

Costin Badica, Giuseppe Mangioni,Vincenza Carchiolo,
and Dumitru Dan Burdescu (Eds.)

Intelligent Distributed Computing, Systems and Applications

Studies in Computational Intelligence,Volume 162

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 140. Nadia Magnenat-Thalmann, Lakhmi C. Jain
and N. Ichalkaranje (Eds.)
New Advances in Virtual Humans, 2008
ISBN 978-3-540-79867-5

Vol. 141. Christa Sommerer, Lakhmi C. Jain
and Laurent Mignonneau (Eds.)
The Art and Science of Interface and Interaction Design (Vol. 1),
2008
ISBN 978-3-540-79869-9

Vol. 142. George A. Tsihrintzis, Maria Virvou, Robert J. Howlett
and Lakhmi C. Jain (Eds.)
New Directions in Intelligent Interactive Multimedia,2008
ISBN 978-3-540-68126-7

Vol. 143. Uday K. Chakraborty (Ed.)
Advances in Differential Evolution, 2008
ISBN 978-3-540-68827-3

Vol. 144.Andreas Fink and Franz Rothlauf (Eds.)
Advances in Computational Intelligence in Transport, Logistics,
and Supply Chain Management, 2008
ISBN 978-3-540-69024-5

Vol. 145. Mikhail Ju. Moshkov, Marcin Piliszczuk
and Beata Zielosko
Partial Covers, Reducts and Decision Rules in Rough Sets, 2008
ISBN 978-3-540-69027-6

Vol. 146. Fatos Xhafa and Ajith Abraham (Eds.)
Metaheuristics for Scheduling in Distributed Computing
Environments, 2008
ISBN 978-3-540-69260-7

Vol. 147. Oliver Kramer
Self-Adaptive Heuristics for Evolutionary Computation, 2008
ISBN 978-3-540-69280-5

Vol. 148. Philipp Limbourg
Dependability Modelling under Uncertainty, 2008
ISBN 978-3-540-69286-7

Vol. 149. Roger Lee (Ed.)
Software Engineering,Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2008
ISBN 978-3-540-70559-8

Vol. 150. Roger Lee (Ed.)
Software Engineering Research, Management and
Applications, 2008
ISBN 978-3-540-70774-5

Vol. 151. Tomasz G. Smolinski, Mariofanna G. Milanova
and Aboul-Ella Hassanien (Eds.)
Computational Intelligence in Biomedicine and Bioinformatics,
2008
ISBN 978-3-540-70776-9

Vol. 152. Jaros�law Stepaniuk
Rough – Granular Computing in Knowledge Discovery and Data
Mining, 2008
ISBN 978-3-540-70800-1

Vol. 153. Carlos Cotta and Jano van Hemert (Eds.)
Recent Advances in Evolutionary Computation for
Combinatorial Optimization, 2008
ISBN 978-3-540-70806-3

Vol. 154. Oscar Castillo, Patricia Melin, Janusz Kacprzyk and
Witold Pedrycz (Eds.)
Soft Computing for Hybrid Intelligent Systems, 2008
ISBN 978-3-540-70811-7

Vol. 155. Hamid R. Tizhoosh and M.Ventresca (Eds.)
Oppositional Concepts in Computational Intelligence, 2008
ISBN 978-3-540-70826-1

Vol. 156. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Innovations in Bayesian Networks, 2008
ISBN 978-3-540-85065-6

Vol. 157.Ying-ping Chen and Meng-Hiot Lim (Eds.)
Linkage in Evolutionary Computation, 2008
ISBN 978-3-540-85067-0

Vol. 158. Marina Gavrilova (Ed.)
Generalized Voronoi Diagram: A Geometry-Based Approach to
Computational Intelligence, 2008
ISBN 978-3-540-85125-7

Vol. 159. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Artificial Intelligence Techniques for Computer Graphics, 2008
ISBN 978-3-540-85127-1

Vol. 160. P. Rajasekaran and Vasantha Kalyani David
Pattern Recognition using Neural and Functional Networks,
2008
ISBN 978-3-540-85129-5

Vol. 161. Francisco Babtista Pereira and Jorge Tavares (Eds.)
Bio-inspired Algorithms for the Vehicle Routing Problem, 2008
ISBN 978-3-540-85151-6

Vol. 162. Costin Badica, Giuseppe Mangioni,
Vincenza Carchiolo and Dumitru Dan Burdescu (Eds.)
Intelligent Distributed Computing, Systems and Applications,
2008
ISBN 978-3-540-85256-8

Costin Badica
Giuseppe Mangioni
Vincenza Carchiolo
Dumitru Dan Burdescu
(Eds.)

Intelligent Distributed
Computing, Systems and
Applications

Proceedings of the 2nd International
Symposium on Intelligent Distributed
Computing – IDC 2008, Catania, Italy, 2008

123

Costin Badica
Facultatea de Automatica, Calculatoare si
Electronica
Departamentul de Inginerie Software
Universitatea din Craiova
Bvd. Decebal, Nr. 107
200440, Craiova, Dolj
Romania
E-Mail: badica costin@software.ucv.ro

Giuseppe Mangioni
Dipartimento di Ingegneria Informatica e delle
Telecomicazioni
Universita di Catania
Viale A. Doria, 6
95125 Catania
Italy
E-Mail: Giuseppe.Mangioni@diit.unict.it

Vincenza Carchiolo
Dipartimento di Ingegneria Informatica e delle
Telecomicazioni
Universita di Catania
Viale A. Doria, 6
95125 Catania
Italy
Email: Vincenza.Carchiolo@diit.unict.it

Dumitru Dan Burdescu
Facultatea de Automatica, Calculatoare si
Electronica
Departamentul de Inginerie Software
Universitatea din Craiova
Bvd. Decebal, Nr. 107
200440, Craiova, Dolj
Romania
Email: burdescu dumitru@software.ucv.ro

ISBN 978-3-540-85256-8 e-ISBN 978-3-540-85257-5

DOI 10.1007/978-3-540-85257-5

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: 2008932399

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks.Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer.Violations are liable to prosecution under the German
Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Intelligent Distributed Computing – IDC Symposium Series was started as an initiative
of research groups from: (i) Systems Research Institute, Polish Academy of Sciences in
Warsaw, Poland and (ii) Software Engineering Department of the University of Craiova,
Craiova, Romania. IDC aims at bringing together researchers and practitioners involved
in all aspects of intelligent and distributed computing to allow cross-fertilization and
search for synergies of ideas and to enable advancement of research in these exciting
sub-fields of computer science. Intelligent Distributed Computing 2008 – IDC 2008
was the second event in this series. IDC 2008 was hosted by Dipartimento di Ingegneria
Informatica e delle Telecomunicazioni, Università di Catania, Italia during September
18-19, 2008.

This book represents the peer-reviewed proceedings of the IDC 2008. We received
58 submissions from 24 countries. Each submission was carefully reviewed by at least 3
members of the Program Committee. Acceptance and publication were judged based on
the relevance to the symposium themes, clarity of presentation, originality and accuracy
of results and proposed solutions. Finally 20 regular papers and 12 short papers were
selected for presentation and were included in this volume, resulting in acceptance rates
of 34.48 % for regular papers and 55.17 % for regular and short papers. The book
contains also 3 invited papers authored by well-known researchers in the field.

The 35 contributions in this book address many topics related to intelligent dis-
tributed computing, systems and applications, including: adaptivity and learning; agents
and multi-agent systems; argumentation; auctions; case-based reasoning; collaborative
systems; data structures; distributed algorithms; formal modeling and verification; ge-
netic and immune algorithms; grid computing; information extraction, annotation and
integration; network and security protocols; mobile and ubiquitous computing; ontolo-
gies and metadata; P2P computing; planning; recommender systems; rules; semantic
Web; services and processes; trust and social computing; virtual organizations; wireless
networks; XML technologies.

We would like to thank to Prof. Janusz Kacprzyk, editor of Studies in Computational
Intelligence series and member of the Steering Committee for their kind support and
encouragement in starting and organizing the IDC Symposium Series. We would like
to thank to the Program Committee members for their work in promoting the event

VI Preface

and refereeing submissions and also to all colleagues who submitted papers to the IDC
2008. We deeply appreciate the efforts of our invited speakers (in alphabetical order):
Prof. Alberto Montresor, Prof. Marcin Paprzycki, and Prof. Franco Zambonelli and
thank them for their interesting lectures. Special thanks also go to Prof. Michele Mal-
geri, Dr. Alessandro Longheu, and Dr. Vincenzo Nicosia from Università di Catania,
Italia, and to all the members of the Dipartimento di Ingegneria Informatica e delle
Telecomunicazioni, Università di Catania, Italia for their help with organizing the IDC
2008 event.

Craiova, Catania Costin Bădică
June 2008 Giuseppe Mangioni

Vincenza Carchiolo
Dumitru Dan Burdescu

Organization

Organizers

Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università di
Catania, Italia
Software Engineering Department, Faculty of Automation, Computers and Electronics,
University of Craiova, Romania

Conference Chairs

Giuseppe Mangioni, Università di Catania, Italia
Costin Bădică, University of Craiova, Romania

Steering Committee

Costin Bădică, University of Craiova, Romania
Janusz Kacprzyk, Polish Academy of Sciences, Poland
Michele Malgeri, Università di Catania, Italia
Marcin Paprzycki, Polish Academy of Sciences, Poland

Organizing Committee

Vincenza Carchiolo, Università di Catania, Italia
Michele Malgeri, Università di Catania, Italia
Giuseppe Mangioni, Università di Catania, Italia
Alessandro Longheu, Università di Catania, Italia
Vincenzo Nicosia, Università di Catania, Italia
Dumitru Dan Burdescu, University of Craiova, Romania
Mihai Mocanu, University of Craiova, Romania
Dan Popescu, University of Craiova, Romania

VIII Organization

Invited Speakers

Alberto Montresor, Dipartimento di Ingegneria e Scienza dell’Informazione, University
of Trento, Italy
Marcin Paprzycki, Systems Research Institute, Polish Academy of Sciences, Poland
Franco Zambonelli, Dipartimento di Scienze e Metodi dell’Ingegneria, University of
Modena and Reggio Emilia, Italy

Program Committee

Razvan Andonie, Central Washigton University, USA
Galia Angelova, Bulgarian Academy of Sciences, Bulgaria
Nick Bassiliades, Aristotle University of Thessaloniki, Greece
Frances Brazier, Vrije Universiteit, Amsterdam, Netherlands
Dumitru Dan Burdescu, University of Craiova, Romania
Giacomo Cabri, Università di Modena e Reggio Emilia, Italy
David Camacho, Universidad Autonoma de Madrid, Spain
Jen-Yao Chung, IBM T.J. Watson Research Center, USA
Gabriel Ciobanu, “A.I.Cuza” University of Iaşi, Romania
Valentin Cristea, “Politehnica” University of Bucharest, Romania
Paul Davidsson, Blekinge Institute of Technology, Sweden
Beniamino Di Martino, Second University of Naples, Italy
Vadim A. Ermolayev, Zaporozhye National University, Ukraine
Adina Magda Florea, “Politehnica” University of Bucharest, Romania
Chris Fox, University of Essex, UK
Maria Ganzha, Elblag University of Humanities and Economics, Poland
Adrian Giurca, Brandenburg University of Technology at Cottbus, Germany
De-Shuang Huang, Chinese Academy of Sciences, China
Axel Hunger, University of Duisburg-Essen, Germany
Mirjana Ivanović, University of Novi Sad, Serbia
Halina Kwasnicka, Wroclaw University of Technology, Poland
Ioan Alfred Leţia, Technical University of Cluj-Napoca, Romania
Alessandro Longheu, University of Catania, Italy
Heitor Silverio Lopes, Federal University of Technology - Parana, Brazil
José Machado, University of Minho, Portugal
Yannis Manolopoulos, Aristotle University of Thessaloniki, Greece
Urszula Markowska-Kaczmar, Wroclaw University of Technology, Poland
Ronaldo Menezes, Florida Institute of Technology, USA
Mihai Mocanu, University of Craiova, Romania
Alexandros Nanopoulos, Aristotle University of Thessaloniki, Greece
Viorel Negru, Western University of Timişoara, Romania
Ngoc-Thanh Nguyen, Wroclaw University of Technology, Poland
Peter Noerr, MuseGlobal, Inc., USA
Vincenzo Nicosia, University of Catania, Italy
George A. Papadopoulos, University of Cyprus, Cyprus

Organization IX

Myon Woong Park, Korea Institute of Science and Technology, Korea
Dana Petcu, Western University of Timişoara, Romania
Joël Quinqueton, CNRS & Montpellier University, France
Shahram Rahimi, Southern Illinois University, USA
Carlos Ramos, Instituto Superior de Engenharia do Porto, Portugal
Yucel Saygin, Sabanci University, Turkey
Rainer Unland, University of Duisburg-Essen, Germany
Laurenţiu Vasiliu, National University of Ireland, Ireland
Laurent Vercouter, Ecole des Mines de St-Etienne, France
Lucian Vinţan, Academy of Technical Sciences, Romania
Nikos Vlassis, Technical University of Crete, Greece
Peter Vojtáš, Charles University, Czech Republic
Gerd Wagner, Brandenburg University of Technology at Cottbus, Germany
Niek Wijngaards, D-CIS Lab / Thales Research & Technology, Netherlands
Franz Wotawa, Graz University of Technology, Austria
Jacek Zurada, University of Louisville, USA

Contents

Part I: Invited Papers

Intelligent Gossip
Alberto Montresor . 3

Infrastructure for Ontological Resource Matching in a Virtual
Organization
Micha�l Szymczak, Grzegorz Fr ↪ackowiak, Maria Ganzha,
Marcin Paprzycki, Sang Keun Rhee, Myon Woong Park,
Yo-Sub Han, Young Tae Sohn, Jihye Lee, Jae Kwan Kim 11

Architecture and Metaphors for Eternally Adaptive Service
Ecosystems
Franco Zambonelli, Mirko Viroli . 23

Part II: Regular Papers

An Agent Based Approach to the Selection Dilemma in CBR
Cesar Analide, António Abelha, José Machado, José Neves 35

Modeling Interactions in Agent-Based English Auctions with
Matchmaking Capabilities
Amelia Bădică, Costin Bădică . 45

Output-Driven XQuery Evaluation
David Bednárek . 55

Approximating All-to-All Broadcast in Wireless Networks
Doina Bein, S.Q. Zheng . 65

XII Contents

Trusting Evaluation by Social Reputation
Vincenza Carchiolo, Alessandro Longheu, Michele Malgeri,
Giuseppe Mangioni . 75

Linguistic Extraction for Semantic Annotation
Jan Dědek, Peter Vojtáš . 85

Xord: An Implementation Framework for Efficient XSLT
Processing
Jana Dvořáková, Filip Zavoral . 95

A Simple Trust Model for On-Demand Routing in Mobile
Ad-Hoc Networks
Nathan Griffiths, Arshad Jhumka, Anthony Dawson, Richard Myers 105

A Platform for Collaborative Management of Semantic Grid
Metadata
Michael Hartung, Frank Loebe, Heinrich Herre, Erhard Rahm 115

Distributed Approach for Genetic Test Generation in the
Field of Digital Electronics
Eero Ivask, Jaan Raik, Raimund Ubar . 127

A Planning-Based Approach for Enacting World Wide
Argument Web
Ioan Alfred Leţia, Adrian Groza . 137

A Distributed Immune Algorithm for Solving Optimization
Problems
Mariusz Oszust, Marian Wysocki . 147

Evaluation of Selective Distributed Discovery within
Distributed Bio-active Agent Community
Ognen Paunovski, George Eleftherakis, Konstantinos Dimopoulos,
Tony Cowling . 157

VPOET: Using a Distributed Collaborative Platform for
Semantic Web Applications
Mariano Rico, David Camacho, Óscar Corcho . 167

Are Many Heads Better Than One—On Combining
Information from Multiple Internet Sources
Jakub Stadnik, Maria Ganzha, Marcin Paprzycki . 177

Formal Modeling and Verification of Real-Time Multi-Agent
Systems: The REMM Framework
Francesco Moscato, Salvatore Venticinque, Rocco Aversa,
Beniamino Di Martino . 187

Contents XIII

Email Archiving and Discovery as a Service
Frank Wagner, Kathleen Krebs, Cataldo Mega, Bernhard Mitschang,
Norbert Ritter . 197

Similarity of DTDs Based on Edit Distance and Semantics
Aleš Wojnar, Irena Mlýnková, Jǐŕı Dokulil . 207

Timer-Based Composition of Fault-Containing Self-stabilizing
Protocols
Yukiko Yamauchi, Sayaka Kamei, Fukuhito Ooshita,
Yoshiaki Katayama, Hirotsugu Kakugawa, Toshimitsu Masuzawa 217

Calibrating an Embedded Protocol on an Asynchronous
System
Yukiko Yamauchi, Doina Bein, Toshimitsu Masuzawa, Linda Morales,
I. Hal Sudborough . 227

Part III: Short Papers

On Establishing and Fixing a Parallel Session Attack in a
Security Protocol
Reiner Dojen, Anca Jurcut, Tom Coffey, Cornelia Gyorodi 239

Constructing Security Protocol Specifications for Web
Services
Genge Bela, Haller Piroska, Ovidiu Ratoi . 245

On the Foundations of Web-Based Registries for Business
Rules
Adrian Giurca, Ion-Mircea Diaconescu, Emilian Pascalau,
Gerd Wagner . 251

Large-Scale Data Dictionaries Based on Hash Tables
Sándor Juhász . 257

Undo in Context-Aware Collaborative Ubiquitous-Computing
Environments
Marco P. Locatelli, Marco Loregian . 263

Understanding Distributed Program Behavior Using a
Multicast Communication Scheme
Mihai Mocanu, Emilian Guţuleac . 269

Multi-agent Conflict Resolution with Trust for Ontology
Mapping
Miklos Nagy, Maria Vargas-Vera, Enrico Motta . 275

XIV Contents

Algorithmic Trading on an Artificial Stock Market
Daniel Paraschiv, Srinivas Raghavendra, Laurentiu Vasiliu 281

Towards a Visual Definition of a Process in a Distributed
Environment
Dragoslav Pešović, Zoran Budimac, Mirjana Ivanović 287

A Multi-agent Recommender System for Supporting Device
Adaptivity in E-Commerce
Domenico Rosaci, Giuseppe M.L. Sarné . 293

Dynamically Computing Reputation of Recommender Agents
with Learning Capabilities
Domenico Rosaci, Giuseppe M.L. Sarné . 299

Topic Map for Medical E-Learning
Liana Stănescu, Dan Burdescu, Gabriel Mihai, Anca Ion,
Cosmin Stoica . 305

Author Index . 311

Part I

Invited Papers

Intelligent Gossip

Alberto Montresor

University of Trento, Italy
alberto.montresor@unitn.it

Summary. The gossip paradigm made its first appearance in distributed systems in
1987, when it was applied to disseminate updates in replicated databases. Two decades
later, gossip-based protocols have gone far beyond dissemination, solving a large and
diverse collection of problems. We believe that the story is not over: while gossip is not
the panacea for distributed systems, there are still virgin research areas where it could
be profitably exploited. In this paper, we briefly discuss a gossip-based “construction
set” for distributed systems and we illustrate how intelligent distributed computing
could benefit by the application of its building blocks. Simple examples are provided
to back up our claim.

1 Introduction to Gossip

Since the seminal paper of Demers et al. [3], the idea of epidemiological (or
gossip) algorithms has gained considerable popularity within the distributed
systems and algorithms communities.

In a recent workshop on the future of gossip (summarized on a special issue
of Operating System Review [12]), there has been a failed attempt to precisely
define the concept of gossip. The reason for this failure is twofold: either the
proposed definitions were too broad (including almost any message-based proto-
col ever conceived), or they were too strict (ruling out many interesting gossip
solutions, some of them discussed in the next section).

While a formal definition seems out of reach, it is possible to describe a pro-
totypical gossip scheme that seems to entirely cover the intuition behind gossip.
The scheme is presented in Figure 1.

In this scheme, nodes regularly exchange information in periodic, pairwise
interactions. The protocol can be modeled by means of two separate threads
executed at each node: an active one that takes the initiative to communicate,
and a passive one accepting incoming exchange requests.

In the active thread, a node periodically (every Δ time units, the cycle length)
selects a peer node p from the system population through function selectPeer();
it extracts a summary of the local state through function prepareMessage(); and
finally, it sends this summary to p. This set of operations is repeated forever.
The other thread passively waits for incoming messages, replies in case of active
requests, and modifies the local state through function update().

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 3–10, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

4 A. Montresor

1: loop
2: wait(Δ)
3: p ← selectPeer ()
4: s = prepareMessage()
5: send 〈request, s〉 to p
6: end loop

(a) active thread

1: loop
2: receive 〈t, sp〉 from all
3: if t = request then
4: s = prepareMessage()
5: send 〈reply, s〉 to p
6: end if
7: update(sp)
8: end loop

(b) passive thread

Fig. 1. The generic gossip scheme

The scheme is still too generic and can be used to mimic protocols that are
not gossip; as an example, we can map the client-server paradigm to this scheme
by simply having all nodes selecting the same peer. For this reason, this scheme
must be associated with a list of “rules of thumb” to distinguish gossip from
non-gossip protocols:

• peer selection must be random, or at least guarantee enough peer diversity
• only local information is available at all nodes
• communication is round-based (periodic)
• transmission and processing capacity per round is limited
• all nodes run the same protocol

These features are intentionally left fuzzy: for example “limited”, “local” or
“random” is not defined any further.

With this informal introduction behind, we can focus on what makes gossip
protocols so “cool” these days. The main reason is robustness: node failures do
not cause any major havoc to the system, and can be tolerated in large quantity;
message losses often cause just a speed reduction rather than safety issues. Low-
cost is another plus: load is equally distributed among all nodes, in a way such
that overhead may be reduced to few bytes per second per node.

The cause of such robustness and efficiency can be traced back to the inher-
ently probabilistic nature of gossip protocols. They represent a certain “laid-
back” approach, where individual nodes do not take much responsibility for the
outcome. Nodes perform a simple set of operations periodically, they are not
aware of the state of the entire system, only a very small (constant) proportion
of it, and act based on completely local knowledge. Yet, in a probabilistic sense,
the system as a whole achieves very high levels of robustness to benign failures
and a favorable (typically logarithmic) convergence time.

We claim that if adopted, the gossip approach can open intelligent distributed
computing to a whole variety of autonomic and self-* behaviors, bringing robust-
ness to existing intelligent computing techniques. This claim will be backed up
in two steps: first, by showing that several important problems in distributed

Intelligent Gossip 5

systems have a robust gossip solution; second, by showing how these solutions
can be integrated in existing computational intelligence techniques.

2 Gossip Lego: Fundamental Bricks

Beyond the original goal of information dissemination, gossip protocols have been
used to solve a diverse collection of problems. More interestingly, it appears now
that most of these solutions can be profitably combined to solve more complex
problems. All together, these protocols start to look like a construction set, where
protocols can be combined as Lego bricks. Figure 2 lists some of these bricks;
the following subsections briefly discuss each of them.

Fig. 2. Gossip Lego: Fundamental bricks

2.1 Peer Sampling

The first piece, peer sampling, may be seen as the green Lego baseplate where all
kind of models are built. In fact, the problem it solves is at the basis of gossip:
how to keep together the population of nodes that constitute the system, in such
a way that it is possible implement function selectPeer () that selects nodes from
such population.

Instead of providing each node with a global view of the system, the peer sam-
pling service provides each node with continuously up-to-date random samples
of the entire population. Higher-level gossip protocols may transparently imple-
ment selectPeer () by randomly choosing a per from this sample. Locally, each
node only see the random node returned by selectPeer (); globally, the nodes and
their samples define an overlay topology, i.e. a directed graph superimposed over
the network. The graph is characterized by a random structure and the presence
of a single strongly connected component.

An example instantiation of the peer sampling service is the newscast pro-
tocol [9], characterized by its low cost, extreme robustness and minimal as-
sumptions. The basic idea of newscast is that each node maintains a local set
of random descriptors, called the (partial) view. A descriptor is a pair (node

6 A. Montresor

address, timestamp). newscast is based on the same scheme as all gossip pro-
tocols. Function selectPeer () returns a random member of the view; function
prepareMessage() returns the local view, plus a fresh descriptor of itself. Func-
tion update() keeps a fixed number of freshest descriptors (based on timestamps),
selected from those locally available in the view and those contained in the re-
ceived message. Nodes belonging to the network continuously inject their identi-
fiers in the network with the current timestamp, so old identifiers are gradually
removed from the system and are replaced by newer information. This feature
allows the protocol to “repair” the overlay topology by forgetting information
about crashed neighbors, which by definition cannot inject their identifiers.

Implementations exist in which these messages are small UDP messages con-
taining approximately 20-30 descriptors, each composed of an IP address, a port
and a timestamp. The cycle length Δ is typically long, in the range of 10s. The cost
is therefore small, few tens of bytes per second, similar to that of heartbeats in many
distributed architectures. The protocol provides high quality (i.e., sufficiently ran-
dom) samples not only during normal operation (with relatively low churn), but
also during massive churn and even after catastrophic failures (up to 70% nodes
may fail), quickly removing failed nodes from the local views of correct nodes.

2.2 Decentralized Aggregation

Aggregation is a common name for a set of functions that provide a summary
of some global system property. In other words, they allow local access to global
information in order to simplify the task of controlling, monitoring and optimiz-
ing distributed applications. Examples of aggregation functions include network
size, total free storage, maximum load, average uptime, location and intensity
of hotspots, etc.

An example of gossip-based aggregation algorithm is contained in [8]. The
algorithm assumes that each node maintains a local approximation of the value
to be aggregated, initially equal to the value of the local property. Function
selectPeer() exploit the underlying peer-sampling protocol to return a random
node. Function prepareMessage() returns the current local approximate value,
while function update() modifies the local approximate value based on some
aggregation-specific and strictly local computation based on the previous values.
This local pairwise interaction is designed in such a way that all approximate
values in the system will quickly converge to the desired aggregate value. For
example, in case of average aggregation, at the end of an exchange both nodes
install the average of their current local approximate values; after each exchange,
the global average will not change, while variance is reduced. It can be proved
that at each cycle, the expected reduction is equal to (2

√
e)−1, independently of

the size of the network.

2.3 Load Balancing

The aggregation protocol described above is proactive, meaning that all nodes
participating in the computation are made aware of the final results. This

Intelligent Gossip 7

suggests a simple improvement of a well-known load balancing protocol, as well
as showing how simple protocol pieces can be combined together [7].

The load balancing scheme we want to improve works as follows: [1,13]: given
a set of tasks that must be executed by a collection of nodes, nodes periodically
exchange tasks in a gossip fashion, trying to balance the load in the same fashion
as our average aggregation protocol. The problem with this approach is that
tasks may be costly moved from one overloaded node to another overloaded
node, without really improving the situation - nodes remain overloaded.

Our idea is based on the concept that moving information about tasks is
cheaper than moving tasks. For this reason, we use our aggregation service to
compute the average load, and then later we put in contact - through a spe-
cialized peer sampling service - nodes that are underloaded with nodes that
are overloaded. By avoiding overloaded-to-overloaded exchanges, this algorithm
guarantees that an optimal number of transfers are performed.

2.4 Slicing

Once collected all nodes in the same basket through peer sampling, one may want
to start to differentiate among them, creating sub-groups of nodes that are as-
signed to specific tasks. This functionality is provided by a slicing service, where
the population of nodes is divided into groups (slices) which are maintained, in
a decentralized way, in spite of failures.

The composition of slices may be defined based on complex conditions based
on both node and slice features; example of possible slice definitions include the
following:

• nodes with at least 4GB of RAM;
• not more than 10.000 machines, each of them with ADSL connection or more;
• the group composed by the 10% most performant machines;
• a group of nodes whose free disk space sums up to 1PB.

Several protocols have been devised to solve these problems [6, 4, 14]; all of
them are based on special versions of peer sampling. For example, if only nodes
with special characteristics (e.g., RAM greater than 4GB) are allowed to insert
their node descriptor in exchanged messages, we quickly obtain a sub-population
that only contains the desired nodes. By using count aggregation, you can limit
the size to a specified value; by ranking values, you can select the top 10%; by
using sum aggregation, you can obtain the desired disk space.

2.5 Topology Maintenance

Once you have your slice of nodes, it could be required to organize them in
a complex structured topology. t-man is a gossip-based protocol scheme for
the construction of several kinds of topologies in logarithmic time, with high
accuracy [5].

Each node maintains a partial view; as in peer sampling, views are periodically
updated through gossip. In a gossip step, a node contacts one of its neighbors,

8 A. Montresor

and the two peers exchange a subset of their partial views. Subsequently both
participating nodes update their lists of neighbors by merging the the received
message.

The difference form peer sampling is how to select peers for a gossip step
(function selectPeer()), and how to select the subset of neighbors to be sent
(function prepareMessage()).

In t-man, selectPeer () and prepareMessage() are biased by a ranking function
that represents an order of preference in the partial views. The ranking function
of t-man is a generic function and it can capture a wide range of topologies from
rings to binary trees, to n-dimensional lattices. For example, in an ordered ring,
the preference goes to immediate successors and predecessors over the ring itself.
It is possible to demonstrate that several different topologies can be achieved in
a logarithmic time.

3 Towards Intelligent Gossip

The bricks presented so far are all dedicated to simple tasks, mostly related to
the management of the gossip population itself. You can keep together the entire
population though peer sampling, select a group of nodes that satisfies a specific
condition through slicing, build a particular topology through t-man, and finally
monitor the resulting system through aggregation.

But gossip is not limited to this. Recent results suggest a path whereby results
from the optimization community might be imported into distributed systems
and architected to operate in an autonomous manner. We briefly illustrate some
of these results.

3.1 Particle Swarm Optimization

PSO [11] is a nature-inspired method for finding global optima of a function f of
continuous variables. Search is performed iteratively updating a small number
n of random “particles”, whose status information includes the current position
vector xi, the current speed vector vi, together with the optimum point pi and
its fitness value f(pi), which is the “best” solution the particle has achieved so
far. Another “best” value that is tracked by the particle swarm optimizer is the
global best position g, i.e. the best fitness value obtained so far by any particle
in the population.

After finding the two best values, every particle updates its velocity and po-
sition based on the memory of its current position, the best local positions and
the best global position; the rationale is to search around positions that have
proven to be good solutions, avoiding at the same time that all particles ends
up in exactly the same positions.

Nothing prevents the particle swarm to be distributed among a collection of
nodes [2]. At each node p, a sub-swarm of size k is maintained; slightly departing
from the standard PSO terminology, we say that each swarm of a node p is
associated to a swarm optimum gp, selected among the particles local optima.

Intelligent Gossip 9

Clearly, different nodes may know different swarm optima; we identify the best
optimum among all of them with the term global optimum, denoted g.

Swarms in different nodes are coordinated through gossip as follows: period-
ically, each node p sends the pair 〈gp, f(gp)〉 to a peer node q, i.e. its current
swarm optimum and its evaluation. When q receives such a message, it com-
pares the swarm optimum of p with its local optimum; if f(gp) < f(gq), then q
updates its swarm optimum with the received optimum (gq = gp); otherwise, it
replies to p by sending 〈gq, f(gq)〉.

Simulations results [2] show that this distributed gossip algorithm is effective
in balancing the particles load among nodes; furthermore, the system is char-
acterized by extreme robustness, as the failure of nodes has the only effect of
reducing the speed of the system.

3.2 Intelligent Heuristics

Many heuristic techniques can be used to approximately solve complex problems
in a distributed way. For example, in [10] the problem of placing servers and other
sorts of superpeers is considered. The particular goal of this paper is to situate
a superpeer close to each client, and create enough superpeers to balance the
load. The scheme works in a gossip way, as follows. Nodes randomly take the
role of superpeers, and clients are associated to them; then, nodes dissatisfied
with the service their receive, start to gossip, trying to elect superpeers that
could provide better service. Dissatisfaction could be motivated by the overload
of the superpeer, of by the excessive distance between the client and the server.
While this heuristics scheme could be stuck in local optima, stills it reasonably
improve the overall satisfaction of nodes, especially considering that nodes work
in the absence of complete data.

Acknowledgments

Work supported by the project CASCADAS (IST-027807) funded by the FET
Program of the European Commission.

References

1. Barak, A., Shiloh, A.: A Distributed Load Balancing Policy for a Multicomputer.
Software Practice and Experience 15(9), 901–913 (1985)

2. Biazzini, M., Montresor, A., Brunato, M.: Towards a decentralized architecture for
optimization. In: Proc. of the 22nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2008), Miami, FL, USA (April 2008)

3. Demers, A., et al.: Epidemic Algorithms for Replicated Database Management. In:
Proc. of 6th ACM Symp. on Principles of Dist. Comp. (PODC 1987), Vancouver
(August 1987)

4. Fernandez, A., Gramoli, V., Jimenez, E., Kermarrec, A.-M., Raynal, M.: Dis-
tributed slicing in dynamic systems. In: Proceedings of the 27th International Con-
ference on Distributed Computing Systems (ICDCS 2007), p. 66. IEEE Computer
Society Press, Washington (2007)

10 A. Montresor

5. Jelasity, M., Babaoglu, O.: T-Man: Gossip-based overlay topology management. In:
Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA
2005. LNCS (LNAI), vol. 3910, pp. 1–15. Springer, Heidelberg (2006)

6. Jelasity, M., Kermarrec, A.-M.: Ordered slicing of very large-scale overlay networks.
In: Peer-to-Peer Computing, pp. 117–124 (2006)

7. Jelasity, M., Montresor, A., Babaoglu, O.: A Modular Paradigm for Building Self-
Organizing P2P Applications. In: Di Marzo Serugendo, G., Karageorgos, A., Rana,
O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 265–282.
Springer, Heidelberg (2004)

8. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM Trans. Comput. Syst. 23(1), 219–252 (2005)

9. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-
based peer sampling. ACM Transactions on Computer Systems 25(3), 8 (2007)

10. Jesi, G.P., Montresor, A., Babaoglu, O.: Proximity-aware superpeer overlay topolo-
gies. IEEE Transactions on Network and Service Management 4(2), 74–83 (2007)

11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks 1995. vol. 4 (1995)

12. Kermarrec, A.-M., van Steen, M.: Gossiping in distributed systems. Operating
Systems Review 41(5), 2–7 (2007)

13. Kok, P., Loh, K., Hsu, W.J., Wentong, C., Sriskanthan, N.: How Network Topology
Affects Dynamic Load Balancing. IEEE Parallel & Distributed Technology 4(3)
(September 1996)

14. Montresor, A., Zandonati, R.: Absolute slicing in peer-to-peer systems. In: Proc. of
the 5th International Workshop on Hot Topics in Peer-to-Peer Systems (HotP2P
2008), Miami, FL, USA (April 2008)

Infrastructure for Ontological Resource Matching
in a Virtual Organization

Michał Szymczak1, Grzegorz Frąckowiak1, Maria Ganzha1, Marcin Paprzycki1,
Sang Keun Rhee2, Myon Woong Park2, Yo-Sub Han2, Young Tae Sohn2,
Jihye Lee2, and Jae Kwan Kim2

1 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
marcin.paprzycki@ibspan.waw.pl

2 Korea Institute of Science and Technology, Seoul, Korea
greyrhee@kist.re.kr

Summary. In our earlier work we have outlined general approach to ontological
matchmaking in an agent-based virtual organization. The aim of this paper is to de-
scribe in details how matchmaking is to take place within the system under construc-
tion. The Grant Announcement application is used to illustrate the proposed approach.
Questions concerning efficiency of matchmaking will be addressed and in this context
a distinction between asynchronous and synchronous matchmaking will be proposed.

1 Introduction

As the amount of available information increases rapidly, sometimes the effi-
cient searching method alone is not enough to obtain necessary information
in timely manner. Therefore support is needed to share the burden of search-
ing for and filtering information. In the era of ubiquitous computing, computer
systems existing everywhere should be able to proactively provide information
just in time. Resource matching is essential in order to develop system search-
ing and recommending information required for a user in a specific context.
This paper describes the infrastructure and methodology of resource matching
in the environment of a Research Institute where most of paperwork is carried
out through an intranet. System requirements which are set by the Research
Institute include facilitating user specific suggestion based on the knowledge
model, actual data and geospatial information about objects. In the following
sections we discuss how these factors can be included in a single suggestion
request processing. In order to do so, we specify matching functionality, its pos-
sible processing modes and system building blocks which allow to realize the
requirements. Resource matching utilized in forwarding notices about new re-
search grants to appropriate users is used to illustrate the proposed approach.
This work can be generalized and expanded to become a kernel of a smart
information provider.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 11–21, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

12 M. Szymczak et al.

2 Defining Matching

Let us start by defining matchmaking in the context of our work. By match-
ing we mean establishing closeness between ontology class instances (object(s))
and (an)other selected object(s) for which certain Matching Criteria are met.
Calculating Relevance is a method for finding a degree of relevance (closeness)
between objects which are related through their properties. Our approach to
calculating relevance was outlined in [9]. In the case considered thus far in our
work, Matching Criteria is an ordered quadruple {x, q, a, g}, where:

• x is the selected ontology class instance (the source object)
• q is a SPARQL query [5] which defines a subset of objects that are considered

relevant and will be matched against the source object x
• a > 0 is the relevance threshold—value above which objects will be considered

relevant
• g is a sub-query processed by the GIS subsystem; this part of the system is

responsible for finding cities which are located close to others (part of the
Duty Trip Support application, see [7]). This sub-query is a triple {gc, gr, ga},
where:
– gc is an URI of a city demarcated with the City class properties of the

system ontology
– gr is an operator which allows to either limit returned number of cities of

interest (AMOUNT condition) or to limit the maximum distance between
the gc and the returned cities (RADIUS condition)

– ga is the parameter of the gr operator, it either limits the number of cities
that can be returned or the maximum distance between the gc and the
returned cities

To make the idea of the GIS sub-query clear we can consider its following two
instances:

{gc, gr, ga} = {geo:WarsawCity, RADIUS, 100}
{gc, gr, ga} = {geo:WarsawCity, AMOUNT, 50}

As a result of the first query the GIS module should return all cities which are
located not further than 100 km from the city of Warsaw (represented by the
RDF resource geo:WarsawCity). On the other hand, the second request means
that a maximum of 50 cities should be found (that are located closest to Warsaw).

Note that, in general, the GIS sub-query can be omitted, or replaced with a
different criterion (or a group of criteria). Therefore, due to the lack of space, it
will be left to be discussed in more details in subsequent publication.

2.1 Grant Announcement-Based Matching Example

In our earlier work [7] we have provided an example of a scientist employed in a
Science Institute in North-east Asia.

Infrastructure for Ontological Resource Matching 13

When represented in the system, this sample employee (Prof. Chan), can have
several profiles assigned. Below we depict an example of the general Employee
profile, which consists of a Personal Profile and an Experience Profile:
: Employee\#1 a onto : ISTPerson ;
onto : id " 1234567890 "^^xsd : s t r i n g ;
onto : h a sP r o f i l e (: Employee\#1PPro f i l e , : Employee\#1EPro f i l e) ,
onto : belongsToOUs (:GOU) .

: ResearchOU a onto : Organ izat ionUnit ;
onto : name ‘ ‘ Researchers Organ izat ion Unit ’ ’^^xsd : s t r i n g .

In this example the Employee#1PProfile—Personal Profile, which describes
the “human resource properties” of an employee. In what follows we use basic
properties (however, our system supports a complete list of needed HR-related
properties): fullname, gender and birthday. Furthermore, the belongsToOUs
property indicates Prof. Chan’s appointment in the organization.
: Employee\#1PPro f i l e a onto : ISTPer sona lPro f i l e ;

onto : belongsTo : Employee\#1;
person : fu l lname ’ ’Yao Chan ’ ’^^xsd : s t r i n g ;
person : gender person : Male ;
person : b ir thday ’ ’ 1982−01−01T00 : 00 : 00 ’ ’^^xsd : dateTime .

The second possible profile of Employee#1 (Prof. Chan) is an Experience Pro-
file. It demarcates human resource specialization in terms of fields of knowledge
and project experience. Note that codes for the specification of fields of knowl-
edge originate from the KOSEF (Korea Science and Engineering Foundation)
[3].
: Employee\#1EPro f i l e a onto : ISTExper i encePro f i l e ;
onto : belongsTo : Employee\#1;
onto : doesResearch InF ie ld s

scienceNamespace : Volcanology −13105 ,
scienceNamespace : Paleontology −13108 ,
scienceNamespace : Geochronology −13204;

onto : knowsFields
[a onto : Knowledge ;
onto : knowledgeObject scienceNamespace : Volcanology −13105;
onto : knowledgeLevel " 0 .75 "^^xsd : f loat] ,
[a onto : Knowledge ;
onto : knowledgeObject scienceNamespace : Paleontology −13108;
onto : knowledgeLevel " 0 .40 "^^xsd : f loat] ,
[a onto : Knowledge ;
onto : knowledgeObject scienceNamespace : Geochronology −13204;
onto : knowledgeLevel " 0 .90 "^^xsd : f loat] ;
onto : managesProjects (: Pro jec t1) .

According to the Experience Profile, Prof. Chan specializes in Volcanology, Pa-
leontology and Geochronology. While the level of knowledge in each of these areas
is expressed as a real number from the interval (0, 1), respectively: 0.75, 0.4, 0.9,
without loss of generality, we omit influence of this factor on the matching pro-
cess. Additionally, Employee#1 who is described with that profile manages a

14 M. Szymczak et al.

project Project1. It is a scientific project in Volcanology, which has its own
profile:

: Pro jec t1 a onto : ISTProject ;
onto : managedBy : Employee\#1;
onto : pe r iod

[a onto : Period ;
onto : from "2008−06−01T00 : 00 : 00 "^^xsd : dateTime ;
onto : to "2009−05−31T00 : 00 : 00 "^^xsd : dateTime] ;

onto : f i e l d sR e f scienceNamespace : Volcanology −13105;
onto : p r o j e c tT i t l e ‘ ‘ Very Important Volcanology

S c i e n t i f i c Pro jec t ’ ’^^xsd : s t r i n g .

The listings introduced above set a context within which we place a member
of an organization. In order to make the matching definition clearer, let us now
introduce an instance of a SampleGrant. Note that the sample grant could be
replaced by any resource that is delivered to the organization and information
about which has to be delivered to the right employees (e.g. a book, or a transport
of copy paper). Profile of the proposed SampleGrant specifies its domain as
Geochemistry. Obviously a resource could be demarcated using more complicated
structure of covered areas and the proposed approach would work as well.

: SampleGrant a onto : ISTAnnouncement ;
onto : hasDesc r ip t ion

‘ ‘ Desc r ip t ion o f the exemplary grant announcement .
I t should be r e a l l y i n t e r e s t i n g . ’ ’^^xsd : s t r i n g ;

onto : r e f S c i e n t i f i c F i e l d s (<scienceNamespace :
Geochemistry −13200>).

In order to match the SampleGrant announcement with a human resource
represented by the ISTPerson class instance, the following process has to be
executed:

1. Construct a set of Matching Criteria x, q, a, g:
a) x =: SampleGrant (comparing against :SampleGrant)
b) q =

PREFIX onto :
<http :// r o s s i n i . ibspan .waw . p l / Onto log i e s /KIST/KISTVO>
SELECT ? person
WHERE {

? person i sa onto : ISTPerson .
? p r o f i l e i sa onto : Exp r i en c ePro f i l e .
? person onto : h a sP r o f i l e ? p r o f i l e .
? person onto : belongsToOU : ResearchOU}

c) a = 1
40 (sample value)

d) g = NULL, since Grant Announcement scenario does not require any
geo-spatial support

2. Execute thus generated SPARQL query. In the case of the Grant Announce-
ment scenario [8, 7] this query is going to filter employee’ experience profiles

Infrastructure for Ontological Resource Matching 15

F
ig

.
1.

R
el

at
io

ns
be

tw
ee

n
sa

m
pl

e
E

m
pl

oy
ee

an
d

sa
m

pl
e

G
ra

nt
A

nn
ou

nc
em

en
t

ob
je

ct
s

16 M. Szymczak et al.

leaving only researchers, i.e. employees that belong to the Organization Unit
which is specific to all researchers (more on Organization Units, their role in
the knowledge base and examples can be found in [7, 12, 9]). In our example,
the result of the query is the Employee#1EProfile.

3. Perform Relevance Calculations for (in our example):
a) source object URI =: SampleGrant
b) target objects URI ′s = [: Employee#1EProfile]

In Figure 1 we depict relations between Employee#1 and SampleGrant ob-
jects. Unfortunately, due to the complexity of the example, listings including all
relations between these objects would make it illegible. However, note that all
objects are linked with properties which are included in the listings and refer to
ontology classes and properties described in [9, 7, 12]. For instance, path between
the SampleGrant and the Employee1 is composed through the following interme-
diate nodes: GeologicalScience13100, Volcanology13105 and Employee1EProfile.
Additionally, following property weights are set in the ontology (see, [12]):

voPropertyWeight(doesResearchInFields) = 2
voPropertyWeight(isSubfieldOf) = 5
voPropertyWeight(hasSubfield) = 3
voPropertyWeight(refScientificF ield) = 2
voPropertyWeight(invRefScientificF ield) = 8
voPropertyWeight(hasProfile) = 1
voPropertyWeight(belongsToResource) = 1

These weights are given just sample values. Thus far we have not designed the
mechanism for setting them up. Based on the weights and relations presented
in Figure 1, closeness between the two objects can be computed. The computed
relevance, according to the algorithm proposed in [10, 11], is 1

36 . Depending on
the threshold used in the application, this degree of closeness may or ma not be
considered “close enough.” Since we specified the threshold value as a = 1

40 , this
grant information will be delivered to Mr. Chan.

3 Matching Request Processing

Matching Criteria defined in the previous section require adequate computations
to be performed by:

• GIS Subsystem (mostly omitted in this paper)
• SPARQL engine
• Relevance Graph matching

All these operations are by default heavily resource consuming. Therefore
we distinguish two basic matching modes to be supported by the system: syn-
chronous and asynchronous.

Infrastructure for Ontological Resource Matching 17

3.1 Synchronous Matching Request Processing

Synchronous method of matching request processing might be highly valuable for
applications or even single components that require short response time. Possible
usages of this method include but are not limited to (1) matching in the case of
a process which has to deliver the result to a web page in a synchronous mode,
or (2) requesting a single result based on the current state of objects stored in
the system.

Fig. 2. Synchronous matching request processing

This approach has been represented in Figure 2 for the agent-based informa-
tion processing. Specifically we can see there that:

1. A Matching Client (a role which can be realized by any agent capable of
performing it) creates a synchronous request SRequest object.

2. The Matching Client fills Matching Criteria of the matching request.
3. The service which is responsible for processing synchronous matching re-

quests (due to the fact that it extends abstract SynchronousService class)
receives the new request and orders the RDF Storage (e.g. Jena) to provide
results of SPARQL matching request part (SPARQL Filtering).

4. GIS Subsystem may be requested to perform Cities Filtering based on the
GIS request.

5. Steps 3 and 4 filter objects which meet SPARQL (and GIS) Matching Crite-
ria. These objects are processed by the Relevance Calculation Engine which
is based on the Relevance Graph (see below).

6. Results of relevance calculation are wrapped in the Response object and sent
back to the requesting client.

3.2 Asynchronous Matching Request Processing

Asynchronous method of request processing might be more suitable for low pri-
ority relevance calculations and for calculation which have to be repeated within

18 M. Szymczak et al.

Fig. 3. Asynchronous matching request processing

a certain time frame. For instance, consider search of employees who should be
informed about a Grant Announcement (GA). Here, we can assume in that the
GA is valid for some predefined time (until its deadline) and during that time
there may appear “new” individuals who meet the Matching Criteria; e.g. due to
their profile update. Since the asynchronous mode supports repeating request,
results which include resource with changed profiles will be returned.

Figure 3 represents the sequence diagram of the asynchronous matching pro-
cess, which can be described as follows:

1. A Matching Client (a role similar to the Matching Client described in the
section above) creates an asynchronous request ARequest object.

2. The client fills Matching Criteria of the matching request.
3. The client sets request triggering conditions.
4. The client sets request callback properties.
5. The service which is responsible for processing asynchronous matching re-

quests (service which extends abstract AsynchronousService class) receives
the new request and creates a trigger object which is set in accordance with
triggering conditions specified in the ARequest object.

6. Each time the trigger executes its Run function, it starts a process which is
similar to the Synchronous Request Processing. Function calls 6.1–6.3 corre-
spond to the function calls 4.1–4.3 presented in Figure 2.

Infrastructure for Ontological Resource Matching 19

7. Results of relevance calculation are wrapped in the Response object and sent
back to the client using the callback function defined in the ARequest object
(callback properties).

8. If the trigger notifies that it has finished the scheduled work, the service
is informed and similar request processing finish notification is sent to the
client using the same callback settings.

4 System Building Blocks

Let us now describe in some details the main building block involved in relevance
calculations.

4.1 Relevance Calculation Engine

The main role of the Relevance Calculation Engine (RCE) is, given a resource,
produce a list of related resources with their relevance values. This module is
designed in Java, with additional libraries from the Jena API [6] for ontology
model handling, and the Structure Package [2] for dealing with the graph struc-
ture. The relevance measure algorithm applied here was first introduced in [10],
and its initial application was described in [11].

Fig. 4. Relevance calculation process

The process illustrated in Figure 4 includes objects that play key roles in
calculating relevance between the Initial Instance and the Target Instances.

Relevance Graph

The core of the RCE is based on a graph structure that represents the un-
derlaying Jena Ontology Model. The Model is interpreted as a directed graph
G = (V, E) so that:

V : set of nodes, representing all instances (or individuals)
E : set of edges, representing all object properties.

Note that reflexive relations are ignored. Upon creating edges, the value of the
annotation property voPropertyWeight of each object property becomes the label

20 M. Szymczak et al.

of the edge, representing the distance between two nodes. The relevance value
between two nodes is the inverse of the distance value. Graph creation function
results in creating a weighted, directed graph on ontology resources and their
object properties.

Relevance Calculation Interface

The Relevance Calculation Engine establishes closeness between a specific (Ini-
tial) resource and a given list of (Target) resources. The result is returned as an
instance of the Java Map〈Key, V alue〉 interface, where Keys are the URI’s of
resources and Values are the relevance results for these resources and the Initial
node computed by the engine.

4.2 GIS Sub-system

In [8, 7] we have outlined utilization of the GIS module. The state of the art
research shown that we can provide reliable geospatial backend for our system
by using the following components: (1) GeoMaker [1] for collecting geographic
coordinates of cities in the world, (2) PostgreSQL database [4] for storing that in-
formation and calculating distance between cities on demand, finally for caching
the result, (3) Java for interfacing the GIS module with the rest of the system.
As the GIS based calculation details were omitted in the text, we only sketch
the description of the GIS. We will provide detailed reports on the architecture
and efficiency of the GIS module in our subsequent publications.

5 Concluding Remarks

In the text we have outlined how the resource matching and relevance calcula-
tions will be facilitated in our agent-based virtual organization. We are currently
implementing the proposed approach. Our subsequent immediate research goals
are: property weights setup, stress and performance tests, matching including
time frame constraints.

Acknowlegement

Work was partially sponsored by the KIST-SRI PAS “Agent Technology for
Adaptive Information Provisioning” grant.

References

1. Geomaker.
http://pcwin.com/Software_Development/GeoMaker/index.htm.

2. Java structure.
http://www.cs.williams.edu/~bailey/JavaStructures/Software.html.

http://pcwin.com/Software_Development/GeoMaker/index.htm
http://www.cs.williams.edu/~bailey/JavaStructures/Software.html

Infrastructure for Ontological Resource Matching 21

3. Korea science and engineering foundation.
http://www.kosef.re.kr/english_new/index.html.

4. Postgis:home.
http://postgis.refractions.net/.

5. Sparql query language for rdf. http://www.w3.org/TR/rdf-sparql-query.
6. Jena—a semantic framework for java. http://jena.sourceforge.net, 2008.
7. G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak, M.-W.

Park, and Y.-S. Han. Considering Resource Management in Agent-Based Virtual
Organization. LNCS. Springer, 2008. in press.

8. G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak, M.-W.
Park, and Y.-S. Han. On resource profiling and matching in an agent-based virtual
organization. In Proceedings of the ICAISC’2008 conference, LNCS. Springer, 2008.

9. M. Ganzha, M. Gawinecki, M. Szymczak, G. Frackowiak, M. Paprzycki, M.-W.
Park, Y.-S. Han, and Y. Sohn. Generic framework for agent adaptability and
utilization in a virtual organization—preliminary considerations. In J. Cordeiro
et al., editors, Proceedings of the 2008 WEBIST conference, pages ISâĂŚ17âĂŚ–
ISâĂŚ25. INSTICC Press, 2008. to appear.

10. S. Rhee, J. Lee, and M.-W. Park. Ontology-based semantic relevance measure.
CEUR-WS, 294(1613-0073), 2007.

11. S. Rhee, J. Lee, and M.-W. Park. Riki: A wiki-based knowledge sharing system
for collaborative research projects. In Proceedings of the APCHI 2008 Conference,
LNCS. Springer, 2008.

12. M. Szymczak, G. Frackowiak, M. Gawinecki, M. Ganzha, M. Paprzycki, M.-W.
Park, Y.-S. Han, and Y. Sohn. Adaptive information provisioning in an agent-based
virtual organization—ontologies in the system. In N. Nguyen, editor, Proceedings
of the AMSTA-KES Conference, volume 4953 of LNAI, pages 271–280, Heidelberg,
Germany, 2008. Springer.

http://www.kosef.re.kr/english_new/index.html
http://postgis.refractions.net/
http://www.w3.org/TR/rdf-sparql-query
http://jena.sourceforge.net

Architecture and Metaphors for Eternally Adaptive
Service Ecosystems

Franco Zambonelli1 and Mirko Viroli2

1 DISMI – Universita’ di Modena e Reggio Emilia
42100 Reggio Emilia, Italy
���������	
��������	�����

2 DEIS – University of Bologna
47023 Cesena (FC), Italy
	�����������
���

Summary. In this paper, we first motivate the need for innovative open service frameworks that
ensure capability of self-adaptability and long-lasting evolvability (i.e., eternity). On this basis,
we discuss how such frameworks should get inspiration from natural ecosystems, by enabling
modelling and deployment of services as autonomous individuals in an ecosystem of other ser-
vices, data sources, and pervasive devices. A reference architecture is presented to clarify the
concepts expressed, and then several possible approaches to realise the idea are surveyed and
critically analyzed.

1 Motivations

In the near future, pervasive sensing and actuating devices will densely populate our
everyday environments, will be tightly integrated with current Telecom and Internet
networks, and will eventually contribute to blur the distinction between Telecom and
Internet networks [5, 9].

In this context of tight convergence and integration, a single innovative open soft-
ware platform will have to be provided to host and orchestrate in an integrated and
self-managing way the execution of general-purpose pervasive Telecom�Web services
and the organization of large masses of contextual data. Also, such an infrastructure
should take into account the increasingly diverse and demanding needs of users (which
will also seamlessly act as consumers and producers of data and services) [14], and
must be able to flexibly tolerate evolutions over time without requiring significant re-
engineering to incorporate innovations and changing needs.

Recently, a great deal of research activity has been devoted to produce solutions to
match the emerging characteristics of future networks [7] and to solve problems related
to, e.g., increasing dependability, reducing management e�orts via self-* features, en-
forcing context-awareness and adaptability, tolerating evolution over time and eventu-
ally ensure that the overall service framework (if not all services within) can be highly
adaptive and very long-lasting, even in the absence of explicit management actions.
Unfortunately, most of the solutions so far are proposed in terms of “add-on”, one-of
solutions to be integrated in existing frameworks. The result of this process is often an

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 23–32, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

24 F. Zambonelli and M. Viroli

increased complexity of current frameworks and the emergence of contrasting trade-o�
between di�erent solutions.

For instance, while the strict layering of network architectures and protocols enables
services to easily survive changes at the device and communication level, it prevents
information about the current execution context of services from freely flowing in the
network, limiting the adaptability of services. As another example, a huge amount of
research proposes application-level and self-organizing overlay networks as a mecha-
nism to exchange information in several distributed and dynamic scenarios. However,
such overlays are typically conceived to serve specific classes of application problems
in specific network scenarios, and cannot tolerate adaptations with regard to changes in
their usage or in the characteristics of the underlying network.

In our opinion, there is need for tackling all the above problems by reformulating
their foundation, and by trying to answer the following question: Is it possible to con-
ceive a radically new way of modelling integrated network services and their execu-
tion environments, such that the apparently diverse issues of enabling pervasiveness,
context-awareness, dependability, openness, diversity, flexible and robust evolution, can
all be uniformly addressed once and for all? In other words, in our opinion, the way
towards the realisation of eternally adaptive services is to tackle the problem form the
foundation, and start from a total deconstruction of current service architectures and
models. We should no longer see services as localised “loci” of data and functionalities,
whose activities are to be orchestrated and synchronised according to specific patterns,
with the support of middleware services such as discovery services, routing services,
data and context services, and where self-adaptability and evolvability are enforced via
the introduction of autonomic managers [11]. Rather, we should start taking inspira-
tion from natural systems [16, 8], where adaptability and eternal evolvability are there
because of the basic “rules of the game”.

No matter whether one thinks at physical systems, at chemical systems, at biolog-
ical systems, as well as at general ecological systems. In all these systems, you can
always recognise the following characteristics: Above a common environmental sub-
strate (defining the basic “laws of nature” and the ground on which individuals can
live), individuals of di�erent kinds (or species) interact, compete, and combine with
each other (in respect of the basic laws of nature), so as to serve their own individual
needs as well as the sustainability and the evolvability of the overall system.

Although such considerations apply whether you think at a physical system, at chem-
ical systems, or at biological system, let us try to better elaborate the idea by referring
at biological evolution and at the dynamics of life on earth. Life is, to most extents (i.e.,
apart from planetary catastrophes) sort of eternal and eternally adaptive: mechanisms,
protocols, and the basic “infrastructure” of life do not change and have never changed
since its first appearance. Simply, new individuals get on appearing, finding their own
way in the overall system, and possibly leading to the emergence of new reactions and
new combinations of elements, in the end possibly leading to the emergence of new life
forms and new ecological dynamics. The chemistry of life is eternal, the forms under
which it manifests depends on the specific characteristics of the environment, and the
specific contingencies occurring in the environment, and on the specific species that

Architecture and Metaphors for Eternally Adaptive Service Ecosystems 25

populate the environment. Also, very important, it is not individuals that evolve, but the
ecosystem as a whole.

This is the sort of endeavour that we think one should assume towards the realisation
of “Eternally adaptive service ecosystems”: conceiving services and data components
as individuals in an open ecosystem in which they interact accordingly to a limited set
of “eco-laws” to serve their own individual purposes in respect of such laws, and where
self-adaptation and eternity are inherent, endogenous properties of the ecosystem rather
than peculiar characteristics of its individuals [10].

Against this background, the remainder of this paper (i) tries to sketch a general ref-
erence architecture for nature-inspired service ecosystems and (ii) surveys and shortly
analyses the possible metaphors that can be adopted for such ecosystems, and that can
lead to di�erent realisation of the reference architecture.

2 A Reference Architecture for Eternally Adaptive Service
Ecosystems

Independently of the specific approach adopted, a uniform reference architecture can be
adopted for open service ecosystems. A pictorial representation of such an architecture
is reported in Figure 1.

At the very low level, the physical ground on which the ecosystem will be deployed
is laid, which is a very dense network (ideally, a pervasive continuum) of networked
computing devices and information sources. The former includes all the devices that are
going to increasingly pervade all our everyday environments (e.g., PDAs, smart phones,
sensors, tags), all interconnected with each other. The latter includes the increasing
amount of Web data sources that already (and increasingly) collect knowledge, facts
and events about nearly every aspect of the world.

At the top level, service developers, producers and consumers of services and data,
access the open service framework for using�consuming data or services, as well as for
producing and deploying in the framework new services and new data components. At
both the lower and the top levels of the architecture openness stands: on the one hand,
new devices can join�leave the system at any time; on the other hand, new users can
interact with the framework and can deploy new services and data items on it. Between
these two levels, the components of the ecosystem reference architecture stand.

The level of “Species” is the one in which physical and virtual devices of the per-
vasive system, digital and network resources of any kind, persistent and temporary
knowledge�data, contextual information, events and information requests, and of course
software service components, are all provided with a uniform abstract view of being
the“living entities” of the system, which we refer to as ecosystem individuals, and which
populate the world. Although such individuals are expected to be modelled (and com-
putationally rendered) in a uniform way, they will have specific characteristics very
di�erent from each other, i.e., they will be of di�erent “species”.

In a bootstrap phase, an ecosystem is expected to be filled with a set of individu-
als physically deployed in the environment (physical and network resources, contextual
information, initialization data and services, and so on). From then on, the ecosystem
eternally lives, with the population of individuals evolving in di�erent ways: (i) the

26 F. Zambonelli and M. Viroli

Fig. 1. Service Ecosystems Architecture

initial set of individuals is subject to changes (to tackle the physical system’s mobility,
faults, and evolution); (ii) service developers and producers inject in the system new
individuals (developers insert new services and virtual devices, prosumers insert data
and knowledge); and (iii) consumers keep observing the environment for certain indi-
viduals (inject information requests and look for certain data, knowledge, and events).

Below the level of species there is the individuals “world” level, which provides the
virtual fabric that supports individuals, their activities and interactions, as well as their
insertion and evolution. This overall ecological behaviour is to be enacted by a middle-
ware substrate, a software infrastructure deployed on top of the physical deployment
context (i.e., on top of the pervasive continuum), which is in charge of handling inser-
tion and observation of individuals, their persistence and accessibility, as well as their
interaction. Moreover, it should deal with the mobility and dynamism of the underlying
context, properly turning it into the creation, destruction and change of individuals rep-
resenting physical and network resources. More in general. the world level define the
“shape” and the characteristics of the world in which individuals live.

The way in which individuals interact, compose with others, aggregate so as to form
or spawn new individuals, and decay (ultimately winning or losing the natural selec-
tion process intrinsic in the ecosystem) is determined by the set of fundamental “laws”
regulating the eternal service ecosystems model. Starting from the unified description of
living entities—the information�service�structure they provide—and from proper match-
ing criteria, such laws basically specify the likelihood of certain spontaneous evolutions
of individuals or groups of individuals. Typical evolution patterns driven by such laws

Architecture and Metaphors for Eternally Adaptive Service Ecosystems 27

are the following: temporary data and services decay as long as they are not exploited
until disappearing, and dually, they get reinforced when exploited; data, data requests,
and data retrieving services might altogether match, hence spawning “data-found”
events; new services can be created by aggregating existing services whose description
strongly matches; an existing service can be upgraded—or corrected when faulty—by
injecting a service patch that will automatically compose to it; and so on. A key conse-
quence of the fact that all components are seamlessly seen as individuals is that ecologi-
cal laws abstract away from the peculiarities of the above cases, uniformly dealing with
the concepts of individuals’ match-based grouping and evolution: laws of the ecology
are the only part of the ecosystem that do not evolve—as happens in natural ecologies.
Accordingly, services and applications built with this paradigm will never be stopped
or shutdown, but simply debugged, maintained, sustained, or sacrificed by an on-the-fly
evolution based on laws behaviour and on the insertion of new individuals—e.g., acting
like cures, diseases, feeding resources or viruses.

3 Survey and Analysis of Possible Approaches

The key di�erence in the possible approaches that can be undertaken towards the re-
alisation of eco-inspired service frameworks (as from the described reference architec-
ture) stands in the metaphor adopted to model the ecosystem, its individuals, and its
laws. In particular—without excluding the existence of other useful natural metaphors
or the possibility of conceiving interesting non-natural metaphors—the main metaphors
that can be adopted and have been suggested are: physical metaphors [6, 12], chemi-
cal metaphors [3], biological metaphors [2, 4, 15], together with the properly called
ecological metaphors [1, 13].

A summary of the characteristics of each of these metaphors is in Figure 2. We em-
phasise in any case that, so far, none of these metaphors has been actually adopted
to extensively study and prototype an actual, open and general-purpose service frame-
work: either the metaphor has been applied to specific application scenarios [12, 4, 15]
or its potential general adoption has been only envisioned [6, 1].

3.1 Metaphors

Let us now come to the distinguishing characteristics of each metaphor, a summary of
which is in Figure 2.

Physical metaphors consider that the species of the ecosystem are sort of compu-
tational particles, living in a world of other particles and virtual computational fields,
which act as the basic interaction means. In fact, all activities of particles are driven by
laws that determine how particles should be influenced by the local gradients and shape
of the computational field: they can change their status based on the perceived fields,
and they can move or exchange data by navigating over such fields (i.e., by having par-
ticles that move following the gradient descent of a field, or by making them spread sort
of data particles to be routed according to the shape of fields). The world in which such
particles live and in which fields spread and di�use can be either a simple (euclidean)
metric world, or it could be a sort of relativistic world, in which shapes and distances

28 F. Zambonelli and M. Viroli

Fig. 2. Metaphors for Service Ecosystems

in the environment are not “inherent” but are rather shaped by fields themselves (as in
gravitational space-time).

Chemical metaphors consider that the species of the ecosystem are sorts of computa-
tional atoms�molecules, with properties described by some sort of semantic descriptions
which are the computational counterpart of the description of the bonding properties of
physical atoms and molecules. Indeed, the laws that drive the overall behaviour of the
ecosystem are sort of chemical laws, that dictates how chemical reactions and bond-
ing between components take place (i.e., relying on some forms of pattern matching
between the semantic description of components), and that can lead to both the produc-
tion of aggregates (e.g., of aggregated distributed components) or of new components
(e.g., of composite components). In this case, the world in which components live is
typically formed by a set of localities, intended as the “solution” in which chemical
reactions can occur, altough of course it is intended that components can flow�di�use
across localities to ensure globality of interactions.

Biological metaphors typically focusses on biological systems at the small scale, i.e.,
at the scale of individual organisms (e.g., cells and their interactions) or of colonies of
simple organisms (e.g. ant colonies). The species are therefore either simple cells or
very simple (unintelligent) animals, that act on the basis of very simple goal-oriented
behaviours (e.g., move and eat) and that are influenced in their activities by the strength
of chemical signals in their surroundings. Similarly to physical systems, in fact, com-
ponents are expected (depending on their status) to be able to spread and di�use (chem-
ical) signals around, that can then influence the behaviour of other components. The
laws of the ecosystem determines how such signals should di�use, and how they could
influence the behaviour and characteristics of components. The world in which

Architecture and Metaphors for Eternally Adaptive Service Ecosystems 29

components live is typically a virtual computational landscape that can influence the
way signals di�use and the way components can move over it.

Ecological metaphors focusses on biological systems at the level of animal species
and of their interactions. The components of the ecosystem are sort of goal-oriented
animals (i.e., agents) belonging to a specific species (i.e., agent classes), that are in
search of “food” resources to survive and prosper (e.g., specific resources or other
components). The laws of the ecosystem determine how the resulting “web of food”
should be realised, that is, they determines how and in which conditions animals are
allowed to search food, eat, and possibly produce and reproduce, thus influencing and
ruling the overall dynamics of the ecosystem and the interaction among individuals
of di�erent species. Similarly to chemical systems, the shape of the world is typically
organized around a set of localities, i.e., of ecological niches (think at a set of local
pervasive computing environments), yet enabling interactions and di�usion of species
across niches.

3.2 Space, Time, and Control

The analysis of which metaphor to adopt cannot abstract from the fundamental question
of: what do we want to achieve with it? What features do we want our ecosystem to
express?

In general terms, as already stated in the introduction, we think that the ecosys-
tem should be able to exhibit features of self-adaptation and eternity. Such features,
from a very practical viewpoint, translate in: (i) the capability of the ecosystem of au-
tonomously self-organize the distributed (i.e., spatial) activities of the components, so
as to autonomously adapt the overall structure and behaviour of the system to spe-
cific contingencies; (ii) the capability of the ecosystem of tolerating changes over time,
which includes the capabilities of adaptively accommodating new species or of surviv-
ing the extinction of species, as well as the capability of accommodating very diverse
and composite behaviour with the same limited set of eco-laws. In addition, since we
should never forget that the service ecosystem is here to serve us, we cannot forget an
additional important feature, that is, (iii) the need allow humans (e.g., system adminis-
trator and users) to exert control over the behaviour of the ecosystem (or of some of its
parts), i.e., of directing its activities and behaviour over space and time. All of these fea-
tures, of course, should be enforced without paying the price of dramatically increasing
the complexity of the ecosystem (i.e., the number and complexity of eco-laws, and the
structure of its components and of the world in which they live).

The analysis of the extent to which the presented metaphors are able to accommodate
(and how easily and naturally) the above features, is very complex, and would require
much more room than the few pages of this paper. Nevertheless, we can try at least to
draw some considerations about this, as summarised in Figure 3.

Physical metaphors have been extensively studied for their spatial self-organization
features, and in particular for their capability of facilitating the achievement of coherent
behaviours even in large scale system (e.g., for load balancing and data distribution),
and the conceptual tools available for controlling the spatial behaviour and the dynam-
ics of such systems are well-developed. However, the physical metaphor seems to fall

30 F. Zambonelli and M. Viroli

Fig. 3. Advantages and Limitations of the Di�erent Metaphors

short in evolution and time adaptation, in that it hardly tolerates the presence of very
diverse components with very diverse behaviours (at least if we want to preserve the
simplicity of the eco-laws).

Chemical metaphors, on the other hand, can e�ectively lead to local self-organizing
structures (e.g., local composite services) and, to a more limited extent, to some sorts
of global structures (e.g., networks of distributed homogeneous components, as in
crystals). Real chemistry, and so chemical computational metaphors, can accommo-
date an incredible amount of di�erent components and composites, yet with the same
set of simple basic laws. This is an important pre-condition for facilitating evolu-
tion over time. As far as control is concerned, one can think at using sort of cata-
lyst or reagent components to control the dynamics and the behaviour of a chemical
ecosystem.

Biological metaphors appears very flexible in enabling the spatial formation of lo-
calised morphological and activity patterns, and this has been shown to have notable
applications in a variety of applications to distributed systems. However, the number of
patterns that can be enforced by the spread of chemical gradients and by the reactions
of simple individuals seem (as it is in physical metaphors) quite limited, and this does
not match with the need for time evolution and adaption. Moreover, it is quite diÆcult

Architecture and Metaphors for Eternally Adaptive Service Ecosystems 31

to understand how to properly control the overall behaviour of such systems (just think
at the fact that, so far, the mechanisms of morphogenesis are not fully understood by
scientists).

Ecological metaphors, the same as chemical ones, promises to be very suitable for
local forms of spatial self-organization (think at equilibria in ecological niches), and
are particularly suited for modeling and tolerating evolution over time (think at how
biodiversity has increased over the course of evolution, without ever mining the health
existence of life in each and every place on earth). However, unlike chemical systems,
understanding how to properly control the local and global equilibria of real ecological
system is a diÆcult task, and it would probably be very diÆcult also in their computa-
tional counterparts.

In summary, it is very diÆcult to assess once and for all which of the metaphors is the
best for next generation of adaptive service ecosystems. Some exhibit suitable features
for certain aspects, but fall short for others. Personally, we have a preference for using
the chemical abstraction as a basis—which seems to be the most flexible one—possibly
extending it with features of other metaphors: hence the correct answer is probably in
some new “hybrid” metaphor, getting the best of all the above.

4 Concluding Remarks

The peculiar characteristics of emerging and future network scenarios challenge cur-
rent service frameworks, calling for novel service models and associated open service
frameworks capable of exhibiting properties of autonomous adaptation and long-lasting
(ideally eternal) availability and e�ectiveness.

In this paper, we have tried to elaborate on the idea of getting inspiration from nat-
ural ecosystem, i.e., of conceiving future service frameworks as an ecology of data,
services and resources. There, services are modeled and deployed as autonomous in-
dividuals in an ecosystem of other services, data sources, and pervasive devices, and
their interactions takes place in the form of a natural obedience to a simple set of
well-defined “laws of nature”. In this way, it is possible to deliver adaptivity and eter-
nity as inherent properties of the service framework, rather than as complicated ad-hoc
solutions.

Despite the promises of the ecological approach, though, the road towards the ac-
tual deployment of usable and e�ective “eco-inspired” open service frameworks still
requires answering to several challenging questions. What metaphor, among the many
possible ones (e.g., biological, physical, chemical) should be better adopted for mod-
eling a suitable service framework? How should we model and represent individuals,
the space in which they live, and the laws of nature to which they are subject? How can
such individuals and the laws of nature lead to suitable, useful, and controllable forms
of spatial self-organization? How can their dynamics be controlled to ensure eternal
evolvability in an open setting? What shape should be taken by an actual software in-
frastructure that supports the ecosystem? All of these, and many further questions we
may have missed identifying, open up fascinating areas of research.

32 F. Zambonelli and M. Viroli

References

1. Agha, G.: Computing in pervasive cyberspace. Commun. ACM 51(1), 68–70 (2008)
2. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F., Gambardella, L.M.,

Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design patterns from
biology for distributed computing. ACM Trans. Auton. Adapt. Syst. 1(1), 26–66 (2006)

3. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Professional 8(5), 31–37
(2006)

4. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor�actuator networks.
IEEE Intelligent Systems 21(2), 10–19 (2006)

5. Castelli, G., Rosi, A., Mamei, M., Zambonelli, F.: A simple model and infrastructure for
context-aware browsing of the world. In: Pervasive Computing and Communications, March
19-23, pp. 229–238 (2007)

6. Crowcroft, J.: Toward a network architecture that does everything. Commun. ACM 51(1),
74–77 (2008)

7. Dobson, S., Denazis, S., Fernández, A., Gaı̈ti, D., Gelenbe, E., Massacci, F., Nixon, P., Sa�re,
F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton.
Adapt. Syst. 1(2), 223–259 (2006)

8. Herold, S., Klus, H., Niebuhr, D., Rausch, A.: Engineering of it ecosystems: design of ultra-
large-scale software-intensive systems. In: ULSSIS 2008: Proceedings of the 2nd interna-
tional workshop on Ultra-large-scale software-intensive systems, pp. 49–52. ACM, New
York (2008)

9. Jain, R.: Eventweb: Developing a human-centered computing system. Computer 41(2), 42–
50 (2008)

10. Jazayeri, M.: Species evolve, individuals age. In: IWPSE 2005: Proceedings of the Eighth
International Workshop on Principles of Software Evolution, pp. 3–12. IEEE Computer So-
ciety Press, Washington (2005)

11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

12. Mamei, M., Zambonelli, F.: Field-based Coordination for Pervasive Multiagent Systems.
Springer, Heidelberg (2006)

13. Peysakhov, M.D., Lass, R.N., Regli, W.C.: Stability and control of agent ecosystems. In: AA-
MAS 2005: Proceedings of the fourth international joint conference on Autonomous agents
and multiagent systems, pp. 1143–1144. ACM, New York (2005)

14. Ramakrishnan, R., Tomkins, A.: Toward a peopleweb. Computer 40(8), 63–72 (2007)
15. Shen, W.-M., Will, P., Galstyan, A., Chuong, C.-M.: Hormone-inspired self-organization and

distributed control of robotic swarms. Autonomous Robots 17(1), 93–105 (2004)
16. Ulieru, M., Grobbelaar, S.: Engineering industrial ecosystems in a networked world. In: 5th

IEEE International Conference on Industrial Informatics, June 23-27, pp. 1–7. IEEE, Los
Alamitos (2007)

Part II

Regular Papers

An Agent Based Approach to the Selection Dilemma
in CBR

Cesar Analide, António Abelha, José Machado, and José Neves

Universidade do Minho
Departamento de Informática
Braga, Portugal
�������������	��
����
�������������	����

Summary. It is our understanding that a selection algorithm in Case Based Reasoning (CBR)
must not only apply the principles of evolution found in nature, to the predicament of finding an
optimal solution, but to be assisted by a methodology for problem solving based on the concept
of agent. On the other hand, a drawback of any evolutionary algorithm is that a solution is bet-
ter only in comparison to other(s), presently known solutions; such an algorithm actually has no
concept of an optimal solution, or any way to test whether a solution is optimal. In this paper it is
addressed the problem of The Selection Dilemma in CBR, where the candidate solutions are seen
as evolutionary logic programs or theories, here understood as making the core of computational
entities or agents, being the test whether a solution is optimal based on a measure of the quality-
of-information that stems out of them.

Terms: Algorithms, Languages, Theory.
Keywords: Case Based Reasoning, Evolutionary Computation, Extended Logic Programming,
Quality-of-Information.

1 Introduction

Case Based Reasoning (CBR) [1][5] may be understood as the process of solving new
problems based on the solutions of similar past ones, but also as a powerful method
for computer reasoning, or a pervasive behaviour in everyday human problem solving
task. On the other hand, Genetic Programming (GP) may be seen as one of the most
useful, general-purpose problem solving techniques available nowadays. GP is one in-
stance of the class of techniques called evolutionary algorithms, which are based on
insights from the study of natural selection and evolution. An evolutionary algorithm
solves a problem by opening or generating a large number of random problem solvers
(here understood as logical programs or agents). Each problem solver is executed and
rated according to a fitness metric, given beforehand. In the same way that evolution in
nature results from natural selection, an evolutionary algorithm selects the best problem
solvers in each generation and breeds them. GP and genetic algorithms are two di�er-
ent kinds of evolutionary algorithms. Genetic algorithms involve encoded strings that
represent particular problem solutions. Genetic programming, when applied to The Se-
lection Dilemma in CBR, the subject of this article, follows a di�erent approach. Instead
of encoding a representation of a solution, GP breeds executable computer programs.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 35–44, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

36 C. Analide et al.

2 The Problem

In general, given a target problem, one intends to retrieve cases from memory that are
relevant to solving, where a case may consist of a problem description, its solution, and
annotations about how the solution was derived. On the other hand, a genetic or evolu-
tionary algorithm applies the principles of evolution found in nature to the problem of
finding an optimal solution to a problem. In a genetic algorithm the problem is encoded in
a series of bit strings that are manipulated by the algorithm; in an evolutionary algorithm
the decision variables and problem functions are used directly. A drawback of any evo-
lutionary algorithm is that a solution is better only in comparison to other(s), presently
known solutions. Such an algorithm actually has no concept of an optimal solution, or any
way to test whether a solution is optimal. This also means that an evolutionary algorithm
never knows for certain when to stop, aside from the length of time, or the number of it-
erations or candidate solutions, that one may wish to explore. In this paper it is addressed
the problem of using Genetic programming, when applied to The Selection Dilemma in
CBR, where the candidate solutions are seen as evolutionary logic programs or theories.
Indeed, the Selection Dilemma in CBR, when set in terms of a Genetic Programming
problem, is a form of computer based search and evolution [8].

2.1 The Past

Let us consider the case where we had a series of data (e.g., pathologies) that were
produced from a set of diagnosis taken over time. In this case we have the values that
define the output of the function, and we can guess at some parameters which might
inter-operate to produce these values - such as a measure of the fever, pain or itch of a
given patient. We might like to predict how the outcome (i.e., the pathology) will fare
in the future, or we may want to fill in some missing data into the series. To do so, we
need to find the relationship between the parameters which will generate values as close
to the observed values as possible. Therefore, our optimum will be fit to the observed
values.

The GA operates upon a population of candidate solutions to the problem. These
solutions can be held in the type of their parameter representation. For example, if the
candidate solutions were for a function optimization problem in which the function took
a fixed number of floating point parameters, then each candidate could be represented
as an array of such floating point numbers.

Clearly, we want to search only the most promising search paths into the popula-
tion, although we must remain aware that sometimes non-promising search paths can
be the best route to the result we are looking for. In order to work out which are the
most promising candidates, we evaluate each candidate solution using a user supplied
evaluation function. In general, this assigns a single numeric goodness measure to each
candidate, so that their relative merit is readily ascertained during the application of the
genetic operators. Undoubtedly, the amount of meaning and the interpretation that can
be gleaned from this single value is crucial to a successful search [9].

An Agent Based Approach to the Selection Dilemma in CBR 37

2.2 The Future

With respect to the computational paradigm it were considered extended logic programs
with two kinds of negation, classical negation, �, and default negation, not. Intuitively,
notp is true whenever there is no reason to believe p (close world assumption), whereas
�p requires a proof of the negated literal. An extended logic program (program, for
short) is a finite collection of rules and integrity constraints, standing for all their ground
instances, and is given in the form:

p � p1 � � � � � pn� not q1 � � � �� not qm; and

?p1 � � � � � pn� not q1 � � � �� not qm� (n� m � 0)

where ? is a domain atom denoting falsity, the pi, q j, and p are classical ground literals,
i.e. either positive atoms or atoms preceded by the classical negation sign � [7]. Every
program is associated with a set of abducibles. Abducibles may be seen as hypotheses
that provide possible solutions or explanations of given queries, being given here in the
form of exceptions to the extensions of the predicates that make the program. These
extended logic programs or theories stand for the population of candidate solutions to
model the universe of discourse.

Indeed, in our approach to GP, we will not get a solution to a particular problem, but
rather a logic representation (or program) of the universe of discourse to be optimized.
On the other hand, logic programming enables an evolving program to predict in ad-
vance its possible future states and to make a preference. This computational paradigm
is particularly advantageous since it can be used to predict a program evolution employ-
ing the methodologies for problem solving that benefit from abducibles [8], in order
to make and preserve abductive hypotheses. It is on the preservation of the abductive
hypotheses that our approach will be based, leading to a solution to the problem of
Selection Dilemma in CBR.

Designing such a selection regime presents, still, unique challenges. Most evolu-
tionary computation problems are well defined, and quantitative comparisons of per-
formance among the competing individuals are straightforward. By contrast, in select-
ing an abstract and general logical representation or program, performance metrics are
clearly more diÆcult to devise. Individuals (i.e., programs) must be tested on their abil-
ity to adapt to a changing environment, to make deductions and draw inferences, and to
choose the most appropriate course of action from a wide range of alternatives. Above
all they must learn how to do these things on their own, not by implementing specific
instructions given to them by a programmer, but by continuously responding to positive
and negative environmental feedback.

In order to accomplish such goal, i.e., to model the universe of discourse in a chang-
ing environment, the breeding and executable computer programs will be ordered in
terms of the quality-of-information that stems out of them, when subject to a process
of conceptual blending [8]. In blending, the structure or extension of two or more pred-
icates is projected to a separate blended space, which inherits a partial structure from the

38 C. Analide et al.

inputs, and has an emergent structure of its own. Meaning is not compositional in the
usual sense, and blending operates to produce understandings of composite functions
or predicates, the conceptual domain, i.e., a conceptual domain has a basic structure
of entities and relations at a high level of generality (e.g., the conceptual domain for
journey has roles for traveller, path, origin, destination). In our work we will follow
the normal view of conceptual metaphor, i.e., metaphor will carry structure from one
conceptual domain (the source) to another (the target) directly.

Therefore, let i (i � 1� � � � � m) denote the predicates whose extensions make an ex-
tended logic program that model the universe of discourse, and j (j � 1� � � � � n) the
attributes for those predicates. Let x j � [min j� max j] be a value for attribute j. To each
predicate it is also associated a scoring function Vi j[min j� max j] � 0 � � �1, that given
the score predicate i, assigns to attribute j a value in the range of its acceptable values,
i.e., its domain. For the sake of simplicity, scores are kept in the interval [0 � � �1], here
given in the form:

all(attribute-exception-list, sub-expression, invariants)

This states that sub-expression should hold for each combination of the exceptions of
the extensions of the predicates that denote the attributes in the attribute-exception-list
and are according to the invariants. This is further translated by introducing three new
predicates. The first predicate creates a list of all possible exception combinations (e.g.,
pairs, triples) as a list of sets determined by the domain size. The second predicate
recurses through this list, and makes a call to the third predicate for each exception
combination. The third predicate denotes sub-expression, given for each predicate, as a
result, the respective score function. The Quality of the Information (QI) with respect
to a generic predicate K is, therefore, given by QIK � 1�Card, where Card denotes the
cardinality of the exception set for K, if the exception set is not disjoint. If the exception
set is disjoint, the QI is given by:

Qk �
1

CCard
1 �����CCard

Card

where CCard
Card is a card-combination subset, with Card elements.

The next element of the model to be considered, it is the relative importance that
a predicate assigns to each of its attributes under observation, wi j, which stands for
the relevance of attribute j for predicate i (it is also assumed that the weights of all
predicates are normalized [4]:

�i
�n

j�1 wi j � 1

It is now possible to define a predicate scoring function, i.e., for a value x �

(x1� � � � � n) in the multi dimensional space defined by the attributes domains, which is
given in the form:

Vi(x) �
�n

j�1 wi j 	 Vi j(x j).

An Agent Based Approach to the Selection Dilemma in CBR 39

It is now possible to measure the QI that stems from a logic program, by posting the
Vi(x) values into a multi-dimensional space and projecting it onto a two dimensional
one. Under this procedure, it is defined a circle, as the one given in Figure 1. Here, the
dashed n-parts of the circle (in this case built on the extensions of 5 (five) predicates,
named as p1 � � � p5) denote the QI that is associated with each of the predicate extensions
that make the logic program P. It works out the most promising extended logic programs
or theories to model the universe of discourse of the agents that make the case memory,
providing the optimal solution, subject to formal proof, to the Selection Dilemma in
CBR.

It is now possible to return to the case referred to above, where we had a series of
data that is produced according to a set of patient attributes, being got all time along. It
is therefore possible, to produce a case memory, as the one depicted below, in terms of
the predicates itch, f ever and pain [3]. The corresponding evolutionary logic programs
are presented in Figures 2, 3 and 4.

Fig. 1. A measure of the quality-of-information for logic program or theory P

The extended logic program for predicate itch

{

¬itch(X, Y)← not itch(X, Y)∧ not exceptionitch(X, Y),
exceptionitch(X, Y)← itch(X, itch),
itch(john, itch),
itch(carol, 1),
exceptionitch(kevin, 0.6),
exceptionitch(kevin, 0.8),
?((exceptionitch(X, Y)∨exceptionitch(X, Y))∧¬(exceptionitch(X, Y)∧exceptionitch(X, Y))
}agitch

40 C. Analide et al.

The extended logic program for predicate fever

{

¬ f ever(X, Y)← not f ever(X, Y)∧ not exception f ever(X, Y),
exception f ever(X, Y)← f ever(X, f ever),
f ever(kevin, f ever),
f ever(john, 1),
exception f ever(carol, 0.5),
exception f ever(carol, 0.75),
?((exception f ever(X, Y)∨exception f ever(X, Y))∧¬(exception f ever(X, Y)∧exception f ever(X, Y))
}ag f ever

The extended logic program for predicate pain

{ ¬pain(X, Y)← not pain(X, Y)∧ not exceptionpain(X, Y),
exceptionpain(X, Y)← pain(X, pain),
pain(carol, pain),
pain(kevin, 1),
exceptionpain(john, 0.3),
exceptionpain(john, 0.45),
?((exceptionpain(X, Y)∨exceptionpain(X, Y))∧¬(exceptionpain(X, Y)∧exceptionpain(X, Y)),
}agpain

Now, and in order to find the relationships among the extensions of these predicates,
we will evaluate the relevance of the QI, which, for patient kevin, will be given in the
form Vitch(kevin) � 0�785; V f ever(kevin) � 0; Vpain(kevin) � 1, i.e., it is now possible
to measure the QI that flows out of the logic programs referred to above (the dashed
n-parts (here n is equal to 3 (three)) of the circles denote the QI for predicates itch,
f ever and pain).

It is also possible, considering what it is illustrated by Figures 5, 6 and 7, to predict
not only how the outcome of the patient diagnosis will fare into the future, but also how

Fig. 2. The evolutionary logic program for predicate itch

An Agent Based Approach to the Selection Dilemma in CBR 41

Fig. 3. The evolutionary logic program for predicate fever

Fig. 4. The evolutionary logic program for predicate pain

to fill in some missing data into the series. To do so, we need to evolve the logic theories
or logic programs, evolving the correspondent evolutionary logic programs, according
to the rules of programs synthesis [10] [8]. A new predicate may be defined (the three
argument predicate pathology), whose extension may be given in the form:

�pathology(X� Y� Z) � not pathology(X� Y� Z)�
not exceptionpathology(X� Y� Z),

pathology(john� f lu� ((itch� 0)� (f ever� 1)� (pain� 0�785))),
pathology(kevin� thrombosis� ((itch� 0�785)� (f ever� 0)� (pain� 1))),
pathology(carol� heartattack� ((itch� 1)� (f ever� 0�785)� (pain� 0))),
�agpathology

Now, given a new case, the seriation of the pathologies is made according the per-
centage of overlap between the dashed areas that make the QI for the predicates in the

42 C. Analide et al.

Fig. 5. A measure of the symptoms for patient John

Fig. 6. A measure of the symptoms for patient Kevin

case memory, and those for the new one. For instance, if we have a case under evalua-
tion, with the QI values depicted below:

QIitch � 0�785
QI f ever � 0
QIpain � 0�785

it is possible to define an order relation with respect to the pathologies referred to in
the case memory, leading to:

Thrombosis � Flu � Heartattack

An Agent Based Approach to the Selection Dilemma in CBR 43

Fig. 7. A measure of the symptoms for patient Carol

3 Conclusions

This paper shows how to construct a dynamic virtual world of complex and interacting
populations, entities that are built as evolutionary logic programs that compete against
one another in a rigorous selection regime. It provides a solution, subject to formal
proof, to the Selection Dilemma in CBR, i.e., in order to produce the optimal solution
to a particular problem, one must evolve the logic program or theory that models the
universe of discourse, in which its fitness is judged by one criterion alone, the owner
Quality-of-Information.

Clearly, we work out:
The model, that provides a solution, subject to formal proof, to the Selection

Dilemma in CBR. Indeed, a model in this context is to be understood as the compo-
sition of the extensions of the predicates that denote the objects and the relations that
make the inner circle of every case in the case memory.

The parameters or attributes, that we were seeking to discover, here given in terms
of the extensions of predicates of the kind just referred to above [2].

The optimal, here understood as the logic program or theory that models the universe
of discourse in terms of the predicates available and maximizes their QI factors [6].

How to measure and assign values to possible solutions, which was accomplished
via mechanical theorem proving and program composition [7].

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. AI Communications 7(1), 39–59 (1994)

2. Analide, C., Novais, P., Machado, J., Neves, J.: Quality of Knowledge in Virtual Entities.
In: Encyclopedia of Communities of Practice in Information and Knowledge Management,
pp. 436–442. Idea Group Inc. (2006)

44 C. Analide et al.

3. Angeline, P.J.: Parse Trees. In: BŁck, T., et al. (eds.) Evolutionary Computation 1: Basic
Algorithms And Operators. Institute of Physics Publishing, Bristol (2000)

4. Jennings, N.R., Faratin, P., Johnson, M.J., Norman, T.J., O‘Brien, Wiegand, M.E.: Journal of
Cooperative Information Systems 5(2-3), 105–130 (1996)

5. Leake, D.: Case-Based Reasoning - Experience, Lessons and Future Direction. MIT Press,
Cambridge (1996)

6. Mendes, R., Kennedy, J., Neves, J.: Avoiding the Pitfalls of Local Optima: How topologies
can Save the Day. In: Proceedings of the 12th Conference Intelligent Systems Application to
Power Systems (ISAP 2003). IEEE Computer Society, Lemnos (2003)

7. Neves, J.: A Logic Interpreter to Handle Time and Negation in Logic Data Bases. In: Pro-
ceedings of ACM 1984 Annual Conference, San Francisco, USA, October 24-27 (1984)

8. Neves, J., Machado, J., Analide, C., Abelha, A., Brito, L.: The Halt Condition in Genetic
Programming. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI),
vol. 4874, pp. 160–169. Springer, Heidelberg (2007)

9. Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions
on Neural Networks, Special Issue on Evolutionary Computation 5(1), 96–101 (1994)

10. Teller, A.: Evolving programmers: The co-evolution of intelligent recombination operators.
In: Kinnear, K., Angeline, P. (eds.) Advances in Genetic Programming 2, MIT, Cambridge
(1996)

Modeling Interactions in Agent-Based English
Auctions with Matchmaking Capabilities

Amelia Bădică and Costin Bădică

University of Craiova, Bvd.Decebal 107, Craiova, 200440, Romania
���������	�
������ ����� ��������������������

Summary. Creation of dynamic, non-trivial business relationships in agent-based trading envi-
ronments requires the use of di�erent types of middle-agents including matchmakers and arbi-
trators. In this note we apply the formal framework of finite state process algebra for modeling
and analysis of complex interactions occurring in agent-based English auctions combined with
matchmaking activities. In our model: i) several auctions initiated by di�erent seller agents are
carried out in parallel; ii) buyer agents have the option to register for participation only in auctions
that match their goals and iii) buyers decision to what active auction to register for participation
is taken dynamically.

1 Introduction

The ability of software agents to discover remote markets and to dynamically engage
in commercial transactions is very important in dynamic trading environments ([8]).
Connecting requester agents with provider agents in such an environment is a crucial
problem (known as the connection problem) that requires the use of middle-agents –
replacements of middlemen in a virtual environment ([7, 9]).

Typical use of middle-agents is encountered in e-commerce applications. For exam-
ple, the model agent-based e-commerce system discussed in [2] uses middle-agents to
connect user buyers on the purchasing side with shops on the selling side in a distributed
marketplace. Each user buyer is represented by a Client agent and each shop is repre-
sented by a Shop agent. The user buyer submits an order to the system for purchasing a
product via his or her Client agent. The Client agent uses a special agent called Client
Information Center – CIC that is responsible for providing information which shop in
the system sells which products. So, it can be easily noticed that CIC is in fact a match-
maker with respect to connecting the Client agent with an appropriate Shop agent.

Negotiations (and auctions in particular) are complex activities frequently encoun-
tered in modern e-commerce processes. They are typically characterized by tight in-
teractions between the involved business parties ([8]). Their understanding, especially
when negotiations are automatized using software agents ([10]), requires a careful anal-
ysis, usually supported by appropriate formal modeling frameworks.

For example, in the model agent-based e-commerce system presented in [2], after
the process of matchmaking between the Client agent and the Shop agent, the Client
has the possibility to create a specialized Buyer agent and to send him to the Shop
site to negotiate for buying a sought-after product at an a�ordable price. This example

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 45–54, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

46 A. Bădică and C. Bădică

clearly shows that combination of matchmaking and negotiation processes provides the
Client agent with a flexible support for dynamically engaging in non-trivial business
relationships.

In this paper we present a formal modeling of more complex agent-based e-commerce
processes that integrate two types of middle-agents frequently encountered in applica-
tions: Matchmaker and Arbitrator. We have chosen an Arbitrator for mediating English
auctions, inspired by [4] that has been extended with the ability of handling multiple
auctions in parallel to allow the study of more complex models. The Matchmaker model
has been inspired from [1]. The modeling is using the formal framework based on finite
state process algebra – FSP, initially proposed in [3].

We start in section 2 with: (i) background on FSP formal specification language;
(ii) an overview of our negotiation model; and (iii) an introduction to middle-agents
focusing on Matchmaker. In section 3 we detail our FSP models of English auctions
with matchmaking capabilities. We follow in section 4 with conclusions and proposed
future work.

2 Background

2.1 Overview of FSP

FSP is an algebraic specification technique of concurrent and cooperating processes
that allows a compact representation of a finite state labeled transition system (LTS
hereafter), rather than describing it as a list of states and transitions.

A FSP model consists of a finite set of sequential and�or composite process defi-
nitions. Additionally, a sequential process definition consists of a sequence of one or
more definitions of local processes. A process definition consists of a process name
associated to a process term. FSP uses a rich set of constructs for process terms (see
[11] for details). For the purpose of this paper we are using the following constructs:
action prefix (a � P), nondeterministic choice (P�Q), and process alphabet extension
(P � �a1� � � � � an�) for sequential process terms and parallel composition (P��Q) and re-
labeling (P��new1�old1� � � � � newk�oldk�) for composite process terms.

FSP has an operational semantics given via a LTS. The mapping of a FSP term to a
LTS is described in detail in [11] and it follows the intuitive meaning of FSP constructs.

The modeling that we propose here follows the general guidelines outlined in [3].
Briefly: i) agents are modeled as FSP processes and a multi-agent system is modeled as
a parallel composition of processes; ii) sets � of buyers and � of sellers are assumed
to be initially given and agent requests and replies are indexed with buyer and�or seller
identifiers; iii) matching operation is modeled as a relation � � � 	 �.

2.2 Agent Negotiation Model

We understand automated negotiations as a process by which a group of software agents
communicate with each other to reach a mutually acceptable agreement on some matter
([10]). In this paper we focus our attention on auctions – a particular form of negotia-
tion where resource allocations and prices are determined by bids exchanged between
participants according to a given set of rules ([12]).

Modeling Interactions in Agent-Based English Auctions 47

In automated negotiations we distinguish between protocols (or mechanisms) and
strategies. The protocol comprises public “rules of encounter” between negotiation par-
ticipants by specifying the requirements that enable them to interact and negotiate. The
strategy defines the private behavior of participants aiming at achieving their desired
outcome ([10]).

Our negotiation model follows the generic software framework for automated ne-
gotiation proposed by [6] and it is specialized for the particular case of English auc-
tions ([8]) following implementation details reported in [5]. This framework comprises:
(1) negotiation infrastructure, (2) generic negotiation protocol and (3) taxonomy of
declarative rules. The negotiation infrastructure defines roles of negotiation partici-
pants (eg.Buyer or S eller in an auction) and of a negotiation host. According to the
generic negotiation protocol ([6]), participants exchange proposals (or bids) via a com-
mon space that is governed by an authoritative entity – the negotiation host. Negotiation
state and intermediary information is automatically forwarded by the host to all entitled
participants according to the information revealing policy of that particular negotiation
([6, 5]). Negotiation rules deal with the semantic constraints a particular negotiation
mechanism (e.g. English auctions).

The generic negotiation protocol controls how messages are exchanged by the host
and participants by facilitating the following negotiation activities: (1) admission to ne-
gotiation, (2) proposal (or bid) submission, (3) informing participants about the change
of negotiation state, (4) agreement formation and (5) negotiation termination.

2.3 Matchmakers

A standard classification of middle-agents was introduced in the seminal work [7].
Based on assumptions about what it is initially known by the requesters, middle-agent,
and providers about requester preferences and provider capabilities, authors of [7] pro-
posed 9 types of middle-agents: Broadcaster, Matchmaker, Front-agent, Anonymizer,
Broker, Recommender, Blackboard, Introducer, and Arbitrator.

A Matchmaker middle-agent assumes that requester preferences are initially known
only to the requester, while provider capabilities are initially known to all interaction
participants. This means that a provider will have to advertise its capabilities with
Matchmaker and Matchmaker has responsibility to match a request with registered
capabilities advertisements. However, the fact that provider capabilities are initially
known also by the requester means that the result of the matching (i.e set of match-
ing providers) is returned by Matchmaker to requester (so provider capabilities become
thus known to the requester), and the choice of the matching provider is the responsibil-
ity of the requester. Consequently the transaction is not intermediated by Matchmaker,
as would be the case with Broker or Front-agent ([1]).

3 FSP Model of Agent Negotiation with Matchmaking

In this section we show how the FSP model of an English auction introduced in [4] can
be extended to handle multiple parallel auctions and matchmaking.

48 A. Bădică and C. Bădică

3.1 Negotiation Structure

A negotiation structure defines a general framework that statically constraints a given
negotiation.

The negotiation host role orchestrates the negotiation and coordinates negotiators by
employing the general negotiation protocol. We shall have a separate negotiation host
for each active auction in the system. All the active negotiation hosts are managed by a
negotiation server host.

A negotiation participant role describes the behavior of a negotiator that plays a
certain role in the negotiation. Usually, two negotiation participant roles are defined –
buyer and seller. For example, in an English auction there is a single seller participant
and one or more buyer participants, while in an reverse English auction there is a single
participant with role buyer and one or more participants with role seller.

A negotiation process is always initiated by a certain participant known as negotia-
tion initiator. The negotiation initiator requests the initiation of a new negotiation to the
negotiation server host. Usually it is required that the initiator has a given negotiation
role – negotiation initiator role. For example, in an English auction the initiator has
always role seller, while in a reverse English auction the initiator has always role buyer.

Focusing our discussion on auctions for buying and selling goods, a negotiation
structure can be formally defined as follows:

Definition 1. (Negotiation Structure) A negotiation structure is a tuple N �
S er-
verHost� Hosts� S eller� Buyer� Initiator� such that: i) S erverHost is the negotiation
server host role; ii) Hosts is the set of negotiation hosts roles; this set is composed
of several Host roles, each of them describing a negotiation host; iii) S eller is the
seller role that defines behavior of participants selling goods in the auction; iv) Buyer
is the buyer role that defines behavior of participants buying goods in the auction; iv)
Initiator is the role that is allowed to initiate the auction – either buyer or seller, i.e.
Initiator � �Buyer� S eller�.

Buyer Host

Seller

accept_bid

reject_bid

inform

win, no_win

bid

cancel_bid

win, no_win

Fig. 1. Roles interaction during negotiation

Seller

Host

ServerHost

Matchmaker

Buyer

create_auction

auction_not_created

auction_ created

end_auction

request

tell
register

acc_reg

rej_reg

Fig. 2. Roles interaction before and after nego-
tiation

Modeling Interactions in Agent-Based English Auctions 49

Interactions between the roles of a negotiation structure during and before�after negoti-
ation are illustrated in figures 1 and 2.

Behavior of negotiation roles is described using FSP. Therefore we shall have FSP
processes describing the S erverHost, Host, S eller, Buyer and Matchmaker roles. A
participant behavior is defined by instantiating its role. Finally, the behavior of the ne-
gotiation system is defined using parallel composition of roles for each negotiation
participant, including of course the negotiation server host, the negotiation hosts and
the matchmaker.

3.2 Negotiation Host

A negotiation host is able to handle a single negotiation at a certain time. In other words,
the negotiation host functions as a one-at-a-time server. In order to handle multiple
negotiations concurrently, several negotiation hosts instances will be created and ran
concurrently under the control of the negotiation server host.

Negotiation consists of a series of stages that, in what follows, are particularized for
the case of an English auction:

i) initiation – the negotiation is initiated by the seller using the init action; note that
initiation acts also as a registration of the seller agent participant; initiation is either
accepted (action accept init) or rejected (action re ject init) by the host;

ii buyer registration – each buyer agent must register with the negotiation using
register action before she is allowed to submit bids; registration is granted (action
accept registration) or not (action re ject registraton) by the negotiation host;

iii) bids submission – each registered buyer is allowed to submit bids using bid action;
bids are either accepted (action accept bid) or not (action re ject bid) by the host;
when a certain bid is accepted, the other registered buyer participants are notified
accordingly by the host (action in f orm). additionally, a buyer may cancel submit-
ting bids (action cancel bid), in this case being deregistered from the negotiation;

iv) agreement formation – when the host observes a certain period of bidding inactiv-
ity, it triggers negotiation termination via action no bid. This event subsequently
triggers agreement formation. In this stage the host checks if an agreement can
be generated. If no buyer has registered before the negotiation terminated then no
agreement can be made and action no win with no parameter is executed. How-
ever, if at least one buyer has successfully submitted an accepted bid then the host
will decide if there is a winner (action win) or not (action no win with parameter)
depending on if the currently highest bid overbids or not the seller reservation price.

Negotiation host behavior is described as the Host process (see table 1). The Host
process has a cyclic behavior and thus it runs infinitely, being able to handle an in-
finite sequence of negotiations, one negotiation at a time. Note that, di�erently from
the model introduced in [4] where the decision of accepting the initiation of a new
negotiation was taken by the Host, here this decision is taken by the S erverHost pro-
cess (see table 2).

In a real setting, participant agents (buyers and sellers) can be created and destroyed
dynamically. In our model we assume there is a given set of buyers as well as a given

50 A. Bădică and C. Bădică

Table 1. Host process that describes the negotiation host role for controlling a single negotiation

Host � (init � S erverBid(���))�
S erverBid(chb� Bs) � (bid(b � Bs) � AnswerBid(b�chb� Bs)�

cancel bid(b� � Bs) � S erverBid(chb� Bs � �b��)�
register(b� � Bs) � AnswerReg(b�� chb� Bs)�
no bid � S erverAgreement(chb))�

AnswerReg(b�� chb� Bs) � (accept registration(b�) � S erverBid(chb� Bs 	 �b��)�
re ject registration(b�) � S erverBid(chb� Bs))�

AnswerBid(b�chb� Bs) � (accept bid(b) � In f ormBuyers(b� Bs)�
re ject bid(b) � S erverBid(chb� Bs))�

In f ormBuyers(b� Bs) � (in f orm(b1) � in f orm(b2) � � � � �

in f orm(bk) � S erverBid(b� Bs))�
S erverAgeement(�) � (no win � Host)�
S erverAgeement(chb) � (win(chb) � Host�no win(chb) � Host)�

Host(s �
) � Host��auction created(s)�init� end auction(s)�no bid� win(s)�win�

no win(s)�no win� register(s�b)�register(b)� in f orm(s� b)�in f orm(b)�
accept registration(s� b)�accept registration(b)�
re ject registration(s� b)�re ject registration(b)�
cancel bid(s� b)�cancel bid(b)� bid(s� b)�bid(s)�
re ject bid(s� b)�re ject bid(s)� accept bid(s� b)�accept bid(s)��

Hosts � ��s��Host(s)

set of sellers that are created when the system is started. Buyers are able to dynamically
register to negotiations while sellers are able to dynamically initiate negotiations.

Assuming each buyer agent has a unique name, let � be the set of all names of buyer
agents and let � be the set of all names of seller agents that were created when the
system was initiated. Let be a name not in �. Definition of the Host process is using
several indexed families of local processes:

� S erverBid(chb� B) such that chb � B � ��� B � �. Here chb records the buyer
associated with currently highest bid and B denotes the set of registered buyers. The
condition chb � B� �� means that either no buyer agent has submitted a bid in the
current negotiation (when chb �) or the buyer agent that submitted the currently
highest bid must have already registered with the negotiation before the submission
(i.e. chb � B).

� AnswerReg(b� chb� B) such that b � �� B� chb � B� ��� B � �. Here b denotes the
buyer that requested registration with the current negotiation, chb denotes the buyer
associated with currently highest bid and B denotes the set of registered buyers. The
fact that b � ��B means that the registration request comes from a buyer that is not
yet registered with the negotiation. The fact that chb � B��� means that either the
currently highest bid has not been submitted yet (i.e. chb �) or it was submitted
by a registered buyer (i.e. chb � B).

� In f ormBuyers(b� B) such that b � B� B � �. Here b denotes the buyer that submit-
ted an accepted bid and B denotes the set of registered buyers. The fact that b � B
means that the bid that was accepted comes from a buyer that has registered with
the negotiation.

Modeling Interactions in Agent-Based English Auctions 51

Table 2. S erverHost process that describes the negotiation server host role

S erverHost � S erverHost(�)�
S erverHost(S) � (end auction(s � S) � S erverHost(S � �s�)�

create auction(s� � S) � S erviceHost(s�� S))�
S erverHost(s� � S s� S s) � (auction not created(s�) � S erverHost(S)�

auction created(s�) � S erverHost(S 	 �s��))�

3.3 Negotiation Server Host

Negotiation server host manages all the active negotiations at a given time. Whenever
a new auction is created, it is registered with the negotiation server host. Whenever an
auction is terminated it is consequently deregistered with the negotiation server host.
Note that decision of accepting or not the creation of a new auction belongs to the
negotiation host server.

3.4 Buyer and Seller Roles

The Buyer role first queries the Matchmaker to find out active negotiations (action
send request). The Matchmaker responds with a set S of matching negotiations (ac-
tion tell(S � �)). The buyer agent selects a convenient matching negotiation s � S and
then registers to the negotiation before starting to submit bids. If registration is granted,
she can start bidding according to its private strategy – action bid. Here we have cho-
sen a very simple strategy: each buyer agent submits a first bid immediately after it is
granted admission to the negotiation and subsequently, whenever it gets a notification
that another participant issued a bid that was accepted by the host. Additionally, each
buyer participant has its own valuation of the negotiated product. If the current value
that the buyer decided to bid exceeds her private valuation then the proposal submission
is canceled – action cancel bid, i.e. product became “too expensive”. Note that after a

Table 3. Buyer and S eller processes

Buyer � (send request � WaitReply)�
WaitReply � (tell(S �
) � if S � � then ContactProvider(S) else Buyer)�
ContactProvider(S �
) � (while S � � register(s � S) � BuyerRegister(s))�
BuyerRegister(s �
) � (accept registration(s) � BuyerBid(s)�

re ject registration(s) � Buyer)�
BuyerBid(s �
) � (bid(s) � WaitBid(s)�

cancel bid(s) � WaitBid(s)�
in f orm(s) � BuyerBid(s))�

WaitBid(s �
) � (accept bid(s) � Wait(s)�
re ject bid(s) � BuyerBid(s)�
in f orm(s) � BuyerBid(s))�

Wait(s �
) � (in f orm(s) � BuyerBid(s)�
end(s) � Buyer)�

S eller � (init � WaitInit)�
WaitInit � (accept init � WaitEnd�

re ject init � S eller)�
WaitEnd � (end � S eller)�

52 A. Bădică and C. Bădică

Table 4. Matchmaker middle-agent

Matchmaker � Matchmaker(�)�
Matchmaker(S �
) � (request(b � �) � MatchReq(b� S) �

o f f er(s �
 � S) � Matchmaker(S 	 �s�) �
withdraw(s � S) � Matchmaker(S � �s�))�

MatchReq(b � �� S �
) � (tell(b�(b) � S) � Matchmaker(S)) � �tell(b� � �� S � �
)��

NegoMatchmaker � Matchmaker��auction created�o f f er� end auction�withdraw��

buyer agent submitted a bid that was accepted, she will enter a state waiting for a noti-
fication that either another successful bid was submitted or that she eventually was the
last submitter of a successful bid in the current auction (i.e. a potentially winning bid,
depending on if the bid value was higher than the seller reservation price) – action end.

The seller agent initiates the auction – action init and then, assuming initiation was
successful, she waits for the auction to terminate – action end, before issuing a new
initiation request.

3.5 Matchmaker Role

Matchmaker agent registers and deregisters active negotiations and answers Buyer re-
quests for matching negotiations. The matching operation is modeled as a relation
� � � 	 �. Matchmaker informs Buyer about available active negotiations (action
tell). Note that Buyer is responsible to choose an appropriate matching negotiation from
the available matching o�ers.

Note that special care should be taken in order to accurately model agents commu-
nication using FSP synchronization. Matchmaker model requires alphabet extension
(construct��tell(b� � B� S � � �)� in table 4) in order to model correctly communication
between Matchmaker and Buyer.

3.6 Negotiation System

Buyer and seller agents are created by instantiating Buyer and respectively S eller
roles. Note that instantiation of Buyer roles assumes also indexing of actions bid,
re ject bid, accept bid, in f orm, cancel bid, register, accept registration, re-
ject registration with buyer’s name and also renaming action end with an indexed set
of actions �win� no win�. Similarly, instantiation of S eller role assumes renaming ac-
tion end with a set of actions denoting various ways the auction may terminate: without
a winner assuming no buyer submitted an accepted bid – no win, with or without a
winner assuming at least one buyer submitted an accepted bid – indexed set of actions
�win� no win�. Finally, instantiation of S erver role requires no renaming, as the names
of the buyer agents were supposedly known in the definition of S erver process.

Negotiation system is defined as parallel composition of negotiation server host, ne-
gotiation hosts, seller and buyer agents processes – see table 5.

We have determined the LTS of a sample negotiation system with 2 buyers and 2
sellers using LTSA tool ([11]). The complete definition of this system is shown in the
appendix. The analysis performed revealed that the system has 790 states and 2470
transitions and it is free of deadlocks.

Modeling Interactions in Agent-Based English Auctions 53

Table 5. S ystem process as parallel composition of negotiation host, buyers and seller processes

BuyerAgent(b � �) � Buyer��bid(s�b)�bid(s)� re ject bid(s� b)�re ject bid(s)�
accept bid(s� b)�accept bid(s)� in f orm(s� b)�in f orm(s)�
cancel bid(s� b)�cancel bid(s)� �win(s� b)� no win(s� b)��end(s)�
register(s� b)�register(s)�accept registration(s� b)�accept registration(s)�
re ject registration(s� b)�re ject registration(s)� tell(b� S)�tell(S)��

S ellerAgent(s �
) � S eller���no win(s)� win(s� b)� no win(s� b)��end�

create auction(s)�init� auction created(s)�accept init�
auction not created(s)�re ject init��

Buyers � ��b��BuyerAgent(b)

S ellers � ��s��S ellerAgent(s)

S ystem � (S erverHost��Hosts��S ellers��Buyers��NegoMatchmaker)�

4 Conclusions and Future Work

In this paper we applied a formal framework based on FSP process algebra for modeling
a system that contains seller and buyer agents engaged in complex matchmaking and
negotiation processes. We checked the resulting model with the LTSA analysis tool.
As future work, we intend to: i) modeling of more complex systems containing other
types of middle-agents; ii) introduction and analysis of qualitative properties of agent
systems; iii) carry out of verification experiments using the proposed models.

References

1. Bădică, A., Bădică, C.: Formal Specification of Matchmakers, Front-agents, and Brokers
in Agent Environments Using FSP. In: Ultes-Nitsche, U., Moldt, D., Augusto, J.C. (eds.)
Proc. MSVVEIS, – 6th International Workshop on Modelling, Simulation, Verification and
Validation of Enterprise Information Systems, pp. 9–18. INSTICC Press (2008)

2. Bădică, C., Ganzha, M., Paprzycki, M.: Developing a Model Agent-based E-Commerce Sys-
tem. In: E-Service Intelligence: Methodologies, Technologies and Applications. Studies in
Computational Intelligence, vol. 37, pp. 555–578. Springer, Heidelberg (2007)

3. Bădică, A., Bădică, C., Liţoiu, L.: Middle-Agents Interactions as Finite State Processes:
Overview and Example. In: Proc.16th IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE 2007), pp. 12–17 (2007)

4. Bădică, A., Bădică, C.: Formalizing Agent-Based English Auctions Using Finite State Pro-
cess Algebra. Journal of Universal computer Science 14(7), 1118–1135 (2008)

5. Bădică, C., Ganzha, M., Paprzycki, M.: Implementing Rule-Based Automated Price Negoti-
ation in an Agent System. Journal of Universal Computer Science 13(2), 244–266 (2007)

6. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated Negotia-
tion. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SELMAS 2004. LNCS,
vol. 3390, pp. 213–235. Springer, Heidelberg (2005)

7. Decker, K., Sycara, K.P., Williamson, M.: Middle-agents for the internet. In: Proceedings
of the 15th International Joint Conference on Artificial Intelligence IJCAI 1997, vol. 1, pp.
578–583. Morgan Kaufmann, San Francisco (1997)

8. Fasli, M.: Agent Technology For E-Commerce. Wiley, Chichester (2007)

54 A. Bădică and C. Bădică

9. Klusch, M., Sycara, K.P.: Brokering and matchmaking for coordination of agent societies:
A survey. In: Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.) Coordination of
Internet Agents. Models, Technologies, and Applications, pp. 197–224. Springer, Heidelberg
(2001)

10. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in
electronic commerce. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS (LNAI),
vol. 1991, pp. 19–33. Springer, Heidelberg (2001)

11. Magee, J., Kramer, J.: Concurrency. State Models and Java Programs, 2nd edn. John Wiley
& Sons, Chichester (2006)

12. McAfee, R.P., McMillan, J.: Auctions and bidding. Journal of Economic Literature 25(2),
699–738 (1987)

Output-Driven XQuery Evaluation

David Bednárek

Department of Software Engineering, Faculty of Mathematics and Physics
Charles University Prague
�����������	�
����������

Summary. When a XML document is stored in a relational or native database, its tree structure
is usually dissolved into various forms of interval or Dewey indexes. Besides other advantages,
these loosely-coupled structures allow parallel or distributed evaluation of XPath queries. How-
ever, when a XQuery or XSLT program produces a new XML document, its construction forms a
hardly parallelizable bottleneck. In this paper, we present a method of XQuery�XSLT evaluation
that directly generates Dewey-like structures representing the output of the transformation. This
approach forms an output-side counterpart of Dewey-based XPath evaluation methods and makes
parallel evaluation of XQuery�XSLT programs easier.

1 Introduction

Contemporary XQuery�XSLT�XPath processing and optimization techniques are usu-
ally focused on the querying side of the problem. Compared to the complexity of XPath
evaluation, the generation of the output tree seems straightforward. The semantics of
the XQuery�XSLT constructors suggests bottom-up in-memory construction of the tree
of the output document. It works fine when the output is being concentrated into a se-
rialized document; however, in a parallel or distributed environment, the canonical ap-
proach su�ers from the following problems: First, the maintenance of in-memory tree
structures in a distributed environment is diÆcult. Second, the bottom-up tree building
approach requires that lower parts of the tree are finished before continuing to the next
level; thus, this requirement may form a serial bottleneck in the distributed process.

When the output of a XQuery�XSLT program is being stored into a relational
database or a native XML-database, for instance as a materialized XML-view, the docu-
ment is being dissolved into a loosely-coupled structure. The elements of this structure,
e.g. individual table rows in a relational database, are bound together using various
forms of keys and indexes, like Dewey identifiers (see, for instance, [8]) or interval in-
dexes ([2]). In such environment, the physical construction of the output document in
the form of a tree is superfluous.

In our approach we suggest that the XQuery�XSLT processor directly generate the
individual elements of the output document representation, in the form used in the target
database. Instead of presenting the output document as a solid body, the elements are
generated independently. Moreover, the elements may be generated at various nodes
of a distributed computing environment; in the best case, at the same nodes where the
elements will be stored in a distributed database.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 55–64, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

56 D. Bednárek

Our method is based on partial reversal of the direction of data flow in a XQuery
program. In the synthetic part of the program that generates the output document, the
canonic bottom-up evaluation is replaced by top-down distribution of placeholders.
These placeholders give advice to the constructor operators on where the constructed
nodes will reside in the final output document.

In the next section, we will show the principles of the reversed evaluation. In the
third section, a mathematical model of the reversed evaluation will be introduced.

2 Reversed Evaluation

In the standard model of XQuery evaluation, each expression evaluates to a sequence of
items; each item may be an atomic value, (a reference to) a node of an input document,
or a node created by a constructor during the evaluation. In most cases, constructed
nodes and trees are not navigated using XPath axes or combined using node-set oper-
ations; they are just propagated to other constructors or to the final output of the pro-
gram. (Note that navigation in temporary trees was prohibited in XSLT 1.0., therefore,
it is still very rare practice in XSLT 2.0 and XQuery.) In such cases, the expressions
forming a XQuery program may be statically divided into two classes: Expressions re-
turning atomic values and input document nodes and expressions returning constructed
nodes.

Under the assumption that constructed trees are not navigated, only the following
operators may be applied to the constructed node sequences:

� Concatenation (�) operator
� ���-expression
� ���-expression
� Node constructor
� Input-to-output tree conversion (implicit)
� Function call

These operators can perform only a limited degree of manipulation on the sequences.
As a result, each node is just placed somewhere in the output document, without any
modification to its contents. Using �	��� clause, nodes may be discarded; using ���-
expression or function arguments, nodes may be copied. Thus, the total e�ect on a con-
structed node may be represented by a set of placeholders that represent the positions
in the output document, where the node is placed (copied).

We will show that the set of placeholders may be computed in the reversed direction
of the constructed node flow. The computation begins at the main expression of the
program, with a single placeholder pointed at the root of the output document. The sense
of the abovementioned operators is reversed – they manipulate and propagate the set of
placeholders from their original output to their operands. Besides the propagation, each
constructor creates corresponding nodes in the output document, at all places denoted
by the placeholders that reached it. It means that these operators have side e�ects and
the XQuery language is not evaluated as a functional language. In other words, each
function returning a constructed tree sequence is replaced with a procedure with an
additional parameter containing a placeholder set. Conversely, input arguments carrying

Output-Driven XQuery Evaluation 57

constructed nodes are replaced with output arguments carrying placeholders. Similarly,
a variable assigned a constructed node sequence by a ���-expression is replaced by a
placeholder-set collected from all usages of the variable and propagated further into the
expression in the let clause.

The edge labels in the output document are generated during the evaluation of the
program. In general, the labels are combined from the following partial labels:

� Fixed labels used to implement concatenation (comma) operator.
� Input node identifiers used to reflect the (implicit) document ordering of node sets

produced by XPath expressions.
� Atomic values from various XML universes (xs:string, xs:integer, etc.) generated

by ��
�� �� clauses.

In order to protect the correct ordering and to avoid random collisions, the partial
labels must not be combined by direct concatenation. Instead, hierarchical strings are
used, whose letters are recursively composed of other hierarchical strings, labels, or
atomic values. In Fig. 4, the hierarchical composition of output node labels is shown
by parentheses; in our mathematical model, we will define the operator � to produce
hierarchical string letters.

Output node identifiers are produced during the reversed evaluation of the XQuery
program. Starting at the main expression, (partial) placeholders are propagated through
the program; at each constructor, partial placeholders are finalized to produce complete
output node identifiers. These identifiers, together with the properties of the constructed
node, are stored into the output database.

Placeholders are generalized form of node identifiers – they allow insertion at a po-
sition marked inside an (incomplete) node identifier.

Example

As an example, we will use the Use Case TREE – Query 1 from the XQuery Test Suite
[12], shown at Fig. 1. Fig. 2 shows the corresponding abstract syntax trees with arrows
depicting the propagation of information. The thin dashed arrows show the propagation
of input tree nodes, the thick dashed arrows carry the constructed nodes. Note that the

�����	� ������� ������������ �� ���������� �� ����������

�

�	 �� �� ����������

	���	� ��������� �

����� �������� �������������

! ����������

!"

����� �

�	 �# �� �$����
 	���	� �����������#�

! ������

Fig. 1. Query 1

58 D. Bednárek

<section>

for $X

return
in

$P/section

toc($X)

,

$X/@*

function toc($P)

$X/title

<toc>

for $S

in

$I/book
toc($S)

PI

$S

$X

$P

return

main

$P

Fig. 2. Query 1 – Standard data flow

<section>

for $X

return
in

$P/section

toc($X)

,

$X/@*

function toc($P)

$X/title

<toc>

for $S

in

$I/book
toc($S)

PI

$S

$X

$P

return

main

$P

Fig. 3. Query 1 – Reversed data flow

���� and ������� expressions produce input nodes, however, their corresponding
sub-trees are copied into the output document. This behavior may be regarded as an
implicit conversion – by definition, it shall take place just before the ��������� con-
structor; however, static analysis may move the conversion operation down to the XPath
expressions as shown in the figure.

Output-Driven XQuery Evaluation 59

section

9

8

book

sectiontitle title

7 4

title

7

section

5

@id

6

/

1

p

8

p

9

section

((1)(1.9))

(3(1.5.8))

toc

sectiontitle title

(2(1.5.7)) (2(1.9.4))

title

(2(1.5.8.9))

section

((1)(1.5))

@id

(1(1.5.8.6))

/

()

Fig. 4. Query 1 – Sample input and output documents

Fig. 4 shows an input document and the corresponding output generated by the pro-
gram shown at Fig. 1. Each node is identified by the concatenation of the labels as-
sociated with the edges of the document tree; for instance, the @id node in the input
document receives the identifier 1.5.8.6. The lexicographical ordering of the node iden-
tifiers corresponds to the document ordering as defined in the XML standard.

The reversed flow of placeholders is shown at Fig. 3, using solid arcs. The side e�ects
of constructors are shown as thick dashed arrows. Implicit conversions attached to the
���� and ������� expressions were transformed to side e�ects: Such expressions
perform a Cartesian product of their new placeholder argument with the input nodes
returned by their XPath expression. Each of these input nodes is (together with its sub-
tree) copied into every place denoted by the placeholder set.

The computation starts with the empty placeholder (’) consisting of a single hierar-
chical letter whose interior is empty but marked (with the apostrophe) as the insertion
point. The empty placeholder reaches the ����� constructor which finalizes the place-
holder by removing the insertion point and produces a node in the form of the tuple
[(),element,‘toc’]. The constructor operator also creates another partial placeholder ()(’)
to be passed down to the child expression.

A ���-expression iterates through a sequence. In our example, this is a sequence
of nodes serialized in the document-order; therefore, their node identifiers are used to
carry the ordering information. In each iteration, the ���-expression produces a new
placeholder by inserting the identifier before the insertion point; in the example, the
��� � expression creates the placeholder ()((1)’) using the node identifier 1 from the
input document. This placeholder is passed down to the function ���.

The expression ��� � iterates through two input nodes having identifiers 1.5 and
1.9. Therefore, it produces these two placeholders: ()((1)(1.5)’) and ()((1)(1.9)’). Subse-
quently, the ��������� constructor is invoked twice, producing the following tuples:
[()((1)(1.5)),element,‘section’] and [()((1)(1.9)),element,‘section’].

The concatenation (�) operator is implemented using fixed labels �1,2,3� assigned
to its three operands. Thus, the sub-expression ������� receives placeholders with

60 D. Bednárek

the label 2 inserted, like ()((1)(1.5))(2’). The node-set computed by the XPath expres-
sion is copied to the output document. Their input node identifiers are inserted into
placeholders in order to keep their document order preserved. Thus, the node identifier
()((1)(1.5))(2(1.5.7)) is generated for the first title node.

The function ��� is called recursively for three times; during these calls, it receives
the following placeholders: ()((1)(1.5))(3’), ()((1)(1.5))(3(1.5.8))(3’) and ()((1)(1.9))(3’).
However, only the first call produces any output.

3 Mathematical Model

In this section, we define a mathematical model of the reversed evaluation of a XQuery
program. For brevity, we will ignore some technical details: We will not explicitly
model the access to the input document(s). We will assume that XPath navigation (axes)
and node-set operators are never applied to nodes constructed during the evaluation. Fi-
nally, we will not model the details of manipulation with atomic values and text nodes
required by the XQuery standard, since the required concatenation may be applied ad-
ditionally on the output of the transformation.

We will show the model on selected operators of the XQuery language. Since the
XSLT and XQuery are related languages and the translation from XSLT to XQuery is
known (see [6]), the model may be applied also to XSLT.

We assume that the XQuery was already statically analyzed to determine which ex-
pressions are used as output node sequences (such a method was already described in
[1]). Those expressions will be evaluated in the reversed manner, using the placeholder
sets. If an expression is used in both output and input styles (for instance, in an XPath
navigation and in a constructor), the expression shall be duplicated.

Our model consists of three portions:

� Value model used to describe sequences of atomic values and input nodes.
� Placeholder model comprehending the data passed in the reversed direction.
� Output model used to formalize the output of the program.

We will not describe operations on the value model since almost any XPath evalua-
tion approach may be mapped to our model. We will need the value model only at the
interface between the standard and reversed evaluation regions, i.e. in the description of
the semantics of ���-statements and the conversion between input and output nodes.

Both value and placeholder models must include description of the context where
the underlying XQuery expressions are evaluated. To define the context, we will use
two stacks:

� Call stack storing positions in the program where functions were called on the de-
scent to the current position. We will use ADDR to denote the set of call instructions
in the program.

� Variable stack storing values assigned to control variables of ���-statements along
the descent.

All models represent sequences using a mapping from an ordered set of sequence
identifiers to the corresponding values. Sequence identifiers, input and output node

Output-Driven XQuery Evaluation 61

identifiers, and value stacks are represented using the same formalism – hierarchical
strings.

Hierarchical alphabet is an (infinite) totally ordered set � with a function � :
�� � � that is a homomorphism with respect to the (lexicographical) ordering,
�(u) � �(w) � u � w. Additionally, the alphabet shall contain all natural numbers,
� � �, and all atomic value universes from the XML standard shall be mapped into the
hierarchical alphabet. Hierarchical string is a finite word over hierarchical alphabet, a
member of ��. We will use � to denote the empty string and � as concatenation operator.

Hierarchical strings may be implemented for instance by unranked ordered trees
whose leaves are labeled with natural numbers or atomic values.

We will use the following operators borrowed from classical relational algebra:
Union and set di�erence, R � S and R 	 S , natural join, R �� S , selection, �P(a1 �����an)(R),
based on a predicate P, projection, 	a1�����an (R) (for removing attributes, we will also
use the abbreviation 	�a1�����an (R) for 	AR��a1�����an�(R) where AR is the set of attributes of
R), and rename,
b�a(R). Additionally, we define the operator of function application
�b� f (a1 �����an)(R) which adds a new attribute b to the relation R, based on the function f
and the values of the attributes a1� � � � � an.

We will use the notation R � (a1 : T1� � � � � an : Tn) to declare that R is a relation with
attributes a1� � � � � an from domains T1� � � � � Tn.

A sequence of atomic values or input nodes is modeled using the following relation:

value � (i : ADDR�� v : ��� s : ��� x : ��)

The i and v attributes represent the call and variable stacks forming the context where
the expression is evaluated. s is the sequence identifier and x is either an atomic value
(mapped to a member of �) or an input node identifier (a member of (rng(�))�).

A set of descriptors is expressed using the following relation:

desc � (i : ADDR�� v : ���m : ��� s : ��)

The i and v attributes correspond to the call and variable stacks. The remaining hi-
erarchical identifiers form the partial placeholder m��(s�) with the apostrophe marking
the insertion point.

The output of the XQuery program is collected from all constructor operators
throughout the program. Every contribution is modeled as the relation:

output � (i : ��� k : KIND� n : ��� v : ��)

The i attribute is the output node identifier, k, n, and v attributes represent node kind,
name and value as required by the XML document model.

The reversed evaluation of the applicable XQuery operators is described by the fol-
lowing equations:

� Concatenation – E0 � E1 � E2

desc[E1] �
s�u 	�s �u�s�1 (desc[E0])

desc[E2] �
s�u 	�s �u�s�2 (desc[E0])

62 D. Bednárek

� Node construction – E0 � ���� E1 �����

output[E0] � �k�element �n�� �v�� 	i �i�m��(s) (desc[E0])

desc[E1] � �s��
m�p 	i�v�p �p�m��(s) (desc[E0])

� For expression – E0 � ��� � �� E1 ������ E2

desc[E2] � 	� j�u�w�x �v� j��(x) �s�u��(w) ((
 jv
u�s (desc[E0]))

�� (
w�s (value[E1])))

� Order-by clause – E0 � ��� � �� E1 ��
�� �� E2 ������ E3

desc[E3] � 	� j�u�w�x �v� j��(x) �s�u��(y)��(w) ((
 jv
u�s (desc[E0]))

�� (
w�s (value[E1])))

�� (
 jv
y�x 	�s (value[E2])))

4 Conclusion

We have presented a method of XQuery evaluation that reverses the standard flow of
evaluation on the output, synthetic portion of the program. This approach allows to
generate elements of the output document directly at their final locations in the repre-
sentation of the output document, bypassing the creation and merging of temporal trees
required in the standard evaluation order. The method is developed for systems where
the output of the transformation is stored in a database and it may be functional if the
following requirements are satisfied:

� The target database uses a kind of identifiers to link the individual elements together.
(Pointer-based implementations are disqualified.)

� These identifiers must be stable and independent on the presence of sibling ele-
ments. For instance, identifier schemes based on sequential (1,2,3,. . .) numbering
of document nodes are not suitable. Fortunately, schemes designed to support up-
dates usually satisfy this requirement.

� The target database must tolerate temporal violation of referential integrity during
the process of document generation. (For instance, children representation may be
generated before their parents.) Transaction-based isolation can solve this problem;
however, the cost of this approach in a distributed environment is not negligible.
Higher-level management of incomplete output documents may perform better than
a transsaction-based approach.

� The target database must o�er an interface capable to accept individual document
elements and identifiers from the XQuery�XSLT engine.

It seems that many contemporary XML storage systems, either relational (for in-
stance [10]) or native, can support the first three requirements either immediately or
with little changes. The main blocker is the fourth requirement, since the storage sys-
tems are usually built as black-boxes not capable to accept their internal identifiers from
the outside. Nevertheless, advanced XML storage systems are often tightly coupled

Output-Driven XQuery Evaluation 63

with an XPath engine on the retrieval side; therefore, the integration on the document-
generation side may be realizable.

Materialized XML-views are one of the areas where such an approach may be used.
Indeed, methods using identifier schemes satisfying the abovementioned requirements
were already presented ([5, 4]); however, they are focused on view updates, therefore
solving a di�erent problem than our method described in this paper. In [7], related
techniques were used in query reformulation above XSLT Views.

The main advantage of the presented method is the absence of in-memory structures
representing the output document or its parts during the execution. This fact reduces
the memory footprint of the execution. On the other hand, the amount of information
generated during the execution is greater than in memory-based approaches, due to the
fact that each generated node carries the Dewey identifier of the absolute location of
the node. Therefore, the proposed approach may be advantageous under the following
circumstances:

� Large output documents that would hardly fit into memory. Traditionally, streaming
XQuery�XSLT processors are used in these cases; however, our technique allows
to process programs that do not fit into streamability requirements associated with
various streaming methods (see, for instance [3]).

� Shallow output documents. In this case, the absolute Dewey identifiers of the gener-
ated nodes are relatively short and the abovementioned overhead connected to their
generation is lower. Studies [9] show that real XML data are rather shallow.

� A distributed environment, where the maintenance of in-memory trees is costly.
� XML messaging. Our labeling scheme may also be used as an alternative to seri-

alized XML in tightly-coupled systems (for instance XRPC [11]) where latency is
more important than bandwidth.

The exact balance of the benefits and overheads of our approach is not evaluated
yet. The reversed evaluation strategy becomes a part of an experimental XML frame-
work; experiments comparing various strategies including the reverse evaluation will
be conducted in simulated environments with the abovementioned properties.

Acknowledgment

This work was supported by the program “Information society” of the Thematic pro-
gram II of the National research program of the Czech Republic, No. 1ET100300419.

References

1. Bednárek, D.: Reducing Temporary Trees in XQuery. In: ADBIS 2008: Proceedings of the
12th East-European Conference on Advances id Databases and Information Systems, Pori,
Finland. LNCS. Springer, Heidelberg (2008)

2. Boulos, J., Karakashian, S.: A New Design for a Native XML Storage and Indexing Manager.
In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K.,
Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 755–772. Springer,
Heidelberg (2006)

64 D. Bednárek

3. Dvořáková, J., Zavoral, F.: A Low-Memory Streaming Algorithm for XSLT Processing Im-
plemented in Xord Framework. In: ICADIWT 2008: Proceedings of The First IEEE In-
ternational Conference on the Applications of Digital Information and Web Technologies,
Ostrava, Czech Republic. IEEE Computer Press, Los Alamitos (to appear, 2008)

4. El-Sayed, M., Rundensteiner, E.A., Mani, M.: Incremental Fusion of XML Fragments
Through Semantic Identifiers. In: IDEAS 2005: Proceedings of the 9th International
Database Engineering & Application Symposium, pp. 369–378. IEEE Computer Society,
Washington (2005)

5. El-Sayed, M., Wang, L., Ding, L., Rundensteiner, E.A.: An algebraic approach for incre-
mental maintenance of materialized XQuery views. In: WIDM 2002: Proceedings of the
4th international workshop on Web information and data management, Virginia, USA, pp.
88–91. ACM, New York (2002)

6. Fokoue, A., Rose, K., Siméon, J., Villard, L.: Compiling XSLT 2.0 into XQuery 1.0. In:
WWW 2005: Proceedings of the 14th international conference on World Wide Web, China,
Japan, pp. 682–691. ACM, New York (2005)

7. Groppe, S., Böttcher, S., Birkenheuer, G., Höing, A.: Reformulating XPath Queries and
XSLT Queries On XSLT Views. Technical report, University of Paderborn (2006)

8. Lu, J., Ling, T.W., Chan, C.-Y., Chen, T.: From region encoding to extended Dewey: on
eÆcient processing of XML twig pattern matching. In: VLDB 2005: Proceedings of the 31st
international conference on Very large data bases, Trondheim, Norway, pp. 193–204. ACM,
New York (2005)

9. Mlynkova, I., Toman, K., Pokorny, J.: Statistical Analysis of Real XML Data Collections.
In: COMAD 2006: Proc. of the 13th Int. Conf. on Management of Data, New Delhi, India,
pp. 20–31. Tata McGraw-Hill, New York (2006)

10. Pal, S., Cseri, I., Seeliger, O., Rys, M., Schaller, G., Yu, W., Tomic, D., Baras, A., Berg, B.,
Churin, D., Kogan, E.: XQuery implementation in a relational database system. In: VLDB
2005: Proceedings of the 31st international conference on Very large data bases, Trondheim,
Norway, pp. 1175–1186. ACM, New York (2005)

11. Zhang, Y., Boncz, P.: XRPC: Interoperable and EÆcient Distributed XQuery. In: VLDB
2007: Proceedings of the 33rd international conference on Very large data bases, Vienna,
Austria, pp. 99–110. ACM, New York (2007)

12. W3C. XML Query Test Suite (November 2006)

Approximating All-to-All Broadcast in Wireless

Networks

Doina Bein1 and S.Q. Zheng2

1 Department of Computer Science, Erik Jonsson School of Engineering and
Computer Science, University of Texas at Dallas, USA
siona@utdallas.edu

2 Department of Computer Science, University of Texas at Dallas, USA
sizheng@utdallas.edu

Summary. All-to-all broadcast is a communication pattern in which every node initi-
ates a broadcast request. In this paper we investigate the problem of building a unique
cast tree, that is unoriented (unrooted) tree and has minimal total power – minimal
unique cast (MUC) tree – to be used for all-to-all broadcast. We propose a polynomial-
time approximation algorithm for MUC problem. The power level of a node is selected
to ensure bidirectional communication with its siblings, thus broadcast and converge-
cast can be performed in the tree starting at any node.

1 Introduction

Minimum-energy broadcasting has been studied extensively in the literature.
Most of the work focused on finding the solution for a given source node that
initiates the broadcast request (a so called initiator for a wireless sensor net-
work). Convergecast is the dual of a broadcast, where the data flows back to a
single node. All-to-all broadcast refers to the communication pattern in which
every node is an initiator for a broadcast.

The pioneer work of Wieselthier et al. [14] and Stojmenovic et al. [12] had
given a new orientation in designing broadcast trees for wireless networks. By
using omnidirectional antennas at the nodes in a wireless network, a node trans-
mission can reach multiple neighbors at the same time. For example, for node
a to communicate with nodes b, c, and d, node a would need to spend at least
Pab, Pac, and Pad, to reach each individual node. But a transmission of power
P1 = max{Pab, Pac, Pad} will reach all the nodes a, b, and c, while a transmission
of power P2 = max{Pab, Pad} will reach only nodes b and d. To send a packet at
distance d, a node uses the power Pe = dα + ce where α is a constant parameter
depending on the characteristics of the communication medium (typically with
a value between 2 and 4), and ce is a parameter representing an overhead due
to signal processing.

For most wireless networks, there is an assumption that the transmission
range of a node can be adjusted in order to minimize the overall energy used

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 65–74, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

66 D. Bein and S.Q. Zheng

for broadcasting a message through the network. If that is the case, the node
will try to minimize its transmission range, thus its power level, while in order
to maintain a connected network, some nodes will have to increase their power
level, to reach more nodes. Building a broadcast or multicast tree of minimum
energy rooted at a given node are NP-complete problems [7, 8, 2], and several
approximation algorithms to solve these problems have been proposed [14, 12,
2]. In wireless sensor networks, since the communication from the leaf nodes
(sensors) back to the root node (source or initiator) is vital, the convergecast
problem [3] has been analyzed from the collision detection point of view [5] and
latency (total steps needed to collect the data) [6, 4].

Since the data acquired by the sensors has to be sent back to the initia-
tor for collection and analysis, using the broadcast tree built as rooted at the
initiator, the total cost of the convergecast is different from the cost of the ini-
tial broadcast, since a node will have to sent data to the parent and not to
its children. For the all-to-all broadcast problem in a n-node network, consid-
ering the n individual broadcast trees, one for each possible source node, is
unfeasible. A node will have to keep track of n broadcast trees. This requires
a large memory space and/or large and fast processing capabilities at a node.
The construction of each broadcast tree will have incur a large use of bandwidth
in the preprocessing step, when the broadcast trees are computed, and also
additional use of bandwidth when the network topology change (and some or
all nodes have to recompute their broadcast trees). An approach that requires
central coordination is to select a central node that is the closest to all the
nodes that collects the data and sends it to everyone else. This can be extended
to a distributed approach [9], where the network is partitioned into clusters,
and selected nodes called clusterhead play the role of the central node for their
clusters.

Even though the existent solutions for single (Papadimitriou and Georgiadis
[11]) or source-dependent broadcast trees (Wieselthier et al. [14]) are not opti-
mal, since the communication back to the initiator is not considered the energy
cost is underestimated for the all-to-all broadcast or convergecast.

For the all-to-all broadcasting problem we propose a power assignment for
nodes that uses a single, unoriented tree T , ensures all-to-all broadcasting in the
network (two sibling nodes in T have bidirectional communication links), and is
of minimal power. We propose the following heuristic (Algorithm MUCT): For
each node i in the network, determine the minimal-power broadcast tree rooted
at i using some approximation algorithm for broadcast trees (see [14, 7, 2] for
proposed approximation algorithms), and select the tree that has the minimum
value for powerT .

In Section 2 we present related work. In Section 3 we define the MUC problem.
and we propose an approximation algorithm for it (Section 4) In Section 5 we
show the relationship between the broadcast, convergecast, and MUC problem,
and we give upper and lower bounds for the total power required for MUC
problem. We conclude in Section 6.

Approximating All-to-All Broadcast in Wireless Networks 67

2 Related Work

Wieselthier et al. ([14]) had introduced the notion of wireless multicast advan-
tage and proposed the BIP (Broadcast Incremental Power) algorithm. Stojmen-
ovic et al. ([12]) proposed the concept of internal nodes as an alternative of
clusterheads, to reduce the communication overhead of broadcasting. Li and
Nikolaidis ([7]) proved that the minimum-energy broadcast problem, i.e. build-
ing a broadcast tree rooted at some given node, is NP-hard, and proposed an-
other approximation algorithm called Iterative Maximum-Branch Minimization
(IMBM). Independently, Cagali et al. ([2]) and Liang ([8]) showed that the prob-
lem is NP-complete. In the previous solutions to the broadcast tree problem, the
total power used by some broadcast tree rooted at the specified node was to be
minimized, among all the broadcast tree rooted at that node that span the net-
work. Hence, for an n-node wireless network, each node would have had to keep
track of n rooted broadcast trees, including the one rooted at itself. Papadim-
itrious and Georgiadis ([11]) have proposed a single broadcast tree for the entire
network, on which the broadcasting initiated by any source node will take place
in predetermined manner. The algorithm works for any type of weighted, general
networks. They have established that the minimum spanning tree (MST) that in
solvable in polynomial time sequentially and sub-polynomial time in distributed
manner, is within Δ times the optimal power, where Δ is the maximum node
degree in the network.

Convergecast problem was investigated for wireless sensor networks. Huang
and Zhang [5] have proposed a coordinated convergecast protocol to solve the
collision problem. Gandham et al. [4] and Kesselman and Kowalski [6] focused
on minimizing the total time to complete a convergecast. They proposed a dis-
tributed convergecast scheduling algorithm for the TDMA problem, respectively
a randomized distributed algorithm for the same problem.

All-to-all broadcast consumes much energy so there are very few results. The
effect on energy efficiency is studied by Lindsey and Raghavendra in [9, 10].
Bauer et al. [1] propose a data strucure called legend that gathers and shares its
contents with visited nodes; several traversal methods are explored.

3 Models

A fixed n-node wireless network is a pair (V, w) where V is the set of set of
nodes, |V | = n, and w is a non-negative function, defined over V ×V , measuring
the distance between the nodes. If the nodes have assigned certain power levels
then we can model the network as a weighted digraph G = (V, E, w) where E is
the set of arcs, representing unidirectional communication links (the power level
of some node decides to which nodes is connected). We note that if the power
level of some node changes, then the set E changes. Given any two nodes i and j
in G, we define the function cost to be costij = wα

ij if (i, j) ∈ E or ∞ otherwise.
Since the transmission range of each node dictates whether there is an arc

to some other node, and nodes do not have necessarily the same transmission

68 D. Bein and S.Q. Zheng

Pac

a
< Pcd

Pbd

b
Pcd

c

d

Fig. 1. Asymmetric communication between nodes

range, between two nodes u and v there can be an arc (u, v) ∈ E, or (v, u) ∈ E,
or both, or neither. For example, in Figure 1, node a has enough power level
to cover the distance to node c, node b to cover the distance to node d, node
d to cover the distance to node c, and node c does not have enough power
to reach any node (the value written in boxes under the node IDs). Assuming
Euclidean distances between nodes (function w), since wbd < wcd then there is
a bidirectional communication between nodes b and d. Since wbd < wab, then
there is a unidirectional communication from a to b. Node c is isolated, since
there is no node situated at a distance less than wcd.

The underlying graph of G is a simple graph; by selecting n−1 edges to connect
the nodes in G we obtained an unoriented (or unrooted) tree T , T = (V, ET). By
choosing a node in the network as a source (root), an unoriented tree can become
oriented by selecting the parent of each node as the neighboring node that has
the shortest distance to the root. The total number of possible unoriented trees
that can be built in a n-node network is no more than (n + 1)n−1, which is the
Cayley’s tree enumeration.

Since the tree is unoriented, there is no notion of parent or children of a node.
Instead, we denote by the siblings the set of nodes a node is connected to in the
tree (neighboring nodes). For unoriented tree T , for any node i, let Si be the set
of siblings of i in T : ∀j ∈ Si, (i, j) ∈ ET . We propose to measure the energy at
a node based on the distance to the farthest sibling. Given a tree T = (V, ET)
rooted at some node r that spans the underlying graph of G = (V, E), we propose
a new measure for the power used by a node i, powerT

i , to be

powerT
i = max

j∈Si

costij (1)

We denote by powerT the total power of all the nodes in the tree T :

powerT =
∑

i∈V

powerT
i (2)

Different power assignments at a node generates different network topologies.
Assuming Euclidean distance among the nodes in Figure 2, let |xy| be the dis-
tance between nodes x and y, for x, y ∈ {a, b, c, d}. Let |cd| < |ac| < |ab| < |bc| <
|bd|, |ac| < |ab| < |ad|, and |cd| < |ad|.

In Figure 2(a), if node c has the power Pca (enough to reach nodes a and d but
not node b), then the only possible spanning tree for the entire network is T1,
the one rooted at node b and has the set of arcs {(b, a), (a, c), (c, d)}. The total
power used for broadcasting with node b as the source node is Pba + Pac + Pcd.

Approximating All-to-All Broadcast in Wireless Networks 69

Pac

Pba

Pca

Pdc

b

a

c

d

Pac

Pba

Pcb

Pdc

b

a

c

d

(a) (b)

Fig. 2. Selecting the transmission power

If the nodes set their power levels as indicated by Equation (1), then powerT1 =
Pab + Pba + Pca + Pdc.

In Figure 2(b), if node c has the power Pcb (enough to reach all the nodes a, b,
and d), then another tree T2, rooted at c and with the arcs {(c, a), (c, b), (c, d)},
can be considered. The total power used for broadcasting with node c as the
source node is Pcb. If the nodes set their power levels as indicated by Equation
(1), then powerT2 = Pac + Pbc + Pcb + Pdc.

One can observe that T2 has the total broadcast power smaller than T1 since
|bc| < |ba|+ |ac| (triangle inequality), |ba|+ |ac| < |ba|+ |ac|+ |cd|, and the power
at a node is defined as in Equation(1). At the same time, powerT1 < powerT2

since we assume |ba| < |bc|. Thus selecting the tree with the minimum broadcast
power is necessarily a good heuristic for selecting the tree with the minimum
all-to-all power.

During a single source broadcast a node may receive the same message more
than once. Thus the broadcast does not induce an oriented tree, but a connected
graph that it will contain an oriented tree. Thus, by eliminating the extra re-
ceipts, we can consider the induced graph as a tree. We formulate the minimal
unique cast graph (MUC) problem as follows:

MUC. Given a wireless network (V, w), assign power levels to the nodes
such that the corresponding unidirectional links (arcs) formed between
nodes induce a strongly connected graph that can be used for all-to-all
broadcast and the sum of all nodes’ power is minimum.

The corresponding decision problem can be formulated as follows:

Instance: A wireless network V and a positive integer k.
Question: Does there exists a power assignment for the nodes in V such
that the corresponding unidirectional links (arcs) formed between node
induce a tree T that can be used for all-to-all broadcast and the sum of
all nodes’ power is less or equal k?

4 Approximation Algorithm for All-to-All Broadcast

Consider the following algorithm MUCT for a given wireless network (V, w). For
each node r in V , one can construct a single-source broadcast tree T r rooted at

70 D. Bein and S.Q. Zheng

r, using some approximation algorithm (see [14, 12, 13, 2] for existent approx-
imation algorithms). For each tree T r, consider at the nodes the power levels
given by Equation (1) and the total power given by Equation (2).

We apply the following heuristic: select the tree To that has the minimum
value for the total power powerTo = min

∀r∈V

powerT r

.

Algorithm 4.1. Algorithm MUCT (Minimum Unique Cast Tree)

Read the input: (V, w)
Initialization: Let powero = ∞ and OPT = ∅.
Main Procedure:

Forall r ∈ V do
Build a broadcast tree rooted at r, BT , using an approx. alg. A
Let T to be the unoriented tree obtained by ignore the orientation in BT .
Define the power level of some node i as in Equation (1).
Compute powerT as in Equation (2).
If powerT < powero then store T in OPT and powerT in powero.

Endfor

The power levels at a node in the tree To are such that between any two
siblings there is no bidirectional communication. Thus the tree can be used for
all-to-all broadcast, and Algorithm MUCT is an approximation for the MUC
problem.

5 Proofs

Let T be an oriented tree spanning the underlying graph of G. We show that
by choosing the power of some node i be the maximum cost for reaching the
siblings (Equation (1)), then between any two siblings in T there is a bidirectional
communication link (Lemma 1). Then we show that during a broadcast from any
node in the tree the total power spent is less than the value of powerT given
in Equation (2) (Lemma 2), and during a convergecast back to any node in the
tree the total power spent is less than the value of powerT (Lemma 3). This
concludes a lower bound for powerT (Theorem 1).

We show that the total power spent during a convergecast is greater than half
of powerT (Lemma 4) and during a broadcast followed by a convergecast, the
total power spent is at least powerT (Lemma 5). This concludes an upper bound
for powerT (Theorem 2).

Lemma 1. If for any node i in the tree the power level at i is the one defined
as in Equation (1) then there is a communication path between any two nodes.

Proof. Recall that the power level of a node decides whether there is a unidi-
rectional, bidirectional, or no communication between the node and some other

Approximating All-to-All Broadcast in Wireless Networks 71

node. We show that by selecting n − 1 edges to connect the nodes in G, edges
that form an oriented tree T , and by selecting the power level of some node to be
the value given in Equation (1), between any two neighboring nodes in T there
will be a bidirectional communication.

Let i be some node in T and j be some sibling of i in T : j ∈ Si. From
Equation (1) it follows that powerT

i ≥ costij thus there is an unidirectional
communication link from i to j. Similarly, for node j powerT

j ≥ costji, therefore
there is an unidirectional communication link from j to i. Thus between any two
sibling nodes in T there is a bidirectional communication. Henceforth, there is
a communication path between any two nodes in the tree.

Since between any two neighboring nodes there is a bidirectional communication
link, we can consider T as a graph instead of a digraph.

For some node r, consider the orientation of the tree T with respect to r as
the root node. Ancestor/descendant relationship between nodes induces a partial
order. We denote by i <r j (or simply i < j if r is understood) that node i is an
ancestor of node j.

We denote by r-broadcasting the broadcast initiated by node r.

Lemma 2. If any node i in the tree T has the power level as defined in Equation
(1), then the total power used for a broadcast initiated by some node r along the
tree T is less than the value of powerT given by Equation (2).

Proof. Some node i in T spends during the r-broadcast an amount of power,
pr,T

i , equal to
pr,T

i = max
∀j∈Si

r≤i<j

costij (3)

The total power spent for r-broadcast is pr,T

pr,T =
∑

i∈V

pr,T
i (4)

It can be easily observed that pr,T
i ≤ powerT

i , for any nodes i and r. Moreover,
if i is a leaf node of the oriented tree T rooted at r, then pr,T

i = 0, thus pr,T
i <

powerT
i , for any node r. It follows then that the total power spent for r-broadcast,

pr,T , given by Equation (4), is strictly smaller than the value of powerT , given
by Equation (2).

We denote by r-convergecast the collection at node i of all the packets send by
the children of i and the sending of an unique message with the aggregated data
at a range that covers at least the parent of i.

Lemma 3. If any node i in the tree T has the power level as defined in Equation
(1), then the total power used for a convergecast towards some node r along the
tree T is less than the value of powerT given by Equation (2).

72 D. Bein and S.Q. Zheng

Proof. Some node i other than r spends during the r-convergecast an amount
of power, ppr,T

i , equal to

ppr,T
i = costik (5)

where k ∈ Si, r ≤ k < i, and ppr,T
r = 0.

The total power spent for r-convergecast is ppr,T

ppr,T =
∑

i∈V

ppr,T
i =

∑

(i,j)∈T,i<j

costij (6)

It can be easily observed that ppr,T
i ≤ powerT

i , for any nodes i and r. More-
over, if i is a leaf node in the oriented tree T rooted at r then ppr,T

i = powerT
i .

Note also that ppr,T
r = 0 < powerT

r .
It follows then that the total power spent for r-convergecast, ppr,T , given by

Equation (6), is strictly smaller than the value of powerT , given by Equation
(2).

We can the conclude:

Theorem 1. For any node r in the network G and any tree T that spans G, if
the power level at r is the one defined as in Equation (1) then

powerT ≥ max(pr,T , ppr,T)

Lemma 4. The total power used for convergecast towards some node r in the
tree given by Equation (6) is greater or equal to half of powerT given by Equation
(2), for any node r.

Proof. Note that

2ppr,T = 2
∑

(i,j)∈T

costij =
∑

i∈V

∑

j∈S(i)

costij

Since for any set A, the sum of elements in A is greater or equal to the
maximum element in A, it follows that for any node i,

∑

j∈S(i)

costij ≥ max
j∈S(i)

costij

In this inequality, the right expression is powerT
i . Thus 2ppr,T ≥ powerT .

Lemma 5. If for any node i in the tree T , the power level at i is the one defined
as in Equation (1), then the total power used for a broadcast initiated by some
node r followed by a convergecast towards r along the tree T is greater or equal
to the value of powerT given by Equation (2).

Approximating All-to-All Broadcast in Wireless Networks 73

Proof. The power spent by a node i during r-broadcast and r-convergecast is
pr,T

i + ppr,T
i .

The total power spent by all nodes during during r-broadcast and r-convergecast
is ∑

i∈V

(pr,T
i + ppr,T

i) = pr,T + ppr,T

Since for any node i, the set S(i) contains the parent of i towards r (let’s
called it node k) and the children of i: S(i) = {k} ∪ {j ∈ S(i)|r ≤ i < j}. From
this and Equation (1) it follows that

powerT
i = max

∀j∈Si

= max(costik, max
∀j∈Si
r≤i<j

costij)

Since for any two non-negative values a and b, max(a, b) ≤ a + b, it follows
that

max(costik, max
∀j∈Si
r≤i<j

costij) ≤ costik + max
∀j∈Si
r≤i<j

costij

In this inequality, the left expression is powerT
i (Equation (2)), and the right

expression is the sum of pr,T
i (Equation (3)) and ppr,T

i (Equation (5)). Thus
for any node i, powerT

i ≤ pr,T
i + ppr,T

i . It follows then directly that powerT ≤
pr,T + ppr,T .

We can the conclude:

Theorem 2. For any node r in the network G and any tree T that spans G, if
the power level at r is the one defined as in Equation (1) then

powerT ≤ ppr,T + min(ppr,T , pr,T)

It follows from Theorem 1 and 2 that

max(pr,T , ppr,T) ≤ powerT ≤ pr,T + ppr,T

6 Conclusion

We propose an approximation algorithm to build a unique cast tree to be used for
all-to-all broadcast, that is unoriented and has minimal total power. Lower and
upper bounds for the sum of all nodes’ power are given also. Such a construction
is a sufficient approximation for MUC problem, but a necessary ones. Finding
a tree that has a minimal total power, that can be used for all-to-all broadcast,
not necessarily using a broadcast tree as a preprocessing step, is an interesting
open problem.

74 D. Bein and S.Q. Zheng

References

1. Bauer, N., Colagrosso, M., Camp, T.: Efficient implementations of all-to-all broad-
casting in mobile ad hoc networks. Pervasive and Mobile Computing, 311–342
(2005)

2. Cagali, M., Hubaux, J.P., Enz, C.: Minimum-energy broadcast in all-wireless net-
works: Np-completeness and distribution issues. In: Proceedings of MOBICOM
2002, pp. 172–182 (2002)

3. Chlamtac, I., Kutten, S.: Tree-based broadcasting in multihop radio networks.
IEEE Transactions on Computers 36(10), 1209–1223 (1987)

4. Gandham, S., Zhang, Y., Huang, Q.: Distributed minimal time convergecast
scheduling in wireless sensor networks. In: Proccedings of the 26th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS 2006), p. 50 (2006)

5. Huang, Q., Zhang, Y.: Radial coordination for convergecast in wireless sensor net-
works. In: Proceedings of the IEEE 1st workshop on Embedded Networked Sensors
(EmNeTS-I) (2004)

6. Kesselman, A., Kowalski, D.R.: Fast distributed algorithm for convergecast in ad
hoc geometric radio networks. Journal of Parallel and Distributed Computing,
578–585 (2006)

7. Li, F., Nikolaidis, I.: On minimum-energy broadcasting in all-wireless networks.
In: Proceedings of LCN 2001, pp. 193–202. IEEE Computer Society Press, Los
Alamitos (2001)

8. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc net-
works. In: Proceedings of MOBICOM 2002, pp. 112–122 (2002)

9. Lindsey, S., Raghavendra, C.: Energy efficient broadcasting for situation awareness
in ad hoc networks. In: Proceedings of the International Conference on Parallel
Processing (ICPP 2001) (2001)

10. Lindsey, S., Raghavendra, C.: Energy efficiency all-to-all broadcasting for situation
awareness in ad hoc networks. Journal of Parallel and Distributed Computing, 15–
21 (2003)

11. Papadimitriou, I., Georgiadis, L.: Minimum-energy broadcasting in multi-hop wire-
less networks using a single broadcast tree. Mobile Networks and Applications 11,
361–375 (2006)

12. Stojmenovic, I., Seddigh, M., Zunic, J.: Internal nodes based broadcasting in wire-
less networks. In: Proceedings of the 34th Hawaii International Conference on
System Sciences (HICSS 2001) (2001)

13. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Algorithms for energy-efficient
multicasting in static ad hoc wireless networks. Mobile Networks and Applica-
tions 6 (2000)

14. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In: Proceedings of
INFOCOM 2000. IEEE Computer Press, Los Alamitos (2000)

Trusting Evaluation by Social Reputation

Vincenza Carchiolo, Alessandro Longheu, Michele Malgeri,
and Giuseppe Mangioni

Dipartimento di Ingegneria Informatica e delle Telecomunicazioni
Facoltà di Ingegneria - Università degli Studi di Catania - Italy

Summary. The increasing use of Internet for human real world activities such as
e-commerce, exchange of information, advertising and several other service make the
question of trust a critical issue. Today, everyone pushes information inside the net so
is not easy to base trust on some, centralized authorities. many people is investigating
how trust can be obtained - in some cases inspiring their investigation on social behavior
- starting from some judges one may have on some others. This paper analyzes this
matter, modelling trust relationship by a oriented graph and discussing some metrics
useful to calculate reputation of a node based on others trust him/her.

1 Introduction

The stressing and increasing use of Internet for everyday life activities is har-
vesting more and more human real world interactions, pushing them into the
virtual world of e-commerce, file sharing, on-line communities, blogs, wikies,
and a plethora of other services. This transposition of social networks from a
real to a virtual environment [21] makes the question of trust a critical issue,
also due to the fact that in the past only few sources (public institutions, uni-
versities, corporate websites etc.) pushed their information in to the web, now
anyone can spread any information across the web; actually, an authoritative
source should not be considered trusted per se, however trusting has become
increasingly relevant as the number of independent information sources grows.

Trust was initially defined and deeply analyzed within sociology and pysichol-
ogy context. In [5], trust is given a central role: “Trustworthiness [. . .] is both
the constitutive virtue of, and the key causal precondition for the existence of
any society”; this relevance tends to increase within virtual environments, in-
deed, collecting concrete real-world evidences of virtual artifacts is often a hard
question. Think for instance at whitewashing phenomenon, in real world change
own’s face it’s not so easy. This gap leads to rely also on others mechanism and
trust is a feasible solution since it aims at reproducing human behavior within
social networks, where trust is achieved as a combination of personal experience
(whenever available) with a person to be assigned a trustworthiness and the
shared opinion (reputation) that person is given. In this sense, trust is used as
a tool for complexity reduction [12], i.e. it provides the internal security before
taking an action despite uncertainty or incomplete information (limited concrete
evidences).

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 75–84, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

76 V. Carchiolo et al.

The notion of reputation was mainly introduced to address the free-riding
question, i.e. the malicious behavior of peer who consume resources offering lim-
ited or no participation to the network they exploit. Reputation-based systems
for trust evaluation is a common approach [10, 4], generally opposed to policy-
based systems, where the hard evidence of owned credentials is used to grant
trust[1]; this is though less feasible within social networks.

Several definitions for trust can be considered, moving from social science
[2][16] to more specific, computer science context [1][9]. However, trust here is not
intended a synonym for authentication. The choice we make of approaching the
question of trust by miming social networks behaviors not only reflects the fact
that trust within computer science context still remains a social phenomenon,
but it also allows to exploit some useful properties of social networks, specifically
the well known small-world effect[20] , according to which it is often possible to
find a short chain of friends of friends to anyone on the globe.

Reputation expresses the common opinion about a person and is usually com-
bined with personal opinion in order to make a choice about that person (work
together, exchange information, . . .) since it is beyond individual resources to
catch all aspects of a person when making a trust decision [16]. The approach
of integrating weighted contribution of both personal opinion and reputation is
adopted in other works, e.g. [14][18].

Our goal is to exploit reputation for trusting evaluation; we analyze two met-
rics to determine the reputation of a peer node, performing some experiments on
Advogato [11] data set, that is an online community dedicated to free software
development that provide with a trust among people belonging to the commu-
nity. In section 2 we outline the scenario in which our proposal is defined; in
section 3 we introduce metrics and simulations, and in section 4 related works
are considered, finally in section 5 we present some conclusions.

2 Scenario

The existing trust network is modeled as a directed labeled graph, i.e. a graph
whose edges are ordered pairs ov vertices; a graph, G = (N , E) where N is a
set of nodes (representing persons in a social network) and E (u, v) is a set of
oriented edges between nodes, i.e. E = {(u, v)|u, v ∈ N ∧ u �= v}; a link from
A to X is labelled with trustworthiness tAX ∈ [−1, 1] a value that quantifies how
much A trusts X; -1 means A does not trust X at all, 1 indicates that A trusts X
completely, and 0 models the indifference, either due to a lack of information or
to opposite judgements about X; note trustworthiness is not commutative, thus
edge orientation is needed.

This generalized trust network can be exploited by any other application, for
instance there may be a P2P network for file sharing that use trust to distinguish
reliable from unrealiable peers. The trusting network itself should be intended
as an overlay network placed on top of an underlying message transportation
network; we make this hypotesis so message routing and node reachability, both

Trusting Evaluation by Social Reputation 77

used to exchange information on trustworthiness, are completely independent
from trust evaluation, thus we can always suppose any node is reachable.

The next question is “How tAX is determined?”. Whenever a person (node) A
wishes to assign a trustworthiness to another person X, he combines his personal
judgement with reputation, being the former assigned from his personal experi-
ence with X and the latter derived from trustworthiness X has already assigned
in the network by other nodes. The role of personal experience is out of the scope
of this paper; other works address this issue, e.g. [6][8].

In order to achieve a reputation value about X from the network, since we
want to reproduce social behaviour, the question is “who should A ask to get a
reputation about X?”. The most intuitive choice is to ask to all nodes that already
assigned X a trustworthiness. We name such nodes as X’s judges (J X); note that
X could also be not aware of their existence, being not commutative the trust
relationship. If A could get all X’s judges opinion (trustworthiness about X), he
could someway evaluate X reputation, for instance simply mediating among all
values; this solution has been proposed in [22]. The main drawback with this
approach is that in general X’s judges may not have a trust relationship with
requesting node A, thus A has no way of evaluating the goodness of their opin-
ions, being then strongly subject to empowering. A refinement for this approach
could be searching among X’s judges who are also known (and someway trusted)
by A; in this way, A is able to weight those judges’ opinions, e.g. through trust-
worthiness he gave to them. It could also happen that A does not directly knows
such judges, but some path traversing friendship relations from A exists, hence
the refinement could be better defined as the search of paths from A to each of
X’s acquaintaces, so that A can better evaluate the opinions about X to build
his reputation.

3 Trust Evaluation: Algorithms and Results

As introduced in previous section, we evaluate the reputation about a target
node X exploiting information from his judges, hence we introduce a first basic
metric, i.e. where no paths leading to the source node A are considered. To assess
the correctness of reputation evaluation using this metric, we choose a generic
source node A that already assigned a trustworthiness to a target X, we remove
this edge from the network and try to evaluate reputation and how much it differs
from trustworthiness A gave to X (A’s personal judgement is neglected). This
approach is known as the leave-one-out, a classical machine learning technique
also exploited in other works (e.g. [15][17]). The formula we adopt at this stage
is a simple average of X’s judges trustworthiness; note that this value actually
does not depend from requesting (source) node A.

To assess the effectiveness of our metrics, the Advogato data set [11] has been
considered. Its properties are illustrated in table 1.

In particular, the network presents 2685 nodes with indegree = 0 for which any
approach of evaluating a reputation clearly fails. Note however that such nodes
are infrequent within social networks, since they would represent individuals who

78 V. Carchiolo et al.

Table 1. Advogato data set characteristics

Property #

Nodes 7321
Edges 51660
Nodes with outdegree = 0 3253
Nodes with indegree = 0 2685
Nodes with degree = 0 1992
Average outdegree 12.70
Average indegree 11.14
Max indegree/outdegree 767

(possibly) judge people being not judged by anyone, think for example to a person
who always remains inside his house, and knows about other people through the
TV and Internet, but he only see movies, read blogs or websites, without directly
contacting anyone, thus nobody can actually knows about his existence and can-
not assign him a trustworthiness; this is clearly a remote possibility, hence such
nodes are considered not significant in the remainder of our discussion. Similarly,
3253 nodes exist in the data set with outdegree = 0, but this also is a remote case
in social network, where individuals generally interact each other thus assigning
them trustworthiness; an outdegree=0 indeed would model a node that trust no
one, but as soon as he lives in society, he knows people, and it is in human nature
to assign a trustworthiness to a person as soon as we interact with him, thus we
will neither consider such nodes in the following.

Applying the basic metrics to the Advogato data set, figure 1 illustrates the
difference between the evaluated reputation and the existing trustworthiness (on
x axis), obtained by varying node X over all the network (on y axis we report the
number of nodes with a given percentage error). We note that most nodes are
located below the 0.20 of difference, showing that the evaluated reputation can
be considered an acceptable approximation for trustworthiness for the Advogato

Fig. 1. # of nodes (y axis) vs. associated (reputation - trust basic metrics)

Trusting Evaluation by Social Reputation 79

dataset the overall trust does not change. However it still remains open the
possibility of cheating by judges due to the limited knowledge requesting node
A has about them.

3.1 Source Centric Metric

In this section we introduce a metric aiming at reducing the problem of cheating
combining trust values obtained by judges of target node X with trustworthiness
source node A assigned to judges themselves.

Given a node N ∈ J X we define PA
N i as the i − th path joining A with N.

Since several path joining a couple of node could exists we call PA
N =

⋃
i PA

N i the
set they belong to.

The formula used to calculate reputation about X from A’s point of view -
called tAX - depends on judges trust on X and paths from A to them, that is we
use the average of such opinions weighted through paths. First of all, we define
the weight of the i − th path (wi(A, N)) connecting A and N, where N ∈ J X ;

wi(A, N) =
∏

(u,v)∈PA
N i

tuv (1)

where (u, v) is the oriented arc joining nodes u and v
Then, we join all wi(A, N) into a single value taking into account all paths

connecting source node to one specific judge

w(A, N) =

∑

i

wi(A, N)

|{wi(A, N)}| (2)

Al last the reputation of target node, from A’s point of view, is as follows:

tAX =

∏

N∈JX

w(A, N) · tNX

|J X |
(3)

The equation 2 allows us to reduce the effect of cheating because all judges
are weighted with respect to source nodes. Fig 2 reports some figures obtained
in the same way of those reported in figure 1 but using the source centric metric;
it can be seen that results are still acceptable.

Actually, we are investigating on several approaches in order to take into
account friendship chains in wi(A, N) estimation, where N ∈ J X . These ap-
proaches aim at addressing some aspects, in particular it is possible to choose
between a step-by-step and a cumulative evaluation, where in the former we con-
sider two adjacent nodes at a time, and the latter operates on the entire set of
nodes belonging to the friendship chains. For instance, formula 2 is cumulative,
since all trustworthiness values are multiplied in order to assess the trust node
A gave to X’s judge N. The step-by-step can be used to weight differently each

80 V. Carchiolo et al.

Fig. 2. # of nodes (y axis) VS associated (reputation - path centric metrics)

hop along friendship chain by focusing on each adjacent nodes pair, whereas the
cumulative approach tends to consider the path as a whole.

Moreover continuous values for trustworthiness have been considered so far,
however a discrete set of values (as actually the Advogato data set use) could
be also adopted to better model real world trust, where often just a finite set of
values (e.g. high, medium and low trust) is considered enough.

Another factor to consider is the path length, indeed in real trust networks we
consider more significant an opinion if the path consists of a small set of nodes.
To justify this, consider a path from A to X, nodes close to X are considered
reliable due to their closeness to X (i.e. knowledge about X tends to increase)
and those close to A are also reliable since A trust his friends and also friends of
his friends and so on, decreasing trustworthiness as distance from A increases.
From these consideration, it comes that nodes intermediate along the path would
be considered the least reliable, being far away both from A and X; if the path
is short enough, the presence of such nodes can be reduced.

Last but not least, the choice of the trustworthiness aggregation operator is
a critical factor since it determines how much consideration has to be given to
X judges. In formula 2 we used the product among all trustworthiness along the
path, but other choices are possible, for instance the maximum between each pair
of adjacent nodes trustworthiness allows to preserve the trust; alternatively, the
minimum models a conservative approach, where we trust as least as possible.

3.2 Searching for Judges

To evaluate the reputation in an existing trust network we need to search all
judges of the node to be trusted (X). In previous sections we neglect this issue,
thus in in the following we address it. We point out that only local approaches
are considered here, thus the existing trusting network could be not completely
known a priori; this situation occurs when the network is very large and/or
nodes join and leave frequently, as in social and P2P networks, hence we choose

Trusting Evaluation by Social Reputation 81

the more realistic hypothesis of a local view rather than effective but (possibly)
Ir-realistic scenario of getting a global view (e.g. as in Eigentrust algorithm [19]).

Adopting a local view implies that we only suppose X is known by A (the
node that is going to assign a trustworthiness to X), but X’s judges have to
be discovered someway since trust relationship is not commutative, hence the
knowledge of X implies the knowledge of its outgoing links but this does not
guarantee that those nodes are actually X’s judges (a node could trust X without
X knowing its existence). The simple criteria we adopt is to start from X, consider
all nodes he trusts in (outgoing links), and check whether they also trust X or
whether nodes they trust in also trust X; this approach is reasonable in social
and P2P networks, where interaction between individuals (or their alter-ego, i.e.
peers) generally results into mutual trust relationships.

In order to assess the effectiveness of judges search algorithm, we considered
the same data set used to assess proposed metrics ([11]); excluding nodes with
outdegree = 0 or indegree = 0 since they would model infrequent cases within
social networks, as stated previously. The experiment consists of varying the role
of target node X over the whole data set, applying the algorithm and comparing
the average discovered indegree with the real indegree. Table 2 shows that over a
total of 7320 scanned nodes, 4381 was excluded since 3523 was with outdegree=0
(the algorithm fails) and 1128 was with indegree=0 (nobody has trusted X hence
reputation is unavailable). For remaining nodes it has been revealed that the
average number of judges found was 2.404 over 7.057 losing 4.654 nodes, hence
the experiment shows that this approach, though simple and efficient (no flooding
actually occurs on the network), apparently does not seem to be very effective
in finding judges.

Table 2. Judges search simulation setup and results

Description # of nodes avg. indegree

Total scanned nodes 7320 7.057

Nodes with outdegree=0 3253 1.275
Nodes without indegree=0 1128 1.421
Found judges per successfully request 2.404 7.057
Missed judges per successfully request 4.654

However, a deeper analysis reveals a different result; in particular, figure 3
shows cumulative missing with respect the indegree and outdegree, i.e. x-axis is
in(out) degree and y-axis is total number of missing judges of a simulation session
where a randomly chosen node asks for reputation about all other nodes. We
note that as indegree increases, i.e. the number of judges is higher, the number
of missing judges rapidly decreases, showing that our approach tends to fail just
for poorly connected nodes (an infrequent case in social networks).

The same figure also compare missed judges with outdegree, showing again
that the higher is outdegree, the less is the number of missed nodes; this means
that our approach of starting the search of judges from X’s outgoing links, even if

82 V. Carchiolo et al.

Fig. 3. # of missed judges vs in(out)-degree

does not guarantee that nodes trusted by target X also trust X, tends to provide
meaningful results for nodes with a relevant number of social relationships; both
for indegree and outdegree the threshold after which no nodes are missing is
about 5.

4 Related Work

The recent work by Artz and Gil [1] provides a comprehensive discussion about
trust within computer science and the semantic web; the notion of trust how-
ever is quite old, indeed it has been addressed in social sciences, business and
psychology before it concerned computer science researchers, for instance in [7]
trust is analyzed from a social perspective.

Considering the numerical representation of trustworthiness, we believe the
range [-1,1] is the best choice, being simple, normalized and symmetric around
the zero (representing the indifference). As claimed by [13] (the first work pro-
viding a formal model of trust), probably none of the extremes (i.e. full trust or
distrust) is actually possible. In [17] however, the use of a range with negative
values to model distrust is somehow criticized, mainly due to algorithmic-related
issues (no more necessarily real values for trust matrix eigenvector). We use the
[-1,1] range since negative values provide the right adjustment when evaluating
reputation of a given node. Using interval [-1,1] is a comfortable way to study
trustworthiness, but any other representation - a set of scalar values, different
range of values, fuzzy sets - can be used without affecting the way those values
will be searched and collected by the source agents going to calculates reputation
on some target agent. In general, as reported in [18], the choice of continuous
values is adopted by trust models based on aggregation mechanisms, as our pro-
posal where reputation aggregates values from nodes that knows the node to be
assigned a trustworthiness; the use of discrete values, as for instance the binary
set {0,1}, is frequent in models that rely on probabilistic methods, e.g. [4].

Trusting Evaluation by Social Reputation 83

The formula 3 we introduced to evaluate reputation is also used in other
works, e.g. [4][22], being a simple approach that allows both to exploits the
trustworthiness of people that directly know the target node X, and to mediate
these values with trust relationships chains of requesting node A. [3] adopts the
same approach, focusing on how to determine paths from A to X.

5 Conclusions

In this work metrics for reputation evaluation are introduced, exploiting them in
assigning trustworthiness to an unknown person (target node). We showed that
the enhanced metrics is effective in finding needed judgements. We also consid-
ered how to discover nodes with existing opinion about target node (judges),
in order to exploit their experience. We applied such metrics on a real data set
to test their assessment. This work suggests the investigation of several other
promising issues, as friendship chains algorithm evaluation (discarding too long
paths or with too low average), feedback (how trust changes over time) and
robustness (resilience to empowering and other attacks).

References

1. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web.
Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 58–71
(2007)

2. Chervany, N.L., McKnight, D.H.: The meanings of trust. Technical report, Min-
neapolis, MN - USA (1996)

3. Dell’Amico, M.: Neighbourhood maps: Decentralised ranking in small-world p2p
networks. In: 3rd International Workshop on Hot Topics in Peer-to-Peer Systems
(Hot-P2P), Rhodes Island, Greece (April 2006)

4. Despotovic, Z., Aberer, K.: P2P reputation management: probabilistic estimation
vs. social networks. Comput. Networks 50(4), 485–500 (2006)

5. Dunn, J.: The Concept of Trust in the Politics of John Locke. In: Philosophy in
History. Cambridge University Press, Cambridge (1984)

6. Esfandiari, B., Chandrasekharan, S.: On how agents make friends: Mechanisms for
trust acquisition. In: Fourth Workshop on Deception, Fraud and Trust in Agent
Societies, Montreal, Canada, pp. 27–34 (2001)

7. Fagin, R., Halpern, J.Y.: I’m ok if you’re ok: on the notion of trusting communi-
cation. Journal of Philosofical Logic 17, 329–354 (1988)

8. Gambetta, D.: Can we trust trust? Trust: Making and Breaking Cooperative Re-
lations, 213–237 (1990)

9. Golbeck, J.: Trust and nuanced profile similarity in online social networks. ACM
Transactions on the Web (to appear, 2008)

10. Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks.
In: NOSSDAV 2003: Proceedings of the 13th international workshop on Network
and operating systems support for digital audio and video, pp. 144–152. ACM
Press, New York (2003)

11. Levien, R.: Advogato data set (2004)
12. Luhmann, N.: Trust and Power. Wiley, Chichester (1979)

84 V. Carchiolo et al.

13. Marsh, S.: Formalising trust as a computational concept. Technical report, Uni-
versity of Stirling, PhD thesis (1994)

14. Marti, S., Garcia-Molina, H.: Limited reputation sharing in P2P systems. In: EC
2004: Proceedings of the 5th ACM conference on Electronic commerce, pp. 91–101.
ACM Press, New York (2004)

15. Massa, P., Avesani, P.: Controversial users demand local trust metrics: An exper-
imental study on epinions.com community. In: AAAI, pp. 121–126 (2005)

16. Misztal, B.: Trust in Modern Societies. Polity Press (1996)
17. Raghavan, P., Guha, R., Kumar, R., Tomkins, A.: Propagation of trust and dis-

trust. In: Proc. of WWW 2004 conf. (2004)
18. Sabater, J., Sierra, C.: Review on computational trust and reputation models.

Artificial Intelligence Review 24, 33–60 (2005)
19. Garcia-Molina, H., Kamvar, S.D., Schlosser, M.T.: The eigentrust algorithm for

reputation management in P2P networks. In: Proceedings of the Twelfth Interna-
tional World Wide Web Conference 2003 (2003)

20. Travers, J., Milgram, S.: An experimental study of the small world problem. So-
ciometry 32(4), 425–443 (1969)

21. Wellman, B.: Computer networks as social networks. Science 293(5537), 2031–2034
(2001)

22. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities. IEEE Trans. Knowl. Data Eng. 16(7), 843–857 (2004)

Linguistic Extraction for Semantic Annotation

Jan Dědek1 and Peter Vojtáš2

1 Charles University in Prague, Department of Software Engineering
Malostranské nám. 25, 118 00 Prague 1, Czech Republic
����������	

�������

2 Academy of Sciences of the Czech Republic, Institute of Computer Science
Pod Vodárenskou věžı́ 2, 182 07 Prague 8, Czech Republic
����������������

Summary. Bottleneck for semantic web services is lack of semantically annotated information.
We deal with linguistic information extraction from Czech texts from the Web for semantic an-
notation. The method described in the paper exploits existing linguistic tools created originally
for a syntactically annotated corpus, Prague Dependency Treebank (PDT 2.0). We propose a sys-
tem which captures text of web-pages, annotates it linguistically by PDT tools, extracts data and
stores the data in an ontology. We focus on the third phase – data extraction – and present methods
for learning queries over linguistically annotated data. Our experiments in the domain of reports
of traÆc accidents enable e.g. summarization of the number of injured people. This serves as a
proof of concept of our solution. More experiments, for di�erent queries and di�erent domain are
planned in the future. This will improve third party semantic annotation of web resources.

1 Introduction

For the Web to scale, tomorrow’s programs must be able to share and process data even
when these programs have been designed totally independently. Web services provide
a standard means of interoperating between di�erent software applications, running
on a variety of platforms and�or frameworks. Web services are characterized by their
great interoperability and extensibility, as well as their machine-processable descrip-
tions thanks to the use of XML. They can be combined in a loosely coupled way in
order to achieve complex operations. Programs providing simple services can interact
with each other in order to deliver sophisticated added-value services [7].

Still, more work needs to be done before the Web service infrastructure can make
this vision come true. Current technology around UDDI, WSDL, and SOAP provide
limited support in mechanizing service recognition, service configuration and combina-
tion (i.e., realizing complex workflows and business logics with Web services), service
comparison and automated negotiation. In a business environment, the vision of flexible
and autonomous Web service translates into automatic cooperation between enterprise
services. Any enterprise requiring a business interaction with another enterprise can
automatically discover and select the appropriate optimal Web services relying on se-
lection policies. Services can be invoked automatically and payment processes can be
initiated. Any necessary mediation would be applied based on data and process ontolo-
gies and the automatic translation and semantic interoperation. An example would be

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 85–94, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

86 J. Dědek and P. Vojtáš

Informace z resortu o tom, co se stalo, co se d je i co se p ipravuje

> zm na vzhledu> vyhledávání> navigace> home

Hasi i
Generální editelství
hl. m. Praha
Jiho eský kraj
Jihomoravský kraj
Karlovarský kraj
Královéhradecký kraj
Liberecký kraj
Moravskoslezský kraj
Olomoucký kraj
Pardubický kraj
Plze ský kraj
St edo eský kraj
Ústecký kraj
kraj Vyso ina
Zlínský kraj

V této rubrice Zpravodajství
Aktualizace stránek
Archiv zpravodajství
Bleskové zpravodajství
RSS
Boj proti korupci
Digitální televize
Hasi i
Hlavní zprávy
Ministerstvo
Od dopisovatel
(neoficiální)
Policie
Regiony
Servis nejen pro noviná e
Schengenská spolupráce
WebEditorial

Na našem serveru v jiných
rubrikách

Aktuality Národního
archivu

Zubatého 1, 614 00 Brno, telefon 950 630 111,
http://www.firebrno.cz
Zpravodajství v roce 2006

15.05.2007

V trabantu zem eli dva lidé
K tragické nehod dnes odpoledne hasi i vyjížd li na silnici z obce

eská do Ku imi na Brn nsku.

Nehoda byla opera nímu st edisku HZS ohlášena ve 13.13 hodin a
na míst zasahovala jednotka profesionálních hasi ze stanice v
Tišnov . Jednalo se o elní srážku autobusu Karosa s vozidlem Trabant
601. Podle dostupných informací trabant jedoucí ve z Brna do Ku imi
z ejm vyjel do protism ru, kde narazil do linkového autobusu dopravní
spole nosti ze Ž áru nad Sázavou. Ve zdemolovaném trabantu na
míst zem eli dva muži – 82letý senior a další muž, jehož totožnost
zjiš ují policisté.

Hasi i ud lali na vozidle protipožární opat ení a po vyšet ení a
zadokumentování nehody dopravní policií vrak trabantu zaklesnutý pod
autobusem pomocí lana odtrhli. Po odstran ní st echy trabantu pak z
kabiny vyprostili t la obou muž . Ob vozidla – trabant i autobus, pak
postupn odstranili na kraj vozovky a uvolnili tak jeden jízdní pruh. Únik
provozních kapalin nebyl zjišt n. Po 16. hodin pomohli vrak trabantu
naložit k odtahu a asistovali p i odtažení autobusu. Po úklidu vozovky
krátce p ed 16.30 hod. místo nehody p edali policist m a ukon ili zásah.

Fig. 1. Example of the web-page with a report of a fire department

supply chain relationships where an enterprise manufacturing short-lived goods must
frequently seek suppliers as well as buyers dynamically. Instead of employees con-
stantly searching for suppliers and buyers, the Web service infrastructure does it auto-
matically within the defined constraints. Other applications areas for this technology
are Enterprise-Application Integration (EAI), eWork, and Knowledge Management [6].

Bottleneck for semantic web services is lack of semantically annotated information.
This is especially diÆcult for Web resources described in natural language, especially
for IndoEuropean flexitive type languages like Czech Language. We deal with linguistic
information extraction from Czech texts from the Web for semantic annotation.

In this paper we describe initial experiments with information extraction from traÆc
accident reports of fire departments in several regions of the Czech Republic. These re-
ports are being published on the web1 of the Ministry of Interior of the Czech Republic.
An example of such report can be seen on the Figure 1. We would like to demon-
strate the prospects of using linguistic tools from the Prague school of computational

1 �����������	����������������������	�

http://www.mvcr.cz/rss/regionhzs.html

Linguistic Extraction for Semantic Annotation 87

Fig. 2. Schema of the extraction process

linguistic (described in 3). Our experiments are promising, they e.g. enable the summa-
rization of the number of injured people.

Main contributions of this paper are:

1. Experimental chain of tools which captures text of web-pages, annotates it linguis-
tically by PDT tools, extracts data and stores the data in an ontology.

2. In the third phase – data extraction – methods for learning queries over linguisti-
cally annotated data.

3. Initial experiments verifying these methods and tools

2 Chain of Tools for Extraction and Annotation

Here we describe our chain of tools for the linguistic extraction of semantic informa-
tion from text-based web-resources (containing grammatical sentences in a natural lan-
guage). The chain covers a process that consists of four steps. The Figure 2 describes
it. Notice, more detailed structure of the third pahase we focus in this paper.

1. Extraction of text
The linguistic annotating tools process plain text only. In this phase we have to ex-
tract the text from the structure of a given web-resource. In this first phase we have
used RSS feed of the fire department web-page. From this we have obtained URLs
of particular articles and we have downloaded them. Finally we have extracted the
desired text (see highlighted area in the Figure 1) by means of a regular expression.
This text is an input for the second phase.

2. Linguistic annotation
In this phase the linguistic annotators process the extracted text and produce corre-
sponding set of dependency trees representing the deep syntactic structure of indi-
vidual sentences. We have used the linguistic tools described in the section 3 for this
task. Out put of this phase are tectogrammatical trees (for example see Figure 3) of
sentences in document under investigation.

88 J. Dědek and P. Vojtáš

3. Data extraction
We use the structure of tectogrammatical (i.e. deep syntactic) dependency trees to
extract relevant data. Refinement of this step is the main focus of this paper, see
section 4 for more details.

4. Semantic representation
This phase consists of quite simple data transformation or conversion to the desired
ontology format. But it is quite important to choose suitable ontology that will
properly represent semantics of the data. Output are two fold. An ontology with
instances. Annotation of a web resource (e.g. using API to an RDFa editor of html
pages).

.

.

T-jihomoravsky49640.txt-001-p1s4
root

#PersPron
ACT
n.pron.def.pers

zdemolovaný
RSTR
adj.denot

Trabant
LOC basic
n.denot

místo
LOC basic
n.denot

zem ít
PRED
v

dva
RSTR
adj.quant.def

muž
ACT
n.denot

#Dash
APPS
coap

82letý
RSTR
adj.denot

senior
DENOM
n.denot

a
CONJ
coap

další
RSTR
adj.denot

muž
DENOM
n.denot

který
APP
n.pron.indef

totožnost
ACT
n.denot.neg

zjiš ovat
RSTR
v

policista
ACT
n.denot

Fig. 3. Example of a tectogrammatical tree

3 PDT Linguistic Tools for Automatic Linguistic Annotation of
Texts

In this section we will describe the linguistic tools that we have used to produce lin-
guistic annotation of texts. These tools are being developed in the Institute of Formal

Linguistic Extraction for Semantic Annotation 89

Table 1. Linguistic tools for machine annotation

Name of the tool Results (proclaimed by authors)

Segmentation and tokenization precision(p): 98,0%, recall(r): 91,4%

Morphological analysis 2,5% unrecognized words
Morphological tagging 93,0% of tags assigned correctly

Collins’ parser (Czech adapt.) precision: 81,6%
Analytical function assignment precision: 92%

Tectogrammatical analysis [3] dependencies p: 90,2%, r: 87,9%
f-tags p: 86,5%, r: 84,3%

and Applied Linguistics2 in Prague, Czech Republic. They are publicly available – they
have been published on a CD-ROM under the title PDT 2.0 [2] (first five tools) and
in [3] (Tectogrammatical analysis). These tools are used as a processing chain and at
the end of the chain they produce tectogrammatical [4] dependency trees. The Table 1
shows some details about these tools.

1. Segmentation and tokenization consists of tokenization (dividing the input text
into words and punctuation) and segmentation (dividing a sequences of tokens into
sentences).

2. Morphological analysis assigns all possible lemmas and morphological tags to
particular word forms (word occurrences) in the text.

3. Morphological tagging consists in selecting a single pair lemma-tag from all pos-
sible alternatives assigned by the morphological analyzer.

4. Collins’ parser – Czech adaptation [1]
Unlike the usual approaches to the description of English syntax, the Czech syntac-
tic descriptions are dependency-based, which means, that every edge of a syntac-
tic tree captures the relation of dependency between a governor and its dependent
node. Collins’ parser gives the most probable parse of a given input sentence.

5. Analytical function assignment assigns a description (analytical function – in lin-
guistic sense) to every edge in the syntactic (dependency) tree.

6. Tectogrammatical analysis produces linguistic annotation at the tectogrammatical
level, sometimes called “layer of deep syntax”. Such a tree can be seen on the
Figure 3. Annotation of a sentence at this layer is closer to meaning of the sentence
than its syntactic annotation and thus information captured at the tectogrammatical
layer is crucial for machine understanding of a natural language [3].

4 The Linguistic Extraction - Learning a Query

Extraction of information in this phase of our research and development is based on
specific queries. Here for example, to get from web resources number of injured people
in traÆc accidents based on concrete traÆc accidents reports (in certain time and region

2 ��������
���	

�������

http://ufal.mff.cuni.cz

90 J. Dědek and P. Vojtáš

Transcript:

zranit usmrtit zemřı́t zahynout přežı́t

to injure to kill to die to wane to survive

kdo člověk osoba muž žena dı́tě

somebody (hu)man person man woman child

řidič řidička spolujezdec spolujezdkyně

driver woman driver passenger woman passenger

Fig. 4. Netgraph query – extract rule

- but these are “easy attributes”). Such an informal query will be translated, in order to
be applied to the results of second phase of our process, namely to tectogrammatical
trees of traÆc accidents reports.

Our linguistic extraction method is based on extraction rules. These rules correspond
to query requests of Netgraph application. The Netgraph application [5] is a linguistic
tool used for searching through a syntactically annotated corpus of a natural language.
It was originally developed for searching the analytical and tectogrammatical levels of
the Prague Dependency Treebank, a richly syntactically annotated corpus of Czech [2].
Netgraph queries are written in a special query language. An example of such Netgraph
query can be found in the Figure 4. The Netgraph is a general tool for searching trees,
it is not limited only to the trees in the PDT format. In our application we use it for
searching the tectogrammatical trees provided by a set of language processing tools
described in the previous chapter. The tectogrammatical trees have a very convenient
property of containing just the type of information we need for our purpose, namely the
information about inner participants of verbs - actor, patient, addressee etc.

4.1 Extraction Method

The extraction works as follows: the extraction rule is in the first step evaluated by
searching through a set of syntactic trees. Matching trees are returned and the desired
information is taken from particular tree nodes.

Let us explain it in more detail by using the example of extraction rule from the
Figure 4. This rule consists of five nodes. Each node of the rule will match some

Linguistic Extraction for Semantic Annotation 91

<injured_result>
<action type="zranit">

<sentece>
 P i požáru byla jedna osoba lehce zran na -- jednalo se

o majitele domu, který si vykloubil rameno.
</sentece>
<sentece_id>T-vysocina63466.txt-001-p1s4</sentece_id>
<negation>false</negation>
<manner>lehký</manner>
<participant type="osoba">

<quantity>1</quantity>
<full_string>jedna osoba</full_string>

</participant>
</action>
<action type="zem ít">

<sentece>
 Ve zdemolovaném trabantu na míst zem eli dva muži -- 82letý

 senior a další muž, jehož totožnost zjiš ují policisté.
</sentece>
<sentece_id>T-jihomoravsky49640.txt-001-p1s4</sentece_id>
<negation>false</negation>
<participant type="muž">

<quantity>2</quantity>
<full_string>dva muži</full_string>

</participant>
</action>
<action type="zranit">

<sentece> ty iat icetiletý idi nebyl zran n.</sentece>
<sentece_id>T-jihomoravsky49736.txt-001-p4s3</sentece_id>
<negation>true</negation>
<participant type=" idi ">

<full_string> ty iat icetiletý idi </full_string>
</participant>

</action>
</injured_result>

Fig. 5. Example of the result of the extraction procedure

node in each matching tree. So we can investigate the relevant information by reading
values of tags of matching nodes. We can find out the number (node number 5) and
kind (4) of people, which were or were not (2) killed or injured (1) by an accident
that is presented in the given sentence. And we can also identify the manner of injury
in the node number 3.

We have evaluated the extraction rule shown in the Figure 4 by using the set of
800 texts of news of several Czech fire departments. There were about 470 sentences
matching the rule and we found about 200 numeric values contained in the node
number 5. This extraction rule (from the Figure 4) is a result of a learning procedure
described in the section 4.2.

Small part of the result of the extraction is shown in the Figure 5. This result
contains three pieces of information extracted from three articles.

Each piece of information is closed in the �������� element and each deals with
some kind of action that happened during some accident.

The attribute �	
� specifies the type of the action. So in the first and in the third
case there was somebody injured (zranit means to injure in Czech) and in the second
case somebody died (zemřı́t means to die in Czech).

The element ���������� holds the information about negation of the clause. So
we can see that the participant of the third action was not injured.

92 J. Dědek and P. Vojtáš

The element �
�����
���� contains information about the participants of the
action. The attribute �	
� specifies the type of the participants and the element
��������	� holds the number of the participants. So in the first action only a single
person (osoba) was injured. In the second action two men (muž) died and in the third
action a driver (řidič) was not injured.

4.2 Query Learning Procedure

So far the process of building up the extraction rules is heavily dependent on skills
and experience of a human designer. Fulfillment of this process is quite creative task.
But we will try to pick it up as precisely as possible. We assume that a formal de-
scription of this process can help us in two ways. First – we can develop tools that
will assist the designer of the extraction rules. Second – we can work on the autom-
atization of the process. This process consists of two parts:

Learning the Netgraph Query

The procedure of learning the Netgraph query is demonstrated in the Figure 6. One
obvious preposition of this learning procedure is that we have a collection of learning
texts.

The procedure starts with frequency analysis of words (their lemmas) occurring
in these texts. Especially frequency analysis of verbs is very useful — meaning of a
clause is usually strongly dependent on the meaning of corresponding verb.

Frequency analysis helps the designer to choose some representative words (key-
words) that will be further used for searching the learning text collection. Ideal choice
of key-words would cover a majority of sentences that express the information we
are looking for and it should cover minimal number of the not-intended sentences
(maximization of relevance). An initial choice need not be always suÆcient and the
process could iterate.

Next step of the procedure consists in investigating trees of sentences covered by
key-words. System responds with a set of matching trees. The designer examines
corresponding syntactic trees — looks for the position of key-words and their match-
ing neighbors in the trees.

After that the designer can formulate an initial (Netgraph) tree query and he or she
can compare result of the Netgraph query with the coverage of key-words. Based on
this he or she can reformulate the query and gradually tune the query and the query
coverage.

There are two goals of the query tuning. The first goal is maximization of the
relevance of the query. The second goal is to involve all important tree-nodes to the
query. This second goal is important because the complexity of the query (number of
involved nodes) makes it possible to extract more complex information. For example
see the query on the Figure 4 — each node of it keeps di�erent kind of information.

Semantic Interpretation of the Query

After the designer have successfully formulated the Netgraph query he or she have
to supply semantic interpretation of the query. This interpretation expresses how to

Linguistic Extraction for Semantic Annotation 93

More complex
queries

Tree
Query

Coverage
tuning

Investigation
of neighbors

More accurate
matches

Fig. 6. Schema of the query learning procedure

transform matching nodes of the query (and the available linguistic information con-
nected with the nodes) to the output data. The complexity of the transformation varies
form simple (e.g. putting value of some linguistic attribute of the node to the out-
put) to complex. For example a translation of a numeral to a number can be seen in
the Figure 5 (element ��������	�). This is a candidate for our task to select num-
ber of killed and�or injured people in traÆc accidents. In an inductive procedure (as
an another ILP task) we have to learn rules which try to interpret results of extrac-
tion procedure in the sense of our task. One example of such rule, can be red as
follows: if ���������� has value ���, then number of injured people is 0 (e.g.
nobody was injured). Another rule can from �������������������������� and
��������	�����������	� deduce that number of injured people is two.

Our experiments have shown that the whole chain works and linguistic extrac-
tion and semantic annotation are realizable. Nevertheless, it is still a long way to go,
especially in automating our process and improving learning on several steps of our
procedure.

5 Conclusion

We have presented a proposal of and experiments with a system for linguistic ex-
traction and semantic annotation of information from Czech text on Web pages. Our
system relies on linguistic annotation tools from PDT [2] and the tree querying tool
Netgraph [5]. Our contributions are an experimental chain of tools which captures
text of web-pages, annotates it linguistically by PDT tools, extracts data and stores

94 J. Dědek and P. Vojtáš

the data in an ontology. Especially in the third phase – data extraction – we have
presented methods for learning queries over linguistically annotated data. Our ini-
tial experiments verified these methods and tools. In the near future we would like to
extend this method by domain oriented lexical net and semiautomatic search for inter-
esting extraction rules, more experiments with di�erent queries and di�erent domain.
In a more distant future we plan to include our method in a semantic web service.

Acknowledgment. This work was partially supported by the Ministry of Education of
the Czech Republic (grant MSM0021620838) and by Czech projects 1ET100300517
and 1ET100300419.

References

1. Collins, M., Hajič, J., Brill, E., Ramshaw, L., Tillmann, C.: A Statistical Parser of Czech.
In: Proceedings of 37th ACL Conference, University of Maryland, College Park, USA, pp.
505–512 (1999)

2. Hajič, J., Hajičová, E., Hlaváčová, J., Klimeš, V., Mı́rovský, J., Pajas, P., Štěpánek, J.,
Vidová-Hladká, B., Žabokrtský, Z.: Prague dependency treebank 2.0 cd-rom. Linguistic
Data Consortium LDC2006T01, Philadelphia 2006 (2006)

3. Klimeš, V.: Transformation-based tectogrammatical analysis of czech. In: Sojka, P.,
Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 135–142. Springer,
Heidelberg (2006)

4. Mikulová, M., Bémová, A., Hajič, J., Hajičová, E., Havelka, J., Kolářová, V., Kučová, L.,
Lopatková, M., Pajas, P., Panevová, J., Razı́mová, M., Sgall, P., Štěpánek, J., Urešová,
Z., Veselá, K., Žabokrtský, Z.: Annotation on the tectogrammatical level in the prague
dependency treebank. annotation manual. Technical Report 30, ÚFAL MFF UK, Prague,
Czech Rep. (2006)

5. Mı́rovský, J.: Netgraph: A tool for searching in prague dependency treebank 2.0. In: Hajič,
J., Nivre, J. (eds.) Proceedings of the Fifth Workshop on Treebanks and Linguistic Theories
(TLT), Prague, Czech rep., vol. 5, pp. 211–222 (2006)

6. SWSI. Semantic web services initiative
7. W3C. Web services activity statement (2008)

Xord: An Implementation Framework for

Efficient XSLT Processing

Jana Dvořáková and Filip Zavoral

Department of Software Engineering
Faculty of Mathematics and Physics
Charles University in Prague, Czech republic
{Jana.Dvorakova,Filip.Zavoral}@mff.cuni.cz

Summary. We introduce an implementation of Xord - an XSLT processing frame-
work which enables us to design and implement efficient algorithms for clearly char-
acterized classes of XSLT transformations with known memory requirements. Within
the framework, we design and implement a streaming algorithm using stack of the size
proportional to the depth of the input document and associate it with the class of sim-
ple order-preserving and branch-disjoint transformations. The framework provides an
unified interface to the underlying algorithms and acts as a standard XSLT processor.

1 Introduction

In this paper, we focus on streaming processing of XML transformations. Com-
mon processors of XML transformation languages XSLT and XQuery store the
whole input in the memory and then perform the transformation itself. This
kind of processing is called tree-based processing. In early days of XML, tree-
based processing was sufficient since the existing XML documents were small
and stored in files. However, nowadays it is quite common to see very large
XML documents or XML data streams in practice. In both cases, the classical
processing is apparently not suitable - in the former case, it is not acceptable
or even possible to store the whole input document in the memory, while in the
later one, the XML data become available stepwise and need to be processed
“on the fly”. It is thus natural to employ the streaming processing, i.e., to read
the input document sequentially in the document order as well as to generate
the output document sequentially. It is easy to see that, for certain classes of
XML transformations, such streaming processor is less memory-consuming than
the tree-based processors.

The main contributions of this paper are the following:

• We introduce an implementation framework called Xord framework for effi-
cient XSLT transformations. It enables us to develop streaming algorithms,
each of them capable to process certain XSLT transformation class. A con-
tributing feature of our approach is exactly the association of streaming algo-
rithms (differing in their complexity - memory, number of passes) with clearly
characterized transformation classes. An algorithm is shown to be efficient

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 95–104, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

96 J. Dvořáková and F. Zavoral

when processing the associated class - the efficiency is proved with mathe-
matical rigor using the underlying formal models. The framework provides
a unified interface to the streaming algorithms and thus can be viewed as a
standard XSLT processor.

• Within the framework, we implement a stack-based streaming algorithm for
processing simple order-preserving and branch-disjoint XSLT transforma-
tions. We exactly characterize this class of transformations. The algorithm
uses a stack of the size proportional to the depth of the input XML document.
Such memory usage is highly-efficient in practice, since real XML documents
typically contain only few levels of elements.

• We support theoretical results for the stack-based algorithm by evaluation
tests. As shown the algorithm indeed consumes constant amount of memory
when processing transformations from associated class on large and shallow
XML inputs.

Related work. Several streaming processors for XSLT and XQuery have been
implemented. However, their efficiency was demonstrated only by experiments
on a small number of XML transformations and input XML documents. It is
thus not known how much memory is consumed on clearly characterized trans-
formation classes.

XML Streaming Machine (XSM) [8] processes a subset of XQuery on XML
streams without attributes and recursive structures. It is based on a model called
XML streaming transducer. The processor have been tested on XML documents
of various sizes against a simple query. Using XSM the processing time grows
linearly with the document size, while in the case of standard XQuery processors
the time grows superlinearly. However, more complex queries have not been
tested.

BEA/XQRL [4] is a streaming processor that implements full XQuery. The
processor was compared with Xalan-J XSLT processor on the set of 25 transfor-
mations and another test was carried on XMark Benchmarks. BEA processor was
fast on small input documents, however, the processing of large documents was
slower since the optimizations specially designed for XML streams are limited
in this engine.

FluXQuery [7] is a streaming XQuery processor based on a new internal query
language FluX which extends XQuery with constructs for streaming processing.
XQuery query is converted into FluX and the memory size is optimized by
examining the query as well as the input DTD. FluXQuery supports a subset
of XQuery. The engine was benchmarked against XQuery processors Galax and
AnonX on selected queries of the XMark benchmark. The results show that
FluXQuery consumes less memory and runtime.

SPM (Streaming Processing Model) [5] is a simple one-pass streaming XSLT
processor without an additional memory. Authors present a procedure that tries
to converts a given XSLT stylesheet into SPM. However, no algorithm for testing
the streamability of XSLT is introduced, and thus the class of XSLT transfor-
mations captured by SPM is not clearly characterized.

Xord: An Implementation Framework for Efficient XSLT Processing 97

2 Formal Base

The Xord framework is based on the abstract framework introduced in [2, 3].
The abstract framework captures transformations of XML documents without
data values. It consists of two groups of formal models. The basic general XML
transducer (GXT) is used to model all (algorithmically computable) XML trans-
formations and their tree-based processing. By imposing various restrictions on
the GXT, different XML transformation classes can be defined. On the other
hand, the basic streaming XML transducer (SXT) is used to model one-pass
streaming processing without an additional memory. It can be extended by a
memory to store temporary data or by allowing more passes over the input
document. This way, we obtain models of several streaming processors.

When designing a new streaming algorithm within the framework, it is neces-
sary to find a correspondence between a restricted GXT and an extended SXT.
In this paper, we present one such algorithm in which we consider the simple
order-preserving branch-disjoint GXT and the simple SXT (SSXT). The algo-
rithm is called SSXT algorithm according to the streaming XML transducer
employed. In this paper, we focus on XSLT transformations and therefore we
directly consider XSLT transformation classes instead of GXTs.

At the design level, the Xord framework for XSLT transformations consists
of two basic modules:

1. Static analyzer analyzes the given XSLT stylesheet xsl and determines to
which of the known classes of XSLT transformations it belongs.

2. Transformer processes xsl using the algorithm associated with the deter-
mined transformation class.

3 SSXT Algorithm

In the SSXT algorithm we consider only simple XSLT transformations which
are described below. A simple XSLT transformation must conform to two fur-
ther conditions in order to be processable by the algorithm - it must be order-
preserving and branch-disjoint. The conditions are input-dependent, i.e., in order
to check their conformance, both the XSLT stylesheet and the structure of the
input XML documents must be examined.

3.1 Simple XSLT Transformations

Simple XSLT stylesheet contains an initializing template and several transform-
ing templates. The initializing template sets the mode to m0 and calls processing
of the root element. A transforming template is called by an element name and
a mode:
<xsl:template match="a" mode="m1"> ... body ...</xsl:template>

The template body consists of output elements (possibly nested) and template
calls which call application of other templates by an XPath expression and a
mode. The template calls are of the form:
<xsl:apply-templates select="child::a/descendant::b" mode="m2"/>

98 J. Dvořáková and F. Zavoral

A subset of XPath expression is allowed in transforming templates - they may
contain only child and descendant axis, and they select nodes by name:

XPath := Step | Step/XPath
Step := (child | descendant)::name

where name refers to an element name. The evaluation function for expression
exp with respect to the XML document d and one of its nodes u is denoted by
eval(exp, d, u). The semantics of the eval function directly follows the semantics
of the evaluation of XPath expressions - the only difference is that in our case
it is sufficient to consider a single node as the current context set.

In order to determine whether a stylesheet is simple, it must be checked that
it conforms to the structure described. Now we define order-preserving simple
XSLT transformations and branch-disjoint simple XSLT transformations. In case
a simple XSLT transformation does not conform to these conditions, the SSXT
algorithm is not applicable - moreover, in majority of cases, additional memory
buffers are needed in order to process the transformation. We first define an
auxiliary function eval-exp: Let tmp be a transforming template, d be an XML
document, and u be a node of d, then

eval-exp(tmp, d, u) = eval(exp1, d, u) . . . eval(expn, d, u)

where exp1, . . . , expn is a sequence of XPath expressions appearing in the tem-
plate calls of tmp (in this order). Thus, the eval-exp function returns the con-
catenation of the node sequences returned by individual expressions.

Order-preserving simple XSLT. A simple XSLT xsl is order-preserving on
a set of XML documents D if and only if,

• for each transforming template tmp of xsl,
• for each XML document d ∈ D,
• for each node u of XML document d,

it holds eval-exp(tmp, d, u) returns a sequence of nodes of d in document order.

Branch-disjoint simple XSLT. A simple XSLT xsl is branch-disjoint on a set
of XML documents D if and only if it holds eval-exp(tmp, d, u) does not contain
two nodes located within the same branch of d where tmp, d, u are as above.

3.2 Simple Streaming XML Transducer

Now we describe the transducer SSXT and the way how it processes the input
XSLT stylesheet xsl. The SSXT is defined as a stream-to-stream trancducer
since such specification is closer to the implementation than the tree-to-tree
transduction used in the previous work [2, 3]. We denote by DΣ a set of XML
documents over an alphabet of element names Σ.

SSXT. The SSXT has a single input head that reads the input document sequen-
tially, and a single output head that generates the output document sequentially.

Xord: An Implementation Framework for Efficient XSLT Processing 99

The SSXT is equipped with a stack to store temporary data. Formally, the SSXT
is a 7-tuple

T = (M, Σ, Δ, Γ, m0, Z0, R)

where M is a set of states, Σ is an input alphabet, Δ is an output alphabet, Γ
is a finite set of stack symbols, m0 ∈ Q is the designated initial state, z0 ∈ Γ is
the initial stack symbol, and R is a set of rules of the form

(m, label, tag, la-tag, z) → s(m′, move, γ)

In the left-hand side, m is the current state, label ∈ Σ is an input element
name, tag, la-tag ∈ {start, end} is a type of the current tag and the following
tag (lookahead tag), respectively, and z is the current top stack symbol. In the
right-hand side, s is a constant string that represents the part of the output to
be generated, m′ is a new state, γ is a new sequence of stack symbols, and move
is an action of the input head: ⊗ - no move, � - preorder move.

The configuration of SSXT T with respect to the input XML document din

is of the form
sout(m, e, tag, γ)

where sout is the output XML stream generated so far, m is the current state, e
is the current element of din

1, tag is the type of the current tag and γ ∈ Γ ∗ is the
current content of the stack. The transformation induced by T is the function
μT : DΣ → DΔ such that μT (sin) = sout if and only if sout ∈ DΔ is generated by
computation of T starting at the initial configuration (with respect to sin) of the
form (q0, 1, start, z0) and terminating in the final configuration sout(q, 1, end, z0).

The SSXT reads the input document din sequentially in one pass and apply
the stylesheet xsl stepwise. First, the template matching the root element of din

in the initial mode m0 is set to be the currently processed template (current
template). The processing proceeds in cycles. During a single cycle, a single
template call of the current template is processed.

Processing cycle. All XPath expression within a template are evaluating con-
currently. The evaluation is realized by deterministic finite automata (DFA)2.
A single DFA is constructed for each expression. When the processing of a tem-
plate starts, the sequence of the initial states of DFAs is pushed on the stack.
The input head of SSXT reads the elements of din in document order. When a
start-tag is encountered, new sequence of DFAs is computed. Three situations
may occur:

a) new sequence contains no final state - the input head continues in evaluation,
b) new sequence contains a single final state which belongs to the DFA evaluat-

ing the lastly-matched expression or an expression located after the lastly-
matched expression - the corresponding template call is processed,

1 We consider dynamic-level numbering for unique identification of the elements within
an XML documents, i.e., the root element has identifier 1, its children 1.1., 1.2, 1.3,
etc.

2 We refer the reader to [1] for a more detailed description of this evaluating method.

100 J. Dvořáková and F. Zavoral

c) new sequence contains a final state which belongs to the DFA evaluating
expression located before the lastly-matched expression, or it contains two
or more final states - error.

In case b), the current cycle configuration (template id, matched expression id) is
pushed on the stack and new cycle for processing the called template starts. The
cycle configuration is popped after the whole called template has been processed
and the control moves back to the current template. In case a), the evaluation
continues. Here if an end-tag is encountered, the sequence of the DFA states
located at the top of the stack is popped. Hence, the XPath expression of the
current template are evaluated on “branches” of din.

3.3 Algorithm

We outline the overall streaming algorithm. It accepts a simple XSLT stylesheet
xsl and an XML document din as the input. It tries to process the transformation
specified in xsl on din. In case xsl is non-order-preserving or non-branch-disjoint
on din, an error is reported. Otherwise, a proper output XML document is
generated.

Stack items. The stack may contain two kinds of items (and the initial symbol
z0):

• cycle configuration is a pair of integers referring to the current template and
to the matched expression (see variables below).

• sequence of DFA states used for evaluating XPath expression in the current
template.

Variables. The algorithm uses the following variables:

• top: returns the symbol on the top of the stack,
• label: returns the label of the current tag,
• tag, la-tag: returns the type of the current tag and the lookahead tag.
• current-template: refers to the currently processed template of xsl,
• matched-expression: refers to the lastly-matched XPath expression of the

current template. Initially, it contains null reference.

1: set current-template to template with head <xsl:template match="label" mode="m0">;
2: set matched-expression to 0;
3: push initial stack symbol z0;
4: set transformed to false;
5: while not transformed do {Iterates over elements of din in document order}
6: if top is a sequence S of DFA states then
7: if tag is start-tag then {Downwards evaluation}
8: let S′ be a sequence of DFA states obtained after transition from S on

symbol label ;
9: if S′ contains no final state then {No match}

10: push sequence of DFA states S′;
11: advance;

Xord: An Implementation Framework for Efficient XSLT Processing 101

12: else if S′ contains final state for single XPath expression exp ≥ matched-
expression then {Match found}

13: generate fragment of current-template between matched-expression and
exp;

14: let m be a mode associated with exp;
15: let tmp be template with head <xsl:template match="label" mode="m">;
16: if tmp is no-call template then
17: generate content of tmp;
18: set matched-expression to exp;
19: if la-tag is start-tag then
20: push S′;
21: end if
22: else if tmp contains some call then
23: push cycle configuration (current-template,exp);
24: set current-template to tmp;
25: set matched-expression to 0;
26: end if
27: else
28: error;
29: end if
30: else if tag is end-tag then {Upwards evaluation}
31: if la-tag is end tag then
32: pop;
33: advance;
34: end if
35: end if
36: else if top is a cycle configuration (i, j) then
37: if tag is start-tag then {Cycle start}
38: if la-tag is start tag then
39: push sequence of initial states of DFAs for current-template;
40: end if
41: advance;
42: else if tag is end-tag then {Cycle end}
43: generate fragment of current-template between matched-expression and the

end of the template;
44: set current-template to i;
45: set matched-expression to j;
46: pop;
47: end if
48: else if top is initial stack symbol z0 then
49: if tag is start-tag then {Initial cycle start}
50: push sequence of initial states of DFAs for current template;
51: advance;
52: else if tag is end tag then {Initial cycle end}
53: generate fragment of current-template between matched-expression and the

end of the template;
54: set transformed to true;
55: end if
56: end if
57: end while

102 J. Dvořáková and F. Zavoral

Memory usage. In the SSXT algorithm, a single sequence of DFA states is
pushed on the stack when reading start-tags and no match is found (3.3), and
a single sequence of DFA states is popped from the stack when reading end-
tags and moving upwards in the element hierarchy (3.3). The sequences are
obviously of constant length since the number of states in a sequence depends
on the number of XPath expressions in the templates of xsl. A new processing
cycle starts when a match is found for some template call (3.3, 3.3). Here an extra
item - a cycle configuration - is pushed on the stack. However, when returning
from processing the call, the cycle configuration is popped (3.3). Based on this
observation, it is easy to see that the size of the stack never exceeds the number
(depth of din ∗ 2).

We treat two boundary situations in a special way - processing templates
without template calls (3.3) and processing matches at leaves of din (3.3).

Static analysis. The static analyzer for the SSXT algorithm currently checks
the order-preservation and branch-disjointness of simple XSLT stylesheet in case
the set of input XML documents is not restricted by a schema.

4 Implementation and Evaluation

We have designed and implemented the Xord framework based on .Net technolo-
gies for static analyzing of stylesheets and XML schemas and running different
classes of sequential transformation algorithms depending on the analysis results.
The overall structure of the Xord is depicted on Fig. 1.

The evaluation of the SSXT algorithm implementation shows that it requires
a memory proportional to the depth of the input XML document. Since this
depth is generally not depending on the document size and documents are rela-
tively shallow (99% of documents have fewer than 8 levels whereas the average
depth is 4 according to [6]), our memory requirements for most of the XML
documents are constant, independent to the document size. On contrary, XSLT
processing using standard processors like Xalan or Saxon constructs DOM for the
whole document which implies memory requirements proportional to the doc-
ument size. Our measurements confirmed this expectation. Fig. 2 (a) shows a
comparison of transformation memory requirements between DOM-based and
streaming processing. While the DOM-based processing requires a memory

Fig. 1. A schema of the Xord Framework

Xord: An Implementation Framework for Efficient XSLT Processing 103

0,7 1,1 1,8

5,5

16

1,1 1,1 1,1 1,1 1,1 1,1

0

2

4

6

8

10

12

14

16

18

20

10K 30K 100K 300K 1M 10M
DOM SSXT

1068
1104

1164
1200

1252

950

1000

1050

1100

1150

1200

1250

1300

8 50 100 150 200

168

a) b)

Fig. 2. Evaluation results

linear to the input size, the sequential processing memory requirements do not
depend on the input size, it remains constant. On the other hand, the SSXT
memory requirements depend on the document depth, but the differences are
not significant (they would even not be observable using the scale as in Fig. 2 (a).
The dependence on the document depth is depicted in Fig. 2 (b) in more detail,
even relatively big differences in a document depth imply only minor increase of
memory requirements.

We have not included comparison to the transformations written manually
using event-based parsers since the effectiveness of a hand-written program de-
pends solely on the programmer skills.

5 Conclusion

We introduced an implementation framework for efficient XSLT processing.
Within this framework, we designed and implemented a streaming algorithm,
called the SSXT algorithm, which can process simple order-preserving and
branch-disjoint XSLT transformations using stack of the size proportional to
the depth of the input document. In practice, such algorithm is highly efficient
since real-world XML documents are shallow as shown by experiments.

In the future, we intend to extend the static analysis for XML documents
constrained by a schema so that the analyzer will be able to determine the
class of given XSLT transformation by examining both the stylesheet and the
schema. Such static analysis will also help us to design more complex buffer-based
streaming algorithms for processing transformations outside the class processable
by the SSXT algorithm.

Acknowledgments. This work was partially supported by the Ministry of Ed-
ucation of the Czech Republic (grant MSM0021620838) and by the grant VEGA
1/3106/06. A part of the results presented comes from a PhD thesis of Comenius
University in Bratislava, Slovakia.

104 J. Dvořáková and F. Zavoral

References

1. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst. 28(4), 467–516 (2003)

2. Dvořáková, J.: Automatic Streaming Processing of XSLT Transformations Based
on Tree Transducers. In: Proceedings of IDC 2007. Studies in Computational Intel-
ligence. Springer, Heidelberg (2007)

3. Dvořáková, J., Rovan, B.: A Transducer-Based Framework for Streaming XML
Transformations. In: Proceedings of SOFSEM (2), pp. 50–60 (2007)

4. Florescu, D., Hillery, C., Kossmann, D., Lucas, P., Riccardi, F., Westmann, T.,
Carey, M.J., Sundararajan, A., Agrawal, G.: The BEA/XQRL Streaming XQuery
Processor. In: Proceedings of VLDB 2003, pp. 997–1008 (2003)

5. Guo, Z., Li, M., Wang, X., Zhou, A.: Scalable XSLT Evaluation. In: Yu, J.X., Lin,
X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007. Springer, Heidelberg
(2004)

6. Mlýnková, I., Toman, K., Pokorný, J.: Statistical Analysis of Real XML Data Col-
lections. In: COMAD 2006: Proc. of the 13th Int. Conf. on Management of Data,
New Delhi, India, pp. 20–31 (2006)

7. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: FluXQuery: An optimizing
XQuery processor for streaming XML data. In: Proceedings of VLDB 2004, pp.
1309–1312 (2004)

8. Ludäscher, B., et al.: A Transducer-Based XML Query Processor. In: Proceedings
of VLDB 2002, pp. 227–238 (2002)

A Simple Trust model for On-Demand Routing in
Mobile Ad-Hoc Networks

Nathan Griffiths�, Arshad Jhumka, Anthony Dawson, and Richard Myers

Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
{nathan,arshad}@dcs.warwick.ac.uk

Summary. In a mobile ad-hoc network, nodes cannot rely on any fixed infrastructure for routing
purposes. Rather, they have to cooperate to achieve this objective. However, the absence of any
trusted third party in such networks may result in nodes deviating from the routing protocol for
selfish or malicious reasons. The concept of trusted routing has been promoted to handle the
problems selfish and malicious nodes cause to the network. In this paper, we focus on using trust
in routing, and show how trust can mitigate against malicious behaviour.

1 Introduction

A mobile ad-hoc network (MANET) is a wireless network with no fixed infrastructure
and no central administration. Nodes in the network usually have limited resources for
computation, bandwidth, memory, and energy. Because nodes are mobile, the topology
of the network varies. Message routing in MANETs is a significant problem. The lack
of central administration means that nodes cannot be forced to cooperate for message
routing. Nodes may deviate from the protocol for selfish or malicious reasons. For ex-
ample a selfish user may wish to preserve energy resources, while a malicious user
might attempt a denial of service attack. Routing protocols must cope with such selfish
and malicious behaviours.

Recently, a new class of routing protocol has been proposed, namely trusted routing.
Trusted routing protocols consist of two parts: a routing part and a trust model. Routing
decisions are made according to the trust model. Trust and reputation have been used
in many settings to cope with uncertainty in interactions. Trust is used to assess the
risk associated with cooperating with others; it is an estimate of how likely another is
to fulfil its commitments [2, 5]. Trust can be derived from direct interactions and from
reputation.

Our work is inspired by Pirzada and McDonald’s (hereafter referred to as P&M)
trusted routing model [7, 8]. Based on Marsh’s [5] work on computational trust, P&M
use trust for routing in ad-hoc networks and obtain promising simulation results. Their
approach (described below) is sophisticated and combines a range of situational trust
assessments into an overall trust assessment for making decisions. Our view is that
although such sophistication offers rich information on which to base decisions, similar
levels of resistance to malicious behaviour can be achieved with a simpler approach.

� Contact author.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 105–114, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

106 N. Griffiths et al.

Although we accept P&M’s results we also find some limitations. For example, they
consider a range of mechanisms for malicious behaviour, and their results do not discern
the effect of trust against specific types of behaviour. Aspects of P&M’s results are
counter-intuitive, e.g., network latency decreases as the number of malicious nodes is
increased.

2 Background

In this section, we briefly introduce key work that relates to our approach. We begin
by introducing the Ad-hoc On-demand Distance Vector (AODV) routing protocol, and
then discuss selected trust models and how trust relates to routing.

2.1 Routing Protocols

There are two major classes of routing protocols for MANETs: proactive and reactive
protocols. In proactive protocols nodes devote resources to tracking routes in a rout-
ing table, whereas in reactive protocols, routes are discovered when needed to preserve
nodes’ resources. In this paper, we focus on the AODV reactive protocol as it is an effi-
cient low-overhead approach. There also exist hybrid protocols, that combine features
of proactive and reactive protocols, but these are beyond the scope of this paper.

In AODV [6], when a source node wants to communicate with a destination node, but
does not have a route to the destination, it initiates a route discovery. The source node
broadcasts a RREQ (route request message) to all of its neighbours. Each neighbour
that receives the RREQ will check in its own routing table to see if it has a route to
the specified destination. If not, it will set up a reverse path towards the sender of the
RREQ and then re-broadcast the RREQ. Any node receiving the RREQ will generate a
RREP (route reply message) if it either has a fresh enough route to the destination, or is
itself the destination. This RREP is then unicast to the next hop towards the originator of
the RREQ. When a node receives a RREP, it updates the appropriate fields in its routing
table and in the RREP, and then forwards the RREP to the next hop until it reaches the
original sender. A sender node can have multiple routes to the destination. However,
the chosen route is the shortest one between the sender and destination. This relies on
the underlying assumption that all nodes are trustworthy and will never deviate from
the protocol. In this paper we do not make this assumption, and use trust to mitigate
against malicious or faulty behaviour.

2.2 Dependable Routing

The majority of routing mechanisms for MANETs rely on the assumption that nodes
will never deviate, but in a real-world MANET this assumption is unrealistic. Because
resources in a MANET are scarce, nodes may act selfishly such as not forwarding a mes-
sage. In the worst case, nodes may act in an arbitrary fashion, i.e., display Byzantine
behaviour [1]. Hence, to handle these problems, techniques such as secure routing [11]
and trusted routing [7] have been proposed. In secure routing, cryptographic primi-
tives are used to ensure properties such as confidentiality, integrity etc. However, secure

A Simple Trust model for On-Demand Routing in Mobile Ad-Hoc Networks 107

routing requires a centralised trusted third party, making it impractical for MANETs.
Trusted routing, on the other hand, can be used to handle both selfish and Byzantine
nodes. In trusted routing, a trust model is embedded within the routing algorithm, and
routing decisions are taken based not on shortest path but on trust values. Thus, in
trusted routing the path with the highest trust is chosen.

2.3 Trust Models

Numerous models of trust and reputation exist to support cooperation in computational
environments [4, 9]. One of the earliest approaches is Marsh’s formalism [5]. Marsh
uses the outcomes of direct interactions among entities to calculate situational and gen-
eral trust. Situational trust is the level of trust in another for a specific type of situation,
while general trust refers to overall trustworthiness irrespective of the situation. After
each interaction an entity considers whether the other entity fulfilled its obligations. If
so, then trust increases, but trust decreases if commitments are broken. To minimise
the risk of failure entities will interact with the most trusted of the potential interaction
partners.

Marsh’s formalism is the base of many subsequent models, which supplement trust
based on direct interactions with other information sources to inform decision making.
For example, sophisticated approaches such ReGreT [10] and FIRE [3] add reputation
information provided by third parties and knowledge of social structures to arrive at
overall trust assessments. However, whilst powerful, such sophisticated models are not
appropriate for routing in MANETs where resources are scarce and knowledge of social
relationships between nodes is unlikely to be available.

Several trust models have been developed for peer-to-peer systems [12, 13, 14],
based on sharing recommendation information to establish reputation. Although in prin-
ciple these could be applied to routing in MANETs, there are two important problems.
First, there is significant network overhead due to the additional information exchanged.
Second, addressing the potential for malicious recommendations requires a trusted third
party (or a computationally expensive public-key infrastructure), which goes against the
nature of MANETs.

There are few trust mechanisms for ad-hoc networks. Zhou and Haas [15] describe a
cryptographic scheme to ensure node integrity. However, their approach requires com-
plex pre-configuration of servers to provide a distributed certification authority and
relies on cryptographic operations which are costly in computation and power. P&M
propose arguably the most appropriate mechanism, where nodes calculate situational
trust according to observed events and then use an aggregated general trust for routing
decisions. Nodes record information about others for various event types: acknowledge-
ments, packet precision, gratuitous route replies, blacklists, HELLO packets, destination
unreachable messages and authentication objects. For each type, the proportion of posi-
tive events is taken to correspond to the situational trust. Situational trust values are then
aggregated using a weighted product to give overall trust. When routing, nodes will for-
ward packets to maximise trust (rather than minimising cost in standard AODV). P&M
have obtained promising simulation results, but we argue that similar positive effects
can be obtained with a greatly simplified trust model.

108 N. Griffiths et al.

3 The Proposed Model: Simple Trusted AODV

3.1 Network Model

The setting for our approach is a simple MANET in which we assume that nodes are
situated in a bounded 2-dimensional space, within which they are free to move. For
simplicity we assume they move randomly around the space. Each node has individ-
ual characteristics that define its speed of movement and the range over which it can
transmit messages. The positions and transmission ranges define the network neigh-
bourhood, since nodes can only transmit to others within their transmission range, and
can only receive messages from others when they are within their range. Thus, if two
nodes are within each others’ transmission range they are free to communicate, but oth-
erwise intermediate nodes are needed to forward packets. We assume that nodes use
AODV as described above, and we describe below our approach for incorporating trust
into AODV.

3.2 Attack Model

The standard AODV protocol assumes that nodes are fully functional and benevolent,
and does not cope well if this is not the case. This has led to the development of trusted
routing protocols such as that proposed by P&M. In developing their protocol, P&M
describe several possible attacks, and their simulations allow malicious nodes to use
any of these. Consequently, it is impossible to evaluate their trust model against specific
attack types. In this paper, therefore, we concentrate on a small number of specific
attacks and test our model against each type individually.

We consider two varieties of blackhole and a greyhole attack. A blackhole is a mali-
cious node that attempts to drop all packets, typically by forging route replies to create
fake routes with it as an intermediate node. This allows the blackhole to divert and inter-
cept traffic from across the network, and subsequently drop all packets that it receives.
A greyhole can be viewed as a faulty node, rather than explicitly malicious. Greyholes
do not falsify route replies, but instead will periodically drop packets. This might be due
to a fault or due to malicious intentions. Regardless of the reason, greyholes appear as
intermittently faulty nodes to the rest of the network. There are several possible mech-
anisms to implement these attacks within AODV, and we use the following definitions.

Blackhole on route (Blackhole-OnRoute)

This is our simplest blackhole definition, and operates by replying that it has a fresh
enough route to the destination whenever it receives a RREQ, regardless of whether it
actually knows a route. AODV uses sequence numbers to track the freshness of routes.
When nodes issue a new RREQ or the destination responds the sequence number is
increased. A Blackhole-OnRoute node claims to have an existing fresh route to the
destination and so the generated RREP has the same sequence number as the RREQ, caus-
ing it to be accepted by the original sender, which subsequently creates a route with the
blackhole as an intermediate node. This kind of a blackhole is partially guarded against
within AODV, since if the original RREQ eventually reaches the intended destination a

A Simple Trust model for On-Demand Routing in Mobile Ad-Hoc Networks 109

RREP will be generated. The reply from the destination itself has an increased sequence
number over the RREQ and so will overwrite the malicious route setup by the blackhole.
Despite this, in our simulations Blackhole-OnRoute was able to cause significant
packet loss, as the routes it created intercept the first packets sent across any new route
until the destination’s RREP was received.

Blackhole fake destination reply (Blackhole-FakeDestReply)

This blackhole is more malicious than Blackhole-OnRoute, since in addition to claim-
ing to have a recent enough route to the destination it also increases the sequence num-
ber in the RREP and so appears to offer a new route. The effect is that Blackhole-Fake-
DestReply’s route is not overwritten by any reply subsequently returning from the
destination itself. Thus, a route to the actual destination will only be established when
the destination’s RREP is received before that generated by the Blackhole-Fake-
DestReply node.

Greyhole (Greyhole)

The Greyhole does not falsify route replies in order to intercept packets, but instead
simulates a node having intermittent faults. We characterise a Greyhole using two time
periods:

• MAX_TIME_TO_BURST_FAULT: maximum time to the next burst fault (seconds)
• MAX_TIME_BURST_FAULT_LASTS: maximum burst fault duration (seconds)

Using these time periods a node will start a burst fault at a random time between 0
and MAX_TIME_TO_BURST_FAULT. The burst fault lasts for a random period between
0 and MAX_TIME_BURST_FAULT_LASTS. These parameters can be modified to alter the
nature of the faults.

3.3 Trust Model — Simple Trusted AODV (ST-AODV)

There are many potential mechanisms for determining whether a node can be trusted,
based on observing the nodes’ activities and behaviours. The influence of these ob-
servations can be combined to determine a trust level. P&M use several aspects of
node behaviour including acknowledgements, packet precision, gratuitous route replies
etc., as described in Section 2. Our view is that the effect of malicious nodes can be
significantly reduced using a much simpler scheme. We build our trust models using
acknowledgements as the single observable factor for assessing trust. We believe that
acknowledgements offer an effective indication of a node’s trustworthiness.

An acknowledgement is a means of ensuring that packets which have been sent
for forwarding have actually been forwarded. There are a number of ways that this is
possible, but passive acknowledgement is the simplest. Passive acknowledgement uses
promiscuous mode to monitor the channel, which allows a node to detect any trans-
mitted packets, irrelevant of the actual destination that they are intended for. Using this
method a node can ensure that packets it has sent to a neighbouring node for forwarding
are indeed forwarded.

110 N. Griffiths et al.

To record trust information about a node, we introduce a TrustNode data store,
which comprises a nodeID, a packetBuffer, and an integer trustValue for the node.
Each node maintains a TrustNode for each of the nodes that it has sent packets to for
forwarding. To detect whether a packet is successfully forwarded, the packets that have
been recently sent for forwarding are stored in the packetBuffer. This is a circular
buffer, meaning that if packets are not removed frequently enough the buffer will cycle,
erasing the oldest elements. Thus, if a node is dropping packets or is being unaccept-
ably slow at forwarding packets then the buffer will cycle. Otherwise, if the node is
performing acceptably then when the promiscuous mode detects a forwarded packet, it
can be found and removed from the buffer.

In ST-AODV we use a simple trust model, where the trustValue for each node is
initialised to 0. With each observation, the value is incremented for nodes that are de-
tected to forward packets and decremented for nodes that do not appear to forward pack-
ets. To check whether a node is sufficiently trusted we introduce a minTrust threshold
such that nodes with trustValue <= minTrust are considered untrusted. If a node
is untrusted then it is not sent packets for forwarding, and any replies it gives to route
requests are ignored. Once a node becomes untrusted it is barred from consideration for
packet forwarding by dropping it from the set of neighbours, removing all routes that
use it, and sending out a new RREQ to re-establish the removed routes. Similarly, when
receiving a RREP the first hop node is checked and if it is untrusted then the reply is dis-
regarded. Thus, only routes where the first hop is trusted are established. Nodes make
routing choices based on trust as well as the number of hops, such that the selected next
hop gives the shortest trusted path.

4 Simulation and Results

To evaluate the effectiveness of ST-AODV we have performed simulations using the
ns-2 network simulator1. Nodes are situated in a bounded 2-dimensional world about
which they wander randomly. We use a network of 50 nodes in the simulations dis-
cussed below. The network contains benevolent nodes that use ST-AODV to make rout-
ing decisions, and malicious nodes that use one of the attacks defined in Section 3.
The minTrust threshold used for barring nodes is set at -10. We obtain the following
metrics from our results (which are averaged over a number of runs):

• Packet throughout: ratio of packets received by the destination to the number of
packets sent (%)

• Average latency: average time for packets to reach their destination (seconds)
• Packet overhead: ratio of control packets generated to the total number of data

packets sent (%)
• Byte overhead: ratio of control bytes generated to the total number of data bytes

sent (%)

We record these metrics using both standard AODV and ST-AODV for each attack
type under various proportions of malicious nodes. Figures 1, 2 and 3 show the re-
sults for Blackhole-FakeDestReply, Blackhole-OnRoute and Greyhole attacks

1 http://www.isi.edu/nsnam/ns/

A Simple Trust model for On-Demand Routing in Mobile Ad-Hoc Networks 111

100

90

80

70

60

50

40

30

20

10

 0 5 10 15 20 25 30 35 40 45

P
ac

ke
t T

hr
ou

gh
pu

t (
%

)

Number of Blackhole-FakeDestReply nodes

ST-AODV
AODV

0.06

0.05

0.04

0.03

0.02

0.01

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 L
at

en
cy

 (
se

co
nd

s)

Number of Blackhole-FakeDestReply nodes

ST-AODV
AODV

350

300

250

200

150

100

50

 0 5 10 15 20 25 30 35 40 45

P
ac

ke
t O

ve
rh

ea
d

(%
)

Number of Blackhole-FakeDestReply nodes

ST-AODV
AODV 30

25

20

15

10

5

 0 5 10 15 20 25 30 35 40 45

B
yt

e
O

ve
rh

ea
d

(%
)

Number of Blackhole-FakeDestReply nodes

ST-AODV
AODV

Fig. 1. Results for the Blackhole-FakeDestReply attack

100

90

80

70

60

50

40

30

20

10

 0 5 10 15 20 25 30 35 40 45

P
ac

ke
t T

hr
ou

gh
pu

t (
%

)

Number of Blackhole-OnRoute nodes

ST-AODV
AODV

0.06

0.05

0.04

0.03

0.02

0.01

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 L
at

en
cy

 (
se

co
nd

s)

Number of Blackhole-OnRoute nodes

ST-AODV
AODV

300

250

200

150

100

50

 0 5 10 15 20 25 30 35 40 45

P
ac

ke
t O

ve
rh

ea
d

(%
)

Number of Blackhole-OnRoute nodes

ST-AODV
AODV 25

20

15

10

5

 0 5 10 15 20 25 30 35 40 45

B
yt

e
O

ve
rh

ea
d

(%
)

Number of Blackhole-OnRoute nodes

ST-AODV
AODV

Fig. 2. Results for the Blackhole-OnRoute attack

112 N. Griffiths et al.

100

98

96

94

92

90

 0 5 10 15 20 25 30 35 40 45

P
ac

ke
t T

hr
ou

gh
pu

t (
%

)

Number of Greyhole nodes

ST-AODV
AODV

0.03

0.02

0.01

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 L
at

en
cy

 (
se

co
nd

s)

Number of Greyhole nodes

ST-AODV
AODV

25

20

15

10

5

 0 5 10 15 20 25 30 35 40 45

P
ac

ke
t O

ve
rh

ea
d

(%
)

Number of Greyhole nodes

ST-AODV
AODV

2.5

2

1.5

1

0.5

0
 0 5 10 15 20 25 30 35 40 45

B
yt

e
O

ve
rh

ea
d

(%
)

Number of Greyhole nodes

ST-AODV
AODV

Fig. 3. Results for the Greyhole attack

respectively. The results show that ST-AODV significantly improves packet throughput
under all attack types. As the number of malicious nodes is increased each attack type
reduces throughput, but ST-AODV mitigates against this.

In standard AODV a small number of blackhole nodes dramatically reduces through-
put, the effect stabilises for moderate numbers, and for Blackhole-OnRoute falls
off for high numbers (Blackhole-FakeDestReply does not fall off further since
throughput has already fallen significantly). The Greyhole attack results in a fairly
linear throughput reduction as the number of malicious nodes increases. As predicted,
Blackhole-FakeDestReply has the most effect. For AODV, increasing the number
of Blackhole-FakeDestReply nodes very soon reduces throughput to around 25%
with 10 malicious nodes, while a similar number of Blackhole-OnRoute nodes gives
around 65% throughput. Regardless of attack type, ST-AODV achieves a good and
fairly consistent throughput. For both blackhole attacks a throughput of over 90% is
maintained if less than half the nodes are malicious. With standard AODV just 2 mali-
cious nodes reduces throughput to below 70%. Under a Greyhole attack the throughput
using ST-AODV reduces linearly with the number of malicious nodes (as for AODV),
but the rate of reduction is reduced meaning trust is more beneficial with higher num-
bers of malicious nodes.

For blackhole attacks there is relatively little effect on latency using ST-AODV. Per-
formance is slightly improved for Blackhole-OnRoute attacks (by < 0.005 seconds)
while it is slightly worse for Blackhole-FakeDestReply (again by < 0.005 sec-
onds). Under Greyhole attacks latency is reduced by approximately 0.01 seconds using

A Simple Trust model for On-Demand Routing in Mobile Ad-Hoc Networks 113

ST-AODV, regardless of the number of malicious nodes. As expected, the packet over-
head and the byte overhead are increased by using ST-AODV under all attack types. As
the number of malicious nodes is increased the overhead also increases, and more sig-
nificantly so with higher numbers of malicious nodes. For the Greyhole attack the
packet overhead is increased by approximately 5% where under half the nodes are
malicious, rising to around 10% with more malicious nodes. In the Blackhole-On-
Route attack the overhead is below 25% with below 25 malicious nodes, but this rises
rapidly for higher numbers, peaking at over 200% overhead for 45 malicious nodes.
The Blackhole-FakeDestReply attack causes the overhead to rise more rapidly,
to nearly 100% where half the nodes are malicious. This is as expected, since the
Blackhole-FakeDestReply attack is more malicious.

5 Conclusions and Summary

We have described a simple trust model that extends AODV to cope with malicious
nodes. Our simulations show significant improvements in throughput, at the expense
of packet and byte overhead. For low proportions of malicious nodes in the population
the increase in overhead is relatively small given the improvement in throughput. Our
results also show how different attacks affect a network. In particular, using standard
AODV a Blackhole-FakeDestReply attack significantly reduces throughput com-
pared to Blackhole-OnRoute and Greyhole attacks. Using ST-AODV we are able to
minimise this difference and to protect the network effectively against all three attacks.

The results presented above are preliminary findings and there are many areas of
ongoing investigation. Our results compare favourably to those obtained by P&M in
terms of the improvement in throughput. We find a higher packet and byte overhead than
P&M and this requires further investigation. However, P&M’s results are unintuitive
in that the overhead and latency decrease as more malicious nodes are added. These
differences require further investigation.

We are considering several extensions to ST-AODV, including a more flexible (non-
linear) trust update function and improved monitoring using promiscuous mode to mon-
itor all traffic, rather than only a node’s own packet forwarding requests. We are also
investigating more flexible sanctions against untrusted nodes, such as temporary black-
listing. Finally we aim to explore how different trust models perform against different
attacks and combinations of attack.

References

1. Awerbuch, B., Holmer, D., Nita-Rotaru, C., Rubens, H.: An on-demand secure routing pro-
tocol resilient to byzantine failures. In: Proceedings of the 1st ACM workshop on Wireless
security, pp. 21–30 (2002)

2. Gambetta, D.: Can we trust trust? In: Gambetta, D. (ed.) Trust: Making and Breaking Coop-
erative Relations, pp. 213–237. Basil Blackwell, Malden (1988)

3. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation model for
open multi-agent systems. Autonomous Agents and Multi-Agent Systems 13(2), 119–154
(2006)

114 N. Griffiths et al.

4. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decision Support Systems 43(2), 618–644 (2007)

5. Marsh, S.: Formalising Trust as a Computational Concept. PhD thesis, University of Stirling
(1994)

6. Perkins, C., Royer, E.M., Das, S.: Ad hoc on-demand distance vector (AODV) routing. IETF
RFC 3561 (2003)

7. Pirzada, A.A., McDonald, C.: Trust establishment in pure ad-hoc networks. Wireless Per-
sonal Communications 37(1–2), 139–168 (2006)

8. Pirzada, A.A., McDonald, C., Datta, A.: Performance comparison of trust-based reactive
routing protocols. IEEE Trans. on Mobile Computing 5(6), 695–710 (2006)

9. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. Knowledge Engi-
neering Review 19(1), 1–25 (2004)

10. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent systems. In:
Proceedings of the 1st Int. Conf. on Autonomous Agents in Multi-Agent Systems, pp. 475–
482 (2002)

11. Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: A secure routing
protocol for ad hoc networks. In: Proceedings of the 10th IEEE Int. Conf. on Network Pro-
tocols, pp. 78–89 (2002)

12. Selçuk, A.A., Uzun, E., Pariente, M.R.: A reputation-based trust management system for P2P
networks. In: IEEE/ACM Int. Symposium on Cluster Computing and the Grid, pp. 251–258
(2004)

13. Song, S., Hwang, K., Zhou, R., Kwok, Y.-K.: Trusted P2P transactions with fuzzy reputation
aggregation. IEEE Internet Computing 9(6), 24–34 (2005)

14. Xiong, L., Liu, L.: PeerTrust: Supporting reputation-based trust in peer-to-peer communities.
IEEE Trans. on Knowledge and Data Engineering 16(7), 843–857 (2004)

15. Zhou, L., Haas, Z.J.: Securing ad-hoc networks. IEEE Network Magazine 13(6), 24–30
(1999)

A Platform for Collaborative Management of

Semantic Grid Metadata

Michael Hartung1, Frank Loebe2, Heinrich Herre3, and Erhard Rahm2

1 Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
hartung@izbi.uni-leipzig.de

2 Department of Computer Science, University of Leipzig, Germany
(loebe,rahm)@informatik.uni-leipzig.de

3 Institute for Medical Informatics, Statistics and Epidemiology,
University of Leipzig, Germany
hherre@imise.uni-leipzig.de

Summary. Grid environments, providing distributed infrastructures, computing re-
sources and data storage, usually show a high degree of heterogeneity in their metadata.
We propose a platform for collaborative management and maintenance of common
metadata for grids. As the conceptual foundation of this platform, a meta model is
presented which distinguishes structured descriptions and classification structures. On
this basis, the system allows for the user-friendly creation and editing of grid relevant
metadata and provides various search and navigation facilities for grid participants.
We applied the platform to the German D-Grid initiative by establishing the D-Grid
Ontology (DGO).

1 Introduction

Grid computing offers scientists a distributed infrastructure for collaboration and
provides massive amounts of computing, storage, and data resources. Such grid
initiatives, e.g., the German D-Grid1, are highly complex and involve many het-
erogeneous components. They offer resources of different types (e.g., hardware or
software resources). Furthermore, these resources belong to many participating
organizations, e.g., universities, research centers or enterprises, which themselves
have affiliated persons or take part in different grid sub projects representing in-
dividual communities such as medicine or physics.

Metadata at varying levels of detail is needed to describe all these grid re-
sources as well as the participating organizations, projects, and persons. Fre-
quently, grid metadata is managed independently in each participating project,
i.e., a project is responsible for its specific metadata. This may be appropriate
for the management of project-specific or domain-specific metadata, for exam-
ple, biomedical grid projects typically use life science ontologies for data anno-
tation. On the other hand, there are common types of metadata which apply to
all grid projects. Information about projects, grid resources and organizations
1 http://www.d-grid.de

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 115–125, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

116 M. Hartung et al.

can be managed in an integrated form, and should be accessible on-line and
directly editable for all authorized participating persons and projects. Further-
more, metadata especially about resources should be offered to grid applications
and services, e.g., through metadata service interfaces. Providing an integrated
access to grid metadata permits projects to better exchange information about
their ongoing work. For example, grid participants can more easily notice related
work in other projects, so that cooperation can be improved and duplicate efforts
be reduced. It is important that a metadata management system offers simple
user interfaces for the extension and change of the metadata (usability aspect),
since persons of different domains with diverse technical backgrounds (e.g., com-
puter scientists, physicians, or librarians) meet in a grid’s virtual organization.
We make the following contributions in this paper:

• We propose a simple yet flexible meta model suitable for management of
semantic grid metadata including content types for structured information
and ontological categorization for content classification.

• We describe a web-based and wiki-like platform using the defined meta model
and supporting the collaborative creation and editing of grid metadata. The
platform also addresses usability issues such as powerful search, navigation
and visualization capabilities.

• An application of our platform is presented, namely the D-Grid Ontology
(DGO) of the German D-Grid initiative available under http://buell.izbi.uni-
leipzig.de/dgo. In particular, we outline the current organization of the se-
mantic metadata.

The remainder of the paper is organized as follows. In Section 2 we describe
models for the collaborative management of grid metadata, with a focus on the
meta model level. Section 3 presents the model of DGO, while usability features
of the platform are illustrated in Section 4. Implementation details are provided
in Section 5. Section 6 discusses related work. We conclude with a summary and
an outlook on future work.

2 Models of the Platform

We build on a three-layered representation of metadata and data (see Fig. 1)
differentiating between the following layers: meta model, models and instance
data. The model (or schema) is specific to a particular grid or virtual organiza-
tion, e.g., D-Grid, and prescribes the structure of possible instances and their
semantic annotations. The meta model defines the constructs which can be used
for defining the models, in particular for describing the structure of instances
(content) and the use of ontologies for semantic annotation of instances. In this
section we describe the meta model, whereas Section 3 focuses on the D-Grid
Ontology (DGO) with its model and instances.

The meta model consists of two main parts, content types and categories. Con-
tent types are used to define the meta information (structure) for instantiable
information or content. Categories, on the other hand, are not directly instan-
tiable but serve for a semantic annotation of content, in particular content items.

A Platform for Collaborative Management of Semantic Grid Metadata 117

U
ni

ve
rs

ity

E
du

ca
tio

na
l O

rg
.

O
rg

. C
at

eg
or

y

R
es

ea
rc

h
In

st
itu

te

S
ax

on
y

G
eo

. C
at

eg
or

y

G
er

m
an

y

E
ur

op
e

B
er

lin

S
of

tw
ar

e
R

es
ou

rc
e

C
om

pu
tin

g
R

es
ou

rc
e

S
to

ra
ge

 R
es

ou
rc

e

H
ar

dw
ar

e
R

es
ou

rc
e

R
es

ou
rc

e
C

at
eg

or
y

C
lu

st
er

«a
ss

ig
ne

dT
o»

Le
ge

nd
:

«s
ub

C
at

eg
or

yO
f»

«i
ns

ta
nc

eO
f»

«p
ar

tO
f»

«g
en

er
al

iz
at

io
n»

O
rg

an
iz

at
io

n
na

m
e

ad
dr

es
s

 1
..*

 a

ttr
ib

ut
es

in
ve

rs
eI

sP
ar

tO
f

is
P

ar
tO

f
ha

sH
W

R
es

ou
rc

e
be

lo
ng

sT
o

ha
sM

em
be

rs
is

M
em

be
rO

f ha
sH

W
R

es
ou

rc
e

be
lo

ng
sT

o

IZ
B

I a
pr

ili
a:

 G
rid

H
W

R
es

ou
rc

e
na

m
e:

 IZ
B

I a
pr

ili
a

nu
m

be
rO

fC
P

U
s:

 4
m

ai
nM

em
or

y:
 8

 G
B

C
at

eg
or

y
na

m
e

G
rid

H
W

R
es

ou
rc

e
nu

m
be

rO
fC

P
U

s
m

ai
nM

em
or

y

G
rid

S
W

R
es

ou
rc

e
sw

V
er

si
on

P
er

so
n

fir
st

N
am

e
la

st
N

am
e

P
ro

je
ct

na
m

e
st

ar
t

en
d

R
el

at
io

ns
hi

p
fo

rw
ar

dN
am

e
ba

ck
w

ar
dN

am
e

C
on

te
nt

 T
yp

e
na

m
e

 In
st

an
ce

 D
at

a

 C
at

eg
or

y
M

od
el

G
rid

R
es

ou
rc

e
na

m
e

A
ttr

ib
ut

e
na

m
e

m
ul

tip
le

m
an

da
nt

or
y

 C
on

te
nt

 T
yp

e
M

od
el

 I
ns

ta
nc

e
D

at
a

 C
at

eg
or

y
M

et
a

M
od

el

IZ
B

I:
O

rg
an

iz
at

io
n

na
m

e:
 In

te
rd

is
ci

pl
in

ar
y

C
en

tr
e

fo
r

B
io

in
fo

rm
at

ic
s

ad
dr

es
s:

 H
är

te
ls

tr
. 1

8,
 ..

.

U
ni

ve
rs

ity
 o

f L
ei

pz
ig

: O
rg

an
iz

at
io

n
na

m
e:

 U
ni

ve
rs

ity
 o

f L
ei

pz
ig

ad
dr

es
s:

 R
itt

er
st

r.
 2

6,
 ..

.

 0
..*

 0

..*su
bC

at
eg

or
yO

f

 C
on

te
nt

 T
yp

e
M

et
a

M
od

el

0.
.1

 0
..*

0.
.1

 0
..*

 p

ar
tO

f
ge

ne
ra

liz
at

io
n

0.
.*

1
so

ur
ce

0.
.*

1
ta

rg
et

is
A

ffi
lia

te
dW

ith

ha

sM
em

be
rs

 is
P

ar
tO

f

 in
ve

rs
eI

sP
ar

tO
f

Fig. 1. Three-layered representation of metadata

118 M. Hartung et al.

Each content item is associated to a particular content type, i.e., a content item
instantiates a specific content type of the model. In the following subsections,
we describe content types, categories and related aspects in more detail.

2.1 Content Types

A content type has a name and a set of attributes describing simple properties
for content items. An attribute has a name, a data type and a cardinality of one
or many. The latter allows for arbitrarily many values of that attribute within
a content item. Attributes may also be defined as mandatory, i.e., they must
be specified during content instantiation (e.g., the first and last name of a per-
son). The attribute’s data type restricts the permissible values, e.g., date, URL
or string. Furthermore, allowed values can be restricted to a controlled vocab-
ulary to guarantee well-defined terms. We further distinguish between generic
and specific attributes. Generic attributes are predefined and exist for all con-
tent types, e.g., the ‘ID’ and ‘Synonym’ attributes. Specific attributes describe
application-specific properties of content types.

Content types can be interrelated by binary relationships of a specified cardi-
nality. Relationships are managed bidirectionally and thus consist of a forward
and backward relationship. Hence content items participating in a relationship
are accessible from both directions. For instance, assume a content type Person
has a relationship with a second content type Organization. When a content
item A of Person ‘isAssociatedWith’ a content item B of Organization (forward
relation), we also maintain that B is connected to A through a ‘hasMembers’
relationship (backward). In order to keep our model simple and flexible, we cur-
rently do not use relationship attributes.

In addition to such application-specific relationships we support two gen-
eral kinds of relationships with predefined semantics: generalization and partOf.
Firstly, content types can be part of generalization hierarchies supporting inher-
itance. Hence, derived content types reuse the metadata of their predecessors
in the generalization hierarchy and may define additional attributes or relation-
ships. The topmost (root) nodes of the generalization relation are called base
content types. For instance, a base content type ‘GridResource’ may inherit its
attributes and relationships to more specific content types such as ‘GridHard-
wareResource’ or ‘GridSoftwareResource’. Secondly, the partOf relationship in-
terrelates content types to construct aggregation hierarchies. For example, we
use a recursive partOf relationship between organizations. Such partOf hierar-
chies are used in our platform to support navigation and to specify the context
of content items. For instance, we may have several items called ‘Department
of Computer Science’. Their meaning only becomes clear by considering their
predecessors within the organizational partOf hierarchy, e.g., to differentiate
between ‘University of Leipzig’ / ‘Department of Computer Science’ and ‘TU
Munich’ / ‘Department of Computer Science’.

A Platform for Collaborative Management of Semantic Grid Metadata 119

2.2 Categories

Categories have a name and are hierarchically organized within subCategoryOf
relationships. These relationships are assumed to form directed acyclic graphs
(DAGs) of categories. Moreover the subCategoryOf relationship involves differ-
ent semantics depending on what categories are interrelated, e.g., ‘Germany’ is
part of ‘Europe’ or a ‘University’ is an ‘Educational Organization’. Roots are
special categories without predecessor for the subCategoryOf relationship and
therefore act as entry points of a category structure.

We build on this simple yet flexible category model to broadly support se-
mantic annotations, i.e., the ontological structuring and classification of content
items (instance data). Categories can be used to manage content items of differ-
ent content types independently of the content structure. In particular, content
items can be categorized along multiple categories. Notably, the associations
between content items and categories exhibit the character of annotations (see
‘assignedTo’ associations in Fig. 1). Such associations may be used in many cases,
e.g., to instantiate categories or to associate objects to a geographical category.
For example, the content item ‘University of Leipzig’ may be associated to a
‘University’ category and a ‘Saxony’ category.

Categories can be used to improve the navigation within the platform (along
the lines of faceted classification) and to support semantic queries. For instance,
if somebody is interested in all universities participating in a grid, one navigates
through the organization category structure to the university category to see all
associated university organizations.

3 Sample Application – The D-Grid Ontology

D-Grid started in 2005 as a Germany-wide grid initiative. Its aim is to provide
a common grid infrastructure for e-Science projects in Germany and to prove
the viability and advantages of grid usage in different scientific domains. D-Grid
entails many community projects, e.g., for medical and physics applications, and
a common integration project (DGI).

Currently, metadata about D-Grid and its structures is highly heterogeneous
and distributed across many websites and project-specific repositories, e.g., infor-
mation about projects, persons, or available hardware and software resources.
Furthermore, there are almost no relations or explicit semantic links between
these independently maintained information objects. The goal of our metadata
platform is to integrate and semantically categorize this heterogeneous informa-
tion in a common system and to offer it to all D-Grid participants, applications
and interested users. New participants in D-Grid can thus quickly inform them-
selves about ongoing work in D-Grid projects and the organizations and persons
involved. Further, resource providers, i.e., institutes providing hardware or soft-
ware to the grid, can specify parameters about their resources which may be
useful for scheduling and distribution of grid applications. Our platform seman-
tically categorizes its content within a so-called D-Grid Ontology (DGO). It

120 M. Hartung et al.

simplifies the manual creation and maintenance of metadata using a collabora-
tive, wiki-like platform. Through the use of the meta model including content
types and ontological annotations a high data consistency and quality is pursued.

On the basis of our meta model described in Sec. 2, we use four basic grid
content types in the DGO model, namely Person, Project, Organization and
GridResource (see content type model in Fig. 1). As an example, the content type
Person uses attributes such as first name, last name, email or phone number for
the registration of personal information. Furthermore, relationships to content
items of other content types show a person’s semantic neighborhood, e.g., the
projects a person is working in (‘isMemberOf’) or the organization to which
a person is affiliated (‘isAffiliatedWith’). Furthermore, DGO exploits recursive
partOf relationships for projects and organizations. In particular, ‘D-Grid’ is
the topmost project of DGO and contains a number of sub projects such as
‘MediGRID’, ‘HEP-Grid’ or the ‘Integration Project (DGI)’, which themselves
include further sub projects. Furthermore, DGO uses several category hierarchies
for ontological classification of content items (see category model in Fig. 1). Every
content item of DGO is assigned to a minimum of one category. For instance, a
community project such as ‘MediGRID’ is assigned to the category ‘Community
Project’ (in terms of project type) and ‘D-Grid I’ (funding aspect) since it was
funded as one of the starting projects of the D-Grid initiative.

The current version of DGO (as of April 2008) categorizes and interrelates
about 40 projects, 150 organizations, 300 persons, and 75 grid resources. There
are about 950 bidirectional relationships between content items.

4 Usability Features

In the following, we describe some of the features of our platform to illustrate its
usability. In particular, we firstly illustrate how semantic metadata is displayed
within the platform. Furthermore, we present navigation and search capabili-
ties as well as options for creation, classification and editing of content. For a
hands-on experience the interested reader may directly use the system (after
registration) under http://buell.izbi.uni-leipzig.de/dgo.

4.1 Content Visualization

Each content item is shown on its own article page, providing information about
its name, basic attributes, relationships, category classifications, explanations
(free text), images and versioning. Relationships to other content items are pre-
sented as hyperlinks allowing the user to traverse to the content page of the
referenced item. Specific tabs allow the direct change of content pages, in par-
ticular editing, renaming or category assignment.

Our platform exploits Web 2.0 techniques, such as maps and navigable trees,
to display semantic metadata in different forms. In particular, we use Google
Maps2 to geographically locate content items such as organizations or D-Grid
2 http://maps.google.com

A Platform for Collaborative Management of Semantic Grid Metadata 121

Fig. 2. Organizations of D-Grid on a map (left) and query generator (right)

hardware resources on a map. For example, users are able to notice what or-
ganizations in their local environment also participate in the same grid project
and hence regional cooperation is improved or duplicate work can be reduced.
Furthermore, we employ partOf relationships between content types to gener-
ate trees representing hierarchical structures such as organization or project
structures.

The sample map in Fig. 2 (left) includes all organizations currently partici-
pating in D-Grid. When selecting a location, e.g., Leipzig, all organizations in
this place participating in D-Grid are listed and may be further explored. In
order to generate these maps, we utilize location attributes of a content type
as well as partOf relationships between content items. Currently, the location
attributes represent the city, e.g., of an organization. The geographical coordi-
nates (latitude/longitude) of a city needed for the map visualization is obtained
from a publicly available web service3. For each location on the map, we use the
partOf structure among content items to aggregate all corresponding items for
display.

4.2 Search and Navigation Facilities

The platform provides different search and navigation facilities. A simple text
search supports keyword-based search over all attributes of content items. Fur-
thermore, semantic query capabilities on content types and categories are pro-
vided. In particular, a query generator (Fig. 2 right) for interactive specification
of semantic queries is available so that users can pose powerful queries without
having to learn a complex query syntax or query rules. Users choose a specific
content type and their attributes or relationships they are interested in. For
3 http://www.geonames.org

122 M. Hartung et al.

instance, a query to determine the email and names of all persons working in D-
Grid can be generated within a few seconds. The results are presented in tables
which can be interactively sorted on different attributes or relationships, e.g.,
person name or the affiliated organization.

Besides search, the platform provides extensive navigation capabilities for con-
tent retrieval. A category browser (Fig. 3 left) enables simple and fast navigation
to content of interest. It dynamically generates a navigation tree representing
categories and content items in an integrated form, by attaching content items
as leaves to their most specific categories. For instance, with some clicks a user
can navigate from the top category ‘Person’ to ‘Researcher’ or ‘Professor’ to see
all associated content items. All nodes of the tree are linked, i.e., a click on a cat-
egory displays the corresponding category page with all assigned content items,
and a click on a content item shows the article of the content item, respectively.

4.3 Creation and Editing of Content

For every content type the system provides an interactive input form to cre-
ate new content items. These forms are dynamically created from the current
meta information (attributes, relationships, category associations) of a content
type. To change existing content items, the current content attribute values, re-
lationships and category associations are presented for editing within UI forms
analogous to the ones for creating new content items (Fig. 3 right).

A UI form for creation or editing of content consists of different kinds of form
fields, in particular mandatory fields, autocomplete-aware fields, single- / mul-
tivalued fields, category association fields and free text. Mandatory fields reflect
mandatory attributes, i.e., they need to be filled out in order to create a new con-
tent item, e.g., a person’s name. In order to simplify user input and to avoid dupli-
cate entries, autocompletion is utilized in the following way. As soon as a user clicks
on an autocomplete field or types some letters into it, value suggestions are offered

Fig. 3. Category browser (left) and editing of content (right)

A Platform for Collaborative Management of Semantic Grid Metadata 123

for selection. For example, an input field capturing a relationship to the content
type ‘Organization’ (e.g., a person’s affiliation) suggests organization items match-
ing the input. Furthermore, if an attribute is restricted to a controlled vocabulary,
we suggest values matching current entries of such a vocabulary. In order to enter
multiple values for an attribute or relationship we utilize multivalued fields with
a common separator to separate multiple values. The category association field
provides the possibility to assign the current content item to different categories.
Here, we again make use of autocompletion to simplify categorization and to guar-
antee correct category associations. Finally, a free text field allows for entering
content not covered by attributes, relationships or category association. The dif-
ferent fields just described are marked with different background colors and labels
to improve user interaction and the input dialog.

5 Implementation

The presented platform builds upon a widely used semantic wiki implementation,
the Semantic Media Wiki (SMW) [5]. SMW, in turn, extends the MediaWiki4

implementation, which is also used by Wikipedia. MediaWiki provides a power-
ful infrastructure for collaborative management of text-based articles. It is also
aware of categories and sub categories, but links between articles in MediaWiki
are un-typed (have no semantics) and search capabilities are limited to simple
text searches. SMW introduces semantic properties for wiki articles and thus
supports a semantic annotation and enhanced querying of wiki contents.

We extended MediaWiki and SMW in several directions. Firstly, we intro-
duce content types (based on the template feature of MediaWiki) to capture
semantic metadata in the form of structured content. Secondly, we introduce
bidirectional relationships (on the basis of SMW semantic properties) between
content types to automatically maintain referential integrity and to provide bet-
ter navigation capabilities. Thirdly, we support the use of controlled vocabularies
and user-friendly UIs for content creation and change, e.g., autocompletion to
avoid duplicates. Finally, we utilize Web 2.0 techniques for novel visualization
and interaction options, e.g., dynamic generation of maps for content items and
interactive specification of semantic queries.

6 Related Work

Our approach builds upon established wiki technology [6] and its combination
with semantic technology, cf. [8, 10]. The initially visible distinction between
semantic wikis originating from ‘classical’ wikis, e.g., the Semantic MediaWiki
[5], and editors for knowledge bases or ontologies with wiki-like, collaborative
features, e.g., IkeWiki [9] or OntoWiki [1], is currently diminishing [3].

In general, the platform presented herein aims at the collaborative and user-
friendly collection and maintenance of structured data. A major difference to
4 http://www.mediawiki.org

124 M. Hartung et al.

other systems concerns our meta model. The meta models of many semantic
wikis are based on Semantic Web standards, most often RDF (e.g., WikSAR
[2], SweetWiki [3], etc.) and sometimes OWL [7] (e.g., IkeWiki, OntoWiki). In
contrast, our meta model supports both a database-oriented and an ontological
part. The first comprises multiple content types, relationships and attributes for
expressing structured contents. The ontological part provides multiple hierar-
chies of categories for the classification of content items. These aspects result
in a clearly structured system configuration and facilitate a user-friendly access
and maintenance of grid metadata. In contrast, the sole use of RDF and OWL
models often result in complex graph structures and reduced user friendliness.
Another feature of our platform is the bidirectionality of the relationships. This
can be considered as a simple form of reasoning which still allows for efficient
system behavior. Many semantic wikis avoid the use of Semantic Web reasoning
for efficiency reasons (cf. [3, p. 87]; exceptions are e.g. IkeWiki and BOWiki [4]).

As already discussed in the previous section, the presented system utilizes the
features of the meta model (content types, bidirectional relationships, categories,
controlled vocabularies) for improved consistency and usability, e.g., semantic
queries and powerful navigation, visualization and editing (e.g., autocompletion).
This is a clear improvement over approaches in which editing of information is
only possible in terms of wiki syntax as used for free text editing and markup.

7 Summary and Future Work

We presented a meta model and a platform for the collaborative management of
semantic metadata in grids. The platform provides grid participants of large-scale
grid initiatives such as D-Grid with a collaborative, web-based and user-friendly
way of creating, editing and using grid metadata, e.g., on grid resources, projects,
and participating organizations and persons. We applied the platform within the
German D-Grid initiative in order to build a semantic metadata repository for
D-Grid and to improve the collaboration between participating projects. The
platform is currently running under http://buell.izbi.uni-leipzig.de/dgo and is
actively used by D-Grid members.

In the future, we will extend the platform based on new requirements from the
D-Grid communities. We further investigate automatic support of the evolution
of the domain model, i.e., changes in the content types and categories (instances
with respect to the meta model level).

Acknowledgement. This work is supported by BMBF grant 01AK803E “Medi-
GRID – Networked Computing Resources For Biomedical Research”.

References

1. Auer, S., Dietzold, S., Riechert, T.: Ontowiki – a tool for social, semantic collab-
oration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749. Springer,
Heidelberg (2006)

A Platform for Collaborative Management of Semantic Grid Metadata 125

2. Aumüller, D., Auer, S.: Towards a semantic wiki experience – desktop integra-
tion and interactivity in WikSAR. In: ISWC 2005, vol. 175, pp. 212–217. CEUR-
WS.org, Aachen (2005)

3. Buffa, M., Gandon, F.L., Ereteo, G., Sander, P., Faron, C.: SweetWiki: A semantic
wiki. Journal of Web Semantics 6(1), 84–97 (2008)

4. Hoehndorf, R., Prüfer, K., Backhaus, M., Herre, H., Kelso, J., Loebe, F., Visagie,
J.: A proposal for a gene functions wiki. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 669–678. Springer, Heidelberg
(2006)

5. Krötzsch, M., Vrandečić, D., Völkel, M., Haller, H., Studer, R.: Semantic
Wikipedia. Journal of Web Semantics 5(4), 251–261 (2007)

6. Leuf, B., Cunningham, W.: The Wiki Way: Collaboration and Sharing on the
Internet. Addison-Wesley Professional, Reading (2001)

7. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language overview.
W3C Recommendation, World Wide Web Consortium (W3C), Cambridge, Mas-
sachusetts (2004)

8. Riehle, D., Noble, J. (eds.): Proc. of the 2006 International Symposium on Wikis.
ACM, New York (2006)

9. Schaffert, S.: IkeWiki: A semantic wiki for collaborative knowledge management.
In: Proc. of the 15th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, WETICE 2006, Manchester, UK,
June 26-28, pp. 388–396. IEEE Computer Society Press, Los Alamitos (2006)

10. Völkel, M., Schaffert, S. (eds.): SemWiki 2006 – From Wiki to Semantics: Proc.
of the First Workshop on Semantic Wikis, Budva, Montenegro, June 12, vol. 206,
CEUR-WS.org, Aachen (2006)

Distributed Approach for Genetic Test Generation in
the Field of Digital Electronics

Eero Ivask, Jaan Raik, and Raimund Ubar

Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia
���������������	
�������	���

Summary. Distributed computing attempts to aggregate di�erent computing resources available
in enterprises and in the Internet for computation intensive applications in a transparent and scal-
able way. Digital test generation aims to find minimal set of test vectors to obtain maximum
fault coverage for digital electronic circuits. In this paper we focus on distributed environment
and parallelization of the computationally intensive genetic algorithm based test generation for
sequential circuits. We discuss the concept and implementation of our system infrastructure, task
partitioning, allocation, test generation algorithm and results.

1 Introduction

As the complexity of modern digital devices is increasing dramatically, the demand on
test quality and reliability is getting higher for most products. On the other hand, as
the sizes of circuits grow, so do the test costs [1]. Test costs include not only the time
and resources spent for testing a circuit, but also time and resources spent to generate
appropriate test vectors (input values) for circuit under test.

Despite of their eÆciency, GA-based techniques may still require large amount of
CPU time due to simulation costs. Speeding up current test generation tools is chal-
lenge nowadays, as we see. One way to gain practical speedup is to parallelize the task
execution. In our case, most time consuming part of the algorithm is certainly fault
simulation- verification of usefulness of produced test vectors. There are several meth-
ods to parallelize the fault simulation: algorithm can be parallelized, circuit model can
be partitioned into separate components and simulated in parallel, partitioning the fault
set data and simulating faults in parallel (fault parallelism). In this paper, we present
distributed test generation approach, which relies on fault parallelism. Fault set is di-
vided and faults are simulated in parallel on di�erent computers in wide or local area
network.

Current distributed solution was initially inspired from MOSCITO system [2], which
had a goal to provide the functionality of the existing local work tools to potential users
in LAN mainly. Major obstacle for Internet based use was TCP�IP socket based commu-
nication, which conflicted with firewalls. More flexible web-based solution for remote
tool usage was proposed in [3]. Socket communication was replaced with HTTP. Java
Servlets and Applets were used along with Java applications, also database was intro-
duced to store user information and intermediate results. In current paper this concept
is revised and improved to support adaptive distributed computing.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 127–136, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

128 E. Ivask, J. Raik, and R. Ubar

There are, of course other, general purpose frameworks for distributed computing,
like BOINC (Open Infra-structure for Network Computing), which is a non-commercial
middleware system for volunteer computing, originally developed to support the
SETI@home project, but intended to be useful for other applications in areas as diverse
as mathematics, medicine, molecular biology, climatology, and astrophysics [4].

Major drawback of such infrastructure however is the use of remote procedure call
(RPC) mechanisms, which is considered security risk (even if it is configured for con-
nections from the same computer). Use of PHP instead of Java cannot be considered as
an advantage.

Internet based grid-computing middleware AliCE using Java based Jini technology
is described in [5]. Jini technology is based on RMI (Remote Method Invocation)- al-
though elegant programming solution for distributed computing where one program
can remotely invoke methods physically residing in other machine, however, firewall
traversal can be problematic again, as dedicated communication ports are needed. Strict
security policy might not allow that.

The paper is organized as follows: overall concept of web-based infrastructure and
communication is described in section 2. In section 3 implementation details are out-
lined including communication, data management and user interface. Section 4 de-
scribes workflow with distributed computing. Section 5 describes digital test tool.
Sections 6 and 7 describe task partitioning and task allocation. Experimental results
are presented in Section 8 and conclusions are given in Section 9.

2 General Concept

A web-based solution to support parallel distributed test generation for digital sequen-
tial circuits is described below. User will be able to use test tool remotely over the
Internet.

System core has client-server concept. There is one master server, several applica-
tion servers and arbitrary number of clients (see Fig. 1). Master server maintains the
information about application servers, which provide service. On application server so
called agents can be invoked. Agents encapsulate actual test tool.

There is no need to install tools on the user’s local computer. Therefore, user’s e�ort
for installation, configuration and maintenance of software will be drastically reduced.

The system is implemented in Java and can therefore run on di�erent computing
platforms. Actual work tools must run on their native platform of course.

Fig. 1. Components in the system

Distributed Approach for Genetic Test Generation 129

Each tool must be provided with network communication abilities i.e. it must be
wrapped with additional software an Agent is created. Agents work on Application
servers. One Master server will serve many clients in parallel. There is task queue man-
agement. Results reside initially on the server computer. Each user has its own server-
side workspace in the database.

Client and Agents work in polling mode, Master server is working in answering
mode. Master server and Agents on Application servers must be started by administra-
tors first. Client then initiates a task which is first passed to Master server where the
task is stored until a free Agent is asking for a new task. When task is complete, Agent
passes results back to Master server where results are stored again until user will ask
for results. Subsequently, implementation specific details of general concept are given.

3 Implementation

The WEB based infrastructure is built according to the client-server three-tier concept
using Java applet�servlet technology. MySQL database was chosen as backend DB for
data persistency, for user tracking and to support management tasks. Principal solution
in details is given in Fig. 2. Tomcat is the servlet container that is used in the oÆ-
cial Reference Implementation for the Java Servlet and JavaServer Pages technologies.
Tomcat and servlets running on it play important role in order to gain access to in-
tranet resources on application servers and to MySql database (platform independent
open source DB). Test tool is implemented partially in Java, partially in C language, i.e.
simulation functions are written in C and invoked via Java Native Interface (JNI). Java
language has excellent support for network programming.

Fig. 2. Three layer architecture and communication details

Communication is based on HTTP protocol. The tools on di�erent computers and
on di�erent computing platforms (UNIX, Linux, Windows) can easily exchange data
as serialized Java objects (Transfer Object design best practice). HTTP protocol allows
us also easy firewall traversal as we can use default web server port and Java servlet
extensions on web servers as sort of proxies in order to reach intranet resources. There is
no need for opening extra ports in the firewall on the user side as it is the case in TCP�IP
socket based communication (which would be major restriction). Communication is
secured via SSL encryption.

Data management module used in coordinating servlet running on the web server
(i.e. Master server) is described below in this section. As we know, web-based http

130 E. Ivask, J. Raik, and R. Ubar

communication is by design stateless. This means that we have to keep track about
all necessary information. As work tools tend to run long, then normal user’s http ses-
sion is not valid for such time period and data will be lost. As we want to provide our
user with a possibility to come back later to receive his results, we have to identify
(track) users and store all their relevant data. Using so called cookies could be one solu-
tion, but database approach used here o�ers many advantages like powerful SQL query
mechanism, speed, reliability, consistency of data and ease of use. User tracking system
allows us to monitor and control the usage of service. Without proper user management,
anybody in the Internet could possibly use valuable computer resources. Therefore, bet-
ter practice would be to allow registered users access the resources. It may allow also
billing the business customers. Main goal was to provide suÆcient set of basic functions
to support user registration, tracking, and management of user tasks. Solution is based
on relational database. Tool execution and data base access over Internet is carried out
via Java servlet technology. Below the implementation details are given.

The data management module has open architecture, general API (application pro-
gramming interface). With slight modifications, it is also reusable for similar web-based
systems, where for example user tracking is needed. It has three layers: presentation
layer (user tier), business logic tier (data base queries, etc.), physical database (MySQL-
platform independent open source DB).

First two layers are implemented in Java programming language. User is accessing
database via presentation layer, not directly. This makes architecture open. Database
access is implemented using Data Access Object (DAO) design practice in mind. Data
access is using also connection pooling to speed up DB transactions. Data passing be-
tween user and Master server and between Application server is implemented following
Transfer Object (TO) design practice. Relevant information is not sent string by string
but it is passed once as data bundle (datagram).

User tier consists of several functions to make business layer queries. User tier and
business logic tier are decoupled. Therefore, it is easy to have di�erent user interfaces
for di�erent applications in the future. In addition, if the database structure or busi-
ness logic changes, there is no need to change user interfaces. Moreover, it is easy to
introduce common functionality to new applications - it is much simpler for instance
to invoke appropriate function (method), than construct a new query every time a new
application needs one.

Graphical User interface. (GUI) is based on Java Applet, which can be integrated
into HTML page when needed. GUI has fields to gather test tool’s parameters, allows
browsing for circuit model file, has button to start the tool, a console window to display
all the messages from the running tool. When the task is complete, results download
button is enabled. User can browse and select the folder where to save results.

Since accessing local hard drive for Java applet is restricted for security reasons, then
GUI applet has been signed digitally, with so called self-signed certificate for simplicity.
Certificate shows owner specific information. Only di�erence for end user is that when
signed Applet is first time downloaded into user’s computer, informative dialog box is
displayed. It is user’s responsibility to trust or untrust the origin and contents of the
Applet. User can contact Applet owner about autenticy of certificate, when question
arises.

Distributed Approach for Genetic Test Generation 131

4 Workflow with Distributed Computing

First, user specifies parameters and design file location for certain test tool. Thereafter
user GUI contacts with coordinating web server and described parameters along the
model are passed automatically. Task coordinator service process (Java servlet) on Web
server records all requests from user(s) and divides the task into subtasks. Java based
test agents poll constantly web server and if any subtask is scheduled by coordinator
process, then test agents receive the appropriate parameters and design file and will
start actual native test tool. Test agent waits then until his subtask will be completed
and reports results back to coordinating web server, which in turn assembles sub results
into final result and forwards it to user when requested.

Test agent will accept one task at time, but if the host computer has several processors
then of course it is reasonable to have one agent for each processor. Operating system
itself will assign running tasks to available processors. Test agent and native test tool
must reside on the same computer as we assume that native test tool has no network
support built in. Web server resides usually separately from test agents, they must not
reside in the same local area network. Each agent can reside on di�erent local area
network.

This solution is relatively flexible and e�ectively works across the internet and
through the firewalls as long as dedicated communication port for task coordinator ser-
vice process on Master server is opened by administrator.

5 Genetic Test Generation

This section presents a genetic algorithm based approach to test generation for digital
gate level sequential circuits (circuits with memory and feedback to inputs). This ap-
proach di�ers from most of the previous works by specifically targeting single faults,
also some structural knowledge about the circuit is used. The priority was to improve
the fault coverage, to detect additional faults.

In order to solve the problem, the following components are must in genetic
algorithm [6]:

� Representation of solution to the problem,
� Way to create an initial population of solutions,
� An evaluation (fitness) function in order to estimate the quality of the solution
� Genetic operators that alter the structure of ”children” during reproduction
� Fine-tuned parameters

Representation. In context of test generation for sequential circuits, sequence of test
vectors will be the individual. Several concurrent sequences form the population.

Initialization takes place by generating a random set of test sequences. Such an ini-
tial test sequence set is subsequently given to a simulator tool for evaluation. Following
steps of algorithm are carried out repeatedly.

Evaluation of test vectors measures fitness of the individuals, i.e. the quality of
solutions in a population. Better solutions will get higher score. Evaluation function
directs population towards progress because good solutions (with high score) will be

132 E. Ivask, J. Raik, and R. Ubar

selected for crossover and poor solutions will be rejected. We use fault simulation in
order to evaluate test sequences. Simulation is carried out only for particular fault under
consideration. Fault simulator was improved to keep track the number of fault e�ects
activated and propagated onto flip-flops and primary outputs. Simulation procedure uses
Structurally Synthesized BDD (SSBDD) description [7] as its internal model. It is a
special case of Binary Decision Diagrams (BDD), which are now commonly used for
representing Boolean functions because of their eÆciency in terms of time and space
[8]. They have become the state-of-the-art data structure in many VLSI CAD systems.
In essence, a decision diagram is a directed acyclic graph, consisting nodes, edges and
special terminal nodes. Traditional BDDs can be used only for representing functions
and not for the faults in gate networks.

Fitness of the test sequence is calculated as follows: Ca �activated�Cp � propagated,
where activated is number of clock cycles when particular fault e�ect was activated in
the circuit and propagated is the number of clock cycles when fault e�ect was prop-
agated onto some flip-flop. Ca and Cp are constants, which show how much stress is
given to parameters. We selected 0.1 for Ca and 1 for Cp.

Genetic operators. Selection is needed for finding two candidates for crossover. Based
on fault simulation results better test sequences are selected. Roulette wheel selection
mechanism was used here. Number of slots on the roulette wheel will be equal to pop-
ulation size. Size of the roulette wheel slots is proportional to the fitness value of the
test vector sequence. This means that better sequences have a greater possibility to be
selected. If our population size is N, and N is an even number, we have N�2 pairs for
reproduction. Candidates in pair will be determined by running roulette wheel twice.
One run will determine one candidate. With such a selection scheme, it can happen that
same candidate is selected two times. Reproduction with itself does not interfere. This
means the selected test sequence is good and it carries its good genetic potential into
new generation.

Crossover. Swapping genetic material of the two parents allows useful genes (relevant
bits) to be combined in their o�spring (new test sequence). Most successful parents
reproduce more often. Beneficial properties of two parents combine. Crossover and
selection (fitness function) are the keys to genetic algorithm’s power. Here, one-point
vertical and one-point horizontal crossover were implemented.

Mutation. Random mutation provides background variation and occasionally intro-
duces beneficial genetic material [6]. Without the mutation, all the individuals in pop-
ulation will eventually be the same (because of the exchange of genetic material) and
there will be no progress. We change randomly some bits in test vectors. Bit position
corresponding to reset input is not altered during mutation. Using such knowledge based
technique helps to reduce search space.

Working algorithm. GA works in two stages: In the first stage, fault activation sequence
for the particular fault is generated: at first, short random test sequence is simulated
with fault simulator. If fault was not activated then test sequence length is automatically
doubled and fault simulation is repeated. This happens until fault is activated or test
sequence length limit is exceeded. In latter case fault is aborted and next fault from
list is taken. Activation process starts again with short sequence. Fault is considered

Distributed Approach for Genetic Test Generation 133

activated when we could set up the necessary logic value in the particular schematic
node. Important is that in such initialization sequence bit position corresponding to reset
signal is filled with zeros. Only in second vector there is ’one’ i.e. we describe behavior
of the reset signal based on a priori knowledge. User can supply reset index.

Second stage of GA begins if fault activation was successful. At first, activation se-
quence is distributed into all individuals - the beginning of all test sequences in our
population is filled with fault activation vectors (keeping reset 0). The rest of the se-
quences are filled with random patterns. Sequence length in this stage is twice as long
as final fault activation sequence was. It is possible to select also vector sequence length
dynamic increase - it takes into account if fault e�ect was not propagated onto primary
outputs, but still progress was made compared to previous iteration. In such cases se-
quence length is doubled. This can happen until fault is detected (propagated to primary
outputs) or until sequence length limit is reached. Such a technique has proved to be
e�ective in terms of fault coverage increase and shorter test sequences, but requires
longer runtimes.

After the population of test sequences is initialized, GA main cycle begins. At first,
all sequences are evaluated subsequently by simulation procedure again. For each se-
quence, numeric fitness value is calculated. Then candidates for crossover are selected.
Crossover type can be selected by user. New population will be filled only with newly
constructed sequences, however optionally it is possible to conserve the best individual
from the last generation- this is called elitist selection. Finally, before new cycle begins,
some mutation is introduced into newly engineered test sequences. Mutation proba-
bility is increased dynamically when several subsequent generations did not improve
fault propagation. When there was success finally, then mutation rate is lowered again
down to initial value. After new population of test sequences is ready, GA main cycle
is repeated. This will last until current fault is detected or number of predetermined (by
user) number of generations is exceeded. Thereafter new fault is considered if any is
left. More details of this test generator tool are given in [9].

6 Task Partitioning

In current solution, we exploited the fault parallelism- the fact that test generation can
be done independently for subsets of faults using the same circuit model and resulting
test vectors can be later assembled into final test set.

Two types of fault set partitioning were tried: adjacent fault selection where faults
were selected one after another in a sequence and random fault selection. Experiments
showed that the latter is able to ensure more equal execution times for subtasks and
therefore contributes to overall shorter parallel simulation time.

Task size, i.e. how many faults will fault set contain varies and depends on number
of users on the system and processors available.

7 Task Allocation

There could be possibly two goals while allocating tasks to di�erent computers: 1)
maximize the speed of particular test generation task execution for particular user 2)

134 E. Ivask, J. Raik, and R. Ubar

maximize system overall throughput from the perspective of all users (the level of the
service quality- nobody should starve).

Generally, task allocation can depend on several factors that may change in time:

� Number of application users
� Number of computers in resource pool
� Computer’s workload
� Speed of the communication links

In current solution we assume that communication delay is taken into account al-
ready with execution time for particular computer - i.e. communication link speed is
not addressed separately here.

Resource allocation goes as following: all the computing resource is divided between
particular application users. When number of users changes, computing resource is re-
allocated. Current users get less resource from pool and when number of users increases
and vice versa. In extreme case when there is only one user working in the system, then
his task is solved on all processing units. When number of users is equal to number of
processors then user task is solved on single computer. Task allocation starts with small
amount of data and will be increased by half after each iteration, assuring at the same
time that all users get equally attention. Task sizing stops when there is no free comput-
ing resource available. Initial small amount of data also helps us to estimate di�erent
computers computational power in the resource pool. The time it takes to complete the
initial subtasks is measured and speed coeÆcients are determined for each machine.
These coeÆcients can be applied while next time allocating subtasks- faster machines
get larger tasks respectively.

8 Experimental Results

In experiments we wanted to determine how well is the distributed solution with current
task partitioning scalable when number of processing units is increasing. We measured
fault simulation times as simulation is by far most ressource intensive task here. Experi-
ments were carried out on SUN UltraSPARC-IIIi processors running at 1280 MHz. For
each circuit equal number of test patterns was applied. In Table 1, the maximum time
of all subtask simulation times is presented. Two types of fault set partitioning were
tried: adjacent fault selection (subsequent) and random fault selection. The latter is able
to ensure more equal simulation times for subtasks and therefore contributes to overall
shorter parallel simulation time (up to 3 times faster in case of 8 processors for DIFFEQ
circuit in comparison with adjacent selection, see Table 1).

Adjacent fault selection performs badly, we can see subtle di�erences between sub-
task results in Table 2 maximum di�erence is 20 times for DIFFEQ circuit in case of 8
processors. In case of 4 processors di�erence was 14 times (not sown in table). Task is
not considered finished until all the subtasks are not completed.

Experiments show, that partitioning can be still improved, especially considering
more ‘equal’ fault sets. Max deviation in table 2 shows the di�erence in percentage
between the ideal (mean) time and maximum time (the time user has to actually wait)
for fault simulation.

Distributed Approach for Genetic Test Generation 135

Table 1. Simulation results for example circuits (1-8 processors)

circuit Subsequent fault selection (Time, s) Random fault selection (Time, s)
1 proc. 2 proc. 4 proc. 8 proc. 1 proc. 2 proc. 4 proc. 8 proc.

mult8x8 156 92 49 29 156 79 41 21
di�eq 212 138 123 118 212 125 75 40
risc 437 279 151 78 437 221 115 60

ellipf 652 346 181 109 652 329 166 84

Table 2. Simulation results for subtasks (8 processors)

circuit Subsequent fault selection Random fault selection
mult8x8 di�eq risc ellipf mult8x8 di�eq risc ellipf

Time for subtasks, s 29 118 55 109 20 33 54 79
21 7 76 73 19 22 55 83
20 6 75 80 20 37 56 82
17 12 78 86 21 40 60 84
21 6 48 84 19 22 56 83
23 5 36 79 21 25 55 83
20 22 41 81 19 24 51 81
10 53 35 67 21 27 54 81

Total time, s 161 229 444 659 160 230 441 656
Mean of total time, s 20 29 56 82 20 29 55 82

Max deviation, % 45 307 39 33 5 37 9 2

Overall simulation speedup gained with current random fault selection solution
varies. In case of 8 processors lowest speedup 5.3 times for DIFFEQ circuit was ob-
tained and highest speedup 7.8 times for ELLIPF circuit was obtained. The same pro-
portion remains also for other number of processors.

9 Conclusions

WEB-based distributed environment described here in the paper will allow to speed up
the genetic test generation significantly and allows to work over the internet thereby ex-
tending the lifecycle and value of this tool. Concept of remote tool usage was improved
to support adaptive parallel distributed computing, in order to overcome the diÆcult
problem that genetic algorithm based tools tend to run too long on a single computer to
obtain satisfactory test coverage in everyday tasks.

Current solution allows to run partitioned fault simulation task on several computing
stations in parallel. Adaptive task partitioning and task allocation was introduced to the
distributed system. Algorithm is adaptive to changes in number of computers available
and their workload in the resource pool, changes in number of users are also taken
account. Presented solution is flexible and e�ectively works across the Internet and
through the firewalls.

136 E. Ivask, J. Raik, and R. Ubar

Two types of fault set partitioning were tried in experiments: adjacent fault selection
(subsequent) and random fault selection. The latter is able to ensure more equal fault
distribution and therefore contributes to overall shorter execution time.

References

1. ITRS roadmap (2006), ��������	
������������
2. Schneider, A., et al.: Internet-based Collaborative Test Generation with MOSCITO. In: Proc.

DATE 2002, Paris, France, pp. 221–226 (2002)
3. Ivask, E., Raik, J., Ubar, R., Schneider, A.: WEB-Based Environment: Remote Use of Digital

Electronics Test Tools. In: Proc. IFIP 18th World Computer Congress: Virtual Enterprises and
Collaborative Networks, Toulouse, France. Kluwer Academic Publishers, Dordrecht (2004)

4. BOINC, �������
�����
���������	�
5. Teo, Y.M., Low, S.C., Tay, S.C., Gozali, J.P.: Distributed Geo-rectification of Satellite Images

using Grid Computing. In: Proc. International Parallel and Distributed Processing Symposium
IPDPS 2003 (2003)

6. Goldberg: Genetic algorithms. Addison-Wesley, USA (1991)
7. McGeer, P., McMillan, K., Saldanha, A., Sangiovanni-Vincetelli, A., Scaglia, P.: Fast discrete

function evaluation using decision diagrams. In: Proc. ICCAD 1995, pp. 402–407 (1995)
8. Minato, S.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic

Publishers, Dordrecht (1996)
9. Ivask, E., Raik, J., Ubar, R.: Fault Oriented Test Pattern Generation for Sequential Circuits

Using Genetic Algorithms. In: Proc. IEEE European Test Workshop, Cascais, Portugal, pp.
319–320 (2000)

http://public.itrs.net/
http://boinc.berkeley.edu/

A Planning-Based Approach for Enacting

World Wide Argument Web

Ioan Alfred Leţia1 and Adrian Groza1

Technical University of Cluj-Napoca
Department of Computer Science
Baritiu 28, RO-400391 Cluj-Napoca, Romania
{letia,adrian}@cs-gw.utcluj.ro

Summary. The goal of this research was to identify the suitable technologies for
enacting the World Wide Argument Web (WWAW) in the context of newly arisen
Pragmatic Web paradigm. The vision is to develop the WWAW based on the Argu-
ment Interchange Format (AIF) ontology. On the one hand, we propose concept maps
for presenting AIF-based arguments to the human agents. On the other hand, the ar-
gumentation schemes are formalized as planning operators in order to provide software
agents with the ability to build argumentation plans.

1 Introduction

We are in the age when we can imagine an infrastructure (World Wide Argument
Web - WWAW), native to the Internet, which enhances software agents with
the ability to debate, rise argumentation, or analyze ideas, in order to provide
an effective dissemination of the information to the more and more knowledge
driven, but lost, human agents. WWAW [7] is a large scale network of inter-
connected arguments created by human agents in a structured manner. Even if
the idea of integrating argumentation within WWW backs its roots in 1997 [8],
the current vision is to create an infrastructure for mass-collaborative editing of
structured arguments in the style of Semantic Wikipedia.

During the past years, the research on argumentation theory has focused
on identifying and formalizing the most adequate technical instrumentation for
modeling argumentation. Defeasible logic seems to be one answer to these at-
tempts. Recently, in the context of large scale argumentation, the interest has
been shifted towards frameworks where all different inference mechanisms are
able to co-exist under one umbrella. At the moment, the standard is given by
the Argument Interchange Format (AIF) ontology.

From a complementary perspective, the Pragmatic Web [10] aims to give con-
trol to the information consumers so that they can customize how to use informa-
tion. As stated in [9], the original syntactic web has given most of the control to
the information producers, whilst the semantic web separates the content from
presentation, without having received yet general acceptance. The Pragmatic
Web intends to provide information consumers with the technical instrumenta-
tion for specifying how to turn existing data into context relevant information

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 137–146, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

138 I.A. Leţia and A. Groza

[9]. Within this three level architecture, our proposal regards: i) for the prag-
matic web level to extend the WWAW with context; ii) at the semantic level,
to use the AIF ontology, and iii) at the syntactic level, to build a computational
model based on planning (PDDL).

2 WWAW as a Pragmatic Web Component

2.1 Extending AIF Ontology with Context

One desiderata is for the WWAW to employ a unified extendable argumentation
ontology [7]. At present, there exist two extensions of the AIF ontology: one in
which Argument Schemes (AS) are introduced [7], and one in which Protocol
Interaction Application Nodes are attached [6]. The first one enhances agents
with both reasoning capabilities: logic-based and scheme-based argumentation,
and it also focuses on representing the form of an argument. The second one
allows agents to represent dialectical part of arguments.

We introduce a new node type, namely context node (CO − node). We argue
the necessity of this node, due to the fact that context exists independent of
any object in the system. Thus, one context may be used to evaluate different
arguments, whilst the same argument can be evaluated in different contexts.
Arguments conveyed in a debate base their degree of acceptance on a complex
background of beliefs (or epistemic state) of the audience.

Definition 1. The extended-AIF ontology has five disjoints sets of nodes:

• An information node I − node ∈ NI represents passive information of an
argument such as: claim, premise, data, locution, etc.

• A scheme node S − node ∈ NS captures active information or domain-
independent patterns of reasoning. The schemes are split in three disjoint
sets, whose elements are: rule of inference schemes (RA − node), conflict
application node (CA − node), preference application node (PA − node).

• Forms of arguments F − node ∈ NF model argumentation schemes, by defin-
ing premises and conclusion descriptors, presumptions, and exceptions.

• Protocol interaction nodes (PIA−node) are used to constrain the dialog moves
within an argumentation process.

• Context application nodes (CO − nodes ∈ NCO) are used to capture the con-
text of the above node types in order to increase the re-usability of arguments
in WWAW.

RA−nodes are used to represent logical rules of inference such as modus ponens,
defeasible modus ponens, modus tollens. Specific pragmatic inference schemes
such as: entailment, implicature, presupposition, deixis can be encapsulated
within these nodes. Because of the separation of the argument structure, modeled
with I-nodes and Scheme-nodes, from contexts, more power to re-use arguments,
and flexibility in representation and acceptance is provided. CA − nodes repre-
sent declarative specifications of possible conflicts (such as negation). PA−nodes
allow to declaratively specify preferences among evaluated nodes (such as legis

A Planning-Based Approach for Enacting World Wide Argument Web 139

Argument from expert opinion � AS EO
A1 : E asserts that A is known to be true.

A2 : E is an expert in domain D .

C : A may (plausibly) be taken to be true.

CQ1 : Is A within D?

CQ2 : Is E a genuine expert in D?

CQ3 : Is A relevant to domain D?

CQ4 : Is A consistent with what other experts in D say?

CQ5 : Has the expert E a good reputation?

Fig. 1. Critical questions block the derivation of the conclusion

posterior, legis superior, or legis specialis). Allowing the application of CA−nodes
or PA − nodes over RA − nodes results in a very expressive formalism to model
different types of arguments (meta-argumentation for instance). PIA − node en-
codes the range of possible speech acts as reply to an I-node of type locution, and
their preconditions and effects [6]. In our approach, PIA nodes always occur in
a richly defined context. In WWAW, a mediator deploys PIA − nodes for dialog
representation that can be accessed by the participating agents that can take
two actions: i) to use this node, by providing I −nodes encapsulating the speech
acts specified into the PIA − node, or ii) to attack the node by instantiating a
scheme node having the PIA − node as conclusion. F − nodes focuses on the
form aspect of arguments by allowing introduction of ASs in the AIF ontology.
The next section addresses argumentation schemes related issues.

2.2 Argumentation Schemes as Protocol

From the practical viewpoint of enacting argumentation based applications,
there is a gap between logic-based agents and human reasoning. The model
of argumentation schemes aims to fill this gap by providing schemes capturing
stereotypical patterns of human reasoning. One example is the pattern Argument
from expert opinion, depicted in figure 1. Formally, an argumentation scheme is
composed of a set of premises Ai , a conclusion C , and a set of critical questions
CQi , aimed to defeat the derivation of the consequent.

One desiderata of the argumentation schemes is to simplify the argumentation
process. This is done by hiding secondary premises and encapsulating them as
critical questions. Based on the main premises A1 and A2, the consequent is
defeasibly inferred. During the process of gradually revealing information in
a dispute, when a counter-argument arises, the conclusion might be defeated.
Each argumentation line sustaining a claim provides the correspondent critical
questions that the opponent may use to challenge the pleading. When a critical
question is conveyed, the conclusion of the argumentation scheme to which the
respective CQ belongs is suspended, until the subject of the dispute is clarified.

140 I.A. Leţia and A. Groza

Whoever is responsible for this clarification, in other words who has the burden
of proof, depends on the type of the CQ .

Definition. An undercutting CQ attacks the link between the premises and the
conclusion. The burden of proof is shifted to the proponent of the argument.
A rebuttal CQ challenges an argument by instantiating an AS sustaining the
opposite conclusion. The burden of proof remains to the opponent.

An undercutting CQ cannot be used to draw any conclusion, its only use is
to prevent the derivation of some conclusions. Having the burden of proof, the
proponent of the claim has to provide more justifications in favor of that con-
clusion. A rebuttal CQ is used to derive the opposite claim. Having the burden
of proof, the opponent must instantiate a scheme sustaining the opposite con-
clusion. In current practice of law the burden of proof can be itself the subject
of the dispute.

2.3 Enacting AIF Ontology as Concept Maps

The simplification of the argumentation process is done in two steps. First,
one can start by splitting the premises in ordinary premises, presumptions and
exceptions [3]. In the next step, the presumptions are translated to undercutting
critical questions and the exceptions to rebuttal critical questions (see figure 2).
Here, the same Argument from expert opinion scheme is represented as a F−node
in the AIF ontology.

We use the concept maps to provide intuitive visualizations of argument net-
works in WWAW. Concept maps have their origin in the learning movement
called constructivism. Following the constructivist vision, in our approach the
argumentation agents actively construct knowledge based on the available in-
formation and the current context. Regarding technical instrumentation, one
possible candidate is Cmap servers (http://cmap.ihmc.us/). When an argument
map is saved to a CmapServer, a web page version is also stored. Thus, a WWW
browser is sufficient to browse the argumentation chains, opening the road to
enact the WWAW architecture.

The functionalities provided by the Cmap servers that we exploit are: i) De-
ploying arguments in WWAW - the system allows users to save their arguments
on the available public servers; ii) Searching Arguments - Cmaps tool provides
searching capabilities for identifying arguments within both public argument
maps and WWW; iii) Validating and fixing links - Due to the dynamics of WWW
resources, web pages having the role of supporting or attacking arguments might
be no longer available. The tool can check if any chain of arguments is available
at a certain time; iv) Public character of the arguments - some debates, such
as Online Dispute Resolution, need to maintain arguments as private. Even if
they are posted on the WWW, only the arbitrator might have the right to read
them; v) Providing evidence - An argument is stronger if evidence is provided
for its premises. The system enhances parties with the ability to point towards
relevant evidence in different formats.

A Planning-Based Approach for Enacting World Wide Argument Web 141

Fig. 2. F-node: Argument from expert opinion enriched with context, in CMaps

3 Formal Model of Argumentation Schemes

3.1 Interleaving Planning with Arguing

Consider the simple scenario in figure 3. The goal of the producer P is to obtain
20$ profit. It can achieve its input item from two suppliers: S1 at the price of
20$, or S2 at the price of 15$, but the consumer C promises to pay only 30$. In
a planning domain, this can be formalized as follows:

(:Init (sell S1 20$)(sell S2 15)(buy C 30$)) (:Goal (profit P 20$))

In a classical planning approach, no plan can be generated given the initial
facts. The idea is that agent P can slightly adjust the initial world state by

Fig. 3. Planning in supply chain

142 I.A. Leţia and A. Groza

negotiating with its business partners. Given the current situation, the agent P
can generate several plans to reach its objective:

p1: (sell S2 15$) (argue increase C from 30$ to 35$) (buy C 35$)
p2: (sell S1 20$) (argue increase C from 30$ to 40$) (buy C 40$)
p3: (argue decrease S2 from 15$ to 10$) (sell S2 10$)(buy C 30$)
p4: (argue decrease S1 from 20$ to 10$) (sell S1 10$)(buy C 30$)
p5: (argue decrease S2 from 15$ to 12$) (argue increase C from 30 to 32)

(sell S2 12$)(buy C 32$)

Here, the communicative act argue is used to start an argumentation process
with the client C , aiming to convince him to buy the item for 34$. Two issues
are of utmost importance here: The first one relates to how the exact outcome
of the action argue can be defined. In our view, a kind of contingency planning
can be used: the expected outcome is defeasible considered, but the effect will be
retracted in the light of new contradictory information. A re-planning phase will
take place and the agent should consider the next plan according to a preference
relation or persuation strategy. This leads to the second issue: when does the
agent pursue with the current communicative action in an attempt to persuade
its partner or when does it decide to change the plan? We advocate that a
machine learning approach can provide technical solutions to this issue.

Two threads of argumentation can run in parallel as in the plan p5. The
preference between plans can be encapsulated within PA − nodes , depending on
past experience or on the current context extracted from CO −nodes . In order to
be successful, the producer P has to provide arguments supporting the sentence
increase C from 30$ to 32$. The arguments are built employing the available
ASs , formalized as planning operators in the next section.

3.2 Implementation Issues

The classical solution for proving a sentence is to use an inference engine. We
approach the problem from a different perspective: each AS is implemented as an
action within a planning domain, whilst the sentence we want to prove represents
the goal of that planning problem. Using PDDL, the following advantages arise
by applying it to dispute resolution systems:

• It is highly expressive having different levels of richness of domain descrip-
tions: types, probabilities, time constraints.

• It is supported by a wide range of planning engines. Having the schemes in
PDDL, they may be delegated to the most suitable planner for the current
issue. If explanations of the outcome are required, the schemes’ chain will be
computed by an abductive planner. In case of anticipating a tough debate,
a defeasible planner may be adequate. When the legal complexity is high
and domain knowledge is available, a hierarchical task decomposition planner
would be more appropriate. In case of a typical debate, one can use case-based
planners, whilst when there are hard time constraints, a genetic programming
planner can be used.

A Planning-Based Approach for Enacting World Wide Argument Web 143

• The PIA − nodes can be encapsulated in preconditions and effects, while the
consequents are modeled with domain axioms and conditional effects, which
models the fact that the derivation of a conclusion may depend on the proof
standard required by the stage of the dispute.

• Several metrics can be attached to each argument in order to decide upon the
most suitable one for a specific context: (: maximise degree of support) or
(: minimize number of critical questions). For instance, in a formal dispute
one prefers arguments chains comprising preponderantly of legal argumen-
tation schemes, or in a long run business relationship one seeks argumenta-
tion plans composed by economical argumentation schemes. Soft constraints,
available in PDDL 3.0 [2], might be used, by applying them both to the claim
and the preconditions.

• The core ontology can be easily extended by using PDDL domains. Online
dispute resolution mediators are not necessarily lawyers or judges, or they can
manifest different levels of experience. As they get experience, the mediators
might extend and refine the basic ASs and CQs.

• Through WEB-PDDL or OWL2PDDL, the framework is compatible with
semantic web. Therefore, structured argumentation systems can benefit from
the existing translation tools or legal ontologies.

In our approach, the most suitable argumentation line for pleading is com-
puting as a planning problem (figure 4). The domain starts by defining types for
ASs, CQs, or the agents implied: suppliers, producers, consumers, and eventually
the experts involved. Then, the needed predicates are defined.

In the case of claiming the argumentation scheme from expert opinion, the
required parameters are: the agent ?agent who utters the scheme, the expert ?e
cited by the agent, the fact ?a on which the expert has given his or her expertise,
and the domain ?d to which the fact ?a belongs. The preconditions assure that

(define (domain SupplyChain) (:action claim_AS_EXPERT
(:requirements :typing :adl) :parameters (?agent agent ?e - expert

?d - domain ?a - i_node)
(:types f_node, i_node, CQ, domain,

agent - object :precondition (and (legal AS_EXPERT)
as - f_node (burdenofprof ?agent))
presumption, exception - CQ
cq1, cq2, cq3 - presumption :effect (when (and (expert ?e ?d)
cq4, cq5 - exception (claim ?e ?a))
supplier producer expert - agent) (and (plausibly ?a)

(legal cq1 belongs ?a ?d)
(:constants AS_EXPERT AS_COMMITMENT - as) (legal cq2 genuine ?e ?d)

(legal cq3 relevant ?a ?d)
(:predicates (expert ?e - expert ?d - domain) (legal cq4 consistent ?e)

(claim ?e - expert ?a - i_node) (legal cq5 reputation ?e))))
(belongs ?a - i_node ?d - domain)
(plausibly ?a - i_node)
(evidence ?a - i_node)
(legal ?as - f_node))

Fig. 4. Argument schemes as planning operators

144 I.A. Leţia and A. Groza

the scheme can be conveyed, in our case: i) it is legal to be uttered in the current
context and ii) the agent has the burden of proof. Thus, the mediation protocol is
encapsulated as PDDL preconditions. Then, the conditional preconditions model
the premises A1 and A2 of the AS from figure 1. The effect consists of asserting
the conclusion ?a sustained by the expert, but it also introduces the legality to
utter the associated CQs of the current scheme, where cq1, cq2, and cq3 are of
type presumption, whilst cq4 and cq5 of type exception.

4 Estimated Impact

The long term goals of this research address two issues: context-aware
argumentation and large scale argumentation. The objectives are related to:
i) augmenting human collaboration and argumentation by appropriate tech-
nologies; ii) extending the WWAW towards a Pragmatic Web infrastructure for
collaborative human-computer argument networks; iii) enhancing an individual’s
reasoning capabilities by increasing visibility, handle information overload, and
providing users with re-usable patterns of argumentation. The current trend of
forums, blogging, on-line debates is a positive social factor in the spirit of the
current research. The technology has already started to be seen as an impor-
tant part in the argumentation process [5], with an exciting impact on several
domains such as:

Law. Structured argumentation will enhance the practice of conducting on-line
consultation in domains such as Online Dispute Resolution. There are specific
domains adequate for on-line dispute resolution services: e-commerce where the
parties are not able to physically meet, or divorce disputes where parties, in
some situations, don’t want to directly interact. The impact of structured argu-
mentation applied to law is related to: i) increasing transparency and trust; ii)
enriching the ability to construct a judicial case; iii) costs and time saving due
to on-line support.

Medical. A lot of research centered on applications of argumentation in medicine
(such as risk assessment or treatment planning) has led to a comprehensive
view of argumentation as a form of evidential reasoning. Our approach based
on contextual-aware argumentation aims to identify methods of re-usable argu-
ments for medical decisions based on multi-criteria factors: i) helping patient to
understand him or her health state; ii) assisting medical staff to take decisions
in case of contradictory information; iii) helping medical staff to apply forms of
case based reasoning.

Education. Concept maps is a technique that allows the student to (1) see the
connections between ideas they already have, (2) connect new ideas to knowledge
that they already have, and (3) organize ideas in a logical but not rigid struc-
ture that allows future information or viewpoints to be included. In this context,
concept mapping could be an effective teaching method for promoting learning,

A Planning-Based Approach for Enacting World Wide Argument Web 145

but also a mean to evaluate students’ critical thinking. The method might be
applied both to distant and traditionally learning.

Deliberative democracy (e-Government, e-Administration). It involves dialog
with the public and it requires many feedbacks, which must present themselves
in a structured manner in order to be effectively processed. The system helps
when building multiple views of problems and resources among the following key
actors: government and institutions, planners and technical experts, community.
Services supporting structured argumentation impacts e-government in: i) in-
creasing transparency; ii) collecting relevant and motivated ideas from citizens;
iii) supporting multiple views representation. We anticipate the emergence of
clusters of related debates, where arguments about general ideas and ones about
specific issues interleave.

5 Related Work and Conclusions

Debatepedia1 is a new wiki encyclopedia of arguments and debate related mate-
rials, including domains such as critical thinking, education, deliberative democ-
racy. It provides a search-able repository of debates and the corresponding ar-
guments supporting them, but without any formalization. We address the issue
of large scale argumentation from a more structured viewpoint and in a more
context dependent approach, in the spirit of the Pragmatic Web.

Araucaria2 is a tool for analyzing arguments based on diagrammatic reason-
ing, which also deploys a repository of debates. It provides a user-customizable
set of schemes with which the human agent can analyze arguments and save them
in the Argument Markup Language format. We make use of the AIF ontology,
which represents the state of the art standard at the moment when formaliz-
ing arguments. We also provide a computational model based on planning for
building argument chains based on ASs.

Interleaving planning with arguing appears also in [1], but at a more abstract
level, based on defeasible logic. By using ASs, we aim to provide a framework
in which the interaction with the human agent is more flexible. From a different
perspective, defeasible logic has already been proved to be the most suitable
technical instrumentation for modeling argumentation. Quite the opposite, in
the context of large scale argumentation, the interest is to provide a framework
where all different inference mechanisms are able to co-exist under one umbrella,
given for the moment by the AIF ontology. By introducing context, our research
is closer to the idea of social dependent argumentation [4].

The ongoing work regards dealing with the context in PDDL, concerning the
following: the extension of the WWAW with context in the spirit of the prag-
matic web level ; usage of the AIF ontology for the semantic level, and building
a computational model of argumentation schemes based on planning and PDDL
at the syntactic level. In this paper, we bring concept maps and AIF ontology
1 http://wiki.idebate.org, launched on October 2007.
2 http://araucaria.computing.dundee.ac.uk/

146 I.A. Leţia and A. Groza

together with interesting advantages and challenges: concept maps are a semanti-
cally weak notation, which brings benefits in usability, but they have weaknesses
in interpretation and automated manipulation, while AIF ontology reverses this
balance.

Acknowledgment

We are grateful to the anonymous reviewers for useful comments. Part of this
work was supported by the grant TD7 CNCSIS 534 from the National Research
Council of the Romanian Ministry for Education and Research.

References

1. Garćıa, D.R., Garćıa, A.J., Simari, G.R.: Planning and defeasible reasoning. In:
Durfee, E.H., Yokoo, M., Huhns, M.N., Shehory, O. (eds.) AAMAS, pp. 856–858
(2007)

2. Gerevini, A., Long, D.: Plan constraints and preferences for PDDL3. Technical
report, University of Brescia, Italy (2005)

3. Gordon, T., Prakken, H., Walton, D.: The Carneades model of argument and
burden of proof. Artificial Intelligence 171(10-15), 875–896 (2007)

4. Kalofonos, D., Karunatillake, N., Jennings, N.R., Norman, T.J., Reed, C., Wells,
S.: Building agents that plan and argue in a social context. In: 1st International
Conference on Computational Models of Argument, pp. 15–26 (2006)

5. Katsch, E., Rifkin, J.: Online Dispute Resolution: Resolving Conflicts in Cy-
berspace. John Wiley, Chichester (2001)

6. Modgil, S., McGinnis, J.: Towards characterising argumentation based dialogue
in the argument interchange format. In: Rahwan, I., Parsons, S., Reed, C. (eds.)
ArgMAS 2007. LNCS (LNAI), vol. 4946, Springer, Heidelberg (2008)

7. Rahwan, I., Zablith, F., Reed, C.: Laying the foundations for a world wide argument
web. Artificial Intelligence 171(10-15), 897–921 (2007)

8. Reed, C.: Representing and applying knowledge for argumentation in a social con-
text. AI and Society 11(1-2), 138–154 (1997)

9. Repenning, A., Sullivan, J.: The pragmatic web: Agent-based multimodal web
interaction with no browser in sight. In: Rauterberg, M., Menozzi, M., Wesson, J.
(eds.) INTERACT. IOS Press, Amsterdam (2003)

10. Schoop, M., de Moor, A., Dietz, J.L.G.: The pragmatic web: a manifesto. Commun.
ACM 49(5), 75–76 (2006)

A Distributed Immune Algorithm for Solving
Optimization Problems

Mariusz Oszust1 and Marian Wysocki2

1 Rzeszow University of Technology, Department of Computer and Control Engineering
W. Pola 2, 35-959 Rzeszow, Poland
���������	�
	��������

2 Rzeszow University of Technology, Department of Computer and Control Engineering
W. Pola 2, 35-959 Rzeszow, Poland
����������	�
	��������

Summary. The mammal immune system is a distributed multiagent system. Its properties of dis-
tributive control and self organization have created interest in using immune principles to solve
complex engineering tasks such as decentralized robot control, pattern recognition, multimodal
and combinatorial optimization. In this paper a new immunity-based algorithm for solving opti-
mization problems is proposed. The algorithm di�ers from the representative immune algorithm
CLONALG. The agents participating in distributed problem solving enrich their knowledge about
the solution via communication with other agents. Moreover they are decomposed into groups of
specialists that can modify only some decision variables and�or use their own method of local
improvement of the solution. The empirical results confirming usability of the algorithm and its
advantage over CLONALG are presented. Obtained estimates of the global optima of multimodal
test functions and traveling salesperson problem (TSP) are closer to the theoretical solutions and
require fewer tentative computations.

1 Introduction

The mammal immune system contains a set of tissues and cells protecting the body
from foreign structures. The foreign structures that activate cells of the immune sys-
tem (the lymphocytes) are called antigens. The lymphocytes cooperate to defense the
organism against antigens. Part of them called B lymphocytes proliferate after the con-
tact with the antigen and di�erentiate themselves during the clonal selection process.
In the di�erentiation stage the B lymphocyte provides accelerated somatic mutations
(hypermutation) on its antibodies in order to acquire better binding (aÆnity) to the anti-
gen. After successful elimination of the antigen the best lymphocytes are maintained
as memory cells. According to Jerne’s idiotypic network (immune network) hypothesis
[5, 3] antibodies are stimulated not only by antigens but also by other antibodies. The
basic idea of this hypothesis is that the immune system is constructed of a lymphocyte
network. These lymphocytes interact with each other. In this way, the immune system
is a parallel distributed system.

There are many algorithms based on immune metaphors. The authors of [2] propose
an immune algorithm CLONALG based on the clonal selection principle. The algorithm
operates on a population of lymphocytes. The lymphocytes with best antibody-antigen

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 147–155, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

148 M. Oszust and M. Wysocki

aÆnity (best stimulated by the antigen) are cloned and the clones are hypermutated.
Next the best clones replace the worse ones. The process ends after predefined number
of generations. Wierzchon in [10, 11] proposed a modified clonal selection algorithm
extending CLONALG by preselection and crowding mechanisms.

Due to the similarities observed between the immune system and the multi-agent
system, (e.g.: distributed or decentralized structure, autonomous entities with individual
and global goals, ability of communication and coordination, adaptability, knowledge
with which they make intelligent decisions) various artificial immune systems are cre-
ated using agents. The paper [8] provides an agent system AISIMAM solving a mine
detection problem. The proposed model of the system defines two types of agents: anti-
gens and lymphocytes. The lymphocytes (robots) cooperate trying to detect and di�use
the antigens (mines). More complex example of a mutlitagent system is described in
[6]. Its main goal is to provide an integrated solution to control and coordinate dis-
tributed systems with large number of autonomous agents. The lymphocytes in this
system identify the antigen, use communication with other lymphocytes to generate
new capabilities, gain knowledge and make distributed decisions.

This paper presents an algorithm inspired by the concept of agents participating in
distributed problem solving. The proposed distributed immune algorithm (DIA) does
not directly use clonal selection but it rather resembles the Jerne’s idiotypic network.
The lymphocytes in DIA enrich their knowledge about the solution of the problem via
communication with other lymphocytes. Moreover, they are decomposed into groups of
specialists that can modify (mutate) only some decision variables and�or use their own
method of mutation. The paper is organized as follows. Section 2 presents the new algo-
rithm. Section 3 presents the results provided by the algorithm using a set of benchmark
functions and compares them with the results obtained by other immune algorithms. It
also contains discussion about the parameters of the algorithm and introduces the results
of implementation 100 cities TSP. Finally, section 4 concludes this paper and suggests
future research directions.

2 The New Algorithm

The aim of this algorithm is to solve optimization problems. Without loss of generality
we consider maximizing a scalar objective function J(x) with respect to the vector x of
decision variables from a feasible region X. Like in other immune algorithms, two types
of agents appear in the proposed method, i.e. the antigen and a set of lymphocytes. The
antigen represents unknown global solution of the problem. The lymphocytes, identi-
fied here with antibodies, represent candidates of the solution. They are decomposed
into groups of specialists. The specialist can modify (mutate) only some decision vari-
ables in x and�or it uses its own method of mutation, both defined at the initialization
stage. At the beginning of the algorithm the antigen sends its estimation of the solution
(the starting point) to a randomly chosen lymphocyte. This lymphocyte tries to improve
the obtained solution through a mutation (hypermutation) process to get higher value of
the objective function J. Next it sends the result to some set of randomly chosen lym-
phocytes. Each receiver repeats the activities of the sender and the process is continued.
Each transferred solution is provided with a token, which says how many transfers have

A Distributed Immune Algorithm for Solving Optimization Problems 149

been performed or, equivalently, how many agents have participated in building this so-
lution. When the token related to a solution reaches the given threshold, this solution is
sent to the antigen which determines the final result. The algorithm is presented below.
The SEQ (sequential) construct causes all of the following processes indented by ”-” to
execute in the listed order, the PAR (parallel) statement defines a set of processes which
execute concurrently (or in parallel).

Algorithm. DIA(N, Ns, n, T , M, S)

N - population size
Ns - number of specializations
n - number of lymphocytes a tentative solution is directly transferred to, n � N
(optionally, the number of transfers is randomly selected from the set 1, 2, ... , n in
each iteration)
T - threshold value of the token (it determines the number of main iterations)
M - number of iterations in the mutation process
S - number of solutions used by the antigen in determining the final estimation of
the global optimum, S � nT�1

Initialization

- Create a population of N lymphocytes. Each lymphocyte has its individual, ran-
domly generated initial solution xmem.

- Decompose the population into Ns sub-populations, each containing specialists of
the same type.

- Create the antigen with an initial solution (the starting point of the algorithm), pro-
vided with the token � 0.

PAR

- Antigen
SEQ

- send(starting point, token, value of the objective function, to a randomly
chosen lymphocyte)

- receive(S solutions with related values of the objective function, from lym-
phocytes), determine the best solution

- broadcast(end)
- Lymphocytes

PAR
- if received(end, from the antigen) then terminate the computation
- if received(solution, token, value of the objective function, from a lym-

phocyte or from the antigen) then place the triple [solution, token, value
of the objective function] into FIFO

- while FIFO not empty than do
SEQ

- take [solution, token, value of the objective function], token � token
�1

- xmut a � solution, perform the mutation process on the received solu-
tion:

150 M. Oszust and M. Wysocki

for m � 1 until M do
xmut old � xmut a, modify xmut old accordingly to the specializa-
tion of the lymphocyte, if the result is better, retain it as xmut a

end
- xmut b � xmem, perform the mutation process on xmem:

for m � 1 until M do
xmut old � xmut b, modify xmut old accordingly to the specializa-
tion of the lymphocyte, if the result is better retain it as xmut b

end
- set xmem � better of two solutions xmut a, xmut b

- if token � T then
send(xmem, token, value of the objective function, to n randomly cho-
sen lymphocytes)

else
send(xmem, value of the objective function, to the antigen).

The lymphocytes can be identified with distributed autonomous agents that try to coop-
eratively solve a decision problem. The antigen can be defined as the separate entity or
its function can be assigned to a lymphocyte. Looking for similarities of the proposed
algorithm with the clonal selection, we can consider the receivers as the clones of the
sender. The process of improving the solution by successive groups of lymphocytes
can be compared with the creation of the generations of lymphocytes. Furthermore,
we can speak about mutual stimulation, because the lymphocyte that sends its result
to other lymphocytes, influences (stimulates) them. The lymphocyte sends and stores
its best solution. To find this solution it uses the stored result from the previous itera-
tion. This is comparable with storage and cloning of the best lymphocytes, important
for the convergence of the algorithm based on clonal selection [9]. Furthermore, such a
procedure extends the search region and makes it possible to escape from local optima.
Mutation performed on xmem allows to explore a local area around it. Because mutations
with lower values of the objective function J are lost, the xmut b tends to go up the hill,
leading to a local optimum. Occasionally, the solution received from other lymphocyte
will be on the side of the hill where the climbing region (thus the mutation process
performed on xmut a) is more promising, which means that it will lead to the global so-
lution. The loops concerning xmut a and xmut b are independent and they do not have to
be performed sequentially. The parameter S of the algorithm requires a comment. If the
number n of transfers remains constant in each iteration the user can set S equal to or
less than nT�1. The second alternative may be useful when communication failures are
considered. Similar situation arises if the number of transfers is randomly selected from
the set 1� 2� ���� n in each iteration. Alternatively, one can modify the algorithm introduc-
ing a parameter representing the maximal allowed computation time. Independently,
one can allow to stop computations after the antigen receives satisfactory solution.

3 Evaluation of the Algorithm

In this chapter we show the results of experiments. First we compare the algorithm DIA
with CLONALG [2] and with the modified CLONALG proposed in [11], with respect

A Distributed Immune Algorithm for Solving Optimization Problems 151

to finding the global optima of some typical multimodal test functions. Next we discuss
the influence of the parameters of the DIA. At the end we apply the algorithm to the
100 European cities TSP. The experiments have been performed using an agent-based
system and the MadKit platform [4].

3.1 Finding Global Optima of Multimodal Functions

We consider three multimodal functions which turn out to be diÆcult for any search
algorithm because they have numerous peaks [10].

FA(x) � x1sin(4�x1) � x2sin(4�x2 � �) � 1� x � [�1� 2] (1)

FB(x) � An �
n�

i�1

(x2
i � Acos(2�xi))� A � 10� n � 20� x � [�5�12� 5�12] (2)

FC(x) � �

n�

i�1

x2
i

4000
� 1 �

n�

i�1

cos(
xi�

i
)� � � 0�1� n � 10� x � [�600� 600] (3)

Function FA of two variables has the unique global maximum equal to 4.254. Function
FB is the Rastrigin function of 20 variables, FC is the Grievank function of 10 variables.
Both functions take their unique global minima equal to zero at the origin of the system
of coordinates.

The mutation process in the DIA is performed only on decision variables determined
by the specialization of the lymphocyte. In our experiments the specialists in the i-th of
Ns groups modify the i-th set of p decision variables, where p � (number of decision
variables)�Ns. First, a decision variable is randomly selected from the set assigned to
the specialist. Then one of two mutation variants is selected with the probability 0.5.
In the first variant the result of the mutation is drawn from the domain [lb� ub] of the
decision variable, in the second variant the result is taken as min(ub� lb � (v � lb) � l)
where v is the actual value of the decision variable and l is randomly selected from [0,
2]. Other parameters used in the experiments are given in table 1. Table 2 compares the
results obtained with three algorithms: (i) DIA, (ii) CLONALG [2], and (iii) modified
CLONALG [11] denoted here as MCLONALG.

As we can see, the results obtained using the DIA outperform the remaining results.
They are closer to the theoretical solutions in the sense of the best value, as well as in
the sense of the mean and dispersion of the best results obtained in repeated executions

Table 1. Parameters of the DIA used in the experiments

Function N Ns n T M S

FA 4 2 2 4 40 8
FB 5 5 2 8 100 128
FC 5 5 2 10 100 512

152 M. Oszust and M. Wysocki

Table 2. Comparison of the results obtained with various immune algorithms

Function Algorithm Number Average The The The Standard
of number maximal minimal mean of deviation

executions of value of value of the best of the
generated the the values of best
tentative objective objective the values of
solutions function function objective the

function objective
function

FA DIA 30 1200 4.25379 3.98556 4.22618 0.05114
CLONALG 30 50100 4.13 3.209 3.711 0.281

FB DIA 30 51000 0.00226 1e-15 0.00018 0.00055
CLONALG 10 800100 35.0729 12.67206 22.72131 6.30522

MCLONALG 10 not not 0.00646 0.066525 not
reported reported reported

FC DIA 30 204600 0.00420 0.00009 0.00130 0.00120
CLONALG 10 800100 0.07838 0.01205 0.0408 0.01752

MCLONALG 10 not not 0.01667 0.020942 not
reported reported reported

of the algorithm. Moreover the DIA uses significantly fewer tentative solutions to find
the final result.

Influence of the parameters of the algorithm

In the DIA the best solution is determined by the antigen on the basis of the solutions
received from lymphocytes. These solutions arise as the e�ect of the process in which
many tentative solutions are generated. The number of solutions generated by the DIA
is equal to 2�M �nT�1. So it is proportional to the number of mutations executed by the
lymphocyte during the main iteration and to the (T �1)-th power of the number of lym-
phocytes a tentative result is transferred to. Increasing the values of the parameters M,
n, T , we expect that the final solution will be closer to the global optimum. Exemplary
relations concerning the function FC are shown in fig. 1.

Fig. 2. illustrates how the performance of the algorithm is influenced by the
parameter S .

Fig. 1. The minimal value of the objective function FC (averaged on the base of 10 executions of
the algorithm) vs.: a) n, for M � 100, T � 9, b) T , for M � 100, n � 2, c) M, for n � 2, T � 9

A Distributed Immune Algorithm for Solving Optimization Problems 153

Fig. 2. The minimal value of the objective function FC (averaged on the base of 30 executions of
the algorithm) vs. the number S of successive solutions received by the antigen and used by it in
determining the actual estimation of the optimum (n � 2, M � 100, T � 10)

3.2 TSP

In this known NP-hard problem a collection of cities resides on a plane, and we have
to find the shortest tour starting in some city, visiting every other city exactly once, and
returning to the starting point. In our experiments the tour of the salesperson is repre-
sented as the integer valued vector of numbers representing the cities. The population
of the lymphocytes is divided into groups of specialists. All specialists in the group use
the same method of mutation. The following known variants have been used [1, 7]: (1)
switching - randomly selecting two cities and switching them in the tour, (2) translation
- removing a section of the tour and then replacing it in between two randomly selected
consecutive cities, (3) inversion - removing a section of the tour and then replacing it
with the same cities running in the opposite order, (4) combination of the methods (2)
and (3).

The DIA algorithm has been tested on the 100 cities TSP [1]. The following values
of the parameters have been used: N � 15, Ns � 5 (each group with 3 specialists,
translation of single city is considered as the fifth specialization), n � randomly selected
from the set 1, 2, ... , 15 in each iteration, T � 16. The length of the shortest route is
equal to 21134 km. After 15 executions of the DIA the following results have been
obtained: the best result � 21224 km (i.e. 0.43% worse than the global optimum), the
mean and the standard deviation of the best solutions from each execution: 21691 km
(i.e. 2.64% worse than the global optimum), and 398 km, respectively. Fig. 3. illustrates
how the performance of the algorithm is influenced by the parameter S .

The same problem has been solved with the slightly modified CLONALG. As op-
posed to the original version of CLONALG only the best lymphocytes are cloned. The
lymphocytes representing tours that are more than � percent longer than the best solu-
tion in the population are removed. The number of clones of the lymphocyte remains
constant, but the population size changes from generation to generation, because it de-
pends on the numbers of the best and of the worst lymphocytes in the previous gener-
ation. All lymphocytes use identical method of mutation, determined at the start of the
algorithm (no specialization). The tests have been performed with the following param-
eters: population size in the first generation � 2, number of generations � 2000, number

154 M. Oszust and M. Wysocki

Fig. 3. The minimal length of the tour (averaged on the base of 15 executions of the algorithm)
vs. the number S of successive solutions received by the antigen and used by it in determining
the actual estimation of the optimum

of clones produced by the lymphocyte � 220, � � 0�2. The computations have been
executed 10 times for each mutation method. The best results are as follows: (1) for
translation 22249 (the best result in the experiment, 5.27% worse than the global opti-
mum), (2) for combination of inversion and translation 22424, (3) for inversion 22924,
(4) for switching 28976, (5) the mean of the 10 results 23244 (obtained for translation,
10% worse than the global optimum) - with the standard deviation 796.

The results obtained with the DIA are significantly better although this algorithm
generated fewer tentative solutions. The DIA uses specialization. So the result obtained
by a lymphocyte is improved by agents with other specializations. Moreover, in CLON-
ALG the best solution is not improved until the next generation. In the DIA it is directly
sent for improvement to other lymphocytes. The additional important factor influencing
the quality of the final result is that the best tentative solution generated by the lympho-
cyte is stored in its memory. After receiving a solution from other agent the lymphocyte
tries to improve two solutions, i.e. the stored and the received. The better of two solu-
tions is retained in the local memory and transferred to other lymphocytes.

4 Conclusion and Further Work

A new immune-based algorithm DIA for solving optimization problems has been pro-
posed. The algorithm has been compared with two known immune-based algorithms
CLONALG [2] and modified CLONALG [11]. The results concerning optimization
of the typical multimodal test functions as well as the 100 cities TSP outperform the
related solutions obtained with the remaining methods. They are closer to the exact so-
lutions in the sense of the best value, as well as in the sense of the mean and dispersion
of the best results obtained in repeated executions of the algorithm. Moreover, these
results required fewer tentative solutions.

The DIA uses specialization. So the result obtained by a lymphocyte is improved
by agents with other specializations. Moreover, in CLONALG the best solution is not
improved until the following next generation. In the DIA it is directly sent for improve-
ment to other lymphocytes. The additional important factor influencing the quality of

A Distributed Immune Algorithm for Solving Optimization Problems 155

the result is that the lymphocyte retains its tentative best solution. After receiving new
solution, it tries to improve both results. Then the better solution is retained in the lo-
cal memory and transferred to other lymphocytes. This procedure helps to escape from
local optima.

The algorithm is faster than the remaining two algorithms, even if comparable num-
bers of tentative solutions are generated. This is because the lymphocytes in the DIA
are focused on local improvement of its solutions and thus the elements of the popula-
tion are not ranked. The lymphocytes in the DIA are not replaced with new individuals.
They enrich their knowledge by the information from other lymphocytes. Thus they
can generate good solutions based on communication with other lymphocytes, without
direct contact with the antigen. This resembles the idiotypic network of Jerne [5].

The lymphocytes in the DIA can be identified with distributed autonomous agents
(e.g. robots, controllers) that cooperatively solve a decision problem in a decentralized
manner. In further research we will use the algorithm for energy management via nego-
tiation among networked intelligent appliances.

References

1. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. John Willey & Sons
(1989)

2. De Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal Selection
Principle. IEEE Transactions on Evolutionary Computation 3, 239–251 (2002)

3. Carter, J.H.: The Immune System as a Model for Pattern Recognition and Classification.
Journal of the American Medical Informatics Association 1, 28–41 (2000)

4. Gutknecht, O., Ferber, J., Michel, F.: The MadKit Agent Platform Architecture. Rapport De
Recherche, LIRM, Universite Montpellier, France (2000)

5. Jerne, N.K.: The Immune System. Scientific American 229(1), 52–60 (1973)
6. Lau, H.Y.K., Wong, V.W.K.: An Immunity-Based Distributed Multiagent-Control Frame-

work. IEEE Transactions on Systems, Man, and Cybernetics - part A: Systems and Hu-
mans 1, 91–108 (2006)

7. Michalewicz, Z.: Genetic Algorithms � Data Structures � Evolutionary Programs. Springer,
Heidelberg (1996)

8. Sathyanath, S., Sahin, F.: AISIMAM An Artificial Immune System Based Intelligent Multi
Agent Model and its Application to a Mine Detection Problem. In: Proc. ICARIS (2002)

9. Villalobos-Arias, M., Coello Cello, C.A., Hernandez Lerma, O.: Convergence Analysis of
Multiobjective Artificial Immune Algorithm. In: Proc. ICARIS, pp. 226–235 (2004)

10. Wierzchon, S.T.: Artificial Immune Systems. Theory and Applications (in Polish). AOW
EXIT, Warszawa (2001)

11. Wierzchon, S.T.: Multimodal optimization with artificial immune system. In: Klopotek,
M.A., Michalewicz, Z., Wierzchon, S.T. (eds.) Intelligent Information Systems. Physica-
Verlag (2001)

Evaluation of Selective Distributed Discovery

within Distributed Bio-active Agent Community

Ognen Paunovski1, George Eleftherakis2, Konstantinos Dimopoulos2,
and Tony Cowling3

1 South East European Research Centre (SEERC), 17, Mitropoleos str., 54624
Thessaloniki, Greece
ogpaunovski@seerc.org

2 City College, 13, Tsimiski str., 54624 Thessaloniki, Greece
{eleftherakis,k.dimopoulos}@city.academic.gr

3 University of Sheffield, Regent Court, 211 Portobello Str., Sheffield, S1 4DP. UK
a.cowling@dcs.shef.ac.uk

Summary. The increased demand and complexity of the services operating within
open distributed environments has emphasized the need for more robust, adaptive and
self-organizing solutions. To address these problems some agent oriented approaches,
like the Bio-Networking architecture, have adopted ideas from large scale biological
collectives as a solution. However the introduction of biological properties, like birth
and death events, generates an extremely dynamic system, making it difficult to main-
tain the overall connectivity of the agent network and discovery of resources within
the system. Towards this end, in this paper the performance of a selective discovery
mechanism is evaluated through multi-agent simulation studies. The primary focus of
this study is on the impacts which death and (sexual/asexual) reproduction events
have on the effectiveness of the discovery process in different overlay networks.

1 Introduction

Today, services operating in distributed environments are faced with growing
number of users demanding more advanced, more efficient and secure services.
In addition, developers aim to design more robust, decentralized, self-optimizing
applications which will require minimal configuration and management. All these
requirements impose significant constraints on the services, which are becoming
complex, difficult to design, develop and maintain.

In recent years considerable effort has been put on the advancements of agent
oriented approaches which show promise for dealing with these problems. The
basic idea of multi-agent systems is to deploy autonomous entities with limited
knowledge and capabilities which will cooperate in order to achieve a common
goal [1]. In this context some of the approaches, like the Bio-Networking archi-
tecture [5], incorporate ideas from biology in order to overcome various obsta-
cles as well as move towards self-organizing adaptive behaviour. The rationale
for introducing ideas from biology is based on the notion that large scale bi-
ological collectives, as they exist in nature, are able to produce a variety of

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 157–166, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

158 O. Paunovski et al.

complex behaviours like: self-organization, adaptation, scalability, availability
etc. These properties can be very useful for solving problems common in dis-
tributed environments.

Nevertheless incorporating biological properties, especially death and repro-
duction, makes the entire multi-agent system extremely dynamic. Even a small
fluctuation in the agent population can render the agent communication and
interaction to be inefficient or impossible. In order to resolve this problem there
is a need for intelligent discovery mechanisms, which will facilitate the location
of agents and other resources within a distributed environment. The discovery
algorithms used are heavily influenced by the solutions proposed in the area of
peer-to-peer systems (see [3] for more details). However up to now there are no
studies which aim to evaluate how bio-related properties like death and repro-
duction can influence the performance of the discovery mechanism within the
agent population.

This paper presents the results of an investigation aimed to evaluate the
impacts of death and (sexual/asexual) reproduction events on the performance
of a discovery mechanism relying on selective query forwarding. The evaluation
is done through an agent oriented simulation model based on the Bio-Networking
architecture [5]. The work presented in this paper is a continuation of the work
presented in [3] which concentrated on the selective distributed discovery in a
bio-static environment.

2 Bio-Networking and Distributed Discovery

Bio-networking [5] is an attempt to create a framework for the development
of bio-inspired agent oriented services operating within open, decentralized en-
vironments. It is both a paradigm as well as a middleware composed out of
two major components, the Bionet platform and Cyber Entities (CEs) [5]. The
Bionet platform corresponds to an adaptation of the biological environment,
where the main application components called Cyber Entities operate. A Cyber
Entity (CE) is an autonomous mobile agent, able to perform functions which are
part of the specific Bio-Networking application design. In this context the major
distinction between a CE and a mobile agent is the introduction of bio-properties
(birth,death, natural selection) as part of the CE’s life cycle.

Since each CE is completely autonomous there is no central entity or repos-
itory that manages the CE population. Consequently a vital element in the
operation of the entire application is the ability of the entities to interact and
communicate between each other. One of the approaches, proposed by Moore
and Suda [2], for facilitating discovery in Bio-networking is based on selective
query forwarding. The discovery is performed in a relationship overlay network
formed by links between the individual CEs. During the discovery process, each
CE autonomously performs the query processing and query routing procedure.
When a query is received by an entity, it decides where to forward the query
in the case it cannot satisfy it. However since query forwarding consumes band-
width as well as processing power, the aim is to devise a strategy which will guide

Evaluation of Selective Distributed Discovery 159

the forwarding process by indicating which entities are more likely to satisfy the
query. One of the strategies elaborated in [2] is based on the use of keywords.
Each entity is assigned keywords which describe its capabilities and knowledge.
Consequently the query contains the keywords required by an entity to complete
its task.

3 Simulation Model

The simulation model developed for the particular study is based on the Bio-
Networking Architecture [5, 4] and partially on the discovery algorithm proposed
by Moore and Suda [2]. The model has two main layers, the lower layer is com-
posed out of a set of nodes and communication links between them. It abstracts
a real network infrastructure with servers and network connections. The upper
layer is composed of agent like entities (resembling CEs) and an overlay rela-
tionship network formed with the links between the entities. The data and the
functionality of a particular entity are described by a specific set of keywords.
Using these keywords other entities (agents or processes) are able to determine
whether a specific agent can provide the required service or information. Fur-
thermore the keywords are used to define a Keyword Similarity Value (KSV),
which is the ratio of common keywords between two agents or an agent and a
discovery query.

3.1 Types of Relationships in the Overlay Network

Each agent in the simulation has a limited number of relationships with other
agents, forming an overlay network in which discovery is performed. A relation-
ship between a pair of entities can be classified in two ways: firstly as simplex
(a one-way relationship) or duplex (a two-way relationship), and secondly as
evaluated or random relationships.

In a simplex relationship only one of the two entities can initiate communica-
tion (A knows B but B does not know A). In a duplex relationship either entity
can initiate the communication (A knows B and B knows A). In an evaluated
relationship, meta-data (KSV) about the relationship are kept. On the other
hand in a random relationship no meta-data are kept. One entity can contain
both evaluated as well as random relationships at the same time, while having
either simplex or duplex relationships.

Due to the dynamic nature of the entity population, a certain relationship
could be rendered invalid at a particular point of operation. This raises the
need for relationship update, which is performed in two steps. First, discard the
invalid relationship and second, acquire a new relationship (for details see [3]).
The relationship update process is designed to acquire relationships with high
KSV, while discarding the ones with low KSV. This process leads to organization
of the relationship graph by grouping the agents with high number of similar
keywords closer together, thus forming similarity clusters. Random relationships
ensure the connectivity between the clusters.

160 O. Paunovski et al.

3.2 Distributed Discovery in the Simulation Model

The discovery strategy is a query forwarding algorithm that decides to which
entity the query will be forwarded next. The distributed discovery in the simula-
tion model is based on “selective” query forwarding. In this scheme, the decision
about where to forward the query depends on the KSV meta-data about the rela-
tionship partners and the keywords contained in the query. In the case when the
keyword similarity between the entity and the query is high enough, the query
is forwarded to the highest KSV partner. Otherwise the query is forwarded to a
random or low KSV relationship. Each entity knows which relationship partner
has sent the query and to which partners it has forwarded the query. In the
case where an entity has forwarded the query to all of its relationship partners
without successful match, the entity will return the query to the relationship
partner it received it from, signalling that there are no more paths to explore.

The discovery process can end either with successful query match or with a
failure. There are two ways in which the discovery can fail. First, by exploring
all possible paths and second, by reaching the search limit. The search limit acts
as a time-to-live (TTL) value which is decreased by one each time the query is
processed by an entity. Using the described discovery strategy the relationship
network is explored in a depth first search manner. At a particular time instance
(time in the simulation is discrete) only one entity performs query matching and
forwarding.

4 Simulation Conditions and Evaluation

The main aim of the simulation study was to evaluate the performance of the
selective discovery strategy in simplex and duplex relationship networks during
death and reproduction events in an agent population. This aim was the main
factor which influenced the development of the simulation methodology and
evaluation criteria.

The simulation model and the simulation environment were implemented as
a standalone Java application. In order to address the study objectives a to-
tal of 12 different simulation scenarios were created. Each scenario started with
different initial conditions varying in: relationship type (simplex and duplex),
death/birth probability (0.01, 0.05 and 0.2) or a reproduction strategy (sexual,
asexual). Since birth and death events are mutually dependent the same proba-
bility value was used for both events in a particular simulation run, thus main-
taining constant search space. To address continuity of operation, one hundred
consecutive simulation runs were executed for each simulation scenario, each for
a different query with different initial entity. A population of 1500 entities was
used in all scenarios. In order to ensure statistically sound results every scenario
was repeated multiple times.

Each query contained eight keywords, whereas each entity contained fifteen
keywords that described its data and functions. The query was designed to be
successfully matched by at least one entity in the initial population. Each agent

Evaluation of Selective Distributed Discovery 161

contained 10 relationships to other entities, 8 of which were evaluated while 2
were random.

In order to evaluate the performance of the distributed discovery mechanism, a
number of parameters were used. These parameters are categorized as: discovery
success, search cycles measurements and bio-life telemetry.

The discovery success gives an indication of successful/failed query matches
in respect to all simulation runs executed with the same setup specification. It
contains data indicating the success rate value as well as the failure rate value
due to exploration of all paths or reaching the search limit.

The search cycles give an indication of the average cycles required to perform
the discovery in a particular simulation run. One cycle is the time required for
any agent to receive, perform query matching and forward the query to one other
agent. Two measurements were used in this category. The total number of cycles
corresponding to the total time required to perform the search. A unique search
cycle which denotes the number of cycles that a query has been processed by an
entity for the first time. The unique over total ratio expresses the useful search
cycles in a single simulation run.

The bio-life telemetry contains bio-data gathered during the simulation.
These are kept as measurements about the number of death and reproduction
events which have occurred in a particular simulation run. In addition the bio-
data also contain the population uniformity. The uniformity is an indication
of the average number of entities with identical capabilities (keywords) in the
population.

5 Results, Analysis and Discussion

A number of experiments have been performed in order to investigate how asex-
ual/sexual reproduction and death events in the agent population affect the
discovery performance in simplex and duplex relationships networks. To this
end the analysis of the findings is presented and according to the reproduction
strategy used.

5.1 Asexual Reproduction in Duplex and Simplex Networks

The asexual reproduction strategy implies creation of a child entity which is
basically an identical copy of its parent. The child inherits all the keywords
possessed by its parent. As the child entity is formed, a relationship between
the child and the parent is introduced. As it can be seen from figure 1(A), the
discovery success rates decrease as the probability of birth and death events
increase. The success rate decrease is much higher in a simplex compared to a
duplex network. For example the average decrease in simplex networks goes from
92% for birth/death probability of 0.01, to 7% when the probability is 0.2. The
major reason for the decrease is that all possible paths have been explored (91%
for p=0.2). Furthermore, data in figure 1(B) show that when the birth and death
probability is 0.01, the number of average total search cycles is much higher than

162 O. Paunovski et al.

1%

1%

0.01 0.05 0.2
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 3%
2% 8%

98% 98%

 prob.
0.01 0.05 0.2

 prob. prob. prob. prob. prob.

All paths Explored Limit Reached Success rate

Simpex NetworkDuplex Network

71%

0% 62% 91%

8% 9% 2%

92% 29% 7%

991
896 902

426
289

124

1028
1191

341
438

160
46

 Search Cycles

0

500

1000

1500

prob. 0.01 prob. 0.05

Duplex Total Duplex Unique
Simplex Total Simplex Unique

prob. 0.2

A
B

Fig. 1. A(left): Discovery success rates for asexual reproduction with different proba-
bilities for birth/death events. B(right): Average total/unique search cycles for different
probabilities for birth/death events during asexual reproduction.

in case of the 0.2 (1028 for p=0.01 to 341 for p=0.2). This implies fragmentation
and clustering of the overlay relationship network. Figure 2 presents a view of the
simplex network degradation process in a typical simulation scenario. During the
initial runs, the fragmentation causes formation of big clusters. The discovery
process needs many cycles to explore a cluster. In some cases, where the target
entity is in a different cluster, the discovery reaches the search limit. However in
later discovery runs, the network degradation process divides the clusters even
further, creating smaller and smaller clusters. This leads to a situation where
only a few discovery cycles are needed to explore all possible paths within the
cluster.

The main reason for the fragmentation of the network in the case of simplex
relationships is the inability to update invalid relationships. The crucial point
in the relationship update is the detection of the invalid (dead) relationship
partners, which in simplex networks can only be performed when the entity
tries to contact its relationship partner. However since entities communicate
only during the discovery process (spooling consumes too much bandwidth), the
detection of invalid relationships cannot cope with the increase of the birth/death
events. Thus entities perceive invalid relationships as valid.

On the other hand in duplex networks the detection of invalid relationships is
handled more smoothly. Before an entity dies it informs its relationship partners
(through the return relationship) that it is about to die, so the relationship
partners can immediately render this relationship as invalid. Afterword they can
replace the invalid relationship with a valid one. This is the main reason why
the success rate in duplex networks is much higher (98% for p=0.01 and 71% for

Evaluation of Selective Distributed Discovery 163

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
Consecutive simulation runs

To
ta

l s
ea

rc
h

cy
cl

es

birth/death prob. 0.01 birth/death prob. 0.05 birth/death prob. 0.2

Fig. 2. Discovery performance during asexual reproduction (100 consecutive runs)

p=0.2). Nevertheless the success rate still decreases as the number of birth/death
events increases due to fragmentation of the network.

The main reason for fragmentation in a duplex network is the formation of
uniform fragments (clusters). A uniform cluster is an environment with large
number of entities belonging to one (or very few) agent families with no outside
relationships. The formation of family clusters occurs because a family with more
members has greater chances of producing offspring. Additionally the child and
parent introduce a relationship between them which has the highest possible
KSV (having identical keywords), making the relationship permanent. Moreover,
the relationship update gives preference to relationships with other members of
the family over other entities, since family members have the highest KSV.

5.2 Sexual Reproduction in Duplex and Simplex Networks

Unlike asexual reproduction, in the case of sexual reproduction two entities play
the role of the parents. The child entity is a result of a random combination of
the keywords and relationships from both parents. In addition, during sexual
reproduction there is a possibility of mutation (variation in the inherited key-
words). This increases the probability that a newborn entity will be a unique
instance in the entire population.

Figure 3(A) presents the success rates for both simplex and duplex networks
during sexual reproduction. The general trend is that the success rate decreases
as the birth and death probability increases. However if we compare the success
in the sexual and asexual reproduction strategies (fig. 4(B)), then we clearly ob-
serve that the success rate decrease is much lower in the case of sexual reproduc-
tion. For example in the simplex network case when the birth/death probability
is 0.05, the success rate is 29% during asexual reproduction. In comparison, the
success rate for the same probability during sexual reproduction is 64%. An
examination of figures 3(B) and 4(A) reveals the reason for this trend. In the
case of birth/death probability of 0.05 we can observe in figure 3(B) that the

164 O. Paunovski et al.

0% 24% 91%
6% 12% 3%

94% 64% 6%

0.01 0.05 0.2
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 0% 3%
2% 2% 8%

98% 98% 89%

 prob.
0.01 0.05 0.2

 prob. prob. prob. prob. prob.

All paths Explored Limit Reached Success rate

Simpex NetworkDuplex Network

 Search Cycles

1081

681 593
452

245 143

1091

1827

938

454
213

52
0

500

1000

1500

2000

prob. 0.01 prob. 0.05
Duplex Total Duplex Unique
Simplex Total Simplex Unique

prob. 0.2

A
B

Fig. 3. A(left): Discovery success rates during sexual reproduction with different
birth/death event probabilities. B(right): Average unique/total search cycles ratio dur-
ing sexual reproduction with different birth/death event probabilities.

A
B

Comparison of uniformity

1 1.02

6.18

1.07 1 1.08 1.67

0

2

4

6

8

10

Duplex Simplex Duplex Simplex

Asexual Sexual

 prob. 0.01 prob. 0.05 prob. 0.2

1.51

3.87

1.86

5.42

7.2

simplex

Relationship TypeReproduction
Probabilty

asexual

prob. 0.01 92% 94% 98% 98%

29% 64% 98% 98%

7% 6% 71% 89%

prob. 0.05

prob. 0.2

sexual asexual sexual
duplex

Fig. 4. A(left): Comparison of entity uniformity during sexual and asexual reproduc-
tion. B(right):Comparison of success rates for asexual and sexual reproduction.

unique/total cycles ratio is very high, while figure 4(A) shows that the uniformity
of the population is very low. This means that the network is not completely frag-
mented and there are still a few relationships which connect the fragments. The
discovery process manages to find an exit from the cluster after it has exhausted
the high KSV relationships within the cluster. This is further supported by the
simulation logs which indicated that usually an exit relationship has low KSV.
These relationships exist because the sexual reproduction introduces diversity in
the offspring’s relationships, which in turn results in slower degradation of the
network.

Evaluation of Selective Distributed Discovery 165

The case of sexual reproduction with probability 0.2 for simplex network is a
special case (see fig. 4(B)). In this case there is no visible improvement in the
success rate (6%) of sexual over asexual reproduction strategy. This is because
in both situations the network is completely fragmented. Thus the success rate is
strongly influenced by the initial point (starting entity) of the discovery process.
If the query is initiated in the “correct” cluster then the query is matched in
very few search cycles. However the significantly higher number of search cycles
and better total/unique search cycle ratio suggest that fragments are relatively
bigger during sexual reproduction.

Distributed discovery in duplex networks during sexual reproduction shows
significant improvement compared to asexual reproduction for probability of
0.2 (89% compared to 71%). This is attributed to the fact that during sexual
reproduction the population uniformity is much lower (figure 4(A)). Thus while
the entities maintain relationships with their parents and children, the KSV is
not as high as during asexual reproduction and therefore these relationships are
not permanent. This slows down the fragmentation of the network and blurs the
cluster boundaries.

6 Conclusions and Future Work

This paper is a continuation of the work presented in [3]. The paper examines the
performance of a selective distributed discovery algorithm in a bio-active agent
population through a multi-agent simulation model based on the Bio-Networking
architecture. The focus of the study is on discovery performance in simplex and
duplex relationships networks when there are death and (sexual/asexual) repro-
duction events in the agent population. In addition the paper has elaborated the
impacts of sexual and asexual reproduction strategies on the fragmentation of
the overlay relationship graph.

The major finding was that the degradation level in a duplex network was
significantly lower (compared to simplex network) even under extreme popula-
tion flux. This is due to the improved detection of invalid relationships which
ensured better connectivity in the overlay network. Another important finding
was that asexual reproduction by reducing the population diversity created uni-
form clusters of identical entities. This resulted in a reduction of the success rate
and unique/total search cycles ratio. On the other hand the sexual reproduction
increased the diversity, allowing better discovery performance by decreasing the
success rate drop for high population flux.

This study can be of benefit to the design of intelligent search and retrieval
processes for various content delivery systems, peer-to-peer systems, web ser-
vices, and other systems operating within distributed environment. Furthermore
the findings presented may prove vary valuable in the case of distributed web
services where it is useful to incorporate death and reproduction as means of
self-optimization based on the user demand for particular web service.

166 O. Paunovski et al.

Therefore future work will aim to explore the selective discovery performance
in different user request/demand scenarios. Furthermore it would be interesting
to examine how migration and various migration heuristics can impact the dis-
covery performance.

References

1. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and de-
velopment. Journal of Autonomous Agents and Multi-Agent Systems 1(1), 7–38
(1998)

2. Moore, M., Suda, T.: A decentralized and self-organizing discovery mechanism
(2001)

3. Paunovski, O., Dimopoulos, K., Eleftherakis, G.: Impacts of the relationship overlay
network on the distributed discovery performance in a decentralized agent commu-
nity. In: Proceedings of the 3rd Balkan Conference in Informatics (BCI 2007), Sofia,
Bulgaria, pp. 277–288 (2007)

4. Suzuki, J., Suda, T.: An overview of the bio-networking architecture. In: The Super
Distributed Objects Forum, number sdo/02-10-05. Object Management Group TC
meeting at Helsinki (October 2002)

5. Wang, M., Suda, T.: The bio-networking architecture: A biologically inspired ap-
proach to the design of scalable, adaptive, and survivable/available network applica-
tions. In: Proceedings of the 1st IEEE Symposium on Applications and the Internet
(SAINT) (2001)

VPOET: Using a Distributed Collaborative

Platform for Semantic Web Applications�

Mariano Rico1, David Camacho1, and Óscar Corcho2

1 Escuela Politécnica Superior, UAM
{Mariano.Rico,David.Camacho}@uam.es

2 Ontology Engineering Group, Departamento de Inteligencia Artificial, UPM
ocorcho@fi.upm.es

Summary. This paper describes a distributed collaborative wiki-based platform that
has been designed to facilitate the development of Semantic Web applications. The
applications designed using this platform are able to build semantic data through the
cooperation of different developers and to exploit that semantic data. The paper shows
a practical case study on the application VPOET, and how an application based on
Google Gadgets has been designed to test VPOET and let human users exploit the
semantic data created. This practical example can be used to show how different Se-
mantic Web technologies can be integrated into a particular Web application, and how
the knowledge can be cooperatively improved.

Keywords: Distributed collaborative systems, Semantic Web, Wiki architectures.

1 Introduction

One of the key aspects of the Semantic Web [2, 6] is that software agents or
applications are able to “understand”the meaning of contents specifically de-
signed for them. The Semantic Web is made possible using a set of standards
like RDF(S) [7, 3], OWL [1], or SPARQL [8], among others.

In the Semantic Web research area, the concept of semantic information rep-
resents knowledge that can be automatically analysed with no (or minimal) am-
biguity. To avoid any possible ambiguity, the Semantic Web standards have been
designed using logic-based formalisms and ontological representations. For ex-
ample, there are a set of Description Logic reasoners that can be used to perform
inferences with OWL models. On the other hand, different knowledge standard
representations, named ontologies, have been designed to formally describe the
exact meaning of a particular concept. An ontology is a set of formal definitions
about a particular domain. Although there exist other standards and formalisms
to represent ontologies, the most popular in the Web is OWL which is based in
the definition of classes, properties, individuals, and relationships be-
tween them. For example, the Friend Of A Friend(FOAF) ontology can be used

� This work has been supported by TIN 2005-06885, TIN 2007-64718 and TIN
2007-65989.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 167–176, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

168 M. Rico, D. Camacho, and Ó. Corcho

to define the Person and Organization classes; the name, surname and email
properties; and the knows relationship (applicable to individuals belonging to
the Person class). The FOAF ontology comprises definitions, that is, no in-
stances are declared for any defined class. Ontologies and data are identified by a
namespace.

The evolution of the Semantic Web is directly joined to ontologies and seman-
tic technologies success. There are currently about 11,000 ontologies available
on the Internet [10, 4], and the semantic data has experimented an exponential
growth for the last ten years [5]. However this high-quality information remains
hidden to most end-users, developers, and even software agents, because there
are only some few applications able to manage with this semantic data. Two
main problems can be analysed to explain this current situation. On the one
hand, the increasing difficulty to design adaptable and easily reusable Web ap-
plications where a wide set of Web technologies and programming languages,
such as HTML, Javascript, CSS, DHTML, Flash, or AJAX, need to be used,
converting graphical-designers in skilled programmers as pointed in [9]. On the
other hand, the complexity of Semantic Web technologies requires a very spe-
cialised knowledge. For instance, the process of creating ontologies using OWL
needs from domain experts and OWL specialists in order to “transfer”the ex-
perts’ know-how into a specific OWL ontology. Therefore, the correct design of a
semantic web application needs from a wide set of different specialised experts.

This paper proposes a new approach to solve some of the previous problems.
Our approach is based on a particular methodology used to simplify the creation
of Semantic Web Applications using a wiki-based approach, one of the most
successful collaborative environments for the last years. Unlike common wikis,
oriented to contents creation, some wikis can be used to functionality creation,
in a collaborative way for developers.

This paper is structured as follows. Section 2 shows our methodological
approach to design semantic applications based on wiki technologies. Section 3
describes VPOET, a semantic application that implements the previous method-
ology. Section 4 describes a practical case study that exploits the communications
channel provided by VPOET. Section 5 shows how to get the best fitted visu-
alisation of a semantic data element for a given user profile. Finally, Section 6
summarises the conclusions and future work.

2 Distributed Methodology for Semantic
Cooperative-Based Web Applications

Interaction with human users, showing semantic data, or requesting data that
will have to be converted to semantic data, is a cornerstone of the Semantic
Web. Our work focuses on a technological approach, providing developers with a
simple and collaborative programming framework in order to simplify the process
of creation of semantic web applications. As a proof-of-concept, we present a
real semantic web application that uses the aforementioned framework in order

VPOET: Using a Distributed Collaborative Platform for SemWeb Apps. 169

to validate the technological approach. Next subsections give the detail of this
approach and a concrete implementation.

2.1 Designing a Platform Based in Contribution for Semantic
Applications Developers

Unlike recent efforts to create wiki-based technologies that allow editing semantic
data (so-called semantic wikis, like Semantic Mediawiki, IkeWiki, or ODEWiki)
in our approach we go a little bit further and allow users to create easily and col-
laboratively pieces of code that can be included in Semantic Web applications.
This technological approach does not require developers with skills in multi-
ple languages and technologies, but just wiki essentials, and basic skills on a
programming language and semantic web technologies. For this kind of develop-
ers, and for a concrete wiki-engine called JSPWiki1, we have created a software
framework called Fortunata . This software exploits plugins, software pieces that
extend a given functionality. In this case, our plugins extend the functionality of
an open-software wiki. Applications designed under this architectural paradigm
let developers to create functionality in a decentralised way. Traditional devel-
opment centralises the source code. Therefore, extending functionality typically
requires accessing the source code and compile. The result is a new version of
the application. However, plugins let members of a community to contribute cre-
ating new functionality with a minimal degree of dependence. When a developer
has created and tested a new plugin, the source code is sent to the wiki ad-
ministrator. If the code is considered valid and safe, it is compiled and added to
the wiki engine. Unlike traditional development environments, this addition does
not require to check for dependencies or compiling the whole application code.
Even, in our system, it can be done while the application is running. Semantic
web technologies provide us an additional advantage: simpler data integration.
Fortunata-based applications comprise a set of plugins managing a semantic
data source. These applications can integrate easily semantic data from other
Fortunata-based applications.

2.2 Applying the Architectural Aspects to Real Applications

As a result of applying this aspect, different roles appear for both developers
and end-users. Figure 1 shows a clear separation between end-users, developers,
and semantic agents, as well as different roles that are introduced below.

The architectural aspect results in two different kinds of developers, as are
shown in figure 1. Table 1 shows the activities and requirements of these users.
User1 plays the role of “semantic web applications developer”, providing with
Fortunata-based plugins (F-plugins in figure 1). A different kind of developer is
represented by user5. She does not contribute with plugins, but takes advantage
of the semantic data created by user1’s applications.
1 See http://jspwiki.org

http://jspwiki.org

170 M. Rico, D. Camacho, and Ó. Corcho

Fig. 1. Involved roles in the proposed system

As a proof-of-concept, we have created some Fortunata-based applications. In
this paper we focus on VPOET. Let us see a brief description of this application
and how it benefits from the methodological aspect.

VPOET enable end-users, denoted “visualisation providers”in this context,
to create visualisation templates for a given ontology element, not only to show
semantic data (output templates) but to request data from the user (input tem-
plates). These templates can be created by any user with basic skills in client-
side technologies, such as HTML or Javascript, using simple macros provided
in VPOET. Visualization providers can get information about the ontology ele-
ment reading the wiki pages generated by another Fortunata-based application,
or reading other manually created wiki pages referencing to these pages. In
figure 1, user3 represents this kind of user.

Besides creating the visualisation template, visualisation providers indicate
the features of their templates using forms, specifying details such as template
type (input or output), behaviour in case of changes to the font size, sizes (pre-
ferred, minimum, maximum), code-type provided (HTML, Javascript, CSS), or
dominant colours. As any other Fortunata-based application, all the generated
information is published as semantic data, so that it can be used by semantic
agents. Besides, a HTTP GET/POST channel has been created to get access to
the semantic data. Figure 1 shows this channel in the case of VPOET, and how
it is exploited by developers like user5. For testing purposes, we have exploited
this channel creating a Google Gadget called GG-VPOET. End users like user4
use GG-VPOET to render a semantic data source under a concrete visualisa-
tion template. Other applications can exploit this channel. For example, we are
using this channel to query for the most appropriated visualisation for a given
user profile. This experimental user profile contains data about the interactive
impairments of the user, its interaction device, or its aesthetic preferences.

VPOET: Using a Distributed Collaborative Platform for SemWeb Apps. 171

Table 1. Description on the roles in the proposed system

Role Activities Requirements

user1
F-plugins developer. Uses the Fortunata
framework to create semantic plugins

Basic java programming
skills

user5
Semantic Web applications developer. Uses
the HTTP channel provided by VPOET

Basics of HTTP in any pro-
gramming language

user2

OMEMO user. Any user interested in ob-
taining a simple and textual description of
the elements in a given ontology

None

user3
VPOET user. Client side graphical de-
signer

Requires basics of client side
technologies

user4

VPOET-GG end-user. Any user interested
in providing a visualisation of a semantic
data source

None

3 Using VPOET

VPOET lets users create visualisation templates for any ontology element. Al-
though VPOET can be used by any user with basic skills in client side-side
web technologies, it has been created to let professional graphical-designers
author attractive designs capable of rendering semantic data. Users of VPOET
are denoted “visualisation providers”(VPs). From an end-user point of view, this
application is like any other web application, with form elements like text fields,
radio buttons, or buttons. VPs just have to follow an online tutorial to start
creating templates.

The process to create a template starts targeting an ontology element. For
example, the next subsection reports on a use case that follows the tutorial
aforementioned, in which the element Person from the FOAF ontology version
20050403 is targeted. The process to create the template comprises these steps:

1. Getting information about the structure of the targeted element. That is, to
know which sub-elements comprise the element. The visualisation provider
obtains this information reading wiki pages automatically generated by
OMEMO (user2 in figure 1), other Fortunata-based application.

2. Authoring a graphical design in which semantic data will be inserted. End-
users are free to use their favourite web authoring tool.

3. Choose an identifier (ID) to create a wiki page with that ID. This wiki page
shows information about the VP and its templates stored.

4. The graphical design comprises a set of files (images, and client-side code
such as HTML, CSS, or javascript). The client-side code is copied-pasted in
the appropriated form fields. Image files or“included”files must be uploaded

172 M. Rico, D. Camacho, and Ó. Corcho

Table 2. Main macros available for visualisation providers in VPOET

Macro Arguments Explanation

OmemoGetP propName It is substituted by the property value
propName

OmemoBaseURL No arguments It is substituted by the URL of the server
in which VPOET is running

OmemoConditionalVizFor propName,
designerID,
designID

Renders the property propName only if it
has a value, using the template indicated

OmemoGetLink relationName It is substituted by a link capable of dis-
playing elements of the type pointed by the
relation relationName

to the provider wiki page, or uploaded to any web server. In any case, the
client code must point correctly to these files.

5. A test loop starts, using semantic-data sources (typically external to VPOET)
containing instances of the targeted element.
a) Paths (relatives or absolutes) must be substituted by means of a specific

macro.
b) Semantic data are inserted using specific macros.
c) The design is tested against the test data sources
d) This loop finish when the design produces a successful visualisation for

all the semantic test data sources.
6. The design is characterized by its creator, providing info about the template

features, such as type, colors, size policy, or font changes behavior.

Most of the effort required to create a template is located in the test loop,
especially in the insertion of macros. The table 2 shows the most relevant macros
available in VPOET, the arguments each macro requires, and a brief explanation
of each macro.

VPOET has been designed to let its users reuse their templates. This is
achieved using: (1) the conditional rendering of a property (using the macro
OmemoConditionalVizFor) and (2) links capable of displaying the destination
element of a relation (macro OmemoGetLink). A detailed explanation, and usage
examples, can be found at http://ishtar.ii.uam.es/fortunata.

4 Using the HTTP Channel in VPOET

Although the information stored in VPOET is published as semantic data reach-
able through an URL that can be used by semantic agents, an additional channel
to let non-semantic users access this information has been created. It has been
implemented as a servlet that let users make HTTP GET/POST requests with

http://ishtar.ii.uam.es/fortunata

VPOET: Using a Distributed Collaborative Platform for SemWeb Apps. 173

Table 3. Parameters accepted in the HTTP GET/POST request

Parameter Value Explanation/Example
action renderOutput Request a visualisation for the elements object in

the data source given in parameter object
renderInput Request a visualisation to request data for the el-

ement object from the user

object prefix.class[.ver] Example: foaf.Person
prefix.relation[.ver] Example: foaf.firstName

source (GET
only)

URL URL of the semantic data source

[provider] ID Identifier of the visualization provider. For exam-
ple: user3.test

outputFormat HTML Default value
XHTML XHTML is used by WAP 2.0 mobile phones

[userProfile]
(GET only)

URL URL of the RDF data source with the user profile

Fig. 2. Using GG-VPOET in different application oriented to end-users. In clockwise:
a personal page, Google Desktop, iGoogle, and Google Pages.

variable parameters in order to facilitate queries like “get an output visualisation
created by provider X for the element foaf.Person.20050603 for the semantic data
at URL Y”. The complete syntax is shown in Table 3.

When the GET method is used, the parameter source must be provided to
indicate where semantic data source can be found. In the other hand, when POST
method is used, the parameter source is not necessary because the semantic
data must be contained by the HTTP message. If the parameter provider is
not provided, VPOET will return the “best visualisation”given the user profile
pointed by parameter userProfile. When there is no template for a requested
element, a default visualisation is provided.

174 M. Rico, D. Camacho, and Ó. Corcho

An Fortunata-based application, called MIG, provide users with a form (in a
wiki page) to specify the user profile. As any Fortunata-based application, this
information is public and accessible.

The HTTP messages with the specified syntax can be sent to VPOET by
other programs (agents) written in any programming language, or by javascript
applications executed in a web browser. However, browsers are more limited than
other applications because they suffer security restrictions due to communication
is restricted to the server which holds the web application. However, our approach
do not have this problem because communications are centralised by Fortunata.

To let final users exploit this channel, a Google Gadget has been implemented,
as was show in figure 1. In this figure, user4 use this gadget in its web pages,
or in some Google products, such as iGoogle, Google Pages, or Google Desktop.
This gadget is configured providing the same information that was provided for
the test phase. Figure 2 shows this gadget in action using an output template
for foaf:Person.

5 Matching the User Profile and the VPOET Semantic
Templates

Let us suppose that VPOET contains different templates for foaf.Person, and
an external application requesting a foaf.Person template through the HTTP
channel. VPOET should return “the most adequate”template for a given user
profile. An example of this matching process is depicted in figure 3.

Each ontology, identified by a namespace, is shown as a cloud. The elements
of the ontology, and their individuals, are shown inside its cloud; with ontology
elements and some individuals inside the cloud. The left part of this figure shows
the ontology describing the user profile, characterised by namespace a. In this
example, the user identified as a:user34 has the following profile: (1) uses a
WAP2 mobile phone as interaction device, (2) prefers simple aesthetics and (3)
he/she is daltonic (colour-blindness associated to red-green colours).

VPOET

Ontology

namespace v)(

Common

Ontologies

namespaces zN)(

Client

description

Ontology

(namespace a)

Aesthetic

Preferences

Device's

Characteristics

User's

Characteristics

a:simple

a:mobile

a:daltonism

{ z3:minimal,

z3:simple }

z1:XHTML

z5:PartialColorBlindness

z5:Dichromacy

z5:Deuteranopia

z5:Protanopia

z5:Tritanopia

v:minimalistic

v:XHTML

v:red

owl:sameAs

owl:sameAs

owl:oneOf

z1:WAP 2.0a:usesProtocol
a:WAP2

a:prefersAesth
a:user34

a:usesDevice

a:hasCharacterists

z1:codification

z3:style
owl:sameAs

v:design67

v:codificationLang

owl:sameAs

v:primaryAesthetic

owl:sameAs z4:sameColor
{ z4:red,

z4:green }

{ z4:yellow,

z4:blue }

z4:sameColor

v:primaryColor
v:secondaryColor

v:yellow

Fig. 3. Matching process to find a visualisation template from a given user profile

VPOET: Using a Distributed Collaborative Platform for SemWeb Apps. 175

In centre part of figure 3, public well-known ontologies are shown. Ontology
z1 indicates that the protocol WAP2.0 is codified as XHTML. For ontology
z3,“minimal”and “simple”are different kinds of styles but semantically close.
Ontology z5 has a visual-impairments hierarchy.

The right part of figure 3 shows the VPOET ontology, with namespace v. In
this ontology, the template identified as v:design67 is codified using the XHTML
language, its primary aesthetic is minimalistic, and it has red and yellow as
primary and secondary colours.

With just this semantic information, it is impossible to find that v:design67
is even a valid template for a:user34. An additional semantic data source is
required in order to link elements belonging to different ontologies. These links
use to be “sameAs”relations, shown as discontinuous bold arrows in figure 3.
Joining all this semantic information, a semantic agent can make a semantic
query (e.g., using SPARQL language) based in the user profile, like this one:
“select a template with these characteristics: (1) codified in XTHML, (2) with
minimalism as chief aesthetic, and (3) with primary colours avoiding red and
green tones for text and background”. For this example, the result of this query
would be the design v:design67. Additional restrictions can refine the query to
get the “most adequate”template for a given user profile.

6 Conclusions and Future Work

The work presented in this paper aims at providing developers with a simple
and collaborative programming framework i order to simplify the process of
creation of semantic web applications. Developers require (1) development en-
vironments simple and collaborative, (2) facilities for reuse of the contributed
functionality, and (3) minimal dependencies between contributors. To achieve
these requirements, we have taken advantage of an open source wiki-engine. We
have developed a java library called Fortunata in order to facilitate developers
the creation of plugins with semantic capabilities. As a proof-of-concept, some
applications have been built using Fortunata. VPOET is an example of one of
these applications.

From a developer’s perspective, we consider that the targeted requirements con-
cerning developers are successfully accomplished by the selected wiki-engine. How-
ever, it must be noticed that this is the result of our experience for some concrete
applications. Concerning end-users, these applications are intended for a wide
audience with no previous training in programming or semantic web technolo-
gies. This objective has been achieved be means of forms and simple macros, and
experiments with end-users (not described in this paper) confirm it.

These are the initial steps towards a semantic agent capable of providing an
automatic generation of the user interface. This agent can use the data provided
by VPOET in order to adapt the user interface to the user’s profile (device
used, user’s impairments, and aesthetic preferences). Many open aspects remains
open: composition of templates, or interaction between templates, among others.

176 M. Rico, D. Camacho, and Ó. Corcho

The architecture shown in this paper can provide developers with a simple but
powerful infrastructure to achieve these long-term objectives.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L.: OWL Web Ontology Language Reference. Technical report
(2004), http://www.w3.org/TR/2004/REC-owl-ref-20040210/

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific Ameri-
can 284(5), 28–37 (2001)

3. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation. Technical report (2004),
http://www.w3.org/TR/rdf-schema/

4. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
Proceedings of the Thirteenth ACM conference on Information and knowledge
management, pp. 652–659 (2004)

5. Finin, T., Ding, L.: Search engines for semantic web knowledge. In: Proceedings of
XTech 2006: Building Web 2.0, Amsterdam, May 16-19 (2006)

6. Herman, I.: The Semantic Web home page. Technical report, W3C (2006),
http://www.w3.org/2001/sw/

7. Klyne, G., Carroll, J.: Resource Description Framework (RDF): Concepts and Ab-
stract Syntax. Technical report, W3C (2004),
http://www.w3.org/TR/rdf-concepts/

8. Prud’hommeaux, E., Seaborne, A.: Sparql query language for RDF. Technical re-
port, W3C Recommendation (2008)

9. Rochen, R., Rosson, M., Pérez, M.: End user Development of Web Applications,
ch. 8, pp. 161–182. Springer, Heidelberg (2006)

10. Warren, R.H., Baker, C.O.J.: Ontologies: Where are we at? In: Knowledge-Based
Bioinformatics Workshop, Canada poster (2005)

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/rdf-concepts/

Are Many Heads Better Than One—On

Combining Information from Multiple Internet
Sources

Jakub Stadnik1, Maria Ganzha2, and Marcin Paprzycki2

1 Warsaw University of Technology, Warsaw, Poland
2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland

{Maria.Ganzha,Marcin.Paprzycki}@ibspan.waw.pl

Summary. In this paper we look into three approaches, based on: Game Theory,
Auction and Consensus methods, to combine information from multiple sources. As
originally introduced, they are conceptualized using an agent metaphor and imple-
mented using a JADE agent platform. Preliminary performance comparison completes
the presentation.

1 Introduction

Since different Internet search engines produce different results for the same
query, we can say that they “see” the world differently. The question then arises:
how to combine answers from different sources in such a way that the obtained
answer would be “better” than when using only a single source? What suggest
combining “advice” from multiple sources is a standard situation, when a panel
of experts is used to address a problem. Combining multiple suggestions can be
achieved, among others, utilizing a Consensus method [5, 2, 4], Game Theory
and Auctions [8, 7]. These approaches have been originally proposed as based
on software agents. While this is somewhat spurious (proposed functionalities
can be achieved without agents), we follow predecessors and use JADE agent
platform to implement combining information from multiple Internet sources.

This note is organized as follows. In the next section we introduce the three
approaches to information joining. We follow with preliminary experimental re-
sults and their analysis.

2 System Setup

Proposed system can be split into two main parts: Client Module (the inter-
face) and the Main Agent (system manager). Client Module is responsible for
interacting with the end-user. The Main Agent receives requests from the Client
Module and manages agents for information retrieval and combining results.

At the beginning there is only the Main Agent (MA) waits for a query and
the processing algorithm of choice. When the input is received the MA creates as

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 177–186, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

178 J. Stadnik, M. Ganzha, and M. Paprzycki

many Search Agents (SA) as there are selected search engines (user can specify
how many and/or which search engines to include, or a default number will be
used). Each SA is assigned a different search engine. SA’s query the database
using the content of the query and information about selected algorithm, to
retrieve the weights set, which are used during data processing. Weights are the
ranks of search engines; computed for a given algorithm based on previous results
for a given query. Their belong to interval (0, 1) depending on how the algorithm
evaluated result set of a particular search engine. If engine performed badly—
results were not satisfactory in the sense of the algorithm; it is assigned a smaller
weight than the engine results of which were considered as better ones (in the
sense of the algorithm). If this is the first time for a given query, all ranks are
set to 1. Those weights are used during the ranking processes to “boost” URLs
originating from engines, which contributed better results in previous runs for
that query and algorithm.

Next, SAs execute the query and return their results to the MA, which
processes them according to the selected algorithm. When the processing is fin-
ished, the MA sends the final results to the web application to be displayed. Note
that if the algorithm was able to find the best result, the result list is displayed
and knowledge base is updated instantaneously. The search engine which yielded
the top result is ranked as the best and other engines are ranked according to
how close they were to this engine. If, however, algorithm was not able to yield a
“satisfactory” answer; application displays “an answer” and an option to provide
feedback (subjective evaluation performed by the user). Feedback (if received)
ranks search engines. In the knowledge base we store—for each query, search
engine and method of answer processing, and the engine rank.

2.1 Common Algorithms

There is a number of algorithms that are used by multiple approaches. First,
the algorithm for the initial URL ranking. This initial ranking is performed
before the Game Theory and Auction methods (not the Consensus method)
start their computations. Its purpose is to calculate confidence values of Search
Agents about retrieved URLs. In general, the confidence value is calculated as
follows: |result set of agent|− position of the URL in resulting set. However, the
Game Theory and the Auction methods require that each result set contains the
same URLs (in any order). If this is not the case they break, since comparison
of ranks certain URLs cannot be performed. Therefore, this algorithm updates
the result sets with missing URLs. It also determines if the main computational
parts of the two approaches can even be performed. The rule is as follows: if for
all pairs of result sets A and B the A ∩ B = ∅ then the main part of the Game
Theory and Auction cannot start. Thus, if a result set has no common URL with
any other result set it is removed from the process as being not suitable for the
algorithms which require every URL to be in every result set. The pseudo-code
of the algorithm is as follows.

On Combining Information from Multiple Internet Sources 179

URL ranking algorithm for Game Theory and Auction methods

Input Map of results 〈ai, ri〉 provided by

m

Search Agents—each in the form ri = 〈Ui
1, Ui

2, . . . , Ui
n〉, where Ui

j , j = 1, . . . , n, are URLs.
Output Map containing URL ranking.
BEGIN

1. for each agent in the map:

• check if other agents result sets contain any of the URLs of the agent
• construct matrix representing how many URLs of the agent are contained in the

each result set of other agents

2. check if each agent has at least one common URL with another if not—remove it from
further processing

3. if result set of every agent is disjoint with each result set of every other agent—stop
algorithm

4. for each agent in map:

• for each URL in agent result set:
– rank the URL as follows:

rank(Ui
) = (|r| − i) × weight(r)

, where i is a position of URL in r
– find agents which result set does not contain the URL, update their rankings:

rank(Ui) = 1.0 × weight(r)

(weights calculation—listing 2.1)
5. return ranking

END

Weights calculation for Game Theory and Auction methods

Weights calculation is performed after Game Theory and Auction methods fin-
ish their main negotiation parts. This algorithm is to rank the search engines
according to how the URLs from a given engine were evaluated (placed) in the
final answer. The topmost URL is chosen to be the feedback result and other
result sets are weighted accordingly to the number of URLs overlapping with
the result set which provided the URL.

Input: Result from feedback; initial result sets
Output: Map of weights with corresponding agents
BEGIN

1. find the agent whose result set contains the “best” result, set his weight to 1
2. for all other agents:

find d(r
(i)

, r
w

)

W [i] =
|r(i)| − d(r(i), rw)

|r(i)

where d(r(i), rw) is the number of different URLs between the result set of agent i
and the “winner” agent

3. return weights
END

180 J. Stadnik, M. Ganzha, and M. Paprzycki

After this part is finished, ranks are stored in the knowledge base for further
use. These weights are used as follows: when issuing the query for the second
time for a particular method (Game theory or Auction in this case) the weight
of the result set is used to decrease the rank of the URL which originates from
this result set. The rank of such URL is multiplied by this weight. Thus, if it
is less than 1 it is being decreased. This process gives handicap to URLs which
are returned by the search engines with low weights—those contributed “not so
good” results for a particular query. If the weight is equal to zero the rank is
multiplied by 0.01 (to still keep it in “in the game”).

3 Three Main Algorithms

3.1 Game Theory

This approach was used in the NeurAge system [8, 7, 1]. In its modified version,
instead of voting for certain “classes of data,” agents vote for URLs retrieved by
search engines. Confidence values from the original algorithm have been replaced
by URL ranks (obtained after above-described the pre-processing). Furthermore,
in the original algorithm agents delivered a single “data class” as the answer.
However, in Internet searching multiple, ranked responses are expected. There-
fore, in the adapted approach, 10 “best” URLs are returned. Here, we utilize
an iterative approach, where each iteration starts the selection process from the
beginning, without previously selected URLs. This modification does not violate
main assumptions of the algorithm [9].In general, a “game” consists of set of
players, set of moves (strategies) and specification of payoffs for each combina-
tion of moves. In a normal form the game that is defined as follows:

There is a finite set P of players, which we label {1, 2, ..., m}. Each player k has
finite number of pure strategies (moves) Sk = {1, 2, ..., nk} A pure strategy profile is
an association of strategies to players, that is m-tuple σ = (σ1, σ2, . . . , σm) such that
σ1 ∈ S1, σ2 ∈ S2, . . . , σm ∈ Sm Let strategy profiles be denoted by Σ A payoff
function is a function F : Σ → � which intended representation is the award given to
a single player as the outcome of the game. Accordingly to specify a game the payoff
function has to be specified for each player in the player set P = {1, 2, . . . , m} .

Definition 1. A game in normal form is a structure (P, S, F) Where P = {1, 2, ..., m}
is a set of players, S = (S1, S2, . . . , Sm) is a mtuple of pure strategy sets, one for each
player and F = (F1, F2, . . . , Fm) is a m-tuple of payoff.

In the game considered here, components are as follows: (a) players are agents,
(b) possible moves are to change or to keep the URL, (c) payoffs for those moves
are defined as a 2 × 2 matrix. Each agent is assigned two values: for the keeping
the URL and for changing it. Those values may or may not change each round
of the game, depending on the outcome of the previous round.

At the beginning of the process, results obtained by the Manager Agent from
Search Agents are filtered, ranked and updated (see above). The URL ranking
represents confidence in a specific URL. In each round of the game two agents
with highest ranked URLs have two possibilities: to keep their answer or to
change it. If the keep action has higher value than the change action, the agent
will be assigned the action to keep its URL for the next round. If, however, the

On Combining Information from Multiple Internet Sources 181

agent is assigned the action to change its URL and the second agent is assigned
the action to keep its URL, the latter is considered a winner of the round and
the former is considered a loser—it and its result set are discarded from further
considerations. Then the next round starts (without the agent and its result set;
removed in previous round) and so on, until there is only one agent and its top
URL is the winner. Process is then repeated, without the URL that was selected
in the previous “big” round (this URL is removed from all result sets; recall
that all sets have all URL’s included; see above). Game continues until 10 (best)
URLs are selected.

3.2 Auction-Based Approach

Auction-based approach was originally used in the NeurAge system [7], and was
adapted to return 10 distinct URLs (rather than a single result). In each round
of the auction each agent has its “product” (URL) assigned. Afterward, the
“cost” for each assigned URL is calculated. Costs are compared and agent with
the highest cost is considered to be a loser. Afterward, the confidence values for
selected URLs are updated by subtracting the cost from their value. Henceforth,
the next round takes place. If the agent that was marked before as a loser, loses
again, it and its result set are discarded from further auctions. After removal of
a twice-looser, process enters the next round, and continues until a single agent
remains with its selected answer. This process is repeated 10 times and after
each round the URL that was just selected, is removed from result-sets of all
agents.

Here, we present an example of flow of one round of the Auction method:
Input: Map containing URL rankings.
Output: 10 URLs.
BEGIN

1. repeat until there are 10 URLs in answer list
2. repeat until one agent remains

3. find highest ranked URLs for all agents and pair them (A(i), U(i))
4. calculate costs for each agent:

cost(A(i)) =

m∑
i=1,i�=j

(rank(A(i), U(i)) − rank(A(i), U(j)))

10

where U(i) is URL from pair (A(i), U(i)) (highest ranked URL for agent A(i) and U(i)

is a highest ranked URL for agent A(i)

5. find agent with highest cost—a loser; it may happen that all agents have the same
costs—if it occurs twice the agent which is assigned the URL initially ranked as the
lowest is considered a loser and thus removed from further negotiation, if it is so, go
to 7.

6. if the agent is a loser twice in a row remove it from further auctions
7. update URL rankings for all agents as follows:

rank(A(i)
, U

(i)
) = rank(A(i)

, U
(i)

) − cost(A(i)
)

where the pair (A(i), U(i)) is found at the beginning; at this point the winning URL
can be changed

8. add URL to the answer list
9. remove the URL from all answer sets

182 J. Stadnik, M. Ganzha, and M. Paprzycki

3.3 Consensus Method

The Consensus method was used previously in the AGWI system [5, 3, 6, 2, 4].
Its aim is to combine a set of answers into a final joint answer. The difference
in the modified approach are as follows. The algorithm for measuring distances
between result sets was adapted (to use the Levenshtein method). Furthermore,
in the AGWI system there were more search engines than there were Search
Agents (and thus only some of them were selected to be used). Here, there are
as many Search Agents as there search engines.

In the Consensus method, result sets are evaluated and a combined result set
(without repeating URLs) is created. Next, for each URL its average position in
all result sets is calculated. In what follows, the combined result sets are sorted
according to the average position of each URL. Then the consensus answer is
found and its consistency checked. Before performing the calculation, however,
the result sets and consensus are normalized; only a specific number of top
URLs are incorporated into the answer. This number is of size of the smallest
non-zero result set. To check consistency of the consensus answer, average of
distances between result sets and average of distances between each result set
and the consensus answer are evaluated. If the average of distances is bigger than
average of distances of result sets and the consensus, then consensus answer is
consistent; if not, the consensus answer is not consistent. The following listing
presents the pseudo code of algorithm for finding the consensus answer.

Input: Map of results provided by m Search Agents. Map containing weights for result
sets.

Output: Consensus answer.
BEGIN

1. create set URLS from all URLs from all result sets (without repetitions)
2. for each U ∈ URLS

• create array <t1, t2, . . . , tn>, where ti is position on which U appears in r(i);

• if U does not appear in r(i) then set ti as the length of the longest ranking
increased by 1

• divide each ti by weight(r(i)); if weight(r(i)) = 0 divide by 0.01
• calculate average t(U) of values (t1, t2, . . . , tn)

3. consensus answer is obtained by ordering elements of according to values
END

Having checked the consistency of the result set, the algorithm decides on
the next step. When the consistency is low, the answer containing all results
is returned and feedback is requested. If the consistency is high, 10 first URLs
from the consensus answer are presented.

Depending on the outcome of the consistency check the different entry point
is used for the weight calculation algorithm. If the consistency of the consensus
is high, agent whose result set has the smallest distance to the consensus is se-
lected as the agent whose weight will be equal to 1 and the algorithm in following
listing does not require the feedback URL as an input—thus, step 1 is omitted.
If the consistency is low, the first step of the algorithm must be performed to
find the “winner” agent.

Input: Result from feedback; initial result sets
Output: Map of weights with corresponding agents
BEGIN

1. find the agent whose result set contains the best result from feedback, set his weight
to 1

On Combining Information from Multiple Internet Sources 183

2. for all other agents:

find d(r
(i)

, C)

W [i] =
|r(i)| − d(r(i), C)

|r(i)

where d(r(i), C) is the the Levenshtein distance
3. return weights

END

4 Initial Experimental Results

In our initial set of experiments three queries were issued for the testing
purposes: “consensus decision making”, “consensus decision making for
conflict solving”, and “is consensus decision making for conflict
solving good enough or maybe Game theory or auction is better”.

The idea was to take three queries which are related to the same topic; however
first was to be simple, second intermediately complex, and third was to be very
complex, while retaining coherence. There were 5 search engines queried. Four
of them were English-language-based: Google, Ask.com, Live, Yahoo! and one
of Polish origin—Interia, which in fact is a Google based engine; however very
often it produces results which differ from its parent engine. System was set-up to
return 20 results for each query. In this note, due to the lack of space, in Table 1
we present only two “performance measures;” the Set Coverage and the and
URL to URL coverage for each of the three approaches, for each of the queries.
The Set Coverage measures how many URLs from the final result are contained
in the result set returned by a search engine regardless of the position of the
URL. In other words, this measure tells us if there is a relationship between the
combined answer and answers returned separately by each search method. The
and URL to URL coverage measures how many URLs were at the same position
in both results (of the algorithm and that of the search engine).

Let us observe that as the query becomes more complex, the coverage drasti-
cally decreases. This can be explained by the fact that the responses generated
by various search engines have less and less in common. Therefore, regardless of
the method used, the final answer set becomes a collection of “separate links”
chosen from each individual answer-set. This trend is even more drastic in the
URL to URL comparison. Here, already for the intermediate query practically
no URL is in the same location in the answer set as it is in any of the search
engines. This indicates also that this performance measure is not particularly
useful for the application in question.

As expected, results returned by Interia and Google are very similar, with
both performance measures varying, randomly favoring either one of them. In-
terestingly, these two search engines seem to have best performance for the
complex query. However, this may be a result of collusion, where two similar
search engines “dominate” views of the others. This observation provides also a
warning, that the selection of the “groups of experts” has to provide as “orthog-
onal” view of the subject as possible. Otherwise, regardless of the method used,

184 J. Stadnik, M. Ganzha, and M. Paprzycki

Table 1. Summary of experimental results

Auction method, simple query

Auction Ask.com Live Interia Yahoo Google

Set Coverage 60% 40% 110% 60% 70%

URL to URL 0% 10% 20% 30% 20%

Game theory method, simple query

Game theory Ask.com Live Interia Yahoo Google

Set Coverage 60% 60% 70% 80% 60%

URL to URL 30%% 10% 0% 50% 0%

Consensus method, simple query

Consensus Ask.com Live Interia Yahoo Google

Set Coverage 70% 50% 80% 70% 80%

URL to URL 20% 20% 10% 20% 10%

Auction method, intermediate query

Auction Ask.com Live Interia Yahoo Google

Set Coverage 10% 10% 50% 10% 40%

URL to URL 0% 10% 0% 0% 0%

Game theory method, intermediate query

Game theory Ask.com Live Interia Yahoo Google

Set Coverage 60% 40% 30% 40% 30%

URL to URL 40% 0% 10% 0% 10%

Consensus method, intermediate query

Consensus Ask.com Live Interia Yahoo Google

Set Coverage 50% 30% 70% 40% 60%

URL to URL 0% 20% 0% 0% 0%

Auction method, very complex query

Auction Ask.com Live Interia Yahoo Google

Set Coverage 0% 0% 30% 0% 40%

URL to URL 0% 0% 10% 0% 20%

Game theory method, very complex query

Game theory Ask.com Live Interia Yahoo Google

Set Coverage 0% 40% 30% 10% 50%

URL to URL 0% 0% 0% 10% 0%

Consensus method, very complex query

Consensus Ask.com Live Interia Yahoo Google

Set Coverage 10% 20% 90% 20% 40%

URL to URL 0% 0% 30% 0% 0%

On Combining Information from Multiple Internet Sources 185

the returned combined answer may be dominated by a few experts that see the
problem similarly.

Observed results suggest also that the consensus method does what its name
suggests—delivers response that is closest to consensus. This can be seen par-
ticularly in the case of the complex query, where for the consensus method the
Set Coverage is non-zero also for search engines other than Interia and Google.

Overall, on the basis of all of our experiments (also these not reported here),
we can state that: (1) Results delivered by the Auction method are highly depen-
dent on each individual result set and do not represent well the “combined view”
of all search engines. No matter if the URL is in many result sets, it may not make
it to the final (combined) result. Instead, returned are “winning” URLs, which
appear in a single result sets. (2) Game Theory method also does not seem to
create a combined view of initial answers. However, if a URL is at of of top places
of more than one result set, it is very likely to be incorporated into the final result
set (even though it may be locate much lower than its average position). (3) The
Consensus method returned the results which represent the most common view
of participating search engines. However in three tested cases all returned result
sets were inconsistent(!) according to consensus theory itself. This happens due
to the high “position dispersion” of URL’s throughout the result sets. There are
situations where a URL is, for instance, on the 1st place in one result set, on the
9th place in another result set, and on the 5th in the next. For this result, the
Levenshtein distance between response sets is relatively large and thus the final
result set is inconsistent. Nevertheless, if one was not to take the consistency into
account (as in its current form it may not be a useful measure after all), the Con-
sensus method provided results which could be claimed to be “the best overall.”

5 Concluding Remarks

In this note we discussed three methods for combining results from multiple In-
ternet sources and presented initial evaluation of their performance. Our results
indicate that each method leads to a different combined answer set. Out of these
methods, the Consensus method seems to generate the most “common” view
of the initial answers, while the remaining two methods tend to favor certain
answers over others. This is particularly the case for the Auction theory. We are
currently performing additional experiments with the three methods and start-
ing to look more qualitatively into obtained answer sets (to establish their value
for actual users).

Acknowledgment

Work was supported from the “Funds for Science” of the Polish Ministry for
Science and Higher Education for years 2008-2011, as a research project.

186 J. Stadnik, M. Ganzha, and M. Paprzycki

References

1. Canuto, A.M.P., Abreu, M.: Analyzing the benefits of using a fuzzy neuro model
in the accuracy of the neurage system: an agent-based system for classification
tasks. In: Proceedings of the International Joint Conference on Neural Networks,
pp. 2951–2958 (2006)

2. Nguyen, N.: Consensus system for solving conflicts in distributed systems. Journal
of Information Sciences 147, 91–122 (2002)

3. Nguyen, N.: Processing inconsistency of knowledge at semantic level. Journal of
Universal Computer Science 11(2), 285–302 (2005)

4. Nguyen, N.: Methods for achieving susceptibility to consensus for conflict profiles.
Journal of Intelligent and Fuzzy Systems: Applications in Engineering and Technol-
ogy 17(3), 219–229 (2006)

5. Paprzycki, M., Nguyen, N.T., Ganzha, M.: A Consensus-Based Multi-agent Ap-
proach for Information Retrieval in Internet. In: Alexandrov, V.N., van Albada,
G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 208–215.
Springer, Heidelberg (2006)

6. Nguyen, N., Ma�lowiecki, M.: Consistency measures for conflict profiles. In: GI 1973.
LNCS, vol. 1, pp. 169–186. Springer, Heidelberg (2004)

7. Santana, L., Canuto, A., Abreu, M.: Analyzing the performance of an agent-based
neural system for classification tasks using data distribution among the agents. In:
Proceedings of the International Joint Conference on Neural Networks, pp. 2951–
2958 (2006)

8. Santana, L., Canuto, A., Junior Xavier, J., Campos, A.: A comparative analysis of
data distribution methods in an agent based neural system for classification tasks.
In: Proceedings of the Sixth International Conference on Hybrid Intelligent Systems,
vol. 9 (2006)

9. Szymanska, E.: Personal communication

Formal Modeling and Verification of Real-Time

Multi-Agent Systems: The REMM Framework�

Francesco Moscato1, Salvatore Venticinque2, Rocco Aversa2,
and Beniamino Di Martino2

1 Dep. of Computer Science and Systems, Univ. of Naples Federico II
francesco.moscato@unina.it

2 Dep. of Computer Science Engineering, Second Univ. of Naples
{rocco.aversa,salvatore.venticinque,beniamino.dimartino}@unina2.it

Summary. Multi Agent Systems represent a new approach for modeling complex and
distributed systems. Many efforts of software engineering aim at providing methodolo-
gies and tools for designing and developing MAS. However formal verification of MAS
dependability is still an open issue. Here we focus on modeling, design and verification
of real-time properties in MASs. We propose a methodology that supports developers
in different phases of MAS developing cycle. We also present an integrated environment
that allows for UML design, code generation, time constraints verification and testing
of soft-real time MASs. A case of study is described to demonstrate an application of
such methodology and the utilization of developed tools.

1 Motivation

During last years new challenges in software engineering arose because of the
spread of distributed and reliable systems. Due to the complexity and the dis-
tribution of novel architectures, solutions have been built by autonomous and
proactive components. Multi-agent system(MAS) represent a model for designing
and developing these systems [1, 2]. Several methodologies have been proposed
for MAS design and development [3, 4]. However software engineering has not
provided yet any approaches to model and verify dependability of such kinds
of systems in design and testing phases. A set of agents,which execute under
real-time constraints [5], can be modeled as real-time MAS. For such systems,
it is critical to verify, since design phase, if the provided solution will be able to
satisfy certain time constraints. In our model agents have to achieve some goals
within certain deadlines. If at run-time unpredictable events happen, and timing
constraints cannot be satisfied by current strategy, a reconfiguration is needed.
New plans must be evaluated to meet again deadlines, when it is possible. Un-
achievable goals should be withdrawn to reduce the system workload.

In such a context, verification and validation of MAS properties and on-line
reconfiguration are the open challenges we are addressing.
� This work has been supported by LC3 - LABORATORIO PUBBLICO-PRIVATO

DI RICERCA SUL TEMA DELLA COMUNICAZIONE DELLE CONOSCENZE
CULTURALI - National Project of Ministry of Research MIUR DM17917.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 187–196, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

188 F. Moscato et al.

Here we present a methodology and an integrated framework, which support
design and development of MAS, where the correct achievement of system goals
depends by soft real-time requirements. The methodology will be applied to
a case study where it is necessary to develop intelligent bots for the Unreal
Tournament game.

Second section introduces the architecture of a real-time MAS and present
an overview of our framework. Section 3 describes a language for modeling real-
time BDI agents and their interactions. In section 4 the proposed methodology
is presented in detail. In section 5 we provide an example of application of our
methodology to a relevant case study. Finally conclusions are due.

2 An Overview of the REMM Framework

In the REMM framework, agents are modeled according to the BDI logic: they
are characterized by beliefs, desires and intentions. Agents can collaborate or
compete to achieve their goals. Real-time requirements to be satisfied in the
Execution Environment must be transported in the MAS by granting that agents
goals are achieved within a certain deadline. It means that to pursue a goal:

1. For each necessary goal must exist at least a plan that can complete within
the deadline.

2. Agents must schedule and execute only those plans which can complete
within a maximum amount of time.

A Verifier checks that a goal can be achieved, by a plan, within a certain deadline.
During the design phase, it grants the correctness of the project. At run time it
performs an on-line checking.

A planner composes and schedules plans of an agent in order to grant at each
moment the reachability of pursued goals.

To develop such a system we must define: (1) A real-time agent formalism.
We called Real-Time AML (RT-AML) our extension of AML[13],that is a set of
UML Stereotypes to model BDI agents; (2) A tool for real-time agent modeling.;
(3) A tool for verification of real-time properties of a MAS.

3 Real-Time Agents Modeling Language: RT-AML

RT-AML extends AML [13], a language for describing MAS by using an UML-
based approach. AML is a semi-formal language used for MAS description. The
original support for describing time is poor: it only allows for definition of dura-
tion of messages passing during the interactions of several agents. It is defined
by using ad-hoc stereotypes in UML 2.0. In particular, it can be, on its own,
easily extended by using proper UML stereotypes and constructs. Two views of
AML systems will be used in this work: the Architecture and the Mental view.
The main elements of these views are Entities and Agents. The former element
defines a meta-classes hierarchy for defining the main MAS components, while

Formal Modeling and Verification of RT-MAS: The REMM Framework 189

the latter one contains all the meta-classes used to define a single agent. In Men-
tal view, several meta-classes are used to define the BDI logic which describes
agents behavior. It is possible to define beliefs of an agent, the goals it wants to
reach and the available plans to reach the goals.

RT-AML mainly adds the following UML stereotypes definitions to the orig-
inal AML profile:

Table 1. Main RT-AML stereotypes

Name Stereopype AML Base Class Description

Real-Time Agent Type << agentRT >> UMLClass, UMLClassifierRole, Agent Type RT
UMLObject constraints

Real-Time Belief << beliefRT >> UMLClass, UMLObject Belief with RT
constraints

Real-Time Decidable Goal << dgoalRT >> UMLClass, UMLObject Decidable Goal with
UMLObject RT constraints

4 The Design and Verification Methodology

The methodology we present for MAS design and development is divided into
four phases: Modeling; Validation ; Translation; Run-time. In the first phase a
MAS system is defined by using the RT-AML language; in the second phase a
RT-AML model is translated into a timed automata in order to perform verifi-
cation tasks; in the third phase the RT-AML model is translated into stubs for
an agents platform (JADEX [6]), which will be specialized by programmers. In
the last phase the constraints defined in the MAS modeling phase are monitored
at run-time in order to evaluate if design specifications are verified during real
system execution. In the following the four phases will be described in detail.

4.1 Modeling Phase

A number of RT-AML static diagrams used to define agents beliefs, states and
stimula are used to model agents. (RT-)AML Activity Diagram and (RT-)AML
Communicative Sequence Diagram are used here to model interactions among
agents. These two diagrams represent a dynamic view of the system and are
critical for definition of a real-time behavior. We will focus in the following on
the definition of this view since the statical one is similar to class diagram of
any object oriented applications.

For each agent behavior, in RT-AML Activity Diagrams, a sequences of ac-
tions (called Action States), which leads from an Initial state to a Final State,
must be defined. All states are characterized by real-time properties. Stimula
(internal or external) can be defined by edges connecting states. Stimula are
also characterized by real-time properties and can be generated by the agent
itself (e.g. acting on other agents), or they are sensed by the agent in a given
state to enable a (timed) state transition. All agents start from an Initial State,
characterized by specific beliefs, and aim at achieving a Final State that is asso-
ciated to a RT-Goal. In such a way plans are defined for agents, which pursue a

190 F. Moscato et al.

Intial
State

<< actiostateRT >>
Focus Enemy

{ ExecAcion Time(ms) = 1000, Timeout(ms) = 1500}

Goal
(deadline 6 s)

<<transitionRT>>

<< actiostateRT >>
Shoot

{ ExecAcion Time(ms) = 1000, Timeout(ms) = 1000 }

<<transitionRT>>

<<transitionRT>>
Distant_Enemy

focusOK
<<transitionRT>>

focusNotOK
<<transitionRT>>

<< actiostateRT >>
Punch

{ ExecAcion Time(ms) = 3000, Timeout(ms) = 6 000 }

Close_Enemy
<<transitionRT>>

<<transitionRT>>

<<transitionRT>>

Fig. 1. Agent Plan with decision model

Soldier Player

1 : close
<<stimulusRT>>

2 : punch
<<stimulusRT>>

Soldier Player

1 : close
<<stimulusRT>>

2 : shoot
<<stimulusRT>>

Soldier Player

1 : approaching
<<stimulusRT>>

2 : close
<<stimulusRT>>

3 : shoot
<<stimulusRT>>

Soldier Player

1 : approaching
<<stimulusRT>>

2 : close
<<stimulusRT>>

3 : punch
<<stimulusRT>>

Fig. 2. Communicative Sequence Diagram

defined goal when a given set of beliefs are true. Depending on external stimula
and beliefs, an agent can usually take different choices to achieve a goal. These
choices are modeled by choice elements (rhombuses) in the RT-AML Activity
Diagram as shown in Fig. 1.

Once the agent behaviors are defined by the RT-AML Activity Diagrams,
interactions among agents have to be defined. This is done by defining RT-
AML Communicative Sequence Diagrams, which describe sequences of stimula
exchanged among agents. Stimula exchanged with other agents, or Self Stimula
(sent from an agent to itself), are characterized by real-time properties and
can be represented by << StimulusRT >> meta-class. An example of such
diagrams is reported in Fig.2

Formal Modeling and Verification of RT-MAS: The REMM Framework 191

4.2 Validation Phase

In this phase the RT-AML model is translated into a formalism on which model
checking techniques [7] can be applied. The language chosen for the validation
and verification phase is the timed automaton formalism [8, 9]. Basically, timed
automata are state automata where time is defined explicitly. It allows to eval-
uate how much time it is possible to remain in a given state. Furthermore it
is possible to define if a state transition generates an external event or if an
event allows for transitions enactment. Due to lack of space, we will describe
briefly how translation works and how timed automata are built from RT-AML
diagrams introduced in the previous section.

All Action States in the RT-AML Activity Diagrams are then translated in
States of the Timed Automata model. Each diagram has its own timed automa-
ton, while their product automaton is representative of the whole system. State
invariants and transitions guards are defined by taking into account timing prop-
erties from RT-AML model. RT-AML Sequence Diagram is used to define timed
automata synchronization events.

For example part of timed automata generated by these translation rules looks
like in Fig.3 The verification problem is then translated into a reachability prob-
lem: a MAS can reach a goal if the Final State representing a goal is translated
into a reachable state into the timed automata model. This property can be ex-
pressed into TCTL logics [10]. Obviously all properties, which can be expressed
in TCTL logics can be checked on timed automata model.

4.3 Translation Phase

In this phase the (validated) RT-AML model is translated into a series of stubs,
which implement agents interfaces and their behaviors. In our methodology stubs
for JADEX [6] are produced. A deep description of this phase is omitted for
brevity’s sake but the JADEX stubs are generated similarly to Java code from
UML diagrams.

Fig. 3. Specification of a Timed Automata

192 F. Moscato et al.

4.4 Run-Time Phase

At run-time, due to unpredictable events, real-time specifications of a MAS could
not be satisfied as it was expected. This may lead to situations where real-time
goals cannot be reached within specified deadlines or cannot be reached at all.
It is then necessary to monitor run-time execution to manage such situations.
JADEX Monitor and Scheduler classes implemented in the previous phase are
used at run-time to identify such events. Usually, it is possible to have three type
of timing behaviors for activities in Action States (see Fig.4):

time

time

time

Estimated
Execution time

Action
timeout

(A)

(B)

(C)

Action Execution Time

Action Execution Time

Action Execution Time

Fig. 4. Timelines

Each Action State is associated to an expected execution time and to a time-
out. If a real execution of an Action State exceeds the estimated time and even
its timeout, the plan state reachability set could change. In order to check contin-
uosly the reachability of the current configuration, the original RT-AML model
is modified with the new timing behavior.

Check results could inform that: goal is still reachable; goal is still reachable
but not through all execution path (i.e. some execution path cause a deadline
expiration); goal is never reachable. In the first case agents can continue their
execution without any reconfiguration; in the second case agents may choose the
current plan to reach their goal; in the last case agents have to change their
plans because their goal are definitely not reachable.

4.5 The REMM Framework

In order to enact the described phases, the REMM framework has been devel-
oped. Its architecture is depicted in Fig.5. Modeling and Design Tool enacts
the Modeling phase and it is implemented by using StarUML [12], in which the
RT-AML metaclasses profile has been defined. The Translation tool enacts both
second and third phase of the proposed methodology. It translates both RT-AML
model into timed automata and into JADEX stubs. The verification tool is used
for validation and verification phase. Agents Code produced by the translation
tool is interfaced with a run-time environment for validation and verification
also during execution as it has been explained before.

Formal Modeling and Verification of RT-MAS: The REMM Framework 193

Fig. 5. REMM Architecture

5 The GameBot Example

As proof of concept we desiged and developed intelligent agents, called bots,
for the GameBots [14] framework. Agents developed in GameBots are then ex-
ecuted into the Unreal Tournament game to play against human players. They
must be provided with reactivity, proactivity and autonomy and must satisfy
real-time requirements while interact with humans players and with the exe-
cution environment. Two bots are designed in this example. AttackBot aims at
searching and shooting human players, SupportBot is searching for other bots for
supporting purposes. A snapshoot from StarUML, of a Static view of the RT-
AML model of the two bots is showed in Fig.5. Blue shapes represent agents;
double circles correspond to goals, and pentagons represent plans. The two bots
specialize a common agent class called GameBot that includes all GameBot in-
terfaces. The main goal of each bot is FindEnemy. AttackBot pursue also other
two goals: Shooting enemies (human players) and to getCured when its energy
is low. SupportBot has aims at achieving FindFriend and Heal goals. Each Bot
pursue these goals while they are exploring the arena to find out enemies or
the other bot. When the enemy is found, the AttackBot tries to shoot him by
using the shooting plan. It has to move properly in order to follow the enemy
and kill him without wasting ammos. Each movement is an action to execute
under real-time constraints and the whole shooting plan is also a real-time plan.
If the bot is wounded by enemies, it calls for help (Call-for-help). And the other
bot tries to reach it in time. Some activity diagrams, which have been showed
in previous sections, are part of the complete example that is not described in
detail here for lack of space.

194 F. Moscato et al.

Fig. 6. Bots model

Fig. 7. Game Screenshot

Bots use run-time validation when their deadline expires, choosing other plan
if goals become unreachable (for example if a bot was shooting a player that
runs away, its goal of shooting becomes unreachable and exchanges its current
plan and goal with SearchEnemy ones). In Fig.5 a screenshot where AttackBot
tries to achieve the Shoot goal is showed.

6 Summary and Conclusion

We described in this paper a methodology we defined to support modeling and
design of real time Multi Agent Systems. We developed a framework for de-
velopment, verification and execution of multi agents applications. The pillars
of our methodology are: a Real Time formalism for MAS modeling; a trans-
lation tool for generation of timed automata and of agent code; a run-time
environment for code execution and on-line verification. Real Time formalism

Formal Modeling and Verification of RT-MAS: The REMM Framework 195

allow to introduce time constraints into BDI architecture and interactions of
MASs. Timed Automata are used to verify if agents goals could be achieved
at design phase. Agent code is automatically generated from Real Time Agent
Language to be executed into a JADEX platform. An agent monitor is embed-
ded in the code for on-line checking of goals reachability, when, at run-time,
estimated parameters of model are updated with timing measured during exe-
cution. A case of study is presented. Characters implemented by agents, which
play against a human user, in an interactive environment, under soft real-time
constraints.

References

1. d’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS
Architechure: A Specification of the Distributed Multi-Agent Reasoning System.
Journal of Autonomous Agents and Multi-Agent Systems 9(1-2), 5–53 (2004)

2. Himoff, J., Skobelev, P., Wooldridge, M.: MAGENTA Technology: Multi-Agent
Systems for Industrial Logistics. In: Proceedings of the AAMAS 2005, Industry
Track, Utrecht, The Netherlands (2005)

3. Kavi, K., Aborizka, M., Kung, D.: A framework for designing, modeling and ana-
lyzing agent based software systems. In: Proc. of 5th International Conference on
Algorithms & Architectures for Parallel Processing, Beijing, China, October 23-25
(2002)

4. Silva, V., Lucena, C.: From a Conceptual Framework for Agents and Objects to
a Multi-Agent System Modeling Language. Journal of Autonomous Agents and
Multi-Agent Systems 9(1-2), 145–189 (2004)

5. Zhang, L.: Development Method for Multi-Agent Real-Time Systems. International
Journal of Information Technology 12(5) (2006)

6. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In:
Bordini, R., Dastani, M., Dix, J., Seghrouchni, A. (eds.) Multi-Agent Program-
ming. Kluwer, Dordrecht (2005)

7. Wooldridge, M., Huget, M.-P., Fisher, M., Parsons, S.: Model Checking Multi-
Agent Systems: The MABLE Language and Its Applications. International Journal
on Artificial Intelligence Tools 15(2), 195–225 (2006)

8. Wooldridge, M.: An Automata-theoretic approach to multiagent planning. In: Pro-
ceedings of the First European Workshop on Multiagent Systems (EUMAS 2003).
Oxford University, Oxford (2003)

9. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifiable multi-agent pro-
grams. In: Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) PROMAS 2003.
LNCS (LNAI), vol. 3067, pp. 72–89. Springer, Heidelberg (2004)

10. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Department of
Computer Science. Aalborg University, Denmark (2004)

11. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE - A white paper. EXP in
search of innovation - Special Issue on JADE TILAB Journal (2003)

12. Wong, S.: StarUML Tutorial [Connexions Web site] (September 10, 2007),
http://cnx.org/content/m15092/1.1/

http://cnx.org/content/m15092/1.1/

196 F. Moscato et al.

13. Trencansky, I., Cervenka, R., Greenwood, D.: Applying a UML-based agent model-
ing language to the autonomic computing domain. In: Companion to the 21st ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications OOPSLA 2006, Portland, Oregon, USA, October 22 - 26, pp. 521–529.
ACM, New York (2006)

14. Kaminka, G.A., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshal, A.N.,
Scholer, A.S., Tejada, S.: GameBots: the ever-challenging multi-agent research test-
bed. Communications of the ACM (January 2002)

Email Archiving and Discovery as a Service

Frank Wagner1, Kathleen Krebs2, Cataldo Mega3, Bernhard Mitschang1,
and Norbert Ritter2

1 University of Stuttgart, Universitätsstraße 38, D-70569 Stuttgart
���������	
�������������������������

2 University of Hamburg, Vogt-Koelln-Straße 30, D-22527 Hamburg
������	�������������
�����������
�������

3 IBM Deutschland Entwicklung GmbH, Schönaicher Straße 220, D-71032 Böblingen
�������
���������
���

Summary. Corporate governance and legislative regulations are forcing companies to extend
their IT infrastructure by Email Archive and Discovery (EAD) systems for compliance reasons.
Praxis shows that every installation is di�erent from another; not only in terms of the execution
infrastructure, but also in terms of e.g. document and archiving procedures that map a company’s
own business rules. As a consequence, EAD systems have to be highly customizable to their
intended usages.

For this purpose, we propose a service-oriented approach at various levels of detail that, on one
hand, allows for describing EAD properties at the abstract (service) level and, on the other hand,
supports the appropriate mapping of these services to the existing execution infrastructure. In this
paper, we focus on the development and (architectural) design of an EAD system, which is well
suited to fulfill these requirements. On the long run, we consider this solution as an important step
on the way to an e�ective distributed and scalable approach, which, as we think, can be achieved
by appropriate mechanisms of automatic workload management and dynamic provisioning of
EAD services based on e.g. grid technology.

1 Introduction

Large enterprises use software to capture, manage, store, preserve and deliver content
since more than 20 years. Content in this case does not only mean structured or un-
structured information. The term stands for any kind of electronic artifacts: records,
data, metadata, documents, websites, etc. that are related to organizational processes.
This variety of heterogeneous content types involves various application areas of
Enterprise Content Management (ECM). Nowadays the role of ECM is changing
considerably, since more and more new requirements have to be fulfilled by content
management systems (CMS). On one hand, all digital assets (content) of an enterprise
need to be managed appropriately and in a comprehensive way (functional require-
ments). On the other hand, these huge amounts of content data need to be processed very
eÆciently. Besides high performance and scalability, cost e�ectiveness (of CMS soft-
ware and hardware) is a further non-functional key requirement. By cost e�ectiveness
we mean both reduction in storage and processing cost of steadily growing content col-
lections as well as the administration of the underlying IT infrastructure. The latter is
especially relevant, since there is a growing market for ECM solutions in the area of
small and medium enterprises.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 197–206, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

198 F. Wagner et al.

Email archiving and discovery (EAD) for compliance is a more and more important
facet of ECM, obviously showing the above mentioned non-functional requirements. In
our research we consider EAD as a representative area in ECM, which can be used to
analyze key characteristics of ECM solutions.

Several factors are driving the need for EAD:

Mailbox limitations: The size of individuals’ mailboxes are almost always restricted
for two reasons: 1) calculable storage costs and 2) performance of the email server.
Therefore emails have to be deleted from the email servers and archived elsewhere.

Knowledge stored in the emails: Email is playing a more and more important role
for the communication within and between enterprises. Obviously, there is a huge
amount of value (knowledge) contained in email systems worth of being discov-
ered.

Legislative requirements: Triggered by large financial scandals, like those about the
US enterprises Enron and WorldCom (now MCI), laws are enforcing regulatory
compliance when archiving emails [6, 7]. Additionally, existing laws and regula-
tions demanding safekeeping of documents are nowadays also applied to digital
documents and email communications.

Court orders: More and more companies are forced by litigation to (re)produce old
emails. Some large companies are even receiving several of these requests per day.
Without proper procedures in place, this is a very time-consuming, expensive and
error-prone task.

Obviously EAD is a very important issue for today’s enterprises. One major chal-
lenge regarding the development of an appropriate EAD system is to support the re-
quired email processing, archiving and search functions in an eÆcient and scalable
way. These non-functional requirements are hard to fulfill facing the huge amount of
data to be managed and the high numbers of emails the EAD system has to continu-
ously cope with. In this paper, we focus on the development and (architectural) design
of an EAD system, which is well suited to fulfill these requirements. We further pro-
vide a distributed architecture and corresponding empirical evaluations proving that our
approach meets current performance and scalability requirements. On the long run, we
consider this solution as an important step on the way to an even more e�ective ap-
proach, which, as we think, can be achieved by appropriate mechanisms of automatic
workload management and dynamic provisioning of EAD services based on e.g. grid
technology.

The remainder of the paper is organized as follows. Section 2 gives an overview
of related work. Section 3 describes major use cases and requirements for an EAD
system. In section 4 we present our approach to a service-based EAD and evaluate it in
section 5. Finally, section 6 concludes the paper and gives an outlook.

2 Related Work

As email archiving is a very hot topic for many enterprises, there are many solutions
available on the market [1]. As the publicly available information is often limited to
marketing brochures, we only mention two solutions. The solution IBM and its former

Email Archiving and Discovery as a Service 199

business partner iLumin [9, 10] once o�ered used a central relational database to hold
the catalog. In large settings this database is a bottleneck, especially as it is also respon-
sible for the analysis of the emails. In contrast, Symantec’s solution [5] uses multiple
search engines for the catalog, but they are set up in a static way.

Some research projects also deal with email archiving. The “Texas Email Repository
Model” [2] mostly deals with how to operate a statewide email archive and with long-
term preservation. A project within IBM research [4] considered a very stringent fraud
model. They make sure that nobody in the enterprise, no matter how many privileges he
has, can manipulate the data or metadata of a record after it was archived. In contrast,
we are focusing more on performance and assume the environment being suÆciently
secured.

The most common approach adopted in ECM systems w.r.t. scalability was scale-up
on the basis of large multi-processor systems. Measurements [3, 8] performed on cluster
and grid systems indicate that scale-out might be more cost e�ective and a�ordable if
administration and maintenance overhead can be kept to a minimum.

3 Email Archiving and Discovery

Figure 1 shows the major components of an email system. An important component
is the email server, which is managing the mailboxes of its users. It reliably stores the
mails in the inbox and in folders. For emails coming from the Internet into the system,
it is nowadays common to scan them for spam and viruses. Therefore email servers
provide interfaces to plug-in filters. Although it is not always allowed to just drop such
emails, the further processing of the email can be di�erent.

The components we are most interested in are the archive, where mails are stored
for a longer period of time according to corporate-specific policies, and the discovery
service, that allows searching for information in the archive.

The archiving system has four main tasks: ingest emails, full-text index, archive, and
manage them for search and retrieval. To fulfill these tasks the archive has crawlers
which identify qualifying emails by interpreting predefined archive rules, then retrieve

Fig. 1. Major email system components

200 F. Wagner et al.

them from the email server and pass them to parsers that extract the plain text from all
kinds of document formats. Further, the email messages and attachments are full text
indexed and stored in the catalog for later search and retrieval.

3.1 Use Cases

In this section we will describe the primary EAD use cases. Of course there are many
more use cases. However, we want to focus on those relevant for the message of this
paper, especially ingestion of the inbound message flow from the various email sources
into the archive.

Use Case 1 - Ingestion of emails: There are two ways for an email to enter the system.
a) A crawler regularly scans all mailboxes and archives all emails that meet specific
rules. Archived emails are either completely removed from the mailbox, or are
replaced by small stubs with references to the archived versions. b) The archive
system captures all emails processed by the email server. For this purpose, IBM R�

Lotus R� Domino R� for example provides journaling mailboxes.
Use Case 2 - Search and retrieve: A regular user tries to retrieve one of his archived

emails. He possibly remembers the sender�receiver of the email or some words�parts
of the subject or body of the email. After matching emails have been found in the
archive, the user may want to either directly look at some of them or re-import them
into his mailbox.

Use Case 3 - Compliance and Discovery: A user equipped with higher privileges
searches inside all the emails or a large subset of them, e.g. to check that inter-
nal compliance rules are met, or to find emails that might be relevant to a court
case. Therefore he might search for all emails send and�or received by a given set
of users within a certain period of time and containing a specific company name.
After examining matching emails he may want to put a legal hold onto these emails
in order to assure that they will not be deleted, and to export these emails to be
further examined by e.g. lawyers.

Use Case 4 - Remove emails from the archive: The last use case covers the removal of
emails. The archive therefore regularly deletes all the emails that have reached the
end of their retention time, and are not on a legal hold.

3.2 Functional EAD Requirements

In contrast to ‘usual’ Content Management it is a special property of EAD that emails
are never updated. Given the amount of data to be considered, most emails will very
likely never be retrieved. They are only ingested and finally disposed at the end of
their retention period. Therefore, the major concern of an EAD system design must
be the optimization of the ingest process. Classification and filtering of emails as well
as persistence mechanisms with di�erent properties, e.g. for records management, are
further required functions.

Email Archiving and Discovery as a Service 201

3.3 Non-functional EAD Requirements

Important non-functional requirements for an EAD system are reliability, authenticity
and security. These properties are mandatory for an archive in a real-world environment.
Without, the results of the archive are not usable in legal cases.

A further requirement is high performance, and especially high throughput. The
EAD system has to support the email load expected for large enterprises.

Finally the system has to be a�ordable and cost-e�ective, especially in the small and
medium businesses segment. Being able dynamically adapt to the current situation by
acquiring additional resources and releasing unused resources is worthwhile.

4 Design and Engineering Issues

Concrete requirements largely vary from industry to industry and from company to
company. We have chosen a service-oriented approach for various reasons: (1) cus-
tomizability; (2) high performance and scalability through dynamic provisioning and
corresponding resource management and (3) developing an initial concept for provid-
ing EAD as a Service.

As indicated in Figure 2, the system is separated into several hardware and soft-
ware components. We use service-orientation to encapsulate all components and make
them being manageable resources. This is necessary to allow dynamic provisioning and
management of all EAD application components.

The application logic layer contains the EAD services meeting the functional re-
quirements: ingest of new emails (ingest service), and making the data accessible for
search and retrieval (content service). These services can be instantiated on the infras-
tructure as needed and the number of their incarnations can be adapted to the current
load. The services at the virtualization layer coordinate the services in the application
logic layer and integrate their results. The ingest and content services as well as the
catalog component of our service-oriented EAD approach are described in more detail
in the next sub-sections.

Our approach allows the configuration of the system at three levels: the process,
the services and the application. Customization at the process level comprehends

Fig. 2. Architecture of the service-oriented EAD approach

202 F. Wagner et al.

skipping individual handlers or replacing one handler by another. For example clas-
sification might not be necessary in all situations. Customization at the service level
means setting service parameters. Examples are the hashing-algorithm that should be
used to generate the IDs, or the merge factor used by Lucene. EAD applications can be
provided following the software as a service idea. The customers only pay per usage
according to agreed SLAs.

4.1 Ingestion Service

An EAD system must monitor emails entering, leaving and exchanged within an en-
terprise. The emails are captured, parsed, interpreted, and, if found relevant, archived.
Typically such a system is composed of many components as indicated in Figure 1.
One observation from existing EAD solutions is that data is often copied between dif-
ferent components of the system, and that some steps are performed similarly by mul-
tiple components. An example for such a step is text extraction. This has to be done
for a content-based filtering to evaluate compliance rules, and for full-text indexing of
emails. Therefore one central point of our approach is to reduce unnecessary copying
and duplicate work in order to increase the throughput of the system.

To start a new ingest job an ingest service gets the location of the mailbox to crawl,
the necessary credentials and additional configuration parameters from the scheduler. It
then connects to the email server and performs several steps for each email:

1. The crawler retrieves the emails eligible for archiving from the email server and
puts them into a working queue.

2. Unique IDs are generated based on the email using a hash algorithm like MD5.
3. The IDs are used to check, whether the email itself or parts of it have already been

stored in the system. Duplicates are not archived again.
4. Plain text is extracted from attachments with rich media like PDF-documents or

oÆce documents.
5. The extracted plain text can be further processed with linguistic methods to aug-

ment the text information.
6. The emails are classified to determine if and how long they have to be archived.
7. The extracted plain text from headers, body and attachments is added to a Lucene

full text index.
8. Finally the email is stored in the archive in a format well suited to provide 100%

format fidelity with its original.

To be able to scale-up on a multiprocessor system, the crawler can be configured
to instantiate multiple threads. The threads then pick one email after the other from a
shared working queue and drive them through the process.

4.2 Content Service

The catalog and the archived data are distributed over several nodes. Managing them
and making them accessible is the duty of the content services. Search requests from
a user are first processed by the request server which then forwards the request to the
relevant content services. The content service then processes the request on its local

Email Archiving and Discovery as a Service 203

indexes and returns the result to the request server. Requests to retrieve emails from
the archive are processed in a similar way. Additionally the content services are used
to manage the local data, e.g. to merge full-text indexes or to delete emails when their
retention period is over.

4.3 Catalog

An important component of any archiving system is the catalog. It is an – at least logi-
cally – centralized component that manages the state of the system. It essentially con-
tains the following information:

� Specification of the items stored in the archive. It lists all the fields of the item, their
names, data types and some other properties.

� Information about the actual ingestion process. The steps that have to be performed
for each item and the rules that have to be applied.

� Metadata about each item in the archive as defined by the item type. This is the data
that is generated by the ingestion process and can then be searched on by the user
in order to find an item.

� User and access control. Although the users may be managed externally for example
in an LDAP server, it is still necessary to specify who is allowed to do what.

� The state of the system. The catalog keeps track of the existing indexes, their state,
and some summary data about their content.

There are three big di�erences between the metadata extracted from the emails and
the other listed information: a) the rate at which the metadata is modified is much higher
than for the others. For each email that is archived a new entry is added. And this
typically happens more often than everything else in the system. b) This metadata is by
orders of magnitude the largest part of the total information. c) In an EAD system, as in
any archive, the item itself does not change. Therefore the extracted metadata is never
modified.

Emails can be considered as semi-structured data with a very simple structure (only
a few header fields). Large parts of the email, the body and the attachments, are free
text, and even the content of the header fields, like the subject and maybe even the
email addresses, are more or less free text. This characteristic makes search engines
well suited for managing the metadata of an email archiving system.

The main problem of search engines is their deficiencies with respect to the update
of individual fields of a document. To overcome this deficiency, we are following a
hybrid approach. The aim is to store the volatile information in a DBMS where it can
be eÆciently updated, and to store the non-volatile information in the search engine.

To avoid expensive joins between DBMS and search engine, it is crucial that most
operations are performed on only one of the two systems. Especially the two most
important and critical operations, ingest and search, should only by executed by the
search engine. The amount of information that needs to be retrieved from the DBMS,
for example for access control, is small. It is suÆcient to retrieve it once at the beginning
of an ingest process or a search session.

Search engines typically do not provide ACID transactions. The indexes are updated
incrementally in batches. This leads to a lag in the searchable information. But for an

204 F. Wagner et al.

EAD system this is not a problem, as long as all information will be searchable within
a customer-specific time frame. This also opens the possibility to ingest the emails
independently on several machines, and to integrate the results from time to time.

5 Design Evaluation

To evaluate our service-oriented approach we implemented a subset of the functionality
required for an EAD system using a set of EAD services. These services and initial
performance measurements are discussed in this section.

5.1 Architecture

In a service-oriented architecture the atomic element is the service. This indicates that
all components of the EAD system have to be transformed into or encapsulated by a
service. Our service-oriented design is shown in figure 3. All included services are part
of a scalable service pool. Besides the mainly static components scheduler and registry,
a set of EAD services (factory, content service and ingest service) is present in the
service pool.

The second main component of the system is the Content Repository. In this design
it is a logical component that is combined from a distributed catalog, implemented as
full-text search indices, and an archive which is responsible for the actual archiving
of the original email documents. The repository abstraction layer o�ers an integrated
access to the content repository, without requiring knowledge about the distribution.

5.2 Measurements

In this section we are presenting some results of initial performance measurements. In
these tests the emails (enron email dataset as test dataset) are read from a file system.

Fig. 3. Architecture of our current prototype

Email Archiving and Discovery as a Service 205

Fig. 4. Ingest performance measurements

The currently implemented reduced ingestion process consists of indexing the emails
using Lucene and storing them in the file system. As this test setup is very simplistic,
the results are only meant to show the tendency.

The multi-threaded implementation of the crawler allows for utilizing the CPU
power of a single computer very well. Figure 4(a) shows that on the test machines
with two dual-core processors the throughput increases up to four threads. Resource
monitoring shows that by further increasing the thread number the CPUs get exhausted,
and the throughput stagnates.

The way the catalog is separated into a DBMS part and a search engine part fa-
cilitates a straightforward system evolution towards a distributed approach with EAD
system being distributed over multiple nodes. This distributed system still has one
coordinator-DBMS, but may comprise a varying number of machines with largely in-
dependent workers and search engines. Initial experiments (see Figure 4(b)) indicate a
nearly linear scalability in the number of nodes. Therefore the architecture presented in
this paper is a promising approach towards an a�ordable and adaptive system that can
scale-out as necessary. The details of the distribution and the partitioning and as well as
the orchestration of the services for scalability are beyond the scope of this paper.

6 Conclusion and Outlook

In this paper we presented an architectural approach for the implementation of an
service-oriented EAD system. The functionalities are implemented as services that
can be instantiated as needed on the infrastructure. This facilitates the adaption of the
EAD system to di�erent customer requirements and workloads. The system provides a
promising performance while yet fulfilling the requirements towards an EAD system.

Current and future work encompasses the management and provisioning of the
system. This includes various issues over all layers, e.g. monitoring and adjusting the
system so the assured service level agreements are fulfilled.

206 F. Wagner et al.

Trademarks: IBM, Lotus and Domino are registered trademarks of the International
Business Machines Corporation in the United States, other countries or both. Other
company, product, or service names may be trademarks or service marks of others.

References

1. DiCenzo, C., Chin, K.: Magic quadrant for e-mail active archiving, 2007. Technical report,
Gartner (2007)

2. Green, M., Soy, S., Gunn, S., Galloway, P.: Coming to term – designing the texas email
repository model. D-Lib Magazine 8(9) (2002)

3. Michael, M., Moreira, J.E., Shiloach, D., Wisniewski, R.W.: Scale-up x scale-out: A case
study using nutch�lucene. In: Parallel and Distributed Processing Symposium, pp. 1–8 (2007)

4. Mitra, S., Hsu, W.W., Winslett, M.: Trustworthy keyword search for regulatory-compliant
records retention. In: Proceedings of the 32nd International Conference on Very Large Data
Bases, Seoul, Korea, pp. 1001–1012. ACM Press, New York (2006)

5. Symantec. Symantec enterprise vault introduction and planning. Technical report, Symantec
(2006)

6. Thickins, G.: Compliance: Do no evil – critical implications and opportunities for storage.
Byte and Switch Insider 2(5) (2004)

7. U.S. Department of the Interior. It’s in the mail: Common questions about electronic mail
and oÆcial records (2006)

8. Yu, H., Moreira, J.E., Dube, P.: Performance studies of a websphere application, trade, in
scale-out and scale-up environments. In: Parallel and Distributed Processing Symposium,
pp. 1–8 (2007)

9. Yung, W.W.: Explore the IBM mail management and compliance solution. developerWorks
(2005)

10. Zhu, W.-D., Friedrich, T., Hogg, R., Maletz, J., McBride, P., New, D.: E-mail Archiving and
Records Management Integration Solution Guide. IBM Redbooks (January 2006)

Similarity of DTDs Based on Edit Distance and
Semantics�

Aleš Wojnar, Irena Mlýnková, and Jiřı́ Dokulil

Charles University in Prague, Czech Republic
��������	�
��������, �
�	����	����������	����,
��
���������������	����

Summary. In this paper we propose a technique for evaluating similarity of XML schema frag-
ments. Contrary to existing works we focus on structural level in combination with semantic
similarity of the data. For this purpose we exploit the idea of edit distance utilized to constructs
of DTDs which enables to express the structural di�erences of the given data more precisely.
In addition, in combination with the semantic similarity it provides more realistic results. Using
various experiments we show the behavior and advantages of the proposed approach.

1 Introduction

The eXtensible Markup Language (XML) [3] has already become a standard for data
representation and manipulation and, thus, it appears in most areas of information tech-
nologies. A possible optimization of XML-based methods can be found in exploitation
of similarity of XML data. The most common areas of exploitation of data similarity
are clustering, dissemination-based applications (e.g. [1]), schema integration systems
(e.g. [7]), data warehousing, e-commerce, semantic query processing etc. But despite
the amount of existing similarity-based approaches is significant, there is still a space
for both improvements and new ways of similarity exploitation.

In this paper we focus on similarity of XML schema fragments expressed in DTD
language [3] and, in particular, on persisting disadvantages of the existing approaches.
The key emphasis is currently put on the semantic similarity of schema fragments re-
flecting the requirements of corresponding applications. And if the approaches consider
DTD structure, they usually analyze only simple aspects such as, e.g., leaf nodes or
child nodes of roots of the fragments. Therefore, we focus on more precise analysis
of the structure, but, on the other hand, we still preserve the exploitation of seman-
tic similarity. For this purpose we combine and adapt to DTD constructs two verified
approaches – edit distance and semantics of element�attribute names.

The paper is structured as follows: Section 2 overviews the related works. Section 3
describes the proposed approach and Section 4 results of related experiments. Section
5 provides conclusions and outlines future work.

� This work was supported in part by the National Programme of Research (Information Society
Project 1ET100300419).

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 207–216, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

208 A. Wojnar, I. Mlýnková, and J. Dokulil

2 Related Work

The number of existing works in the area of XML data similarity evaluation is nontriv-
ial. We can search for similarity among XML documents, XML schemes, or between
the two groups. We can distinguish several levels of similarity, such as, e.g., structural
level, semantic level or constraint level. Or we can require di�erent precision of the
similarity.

In case of document similarity we distinguish techniques expressing similarity of
two documents DA and DB using edit distance, i.e. by measuring how diÆcult is to
transform DA into DB (e.g. [10]) and techniques which specify a simple and reason-
able representation of DA and DB, such as, e.g., using a set of paths, that enables their
eÆcient comparison and similarity evaluation (e.g. [12]). In case of similarity of a doc-
ument D and a schema S there are also two types of strategies – techniques which
measure the number of elements which appear in D but not in S and vice versa (e.g.
[2]) and techniques which measure the closest distance between D and “all” documents
valid against S (e.g. [9]). And finally, methods for measuring similarity of two XML
schemes S A and S B combine various supplemental information and similarity measures
such as, e.g., predefined similarity rules, similarity of element�attribute names, equal-
ity of data types, similarity of schema instances or previous results (e.g. [4, 5]). But,
in general, the approaches focus mostly on semantic aspects of the schema fragments,
whereas structural ones are of marginal importance.

3 Proposed Algorithm

The proposed algorithm is based mainly on the work presented in [10] which focuses
on expressing similarity of XML documents DA and DB using tree edit distance, i.e. the
amount of operations necessary to transform DA to DB. The main contribution of the
algorithm is in introducing two new edit operations InsertTree and DeleteTree which
allow manipulating more complex structures than a single node. And repeated struc-
tures can be found in a DTD as well if it contains shared or recursive elements. But,
contrary to XML documents that can be modeled as trees, DTDs can, in general, form
general cyclic graphs. Hence, procedures for computing edit distance of trees need to be
utilized to DTD graphs. In addition, not only the structural, but also the semantic aspect
of elements is very important. Therefore, we will also concern semantic similarity of
element�attribute names.

Algorithm 1. Main body of the algorithm
Input: XS DA, XS DB

Output: Edit distance between XS DA and XS DB

1: TA � ParseXSD(XS DA);
2: TB � ParseXSD(XS DB);
3: CostGra f t � ComputeCost(TB);
4: CostPrune � ComputeCost(TA);
5: return EditDistance(TA, TB, CostGra f t , CostPrune);

Similarity of DTDs Based on Edit Distance and Semantics 209

The method can be divided into three parts depicted in Algorithm 1, where the input
DTDs are firstly parsed (line 1 and 2) and their tree representations are constructed.
Next, costs for tree inserting (line 3) and tree deleting (line 4) are computed. And in the
final step (line 5) we compute the resulting edit distance, i.e. similarity, using dynamic
programming.

3.1 DTD Tree Construction

The key operation of our approach is tree representation of the given DTDs. Neverthe-
less, the structure of a DTD can be quite complex – the specified content models can
contain arbitrary combinations of operators (i.e. “�” or “�”) and cardinality constraints
(i.e. “�”, “�” or “�”). Therefore, we firstly simplify the complex regular expressions
using a set of transformation rules.

Simplification of DTDs. For the purpose of simplification of DTD content models we
can use various transformation rules. Probably the biggest set was defined in [11], but
these simplifications are for our purpose too strong. Hence, we use only a subset of
them as depicted in Figures 1 and 2.

I-a) (e1�e2)� � e�1� e�2
I-b) (e1� e2)� � e�1� e�2
I-c) (e1� e2)? � e1?� e2?
I-d) (e1� e2)� � e�1 � e�2
I-e) (e1�e2) � e1?� e2?

Fig. 1. Flattening rules

II-a) e��1 � e�1 II-b) e��1 � e�1
II-c) e�1? � e�1 II-d) e1?� � e�1
II-e) e��1 � e�1 II-f) e��1 � e�1
II-g) e1?� � e�1 II-h) e�1 ? � e�1
II-i) e1?? � e?

1

Fig. 2. Simplification rules

The rules ensure that each cardinality constraint operator is connected to a single
element and avoid usage of “�” operator, though at the cost of a slight information loss.

DTD Tree. Having a simplified DTD, its tree representation is defined as:

Definition 1. A DTD Tree is an ordered rooted tree T � (V� E), where

1. V is a finite set of nodes, s.t. for �v � V, v � (vType� vName� vCardinality), where vType

is the type of a node (i.e. attribute, element or #PCDATA), vName is the name of
an element�attribute, and vCardinality is the cardinality constraint operator of an ele-
ment�attribute,

2. E � V � V is a set of edges representing relationships between elements and their
attributes or subelements.

An example of a DTD and its tree representation (after simplification) is depicted in
Figure 3.

Shared and Repeatable Elements. The structure of a DTD does not have to be purely
tree-like. There can occur both shared elements which invoke undirected cycles and re-
cursive elements which invoke directed cycles. In case of a shared element we easily

210 A. Wojnar, I. Mlýnková, and J. Dokulil

Fig. 3. An example of a DTD and its tree representation

create its separate copy for each sharer. But, in case of recursive elements the same idea
would invoke infinitely deep trees. However, we exploit the observation of a statistical
analysis of real-world XML data [8] that the amount of repetitions is in general very
low – less than 10. Actually, for our method it is not important exactly how many occur-
rences we use because each of them can be transformed using a single edit operation.

3.2 Tree Edit Operations

Having the above described tree representation of a DTD, we can now easily utilize the
tree edit algorithm proposed in [10]. For a given tree T with a root node r of degree m
and its first-level subtrees T1� T2� ���� Tm, the tree edit operations are defined as follows:

Definition 2. S ubstitutionT (rnew) is a node substitution operation applied to T that
yields the tree T � with root node rnew and first-level subtrees T1� ���� Tm.

Definition 3. Given a node x with degree 0, InsertT (x� i) is a node insertion operation
applied to T at i that yields the new tree T � with root node r and first-level subtrees
T1� ���� Ti� x� Ti�1� ���� Tm.

Definition 4. If the first-level subtree Ti is a leaf node, DeleteT (Ti) is a delete node
operation applied to T at i that yields the tree T � with root node r and first-level subtrees
T1� ���� Ti�1� Ti�1� ���� Tm.

Definition 5. Given a tree T j, InsertTreeT (T j� i) is an insert tree operation applied to T
at i that yields the tree T � with root node r and first-level subtrees T1� ���� Ti� T j� Ti�1� ���� Tm.

Definition 6. DeleteTreeT (Ti) is a delete tree operation applied to T at i that yields the
tree T � with root node r and first-level subtrees T1� ���� Ti�1� Ti�1� ���� Tm.

Transformation of a source tree TA to a destination tree TB can be done using various
sequences of the operations. But, we can only deal with so-called allowable sequences,
i.e. the relevant ones. For the purpose of our approach we only need to modify the
original definition [10] as follows:

Definition 7. A sequence of edit operations transforming a source tree TA to a
destination tree TB is allowable if it satisfies the following two conditions:

Similarity of DTDs Based on Edit Distance and Semantics 211

1. A tree T may be inserted only if tree similar to T already occurs in the source tree
TA. A tree T may be deleted only if tree similar to T occurs in the destination tree
TB.

2. A tree that has been inserted via the InsertTree operation may not subsequently
have additional nodes inserted. A tree that has been deleted via the DeleteTree
operation may not previously have had nodes deleted.

While the original definition requires exactly the same nodes and trees, we relax the
requirement only to similar ones. The exact meaning of the similarity is explained in
the following text and enables to combine the tree edit distance with other approaches.
Also note that each of the edit operations is associated with a non-negative cost.

3.3 Costs of Inserting and Deleting Trees

Inserting (deleting) a subtree Ti can be done with a single operation InsertTree (Delete-
Tree) or with a combination of InsertTree (DeleteTree) and Insert (Delete) operations.
To find the optimal variant the algorithm uses pre-computed cost for inserting Ti,
CostGra f t(Ti), and deleting Ti, CostPrune(Ti). The procedure can be divided into two
parts: In the first part ContainedIn list is created for each subtree of Ti; in the second
part CostGra f t and CostPrune are computed for Ti. For our purpose we modify procedure
defined in [10] to involve similarity.

Similarity of Elements�Attributes. Similarity of elements�attributes can be evaluated
using various criteria. Since the structural similarity is solved via the edit distance, we
focus on semantic, syntactic and cardinality-constraint similarity.

Semantic similarity is a score that reflects the semantic relation between the mean-
ings of two words. We exploit procedure SemanticSim described in [5] which deter-
mines ontology similarity between two words w1 and w2 by iterative searching a the-
saurus and comparing w1 with synonyms of w2.

Syntactic similarity of element�attribute names is determined by computing the edit
distance between their labels. For our purpose the classical Levenshtein algorithm [6]
is used that determines the edit distance of two strings using inserting, deleting or re-
placing single characters.

And finally, we consider similarity of cardinality constraints of elements specified
by the cardinality compatibility table depicted in Table 1.

The overall similarity of elements�attributes e1 and e2 is computed as S im(e1� e2) �
Max(S emanticS im(e1� e2)� S yntacticS im(e1� e2))���CardinalityS im(e1� e2)��, where
� � � � 1 and �� � � 0.

Table 1. Cardinality compatibility table

� � � 	�	�

� 1 0.9 0.7 0.7
� 0.9 1 0.7 0.7
� 0.7 0.7 1 0.8
	�	� 0.7 0.7 0.8 1

212 A. Wojnar, I. Mlýnková, and J. Dokulil

ContainedIn Lists. The procedure for determining element�attribute similarity is used
for creating ContainedIn lists which are then used for computing CostGra f t and CostPrune.
The list is created for each node of the destination tree and contains pointers to similar
nodes in the source tree.

The procedure for creating ContainedIn lists is shown in Algorithm 2. Since creating
of lists starts from leaves and continues to root, there is recursive calling of procedure
at line 2. At line 4 we find all similar nodes of n in tree TA and add them to a temporary
list. If n is a leaf node, the ContainedIn list is created. For a non-leaf node we have to
filter the list with lists of its descendants (line 6). At this step each descendant of n has to
be found at corresponding position in descendants of nodes in the created ContainedIn
list. More precisely, let vA � nContainedIn, childrenvA is the set of vA descendants, and c is
a child of n. Then cContainedIn�childrenvA � �, otherwise vA is removed from nContainedIn.

Algorithm 2. CreateContainedInLists(TA, n)
Input: tree TA, root n of TB

Output: CointainedIn lists for all nodes in TB

1: for all child of n do
2: CreateContainedInLists(TA, child);
3: end for
4: nContainedIn � FindSimilarNodes(TA, n);
5: for all child of n do
6: nContainedIn � FilterLists(nContainedIn� childContainedIn);
7: end for
8: Sort(nContainedIn);

Costs of Inserting Trees. When the ContainedIn list with corresponding nodes is cre-
ated for node r, the cost for inserting the tree rooted at r can be assigned. The procedure
is shown in Algorithm 3. The foreach loop computes sum, sumd0 , for inserting node r
and all its subtrees. If InsertTree operation can be applied (ContainedIn list of r is not
empty), sumd1 , is computed for this operation at line 8. The minimum of these costs are
finally denoted as CostGra f t for node r.

Algorithm 3. ComputeCost(r)
Input: root r of TB

Output: CostGra f t for TB

1: sumd0 � 1;
2: for all child of r do
3: ComputeCost(child);
4: sumd0 �� CostGra f t(child);
5: end for
6: sumd1 ��;
7: if rContainedIn is not empty then
8: sumd1 � ComputeInsertT reeCost(r);
9: end if

10: CostGra f t(r) � Min(sumd0 ,sumd1);

Similarity of DTDs Based on Edit Distance and Semantics 213

Costs of Deleting Trees. Since the rules for deleting a subtree from source are
same as rules for inserting a subtree into destination tree, costs for deleting trees
are obtained by the same procedures. We only switch tree TA with TB in procedures
CreateContainedInLists and ComputeCost.

3.4 Computing Edit Distance

The last part of the algorithm, i.e. computing the edit distance, is based on dynamic
programming. At this step the procedure decides which of the operations defined in
Section 3.2 will be applied for each node to transforming source tree TA to destination
tree TB. This part of algorithm does not have to be modified for DTDs so the original
procedure presented in [10] is used. (We omit the formal algorithm for the paper length.)

3.5 Complexity

In [10] it was proven that the overall complexity of transforming tree TA into tree TB

is O(�TA��TB�). In our method we have to consider procedures for constructing DTD
trees and for evaluating similarity. Constructing a DTD tree can be done in O(�TA�)
for tree TA. Complexity of finding similarity depends on procedures S emanticS im,
S yntacticS im and CardinalityS im. S yntacticS im is computed for each pair of elements
in trees TA and TB, so its complexity is O(�TA��TB����), where � is maximum length of
an element�attribute label. CardinalityS im is also computed for each pair of elements,
however, with constant complexity, i.e. in O(�TA��TB�). Complexity of S emanticS im de-
pends on the size of the thesaurus, so the overall complexity is O(�TA��TB����), where �

is the set of words in the thesaurus. And it also determines the complexity of the whole
algorithm.

4 Experiments

To analyze the behavior of the proposal we have performed various experiments with
both real-world and synthetic XML data.

Real-World XML Data. In the first test we have used seven di�erent real-world DTDs.
First five DTDs (c1, c2, ..., c5) represent an object ���	
��, but in more or less
di�erent ways. Next two DTDs represent di�erent objects – 	��������� (tv) and
�������� (np). The parameters have been set to default values and both structural
and semantic similarities have been exploited. The resulting similarities are depicted in
Table 2.

Expectably, DTDs representing the same object, i.e. ���	
��, have higher mutual
similarities (the average similarity is 0.44) than similarities among DTDs representing
di�erent objects (the average for ��������DTD is 0.13 and average for 	���������
DTD is only 0.03). The only one exception is between ���	
��� and �������� due
to their structural similarity.

In the second test we have used the same DTDs, but we have evaluated their
similarities regardless semantic similarity. As we can see in Table 3, the resulting values

214 A. Wojnar, I. Mlýnková, and J. Dokulil

Table 2. Structural and semantic similarity of
real-world DTDs

c1 c2 c3 c4 c5 tv np
c1 1 0.57 0.43 0.19 0.71 0.08 0.42
c2 0.57 1 0.57 0.45 0.48 0.10 0.11
c3 0.43 0.57 1 0.39 0.36 0.01 0.13
c4 0.19 0.45 0.39 1 0.21 0.00 0.00
c5 0.71 0.48 0.36 0.21 1 0.00 0.11
tv 0.08 0.10 0.01 0.00 0.00 1 0.00
np 0.42 0.11 0.13 0.00 0.11 0.00 1

Table 3. Similarity of real-world DTDs without
semantic similarity

c1 c2 c3 c4 c5 tv np
c1 1 0.45 0.23 0.09 0.57 0.00 0.13
c2 0.45 1 0.50 0.42 0.32 0.00 0.00
c3 0.23 0.50 1 0.30 0.15 0.00 0.00
c4 0.09 0.42 0.30 1 0.20 0.00 0.00
c5 0.57 0.32 0.15 0.20 1 0.00 0.00
tv 0.00 0.00 0.00 0.00 0.00 1 0.00
np 0.13 0.00 0.00 0.00 0.00 0.00 1

are lower, however, the trend between same and di�erent objects is same as in the first
test.

Semantic Similarity. In the next set of tests we have focused on various parameters
of the similarity measure using synthetic data. Firstly, we have dealt with semantic
similarity. For this purpose, we defined three DTDs (see Figure 4) with exactly the
same structure, but di�erent element names. In addition, element names of the first and
second DTD have similar meaning while the element names of the third DTD have no
lexical meaning. The results are depicted in Table 4.

Fig. 4. Synthetic DTDs for analysis of semantic similarity

Table 4. Influence of semantic similarity

Semantic similarity � �

������ x ��� 0.92 0.40
������ x !!! 0.33 0.33

Table 5. Comparing di�erent costs of
edit operations

Cost 1 5 10 100
 ���" x ���# 0.92 0.74 0.52 0.52

As we can see, there is a significant di�erence in comparing the first two DTDs
– they were correctly identified as almost similar when we used semantic similarity.
Consequently, despite the semantic similarity is a time-consuming task due to necessary
searching through thesaurus, it is enables to acquire more precise similarity values.

Edit Distance Operations. In the last test we have focused on two key edit operations
used for transforming DTD trees, InsertTree and DeleteTree, proposed for transforming
repeating structures of a tree. For the purpose of the test we have defined two similar
DTDs depicted in Figure 5, whereas one of them involves shared elements. We have
performed their similarity evaluation with di�erent costs of edit operations InsertTree
and DeleteTree.

Similarity of DTDs Based on Edit Distance and Semantics 215

Fig. 5. Synthetic DTDs for analysis of edit operations

As we can see in Table 5, in first two cases the operations were really used, but in the
last two comparisons the costs for the operations were too high and the repeating tree
structures were transformed using a sequence of single-node edit operations. Hence, the
DTDs were correctly identified as similar only when the costs of the operations were
set suÆciently low. This observation is similar to the observation made for edit distance
algorithms used for XML documents.

5 Conclusion

The aim of this paper was a proposal of an algorithm for evaluating XML schema
similarity on structural level. In particular, we have focused on DTDs which are still
more popular than other languages for schema specification. We have combined two
approaches and adapted them to DTD-specific structure – edit distance and semantic
similarity. The exploitation of edit distance enables to analyze the structure of DTDs
more precisely, whereas the semantic similarity enables to get more precise results,
though at the cost of searching a thesaurus.

In our future work we will focus mainly on further improvements of our approach,
such as other edit operations (e.g. moving a node or adding�deleting a non-leaf node)
or XML Schema definitions that involve new constructs (e.g. unordered sequences of
elements) as well as plenty of syntactic sugar.

References

1. Altinel, M., Franklin, M.J.: EÆcient Filtering of XML Documents for Selective Dissemina-
tion of Information. In: VLDB 2000, pp. 53–64. Morgan Kaufmann, San Francisco (2000)

2. Bertino, E., Guerrini, G., Mesiti, M.: A Matching Algorithm for Measuring the Structural
Similarity between an XML Document and a DTD and its Applications. Inf. Syst. 29(1),
23–46 (2004)

3. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup
Language (XML) 1.0 (Fourth Edition). W3C (2006)

4. Do, H.H., Rahm, E.: COMA – A System for Flexible Combination of Schema Matching
Approaches. In: VLDB 2002, pp. 610–621. Morgan Kaufmann, Hong Kong (2002)

5. Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: XClust: Clustering XML Schemas for E�ective
Integration. In: CIKM 2002, pp. 292–299. ACM Press, New York (2002)

6. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady 10, 707 (1966)

7. Milo, T., Zohar, S.: Using Schema Matching to Simplify Heterogeneous Data Translation.
In: VLDB 1998, pp. 122–133. Morgan Kaufmann, San Francisco (1998)

216 A. Wojnar, I. Mlýnková, and J. Dokulil

8. Mlynkova, I., Toman, K., Pokorny, J.: Statistical Analysis of Real XML Data Collections.
In: COMAD 2006, New Delhi, India, pp. 20–31. Tata McGraw-Hill Publishing, New York
(2006)

9. Ng, P.K.L., Ng, V.T.Y.: Structural Similarity between XML Documents and DTDs. In: ICCS
2003, pp. 412–421. Springer, Heidelberg (2003)

10. Nierman, A., Jagadish, H.V.: Evaluating Structural Similarity in XML Documents. In:
WebDB 2002, Madison, Wisconsin, USA, pp. 61–66 (2002)

11. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton, J.F.: Relational
Databases for Querying XML Documents: Limitations and Opportunities. In: VLDB 1999,
pp. 302–314. Morgan Kaufmann, San Francisco (1999)

12. Zhang, Z., Li, R., Cao, S., Zhu, Y.: Similarity Metric for XML Documents. In: FGWM 2003,
Karlsruhe, Germany (2003)

Timer-Based Composition of Fault-Containing

Self-stabilizing Protocols

Yukiko Yamauchi1, Sayaka Kamei2, Fukuhito Ooshita1,
Yoshiaki Katayama3, Hirotsugu Kakugawa1, and Toshimitsu Masuzawa1

1 Graduate School of Information Science and Technology, Osaka University
{y-yamaut,f-oosita,kakugawa,masuzawa}@ist.osaka-u.ac.jp

2 Department of Information Engineering, Graduate School of Engineering,
Hiroshima University
s-kamei@se.hiroshima-u.ac.jp

3 Graduate School of Computer Science and Engineering,
Nagoya Institute of Technology
katayama@nitech.ac.jp

Summary. Self-stabilizing protocols provide autonomous recovery from finite num-
ber of transient faults. Fault-containing self-stabilizing protocols promise not only self-
stabilization but also quick recovery and small effect from small scale of faults. In
this paper, we introduce a timer-based composition of fault-containing self-stabilizing
protocols that preserves the fault-containment property of source protocols. Our frame-
work can be applied to a larger subclass of fault-containing self-stabilizing protocols
than existing compositions [1].

Keywords: fault-containment, self-stabilization, composition, timer.

1 Introduction

Large scale networks that consist of a large number of processes communicat-
ing with each other have been developed in these years. It is necessary to take
measures against faults (e.g. memory crash at processes, topology change, etc.)
when we design distributed protocols for large scale networks. A self-stabilizing
protocol converges to a legitimate configuration from any arbitrary initial config-
uration. Self-stabilization was first introduced by Dijkstra [2]. Since then, many
self-stabilizing protocols have been designed for many problems [3, 4, 5]. The
stabilization property provides autonomous adaptability against any number
of transient faults that corrupt memory contents at processes. In practice, the
adaptability to small scale faults is important because catastrophic faults rarely
occur. However, self-stabilization does not promise efficient recovery from small
scale of faults and sometimes the effect of a fault spreads over the entire network.

When a fault corrupts f processes in a legitimate configuration, we call
the obtained configuration an f -faulty configuration. An f -fault-containing self-
stabilizing protocol promises self-stabilization and fault-containment [6, 7, 8]:
starting from an f ′-faulty configuration (f ′ ≤ f), it reaches a legitimate

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 217–226, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

218 Y. Yamauchi et al.

configuration in the time and with the number of processes affected proportional
to f or less.

Hierarchical composition of multiple protocols is expected to extend the
application of existing protocols and to ease the design of new protocols. In
a hierarchical composition of two (or more) protocols, the output of one pro-
tocol (called the lower protocol) is used as the input to the other (called the
upper protocol), and the obtained protocol provides the output of the upper
protocol for the input to the lower protocol. Executing two (or more) differ-
ent self-stabilizing protocols in parallel is well known as fair composition that
provides hierarchical composition of the source protocols and promises self-
stabilization of the obtained protocol [5]. However, a fair composition cannot
preserve the fault-containment property when composing fault-containing self-
stabilizing protocols.

Related work. Global neighborhood synchronizers are often used to implement
timers at processes in designing fault-containing self-stabilizing protocols. Ghosh
et al. proposed a transformer for non-reactive self-stabilizing protocols to obtain
corresponding 1-fault-containing protocols [7]. An obtained 1-fault-containing
protocol guarantees that the output of the protocol recovers quickly. However,
their transformer utilizes a global neighborhood synchronizer and the effect of
a fault spreads over the entire network via global synchronization. However, the
expected property for fault-containment is temporal and spatial containment of
the effect of faults.

Contributions. Yamauchi et al. defined composition of fault-containing self-
stabilizing protocols, called fault-containing composition and proposed the first
framework for fault-containing composition [1]. RWFC (Recovery Waiting Fault-
containing Composition) strategy is to stop the upper protocol until the lower
protocol recovers. In [1], RWFC strategy is implemented as follows: each process
evaluates a local predicate to check local consistency of the current configuration
of the lower protocol whenever the process wants to execute the upper protocol. If
the process finds the lower protocol locally consistent, then the process executes
the upper protocol. Otherwise, the process cannot execute the upper protocol.
Thus, each process has to communicate with distant processes to evaluate the
local predicate. Moreover, they put many restrictions on source protocols and it
regulates the application of the composition framework.

In this paper, we present a novel timer-based technique for fault-containing
composition. We adopt RWFC strategy, however, the proposed composition uti-
lizes recovery time of fault-containing protocols. Recovery time is the maximum
time for the system to recover from a target faulty configuration. We force the
upper protocol to stop during the recovery time of the lower protocol. After
that, the upper protocol can execute on the correct input from the lower pro-
tocol. Thus, the upper protocol can recover with its fault-containment property
and the composite protocol promises fault-containment as a whole.

Our framework does not need communication among distant processes and
relaxes the restrictions on source protocols. In [1], it is necessary that each

Timer-Based Composition of Fault-Containing Self-stabilizing Protocols 219

process has to keep detecting the inconsistency of the lower protocol during the
recovery of the lower protocol by communicating with distant processes while in
this paper, each process has to detect the inconsistency of the lower protocol in
the initial configuration by communicating direct neighbors.

We use local timers at processes to measure the recovery times of the source
protocols. Global neighborhood synchronizers are often used to implement local
timers. However, a fault-containing protocol bounds the effect of faults with con-
tamination radius : the maximum distance from any faulty process to any process
affected by the faulty process. We introduce a local neighborhood synchronizer
that emulates M synchronized rounds among the k-neighbors of the initiator
that initiates the synchronization.

2 Preliminary

A system is a network which is represented by an undirected graph G = (V, E)
where the vertex set V is a set of processes and the edge set E is a set of
bidirectional communication links. Each process has a unique identity. Process
p is a neighbor of process q iff there exists a communication link (p, q) ∈ E. A
set of neighbors of p is denoted by Np. Let N0

p = {p}, N1
p = Np and for each

i ≥ 2, N i
p =

⋃
q∈Ni−1

p
Nq \ {p}. The set of processes denoted by N i

p is called
i-neighbor of p. The distance between p and q (q �= p) is denoted by dist(p, q)
and dist(p, q) = j iff q �∈ N j−1

p ∧ q ∈ N j
p .

Each process p maintains local variables and the values of all local variables
at p define the local state of p. Local variables are classified into three classes:
input, output, and inner. The input variables indicate the input to the system
and they are not changed by the system. The output variables are the output
of the system for external observers. The inner variables are internal working
variables used to compute output variables.

We adopt locally shared memory model as a communication model: each pro-
cess p can read the values of the local variables at q ∈ Np ∪ {p}. A protocol
at each process p consists of a finite number of guarded actions in the form of
〈guard〉 → 〈action〉. A 〈guard〉 is a boolean expression involving the local vari-
ables of p and Np, and an 〈action〉 is a statement that changes the values of p’s
local variables (except input variables). A process with a guard evaluated true
is called enabled. We adopt distributed daemon as a scheduler: in a computation
step, distributed daemon selects a nonempty set of enabled processes and these
processes execute the corresponding actions. The evaluation of guards and the
execution of the corresponding action is atomic: these computations are done
without any interruption. A configuration of a system is represented by a tuple
of local states of all processes. An execution is an infinite sequence of configura-
tions E = σ0, σ1, σ2, · · · such that σi+1 is obtained by applying one computation
step to σi or σi+1 is the final configuration.

Distributed daemon allows asynchronous executions. In an asynchronous
execution, the time is measured by computation steps or rounds. Let E =
σ0, σ1, σ2, · · · be an asynchronous execution. The first round σ0, σ1, σ2, · · · , σi

220 Y. Yamauchi et al.

is the minimum prefix of E such that for each process p ∈ V if p is enabled in
σ0, either p’s guard is disabled or p executes at least one step in σ0, σ1, σ2, · · · σi.
The second and latter rounds are defined recursively by applying the definition
of the first round to the remaining suffix of the execution E′ = σi+1, σi+2, · · ·.

A problem (task) T is defined by a legitimate predicate on configurations. A
configuration σ is legitimate iff σ satisfies the legitimate predicate. In this paper
we treat non-reactive problems: no process changes its state after the system
reaches a legitimate configuration, e.g. spanning tree construction, leader elec-
tion, etc. We say a distributed protocol P (T) solves T in a configuration iff the
configuration satisfies the legitimate predicate L(P (T)). The input (output) of
P (T) is represented by the conjunction of input (output, respectively) variables
at each process. We omit T if T is clear.

Definition 1. Self-stabilization
Protocol P is self-stabilizing iff it satisfies the following two properties:

Stabilization: starting from any arbitrary initial configuration, it eventually
reaches a legitimate configuration.
Closure: once it reaches a legitimate configuration, it remains in legitimate
configurations thereafter.

A transient fault corrupts some processes by changing the values of their lo-
cal variables arbitrarily. A configuration is f -faulty iff the minimum number of
processes such that we have to change their local states (except inner variables)
to make the configuration legitimate is f . We say process p is faulty iff we have to
change p’s local state to make the configuration legitimate and otherwise correct.

Definition 2. f-fault-containment
A self-stabilizing protocol is f -fault-containing iff it reaches a legitimate config-
uration from any f ′-faulty configuration (f ′ ≤ f) with the number of processes
that change their states according to the fault and the time to reach a legitimate
configuration depending on f (not |V |).

We simply denote an f -fault-containing self-stabilizing protocol as an f -fault-
containing protocol. The performance of an f -fault-containing protocol is mea-
sured by stabilization time, recovery time, and contamination radius:

Stabilization time: the maximum (worst) number of rounds to reach a legiti-
mate configuration from an arbitrary initial configuration.
Recovery time: the maximum (worst) number of rounds to reach a legitimate
configuration from an f ′-faulty configuration (f ′ ≤ f).
Contamination radius: the maximum distance from any faulty process to the
process that changes its local state according to the faulty process during the
recovery from an f ′-faulty configuration (f ′ ≤ f).

A hierarchical composition of two protocols P1 and P2 is denoted by (P1 ∗P2)
where the variables of P1 and those of P2 are disjoint except that the input to
P2 is the output of P1. We define the output variables of (P1 ∗ P2) is the output
variables of P2. A legitimate configuration of (P1 ∗P2) is defined by L((P1 ∗P2))
where L(P1 ∗ P2) = L(P1) ∧ L(P2).

Timer-Based Composition of Fault-Containing Self-stabilizing Protocols 221

Definition 3. Fault-containing composition
Let P1 be an f1-fault-containing protocol and P2 be an f2-fault-containing proto-
col. A hierarchical composition (P1 ∗ P2) is a fault-containing composition of P1

and P2 iff (P1 ∗ P2) is an f1,2-fault-containing protocol for some f1,2 such that
0 < f1,2 ≤ min{f1, f2}.

In a hierarchical composition, the input to P2 can be corrupted by a fault when
the fault corrupts the output variables of P1. However, the input to P1 can be
seen as the system parameters, e.g. topology, ID of each process, etc.

Assumption 1. For a hierarchical composition (P1 ∗P2), the input to P1 is not
corrupted by any fault.

We consider a subclass of fault-containing protocols Π such that each
f -fault-containing protocol P ∈ Π satisfies Assumption 2, 3, and 4. Many exist-
ing fault-containing protocols [6, 8] satisfy Assumption 2, 3, and 4.

Assumption 2. The legitimate configuration of P is uniquely defined by the
input variables.

Consider a composition (P1 ∗ P2) of an f1-fault-containing protocol P1 and
an f2-fault-containing protocol P2. Starting from an f ′-faulty configuration
(f ′ ≤ min{f1, f2}), if the output of P1 after P1 reaches a legitimate config-
uration is different from what it was before the fault, then the input to P2

changes and the output of P2 may change drastically to adopt it. Then, P2 can-
not guarantee fault-containment. Because the input to P1 is not changed by any
fault (Assumption 1), Assumption 2 guarantees that P1 recovers to the unique
legitimate configuration and ensures the possibility of fault-containment of P2

in the composite protocol.

Assumption 3. The legitimate predicate L(P) for P is represented in the form
L(P) ≡ ∀p ∈ V : consp(P). The predicate consp(P) involves the local variables
at p and its neighbors, and it is defined over the values of output, inner, and
input variables.

We say process p is inconsistent iff consp(P) is false, otherwise consistent.
Because we work on non-reactive problems, the predicate consp(P) is evaluated
false when process p is enabled.

Assumption 4. In an f ′-faulty configuration (f ′ ≤ f), if a faulty process p is
a neighbor of correct process(es), at least one correct process q neighboring to p
or p itself evaluates consq(P) (or consp(P)) false.

For a faulty process p and a neighboring correct process q, consp(P) (consq(P),
respectively) involves the local variables at q and p. Because p is faulty, there
can be some inconsistency between the local state of p and that of q.

222 Y. Yamauchi et al.

3 The Composition Framework

Let P1 be an f1-fault-containing protocol and P2 be an f2-fault-containing
protocol. Our goal is to produce f1,2-fault-containing protocol (P1 ∗ P2) for
f1,2 = min{f1, f2}.

Fair composition of fault-containing protocols cannot preserve the fault-
containment property. When a fault corrupts the output variables of P1 at f
processes (f ≤ f1,2), during the recovery of P1, P2 can be executed in parallel
to adopt the changes in the output variables of P1. The number of contami-
nated processes in P1 may become larger than f2 and this causes the number of
processes that change their local states in P2 becomes larger than f2. These pro-
cesses can change its state repeatedly until P1 recovers. If more than f2 processes
change their states repeatedly in P2, then P2 cannot guarantee fault-containment
even though f (the number of the processes that the original fault corrupts) is
smaller than f2.

We implement the RWFC strategy with local timers at processes. Let r1

(r2, respectively) be the recovery time of P1 (P2, respectively) and c1 (c2,
respectively) be the contamination radius of P1 (P2, respectively). We imple-
ment timers at processes with a local neighborhood synchronizer that synchro-
nizes the processes in max{c1, c2}-neighbors for each faulty process for (r1 + r2)
rounds. We first define the specification of the local neighborhood synchronizer in
Section 3.1 and show our composition framework in Section 3.2. Finally, we
present an implementation of the local neighborhood synchronizer in
Section 3.3.

3.1 Specification of the Local Neighborhood Synchronizer

In this section we define a specification of our local neighborhood synchronizer
for fault-containing composition (P1∗P2). For Pi, ri represents the recovery time
and ci represents the contamination radius where i = 0, 1.

Specification 1. Each process p maintains a counter variable tp that takes an
integer in [0..(r1 + r2)]. The local neighborhood synchronizer is self-stabilizing
and in a legitimate configuration, tp = 0 holds at ∀p ∈ V .

The local neighborhood synchronizer is implemented with a typical technique of
synchronizers [7]. We say a process is s-consistent iff its counter variable differs
at most one with those at all its neighbors involved in the synchronization.
Synchronization is realized by making each counter variable s-consistent and
then decrementing it with preserving the s-consistency.

Synchronization radius is the maximum distance from any faulty process and
a process involved in the synchronization caused by the faulty process. From
Assumption 4, the distance between a process that finds inconsistency in the
source protocols and any contaminated process is at most k1,2 = max{c1, c2} +
max{f1, f2} + 1. To involve all max{c1, c2}-neighbors of each faulty process,
it is necessary to involve all k1,2-neighbors for each faulty process into the
synchronization.

Timer-Based Composition of Fault-Containing Self-stabilizing Protocols 223

A counter sequence of process p is the sequence of the value of tp from an
initial configuration.

Specification 2. Starting from an f -faulty configuration (f ≤ f1,2), the local
neighborhood synchronizer should provide the following five properties:

Containment: synchronization radius is O(k1,2).
Synchronization: each processes involved in the synchronization decrements
its counter variable with keeping s-consistency.
Correct sequence: a counter sequence v0

p, v1
p, · · · of any correct process p in-

volved in the synchronization has a prefix v0
p, v1

p, · · · , vi−1
p , vi

p for some i such that
v0

p = v1
p = · · · = vi−1

p = 0 and vi
p = r1 + r2.

Faulty sequence: a counter sequence v0
q , v1

q , · · · of any faulty process q has a
suffix vi

q, v
i+1
q , · · · , vj

q , · · · for some i and j such that vk
q − vk+1

q ≤ 1 for i ≤ k ≤ j

and vj
q = vj+1

q = · · · = 0.
Termination: the local neighborhood synchronizer reaches a legitimate config-
uration in (r1 + r2 + O(1)) rounds.

We do not assume that faulty processes decrement their counter variables from
(r1 + r2). From Assumption 4, when a faulty process is surrounded by other
faulty processes, it cannot determine whether it is correct or not.

Specification 3. The following APIs should be available at each process p ∈ V
for the application of the local neighborhood synchronizer:

call start synch NS: when this function call is executed at process p, it starts
the synchronization involving k1,2-neighbors of p. These processes decrements
their counter variables from (r1 + r2) to 0 with keeping s-consistency and the
system reaches the legitimate configuration in O(r1 + r2) rounds.
call exec NS: when this function call is executed at process p, if p is enabled
in the local neighborhood synchronizer, then it executes one of the corresponding
actions and if p decrements tp, this function call returns true, otherwise false. If
p is not enabled, then p does nothing and this function call returns ⊥.

3.2 The Framework FC-LNS

Our composition framework FC-LNS (Fault-containing Composition with the
Local Neighborhood Synchronizer) is shown in Protocol 3.1. Process p
executes the guarded actions of the local neighborhood synchronizer by execut-
ing call exec NS, and whenever it decrements tp, p executes the source protocols
by executing the procedure A(tp) that selects which source protocol is executed
at p. If p finds inconsistency in P1 when 0 < tp ≤ r2 or in P1 or P2 when
tp = 0, then it initiates the synchronization of the local neighborhood synchro-
nizer by executing call start synch NS. Thus, p and its k1,2-neighbors execute
P1 untill P1 reaches the legitimate configuration. After that, they executes P2

on the correct output from P1 and P2 reaches the legitimate configuration with
its fault-containment property.

224 Y. Yamauchi et al.

Protocol 3.1. FC-LNS
Procedure A(tp) for process p

if (r2 ≤ tp < r1 + r2) then execute P1
else execute P2;

Actions for any process p
true −→
if call exec NS = true then A(tp);
if {(0 < tp ≤ r2) ∧ ¬consp(P1)} ∨ {(tp = 0) ∧ (¬consp(P1) ∨ ¬consp(P2))}

then call start synch NS

Theorem 1. FC-LNS provides a min{f1, f2}-fault-containing protocol (P1 ∗P2)
for an f1-fault-containing protocol P1 and f2-fault-containing protocol P2. For
each i = 1, 2, let ci be the contamination radius of Pi and ri be the recovery time
of Pi. The contamination radius of the obtained protocol is O(max{c1, c2} +
max{f1, f2}). The recovery time of the obtained protocol is O(r1 + r2).

Due to page restriction, we omit the detailed proof.

3.3 Local Neighborhood Synchronizer

In this section we present an implementation of the local neighborhood synchro-
nizer LNS that meets the specifications in Section 3.1.

For any given M and k, LNS provides the synchronization of M rounds among
k-neighbors of the initiator. The synchronization consists of three phases. In the
first phase, an initiator arises and the shortest path tree rooted at the initiator
is constructed to involve all the k-neighbors of the initiator into the synchro-
nization. Then, in the second phase, the synchronized count-down of counter
variables takes place among k-neighbors of the initiator. In the third phase, the
shortest path tree is released from the root to the leaves.

Each process p has two variables, tp and dp: tp is the counter variable and
dp is the depth variable which is used to construct the shortest path tree. In a
legitimate configuration, tp = 0 ∧ dp = 0 holds at ∀p ∈ V .

Let p be an initiator. Each process q ∈ Nk
p constructs the shortest path tree

by setting dq = k − dist(p, q) where dist(p, q) denotes the distance between p
and q. The parent(s) of q is any neighbor r ∈ Nq where dr = dq + 1. A process
s ∈ Nq is a child of q iff ds = dq − 1.

The protocol LNS is shown in Protocol 3.2. Parameter Predicateinit
p is a

predicate that involves local variables at p and all its neighbors and parameter
Actiondec

p is a set of actions that changes the value of local variables at p except
tp and dp. The first phase starts when some process p finds inconsistency in the
timer variables or depth variables of itself and its neighbors, and executes S1.
After p executes S1, each process q ∈ Nk

p executes S2 (and S3 if necessary) and
q is involved in the shortest path tree by setting tq = M and dq = k − dist(p, q).
After tq = M ∧ dq = k − dist(p, q) holds at q and all its neighbors get involved
in the shortest path tree, q goes into the second phase. In the second phase, q
decrements tq by executing S4. The synchronization is realized by decrementing
tq with keeping the s-consistency (Dq(2) = true). The execution of S4 starts

Timer-Based Composition of Fault-Containing Self-stabilizing Protocols 225

Protocol 3.2. LNS (Predicateinit
p , Actiondec

p)
Predicates
safe dp ≡ {dp = k} ∨ {dp = 0} ∨ {(0 < dp < k) ∧ (∃q ∈ Np : dq − dp = 1)}
OK dp ≡ safe dp ∧ (∀q ∈ Np : |dp − dq| ≤ 1)
safe tp ≡ {tp = 0} ∨ {tp = M} ∨ {(∃q ∈ Np : |tp − tq| ≤ 1)∧

(∀q ∈ Np : (tq = 0 ∧ (tp = M ∨ dp = 0)) ∨ (|tp − tq| ≤ 1))}
OK tp ≡ safe tp ∧ [{tp = 0} ∨ {(dp > 0) ∧ (∀q ∈ Np : |tp − tq| ≤ 1)}∨

{(dp = 0) ∧ (∃q ∈ Np : dq = 1 ∧ |tp − tq| ≤ 1)}]
initp ≡ Ip(1) ∨ Ip(2) ∨ Ip(3)

Ip(1) ≡ {(tp > 0) ∨ (dp > 1)} ∧ ¬(tp = M ∧ dp = k)∧
{∀q ∈ Np : tq = 0 ∧ dq = 0}

Ip(2) ≡ {(0 < dp < k) ∧ (∀q ∈ Np : dp ≥ dq) ∧ (∃q ∈ Np : dq > 0)}
Ip(3) ≡ {¬safe tp ∧ (tp �= M ∨ dp �= k) ∧ (∀q ∈ Np : tp ≥ tq)}

raisep ≡ Rp(1) ∧ Rp(2)
Rp(1) ≡ (tp �= M)
Rp(2) ≡ {∃q ∈ Np : (tq = M) ∧ (dq > 0) ∧ ¬((tp = M − 1) ∧ (dp = dq − 1))∧

(∀r ∈ Np : dr < dp → tr = M)}
maxdp ≡ Mp(1) ∧ Mp(2)

Mp(1) ≡ (tp > 0) ∧ (dp �= k)
Mp(2) ≡ (maxq∈Np{dq} �= 0) ∧ (maxq∈Np{dq} − 1 > dp)

decp ≡ OK dp ∧ OK tp ∧ Dp(1) ∧ Dp(2)
Dp(1) ≡ (tp > 0) ∧ (∀q ∈ Np : tp ≥ tq)
Dp(2) ≡ (∀q ∈ Np : tp = tq → dp ≥ dq)

clrdp ≡ Cp(1) ∧ Cp(2)
Cp(1) ≡ (tp = 0) ∧ {∀q ∈ Np : (tq = 0)}
Cp(2) ≡ (dp > 0) ∧ {∀q ∈ Np : (dp ≥ dq) ∨ (dq = 0)}

Actions for any process p
S1 initp ∨ Predicateinit

p −→ tp = M ; dp = k
S2 raisep −→ tp = M ;

if (¬((maxq∈Np{dq} = k − 1) ∧ (dp �= k))) then dp = maxq∈Np{dq} − 1
S3 maxdp −→ dp = maxq∈Np{dq} − 1

S4 decp −→ tp = tp − 1; Actiondec
p

S5 clrdp −→ dp = 0

from the initiator to leaves. In the third phase, after all the neighbors finish the
count-down (Cq(1) = true), q executes S5 and sets dq = 0. The execution of
S5 also starts from the initiator to leaves and the shortest path tree is released.
Eventually, the third phase ends and tq = 0 ∧ dq = 0 holds at ∀q ∈ V .

LNS satisfies Specification 1 and 2 with M = r1 + r2 and k = k1,2. (Due
to page restriction, we omit the detailed proof.) APIs of LNS defined by
Specification 3 is given as the parameter Predicateinit

p and Actiondec
p where

Predicateinit
p = {(0 < tp ≤ r2) ∧ ¬consp(P1)} ∨ {(tp = 0) ∧ ¬(consp(P1) ∧

consp(P2))} and Actiondec
p = A(tp).

4 Conclusion

We proposed a novel timer-based fault-containing composition. To implement
timers, we designed a local neighborhood synchronizer protocol that is very
useful in fault-containment. Though we discussed only the theoretical aspects of
fault-containing composition, simulation experiments are one of the most inter-
esting issues. Our next goal is to establish a composition framework for various
types of source protocols preserving their fault-tolerance.

226 Y. Yamauchi et al.

Acknowledgement. This work is supported in part by Global COE (Cen-
ters of Excellence) Program of MEXT, Grant-in-Aid for Scientific Research
((B)19300017, (B)17300020, (B)20300012, and (C)19500027)) of JSPS, Grand-
in-Aid for Young Scientists ((B)18700059 and (B)19700075) of JSPS, Grant-
in-Aid for JSPS Fellows (20-1621), and Kayamori Foundation of Informational
Science Advancement.

References

1. Yamauchi, Y., Kamei, S., Ooshita, F., Katayama, Y., Kakugawa, H., Masuzawa, T.:
Composition of fault-containing protocols based on recovery waiting fault-containing
composition framework. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS,
vol. 4280, pp. 516–532. Springer, Heidelberg (2006)

2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communica-
tions of ACM 17(11), 643–644 (1974)

3. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing
spanning trees. Information Processing Letters 39, 147–151 (1991)

4. Huang, S.T., Chen, N.S.: Self-stabilizing depth-first token circulation on networks.
Distributed Computing 7(1), 61–66 (1993)

5. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems. In: Proceed-
ings of WSS 1989 (1989)

6. Ghosh, S., Gupta, A.: An exercise in fault-containment: self-stabilizing leader elec-
tion. Information Processing Letters 59(5), 281–288 (1996)

7. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-
stabilizing algorithms. In: Proceedings of PODC 1996, pp. 45–54 (1996)

8. Ghosh, S., He, X.: Fault-containing self-stabilization using priority scheduling. In-
formation Processing Letters 73, 145–151 (2000)

Calibrating an Embedded Protocol on an
Asynchronous System

Yukiko Yamauchi1, Doina Bein2, Toshimitsu Masuzawa3, Linda Morales4, and
I. Hal Sudborough5

1 Graduate School of Information Science and Technology, Osaka University
����������	�
�	�����
�
��

2 Department of Computer Science, University of Texas at Dallas
	������������	
���

3 Graduate School of Information Science and Technology, Osaka University
��	�������	�
�	�����
�
��

4 Department of Computer Science, University of Texas at Dallas
�������	��������	
���

5 Department of Computer Science, University of Texas at Dallas
�����������	
���

Summary. Embedding is a method to obtain new distributed protocols for other topologies from
existing protocols designed for specific topologies. But the fault tolerance of the original protocol
is rarely preserved in the protocol embedded in the target topology, called embedded protocol.
Specifically, transient faults can a�ect intermediate processes along the path in the target topology
that corresponds to a link in the original topology.

In this paper, we propose to analyze and model the communication of the embedded proto-
col as unreliable communication along the links of the original protocol. We propose a particular
type of unreliable channel called almost reliable channel and we show an implementation of these
channels for embedding a protocol into another topology.

Keywords: asynchronous system, channel system, embedding, fault tolerance.

1 Introduction

Processes in distributed systems can be modeled as finite state machines, called Com-
municating Finite State Machines (CFSM), that communicate using message-exchange
over unbounded, unidirectional, error-free FIFO channels. Neighboring processes are
linked by two such channels, one for sending and one for receiving. A channel is said to
be FIFO (First-In First-Out) if it preserves the order in which the messages were sent
through it.

CFSM systems [2, 3, 4, 8, 13, 14] have the power of Turing machines when the cardi-
nality of the message alphabet is at least two. Decidability for specific problems (termi-
nation detection, reachability, etc.) is studied for either general case of CFSM or CFSM
with particular type of channels (reliable, lossy, fair lossy) [1, 5, 6, 7, 10, 11, 12, 15].

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 227–236, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

228 Y. Yamauchi et al.

There are two particular types of FIFO channels mostly used. A fair lossy channel has
a limited amount of lossiness [9]: If infinite many messages are sent, then infinite many
messages are received. A reliable channel does not create or duplicate messages, and
every message sent is eventually received. Independently, Finkel [5] and Abdulla and
Jonsson [1] have modeled as finite automata the communication protocols using FIFO
channels that allow loss of messages.

A transient fault corrupts the memory of some process but it does not a�ect its
program (code). We study how we can model the e�ect of transient faults over the
communication paths using message-passing on an embedded topology.

Embedding one (original) topology onto a target topology is often used to ease the
design of distributed protocols. Yamauchi et al. proposed a ring embedding on trees
that preserves the fault-tolerance of original protocols designed for rings in trees [16].
A one-to-one node embedding preserves some fault-tolerance capability since a faulty
process in one topology corresponds to a faulty process in the other topology. When
the dilation (the maximum distance in the target topology between two neighboring
nodes in the original topology) is greater than one, i.e. a link between processes in the
original topology becomes a simple path in the target topology, the communication in
the target topology can be modeled as an unreliable channel in the original topology.
We cope with faults that a�ect the intermediate processes along a path. For coping with
transient faults at the endpoints there are already established, fault-tolerant methods as
self-stabilizing, snap-stabilization, or fault-containing.

Let an original topology�v be embedded on a target topology�r with reliable chan-
nels. If a transient fault corrupts some processes in the target topology, we cannot en-
sure a reliable communication on �v. For any pair of adjacent processes in �v, the path
between them in the target topology �r will be modeled as a single channel. Thus a
transient fault that a�ects the communication of the embedded protocol (that corrupts
some or all the intermediate processes along that path) can be modeled as the reliability
of the direct channels in the original protocol.

We propose a particular type of unreliable channels, channels with failures [9], where
a failure is considered either a message loss or a duplication, called almost reliable
channels. We show the usefullness of this type of channels by proposing a transformer
that takes as input a protocol�v running on a topology�v with almost reliable channels
and a one-to-one node embedding � of �v onto another topology �r , and outputs a pro-
tocol �r running on topology �r with reliable channels that solves the same task as the
original protocol. Also our proposed transformer preserves the fault-tolerant property
of the original protocol, namely if the original protocol �v is fault-tolerant, then the
output protocol �r will have the fault-tolerant characteristic preserved. At the price of
message duplication (some messages can be received twice), we ensure no message loss
and no message creation. Furthermore, by attaching sequence numbers to messages we
can exclude message duplication.

The paper is organized as follows. The communication model and the embedding are
given in Section 2. In Section 3, we define the almost reliable channels, the embedding
transformation problem, and Transformer ��. A sketch of the proof of correctness is
given in Section 4. We finish with concluding remarks in Section 5.

Calibrating an Embedded Protocol on an Asynchronous System 229

2 Models

A distributed system is represented by a graph G � (V� E) where the vertex set
V � �p1� p2� � � � � pn� is a set of n processes and the edge set E is a set of bidirectional
channels. Process pi is a neighbor of process p j i� there exists a communication link
(pi� p j) � E.

We consider the message-passing model of communication: A process pi commu-
nicates with some adjacent process p j by invoking send(m) to p j. Process p j receives
some message m when it terminates the invocation of receive(m). Action receive(m) at
pi triggers some internal computation at pi that changes the state of pi. Each action of
send(m), receive(m), and any internal computation is executed atomically. For any two
messages m1 and m2 sent on a FIFO channel e, if send(m1) occurs earlier than send(m2),
then receive(m1) occurs earlier than receive(m2).

Each process pi holds a set of local variables and the values of all local variables of
pi define the local state of pi. A transient fault can a�ect many processes by changing
the values of the processes’ variables to arbitrary ones, but it does not a�ect the code of
the processes (the set of actions to be executed when send() or received() is invoked).
In other words, for any process the data area may be corrupted by a transient fault, but
not the program area.

Each process executes a protocol P that consists of a finite number of statements
called guarded actions, of the form �label	 :: �guard	
 �action	. The guard of an
action is a Boolean expression involving the variables of the process and of its neigh-
boring processes. The action can be executed only if its guard evaluates to true. A
process with at least one enabled guard is called enabled. A distributed daemon will
select non-deterministically a non-empty subset of enabled processes to execute one of
the enabled actions. We assume that the actions are atomically executed: the evaluation
of a guard and the execution of the corresponding action, if it is selected for execution,
are done in one atomic step.

Let � : Ev
 2Er be an one-to-one node-embedding of a topology Gv � (V� Ev) onto
a target topology Gr � (V� Er). (The set of nodes for both graphs Gv and Gr is isomor-
phically the same.) Let k be the dilation of the embedding � which is the maximum
distance in Gr between two adjacent nodes in Gv.

When pi sends some message m to its neighbor p j in Gv, message m should be
relayed from pi to p j in Gr. The embedding � provides a routing function at each pro-
cess p, f p

�
: V � V
 V in Gr, that enables message exchange between neighboring

processes in Gv. Let f� be the collection of the routing functions of all processes. For
each process pk, the routing function f pk

�
(pi� p j) specifies the process r to which pk

should relay a message either generated locally at pk (when pi � pk) or received from
pi on pk’s channels, and addressed to p j. If pk receives a message addressed to pk, it
delivers the message in Gv. Otherwise, pk forwards the message further. In both cases
the message is stored locally at pk, and the local copy will be sent further.

Every message received at process pi and not addressed to pi will be forwarded to the
correct neighbor by sending it to the neighbor defined by f pi

�
. We assume that it takes at

most Æpi rounds for a message to be forwarded, where Æpi is the degree of process pi (the
number of communication links incident to pi). This delay is caused by the embedding
and is not related to the transformation problem.

230 Y. Yamauchi et al.

The k-majority (for short, majority) is a value that appears at least k times in a set of
2k�1 values. If we have less than 2k�1 values, or there is no value that appears at least
k times, then the majority is undefined ().

Definition 1. Almost Reliable channels
A FIFO channel (pi� p j) is almost reliable if it satisfies the following conditions:
- For any message m sent by pi to p j, if there is no fault at pi during the send action and
at p j during the receive action, m is eventually received but may be duplicated.
- p j does not receive any message that was not sent by pi, if there is no fault at pi and
p j (no message creation).

If there is a fault at endpoints during the transmission of a message m, an almost reliable
channel guarantees nothing about m.

Definition 2. Transformation problem for reliable channels
Design a transformer �� that takes as input a protocol �v (original protocol), designed
for an asynchronous system with almost reliable channels Gv (original topology), and
the one-to-one node embedding �, and gives as output the protocol �r (embedded pro-
tocol) that runs on an asynchronous system with reliable channels modeled as the graph
Gr (target topology).

3 Calibrating the Network

If the following three conditions are satisfied in �v:

(1) message m is sent by pi in �v to p j along the link in the original topology e �

(pi� p j) � Ev with Action send(m),
(2) the message m is delivered at process p j in �v with Action receive(m),
(3) there are no faults at processes pi and p j during the transmission,

then, in Protocol�r, message m sent by process pi along the embedded path ee � �(e) �
(pi� � � � � p j) is delivered at process p j, independent on whether there are transient faults
at intermediate processes on the embedded path.

We implement the following transformer �� (Algorithm 3). For each process pi, the
atomic guarded actions send(m) and receive(m) of the original protocol �v are replaced
by the atomic actions snd(m) (Action S) and rcvd(m) (Action R) that will be executed
by the same process in Protocol �r.

Each process pi holds a variable counter cpi with non-negative integer values, a vari-
able m jprev that stores the previously delivered majority, and a stack stack that stores
the messages addressed to pi. The size of the stack must be at least 3k.

The guard snd(m) is true whenever process pi sends a message m to process p j. In
topology Gv, pi sends m along the link e � (pi� p j), while in the target topology Gr,
process pi sends m 2k � 1 times along the path ee � (pi� � � � � p j) � �(pi� p j). When pi

sends 2k�1 copies of message m in Pr, we assume that each intermediate process along
the path ee � (pi� � � � � p j) � �(pi� p j) holds at any time at most one copy of m.

The guard rcvd(m) is true when pi receives a message m which is addressed to itself.
Whenever process p j counts and stacks 2k � 1 messages (addressed to it) from process

Calibrating an Embedded Protocol on an Asynchronous System 231

Algorithm 3.1. Algorithm �� (Fault-Tolerance-Preserving Embedding)

Communication Actions for any process i:
S snd(m):: for j�1 to 2k � 1 do send(m)

R rcvd(m) :: �* store value m read in the stack and increment ci
push(m� stacki)
ci��

�* test whether majority of the top 2k � 1 values from stacki needs to be computed *�
if ci � 2k � 1 then

m j � ma jority(stacki� 0� 2k � 1) �* compute maj. of the last 2k � 1 values *�
if m j � � then

�* the maj. is �, look for maj. in stack by removing the top j values *�
j � 1
while ((m j � ma jority(stacki� j� 2k � 1)) �� � � j � 2k � 1) do j��
if m j � m jprev then m j � � �* wait for more data *�

if m j � �

m jprev � m j �* store the latest defined maj. *�
receive(m j)
ci � 0

pi, it computes the k-majority on the latest 2k � 1 messages. If the result is defined (not
) then it is delivered at p j. Else, if a new majority (di�erent from the previous stored
one) can be obtained from the stack by removing 1� 2� � � � � k � 1 messages, then that
majority is delivered at p j. If the previous majority if obtained by such operation, then
process pi waits for more messages to come (it delays the delivery of a message). Once
some process p computes the majority over the received data, if the result is defined
(�), it will be delivered to p.

4 Proof of Correctness

We show that transient faults that may occur at the intermediate processes along the
path ee do not prevent the delivery of message m to process p j. In Transformer ��,
sending 2k � 1 copies of some message m is not necessarily executed atomically at a
process pi. The receiving process of the 2k � 1 copies (corrupted or not) of m executed
at the destination p j is non-atomic. Transformer �� guarantees that message m will be
relayed at p j if there is no fault at pi and p j during the transmission of the 2k�1 copies.
Message m may be duplicated at p j but cannot be lost (Theorem 1).

Whenever a message addressed to pi is received at pi, cpi is incremented and the
message is pushed into stacki. Whenever cpi passes the threshold 2k � 1, the majority
function ma jority(stack� int� 2k � 1) is applied which returns the majority of the data
starting from intth data to (int � 2k � 1 � 1)th data (the 0th data means the top data
in the stack stacki.): e.g. ma jority(stacki� 0� 2k � 1) returns the majority of top 2k � 1
data in stacki. If ma jority(stacki� 0� 2k � 1) returns a definite result (�), then it is
delivered at pi and cpi is reset to 0. An undefined result () caused by either arbitrary
initialization or faults at intermediate nodes delays the relaying of data to pi. Then pi

looks into stacki for some defined majority (by eliminating the top element, the top two
elements, ..., the top k � 1 elements) and if the value is not delivered at pi, pi delivers
the value. Otherwise it delays delivering the message (decision).

232 Y. Yamauchi et al.

We show that a decision will be taken in finite time (Lemma 2). Starting from an
arbitrary initialization or after a transient fault, during any 2k � 1 consecutive rounds, a
decision will be taken at least once (Theorem 1).

When majority is applied at every process when the counter is 2k � 1 and the result
is defined (�), we say that the network is calibrated.

We make the following assumption for transient faults.

Assumption 1. For any pair of processes pi and p j that are adjacent in Gv, between
the time pi sends the first copy of a message m and the time p j receives the last copy of
m (corrupted or not), any process is a�ected by a fault at most once.

This assumption is translated for the original protocol �v as follows: Between the send-
ing of a message m by pi and receiving of m by p j, any process can have its data
corrupted at most once (which is always assumed to be the case for any protocol). In
the following, we consider the case where pi and p j are not corrupted by faults since
the almost reliable channel guarantees nothing if pi or p j is corrupted.

In case a transient fault a�ects some processes in the topology Gr , the number of
corrupted copies of the same message sent by pi and received by p j in Gr is no greater
than the number of corrupted intermediate processes on the path in Gr between pi and
p j. Since the dilation of the embedding is k, the maximum number of intermediate
processes that can be a�ected by transient faults is k � 1. If send(m)i j was executed by
Protocol �v (message m was sent by node pi along the link e � (pi� p j)) in the original
topology, that corresponds to an execution of snd(m)i j at pi in Protocol �r (message m
was sent (at least) 2k � 1 times along the path ee � (pi� � � � � p j) � �(e)) in the target
topology. Thus, in a sequence of 2k � 1 consecutive data that are copies of the same
message m, at most k � 1 data can be corrupted.

Definition 3. Let S be some (in)finite string obtained by concatenating the 2k�1 copies
(corrupted or not) of message m, followed by the copies of the next message, sent by
some process pi and addressed to and received by some process p j. Then, there exists
two unique positions kS

l and kS
r in S , (position 1 is when the first copy of m is received

by p j), such that the majority computed on S returns m i� it is computed between the
positions kS

l ��k
S
r of S .

Observation 1 follows directly from Definition 3.

Observation 1. For any k � 1, k � kS
l � kS

r � 2k � 1 � k � 1.

The values for kS
l and kS

r depend on the position(s) of the corrupted data in the (2k� 1)-
string.

Observation 2. If no data is corrupted, then kS
l � k, kS

r � 2k � 1 � k � 1 � 3k � 2, and
the ma jority(stacki� 0� 2k � 1) is applied between in the position of k (kS

l � k � kS
r) at

least once and returns m.

Proof. Majority returns m i� the majority is computed any time after k copies have been
received, but no later than when at most k � 1 copies of the next message are received.

The majority ma jority(stacki� 0� 2k�1) is computed at least once in the 2k�1 receive
actions.

Calibrating an Embedded Protocol on an Asynchronous System 233

m mm m m

m’ m m m m

m m’ m m m

m m m’ m m

m m m m’ m

k

3

4

4

4

3

7

7

7

6

6

m m m m m’ 3 6

krlString

m m m

m m m

m

m m

m m

k

4

7

6

krlString k krlString

m’ m’’ 5

m’ m’’

m’ m m’’m

m’ m m’’

m’ mm’’

65

5 6

5 5 m’’m’mmm 3 5

m m m’ m m’’

mm’’m’mm

m m’ m m m’’

4 5

55

4 5

55mm’’mm’m

Fig. 1. At most 2 messages out of 5 are corrupted

Let S be the string where the first k � 1 data are correct copies of the message m, the
next k � 1 data are corrupted copies of the m, and the last data is a correct copy of
m. Then kS

l � kS
r � 2k � 1. Another “bad” string is an alternating sequence of non-

corrupted copies and corrupted copies, starting with a non-corrupted copy. In this case,
kS

l � kS
r � 2k � 1 also.

If l is the number of faults that have occurred, then there are

�
2k � 1

l

�
possible

strings with l copies corrupted, thus the total number of possible combinations is
k�1�
t�1

�
2k � 1

t

�
� 22k�2.

In Figure 1 we present a particular example when k � 3 and l � 2.

Property 1. If the majority computed when t (0 � t � 2k�2) copies of message m have
been received returns , and by analyzing the stack no new majority can be computed,
then � t0 � 0 such that the majority computed when t�t0 copies of m have been received
returns m (t � t0 � 2k � 1).

Proof. Out of 2k� 1 copies of m, at most k� 1 copies can be corrupted by a single fault
at intermediate processes.

Assume that the majority computed when t messages have been received returns
and assume that m should be the new majority. We have two cases, depending on the
value of t:

1. If t � k then, by examining the stack, only the previous majority can be computed.
But then there are 2k� 1� t � k� 1 copies of m still to be received. The latest once
all 2k� 1 copies of m (corrupted or not) have been received, the majority computed
at that moment returns m, thus t � t0 � 2k � 1.

2. If t � k then, by examining the stack either the old majority (if less than k correct
copies of m have been received) or the new majority can be obtained (if at least k
correct copies of m exists already in the stack). If the new majority can be obtained
then t0 � 0. If only the old majority can be obtained, it implies that the process has
to delay delivering a data, and it continues to increment its counter. The latest once
all 2k� 1 copies of m (corrupted or not) have been received, the majority computed
at that moment returns m, thus t � t0 � 2k � 1.

234 Y. Yamauchi et al.

Lemma 1. For any node pi, except for a finite prefix of values, the values of the counter
cpi when the majority is applied and returns a defined value (�) represent an infinite
series IS with bounded values, that is non-decreasing if no fault occurs. If a fault oc-
curs, then the values of this series may “re-start” with a value higher than 2k � 1 after
the fault.

Proof. In finite time, starting from an arbitrary initialization, the majority will return a
value � . Let li be the first value of the counter cpi when such majority is computed.
From Observation 2 and Property 1 we obtain that 2k� 1 � li � 3k� 2. At that moment
the counter cpi is reset to 0, and the next majority will be computed when cpi equals to
2k � 1 and it remains so. (The process becomes calibrated). A fault at pi may cause the
majority to be computed before all 2k � 1 values are received, thus the series IS may
have a sudden increase in value after the fault.

The following corollary derives directly from Lemma 1:

Lemma 2. A process pi will decide in finite time.

Proof. The series IS is non-increasing and the values are lower bounded by 2k � 1 and
upper bounded by 3k � 2. Thus for pi, the number of times a decision is delayed by a
fault is finite.

If cpi � 2k � 2 and majority cannot be decided, then after at most k � 1 messages
there will be a decided majority. Assume that process pi had a decided majority when
cpi was previously 0. Majority will return a defined value at least when all the 2k � 1
copies are received, if not earlier.

Theorem 1. Between two consecutive transient faults, for any message m sent by pi in
Protocol Pv for p j, in Protocol Pr � ��(Pv), message m sent by pi will be relayed at p j

if there is no fault at pi or p j during the communication of the 2k � 1 copies of m. In
any sequence of 2k � 1 messages received by some process pi, a decision will be taken
at pi at least once.

Proof. Transformer �� solves the transformation problem.
Let e be some link in the original topology where some message m was sent by

protocol�v (original protocol) that runs on an asynchronous system with almost reliable
channels modeled as the graph Gv (target topology).

If message m is sent along the link e � (pi� p j), then 2k�1 copies of m are received by
process p j running protocol�r. If majority at p j, applied after 2k�1 time units, returns
, then it takes longer than 2k � 1 time units for p j to have the message m delivered to
itself.

By Property 1, message m is eventually delivered at p j. Let p j sends some message
m� to its neighbor pk in Pv (with the link enext � (p j� pk)). Until m is not delivered at p j,
p j does not do any internal computation to change its state. Thus pk may receive more
than 2k � 1 copies of the message m� sent by p j before message m is delivered to p j.

The maximum delay of a message m sent by pi to p j in Pv is (3k � 1). A delay of a
message m means the time between the time pi sends the first copy of m and the time
p j receives the last (corrupted or not) copy of m. This is because p j receives at most
(k � 1) arbitrary data till it receives the first (corrupted or not) copy of m and after that

Calibrating an Embedded Protocol on an Asynchronous System 235

p j receives 2k� 1 (corrupted or not) copy of m. Before p j receives the last copy of m, it
delivers non- value by applying the majority function. If process pk receives l copies
of some message m�, 2k � 1 � l � 3k � 1, then message m� will be delivered at pk at
most twice.

Thus we have constant-duplication of messages, but no message creation, and neither
message loss.

The following corollary holds almost directly:

Corollary 1. If a message exchange between any two neighboring processes in Gr takes
at most Æv rounds, the delay in executing an action at process pi in protocol Pr is of at
most (3k � 1) � Æp rounds.

Proof. We do not have a message duplicated more than twice in a row for the same
message.

As described above, the transformed protocol Pr allows message duplication (i.e., a
message may be delivered twice at the destination process). This requires that the orig-
inal protocol Pv should work on a topology Gv with almost reliable channels. However,
by attaching a sequence number to each message, we can easily avoid the message du-
plication of Pr, and thus, we can accept as an input a (weaker) protocol that works on a
topology Gv with (completely) reliable channels.

5 Conclusion

We propose the notion of almost reliable channels. We show how the almost reliable
channels are used in embedding a protocol designed for one topology into another topol-
ogy. Our implementation guarantees the lossless of message communication (even in
the presence of transient faults) that preserves the reliability of the original protocol at
the price of constant-message duplication. Our next goal is to investigate other methods
to embed protocols for some specific topologies that are lossless, non-creating, non-
duplicating of messages, and fault-contained.

Acknowledgement

This work is supported in part by Global COE (Centers of Excellence) Program of
MEXT, Grant-in-Aid for Scientific Research ((B)19300017) of JSPS, and Grant-in-Aid
for JSPS Fellows (20-1621).

References

1. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: Proceedings of
the 8th IEEE International Symposium on Logic in Computer Science, pp. 160–170 (June
1993)

2. Aggarwal, S., Gopinath, B.: Special issue on tools for computer communication systems.
IEEE Transactions on Software Engineering 14(3), 277–279 (1988)

236 Y. Yamauchi et al.

3. Bochmann, G.V.: Finite state description of communication protocols. Computer Net-
works 2, 361–371 (1978)

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of ACM 30(2),
323–342 (1983)

5. Finkel, A.: Decidability of the termination problem for completely specified protocols. Dis-
tributed Computing 7, 129–135 (1994)

6. Finkel, A., Rosier, L.: A survey on decidability results for classes of fifo nets. In: Rozenberg,
G. (ed.) APN 1988. LNCS, vol. 340, pp. 106–132. Springer, Heidelberg (1988)

7. Finkel, A., Sutre, G.: Decidability of reachability problems for classes of two counters
automata. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 346–357.
Springer, Heidelberg (2000)

8. Gouda, M.: To verify progress for communicating finite state machines. IEEE Transactions
on Software Engineering 10(6), 846–855 (1984)

9. Lynch, N.A.: Distributed algorithms. Morgan Kaufmann Publishers, Inc., San Francisco
(1996)

10. Pachl, J.: Reachability problems for communicating finite state machines. Technical Report
CS-82-12, University of Waterloo (1982)

11. Rosier, L., Yen, H.: Boundedness, empty channel detection, and synchronization for com-
municating finite automata. Theoretical Computer Science 44, 69–105 (1986)

12. Schnoebelen, P.: The verification of probabilistic lossy channel systems. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Sys-
tems. LNCS, vol. 2925, pp. 445–466. Springer, Heidelberg (2004)

13. Sunshine, C.: Formal techniques for protocol specification and verification. Computer Jour-
nal 12(9), 20–27 (1979)

14. Sunshine, C.: Formal Modeling of Communication Protocols. In: Schoemaker, S. (ed.) Com-
puter Networks and Simulation, vol. II, pp. 141–165. Elsevier, North-Holland Publishing,
Amsterdam (1982)

15. Vuong, S.T., Cowan, D.D.: Reachability analysis of protocols with FIFO channels. Computer
Communication Review 13(2), 49–57 (1983)

16. Yamauchi, Y., Masuzawa, T., Bein, D.: Ring embedding preserving the fault-containment.
In: Proceedings of the 7th International Conference on Applications and Principles of Infor-
mation Science, pp. 43–46 (2008)

Part III

Short Papers

On Establishing and Fixing a Parallel Session

Attack in a Security Protocol

Reiner Dojen1, Anca Jurcut1, Tom Coffey1, and Cornelia Gyorodi2

1 Department of Electronic & Computer Engineering, University of Limerick, Ireland
reiner.dojen@ul.ie, anca.jurcut@ul.ie, tom.coffey@ul.ie

2 Department of Computer Science, University of Oradea, Romania
cgyorodi@uoradea.ro

Summary. Nowadays mobile and fixed networks are trusted with highly sensitive
information, which must be protected by security protocols. However, security protocols
are vulnerable to a host of subtle attacks, such as replay, parallel session and type-flaw
attacks. Designing protocols to be impervious to these attacks has been proven to be
extremely challenging and error prone.

This paper discusses various attacks against security protocols. As an example, the
security of the Wide-Mouthed Frog key distribution protocol when subjected to known
attacks is discussed. Significantly, a hitherto unknown attack on Lowe’s modified ver-
sion of the Wide-Mouthed Frog protocol is presented. Finally, a correction for the
protocol to prevent this attack is proposed and discussed.

Keywords: Security protocols, protocol flaws, parallel session attack.

1 Introduction

With the ever increasing use of distributed applications for meeting customer
demands, there is a commensurate increase in the reliance of electronic commu-
nication over networks. Since many of these applications require the exchange of
highly sensitive information over computer networks, the need for security proto-
cols to ensure the protection and integrity of data is critical. Basic cryptographic
protocols allow protocol principals to authenticate each other, to establish fresh
session keys for confidential communication and to ensure the authenticity of
data and services. Building on such basic cryptographic protocols, more ad-
vanced services like non-repudiation, fairness, electronic payment and electronic
contract signing are achieved.

In this paper we introduce attacks against security protocols. As an example,
the Wide-Mouthed Frog key distribution protocol is discussed and known attacks
on the protocol are detailed. Additionally, a hitherto unknown attack on Lowe’s
modified version of the Wide-Mouthed Frog protocol is presented. A correction
for the protocol to prevent the attack is proposed and discussed.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 239–244, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

240 R. Dojen et al.

2 Attacks Against Security Protocols

A security protocol should enforce the data exchange between honest principals,
while the dishonest ones should be denied any benefit of it. However, security
protocols can contain weaknesses that make them vulnerable to a range of attacks
such as replay, parallel session and type-flaw attacks. Many security protocols
have been found to contain weaknesses, which have subsequently been exploited,
for example [1][2][3][4][5][6][7][8][9]. This highlights the difficulty of designing
effective security protocols.

A replay attack is one of the most common attacks on authentication and key-
establishment protocols. If the messages exchanged in an authentication protocol
do not carry appropriate freshness identifiers, then an adversary can get himself
authenticated by replaying messages copied from a legitimate authentication
session. Examples of replay attacks include [1][2][5][6].

A parallel session attack requires the parallel execution of multiple protocol
runs, where the intruder uses messages from one session to synthesise messages
in the other session. Examples of parallel session attacks on security protocols
include [1][3][4][7]. There are several forms of parallel session attacks. In an
oracle attack the intruder starts a new run of the protocol and uses one of the
principals as an oracle for appropriate answers to challenges in first protocol
run. A man-in-the-middle attack occurs when two principals believe they are
mutually authenticated, when in fact the intruder masquerades as one principal
in one session and as the other principal in another. A multiplicity attack is a
parallel session attack where the principals disagree on the number of runs they
have successfully established with each other.

A type flaw attack involves the replacement of a message component with
another message of a different type by the intruder. Examples of type flaw attack
on security protocols include [4][8][9].

3 The Wide-Mouthed Frog Protocol

To illustrate the difficulty of designing effective security protocols, the Wide-
Mouthed Frog protocol, published by Burrows, Abadi and Needham [2], is dis-
cussed. It was proposed for the distribution of a fresh key between peer entities.
It assumes the use of symmetric key cryptography, a trusted server and synchro-
nized clocks. Anderson and Needham claimed a replay attack on the protocol
[10] and another attack was discovered by Lowe, who modified the protocol to
prevent these attacks[11]. Further, the authors of this paper present a hitherto
unknown attack on the protocol. The presence of flaws in the protocol in spite of
the repeated revisions demonstrates the difficulty of designing effective security
protocols.

Fig. 1 depicts the steps of the Wide-Mouthed Frog protocol: In step 1 A sends
timestamp Ta, the identity of B and the new session key Kab, encrypted with
Kas to server S. The server forwards the session key, along with A’s identity and
timestamp Ts to B using Kbs. Table 1 explains the used notation.

On Establishing and Fixing a Parallel Session Attack 241

A

S

B

2: {Ts, A, Kab}Kbs1: A, {Ta, B, Kab}Kas

Fig. 1. The Wide-Mouthed Frog Protocol

Table 1. Notation for Protocol Descriptions

{m}k message m encrypted with key k

A,B legitimate principals

S trusted server

Kas/Kbs symmetric key shared between A & S and B & S

I(A)/I(B) intruder masquerading as principal A/B

Ta/b/s timestamp created by A/B/S

Na/b once off random number (nonce) generated by principal A/B

To-date, two attacks on the Wide-Mouthed Frog protocol have been published.
Anderson and Needham claim a replay attack [10] and Lowe a multiplicity attack
[11].

3.1 A Replay Attack on the Wide-Mouthed Frog Protocol

The replay attack on the Wide-Mouthed Frog protocol enables an attacker to
keep the session key Kab alive [10]. It assumes that the server does not keep a
list of all recent keys.

The attack - depicted in Fig. 2 - works as follows: After intercepting the
message exchange of the protocol run i, the intruder starts a new run of the
protocol (ii) masquerading as B and sends to the server as message ii.1 a copy
of message i.2. Intercepting message ii.2, the intruder can start run iii of the
protocol and masquerade as A and so on. As a result the session key Kab is kept
alive by the intruder.

i.1. A -> S : A, {Ta, B, Kab}Kas
i.2. S -> B : {Ts, A, Kab}Kbs

ii.1. I(B) -> S : B, {Ts, A, Kab}Kbs
ii.2. S -> A : {Ts’, B, Kab}Kas

iii.1. I(A) -> S : A, {Ts’, B, Kab}Kas
iii.2. S -> B : {Ts’’, A, Kab}Kbs
....

Fig. 2. Replay attack on the Wide-Mouthed Frog Protocol

242 R. Dojen et al.

3.2 A Multiplicity Attack on the Wide-Mouthed Frog Protocol

Although Burrows, Abadi, and Needham claimed that both time stamps and
nonces ensure freshness of message exchanges in the Wide-Mouthed Frog proto-
col [2], Lowe demonstrated that time stamps only ensure recentness of a message
[11]. The protocol is thus susceptible to a multiplicity attack.

In this attack an intruder records the second message and replays it to B.
Alternatively, the intruder could replay the first message to the server. As a
result, B is lead into thinking that A is trying to establish a second session,
whereas A has established only one session. The attack involves two interleaved
runs of the protocol, as shown in Fig. 3. For this attack to succeed it is assumed
that the principals do not keep lists of recent keys.

i.1. A -> S : A, {Ta, B, Kab}Kas
i.2. S -> B : {Ts, A, Kab}Kbs

ii.2. I(S) -> B : {Ts, A, Kab}Kbs

Fig. 3. Multiplicity Attack on the Wide-Mouthed Frog Protocol

3.3 Lowe’s Modified Wide-Mouthed Frog Protocol

In Lowe’s modified version of the Wide-Mouthed Frog protocol [11] a nonce
handshake between A and B (cf. Fig. 4) has been added to prevent the presented
attacks. To-date no weaknesses of Lowe’s modified versions of the Wide-Mouthed
Frog protocol have been published.

A

S

B

2: {Ts, A, Kab}Kbs

3: {Nb}Kab

4: {succ(Nb)}Kab

1: A, {Ta, B, Kab}Kas

Fig. 4. Lowe’s Modified Wide-Mouthed Frog Protocol

4 A New Attack on Lowe’s Modified Protocol

We now present a hitherto unknown parallel session attack on Lowe’s modified
Wide-Mouthed Frog protocol, which uses A as an oracle. Consequently, the in-
truder impersonates principal B to A. Fig. 5 details the attack, which assumes
that A initiates the protocol. The intruder intercepts message i.2 and starts a
new protocol run as B, using message i.2 as part of ii.1. The honest principal
A decrypts message ii.2, extracts key Kab and responds by sending message ii.3
which contains a freshly generated nonce Na encrypted with this session key.
The intruder then replays ii.3 as its next message in run i (i.3.). In response, A
returns the encrypted successor of Na (i.4.), which the intruder replays as final
message in run ii (ii.4).

On Establishing and Fixing a Parallel Session Attack 243

i.1. A -> S : A, {Ta, B, Kab}Kas
i.2. S -> I(B) : {Ts, A, Kab}Kbs

ii.1. I(B) -> S : B, {Ts, A, Kab}Kbs
ii.2. S -> A : {Ts’, B, Kab}Kas
ii.3. A -> I(B) : {Na}Kab

i.3. I(B) -> A : {Na}Kab
i.4. A -> I(B) : {succ(Na)}Kab

ii.4. I(B) -> A : {succ(Na)}Kab

Fig. 5. New Attack on Lowe’s Modified Wide-Mouthed Frog Protocol

Consequently, A believes that a session has been established with B in run i
and also believes that B has established a session in run ii, even though B is in
fact absent. Therefore, the protocol does not ensure authentication.

The protocol suffers from two weaknesses: One is the symmetry of the first
two encrypted messages of the protocol, which allows the intruder to replay the
second message of the first protocol run (i.2) as the initial message of the second
run (ii.1). The other and major weakness is that it is not possible to establish
the source of the second last message.

4.1 Fixing the Flaw

In order to fix the protocol, the source of message 3 needs to be established.
This can be achieved by including the sender’s identity in the third message of
the protocol as presented in Fig. 6.

A

S

B

1: A, {Ta, B, Kab}Kas 2: {Ts, A, Kab}Kbs

3: {Nb, B}Kab

4: {succ(Nb)}Kab

Fig. 6. Proposed Correction to Wide-Mouthed Frog Protocol

As message 3 now includes the encrypted identity of B (originator of the mes-
sage), an intruder cannot successfully replay the message in a parallel session
with switched roles of initiator and responder: Message ii.3 in Fig. 5 becomes
{Na, A}Kab, whereas message i.3 requires {Na, B}Kab. Thus, the presented at-
tack is prevented. Further, formal verification of the proposed protocol using the
OFMC tool [12] provides confidence in its correctness.

5 Conclusion

A security protocol should enforce the data exchange between honest principals,
while the dishonest ones should be denied any benefit of it. However, secu-
rity protocols can contain weaknesses that make them vulnerable to a range of

244 R. Dojen et al.

attacks, such as replay, parallel session and type-flaw attacks. Designing proto-
cols to be resistant against these attacks has been proven very challenging as is
highlighted by the large number of security protocols that have been found to
contain exploitable weaknesses.

This paper analysed the Wide-Mouthed Frog key distribution protocol and
known attacks on the protocol were presented. Additionally, a hitherto unknown
attack on Lowe’s modified version of the Wide-Mouthed-Frog protocol that al-
lows an intruder to impersonate an legitimate principal was detailed. A correc-
tion for the protocol to prevent the attack was proposed and discussed.

Acknowledgement

This work was funded by the Irish Research Council for Science, Engineering
and Technology (IRCSET Embark Initiative) and Science Foundation Ireland -
Research Frontiers Programme (SFI RFP07 CMSF 631).

References

1. Boyd, C., Mathuria, A.: Protocols for authentication and key establishment.
Springer, Berlin (2003)

2. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transac-
tions on Computer Systems TOCS 8(1), 18–36 (1990)

3. Lowe, G.: An attack on the Needham-Schroeder public key authentication protocol.
Information Processing Letters 56(3), 131–136 (1995)

4. Lowe, G.: Some new attacks upon security protocols. In: Proceedings of Computer
Security Foundations Workshop VIII. IEEE Computer Society Press, Los Alamitos
(1996)

5. Denning, D., Sacco, G.: Timestamps in key distributed protocols. Communication
of the ACM 24(8), 533–535 (1981)

6. Aura, T.: Strategies against replay attacks. In: Proceedings of the 10th IEEE Com-
puter Society Foundations Workshop, Rockport, MA, pp. 59–68 (June 1997)

7. Nam, J., Kim, S., Park, S., Won, D.: Security analysis of a nonce-based user au-
thentication scheme using smart cards. IEICE Transactions Fundamentals 90(1),
299–302 (2007)

8. Hwang, T., Lee, N.Y., Li, C.M., Ko, M.Y., Chen, Y.H.: Two attacks on Neumann-
Stubblebine authentication protocols. Information Processing Letters 53, 103–107
(1995)

9. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security
protocols, pp. 255–268. IEEE Computer Society, Los Alamitos (2000)

10. Anderson, R., Needham, R.: Programming Satan’s Computer. In: van Leeuwen, J.
(ed.) Computer Science Today. LNCS, vol. 1000, pp. 426–440. Springer, Heidelberg
(1995)

11. Lowe, G.: A family of attacks upon authentication protocols. Technical Report
1997/5, Dept. Mathematics & Computer Science, University of Leicester (1997)

12. Basin, D., Mdersheim, S., Vigan, L.: OFMC: A symbolic model checker for security
protocols. Int. Journal of Information Security 4(3), 181–208 (2005)

Constructing Security Protocol Specifications for Web
Services

Genge Bela, Haller Piroska, and Ovidiu Ratoi

“Petru Maior” University of Targu Mures, Electrical Engineering Department
Nicolae Iorga St., No. 1, Mures, RO-200440, Romania
�����������		�
��
�����������
�������
�

Summary. In order to integrate new security protocols, existing systems must be modified ac-
cordingly, which often means interrupting system activity. We propose a solution to this problem
by developing an ontology model which provides semantic to security protocol operations. The
proposed model is based on a formal specification model and is integrated in existing Web service
description technologies.

1 Introduction

Security protocols are widely used today to provide secure communication over inse-
cure environments. By examining the literature we come upon various security proto-
cols designed to provide solutions to specific problems ([10]). With this large amount of
protocols to chose from, distributed heterogenous systems must be prepared to handle
multiple security protocols.

Existing technologies, such as the Security Assertions Markup Language ([12]) (i.e.
SAML), WS-Trust ([15]) or WS-Federation ([14]) provide a unifying solution for the
authentication and authorization issues through the use of predefined protocols. By im-
plementing these protocols, Web services authenticate users and provide authorized
access to resources. However, despite the fact that existing solutions provide a way to
implement security claims, these approaches are rather static. This means that in case of
new security protocols, services supporting the mentioned security technologies must
be reprogrammed.

In this paper, we propose a more flexible solution to this problem by developing an
ontology model aiming at the automatic discovery and execution of security protocols.
An ontology is a “formal, explicit specification of a shared conceptualization” ([1]),
consisting of concepts, relations and restrictions. Ontologies are part of the semantic
Web technology, which associates semantic descriptions to Web services.

In order to construct the proposed ontology model, we first create an enriched formal
specification model for security protocols. In addition to the information provided by
existing formal models, such as the SPI calculus ([2]), the strand space model ([3]) or
the operational semantics ([4]), we also include explicit processing operations. These
operations are then translated to semantic concepts and properties in the proposed
ontology model.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 245–250, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

246 G. Bela, H. Piroska, and O. Ratoi

The paper is structured as follows. In section 2 we construct a formal security proto-
col specification model. Based on this, in section 3 we describe the proposed ontology
model and an example implementation. In section 4 we connect our work to others. We
end with a conclusion and future work in section 5.

2 Security Protocol Specifications

Existing security protocol specifications limit themselves to the representation of oper-
ations and message components that are vital to the goal of these protocols: exchanging
messages in a secure manner. One of the most simplest form of specification is the in-
formal specification. For example, let us consider Lowe’s modified version of the BAN
concrete Andrew Secure RPC ([5]):

A � B: A� Na

B � A: �Na� K� B�KAB

A � B: �Na�K

B � A: Nb

By running the protocol, two participants, A and B, establish a fresh session key K.
The random number Na ensures freshness of the newly generated key, while Nb is sent
by participant B to be used in future sessions. Curly brackets denote symmetrical key
encryption. Throughout this paper we use the term “nonce”, which is a well-known
term in the literature, to denote random numbers.

Participants running security protocols usually exchange message components be-
longing to well-defined categories. We model these categories using the following sets:
R, denoting the set of participant names; N, denoting the set of nonces and K, denoting
the set of cryptographic keys.

The message components exchanged by participants are called terms. Terms may
contain other terms, encrypted or not. Encryption is modeled using function names.
The definition of function names and terms is the following:

FuncName ::�sk (secret key)
� pk (public key)
� h (hash or keyed hash)

� ::�. � R � N � K � (� ��)
� �� �FuncName(�)

Terms that have been encrypted with one key can only be decrypted by using either
the same key (when dealing with symmetric encryption) or the inverse key (when deal-
ing with asymmetric encryption). To determine the corresponding inverse key, we use
the �1 : K � K function.

As opposed to regular specifications where the user decides on the meaning of each
component, for our goal to be achievable, we need to include additional information in
the specification so that protocols can be executed without any user intervention.

We use the term “protocol header” to denote a set of sections needed for the inter-
pretation of the information that follows. The header we propose consists of three sec-
tions: types, precondition and e�ect. The predicates defined for each section are given in
table 1. Using the defined terms, we now define several functions to operate on them,

Constructing Security Protocol Specifications for Web Services 247

Table 1. Predicate definitions used to construct the protocol header

Section Predicate Definition Description

types part R� Participant list
nonce N� Nonce list
key K� Key list
term � � Term list

precondition shared key R � R � K Shared key between two participants
init part R Initializing participant
resp part R Respondent participant

e f f ect key exchange � � Key exchange protocol
authentication � � Authentication protocol

Table 2. Function definitions used to construct the protocol body

Function Definition Example Usage : Result

gennonce R � N gennonce(A) : Na

genkey R � K genkey(A) : K
encrypt R � � � � � � encrypt(A� (A� Na)� Kab) : �A� Na�sk(Kab)

decrypt R � � � � � � decrypt(A� �A� Na�sk(Kab)� K�1
ab) : (A� Na)

resulting the “protocol body”. These functions are used to provide a detailed description
of atomic operations specific to term construction and extraction. Sending and receiving
operations are handled by send : R�R�� � � and recv : R�R�� � � functions.

The list of proposed functions is given in table 2, which can be extended with other
functions if needed.

3 Ontology Model and Semantic Annotations

Based on the formal protocol construction from the previous section we have devel-
oped an ontology model that serves as a common data model for describing semantic
operations corresponding to security protocol executions. The core ontology (figure 1)
defines a security protocol constructed from four domains: Cryptographic specifica-
tions, Communication, Term types and Knowledge. Interrupted lines denote ontology
import, empty arrowed lines denote sub-concept association and filled arrowed lines
denote functional relations (from domain to range) between concepts.

The proposed ontology has been developed in the Protégé ontology editor ([9]).
It provides semantic to protocol operations such as generating new terms (i.e. key or
nonce), verifying received terms, sending and receiving terms.

The knowledge concept plays a key role in the automatic execution process. It’s
purpose is to model the stored state of the protocol between exchanged messages. For
example, after generating a new nonce, this is stored in the knowledge of the executing

248 G. Bela, H. Piroska, and O. Ratoi

Fig. 1. Core ontology for describing security protocols

participant. When a term is received containing the same nonce, the participant must
verify it’s validity by comparing the stored value with the received one.

The ontology model provides semantic for the purpose of each sent and received
term. However, it does not provide description of the mechanisms that would allow
terms to be exchanged by parties. It also does not provide a specification of the precon-
ditions, e�ects, cryptographic details or exchanged message sequences.

In our implementations, we used WSDL with Semantic annotations ([11]) (i.e.
WSDL-S) to handle the aspects that are not addressed by the ontology model. The
WSDL standard defines the portType section to denote a collection of messages. We
annotate messages defined by portType using the wssem:modelReference extension
attribute. Part of an example annotated XML schema representation of an encrypted
message is the following:

��������	
�� ��������	
����

����������

�������� ���������� �
�����������	
���

�� ����!��

����������

�������� ����������� �
������������	
���

�� "����!�

����������

�������� �����#�
���� �
�������������$�
	
���

�� $�
!%�

����������

�������� ��������!��� �
����������

�� &��!&'�

����������

�����������

���������	
���

E�ects and preconditions are added using the already existing wssem:precondition
and wssem:e�ect elements. Part of the WSDL-S defining a security protocol which

Constructing Security Protocol Specifications for Web Services 249

requires a shared key between users and as an e�ect produces a session key is the
following:

����������	
�� �����&��(�����

������������������� �����'�����$�
�

�� '�����$�
!%���

������������������� �����'������$�
�

�� '���$�
!%���

�����������	
���

4 Related Work

There are several proposals and already established standards in the web service com-
munity dealing with security aspects. We will briefly describe three approaches that
have the most in common with our proposal: SAML (Security Assertion Markup
Language), WS-Federation (Web Service-Federation) and WS-Security (Web Service-
Security).

The Security Assertion Markup Language is an “XML framework for exchanging
authentication and authorization information” ([12]) between entities. This is achieved
by the use of assertions, based on XML constructions, that denote authentication and au-
thorization sequences achieved by entities. Based on these assertions, service providers
can decide whether clients are authorized or not to access the requested services. SAML
also provides a set of XML constructions called “profiles” to describe the required mes-
sage exchange for transferring assertions. However, these are predefined messages that
must be implemented by all services and protocol participants. Our proposal includes a
semantic description that allows executing security protocols containing message struc-
tures that are not predefined.

A similar proposal to the SAML framework is WS-Federation ([14]). As mentioned
by the authors of WS-Federation, the goals achieved are mainly the same as in the case
of SAML. Major di�erences relate to the fact that it extends the WS-Trust model ([15])
and it provides a set of composable protocols. These components that di�erentiate it
from the SAML framework, however, do not compete with our proposal.

The WS-Security ([13]) proposes a standard set of SOAP extensions to implement
message integrity and confidentiality. It describes how to encode binary security com-
ponents such as keys, random numbers or X.509 tokens. The WS-Services specification
is thus a transport layer for the actual execution of protocols and not the description of
the involved messages. The WS-Services could thus be used in conjunction with our
proposal to encode binary data included in protocol messages.

5 Conclusions and Future Research

In this paper we presented an ontology model which provides semantic to security
protocol execution operations. The ontology model is based on a formal specification
model that ensures a detailed description through the use of a protocol header and a
protocol body. Based on these descriptions, client applications can execute new secu-
rity protocols based only on the proposed description.

250 G. Bela, H. Piroska, and O. Ratoi

The major advances in the field of protocol composition ([7, 8]) provide the means to
create new protocols from existing security protocols. The analysis process of the com-
posed protocols has been reduced to a syntactical analysis ([6]) which could be used
to create protocols in real time. As future research we intend to combine the specifica-
tion and ontology model proposed in this paper with composition operators in order to
create protocols based on multiple specifications.

References

1. Studer, R., Benjamins, V., Fensel, D.: Knowledge Engineering: Principles and Methods. In:
Data and Knowledge Engineering, pp. 161–197 (1998)

2. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: the spicalculus. In: 4th
ACM Conference on Computer and Communications Security, pp. 36–47 (1997)

3. Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand Spaces: Why is a security protocol cor-
rect? In: Proc. Of the 1998 Symposium on Security and Privacy, pp. 66–77 (1998)

4. Cremers, C., Maw, S.: Operational semantics of security protocols. In: Leue, S., Systa, T.
(eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 66–89. Springer,
Heidelberg (2005)

5. Lowe, G.: Some new attacks upon security protocols. In: Proc. of the 8th Computer Security
Foundations Workshop (1996)

6. Genge, B., Ignat, I.: Verifying the Independence of Security Protocols. In: Proc. of the 3rd
International Conference on Intelligent Computer Communication and Processing, Romania,
pp. 155–163 (2007)

7. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol Composition Logic. In: Electronic
Notes in Theoretical Computer Science, pp. 311–358 (2007)

8. Hyun-Jin, C.: Security protocol design by composition. Technical report Nr. 657, UCAM-
CL-TR-657, Cambridge University, UK (2006)

9. Noy, N.F., Crubezy, M., et al.: Protege-2000: An Open-Source Ontology-Development and
Knowledge-Acquisition Environment. In: AMIA Annual Symposium Proceedings (2003)

10. Security Protocol Open Repository (2008), �����������	���������������
����
��
11. World Wide Web Consortium. Web Service Semantics WSDL-S Recommendation (Novem-

ber 2005), ���������������
��������	�
12. Organization for the Advancement of Structured Information Standards. SAML V2.0 OASIS

Standard Specification (November 2007), ����������	���	��
��
13. Organization for the Advancement of Structured Information Standards. OASIS Web Ser-

vices Security (WSS) TC (November 2006), ���������������
����������������
14. IBM. Web Services Federation Language Specification (December 2006),

����������������������	���
��
���	�
�
 �������������������

15. Organization for the Advancement of Structured Information Standards. WS-Trust v1.3
OASIS Standard (March 2007), �����������������������
������������
����

!""#$!�����
����$���������	�

http://www.lsv.ens-cachan.fr/spore/
http://www.w3.org/TR/wsdl/
http://saml.xml.org/
www.oasis-open.org/committees/wss/
http://www.ibm.com/developerworks/library/specification/ws-fed/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html/

On the Foundations of Web-Based Registries for
Business Rules

Adrian Giurca1, Ion-Mircea Diaconescu1, Emilian Pascalau1, and Gerd Wagner1

Brandenburg University of Technology, Germany
���������	
������������������������������������	

Summary. In the last eight years, registries for e-business, such as ebXML or UDDI, enabling
enterprise of any size and in any geographical location to conduct their businesses on the World
Wide Web, were developed. Applications in domains such as insurance (for example, insurance
rating), financial services (loans, claims routing and management, fraud detection), government
(tax calculations), telecom customer (care and billing), e-commerce (personalizing the user’s
experience, recommender systems, auctions), and so on benefit greatly from using rule engines.
Therefore, sharing rulesets becomes a necessity for many B2B businesses. This work presents
a basic architecture of building a Web-based registry for rules. The main goal of the registry
is to allow rulesets discovery. Registry entries contain both required ruleset related data (such
as ruleset URI or properties describing their intended scope) and optional metadata covering
additional properties such as last modified date.

1 Introduction and Motivation

Registries and repositories such as UDDI [11] and ebXML [10, 9] are developed to
enrich the actual need for a standardization in e-business. They come with necessary
infrastructure for defining business processes, business information, business entities,
business relationships, e-commerce patterns, catalog of common business processes,
message services, and business services. Nowadays, in many cases, businesses behavior
is expressed naturally through business rules[14], [15]. There are several rule platforms
such as Drools, ILog, Jess, FLORA 2, Jena Rules, SWRLTab, but there is no standard
way for defining business rules. The standardization is a concern for both OMG and
W3C. The first produced Production Rule Representation (PRR), Beta 1[12] and the
second Basic Logic Dialect [2]. Moreover, the W3C Rule Interchange Format WG goal
is to produce W3C recommendations for rules interchange on the Semantic Web. Users
encode and store their rules either in PRR or RIF representation. Since RIF is an in-
terchange format, the interoperability goal is achieved. However, the need of a rule
registry remains actual and necessary. Such a registry will help users to discover busi-
ness rulesets and reuse them in their applications. This paper proposes an architecture
for a Web-based rule registry. Any registry implementation must comply with at least
the following functionalities:

� Ruleset registration - Registering a ruleset makes it available for public�private use
by other applications.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 251–255, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

http://labs.jboss.org/drools
http://www.ilog.com
http://www.jessrules.com
http://flora.sourceforge.net/
http://jena.sourceforge.net/inference
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
http://www.omg.org
http://www.w3c.org

252 A. Giurca et al.

� Ruleset discovery - The searching capabilities of the registry should permit to users
and to applications to find out the appropriate ruleset to their needs.

2 The Registry Entry Information Model

This section describes the information model of a registry entry to be maintained in a
rule registry to achieve eÆcient rulesets discovery.

2.1 A Business Ruleset Example

For a better understanding of the goal and the result we use an example ruleset provided
by Business Rule Forum – the Driver Eligibility ruleset. Its purpose is to establish if
a driver is or isn’t eligible for an auto insurance. Below is an excerpt of the ruleset
expressed in natural language:

1. If young driver and driver has training certification, then is an eligible driver.
2. If senior driver and driver has training certification, then is an eligible driver.
3. If both of the following are not true, then is an eligible driver

� Young driver;
� Senior Driver;

Recall that this work addresses production rulesets conforming to the OMG PRR
[12], and therefore rules are vocabulary based and only the standard actions i.e. assert,
retract, updateState and invoke are allowed. Readers familiar with RETE algorithm [7]
are aware that rules from this ruleset can be executed only if the working memory con-
tains a specific set of facts (they have to match rule conditions). Rule platforms use
specific vocabulary language to encode concepts. For example, Drools and JRules use
Java beans as vocabulary (e.g. all above rules written in Drools assume the availability
of the ������ bean). Also the facts representation of the Working Memory must con-
form with this vocabulary (e.g. an instance of ������ is logically interpreted as a set of
facts). Therefore, a registry entry should keep at least: (a) a reference to the vocabulary
representation language and (b) a reference to the rule vocabulary.

A registry entry contains the following required information:

1. A literal acting as a primary key of a registry entry encoded as the value of id
property;

2. An URI reference to the natural description of the ruleset, allowing human read-
ers to better understand if the ruleset is or is not appropriate for his purposes (an
implementation solution may be by using Dublin Core [8] description property);

3. A literal representing the code of the business addressed by this ruleset. The imple-
mentation may use, for example, NAICS or UNSPSC codes of the corresponding
business part (encoded as a value of the Dublin Core related property);

4. An URI reference to the ruleset vocabulary fragment corresponding to the intended
initial set of facts (encoded as a value of prereqVocabulary property;

5. An URI reference to the ruleset vocabulary fragment corresponding to the expected
results (this is a subset of the vocabulary corresponding to the fact instances a�ected
by rule actions), encoded as a value of the resultVocabulary property);

http://www.businessrulesforum.com/
http://www.census.gov/epcd/naics02/naicod02.htm
http://www.unspsc.org/

On the Foundations of Web-Based Registries for Business Rules 253

6. An URI reference to the specific ruleset implementation, encoded as the value of
ruleSetID property;

7. An URI reference to the ruleset representation language, (e.g.
����	

����������
����� in the case of a Java beans vocabulary). encoded
as a value of the Dublin Core type property;

8. An URI reference to the vocabulary representation language (encoded also with the
help of Dublin Core type property);

9. A literal encoding the mime-type of the vocabulary representation (e.g. text�html,
application�xml) encoded as a value of the Dublin Core format property;

10. A literal encoding the mime-type of the ruleset representation (encoded also with
the help of Dublin Core format property);

In addition an entry may o�er the following non-mandatory information:

1. the creator (using Dublin Core creator or FOAF [6] maker);
2. contributors (using Dublin Core contributor property);
3. the release date (using Dublin Core date property);
4. the version (using Dublin Core hasVersion property);
5. the submission date (using Dublin Core dateSubmitted property);
6. the last modified date (using Dublin Core modified property);
7. the ruleset applicable licence (using Dublin Core licence property);
8. the publisher (using Dublin Core publisher property);
9. positive usages and negative usages (values of positiveUsage and negativeUsage

respectively);
10. known translators to other rule languages (values of translator property);

All those properties are optional, but they are strongly recommended this allowing a
much sharp discovery of the rulesets.

The example below (using Turtle notation[4]) describes a DriverEligibility ruleset
entry in the registry. The next section describes how to use SPARQL [13] queries to
extract information from the registry.

������� ��	 �����	

�������������
�

������� ���	 �����	

���������������
�����
��������
����� �

���	���!����" ���	���� ���	#���$��!����%

���	�� &������!����������&%

��	������� ��	'���$����%

��	����������� ��	������!��������������

��	������� &()�*+,-$&%

���	����������#�������� .	/��#��0"%

���	����$��#�������� .	#$#��0"%

���	��������1���� ��	�!������"

���	��������1���� ��	�!������"

���	��������1���� ��	�!������)

.	/��#��0" ���	���� ���	/���������%

��	���� �����	

����2���
3#
����������
�

254 A. Giurca et al.

��	������ &�����������
���4���&

���	����������,� ��	1�����!./���������%

���	�����5/��������� ��	1�����!.6����5/���������%

���	������/��������� ��	1�����!.#�����/���������%

.	#$#��0" ���	���� ���	#���$��%

��	���� �����	

������������������
�

��	������ &����
����&

���	����$��,� ��	1�����!.#���$��%

The choice of RDF(S)[5] for the entry representation is due to its conformance with
at least the following criteria:

� The registry refers distributed resources on the Web;
� RDF(S) o�ers a well established semantics[1] of distributed and shared data on the

Web [1];
� Well established metadata standards such as Dublin Core and FOAF use RDF

Schemas;
� RDF(S) o�ers a query language for Semantic Web i.e. SPARQL [13];
� Reasoning on the resources is possible by adding web rules and inference engines

(such as Jena Rules).

3 Querying the Registry

Since the entry representation is RDFS it is straightforward to use SPARQL, as a query
language of the registry. For example one may want to obtain rulesets related to Finance
and Insurance (code 52-NAICS), written in Jena and for which at least one positive
example is available. Then the following SPARQL query can be designed:

$!7!-3 8��,�

9:!#! ;

8�� ���	���� ���	#���$��!����%

���	�� 8��,�%

��	������� &()�*+,-$&%

���	����$��#�������� 8��%

���	��������1���� 8<��

8�� ��	���� �����	

������������������
�

=,73!# >�����>8<��? � 0??

@

For a number of cases, when the vocabulary of the ruleset is expressed by using
RDFS, more advanced searches are available.

For the above example, we can check the vocabulary to find if the ruleset contains
Driver objects. In such a registry, no rules, no vocabularies nor other direct information
regarding rule sets are stored, but instead, it o�ers access to all these resources by
using URI references. This way, access to all information needed is provided, and more
advanced searches are then supported. The limit depends on the implementation of the
search engines through that information.

On the Foundations of Web-Based Registries for Business Rules 255

4 Conclusion and Future Work

In this paper we defined the structure of a web-based rules registry. The registry en-
tries provide both required and optional information allowing rulesets discovery. The
information model proposes RDF(S) as a knowledge representation language of the
registry entries and SPARQL as a registry query language. Future work will investigate
an extension of the registry under the assumption that properties positiveUsage and
negativeUsage are open and complementary. Unfortunately this can’t be expressed by
using RDF(S), therefore the actual reasoning process over it can’t take this into consid-
eration. A possible solution is to investigate the usage of ERDF [3] for representation of
the registry entries. In ERDF, those properties collapse into a single one, namely usage
represented as a PartialProperty, and its complement can be expressed by using strong
negation. However such a solution is subject of discussion since it involves a potential
SPARQL extension to query ERDF knowledge bases.

References

1. RDF Semantics. W3C Recommendation (February 10, 2004),
����������	��	��������
�����

2. RIF Basic Logic Dialect (October 2007), ����������	��	���������������� ��!"#
3. Analyti, A., Antoniou, G., Damasio, C.V., Wagner, G.: Extended RDF as a Semantic Foun-

dation of Rule Markup Languages. Journal of Artificial Intelligence Research 32, 37–94
(2008)

4. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF Triple Language (January 2008),
����������	��	�������$����������������

5. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation (February 2004), ����������	��	��������
��������

6. Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.91 (November 2007),
�������%����	�������������

7. Forgy, C.: Rete – A Fast Algorithm for the Many Pattern � Many Object Pattern Match
Problem. Artificial Intelligence 19, 17–37 (1982)

8. Dublin Core Metadata Initiative. DCMI Metadata Terms (January 2008),
�������
��������	����
��������
���������

9. OASIS. ebXML Business Process Specification Schema Version 1.01 (May 2001),
����������	�%��	����������!&$$	�
�

10. OASIS. ebXML Technical Architecture Specification v1.0.4 (February 2001),
����������	�%��	�����������'	�
�

11. OASIS. UDDI Version 3.0.2, UDDI Spec Technical Committee Draft, Dated 20041019 (Oc-
tober 2004), ��������

�	����������

��(�	�	�����)*�*+	�
�

12. OMG: Production Rule Representation (PRR), Beta 1. Technical report (November 2007)
13. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (November 2007),

����������	��	��������
������,��,��-�

14. Ross, R.G.: The Business Rule Book: Classifying, Defining and Modeling Rules, 2nd edn.
Database Research Group, Inc., Boston (1997)

15. Ross, R.G.: Principles of the Business Rule Approach, 1st edn. Addison-Wesley, Reading
(2003)

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/2005/rules/wiki/BLD
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec/
http://dublincore.org/documents/dcmi-terms/
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebTA.pdf
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
http://www.w3.org/TR/rdf-sparql-query/

Large-Scale Data Dictionaries Based on Hash Tables

Sándor Juhász

Department of Automation and Applied Informatics,
Budapest University of Technology and Economics,
1111 Budapest, Goldmann György tér 3. IV. em., Hungary
����������	
�����������

Summary. Data dictionaries allow eÆcient transformation of repeating input values. The atten-
tion is focused on the analysis of voluminous lookup tables that store up to a few tens of millions
of key-value pairs. Because of their compactness and search eÆciency, hash tables turn out to pro-
vide the best solutions in such cases. This paper deals with performance issues of such structures
and its main contribution is to take into consideration the e�ect of the multi-level memory hier-
archies present in all the current computers. The paper enumerates and compares various choices
and methods in order to give an indication how to choose the structure and the parameters of hash
tables in case of large-scale, in-memory data dictionaries.

Keywords: hash table, cache, large data dictionaries, performance optimization.

1 Introduction

Hash tables store the matching input-output (key-value) pairs instead of performing
di�erent calculation steps on the input data to provide the corresponding result. This
paper studies performance optimization possibilities of large in-memory hash tables.
When analyzing the storage layout choices, hash functions and optimization methods,
we focus our attention to minimizing the number of L2 cache misses. This study ad-
dresses problems originating from real life projects related to web log processing [4]
and model transformation issues [5]. While the primary goal to achieve was the high-
est performance possible, seeking for memory-economic solutions is also beneficial as
it spares resources for other cooperating tasks. The rest of the paper is organized as
follows. Section 2 deals with performance analysis and enumerates the possible opti-
mization choices and methods suggested by other authors. Section 3 applies various
optimization methods one by one to the hash tables, and analyzes the e�ect they have
on the real performance. Section 4 provides an evaluation and comparison of di�erent
methods presented in the paper. We conclude by giving a suggestion how to choose the
structure and the parameters of large hash tables to achieve the best performance.

2 Related Works

Lookup tables are memory intensive with low computation power requirements, thus
their performance is equally e�ected by the memory access pattern and by the number

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 257–262, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

258 S. Juhász

or instructions (comparisons) completed to find the element corresponding to the key.
Thanks to optimization work of di�erent researchers trying to find better hash functions
or improve collision or overflow handling, good hash tables provide a constant access
time to the elements, where the average can be pushed down nearly as low as a single
step [6]. Di�erent parameters such as initial size and the type of the hashing play crucial
roles in this process. Two di�erent approaches exist: open hashing and bucket hashing.
Open hashing uses a single directly addressable flat structure, while bucket hashing
distributes the values into groups (buckets) based on the hash function, and stores these
groups in separate lists.

If more keys are mapped to the same value a collision occurs. Lum, Yuen and Dodd
were among the firsts to analyze the accuracy of hash functions and collision solving
methods on real data [1]. They came to the conclusion that bucket hashing outper-
forms open hashing if the buckets are small enough. Their work was continued by Ra-
makrisnha [3], who verified the predicted analytical performance of hashing techniques
in practice, taking in account both the successful and unsuccessful search lengths and
the expected worst case performance. Owolabi in [8] used open hashing to compare
five common hash functions (division, multiplication, midsquare, radix conversion and
random) along with two collision handling techniques (linear probing and chaining)
and found that random and division methods perform the best on the tested real-life
data sets. It is also suggested [1] to use prime numbers as the number of buckets, or at
least to avoid values having small numbers (less than 20) between their prime factors,
but our tests presented in Section 3 did not confirm the importance of applying such
restrictions.

Unfortunately the above works concentrate on reducing the number of comparisons
only, Mitzenmacher [7] was the first to mention the importance of memory access pat-
terns and caching when adjusting the parameters of hash tables. In modern computers as
a multilevel cache acts as a temporary storage place for frequently or recently accessed
data [9][10], thus in practice the performance complexity of data intensive application
is always measured in the number of the slow memory accesses (cache misses).

3 Comparing the Di�erent Approaches

This paper focuses on finding a performance optimal structure and memory usage pat-
tern for hash tables. Our main contribution lies in analyzing the e�ect the di�erent
storage structures have on the memory access and through this, on their overall perfor-
mance. This e�ect is captured by measuring the number of L2 cache misses. Caches in
current CPUs administer lines of usually 64 bytes. When designing the storage struc-
ture accordingly, this fact can be turned into an advantage. This section illustrates the
e�ects of the di�erent design and run-time parameters on the eÆciency of the lookups.
The theoretic proposals are supported by various experiments. A lookup table used in
real-life web log compression will serve to support our suggestion and observations,
where a field of 20 bytes is transformed to 4 bytes). The code table in the measure-
ments includes 10 million pieces of these 24 byte long key-value pairs. All the hash
table implementations are written in C��, compiled with Microsoft Visual Studio 2005,
and executed on Intel Pentium 4 CPU @ 3.2 GHz, 2 MB L2 cache, with 4 GB system

Large-Scale Data Dictionaries Based on Hash Tables 259

Fig. 1. Outline of the listed hash table structures

Fig. 2. Execution time and the number of cache misses of the hash tables

memory. The L2 cache usage was measured with Intel VTune Performance Analyzer
9.0. Each measurement starts after inserting the 10 million items and includes the exe-
cution time of 200 million lookups.

As the primary goal is to enable fast data conversions for voluminous data dictionar-
ies, the first experiment was done with bucket hashing as suggested in [1]. The storage
of the buckets themselves can be implemented with linked lists or with arrays. Lists
can dynamically increase their size, while arrays require more administration (realloca-
tion), but as the items are stored side by side arrays provide a cache friendlier behavior.
Linked lists on the other hand do not have this advantage, as their items are spread all
along the memory. If the average number of items per (non-empty) buckets falls bel-
low two, the possibility of taking advantage of cache line prefetches vanishes. Fig. 1
summarizes the di�erent bucket hash structures handled in the paper. Next to the above
mentioned array and linked list based implementations, we can see a special separated
key-value approach.

Fig. 2 compares the performance of the above three storage structures to the tradi-
tional approach of open hashing by measuring the execution time and the number of
cache misses. It is clearly visible that there is a strong correlation between the number
of cache misses and the execution time.

As expected, arrays outperform linked at low bucket numbers (see Fig. 2). When
increasing the number of buckets the average bucket size decreases and after a point
linked lists become faster. This happens because arrays have higher initial cost (the size
of the array has to be queried as well), but fetching items after getting the first one

260 S. Juhász

is cheaper. Fig. 2 also shows the curves of cache misses corresponding exactly to the
execution time of the algorithms and we can see that the change in favor of linked lists
is also verified. Our experience shows that arrays are advised when there are more than
2 items in the buckets, and linked lists are recommended below that bucket size.

Good data locality allows taking advantage of the prefetching. Reducing the size
of the items increases the cache performance by allowing more items to fit in a single
cache line. Although the size of key or the value cannot be modified, but their separation
(putting them into separate arrays) is feasible, like it is done in case of the separated
array version. Since searching uses the keys only for comparison, the values will not
be needed until the key matches. This variation runs faster until the bucket number of
10 millions is reached. At this bucket number, the average number of items per bucket
drops to nearly 1 thus the first item in the bucket is highly likely to be a match, and the
value of that item will be requested immediately in both cases. With the modification,
the value request will result in a cache miss, since it is stored at a di�erent part of the
memory; while in the original version, the key and the value is loaded in one step, and
the value is directly accessible. The larger the buckets are, and the bigger part the values
in the key-value pairs represent, the more significant improvement such modifications
provide. As a consequence, the separation of keys and values is strongly advised when
using arrays, especially when the number of buckets is smaller than the number of
items.

The most significant factor determining the performance of hash tables is the number
of buckets (or the expected size of the buckets). As a rule of thumb, the more buckets are
used, the better the performance is. With the growing number of buckets, the average
bucket size decreases, resulting in fewer items to be checked. However, the performance
gain is limited. While the CPU time may decrease as the items in the buckets gets fewer
and fewer, the number of memory reads stay constant after a point, therefore the time
will not be reduced further, memory consumption on the other hand will continue to
increase rapidly. The limit is reached around 20-30 million buckets for 10 million items,
as visible in Fig. 2.

Having tuned the bucket hashing in the previous sections, now it is time to verify
whether our initial choice of bucket hashing instead of open hashing was really a good
one under the circumstances we face. The simplified description of both approaches
was presented in Section 2. To do a fair comparison during the measurements, linear
probing was used in the implementation of open hashing, as it takes the best advantage
from the cache line prefetch, and is claimed to be best for medium saturation levels
(40-70%) [11]. With the increasing amount of memory reserved for open hashing, the
execution time decreases, while the allocated memory increases. Below 50% saturation
(20 million buckets), the execution time does not change considerably showing same
behavior that bucket hashing did. Open hashing is considerably faster in the high bucket
regions, although, bucket hashing is still a viable choice for bucket numbers less than
the number of items. Open hashing in these regions simply does not work, as by nature it
requires more slots than items. Smaller bucket numbers also come with smaller memory
need, thus for memory sensitive operations, bucket hashing is advised, otherwise open
hashing is the suggested choice.

Large-Scale Data Dictionaries Based on Hash Tables 261

4 Comparison of Methods

An overview of the examined aspects is given in Table 1, showing the e�ect of the
di�erent options on the execution time and on the amount of the reserved memory. The
best choice is often not obvious, but depends on the number of buckets (many buckets
in the table means at least as many buckets as items, less buckets means between 10%
and 75% of the number of items). Given that using bucket hashing makes only sense
with small bucket sizes (otherwise open hashing is a clear winner), we did not consider
cases where the number of buckets fall below 10% of the items.

The most controversial modification is the choice of storage structure in bucket hash
tables. While arrays perform significantly better (up to 100%) for small bucket numbers
by taking advantage of cache usage, linked lists will profit from higher bucket numbers.
The decision is also influenced by the nature of the items. When the number of items is
unknown, open hashing is out of the question, while linked lists will deteriorate rapidly
with the growing number of items. In this case, bucket hashing is a safe bet as its
performance deteriorates much slower.

The most dominant parameter is clearly the number of buckets. Estimating the best
number of buckets is out of the scope of the current paper, but as a rule of thumb,
increasing the number of buckets results in the better performance, but it no use going
above 2-3 times of the number of items to store.

Table 1. Comparison of methods

in favor of performance gain gain in memory

open vs. bucket hashing
many buckets open 20-30% -30%
less bucket bucket open hash not applicable

linked lists vs. arrays
many buckets linked lists 20% -
less buckets array 100% 5-10%

separation of keys many buckets key-value together 7% -
with arrays less buckets separated key 10% -
bucket number high numbers 20-30% -30%

5 Conclusion

This paper presented methods and aspects of hash table design when storing tens of
millions of key-value pairs. The main focus was put on the performance of searching
that was sped up by choosing the most suitable storage structures and methods taking
advantage of L2 cache. During our work we found that bucket hashing does not out-
perform open hashing even if the bucket sizes are kept small. As the di�erence in high
performance region is small (below 10%), bucket hashing can prove to be useful when
we ignore the number of items to be stored in advance.

Considering the memory usage, lookup performance and parameter sensitivity bucket
hash tables turned out to have two optimal working points. The first version is recom-
mended for known-number of items, where the lookup speed is a primary concern. In

262 S. Juhász

this case linked lists are advised; and the bucket number should be greater than the
number of items. As the buckets store list pointers only, overestimating (or increasing)
the number of buckets has a slight additional memory cost only. The second version is
a tradeo� between memory usage and lookup speed. Being less sensitive to the number
of items this version is advised when the number of items is not well-known in the be-
ginning. In this case arrays with separated keys and values are used, and the number of
buckets is chosen between one tenth and one fourth of the number of items. This ver-
sion is very robust, the execution time declines only slowly when inserting more items
than what the hash table was designed for.

Acknowledgment

This work was completed in the frame of Mobile Innovation Centre’s integrated project
Nr. 3.2. supported by the National OÆce for Research and Technology (Mobile 01�2004
contract).

References

1. Lum, V.Y., Yuen, P.S.T., Dodd, M.: Key-to-address transform techniques: A fundamental
performance study on large existing formatted files. Communications of the ACM 14(4),
228–239 (1971)

2. Lum, V.Y.: General performance analysis of key-to-address transformation methods using an
abstract file concept. Com. of the ACM 16(10), 603–612 (1973)

3. Ramakrishna, M.V.: Hashing in Practice, Analysis of Hashing and Universal Hashing. In:
Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 191–199 (1988)

4. Juhász, S., Iváncsy, R.: Tracking Activity of Real Individuals in Web Logs. International
Journal of Computer Science 2(3), 172–177 (2007)

5. Lengyel, L., Levendovszky, T., Charaf, H.: Normalizing OCL Constraints in UML Class
Diagram-Based Metamodels - AND�OR Clauses. In: Proceedings of the IEEE EUROCON
2005, Belgrade, November 21-24, pp. 579–582 (2005)

6. Litwin, W.: Linear hashing: A new tool for file and table addressing. In: Proceedings of the
Sixth International Conference on Very Large Data Bases, New York, pp. 212–223 (1980)

7. Mitzenmacher, M.: Good Hash Tables & Multiple Hash Functions. Dr. Dobbs Journal 336,
28–32 (2002), ���������		���
��	��������������������

8. Owolabi, O.: Empirical studies of some hashing functions. Information & Software Technol-
ogy 45(2), 109–112 (2003)

9. van der Pas, R.: Memory Hierarchy in Cache-Based Systems, Technical report, High Perfor-
mance Computing, Sun Microsystems, Inc. (2005),
��������������
�������������������� ������	!

10. Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious. Computer
Architecture News 23, 20–24 (1995)

11. Pagh, A., Pagh, R., Ruzic, M.: Linear probing with constant independence. In: Proceedings
of the 39th ACM Symp. on Theory of Computing, San Diego, pp. 318–327 (2007)

http://www.ddj.com/dept/architect/184405046
http://www.sun.com/blueprints/1102/817-0742.pdf

Undo in Context-Aware Collaborative
Ubiquitous-Computing Environments

Marco P. Locatelli and Marco Loregian

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano Bicocca,
viale Sarca 336,
20126 Milano (Italy)
�������������	�
�������������������

Summary. A comprehensive approach to the design of Ubiquitous Computing systems must
deal with the issues related to the restoration of an earlier or acceptable state of the system, if
possible, when users intentionally want to undo some previous actions. Systems supporting col-
laborative Ubiquitous Computing environments should provide a default undo function, but also
provide users and applications with awareness information to correctly decide which (compen-
sative) actions should be undertaken. In this paper we describe how to achieve undo in distributed,
dynamic, context-aware systems. We present a general approach to undo in collaborative Ubiq-
uitous Computing environments in terms of the CASMAS model: part of the approach relies on
the notion of active coordination artifacts, as defined also in CSCW literature.

1 Introduction

We have studied the problem of undo from various perspectives: from Business Process
Management [2] to Human-Computer Interaction [6, 7]. Several approaches and theo-
retical frameworks for undo have been proposed in literature [3] and implemented in
prototype systems as well as in commercial applications. However, even if undo can no
longer be considered just an accessory function, the topic has not been treated system-
atically for ubiquitous-computing (ubicomp) systems.

In a previous work, we have analyzed experimentally the perception users have of
undo in ubicomp environment [7]. Our research showed that the average users already
have a complex idea about what undo should be like in ubicomp environments: context-
aware, smart (semi-proactive), and with compensation mechanisms (e.g., to be able to
deal with the consumption of resources).

In this paper, we present how an undo function satisfying the expectations of users
can be designed for cooperative ubiquitous-computing environments.

We adopt the CASMAS model (Community-Aware Multi-Agents Situated Sys-
tems [4]) as a reference for the design context-aware ubicomp systems, and extend
the notion of active coordination artifact [8, 4] to achieve dynamic, distributed undo for
context-aware systems.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 263–268, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

264 M.P. Locatelli and M. Loregian

2 Undo in Context-Aware UbiComp Environments

A command can be defined as the high-level (user) action that causes the execution of a
set of lower-level operations by the system, and the scope of a command can be defined
considering the atomic operations it triggers, and their e�ects, as a whole. The term
undo is appropriate when there has previously been the intention to do something [1].
As a consequence, undoing a command can be seen as the result of the capability of a
system to perform a set of actions to fulfill the will of the users to reach a state as if the
previous command had never been given.

Ubiquitous Computing systems are composed of many di�erent technological
elements (hardware and software) setup to behave coherently [4]. Regardless of the
architecture of the system, each technological entity (device or service�application) is
characterized by specific features and functionalities, thus by a distinctive set of low-
level operations and�or a set of high-level commands. It is an established practice, ac-
quired from the design of PC applications, to implement “general purpose” undo com-
mands to trigger inverse operations [9] according to the specific user requests. Undo
is designed as a meta-command that works only with the command history and with
other commands [11, 10]. In this case, there must be a direct and explicit association
between a command and its inverse or compensation one, and the undo command has
only to execute such inverse command. All the data needed by the entity to perform the
undo must be directly accessible: current data, history, and possibly also the previous
versions of data. This generally means to have everything within the local scope, since
independent applications are the reference case.

In the absence of inter-entity interactions requiring coordination for the execution of
commands (even if there is some shared data), the undo process is generally straightfor-
ward and limited in scope to the single entity (with its mechanisms and data). Also, the
involvement of the user is limited only to the initial undo request, and there is no way
she can further a�ect or customize the execution. The only alternative to the predefined
undo is to intentionally perform a di�erent set of commands or operations [1].

2.1 Issues with Cooperating Entities

In systems where di�erent entities are actively cooperating (influencing each other and
possibly not only accessing the same data) it is necessary to achieve coordination: the
execution of actions must be concerted to reach a common goal and to avoid conflicts,
data must be passed along (sometimes more than once, in an iterated communication
process), and so on. When the undo of a command that had involved various entities
is requested through or by a specific entity, also the undo mechanism must be able to
span across entities and to deal with all the e�ects of the original command. Among the
problems that may arise, it is worth considering:

� how to start and to distribute the undo mechanism, i.e., how to enact communication
between entities so that the enacted process is acknowledgeable to be an undo, e.g.,
to make also other entities aware of what is happening;

� how to make the di�erent entities coordinate, e.g., to avoid conflicts and possibly to
make all of them converge on the current goal;

Undo in Context-Aware Collaborative Ubiquitous-Computing Environments 265

� how to detect or to infer that the undo process has terminated, i.e., all the required
commands or operations have been performed causing the system to be in a (stable)
state meeting the expectations of users;

� how to deal with the inability of the undo process to terminate successfully, e.g.,
supporting interaction with human or technological entities to proceed by providing
additional information.

These issues could be avoided by exploiting coordination information [4] to enforce
the so-called must policies or prescriptive interaction: the set of operations to be per-
formed must be defined uniquely and based only on the information kept by the entities
involved in the operation. In other words, it is necessary to rely on a complete descrip-
tion of the undo process in terms of entities involved, information exchanged and the
e�ects of the interaction with respect to the whole system. This technique is commonly
adopted to deal with undo, rollback and even exceptions in Business Process Manage-
ment (BPM) and Workflow Management systems [2] but it is not suitable for systems
that do not rely on an explicit description of the supported processes.

2.2 History as a Coordination Artifact

In systems with cooperating entities — interacting in a dynamic, spontaneous, and not
predictable way, — history can provide more than just an a posteriori trace (log) of
the system: entities can adopt it as a coordination artifact [4] both to do and undo. The
information in the history can be used by entities to coordinate the execution of their
actions: all the actions performed are stored in the history to be available to all the
entities. In particular, history can support specific undo mechanisms such as the non-
linear ones by making temporal or logical dependencies between commands explicit.
Entities rely on the sequence (order) of the already performed commands to define the
sequence of action to be performed to achieve undo, e.g., waiting for the completion
of other commands (in order to get correct data). In other words, even if there is no
explicit description of a do process, the history can be used to define the undo process
according to the selected undo strategy.

In collaborative ubicomp environments, usually there is no unified control over the
overall environment and on the operations executed therein. This fragmentation of con-
trol — i.e., distributed coordination on a local basis — generally introduces an intrinsic
inconsistency between the actual state of the whole environment and the state of the
same environment as perceived by the participating entities. Hence, the consistent tem-
poral sequence of commands can not be granted to be available because the access to
the resources of the environment can not be forced to be done in a way that is purely
functional to having a consistent history. As a consequence, the possibility of having
inconsistencies in the history must be taken into account when choosing, designing and
implementing an undo mechanism: other information regarding the environment must
be exploited to achieve the desired goals (Section 2.3).

In CASMAS, history is modeled as a coordination artifact whose content is the list
of commands, asserted and shared in the community fulcrum (which is the space where
entities that are members of the community share information) to which the cooperating
entities are linked. In this way, the coordination artifact is available to all the commu-
nity members and they can add the command record to the history artifact each time

266 M.P. Locatelli and M. Loregian

they execute a command. The command record is the set of information related to a
command and that contains at least the command name and the ID of the entity that
executed it. When a generic undo request is sent by an entity — this event may be con-
sidered equivalent to the generic PC undo, or ‘ctrl�Z’ — the command to be undone is
identified according to the adopted undo strategy, and a consequent assertion is made
in the community fulcrum. As a reaction, if the input conditions match, the rules of
some entities fire to perform what is needed to undo the specific command. The entity
performing the undo might be the same that had performed the command to be undone,
but this is not always the case. Consider for example a simple consumption case, where
the entity consuming a resource within the system is generally not the same having
produced or provided the same resource. Similarly, if a selective strategy is adopted,
entities can also directly ask for the undo of some specific command. In this case, if a
global undo is performed — meaning that the actions performed by all entities consti-
tute the scope of the undo — it is suÆcient to assert the undo request in the community
fulcrum and the process continues as above. Also if local undo is performed, it might
be necessary to make other entities aware of the process, especially if the entity is a
constitutive element of the context, as we are describing next.

2.3 Context-Aware Undo

The adoption of an explicit construct like the history helps distributed systems to adapt
to unexpected situations. For example, if some entity performs an undo locally, and
the history of the system is changed accordingly then also other entities might need
to react — this can be due to the fact that the designer of the individual entities of
a ubicomp systems have only a partial knowledge of what the other elements of the
system will be like.

Context-aware (ubicomp) systems need to be able to process information also at a
further level in order to flexibly adapt and e�ectively support the di�erent user (work)
practices. Entities should be able to enact undo mechanisms according to context in-
formation, e.g., to implicitly or explicitly select between di�erent complex strategies
according to di�erent context (trigger) conditions, and not only to restore a previous
system or entity state or set of data: the possibility to sense various kinds of context-
related information can give great flexibility, and can open many other possibilities.

By modeling (at design time) and processing (at runtime) awareness information,
also may policies can be enacted, i.e., all those mechanisms that depend on the many
facets of the current context, and that entities can discretionally enact according to their
subjective perception of the environment.

The awareness module of CASMAS, with its awareness graphs [5] to model the
various aspects of the context (location, roles, . . .), can provide entities with the infor-
mation they need to adapt to the current context and to perform the most appropriate set
of commands or operations to fulfill the undo request. If the input conditions of no undo
specification are completely met, the undo request might not take place as expected (by
the requesting entity).

Undo in Context-Aware Collaborative Ubiquitous-Computing Environments 267

2.4 Active Coordination Artifacts as Carriers of Undo Policies

Even if active coordination artifacts are not necessary in principle to achieve entity
coordination, they can provide an e�ective way to concert the coordinated execution of
“do” mechanisms [4]. Similarly, active coordination artifacts can be e�ective when they
transport undo policies, i.e., the specification of how and when to execute coordinated
undo, and the information that is necessary to achieve that goal. To have some active
coordination artifacts to enact the coordination can be especially useful in cases like the
last in the list in Section 2.1 (i.e., undo impossible or unsatisfactory termination).

In CASMAS, active coordination artifacts (can) carry into the community the undo
mechanisms that are possibly missing (e.g., when they had not been foreseen or de-
signed) or introduce further elements also to solve critical cases (e.g., additional data
that can help avoiding system deadlocks). The active coordination artifact shares the
undo mechanisms by using the “share behavior” feature of CASMAS to assert the rules
that implement the undo mechanisms in the community fulcrum; in this way undo rules
are available to the entities that takes part to the community and they can acquire them.
This means that these entities are now able to properly achieve coordination also during
the execution of an undo command.

3 Conclusion

In this paper, we have discussed the characteristics of undo for context-aware
ubiquitous-computing environments. While the undo function is commonly available
for PC applications, and while there exists approaches to deal with undo in distributed
processes such as workflows [2], the problem of undoing actions in ubicomp environ-
ments has not been investigated systematically. Starting from an experimental analy-
sis of the problem [7], we outlined the implication of undo on the design of ubicomp
systems: (a) it is necessary to provide interacting entities with alternative undo mech-
anisms, exploiting context information (awareness), instead of just a general purpose
solution relying on fixed inverse specifications or compensation; (b) history can be
adopted as a mean to enrich cooperation between entities when no process specification
can be given; (c) if a support for coordination, such as active coordination artifacts, is
introduced in the reference model, the same can be used to dynamically transport undo
policies within and between ubicomp environments.

References

[1] Abowd, G.D., Dix, A.J.: Giving undo attention. Interact. Comput. 4(3), 317–342 (1992)
[2] Agostini, A., De Michelis, G., Loregian, M.: Undo in Workflow Management Systems. In:

van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678,
pp. 321–335. Springer, Heidelberg (2003)

[3] George, B., Leeman, J.: A formal approach to undo operations in programming languages.
ACM Trans. Program. Lang. Syst. 8(1), 50–87 (1986)

[4] Locatelli, M.P., Loregian, M.: Active coordination artifacts in collaborative ubiquitous-
computing environments. In: Schiele, B., Dey, A.K., Gellersen, H., de Ruyter, B.E.R.,
Tscheligi, M., Wichert, R., Aarts, E.H.L., Buchmann, A.P. (eds.) AmI 2007. LNCS,
vol. 4794, pp. 177–194. Springer, Heidelberg (2007)

268 M.P. Locatelli and M. Loregian

[5] Locatelli, M.P., Vizzari, G.: Awareness in collaborative ubiquitous environments: The mul-
tilayered multi-agent situated system approach. ACM Transactions on Autonomous and
Adaptive Systems 2(4), 13 (2007)

[6] Loregian, M.: Undo for Mobile Phones: Does your Mobile Phone Need an Undo Key? Do
You? In: Proceedings of the 5th Nordic Conference on Human-Computer Interaction 2008,
Lund, Sweden, October 20-22. ACM, New York (2008)

[7] Loregian, M., Locatelli, M.P.: An Experimental Analysis of Undo in Ubiquitous Computing
Environments. In: Sandnes, F.E., Zhang, Y., Rong, C., Yang, L.T., Ma, J. (eds.) UIC 2008.
LNCS, vol. 5061, pp. 505–519. Springer, Heidelberg (2008)

[8] Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foundation
of cscw systems design. Computer Supported Cooperative Work (CSCW) 5(2), 155–200
(1996)

[9] Sun, C.: Undo as concurrent inverse in group editors. ACM Trans. Comput.-Hum. Inter-
act. 9(4), 309–361 (2002)

[10] Yang, Y.: Undo support models. Int. J. Man-Mach. Stud. 28(5), 457–481 (1988)
[11] Zhou, C., Imamiya, A.: Object-based nonlinear undo model. In: COMPSAC 1997: Proceed-

ings of the 21st International Computer Software and Applications Conference, pp. 50–55.
IEEE Computer Society, Washington (1997)

Understanding Distributed Program Behavior Using a
Multicast Communication Scheme

Mihai Mocanu1 and Emilian Guţuleac2

1 University of Craiova, Software Engineering Dept., Bvd.Decebal 107, Craiova,
RO-200440, Romania
���������	
����������

2 Technical University of Moldova, Computer Science Dept., 168 Bd. Ştefan cel Mare,
Chişinău, MD-2004, Republic of Moldova
��
�����������
����

Summary. Events in a distributed global computation framework, unlike those in a sequential
local computation, form a partially ordered set with respect to the causality relation revealed by
timestamps. This paper describes a new logical timestamping mechanism based on multicasting,
called Collective Logical Time, and compares it with other known schemes that have been de-
veloped in the domain mainly to help in detecting undesired (global) properties of distributed
computations (such as deadlock). Unfortunately, due to excessive complexity and some unre-
alistic restrictions (such as a fixed number of processes), these schemes have produced limited
results. Some of the benefits in using our scheme are revealed, together with the possibilities for
direct applications in the development of low-level communication protocols.

1 Introduction

Tracing event execution in a distributed computing environment (DCE) might seem a
simple idea if we want to analyze a programs’ behavior, its eÆciency, or with respect to
unusual event occurrences, but the formation of correct global time measurements is a
diÆcult task. It is hard to understand an execution using a set of traces, due to the non-
deterministic duration (Non-DD) of processes, as a consequence of their distributed
nature and multiple interactions. Time is not absolute and the events in DCEs, unlike
those in a sequential computation (SC), form a partially ordered set with respect to the
causality relation, revealed by timestamps. Real time clocks are not relevant here, more
useful to track causal dependencies between global events is the “logical” time, based
either on scalar [1] or vector clocks [2] [3]. DiÆculties here are in mapping partial
order of distributed events into total ordering, or in the need to setup a constant, known-
in-advance number of processes in the DCE [4][5]. Moreover, a distributed program
may be easily perturbed by a metric code inserted, or too sensible to the application
architecture and deployment decisions.

We present here a new logical timestamping mechanism - named Collective Logical
Time (CLT), and a way to build it on top of a multicast scheme. We show also some of
its advantages over other known schemes and how can it be directly applied in the con-
struction of concurrency domains of execution, defined and denoted here as Collective
Work Domains (CWD). These can in turn be used to understand the behavior and the
implications of alternative implementations for the overall performance.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 269–274, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

270 M. Mocanu and E. Guţuleac

Fig. 1. Time diagram corresponding to an execution, as reported by an arbitrary observer

2 A Distributed Model of Execution

In our model, a set of sequential, “spatially” separated asynchronous processes coop-
erate to achieve a common task and communicate only by passing messages over a
communication network. Process Non-DD, unpredictable communication delays are
characteristic. The types and relative order of events (instantaneous and atomic actions
occurring in each process) describe the model. Message transmission delays cannot be
neglected. Communication between processes is point to point and FIFO order of mes-
sage delivery is assumed. A global clock, or equivalently, perfectly synchronized local
clocks are not available. If we denote by E1� E2� � � � � EN the set of events occurring in
processes P1� P2� � � � � PN , then E � E1 � E2 � � � � � EN is the total set of all events
occurring in the DCE. It is convenient to index the events in a process Pi in their order
of occurrence, so let Ei � ei1� ei2� ���� eik� be a local sequence of events, usually denoted
as (process Pi) trace. In terms of type, we need to distinguish between: send events, re-
flecting the fact a message was sent, receive events, denoting the fact a sent message has
been received and state has been changed in consequence, and internal events, which
a�ect only the local process state.

Unlike things happen in SC, in DCEs we cannot preserve a linear, unique sequence of
events. We can see this if we examine closely the structure of a distributed computation,
using a time diagram similar to the one in figure 1, and keep in mind that time scale may
not be the same (for each process, a directed line representing local time whose flow
is left-to-right, shows the progress). Events are symbolized here as dots on the process
lines, according to their relative order of occurrence. Messages are drawn as arrows
connecting send events with their corresponding receive events.

In the absence of a global system clock, computation in a DCE di�ers essentially
from a sequential computation with respect to the definition of the temporal relationship
between global events. Fortunately, almost all problems in understanding the execution
of either one or many tasks in a DCE may be embedded in the fundamental problem
of obtaining a consistent (non-contradictory) global view of distributed computations,
and downsized to the detection of a consistent set of traces from event executions, with
respect to cause-e�ect relationship. Therefore, most solutions proposed are based on
causality mechanisms and use “timestamping” of events [8].

Understanding Distributed Program Behavior 271

For the so-called observability and consistency problems, very well summarized in
[3], the origin is in process non-DD duration, the lack of availability of absolute “real-
time” and the unpredictable notification delays that any observation of the global com-
putation may su�er. What is really important for di�erent observations of a system is not
to keep the real-time ordering of the events (diÆcult to obtain, may easily change) but
to preserve the consistency of the observations, with respect to the causality relations.
Put simply, observation consistency is directly derived from computation consistency,
and equivalent to the requirement that, in the global linear event ordering, a cause must
precede its e�ect (the consistency criterion).

Logical timestamping mechanisms are essentially based on event counting. In a sys-
tem which uses logical timestamping, every process maintains a logical clock as a
counter which is always advanced (never going back) using specific rules. Two of the
most used systems of logical clocks are the scalar logical time (Lamport) [1] and vector
time (Mattern-Fidge) [3][6]. A knowledge-based interpretation of vector time is that the
component V j[j] of P j’s current vector time reflects the accurate logical time of P j, as
the “number of past events” at P j, while V j[i] is the best estimate P j was able to derive
about Pi’s current logical time value, from the messages received at P j. Thus, if V(e) is
the vector timestamp of an event occurring in P j, then V(e)[i] is the number of events
in Pi which e “knows about” i.e. which are in the causal history of e [5]. But, unlike it
seems, vectors of dimension N are not mandatory in order to track N-distributed com-
putations, if we need a simple mechanism consistent with causality. On the other hand,
with respect to the size of vector clocks, a definite result would require some state-
ment about the minimum amount of information that must be contained in timestamps
in order to define an N-dimensional partial order on them. Stating this is still an open
problem [4][6].

Finally, we must stress here that the causality relation introduced is potential, not
real. For instance, events occurring in the same process are totally ordered, although
some of them are not causally related (the absence of an event occurrence does not
imply automatically the absence or modification of all the other events in its observed
trace). This leads to the idea of relaxing the causality relation and to the aim of using
other logical timing mechanisms to characterize the modified relation.

3 Collective Logical Time

A new timestamping mechanism, which relaxes the total (and thus artificial) order de-
rived from Lamport logical time, seems to yield a partial order somewhat stricter, al-
though in a more “natural” way than the order induced by vector time. We called it
Collective Logical Time and based its construction on a multicast scheme. According to
this, on each event occurrence in a process, which has potential to a�ect others, a noti-
fication is sent to all the other co-operative processes. It contains only time information
and must use the fastest communication channels; the only condition needed here is that
multicast communication of short notification messages is faster than longer messages
exchanged between pairs of processes. This condition is realistic for today’s distributed
systems technology - where fast links or high priorities are dedicated to signals. As a
consequence, a new category of events appear in a process: collective events, which

272 M. Mocanu and E. Guţuleac

are receive notification events which carry information from another process, about the
occurrence there of a potentially-a�ecting event.

Definition 1. (CLT). The collective logical time is a mapping C : E � N from events
to integers, defined as follows:

1. If e is an internal or send event without (immediate) local predecessor, C(e) � 1.
2. If e is an internal, send or receive event and has as local predecessor the internal

or collective event e’, then C(e) � C(e�) � 1.
3. If e is a collective event, it either has the timestamp of a local predecessor e’, or

carries the timestamp of corresponding send event e“: C(e) � max(C(e�)�C(e”)).

Theorem 1. The collective timestamping order (C� �) is consistent with causality.

Proof. Let e, e’ be two events such as e � e�. If e and e’ occur in the same process,
the logical clock C is incremented once with each event between (exclusive) e and
(inclusive) e’, and never set back. This means C(e) � C(e�). If e and e’ occur in di�erent
processes Pi and P j, e � e� implies there is a path from e to e’, with two corresponding
send-receive events s in Pi and r in P j, s � r. But for local events we have e � s and
r � e�, and from the transitivity of causality relation it follows e � e�.

The diagrams in figure 2 illustrate similarities of our mechanism with Lamport times-
tamping, its simplicity, but also an increase in its potential to construct “time zones”
denoted here as concurrency domains for the distributed processing. Comparing Lam-
port and Collective timestamping reveals that: a. our assignment for logical time, with
concurrency domains marked, is quite similar to Lamport’s and therefore, simple; b. the
multicast communication scheme which assigns CLT works; c. the collective logical time
assignment can be used in building concurrency domains, clearly marked in figure 2c.

An algorithm to build CWDs will be introduced in the next section, together with a
discussion of a possible protocol.

4 Collective Work Domains

The collective timestamping mechanism transmits a sort of “global knowledge” in the
form of chronological information in groups of cooperative processes. This information
can be used by synchronization algorithms and protocols. Better grouping of collective
logical time values, as opposed to the dispersion of Lamport logical time values, sug-
gest the idea of defining concurrency domains. These should be able to put together
distributed events that can be executed in the same time frame (horizon). What it im-
portant here is to base the decision of events immediate execution or postponement
strictly on local information.

Definition 2. (CWD) The collective work domain (concurrency domain) is a subset of
distributed events having adjacent timestamps, which can be executed when they are
ready as follows: sequentially, within the frame of the same process, and concurrently,
in any order, if they belong to di�erent processes.

Understanding Distributed Program Behavior 273

Fig. 2. A comparison between Lamport and Collective Timestamping

Algorithmic steps in constructing CWDs:

1. a) Initialize C�1 and b) first CWD to include all events with timestamp C.
2. a) If there is a causal communication between an event e � Pi and another event

e�

� P j, neither e’ or another distributed event with timestamp C�C(e’) will be
included in CWD1, but will form the first timestamp value for the next CWD.
b) Else, in the absence of a causal communication, C is incremented and the CWD
is extended with distributed events timestamped with this new time value.

3. Repeat steps 2a and b until a causal communication is detected.
4. Repeat steps 1b, 2 and 3 until all distributed events have been processed.

The iterative construction of CWDs is based on the identification of causal dependen-
cies among distributed events and their expression in collective logical time values. An
application of this algorithm is illustrated by an improved construction of CWDs in

274 M. Mocanu and E. Guţuleac

figure 2c, as compared to the concurrency domains in figure 2a that can be obtained
based on a Lamport scheme.

5 Concluding Remarks

Time is a multi-shape concept, not yet fully understood in DCE. Real (absolute) time is
less important than logical time, whose flow is only determined by the events happened
locally and by the knowledge acquired for global events.
We discussed in this paper di�erent schemes to assign logical clocks, including a new,
original scheme. CLT, and the separation of distributed events in CWD, exhibit some
direct advantages over other known schemes. Reflecting in each local process knowl-
edge on the global events more precisely than Lamport time, and propagating complete
global knowledge with high probability in every moment, they serve in the detection of
simultaneous events and in the exploitation of the maximum degree of concurrency in
execution. This mechanism may also have others straightforward and important appli-
cations: it may be used to avoid race conditions and other synchronization errors, or in
detecting the termination of a distributed computation; to accurately replay concurrent
activities in distributed systems for the purpose of debugging and monitoring; for rea-
soning about the properties of asynchronous systems, since it reflects both causal and
temporal structure of such a system; or in parallel and distributed simulations, either by
conservative and optimistic protocols.

References

1. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Comm.
ACM 21(7), 558–565 (1978)

2. Charron-Bost, B.: Concerning the Size of Logical Clocks in Distributed Systems. Information
Processing Letters 39, 11–16 (1991)

3. Fidge, C.J.: Fundamentals of Distributed System Observation. IEEE Software 13(6), 77–83
(1996)

4. Landes, T.: Dynamic Vector Clocks for Consistent Ordering of Events in Dynamic Distributed
Applications. In: Arabnia, H.R. (ed.) Proc. Intl. Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, Las Vegas, Nevada, vol. 1, pp. 31–37 (2006)

5. Raynal, M., Singhal, M.: Logical Time: Capturing Causality in Distributed Systems. IEEE
Computer 29(2), 49–56 (1996)

6. Schwarz, R., Mattern, F.: Detecting Causal Relationships in Distributed Computations: In
Search of the Holy Grail. Distr. Computing 7(3), 149–174 (1994)

7. Basten, T.a.o.: Vector Time and Causality among Abstract Events in Distributed Computa-
tions, TR-NSERC, University of Waterloo, Canada, pp.1-33 (1996)

8. Santoro, N.: Design and Analysis of Distributed Algorithms. John Wiley and Sons, Chichester
(2007)

Multi-agent Conflict Resolution with Trust for Ontology
Mapping

Miklos Nagy1, Maria Vargas-Vera2, and Enrico Motta1

1 The Open University, Knowledge Media Institute (Kmi), Milton Keynes, MK7 6AA , UK
���������	
�����������	�� ��������������	�

2 The Open University, Computing Department Milton Keynes, MK7 6AA , UK
���������������������	�

Summary. Software agents that operate on the Semantic Web have to deal with scenarios where
the discovery and combination of the relevant information from a variety of heterogeneous
sources becomes contradicting. One such application area of the Semantic Web is ontology map-
ping where di�erent similarities have to be combined into a more reliable and coherent view,
which might easily become unreliable if trust is not managed e�ectively between the di�erent
sources. In this paper we propose a solution for managing trust between contradicting beliefs in
similarities for ontology mapping based on the fuzzy voting model.

1 Introduction

Managing content related trust on the Semantic Web has not received too much atten-
tion from the research community so far. The reason for that is most probably the rela-
tively small number of successfully deployed applications that can be tested by users of
communities. However since Semantic Web applications become more and more ado-
lescent, issues related to the very nature of this environment will likely emerge such as
trustworthiness of the information available in this media or the uncertain nature of the
deducted information as a direct consequence of the heterogeneous environments. If we
assume that in the Semantic Web environment it is not possible to deduct an absolute
truth from the available sources then we need to evaluate content dependent trust lev-
els by each application that processes the information on the Semantic Web e.g. how a
particular information coming from one source compares the same or similar informa-
tion that is coming from other sources. The main contribution of this paper is a novel
trust management approach for resolving conflict between agent’s belief in similarities
which is the core component in the DSSim[7, 8] ontology mapping system. DSSim ad-
dresses the uncertain nature of the ontology mapping by considering di�erent similarity
measures as subjective probabilities for the correctness of the mapping which is repre-
sented as an individual belief of a mapping software agent . It employs the Dempster
Shafer theory of evidence in order to create and combine beliefs that has been produced
by the di�erent similarity algorithms.

The paper is organized as follows. Section 2 provides the description of the problem
and its context. Section 3 describes the voting model and how it is applied for deter-
mining trust during the ontology mapping. Section 4 gives and overview of the related
work. Finally, section 5 describes our future work.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 275–280, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

276 M. Nagy, M. Vargas-Vera, and E. Motta

2 Problem Description

The problem of trustworthiness in the context of ontology mapping can be represented
in di�erent ways. In general, trust issues on the Semantic Web are associated with the
source of the information i.e. who said what and when and what credentials they had
to say it. Consider an example from ontology mapping. When software agents assess
similarity between two terms they can use di�erent linguistic and semantic information
in order to determine the similarity level e.g. background knowledge or concept hierar-
chy. The problem is that any similarity assessment can perform di�erently depending
on domain because the context is determined by the available backgroud knowledge .
In reality any similarity algorithm will produce good and bad mappings for the same
domain depending of the actual context of the terms in the ontologies e.g. di�erent
background knowledge descriptions or class hierarchy. In order to overcome this short-
coming the combination of di�erent similarity measures are required. In general any
similarity combination can improve the overall result except if there is a conflict be-
tween the assessments. To handle this conflict in our ontology mapping method we
propose using trust in the provided beliefs in similarities, which is assessed between
the ontology entities and associated to the actual understanding of the mapping entities.
These beliefs can di�er from case to case e.g. a similarity measure can be trusted in one
case but not trustful in an another case during the same process.

3 Trust Management for Belief Combination

In ontology mapping the conflicting results of the di�erent beliefs in similarity can be
resolved if the mapping algorithm can produce an agreed solution, even though the in-
dividual opinions about the available alternatives might vary. We propose a solution for
reaching this agreement by evaluating trust between agents’ established belief through
voting which is a general method of reconciling di�erences. Voting is a mechanism
where the opinions from a set of votes are evaluated in order to select the alternatives
that best represent the collective preferences. Unfortunately deriving binary trust like
trustful or not trustful from the di�erence of belief functions is not so straightforward
since the di�erent voters express their opinion as subjective probability over the similar-
ities. For a particular mapping this always involves a certain degree of vagueness hence
the threshold between the trust and no trust cannot be set definitely for all cases that
can occur during the process. Our argument is that the trust membership value which is
expressed by di�erent voters can be modeled properly by using fuzzy representation as
depicted on Fig. 1.

In fuzzy logic the membership function �(x) is defined on the universe of discourse
U and represents a particular input value as a member of the fuzzy set i.e. �(x) is a
curve that defines how each point in the U is mapped to a membership value (or de-
gree of membership) between 0 and 1. For representing trust in beliefs over similarities
we have defined three overlapping trapezoidal membership functions which represents
high, medium and low trust in the beliefs over concept and property similarities in our
ontology mapping system.

Multi-agent Conflict Resolution with Trust for Ontology Mapping 277

Fig. 1. Trust representation

3.1 Fuzzy Voting Model

The fuzzy voting model was developed by Baldwin [1] and has been used in Fuzzy
logic applications. However, to our knowledge it has not been introduced in the context
of trust management on the Semantic Web. In this section, we will briefly introduce the
fuzzy voting model theory using a simple example of 10 voters (agents) voting against
or in favor of a similarity measure for ontology mapping. According to Baldwin [1] a
linguistic variable is a quintuple (L� T (L)�U�G� �) in which L is the name of the variable,
T (L) is the term set of labels or words (i.e. the linguistic values), U is a universe of
discourse, G is a syntactic rule and � is a semantic rule or membership function. We
also assume for this work that G corresponds to a null syntactic rule so that T (L) consists
of a finite set of words. A formalization of the fuzzy voting model can be found in [6].
Consider the set of words � low-trust (Lt), medium-trust (Mt) and high-trust (Ht) � as
labels of a linguistic variable trust with values in U � [0� 1]. Given a set “m” of voters
where each voter is asked to provide the subset of words from the finite set T (L) which
are appropriate as labels for the value u. The membership value ��(w)(u) is taking the
proportion of voters who include v in their set of labels.

We need to introduce more opinions to the system i.e. we need to add the opinion
of the other agents in order to vote for the best possible outcome. Therefore we assume
for the purpose of our example that we have 10 voters (agents). Formally, let us define

V � A1� A2� A3� A4� A5� A6� A7� A8� A9� A10 (1)

� � Lt� Mt� Ht

Let us start illustrating the previous ideas with a small example - By definition
consider our linguistic variable L as TRUST and TL the set of linguistic values as
T L � (low trust�medium trust� high trust). The universe of discourse is U which is
defined as U � [0� 1]. Then, we define the fuzzy sets �(Low� trust)� �(Medium� trust)
and �(High � trust) for the voters where each voter has the overlapping trapezoidal
membership functions as depicted on Figure 1. The random set L�TRUST is defined
by the Table 1. Note that in the table we use a short notation Lt means Low trust, Mt

means Medium trust and Ht means High trust. Once the fuzzy sets (membership func-
tions) have been defined the system is ready to assess the trust memberships for the
input values. Based on the di�erence of beliefs in similarities the di�erent voters will

278 M. Nagy, M. Vargas-Vera, and E. Motta

Table 1. Possible values for the voting

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Lt Lt Lt Lt Lt Lt Lt Lt Lt Lt

Mt Mt Mt Mt Mt Mt

Ht Ht Ht

Table 2. Voting

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Ht Mt Lt Lt Mt Mt Lt Lt Lt Lt

select the words they view as appropriate for the di�erence of belief. Assuming that the
di�erence in beliefs(x) is 0.67 the voters will select the following labels:

Then we compute the membership value for each of the elements on set T L.

��(Low trust)(u) � 1 (2)

��(Medium trust)(u) � 0�6 (3)

��(High trust)(u) � 0�3 (4)

and

L �
Low trust

1
�

Medium trust
0�6

�
High trust

0�3
(5)

A value x is presented and voters pick exactly one word from a finite set to label x
as depicted in Table 2.

Taken as a function of x these probabilities form probability functions. They should
therefore satisfy:

�
Pr(L � w�x) � 1 (6)

w � T L

which gives a probability distribution on words:

�
Pr(L � Low trust�x) � 0�6 (7)

�
Pr(L � Medium trust�x) � 0�3 (8)
�

Pr(L � High trust�x) � 0�1 (9)

As a result of voting we can conclude that given the di�erence in belief x � 0�67 the
combination should not consider this belief in the similarity function since based on its
di�erence compared to another beliefs it turns out to be an untrustful assessment. The
before mentioned process is then repeated as many times as many di�erent beliefs we
have for the similarity i.e. as many as di�erent similarity measures exist in the ontology
mapping system.

Multi-agent Conflict Resolution with Trust for Ontology Mapping 279

4 Related Work

Dominantly the existing approaches for ontology mapping that address the problem of
the trustworthiness of the available data on the Semantic Web are reputation and context
based e.g. using digital signatures that would state who the publisher of the ontology
is. For ontology mapping there are di�erent methods to combine similarities. GLUE
[2] for example uses Bayesian probabilistic model to combine the results of di�erent
learners, which exploit information in concept instances and taxonomic structure of
ontologies. Other system COMA [3] applies the variations of max, min, weighted or
threshold aggregation methods in order to assess the best possible similarity measures.
In practice considering the overall results these combination methods will perform rel-
atively well under di�erent circumstances except when contradictory evidence occurs
during the combination process. Trust is important in applications where the human-
computer interaction is necessary in order to support the users’ task with mimicking
intelligent behavior. Ontology mapping is one of these areas and such there is a possi-
bility to improve these systems if the algorithms can be enhanced with cognitive support
[4]. To date this perspective of trust has not been investigated in the context of ontology
mapping. Ongoing research has mainly been focusing on how trust can be modeled in
the Semantic Web context [10] where the trust of user’s belief in statements supplied
by any other user can be represented and combined. Considering multi-agent systems
on the Web existing trust management approaches have successfully used fuzzy logic
to represent trust between the agents from both individual[5] and community[11] per-
spective. However the main objective of these solutions is to create a reputation of an
agent which can be considered in future interactions.

5 Conclusion

In this paper we have shown how the fuzzy voting model can be used to evaluate trust,
and determine which belief is contradictory with other beliefs before combining them
into a more coherent state. We have proposed new levels of trust in the context of
ontology mapping, which is a prerequisite for any systems that makes use of informa-
tion available on the Semantic Web. Our system is flexible because the membership
functions for the voters can be changed dynamically in order to influence the outputs
according to the di�erent similarity measures that can be used in the mapping system.
There are many areas of ongoing work, with our primary focus being additional experi-
mentation to investigate di�erent kind of membership functions for the di�erent voters
and to consider the e�ect of the changing number of voters and the impact on precision
and recall. In our future research we also intend to investigate di�erent conflict detec-
tion methods. Our aim to measure how di�erent levels of conflict can a�ect the overall
performance of our solution.

References

1. Baldwin, J.F.: Mass assignment Fundamentals for computing with words. In: Selected and
Invited Papers from the Workshop on Fuzzy Logic in Artificial Intelligence. Lecture Notes
In Computer Science, pp. 22–44. Springer, Heidelberg (1999)

280 M. Nagy, M. Vargas-Vera, and E. Motta

2. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies
on the semantic web. In: Proceedings of the 11th World Wide Web Conference, Honolulu,
Hawaii (2002)

3. Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching
Approaches. In: Proceedings of 28th International Conference on Very Large Databases
(VLDB), Hong Kong, China (2002)

4. Falconer, S., Storey, M.: A cognitive support framework for ontology mapping. In: Proceed-
ings of the 6th International Semantic Web Conference, Busan, Korea (2007)

5. GriÆths, N.: A Fuzzy Approach to Reasoning with Trust, Distrust and InsuÆcient Trust. In:
Proceedings of the 10th International Workshop on Cooperative Information Agents, Edin-
burgh, UK (2005)

6. Lawry, J.: A Voting Mechanism for Fuzzy Logic International Journal of Approximate Rea-
soning. 19, 315–333 (1998)

7. Nagy, M., Vargas-Vera, M., Motta, E.: DSSim - Managing Uncertainty on the Semantic Web.
In: Proceedings of the 2nd International Workshop on Ontology Matching, Busan, Korea
(2007)

8. Nagy, M., Vargas-Vera, M., Motta, E.: Multi-agent ontology mapping with uncertainty on
the Semantic Web. In: Proceedings of the 3rd IEEE International Conference on Intelligent
Computer Communication and Processing, Cluj, Romania (2007)

9. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

10. Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In:
Proceedings of the 2nd International Semantic Web Conference, Florida, USA (2003)

11. Rehak, M., Pechoucek, M., Benda, P., Foltyn, L.: Trust in Coalition Environment: Fuzzy
Number Approach. In: Proceedings of The 4th International Joint Conference on Au-
tonomous Agents and Multi Agent Systems - Workshop Trust in Agent Societies, The
Netherlands (2005)

Algorithmic Trading on an Artificial Stock Market

Daniel Paraschiv1, Srinivas Raghavendra2, and Laurentiu Vasiliu1

1 CIMRU�DERI National University of Ireland, Galway
���������	�
����������������, ���	�������
�����������������

2 Department of Economics National University of Ireland, Galway

�	�����������������

Summary. This work introduces algorithmic trading on artificial stock markets and describes
past and existing approaches. A proposed framework of the artificial stock market approach is
presented, together with the used agent types. Then the simulation results’ analyses are discussed.
Conclusions and future work directions are presented, showing where the MACD algorithm and
some rules can be used. The human behavior influence over the market is highlighted.1

Keywords: Artificial Stock Market, Double Auction, Back Testing, MACD.

1 Introduction

Algorithmic trading and artificial stock markets have been in the last decade of high in-
terest for business, IT research and academia. The emergence of algorithmic trading has
created a new environment where the classic way of trading requires new approaches.
High trading speed and automated algorithms have accelerated the trading process be-
yond human capabilities, moving brokers in a new area that can be called ’micro-second
economics’. In order to tackle this, new tools theories and approaches need to be cre-
ated. Thus artificial stock markets have emerged as simulation environments where to
test, understand and model the already complex human behaviours and also to anal-
yse the impact in the system of algorithmic trading where humans and software agents
may compete on the same market. Considering this, the purpose of this paper is to cre-
ate a framework to test and analyse various trading strategies in a dedicated artificial
environment.

2 Related Work

There exists a vast literature on the computer-simulated, artificial financial markets fol-
lowing the pioneering work done at the Santa Fe Institute [1]. Some studies proposed

1 This research has been funded through Enterprise Ireland Research Grant CFTD�05�312,
M2MN project.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 281–286, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

282 D. Paraschiv, S. Raghavendra, and L. Vasiliu

artificial markets populated with heterogeneous agents endowed with learning and op-
timising capabilities with an aim to mimic the performance of the real world markets.
Other studies looked at various trading rules attributed to agent types and its implica-
tion for the market outcome. Given the vastness of this literature and for want of space,
we will discuss a representative model from the literature and its relation to the present
work.

In [2] is presented an agent-based artificial financial market with heterogeneous
agents who trade one single asset through a trading mechanism, to study the pro-
cess of price formation. The price-formation process of the market was built around
a mechanism for matching demand and supply of market orders. In this market, agents
are endowed with limited resources with the global-amount of cash in the economy
in time-invariant. There are N agents and at each simulation step each agent issues
a buy order with probability pi or a sell order with probability 1-pi. The orders are
generated in the following way: Suppose the ith agent issues a sell order of quantity
ai

s at time h�1. The quantity of stocks o�ered for sale at time step h�1 is a ran-
dom fraction of the quantity of stocks owned at time step h according to the rule:
as

i � [riAi(h)] where ri is a random number drawn from a uniform distribution in
the interval [0,1] and Ai(h) is the amount of assets owned by the ith agent at time
h. In addition, a limit sell price si is associated to each sell order. The limit prices
are computed by si � (p(h)

Ni(���i)
) where Ni(�� �i) is a random draw from a Gaussian

distribution with � � 1�01and a standard deviation is proportional to the histori-
cal volatility computed through the equation �i � k�(Ti) with k being a constant
and �(Ti) is the standard deviation of log-price returns. The buy orders are gener-
ated in a fairly symmetrical way with respect to sell orders, where the buy order,
ci, at time h�1 is a random function of available cash at time h, i.e., ci � riCi(h)
with ri being a random number drawn from a uniform distribution in the interval
[0, 1] and Ci(h) is the amount of cash with ith agent. The price formation process
is set at the intersection of the demand and supply curves with the former is a de-
creasing step function of price and the latter is an increasing step function of price
and the equilibrium price is computed by the system at which the two functions
intersect.

Even though the results of this model and other subsequent models seem to capture
some of the stylized facts of Herding, Bubbles, Crashes, Fat tails and Volatility Clus-
tering that we observe in real financial markets, limiting the model to only random or
uninformed agents is too simplistic and there is a scope for generalising this model with
di�erent types of agents to test the robustness of the results [3]. Nevertheless, in terms
of comparing various artificial agent models that generate various stylized facts of the
financial markets from, it is pertinent to develop an artificial agent environment that has
the capability of back-testing whereby it lends itself as a standard for comparing the
empirical verifiability of this class of models. It is in this sense, the model presented
here is a contribution to the literature of artificial agent models.

Algorithmic Trading on an Artificial Stock Market 283

3 Model Framework of Artificial Market with Algorithmic Trading

The framework of the artificial market proposed in this paper is presented in figure 1.
The artificial stock market uses a double auction [4] system or if preferred uses real
data from time series of real stocks. Using algorithmic trading the agents place buy or
sell stock orders on the Artificial Stock Market that makes the connection between buy
orders and sell orders of the same stock.

Fig. 1. The framework of the artificial environment

The algorithm of the Artificial Stock Market is:

1. while (market is open) do
2. IF time to apply tick passed THEN
3. Change all Stocks Price with a tick
4. Process Orders for a cycle
5. IF a day has passed THEN
6. Change time period to all stocks

The aim of a double auction system is to maximize the number of shares processed
[5]. To do so the price of each stock is changed every 100ms with a tick of value 0.005.
The formula of the new price for each stock is:

Pnew �

�
����
����

Pold � Tick IF VB � VS � 10
Pold � Tick IF VS � VB � 10

Pold otherwise

Where VB is the total volume of buy shares and VS is the total volume of sell shares
of the stock with price P. 1000 shares of each stock are matched at step 4. Shares from
the same order can be processed with di�erent prices and the final price of the shares is
given by the volume weighted average price formula [6].

When a day has passed (step 6) the current data is added to a list of old data in case
of double auction mode or real data are loaded from database and added to this list
of old data in case of back testing mode. The real data were downloaded from Yahoo
Finance [7], being the historical data from 1st of March 2005 to 24th of March 2008 for
ten companies: Microsoft, Yahoo, IBM, Google, Apple, Sony, General Motors, Ford,
Honda Motor and NISSAN.

284 D. Paraschiv, S. Raghavendra, and L. Vasiliu

3.1 Agent Types

The tested and analyzed classes of agents are random agents, human agents, market
makers agent and three strategic agents.

1) Random Agents: They place, for each stock, buy orders with probability 0.5 and
sell orders with probability 0.5. After a random number of placing orders they check
the total volume of buy orders and sell orders and they place an order that makes the
number of buy shares equal with the number of sell shares.

2) Human Agents & Market Makers agent: Anybody can place an order manually
using a human agent. The orders can be limit orders or market orders. The human agent
can place buy or sell orders for each company or for all companies at once. The Market
Makers Agent automatically makes sure that buy volume and sell volume (demand and
supply) are almost balanced.

3) Strategic Agents: These agents implement a rule of the form:

IF condition THEN buy�sell stock(s)
a) Rule 1 Agent type: IF the agent has stock X in portfolio AND Y is not in portfolio

AND X is up UpThreshold AND Y is down DownThreshold in NoOfDays THEN sell
stock X and buy Y with money from stock X.

b) Rule 2 Agent type: IF the agent has stock X in portfolio AND X is up UpThreshold
OR X is down DownThreshold THEN sell stock X and buy Y that is not in portfolio
and has the highest fall in NoOfDays, with money from stock X.

c) MACD Agent type: IF X is in portfolio AND the histogram changed from positive
to negative THEN sell X; IF X is not in portfolio AND the histogram changed from
negative to positive THEN buy X.
Moving Average Convergence Divergence - MACD [8] is a method to identify a trend
for a stock. The formulas for MACD are:

MACD � EMA[D2] of price - EMA[D1] of price
signal � EMA[D3] of MACD
histogram � MACD - signal, where EMA is the exponential moving average [9] with

the give number of days (Di), and D1 �D2 �D3.

4 Results and Discussion

There were tested 10 stocks and it was created an index as the arithmetic average of
these stocks. The charts were implemented with JFreeChart [10]. For each stock and
index are candlestick charts [11], a chart with logarithmic return and a chart with the
distribution of return. Also for each stock can be seen the excess demand, current price,
price change, current volume, average volume and other indicators, see figure 2. For
each agent can be seen the initial wealth, current wealth, portfolio wealth, the percent-
age of profit or lose, no of bought�sold orders and no of bought�sold shares for each
stock and per total. The agents are sorted by profit.

The random agents, also known as uninformed agents, are useful to guarantee a
volume of shares on the artificial stock market. They place buy and sell orders without

Algorithmic Trading on an Artificial Stock Market 285

Fig. 2. The stock chart, the logarithmic return and logarithmic return distribution

Table 1. The profit and lose of agents from di�erent types of agents

Double Auction Back Testing

Random Agents, Human agent and the agents with rule 1 and rule 2 (150 days)

Top:
Rule 1, Profit: 10.42% Rule 1, Profit: 11.17%

Rule 2, Profit: 8.49% Rule 2, Profit: 7.3%

Loser: Rule 2, Lose: 4.15% Rule 2, Lose: 3.13%

Random Agents, Human A., rule 1 (R1) and rule 2 (R2) A. and MACD (M) A.

250 days 500 days 750 days 250 days 500 days 750 days

Top:

R1: 11.8% R2: 19.1% R2:35.2% R1: 15.2% R1:23.8% R1: 26%

R2: 9.2% R1: 13% R1:16.8% R2: 11.4% R2: 21.4% M: 22.6%

M: 3.99% M: 1.62% M: -0.37% M: 11.01% M: 15.19% R2: 13.5%

Loser: R2: -2.9% M: -5.2% M: -8.26% R2: -4.4% R2: -8.37% R2: -8.6%

checking the price. Usually their profit is negative. If only these agents are active, in
double auction mode, then the stocks follow a sinusoidal move.

There were four main simulations with di�erent types of agents and di�erent modes,
as presented in table 1. The first two simulations were with 10 random agents, a hu-
man agent, 98 rule 1 agents and 98 rule 2 agents. The last two simulations were with
8 more MACD agents in double auction mode and 121 more MACD agents in back
testing mode. In back testing mode the market maker agent was activated. Each agent
had di�erent values of parameters. In figure 2 is presented a stock with the first sim-
ulation. In table 1 are presented the best profit of agents from each type of agent and
the type of agents with the highest lose. With human agents there were made available
the shares that the strategic agents buy initially. When there are many MACD agents
in double auction mode they create trends. In the simulation with MACD agents and
double auction mode was a small down trend and all 8 MACD agents had lost wealth
after 750 days. In back testing mode all 121 MACD agents had profit after 750 days.

286 D. Paraschiv, S. Raghavendra, and L. Vasiliu

5 Conclusions and Further Work

The human agent described in the artificial market can represent a group of traders.
There had been observed during experiments in double auction mode that when the
human agent places buy order with a high volume (more than 50% daily volume) of
shares then an up trend is created. If the human agent places sell order with a high
volume of shares then a down trend is created.

Although rule 1 looks very similar with rule 2 (as presented in section 3.1, 3) a) and
b)), it has been proved experimentally that rule 1 is better than rule 2 in most of the
cases and rule 2 is better than rule 1 in a down market.

MACD method is suited to detect a trend. In double auction mode if there are many
MACD agents then they create trends in which the market goes up for small up trends,
and for small down trends they create mass selling which produces down trends.

MACD has been proved to be useful in back testing mode and it was not so useful in
double auction mode. This showed that MACD is not useful for traders that place big
orders and influence the market, it is useful for small orders that do not influence the
market.

As future work there is intended to create and test more types of agents. There will
be created agents that chose their strategies based on index as some strategies are better
suited than others when the index goes up or down. There will be created agents that
forecast the prices of stocks. There will be automated more technical indicators, e.g.
momentum indicators, William’s and so on [12]

References

1. LeBaron, B.: Building the Santa Fe Artificial Stock Market. Brandeis University (2002)
2. Raberto, M., Cincotti, S., Focardi, S.M., Marchesi, M.: Agent-based simulation of a financial

market. Physica A 299(1-2), 320–328 (2001)
3. Samanidou, Cf. Zschischang, E.E., Stau�er, D., Lux, T.: Agent-based models in financial

markets, arXiv:physics�0701140v1 [physics.soc-ph] (January 11, 2007)
4. Double Auction,

��������������
��	��	�
���������������� ������� ��	��������

5. Equity Trading Systems in Europe by Marianne Demarchi and Thierry Foucault
6. Electronic and Algorithmic Trading Technology by Kendall Kim
7. Yahoo Finance, �������������������������
8. MACD, ��������������
��������������	�
���������
�
9. Exponential Moving Average,

���������������
������������������	
�� �����������

10. JFreeChart, �����������!�	����	��!�	�����	��
11. Candlestick chart, ��������������
��������������	�
���������
������
�
12. Algorithmic trading indicators,

������������	��	���	����������"�������	����#�	�����#��������	
����

http://www.investorwords.com/1550/double_auction_market.html
http://finance.yahoo.com/
http://www.investopedia.com/terms/m/macd.asp
http://www.decisionpoint.com/TAcourse/MovingAve.html
http://www.jfree.org/jfreechart/
http://www.investopedia.com/terms/c/candlestick.asp
http://www.programtrading.com/DAT/algorithm-trading-indicators.htm

Towards a Visual Definition of a Process in a
Distributed Environment�

Dragoslav Pešović, Zoran Budimac, and Mirjana Ivanović

Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad
Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
����������	
��	���������������

Summary. Workers, Inc., a workflow management system implemented using the technology of
mobile agents, is especially suited for highly distributed and heterogeneous environments. This
paper discusses the issues related to visual definitions of new processes, and their translation into
execution contexts of the system.

1 Introduction

The usage of mobile agents [3] in modeling and implementation of a workflow [5]
simplifies the workflow management. Workers, Inc. consists of individual agents with
autonomous behavior. Mobile agents carrying out workflow instances (the so-called
workers) have the ability to move to di�erent users, where they can interact with them
locally, autonomously taking care of their current position, state, and further itinerary.
In order to achieve the flow of work, workers split the work in logical parts, cooperate
together, and synchronize themselves.

However, in the proposed system, new agent classes describing brand-new work-
flows had to be hard-coded manually. In order to employ the workflow system in a real
working environment, end-users of the workflow system should be enabled to create
brand-new worker classes. This goal could be achieved by the means of a declarative
language, which can be used for describing workflow definitions. Moreover, a software
tool, which would enable the visual definition of a new worker, could be used for pro-
cess modeling while extracting the necessary data.

The Workflow Management Coalition (WfMC) developed and proposed XML Pro-
cess Definition Language (XPDL) [6] with the intention for it to become a common
language in the workflow domain considering the definition and exchange of process
definitions. The language allows for the import and export of process definitions be-
tween a variety of tools ranging from workflow management systems to modeling and
simulation tools.

By adopting the proposed standardized language (XPDL), our system becomes capa-
ble not only to use a number of existing graphical workflow editors, but also to exchange
process definitions with various other workflow products.

In order to comply with XPDL, the system first had to be modified to conform to the
basic constructs of XPDL and the underlying meta-model. The structure of workers’
� This work was supported by project “Abstract Methods and Applications in Computer Sci-

ence” (no. 144017A), of the Serbian Ministry of Science and Environmental Protection.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 287–292, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

288 D. Pešović, Z. Budimac, and M. Ivanović

itineraries (previously supporting only sequential routing) was adapted to support more
refined control-flow patterns, like parallel routing, alternative paths, or iterations. The
system which developed in such a way has been named Workers, Inc. to emphasize the
collaborative nature of agents.

Moreover, a system-specific import layer had to be provided to allow the translation
of process definitions, generated using a visual modeling tool, into worker execution
contexts, their internal system representations.

2 System Architecture

Workers, Inc. is envisioned as a community of cooperative agents, its main characteris-
tics being full decentralization and distribution of workflow functions. It is built on top
of the Mole mobile agent system [1]. The current architecture is essentially two-part,
consisting of work-agents (workers) and host-agents (worker hosts).

2.1 Workers

A worker is the key system component encapsulating both the process definition and the
execution state of a workflow. While performing a workflow, a worker itinerates among
distributed resources carrying process-specific information and autonomously taking
care of its execution state. In that way, workers manage not only to perform workflow
activities locally with respect to assigned resources, but to avoid the need to consult a
central server or the originating machine at every step.

A workers behavior is entirely defined by its execution context. A worker context
is an executable process definition, a worker being just a medium through which its
context is transmitted and accomplished. When a worker migrates, its entire execution
context as an object net is being encompassed by object serialization, and then trans-
ported and reconstructed at the target location.

The most important part of a context is the worker itinerary, which represents a flow
of a worker through a network. By representing itineraries with directed graphs we are
able to support complex flow patterns that could be needed by workflow applications.

To allow concurrent activity execution, agent social abilities are employed. When a
single thread of control needs to split into two or more threads, which can be executed
in parallel, the worker context is cloned and multiple worker instances are allowed
to be executed simultaneously. On the other hand, when multiple parallel threads of
execution need to converge into a single thread, agent coordination mechanisms and
synchronization techniques are employed.

To strengthen security of the system, Mole mobile agents and thus workers are for-
bidden to access any system resources directly. Critical resources can be accessed only
by communicating with stationary system agents, i.e. worker-hosts.

2.2 Worker Hosts

Every node in the network contains a worker host, which is implemented as a station-
ary system agent, having special privileges for the access to host system resources. A

Towards a Visual Definition of a Process in a Distributed Environment 289

worker host is a passive entity, which spends most of its lifetime receiving requests
from workers or users and coordinating their actions. There are the three main subcom-
ponents of a worker host: an application manager, a participant manager, and a user
interface.

3 Execution Contexts

The design of an execution context is done so as to comply with the workflow meta-
model specification [6]. According to the specification, a process definition is the main
meta-model entity, while a package represents a container for the grouping of common
data entities from a number of di�erent process definitions whose scope may be wider
than a single process definition. To conform to the meta-model specification, the two
distinct kinds of contexts have been set up: a worker context representing a process
definition, and a package context representing a package definition.

3.1 Participant Specification

The participant declaration represents an abstraction level between the actual performer
and the activity which has to be performed. Declared participant identifiers figure in
activity performer expressions. At run time, performer expressions are evaluated, and
activities are assigned to concrete humans, programs, and�or machines.

In Workers, Inc., human or system users are distinguished by their network locations.
The participant resolution process will therefore result in the location of the user being
determined and assigned to the declared participant.

3.2 Application Declaration

In XPDL, applications are barely declared. In fact, they are just named. Additionally, a
list of formal parameters may be supplied. The real definition of an application is not
required at the process definition level, and may be handled by an application manager
at run time. The reason for this approach is the support for heterogeneous environments,
where a di�erent program has to be invoked for each platform.

In Workers, Inc., an application manager of a worker host maintains the list of locally
available applications (and their calling mechanisms) registered by the owner of the
host. In case that its current activity refers to an application declaration, a worker will
use locally available information to map the declaration to the concrete application and
its calling mechanism.

Besides a generic application declaration, Workers, Inc. also allows for a richer ap-
plication declaration, where the concrete application and its calling mechanism may be
identified already at the level of the process definition.

3.3 Data Fields

Workflow relevant data represents the data created and used within each process in-
stance during process execution. Workflow relevant data may be referenced from ac-
tivities or transitions, and it may be passed to invoked applications. Furthermore, data

290 D. Pešović, Z. Budimac, and M. Ivanović

fields may be used to pass persistent information or intermediate results between activ-
ities. Package data may be used for communication between multiple process instances
originating from the same ancestor, while the process data may be used only for passing
information between activities within the particular process instance.

Workers, Inc. adopts this strategy with certain limitations imposed by the fact that
the system is highly distributed and lacks a centralized control. If the process involves
parallel execution paths, there is a potential risk for concurrency problems to arise: a
worker context is cloned as a whole, and concurrently executed activities do not point
to the common data storage any more. Whenever multiple execution threads converge
into a single thread, the data consolidation mechanism is used to provide as much as
possible data consistency of the merged context. Corresponding data fields of the two
merging contexts are compared by the time of their last modification, and the lastly
modified value is taken. However, this may lead to inconsistent results depending on
the activity execution sequence that is taken.

3.4 Itinerary

The itinerary has the structure of an arbitrary complex directed graph, where vertices
of the graph represent process activities, and edges of the graph correspond to process
transitions.

An activity is the smallest, atomic unit of work in a business process. The three main
properties of an activity specification, which can be seen as answers to the accompanied
questions, are:

� Performer assignment (Where?) — It specifies the performer of the activity. In the
process of participant resolution, the actual location of a participant is determined.
By evaluating a performer expression, a worker knows where its activity needs to
be carried out, and will transfer itself over the network accordingly.

� Implementation specification (What?) — It specifies what the concrete realization
of the activity is. It can be a call to a declared application, another workflow process,
or an embedded activity set. Also, the activity may have no implementation at all,
in which case it supports complex flow transitions or manually performed activities.

� Automation modes (How?) — Information on whether the activity is to be started�
finished manually by the user or automatically by the worker itself.

Transitions connect individual activities. A transition may contain a condition which
must be fulfilled for the worker to start performing the target activity. If the performer
assigned to the target activity is di�erent than the one of the source activity, the worker
will first transfer itself to the appropriate node in the network before it actually starts
the activity.

3.5 Transition Restrictions

Transition restrictions of an activity specify how a worker should operate when encoun-
tered with multiple incoming or outgoing transitions of the activity. When faced with
multiple outgoing transitions, a worker can take one, several, or all of the encountered

Towards a Visual Definition of a Process in a Distributed Environment 291

paths, depending on the split type of the activity and the conditions associated with
the transitions. On the other hand, when an activity has multiple incoming transitions,
worker should know whether to start the activity immediately or to wait for the other
active flows to complete, depending on the join type of the activity.

Any transition restriction may be of one of the three di�ered types:

1) XOR – representing alternative paths (only one path is taken)
2) AND – representing concurrent paths (all paths are taken)
3) OR – representing alternative paths with the potential of concurrency (several paths

are taken, ranging from one to all)

Split points generating multiple concurrent threads are achieved by cloning a worker
context into the appropriate number of copies, and by creating the same number of
separate workers to carry and interpret those copies.

On the other hand, supporting join points that involve convergence of multiple
threads has a necessary precondition: all merging workers must meet at the same node.
This subject is directly related to the mechanism used for participant resolution. When
participant locations are resolved in process initialization phase (as is the case in the
current implementation), it is not an issue. If participant locations were evaluated dy-
namically during run time, it would become an issue raised by the same concurrency
problems that apply to data fields.

4 XPDL Compiler

XPDL Compiler for Workers, Inc. takes an XPDL source code as its input, and produces
appropriate context classes needed by workers to carry out defined processes. Once
the system has been made compliant to the workflow meta-model, the translation itself
becomes a routine: every XPDL element is translated into a block of Java code, in which
the corresponding context member is constructed and associated with the appropriate
context. The use of the compiler is required as the intermediate step between a modeling
tool, which provides the XPDL process definition, and the actual process invocation in
Workers, Inc. The compiler works through three phases:

1) XPDL document parsing. The XPDL source is validated against the XPDL schema
for well-formedness, and a DOM tree is built.

2) Code generating for appropriate context classes. By traversing the DOM tree, the
Java source code for the adequate number of context classes is generated. Process
graphs are checked for correctness, and local methods are incorporated in the ap-
propriate context classes.

3) Running Java compiler to produce Java bytecode.

The Graph Structure Checker component of the XPDL Compiler analyzes the pro-
cess graph during compile time, so that potentially problematic points in the process
graph can be detected prior to run time. A process definition containing problematic
constructs may be rejected and asked for a revision, or the suspicious points may be
marked and treated accordingly at run time.

292 D. Pešović, Z. Budimac, and M. Ivanović

5 Related Work

WADE [4] is another software platform that facilitates the development of distributed
multi-agent applications where agent tasks can be defined according to the workflow
metaphor. WADE is built on top of JADE [2], which is primarily a multi-agent system
providing limited support for agent mobility. The current version of JADE supports only
intra-platform mobility, i.e. an agent can move only within the same platform from one
container to another.

WADE comes with a development environment called WOLF that provides support
for the graphical definition of WADE workflows. WOLF does not use internally any
standard workflow definition language. However, in order to facilitate import�export
operations, WADE adopts the core elements of the workflow meta-model defined in the
XPDL standard. Still, some meta-model elements, such as packages, type declarations,
or block activities, are left unsupported. Also, there is no explicit support for process
participants and activity performers in terms of the meta-model.

6 Concluding Remarks

A workflow modeler creates new processes by using a workflow process editor. He�she
places the activities in lanes of process participants, connects them with transitions,
and fills out all other process definition relevant data. The generated XPDL process
definition is then taken as input to the XPDL Compiler which produces context classes
necessary for workers to carry out the defined process.

The system is used experimentally within the department. First experiences proved
all our expectations.

References

1. Baumann, J., Hohl, F., Rothermel, K., Strasser, M.: Mole – Concepts of a Mobile Agent Sys-
tem. Homepage of the University of Stuttgart (1997)

2. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE – A White Paper (2003),
���������������������

3. Green, S., Hurst, L., et al.: Software Agents: A review, IAG review (1997)
4. Wade User Guide, ��������������������������
5. Hollingsworth, D.: Workflow Management Coalition: The Workflow Reference Model.

Homepage of Workflow Management Coalition (1995)
6. Workflow Management Coalition: Workflow Process Definition Interface – XML Process

Definition Language, Version 1.0. Homepage of Workflow Management Coalition (2002)

http://jade.tilab.com/
http://jade.tilab.com/wade/

A Multi-agent Recommender System for

Supporting Device Adaptivity in E-Commerce

Domenico Rosaci and Giuseppe M.L. Sarné

University Mediterranea of Reggio Calabria
{domenico.rosaci,sarne}@unirc.it

Summary. E-Commerce recommender systems provide customers with useful sugges-
tions about available products. However, in presence of a high number of interactions
between customers and Web sites, the generation of recommendations could become
a heavy task. Moreover, customers often navigate on the Web using different devices
whose different characteristics may influence customer’s preferences. In this paper we
propose a new multi-agent system in which each device exploited by a customer is asso-
ciated with a software agent which autonomously monitors the customer’s behaviour.
The use of device agents leads to generate recommendations taking into account the ex-
ploited device, while the fully decentralized architecture introduces a strong reduction
of the time costs.

1 Introduction

In an E-Commerce environment, a customer generally spends a large amount of
time to search interesting products while the sellers need to propose their products
taking into account customers’ preferences. A number of adaptive E-Commerce
systems proposed in the last years [1, 6, 4, 2] face these problems by using a profile
of the customer, which represents his interests and preferences, and exploit soft-
ware agents to construct such a profile. Generally, when the customer accesses an
E-Commerce site, his agent exploits the profile to interact with the site. In this
interaction, the site can use both content-based and collaborative filtering tech-
niques to provide recommendations to the customer’s agent by adapting the site
presentation. Moreover, nowadays customers can navigate on the Web by using
different devices as traditional desktop PCs, notebooks, cellular phones, etc. The
necessity that recommender systems consider the device in generating suggestions
is becoming a key issue [5, 4]. Indeed, if a user accesses a site by a PC, the site
can propose its recommendations by a presentation including graphics and other
multimedia while, if the exploited device is a cellular phone, the site presentation
has to be lighter. In order to tackle this issue, some approaches have been pro-
posed in the past. As an example, a multi-agent recommender for E-Commerce,
called EC-XAMAS, is presented in [4]. EC-XAMAS assists a customer in the
search of products of interest, accordingly to his past interests and considering
different possible devices. However, the computation for generating suggestions is
entirely performed on the client-side, introducing high costs for those devices hav-
ing limited resources. Another proposal is represented by the MASHA system [5].

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 293–298, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

294 D. Rosaci and G.M.L. Sarné

Device agents

of customer C1

Device agents

of customer C2

Customer agent of

customer C1

Customer agent of

customer C2

Counsellor agent

of partition P1

Seller agent

P
a

rtitio
n

P
1

Fig. 1. The ARSEC Architecture

MASHA provides each device with a client agent that builds a user’s profile asso-
ciated to just that device. This profile is continuously updated by a server agent
which collects the information provided by the different users’ devices. A third
component, called adapter agent, generates a personalized site’s representation
containing some recommendations derived by both an analysis of the user’s pro-
file and the suggestions coming from other users that in the past exploited the
same device. However, although MASHA effectively takes into account the differ-
ent devices and reduces the client-side time costs, it presents a significant cost for
computing recommendations. In order to reduce both these costs, we propose in
this paper a new multi-agent architecture, called Adaptive Recommender System
for E-Commerce (ARSEC). ARSEC (see Figure 1) maintains the three MASHA
agents, namely: (i) a device agent, (ii) a customer agent, associated with each
customer, and (iii) a seller agent, associated with each E-Commerce site. How-
ever, differently from MASHA, the recommendations provided by ARSEC are not
autonomously generated by the seller agent, but they are the result of a collab-
oration between the seller agent and a new agent type, called counsellor agent.
The basic idea underlying ARSEC is grouping the customers in partitions of cus-
tomers having similar profiles, where each partition is managed by a counsellor
agent. Consequently, when a customer accesses a site, the seller agent does not
compute recommendations, but it exploits the help of the counsellor agents asso-
ciated with the clusters which the customer belongs to. We have experimentally
evaluated ARSEC by comparing it with MASHA, and we have observed a signi-
ficative improvements of the recommendation performances and a low time cost
for generating recommendations. In Section 2 we provide the technical details of
the ARSEC architecture. Finally, in Section 3, some experiments are presented
and some conclusions are drawn.

2 The ARSEC Architecture

2.1 The Device Agent

A device agent is associated with each customer’s device. It stores a Device Pro-
file DP and a Customer Profile CP . In its turn, DP contains: (i) The set of

A Multi-agent Recommender System 295

the counsellor agents associated to the partitions which the customer belongs
to; (ii) The maximum size (in Kbyte) of text (resp. audio, video) content of a
product that the customer desires to handle when using the device; (iii) three
parameters ρ1, ρ2, ρ3 ∈ [0, 1], associated to the actions performable by the cus-
tomer (i.e., visit, buy or add to favorite); (iv) an integer value T used to evaluate
the customer’s interest in a product; (v) three parameters k, z and r, that are
exploited by the device agent in its interaction with the seller agent of each
visited E-Commerce site and that respectively represent the maximum number
of: (a) interesting categories belonging to the site that the customer desires to
be considered; (b) similar agents that the customer desires to be considered in
collaborative filtering recommendations; (c) recommendations to be considered
for each similar agent. The customer profile CP stores the profile of the cus-
tomer, based on the whole E-Commerce sessions history. More in detail, CP is a
set of pairs (τ, IW), each one associated with a category τ , where IW (Interest
Weight) is a measure of the customer’s interest in the category τ by using the
device. We define IW by using the actual time t spent by the customer when
visiting the page containing τ . Moreover, the customer can buy τ , add it to fa-
vorite or visit the page containing τ , and this is taken into account by weighting
IW with a coefficient ρa for each action a (where a = 1, 2, 3). More formally, for
each new update, IW is computed as follows:

IW =
{

(IW + t
T × ρa)/2 , if t ≤ T

(IW + ρa)/2, elsewhere

2.2 The Customer Agent

A customer agent is associated with each agent and collects information about
the categories visited during the customer’s activities. These information will
be send to the counsellor agents of the customer’s partitions. The customer
agent contains two elements, namely the Connection Setting (CS) and the Global
Customer Profile (GCP). In its turn, CS stores the the number ND of device
agents associated with the customer and a vector PM of ND elements, where
each element PMi is the cost for Kbyte of the Internet connection of the i-th
device. GCP stores a global representation of the customer’s interests relative
to the visited categories. In particular, it is a list of pairs 〈τ, GIW 〉, where τ
identifies a category accessed by the customer and GIW is the Global Interest
Weight shown by the customer, computed as the weighted mean of all the interest
weights, relative to the different devices. That is GIW =

∑ND
i=1 PMi×IWi∑ ND

i=1 IWi
, where

IWi is the interest weight computed for the given category τ by the i-th device,
i = 1, ..ND.

2.3 The Counsellor Agent and the Seller Agent

A counsellor agent is associated with a set of customers that are interested in
the same domain. A seller agent is associated with a site to manage the products
contained in the site. The data structure of the counsellor agent is composed of

296 D. Rosaci and G.M.L. Sarné

three elements called Seller Catalogue (SC), Global Profile Set (GPS) and Pro-
file Collector (PC). The seller catalogue contains, for each site E that interacted
with the counsellor agent in the past, all the products of E. The global profile set
contains the global profiles of all the customers associated with the counsellor.
The Profile Collector contains several data sections, each one relative to a site E
and denoted by DSE . Each DSE contains in its turn the list of the profiles as-
sociated to the past visitors of E. We denote by DSE [c, d] each of these profiles,
associated to a given customer c and his device d. The elements of DSE [c, d] are
pairs (τ, IW) where τ is a category that c considers interesting in the site E, and
IW is the interest weight of τ . The information relative to each visitor profile
DSE [c, d] is provided to the counsellor agent by the site agent of E when c ends
its session. Suppose that c visits the site E exploiting a given device d; then, the
c’s device agent sends to the seller agent the device profile DP . The customer c
belongs to some customer partitions, each of which is associated to a counsellor
agent. In this case, the seller agent contacts each counsellor agent and sends to
it the device profile DP . In order to generate content-based recommendations,
the counsellor agent has built a list CB that contains those products of E whose
categories belong to the global profile of c (this global profile is contained in
the Global Profile Set). Then, the counsellor agent orders CB in a decreasing
fashion based on the coefficient IW of each category and maintains only the first
k products deleting the remaining ones (remember that k is contained in DP).
Moreover, to generate collaborative filtering recommendations, the counsellor
agent compares the profile DSE [c, d] contained in the data section DSE and
relative to the customer c, with each profile DSE [q, d] of each other customer
q, that has visited E in the past exploiting the same device of c. As a result, a
list CF of the products belonging to those categories accessed by the z visitors
less different to c is obtained (remember that also z is contained in DP). The
difference between each pair of customers c and q that use the same device d is
computed as follows. Let τ be a category that belongs both to the data sections
DSE [c, d] of c and DSE [q, d] of q, and let IWc(τ) (resp. IWq(τ)) be the interest
rate assigned to τ in the profile of c (resp. q). The value d(τ) = |IWc(τ)−IWq(τ)|
is assumed to be a reasonable measure of the difference between c and q in the
evaluation of the category τ . We measure the global difference between the two
customers c and q, denoted by D(c, q, d) by summing all the contributions d(τ)
relative to all the categories shared by the profiles of c and q. More formally,
D(c, q, d) =

∑
τ∈DSE[c,d]

⋂
DSE [q,d] |IWc(τ) − IWq(τ)|. Each counsellor agent of

the customer c that is visiting an E-Commerce site returns to its seller agent
the lists CB and CF , which contains products suitable to be recommended to
c. Besides these lists, the counsellor returns to the seller agent also the similar
customer list which contains the z customers more similar to c. These lists are
used by the seller agent to generate an adapted presentation for the visiting
customer. In particular, the seller agent generates a Web page that contains
only elements compatible with the specification of the customer’s device, con-
tained in the device profile DP . Moreover, the Web page presents two section
of recommendations, namely The seller recommends and The other customers

A Multi-agent Recommender System 297

recommend, containing the products contained in the lists CB and CF , respec-
tively. A third section, called Contact other customers, gives the possibility to
send a message to the customers that have been considered when generating the
CF list.

3 Experiments and Conclusions

In this section, we present some experiments aiming to evaluate the advantages
introduced by ARSEC, in terms of recommendation quality and time cost, with
respect to both MASHA and EC-XAMAS. We used in our experiment 25 E-
Commerce sites, each one provided with about 50 products. We monitored 53
customers during 42 days and in particular we exploited 10 of the 25 sites for
building the customers’ profiles. The remaining 15 sites have been used to test
the systems. We recorded, for each customer, the customer’s choices into a log
file, containing a list of 200 elements 〈a, b, t〉, relative to 200 different products
accessed by a customer, where a (resp. b) is the identifier of the source (resp.
destination) product, and t is the timestamp associated to the choice to cross
from a to b. We have implemented both the above systems in JADE [3]. In
particular for ARSEC we have considered three device agents associated with
three different devices, namely a desktop PC, a palmtop and a cellular phone.
Finally, each ARSEC customer agents adopt the same parameters values: (i)
n = 3, having only three types of device agents for each user; (ii) the prices
per Mbyte (in euro cents) that we have considered are: PM1 = 0.9, PM2 =
1.4, PM3 = 1.8. We considered four sets S1, S2, S3, and S4 containing 20, 40,
60, and 80 customers, respectively. The following experiment was repeated for
each set of customers S1, S2, S3, and S4. For each customer, in correspondence of
each triplet 〈a, b, t〉 belonging to the test-set, we generated a list of recommended
product R(a), for both of the evaluated systems. We checked if b belongs to R(a)
in order to measure the effectiveness of the different approaches and we stored
the result in a value δa, where δa = 1 if b ∈ R(a), δa = 0 otherwise. The Average
Precision (P) of each E-Commerce system is defined as the average of the δa

values on all the triplets 〈a, b, t〉. The first 3 rows of Table 1 report the results
obtained by the two approaches considering, in terms of Average Precision, the
global performance, the content-based and the collaborative filtering component,
respectively. We can note that, in all the three cases and for different size of the

Table 1. Experimental Results for ARSEC(A), MASHA(M) and EC-XAMAS(E)

S1 S2 S3 S4

A M E A M E A M E A M E

Global P 0.80 0.72 0.69 0.85 0.75 0.71 0.89 0.79 0.74 0.91 0.82 0.78

CB P 0.58 0.52 0.50 0.56 0.55 0.53 0.61 0.54 0.53 0.61 0.55 0.54

CF P 0.47 0.40 0.38 0.54 0.45 0.39 0.67 0.49 0.48 0.71 0.55 0.52

T 0.99 2.40 4.38 1.07 2.95 4.51 1.11 3.69 4.49 1.31 4.27 4.92

298 D. Rosaci and G.M.L. Sarné

customer agent community (S1, S2, S3, and S4), ARSEC performs better than
the other two systems. Finally, we have compared the impact of the different
recommendation algorithms on the performances of the E-Commerce sites. The
last row of Table 1 reports the average waiting time of the customers when
accessing an E-Commerce site considered in the experiment above, computed
on all the E-Commerce sites and on all the client accesses. The experiment
shows that ARSEC introduces a waiting time significantly smaller than both
MASHA and EC-XAMAS, and the advantage increases with the dimension of
the customer set. We argue that this good performance is due to the presence of
the counsellor agents that pre-compute recommendations, thus avoiding onerous
computation for both the customer client and the seller server.

References

1. Badica, C., Ganzha, M., Paprzycki, M.: Mobile agents in a multi-agent e-commerce
system. In: Int. Symp. on Symbolic and Numeric Algorithms for Scientific Comput-
ing, p. 8. IEEE, Los Alamitos (2005)

2. Alim, A., Siddique, S.A., Chisty, K.J.A., Rahman, G., Hossain, A.: Developing an
agent-mediated e-commerce environment for the mobile shopper. In: Proc. of the
7th Int. Conf. on Computer and Information Technology

3. http://www.jade.tilab.org (2005)
4. De Meo, P., Rosaci, D., Sarnè, G.M.L., Terracina, G., Ursino, D.: An xml-based

adaptive multi-agent system for handling e-commerce activities. In: Int. Conf.
ICWS-Europe 2003, Erfurt, Germany, pp. 152–166. Springer, Heidelberg (2003)

5. Rosaci, D., Sarné, G.M.L.: MASHA: A Multi Agent System Handling User and
Device Adaptivity of Web Sites. UMUAI 16(5), 52–64 (2006)

6. Di Stefano, A., Pappalardo, G., Santoro, C., Tramontana, E.: A multi-agent re-
flective architecture for user assistance and its application to e-commerce. In: Int.
Work. CIA, pp. 90–103. Springer, London (2002)

http://www.jade.tilab.org

Dynamically Computing Reputation of

Recommender Agents with Learning
Capabilities

Domenico Rosaci and Giuseppe M.L. Sarné

University Mediterranea of Reggio Calabria
{domenico.rosaci,sarne}@unirc.it

Summary. The importance of mutual monitoring in recommender systems based on
learning agents derives from the consideration that a learning agent needs to interact
with other agents in its environment in order to improve its individual performances.
In this paper we present a novel framework, called EVA, that introduces a strategy to
improve the performances of recommender agents based on a dynamic computation of
the agent’s reputation. Some preliminary experiments show that our approach, imple-
mented on the top of some well-known recommender systems, introduces significant
improvements in terms of effectiveness.

1 Introduction

The issue of realizing recommender agents with learning capabilities has received
a great deal of attention in the recent past. A key problem in such a context [1]
is to realize an effective mutual monitoring among the agents, providing each
agent with useful suggestions about other agents which could be contacted to
obtain a fruitful cooperation. For instance, in [1] and in [5], it is proposed that
the owner can integrate the individual knowledge of its agent with that of other
agents that have similar interests in the community. A limitation of these ap-
proaches is given by the relatively simple cooperation mechanism, only based
on a similarity measure. Instead, most of the recent cooperative approaches in
multi-agent systems use reputation models to select the best candidates for col-
laboration [7, 2]. However, these reputation models are conceived for general
multi-agent systems, and do not take into account the particular characteris-
tics of a system composed by learning agents, that continuously update their
knowledge bases and than can improve/worsen in time their capabilities. In this
paper, we propose to face the problems above by an evolutionary framework,
called EVolutionary Agents (EVA). In our approach, a user that is not satisfied
by his/her agent can require the system to provide him/her with a new agent.
In order to satisfy the request of the user, the system selects in the community
that agent appearing as the best candidate to the substitution, based on an
opportune score. Such a score is computed taking into account the reputation
of each agent in the community. The selected agent is cloned and the created
copy (clone) is sent to the requester user. The core of our method consists in

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 299–304, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

300 D. Rosaci and G.M.L. Sarné

the mechanism to compute the reputation of an agent, that takes into account
the cloning mechanism, and considers a genetic component of the reputation.
The paper is organized as follows. Section 2 describes the EVA framework, and
Section 3 introduces our reputation model. Section 4 presents an evaluation of
the framework and draws some final conclusions.

2 The EVA Framework

In our framework, each user u is assisted by a set Au of information software
agents able to provide him with recommendations. When u accesses a Web page,
each agent ai ∈ Au provides him with some recommendations, where each rec-
ommendation is a Web link. We denote by Ri the set of recommendations that ai

during its life suggested to u. To evaluate the quality of the set Ri, precision and
recall are the best known measures used in information retrieval [3]. Precision is
the fraction of the recommendations that are considered as relevant by u. Recall
is the fraction of the links actually selected by u that have been recommended
by the agent ai. A well-known approach to take into account both recall and
precision is represented by the Fβ-measure defined in [4], i.e the harmonic mean
of precision and recall, where β is a non-negative real that weights the recall with
respect to the precision. In this paper we use the Fβ-measure of Ri to compute
the satisfaction of the user u for the recommendations provided by his agent ai.
Analogously, we can define the F-measure Fβ(Au) for the whole agent-set Au,
considering that the recommendations provided by the agent-set is the union
of the sets Ri relative to each agent ai ∈ Au. EVA framework introduces a dy-
namic strategy to improve the satisfaction of the agents composing the MAS. In
particular, in the EVA architecture two types of agent are appositely conceived
to manage such a strategy. First, each user u is provided with an agent called
Local Evolution Manager (LEMu). Moreover, the whole MAS is provided with a
Global Evolution Manager (GEM). Each user u can fix a satisfaction threshold
ρu for Fβ(Au), under which the quality of the recommendations provided by Au

is unsatisfactory. In the case Fβ(Au) < ρu, LEMu determines which agent ai

has a measure Fβ(ai) < ρu. We denote by UAu the set of those unsatisfactory
agents. If UAu �= ∅, then LEMu de-activates the agents belonging to UAu and
sends a help request to GEM . This help request informs GEM that the agent
u deactivated the k agents belonging to the set UAu (where k is the cardinality
of UAu) and then it needs to substitute them with other k more satisfactory
agents. As we will see below, GEM will determine a set of substitutes agents
based on both their similarity with the unsatisfactory agents contained in UAu

and the reputation that the community gives to the agents. Therefore, in the
help request the agent LEMu provides to GEM , besides of the set UAu and the
threshold ρu, also a parameter ψu (a real value ranging in [0, 1]) that represents
how much u weights the similarity w.r.t the reputation. The agent GEM main-
tains a similarity matrix Σ = {Σab}, a, b ∈ MAS where each element represents
the similarity between two agents a and b belonging to the MAS. This simi-
larity is computed as described in [5], and it is a real value belonging to [0, 1].

Dynamically Computing Reputation of Recommender Agents 301

Moreover, GEM also stores, for each agent a belonging to the MAS, a reputa-
tion coefficient ra. This coefficient is a real value belonging to [0, 1], computed
as described in Section 3, representing a measure of how much the whole com-
munity considers the performances of a as satisfactory. When GEM receives a
help request hu = (UAu, ρu, ψu) by u, it determines a substitute for each agent
μ ∈ UAu. To this purpose, GEM examines as candidate to the substitution
each agent a of the MAS to which is associated a F-measure greater than ρu.
We denote by Cμ the set of these candidate agents. Then, GEM computes for
each agent a ∈ Cμ, the score: s(a, μ) = ψu · Σa,μ + (1 − ψu · ra) Finally, GEM
chooses as substitute of μ the agent subμ to which is associated the maximum
score max(s(a, μ)), a ∈ Cμ. For each agent μ belonging to UAu, the agent GEM
clones the substitute agent subμ. The clone agent sub∗μ is then transmitted to
the local evolution manager of u, that adds it to the agent-set of u in substi-
tution of the unsatisfactory agent μ. From now on, the evolution of sub∗μ will
be independent on the parent agent subμ, since the model encoded in it will be
applied to the environment of the user u. It is important to point out that the
core of the strategy is that an unsatisfactory agent μ is killed and substituted by
another agent sub∗μ, provided via the activity of the global evolution manager
GEM . The reason that leads to believe that this substitution will lead some
advantages to the user u of μ is that sub∗μ is the clone of an agent that (i)
has a F-measure greater than the satisfaction threshold required by u and (ii)
presents a good score, computed by taking into account both the similarity with
the substituted agent and the global reputation in the community. Feature (i)
alone is not sufficient to conjecture that sub∗μ will produce an F-measure greater
than the u’s satisfaction threshold but only assures that the parent agent of
sub∗μ is goodly evaluated by its own user, that could obviously have a different
perception of the satisfaction with respect to u. However, feature (ii) assures
that the parent agent of sub∗μ has a personal ontology similar enough to that of
substituted agent μ and, in addition, it has a good reputation in the community.
Considered together, the two features give a reasonable motivation to believe
in a possible improvement of the u’s satisfaction w.r.t. the original situation in
which the unsatisfactory agent μ was present.

3 Agent Reputation in an Evolutionary Environment

It is widely recognized that the reputation on an agent, rather than being a sin-
gle information, is a multi-dimensional concept, since it should take into account
different aspects. Moreover, each user usually has a different way of combining
the single aspects of the reputation associated with his agents, weighting each
aspect by his/her personal point of view (this is called the ontological dimen-
sion of the reputation [7]). Finally, when an agent belongs to a group, besides
the personal evaluation of the reputation (the individual dimension of the rep-
utation), we need to consider the opinion of the whole community (the social
dimension of the reputation). Our reputation problem presents a unique indi-
vidual dimension, i.e. the reputation of providing good recommendations to the

302 D. Rosaci and G.M.L. Sarné

a

b c d

f ge

a

b c d

f ge

0.9 0.6 0.5

0.8 0.5 0.5

0.7
(A) (B)

Fig. 1. An example of Descent Tree

agent’s owner. Therefore, it is reasonable to consider, as possible ontological di-
mensions of the individual reputation, both the precision and the recall of the
recommendations. Consequently, in our approach we assume the F-measure as
a global measure of the individual reputation of the agent a, considering both
the two ontological dimensions and where we denote as ua the owner of a and as
βua the personal consideration of ua for the precision with respect to the recall.
Since the evolutionary strategy we have described above implies that an agent
can be cloned and its clone can be moved in a new environment, it is necessary
to define the agent reputation under this novel, particular perspective.

To study this problem, it is useful to represent the relationships the cloning
process introduces in the set of the agents, by using some definitions directly
derived from the terminology used to represent relationships between entities
that share a genealogical origin. Figure 1-(A) helps us to introduce these defi-
nitions. It represents a set of agents, mutually involved in cloning activity, by
using a sort of “genealogical” tree, where each node is associated to an agent,
and each edge represents a cloning process between two agents, where we call
parent the agent that is cloned and child the agent that results from the cloning.
For instance, in Figure 1-(A), the agent a is the parent of the agent b. Obviously,
while an agent has only one parent, it can have zero or more children. We call
siblings two agents, like b and c in Figure 1-(A), that have the same parent. The
parental relationship can be recursively applied, leading to introduce the notion
of ancestor of an agent. For instance, a is an ancestor of e since it is the parent
of b which is, in its turn, the parent of e. Already using the analogy with the
human kinship system, we define relatives two agents that share a common an-
cestor, as all the agents in Figure 1-(A), and we can also define a kinship degree
between two relatives, as the distance between them in the tree passing through
the common ancestor. For instance, the agents e and g have kinship degree equal
to 4, since the path linking them is composed by four edges. Obviously, if an
agent a is cloned, then each of its clones b ∈ childrena, being identical to a,
has to inherit at the cloning time the same reputation of a. Then, the inher-
ited reputation of b can be considered as a sort of initial reputation. However,
considering that b will moved to a user different from that of a, the reputa-
tion of b should evolve in time, taking into account, besides the initial inherited
reputation, the individual satisfaction expressed by its current owner. It is also
necessary to determine how these two components (i.e., inherited reputation and
individual satisfaction) are weighted for determining a unique, global, measure of

Dynamically Computing Reputation of Recommender Agents 303

reputation. Moreover, due to the cloning process, each agent a belongs to a fam-
ily of relatives, represented in the descent tree DTa. Since a shares with all these
relatives some similarities deriving from the cloning process, it seems reasonable
to consider the performances of all these relatives to determine the reputation
of a. This consideration introduces a social component (deriving from the rela-
tives’ performances) in the computation of the reputation. To take into account
the observations above, in our approach we introduce a reputation coefficient
ra associated with each agent a, belonging to the interval [0, 1], where ra = 1
means complete reliability of a. Such a coefficient is computed as a weighted
mean of n contributions, where each contribution is associated with one agent
of the descent tree DTa and where n is the number of relatives composing the
descent number DTa. The first contribution is associated with the agent a itself,
and it is equal to the F-measure Fβa(a). Each of the other n − 1 contributions
is associated with one of the relatives of a, and it is equal to the F-measure
Fβa(a). Each of this component, associated with an agent x ∈ Fa, is weighted
by a coefficient, equal to ka,x + 1. This way, the contribution of Fβa(a) to the
overall reputation is equal to Fβa(a), being ka,a = 0, while the contribution of
the satisfaction obtained by each other relative b is as smaller as higher is the
kinship degree between a and b. As an example, consider the situation in Figure
1-(B), where to each agent of the descent tree is associated the F-measure w.r.t.
its own owner. The F-measure of the agent e is equal to 0.9. The reputation of
e is equal to 0.696.

4 Experimental Evaluation and Conclusions

To evaluate our approach, we have built some experiments that exploit EVA
framework to improve some agent-based recommender system, i.e. MASHA [6],
CILIOS [5] and SPY [1]. We have considered a set U composed by n = 37 real
users, each provided with a set of 3-5 recommender MASHA (resp., CILIOS,
SPY) agents, and we have exploited the same set of Web sites on Travel Agen-
cies described in [6]. We have compared the performances, in terms of F-measure
(using β = 0.5 and ψ = 0.5), in these two different cases: (i) the system does not
use the EVA framework to substitute the unsatisfactory agents; (ii) the system
uses the EVA framework. We have measured the percentage of improvement
in the average satisfaction of the agents obtained in the case (ii) with respect
to the case (i), where the average satisfaction has been computed as follows:
F =

∑
u∈U

Fβ(Au)
n

and the percentage of improvement is defined as Pi = |F E−F i|
F i

,

where FE is the average satisfaction in presence of EVA framework, where F i is
the average satisfaction of the system i, (i = CILIOS, MASHA, SPY), without
applying EVA strategies. Figure 2 shows how the improvement P significantly
increases with the number of total sessions globally performed by the users, for
all the considered systems, achieving for CILIOS a value of about 50 percent af-
ter 20000 sessions. Although promising, these experiments represents only a very
preliminary evaluation of the framework. In our ongoing research, we are study-
ing other evaluation methodologies, both theoretical and experimental, aiming at

304 D. Rosaci and G.M.L. Sarné

0

10

20

30

40

50

60

1 2 3 5 7 10 15 20 25

of sessions (in thousands)

P

MASHA

SPY

CILIOS

Fig. 2. Percent of improvement using EVA with different recommender systems

precisely characterizing the advantage of the evolutionary strategy in improving
the global system performances.

References

1. Buccafurri, F., Palopoli, L., Rosaci, D., Sarné, G.M.L.: Modeling cooperation in
multi-agent communities. Cognitive Systems Research 5(3), 171–190 (2004)

2. Carbo, J., Molina, J.M., Davila, J.: Comparing predictions of sporas vs. a fuzzy
reputation agent system. In: Proc. of 3rd International Conference on Fuzzy Sets
and Fuzzy Systems, Interlaken, pp. 147–153 (2002)

3. Raghavan, V., Bollmann, P., Jung, G.S.: A critical investigation of recall and pre-
cision as measures of retrieval system performance. ACM Trans. Inf. Syst. 7(3),
205–229 (1989)

4. Van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)
5. Rosaci, D.: Cilios: Connectionist inductive learning and inter-ontology similarities

for recommending information agents. Inf. Syst. 32(6) (2007)
6. Rosaci, D., Sarné, G.M.: Masha: A multi-agent system handling user and device

adaptivity of web sites. UMUAI 16(5), 435–462 (2006)
7. Sabater, J., Sierra, C.: Review on computational trust and reputation models. Ar-

tificial Intelligence Review 24(1), 33–60 (2004)

Topic Map for Medical E-Learning

Liana Stănescu, Dan Burdescu, Gabriel Mihai, Anca Ion, and Cosmin Stoica

University of Craiova, Software Engineering Department
Bvd.Decebal 107, Craiova, RO-200440, Romania
��������� �	���
������� ��	���
�	��	 ����	��
��	�� ����

���	�� ����	������������������

Summary. The paper presents original ways of using a modern concept - topic map - in medical
e-learning. The topic map is mainly used for visualizing a thesaurus containing medical terms.
The topic map is built and populated in an original manner, mapping an xml file that can be
downloaded free, to an xtm file that contains the structure of the topic map. Only a part of the
MeSH thesaurus was used, namely the part that includes the medical diagnosis’s names. The
student can navigate through topic map depending on its interest subject, having in this way
big advantages. The paper presents also how to use the topic map for semantic querying of a
multimedia database with medical information and images. For retrieving the interest information
this access path can be combined with another modern solution: the content-based visual query on
the multimedia medical database. Combining these possibilities to access a database with medical
data and images, allows students to see images and associated information in a simple and direct
manner. The students are stimulated to learn, by comparing similar cases or by comparing cases
that are visually similar, but with di�erent diagnoses.

1 Introduction

In the last decade, the electronic learning became a very useful tool in the students’ ed-
ucation from di�erent activity domains. Among these domains is the medical domain,
even if in this case it is adopted a hybrid process that combines the traditional learn-
ing methods with the electronic ones. The accomplished studies, including the ones
focusing on medical domain, indicated that the students substantially appreciate the e-
learning method, due to the facilities o�ered, but they don’t consider it as a replacement
of the traditional learning which has other advantages [5].

Taking into account all these, an e-learning platform, called TESYS, was designed
and implemented for the University of Medicine in Craiova. It provides both traditional
functionalities and original facilities that are included only in few advanced medical
e-learning platforms [7, 8, 9]:

� A database with medical images acquired by doctors in the patients’ diagnosis pro-
cess. Along with these images are provided other relevant data: diagnosis, treat-
ment, evolution. This database completes the small number of images presented in
the specialty courses or books.

� Content-based visual retrieval at the image or region level, based on color or tex-
ture characteristics automatically extracted from images.This modern possibility of
database query is used both in the learning and testing process.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 305–310, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008

306 L. Stănescu et al.

This paper presents another original functionality included in the TESYS platform,
namely a topic map based on a thesaurus with medical terms. The topic map represents
a browsing tool for student, but also a means to enable semantic search. To build the
topic map it was used a part of MeSH, the National Library of Medicine’s controlled
vocabulary thesaurus, especially the part that includes medical diagnosis.

The topic map concept is used not only to help student to understand the semantic
context in which a collection and it’s single items are embedded and to discover unex-
pected knowledge, but also to execute semantic queries on the multimedia database that
was included in the TESYS platform. On the record set selected by the semantic query,
content-based retrieval functions can be executed next. This type of query uses charac-
teristics like color, texture or color regions that were automatically extracted from the
medical images [6].

The student has the possibility to combine di�erent access options, which is consid-
ered the most successful approach in image retrieval. Using content-based visual query
with other access methods to medical imagistic database allows students to see images
and associated information in a simple and direct manner. They only have to select a
query image in order to find similar ones. The student is stimulated to learn by com-
paring similar cases or by comparing cases that are visually similar, but with di�erent
diagnoses [1].

2 Topic Maps

Topic maps represent a powerful tool for modeling semantic structures (associations)
between any kinds of things (topics), which are linked to any kind of documents (oc-
currences) [3, 4, 10]. The available resources that can act as a source of input to
auto-population of the topic map are identified: ontology, relational or object-oriented
database, metadata about resources, index glossary, thesaurus, data dictionary, docu-
ment structures and link structures or unstructured documents [3]. It can be observed
among these resources, the presence of thesaurus and XML, which are used for the
design and self- population of topic maps, solution adopted by us also.

When converting a thesaurus to a topic map, the thesaurus provides the topics and
some basic associations: the superclass-subclass association, synonyms and related
terms. In this software tool for medical learning, it is used a thesaurus that was de-
signed based on MeSH that is the National Library of Medicine’s controlled vocabulary
thesaurus. It consists of sets of terms naming descriptors in a hierarchical structure that
permits searching at various levels of specificity [2]. Taking into account that the most
important information associated to medical images is the diagnosis, and the retrieval is
based on this criterion, we used from the MeSH thesaurus only the “Diseases” part that
defines the medical terms necessary in the diagnosis process. This thesaurus served as a
fundament for the construction of the topic map. Starting from the information o�ered
by MeSH, it is obtained an xtm file that contains the structure of topic map that presents
only details for digestive diseases. Of course the extension of the topic map for other
pathologies or categories of medical terms can be easily realized.

Topic Map for Medical E-Learning 307

2.1 Building and Populating the Topic Map

MeSH 2008 has two important files:

� An xml file named desc2008 that gives information about diseases or di�erent dis-
eases categories.

� A txt file trees2008 that gives information about the organization of these diseases
in a tree structure.

For generating the xtm file that contains topic map, the necessary operations are
grouped in 2 steps:

1)Parsing the xml desc2008 file and generating the topics.
The desc2008 file has a series of XML tags of DescriptorRecord type. Each tag of

this type has information about one disease or a diseases category. This file is parsed
and analyzed and the content of each DescriptorRecord tag will be used to generate a
topic. The xtm file will also contain two topic types: diseases category and entryterm
with the next structure:

��������	
�������	�����������������������

�����������	�

����������

��������� �������������� ������������������ ������

�����������

��������

������ ����!����"�����

����������

��������� ������!���� "������������� ������

�����������

��������

The disease categories presented in the desc2008 file are organized into a hierarchy
and the TreeNumber tag indicates the sub-tree where the disease or disease category is
included, as in the next example:

�"����#����$����

�"����#�����%&'()**(+,'��"����#�����

�"����#�����%&-(.&/��"����#�����

��"����#����$����

The content of each TreeNumber type tag (that is unique) will be used when the
association type tags for the topic map will be generated. The parsing and generation
module uses a hashtable that stores (key, value) pairs as in the example:

h[”C04.588.274”] � ”D004067”;
h[”C06.301”] � ”D004067”;

308 L. Stănescu et al.

2) Parsing the txt trees2008 file and associations generation.
The file trees2008 contains a set of records with the following form: (disease name or

disease category; identification string of the tree where it is included), as in the example:

%��������0 1#����0 2�����3 %&'()**(/*&(.4&

5�������� "#���3 %&'()**(/*&(,-+

1������6� ����� ���������3 %&'()**(+,'

5��������� 7���#��3 %&-(+-,(,,)

1������6� ����� ���������3 %&-(.&/

2������ "���� ���������3 %&-(.&/(/+&

We can see that the category Digestive System Neoplasms appears in 2 sub-trees
meaning that this category is part of two associations. To generate the association that
includes the record: (Digestive System Neoplasms; C04.588.274), the identification
string C04.588.274 must be analyzed. Three groups compose it: C04, 488 and 274.
The parsing and generation module will search in the trees2008 file, records that have
the identification string composed by 4 groups (C04, 488, 274, XYZ) with X, Y, Z
as variables. To obtain the unique ID of the topics included in the association, the h
hashtable that was obtained after parsing Mesh2008 file is used.

2.2 Topic Map View

By parsing these 2 files, as presented above, we identify the information needed to
generate the file in xtm format that must be analyzed and displayed next in a graphical
fashion (figure 1).

As a result, the students can use the topic map as a navigation tool. They can nav-
igate through topic map depending on their interest subject, having in this way big

Fig. 1. Extract from the topic map

Topic Map for Medical E-Learning 309

advantages. They don’t have to be familiar with the logic of the database, they will
learn about the semantic context, in which a collection and its single items are embed-
ded and they may find useful items that they would not have expected to find them in
the beginning.

The hierarchical structure of the descriptors from MeSH thesaurus, that has also
multiple relationships between the medical terms, and each term may have a series of
synonyms, can be properly visualized only by means of a topic map that o�ers to the
student the opportunity to understand exactly these things.

3 Using the Topic Map for Querying the Medical Imagistic
Database

Using the built topic map the student can launch a semantic query on the medical imag-
istic database. In our topic map, since the occurrences are stored in the database, every
topic will be defined as a database query. This query may be simple: the topic “peptic
ulcer”, for example, will initiate a query for “peptic ulcer” in the diagnosis field of the
table Images in the database. Consequently, every relevant image of “peptic ulcer” will
be retrieved. The database search can be done in two ways: Using a single topic. In this
case it is executed a Select command with the general form:

SELECT * FROM image where diagnosis�“topic”
Example: Select * FROM image where diagnosis�“peptic ulcer”

Using the topic and all the synonyms, if there are, and the Select command has the
following form:

SELECT diagnosis FROM image where diagnosis�“topic1” or diagnosis�“topic2”
or...

Example: Select * FROM image where diagnosis�“peptic ulcer” or diagnosis� “gas-
troduodenal ulcer” or diagnosis� “marginal ulcer”

The second query modality is very useful in the learning process, because the images
are introduced in the database by di�erent specialists, and for diagnosis they can use
synonyms, very known in the medical language, but less known by students.

This access path to the medical imagistic database can be combined with other mod-
ern modalities, the results being useful to the student in the learning process. For ex-
ample, the student browses the topic map, learning about the hierarchical structure of
diagnosis, and he decides to launch a query that uses the synonyms. As result, all the
images corresponding to synonym diagnosis will be displayed. On the returned images
set the content-based visual query can be executed.

4 Conclusions

The paper presents two original applications of the topic map concept in the medical
e-learning: for browsing a thesaurus with medical terms and for semantic querying a
multimedia database containing medical images and their diagnoses. To build and pop-
ulate the topic map, taking into account that diagnosis is the main information attached

310 L. Stănescu et al.

to a medical image, we use a part of the MeSH dictionary. It has as component the
medical diagnosis hierarchy, and also relationships between these and their synonyms.
The topic map was build and populated identifying the useful information in an xml file
and it’s mapping to the xtm format corresponding to the topic map.

The topic map represents the most appropriate modality of visualizing this hierarchy
in an educational way, capable to o�er also contextual information. The topic map is
also used to launch semantic queries on the multimedia medical database. This access
path can be easily combined with other modern modalities like content-based image
query or content-based region query. This combination is considered the most success-
ful approach in image retrieval.

This new functionality added to TESYS medical e-learning platform was accepted
by the teachers from Gastroenterology department of the Medicine and Pharmacy Uni-
versity from Craiova and appreciated as useful and original. During this year, the new
functions will be tested in students training, in order to study the improvements of the
learning process.

References

1. Muller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A Review of Content-based Image
Retrieval Systems in Medical Application - Clinical Benefits and Future Directions. Int. J.
Med. Inform. 73(1), 1–23 (2004)

2. National Library of Medicine, Medical Subject Headings, MeSH Tree Structures,
����������������	������������������������������

3. Park, J., Hunting, S.: XML Topic Maps: Creating and Using Topic Maps for the Web. Addi-
son Wesley, Reading (2002)

4. Rath, H.: The Topic Maps Handbook. In: Empolis GmbH, Gutersloh, Germany (2003)
5. Ruiz, J., Mintzer, M.J., Leipzig, R.M.: The Impact of E-Learning in Medical Education.

Academic Medicine 81(3) (2006)
6. Smith, J.R.: Integrated Spatial and Feature Image Systems: Retrieval, Compression and

Analysis. Ph.D. thesis, Graduate School of Arts and Sciences, Columbia University (1997)
7. Stanescu, L., Mihaescu, C., Burdescu, D., Georgescu, E., Florea, L.: An Improved Platform

for Medical E-learning. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS,
vol. 4823, pp. 392–403. Springer, Heidelberg (2008)

8. Stanescu, L., Burdescu, D., Ion, A., Panus, A.: An Original e-testing Method for Medi-
cal e-learning. In: 8th IEEE International Conference on Advanced Learning Technologies
(ICALT), Santander, Spain (2008)

9. Stanescu, L., Burdescu, D., Ion, A., Panus, A.: Imagistic Database for Medical E-learning.
In: 21st IEEE International Symposium on Computer-Based Medical Systems (CBMS), Jy-
vaskyla, Finland (2008)

10. TopicMaps. Org, ��������������	����������

http://www.nlm.nih.gov/mesh/008/MeSHtree.C.html
http://www.topicmaps.org/

Author Index

Abelha, António 35
Analide, Cesar 35
Aversa, Rocco 187

Bădică, Amelia 45
Bădică, Costin 45
Bednárek, David 55
Bein, Doina 65, 227
Bela, Genge 245
Budimac, Zoran 287
Burdescu, Dan 305

Camacho, David 167
Carchiolo, Vincenza 75
Coffey, Tom 239
Corcho, Óscar 167
Cowling, Tony 157

Dawson, Anthony 105
Di Martino, Beniamino 187
Diaconescu, Ion-Mircea 251
Dědek, Jan 85
Dimopoulos, Konstantinos 157
Dojen, Reiner 239
Dokulil, Jǐŕı 207
Dvořáková, Jana 95

Eleftherakis, George 157

Fr ↪ackowiak, Grzegorz 11

Ganzha, Maria 11, 177
Giurca, Adrian 251
Griffiths, Nathan 105
Groza, Adrian 137

Guţuleac, Emilian 269
Gyorodi, Cornelia 239

Han, Yo-Sub 11
Hartung, Michael 115
Herre, Heinrich 115

Ion, Anca 305
Ivanović, Mirjana 287
Ivask, Eero 127

Jhumka, Arshad 105
Juhász, Sándor 257
Jurcut, Anca 239

Kakugawa, Hirotsugu 217
Kamei, Sayaka 217
Katayama, Yoshiaki 217
Kim, Jae Kwan 11
Krebs, Kathleen 197

Leţia, Ioan Alfred 137
Lee, Jihye 11
Locatelli, Marco P. 263
Loebe, Frank 115
Longheu, Alessandro 75
Loregian, Marco 263

Machado, José 35
Malgeri, Michele 75
Mangioni, Giuseppe 75
Masuzawa, Toshimitsu 217, 227
Mega, Cataldo 197
Mihai, Gabriel 305
Mitschang, Bernhard 197

312 Author Index

Mlýnková, Irena 207
Mocanu, Mihai 269
Montresor, Alberto 3
Morales, Linda 227
Moscato, Francesco 187
Motta, Enrico 275
Myers, Richard 105

Nagy, Miklos 275
Neves, José 35

Ooshita, Fukuhito 217
Oszust, Mariusz 147

Paprzycki, Marcin 11, 177
Paraschiv, Daniel 281
Park, Myon Woong 11
Pascalau, Emilian 251
Paunovski, Ognen 157
Pešović, Dragoslav 287
Piroska, Haller 245

Raghavendra, Srinivas 281
Rahm, Erhard 115
Raik, Jaan 127
Ratoi, Ovidiu 245
Rhee, Sang Keun 11
Rico, Mariano 167

Ritter, Norbert 197
Rosaci, Domenico 293, 299

Sarné, Giuseppe M.L. 293, 299
Sohn, Young Tae 11
Stănescu, Liana 305
Stadnik, Jakub 177
Stoica, Cosmin 305
Sudborough, I. Hal 227
Szymczak, Micha�l 11

Ubar, Raimund 127

Vargas-Vera, Maria 275
Vasiliu, Laurentiu 281
Venticinque, Salvatore 187
Viroli, Mirko 23
Vojtáš, Peter 85

Wagner, Frank 197
Wagner, Gerd 251
Wojnar, Aleš 207
Wysocki, Marian 147

Yamauchi, Yukiko 217, 227

Zambonelli, Franco 23
Zavoral, Filip 95
Zheng, S.Q. 65

	Title Page
	Preface
	Organization
	Contents
	Part I Invited Papers
	Intelligent Gossip
	Introduction to Gossip
	Gossip Lego: Fundamental Bricks
	Peer Sampling
	Decentralized Aggregation
	Load Balancing
	Slicing
	Topology Maintenance

	Towards Intelligent Gossip
	Particle Swarm Optimization
	Intelligent Heuristics

	References

	Infrastructure for Ontological Resource Matching in a Virtual Organization
	Introduction
	Defining Matching
	Grant Announcement-Based Matching Example

	Matching Request Processing
	Synchronous Matching Request Processing
	Asynchronous Matching Request Processing

	System Building Blocks
	Relevance Calculation Engine
	GIS Sub-system

	Concluding Remarks
	References

	Architecture and Metaphors for Eternally Adaptive Service Ecosystems
	Motivations
	A Reference Architecture for Eternally Adaptive Service Ecosystems
	Survey and Analysis of Possible Approaches
	Metaphors
	Space, Time, and Control

	Concluding Remarks
	References

	Part II Regular Papers
	An Agent Based Approach to the Selection Dilemma in CBR
	Introduction
	The Problem
	The Past
	The Future

	Conclusions
	References

	Modeling Interactions in Agent-Based English Auctions with Matchmaking Capabilities
	Introduction
	Background
	Overview of FSP
	Agent Negotiation Model
	Matchmakers

	FSP Model of Agent Negotiation with Matchmaking
	Negotiation Structure
	Negotiation Host
	Negotiation Server Host
	Buyer and Seller Roles
	Matchmaker Role
	Negotiation System

	Conclusions and Future Work
	References

	Output-Driven XQuery Evaluation
	Introduction
	Reversed Evaluation
	Mathematical Model
	Conclusion
	References

	Approximating All-to-All Broadcast in Wireless Networks
	Introduction
	Related Work
	Models
	Approximation Algorithm for All-to-All Broadcast
	Proofs
	Conclusion
	References

	Trusting Evaluation by Social Reputation
	Introduction
	Scenario
	Trust Evaluation: Algorithms and Results
	Source Centric Metric
	Searching for Judges

	Related Work
	Conclusions
	References

	Linguistic Extraction for Semantic Annotation
	Introduction
	Chain of Tools for Extraction and Annotation
	PDT Linguistic Tools for Automatic Linguistic Annotation of Texts
	The Linguistic Extraction - Learning a Query
	Extraction Method
	Query Learning Procedure

	Conclusion
	References

	Xord: An Implementation Framework for Efficient XSLT Processing
	Introduction
	Formal Base
	SSXT Algorithm
	Simple XSLT Transformations
	Simple Streaming XML Transducer
	Algorithm

	Implementation and Evaluation
	Conclusion
	References

	A Simple Trust model for On-Demand Routing in Mobile Ad-Hoc Networks
	Introduction
	Background
	Routing Protocols
	Dependable Routing
	Trust Models

	The Proposed Model: Simple Trusted AODV
	Network Model
	Attack Model
	Trust Model — Simple Trusted AODV (ST-AODV)

	Simulation and Results
	Conclusions and Summary
	References

	A Platform for Collaborative Management of Semantic Grid Metadata
	Introduction
	Models of the Platform
	Content Types
	Categories

	Sample Application – The D-Grid Ontology
	Usability Features
	Content Visualization
	Search and Navigation Facilities
	Creation and Editing of Content

	Implementation
	Related Work
	Summary and Future Work
	References

	Distributed Approach for Genetic Test Generation in the Field of Digital Electronics
	Introduction
	General Concept
	Implementation
	Workflow with Distributed Computing
	Genetic Test Generation
	Task Partitioning
	Task Allocation
	Experimental Results
	Conclusions
	References

	A Planning-Based Approach for Enacting World Wide Argument Web
	Introduction
	WWAW as a Pragmatic Web Component
	Extending AIF Ontology with Context
	Argumentation Schemes as Protocol
	Enacting AIF Ontology as Concept Maps

	Formal Model of Argumentation Schemes
	Interleaving Planning with Arguing
	Implementation Issues

	Estimated Impact
	Related Work and Conclusions
	References

	A Distributed Immune Algorithm for Solving Optimization Problems
	Introduction
	The New Algorithm
	Evaluation of the Algorithm
	Finding Global Optima of Multimodal Functions
	TSP

	Conclusion and Further Work
	References

	Evaluation of Selective Distributed Discovery within Distributed Bio-active Agent Community
	Introduction
	Bio-Networking and Distributed Discovery
	Simulation Model
	Types of Relationships in the Overlay Network
	Distributed Discovery in the Simulation Model

	Simulation Conditions and Evaluation
	Results, Analysis and Discussion
	Asexual Reproduction in Duplex and Simplex Networks
	Sexual Reproduction in Duplex and Simplex Networks

	Conclusions and Future Work
	References

	VPOET: Using a Distributed Collaborative Platform for Semantic Web Applications
	Introduction
	Distributed Methodology for Semantic Cooperative-Based Web Applications
	Designing a Platform Based in Contribution for Semantic Applications Developers
	Applying the Architectural Aspects to Real Applications

	Using VPOET
	Using the HTTP Channel in VPOET
	Matching the User Profile and the VPOET Semantic Templates
	Conclusions and Future Work
	References

	Are Many Heads Better Than One—On Combining Information from Multiple Internet Sources
	Introduction
	System Setup
	Common Algorithms

	Three Main Algorithms
	Game Theory
	Auction-Based Approach
	Consensus Method

	Initial Experimental Results
	Concluding Remarks
	References

	Formal Modeling and Verification of Real-Time Multi-Agent Systems: The REMM Framework
	Motivation
	An Overview of the REMM Framework
	Real-Time Agents Modeling Language: RT-AML
	The Design and Verification Methodology
	Modeling Phase
	Validation Phase
	Translation Phase
	Run-Time Phase
	The REMM Framework

	The GameBot Example
	Summary and Conclusion
	References

	Email Archiving and Discovery as a Service
	Introduction
	Related Work
	Email Archiving and Discovery
	Use Cases
	Functional EAD Requirements
	Non-functional EAD Requirements

	Design and Engineering Issues
	Ingestion Service
	Content Service
	Catalog

	Design Evaluation
	Architecture
	Measurements

	Conclusion and Outlook
	References

	Similarity of DTDs Based on Edit Distance and Semantics
	Introduction
	Related Work
	Proposed Algorithm
	DTD Tree Construction
	Tree Edit Operations
	Costs of Inserting and Deleting Trees
	Computing Edit Distance
	Complexity

	Experiments
	Conclusion
	References

	Timer-Based Composition of Fault-Containing Self-stabilizing Protocols
	Introduction
	Preliminary
	The Composition Framework
	Specification of the Local Neighborhood Synchronizer
	The Framework FC-LNS
	Local Neighborhood Synchronizer

	Conclusion
	References

	Calibrating an Embedded Protocol on an Asynchronous System
	Introduction
	Models
	Calibrating the Network
	Proof of Correctness
	Conclusion
	References

	Part III Short Papers
	On Establishing and Fixing a Parallel Session Attack in a Security Protocol
	Introduction
	Attacks Against Security Protocols
	The Wide-Mouthed Frog Protocol
	A Replay Attack on the Wide-Mouthed Frog Protocol
	A Multiplicity Attack on the Wide-Mouthed Frog Protocol
	Lowe’s Modified Wide-Mouthed Frog Protocol

	A New Attack on Lowe’s Modified Protocol
	Fixing the Flaw

	Conclusion
	References

	Constructing Security Protocol Specifications for Web Services
	Introduction
	Security Protocol Specifications
	Ontology Model and Semantic Annotations
	Related Work
	Conclusions and Future Research
	References

	On the Foundations of Web-Based Registries for Business Rules
	Introduction and Motivation
	The Registry Entry Information Model
	A Business Ruleset Example

	Querying the Registry
	Conclusion and Future Work
	References

	Large-Scale Data Dictionaries Based on Hash Tables
	Introduction
	Related Works
	Comparing the Dierent Approaches
	Comparison of Methods
	Conclusion
	References

	Undo in Context-Aware Collaborative Ubiquitous-Computing Environments
	Introduction
	Undo in Context-Aware UbiComp Environments
	Issues with Cooperating Entities
	History as a Coordination Artifact
	Context-Aware Undo
	Active Coordination Artifacts as Carriers of Undo Policies

	Conclusion
	References

	Understanding Distributed Program Behavior Using a Multicast Communication Scheme
	Introduction
	A Distributed Model of Execution
	Collective Logical Time
	Collective Work Domains
	Concluding Remarks
	References

	Multi-agent Conflict Resolution with Trust for Ontology Mapping
	Introduction
	Problem Description
	Trust Management for Belief Combination
	Fuzzy Voting Model

	Related Work
	Conclusion
	References

	Algorithmic Trading on an Artificial Stock Market
	Introduction
	Related Work
	Model Framework of Artificial Market with Algorithmic Trading
	Agent Types

	Results and Discussion
	Conclusions and Further Work
	References

	Towards a Visual Definition of a Process in a Distributed Environment
	Introduction
	System Architecture
	Workers
	Worker Hosts

	Execution Contexts
	Participant Specification
	Application Declaration
	Data Fields
	Itinerary
	Transition Restrictions

	XPDL Compiler
	Related Work
	Concluding Remarks
	References

	A Multi-agent Recommender System for Supporting Device Adaptivity in E-Commerce
	Introduction
	The ARSEC Architecture
	The Device Agent
	The Customer Agent
	The Counsellor Agent and the Seller Agent

	Experiments and Conclusions
	References

	Dynamically Computing Reputation of Recommender Agents with Learning Capabilities
	Introduction
	The EVA Framework
	Agent Reputation in an Evolutionary Environment
	Experimental Evaluation and Conclusions
	References

	Topic Map for Medical E-Learning
	Introduction
	Topic Maps
	Building and Populating the Topic Map
	Topic Map View

	Using the Topic Map for Querying the Medical Imagistic Database
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

