuring instrument multiplied by the time of each calibration
measurement. Due to the formula (11), the resulting cost of each calibration is

equal to f1 · k0 · σ2

Δ2 . To get the cost of a single measurement, we must multiply
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this cost by the number of calibrations
2 · k · T0

Δ
required during the time period

T0, and then divide by the typical number of measurements performed during

this period of time. As a result, the cost of a single measurement becomes
const
Δ3 .

The cost of measurements beyond calibration: general discussion. In
many scientific cutting-edge experiments, we want to achieve higher accuracy
than was possible before. In such situations, we cannot simply use the existing
standard measuring instrument to calibrate the new one, because we want to
achieve the accuracy that no standard measuring instrument has achieved earlier.

In this case, how we can increase the accuracy depends on the specific quantity
that we want to measure.

The cost of measurements beyond calibration: example. For example, in
radioastrometry – the art of determining the locations of celestial objects from
radioastronomical observation – the accuracy of a measurement by a single radio
telescope is Δ ≈ λ/D, where λ is the wavelength of the radio-waves on which we
are observing the source, and D is the diameter of the telescope; see, e.g., [10].
For a telescope of a linear size D, just the amount of material is proportional to
its volume, i.e., to D3; the cost F of designing a telescope is even higher – it is
proportional to D4. Since D ≈ const/Δ, in this case, we have F (Δ) ≈ const/Δ4.

The cost of measurements beyond calibration: power laws. The above
dependence is a particular case of the power law F (Δ) ≈ const/Δα. Power laws
are, actually, rather typical descriptions of the dependence of the cost of an
individual measurement on its accuracy.

In [5], we explain why in the general case, power laws are indeed reasonable
approximation: crudely speaking, in the absence of a preferred value of the mea-
sured quantity, it is reasonable to assume that the dependence does not change
if we change the measuring unit (i.e., that it is scale invariant), and power laws
are the only scale-invariant dependencies.

Comment. The same arguments about scale invariance apply when we try to find
out how the cost of a measurement depends on the standard deviation. So, it
is reasonable to assume that this dependence is also described by a power law
F (σ) ≈ const/σβ for some constant β.

6 Trade-Off between Accuracy and Sample Size in
Different Cost Models

Let us plug in the above cost models into the above general solution for the
tradeoff problem and find out what is the optimal trade-off between accuracy
and sample size in the above cost models.

Since the above cost models only describe the dependence of the cost of Δ and
n, we will assume that the characteristic σ of the random error component is fixed,
so we can only select the accuracy characteristic Δ and the sample size n.
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Basic cost model: engineering situation. Let us start with the basic cost
model, according to which F (Δ) = c/Δ. Within this model, we can explicitly
solve the above system of equations. As a result, for the engineering situation,
we conclude that

nopt =
9 · k2

0 · σ2

4 · Δ2
0

; Δopt =
1
3

· Δ0. (12)

Observation. In this case, the overall error bound Δ0 is the sum of the bounds
coming from two error components:

• the bound Δ0 that comes from the systematic error component, and
• the bound k0 · σ√

n
that comes from the random error component.

In the optimal trade-off, the first component is equal to 1/3 of the overall er-
ror bound, and therefore, the second component is equal to 2/3 of the over-
all error bound. As a result, we conclude that when the error comes from several
error components, in the optimal trade-off, these error components are of ap-
proximately the same size.

Heuristic consequence of this observation. As a result of this qualitative
idea, it is reasonable to use the following heuristic rule when looking for a good
(not necessarily optimal) trade-off: split the overall error into equal parts.

In the above example, this would mean taking Δ = (1/2) · Δ0 (and, corre-
spondingly, k0 · σ√

n
= (1/2) · Δ0) instead of the optimal value Δ = (1/3) · Δ0.

How non-optimal is this heuristic solution?
For the optimal solution Δ = (1/3) · Δ0, the resulting value of the objective

function (1) (representing the overall measurement cost) is
27
4

· k2
0 · σ2 · c

Δ2
0

, while

for Δ = (1/2) · Δ0, the cost is 8 · k2
0 · σ2 · c

Δ2
0

– only ≈ 20% larger.

If we take into account that all our models are approximate, this means that
the heuristic trade-off solution is practically as good as the optimal one.

Basic cost model: science situation. In the science situation (2), we get

nopt =
(

F0 · k0 · σ

2 · c

)2/3

; Δopt =
nopt · c

F0
. (13)

Cases of more accurate and cutting-edge measurements. When F (Δ) =
c/Δα, for the engineering case, we get

nopt =
(α + 2)2 · k2

0 · σ2

4 · Δ2
0

; Δ0 =
α

2 + α
· Δ0.

For the science case,

nopt =
(

F0

c

)2/(2+α)

·
(

k0 · α

2

)(2α)/(2+α)

; Δopt =
α

2
· k0 · σ

√
nopt

.
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In both cases, the error bound coming from the systematic error component
is approximately equal to the error bound coming from the random error
component.

7 Conclusion

In many practical situations, we are not satisfied with the accuracy of the ex-
isting measurements. There are two possible ways to improve the measurement
accuracy. First, instead of a single measurement, we can make repeated measure-
ments; the additional information coming from these additional measurements
can improve the accuracy of the result of this series of measurements. Second,
we can replace the current measuring instrument with a more accurate one; cor-
respondingly, we can use a more accurate (and more expensive) measurement
procedure provided by a measuring lab – e.g., a procedure that includes the use
of a higher quality reagent. In general, we can combine these two ways, and make
repeated measurements with a more accurate measuring instrument.

What is the appropriate trade-off between sample size and accuracy? Tradi-
tional engineering approach to this problem assumes that we know the exact
probability distribution of all the measurement errors. In many practical situa-
tions, however, we do not know the exact distributions. For example, we often
only know the upper bound on the corresponding measurement (or estimation)
error; in this case, after the measurements, we only know the interval of possible
values of the quantity of interest. In the first part of this paper, we show in such
situations, traditional engineering approach can sometimes be misleading, so for
interval uncertainty, new techniques are needed. In the remainder of this paper,
we describe proper techniques for achieving optimal trade-off between sample
size and accuracy under interval uncertainty.
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Summary. In many practical situations, we are not satisfied with the accuracy of
the existing measurements. There are two possible ways to improve the measurement
accuracy:

• first, instead of a single measurement, we can make repeated measurements; the
additional information coming from these additional measurements can improve
the accuracy of the result of this series of measurements;

• second, we can replace the current measuring instrument with a more accurate one;
correspondingly, we can use a more accurate (and more expensive) measurement
procedure provided by a measuring lab – e.g., a procedure that includes the use of
a higher quality reagent.

In general, we can combine these two ways, and make repeated measurements with
a more accurate measuring instrument. What is the appropriate trade-off between
sample size and accuracy? In our previous paper, we solved this problem for the case
of static measurements. In this paper, we extend the results to the case of dynamic
measurements.

1 Formulation of the Problem

In some practical situations, we want to know the value of the measured quantity
with the accuracy which is higher than the guaranteed accuracy of a single mea-
surement. There are two possible ways to improve the measurement accuracy:

• first, instead of a single measurement, we can make several (n) measurements;
• second, we can replace the current measuring instrument with a more accu-

rate one.

What is the appropriate trade-off between sample size and accuracy? In our
previous paper [11], we analyzed this problem for the case when we measure a

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 45–56, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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static quantity, i.e., a quantity which does not change with time. In this paper,
we extend the results from [11] to the general case of dynamic measurements,
when the measured quantity changes over time.

For such dynamic quantities, we may have two different objectives:

• We may be interested in knowing the average value of the measured quantity,
e.g., the average concentration of a pollutant in a lake or the average day
temperature. In addition to to knowing the average, we may also want to
know the standard deviation and/or other statistical characteristics.

• We may also want to know not only the average, but also the actual depen-
dence of the measured quantity on space location and/or time.

For example:

• If we are interested in general weather patterns, e.g., as a part of the cli-
matological analysis, then it is probably sufficient to measure the average
temperature (or the average wind velocity) in a given area.

• On the other hand, if our intent is to provide the meteorological data to
the planes flying in this area, then we would rather know how exactly the
wind velocity depends on the location, so that the plane will be able to avoid
locations where the winds are too strong.

In this paper, we analyze the trade-off between accuracy and sample size for
both objectives.

2 First Objective: Measuring the Average Value of a
Varying Quantity

Case of ideal measuring instruments: analysis. Let us start to analyze
this situation with the case of an ideal measuring instrument, i.e., a measuring
instrument for which the measurement errors are negligible.

By using this ideal instrument, we can measure the value of the quantity of
interest at different points and at different moments of time. After we perform
n measurements and get n measurement results x1, . . . , xn, a natural way to
estimate the desired mean value x0 = E[x] of x is to use the arithmetic average

E
def=

x1 + . . . + xn

n
of these measured values. It is reasonable to assume that the

differences xi − x0 are independent random variables, with a known standard
deviation σ0.

In this case, due to the Central Limit Theorem, for large n, the difference
Δx0

def= E−x0 between the estimate E and the desired value x0 is approximately
normally distributed with 0 average and standard deviation σ0/

√
n.

So, even for measurements with the ideal measuring instrument, the result
E of measuring x0 is not exact; we can only guarantee (with the corresponding
level of confidence) that the measurement error Δx0 is bounded by the value
k0 · σ0/

√
n.
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Comment. If we do not know this standard deviation, we can estimate it based on
the measurement results x1, . . . , xn, by using the standard statistical formulas,
such as

σ0 ≈

√√√√ 1
n − 1

·
n∑

i=1

(xi − E)2.

Case of ideal measuring instruments: recommendations. In the case of
ideal measuring instruments, if we want to achieve the desired overall accuracy
Δ0 with a given confidence, then the sample size n must be determined by the
condition that k0 · σ0/

√
n ≤ Δ0, where k0 corresponds to this confidence:

• 95% confidence corresponds to k0 = 2,
• 99.9% corresponds to k0 = 3, and
• confidence 1 − 10−6% corresponds to k0 = 6.

The above condition is equivalent to
√

n ≥ k0 · σ0

Δ0
, i.e., to n ≥ k2

0 · σ2
0

Δ2
0

. To

minimize the measurement costs, we must select the smallest sample size for

which this inequality holds, i.e., select n ≈ k2
0 · σ2

0

Δ2
0

.

Case of realistic measuring instruments: description. In practice, mea-
suring instruments are not perfect, they have measurement errors. Usually, we
assume that we know the standard deviation σ of the corresponding measure-
ment error, and we know the upper bound Δ on the possible values of the mean
(systematic) error Δ − s: |Δs| ≤ Δ; see, e.g., [14].

Case of realistic measuring instruments: analysis. For realistic measuring
instruments, for each measurement, the difference Δxi = x̃i − xi between the
measured and actual values of the quantity of interest is no longer negligible.

In this case, based on n measurement results x̃1, . . . , x̃n, we do not get the
arithmetic average E of the actual values, we only get the average

Ẽ =
x̃1 + . . . + x̃n

n

of the measured values. We are using this average Ẽ as an estimate for the desired
average x0. There are two reasons why Ẽ is different from x0:

• first, due to measurement errors, x̃i �= xi, hence Ẽ �= E;
• second, due to the finite sample size, E �= x0.

As a result, the error Δx0 with which this procedure measures x0, i.e., the
difference Δx0

def= Ẽ−x0, can be represented as the sum of two error components:

Ẽ − x0 = (Ẽ − E) + (E − x0). (1)
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If we use a measuring instrument whose mean (systematic) error is Δs and
standard deviation is σ, then for the difference of arithmetic averages, the mean
is the same value Δs (systematic error) and the standard deviation is

√
n times

smaller: it is equal to σ/
√

n. We have just described the difference E − x0: it is
a random variable with 0 mean and standard deviation σ0/

√
n.

Since the mean value of E −x0 is 0 (by definition of x0 as the mean of xi), the
mean value of the sum (1) is equal to the mean value of the first error component,
i.e., to Δs.

It is reasonable to assume that the measurement errors x̃i −xi (caused by the
imperfections of the measurement procedure) and the deviations xi −x0 (caused
by variability of the quantity of interest) are independent random variables. In
this case, the variance of the sum (1) is equal to the sum of the corresponding
variances, i.e., to

σ2

n
+

σ2
0

n
=

σ2
t

n
,

where we denoted σt
def=

√
σ2 + σ2

0 . Hence, the standard deviation of the total
error is equal to σt/

√
n.

So, the measurement error Ẽ−x0 is approximately normally distributed, with
the mean Δs (about which we know that |Δs| ≤ Δ) and the standard deviation
σt/

√
n. Thus, we can conclude that with a selected degree of confidence, the

overall error cannot exceed Δ + k0 · σt√
n

.

Case of realistic measuring instruments: recommendations. From the
purely mathematical viewpoint, when the standard deviation σ of a measuring
instrument is fixed, then, to determine Δ and n, we get exactly the same formulas
as in the case of static measurements, with the only difference that:

• instead of the standard deviation σ of the random error component of the
measuring instrument,

• we now have the combined standard deviation σt =
√

σ2 + σ2
0 of the mea-

suring instrument and of the measured quantity.

So, all the recommendations that we have developed in [11] for static measure-
ments are also applicable here.

Example. If we want to achieve a given accuracy Δ0 with the smallest possi-
ble cost, then, according to [11], we should use the measuring instrument with
accuracy Δ ≈ (1/3) · Δ0. The sample size n is then determined by the formula
k0 · σt√

n
= (2/3) · Δ0.

For measuring average, the optimal accuracy Δ if the same as for static mea-
surements, but the optimal sample size is now determined by a new formula

nopt =
9 · k2

0 · σ2
t

4 · Δ2
0

, with σt instead of σ. Since σt > σ, we will need a larger

sample size n.
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3 Second Objective: Measuring the Actual Dependence
of the Measured Quantity on Space Location and/or on
Time

Formulation of the problem. In many real-life situations, we are interested
not only in the average value of the measured quantity x, we are also interested
in the actual dependence of this quantity on space and/or time.

Within this general scheme, there are several possible situations:

• We may have a quantity that does not depend on a spatial location but does
depend on time – e.g., we may be interested in the temperature at a given
location. In this case, we are interested to learn how this quantity x depends
on the time t, i.e., we are interested to know the dependence x(t).

• We may be interested in a quantity that does not change with time but does
change from one spatial location to the other. For example:
– in a geographic analysis, we may be interested in how the elevation x

depends on the 2-D spatial location t = (t1, t2);
– in a geophysical analysis, we may be interested how in the density depends

on a 3-D location t = (t1, t2, t3) inside the Earth.
• Finally, we may be interested in a quantity that changes both with time and

from one spatial location to the other. For example:
– we may be interested in learning how the surface temperature depends

on time t1 and on the 2-D spatial location (t2, t3);
– we may be also interested in learning how the general temperature in the

atmosphere depends on time t1 and on the 3-D spatial location (t2, t3, t4).

In all these cases, we are interested to know the dependence x(t) of a measured
quantity on the point t = (t1, . . . , td) in d-dimensional space, where the dimen-
sion d ranges from 1 (for the case when we have a quantity depending on time)
to 4 (for the case when we are interested in the dependence both on time and
on the 3-D spatial location).

Measurement inaccuracy caused by the finiteness of the sample. In
practice, we can only measure the values of x at finitely many different locations,
and we must use extrapolation to find the values at other locations. So, even if
we use a perfect measuring instrument, for which the measurement error can be
ignored, we still have an error cause by extrapolation.

For example, suppose that we have measured the values x(t(i)) of the quantity
x at moments of time t(1) < t(2) < . . . , < t(n), and we want to describe the value
x(t) of this quantity at a different moment of time t �= t(i), a moment of time at
which no measurement has been made.

In practice, for most systems, we know the limit g on how fast the value of
the quantity x can change with time (or from one spatial location to the other).
So, when, e.g., t(1) < t < t(2), we can conclude that |x(t)−x(t(1))| ≤ g · |t− t(1)|,
i.e., that x(t) ∈ [x(t(1)) − g · |t − t(1)|, x(t(1)) + g · |t − t(1)|]. Thus, even when we
have an ideal measuring instrument, the fact that we only have a finite sample
t(1), . . . , t(n) leads to uncertainty in our knowledge of the values x(t) for t �= x(i).
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Estimate of the measurement uncertainty for a given measurement
accuracy and given sample size. Let us consider a general situation when
we perform measurements with a guaranteed accuracy Δ, and when we measure
the quantity x at n different points t(1), . . . , t(n) in the d-dimensional space. As
a result of this measurement, we get n values x̃i that are Δ-close to the actual
values of the quantity x at the corresponding point t(i): |x̃i − x(t(i))| ≤ Δ.

If we are interested in the value x(t) of the quantity x at a point t �= t(i), then
we have to use one of the measured values x̃i.

We assume that we know the rate g with which x(t) changes with t. Thus, if
we use the the result x̃i of measuring x(t(i)) to estimate x(t), we can guarantee
that |x(t(i)) − x(t)| ≤ g · ρ(t, t(i)), where ρ(a, b) denotes the distance between
the two points in the d-dimensional space. Since |x̃i − x(t(i))| ≤ Δ, we can thus
conclude that |x̃i − x(t)| ≤ |x̃i − x(t(i))| + |x(t(i)) − x(t)| ≤ Δ + g · ρ(t, t(i)), i.e.,

|x̃i − x(t)| ≤ Δ + g · ρ(t, t(i)). (2)

Thus, the smaller the distance between t and t(i), the smaller the resulting error.
So, to get the most accurate estimate for x(t), we must select, for this estimate,
the point t(i) which is the closest to t.

In general, once we fix the accuracy Δ, the sample size n, and the points
t(1), . . . , t(n) at which the measurement are performed, we can guarantee that
for every t, the value x(t) can be reconstructed with the accuracy Δ + g · ρ0,
where ρ0 is the largest possible distance between a point t and the sample set
{t(1), . . . , t(n)}.

Thus, once we fixed Δ and n, we should select the points t(i) in such a way
that this “largest distance” ρ0 attains the smallest possible value.

In the 1-D case, the corresponding allocation is easy to describe. Indeed,
suppose that we want to allocate such points t(i) on the interval [0, T ]. We
want to minimize the distance ρ0 corresponding to a given sample size n – or,
equivalently, to minimize the sample size given a distance ρ0. Every point t
is ρ0-close to one of the sample points t(i), so it belongs to the corresponding
interval

[t(i) − ρ0, t
(i) + ρ0].

Thus, the interval [0, T ] of width T is covered by the union of n intervals [t(i) −
ρ0, t

(i) + ρ0] of widths 2ρ0. The width T of the covered interval cannot exceed
the sum of the widths of the covering intervals, so we have T ≤ n · (2ρ0), hence
always ρ0 ≥ T/(2n). Actually, we can have ρ0 = T/2n if we select the points
t(i) = (i − 0.5) · (T/n). Then:

• for the values t ∈ [0, T/n], we take, as the estimate for x(t), the result x̃1 of
measuring x(t(1)) = x(T/(2n));

• for the values t ∈ [T/n, 2T/n], we take, as the estimate for x(t), the result
x̃2 of measuring x(t(2)) = x((3/2) · (T/n));

• . . .
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• for the values t ∈ [(i − 1) · T/n, i · T/n], we take, as the estimate for x(t), the
result x̃i of measuring x(t(i)) = x((i − 1/2) · (T/n));

• . . .

So, the optimal location of points is when they are on a grid t(1) = 0.5 · T/n,
t(2) = 1.5 · T/n, t(3) = 2.5 · T/n, . . . , and each point t(i) “serves” the values t
from the corresponding interval [(i − 1) · T/n, i · T/n] (the interval that contains
this point t(i) as its center), serves in the sense that for each point t from this
interval, as the measured value of x(t), we take the value x(i). These intervals
corresponding to individual points t(i) cover the entire interval [0, T ] without
intersection,

In this optimal location, when we perform n measurements, we get ρ0 =
T/(2n).

Similarly, in the general d-dimensional case, we can place n points on a d-
dimensional grid. In this case, each point t(i) “serves” the corresponding cube;
these cubes cover the whole domain without intersection. If we denote, by V ,
the d-dimensional volume of the spatial (or spatio-temporal) domain that we
want to cover, then we can conclude that each point x(i) serves the cube of
volume V/n. Since the volume of a d-dimensional cube of linear size Δt is equal
to (Δt)d, we can thus conclude that the linear size of each of the cubes serves
by a measurement point is (V/n)1/d.

Within this cube, each point t(i) is located at the center of the corresponding
cube. Thus, for each point t within this cube and for each coordinate j, the
absolute value |tj − t

(i)
j | between the j-th coordinate of this point t and the j-th

coordinate of the cube’s center t(i) does not exceed one half of the cube’s linear
size: |tj − t

(i)
j | ≤ (1/2) · (V/n)1/d. Therefore, for

ρ(t, t(i)) =

√(
t1 − t

(i)
1

)2
+ . . . +

(
td − t

(i)
d

)2
,

we get

ρ(t, t(i)) ≤ ρ
def=

√√√√d ·
(

1
2

·
(

V

n

)1/d
)2

=
√

d · 1
2

· V 1/d

n1/d
.

We have already mentioned that for every point t, the accuracy with which we
can reconstruct x(t) is bounded by the value Δ + g · ρ0. Thus, this accuracy is

bounded by Δ + g ·
√

d · 1
2

· V 1/d

n1/d
.

We are now ready to formally describe the corresponding trade-off problems.

Trade-off problems for engineering and science: formulation. In engi-
neering applications, we know the overall accuracy Δ0, and we want to minimize
the cost of the resulting measurement. In this case, the trade-off problem takes
the following form:

Minimize n · F (Δ) → min
Δ,n

under the constraint Δ +
g0

n1/d
= Δ0, (3)
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where F (Δ) is a cost of a single measurement made by a measuring instrument
with accuracy Δ, and we denoted

g0
def= g ·

√
d · 1

2
· V 1/d. (4)

In scientific applications, when we are given the cost F0, and the problem is to
achieve the highest possible accuracy within this cost. In this case, we arrive at
the following problem

Minimize Δ +
g0

n1/d
→ min

Δ,n
under the constraint n · F (Δ) = F0. (5)

Engineering situation: solution. For the basic cost model F (Δ) = c/Δ [11],
the engineering problem (3) has the following solution:

Δopt =
1

d + 1
· Δ0; nopt =

(
g0

Δ0
· d + 1

d

)d

. (6)

Similarly to the static case [11], the optimal trade-off between accuracy and the
sample size is attained when both error components are of approximately the
same size.

Science situation: solution. For the basic cost model F (Δ) = c/Δ, the science
problem (3) has the following solution:

nopt =
(

F0

c
· g0

d

)d/(d+1)

; Δopt =
nopt · c

F0
. (7)

In this case too, in the optimal trade-off, the error bound coming from the
accuracy of individual measurements is approximately equal to the error bound
coming from the finiteness of the sample.

Case of non-smooth processes: how to describe them. In the above text,
we considered the case the dependence of the quantity x on time and/or space t is
smooth. In this case, for small changes Δt, this dependence can be approximately
described by a linear function x(t + Δt) = x(t) + g1 · Δt1 + . . . + gd · Δtd. So, if
we know the upper bound g on the length ‖(g1, . . . , gd)‖ of the gradient of x(t),
we can bound the difference x(t + Δt) − x(t) between the values of the quantity
x at close points t + Δt and t by the product g · ‖Δt‖ = g · ρ(t, t + Δt).

In practice, we often encounter non-smooth processes. For example, meteo-
rological data exhibit random change (similar to the Brownian motion); as the
result of this, the dependence of the corresponding quantities x on time and
spatial coordinates is not smooth.

For the particular case of a Brownian motion, the difference between the
values of the quantity x at nearly points grows as the square root of the distance
between these points: |x(t + Δt) − x(t)| ≤ C · ‖Δt‖1/2 for some real number
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C. In many physical processes, this dependence can be described by a more
general power law, i.e., |x(t + Δt) − x(t)| ≤ C · ‖Δt‖β for some real numbers
C and β ∈ (0, 1). Such processes are a particular case of fractals; see, e.g., [9]
(This notion is closely related with the notion of a fractal dimension: namely, the
graph of the corresponding dependence x(t) has a fractal dimension d+(1−β).)

In [10], it is explained why scale invariance naturally leads to the power law
– and thus, to the fractal dependence.

Measurement errors in the case of non-smooth processes. Let us use
these formulas to estimate measurement errors for the case of non-smooth pro-
cesses. We have already mentioned that if we perform (appropriately located) n
measurements in a d-dimensional space, then the distance from each point t of
the domain of interest to one of the points t(i) in which the measurement was

made does not exceed ρ0 =
√

d · 1
2

· V 1/d

n1/d
.

In the fractal case, we can conclude that the error of approximating the desired
value x(t) with the measured value x(t(i)) does not exceed C · ρβ. Thus, if we
perform n measurements with a measuring device of accuracy Δ, the resulting
accuracy in reconstructing all the values of x(t) is bounded by the value

Δ + C · ρβ
0 = Δ + C · dβ/2 · 1

2β
· V β/d

nβ/d
= Δ +

gβ

nβ/d
,

where we denoted
gβ

def= C · dβ/2 · 1
2β/d

· V β/d.

Trade-off problems for engineering and science: formulation and solu-
tion. In the situation when we know the overall accuracy Δ0, and we want to
minimize the cost of the resulting measurement, the trade-off problem takes the
following form:

Minimize n · F (Δ) under the constraint Δ +
gβ

nβ/d
= Δ0. (8)

In the situation when we are given the limit F0 on the cost, and the problem is to
achieve the highest possible accuracy within this cost, we arrive at the following
problem

Minimize Δ +
gβ

nβ/d
under the constraint n · F (Δ) = F0. (9)

From the mathematical viewpoint, these formulas are similar to the formulas
corresponding to the smooth case, with the only difference that instead of raising
n to the power 1/d, we now raise n to the power 1/d′, where d′ def= d/β.

Thus, for the basic cost model F (Δ) = c/Δ [11], the engineering problem has
the following solution:

Δopt =
β

d + β
· Δ0; nopt =

(
gβ

Δ0
· d + β

d

)d

. (10)



54 H.T. Nguyen et al.

For the basic cost model F (Δ) = c/Δ, the science problem has the following
solution:

nopt =
(

F0

c
· gβ

d

)d/(d+β)

; Δopt =
nopt · c

F0
. (11)

in this case too, in the optimal trade-off, both error components are of approxi-
mately the same value.

Case of more accurate measuring instruments. In [11], we have shown
that for more accurate measuring instrument, the cost F (Δ) of a measurement
depends on its accuracy as F (Δ) = c/Δα. Once we go beyond the basic cost
model α = 1, we get α = 3, and then, as we increase accuracy, we switch to a
different value α.

For such a power law, in the engineering case, the optimal accuracy is Δopt =
α

α + 2
· Δ0. In particular, for α = 3, we have Δopt =

3
5

· Δ0.

4 Case Study: In Brief

A real-life example in which we used similar arguments to made a selection
between the accuracy and the sample size is the design of radioastronomical
telescope system [1, 2, 3, 4, 5, 7, 8]. As we have mentioned, for the radiotelescope
of diameter D, the measurement accuracy is proportional to λ/D, and the cost
is proportional to D4.

The design of a large system of radiotelescopes has several objectives:

• first, we would like to solve radioastrometry problems, i.e., determine the
location of the radiosources with as much accuracy as possible;

• second, we would like to solve the radioimaging problems, i.e., for each of the
radiosources, we would like to know not only its location, but also its image
– i.e., how the intensity (and polarization) of the source changes from one
point of this source to the other.

In the first problem, we are interested in measuring a well-defined unchanging
quantity. In the second problem, we are interested in finding the actual depen-
dence of the measured quantity on the spatial location.

In the second problem, similar to what we discussed in the general case, the
more samples we take (i.e., the more telescopes we build), the more points we
will get on the image. On the other hand, within a given overall cost, if we build
more telescopes, then the amount of money allocated to each telescope will be
smaller, so each telescope will be small (D′ 
 D), and the resulting accuracy
Δ ∼ 1/D of each of the many measurements will be not so good.

In our analysis, we have found an optimal trade-off between accuracy and sam-
ple size. This analysis was used in the design of the successful Russian network
of radiotelescopes.
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5 Conclusions

In general, if the measurement error consists of several components, then the
optimal trade-off between the accuracy Δ and the same size n occurs when
these components are approximately of the same size.

In particular, if we want to achieve the overall accuracy Δ0, as a first approxi-
mation, it is reasonable to take Δ = Δ0/2 – and select the sample size for which
the resulting overall error is Δ0.

A more accurate description of optimal selections in different situations is as
follows:

• for the case when we measure a single well-defined quantity (or the average

value of varying quantity), we should take Δ =
1
3

· Δ0;

• for the case when we are interested in reconstructing all the values x(t) of
a smooth quantity x depending on d parameters t = (t1, . . . , td), we should

take Δ =
1

d + 1
· Δ0;

• for the case when are interested in reconstructing all the values x(t) of a non-
smooth quantity x depending on d parameters t = (t1, . . . , td), we should take

Δ =
β

d + β
·Δ0, where β is the exponent of the power law that describes how

the difference x(t + Δt) − x(t) changes with ‖Δt‖.

For the case of more accurate measuring instruments, when the cost F (Δ) of

a single measurement starts growing as c/Δ3, we should take Δ =
3
5

· Δ0. In

general, if F (Δ) = c/Δα, we should take Δ =
α

α + 2
· Δ0.
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Summary. Support Vector Machines (SVM) is one of the most widely used technique
in machines leaning. After the SVM algorithms process the data and produce some
classification, it is desirable to learn how well this classification fits the data. There exist
several measures of fit, among them the most widely used is kernel target alignment.
These measures, however, assume that the data are known exactly. In reality, whether
the data points come from measurements or from expert estimates, they are only known
with uncertainty. As a result, even if we know that the classification perfectly fits the
nominal data, this same classification can be a bad fit for the actual values (which are
somewhat different from the nominal ones). In this paper, we show how to take this
uncertainty into account when estimating the quality of the resulting classification.

1 Formulation of the Problem

Machine learning: main problem. In many practical situations, we have examples
of several types of objects, and we would like to use these examples to teach the
computers to distinguish between objects of different types. Each object can be
characterized by the corresponding values of several relevant quantities. If we
denote the number of these quantities by d, then we can say that each object
i can be represented by a d-dimensional vector x(i) = (x(i)

1 , . . . , x
(i)
k , . . . , x

(i)
d ),

where x
(i)
k denotes the value of the k-th quantity for i-th object. So, from the

mathematical viewpoint, the problem is as follows: in d-dimensional space X ,
we have several points x(1), . . . , x(n) belonging to different classes, and we need
to be able, given a new point x ∈ X , to assign it to one of these classes.

In the simplest case when we have two classes, we have several points belonging
to the first class, and several points which do not belong to the first class, and
we must find a separating algorithm.

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 57–69, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Linear classification: main idea. In the past, a typical approach to data classi-
fication was to find a hyperplane c1 · x1 + . . . + cd · xd = c0 which separates the
two classes – so that c1 · x

(i)
1 + . . . + cd · x

(i)
d > c0 for all positive examples (i.e.,

examples from the first class) and c1 · x
(i)
1 + . . . + cd · x

(i)
d < c0 for all negative

examples (i.e., examples which do not belong to the first class).

Linear classification: limitations. The main limitations of linear classification
approach is that in many important practical cases, there is no hyperplane sep-
arating positive and negative examples.

For example, suppose that we want to teach the computer to distinguish
between the center of the city and its suburbs. To do that, we mark several
places in the center as positive examples and places in the suburbs as negative
examples. Here, a natural idea is to take d = 2, so that x1 and x2 are two
coordinates of each point. To make it easier, we can take the central square of
the city as the origin of the coordinate system, i.e., as a point (0, 0).

In this example, separation is straightforward: points whose distance
√

x2
1 + x2

2
to the center is below a certain threshold t are within the city center, while points
for which the distance is > t are in the suburbs. However, no straight line can
separate close points from the distant ones – because on each side of the straight
line we have points which are far away from the center.

Support Vector Machines: main idea. What can we do when there is no linear
separation? In the 2-D case, as long as there is a separation, i.e., as long as the
same point x ∈ X does not appear as both a positive and a negative example, we
can draw a curve separating positive points from negative ones. Similarly, in the
d-dimensional case, we can always draw a (d − 1)-dimensional surface separat-
ing positive and negative examples. Moreover, we can always find a continuous
function f(x1, . . . , xd) such that f(x(i)

1 , . . . , x
(i)
d ) > 0 for all positive examples

and f(x(i)
1 , . . . , x

(i)
d ) < 0 for all negative examples.

A continuous function f(x1, . . . , xd) can be, with arbitrary accuracy, approx-
imated by polynomials; thus, be selecting a good enough accuracy, we can have
a polynomial

f̃(x1, . . . , xd) = c0 + c1 · x1 + . . . + cd · xd +
d∑

k=1

d∑

l=1

ckl · xk · xl + . . .

which has the same separating property, i.e.,

c0 + c1 · x(i)
1 + . . . + cd · x

(i)
d +

d∑

k=1

d∑

l=1

ckl · x
(i)
k · x

(i)
l + . . . > 0

for all positive examples and

c0 + c1 · x(i)
1 + . . . + cd · x

(i)
d +

d∑

k=1

d∑

l=1

ckl · x
(i)
k · x

(i)
l + . . . < 0
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for all negative examples. These formulas clearly show that this non-linear sep-
aration means that we linearly separate points (x1, . . . , xn, x2

1, x1 · x2, . . .).
Instead of polynomials, we could use trigonometric polynomials or sums

of Gaussian functions, or any other class of approximating functions. In all
these cases, what we are doing is mapping each point x into a point φ(x) =
(φ1(x), . . . , φp(x), . . . , φN (x)) in a higher-dimensional space (of dimension N ≥
d), and then use linear separation to separate the resulting points φ(x(1)), . . . ,
φ(x(n)) in the N -dimensional space. This, in a nutshell, is the main idea behind
the Support Vector Machines (SVM) techniques; see, e.g., [10].

Need to estimate classification quality. The fact that we have a surface separating
positive examples from negative examples does not necessarily mean that this
classification is good. Intuitively, if we have a new example x which is similar
to one of the previously given examples x(i), then this new example should be
classified to the same class as x(i). So, we want to make sure not only that all
the positive examples are on the right side of the separating surface, but also
that the points which are close to these examples are also on the same side of the
separating surface. In other words, we want to make sure that all the examples
are sufficiently far away from the separating surface. Thus, some reasonable
measure of the distance from this surface can serve as the measure of the quality
of the resulting classification.

Several such criteria have been proposed. These criteria are usually defined
in terms of the kernel matrix kij

def= 〈φ(x(i)), φ(x(j))〉, where

〈φ, φ′〉 def=
N∑

p=1

φp · φ′p.

KTA. The most widely used criterion is the kernel target alignment (KTA) A
[1], which is defined as follows (in our notations):

A =

n∑

i=1

n∑

j=1

kij · yi · yj

n ·
n∑

i=1

n∑

j=1

k2
ij

,

where yi = 1 for positive examples and yi = −1 for negative examples. This cri-
terion has a very intuitive meaning. In the ideal situation, the separation should
be as sharp as possible: we should have all the vectors φ(x(i)) corresponding to
the positive examples to be equal to some unit vector e and all the vectors cor-
responding to the negative examples to be equal to −e. In this ideal situation,
the kernel matrix is equal to yi · yj. To estimate the quality of a classification,
it is reasonable to check how close the actual kernel matrix is to this ideal one.
One way to check is to consider both matrices as vectors in a N ×N dimensional
space, and estimate the cosine of the angle between these vectors; if the vectors
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coincide, the angle is 0, and the cosine is 1; if the vectors are close, the angle is
close to 0, and the cosine is close to 1, etc. This cosine is equal to

〈K, ·yT 〉F√
〈K, K〉F 〈y · yT , y · yT 〉F

,

where

〈K, K ′〉F
def=

n∑

i=1

n∑

j=1

kij · k′ij ,

so we get the above expression for the KTA.

Class Separability Measure (CSM). An alternative measure to KTA has been
proposed in [13]. This measure is actually defined for a general case of classi-
fying the data into several (C ≥ 2) classes. The main idea is that in a good
classification, data points within each class should be close to each other, while
data points from different classes should be far away from each other. In other
words, “within-class” scatter should be much smaller than the “between-classes”
scatter.

Each class is naturally characterized by its average. Thus, for each data point,
its contribution to the “within-class” scatter can be described as a (squared) dis-
tance from this data point to the average, and its contribution to the “between-
classes” scatter can be described as a (squared) distance between the average of
this class and the overall average.

In the SVM approach, each data point x(i) is represented by the vector φ(x(i)).
Thus, the above idea can be reformulated as follows. For each class Sc, c =
1, 2, . . . , C, let nc denote the number of data points classified into this class. Let
φc denote the average of all the vectors φ(x(i)) from the c-th class, and let φ
denote the average of all n vectors φ(x(i)). Then, we can define the within-class
scatter sw as

sw
def=

C∑

c=1

∑

i∈Sc

‖φ(x(i)) − φc‖2,

and the between-classes scatter as

sb
def=

C∑

c=1

nc · ‖φc − φ‖2.

We can also define total scatter as the sum st
def= sw + sb. A classification is of

good quality if sw � sb, i.e., equivalently, if sb ≈ st and the ratio C
def=

sb

st
is

close to 1. This ratio C is used as an alternative quality characteristic.
For the case of two classes, we will denote the number of the corresponding

examples as n+ and n−, and the averages of the corresponding vectors φ(x(i))
by φ+ and φ−. The value of the CSM ratio C can be computed in terms of the
kernel matrix kij = 〈φ(x(i)), φ(x(j))〉 as follows:
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• First, for every i, we compute

a+
i =

1
n+

∑

j:yj=1

kij ; a−i =
1

n−
∑

j:yj=−1

kij .

• Second, we compute

a++ =
1

n+

∑

j:yj=1

a+
i , a+− =

1
n−

∑

j:yj=−1

a+
i ,

a−+ =
1

n+

∑

j:yj=1

a−i , a−− =
1

n+

∑

j:yj=−1

a−i ,

and sb = a++ − a+− − a−+ + a−−.
• Then, we compute

sw =
n∑

i=1

kii − n+ · a++ − n− · a−−,

and C =
sb

sb + sw
.

A new alternative quality measure: FSM. In many practical examples, KTA and
CSM provides a reasonable estimate for the quality of fit, in the sense that cases
when we have a better fit have a larger value of KTA or CSM. However, there
are examples when the values of KTA and CSM are larger for the cases when
intuitively, the classification quality is worse.

One reason for the sometimes counterintuitive character of CSM is that CSM
estimates a within-class scatter based on deviations in all directions. For exam-
ple, if for some coordinate φp(x), we have φp(x(i)) = 1 for all positive examples
and φp(x(i)) = −1 for all negative examples, then intuitively, we have a perfect
classification. However, since the values φq(x(i)) for q 	= p may be widely scat-
tered, we can have a huge value of the within-class scatter, and thus, a very low
value of the CSM measure of fit.

To avoid this problem, it is reasonable to take into account only the scatter in
the direction between the centers φ− and φ+. The corresponding Feature-Spaced
Measure (FSM) was proposed in [7].

To estimate this measure, we do the following:

• First, we compute the average φ+ of the values φ(x(i)) for all the positive
examples and the average φ− of the values φ(x(i)) for all the negative exam-
ples. In the ideal case, as we have mentioned, we should have φ+ = e and
φ− = −e for some unit vector e.

• Then, we estimate the vector e as the unit vector in the direction of the

difference φ+ − φ−, i.e., as e =
φ+ − φ−

‖φ+ − φ−‖ .



62 C.H. Nguyen, T.B. Ho, and V. Kreinovich

• Next, for each example i, we compute the projection pi = 〈φ(x(i)), e〉 of the
vector φ(i) to the direction e.

• Finally, we compute the population means

p+ =
1

n+ ·
∑

i:yi=1

pi; p− =
1

n−
·

∑

i:yi=−1

pi,

where n+ and n− (= n − n+) denote the numbers of positive and negative
examples, compute population variances

V + =
1

n+ − 1
·

∑

i:yi=1

(pi − p+)2; V − =
1

n− − 1
·

∑

i:yi=−1

(pi − p−)2,

and the desired value √
V + +

√
V −

‖φ+ − φ−‖ .

This algorithm describes how to compute these values based on the vectors
φ(x(i)); alternatively, as shown in [7], we can compute it from the kernel matrix
kij as follows:

• First, we compute the values a+
i and a−i as in the CSM case.

• Second, we compute the values a++, a+−, a−+, and a−− as in the CSM case,
and compute ‖φ+ − φ−‖2 = a++ − a+− − a−+ + a−−.

• Then, we compute

V + =

∑

i:yi=1

((a−i − a−+) − (a+
i − a++))2

(n+ − 1) · ‖φ+ − φ−‖2 ,

V − =

∑

i:yi=−1

((a+
i − a+−) − (a−i − a−−))2

(n− − 1) · ‖φ+ − φ−‖2 ,

and the desired value √
V + +

√
V −

‖φ+ − φ−‖ .

2 How to Take into Account Probabilistic and Interval
Uncertainty: Formulation of the Problem and
Linearized Algorithms for Solving This Problem

Need to take into account probabilistic and interval uncertainty. In presenting
algorithms for computing the SVM quality measures, we (implicitly) assumed
that we know the exact values of the data points x(i) = (x(i)

1 , . . . , x
(i)
d ). In reality,

the values x
(i)
k come from measurements or from expert estimates, and both

measurements and expert estimates are never 100% accurate. As a result, the
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measured (estimated) values x̃
(i)
k of the corresponding quantities are, in general,

different from the (unknown) actual values x
(i)
k .

It is desirable to take into account this measurement (estimation) uncertainty
when estimating the quality measures.

Need to describe measurement and/or estimation uncertainty. In order to gauge
the effect of the measurement (estimation) uncertainty on the values of the
quality measures, we must have the information about the measurement (esti-
mation) uncertainty, i.e., the information about the measurement (estimation)
errors Δx

(i)
k

def= x̃
(i)
k − x

(i)
k .

For simplicity, in the following text, we will mainly talk about measurement
errors; for estimation errors the situation is very similar.

Upper bound on the measurement error. How can the measurement error be
described? First, the manufacturer of a measuring instrument must provide us
with an upper bound Δ on the absolute value |Δx| of the measurement error
Δx. If no such bound was guaranteed, this would mean that the difference Δx
can be arbitrarily large; in this situation, after getting a measurement result say
x̃ = 1, we cannot be sure whether the actual value x of the measured quantity
is 1, 0, 10, 100, or 1,000,000. In this situation, x̃ = 1 is a wild guess, not a
measurement result.

When we know this upper bound Δ, this means that the actual value Δx of
the measurement error must be inside the interval [−Δ, Δ].

Probabilistic information. In addition to the upper bound Δ, we often also know
the probabilities of different values Δx from the interval [−Δ, Δ].

This situation of probabilistic uncertainty is traditionally used in engineering
and scientific practice. Most frequently, scientists and engineers consider the
situation when the measurement error is normally distributed, with 0 mans and
known standard deviation σ; see, e.g,., [9].

Case of interval uncertainty. In many important practical situations, we do not
have the information about the probabilities of different values of Δx, we only
know the upper bound Δ.

The reason is that the probabilistic information usually comes from com-
paring the results of measuring the same quantity with two different measuring
instruments: the one used for actual measurements and the standard (much more
accurate) one – whose results are so much closer to the actual values that we can
ignore the corresponding measurement errors and consider these results actual
values.

There are two situations when this comparison is not done. The first such
situation is the situation of cutting-edge measurements, when we are actually
using the best possible measuring instrument. For example, if we perform some
protein measurements by using a state-of-the-art electronic microscope, it would
be nice to be able to compare the results with a much more accurate microscope
– but ours is already the best.
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Another case when the probabilities are not determined is when we have
limited resources. For example, in geophysics, in every seismic experiment, we
use a large number of sensors to measure the corresponding time delays. It would
be nice to be able to compare all these sensors with more accurate ones. However,
the detailed comparison of each sensor requires the use of costly standard sensors
and, as a result, costs several orders of magnitude more than the cost of buying
a new sensor – so we often cannot do this detailed probabilistic “calibration”
within our limited resources.

In both cases, the only information we have about the measurement error
Δx = x̃ − x is the upper bound Δ: |Δx| ≤ Δ. In such situations, once we
have the measurement result x̃, the only conclusion that we can make about
the (unknown) actual value x is that x belongs to the interval x = [x, x], where
x

def= x̃ − Δ and x
def= x̃ + Δ. This situation is called the situation of interval

uncertainty.

Estimating the measures of fit under measurement uncertainty: formulation of
the problem. In general, we have an algorithm

Q(x(1)
1 , . . . , x

(1)
d , x

(2)
1 , . . . , x

(2)
d , . . . , x

(n)
1 , . . . , x

(n)
d )

which transforms the values

x
(1)
1 , . . . , x

(1)
d , x

(2)
1 , . . . , x

(2)
d , . . . , x

(n)
1 , . . . , x

(n)
d

of the corresponding quantities into the value

y = Q(x(1)
1 , . . . , x

(1)
d , x

(2)
1 , . . . , x

(2)
d , . . . , x

(n)
1 , . . . , x

(n)
d )

of the corresponding quality characteristic. Due to measurement errors, we do
not know the actual values x

(i)
k . Instead, we only know the intervals [x(i)

k , x
(i)
k ]

of possible values of x
(i)
k – and possible also the probabilities of different values

from these intervals.
Different values x

(i)
k ∈ [x(i)

k , x
(i)
k ] lead, in general, to different values of the

measure of fit y = Q(x(1)
1 , . . . , x

(n)
d ). It is therefore desirable to find the range y

of possible values of y:

y = {Q(x(1)
1 , . . . , x

(n)
d ) | x(1)

1 ∈ [x(1)
1 , x

(1)
1 ], . . . , x(n)

d ∈ [x(n)
d , x

(n)
d ]},

and, if possible, the probability of different values of y within this interval.

Case of relatively small measurement error: possibility of linearization. When
the measurement errors Δxi are relatively small, we can use linearization.

By definition of the measurement error Δx
(i)
k = x̃

(i)
k − x

(i)
k , hence x

(i)
k =

x̃
(i)
k − Δx

(i)
k . When the measurement errors Δx

(i)
k of direct measurements are

relatively small, we can expand the expression

Δy = ỹ − y = Q(x̃(1)
1 , . . . , x̃

(n)
d ) − Q(x(1)

1 , . . . , x
(n)
d ) =
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Q(x̃(1)
1 , . . . , x̃

(n)
d ) − Q(x̃(1)

1 − Δx
(1)
1 , . . . , x̃

(n)
d − Δx

(n)
d )

in Taylor series and only keep linear terms in the resulting expansion. Since

y = Q(x̃(1)
1 −Δx

(1)
1 , . . . , x̃

(n)
d −Δx

(n)
d ) ≈ Q(x̃(1)

1 , . . . , x̃
(n)
d )−

n∑

i=1

d∑

k=1

∂Q

∂x
(i)
k

·Δx
(i)
k ,

we conclude that Δy = ỹ − y =
n∑

i=1

d∑
k=1

c
(i)
k · Δx

(i)
k , where c

(i)
k

def=
∂Q

∂x
(i)
k

.

Linearization: probabilistic case. When Δx
(i)
k are independent normally dis-

tributed random variables with 0 means and known standard deviations σ
(i)
k ,

the linear combination Δy =
n∑

i=1

d∑
k=1

c
(i)
k ·Δx

(i)
k is also normally distributed, with

0 mean and standard deviation

σ =

√√√√
n∑

i=1

d∑

k=1

(c(i)
k · σ(i)

k )2.

So, in this case, to find the uncertainty in the value of the measure of fit, it is
sufficient to be able to compute the values of the corresponding partial derivatives
c
(i)
k .

Linearization: interval case. The dependence of Δy on Δx
(i)
k is linear: it is in-

creasing relative to x
(i)
k if c

(i)
k ≥ 0 and decreasing if c

(i)
k < 0. So, to find the

largest possible value Δ of Δy, we must take:

• the largest possible value Δx
(i)
k = Δ

(i)
k when c

(i)
k ≥ 0, and

• the smallest possible value Δx
(i)
k = −Δ

(i)
k when c

(i)
k < 0.

In both cases, the corresponding term in the sum has the form |c(i)
k | ·Δ(i)

k , so we
can conclude that

Δ =
n∑

i=1

d∑

k=1

|c(i)
k | · Δ

(i)
k .

Similarly, the smallest possible value of Δy is equal to −Δ. Thus, the range of
possible values of y is equal to [y, y] = [ỹ − Δ, ỹ + Δ]. So, to compute Δ, it is

also sufficient to know the partial derivatives c
(i)
k .

How to compute the derivatives. For all the above characteristics y, we have
an explicit expression in terms of the values kij . Thus, we can find the explicit
analytic formulas in terms of the corresponding derivatives as

c
(i)
k =

n∑

a=1

n∑

b=1

∂y

∂kab
· ∂kab

∂x
(i)
k

.
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Here, the first partial derivative can be explicitly computed: e.g., for KTA Q = A,
we have

∂y

∂kab
=

ya · yb

n ·
n∑

i=1

n∑
j=1

k2
ij

− 2kab ·

n∑
i=1

n∑
j=1

kij · yi · yj

n ·
(

n∑
i=1

n∑
j=1

k2
ij

)2 .

For kab =
N∑

p=1
φp(x(a)) · φp(x(b)), the derivative

∂kab

∂x
(i)
k

is only different from 0 if

a = i or b = i:

∂kib

∂x
(i)
k

=
N∑

p=1

∂φp

∂xk
(x(i)) · φp(x(b)) for a = i and b 	= i;

∂kai

∂x
(i)
k

=
N∑

p=1

φp(x(a)) · ∂φp

∂xk
(x(i)) for a 	= i and b = i;

∂kii

∂x
(i)
k

= 2
N∑

p=1

∂φp

∂xk
(x(i)) · φp(x(i)) for a = b = i.

3 In General, Estimating Quality of SVM Learning under
Interval Uncertainty Is NP-Hard

Motivations. In the previous section, we considered the case when measurement
errors are small, e.g., no more than 10%, so that we can ignore terms which are
quadratic in terms of these errors. For example, for 10% = 0.1, the quadratic
terms are proportional to 0.12 = 1% � 10% and thus, indeed, much smaller than
the original errors. In this case, we can linearize the formulas for the quality
of SVM learning and get efficient algorithms for computing the range of the
corresponding quality characteristics.

In practice, however, the measurement errors are often not very small. For ex-
ample, for a realistic measurement error of 30%, the square is ≈ 10% and is no
longer negligible in comparison with the original measurement errors. In such sit-
uations, we can no longer use linearized techniques, we must consider the original
problem of computing the range [y, y] of a given characteristic Q(x(1)

1 , . . . , x
(n)
d )

under interval uncertainty:

[y, y] = {Q(x(1)
1 , . . . , x

(n)
d ) | x(1)

1 ∈ [x(1)
1 , x

(1)
1 ], . . . , x(n)

d ∈ [x(n)
d , x

(n)
d ]}.

It turns out that in general, this problem is NP-hard – at least it is NP-hard for
the most widely used measures of fit KTA and CSM.

Crudely speaking, NP-hard means that there is practically no hope of design-
ing an efficient algorithm which would always correct compute this range; for
precise definitions, see, e.g., [3, 4, 8].
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Theorem 1. Computing the range of KTA under interval uncertainty is NP-
hard.

Proof. To prove NP-hardness of our problem, we will reduce a known NP-hard
problem to our problem of computing the range A of KTA A under interval
uncertainty. Specifically, we will reduce, to our problem, the following partition
problem [3] that is known to be NP-hard:

• Given k positive integers s1, . . . , sk,

• check whether it is possible to find the values εi ∈ {−1, 1} for which
k∑

i=1
εi ·

si = 0.

To each instance s1, . . . , sk of this problem, we assign the following instance of
the problem of computing A: we take d = 1, n = k + 1, y1 = . . . = yk = 1,
yk+1 = −1, x(i) = [−si, si] for i ≤ k, and x(n) = {2S}, where S

def= max
i=1,...,k

si. As

φ, we take a 2-dimensional mapping φ = (φ1, φ2) consisting of the following two
piece-wise linear functions:

φ1(x) =

⎧
⎪⎨

⎪⎩

x if x ≤ S

2S − x if S ≤ x ≤ 2S

0 if x ≥ 2S

; φ2(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ S

x/S − 1 if S ≤ x ≤ 2S

1 if x ≥ 2S

.

In this case,

kij = 〈φ(x(i)), φ(x(j))〉 =

⎧
⎪⎨

⎪⎩

x(i) · x(i) if i, j < n,
1 if i = j = n,
0 otherwise.

Therefore,

n∑

i=1

n∑

j=1

kij · yi · yj =
k∑

i=1

k∑

j=1

x(i) · x(i) + 1 =

(
k∑

i=1

x(i)

)2

+ 1;

n∑

i=1

n∑

j=1

k2
ij =

k∑

i=1

k∑

j=1

(
x(i)

)2
·
(
x(j)

)2
+ 1 =

(
k∑

i=1

(
x(i)

)2
)2

+ 1; and

A =

(
k∑

i=1
x(i)

)2

+ 1

n ·

√(
k∑

i=1

(
x(i)

)2
)2

+ 1

.

The numerator is always greater than or equal to 1. Since |x(i)| ≤ si, we have
(
x(i)

)2 ≤ s2
i and hence, the denominator is always ≤ n ·

√(
k∑

i=1
s2

i

)2

+ 1. Thus,
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we always have A ≥ A0
def=

1

n ·

√(
k∑

i=1
s2

i

)2

+ 1

. The only possibility for A = A0

is when the numerator of the fraction A is equal to 1, and its denominator is

equal to n ·

√(
k∑

i=1
s2

i

)2

+ 1. This is only possible when |x(i)| = si for all i, i.e.,

when x(i) = εi · si for some εi ∈ {−1, 1}, and
k∑

i=1
x(i) = 0 – i.e., exactly when the

original instance of the partition problem has a solution. So, A = A0 if and only
if the original instance has a solution. This reduction proves that our problem
is indeed NP-hard.

Theorem 2. Computing the range of CSM under interval uncertainty is NP-
hard.

Proof. Under the same reduction as in Theorem 1, we get n+ = k, n− = 1,

a+
n = 0 and for i < n, we have a+

i =
1
k

·
k∑

j=1

x(i) · x(j) = x(i) · E, where E
def=

1
k

·
k∑

i=1

x(i). Similarly, a−n = 1 and a−i = 0 for all i < n. Thus, a++ =
1
k

·
k∑

i=1

a+
i =

E · 1
k

·
k∑

i=1

x(i) = E2, a+− = a−+ = 0, and a−− = 1. Hence, sb = E2 + 1,

sw =
k∑

i=1

(
x(i)

)2 − k · E2 − 1 and thus, C =
E2 + 1

k∑
i=1

(
x(i)

)2 − (k − 1) · E2

. The

numerator is ≥ 1, the denominator is ≤
k∑

i=1
s2

i , hence C ≥ C0
def=

1
k∑

i=1
s2

i

. The

only possibility to have C = C0 is when E = 0 and |x(i)| = si for all i, i.e.,
when the original instance of the partition problem has a solution. The theorem
is proven.

4 Conclusion

For classification produced by machine learning techniques, it is desirable to
learn how well this classification fits the data. There exist several measures of
fit, among them the most widely used is kernel target alignment.

The existing formulas for these measures assume that the data are known
exactly. In reality, whether the data points come from measurements or from
expert estimates, they are only known with uncertainty. As a result, even if we
know that the classification perfectly fits the nominal data, this same classifica-
tion can be a bad fit for the actual values (which are somewhat different from
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the nominal ones). In this paper, we show how, when the measurement errors
are relatively small, we can take this uncertainty into account when estimating
the quality of the resulting classification. We also show that in the general case
of large uncertainty, the problem of estimating the range of these measures of fit
is NP-hard.
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Summary. The main goal of information fusion can be seen as improving human
or automatic decision-making by exploiting diversities in information from multiple
sources. High-level information fusion aims specifically at decision support regarding
situations, often expressed as “achieving situation awareness”. A crucial issue for de-
cision making based on such support is trust that can be defined as “accepted depen-
dence”, where dependence or dependability is an overall term for many other concepts,
e.g., reliability. This position paper reports on ongoing and planned research concerning
imprecise probability as an approach to improved dependability in high-level informa-
tion fusion. We elaborate on high-level information fusion from a generic perspective
and a partial mapping from a taxonomy of dependability to high-level information
fusion is presented. Three application domains: defense, manufacturing, and precision
agriculture, where experiments are planned to be implemented are depicted. We con-
clude that high-level information fusion as an application-oriented research area, where
precise probability (Bayesian theory) is commonly adopted, provides an excellent eval-
uation ground for imprecise probability.

1 Introduction

Information fusion (IF) is a research field that has been tightly coupled with
defense applications (e.g., [27]) for many years. However, recently researchers in
other domains such as manufacturing (e.g., [38]) and precision agriculture (e.g.,
[34]) have started to recognize the benefits of IF. IF, sometimes also referred to
as data fusion, can be depicted as done by Dasarathy [13].

“Information fusion encompasses the theory, techniques, and tools con-
ceived and employed for exploiting the synergy in the information ac-
quired from multiple sources (sensor, databases, information gathered by
human etc.) such that the resulting decision or action is in some sense
better (qualitatively and quantitatively, in terms of accuracy, robustness
and etc.) than would be possible, if these sources were used individually
without such synergy exploitation.”

From Dasarathy’s description, it is seen that the overall goal is to improve deci-
sion making, and since there most often exist uncertainty regarding decisions, it

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 70–84, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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can be concluded that uncertainty management is crucial to IF. In fact, it has
even been argued that the main goal of an IF system is to reduce uncertainty [9].
Many methods for handling uncertainty in the IF domain are based on Bayesian
theory, e.g., Kalman filtering [16] and Bayesian networks (BNs) [6].

Most research in the IF domain so far has addressed problems in low-level IF,
e.g., target tracking by multi-sensor fusion, while the higher abstraction levels
of reasoning, referred to as high-level information fusion (HLIF), have been a
relatively uncharted research field. Furthermore, those attempts that do exist
for HLIF rarely address dependability issues (cf. [36]).

In this position paper, we elaborate on HLIF from a generic perspective and
a partial mapping from a taxonomy of dependability to HLIF is presented. We
argue for imprecise probability as an interesting approach for improved depend-
ability in HLIF, and that more research on this topic is needed. We also argue for
the importance of more research on deployment of methods based on imprecise
probabilities in “real-world” applications.

The paper is organized as follows: in Sect. 2, we depict the foundations of IF.
A thorough description of HLIF is presented in Sect. 3. In Sect. 4, we describe
a partial mapping from a taxonomy of dependability to HLIF. Imprecise proba-
bility as an approach to improved dependability in HLIF is described in Sect. 5.
Three application domains, defense, manufacturing, and precision agriculture,
for evaluation of imprecise probability, are presented in Sect. 6. Lastly, in Sect. 7,
we argue for the importance of evaluation of imprecise probability in comparison
with precise probability (Bayesian theory) through experiments in “real-world”
applications.

2 Information Fusion

In order to allow for easy communication among researchers of IF, the Joint
Directors of Laboratories (JDL) data fusion group has established a model that
comprises the IF domain [43]. The model, referred to as the JDL model, has
been revised many times (e.g., [35, 26]), either due to the lack of some important
aspect of IF, or for the purpose of making it more general. Steinberg et al. [35]
have presented the following variant of the JDL model, hereafter referred to as
the revised JDL model, with five functions or levels:

• Level 0 – Sub-Object Data Assessment: estimation and prediction of
signal observable states

• Level 1 – Object Assessment: estimation and prediction of entity states,
based on observation-to-track association

• Level 2 – Situation Assessment: estimation and prediction of relations
among entities

• Level 3 – Impact Assessment: estimation and prediction of effects of
actions on situations

• Level 4 – Process Refinement: continuous improvement of the informa-
tion fusion process
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The claim that uncertainty management is crucial to IF is here reinforced since
words such as estimation and prediction appear in all of the levels except Level 4.
With HLIF, we refer to Level 2, 3, and with low-level IF to Level 0, 1, in the
revised JDL model. The reason to not include Level 4 in HLIF, is that it may be
regarded as a meta-process that is a part of all levels, i.e., refinement of processes
at each level.

3 High-Level Information Fusion

The aim of high-level information fusion (HLIF) is to establish the current sit-
uation, and possible impacts of that situation conditional on a set of actions.
Since HLIF mainly has addressed issues in the defense domain, we here elab-
orate on it from a generic perspective. A terminology for HLIF that captures
concepts such as situations and impacts is presented. It should be noted that
there exists a framework, referred to as situation theory [14] for which there are
some similarities to the terminology that we introduce here, e.g., that situations
are about relations (this can also be seen from the revised JDL model). Kokar
et al. [24] have developed an ontology for situation awareness that is based on
situation theory and which is referred to as situation awareness ontology (STO).
However, uncertainty is not the main focus of the above framework; thus, the
concepts introduced here aim at providing a generic and clear understanding of
HLIF from the perspective of uncertainty.

3.1 Level 2 – Situation Assessment

As can be seen from the revised JDL model, the main concern in Level 2 –
Situation Assessment – is relations among entities. As noted by Kokar et al.
[23, 24], a binary relation in mathematics, denoted by R, has the following
structure:

R ⊆ X × Y (1)

X × Y
def.= {(x, y) : x ∈ X, y ∈ Y } (2)

However, in order to allow other relations than binary, it is necessary to consider
n-ary relations that can be formally depicted as, cf. [24]:

R ⊆ X1 × . . . × Xn (3)

X1 × . . . × Xn
def.= {(x1, . . . , xn) : xi ∈ Xi} (4)

A relation can be defined intensionally by a predicate P that decides which
n-tuples that actually belong to the relation [24]:

R def.= {(x1, . . . , xn) : P (x1, . . . , xn), xi ∈ Xi} (5)

The relations that are of interest in HLIF, are usually not observable in a direct
way; thus, uncertainty regarding the predicate, and hence the relation, is most
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often evident. As Kokar et al. [24] have also noted, and which can be seen from
the revised JDL model [35], a situation can consist of more than one relation.
Consequently, it is necessary to interpret a situation as a set of relations denoted
by S and more formally stated as:

S def.= {R1, . . . , Rk} (6)

One may think of the relations as representing different concepts that for some
reason are needed by a decision maker in order to make a decision about situa-
tions in a particular application domain.

Since there most often exists uncertainty regarding which n-tuples that satisfy
the predicate for a given relation in HLIF; it is necessary to be able to consider
the elements of the relation as hypotheses, which we here denote by (x1, . . . , xn)h

j

to indicate that it is a hypothesis with respect to a specific relation Rj , 1 ≤ j ≤ k.
Since the elements of a given relation Rj now can be considered as hypotheses,
it is also necessary to consider the relation itself as such, a relational hypothesis,
denoted by Rh

j . Lastly, since a situation S is defined using relations that may be
hypotheses, a situation can also be a hypothesis, denoted by Sh

i , i ∈ JS , where
JS is an index set.

Let the set of available information (sensor readings, domain knowledge and
stored information) be denoted by ξ. Note that ξ may contain information that is
uncertain, e.g., information from an unreliable source, imprecise, i.e., information
which in some sense refers to more than one possibility, and inconsistent, e.g.,
information sources are in conflict [7] (for more detail, see [22, Sect. II-A1]). We
will here use belief as a generic term for quantifying a rational agent’s belief,
thus, belief in the above sense is not associated with any particular Uncertainty
Management Method (UMM). The following belief measure needs to be assessed
in Level 2 – Situation Assessment:

μS(Sh
i = S|ξ), (7)

i.e., the degree of belief for a specific situation hypothesis Sh
i being the “true”

current situation S conditional on ξ. Depending on the application domain and
the type of relations involved in S, it may also be necessary to define belief
measures that capture some specific part of a situation in more detail. Examples
of such measures are:

μTj ((x1, . . . , xn)h
j ∈ Rj |ξ) (8)

μRj (Rh
j = Rj |ξ), (9)

where μTj denotes the degree of belief for a single tuple Rj , and μRj depicts
the degree of belief for the “true” set that constitutes the relation. In particular
scenarios it could be sufficient to define some of these belief measures in terms
of the others by for example using the mean. As an example μRj can be defined
in terms of μTj by using the mean, in the following way:
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μRj (Rh
j = Rj |ξ) =

1
|X1 × . . . × Xn|⎡

⎣
∑

(x1,...,xn)h
j ∈Rh

j

μTj ((x1, . . . , xn)h
j ∈ Rj |ξ)

+
∑

(x1,...,xn)h
j ∈R

h
j

μTj ((x1, . . . , xn)h
j /∈ Rj |ξ)

⎤

⎥⎦ ,

where Rh

j = (X1 × . . . × Xn)\Rh
j .

(10)

The last part of the equation can be simplified if one assumes that the following
holds:

μTj((x1, . . . ,xn)h
j /∈ Rj |ξ) =

1 − μTj ((x1, . . . , xn)h
j ∈ Rj |ξ)

(11)

However, depending on the UMM, this is not always the case (e.g., Dempster-
Shafer theory). In the general case one might want to assess the measures μTi ,
μRi , and μS more specifically by applying some other method than just using
the mean over an existing belief measure.

3.2 Level 3 – Impact Assessment

Consider Level 3 – Impact Assessment – where the aim is to estimate effects
on situations given certain actions [35]. The representation of situations still
applies since “estimation and prediction of effects on situations” as stated in the
revised JDL model can be interpreted as estimation and prediction of “future
situations”, impacts, which we here will denote by I, and Ih

i , i ∈ JI , when
considered as a hypothesis. From a decision maker’s point of view, a certain
set of planned actions is expected to lead to a desirable impact. Now, since
there most often exists uncertainty regarding the current situation, something
that is reflected in the belief measure μS , it is also necessary to incorporate
this uncertainty when estimating future situations, impacts Ih

i . Consequently, a
belief measure for Impact Assessment, μI , has the following appearance:

μI(Ih
i = I|A, μS , ξ), (12)

i.e., the degree of belief regarding a possible impact Ih
i is conditional on: a set

of actions A, the belief measure for the current situation μS , and the set of
available information ξ. Additional belief measures that capture some specific
part of an impact in more detail, similarly to expressions (8) and (9), may also
be defined for Impact Assessment.

4 Dependable High-Level Information Fusion

One of the main issues in HLIF is to assess the belief measures μS and μI
over possible current situations, {Sh

i }i∈JS and possible impacts {Ih
i }i∈JI . Since
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these quantifications constitute a basis for HLIF-based decision making, human
or automatic, a question one can pose is how trustworthy such quantifications
are? However, a clarification on what is actually meant by “trustworthiness”
or “trust” in HLIF is necessary since there is a lack of research on that topic.
Avižienis et al. [5] define trust as “accepted dependence” and have presented
a taxonomy of dependability that is well-accepted within the dependable com-
puting domain. In HLIF, however, some of these concepts, e.g., reliability and
robustness, are also utilized but with no consistent meaning; thus, researchers
have adapted their particular interpretation in a specific application domain
and problem. We will here present a partial mapping from this taxonomy to
HLIF that preserves as much consistency as possible with respect to how con-
cepts have been utilized in HLIF. Since specific characteristics of dependability
is application dependent, this partial mapping should be seen as a guideline
for interpreting dependability in HLIF. We will later use this terminology when
we discuss why imprecise probability seems to be an interesting approach to
improved dependability in HLIF (Sect. 5).

4.1 High-Level Information Fusion as a Service

The basis for the concepts in the dependability taxonomy is a service; thus, we
need to clearly state what type of service the involved functions in HLIF provide.
By the description of HLIF in Sect. 3, it can be argued that a HLIF service
provides the artifacts listed in the introduction of this section, i.e., {Sh

i }i∈JS ,
{Ih

i }i∈JI , μS , and μI . These artifacts are utilized by a decision maker (human
or automatic) in order to make a decision concerning situations, in other words,
a HLIF service aims at providing decision support regarding situations.

4.2 Reliability

We start this partial mapping with the attribute of dependability referred to
as reliability; an attribute that has many different interpretations [30, 26, 42].
Svensson [36] has proposed the following interpretation of reliability for HLIF-
based decision-support systems:

“Technical system property of delivering quantitative results which are
reasonably close to best possible, subject to known statistical error distri-
butions”.

However, “...results which are reasonably close to best possible...” could be hard
to interpret since “best possible” needs to be more clearly defined, and “...sta-
tistical error distributions” is too specific in many circumstances, e.g., when
subjective opinions (from domain experts) are utilized.

In the dependability taxonomy, it is seen that reliability is defined as “con-
tinuity of correct service”. Llinas [25] has listed “Correctness in reasoning” as
an important criteria for evaluation of fusion performance in a context of HLIF.
Thus, one can argue that the key to think about reliability is correctness. The
question then becomes what a correct HLIF service is, and a natural answer is
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that correctness refers to what such service actually delivers, i.e., correctness of
the artifacts: {Sh

i }i∈JS , {Ih
i }i∈JI , μS , and μI .

For the sets of hypotheses, correctness refers to the extent of all plausible
hypotheses actually being in the sets (cf. [31]), i.e., exhaustivity. For the belief
measures, it can be argued that correctness is achieved when the measures reflect
the character of the available information (cf. [39, Section 1.1.4]). As an example,
if information is scarce, uncertain, imprecise or conflicting (see further [22]), this
should be reflected in the belief measure.

Lastly, if we assume that ξ continuously gets updated, e.g., via a sensor
stream, then it is necessary for the belief measures to continuously reflect ξ,
thus in agreement with “continuity...” in the definition of reliability found in
the taxonomy.

4.3 Fault

A fault in the dependability taxonomy is defined as the cause of an error that
in its turn is something that may cause a failure, i.e., a deviation from correct
service [5]. Since we have already argued that a correct HLIF service delivers
an exhaustive set of plausible hypotheses and belief measures that reflect the
character of ξ, the negation of this statement, i.e., a service that provides a non-
exhaustive set of plausible hypothesis or belief measures that do not reflect ξ, is
considered to be a service that is not correct.

Based on these arguments, faults can be defined as: uncertain, imprecise,
inconsistent, and lack of information (for more detail, see [22, Sect. II-A1]),
since if inadequately handled, all of these may lead to service incorrectness. For
a non-exhaustive set of hypotheses, insufficient or inaccurate domain knowledge
about the process can also be considered as a fault since design of hypotheses
most often rely on domain knowledge. Another important fault in HLIF concerns
unreliable sources. If we consider a source as providing a service, reliability of this
service would be correctness of the source output. It is possible to account for
unreliable sources by introducing reliability coefficients that quantify the degree
of reliability for the sources [30]. Thus, one can say that a service, based on
unreliable sources, is still reliable as long as one know the quality of sources,
e.g., reliability coefficients, and compensate for this.

4.4 Safety

The next concept in the taxonomy that we will consider is safety, which is defined
as “Absence of catastrophic consequences on the user(s) and the environment”
[5]. Seen from a decision maker’s point of view, one can aim at a minimized num-
ber of possible catastrophic consequences. In essence, when a decision is taken by
utilizing a HLIF service, a possible catastrophic consequence may be interpreted
as an unexpected impact of such decision. There are two important so called sec-
ondary attributes (attributes that refine primary attributes [5]) that we consider
to be a part of safety: robustness and stability.
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Robustness

Svensson [36] has proposed the following definition of robustness for HLIF-based
decision-support systems:

“Property of a system to react appropriately to exceptional conditions,
including to avoid making large changes in recommendations as a con-
sequence of small changes in input data.”

Bladon et al. [6] have proposed the following description of robust in conjunction
with a Situation-Assessment system:

“Robust: able to handle inconsistent, uncertain, and incomplete data.”

Llinas [25] has listed the following criteria for evaluation of HLIF performance:

“Adaptability in reasoning (robustness)”

Antony [3] claims that:

“Robustness measures the fragility of a problem-solving approach to
changes in the input space.”

Avižienis et al. [5] define robustness as a secondary attribute in the following
way:

“...dependability with respect to external faults, which characterizes a
system reaction to a specific class of faults.”

When looking at the statements above, it can be argued that most of them re-
late to a reaction. The description of robustness by Avižienis et al. [5] suggests
that we need to find a class of faults that the reaction refers to. In order to be
able to distinguish “robust” from “reliable”, we partially adopt Svensson’s inter-
pretation that robustness is about “...exceptional conditions...”. Consequently,
we define the class of faults as exceptional which in HLIF may be exceptional
degrees of:

• Uncertain, imprecise, and inconsistent information
• Lack of information
• Insufficient or inaccurate domain knowledge
• Unreliable sources

Exceptional degrees is something that is dependent on the application domain
at hand, and must therefore be defined accordingly. The desired reaction to
exceptional faults, from a decision maker’s point of view, would be to expect
that the service still fulfill reliability, i.e., correctness. Altogether, robustness in
HLIF is about being able to provide a reliable service even though exceptional
faults are present.

Stability

Stability is included in the definition of robustness by Svensson [36]:
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“...avoid making large changes in recommendations as a consequence of
small changes in input data.”

In order to allow for as precise and clear meaning as possible for both robust-
ness and stability, we prefer to view stability as a separate secondary attribute to
safety. It is somewhat unclear what Svensson exactly means by “...large changes
in recommendations...”. When are recommendations of actions considered to be
different from each other? One may even think of two very different recommenda-
tions that are expected to lead to essentially the same impact. Thus, we rephrase
stability as: small variations in input should not cause changes in actions that are
expected to lead to different impacts. Here, “expected” and “different impacts”,
needs to be more clearly defined, something that must be done with respect to
a specific problem and application domain.

As an example, assume that one has two different sets of actions, A1 and A2,
which for some reason are expected to lead to different impacts. Assume that
the following holds for an impact Ih

i :

μI(Ih
i = I|A1, μS , ξ)−

μI(Ih
i = I|A2, μS , ξ) = κ

(13)

Let the input in our interpretation of stability refer to ξ, more concretely, let ξ

constitute a sensor stream of information. Now, assume that the stream becomes
noisy, i.e., small random variations in the information are present, denoted by
ξ′. Such variation may cause, at a given time instant, the following equation to
hold:

μI(Ih
i = I|A1, μS , ξ′)−

μI(Ih
i = I|A2, μS , ξ′) = κ′

(14)

By fulfilling stability the following is prevented:

|κ − κ′| > ε (15)

In other words, the difference in belief is not allowed to deviate “too much” due
to random variations in ξ′. Here ε is a parameter that quantifies an acceptable
deviation with respect to the variation in ξ′. In the worst case, a decision maker
may choose to implement A1 when Eq. (13) holds and A2 when Eq. (14) holds.
Since the action sets were expected to lead to impacts that are in some sense
different from each other, such behavior is considered to be “unsound”. In this
example, the input was the set of available information ξ, but one may equally
well consider the belief measure μS as the input, i.e., small variations in μS
should not cause the behavior defined by Eq. (15).

5 Imprecise Probability - Dependable High-Level
Information Fusion

Imprecise probability [41] refers to a family of theories that allow imprecision in
the belief measures, e.g., a probability interval. Walley [39, 40, 41] has argued
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extensively for the importance of imprecision in probabilities and describes sev-
eral different sources of it such as: lack of information, conflicting information
(inconsistent information), and conflicting beliefs (e.g., conflict amongst a group
of domain experts), to name a few of them. Lack of information is related to
a specific type of uncertainty referred to as epistemic or reducible [33], since
gathering more information may reduce this type of uncertainty; closely related
to one of the goals of IF, i.e., reducing uncertainty. The two latter sources of im-
precision in probabilities: conflicting information and conflicting beliefs, are also
obvious in an IF context, since utilizing multiple sources of information typically
lead to conflict.

As pointed out by Walley [39, Section 5.1.5], a significant difference between
Bayesian theory and imprecise probability, is the way the amount of information
is reflected in the belief measure. If little or no prior information concerning
some process is available, Bayesian theory propose a non-informative prior, e.g.,
maximum entropy [20], while imprecise probability utilize the degree of impre-
cision to reflect the amount of information; substantial information implies a
small interval of possible probabilities, and scarce information a large interval of
possible probabilities. Thus, when utilizing imprecise probability, the informa-
tion can actually be seen in the belief measure itself, while in Bayesian theory
the same belief measure can be adopted before any information is available, as
well as later when a large amount of information is available. Subsequently, if
we consider reliability in HLIF as a correctness criterion, where the belief mea-
sure should reflect the character of the available information, even in exceptional
cases when there is a severe lack of it (related to robustness), Bayesian theory
cannot adequately fulfill this. From a decision maker’s point of view, reliability
can be thought of as a sort of “soundness” criterion, i.e., the decision maker will
be aware of the quality of the belief measure.

Imprecise probabilities also allow a direct way of handling the problem of
stability. Consider Bayesian networks (BNs) [17], a method that is commonly
proposed for HLIF [6, 12, 21], where precise probabilities, usually referred to as
conditional probability tables (CPTs) needs to be assessed from data, or elicited
from a domain expert. A problem with such networks, besides assessment or
elicitation of precise CPTs, is that it is necessary to perform sensitivity analysis,
i.e., examine for chaotic behavior [37] by perturbation of the CPTs. By utilizing
imprecise probability (e.g., [10, 11]) it is possible to account for “possible” values
of the CPTs in a direct way. Thus, instead of assessing or eliciting precise proba-
bilities followed by sensitivity analysis, where the CPTs are perturbed; imprecise
probability account for this from the start, i.e., the imprecision constitutes “pos-
sible” probabilities that potentially could have resulted from a perturbation of
precise probability.

6 Application Domains

Information fusion (IF) has its roots in the defense domain and is still tightly
coupled to it. In this section, we first depict the current state of IF techniques
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and applications within defense. Then, we describe two “civilian” application do-
mains, manufacturing and precision agriculture, where researchers have started
to recognize the benefits of IF, mainly through initial studies in low-level IF.

6.1 Defense

There exist a number of different IF applications within the defense domain
such as: ocean surveillance, air-to-air and surface-to-air defense, battlefield in-
telligence, surveillance, target acquisition, and strategic warning and defense [16].
In a defense context, Level 1 – Object Assessment – concerns the problem of de-
tecting objects and their corresponding physical attributes, e.g., vehicle type
(e.g, tank or jeep), position, velocity, and heading.

The goal of Level 2 – Situation Assessment – is to establish relationships
among the identified objects and events, which belong to the environment under
consideration [16]. A common relation applied at this level is clustering, e.g.,
clustering of vehicles into platoons, companies, and battalions [32]. Lastly, in
Level 3 – Impact Assessment – predictions are made about future situations,
e.g., different threats of enemies [16].

So far in the defense domain, most of the research has concerned Level 1 – Ob-
ject Assessment –, e.g., target tracking with multi-sensor fusion. Most attempts
to HLIF in defense involves Bayesian theory and especially BNs [6, 12, 21].
Other approaches to HLIF in the defense domain are: Dempster-Shafer theory
[32], genetic algorithms, fuzzy logic, neural networks [18], case-based reasoning,
and fuzzy belief networks [27].

6.2 Manufacturing

A well-known problem in manufacturing is planning of maintenance such that
the cost and risk of failure are minimized. According to Jardine et al. [19], main-
tenance can be divided into: unplanned maintenance (breakdown maintenance)
and planned maintenance. In unplanned maintenance, utilization of a physical
asset occurs until breakdown, an approach that enables for maximum amount
of utilization while there are no serious failures, but on the other hand, a break-
down can potentially cause a halt in production or even more serious failures,
leading to severe economic loss. In planned maintenance, a schedule is utilized
for each physical asset. The advantage of this approach is that it reduces the
number of breakdowns, but for a cost of decreased utilization, since maintenance
is performed independently of the actual condition of the physical asset. Due to
an increased complexity in machines, planned maintenance has become a costly
activity [19].

Recently, there has been an increased interest in multi-sensor fusion as a
means to achieve more reliable prognosis and diagnosis in maintenance [19], and
researchers have started to notice the commonalities between the IF domain and
manufacturing [38, 19].
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6.3 Precision Agriculture

The aim of precision agriculture is to account for large within-field spatial and
temporal variations of different crop and soil factors [34]. By measuring different
soil properties such as texture, moisture content, nitrogen (N) content and pH [1],
the field can be divided into zones that have different needs, e.g., of fertilization
or pesticides. When combining a geographical information system with a global
positioning system, each zone can be targeted, through model simulation, with
its corresponding need of for instance N-fertilization, pesticides, or watering. In
the case of fertilization, it is also common to utilize so called on-the-go sensors
(e.g., radiometric sensors) where sensor readings are used as further input for
fertilization calculations. Since these calculations are performed during the ac-
tual fertilization process, they need to meet certain time constraints. Precision
agriculture is both economical and environmentally friendly since the purpose
is to estimate the exact need for optimal yield and minimum influence on the
environment [28].

7 Discussion and Future Work

While there are many articles that describe theoretical aspects of imprecise prob-
abilities (e.g., [41]), and comparative studies of uncertainty management meth-
ods addressing “artificial” (toy) problems (e.g., [15]), the more practical aspects
where such methods are implemented and evaluated in “real-world” applications
seem to be to a large extent overlooked (there are exceptions, e.g., [4, 8, 29]).
We believe that the only way for imprecise probability to gain recognition by
researchers in HLIF in particular and other research communities in general, is
to conduct experiments that actually demonstrate benefits of such approach in
comparison with precise probability. We have here described three application
domains which will be utilized for this purpose. The exact theories to be eval-
uated in the family of imprecise probability will be selected in accordance to
characteristics of the specific problem in each of these application domains. A
common feature of all these domains, and most IF applications, is that decisions
must be made within a certain period of time, i.e., certain time constraints need
to be met. Such constraints may be challenging to meet when using imprecise
probability, due to the additional complexity introduced by imprecision (sets of
probability measures instead of a single probability measure).

Since many attempts to address HLIF rely on Bayesian theory such as BNs;
imprecise probability will naturally be evaluated against existing precise solu-
tions. Consequently, HLIF provides an excellent evaluation ground for imprecise
probability. There is also genuine need for addressing dependability issues in
HLIF, an area that has been more or less neglected, or as Svensson [36] puts it:

“Indeed, unless concepts and methodologies are found and generally ap-
plied which enable researchers and developers to achieve and demonstrate
reliability of high-level information fusion methods and algorithms, oper-
ational decision makers are unlikely to be willing to trust or use decision
support systems based on such techniques.”
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In a recent publication, Antonucci et al. [2] have recognized the benefits of uti-
lizing imprecise probability – credal networks [10, 11] – in IF. The application
of credal networks to HLIF is definitely something that should be further inves-
tigated and contrasted against BNs.

8 Conclusions

In this position paper we have reported on ongoing and planned future work
on deployment and evaluation of imprecise probability in high-level information
fusion (HLIF) applications. A detailed description of HLIF and a partial mapping
from a dependability taxonomy to HLIF were presented. There is a need to find
more dependable methods within HLIF, and imprecise probability seems to be
an interesting approach to improve dependability. We have also argued that it
is important to implement and evaluate imprecise probability in “real-world”
applications, if such methods are going to be acknowledged. Since HLIF is an
application oriented research area, where most methods are based on Bayesian
theory, we have also concluded that HLIF is an excellent evaluation ground for
this purpose. Three application domains: defense, manufacturing, and precision
agriculture, for evaluation of imprecise probability as an approach to improved
dependability in HLIF, were described. Design of experiments in these domains,
which contrasts the benefits and drawbacks of imprecise probability to precise
probability, is our next step, something that in itself is challenging and valuable
to the dissemination of research on imprecise probability.
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Summary. An alternative perspective on granular modelling is introduced where an
information granule characterises the relationship between a label expression and ele-
ments in an underlying perceptual space. Label semantics is proposed as a framework
for representing information granules of this kind. Mass relations and linguistic decision
trees are then introduced as two types of granular models in label semantics. Finally,
its shown how linguistic decision trees can be combined within an attribute hierarchy
to model complex multi-level composite mappings.

1 Introduction to Granular Modelling

Fundamental to human communication is the ability to effectively describe the
continuous domain of sensory perception in terms of a finite set of description
labels. It is this process of granular modelling which permits us to process and
transmit information efficiently at a suitable level of detail, to express similarity
and difference between perceptual experiences and to generalize from current
knowledge to new situations. Furthermore, it allows us to express information
and knowledge in a way that is robust to small variations, noise and sensory
aggregations in a complex multi-dimensional and evolving perceptual environ-
ment. Given these advantages, the formalization of granular models within a
mathematical theory can allow for the effective modelling of complex multi-
dimensional systems in such a way as to be understandable to practitioners who
are not necessarily experts in formal mathematics.

The use of labels as a means of discretizing information plays a central role
in granular modelling. Indeed one possible definition of an information granule
could be in terms of the mapping between labels and domain values as follows:

An information granule is a characterisation of the relationship between
a discrete label or expression and elements of the underlying (often con-
tinuous) perceptual domain which it describes.

From this perspective crisp sets, fuzzy sets [19], random sets [10] and rough
sets [11] can all correspond to information granules in that they can be used
to characterise just such a relationship between a label and the elements of the
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underlying domain. A typical form of information granule is as the extension of
the concept symbolically represented by a given label. For a label L the extension
of L identifies the set of domain elements to which L can be truthfully or appro-
priately applied. Fuzzy sets, random sets and rough sets are then mechanisms
according to which gradedness, uncertainty and imprecision can respectively be
introduced into the definition of concept extensions.

The above definition of information granule should be contrasted with that
of Zadeh [20] who explains granularity in terms of (possibly fuzzy) clusters of
points as follows:

A granule is a clump of objects (points) which are drawn together by
indistinguishability, similarity, proximity and functionality.

However, while different there are a number of clear connections between the two
notions of information granule. Gärdenfors [3] introduces conceptual spaces as
metric spaces of sensory inputs in which the extensions of concepts correspond to
convex regions. Certainly from this perspective elements within the extension of
a concept are indeed likely to be linked in terms of their similarity and proximity
to one another. Also the functionality of an object can directly inference the way
that it is labelled or classified. For example. the labelling of parts of the face as
nose, mouth, ear etc is, as noted by Zadeh [20], significantly dependant on their
respective functions.

Label semantics [5], [6] is a representation framework to encode the conven-
tions for allocating labels and compound expressions generated from labels, as
descriptions of elements from the underlying domain. As such it provides a useful
tool for granular modelling when formulated as above with an emphasis on the
association of points and labels. The notion of vagueness is also closely related
to that of information granularity in that for most examples of information pro-
cessing in natural language the information granules are not precisely defined.
Indeed this semantic imprecision can often result in more flexible and robust
granular models. Label semantics is based on an epistemic theory of vagueness
[18] according to which the individual agents involved in communication believe
in the existence of language conventions shared across the population of com-
municators but are (typically) uncertain as to which of the available labels can
be appropriately used to describe any given instance.

2 Underlying Philosophy of Vagueness

In contrast to fuzzy set theory [19], label semantics encodes the meaning of lin-
guistic labels according to how they are used by a population of communicating
agents to convey information. From this perspective, the focus is on the decision
making process an intelligent agent must go through in order to identify which
labels or expressions can actually be used to describe an object or value. In other
words, in order to make an assertion describing an object in terms of some set of
linguistic labels, an agent must first identify which of these labels are appropri-
ate or assertible in this context. Given the way that individuals learn language
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through an ongoing process of interaction with the other communicating agents
and with the environment, then we can expect there to be considerable uncer-
tainty associated with any decisions of this kind. Furthermore, there is a subtle
assumption central to the label semantic model, that such decisions regarding
appropriateness or assertibility are meaningful. For instance, the fuzzy logic view
is that vague descriptions like ‘John is tall’ are generally only partially true and
hence it is not meaningful to consider which of a set of given labels can truth-
fully be used to described John’s height. However, we contest that the efficacy
of natural language as a means of conveying information between members of
a population lies in shared conventions governing the appropriate use of words
which are, at least loosely, adhere to by individuals within the population.

In our everyday use of language we are continually faced with decisions about
the best way to describe objects and instances in order to convey the informa-
tion we intend. For example, suppose you are witness to a robbery, how should
you describe the robber so that police on patrol in the streets will have the best
chance of spotting him? You will have certain labels that can be applied, for ex-
ample tall, short, medium, fat, thin, blonde, etc, some of which you may view as
inappropriate for the robber, others perhaps you think are definitely appropriate
while for some labels you are uncertain whether they are appropriate or not. On
the other hand, perhaps you have some ordered preferences between labels so
that tall is more appropriate than medium which is in turn more appropriate
than short. Your choice of words to describe the robber should surely then be
based on these judgements about the appropriateness of labels. Yet where does
this knowledge come from and more fundamentally what does it actually mean
to say that a label is or is not appropriate? Label semantics proposes an interpre-
tation of vague description labels based on a particular notion of appropriateness
and suggests a measure of subjective uncertainty resulting from an agent’s par-
tial knowledge about what labels are appropriate to assert. Furthermore, it is
suggested that the vagueness of these description labels lies fundamentally in
the uncertainty about if and when they are appropriate as governed by the rules
and conventions of language use. The underlying assumption here is that some
things can be correctly asserted while others cannot. Exactly where the dividing
line lies between those labels that are and those that are not appropriate to use
may be uncertain, but the assumption that such a division exists would be a
natural precursor to any decision making process of the kind just described.

The above argument is very close to the epistemic view of vagueness as ex-
pounded by Timothy Williamson [18]. Williamson assumes that for the exten-
sions of a vague concept there is a precise but unknown dividing boundary
between it and the extension of the negation of that concept. However, while
there are marked similarities between the epistemic theory and the label se-
mantics view, there are also some subtle differences. For instance, the epistemic
view would seem to assume the existence of some objectively correct, but un-
known, definition of a vague concept. Instead of this we argue that individ-
uals when faced with decision problems regarding assertions find it useful as
part of a decision making strategy to assume that there is a clear dividing line
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between those labels which are and those which are not appropriate to describe
a given instance. We refer to this strategic assumption across a population of
communicating agents as the epistemic stance, a concise statement of which is
as follows:

Each individual agent in the population assumes the existence of a set of
labelling conventions, valid across the whole population, governing what
linguistic labels and expressions can be appropriately used to describe
particular instances.

In practice these rules and conventions underlying the appropriate use of labels
would not be imposed by some outside authority. In fact, they may not exist at
all in a formal sense. Rather they are represented as a distributed body of knowl-
edge concerning the assertability of predicates in various cases, shared across a
population of agents, and emerging as the result of interactions and communi-
cations between individual agents all adopting the epistemic stance. The idea is
that the learning processes of individual agents, all sharing the fundamental aim
of understanding how words can be appropriately used to communicate infor-
mation, will eventually converge to some degree on a set of shared conventions.
The very process of convergence then to some extent vindicates the epistemic
stance from the perspective of individual agents. Of course, this is not to suggest
complete or even extensive agreement between individuals as to these appropri-
ateness conventions. However, the overlap between agents should be sufficient to
ensure the effective transfer of useful information.

A further distinction between our view of appropriateness and the epistemic
view of Williamson can be found in the local, or instance-based, nature of ap-
propriateness judgements. Arguments in favour of the epistemic view concern
the existence of a precise boundary between the extension of a concept and that
of its negation. The appropriateness of labels on the other hand is judged with
reference to a particular instance. From this perspective it is unlikely that agents
would generate an explicit representation of the extension of a vague concept.
Instead their knowledge would be based on previous experience of assertions
about similar instances from a range of other agents and a subsequent process of
interpolation between these examples. In most cases decision problems about as-
sertions would then typically concern a particular instance, so that the problem
of identifying concept boundaries would not be directly considered.

The epistemic stance allows agents to meaningfully apply epistemic models
of uncertainty to quantify their subjective belief in whether certain labels are
appropriate. In the sequel we will introduce two related probabilistic measures
of an agent’s uncertainty concerning the appropriateness of vague expressions
and explore the resulting calculus.

3 Label Semantics

Label semantics proposes two fundamental and inter-related measures of the
appropriateness of labels as descriptions of an object or value. We begin by
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assuming that for all agents there is a fixed shared vocabulary in the form of a
finite set of basic labels LA for describing elements from the underlying universe
Ω. These are building blocks for more complex compound expressions which can
then also be used as descriptors as follows. A countably infinite set of expressions
LE can be generated through recursive applications of logical connectives to the
basic labels in LA. So for example, if Ω is the set of all possible rgb values and
LA is the set of basic colour labels such as red, yellow ,green, orange etc then LE
contains those compound expressions such as red & yellow, not blue nor orange
etc. The measure of appropriateness of an expression θ ∈ LE as a description of
instance x is denoted by μθ(x) and quantifies the agent’s subjective probability
that θ can be appropriately used to describe x. From an alternative perspective,
when faced with describing instance x, an agent may consider each label in LA
and attempt to identify the subset of labels that are appropriate to use. This is
a totally meaningful endeavour for agents who adopt the epistemic stance. Let
this complete set of appropriate labels for x be denote by Dx. In the face of their
uncertainty regarding labelling conventions agents will also be uncertain as to
the composition of Dx, and we represent this uncertainty with a probability mass
function mx : 2LA → [0, 1] defined on subsets of labels. Hence, for the subset of
labels {red, orange, yellow} and rgb value x, mx({red, orange, yellow}) denotes
the subjective probability that Dx = {red, orange, yellow}, or in other words
that {red, orange, yellow} is the complete set of basic colour labels with which
it is appropriate to describe x. We now provide formal definitions for the set of
expressions LE and for mass functions mx, following which we will propose a
link between the two measures μθ(x) and mx for expression θ ∈ LE.

Definition 1. Label Expressions
The set of label expressions LE generated from LA, is defined recursively as
follows:

• If L ∈ LA then L ∈ LE
• If θ, ϕ ∈ LE then ¬θ, θ ∧ ϕ, θ ∨ ϕ ∈ LE.

Definition 2. Mass Function on Labels
∀x ∈ Ω a mass function on labels is a function mx : 2LA → [0, 1] such that∑

S⊆LA mx (S) = 1.

Note that there is no requirement for the mass associated with the empty set
to be zero. Instead, mx(∅) quantifies the agent’s belief that none of the labels
are appropriate to describe x. We might observe that this phenomena occurs
frequently in natural language, especially when labelling perceptions generated
along some continuum. For example, we occasionally encounter colours for which
none of our available colour descriptors seem appropriate. Hence, the value mx(∅)
is an indicator of the describability of x in terms of the labels LA.

Now depending on labelling conventions there may be certain combinations
of labels which cannot all be appropriate to describe any object. For example,
small and large cannot both be appropriate. This restricts the possible values of
Dx to the following set of focal elements:
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Definition 3. Set of Focal Elements
Given labels LA together with associated mass assignment mx : ∀x ∈ Ω, the set
of focal elements for LA is given by F = {S ⊆ LA : ∃x ∈ Ω, mx (S) > 0}.

The link between the mass function mx and the appropriateness measures μθ(x)
is motivated by the intuition that the assertion ‘x is θ’ directly provides infor-
mation dependent on θ, as to what are the possible values for Dx. For example,
the assertion ‘x is blue’ would mean that blue is an appropriate label for x, from
which we can infer that blue ∈ Dx. Similarly, the assertion ‘x is green and not
blue’ would mean that green is an appropriate label for x while blue is not, so
that we can infer green ∈ Dx and blue 
∈ Dx. Another way of expressing this
information is to say that Dx must be a member of the set of sets of labels which
contain green but do not contain blue i.e. Dx ∈ {S ⊆ LA : green ∈ S, blue 
∈ S}.
More generally, we can define a functional mapping λ from LE into 22LA

(i.e.
the set containing all possible sets of label sets) for which the assertion ‘x is
θ’ enables us to infer that Dx ∈ λ(θ). This mapping is defined recursively as
follows:

Definition 4. λ-mapping
λ : LE → 2F is defined recursively as follows: ∀θ, ϕ ∈ LE

• ∀L ∈ LA λ(L) = {S ∈ F : L ∈ S}
• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)
• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)
• λ(¬θ) = λ(θ)c.

The λ-mapping then provides us with a means of evaluating the appropriateness
measure of an expression θ directly from mx, as corresponding to the subjective
probability that Dx ∈ λ(θ) so that:

Definition 5. Appropriateness Measures
For any expression θ ∈ LE and x ∈ Ω, the appropriateness measure μθ(x) can
be determined from the mass function mx according to:

∀θ ∈ LE μθ(x) =
∑

S∈λ(θ)

mx(S).

From this relationship the following list of general properties hold for expressions
θ and ϕ in LE [5]:

Theorem 1. Lawry [5],[6]

• If θ |= ϕ then ∀x ∈ Ω μθ(x) ≤ μϕ(x)
• If θ ≡ ϕ then ∀x ∈ Ω μθ(x) = μϕ(x)
• If θ is a tautology then ∀x ∈ Ω μθ(x) = 1
• If θ is a contradiction then ∀x ∈ Ω μθ(x) = 0
• ∀x ∈ Ω μ¬θ(x) = 1 − μθ(x).

Notice, here that the laws of excluded middle and non-contradiction are
preserved since for any expression θ, λ(θ ∨ ¬θ) = λ(θ) ∪ λ(θ)c = 22LA

and
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λ(θ ∧ ¬θ) = λ(θ) ∩ λ(θ)c = ∅. Also, the idempotent condition holds since
λ(θ ∧ θ) = λ(θ) ∩ λ(θ) = λ(θ).

The λ-mapping provides us with a clear formal representation for linguistic
constraints, where the imprecise constraint ‘x is θ’ on x is interpreted as the
precise constraint Dx ∈ λ(θ) on Dx.

3.1 Ordering Labels

As discussed above an agent’s estimation of both mx and μθ(x) should depend
on their experience of language use involving examples similar to x. Clearly the
form of this knowledge is likely to be both varied and complex. However, one
natural type of assessment for an agent to make would be to order or rank label
in terms of their estimated appropriateness for x. This order information could
then be combined with estimates of appropriateness measure values for the basic
labels (i.e. elements of LA) in order to provide estimates of values for compound
expressions (i.e. elements of LE). Hence we assume that:

An agent’s knowledge of label appropriateness for an instance x, can be
represented by an ordering on the basic labels LA and an allocation of
uncertainty values to the labels consistent with this ordering.

Effectively we are assuming that through a process of extrapolation from expe-
rience agents are, for a given instance, able to (at least partially) rank labels in
terms of their appropriateness and then, consistent with this ranking, to esti-
mate a subjective probability that each label is appropriate. On the basis of both
the ordering and probability assignment to basic labels the agent should then
be able to evaluate the appropriateness measure of more complex compound
expressions. The ranking of available labels would seem to be an intuitive first
step for an agent to take when faced with the decision problem about what to
assert. Also, the direct allocation of probabilities to a range of complex com-
pound expressions so that the values are internally consistent is a fundamentally
difficult task. Hence, restricting such evaluations to only the basic labels would
have significant practical advantages in terms of computational complexity.

Definition 6. (Ordering on Labels)
For x ∈ Ω let �x be an ordering on LA such that for L, L′ ∈ LA, L′ �x L
means that L is at least as appropriate as a label for x as L′.

The identification by an agent of an ordering on labels �x for a particular x ∈ Ω
(as in definition 6), restricts the possible label sets which they can then consis-
tently allocate to Dx. For instance, L′ �x L then this implies that if L′ ∈ Dx

then so is L ∈ Dx, since L is as least as appropriate a description for x as
L′. Hence, given �x for which L′ �x L it must hold that mx(S) = 0 for
all S ⊆ LA where L′ ∈ S and L 
∈ S. Trivially, from definition 5 this also
means that μL′(x) ≤ μL(x). Given these observations an important question
is whether the information provided by ordering �x together with a set of ap-
propriateness values μL(x) : L ∈ LA for the basic labels, consistent with �x,
is sufficiently to specify a unique mass function mx? Notice that in the label



94 J. Lawry

semantics framework the identification of a unique mass function mx in this
way immediately enables the agent to apply definition 5 in order to evaluate
the appropriateness μθ(x) of any compound expression θ from the appropri-
ateness measure values for the basis labels. In fact, in the case that �x is a
total (linear) ordering it is not difficult to see that such a unique mapping
does indeed exist between the mass function and the appropriateness mea-
sures of basic labels. To see this suppose that we index the labels in LA so
that Ln �x Ln−1 �x . . . �x L1 with corresponding appropriateness measures
μLn(x) = an ≤ μLn−1(x) = an−1 ≤ . . . ≤ μL1(x) = a1. Now from the above
discussion we have that in this case the only possible values for Dx are from
the nested sequence of sets ∅, {L1}, {L1, L2}, . . . , {L1, . . . , Li}, . . . , {L1, . . . , Ln}.
This together with the constraints imposed by definition 5 that for each label
ai = μLi(x) =

∑
S:Li∈S mx(S) results in the following unique mass function:

mx := {L1, . . . , Ln} : an, . . . , {L1, . . . , Li} : ai − ai+1,

. . . , {L1} : a1 − a2, ∅ : 1 − a1

Hence, for �x a total ordering we see that μθ(x) can be determined as a function
of the appropriateness measure values μL(x) : L ∈ LA on the basic labels. For
an expression θ ∈ LE, this function is a composition of the above mapping,
in order to determine a unique mass function, and the consequent summing of
mass function values across λ(θ), as given in definition 5, to evaluate μθ(x). Al-
though functional in this case, the calculus for appropriateness measures cannot
be truth-functional in the sense of fuzzy logic since appropriateness measures
satisfy all the classical Boolean laws and a well known result due to Dubois and
Prade [2] shows that no truth-functional calculus can in general preserve all such
laws. For a more detailed discussion of the difference between functionality and
truth-functionality see Lawry [6]. The following theorem shows that in the case
where �x is a total ordering the max and min combination rules can be applied
in certain restricted cases:

Theorem 2. [5, 16]
Let LE∧,∨ ⊆ LE denote those expressions generated recursively from LA using
only the connectives ∧ and ∨. If the appropriateness measures on basic labels are
consistent with a total ordering �x on LA then ∀θ, ϕ ∈ LE∧,∨ it holds that:

μθ∧ϕ (x) = min (μθ (x) , μϕ (x)) , μθ∨ϕ (x) = max (μθ (x) , μϕ (x)) .

In the case that �x is only a partial ordering on LA then in general this does
not provide the agent with sufficient information to determine a unique mass
function from the appropriateness measure values on the basic labels. Instead,
further information is required for the agent to evaluate a mass function and
consequently the appropriateness of compound label expressions. In Lawry [7]
it is proposed that this additional information takes the form of conditional in-
dependence constraints imposed by a Bayesian network generated by �x. These
additional assumptions are then sufficient to determine mx uniquely. Details of
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this approach, however, are beyond the scope of this current paper. Instead in
the examples presented in the sequel we will assume that the ordering �x is
total.

4 Granular Models in Label Semantics

In label semantics information granules correspond to appropriateness measure
for a fixed expression i.e. an information granule is a function μθ : Ω → [0, 1] for
some label expression θ ∈ LE. In fact, within the scope of this definition we can
also use mass functions to represent information granules. Specifically, for a fixed
focal set F ⊆ LA an information granule may also be represented by the function
corresponding to the values of mx(F ) as x varies across Ω. To see this notice
that the value mx(F ) can also be represented by the appropriateness measure
μαF (x) where αF = (

∧
L∈F L) ∧ (

∧
L �∈F ¬L) is the label expression stating that

all and only the labels in F are appropriate. Hence, for a focal set F ⊆ LA the
corresponding information granule is the function μαF : Ω → [0, 1]. For example,
in figure 1 information granules are defined in terms of the appropriateness
measures for labels low, medium and high, represented by trapezoidal functions
of x ∈ Ω = [0, 30]. Assuming a total ordering �x on labels for all x ∈ Ω results in
mass functions mx for the focal sets F = {{l}, {l, m}, {m}, {m, h}, {h}}, shown
as triangular functions in figure 2. These triangular functions then correspond
to the information granules generated by the focal sets in F . The direct use of
focal sets as information granules in granular models can in some cases allow for
more straightforward information processing. In particular, note that the mass
function mx defines a probability distribution on Dx which can in turn make it
relatively straightforward to evaluate probability values from a granular model
based on such functions.
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Consider the following formalization of a simple modelling problem: Given
attributes x1, . . . , xk+1 with universes Ω1, . . . , Ωk+1 suppose that xk+1 is depen-
dent on x1, . . . , xk according to some functional mapping g : Ω1 × . . . × Ωk →
Ωk+1 (i.e. xk+1 = g(x1, . . . , xk)). In the case that Ωk+1 is finite then this
is referred to as a classification problem whereas if Ωk+1 is an infinite sub-
set of R (typically a closed interval) then it is referred to as a prediction or
regression problem. For a learning problem, information regarding this func-
tion is then provided by a training database containing vectors of input val-
ues together with their associated output. Let this database be denoted by
DB = {〈x1(i), . . . , xk(i), xk+1(i)〉 : i = 1, . . . , N}. For a more general modelling
problem information on g may take a variety of forms including qualitative in-
formation elicited from domain experts.

Label semantics can be used to represent linguistic rule based models which
provide an approximation ĝ of the underlying function mapping g. Here we con-
sider two such models; mass relations and linguistic decision trees. For both
these approaches we use appropriateness measures to define a set of labels de-
scribing each attribute LAj : j = 1, . . . , k + 1 with associated label expressions
LEj : j = 1, . . . , k + 1 and focal sets Fj : j = 1, . . . , k + 1. We will also de-
scribe how these models can be used within a hierarchical structure to provide
a decomposed model for high-dimensional mappings.

4.1 Mass Relational Models

If we consider the problem of describing an object or instance on the basis of
k attributes x1, . . . , xk then we need to jointly quantify the appropriateness of
labels in each of the associated labels sets LAj : j = 1, . . . , k to describe each
attribute. In other words, we need to define a joint mass function on Dx1 × . . .×
Dxk

mapping from F1 × . . .×Fk into [0, 1]. We refer to such joint mass functions
on label sets as a mass relations. Mass relations can be used to represent a
granular model of the function g. Typically, this is achieved by defining a mass
relation between input focal sets conditional on each of the output focal sets in
Fk+1. Together these can then be used to infer a mass functions on output focal
sets given a vector of input attribute values.

Definition 7. Mass Relations
A mass relation is a conditional function m : F1 × . . . × Fk → [0, 1] such that
for Fi ∈ Fi : i = 1, . . . , k + 1, m(F1, . . . , Fk|Fk+1) is the conditional joint mass
function value of the input focal sets F1, . . . , Fk given output focal set Fk+1. This
can be evaluated from a database DB according to:

m(F1, . . . , Fk|Fk+1) =

∑
i∈DB

∏k+1
j=1 mxj(i)(Fj)∑

i∈DB mxk+1(i)(Fk+1)

A set of mass relations conditional on each of the output focal sets in Fk+1
generates a set of weighted rules of the form:
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(Dx1 = F1) ∧ . . . ∧ (Dxk
= Fk) → (Dxk+1 = Fk+1) : w where

w = m(Fk+1|F1, . . . , Fk) =
m(F1, . . . , Fk|Fk+1)m(Fk+1)∑

Fk+1
m(F1, . . . , Fk|Fk+1)m(Fk+1)

and m(Fk+1) =
1
N

∑

i∈DB

mxk+1(i)(Fk+1).

Given a vector of input values x = 〈x1, . . . , xk〉 we can use Jeffrey’s rule [4] to
determine a mass function on the output focal sets Fk+1 from a mass relation
between F1 × . . . × Fk and Fk+1, as follows:

∀Fk+1 ∈ Fk+1 m(Fk+1|x) =
∑

F1∈F1

. . .
∑

Fk∈Fk

m(Fk+1|F1, . . . , Fk)mx(F1, . . . , Fk) where

mx(F1, . . . , Fk) =
k∏

i=1

mxi(Fi)

In practice it can be computationally expensive to calculate the mass relation
exactly and typically we need to use some form of approximation. One of the
simplest is to assume conditional independence between Dx1 , . . .Dxk

given the
values of Dxk+1 . In this case:

m(F1, . . . , Fk|Fk+1) =
k∏

i=1

m(Fi|Fk+1)

An extension to this approach involves searching for dependency groupings
amongst the attributes and assume conditional independence (given Fk+1) be-
tween these groups (see [14] for details).

Recent applications of mass relations have focussed on the area of flood pre-
diction where they have been used to model river flow [13] and also tidal surges
up to the Thames barrier in London [15].

4.2 Linguistic Decision Trees

A linguistic decision tree is a decision tree with attributes as nodes and linguistic
descriptions of attributes as branches. Also associated with each branch, there
is a mass function over the output focal sets.

Definition 8. Linguistic Decision Trees (LDT)
A linguistic decision tree is a decision tree where the nodes are attributes from
x1, . . . , xk and the edges are label expressions describing each attribute. More
formally, supposing that the j’th node at depth d is the attribute xjd

then there
is a set of label expressions Lj,d ⊆ LEi forming the edges from xjd

such that
λ(

∨
θ∈Lj,d

θ) ⊇ Fjd
and ∀θ, ϕ ∈ Lj,d λ(θ ∧ ϕ) ∩ Fjd

= ∅. Also a branch B from a
LDT consists of a sequence of expressions ϕ1, . . . , ϕm where ϕd ∈ Lj,d for some
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j ∈ N for d = 1, . . . , m, augmented by a conditional mass value m(Fk+1|B) for
every output focal set Fk+1 ∈ Fk+1. Hence, every branch B encodes a set of
weighted linguistic rules of the form:

(xj1 is ϕ1) ∧ . . . ∧ (xjm is ϕm) → (Dxk+1 = Fk+1) : m(Fk+1|B)
where xjd

is a depth d attribute node.

Also the mass assignment value m(Fk+1|B) can be determined from DB
according to:

m(Fk+1|B) =
∑

i∈DB mxk+1(i)(Fk+1)
∏m

d=1 μϕd
(xjd

(i))∑
i∈DB

∏m
d=1 μϕd

(xjd
(i))

Notice that a branch of a linguistic decision tree can be rewritten using the λ-
function so that it refers only to constraints on Dxi : i = 1, . . . , k. This means
that the rules generated by LDT branches are a more general form of the rules
generated by mass relations. For example, the branch rule

(xj1 is ϕ1) ∧ . . . ∧ (xjm is ϕm) → (Dxk+1 = Fk+1) : m(Fk+1|B)
can be rewritten as

(Dxj1
∈ λ(ϕ1)) ∧ . . . ∧ (Dxjm

∈ λ(ϕm)) → (Dxk+1 = Fk+1) : m(Fk+1|B)

Given a vector of input attribute values x = 〈x1, . . . , xk〉 we can use a LDT to
determine a mass function on output focal sets as follows: Suppose the LDT has
branches B1, . . . , Bt each with an associated mass function m(•|Bj) : j = 1, . . . , t

x1

x2 x3

LF1 LF2 LF3

LF4

LF5 LF6 LF7

{s}
s ∧ ¬l {s, l}

s ∧ l
l ∧ ¬s
{l}

{s}
s ∧ ¬l

{s, l}
s ∧ l

{l}
l ∧ ¬s

{s}
s ∧ ¬l

{s, l}
s ∧ l

{l}
l ∧ ¬s

m(•|B1) m(•|B2) m(•|B3)

m(•|B4)

m(•|B5) m(•|B6) m(•|B7)

Fig. 3. An example of a linguistic decision tree
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on Fk+1. By applying Jeffrey’s rule we obtain an aggregated mass function on
Fk+1 for a given input vector x according to:

m(Fk+1|x) =
t∑

j=1

m(Fk+1|Bj)P (Bj |x) where if

Bj = (xj1 is ϕ1) ∧ . . . ∧ (xjm is ϕm) then P (Bj |x) =
m∏

d=1

μϕd
(xjd

)

Notice that from a computational viewpoint the output mass function above is
determined from the LDT as a function of the input masses mx1 , . . . , mxk

only.
From this perspective a LDT can be viewed as a function mapping from mass
functions on the input attribute labels to a mass function on the output labels.

m(•|x) = LDT (mx1, . . . , mxk
)

Figure 3 shows an example of a simple linguistic decision tree involving only
three input attributes x1, x2 and x3. Each of these is described by the same
set of two overlapping labels LA = {small, large}, so that we have focal sets
{{s}, {s, l}, {l}}. Each branch in figure 3 is labelled with its associated linguistic
expressions together with their corresponding representation in terms of focal
sets. In this case all the linguistic expressions involved are atomic in nature so
that their λ-mappings contain only one focal set. For example, the branch B2
ending in the leaf node LF2 encodes the follow rules: For all Fk+1 ∈ Fk+1,

(x1 is s ∧ ¬l) ∧ (x2 is s ∧ l) → (Dxk+1 = Fk+1) : m(Fk+1|B2)

Now λ(s ∧ ¬l) = {{s}} and λ(s ∧ l) = {{s, l}} and hence the above rule has the
following focal set representation:

(Dx1 = {s}) ∧ (Dx2 = {s, l}) → (Dxk+1 = Fk+1) : m(Fk+1|B2)

Linguistic decision trees can be learnt from data using the LID3 algorithm
[12]. This is an extension of ID3 to allow for the type of calculations on mass
functions required for a LDT. Recent application of LID3 include classification
of radar images [9] and online path planning [17].

4.3 Linguistic Attribute Hierarchies

In many cases the function g is complex and it is difficult to define ĝ as a
direct mapping between x1, . . . , xk and xk+1. Attribute hierarchies [1] are a well
known approach to this problem and involve breaking down the function g into
a hierarchy of sub-functions each representing a new intermediate attribute. A
bottom-up description of this process is as follows: The set of original attributes
{x1, . . . , xk} are partitioned into attribute subsets S1, . . . , Sm and new attributes
z1, . . . zm are defined as functions of each partition set respectively, so that zi =
Gi(Si) for i = 1, . . . , m. The function g is then defined as a new function F of



100 J. Lawry

xk+1

ziz1 zm

SiS1 Sm

GiG1 Gm

F

Fig. 4. Attribute hierarchy showing partition of attributes

the new attributes z1, . . . zm, so that xk+1 = g(x1, . . . , xk) = F (z1, . . . , zm) =
F (G1(S1), . . . , F (Gm(Sm)). The same process can then be repeated recursively
for each partition set Si, to generate a new layer of new variables as required.

The identification of attribute hierarchies and their associated functional map-
pings is often a highly subjective process involving significant uncertainty and
imprecision. Hence, the relationship between certain levels in the hierarchy, can
best be described in terms of linguistic rules and relations. This can allow for
judgements and rankings to be made at a level of granularity appropriate to the
level of precision at which the functional mappings can be realistically defined.
In linguistic attribute hierarchies the functional mappings between parent and
child attribute nodes in the attribute hierarchy are defined in terms of weighted
linguistic rules (typically linguistic decision trees) which explicitly model both
the uncertainty and vagueness which often characterises our knowledge of such
aggregation functions.

In linguistic attribute hierarchies the functional relationship between child and
parent nodes are not defined precisely. Instead the labels for a parent attribute
are defined in terms of the labels describing the attributes corresponding to its
child nodes, by means of a linguistic decision tree. To illustrate this idea consider
the following simple linguistic attribute hierarchy as shown in figure 5. Here we
have 4 input attributes x1, . . . , x4 and output attribute x5, these being described
by label sets LA1, . . . , LA5 with focal sets F1, . . . , F5 respectively. The labels for
x5 are defined in terms of the labels for two intermediate level attributes z1 and
z2 by a linguistic decision tree LDT1. Let LAz1 , LAz2 and Fz1 , Fz2 be the labels
and focal sets for z1 and z2 respectively. Furthermore, the labels for z1 are defined
in terms of those for x1 and x2 according to linguistic decision tree LDT2, and
the labels for z2 are defined in terms of those for x3 and x4 according to linguistic
decision tree LDT3. Information is then propagated up through the hierarchy
as mass functions on the relevant focal sets. Specifically, LDT2 combines mass
functions on F1 and F2 in order to generate a mass function on Fz1 . Similarly
mass functions on F3 and F4 are combined using LDT3 to generate a mass
function on Fz2 . These two mass functions on Fz1 and Fz2 respectively are then
combined according to LDT1 in order to obtain a mass assignment on the output
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x5

z1
LDT1

z2

x1

LDT2

x2 x3

LDT3

x4

Fig. 5. Example of a simple linguistic attribute hierarchy

focal sets F5 conditional on the inputs. At the mass function level the complete
mapping is:

m(•|x1, . . . , x4) = LDT1(LDT2(mx1 , mx2), LDT3(mx3 , mx4))

5 Conclusions

An alternative perspective on granular modelling has been introduced where in-
formation granules encode the relationship between description labels and the
underlying perceptual domain. Label semantics has been introduced as a frame-
work for modelling linguistic vagueness and granularity. In this framework infor-
mation granules are appropriateness measures and mass functions which quantify
the appropriateness of label expressions to describe elements from the underly-
ing universe. Two types of granular models have been described; mass relations
and linguistic decision trees. These encode the relationship between labels on
input values and those on the output values in an imprecisely defined functional
mapping. In addition, we have shown how linguistic decision trees can be used
as part of attribute hierarchies to combine information in complex multi-level
composite mappings.
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Summary. Among modern applications of document retrieval, a practical system for
retrieving scientific publications has recently been attracting much attention from re-
search community. In a scientific document, there are many types of uncertainty infor-
mation occurring, such as research areas of the documents or authors. Thus, a method
for efficiently handling uncertainty information when retrieving scientific information,
as well as other kinds of uncertainty information, is currently desirable. In our pa-
per, we propose a novel fuzzy retrieval framework based on approximating reasoning
for document retrieval. We also discuss using approximating reasoning to discover ad-
ditional relations in the database to support more advanced search functions in an
intelligent information retrieval system. This paper also introduces an experimental
system implementing our proposed technique. The performance of the system is then
evaluated and analyzed.

1 Introduction

To help researchers retrieve documents effectively, there are many intelligent in-
formation systems or digital libraries [1] that have been developed for document
retrieval purpose. In typical document retrieval systems, some Boolean-based
query-to-document matching functions [2] are adopted to calculate the keywords
relevances. Since there is generally always some uncertainty information con-
cerning keywords or documents, fuzzy logic [3] is proposed to be incorporated
in document retrieval systems to better reflect queries and knowledge captured
in documents. There are various introduced approaches [4, 5] which have made
use of fuzzy query to enhance and improve document retrieval. Basically, a fuzzy
query is a query in which the keywords are associated with some membership
values [6]. Then, the membership values will be taken into account when the
systems calculate the relevances between documents and query keywords. As
such, the documents related to a query keyword with greater membership value
will be reasonably ranked higher when retrieved.

However, most of the existing techniques on fuzzy query only focus on fuzzi-
fying queries with membership values. That means, uncertainty information of
the stored documents has not been investigated and analyzed deeply to support

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 103–114, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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enhancing document retrieval. Thus, the accuracy and efficiency of these tech-
niques are still limited. In [7], there is an attempt to mine uncertainty information
from the Web documents to form a so-called fuzzy concept matrix, which makes
use of fuzzy logic to imply the similarities of concepts. However, such fuzzy
concept matrix is constructed based heavily on the rates from users. It makes
the fuzzy concept matrix construction time-consuming. Also, since most users
are not experts in the domains of the rated documents, the concept similarities
suggested by them may not be highly precise.

One of practical domains that highly involves uncertainty information is that
of scholarly publications. Currently, research and prototyping systems such as
the Institute for Scientific Information [8], Open Citation (OpCit) project [9],
and CiteSeer [10] have been developed to explore and retrieve scientific pub-
lications. However, these existing systems can only support some basic search
functions like search for documents or authors based on inputted keywords.
Meanwhile, uncertainty information stored in scientific documents should be
useful for user to further explore and retrieve scholarly knowledge to fulfill their
desired search requirement. For example, information on research areas of doc-
uments or researchers can help scholars effectively to find documents related to
their research or identify experts in certain domains. However, such uncertainty
information is not always explicitly available in a pre-defined database. It is also
quite difficult for the database constructor to infer such information manually
from raw data.

In this paper, we propose a fuzzy retrieval framework that applies approxi-
mating reasoning to overcome the discussed problems. The rest of paper is or-
ganized as follows. Section 2 introduces our proposed fuzzy retrieval framework.
Section 3 gives formal definitions of fuzzy representations of uncertainty objects
and queries. Section 4 presents fuzzy-based retrieval process, which consists of
two steps: proposition extraction and approximating reasoning. In Section 5, we
discuss using approximating reasoning for fuzzy-based additional relation discov-
ery in database. Section 6 presents an experimental system for fuzzy retrieval of
scientific documents. Finally, Section 7 concludes the paper.

2 Fuzzy Retrieval Framework

Figure 1 presents our proposed fuzzy retrieval framework. In the framework,
the knowledge to be inferred and retrieved (e.g. documents) is firstly stored in
a database called Fundamental Knowledge database. Like other typical infor-
mation retrieval systems, in order to support retrieving data effectively, some
Knowledge Discovery in Databases (KDD) techniques, or data mining tech-
niques, may be applied to mine additional hidden knowledge from the Fun-
damental Knowledge database. The mined knowledge is then stored in Mined
Knowledge database. Traditionally, the KDD technique often used in document
retrieval systems is clustering; and the mined knowledge is a set of document
clusters. However, in the scope of this paper, we do not focus on this KDD aspect
of the framework.
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Fig. 1. Fuzzy retrieval framework

In our context, we assume that uncertainty information occurs in both Funda-
mental Knowledge and Mined Knowledge databases. Thus, the Fuzzy Retrieval
process will be able to retrieve knowledge from fuzzy queries submitted by users.
Fuzzy Retrieval consists of two sub-processes: Proposition Extraction and Ap-
proximating Reasoning. Firstly, Proposition Extraction represents knowledge in
the databases as fuzzy retrieval rules. Subsequently, when a user submits a fuzzy
query, Approximating Reasoning is performed to identify the fuzzy retrieval rule
that best matches with the submitted query. Then the knowledge corresponding
to the identified rule will then be retrieved and returned to the user accordingly.

In addition, the framework also uses approximating reasoning in the Fuzzy-
based Additional Relation Discovery process to discover additional relations in
the databases. The discovered relations can be used to support more advanced
search functions using the same fuzzy retrieval mechanism discussed above.

3 Fuzzy Representations of Uncertainty Objects and
Queries

We recall the definition of a fuzzy set as follows.

Definition 1 (Fuzzy Set). A fuzzy set A on a domain U , is defined by a
membership function from U to [0.1], i.e. each item in A has a membership
value given by μ. We denote Φ(S) as a fuzzy set generated from a traditional set
of items S.

Based on the above basic definition of fuzzy set, we then construct definition on
fuzzy representation of an uncertainty object as follows.
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Definition 2 (Fuzzy Representation of Object). Each object O can be rep-
resented by a fuzzy set Φ(O) on a set of attributes A = {A1, A2, . . . , Am} as
Φ(O) = {A1(μ1), A2(μ2), . . . , Am(μn)} where μi is the membership of O with
attribute Ai. Φ(O) is called the fuzzy representation of O on A.

Example 1. Given a document D and a set of keywords K = {Data Mining,
Clustering, Fuzzy Logic}. The relevance degrees between D and each keyword in
K are respectively defined as fuzzy membership value of 0.8, 0.12 and 0.61. Thus,
the fuzzy representation of D on K is Φ(O)={Data Mining(0.8),Clustering(0.12),
Fuzzy Logic(0.61)}.

Similarly, we define a fuzzy representation of a set of objects as follows.

Definition 3 (Fuzzy Representation of a Set). Given a set of objects S =
{O1, O2, . . . , On}, the fuzzy representation of S on a set of attributes A is a
fuzzy set Φ(C) as Φ(C) = Φ(O1) ∩ Φ(O2) ∩ . . . Φ(On) where Φ(On) is a fuzzy
representation of Oi on A.

In our research, when performing clustering on the database, we have also stored
uncertainty information in the generated clusters. Each cluster can then be rep-
resented as a fuzzy representation on a set of keywords as stated in Definition 3.
Thus, such stored information could be used effectively for fuzzy retrieval in
which the submitted queries also contain uncertain requirements. This leads us
to the following definition of fuzzy query as follows.

Definition 4 (Fuzzy Query). A fuzzy query on a set of keywords K is the
fuzzy set Qf = Φ(K).

4 Fuzzy Retrieval

Typically, in order to retrieve appropriate documents from inputted queries, doc-
ument retrieval systems will first model the documents and queries as arithmetic
vectors, mostly tf · idf ones. Then, the retrieval process is performed based on
vector similarity calculation. However since this method does not employ fun-
damental principle of fuzzy logic, it has hardly fulfilled effectively jobs involving
uncertainty such as dealing with fuzzy query.

In this paper, we propose a new approach of using approximating reasoning to
perform retrieval from fuzzy queries. Generally, the retrieval process featured in
our approach consists of 2 processes: Proposition Extraction and Approximating
Reasoning.

4.1 Proposition Extraction

The proposition extraction step will represent each cluster of data as a fuzzy
proposition. The generated propositions will then be used for approximating
reasoning in order to retrieve information in the next step. Thus, each extracted
proposition is referred to as fuzzy retrieval rule.
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Theoretically, a proposition can be represented as a statement “x is A” where
x is a variable and A is a value. In fuzzy logic, a proposition can be represented
as a fuzzy set U , which implies “x is U ”. For reasoning, the proposition that
has widely been used in fuzzy logic is the “IF-THEN” proposition, which can be
represented as follows: IF <proposition> THEN <proposition>. Assume that
we have a cluster Ci that contains a set of objects {O1, O2, . . . , On}. Logically,
we can construct an “IF-THEN” proposition as follows: “IF x is O1 or x is O2
or . . . or x is On THEN x belongs to Ci”.

However, for retrieval purpose, we do need to represent proposition in a higher
uncertainty level. Since a cluster is a group of similar items, we should retrieve
a certain cluster as a result returned to a query, if the query relates to at least
an item in the cluster. Besides, there may be more than one clusters relating
to a certain query in various degrees of relevance, thus the fact “a query relates
to a cluster” is an uncertain statement. In that case, we need to represent the
following proposition: “IF query q relates to O1 or q relates to O2 or . . . or
q relates to On THEN C may relate to q”. Obviously, classical logic cannot
represent the proposition “C may relate to q”.

Theoretically, a proposition “q relates Oi”, where Oi is an object, can be
represented as P (Oi) = {Ai(μi1), Ai(μi2), . . . , Ai(μin)} , where {A1, A2, , Am} is
the set of attributes and μij is the membership of Oi with attribute Aj . Thus,
the IF proposition “IF query q relates to O1 or q relates to O2 or . . . or q relates
to On” can be represented as a fuzzy set Φ(O1) ∪ Φ(O2) ∪ . . . Φ(On).

Since the aim of the IF-THEN proposition is to conclude if a query relates
to clusters of objects, the THEN proposition should be a fuzzy set FS on the
domain DC , where DC is the set of clusters. The problem is how to calculate
the membership for each cluster Cj in DC when we construct the IF-THEN
proposition from a certain cluster Ci.

Since the membership value implies that “If a query q relates to Ci, then how
much does q relate to Cj”, the membership value of Cj in the THEN part of the
proposition should be the subsethood of Φ(Ci) of Φ(Cj).

Example 2. Given a dataset of three documents D1 = {Data Mining (0.8),
Clustering (0.12), Fuzzy Logic (0.61)}, D2 = {Data Mining (0.9), Cluster-
ing(0.85), Fuzzy Logic(0.13)} and D3 = {Data Mining (0.1), Clustering (0.14),
Fuzzy Logic (0.87)}, assume that the dataset can be clustered into two clus-
ters CK1 = {D1, D2} and CK2 = {D1, D3}. (It is noted that some soft-
clustering techniques allow an object belonging to more than one clusters).
Thus, two IF-THEN propositions for P1 and P2, are obtained respectively. Since
CK1 has two objects D1 and D2, the IF part of P1 can be represented as
P (D1)∪P (D2)= {Data Mining (0.8), Fuzzy Logic (0.61)}∪ {Data Mining (0.9),
Clustering (0.85)} = {Data Mining (0.9), Clustering (0.85), Fuzzy Logic (0.61)}.
Similarly, P2 has the IF part as {Data Mining (0.8), Fuzzy Logic (0.87)}. We
have subsethood(Φ(CK1), Φ(CK1)) = 1, subsethood(Φ(CK1), Φ(CK2)) = 0.41,
subsethood(Φ(CK2), (CK1)) = 0.42 and subsethood(Φ(CK2), Φ(CK2)) = 1.
Therefore, P1 is represented as a fuzzy rule: IF {Data Mining (0.9), Clustering
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(0.85), Fuzzy Logic (0.61)} THEN {CK1(1), CK2(0.41)}. Similarly, P2 is repre-
sented as IF{Data Mining (0.8), Fuzzy Logic (0.87)} THEN{CK1(0.42), CK2(1)}.

4.2 Approximating Reasoning

After the proposition extraction step, we have obtained a set of propositions
as fuzzy rules. The next step is to use the generated rules for retrieval using
approximating reasoning. For example, assume that we have a fuzzy rule “IF
x is A THEN y is B” where A and B are fuzzy sets. Then, if we have a new
proposition “x is A”, we need to find what conclusion we can get about y.

Theoretically, a proposition IF < FP1 > THEN < FP2 > where FP1 and
FP2 are two fuzzy propositions that can be interpreted as a relation connecting
FP1 and FP2. In classical propositional logic, the rule “IF x THEN y” means
“x implies y” and is written as x → y. When x and y are fuzzy propositions then
x → y is a fuzzy relation. There are several definitions for the fuzzy implication
relation (→) listed as follows:

• Dienes-Rescher Implication: μx→y = max[1 − μx(u), μy(v)]
• Zadeh Implication: μx→y = max[min[μx(u), μy(v)], 1 − μx(u)]
• Godel implication: μx→y = μx(u) ≤ μy(v)?1 : μy(v)
• Mamdami Implication: μx→y = min[μx(u), μy(v)]
• Larsen Implication: μx→y = μx(u) · μy(v)

where x and y are two propositions represented as two fuzzy sets on two domains
U and V ; u and v are two objects in U and V ; μx(u) and μy(v) are membership
values of u and v in x and y respectively.

Using such implications, we can construct the fuzzy relations R between
propositions in the IF part and the THEN part in an “IF-THEN” proposition.
Then, we can perform reasoning for new data object O. The conclusion is C such
that C = O · R. For example, using the Mamdami implication, we can construct
fuzzy relations for topic keywords and clusters from proposition P1 from 1 as

R1 =
Data Mining
Clustering

Fuzzy Logic

⎡

⎣
0.9 0.41
0.85 0.41
0.61 0.41

⎤

⎦

Assume that we have a query Q which can be represented as a fuzzy set of
keywords as Q = {Data Mining (0.45), Clustering (0.86), Fuzzy Logic (0.14)}.
The conclusion CQ1 of Q using proposition P1 with the Mamdami implication
is

CQ1 = QR1 = [0.45 0.86 0.14] •

⎡

⎣
0.9 0.41
0.85 0.41
0.61 0.41

⎤

⎦

= [0.85 0.41] = {CK1(0.85), CK2(0.41)}
Hence, the conclusion obtained is that the membership grade of Q on CK1 is

0.85 and on CK2 is 0.41. Since we can obtain a distinct proposition from each
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cluster, the final conclusion should be the union of conclusions obtained from the
propositions. From the above example, the fuzzy relation R2 can be constructed
from proposition P2 as

R2 =
Data Mining
Clustering

Fuzzy Logic

⎡

⎣
0.42 0.8
0.00 0.00
0.42 0.97

⎤

⎦

Therefore, the conclusion CQ2 given by P2 is

CQ2 = QR2 = [0.45 0.86 0.14] •

⎡

⎣
0.42 0.8
0.00 0.00
0.42 0.87

⎤

⎦

= [0.42 0.45] = {CK1(0.42), CK2(0.45)}
The final conclusion CQ is the union of CQ1 and CQ2 such that CQ =

{CK1(0.85), CK2(0.41)}∪{CK1(0.42), CK2(0.45)} = {CK1(0.85), CK2(0.45)}.
Hence, the final decision is that Q should relate to CK1, since CK1 is the se-
mantically closest cluster of Q. Thus, document in CK1 should be retrieved as
the answer set for query Q.

5 Fuzzy-Based Additional Relation Discovery

In the previous section, we have presented a fuzzy-based retrieval technique us-
ing approximating reasoning. The technique relies on the explicit information
stored in the database, for example the relations between documents and their
corresponding clusters. In this section, we discuss another application of ap-
proximating reasoning for discovering additional useful relations in database.
For example, the keywords extracted from document clusters can provide hints
to determine the areas of the documents. Thus, if we can discover the relations
between the document authors with the document clusters, we can identify re-
search areas of the authors. This kind of discovered relation can provide signif-
icant hints to recognize experts in research areas. To achieve this goal, we first
adopt the concept of fuzzy context [11] to represent data relations. First, we
define the cross relation between fuzzy contexts as follows.

Definition 5 (Fuzzy Context). A fuzzy context is a triple K = (G, M, I =
ϕ(G × M)) where G is a set of objects, M is a set of attributes, and I is a fuzzy
set on domain G×M . Each relation (g, m) ∈ I has a membership value μ(g, m)
in [0,1].

Example 3. Table 1 presents a fuzzy context representing relations between
documents and clusters. For instance, document D1 belongs to cluster CK1
with them membership value of 0.9.

Definition 6 (Cross Relation). The fuzzy formal context Ks = (Gs, Ms, Is)
is said to have a cross relation of to a fuzzy formal context Kt = (Gt, Mt, It) if
Ms = Gt.
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Table 1. A fuzzy context

CK1 CK2 CK3

D1 0.9 0.61 0.61
D2 0.85 - -
D3 - 0.87 0.87

Table 2. A fuzzy context having cross relation with the one in Table 1

D1 D2 D3

Author1 1.0 - 1.0
Author2 0.5 1.0 -

The cross relation represents an inter-context relation that probably occurs
between the fuzzy contexts when the set of objects of a context is regarded as
the set of attributes of an other contexts. For example, the context represented
by the cross table shown in Table 2 has cross relation with the context in Table
1, while the documents are used as attributes of the authors. The membership
value of 1.0 implies that the author is the first author of the document, while
0.5 implies that the author is the second author.

Definition 7 (Composed Context). Given a fuzzy formal context Ks =
(Gs, Ms, Is) that has cross relation with a fuzzy formal context Kt = (Ms, Mt, It),
the composed context of Ks and Kt is the fuzzy formal context Kst =(Gs, Mt, Ist

= Is · It).

For example, since the fuzzy formal context KC = (GC , MC , IC) given in Table 4
has a cross relation with the fuzzy formal context KA = (GA, MA, IA) given in
Table 2, we can generate the composed context KCA = (GCA, MCA, ICA) where

ICA = IC • IA =
[

1.0 0 1.0
0.5 1.0 0.87

]
•

⎡

⎣
0.9 0.61 0.61
0.85 0.00 0.00
0.00 0.87 0.87

⎤

⎦ =
[

0.9 0.87 0.87
0.85 0.5 0.5

]

Table 3 represents the composed context between the contexts represented in
Table 2 and Table 1, respectively. In the composed context, relations between
authors and research areas have the appropriate membership values that are
generated using fuzzy composition as discussed above. Based on the composed
context constructed, one can further perform fuzzy retrieval to support some
advanced search function like expert search, similar to what has been done in
Section 3 for document search. That is, users still input fuzzy queries indicating
the areas they want to find information. However, instead of returning infor-
mation on relevant documents, the system will answer the authors that have
much publications in the areas. These authors should be regarded as experts in
searched areas. For example, one can infer that Author1 should be an expert
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Table 3. The composed context of the fuzzy formal contexts given by Table 1 and
Table 2

CK1 CK2 CK3

Author1 0.9 0.87 0.87
Author2 0.85 0.5 0.5

in the research area represented by cluster CK2 due to its corresponding high
membership value in the composed context.

6 Performance Evaluation

We have developed an experimental system verify our proposed technique. We
have also evaluated the performance of our a system on a citation database. Our
system is enhanced from the PubSearch document retrieval system [12], which
has been developed previously at Nanyang Technological University, Singapore.

To construct the citation database, we have collected a set of 1400 scientific
documents on the research area “Information Retrieval” published in 1987-1997
from the Institute for Scientific Information’s (ISI) website . The downloaded
documents are preprocessed to extract related information such as the title, au-
thors, citation keywords, and other citation information. The extracted informa-
tion is then stored as a citation database. The membership value of a document
D on a citation keyword CK in Kf is computed as μ(D, CK) = n1

n2
; where n1

is the number of documents that cite D and contain CK , and n2 is the number
of documents that cite D. This formula is based on the premise that the more
frequent a keyword occurs in the citing paper, the more important the keyword
is in the cited paper.

From the constructed database enriched with fuzzy membership values, we
have implemented the features of fuzzy document retrieval and expert finding
as discussed in Section 3 and Section 4. Fuzzy queries are form based on an
interface developed to allow user to specify the fuzzy membership of each query
term. To evaluate the retrieval accuracy, we have manually classified documents
into groups based on their topics. Then, the significant keywords extracted from
each topic have been used as fuzzy queries. The membership values of each key-
words have been inferred based on their occurrences. We have used a confidence
threshold TC to filter the most significant keywords.

Figures 2(a–c) give the performance results based on precision, recall and F-
measure on both the crisp queries and fuzzy queries according to different values
of confidence thresholds TC varying from 0.0 (i.e. no confidence threshold used)
to 0.9. When TC is higher, the more keywords are filtered. From the figures,
the measured recall, precision and F-measure are significantly decreased when
TC is greater than 0.2, as many important keywords are filtered out after this
threshold. Figure 2(a) has shown that fuzzy queries have achieved slightly better
recall performance than the crisp queries. However, in Figure 2(b), fuzzy queries
have achieved significant improvement on precision performance and therefore
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Fig. 2. Performance results based on IR measures

the F-measure performance has significantly been improved as shown in Fig-
ure 2(c). It implies that the membership values used in fuzzy queries are useful
for determining the relevance of the retrieved documents.

Since precision and recall measure the accuracy and efficiency, it is also nec-
essary to compare the retrieval accuracy of our proposed approach with other
techniques that are commonly used in retrieval systems [13, 14, 15]. Four re-
trieval techniques are used for comparison. We have used two variations of the
k-nearest neighbor (kNN) technique. The first variation, denoted as kNN1, is
based on the normalized Euclidean distance for retrieval. The second, denoted
as kNN2, uses the fuzzy-trigram technique. In addition, we have also used two
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Table 4. Retrieval accuracy

Retrieval Technique Retrieval Accuracy
kNN1 81.4%
kNN2 77.6%
LVQ3 93.2%
KSOM 90.3%
Reasoning with Crisp Query 84.6%
Reasoning with Fuzzy Query 92.4%

artificial neural networks (ANNs). They are the supervised LVQ3 neural network
and the unsupervised KSOM.

Table 4 shows the retrieval accuracy performance. It has shown that when
fuzzy queries are used, the accuracy of the proposed approach has outperformed
the typical kNN technique and matched with the neural network techniques.
Thus, the proposed approach is not only able to preserve the accuracy but also
to improve the efficiency of the retrieval. Among the four techniques, LVQ3 has
achieved the best performance in terms of accuracy. However, as LVQ3 is a su-
pervised technique, it requires prior expert knowledge for training the network.
As such, it will pose a problem when dealing with large database containing un-
certain information. Although the proposed approach has achieved slightly less
accurate results compared with LVQ3, it can avoid the problem faced by LVQ3.

7 Conclusion

In this paper, we have presented a technique for fuzzy-based information retrieval
using approximating reasoning. In practical application of document retrieval,
our technique can be either directly applied to retrieve relevant documents for
fuzzy queries, or to discover additional relations on the database to support
higher level of retrieval, like search for experts in research areas. An experimental
system has also been implemented to evaluate the performance of our approach.
The initial results are mostly encouraging. We also use the feedback gathered
from users to refine our system. Further significant developments/findings will
be reported in due course. The work is presented in the context of scientific
document retrieval, but it could also be adapted to other types of uncertainty
documents, such as medical records, machine-fault records and legal documents.
This is because the basic principles are the same.
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Summary. The authors previous work on probabilistic constraint reasoning assumes
the uncertainty of numerical variables within given bounds, characterized by a priori
probability distributions. It propagates such knowledge through a network of con-
straints, reducing the uncertainty and providing a posteriori probability distributions.
An inverse problem aims at estimating parameters from observed data, based on some
underlying theory about a system behavior. This paper describes how nonlinear in-
verse problems can be cast into the probabilistic constraint framework, highlighting its
ability to deal with all the uncertainty aspects of such problems.

1 Introduction

Many problems of practical interest can be formulated as nonlinear inverse prob-
lems. Such problems aim at finding the parameters of a model, given by systems
of equations, from noisy data. Classical approaches for these problems are based
on nonlinear regression methods, which search for the model parameter values
that best-fit a given criterion [9]. Best-fit approaches, often based on local search
methods, provide a non reliable single solution which may not be enough to the
adequate characterization of the parameters.

Other stochastic approaches [16] associate a probabilistic model to the prob-
lem, from which is possible to obtain any sort of statistical information on the
model parameters. These approaches typically rely on extensive random sam-
pling to characterize the parameter space. However, even after intensive compu-
tations, no definitive conclusion can be drawn with these approaches, because a
significant subset of the parameter space may have been missed.

In contrast, bounded-error approaches [5, 4] aim at characterizing the set of
all solutions consistent with the uncertainty on the parameters, the model and
the data. This is achieved through constraint reasoning, where initial intervals,
representing the uncertainty on parameter values, are safely narrowed by reliable
interval methods. Nevertheless, this approach has a major pitfall as it considers
the same likelihood for all values in the intervals. In the interval computations
context a combination of intervals with probabilistic uncertainty was proposed
[6]. However, its dependence on a forward evaluation algorithm makes it unsuit-
able for inverse problems.

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 115–128, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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The authors previous proposal of a probabilistic constraint framework [2]
aims at computing an a posteriori distribution from an a priori distribution
accordingly to safe reasoning on a continuous constraint model. In this paper
we argue that such framework may constitute an attractive alternative approach
to inverse problems, bridging the gap between pure probabilistic reasoning and
pure safe reasoning.

The paper is organized as follows. In section 2 inverse problems are introduced.
In sections 3 and 4 the constraint programming framework and the basic ideas of
probabilistic reasoning are presented, together with their existing approaches to
inverse problems. Next probabilistic interval computations are briefly presented.
Section 6 describes the authors probabilistic constraint framework and highlights
its ability to deal with all the uncertainty aspects of inverse problems. Finally,
conclusions and future work are discussed.

2 Inverse Problems

A mathematical model describes a system by a set of variables and equations
that establish relationships between them. In the context of inverse problems, the
variables are divided into model parameters, whose values completely character-
ize the system, and observable parameters, which can be measured. The model is
typically a forward model, defining a mapping from the model parameters to the
observable parameters. It allows predicting the results of measurements based
on the model parameters. An inverse problem is the task of obtaining values for
the model parameters from the observed data.

The forward mapping, resulting from some theory about the system behavior,
is commonly represented as a vector function f from the parameter space m
(model parameters) to the data space d (observable parameters):

d = f(m) (1)

Such relation may be represented explicitly by an analytical formula or implicitly
by a complex system of equations or some special purpose algorithm.

Nonlinearity and uncertainty play a major role in modeling the behavior of
most real systems. In inverse problems the main sources of uncertainty are model
approximations and measurement errors. Given uncertainty, an inverse problem
may have no exact solutions, since usually there are no model parameter values
capable of predicting exactly all the observed data. However, since the model
equations are often highly nonlinear, uncertainty may be dramatically magnified,
and an arbitrarily small change in the data may induce an arbitrarily large
change in the values of the model parameters.

For example, consider the data summarized in Table 1 based on the USA
census over the years 1790 (normalized to 0) to 1910 with a 10 year period.

Assuming that an exponential growth is an acceptable model for the popu-
lation growth, the forward mapping would be defined by the following set of
equations (one for each pair 〈ti, di〉):
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Table 1. US Population (in millions) over the years 1790 (0) to 1910 (120)

ti 0 10 20 30 40 50 60 70 80 90 100 110 120
di 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 39.8 50.2 62.9 76.0 92.0

di = m0e
m1ti (2)

where m0 and m1 are the model parameters whose values must be estimated
from the observed data. This is an example of an inverse problem with a simple
nonlinear forward model but with no possible value combination for the model
parameters satisfying the observed data set.

This problem is classically handled as a curve fitting problem [9]. Such
approaches for nonlinear inverse problems are based on nonlinear regression
methods which search for the model parameter values that best-fit a given crite-
rion. For instance, the (weighted) least squares criterion minimizes a (weighted)
quadratic norm of the difference between the vector of observed data and the
vector of model predictions.

In the above example the weighted least squares criterion would be the mini-
mization of the expression:

∑

i

(
di − m0e

m1ti

σi

)2

(3)

where σi is the weight associated with the error of the ith observation.
The minimization criteria (such as the weighted least squares criterion) are

justified by the hypothesis that all problem uncertainties may be modeled using
some well behaved distributions (such as Gaussians) eventually with specific
parameter values for the different observations (the σi values). This is the case for
some linear or weakly nonlinear inverse problems, where efficient computational
techniques exist to solve them as curve fitting problems [9].

In generic nonlinear inverse problems, where no explicit formula can be pro-
vided for obtaining the best-fit values, minimization is often performed through
local search algorithms. However, the search method may stop at a local mini-
mum with no guarantees on the complete search space. Moreover, in most prob-
lems, a single best-fit solution may not be enough. Since other solutions could
also be quite satisfactory with respect to the adopted criterion, the uncertainty
around possible solutions should also be characterized. Analytic techniques can
only be used for this purpose relying on some special assumptions about the
model parameter distributions (for instance, assuming a single maximum). How-
ever, if the problem is highly nonlinear such assumptions do not provide realistic
approximations for the uncertainty.

3 Continuous Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) [10] is defined by a triple (X;D;C)
where X is a set of variables, each with an associated domain of possible
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values in D, and C is a set of constraints on subsets of the variables. A con-
straint specifies which values from the domains of its variables are compatible.
A solution to the CSP is an assignment of values to all its variables, which satis-
fies all the constraints. In continuous CSPs (CCSPs) [8, 1, 15] variable domains
are continuous real intervals and constraints are equalities and inequalities. The
space of possibilities is represented by boxes, i.e., the Cartesian product of real
intervals. The CCSP framework is powerful enough to model a wide range of
problems. In particular, engineering systems with components described as sets
of continuous valued variables and relations defined by numerical equalities or
inequalities, eventually with uncertain parameters. Continuous constraint rea-
soning eliminates value combinations from the initial search space (the Cartesian
product of the initial domains), without loosing solutions. It combines pruning
and branching steps until a stopping criterion is satisfied.

The pruning of the variable domains is based on constraint propagation. The
main idea is to use the partial information expressed by a constraint to eliminate
some incompatible values from the domain of its variables. Once the domain of
a variable is reduced, this information is propagated to all constraints with that
variable in their scopes. The process terminates when the domains cannot be
further reduced by any constraint. Safe narrowing functions (mappings between
boxes) are associated with constraints, to eliminate incompatible value combi-
nations. Efficient methods from interval analysis (e.g. the interval Newton [11])
are often used to implement efficient narrowing functions which are correct (do
not eliminate solutions) and contracting (the box obtained is smaller or equal
than the original one).

Constraint propagation is a local consistency algorithm for pruning the vari-
able domains, which is often insufficient to support safe decisions. To obtain
better pruning, it is necessary to split the boxes and reapply constraint prop-
agation to each sub-box. Such branch and prune process enforces a stronger,
non local, consistency criterion. Several consistency criteria have been proposed
[8, 1, 3], with distinct trade-offs between efficiency and pruning.

3.1 Constraint Approach to Inverse Problems

In the classical CCSP framework, the uncertainty associated with the problem is
modeled by using intervals to represent the domains of the variables. Constraint
reasoning reduces uncertainty, by reshaping the search space to become a safe
approximation of the solution space. Such framework, with its efficient techniques
to deal with nonlinear constraints and its safe uncertainty narrowing capabilities,
is naturally appealing to handle nonlinear inverse problems beyond the classical
best fitting methods.

The application of CCSPs in the context of inverse problems is known as
bounded-error estimation or set membership estimation [5, 4]. The idea is to
replace the search for a single best-fit solution (a parameter value combination)
with the characterization of the set of all solutions consistent with the forward
model, the uncertainty on the parameters and on the observations.
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In its simplest form, bounded-error estimation assumes initial intervals to
each problem variable, either a model or an observable parameter, and solve the
CCSP with the set of constraints representing the forward model. Such strategy
assumes prior knowledge on the acceptable parameter ranges as well as on the
uncertainty of (difference between) predicted and observed data.

From the safe approximation of the solution space, a projection on the set
of model parameters (or any subset of it) provides insight on the remaining
uncertainty about their possible value combinations. In practice, since the nar-
rowed ranges of the observable parameters are not essential, the variables that
represent them may be replaced by their respective initial intervals.

Applying bounded-error estimation to the inverse problem described in sec-
tion 2, it can be reformulated as a CCSP with the following set of constraints
(one for each pair 〈ti, di〉):

[di − δi, di + δi] � m0e
m1ti (4)

where δi is an acceptable difference between the ith observation and the respec-
tive predicted value, and m0 and m1 are the only variables of the constraint
model. The initial ranges for these variables should be provided within reason-
able bounds (I0 and I1) and represent the parameter uncertainty that will be
reduced through constraint reasoning. Figure 1 shows the approximation of the
solution space that is computed with I0 = [0, 100], I1 = [0.01, 0.1] and δi = 3 for
all observations presented in Table 1. From the figure, it is clear which combina-
tions of the model parameter values are consistent with the initial uncertainty
assumptions, the forward model and the observations.

m0

m .101
3

Fig. 1. Approximation of the CCSP solution space

The formulation of an inverse problem as a CCSP may easily accommodate
additional requirements, in the form of constraints, which are more difficult to
enforce in classical approaches. Moreover, the generality of this approach allows
its application to inverse problems whose forward model is not defined by an
explicit analytical formula but rather by a complex set of relations.

However, in many cases, safe reasoning is useless, intervals are often very wide,
and subsequent constraint propagation is not able to narrow them. In fact, an
uncertain value may range over a wide interval but a much narrower interval
may include the most likely values. In some problems, the plausibility distri-
bution of values within the bounds of an uncertain parameter is known. For
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instance, uncertainty due to measuring errors may be naturally associated with
an error distribution. However, the traditional CCSP framework cannot accom-
modate such information and thus, for each variable, all values in its domain are
considered equally plausible.

4 Probabilistic Reasoning

Probability provides a classical model for dealing with uncertainty. The basic
element of probability theory is the random variable, which plays a similar role
to that of the CSP variables. Each random variable has a domain where it can
assume values. In particular, continuous random variables assume real values. A
possible world, or atomic event, is an assignment of values to all the variables of
the model. An event is a set of possible worlds. The complete set of all possible
worlds in the model is the sample space. If all the random variables are con-
tinuous, the sample space is the hyperspace obtained by the Cartesian product
of the variable domains, and the possible worlds and events are, respectively,
points and regions from such hyperspace.

Probability measures may be associated with events. In the continuous case,
an assignment of a probability to a point, is representative of the likelihood in its
neighborhood. A probabilistic model is an encoding of probabilistic information,
allowing to compute the probability of any event, in accordance with the axioms
of probability. The usual method for specifying a probabilistic model assumes,
either explicitly or implicitly, a full joint probability distribution, which assigns
a probability measure to each possible world.

Probabilistic reasoning aims at incorporating new information, known as evi-
dence, by updating an a priori probability into an a posteriori probability given
the evidence. The a priori probability is a description of what is known in the
absence of the evidence. For incorporating this evidence, conditioning is used.
Conditional probability P (A|B) is the probability of some event A, given the oc-
currence of some other event B. The a posteriori probability is the conditional
probability when the relevant evidence is taken into account.

Probabilistic graphical models [7] (Markov networks and Bayesian networks
[13]) provide a powerful framework for efficient probabilistic reasoning. The idea
is to use a probabilistic network that captures the structural properties of the
probabilistic model (such as conditional independence) and defines an implicit
full joint probability distribution. Given new evidence (information about some
nodes), belief propagation [13] is one of the most efficient inference algorithms to
compute a posteriori probabilities for all the non-evidence nodes in the network.
However, such approaches, which require the full specification of a conditional
probability at each node of the network, are often inadequate for continuous
nonlinear problems.

4.1 Probabilistic Approach to Inverse Problems

Inverse problems are often handled by probabilistic approaches that associate an
explicit probabilistic model to the problem [16]. Prior information on the model
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parameters is represented by a probability distribution, which is transformed
into an a posteriori probability distribution, by incorporating a forward theory
(relating the model parameters to the observable parameters) and the actual
result of the observations (with their uncertainties).

On these approaches all the information related to inverse problems is de-
scribed using probability densities. The a posteriori probability density of the
model parameters σM (m) can be computed from these distributions. For exam-
ple, assuming linear data and model spaces this probability density is:

σM (m) = kρM (m)
∫

D

ρD(d)Θ(d,m)dd (5)

where k is a normalization constant and ρD(d), ρM (m) and Θ(d,m) are the
probability densities for the observable parameters, the model parameters and
the underlying theory.

σM (m) provides an explicit definition of a full joint probability distribution on
the model parameter space, from which is possible to obtain any sort of statistical
information on the model parameters compatible with the a priori uncertainty,
the theoretical information and the experimental results. In the particular case
where σM (m) is identically null, some incompatible assumptions were surely
made, indicating that uncertainty has been underestimated.

Only in very simple cases analytic techniques can be used to characterize
σM (m). In general, it is necessary to perform an extensive exploration of the
model space. When it is small, a systematic exploration may be achieved, com-
puting σM (m) at every point of a grid defined over the complete space. Usually,
such exploration cannot be systematic since too many points would have to be
evaluated, so it is replaced by a random (Monte Carlo) exploration. For a more
detailed description of these methods see [16, 12].

Nevertheless, only a number of discrete points of the continuous model space
is analyzed and the results must be extrapolated to characterize the overall un-
certainty. Such approach is highly dependent on the exploration length which, to
provide better uncertainty characterizations, need to be reinforced in highly non-
linear problems. Moreover, contrary to constraint reasoning approaches, these
probabilistic techniques cannot prune the search space based on model informa-
tion. Consequently the entire space is considered for exploration, independently
of its a posteriori probability distribution, which can have null values for incon-
sistent subregions.

5 Probabilistic Interval Computations

A combination of probabilistic and interval representations of uncertainty ap-
pears in [6]. This approach uses interval domains to represent the ranges of
possible values and allows the incorporation of extra information about their
probabilities. Such framework uses interval computations instead of the broader
paradigm of continuous constraint reasoning. It is specially suited for data
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processing problems, where an estimate for a quantity y must be computed,
applying a known deterministic algorithm f to the available estimates for other
quantities x1, . . . , xn.

y = f(x1, . . . , xn) (6)

Data processing problems arise naturally when the estimates for the quanti-
ties x1, . . . , xn come from direct measurements obtained by physical instruments
which provide upper bounds for the measurement errors, together with informa-
tion about the error probability distributions. Probabilistic interval computa-
tions provide an alternative approach when only partial information about error
distributions is available and standard statistical approaches [14] cannot be ap-
plied. It makes use of such partial information in the estimation of y. The idea is
to maintain intervals to represent possible values of variables as well as possible
values of parametric descriptors of their distributions (e.g., expected values).
During interval computations such intervals are maintained consistent by a step
by step evaluation process that extends basic interval arithmetic operations (see
[6] for details).

Contrary to constraint approaches, that are based on undirected relations,
this approach is highly dependent on the availability of a directed algorithm
f to compute the pretended information for y from the x1, . . . , xn estimates.
Clearly this is not the case for inverse problems where the model parameters are
not outputs but rather inputs of the forward model. So, to apply this approach,
it would be necessary to find a suitable analytical solution with respect to each
model parameter.

6 Probabilistic Constraint Reasoning

In [2] the authors proposed the Probabilistic Continuous Constraint Satisfaction
Problem (PCCSP) as an extension of a CCSP. A PCCSP is defined by (X;D;F;C),
where X is a set of continuous random variables, each with an associated inter-
val domain of possible values in D, distributed accordingly to the corresponding
probability density function (p.d.f.) in F, and C is a set of constraints on subsets
of the variables. Given a point in the domain of a random variable, its p.d.f. is
representative of the a priori probability in its neighborhood, without consider-
ing the relations between the variables. It is assumed that all relevant relations
between variables are expressed by the constraints of the model. Thus, when the
constraints are not accounted for, the variables are independent.

The initial search space represents a probability space, characterized by a
joint p.d.f. which, due to the independence assumption, is implicitly defined by
the product of the individual p.d.f.s of the random variables. In the process of
reducing uncertainty, there is a combination of continuous constraint reasoning
and probabilistic reasoning. While the first reduces uncertainty by reshaping the
search space, the second redefines the search space a priori probability distribu-
tion by computing an a posteriori distribution, based on the constraint reasoning
outcome.
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The constraints are the new information that is incorporated in the proba-
bilistic model. The solution space is the event containing all possible worlds that
satisfy the constraints. Through constraint reasoning an approximation (enclo-
sure) of the solution space is obtained. Therefore the a posteriori probability
is computed as a conditional probability, given the evidence represented by the
approximation of the solution space. This probability is calculated by the con-
ditional probability rule P (A|B) = P (A ∩ B)/P (B). The probability of region
A given the evidence, is the probability of the subregion of A contained in the
approximation of the solution space, divided by a normalizing factor.

The quality of the solution space approximation depends on the consistency
and stopping criteria used in the constraint reasoning process. Regions of the
search space that were not pruned during constraint reasoning may contain solu-
tions, although there is no guaranty that they do. In fact, there is no knowledge
why such regions are maintained. Was it due to lack of further exploration of
this regions or did they contain solutions? Normally, the process of constraint
reasoning, leads to non uniform sizes of the boxes that represent the solution
space approximation. Nevertheless, for reasoning with probabilistic information,
some kind of fairness in the exploration of the search space must be guaranteed,
so that the obtained a posteriori distribution is not biased by heterogeneous
search.

In the PCCSP, the stopping criterion is based on the maximum width ε1
allowed for the intervals that constitute a box. A box is no further explored
when all its intervals are smaller or equal to ε1. When all the boxes meet this
criterion the search stops. The stopping criterion assures some uniformity of
the solution space approximation. However, due to the consistency enforcement
narrowing capability, which differs between distinct regions of the search space,
some heterogeneity is still present.

To maintain a generic non parametric representation of the a posteriori
marginal p.d.f.s, some kind of discretization must be assumed. This is achieved
by considering an ε2-hypergrid, i.e., a grid where the dimension is the number
n of variables in the PCCSP, and each grid unit (hypercube) has width ε2 in all
dimensions. The hypergrid allows to transform the non uniform solution space
approximation, resulting from constraint reasoning, in a uniform one, provid-
ing a fair computation of the marginal p.d.f.s. The transformation is achieved
by overlaying the hypergrid upon the solution space approximation, enforcing a
snap to grid to this region. The new approximation is the set of grid hypercubes
that intersect with the original approximation, producing a set of uniform boxes.
Figure 2 illustrates the described reasoning process.

Once obtained the solution space approximation as a set SS of ε2-hypergrid
boxes, algorithm 1 calculates and returns the marginal a posteriori p.d.f. of a
set of m variables (where m ≤ n), discretized accordingly to the ε2-hypergrid.
For that purpose the algorithm maintains a m-dimensional matrix M , where
each dimension corresponds to a variable. In the algorithm, Hbox[i] and Gbox[i]
are the ith intervals of the boxes (Cartesian product of n intervals). Given two
intervals I1 = [l1, r1] and I2 = [l2, r2], the union hull I1 � I2 is the interval
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Fig. 2. Process of probabilistic constraint reasoning. (a) Initial search space and so-
lution space; (b) Solution space approximation; (c) Hypergrid and a priori marginal
p.d.f.s; (d) Snap to grid and a posteriori marginal p.d.f.s.

[min(l1, l2), max(r1, r2)]. Hbox is a box where each interval is the union hull of the
respective intervals of all the boxes in SS, i.e. is the smallest box enclosing all the
boxes in SS (line 2). The length of each dimension is the number of ε2 segments in
which the corresponding variable domain can be divided (line 3). Each matrix cell
thus obtained is initialized to zero (line 4) and its probability value is computed
by summing up the contribution of all hypercubes (boxes) that are aligned with
that cell (line 5-9), normalized by the sum of all hypercube contributions (lines 1,
10, 12). Due to the independence assumption, the contribution of an hypercube
is the product of each variable contribution, i.e., the integral of its a priori p.d.f.
(fi), within the respective box interval (line 8).

Algorithm 1. Calculates marginal a posteriori p.d.f.
function marginalAPosterioriPDF (SS, ε, m)
1: accum ← 0
2: Hbox ← �SS
3: ∀1≤i≤m li ← Hbox[i].width/ε
4: ∀1≤i1<l1 . . . ∀1≤im<lm M [i1] . . . [im] ← 0
5: while SS �= � do
6: Gbox ← remove(SS)
7: ∀1≤i≤m ji ← (Gbox[i].left − Hbox[i].left)/ε

8: pbox =
n∏

i=1

∫ Gbox[i].right

Gbox[i].left

fi(xi)dxi

9: M [j1] . . . [jm] ← M [j1] . . . [jm] + pbox

10: accum ← accum + pbox

11: end while
12: ∀1≤i1<n1 . . . ∀1≤im<nm M [i1] . . . [im] ← M [i1] . . . [im]/accum
13: return M

6.1 Probabilistic Constraint Approach to Inverse Problems

The application of PCCSPs in the context of inverse problems, based on
bounded-error estimation, assumes both prior knowledge on the acceptable pa-
rameter ranges and on the uncertainty about the difference between predicted
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Fig. 3. Exponential model. (a) Joint p.d.f.; (b)(c) marginal p.d.f.s.

and observed data. This knowledge is expressed, respectively, by intervals and
explicit a priori probability distributions within such intervals. If prior informa-
tion is unavailable uniform distributions are considered.

When solving the PCCSP, where the set of constraints represents the forward
model, a safe approximation of the solution space is obtained, and a projection
on the set of model parameters (or any subset of it) provides insight on the a
posteriori distribution of the resulting narrowed ranges.

In this approach, data parameters cannot be replaced by their respective
initial intervals because it is necessary to keep track of their p.d.f.s for computing
the a posteriori distributions. However, as long as the model parameters are the
only shared variables between constraints, the contribution of each constraint, on
the model parameters a posteriori distribution, may be independently computed
and incrementally combined.

Consider again the inverse problem presented in section 2. Suppose that be-
sides accepting a difference δi between the ith observation and the respective
predicted value, a p.d.f. ρi(di) is associated to the acceptable interval represent-
ing the prior information on such difference. The initial ranges and respective
p.d.f.s (possibly uniform distributions) must also be provided for the model pa-
rameters m0 and m1, characterizing the full a priori joint p.d.f.. In this case,
the inverse problem may be reformulated as a PCCSP with the following set of
constraints (one for each pair 〈ti, di〉):

di = m0e
m1ti (7)

where m0, m1 and d0, . . . , d12 are the variables of the constraint model. The
a posteriori distribution of the model parameters is computed by solving the
PCCSP (projecting the results with respect to m0 and m1).

Figure 3 shows the a posteriori distribution of the model parameters that
is computed with the initial ranges defined in subsection 3.1 and assuming a
priori uniform distributions for the model parameters and triangular distribu-
tions (centered in di) for the observable parameters. Besides identifying which
value combinations of m0 and m1 are consistent, figure 3(a) illustrates its joint
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Fig. 4. Logistic model. (a)(b)(c) marginal p.d.f.s.

probability distribution, allowing to identify regions of maximum likelihood. Fig-
ures 3(b) and 3(c) are projections on m0 and m1 showing the a posteriori prob-
ability computed for each of the model parameters.

If a logistic model is considered, instead of an exponential model for the
population growth, its reformulation as a PCCSP should keep the observable
variables but satisfy a new set of constraints (one for each pair 〈ti, di〉):

di =
m2

1 + m0e−m1ti
(8)

where m0, m1 and m2 are the variables of the constraint model representing the
model parameters. Figure 4 presents the marginal a posteriori distributions for
each model parameter computed from the joint p.d.f. (with equal assumptions
on the observed parameters uncertainty and with initially uniformly distributed
I0 = [10, 100], I1 = [0.02, 0.05] and I2 = [100, 400]).

The PCCSP associated with a given inverse problem can be easily extended to
make predictions on the outcomes of new measurements. For this purpose a new
constraint for each new measurement should be included in the model. Such con-
straints, similar to the other constraints representing the forward model, should
include new unknown observable parameters (initially unbounded and uniformly
distributed). A posteriori distributions for these new variables can be computed
by solving the PCCSP and projecting the results with respect to each of them.
Figure 5 illustrates the predictions for the population size in 1920 (ti = 130) in
the previous problem with both, the exponential model (figure 5(a)) and the logis-
tic model (figure 5(b)). Note that the real observed value for the population size in
1920 was 106.0 (not shown in table 1) which is in accordance with the predictions
of the logistic model, but outside the bounds predicted by the exponential model.

An insight about the quality of a particular model for a specific inverse prob-
lem may be achieved by analyzing the maximum likelihood regions. The obtained
a posteriori marginal p.d.f. for the model parameters provides valuable informa-
tion for inspecting the quality of a particular model. Not only it allows easy
identification of maximum likelihood regions as peaks of such p.d.f., but also
displays the complete shape of the uncertainty dispersion showing, for instance,
if it is unimodal.
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Fig. 5. Expected US population in 1920. (a) Exponential and (b) logistic models.

In the presented example, given the unimodality of the a posteriori p.d.f.s
for both models, a quantitative measure of their quality may be obtained by
evaluating any numerical best-fit criterion (see section 2) at their maximum
likelihood points. The boxes that enclose such points for the exponential and
the logistic models are, respectively, 〈[6.159, 6.160], [0.022770, 0.022771]〉 and
〈[45, 46], [0.0318, 0.0319], [181, 182]〉. The least squares criterion (formula 3 with
σi = 1) evaluated at this boxes results, respectively, in I1 = [24.6, 18341.6] and
I2 = [0.1, 11.8]. Since the maximum likelihood points are included in those boxes
and any value of I2 is smaller than any value of I1, according to the chosen cri-
terion, the logistic model is a better representation for the population growth
than the exponential model.

7 Conclusions and Future Work

This paper describes how inverse problems can be cast into the probabilistic con-
tinuous constraint framework. The approach introduces new expressive power for
modeling the underlying theory about the system behavior and produces appeal-
ing graphical results for representing the uncertainty on model parameters and
predictions on measurement outcomes. However, it seems to be more adequate to
handle inverse problems with a reduced number of parameters. This is particu-
larly true when the model is highly nonlinear, in which case, a smaller granularity
is required for pruning the search space. To address the scalability of the ap-
proach further experimentation must be done on more realistic inverse problems.
Furthermore, we intend to develop an interactive prototype, to improve usability
and fully explore the framework capabilities.
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Summary. Many multiple attribute decision analysis (MADA) problems are charac-
terised by both quantitative and qualitative attributes with various types of uncertain-
ties. Incompleteness (or ignorance) and vagueness (or fuzziness) are among the most
common uncertainties in decision analysis. The evidential reasoning (ER) and the in-
terval grade evidential reasoning (IER) approaches have been developed in recent years
to support the solution of MADA problems with interval uncertainties and local igno-
rance in decision analysis. In this paper, the ER approach is enhanced to deal with
both interval uncertainty and fuzzy beliefs in assessing alternatives on an attribute. In
this newly developed FIER approach, local ignorance and grade fuzziness are modelled
under the integrated framework of a distributed fuzzy belief structure, leading to a
fuzzy belief decision matrix. A numerical example is provided to illustrate the detailed
implementation process of the FIER approach and its validity and applicability.

1 Introduction

Many real world multiple attribute decision analysis (MADA) problems are
characterised with both quantitative and qualitative attributes. In many cir-
cumstances, the attributes, especially qualitative ones, could only be properly
assessed using human judgments, which are subjective in nature and are in-
evitably associated with uncertainties caused due to either or both of the fol-
lowing two phenomenon:

(i) Human being’s inability to provide complete judgments, or the lack of in-
formation, which is referred to as “ignorance” (incompleteness);

(ii) The vagueness of meanings about attributes and their assessments, which is
referred to as “fuzziness” (vagueness).

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 129–140, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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For decades, many MADA methods have been developed, such as the well-
know Analytical Hierarchy Process (AHP) [10] and Multiple Attribute Utility
Theory [8, 4]. as well as their extensions [1, 2, 11, 7]. In those methods, MADA
problems are modelled using decision matrices, in which an alternative is as-
sessed on each attribute by either a single real number or an interval value.
Unfortunately, in many decision situations using a single number or interval to
represent a judgement proves to be difficult and may be unacceptable. Informa-
tion may be lost or distorted in the process of pre-aggregating different types
of information, such as a subjective judgement, a probability distribution, or an
incomplete piece of information.

Concerning the fuzziness of MADA problems, a large amount of fuzzy MADA
methods have been proposed in the literature [3, 15, 16, 17, 9, 6, 13]. Nevertheless,
these pure fuzzy MADA approaches are essentially based on traditional evaluation
methods and are unable to handle probabilistic uncertainties such as ignorance.

Different from the traditional MADA methods, the Evidential Reasoning (ER)
approach [21, 20, 19, 23, 24], which is the combination of the D-S theory [12] with
a distributed modelling framework, shed a new line to modelling complex MADA
problems. The ER approach uses a distributed modelling framework, in which
each attribute is accessed using a set of collectively exhaustive and mutually ex-
clusive assessment grades. Probabilistic uncertainty including local and global ig-
norance is characterized by a belief structure in the ER approach, which can both
model precise data and capture various types of uncertainties such as probabilities
and vagueness in subjective judgments. Along with the application of ER mod-
elling, experiences show that decision maker may not always be confident enough
to provide subjective assessments to individual grades only, but at times wishes to
be able to assess beliefs to sub-sets of adjacent grades. Such ignorance is referred
to as local ignorance or interval uncertainty. It is to deal with the local ignorance
that the interval grade ER (IER) approach is proposed [14]. Another extension to
the basic ER approach is to take account of vagueness or fuzzy uncertainty, i.e.
the assessment grades are no longer clearly distinctive crisp sets, but are defined
as dependent fuzzy sets. In other words, the intersection of two fuzzy sets may not
be empty. Yang et al [22] proposed the fuzzy ER approach.

The aim of this paper is to integrate the main features of the above two
approaches, and develop a general ER modelling framework and an attribute
aggregation process, referred to as the fuzzy IER (FIER) algorithm, in order to
deal with both fuzzy and interval grade assessments in MADA and provide a
more powerful means to support the solution of complex MADA problems.

2 The FIER Approach for MADA under Fuzzy
Uncertainty

2.1 The New FIER Distributed Modelling Framework using the
Fuzzy Belief Structure

Suppose a MADA problem has M alternatives al, l = 1, ..., M , one upper
level attribute, referred to as general attribute, and L lower level attributes
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ei, i = 1, ..., L, called basic attributes. The relative weights of the L basic at-
tributes are denoted by W = (w1, ..., wL), which are known and satisfy the
conditions 0 ≤ wi ≤ 1 and

∑L
i=1 wi = 1.

Suppose M alternatives are all assessed using a pre-defined set H . In basic ER
methodology, set H is defined as a union of N assessment grades Hp, p = 1, ..., N ,
which are mutually exclusive and collectively exhaustive for the assessment of
all attributes, and the whole set H1N as follows:

H = {H1, H2, ..., HN , H1N} (1)

According to [14], in the IER (Interval grade ER) methodology, the perfor-
mances of alternatives can be assessed to an individual grade or a grade interval,
the complete set of all individual grades and grade intervals, for assessing each
attribute can be represented by

H =

⎧
⎪⎪⎨

⎪⎪⎩

H11 H12 . . . H1N

H22 . . . H2N

. . . . . .
HNN

⎫
⎪⎪⎬

⎪⎪⎭
(2)

where Hpp, p = 1, ..., N in formula (2) denotes an individual grade. Hpq, p =
1, ..., N, q = p+1, ..., N denotes the interval grade which is the union of individual
grades Hpp, H(p+1)(p+1), ..., Hqq.

In the basic ER as well as the IER approach introduced above, all individual
and interval assessment grades are assumed to be crisp and independent of each
other. However, there are occasions where an assessment grade may represent a
vague concept or standard and there may be no clear cut between the meanings
of two adjacent grades. In this paper, we will drop the above assumption and
allow grades to be vague and adjacent grades to be dependent. To simplify the
discussion and without loss of generality, fuzzy sets will be used to characterize
vague assessment grades and it is assumed that only two adjacent fuzzy grades
have the overlap of meanings. This represents the most common features of fuzzy
uncertainty in decision analysis.

In order to generalize the Hpq, p = 1, ..., N, q = p, ..., N to fuzzy sets, we as-
sume that a general set of fuzzy individual assessment grades {Hpq}, p = 1, ..., N
are dependent on each other, which may be assumed to be either triangular or
trapezoidal fuzzy sets or their combinations for simplifying the discussion and
without loss of generality. Assuming that only two adjacent fuzzy individual as-
sessment grades may intersect, we denote by {Hp∧(p+1)}, p = 1, ..., N − 1 the
fuzzy intersection subset of the two adjacent fuzzy individual assessment grades
Hpp and H(p+1)(p+1)(Fig. 1).

Furthermore, we define the sets Hpq, p = 1, ..., N, q = p, ..., N as trape-
zoidal fuzzy sets which include individual grades Hpp, H(p+1)(p+1), ..., Hqq. If
these individual assessment grades are triangular or trapezoidal fuzzy sets, ev-
ery interval grade will be a trapezoidal fuzzy set (Fig. 1b). And we also define
{Hp∧(p+1)}, p = 1, ..., N − 1 as the fuzzy intersection subset of the two adja-
cent fuzzy interval assessment grades Hkp and H(p+1)q, where k ≤ p, q ≥ p + 1
(Fig. 2).
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Finally, the generalized fuzzy assessment set can be defined as follows.

H = HF = {Hpq, p = 1, ..., N, q = p, ..., N} ∪ {Hp∧q, p = 1, ..., N − 1} (3)

where Hpq is a fuzzy set and Hp∧(p+1) is the intersection of two adjacent fuzzy
sets Hkp and H(p+1)q, where k ≤ p, q ≥ p + 1.

The assessment of an alternative on attribute is then given by

S(al) = {C, βi(C)); C ∈ H, i = 1, ..., L} (4)

where
∑

C∈H βi(C) = 1, for i = 1, ..., L holds.
The mass functions are defined as follows:

mi(C) = wiβi(C), i = 1, ..., L, C �= Ø, C ∈ H (5)

mi(Ø) = 0 (6)

mi(U) = 1 − wi, i = 1, ..., L (7)

where mi(U) in equation (7) is the remaining probability mass that is unas-
signed to any evaluation grades in set H after only attribute i has been taken
into account. In other words, mi(U) represents the remaining role that other
attributes can play in the assessment. mi(U) should eventually be assigned back
to set H , in a way that is dependent upon the importance of other attributes.

2.2 The New FIER Algorithm under Both Interval Probabilistic
and Fuzzy Uncertainties

Based on the fuzzy assessment set HF , a FIER (Fuzzy Interval grade ER) recur-
sive algorithm is developed as follows using the similar technique used in [21, 22].

m̃I(1)(Hpq) = m1(Hpq), p = 1, ..., N, q = p, ..., N (8)

m̃I(1)(Hp∧(p+1)) = 0, p = 1, ..., N − 1 (9)

m̃I(1)(U) = m1(U) (10)

m̃I(i+1)(Hpq) = −m̃I(i)(Hpq)mi+1(Hpq)

+
p∑

k=1

N∑

l=q

[m̃I(i)(Hkl)mi+1(Hpq) + m̃I(i)(Hpq)mi+1(Hkl)]

+
p−1∑

k=1

N∑

l=q+1

[m̃I(i)(Hkq)mi+1(Hpl) + m̃I(i)(Hpl)mi+1(Hkq)]

+m̃I(i)(U)mi+1(Hpq) + m̃I(i)(Hpq)mi+1(U),
p = 1, ..., N, q = p, ..., N (11)
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�mI(i+1)(Hp∧(p+1)) =
p�

k=1

N�
q=p+1

[�mI(i)(Hkp)mi+1(H(p+1)q) + �mI(i)(H(p+1)q)mi+1(Hkp)]

+
p+1�
k=1

N�
l=p,l≥k

�mI(i)(Hp∧(p+1))mi+1(Hkl) + �mI(i)(Hp∧(p+1))mi+1(U)

p = 1, ..., N − 1 (12)

m̃I(i+1)(U) = m̃I(i)(U)mi+1(U) =
i+1∏

l=1

ml(U) (13)

K = 1/[
N∑

p=1

N∑

q=p

m̃I(L)(Hpq) +
N−1∑

p=1

μmax
p∧(p+1) · m̃I(L)(Hp∧(p+1)) + m̃I(L)(U)] (14)

m(Hpq) = K · m̃I(L)(Hpq) (15)

m(Hp∧(p+1)) = K · μmax
p∧(p+1) · m̃I(L)(Hpq) (16)

m(U) = K · m̃I(L)(U), p = 1, ..., N, q = p, ..., N (17)

After the L attributes have been combined one-by-one using the above FIER
algorithm, the overall assessment of an alternative al can be obtained as:

β(Hpq) =
m(Hpq)

1 − m(U)
, p = 1, ..., N, q = p, ..., N (18)

Fig. 1. Fuzzy sets definitions
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β(Hp∧(p+1)) =
m(Hp∧(p+1))

1 − m(U)
, p = 1, ..., N, q = p, ..., N − 1 (19)

Fig. 2. Intersections between fuzzy assessment grades

3 Fuzzy Expected Utilities for Characterising
Alternatives

Utility is one of the most important concepts in decision analysis. In fuzzy
MADA, however, utilities corresponding to fuzzy assessment grades can no longer
be represented by singleton numerical values because the evaluation grades are
fuzzy sets. In general, a fuzzy grade utility should have the same form as its
corresponding fuzzy assessment grade. For example, if a fuzzy assessment grade
is a triangular fuzzy number, its corresponding fuzzy grade utility should also
be a triangular fuzzy number. In the FIER methodology according to the defini-
tions of fuzzy grades in section 2.1, the utility values of an interval fuzzy grade
can be calculated from the utility values of the correspondent fuzzy individual
grades as shown in Fig. 3. According to the basic ER methodology, the fuzzy
expected utility of an aggregated assessment S(y(al)) for alternative al is defined
as follows:

u(S(y(al))) =
N∑

p=1

N∑

q=p

β(Hpq)u(Hpq) +
N−1∑

p=1

β(Hp∧(p+1))u(Hp∧(p+1)) (20)
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where u(Hpq) is the fuzzy grade utility of the assessment grade Hpq, and
u(Hp∧(p+1)) is the fuzzy grade utility of the intersection fuzzy grade set Hp∧(p+1).
Without loss of generality, for p = 1, ..., N −1, suppose u(Hpp) is the utility value
of the grade Hpp with u(H(p+1)(p+1)) ≥ u(Hpp) as it is assumed that the grade
H(p+1)(p+1) is preferred to Hpp. Suppose H11 is the least preferred fuzzy as-
sessment grade, which has the lowest fuzzy grade utility, and HNN is the most
preferred fuzzy assessment grade, which has the highest fuzzy grade utility. Sup-
pose u(Hpq) can take the lower bound value, the upper bound value and the two
most possible values as umin(Hpq), umax(Hpq),uMPV 1(Hpq) and uMPV 2(Hpq)
(uMPV 1(Hpq) ≤ uMPV 2(Hpq)) respectively if all grade sets are triangular or
trapezoidal fuzzy sets. It is straightforward that the following equations hold
according to the relationships of individual and interval grade sets:

umin(Hpq) = umin(Hpp) (21)

umax(Hpq) = umax(Hqq) (22)

uMPV 1(Hpq) = uMPV 1(Hpp) (23)

uMPV 2(Hpq) = uMPV 2(Hqq) (24)

where in equation (22), the belief degree β(Hpq) could be assigned to the best
grade in the interval grade Hpq, which is Hqq, and also can be assigned to the
worst grade Hpp as shown in equation (21).

Similarly, suppose u(Hp∧(p+1)) can take the lower bound value, the upper
bound value and the two most possible values as umin(Hp∧(p+1)), umax(Hp∧(p+1)),
uMP1(Hp∧(p+1)) and uMP2(Hp∧(p+1)) respectively, note uMP1(Hp∧(p+1)) =
uMP2(Hp

�
(p+1)), and the following equations hold:

Fig. 3. The utility of fuzzy grades
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umin(Hp∧(p+1)) = umin(H(p+1)(p+1)) (25)

umax(Hp∧(p+1)) = umax(Hpp) (26)

Accordingly, the fuzzy expected utility is also a fuzzy number. From equations
(20-26), the maximum utility value of alternative could be calculated as:

umax(al) =
N∑

p=1

N∑

q=p

β(Hpq)umax(Hqq) +
N−1∑

p=1

β(Hp∧(p+1))umax(Hpp) (27)

Similarly, in the worst case, if the uncertainty turned out to be against the
assessed alternative, with the belief degree β(Hpq) being assigned to Hpp (the
worst grade in the interval grade), then the minimum utility value would be
given by:

umin(al) =
N∑

p=1

N∑

q=p

β(Hpq)umin(Hpp)+
N−1∑

p=1

β(Hp∧(p+1))umin(H(p+1(p+1)) (28)

We can also define the two most possible utilities and their average value as
follows:

uMPV 1(al) =
N∑

p=1

N∑

q=p

β(Hpq)uMPV 1(Hpp)+
N−1∑

p=1

β(Hp∧(p+1))uMPV 1(H(p+1(p+1))

(29)

uMPV 2(al) =
N∑

p=1

N∑

q=p

β(Hpq)uMPV 2(Hqq)+
N−1∑

p=1

β(Hp∧(p+1))uMPV 2(H(p+1(p+1))

(30)

uAV G−MPV (al) =
uMPV 1(al) + uMPV 2(al)

2
(31)

4 Application of the FIER Approach to a New Product
Screening Problem

The company concerned is an electronic manufacturer, which manufactures a
wide range of electronic entertainment products. Every year, the company iden-
tifies market requirements and comes up with a list of potential product devel-
opment projects. Suppose there are three new computer game projects available:
Motor Cycling, Sport Bass Fishin’ and Play TV Baseball. However, at a pre-
liminary design phase, the assessment of a project on multiple criteria is mainly
based on experts’ subject judgments. Experts’ opinions may be expressed by be-
lief degrees (or possibility measures) based on basic evaluation grades, i.e. Bad,
Poor, Average, Good, and Excellent. As such, the basic evaluation grade set can
be defined as a set H as follows:
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H = {H11, H22, H33, H44, H55} = {Bad, Poor, Average, Good, Excellent}
Due to the high level of uncertainty involved in this NPD problem, however,

these evaluation grades may not be regarded as crisp sets. For example, it is
difficult to separate the grade Bad from the grade Poor especially if evaluations
need to be given between these two grades. Also it is not surprising that for some
evaluations the experts prefer to give the belief degree measures on interval
grades. For example, the TIMING for Sport Bass Fishin’ is (H34, 1.0), which
means that means that 100% belief is given to interval grade H34, i.e. the worst
assessment for Sport Bass Fishin’ on TIMING is Average and the highest is
Good. However, the exact belief degree to each of the two grades is not known.
In a similar way, the incomplete opinions of the experts in evaluating this NPD
problem can be captured conveniently by the following fuzzy evaluation grades.

H = HF = {Hpq, p = 1, ..., 5, q = p, ..., 5} ∪ {Hp∧(p+1), p = 1, ..., 4}
Based on the experts’ opinions, we can approximate all the five individual

assessment grades by either triangular or trapezoidal fuzzy numbers as shown
in table 3, and the maximum degree of membership for every fuzzy intersection
set is 0.5.

By using our proposed FIER methodology, the aggregated performance dis-
tribution of all the three alternative projects can be calculated. The expected
maximum and minimum utilities can also be calculated according to formulae
(27)-(31), as shown in table 5. A final rank order can be obtained as follows.

Sport Bass Fishin’ is possibly better than Motor Cycling and Play TV Base-
ball according to the average MPV values of all the three projects presented.
However, it is obviously that Sport Bass Fishin’ does not absolutely dominate
the other two projects. This is because

umin(SportBassF isin′) = 0.3878 < umax(MotorCycling) = 0.7420
< umax(PlayTV Baseball) = 0.7406

While in the sense of MPV dominance, we can obtain:

uMPV 1(SportBassF ishin′) = 0.5686 > uMPV 2(MotorCycling) = 0.5425

This means that Sport Bass Fishin’ is preferred to Motor Cycling in the sense
of MPV dominance, or

Sport Bass Fishin’ �MPV Motor Cycling.

Table 1. Membership functions of the fuzzy assessment grades and their fuzzy utilities

Linguistic term Worst(W) Poor(P) Average(A) Good(G) Excellent(E)

Membership
functions of
fuzzy grade utili-
ties

(0, 0, 0.2) (0, 0.2, 0.4) (0.2, 0.4, 0.6,0.8) (0.6, 0.8, 1) (0.8, 1, 1)
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Table 2. Belief Matrix of the Performance Assessment Problem

Criteria Weights Motor Cycling Sport Bass
Fishin’

Play TV Base-
ball

TIMING 0.1 {(H44, 1.0)} {(H34, 1.0) } {(H12, 1.0)}
PRICE 0.1 {(H11, 1.0)} {(H44, 0.9),

(H15, 0.1)}
{(H45,0.9),
(H15, 0.1)}

LOGISTICS 0.05 {(H44, 1.0)} {(H45, 1.0)} {(H45, 1.0)}
SALES 0.02 {(H33, 1.0)} {(H33, 1.0)} {(H22, 1.0)}
MFGTECH 0.02 {(H44, 1.0)} {(H33, 0.6),

(H44, 0.4)}
{(H22,1.0)}

MFGCAP 0.02 {(H44, 1.0)} {(H44, 1.0)} {(H45, 1.0)}
SUPPLY 0.05 {(H34, 1.0)} {(H34, 1.0)} {(H45, 1.0)}
DESIGN 0.1 {(H11, 1.0)} {(H44, 0.8),

(H15, 0.2)}
{(H45, 0.8),
(H15,0.2)}

DIFFADV 0.08 {(H11, 1.0)} {(H55, 1.0)} {(H55, 1.0)}
PAYOFFS 0.08 {(H11, 1.0)} {(H44, 0.8),

(H15, 0.2)}
(H45,0.8),
(H15, 0.2)

LOSSES 0.08 (H44, 1.0) (H22, 0.9),
(H15, 0.1)

(H23, 0.9),
(H15, 0.1)

R&DUNC 0.25 {(H34, 1.0)} {(H34, 0.9),
(H15,0.1)}

{(H12, 0.8),
(H15, 0.2)}

NONR&D 0.05 {(H44, 1.0)} {(H33, 0.8),
(H15,0.2)}

{(H12, 0.8),
(H15, 0.2)}

Table 3. Fuzzy expected utilities and ranking order of alternatives

Fuzzy expected utility
Lower
bound

Most possible value Upper
bound

Avg.
of MPV

Motor Cycling 0.2910 0.4273 0.5425 0.7420 0.4849
Sport Bass Fishin’ 0.3878 0.5686 0.7809 0.9433 0.6747
Play TV Baseball 0.2831 0.3960 0.6458 0.7406 0.5209

5 Concluding Remarks

Incompleteness and fuzziness are among the most common uncertainties in com-
plex MADA problems. The new development as reported in this paper further
extends the capability of the ER approach to utilise information with both local
ignorance or interval uncertainty and fuzzy linguistic evaluation grades. Expert
judgements can be captured by our proposed FIER method in such a convenient
way that the evaluations made by experts, which are incomplete and fuzzy in
nature, do not need to be converted to some strictly defined formats that may
inevitably lead to the loss of important information, as shown in some classical



The Evidential Reasoning Approach for Multi-attribute Decision Analysis 139

MADA methods. In this sense, our FIER method can be used to deal with vari-
ous types of uncertainties to help the DMs in making more informative decisions.

Similar with the previous ER approach, this FIER method is aimed to gen-
erate the preference orders of alternatives without having to gather perfect or
complete information as is often done in real life decision making. However, the
results obtained using the new methods may be an incomplete preference order
as well due to the incompleteness and fuzziness in initial data, as illustrated in
the example. In such cases, more information may be needed to support specific
decision making such as finding a single winner in a performance assessment
problem. Further research is needed to investigate the process of information
gathering for sensitivity analysis.
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Summary. Although fuzzy set and probability theories are complementary for deal-
ing with pervasive imprecision and uncertainty in real world problems, object-oriented
database models combining the relevance and strength of both the theories appear to
be sporadic. This paper introduces our extension of Eiter et al.’s probabilistic object
base model with two key features: (1) uncertain and imprecise attribute values are rep-
resented as probability distributions on a set of fuzzy set values; and (2) class methods
with uncertain and imprecise input and output arguments are formally integrated into
the new model. A probabilistic interpretation of relations on fuzzy set values is pro-
posed for their combination with probability degrees. Then the syntax and semantics of
fuzzy-probabilistic object base schemas, instances, and selection operation are defined.
Furthermore, the soft computing paradigm needs to have real systems implemented
to be useful in practice. This paper also presents our development of FPDB4O as a
management system for fuzzy and probabilistic object bases of the proposed model.

1 Introduction

For modelling real-world problems and constructing intelligent systems, integra-
tion of different methodologies and techniques has been the quest and focus of
significant interdisciplinary research effort. The advantages of such a hybrid sys-
tem are that the strengths of its partners are combined and complementary to
each other’s weakness.

In particular, object orientation provides a hierarchical data abstraction
scheme and an information hiding and inheritance mechanism. Meanwhile, prob-
ability theory and fuzzy logic provide measures and rules for representing and
reasoning with uncertainty and imprecision in the real world. Many uncertain
and fuzzy object-oriented data models have been proposed and developed (cf.
[24], [6], [5], [9], [11]).

The key issues in research on extending the classical object-oriented data
models to deal with uncertainty and imprecision in the real world are:

1. Modelling partial subclass relationship.
2. Definition of partial class membership.
3. Representation of uncertain and/or imprecise attribute values.
4. Representation and execution of class methods.

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 141–159, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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5. Expression of partial applicability of class properties.
6. Mechanism for inheritance under uncertainty and imprecision.

This paper focuses on the first four issues only.
Regarding partial subclass relationship, there are models defining inclusion

degrees between classes ([15], [23], [24]). However, as discussed in [1], a set of
classes with a graded inclusion or inheritance relation actually forms a network
rather than a hierarchy, because if a class A has some inclusion degree to a
class B based on a fuzzy matching of their descriptions, then B usually also has
some inclusion degree to A. Moreover, naturally, a concept is usually classified
into sub-concepts that are totally subsumed by it, though the sub-concepts can
overlap each other (cf. [12]).

Uncertain and imprecise attribute values lead to partial membership of an
object to a class, and there are different measures proposed. In [25], for instance,
a membership function on a set of objects was defined for each class. In [6],
linguistic labels were used to express the strength of the link of an object to
a class. In [12], membership was defined as similarity degrees between objects
and classes. Meanwhile, [5] mentioned different measures, including probabilistic
one, to be used for membership degrees. Nevertheless, it is to be answered how
measures of different meanings, such as possibility and probability, on various
levels of a model are integrated coherently.

Most of the works on fuzzy object-oriented data models, which are referred
in this paper, were mainly based on fuzzy set and possibility theories and used
fuzzy sets or possibility distributions to represent imprecise attribute values. In
[6] and [5], the authors also modelled uncertainty about an attribute having a
particular value. However, much less concern was given for uncertainty over a
set of values of an attribute and a foundation to combine probability degrees
and fuzzy sets in the same model.

While class attributes were paid much attention and treatment, class meth-
ods, as common in object-oriented systems for modelling object behaviours and
parameterized properties, were often neglected. In [12] and [5] methods were
not considered. The authors of [6] mentioned about methods but did not pro-
vide formal representation and explicit manipulation in their model. In [25] and
[9] methods were formally defined as Horn clauses and executed as a reasoning
process, but those models were thus deductive in contrast to imperative ones.

Recently, [10] reviewed existing proposals and presented recommendations for
the application of fuzzy set theory in a flexible generalized object model. Fur-
thermore, [11] focused on representing data as constraints on object attributes
and query answering as constraint satisfaction. For realization of fuzzy object-
oriented data models, [4] was concerned with implementation of their model on
an existing platform.

Meanwhile, [13] introduced a probabilistic model to handle object bases with
uncertainty, called POB (Probabilistic Object Bases). For a POB class hierarchy,
although a class was assumed to be fully included in its super-classes, the model
specified the conditional probability for an object of a class belonging to each of
its subclasses. Intuitively, it specified how likely an object of a class belonged to a
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subclass of that class. Accordingly, the partial class membership was measured by
probability degrees. For each attribute of an object, uncertainty about its value
was represented by lower bound and upper bound probability distributions on
a set of values. The authors also developed a full-fledged algebra to query and
operate on object bases.

However, the two major shortcomings of the POB model are: (1) it does not
allow imprecise attribute values; and (2) it does not consider class methods. For
instance, in the Plant example therein, the values of the attribute sun light are
chosen to be only enumerated symbols such as mild, medium, and heavy without
any interpretation. Meanwhile, in practice, those values are inherently vague and
imprecise over degrees of sun light. Moreover, without an interpretation, they
cannot be measured and their probability distributions calculated.

Since fuzzy set theory and fuzzy logic provide a basis for defining the se-
mantics of, and computing with, linguistic terms ([26]), [8] has applied them to
extend the POB model to represent and compute with imprecise attribute val-
ues, called FPOB (Fuzzy Probabilistic Object Bases). For instance, the values
mild, medium, and heavy of the attribute sun light above could be defined by
fuzzy sets. In this paper, as a further extension of FPOB, we integrate class
methods into the model.

We argue that, due to complexities of theoretical foundation and practical
implementation, no model would be so universal that could include all measures
and tackle all aspects of uncertainty and imprecision. Our work is thus not to
supersede previous models, but rather to complement them to deal with certain
facets of the complex real world. Moreover, the soft computing paradigm needs
to have real systems implemented to be useful in practice. So, we have devel-
oped FPDB4O as a management system for FPOB, to be used for real world
applications.

As a basis for combining probabilities and fuzzy sets, Section 2 introduces
a probabilistic interpretation of relations on fuzzy sets and an abstract algebra
on fuzzy probabilistic triples. Sections 3 and 4 extend the notions of FPOB
types, schemas, and instances with class methods. Section 5 presents the syntax
and semantics of FPOB selection operation under imprecision and uncertainty.
Section 6 describes FPDB4O with run examples. Finally, Section 7 concludes
the paper and suggests further research.

2 Combination of Probabilities and Fuzzy Sets

2.1 Probabilistic Interpretation of Relations on Fuzzy Sets

In this work, for combining fuzzy set values with probabilities, we apply the
voting model interpretation of fuzzy sets ([14], [2]). That is, given a fuzzy set A
on a domain U, each voter has a subset of U as his/her own crisp definition of
the concept that A represents. The membership function value μA(u) is then the
proportion of voters whose crisp definitions include u. This model defines a mass
assignment (i.e., probability distribution) on the power set of U, where the mass
(i.e., probability value) assigned to a subset of U is the proportion of voters who
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have that subset as a crisp definition for the fuzzy concept A. As such, this mass
assignment corresponds to a family of probability distributions on U. We now
introduce a probabilistic interpretation of the following binary relations on fuzzy
sets. We write Pr(E1 | E2) to denote the conditional probability of E1 given E2.

Definition 1. Let A be a fuzzy set on a domain U, B be a fuzzy set on a domain
V, and θ be a binary relation from {=, �=, ≤, <, ⊆, ∈} assumed to be valid on
(U ×V ). The probabilistic interpretation of a relation A θ B, denoted by prob(A
θ B), is a value in [0, 1] that is defined by ΣS⊆U,T⊆V Pr(uθv | u ∈ S, v ∈
T ).mA(S).mB(T ).

Intuitively, given fuzzy propositions x ∈ A and y ∈ B, prob(A θ B) is the proba-
bility for x θ y being true. The rationale of the above probabilistic interpretation
is that, given each crisp definition S of A and T of B, the conditional probability
u θ v given u ∈ S and v ∈ T is calculated and weighted by the product of the
masses associated with S and T . Then prob(A θ B) is the sum of those weighted
conditional probability values.

Definition 2. Let A and B be two fuzzy sets on a domain U . The probabilistic
interpretation of the relation A → B, denoted by prob(A → B), is a value in [0,
1] that is defined by ΣS,T⊆U Pr(u ∈ T | u ∈ S).mA(S).mB(T ).

The intuitive meaning of prob(A → B) is that it is the probability for x ∈ B being
true given x ∈ A being true. In other words, it is the fuzzy conditional probability
of x ∈ B given x ∈ A. We note that the above probabilistic interpretation can
also be adapted for fuzzy sets on continuous domains, using integration instead
of addition, as in the definition of fuzzy conditional probability in [3].

2.2 Algebra on Fuzzy Probabilistic Triples

For representing uncertainty about the value of an attribute in POB, [13] intro-
duced the notion of probabilistic triples. In FPOB, [8] has extended that notion
to be fuzzy probabilistic triples with fuzzy set values.

Definition 3. Let dom(τ) be the set of values of a type τ . A fuzzy probabilistic
triple of type τ is defined to be of the form 〈V, α, β〉, where V ∈ dom(τ) and α
and β are lower and upper bound probability distributions on V .

Intuitively, if the value of an attribute is uncertainly defined by 〈V, α, β〉 then,
for each v ∈ V , the probability for that attribute taking the certain value v
is between α(v) and β(v). A single and certain value v could be considered as
a special fuzzy probabilistic triple, written as 〈{v}, u, u〉 where u denotes the
uniform distribution, i.e., u(v) = 1.

Example 1. Suppose that the time it takes to send a letter by express air-
mail from Saigon to Hanoi is about 48 or 72 hours with a probability be-
tween .4 and .6. Then, it can be represented by the fuzzy probabilistic triple
〈{about 48, about 72}, .8u, 1.2u〉, where about 48 and about 72 are linguistic
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labels of fuzzy sets, u is the uniform distribution, and .8u and 1.2u denote the
distribution functions .8u(x) = .8/2 = .4 and 1.2u(x) = 1.2/2 = .6 for every x
from about 48, about 72.

In this work, for introducing methods into the FPOB model, we define an ab-
stract algebra with operations on fuzzy probabilistic triples. We employ alterna-
tive probabilistic combination strategies in [18] and [13], where ⊗ and ⊕ denote
alternative conjunction and disjunction operators, respectively.

Definition 4. Let VVV = {〈V, α, β〉 | V ⊆ dom(τ)} be a non-empty set of fuzzy
probabilistic triples of type τ . If A = (dom(τ), o1, o2, . . . , on) is a fuzzy set algebra
with operations o1, o2, . . . , on on dom(τ), then AAA = (VVV , o1, o2 , . . . , on) is a fuzzy
probabilistic triple algebra, in which the operations o1, o2 , . . . , on on VVV are derived
from A as follows:

(i) oi (〈V1, α1, β1〉 , 〈V2, α2, β2〉 , . . . , 〈Vmi , αmi , βmi〉) = 〈V, α, β〉 ,
where V = {v = oi(v1, v2, . . . , vmi) | vj ∈ Vj, for j from 1 to mi, and

(ii) [α(v), β(v)] = ⊕me v1∈V1,v2∈V2,...,vmi
∈Vmi

,v=oi(v1,v2,...,vmi
)[α1(v1), β1(v1)]

⊗[α2(v2), β2(v2)] ⊗ . . . ⊗ [αmi(vmi), βmi(vmi)], for every v ∈ V .

In the definition of [α(v), β(v)] above, since there can be more than one tuple
(v1, v2, . . . , vmi) such that v = oi(v1, v2, . . . , vmi), the probabilistic conjunctions
of those tuples have to be aggregated. This is in agreement with [22]. Also,
obviously, the algebra AAA has similar properties as the algebra A. For example,
if oi’s are commutative in A, then so are oi ’s in AAA.

Example 2. Let {real} denote the fuzzy real number type, VVV = {〈V, α, β〉 | V ⊆
dom({real})} be the set of fuzzy probabilistic triples of type {real}, and A =
(dom({real}), +, ×) be an algebra on dom({real}) with two fuzzy arithmetic
operations + and × using the extension principle ([17]). That is, each v ∈ V is
a fuzzy set on real numbers. Then AAA = (VVV , +, ×) is an algebra on VVV with two
operations + and × defined as follows, where ⊕me denotes the mutual exclusion
conjunction operator:

(i) 〈V1, α1, β1〉 + 〈V2, α2, β2〉 = 〈V, α, β〉, where V = {v = v1 + v2 | v1 ∈ V1,
v2 ∈ V2} and (v1 + v2)(z) = supz=x+ymin[v1(x), v2(y)], for all real num-
bers x, y, z, and [α(v), β(v)] = ⊕me v1∈V1,v2∈V2,v=v1+v2 [α1(v1), β1(v1)] ⊗
[α2(v2), β2(v2)], for every v ∈ V .

(ii) 〈V1, α1, β1〉 × 〈V2, α2, β2〉 = 〈V, α, β〉, where V = {v = v1 × v2 | v1 ∈ V1,
v2 ∈ V2} and (v1 × v2)(z) = supz=x×ymin[v1(x), v2(y)], for all real num-
bers x, y, z, and [α(v), β(v)] = ⊕me v1∈V1,v2∈V2,v=v1×v2 [α1(v1), β1(v1)] ⊗
[α2(v2), β2(v2)], for every v ∈ V .

3 Fuzzy and Probabilistic Object Properties

3.1 FPOB Class Hierarchy

For FPOB we use the same definition of class hierarchy as for POB. Figure 1
shows an example FPOB hierarchy of postal packages that are classified as being
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either letters, boxes, or tubes and, alternatively, as being normal or priority ones.
Those subclasses of a class that are connected to a d node are mutually disjoint
(i.e., an object cannot belong to any two of them at the same time) and they form
a cluster of that class. In this example, the class PACKAGE has two clusters,
namely LETTER, BOX, TUBE and NORMAL, PRIORITY. A value in [0, 1]
associated with the link between a class and one of its immediate subclasses
represents the probability for an object of the class belonging to that subclass.

Fig. 1. An example FPOB class hierarchy

3.2 FPOB Attributes and Methods

As in the classical object-oriented model, in [8] each class in FPOB is charac-
terized by a number of attributes whose values are of particular types, including
fuzzy set types. Here, we extend that FPOB model further with methods, and
use the common term property to refer to both attributes and methods. Each
property has its type and value. For a method, its type and value are those of its
output, which is defined as a function of the input arguments of the method. For
a unified treatment of attributes and methods, an attribute could be considered
as a special method with a fixed output, having no input argument. Alterna-
tively, a method could be considered as a parameterized attribute, whose value
depends on its input arguments. The following definitions and examples explain
these ideas.

Definition 5. Let PPP be a set of properties and TTT be a set of atomic types. Then
types are inductively defined as follows:

(i) Every atomic type from TTT is a type.
(ii) If τ is a type, then {τ} is the fuzzy set type of τ .
(iii) If P1, P2, . . . , Pk are pairwise different properties from PPP , τ1, τ2, . . . , τk, and

τij’s, for every i from 1 to k and j from 1 to ni, are types, then τ =
[P1(τ11, τ12, . . . , τ1n1) : τ1, P2(τ21, τ22, . . . , τ2n2) : τ2, . . . , Pk(τk1, τk2, . . . ,
τknk

) : τk] is the tuple type over {P1, P2, . . . , Pk}. One writes τ.Pi to de-
note τi, and P1, P2, . . . , Pk are called top-level properties of τ .

In the definition above, τij ’s represent the types of the input arguments of Pi

when it is a method, and they are null when it is an attribute. However, τij ’s can
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also be omitted when it is not necessary to mention them in a certain context.
Each type has a domain of its values as defined below (cf. [13], [8]).

Definition 6. Let every atomic type τ ∈ TTT be associated with a domain dom(τ).
Then values are defined by induction as follows:

(i) For every τ ∈ TTT , every v ∈ dom(τ) is a value of type τ .
(ii) For every τ ∈ TTT , every fuzzy set on dom(τ) is a value of type {τ}.
(iii) If P1, P2, . . . , Pk are pairwise different properties from PPP and v1, v2, . . . ,

vk are values of types τ1, τ2, . . . , τk, then [P1 : v1, P2 : v2, . . . , Pk : vk] is a
value of type [P1 : τ1, P2 : τ2, . . . , Pk : τk].

Regarding fuzzy set values, we recall that a crisp set, or a single value, on a
domain U could be considered as a special fuzzy set on U . As such, all values
of a type could be treated uniformly as fuzzy sets of that type. Therefore, the
FPOB model includes the classical object base model as a special case.

In [8], imprecision of attribute values is expressed by fuzzy sets. Meanwhile,
uncertainty of attribute values is expressed by probabilistic triples. Here, that
imprecision and uncertainty modelling is extended for values of input and output
arguments of a method as well.

Definition 7. Let P1, P2, . . . , Pk be pairwise different properties from PPP, Vi and
Vij be finite sets of values of types τi and τij, [αi, βi] and [αij , βij ] be pairs of prob-
ability distributions over Vi and Vij , for every i from 1 to k and j from 1 to ni.
Then fptv=[P1(〈V11, α11, β11〉, 〈V12, α12, β12〉,. . . ,〈V1n1 , α1n1 , β1n1〉) :〈V1, α1, β1〉,
P2(〈V21, α21, β21〉, 〈V22, α22, β22〉, ..., 〈V2n2 , α2n2 , β2n2〉) : 〈V2, α2, β2〉, . . . ,
Pk(〈Vk1, αk1, βk1〉,〈Vk2, αk2, βk2〉,. . . ,〈Vknk

, αknk
, βknk

〉):〈Vk, αk, βk〉] is a fuzzy-
probabilistic tuple value of type [P1(τ11, τ12, . . . , τ1n1) : τ1, P2(τ21, τ22, . . . , τ2n2) :
τ2, . . . , Pk(τk1, τk2, . . . , τknk

) : τk] over {P1, P2, . . . , Pk}. One writes fptv.Pi to
denote 〈Vi , αi , βi〉.

As such, a method could be considered as a function whose input and output
arguments take fuzzy probabilistic triple values.

3.3 FPOB Schema

FPOB schemas are now defined as follows, extending the definitions in [13] and
[8] with methods.

Definition 8. An FPOB schema is a hextuple (CCC,τ, ⇒, me, p, f ) where:

(i) CCC is a finite set of classes.
(ii) τ maps each class to a tuple type τ(c) representing the properties and their

types of that class.
(iii) ⇒ is a binary relation on CCC such that (CCC , ⇒) is a directed acyclic graph,

whereby each edge c1 ⇒ c2 means c1 is an immediate subclass of c2.
(iv) me maps each class c ∈ CCC to a partition of the set of all immediate subclasses

of c, such that the classes in each cluster of the partition me(c) are mutually
disjoint.
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(v) p maps each edge c1 ⇒ c2 in (CCC, ⇒) to a rational number p(c1 | c2) in
[0, 1] measuring the conditional probability for an object picked at random
uniformly from c2 belonging to c1.

(vi) f maps each method Pi(τi1, τi2, . . . , τini) : τi to a function from products of
fuzzy probabilistic triples of types τij ’s to fuzzy probabilistic triples of type
τi.

Given c1 ⇒ c2 ⇒ . . . ⇒ ck, one can write c1 ⇒∗ ck, and in particular c ⇒∗ c
for every c ∈ CCC.

Example 3. An FPOB schema for the Package example above may be defined as
follows:

CCC = { PACKAGE, LETTER, BOX, TUBE, PRIORITY, NORMAL,
PRIORITY LETTER, NORMAL BOX}

τ is given as in Table 1.
(CCC, ⇒), me, and p are given as in Figure 1.
f defines the methods area and volume using an algebra on fuzzy probabilistic
triples introduced above as follows:
LETTER: area([length: 〈V1, α1, β1〉], [width: 〈V2, α2, β2〉]): 〈V, α, β〉
1. 〈V, α, β〉 = 〈V1, α1, β1〉 × 〈V2, α2, β2〉
2. return 〈V, α, β〉.
BOX: volume([length: 〈V1, α1, β1〉], [width: 〈V2, α2, β2〉], [height: 〈V3, α3, β3〉])
: 〈V, α, β〉
1. 〈V, α, β〉 = 〈V1, α1, β1〉 × 〈V2, α2, β2〉 × 〈V3, α3, β3〉
2. return 〈V, α, β〉.
TUBE: volume([diameter: 〈V1, α1, β1〉], [width: 〈V2, α2, β2〉]): 〈V, α, β〉
1. 〈V, α, β〉 = (〈V1, α1, β1〉 /2)2 × 〈V2, α2, β2〉
2. return 〈V, α, β〉.

Table 1. Type assignment of the Package example

c τ (c)
PACKAGE [origin: string, destination: string, time: {real}]
LETTER [length: {real}, width: {real}, area(length: {real}], [width:

{real}]): {real}]
BOX [length: {real}, width: {real}, height: {real},volume([length:

{real}], [width: {real}], [height: {real}]): {real}]
TUBE [diameter: {real}, height: {real}, volume([diameter: {real}],

[height: {real}]): {real}]
PRIORITY [priority level: integer]
NORMAL [stop over: string]
PRIORITY LETTER []
NORMAL BOX []

We note that, in Definition 8 and Example 3 of FPOB schemas, the properties
specified for a class are only the top-level ones of that class, which do not include
those properties inherited from its super-classes.
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4 Fuzzy and Probabilistic Object Base Instances and
Class Extents

4.1 FPOB Instances

Given an FPOB schema, an FPOB instance is defined as a base of objects
associated with their classes and fuzzy-probabilistic tuple values in accordance
with the schema.

Definition 9. Let S = (CCC,τ, ⇒, me, p, f ) be an FPOB schema and OOO be a set of
object identifiers. An FPOB instance over S is a pair (π, ν) where:

(i) π maps each c ∈ CCC to a finite subset of OOO such that, for different c1, c2 ∈ CCC,
π(c1) ∩ π(c2) = ∅.

(ii) For each c ∈ CCC, ν maps each o ∈ π(c) to a fuzzy-probabilistic tuple value of
type τ(c).

In the definition above, π(c) denotes only the set of the identifiers of the objects
that are defined in the class c. Meanwhile, the set of the identifiers of all the
objects that belong to c (i.e., those that are defined in c or its proper subclasses)
are denoted by π∗(c) = ∪{π(d) | d ∈ CCC and d ⇒∗ c}. Also, one writes π(CCC) to
denote ∪{π(c) | c ∈ CCC}. We also note that, for ν, the default fuzzy-probabilistic
tuple value returned by a method is determined by f.

Table 2. Object mappings π and π∗

c π(c) π∗(c)
PACKAGE {o1} {o1, o2,o3, o4 }
LETTER {} { o2,o3 }
BOX {} { o4 }
TUBE {} {}
PRIORITY {} { o2,o3 }
NORMAL {} { o2 }
PRIORITY LETTER {o2,o3} {o2,o3 }
NORMAL BOX {o2} {o2}

Example 4. An FPOB instance over the FPOB schema in Example 3 can be
(π, ν) where π and π∗ are shown in Table 2 and ν in Table 3. Here, for comput-
ing the methods area and volume, the extension principle of fuzzy arithmetics
and the independence probabilistic conjunction strategy are applied. For exam-
ple, suppose that about 20 = (18:0; 20:1; 22:.0), denoting the triangular shape
fuzzy set whose three vertices are respectively (18, 0), (20, 1) and (22, 0), is the
height of the box denoted by o4. Then its volume is about 25200 = (22680:0;
25200:1; 27720:0) or about 26400 = (23760:0; 26400:1; 29040:0) with a proba-
bility between .4 and .7.
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Table 3. Value mapping ν

oid v(oid)
o1 [origin: 〈{Hanoi}, u, u〉, destination: 〈{Saigon}, u, u〉, time: 〈{24,. . . , 240},

u, u〉]
o2 [origin: 〈{Saigon}, u, u〉, destination: 〈{Hue}, u, u〉, length: 〈{30, 32}, .8u,

1.8u〉, width: 〈{22}, u, u〉, priority level: 〈{1}, u, u〉, time: 〈{24, 48}, .9u,
1.2u〉, area: 〈{660, 704}, .8u, 1.8u〉]

o3 [origin: 〈{Hanoi}, u, u〉, destination: 〈{Nhatrang}, u, u〉, length: 〈{22, 24},
u, u〉, width: 〈{11, 12}, .6u, 1.8u〉, priority level: 〈{2}, u, u〉, time: 〈{48, 72,
96}, .6u, 1.8u〉, area: 〈{242, 264, 288}, α, β〉], where α(242) = α(288) = .15,
α(264) = .3, β(242) = β(288) = .45, β(264) = .9.

o4 [origin: 〈{Saigon}, u, u〉, destination: 〈{Hanoi}, u, u〉, length: 〈{42, 44}, .8u,
1.4u〉, width: 〈{30}, u, u〉, height: 〈{about 20}, u, u〉, stop over: 〈{Nhatrang,
Hue}, .8u, 1.6u〉, time: 〈{216, 240}, .8u, 1.6u〉, volume: 〈{about 25200,
about 26400}, .8u, 1.4u〉]

4.2 Probabilistic Extents of Classes

In classical object bases, the extent of a class comprises all the objects that
belong to that class. In POB as well as FPOB, the probabilistic extent of a class
specifies the probability for each object belonging to that class. The following
definition is adapted from [13].

Definition 10. Let (π, ν) be an FPOB instance over an FPOB schema S =
(CCC,τ, ⇒, me, p, f ). Then, for each class c ∈ CCC, the probabilistic extent of c, denoted
by ext(c), maps each o ∈ π(CCC) to a set of rational number in [0, 1] as follows:

(i) If o ∈ π∗(c) then ext(c)(o) = {1}.
(ii) If o ∈ π∗(d) and ε(c) ∩ ε(d) = ∅ for every model ε of S, then ext(c)(o) =

{0}.
(iii) Otherwise, ext(c)(o) = {p | p is the product of the edge probabilities on a

path from c up to d where c ⇒∗ d with d being minimal and o ∈ π∗(d)}.

For a comparison with relational databases, an FPOB schema corresponds to a
relational schema, and each object of an FPOB instance corresponds to a tuple.

5 Selection Operation on Fuzzy and Probabilistic Object
Bases

5.1 Syntax of Selection Conditions

As for relational databases and object bases, selection is a basic operation for
FPOB. Intuitively, the result of a selection query on an FPOB instance I over
an FPOB schema S is another FPOB instance I ’ over S such that the objects
of the classes in I ’ and their property values satisfy the selection condition of
the query.
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Before defining the FPOB selection operation, we present the formal syntax
and semantics of selection conditions, extending those definitions in [13] and [8]
with class methods and relations on fuzzy set values. We start with the syntax
of path expressions and selection expressions.

Definition 11. Given a type τ = [P1 : τ1, P2 : τ2, . . . , Pk : τk], path expressions
are inductively defined for every i from 1 to k as follows:

(i) Pi is a path expression for τ .
(ii) If Ei is a path expression for τi, then Pi.Ei is a path expression for τ .

For selection expressions on FPOBs, stating constraints on values of the last
properties in path expressions, we employ the binary relations on fuzzy sets
defined in Section 2.

Definition 12. Let S = (CCC,τ, ⇒, me, p, f ) be an FPOB schema and XXX be a set
of object variables. Then fuzzy selection expressions are inductively defined as
having one of the following forms:

(i) x ∈ c, where x ∈ XXX and c ∈ C.
(ii) x.P θ v, where x ∈ XXX , P is a path expression, θ is a binary relation from

{=, �=, ≤, <, ⊆, ∈, →}, and v is a value.
(iii) x.P1 =⊗ x.P2, where x ∈ XXX , P1 and P2 are path expressions, and ⊗ is a

probabilistic conjunction strategy of combining the probabilities for x.P1 = v1
and x.P2 = v2 such that v1 = v2.

(iv) E1 ⊗ E2, where E1 and E2 are selection expressions over the same object
variable and ⊗ is a probabilistic conjunction operator combining the proba-
bilities for E1 and E2 being true.

(v) E1 ⊕ E2, where E1 and E2 are selection expressions over the same object
variable and ⊕ is a probabilistic disjunction operator combining the proba-
bilities for E1 and E2 being true.

Those of the first three forms are called atomic fuzzy selection expressions. Dif-
ferent probabilistic conjunction and disjunction strategies mentioned in Section 2
could be used.

Selection conditions are now defined as selection expressions to be satisfied with
a probability in a given interval.

Definition 13. Fuzzy selection conditions are inductively defined as follows:

(i) If E is a fuzzy selection expression and [l, u] is a sub-interval of [0, 1], then
(E)[l, u] is a fuzzy selection condition.

(ii) If φ and ψ are fuzzy selection conditions, then ¬φ, (φ ∧ ψ), and (φ ∨ ψ) are
fuzzy selection conditions.

5.2 Semantics of Selection Conditions

For defining the semantics of selection conditions, interpretations of path expres-
sions, fuzzy selection expressions and conditions are introduced.
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Definition 14. Given a type τ = [P1 : τ1, P2 : τ2, . . . , Pk : τk] and a value
v = [P1 : v1, P2 : v2, . . . , Pk : vk], the interpretation of a path expression E for τ
under v, denoted by v.E, is inductively defined as follows:

(i) If E = Pi, then v.E = vi.
(ii) If E = Pi.Ei where Ei is a path expression for τi, then v.E = vi.Ei.

Definition 15. Let S = (CCC,τ, ⇒, me, p, f ) be an FPOB schema, I = (π, ν) be
an FPOB instance over S, and o ∈ π(CCC). The probabilistic interpretation with
respect to S, I, and o, denoted by probS,I,o, is the partial mapping from the set
of all fuzzy selection expressions to the set of all closed sub-intervals of [0, 1]
that is inductively defined as follows:

(i) probS,I,o(x ∈ c) = [min(ext(c)(o)), max(ext(c)(o))].
(ii) probS,I,o(x.E θ v) =

[Σw∈V α(w).Pr(w.E’ θ v), min(1, Σw∈V β(w).Pr(w.E’ θ v))], where E =
P.E’, ν(o).P = 〈V, α, β〉.

(iii) probS,I,o(x.E1 =⊗ x.E2) =
[Σw∈V α(w).Pr(w1 .E1’ θ w2.E2’), min(1, Σw∈V β(w).Pr(w1 .E1’ θ w2.E2’))],
where E1 =P1.E1’, ν(o).P1 =〈V1, α1, β1〉, E2 =P2.E2’, ν(o).P2 = 〈V2, α2, β2〉,
and [α(w), β(w)] = [α1(w1), β1(w1)]⊗[α2(w2), β2(w2)] for all w = (w1, w2) ∈
V1 × V2.

(iv) probS,I,o(E1 ⊗ E2) = probS,I,o(E1) ⊗ probS,I,o(E2).
(v) probS,I,o(E1 ⊕ E2) = probS,I,o(E1) ⊕ probS,I,o(E2).

Intuitively, probS ,I ,o(x ∈ c) is the interval of the probability for o belonging to
c, probS ,I ,o(x.P.E’ θ v) is the interval of the probability for the property P of
o having a value w such that w.E’ θ v. Also, probS ,I ,o(x.P1.E1’ =⊗ x.P2.E2’) is
the interval of the probability for the properties P1 and P2 of o (whose mutual
dependency is reflected in the selected ⊗ ) having values w1 and w2, respectively,
such that w1.E1’ = w2.E2’. We note that E’, E1’, and E2’ can be empty. We now
define when a selection condition is satisfied under a probabilistic interpretation.

Definition 16. Let S = (CCC,τ, ⇒, me, p, f ) be an FPOB schema, I = (π, ν) be
an FPOB instance over S, and o ∈ π(CCC). The satisfaction of fuzzy selection
conditions under probS,I,o is defined as follows:

(i) probS,I,o |= (E)[l, u] if and only if probS,I,o(E) ⊆ [l, u].
(ii) probS,I,o |= ¬φ if and only if probS,I,o |= φ does not hold.
(iii) probS,I,o |= (φ ∧ ψ) if and only if probS,I,o |= φ and probS,I,o |= ψ.
(iv) probS,I,o |= (φ ∨ ψ) if and only if probS,I,o |= φ or probS,I,o |= ψ.

Definition 17. Let S = (CCC,τ, ⇒, me, p, f ) be an FPOB schema, I = (π, ν) be
an FPOB instance over S, and φ be a fuzzy selection condition over an object
variable x. The selection on I with respect to φ, denoted by σφ(I), is the FPOB
instance I’ = (π’, ν’) over S such that π’(c) = {o ∈ π(c) |probS,I,o |= φ} and
ν’ is ν restricted to π’(c).
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Example 5. Let I = (π, ν) be the instance in Example 4. The query “Find all the
packages whose volume is about 25000 with a probability of at least .3 and which
can be sent within 10 days (240 hours) with a probability of at least .8” can be an-
swered by the selection operation σφ(I ) where φ = (x.volume → about 25000 )[.3,
1] ∧ (x.time ≤ 240)[.8, 1]. One can verify that σφ(I ) only includes o4, be-
cause probS ,I ,o4(x.time ≤ 240) = [.8, 1] ⊆ [.8, 1] and probS ,I ,o4(x.volume →
about 25000 ) = [.469, .821] ⊆ [.3, 1].

6 FPDB4O: A Fuzzy and Probabilistic Object Base
Management System

6.1 Overview of FPDB4O

We have developed a management system for FPOB, called FPDB4O. It is built
over DB4O, an open source database library written in Java. One can develops
software using Java and employing DB4O for storing and retrieving objects in
the classical object-oriented data model ([16]).

Small size, high performance, and simplicity in managing object persistence
are advantages of DB4O. Therefore, it is getting popular in industry as well as
research. For example, in [20], DB4O is used for storing reservation timetables
of a local reservation system. Meanwhile, in [21], [19], and [27], the authors rely
on DB4O for persistent layers in their systems.

Fig. 2. FPDB4O architecture

Therefore, we have chosen DB4O as the underlying database management
system. On top of it, we have defined classes to represent the probabilistic and
fuzzy features of the FPOB model as presented above, and to express and execute
FPOB queries. Figure 2 shows the architecture of FPDB4O comprising three
layers:
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(i) GUI Layer: this is for user interface, allowing users to draw an FPOB class
hierarchy and define attributes for classes (Schema Definition), to create
a new FPOB instance by creating and modifying data objects (Instance
Creation), and to query on an FPOB (Query Editor).

(ii) Core Layer: this is the main component of the architecture. It includes two
main blocks, one for representing the FPOB model, and one for executing
queries. In more detail, the former determines the structure for representing
schemas, data objects, probabilistic distributions of attribute values, and
fuzzy sets. The latter parses queries, performs probabilistic interpretations,
and gives answers.

(iii) Data Layer: this provides functions for storing and retrieving FPOB data
objects, employing related functions of DB4O.

6.2 Implementation of FPOB Types and Schemas

Types in an FPOB schema, as defined above, include atomic types, fuzzy set
types, and tuple types. Each type is implemented as a Java class. For atomic
types, the system provides some available types in Java like string, integer,
double, in addition to enumerated types defined by users. In case of an enumer-
ated type, it is compiled into a corresponding class with its domain values, which
then behaves in the same way as other built-in types like string and integer.

For fuzzy set types, we define two classes, namely, DiscreteFuzzySet for repre-
senting fuzzy sets on discrete domains and ContinuousFuzzySet for representing
those on continuous domains. A discrete fuzzy set is defined by a set of domain
values and their membership degrees. A continuous fuzzy set is assumed to be
of the trapezoid shape, defined by four corner points. Fuzzy sets of both types
are associated with linguistic labels for further reference.

A tuple type comprises some attributes and their types, which can be re-
cursively tuple types as well. Therefore, we implement a tuple type in a tree
structure, in which sub-nodes of a node function as sub-types of a tuple type.
Names of classes representing types are created automatically and used inter-
nally in the system.

To define a schema, one needs to draw a class hierarchy and specify a finite
set of attributes for each class. FPDB4O provides tools to draw a graph and
edit attributes visually. Each class type has a table to store its attributes, each
row of which contains the name and type of one attribute, and the list of its
sub-types. Besides, for FPOB, a table is constructed to store the sub-class rela-
tionship and probability degrees between classes. Based on this table, the inher-
ited attributes and probabilistic extent of an object to an FPOB class can be
computed.

After an FPOB schema is completely defined and submitted, it is checked for
syntactic and semantic correctness. The types, attributes and classes of a correct
schema are then compiled into actual Java classes and saved for creating FPOB
instances later. Figure 3 shows FPDB4O interface windows after a schema is
created. The left panel is the probabilistic class hierarchy of the Package example
above. Like most object-oriented systems, currently FPDB4O does not allow
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Fig. 3. Creating an FPOB schema in FPDB4O

multiple super-classes of a class to have a common property. When selecting a
class in the left panel, one can see its attributes in the right panel in a tree
structure. On this panel, users can edit, add or remove attributes of a class.

6.3 Implementation of FPOB Instances

An FPOB instance over an FPOB schema contains a set of objects instan-
tiated from classes in the schema. Fuzzy-probabilistic triple values of object
attributes are implemented by the generic class Triple〈type 〉, where type is
the parameter representing the type of a particular attribute as defined in the
schema. The class Triple is for representing fuzzy-probabilistic triple values of
the form 〈{v1, v2,. . . ,vk}, α, β〉, by holding the list {v1, α(v1), β(v1)},{v2, α(v2),
β(v2)},. . . ,{vk, α(vk), β(vk)}.

Figure 4 shows the interface of FPDB4O for creating an FPOB instance over
a defined schema. The first panel displays all classes of the schema. The second
lists all objects of a selected class. The third shows the attributes and their values
of a selected object, displayed in a tree structure to be easily viewed and edited.

The system maintains a set of predefined fuzzy set values for each FPOB
instance. Users can add, remove or edit any of those fuzzy sets. Each value of
an attribute of a fuzzy set type has a reference to one of those predefined fuzzy
set values. Removing a fuzzy set is permitted only if there is no reference to it.

When one wants to edit a tuple type value, the system traverses its whole
value tree to get all the leaf nodes, which represent the values of the most inner
attributes of that tuple value. Those values must be primitive, i.e., atomic or
fuzzy set values. All of them are displayed on the same panel, and one can edit
a tuple type value at one time.
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Fig. 4. Creating an FPOB instance in FPDB4O

6.4 Implementation of FPOB Selection Operation

FPDB4O supports the FPOB selection query as defined above, with a text editor
for posing a query. For example, the query to select “Find all the packages whose
volume is about 25000 with a probability of at least 0.3 and which can be sent
within 10 days (240 hours) with a probability of at least 0.8” can be entered as
follows:

(x.volume → about 25000 )[.3, 1] AND (x.time ≤ 240)[.8, 1]

After parsing the fuzzy selection condition of a query, the system computes its
probabilistic interpretation on each object in the FPOB instance of discourse, as
in Definition 15. For FPOB, there are three atomic fuzzy selection expressions
and two forms for expression combination, each of which is interpreted by a
method as follows:

(i) The interpretation of x ∈ c is computed based on the value of ext(o)(c) for
each object o. Those values are obtained from the component that manages
the schema of discourse.

(ii) The interpretation of x.P θ v is computed by tracing the path expres-
sion P to get the actual attribute of an object, then comparing its fuzzy-
probabilistic triple value to v in regards of θ.

(iii) The interpretation of x.P1 =⊗ x.P2 is computed similarly. For the path
expressions P1 and P2, every pair of corresponding values are compared
and weighted by their probability distributions.

(iv) The interpretations of E1 ⊗E2 and E1 ⊕E2 are computed recursively using
the probabilistic conjunction and disjunction strategies of discourse.

In the current version of FPDB4O, continuous fuzzy sets are transformed into
discrete ones before fuzzy selection conditions are interpreted, with the overall
computation accuracy less than 0.1%. Also, crisp attribute values are treated as
special fuzzy sets in fuzzy relations.
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Fig. 5. Executing a query in FPDB4O

Figure 5 demonstrates execution of the query (x.volume → about 25000 )
[.3, 1] AND (x.time ≤ 240)[.8, 1], entered using the Query Editor. A query can
be saved for later use. The Predefined Fuzzy Set panel displays all available
fuzzy sets and allow users to edit them or add new ones. The result is shown
on two bottom panels, with the left panel showing answer objects and the right
panel showing their attribute values. When execution of a query is completed,
the Query Stack Trace panel appears to show the probabilistic interpretations
of the query with respect to each object. As shown in the figure, the object with
internal ID 27342 is an answer to the query.

7 Conclusion

We have presented the object base model FPOB, as a fuzzy extension of the
probabilistic model introduced by Eiter et al. In FPOB, uncertain and imprecise
object property values are represented by probability distributions on fuzzy set
values. Class methods are supported and realized as functions on fuzzy proba-
bilistic triples.

A probabilistic interpretation of relations on fuzzy sets has been proposed as
a basis to integrate probability and fuzzy set values into a unified model. The
selection operation has been defined to query object bases, taking into account
uncertain and imprecise values of class attributes and methods.

We have developed FPDB4O as an FPOB management system for real world
applications, based on the open source object-oriented database platform DB4O.
Implementation of FPOB types, schemas, instances, and selection operation have
been presented.

On the one hand, FPDB4O is currently enhanced with computation on contin-
uous fuzzy sets. On the other hand, the FPOB model is being extended further
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with uncertain applicability of class properties and inheritance under uncertainty
as discussed in [7]. Thus FPDB4O is to be advanced with those new features
and the other operations, such as join and union, of the full FPOB algebra.
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Summary. In this paper, we investigate reducts preserving a structure induced from
dominance-based rough sets as well as a structure from variable-precision dominance-
based rough sets. It is shown that three kinds of reducts are obtained in the dominance-
based rough set approach. For each kind of reduct, a discernibility matrix is given for
the enumeration of the reducts. Moreover, it is shown that four kinds of reducts are
obtained in the variable-precision dominance-based rough set approach. A counter-
example showing the impossibility of reduct enumeration in the case of variable-
precision dominance-based rough set approach.

1 Introduction

Attribute reduction in decision tables is one of major advantages of rough set
analysis [1]. Important attributes are found by the attribute reduction. Attribute
reduction is used in pattern recognition, data mining, decision analysis, and so
on. The variety of attribute reduction is discussed by Ślȩzak [2]. A reduced
attribute set is called a reduct. Some reducts are defined by a measure while
others are defined by structure induced from rough set analysis. In this paper,
we focus on the structure-based reducts.

The well-known conventional reduct can be seen as a reduct preserving lower
approximations. Since other reducts are defined by Ślȩzak [2] and Inuiguchi and
Tsurumi [3], we call the conventional reduct reduct preserving lower approxi-
mations or simply L-reduct. Ślȩzak [2] proposed a reduct preserving boundary
regions by the name of rough decision reduct. We call this reduct simply B-reduct.
On the other hand, Inuiguchi and Tsurumi [3] proposed a reduct preserving up-
per approximations. We call it U-reduct. It is shown that a B-reduct is a U-reduct
and vice versa [3]. Moreover, a U-reduct preserves lower approximations. Then,
we obtain two kinds of reducts, L- and U-reducts based on the structure induced
from rough sets.

This discussion is extended to the case of variable precision rough set models
by Inuiguchi [4]. In this case, we can prove neither that a U-reduct preserves
lower approximations nor that B- and U-reducts are equivalent. Moreover, we

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 163–175, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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may have objects which are not included in any upper approximations of decision
classes. The set of such objects is called the unpredictable region. Because of
these complexities, we can define seven kinds of structure-preserving reducts.
The relations of those reducts are investigated by Inuiguchi [4].

In this paper, we would like to extend the investigation into dominance-based
rough set approach (DRSA) [5, 6]. In DRSA, a reduct based on a measure called
the quality of approximation has been proposed by Susmaga et al.[7]. They have
not yet discussed the structure induced by DRSA. By the nature of DRSA, the
lower and upper approximations are defined for upward and downward unions.
Therefore, we can discuss structures based on those unions as well as based on
decision classes. We treat the structure based on upward/downward unions in
this paper. We define reducts related to the structure defined by unions and
discuss the relationships among them in DRSA as well as variable-precision
dominance-based rough set approach (VP-DRSA) [8]. Moreover, for each kind
of reduct, we discuss the enumeration of reducts based on discernibility matrices.
We show that this is impossible in VP-DRSA while possible in DRSA.

This paper is organized as follows. In next section, DRSA and VP-DRSA
are briefly reviewed. In Section 3, reducts in DRSA are investigated. The rela-
tions among different kinds of reducts and discernibility matrices enumerating
all reducts are given. In Section 4, reducts in VP-DRSA are studied. The rela-
tions among different kinds of reducts are shown and the impossibility of reduct
enumeration is explained by a counter-example.

2 Dominance-Based Rough Set Approach

2.1 Decision Table with Dominance Relations

Consider a decision table T = 〈U, C∪{d}, V, ρ〉 shown in Table 1. A decision table
T is characterized by an object set U , a condition attribute set C and a decision
attribute d, an attribute value set V =

⋃
a∈C∪{d} Va (Va is a set of all values of

attribute a) and an information function ρ : U × C ∪ {d} → V . In Table 1, we
have U = {S1, S2, . . . , S15}, C = {Mathematics (Math), Literature (Lit)}, d =
Passing Status (PS) and V = {Utterly Bad (UB), Very Bad (VB), Bad (B),
Medium (M), Good (G), Very Good (VG), Excellent (E), Yes (Y), No (N)}. The
information function ρ is characterized by the table so that we know, for example,
ρ(S2, Math) = E and ρ(S11, PS) = N.

In cases such as Table 1, we assume that the better condition attribute values
are, the better the decision value is. Namely, in Table 1, we assume a student
having better evaluations in Math and Lit, he/she can have a better value in
PS. However, an inconsistency with this monotonicity is found in Table 1. For
example, an inconsistency is found in evaluation between S4 and S9. S4 takes
much better evaluations in Math and Lit but a worse result in PS than S9.
Such an inconsistency can occur (a) when decision maker have a hesitation in
the evaluation, (b) when some related condition attribute is missing, (c) when
the condition attribute data are substituted ones (e.g., trial examination scores
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Table 1. A decision table of student evaluation

Student Mathematics Literature Passing Status
S1 Excellent Very Good Yes
S2 Excellent Medium Yes
S3 Very Good Excellent Yes
S4 Very Good Very Good No
S5 Very Good Good Yes
S6 Very Good Utterly Bad No
S7 Good Bad Yes
S8 Medium Very Good Yes
S9 Medium Bad Yes
S10 Bad Medium No
S11 Bad Very Bad No
S12 Very Bad Very Bad No
S13 Very Bad Utterly Bad No
S14 Utterly Bad Medium No
S15 Utterly Bad Bad No
S16 Utterly Bar Very Bad No
S17 Utterly Bad Utterly Bad No

in this example) for those used for the evaluation of the decision attribute, (d)
when data are recorded mistakenly, and so on. Such inconsistencies included
in given decision tables lead to counter-intuitive results in the classical rough
set analysis. To avoid such counter-intuitive results, the dominance-based rough
set approach (DRSA) has been proposed by Greco et al. [5, 6]. In DRSA, we
can treat nominal and ordinal condition attributes at the same time but in this
paper, for the sake of simplicity, we consider a case that all condition attributes
are ordinal. By this simplification, we do not loose the essence of the proposed
approach.

2.2 DRSA

Let Clk, k = 1, 2, . . . , n be decision classes. Namely, to each decision attribute
value vdk

, we define Clk = {x ∈ U | ρ(x, d) = vdk
}. We assume a total order for

decision attribute values such that vd1 ≺ vd2 ≺ · · · ≺ vdn , where vdk
≺ vdj means

that vdj is better than vdk
. According to this total order we write Cl1 ≺ Cl2 ≺

· · · ≺ Cln. We also assume a dominance relation on condition attribute values.
A dominance relation with respect to condition attribute p is denoted by �p and
“v1 �p v2” means that v1 dominates (is better than) v2. In Table 1, we have
N ≺ Y for decision attribute and E �p VG �p G �p M �p B �p VB �p UB
(p = Math, Lit) for condition attributes.

In order to reflect the total order and dominance relations, the following up-
ward and downward unions of decision classes are considered:

Cl≥t =
⋃

s≥t

Cls, Cl≤t =
⋃

s≤t

Cls. (1)
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Then, we have

Cl≥1 = Cl≤n = U, Cl≤1 = Cl1, Cl≥n = Cln, (2)

Cl≥t = U − Cl≤t−1, Cl≤t = U − Cl≥t+1, (3)

where we define Cl≤0 = Cl≥n+1 = ∅ so that the second equalities are valid for
t = 1, 2, . . . , n.

On the other hand, using dominance relations on condition attribute values, a
dominance relation between objects with respect to a set of condition attributes
P ⊆ C is defined by

xDP y ⇔ ρ(x, p) �p ρ(y, p) for all p ∈ P , (4)

where v1 �p v2 if and only if v1 �p v2 or v1 = v2. Obviously, DP is reflexive and
transitive. Given P ⊆ C and x ∈ U , we define

D+
P (x) = {y ∈ U | yDpx}, D−P (x) = {y ∈ U | xDpy}. (5)

Given P ⊆ C, for t = 1, 2, . . . , n, P -lower and P -upper approximations of Cl≥t
and Cl≤t are defined as follows:

P (Cl≥t ) = {x ∈ U | D+
P (x) ⊆ Cl≥t }, P (Cl≥t ) =

⋃
{D+

p (x) | x ∈ Cl≥t }, (6)

P (Cl≤t ) = {x ∈ U | D−P (x) ⊆ Cl≤t }, P (Cl≤t ) =
⋃

{D−p (x) | x ∈ Cl≤t }. (7)

Moreover, for t = 1, 2 . . . , n, boundary regions BnP (Cl≥t ) and BnP (Cl≤t ) can be
defined by

BnP (Cl≥t ) = P (Cl≥t ) − P (Cl≥t ), BnP (Cl≤t ) = P (Cl≤t ) − P (Cl≤t ). (8)

Using those upper and lower approximations, decision tables with dominance
relations can be analyzed in the same way as the classical rough set analysis. We
have the following properties:

P (Cl≥1 ) = P (Cl≥1 ) = U, P (Cl≤n ) = P (Cl≤n ) = U, (9)

P (Cl≥n+1) = P (Cl≥n+1) = ∅, P (Cl≤0 ) = P (Cl≤0 ) = ∅, (10)

P (Cl≥t ) ⊆ Cl≥t ⊆ P (Cl≥t ), P (Cl≤t ) ⊆ Cl≤t ⊆ P (Cl≤t ), (11)

P (Cl≥t ) = {x ∈ U | D−P (x) ∩ Cl≥t �= ∅},

P (Cl≤t ) = {x ∈ U | D+
P (x) ∩ Cl≤t �= ∅}, (12)

P (Cl≥t ) = U − P (Cl≤t−1), P (Cl≤t ) = U − P (Cl≥t−1), (13)

BnP (Cl≥t ) = BnP (Cl≤t−1) for t = 1, . . . , n. (14)

Moreover, when Q ⊆ P ⊆ C, we have the following monotonicity:

Q(Cl≥t ) ⊇ P (Cl≥t ), Q(Cl≤t ) ⊇ P (Cl≤t ), (15)

Q(Cl≥t ) ⊆ P (Cl≥t ), Q(Cl≤t ) ⊆ P (Cl≤t ). (16)
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2.3 VP-DRSA

The given decision table is sometimes inconsistent with the monotonicity. Such
an inconsistency is caused by errors in recording, measurement, observation,
and so on. From this point of view, the authors proposed variable-precision
dominance-based rough set approach. In the approach, we define the precision
of x ∈ Cl≥t by

β =
|D−P (x) ∩ Cl≥t |

|D−P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

. (17)

The precision β can be interpreted as follows. For any y ∈ D−P (x), from the
dominance relation DP , we may infer that ρ(x, d) �d ρ(y, d), i.e., x is included
in a decision class not worse than the decision class to which y belongs. Thus
for any y ∈ D−P (x) ∩ Cl≥t , we may infer x ∈ Cl≥t . Hence, |D−P (x) ∩ Cl≥t | is
the number of objects which endorses x ∈ Cl≥t . On the contrary, by the same
consideration, for any z ∈ D+

P (x) ∩ Cl≤t−1, we may infer x ∈ Cl≤t−1 = U − Cl≥t .
Hence |D+

P (x) ∩ Cl≤t−1| is the number of objects which endorses x�∈Cl≥t . Other
objects endorse neither x ∈ Cl≥t nor x�∈Cl≥t . Therefore, β is the ratio of objects
endorsing x ∈ Cl≥t to all objects endorsing x ∈ Cl≥t or x�∈Cl≥t .

Then, given a precision level l ∈ (0.5, 1], a P -positive region of Cl≥t with
respect to P ⊆ C is defined as a set of objects x ∈ U whose degrees of precision
are not less than l, i.e.,

POSl
P (Cl≥t ) =

{
x ∈ U

∣∣∣∣
|D−P (x) ∩ Cl≥t |

|D−P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

≥ l

}
. (18)

In variable-precision case, we use a terminology ‘positive region’ instead of ‘lower
approximation’ following the convention. Accordingly, we use a terminology ‘non-
negative region’ instead of ‘upper approximation’.

Similarly, a P -positive region of Cl≤t with respect to P ⊆ C is defined by

POSl
P (Cl≤t ) =

{
x ∈ U

∣∣∣∣
|D+

P (x) ∩ Cl≤t |
|D+

P (x) ∩ Cl≤t | + |D−P (x) ∩ Cl≥t+1|
≥ l

}
. (19)

By using the duality, P -nonnegative regions of Cl≥t and Cl≤t with respect to
P ⊆ C can be defined by

NNGl
P (Cl≥t ) = U − POSl

P (U − Cl≥t ) = U − POSl
P (Cl≤t−1)

=

{
x ∈ U

∣∣∣∣
|D−P (x) ∩ Cl≤t |

|D−P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

> 1 − l

}
, (20)

NNGl
P (Cl≤t ) = U − POSl

P (U − Cl≤t ) = U − POSl
P (Cl≥t+1)

=

{
x ∈ U

∣∣∣∣
|D+

P (x) ∩ Cl≤t |
|D+

P (x) ∩ Cl≤t | + |D−P (x) ∩ Cl≤t+1|
> 1 − l

}
. (21)
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We can define P -boundary regions of Cl≥t and Cl≤t with respect to P ⊆ C as
follows:

BNDl
P (Cl≥t ) = NNGl

P (Cl≥t ) − POSl
P (Cl≥t ), (22)

BNDl
P (Cl≤t ) = NNGl

P (Cl≤t ) − POSl
P (Cl≤t ). (23)

For positive and nonnegative regions defined above satisfy the following
relations:

POSl
P (Cl≥1 ) = NNGl

P (Cl≥1 ) = U, POSl
P (Cl≤n ) = NNGl

P (Cl≤n ) = U, (24)

POSl
P (Cl≥n+1) = NNGl

P (Cl≥n+1) = ∅, POSl
P (Cl≤0 ) = NNGl

P (Cl≤0 ) = ∅, (25)

POSl
P (Cl≥t ) ⊆ NNGl

P (Cl≥t ), POSl
P (Cl≤t ) ⊆ NNGl

P (Cl≤t ), (26)

BNDl
P (Cl≥t ) = BNDl

P (Cl≤t−1) for t = 1, . . . , n. (27)

In the case of VP-DRSA, the monotonicity expressed by (15) and (16) cannot
be always satisfied. Moreover, by virtue of (24), there is no unpredictable region.

3 Union-Based Reducts in DRSA

Lower and upper approximations and boundary regions of upward and downward
unions can be considered as a structure over a given object set U . From this
point, we define several structure-preserving reducts. The following reducts are
conceivable:

Reduct preserving lower approximations of upward unions: A set of
condition attributes, P ⊆ C is called a ‘reduct preserving lower approxi-
mations of upward unions’ or simply an ‘L≥-reduct’ if and only if

(L1≥) P (Cl≥t ) = C(Cl≥t ), t = 1, 2, . . . , n, and
(L2≥) � ∃Q ⊆ C, Q(Cl≥t ) = C(Cl≥t ), t = 1, 2, . . . , n.

Reduct preserving lower approximations of downward unions: A set
of condition attributes, P ⊆ C is called a ‘reduct preserving lower
approximations of downward unions’ or simply an ‘L≤-reduct’ if and only if

(L1≤) P (Cl≤t ) = C(Cl≤t ), t = 1, 2, . . . , n, and
(L2≤) � ∃Q ⊆ C, Q(Cl≤t ) = C(Cl≤t ), t = 1, 2, . . . , n.

Reduct preserving upper approximations of upward unions: A set of
condition attributes, P ⊆ C is called a ‘reduct preserving upper approxi-
mations of upward unions’ or simply an ‘U≥-reduct’ if and only if

(U1≥) P (Cl≥t ) = C(Cl≥t ), t = 1, 2, . . . , n, and
(U2≥) � ∃Q ⊆ C, Q(Cl≥t ) = C(Cl≥t ), t = 1, 2, . . . , n.

Reduct preserving upper approximations of downward unions: A set
of condition attributes, P ⊆ C is called a ‘reduct preserving upper approxi-
mations of downward unions’ or simply an ‘U≤-reduct’ if and only if

(U1≤) P (Cl≤t ) = C(Cl≤t ), t = 1, 2, . . . , n, and
(U2≤) � ∃Q ⊆ C, Q(Cl≤t ) = C(Cl≤t ), t = 1, 2, . . . , n.
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Fig. 1. Strong-weak relation of union-based reducts in DRSA

Reduct preserving lower approximations of upward and downward
unions: A set of condition attributes, P ⊆ C is called a ‘reduct preserving
lower approximations of upward and downward unions’ or simply an
‘L�-reduct’ if and only if

(L1�) P (Cl≥t ) = C(Cl≥t ), P (Cl≤t ) = C(Cl≤t ), t = 1, 2, . . . , n, and
(L2�) � ∃Q ⊆ C, Q(Cl≤t ) = C(Cl≤t ), Q(Cl≤t ) = C(Cl≤t ), t = 1, 2, . . . , n.

Reduct preserving upper approximations of upward and downward
unions: A set of condition attributes, P ⊆ C is called a ‘reduct preserving
upper approximations of upward and downward unions’ or simply an
‘U�-reduct’ if and only if

(U1�) P (Cl≤t ) = C(Cl≤t ), P (Cl≤t ) = C(Cl≤t ), t = 1, 2, . . . , n, and
(U2�) � ∃Q ⊆ C, Q(Cl≤t ) = C(Cl≤t ), Q(Cl≤t ) = C(Cl≤t ), t = 1, 2, . . . , n.

Reduct preserving boundary regions of upward/downward unions: A
set of condition attributes, P ⊆ C is called a ‘reduct preserving boundary
regions of upward/downward unions’ or simply an ‘B�-reduct’ if and only if

(B1�) BnP (Cl≤t ) = BnC(Cl≤t ), t = 1, 2, . . . , n, or equivalently,
BnP (Cl≥t ) = BnC(Cl≥t ), t = 1, 2, . . . , n, and

(B2�) � ∃Q ⊆ C, BnQ(Cl≤t ) = BnC(Cl≤t ), t = 1, 2, . . . , n, or
equivalently, � ∃Q ⊆ C, BnQ(Cl≥t ) = BnC(Cl≥t ), t = 1, 2, . . . , n.

From (9) to (14), we know that L≥-reduct and U≤-reduct are equivalent. Sim-
ilarly, L≤-reduct and U≥-reduct are equivalent. Therefore, L�-reduct is equiva-
lent to U�-reduct. Moreover, since condition (L1�) implies conditions (L1≥) and
(L1≤), any L�-reduct is a superset of an L≥-reduct and also a superset of an
L≤-reduct. Similarly, since condition (U1�) implies conditions (U1≥) and (U1≤),
any U�-reduct is a superset of a U≥-reduct and also a superset of a U≤-reduct.

We have the following theorem.

Theorem 1. B�-reduct is equivalent to L�-reduct, or equivalently, U�-reduct.

Proof. By (8) and (13), it is straightforwardly obtained that (L1�) implies (B1�).
Then it suffices to prove that (B1�) implies (L1�). Suppose (B1�) holds but (L1�)
does not. Under this supposition, two cases are possible: (a) (L1≥) does not hold
and (b) (L1≤) does not hold. Consider case (a). In this case, by the monotonicity,
there exists at least one object such that x ∈ C(Cl≥t ) but x�∈P (Cl≥t ). To satisfy
(B1�), we should have x�∈P (Cl≥t ). However, we have x ∈ C(Cl≥t ) ⊆ C(Cl≥t ) ⊆
P (Cl≥t ). This fact contradicts with the previous fact. Then we never have case
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Table 2. An example showing the difference L� and L≥-reducts

Student Mathematics Literature Passing Status
S1 Very Good Good Yes
S2 Good Very Good Yes
S3 Medium Medium Yes
S4 Good Bad No
S5 Bad Very Bad Yes
S6 Very Bad Utterly Bad No

(a). In case (b), in the same way, we obtain the contradiction. Therefore, the
supposition is never valid. Then we have that (B1�) implies (L1�). ��

As the result of the discussion, we obtain three different reducts based on the
structure induced from rough set operations on unions. They are represented
by L≥-reduct, L≤-reduct and L�-reduct. The strong-weak relations among those
reducts are depicted in Figure 1. Moreover, a simple example showing the dif-
ference between L≥- and L�-reducts is given by a decision table shown in Ta-
ble 2. In Table 2, we have C = {Math, Lit} and consider ‘Yes’ � ‘No’. Let
P = {Lit}. We have C(Cl≥Yes) = {S1, S2, S3}, C(Cl≥Yes) = {S1, S2, S3, S4, S5},
P (Cl≥Yes) = {S1, S2, S3} and P (Cl≥Yes) = {S1, S2, S3, S4, S5, S6}. Then P can be
an L≥-reduct but not an L�-reduct.

3.1 Discernibility Matrices for Reducts

The usual reduct defined in the classical rough set model can be calculated by
using a decision matrix. In this subsection, we present discernibility matrices
that can be used to calculate the union-based reducts.

Consider two objects in U . If one object belongs to a lower approximation
of a union and the other object does not, we should take an attribute which
can explain this difference. From the opposite viewpoint, if no such an attribute
is included in P ⊆ C, the difference of the two objects cannot be expressed.
Moreover, when any two objects in a lower approximation of a union become
indiscernible by the reduction of condition attribute, their memberships to the
lower approximation are preserved.

From these observations, the (i, j, k)-component of the discernibility matrix
for enumerating L≥-reducts is defined by

δ≥ijk =
{

{a ∈ C | ρ(xi, a) � ρ(xj , a)}, if xi ∈ C(Cl≥k ), xj �∈C(Cl≥k ),
∗, otherwise,

(28)

where ∗ stands for ‘don’t care’. The preservation of lower approximations of
upward unions is characterized by the following logical function:

FL≥
=

∧

k=1,2,...,n

∧

i,j
xi,xj∈U

∨
δ≥ijk. (29)
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Thus, all L≥-reducts can be obtained as prime implicants of FL≥
.

Similarly, the (i, j, k)-component of the discernibility matrix for enumerating
L≤-reducts is defined by

δ≤ijk =
{

{a ∈ C | ρ(xi, a) ≺ ρ(xj , a)}, if xi ∈ C(Cl≤k ), xj �∈C(Cl≤k ),
∗, otherwise.

(30)

The preservation of lower approximations of upward unions is characterized by
the following logical function:

FL≤
=

∧

k=1,2,...,n

∧

i,j
xi,xj∈U

∨
δ≤ijk. (31)

Thus, all L≤-reducts can be obtained as prime implicants of FL≤
.

Finally, because we have (L�)⇔(L≥)∧(L≤), all L�-reducts can be obtained as
prime implicants of FL≥ ∧ FL≤

.

4 Union-Based Reducts in VP-DRSA

Now let us discuss reducts in VP-DRSA. The seven reducts corresponding to
L≥-, L≤-, U≥-, U≤-, L�-, U�- and B�-reducts in DRSA are conceivable. However,
considering the relations (20) and (21), we select the following four reducts:

Reduct preserving positive regions of upward unions: A set of condi-
tion attributes, P ⊆ C is called a ‘reduct preserving positive regions of
upward unions’ or simply an ‘L≥l -reduct’ if and only if

(L1≥l ) POSl
P (Cl≥t ) = POSl

C(Cl≥t ), t = 1, 2, . . . , n, and
(L2≥l ) � ∃Q ⊆ C, POSl

Q(Cl≥t ) = POSl
C(Cl≥t ), t = 1, 2, . . . , n.

Reduct preserving positive regions of downward unions: A set of con-
dition attributes, P ⊆ C is called a ‘reduct preserving positive regions of
downward unions’ or simply an ‘L≤l -reduct’ if and only if

(L1≤l ) POSl
P (Cl≤t ) = POSl

C(Cl≤t ), t = 1, 2, . . . , n, and
(L2≤l ) � ∃Q ⊆ C, POSl

Q(Cl≤t ) = POSl
C(Cl≤t ), t = 1, 2, . . . , n.

Reduct preserving positive regions of upward and downward unions:
A set of condition attributes, P ⊆ C is called a ‘reduct preserving positive
regions of upward and downward unions’ or simply an ‘L�l -reduct’ if and
only if

(L1�l ) POSl
P (Cl≥t ) = POSl

C(Cl≥t ), POSl
P (Cl≤t ) = POSl

C(Cl≤t ),
t = 1, 2, . . . , n, and

(L2�l ) � ∃Q ⊆ C, POSl
Q(Cl≤t ) = POSl

C(Cl≤t ),
POSl

Q(Cl≤t ) = POSl
C(Cl≤t ), t = 1, 2, . . . , n.

Reduct preserving boundary regions of upward/downward unions: A
set of condition attributes, P ⊆ C is called a ‘reduct preserving boundary
regions of upward/downward unions’ or simply an ‘B�l -reduct’ if and only if
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(B1�l ) BNDl
P (Cl≤t ) = BNDl

C(Cl≤t ), t = 1, 2, . . . , n, or equivalently,
BNDl

P (Cl≥t ) = BNDl
C(Cl≥t ), t = 1, 2, . . . , n, and

(B2�) � ∃Q ⊆ C, BNDl
Q(Cl≤t ) = BNDl

C(Cl≤t ), t = 1, 2, . . . , n, or
equivalently, � ∃Q ⊆ C, BNDl

Q(Cl≥t ) = BNDl
C(Cl≥t ),

t = 1, 2, . . . , n.

Note that other three reducts are included in those four reducts. More concretely,
U≥l -reduct defined corresponding to U≥-reduct is equivalent to L≤l -reduct and
U≤l -reduct defined corresponding to U≤-reduct is equivalent to L≥l -reduct. More-
over, U�l -reduct defined corresponding to U�-reduct is equivalent to L�l -reduct.

Obviously, we have that condition (L1�l ) implies conditions (L1≥l ) and (L1≤l ).
Therefore, any L�l -reduct is a superset of an L≥l -reduct and a superset of an
L≤l -reduct. Moreover, conditions (B1�l ) and (L1≥l ) imply condition (L1�l ) and
conditions (B1�l ) and (L1≤l ) imply condition (L1�l ). Therefore, the reduct based
on (B1�l ) and (L1≥l ) and that based on (B1�l ) and (L1≤l ) are both reduced to an
L�l -reduct.

In DRSA, Theorem 1 holds. However in VP-DRSA, the theorem correspond-
ing to Theorem 1 does not hold. We only have that (L1�l ) implies (B1�l ). This
implies that any L�l -reduct is a superset of an B�l -reduct. The difference between
L�l -reduct and B�l -reduct can be shown by a simple example with a decision table
given in Table 1. Let P = {Math} and l = 0.7. We obtain

POSl
C(Cl≥Yes) = {S1, S2, S3, S4, S5}, (32)

POSl
P (Cl≥Yes) = {S1, S2, S3, S4, S5, S6}, (33)

NNGl
C(Cl≥Yes) = {S1, S2, S3, S4, S5, S7, S8, S9}, (34)

NNGl
P (Cl≥Yes) = {S1, S2, S3, S4, S5, S6, S7, S8, S9}, (35)

BNDl
C(Cl≥Yes) = {S7, S8, S9}, (36)

BNDl
P (Cl≥Yes) = {S7, S8, S9}, (37)

POSl
C(Cl≤No) = {S6, S10, S11, S12, S13, S14, S15, S16, S17}, (38)

POSl
P (Cl≤No) = {S10, S11, S12, S13, S14, S15, S16, S17}, (39)

NNGl
C(Cl≤No) = {S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17}, (40)

NNGl
P (Cl≤No) = {S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17}, (41)

BNDl
C(Cl≤No) = {S7, S8, S9}, (42)

BNDl
P (Cl≤No) = {S7, S8, S9}. (43)

Thus, BNDl
C(Cl≥Yes) = BNDl

P (Cl≥Yes) and BNDl
C(Cl≤No) = BNDl

P (Cl≤No)
are valid. Then P is a B�l -reduct. However, we have POSl

C(Cl≥Yes) �=
POSl

P (Cl≥Yes), NNGl
C(Cl≥Yes) �= NNGl

P (Cl≥Yes), POSl
C(Cl≤No) �= POSl

P (Cl≤No) and
NNGl

C(Cl≤No) �= NNGl
P (Cl≤No). Therefore, P is not an L�l -reduct.

The strong-weak relations among those reducts are depicted in Figure 2. Even
in VP-DRSA, the relation of union-based reducts becomes simple.
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Fig. 2. Strong-weak relation of union-based reducts in VP-DRSA

Table 3. A counter-example

Student Mathematics Physics Literature Passing Status
S1 Good Very Good Very Good Yes
S2 Very Good Very Good Good Yes
S3 Good Good Good Yes
S4 Bad Bad Bad Yes
S5 Good Very Good Bad No
S6 Good Medium Medium No
S7 Medium Good Bad Yes
S8 Medium Medium Medium Yes
S9 Bad Very Bad Bad No
S10 Very Bad Bad Bad No
S11 Very Bad Very Bad Bad No

Being different from the classical variable precision rough set model, no union-
based reduct in VP-DRSA can be enumerated by a discernibility matrix. This
is because their memberships to the positive region (resp. boundary region) are
not always preserved when an attribute is dropped keeping the discernibility
between positive and non-positive regions of unions. A counter-example is given
as follows.

Consider a decision table given in Table 3. Let l = 0.65. Then we obtain

POSl
C(Cl≥Yes) = {S1, S2, S3, S4, S5, S6, S7, S8}, (44)

NNGl
C(Cl≥Yes) = {S1, S2, S3, S4, S5, S6, S7, S8}, (45)

BNDl
C(Cl≥Yes) = ∅, (46)

POSl
C(Cl≤No) = {S9, S10, S11}, (47)

NNGl
C(Cl≤No) = {S9, S10, S11}, (48)

BNDl
C(Cl≤No) = ∅. (49)

In order to keep the difference between POSl
C(Cl≥Yes) and NNGl

C(Cl≤No), we
cannot drop Math from C since dropping Math makes S4 and S10 indiscernible
in condition attributes. Similarly, we cannot drop Phy from C since dropping
Phy makes S4 and S9 indiscernible. Then P = {Math, Phy} can be a candidate
of L≥l -reduct (also a candidate of any other reduct). However, we have
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POSl
P (Cl≥Yes) = {S1, S2, S3, S4, S5, S6, S7}, (50)

NNGl
P (Cl≥Yes) = {S1, S2, S3, S4, S5, S6, S7, S8}, (51)

BNDl
P (Cl≥Yes) = {S8}, (52)

POSl
P (Cl≤No) = {S9, S10, S11}, (53)

NNGl
P (Cl≤No) = {S8, S9, S10, S11}, (54)

BNDl
C(Cl≤No) = {S8}. (55)

Namely, we have POSl
C(Cl≥Yes) �= POSl

P (Cl≥Yes). Then P cannot be an L≥l -reduct.
On the contrary, if we have an additional object S12 such that ρ(S12, Math) =

Bad, ρ(S12, Phy) = Medium, ρ(S12, Lit) = Bad and ρ(S12, PS) = Good in the
decision table, P is an L≥l -reduct.

From this observation, we know that we cannot always enumerate all union-
based reducts in VP-DRSA based on a discernibility matrix.

Therefore, to enumerate all union-based reducts in VP-DRSA surely, an ex-
haustive enumeration would be necessary.

5 Concluding Remarks

We have investigated several reducts based on downward and upward unions
in DRSA and VP-DRSA. Three different reducts have been obtained in DRSA
whereas four different reducts have been obtained in VP-DRSA. The three kinds
of reducts in DRSA can be enumerated by a decision matrix method while
the four kinds of reducts cannot. The selection of a kind of reduct depends on
the application. For example, an L≥-reduct can be useful to know necessary
attributes in inferring the certain lower bounds of classes while an L≤-reduct
can be useful to know necessary attributes in inferring the certain upper bounds
of classes.

The investigations of reducts based on classes and the relations with reducts
described in this paper would be our future topics.
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Summary. The main aim of this brief note is to explain relations between the classic
approach to set approximations and recent proposals appearing in the literature on
rough sets. In particular, relations between the standard topological concepts and basic
concepts of rough set theory are considered.

1 Introduction

The theory of rough sets, as introduced by Pawlak, deals with situations in which
knowledge about elements of a finite nonempty set is restricted by a collection
of equivalence relations on that set. The basic idea is to use the available knowl-
edge for introducing the notion of a definable subset and to approximate every
undefinable subset through definable sets.

Various formulations and a number of generalizations of Pawlak’s approach
have been proposed and studied, and several notions and facts known in various
branches of mathematics have been rediscovered and introduced under different
names by the rough set community.

The main purpose of the present paper is to show that there is an intimate
connection between the approximation operators of rough set theory and oper-
ators commonly met in topological spaces and their extensions. In particular, I
would like to attract attention to the rarely noticed connection with the system
of extended topology introduced and studied by Preston C. Hammer in a series
of papers published in the early 1960’s, and recently by Gni�lka [2].

2 Preliminaries

2.1 Relations

Throughout the paper, U denotes a fixed nonempty (not necessarily finite) set
and P(U) denotes the power set of U . If R is a binary relation in U , then the

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 176–186, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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converse R−1 of R is defined by R−1 = {(x, y) : (y, x) ∈ R}. The identity
relation (also called the diagonal) in U is the set of all pairs of the form (x, x)
for x ∈ U. If R and S are binary relation in U, then the composite of R and S is
denoted by R ◦ S; it is defined to be the set of all pairs (x, z) such that for some
y it is true that (x, y) ∈ S and (y, z) ∈ R.

A reflexive binary relation in U is called

• a tolerance if it is symmetric,
• a preorder if it transitive,
• an equivalence if it is transitive and symmetric.

By a partition of U we mean a collection of pairwise disjoint nonempty subsets
of U whose union is U . Let us recall that partitions and equivalence relations
are closely connected.

Let E be the mapping from the set of all partitions of U into the set of binary
relations in U defined as follows. If D is a partition of U , then E(D) is the binary
relation such that (x, y) ∈ E(D) just in case x and y belong to the same member
of partition D. We shall call E(D) the relation induced by the partition D. It
can easily be shown that E(D) is an equivalence relation.

On the other hand, every equivalence relation in U induces a partition as
follows. If E is an equivalence relation between elements of U , then an equivalence
class of E in U is a subset X of U such that

• every two elements in X are equivalent in the sense of E, and
• each element of U that is equivalent to some element of X belongs to X.

The equivalence class of an element x of U is the equivalence class to which x
belongs. The equivalence class of x will be denoted by x/E, and the collection
of all equivalence classes of E will be denoted by D(E). It turns out that the
collection D(E) is a partition of U . Moreover, for each equivalence E and each
partition D, we have

D(E(D)) = D and E(D(E)) = E.

2.2 Topologies

A topology for U is a collection τ of subsets of U satisfying the following
conditions:

• The empty set and U belong to τ .
• The union of the members of each sub-collection of τ is a member of τ .
• The intersection of the members of each finite sub-collection of τ is a member

of τ .

If τ is a topology for U then we say that the pair (U, τ) or U is a topological
space. Let τ be a topology for U and X be a subset of U.

• The members of τ are called the open sets of (U, τ).
• The complements of the open sets are called the closed sets of (U, τ).
• The interior of X is the largest open subset of X.
• The closure of X is the smallest closed subset that includes X .
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2.3 Uniformities

A quasiuniformity for U is a nonempty collection � of subsets of U ×U such that

(a) Each member of � contains the diagonal.
(b) The intersection of any two members of � also belongs to �.
(c) If R is a member of � and S is a subset of U × U such that R ⊂ S, then S

also belongs to �.
(d) For each R ∈ � there is an S ∈ � such that S ◦ S ⊂ R.

The quasiuniformity � for U is called a uniformity for U if the following addi-
tional condition is satisfied:

(e) If R is in �, then the inverse R−1 of R is also in �.

If � is a quasiuniformity or uniformity for U , then the pair (U, �) is said to be
a quasiuniform or uniform space, respectively.

Every quasiuniformity � on U yields a topology for U by taking as open
sets the sets A with the property: if x ∈ A then there is R in � such that
{y : (x, y) ∈ R} ⊂ A.

3 Definability in Rough Set Theory

3.1 Definability Based on Equivalences

Consider information in Table 1 taken from one of Pawlak’s examples.

Table 1. A data table

Patient Headache Muscular pain Temperature Flue

1 no yes high yes

2 yes no high yes

3 yes yes very high yes

4 no yes normal no

5 yes no high no

6 no yes very high yes

First, notice that some patients are indiscernible with respect to some at-
tributes or sets of attributes. For instance, patients 2, 3 and 5 are indiscernible
with respect to Headache, patients 3 and 6 are indiscernible with respect to the
pair Muscular pain and Flue. Also notice that every set of attributes divides
the set of patients into a collection of pairwise disjoint nonempty subsets. For
example,

Headache: {1,4,6}, {2,3,5};
Temperature: {1,2,5}, {3,6}, {4};

Muscular pain and Temperature: {2,5}, {3,6}, {4}, {1}.
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Consider some set of patients, for example, the set X = {1, 3, 6}. It can be
described by means of the pair of attributes Muscular pain and Temperature as
the set of the patients feeling muscular pain and having high or very high tem-
perature. However, it cannot be described exactly by the attribute Temperature.

Intuitively, this leads us to consider as definable subsets (with respect to
a given equivalence relation) only the equivalence classes and unions of some
equivalence classes.

Formally, we obtain the family of definable subsets as follows. Let E be an
equivalence relation in U and let D(E) be the partition of U induced by E. The
lower and upper approximations, and definability of a subset X of U considered
by Pawlak [9] can be introduced as follows:

• The E-lower approximation EX of X is the union of those members of D(E)
that are subsets of X.

• The E-upper approximation EX of X is the union of those members of D(E)
that contain at least one element of X.

• A subset X of U is E-definable if EX = EX.

It can easily be verified that

• EX ⊂ X ⊂ EX,
• EX = U \ E(U \ X) and EX = U \ E(U \ X),
• X ⊂ Y implies EX ⊂ EY and EX ⊂ EY,
• E(X ∩ Y ) = EX ∩ EY and E(X ∪ Y ) = EX ∪ EY,
• E(EX) = EX and E(EX) = EX.

Also notice that

E(EX) = E(EX) and E(EX) = E(EX).

In other words, for each X , Pawlak’s lower and upper approximations EX and
EX are definable sets.

3.2 Definability Based on Tolerances

For a tolerance relation T, we define x/T to be the set of those elements y in U
for which (x, y) ∈ T.

If T is a transitive tolerance, then T is an equivalence and x/T is the equiv-
alence class of x. As a consequence, for every x and y, if x/T and y/T are not
equal, then they are disjoint. However, if a tolerance T is not transitive, then
two distinct x/T and y/T may have common elements. Therefore, the collec-
tion {x/T : x ∈ U} of subsets of U is not necessarily a partition of U. By the
reflexivity of T , {x/T : x ∈ U} is always a covering of U. We denote it by C(T ).

As an example, let us consider Table 2 taken from Järinen [5].
From the table we extract the following tolerance relation:

T = Δ ∪ {(1, 2), (2, 1), (1, 3), (3, 1), (5, 4), (4, 5), (5, 6), (6, 5), (5, 7), (7, 5)}

where Δ is the identity relation in the set of patients. The corresponding sets
x/T are given in Table 3.
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Table 2. A data table

Patient Blood pressure Hemoglobin Temperature

1 103/65 125 39.3

2 97/60 116 39.1

3 109/71 132 39.2

4 150/96 139 37.1

5 145/93 130 37.3

6 143/95 121 37.8

7 138/83 130 36.7

Table 3. Tolerance classes

1/T 2/T 3/T 4/T 5/T 6/T 7/T

{1,2,3} {1,2} {1,3} {4,5} {4,5,6,7} {5,6} {5,7}

Following Pawlak’s approach, several authors (see, for example, [5, 6, 15]) have
introduced the lower approximations, upper approximations and definability of
sets with respect to tolerances as follows.

Let T be a tolerance relation in U, let C(T ) be the covering of U defined by
T, and let X be a subset of U.

• The T -lower approximation TX of X is the union of those members of C(T )
that are subsets of X.

• The T -upper approximation TX of X is the union of those members of C(T )
that contain at least one element of X.

• A subset X of U is T -definable if TX = TX.

It can easily be verified that

• TX ⊂ X ⊂ TX,
• TX = U \ T (U \ X) and TX = U \ T (U \ X),
• X ⊂ Y implies TX ⊂ TY and TX ⊂ TY.

Let T be a tolerance in U and let ET be the intersection of all equivalences
in U that include T. It turns out that ET is an equivalence, and the collection
of T -definable sets is the same as the collection of ET -definable sets.

Nevertheless, there is a significant difference between approximations based
on tolerances and those based on equivalences. For an equivalence, both lower
and upper approximation of a set is always a definable set, while this is not
true for tolerances. For instance, in the example above, the upper approximation
T{2} is T -undefinable, because T {2} = {1, 2}, and T{1, 2} = {2}, T{1, 2} =
{1, 2, 3}.
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3.3 Definability Based on Preorders

Let Q be a preorder in U and x be an arbitrary point in U. Let Q←(x) and
Q→(x) be the subsets of U defined by

Q←(x) = {y ∈ U : (y, x) ∈ Q}

Q→(x) = {y ∈ U : (x, y) ∈ Q}
If we wish to define the upper and lower and upper approximations with

respect to preorders analogously to the cases of equivalences and tolerances,
we have to take into account that preorders may be unsymmetrical; that is, in
general, Q←(x) �= Q→(x). Hence we have several possibly nonequivalent variants
how to define the lower and upper approximations Q and Q. Namely,

QX = {x ∈ U : Q→(x) ∩ X �= ∅} (1)
QX = {x ∈ U : Q→(x) ⊂ X} (2)

QX = {x ∈ U : Q←(x) ∩ X �= ∅} (3)
QX = {x ∈ U : Q←(x) ⊂ X} (4)

QX = {x ∈ U : Q→(x) ∩ X �= ∅} (5)
QX = {x ∈ U : Q←(x) ⊂ X} (6)

QX = {x ∈ U : Q←(x) ∩ X �= ∅} (7)
QX = {x ∈ U : Q→(x) ⊂ X} (8)

For a preorder Q, we define the upper approximations QX and lower approx-
imations QX of X by

QX = {x ∈ U : Q→(x) ∩ X �= ∅} (9)
QX = {x ∈ U : Q←(x) ⊂ X} (10)

and we say that a subset X of U is Q-definable if

QX = QX.

To illustrate reasons for this choice, we consider the following example taken
from Järinen and Kortelainen [6].

Let U be the set {1, 2, 3}, and consider the preorder

Q = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)}.

Then we obtain Tables 4–6.
The last table shows that the richest collection of definable sets is obtained

for our choice or for the “dual” choice

QX = {x ∈ U : Q←(x) ∩ X �= ∅} (11)
QX = {x ∈ U : Q→(x) ⊂ X}. (12)



182 M. Vlach

Table 4. Images and inverse images under Q

x Q←(x) Q→(x)

1 {1} {1,2,3}
2 {1,2} {2,3}
3 {1,2,3} {3}

Table 5. Lower and upper approximations

X QX, → QX, ← QX, → QX, ←
{1} {1} {1,2,3} ∅ {1}
{2} {1,2} {2,3} ∅ ∅
{3} {1,2,3} {3} {3} ∅

{1,2} {1,2} {1,2,3} ∅ {1,2}
{1,3} {1,2,3} {1,2,3} ∅ {1}
{2,3} {1,2,3} {2,3} {2,3} ∅

Table 6. Lower and upper approximations for (5) and (6)

Q∅ = ∅ Q∅ = ∅
Q{1} = {1} Q{1} = {1}
Q{2} = ∅ Q{2} = {1, 2}
Q{3} = ∅ Q{3} = {1, 2, 3}
Q{1, 2} = {1, 2} Q{1, 2} = {1, 2}
Q{2, 3} = ∅ Q{2, 3} = {1, 2, 3}
Q{1, 3} = {1} Q{1, 3} = {1, 2, 3}
Q{1, 2, 3} = {1, 2, 3} Q{1, 2, 3} = {1, 2, 3}

3.4 General Case

Let R be an arbitrary relation in U and x be an arbitrary point in U. Let R←(x)
and R→(x) be the subsets of U defined by

R←(x) = {y ∈ U : (y, x) ∈ R},

R→(x) = {y ∈ U : (x, y) ∈ R}.

Let us introduce the upper approximations RX and lower approximations
RX of X by

RX = {x ∈ U : R→(x) ∩ X �= ∅},

RX = {x ∈ U : R←(x) ⊂ X}.
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Then we say a subset X of U is R-definable if

RX = RX.

Given that equivalences and tolerances are symmetric, it is immediate that
these approximations, and consequently the definability, coincide with those de-
scribed above for equivalences, tolerances and preorders.

4 Topologies of Approximation Spaces

Let D be a partition of U . It can easily be seen that the collection of all sets that
can be written as unions of some members of D together with the empty set is
a topology for U. This topology is called the partition topology generated by D.
Because every equivalence E in U defines a partition of U, it also generates a
topology for U ; namely, the partition topology generated by the partition D(E).
We denote it by τE and, if there is no danger of misunderstanding, we omit
references to E.

It is worth mentioning that partition topologies are characterized by the fact
that every open set is also closed, and that every partition topology is an Alexan-
drov topology. That is, a topology for which the intersection of the members of
each (not only finite) collection of open sets is open.

In the rough set literature, the ordered pair (U, E), where U is a (finite)
nonempty set and E is an equivalence in U, is called an approximation space or
Pawlak’s approximation space. In order to see clearly how Pawlak’s approxima-
tion spaces are intimately related with the topological spaces, we observe that:

• A subset X of U is E-definable if and only if it is either empty or it can be
written as the union of some members of the partition induced by E.

• A subset X of U is τE-open if and only if it is either empty or it can be
written as the union of some members of the partition induced by E.

Moreover, if E is an equivalence in U, then the collection � of subsets of U × U
defined by

� = {R : R ⊂ U × U, E ⊂ R}
is a uniformity for U and the topology for U induced by this uniformity coincides
with topology τE .

Consequently,

• Pawlak’s approximation spaces are uniform spaces whose uniform topologies
coincide with partition topologies.

• These topologies can be characterized by the fact that every open set is also
closed.

• These topologies are Alexandrov topologies .

Hence the difference between Pavlak’s approximation space (U, E) and the topo-
logical space (U, τE) is only terminological. In particular, we have

• X is definable if and only if it is open.
• X is definable if and only if it is closed.
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• The lower approximation of X is the interior of X .
• The upper approximation of X is the closure of X .
• X is definable if and only if its interior is equal to its closure.

For translation of some other terms of Pawlak’s terminology into the standard
language of general topology, see [14].

Let T be a tolerance in U and let ET be the intersection of all equivalences
in U that include T. It turns out that ET is an equivalence, and the collection
of T -definable sets is the same as the collection of ET -definable sets. Therefore,
for each tolerance T , the collection of T -definable sets is a partition topology.
Moreover, the collection � of subsets of U × U defined by � = {R : R ⊂ U ×
U, T ⊂ R} is a quasiuniformity for U and the topology for U induced by this
quasiuniformity coincides with the partition topology generated by τET .

Let Q be a preorder in U . Järvinen and J. Kortelainen [6] showed that the
collection of Q-definable sets is again a topology for U. We denote this topology
by τQ. This topology is not necessarily a partition topology but it is always an
Alexandrov topology.

Conversely, let τ be an Alexandrov topology for U, and let Qτ be a binary
relation in U defined by (x, y) ∈ Qτ if and only if Nx ⊂ Ny where Nx and Ny

are the neighborhood systems of x and y, respectively.
It turns out that τQ is an Alexadrov topology if Q is a preorder, Qτ is a

preorder if τ is an Alexandrov topology, and

τQτ = τ and QτQ = Q.

5 Hammer’s Extended Topology

If R is a binary relation in U, then the function

X 	→ {y ∈ U : (x, y) ∈ R for some x ∈ X}

maps the power set P(U) of U into itself. Therefore, we can obtain an insight into
the system of approximations of rough set theory also by studying properties of
set-valued set-functions.

Basic properties of such functions have been studied in detail, for example, by
Preston C. Hammer [4] in a series of papers on the extended topology published
in the early 1960’s; see also Gni�lka [2].

Let
f : P(U) → P(U)

be an arbitrary function. Define the dual fd of f by

fd(X) = U \ f(U \ X).

Since the lower and upper approximations used in rough set theory are isotonic
functions in the sense that

X ⊂ Y implies f(X) ⊂ f(Y )

we focus our attention on the class of isotonic functions.
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The following properties are equivalent:

f is isotonic,

f(X) ∪ f(Y ) ⊂ f(X ∪ Y ) for all X, Y ∈ U,

f(X) ∩ f(Y ) ⊃ f(X ∩ Y ) for all X, Y ∈ U,

fd is isotonic,

fd(X) ∪ fd(Y ) ⊃ fd(X ∪ Y ) for all X, Y ∈ U,

fd(X) ∩ fd(Y ) ⊂ fd(X ∩ Y ) for all X, Y ∈ U,

X ∩ Y = ∅ implies f(X) ∩ fd(Y ) = ∅.

In Hammer’s system of extended topology the isotonic functions that are also
non-shrinking in the sense

X ⊂ f(X) for all X

are called expansive functions. It can easily be seen that if f is expansive, then
fd is contractive; that is, isotonic and non-enlarging in the sense

X ⊃ fd(X) for all X.

We have seen that the upper approximations are expansive and lower approxi-
mations are contractive. Moreover the upper approximations are subadditive in
the sense that

f(X) ∪ f(Y ) ⊃ f(X ∪ Y ) for all X, Y ∈ U,

and the lower approximations are submultiplicative in the sense

f(X) ∩ f(Y ) ⊂ f(X ∩ Y ) for all X, Y ∈ U.

The fact that the isotonic approximations are exactly those with the property

X ∩ Y = ∅ implies f(X) ∩ fd(Y ) = ∅

is important in optimization theory, because the optimality of a feasible solution
can be expressed by stating that the intersection of certain sets is empty.

In contrast to the approximations used in the theory of rough sets, the ap-
proximations used in optimization are usually neither expansive nor contractive.
Properties of such approximations have been studied in Vlach (1980, 1983),
where the isotonic approximations with the property

f(X) = X for X ∈ {∅, U}

are called external approximations, provided they are subadditive, and internal
approximations, if they are submultiplicative.
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6 Conclusions

The paper shows that there exists an intimate relationship between the theory
rough sets and the theory of topological spaces. Namely: if the underlying in-
discernibility relation is an equivalence, then the collection of definable sets is a
uniformity whose topology is a partition topology, that is, a topology in which
every open set is also closed and vice versa; if the collection of definable sets
is a tolerance, then the collection of definable sets is a quasiuniformity whose
topology is again a partition topology; if the underlying indiscernibility relation
is a preorder, then the collection of definable sets is again a topology but not
necessarily a partition topology. However, in all mentioned cases, the collection
of definable sets is an Alexandrov topology, that is, an arbitrary intersection of
definable sets is a definable set.
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Summary. In this paper we develop a rough set-based solution to dealing with the
inconsistent decision classes of instances in inducing decision rules and an evidential
reasoning method to resolve such inconsistent conclusions encountered in determining
class decisions for instances. The distinguishing aspects of our method are to exploit
the rough boundary region in inducing rules and to aggregate multiple conclusions in
classifying instances. We present our proposed method and use an example to illustrate
how our method can be applied to classification problems along with its advantage.

1 Introduction

The starting point of rough set theory is the observation that instances may be
indiscernible due to limited information available [1]. In such a situation, two
instances with the same attribute values may be classified into two different
decision classes. Thus the decision classes relating to these instances may be in-
consistent and uncertain. In the rough set-based inductive learning approaches,
such inconsistency is not corrected. Instead, it will be replaced by the lower and
upper approximations of the decision classes [2]. On the basis of these approxi-
mations, two sets of rules are generated: certain and uncertain rules. The certain
rules can be used as in conventional rule-based systems, and the uncertain rules
may be used to cope with non-deterministic instances in classification.

In a rule-based classification system, classifying instances is to select single
rules in which their conditions either exactly or partially match instances and
their conclusions will be assigned to the instances. For a given instance, there
often exist more than one rule to be activated, this implies that one instance
may belong to more than one decision class. These classes may potentially be in
inconsistence or conflict. To deal with such an issue, the conventional approaches
used in most rule-based systems is to select one and only one rule in inference
process to avoid conflict cases, these include 1) ordering rules and picking the
first or last rule matched; 2) starting from the first rule and taking the earliest
matched rule; and 3) putting a default rule at the end of rule list in case no rule
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is activated [3, 4]. In the context of rough set-based inductive systems, such a
issue has not drawn a great deal of attention and there is a little effort devoted
to how conflicting cases could be resolved.

Given the above two cases of conflicting decision classes arising from rule-
based systems, we propose a novel approach. For the former we suggest to make
use of the rough set boundary of instances to generate uncertain rules instead
of using the upper approximation. We argue that inconsistent decision classes
should be treated as a set of classes with a certain degree of confidence, because
they cannot ascertain any individual decision classes. For the later case we put
forward an effective solution to resolve inconsistent decisions by accumulating
evidence derived from multi-conclusions. This solution is developed on the basis
of the Dempster-Shafer theory of evidence.

The rest of paper is organized as follows. Section 2 details the rough sets-based
algorithms for computing minimal sets of attributes called reducts for computing
lower and upper approximations, which are, in turn, used to generate certain and
uncertain rules. Section 3 provides a method for modeling multiple conclusions
drawn as uncertainty reasoning problem. The final summary is given in Section 4.

2 A Rough Sets-Based Method for Rule Induction

To properly understand how rules can be induced using a rough sets-based learn-
ing algorithm, let us start with a formal model for rule induction [1, 5].

2.1 Preliminary

In rough sets, objects / instances are organized into an information system,
denoted by I =< U, A >, where

1. U = {u1, u2, · · · , u|U|} is a finite non-empty set, called the universe or object
space; elements of U are called objects/instances;

2. A = {a1, a2, · · · , a|A|} is also a finite non-empty set; elements of A are called
attributes;

3. for every a ∈ A there is a mapping for a from U into some space a : U →
a(U), and a(U) = {a(u) | u ∈ U} is called the domain of attribute a.

An information system I can be expressed intuitively in terms of an informa-
tion table as follows:

U\A | aj

ui | aj(ui)
(1)

where attribute aj has domain aj(U) = {aj(ui) | i = 1, 2, ..., |U |}. When there
is no repetition of objects, the information table is a relation, and attributes
can be divided into two categories of condition and decision based on their
dependencies. An information system < U, A > is called a decision system, if
we have A = C ∪ D and C ∩ D = ∅, where attributes in C are called condition
attributes and attributes in D are called decision attributes.

Given a decision system, a range of operations can be defined below.
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Table 1. A decision system: h = headache, m = muscle-pain, t = temperature, d =
flu or non-flu, Y = yes, N = no, H = high, VH = very high

U/Y h m t d
1 n y h y

2 y n h y

3 y y vh y

4 n y n n

5 y n h n

6 n y vh y

U/h = {W1, W2} = {{1, 4, 6}, {2, 3, 5}}
U/m = {W1, W2} = {{1, 3, 4, 6}, {2, 5}}
U/t = {W1, W2, W3} = {{1, 2, 5}, {3, 6}, {4}}
U/d = {W1, W2} = {{1, 2, 3, 6}, {4, 5}}

Fig. 1. Partitions of attributes h,m, t and d

Definition 1. Let U be a universe U and a ∈ A be an attribute, a partition
operation over U is defined by U/{a} = {W1, · · · , WK}, simply denoted by U/a,
where for any u1, u2 ∈ Wi, u1 �= u2, a(u1) = a(u2), and Wi is called a partition.

Definition 2. Let W1 and W2 be two subsets of U , an intersection operation is
defined by W1 ⊗ W2 below:

W1 ⊗ W2 = {u ∈ U | u ∈ W1, u ∈ W2} (2)

To make the above concepts more clear, let us look at a well-known example
drawn from the work of Pawlak as follows [6]. The example is represented as
a decision system < U, A > in Table 1, containing information about patients’
symptoms and the diseases from which patients suffer, U = {1, 2, 3, 4, 5, 6} and
A = C ∪ D, where C = {h, m, t} are condition attributes and D = {d} is a
decision attribute. The partitions of the attributes are illustrated in Figure 1 and
the intersections of partitions with respect to attributes h and m are presented
in Figure 2.

U/hm = U/h ⊗ U/m
= {{1, 4, 6}, {2, 3, 5}} ⊗ {{1, 3, 4, 6}, {2, 5}}
= {W1, W2, W3} = {{1, 4, 6}, {3}, {2, 5}}

Fig. 2. Intersection of partitions of attributes h and m

2.2 Decision Rules

In general, decision rules as knowledge representation can be used to express
various relations and semantics between condition attributes (or the antecedent)
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and decision attributes (or the consequent). For instance, a rule can be used to
express a cause-effect relation: if you have headache and a high temperature,
then you may have caught flu. It can express semantics, e.g. if A =“gender”
and B =“sex”, then A and B are semantically equivalent. It also can express
an association discovered from a supermarket transaction, e.g., if someone buys
breads, then he or she probably buys milks as well. According to the types of
outputs which inductive learning algorithms have, decision rules can be grouped
into three categories as shown in Figure 3. In this figure, ci ∈ C is a attribute,

1)IF (c1/v1) ∧ · · · ∧ (cM/vM )THENd1|stg
2)IF (c1/v1) ∧ · · · ∧ (cM/vM )THEN{d1|stg1, · · · , ds|stgs}
3)IF (c1/v1) ∧ · · · ∧ (cM/vM )THEN{d1, · · · , ds}|stgs

Fig. 3. Three types of decision rules

vi ∈ ci(U) is an attribute value of ci and di ∈ d(U) is a decision attribute value,
and stgi is a degree of belief about possible conclusions, called a rule strength and
also denoted by stg(di) = stgi. It lies in a range [0, 1]. The intuitive interpretation
of rule execution is straightforward. Given an instance, if it exactly matches the
condition of a rule, then three possible conclusions could be drawn from three
types of rules: 1) the conclusion is d1 with the degree of belief stg1; 2) the
conclusion is a set of decisions along with their degrees of belief, and 3) the
conclusion is a set of decisions with one degree of belief. This division of rules is
slightly different from that given by Song [7]. We merge the three types of rules
described by Song into the first two and add the third type of rule that can be
used to deal with a set of conclusions in decision making under uncertainty. In
this study, we use Type 1 and 3 of rules to represent different uncertain relations
between condition and decision attributes in different situations.

To illustrate the process of rule induction, let us look at Table 1. Since these
instances do not belong to the same decision class, we need a way to split them
into subsets based on the condition attribute values. First, we consider partitions
on attributes h and d to see whether all the instances can be classified into a
decision class flu or not-flu.

With partitions U/h = {Wh
1 , Wh

2 } and U/d = {W d
1 , W d

2 }, it can be seen that
no subsets of U/h belongs to any subsets of U/d. This means that instances with
respect to attribute h cannot be classified into the decision class flu or not-flu.
Hence we need to add another attribute to h to classify the instances in U . For
example, we add attribute m into h to yield another set of partitions U/hm =
{Whm

1 , Whm
2 , Whm

3 }, we notice Whm
2 ⊆ W d

1 , but the remaining partitions still
do not belong to U/d, i.e. some instances still cannot be classified into flu or
not-flu with attributes h and m. Thus we need to add another attribute to hm
to partition U . This process will be repeated for each of the remaining attributes
until all the instances in U are classified into the decision classes of flu or not-flu.

Unfortunately, in some situations, some instances in U cannot be classified
into the decision classes even if all the combinations of attributes are considered.
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For example, instances 2 and 5 in Table 1, although the two instances have the
same attribute values, the decision class to which instance 2 belongs is different
from that of instance 5. That means that two instances cannot be characterized
in terms of the information available, resulting in inconsistency or uncertainty,
in determining a decision class for instances 2 and 5. This leads to a difficult
situation to induce decision rules.

The rough set theory as a mathematical tool provides an effective mechanism
to cope with inconsistencies or uncertainty in determining decision classes for
instances. Unlike the approaches widely used in other inductive learning algo-
rithms, such inconsistencies are corrected [2] or instances are removed. Instead,
these inconsistent classes will be replaced by a pair of the lower and/or upper
approximations of the decision classes. On the basis of the approximations, two
sets of rules are induced: certain and uncertain. The certain rules can be used
as in conventional rule-based systems, and the possible rules may be used for
dealing with uncertainty. In the following sections, we will see how the two types
of rules can be induced by the rough set-based algorithms and how they can be
exploited for classification.

2.3 An Algorithm for Computing Multiple Reducts

Inductive learning can be seen as a process of synthesizing evidential mappings
from a sample space consisting of individual instances (objects). The result of-
ten is to reduce the space containing individual instances in size, forming a
new smaller space containing a set of representative instances. These remaining
instances serve the same role as the original ones. In contrast, the rough set-
based inductive learning is aimed at learning a subset of attributes in terms of
a reduct which is a minimal sufficient subset of a set of condition attributes. It
preserves the dependency degree with respect to a set of decision attributes and
has the same ability to discriminate instances as a full set of attributes. Prior to
developing algorithms, we introduce several important concepts below [1, 5].

Definition 3. Suppose that a subset of attributes X ⊆ A, if there is Q ⊆ X ,
and Q is minimal among all the subsets of X with the condition of U/X = U/Q,
then Q is called a reduct of X .

Notice that attributes within a reduct are significant such that none of them
can be omitted, and there may be more than one reduct for a given subset X .

Definition 4. For each subset W ∈ U/Y = {W1, · · · , WK} with respect to
a decision attribute Y ⊆ D, and a subset of condition attributes X ⊆ C, we
associate two subsets with W :

XW = ∪{v ⊆ U/X | v ⊆ W} (3)

XW = ∪{v ⊆ U/X | v ∩ W �= ∅} (4)

In the above notation, XW is called a lower approximation of W and XW is
called a upper approximation of W . In addition POSX = XW1 ∪ XW2 ∪ · · · ∪
XWK is called a X-positive region and BNX = XW −XW is called a boundary.
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XW = XW1 ∪ XW2 = {1, 3, 6} ∪ {4} = {1, 3, 4, 6}
XW = XW1 ∪ XW2 = {1, 3, 6, 2, 5} ∪ {4, 2, 5}

= {1, 2, 3, 4, 5, 6}
BNX = XW − XW = ∪2

i=1XWi − ∪2
i=1XWi = {2, 5}

Fig. 4. Lower and upper approximations, and boundary

sptX(W1) = spt{m,t}(W1) = |{1,3,6}|
|U| = 3

6

sptX(W2) = spt{m,t}(W2) = |{4}|
|U| = 1

6

γX(Y ) = γ{m,t}(Y ) = sptX(W1) + sptX(W2) = 4
6

Fig. 5. Support and dependency degree

To quantify relation between a subset of condition attributes X and a de-
cision attribute Y , we define two measures: support, denoted by sptX(W ), and
dependency degree, denoted by γX(W ) (being equivalent to stg defined in Fig. 3),
below.

sptX(W ) =
|XW |
|U | , W ∈ U/X (5)

γX(Y ) =
∑

W∈U/Y

sptX(W ) (6)

Formula (6) expresses the dependency degree between X and Y . If γX(Y ) = 1,
Y is totally dependent on X . This means all the instances in U can be classi-
fied by using a subset of attributes X . If 0 < γX(Y ) < 1, then Y is partially
dependent on X . In other words, only those instances which fall in the positive
region can be classified by using X . When γX(Y ) = 0, none of instances can be
classified using a subset of attributes X .

As an example, we look at Table 1 again. Suppose we are given a sub-
set of attributes X = {m, t}, Y = {d}, and U/mt = {{1}, {3, 6}, {4}, {2, 5}}
U/d = {W1, W2} = {{1, 2, 3, 6}, {4, 5}}, by using formulas (3)-(6), we can ob-
tain lower and upper approximations, dependency as shown in Figure 4 and the
corresponding support and the degree of dependency as depicted in Figure 5.

With the definition of the degree of dependency between two sets of attributes,
we proceed to introduce an algorithm for calculating reducts. In our work, we
have implemented an algorithm which is similar to the algorithms developed us-
ing single covering approaches [2, 8]. The key idea of the algorithm is to search
subsets of attributes with the maximum dependency degree from a set of at-
tributes C in terms of reducts. It starts with an empty subset Q and then
computes an attribute with the largest dependency to be added into Q. Re-
moving Q from C, the algorithm continues to calculate another attribute with
the second largest dependency, which will be added into Q. This process will
be repeated until the degree of dependency of Q subset of attributes does not
increase. Figure 6 illustrates a simplified algorithm for generating reducts.
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Algorithm: generate reducts
1 Input C a set of condition attributes,

D a set of decision attributes
2 Output Q: holds a reduct, Q ⊆ C
3 Q ← ∅, X ← ∅
4 while (γQ∪{x}(D) �= γT (D))
5 T ← Q
6 for each x ∈ (C − Q) do
7 if (γQ∪{x}(D) > γT (D)) then
8 T ← Q ∪ {x}
9 X ← {x}
10 endif
11 Q ← T
12 endfor
13 endwhile
14 output Q
15 C ← C − X
16 if (|C| > 1) go to 2
17 end

Fig. 6. A rough set for generating reducts

2.4 Rough Sets for Rule Induction

Using rough sets-based methods, rules can be generated from the instances be-
longing to the lower approximation, the upper approximation and the boundary
of different decision classes [2]. Given the lower approximation of a reduct, a
set of rules can be generated in the form of Type 1 as illustrated in Figure 3,
and their strengths can be calculated by formula (5). These rules are regarded as
certain rules in this context. Rules generated from the other regions are regarded
as uncertain rules, which can be used for coping with vagueness and uncertainty
in classification.

The approaches to inducing uncertain rules from an upper approximation
have been used in most of the rough sets-based systems [3]. However there are
few suggestions about how the uncertain rules can be derived from the boundary
and how uncertain rules derived in this way can be exploited. In the boundary
case, the consequent part of such rules consists of a set of contradicting decision
classes in the disjunctive form. However choosing the best supported decision
from them is cumbersome because we have no criterion for identifying that best
individual, all we could do is to pick one at random. In this study we propose
that such contradicting decision classes could be treated as a set of decision
classes, representing an undeterministic status of rule induction. Figures 7 and
8 illustrate two algorithms for rule construction from low approximation and
boundary, respectively.

Returning the example and calculating the dependencies for all possible sub-
sets of C, we can obtain two reducts {m, t} and {h, t}. Inputting the two reducts
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Algorithm: generating rules
1 Input: U/d = {W1, · · · , WK} a set of partitions

with respect to decision attribute d;
X a reduct; XWi a lower approximation
mask[] an index of attributes

2 Output: Ri a rule
3 S ← XWi

4 for (i = 1to|S|) do
5 stg ← 1
6 for (j = i + 1to|S|) do
7 if (¬mask[j]) then
8 if (X(S[i] == X(S[j])) then
9 stg ← stg + 1
10 mask[j] ← true;
11 endif
12 endif
13 endfor
14 Ri ← IF
15 for each (x ∈ X)
16 Ri ← Ri ∧ (x/x(S[i]))
17 Ri ← Ri + THENdi|stg/|U |
18 endfor
18 endfor
19 output Ri

20 end

Fig. 7. Constructing rules from lower approximation

and boundary into the algorithms of rule constructions, two sets of rules can be
generated as shown in Figures 9 and 10.

In the following section, we examine the use of rules induced from the lower
approximation and the corresponding boundary in evidence accumulation, i.e.
retaining a number of decision classes with support/belief, which are used to
contribute evidence accumulation.

3 Uncertainty Reasoning for Classification

Given the methods and techniques described in the previous sections, now we
are ready to examine how they can be applied to uncertainty reasoning for
classification.

3.1 Matching Process

In rule-based classification systems, rules can be activated in different ways such
as ’M-of-N rule’ [9], low and high match degrees for dynamic reasoning [7], etc.
In our work, we adopt a probabilistic model developed for information retrieval
to determine how a rule can be activated in reasoning process [10]. Given an
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Algorithm: generating rules
1 Input: U/d = {W1, · · · , WK} a set of partitions

with respect to decision attribute d;
X a reduct; BNX(Wi) a lower approximation

2 Output: Ri a rule
3 S ← BNX(Wi)
4 for (i = 1to|S|) do
5 T ← T ∪ d(S[i])
6 endfor
7 stg ← |BNX(Wi)|/|U |
8 Ri ← IF
9 for each (x ∈ X)
10 Ri ← Ri ∧ (x/x(S[i]))
11 Ri ← Ri + THENT |stg
12 endfor
13 output Ri

14 end

Fig. 8. Constructing rules from boundary

r11 : IF (h/N) ∧ (t/H)THENd/Y | |{u1}|
|U| = 1

6

r12 : IF (h/Y ) ∧ (t/V H)THENd/Y | |{u3}|
|U| = 1

6

r13 : IF (h/N) ∧ (t/V H)THENd/Y | |{u6}|
|U| = 1

6

r14 : IF (h/N) ∧ (t/N)THENd/N | |{u4}|
|U| = 1

6

r15 : IF (h/Y ) ∧ (t/h)THEN{Y,N}| |{u2,u5}|
|U| = 2

6

Fig. 9. Rules derived by using reduct {h, t}

r21 : IF (m/Y ) ∧ (t/H)THENd/Y | |{u1}|
|U| = 1

6

r22 : IF (m/Y ) ∧ (t/V H)THENd/Y | |{u3,u6}|
|U| = 2

6

r23 : IF (m/Y ) ∧ (t/V H)THENd/N | |{u4}|
|U| = 1

6

r24 : IF (m/N) ∧ (t/h)THEN{Y,N}| |{u2,u5}|
|U| = 2

6

Fig. 10. Rules derived by using reduct {m, t}

instance or a piece of evidence e and a set of rules R = {r1, r2, · · · , r|R|}, de-
termining whether e is matched against the conditions of a rule ri is simply
modelled by a logic implication, denoted by P (e → ri) and the conditions of
each rule are denoted by {ci1/vi1, ci2/ci2, · · · , cik/cik}. By interpreting such a
logical implication as a conditional probability, we have P (e → ri) = P (e|ri),
which can be calculated by the following formula:

μ(e) =
|{e} ∩ {ci1/vi1, ci2/ci2, · · · , cik/cik}|

|{ci1/vi1, ci2/ci2, · · · , cik/cik}| (7)
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Equation (7) will be used for computing the matching degree of a given in-
stance and a set of rules. When μ{e} = 1 means that the evidence is exactly
matched to the conditions of a rule, and μ{e} < 1 indicates that the evidence is
partially matched to the conditions of a rule.

It notices that for a given evidence, more than one rule may be activated, in
particular, partial matching is involved in reasoning process, this implies that
more than one conclusion may be inferred. Therefore in order to obtain a single
conclusion, it is desirable to study an effective method to combine those inferred
conclusions, so that a final conclusion can be achieved. Prior to detailing our
proposed method, we briefly overview several important concepts of the DS
theory of evidence which have been used in our method [11].

3.2 Dempster-Shafer (DS) Theory of Evidence

Definition 5. Let Θ be a finite nonempty set, and call it the frame of discern-
ment. Let [0, 1] denote the interval of real numbers from zero to one, inclusive:
[0, 1] = {x|0 ≤ x ≤ 1}. A function m : 2Θ → [0, 1] is called a mass function if it
satisfies:

1) m(∅) = 0; 2)
∑

X⊆Θ

m(X) = 1.

A mass function is a basic probability assignment (bpa) to all subsets X of Θ.
A subset A of a frame Θ is called a focal element of a mass function m over
Θ if m(A) > 0 and it is called a singleton if it contains only one element. The
definition applies to propositions as well as subsets.

Definition 6. Let m1 and m2 be mass functions on the frame Θ, and for any
subsets A ⊆ Θ, the orthogonal sum ⊕ of two mass functions on A is defined as

m(A) = (1/N)
∑

X∩Y =A

m1(X)m2(Y ) (8)

where N = 1−
∑

X∩Y �=∅m1(X)m2(Y ) and K = 1/N is called the normalization
constant of the orthogonal sum m1 ⊕ m2. The orthogonal sum is a fundamental
operation of evidential reasoning and it is often called Dempster’s rule of combi-
nation. There are two conditions to ensure the orthogonal sum exists: 1) N �= 0;
2) two mass functions must be independent of each other. We often allocate
some mass to undeterministic status by means of ignorance.

3.3 Defining Rule Mass Function

Conclusions inferred from different rules cannot be directly combined using
Dempster’s rule of combination since for an unseen instance, it is a rare case
or even impossible that the whole set of rules will be satisfied, in this situation,
the sum of the rule strengths associated with these conclusions will not be equal
to 1, which does not meet the condition given in Definition 5. To apply Demp-
ster’s rule of to combine conclusions, we need to normalize all the rule strengths
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attached to the inferred conclusions and ensure that the normalization still fully
preserve the information provided with these conclusions.

Formally let D = {d1, d2, · · · , d|D|} be a frame of discernment, and let R =
{r1, r2, · · · , r|R|} be a set of rules, given a new evidence e, if q rules are activated,
i.e. ri1, ri2, · · · , riq , then q conclusions are inferred from R. The inference process
can be expressed by ri1(e) → di1|stg(di1), ri2(e) → di2|stg(di2), · · · , riq(e) →
diq|stg(diq). As a result, we have a set of conclusions, denoted by H =
{di1, di2, · · · , diq}, where H ∈ 2D. Due to q < |R|, stg(di1) + stg(di2) + · · · +
stg(diq) < 1, thus H does not meet the condition of applying Dempster’s rule
as given Definition 5. Now we describe our method for normalizing a set of
conclusions below.

First, we remove duplicate conclusions and add up rule strengths, and then
construct a new set of the conclusions. Specifically, for any two dij and dij ,
if dij = dij and ii �= ij, then stg(dii) ← stg(dii) + stg(dij), and dij is elim-
inated. After processing, a frame of conclusions is reconstructed, denoted by
H = {d1, d2, · · · , d|H|}, apparently H ∈ 2D. Notice that di is a singleton decision
since it is inferred by using the rules of Type 1 (see Table 4), but it can be a
set of decisions when the rules of Type 3 are used. To avoid confusion in accom-
modating more complicate situations, we denote H = {h1, h2, · · · , h|H|}, where
hj = dij or hj ⊆ D. Therefore a rule mass function for H is defined below:

Definition 7. A rule mass function is defined as a mapping m : H → [0, 1].
There are two situations based on the inclusive relations between H and D.

1) if D ∈ H , then a rule mass function is defined as follows:

m({hi}) =
stg(hi)∑|H|

j=1 stg(hj)
(1 ≤ i ≤ |H |) (9)

2) if D /∈ H and |H | > 2, then H ← H ∪D and a rule mass function is defined
as follows:

m({hi}) = stg(hi) (1 ≤ i ≤ |H | − 1) (10)

m({hi}) = 1 −
|H|−1∑

j=1

stg(hj) (11)

We have provided a proof that rule strengths satisfy the condition of a mass
function [12, 13]. However, as in the first case above, some conclusions cannot
be individually inferred from a piece of evidence, this means those conclusions
remain unknown. Therefore, it is necessary to redistribute rule strengths over
the known conclusions in order to meet the conditions given in Definition 5.

The second case means that the added D represents the unknown state of hy-
potheses in inference processes in terms of ignorance. It absorbs the unassigned
portion of the belief after committing to H . The addition of ignorance about
the likelihood of future hypotheses provides us with the partial information we
need for the inference process. This also means that our method does not re-
quire complete knowledge about all potential hypotheses since we represent an
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implicit set of unmodeled future hypotheses by including an additional unknown
state D.

To demonstrate how a threshold can be used for partial matching, and how
rule strengths can be calculated, normalized and then combined using Demp-
ster’s rule, let us look at the following section.

3.4 An Example

Suppose a new instance e = {h/Y, m/Y } and a threshold μ(e) = 0.5, the process
of decision making starts with activating the rules as shown in Figures 9 and 10.

μ({h/Y }) =
|{h/Y } ∩ {h/Y, t/V H}|

|{h/Y, t/V H}| =
|{h/Y }

|{h/Y, t/V H}| =
1
2

μ({h/Y }) =
|{h/Y } ∩ {h/Y, t/V H}|

|{h/Y, t/H}| =
|{h/Y }

|{h/Y, t/H}| =
1
2

μ({m/Y }) =
|{m/Y } ∩ {m/Y, t/H}|

|{m/Y, t/H}| =
|{m/Y }

|{m/Y, t/H}| =
1
2

μ({m/Y }) =
|{m/Y } ∩ {m/Y, t/V H}|

|{m/Y, t/V H}| =
|{m/Y }

|{m/Y, t/V H}| =
1
2

μ({m/Y }) =
|{m/Y } ∩ {m/Y, t/N}|

|{m/Y, t/N}| =
|{m/Y }

|{m/Y, t/N}| =
1
2

By μ(e) = 0.5 , two sets of rules are activated: R1 and R2, where R1 =
{r12, r15} and R2 = {r21, r22, r23}. With these rules, we can obtain two groups
of conclusions, denoted by H1and H2, respectively, where H1 = {h11, h12} =
{yes, {yes, no}}, and H2 = {h21, h22, h23} = {yes, yes, no}, performing a nor-
malization operation on them, we can have H1 = {yes, {yes, no}} and H2 =
{yes, no, {yes, no}}, and the calculation of rule mass functions are given below.

For mass function m1 over H1, we have

m1({yes}) =
stg({yes})

stg({yes}) + stg({no})
=

1
6

1
6 + 2

6

=
1
3

m1({yes, no}) =
stg({yes, no})

stg({yes}) + stg({yes, no})
=

1
6

1
6 + 2

6

=
2
3

For mass function m2 over H2, we have

m2({yes}) = stg({yes}) + stg({yes}) =
1
6

+
2
6

=
3
6

m2({no}) = stg({no}) =
1
6

m2({yes, no}) = 1 − m2({yes}) − m2({no}) = 1 − 1
6

− 3
6

=
2
6
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By using Dempster’s rule to aggregate the rule strengths from two sets of
rules, we have (m1 ⊕ m2)({yes}) = 0.647, (m1 ⊕ m2)({no}) = 0.118 and (m1 ⊕
m2)({yes, no}) = 0.235. The final decision made on basis of the combined rule
strengths flu = yeas with confidence 0.647.

This example illustrates how conflict conclusions can be resolved by aggre-
gating these conclusions through Dempster’s rule. Although this example is a
special case where the matching degrees are equal, the degrees associated with
every single rule are different from each other. Thus it is sufficient to warrant
the merit of our proposed method.

4 Conclusion

In this paper, we have introduced a rough set-based method for rule induction,
including the induction of certain decision rules and uncertain decision rules. In
particular, we provide an effective solution to coping with inconsistencies among
the decision classes and to how these inconsistent instances are organized into a
set of decision classes with a single degree of belief. These solutions underpins the
method for making use of multiple pieces of evidence in uncertainty reasoning
for classification.

In addition we have developed a measure in terms of rule strengths to repre-
sent quantitative relation between condition and decision attributes in a decision
system. It has been theoretically proved that rule strengths meet the conditions
of mass functions. But in most situations, the rule strengths attached to the con-
clusions drawn are necessarily normalized so that Dempster’s rule of combination
can be applied.

We use a simplified example to illustrate the process of decision making with a
partial matching mechanism, where inferred conclusions may be in conflict. The
significant aspect of our method is that we can achieve a sensible result even
if an instance is not exactly matched with the antecedents of rules throughout.
The other important aspect is that when more than one rule is activated, these
rules can be combined to infer a conclusion, so that the generalization capability
may be improved in a classification systems. These two aspects distinguish our
method from most of the knowledge-based methods which are conventionally
used in classification systems.
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Summary. In this paper we introduce the relative belief of singletons as a novel
Bayesian approximation of a belief function. We discuss its nature in terms of degrees
of belief under several different angles, and its applicability to different classes of belief
functions.

1 Introduction: A New Bayesian Approximation

The theory of evidence (ToE) [16] extends classical probability theory through
the notion of belief function (b.f.), a mathematical entity which independently
assigns probability values to sets of possibilities rather than single events. A
belief function b : 2Θ → [0, 1] on a finite set (“frame”) Θ has the form
b(A) =

∑
B⊆A mb(B) where mb : 2Θ → [0, 1], is called “basic probability assign-

ment” (b.p.a.), and meets the positivity mb(A) ≥ 0 ∀A ⊆ Θ and normalization∑
A⊆Θ mb(A) = 1 axioms. Events associated with non-zero basic probabilities

are called “focal elements”. A b.p.a. can be uniquely recovered from a belief
function through Moebius inversion:

mb(A) =
∑

B⊆A

(−1)|A−B|b(B). (1)

1.1 Previous Work on Bayesian Approximation

As probability measures or Bayesian belief functions are just a special class of
b.f.s (for which m(A) = 0 when |A| > 1), the relation between beliefs and prob-
abilities plays a major role in the theory of evidence [9, 14, 23, 11, 12, 13, 2].
Tessem [21], for instance, incorporated only the highest-valued focal elements
in his mklx approximation; a similar approach inspired the summarization tech-
nique formulated by Lowrance et al. [15]. In Smets’ “Transferable Belief Model”
[17] beliefs are represented at credal level (as convex sets of probabilities), while
decisions are made by resorting to a Bayesian belief function called pignistic
transformation [19]. More recently, two new Bayesian approximations of belief
functions have been derived from purely geometric considerations [7] in the con-
text of the geometric approach to the ToE [6], in which belief and probability
measures are represented as points of a Cartesian space.

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 201–213, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Another classical approximation is based on the plausibility function (pl.f.)
plb : 2Θ → [0, 1], where

plb(A) .= 1 − b(Ac) =
∑

B∩A �=∅
mb(B)

represent of the evidence not against a proposition A. Voorbraak [22] proposed
indeed to adopt the so-called relative plausibility of singletons (rel.plaus.) p̃lb as
the unique probability that, given a belief function b with plausibility plb, assigns
to each singleton x ∈ Θ its normalized plausibility (2). He proved that p̃lb is a
perfect representative of b when combined with other probabilities p through
Dempster’s rule ⊕ [10],

p̃lb(x) =
plb(x)∑

y∈Θ plb(y)
, p̃lb ⊕ p = b ⊕ p. (2)

The properties of the relative plausibility of singletons have been later discussed
by Cobb and Shenoy [3].

1.2 Relative Belief of Singletons

In this paper we introduce indeed a Bayesian approximation which is the dual of
relative plausibility of singletons (2), as it is obtained by normalizing the belief
(instead of plausibility) values of singletons:

b̃(x) .=
b(x)∑

y∈Θ b(y)
=

mb(x)∑
y∈Θ mb(y)

. (3)

We call it relative belief of singletons b̃ (rel.bel.). Clearly b̃ exists iff b assigns
some mass to singletons: ∑

x∈Θ

mb(x) �= 0. (4)

As it has been recently proven [4], both relative plausibility and belief of single-
tons commute with respect to Dempster’s orthogonal sum, and b̃ meets the dual
of Voorbraak’s representation theorem (2).

Proposition 1. The relative belief operator commutes with respect to Demp-
ster’s combination of plausibility functions, namely

b̃[pl1 ⊕ pl2] = b̃[pl1] ⊕ b̃[pl2].

The relative belief of singletons b̃ represents perfectly the corresponding plausi-
bility function plb when combined with any probability through (extended) Demp-
ster’s rule:

b̃ ⊕ p = plb ⊕ p

for each Bayesian belief function p ∈ P.
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Moreover, b̃ meets a number of properties with respect to Dempster’s rule which
mirror the set of results proven by Cobb and Shenoy for the relative plausibility
of singletons [3].

Proposition 2. If plb is idempotent with respect to Dempster’s rule, i.e. plb ⊕
plb = plb, then b̃[plb] is itself idempotent: b̃[plb] ⊕ b̃[plb] = b̃[plb]. If ∃x ∈ Θ such
that b(x) > b(y) ∀y �= x, y ∈ Θ, then b̃[pl∞b ](x) = 1, b̃[pl∞b ](y) = 0 ∀y �= x, where
pl∞b denotes the infinite limit of the combination of plb with itself.

In this paper we focus instead on the semantics of rel.bel. in a comparative study
with that of rel.plaus., in order to understand its meaning in terms of degrees of
belief, the way it attributes a mass to singletons, the conditions under which it
exists, and to which classes of belief function it can be applied.

1.3 Outline of the Paper

First (Section 2), we argue that rel.bel. gives a conservative estimate of the sup-
port b give to each singleton x ∈ Θ, in opposition to the optimistic estimate
provided by the relative plausibility of singletons. Interestingly (Section 3) the
relative belief b̃ can indeed be interpreted as the relative plausibility of singletons
of the associated plausibility function. In order to prove that, we need to extend
the evidential formalism to functions whose Moebius inverse is not necessarily
positive or pseudo belief functions (Section 3.1). Those two Bayesian approxi-
mations form then a couple which, besides having dual properties with respect
to Dempster’s sum, have dual semantics in terms of mass assignment.

In Section 4 we analyze the issue posed by the existence constraint (4), i.e.
the fact that rel.bel. exists only when b assigns some mass to singletons. We
will argue that situations in which the latter is not met are pathological, as all
Bayesian approximations are forced to span a limited region of the probability
simplex. Finally, we will prove that, as all those approximations converge for
quasi-Bayesian b.f.s, rel.bel. can be seen as a low-cost proxy to pignistic trans-
formation and relative plausibility, and discuss the applicability of b̃ to some
important classes of b.f.s in order to shed more light on interpretation and ap-
plication range of this Bayesian approximation.

2 A Conservative Estimate

A first insight on the meaning of b̃ comes from the original semantics of belief
functions as constraints on the actual allocation of mass of an underlying un-
known probability distribution. Accordingly, a focal element A with mass mb(A)
indicates that this mass can “float” around in A and be distributed arbitrarily
between the elements of A. In this framework, the relative plausibility of single-
tons p̃lb (2) can be interpreted as follows:

• for each singleton x ∈ Θ the most optimistic hypothesis in which the mass
of all A ⊇ {x} focuses on x is considered, yielding {plb(x), x ∈ Θ};
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• this assumption, however, is contradictory as it is supposed to hold for all
singletons (many of which belong to the same higher-size events);

• nevertheless, the obtained values are normalized to yield a Bayesian belief
function.

p̃lb is associated with the less conservative (but incoherent) scenario in which all
the mass that can be assigned to a singleton is actually assigned to it.

The relative belief of singletons (3) can then be naturally given the following
interpretation in terms of mass assignments:

• for each singleton x ∈ Θ the most pessimistic hypothesis in which only
the mass of {x} itself actually focuses on x is considered, yielding {b(x) =
mb(x), x ∈ Θ};

• this assumption is also contradictory, as the mass of all higher-size events is
not assigned to any singletons;

• the obtained values are again normalized to produce a Bayesian belief
function.

Dually, b̃ reflects the most conservative (but still not coherent) choice of assigning
to x only the mass that the b.f. b (seen as a constraint) assures it belong to x.
The underlying mechanism, though, is exactly the same as the one supporting
the rel.plaus. function.

3 Dual Interpretation as Relative Plausibility of a
Plausibility

A different aspect of rel.bel. emerges when considering the dual representation
of the evidence carried by b expressed by the plausibility function plb. We first
need though to introduce the notion of ”pseudo belief function”.

3.1 Pseudo Belief Functions

A belief function is a function on 2Θ whose Moebius inverse mb (the basic prob-
ability assignment) meets the positivity axiom: mb(A) ≥ 0 ∀A ⊆ Θ.

However, all functions ς : 2Θ → R admit Moebius inverse (1) mς : 2Θ \ ∅ → R

such that
ς(A) =

∑

B⊆A

mς(B)

where mς(B) �≥ 0 ∀B ⊆ Θ [1].
Functions ς whose Moebius inverse meets the normalization constraint

∑

∅�A⊆Θ

mς(A) = 1

are then natural extensions of belief functions1, and are called pseudo belief
functions (p.b.f.s) [20].
1 Geometrically, each p.b.f. can be thought of as a vector ς of R

N , N = 2|Θ| −1, while
belief functions form a simplex in the same space [6].
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As they meet the normalization constraint (plb(Θ) = 1 for all b), plausibility
functions are themselves pseudo belief functions. Their Moebius inverse [8]

μb(A) .=
∑

B⊆A

(−1)|A\B|plb(B) = (−1)|A|+1
∑

B⊇A

mb(B), A �= ∅ (5)

is called basic plausibility assignment (b.pl.a.), with μb(∅) = 0.

3.2 Duality between Relative Belief and Plausibility

A useful property of μb is that

Theorem 1. mb(x) =
∑

A⊇{x} μb(A).

Proof. By definition of b.pl.a. μ we have that
∑

A⊇{x}
μb(A) =

∑

A⊇{x}
(−1)|A|+1( ∑

B⊇A

mb(B)
)

=

= −
∑

B⊇{x}
mb(B)

( ∑

x⊆A⊆B

(−1)|A|
)

where
∑

x⊆A⊆B(−1)|A| = 0 if B �= {x}, −1 if B = {x} for Newton’s binomial:∑n
k=0 1n−k(−1)k = 0.

If we write the plausibility of singletons as

plb(x) =
∑

A⊇{x}
mb(A)

we realize that Theorem 1 states that the belief of singletons b(x) is nothing
but the plausibility of singletons of plb interpreted as a pseudo belief function:
b(x) = plplb(x). Formally,

• there exists a class of pseudo b.f.s which correspond to the plausibility of
some b.f. b: ς = plb for some b ∈ B;

• each p.b.f. admits a (pseudo) plausibility function, analogous to the case of
standard b.f.s: plς(A) =

∑
B∩A �=∅mς(B);

• but for the above class of p.b.f. ς = plb, so that the above equation reads as
plplb(A) =

∑
B∩A �=∅ μb(B) (as μb is the Moebius inverse of plb);

• when applied to singletons this yields

plplb(x) =
∑

B
x

μb(B) = mb(x) (6)

by Theorem 1, which implies p̃lplb = b̃.

It is a bit paradoxical to point out that, as the basic plausibility assignment μb

carries the same information as the basic probability assignment mb, according
to Equation (6) all the information carried by b is used to compute the relative
belief of singletons, while its definition (3) seems to suggest that most of this
information is discarded in the process.
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4 On the Existence Constraint

The relative belief of singletons exists only for those belief function such that∑
x b(x) �= 0.
As b̃ is the relative plausibility of ς = plb (Section 3), and as relative plausi-

bilities do not undergo any existence constraint (as
∑

x plb(x) �= 0), one could
argue that b̃ should always exist. However, the symmetry is broken by the fact
that the b.pl.a. μb does not meet the non-negativity constraint (μb �≥ 0), and as
a consequence plplb(x) can actually be zero ∀x ∈ Θ.

4.1 Example: The Binary Case

In the binary case Θ = {x, y}, for instance, according to (4) the only b.f. which
does not admit rel.bel. is the vacuous one bΘ: mbΘ (Θ) = 1. For bΘ, mbΘ(x) =
mbΘ(y) = 0 so that

∑
x mbΘ (x) = 0 and b̃Θ does not exist. Symmetrically, the

pseudo b.f. ς = plbΘ (for which plbΘ(x) = plbΘ(y) = 1) is such that plplbΘ
= bΘ, so

that p̃lplbΘ
does not exist. In the binary frame each belief function is completely

b =[0,0]'

pl =[1,1]'
bb  =[0,1]'=pl y

 

b  =[1,0]'=pl x

b

P

b~

 b y

 b xΘ

Θ

Fig. 1. B.f.s b = [mb(x),mb(y)]′ and pl.f.s plb = [plb(x) = 1 − mb(y), plb(y) = 1 −
mb(x)]′ on Θ = {x, y} can be represented as points of R

2 [6]. The locations of b̃ =
[ mb(x)
mb(x)+mb(y) ,

mb(y)
mb(x)+mb(y) ]

′ and the singular points bΘ = [0, 0]′ and plbΘ = [1, 1]′ are
shown.

determined by its belief values b(x), b(y) (as b(∅) = 0, b(Θ) = 1 for all b) and
can then be represented as a point of the plane R

2:

b = [b(x), b(y)]′.

Figure 1 illustrates then the location of b̃ in the simple binary case and those of
the dual singular points bΘ, ς = plbΘ .
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4.2 Region Spanned by a Bayesian Approximation

One can argue that the existence of rel.bel. is subject to quite a strong condition
(4). We can claim though that situations in which the constraint is not met are
indeed rather pathological, in a very precise way.

To show this, let us compute the region spanned by the most common Bayesian
approximations: rel.plaus. (2) and pignistic function [19]

BetP [b](x) .=
∑

A⊇{x}

mb(A)
|A| .

All Bayesian approximations can be seen as operators mapping belief functions
to probabilities:

p̃l : B → P
b �→ p̃l[b] = p̃lb

BetP : B → P
b �→ BetP [b] (7)

where B and P denote the set of all b.f.s and probability functions respectively.
Now, it is well known [7] that the pignistic transformation (7)-right commutes
with affine combination:

BetP
[∑

i

αibi

]
=

∑

i

αiBetP [bi],
∑

i

αi = 1. (8)

If we then denote by Cl the convex closure operator

Cl(b1, ..., bk) =

{
b ∈ B : b = α1b1 + · · · + αkbk,

∑

i

αi = 1, αi ≥ 0 ∀i

}
(9)

(8) implies that BetP commutes with Cl:

BetP [Cl(b1, ..., bk)] = Cl(BetP [bi], i = 1, ..., k).

In the case of p̃lb, even though the latter does not commute with affine combi-
nation (the relation being somehow more complex [5]) we can still prove that it
commutes with convex closure (9).

Using this tools we can find the region of the probability simplex P spanned
by the Bayesian transformation of a certain convex region Cl(b1, ..., bk) of b.f.s.
It suffices to compute in both cases the approximations of the vertices of the
considered region.

4.3 Zero Mass to Singletons as a Pathological Situation

But the space of all belief functions B .= {b : 2Θ → [0, 1]} defined on a frame Θ
is indeed the convex closure [6]

B = Cl(bA, A ⊆ Θ) (10)
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bΘ

bx

b

P

by

b A

B

b  x

b  y

b  z

_
P

_
P P

P

_

_

 {x,y}

 {x,z}

 {y,z}

Fig. 2. Left: The space of all belief functions on a domain Θ is a polytope or ”simplex”
(10) in R

N . The probability simplex P is a face of B. Right: For the class of b.f.s
{b :
�

x mb(x) = 0}, pignistic function and relative plausibility are allowed to span only
a proper subset of the probability simplex (delimited by dashed lines in the ternary
case Θ = {x, y, z}). Otherwise b̃, BetP [b], p̃lb can be located in any point of P for some
values of b.

of all basis belief functions

bA
.= b ∈ B s.t. mb(A) = 1, mb(B) = 0 ∀B �= A (11)

i.e. the belief functions focusing on a single event A ⊆ Θ. Geometrically, they
are the vertices of the polytope B of all belief functions (Figure 2-left).

The images of a basis b.f. bA under the transformations (7) are

p̃lbA
(x) =

�
B⊇{x} mbA

(B)
�

B⊇{x} mbA
(B)|B| =

{ 1
|A| x ∈ A

0 else
.= PA

BetP [bA](x) =
∑

B⊇{x}
mbA

(B)
|B| = PA

so that

BetP [B] = BetP [Cl(bA, A ⊆ Θ)] = Cl(BetP [bA], A ⊆ Θ) =
= Cl(PA, A ⊆ Θ) = P = p̃l[B].

In normal conditions the whole probability simplex P can host such approxi-
mations. On the other side, as they have the form b =

∑
|A|>1 mb(A)bA with

mb(A) ≥ 0,
∑
|A|>1 mb(A) = 1, the set of (singular) b.f.s not meeting the con-

straint (4) is Cl(bA, |A| > 1) so that the region of P spanned by their Bayesian
approximations is

p̃l[Cl(bA, |A| > 1)] = Cl(p̃lbA
, |A| > 1) = Cl(PA, |A| > 1) =

= Cl(BetP [bA], |A| > 1) = BetP [Cl(bA, |A| > 1)].

The result is illustrated by Figure 2-right in the ternary case. If (4) is not met,
all Bayesian approximations of b can span only a limited region
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Cl(P{x,y}, P{x,z}, P{y,z}, PΘ) = Cl(P{x,y}, P{x,z}, P{y,z})

of the probability simplex (delimited by dashed lines).
The case in which b̃ does not exist is indeed pathological, as it excludes a

great deal of belief and probability measures.

5 A Low-Cost Proxy for other Bayesian Approximations

A different angle on the utility of b̃ comes from a discussion of what classes of
b.f.s are “suitable” to be approximated by means of (3). As it only makes use of
the masses of singletons, working with b̃ requires storing n values to represent
a belief function. As a consequence, the computational cost of combining new
evidence through Dempster’s rule or disjunctive combination [18] is reduced to
O(n) as only the mass of singletons has to be calculated.

When the actual values of b̃(x) are close to those provided by, for instance,
pignistic function or rel.plaus. is then more convenient to resort to the relative
belief transformation.

5.1 Convergence under Quasi-bayesianity

A formal support to this argument is provided by the following result. Let us
call quasi-Bayesian b.f.s the belief functions b for which the mass assigned to
singletons is very close to one:

kmb

.=
∑

x∈Θ

mb(x) → 1.

Theorem 2. For quasi-Bayesian b.f.s all Bayesian approximations converge:

lim
kmb
→1

BetP [b] = lim
kmb
→1

p̃lb = lim
kmb
→1

b̃.

Proof. If kmb
→ 1 then

∑
|A|>1 mb(A) → 0 which implies

mb(A) → 0 ∀A : |A| > 1

(as mb(A) ≥ 0 ∀A). But by definition of BetP , b̃ p̃l, we have that

BetP [b](x) .= mb(x) +
∑

A�{x}
mb(A) → mb(x),

b̃(x) .=
mb(x)
kmb

→ mb(x),

p̃lb(x) .=
plb(x)∑
x plb(x)

=
mb(x) +

∑
A�{x}mb(A)

∑
x(mb(x) +

∑
A�{x}mb(A))

→ mb(x)
kmb

= mb(x).

Theorem 2 highlights then the convenience of computing rel.bel. instead of other
Bayesian approximations for quasi-Bayesian b.f.s defined on a large frame of
discernment.
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5.2 Convergence in the Ternary Case

Let us consider for instance the ternary case Θ = {x, y, z} in which

b̃(x) =
mb(x)

mb(x) + mb(y) + mb(z)
,

p̃lb(x) =
(mb(x) + mb({x, y}) + mb({x, z}) + mb(Θ))∑

w∈Θ plb(w)
,

BetP [b](x) = mb(x) +
mb({x, y}) + mb({x, z})

2
+

mb(Θ)
3

.

(12)

with
∑

w∈Θ plb(w) = (mb(x) + mb(y) + mb(z)) + 2(mb({x, y}) + mb({x, z}) +
mb({y, z})) + 3mb(Θ).

According to Theorem 2, if kmb
=

∑
w mb(w) → 1 all the quantities (12)

converge to mb(x). It is interesting to assess the velocity of this convergence
with respect to the parameter kmb

. For sake of comparison we consider two
different mass allocations to higher-order events: a) mb(Θ) = 1 − kmb

and: b)
mb({x, y}) = 1 − kmb

. The above expressions (12) then yield

b̃(w) = mb(w)
kmb

∀w ∈ {x, y, z};

p̃lb(w) =

⎧
⎪⎪⎨

⎪⎪⎩

mb(w)+1−kmb

kmb
+3(1−kmb

) ∀w ∈ {x, y, z} mb(Θ) = 1 − kmb
,

mb(w)+1−kmb

kmb
+2(1−kmb

) ∀w ∈ {x, y} mb({x, y}) = 1 − kmb
,

mb(w)
kmb

+2(1−kmb
) w = z mb({x, y}) = 1 − kmb

;

BetP [b](w) =

⎧
⎪⎨

⎪⎩

mb(w) + 1−kmb

3 ∀w ∈ {x, y, z} mb(Θ) = 1 − kmb
,

mb(w) + 1−kmb

2 ∀w ∈ {x, y} mb({x, y}) = 1 − kmb
,

mb(w) w = z mb({x, y}) = 1 − kmb
.

We evaluated the above expressions for mb(x) = kmb
/3, mb(y) = kmb

/2, mb(z) =
kmb

/6 in order to maintain the same relative belief of singletons

b̃(x) = 1/3, b̃(y) = 1/2, b̃(z) = 1/6

in all three cases. Figure 3-top-left plots the L2 distances in the probability
simplex P = Cl(bx, by, bz)

d(p, p′) .=
√∑

w∈Θ

|p(w) − p′(w)|2

of BetP [b] and p̃lb from b̃ as a function of kmb
, in both cases a) and b). As

stated by Theorem 2, for quasi-Bayesian b.f.s (kmb
→ 1) all approximations

are the same. It is interesting to notice, however, that for the pignistic function
the rate of convergence to b̃ is the same no matter how the mass is assigned to
higher-size events, and is constant.

For p̃lb, instead, the rate of convergence differs in the two cases and is actually
slower for discounted belief functions, i.e. b.f.s which assign all the mass of non-
singletons to the whole frame Θ (case b), a rather counterintuitive result.
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Fig. 3. Convergence of pignistic function and relative plausibility to the relative belief
in the ternary frame Θ = {x, y, z}. Top left: distance from b̃ of BetP [b] (solid line)
and p̃lb (dotted line: case a; dashed line: case b) as a function of kmb . Top right:
Corresponding distance between BetP and p̃lb (solid line: case a; dashed line: case b).
Bottom: Sample locations in the probability simplex of b̃ (square), BetP[b] (stars) and
p̃lb (crosses) for kmb = 0.95, kmb = 0.5, kmb = 0.05 in both case a) (towards the side
bx, by of the simplex) and b) (towards the barycenter of the simplex).

Figure 3-top-right plots by comparison the distance between BetP [b] and p̃lb
as a function of kmb

, in the two cases (again: a - solid line, b - dashed line).
The two Bayesian approximations turn out to be close for low values of kmb

too (almost singular b.f.s) and their distance reaches a peak for intermediate
values of the total mass of singletons. Such values are though different for the
two functions, and the divergence is reduced in the case of asymmetric mass
assignment (mb({x, y}) = 1 − kmb

).
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Finally, Figure 3-bottom shows the location of all considered Bayesian ap-
proximations on the probability simplex in both cases (a and b) for the three
sample values kmb

= 0.95, kmb
= 0.5, kmb

= 0.05 of the total mass of singletons.

6 Conclusions

In this paper we discussed interpretations and applicability of the relative be-
lief of singletons as a novel Bayesian approximation of a belief function. It has
recently been proven that relative belief and plausibility of singletons form a
distinct family of Bayesian approximations related to Dempster’s rule, as they
both commute with ⊕, and meet dual representation and idempotence proper-
ties [4]. Here we focused in particular on the semantics of rel.bel. On one side
we stressed the analogy between the mechanisms generating relative belief and
plausibility, pointing out that they correspond to antithetical estimates of the
evidence supporting each singleton. We proved that b̃ is in fact equivalent to
the relative plausibility of a plausibility (seen as a pseudo belief function), but
that this symmetry is broken by the existence constraint acting on b̃. We argued
though that situations in which the latter is not met are pathological, as all
Bayesian approximations are forced to span a limited region of the probability
simplex. Finally, we proved that, as all those approximations converge for quasi-
Bayesian b.f.s, rel.bel. can be seen as a low-cost proxy to pignistic transformation
and relative plausibility. The analysis of this convergence for different classes of
b.f.s has provided us with some insight on the relation between the probabilities
associated with a belief function.
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Summary. In this paper we discuss the nature of independence of sources in the theory
of evidence from an algebraic point of view, starting from the analogy with the case of
projective geometries. Independence in Dempster’s rule is equivalent to independence
of frames as Boolean algebras. Collection of frames, though, can be interpreted as
semi-modular lattices on which independence can be defined in several different forms.
We prove those forms to be distinct but related to Boolean independence, as a step
towards a more general definition of this fundamental notion.

1 Introduction

The theory of evidence was born as a contribution to a mathematically rigorous
description of subjective probability, where different observers (or “experts”) of
the same phenomenon possess in general different notions of what the decision
space is. Mathematically, this translates into admitting the existence of several
distinct representations of the decision space at different levels of refinement.
Evidence available on those spaces or frames can then be “moved” to a common
frame or “common refinement” to be fused. In the theory of evidence, informa-
tion fusion takes place by combining evidence in the form of belief functions by
means of Dempster’s orthogonal sum [5].

Dempster’s combination, however, is guaranteed to exist [4] only when the
original frames are independent [15]. Combinability (in Dempster’s approach)
and independence of frames are strictly intertwined.

Evidence combination has indeed been widely studied [24, 23] in different
mathematical frameworks [19, 7]: An exhaustive review would be impossible
here [1, 11, 12, 2, 14]. In particular, a lot of work has been done on the issue
of merging conflicting evidence [6, 8, 10, 22], while some attention has been
given to situations in which the latter comes from dependent sources [3]. On the
other hand not much work has been done on the properties of the families of
compatible frames [17, 9, 4].

Here we build on the results obtained in [4] to complete an algebraic analysis
of families of frames and conduct a comparative study of the notion of indepen-
dence, so central in the theory of evidence, in an algebraic setup.

First, we recall the fundamental result on the equivalence between indepen-
dence of sources in Dempster’s combination (Section 2) and independence of

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 214–227, 2008.
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frames (Section 2.3). In this incarnation independence of sources can indeed
be studied from an algebraic point of view, and compared with other classi-
cal forms of independence (Section 2.4)). In the core of the paper (Section 3)
we prove in particular that families of compatible frames form semi-modular
lattices , extending some recent preliminary results [4]. Independence can be de-
fined on semi-modular lattices in several different forms: We can then study the
relationship between evidential and lattice independence in all those different
formulations (Section 4): they turn out to be distinct, but nevertheless strictly
related.

As independence of frames is a direct consequence of independence of Boolean
sub-algebras [18], the overall picture opens the way to a more comprehensive
definition of this basilar concept.

2 Independence of Sources in Dempster’s Combination

2.1 Dempster’s Combination of Belief Functions

In the theory of evidence a basic probability assignment (b.p.a.) over a finite set
or frame [15] Θ is a function m : 2Θ → [0, 1] on its power set 2Θ = {A ⊆ Θ}
such that m(∅) = 0,

∑
A⊆Θ m(A) = 1, m(A) ≥ 0 ∀A ⊆ Θ.

The belief function (b.f.) b : 2Θ → [0, 1] associated with a b.p.a. m on Θ is
defined as b(A) =

∑
B⊆A m(B). The orthogonal sum or Dempster’s sum of two

b.f.s b1, b2 is a new belief function b1 ⊕ b2 with b.p.a.

mb1⊕b2(A) =
∑

B∩C=A mb1(B)mb2 (C)∑
B∩C �=∅mb1(B)mb2 (C)

. (1)

When the denominator of (1) is zero the two b.f.s are non-combinable.

2.2 Independence of Sources

Independence plays a central role in Dempster’s combination (1), as it is the
fundamental assumption under which the combination of two belief functions
can actually take place.

Consider a problem in which we have probabilities for a question Q1 and
we want to obtain degrees of belief for a related question Q2 [16, 20], with Ω
and Θ the sets of possible answers to Q1 and Q2 respectively. Formally, given
a probability measure P on Ω we want to derive a degree of belief b(A) that
A ⊆ Θ contains the correct response to Q2 (see Figure 1). Let us call Γ (ω) the
subset of answers to Q2 compatible with a given outcome ω ∈ Ω of Q1. The map
Γ : Ω → 2Θ is called a multi-valued mapping.

The degree of belief b(A) of an event A ⊆ Θ is then the total probability of all
answers ω that satisfy the above condition, namely b(A) = P ({ω|Γ (ω) ⊆ A}).

Consider now two multi-valued mappings Γ1, Γ2 inducing two b.f.s b1, b2 on
the same frame Θ, Ω1 and Ω2 their domains and P1, P2 the associated probability
measures on Ω1 and Ω2, respectively. If we suppose that the items of evidence
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ω

A
Θ

Ω

Γ
Γ(ω)

P : Ω −> [0,1]

b : 2  −> [0,1]Θ

Fig. 1. A probability measure P on Ω induces a belief function b on Θ whose values
on the events A of Θ are given by b(A) =

�
ω∈Ω:Γ (ω)⊆A P (ω)

generating P1 and P2 are independent, we are allowed to build the product space
(Ω1 × Ω2, P1 × P2): the detection of two outcomes ω1 ∈ Ω1 and ω2 ∈ Ω2 will
then tell us that the answer to Q2 is somewhere in Γ (ω1, ω2) = Γ1(ω1)∩Γ2(ω2).
We then need to condition the product measure P1 × P2 over the set of pairs
(ω1, ω2) whose images have non-empty intersection: P = P1 × P2|Ω, with Ω =
{(ω1, ω2) ∈ Ω1 ×Ω2|Γ1(ω1)∩Γ2(ω2) 
= ∅}. This new belief function b is precisely
the orthogonal sum of b1, b2.

2.3 Independence of Sources and Independence of Frames

Families of compatible frames

Dempster’s mechanism for evidence combination then assumes that the domains
on which the evidence is present (in the form of a probability measure) are inde-
pendent. This concept is mirrored by the notion of independence of compatible
frames [15]. Given two frames Θ and Θ′, a map ρ : 2Θ → 2Θ′

is a refining if
ρ maps the elements of Θ to a disjoint partition of Θ′: ρ({θ}) ∩ ρ({θ′}) = ∅
∀θ, θ′ ∈ Θ,

⋃
θ∈Θ ρ({θ}) = Θ′, with ρ(A) = ∪θ∈Aρ({θ}) ∀A ⊂ Θ. Θ′ is called a

refinement of Θ, Θ a coarsening of Θ′.
Shafer calls a structured collection of frames a family of compatible frames

of discernment ([15], pages 121-125). In particular, in such a family every pair
of frames has a common refinement, i.e. a frame which is a refinement of both.
If Θ1, ..., Θn are elements of a family of compatible frames F then there exists
a unique common refinement Θ ∈ F of them such that ∀θ ∈ Θ ∃θi ∈ Θi for
i = 1, ..., n such that

{θ} = ρ1(θ1) ∩ · · · ∩ ρn(θn),

where ρi denotes the refining between Θi and Θ. This unique frame is called the
minimal refinement Θ1 ⊗ · · · ⊗ Θn of Θ1, ..., Θn.

In the example of Figure 2 we want to find out the position of a target point
in an image. We can pose the problem on a frame Θ1 = {c1, ..., c5} obtained by
partitioning the column range of the image into 5 intervals, but we can also par-
tition it into 10 intervals, obtaining a different frame Θ2 = {c11, c12, ..., c51, c52}.
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Fig. 2. An example of family of compatible frames. Different discrete quantizations of
row and column ranges of an image have a common refinement, the set of cells shown
on the left. The refinings ρ1, ρ2, ρ3 between those frames appear to the right.

The row range can also be divided in, say, 6 intervals Θ3 = {r1, ..., r6}. All
those frames belong to a family of compatible frames, with the collection of cells
Θ = {e1, ..., e60} depicted in Figure 2-left as common refinement, and refinings
shown in Figure 2-right. It is easy to verify that Θ is the minimal refinement of
Θ2, Θ3 as, for example, {e41} = ρ2(c11) ∩ ρ3(r4).

Independence of frames

Now, let Θ1, ..., Θn be elements of a family of compatible frames, and ρi : Θi →
2Θ1⊗···⊗Θn the corresponding refinings to their minimal refinement. Θ1, ..., Θn

are independent [15] (IF) if, whenever ∅ 
= Ai ⊆ Θi for i = 1, ..., n,

ρ1(A1) ∩ · · · ∩ ρn(An) 
= ∅. (2)

In particular, if ∃j ∈ [1, .., n] s.t. Θj is a coarsening of some other frame Θi,
Θ1, ..., Θn are not IF . An equivalent condition is [4]

Θ1 ⊗ · · · ⊗ Θn = Θ1 × · · · × Θn (3)

i.e. their minimal refinement is their Cartesian product.
Now, independence of frames and Dempster’s rule are strictly related [4].

Proposition 1. Let Θ1, ..., Θn elements of a family of compatible frames. Then
they are independent iff all the possible collections of b.f.s b1, ..., bn defined respec-
tively on Θ1, ..., Θn are combinable on their minimal refinement Θ1 ⊗ · · · ⊗ Θn.

Proposition 1 states that independence of frames and independence of sources
(which is at the root of Dempster’s combination) are in fact equivalent.

This is not at all surprising when we compare the condition under which
Dempster’s sum is well defined

Γ1(ω1) ∩ Γ2(ω2) 
= ∅, (ω1, ω2) ∈ Ω1 × Ω2

with independence of frames expressed as

ρ1(θ1) ∩ ρ2(θ2) 
= ∅, (θ1, θ2) ∈ Θ1 × Θ2.



218 F. Cuzzolin

2.4 An Algebraic Study of Independence

In its equivalent form of independence of frames (Proposition 1) independence
of sources can be analyzed from an algebraic point of view.

A powerful intuition comes from the intriguing similarity between IF and
independence of vector subspaces (recalling Equations 2 and 3):

ρ1(A1) ∩ · · · ∩ ρn(An) 
= ∅, ∀Ai ⊆ Θi ≡ Θ1 ⊗ · · · ⊗ Θn = Θ1 × · · · × Θn

v1 + · · · + vn 
= 0, ∀vi ∈ Vi ≡ span{V1, ..., Vn} = V1 × · · · × Vn.
(4)

While a number of compatible frames Θ1, ..., Θn are IF iff each choice of their
representatives Ai ∈ 2Θi has non-empty intersection, a collection of vector sub-
spaces V1, ..., Vn is “independent” iff for each choice of vectors vi ∈ Vi the sum
of those vectors is non-zero. These relations, introduced in what seem very dif-
ferent contexts, can be formally obtained from each other under the following
correspondence of quantities and operators:

vi ↔ Ai, Vi ↔ 2Θi , + ↔ ∩, 0 ↔ ∅, ⊗ ↔ span.

As we will see here, families of frames and collections of subspaces of a vector
space or “projective geometries” share the algebraic structure of semi-modular
lattice, which in turn admits a characteristic notion of independence. It is natural
to wonder how IF is related to lattice-theoretic independence.

3 The Semi-modular Lattice of Frames

3.1 Lattices

A partially ordered set or poset is a set P endowed with a binary relation ≤ such
that, for all x, y, z in P the following conditions hold: 1. x ≤ x; 2. if x ≤ y and
y ≤ x then x = y; 3. if x ≤ y and y ≤ z then x ≤ z. In a poset we say that x
“covers” y (x � y) if x ≥ y and there is no intermediate element in the chain
linking them. A classical example is the power set 2Θ of a set Θ together with
the set-theoretic inclusion ⊂. Given two elements x, y ∈ P of a poset P their
least upper bound x ∨ y is the smallest element of P that is bigger than both x
and y, while their greatest lower bound x ∧ y is the biggest element of P that
is smaller than both x and y. Not every pair of elements of a poset, though, is
guaranteed to admit inf and/or sup.

A lattice L is a poset in which each pair of elements admits both inf and sup.
When each arbitrary (even not finite) collection of elements of L admits both

inf and sup, L is said complete. In this case there exist 0 ≡ ∧L, 1 ≡ ∨L called
respectively initial and final element of L. 2Θ is complete, with 0 = ∅ and
1 = {Θ}. The height h(x) of an element x in L is the length of a maximal chain
from 0 to x. In the case of the power set 2Θ, the height of a subset A ∈ 2Θ is
simply its cardinality |A|.
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3.2 Semi-modularity of the Lattice of Frames

In a family of compatible frames one can define the following order relation:

Θ1 ≤ Θ2 ⇔ ∃ρ : Θ2 → 2Θ1 refining (5)

i.e. Θ1 is a refinement of Θ2. The inverse relation Θ1 ≤∗ Θ2 iff Θ1 is a coarsening
of Θ2 is also a valid ordering. After introducing the notion of maximal coarsening
as the largest cardinality common coarsening Θ1 ⊕ · · ·⊕ Θn of a given collection
of frames Θ1, · · · , Θn, we can prove that [4].

Proposition 2. Both (F , ≤) and (F , ≤∗) where F is a family of compatible
frames are lattices, with respectively

∧
i Θi =

⊗
i Θi,

∨
i Θi =

⊕
i Θi and

∧∗
i Θi =⊕

i Θi,
∨∗

i Θi =
⊗

i Θi.

A special class of lattices arises from projective geometries, i.e. collections L(V )
of all subspaces of a given vector space V .

Definition 1. A lattice L is upper semi-modular if for each pair x, y of elements
of L, x � x ∧ y implies x ∨ y � y. A lattice L is lower semi-modular if for each
pair x, y of elements of L, x ∨ y � y implies x � x ∧ y.
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Fig. 3. Upper semi-modularity of (F , ≤)

Clearly if L is upper semi-modular with respect to an order relation ≤, the
corresponding dual lattice with order relation ≤∗ is lower semi-modular.

Theorem 1. (F , ≤) is an upper semi-modular lattice; (F , ≤∗) is a lower semi-
modular lattice.

Proof. We just need to prove the upper semi-modularity of F with respect to ≤.
Consider two compatible frames Θ, Θ′, and suppose that Θ covers their minimal
refinement Θ ⊗ Θ′ (their inf with respect to ≤). The proof articulates into the
following steps (see Figure 3):
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• since Θ covers Θ ⊗ Θ′ we have that |Θ| = |Θ ⊗ Θ′| + 1;
• hence there exists a single element p ∈ Θ which is refined into two elements

p1, p2 of Θ ⊗ Θ′: all other elements of Θ are left unchanged: {p1, p2} = ρ(p);
• this in turn implies that p1, p2 belong each to the image of a different element

of Θ′ (otherwise Θ would itself be a refinement of Θ′, and we would have
Θ ⊗ Θ′ = Θ): p1 ∈ ρ′(p′1), p2 ∈ ρ′(p′2);

• if we merge p′1, p
′
2 we have a coarsening Θ′′ of Θ′: {p′1, p

′
2} = ρ′′(p′′);

• but Θ′′ is a coarsening of Θ, too, as we can build the following refining

σ : Θ′′ → 2Θ : σ(q) = ρ′(ρ′′(q))

as ρ′(ρ′′(q)) is a subset of Θ ∀q ∈ Θ′′:
– if q = p′′, σ(q) is {p} ∪ (ρ′(p′1) \ {p1}) ∪ (ρ′(p′2) \ {p2});
– if q 
= p′′, ρ′(ρ′′(q)) is also a set of elements of Θ, as all elements of Θ but

p are left unchanged by ρ;
• as |Θ′′| = |Θ′| − 1, Θ′′ is the maximal coarsening of Θ, Θ′: Θ′′ = Θ ⊕ Θ′;
• hence Θ′ covers Θ ⊕ Θ′, which is the sup of Θ, Θ′ in (F , ≤).

Theorem 1 strengthens the main result of [4], where we proved that finite families
of frames are Birkhoff. A lattice is Birkhoff if x ∧ y ≺ x, y implies x, y ≺ x ∨ y.
(Upper) semi-modularity implies the Birkhoff property, but not vice-versa.

3.3 Finite Lattice of Frames

We will here focus on finite families of frames. Given a set of compatible frames
Θ1, ..., Θn consider the set P (Θ) of all partitions of their minimal refinement
Θ = Θ1 ⊗ · · · ⊗ Θn. As IF involves only partitions of Θ1 ⊗ · · · ⊗ Θn, we can
conduct our analysis there. We denote by

L(Θ) .= (P (Θ), ≤), L∗(Θ) .= (P (Θ), ≤∗)

the two lattices associated with P (Θ). Consider for example the partition lattice
associated with a frame of size 4: Θ = {1, 2, 3, 4}, depicted in Figure 4. According
to the ordering ≤∗ each edge indicates that the bottom element is bigger than
the top one. If we pick the pair of partitions y = {1, 2/3, 4} and y′ = {1, 3/2, 4},
we can notice that both y, y′ cover their inf y ∧∗ y′ = {1, 2, 3, 4} but their sup
y ∨∗ y′ = {1/2/3/4} does not cover any of them. Hence, (P (Θ), ≤∗) is not upper
semi-modular but lower semi-modular.

3.4 A Lattice-Theoretic Interpretation of Independence

We can now reinterpret the analogy introduced in Section 2.4 between subspaces
of a vector space V and elements of a family of compatible frames. Both are
lattices: according to the chosen order relation we get an upper L(Θ) or lower
L∗(Θ) semi-modular lattice (see table)
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lattice L(V ) L∗(Θ) L(Θ)

initial element 0 {0} 0F Θ
sup l1 ∨ l2 span(V1, V2) Θ1 ⊗ Θ2 Θ1 ⊕ Θ2
inf l1 ∧ l2 V1 ∩ V2 Θ1 ⊕ Θ2 Θ1 ⊗ Θ2

order relation l1 ≤ l2 V1 ⊆ V2 Θ1 coars. of Θ2 Θ1 refin. of Θ2
height h(l1) dim(V1) |Θ1| − 1 |Θ| − |Θ1|

where 0F denotes the unique frame of a family F with cardinality 1.

1,2,3,4

1/2/3/4

1/2/3,4

1/2,3,4 1,4/2,3

1,2/3/4

1,3,4/2 1,2,4/3 1,2,3/4 1,2/3,4 1,3/2,4

1/2,4/3 1/2,3/4 1,4/2/3 1,3/2/4

y y'

Fig. 4. The partition (lower) semi-modular lattice L∗(Θ) for a frame Θ of size 4.
Partitions A1, ..., Ak of Θ are denoted by A1/.../Ak . Partitions with the same number
of elements are arranged on the same level.

4 Independence on Lattices and Independence of Frames

4.1 Independence on Lattices

As a matter of fact, abstract independence can be defined on the elements of a
semi-modular lattice [21]. Consider again the classical example of linear indepen-
dence of vectors. By definition v1, ..., vn are linearly independent iff

∑
i αivi = 0 �

αi = 0 ∀i: Well known equivalent conditions are:

I1 : vj 
⊂ span(vi, i 
= j) ∀j = 1, ..., n;
I2 : vj ∩ span(v1, ..., vj−1) = 0 ∀j = 2, ..., n;
I3 : dim(span(v1, ..., vn)) = n.

(6)

As 1D subspaces are elements of a lattice L(V ) for which span = ∨, ∩ = ∧,
dim = h and 0 = 0 we can generalize the relations (6) to collections {l1, ..., ln}
of non-zero elements of any semi-modular lattice with initial element 0 as
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I1 : lj 
≤
∨

i�=j li ∀j = 1, ..., n;
I2 : lj ∧

∨
i<j li = 0 ∀j = 2, ..., n;

I3 : h(
∨

i li) =
∑

i h(li).
(7)

4.2 Lattice-Theoretic Independence on the Lattice of Frames

Independence assumes then several different forms in lattice theory. As compati-
ble frames form semi-modular lattices it is natural to suppose that some of those
may indeed coincide with Shafer’s independence of frames, or at least have some
relations with it.

We analyze the relations (7) in the flag lower semi-modular case L∗(Θ):

Θ1, ..., Θn I∗1 ⇔ Θj ⊕
⊗

i�=j

Θi 
= Θj ∀ j = 1, ..., n

Θ1, ..., Θn I∗2 ⇔ Θj ⊕
j−1⊗

i=1

Θi = 0F ∀ j = 2, ..., n

Θ1, ..., Θn I∗3 ⇔
∣∣∣

n⊗

i=1

Θi

∣∣∣ − 1 =
n∑

i=1

(|Θi| − 1)

(8)

as
Θi ∧ Θj = Θi ⊕ Θj , Θi ∨ Θj = Θi ⊗ Θj , h∗(Θi) = |Θi| − 1.

The frames Θ1, ..., Θn are I∗1 iff none of them is a coarsening of the minimal
refinement of all the others; they are I∗2 iff ∀j > 1 Θj does not have a non-
trivial common coarsening with the minimal refinement of its predecessors. I∗3
on its side has a very interesting semantics in terms of probability spaces: As the
dimension of the polytope of probability measures definable on a domain of size k
is k−1, I∗3 is equivalent to say that the dimension of the probability polytope for
the minimal refinement is the sum of the dimensions of the polytopes associated
with the individual frames.

4.3 Evidential Independence Is Stronger than I∗
1 , I∗

2

To study the logical implications between these lattice-theoretic relations and
independence of frames we first need to prove an interesting Lemma.

Lemma 1. Θ1, ..., Θn IF , n > 1 �
⊕n

i=1 Θi = 0F .

Proof. We prove Lemma 1 by induction. For n = 2, let us suppose that Θ1, Θ2
are IF . Then ρ1(A1) ∩ ρ2(A2) 
= ∅ ∀A1 ⊆ Θ1, A2 ⊆ Θ2, A1, A2 
= ∅ (ρi denotes
as usual the refining from Θi to Θ1 ⊗Θ2). Suppose by absurd that their common
coarsening has more than a single element, Θ1⊕Θ2 = {a, b}. But then ρ1(ρ1(a))∩
ρ2(ρ2(b)) = ∅, where ρi denotes the refining between Θ1 ⊕Θ2 and Θi, which goes
against the hypothesis.

Induction step. Suppose that the thesis holds for n − 1. Then, since Θ1, ..., Θn

IF implies {Θi, i 
= j} IF ∀j, this implies by inductive hypothesis that
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⊕

i�=j

Θi = 0F ∀j = 1, ..., n.

Of course then, as 0F is a coarsening of Θj ∀j = 1, ..., n,

Θj ⊕
⊕

i�=j

Θi = Θj ⊕ 0F = 0F .

We can use Lemma 1 to state that evidential independence of frames is indeed
stronger than lattice-theoretic independence of frames in its first form.

Theorem 2. Θ1, ..., Θn IF and Θj 
= 0F ∀j then Θ1, ..., Θn I∗1 .

Proof. Let us suppose that Θ1, ..., Θn are IF but not I∗1 , i.e. ∃j : Θj coarsening
of

⊗
i�=j Θi.

We need to prove that ∃A1 ⊆ Θ1, ..., An ⊆ Θn s.t. ρ1(A1) ∩ · · · ∩ ρn(An) = ∅
where ρi denotes the refining from Θi to Θ1 ⊗ · · · ⊗ Θn (Equation 2).

Since Θj is a coarsening of
⊗

i�=j Θi then there exists a partition Πj of
⊗

i�=j Θi

associated with Θj , and a refining ρ from Θj to
⊗

i�=j Θi.
As {Θi, i 
= j} are IF , for all θ ∈

⊗
i�=j Θi there exists θi ∈ Θi, i 
= j s.t.

{θ} =
⋂

i�=j

ρ′i(Θi),

where ρ′i is the refining to
⊗

i�=j Θi. Now, θ belongs to a certain element A of the
partition Πj . By hypothesis (Θj 
= 0F ∀j) Πj contains at least two elements.
But then we can choose θj = ρ−1(B) with B another element of Πj . In that case
we obviously get

ρj(θj) ∩
⋂

i�=j

ρi(θi) = ∅

which implies that {Θi, i = 1, ..., n}¬IF against the hypothesis.

However, the two notions are not equivalent: Θ1, ..., Θn I∗1 � Θ1, ..., Θn IF .
Consider as a counterexample two frames Θ1 and Θ2 in which Θ1 is not a
coarsening of Θ2 (Θ1, Θ2 are I∗1 ). Then Θ1, Θ2 
= Θ1 ⊗ Θ2 but it easy to find a
situation (see Figure 6-left) in which Θ1, Θ2 are not IF .

More, it is easy to prove that IF is also stronger than the second form of
lattice-theoretic independence.

Theorem 3. Θ1, ..., Θn IF � Θ1, ..., Θn I∗2 .

Proof. We first need to show that Θ1, ..., Θn are IF iff the pair {Θj , ⊗i�=jΘi} is
IF . As a matter of fact (3) can be written as

Θj ⊗
⊗

i�=j

Θi = Θj × (×i�=jΘi) ≡
{

Θj ,
⊗

i�=j

Θi

}
IF .

But then by Lemma 1 we get as desired.
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Fig. 5. A counterexample to I∗
2 � I∗

1

These two form of independence I∗1 , I∗2 are not trivially related to each other:
for instance, Θ1, ..., Θn I∗2 does not imply Θ1, ..., Θn I∗1 . Figure 5 shows a coun-
terexample: Given Θ1 ⊗ · · · ⊗ Θj−1 and Θj , one choice of Θj+1 s.t. Θ1, ..., Θj+1
are I∗2 but not I∗1 is shown.

It follows from Theorems 2 and 3 that, unless some frame is unitary, IF �
I∗1 ∧ I∗2 . The converse is however false. Think of a pair of frames (n = 2), for
which Θ1 ⊕ Θ2 
= Θ1, Θ2 (I∗1 ), Θ1 ⊕ Θ2 = 0F (I∗2 ). Now, those conditions are
met by the counterexample of Figure 5, in which the two frames are not IF .

4.4 Evidential Independence Is Opposed to I∗
3

On its side, lattice independence in its third form I∗3 is actually incompatible
with evidential independence.

Theorem 4. If Θ1, ..., Θn IF , n > 2 then Θ1, ..., Θn¬I∗3 . If Θ1, Θ2 IF then
Θ1, Θ2 I∗3 iff ∃Θi = 0F i ∈ {1, 2}.

Proof. According to (3), Θ1, ..., Θn are IF iff | ⊗ Θi| =
∏

i |Θi|, while according
to (8) they are I3 iff |Θ1 ⊗ · · · ⊗ Θn| − 1 =

∑
i(|Θi| − 1). They are both met iff

∑

i

|Θi| −
∏

i

|Θi| = n − 1,

which happens only if n = 2 and either Θ1 = 0F or Θ1 = 0F .

Stronger results hold when considering only pairs of frames. For n = 2 the
relations (8) read as

Θ1 ⊕ Θ2 
= Θ1, Θ2, Θ1 ⊕ Θ2 = 0F , |Θ1 ⊗ Θ2| = |Θ1| + |Θ2| − 1. (9)



A Lattice-Theoretic Interpretation of Independence of Frames 225

Theorem 5. If Θ1, Θ2 
= 0F then Θ1, Θ2 I∗2 implies Θ1, Θ2 I∗1 . If ∃Θj = 0F
j ∈ {1, 2} then Θ1, Θ2 I∗2 , I∗3 , IF , ¬I∗1 .

Proof. The first fact is obvious from (9). If instead Θ2 = 0F then by (9) Θ1 ⊕
0F = 0F = Θ2 and Θ1, Θ2 are not I∗1 while they are I∗2 . As |Θ1 ⊗ Θ2| =
|0F | · |Θ1| = |Θ1|, |Θ2| = 1 in that case Θ1, Θ2 are I∗3 again by (9). Finally,
according to (3), they are IF as |Θ1 ⊗ Θ2| = |Θ1| = 1 · |Θ1| = |Θ2||Θ1|.

For the binary partitions of Θ, i.e. the atoms (elements covering 0) A∗ of the
lattice L∗(Θ), Theorem 4 implies that IF and I∗3 are incompatible.

Corollary 1. If Θ1, ..., Θn ∈ A∗ then Θ1, ..., Θn IF implies Θ1, ..., Θn ¬I∗3 .

On the other side, the other two relations are trivial for atoms of L∗(Θ).

Theorem 6. If Θ1, ..., Θn ∈ A∗ then Θ1, ..., Θn are both I∗1 and I∗2 .

Proof. If Θj ∈ A∗ ∀j then Θj ⊕
⊗

i�=j Θi = 0F 
= Θj ∀j and Θ1, ..., Θn are I∗1 .
But then by Equation 8 Θ1, ..., Θn are also I∗2 .

As a matter of fact, evidential independence and I∗3 are in opposition for pairs
of atoms of L∗(Θ).

Theorem 7. Θ1, Θ2 ∈ A∗ are IF iff Θ1, Θ2¬I∗3 .

Proof. By Theorem 4 we have that IF � ¬I∗3 . To prove the reverse implication
I∗3 � ¬IF we just need to notice that Θ1, Θ2 ∈ A∗ are I∗3 iff |Θ1 ⊗ Θ2| =
|Θ1| + |Θ2| − 1 = 2 + 2 − 1 = 3 while for them to be IF it has to be |Θ1 ⊗ Θ2| =
|Θ1||Θ2| = 2 · 2 = 4.

 

 

 

1Θ

2Θ 

1ρ

2ρ

1Θ 2Θ 
I IF

1
* I2

*

I3
*

Fig. 6. Left: A counterexample to I∗
1 � IF . Right: Relations between independence

of frames IF and all different forms of semi-modular independence on the lower semi-
modular lattice of frames L∗(Θ).

5 Comments and Conclusions

Independence of sources in the theory of evidence can be reduced to indepen-
dence of frames. This shows in turn intriguing formal analogies with linear inde-
pendence. In this paper we proved that families of frames share indeed with
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projective geometries the algebraic structure of semi-modular lattice (Theo-
rem 1). Several forms of independence relations can be introduced on the el-
ements of such lattices, and related with Shafer’s independence of frames.

Figure 6-right illustrates what we have learned about how IF relates to the
various forms of lattice-theoretic independence in the lower semi-modular lattice
of frames, in the general case of a collection of more than two non-atomic frames
(the case Θi = 0F is neglected). Evidential independence appears distinct from
but related to lattice-theoretic independence.

This is even more interesting when we consider that condition (2) comes di-
rectly from the notion of independence of frames as Boolean sub-algebras [18].
Boolean independence IF is a stronger condition than both I∗1 and I∗2 (Theo-
rems 2, 3) which are indeed trivial for binary partitions of Θ (Theorem 6). On the
other side IF and I∗3 are mutually exclusive (Theorems 4 and 7, Corollary 1).
As I∗3 is in turn a form of matroidal independence [13] this sheds new light on
the relation between Boolean algebra and matroid theory.

The prosecution of this study, particularly in the context of matroid theory,
could in the future shed some more light on both the nature of independence
of sources in the theory of subjective probability, and the relationship between
lattice, matroidal and Boolean independence in discrete mathematics, pointing
out the necessity of a more general, comprehensive definition of this very useful
and widespread notion.

References

1. Campos, F., de Souza, F.M.C.: Extending Dempster-Shafer theory to overcome
counter intuitive results. In: Proceedings of IEEE NLP-KE 2005, vol. 3, pp. 729–
734 (2005)

2. Carlson, J., Murphy, R.R.: Use of Dempster-Shafer conflict metric to adapt sensor
allocation to unknown environments, Tech. report, Safety Security Rescue Research
Center, University of South Florida (2005)

3. Cattaneo, M.E.G.V.: Combining belief functions issued from dependent sources.
ISIPTA, 133–147 (2003)

4. Cuzzolin, F.: Algebraic structure of the families of compatible frames of discern-
ment. AMAI 45(1-2), 241–274 (2005)

5. Dempster, A.P.: Upper and lower probabilities generated by a random closed in-
terval. Annals of Mathematical Statistics 39, 957–966 (1968)

6. Deutsch-McLeish, M.: A study of probabilities and belief functions under conflict-
ing evidence: Comparisons and new method. In: Bouchon-Meunier, B., Zadeh, L.A.,
Yager, R.R. (eds.) IPMU 1990. LNCS, vol. 521, pp. 41–49. Springer, Heidelberg
(1991)

7. Dubois, D., Prade, H.: On the combination of evidence in various mathematical
frameworks. In: flamm, J., Luisi, T. (eds.) Reliability Data Collection and Analysis,
pp. 213–241 (1992)

8. Josang, A., Daniel, M., Vannoorenberghe, P.: Strategies for combining conflicting
dogmatic beliefs. In: Proceedings of Fusion 2003, vol. 2, pp. 1133–1140 (2003)

9. Kohlas, J., Monney, P.-A.: A mathematical theory of hints - an approach to the
dempster-shafer theory of evidence. Lecture Notes in Economics and Mathematical
Systems. Springer, Heidelberg (1995)



A Lattice-Theoretic Interpretation of Independence of Frames 227

10. Lefevre, E., Colot, O., Vannoorenberghe, P.: Belief functions combination and con-
flict management. Information Fusion Journal 3(2), 149–162 (2002)

11. Liu, W.: Analyzing the degree of conflict among belief functions. Artif. In-
tell. 170(11), 909–924 (2006)

12. Murphy, C.K.: Combining belief functions when evidence conflicts. Decision Sup-
port Systems 29, 1–9 (2000)

13. Oxley, J.G.: Matroid theory. Oxford University Press, Great Clarendon Street,
Oxford (1992)

14. Sentz, K., Ferson, S.: Combination of evidence in Dempster-Shafer theory, Tech.
report, SANDIA Tech. Report, SAND2002-0835 (April 2002)

15. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Prince-
ton (1976)

16. Shafer, G.: Perspectives on the theory and practice of belief functions. International
Journal of Approximate Reasoning 4, 323–362 (1990)

17. Shafer, G., Shenoy, P.P., Mellouli, K.: Propagating belief functions in qualitative
Markov trees. IJAR 1(4), 349–400 (1987)

18. Sikorski, R.: Boolean algebras. Springer, Heidelberg (1964)
19. Smets, P.: The combination of evidence in the transferable belief models. IEEE

Transactions on PAMI 12, 447–458 (1990)
20. Smets, P.: Upper and lower probability functions versus belief functions. In: Pro-

ceedings of the International Symposium on Fuzzy Systems and Knowledge Engi-
neering, Guangzhou, China, pp. 17–21 (1987)

21. Szasz, G.: Introduction to lattice theory. Academic Press, New York (1963)
22. Wierman, M.J.: Measuring conflict in evidence theory. In: Proceedings of the Joint

9th IFSA World Congress, Vancouver, BC, Canada, vol. 3, pp. 1741–1745 (2001)
23. Yager, R.R.: On the Dempster-Shafer framework and new combination rules. In-

formation Sciences 41, 93–138 (1987)
24. Zadeh, L.: A simple view of the Dempster-Shafer theory of evidence and its impli-

cation for the rule of combination. AI Magazine 7(2), 85–90 (1986)



   

Part V 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Non-classical Logics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Completions of Ordered Algebraic Structures:
A Survey

John Harding

Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003
jharding@nmsu.edu
Http://www.math.nmsu.edu/∼jharding

Summary. Ordered algebraic structures are encountered in many areas of mathemat-
ics. One frequently wishes to embed a given ordered algebraic structure into a complete
ordered algebraic structure in a manner that preserves some aspects of the algebraic
and order theoretic properties of the original. It is the purpose here to survey some
recent results in this area.

1 Introduction

An ordered algebraic structure A consists of an algebra, in the sense commonly
used in universal algebra [9], together with a partial ordering on the underlying
set of the algebra. We require that the operations of the algebra are compatible
with the partial ordering in that they preserve or reverse order in each coordinate.
The partial orderings we consider here will almost always be lattice orderings.

Ordered algebraic structures occur in a wide variety of areas. Examples include
partially ordered vector spaces, lattice ordered groups, Boolean algebras, Heyt-
ing algebras, modal algebras, cylindric algebras, relation algebras, orthomodular
posets, and so forth. In applications, the existence of certain infinite joins and
meets often play an important role. In analytic applications, certain infinite joins
and meets are often related to limit processes; in logical applications, certain infi-
nite joins and meets are often related to existential and universal quantification;
and in quantum logic, countable orthogonal joins correspond to experiments
built from countable families of mutually exclusive experiments. It is a common
task to try to embed a given ordered algebraic structure into one where certain
families of joins and meets exist.

Perhaps the best example is the earliest one. In 1858 (published in 1872 [12])
Dedekind used his methods of cuts to construct the real numbers R from the
rationals Q. He defined a real number to be a certain type of ordered pair
(A, B) of subsets of the rationals called a cut. Each rational q yields such a
cut, and this provides an embedding ϕ : Q → R. Dedekind further defines an
ordering ≤ and operations +, −, · on R. He shows that with these operations
(R, +, −·, ≤) is an ordered field that is conditionally complete, meaning that

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 231–244, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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every non-empty subset of R that has an upper bound has a least upper bound
and every non-empty subset that has a lower bound has a greatest lower bound.
Having embedded the rationals into a conditionally complete ordered field, one
might ask whether the rationals can even be embedded into a complete ordered
field. This is trivially impossible as an ordered field can never have a largest or
least element.

The embedding ϕ : Q → R produced above is more than just an order embed-
ding that preserves algebraic structure. The map ϕ preserves all existing joins
and meets in Q, a property we call a regular embedding. Further, each element
of R is both a join and meet of elements of the image of ϕ, properties called join
and meet density. In many instances it may be desirable to find a completion
that not only preserves some existing algebraic properties, but also preserves
some existing joins and meets. Further, having some sort of density condition,
to ensure the resulting completion is somewhat tightly tied to the original, is
often desirable.

For a given type of algebraic structure, one can ask a variety of questions
regarding the existence of an embedding into a complete ordered structure pre-
serving certain aspects of the algebraic and order theoretic structure. There is a
large, mostly scattered, literature on such questions for specific classes of struc-
tures. It is not our intent to review this literature in more than an incidental
way. Rather, we concentrate on results, mostly in the past 20 years, that seem
to form the beginnings of a general theory of such completions.

2 Preliminaries

In this section we review some basic definitions.

Definition 1. For a poset P , an n-ary operation f on P is called monotone if
it preserves or reverses order in each coordinate. An ordered algebraic structure
A = (A, (fi)I , ≤) consists of an algebra (A, (fi)I), together with a partial ordering
≤ on A, such that for each i ∈ I, the operation fi is monotone.

Note, this definition allows for Heyting implication −→ that is order reversing
in the first coordinate, and order preserving in the second.

Mostly we will consider here ordered algebraic structures where the underlying
ordering is a lattice ordering. Such structures are also known under the name of
monotone lattice expansions [14, 15].

Definition 2. An embedding of an ordered algebraic structures A into B is a
map ϕ : A → B that is both a homomorphism and an order embedding. A
completion of A is an embedding ϕ : A → B where the underlying ordering of B
is a complete lattice.

For an ordered algebraic structure whose underlying ordering is a lattice, one
might reasonably argue that an embedding should be required to be a lattice
embedding. This is easily accomplished by keeping the current definition and
adding the lattice operations as part of the basic algebraic structure.
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Definition 3. An embedding ϕ : A → B is called join dense if for each b ∈ B,
we have b =

∨
{ϕ(a) : a ∈ A and ϕ(a) ≤ b}. We say ϕ is join regular if for each

S ⊆ A that has a join in A, the image ϕ[S] has a join in B, and ϕ(
∨

S) =
∨

ϕ[S].
Meet dense and meet regular are defined similarly. Finally, call ϕ regular if it is
both join regular and meet regular.

The following is well known, and easy to prove.

Proposition 1. If ϕ is join dense, then it is meet regular, and if ϕ is meet
dense, then it is join regular.

We next describe various types of ideals an filters that play an important role.
We recall that for a subset S of a poset P , that U(S) = {p ∈ P : s ≤ p for all
s ∈ S} is the set of upper bounds of S, and L(S) = {p ∈ P : p ≤ s for all s ∈ S}
is the set of lower bounds of S.

Definition 4. For P a poset and I ⊆ P we say

(i) I is an order ideal if b ∈ I and a ≤ b ⇒ a ∈ I.
(ii) I is an ideal if I is an order ideal that is closed under existing finite joins.
(iii) I is a normal ideal if I = LU(I).

Let IOP , IP and INP be the sets of order ideals, ideals, and normal ideals of
P , considered as posets under the partial ordering of set inclusion.

Similarly an order filter is a subset F ⊆ P where a ∈ F and a ≤ b implies b ∈ F ,
a filter is an order filter closed under existing finite meets, and a normal filter
is a set F with F = UL(F ). We let FOP , FP and FNP be the sets of order
filters, filters, and normal filters partially ordered by reverse set inclusion.

Proposition 2. S is a normal ideal iff it is the intersection of principal ideals,
and S is a normal filter iff it is the intersection of principal filters. Normal ideals
are closed under all existing joins, and normal filters are closed under all existing
meets.

While normal ideals are closed under existing joins, in general, there are ideals
of a lattice that are closed under existing joins but are not normal. However, for
Heyting algebras an ideal is normal iff it is closed under existing joins, but the
corresponding result does not hold for normal filters in a Heyting algebra [5].

Definition 5. For a ∈ P let a ↓= {p ∈ P : p ≤ a} and a ↑= {p ∈ P : a ≤ p}.
We call these the principal ideal and principal filter generated by a.

3 Completion Methods

In this section we collect a number of common completion methods, as well as
a general template into which these methods fit. We first discuss matters for
posets and lattices, considering additional algebraic operations later.
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Proposition 3. For a poset P , the order ideals IOP are a complete lattice and
the map ϕ : P → IOP defined by ϕ(a) = a↓ is a completion of P satisfying

(i) ϕ is join dense.
(ii) For a ∈ P, S ⊆ P , if ϕ(a) ≤

∨
ϕ[S] then a ≤ s for some s ∈ S.

Further, if ψ : P → C is another completion satisfying these two properties,
there is a unique isomorphism μ : IOP → C with μ ◦ ϕ = ψ.

The order ideal completion preserves all existing meets as it is a join dense com-
pletion, but destroys all existing joins except those of subsets with a maximum
element. Also of interest is that IOP is a completely distributive lattice.

Proposition 4. For a poset P , the ideals IP are a complete lattice and the map
ϕ : P → IP defined by ϕ(a) = a↓ is a completion of P satisfying

(i) ϕ is join dense.
(ii) For a ∈ P, S ⊆ P , if ϕ(a) ≤

∨
ϕ[S] then ϕ(a) ≤

∨
ϕ[S′] for some finite

S′ ⊆ S.

Further, if ψ : P → C is another completion satisfying these two properties,
there is a unique isomorphism μ : IOP → C with μ ◦ ϕ = ψ.

The ideal completion preserves all existing meets, and all existing finite joins,
however it destroys all existing joins that are not essentially finite. In the next
section when we consider preservation of identities, we see some of the main
advantages of the ideal completion.

Proposition 5. For a poset P , the normal ideals INP are a complete lattice
and the map ϕ : P → IP defined by ϕ(a) = a↓ is a completion of P satisfying

(i) ϕ is join dense.
(ii) ϕ is meet dense.

Further, if ψ : P → C is another completion satisfying these two properties,
there is a unique isomorphism μ : IOP → C with μ ◦ ϕ = ψ.

The normal ideal completion is often called the MacNeille completion, or the
completion by cuts. It was introduced by MacNeille [28] in the poset setting as
an extension of the method used by Dedekind to construct the reals from the
rationals. It preserves all existing joins and meets, so is a regular completion. The
above characterization is due to Banaschewski and Schmidt [2, 31]. It provides
a minimal completion of P in that for any completion f : P → C there is an
order embedding μ : INP → C with μ ◦ ϕ = f , and this can be used to show
that MacNeille completions provide strictly injective essential extensions in the
category of posets [3].

One similarly obtains order filter, filter, and filter completions of a poset P
using the embedding ψ(a) = a ↑. They have similar properties to the above,
except that the roles of joins and meets are interchanged. As the roles of join
and meet are symmetric for the normal ideal completion, INP and FNP are
isomorphic, and the maps U, L provide mutually inverse isomorphisms.
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One can create additional types of completions by taking other families of
order ideals or order filters that are closed under intersections. For instance, the
family of all order ideals closed under existing countable joins provides a join
dense completion that preserves all existing meets, and existing countable joins.
We soon generalize this observation, but first we consider one more completion.

Proposition 6. For a bounded lattice L, there is a completion ϕ : L → C
satisfying

(i) Each c ∈ C is both a join of meets and a meet of joins of elements from the
image of L.

(ii) For S, T ⊆ L,
∧

ϕ[S] ≤
∨

ϕ[T ] iff
∧

S′ ≤
∨

T ′ for some finite S′ ⊆ S, T ′ ⊆
T .

Further, if ϕ′ : L → C′ is another completion satisfying these two properties,
there is a unique isomorphism μ : C → C′ with μ ◦ ϕ = ϕ′.

Proof. We provide a sketch, details are found in [14]. Let I and F be the sets
of ideals and filters of L and define a binary relation R from F to I by setting
F R I iff F ∩ I �= ∅. Then the polars of R [8] give a Galois connection between
the power set of F and the power set of I. The Galois closed elements of the
power set of F form a complete lattice C, and the map ϕ : L → C defined
by ϕ(a) = {F ∈ F : a ∈ F} is the required embedding. This gives existence,
uniqueness is not difficult.

This completion is called the canonical completion. The embedding ϕ preserves
all finite joins and meets, so is a lattice embedding, but destroys all existing
essentially infinite joins and meets. Canonical completions have their origins in
Stone duality. For a Boolean algebra B the canonical completion is the natural
embedding of B into the power set of its Stone space, for a distributive lattice it
is given by the upsets of the Priestley space, and for general lattices it is given
by the stable subsets of the Urquhart space [32]. An abstract characterization
similar to that above was given in the Boolean case by Jónsson and Tarski [24],
and in the distributive case by Gehrke and Jónsson [16]. The above abstract
characterization in the lattice setting was given by Gehrke and Harding [14].

3.1 A General Template for Completions

The technique used in constructing the canonical completion can be adapted to
create a range of completions. Let P be a poset, I be some set of order ideals
of P containing all principal ideals, and F some set of order filters containing
all principal filters. Define a relation R from F to I by F R I iff F ∩ I �= ∅.
Then the polars of R give a Galois connection, and the Galois closed subsets
of F form a complete lattice G(F , I). The map α : P → G(F , I) defined by
α(a) = {F ∈ F : a ∈ F} is an embedding.

For sets I and F of order ideals and order filters, the completion α : P →
G(F , I) has the property that each element of G(F , I) is both a join of meets
and a meet of joins of elements of the image of P . Further, the embedding α
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preserves all existing joins in P under which each member of I is closed, and
all existing meets in P under which each member of F is closed. It destroys all
other joins and meets.

A number of common completions arise this way. The order ideal completion
arises by choosing I to be all order ideals of P and F to be all principal filters
of P ; the ideal completion by choosing I to be all ideals, F to be all principal
filters; the MacNeille completion by choosing I to be all normal ideals, F to be
all principal filters, or alternately, by choosing I to be all principal ideals and F
all principal filters; and the canonical completion by choosing I to be all ideals,
and F to be all filters. Clearly others are possible as well.

3.2 Extending Additional Operations

Suppose P is a poset, α : P → C is a completion of P , and f is a monotone
n-ary operation on P . We recall monotone means that f preserves or reverses
order in each coordinate. For convenience we write a for an n-tuple of elements
(a1, . . . , an) of P , c for an n-tuple of elements (c1, . . . , cn) of C, and α(a) for
(α(a1), . . . , α(an)).

Definition 6. Let ≤f be the ordering on Cn defined by c ≤ d if ci ≤ di for each
i with f order preserving in the ith coordinate, and di ≤ ci for all other i.

We now describe two ways to lift the operation f on P to an operation on C.

Definition 7. Let f− and f+ be the n-ary operations on C defined by

f−(c) =
∨

{α(f(a)) : α(a) ≤f c}.

f+(c) =
∧

{α(f(a)) : c ≤f α(a)}.

We call f− and f+ the lower an upper extensions of f .

Proposition 7. Both f− and f+ are monotone maps and with repect to either
extension, α is a homomorphism.

For a join dense completion each c ∈ C is given by c =
∨

{α(a) : α(a) ≤ c}.
For f unary and order preserving, f−(c) =

∨
{α(a) : α(a) ≤ c}. Clearly this

is a natural choice of extension. Similarly, for a meet dense completion, f+ is
a natural choice. So for MacNeille completions, both are reasonable choices. In
particular instances one may be preferable to the other. For Heyting algebras,
extending the Heyting implication → using the upper extension yields a Heyting
algebra, while the lower extension does not.

Canonical completions have neither join nor meet density, however, every
element of is a join of meets and a meet of joins of elements of the image. We use
this to define extensions of monotone maps suited to this type of completion. Let
K be all elements that are meets of elements of the image and O be all elements
that are joins of elements of the image. Then c =

∨
{
∧

{α(a) : k ≤ a} : k ≤
c and k ∈ K} for each c in the canonical completion, with a similar expression
involving a meet of joins and all c ≤ o with o ∈ O.
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Definition 8. For f monotone and unary define fσ and fπ by

fσ(c) =
∨

{
∧

{α(f(a)) : k ≤ a} : k ≤ c and k ∈ K}.

fπ(c) =
∧

{
∨

{α(f(a)) : a ≤ o} : c ≤ o and o ∈ O}.

We call fσ and fπ the lower and upper canonical extensions of f .

This definition extends in a natural way to monotone n-ary operations, but
one must use a mixture of open and closed elements depending on whether
the coordinate of f preserves of reverses order. In this generality we have the
following.

Proposition 8. Both fσ and fπ are monotone maps and with respect to either
extension, α is a homomorphism.

For a completion α : P → C and a family of monotone operations (fi)I on P ,
a map β : I → {−, +, σ, π} can be used to indicate which extension method to
apply to each operation fi.

Definition 9. For an ordered structure (A, (fi)I , ≤) and map β :I →{−, +, σ, π},
define the β-ideal completion, β-MacNeille completion, and β-canonical comple-
tion to be the corresponding completion applied to the underlying ordered struc-
ture with operations extended in the indicated way.

This by no means exhausts the range of possible completions, but it does include
many of those commonly encountered. Generally one tends to use − extensions
for ideal completions, + extensions for filter completions, −, + for MacNeille
completions, and σ, π for canonical completions to take advantage of various
density properties.

4 Preservation of Identities

We consider the question of when an identity holding in an ordered structure A
holds in a certain type of completion of A. In the case of lattice ordered struc-
tures, a natural question becomes when a variety of lattice ordered structures is
closed under a certain type of completion. There has been considerable progress
in this area in the past twenty five years, but one of the more useful results is
still one of the oldest.

Definition 10. If A is a lattice with a family of operations that are order pre-
serving in each coordinate, then every identity valid in A is valid in the ideal
lattice completion of A where the operations are extended by the − extension.

Proof. As in [10] one shows that for a term t(x1, . . . , xn) and ideals Ii, . . . , In

of A, that t(I1, . . . , In) = {b ∈ A : b ≤ t(a1, . . . , an) for some a1 ∈ I1, . . . , an ∈
In}.
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While ideal completions work very well with order preserving operations, they
work very poorly when an operation has a coordinate where it is order reversing.
For the basic case of Boolean algebras, the ideal lattice is hopeless as the ideal
completion of a Boolean algebra is Boolean only if it is finite.

The preferred method to complete a Boolean algebra with additional opera-
tions is the canonical completion, usually using the σ extension of maps. Here
there is an extensive literature, beginning with the work of Jónsson and Tarski
[24, 25] in the 1950’s, and continuing with the use of Kripke semantics in modal
logic (see [7] for a complete account). Primary concern is Boolean algebras with
additional operations that preserve finite joins in each coordinate. Such opera-
tions are called operators.

Theorem 1. (Jónsson-Tarski) The canonical completion of a Boolean algebra
with operators preserves all identities that do not use the Boolean negation.

In the 1970’s, Sahlqvist [30] generalized this result to apply to equations in which
negation occurs, provided they are of a certain form. Usually, these equations
are called Sahlqvist equations. While we don’t describe the exact form here,
we do remark that Sahlqvist terms are the ones that correspond to first order
properties of the associated Kripke frame.

Theorem 2. (Sahlqvist) The canonical completion of a Boolean algebra with
operators preserves all Sahlqvist equations.

Sahlqvist’s result was set and proved via Kripke frames, which tied it to the
Boolean algebra with operator setting. Jónsson [26] gave an algebraic proof that
seems more portable. Gehrke, Nagahashi and Venema [17] used Jónsson’s method
to extend Sahlqvist’s theorem to distributive modal logics, but it remains an open
problem to see what portions of this result can be extended to canonical com-
pletions in more general settings. We remark that Jónsson and Tarski’s original
result extends nicely to this setting as described below.

Theorem 3. (Gehrke-Harding) The canonical completion of a bounded lat-
tice with additional monotone operations preserves all identities involving only
operators.

Note that join is an operator on any lattice, but meet being an operator is
equivalent to distributivity. Of course, canonical completions of such lattices with
operations also preserve some identities involving order inverting operations,
such as those for orthocomplementations, and this provides an advantage for
them over ideal completions in such settings. To illustrate the utility of canonical
completions in the general setting we have the following.

Theorem 4. (Gehrke-Harding) Let K be a class of bounded lattices with addi-
tional monotone operations. If K is closed under ultraproducts and β-canonical
completions, where β uses only the extensions σ, π, then the variety generated by
K is closed under β-canonical completions.



Completions of Ordered Algebraic Structures: A Survey 239

In particular, the variety generated by a single finite lattice with monotone oper-
ations is closed under β-canonical completions. The proof of this result requires
showing canonical completions work well with homomorphic images, subalgebras
and Boolean products [14].

Turning to MacNeille completions, there are a good number of results from
different areas stating that a particular variety of interest is closed under Mac-
Neille completions. For instance, the varieties of lattices, Boolean algebras, Heyt-
ing algebras, ortholattices, closure algebras, and post algebras are closed under
MacNeille completions, although one must be careful about choosing the +, −
extension of maps in certain cases.

The first general study of preservation of identities under MacNeille comple-
tions was conducted by Monk [29], who showed an analogous theorem to 1 holds
for MacNeille completions of Boolean algebras with operators provided the oper-
ators preserve all existing joins in each coordinate. Givant and Venema [18] used
Jónsson’s technique to extend this result and obtain a type of Sahlqvist theorem
for preservation of identities for MacNeille completions of Boolean algebras with
operators. The key point in their work is the notion of a conjugated map, which
plays the role for order preserving operations similar to that of residuation for
order inverting ones. Among their results is the following which refers to the −
extensions of maps.

Theorem 5. (Givant-Venema) The MacNeille completion of a Boolean algebra
with a family of additional conjugated operators preserves Sahlqvist identities.

I am not aware of a version of 4 for MacNeille completions, but in the setting
of Boolean algebras with operators, a type of converse holds [15]. The following
uses the idea from Kripke semantics that a set with a family of relations produces
a Boolean algebra with operators consisting of the power set of the set and the
operators defined using relational image.

Theorem 6. (Gehrke-Harding-Venema) If a variety of Boolean algebras with
operators is closed under MacNeille completions using the − extensions of maps,
then the variety is generated by an elementary class of relational structures.

There is also an interesting connection between Boolean products and MacNeille
completions. In [11] it was shown that if a lattice ordered algebraic structure has
a well behaved Boolean product representation, then its MacNeille completion
lies in the variety generated by the original. This result was used to show any
variety of orthomodular lattices that is generated by its finite height members
is closed under MacNeille completions. It can also be used to show that Post
algebras are closed under MacNeille completions. We note that these results for
orthomodular lattices have implications also for Boolean algebras with operators
as every variety of ortholattices can be interpreted in a certain variety of modal
algebras [21].

5 Comparing Completions

Here there is unfortunately little known. The main result is found in [15].
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Theorem 7. (Gehrke-Harding-Venema) For a bounded lattice L with additional
monotone operations, the canonical completion of L is isomorphic to a sublat-
tice of the MacNeille completion of an ultrapower of L. Here any mixture of σ
and π extensions of maps can be used for the canonical completion provided the
MacNeille completion uses the corresponding − and + extensions of these maps.

Proof. The key point in the proof [15] is that every ideal of a sufficiently satu-
rated ultrapower of L is a normal ideal.

This is vaguely reminiscent of a result of Baker and Hales [1] showing that the
ideal lattice of a lattice L is isomorphic to a subalgebra of an ultrapower of L.
Perhaps other such relationships can be found among various completions.

6 Exploring the Boundaries

In this section, we look at a number of results that point to what may, and what
may not, be possible. To begin, it is not the case that every ordered algebraic
structure can be embedded into one that is complete and satisfies the same
identities as the original. The rationals Q provide an example of a structure
without such a completion as no lattice ordered group can have a largest or
least element. For a simple example where even a conditional completion is
impossible, consider the variety V of diagonalizable algebras [6]. These modal
algebras have an order preserving unary operation f and for each member in
V we have x ≤ f(x) implies x = 0. One then finds some A ∈ V with a family
a1 ≤ a2 ≤ · · · where an ≤ f(an+1). Then in any completion of A for x =

∨
an

we have x ≤ f(x). Kowalski and Litak [27] provide a number of varieties sourced
in logic that admit no completion.

Modular ortholattices provide another example of a variety admitting no com-
pletion, but the only known proof of this relies on Kaplansky’s result that every
complete modular ortholattice is a continuous geometry, and von Neumann’s
result that a continuous geometry has a dimension function, two of the deepest
results in lattice theory. In contrast to this, it is known that every complemented
modular lattice can be embedded into a complete complemented modular lat-
tice, via a method known as the Frink embedding [10] which is a modification
of the ideal lattice of the filter lattice. A related question, that remains open, is
whether every orthomodular lattice admits a completion.

Moving to the topic of how specific completion methods behave, we first con-
sider the canonical completion. Here it had long been conjectured that every
variety of Boolean algebras with operators that is closed under canonical com-
pletions is generated by an elementary class of frames. Hodkinson and Venema
[19] showed this is not the case, but their counterexample is not finitely based.
The question remains open in the finitely based setting. On a related note, the
matter of determining whether a finitely based variety of Boolean algebras with
operators is closed under canonical completions is an undecidable problem [33].
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A simpler problem, but also open, is to determine which varieties of lattices
are closed under canonical completions. Here we know every finitely generated
variety of lattices is closed, but the variety of modular lattices is not closed under
canonical completions.

There are a number of results showing that subvarieties of familiar varieties
are not closed under MacNeille completions. The only varieties of lattices closed
under MacNeille completions are the trivial variety and the variety of all lattices
[20]; for Heyting algebras only the trivial variety, the variety of Boolean algebras,
and the variety of all Heyting algebras are closed [5]; and [6] describes the situ-
ation for some varieties of closure algebras and derivative algebras. Belardinelli,
Jipsen, and Ono have shown [4] that in a certain setting, cut elimination for a
logic implies the closure of a corresponding variety under MacNeille completions.
So the above result for Heyting algebras explains why so few superintuitionistic
logics have cut elimination.

It can be a non-trivial task to determine when the variety generated by a
given finite ordered structure A is closed under β-MacNeille completions for
some given method β of extending the operations. Indeed, this is not trivial
even for A being the two-element lattice, or the three-element Heyting algebra.
It would be desirable to have a decision process for this problem, if indeed it is
even decidable.

One might also ask whether a variety is closed under MacNeille completions
in the sense that for each A ∈ V , the operations on A can be extended in some
manner to the MacNeille completion of A to produce an algebra in V . Here
there are further complications. An example in [6] gives a variety V generated
by a four-element modal algebra that is not closed under MacNeille completions
using either the −, + extensions of maps, but whose closure under MacNeille
completions in this more general sense is equivalent to some weak form of the
axiom of choice.

Rather than focusing on MacNeille completions, one may ask more generally
whether a variety admits some type of regular completion. In many applications
it is the regularity that is of primary interest anyway. In some instances, such
as for orthomodular lattices, a variety admitting a regular completion is equiv-
alent to closure under MacNeille completions as any regular completion factors
through the MacNeille completion [21]. However, this is not generally the case.
The variety generated by the three-element Heyting algebra is not closed un-
der MacNeille completions, but does admit a regular completion [22]. This is
the only example of this phenomenon that I know. It would be natural to see
if there are other varieties of lattices or Heyting algebras that admit regular
completions.

7 Conclusions and Discussion

The topic of completing ordered structures is a broad one with a long history. The
results mentioned here focus on one area of this topic, preservation of identities,
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and deal only with a fragment of the array of completion methods available.
Still, there is reason to believe these results form a basis around which a unified
theory can be built, and that this theory addresses questions of concern in many
areas of mathematics.

We have a fairly general template for completions, the I, F -method, that in-
cludes many of the completions commonly encountered. This method also points
a way to tailor completions to specific need. We have also various methods of ex-
tending operations to such completions, and Jónsson’s approach to Sahlqvist’s
theorem may give a portable tool to address preservation of certain types of
identities by various types of completions.

We have also seen several techniques occurring repeatedly in our work. These
include the use of ultraproducts, which occurs when considering the preserva-
tion of identities by canonical extensions, and also in the proof that closure of a
variety under MacNeille completions implies closure under canonical extensions.
Ultraproducts are also related to the formation of the ideal lattice. Boolean prod-
ucts are another recurring theme. They occur in connection with preservation of
identities by canonical extensions, when considering preservation of identities by
MacNeille completions, and are also key in constructing a variety that admits a
regular completion but is not closed under MacNeille completions.

The use of relational structures or Kripke frames has also been closely tied to
our considerations of completions of Boolean algebras with operators, both in
the case of canonical completions and MacNeille completions. It would desirable
to extend this to the more general setting of bounded lattices with additional
operations. There are more general notions of frames in this setting, see for
example Gehrke [13]. Also, Harding [23] has a notion of frames involving a set
X with additional binary relation P and family of relations Ri satisfying certain
conditions, where the relations Ri are used to form operations on the Galois
closed subsets of X under the polarity induced by P . No matter which method
one uses to create frames, it would seem worthwhile to see the extent to which
results can be lifted from the Boolean setting to completions of more general
structures.

In sum, it seems an exciting time to be working in this area of completions.
A sufficient groundwork has been laid to map out a direction of research, and a
number of the tools have been identified. To be sure, there remains much work to
be done, with likely more than a few surprises, but one hopes to see considerable
progress in the near future.
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Summary. Type-2 fuzzy sets have come to play an increasingly important role in
both applications and in the general theory of fuzzy sets. The basis of type-2 fuzzy sets
is a certain algebra of truth values, as set forth by Zadeh. This paper is a survey of
results about this algebra, along with some new material.

1 Introduction

Type-2 fuzzy sets were introduced by Zadeh in 1975 [26]. The basic idea is to
generalize the notion of ordinary fuzzy sets (type-1), affording wider applicabil-
ity. The fundamental object for a “fuzzy set theory” is an algebra of truth values.
For ordinary fuzzy sets, or fuzzy sets of type-1, that algebra, which we denote
by I, is the unit interval with the usual max, min, and negation, and constants 0
and 1. A fuzzy subset of a set S is then a mapping from S into this algebra, and
operations of these mappings come pointwise from operations on [0, 1], yielding
the algebra of fuzzy subsets of S. A common generalization of the algebra I is an
algebra I[2] consisting of pairs (a, b) with 0 ≤ a ≤ b ≤ 1, and with appropriate co-
ordinate operations. Mappings f : S → I[2] are interval-valued fuzzy sets, which
have come to play a big role in applications. Type-2 fuzzy sets are mappings into
the set Map([0, 1], [0, 1]) of fuzzy subsets of the unit interval. The usual opera-
tions put on these mappings to make it into an appropriate algebra are certain
convolutions of the operations of I, as proposed by Zadeh, resulting in an algebra
M of truth values [26]. Mappings f : S → M are fuzzy sets of S of type-2.

The algebra M is a rather complicated object. However, it is entirely appro-
priate for generalizations of type-1 and interval-valued fuzzy sets, and has been
investigated in many papers. This paper is a survey of some of the results of
these investigations, along with a few new results. The material here is drawn
heavily from the papers [2], [3], [4], [5], [19], [20], [21], [22].

2 Type-1 Fuzzy Sets

The fundamental object for a “fuzzy set theory” is a algebra of truth values. For
ordinary fuzzy sets, or fuzzy sets of type-1, that algebra is
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I = ([0, 1], ∨, ∧,′ , 0, 1)

with operations

x ∨ y = max{x, y}
x ∧ y = min{x, y}

x′ = 1 − x

and the nullary operations 0 and 1. The algebra ([0, 1], ∨, ∧,′ , 0, 1) is a bounded
distributive lattice with an involution ′ that satisfies De Morgan’s laws and the
Kleene inequality x ∧ x′ ≤ y ∨ y′, that is, is a Kleene algebra.

3 Interval-Valued Fuzzy Sets

For interval-valued fuzzy sets, the algebra of truth values is

I[2] = ([0, 1][2], ∨, ∧,′ , (0, 0), (1, 1))

with

[0, 1][2] = {(a, b) : a, b ∈ [0, 1], a ≤ b}
(a, b) ∨ (c, d) = (a ∨ c, b ∨ d)
(a, b) ∧ (c, d) = (a ∧ c, b ∧ d)

(a, b)′ = (b′, a′)

and the nullary operations (0, 0) and (1, 1). This algebra is a bounded distributive
lattice with an involution ′ that satisfies De Morgan’s laws. It is not a Kleene
algebra.

4 Type-2 Fuzzy Sets

The algebra of truth values for fuzzy sets of type-2 is much more complicated
than those for type-1 and interval-valued ones. The basic set is that of all map-
pings of [0, 1] into [0, 1], and the operations are certain convolutions of operations
on [0, 1], as in the following definition.

Definition 1. On [0, 1][0,1], let

(f � g) (x) = sup {f (y) ∧ g (z) : y ∨ z = x}
(f � g) (x) = sup {f (y) ∧ g (z) : y ∧ z = x}

f∗(x) = sup {f (y) : y′ = x} = f(x′)

1̄ (x) =
{

1 if x = 1
0 if x 	= 1 0̄ (x) =

{
1 if x = 0
0 if x 	= 0
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The algebra of truth values for type-2 fuzzy sets is

M = ( [0, 1][0,1]
, �, �,∗ ,0̄, 1̄)

A fuzzy subset of type-2 of a set S is a mapping f : S → [0, 1][0,1], and
operations on the set F2(S) of all such fuzzy subsets are given pointwise from
the operations in M. Thus we have the algebra

F2(S) = (Map(S, [0, 1][0,1]), �, �,∗ ,0̄, 1̄)

of fuzzy subsets of type-2 of the set S.
From the above, it is not clear at all exactly how type-2 generalizes type-1

and interval-valued fuzzy sets. At least, the algebras of truth values of type-1
and of interval-valued fuzzy sets should be subalgebras of M. Actually, more is
true as we shall see.

Determining the properties of the algebra M is a bit tedious, but is helped
by introducing the auxiliary operations in the definition following.

Definition 2. For f ∈ M, let fL and fR be the elements of M defined by

fL(x) = sup {f(y) : y ≤ x}
fR(x) = sup {f(y) : y ≥ x}

Note that fL is pointwise the smallest monotone increasing function larger than
f , and similarly, that fR is pointwise the smallest monotone decreasing function
larger than f . The point of this definition is that the operations � and � in M
can be expressed in terms these auxiliary operations and of the pointwise max
and min of functions, as follows.

Theorem 1. The following hold for all f, g ∈ M.

f � g =
(
f ∧ gL

)
∨

(
fL ∧ g

)

= (f ∨ g) ∧
(
fL ∧ gL

)

f � g =
(
f ∧ gR

)
∨

(
fR ∧ g

)

= (f ∨ g) ∧
(
fR ∧ gR

)

Using these auxiliary operations, it is fairly routine to verify the following prop-
erties of the algebra M.

Corollary 1. Let f , g, h ∈ M. The basic properties of M follow.

(i) f � f = f ; f � f = f

(ii) f � g = g � f ; f � g = g � f

(iii) 1̄ � f = f ; 0̄ � f = f

(iv) f � (g � h) = (f � g) � h; f � (g � h) = (f � g) � h
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(v) f � (f � g) = f � (f � g)
(vi) f∗∗ = f

(vii) (f � g)∗ = f∗ � g∗; (f � g)∗ = f∗ � g∗

Notice that this list does not include the absorption laws or distributive laws.
In particular, the algebra M is not a lattice. The properties of this algebra are
investigated in detail in [19].

The following problems seem of some interest.

Problem 1. Does M satisfy any equation not a consequence of these equations?
That is, are these equations an equational base for the variety generated by M?

Problem 2. Is the variety generated by M generated by a finite algebra?

The answers to this last problem are “yes” for I and I[2].
The algebra M contains copies of I and I[2], which are Kleene and De Morgan

algebras, respectively. We indicate that now. For a ∈ [0, 1], let a denote the
characteristic function of {a}, that is, a (a) = 1 and a (b) = 0 for b 	= a. The map

I → M : a �→ a

is a monomorphism. Observe, for example, that a � b = a ∧ b, and a � b = a ∨ b.
Thus the image of this map is a subalgebra of M isomorphic to I. We will identify
I with its image and say I ⊂ M. Note also that I ⊂ I[2]. The map

I[2] → M : (a, b) �→ aL ∧ b
R

is also a monomorphism, and identifying both I and I[2] with their images, we
have

I ⊂ I[2] ⊂ M

We are saying more than that fuzzy sets are special cases of interval-valued sets
and of type-2 sets, and that interval-valued ones are special cases of type-2 fuzzy
sets. The inclusions are as subalgebras. But significantly more is true, as will be
pointed out in the next section.

5 Automorphisms

The algebras I and I[2] are subalgebras of M. One aim of this section is to
point out that they are characteristic subalgebras of M. This means that
automorphisms of M induce automorphisms of these subalgebras, so that they
are very special subalgebras. Intuitively, M contains no subalgebra isomorphic
to I sitting in M in the same way, and similarly for I[2].

Definition 3. An automorphism of an algebra is a one-to-one map of the algebra
onto itself that preserves the operations.



The Algebra of Truth Values of Type-2 Fuzzy Sets: A Survey 249

Here we will limit ourselves to automorphisms of the algebra M =(
[0, 1][0,1]

, �, �, 0̄, 1̄
)
, that is, to the algebra M without the negation operation

∗. Similarly, I and I
[2] will denote the algebras I and I[2] without the negations.

It turns out to be technically advantageous to leave off the negation operation
in the initial investigation of the automorphisms of M. Thus the automorphisms
of M are the one-to-one maps ϕ of [0, 1][0,1] onto itself such that

(i) ϕ(f � g) = ϕ(f) � ϕ(g); ϕ(f � g) = ϕ(f) � ϕ(g)
(ii) ϕ(0) = 0; ϕ(1) = 1

The automorphisms of any algebra A form a group Aut(A) under composition
of maps. It is easy to see that the automorphisms of I are the strictly monotone
increasing maps of [0, 1] onto itself. In [3], it is shown that the automorphisms
of I

[2] are of the form (a, b) → (ϕ(a), ϕ(b)), where ϕ is an automorphism of I.
We want to determine the group of automorphisms of M. Two basic automor-

phisms of M arise from an automorphism of I. For α ∈ Aut(I), and f ∈ [0, 1][0,1],
let

αL(f) = αf

αR(f) = fα

Proposition 1. For α ∈ Aut(I), both αL and αR are automorphisms of

M = ([0, 1][0,1], �, �, 0, 1).

It turns out [21] that all the automorphisms of M are of the form αLβR. and
that Aut(M) ≈ Aut(I) × Aut(I). We also get the following theorems.

Theorem 2. The algebras I and I
[2] are characteristic subalgebras of M [20].

Since I and I[2] are subalgebras of M, it also follows that

Theorem 3. The algebras I and I[2] are characteristic subalgebras of M.

These facts have been determined by identifying the join irreducibles and the
meet irreducibles of M and of some of its subalgebras [20, 21]. Join irreducibles
are those elements f such that f = g � h implies that f = g or f = h. Meet
irreducibles are those f such that f = g � h implies that f = g or that f = h.
Irreducible elements are those that are both join and meet irreducible. Iden-
tifying these various irreducibles requires quite detailed calculations. They are
important in the study of automorphisms since they are carried onto themselves
by every automorphism.

The upshot is that type-2 fuzzy sets, as defined by Zadeh in [26], are, in
a strong mathematical sense, an appropriate generalization of type-1 and of
interval-valued fuzzy sets. The algebra of fuzzy truth values of type-2 fuzzy sets
contains as characteristic subalgebras the truth values algebras of type-1 and of
interval-valued fuzzy sets.
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6 Some Subalgebras of M

The algebra M has a number of quite special subalgebras besides the copies of I
and I[2] it contains. Some of these subalgebras could possibly serve as the algebra
of truth values for fuzzy set theories of practical importance. In any case, they
are of some mathematical interest.

6.1 The Subalgebra of Convex Normal Functions

One of the most important subalgebras is the subalgebra of normal convex
functions.

Definition 4. A function f : [0, 1]→ [0, 1] is normal if sup {f (x) : x ∈ [0, 1]}=1.
A function f is convex if for every x ≤ y ≤ z, f (y) ≥ f (x) ∧ f (z).

A equivalent condition for f being convex is that f = fL ∧ fR. The normal
functions form a subalgebra of M, as do the convex functions.

Theorem 4. [13, 19] The subalgebra L of functions that are both normal and
convex is a De Morgan algebra. It contains I and I[2], and as a lattice, it is
maximal in M.

Proposition 2. The subalgebra L is characteristic in M, as are the subalgebras
of normal and of convex functions.

It is natural to wonder whether or not L is complete as a lattice. Recently, it
has been shown that this it is indeed complete, and a proof is in [8]. There are
also some closely related subalgebras of M which are complete as lattices, for
example, the normal convex upper semicontinuous functions. The latter algebra
is a very special type of complete distributive lattice known as a continuous
distributive lattice. In particular, it is a complete Heyting algebra. Again, the
details are in [8].

6.2 The Subalgebra of Subsets

The functions f in [0, 1][0,1] such that f(x) = 0 or f(x) = 1 are in natural one-to-
one correspondence with the subsets of [0, 1]. The set S of such functions forms
a subalgebra S = (S, �, �,∗ , 0, 1) of M. However, the operations � and � do not
correspond to ordinary union and intersection, so the algebra is a bit mysterious.
The finite subsets of S, that is, those functions that are 1 at only finitely many
places is also a subalgebra. An automorphism of M takes a finite set into a
finite set with the same number of elements. Both S and this subalgebra are
characteristic subalgebras. The algebra S is studied in detail in [23].

6.3 The Subalgebra of Points

This subalgebra consists of those functions that are non-zero at exactly one
element of their domain, but can have any value in (0, 1] at that element. This
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subalgebra P is the subject of the paper [24]. It is a generalization of the truth
value algebra of type-1 fuzzy sets—the subalgebra of points with value 1, and
seems to be a reasonable candidate for applications. For a function in P, its
support could be viewed as degree of membership, and its value as level of
confidence. This generalizes type-1 fuzzy sets, where the “level of confidence” is
always 1.

One feature of this subalgebra is that it can be realized as an algebra of
pairs of elements from [0, 1] with simple pointwise operations, making its study
much simpler, avoiding computations with convolutions of mappings. In [24], it
is shown that P is a characteristic subalgebra of M and its automorphism group
is computed.

6.4 The Subalgebra of Intervals of Constant Height

This subalgebra consists of those functions from the unit interval into itself whose
support is a nonempty closed interval and that are constant on that interval. It is
the subject of the paper [25]. The elements of this subalgebra can be represented
by triples of points from the unit interval—the two end points of the support
interval and the constant value on that interval. The relevant operations turn
out to be simple—not requiring computations with convolutions of mappings.
This subalgebra is characteristic in M, and contains the subalgebras I, I[2], and
the subalgebra P of points. These facts and many more are detailed in [25].

7 T-Norms on M

In type-1 fuzzy theory, t-norms play an important role. They are associative
binary operations on [0, 1] that are monotone increasing in each variable and
have an identity, and they have been thoroughly studied and used. These can be
extended to the algebra M by taking the convolution � of a t-norm � on [0,1],
that is, by defining

(f � g) (x) = sup {f(y) ∧ g(z) : y � z = x}

Such an operation has many desirable properties, and t-norms of this type are
studied in some detail in [19]. We mention a few facts that seem to be of some
interest. Suppose that the t-norm � is continuous.

Proposition 3. The mapping a → a is an isomorphism from the algebra
([0, 1], ∨, ∧, �,′ , 0, 1) into the algebra ([0, 1][0,1], �, �, �,∗ , 0̄, 1̄), that is, from the
algebra (I, �) into the algebra (M,�).

Another fact is that � restricted to the copy of I[2] in M induces a t-norm on
I[2] as we defined t-norms there [3], in particular, they distribute over the meet
and join of I[2]. This is not at all obvious, and was a bit of a surprise.

Proposition 4. The mapping (a, b) → aL ∧ b
R

is an isomorphism from the
algebra ([0, 1][2], ∨, ∧, �,′ , 0, 1) into the algebra ([0, 1][0,1], �, �, �,∗ , 0̄, 1̄).
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The subalgebra L of normal convex functions is turning out to be of some im-
portance, and the following proposition could be useful. It proof was furnished
to us by Professor Vladik Kreinovich, and appears in [18].

Proposition 5. If f and g are in L and the t-norm � is continuous, then f � g
is in L.

8 Finite Type-2 Fuzzy Sets

The basic algebraic properties of M depend principally on the fact that [0, 1]
is a complete chain, so this algebra lends itself to various generalizations. One
special case is where each of the two copies of [0, 1] is replaced by a finite chain,
say of lengths m and n. This yields a finite algebra F(mn) with basically the
same algebraic properties (possibly generating the same variety) as M. Again,
the normal convex functions form a De Morgan algebra, and a basic question
is where do these special De Morgan algebras fit into the world of all finite De
Morgan algebras? These De Morgan algebras are characterized as those whose
poset of join irreducible elements has a particularly simple structure. This leads
to the determination of the automorphism groups of these algebras. Our basic
tool is an alternate representation of these algebras, making their operations
much more intuitive, and avoiding technical computations with convolutions.
The details are in [22]. Type-2 fuzzy sets with F(mn) as the algebra of truth
values are called the grid method of discretisation in [6], where they give effi-
cient algorithms for computing type-2 joins and meets based essentially on the
formulas in Theorem 1.

The algebra F(mn) can actually be realized as a subalgebra of M, and its
subalgebra of convex normal functions as a subalgebra of L. For example, take
X =

{
0, 1

n−1 , 2
n−1 , . . . , n−2

n−1 , 1
}

and Y =
{
0, 1

m−1 , 2
m−1 , . . . , m−2

m−1 , 1
}
. (The even

spacing of the elements of X and Y is needed only for preserving the negation.)
Then F(mn) can be identified with the set of functions f ∈ M such that f (a) ∈
Y for all a, and f (a) = 0 if a /∈ X , and this correspondence preserves the
operations. These algebras are not characteristic subalgebras of M. The finite
character is preserved under automorphisms, but the domain and range will not
stay fixed. Each F(mn) is a subalgebra of the characteristic subalgebra of M
consisting of all functions with finite support.

9 Miscellany

As usual, Map(X, Y ) denotes the set of all functions from the set X into the set Y .
For a setS, the set of its fuzzy subsets of type-2 is the set Map(S, Map([0, 1], [0, 1]).
There are many forms in which this can be written. That is, there are natural one-
to-one correspondences between the set Map(S, Map([0, 1], [0, 1]) and many simi-
lar expressions. We list a number of them below. Since they are not peculiar to the
set [0, 1], we consider Map(S, Map(A, B)) for any sets S, A, and B. Technically,
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the following are isomorphic in the category of sets. The one-to-one correspon-
dences between them are easy to see and are standard mathematical facts.

Map(S, Map(A, B)) ≈ Map(
⋃

s∈S

{s}, Map(A, B))

≈
∏

s∈S

Map({s}, Map(A, B)) ≈
∏

s∈S

Map(A, B)

Map(S, Map(A, B)) ≈ Map(S × A, B) ≈ Map(A, Map(S, B))
≈ Map(

⋃
a∈A

{a}, Map(S, B))

≈
∏

a∈A

Map({a}, Map(S, B)) ≈
∏

a∈A

Map(S, B)

The isomorphism Map(S, Map(A, B)) ≈ Map (S × A, B) says that fuzzy sub-
sets of S of type-2 may be viewed as type-1 fuzzy subsets of S × A, i.e., every
type-2 fuzzy set can be viewed as a type-1 fuzzy set by changing the universe.
Similar interpretations can be made for the other expressions. It should be noted
that

∏
s∈S

Map({s}, Map(A, B)) is not equivalent to
⋃

s∈S

Map({s}, Map(A, B)).

This latter expression is equivalent to
⋃

s∈S

Map(A, B), which, in general, is

much smaller than the product
∏

s∈S

Map({s}, Map(A, B)). Technically, the co-

product (in this case, disjoint union)
⋃

s∈S

{s} comes outside as a product.

Now let f ∈ Map(S × A, B), and for a ∈ A, let fa be the restriction of f
to S × {a}. Then fa = {((s, a) , f(s, a)) : s ∈ S} is a type-1 set, and, viewing
f ∈ Map(S, Map(A, B)), the maps f and fa have essentially the same universe
S. But f =

⋃
a∈A

fa, so a type-2 fuzzy set is the union of type-1 fuzzy sets with

essentially the same universe.
In [12] Mendel and John state a representation theorem for finite type-2 fuzzy

sets in terms of type-1 fuzzy sets. They make the following definition.

Definition 5. Let Ã : X → [0, 1]J where J ⊆ [0, 1]. Let Jx denote the support
of Ã (x). An embedded type-2 set of Ã is a type-1 function Ãe : X → [0, 1]
defined by Ãe (x) = Ã (x) (f (x)), where f : X → J such that f (x) ∈ Jx for all
x ∈ X.

Theorem 5 (Representation Theorem). A type-2 fuzzy set Ã is the union
of all of its embedded type-2 sets Ãe.

Their proof relies heavily on their assumption that the domains of all
functions involved are finite. However, the theorem is true in complete gen-
erality and stated in this generality the proof is transparent. The type-2
fuzzy set Ã : X → [0, 1]J can be identified with the set of triples Ã ={(

x, u, Ã (x) (u)
)

: x ∈ X , u ∈ Jx

}
. Let E = {f : X → J | f (x) ∈ Jx}. Then
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each embedded type-2 set of Ã can be identified with a set of triples Ãf
e ={(

x, f (x) , Ã (x) (f (x))
)

: x ∈ X
}

for some f ∈ E. To see that

Ã =
{(

x, u, Ã (x) (u)
)

: x ∈ X , u ∈ Jx

}

=
⋃

f∈E

{(
x, f (x) , Ã (x) (f (x))

)
: x ∈ X

}
=

⋃
f∈EÃf

e

just observe that both sets contain the same triples. The fact that the same
triple may appear multiple times on the right side causes no problem, by the
very nature of set unions.

Note that under the isomorphism

Map(X, Map(J, [0, 1])) ≈
∏

u∈J

Map(X, [0, 1])

in the previous paragraphs, a type-2 fuzzy set Ã ∈ Map(X, Map(J, [0, 1])) corre-
sponds to the family of maps {Au : X → [0, 1]}u∈J given by Au (x) = Ã (x) (u).
This is the precisely the essence of the Representation Theorem above.

10 Conclusions

The notion of type-2 fuzzy sets leads to many interesting theoretical results.
Many of these same results are also found in some form in applications of
type-2 fuzzy sets. But some of these results are difficult to ferret out, and we
have endeavored in various papers to give a precise mathematical treatment of
them, using standard mathematical notation. We hope this will be of benefit to
both theoreticians and those applying fuzzy set theory. In the meantime, we will
continue our effort to understand the mathematical underpinnings of the various
applications.
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Summary. Many types of fuzzy truth values have been proposed, such as numerical
truth values, interval truth values, triangular truth values and trapezoid truth values
and so on. Recently, different type of fuzzy truth values (which we call multi-interval
truth values) have been proposed and discussed. A characteristic feature of multi-
interval truth values is that some of the truth values are not convex. This fact makes
us difficult to understand algebraic properties on multi-interval truth values. This paper
first shows that a set of multi-interval truth values is de Morgan bi-lattices when the
conventional logical operations are introduced. Next, this paper focuses on functions
over the set of the simplest multi-interval truth values, i.e., we define a multi-interval
truth value as a non-empty subset of {0, 1, 2}. Then, this paper discusses mathematical
properties of functions over multi-interval truth values.

1 Introduction

It is well known that binary logic, which focuses on only propositions whose truth
values are either one of true or false, is strongly related to Boolean algebras.
Then, fuzzy logic was introduced in order to deal with propositions whose truth
values are not determined one of true or false. In fuzzy logic, many types of fuzzy
truth values have been proposed and studied on their algebraic structures [6, 7].
The simplest and traditional fuzzy truth values are numerical truth values. Then,
numerical truth values are expanded into interval truth values, triangular truth
values, and trapezoid truth values. It is a characteristic feature of numerical,
interval, triangular and trapezoid fuzzy truth values that all of them are convex.
It is known that a set of all convex fuzzy truth values together with operations
is a de Morgan algebra [3].

In this paper, we focus on a new type of fuzzy truth values, multi-interval truth
values. A multi-interval truth value is defined as a collection of interval truth
values. Multi-interval truth values were introduced simultaneously by Emoto [10]
and Kikuchi [9]. Figure 2 is an illustration of a multi-interval truth value. As
you can understand by looking the figure, it is a characteristic feature of multi-
interval truth values that some of them are not convex any more. Operations over
multi-interval truth values are introduced. They are given by applying Zadeh’s

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 256–267, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



Some Properties of Logic Functions over Multi-interval Truth Values 257

Fig. 1. Relationships over Numerical, Interval, Triangular and Trapezoid Fuzzy Truth
Values

extension principle to the conventional logical operations min, max and x �→ 1−x
over the unit interval [0, 1]. This paper then clarifies algebraic properties of multi-
interval truth values when the three operations are introduced.

This paper is organized below. In Section 2, multi-interval truth values are
introduced, and three operations over multi-interval truth values are defined by
using Zadeh’s extension principle. Then, it is shown a set of multi-interval truth
values is a de Morgan bi-lattices, which is defined as an algebraic system such
that there are two distributive lattices and de Morgan’s laws connect them to
each other. Section 3 proposes functions over multi-interval truth values, which
we call multi-interval logic functions. Then, algebraic properties of multi-interval
logic functions is discussed. To prove properties, some of binary relations play
important roles. Lastly, Section 4 concludes the paper.

Fig. 2. Illustration of A Multi-Interval Truth Value

2 Multi-interval Truth Values and Basic Properties

Let Er be the set {0, 1, . . . , r − 1} (r ≥ 2), and let Pr be a set of all subsets
of Er, but except the empty set, i.e., Pr = 2Er − {∅}, where 2Er is a power
set of Er. We call an element of Pr a multi-interval truth value. When r =



258 N. Takagi

3, P3 = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. For simplicity, each multi-
interval truth value is expressed by listing its all elements with underline. P3 is
represented as {0, 1, 2, 01, 02, 12, 012}, for example.

The following three logical operations play an important role in fuzzy logic.

a · b = min(a, b) (1)
a + b = max(a, b) (2)
∼ a = (r − 1) − a, (3)

where a and b are elements of Er. The logical operations (1)∼(3) are expanded
into logical operations over the set of multi-interval truth values Pr by applying
Zadeh’s extension principle.

Definition 1. Let A and B be any elements of Pr. The logical operations
(1)∼(3) are expanded into logical operations ∧, � and over multi-interval
truth values in the following manner.

λA∧B(z) = max
x,y∈Er
x·y=z

min(λA(x), λB(y)), (4)

λA�B(z) = max
x,y∈Er
x+y=z

min(λA(x), λB(y)), (5)

λĀ(z) = max
x∈Er∼x=z

λA(x), (6)

where λA and λB are characteristic functions of A and B, respectively. That is,
λA(x) = 1 when x ∈ A, λA(x) = 0 otherwise. λB is the same with λA.

Since characteristic function for every multi-interval truth value takes only 0
and 1, definitions (4)∼(6) can be reformulated into the following formulas.

A ∧ B = {min(a, b) | a ∈ A and b ∈ B} (7)
A � B = {max(a, b) | a ∈ A and b ∈ B} (8)

Ā = {(r − 1) − a | a ∈ A} (9)

Tables 1, 2 and 3 are truth tables of the operations ∧, � and , respectively.
A set of multi-interval truth values Pr with the logical operations ∧, �, is an

algebra [11, 12]. It is easy to show that the following equations are always true in
the algebra (Pr , ∧, �, ,0,1), where 0 and 1 stand for 0 and r − 1, respectively.

S1 A ∧ A = A
S2 A ∧ B = B ∧ A
S3 A ∧ (B ∧ C) = (A ∧ B) ∧ C
S4 1 ∧ A = A
S5 0 ∧ A = 0
S6 (A ∧ B) = A � B

S7 (A) = A

S1’ A � A = A
S2’ A � B = B � A
S3’ A � (B � C) = (A � B) � C
S4’ 1 � A = 1
S5’ 0 � A = A

S6’ (A � B) = A ∧ B

The algebra (Pr, ∧, �, ,0,1) is not a lattice when r ≥ 3 because it does not
satisfy the absorption laws
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Table 1. Truth Table of X ∧ Y

X\Y 0 1 2 01 02 12 012
0 0 0 0 0 0 0 0
1 0 1 1 01 01 1 01
2 0 1 2 01 02 12 012
01 0 01 01 01 01 01 01
02 0 01 02 01 02 012 012
12 0 1 12 01 012 12 012
012 0 01 012 01 012 012 012

Table 2. Truth Table of X � Y

X\Y 0 1 2 01 02 12 012
0 0 1 2 01 02 12 012
1 1 1 2 1 12 12 12
2 2 2 2 2 2 2 2
01 01 1 2 01 012 12 012
02 02 12 2 012 02 12 012
12 12 12 2 12 12 12 12
012 012 12 2 012 012 12 012

Table 3. Truth Table of X̄

X 0 1 2 01 02 12 012
X̄ 2 1 0 12 02 01 012

A ∧ (A � B) = A and A � (A ∧ B) = A.

For example, let A = 02 and B = 1, then A∧(A�B) = 012 
= A and A�(A∧B) =
012 
= A. Similarly, (Pr , ∧, �, ¬,0,1) does not also satisfy all of the following
equalities.

A ∧ (B � C) = (A ∧ B) � (A ∧ C)
A � (B ∧ C) = (A � B) ∧ (A � C)
A ∧ A = 0
A � A = 1
(A ∧ A) ∧ (B � B) = A ∧ A
(A ∧ A) � (B � B) = B � B

Since ∧ is idempotent (S1), commutative (S2) and associative (S3), the algebra
(Pr, ∧) is a lower semilattice. Furthermore, (Pr, ∧) is both 0- and 1-bounded (i.e.,
bounded) because 0 ∧ A = 0 and 1 ∧ A = A for all A ∈ Pr. To emphasize that
the lower semilattice (Pr, ∧) has the greatest element 1 and the least element
0, it is denoted by (Pr, ∧,0,1). Similarly, the algebra (Pr , �,0,1) is a bounded
upper semilattice. Therefore, (Pr, ∧, �, ,0,1) is a de Morgan bisemilattice [8].
Two partial orders are associated with Pr, as follows. For all X, Y ∈ Pr, X ≤∧ Y
is hold if and only if X ∧ Y = X , and X ≤� Y is hold if and only if X � Y = Y .

In the following, we discuss some properties of the de Morgan bisemilattice
(Pr, ∧, �, ,0,1). As mentioned above, the two partial orders ≤∧ and ≤� are
associated with Pr.

Let A and B be any elements of Pr. Then, A∧B and A�B are calculated by the
equations (7) and (8). A∧B is also equal to {a ∈ A | a ≤ bu}∪{b ∈ B | b ≤ au},
where au and bu are the greatest elements of A and B, respectively. This is
because {min(a, b) | a ∈ A} ⊆ {min(a, bu) | a ∈ A} is hold for every b ∈ B,
and {min(a, b) | b ∈ B} ⊆ {min(au, b) | b ∈ B} is also hold for every a ∈ A.
Therefore, we have
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A ∧ B = {min(a, b) | a ∈ A and b ∈ B}
= {a ∈ A | a ≤ bu} ∪ {b ∈ B | b ≤ au}. (10)

Similarly, we also have

A � B = {max(a, b) | a ∈ A and b ∈ B}
= {a ∈ A | b� ≤ a} ∪ {b ∈ B | a� ≤ b}, (11)

where a� and b� are the least elements of A and B, respectively.
Now, we describe on algebraic structures of the lattices (Pr, ∧, ∨,0,1) and

(Pr, �, �,0,1).

Theorem 1. Let A and B be elements of Pr. Then, the least upper bound of A
and B with respect to ≤∧, which is expressed by A ∨ B, is

A ∨ B = (A ∩ B) ∪ {a ∈ A | bu ≤ a} ∪ {b ∈ B | au ≤ b},

where au and bu are the greatest elements of A and B, respectively. Further,
the greatest lower bound of A and B with respect to ≤�, which is expressed by
A � B, is

A � B = (A ∩ B) ∪ {a ∈ A | a ≤ b�} ∪ {b ∈ B | b ≤ a�},

where a� and b� are the least elements of A and B, respectively.
(Proof) We prove only the first equation because the second one can be proved
similarly.

Suppose bu ≤ au, then it is sufficient to show that the least upper bound of A
and B is equal to (A∩B)∪{a ∈ A | bu ≤ a}. Let C be (A∩B)∪{a ∈ A | bu ≤ a}.
We then have C ⊆ A, and further it follows by bu ≤ au that cu = au. So, we
have the following equations.

A ∧ C = {a ∈ A | a ≤ cu} ∪ {c ∈ C | a ≤ au}
= A ∪ C

= A

Therefore, we have A ≤∧ C. Next, let us consider B ∧C. Since bu ≤ au, cu = au,
and C = (A ∩ B) ∪ {a ∈ A | bu ≤ a}, we have the following equations.

B ∧ C = {b ∈ B | b ≤ cu} ∪ {c ∈ C | c ≤ bu}
= B ∪ {c ∈ C | c ≤ bu}
= B ∪ {a ∈ A ∩ B | a ≤ bu} ∪ {a ∈ A | bu ≤ a ≤ bu}
= B ∪ {a ∈ A ∩ B | a ≤ bu}
= B

Therefore, we have B ≤∧ C. So, we have proved that C is an upper bound of A
and B with respect to ≤∧.

Finally, we will show that C is the least element of all the upper bounds of
A and B with respect to ≤∧, that is, it is proved that for any element D of Pr
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such that A ≤∧ D and B ≤∧ D, D ≤∧ C implies D = C. It follows by A ≤∧ D
and D ≤∧ C that we have au ≤ du and du ≤ cu. Thus, the equation au = du is
hold since au = cu. So, we have the following equations.

A ∧ D = {a ∈ A | a ≤ du} ∪ {d ∈ D | d ≤ au}
= A ∪ D

= A

Therefore, we have D ⊆ A. Similarly, since bu ≤ au, au = du, and B ≤∧ D, we
have the following equations.

B ∧ D = {b ∈ B | b ≤ du} ∪ {d ∈ D | d ≤ bu}
= B ∪ {d ∈ D | d ≤ bu}
= B

Therefore, we have {d ∈ D | d ≤ bu} ⊆ B. Then, it follows by D ⊆ A and
D ⊆ {d ∈ D | d ≤ bu} ⊆ B that we have D ⊆ (A ∩ B) ∪ {a ∈ A | bu ≤ a}, that
is, D ⊆ C. Furthermore, it also follows by cu = du and D ≤∧ C that we have
the following equations.

D ∧ C = {d ∈ D | d ≤ cu} ∪ {c ∈ C | c ≤ du}
= D ∪ C

= D

This implies that C ⊆ D. Therefore, we have proved that D = C, which means
that C is the least upper bound of A and B with respect to ≤∧ when bu ≤ au.
We can prove in a similar way that the first equation of the theorem is hold
when au ≤ bu. ��

Theorem 1 can prove the following theorem.

Theorem 2. For any A, B and C of Pr, (Pr , ∧, ∨,0,1) and (Pr, �, �,0,1) sat-
isfy the following equalities S8 ∼ S11 and S8’ ∼ S11’.

S8 A ∧ (A ∨ B) = A
S9 A ∨ (A ∧ B) = A
S10 A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)
S11 A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

S8’ A � (A � B) = A
S9’ A � (A � B) = A
S10’ A � (B � C) = (A � B) � (A � C)
S11’ A � (B � C) = (A � B) � (A � C)

(Proof is omitted.)

By Theorem 2, (Pr, ∧, ∨,0,1) and (Pr , �, �,0,1) are distributive lattices. Fur-
ther, these two distributive lattices are related to each other by de Morganfs
laws. So, we define such two distributive lattices with de Morgan’s laws are de
Morgan bi-lattices. Figure 3 shows Hasse diagrams of the de Morgan bi-lattices
(Pr, ∧, ∨, �, �, , 0, 2).

Several extensions of fuzzy truth values in fuzzy logic have been discussed [7].
As well known that the set of binary truth values {0, 1} forms a Boolean algebra.



262 N. Takagi

2

12 02

012
1

01

0

12

02

012 1

01

2

0

Fig. 3. De Morgan Bi-lattices (P3, ∧, ∨, �, �, ¯ , 0, 2)
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Fig. 4. Relationship of Algebras in Fuzzy Logic

Then, the Boolean algebra is extended into an algebraic system over the unit
interval [0, 1]. This algebra is known as a Kleene algebra [1, 4, 6]. Interval truth
values are one of the extensions of numerical truth values over [0, 1]. It is also
known that the set of interval truth values over [0, 1] forms a de Morgan algebra
[5]. Multi-interval truth values are introduced as a collection of interval truth
values, and the set of multi-interval truth values forms a de Morgan bi-lattices.
Figure 4 shows the relationship of the algebras.

3 3-Valued Multi-interval Logic Functions

In this section, we discuss properties of logic functions over multi-interval truth
values. First, let us define logic formulas.
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Definition 2. Logic formulas are defined inductively in the following manner.

(1)Constants 0 and r − 1 and variables X1, . . . , Xn are logic formulas.
(2) If g is a logic formula, then ḡ is also a logic formula.
(3) If g and h are logic formulas, then (g ∧h) and (g �h) are also logic formulas.
(4) It is a logic formula if and only if we get it from (1), (2) and (3) in a finite

number of steps.

Definition 3. If a function f : Pn
r → Pr is expressed by a logic formula, then f

is called an n-variable r-valued multi-interval logic function.

First of all, the next theorem can be proved by definitions of logical operations
(7)∼(9).

Theorem 3. Let f be a r-valued multi-interval logic function. Then, f is ⊆-
monotonic, i.e., for any elements A and B of Pn

r , A ⊆ B implies f(A) ⊆ f(B).
(Proof) This theorem is proved by the induction of the number of logical oper-
ations. It is evident that constants 0 and r − 1, and variables X1, . . . , Xn sat-
isfy the theorem. Suppose g and h satisfy the theorem, that is, for A and B
of Pr such that A ⊆ B, g(A) ⊆ g(B) and h(A) ⊆ h(B). Then, we have
{min(a, b) | a ∈ g(A) and b ∈ h(A)} ⊆ {min(a, b) | a ∈ g(B) and b ∈ h(B)}.
Therefore, (g∧h)(A) ⊆ (g∧h)(B). Similarly, we can prove (g�h)(A) ⊆ (g�h)(B)
and (g)(A) ⊆ (g)(B). ��

In the following, we discuss properties on 3-valued multi-interval logic functions.
First, two partial orders are introduced into P3 below.

Definition 4. Two binary relations �1 and �2 are defined in P3.

(1) 1 �1 01, 1 �1 12, 1 �1 012, 01 �1 012, 12 �1 012, and A �1 A for any
A ∈ P3

(2) 0 �2 01, 2 �2 12, 02 �2 012, and A �2 A for any A ∈ P3

It is easy to show that two binary relations �1 and �2 are partial order relations
on P3. Fig. 6 shows Hasse diagrams of the partial order relations �1 and �2.

1

01 12

012

0 2 02

Fig. 5. Partial Order Relation �1

1

01 12 012

0 2 02

Fig. 6. Partial Order Relation �2
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Theorem 4. Let f be a 3-valued multi-interval logic function. Then, f is �1-
monotonic and �2-monotonic, i.e., for any elements A and B of Pn

3 , A �1 B
implies f(A) �1 f(B) and A �2 B implies f(A) �2 f(B).

Proof. The theorem can be proved by the induction of the number of operations.
��

Let Q = {0, 1, 2, 02}, and let A be an element of Pn
3 . Then, a subset S(A) is

defined as the following subset of Qn, which depends on the element A.

S(A) = {B : B ⊆ A and B ∈ Qn}

Theorem 5. Let f be a 3-valued multi-interval logic function. Then, the follow-
ing equation is true for any element A of Pn

3 .

f(A) =
⋃

B∈S(A)

f(B)

Proof. First, consider the case where f(A) = 0. Then since it follows by the
⊆-monotonicity of f that f(B) = 0 holds for every element B of S(A), the
theorem is true when f(A) = 0. It can be proved in a similar way that f(A) =⋃

B∈S(A)

f(B) when f(A) = 1 or f(A) = 2.

Next, consider the case where f(A) = 01. Then, it follows by the �1-
monotonicity of f that there is an element B of S(A) such that f(B) = 1
or 01. It also follows by the �2-monotonicity of f that there is an element B of
S(A) such that f(B) = 0 or 01. By the ⊆-monotonicity of f , f(B) = 0, 1 or
01 holds for every element B of S(A). Furthermore, it is not true by the �1-
monotonicity and the �2-monotonicity that f(B) = 0 holds for every element
B of S(A) and f(B) = 1 holds for every element B of S(A). This completes
the theorem when f(A) = 01.

Since it can be proved in a similar way that the theorem is satisfied when
f(A) = 02, 12, or 012, the theorem is always true. ��

The next theorem is easy to prove by Theorem 5.

Theorem 6. Let g and h be any 3-valued multi-interval logic functions. Then,
g(A) = h(A) holds for every A of Pn

3 if and only if g(A) = h(A) holds for every
A of Qn.

In the remainder of this section, some of necessary conditions for a function over
P3 to be a 3-valued multi-interval logic function.

Let T1, T2 and T3 be {0, 1, 2}, {0, 2, 02} and {01, 12, 012}, respectively. Then,
define binary relations over T1, T2 and T3 below.

Definition 5. Define binary relations �1, �2 and �3 in the sets T1, T2 and T3,
respectively, in the following manner.

(1) 0 �1 1, 2 �1 1, and a �1 a for every a ∈ T1.
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(2) 0 �2 02, 2 �2 02, and a �2 a for every a ∈ T2.
(3) 01 �3 012, 12 �3 012, and a �3 a for every a ∈ T3.

It is easy to show that binary relations �1, �2 and �3 are partial order relations.
Hasse diagrams of the partial order relations are given in Fig. 7.

0 2

1

�1

0 2

02

�2

01 12

012

�3

Fig. 7. Partial Order Relations �1, �2 and �3

Theorem 7. Any 3-valued multi-interval logic function f is monotonic in �1,
�2 and �3, i.e.,

(1) for any elements A and B of T n
1 , A �1 B implies f(A) �1 f(B),

(2) for any elements A and B of T n
2 , A �2 B implies f(A) �2 f(B),

(3) for any elements A and B of T n
3 , and A �3 B implies f(A) �3 f(B).

(Proof is omitted.)

Let A be any element of T1. Then, define elements Ȧ and Ä of T2 and T3,
respectively, in the following manner.

Ȧ =
{

02 if A = 1
A otherwise

Ä =

⎧
⎨

⎩

01 if A = 0
12 if A = 2
012 if A = 1

Theorem 8. Let f be any 3-valued multi-interval logic function, and let
(A1, . . . , An) be any element of T n

1 . Then, we have the following equations.

(1) f(Ȧ1, . . . , Ȧn) = ḟ(A1, . . . , An)
(2) f(Ä1, . . . , Än) = f̈(A1, . . . , An)

(Proof is omitted.)

Definition 6. Let A be any element of Q. Then, define an element A′ from A
in the following manner.

A′ =

⎧
⎨

⎩

02 if A = 1
1 if A = 02
A otherwise
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Theorem 9. Let f be any 3-valued multi-interval logic function, and let A be
any element of Qn. Then, we have the following conditions.

(1) If f(A) = 0, 2, 01, or 12 holds, then f(A′) = f(A) holds.
(2) If f(A) = 1 holds, then f(A′) = 02 or 012 holds.
(3) If f(A) = 02 or 012 holds, then f(A′) = 1 holds.

(Proof is omitted.)

4 Conclusion

This paper focused on multi-interval truth values, in which some of them are
not convex. First of all, we showed that the algebra (Pr, ∧, �, ,0,1) is a de
Morgan bi-lattices. A de Morgan bi-lattices has two distributive lattices, and de
Morgan laws connects the two distributive lattices. Next, we discussed multi-
interval logic functions when r = 3, which are defined as functions over P3
expressed by logic formulas. One of the main theorems of this paper is that any
multi-interval logic function f is determined uniquely if we know all the values
f(A) for every element A ∈ Qn. Moreover, some of necessary conditions are also
proved.

This is a early trial to study mathematical properties of non-convex fuzzy
truth values. So, many open problems still remain; a necessary and sufficient
condition for a function over P3 to be a multi-interval logic functions, canonical
forms of multi-interval logic functions, etc. All of them are our future works.
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Summary. This paper proposes a common framework for various probabilistic logics.
It consists of a set of uncertain premises with probabilities attached to them. This raises
the question of the strength of a conclusion, but without imposing a particular seman-
tics, no general solution is possible. The paper discusses several possible semantics by
looking at it from the perspective of probabilistic argumentation.

1 Introduction

If the premises of a valid logical inference are not entirely certain, how cer-
tain is its conclusion? To find an answer to this is an important question, it is
necessary to overcome the restrictions and limits of the classical fields of log-
ical and probabilistic inference. This simple observations is not entirely new
[3, 4, 6, 9, 22, 30, 26], but attempts of building such unifying probabilistic logics
(or logics of probability) are rather sparse, especially in comparison with the long
traditions of logic and probability theory as independent disciplines both in phi-
losophy and in science.1 Nevertheless, probabilistic logic is nowadays a rapidly
developing interdisciplinary research topic with contributions from philosophical
logic [1, 8, 17, 19, 31] and Artificial Intelligence [7, 10, 18, 25, 24, 27], but also
from mathematics, linguistics, statistics, and decision theory [2, 20]. While it is
clear that logic and probability theory are intimately related, the exact shape of
this relationship is still the subject of an ongoing debate.

In principle, there are at least two different ways of constructing a combined
theory of logical and probabilistic inference, depending on whether logic or
1 For more information about the historical account of probabilistic logics, we refer

to the excellent survey in [17].
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probability theory is at its center. The majority of approaches in the litera-
ture is logic-centered, either by defining a probability function on the sentences
of the logic [9, 30, 25] or by incorporating probabilities into the syntax of the
logic [7, 24]. In the theory of probabilistic argumentation [11, 15, 21], where the
available knowledge is partly encoded as a set of logical premises and partly as
a fully specified probability space, the starting point is neither biased towards
logic, nor is it biased towards probability. This setting gets particularly interest-
ing when some of the logical premises include variables that are not contained
in the probability space. The two classical questions of the probability and the
logical deducibility of a hypothesis can then be replaced by the more general
question of the probability of a hypothesis being logically deducible from the
premises.

In Section 2, we first propose a neutral common framework for a variety of
different probabilistic logics. The framework as such has no particular seman-
tics, but we will shortly discuss what most people would probably consider its
“standard semantics”. In Section 3, we first give a short summary of the theory
of probabilistic argumentation, which then allows us to discuss various seman-
tics for the common framework. Hence, the goal of this paper is to establish a
link between probabilistic argumentation and other probabilistic logics via the
common framework.

2 Probabilistic Logics

The principal goal of any probabilistic logic (sometimes called probability logic
[1, 16, 31], or progic for short) is to combine the capacity of probability theory
to handle uncertainty with the capacity of deductive logic to cope with qualita-
tive and structural knowledge such as logical relationships. As most probabilistic
logics are constructed on top of an existing logic (propositional logic in the sim-
plest case), probabilities are usually treated as an addendum rather than as an
integral part of the theory. In this section, we propose such a simple addendum,
in which probabilities (or sets of probabilities) are attached to premises to rep-
resent their respective uncertainties. This then raises the question of the extent
to which a possible conclusion follows from the uncertain premises. Given the
simplicity and generality of the proposed extension, which allows it to be taken
as a common unifying umbrella for many existing probabilistic logics, we will
refer to as the progic framework.

2.1 The Progic Framework

In a classical logic, the fundamental question of interest is whether a conclusion
ψ is logically entailed by a given set of premises Φ = {ϕ1, . . . , ϕn}. Logical
inference is thus essentially a problem of verifying the entailment relation |=
between Φ and ψ. The entailment relation itself is usually defined in terms of
a subset relation ⊆ of corresponding sets of truth assignments (models) in the
respective logic.
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To augment the fundamental question of classical logic towards probabilistic
logic, we will now consider a set of premises with probabilities attached to them.
In the simplest case, this means that each premise ϕi has an attached probability
xi ∈ [0, 1], but to be as general as possible, we may also allow the case where a
set of probabilities Xi ⊆ [0, 1] is attached to each premise ϕi. In this augmented
setting, which includes the special case of sharp probabilities by Xi = {xi}, the
traditional question of classical logic turns into a more general question of the form

ϕX1
1 , . . . , ϕXn

n |= ψY , (1)

where the set Y ⊆ [0, 1] is intended to represent the extent to which the conclu-
sion ψ follows from the premises.2 This is a very general question, which covers
a multitude of frameworks of existing probabilistic logics. We will thus refer to
is as the general progic framework (or progic framework for short). Note that
the problem is the determination of the set Y itself, not the verification of the
entailment relation for a given Y . Needless to say that the determination of Y
is heavily dependent on the semantics imposed by the chosen framework. In the
next subsection, we will discuss one of the most straightforward semantics for
the progic framework.

2.2 The Standard Semantics

In the so-called standard semantics of the progic framework, we consider each
attached probability set Xi as a constraint for the probability P (ϕi) in a cor-
responding probability space. For the sake of simplicity, we will restrict the
premises to be propositional sentences. Formally, we write V = {Y1, . . . , Yr} to
denote the set of involved Boolean variables Yi, each with a set Ωi = {0, 1}
of possible values. In the corresponding propositional language LV , we use
propositional symbols yi as placeholders for Yi = 1. The Cartesian product
ΩV = Ω1 × · · · × Ωr = {0, 1}r then contains the set of all possible truth assign-
ments of the propositional language, each of which representing a possible (state
of the) world. For a given propositional sentence ϕ ∈ LV , we write �ϕ� ⊆ ΩV

to denote the set of truth assignments for which ϕ evaluates to 1 (according to
the usual semantics of propositional logic), and we say that ϕ entails ψ, or that
ϕ |= ψ holds, iff �ϕ� ⊆ �ψ�.

To make a connection to probability theory, let ΩV play the role of a finite
sample space. The finiteness of ΩV allows us to work with the σ-algebra 2ΩV

of all subsets of ΩV , i.e. we obtain a probability space (ΩV , 2ΩV , P ) for any
measure P : 2ΩV → [0, 1] that satisfies the Kolmogorov’s probability axioms.
With P we denote the set of all such probability measures for a given set of
variable V . Note that we adopt the usual notational convention of writing P (ϕ)
rather than P (�ϕ�) for the probability of the event �ϕ�.

According to the above-mentioned general idea of the standard semantics, we
consider each set Xi as a constraint P (ϕi) ∈ Xi for the unknown probability

2 For Xi = {1}, this general setting degenerates into the classical problem of logical
inference.
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measure P . Formally, let Pi = {P ∈ P : P (ϕi) ∈ Xi} denote the set of all prob-
ability measures satisfying the constraint for the i-th premise. The intersection
of all these sets, P∗ = P1 ∩ · · · ∩ Pn, defines then the set of probability measures
satisfying all constraints. From this, we obtain with Y = {P (ψ) : P ∈ P∗} a
simple solution for the generalized inference problem of the progic framework.
Note that inference according to the standard semantics can be seen as a gen-
eralization of classical logical inference, which is concerned with a continuum of
truth assignments in form of all possible probability measures.

An important special case of the above setting arises when the attached prob-
ability sets Xi are all functionally unrelated intervals, i.e. Xi = [�i, ui]. This
means that all sets Pi are convex, which implies that P∗ is also convex and
that Y is again an interval with a lower and an upper bound.3 The lower and
upper bounds of Y are usually denoted by P (ψ) = min{P (ψ) : P ∈ P∗} and
P (ψ) = max{P (ψ) : P ∈ P∗}, respectively. Note that the convexity of P∗ guar-
antees that P and P are among the extremal points of P∗. Interestingly, we
may obtain an interval for Y even if all sets Xi are singletons. From a compu-
tational point of view, we can translate the problem of finding Y according to
the standard semantics into a (very large) linear optimization problem, e.g. with
three constraints P (ϕi) ≥ �i, P (ϕi) ≤ ui, and P (ϕi) =

∑
ω∈�ϕi�

P ({ω}) for all
premises [1, 25].

Example 1. To illustrate the standard semantics, consider two premises (a ∧
b)[0,0.25] and (a ∨ ¬b){1}. For the specification of a probability measure with
respect to the corresponding 2-dimensional sample space {0, 1}2 at least three
parameters are needed (the size of the sample space minus 1). This means that
the set of all possible probability measures P can be nicely depicted by a tetra-
hedron (3-simplex) with maximal probabilities for the state descriptions a ∧ b,
a ∧ ¬b, ¬a ∧ b, and ¬a ∧ ¬b at each of its four extremities. This tetrahedron is
depicted in Fig. 1, together with the convex sets P1, P2, and P∗. The picture also
shows that Y = [0, 1] is the result for the conclusion a, whereas Y = [0, 0.25] is
the result for the conclusion b.

3 Probabilistic Argumentation

The theory of probabilistic argumentation [11, 13, 15, 21] is first of all driven by
the general idea of putting forward the pros and cons of a hypothesis in question,
from which it derives its name. The weights of the resulting logical arguments
and counter-arguments are measured by probabilities, which are then turned
into (sub-additive) degrees of support and (super-additive) degrees of possibil-
ity. Intuitively, degrees of support measure the presence of evidence supporting
the hypothesis, whereas degrees of possibility measure the absence of evidence
refuting the hypothesis. For this, probabilistic argumentation is concerned with
probabilities of a particular type of event of the form “the hypothesis is a logical
consequence” rather than “the hypothesis is true”, i.e. very much like Ruspini’s
3 Convex set of probability measures are sometimes called credal sets [5, 23].
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P (a ∧ ¬b) = 1 P (¬a ∧ b) = 1

P (a ∧ b) = 1

0.25

P2

P (a) = 1
P (b) = 0.25

P (a) = 0.25
P (b) = 0.25

P∗

P (a) = 1
P (b) = 0

P (a) = 0
P (b) = 0

P1

Fig. 1. The set P of all possible probability measures for the sample space {0, 1}2,
depicted as a tetrahedron, together with the convex sets P1, P2, and P∗ of Example 1

epistemic probabilities [28, 29]. Apart from that, they are classical additive prob-
abilities in the sense of Kolmogorov’s axioms.

3.1 Degrees of Support and Possibility

Probabilistic argumentation requires the available evidence to be encoded by a
finite set Φ = {ϕ1, . . . , ϕn} ⊂ LV of sentences in a logical language LV (over a
set of discrete variables V ) and a fully specified probability measure P : 2ΘW →
[0, 1], where ΘW denotes the discrete sample space generated by a subset W ⊆ V
of so-called probabilistic variables. These are the theory’s basic ingredients. There
are no further assumptions regarding the specification of the probability measure
P (we may for example use a Bayesian network) or the language LV .

Definition 1. A probabilistic argumentation system is a quintuple

A = (V, LV , Φ, W, P ), (2)

where V , LV , Φ, W , and P are as defined above [13].

For a given probabilistic argumentation system A, let another logical sentence
ψ ∈ LV represent the hypothesis in question. For the formal definition of degrees
of support and possibility, consider the subset of ΘW , whose elements, if assumed
to be true, are each sufficient to make ψ a logical consequence of Φ. Formally,
this set of so-called arguments is denoted and defined by

ArgsA(ψ) = {ω ∈ ΩW : Φω |= ψ} = ΩW \ �Φ ∪ {¬ψ}�↓W , (3)

where Φω is obtained from Ω by instantiating all the variables from W according
to the partial truth assignment ω [13]. The elements of ArgsA(¬ψ) are sometimes
called counter-arguments of ψ, see Fig. 2 for an illustration. Note that the ele-
ments of ArgsA(⊥) are inconsistent with the available evidence Φ, which is why
they are sometimes called conflicts. The complement of the set of conflicts,
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ΩW

ΩV \W

ArgsA(ψ)

ArgsA(¬ψ)

�Φ�

�ψ�

ArgsA(¬ψ)

Fig. 2. The sets of arguments and counter-arguments of a hypothesis ψ obtained
from the given premises Φ. The sample space ΩW is a sub-space of the entire space
ΩV = ΩW × ΩV \W .

EA = ΩW \ ArgsA(⊥) = �Φ�↓W , (4)

can thus be interpreted as the available evidence in the sample space ΩW induced
by Φ. We will use EA in its typical role to condition P .

Definition 2. The degree of support of ψ, denoted by dspA(ψ), is the conditional
probability of the event Args(ψ) given the evidence EA,

dspA(ψ) = P (ArgsA(ψ)|EA) =
P (ArgsA(ψ)) − P (ArgsA(⊥))

1 − P (ArgsA(⊥))
. (5)

Definition 3. The degree of possibility of ψ, denoted by dpsA(ψ), is defined by

dpsA(ψ) = 1 − dspA(¬ψ). (6)

Note that these formal definitions imply dspA(ψ) ≤ dpsA(ψ) for all hypothe-
ses ψ ∈ LV and dspA(ψ) = dpsA(ψ) for W = V . An important property of
degree of support is its consistency with pure logical and pure probabilistic in-
ference. By looking at the extreme cases of W = ∅ and W = V , it turns out
that degrees of support naturally degenerate into logical entailment Φ |= ψ and
into ordinary posterior probabilities P (ψ|Φ), respectively. This underlines the
theory’s pretense of being a unified formal theory of logical and probabilistic
reasoning [11].

When it comes to quantitatively evaluate the truth of a hypothesis ψ, it is
possible to interpret degrees of support and possibility as respective lower and
upper bounds of an interval. The fact that such bounds are obtained without
effectively dealing with probability sets or probability intervals distinguishes the
theory from most other approaches to probabilistic logic.

3.2 Possible Semantics for the Progic Framework

Now let’s turn our attention to the question of interpreting an instance of
the progic framework in form of Equation (1) as a probabilistic argumentation
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system. For this, we will first generalize in various ways the idea of the standard
semantics as exposed in Subsection 2.2 to degrees of support and possibility (Se-
mantics 1 to 4). Then we will explore the perspective obtained by considering
each attached probability set as an indicator of the premise’s reliability (Seman-
tics 5–7). In all cases we will end up with lower and upper bounds for the target
interval Y in Equation (1).

Semantics 1: The Generalized Standard Semantics

As in the standard semantics, let each attached probability set Xi be interpreted
as a constraint for the possible probability measures, except that we will now
restrict the sample space to be a sub-space ΩW of ΩV for some fixed set W ⊆ V of
probabilistic variables. We use again P to denote the set of all possible probability
measures. Since each premise ϕi defines an event �ϕi�

↓W in ΩW , we can interpret
the set Xi as a constraint P (�ϕi�

↓W ) ∈ Xi. As before, we use Pi = {P ∈ P :
P (ϕ↓Wi ) ∈ Xi} to denote4 the set of all probability measures satisfying the
constraint for the i-th premise, and P∗ = P1 ∩ · · · ∩Pn for the combination of all
constraints. This leads then to a whole family A = {(V, LV , Φ, W, P ) : P ∈ P∗}
of probabilistic argumentation systems, each of which with its own degree of
support (and degree of possibility) function.

To use this interpretation to produce an answer to our main question regarding
the extent of the set Y for a conclusion ψ, there are different ways to go. By
considering all possible degrees of support, i.e. by defining Y1 = {dspA(ψ) :
A ∈ A}, the first option focuses on degrees of support. As a second option, we
may consider the counterpart of the first one with degrees of possibility in its
center, from which we get Y2 = {dpsA(ψ) : A ∈ A}. As a third alternative, we
may consider the minimal degree of support, dsp(ψ) = min{dspA(ψ) : A ∈ A},
and the maximal degree of possibility, dps(ψ) = max{dpsA(ψ) : A ∈ A}, and
use them as respective lower and upper bounds for the target interval Y3 =
[dsp(ψ), dps(ψ)]. Note that in the special case of W = V , all three options
coincide with the standard semantics as described in Subsection 2.2.

Semantics 2: The Standard Semantics Applied to Degrees of Support

A similar semantics arises, if we consider each set Xi to be a constraint for the de-
gree of support of ϕi. Again, we need to fix a set W ⊆ V of probabilistic variables
to get started. Consider then the set S = {dspA : A = (V, LV , Φ, W, P ), P ∈ P}
of all possible degree of support functions, the corresponding constraints Si =
{dspA ∈ S : dspA(ϕi) ∈ Xi} for each premise, and the combined constraint
S∗ = S1 ∩ · · · ∩ Sn. As before, we obtain a whole family A = {A : dspA ∈ S∗} of
probabilistic argumentation systems.

For the determination of the target set Y , we may now consider the same
three options as in the first semantics. The story is exactly the same, except
that it starts from a different set A. As before, W = V leads in all three cases
back to the standard semantics.
4 We prefer to use the simplified notation P (ϕ↓W

i ) as an abbreviation for P (�ϕi�
↓W ).
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Semantics 3: The Standard Semantics Applied to Degrees of
Possibility

By considering each sets Xi as a constraint for the degree of support of ϕi, we
obtain another possible semantics for the progic framework. Due to its perfect
symmetry to the previous semantics, we will not not discuss it explicitly. Note
that we may “simulate” this option by applying the second semantics to the
negated premises ¬ϕY1

1 , . . . , ¬ϕYn
n , where Yi = {1 − x : x ∈ Xi} denotes the

corresponding set of “negated” probabilities, and vice versa. This string rela-
tionships is a simple consequence of the relationship between degrees of support
and possibility.

Semantics 4: The Standard Semantics Applied Symmetrically

To obtain a more symmetrical semantics, in which degrees of support and degrees
of possibility are equally important, we consider the restricted case where each
set Xi = [�i, ui] is an interval. We may then interpret the lower bound �i as a
sharp constraint for the degree of support and the upper bound ui as a sharp
constraint for the degree of possibility of ϕi. For this, we need again a fixed
set W ⊆ V of probabilistic variables to get started. Note that we can use the
relationship dpsA(ψ) = 1 − dspA(¬ψ) to turn the two constraints dspA(ψi) = �i

and dpsA(ψi) = ui into two constraints for respective degrees of support or into
two constraints for respective degrees of possibility. To obtain a target interval
Y for a conclusion ψ, we may then proceed in the same way as in Semantics 2
and 3, the results however will be quite different for all possible options for Y .

Semantics 5: Unreliable Premises (Incompetent Sources)

A very simple, but quite different semantics exists when each premise has a
sharp probability Xi = {xi} attached to it. We can then think of xi to represent
the evidential uncertainty of the premise ϕi in the sense that ϕi belongs to Φ
with probability xi. Formally, we could express this idea by P (ϕi ∈ Φ) = xi and
thus interpret Φ as a fuzzy set whose membership function is determined by the
attached probabilities.

To make this setting compatible with a probabilistic argumentation system,
let us first redirect each attached probability xi to an auxiliary propositional
variable reli. The intuitive idea of this is to consider each premise ϕi as a piece of
evidence from a possibly unreliable source Si. The reliability of Si is thus modeled
by the proposition reli, and with P (reli) = xi we measure its degree of reliability.
The subsequent discussion will be restricted to the case of independent5 sources,
which allows us to multiply the marginal probabilities P (reli) to obtain a fully
specified probability measure P over all auxiliary variables.

5 This assumption may appear to be overly idealized, but there are many practical
situations in which this is approximately correct [12, 14]. Relaxing the independence
assumption would certainly allow us to cover a broader class of problems, but it
would also make the analysis more complicated.
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On the purely logical side, we should expect that any statement from a reliable
source is indeed true. This allows us to write reli → ϕi to connect the auxiliary
variable reli with ϕi. With

Φ+ = {rel1 → ϕ1, . . . , reln → ϕn}

we denote the set of all such material implications, from which we obtain a
probabilistic argumentation system A+ = (V ∪ W, LV ∪W , Φ+, W, P ) with W =
{rel1, . . . , reln} and P as defined above. This allows us then to compute the
degrees of support and possibility for the conclusion ψ and to use them as lower
and upper bounds for the target interval Y .

In the proposed setting, only the positive case of a reliable source is modeled,
but nothing is said about the behaviour of an unreliable source. For this, it is pos-
sible to distinguish between incompetent or dishonest (but competent) sources.
In the case of an incompetent source, from which no meaningful evidence should
be expected, we may model the negative behaviour by auxiliary implications of
the form ¬reli → �. Note that these implications are all irrelevant tautologies,
i.e. we get back to the same set Φ+ from above. In this semantics, the values
P (reli) = xi should therefore be interpreted as degrees of competence rather
than degrees of reliability.

Semantics 6: Unreliable Premises (Dishonest Sources)

As before, we suppose that all attached probabilities are sharp values xi, but
now we consider the possibility of the sources being malicious, i.e. competent but
not necessarily honest. In this case, the interpretation of P (reli) = xi becomes
the one of a degree of honesty of source Si. Dishonest sources are different from
incompetent sources in their attitude of deliberately stating the opposite of the
truth. From a logical point of view, ¬reli allows us thus to infer ¬ϕi, which we
may express by additional material implications ¬reli → ¬ϕi. This leads to an
extended set of premises,

Φ± = Φ+ ∪ {¬rel1 → ¬ϕ1, . . . , ¬reln → ¬ϕn} ≡ {rel1 ↔ ϕ1, . . . , reln ↔ ϕn},

and a different probabilistic argumentation system A±=(V ∪W, LV ∪W, Φ±,W, P ).
Note that the difference between the two interpretations may have a huge impact
on the resulting degrees of support and possibility of ψ, and therefore produce
quite different target sets Y .

Semantics 7: Unreliable Premises (Incompetent and Dishonest
Sources)

For the more general case, where each Xi = [�i, ui] is an interval, we will now
consider a refined model of the above-mentioned idea of splitting up reliability
into competence and honesty. Let Xi still refer to the reliability of the source,
but consider now two auxiliary variables compi (for competence) and honi (for
honesty). This allows us to distinguish three exclusive and exhaustive cases,
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namely compi ∧ honi (the source is reliable), compi ∧ ¬honi (the source is ma-
licious), and ¬compi (the source is incompetent). As before, we assume that ϕi

holds if Si is reliable, but also that ¬ϕi holds if Si is malicious. Statements from
incompetent sources will again be neglected. Logically, the general behaviour of
such a source can thus be modeled by two sentences compi ∧ honi → ϕ and
compi ∧ ¬honi → ¬ϕi, which can be merged into compi → (honi ↔ ϕi). This
leads to the set of premises

Φ∗ = {comp1 → (hon1 ↔ ϕ1), . . . , compn → (honn ↔ ϕn)}.

To turn this model into a probabilistic argumentation system, we need to link the
auxiliary variables W = {comp1, . . . , compn, hon1, . . . , honn} to corresponding
probabilities. For this, we assume independence between compi and honi, which
is often quite reasonable. If we assume the least restrictive interval [0, 1] to
represent a totally incompetent source, and similarly the most restrictive interval
[xi, xi] to represent a totally competent source, then ui − �i surely represents the
source’s degree of incompetence, from which we obtain

P (compi) = 1 − (ui − �i) = 1 − ui + �i

for the marginal probability of compi. Following a similar line of reasoning, we
first obtain P (compi ∧ honi) = �i for the combined event compi ∧ honi of a
reliable source, which then leads to

P (honi) =
�i

P (compi)
=

�i

1 − ui + li

for the marginal probability of honi. As before, we can use the independence as-
sumption to multiply these values to obtain a fully specified probability measure
P over all auxiliary variables. With A∗ = (V ∪ W, LV ∪W , Φ∗, W, P ) we denote
the resulting probabilistic argumentation system, from which we obtain degrees
of support and possibility for ψ, the bounds for the target interval Y . Note that
A+ and A± from the previous two semantics are special cases of A∗, namely
for ui = 1 (honi becomes irrelevant, and reli undertakes the role of compi)
and �i = ui (compi becomes irrelevant, and reli undertakes the role of honi),
respectively.

4 Conclusion

Attaching probabilities to logical sentences is one of the most intuitive and pop-
ular starting points for the construction of a probabilistic logic. With the pro-
posed progic framework, for which no particular semantics is imposed, the paper
presents a unifying umbrella which covers many existing probabilistic logics. This
is the first contribution of the paper.

The second contribution is the discussion of several possible semantics ob-
tained by looking at it as different instances of a probabilistic argumentation
system. This underlines the richness and diversity of the common framework.
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The discussion also contributes to a better understanding of the connection be-
tween the theory of probabilistic argumentation and other probabilistic logics.

This paper is an important partial result in the context of a more compre-
hensive project, in which other possible semantics and a common computational
machinery are currently under investigation.
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Summary. In this paper, we propose a unified formulation of deduction, induc-
tion and abduction using granularity based on variable precision rough set models
proposed by Ziarko [12] and measure-based semantics for modal logics proposed by
Murai et al. [4].

1 Introduction

Rough set theory [8, 9] provides a theoretical basis of approximation and rea-
soning based on data. Variable precision rough set models (for short, VPRS)
proposed by Ziarko [12] is one extension of rough set theory that enable us to
treat probabilistic or inconsistent information in the framework of rough sets.
From the viewpoint of modal logic, it is well-known that lower and upper approx-
imations in rough sets and necessity and possibility in modal logic are closely
related. From a viewpoint of reasoning based on rough set theory, Murai et al.
have proposed a framework of granular reasoning [6, 7], which represents rea-
soning processes by control of granularity of equivalence classes. Moreover, we
have discussed relationship between granularity and background knowledge in
reasoning processes [3].

In this paper, we propose a unified formulation of deduction, induction and
abduction using granularity based on VPRS and measure-based semantics for
modal logics proposed by Murai et al. [4, 5]. Note that this paper is a revised
version of the authors’ previous paper [2].
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2 Backgrounds

2.1 Rough Sets

In this subsection, we briefly review foundations of Pawlak’s rough set theory
and variable precision rough set models. The contents of this subsection is based
on [10].

Let U be a non-empty and finite set of objects called the universe of discourse,
and R be an equivalence relation on U called an indiscernibility relation. For any
element x ∈ U , the equivalence class of x with respect to R is defined as follows:

[x]R
def= {y ∈ U | xRy}. (1)

The equivalence class [x]R is the set of objects which can not be discerned from
x with respect to R. The quotient set U/R

def= {[x]R |x ∈ U} provides a partition
of U . According to Pawlak [9], any set X ⊆ U represents a concept, and a set of
concepts is called knowledge about U is the set of concepts is a partition of U .
Thus, we regard that R provides knowledge about U as the quotient set U/R.

The ordered pair (U, R) is called an approximation space, which provides the
basis of approximation in rough set theory. For any set of objects X ⊆ U , the
lower approximation R(X) of X and the upper approximation R(X) of X by R
are defined as follows, respectively:

R(X) def= {x ∈ U | [x]R ⊆ X} (2)

R(X) def= {x ∈ U | [x]R ∩ X �= ∅} (3)

The lower approximation R(X) of X is the set of objects which are certainly
included in X . On the other hand, the upper approximation R(X) of X is the
set of objects which may be included in X .

If we have R(X) = X = R(X), we say that X is R-definable, and otherwise,
if we have R(X) ⊂ X ⊂ R(X), we say that X is R-rough. The concept X is R-
definable means that we can denote X correctly by using background knowledge
by R. On the other hand, X is R-rough means that we can not denote the
concept correctly based on the background knowledge.

As one generalization of approximation using rough sets, Yao et al. [11] have
discussed generalized lower approximation and generalized upper approximation
by replacing the equivalence class used in (2) and (3) by the set

UR(X) def= {y ∈ U | xRy} (4)

with respect to any binary relation on U .
Variable precision rough set models (for short, VPRS) proposed by Ziarko [12]

is one extension of Pawlak’s rough set theory which provides a theoretical basis
to treat probabilistic or inconsistent information in the framework of rough sets.

Let X ⊆ U be an any set of objects, R be an indiscernibility relation on
U , and a degree β ∈ [0, 0.5) be a precision. The β-lower approximation Rβ(X)
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of X and the β-upper approximation Rβ(X) of X by R are defined as follows,
respectively:

Rβ(X) def=
{

x ∈ U
|[x]R ∩ X |

|[x]R| ≥ 1 − β

}
(5)

Rβ(X) def=
{

x ∈ U
|[x]R ∩ X |

|[x]R| > β

}
(6)

where |X | is the cardinality of the set X . The precision β represents the threshold
degree of misclassification of elements in the equivalence class [x]R to the set X .
Thus, in VPRS, misclassification of elements are allowed if the ratio of misclassi-
fication is under the precision β. Note that the β-lower and upper approximations
with β = 0 corresponds to Pawlak’s lower and upper approximations. Table 1
represents some properties of β-lower and upper approximations. Two symbols
“©” and “×” appeared in Table 1 illustrate that, for each property in Table 1,
whether the property is satisfied (denoted by “©”) or not satisfied (denoted by
“×”) in the case of β = 0 and 0 < β < 0.5, respectively. For example, by the def-
inition of β-lower approximation by (5), it is easy to check that the property T.
Rβ(X) ⊆ X are not guaranteed to satisfy in the case of 0 < β < 0.5. Note that
symbols assigned to properties like T. correspond to axiom schemas in modal
logic (for detail, see [1] for example). In the next subsection, we briefly review
modal logic, and relationship between rough set theory and modal logic.

Table 1. Some properties of β-lower and upper approximations

Properties β = 0 0 < β < 0.5

Df �. Rβ(X) = R(Xc)c © ©
M. Rβ(X ∩ Y ) ⊆ Rβ(X) ∩ Rβ(Y ) © ©
C. Rβ(X) ∩ Rβ(Y ) ⊆ Rβ(X ∩ Y ) © ×
N. Rβ(U) = U © ©
K. Rβ(Xc ∪ Y ) ⊆

�
Rβ(X)c ∪ Rβ(Y )

�
© ×

D. Rβ(X) ⊆ Rβ(X) © ©
P. Rβ(∅) = ∅ © ©
T. Rβ(X) ⊆ X © ×
B. X ⊆ Rβ(Rβ(X)) © ×
4. Rβ(X) ⊆ Rβ(Rβ(X)) © ©
5. Rβ(X) ⊆ Rβ(Rβ(X)) © ©

X ⊆ Y ⇒ Rβ(X) ⊆ Rβ(Y ) © ©
R ⊆ R′ ⇒ Rβ(X) ⊇ R′

β(X) © ×

2.2 Kripke Models for Modal Logic

Propositional modal logic (hereafter, we simply denote modal logic) extends
classical propositional logic by two unary operators � and � (called modal op-
erators), and, for any proposition p, provides the following statements �p (p is
necessary) and �p (p is possible).
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Let LML(P) be the set of sentences constructed from a given at most countably
infinite set of atomic sentences P = {p1, · · · ,pn(, · · · )} constant sentences 

(truth) and ⊥ (falsity), logical connectives ∧ (conjunction), ∨ (disjunction),
→ (conditionality), ↔ (biconditionality), ¬ (negation), and modal operators �

(necessity) and � (possibility) by the following construction rules:

p ∈ P ⇒ p ∈ LML(P), 
, ⊥ ∈ LML(P),
p ∈ LML(P) ⇒ ¬p, �p, �p ∈ LML(P),
p, q ∈ LML(P) ⇒ p ∧ q, p ∨ q, p → q, p ↔ q ∈ LML(P).

We say that a sentence is a modal sentence if the sentence contains at least one
modal operator, and otherwise, we say the sentence is a non-modal sentence.

In this paper, we consider possible world semantics to interpret sentences used
in modal logic. A Kripke model, one of the most popular frameworks of possible
world semantics, is the following triple:

M = (U, R, v), (7)

where U (�= ∅) is the set of possible worlds, R is a binary relation on U called an
accessibility relation, and v : P ×U → {0, 1} is a valuation function that assigns
a truth value to each atomic sentence p ∈ P at each world w ∈ U . We define that
an atomic sentence p is true at a possible world x by the given Kripke model
M if and only if we have v(p, x) = 1. We say that a Kripke model is finite if its
set of possible worlds is a finite set.

We denote M, x |= p to mean that the sentence p is true at the possible
world x ∈ U by the Kripke model M. Interpretation of non-modal sentences is
similar to the case of classical propositional logic. On the other hand, in possible
world semantics using Kripke models, we use accessibility relations to interpret
modal sentences. �p is true at x if and only if p is true at every possible world
y accessible from x. On the other hand, �p is true at x if and only if there
is at least one possible world y accessible from x and p is true at y. Formally,
interpretation of modal sentences are defined as follows:

M, x |= �p
def⇐⇒ ∀x ∈ U(xRy ⇒ M, y |= p),

M, x |= �p
def⇐⇒ ∃x ∈ U(xRy and M, y |= p).

For any sentence p ∈ LML(P), the truth set is the set of possible worlds at
which p are true by the Kripke model M, and the truth set is defined as follows:

‖p‖M def= {x ∈ U | M, x |= p}. (8)

We say that a sentence p is true in a Kripke model M if and only if p is true at
every possible world in M. We denote M |= p if p is true in M.

In the case that the accessibility relation R in the given Kripke model M is an
equivalence relation, the set of possible worlds UR(x) defined by (1) is identical
to the equivalence class [x]R. Thus, in this case, we can rewrite the definition of
interpretation of modal sentences as follows:
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M, x |= �p ⇐⇒ UR(x) ⊆ ‖p‖M,
M, x |= �p ⇐⇒ UR(x) ∩ ‖p‖M �= ∅.

Therefore, in the case that R is an equivalence relation, we have the following
correspondence relationship between Pawlak’s lower approximation and neces-
sity, and Pawlak’s upper approximation and possibility, respectively:

R(‖p‖M) = ‖�p‖M,
R(‖p‖M) = ‖�p‖M.

2.3 Scott-Montague Models for Modal Logic

Scott–Montague models are generalization of Kripke models which use the fol-
lowing functions

N : U → 22U

(9)

to interpret modal sentences instead of accessibility relations. Formally, a Scott–
Montague model is the following triple:

M def= (U, N, v), (10)

where U (�= ∅) is the set of possible worlds, and v : P ×U → {0, 1} is a valuation
function. N is a function in (9).

Using the function N , interpretation of modal sentences in the Scott–Montague
model are defined as follows:

M, x |= �p
def⇐⇒ ‖p‖M ∈ N(x),

M, x |= �p
def⇐⇒

(
‖p‖M

)c �∈ N(x),

where the interpretation of �p is based on duality of modal operators.
For any Scott–Montague model M, if the function N in M satisfies the fol-

lowing four conditions:

(m) X ∩ Y ∈ N(x) ⇒ X ∈ N(x) and Y ∈ N(x),
(c) X, Y ∈ N(x) ⇒ X ∩ Y ∈ N(x),
(n) U ∈ N(x),
(a)

⋂
X∈NR(x) X ∈ NR(x),

we can construct an accessibility relation RN as follows:

xRNy ⇐⇒ y ∈
⋂

X∈N(x)

X. (11)

Note that the conditions (m), (c) and (n) correspond to axiom schemas M, C
and N, respectively.

2.4 Measure-Based Semantics

A function μ : 2U → [0, 1] is called a fuzzy measure on U if the function μ satisfies
the following conditions: (a) μ(U) = 1, (b) μ(∅) = 0, and (c) ∀X, Y ⊆ U, X ⊆
Y ⇒ μ(X) ≤ μ(Y ). In measure-based semantics [4, 5], we use fuzzy measures
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assigned to each possible worlds to interpret modal sentences. Formally, a fuzzy
measure model Mμ is the following triple:

Mμ = (U, {μx}x∈U , v),

where U is a set of possible worlds, and v is a valuation. {μx}x∈U is a class of
fuzzy measures μx assigned to all possible worlds x ∈ U .

In measure-based semantics of modal logic, each degree α ∈ (0, 1] of fuzzy
measures corresponds to a modal operator �α. In this paper, we fix a degree α,
and consider α-level fuzzy measure model. Interpretation of modal sentences by
the α-level fuzzy measure model Mμ is defined by

Mμ, x |= �p
def⇐⇒ μx

(
‖p‖Mμ

)
≥ α, (12)

where μx is the fuzzy measure assigned to x.
It is easy to check that for any α-level fuzzy measure model Mμ =

(U, {μx}x∈U , v), there is a Scott-Montague model MSM = (U, Nα, v) with the
following function Nα defined by

Nα(x) def= {X ⊆ U | μx(X) ≥ α}, (13)

and for all sentence p ∈ LML(P) and all possible world x ∈ U , MSM satisfies the
following property:

Mμ, x |= p ⇐⇒ MSM, x |= p. (14)

3 A Unified Formulation of Deduction, Induction and
Abduction Using Granularity

In this section, we introduce a unified framework of reasoning using granularity
based on VPRS and measure-based semantics for modal logic.

3.1 Background Knowledge by Kripke Models Based on
Approximation Spaces

As a basis of reasoning using granularity based on VPRS and measure-based
semantics, suppose we have a Kripke model M = (U, R, v) that consists of the
given approximation space (U, R) and a valuation v. In the Kripke model M,
any non-modal sentence p that represents a fact is characterized by its truth set
‖p‖M. When we consider the fact represented by the non-modal sentence p, we
may not consider all possible worlds in the truth set ‖p‖M. In such cases, we
often consider only typical situations about the fact p.

To capture the typical situations about the fact p, we consider the lower
approximation of the truth set ‖p‖M by the indiscernibility relation R, and
regard each possible world x ∈ ‖p‖M as a typical situation about p based on the
“background knowledge” about U .
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Moreover, we also need to consider misunderstandings about facts. In this
paper, we capture misunderstandings about facts by regarding situations that are
not typical about the facts as typical situations, and illustrate this characteristic
by using β-lower approximations of the truth sets of sentences which represent
the facts. Thus, using the background knowledge by the Kripke model M, we
can consider the following two sets of possible worlds about a fact p:

• ‖p‖M: correct representation of the fact p.
• Rβ(‖p‖M): the set of “typical situations” about p (non-typical situations

may be also included).

3.2 α-Level Fuzzy Measure Models Based on Background
Knowledge

Using the given Kripke model as background knowledge, we define an α-level
fuzzy measure model to treat “typical situations” about facts as β-lower approx-
imations in the framework of modal logic.

Definition 1. Let M = (U, R, v) be a Kripke model that consists of an ap-
proximation space (U, R) and a valuation v, and α ∈ (0.5, 1] is a fixed degree.
An α-level fuzzy measure model MR

α based on the background knowledge is the
following triple:

MR
α

def= (U, {μR
x }x∈U , v), (15)

where U and v are the same ones in M. The fuzzy measure μR
x assigned to each

x ∈ U is a probability measure based on the equivalence class [x]R with respect
to R defined by

μR
x (X) def=

|[x]R ∩ X |
|[x]R| . (16)

The constructed α-level fuzzy measure model MR
α from M has the following

good properties.

Proposition 1. Let M be a finite Kripke model such that its accessibility rela-
tion R is an equivalence relation, and MR

α be the α-level fuzzy measure model
based on the background knowledge M defined by (15). For any non-modal sen-
tence p ∈ LML(P), the following equations are satisfied:

‖p‖MR
α = ‖p‖M, (17)

‖�p‖MR
α = R1−α

(
‖p‖M

)
. (18)

By (18), we have the following soundness of systems of modal logic with respect
to a class of all α-level fuzzy measure models based on background knowledge.

Proposition 2. For any α-level fuzzy measure model MR
α defined by (15) based

on any finite Kripke model M such that its accessibility relation R is an equiv-
alence relation, the following soundness properties are satisfied in the case of
α = 1 and α ∈ (0.5, 1), respectively:

• If α = 1, then all theorems of the system S5 are true in MR
α .

• If α ∈ (0.5, 1), then all theorems of the system ENMD45 are true in MR
α .
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3.3 Deduction

Deduction is the following reasoning form:

p → q If P, then Q.
p P.
q. Therefore, Q.

Deduction is logically valid inference, where logically valid means that if both the
antecedent p and the rule p → q are true, then the consequent q is guaranteed to
be true. Hereafter, we assume that all sentences p, q, etc. which represent some
facts, and rules like p → q are non-modal sentences.

In the framework of possible world semantics, true rules are represented by
inclusion relationship between truth sets as follows:

MR
α |= p → q ⇐⇒ ‖p‖MR

α ⊆ ‖q‖MR
α . (19)

As we have shown in Table 1, the monotonicity of β-lower approximation is
satisfied for all β ∈ [0, 0.5), thus we have the following relationship:

MR
α |= �p → �q ⇐⇒ ‖�p‖MR

α ⊆ ‖�q‖MR
α . (20)

If we regard the truth set of �p as the set of “typical situations of p”, then, by
(20), we have that every elements x ∈ ‖�p‖MR

α are also elements in the truth set
of �q, therefore we can conclude that all typical situations of p are also typical
situations of q.

Consequently, using the α-level fuzzy measure model MR
α , deduction is char-

acterized by the following form of valid reasoning:

MR
α |= �p → �q If (typically) P, then (typically) Q.

MR
α , x |= �p (Typically) P.

MR
α , x |= �q (Typically) Q.

As an example of deduction, Suppose sentences p and q have the following
meaning:

• p: The sun rises from east.
• q: The sun sets to west.

Thus, deduction is illustrated as follows:

MR
α |= �p → �q

If the sun rises from east, then
the sun sets to west.

MR
α , x |= �p Today, the sun raised from east.

MR
α , x |= �q The sun will set to west today.

3.4 Induction

Induction is the following reasoning form:
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p P.
q Q.
p → q. Therefore, if P, then Q.

Induction is not logically valid, however, we use induction often to provide rules
from facts.

Induction has the following characteristic: From the fact that all observed ob-
jects satisfying a property p also satisfy a property q, we conclude that if objects
satisfy p, then the objects also satisfy q. Using α-level fuzzy measure model MR

α

based on background knowledge, we characterize induction as follows: Suppose
the lower approximation of the truth set ‖p‖MR

α of the sentence p illustrates the
set of observed objects satisfying p. Then, induction has the following form:

MR
α |= �p → q

If observed objects satisfy P,
then the objects also satisfy Q.

MR
α |= p → q If P, then Q.

This form of reasoning is not valid, however, we can regard this reasoning as a
valid reasoning by assuming the following property:

‖�αp‖MR
α = ‖p‖MR

α ⇐⇒ MR
α |= �αp ↔ p (21)

This assumption mean that we regard the set of observed objects satisfying
p as the set of all objects satisfying p. By repeating observations, we get more
detailed background knowledge and this assumption may become more probable.
As shown in Table 1, in variable precision rough set models, even though the
partition becomes finer, that is, the current equivalence relation R changes to an
other equivalence relation R′ such that R′ ⊆ R, the β-lower approximation may
not become large. However, we may have the following situation by the more
detailed equivalence relation R′:

For any q, MR
α |= �αp → q but MR′

α �|= �αp → q. (22)

This situation illustrates that, by getting more detailed background knowledge,
we find some exception in the observed objects such that it does not satisfy q
even though satisfying p. Therefore, in the framework of α-level fuzzy measure
model based on background knowledge, induction has non-monotonicity.

As an example of induction and non-monotonic reasoning, Suppose sentences
p and q have the following meaning:

• p: It is a bird.
• q: It can fly.

Thus, induction and non-monotonic reasoning are illustrated as follows:

MR
α |= �αp → q All observed birds can fly.

MR
α |= �αp ↔ p (Generalization of observed results)

MR
α |= p → q Therefore, all birds can fly.

The equivalence relation R changed to a more detailed
equivalence relation R′ by repeating observations,
MR′

α �|= �αp → q Not all birds can fly.
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3.5 Abduction

Abduction is the following reasoning form:

p → q If P, then Q.
q Q.
p. Therefore, P.

This corresponds to “affirming the consequent”, and is not logically valid. How-
ever, we use this form of reasoning often to get some new ideas. Abduction is
also called “hypothesis reasoning”, and uses to explain the fact q by a hypothesis
p based on the rule p → q.

Generally, there may exist many rule which infer the sentence q representing
the fact. Thus, we need to select one rule to use abduction from many rules
pi → q (pi ∈ {p1, · · · , pn(, · · · )}) which infer q. Similar to the case of deduction,
we consider the truth set ‖�αq‖MR

α of �αq as the set of “typical situations”
about q, and for each rule pi → q, we calculate the following degree of the truth
set ‖pi‖M

R
α of the antecedent pi of the rule:

α(pi)
def= arg min

x∈‖�αq‖MR
α

μR
x

(
‖pi‖M

R
α

)
. (23)

If the calculated degree α(pi) satisfies α(pi) ≥ α, then the antecedent pi satisfies
the following property:

MR
α |= �αq → �αp. (24)

Therefore, by using the rule pi → q with the antecedent p, abduction that infer
pi from the fact q is characterized by the following form of valid reasoning:

MR
α , x |= �q (Actually) Q.

MR
α |= �q → �p Selection of a rule “if P, then Q.”

MR
α , x |= �p (Perhaps) P.

Note that the case there is no rule that satisfies (23) corresponds to the situ-
ation that we can not explain the fact q by the current background knowledge.

As an example of abduction (or hypothesis reasoning), we consider a reasoning
based on fortune-telling we have used in [2]. Suppose sentences p and q have the
following meaning:

• p: I wear some red items.
• q: I am lucky.

Then, reasoning based on fortune-telling is characterized by abduction as
follows:

MR
α , x |= �q I am very lucky today!

MR
α |= �q → �p

In a magazine, I saw a fortune-telling
“wearing red items makes you lucky”.

MR
α , x |= �p Actually I wear red socks!
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4 Conclusion

In this paper, we have introduced α-level fuzzy measure model based on back-
ground knowledge, and proposed a unified formulation of deduction, induction
and abduction based on the α-level fuzzy measure model based on background
knowledge. Using the proposed α-level fuzzy measure model, deduction and ab-
duction are characterized as valid reasoning processes based on typical situ-
ations of facts. On the other hand, induction is characterized as a reasoning
process of generalization of observations. Moreover, we have pointed out that
non-monotonic reasoning has the same structure with induction in the α-level
fuzzy measure model based on background knowledge. More refinement of the
proposed framework is one of the most interesting future issues.
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Summary. We treat the sentences in a finite inconsistent knowledge base as asser-
tions that are true with probability at least some primary threshold η and consider
as consequences those assertions entailed to have probability at least some secondary
threshold ζ.

1 Introduction

A frequent problem in practical applications of reasoning, even with just the
basic propositional calculus, is that the knowledge base is actually inconsistent,
so that if one was permitted to use the full force of logical consequence it would
entail all sentences and so be useless for all practical purposes. On the other
hand one’s knowledge base, even if formally inconsistent, would normally contain
potentially useful information, the problem being how to extract it whilst at the
same time avoiding the classical explosion associated with inconsistency.

Numerous methods have been proposed to solve this problem, for example
fragmenting the knowledge base into maximally consistent subsets and looking
at the common consequences of these, limiting the proof theory or adopting non-
classical semantics (see [1], [9] for surveys). Such a variety of approaches seems
entirely appropriate here since one can envisage different ways in which one might
have acquired an inconsistent knowledge base, for example by receiving some
entirely erroneous information, by receiving information from different sources
or by receiving information which has become corrupted in transmission.

In this paper we shall consider an approach suiting the situation (amongst
others) where the knowledge base consists of the assertions made, or held, by a
single rational agent, such as ourselves. In this context our pronounced knowl-
edge frequently does exhibit inconsistency at a formal level, a feature commonly
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exploited by lawyers when cross examining in a court of law. Nevertheless, in our
everyday lives this causes us little or no concern since under pressure we would
maintain not that our assertions were necessarily undeniable facts (though that
might happen) but rather that we assigned them a high, or at least reasonable,
degree of belief, which for this paper we shall identify with subjective probability.

This paper extends results in [6]. To recap the basic approach from that paper
we suppose that we have a finite inconsistent knowledge base in some finite
propositional language L. Whilst overall the knowledge base is inconsistent in
the simplest case we may have no reason to think that any one sentence from
it is any more believable than any other. What we can do in this case, and this
seems to fit in well with the way we treat inconsistent information in the real
world, is to give each sentence some lower bound ‘threshold probability’ η that
it is true. Given that we have accepted this threshold η it might then be argued
that we should equally be willing to accept as consequences of our knowledge
base any other sentences which as result must have (by probability logic, see for
example [2], [7]) probability at least some suitable threshold ζ.

Of course the natural choice here might seem to be η, that is treating the
believability requirement for the consequences only as rigorously as that for the
initial pieces of knowledge. That was the approach taken in [6] (which we refer to
for further background). However we might consider setting higher demands on
the consequences, that is taking ζ > η, or lower, or even measuring the relative
believability of a consequence by the maximum ζ which can be sustained. This
approach was mentioned very briefly in [6] and will be considered in detail in
this paper.

The method of information extraction, or reasoning, from (possibly) inconsis-
tent knowledge bases that we are proposing here has the advantage that it treats
all the items in the knowledge base equally. At the same time by varying the
choice of thresholds it allows one to provide graded beliefs. Of course the method
does not entirely do away with inconsistency, if the initial threshold η is chosen
too large then the resulting knowledge even within probability logic may be in-
consistent. On the other hand the range of η for which we do have consistency
within probability logic itself gives information about the initial knowledge base,
as Knight describes in [3], [4].

2 Notation and Definitions

We shall work in a finite (but varying) propositional language L, denoting its
propositional variables by p1, . . . , pl or p, q, r . . . in specific examples. We will
denote its corresponding set of sentences by SL (boolean combinations of our
primitive propositions in L) and its corresponding set of atoms by AtL. Recall
that by atoms (see for example [7]) we mean sentences of the form

±p1 ∧ ... ∧ ±pl

where +pi and −pi stand for pi and ¬pi respectively.
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Let w : SL −→ [0, 1]. We say that w is a probability function on L if these
two conditions hold for all θ, φ ∈ SL:

(P1) If |= θ then w(θ) = 1,
(P2) If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

From (P1-2) all the standard properties of probability functions follow, for
example that for general θ and φ,

w(θ ∨ φ) = w(θ) + w(φ) − w(θ ∧ φ)

and if θ |= φ then w(θ) ≤ w(φ) (for more details see [7]). In particular recall
that a probability function w is determined uniquely by its values on the atoms,

〈w(α1), . . . , w(α2l)〉 ∈ {〈x1, . . . , x2l〉| xi ≥ 0,
∑

i

xi = 1}

via the identities
w(θ) =

∑

α|=θ

w(α).

For η ∈ [0, 1] and Γ (here and throughout) a finite subset of SL we say
(following Knight in [3],[4],[5]) that Γ is η-consistent if there is some probability
function w on L such that w(φ) ≥ η for all φ ∈ Γ , in short w(Γ ) ≥ η. We say
that Γ is maximally η-consistent, denoted mc(Γ ) = η, if η is maximal such that
Γ is η-consistent. (As shown in [4] there is such a maximal η).

Following [6] and [12] we define for η, ζ ∈ [0, 1],

Γ η �ζ θ ⇐⇒ for all probability functions w on L,

if w(Γ ) ≥ η then w(θ) ≥ ζ.

In the next two sections we will derive some basic properties of η�ζ and in the
section following these we will set to work providing an equivalent formulation
set entirely within the framework of the propositional calculus. This task will be
completed in the final chapter when we shall consider the functional relationship
between the thresholds imposed on the assumptions and those consequently
applying to the conclusions.

As a simple example here suppose

Γ = { p ∧ q, p ∧ ¬q ∧ r, ¬p ∧ q ∧ r }. (1)

If we are willing to assign belief (i.e. subjective probability) at least 1/3 to each
of these sentences in Γ being true then r will be true with at least probability
2/3, that is Γ 1/3 �2/3 r. Thus if we had set 2/3 as our threshold for which we
were willing to accept conclusions from this set we would accept r. This seems
to us a more satisfactory conclusion (in this context) than, what is probably the
currently most popular system of Rescher and Manor [11], where only conclusions
of all maximal consistent subsets are accepted.



294 J.B. Paris, D. Picado-Muiño, and M. Rosefield

Of course one may argue that the Rescher and Manor approach at least yields
a wholly consistent set of conclusions whereas even with a threshold ζ > 1/2 the
sentences inferred via η�ζ from Γ may be inconsistent when taken as a whole. In
response we would aver that our aim is different from theirs, we are not aiming to
produce a consistent set of conclusions but rather to produce a set of conclusions
each of which is believable to some threshold degree given the assumed credibility
of the original knowledge base. This seems to us closer to what is required in
the case of a fallible agent (such as ourselves) assigning beliefs. The agent is not
in general looking to discard knowledge in order to become internally consistent
but rather to draw conclusions with a guaranteed acceptable probability.

In the next and final sections of this paper we investigate some aspects of
the relation η�ζ pertinent to the above intention. For example its behavior at
extreme values of η, ζ (Proposition 1), its invariance with respect to the under-
lying language (Theorem 1) and the way the optimal ζ varies as a function of η
(Propositions 2, 4, Theorems 3, 4, Corollary 1).

3 Properties of η�ζ

In this section we give a number of simple properties of the relation η�ζ. Our
first proposition just classifies η�ζ at some key extreme values of η, ζ. In the
intervening section we will derive an equivalent of η�ζ formulated entirely within
the propositional calculus.

Proposition 1. For any Γ and θ,
(i) For all η, Γ η �0 θ.
(ii) For ζ > 0, Γ 1 �ζ θ ⇐⇒ Γ |= θ.
(iii) For η > mc(Γ ), Γ η �1 θ.
(iv) For ζ > 0, Γ 0 �ζ θ ⇐⇒ |= θ.

Proof. Parts (i) and (iii) are immediate from the definition of η �ζ . If Γ is
inconsistent then (ii) follows trivially. Otherwise, notice that , since standard
valuations V on L mapping into {0, 1} are probability functions, if Γ 1 �ζ θ then
V (θ) ≥ ζ for all valuations V . But since ζ > 0 the only possibility here is for
V (θ) = 1, so Γ |= θ. Conversely suppose Γ |= θ and w(Γ ) = 1. Then for any
atom α, if w(α) > 0 then α |= φ for every φ ∈ Γ , otherwise

w(φ) =
∑

α|=φ

w(α) < 1,

so α |=
∧

Γ . Hence, since
∧

Γ |= θ,

ζ ≤ 1 =
∑

α|=�Γ

w(α) = w(
∧

Γ ) ≤ w(θ),

as required.
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For (iv), if it is not the case that |= θ then there is some valuation V such
that V (θ) = 0 and so since V is also a probability function Γ 0 �ζ θ must also
fail when ζ > 0. Conversely if Γ 0 �ζ θ fails then there must be some probability
function w such that w(θ) < ζ ≤ 1. Hence � θ by (P1).

The next proposition gives us some general information on how the relation η�ζ

is preserved when we alter η and ζ.

Proposition 2. Assume that Γ η �ζ θ.
(i) If τ ≥ η, ν ≤ ζ then Γ τ �ν θ.

(ii) If τ ≥ 0, ζ > 0 and η + τ, ζ + τ ≤ 1 then Γ (η+τ) �(ζ+τ) θ.

Proof. (i) follows trivially from the definition of η�ζ . We omit the proof of (ii)
since it is a straightforward adaptation of a similar result for η�η in [6] (and
furthermore Corollary 1 in Section 5 will improve on it).

Our next proposition gives us some right and left weakening properties of our
consequence relation η�ζ, both of which follow directly from the definition.

Proposition 3. Assume Γ η �ζ θ. We then have what follows:
(i) Γ ∪ {ψ}η�ζθ.

(ii) If θ |= ψ then Γ η �ζ ψ.

Our next result demonstrates a closure property of the pairs (η, ζ) such that
Γ η �ζ θ.

Proposition 4. If limn→∞ ηn = η, limn→∞ ζn = ζ with the ηn increasing and
Γ ηn �ζn θ for all n then Γ η �ζ θ.

Proof. Suppose on the contrary that under these assumptions Γ η �ζ θ failed,
say w(Γ ) ≥ η but w(θ) < ζ for some probability function w. Then for some n
w(θ) < ζn so Γ ηn �ζn θ since ηn ≤ η, contradiction.

The next result shows that η�ζ is Language Invariant in the sense that it does not
depend on the particular overlying language L that is chosen. More precisely if
L1, L2 are finite propositional languages such that Γ ⊆ SL1∩SL2, θ ∈ SL1∩SL2
then w1(θ) ≥ ζ for every probability function w1 on L1 such that w1(Γ ) ≥ η
if and only if w2(θ) ≥ ζ for every probability function w2 on L2 such that
w2(Γ ) ≥ η

Theorem 1. The relation η�ζ is Language Invariant.

Proof. Assume that Γ ⊆ SL, θ ∈ SL and that Γ η �ζ θ in the context of the
language L, in other words for all probability functions w on L if w(Γ ) ≥ η then
w(θ) ≥ ζ. It is enough to show that if L′ is the language obtained from L by
adding a single new propositional variable p then for any probability function
w′ on L′ if w′(Γ ) ≥ η then w′(θ) ≥ ζ, and conversely.
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In the forward direction suppose that w′ is a probability function on L′ such
that w′(Γ ) ≥ η but w′(θ) < ζ. Then let w be the restriction (or marginalization)
of w′ to SL. The w is clearly again a probability function which agrees with w′

on Γ and θ and so Γ η �ζ θ fails in the sense of L.
Conversely suppose w is a probability function on L such that w(Γ ) ≥ η but

w(θ) < ζ. Notice that the atoms of L′ are of the form α∧pε where ε ∈ {0, 1} and
α is an atom of L. Define w′ on the atoms L′ by w′(α∧p) = w(α), w′(α∧¬p) = 0.
Then for φ a sentence of L

w(φ) =
∑

α|=φ

w(α) =
∑

α|=φ

w′(α ∧ p) + w′(α ∧ ¬p) =
∑

β|=φ

w′(β) = w′(φ)

where the β range over the atoms of L′, since for φ a sentence of L,

α |= φ ⇐⇒ α ∧ p |= φ ⇐⇒ α ∧ ¬p |= φ.

Hence Γ η �ζ θ also fails in the context of language L′.

Because of this proposition we can assume that the overlying language is in fact
potentially infinite. It is just that at any one time we are restricting ourselves to
some finite sublanguage. This is very convenient because probability functions
are easier to deal with in this case, though it could certainly be dispensed with
without changing any of the results.

Having derived the above basic properties of η�ζ we shall, starting in the next
section, give an equivalent formulation of η�ζ set entirely within the context
of the classical propositional calculus. In the section following that we shall
complete the proof of this equivalence and give a rather more detailed picture
of the relationship between pairs 〈η, ζ〉 for which Γ η �ζ θ holds.

4 An Equivalent of η�ζ within Propositional Logic

As in [6] we derive the required equivalent via an extended discussion. Indeed,
as anticipated in that paper, the derivation follows a similar pattern to that for
η�η (for rational η, ζ, see also [12]) and in consequence we shall be somewhat
brief.

We start by considering the case of η, ζ rational, say η = c/d, ζ = e/f with
c, d, e, f ∈ N. We can assume η, ζ > 0 since if either of these is zero we trivially
have a suitable equivalent version (as will soon be apparent). So suppose that

θ1, . . . , θn
c/d �e/f φ. (2)

Let β1, . . . , βm enumerate the satisfiable sentences of the form

±θ1 ∧ . . . ∧ ±θn

where +θi and −θi stand for θi and ¬θi respectively. Let θi be that m-vector
with jth coordinate 1 if βj |= θi and 0 otherwise (i.e. in case βj |= ¬θi) and let
φ be the m-vector with jth coordinate 1 if βj |= φ and 0 otherwise.
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Then condition (2) is equivalent to

For all x ∈ Dm, if θi · x ≥ c/d for 1 ≤ i ≤ n then φ · x ≥ e/f (3)

where
Dm = {〈x1, . . . , xm〉 | xi ≥ 0,

∑

i

xi = 1}.

This follows since for any probability function w,

〈w(β1), . . . , w(βm)〉 ∈ Dm

and
w(θi) =

∑

βj |=θi

w(βj) = θi · 〈w(β1), . . . , w(βm)〉.

Let 1 be the m-vector with 1’s at each coordinate and let

θi = θi − (c/d)1, φ = φ − (e/f)1.

Then (3) can be restated as

For all x ∈ Dm, if θi · x ≥ 0 for 1 ≤ i ≤ n then φ · x ≥ 0. (4)

In turn this is equivalent to the assertion that φ is in the cone in Q
m (i.e. the

m-vectors of rationals) given by
⎧
⎨

⎩

n∑

i=1

aiθi +
m∑

j=1

bjuj | 0 ≤ ai, bj ∈ Q

⎫
⎬

⎭

where uj is the m-vector with jth coordinate 1 and all other coordinates 0. In
other words, it is equivalent to (4) that there are some 0 ≤ ai ∈ Q such that

φ ≥
m∑

i=1

aiθi. (5)

Written in terms of a common denominator M let ai = Ni/M where the M, Ni ∈
N. Then (5) becomes

M(dfφ − de1) ≥
n∑

i=1

Ni(dfθi − cf1), (6)

equivalently

[Md(f − e) + cf

n∑

i=1

Ni]1 ≥ Mdf¬φ +
n∑

i=1

dfNiθi (7)

where ¬φ = 1 − φ. Conversely if (7) holds for some natural numbers M > 0,
N1, . . . , Nn ≥ 0 then we can reverse this chain to get back (2).
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Now let χ1, . . . , χN ∈ {θ1, . . . , θn} be such that amongst these χ1, . . . , χN the
sentence θi appears exactly dfNi times for each i = 1, . . . , n (so N = df

∑
i Ni).

Then for βr |= ¬φ it follows from (7) that the rth coordinate of χj is non-zero
for at most −deM + cf

∑
i Ni = (cN − d2eM)/d many j. Hence

∨

S⊆{1,...,N}
|S|>(cN−d2eM)/d

∧

j∈S

χj |= φ. (8)

Similarly if βr |= φ then it follows from (7) that the rth coordinate of χj is
non-zero for at most Md(f − e) + cf

∑n
i=1 Ni = (cN + d2M(f − e))/d many j.

Hence ∨

S⊆{1,...,N}
|S|>(cN+d2M(f−e))/d

∧

j∈S

χj |= ⊥. (9)

Now let

Z = 1 + (cN + d2M(f − e))/d

T = 1 + (cN − d2eM)/d

so T < Z and
Td(f − e) = fcN − edZ + df.

From (8), (9) we have that
∨

S⊆{1,...,N}
|S|=Z

∧

j∈S

χj |= ⊥, (10)

∨

S⊆{1,...,N}
|S|=T

∧

j∈S

χj |= φ, (11)

Td(f − e) = fcN − edZ + df and T < Z. (12)

Conversely suppose that for some Z ∈ N and χ1, . . . , χN (not necessarily those
above) (10), (11) and

Td(f − e) ≤ fcN − edZ + df and T < Z (13)

hold. Then for any atom α of L, if α |= ¬φ then for at most T − 1 many j
can we have that α |= χj . Similarly if α |= φ then there can be at most Z − 1
such j. Hence, using the earlier vector notation but now with the genuine atoms
α1, . . . , α2l replacing the β’s

N∑

j=1

χj ≤ (T − 1)1 + (Z − T )φ. (14)
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Now suppose x ∈ D2l and χj · x ≥ c/d for j = 1, . . . , N . Then dotting each side
of (14) with x we obtain

(Z − T )φ · x ≥ (c/d)N − T + 1.

But from (13) we have that

(c/d)N − T + 1
Z − T

≥ e/f

so φ · x ≥ e/f .
To sum up, if (10), (11), (13) hold then

χ1, . . . , χN
c/d �e/f φ

and by Proposition 3(i) (if necessary) we have

θ1, . . . , θn
c/d �e/f φ.

Conversely if
θ1, . . . , θn

c/d �e/f φ

then there are sentences χ1, . . . , χN ∈ Γ (possibly with repeats) such that for
some Z, T (10), (11), (13) hold. [Indeed we can even have equality in the first
inequality in (13) though for practical purposes it is very convenient to adopt
the weaker version.]

Taking η = c/d, ζ = e/f we now obtain the following propositional equivalent
of η�ζ in the case when η, ζ are rational and non-zero1. We will complete the
proof of this theorem for possibly irrational η, ζ at the end of the next section
(which will assume this theorem but only in the proven rational case).

Theorem 2. Let η, ζ ∈ (0, 1]. Then for θ1, . . . , θn, φ ∈ SL,
θ1, . . . , θn

η �ζ φ ⇐⇒
∃χ1, . . . , χN ∈ { θ1, . . . , θn } (possibly with repeats) and T, Z such that

T (1 − ζ) ≤ ηN − ζZ + 1, T < Z and
∨

S⊆{1,...,N}
|S|=Z

∧

j∈S

χj |= ⊥,

∨

S⊆{1,...,N}
|S|=T

∧

j∈S

χj |= φ.

1 In [6] a somewhat less amenable equivalent is given for the special case η = ζ and
the necessary side condition T < Z is not explicitly stated.
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Theorem 2 allows one to formulate and work with η�ζ entirely within the
familiar framework of the propositional calculus, though in practice the N can
be at least almost exponentially larger than n, see [8]. Nevertheless in small
examples this does seem to be of some practical use, certainly so once one is
willing to engage with classical propositional reasoning.

To give an idea of how this works in practice let us take our earlier example
(1) where Γ = { p ∧ q, p ∧ ¬q ∧ r, ¬p ∧ q ∧ r } and φ = r. To see that indeed
Γ 1/3 �2/3 φ it is enough here to take χ1 = p ∧ ¬q ∧ r and χ2 = ¬p ∧ q ∧ r (so
N = 2). Then, for Z = 2 and T = 1, the conditions (10), (11) and (13) in the
above discussion (and previous theorem) hold.

In the next section we turn our attention to considering the best ζ, as a
function of η, such that Γ η �ζ θ for given Γ, θ.

5 The Function FΓ,θ

For Γ ⊆ SL, θ ∈ SL and η ∈ [0, 1] define

FΓ,θ(η) = sup { ζ ∈ [0, 1] | Γ η �ζ θ }.

Notice that by Proposition 1(i) this supremum is certainly well defined. Further-
more by Proposition 4 this supremum is actually attained, that is if FΓ,θ(η) = γ
then Γ η �γ θ, and moreover unless η > mc(Γ ) and |= ¬θ there must be some
probability function w such that w(Γ ) ≥ η and w(θ) = γ, otherwise γ would not
be the claimed maximum.

Our next theorem gives what turn out to be the key properties of these func-
tions FΓ,θ.

Theorem 3. The function FΓ,θ is increasing and FΓ,θ(0), FΓ,θ(1) ∈ {0, 1}.
On the interval [0,mc(Γ )] the function FΓ,θ is convex and continuous and is

made up of a finite number of straight line segments y = q1x+ q2 with q1, q2 ∈ Q

such that q1 = q2 = 0 or q1 = 0, q2 = 1 or q1 ≥ 1 − q2 ≥ 1.
On the interval (mc(Γ ), 1] FΓ,θ has constant value 1.

Proof. That FΓ,θ is increasing follows by Proposition 2(i). The fact that its value
on 0 is either 0 or 1 follows from Proposition 1(iv),(ii), and the fact that its value
on 1 is either 0 or 1 follows from Proposition 1(ii),(i).

We now consider FΓ,θ on the interval [0, mc(Γ )]. To show that FΓ,θ is convex
on here suppose that 0 ≤ η1 < η2 ≤ mc(Γ ) and 0 < μ < 1. Pick probability
functions w1, w2 such that w2(Γ ) ≥ η2 and w2(θ) = FΓ,θ(η2) and w1(Γ ) ≥ η1
and w1(θ) = FΓ,θ(η1). Let w be the probability function μw1 + (1 − μ)w2. Then

w(Γ ) ≥ μw1(Γ ) + (1 − μ)w2(Γ ) ≥ μη1 + (1 − μ)η2

w(θ) = μFΓ,θ(η1) + (1 − μ)FΓ,θ(η2).

Then, as required,

FΓ,θ(μη1 + (1 − μ)η2) ≤ μFΓ,θ(η1) + (1 − μ)FΓ,θ(η2).
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Given now that FΓ,θ is increasing and convex on [0, mc(Γ )] to show it is also
continuous it suffices by standard results on convex functions, see for example
[13], to show that for r = mc(Γ ), limx↗r FΓ,θ(x) = FΓ,θ(r). By Proposition 4,
limx↗r FΓ,θ(x) ≤ FΓ,θ(r). If strict inequality held here, say

lim
x↗r

FΓ,θ(x) < λ < FΓ,θ(r),

then we can find increasing γn converging to r and probability functions wn such
that wn(Γ ) ≥ γn, wn(θ) < λ. Since the wn are determined by their values on
the fixed finitely many atoms of L these wn must have a subsequence wkn with
a limit, w say. Then

w(Γ ) ≥ lim
n→∞wkn(Γ ) = r

whilst
w(θ) = lim

n→∞wkn(θ) ≤ λ < FΓ,θ(r),

which is the required contradiction.
To show that on [0, mc(Γ )] FΓ,θ is made up of a finite number of straight line

segments y = q1x + q2 notice that there is a formula Ψ(x, y) of the language of
the structure

R = 〈R, +, ≤, 0, 1〉

such that for η, ζ ∈ [0, 1],

R |= Ψ(η, ζ) ⇐⇒ FΓ,θ(η) = ζ.

Since R satisfies quantifier elimination and is an elementary extension of the
structure

Q = 〈Q, +, ≤, 0, 1〉

we can suppose that Ψ(x, y) is of the form

h∨

i=1

gi∧

j=1

(mijy ≤ nijx + kij)

for some mij , nij , kij ∈ Z. The set of pairs 〈η, ζ〉 such that

R |=
gi∧

j=1

(mijy ≤ nijx + kij)

is a convex set so since FΓ,θ is a function it must actually be a line segment, and
with coefficients in Q.

To see that these coefficients q1, q2 have the required properties assume q1 > 0
(otherwise q2 ∈ {0, 1} by what has already been proved) and pick an interior
rational point 〈η, ζ〉 on this line segment (so η, ζ < 1). By the already proven
result for rationals there exist such N, Z, T etc. for this pair. Notice that T ≥ 1,
otherwise |= θ and q1 = 0, q2 = 1, and T ≤ N , otherwise q1 = q2 = 0. So,
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(1 − ζ)T ≤ ηN − ζZ + 1

and
ζ ≤ ηN − T + 1

Z − T
. (15)

Clearly we must have equality in (15) since otherwise we could increase ζ to
some ζ′ and the rule would give Γ η �ζ′ θ, contradicting FΓ,θ(η) = ζ. But then
on this line

y =
xN − T + 1

Z − T

we must have FΓ,θ(x) = y, so it must be the case that q1 = N/(Z − T ), q2 =
(1 − T )/(Z − T ). Notice that Z ≤ N + 1 since otherwise we could replace Z by
N + 1 without changing the required conditions and that would contradict the
fact that FΓ,θ(η) = ζ. The required inequalities q1 ≥ 1 − q2 ≥ 1 follow.

This shows that FΓ,θ has the required properties on [0, mc(Γ )]. The last part
of the theorem follows directly from Proposition 1(iii).

The next result improves on Proposition 2(ii).

Corollary 1. Suppose η ∈ [0,mc(Γ )], FΓ,θ(η) = ζ and 0 ≤ τ ≤ mc(Γ ) − η.
Then:

(i) If ζ > 0 then FΓ,θ(η + τ) ≥ ζ + τ(1 − ζ)(1 − η)−1.

(ii) If η > 0 then FΓ,θ(η + τ) ≥ min{1, τζη−1}.

Proof. Part (i) follows by noticing that for arguments between η and mc(Γ ) the
graph of FΓ,θ cannot dip below the straight line joining 〈η, ζ〉 and 〈1, 1〉 (notice
that by Proposition 1(i) and Proposition 2(i) FΓ,θ(1) = 1).

If � θ part (ii) similarly follows by noting that by Proposition 1(iv) FΓ,θ(0) = 0
so for arguments between η and mc(Γ ) the graph of FΓ,θ cannot dip below the
straight line passing through 〈0, 0〉 and 〈η, ζ〉. On the other hand if |= θ then
FΓ,θ just takes constant value 1 so the conclusion is trivially true.

We now show the converse to Theorem 3, namely that any function satisfying
the properties of FΓ,θ proved in Theorem 3 is in fact of the form FΓ,θ for some
Γ, θ (in some finite language). The next lemma is key to showing this.

Lemma 1. Given Γ1, Γ2, θ1, θ2 there are Γ, θ (possibly on a finite extension of
the language of Γ1, Γ2 etc.) such that

FΓ,θ(x) = max {FΓ1,θ1(x), FΓ2,θ2(x)}.

Proof. We may assume that Γi ⊆ SLi, θi ∈ SLi for i = 1, 2 were L1 =
{p1, ...pn} and L2 = {q1, ...qm} are disjoint languages with atoms {α1, ..., α2n}
and {β1, ..., β2m} respectively. Let L = L1 ∪ L2 and set Γ = Γ1 ∪ Γ2 ⊆ SL and
θ = θ1 ∨ θ2 ∈ SL.

First note that by the language invariance of η�ζ if w is a probability function
on L such that w(Γ ) ≥ η then w(θ1) ≥ FΓ1,θ1(η) and w(θ2) ≥ FΓ2,θ2(η), so
certainly
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w(θ) ≥ max{FΓ1,θ1(η), FΓ2,θ2(η)}.

Thus it only remains to show that there is some probability function w which
takes exactly this value. Without loss of generality assume that

FΓ1,θ1(η) ≥ FΓ2,θ2(η)

and let wi, i = 1, 2, be a probability function on Li such that wi(Γi) ≥ η,
wi(θi) = FΓi,θi(η). We define a finite sequence of probability functions wr on L
such that for each r

wr(αi) = w1(αi) for i = 1, . . . , 2n,

wr(βi) = w1(βj) for j = 1, . . . , 2m, (16)

so in consequence
wr(θi) = FΓi,θi(η)

for i = 1, 2, and such that for the final wr in this sequence

wr(θ) = wr(θ1),

equivalently
wr(αi ∧ βj) = 0 whenever αi � θ1, βj � θ2. (17)

To start with set
w0(αi ∧ βj) = w1(αi) · w2(βj).

Now suppose we have successfully constructed wr. If (17) holds for this wr

then we are done. Otherwise take the atoms αi∧βj with wr(αi∧βj) > 0, βj |= θ2,
αi � θ1. In this case we can find an atom αp ∧ βq with wr(αp ∧ βq) > 0, αp � θ1,
βq � θ2. Such an atom of L must exist since if not then

wr(θ2) =
∑

t

wr(αit ∧ βjt) +
∑

s

wr(αis ∧ βjs)

and
wr(θ1) =

∑

t

wr(αit ∧ βjt)

for t, s such that βjt � θ2, αit � θ1, βjs � θ2, αis � θ1. But then

FΓ2,θ2(η) = wr(θ2) > wr(θ1) = FΓ1,θ1(η),

contradiction.
Now define wr+1 as follows, for i, j, p and q as above:

wr+1(αi ∧ βj) = wr(αi ∧ βj) − min{wr(αi ∧ βj), wr(αp ∧ βq)},

wr+1(αi ∧ βq) = wr(αi ∧ βq) + min{wr(αi ∧ βj), wr(αp ∧ βq)},

wr+1(αp ∧ βj) = wr(αp ∧ βj) + min{wr(αi ∧ βj), wr(αp ∧ βq)},

wr+1(αp ∧ βq) = wr(αp ∧ βq) − min{wr(αi ∧ βj), wr(αp ∧ βq)},
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and wr+1 agreeing with wr on all other atoms of L. Then again we have (16)
holding for wr+1 in place of wr and compared with wr the probability function
wr+1 gives non-zero probability to strictly fewer atoms αi∧βj with βj |= θ2, αi �

θ1. Clearly then this process eventually terminates at the required probability
function.

We now prove the converse to Theorem 3, that any such function satisfying the
conditions proved of FΓ,θ in that theorem is in fact of the form FΓ,θ for some
Γ, θ. This is clear for the functions which are identically 0 or 1 so we now drop
them from consideration in the next result.

Theorem 4. Let r ∈ [0, 1] ∩ Q and let F be any function such that
(i) F (0) = 0, F (1) = 1, F is increasing.
(ii) On [0,r] F is continuous and convex and made up of a finite set

of straight line segments q1x + q2 with q1, q2 ∈ Q and q1 ≥ 1 − q2 ≥ 1.
(iii) On (r, 1] F (x) ≡ 1.

Then there are Γ, θ such that F = FΓ,θ on [0, 1].

Proof. In view of Lemma 1 it is enough to show

(A) If 0 ≤ r < 1, r ∈ Q, then there are Γ ⊆ SL and θ ∈ SL, for some
finite language L, such that

FΓ,θ(x) =
{

0 for 0 ≤ x ≤ r,
1 for r < x ≤ 1.

(B) If q1, q2 ∈ Q, q1 ≥ 1 − q2 ≥ 1 then there are Γ ⊆ SL and θ ∈ SL for
some finite language L such that

FΓ,θ(x) =

⎧
⎨

⎩

0 for 0 ≤ x ≤ −q2/q1,
q1x + q2 for − q2/q1 ≤ x ≤ (1 − q2)/q1,
1 for (1 − q2)/q1 ≤ x ≤ 1.

To show (A), if r = 0 just take θ to be a contradiction and Γ = {θ}. Otherwise
for r = s/t > 0, s, t ∈ N, take L large enough and set2 Γ

Γ = {
∨

i∈S

αi | S ⊆ {1, . . . , t}, |S| = s }.

If the probability function w gives Γ its maximum consistency then so does any
permutation of w (when identifying w with a vector in D2l) and in turn the
average over these permutations. Hence we see that Γ attains its maximum con-
sistence of s/t for the probability function which gives each αi for i = 1, 2, . . . , t
probability 1/t.

2 We have chosen this large Γ to make the construction easier to understand. There
are much smaller choices, see for example [8].
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To show (B) let −q2/q1 = r/t, (1 − q2)/q1 = s/t where r, s, t ∈ N. By the
conditions on q1, q2, 0 ≤ r/t ≤ s/t ≤ 1. Again let L be large and set

θ =
2t∨

j=t+1

αj ,

and

Γ = {
∨

i∈S

αi ∨
∨

j∈T

αj | S ⊆ {1, . . . , t}, |S| = r, T ⊆ {t + 1, . . . , 2t}, |T | = s }.

Then if w1(αi) = 1/t for i = 1, 2, . . . , t, w2(Γ ) = r/t, w1(θ) = 0, so FΓ,θ(r/t) = 0.
Now suppose that r/t ≤ g < s/t FΓ,θ(g) = h < 1 and let w witness this. As
above we can assume that w(αi) has constant value, a say, for i = 1, 2, . . . , t and
constant value, b say, for i = t+1, . . . , 2t and that all the probability is assigned
to the αi for i ≤ 2t (otherwise assign what is left evenly to the αi for i ≤ t).
Then h = tb, g = sb + ra, ta + tb = 1 so h = r/t + (1 − s/t)g = q1g + q2. From
this and the properties of FΓ,θ shown in Theorem 3 part (B) follows.

At this point we finally return to complete the proof of Theorem 2 in the case
when one or both of η, ζ are irrational.

Proof. of Theorem 2 continued. We first consider the case where η is irra-
tional and ζ rational. In this case if Γ η �ζ φ then by Theorem 3 FΓ,φ(x) = q1x+q2
for some q1, q2 ∈ Q for all x in some open non-empty neighborhood (η− ε, η+ ε).
Since q1η + q2 is irrational (q1 �= 0 otherwise ζ = 0) it must be that q1η + q2 > ζ
so there are r1, r2 ∈ Q such that r1 < η, r2 > ζ, q1r1 + q2 > r2. Taking r1 within
ε of η then FΓ,φ(r1) > r2 so there is some χ1, . . . , χN ∈ Γ and Z, T such that
T (1 − r2) ≤ r1N − r2Z + 1, T < Z and

∨

S⊆{1,...,N}
|S|=Z

∧

j∈S

χj |= ⊥, (18)

∨

S⊆{1,...,N}
|S|=T

∧

j∈S

χj |= φ. (19)

But then
T (1 − ζ) ≤ ηN − ζZ + 1 (20)

as required. Conversely if we have χ1, . . . , χN ∈ Γ and Z, T satisfying (18), (19),
(20) then again there must be r1 < η, r2 > ζ such that

T (1 − r2) ≤ r1N − r2Z + 1.

Thus by the two rational case already proved Γ r1 �r2 φ.
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The case where η ∈ Q, ζ /∈ Q is proved similarly. Finally suppose that η, ζ
are both irrational. If Γ η �ζ φ and FΓ,φ(η) = q1η + q2 > ζ then just as in the
previous case we can show there are χi etc. to give the required propositional
equivalent. So suppose FΓ,φ(η) = q1η + q2 = ζ. In this case by Theorem 3
FΓ,φ(x) = q1x + q2 for x in some non-empty open neighborhood (η − ε, η + ε).
Pick r1 in this interval and set r2 = q1r1+q2. Then by the two rational case there
are some χ1, . . . , χN ∈ Γ and Z, T such that T < Z and T (1−r2) ≤ r1N−r2Z+1
etc.. Indeed we must have equality here, otherwise we could increase r2 with r1
fixed and so (using the two rational case) show that FΓ,φ(r1) > r2. But since
this holds for r1 arbitrarily close to η it must also hold for η. Hence this provides
the required equivalent to Γ η �ζ φ.

Finally in the other direction in the case η, ζ /∈ Q, suppose that we have the
required T, Z, χ1, . . . , χN satisfying (19),(18),(20). Then for rational r1 close to
η and r2 ≤ (r1N − T + 1)/(Z − T ), r2 close to ζ these same χ1, . . . , χN , φ and
Z, T give Γ r1 �r2 φ. Since r1, r2 can be made arbitrarily close to η, ζ respectively
we can conclude by Proposition 4 that Γ η �ζ φ, as required.

6 Conclusion

We have introduced and investigated a parameterized propositional consequence
relation, η�ζ , which we have argued is appropriate for making acceptable infer-
ences in the case of an agent’s subjective, and possibly inconsistent, knowledge
base. Similar results may also be obtained for conditional probabilities, [14], the
predicate calculus, [10], and multiple thresholds, which in the guise of a proof
theory for probability logic will be the subject of a future paper.
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Summary. In this paper, we first apply a technique of fuzzy correspondence analy-
sis to deal with fuzziness in subjective evaluation data of traditional crafts in which
evaluated objects are assessed by multiple evaluators against multiple kansei features,
where each kansei feature corresponds to two (adjectival) kansei words having opposite
meanings. Basically, the variation in subjective evaluation data is transformed into a
parameter space trying to preserve information as much as possible, and thereby we
define fuzzy sets which express relative fuzziness between principal component scores
in the parameter space. Then we define a so-called fitness measure which expresses
how well an object fits with a given kansei word, taking both the distance and the
relative fuzziness into account. This fitness measure is then utilized together with or-
dered weighted averaging (OWA, for short) operator for aggregation to define a ranking
function that quantifies how well an object fits with the feeling preference specified as
a set of kansei words by a potential consumer. A prototyping system for visualizing the
fuzzy correspondence analysis of subjective evaluation data as well as for personalized
recommendation is also developed and illustrated.

1 Introduction

Nowadays, consumers and customers have put higher demands not only on the
quality but also on their satisfaction in terms of psychological feelings of prod-
ucts and services to be purchased. Therefore, in an increasingly competitive
world market, it is important for manufacturers to have a customer-focused ap-
proach in order to improve attractiveness in development of new products, which
should not only satisfy requirements of physical quality, defined objectively, but
should also satisfy consumers’ psychological needs, by essence subjective [15].
Kansei engineering [11, 12] defined as a “translating technology of a consumer’s
feeling and image for a product into design elements” has been a great interest
and concern since its inception in the 1970s. Kansei is a Japanese term which

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 311–325, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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is, according to Nagamachi [16], ‘the impression somebody gets from a certain
artefact, environment or situation using all her senses of sight, hearing, feeling,
smell, taste [and sense of balance] as well as their recognition’. Typically, Kansei
engineering focuses on the issue of how to transform human beings’ feelings in
terms of subjective evaluation into the design of products and the customer-
oriented manufacturing process. It has been rapidly developed and successfully
applied to a variety of industries, e.g., [1, 2, 3, 5, 7, 9, 12].

While evaluation and ranking for decision support are often involved in many
studies of Kansei engineering or other consumer-oriented design techniques [15],
the evaluation process using kansei data of subjective feelings for commercial
products have generally received less attention [10], especially those for tradi-
tional crafts have not been addressed yet. Such evaluations would be power-
ful strength in marketing strategy as, for traditional crafts, decisions on which
product items to buy or use might be strongly influenced by personal feel-
ings/characteristics. Also, they are essentially helpful for recommendation pur-
poses particularly in the era of e-commerce where recommendation systems have
been getting popular and important.

In Japan there are a large number of traditional craft products which are so
closely connected to Japanese traditional culture. As explained in the Web site
of The Association for the Promotion of Traditional Craft Industries [17], each of
which is ‘unique fostered through regional differences and loving dedication and
provides a continual wealth of pleasure’. However, due to the rapid changing of
lifestyles of younger generations plus the prevalence of modern industrial prod-
ucts with their advantage in cost and usage, the market of traditional crafts in
Japan has been shrinking over the last recent decades. Under such circumstances,
in 1974 Japanese government (METI) enacted the so-called Densan Law [18] for
the “Promotion of Traditional Craft Industries” in order that traditional crafts
bring richness and elegance to people’s living and contribute to the development
of local economy.

On the other hand, with the fast growing of e-commerce in today’s business,
the Internet can be a great help in revitalizing traditional craft industries. Man-
ufacturers and retailers via their Web sites can make their marketing better
as providing more attractive introduction and, hopefully, personalized recom-
mendation, or even helping bring people back to traditional and cultural values
concerning their products. Our main concern is with the evaluation of tradi-
tional crafts for the personalized recommendation problem. A particular focus is
put on the evaluation of traditional craft products of Ishikawa prefecture, where
Japan Advanced Institute of Science and Technology is located.

The objective of this paper is two-fold. Firstly, due to a large variance in
subjective evaluations of traditional crafts against kansei features using human
sensibility, we apply a technique of fuzzy correspondence analysis developed
in [13] to model individual differences in evaluation and in the spread of vague-
ness, which hopefully helps us to understand about relative vagueness as well
as about relationship between objects and kansei words behind these evalua-
tions. Secondly, based on that understanding, we propose the so-called fitness
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measure which determines how well an object fits with a given kansei word, and
this fitness measure is then combined with OWA operator [19] for aggregation
to define a ranking function for quantifying how well an object fits with the
feeling preference of a person specified by a set of kansei words. In addition, we
have also implemented a prototyping software system for visualizing the fuzzy
correspondence analysis of subjective evaluation data as well as for personalized
recommendation on traditional products.

The rest of this paper is organized as follows. Section 2 briefly describes the
research problem and the formulation of kansei data structure. Section 3 intro-
duces a technique of fuzzy correspondence analysis using kansei data. Section 4
first proposes a fitness measure between evaluation objects and kansei words and
then defines a ranking function for the problem of personalized recommenda-
tion. Section 5 illustrates the developed prototyping system with a case study of
evaluating Yamanaka lacquer product of Ishikawa prefecture. Finally, Section 6
presents some conclusions.

2 Preliminaries

Let us denote O = {o1, . . . , oM} the set of objects such as traditional ceramic
products to be evaluated. The first task in the evaluation process is to iden-
tify what kansei features human beings often use to express our feelings re-
garding evaluated objects. Each kansei feature is defined by an opposite pair
of (adjectival) kansei words, for example the fun feature determines the pair
of kansei words solemn and funny. Let us denote F = {f1, . . . , fN} the set of
kansei features selected, and w+

n and w−n be the opposite pair of kansei words
corresponding to Fn, for n = 1, . . . , N . Denote W the set of kansei words,
i.e. W = {w+

n ,w−n |n = 1, . . . , N}.
We then design a questionnaire for gathering kansei evaluation data using the

semantic differential (SD, for short) method [14] as a measurement instrument.
Note that SD method has been widely used in application, e.g., [4, 5, 8, 10,
13, 15]. The questionnaire using SD method for gathering information consists
of the list of kansei features, each of which corresponds to an opposite pair
of kansei words located at either end of a 7-point scale {1, . . . , 7}. Let us now
denote E = {e1, . . . , eK} the set of evaluators who are invited to evaluate objects
from O against kansei features from F using the designed questionnaire. Several
situations may happen with the data set obtained by this way as described below.

Assume that Em is the set of evaluators who have evaluated object om, and
Ok is the set of objects which are evaluated by evaluator ek. The following
conditions should be satisfied:

E =
M⋃

m=1

Em, where Em �= ∅, ∀m (1)

O =
K⋃

k=1

Ok, where Ok �= ∅, ∀k (2)
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Then the obtained data set highly depends on each particular application as
well as the designed questionnaire survey. Particularly, we have at least three
different cases of the obtained data structure as follows.

♦ Case 1: (complete 3-way data)

Em = E, ∀m; and Ok = O, ∀k

♦ Case 2: (one person evaluates only one object)

|Ok| = 1, ∀k; Em ∩ Em′ = ∅, for m �= m′; and
M∑

m=1

|Em| = K

♦ Case 3: (some evaluate several objects)

|Ok| ≥ 1, ∀k; and |E| = K

Let us denote zmnk the subjectively evaluation value of evaluator ek regarding
object om against kansei feature fn, where zmnk ∈ {1, 2, 3, 4, 5, 6, 7}. In addition,
we assume that there is no missing data about the evaluated objects. Denote

zmk = (zm1k, zm2k, · · · , zmNk)t, where k ∈ Em.

For Case 1, the averaged data is determined by

zmn =
1
K

K∑

k=1

zmnk, for m = 1, 2, . . . , M, n = 1, 2, . . . , N.

For Cases 2 and 3, the averaged data is defined as follows.

zmn =
1

|Em|

K∑

k=1

zmnk, for m = 1, 2, . . . , M, n = 1, 2, . . . , N.

The data treated in this paper corresponds to Case 1 above, and the technique
of fuzzy correspondence analysis developed in [13] will be adapted for this case
in the following section.

3 Fuzzy Correspondence Analysis Using Kansei Data

3.1 Analysis Based on the Average Data

Let P = [pmn]M×N be the average data matrix for evaluators, where its elements
are determined by

pmn =
zmn

M∑
m=1

N∑
n=1

zmn

(3)

Denote

pm• =
N∑

n=1

pmn, p•n =
M∑

m=1

pmn

then we have
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M∑

m=1

pm• =
N∑

n=1

p•n = 1 (4)

In correspondence analysis, a quantity xm is associated with evaluated object
om, while a quantity yn is associated with a kansei word wn. It should be worth
noting here that for each kansei feature fn, we have two opposite kansei words
w+

n and w−n (n = 1, . . . , N), and in our model we use originally obtained data
[zmnk] to do analysis for kansei words w+

n (n = 1, . . . , N), which locate on the
right hand side in the questionnaire; while the analysis for kansei words w−n
(n = 1, . . . , N) locating on the left hand side in the questionnaire will be done
similarly using the reverse data, i.e. [8−zmnk]. Abusing the notation, but without
danger of confusion, from now on we use only notation wn to indicate a kansei
word being considered.

Now let us denote
x = (x1, x2, · · · , xM )t

y = (y1, y2, · · · , yN )t

These vectors are determined by maximizing the correlation coefficient ρxy in
terms of the following equation:

ρxy =
σxy

σxσy
→ max (5)

where σxy, σx, σy are defined as follows:

σxy =
M∑

m=1

N∑

n=1

pmnxmyn −
M∑

m=1

pm•xm

N∑

n=1

p•nyn (6)

σx =

√√√√
M∑

m=1

pm•x2
m −

(
M∑

m=1

pm•xm

)2

(7)

σy =

√√√√
N∑

n=1

p•ny2
n −

(
N∑

n=1

p•nyn

)2

(8)

Then the solution of the optimization problem (5) can be derived as an eigenvalue
problem. The scores regarding to object om and kansei word wn on a two-
dimensional plane using the second and third eigenvectors are given as follows:

(x2m, x3m), m = 1, 2, . . . , M
(y2n, y3n), n = 1, 2, . . . , N.

(9)

3.2 Modeling Fluctuation of Subjective Evaluations

As mentioned above, the location defined by equation (9) on the eigenvector
space is determined by maximizing the correlation coefficient. In order to ex-
press the fluctuation on subjective evaluations, each evaluator’s eigenvector is
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expressed using the distance from the location defined by average data and in-
dividual evaluation of the evaluator. This can be done as follows.

Let us define

bmk = 1
N

N∑

n=1

(zmnk − zmn)

bm = 1
K

K∑

k=1

bmk, m = 1, 2, . . . , M

Using these vectors, the individual eigenvector is defined by the following
equation

x̃ik = x̃i + λi(bk − b), for i = 2, 3 (10)

where λi are designed parameters, and

bk = (b1k, b2k, · · · , bMk)t

b = (b1, b2, · · · , bM )t

The individual eigenvectors are then featured by the following equation

1
K

K∑

k=1

x̃ik = x̃i

where
x̃ik = (x̃i1k, x̃i2k, · · · , x̃iMk)t

x̃i = (x̃i1, x̃i2, · · · , x̃iM )t

Note that when the individual evaluation vectors are averaged by evaluators, it
results in the same with the original eigenvector.

Fuzzy sets of evaluated objects and kansei words

We now define for each object a fuzzy set which expresses relative fuzziness of
the object in the parameter space. Using Zadeh’s extension principle [21], second
and third elements of the eigenvector are mapped into a two-dimensional fuzzy
set. In particular, let us denote

X̃i = (X̃i1, · · · , X̃iM )t (11)

a fuzzy vector whose membership function is defined by

μX̃i
(x) = exp{−(x̃ − x̃i)tD−1

X (x̃ − x̃i)} (12)

where DX is independent of i and determined as follows

DX =
1
K

K∑

k=1

(x̃ − x̃i)(x̃ − x̃i)t =
1
K

K∑

k=1

bkbt
k (13)

In order to make a mapping to the two-dimensional plane consisting of second
and third elements of the eigenvector, we define am by
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am = (am1, am2, · · · , amM )t (14)

where

amm′ =
{

1, m = m′

0, m �= m′

Then we consider the following mapping

Xim = at
mX̃i (15)

According to Zadeh’s extension principle, the membership function of Xim is
identified as follows

μXim(x) = max
{x̃|x=at

mx̃}
μx̃i(x) = exp

{
− (x − at

mx̃)2

(at
mDXam)

}
(16)

Now we can define a fuzzy set X2m × X3m on the two-dimensional plane for
object om having the membership function defined by

μX2m×X3m(x2, x3) = μX2m(x2) × μX3m(x3)

= exp
{

− (x2 − at
mx̃2)2 + (x3 − at

mx̃3)2

(at
mDXam)

}

Then, for each α ∈ (0, 1], the α-level set of the fuzzy set of om is determined by
the following circle

(x2 − at
mx̃2)2 + (x3 − at

mx̃3)2 = (at
mDXam)(−log(α)) � s2

m (17)

Similarly, we can also define for each kansei word wn a fuzzy set Y2n × Y3n

on the two-dimensional plane, whose membership function is defined by

μY2n×Y3n(y2, y3) = μY2n(y2) × μY3n(y3)

= exp
{

− (y2 − at
nỹ2)2 + (y3 − at

nỹ3)2

(at
nDY an)

}

and the α-level set of the fuzzy set of wn is described as follows

(y2 − at
mỹ2)

2 + (y3 − at
mỹ3)

2 = (at
mDY am)(−log(α)) � t2n (18)

Putting these together in the two-dimensional plane, we can visualize relative
fuzziness as well as the relationship between the evaluated objects and the kansei
words in evaluations.

4 A Ranking Procedure for Personalized
Recommendation

In this section, we propose a ranking procedure for the following problem of
personalized recommendation. Assume that an agent A wants to look at objects
according to her preference given by a set WA of kansei words, which is a subset
of W. Let

WA = {wj1 , . . . ,wjp}
Practically, agent A may state her preference in forms of the following statement
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“I would like objects which meet LQ (of) attributes from WA.”

where LQ is a linguistic quantifier such as all, most, at least half, etc.
Based on the fuzzy correspondence analysis discussed above, we first define a

fitness measure which quantifies how well an object is compatible with a given
kansei word, given subjective evaluations from a population of evaluators. Then
we propose to use an OWA operator [19] for aggregating fitness values of an
object with respect to kansei words from WA to define an overall fitness value,
where weights of OWA operator are determined using the fuzzy set based se-
mantics of linguistic quantifier involved.

4.1 A Fitness Measure

Consider an object om and a kansei word wn, which are fuzzily expressed in the
two-dimensional space by fuzzy sets X2m×X3m and Y2n×Y3n, respectively. Note
that points (x2m, x3m) and (y2n, y3n) (refer to (9)) are modal points of these two-
dimensional fuzzy sets respectively. In order to define a fitness measure between
object om and kansei word wn, we fix an α ∈ (0, 1], and then the fitness measure
is determined by the distance between these modal points and the radiuses of
corresponding α-level sets. Particularly, the fitness measure between om and wn

is defined by

fitness(om,wn) � Smn =
exp{sm + tn}

exp{2 max{sm, tn}} exp{dmn} (19)

where sm and tn (refer to (17) and (18)) are radiuses of α-cuts of X2m×X3m and
Y2n × Y3n, respectively, and dmn is the Euclidean distance between (x2m, x3m)
and (y2n, y3n).

It is easily seen that Smn = 1 when two circles (i.e., α-cuts) are completely
identical, and furthermore, the following condition is also satisfied

0 ≤ Smn ≤ 1 (20)

Before introducing a procedure for ranking objects according to an agent
A’s preference as defined above, it is necessary to recall the notion of OWA
operators.

4.2 OWA Operators

The notion of OWA operators was introduced in [19] regarding the problem of
information aggregation. A mapping

F : [0, 1]p → [0, 1]

is called an OWA operator of dimension p if it is associated with a weighting
vector W = [w1, . . . , wp], such that 1) wi ∈ [0, 1] and 2)

∑
i wi = 1, and

F (a1, . . . , ap) =
p∑

i=1

wibi

where bi is the i-th largest element in the collection a1, . . . , ap.
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Table 1. Linguistic quantifiers

Linguistic quantifier Membership function Q

there exists Q(r) =
�

0 if r < 1/n
1 if r ≥ 1/n

for all Q(r) =
�

1 if r = 1
0 if r �= 1

almost all Q(r) = r

at least half Q(r) =
�

2r if 0 ≤ r ≤ 0.5
1 if 0.5 ≤ r ≤ 1

as many as possible Q(r) =
�

0 if 0 ≤ r ≤ 0.5
2r − 1 if 0.5 ≤ r ≤ 1

most Q(r) =

��
�

0 if 0 ≤ r ≤ 0.3
2r − 0.6 if 0.3 ≤ r ≤ 0.8
1 if 0.8 ≤ r ≤ 1

One of approaches for obtaining weights wi’s for an OWA operator is to asso-
ciate some semantics or meaning to them and then, based on these semantics, we
can directly determine their values. In the following we introduce the semantics
based on fuzzy linguistic quantifiers for weights.

The fuzzy linguistic quantifiers were introduced by Zadeh in [20]. According
to Zadeh, there are basically two types of quantifiers: absolute and relative.
Here we focus on the relative quantifiers typified by terms such as most, at
least half, as many as possible. A relative quantifier Q is defined as a mapping
Q : [0, 1] → [0, 1] verifying Q(0) = 0, there exists r ∈ [0, 1] such that Q(r) = 1,
and Q is a non-decreasing function.

Table 1 provides a list of linguistic quantifiers associated with their member-
ship functions, all of which are taken from the literature.

Then, Yager [19] proposed to compute the weights wi’s based on the linguistic
quantifier represented by Q as follows:

wi = Q

(
i

n

)
− Q

(
i − 1

n

)
, for i = 1, . . . , n. (21)

4.3 A Ranking Procedure

With those discussed previously, we now introduce the following procedure which
provides a way of evaluating objects in O according to agent A’s preference.

1. Determine the membership function Q of linguistic quantifier LQ and the
corresponding weighting vector (refer to (21))

WLQ = [w1, . . . , wp]

2. For each om ∈ O, the evaluation of om is calculated by



320 M. Ryoke, Y. Nakamori, and V.N. Huynh

V (om) = FWLQ(Sij1 , . . . , Sijp)

=
K∑

k=1

wkSk (22)

where Sk is the k-th largest element in the collection Sij1 , . . . , Sijp .
3. Rank objects in O according to V (om) by a sorting algorithm for crisp

numbers.

5 A Case Study for Yamanaka Lacquer

Based on the above considerations, we have developed a prototyping software
system for fuzzy correspondence analysis as well as for personalized recommen-
dation. Figure 1 graphically shows a screenshot of the system.

Fig. 1. A screenshot of the system

In the following we will briefly describe a case study for evaluating Yamanaka
Lacquer, a traditional craft industry of Ishikawa prefecture. Within the frame-
work of a research project supported by the local government, a total of 45
patterns of Yamanaka Lacquer have been collected for evaluation using kansei
data. Due to the limitation of space, we has not presented the detailed analysis
of this case study as well as experimental results here.
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5.1 Identification of Kansei Features

Before gathering kansei data of these patterns for evaluation, a preliminary re-
search was carried out to select kansei features, consulting with local manufac-
turers and trading shops. As for the purpose of this research, we did not consider
aspects like type or function of products here, but we mainly focus on psycholog-
ical feelings such as the esteem and aesthetic aspects of human beings on tradi-
tional crafts. Criteria used to select kansei features can be summarized as follows:

(i) frequent adjectives used in traditional craft shops, and
(ii) impressive adjectives given by designers from evaluated samples.

At the end of the preliminary research, 26 pairs of opposite kansei words were
selected which are shown in Table 2.

Table 2. Pairs of kansei words

n left kansei word (w−
n ) ←→ right kansei word (w+

n )
1 standard ������� unconventional
2 simple ������� rich
3 ceremonious ������� funny
4 formal ������� causal
5 serene ������� powerful
6 stillness ������� carousing
7 pretty ������� austere
8 friendly ������� inaccessible
9 soft ������� hard
10 blase ������� attractive
11 flowery ������� quiet
12 happy occasions ������� usual
13 elegant ������� loose
14 delicate ������� largehearted
15 luxurious ������� plain
16 gentle ������� pithy
17 bright ������� dark
18 reserved ������� imperious
19 free ������� regular
20 level ������� indented
21 lustered ������� matte
22 translucent ������� dim
23 warm ������� cool
24 moist ������� arid
25 colorfull ������� sober
26 plain ������� gaudy, loud

5.2 Evaluated Objects and Results

The evaluated objects are collected from local manufactures. A total of 45 pat-
terns of Yamanaka Lacquer (evaluated objects) is prepared together with the
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Fig. 2. Yamanaka
lacquer #14

Fig. 3. Yamanaka
lacquer #15

Fig. 4. Yamanaka
lacquer #19

Fig. 5. Yamanaka
lacquer #20

Fig. 6. Yamanaka
lacquer #27

Fig. 7. Yamanaka
lacquer #36

Fig. 8. Yamanaka
lacquer #37

Fig. 9. Yamanaka
lacquer #42

questionnaire survey. Figures 2–9 show some patterns to be evaluated in this
case study. All evaluators are invited to come to an assessment session to pro-
vide their evaluations. The obtained data is 3-way data of which each pattern is
assessed by all participated evaluators on all 26 kansei features.

Figure 10 shows a screenshot of the result of fuzzy correspondence analysis.
In this figure, evaluated objects are displayed as circles in red color, (adjectival)
kansei words located at the left hand side (respectively, the right hand side) are
displayed as circles in yellow (respectively, blue) color. The circles with semi-
transparent color are utilized to see whatever is beneath the shapes when they
are overlapped. When we move the mouse across any circle, the name of the cor-
responding kansei word or object will be appeared such as “yamanaka32” in the
graph. In addition, when an evaluated object is selected to see the circumstance,
the corresponding circle is stressed by elastic movement.

As we can see at the screenshot shown in Figure 1, the second column shows
the list of pairs of opposite kansei words so that from which an user can select a
set of kansei words as her preference, where only one kansei word from each pair
can be selected. This is due to the observation that, for example, if the user is
interested in craft items being funny, then she is not interested in those being
ceremonious, the opposite kansei word of funny. In addition, the system also
allows users to select different linguistic quantifiers for aggregation according to
their own attitudes.

For example, let us consider a recommendation request consisting of three
kansei words ‘unconventional ’, ‘funny’ and ‘casual ’. Figure 11 shows the result
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Fig. 10. A result of the fuzzy correspondence analysis

Fig. 11. A ranking of objects (LQ = all)

for the case of linguistic quantifier ‘all ’ being selected for aggregation. While the
frame in the left hand side of Figure 11 shows the obtained ranking of patterns
according to the recommendation request, the central area displays the result of
fuzzy correspondence analysis illustrating the relationship between these kansei
words and objects, where three selected kansei words are expressed by three
blue circles. Table 3 shows the top 5 of recommended patterns (graphically,
see Figures 2–9) according to these three kansei words with different linguistic
quantifiers used.
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Table 3. Top 5 of recommended patterns

Fuzzy Quantifier ID Numbers
LQ = all #37 #27 #42 #14 #15
LQ = almost all #37 #27 #42 #15 #14
LQ = as many as possible #27 #37 #20 #42 #19
LQ = most #37 #27 #42 #19 #36
LQ = at least half #20 #27 #19 #37 #36
LQ = there exists #20 #27 #19 #36 #37

6 Concluding Remarks

In this paper, we have presented a technique of for analyzing relative fuzziness
in subjective evaluations of traditional crafts using kansei data. Based on this
analysis, we have introduced a fitness measure for quantifying how well an evalu-
ated object is compatible with a given kansei word and then proposed a ranking
procedure for the problem of personalized recommendation. A case study of eval-
uating patterns of Yamanaka Lacquer, a traditional craft industry of Ishikawa
prefecture, has been also illustrated with the developed prototyping software
system.
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(2005)

17. The Association for the Promotion of Traditional Craft Industries,
http://www.kougei.or.jp/english/promotion.html

18. The Japanese Ministry of Economy, Trade and Industry (METI),
http://www.kansai.meti.go.jp/english/dentousangyou/top page.html

19. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria
decision making. IEEE Transactions on Systems, Man, and Cybernetics 18, 183–
190 (1988)

20. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages.
Computers and Mathematics with Applications 9, 149–184 (1983)

21. Zadeh, L.A.: The concept of a linguistic variable and its applications to approxi-
mate reasoning. Part I. Information Sciences 8, 199–249 (1975)

http://www.kougei.or.jp/english/promotion.html
http://www.kansai.meti.go.jp/english/dentousangyou/top_page.html


A Probability-Based Approach to Consumer
Oriented Evaluation of Traditional Craft Items
Using Kansai Data

Hongbin Yan, Van Nam Huynh, and Yoshiteru Nakamori

Japan Advanced Institute of Science and Technology (JAIST)
Nomi, Ishikawa 923-1292, Japan
{hongbinyan,huynh,nakamori}@jaist.ac.jp

Summary. This paper deals with the evaluation problem of Japanese traditional
crafts in which product items are evaluated according so-called kansei features by
means of the semantic differential method. As for traditional crafts, decisions on which
items to buy or use are usually influenced by personal feelings/characteristics, we shall
propose a consumer-oriented evaluation model targeting on those recommendation re-
quests specified by consumers. Particularly, given a consumer’s recommendation re-
quest, the proposed model aims at defining an evaluation function that quantifies how
well a product item meets the consumer’s feeling preference. An application for evaluat-
ing patterns of Kutani porcelain is conducted to illustrate how the proposed evaluation
model works practically.

1 Introduction

Kansei Engineering, invented by Mitsuo Nagamachi at Hiroshima University in
the 1970s, is defined by its founder as a translating technology of a consumer’s
feeling and image for a product into design elements [11]. According to Naga-
machi [18], Kansei is “the impression somebody gets from a certain artefact,
environment or situation using all her senses of sight, hearing, feeling, smell,
taste [and sense of balance] as well as their recognition”. For building a kansei
database on psychological feelings of products, the most commonly-used method
is to choose (adjectival) kansei words first and then ask people to express their
feelings using those words in which the semantic differential (SD) method [14]
or its modifications are often used, e.g., [4, 8, 12, 18].

Generally, evaluations for ranking and for selection are two closely related and
common facets of human decision-making activities in practice. Many studies of
Kansei Engineering or other consumer-oriented design techniques have involved
an evaluation process in which for example a design could be selected for produc-
tion [15]. However, kansei data-based evaluation for commercial products have
generally received less attention [10], in particular those for traditional prod-
ucts have not been addressed yet [17]. These evaluations would be helpful for
marketing or recommendation purposes and particularly more important in the
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era of e-commerce, where recommender systems have become an important re-
search area [1].

The main purpose of this paper is to propose and develop an evaluation model
for Japanese traditional crafts using kansei data and consumer-specified prefer-
ences. A particular focus is put on the evaluation of traditional craft products
of Ishikawa prefecture, located in Japan. It should be emphasized here that the
esteem and aesthetic aspects play a crucial role in human beings perception
on traditional crafts, therefore kansei data are essential and necessary for the
evaluation.

In order to do so, a preliminary research is conducted to select kansei words
and then a population of subjects is called for gathering evaluation data of tra-
ditional crafts, here the SD method is used for this purpose. Using the voting
statistics, these kansei data are then used to generate kansei profiles of evalu-
ated patterns which will be served as the knowledge for a consumer-oriented
evaluation later. Because the preference on traditional crafts varies from person
to person depending on personal character, feeling and aesthetic, assuming we
are given a consumer c’s preference also expressed by kansei words like bright,
elegant, etc., we then define an evaluation function V : O → [0, 1], where O is
the set of evaluated patterns or objects and V (o) is interpreted as the degree
to which the pattern o meets c’s preference. Basically, our approach is based on
the appealing idea of target-based decision analysis [2] that a consumer would
be only interested in patterns meeting her feeling needs. It particular, following
our model, the preference order on the qualitative scale according to a kansei
feature will be determined adaptively depending on a particular consumer’s pref-
erence. Furthermore, viewing multi-person assessments as uncertain judgments
regarding kansei features of traditional craft items, making use of a similar idea
as in uncertain decision making with fuzzy targets [7], we shall be able to work
out the probability that judgment on a kansei feature of each item meets the
feeling target set on this feature by the consumer. Then, guided by the linguis-
tic quantifier also specified by the consumer, an appropriate ordered weighted
averaging (OWA) operator [19] can be used to define the evaluation function V
as mentioned above.

The paper is organized as follows. Section 2 begins with a brief description
of the research context and follows by the formulation of research problem. Sec-
tion 3 introduces a consumer-oriented evaluation model using kansei data and
Section 4 applies the proposed model to a case study of evaluating Kutani porce-
lain, one of traditional craft products of Ishikawa. Finally, some concluding re-
marks are presented in Section 5.

2 Preliminaries

2.1 OWA Operators and Linguistic Quantifiers

The notion of OWA operators was first introduced in [19] regarding the problem
of aggregating multi-criteria to form an overall decision function. By definition,
an OWA operator of dimension n is a mapping
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F : [0, 1]n → [0, 1]

associated with a weighting vector w = [w1, . . . , wn], such that 1) wi ∈ [0, 1]
and 2)

∑
i wi = 1, and

F(a1, . . . , an) =
n∑

i=1

wibi

where bi is the i-th largest element in the collection {a1, . . . , an}.
OWA operators provide a type of aggregation operators which lie between

the “AND” and the “OR” aggregation. As suggested by Yager [19], there exist
at least two methods for obtaining weights wi’s. The first approach is to use
some kind of learning mechanism. That is, we use some sample data, arguments
and associated aggregated values and try to fit the weights to this collection of
sample data. The second approach is to give some semantics or meaning to the
weights. Then, based on these semantics we can directly provide the values for
the weights. As for the purpose of this paper, let us introduce the semantics
based on linguistic quantifiers for the weights.

The fuzzy linguistic quantifiers were introduced by Zadeh in [22]. According
to Zadeh, there are basically two types of quantifiers: absolute, and relative.
Here we focus on the relative quantifiers typified by terms such as most, at
least half, as many as possible. A relative quantifier Q is defined as a mapping
Q : [0, 1] → [0, 1] verifying Q(0) = 0, there exists r ∈ [0, 1] such that Q(r) = 1,
and Q is a non-decreasing function. For example, the membership function of
relative quantifiers can be simply defined as

Q(r) =

⎧
⎨

⎩

0 if r < a
r−a
b−a if a ≤ r ≤ b

1 if r > b
(1)

with parameters a, b ∈ [0, 1].
Then, Yager [19] proposed to compute the weights wi’s based on the linguistic

quantifier represented by Q as follows:

wi = Q

(
i

n

)
− Q

(
i − 1

n

)
, for i = 1, . . . , n. (2)

In addition, the so-called measure ‘orness ’ of OWA operator F associated with
weighting vector w = [w1, . . . , wn] is defined as

orness(F) =
1

n − 1

n∑

i=1

((n − i) × wi) (3)

This measure of ‘orness ’ indicates how much degree the operator F behaves like
an ‘OR’ aggregation. Also, the measure of ‘andness ’ associated with F is defined
as the complement of its ‘orness ’, then

andness(F) = 1 − orness(F) (4)

which indicates how much degree the operator F behaves like an ‘AND’
aggregation.
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2.2 Formulation of the Problem

The consumer-oriented evaluation process for traditional crafts using kansei data
is graphically described as in Fig. 1. Let us denote O the collection of craft
patterns to be evaluated and N is the cardinality of O, i.e. N = |O|.

Fig. 1. The framework of consumer-oriented evaluation using kansei data

Identification of kansei features and measurement instrument

As mentioned previously, the first task in the kansei data-based evaluation pro-
cess is to identify what kansei features we as human beings often use to express
our feelings regarding traditional crafts. In the present research project, kansei
features are selected through a brainstorming process by those attending includ-
ing relevant researchers, senior residents and certificated masters of traditional
crafts. Each kansei feature is defined by an opposite pair of (adjectival) kansei
words, for example the fun feature determines the pair of kansei words solemn
and funny. Let

1. {F1, . . . , FK} be the set of kansei features selected,
2. w+

k and w−k be the opposite pair of kansei words corresponding to Fk, for
k = 1, . . . , K. Denote W the set of kansei words, i.e. W = {w+

k ,w−k |k =
1, . . . , K}.

Then, SD method [14] is used as a measurement instrument to design the ques-
tionnaire for gathering kansei evaluation data.

Gathering information

The questionnaire using SD method for gathering information consists in listing
the kansei features, each of which corresponds to an opposite pair of kansei words
that lie at either end of a qualitative M -point scale, where M is an odd positive
integer as used, for example, in 5-point scale [13], 7-point scale [10] or 9-point
scale [9]. In our model, the qualitative scale are treated as categorical scale, then
we symbolically denote the M -point scale by

V = {v1, . . . , vM}

where w+
k and w−k are respectively assumed to be at the ends v1 and vM .

The questionnaire is then distributed to a population P of subjects who are
invited to express their emotional assessments according each kansei feature of
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craft patterns in O by using the M -point scale. Formally, we can model the
kansei data of each craft pattern oi ∈ O according to kansei features obtained
from the assessment of subjects sj in P as shown in Table 1, where xjk(oi) ∈ V,
for j = 1, . . . , P = |P| and k = 1, . . . , K.

Table 1. The kansei assessment data of pattern oi

Kansei Features
Subjects F1 D2 · · · FK

s1 x11(oi) x12(oi) · · · x1K(oi)
s2 x21(oi) x22(oi) · · · x2K(oi)
...

...
...

. . .
...

sm xP1(oi) xp2(oi) · · · xpK(oi)

Problem

The kansei assessment database built, as described above, will be utilized to
generate the knowledge serving for the following evaluation problem. Assume
that an agent as a potential consumer is interested in looking for a craft pattern
which would meet her preference given by a proper subset W of the set W of
kansei words as defined below. She may then want to rate craft patterns available
in O according to her preference. In particular, we are concerned with consumer-
specified recommendation requests which can be stated generally in forms of the
following statement:

“I should like craft patterns which would best meet LQ (of) my prefer-
ence specified in W ⊂ W” (�)

where LQ is a linguistic quantifier such as all, most, at least half, as many as
possible, etc. Formally, the problem can be formulated as follows.

Given W = {w∗k1
, . . . ,w∗kn

} and LQ corresponding to the recommendation
request specified by an agent as linguistically stated in (�), where ∗ stands
for either + or −, and {k1, . . . , kn} ⊆ {1, . . . , K}, the problem now is how to
evaluate craft patterns in O using kansei data and the recommendation request
specified as the pair [W, LQ]? Here, by ∗ standing for either + or − as above,
it indicates that only one of the two w+

kl
and w−kl

(l = 1, . . . , n) presents in W ,
which may be psychologically reasonable to assume. For example, if the agent is
interested in craft items being funny according to kansei feature of fun, then she
is not interested in those being solemn, the opposite kansei word of funny. This
evaluation problem will be solved by a so-called consumer-oriented evaluation
model presented in the next section.

3 A Consumer-Oriented Evaluation Model

In this section we shall propose a consumer-oriented evaluation model based on
the idea that a consumer should be only interested in craft patterns that would
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best meet her psychological needs from the esteem/aesthetic point of view. Let us
denote D the kansei assessment database about a finite set O of craft patterns
using SD method as mentioned previously, and D[oi] the data of pattern oi

(i = 1, . . . , N) as shown in Table 1. The proposed model basically consists of the
following main steps. The first step is to generate a kansei profile for each pattern
oi using its data D[oi] based on voting statistics. Then in the second step, given
the recommendation request specified by a consumer c as a pair [W, LQ], an
evaluation function V : O → [0, 1] is defined taking c’s recommendation request
into consideration. Lastly, a ranking order for all patterns in O is determined
according to this function V as an answer to the recommendation request. In
the following, we will describe these three steps in detail.

3.1 Generating Kansei Profiles

For each pattern oi with its assessment data D[oi] shown in Table 1, we define for
each kansei feature Fk, k = 1, . . . , K, a probability distribution fik : V → [0, 1]
as follows:

fik(vh) =
|{sj ∈ P : xjk(oi) = vh}|

|P| (5)

This distribution fik is considered as an uncertain judgment of craft pattern
oi according to kansei feature Fk. By the same way, we can obtain a K-tuple
of distributions [fi1, . . . , fiK ] regarding the kansei assessment of oi and call the
tuple the kansei profile of oi. Similarly, kansei profiles of all patterns in O can
be generated from D.

It should be also emphasized here that in many papers of Kansei Engineering
or other methodologies of consumer-oriented design support using SD method
for gathering data, populations of subjects involved in experimental studies have
a size ranging typically from 10 to 35 people, (cf. [3, 9, 10, 15]). However, for
the purpose of consumer-oriented evaluation which the present paper is aiming
at, such a small size of the population P may cause a statistical bias as well
as may provide not enough information from various points of view to possibly
reduce the subjectivity of the evaluation. Therefore, a population of subjects
with a much larger size has been used for gathering kansei data. In addition,
in order to increase the reliability of subjective judgements, all subjects were
invited to participate at a centralized face-to-pattern evaluation session on a
designed date. For example, in the case study of Kutani porcelain described in
the following section, a population of 211 subjects was used at a centralized
evaluation session.

3.2 Evaluation Function

Having generated kansei profiles for all patterns oi ∈ O as above, we now de-
fine the evaluation function V corresponding to the recommendation request
(�) symbolically specified as [W, LQ], where W = {w∗k1

, . . . ,w∗kn
} and LQ is a

linguistic quantifier.
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Intuitively, if a consumer expresses her preference on a kansei feature such as
color contrast with kansei word bright, she may implicitly assume a preference
order on the semantic differential scale corresponding to color contrast towards
the end v1 where bright is placed. Conversely, if the consumer’s preference on
color contrast was dark, i.e. the opposite kansei word of bright, she would assume
an inverse preference order on the scale towards the end vM where dark is placed.
In other words, in consumer-oriented evaluation using kansei data, the preference
order on the semantic differential scale corresponding to a kansei feature should
be determined adaptively depending on a particular consumer’s preference. This
can be formally formulated as below.

For each w∗kl
∈ W , we define a linear preference order �l on V according to

the kansei feature Fkl
as follows

vh �l vh′ ⇔
{

h′ ≥ h, if w∗kl
= w+

kl

h ≥ h′, if w∗kl
= w−kl

(6)

In addition, due to vagueness inherent in consumer’s expression of preference in
terms of kansei words, each w∗kl

is considered as the feeling target, denoted by
Tkl

, of the consumer according to kansei feature Fkl
, which can be represented

as a possibility variable [21] on V whose possibility distribution is defined as

πkl
(vh) =

{ M−h
M−1 , if w∗kl

= w+
kl

h−1
M−1 , if w∗kl

= w−kl

(7)

Fig. 2 graphically illustrates these concepts.

1  1  

vMvhv1w+
kl

w−kl
w−kl

�l �l w+
kl

v1 vh vM�l �l

(a) (b)
Tkl

Tkl

Fig. 2. The preference order �l and the possibility distribution of feeling target Tkl
:

(a) w∗
kl

= w+
kl

; (b) w∗
kl

= w−
kl

As such, with the consumer’s preference specified by W , we obtain n feel-
ing targets Tkl

(l = 1, . . . , n) accompanying with n preference orders �l (l =
1, . . . , n) on the semantic differential scale of kansei features Fkl

(l = 1, . . . , n),
respectively. Recall that, for each l = 1, . . . , n, the uncertain judgment of each
craft pattern oi regarding the kansei feature Fkl

is represented by the probabil-
ity distribution fikl

over V, as defined previously. Bearing these considerations
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in mind, we are now able to evaluate, for each l = 1, . . . , n, how the feeling
performance of a pattern oi on Fkl

, denoted by Fkl
(oi) and represented by fikl

,
meets the feeling target Tkl

representing consumer’s preference on Fkl
. This can

be done as follows.
Firstly, making use of the possibility-probability conversion method [20] we

can transform the possibility distribution of feeling target Tkl
into an associated

probability distribution, denoted by p̂kl
, via the simple normalization as follows

p̂kl
(vh) =

πkl
(vh)∑

v∈V

πkl
(v)

(8)

Then, by accepting the assumption that the feeling target Tkl
is stochastically

independent of feeling performance on Fkl
of any pattern oi, we can work out

the probability that the feeling performance Fkl
(oi) meets the feeling target Tkl

,
denoted by P(Fkl

(oi) � Tkl
), in terms of the preference order �l as

P(Fkl
(oi) � Tkl

) � P (fikl
�l p̂kl

)
=

∑M
h=1 fikl

(vh)P (vh �l p̂kl
)

(9)

where P (vh �l p̂kl
) is the cumulative probability function defined by

P (vh �l p̂kl
) =

∑

vh�lvh′

p̂kl
(vh′) (10)

It is of interest noting here that a similar idea has also been recently used
in [6] for developing the so-called satisfactory-oriented linguistic decision model.
Intuitively, the quantity P(Fkl

(oi) � Tkl
) defined above could be interpreted

as the probability of “the feeling performance on Fkl
of oi meeting the feeling

target Tkl
specified by a consumer on Fkl

”. Then, after having these probabil-
ities P(Fkl

(oi) � Tkl
) = Pkli, for l = 1, . . . , n, we are able to aggregate all

of them to obtain an aggregated value with taking the linguistic quantifier LQ
into account, making use of the so-called ordered weighted averaging (OWA)
aggregation operator [19].

Under such a semantics of OWA operators, now we are ready to define the
evaluation function, for any oi ∈ O, as follows

V (oi) = F(Pk1i, . . . ,Pkni)
=

∑n
l=1 wlPli

(11)

where Pli is the l-th largest element in the collection Pk1i, . . . ,Pkni and weight-
ing vector [w1, . . . , wn] is determined directly by using a fuzzy set-based seman-
tics of the linguistic quantifier LQ. As interpreted previously on quantities Pkli

(l = 1, . . . , n), the aggregated value V (oi) therefore indicates the degree to which
craft pattern oi meets the feeling preference derived from the recommendation
request specified by a consumer as [W, LQ].
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3.3 Rating Craft Patterns

Based on the evaluation function (11) defined above, a rating of all the craft
patterns oi in O can be straightforwardly determined according to their values
V (oi) by a sorting algorithm for real numbers. The obtained rating is then
considered as the solution to the recommendation request [W, LQ]. For the sake
of convenience, the evaluation procedure for recommendation described above is
summarized and algorithmically presented in Fig. 3.

Input: A recommendation request [W, LQ]

• W = {w∗
k1 , . . . ,w∗

kn
}–feeling preference.

• LQ – linguistic quantifier.

Output: A rating of all items in O
1: for each w∗

kl
∈ W do

2: determine the preference order �l on V for kansei feature Fkl
via (6)

3: determine the feeling target Tkl
on Fkl

and its possibility distribution via (7)
4: end for
5: determine weighting vector [w1, . . . , wn] using the fuzzy set based semantics of

linguistic quantifier LQ
6: for each oi ∈ O do
7: for each w∗

kl
∈ W do

8: compute P(Fkl
(oi) � Tkl

) via (9)
9: end for

10: compute V (oi) via (11)
11: end for
12: rank items oi according to their values V (oi)

Fig. 3. The recommendation procedure

4 Application to Kutani Porcelain

In this section we shall apply the proposed model to evaluating Kutani
porcelain, a traditional craft industry in Japan, historically back to the sev-
enteenth century, of Kutani Pottery Village in Ishikawa prefecture1. Within the
framework of a research project supported by the local government, a total of
30 patterns of Kutani porcelain have been collected for the kansei data-based
evaluation [16].

Before gathering kansei assessment data of these patterns for evaluation, a
preliminary research was carried out to select kansei features, consulting with
local manufacturers and trading shops. Finally, 26 opposite pairs of kansei words
were selected at the end of a brainstorming process. Kansei words are approxi-
mately translated into English as shown in Table 2 (adapted from [16]).

1 http://shofu.pref.ishikawa.jp/shofu/intro e/HTML/H S50402.html
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Table 2. Opposite pairs of kansei words used for the evaluation

Fk Left kansei word v1 v2 v3 v4 v5 v6 v7 Right kansei word
1 conventional(w+

1 ) � � � � � � � unconventional(w−
1 )

2 simple(w+
2 ) � � � � � � � compound(w−

2 )
3 solemn(w+

3 ) � � � � � � � funny(w−
3 )

4 formal(w+
4 ) � � � � � � � causal(w−

4 )
5 serene(w+

5 ) � � � � � � � forceful(w−
5 )

6 still(w+
6 ) � � � � � � � moving(w−

6 )
7 pretty(w+

7 ) � � � � � � � austere(w−
7 )

8 friendly(w+
8 ) � � � � � � � unfriendly(w−

8 )
9 soft(w+

9 ) � � � � � � � hard(w−
9 )

10 blase(w+
10) � � � � � � � attractive(w−

10)
11 flowery(w+

11) � � � � � � � quiet(w−
11)

12 happy(w+
12) � � � � � � � normal(w−

12)
13 elegant(w+

13) � � � � � � � loose(w−
13)

14 delicate(w+
14) � � � � � � � large-hearted(w−

14)
15 luxurious(w+

15) � � � � � � � frugal(w−
15)

16 gentle(w+
16) � � � � � � � pithy(w−

16)
17 bright(w+

17) � � � � � � � dark(w−
17)

18 reserved(w+
18) � � � � � � � imperious(w−

18)
19 free(w+

19) � � � � � � � regular(w−
19)

20 level(w+
20) � � � � � � � indented(w−

20)
21 lustered(w+

21) � � � � � � � matte(w−
21)

22 transpicuous(w+
22) � � � � � � � dim(w−

22)
23 warm(w+

23) � � � � � � � cool(w−
23)

24 moist(w+
24) � � � � � � � arid(w−

24)
25 colorful(w+

25) � � � � � � � sober(w−
25)

26 plain(w+
26) � � � � � � � gaudy, loud(w−

26)

4.1 Gathering Data and Kansei Profiles

Several assessment sessions, with a total of 211 subjects invited to participate
in, were held to gather kansei data. The data obtained is 3-way data of which
each pattern Kutani#i (i = 1, . . . , 30) is assessed by all participated subjects on
all kansei features Fk, k = 1, . . . , 26.

The 3-way data is then used to generate kansei profiles for patterns via (5)
as mentioned previously. These kansei profiles are considered as (uncertain)
feeling assessments of patterns serving as the knowledge for consumer-oriented
evaluation.

4.2 Consumer-Oriented Evaluation

To illustrate how the model proposed in the preceding section works, let us
consider the following example.

Assuming a consumer’s recommendation request is specified as

[{w−3 ,w+
7 ,w−10,w

+
11}, as many as possible ]
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That is, verbally, she would ask for craft patterns meeting as many as possible
her feeling preference of funny, pretty, attractive and flowery.

According to the evaluation procedure shown in Fig. 3, we first determine
preference orders on V = {v1, . . . , v7} for features F3, F7, F10, F11. Using (6),
we have �3=�10, �7=�11 and v7 �3 . . . �3 v1 and v1 �7 . . . �7 v7. Then,
using (7) we define feeling targets T3, T7, T10, T11 on features F3, F7, F10, F11,
respectively. In particular, we again have T3 ≡ T10, T7 ≡ T11 with possibility
distributions shown in Fig. 4.

0

1

v1 v2 v3 v4 v5 v6 v7w+
3 ,w+

10 w−
3 ,w−

10

0

1

v1 v2 v3 v4 v5 v6 v7w+
7 ,w+

11 w−
7 ,w−

11

Fig. 4. Possibility distribution of feeling targets

We now determine the weighting vector [w1, w2, w3, w4] according to the fuzzy
set based semantics of linguistic quantifier ‘as many as possible’. Assume that
the membership function of the quantifier ‘as many as possible’ is defined as a
mapping Q : [0, 1] → [0, 1] such that [5]

Q(r) =
{

0 if 0 ≤ r ≤ 0.5
2r − 1 if 0.5 ≤ r ≤ 1

We then obtain the weighting vector as [0, 0, 0.5, 0.5] using Yager’s method (refer
to (2)).

With these preparations done, we are now ready to use (8) and (9) for comput-
ing probabilities P3i, P7i, P10i, P11i of meeting corresponding feeling targets T3,
T7, T10, T11 for each pattern Kutani#i (i = 1, . . . , 30). Then, using (11) we have

V (Kutani#i) = F(P3i,P7i,P10i,P11i)

where F is the OWA operator of dimension 4 associated with the weighting
vector [0, 0, 0.5, 0.5].

Table 3. Quantifiers used and corresponding top 3 patterns

Linguistic quantifier Weighting vector The top 3 patterns
As many as possible (AMAP) [0, 0, 0.5, 0.5] #14 � #10 � #18

All [0, 0, 0, 1] #14 � #18 � #30
There exists (∃) [1, 0, 0, 0] #10 � #29 � #3

At least haft (ALH) [0.5, 0.5, 0, 0] #10 � #29 � #3
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Finally, a ranking of patterns Kutani#i, i = 1, . . . , 30, according to their
values V (Kutani#i) can be easily obtained. Table 3 shows the top three pat-
terns that would best meet the feeling preference of funny, pretty, attractive and
flowery with different typical linguistic quantifiers used.

4.3 Discussion

To facilitate the discussion of the obtained results, all the target achievements
of recommended patterns on selected features as well as their aggregated values
corresponding to different quantifiers used are shown in Table 4. Accordingly,
the target achievements of recommended patterns on selected features as well as
their aggregated values corresponding to different quantifiers used are shown in
Table 4.

Table 4. Target Achievements on Selected Features of Recommended Patterns

Target Achievements Aggregated Values
Patterns F3 F7 F10 F11 ∃ ALH AMAP All
#03 0.4159 0.61776 0.5099 0.18767 0.61776 0.56383 0.30148 0.18767
#10 0.59957 0.538 0.32924 0.799 0.799 0.69929 0.43362 0.32924
#14 0.48605 0.59976 0.39843 0.5259 0.59976 0.56283 0.44224 0.39843
#18 0.40033 0.53248 0.39043 0.43967 0.53248 0.48607 0.39538 0.39043
#29 0.6269 0.55824 0.35995 0.35771 0.6269 0.59257 0.35883 0.35771
#30 0.49081 0.48695 0.36848 0.363 0.49081 0.48888 0.36574 0.363

First, let us consider the result according to the use of quantifier ‘there exists’.
As shown in Table 3, in this case we have the top three patterns are, in order
of preference, #10, #29, and #03. According to Table 4 and as graphically
illustrated by Fig. 5, one can intuitively observe that pattern #10 meets very well
the feeling target flowery (w+

11), follow by funny (w−3 ) of pattern #29 and pretty
(w+

7 ) of pattern #3. In the case where quantifier ‘at least half ’ is used instead
of ‘there exists’, we still obtain the same result. This is due to, beside the feeling
target flowery, pattern #10 has well met the target funny and, moreover, beside
funny and pretty, pattern #29 and #03 are quite good at meeting pretty and
attractive, respectively. It would be worth noting here that aggregation operator
F with weighting vector corresponding to quantifier ‘there exists’ is a pure ‘OR’
operator, and the one corresponding to quantifier ‘at least half ’ still behaves
toward an ‘OR’ aggregation as well; namely, the degree of ‘orness ’ (refer to (3))
associated with the operator F of quantifier at least half is

orness(F) =
1
3
(3 × 0.5 + 2 × 0.5) = 0.833

Now let us look at the case of using quantifier ‘as many as possible’. Then we
obtain, in the order of preference, patterns #14, #10 and #18 as the top three.
In this case, due to the requirement of meeting as many as possible of the four
feeling targets {funny, pretty, attractive, flowery}, the aggregation operator F



338 H. Yan, V.N. Huynh, and Y. Nakamori

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

w+
3 w−

3 w+
7 w−

7 w+
10 w−

10 w+
11 w−

11

Kutani#03

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

w+
3 w−

3 w+
7 w−

7 w+
10 w−

10 w+
11 w−

11

Kutani#10

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

w+
3 w−

3 w+
7 w−

7 w+
10 w−

10 w+
11 w−

11

Kutani#14

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

w+
3 w−

3 w+
7 w−

7 w+
10 w−

10 w+
11 w−

11

Kutani#18

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

w+
3 w−

3 w+
7 w−

7 w+
10 w−

10 w+
11 w−

11

Kutani#29

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

w+
3 w−

3 w+
7 w−

7 w+
10 w−

10 w+
11 w−

11

Kutani#30

Fig. 5. Recommended patterns’ uncertain judgments on selected features

behaves toward an ‘AND’ aggregation with the corresponding degree of ‘andness ’
(refer to (4)) being

andness(F) = 1 − orness(F)
= 1 − 1

3 (1 × 0.5 + 0 × 0.5)
= 0.833

Then, pattern #14 in this case becomes the most recommended one as having the
highest aggregated value which is the average of its two lowest degrees of target
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achievement for funny and attractive, while having good scores in achieving pretty
and flowery targets. Pattern #10 appears as the second recommended item
because of having a good score in meeting pretty target and not so bad score in
meeting attractive one, beside very well scores of target achievement on flowery
and funny. Looking at Fig. 5, one may have an impression that the uncertain
judgments of patterns #14 and #18 on correspondingly selected features are
somewhat similar. More concretely, pattern #18 has the third highest aggregated
value which is the average of its two lowest degrees of target achievement also
for funny and attractive like the case of pattern #14 as shown in Table 4.

Finally, if quantifier ‘all ’ is used, the aggregation operator F is a pure ‘AND’
operator, i.e. andness(F) = 1. In this case, we see that pattern #10 disappears
from the top three recommended items due to the target achievement for at-
tractive, while pattern #30 becomes the third recommended item, after patterns
#14 and #18, as having the third highest aggregated value.

5 Conclusion

In this paper, firstly we have formulated the evaluation problem of Japanese
traditional crafts in which product items are essentially evaluated according
kansei features reflecting esteem and aesthetic aspects of human beings percep-
tion on them. Practically, decisions on which traditional items to purchase or
use are heavily influenced by personal feelings/characteristics, we have proposed
a consumer-oriented evaluation model targeting on recommendation requests
specified by consumers’ feeling preferences. Particularly, the proposed evalua-
tion model aims at providing a recommendation to a particular consumer that
which product items would best meet her feeling preference predefined. An ap-
plication for Kutani porcelain has been provided to illustrate how the proposed
evaluation model works.
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Summary. Uncertainties in the real world often appear as variabilities of observed
data under similar conditions. In this paper, we use interval functions to model un-
certainty and function volatility. To estimate such kinds of functions, we propose a
practical interval function approximation algorithm. Applying this algorithm, we have
studied stock market forecasting with real economic data from 1930-2004. The com-
putational results indicate that interval function approximation can produce better
quality forecasts than that obtained with other methods1.

1 Introduction

1.1 Interval Function

Functions have been among the most studied topics in mathematics and appli-
cations. Provided in analytical form, a function can be easily examined for its
properties. However, in real world applications, the analytical form of a function
is often unknown. To discover a function that properly models an application is
a major challenge. Hence, computational methods on interpolation and approx-
imation are often applied in estimating a function. Also, the main objective of
studying differential and integral equations is to search for the unknown function
that satisfies given conditions either theoretically or computationally.

Real world observations often differ from from the exact mathematical defini-
tion of a function. Even for a fixed x, the observed values of y may be different
from time to time. These kinds of uncertainties are traditionally considered as ef-
fects of random noise and are modeled with probability theory. These variations
of the value of a function f , for a given x, are often within a finite interval rather
than completely random. Also, due to imprecise measurement and control, the
value of x can be within an interval rather than an exact point. This means that
an observed data pair can be represented as an interval valued pair (x,y) rather
than precise point (x, y).

1 The computational results have been published recently [12]. This paper is a gener-
alized abstraction.

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 341–352, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Definition 1. Let f be a mapping from �n → � and x be an interval vector in
�n (i. e. each component of x is an interval in �). If for any interval vector x
there is an interval y such that f(x) = y, then f is an interval function.

We use Figure 1 to illustrate a volatile function that can be better modeled
with a interval function. In observing the function values in the figure repeatedly,
due to imprecise measurement and control, one may obtain different values of
y even for a “fixed” x. More importantly, even one can control x precisely and
get the exact y, the point data pairs (x, y) can be misleading when use them
in classical function interpolation and approximation. Therefore, an observation
recorded as (x,y) should be more appropriate.

Fig. 1. A volatile function

We say that a real valued function f is ‘volatile’ in a domain D, if within
any small subset of D the sign of the derivatives of f alternates frequently.
Figure 1 presents a ‘volatile’ function. Real world examples of volatile functions
include stock prices during any volatile trading day and recorded seismic wave.
As shown in Figure 1, for a volatile function, it would be more appropriate to
use an interval valued pair to record an observation.

1.2 The Objective of This Paper

Using observed discrete data pairs (x, y) to computationally approximate an
unknown function has been intensively studied. Numerical polynomial interpo-
lation and the least squares approximation are the classical methods in scientific
computing. In this paper, we view uncertainty as function volatility modeled
with interval valued function. Our objective is to establish a general algorithm
that can approximate an unknown interval function. In other words, we try to
estimate an interval function from a collection of interval valued pairs (x,y).
Algorithms on interpolating interval functions have been discussed in [13]. In
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this paper, we focus on approximation, specifically, on the least squares approx-
imation, since it is probably the most broadly used computational method in
function approximation.

The rest of this paper is organized as the follow. Section 2 reviews briefly
the classical least-squares approximation. Section 3 presents an algorithm for
interval function least squares approximation. Section 4 discusses assessment
indicators. Section 5 presents a case study. Section 6 concludes the paper.

2 Least Squares Approximation

In this section, we briefly review the principle and computational methods of
the ordinary least squares approximation.

2.1 Basis of a Function Space

Let us start with basic concepts related to a function space first.

Definition 2. Let F be a function space and Φ = {φ0, φ1, · · · , φn, · · ·} be a set
of functions in F . We say that Φ is a basis of F if for any function f ∈ F and
any given ε > 0 there is a linear combination of φ, f =

∑

j

αjφj , such that

|f(x) −
∑

j

αjφj | < ε for all x in the domain.

For example, the set {1, x, x2, · · ·} is a basis of polynomial function space as
well as a basis of a function space that consists of all continuous functions. Of
course, there are other bases for a function space. For example, Chebychev poly-
nomials, Legendre polynomials, sine/cosine functions, and others are commonly
used as bases in approximating continuous functions.

2.2 The Least Squares Principle

For a continuous function f (even with countable discontinuities), we may ap-
proximate it as f(x) ≈

∑

0≤j≤m

αjφj(x), where φj(x) is a preselected set of m

basis functions. To determine the coefficient vector α = (α0, α1, · · · , αm)T , the
least squares principle requires that the integral of the squares of the defer-
ences between f(x) and

∑

0≤j≤m

αjφj(x) is minimized. In other words, applying

the least-squares principle in approximating a function f , one selects the vector

α = (α0, α1, · · · , αm)T that minimizes
∫ ⎛

⎝f(x) −
∑

0≤j≤m

αjφj(x)

⎞

⎠
2

dx.

2.3 Discrete Algorithm

In real world applications, one usually only knows a collection of N pairs of
(xi, yi) rather than the function y = f(x). Therefore, one minimizes the total
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sum
N∑

i=1

⎛

⎝yi −
∑

0≤j≤m

αjφj(xi)

⎞

⎠
2

dx instead. The classical algorithm that com-

putationally determines the coefficient vector α is as the follow:

Algorithm 1

(i) Evaluate the basis functions φj(x) at xi for all 1 ≤ i ≤ N and 1 ≤ j ≤ m;
(ii) Form the matrix

A =

⎛

⎜⎜⎜⎜⎝

N Σiφ1 Σiφ2 · · · Σiφm

Σiφ1 Σiφ
2
1 Σiφ1φ2 · · · Σiφ1φm

Σiφ2 Σiφ2φ1 Σiφ
2
2 · · · Σiφ2φm

· · · · · · · · · · · · · · ·
Σiφm Σiφmφ1 Σiφmφ2 · · · Σiφ

2
m

⎞

⎟⎟⎟⎟⎠
(1)

and the vector

b = (Σiyi Σiyiφ1(xi) Σiyiφ2(xi) · · ·Σiyiφm(xi))T ; (2)

(iii) Solve the linear system of equations Aα = b for α.

The linear system of equations Aα = b above is called the normal equation. In
stead of normal equations, a more current approach applies a design matrix with
a sequence of Householder transformations to estimate the vector α. For details
about Householder transformations, it is out of the main scope of this paper,
readers may refer [16] or most books that cover computational linear algebra.
Although the basic idea of this paper can be applied to both approaches, we use
the normal equation approach in the rest of is paper for its simplicity.

2.4 Time Series and Slicing-Window

We now switch our attention to the dataset. In real world applications, an ob-
served data pair (xi, yi) is often associated with a specific time. The collection
of data pairs, if ordered chronically, is called a time series. Time series have been
extensively studied for prediction and forecasting [5] and [7]. Rules and func-
tions often rely on a specific time period. We call it time-varying, that is, the
relationship is valid for a limited time period. Therefore, in applying function
approximation on a time series, one should use only data inside an appropri-
ate time-window to estimate the relationship. By slicing the time-window (also
called rolling), one obtains a sequence of function approximations such that each
of them valid only for a specific time-window.

3 Interval Function Approximation

Previous studies on least squares approximation mostly assume, if not all, point
valued data. There are several computational issues that need to be considered
in order to apply Algorithm 1 on interval valued pairs (x,y) to approximate an
interval function.
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3.1 Computational Challenges

With interval arithmetic [17], it is straightforward to perform both steps 1 and
2 in Algorithms 1. However, it presents a challenge in the step 3. This is because
the normal equations are now interval systems of linear equations Aα = b. The
solution set of an interval linear system of equations is mostly irregular shaped
and non-convex [18]. A naive application of interval arithmetic to bound the
solution vector α may cause serious overestimation due to the wrap effects, and
then negatively affect the approximation quality. Using the design matrix ap-
proach would not solve the problem since finding a Householder transformation
for an interval matrix remains a challenge.

3.2 An Inner Approximation Approach

While an interval x is usually presented by its lower and upper bounds as x =

[x, x], it can also be represented by its midpoint mid(x) =
x + x

2
and its width

w(x) = x−x. This creates a two-step approach where we consider the midpoint
and width separately in each of the two steps.

Instead of finding the lower and upper bounds of the interval vector α in the
step 3 of Algorithm 1, let us first try to find its midpoint vector, which is a scalar
vector. This suggests us to match the center of two interval vectors Aα and b
in the interval linear system of equations Aα = b. Let Amid be the midpoint
matrix of A, and bmid be the midpoint vector of b. We solve the non-interval
linear system of equations Amidα = bmid for α.

We would like to emphasize that the result of y = f(x) ≈ α0 +
∑

1≤j≤m

αjφj(x)

is an interval even when we use the midpoint of the interval vector α in the
calculation. This is because of that the independent variable x is interval valued.
However, by collapsing an interval vector α to its midpoint, we could reasonably
expect that the approximation is an inner interval approximation.

3.3 Width Adjustment

Now, let us consider the width. One may try to look for the width vector of α
vector or for the width of y. There can be different computational heuristics too.
For example, one may select a width vector that makes Aα as close as possible to
b in the step 3 of Algorithm 1. One may also use widths to perform least-square
approximation to estimate the width of y. Another computational heuristic is
to adjust the width by multiplying a scale factor to the inner approximation. In
our case study, we adopted the later approach. We believe that there are still
many open questions for further study on width adjustment.

3.4 Interval Least-Squares Approximation

By summarizing the above discussions, we revise Algorithm 1 to Algorithm 2
below for interval function least squares approximation.
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Algorithm 2

(i) Input available interval data pairs (xi,yi) for 1 ≤ i ≤ N ;
(ii) Evaluate matrix A and vector b with interval arithmetic;
(iii) Find Amid and bmid, the midpoint matrix of A and the midpoint vector of

b, respectively;
(iv) Solve the linear systems of equations: Amidα = bmid;
(v) Apply the vector α to calculate an inner approximation with interval arith-

metic;
(vi) Modify the initial approximation with a width adjustment.

3.5 Other Approaches to Obtain an Interval Approximation

One may obtain an interval approximation without using interval arithmetic
at all. The lower and upper bounds of interval data pairs (xi,yi) form two
collections of point data (xi, yi

) and (xi, yi). By applying point least square
approximation to them separately, one can obtain two point estimations. These
two estimations can form an interval estimation. We call this approach the min-
max interval approximation. This has been reported and applied in [10] and [11].

Another way to obtain an interval approximation is to apply classical statis-
tic/probabilistic approach. By adding to and subtracting from a point approxi-
mation a certain percentage of standard deviations, one can obtain forecasting
intervals. In the literature, this is called a confidence interval. However, the case
study in Section 5 of this paper implies that, at least in certain cases, interval
function lease squares approximation may produce better computational results
than that obtained with the min-max interval and confidence interval.

4 Assessing Interval Function Approximation

There are different ways to produce an interval approximation. A immediate
question is how to assess the quality of different interval estimations. We define
two measurements for quality assessment of an interval approximation.

Definition 3. Let yest be an approximation for the interval y. The absolute
error of the approximation is the absolute sum of the lower and upper bounds
errors, i.e. |y

est
− y| + |yest − y|.

Example 1. If one obtained [−1.02, 1.95] as an approximation for the interval
[−1.0, 2.0], then the absolute error of the estimation is |(−1.02)−(−1.0)|+|1.95−
2.0| = 0.02 + 0.05 = 0.07.

Since both yest and y are intervals, an additional meaningful quality mea-
surement can be defined. The larger the overlap between the two intervals the
better the approximation should be. By the same token, the less the non-overlap
between the two intervals the more accurate the forecast is. In addition, the ac-
curacy of an interval estimation should be between 0% and 100%. By using the
notion of interval width, which is the difference of the upper and lower bounds
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of an interval, we can measure the intersection and the union (or the convex
hull) of the two intervals. Let w( ) be the function that returns the width of an
interval. Then, we define the concept, named the accuracy ratio of an interval
approximation, as the follow.

Definition 4. Let yest be an approximation for the interval y. The accuracy ra-

tio of the approximation is
w(y ∩ yest)
w(y ∪ yest)

if (y∩yest) 	= ∅. Otherwise, the accuracy

ratio is zero.

Example 2. Using [−1.02, 1.95] to approximate the interval [−1.0, 2.0], the

accuracy ratio is
w([−1.02, 1.95] ∩ [−1.0, 2.0])
w([−1.02, 1.95] ∪ [−1.0, 2.0])

=
w([−1.0, 1.95])
w([−1.02, 2.0])

=
2.95
3.02

=97.68%.

As in classical statistics, for a collection of interval estimations, one can cal-
culate the mean and standard deviation of the absolute error and the accuracy
ratio. Furthermore, one may also apply probability theory to perform compar-
isons of different approximations.

5 Case Study: Forecasting the S & P 500 Index

The S & P 500 index is a broadly used indicator for the overall stock market.
Using interval least squares approximation, we have performed S & P 500 an-
nual forecast with astonishing computational results[9] and [12]. We report it
here again as a case study with comparisons against the result obtained with
traditional ordinary least squares forecasting.

5.1 The Model

Driven by macroeconomic and social factors, the stock market usually varies
with time. The main challenge in studying the stock market is its volatility and
uncertainty. The arbitrage pricing theory (APT) [20] provides a framework that
identifies macroeconomic variables that significantly and systematically influence
stock prices. By modeling the relationship between the stock market and relevant
macroeconomic variables, one may try to forecast the overall level of the stock
market.

The model we use in this case study is a broadly accepted one by Chen, Roll
and Ross (1986). According to their model, the changes in the overall stock
market value (SPt) are linearly determined by the following five macroeconomic
factors: the growth rate variations of seasonally-adjusted Industrial Production
Index (IPt); changes in expected inflation (DIt) and unexpected inflation (UIt);
default risk premiums (DFt); and unexpected changes in interest rates (TMt).
This relationship can be expressed as

SPt = at + It(IPt) + Ut(UIt) + Dt(DIt) + Ft(DFt) + Tt(TMt)

By using historic data, one may estimate the coefficients of the above equation
to forecast changes of the overall stock market. There is a general consensus in
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the financial literature, that relationships between financial market and macroe-
conomic variables are time-varying. Hence the coefficients are associated with a
time-window.

In the literature, it is called an in-sample forecast if using the obtained co-
efficients in a time-window and the equation above to calculate the SP for the
last time period in the time-window. It is called an out-of-sample forecast if us-
ing the obtained coefficients in a time-window to calculate the SP for the first
time period that immediately follows the time-window [4]. By slicing the time-
window (also called rolling), one obtains a sequence of coefficients and forecasted
SP values. The overall quality of forecasting can be measured by comparing the
forecasts against actual SP values. In practice, the out-of-sample-forecast is more
useful than in-sample-forecast because it can make predictions.

5.2 The Data

So far the primary measurements used in economics and finance are quantified
points. For instance, a monthly closing value of an index is used to represent the
index for that month even though the index actually varies during that month.
The available data in this case study are monthly data from January 1930 to
December 2004. We list a portion of the data here.

Date UI DI SP IP DF TM
30-Jan -0.00897673 0 0.014382062 -0.003860512 0.0116 -0.0094
30-Feb -0.00671673 -0.0023 0.060760088 -0.015592832 -0.0057 0.0115
30-Mar -0.00834673 0.0016 0.037017628 -0.00788855 0.0055 0.0053
30-Apr 0.00295327 0.0005 0.061557893 -0.015966279 0.01 -0.0051
30-May -0.00744673 -0.0014 -0.061557893 -0.028707502 -0.0082 0.0118
30-Jun -0.00797673 0.0005 -0.106567965 -0.046763234 0.0059 0.0025

...... ...... ... ... ... ... ...

04-Jun 0.00312327 -0.0002 0.026818986 0.005903385 -0.0028 0.0115
04-Jul -0.00182673 0.0002 -0.024043354 0.00306212 0.0029 0.0147
04-Aug 0.00008127 0.0002 -0.015411102 -0.002424198 0 0.0385
04-Sep 0.00156327 0.0001 0.026033651 0.007217235 0.0005 0.0085
04-Oct 0.00470327 0 0.000368476 0.002001341 0.001 0.0143
04-Nov -0.00002273 0 0.044493038 0.006654848 0.0034 -0.0245
04-Dec -0.00461673 0.0004 0.025567309 0.001918659 0.0007 0.0235

In this case study, we use a time-window of ten years to obtain the out-of-
sample annual forecasts for 1940-2004.

5.3 Interval Rolling Least Squares Forecasts

To perform interval rolling least squares forecasts, we need interval input data.
From the provided monthly data, for each of the attributes, we choose its
annual minimum and maximum to form the interval input data. By applying
Algorithm 2, we obtain initial forecasts first. For each of them, we then adjust
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the width of the predicted S & P 500 interval to the average of that of those
within the time-window. The program was written in C++. The software pack-
age IntBLAS [19] was applied for interval and related linear algebra operations.
Figure 2 illustrates the out-of-sample annual interval forecasts.

Fig. 2. Out-of-Sample Annual Interval Forecasts(1940-2004)

For the purpose of quality comparison, we calculated the annual point fore-
casts that are commonly used in financial study. We obtained the out-of-sample
annual forecasts (in percent) for a period of 1940-2004. The out-of-sample annual
point forecasts have an average absolute forecasting error of 20.6% with a stan-
dard deviation of 0.19. By adding to and subtracting from the point-forecasts
with a proportion of the standard deviation, we may form confidence interval
forecasts with 95% statistical confidences.

It is worth pointing out that the ranges of Figure 2 are significantly less than
that of Figure 3 at the ratio only about 14%.

5.4 Quality Comparisons

To assess the quality of the above forecasts, we use the following indicators: (1)
the average absolute forecast error, (2) the standard deviation of forecast errors,
(3) the average accuracy ratio, and (4) the number of forecasts with 0% accuracy.
We summarize the statistics of the quality indicators in the table below.

All measured indicators for forecasting quality in the table suggest that
interval OLS significantly outperform point-based forecasts with a much less
mean forecast error. The much smaller standard deviations produced by the in-
terval approaches indicate that the interval forecasting is more stable than other
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Fig. 3. Out-of-Sample Annual Point Forecasts (1940-2004)

Table 1. Quality comparison of annual forecasts (1940-2004)

Methods/Item Absolute standard Accuracy Number of
mean error deviation ratio 0 accuracy

OLS 0.20572 0.18996 NA NA
std dev. 95% confidence 0.723505 0.311973 0.125745 5
Min-Max interval 0.066643 0.040998 0.4617 0
Initial interval Fcast 0.073038 0.038151 0.385531 0
Interval Fcast 0.0516624 0.032238 0.641877 0

comparing methods. Compared with the point-based confidence interval fore-
casting, interval methods produce a much higher average accuracy ratio. The
interval scheme with width adjustments further improves the overall forecast-
ing quality of initial approximations in terms of the higher average accuracy
ratio. All forecasts with interval computing have a positive accuracy ratio while
a number of the point-based confidence intervals has zero accuracy.

6 Conclusion

In this paper, we model uncertainty as volatilities of a function. It is more rea-
sonable to record volatile data as interval valued nodes of an interval function
rather than point values. To apply classical least squares approximation with
discrete interval valued nodes, we use interval arithmetic to obtain the normal
equation. By using the midpoint approach, we calculate an inner approximation
initially. Then, we adjust its width with computational heuristics. Although the
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function to be approximated is unknown, we can still assess the quality of an
interval approximation statistically with provided data. These quality indicators
include absolute error, accuracy ratio, and their means and standard deviations.

Using this approach, in our case study, we performed annual forecasts for the
S & P 500 index from 1940-2004 with real economical data. Although it is merely
one of the initial attempts to use interval methods in financial forecasting, the
empirical results provide astonishing evidence that interval least squares approx-
imation may outperform traditional point approaches in terms of the overall less
mean error and higher average accuracy ratio. Hence, interval methods have a
great potential in dealing with uncertainty.
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Summary. Uncertainty is the main obstacle in predicting crude oil price. Although
there are various models and computational methods on crude oil price forecasting
in literature, most of them do not effectively predict the variability of crude oil price
due to uncertainty. Very recently, Hu and He [2] reported of using ILS (Interval Least
Square) approach to forecast the stock market and obtained much better results than
that obtained with traditional point methods, In this paper, we investigate if the ILS
approach can forecast the relationship between commodity inventory levels and crude
oil spot prices effectively. Our empirical study suggests that both the ILS method and
the confidence interval method can produce comparable quality forecasts. While the
computational result produced by the ILS method seems slightly worse than the 95%
confidence intervals in two quality measurements, the differences are negligible. On a
new forecasting quality measurement proposed in this paper, the ILS method produces
results better than the 95% confidence intervals. Hence, interval method is a feasible
alternative in crude oil price forecasting.

1 Introduction

1.1 Forecasting Crude Oil Price

As a strategic resource, crude oil and its trade have attracted extensive atten-
tion for a long time. Since the beginning of this century, international crude oil
price has continued to rise rapidly. Therefore, the crude oil price forecasting has
become a focus of economists and decision makers.

Recently, numerous studies have focused on the relationship between com-
modity inventory levels and spot prices. Specifically, in the crude oil market,
previous work has explained a relationship between crude oil price and total in-
ventories (crude plus products) of Organization for Economic Cooperation and
Development (OECD) countries. For example, Pindyck [5] described the short-
run dynamic relationship between commodity prices and inventories by using
the petroleum markets for illustrations; Considine and Larson [1] studied the
presence of risk premiums on crude oil inventories.

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 353–363, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Ye, Zyren, and Shore [6] developed a more practical simple model for short-
term crude oil price forecasting. The model is easily interpreted and accepted,
hence, it is intuitively appealing to decision-makers. The model also provides
good in-sample and out-of-sample dynamic forecasts for the post-Gulf War time
period. In addition to providing good forecasting results, a desirable feature of
the model is that it can readily be implemented in a spreadsheet or other software
package, with the variables easy to update.

Ye, Zyren, and Shore [7] also provided a nonlinear-term model, which im-
proves upon the model that assumes only linear price adjustments to inventory.
The model nonlinearity is based on the feature that inventory has a zero lower
bound or a minimum operating requirement. Two nonlinear inventory variables
are incorporated: one for the low inventory state and another for the high in-
ventory state of the crude oil market. Compared with the linear forecast model,
the nonlinear model demonstrates its superiority in both the model fitness and
forecasting ability.

1.2 Interval Computing

Moore [3] proposed interval analysis in the late of 1950’s. Since then, thousands
of research articles and numerous books have appeared on the subject. The web-
site of Interval Computations [8] provides comprehensive information on interval
computations. An increasing amount of software resources for interval compu-
tations are available through the Internet. Interval computation, different from
classical point arithmetic, has contributed a lot in many researching fields. For
illustration, Hales and Ferguson solved the Kepler conjecture about the densest
arrangement of spheres in space by using interval computing [8]. This work led
them the 2007 Robbins Prize by the American Mathematical Society. In his re-
sponse to this award, Hales explicitly thanked those who developed the tools of
interval computations.

Interval computing does contribute unique merits compared with traditional
point methods in the following aspects. First of all, interval computing can bound
the errors of finite digit floating-point computing. Interval computations yield a
pair of numbers, an upper and a lower bound, which are guaranteed to enclose
the exact answer. Maybe we still don’t know the truth, but at least we know how
much we don’t know. For example, interval arithmetic has been used in com-
puters to cope with some of the continuous and infinite aspects of mathematics
to fence the round-off errors, which might lead to inaccurate results. Secondly,
interval computing plays an important role in dealing with uncertainty in com-
putational modeling. In the real world, the value of data may not be precisely
known due to certain forms of uncertainty. Hence, it is unreasonable to use point
data for that may lead to inappropriate results especially when the inaccuracy
is not negligible. One approach to dealing with such problem is to use intervals,
which is not an approximate value of the de-sired data but is guaranteed to
contain the unknown value. Thirdly, in reality, many variables are bounded by
intervals for a given time. For instance, macroeconomic variables definitely vary
within intervals during a given period and the point valued data does not reflect
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the variability of these variables. Therefore, it makes more sense to use interval
inputs instead of the point-based data for that they contain more in-formation.
Last but not the least, if the predicted variable possesses the property mentioned
above, it is more reasonable to provide interval forecasting outputs to decision
makers than the point valued ones.

1.3 Motivation of This Work

In this paper, we propose to apply interval methods in monthly crude oil spot
price forecasting for the following reasons.

First, as mentioned above, interval data contains more information than point
data. In Ye et al. [7], two new variables were incorporated to capture the non-
linear behavior of inventory and the forecasting ability has been improved. In
other words, these new variables introduce more information to the former linear
model in Ye et al [6]. In this paper, instead of adding new variables to the former
model, we directly form interval input data to characterize the volatility of all
the variables by which more information were included.

Secondly, variables such as crude oil spot price definitely vary frequently
within an interval during a given month. Thus it is much more meaningful to
supply interval valued forecasting outputs than the ordinary point valued ones.

Thirdly, Hu and He [2] have developed an interval least squares scheme and
ap-plied it in forecasting the S & P 500 index. The annual interval forecasts they
obtained are in much better quality than that obtained with point methods.
Inspired by their work, we would like to investigate whether interval method is
reasonable in forecasting other economical variables, as of crude oil spot price.
To evaluate the forecasting quality, we not only apply the same measurements
proposed by Hu and He, but also propose a new measurement which checks
how many times that the forecasting outputs fail to encompass actual monthly
average oil spot prices.

The rest of this paper is organized as follows. We introduce the model equa-
tions used in this study and review the interval least squares method (ILS) and
rolling forecasting in Section 2. Then we describe the data and software for the
empirical study in Section 3. We report the computational results in both numer-
ical tables and graphical charts, and compare them with 95% confidence intervals
(CI)1 of point forecasts in Section 4. We conclude this paper with possible future
work in Section 5.

2 The Model and Computational Methods

In this study, we use the oil price forecasting model established by Ye, Zyren
and Shore [6]. We use this model mainly because of its broad acceptance in the
literature. In this section, we briefly review this model and then introduce the
interval least square method reported in [2]. Meanwhile, some computational
details are provided.
1 A confidence interval for a point forecast specifies a range of values within which

the actual average monthly oil spot price may lie.
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2.1 The Model

In Ye, Zyren and Shore [6], the observed level of petroleum inventory is decom-
posed into two components: the normal level and the relative level. The former
is determined by historical seasonal movements and trends, and reflects the
normal market demand and operational requirements. The later represents the
difference between the observed and normal levels and reflects short-run market
fluctuations. The relative inventory level (denoted by RIN) is determined as

RINt = INt − IN∗t; IN∗t = a0 + b1T +
12∑

k = 2bkDk (1)

where IN is the actual inventory level and IN∗ is the normal inventory level.
Dk, k = 2, · · · , 12, are 11 seasonal dummy variables2 and T is time (T begins
with 1). a0, b1 and bk(k = 2, 3, · · · , 12) are parameters to be estimated. The
crude oil price forecasting model is

WTIt = a +
3∑

i=0

biPINt − i +
5∑

j=0

cjDj911 + dLAPR99 + eWTIt − 1 + ε (2)

In (2), WTI is the West Texas Intermediate crude oil spot price. Subscript t is
for the tth month; subscript i is for ith month prior to the tth month; Dj911(j =
0, 1, · · · , 5) referring to the 6 months from October 2001 to March 2002) is a set
of single monthly variables3 to account for market disequilibrium following the
September 11, 2001 terrorist attacks in the United States; LAPR99 is a level-
shifting variable4 corresponding to the effect that OPEC quota tightening had on
the petroleum market be-ginning in April 1999; a, bi, cj, d and e are coefficients
to be estimated.

Relationships between WTI and the explanatory variables are time-varying.
That is to say, the relationship may be valid for a limited time period. The
relationships and the forecasts are associated with a time-window. By rolling the
time window, one obtains a series of forecasts. The overall forecasting quality can
be measured by the average performance of the series. We follow the method of
rolling forecasting used by Hu and He [2]. In the paper, it is called an in-sample
forecast if using the obtained coefficients in a time window to calculate the WTI
for the last period in the time window. It is called an out-of-sample forecast if
using the obtained coefficients in a time window to calculate the WTI for the
first time period that immediately follows the time window.

2.2 Interval Least Square Method

As many economic variables are time-varying, it is more meaningful to ana-
lyze interval data rather than point data. This urges the emergence of interval
2 Dummy variables are binary variables. For example, when it is February, D2 equals

1 and other Dk(k = 3, 4, · · · , 12) equals 0.
3 Dj911 equals 1 at its corresponding month and equals 0 at all the other months.
4 LAPR99 is also a dummy variable. It equals 0 before April 1999 and equals 1 after

the month (including April 1999).
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econometrics. This cross field is still at its infancy, facing computational difficul-
ties and lack of theoretical basis. As for the simple linear regression for interval
data, Hu and He [2] propose a computational scheme. We summarize this scheme
here as Interval Least Square method.

In contrast to OLS, the inputs and outputs in ILS are intervals rather than
points, though at this stage it still relies on OLS to estimate coefficients of the
regression. The computational scheme is as follows:

(i) Read available interval data.
(ii) Find the midpoint of the intervals.
(iii) Solve the linear system of equations: Amidx = bmid for x
(iv) Apply the obtained coefficient vector x to calculate the initial prediction

with interval data using interval arithmetic
(v) Perform width adjustment for the initial prediction to make a forecast.

3 Data and Software for the Empirical Study

The major difference between this study and the traditional ones is the data type.
In this section, we present the details about the data source, data preprocessing,
and software used in our empirical study.

3.1 Data Source

The data we used in this study are monthly average West Texas Intermediate
crude spot prices and the monthly OECD total inventory levels from the website
of Energy Information Association (EIA). Average is commonly used in forecast-
ing monthly oil price. Ye et al. [6, 7] use average as the dependent variable. The
monthly data released by EIA official website is also the average of daily prices
in a single month. Thus we use the average as the dependent variable and pre-
dictor in point model as well as in one of our error measurements which will be
explained later. We substitute the OECD total inventory level for the OECD
commercial inventory level used in [6] mainly because of that the OECD com-
mercial inventory level is unavailable to access. The WTI spot price is in nominal
dollars per barrel and the inventory level is measured in million barrels.

In [6, 7], the authors limit their study to the period from Jan 1992 to April
2003. We do of the same in this study. In [6], the process of generating out-
of-sample forecasts begins by fitting the models for the Jan 1992 to Dec 1999
time period. We use the same length of this period, 96 months, as that of the
time window for our rolling forecasting. As noticed, the rolling forecasting is
interrupted by the event of September 11, 2001. The crude oil spot price fell and
rose dramatically after this event. Therefore, six dummy variables are placed
in the model. Consequently, because of the dummy variables, the model cannot
produce appropriate forecasts for the six months after the event. Thus, the six
months are not forecasted. The period of in-sample forecasts is from Dec 1999 to
April 2003, and that of out-of-sample forecasts is from Jan 2000 to April 2003,
excluding the period of Oct 2001 to March 2002.
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3.2 Data Preprocessing

The monthly spot price interval is formed by the minimum and the maximum
daily price in the month. The relative inventory level is calculated by using
formula (1). Given the common sense that the inventories vary during a month,
we transform the relative level into interval data by adding and subtracting a
certain percentage. The percentage is determined by repeatedly experiments. In
this study, as the percentage grows, the average Absolute Error and the average
Accuracy Ratio also grow. We find that around 40%, the 95% confidence interval
forecasts and the ILS interval forecasts are not so different to each other.

The percentage seems high, but that doesn’t necessarily mean that the fluc-
tuations are fierce, because it is the percentage of the “relative” inventory level
rather than the observed inventory level. A high percentage against the ”rela-
tive” level may only count for a small percentage against the whole inventory.
Using the method of adding and subtracting a percentage of the relative level
suggests that the widths of the intervals may vary significantly from each other.
The interval is going to be large when the inventory is far away from the normal
level, while to be small when the inventory is near the normal level. Thus, the
widths are related to the fluctuations of the inventory level. Large input inter-
vals are likely to produce large forecast intervals. When relative inventory level
varies around zero, it is not likely to get large forecast intervals, that is, fierce
fluctuations. In contrast, when the inventory level is far away from normal level,
the forecast will exhibit bigger fluctuations and become more sensitive. This
is consistent with common sense, when larger interval is interpreted as bigger
fluctuations. Therefore, comparing with intervals with constant width, intervals
formed in this way will cast non-linear effect on the widths of the price intervals.

3.3 Software

The software package we used in this study is developed and provided by Profes-
sor Chenyi Hu who visited the Academy in summer 2007. The package includes
a col-lection of interval linear algebra subroutines (Nooner and Hu [4]) and an
application program for interval least squares rolling forecasting. The package is
written in C++.

4 Computational Results and Comparisons

Using the method discussed in Section 2 and the data discussed in Section 3, we
obtain the empirical results that are presented in this section. Firstly, measure-
ments to access the quality of forecasts are discussed, followed by comparisons
of the empirical results that are showed in tables and diagrams.

4.1 The Error Measurements

Two error measurements are used to access the quality of the forecasts. One
is the Absolute Error, the sum of absolute forecast errors of lower bound and
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upper bound forecasts; the other is the Accuracy Ratio, the percentage of the
intersection of the forecast interval and the actual interval against the union of
the two intervals. The Accuracy Ratio should be between 0% and 100%. For
more details, please refer to Hu and He [2].

4.2 Comparison with Actual Monthly Price Interval

Using model (2) and ILS method described above, we obtain the in-sample and
the out-of-sample monthly interval forecasts. The forecast quality measurements
are shown is Table 1.

Table 1. The forecast quality of ILS method; percentage: 40%

in-sample out-of-sample

Average Absolute Error 3.147 3.511
Average Accuracy Ratio 51.932 48.557

In order to compare them with the results of point forecasting, we also calcu-
late the 95% confidence intervals of the point forecasts (using the same model
and the same forecasting period). The forecast quality of confidence intervals is
summarized in Table 2.

Table 2. The forecast quality of 95% confidence intervals

in-sample out-of-sample

Average Absolute Error 3.163 3.482
Average Accuracy Ratio 53.239 50.241

A comparison of the in-sample interval forecasts (ILS method) and the actual
intervals are shown in Figure 1, and that of the out-of-sample (ILS method) is
shown in Figure 2.

The two tables above show that the forecast capability of confidence interval
method and ILS method are comparable. Confidence interval method is slightly
better than ILS method. However, the difference is not huge. Although the new
method does not outperform the tradition one as used in forecasting annual
return of S&P index, it is comparable to the traditional one. Thus, it is reasonable
to use interval method in this case as well.

Aside from forecast quality, direct interval forecast is more meaningful. Unlike
confidence interval, which stands for the possible interval of the mean, interval
out-put from ILS method stands for the lower and upper boundaries of the price.
The meaning of interval output is clearer and more direct.
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Fig. 1. In-sample forecasts comparing with the actual WTI prices

Fig. 2. Out-of-sample forecasts comparing with the actual WTI prices

4.3 Comparison with Actual Monthly Average Price

The following tables show the forecasting quality of the two methods CI and ILS
by comparison them with the actual monthly average price of WTI crude oil.

Considering that decision makers who are used to interpret CI results may
want to know if the intervals encompass the actual monthly average prices,
especially in the case of out-of-sample forecast, we count the numbers of intervals
which do not include the actual monthly average price of both methods. The
results are represented in Table 3, and Figure 3 and Figure 4 are the related
graphs. As is shown in Table 3, the number of fails of ILS method is smaller
than that of CI method. The possibility of failure of ILS is 3% lower than that
of CI method. That is, in this case, ILS method is slightly better than traditional
CI method.

As is shown in Figures 3 and 4, forecasts of the two methods are not so different
from each other, because they are based on the same model. Although they use
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Fig. 3. Out-of-sample forecasts of CI method and monthly average oil spot price

Fig. 4. Out-of-sample forecasts of ILS method and monthly average oil spot price

Table 3. Statistics of out-of-sample forecasts, which fail to encompass actual monthly
average oil spot prices, of ILS method and CI method

Number of fails Prob.

ILS 6 17.65%
CI 7 20.59%

different approaches to produce the intervals, they share the same explanatory
variables and the same lags. The model, due to its simple, linear form, may
not perform well when the price fluctuates a lot. Yet, because we mainly focus
on comparing the two approaches-ILS and CI, how to improve the ability of the
model by, let us say, adding new variables, is not in our scope currently. However,
since the model is made for point data, to make a model for interval data may
improve overall forecast quality of ILS.
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5 Conclusions and Future Work

In this work we study the potentials of interval arithmetic to forecast economic
variables which manifest high uncertainty. Interval least square method is used
to predict monthly WTI oil spot price. We use data ranging from January 1992
to April 2003 to build the relative stock model (RSTK) based on which we
calculate the 95% confidence intervals for the rolling forecasts from December
1999 (in-sample) /January 2000 (out-of-sample) to April 2003. Then we apply
the ILS approach to the RSTK model to obtain direct interval forecasts for
the same period. The forecast results of traditional confidence interval method
and ILS method are compared from two views, the view of researchers of in-
terval arithmetic who emphasize intersections of intervals and the view of tradi-
tional decision makers who are familiar with average values. The empirical study
shows that for predicting oil prices, the interval method is al-most as good as
the tradition one. Thus, it is reasonable to use interval method in this case
as well.

We believe that interval method is more meaningful in analyzing constantly
changing economic variables and thus it is worth further studies following this
one. We mention three here. First, asymmetric intervals of relative inventory
level, for example, adding 40% and subtracting 60% to the point data, may
improve forecast quality, since there are literatures arguing about asymmetric
effects, like Ye et al. [7]. Second, the ILS method has the potential for improve-
ment. For instance, we can use information about the width of intervals to gain
better estimation of the coefficients. Since the estimation includes information
of both the midpoint and the width, the relationship between variables may
become more reliable. Finally, further efforts are needed to establish theoretical
foundation for interval economic analysis.
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Summary. Decision making of the severeness of the acute radiation syndrome is a
major challenge due to the fact that the radiation dose is not known and cannot eas-
ily be reconstructed. Although radiation accidents are relatively rare, an automatic
damage classification for individual medical prognosis of the health status of a patient
is necessary. Under the threat of nuclear terroristic attacks the problem has received
special attention.

Early classification of the severeness of the damage in case of the acute radiation
syndrome allows for separation of patients with irreversibly damaged cell renewal sys-
tems from those with reversible damage. As a consequence, the available resources for
the treatment of patients can be used most efficiently and, especially, therapeutic ac-
tions for patients with irreversible cell damage can be taken in time.

This paper concentrates on the damage to the hemopoietic system. Measurements
from available patient data are represented by time series of cell counts of the relevant
blood cell lines. Features extracted from reduced dynamic models form the basis for
automatic damage classification where emphasis is on an early classification based on
a time horizon not exceeding 10 days. Our newest results guarantee a generalization
rate in the range of 80%.

1 Introduction

Management of acute radiation accidents requires early recognition of the medi-
cal severeness of the irradiation damage. It is known that damage to the hemopoi-
etic system is a key indicator for classification [1, 3, 4, 11]. In the decision mak-
ing approach grading codes H1 to H4 are extracted from blood cell counts of
platelets, granulocytes, and lymphocytes of the individual patient. On this scale,
H4 represents the most severe irreversible radiation damage which requires stem
cell transplant. Consequently, a reliable and fast automatic classification is nec-
essary to separate grading code H4 mainly from grading code H3.

V.-N. Huynh et al. (Eds.): Interval/Probabilistic Uncertainty, ASC 46, pp. 364–371, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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The classification results could be substantially increased [6, 7] by an improved
new concept concerning the lymphocyte cell count in peripheral blood after
radiation exposure [8]. For a reduced time horizon of 10 days the developed
lymphopoietic modeling is a excellent starting point for the subsequent feature
extraction. In this paper, an automatic classification based on feature extraction
from patient data is proposed for early decision making of the severeness of the
acute radiation syndrome.

2 Feature Extraction

Patient data from cell counts of platelets, granulocytes, and lymphocytes in the
peripheral blood after acute radiation form the basis for feature extraction [5, 8].
Projections of the 4-dimensional feature space into two selected 2-dimensional
feature spaces are shown in Figure 1. The plot indicates that there is no domi-
nant clustering. Consequently an automatic classification procedure is a major
challenge.

3 Automatic Classification

As a common basis for automatic classification we use the information of the
given training data represented in the 4-dimensional feature space x in associa-
tion with the expert classification ω.

Due to the fact that nuclear accidents are rare events only a limited number
of sufficiently documented data records are available. For our classification we
use 65 sets of patient data recorded at the WHO Ulm database together with
their expert gradings (8 H1, 14 H2, 16 H3 and 27 H4). For training 50 sets are
used and for test purposes the remaining 15 sets with expert gradings (2 H1, 3
H2, 4 H3 and 6 H4) have been selected. This leads to 5.49 · 1012 combinations
[7]. From these combinations 10,000 have been selected randomly for evaluation
of the classification approach.

3.1 Bayesian Classification

The feature dependent probabilities P (ωj |x) for the four damage classes ωj with
j = 1 . . . 4, form the basis of the Bayesian classification [2, 10]. At first the
classification for the class ωi finally results from the probability distribution
P (ωi|x) > P (ωj |x) for all j �= i.

Using the theorem of Bayes the probability

P (ωj |x) =
p(x|ωj) · P (ωj)∑
j p(x|ωj) · P (ωj)

(1)

can be calculated from the a-priori probability for the damage class P (ωj) and
the class dependent probability density function p(x|ωj) for the feature values x.
The a-posteriori class dependent probability density function p(x|ωj) is usually
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Fig. 1. Projections from the 4-dimensional feature space with feature platelets, feature
lymphocytes, feature 1 granulocytes and feature 2 granulocytes in association with the
given expert classifications H1 (mild) H2 (moderate), H3 (severe), and H4 (irreversibel
damage)

determined from histograms in case of a low dimensional feature space and a large
number of measurement data. In the case under consideration class dependent
probability densities are estimated as parametric distributions using empirical
mean value μj and covariance matrix Σj for each class ωj .

In our approach the a-priori probabilities P (ωj) for the four classes j = 1 . . . 4
have been assumed to be equal, i.e., P (ωj) = 0.25. Using P (ωj |x) ≈ p(x|ωj) the
automatic classification can be simplified considerably with

P (ωj |x) ≈ p(x|ωj) =
1

|Σj |1/2 · (2π)n/2 · e−
1
2 (x−μj)T (Σj)−1(x−μj). (2)
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In a second step a decision rule to minimize the probability of false clas-
sification is introduced. The damage class ωk with the smallest risk of error
classification

R(ωAi|x) =
∑

j

λ(ωAi|ωEj) · P (ωEj|x)

will be selected. For the expert classification ωEj the 4 × 4 loss function matrix

λ(ωAi|ωEj) =

⎧
⎨

⎩

0 i = j
a i < j
b i > j

for i, j = 1, . . . , 4

is linked with the possible automatic classification results ωAi. The loss function
matrix allows to steer the automatic classification result.

If the automatic classification result corresponds to the expert classification
with i = j the loss function becomes zero. In all other cases i �= j special
weightings are possible. In our application a > b corresponds to a higher error
probability of weak damage classes. Finally for the automatic classification this
results in stronger damage classes. The influence of the weighting relation a/b
on the generalization rate (accuracy) is shown in Figure 2.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Weighting Relation a/b

G
en

er
al

is
at

io
n 

R
at

e 
in

 %

Fig. 2. Generalization rate using Bayesian classification

For a detailed evaluation the confusion matrix for the Bayesian classification is
given in Table 1. The sensitivity indicates the percentage of correctly classified
data for the respective expert classification. The precision corresponds to the
probability of the correctness of the result. The element in the lower right corner
corresponds to the accuracy of the correctly classified data records. As a result,
on the average 78.4% of the unknown test data are classified correctly.
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Table 1. Confusion matrix of automatic classification results with Bayesian classifica-
tion using the weighting relation a/b = 2

Expert Classification
H1 H2 H3 H4 Precision

T
es

t
R

es
ul

t H1 1.3687 0.6486 – – 0.6785
H2 0.6313 1.7883 0.2619 – 0.6669
H3 – 0.5630 3.0737 0.4752 0.7475
H4 – 0.0001 0.6644 5.5248 0.8926

Sensitivity 0.6844 0.5961 0.7684 0.9208 0.7837

3.2 Classification with Parzen Windows

A nonparametric method to calculate the necessarily class dependent probability
density function p(x|ωj) for the feature values x is based on specific kernel or
window functions [2, 9]. In our approach kernel functions ϕ(u) are gaussians
with localization at every feature space value xi and variable specific univariat
standard deviation hj . The number cj includes all training data sets with the
expert classification ωj

p(x|ωj) =
1
cj

·
cj∑

i=1

1
hj

ϕ

(
x − xi

hj

)
. (3)

Figure 3 shows the characteristic dependence of the generated probability density
function from the used kernel parameter hj . The computed probability density
function for the kernel parameter hj = 0.15 is very similar to the Bayesian case.
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Fig. 4. Generalization rate using classification with Parzen windows

The relation between class specific kernel parameter hj and general kernel
parameter h is given by

hj =
h

√
cj

. (4)

Details of the evaluation of the classification with Parzen windows for the
15 test cases are given by the confusion matrix in Table 2, analogously to the
Bayesian classification in Table 1. Best results for the accuracy are obtained
for the kernel parameter h = 0.56 with an average of 80.5% correctly classified
unknown test data.

Table 2. Confusion matrix of automatic classification results with Parzen windows
method using the kernel parameter h = 0.56

Expert Classification
H1 H2 H3 H4 Precision

T
es

t
R

es
ul

t H1 1.4686 0.3907 – – 0.7899
H2 0.5314 2.0048 0.3045 – 0.7057
H3 – 0.6045 3.1852 0.5850 0.7281
H4 – – 0.5103 5.4150 0.9139

Sensitivity 0.7343 0.6683 0.7963 0.9025 0.8049

4 Reliability of the Diagnosis Result

Both methods presented here are suitable for practical use. In every case an
accuracy of 78,4% (Bayes) to 80,5% (Parzen) is reached for all damage classes
H1 to H4. For both cases the false classification is at maximum the neighboring
damage class. Finally, the sensitivity for the irreversibel damage class H4 reaches
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Fig. 5. Receiver operating characteristic using Bayesian classification

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm

S
en

si
tiv

ity

H1
H2
H3
H4
h = 0.56

Increasing Kernel Parameter h

Fig. 6. Receiver operating characteristic using classification with Parzen windows

92,1% (Bayes) and 90,3% (Parzen) in connection with a false alarm rate of
7,4% (Bayes) and 5,7% (Parzen). Figures 5 and 6 show the receiver operating
characterstics for the described automatic classification methods.

The individual identification of the irreversible damaged hemopoietic system
is extremely important. Using our method it is possible to separate reversible
damage (H1, H2 and H3) and irreversible damage (H4) within 10 days after
exposition very reliable . The likelihood ratio LR+ for the positive test (H4)
results in 14,45 (Bayes) and 15,84 (Parzen), respectively. The likelihood ratio
LR− for the negative test (not H4) results in 0,085 (Bayes) and 0,102 (Parzen),
respectively.
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5 Conclusion and Outlook

In this paper, the acute radiation syndrome has been treated under the as-
pect of early damage classification. An automatic classification procedure using
Bayesian classification as well as classification with Parzen windows lead to best
results. In summary, the two presented automatic classification methods are ex-
cellent exclusion tests as well as diagnostic tests for an irreversible damage of the
hemopoietic system. This form take basis to develop a very reliable diagnostic
tool for decision making. A further goal must be to reduce the time horizon to
a few days after radiation exposure.
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