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Preface

This volume gathers a number of selected contributions from the XIX Sitges
Conference on “Jamming, Yielding, and Irreversible Deformation in Con-
densed Matter”, held at Sitges (Barcelona, Spain) from 14–18 June, 2004.
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“state of the art”, and of the recent developments, in the fields of material
yield and irreversible deformation in different physical systems, which are of
great interest within the realm of Condensed Matter Physics.

The Conference was sponsored by several institutions that generously
provided financial support: Ministerio de Educación y Ciencia of the Span-
ish Government, AGAUR of the Generalitat de Catalunya, Universitat de
Barcelona, and the Centre Especial de Recerca (CER) F́ısica de Sistemes
Complexos. As in former editions of the Conference, the city of Sitges allowed
us to use the beautiful Palau Maricel as the lecture hall. We thank them for
their kind hospitality. We are also very grateful to all those who collaborated
in organizing the event: M. Naspreda, A. Pérez-Madrid, R. Pastor-Satorras,
and S. Zapperi.

Finally, we wish to express our gratitude to all the speakers and partici-
pants in the Conference, who contributed with high scientific level presenta-
tions, and created a very pleasant atmosphere.

Barcelona M.-Carmen Miguel
April 2005 Miguel Rub́ı
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Università di Napoli “Federico II”
Dipartimento di Fisica
INFM
Coherentia and Unità di Napoli
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Institute of Physics
and
International Center of Condensed
Matter Physics
CP 04513, 70919-970, Braśılia-DF
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Introduction

A general jamming scenario has been recently proposed to understand the
nonequilibrium behavior of a broad class of amorphous materials as diverse
as colloidal suspensions, emulsions, foams, gels, polymeric melts, supercooled
liquids, biological tissues, or granular matter which share common features
near the so-called jamming transition. The dynamics of this wide class of
physical systems is governed by the presence of kinematical constraints, in-
duced by both interactions and geometry, which may be able to suppress their
temporal relaxation and thus their ability to explore the space of configura-
tions. On the other hand, they flow like a viscous fluid above the so-called
yield stress value. Shear yielding is thus another feature they have in common,
together with other characteristics of their intriguing rheology.

Under stress conditions, not only amorphous materials but also crys-
talline solids are able to display jamming and shear yielding, due to the
interactions and spatial arrangement of their linear topological defects. The
collective dynamics of these defects, known as dislocations, is responsible for
the irreversible or plastic deformation of most crystals, including ordered self-
assembled structures formed by various materials like synthetic nanocrystals,
magnetic colloids, charged particles in Coulomb crystals, proteins, or vortices
in type II superconductors. Dislocations are at the origin of important phe-
nomena in crystalline materials such as strain hardening or fatigue. Moreover,
the slow and heterogeneous dynamics, the time laws of creep, and the stress-
strain relations observed in some plastically deforming crystals also resemble
the time-dependent rheology and flow curves reported for soft amorphous
materials.

More generally, elastic manifolds driven by an external force can also un-
dergo a dynamic phase transition from a blocked to a moving phase due to
the presence of quenched disorder. This general process is usually referred to
as depinning transition. If pinning forces are sufficiently strong, topological
defects proliferate disrupting the topological order of the manifold and giving
rise to plastic flow. The current theoretical understanding of plastic depinning
and plastic flow under these circumstances is by no means complete. Never-
theless, some of the characteristic features of this nonequilibrium transition,
for instance, scaling properties, slow time relaxation, and non-trivial steady-
state force-velocity curves, resemble those observed in the creep dynamics
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around the jamming threshold, despite the absence of quenched disorder in
the latter case.

Motivated by the previous considerations, in the XIX Sitges Conference
we gathered several leading experts in the fields of jamming, irreversible de-
formation, and flow in Condensed Matter Physics. This book contains a num-
ber of selected contributions that will give the reader a general overview of
the most recent developments in the field. These contributions emphasize the
similarities and differences of these kinetic processes in a diversity of physi-
cal systems, which allows to explore the jamming scenario in a much broader
context to favor the interchange and cross-fertilization of ideas. We hope that
this book will represent a comprehensive introduction to this emerging field
and a useful tool towards the final aim of deepen the understanding of its
open questions.



Yielding and Jamming of Dense Suspensions

M.E. Cates

School of Physics, University of Edinburgh, JCMB King’s Buildings,
Mayfield Road, Edinburgh EH9 3JZ, Scotland

Recent progress in the understanding of yielding and jamming of colloids,
based on extensions of the mode coupling theory (MCT) of glasses, is re-
viewed. This includes schematic extensions to shear-thickening fluids based
on the ad-hoc introduction of a stress-dependent vertex in MCT. The pos-
sible distinction between dynamic and static yield stress, and its implica-
tions for shear-banding and other instabilities, is considered. Finally, what
we know about systems where steady stress leads to unsteady flow or vice
versa (“rheochaos”) is briefly summarised.

1 Introduction

The flow behaviour of very dense suspensions can, if the flow is steady, be
characterized by the so-called flow curve, σ(γ̇) which plots the shear stress σ
as a function of shear rate γ̇. (We assume a simple shearing flow with fluid
velocity u(r) = γ̇yx̂ in a cartesian coordinate system (x, y, z); z is the neutral
or “vorticity” direction, and σ denotes the shear stress σxy = σyx.) Note that
normal stresses can also be present [1, 2]; we do not discuss these here. Nor
do we discuss the fluid response at finite frequency. But at the end of the
paper (Sect. 6) we do consider materials where steady shear stress leads to
unsteady shear rate or vice versa.

A Newtonian fluid has the linear flow curve σ = ηγ̇ with η its viscosity.
More generally η is defined as the limiting value of the ratio σ/γ̇ as γ̇ → 0.
Upward curvature of the flow curve is called shear thickening, downward cur-
vature, shear thinning. If a yield stress σY is present, the stress σ tends to a
finite limit σY as γ̇ → 0; the viscosity η is then divergent. However, divergent
viscosity does not imply a yield stress; counter-examples are “power-law flu-
ids” with σ ∼ γ̇p with 0 < p < 1. Below we will encounter flow curves that
are nonmonotonic; these require special consideration (Sect. 4).

If a fluid is nonergodic, its properties can be age-dependent. However,
there are good reasons to believe, in dense suspensions with relatively simple
interactions at least, that nonergodicity is possible only for γ̇ = 0. Explicit
consideration of aging effects has been given, for a simple model of “soft glassy
materials” (foams, dense emulsions etc.) which confirms this statement [3,4]
(as does related work on spin-glass models, [5]). That model shows a range of

M.E. Cates: Yielding and Jamming of Dense Suspensions, Lect. Notes Phys. 688, 3–21 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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interesting flow behaviour, some of which might be useful in describing dense
colloidal suspensions; however, we review here a different, complementary,
approach [6–10]. This is based on mode coupling theory (MCT) and is limited
in scope to address the steady state flow curve: it cannot, as yet, address either
ageing or time-dependent flows. Care must be taken in such an approach when
defining the yield stress σY . We return to this in Sect. 5.

2 Arrest in Colloidal Fluids

Colloidal fluids can be studied by light scattering [11,12]. A key observable is
the dynamic structure factor S(q, t1 − t2) = 〈ρ(q, t1)ρ(−q, t2)〉/N which in-
cludes the static one, S(q) = S(q, 0). Here ρ(r, t) =

∑
i δ(ri(t) − r) − N/V ;

this is the real space particle density (with the mean value subtracted), and
ρ(q, t) is its Fourier transform. For particles of radius a with short-range
repulsions, S(q) exhibits a peak at a value q∗ with q∗a = O(1). The dy-
namic structure factor S(q, t), at any q, decays monotonically from S(q) as
t increases. In an ergodic colloidal fluid, S(q, t) decays to zero eventually:
all particles can move, and the density fluctuations have a finite correlation
time. In an arrested state, which is nonergodic, this is not true. Instead the
limit S(q,∞)/S(q) = f(q) defines the nonergodicity parameter. The pres-
ence of nonzero f(q) signifies frozen-in density fluctuations. Although f(q) is
strongly wavevector-dependent, it is common to quote only f(q∗) [13].

The above formulas assume time-translation invariance; nonergodic sys-
tems can violate this, in which case S(q, t1 − t2) as defined above must be
written S(q, t1, t2) with two time arguments. Also note that, in the real world,
the idea that S(q, t) remains finite forever could be an idealisation. However,
it is close enough to reality, on the experimental timescales relevant for dense
colloids, to be useful: the idealisation of a glass transition is one we accept in
this paper. The same applies to (closely related) concepts such as the yield
stress [14]; it is possible that in real fluids this represents a sharp kink rather
than an actual discontinuity in the flow curve. Note that the conceptual va-
lidity of these idealisations is less secure for colloids with strong short range
attractions than for purely hard-sphere colloids [15].

In many colloidal materials the effective interparticle interaction u(r)
comprises a hard sphere repulsion, operative at separation 2a, perhaps com-
bined with an attraction at larger distance. (For simplicity one can imagine a
square well potential of depth ε and range aδ, with δ < 1 typically.) Colloidal
fluids of this type are found to undergo nonergodicity transitions into two
different broad classes of arrested nonequilibrium states. One is the colloidal
glass, in which arrest is caused by the imprisonment of each particle in a cage
of neighbours. This occurs even for ε = 0 (i.e. hard spheres) at volume frac-
tions above about φ ≡ 4πa3N/3V � 0.58. The nonergodicity parameter for
the colloidal glass obeys f(q∗) � 0.8. The second arrested state is called the
colloidal gel. Unlike the repulsive glass, the arrest here is driven by attractive
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interactions, resulting in a bonded, network-type structure. Such gels can
be unambiguously found, for short range attractions, whenever βε>∼ 5 − 10.
(Here β ≡ 1/kBT .) Hence it is not necessary that the local bonds are in-
dividually irreversible (this happens, effectively, at βε>∼ 15 − 20); and when
they are not, the arrest is a collective, not just a local, phenomenon. It is
found experimentally that for colloidal gels, f(q∗)>∼ 0.9, which is distinctly
different from the colloidal glass.

2.1 Mode Coupling Theory (MCT)

One widely used form of the theory [16] is based on projection methods.
These have technical advantages and are used in our own work on MCT
under shear [6,8]. However, to many physicists these methods are somewhat
unfamiliar. Fortunately, at least for the static case and in a stripped-down
version (see e.g. [17, 18]) the resulting equations can alternatively be viewed
as a fairly standard one-loop selfconsistent approximation to a dynamical
theory for the particle density field. We present this approach briefly here.

We take β = 1, bare particle diffusivities D0 = 1, and start from the
overdamped Langevin equations ṙi = Fi+fi for independent particles subject
to external forces Fi and random forces fi. One proceeds by a standard route
to a Smoluchowski equation Ψ̇ = ΩΨ for the N -particle distribution function
Ψ , with evolution operator Ω =

∑
i ∇i.(∇i − Fi). Now take the forces Fi to

originate (via Fi = −∇iH) from an interaction Hamiltonian

H = −1
2

∫

d3rd3r′ρ(r)ρ(r′)c(|r − r′|) (1)

where Nc(q) = V [1−S(q)−1]. This is a harmonic expansion in density fluctu-
ations; c(q) is the direct correlation function, and this form ensures that S(q)
is recovered in equilibrium. We neglect solvent-mediated dynamic forces (hy-
drodynamic couplings). In principle these couplings mean that the noise in
the Langevin equation should be correlated between particles, in contrast to
the independent white noise assumed here. In addition we neglect anharmonic
terms in H; to regain the correct higher order density correlators (beyond the
two point correlator S(q)) in equilibrium, these terms would have to be put
back. (Our ad-hoc introduction of a stress-dependent vertex in Sect. 4 below
can be viewed as a poor man’s way of dealing with such omitted terms, in
their effect on arrest.)

From the Smoluchowski equation (or the corresponding nonlinear
Langevin equation for the density ρ(r) [7, 17]), one can derive a hierarchy
of equations of motion for correlators such as S(q, t), more conveniently ex-
pressed via Φ(q, t) ≡ S(q, t)/S(q). Factoring arbitrarily the four-point cor-
relators that arise in this hierarchy into products of two Φ’s, one obtains a
closed equation of motion for the two point correlator

Φ̇(q, t) + Γ (q)
[

Φ(q, t) +
∫ t

0

m(q, t − t′)Φ̇(q, t′)dt′
]

= 0 (2)
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where Γ (q) = q2/S(q) is an initial decay rate, and the memory function obeys

m(q, t) =
∑

k

Vq,kΦ(k, t)Φ(k − q, t) (3)

with the vertex

Vq,k =
N

2V 2q4
S(q)S(k)S(|k − q|)[q.kc(k) + q.(k − q)c(|k − q|)]2 (4)

Equations 2–4 are slightly simpler than the ones used in molecular glasses
because of the justified neglect of inertial terms. They fully specify MCT as
it is usually applied in colloidal systems [16].

The MCT equations exhibit a bifurcation that corresponds to a sudden
arrest transition, upon smooth variation of either the density φ or any inter-
action parameters that control c(q) (equivalently, S(q)). Here the nonergod-
icity parameters f(q), suddenly jump (for all q at once) from zero to nonzero
values. Near this (on the ergodic side, which is always the direction MCT ap-
proaches from), Φ(q, t) develops interesting behaviour. Viewed as a function
of time, it decays onto a plateau of height f(q), stays there for a long time,
and then finally decays again at very late times. The two decays are called
β and α respectively. Upon crossing the bifurcation, their relaxation times
diverge smoothly with the parameters; hence f(q) ≡ S(q,∞)/S(q) jumps
discontinuously from zero to a finite value.

3 Yield and Flow of Glasses: Shear Thinning

3.1 A Microscopic Approach

In [6], a theory is given, along MCT lines, of colloidal suspensions under
flow. The work studies the effect of imposed shear flow either on a glass,
or on a fluid phase very near the glass transition. Although intended ini-
tially for repulsive glasses, it also offers interesting predictions for attraction-
driven ones [19]; see Sect. 3.2 below. Note also that a closely related theory
has been offered by Miyazaki and Reichman [20]. However, unlike the work
of [6], which uses a projection operator methodology, [20] assumes that a
fluctuation-dissipation relation between correlators and response functions,
valid in equilibrium and used en-route to deriving (2), continues to hold un-
der shear. The results have qualitative similarities to [6] but differ in many
important details.

Close to a glass transition, the bare diffusion time τ0 = a2/D0 is small
compared to the “renormalized” one τ = a2/D, which in fact diverges (en-
slaved to the α relaxation time) at the transition. For γ̇τ0 
 1 ≤ γ̇τ , the
details of the local dynamics should be inessential and universal features re-
lated to glass formation should dominate. Note, however, that by continuing
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to use a quadratic H (1), we will assume that, even under shear, the system
remains “close to equilibrium” in the sense that the density fluctuations that
build up remain small enough for a harmonic approximation to be useful.
This may well be inadequate for hard spheres, and its breakdown could be
linked to the physics of jamming (Sect. 4).

We again take β = 1, D0 = 1, and start from the Langevin equations
ṙi = u+Fi + fi, where an imposed flow velocity u(r) = γ̇yx̂ has been added.
The Smoluchowski equation Ψ̇ = ΩΨ is unchanged but the evolution operator
is now Ω =

∑
i ∇i.(∇i − Fi − u(ri)). (For related earlier work see [21, 22].)

So far, the adaption to deal with shearing is fairly trivial. The next stages
are not. We assume an initial equilibrium state with Ψ(t = 0) ∝ exp[−H],
and switch on shearing at t = 0+. We define an advected correlator

Φ(q, t) = 〈ρ(q, 0)ρ(−q(t), t)〉/S(q)N (5)

where q(t) = (qx, qy + qxγ̇t, qz). This definition subtracts out the trivial part
of the advection, which merely transports density fluctuations from place to
place. The nontrivial part comes from the effect of this transport on their
time evolution; the main effect (see e.g. [22]) is to kill off fluctuations by
moving their wavenumbers away from q∗ where restoring forces are weakest.
Hence the fluctuations feel a stronger restoring force coming from H, and
decay away more strongly. This feeds back, through the nonlinear term, onto
the other fluctuations, including ones with q along the neutral direction, z,
for which the trivial advection is absent.

There follow a series of MCT-like manipulations which differ from those
of the standard approach because they explicitly deal with the switching on
of the flow at t = 0+. We integrate through the transient response to obtain
the steady state correlators, under shear, as t → ∞. (There is no integration
through transients in standard MCT; one works directly with steady-state
quantities.) Despite all this, the structure of the resulting equations is re-
markably similar to (2, 3) [6]:

Φ̇(q, t) + Γ (q, t)
[

Φ(q, t) +
∫ t

0

m(q, t, t′)Φ̇(q, t′)dt′
]

= 0 . (6)

(6) involves a time dependent, anisotropic “initial decay rate”:

Γ (q, t)S(q) = q2 + qxqyγ̇t + (qxqyγ̇t + q2
xγ̇2t2)S(q) − qxqyγ̇S′(q)/q . (7)

The memory kernel is no longer a function of the time interval t − t′ but
depends on both arguments separately

m(q, t, t′) =
∑

k

V (q,k, t, t′)Φ(k, t − t′)Φ(k − q, t − t′) (8)

through a time-dependent vertex V which was published in [9] and whose
detailed derivation will be given in [23]. Using a nonequilibrium Kubo-type



8 M.E. Cates

relationship [6] one can also obtain an expression for the steady state viscosity
η = σ(γ̇)/γ̇ where σ(γ̇) is the shear stress as a function of shear rate. The
viscosity is expressed as an integral

η =
∫ ∞

0

dt
∑

k

Vη(k, t)Φ2(k, t) (9)

where the function Vη may be found in [6].
The calculations reviewed above give some useful insights. First, as

promised earlier, even an infinitesimal steady shear rate γ̇ restores ergodicity
for all wavevectors (including ones that do not undergo direct advection). It
is the absence of ergodicity that normally prevents MCT-like theories being
used inside the glass phase, at T < Tg or φ > φg. Here we may use the theory
in that region, so long as the shear rate is finite. This gives a new approach
to the static glass in which a small shear rate is used as a regularising pa-
rameter. However, it also means we have to be careful in interpreting flow
curves. In particular, in this approach, the yield stress σY = σ(γ̇ → 0+) is
defined dynamically: it is the limiting stress found in a series of measure-
ments at successively smaller flow rate γ̇, where each of these measurements
has been allowed to achieve steady state after decay of all transients. The
latter requirement may not be practically achievable since the equilibration
time could diverge at small γ̇: certainly one would expect to have to wait at
least for times t such that γ̇t >∼ 1. But unless the flow curve has unexpected
structure at small shear rates, the required extrapolation can presumably be
made. Note that even if all this is true, alternative definitions of the yield
stress are possible; we return to this issue in Sect. 5.

In the liquid phase (φ < φg) the flow curve σ(γ̇) that results from these
calculations shows shear thinning at γ̇τ >∼ 1, which is when the shearing be-
comes significant on the timescale of the slow relaxations. This is basically as
expected. Less obviously, throughout the glass, one finds that σY is nonzero,
whereas the viscosity is finite throughout the liquid phase. There is no in-
termediate power law fluid regime, in contrast to trap-based models of soft
glasses [3]. At the glass transition φ = φg, the yield stress jumps discontinu-
ously from zero to a nonzero value, σc

Y . The existence of a yield stress seems
to be in line with most experimental data on the flow of colloidal glasses [24].

To calculate actual values for quantities like σc
Y , one must invoke further

technical approximations to the sheared MCT calculation, beyond those al-
ready enumerated above. The best current estimates come from the ISHSM
or “isotropically sheared hard sphere model” [8] in which the effect of
shear advection on density fluctuations is isotropised (whereas in reality it
should depend strongly on the direction in q space). This gives, for example,
σc

Y = 0.75kBT/a3 for hard spheres of radius a. The experimental data [24]
suggests a value perhaps twice as high as this; however, the theory predicts a
very rapid rise in σY beyond the transition so this could be the result of the
experiments lying just a percent or so, in volume fraction, beyond the true
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glass point. ISHSM predicts a power law exponent 0.152 for the growth of
σ−σY at small γ̇, and a square root growth of σY within the glass phase [8].
These two predictions are also closely mimicked by an even simpler schematic
model called F γ̇

12, as outlined in Sect. 3.3. Note the shape of the flow curve in
these models: in the fluid, the curve always has downward curvature (shear
thinning), at least for small and intermediate γ̇. In the glass, the curve is
similar, but offset vertically by σY . This still corresponds to shear thinning.
In neither case is the curve nonmonotonic.

3.2 Attractive Interactions

The ISHSM refers to hard-sphere colloids only. However, since the interaction
between colloids enters only via the static structure factor S(q), the same
methods can be used for attracting colloids also. It is simplest to combine
these with a virial-type analysis of the adhesive hard sphere system (AHSS)
[25]; the results have been presented in [19] and are reviewed briefly here.

The scaling of the critical yield stress σc
Y with the attraction range δ can,

for small δ, be estimated from a virial expansion of Sq for the AHSS: one finds
1−S−1

q → 6Aφδ sin(2qa)/(qa), where A = exp ε−1. Inserting this expression
into the ISHSM formulae [6, 19], one can take the low density limit φ → 0
and A → ∞ with Γv = 6φA2δ/π2 held fixed. This leads to the asymptotic
memory kernel [19]:

mq̃(t) →
Γv

2q̃2

∫ k̃>

d3k̃

(
q̃ · k̃
q̃k̃

)2

cos

(
k̃(t) − k̃

δ/2

)

Φk̃(t)Φ|q̃−k̃| . (10)

The corresponding expression for the steady state shear stress becomes [19]:

σ → γ̇
kBT

a3

φΓv

5δ2

∫ ∞

0

dt

∫ k̃>

0

dk̃ k̃2 cos

(
k̃(t) − k̃

δ/2

)

Φ2
k̃
(t) . (11)

Here, the limit δ → 0 applies, and the rescaled wavectors q̃ = qaδ and a cutoff
k̃> were introduced; choosing k̃> ≈ 3.68 maps the AHSS virial results onto
those of an attractive square well system with range δ [25].

These equations can be closed via (6) [6] for the normalized density cor-
relation functions Φq̃(t) to find the nonlinear rheology close to the arrest
transition (at Γ c

v = 1.42) of attracting colloids. Although the low–φ approx-
imation appears drastic, if shear is switched off in (10), the results for the
arrest line at small δ agree qualitatively with those of [26] up to rather large
φ [25,27]. With shear present, the Φq̃(t) asymptotically obey a “yielding scal-
ing law”, Φq̃(t) → Φ+

q̃ (t̂) with t̂ = t/τ(γ̇) and τ(γ̇) a shear-rate dependent
characteristic time. Making use also of a limiting closure relation [19], the
yield stress σc

Y then follows from inserting Φ+
q̃ (t̂) into (11).

The expressions for the memory kernel and stress, (10, 11), contain a
rapidly oscillating term cos(2(k̃(t) − k̃)/δ), from interference of the particle
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density fluctuations within the narrow region of attraction. Without shear,
constructive interference holds, and this factor is unity; the memory kernels
describe bond-formation, and the correlator stays arrested at its glass value.
Under shear, the advection of wavevectors produces rapid oscillations in this
factor when δ is small. The interference is destroyed, causing a fast decay of
the memory functions. The time scale τ(γ̇) needs to be found self-consistently
[19]; it scales as τ(γ̇) = caδ /|γ̇| where ca is of order unity. In contrast, for
repulsive interactions one has [6, 8] τ(γ̇) = cr/|γ̇| with cr of order unity.

Integrating (11), one obtains (with further constants c′a,r) the scaling
expressions σc

Y = c′a Ga δ for AHSS, which differs by one power of the range
parameter δ from the result, σc

Y = c′r Gr, for hard spheres without attraction.
Here Ga,r are the corresponding shear moduli which, within MCT, have finite
values on arrest, and whose scalings have been discussed elsewhere [25–29].
(For AHSS one has Ga ∼ kTa−3δ−2 whereas Gr � kTa−3 holds for hard
spheres.)

The final scaling result for AHSS is thus σc
Y � Gaδ � kTa−3δ−1. This

dependence of the yield stress on the attraction range leads to interesting
scenarios in systems where both attraction and repulsion-driven arrest can be
observed [30,31]. Interpreting the ratio of yield stress to the elastic modulus
as a yield strain uy = σc

Y /G, the scaling dependence of yield stress on δ
can easily be understood. The yield strain of an attraction-driven glass of
order the relative range of the attraction δ: the solid is shear-melted as soon
as particle bonds are broken. Because the yield strain is much smaller for
a bonded glass than for a caged one, the nonlinear rheology should vary
strongly between these two cases.

3.3 Schematic MCT Models

It has long been known that the key mathematical structure behind (2–4)
can be captured by low-dimensional schematic models in which the full q
dependence is suppressed [16,32]. In other words, one chooses a single mode,
with a representative wavevector around the peak of the static structure
factor, and writes mode coupling equations for this mode treated by itself.
At a phenomenological level, one can capture the physics similarly even with
shearing present (despite the more complicated vectorial structure that in
reality this implies). Specifically one can define [6] the F γ̇

12 model – the sheared
extension of a well known static model, F12 – via

Φ̇(t) + Γ

[

Φ(t) +
∫ t

0

m(t − t′)Φ̇(t′)dt′
]

= 0 (12)

with memory function (schematically incorporating shear)

m(t) = [v1Φ(t) + v2Φ
2(t)]/(1 + γ̇2t2) . (13)

The vertex parameters v1,2 are smooth functions of the volume fraction φ (and
any interactions). To calculate flow curves, etc., one also needs a schematic
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form of (9); here we take the first moment of the correlator to fix the time
scale for stress relaxation (which is, in suitable units, simply the viscosity):

η =
∫ ∞

0

Φ(t)dt (14)

Note that a different choice, e.g. with Φ(t)2 in this equation to closer resemble
(9), would yield quite similar results. This simplest of schematic models gives
very similar results to the ISHSM [8,9].

4 Shear Thickening and Jamming

The calculations described above predict, generically, shear thinning behav-
iour: advection kills fluctuations, reducing the α relaxation time, which causes
the system to flow more easily at higher stresses. However, in some colloidal
systems, the reverse occurs. This is shear thickening, and gives a flow curve
σ(γ̇) with upward curvature. In extreme cases, an essentially vertical por-
tion of the curve is reported [2, 33]. One interpretation of the latter scenario
(called “discontinuous shear thickening”) is that the underlying flow curve
is actually S-shaped. Since any part of the curve with negative slope is me-
chanically unstable (a small increase in the local shear rate would cause an
acceleration with positive feedback). This allows a hysteresis cycle in which,
at least according to the simplest models, discontinuous vertical jumps on
the curve bypass the unstable section (see Fig. 1).

These jumps are analagous to first order phase transitions in thermody-
namics and the corresponding phase-separation is called “shear banding”:
slabs of material, with equal γ̇ but unequal σ are stacked with layer normals
along the neutral (z) direction [34]. (This orientation is called “transverse”
shear banding.) Note that for shear thinning materials shear banding can
also occur, but now with the “normal” orientation, which has slabs of equal
σ and unequal γ̇ stacked along y.

If this viewpoint of discontinuous shear thickening is adopted, there seems
to be nothing to prevent the upper, re-entrant part of the curve from extend-
ing right back to the vertical axis (see Fig. 1) in which case there is zero
steady-state flow within a certain interval of stress. The system has both an
upper and a lower yield stress delimiting this region. (If it is nonergodic at
rest, it could also have a regular yield stress on the lower part of the curve near
the origin – we ignore this here.) This case has been called “full jamming” [4].
Although mostly a theoretical speculation, at least one experimental report
of this kind of behaviour has appeared in the literature recently [35].

4.1 Shear Thickening within MCT

The above discussion suggests that shear thickening and full jamming might
be viewed as a stress-induced glass transition of some sort [1]. If so, it is
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Fig. 1. Three possible flow curves for a shear thickening material. The monotonic
curve corresponds to continuous shear thickening. The remaining two curves are
S-shaped; one expects, on increasing the shear rate, the stress to jump from the
lower to upper branch at (or before) the vertical dashed line shown in each case.
One curve shows the full jamming scenario: the existence of an interval of stress,
here between 0.45 and 0.63, within which the flow rate is zero, even in a system
ergodic at rest (Stress and strain rate units are arbitrary)

natural to ask whether this idea can be accommodated within an MCT-like
approach. Since the analysis of [6] gives only shear thinning, this is far from
obvious. In particular, a stress-induced glass transition would require the
vertex V to “see” the stress; this might require one to go beyond harmonic
order in the density, that is, it might require improvement to (1). Indeed, since
it is thought that jamming arises by the growth of chainlike arrangements
of strong local compressive contacts [1], it is very reasonable to assume that
correlators beyond second order in density should enter.

In [10] we develop a schematic model along the lines of (12–14) to address
shear thickening (with, for simplicity, v2 = 0). This is the F γ̇,σ

1 model

Φ̇(t) + Γ

[

Φ(t) +
∫ t

0

m(t − t′)Φ̇(t′)dt′
]

= 0 (15)

with memory function

m(t) = [v0 + ασ] exp[−γ̇t]Φ(t) (16)

and viscosity η = σ/γ̇ obeying

η =
∫ ∞

0

Φ(t)dt . (17)



Yielding and Jamming of Dense Suspensions 13

The memory function now schematically incorporates both the loss of mem-
ory by shearing and a stress-induced shift of the glass transition. (Without
stress or shear, the latter occurs at v0 = 4.) The choice of an exponential
strain rate dependence is purely for algebraic convenience, whereas the form
in (13) is closer to the one found in the full q-dependent vertex under shear
(see above and [6]). The choice of a linear dependence of the vertex on stress
(rather than the quadratic one that would arise in a Taylor expansion about
the quiescent state) can be viewed as a linearization about a finite stress
chosen to lie close to the full jamming region: this, rather than the behaviour
at very small stresses, is the interesting region of the model. In any case, the
qualitative scenarios that emerge from (15–17) are relatively robust to the
precise details of the model [10,36].

This model results in a “full jamming” scenario as part of a wider range
of rheological behaviour. Figure 2 shows three kinds of thickening behaviour,
dependent on model parameters; v0 is varied close to the quiescent glass
transition, and for the chosen α there is a progression from a monotonic,
continuously shear-thickening curve, via a nonmonotonic S-shaped curve, to
a curve that extends right back to the vertical axis. For the largest values
of the parameter vo, in Fig. 2, there is therefore a range of stress for which
the shear rate returns to zero: there is then no ergodic solution, and the
jammed state is stable. This represents full jamming. Note that if, as seems
likely, α depends on the details of interparticle interactions, then the evolution
between these scenarios does too. This makes sense since one would certainly
expect hard particles to be more “jammable” than soft ones.

The lower and upper endpoints σc1 and σc2 of the stable jammed state
represent distinct jamming transitions. Their critical stresses obey

fc [(vo + ασc) fc − 2] = σc , (18)

where fc is given by the largest solution of fc

1−fc
= (vo + ασc)f2

c . Such tran-
sitions exist provided that both vo and α are sufficiently large. Bertrand
et al. [35] found that, for concentrations below a certain value, their samples
showed ordinary thickening, whilst above this value the shear-induced solid
was seen. The behaviour illustrated in Fig. 2 is reminiscent of this. Note that
the re-fluidisation under increasing stress depends on α: if this is too large
(for a given vo) this refluidisation is not present.

4.2 Dilatancy and Granulation

Several variants of this model, all involving an ad-hoc stress dependence of
the vertex, are possible [36]; the results are broadly similar to those outlined
above.

The absence of refluidisation at large values of the “jammability” para-
meter α has interesting consequences. It is reminiscent of the dilatancy of
dry powders: above a certain packing density (which seems to lie quite close
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Fig. 2. Flow curves for α = 0.95. For the two largest values of vo, for a window
in σ, the relaxation time has diverged. Analytic calculations of the limits of this
window are indicated as horizontal lines near the stress axis. These values of the
stress are σc1 and σc2, as shown here for one of the parameter sets

to 0.58 for spherical particles [37]) these cannot flow without expansion of
the sample. In dense suspensions, expansion is effectively prohibited by the
presence of a fixed volume of solvent; therefore a suspension dense enough
that it cannot flow without dilating will never refluidise, whatever the stress.
(Brownian motion of course complicates the picture but this is included in
the MCT approach.) In practice, we can expect such a suspension to undergo
brittle fracture, in which the material cracks and air ingresses to create new
interfaces with the solvent. (Such effects are clearly not handled within our
schematic model.) The stress required to create large amounts of new surface
is large but not off-scale for colloidal suspensions, and indeed a phenomenon
very like this arises in the industrial process of “granulation”. In this process,
a very dense suspension is converted by shear into discrete granular lumps
which rest on each other under gravity but are essentially surrounded by air.
It is possible that these lumps are themselves examples of full jamming, in
which capillary forces are responsible for supplying the required stress.

It seems reasonable to assume that the jammability parameter α and
the “glassiness” parameter vo are both monotonically increasing functions of
volume fraction φ. However, depending on the exact φ-dependence of each,
various sequences of flow curve can emerge as φ is increased. An appealing
one, which seems in tune with experimental data [35,38,39] is as follows:
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Newtonian → continuous shear thickening → discontinuous shear thick-
ening → full jamming → yielding glass → brittle glass

where a brittle glass will “flow”, at high enough stresses, but only by fracture
or granulation. This avenue will be explored further elsewhere [40].

4.3 Glassy versus Hydrodynamic Thickening

Shear thickening is widely reported (e.g. [2,33,41,42]) and usually attributed
to a buildup of hydrodynamic forces between clusters of particles [43,44]. Our
work suggests that, at least in some systems, this may not be the only mecha-
nism at work. In particular, Fig. 2 admits shear thickening at Peclet numbers
γ̇τ0 ∼ 10−4, rather than values of order unity predicted by most theories of
hydrodynamic clustering. Such theories do not so far appear to offer any nat-
ural explanation of the S shaped flow curve that appears to underly discon-
tinuous shear thickening (see e.g. [45], and references therein). On the other
hand, simulations of dense colloids do predict, for hard spheres in the absence
of Brownian motion, a catastrophic jamming transition. In this transition, a
network of close contacts propagates to infinity at finite strain, creating a
solid [46]. To whatever extent full jamming is actually observed [35, 38], hy-
drodynamic theories cannot explain it. This is because hydrodynamic forces
are dynamical in origin and therefore cannot be responsible for maintaining
a purely static state of arrest. It is conceivable that a limit exists in which
interparticle velocities and separations both vanish at late times in such a
fashion that the resulting forces approach constant values. However, we do
not find this particularly plausible.

Most existing hydrodynamic theories (rather than simulations [46]) of
colloid rheology, by taking no account of the glass transition, predict that the
zero shear viscosity diverges only at random close packing (volume fraction
φ = 0.63) [47]. This appears inconsistent with experimental observations
where the viscosity divergence occurs instead at the colloidal glass transition
(φ = φg = 0.58) [48]. Accordingly it is necessary to develop a new theory,
as outlined in Sect. 3, to describe flow curves at φ > φg. The hypothesis
of the work on colloidal jamming reported here is that the proximity of this
transition also affects flow properties in a window of densities below φg, to the
extent that one should treat hydrodynamic forces as a perturbation (which
we neglect) to the dynamics of collective arrest, rather than vice versa.

5 Static versus Dynamic Yield Stress

Let us now return to an issue raised earlier, which is the definition adopted
above for the yield stress σY . It was emphasised that, within MCT or any
other theory where one approaches the arrest transition from the fluid side,
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the natural definition of σY comes from considering a sequence of steady-
state flows. Each flow has a smaller flow rate γ̇ than the last, and if in the
limit of the sequence, as γ̇ → 0+, the steady-state stress remains finite, then
the limiting stress is the yield stress. It is crucial to note that every state in
the sequence considered is flowing and hence ergodic.

A quite different, static, definition of the yield stress (call this σy) is as
follows. Consider a sample at rest. Allow it to reach thermal equilibrium as
best it can (if it is aging, it may never quite make it). Now switch on a steady
stress σ and see if, after relaxing to a steady state, the material has finite
shear rate γ̇ or not. If not, repeat the whole experiment at a slightly larger
stress and find the largest such value for which there is no steady flow. This
largest value is σy.

The distinction between static and dynamic yield stresses, and the rel-
evance of this to systems undergoing a glass transition, is emphasised by
Berthier [49]. At a qualitative level, the relation between σy and σY is
analagous to that between static and dynamic friction for a solid block on an
inclined plane. Clearly, σy ≥ σY . Interestingly also, although σY is found from
ergodic states and hence not subject to aging, σy could be age-dependent and
might generally be expected to increase with age, assuming that the material
at rest tends to consolidate rather than fall apart.

5.1 Viscosity Bifurcation

If, as the above discussion allows, σy > σY with strict inequality [49, 50]
then some interesting new flow scenarios are permitted. In particular, recall
the flow curve of a yielding glass, as predicted by [6, 8] without any ad-hoc
stress dependence in the vertex, is monotonically increasing. Accordingly,
for a yielding glass one does not expect any form of shear banding to arise.
However, if we allow for a static yield stress σy there is a new branch to the
flow curve, which is a vertical line segment on the γ̇ = 0 axis, between σY and
σy. Exactly this scenario is reported by Varnik et al. in recent simulations
[50]. The resulting composite flow curve is no longer strictly monotonic; it
is possible in principle to have a shear banded state involving coexistence of
a completely static phase (undergoing aging) and a fluidized phase which is
ergodic. To achieve this state in the laboratory one might have to start from
an aged sample and shear, rather than create a system at uniformly high
shear rate and then back off the stress – the latter would, according to the
MCT model for a yielding glass, remain in an ergodic state so long as it was
uniform, and vice versa. Accordingly one might expect extreme bistability of
banded and unbanded flows, in systems where σy > σY .

This could help explain the phenomenon of “viscosity bifurcation”, which
we interpret here as shear-banding in which one band is not flowing (γ̇ = 0).
This phenomenon has been reported in a very wide range of systems [51],
including some for which our glass models, and perhaps those of [3], should
offer a reasonable theoretical description. If one does not allow σy > σY ,
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then the simplest way to explain viscosity bifurcation is to have a flow curve
with a dynamic yield stress σy and a negative slope at γ̇ → 0+, with an up-
turn at higher shear rates [52]. However, our MCT-based models for colloidal
suspensions at high density show no such tendencies. (The scenario is more
plausible for weak, low density gels where a fluffy bonded structure is cre-
ated at rest and destroyed progressively under shear.) Therefore, if viscosity
bifurcation is seen in a dense colloidal suspension, this offers strong evidence
for σy > σY .

6 Rheological Instability and Chaos

Throughout the above discussion we have emphasised the role of the flow
curve σ(γ̇) in describing steady states. However, this curve contains no infor-
mation about transient phenomena. Nor, indeed, does our ability to calculate
such a curve prove that the steady states that it describes are stable. The
commonest form of instability (negative slope) can be resolved by partition-
ing into steady shear bands as described previously. However, in some cases
these bands can be unstable with the interface between them constantly in
motion [53–55]. Moreover, this type of instability, can lead not only to oscil-
lation but to chaos. In complex fluids at effectively zero Reynolds number,
this is sometimes called “rheochaos” to distinguish it from the well stud-
ied hydrodynamic instabilities of Newtonian flows. (The latter are gener-
ally caused by inertial nonlinearity, rather than the constitutive nonlinearity
(stress/strain) that matters here.) Rheochaos is reported experimentally in
several systems [56], including some that are shear-thickening; but so far
there are no quantitative reports in dense colloids. However there are several
reports of highly erratic γ̇(t) at fixed σ or vice versa, e.g. [2, 57].

Recently, rheological instability, leading to rheochaos, has been studied
in a very simple model of a shear-thickening material [54, 58]. This model
is not based on MCT; indeed, we as yet have no machinery for address-
ing unsteady flow within that framework. Remarkably the steady-state flow
curve in this model is monotonic (continuous shear thickening) and yet unsta-
ble [59]. This can be traced to the presence, in the model, of a relaxation time
for a structural parameter that exceeds the relaxation time for stress. (The
slowly relaxing structure could be local colloid concentration, or a textural
property such as chaininess of the bonding network in an attractive system.)
If this slow relaxation is quenched, the flow curve ceases to be monotonic:
a material of fixed internal structure would show discontinuous thickening
and shear banding [58]. Yet the two bands arising would have different his-
tory; their coexistence requires equality of the structural parameter between
bands, and this cannot be maintained at timescales beyond the structural
relaxation. Hence steady unbanded and steady banded flow are both ruled
out. Figure 3 shows the time evolution of the unsteady banded state and
the resulting flow rate at fixed imposed stress for model parameter settings
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Fig. 3. Chaotic shear bands and the resulting erratic strain rate for the shear
thickening model of [58] (see also [54]). In the spacetime plot (left) time is vertical
and space axis (z) is horizontal; the gray scale denotes local stress. (In transverse
shear banding, the constant externally imposed stress on the rheometer place does
not fix the local stress, only the global mean value.) Figure courtesy of A. Aradian

in the chaotic regime. In other parameter ranges simpler, but nonetheless
quite exotic oscillatory behaviours are found [58]. The relevance of rheochaos
to dense colloids largely remains to be explored; however, there is probably
some connection with the observation of aperiodic “stick-slip” type dynamics
around the jamming transition where discontinuous shear thickening sets in
(e.g., [2, 57]).

7 Conclusion

Theoretical developments directly inspired by MCT now offer a promising
framework for calculating the nonlinear flow behaviour of colloidal glasses and
glassy liquids [6]. (Other work on the rheology of glasses [3,5] does not, as yet,
offer quantitative prediction of experimental quantities.) While promising,
many things are missing so far from the approach initiated in [6]: velocity
fluctuations, hydrodynamic forces, anharmonicity in H etc., are all ignored.
The fact that only shear thinning is predicted in this case is excusable.

The schematic work of [10] (see also [36]) on shear thickening suggests
how new physics (beyond two-point correlations) may need to be added to
MCT before the full range of observed colloidal flow behaviour is properly
described. Hydrodynamic interactions, and perhaps velocity fluctuations, are
certainly also important in some aspects of shear thickening though we might
hope that these do not dominate very close to the glass transition where the
longest relaxation time is structural rather than hydrodynamic.

Of course, even for systems at rest, some important physics is missing from
MCT, in particular, activated dynamics (see [9] for a discussion). These allow
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the system to move exponentially slowly despite being in a region of phase
space where, according to MCT, it cannot move at all (see e.g. [18]). Qualita-
tively, stress-induced jamming seems a quite different phenomenon from this;
we can suspect that there are more things missing from MCT than just acti-
vated processes. In particular a more general treatment of anharmonic terms
(or equivalently, a treatment of three-point and higher order correlations)
may be required before one has a fully workable theory of sheared colloidal
glasses.

Inserting an ad-hoc stress dependence of the MCT vertex within a
schematic model, we were able to rationalise a number of jamming phenomena
including, in principle, the existence at high enough colloid densities of brittle
rather than yielding glasses. Brittle behaviour is implicated in the industrial
process of granulation and could be intimately linked to the phenomenon of
dilatancy in dry powders.

Because our version of MCT approaches the glass transition from the
ergodic side, it cannot address the important distinction between static and
dynamic yield stresses. Some other MCT-like schematic models can do this
[49], as can simulation [50], and both suggest a finite difference between
the two yield stress values. This opens the door to a “viscosity bifurcation”
[51] involving the shear-banded coexistence, at a common stress value, of an
arrested, aging phase and an ergodic flowing one. This bypasses the need for
a negative slope on any part of the ergodic flow curve at nonzero shear rates.

Finally, our MCT-based theories are yet to evolve to the point where un-
steady flow can meaninfully be discussed. This is a major deficiency since
unsteady and even chaotic flow might be expected in various dense colloidal
systems, especially in connection with jamming an the transition to discon-
tinuous shear banding. Fortunately, some of these effects can be captured
within very simple models [53,58] although it remains a challenge to connect
these with a more microscopic picture or, indeed, with the glass transition.

Acknowledgements

I thank Matthias Fuchs, Colin Holmes, and Achod Aradian for their enthu-
siastic and stimulating collaboration in the various areas addressed by this
review.

References

1. M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, P. Claudin: Phys. Rev. Lett. 81,
1841 (1998); A. J. Liu, S. R. Nagel: Nature 396, 21 (1998).

2. H. M. Laun: J. Non-Newtonian Fluid Mec. 54, 87 (1994).
3. S. M. Fielding, P. Sollich, M. E. Cates: J. Rheol. 44, 323 (2000); P. Sollich, F.

Lequeux, P. Hebraud, M. E. Cates: Phys. Rev. Lett. 78, 2020 (1997); P. Sollich:
Phys. Rev. E 58, 738 (1998).



20 M.E. Cates

4. D. A. Head, A. Ajdari, M. E. Cates: Phys. Rev. E 64, 061509 (2001).
5. L. Berthier, J.-L. Barrat, J. Kurchan: Phys. Rev. E 61, 5464 (2000).
6. M. Fuchs, M. E. Cates: Phys. Rev. Lett. 89, 248303 (2002); Faraday Discussion

123, 267 (2002).
7. M. E. Cates: Ann. Henri Poincaré 4, S647 (2003) (cond-mat/0211066).
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In this lecture we review several aspects of the thermal noise properties in
two aging materials: a polymer and a colloidal glass. The measurements have
been performed after a quench for the polymer and during the transition
from a fluid-like to a solid-like state for the gel. Two kind of noise has been
measured: the electrical noise and the mechanical noise. For both materials
we have observed that the electric noise is characterized by a strong intermit-
tency, which induces a large violation of the Fluctuation Dissipation Theorem
(FDT) during the aging time, and may persist for several hours at low fre-
quency. The statistics of these intermittent signals and their dependance on
the quench speed for the polymer or on sample concentration for the gel are
studied. The results are in a qualitative agreement with recent models of
aging, that predict an intermittent dynamics. For the mechanical noise the
results are unclear. In the polymer the mechanical thermal noise is still in-
termittent whereas for the gel the violation of FDT, if it exists, is extremely
small.

1 Introduction

When a glassy system is quenched from above to below the glass transition
temperature Tg, any response function of the material depends on the time tw
elapsed from the quench [1]. For example, the dielectric and elastic constants
of polymers continue to evolve several years after the quench [1]. Similarly,
the magnetic susceptibility of spin-glasses depends on the time spent at low
temperature [2]. Another example of aging is given by colloidal-glasses, whose
properties evolve during the sol-gel transition which may last a few days [3].
For obvious reasons related to applications, aging has been mainly charac-
terized by the study of the slow time evolution of response functions, such as
the dielectric and elastic properties of these materials. It has been observed
that these systems may present very complex effects, such as memory and
rejuvenation [1, 4–6], in other words their physical properties depend on the
whole thermal history of the sample. Many models and theories have been
constructed in order to explain the observed phenomenology, which is not yet
completely understood. These models either predict or assume very different
dynamical behaviours of the systems during aging. This dynamical behaviour
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23–52 (2006)
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can be directly related to the thermal noise features of these aging systems
and the study of response functions alone is unable to give definitive answers
on the approaches that are the most adapted to explain the aging of a specific
material. Thus it is important to associate the measure of thermal noise to
that of response functions. The measurement of fluctuations is also related
to another important aspect of aging dynamics. Indeed glasses are out of
equilibrium systems and usual thermodynamics does not necessarily apply.
However, as the time evolution is slow, some concepts of the classical ap-
proach may be useful for understanding the glass aging properties. A widely
studied question is the definition of an effective temperature in these systems
which are weakly, but durably, out of equilibrium. Recent theories [7] based
on the description of spin glasses by a mean field approach proposed to extend
the concept of temperature using a Fluctuation Dissipation Relation (FDR)
which generalizes the Fluctuation Dissipation Theorem (FDT) for a weakly
out of equilibrium system (for a review see [8–10]). However the validity of
this temperature is still an open and widely studied question.

For all of these reasons, in recent years, the study of the thermal noise
of aging materials has received a growing interest. However in spite of the
large amount of theoretical studies there are only a few experiments dedi-
cated to this problem [11,22]. The available experimental results are in some
way in contradiction and they are unable to give definitive answers. For ex-
ample the thermal noise may present a strong intermittency which slowly
disappear during aging. Although several theoretical models predict this in-
termittency [23–26] the experimental conditions which produce such a kind of
behaviour are unclear. Therefore new experiments are necessary to increase
our knowledge on the thermal noise properties of the aging materials.

In this lecture we will review several experimental results on the electrical
and mechanical thermal fluctuations of a polymer and a colloidal glass. We
will mainly focus on the measurements of the dielectric susceptibility and of
the polarization noise in the polymer material , in the range 20 mHz–100 Hz,
because the results of these measurements demonstrate the appearance of
a strong intermittency of the noise when this material is quickly quenched
from the molten state to below its glass-transition temperature. This inter-
mittency produces a strong violation of the FDT at very low frequency. The
violation is a decreasing function of the time tw elapsed from the quench,
and of the frequency of measurement f = ω/2π. Nevertheless, this violation
is observed at ωtw � 1 and may last for more than 3 h for f > 1Hz. We have
also observed that the intermittency is a function of the cooling rate of the
sample and it almost disappears after a slow quench. In this case the violation
of FDT remains but it is very small. Preliminary mechanical measurements
done on a polycarbonate beam confirm the presence of an intermittent be-
haviour after a fast quench. We also review some equivalent measurements
in a different material: a colloidal glass of Laponite. As for the polymer, a
strong intermittency, sensible to initial conditions, is observed with electrical
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measurements. It is interesting to note however that no such effect can be
detected on the mechanical behaviour.

The paper is organized in three main sections, the first one on the elec-
trical measurements in polycarbonate, a second one on the mechanical mea-
surements and a third one on the fluctuations in Laponite preparations. In
the first section we describe the experimental set up and the measurement
procedure, the results of the noise and response measurements and the sta-
tistical analysis of the noise. We then discuss the dependence on the quench
speed of the FDT violation and the temporal behaviour of the effective tem-
perature after a slow quench. In Sect. 3 we describe the experimental set-up
for mechanical measurements and the preliminary results on the mechanical
noise. In Sect. 4 the electrical noise in the colloidal gel is analyzed. We briefly
discuss the case of the mechanical properties for the gel. Finally in Sect. 5
we first compare the experimental results on polycarbonate with those of
colloidal glasses and other materials. We then discuss the relevance of these
results in the context of the recent theoretical models before concluding.

2 Dielectric Noise in a Polymer Glass

We present in this section measurements of the dielectric susceptibility and
of the polarization noise, in the range 20 mHz–100 Hz, of a polymer glass:
polycarbonate. These results demonstrate the appearance of a strong inter-
mittency of the noise when this material is quickly quenched from the molten
state to below its glass-transition temperature. This intermittency produces
a strong violation of the FDT at very low frequency. The violation is a de-
creasing function of time and frequency and it is still observed for ωtw � 1:
it may last for more than 3 h for f > 1 Hz. We have also observed that the
intermittency is a function of the cooling rate of the sample and almost dis-
appears after a slow quench. In this case the violation of FDT remains, but
it is very small.

2.1 Experimental Setup

The polymer used in this investigation is Makrofol DE 1-1 C, a bisphenol A
polycarbonate, with Tg � 419K, produced by Bayer in form of foils. We have
chosen this material because it has a wide temperature range of strong aging
[1]. This polymer is totally amorphous: there is no evidence of crystallinity
[28]. Nevertheless, the internal structure of polycarbonate changes and relaxes
as a result of a change in the chain conformation by molecular motions [1,
29,30]. Many studies of the dielectric susceptibility of this material exist, but
none had an interest on the problem of noise measurements.

In our experiment polycarbonate is used as the dielectric of a capacitor.
The capacitor is composed by 14 cylindrical capacitors in parallel in order
to reduce the resistance of the sample and to increase its capacity [20]. Each



26 L. Bellon et al.

(a) (b)

10
2

10
3

10
4

300

350

400

450

 t (s)

 T
 (

K
)

 (b) 
 T

g
=419K 

Fig. 1. Polycarbonate experimental set-up (a) Design of polycarbonate ca-
pacitance cell. (b) Typical temperature quench: from Ti = 453 K to Tf = 333K,
the origin of tw is set at T = Tg

capacitor is made of two aluminum electrodes, 12 µm thick, and by a disk
of polycarbonate of diameter 12 cm and thickness 125 µm. The experimental
set-up is shown in Fig. 1(a). The 14 capacitors are sandwiched together and
put inside two thick aluminum plates which contain an air circulation used to
regulate the sample temperature. This mechanical design of the capacitor is
very stable and gives very reproducible results even after many temperature
quenches. The capacitor is inside 4 Faraday screens to insulate it from exter-
nal noise. The temperature of the sample is controlled within a few percent.
Fast quenches of about 1K/s are obtained by injecting Nitrogen vapor in
the air circulation of the aluminum plates. The electrical impedance of the
capacitor is Z(ω, tw) = R/(1 + iω R C), where C is the capacitance and R
is a parallel resistance which accounts for the complex dielectric susceptibil-
ity. This is measured by a lock-in amplifier associated with an impedance
adapter [20]. The noise spectrum SZ(ω, tw) of the impedance Z(ω, tw) is:

SZ(f, tw) = 4 kB Teff (f, tw) Re[Z(ω, tw)] =
4 kB Teff (f, tw) R

1 + (ω R C)2
(1)

where kB is the Boltzmann constant and Teff is the effective temperature of
the sample. This effective temperature takes into account the fact that FDT
(Nyquist relation for electric noise) can be violated because the polymer is out
of equilibrium during aging, and in general Teff > T , with T the temperature
of the thermal bath. Of course when FDT is satisfied then Teff = T . In
order to measure SZ(f, tw), we have made a differential amplifier based on
selected low noise JFET(2N6453 InterFET Corporation), whose input has
been polarized by a resistance Ri = 4GΩ. Above 2Hz, the input voltage noise
of this amplifier is 5 nV/

√
Hz and the input current noise is about 1 fA/

√
Hz.

The output signal of the amplifier is directly acquired by a NI4462 card. It
is easy to show that the measured spectrum at the amplifier input is:
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SV (f, tw) =
4 kB R Ri (Teff (f, tw) Ri + TR R + Sξ(f) R Ri)

(R + Ri)2 + (ω R Ri C)2
+ Sη(f)

(2)

where TR is the temperature of Ri and Sη and Sξ are respectively the voltage
and the current noise spectrum of the amplifier. In order to reach the desired
statistical accuracy of SV (f, tw), we averaged the results of many experi-
ments. In each of these experiments the sample is first heated to Ti = 1.08Tg.
It is maintained at this temperature for several hours in order to reinitialize
its thermal history. Then it is quenched from Ti to the working final temper-
ature Tf where the aging properties are studied. The maximum quenching
rate from Ti to Tf is 1K/s. A typical thermal history of a fast quench is
shown in Fig. 1(b). The reproducibility of the capacitor impedance, during
this thermal cycle is always better than 1%. The origin of aging time tw is
the instant when the capacitor temperature is at Tg � 419K, which of course
may depend on the cooling rate. However adjustment of Tg of a few degrees
will shift the time axis by at most 30 s, without affecting our results.

2.2 Response and Noise Measurements

Before discussing the time evolution of the dielectric properties and of the
thermal noise at Tf we show in Fig. 2 the dependence of R and C measured
at 1Hz as a function of temperature, which is ramped as a function of time
as indicated in the inset of Fig. 2(a). We notice a strong hysteresis between
cooling and heating. In the figure Tα is the temperature of the α relaxation at
1Hz. The other circles on the curve indicate the Tf where the aging has been
studied. We have performed measurements at Tf = 0.79Tg, 0.93Tg, 0.98Tg

using fast and slow quenches. The cooling rate is 1K/s and 0.06K/s for the
fast and slow quenches respectively. As at Tf = 0.98Tg the dielectric constant
strongly depends on temperature (see Fig. 2), the temperature stability has
to be much better at Tf = 0.98Tg than at the two other smaller Tf . Because
of this good temperature stability needed at Tf = 0.98Tg it is impossible to
reach this temperature too fast. Therefore at 0.98Tg we have performed only
measurements after a slow quench.

We first describe the results after a fast quench at the smallest tempera-
ture, that is Tf = 0.79Tg. In Fig. 3(a) and (b), we plot the measured values
of R and C as a function of f at Ti = 1.08Tg and at Tf for tw � 200 s. The
dependence of R, at 1Hz, as a function of time is shown in Fig. 3(c). We see
that the time evolution of R is logarithmic in time for t > 300 s and that the
aging is not very large at Tf = 0.79Tg, it is only 10% in 3 hours. At higher
temperature close to Tg aging is much larger.

Looking at Fig. 3(a) and (b), we see that lowering temperature R in-
creases and C decreases. As at 0.79Tg aging is small and extremely slow
for tw > 200 s the impedance can be considered constant without affecting
our results. From the data plotted in Fig. 3 (a) and (b) one finds that R =
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Fig. 2. Polycarbonate response function at 1 Hz (a) Dependence of C, mea-
sured at 1Hz, on temperature, when T is changed as function of time as indicated
in the inset. (b) Dependence of R, measured at 1 Hz, on T . Tα is the temperature
of the α relaxation at 1Hz, Tg is the glass transition temperature. The other circles
on the curve indicate the Tf where aging has been studied
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Fig. 3. Polycarbonate response function (a) Polycarbonate resistance R as a
function of frequency measured at Ti = 1.08Tg (�) and at Tf = 0.79Tg (◦)(after
a fast quench). The effect of the 4GΩ input resistance in parallel with the poly-
carbonate impedance is also shown at T = 433K (�) and at T = 333 K (∗).
(b) Polycarbonate capacitance versus frequency measured at Ti = 433K (�) and
at Tf = 333 K (◦). (c) Typical aging of R measured at 1 Hz as a function of tw

1010(1 ± 0.05) f−1.05±0.01 Ω and C = (21.5 ± 0.05)nF . In Fig. 3(a) we also
plot the total resistance at the amplifier input which is the parallel of the
capacitor impedance with Ri. We see that at Tf the input impedance of the
amplifier is negligible for f > 10Hz, whereas it has to be taken into account
at slower frequencies.

Figure 4(a) represents the evolution of SV (f, tw) after the fast quench.
Each spectrum is obtained as an average in a time window starting at tw.
The time window increases with tw so to reduce error for large tw. The
results of 7 quenches have been averaged. At the longest time (tw = 1day)
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Fig. 4. Voltage noise and effective temperature in polycarbonate after a
fast quench (a) Noise power spectral density SV (f, tw) measured at Tf = 333 K
and different tw. The spectra are the average over seven quenches. The continuous
line is the FDT prediction. Dashed lines are the fit obtained using (2) and (3) (see
text for details). (b) Effective temperature vs frequency at Tf = 333 K for different
aging times: (�) tw = 200 s, (∗) tw = 260 s, • tw = 2580 s, (×)tw = 6542 s, (◦)tw =
1day. The continuous lines are the fits obtained using (3). The horizontal straight
line is the FDT prediction. The dot dashed line corresponds to the limit where the
FDT violation can be detected. In the inset the frequency fo(tw), defined in (3), is
plotted as a function of tw. The continuous line is not a fit, but it corresponds to
fo(tw) ∝ 1/tw

the equilibrium FDT prediction (continuous line) is quite well satisfied. We
clearly see that FDT is strongly violated for all frequencies at short times.
Then high frequencies relax on the FDT, but there is a persistence of the
violation for lower frequencies. The amount of the violation can be estimated
by the best fit of Teff (f, tw) in (2) where all other parameters are known.
We started at very large tw when the system is relaxed and Teff = T for
all frequencies. Inserting the values in (2) and using the SV measured at
tw = 1day we find Teff � 333K, within error bars for all frequencies (see
Fig. 4b). At short tw data show that Teff (f, tw) � Tf for f larger than a
cutoff frequency fo(tw) which is a function of tw. In contrast, for f < fo(tw)
we find that Teff is: Teff (f, tw) ∝ f−A(tw), with A(tw) � 1. This frequency
dependence of Teff (f, tw) is quite well approximated by

Teff (f, tw) = Tf

[

1 +
(

f

fo(tw)

)−A(tw)
]

(3)

where A(tw) and fo(tw) are the fitting parameters. We find that 1 < A(tw) <
1.2 for all the data set. Furthermore for tw ≥ 250, it is enough to keep A(tw) =
1.2 to fit the data within error bars. For tw < 250 s we fixed A(tw) = 1. Thus
the only free parameter in (3) is fo(tw). The continuous lines in Fig. 4(a) are
the best fits of SV found inserting (3) in (2).
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In Fig. 4(b) we plot the estimated Teff (f, tw) as a function of frequency at
different tw. We see that just after the quench Teff (f, tw) is much larger than
Tf in all the frequency interval. High frequencies rapidly decay towards the
FDT prediction whereas at the smallest frequencies Teff � 105 K. Moreover
we notice that low frequencies decay more slowly than high frequencies and
that the evolution of Teff (f, tw) towards the equilibrium value is very slow.
From the data of Fig. 4(b) and (3), it is easy to see that Teff (f, tw) can be
superposed onto a master curve by plotting them as a function of f/fo(tw).
The function fo(tw) is a decreasing function of tw, but the dependence is
not a simple one, as it can be seen in the inset of Fig. 4(b). The continuous
straight line is not fit, it represents fo(tw) ∝ 1/tw which seems a reasonable
approximation for these data for t > 1000 s. For tw > 104 s we find the
fo < 1Hz. Thus we cannot follow the evolution of Teff anymore because the
contribution of the experimental noise on SV is too big, as it is shown in
Fig. 4(b) by the increasing of the error bars for tw = 1day and f < 0.1Hz.

We do not show the same data analysis for the other working temper-
ature after a fast quench, because the same scenario appears in the range
0.79Tg < T < 0.93Tg, where the low frequency dielectric properties are al-
most temperature independent (see Fig. 2(b)). The only important difference
to mention here is that aging becomes faster and more pronounced as the
temperature increases. At Tf = 0.93Tg, the losses of the capacitor change of
about 50% in about 3 h, but all the spectral analysis performed after a fast
quench gives the same evolution. We can just notice that Teff for T = 0.93Tg

is higher than that at T = 0.79Tg. At T = 0.93Tg, Teff is well fitted by (3). It
is enough to keep A(tw) = 1 for all tw and fo(tw) ∼ 1/t1.5

w , (see Fig. 5a). We
notice that at 0.93Tg the power law behaviour is well established, whereas it
was more doubtful at 0.73Tg. The dependence of Teff as a function of tw is
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Fig. 5. fo and Teff as a function of tw at Tf = 0.93Tg after a fast quench.
(a) fo defined in (3) as a function of tw (b) Evolution of Teff at two different
frequencies (◦) 7 Hz and (�) 2 Hz
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plotted in Fig. 5 for two values of f and has also a power law dependence
on tw.

For T > 0.93Tg fast quenches cannot be performed for the technical rea-
sons mentioned at the beginning of Sect. 3. The results are indeed quite
different. Thus we will not consider, for the moment, the measurement at
Tf = 0.98Tg and we will mainly focus on the measurements done in the
range 0.79Tg < T < 0.93Tg with fast quenches. For these measurements the
spectral analysis on the noise signal indicates that Nyquist relation (FDT)
is strongly violated for a long time after the quench. The question is now to
understand the reasons of this violation.

2.3 Statistical Analysis of the Noise

In order to understand the origin of such large deviations in our experiment
we have analyzed the noise signal. We find that the signal is characterized by
large intermittent events which produce low frequency spectra proportional
to f−α with α � 2. Two typical signals recorded at Tf = 0.79Tg for 1500 s <
tw < 1900 s and tw > 75000 s are plotted in Fig. 6. We clearly see that in the
signal recorded for 1500 s < tw < 1900 s there are very large bursts which are
on the origin of the frequency spectra discussed in the previous section. In
contrast in the signal which was recorded at tw > 75000 s, when FDT is not
violated, the bursts totally disappear (Fig. 6b).

The probability density function (PDF) of these signals is shown in Fig. 7
(a). We clearly see that the PDF, measured at small tw, has very high tails
which becomes smaller and smaller at large tw. Finally the Gaussian profile
is recovered after 24 h. The PDF are very symmetric in their gaussian parts,
i.e. 3 standard deviations. The tails of the PDF are exponential and are
decreasing functions of tw.
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Fig. 6. Voltage noise signal in polycarbonate after a fast quench Typical
noise signal of polycarbonate measured at Tf = 333 K for 1500 s < tw < 1900 s (a)
and tw > 75000 s (b)



32 L. Bellon et al.

(a) (b)

−4 −3 −2 −1 0 1 2 3 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 V (µV) 

P
(V

)

t
w

<1400s
t
w

=3000s
t
w

=6000s
t
w

=70000s

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

τ (s)

ψ
(τ

)

t
w

<1200 s
t
w

<3600 s
3600 s<t

w
<7000 s

τ
0
/τ1+µ

Fig. 7. PDF of voltage noise in polycarbonate after a fast quench at
Tf = 0.79Tg. (a) The large tails of the PDF at early tw are a signature of strong
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The time interval τ between two successive pulses is power law distributed.
In order to study this distribution Ψ(τ, tw) of τ , we have first selected the
signal fluctations with amplitude larger than a fixed threshold, which has been
chosen between 3 and 4 standard deviations of the equilibrium noise, i.e. the
noise predicted by the FDT. We have then measured the time intervals τ
between two successive large fluctuations. The histogram Ψ(τ, tw) computed
for tw < 20 min and for 20 min < tw < 3h is plotted in Fig. 7(b). We clearly
see that Ψ(τ, tw) is a power law, specifically Ψ(τ) ∝ 1

τ1+µ with µ � 0.4± 0.1.
This result agree with one of the hypothesis of the trap model [31,32], which
presents non-trivial violation of FDT associated to an intermittent dynamics.
In the trap model τ is a power-law-distributed quantity with an exponent
1+µ that, in the glass phase, is smaller than 2. However, there are important
differences between the dynamics of our system and that of the trap model.
Indeed in this model one finds short and large τ for any tw which is in
contrast with our system because the probability of finding short τ seems to
decrease as a function of tw. But this effect could be a consequence of the
imposed threshold. It seems that there is no correlation between the τ and
the amplitude of the associated bursts. Finally, the maximum distance τmax

between two successive pulses grows as a function of tw logarithmically, that
is τmax = [10 + 152 log(tw/300)] s for tw > 300 s. This slow relaxation of the
number of events per unit of time shows that the intermittency is related to
aging.

The same behaviour is observed at Tf = 0.93Tg after a fast quench.
The PDF of the signals measured at Tf = 0.93Tg are shown in Fig. 8(a).
The behaviour is the same except for the relaxation rate towards the
Gaussian distribution which is faster in this case, because the aging effects
are larger at this temperature. From these measurements one concludes that
after a fast quench the electrical thermal noise is strongly intermittent and
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Fig. 8. PDF of voltage noise in polycarbonate after a fast quench at 0.93Tg

(a) PDF of the noise signal of polycarbonate measured at various tw. (b) Histograms
Ψ(τ, tw), following at early tw a 1/τ1+µ law with µ = 0.9 ± 0.1

non-Gaussian. The number of intermittent events increases with the temper-
ature : for Tf = 0.93Tg, Teff is higher than for Tf = 0.79Tg and PDF tails
are more important. The histograms Ψ(τ, tw) are shown Fig. 8 (b). The be-
haviour is the same with µ = 0.9±0.1. By comparing Ψ(τ, tw) for short τ and
short tw there are more events at 0.93Tg (Fig. 8 (b)) than at 0.79Tg (Fig. 7
(b)). This is consistent with activation processes for the aging dynamics. In-
deed the probability of jumping from a potential well to another increases
with temperature. Thus one expects to find more events at high temperature
than at low temperature.

2.4 Influence of the Quench Speed

The intermittent behaviour described in the previous sections depends on
the quench speed. In Fig. 9(a) we plot the PDF of the signals measured af-
ter a slow quench (3.6K/min) at Tf = 0.93Tg. We clearly see that the PDF
are very different: intermittency has almost disappeared. The comparison be-
tween the fast quench and the slow quench merits a special comment. During
the fast quench Tf = 0.93Tg is reached in about 100 s after the passage of T
at Tg. For the slow quench this time is about 1000 s. Therefore one may won-
der whether after 1000 s of the fast quench one recovers the same dynamics of
the slow quench. By comparing the PDF of Fig. 8(a) with those of Fig. 9(a)
we clearly see that this is not the case. Furthermore, by comparing the his-
tograms of Fig. 8(b) with those of Fig. 9(b), we clearly see that there are less
events separated by short τ for the slow quench. Therefore one deduces that
the polymer is actually following a completely different dynamics after a fast
or a slow quench [33, 34]. This is a very important observation that can be
related to well known effects of response function aging. The famous Kovacs
effect is an example [4] where depending on the cooling rate the isothermal
compressibility presents a completely different time evolution.
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Fig. 9. PDF of voltage noise in polycarbonate after a slow quench at
Tf = 0.93Tg. (a) No intermittency is visible after a slow quench at 3.6 K/min.
(b) Histograms Ψ(τ, tw) after a slow quench. The line corresponds to the τ0/τ1+µ

fit of Fig. 8(b), where µ = 0.93

2.5 Teff after a Slow Quench

In the previous section we have shown that the intermittent aging dynamics
is strongly influenced by the cooling rate. We discuss in this section the
behaviour of the effective temperature after a slow quench. We use for this
purpose the measurement at Tf = 0.98Tg. The time evolution of the response
function is much larger at this temperature than at Tf = 0.79Tg as it can
be seen in Fig. 10. It is about 50% at the small frequencies, therefore it
has to be kept into account in the evaluation of FDT. The spectrum of
the capacitance noise measured at 0.98Tg is plotted for two different times
in Fig. 11. The continuous lines represents the FDT predictions computed
using the measured response function reported in Fig. 10. We clearly see
that the experimental points are very close to the FDT predictions, thus the
violation of FDT, if it exists, is very small. To check this point, we have
computed Teff in the range [1Hz − 10Hz], which is plotted as a function
of time in Fig. 12. Although the error bars are rather large, we clearly see
that Teff decreases logarithmically as a function of time. We also notice
that the maximum violation at short times is about 25% which is much
smaller than that measured at smaller Tf after a fast quench. The PDF of
the noise signal at 0.98Tg are plotted in Fig. 13(a) and they do not show
very large tails as in the case of the intermittent dynamics. The statistics
of the time intervals τ between two large events does not present any power
law either (see Fig. 13(b)). Thus the signal statistics look much more similar
to those measured at 0.93Tg after a slow quench than to the intermittent
ones. This comparison shows that independently of the final temperature
the intermittent behaviour is induced by the fast quench and that the FDT
violation is cooling rate dependent.
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200 s, (b) tw = 7200 s. Circles stand for measurement points, whereas the continuous
line is the FDT prediction

3 Mechanical Measurements
on a Polycarbonate Cantilever

In the previous section we have studied the properties of dielectrical thermal
noise during the aging of polycarbonate. In this section we want to check if
the thermal noise features are independent of the observable. As a second
observable, we have chosen to measure the thermally excited vibrations of a
cantilever made of polycarbonate.
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with the theoretical estimation of the trap model

3.1 FDT in a Mechanical Oscillator

The physical object of our interest is a small plate with one end clamped and
the other free, i.e. a cantilever. The plate is of length l, width a, thickness
b, mass mPolyc. On the free end of the cantilever a small golden mirror of
mass mmirror is glued. As described in the next section, this mirror is used
to detect the amplitude xc of the transverse vibrations of the cantilever free
end. The motion of the cantilever free end can be assimilated to that of a
driven harmonic oscillator, which is damped only by the viscoelasticity of
the polymer. Consequently, the equation of motion of the cantilever free end
takes a simple form in Fourier space:
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[−mω2 + K(ω)]x̂c = F̂ext (4)

where x̂c is the Fourier transform of xc, m is the total effective mass of the
plate plus the mirror, K = K ′ + iK ′′ is the complex elastic stiffness of the
plate free end, and F̂ext is the Fourier transform of the external driving force.
The complex K(ω) takes into account the viscoelastic nature of the cantilever.
From the theory of elasticity [35] one obtains that, for low frequencies, an
excellent approximations for m and K are:

m =
3

(3.52)2
mPolyc + mmirror , (5)

and K =
Eab3

4l3
, (6)

where E = E′ + iE′′ is the plate Young modulus. Notice that if mmirror = 0,
then one recovers the smallest resonant frequency of the cantilever [35]. For
Polycarbonate at room temperature, E is such that E′ = 2.2 × 109 Pa and
E′′ = 2×107 Pa, and its frequency dependence may be neglected in the range
of frequency of our interest, that is from 0.1 to 100 Hz [36]. Thus we neglect
the frequency dependence of K in this specific example.

When Fext = 0, the amplitude of the thermal vibrations of the cantilever
free end xT is linked to its response function χ via the FDT [37]:

〈|x̂T |2〉 =
2kBT

ω
Im χ̂ , (7)

where 〈|x̂T |2〉 is the thermal fluctuations spectral density of xc, kB the Boltz-
mann constant and T the temperature. From (4) one obtains that the re-
sponse function of the harmonic oscillator is

χ̂ =
x̂c

F̂ext

=
1

m[ω0
2 − ω2 − i (sign ω) γω0

2]
, (8)

where ω0
2 = K ′/m and γ = K ′′/K ′.

Inserting (8) into (7), one can compute the thermal fluctuations spectral
density of the Polycarbonate cantilever for positive frequencies:

〈|x̂T |2〉 =
2kBT

ω

γω0
2

m[(ω0
2 − ω2)2 + (γω0

2)2]
. (9)

Notice that 〈|x̂T |2〉 ∼ ω−1 for ω 
 ω0, because the viscoelastic damping
K ′′ is constant in our frequency range. In the case of a viscous damping (for
example, a cantilever immersed in a viscous fluid) K ′′ = α ω, where α is
proportional to the fluid viscosity and to a geometry dependent factor. Then
the thermal fluctuations spectral density of the cantilever free end, in the
case of viscous damping, is
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〈|x̂T |2〉 =
2kBT α

m2[(ω2
0 − ω2)2 + ( α

mω)2]
, (10)

which is constant for ω 
 ω0. Therefore, the thermal fluctuations spectral
density shape depends on K ′′(ω). In the case of a viscoelastic damping (9),
the thermal noise increases when ω goes to 0, and with a suitable choice of
the parameters the low frequency spectral density of an aging polymer can
be measured using this method.

However, the cantilever is also sensitive to the mechanical noise, and the
total displacement xc of the cantilever free end actually reads xc = xT +xacc,
where xacc is the displacement induced by the external mechanical noise.
Thus, it is important to compute the signal-to-noise ratio (SNR) of our ap-
paratus, which we define as the ratio between the thermal fluctuations and
the mechanical noise spectral densities. All the details on the optimization of
the SNR can be found in [38].

3.2 Experimental Apparatus

Let us estimate the amplitude of
√

〈|x̂T |2〉 at ν = ω/2π = 1 Hz for the
following choice of the parameters: γ � 10−2, l � 10 mm, a � 1 mm, b =

125 µm and mmirror � 10−3 g. We find ν0 � 100 Hz and
√

〈|x̂T (1 Hz)|2〉 �
10−11 m/

√
Hz, which is a very small signal. As a consequence, extremely

small vibrations of the environment may greatly perturb the measurement.
Therefore, to increase the signal-to-noise ratio of the measurement, one has to
reduce the coupling of the cantilever to the environmental noise (acoustic and
seismic) using vibration isolation systems. This may be not enough in this
specific case because of the smallness of the thermal fluctuations. Therefore
we have applied an original noise subtraction technique described in [38] in
order to recover xT from the measurement of xc.

The measurement of xc is done using a Nomarski interferometer (for de-
tailed reviews, see [39–41]) which uses the mirror glued on the Polycarbonate
cantilever in one of the two optical paths. The interferometer noise is about
5 × 10−14 m/

√
Hz, which is two orders of magnitude smaller than the can-

tilever thermal fluctuations. The cantilever is inside an oven under vacuum.
A window allows the laser beam to go inside (cf Fig. 14). The size of the
Polycarbonate cantilever are, l � 13.5 mm, a � 1mm and b = 125 µm, and
the mirror mass is mmirror � 10−3 g such that ν0 � 100 Hz. As already men-
tioned, the cantilever is sensitive to unavoidable mechanical vibrations which
are the main source of error and strongly reduce the signal to noise ratio.
To improve the signal-to-noise ratio we have applied the reduction technique
described in [38]. This technique is based on a mechanical noise detection sys-
tem whose scheme is shown in Fig. 14: A second cantilever, the parameter of
which are tuned to be only sensitive to external vibration (and not to its own
thermal fluctuations), is used to subtract the mechanical noise component
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Fig. 14. Experimental setup for measuring the mechanical noise in poly-
carbonate The polycarbonate cantilever (C1) is inside an oven to control the
temperature. Its displacement is measured by a very sensitive Nomarski Interfer-
ometer. The cantilever (C2) the laser diode, and the 4Q detector, are use for the
noise reduction technique (see text)

from the signal of the polycarbonate cantilever. More details can be found
in [38].

3.3 Experimental Results

We first check whether the polycarbonate cantilever verifies the FDT at room
temperature. The results are shown in Fig. 15a), where the square root of
the spectral density is plotted as a function of f. The dashed line is the FDT
prediction obtained from a direct measurement of the cantilever response
function. The agreement is good. For comparison the square root of the spec-
tral density of the interferometer noise is plotted too. We see that the SNR
is quite good. The extra picks on the spectrum of xc come from residual me-
chanical vibrations. This figure shows that the experimental system is well
suited to study fluctuation relations in an aging material. To study the poly-
carbonate cantilever noise after a quench we used a protocol that is different
from that described in Sect. 1) for dielectric measurement. As polycarbonate
is almost liquid above Tg it is impossible to keep it in the above described
measurement cell. Thus we put the cantilever inside a box which has in the
bottom a groove where the cantilever fits perfectly inside. Then this box is
first heated at Ti = 460K and then rapidly cooled by putting it into a cool
water. Thus in a few seconds the cantilever is quenched from 460K to about
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Fig. 15. Spectra of the thermal noise of the polycarbonate cantilever
(a) Equilibrium spectrum at 293K of the cantilever tip thermal fluctuations. The
dashed line is the FDT prediction. the noise of the detection system (spectrum
in the bottom of the figure) is shown for comparison. (b) Time evolution of the
cantilever noise spectrum recorded at three different times tw = 20 min, 2 h, 18 h
after that the temperature Tf = 393K has been reached from below (see text)

280K. Then the cantilever is installed inside the measurement cell that is
heated to the working temperature Tf which is now reached from low tem-
perature. The polycarbonate ages anyway: it is well known that in aging
systems the time spent at low temperature does not affect the aging at high
temperature. We report here a measurement of the time evolution of the noise
spectrum performed at Tf = 0.93Tg. A typical evolution of the polycarbonate
cantilever fluctuation spectrum is plotted in Fig. 15. The spectra recorded at
tw = 20 min, 2 h, 18 h are shown. We see that at very short time the spectrum
present a very large power law behaviour at low frequencies. This component
relaxes towards equilibrium in several hours. As the response function of the
cantilever evolves of just a few percent during the same amount of time it is
clear that the violation of FDT is very large also in the case of this mechan-
ical measurement. The reason is the presence of a strong intermittency as in
the case of the dielectric measurements described in Sect. 2.

4 Thermal Noise in a Colloidal Glass

We review in this section results on electrical noise measurements in Laponite
during the transition from a fluid like solution to a solid like colloidal glass.
The main control parameter of this transition is the concentration of Laponite
[42], which is a synthetic clay consisting of discoid charged particles. It dis-
perses rapidly in water to give gels even for very low mass fraction. Physical
properties of this preparation evolves for a long time, even after the sol-gel
transition, and have shown many similarities with standard glass aging [3].
Recent experiments have even proved that the structure function of Laponite
at low concentration (less than 3% mass fraction) is close to that of a glass,
suggesting the colloidal glass appellation [43].
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In previous studies, we showed that the early stage of this transition was
associated with a small aging of its bulk electrical conductivity, in contrast
with a large variation in the noise spectrum at low frequency. As a conse-
quence, the FDT in this material appeared to be strongly violated at low
frequency in young samples, and it is only fulfilled for high frequencies and
long times [14,15,18,19]. As in polycarbonate, this effect was shown to arise
from a strong intermittency in the electrical noise of the samples, character-
ized by a strong deviation to a standard gaussian noise [19]. We summarize
these results in the first part of this section, before presenting preliminary
results on the role of concentration in the noise behavior.

4.1 Experimental Setup

The experimental setup is similar to that of previous experiments [14,15,19].
The Laponite [42] dispersion is used as a conductive material between the
two golden coated electrodes of a cell. It is prepared in a clean N2 atmosphere
to avoid CO2 and O2 contamination, which perturbs the aging of the prepa-
ration and the electrical measurements. Laponite particles are dispersed at
a concentration of 2.5% to 3% mass fraction in pure water under vigorous
stirring for 300 s. To avoid the existence of any initial structure in the sol,
we pass the solution through a 1 µm filter when filling the cell. This instant
defines the origin of the aging time tw (the filling of the cell takes roughly two
minutes, which can be considered the maximum inaccuracy of tw). The sam-
ple is then sealed so that no pollution or evaporation of the solvent can occur.
At these concentrations, light scattering experiments show that Laponite [42]
structure functions are still evolving several hundreds hours after the prepa-
ration, and that solid like structures are only visible after 100 h [3]. We only
study the beginning of this glass formation process.

The two electrodes of the cell are connected to our measurement system,
which records either the impedance value or the voltage noise across it. The
electrical impedance of the sample is the sum of two effects: the bulk is purely
conductive, the ions of the solution following the forcing field, whereas the
interfaces between the solution and the electrodes give mainly a capacitive
effect due to the presence of the Debye layers [44]. This behavior has been val-
idated using a four-electrode potentiostatic technique [45] to make sure that
the capacitive effect is only due to the surface. In order to probe mainly bulk
properties, the geometry of the cell is tuned to push the surface contribution
to low frequencies: the cell consists in two large reservoirs where the fluid is
in contact with the electrodes (area of 25 cm2), connected through a small
rigid tube – see Fig. 16(b). The main contribution to the electrical resistance
of the cell is given by the Laponite sol contained in this tube connecting the
two tanks. Thus by changing the length and the section of this tube the total
bulk resistance of the sample can be tuned around Ropt = 100 kΩ, which
optimizes the signal to noise ratio of voltage fluctuations measurements with
our amplifier. The cut-off frequency of the equivalent R-C circuit (composed
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Fig. 16. Impedance of a 2.5 wt% Laponite cell. (a) Frequency dependance of
a sample impedance for 2 different aging times (tw = 1h and tw = 14 h). (b) Cell
design and equivalent electrical model (c) Time evolution of the bulk resistance: this
long time evolution is the signature of the aging of the colloidal suspension. In spite
of the decreasing mobility of Laponite particles in solution during the formation of
the gel, the electrical conductivity increases

by the series of the Debye layers plus the bulk resistance) is about 20 mHz.
In other words above this frequency the imaginary part of the cell impedance
is about zero, as shown in Fig. 16(a). The time evolution of the resistance of
one of our sample is plotted in Fig. 16(c): it is still decaying in a non trivial
way after 24 h, showing that the sample has not reached any equilibrium yet.
This aging is consistent with that observed in light scattering experiments [3].

4.2 Electric Noise Measurements in Laponite

In order to study the voltage fluctuations across the Laponite cell, we use a
custom ultra low noise amplifier to raise the signal level before acquisition. To
bypass any offset problems during this strong amplification process, passive
high pass filtering above 30 mHz is applied. The power spectrum density of
the voltage noise of a 2.5wt% Laponite preparation is shown in Fig. 17. As
the dissipative part of the impedance Re(Z) is weakly time and frequency
dependent, one would expect from the Nyquist formula [46] that so does the
voltage noise density SZ . But as shown in Fig. 17, we have a large deviation
from this prediction for the lowest frequencies and earliest times of our ex-
periment: SZ changes by several orders of magnitude between highest values
and the high frequency tail. For long times and high frequencies, the FDT
holds and the voltage noise density is that predicted from the Nyquist for-
mula for a pure resistance at room temperature (300K). In order to be sure
that the observed excess noise is not due to an artifact of the experimental
procedure, we filled the cell with an electrolyte solution with a pH close to
that of the Laponite preparation such that the electrical impedance of the
cell was the same (specifically: NaOH solution in water at a concentration
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of 10−3 mol · l−1). In this case, the noise spectrum was flat and in perfect
agreement with the Nyquist formula [14].

Aiming at a better understanding of the physics underlaying such a be-
havior, we have directly analyzed the voltage noise across the Laponite cell.
This test can be safely done in our experimental configuration as the am-
plifier noise is negligible with respect to the voltage fluctuations across cell,
even for the lowest levels of the signal, that is when the FDT is satisfied.
In Fig. 18(a) we plot a typical signal measured 2 h after the gel prepara-
tion, when the FDT is strongly violated. The signal plotted in Fig. 18(b)
has been measured when the system has relaxed and FDT is satisfied in all
the frequency range. By comparing the two signals we immediately realize
that there are important differences. The signal in Fig. 18(a) is interrupted
by bursts of large amplitude which are responsible for the increasing of the
noise in the low frequency spectra (see Fig. 17). The relaxation time of the
bursts has no particular meaning, because it corresponds just to the charac-
teristic time of the filter used to eliminate the very low frequency trends. As
time goes on, the amplitude of the bursts reduces and the time between two
consecutive bursts becomes longer and longer. Finally they disappear as can
be seen in the signal of Fig. 18(b) recorded for a 50 h old preparation, when
the system satisfies FDT.

As in polycarbonate, the intermittent properties of the noise can be char-
acterized by the PDF of the voltage fluctuations. To compute these distri-
butions, the time series are divided in several time windows and the PDF
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Fig. 18. Voltage noise signal in a 2.5 wt% Laponite sample. (a) Noise signal,
2 hours after the Laponite preparation, when FDT is violated. (b) Typical noise
signal when FDT is not violated (tw = 50 h)

are computed in each of these window. Afterwards the result of several ex-
periments are averaged. The distributions computed at different times are
plotted in Fig. 19. We see that at short tw the PDF presents heavy tails
which slowly disappear at longer tw. Finally a Gaussian shape is recovered
after tw = 16h. This kind of evolution of the PDF clearly indicate that the
signal is very intermittent for a young sample and it relaxes to the Gaussian
noise at long times.
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Fig. 19. PDF of the voltage noise in a 2.5 wt% Laponite sample. Typical
PDF of the noise signal at different times after preparation, with from top to
bottom: (...)tw = 1h, (−−)tw = 2 h, (+)tw = 50h. The continuous line is obtained
from the FDT prediction
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Fig. 20. Voltage noise in a 3 wt% Laponite sample. (a) During the first hours,
the voltage noise is dominated by huge intermittent fluctuations: bursts over 1 mV
are detected, when thermal noise should present a typical 1 µV rms. amplitude.
(b) The PDF of this intermittent signal departs clearly from a gaussian distribution

4.3 Influence of Concentration

To check for the influence of concentration on these results, we recently
started new series of measurements with 3 wt% Laponite preparations. In
Fig. 20(a) we plot a typical signal measured during the first 6 hours of such a
sample. Again, this signal is interrupted by bursts of very large amplitude. As
time goes on, the amplitude of the bursts reduces and the time between two
consecutive bursts becomes longer and longer. Finally they disappear after
a few days, and we only observe classic thermal noise. The main difference
with less concentrated samples is in the amplitude and density of this in-
termittency: now bursts over 1mV are detected, when thermal noise should
present a typical 1 µV rms. amplitude, and they are much more frequent.
This difference is also clear on the PDF of the signal, plotted in Fig. 20(b).
The non gaussian shape is much more pronounced, and the presence of heavy
tails clearly indicate that the signal is very intermittent at the beginning of
the experiment. In fact, the dynamic is so important that we don’t even have
enough precision to resolve the classic thermal fluctuations predicted by the
Nyquist formula in this measurement. The influence of increasing the concen-
tration of Laponite preparation thus appears to be somehow similar to the
effect of increasing the cooling rate during the quench of the polymer glass:
the resulting dynamics is more intermittent in both cases.

4.4 Mechanical Noise on Laponite

We have studied the mechanical noise of Laponite in very sensitive thermal
rheometer [15] which is based on a principle very similar to the one described
for the polycarbonate cantilever in Sect. 3 (see also [47]. We have found that
in this case no intermittency is present and the violation of FDT, if it exists, is
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certainly very small [15]. Recent measurements done on the Brownian motion
of a particle inside a Laponite preparation seems to confirm these observations
[48].

5 Discussion and Conclusions

In the previous sections we have presented several measurements of the elec-
tric and mechanical thermal noise in two very different materials: a polymer
and a colloidal glass. We first compare the main results on the electric noise
measurements which are certainly the most complete. These results are:

(1) At the very beginning of aging the noise amplitude for both materials
is much larger than what predicted by Nyquist relations. In other words
Nyquist relations, or more generally FDT, are violated because the mate-
rials are out of equilibrium: they are aging. In agreement with theoretical
prediction the amplitude and the persistence time of the FDT violation
is a decreasing function of frequency and time. The violation is observed
even at ωtw � 1 and it may last for more than 3 h for f > 1Hz.

(2) The noise slowly relaxes to the usual value after a very long time.
(3) For the polymer there is a large difference between fast and slow quenches.

In the first case the thermal signal is strongly intermittent, in the sec-
ond case this feature almost disappears. The features of fast and slow
quenches in polycarbonate are:
(3.1) After a fast quench the Teff estimated using FDR is huge. This

huge Teff is produced by very large intermittent bursts which are
at the origin of the low frequency power law decay of noise spectra.
The statistic of these events is strongly non Gaussian when FDT
is violated and slowly relaxes to a Gaussian one at very long tw.
The time intervals τ between two intermittent events are power law
distributed with an exponent which depends on Tf .

(3.2) After a slow quench the Teff estimated using FDR is about
20% larger than Tf . The intermittency disappears, the noise signal
PDF are much closer to a Gaussian and the time between two large
fluctuations is not power law distributed.

(4) The colloidal suspension signal is strongly intermittent, all the more as
concentration is increased. The noise signal PDF at small tw is strongly
non-Gaussian. The asymmetry of the noise may be linked to the sponta-
neous polarization of the cell.

We want first to discuss the intermittence of the signal, which has been
observed in other aging systems. Our observations are reminiscent of the
intermittence observed in the local measurements of polymer dielectric prop-
erties [13] and in the slow relaxation dynamics of another colloidal gel [21,22].
Indeed several theoretical models predict an intermittent dynamics for an ag-
ing system. For example the trap model [32] which is based on a phase space



Thermal Noise Properties of Two Aging Materials 47

description of the aging dynamics. Its basic ingredient is an activation process
and aging is associated to the fact that deeper and deeper valleys are reached
as the system evolves [23–27]. The dynamics in this model has to be intermit-
tent because either nothing moves or there is a jump between two traps [23].
This contrasts, for example, with mean field dynamics which is continuous in
time [7]. Furthermore two very recent theoretical models predict skewed PDF
both for local [51] and global variable [27]. This is a very important observa-
tion, because it is worth noticing that one could expect to find intermittency
in local variables but not in global. Indeed in macroscopic measurements, fluc-
tuations could be smoothed by the volume average and therefore the PDF
would be Gaussian. This is not the case both for our experiments and for the
numerical simulations of aging models [27]. In order to push the comparisons
with these models of intermittency on a more quantitative level one should
analyze more carefully the PDF of the time between events, which is very
different in the various models [26, 27, 32]. Our statistics is not yet enough
accurate to give clear answers on this point, thus more measurements are
necessary to improve the comparisons between theory and experiment. But
the time statistics of the trap model [32] seems to fit the data better than
that of [26]. The large Teff produced by the intermittent dynamics merits
a special comment too. Indeed such a huge Teff is not specific to this class
of systems, it has also been observed in domain growth models [10, 49]. The
behaviour of these models is however not consistent with that of our system,
because in the case of domain growth the huge temperature is given by a
weak response, not by an increase of the noise signal.

Going back to the analysis of our experimental data there is another ob-
servation, which merits to be discussed. This concerns the difference between
fast and slow quenches in polycarbonate. In order to discuss the problem re-
lated to this difference it is important to recall that the zero of tw is defined
as the instant in which the temperature crosses Tg. The first question that
one may ask, already discussed in Sect. 2.4, is whether the behaviour of the
system at the same tw after a slow and a fast quenches is the same. This is
certainly not the case because the system takes about 20min during a slow
quench to reach Tf and we have seen that after a fast quench the signal re-
mains intermittent for many hours, whereas after a slow quench intermittency
is never observed. Thus one concludes that it is not just a matter of time de-
lay between fast and slow quenches, the dynamics is indeed very different in
the two cases. This result can be understood considering that during the fast
quench the material is frozen in a state which is highly out of equilibrium at
the new temperature. This is not the case for a slow quench. More precisely
one may assume that when an aging system is quenched very fast, it explores
regions of its phase space that are completely different than those explored
in the quasi-equilibrium states of a slow quench. This assumption is actually
supported by two recent theoretical results [33, 34], which were obtained in
order to give a satisfactory explanation, in the framework of the more recent
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models, of the old Kovacs effect on the volume expansion [4]. Our results
based on the noise measurements can be interpreted in the same way.

Finally, we want to discuss the analogy between the electrical thermal
noise in the fast quench experiment of the polymer and that of the gel during
the sol-gel transition. In spite of the physical mechanisms that are certainly
very different, the statistical properties of the signals are very similar. Thus
one may wonder, what is the relationship between the fast quench in the
polymer and the gel formation. As already mentioned, during the fast quench
the polymer is strongly out of equilibrium, which is the same situation for
the liquid-like state at the very beginning of the gel transition. The speed of
this transition is controlled by the initial Laponite/water concentration and
therefore intermittency should be a function of this parameter. Preliminary
measurements seem to confirm this guess: the higher the concentration, the
stronger the intermittency.

The main consequence of these observations in the electric measurements
is that the definition of Teff based on FDR depends on the cooling rate
(on the concentration for the colloid) and probably on Tf . In Fig. 21 we
have summarized the Teff obtained by electric measurements performed on
glycerol [11] and on polycarbonate (Sect. 2) and by magnetic measurements
performed on a spin glass [16]. Specifically we plot Teff/Tg versus Tf/Tg.
The straight line is the FDT prediction for Teff . Looking at this figure we
see that the situation is rather confused. However it becomes more clear
if one takes into account the cooling rate. As the Tg is quite different in
the various materials we define a relative cooling rate Q = ∂T

∂t
1

Tg
, which

takes the following values: 0.5 min−1 for the spin glass, 0.12 min−1 for the
polycarbonate fast quenches (Tf/Tg = 0.93 and 0.79), 0.009 min−1 for the
polycarbonate slow quenches (Tf/Tg = 0.98) and 0.012 min−1 for the glycerol
experiment. Thus by considering the relative cooling rate it is clear that in
the fast quenches Teff is very large and in the slow quenches it is small
independently of the material. However a dependence on Tf seems to be
present too. Many more measurements are certainly necessary to confirm
this dependence of Teff on Tf and on the cooling rate.

Let us now briefly discuss the results on the mechanical thermal noise.
To the best of our knowledge there are only three measurements done on
this kind of noise in aging systems, one in polycarbonate (Sect. 3) and two
in Laponite [15, 48]. The two measurements done in Laponite show that for
short tw there is no intermittency and the violation of FDT is very small.
Thus in the case of this colloidal glass different observables give different
Teff . However this result contrasts with the one described in Sect. 3 where
we have shown that the measurements of the mechanical thermal noise agree
with the electric ones because after a fast quench both measurements confirm
the presence of a strong intermittency in the aging dynamics of polycarbon-
ate. This comparison between the mechanical and electric measurements in
polycarbonate is at the moment rather qualitative due to the difficulty of the
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Fig. 21. Teff as a function of Tf . Teff measured in several experiments on
different types of glasses at the beginning of the aging regime. (+) glycerol (f =
7Hz) [11], (�) spin glass (q = qmin) [16], (•) polycarbonate (f = 7 Hz, fast quench),
(∗) polycarbonate (f = 7 Hz, slow quench)

mechanical measurements. Much more precise data are certainly necessary to
give a clear answer. The difference between the mechanical noise in polycar-
bonate and in Laponite is still unexplained. It is certainly related with the
fact the intermittency in the electrical measurements in Laponite is related
to the important role played by the ions in the gel formation.

We want to conclude by a few important and general questions which
remain opens. The first concerns the quench rate. Indeed, is it the speed
in which Tg is crossed that determines the dynamics or the time in which
Tf is approached? This question has been already studied in the context of
response functions but it will be important to analyze it in terms of noise.
The second important open question is why in realistic simulations of Lenard-
Jones glasses intermittency has not been observed [52,53]. Several hypothesis
can be done: (i) The simulations are done for a time which is too short to
observe intermittency which is a very slow phenomenon. (ii) In the simulation
the quench are performed at imposed volume, this is a big difference with
respect to the experiments which are done at imposed pressure. A third open
question concerns the different dynamics of the thermal noise measured on
different observables. Indeed even from a theoretical point view the effective
temperature of different observables is the same in certain models [54] and
different in others [23]. This is certainly a useful information that can give
new insight to the problem of the mechanisms of aging dynamics in different
materials.

This lecture clearly shows the importance of associating thermal noise
and response measurements. As we have already pointed out in the introduc-
tion the standard techniques, based on response measurements and on the
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application of thermal perturbations to the sample, are certainly important
to fix several constrains for the phase space of the system. However they do
no give information on the dynamics of the sample, which can be obtained
by the study of FDR and of the fluctuation PDF.
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We review some recent results on Statistical Mechanics approach to dense
granular media. In particular, by analytical mean field investigation we de-
rive the phase diagram of a monodisperse system. We show that “jamming”
corresponds to a phase transition from a “fluid” to a “glassy” phase. The
nature of such a “glassy” phase turns out to be the same found in mean
field models for glass formers. This gives quantitative evidence to the idea
of a unified description of the “jamming” transition in granular media and
thermal systems, such as glasses.

1 Introduction

A deep connection between the glass transition in molecular glass formers,
structural arrest in colloidal systems, and jamming transition in granular me-
dia [1–6] has often been stressed in the past few years. In spite of the fact
that these systems are very different one from each other, varying suitably
the control parameters, a slowdown and a subsequent structural arrest in
a solid-like disordered state are found in each of them. In [2, 6] a possible
phase diagram for jamming is suggested, which takes into account the fact
that jamming is obtained either raising the volume fraction or lowering the
temperature or lowering the applied stress. Colloidal suspensions and mole-
cular glass formers are both thermal systems, and it is commonly accepted
that both colloidal glass transition and molecular glass transition are of the
same type despite of the fact that different control parameters may drive the
transition. The case of granular materials is instead very different: They are
athermal systems, since the thermal fluctuations are significantly less than the
gravitational energy and the system cannot explore the phase space without
any external driving. Nevertheless an exceedingly slowing down is observed
when a granular material is shaken at low shaking amplitude, or flows under
a low shear stress, with strong analogies with the slowing down observed in
glass formers. Experimental and numerical studies [4–7] have confirmed this
connection, however its precise nature is still unclear [3, 6].

In the present paper in order to study this connection we apply a statis-
tical mechanics approach to granular media. This approach, which has been
extensively developed in previous works [8, 9], is based on an elaboration of
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the original ideas suggested by Edwards [10]. The basic assumption is that
for a granular system subject to an external drive (e.g. tapping), after having
reached stationarity, time averages coincide with suitable ensemble averages
over the “mechanically stable” states. We have shown [9] that this assumption
works for different lattice models namely that a generalized Gibbs distribu-
tion of the stable states describes with good approximation the stationary
state attained by the system under tapping dynamics. Here each tap consists
in raising the bath temperature to a finite value (called tap amplitude) and,
after a lapse of time (called tap duration) quenching the bath temperature
back to zero. By cyclically repeating the process the system explores the
space of the mechanically stable states.

We thus consider one of the above lattice model for which the statisti-
cal mechanics approach works. The model is made up of hard spheres under
gravity. Then we apply standard statistical mechanics methods in order to
investigate analytically the existence and the nature of a possible jamming
transition. More precisely we consider the Bethe-Peierls approximation using
the cavity method [11,12]: By changing the control parameter a phase tran-
sition from a fluid to a crystal is found, and, when crystallization is avoided,
a glassy phase appears. The nature of this glassy phase is analogous to that
found in mean field models for glass formers [12–14]: In particular we observe
a dynamical transition, where an exponentially high number of metastable
states appears, and at a lower temperature a thermodynamic discontinuous
phase transition to a glassy state. A brief account of these calculations can
be found in [15].

However, 3d numerical simulations of the model described above show a
strong tendency to crystallize. For this reason we also consider here a variant
of the model [13] which has the virtue of avoiding crystallization. We find
that the system under gravity evolved by Monte Carlo taps presents features
characteristic of real granular media [16, 17], and at low tap amplitudes a
dynamical transition with properties recalling those of usual glass formers.
In particular we observe a dynamical non linear susceptibility with a max-
imum at increasing time: This behavior, typical of glass formers, is usually
interpreted as the sign of dynamic heterogeneities in the system.

In conclusions the results confirm early speculations about the deep con-
nection between the jamming transition in granular media and the glass tran-
sition in usual glass formers, giving moreover a precise interpretation to its
nature.

In Sects. 2, 3, 4, and 5 we review the statistical mechanics approach to
granular materials. In Sect. 6 based on this approach we use standard method
of statistical mechanics in order to study the jamming transition in granular
materials. Finally in Sect. 7 the 3d model is presented and the numerical
results are shown.
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2 Statistical Mechanics of Dense Granular Materials

In this section we summarize the essential ideas in the statistical mechanics
of dense granular media. These are strongly dissipative systems not affected
by temperature, because thermal fluctuations are usually negligible. There-
fore, the usual temperature of the external bath can be considered zero and
these media called non-thermal. As the system cannot explore its phase space
(unless perturbed by external forces, such as shaking or tapping) it is frozen,
at rest, in its mechanically stable microstates, also called inherent states in
analogy with the glass terminology.

In the statistical mechanics of powders introduced by Edwards [10] it is
postulated that the system at rest (i.e., not in the “fluidized” regime) can be
described by suitable ensemble averages over its “mechanically stable” states.

The simplest assumption about the ensemble distribution at stationarity
is that the probability, Pr, to find the system in one of its mechanically stable
state r is given by [9] the maximization of the system entropy,

S = −
∑

r

Pr ln Pr (1)

with the macroscopic constraint, in the case of the canonical ensemble, that
the system average energy, E =

∑
r PrEr, is given. This assumption leads to

the Gibbs result:

Pr ∝ e−βconf Er (2)

where βconf is a Lagrange multiplier, called inverse configurational tempera-
ture, enforcing the above constraint on the energy:

βconf =
∂Sconf

∂E
Sconf = ln Ω(E) (3)

Here, Ω(E) is the number of mechanically stable states with energy E. Thus,
summarizing, the system at rest has Tbath = 0 and Tconf = β−1

conf �= 0.
These basic considerations, to be validated by experiments or simulations,

settle a theoretical Statistical Mechanics framework to describe granular me-
dia. Consider, for definiteness, a system of monodisperse hard spheres of mass
m. In the system whole configuration space ΩTot, we can write Edwards’ gen-
eralized partition function as:

Z =
∑

r∈ΩT ot

exp(−HHC − βconfmgH) · Πr (4)

where HHC is the hard core interaction between grains, mgH is the gravity
contribution to the energy (H is particles height), and the factor Πr is a
projector on the space of “mechanically stable” states.

As well as in usual equilibrium “thermal” Statistical Mechanics, it is
straightforward to verify that in the present approach a “standard” (i.e., not
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“out-of-equilibrium”) Fluctuation Dissipation (FD) Theorem holds linking at
stationarity, for instance, the system average energy, E, to its fluctuations,
∆E2:

− ∂E

∂βconf
= ∆E2 . (5)

Usefully, the integration of such equilibrium FD relation may provide direct
access to βconf from energy (or density, etc.) data measured at stationarity [9]:

βconf (E) = β0
conf −

∫ E

E0

(∆E2)−1 dE . (6)

Summarizing, such an “equilibrium” statistical mechanics approach is based
on the hypothesis that at stationarity the system properties do not depend
on the details of the dynamical history. This has to be checked by computer
simulations and experiments. The next step is to verify that a few macroscopic
parameters (such as energy or density, etc.) are completely characterizing
the status of the system, i.e., that a “thermodynamic” description is indeed
possible. In such a case, βconf can be derived, for example, from (6). Finally,
one must check that time averages obtained using such a dynamics compare
well with ensemble averages over the distribution (2).

In the following sections we discuss some recent results [9] about schematic
models validating and generalizing Edwards’ Statistical Mechanics approach.
In particular, we show by mean field analytical calculations that granular
media undergo a phase transition from a (supercooled) “fluid” phase to a
“glassy” phase, when their crystallization transition is avoided. The nature
of such a “glassy” phase results to be the same found in mean field models
for glass formers: a discontinuous one step Replica Symmetry Breaking phase
preceded by a dynamical freezing point. These results are supported by Monte
Carlo (MC) “tap dynamics” simulations which, in the region of low MC
shaking amplitudes, show a pronounced jamming similar to the one found in
experiments on granular media.

3 Monodisperse Hard Sphere Model
for Granular Materials

The simplest model for granular media we considered [9] is a system of hard-
spheres of equal diameter a0 =

√
2, subjected to gravity. We have studied

this model on a lattice, constraining the centers of mass of the spheres on the
sites of a cubic lattice (see inset in Fig. 3). The Hamiltonian of the system is:

H = HHC({ni}) + gm
∑

i

nizi , (7)

where the height of site i is zi, g = 1 is gravity acceleration, m = 1 the
grains mass, ni = 0, 1 the usual occupancy variable (i.e., ni = 0 or 1 if site i
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t

TΓ

τ0
bath

T

Fig. 1. Our lattice models for granular media are subject to a Monte Carlo dy-
namics made of “taps” sequences. A “tap” is a period of time, of length τ0 (the
tap duration), during which the system evolves at a finite bath temperature TΓ

(the tap amplitude); after each “tap” the system evolves at TΓ = 0 and reaches a
mechanically stable state

is empty of filled by a grain) and HHC({ni}) an hard-core interaction term
that prevents the overlapping of nearest neighbor grains (this term can be
written as HHC({ni}) = J

∑
〈ij〉 ninj , where the limit J → ∞ is taken).

We perform a standard Metropolis algorithm on the system. The particles,
initially prepared in a random configuration, are subject to taps (see Fig. 1),
each one followed by a relaxation process. During a tap, for a time τ0 (called
tap duration), the temperature is set to the value TΓ (called tap amplitude),
so that particles have a finite probability, pup ∼ e−mg/TΓ , to move upwards.
During the relaxation the temperature is set to zero, so that particles can only
reduce the energy, and therefore can move only downwards. The relaxation
stops when the system has reached a blocked state, where no grain can move
downwards. Our measurements are performed at this stage when the shake
is off and the system is at rest. The time, t, is the number of taps applied to
the system.

Under such a tap dynamics the systems reaches a stationary state where
the Statistical Mechanics approach to granular media can be tested, and
particularly Edwards hypothesis can be verified by comparing time averages
to ensemble averages of (2).

4 Stationary States and Time Averages

During the tap dynamics, in the stationary state, the time average of the
energy, E, and its fluctuations, ∆E2, are calculated. Figure 2 shows E (main
frame) and ∆E

2
(inset) as function the tap amplitude, TΓ , (for several values

of the tap duration, τ0). Since sequences of taps, with same TΓ and different
τ0, give different values of E and ∆E

2
, it is apparent that TΓ is not the

right thermodynamic parameter. On the other hand, if the stationary states
are indeed characterized by a single thermodynamic parameter the curves
corresponding to different tap sequences (i.e. different TΓ and τ0) should
collapse onto a single master function, when ∆E

2
is parametrically plotted
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Fig. 2. The time average of the en-
ergy, E, and (inset) its fluctuations,

∆E
2
, recorded at stationarity during

a tap dynamics, as a function of the
tap amplitude, TΓ , in the 3D lattice
monodisperse hard sphere model. Dif-
ferent curves correspond to sequences
of tap with different values of the du-
ration of each single tap, τ0

Fig. 3. Time averages of energy fluc-
tuations ∆E2 plotted as function of
the time average of energy E. Filled
circles, triangles and squares are time
averages obtained with different tap
dynamics. Empty circles are indepen-
dently calculated ensemble. The col-
lapse of the data obtained with dif-
ferent dynamics shows that the sys-
tem stationary states are character-
ized by a single thermodynamic pa-
rameter. The agreement with the en-
semble averages show the success of
Edwards’ approach to describe the
system macroscopic properties

as function of E. This is the case in the present model, where the data collapse
is in fact found and shown in Fig. 3. This is a prediction that could be easily
checked in real granular materials.

A technique to derive from raw data the thermodynamic parameter βfd

conjugated to E (apart from an integration constant, β0), is through the
usual equilibrium Fluctuation-Dissipation relation of (5). By integrating (5),
(6) is obtained and βfd −β0 can be expressed as function of E or (for a fixed
value of τ0) as function of βΓ = 1/TΓ : βfd − β0 ≡ g(βΓ ) (the constant β0

can be determined as explained in [9]). By now, we use the name βfd for the
thermodynamic parameter conjugated to E because we can conclude that
βfd = βconf only when the average over the tap dynamics and the ensemble
average with (2) coincide. Thus, even though we have just shown that a
“thermodynamic”, i.e., a Statistical Mechanics description is indeed possible,
we have still to show that specifically the distribution of (2) holds. This is
accomplished in the next section.
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5 Ensemble Averages

Summarizing, in Sect. 4 we have found that the fluctuations of the energy in
the stationary state depend only on the energy, E, and not on the past history.
More generally, we found [9] that all the macroscopic quantities we observed
depend only on the energy, E, or on its conjugate thermodynamic parameter,
βfd, thus the stationary state can be genuinely considered a “thermodynamic
state”.

We now show that ensemble averages based on the theoretical distribution
of (2) coincide with time averages over the tap dynamics. We compare, for
instance, the time average of the energy, E(βfd), recorded during the taps
sequences, with the ensemble average, 〈E〉(βconf ), over the distribution (2).
To this aim we have independently calculated the ensemble average 〈E〉, as
function of βconf . Fig. 4 (see also Fig. 3) shows a very good agreement between
〈E〉(βconf ) and E(βfd) (notice that there are no adjustable parameters). Such
an agreement was found for all the observables we considered [9]. In Fig. 4
(inset) we also show the dependence of the configurational temperature Tconf

on the parameters of the tap dynamics TΓ and τ0. Finally, we mention that
we have also successfully tested Edwards scenario in an other model, the
“frustrated lattice gas” [9], a system in the category of spin glasses.

Fig. 4. Main frame The time average E and the ensemble average over the
distribution (2) 〈E〉, plotted respectively as a function of Tfd and Tconf (in units
mga0), in the 3D monodisperse hard-sphere system under gravity described in the
text. Symbols are as in Fig. 3. Time averages over the tap dynamics and Edwards’
ensemble averages coincide. Lower Inset The temperature Tfd ≡ β−1

fd defined by
(5) as function of TΓ (in units mga0) for τ0 = 500, 10, 5 MCS (from top to bottom).
The straight line is the function Tfd = TΓ
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6 Mean Field Solution in the Bethe-Peierls
Approximation

Having shown in previous sections that in the model (7) the partition function
is given by (4), in the present section we show the phase diagram of the model,
(7), obtained using a mean field theory in the Bethe-Peierls approximation
(see [11, 12] and refs therein), based on a random graph (plotted in Fig. 5)
which keeps into account that the gravity breaks up the symmetry along the
z axis. This lattice is made up by H horizontal layers (i.e., z ∈ {1, ...,H}).
Each layer is a random graph of connectivity, k − 1 = 3. Each site in layer
z is also connected to its homologous site in z − 1 and z + 1 (the total
connectivity is thus k + 1). Locally the graph has a tree-like structure but
there are loops whose length is of order lnN , insuring geometric frustration.
In the thermodynamic limit only very long loops are present. The details of
calculations are given in [27] (see also [15, 18] where this mean field theory
was first introduced).

z−1

z

z+1

Fig. 5. In the mean field approximation, the grains are located on a Bethe lattice,
sketched in the figure, where each horizontal layer is a random graph of given
connectivity. Homologous sites on neighboring layers are also linked and the overall
connectivity, c, of the vertices is c ≡ k + 1 = 5

We solve the recurrence equations found in the Bethe-Peierls approxima-
tion in three cases: 1) A fluid-like homogeneous phase; 2) a crystalline-like
phase characterized by the breakdown of the horizontal translational invari-
ance; 3) a glassy phase described by a 1-step Replica Symmetry Breaking
(1RSB).

The results of the calculations are summarized in Fig. 6, where the bulk
density at equilibrium, Φ ≡ Ns/(2〈z〉 − 1) [19] (where 〈z〉 is the average
height) is plotted as a function of the configurational temperature, Tconf ,
for a given value of the number of grains per unit surface, Ns. We found
that at high Tconf a homogeneous solution corresponding to the fluid-like
phase is found. By lowering Tconf at Tm a phase transition to a crystal phase
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Fig. 6. The density, Φ ≡ Ns/(2〈z〉 − 1), for Ns = 0.6 as a function of Tconf . Φmax

is the maximum density reached by the system in the crystal phase

(an anti-ferromagnetic solution with a breakdown of the translation invari-
ance) occurs. The fluid phase still exist below Tm as a metastable phase
corresponding to a supercooled fluid when crystallization is avoided. Finally
a 1RSB solution (found with the cavity method [11]), characterized by the
presence of a large number of local minima in the free energy [11], appears at
TD, and becomes stable at a lower point TK , where a thermodynamic tran-
sition from the supercooled fluid to a 1RSB glassy phase takes place. The
temperature TD, which is interpreted in mean field as the location of a dy-
namical transition where the relaxation time diverges, in real systems might
instead correspond to a crossover in the dynamics (see [12, 14, 20] and Refs.
therein). Φ(Tconf ) has a shape very similar to that observed in the “reversible
regime” of tap experiments [16,21]. The location of the glass transition, TK ,
corresponds to a cusp in the function Φ(Tconf ). The dynamical crossover
point TD might correspond to the position of a characteristic shaking ampli-
tude Γ ∗ found in experiments and simulations where the “irreversible” and
“reversible” regimes approximately meet.

The model, (7), simulated in 3d by means of Monte Carlo tap dynamics
[15] presents a transition from a fluid to a crystal as predicted by the mean
field approximation, density profiles in good agreement with the mean field
ones, and in the fluid phase a large increase of the relaxation time as a
function of the inverse tap amplitude. In the following section we study a
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more complex model for hard spheres, where an internal degree of freedom
allows to avoid crystallization [13].

7 Hard Spheres with an Internal Degree of Freedom

The Hamiltonian of the model is

H =
∑

〈ij〉
ninjφij(σi, σj) + mg

∑

i

nizi , (8)

where zi is the height of site i, g = 1 is the gravity acceleration, m = 1
the grain mass, ni ∈ {0, 1} is the occupancy variable (absence or presence of
a grain on site i), σi ∈ {1, . . . , q} represents the internal degree of freedom
(which we call spin), and φij(σi, σj) is the interaction energy between spins.
Different values of the spin correspond to different positions of the particle
inside the cell. It is reasonable that a few number of internal states might be
enough to catch the main features of real systems.

As in [13] we study a simple realization of the model described by (8).
Interpreting the spin as position of the particle in the cell, our choice can be
easily visualized in 2d, as shown in Fig. 7. We partition the space in square
cells, and subdivide each cell into four internal positions (namely q = 4).
When a cell is occupied by a particle in any given position, a hard-core
repulsion excludes the presence of particles in some of the internal states of
the neighboring cells (namely the interaction φij(σi, σj) is chosen zero if the
positions σi and σj are “compatible”, and infinite otherwise). This choice
can be interpreted as a coarse grained version of a hard sphere system in the
continuum. In 3d we subdivide the space into cubic cells, and considers six
internal positions instead of four.

Fig. 7. The model in two dimensions: the space is partitioned in square cells, and
each cell can be occupied by at most one particle in anyone of the four shown posi-
tions (little circles). A particle in any given position (large shaded circle) excludes
the presence of particles in any of the black colored positions
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In the Monte Carlo simulations, N = 433 grains are confined in a 3d
box of linear size L = 12 (i.e. Ns = 3), between hard walls in the vertical
direction and with periodic boundary conditions in the horizontal directions.
The system is again subjected to a Monte Carlo tap dynamics as described
in Sect. 3.

In the following the tap duration is fixed, τ0 = 10MCsteps/particle,
and different tap amplitudes, TΓ , are considered. In Fig. 8 the bulk density,
Φ ≡ N/L2(2〈z〉 − 1), is plotted as a function of TΓ : Φ(TΓ ) has a shape
resembling that found in the “reversible regime” of tap experiments [16, 21],
and moreover very similar to that obtained in the mean field calculations
and shown in Fig. 6. At low shaking amplitudes (corresponding to high bulk
densities) a strong growth of the equilibration time (i.e. the time necessary to
reach stationarity) is observed, and for the lowest values here considered (the
black stars in Fig. 8) the system remains out of stationarity. In conclusions
the system here studied presents a jamming transition at low tap amplitudes
as found in real granular media.

In order to test the predictions of the mean field calculations, in the follow-
ing we measure quantities usually important in the study of glass transition:
The relaxation functions, the relaxation time and the dynamical susceptibil-
ity, connected to the presence a dynamical correlation length.

Fig. 8. The bulk density, Φ ≡ N/L2(2〈z〉 − 1), is plotted as function of TΓ for
τ0 = 10 MCsteps/particle. The empty circles correspond to stationary states, and
the black stars to out of stationarity ones. Φmax is the maximum density reached
by the system in the crystal phase, Φmax = 6/7
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In particular we calculate the two-time autocorrelation functions:

C(t, tw) =
1
N

∑

i

ni(t)ni(tw)σi(t)·σi(tw) , (9)

where σi are unit length vectors, pointing in one of the six coordinate direc-
tions, representing the position of the particles inside the cell; the average
(. . .) is done over 16− 32 different realizations of the model obtained varying
the random number generator in the simulations, and the errors are calcu-
lated as the fluctuations over this statistical ensemble. For values of tw long
enough, the system reaches a stationary state, where the time translation
invariance is recovered, i.e., C(t, tw) = C(t − tw). In this time region, by
averaging C(t′, tw) over t′ and tw such that t = t′ − tw is fixed, we calculate
the “equilibrium” autocorrelation functions

〈q(t)〉 = 〈C(t′ − tw)〉 , (10)

and the dynamical non linear susceptibility

χ(t) = 〈q(t)2〉 − 〈q(t)〉2 . (11)

As shown in Fig. 9, at low values of the tap amplitudes, TΓ , two-step de-
cays appear, well fitted in the intermediate time region, by the β-correlator

Fig. 9. The “equilibrium” autocorrelation function, 〈q(t)〉, plotted as function of t,
for tap amplitudes TΓ = 0.60, 0.50, 0.425, 0.40, 0.385, 0.365, 0.36 (from bottom
to top). The continuous line in figure is the β-correlator of the mode coupling theory
with exponent parameters a = 0.30 and b = 0.52. The dashed line is a stretched
exponential ∝ exp[−(t/τ)β ] with β = 0.70
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Fig. 10. The relaxation time, τ , as function of the tap amplitude inverse, T−1
Γ . The

dashed line is a power law, (TΓ −TD)−γ2 , with TD = 0.40±0.01 and γ2 = 1.52±0.10.
The continuous line is an Arrhenius fit, eA/TΓ , with A = 17.4 ± 0.5 (the data in
this region are also well fitted by both a super-Arrhenius and Vogel-Fulcher laws)

predicted by the mode coupling theory for supercooled liquids [22, 23] (the
continuous curve in Fig. 9), and at long time by stretched exponentials (the
dashed curve in figure). The relaxation time, τ , is defined as 〈q(τ)〉 ∼ 0.1.

In Fig. 10 the relaxation time, τ , is plotted as a function of the tap
amplitude, TΓ : A clear crossover from a power law to a different regime
is observed around a tap amplitude TD. The power law divergence can be
interpreted as a mean field behavior, followed by a hopping regime.

The divergence of the relaxation time at vanishing tap amplitude is con-
sistent with the experimental data of Philippe and Bideau [16] and D’Anna
et al. [4]. Their findings are in fact consistent with an Arrhenius behavior
as function of the experimental tap amplitude intensity. However a direct
comparison with our data is not possible since we do not know the rela-
tion between the experimental tap amplitude and the tap amplitude in our
simulations.

The dynamical non linear susceptibility, χ(t), plotted in Fig. 11 at differ-
ent TΓ , exhibits a maximum at a time, t∗(TΓ ). The presence of a maximum in
the dynamical non linear susceptibility is typical of glassy systems [24,25]. In
particular the value of the maximum, χ(t∗), diverges in the p-spin model [24]
as the dynamical transition is approached from above, signaling the presence
of a diverging dynamical correlation length. In the present case the value of
the maximum increases as TΓ decreases (except at very low TΓ where the
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Fig. 11. The dynamical non linear susceptibility, χ(t), (normalized by χ(t0), the
value at t0 = 1) as a function of t, for tap amplitudes TΓ = 0.60, 0.50, 0.425,
0.41, 0.40, 0.385, 0.3825 (from left to right)

maximum seems to decrease [26]). The growth of χ(t∗) in our model suggests
the presence of a growing dynamical length also in granular media.

8 Conclusions

In conclusions using standard methods of statistical mechanics we have inves-
tigated the jamming transition in a model for granular media. We have shown
a deep connection between the jamming transition in granular media and the
glass transition in usual glass formers. As in usual glass formers the mean
field calculations obtained using a statistical mechanics approach to granular
media predict a dynamical transition at a finite temperature, TD, and, at
a lower temperature, TK , a thermodynamics discontinuous phase transition
to a glass phase. In finite dimensions 1) the dynamical transition becomes
only a dynamical crossover as also found in usual glass formers [12, 14, 20]
(here the relaxation time, τ , as a function of both the density and the tap
amplitude, presents a crossover from a power law to a different regime); and
2) the thermodynamics transition temperature, TK , seems to go to zero (the
relaxation time, τ , seems to diverge only at TΓ � 0, even if a very low value
of the transition temperature is consistent with the data).
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Rheological Aspects of the Solid-Liquid
Transition in Jammed Systems

P. Coussot

LMSGC, Institut Navier, Champs sur Marne, France

A common property of jammed systems is a yield stress they have to over-
come in order to start to flow. In rheology it is generally assumed that the
corresponding solid-liquid transition is continuous, the steady state viscosity
progressively decreasing from infinity to a finite value as the applied shear
stress is increased beyond the yield stress. Recent experiments with various
materials such as colloidal suspensions, foams, emulsions, or polymer gels,
show that this transition is in fact abrupt: in steady state, at a critical stress
the material viscosity abruptly turns from infinity to a finite value. This phe-
nomenon corresponds to another effect observed from MRI-rheometry tests:
in steady state such pasty materials either flow at a sher rate larger than
a critical, finite value, associated to a critical stress, or do not flow at all.
This phenomenon has also a dynamic character, which is in particular illus-
trated by the “viscosity bifurcation” in time under controlled stress: below
the critical stress value the shear rate progressively decreases until reaching
stoppage; beyond this critical stress the shear rate increases and reaches a
finite value. Moreover for a material initially at rest the interface between
the sheared and unsheared regions, i.e. the slope break, progressively reaches
its asymptotic position in time. From these results we deduce that usual
macroscopic observations basically reflect complex space and time evolutions
of flow and material characteristics in the rheometer gap, rather than local
time-dependent properties.

1 Introduction

From a physical point of view concentrated emulsions, foams, colloidal sus-
pensions or polymeric gels can be considered as jammed systems [1] since
they are made of a great number of elements (droplets, bubbles, particles,
polymer chains) in strong (direct or at distance) interaction in a liquid. From
a mechanical point of view these are pasty materials or, equivalently, yield
stress fluids, in the sense that they cannot flow in steady state unless the
stress applied to them overcomes a critical, finite value. This property results
from the existence of a continuous network of interactions between elements,
which has to be broken for flow to occur. The strength of this network is
related to the current distribution of positions and states of the elements
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within the liquid. Since we are dealing with out-of-equilibrium systems we
can expect that the strength of this network will continuously evolve in time.
Nevertheless, in practice, the mechanical behavior of such materials has been
generally considered within the frame of simple yield stress fluids which ne-
glects possible time-dependent effects and assumes a continuous transition
from a solid to a liquid regime as the stress increases beyond a critical value.
Since the “jammed character” of these systems mainly relies on their mechan-
ical characteristics, and more precisely on their ability to become “liquid”
beyond some critical stress, here we intend to clarify the characteristics of
the solid-liquid transition from a rheological point of view, and in particular
the interplay of yielding and time-effects.

In the following we start by reviewing the usual yield stress fluid concept
and its implications (Sect. 2). Then, in particular taking advantage of MRI-
rheometry coupled observations, we show that the steady state rheological
behavior of pasty materials differs from the usual asssumption (Sect. 3): there
is a discontinuity in shear rate at the transition between the solid and the
liquid regime. The practical consequences of this phenomenon in rheometry
are reviewed. Some aspects of the rheological behavior of pastes in tran-
sient regime are then described in Sect. 4. We show that before a critical
deformation the material can be considered as a viscoelastic solid. Beyond
this critical deformation the material falls in its liquid regime and exhibits
thixotropic properties which mainly result in the displacement of the sheared
region in time.

2 The Usual Concept of Yield Stress Fluids

2.1 Yielding

Yield stress fluids are materials which can flow only when the applied stress
overcomes a critical value, namely their yield stress τc. At first sight they
resemble ideal plastic materials but they are in fact viscoplastic, since the
resulting flow rate increases with the difference between the applied stress
and the yield stress. In this context usual models describing such a behavior
in simple shear steady state express as follows:

τ < τc → γ̇ = 0 (1)

τ > τc → τ = τc + f(γ̇) , (2)

in which τ and γ̇ are the shear stress and shear rate amplitudes [2]. A “solid”
and a “liquid” regimes thus respectively correspond to (1) and (2). A fun-
damental assumption of usual yield stress models is that f is an increasing
function tending to zero when γ̇ tends to zero. This means that there is a con-
tinuous transition from the solid to the liquid regime in terms of shear rate:
as the shear stress decreases to the yield stress, the shear rate progressively
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tends to its value in the solid regime, i.e. zero. In other terms the apparent
viscosity (η = τ/γ̇) of the material is finite in the liquid regime and progres-
sively tends to infinity (its value in the solid regime) as the applied stress
tends to the yield stress. In practice the Herschel-Bulkley model, for which
f(γ̇) = Kγ̇n, in which K and n are two material parameters, and the Casson
model, for which f(γ̇) = Kγ̇ + 2

√
Kτcγ̇, are the most often used models.

Note that the Bingham model is recovered from the Herschel-Bulkley model
with n = 1. The Herschel-Bulkley model appeared to be capable to very well
represent usual shear stress vs. shear rate data over a wide range of shear
rates (several decades) [3, 4]. Note however that in general such data were
obtained either in steady state under controlled velocity or in pseudo steady
state under controlled, but more or less slowly increasing or decreasing, stress
(see 3). A typical example of corresponding data and model fitting is shown
in Fig. 1.
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Fig. 1. Pseudo steady state shear stress vs shear rate data for a model emulsion
(see characteristics in [35]), and fit of a Herschel-Bulkley model

More sophisticated models were also proposed to take into account a
possible viscoelastic solid regime for stresses below the yield stress or, more
precisely, before a critical deformation from the rest state [5–7]. For example
a basic approach consists to replace equation (1) by a viscoelastic solid model
such as the Kelvin-Voigt model for γ̇ < γ̇c, i.e. τ = Gγ + µγ̇, in which G and
µ are two material parameters and γ is the deformation from the initial (rest)
state. Note that in this frame the solid-liquid transition is expected for the
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critical deformation γc, and the minimum stress value making it possible to
reach this value is τc = Gγc.

Twenty years ago it was suggested that the concept of yielding was in-
appropriate [8, 9] because all materials tend to flow, possibly at extremely
low shear rates, for shear stresses below the yield stress. In this frame the
solid regime would in fact be a pseudo solid regime and the behavior of the
material would be represented by equation (2) along with a modified version
of equation (1): τ < τc → γ̇ = τ/η∞, in which η∞ is the Newtonian viscosity
of the material under low shear stresses. This questio n was the subject of
strong conceptual debates in rheology [10–14] and the main conclusion was
that since the shear rate values possibly reached in this pseudo-solid regime
are extremely small (say of the order of 10−6s−1) the corresponding flows
could hardly play a role in practice. Moreover it was remarked that in several
cases, although such materials apparently flowed under low shear stresses in
rheometers, they did not flow under other conditions (the material kept its
own shape in a container or a denser ball did not settle through it over several
years). This suggests that some experimental problems may affect rheometri-
cal data under low shear rates, a point that will be enlighted by recent results
presented below.

2.2 Thixotropy

In the solid and the liquid regime, pasty materials can exhibit thixotropic
properties: under given boundary conditions (stress or velocity) their appar-
ent viscosity varies in time. Note that this phenomenon is a reversible aging
of the material. In order to deal with the rheology of such systems a ba-
sic though often used approach consists to consider that this phenomenon
adds a time-dependence in the above, simple, yield stress model for the liq-
uid regime: τc and f are now functions of the flow history. A practical way
for expressing this relies on the assumption that thixotropy in fact reflects
the evolution of the internal organization in time of fluid elements such as
bubbles, droplets or colloidal particles, which may be described by a single
parameter, λ, the structure state parameter [15–18]. Under these conditions
τc and f are now considered as functions of the parameter λ which, as for it,
depends on flow history. A simple way to express this dependence consists to
write a kinetic equation for [19,20]:

dλ

dt
= g(λ) − αγ̇h(λ) (3)

The form of (3) relies on some physical assumptions: it is assumed that the
rate of change of λ is equal to the difference between a rate of “restructura-
tion” of the system, which solely depends on the current state of structure,
and a rate of “destructuration” due to flow, which is proportional to the shear
rate because it is natural to expect it to be proportional to the amplitude of
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deformation undergone by the fluid per unit time, namely dγ/dt = γ̇. Unfor-
tunately the exact physical meaning of λ is generally ignored so that no clear
technique has been identified for measuring it directly. Although it was sug-
gested that it could for example be related to the number of links between
particles, the average size of flocs in a flocculating system or the average
depth of the potential wells of particles in a non-flocculating suspension, this
fundamentally remains a phenomenological parameter of rheological models.
For the same reason the exact form of (3) cannot take advantage of a clearer
physical approach.

2.3 Flow Characteristics of Simple Yield Stress Fluids

Due to their strongly non-linear rheological behavior the flow characteris-
tics of yield stress fluids can be very sensitive to heterogeneous shear stress
distributions. Here we focus on these effects by reviewing their basic flow
characteristics in the case of conduit and Couette flows.

Capillary Flow

Let us consider a yield stress fluid the behavior of which may well be rep-
resented by a Herschel-Bulkley model and flowing in steady state through a
cylindrical conduit of radius ro. For reasons of symmetry it may be shown
that the flow occurs in the form of concentric fluid layers gliding relatively
to each other along the conduit axis. From the momentum equation applied
on a virtual rod of length L we deduce the following relationship between
the shear stress and the pressure drop: 2τ/r = ∆p/L. Since the first term
only depends on r while the second term only depends on z they are both
constant. It follows from (1–2) that there exists a critical radius at which the
yield stress is reached:

rc =
2τc

∆p/L
(4)

and the complete velocity profile writes:

r ≤ rc → vz(r) = A(ro − rc)(n+1)/n (5)

r > rc → vz(r) = A
(
(ro − rc)(n+1)/n − (r − rc)(n+1)/n

)
(6)

in which A = (n/n + 1)(∆p/2kL)1/n. This velocity profile is composed of
a rigid (“plug”) region around the central axis (equation (5)) and a sheared
region (equation (6)) between the plug and the wall. The flow of a yield stress
fluid in an open channel of rectangular shape is more complex but the shear
stress also increases towards the wall so that we again expect a plug region
around the central axis. This is effectively what we could observe at the free
surface of a channelized mudflow (cf. Fig. 2).
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Fig. 2. View from upper of a channelized flow of a mud suspension: the deformation
of the line of pepper dropped upstream transversally reflects the velocity profile
(from [38])

Couette Flow

In a Couette flow between two coaxial cylinders of radii r1 and r2 (outer
radius), when the flow is stable and with negligible edge effects and inertia
it may be shown that the flow consists in the relative motion of concentric
fluid layers so that the local shear rate is defined as:

γ̇(r) = r
δ(vθ/r)

δr
(7)

in which vθ(r) is the tangential velocity of the fluid at the distance r. More-
over, from the momentum equation we obtain the shear stress distribution:

τ =
M

2πhr2
(8)

in which M is the torque applied onto the inner cylinder and r the distance
from the axis.

For a yield stress fluid there again exists a critical distance at which the
yield stress is reached:

rc =
√

M

2πhτc
. (9)

If rc > r2 the fluid in the gap is completely sheared. More interesting is the
case for which rc < r2 since there is an unsheared region between the two
cylinders:
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rc < r ≤ r2 → vθ(r) = 0 ; (10)

r1 ≤ r ≤ rc → vθ(r) =
(

M

2πhk

)1/n

r

(∫ rc

r

1
r′

(
1
r′2

− 1
r2
c

)1/n

dr′

)

. (11)

There is no analytical solution of the integral in (11) except for entire values
of 1/n.

For both capillary and Couette flows it may be shown from (6) and (11)
that the variations of the velocity at the approach of the unsheared region
as a function of the distance r are proportional to |r − rc|1+1/n. We deduce
that vθ(r) → 0 when r → rc and that the shear rate is continuous:

γ̇(r) → 0 when r → rc . (12)

This result is in fact a straightwforward consequence of the rheological be-
havior of the fluid. The same result would be obtained for any yield stress
model of the type (2) such that f → 0 when γ̇ → 0. Typical resulting velocity
profiles are shown in Fig. 3. Since the shear stress decreases with the distance
from the inner cylinder the slope of the velocity profile, which is related to the
shear rate via (7), decreases with the distance r. At the approach of the plug
region this slope tends to zero. Moreover, in the limit of small (r − rc)/rc, it
may be shown that the velocity profiles are self-similar, i.e. they have exactly
the same shape at different scales.
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Fig. 3. Herschel-Bulkley velocity profiles in a Couette flow geometry for different
values of n
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3 Rheological Behavior of Jammed Systems
from Local Rheometry

The exact value of the yield stress of a given material appears to be hard to
determine in practice, as proved by the fact that different techniques usually
provide different values for the same material. It is also worth noting that,
for a fluid following a yield stress model, at low shear rates, the shear stress
vs shear rate curve is almost horizontal at the approach of the yield stress,
so that a small uncertainty on stress may lead to a very large error on the
effective shear rate, say of the order of one or two decades. This implies
that the shear rate effectively reached for some stress value close to the yield
stress can significantly depend on the exact stress distribution in the fluid.
In this context it recently became clear that direct observations of the flow
field should make it possible to clarify the exact behavior of the fluid at the
solid-liquid transition.

When the stress distribution is known, direct observations of the flow
field may be used for a “local rheometry”. For example, for a Couette flow,
as soon as we have measured the velocity profile we know the local shear rate
from (7), and since we a priori know the shear stress distribution from (8),
we have the shear stress and the shear rate at any point r in the gap. By
eliminating r between these two expressions we deduce the shear stress vs
shear rate relation at any time. Different ways exist for measuring the velocity
profiles in a flowing fluid: Particle Imaging Velocimetry (PIV), Dynamic Light
Diffusion, Laser Doppler Anemometry, X or Gamma ray, ultrasounds. These
techniques are based on the analysis of signal attenuation or scattering, often
with the help of autocorrelation functions. On the contrary MRI is based
on the direct, local excitation of material particles within the sample under
study. Although some of the above techniques have been used marginally for
studying complex fluids this is mainly MRI which has been developed with
rheological objectives [21–33].

3.1 Flow Characteristics at the Solid-liquid Transition
and Shear-banding

Typical tangential velocity profiles obtained for a pasty material in steady
state flows within a Couette geometry are presented in Fig. 4. At first sight
they look as expected for a yield stress fluid. However it appears impossible
to fit a Herschel-Bulkley model over such a velocity profile over the complete
range of velocities [34, 35]. This is because the velocity profiles for such ma-
terials are not self-similar at the approach of the solid-liquid interface (cf.
Fig. 5). In fact at a sufficiently small scale the slope of the velocity profile re-
mains almost constant over several millimeters until the velocity reaches zero
(cf. Figs. 4–6). Thus, along the solid-liquid interface, in contrast with one
fundamental prediction of simple yield stress models (cf. Â§2.3), the shear
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Fig. 4. Tangential velocity profiles under different rotation velocities of the inner
cylinder for a bentonite suspension obtained from MRI-rheometry (from [36])
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rate in the liquid differs from zero. This result was obtained with various
pasty materials: chocolate, clay suspensions (bentonite [36], laponite [37]),
mayonnaise, silica suspensions [38], carbopol gel [39], cement paste [40], con-
centrated emulsion [35], foam [41], sewage sludges [42], and was also obtained
from molecular dynamics simulations [43].

In most cases the critical shear rate (γ̇c), that is the slope of the velocity
profile in the liquid region along the solid-liquid interface, does not change
significantly when the boundary conditions of the flow, such as the rotation
velocity of the inner cylinder, change, although the position of the interface
changes. Moreover it appears that the shear stress associated to the position
of this interface M(Ω)/2πhrc2 = τc remains constant1. The critical shear rate
(γ̇c) may thus be considered as a rheological parameter of the fluid, associ-
ated to a critical shear stress (τc). Finally the typical form of the effective
constitutive equation of a yield stress fluid in steady state is given by equa-
tion (1) for the solid regime and a modified version of equation (2) for the
liquid regime:

τ > τc → τ = f(γ̇) (13)

1Nevertheless note that for some materials exhibiting strong thixotropic prop-
erties (such as bentonite or laponite suspensions) this is strictly true only if the
material has undergone analogous previous flow histories.
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in which f is now an increasing function such that f(γ̇c) = τc. For example
existing data could be well represented [38] by a power-law function of the
form:

f(γ̇) = τc

(
γ̇

γ̇c

)n

. (14)

However it is worth noting that the range of shear rates studied from MRI-
rheometry is in general rather narrow (typically one decade).

These results imply that at low apparent shear the thickness of the sheared
region should tend towards zero. Such a behavior is reminiscent of shear-
banding in plastic materials and it suggests that the local flow properties of
a paste turn continuously from those of a pure plastic material to those of
a yield stress fluid as the apparent shear rate increases. However our insight
in the local behavior of these materials show that for pastes in steady state,
whatever the size of the sheared band, the fluid is rapidly sheared (at a rate
larger than γ̇c) in some region while the rest of the fluid remains rigid. This
phenomenon is critical when the power n is of the order of 1 because in
that case the shear rate slowly varies with the shear stress. For example, for
a cement paste, a (Newtonian) region in which the fluid is sheared at an
almost constant rate coexists with a (solid) region in which it does not flow
(cf. Fig. 6), but the apparent behavior is that of a simple yield stress fluid.

3.2 Consequences in Rheometry

From these observations it results that a pasty material submitted to an
increasing stress should suddenly turn from a solid to a liquid at a certain
stress value, with a shear rate abruptly growing from zero to γ̇c. In fact usual
observations of yield stress fluids show that the apparent shear rate grows
from zero as the stress increases beyond the yield stress (cf. Â§2). This is so
because in practice there always subsists some slight stress hetereogeneities
in viscometric flows. For example in a cone and plate geometry the stress
is strictly homogeneous only if the cone angle is infinitely small and if the
peripherial free surface is spherical. As a consequence, during an increasing
stress ramp the regions in which the stress is the largest should first fall in
the liquid regime and flow at a shear rate approximately equal to γ̇c while
the rest of the fluid remains in the solid regime. Then, as the stress increases,
the thickness (h) of the liquid region increases, and the apparent shear rate,
equal to hγ̇c/H in which H is the gap between rheometer tools, progressively
increases from zero. This scheme is consistent with the direct observations
of Pignon et al. [44], Coussot et al. [38] (cf. Fig. 7) and the simulations of
Varnik et al. [43]. The corresponding, apparent, flow curve, may be computed
as soon as one assumes (or knows) the exact stress distribution in the gap. It
appears to be very close to the typical Herschel-Bulkley flow curves observed
in practice (cf. Fig. 8).
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Fig. 7. Tangential velocity profiles under different rotation velocities of the upper
cone for a bentonite suspension obtained from MRI-rheometry (from [36])

General consequences for rheometry of jammed systems follow:

1) Rheometrical tests with such materials are systematically affected by
shear-banding at apparent shear rates below γ̇c.

2) Usual yielding flow curves do not only reflect the intrisic rheological be-
havior of the materials; in particular the apparent shear rate under a given
stress value strongly depends on the exact stress distribution in the fluid,
which conditions the way the shear localizes.

3.3 Extreme Shear Localization

The above results also imply that under (apparent) shear rates sufficiently
smaller than the thickness of the sheared region may be of the order of few
times the size of the elements of the fluid. In that case the continuum as-
sumption is no longer valid and the flow of the corresponding band does not
correspond to a flow of the homogeneous paste (at a larger scale). For exam-
ple the apparent behavior of a single layer of droplets sheared between two
plates a priori differs from the behavior of a much larger volume of an emul-
sion made of such droplets. Depending on material this effect takes different
forms. For example, for a foam (cf. Fig. 9) or a laponite suspension [44], un-
der controlled velocity, the shear stress tends to increase towards low shear
rates. Such a situation cannot reflect the effective rheological behavior of a
unique, homogeneous material since it would lead to flow instability. Under
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Fig. 8. Effective flow curve (in terms of T = τapp/τc vs. Γ = γ̇app/γ̇c) of a pasty
material following the constitutive equation (1) and (14) with n = 0.2, and cor-
responding apparent flow curve as deduced from conventional rheometry with a
cone and plate geometry, assuming a homogeneous stress distribution with a slight
power-law perturbation. Note that a qualitatively similar result is obtained with a
Couette geometry in which the stress variations are well controlled. The distribution
of shear in the gap in different situations is represented by successive schemes in
which the sheared region is in dark while the white region corresponds to unsheared
material

controlled stress, for such materials, no steady state data can be obtained in
the range of shear rates for which such a decreasing flow curve is obtained
under controlled velocity. This effect is reminiscent of the decrease of the
friction coefficient for solids at low velocities, and it is likely that for pastes
it indeed corresponds to some kind of “frictional” effects in a thin layer of
such particulate materials.

An opposite effect is obtained with other materials (cf. Fig. 10): below
some shear rate value the stress tends to abruptly decrease towards low shear
rates. This effect is reminiscent of wall slip [35] but here rough surfaces were
used (as in all the experiments reported in this paper). This likely relects
some specific arrangements of the fluid elements along parallel layers. At last,
for many other materials, one obtains the usual, apparent, simple yielding
behavior well represented by a Herschel-Bulkley model [3, 45]. This might
result from some kind of mixing of the material occurring under any flow rate
and leading to an energy dissipation progressively decreasing with velocity.
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More generally these different apparent behavior types result from com-
plex interactions between the specific, local structure of the material (at the
scale of the basic elements), the solid surface and the rest of the material (via
osmotic pressure or migration effects). The apparent behavior of jammed
materials under low (apparent) shear rates, in this “discontinuous” regime,
remains a virgin field of research, which might nevertheless take advantage
of existing knowledge in solid friction or lubrication of complex materials.

4 The Solid-liquid Transition in Jammed Systems:
A Dynamic Phenomenon

4.1 Yielding and Thixotropy

Until now we focused on the steady state behavior of pasty materials, either
in the solid or in the liquid regime. In fact the transition from the solid to the
liquid regime, or from the liquid to the solid regime, appears to be dynamic
phenomena. Let us first examine the solid-liquid transition, i.e. we consider
the material at rest and observe under which conditions we can consider it
has reached the liquid regime. Recent experiments [46] using a new technique
for reconstructing the velocity or deformation profiles in time from creep
tests with a laboratory rheometer showed that the material is viscoelastic in
its solid regime and that the solid-iquid transition occurs, beyond a critical
deformation, progressively in the gap (cf. Fig. 11).

This might in particular affect the physical interpretation of the varia-
tions of the apparent elastic and viscous moduli from dynamics tests. Lo-
cally there is an almost instantaneous transition from the solid to the liquid
regime, so that we would expect a dramatic drop of G′ for a critical stress
or strain amplitude, associated to an increase of G′′ if the stress distribution
was homogeneous. Instead the G′ and G′′ curves progressively vary and their
intersection is generally considered to reflect the solid-liquid transition of the
material, and the yield stress associated to the stress amplitude at this inter-
section (cf. Fig. 12). From the above results we deduce that the progressive
variations of these curves basically reflect the displacement of the solid-liquid
interface in the fluid with stress amplitude increase.

Let us now assume a material in steady state in its liquid regime under a
given stress. At a certain time we apply another stress level and observe the
fluid flow. It appears that for an applied stress larger than a critical value the
flow rate either increases or decreases progressively towards another shear
rate value. For an applied stress smaller than this critical value the fluid
progressively stops flowing (cf. Fig. 13) (“viscosity bifurcation” [47]). Finally,
in steady state the fluid in general appears capable to flow only at a shear
rate larger than a critical, finite value, which obviously corresponds to γ̇c for
sufficiently homogeneous stress distribution. These results are consistent with
MRI data in steady state (cf. Â§3) along with MRI experiments in transient
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Fig. 13. Creep tests with a bentonite suspension under different shear stress after
the same preparation of the material

flows: when an insufficient stress is suddenly applied to a flowing fluid the
local velocity progressively tends to zero until complete stoppage (cf. Fig. 14).
It is worth noting that this effect of viscosity bifurcation was also observed
with granular systems [48] suggesting that it is a generic property of jammed
systems.

A simple, phenomenological, thixotropy model makes it possible to repro-
duce these properties of the liquid-solid transition, and thus suggests a generic
physical explanation of such phenomena. This model assumes a constant rate
of restructuration, i.e. g = 1/θ, and a simple function for the second factor,
i.e. h = λ, in equation (3). Moreover the viscosity is given as: η = ηo(1+λn).
This model appears capable to qualitatively predict the viscosity bifurcation
effect [47] and the velocity bifurcation in the fall of an object through a less
dense, thixotropic fluid either vibrated under different frequencies or after
different times of rest [49]. This model also predicts rather well the delay
before abrupt flow at the approach of some critical angle for a fluid layer
over an inclined plane [50]. It finally appeared capable to predict quantita-
tively the flow characteristics observed by MRI after a sudden change of the
rotation velocity of the inner cylinder (cf. Fig. 14) [51], and the evolution
of the apparent yield stress after some time of rest [50]. Note that, in con-
trast with usual thixotropy models (see Â§2) this phenomenological model
avoids assuming a priori a yield stress form for the constitutive equation.
Here, in agreement with experimental observations, the fluid progressively
evolves towards either the solid or the liquid regime depending on the stress
applied and the initial state of structure (λo). It is thus mainly appropriate
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Fig. 14. Velocity as a function of time at different distances from the central axis
as predicted by the model (continuous lines) and as measured by MRI in Fig. 4
(symbols) for a bentonite suspension in a Couette system after a sudden change of
the rotation velocity of the inner cylinder (from 60 to 10 rpm) (from [51])

for describing the flow properties under flow, and less appropriate for describ-
ing the solid-liquid transition phenomena. In this context, according to this
model, the fluid exhibits an apparent yield stress [51]

τc(λo) =
µo(1 + λn

o )
αθλo

, (15)

corresponding to the critical stress at which the regime bifurcation occurs. In
agreement with existing data [52,53] this apparent yield stress increases with
the “degree of jamming” of the material, such as the fraction of elements in
the liquid or its state of restructuration (which increases with the time of
preliminary rest).

4.2 From Plasticity to Liquid Flow with Increase
in Degree of Jamming

The critical shear rate appears to also increase with the degree of jamming of
the material [47]. For example, under given velocity of rotation of the inner
cylinder in a Couette flow, the thickness of the shear-band, which is roughly
equal to Ωr1/γ̇c decreases with the degree of jamming of the material. This
means that, as its degree of jamming increases, a material will turn from a
simple liquid (extremely low γ̇c) to a pure plastic solid (high γ̇c). This prop-
erty along with the dynamic aspects of the solid-liquid transition described
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Fig. 15. Aspect of the main flow regimes following the dam-break of a bentonite
suspension amount: (a) Type I, simple liquid wave (φ = 4.1; T = 5 min.); (b) Type
II, yield stress fluid layer (;); (c) Type III, landslide (;); (d) Type IV, solid at rest
(φ = 16.4; T = 1 min.); (c) Type III, landslide (φ = 6.4; T = 40 min.); (d) Type
IV, solid at rest (φ = 16.4; T = 1035 min.)

above lead to a large variety of flow characteristics. Let us consider for ex-
ample experiments of dam-break with a bentonite suspension (cf. Fig. 15):
a certain amount of material (at a solid fraction φ) lying behind a dam at
the top of an inclined plane is suddenly released by opening the reservoir
gate, after some time of rest (T ). As the degree of jamming (either T or φ)
increases the resulting flow turns from an apparent simple liquid flow, to a
yield stress fluid flow (forming a mouth stopped in the channel), a landslide
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(abrupt flow in mass, after a certain time, of a part of the fluid), and a solid
being only slightly deformed [54].

5 Conclusion

The solid-liquid transition in jammed systems is a dynamic phenomenon:
the material evolves either towards a solid or a liquid regime depending on
the relative values of the stress applied and a critical stress. In general this
transition does not occur at the same time in different points so that a solid-
liquid interface develops and displaces through the fluid. This in particular
implies that rheometrical data with usual tools often reflect this coupled
spatio-temporal evolution rather than the intrisic properties of the material.

Recently it was also observed that in some systems, strong fluctuations of
the velocity profiles occur either around the transition between two flowing
phases [55] in micellar solutions or around the solid-liquid transition (likely
in the “discontinuous” regime) in foams and granular materials [55–57]. This
suggests that in some cases the solid-liquid transition might also depend on
more complex spatio-temporal collective effects.
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In these notes we present a brief review of the dynamical properties of in-
terfaces in a disordered environment. We focus in particular on the response
of such systems to a very small external force, and the corresponding very
slow motion it entails, so called creep. We discuss various general theoretical
aspects of this problem and consider in detail the case of a one dimensional
interface (domain wall).

1 Introduction

Understanding the statics and dynamics of elastic systems in a random en-
vironment is a longstanding problem with important applications for a host
of experimental systems. Such problems can be split into two broad cate-
gories: (i) propagating interfaces such as magnetic [1–4] or ferroelectric [5,6]
domain walls, fluid invasion in porous media [7], contact line in wetting [8],
epitaxial growth [9] or crack propagation [10]; (ii) periodic systems such as
vortex lattices [11–13], charge density waves [14], or Wigner crystals of elec-
trons [15,16]. In all these systems the basic physical ingredients are identical:
the elastic forces tend to keep the structure ordered (flat for an interface and
periodic for lattices), whereas the impurities locally promote the wandering.
From the competition between disorder and elasticity emerges a complicated
energy landscape with many metastable states. This results in glassy prop-
erties such as hysteresis and history dependence of the static configuration.

To study the statics, the standard tools of statistical mechanics could be
applied, leading to a good understanding of the physical properties. Scaling
arguments and simplified models showed that even in the limit of weak dis-
order, the equilibrium large scale properties of disordered elastic systems are
governed by the presence of impurities. In particular, below four (internal)
dimensions, displacements grow unboundedly [17] with the distance, resulting
in rough interfaces and loss of strict translational order in periodic structures.
To go beyond simple scaling arguments and obtain a more detailed description
of the system is rather difficult and requires sophisticated approaches such as
replica theory [18] or functional renormalization group [19]. Much progress

T. Giamarchi et al.: Dynamics of Disordered Elastic Systems, Lect. Notes Phys. 688, 91–108
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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was recently accomplished both due to analytical and numerical advances.
For interfaces, the glassy nature of the system is confirmed (so called random
manifold), and a coherent picture of the system is derived from the various
methods. Periodic systems have also been shown to have glassy properties but
to belong to a different universality class than interfaces, with quite different
behavior for the long range nature of the correlation functions [12,13,20].

The competition between disorder and elasticity manifests also in the
dynamics of such systems, and if any in a more dramatic manner. Among
the dynamical properties, the response of the system to an external force F is
specially crucial, both from a theoretical point of view, but also in connection
with measurements. Indeed in most systems the velocity v versus force F
characteristics is directly measurable and is simply linked to the transport
properties (voltage-current for vortices, current-voltage for CDW and Wigner
crystals, velocity-applied magnetic field for magnetic domain walls).

Some of the questions related to this issue are shown in Fig. 1. In the
presence of disorder it is natural to expect that, at zero temperature, the
system remains pinned and only polarizes under the action of a small ap-
plied force, i.e. moves until it locks on a local minimum of the tilted energy
landscape. At larger drive, the system follows the force F and acquires a
non-zero asymptotic velocity v. So a first set of questions is prompted by
the zero temperature properties. What is Fc? An estimate of Fc can be ob-
tained via scaling arguments [21] or with a criterion for the breakdown of
the large velocity expansion [22, 23] and related to static quantities such as
the Larkin-Ovchinikov length, or computed numerically by an exact algo-
rithm [24]. The v − F curve at T = 0 is reminiscent of the one of an order
parameter in a second order phase transition [25]. Here the system is out of
equilibrium so no direct analogy is possible but this suggests that one could

T=0

F

V

Fcstatics

T=0

Depinning: 

TAFF or Creep?

moving phase?
Nature of
Large V: 

V = (F−Fc)
β

Fig. 1. The velocity v induced by an external force F of a disordered elastic
system. At zero temperature T = 0 the system stays pinned until a critical force Fc

is reached. At finite temperature a motion can occur even for forces below threshold
F < Fc since the barriers to motion can always be passed by thermal activation
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expect v ∼ (F − Fc)β with a dynamical critical exponent β [26]. Calculation
of such exponents is of course an important question [27–30].

Another important set of questions pertain to the nature of the moving
phase itself, and in particular to the behavior at large velocity: how much
this moving system resembles or not the static one [31–33]? This concerns
both the positional order properties and the fluctuations in velocity such as
the ones measured in noise experiments.

Finally, one of the most important questions, and the one on which we
will concentrate in these notes, is the response well below threshold F 

Fc at finite temperature. In this regime, the system is expected to move
through thermal activation. What is the nature of this motion and what is
the velocity? The simplest answer would be that the system can overcome
barriers via thermal activation, [34] leading to a linear response at small force
of the form v ∼ e−Ub/T F , where Ub is some typical barrier. However it was
realized that such a typical barrier does not exist in a glassy system [35–38]
and that the response of the system was more complicated. The motion is
actually dominated by barriers which diverge as the drive F goes to zero,
and thus the flow formula with finite barriers is incorrect. Well below Fc,
the barriers are very high and thus the motion, usually called “creep” is
extremely slow. Scaling arguments, relying on strong assumptions such as
the scaling of energy barriers and the use of statics properties to describe
an out of equilibrium system, were used to infer the small F response. This
led to a non linear response, characteristic of the creep regime, of the form
v ∼ exp(−C F−µ/T ).

Given the phenomenological aspect of these predictions and the uncon-
trolled nature of the assumptions made, many open questions remain to be
answered, in particular whether such a behavior is indeed correct [39] and
can be derived directly from microscopic equation of the motion [29,40]. We
will review these questions in these notes. The plan of the notes is as fol-
lows. In Sect. 2 we recall the basic concepts of interfaces in the presence of
disorder. In Sect. 3, we recall the phenomenological derivation of the creep
law. We present the microscopic derivation of the creep law from the equa-
tions of motion in Sect. 4, and discuss the similarities and differences with
the phenomenological result. In Sect. 5 we focus on the situation of domain
walls. Such a situation is a particularly important both for experimental re-
alizations of the creep but also because one dimension is the extreme case for
such systems. Conclusions can be found in Sect. 6.

2 Basic Concepts

Let us introduce in this section the basic ingredients of the systems under
study. We will focus in these short notes to the case of interfaces, but similar
concepts apply to periodic systems as well. The interface is a sheet of dimen-
sion d living in a space of dimensions D. For realistic interfaces D = d + 1
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u(r)
r

z

Fig. 2. A one dimensional interface (domain wall) living in a two dimensional space
(film). The position of the interface is determined (provided there are no overhangs
or bubbles) by the displacement u from a flat configuration

but generalization are of course possible (for example D = d corresponds to
periodic systems). We call r the internal coordinate of the interface and z
all its transverse directions. The interface position is labelled by a displace-
ment u(r) from a flat configuration. This determines totally the shape of
the interface provided that u is univalued, i.e. that there are no overhangs
or bubbles. The case of a one dimensional interface (d = 1) in a two di-
mensional film is shown in Fig. 2. Since the interface distortions cost elastic
energy, its zero temperature equilibrium configuration in the absence of dis-
order is the flat one. Deviation from this equilibrium position are described
by an Hamiltonian H[u] which is a function of the displacements u. For small
displacements one can make the usual elastic approximation

H[u] =
1
2

∫
ddq

(2π)d
c(q)u∗

quq (1)

where uq is the Fourier transform of u(r) and c(q) are the so called elastic
coefficients. If the elastic forces acting on the interface are short ranged then
one has c(q) = cq2 which corresponds to

H[u] =
c

2

∫

ddr(∇u(r))2 (2)

For some interfaces where long range interactions play a role different forms
for the elasticity are possible. This is in particular the case when dipolar
forces [41] are taken into account [6] or for the contact line in wetting [42]
and crack propagation [43].

In addition to the elastic energy the interface gains some energy by cou-
pling to the disorder. Two universality classes for the disorder exist (see
Fig. 3). The so called random bond disorder corresponds to impurities that
directly attract or repel the interface. On the contrary, for the so called ran-
dom field disorder the pinning energy is affected by all the randomness that
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Random Bond Random Field

Fig. 3. The two types of disorder (the names are coming from the magnetic real-
ization of such systems). The dark circles are the impurities that contribute to the
pinning energy of the interface. In the random bond case only neighboring impuri-
ties contribute while in the random filed case all the impurities on the left side of
the the interface contribute. This makes the latter disorder effectively long ranged,
even if the disorder potential V (z, r) is short range

the interface has encountered in its previous motion. If V (z, r) denotes the
random potential generated by the impurities the pinning energy writes:

Hdis[u] =
∫

dr

{
V (u(r), r) random bond
∫ u(r)

0
dzV (z, r) random field .

(3)

The competition between disorder and elasticity manifests itself in the
static properties of the interface. The presence of disorder leads to the ap-
pearance of many metastable states and glassy properties. In particular, the
interface deviates from the flat configuration and becomes rough. From the
scaling of the relative displacements correlation function, a roughness expo-
nent ζ can be defined by

B(r) = 〈[u(r) − u(0)]2〉 ∝ r2ζ (4)

where 〈 〉 denotes thermodynamic average and · · · denotes disorder average.
We will not enter in more details about the statics here and refer the reader
to the literature on that point [9, 44].

Dynamics is much more complicated since the standard tools of statistical
physics can not be used. One has to study the equation of motion of the
system

η
∂

∂t
u(r, t) = − δH

δu(r, t)
+ F + ζ(r, t) (5)

This equation is written for overdamped dynamics, but can include iner-
tia as well. η is the friction taking into account the dissipation, F the
external applied force, and ζ(r, t) a thermal noise, needed to reproduce
the effect of finite temperature. The correlation of the thermal noise is
〈ζ(r, t)ζ(r′, t′)〉 = 2ηTδ(r−r′)δ(t− t′). Solving this equation of motion allows
to extract all the dynamical properties of the system. The presence of dis-
order in the Hamiltonian H makes this a very complicated proposal. In the
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absence of the external force F = 0, this Langevin equation allows to recover
the static properties after the system has achieved its thermal equilibrium.

3 Creep, Phenomenology

Let us focus here on the response of the system to a very small external force.
For usual systems we expect the response to be linear. Indeed earlier theories
of such a motion found a linear response. The idea is to consider that a blob
of pinned material has to move in an energy landscape with characteristic
barriers Ub as shown in Fig. 4. The external force F tilts the energy landscape
making forward motion possible. The barriers are overcomed by thermal ac-
tivation (hence the name: Thermally Assisted Flux Flow) with an Arrhenius
law. If the minima are separated by a distance a the velocity is

v ∝ e−β(Ub−Fa/2) − e−β(Ub+Fa/2) � e−βUbF (6)

The response is thus linear, but exponentially small.

Ub

a
z

energy landscape

F.a

Fig. 4. In the Thermally Assisted Flux Flow (TAFF) [34] a region of pinned
material is considered as a particle moving in an energy landscape characterized
by characteristic barriers Ub. This leads to an exponentionally small but linear
response

However this argument is grossly inadequate for a glassy system. The
reason is easy to understand if one remembers that the static system is in a
vitreous state. In such states a characteristic barrier Ub does not exist, since
barriers are expected to diverge as one gets closer to the ground state of the
system. The TAFF formula is thus valid in systems where the glassy aspect is
somehow killed and the barriers do saturate. This could be the case for exam-
ple for a finite size interface. When the glassy nature of the system persists up
to arbitrarily large length scales the theory should be accommodated to take
into account the divergent barriers. This can be done quantitatively within
the framework of the elastic description [35,36,38,45]. The basic idea rests on
two quite strong but reasonable assumptions: (i) the motion is so slow that
one can consider at each stage the interface as motionless and use its static
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description; (ii) the scaling for barriers, which is quite difficult to determine,
is the same as the scaling of the minimum of energy (metastable states) that
can be extracted again from the static calculation. If the displacements scale
as u ∼ Lζ then the energy of the metastable states (see (2)) scales as

E(L) ∼ Ld−2+2ζ (7)

where we use that elastic and pinning energy scale the same way. Since the
motion is very slow, the effect of the external force is just to tilt the energy
landscape

E(L) − F

∫

ddru(r) ∼ Ld−2+2ζ − FLd+ζ (8)

Thus, in order to make the motion to the next metastable state, one needs
to move a piece of the pinned system of size

Lopt ∼
(

1
F

) 1
2−ζ

(9)

The size of the optimal nucleus able to move thus grows as the force decrease.
Since the barriers to overcome grow with the size of the object, the minimum
barrier to overcome (assuming that the scaling of the barriers is also given
by (7))

Ub(F ) ∼
(

1
F

) d−2+2ζ
2−ζ

(10)

leading to the well known creep formula for the velocity

v ∝ exp
[

−βUc

(
Fc

F

)µ]

(11)

where Fc is the depinning force and Uc a characteristic energy scale and the
creep exponent µ is given by,

µ =
d − 2 + 2ζ

2 − ζ
(12)

Equations (11) and (12) are quite remarkable. They relate a dynamical prop-
erty to static exponents, and shows clearly the glassy nature of the system.
The corresponding motion has been called creep since it is a sub-linear re-
sponse. Of course the derivation given here is phenomenological, and it will
be important to check by other means whether the results here hold. This
will be the goals of the two next sections, where first the creep law will be
derived directly from the equation of motion in d = 4 − ε dimensions, and
then the creep will be examined in the important case of d = 1 domain walls.
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4 Around Four Dimensions

The previous phenomenological derivation of the creep formula rests on very
strong hypothesis. In particular it is assumed that: (a) the motion is domi-
nated by the typical barriers, and not by tails of distributions in the waiting
times or barriers; (b) the motion is so slow that the line has the time to
completely re-equilibrate between two hopping events so that one can take
all exponents as the equilibrium ones. Given the phenomenological ground of
these predictions and the uncontrolled nature of the assumptions made, both
for the creep and for the depinning, it is important to derive this behavior in
a systematic way, directly from the equation of motion.

In principle one has simply to solve the equation of motion (5). In prac-
tice this is of course quite complicated. A natural framework for comput-
ing perturbation theory in off-equilibrium systems is the dynamical formal-
ism [46,47]. Integrating on all configurations u we can exponentiate the equa-
tion of motion by introducing an auxiliary field û :

∫

Du δ

(

η
∂u

∂t
+

δH

δu(r, t)
− F − ζ(r, t)

)

=
∫

DuDû exp
[

iû(η
∂u

∂t
+

δH

δu(r, t)
− F − ζ(r, t))

]

(13)

the thermal and disorder average can easily be done, leading to a field theory
with some action S

S(u, û) =
∫

rt

iûrt(η∂t − c∇2)urt − ηT

∫

rt

iûrtiûrt − F

∫

rt

iûrt

− 1
2

∫

rtt′
iûrtiûrt′∆(urt − urt′) (14)

where ∆ is defined in the correlator of the pinning force Fp = −δHdis/δu, as

Fp(u, r)Fp(u′, r′) = ∆(u − u′)δ(r − r′) . (15)

The functional form of this correlator depends on whether one has random
bond or random field disorder (see e.g. [29] for more details). Essentially
∆ is a function with a width of the order of the correlation of the disor-
der along the z direction. The advantages of this representation are many:
disorder and thermal averages 〈A[u]〉 = 〈A[u]〉S of any observable A[u] can
be computed with the weight e−S ; the response functions to an external
perturbation hrt are simply given by correlations with the response field:
〈A[u]iûrt〉 = δ

δhrt
〈A[u]〉. In addition, since we are much more familiar with

fields theories than with equations of motion, we have at our disposal a va-
riety of tools to tackle the action S. Although it is impossible to solve the
action exactly it is possible to look at its properties using a renormalization
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group procedure. We will not detail the procedure but just recall here the
resulting functional renormalization group (FRG) flow equations [29, 40] to
give a flavor of their physics

∂∆̃(u) = (ε − 2ζ)∆̃(u) + ζu∆̃′(u) + T̃ ∆̃′′(u) (16)

+
∫

s>0,s′>0

e−s−s′
[
∆̃′′(u)

(
∆̃((s′ − s)λ) − ∆̃(u + (s′ − s)λ)

)

−∆̃′(u − s′λ)∆̃′(u + sλ)

+∆̃′((s′ + s)λ)
(
∆̃′(u − s′λ) − ∆̃′(u + sλ)

)]

∂ ln λ = 2 − ζ −
∫

s>0

e−ss∆̃′′(sλ)

∂ ln T̃ = ε − 2 − 2ζ +
∫

s>0

e−ssλ∆̃′′′(sλ)

∂F̃ = e−(2−ζ)lcΛ2
0

∫

s>0

e−s∆̃′(sλ)

where ε = 4 − d, ∂ denotes ∂
∂l and λ = ηlv. The tilde denotes rescaled quan-

tities (see [29] for the notations). Contrarily to the standard case of critical
phenomena, where the potential ∆ can be expanded in powers of the field and
only the first terms are relevant, here all the powers of the expansion have the
same dimension. It is thus necessary to renormalize the whole function [48]
(in other words one has an infinite set of coupled renormalization equations).
One of the most important consequences is shown in Fig. 5: the renormalized
function ∆ becomes nonanalytic beyond a certain length scale, and develop
a cusp which signals pinning and the glassy properties of the system. This
cusp appears at a finite length scale corresponding to the Larkin-Ovchinikov
length [23] and it is directly related to the existence of the finite critical force
Fc [27,28] at zero temperature. The FRG procedure has been push up to two
loop expansion [49,50].

The presence of a finite temperature and a finite velocity (proportional
to λ) prevents the appearance of the cusp [29, 40]. For very small external
force, the way the cusp is cut occurs in two steps, as shown in Fig. 6. At

u u

∆ ∆

Fig. 5. Although the correlator of the disorder is initially an analytic function, a
non analyticity (cusp) appears at a finite scale lc. This length scale corresponds to
the Larkin-Ovchinikov length at which pinning and metastability occur
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Lopt Lv
l

thermal depinning flat

∆

u

∆

u

∆

u

Fig. 6. The cusp is rounded by both the temperature and the finite velocity of
the interface. In the thermal regime, the main source of rounding comes from the
temperature and the role of velocity is negligible. Then the system enters a regime
in which the main source of rounding is the velocity and the role of temperature is
negligible. This regime is very similar to a depinning regime. Finally the velocity
rounds the whole correlator of the disorder and thus disorder is washed out by
the averaging due to motion. At this length scale one recovers a purely thermal
interface

very low velocity the cusp is cut first by the temperature and the velocity
can be forgotten. A physical way to interpret this regime is that the motion
consists essentially in overcoming the barriers by thermal activation. This
regime corresponds essentially to the one in the phenomenological derivation
of the creep. Increasing the scale l the temperature renormalizes down and
the velocity renormalizes up. For this reason, above a lengthscale that can
be identified with Lopt, the cusp starts to be regularized by the velocity. The
temperature can now be forgotten and a regime very similar to the standard
depinning regime at T = 0 takes place. Then, finally, at a certain length scale
Lv the whole u dependence of the correlator of the disorder ∆(u) is erased
by the finite velocity. This corresponds to a regime where the motion of the
interface has averaged over the disorder and thus, in the moving frame, the
interface is now simply submitted to the thermal-like noise [27].

The FRG calculation of the velocity confirms the phenomenological argu-
ments and finds the creep law (11). Moreover, at the first order in ε, the creep
exponent µ agrees with the scaling (12). The velocity behavior is thus dom-
inated by the first (thermal) regime. On the other hand because the second
regime exists, we expect that the phenomenological derivation is incorrect as
far as the characteristic lengthscales of the problem are concerned. Indeed,
the phenomenological derivation would predict that the characteristic size of
a moving domain is the optimal length scale Lopt, which coincides with the
end of the thermal regime. However the FRG equations predict that the size
of a moving domain corresponds to Lv, the scale of the end of the depinning
regime. A physical way to understand this behavior is to say that the motion
of the thermal nucleus, of size Lopt, triggers an avalanche of a larger size
Lv. The FRG thus predicts much larger avalanche scales than what should
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thermal activation depinning like

FAST: AvalancheSLOW

opt
L   ~ F

−1/(2−ζ)

V
L   ~ T  F

−σ −λ
L opt

Fig. 7. The phenomenological theory of creep (left) would predict that the
avalanche size corresponds to the size of the thermal nucleus Lopt. From the FRG a
quite different size emerges corresponding to a larger avalanche of size Lv triggered
by the thermal motion, in a way similar than for a depinning process. λ and σ are
two characteristic exponents

be naively expected from the phenomenological theory, as shown in Fig. 7.
Such large avalanches are in agreement with recent experiments in magnetic
systems [3].

Confirming the stretched exponential behavior of the creep is of course
an experimental challenge given the large span of velocities needed. The first
unambiguous determination of the creep law with a precise determination of
the exponent was made in magnetic films, for one dimensional domain walls
[1], and confirmed with subsequent measurements [3,4]. Ferroelectric systems
[5,6] have shown a creep exponent compatible with two dimensional domain
walls in presence of dipolar forces. In periodic systems, such as vortices, it is
more delicate to determine the precise value of the exponent, even when non
linear behavior has been clearly observed. The experiment [51] shows a creep
exponent in agreement with the theoretical predictions.

5 Low Dimensional Situation: Domain Walls

Around four dimensions the creep hypothesis gives a velocity dependence
consistent with the one obtained from the microscopic derivation, at least up
to the order ε at which the renormalization group analysis can be performed.
Let us now focus at the other extreme limit, namely when the wall is one
dimensional and moves in a two dimensional space. The interest in such a
situation is twofold. First, as already mentioned, controlled experiments are
performed on domain wall motion. Second, from the theoretical point of view
the situations of a low dimensional domain wall is very interesting. Thermal
effects are increasingly important as the dimension is lowered. For d ≤ 2 they
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Fig. 8. Discretization scheme for the elastic line driven in a random potential

lead to a roughening of the domain wall, even in the absence of disorder (with
an exponent ζT = (2−d)/2). One can thus expect more intricate competition
between temperature and disorder effects.

Numerical simulations are a valuable alternative theoretical tool to ad-
dress this open issue. In this respect, Langevin dynamics simulations have
been used to study both the velocity-force (v-F ) characteristics and the dy-
namic roughness ζ of an elastic string in a random potential [39,52,53]. In [39]
we have studied equation (5) with a short range elasticity:

η
∂

∂t
u(r, t) = c∂2

ru(r, t) + Fp(u, r) + F + ζ(r, t) (17)

where Fp(u, r) = −∂uV (u(r), r) is the pinning force derived from the random
bond disorder V (u, r).

To solve numerically (17) we discretize the string along the r direction,
r → j = 0, . . . , L − 1, keeping uj(t) as a continuous variable. A second
order stochastic Runge-Kutta method [54] is used to integrate the resulting
equations. To model a continuous random potential we generate, for each j, a
cubic spline V (uj , j) passing through regularly spaced uncorrelated Gaussian
random points [24]. The geometry of our system is shown in Fig. 8. We are
interested in the v-F characteristics. Typical curves, obtained in the simu-
lations, are shown in Fig. 9. In the whole range of temperature and pinning
strength analyzed we find that the v-F curve can be well fitted by the creep
formula (11) with Uc and µ as fitting parameters. We thus confirm the pre-
dicted stretched exponential behavior. However, contrarily to the naive creep
relation (12) we find that not only Uc, but also µ, depend on temperature.
Since the phenomenological theory assumes that µ can be computed directly
from the roughness exponent ζ it is important to study the geometrical prop-
erties of the driven string. For this reason we introduce the averaged structure
factor,

S(q) ∼
〈∣

∣
∣
∣

∫

dru(r, t)e−iqr

∣
∣
∣
∣

2〉

. (18)
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Fig. 9. After [39]. v-F characteristics for several temperatures, increasing from
bottom to top. Solid lines are fits of the creep formula (11) with Uc and µ as fitting
parameters. The inset assures the validity of the creep formula in the range of
temperature and velocity analyzed

The dimensional analysis of this double integral allow us to compute ζ from
S(q) ∼ q−(1+2ζ), valid for small q. In Fig. 10 we show the structure factor of
an elastic string thermally equilibrated at F = 0. We can observe a crossover
between a short distance regime where thermal fluctuations are dominant
(ζ ∼ ζT = 1/2) and a long distance disorder dominated regime where we find
the well known roughness exponent ζ ∼ ζeq = 2/3 [55]. For the dynamics
(see Fig. 11), when F �= 0 one can predict that the short distance behavior
L < LT of the elastic string is still dominated by thermal fluctuations (ζT =
1/2). Note that this thermally dominated regime has nothing to do with the
regime derived in the previous section and valid up to the scale Lopt. In this
regime disorder is already dominant and barriers are overcomed by thermal
activation. On the other hand, as already discussed, the finite velocity makes
the quenched disorder to act as a thermal noise at the largest length scale
l > Lv. Thus, in this case, the expected exponent is also ζv = 1/2 [27]. Finally,
at intermediate length scales, the physics is determined by the competition
between disorder and elasticity and characterized by a non trivial random
manifold roughness exponent.

A systematic analysis of the v-F characteristics and S(q) show essentially
two different regimes of creep motion. In Fig. 12(a) and (b) we show the
structure factor for the two cases. As predicted, we get ζ ∼ ζT = 1/2 for
large q. At a certain scale we observe a crossover between the thermal and
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∆=0

Fig. 10. Structure factor S(q) of the elastic line for the statics. In the presence
of disorder the long distance behavior is characterized by a roughness exponent
ζeq = 2/3, while in the absence of disorder (see inset) thermal fluctuation gives
ζT = 1/2

dynamic
random manifold

T q−2

S(q)

q

−2qV)(∆(0)/

1/L 1/LTv

Fig. 11. Sketch of S(q) expected for a driven elastic line

the random manifold scaling. The location of this crossover decreases as tem-
perature (disorder) is increased (decreased). We can also observe that the
second velocity-controlled crossover is not achieved in our finite-size simula-
tion due to the very slow dynamics. Interestingly, for the small disorder case
(Fig. 12(a)) the random manifold scaling gives ζ = 0.67 ± 0.05, in excellent
agreement with the equilibrium value ζeq = 2/3, while a much higher rough-
ness exponent ζ = 0.9±0.05 is found for the strong disorder case (Fig. 12(b)).
The analysis of the v-F characteristics brings us to the same conclusion: the
value of the exponent µ is close to the equilibrium value µ = 1/4 for low
disorder (high temperature) and departs from this value when the disorder
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(a) (b)

high temperature
low disorder

low temperature
high disorder

Fig. 12. After [39]. Structure factor S(q) of the elastic line in the driven case.
Two regimes are distinguished. (a) In the low disorder/high temperature regime
the roughness exponent is consistent with ζeq = 2/3. (b) In the high disorder/low
temperature regime the roughness exponent is clearly bigger than ζeq

Fig. 13. After [39]. Roughness exponent, ζ(T ), and creep exponent, µ(T ), vs T . The
dashed line gives the equilibrium roughness exponent ζeq = 2/3, and the dotted line
the purely thermal roughness ζT = 1/2. The expected value for the creep exponent
µ = 1/4 is also indicated

(temperature) increases (decreases). In Fig. 13 we summarize all the results.
We notice that although the values of ζ and µ depart from the equilibrium
values, the relation (12) seems still to hold, within the error bars for the two
exponents. This is highly non-trivial since equation (12) is derived from a
calculation of the barriers in an equilibrium situation.

We thus have found two regimes of creep motion. The first one occurs
when the temperature is larger than the strength of the disorder, giving
µ ∼ 1/4 and ζ ∼ 2/3 as predicted by assuming a quasi-equilibrium nucle-
ation picture of the creep motion. This implies that the domain wall has
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time to re-equilibrate between hops, being the underlying assumption behind
(12) essentially satisfied. The second regime occurs for temperatures smaller
than the strength of the disorder, and is characterized by anomalously large
values of both exponents. This clearly shows that in this regime the domain
wall stays out of equilibrium, and that the naive creep hypothesis does not
apply. Note that the measured roughness exponent is intermediate between
the equilibrium value and the depinning value ζdep = 1.26 ± 0.01 [24]. The
fact that the thermal nucleation which is the limiting process in the creep
velocity, is in fact followed by depinning like avalanches was noted in the
FRG study of the creep [29]. Whether such avalanches and the time it would
take them to relax to equilibrium is at the root of the observed increase of
the exponent, is clearly an interesting but quite complicated open question.

6 Conclusions and Open Questions

In these short notes we have presented a brief review of the dynamical proper-
ties of interfaces in a disordered environment. We have in particular focused
on the response of such interfaces to a very small external force, and the
corresponding very slow motion it entails (so called creep). Clearly many
important questions remain to be understood for this problem. for large di-
mensions the microscopic derivation clearly supports the phenomenological
one as far as the velocity is concerned, but also shows that different length
scales enter to describe the dynamics. In particular, it predicts a much larger
avalanche size than initially anticipated. For one dimensional walls the situa-
tion is even more complex, and the very hypothesis that the wall is constantly
in equilibrium between two creep processes seems incorrect at least when the
disorder is not weak enough or if the temperature becomes too low. The de-
viations such effect might entail on the creep exponent is of course important
in connection with the experimental work.

Of course these questions are only the tip of the iceberg and more subtle
questions such as how such a domain wall can age in the presence of the
disorder are still largely not understood, and more analytical, numerical or
experimental work is clearly needed to address these issues.
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1. S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal,
Phys. Rev. Lett. 80, 849 (1998).

2. L. Krusin-Elbaum, T. Shibauchi, B. Argyle, L. Gignac, and D. Weller, Nature
410, 444 (2001).

3. V. Repain, M. Bauer, J.-P. Jamet, J. Ferré, A. Mougin, C. Chappert, and H.
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The magnetic flux line lattice in type II superconductors serves as a useful
system in which to study condensed matter flow, as its dynamic properties
are tunable. Recent studies have shown a number of puzzling phenomena
associated with vortex motion, including: low-frequency noise and slow volt-
age oscillations; a history-dependent dynamic response, and memory of the
direction, amplitude duration and frequency of the previously applied cur-
rent; high vortex mobility for alternating current, but no apparent vortex
motion for direct currents; negative resistance and strong suppression of an
a.c. response by small d.c. bias. A generic edge contamination mechanism
that comprehensively accounts for these observations is based on a competi-
tion between the injection of a disordered vortex phase at the sample edges,
and the dynamic annealing of this metastable disorder by the transport cur-
rent. For an alternating current, only narrow regions near the edges are in
the disordered phase, while for d.c. bias, most of the sample is in the dis-
ordered phase-preventing vortex motion because of more efficient pinning.
The resulting spatial dependence of the disordered vortex system serves as
an active memory of the previous history. Random injection of the strongly
pinned metastable disordered vortex phase through the sample edges and its
subsequent random annealing into the weakly pinned ordered phase in the
bulk results in large critical current fluctuations causing strong vortex veloc-
ity fluctuations. The resulting excess low frequency flux-flow voltage noise
displays pronounced reentrant behavior. In the Corbino geometry the injec-
tion of the metastable phase is prevented and, accordingly, the excess noise
is absent.

G. Jung et al.: Edge Contamination Effects in the Dynamics of Vortex Matter in Supercon-
ductors: Memory Effects and Excess Flux-flow Noise, Lect. Notes Phys. 688, 109–128 (2006)
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1 Introduction: Vortex Matter

Type-I superconductors undergo a first-order transition from the supercon-
ducting state, with total magnetic flux expulsion (Meissner effect), to the
normal state at a critical field Hc. In marked contrast, type-II superconduc-
tors above a lower critical field Hc1 allow magnetic flux to penetrate in a
regular array of quantum units of Φ0 = h/2e, each flux tube being confined
by a circulating vortex of current. These materials remain superconducting
until a second-order transition at an upper critical field Hc2. The magnetic
flux vortices in type-II superconductors were predicted by A. Abrikosov in
1957 in his ground-breaking paper based on the Ginzburg-Landau theory.
The achievements of V. Ginzburg and A. Abrikosov were honored by the
Nobel committee only last year, some 30 years after granting the prize for
the BCS theory, published in the same year as the Abrikosov paper, and al-
most two decades after awarding the Nobel prize for the 1986 break-through
discovery of new classes of oxide-based high-temperature superconductors.
This discovery extended the range of the phase diagram, within which the
superconducting vortices exist, by orders of magnitude, making investigation
of the vortex matter one of the most vigorous research areas in solid state
physics [1–4].

When transport current flows through a superconducting specimen in a
mixed state, i.e., the state containing magnetic flux vortices, a Lorentz force
acts on the flux tubes causing them to move in a direction perpendicular to
the current flow. Unless vortex motion is prevented by pinning (jamming)
of the vortices on intrinsic and artificially introduced material imperfections,
voltage appears across the specimen and energy is dissipated. However, even
in the presence of pinning centers, the vortex system yields and starts to
move at currents higher than the so-called critical depinning current.

The onset of motion is accompanied by significant low frequency noise.
The fluctuations peak in close vicinity to the “peak effect”, where the crit-
ical current anomalously increases with increasing temperature. Excess low
frequency noise at the peak effect is accompanied by a series of exotic and
puzzling phenomena associated with vortex motion, such as slow voltage
oscillations, history-dependent dynamic response, and memory of the direc-
tion, amplitude, duration and frequency of the previously applied current,
high vortex mobility for alternating current, but no apparent vortex motion
for direct currents, and strong suppression of an a.c. response by a small d.c.
bias. Taken together, these phenomena can be comprehensively explained
by a model that accounts for contamination of the ordered vortex phase by
a disordered vortex phase created by vortices penetrating irregular sample
edges [5]. In this paper we concentrate on how edges influence dynamic in-
stabilities, memory, and noise in the vortex system.
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2 Edge Contamination

Our current understanding of the peak effect (PE) is that it is due to a first
order phase transition between a quasi-ordered weakly pinned Bragg glass-
like vortex phase below the PE and a strongly pinned disordered phase (DP)
of solid vortex matter within and above the PE. The order-disorder phase
transition of the vortex lattice occurring between the two solid vortex matter
phases allows for the existence of a supercooled metastable DP in the part
of the phase diagram occupied by the equilibrium ordered phase (OP). At
temperatures well below the PE the supercooled phase is very fragile and
any small perturbation, such as transport current, will easily anneal it into
the equilibrium OP. However, at temperatures only slightly below the PE
the applied current will have two competing effects: on the one hand it will
anneal the disorder, but on the other hand, it will contaminate the system by
fresh penetration of DP resulting in dynamic coexistence of the two phases.
The injection of the disordered vortex phase through the sample edges is the
core of the edge contamination (EC) mechanism.

Current flow in a superconducting sample containing the equilibrium or-
dered vortex phase well below the phase transition results in uniform motion
of the entire vortex lattice. The penetrating vortices enter at their proper
lattice locations and the order of the lattice is preserved. The presence of
surface barriers in real samples significantly changes the situation. The bar-
rier height is sensitive to the surface quality; vortices penetrate predominantly
at the weakest spots of the barrier, and locally destroy the ordered lattice.
Far below the phase transition the disordered state is highly unfavorable en-
ergetically and anneals rapidly into OP. However, in the close vicinity below
the order-disorder phase transition a metastable DP will be formed near the
sample edge. Since the free energies of the two phases are comparable near
the phase transition, the metastable DP becomes sufficiently stable on the
relevant experimental time scales to gradually penetrate deep into the sam-
ple with the flow of the entire lattice [5–7]. The DP can be pinned more
efficiently and is characterized by significantly larger critical current then the
weakly pinned ordered vortex phase [8–11]. The contamination process thus
causes an enhancement of the total integrated critical current of the sample.
A strongly pinned metastable disordered vortex phase dynamically anneals
in the bulk into an ordered phase with much smaller critical current. The
applied current, therefore, has two effects: the current that flows at the edges
causes “contamination” by injecting a disordered vortex phase, while the cur-
rent that flows in the bulk acts as an annealing mechanism. The ensemble
of puzzling phenomena observed in the vicinity of the peak effect and dis-
cussed in detail below arises because of the dynamic balance between these
two competing processes.
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2.1 Critical Current in the Edge Contamination Model

Let us characterize the DP by the local critical current density Jc(x) at
a distance x from the edge, which has a non-equilibrium excess value
J̃c(x) = Jc(x)−Jord

c relative to the critical current of the fully ordered phase.
Since in low-temperature superconductors thermal activation is negligible,
the sole annealing mechanism is current-driven displacement that promotes
rearrangement of the vortices during their motion. The relative change of J̃c

upon displacement by a small ∆x is therefore given by ∆x/Lr, where Lr is a
characteristic relaxation length over which the DP anneals into the OP. Since
the lattice flows with velocity v, J̃c at x+∆x and at time t+∆t = t+∆x/v

is thus described by J̃c(x+∆x, t+∆x/v) = J̃c(x, t)(1−∆x/Lr), which leads
to the partial differential equation for the annealing process [14]

∂J̃c(x, t)/∂x + (1/v)∂J̃c(x, t)/∂t = −J̃c(x, t)/Lr(v) , (1)

The boundary condition at x = 0, where vortices penetrate into the sample,
is J̃c(0, t) = Jdis

c − Jord
c , where Jdis

c is the critical current of the totally dis-
ordered phase. A key aspect of the annealing process is that the relaxation
length Lr crucially depends on the displacement velocity v and on the prox-
imity to the phase transition. Close to the phase transition the metastable DP
is rather stable and Lr is large. Deeper into the OP region the metastable
phase becomes more and more unstable, Lr is small and Jc is depressed.
Theoretical considerations [15, 16] and fast transient measurements [9] show
that Lr decreases with increasing vortex displacement velocity according to
an empirical relation Lr � L0(v0/v)η = L0(V0/V )η. Here η is typically in
the range of 1 to 3, L0, v0, and V0 are scaling parameters, V = vBl is the
measured voltage drop, B is the magnetic field, and l is the distance between
the voltage contacts.

The d.c. solution of (1) is Jdc
c (x) = (Jdis

c − Jord
c ) exp(−x/Lr) + Jord

c and
the integrated d.c. critical current becomes:

Ic = d

∫ W

0

Jdc
c (x)dx = (Jdis

c − Jord
c )[1 − e−

W
Lr(V ) ]Lr(V )d + Iord

c , (2)

where Iord
c = Jord

c Wd, W is the sample width and d its thickness. Observe,
that Ic depends on Lr, which in turn depends on the voltage V .

To evaluate the shape of the V − I characteristics in the edge contami-
nation model assume, for simplicity, that the flux-flow resistance Rf is the
same for the DP and the OP and that the asymptotic V − I characteristics
for the DP and OP are V = Rf (I − Idis

c ) and V = Rf (I − Iord
c ), respectively.

When the DP and OP coexist, V = Rf (I − Ic) with the voltage dependent
Ic given by 2. An example of the non-linear V − I characteristic obtained by
means of numerical simulations is shown in Fig. 1. At very low voltages, Lr is
larger than the sample width, the entire sample is contaminated by the DP,
and the V − I curve initially follows the asymptotic dashed line of the DP
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Fig. 1. Calculated V −I characteristic (solid line) of coexisting vortex phases based
on (2). The asymptotic characteristics of fully ordered and fully disordered vortex
phases are shown with dashed lines

with Ic = Idis
c , where Idis

c = Jdis
c Wd. At high vortex velocities, Lr becomes

very short, most of the sample is in the OP, and the V − I approaches the
asymptotic line of the OP with Ic = Iord

c . In the crossover region, due to
a continuous decrease with current of the total Ic, a nonlinear V − I char-
acteristic is obtained. The curvature in the crossover region depends on the
parameters η, L0, and V0. Our numerical simulations show that with rapidly
decreasing Lr one may even obtain a negative slope resulting in S-shaped
V − I characteristics.

2.2 Strip and Corbino Configuration

In the Corbino disk geometry, the vortices circulate in the bulk without cross-
ing the sample edges. In such an arrangement the contamination by DP is
avoided and the true bulk properties of the vortex matter can be investi-
gated [6,12,13]. In order to perform transport and noise measurements in both
the Corbino and strip-like geometry on the same crystal we have prepared a
special contact configuration, seen in the inset in Fig. 2b [6]. All experiments
discussed in this paper were performed on Fe-doped (200 ppm) 2H-NbSe2

single crystals with Tc = 5.6 K, which display a significantly broader PE as
compared to pure crystals. However, additional experiments performed us-
ing samples with different doping showed the same general behavior as the
one described here. This leads us to believe that the observed phenomena are
common to all superconductors exhibiting PE and are not sample dependent.

Figure 2a shows the d.c. voltage response V vs. the magnetic field ap-
plied parallel to the crystal c-axis at 4.4 K in the strip and Corbino disk
configuration. Since in the Corbino disk the current density varies across the
sample, we have applied different driving currents in the two geometries in
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order to have the same average current density between +V, −V contacts
in both arrangements. As a result, the measured V and the corresponding
vortex velocity are identical at high fields. Upon decreasing the field from
above Hc2(T ), the voltage decreases rapidly and vanishes in the PE region (4
to 8 kOe), where Ic of the sample is large due to the presence of the strongly
pinned DP. The voltage appears again at intermediate fields between the
phase transition fields HDT . In this field range the voltage in the Corbino
disk increases linearly with H, consistent with the well-known flux-flow be-
havior, indicating that the flowing lattice is in the ordered phase. The sharp
drop of the voltage response at each HDT is due to an abrupt disorder-driven
transition of the equilibrium OP into a highly pinned equilibrium DP. The
existence of two transition fields indicates the reentrant behavior of the equi-
librium DP in Fe doped NbSe2 [6, 17, 18]. The region of phase coexistence,
seen in Fig. 2b, appears always on the Bragg glass side of the transition.
Therefore at low fields we face a mirror-like image of high field behavior, see
Fig. 2b.

The voltage response of the strip configuration is restricted to a nar-
rower field range contained between high and low onset fields Hs

on. The strip
voltage is strongly suppressed relative to the Corbino, indicating stronger
effective pinning as a result of an intermixture of DP with OP due to the
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Fig. 2. (a) d.c. voltage seen in a Fe-doped NbSe2 sample in Corbino and strip
geometries. The currents in both geometries were adjusted to provide equal current
densities in the vicinity of the voltage contacts. (b) Phase diagram of vortex mat-
ter in the same sample as in a). Dynamic coexistence of DP and OP occurs in the
area contained between the HDT and Hs

on lines. Inset: contact configuration en-
abling measurements in both Corbino and strip geometry. By applying the current
to the +S, −S contacts, the vortices penetrate through the edge and flow across
the sample, similarly to the standard strip configuration. In contrast, by applying
the current to the +C, −C contacts, the vortices circulate in the bulk without
crossing the edges, as in a Corbino disk. In both configurations the voltage and the
corresponding noise are measured across the same contacts +V, −V. The distance
between the voltage contacts is 0.15 mm and the Corbino disk diameter is 1.1 mm
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EC mechanism. Figure 2b shows the phase diagram of the iron-doped NbSe2

determined by transport measurements of the Corbino and strip geometries.

3 Memory Effects, Dynamical Instabilities
and Edge Contamination

Many experiments performed in the past decade have demonstrated several
surprising phenomena in the low frequency response of the vortex matter in
conventional [8, 9, 19–22, 24, 25] and high-Tc superconductors [27–33]. These
phenomena were particularly pronounced in 2H-NbSe2 strips in the vicinity
of the peak effect, where an ordered vortex lattice transforms into a highly
disordered one. Among the most striking phenomena are the memory effects,
in which the vortex system remembers the direction, amplitude, duration,
and even the frequency of the previously applied current [24–26], and the
history dependent dynamic response [8, 9, 21–23]. High vortex mobility is
observed in the presence of a.c. transport current while the vortices appear
to be immobile in the presence of d.c. current of the same or even substantially
larger amplitude [24]. Moreover, the addition of a small d.c. current to a large
a.c. current can fully suppress the a.c. response of the system [24]. Figure 3
shows a.c. resistance Rac of a 2H-NbSe2 sample recorded as a function of a
superposed d.c. current Idc. Note that the addition of only 10 to 20% of Idc

suppresses the a.c. response Rac by orders of magnitude.
The edge contamination model can account for all the strange phenomena

associated with the peak effect in terms of the competition between injection
of a disordered vortex phase through the surface barriers at the sample edges,
and annealing of the metastable disorder by the transport current [5]. The key

Fig. 3. a.c. resistance Rac of a 2H-NbSe2 as a function of the superposed d.c. bias
in the vicinity of the peak effect. The experimental data were obtained for a.c. bias
current Iac = 20 mA, frequency f = 181 Hz, B = 400 mT, and T = 5 K
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element of the edge contamination model is the spatial variation of the struc-
tural disorder in the vortex matter resulting in position dependent Jc(x), as
outlined in the Sect. 2.1. Correspondingly, transport current becomes nonuni-
form and follows the distribution Jc(x). The EC model predicts that when a
strip is biased with a d.c. current a significant part of the sample will be filled
with the disordered phase injected through an edge. Strong pinning of the
DP prevents vortex motion and one should expect a low response. If the d.c.
bias is substituted by an a.c. current then only narrow regions near the edges
will be contaminated by strongly pinned DP, leaving the remaining part of
the sample with weakly pinned OP, and resulting in a large voltage response.
With increasing frequency the time of injection of the DP decreases and the
width of the contaminated areas close to the edges shrinks.

To verify the EC model predictions we have measured the self-induced
field Bac(x) of the a.c. transport current using linear arrays of miniature
Hall sensors and a lock-in detection technique [34, 35]. The Hall probes are
based on the two-dimensional electron gas (2DEG) in AlGaAs/GaAs het-
erostructures grown on undoped semi-insulating GaAs substrates by means
of molecular beam epitaxy [54]. The array comprises eleven 10 × 10 µm2

Hall sensors, connected in series with a 30 µm separation between them. The
2DEG resides 0.1 µm below the surface. Their sensitivity to fields normal to
the 2DEG is of the order of 100 mΩ/gauss. These structures provide signif-
icantly better spatial resolution than SQUID sensors and operate better in
a changing temperature environment. Bac(x) can be directly inverted into
a current density distribution using the Biot-Savart law, as described else-
where [34]. The resulting Jac(x) distributions are shown in Fig. 4. When a
significant d.c. current Idc = 5.7 mA is added to Iac = 20 mA, disordered
vortices penetrate through the left edge of the sample and contaminate a
significant part of the sample (Fig. 4a). Accordingly, as proven by the mea-
sured Jac(x) distribution, the majority of the current flows along the left edge
occupied by DP with high critical current. Upon reversal of the direction of
the d.c. current (see Fig. 4b), DP is injected through the right edge of the
sample and the distribution looks like a mirror image of that from Fig. 4a.
However, when the d.c. component is very weak compared to the a.c. current
amplitude, as in the case illustrated in Fig. 4c for Idc = 1.7 mA, the contam-
ination by the DP is restricted to two relatively narrow bands at the sample
edges.

The frequency dependence of Jac(x) distributions is illustrated in Fig. 5.
At high frequencies, the DP with enhanced Jc is present only in the narrow
regions close to the edges (481 Hz data). At 181 Hz the DP areas grow and,
correspondingly, the enhanced Jac(x) flows in wider regions near the edges.
When the frequency is reduced to 22 Hz the disordered border regions overlap
and the enhanced current flows through entire sample width. The actual
measured Jac(x) is the magnitude of the local current density averaged over
the cycle period. Close to the edges, the high J is present most of the time,
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while at the depth corresponding to the a.c. penetration depth of the DP,
high current density persists only during a small fraction of the a.c. period
since the DP continuously moves in and out of the sample. Therefore, the
measured amplitude of the time-averaged Jac(x) decreases smoothly from
the sample edge to the point determined by the a.c. penetration depth, (see
Fig. 5).
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The behavior of the a.c. response illustrated in Fig. 3 is a natural conse-
quence of the EC mechanism. As follows from the profiles in Fig. 4, the ad-
dition of a small d.c. component to the a.c. current contaminates the sample
very similarly to the pure d.c. case, except that the penetration depth of the
DP is reduced. When Idc 
 Iac the vortices move back and forth during the
a.c. cycle, with a forward displacement being enhanced by about 2Idc/Iac.
Because the annealing process of the disordered vortex phase depends on
the total displacement, regardless of the direction, the DP is thus annealed
more efficiently. Therefore, at very small d.c. currents, the disordered phase
is present only close to the edges where the DP exits and re-penetrates dur-
ing every half-cycle. Vortices that drift deeper into the bulk are practically
fully annealed. As a result, the initial decrease of Rac for currents below
2mA in Fig. 4 is relatively small. With increasing d.c. current DP penetrates
deeper into the sample leading to a marked drop in the a.c. response. The
above mechanism accounts for the finite a.c. response and explains why the
addition of a relatively small d.c. bias or asymmetry in the Iac waveform
dramatically suppresses the vortex motion.

The EC mechanism, by causing frequency, amplitude and direction-
dependent distributions of current density, accounts also for the memory
effects. The history of the previously applied current is encoded in the spa-
tial profile of the lattice disorder, which in low temperature superconductors,
such as NbSe2, is preserved after the current is switched off owing to negli-
gible thermal relaxation. On reapplying the current, the vortex system will
display a memory of all the parameters of the previously applied current,
including its direction, duration, amplitude and frequency.

4 Low Frequency Noise

The appearance of large, broadband, low frequency noise with the onset
of motion of a condensate in the presence of a quenched random pin-
ning potential (jamming), has been studied extensively in incommensu-
rate charge density waves [36], Wigner crystals in two-dimensional elec-
tron gas [37], and most notably, in vortex matter in type-II superconduc-
tors [19,20,29–32,38–49,51–53]. In all cases, the noise is thought to represent
spatio-temporal irregularities of the moving condensate due to its interac-
tion with the underlying pinning potential, but its precise origin remains ob-
scure and controversial. The voltage noise due to vortex motion in a current-
biased superconductor is generally referred to as flux-flow noise for which
various specific mechanisms have been considered (for a review of early re-
sults see [38]). They include vortex shot noise and the associated density
fluctuations [30,32,38–41], velocity fluctuations resulting from vortex-pin in-
teractions [38], or turbulent flow of surface currents [42], critical slowing down
of vortex dynamics [44], and several suggestions [19,20,29,45–47] and numer-
ical simulations [48,49,51] of various plastic vortex flow mechanisms. Each of
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these mechanisms may make a substantial contribution to the total measured
noise. Yet the puzzling observation, which has no satisfactory explanation,
is that in a specific and narrow region of the H − T phase diagram the
noise is enhanced drastically. This unconventional noise, which we refer to
as excess noise, exceeds the usual flux-flow noise level by orders of magni-
tude [19,20,29,38,45,46]. In low-Tc superconductors the excess noise occurs
in the vicinity of the peak effect (PE) below Hc2, where the critical current
Ic anomalously increases with field [19,20,38,45]. In high-Tc superconductors
similar noise enhancement was found in the vicinity of the melting or order-
disorder transitions [27–29,46]. This low frequency excess noise is apparently
inconsistent with the common flux-flow noise mechanisms due to its unusually
high amplitude, strong field and current dependence, and frequently observed
non-Gaussian character [19,20,29,45].

4.1 Simplified Model of the Noise

The generation of the metastable DP is a random process due to the non-
uniform penetration of vortices through the surface barrier. As a result, the
degree of vortex-lattice disorder and the corresponding value of Jdis

c at the
sample edge are random functions of time. Similarly, annealing of the flowing
DP is a random process that can be taken into account by considering Lr

to be a random variable. Since Jdis
c is typically an order of magnitude larger

than Jord
c [6], random variations δJdis

c and δLr will result in large fluctuations
of the integrated critical current of the sample, causing large voltage noise.

The V (I) curve in the vicinity of the peak effect is described by V (I) =
Rf [I − Ic(V )], where Ic is given by 2. In the small signal approximation we
separate voltage fluctuations into two terms:

δV (I) ≈ ∂V (I)
∂Ic

δIc +
∂V (I)
∂Rf

δRf . (3)

By defining the differential resistance as

Rd ≡ ∂V

∂I
= −∂V

∂Ic
, (4)

(3) becomes

δV (I) = −RdδIc +
V (I)
Rf

δRf . (5)

Since experimentally Lr is usually smaller than W we can approximate (2)
by Ic � Lrd(Jdis

c −Jord
c )+WdJord

c [5]. In this approximation the fluctuation
of the total critical current is

δIc ≈ dδJ̃c(0)Lr + dJ̃c(0)δLr . (6)

From Eg. 5 we obtain that
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δV (I) ≈ −dRdJ̃c(0)Lr[
δJ̃c

J̃c

+
δLr

Lr
] + V (I)

δRf

Rf
. (7)

We now write the power spectral density (PSD) of the voltage noise as

SV ≈ d2R2
dJ̃c

2
(0)L2

rSin/ann + V 2Srf
, (8)

where Srf
=SRf

/R2
f is the normalized spectral density of the flux-flow resis-

tance fluctuations and Sin/ann is the normalized spectral density of the vortex
injection and annealing noise. The most important conclusion that will en-
able us to understand the dependence of excess noise on applied magnetic
field and current is that the noise intensity is proportional to R2

dJ̃c

2
(0)L2

r.

4.2 Experimental Results

The most direct test of the EC noise mechanism is the comparison of the
Corbino disk noise with that of the strip, as shown in Fig. 6. In the Corbino
the excess noise is almost entirely absent, indicating that the randomness in
motion of the vortex lattice within the bulk of the sample does not, by itself,
create excess noise. The absence of the noise in the Corbino clearly indicates
the dominant role of edge contamination in the noise process. The residual
small and narrow peaks in the Corbino noise in Fig. 6 can be ascribed to
small deviations from a perfect Corbino disk configuration. Since Lr diverges
at HDT , any small non-radial part of the current may result in some injection
of the metastable DP, giving rise to noise. Similarly, small inhomogeneities
in the quenched disorder may result in a slightly position-dependent HDT .
In this case, in a narrow field region in the vicinity of the mean-field HDT

some parts of the sample are in the equilibrium DP, whereas others are in
the OP. When the entire lattice is set in motion the DP drifts into regions
of the OP, where it becomes metastable, and may cause noise in this narrow
field region.

In contrast, the strip noise is very pronounced. The peak of the noise
around 3.5 kOe in Fig. 6 is a result of the large Lr in the vicinity of the
phase transition. The second noise peak at about 2 kOe marks the reentrant
phase transition at which Lr becomes large again on approaching HDT . This
low-field peak was not previously observed since the noise studies were carried
out on undoped NbSe2 [19,20,45] which does not show a pronounced reentrant
disorder-driven transition. The existence of two peaks demonstrates that the
excess noise is not a mere result of the fact that Ic increases with H at the
PE since at low fields the same excess noise is found in the region where
Ic decreases with H. Furthermore, the same value of Ic is attained at three
values of H: above the reentrant HDT where Ic decreases with H, below
the high field HDT where Ic increases with H, and in the upper part of
the PE, above the high field HDT where Ic decreases again with H. The
excess noise occurs only in the first two cases, where the metastable DP
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contaminates the equilibrium OP. In the third case, above HDT , the DP
is the thermodynamically stable phase and therefore no “wrong” phase is
generated at the edges.

Figure 7 shows the intensity of the strip noise S
1/2
V , seen at a selected fre-

quency of 3 Hz, as a function of bias current, along with the V − I character-
istics for two different values of applied magnetic field. In each case, the onset
of the noise coincides with the onset of d.c. current induced dissipation. With
increasing current the I-V curve shows an upturn and eventually approaches
linear flux-flow behavior at elevated currents. The noise displays a large peak
and then vanishes rapidly at higher currents. Assuming for simplicity that
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δJdis
c is current independent, the dominant parameters affecting the noise

intensity are the relaxation length Lr and the differential resistance Rd (see
(8)).

The initial buildup of the noise with increasing current follows the initial
growth of Rd. The subsequent decay of the noise is the result of a decrease
of Lr with increasing vortex velocity. Indeed, above 28 mA the V − I charac-
teristic approaches the linear behavior of the OP, indicating that most of the
sample volume is in the OP and that Lr is small. Since the ordered part of
the sample does not contribute to the noise, the noise vanishes as the width
of the DP near the edge shrinks to zero. The specific details of the above
qualitative description are expected, however, to be significantly more com-
plicated because of several factors, including the possible current dependence
of δJdis

c and the fact that δV is often comparable to V , resulting in a highly
nonlinear and apparently non-Gaussian response [19,20], for which the above
oversimplified analysis is not valid.

The above considerations facilitate the analysis of the general behavior
of the strip noise shown in Fig. 8. At low currents (<18 mA), vortex motion
occurs only in the central field region far away from HDT . In the vicinity of
the transition the integrated Ic of the strip is larger than the driving current
due to the large Lr. As a result, the excess noise is present only in the central
field range. At 23 mA, the range of fields, for which vortex motion and the
corresponding noise are observable, expands and two noise peaks become
readily apparent. In the central region the DP is less stable, Lr drops with I,
and hence the noise decreases rapidly with current. Closer to the transition
fields, however, the metastable DP is much more stable and therefore even at
23 mA Lr remains large and noise is still increasing with current. At 36 mA
most of the sample is already in the OP and the noise in the central field
range has accordingly dropped by two orders of magnitude. The strong excess
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noise is restricted now only to the narrow regions adjacent to the transition
fields where the metastable DP survives even at high vortex velocities.

4.3 Velocity vs. Density Fluctuations

The electric field due to magnetic flux motion with a velocity v, neglecting
voltages induced by variations of the flux threading the loop enclosed by the
voltage leads, can be written simply as E = −v×B. The voltage fluctuations
δV (t) = V (t)−V , where V = vBl is the d.c. voltage, can be due either to the
fluctuations of magnetic field δB = Φ0δnB/B, where δn are the fluctuations
in the vortex density n, or to the fluctuations of the vortex velocity v. In a
small signal approximation

δV ≈ l(vδB + Bδv) . (9)

The first term contains density fluctuations δn = n(t)−n, where n = B/Φ0 =
N/Wl is the equilibrium vortex density and N is the total number of vortices.
Vortex density fluctuations can be therefore directly evaluated by measuring
the associated magnetic field noise. The second term describes velocity fluc-
tuations δv = v(t) − v, where the equilibrium vortex velocity v = V /Bl.
Alternatively, the fluctuating component of the voltage due to current driven
vortex motion is given by (3). Direct comparison of (9) with (5) suggests
to associate vortex density fluctuations with the fluctuations of the flux-flow
resistance δRf and fluctuations of the vortex velocity with the fluctuations
of the critical current δIc ∝ δJ̃c(0).

In the experiments we have measured simultaneously the voltage and
magnetic field noise associated with the current driven vortex motion. After
sufficiently long thermalization at low temperatures the Hall sensor d.c. bias
current level that causes onset of the excess shot noise was well above 200 µA
enabling us to operate safely at high current bias, what significantly improves
the signal to noise ratio of the sensor. The ultimate sensitivity of our flux
detection system was typically better than 2 × 10−7 T/Hz1/2 at frequencies
above 5 Hz.

To perform simultaneous conduction and magnetic noise measurements
the NbSe2 crystal with attached leads was placed directly on top of the Hall
sensor array. The entire arrangement was immersed in a specially designed
low noise variable temperature cryostat equipped with an external µ-metal
shield and a superconducting magnet operating in persistent mode. In each
experimental run the sample was zero-field cooled to the required tempera-
ture before application of the magnetic field and bias current. The sample
voltage, measured in a four-point contact arrangement, and the Hall probe
signal were brought to the top of the cryostat by twisted-pairs, amplified by
home-made low noise voltage preamplifiers located within the cryostat head,
and processed by a computer-assisted spectrum analyzer. The power spectra
of the flux and voltage fluctuations were recorded simultaneously with the
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time domain records and d.c. voltage response. Instrumental noise originat-
ing in the measurement circuit, was recorded at zero current through the
NbSe2 crystal and subsequently subtracted from the spectra measured in the
presence of bias.

We have searched for flux noise manifestations in the entire range of cur-
rents, magnetic fields, and temperatures at which the excess voltage noise
appears. Within the sensitivity of our Hall probe arrangement we could not
detect any vortex density fluctuations. Even by biasing the sample at the
very noise peak, where the voltage noise spectral intensity increases more
than four orders of magnitude above the preamplifier background, we saw no
difference in the magnetic noise detected with and without the application of
the driving current causing the motion and annealing of the vortex lattice.

In the face of the negative result we carefully checked that the Hall probe
was properly coupled to the sample by measuring the Meissner effect at low
fields and the self-induced a.c. field of an a.c. transport current. All tests
proved unambiguously that the Hall sensors were properly coupled.

The absence of density fluctuations, in fact, is not surprising and is con-
sistent with the EC model predictions. Let us rewrite the total spectral
density of the voltage noise (5) in terms of the normalized spectral density
Sv = SV /V 2:

Sv =
1

R2
f

SRf
+

R2
d

V 2
SIc

. (10)

By plotting the normalized voltage noise spectral density as a function of the
ratio R2

d/V 2 one can separate contributions of the fluctuating vortex density
and velocity to the total noise. The PSD value for R2

d/V 2 = 0 corresponds to
SRf

, which in turn describes vortex density fluctuations, while the slope of the
SV (R2

d/V 2) plot gives the spectral density of the critical current fluctuations
SIc

.
The experimental data at 0.2 T from Fig. 1 are plotted in the above co-

ordinate system in Fig. 9. The data fit very well to a straight line passing
through the origin. It clearly demonstrates that the excess noise due to the
contamination mechanism is entirely dominated by the critical current fluc-
tuations causing large voltage noise by inducing strong fluctuations of the
velocity of moving vortices. According to (10) any significant density fluctu-
ations would offset the linear fit upward, such that it would cross the y-axis
at the value corresponding to SR. This is clearly not the case in Fig. 2.

We conclude that the excess flux-flow noise in the vicinity of the peak
effect is entirely dominated by vortex velocity fluctuations resulting from the
critical current fluctuations due to random injection and random annealing
of the metastable disordered vortex phase. This result may seem surprising
in view of the experimental evidence of local vortex density noise associated
with current driven motion of vortices in high-Tc Bi2Sr2CaCu2Oy (BSCCO)
single crystals [30–32]. The flux noise in BSCCO system has been detected
using a Hall probe with similar sensitivity. The major difference between
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Fig. 9. Data points at 2 kOe from Fig. 7 plotted as a normalized power spectral
density as a function of R2

d/V 2. Observe that the best linear fit to the data passes
through the origin indicating that the voltage noise is due entirely to the critical
current fluctuations (see text)

the two systems is the fact that in the low-Tc Nb2Se the excess noise is as-
sociated with order-disorder transitions within the solid state of the vortex
matter, whereas in high-Tc BSCCO the excess noise can is associated with
the melting transition. Since the vortex liquid has higher density than the
solid, local melting transitions may result in strong density fluctuations. Nev-
ertheless, it has been shown that the order-disorder phase transition in the
solid vortex phase is also associated with a magnetization jump which should
result in similar density fluctuations [55,56]. A possible reason for the lack of
measurable density fluctuations at the solid-solid phase transition is the very
slow dynamics with which the equilibrium magnetization is reached. In fact,
to detect the magnetization step at the disorder-driven phase transition the
special experimental technique of vortex dithering had to be applied [55]. For
this reason density fluctuations, if any, may appear at very low frequencies,
much lower than the frequencies at which the excess voltage noise has been
observed and beyond the spectral range of the experiment. The exact reason
for the different aspects of excess noise in low and high-Tc systems remains,
however, an open question.

5 Conclusions

In summary, we have shown that the ordered Bragg glass phase becomes
unstable with respect to disorder at both high and low fields, resulting in a
reentrant disorder-driven transition. By using a Corbino geometry, and thus
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avoiding the contamination from the sample edges, we have shown that this
transition is very sharp and apparently of first order.

The injection of the disordered phase through the sample edges causes
a nonuniform distribution of the pinning strength and, correspondingly, a
nonuniform distribution of the current density. In the restricted areas of the
phase diagram, in the vicinity of the peak effect, the disordered phase dy-
namically coexists with the ordered phase, giving rise to a plethora of exotic
phenomena in the vortex matter dynamics. It follows from the proposed edge
contamination model that the transport current has two antagonistic effects;
injection of the disordered phase at the sample edge and its annealing in the
bulk. The edge contamination model explains the memory effects in vortex
matter by the history of the previously applied current being encoded in the
spatial profile of the lattice disorder, which cannot be erased by negligible
thermal fluctuations at low temperatures.

The excess flux-flow noise appearing in the vicinity of the peak effect
has been associated with edge contamination and has been shown not to re-
sult from mere random motion of vortices in the bulk of the sample. The
main conceptual difference is that in the conventional models only random
vortex penetration or irregular vortex motion in the bulk is considered. We
have considered randomness in the injection and annealing processes of the
metastable disordered phase resulting in large fluctuations in the instanta-
neous critical current of the sample, leading to very large voltage noise. We
have demonstrated that the excess noise can be eliminated by preventing the
edge contamination in the Corbino disk geometry. Direct flux noise measure-
ments and re-examination of the voltage noise data brought us to conclusion
that the excess flux-flow noise is entirely dominated by vortex velocity fluctu-
ations resulting from the critical current fluctuations. We believe that the new
noise mechanism may be of importance for various condensed matter systems
exhibiting similar noise associated with a fluctuating pinning force such as
incommensurate charge density waves or Wigner crystals in two-dimensional
electron gas.
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The purpose of the present work is to introduce a limited set of kinetic
equations which describe the out-of-equilibrium relaxation of a structural
glass and its response to shear deformation. It was originally motivated by
recent theories for the plasticity of amorphous solids, [4, 5] in an attempt
to incorporate glassy relaxation at an elementary level. [8, 9] A quite simple
picture emerges, which accounts for important properties of glassy materials,
while its premises may hold for general classes of complex fluids; [7] it echoes
early theories of structural relaxation [1,10,11,14] in a much more systematic
framework, and provides theoretical grounding for phenomenological rate-
and-state equations. [2]

1 Assumptions and Constitutive Equations

We consider, in this study, a piece of material at pressure P , in contact
with a thermal reservoir at temperature T . We sort the material into subsys-
tems [1] (or zones) of, say, z molecules, and characterize structural disorder
by the distribution ρ of volumes, vi ∈ [v0,∞], or enthalpies (hi = Pvi) of
these molecular configurations. (v0 is a lower bound imposed by excluded
volume effects.) At low T , the distribution ρ evolves slowly, as opposed to
the vibrations of the molecular structure which quickly equilibrate with the
thermal bath. The evolution of ρ is expected to result from transitions be-
tween metastable basins in phase space, and these transitions are supposed to
be triggered by conformational changes of molecular subsystems (rearrange-
ments). The typical size of a rearranging zones fixes z, which is here sup-
posed to be independent of T and P . At all times, molecular subsystems are
in mechanical contact with neighboring subsystems, hence likely to exchange
energy among themselves: very small displacements of the average positions
of the molecules are sufficient to ensure these volume (or enthalpy) transfers.
Mediated by acoustic modes (phonons), these transfers are thus expected to
be fast, collective, processes, in contrast with rearrangements which, at low
T , are expected to be rare, space-localized events.
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This observation in the basis of the present work: it permits to sepa-
rate these two thermodynamic processes (equilibration with the bath v.s.
transfers between subsystems) and assume that spatial enthalpy fluctuations
equilibrate on timescales at which the system is not in contact with the
thermal reservoir. At all time, approximation is made that spatial fluctu-
ations are in “adiabatic equilibrium”, characterized by a (P ,H)-ensemble:
the distribution ρ is determined at every single moment by statistical infer-
ence: it maximizes entropy under the single constraint that H =

∫
dh ρ(h)h

is known, whence ρ(h) = 1
Z exp(−λh), with the partition function Z =∫ ∞

h0=Pv0
dh exp(−λh) = (1/λ) exp(−λh0), and where λ is the Lagrange mul-

tiplier that enforces adiabaticity. Θ = 1/(kλ) is an effective temperature, but
differs from the temperature of the thermal reservoir, unless the system has
reached thermal equilibrium. This effective temperature is a generalization of
Edwards’: [3] I made no assumption here that the system is exploring all con-
figurations of some ergodic component at any relevant timescale but, rather,
that, by being very large, it samples, at any single time, all possible configura-
tions allowed by macroscopic constraints. At all time, k Θ(t) = H(t)−Pv0.3

The previous Ansatz for ρ serves here as a basis to investigate the relax-
ation of the system towards equilibrium. At any time, H (or Θ) suffice to
characterize the internal state of the material.4 Their dynamics is specified by
energy conservation: it results from the balance between thermal exchanges
with the reservoir (heat) and the work of external forces. Estimating the rate
of thermal exchanges with the bath is a difficult task; it requires, in principle,
to determine all probabilities p(h → h′) for the reconformations of molecular
subsystems, leading to:

dH

dt
=

∫

dhdh′ p(h → h′) ρ(h) (h′ − h) + W ext . (1)

I argue that a generic form of this equation arises from the study of dominant
contributions to the integral term. Then, I show that the resulting equation
accounts for the emergence of slow relaxation and glassy behavior at low
T , with a marked cooling rate dependence of the glass transition point. A
study of the response to shear in various experimental set-up completes my
presentation.

Rearrangements correspond to elementary contacts with the thermal
reservoir: a fluctuation δh of enthalpy requires a transfer of heat δq = −δh

3k Θ(t) = P (V − v0) is proportional to a Van der Walls’ free-volume: [6] in light
of the following discussion, free-volume activation [14] and effective temperature, [3]
appear to be closely related concepts.

4 The limit we consider is in some sense, “opposite” to the mean-field approx-
imation, in which case every variable vi is directly coupled with the average v̄,
whence the full distribution ρ(vi − v̄) becomes the dynamical variable. We see that
the mechanical contacts between subsystems may (below some critical dimension)
drastically reduce the dimensionality of the relevant dynamics.
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from the thermal reservoir, hence occurs with probability exp(δS/k) =
exp(−δh/(kT )). These thermally activated processes are very sensitive to the
external constraints imposed on a molecular subsystem by its surroundings:
for low v, the reconformation of the molecules may require to deform their
“cage” and pay a consequent price in elastic energy; for large v, molecules
may move freely. Suppose, for the sake of simplicity, that the transitions
h → h′ are controlled by some energy barrier hb which is a simple func-
tion of the volume v. Obviously, hb(v) must be non-increasing, hence there
exist an activation volume va, such that hb(va) = Pva ≡ ha; beyond this
point (v > va) the notion of barrier breaks down. Two different families of
reaction pathways must be identified: when h, h′ < hb, transitions are acti-
vated, and transition state theory indicates that the rates must be written:
p(h → h′) = ν exp(−(hb −h)/(kT )); otherwise, there is no barrier per se and
Monte-Carlo weights read: p(h → h′) = ν min(1, exp(−(h′−h)/(kT ))). These
transition probabilities verify detailed balance and are continuous functions
of either h or h′ when they cross ha. ν is an update frequency, the tem-
perature dependence of which might be neglected as it brings only minimal
corrections. The calculation of the rhs of equation (1) is further simplified by
allowing only transitions such that h − h′ = ±δq; the integral is separated
into the sum I1 over h, h′ ∈ [h0, ha], and I2 over the complementary domain
of integration. It appears that I1 (resp. I2) is of order O((Θ − T )2) (resp.
O(Θ − T )) close to equilibrium, and is proportional to a factor of the form
exp(−A/(kT )) (resp. exp(−A′/(k Θ))) when Θ � T . In both these limits, I1

is dominated by I2: the dynamics of Θ is controlled by the transition path-
ways (found with a frequency exp(−P (va − v0)/(k Θ))) which do not involve
the crossing of energy barriers. It is therefore sufficient to restrict our discus-
sion to the situation in which I1 → 0. To fix ideas, I assume that hb(v) → ∞
below va and drops sharply at that point. (Such steep decay of hb is expected,
for example, in the case of hard-sphere materials.)

After integration one gets from equation (1):

k Θ̇ = E1 exp
[

−∆h

k Θ

] (

exp
(

δq

kΘ
− δq

kT

)

− 1
)

+ σ γ̇ , (2)

with E1 = ν δq and ∆h = P (va − v0). I anticipate here on the second part
of this paper where the deformation of a material in a pure shear geometry
will be considered: σ is the (deviatoric) shear stress, γ̇ the plastic strain rate,
whence W ext = σγ̇. The results presented here do not depend qualitatively on
further dependencies of E1 on T or Θ, which may, however, bring logarithmic
corrections.

2 Out-of-equilibrium Relaxation

In the absence of external stress (σ = 0), equation (2) admits thermodynamic
equilibrium, Θ = T , as its single fixed point. The timescale of the relaxation
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towards equilibrium increases with decreasing T , and at low T the system
may remain out-of-equilibrium on any observable timescale by the mere fact
that Θ is small (or tries to). When Θ � T , equation (2) is dominated by:

k Θ̇ = −E1 exp
[

−∆h

k Θ

]

+ σ γ̇ . (3)

In this limit, the long-time relaxation of the variable Θ is easily obtained by
integrating (3) (with γ̇σ = 0):

∫ Θ(t)

Θ0
exp [∆h/k Θ] k dΘ = −E1 t, and keep-

ing only the dominant contribution: k Θ(t) � ∆h
log(E1 t/∆h) . For finite T , this

process dominates so long as t 
 τT = ∆h exp [∆h/(kT )] /E1: τT diverges
in the limit T → 0.

An important property of the glass transition is that the observed transi-
tion point depends on the cooling rate. [7, 10] Consider the following experi-
ment: enthalpy is monitored during a steady cooling from an initial tempera-
ture Tmax; after reaching Tmin, the temperature is increased at the same rate
back to Tmax. This procedure is reproduced here by integrating equation (2)
for different cooling/reheating rates. The resulting dynamics are portrayed
Fig. 1 (left), where energy is shown as a function of T . Slowing down is seen as
energy does not reach equilibrium at low temperature; upon reheating, energy
does not go back along the same curve. As in the experiments, heat capacity
is then extracted from this data according to the formula, CT = dH/dT ;
the result is displayed Fig. 1 (right). The large increase of CT observed upon
reheating marks a fictive glass transition point, which clearly depends on the
cooling rate.

The rest of this paper is devoted to the study of a material under shear.
Like thermal equilibration, the deformation of a material under an applied
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Fig. 1. Energy (left) and calorific capacity (right) as a function of temperature
during cooling and reheating protocol, between kTmax = 0.5 and kTmin = 0.001, for
cooling rates, 10−3/k (solid line), 10−4/k (dashed line), 10−5/k (dotted line)
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shear stress is expected to proceed by space-localized rearrangements. [4]
However, the transition pathways that contributes respectively to elemen-
tary shear and elementary thermal equilibration processes, are not necessar-
ily identical at the molecular level. Therefore they may, in general, display
different activation enthalpies. Without more knowledge, we can expect the
response to small shear stresses to be of the form:5

γ̇ = E0 exp
[

−∆h′

k Θ

]

σ . (4)

The update frequency E0 normalizes the frequency of elementary vibrations,
and incorporates corrections specific to this mode of deformation. Any de-
pendency of E0 on Θ or T is neglected. (E0/E1 and ∆h/∆h′ are expected to
be of order 1.)

With equations (4) and (2) in hands I now study three experimental proto-
cols: aging in the stress-linear response to step strains, response to oscillatory
forcing, and rheology of steady deformation.

Aging is characterized by monitoring the response of a material to a per-
turbation at various times after an initial quench from a high temperature
equilibrium state. [7,13] The procedure is as follows: At time t = 0, the system
is suddenly quenched from an equilibrium state (Θ0 = T0) to low temper-
ature. Relaxational dynamics take place from then on, and we study the
situation when Θ � T : equation (3) leads at long time to a time-logarithmic
decay of enthalpy. At time tw, a small strain δε is applied; it provokes a
quasi-instantaneous elastic response σ = 2µδε, followed by a slow occurrence
of plastic deformations and stress release as: σ̇ = −2µγ̇. For small δε, the
term γ̇σ in equation (3) is negligible at all times.

At short times , stress decays exponentially, with a timescale, τΘ =
(1/(2µE0)) exp [∆h′/(kΘw)], which depends only on Θw = Θ(tw). At long-
times, stress release is controlled by the slow relaxation of Θ, and integrates
as:

G(t, tw) ≡ σ(t)
σ(tw)

� exp
[
A

(
tβw − tβ

)]

with β = 1 − ∆h′

∆h and A = 2µ E0
β

(
E1
∆h

)β−1
. If ∆h > ∆h′, β > 0 and stress

undergoes KWW relaxation. The crossover between the short-time exponen-
tial relaxation and the long-time stretched exponential is illustrated Fig. 2.
A plateau appears in the crossover region: this typical pattern emerges here
solely from a change in the dynamical regime of Θ. Relaxation curves for
different ages tw are shown Fig. 3 (top). If fitted by exp(−tβ/τ(tw)), it is
easy to check that the apparent relaxation timescale τ(tw) grows like, tαw,
with α = 1 − β; this phenomenon, usually referred as sub-aging is here a
mere artifact of the lin-log representation: this type of scaling – which are
very often used to treat experimental data – may be very misleading and

5I do not consider, in this work, dynamics of shear transformation zones. [4]
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hide, as it does here, the true aging behavior. If ∆h = ∆h′, β = 0, we find
G(t) � 1/t. If ∆h < ∆h′, β < 0 and stress assumes a non-vanishing as-
ymptotic value after relaxation, which increases with the age of the sample:
G(t → ∞) � exp

[
−|A| t−|β|

w

]
.

Another important experimental protocol consist in measuring the in-
phase and out-of-phase moduli, G′ and G′′, when the material is forced at
time tw by an oscillatory shear, γ(t) = γ0 sin(ω (t−tw)). In practice, the mea-
surement is performed by integrating the response a fixed number of periods
n, for each frequency ω. Since the material ages, every point on the spectrum
depends on the whole history of the sample prior to its measurement. The
resulting G′ and G′′ are shown Fig. 3 (bottom). They clearly show an α relax-
ation peak which, here is solely the signature of the slow evolution of Θ. This
peak is obtained for large intervals of the parameters, under the conditions
that µ is somewhat large (which, indeed, is reasonable, given the usual values
of elastic constants); it weakens with the increasing age of the material.

To conclude this study, let me consider the regime of stationary deforma-
tion of the material, at temperature T , under a constant shear rate γ̇. The
steady state value of the variable Θ is the solution of:

γ̇2 = E0 E1 exp
[

−∆h + ∆h′

kΘ

] (

1 − exp
(

δq

kΘ
− δq

kT

))

.
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Fig. 3. Top: Relaxation modulus for E0 = E1 = µ = 1, ∆h = 1.5, ∆h′ = 1,
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For ∆h = ∆h′, one finds, η γ̇ = σ(1 + E0
E1

σ2)−
∆h
δq . For ∆h �= ∆h′, and

kΘ � ∆h+∆h′, this solution is dominated by the contribution, Θ = kT/(1+
(kT/δq) log

(
1 − γ̇2/(E1E0)

)
) which, for small γ̇, indicates that the system

behaves as a Newtonian liquid with a viscosity, η = exp [∆h′/kT ] /E0. For
kT �= kΘ 
 ∆h + ∆h′, the solution is dominated by its T → 0 value,
which leads to a power relation between stress and strain rate: σ ∼ γ̇n, with
n = ∆h−∆h′

∆h+∆h′ .

3 Conclusion

This study suggest that, in the low temperature regime, there exists a direct
relation between the exponent β (and α) of the KWW relaxation, and the
power law rheology displayed in steady shear. It establishes a relation be-
tween two highly dissimilar experimental situations – linear response in the
aging regime, and steady shear deformation – in direct relation to the ratio
κ = ∆h/∆h′ between activation barriers associated respectively to shear and
energy relaxation processes. κ is expected to depend solely on geometrical
aspect of the material: shape of the molecules or polydispersity of colloidal
particles. The existence of such a relation can thus be tested experimentally



136 A. Lemâıtre

by considering families of closely related materials in order to allow some
variation of the exponents.

The equations proposed here are exaggeratedly simple. Their interest lies
in the possibility to account for a whole set of properties commonly associated
with the glass transition, in a over-simplified framework, in comparison to
other studies of rheology. [12] Various aspects of these questions certainly
deserve further studies. In particular, a derivation of the transformation rates
would bring out much needed information. One may, however, hope that out-
of-equilibrium thermodynamics can be defined for structural glasses in terms
of a few rate equations for the appropriate set of thermodynamic quantities.

I thank Jean Carlson and Eric Clément for their support and their interest
in my research. I am especially grateful to Christiane Caroli and Jim Langer
for their suggestions, and their helpful critiques. This work was sponsored by
the W. M. Keck Foundation, and the NSF Grant No. DMR-9813752.
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We review in these notes the dynamics of extended condensed matter systems,
such as vortex lattices in type-II superconductors and charge density waves
in anisotropic metals, driven over quenched disorder. We focus in particular
on the case of strong disorder, where topological defects are generated in the
driven lattice. In this case the response is plastic and the depinning transition
may become discontinuous and hysteretic.

1 Introduction

Nonequilibrium transitions from stuck to flowing phases underlie the physics
of a wide range of physical phenomena. In a first class of systems the onset of
a stuck or frozen state occurs as a result of intrinsic dynamical constraints,
due to interactions or crowding, and is usually referred to as jamming [1].
Familiar examples are supercooled liquids that become glasses upon lowering
the temperature, colloidal suspensions that undergo a glass transition due
to crowding upon increasing the density or the pressure, foams and granu-
lar materials that jam under shear, arrays of dislocations in solids that jam
under an applied load. In a second class of systems the transition to a stuck
state is due to external constraints, such as the coupling to quenched disor-
der (pinning centers from material defects in vortex lattices, optical traps in
colloids, etc.), and is denoted as pinning [2]. Both classes of systems can be
driven in and out of glassy states by tuning not only temperature, density or
disorder strength, but also an applied external force. The external drive may
be a shear stress in conventional glasses or simply a uniform applied force
in systems with extrinsic quenched disorder, where even a uniform trans-
lation of the system relative to the fixed impurities represents a nontrivial
perturbation. Vortex lattices in superconductors [3] and charge density waves
(CDWs) in metals [4] can be driven in and out of stuck glassy states by a
uniform external current or electric field, respectively. As recognized recently
in the context of jamming, the external drive plays a role not unlike that of
temperature in driving the system to explore metastable configurations and
should be included as an axis in a complete phase diagram.

In this lectures I will focus on zero-temperature depinning transitions of
interacting condensed matter systems that spontaneously order in periodic

M.C. Marchetti: Depinning and Plasticity of Driven Disordered Lattices, Lect. Notes Phys.
688, 137–157 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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structures and are driven over quenched disorder. The prototype examples
are vortex lattices in type-II superconductors [5] and charge density waves
in anisotropic metals [8]. Other examples include Wigner crystals of two di-
mensional electrons in a magnetic field moving under an applied voltage [6],
lattices of magnetic bubbles moving under an applied magnetic field gradi-
ent [7], and many others. In general these systems form a lattice inside a solid
matrix, provided by the superconducting or conducting material and are sub-
ject to pinning by random impurities. The statics of such disordered lattices
have been studied extensively [5]. One crucial feature that distinguishes the
problem from that of disordered interfaces is that the pinning force expe-
rienced by the periodic structure is itself periodic, although with random
amplitude and phase [9]. As a result, although disorder always destroys true
long-range translational order and yields glassy phases with many metastable
states and diverging energy barriers between these states, the precise nature
of the glassy state depends crucially on disorder strength. At weak disorder
the system, although glassy, retains topological order (the resulting phase
has been named Bragg glass in the context of vortex lattices) [9]. Topological
defects proliferate only above some characteristic disorder strength, where a
topologically disordered glass is formed.

The driven dynamics of disordered periodic structures have been stud-
ied extensively by modeling the system as an overdamped elastic medium
that can be deformed by disorder, but is not allowed to tear, that is by
neglecting the possible formation of topological defects due to the competi-
tion of elasticity, disorder and drive. This model, first studied in the context
of charge density waves, exhibits a nonequilibrium phase transition from a
pinned to a unique sliding state at a critical value FT of the driving force.
This nonequilibrium transition displays universal critical behavior as in equi-
librium continuous transitions, with the medium’s mean velocity v acting as
an order parameter [2, 8, 10]. While the overdamped elastic medium model
may seem adequate to describe the dynamics of driven Bragg glasses, many
experiments and simulations of driven systems have shown clearly that topo-
logical defects proliferate in the driven medium even for moderate disorder
strengths [11–14, 54]. The dynamics near depinning becomes spatially and
temporally inhomogeneous, with coexisting moving and pinned degrees of
freedom. This regime has been referred to as plastic flow and may be associ-
ated with memory effects and even hysteresis in the macroscopic response.

The goal of the present lectures is to describe coarse-grained models of
driven extended systems that can lead to history-dependent dynamics. Such
models can be grouped in two classes. In the first class the displacement of
the driven medium from some undeformed reference configuration remains
single-valued, as appropriate for systems without topological defects, but the
interactions are modified to incorporate non-elastic restoring forces [15–20].
In the second class of models topological defects are explicitly allowed by
removing the constraint of single-valued displacements [21–23]. Here we will
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focus on the first class and specifically consider driven periodic media with
a linear stress-strain relation, where the stress transfer between displace-
ments of different parts of the medium is nonmonotonic in time and describes
viscous-type slip of neighboring degrees of freedom. A general model of this
type that encompasses many of the models discussed in the literature was
proposed recently by us [18, 20, 24]. Here slips between neighboring degrees
of freedom are described as viscous force, that allows a moving portion of the
medium to overshoot a static configuration before relaxing back to it. It is
shown below that such viscous coupling can be considered an effective way
of incorporating the presence of topological defects in the driven medium.
Related models have also been used to incorporate the effect of inertia or
elastic stress overshoot in crack propagation in solids [19, 25]. The precise
connection between the two classes of models has been discussed in [26].

In Sect. 2 we review the simplest example of depinning transition, ob-
tained when non-interacting particles are driven through a periodic pinning
potential. By contrasting the case of periodic and non-periodic pinning, we
stress that care must be used in the definition of the mean velocity of the sys-
tem. In Sect. 3, we first describe the generic coarse-grained model of a driven
elastic medium that exhibits a continuous depinning transition as a function
of the driving force from a static to a unique sliding state. Next we introduce
an anisotropic visco-elastic model as a generic model of a periodic system
driven through strong disorder. The model considers coarse-grained degrees
of freedom that can slip relative to each other in the directions transverse
to the mean motion, due to the presence of small scale defects (phase slips,
dislocations, grain boundaries) at their boundaries, but remain elastically
coupled in the longitudinal directions. The slip interactions are modeled as
viscous couplings and a detailed physical motivation for this choice is given
in Sect. 3.3. Most of our current results for these type of models are for the
mean-field limit and are presented in Sect. 4. The studies carried out so far
for finite-range interactions suggest that the mean-field theory described here
may give the correct topology for the phase diagram, although there will of
course be corrections to the critical behavior in finite dimensions [27]. Finally,
we conclude in Sect. 5 by discussing the relation to other models described
in the literature and the connection to experiments.

2 Depinning of Noninteracting Particles

It is instructive to begin with the problem of a single particle driven through
a periodic pinning potential as the simplest illustration of driven depinning.
Assuming overdamped dynamics, the equation of motion for the position x
of the particle is

ζ
dx

dt
= F + hY (x) , (1)
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where ζ is a friction coefficient (in the following we choose our units of time so
that ζ = 1), F is the external drive and Y (x) = Y (x + n), with n an integer,
is a periodic function of period 1. For simplicity we choose a piecewise linear
pinning force, corresponding to Y (x) = (1/2 − x), for 0 ≤ x ≤ 1. In this
case a periodic solution of (1) is obtained immediately in terms of the time T
needed to traverse a potential well, or period. Introducing an arbitrary time
tJ such that if x(tJ ) = n, then x(tJ + T ) = n + 1, the particle position for
tJ + nT ≤ t ≤ tJ + (n + 1)T is

x(t) = n +
1 − e−h(t−tJ−nT )

1 − e−hT
, (2)

where T is given by

T (h) =
1
h

ln
(

2F + h

2F − h

)

, (3)

for F > h/2 and diverges for F < h/2. In other words if F < h/2 the
particle never leaves the initial well, i.e., it is pinned. The threshold force for
depinning is then Fc = h/2. In the sliding state the mean velocity is defined
as the average of the instantaneous velocity v(t) = dx

dt over the arbitrary
initial time tJ . This gives

v ≡ 〈v〉tJ
=

∫ t−nT

t−(n+1)T

dtJ
T

v(t) =
1
T

. (4)

This definition naturally identifies the mean velocity of the particle with the
inverse of the period. The logarithmic behavior of v near threshold, v ∼
−1/ln(Fc −F ), is peculiar to a discontinuous pinning force. For an arbitrary
pinning force Y (X) the period T is

T =
∫ 1

0

dx
1

F + hY (x)
, (5)

and can be evaluated analytically for various forces. For instance, for a sinu-
soidal pinning force, Y (x) = sin(2πx), one finds T = (F 2 − h2)−1/2, which
gives v ∼ (F − Fc)1/2 near threshold, a generic behavior for continuous pin-
ning forces.

The main focus of the remainder of this paper will be on the modeling
of extended driven systems as collections of interacting degrees of freedom.
It will then be important to distinguish two cases. For extended systems
that are periodic, such as charge density waves and vortex lattices, the pin-
ning potential is itself periodic as each degrees of freedom sees the same
disorder after advancing one lattice constant. For non-periodic systems, such
as interfaces, each degree of freedom moves through a random array of de-
fects. When interactions are neglected, an extended periodic system moving
through a periodic random pinning potential can be modeled as a collection
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Fig. 1. (a) Sketch of noninteracting degrees of freedom driven over a random peri-
odic pinning potential in one dimension. Spatial coordinates have been discretized
so that degrees of freedom are labelled by an index i. In (b) the case where each
degree of freedom interacts elastically with its neighbors is shown. This is a dis-
cretized one-dimensional realization of the elastic medium model described by (13)
below

of N non-interacting particles, where each particle sees its own periodic pin-
ning potential. The pinning potentials seen by different particles may differ in
height and be randomly shifted relative to each other, as sketched in Fig. 1.
The equation of motion for the i-th particle at position xi is then

dxi

dt
= F + hiY (xi + γi) , (6)

where γi are random phases uniformly distributed in [0, 1) and the pinning
strengths hi are drawn independently from a distribution ρ(hi). Since the
displacements xi are decoupled, they can be indexed by their disorder para-
meters γ and h instead of their spatial label i, i.e., xi(t; γi, hi) → x(t; γ, h).
The mean velocity of the many-particle system can then be written as an
average over the random phases and pinning strengths,

v =
1
N

∑

i

vi = 〈v(t; γ, h)〉γ,h

=
∫

dh ρ(h)
∫ 1

0

dγ v(t; γ, h) , (7)

where v(t; γ, h) = dx(t;γ,h)
dt . The average over the random phase of each degree

of freedom is equivalent to the average over the random time shift tJ described
for the single-particle case and yields

∫ 1

0
dγ v(t; γ, h) = 1/T (h), with T (h)

the period of each particle given in (3). The mean velocity is then

v =
〈

1
T (h)

〉

h

, (8)
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where 〈...〉h =
∫

dh...ρ(h) denotes the average over the barrier height dis-
tribution. For distributions ρ(h) that have support at h = 0, a system of
noninteracting particles with periodic pinning depins at F = 0, as there are
always some particles experiencing zero pinning force.

A different single-particle problem that has been discussed in the litera-
ture is that of a particle moving through a random (non-periodic) array of
defects [28]. The defects can be described as pinning potential wells centered
at random positions and/or with random well heights. To make contact with
the periodic case we consider a particle moving through a succession of evenly
spaced pinning potential wells of random heights. The equation of motion is

∂tx = F +
Np−1∑

p=0

hpY (x − p) , (9)

where Np is the total number of pinning centers and the pinning strengths
hp are drawn independently from a distribution ρ(hp). Choosing again the
piecewise-linear pinning force, the time to traverse the p-th well is simply
T (hp), with T given by (3). The mean velocity of the particle is defined as
the total distance travelled divided by the total time and is given by

v =
Np∑

p T (hp)
≡ 1

〈T (h)〉h
. (10)

In this case, unless the distribution ρ(h) is bounded from above, there is
always a finite probability that the particle will encounter a sufficiently deep
potential well to get pinned. Therefore for unbounded ρ(h) the particle is
always pinned in the thermodynamic limit. If ρ(h) is bounded from above by
a maximum pinning strength hmax, this value also represents the depinning
threshold. Finally, the case of many noninteracting particles driven through a
random array of defects is equivalent to that of a single particle, as the mean
velocity of each particle can be calculated independently. The mean velocity
of the system is then again given by (10).

3 Depinning of an Extended Medium

We consider a d-dimensional periodic structure driven along one of its symme-
try directions, chosen as the x direction. The continuum equations for such
a driven lattice within the elastic approximation were derived by various
authors by a rigorous coarse-graining procedure of the microscopic dynam-
ics [29–31]. Assuming overdamped microscopic dynamics, the equation for
the local deformation u(r, t) of the medium (in the laboratory frame) from
an undeformed reference state is written by balancing all the forces acting
on each portion of the system as [32]

∂tui = ∂jσij + Fδix + Fpi(r,u) , (11)
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where σij is the stress tensor due to interactions among neighboring degrees
of freedom, F is the driving force and Fp is the periodic pinning force. The
periodicity of the pinning force, which contains Fourier components at all
the reciprocal lattice vectors of the lattice, arises from the coupling to the
density of the driven lattice.

3.1 Elastic Model

For conventional short-ranged elasticity the stress tensor is

σel
ij = 2c66uij + δij(c11 − c66)ukk , (12)

where c11 and c66 are the compressional and shear moduli of the driven
lattice, respectively, and uij = 1

2 (∂iuj + ∂jui) is the strain tensor. It was
shown in [29] that deformations of the driven lattice along the direction of
the driving force grow without bound due to large transverse shear stresses
that generate unbounded strains responsible for dislocation unbinding. For
this reason, we focus here on the dynamics of a scalar field ux(x,y, t) ≡
u(r, t), with r = (x,y), describing deformations of the driven lattice along
the direction of mean motion. The d − 1-dimensional vector y denotes the
coordinates transverse to the direction of motion. Assuming c11 � c66, we
obtain a scalar model for the driven elastic medium, given by

∂tu = c11∂
2
xu + c66∇2

yu + F + Fp(r, u) , (13)

where Fp denotes the x component of the pinning force. For simplicity we
also consider a model that only retains the component of the pinning force at
the smallest reciprocal lattice vector and choose our units of lengths so that
the corresponding period is 1. The pinning force is then taken of the form

Fp(r, u) = h(r)Y
(
u(r, t) − γ(r)

)
, (14)

where Y (u) = Y (u+n) is a periodic function. The random pinning strengths
h are drawn independently at every spatial point from a distribution with
zero mean and short-ranged correlations to be prescribed below. The random
phases γ are spatially uncorrelated and distributed uniformly in [0, 1).

The model of a driven overdamped elastic medium embodied by (13) has
been studied extensively both analytically and numerically [2,8,10,33,34]. It
exhibits a depinning transition at a critical value FT of the applied force from
a static to a unique sliding state [35]. The depinning can be described as a
continuous equilibrium transition, with the mean velocity v = 〈∂tu〉 playing
the role of the order parameter, and universal critical behavior. The velocity
vanishes as FT is approached from above as v ∼ (F − FT )β . The critical
exponent β depends only on the system dimensionality and was found to be
β = 1 − ε/6 + O(ε2) using a functional RG expansion in ε = 4 − d [10, 36].
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3.2 Viscoelastic Model

Strong disorder can yield topological defects in the driven lattice, making the
elastic model inapplicable [37, 38]. In this case the dynamics becomes inho-
mogeneous, with coexisting pinned and moving regions [39, 40]. The depin-
ning transition may be discontinuous (first order), possibly with macroscopic
hysteresis. Several mean-field models of driven extended systems have been
proposed [2,16–19,21,22] to describe this inhomogeneous dynamics. Here we
focus on a class of models that retains a single-valued displacement field and
a linear stress-strain relation, but assumes that the presence of topological
defects can be effectively incorporated at large scales by a non-instantaneous
stress transfer that couples to gradients of the local velocity (rather than
displacement). More precisely, we consider an anisotropic model of coarse-
grained degrees of freedom that can slip relative to each other in at least one
of the directions transverse to the mean motion, due to the presence of small
scale defects (phase slips, dislocations, grain boundaries) at their boundaries,
but remain elastically coupled in the longitudinal directions [20]. This model
incorporates the anisotropy of the sliding state in the plastic flow region that
results either from flow along coupled channels oriented in the direction of
the drive (e.g., as in the moving smectic phase [41]) or in layered materials
such as the high-Tc cuprate superconductors. It also encompasses several of
the models discussed in the literature.

For generality, consider a d = d‖ + d⊥-dimensional medium composed of
degrees of freedom that are coupled elastically in d‖ direction and can slip
relative to each other in the remaining d⊥ directions. The axis x along which
the driving force is applied is along one of the d‖ directions. The equation of
motion for the displacement u(r‖, r⊥, t) is given by

∂tu = K∇2
‖u + η∇2

⊥v + F + Fp(r, u) , (15)

with v = ∂tu the local velocity. This model will be referred to as the visco-
elastic (VE) model as it incorporates elastic couplings of strength K in d‖
directions and viscous couplings of strength controlled by a shear viscosity η
in the remaining d⊥ directions. A two-dimensional cartoon of this anisotropic
model is shown in Fig. 2.

For η = 0 (or d⊥ = 0) the VE model reduces to the elastic model (but with
isotropic elasticity) of (13). Conversely, for K = 0 (or d‖ = 0) (15) reduces to
the purely viscous model studied earlier by us [18, 24]. For any distribution
of pinning strengths with support at h = 0, the purely viscous model has
zero threshold for depinning, but it does exhibit a critical point separating
regions of unique and multivalued solutions for the mean velocity. In the VE
model (η �= 0 and K �= 0) even when fluid-like shear takes place, particle
conservation gives a sharp depinning transition in flow along the channels.
Furthermore, as shown below, the model has a sharp mean-field tricritical
point separating a region of parameters where depinning is continuous, in
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Fig. 2. A two-dimensional realization of the anisotropic driven medium described
in the text. Spatial coordinates have been discretized in the figure so that degrees
of freedom are labelled by indices � and i, respectively transverse and longitudinal
to the direction of the driving force, F . Each degree of freedom interacts with
its neighbors via elastic couplings in the longitudinal direction and via viscous or
similar slip couplings in the transverse direction

the universality class of elastic depinning, from one where depinning become
discontinuous and hysteretic.

It is important to stress that the VE model still assumes overdamped mi-
croscopic dynamics. Velocity or viscous couplings can appear generically in
the large-scale equations of motion upon coarse-graining the microscopic dy-
namics of a dissipative medium. In fact, next we show that viscous couplings
indeed represent an effective way of incorporating the local dissipation due
to the presence of topological defects.

3.3 Viscoelastic Coupling as an Effective Description
of Topological Defects

The goal of this section is to provide some justification to the anisotropic VE
model as an effective description of topological defects in a driven lattice. To
this purpose we consider a two dimensional medium and take advantage of
the continuum equations developed many years ago by Zippelius et al. [42] to
describe the time-dependent properties of two-dimensional solids near melt-
ing. These authors combined the equations of free dislocation motion with
solid hydrodynamics to construct a semimicroscopic dynamical model of a
solid with free dislocations. They further showed that the dynamics of such
of a “heavily dislocated solid” (an elastic medium with an equilibrium concen-
tration of free dislocations) is identical to that of the hexatic phase obtained
when a two-dimensional solid melts via the unbinding of dislocations [43].
More recently we [44] reconsidered the dynamical equations for the “heavily
dislocated solid” of [42] and showed that they can be recast in the form of the
phenomenological equations of a viscoelastic fluid (with hexatic order) intro-
duced many years ago by Maxwell [45]. In the presence of free dislocations
the local stresses in the medium have contributions from both elastic stresses
and defect motion. The latter couple again to the the local strains which
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control the defect dynamics. By eliminating the defect degrees of freedom,
one obtains a linear, although nonlocal, relation between strain and stress,
given by [46]

σVE
ij (r, t) = δij cL ukk(r, t) + δij(c11 − cL)

∫ t

−∞
dt′e−(t−t′)/τb vkk(r, t′)

+2c66

∫ t

−∞
dt′e−(t−t′)/τs

[
vij(r, t′) −

1
2
δijvkk(r, t′)

]
, (16)

where vij = 1
2 (∂ivj + ∂jvi and the velocity v is defined here in terms of the

momentum density g as v = g/ρ0, with ρ0 the equilibrium mass density
of the medium. Also in (16) cL is the compressional modulus of the liquid
and τb ≈ (c11µ

c
dnfa2

0)
−1 and τs ≈ (c66µ

g
dnfa2

0)
−1 are the compressional and

shear relaxation times, with µg,c
d the dislocation glide and climb mobility, re-

spectively. Of course in the presence of dislocations the displacement u is no
longer single-valued (although the strain uij remains single-valued and con-
tinuous) and ∂tu �= v due to both the motion of vacancy/interstitial defects
and of dislocations. The phenomenological Maxwell model of viscoelasticity
is obtained by assuming that ∂tu = v even in the presence of dislocations.
Then for t 
 τs, τb the viscoelastic stress σVE(r, t) reduces to the familiar
elastic stress tensor given in (12),

σVE(r, t 
 τs, τb) ≈ σel
ij . (17)

Conversely for t � τs, τb one obtains

σVE
ij (r, t � τs, τb) ≈ δij cLukk + δij(ηb + η)vkk + 2ηvij , (18)

which describes stresses in a viscous fluid of shear viscosity η = c66τs and
bulk viscosity ηb = (c11 − cL)τb. The first term on the right hand side of (18)
is the pressure and incorporates the fact that even a liquid has a nonzero
long-wavelength compressional elasticity, which is associated with density
conservation. As we will see below this terms plays a crucial role in controlling
the physics of depinning of a viscoelastic medium. The Maxwell viscoelastic
fluid has solid-like shear rigidity at high frequency, but flows like a fluid at low
frequency. Since the relaxation times τs and τb are inversely proportional to
the density nf of free dislocations, the Maxwell model behaves as a continuum
elastic medium on all time scales when nf → 0 and as a viscous fluid when
nfa2

0 ∼ 1.
Dislocation climb is much slower than dislocation glide (µc

d 
 µg
d), re-

sulting in τb � τs. We therefore assume that the response to compressional
deformations is instantaneous on all time scales, but retain a viscoelastic
response to shear deformations. Letting τb → ∞, we find

σVE
ij (r, t) ≈ δij c11ukk(t) + 2c66

∫ t

−∞
dt′e−(t−t′)/τs

[
vij(t′) −

δij

2
vkk(t′)

]
.(19)
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We now turn to the case of interest here, where topological defects are
generated in a an extended medium driven through quenched disorder. In
this case the medium has no low frequency shear modulus, but particle con-
servation still requires long wavelength elastic restoring forces to compres-
sional deformations. On the other hand, the number of topological defects is
not fixed as dislocations are continuously generated and annihilated by the
interplay of elasticity, disorder and drive [39, 40, 47]. Furthermore, unbound
dislocations can be pinned by disorder and do not equilibrate with the lattice.
In the plastic region near depinning the dynamics remains very inhomoge-
neous and fluid-like and the pinning of dislocations by quenched disorder is
not sufficient to restore the long wavelength shear-stiffness of the medium.
For this reason we propose to describe the effect of topological defects near
depinning by replacing elastic shear stresses by viscoelastic ones, while retain-
ing elastic compressional forces. Of course the resulting model that assumes
a fixed density of dislocations becomes inapplicable at large driving forces
where dislocations heal as the lattice reorders. For the case of interest here
of a scalar model describing only deformations along the direction of motion,
the viscoelastic model of a driven disordered medium is

∂tu = c11∂
2
xu + c66

∫ t

−∞
dt′e−(t−t′)/τs∂2

yv(t′) + F + h(r)Y (u − γ(r)) , (20)

with v = ∂tu. This model naturally incorporates the anisotropy and channel-
like structure of the driven medium, where shear deformations due to gra-
dients in the displacement in the directions transverse to the mean motion
(∂yu �= 0) are most effective at generating the large stresses responsible for
the unbinding of topological defects. It is instructive to note that due to the
exponential form of stress relaxation the integro-differential equation (20) is
equivalent to a second order differential equation for the displacement,

τs∂
2
t u + γeff∂tu = c11∂

2
xu + η∂2

yv + F + h(r)Y (u − γ(r)) , (21)

with γeff an effective friction [18]. In other words the effect of a finite density of
dislocations in the driven lattice yields “inertial effects” on a scale controlled
by the time τs ∼ 1/nf . The purely viscous model obtained from (21) with
c11 = 0 was analyzed in detail in [24] where it was shown that if τs and
η = c66τs are tuned independently, then τs is a strongly irrelevant parameter
in the RG sense. This allows us to consider a simplified form of the equation
for the driven medium obtained from (21) with τs = 0, but η = c66τs finite,
leading to the general anisotropic viscoelastic model introduced in (15).

4 Mean-field Solution

The mean-field approximation for the VE model is obtained in the limit of
infinite-range elastic and viscous interactions. To set up the mean field theory,
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it is convenient to discretize space in both the transverse and longitudinal
directions, using integer vectors i for the d‖-dimensional intra-layer index
and � for the d⊥-dimensional layer index. The local displacement along the
direction of motion is ui

�(t). Its dynamics is governed by the equation,

∂tu
i
� =

∑

〈j〉
Kij(ui

� − uj
�) +

∑

〈m〉
η�m[u̇i

� − u̇m
j ] + F + hi

�Y (ui
� − γi

�) , (22)

where the dot denotes a time derivative and 〈j〉 (〈m〉) ranges over sites j (m)
that are nearest neighbor to i (�). The random pinning strengths hi

� are chosen
independently with probability distribution ρ(hi

�) and the γi
� are distributed

uniformly and independently in [0, 1). For a system with N = N‖×N⊥ sites,
one mean field theory is obtained by assuming that all sites are coupled
with uniform strength, both within a given channel and with other channels.
Each discrete displacement then couples to all others only through the mean
velocity, v = N−1

∑
u̇i

�, and the mean displacement, u = N−1
∑

ui
�. We

assume that the disorder is isotropic and the system is self averaging and look
for solutions moving with stationary velocity: u = vt. Since all displacements
u are coupled, they can now be indexed by their disorder parameters γ and h,
rather than the spatial indices i and �. The mean-field dynamics is governed
by the equation

(1 + η)u̇(γ, h) = K
(
vt − u

)
+ F + ηv + hY (u − γ) . (23)

The cases K = 0 and K �= 0 need to be discussed separately.

4.1 Mean-field Theory for Viscous Model: K = 0, η �= 0

When K = 0, the mean field equation becomes identical to that of a single
particle discussed in Sect. 2 driven by an effective force F + ηv (with friction
1 + η). In this case different degrees of freedom move at different velocities
even in the mean field limit. The mean field velocity is determined by the
self-consistency condition v = 〈u̇〉γ,h, where the average over the random
phases is equivalent to the average over the random times shifts tJ given in
(4). For the case of a piecewise linear pinning force using (8) we find

v =
1

1 + η

∫

dhρ(h)
1

T (h, F + ηv)
, (24)

with T (h, F ) given by (3). The mean velocity obtained by self-consistent
solution of (24) is shown in Figs. 3 and 4 for two distributions of pinning
strengths.

For a narrow distribution, ρ(h) = δ(h − 1), there is a finite threshold
FT = 1/2, independent of η. The velocity is multivalued for any finite η.
When the force is ramped up adiabatically from the static state the system
depins at F↑ = FT . When the force is ramped down from the sliding state, the
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Fig. 3. (a) Velocity versus driving force for the purely viscous model (K = 0, η �= 0)
with a narrow distribution of pinning strength, ρ(h) = δ(h−1), for η = 0, 2, 5. There
is a finite depinning threshold at FT = 1/2. In (b) the depinning and repinning
forces F↑ and F↓ are shown as functions of η

F F slow−moving

fast−moving

coexistence

Fig. 4. (a) Velocity versus driving force for the purely viscous model (K = 0,
η �= 0) with a broad distribution of pinning strength, ρ(h) = e−h for η = 6, 16.
In this case there are no stable static (pinned states). The velocity is single valued
for η < ηc and multi-valued for η > ηc. In this case when F is ramped up from
zero, the velocity jumps discontinuously at F↑ where the system goes from the
“slow-moving” to the “fast-moving” state. Here and below “coexistence” refers to
multistability of the solutions to the equations of motion. When F is then ramped
down from within the fast-moving state the jump in v occurs at the lower value F↓.
The forces F↓ and F↑ become equal at the critical point, as shown in frame (b)

system repins at the lower value F↓(η). The depinning and repinning forces
are shown in Fig. 3(b). The region where unique and multivalued velocity
solutions coexist extend to η = 0. For a broad distribution with support at
h = 0, e.g., ρ(h) = e−h, the threshold for depinning is zero as some of the
degrees of freedom always experience zero pinning and start moving as soon
as a force is applied. There is a critical point at (Fc, ηc). For η > ηc the
analytical solution for v(F ) is multivalued, as shown in Fig. 4. If the force
is ramped up adiabatically from zero at a fixed η > ηc, the system depins
discontinuously at F↑(η), while when the force is ramped down it repins at
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the lower value F↓(η), as shown in Fig. 4. The viscous model has also been
studied in finite dimensions by mapping it onto the nonequilibrium random
field Ising model (RFIM) [24]. In the mapping, the local velocities correspond
to spin degrees of freedom, the driving force is the applied magnetic field and
the mean velocity maps onto the magnetization. The RFIM has a critical
point separating a region where the magnetization versus applied field curve
displays hysteresis with a discontinuous jump to a region where there is no
jump in the hysteresis curve [48, 49]. In the viscous model the critical point
separates a region where the velocity curve is smooth and continuous from the
region where the “depinning” (from “slow-moving” to “fast-moving” states)
is discontinuous and hysteretic. The critical point is in the Ising universality
class, with an upper critical dimension dc = 6.

4.2 Mean-field Theory for VE Model: K �= 0 and η �= 0

When K �= 0, all degrees of freedom are coupled by a spring-like interaction
(the first term on the right hand side of (23)) to the mean field u = vt and
cannot lag much behind each other. This forces all the periods to be the same,
independent of h, and yields a nonvanishing threshold for depinning. In this
case the mean field velocity is determined by imposing 〈u(t; γ, h)−vt〉γ,h = 0.

It is useful to first review the case where K �= 0 and η = 0. In this limit,
(23) reduces to the mean field theory of a driven elastic medium worked out
by Fisher and collaborators [10]. No moving solution exists above a finite
threshold force FT . For the piecewise linear pinning force this is given by

FT =
〈

h2

2(K + h)

〉

h

. (25)

For F > FT there is a unique moving solution that has a universal dependence
on F near FT , where it vanishes as v ∼ (F −FT )β . In mean-field the critical
exponent β depends on the shape of the pinning force: β = 1 for the discon-
tinuous piecewise linear force and β = 3/2 for generic smooth forces. Using a
functional RG expansion in ε = 4 − d, Narayan and Fisher [10] showed that
the discontinuous force captures a crucial intrinsic discontinuity of the large
scale, low-frequency dynamics, giving the general result β = 1− ε/6 +O(ε2),
in reasonable agreement with numerical simulations in two and three dimen-
sions [33, 34]. For simplicity and to reflect the “jerkiness” of the motion in
finite-dimensional systems at low velocities, we use piecewise linear pinning
below.

When η > 0 the nature of the depinning differs qualitatively from the
η = 0 case, in that hysteresis in the dynamics can take place. Again, no
self-consistent moving solution exists for F < FT , with FT independent of η.
Above threshold, both unique and multi-valued moving solutions exist, de-
pending on the values of the parameters: η, K, and the shape of the disorder
distribution, ρ(h). To obtain the mean field solution in the sliding state, we
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examine the motion during one period T = 1/v during which the displace-
ment advances by 1. Equation (23) is is easily solved for 0 ≤ u ≤ 1 and γ = 0,
with the result,

u(t; γ = 0, h) =
Kvt + F + ηv + h/2

(1 + η)λ
− Kv

(1 + η)λ2
+ Ae−λt , (26)

where λ = (K + h)/(1 + η). At long times, regardless of the initial condition,
u(t) approaches a periodic function of period T = 1/v with jumps in its time
derivative at times tJ +nT , with n an integer. The constant A is determined
by requiring that if u(tJ + nT ) = n, then u(tJ + (n + 1)T ) = n + 1. Writing
u(t; γ, h) = vt+ũ, it is easy to see that for an arbitrary value of γ, the solution
ũ will have the form ũ = ũ(vt − γ, h). The mean velocity is then obtained
from 〈ũ(vt − γ, h)〉γ,h = 0. Averaging ũ over γ is equivalent to averaging ũ
for a fixed γ over a time period, T , with the result,

〈ũ〉γ =
∫ tJ+(n+1)T

tJ+nT

dt

T
ũ(v − γt, h)

=
F + ηv

K
− h2

2K(K + h)
− (K + 2h)v

λ(K + h)
− h2

K(K + h)
1

eλ/v − 1
. (27)

Finally, averaging over h and using the consistency condition, we obtain

F − FT = v
[
1 − M(η,K)

]
+

〈 h2

K(K + h)
1

e(K+h)/(1+η)v − 1

〉

h
, (28)

with FT the threshold force given in (25) and M given by

M(η,K) = (1 + η)
〈

h2

(K + h)2

〉

h

. (29)

As in the purely elastic case (η = 0) only static solutions exist for F < FT .
For F > FT there is a unique sliding solution, provided M(η,K) < 1, with
mean velocity near threshold given by

v ∼ F − FT

1 − M(η,K)
∼ (1 + ηc)

F − FT

ηc − η
, (30)

giving β = 1, as in the purely elastic case. The critical line ηc(K) separating
unique from multivalued sliding solutions is determined by M(η,K) = 1,

ηc(K) =
〈

h2

(K + h)2

〉−1

h

− 1 . (31)

The velocity-force curves and a phase diagram are shown in Fig. 5 for ρ(h) =
e−h. There is a tricritical point at (ηc, Fc = FT ). In contrast to the purely
viscous model with K = 0, for finite long-time elasticity (K > 0) the behavior
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Fig. 5. (a) Velocity versus driving force for the VE model with K = 1 and a broad
distribution of pinning strength, ρ(h) = e−h. The velocity is continuous and single-
valued for η < ηc and becomes multivalued for η > ηc. The dashed line on the curve
for η = 15 indicates the value F↓ where the system repins when the drive is ramped
down from the sliding state. Frame (b) shows the depinning and repinning forces F↑
and F↓ as functions of η. The tricritical point at (Fc, ηc) separates continuous from
hysteretic depinning. Pinned and sliding states coexist in the region F↓ < F < F↑

is independent of the shape of the pinning force distribution, ρ(h). For η <
ηc, a continuous depinning transition at FT separates a pinned state from
a sliding state with unique velocity. In finite dimensions, this transition is
likely to remain in the same universality class as the depinning of an elastic
medium (η = 0). In our mean-field example, the linear response diverges at
ηc, v(η = ηc) ∼ 1/ ln(F −FT ). For η > ηc there is hysteresis with coexistence
of stuck and sliding states.

Numerical simulations of the VE model in two dimensions (d‖ = d⊥ = 1)
indicate a strong crossover (possibly a tricritical point) at a critical value of ηc

from continuous to hysteretic depinning [27]. Although it is always difficult to
establish conclusively on the basis of numerics that hysteresis survives in the
limit of infinite systems, the size of the hysteresis loop evaluated numerically
does appear to saturate to a finite value at large system sizes, indicating that
the MF approximation may indeed capture the correct finite-dimensional
physics.

5 Relationship to Other Models and to Experiments

Other models of driven systems with inertial-type couplings have been pro-
posed in the literature. It is useful to discuss in some detail their relationship
to the viscoelastic model considered here.

In the context of charge density waves, Littlewood [15] and Levy and
collaborators [16, 17] modified the Fukuyama-Lee-Rice model [4] that de-
scribes the phase of the CDW electrons as an overdamped elastic manifold
driven through quenched disorder by incorporating the coupling of the CDW
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electrons to normal carriers. This was realized via a global coupling in the
equation of motion for the phase to the mean velocity of the CDW, not unlike
what obtained by a mean-field approximation of our viscous coupling. The
model was argued to account for the switching and non-switching behavior
observed in experiments.

Schwarz and Fisher [19, 25] recently considered a model of crack propa-
gation in heterogeneous solids that incorporates stress overshoot, that is the
fact that a moving segment of the crack can sometimes overshoot one or
more potential static configurations before settling in a new one, inducing
motion of neighboring segments. These effects may arise from elastic waves
that can carry stress from one region to another of the driven medium. Stress
overshoots, just like topological defects in a driven disordered lattice, have
an effect similar to that of local inertia and were modeled by Fisher and
Schwarz by adding couplings to gradients in the local crack velocity in the
equation of motion for a driven elastic crack. These authors considered an
automaton model where time is discrete. It is straightforward to define an
automaton version of our VE model, where both the displacement ui and
time are discrete, as shown in [26]. It is then apparent that the automaton
version of the viscoeleastic model given in [26] is identical in its dynamics to
the model of crack propagation with stress overshoot studied by Schwarz and
Fisher, provided the strength M of the stress overshoot is identified with the
combination η/(1 + η). The two models differ in the type of pinning consid-
ered as the random force used in by Schwarz and Fisher is not periodic. We
find, however, that the two models have identical mean-field behavior, with a
mean-field tricritical point separating continuous from hysteretic dynamical
transitions. The connection between the viscoelastic and the stress-overshoot
model is important because it stresses that distinct physical mechanisms (in-
ertia, nonlocal stress propagation, unbound topological defects) at play in
different physical systems can be described generically by a coarse-grained
model that includes a coupling to local velocities of the driven manifold. Fi-
nally, in a very recent paper, Maimon and Schwarz suggested that out of
equilibrium a new type of generic hysteresis is possible even when the phase
transition remains continuous [51]. Driven models with both elastic and dis-
sipative velocity couplings may therefore belong to a novel universality class
that exhibits features of both first and second order equilibrium phase tran-
sitions. They clearly deserve further study.

We now turn briefly to simulations and experiments. For comparison with
experiments it is useful to point out that the tricritical point of the viscoelas-
tic model can also be obtained by tuning the applied force and the disorder
strength, rather than the applied force and the viscosity. Since the phase
diagram does not depend on the form of the disorder distribution, ρ(h), we
choose for convenience a sharp distribution, ρ(h) = δ(h−h0). The phase dia-
gram in the (F, h0) plane is shown in Fig. 6. For weak disorder the depinning
is continuous, while for strong disorder it becomes hysteretic, with a region
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Fig. 6. Mean-field solution of the VE model with a piecewise parabolic pinning
potential, ρ(h) = δ(h − h0) and η = 5. Left frame: phase diagram. Right frame:
velocity versus drive for h0/K = 0.5, h0/K = 1 and h0/K = 2. Also shown for
h0/K = 2 are the discontinuous hysteretic jumps of the velocity obtained when F
is ramped up and down adiabatically

of coexistence of pinned and moving degrees of freedom. The tricritical point
is at (hc, Fc = FT ), with hc = K/(

√
1 + η − 1).

Simulations of two-dimensional driven vortex lattices clearly show a
crossover as a function of disorder strength from an elastic regime to a regime
where the dynamics near depinning is spatially inhomogeneous and plastic,
with coexistence of pinned and moving degrees of freedom [39, 40, 52, 53]. In
fact a bimodal distribution of local velocity was identified in [40] as the sig-
nature of plastic depinning. This local plasticity does not, however, lead to
hysteresis in the macroscopic dc response in two dimension: the mean veloc-
ity remains continuous and single-valued, although it acquires a characteristic
concave-up ward form near depinning that cannot be described by the ex-
ponent β < 1 predicted by elastic models in all dimensions. Hysteresis is,
however, observed in simulations of three-dimensional layered vortex arrays
where the couplings across layers are weaker than the in-layer ones [50]. In
this case the phase diagram is qualitatively similar to that obtained for the
viscoelastic model.

Recent experiments in NbSe2 have argued that memory effects orig-
inally attributed in this system to “plasticity” of the driven vortex lat-
tice [54]are actually due edge contamination effects [55–57]. In the experi-
ments a metastable disordered vortex phase is injected in a stable ordered
bulk vortex lattice. Memory effects may then arise in the macroscopic dynam-
ics during the annealing of the injected disordered phase. Edge contamination
does not, however, explain the plasticity seen in simulations, where periodic
boundary conditions are used [40]. A possible scenario may be that while in
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the experiments the vortex lattice in the bulk is always in the ordered phase,
in the simulations the vortex lattice in the bulk of the sample may be strongly
disordered even in the absence of drive. Such a disordered vortex lattice would
then naturally respond plastically to an external drive. Finally, it is worth
mentioning one experimental situation where hysteresis of the type obtained
in our model is indeed observed in the macroscopic response. This occurs in
the context of charge density waves, driven by both a dc and an ac field. In
this case the dc response exhibits mode-locking steps. The “depinning” from
such mode-locked steps was found to be hysteretic [58].

Several colleagues and students have contributed to various aspects of
this work: Alan Middleton, Bety Rodriguez-Milla, Karl Saunders, and Jen
Schwarz. I am also grateful to Jan Meinke for help with some of the fig-
ures. The work was supported by the National Science Foundation via grants
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4. G. Grüner, Rev. Mod. Phys. 60: 1129 (1988).
5. T. Giamarchi and S. Bhattacharya, in High Magnetic Fields: Applications to

condensed matter physics and spectroscopy, C. Berthier. L. P. Lâevy, and G.
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Complex systems such as glasses, gels, granular materials, and systems far
from equilibrium exhibit violation of the ergodic hypothesis (EH) and of the
fluctuation-dissipation theorem (FDT). Recent investigations in systems with
memory [1] have established a hierarchical connection between mixing, the
EH and the FDT. They have shown that a failure of the mixing condition
(MC) will lead to the subsequent failures of the EH and of the FDT. Another
important point is that such violations are not limited to complex systems:
simple systems may also display this feature. Results from such systems are
analytical and obviously easier to understand than those obtained in complex
structures, where a large number of competing phenomena are present. In
this work, we review some important requirements for the validity of the
FDT and its connection with mixing, the EH and anomalous diffusion in one-
dimensional systems. We show that when the FDT fails, an out-of-equilibrium
system relaxes to an effective temperature different from that of the heat
reservoir. This effective temperature is a signature of metastability found in
many complex systems such as spin-glasses and granular materials.

1 Introduction

Since its formulation by Boltzmann [2], the EH has called the attention of
mathematical physicists and chemists. In the last century, a branch of the
mathematics dedicated to its study has been developed. However, most of its
results are accessible only to the specialist. On the other hand, the FDT has
played a central role [3,4] in nonequilibrium statistical mechanics in the linear
response regime (NESML). It gained such importance that Kubo proposed a
complete formulation of the NESML based on it [4]. Since the FDT is directly
related to relaxation processes, its more empirical character has caught the
attention of experimentalists and most of the discussion about its validity
has remained in the hands of theoretical physicists and chemists, instead of
mathematicians.

A necessary requirement for the validity of the FDT is that the time-
dependent dynamical variables be well defined at equilibrium. The presence

M.H. Vainstein et al.: Mixing, Ergodicity and the Fluctuation-Dissipation Theorem in
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of nonlinear effects or far from equilibrium dynamics may lead to situations
where the FDT does not hold [1, 5], the aging process in spin-glass systems
being a good example [6–11].

Most of experimental situations in which the EH and the FDT are violated
happen in complex structures. Nevertheless, we show here simple situations
where those violations appear. Their explicit condition and simplicity allows
the judgment of non-specialists in the subject. This is important because it
opens the possibility that more complex structures can be investigated on a
solid basis.

This work is organized as follows: In this section, we shall define the EH,
the MC, and other main concepts and ideas to be discussed throughout this
work. In Sect. 2, we outline some historical achievements in the study of
diffusion and introduce the FDT. We discuss reaction rates in Sect. 3, be-
fore introducing, in Sect. 4, the concept of memory, i.e., we discuss a system
governed by a Generalized Langevin’s Equation (GLE) and we show how to
obtain anomalous diffusion. Next, we discuss random walks, fractional deriva-
tives and their connection to the GLE in Sect. 5. We then continue by defining
in a clear manner the noise in Sect. 6, and its connection with memory and
correlation functions. After that, we discuss reversibility in Sect. 7. In Sect. 8,
we discuss the main issue of this review, which is the interconnection between
the MC, the EH, and the FDT, and we show under what conditions they fail.
Examples of such violations are given in Sect. 9, where we study ballistic
motion. In Sect. 10, we introduce some speculative topics on the forefront of
physical research; the “skeptic reader” can skip it. Finally, we introduce a
conjecture in Sect. 11 and conclude the paper in Sect. 12.

Let us start by considering the evolution of a dynamical stochastic variable
A(t) see Fig. 1. The variable could be either at equilibrium, Fig. 1(a), or
approaching it, Fig. 1(b). The ensemble average 〈G(A)〉 of any function G(A)
is defined as

〈G(A)〉 =
∫

Ω

exp(−βE(A))G(A)dΩ , (1)

where β−1 = kBT is the inverse temperature, E(A) are the energies, and the
integration is performed over all the accessible states of the phase space Ω.
From that, it is possible to define a correlation function as

CA(t) = 〈A(t)A(0)〉 . (2)

For an exponential decay of the correlation function, it is possible to associate
a relaxation time τ , which is larger than the typical time for a fluctuation
∆t. One can also define a time average as

A(t) =
1
T

∫ T/2

−T/2

A(t + t′)dt′ (3)

For ∆t 
 T 
 τ , the average will produce the continuous line in Fig. 1, i.e.,
it will wash out the fluctuations which we measure with a sensitive probe.
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Fig. 1. Evolution of a dynamical stochastic variable

For times T � τ , the EH reads

A(t) = 〈A(t)〉 . (4)

In simple words: given enough time, the system will reach every accessible
state, and a time average will be equal to an ensemble average. The proof
of the EH has been the Holy Grail of statistical mechanics. One expects it
will hold for macroscopic systems at equilibrium, Fig. 1(a), and for small
deviations from equilibrium; on the other hand, it will not hold for curve
(b), although it is expected that the system in situation (b) will be driven
to equilibrium for longer times. However, a general proof of the EH is still
missing. The concept of “far from equilibrium” is itself sometimes misleading,
since it depends not only on the initial conditions, but also on the possible
trajectories the system may follow [1, 12, 13]. The way a system approaches
an equilibrium is crucial for these definitions.

The “mixing property of a physical system” or mixing condition (MC)
can be stated as

lim
t→∞

R(t) = 0 , (5)

where we have defined the normalized quantity R(t) = CA(t)/CA(0). The
MC tells us that after a long time t � τ , we do not expect that A(t) will
remember its initial value A(0).

2 Diffusion

Diffusion is one of the most fundamental mechanisms for transport of energy,
mass and information; it is a main process for a system to reach uniformity
and equilibrium, and has therefore been the focus of extensive research in
many different disciplines of natural science. For almost two hundred years,
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it has caught the attention of the scientific community. The famous obser-
vations by Robert Brown [14, 15] of the erratic trajectories of pollen opened
a new world for experimental and theoretical studies in what was named
Brownian motion. As a biologist, Brown first assumed he had discovered the
basic essence of life, an idea to be expected from a man dedicated to biology.
Nevertheless, he reproduced the experiments with non-organic material and
observed the same erratic motion. Brown then concluded that this was due
to the motion of matter. Considering his aim, the second conclusion is not
only more difficult; it is a highly advanced and honest conclusion. Unfortu-
nately, most books are unfair with Brown, in not mentioning his subsequent
experiments.

At the centennial celebration of the Einstein miraculous year, one could
be easily driven to the conclusion that most of the diffusive phenomena are
well understood today. However, if we ask simple questions such as “How do
spin waves diffuse in a Heisenberg system with correlated disorder?”, “How
do electrons behave in an irregular lattice?”, or “How does a ratchet device
work?”, it takes a short time to realize that these unanswered problems are
related to diffusion.

For instance, when we flip a spin in the ground state of a ferromagnetic
chain, the principle of equal a priori probability for the accessible states tells
us that somehow the energy due to this disturbance will not remain local-
ized in a single state. However, it does not say whether or not the system
will support a spin wave, whether the wave propagates, and how it prop-
agates in the affirmative case. To answer this kind of question, we usually
need to go on into specific calculations. Our aim is to try to understand the
general character of diffusion and, hopefully, to classify it prior to extensive
calculations.

At the beginning of the twentieth century, much important research was
dedicated to the irregular motion of microscopic particles dispersed in a fluid,
namely Brownian motion. Despite being irregular, the motion reveals some
regularity when analyzed statistically. The main observed quantity was the
mean square displacement 〈x2(t)〉 of the particles, which evolves linearly with
time.

Einstein’s basic idea was to explain the Brownian motion by going be-
yond thermodynamics and into kinetic theory. He considered single spherical
particles of mass m and radius a suspended in a liquid of viscosity η, and
obtained [16]

lim
t→∞

〈x2(t)〉 = 2Dt . (6)

As usual, by infinite time, we mean a time larger than the maximum relax-
ation time of the process. The diffusion constant D was given by

D =
RT

6πNaaη
=

RT

mNaγ
=

RTµ

Na
, (7)



Fluctuation-Dissipation Theorem in Complex Systems 163

where R is the gas constant, Na the Avogadro number, µ the mobility, and
γ the friction the particle feels in the fluid. The last equation is known
as the Einstein relation [16]. However, considering that Sutherland [17] ob-
tained it almost simultaneously [18], it would be fair to name it the Einstein-
Sutherland relation.

Equation (6) was a major achievement; the linear relation with time was
confirmed and an expression for the diffusion constant was obtained. The last
form for D in (7) establishes a connection to the mobility, which is fundamen-
tal for the study of conductivity and transport. It was then possible to check
the theory with the data available at the time. If one knows D, it is possible
to make an estimation of the Avogadro number Na. Future works helped es-
tablish the Boltzmann constant, kB = R/Na, as a new fundamental constant.
Moreover, estimation of the size of sugar molecules dissolved in water became
possible. Besides that, the frequency-dependent diffusion constant D̃(ω) can
be directly associated with the conductivity by the relation [19,20]

σ̃(ω) =
ne2

kBT
D̃(ω) , (8)

where e is the carrier charge and n the carrier density.
The series of Einstein articles about diffusion [16] together with the work

of Smoluchowski [21] paved the way for the modern theory of Brownian mo-
tion.

The next step forward was taken by Langevin. In order to describe the
motion of a particle immersed in a fluid, in 1908, Langevin [22] proposed the
equation

m
dv(t)
dt

= −mγv(t) + f(t) . (9)

where f(t) is a stochastic force subject to the conditions 〈f(t)v(0)〉 = 0,
〈f(t)〉 = 0 and 〈f(t)f(t′)〉 = Λδ(t − t′). If we solve (9) and by using the
equipartition theorem we impose 〈v2(t → ∞)〉 = kBT/m, we obtain the
proportionality constant Λ = 2mkBTγ and write

〈f(t)f(t′)〉 = 2mkBTγδ(t − t′) . (10)

This last relation is known as the fluctuation-dissipation theorem (FDT).
Although the Einstein-Sutherland diffusion constant contains implicitly the
relation between fluctuation and dissipation, in Langevin’s formulation, it
acquires the importance of a basic theorem.

From (9) and the above conditions, one obtains the velocity-velocity cor-
relation function

Cv(t) = 〈v(t + t′)v(t′)〉 = (kBT/m) exp(−γt) . (11)

The correlation function Cv(t), or R(t) = exp(−γt), will satisfy (5), the MC,
with a relaxation time τ = γ−1. This exponential decay from the initial
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conditions is the expected form for the MC. Now, it is possible to obtain the
mean square displacement as

〈x2(t � τ)〉 =
∫ t

0

dt′
∫ t

0

dt′′〈v(t′)v(t′′)〉 = 2Dt , (12)

where, in the last step, we used the Kubo formula

D =
∫ ∞

0

Cv(t)dt . (13)

The Kubo formula, together with (11), reproduces Einstein-Sutherland’s re-
sults.

There are many reasons why one should always look back to Langevin’s
work, the first one being that it focuses attention on the motion of a particle,
which is very intuitive for any physicist. Second, it combines the old New-
tonian deterministic approach with the new “uncertainty” of the stochastic
force f(t). The breaking of the atomic forces in two parts: a fast changing
force f(t) with time scale ∆t, and the slow friction force with time scale τ ,
introduces a large simplification which facilitates understanding and com-
puter simulation. Consequently, the use of the Langevin equation, and of its
generalization (Sect. 4), is still very active, having been applied successfully
to the study of many different systems such as the dynamics of dipolar [23]
and polymeric chains [24–28], metallic liquids [29], Lennard Jones liquids [30],
diffusion in periodic potentials [31–33], ratchet devices [34,35], and synchro-
nization [36], only to name a few. Finally, it established explicitly for the first
time the connection between fluctuation and dissipation, the FDT, which re-
mains a major theorem of statistical mechanics.

The Langevin equation, however, presents some limitations: (a) It is a
classical formalism; (b) It has uncorrelated noise with only two time scales
∆t and τ , whereas a complex system has in general many time scales; (c) We
cannot make any predictions for times shorter than ∆t; (d) It predicts only
normal diffusion.

A quantum formulation of the FDT has been put forward by Callen and
Welton [37]. Following their work, much research has been done in the field,
with many attempts at generalization [6,38]. We shall focus our attention on
the Kubo FDT [4,39–44], or the so-called second FDT, since it is more useful
to the study of diffusion; see Sect. 4.

3 Reaction Rates

Diffusion may be considered the simplest problem of nonequilibrium statis-
tical mechanics; however, if one considers a particle moving in an irregular
media, it is quite probable that the particle will be affected by some potential
and, in moving from point A to point C, will have to cross a potential barrier
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at point b, see Fig. 2. This is one of the oldest problem in statistical mechan-
ics and was first mentioned by Arrhenius [45]. Arrhenius proposed that the
rate of particles crossing the potential barrier will be given by

k = ν0 exp(−βEb) , (14)

where ν0 is the attempt frequency and Eb is the barrier height. Arrhenius
associated the attempt frequency to the vibration frequency at the well bot-
tom.

The issue stood still until Kramers [46] re-addressed it with a more accu-
rate analysis, in such way that the problem is known today as the Kramers
problem. He gave an expression for the attempt frequency, which depends
on the curvature at the top of the potential barrier and on the friction. The
Kramers theory of reaction rates has many applications in biology, chemistry
and physics.

Recent works [31–33] address the diffusion of particles in a periodic po-
tential. They simulated the diffusion using Langevin’s equation and used
Kramers reaction rate to analyze the jumping between successive wells. A
good agreement between theory and the simulation was obtained. This is a
nice exhibition of the relation between transport processes and reaction rates.

For systems with memory a first attempt for a consistent reaction rate
theory was given by Hänggi and Moijtabai [47]. In the 80’s some interesting
works appeared [48, 49]; for a review, see [50]. However, for some complex
situations, such as polymer breaking [24–27] or long-range memory [51], it is
possible to show that the reaction rate has an anomalous behavior. Another
point is the dependence of the reaction process on the dimensionality of the
system [52].
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4 Complex Systems have Memory

If one asks “What makes a system complex?”, a few concepts will come
to mind: a large number of degrees of freedom, nonlinearity and memory.
However, if we ask for a definition of memory, only a few answers will be
precise. We shall use here the concept of memory introduced by Mori in his
seminal paper [53], where he used a method of projection operators which
has many advantages: it allows the treatment of quantum systems, it is not
empirical, it has time correlation, and it is a non-Markovian formulation with
an explicit definition of memory.

Forty years after Mori’s work, many fundamental concepts and meth-
ods have been developed [3, 4, 53–60], which allowed a generalization of the
Langevin formalism and the elimination of most of its limitations (see items
(a) to (d) at the end of Sect. 2). The new formalism gives origin to a Gener-
alized Langevin Equation (GLE) of the form

dA(t)
dt

= −
∫ t

0

Π(t − t′)A(t′)dt′ + F (t) , (15)

where F (t) is a stochastic noise subject to the conditions 〈F (t)〉 = 0,
〈F (t)A(0)〉 = 0 and

CF (t) = 〈F (t)F (0)〉 = 〈A2〉eqΠ(t) . (16)

Equation (16) is the Kubo FDT [4,39,40], being a generalization of (10). The
memory, Π(t), arises here explicitly and, in principle, it allows us to study a
large number of correlated processes. Notice that now many time scales are
possible within Π(t); this is a natural condition for complexity. An equation
for CA(t), or for the renormalized correlation function R(t) is given by

dR(t)
dt

= −
∫ t

0

Π(t − t′)R(t′)dt′ , (17)

where we have used the conditions 〈A(0)F (t)〉 = 0. The Laplace transform
of this equation yields

R̃(z) =
1

z + Π̃(z)
. (18)

From here on, we shall use the tilde to indicate Laplace transforms.
Let us now define the variable y(t) as

y(t) =
∫ t

0

A(t′)dt′ , (19)

with asymptotic behavior

lim
t→∞

〈y2(t)〉 ∼ tα . (20)
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For normal diffusion, α = 1; we have subdiffusion for α < 1, and superdif-
fusion for α > 1. Notice that if A(t) is the momentum of a particle, then
y(t)/m is its position.

It is very simple to show that this new formalism allows both normal and
anomalous diffusion. Consider two examples: first, take

Π(t) = 2γδ(t) . (21)

With this short range memory, we return to the normal Langevin’s equation,
(9), and obtain α = 1, i.e., normal diffusion. Second, consider an extremely
long memory

Π(t) = ω2
0 , (22)

which gives a force of the form −mω2
0y, i.e., an harmonic oscillator which does

not exhibit diffusion at all, α = 0. Those are artificial but simple examples
of how the memory determines diffusion.

Recently, Morgado et al. [61] obtained a general classification for anom-
alous diffusion. They considered that

Π̃(z → 0) ∼ zν , (23)

with ν < 1, and used the time-dependent diffusion function

D(t) =
∫ t

0

Cv(t′)dt′ , (24)

lim
t→∞

D(t) = lim
z→0

zD̃(z) = lim
z→0

Π̃−1(z) = lim
t→∞

1

Π̃(1/t)
(25)

to obtain, with t ∼ z−1,
α = ν + 1 . (26)

Here, we have used the final value theorem [62], and (18). Note that
the long range time behavior, i.e. the dynamics, is dominated by the small
frequencies.

This result is fundamental for the classification of diffusion. Let us take
the previous examples: first, Π(t) = 2γδ(t) with Laplace transform Π̃(z) = γ;
here ν = 0, α = 1, and the diffusion is normal as expected. Second, from (22),
we get Π̃(z) = ω2

0/z, ν = −1, and α = 0.
We are now in condition to discuss mixing. Consider a system governed

by a GLE. The asymptotic behavior

lim
t→∞

Π(t) = lim
z→0

zΠ̃(z) , (27)

lim
t→∞

R(t) = lim
z→0

zR̃(z) = lim
z→0

z

z + Π̃(z)
, (28)
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and condition (23) show that mixing exists only for −1 < ν < 1. In other
words, the mixing condition is fulfilled between the limits of ballistic motion
and harmonic oscillator motion. Close to the limits, one can expect problems.

Notice that for the memory given in (22), we have the exact solution

R(t) = cos(ω0t) , (29)

which obviously does not fulfil the MC, (5). Notice also that if (13) converges,
then it is always possible to have an associated “friction constant” γ, even
for correlated systems

γ−1 =
∫ ∞

0

R(t)dt . (30)

This definition can be plugged into the diffusion formula (7). This explains
why normal diffusion is so widely found in nature, even for processes we
clearly know are strongly correlated [61]. For a long time, the only evidence
of anomalous diffusion had been for subdiffusion processes due to trapping
mechanisms [19] and hierarchical lattices [63]. However, superdiffusive motion
has recently been studied both theoretically [64,65] and experimentally [66–
71] (see Sect. 9). We also expect that research in the new nanoclay technology
will produce anomalous diffusion [72]. Recent works on chain dynamics [23,
26,73] show that the system dynamics may build up a memory. This “casual”
result is explored in the conjecture described in Sect. 11.

5 Random Walk

The study of random walks is somehow older than statistical mechanics and
it has produced many alternative ways to describe diffusive processes. Even
before Einstein, the mathematical works of Bernoulli opened up the possi-
bility of understanding fluctuations; for example one can arrive at (6) by
considering the famous drunk man problem, a starting point in many under-
graduate texts [74]. Besides that, the famous law of large numbers, or N−1/2,
for the relative standard deviation of a variable suggested that if atoms exist
they must be very small, with N being very big, otherwise thermodynamics
would not make sense. However, the basic expression for diffusion (7) was not
obtained before 1905; it has the basic information one needs to know about
the nature of the process. That is a main difference between mathematics and
physics. In this sense, the Einstein-Sutherland diffusion constant was a stun-
ning achievement. We shall call the attention to the famous Chandrasekhar
review on stochastic process [75], which was an up-to-date article until the
origin of the Mori formalism. It still remains as a clear and concise review.

By the end of the nineteen century, the works of Lord Rayleigh [76] on
random flights allowed to understand scattering in random directions, one
of the most famous application of which was to explain the blue color of
the sky, due to light scattering by impurities in the atmosphere. A modern
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formulation shows the latter approach is incorrect and that light scattering is
associated with fluctuations in the dielectric constant [77]. After the creation
of the laser, light scattering became itself a large field of research. [78,79]

Let us consider here a simple random walk analogy to Langevin’s work.
Consider a set of N0 particles with initial velocities equal to zero. The parti-
cles are subject to a random force ±f0 at each time interval ∆t with equal
probability. After N time steps, the average velocity will be 〈v(t)〉 = 0 and
the average squared velocity

〈v2(t)〉 = Nf2
0 ∆t2/m2 . (31)

We can see from the previous expression that the kinetic energy grows linearly
with time, t = N∆t, i.e., the random force acts as a pump of energy. Such
a simple model does not represent a physical process, since it contradicts
the kinetic theory, 〈v2(t → ∞)〉 = kBT/m. To make it more realistic, we
add a dissipative force −mγv(t), and impose the balance of energy to obtain
f2
0 = 2mkBTγ/∆t. Notice that if we define the Dirac delta function as the

limit ∆t → 0 of δ(t) = 1/∆t for −∆t/2 ≤ t ≤ ∆t/2, and 0, otherwise, we
recover the FDT, (10). The FDT is nothing more than a detailed balance
condition; it is a guarantee that the dispersed particles will reach thermal
equilibrium after a reasonable time.

In the same way, there are alternative ways to describe anomalous diffu-
sion besides the GLE. One proposal is to use the continuous random walk,
which can be mathematically described by fractional derivatives [80–82]. The
fractional derivative of a function f(x, t) can be defined as

0D
1−α
t f(x, t) =

1
Γ (α)

∂

∂t

∫ t

0

dt′
f(x, t′)

(t − t′)1−α
, (32)

where Γ (x) is the Gamma function. Equation (32) is a natural generalization
of the derivative of a complex variable using the residue theorem. The nonlo-
cal character of the fractional derivative is the same as that of the memory.
Therefore, it is quite natural that they yield the same results as the GLE.
Indeed, it is possible to obtain a fractional Fokker-Planck equation (FFPE)
of the form

∂f

∂t
= 0D

1−α
t

[
∂

∂x

V ′(x)
mηα

+ Kα
∂2

∂x2

]

f(x, t) , (33)

to address the problem of subdiffusion [81] and to obtain a relation similar
to (26).

The generalization for superdiffusion was recently discussed in a few arti-
cles ( [82], and references therein). Fractional derivatives are a very compact
way to obtain results; however, there are some points one should bear in
mind.

First, we assume a priori a fractional geometry and as a result we obtain
fractional diffusion; that appears to be a circular argument. From the GLE,
that comes naturally from the memory, or from the noise; see (36).
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Second, if x(t) gives the time evolution for a particle position, we know
precisely what 0D

µ
t x(t) means only for µ = 1, 2, . . . However, no one has an

idea of what it means for µ = 0.51, or for any non-integer value.
Finally, natural solutions for the fractional derivatives are the Lévy func-

tions. Unfortunately, these yield an infinite mean square displacement, which
is not a good physical result. The Lévy distributions, φµ(x), are very popular
because they fulfill the generalized central limit theorem (GCLT) [83]

φµ(x) =
∫

φµ(x − x′)φµ(x′)dx′ . (34)

Moreover, recently [84,85], it has been shown that the GCLT represents the
first uncorrelated term in a renormalization process. Correlations, such as
those one expects to find in anomalous diffusion, will cause the deviation
of the studied variables from the GCLT. Recently, Figueiredo et al. [86–89],
have proposed some theorems on the limit sum of stochastic variables without
making the classical assumptions of the GCLT. They developed a general
formalism to explain the non-convergence (or the slow convergence) to the
Gaussian distribution. With this, they have explained the origin of the self-
similar property that appears in real economics time series data. They have
also explained how autocorrelations (linear and nonlinear) can be considered
as a source of truncated Lévy flights. The asymmetry they have found in their
distributions are similar to those found in relaxation in supercooled liquids
and in the height distributions in the etching of a crystalline solid [90–92]. The
experiments of Monte et al. [93,94] show both asymmetric and superdiffusive
behavior.

6 Noise

A fundamental aspect of stochastic processes is the noise. A stochastic gen-
eralized force F (t) can be decomposed into a set of harmonic oscillators of
the form

F (t) = 〈A2〉1/2
eq

∫

ρ(ω)1/2 cos(ωt + φ(ω))dω (35)

Here, 0 < φ(ω) < 2π is the random phase. From the FDT, it follows that

Π(t) =
∫

ρ(ω) cos(ωt)dω , (36)

where ρ(ω) is the noise density of states (NDS). Now, we take the Laplace
transform of (36) to obtain

γ = lim
z→0

Π̃(z) =
π

2
ρ(0) . (37)

This is another relevant result. The friction is equal to the noise density of
states at the origin. This shows how the lower modes determine the type
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of diffusion. A system which has a finite friction presents normal diffusion,
since its NDS is finite at the origin. Subdiffusion will have an infinite friction
and an infinite NDS. Finally, superdiffusion has a null friction. To obtain
superdiffusion for a null friction is a very intuitive and appealing concept. A
null NDS tells us that the lower modes do not relax and the process has “less
interference”, or, in Langevin’s language, “weak collisions”.

Consider now the colored noise

ρ(ω) =

{
2γ0
π ( ω

ωD
)β , if ω < ωD

0 , otherwise .
(38)

Here, ωD is a Debye cutoff frequency. This kind of noise has been used by
Caldeira and Leggett in quantum dissipative systems [95]. If we plug this
noise into (36), take its Laplace transform, and then the limit of small z, we
obtain the exponent [96] from (23)

ν =

{
β , if β < 1
1 , otherwise .

(39)

For most of the cases, the exponent of the NDS for low frequencies will
be the same as that of the Laplace transform of the memory for small z.
Equation (39) shows that α ≤ 2 and, consequently, the motion is limited by
the ballistic motion. Ballistic motion appears to be a limit of this kind of
GLE, see Sect. 8. Notice as well that for ν = 0, we get γ = γ0, from (37).

We shall consider here another possibility. Let the noise be

ρ(ω) =

{
2γ0
π , if ω1 < ω < ω2

0 , otherwise.
(40)

For ω1 = 0, we have the Debye density of states for a thermal noise com-
posed of acoustic phonons. Thus, for ω1 = 0 we have normal diffusion and
for any ω1 �= 0 we have superdiffusion. This NDS is the difference between
two Ornstein-Uhlenbeck processes and is a simple way to produce ballistic
diffusion [1, 61]. Since there is a window, 0 < ω < ω1, where there is no
fluctuation of the modes, this introduces a very practical mechanism to con-
trol simulations. This kind of noise seems more appropriate to describe real
ballistic propagation [97] than (38), see Sect. 9.

7 Reversibility and Correlation Functions

As early as 1876, Loschmidt called attention to the reversibility paradox [98].
His paradox states that all molecular processes must be reversible, since there
is a symmetry between past and future t → −t in the laws of physics. Con-
sequently, statistical mechanics must be reversible, in apparent contradiction
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with thermodynamics, where certain processes are irreversible. At that time,
reversible physics was composed of classical mechanics and electrodynamics.
This paradox, together with the dynamical problems of Liouville, Zermello,
and Poincaré are central in the work of Boltzmann. Those lead to the Boltz-
mann equation, to the H theorem [99], and to the studies of the Poincaré
recurrence theorems.

Again, our aim here is not to go into extensive mathematical proof; rather
we focus on the correlation function. In the definition of the correlation func-
tion we have used

R(t1 − t2) =
〈A(t1)A(t2)〉

〈A2〉 (41)

and
R(−t) = R(t) . (42)

The first relation relies on our basic knowledge of the temporal invariance
of physical laws. However, if the evaluation is made far from equilibrium,
the correlation function R may depend both on t1 and t2, and not on their
difference.

The second relation is time reversal, which can be easily understood for
a classical variable where A(t) and A(0) commute. Given a string of values
A(ti) i = 1, 2, . . . , Nint, for large Nint, one can obtain the relations given by
(41) and (42). For quantum systems, the reader is recommended the review
of Balucani et al. [100]

A great achievement in the discussion of time reversal symmetry for
macroscopic systems was made by Onsager. He considered a solid subject
to a general field E. In the linear regime, the field induces a generalized
current density J of the form

Ji = σi,kEk . (43)

The susceptibility σ satisfies

σi,k = µi,kσk,i . (44)

Here, µi,i = 1 for the diagonal terms. The off-diagonal terms are µi,k = 1 for
variables which do not change sign under time reversal, such as the electric
field, and µi,j = −1 for variables which do change, such as the magnetic field.
Equation (44) is the Onsager reciprocal relation.

A natural generalization of susceptibility is the correlation function or the
response function, sometimes called a Green function. Consider, for example,
that one applies a perturbation P (x1) at the position x1 and wants to know
the disturbance S(x2) at x2. In the linear regime, we get

Si(x2) =
∫

Gi,k(x2, x1)Pk(x1)dx1 . (45)

For systems with translational invariance, we expect that
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G(x1, x2) = G(x1 − x2) . (46)

When the translational invariance is broken, due to the existence of surfaces
such as in a film [101,102], defects, or topological disorder [103], the response
becomes a function of both variables x1 and x2. However, Oliveira [101] has
given a proof based on time reversal symmetry that

Gi,k(x1, x2) = µk,iGk,i(x2, x1) (47)

The tensor µi,j here is the same as the one in (44), i.e., we lose the space
invariance, but, on the other hand, we gain a useful space exchange symmetry.
This result is general and has many applications. For example, it was used
to explain certain asymmetries found in light scattering [101].

The usual Onsager reciprocal relations are actually limited to systems
asymptotically close to equilibrium. For example, they apply at the level of
the Navier-Stokes equations for a simple fluid, but fail for the higher-order
corrections to those equations, as pointed out by McLeannan [104,105]. Dufty
and Rub́ı [105] generalized Mcleannan’s work to nonequilibrium stationary
states.

Many correlation functions of the form 〈A(x1, t1)A(x2, t2)〉 have prop-
erties similar to (46). Notice that even in nonlinear systems, sometimes it
is possible to make some general statements. For example, in the growth
process, the height of a surface h(x, t) is a function of the position x and of
the time t. The main studied quantity is the roughness [106], defined by the
mean square fluctuation

∆h2(x, t) = 〈(h(x, t) − 〈h(x, t)〉)2〉 . (48)

The roughness satisfies the scaling laws

b∆h2(bx, bzt) = ∆h2(x, t) . (49)

where b is a number and z is the growth exponent. Notice that this rela-
tion holds only statistically. Many symmetries or scaling in the correlation
function hold in situations where nothing can be said for a single process.

We now return to the correlation functions of the GLE. Note that the
memory is an even function of t, independent of the NDS (see (36)). The
analytical extension of the Laplace transform of an even function is an odd
function, Π̃(−z) = −Π̃(z). Consequently from (18), R̃(−z) = −R̃(z), and,
by a converse argument, R(t) is an even function [96]. This is in agreement
with the results by Lee for Hamiltonian systems [107]. Notice also that (17)
requires the derivative of R(t) to be null at the origin. Since both memory
and R(t) are even, they can be written as

Π(t) =
∞∑

n=0

bnt2n , (50)
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and

R(t) =
∞∑

n=0

ant2n . (51)

Unfortunately, a large number of works has been presented in the litera-
ture where the correlation function does not satisfy these requirements. We
shall not comment further on these works here: some may be useful approx-
imations, others represent artificial solutions. The reader should be cautious
in identifying them.

Exponentials, stretched exponentials, and power laws are examples of
asymptotic behavior that can be obtained from more complex even func-
tions [96], but obviously they do not fulfil (17).

Determination of the coefficients in (50) and (51) can be done for every
specific noise. For short times, those equations yield R(t) = cos(ω0t), where
ω0 =

√
Π(0). For broadband noise, the asymptotic times yield exponential

decay for normal diffusion. For anomalous diffusion, the behavior is of a
stretched exponential followed by inverse power-law. For short band noise a
very rich oscillatory behavior may be found [96].

A large and growing literature in which non-exponential behavior has
been observed for correlation functions can be found in the following articles:
in glasses and supercooled liquids [108], frustrated lattice gases [109], liquid
crystals [110–112], plasmas [66], hydrated proteins [113], growth [114], dis-
ordered vortex lattice in superconductors [115], and in aging in dissipative
systems [116].

8 Mixing, Ergodicity,
and the Fluctuation-Dissipation Theorem

In this section, we arrive at the central point of this work by showing that
the EH, (4), the MC, (5), and the second FDT, (16) are strongly connected
in the GLE. Consequently, one could expect that the violation of one of
these conditions could lead to the violation of the others. However, we will
show that there is a hierarchy among the three concepts, in such a way that
some may be violated, while others are not. Most of the systems that present
violation of the FDT are complex, such as supercooled organic liquids, some
algebraic maps, evolutionary models, and the eternal spin-glass problem. We
try to show here a minimal condition for violation of that hierarchy.

We may expect from (15) and (16) that a system will be driven to an
equilibrium state, i.e.

lim
t→∞

A2(t) = 〈A2〉eq , (52)

which can be identified with the EH. We shall see, however, that this is not
always the case for superdiffusive dynamics.

Note that the Laplace transform of (15) suggests a solution of the form
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A(t) = A(0)R(t) +
∫ t

0

R(t − t′)F (t′)dt′ , (53)

where we have an ensemble of initial A(0). Squaring (53) and taking the
ensemble average, we obtain for the asymptotic behavior [1]

〈A2(t → ∞)〉 = 〈A2〉eq + R2(t → ∞)[〈A2(0)〉 − 〈A2〉eq] . (54)

This simple result leads to very important consequences. First, the system
will reach full equilibrium only if the MC, (5), holds. Second, the EH holds if
the MC holds. Finally, the FDT will hold only if the EH holds. Consequently,
the FDT is the end validation of the sequence: Mixing ⇒ Ergodic Hypothesis
⇒ Fluctuation-Dissipation Theorem. Observe that if the MC is violated, then
the final value of (54) will depend on the initial conditions. That is just the
essence of the MC.

At this point, we shall call again the attention to Lee’s work in ergodic-
ity [58]. Unlike any other previous attempt at establishing the validity of the
Boltzmann EH, his work approaches the time average directly and explicitly,
which was made possible by his recurrence relation method [56]. Moreover, it
has been demonstrated in several exact solvable models when the hypothesis
is valid. When it is not valid, it is shown the reason why the hypothesis fails.

If the mean square value of A can be associated with a given temper-
ature by the equipartition theorem, we have 〈A2(0)〉 ∼ T0 for the initial
temperature, T for the reservoir temperature, and Teff for the final effective
temperature. Equation (54) becomes

Teff = T + R2(t → ∞)[T0 − T ] . (55)

From (28), we see that the MC is satisfied for 0 < α < 2. For the ballistic
motion, limz→0 Π(z) = az, ν = 1, α = 2, and R(t → ∞) = (1 + a)−1. This
system never thermalizes to the reservoir temperature, unless it already starts
at equilibrium. The system acquires an effective temperature different from
that of the reservoir. This effective temperature is a signature of metastability
found in glasses, where the FDT does not hold [1, 7–9,13].

The first observation of such phenomena was reported by Kauzmann [7].
He noticed that when the entropy of a supercooled liquid is extrapolated
below the glass temperature Tg, it can become smaller than the entropy
of the crystalline solid. To avoid this paradox, he suggested the existence
of an effective spinodal temperature Tsp in the supercooled liquid phase.
Ricci-Tersenghi et al. [9] and Cavagna et al. [117] performed single-spin-
flip Monte Carlo simulations in square lattices with frustration, in which
they obtained effective temperatures Teff �= T . Methods for measuring those
effective temperature [5, 10], and many attempts to get a form of FDT for
inhomogeneous systems have been discussed in the literature [38,118,119].

It has been shown that a drastic elimination of the fast degrees of free-
dom in the dynamics of a system may lead to a violation of the fluctuation-
dissipation theorem [120]. This is due to the fact that equilibration in the
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coarsened description does not necessarily imply full equilibration of the sys-
tem; therefore a fluctuation-dissipation relation, whose validity is limited to
equilibrium or local equilibrium states [121–123], may not exist. The theorem
is valid when there is a great disparity between slow and fast scales in such
a way that faster scales relax practically immediately. This feature has been
found in very different situations as in the diffusion of a Brownian particle
in a shear flow [8, 27, 124], in the anomalous diffusion problem [1, 13, 61], in
systems undergoing activated dynamics [125, 126], and in slow relaxation of
supercooled colloidal systems [127]. This common scenario may suggest that
the violation of the fluctuation-dissipation theorem could originate from the
lack of ergodicity inherent to a coarsened description, which is related to the
tacit reduction of the dimensionality of the system phase space.

9 Ballistic Motion

As discussed earlier in Sect. 4, most of the anomalous diffusion is subdiffusive,
what can also be observed in most conductors [19]. However, very recently
in the history of conductivity investigations, superdiffusive and even ballis-
tic motion have been produced in laboratories. Indeed, we can find reliable
reports on ballistic conductivity in carbon nanotubes [67, 70], in semicon-
ductors [128], and in semiconductor superlattices with intentional correlated
disorder [68,69].

For a simple description of ballistic diffusion, we use (36) and (38) and
obtain

Π(t) =
2γ0

π

[
sin(ω2t)

t
− sin(ω1t)

t

]

. (56)

The Laplace transform of (56) gives, as z → 0, Π̃(z) ∼ z. Consequently,
ν = 1 and α = 2, which is the ballistic limit. If we set γ0 = πω2/4, the initial
temperature T0 = 0, in (55), we get the effective temperature as Teff as

λ∗ =
Teff

T
= 1 −

(
2ω1

ω1 + ω2

)2

. (57)

Equation (57) has a control parameter ω1, which measures the “hole” in the
density of states, and how far we are from the result predicted by the FDT.

Now, we examine the case when A(t) = v(t), the particle’s velocity, so
that we obtain 〈v2(t) >= 〈v2〉eqλ(t). We simulate the GLE for a set of 10000
particles starting at rest at the origin, using the memory in (56) with ω2 = 0.5
and different values of ω1. The results of these simulations are shown in
Fig. 3, where we plot 〈v2(t)〉. We used the normalization 〈v2〉eq = 1, so that
〈v2(t)〉 = λ(t). Notice that λ(t) does not reach a stationary value; rather, it
oscillates around a final average value λs. This value of λs should be compared
with λ∗ obtained from (57).



Fluctuation-Dissipation Theorem in Complex Systems 177

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0 50 100 150 200 250 300

<
v2 >

(t
)

t

a

b

c

Fig. 3. Normalized mean square velocity as a function of time for the memory given
by (56). Here β = ω2/2 and ω2 = 0.5. Each curve corresponds to a different value of
ω1. (a) ω1 = 0; (b) ω1 = 0.25; (c) ω1 = 0.45. The horizontal lines correspond to the
final average value λs. In agreement with the theoretical prediction, λs decreases
as ω1 grows
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Fig. 4. λ∗ as a function of the parameter w1. The line corresponds to the theoretical
prediction given by (57). Each point corresponds to a value of λs obtained from
simulations like those described in Fig. 3

In Fig. 4, we plot λ∗ as a function of ω1 as in (57) with a fixed value of
ω2 = 0.5. We also plot the average values λs obtained from simulations for
different values of ω1. Notice that as ω1 increases, λ∗ decreases as expected.
The agreement between simulations and (57) shows that we can predict the
average value λs, even when the FDT does not hold.
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10 Shape of Things to Come

After the description of some “well-established physics”, we shall take this
section to discuss some less conventional ideas about irreversibility, diffusion,
fluctuations, and the approach to equilibrium.

Blasone et al. [129] have shown that a quantum harmonic oscillator can
emerge from a couple of classical harmonic oscillators. Every classical oscil-
lator will obey the laws of classical physics, however, together their behavior
will follow quantum mechanics. Biró et al. [130], studying the quantization
of classical fields, demonstrated that a classical system that operates in 5
dimensions can transmute into a quantum system in 4 dimensions.

In the same context, the method of Lie symmetry applied to differential
equations has been often invoked as a mechanism to derive, not only solutions,
but also classes of Fokker-Planck equations with non-trivial drift and diffu-
sion terms [131–139]. The study of Lie-group representations in space-time
has been recently developed, following similar procedures as those of field
theories [140]. As a result, the usual Fokker-Planck equation has been de-
rived from a U(1) gauge invariant Lagrangian, and the generalization of such
a formalism for the SU(2) symmetry has provided a new class of Fokker-
Planck dynamics, which is non-abelian gauge invariant. The drift and the
diffusion terms, in this situation, are associated with a tensor metric in a Rie-
mannian manifold. This manifold is based on a Galilean metric space-time,
introduced (via the light-cone of a (4+1) Minkowski-like space) to derive the
non-relativistic physics in a covariant fashion [141–143].

The apparent contradiction between the irreversibility of the macroscopic
phenomena and the time-reversal symmetry of the fundamental laws has
driven passionate discussion since Boltzmann times. This paradox of irre-
versibility, discussed in Sect. 7, finds its place both in classrooms and in
highly specialized conferences. According to Zwanzig [54], there is no para-
dox. According to Chaves et al. [144], the paradox still remains as a problem
far from being solved. Though some people believe that the only mystery
related to irreversibility is the fact that the universe started in a very special
initial state, the question is in fact much subtler and deep. The point is that
the laws of quantum mechanics warrant that time evolution of an isolated
system is described by a unitary operator that keeps constant the value of the
entropy. The only escape from that fate could be quantum gravity, a theory
still to be constructed. The point is that the gravitational interaction has
infinite quantities that have not been renormalized. Thus, we cannot assure
that the zero-point quantum fluctuations of the gravitational field – which in
fact are fluctuations of space-time itself! – result only in the renormalization
of the physically observed quantities.

Those fluctuations can in fact create a non-unitary contribution to the
quantum mechanics evolution operator and thus be a fundamental source
of irreversibility. Chaves et al. [144] suggested that this in fact occurs. On
the basis of the quantum fluctuations of the metric tensor, they proposed an
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extra term in the Schrödinger equation which makes time evolution operator
non-unitary. Their calculations demonstrated that the coherence time of the
microscopic system would be too long to be observed, but macroscopic sys-
tems would decohere very quickly. Acebal et al. [145] demonstrated that those
metric fluctuations could also remove the infinities that plague quantum field
theories.

These unconventional analyses may prove useful for other derivations.
They require a deeper understanding of time and space in the field of statis-
tical mechanics.

11 Spatio-temporal Conjecture for Disordered System

Up to now, we have discussed stochastic systems, i.e., systems with noise
that we shall name temporal disorder . For those, given the NDS, ρ(ω), it is
possible to obtain the memory and then, by using (26), the diffusive exponent
α.

A second class of systems is composed by those which present spatial dis-
order . They have been thoroughly investigated in the last half century [146],
nevertheless, some questions concerning localization or diffusion still remain
open. Let us consider, as an example, the Heisenberg chain [147,148]

H = −
N∑

l=1

JlSl · Sl+1 , (58)

where S = 1/2. Here, Jl is the exchange integral at the site l. Equivalently,
we could consider the disordered harmonic chain [149] or even the Anderson
model [150].

Can we predict the properties of those systems in the same way we do
for the GLE? The answer is partially yes, partially no. The conjecture [97],
being valid, will help to answer those questions.

Consider a system which presents fluctuations in its energy density of
states D(E); let us call ρF (E) the fluctuation density, then

ρF (E) = ρ(E) . (59)

If this is true, then ρF can be introduced in (36) to obtain the diffusive
exponent α. This is the spatio-temporal conjecture [97]. This conjecture has
been verified for the quantum disordered Heisenberg chain [151] and is under
consideration for many similar systems.

12 Conclusion

In this review we discussed some old and permanent problems of statistical
mechanics. The way a system approaches equilibrium is connected with some
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basic questions in physics such as the reversibility paradox, the mixing con-
dition, the ergodic hypothesis and the fluctuation-dissipation theorem. We
have drawn a line between them and, in particular, we have discussed the
hierarchy MC ⇒ EH ⇒ FDT, established by Costa et al. [1].

We have approached the problem taking diffusion as a main phenomena in
physics, since most processes are related with transport of matter, energy, or
information. In this context, the validity of the FDT is exhibited for ballistic
motion. Ballistic motion is presented here as the frontier between a stochastic
process described by a GLE and other processes such as hydrodynamical ones.

We discussed relaxation processes and the conditions that the correlation
functions must fulfill. We presented, in Sect. 10, discussions on the frontier
of physics with particular consequence to statistical physics. We revive the
reversibility paradox as an unclosed subject, as well as the MC, EH and FDT.
We discussed a conjecture that, if valid, will make an important connection
between stochastic and Hamiltonian descriptions.

Nonlinear dynamics is a field which deserves much attention; in particular,
the coalescence of trajectories has been intensively studied in the last few
years [152,153]. There, the restriction of the degrees of freedom may confirm
as well the hierarchy exposed here.

We have not focused deeper on real complex systems; we chose to follow
easy-to-understand concepts where limits could be analytically obtained. This
gave us a good framework for analyzing more complex structures.

We also tried to show that a given result may be obtained through many
different formalisms. Feynman once said: “A physicist must know at least five
different ways to obtain a result” [154]. If we consider the FPE, the FFPE,
and the GLE as alternative approaches, we are close to fulfilling Feynman’s
requirement. It is nice to know that those approaches agree in the main
results; however, the full picture has not yet been drawn, particularly for
anomalous diffusion.

Although anomalous diffusion remains as a surprising phenomenon, we
hope that this work will help in the centennial effort to understand diffusion
and the relation between fluctuation and dissipation. A generalization of the
FDT to include nonlinearities and ballistic motion is necessary, what will
require a deeper understanding of systems far from equilibrium.
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We discuss the statistical properties of interacting dislocations in plastically
deformed crystals. Due to their long-range mutual interactions, dislocations
arrange into jammed configurations, that can be set into motion under the
action of an external stress. Disorder provides an additional source of pinning
which we study by scaling theories, considering the case of parallel arrays of
dislocations in a pileup or a low angle grain boundaries. As an application of
these ideas, we discuss the plastic yielding of a vortex lattice in the Corbino
disk and the growth of a vortex polycrystal in a field cooling experiment.

1 Introduction

Plastic deformation is a multi-scale problem of immense complexity. Relevant
processes range from the atomistic scale where the atomic arrangement and
defect properties of a material are of crucial importance for its deformation
properties, up to the geological scale where deformation instabilities manifest
themselves in the form of earthquakes, avalanches and so on.

In the past, the problem of plastic deformation has been addressed by two
quite distinct communities, using different methods and distinct conceptual
frameworks. The mechanics community has developed the powerful math-
ematical framework of continuum mechanics into a tool for handling com-
plex deformation processes. Finite element modeling has become a standard
method for describing deformation processes in engineering applications. Due
to the very nature of the continuum framework, in the absence of ’patholog-
ical’ cases (plastic instabilities) it is assumed that the state of the material
can be characterized by smooth and differentiable displacement fields, and
plastic deformation is envisaged as a smooth, quasi laminar flow process. The
microscopic properties of materials are reflected by constitutive laws which
serve as an input to the mathematical formalism. The plasticity view of the
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materials science community, on the other hand, starts from the observa-
tion that, on the microscopic scale, plastic deformation is brought about by
the generation, motion and interactions of discrete defects, in the case of
crystalline materials: dislocations [1–4]. A huge amount of experimental and
theoretical work has been devoted to modeling and understanding the prop-
erties of these defects and their links to the atomic structure. However, the
crucial question how defect and microstructure properties link to the macro-
scopic constitutive equations of continuum mechanics has only recently been
put into the focus of attention. Only too often it has been assumed that the
transition from discrete defects and microstructural features to continuum
mechanics can be accomplished by simple homogenization procedures – as
soon as one is well above the scale of the relevant defects, straightforward
averaging of their dynamics should lead to the smooth plastic flow envisaged
by continuum mechanics.

A recent experiment has shown that plastic deformation in ice single crys-
tals occurs in a jump-like, spatially heterogeneous and temporally intermit-
tent manner not only on the scale of the individual dislocations whose motions
are responsible for the deformation (where spatial heterogeneity and jump-
like motions might be considered trivial) but also on scales where deformation
jumps literally involve millions of these defects [5]. Hence plastic deformation
results to be a complex process which cannot be understood without explic-
itly considering the collective dynamics of huge dislocation ensembles. The
dynamics has scale-free features both in the spatial and temporal domain.
This finding poses intriguing questions about the possibility of homogeniza-
tion, and hence about the applicability of continuum descriptions in general.
Of course there must be some scale above which averaging is feasible and
continuum mechanics takes over – but what defines this scale? Only by com-
bining concepts from mechanics, materials science, and complementing them
with the conceptual tools provided by the statistical physics of complex sys-
tems we will be able to develop tools to a world where multiscale modeling
and scale transition problems may become part and parcel of the everyday
work of a design engineer.

The relevance of dislocations dynamics and fluctuations in materials plas-
ticity goes beyond the conventional case of atomic crystals. A wide class
of novel materials ranging from synthetic nanocrystals, magnetic colloids,
charged particles in Coulomb crystals, proteins and surfactants, or vortices in
type II superconductors and in Bose-Einstein condensates, form ordered self-
assembled structures. The response of these structures to external forces of
various kinds (optical, magnetic, mechanical) is of particular importance [6–8]
and can in many cases be interpreted in terms of dislocation dynamics. A vast
experimental and theoretical effort has been recently devoted to characterize
the phase diagram of flux lines in type II superconductors [9–11]. Depending
on the value of the temperature T , H, and sample preparation, magnetic vor-
tices can either form a crystal [12], which at higher temperatures melts into
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a liquid [13], or due to quenched disorder, they may exhibit more complex
glassy phases [11]. Of special importance is the non-equilibrium response of
vortex matter to the flow of an external current, since the dissipative motion
of the vortices induces an undesirable macroscopic resistance. The moving
phase can be as simple as the collective motion of an elastically deforming
vortex crystal or more complex, such as in plastic vortex flow [14]. Clearly
vortex lattice dislocations play an important role in this plastic flow phase
and one can use similar concepts to describe crystal plasticity and supercon-
ducting vortex flow. In the following we present an overview of the statistical
properties of interacting dislocations in both contexts.

2 Dislocations

2.1 Crystal Dislocations

Crystal dislocations are topological defects characterized by a Burgers vec-
tor b [3]. While in a three dimensional crystal dislocations are deformable
lines, one often treats them in the rigid approximation, obtaining an effec-
tive two dimensional particle model, which becomes exact for thin samples.
Dislocations produce long-range stress and strain fields in the host crystal,
and experience a Peach-Koehler force due to the overall local stress. This
induces an interaction force between dislocations that depends on their char-
acter (edge or screw, when b is perpendicular or parallel to the corresponding
dislocation axis, respectively [3]), but that is generally long-range, decaying
as 1/r, and anisotropic. For instance, the force between two edge dislocations
at a distance r = (x, y), and with Burgers vectors b1 and b2 in the x direction
is given by

fx(x, y) =
µb1b2

2π(1 − ν)
x(x2 − y2)
(x2 + y2)2

, (1)

where µ is the shear modulus, and ν is the Poisson ratio of the host crystal.
We have only considered the x component since, differently from other parti-
cles, dislocations move mainly by gliding along preferential directions, namely
the direction of the Burgers vector. This fact, together with the anisotropic
character of the interaction, gives rise to metastable structures that act as
geometric constrains for their own dynamics.

2.2 Vortex Lattice

Superconducting vortices can be schematized as interacting flexible lines.
Nevertheless, as in the case of dislocations, one can consider flux-lines in the
rigid approximation and obtain their mutual force from the London theory

f(r) = Φ2
0/(8π2λ3)K1(|r|/λ)r̂ , (2)
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where Φ0 is the quantized flux carried by the vortices, K1 is a Bessel function
and λ is the London penetration length [9, 10]. Notice that this is a short-
range (since K1(x) ∼ exp(−x) for large x) repulsive central force, with a
divergence of the form x−1 at short distances which is cut off by the vortex
core.

As first discussed by Abrikosov, vortices due their mutual repulsion tend
to form a crystal. A simplified but rather effective description of the vortex
lattice is provided by its representation as an elastic crystal of flux lines.
At large enough distances, the elastic energy of the vortex lattice can be
expressed in terms of the vortex displacement field u as follows

H =
1
2

∫

d3r
[
c66(∇u)2 + (c11 − c66)(∇ · u)2 + c44(∂zu)2

]
, (3)

where c11, c44, c66 are the local elastic moduli, and the magnetic induction B
is parallel to the z direction. As in conventional atomic crystals one can char-
acterize vortex lattice dislocations from the theory of elasticity. In particular,
one can compute vortex dislocations mutual interactions as we discussed in
Sect. 2.1.

3 Experimental Background

3.1 Acoustic Emission and Dislocation Avalanches

Experimentally, the complex character of collective dislocation dynamics can
be revealed by acoustic emission (AE) measurements [5, 15]. The acoustic
waves recorded in a piezoelectric transducer disclose the pulse-like changes of
the local displacements undergoing in the material during plastic deforma-
tion, whereas a smooth plastic flow would not be detected. Thus this method
is particularly useful to inspect possible fluctuations in the dislocation veloc-
ities and densities.

Ice single crystals can be considered as a model material to study glide
dislocation dynamics due to the following reasons: (i) Transparency allows di-
rect verification that AE activity is not related to microcracking. (ii) Within
the range of temperature and stress corresponding to our experimental condi-
tions, diffusional creep is not a significant mechanism of inelastic deformation
which, in hexagonal ice single crystals, occurs essentially by dislocation glide
on the basal planes along a preferred slip direction. (iii) An excellent coupling
between sample and transducer can be obtained by fusion/freezing.

Uniaxial compression creep experiments were performed on artificial ice
single crystals, employing several steps of constant applied stress. One ob-
serves an intense acoustic activity, exhibiting strong intermittent signal that
can be analyzed using statistical methods. In particular, the probability dis-
tribution of energy burst intensities exhibits a power law behavior spanning
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several decades [5]. The complex dislocation dynamics is reflected by a corre-
sponding fractal geometrical patterning, which has been revealed by a trian-
gulation analysis of the AE signals recorded from different transducers [16].

Multiscale properties and pattern formation are ubiquitous in plastic ma-
terials and we expect that the large dynamical fluctuations observed in ice
single crystals are also a significant and rather prevalent feature of plastic
deformation micromechanics. For instance, similar acoustic activity has also
been recorded in ice polycrystals [17]. It is important to notice that a strongly
fluctuating avalanche activity of the kind discussed in [5] is typically associ-
ated to more dramatic instabilities, such as fracture and earthquakes. The
most remarkable feature of the present result is that it appears in plastic
deformation, which is conventionally believed to be a smoother process.

3.2 Andrade Creep

At the beginning of last century, Andrade observed the creep deformation of
soft metals at constant temperature and stress and reported that the global
plastic strain γ grows in time according to a power law with exponent 1/3,
(i.e. γ ∼ t1/3) [18]. It was later shown in more generality that the creep
deformation curve usually follows the relation γ = γ0 + βt1/3 + κt, where
γ0 is the instantaneous plastic strain, βt1/3 is Andrade creep, and κt is re-
ferred to as linear creep [1,2]. This behavior has subsequently been observed
in many materials with different structures implying that this should be a
process determined by quite general principles, independent of most material
specific properties. In crystalline materials, the microscopic origin of this phe-
nomenon lies in the dynamics of dislocations. Plastic flow only occurs when
the externally applied stress overcomes a threshold value, the yield stress of
the material, such that large-scale dislocation motion may take place. Despite
various arguments proposed in the past literature [1,2,19–21], there is no gen-
eral consensus on the basic mechanism to explain Andrade’s law. Mott [19]
attributed the power law to an athermal cooperative process taking place
close to the yield stress, but his idea was not worked out. Later explanations
have always focused on thermally activated processes [20,21].

3.3 Solid Solution Hardening

Solid solution hardening is the increase of the yield stress value when solute
atoms are present in a crystal [22,23]. The presence of solute atoms changes
the local properties of the host material, resulting in a pinning force on nearby
dislocations [22,23]. This is not the only source of pinning, which can also be
provided by particle inclusions or by immobile dislocations in other inactive
slip systems. Several approximate calculations have been performed in the
past to obtain the depinning stress from a statistical summation of individual
pinning forces [1, 24–26]. In general terms, this problem falls in the class of
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depinning transitions of elastic manifolds. We will discuss in Sect. 6 how the
dislocation arrangements and the associated long-range stresses affect the
process.

3.4 Plasticity in Vortex Matter

Transport experiments in superconductors provide an indirect measure of
vortex dynamics, since vortex motion induces an electric field proportional
to the vortex velocities. The interplay between the driving current and lo-
cal pinning forces often results in a breakdown of the crystalline structure
through the formation of dislocations. A clean example of plastic flow is ob-
served in the Corbino disk geometry [27–30], where the current is applied
at the disk center and flows radially towards the boundary. Vortices tend
to move in concentric circles without crossing the sample boundaries. This
inevitably produce shear stresses in the vortex lattice and as the current is
raised one expect to observe yielding. López et al. [30] have evaluated the
vortex velocity profiles measuring the voltage drop across a series of contacts
placed radially on a YBa2Cu3O7−δ disk. For low currents and temperatures
all the vortices move as a rigid solid, giving rise to a linear velocity profile
v(r) = ωr. Above a threshold current I0, the vortex crystal cannot sustain
the shear stress induced by the resulting inhomogeneous Lorentz force and
the response becomes plastic. Vortex lattice dislocations are expected to play
a relevant role in this process as confirmed by numerical simulations.

4 Jamming and Yielding in Crystal Plasticity

4.1 Two Dimensional Model of Interacting Dislocations

In order to investigate the creep behavior of a set of interacting dislocations
we consider a two-dimensional model representing a cross section of a single-
slip oriented crystal where N point-like edge dislocations glide in the xy
plane along directions parallel to the x axis (the effect of the dislocation line
tension will be discussed in Sect. 6). Dislocations with positive and negative
Burgers vectors bn = ±bx̂ are assumed to be present in equal numbers, and
the initial number of dislocations is the same in every realization. An edge
dislocation with Burgers vector bx̂ located at the origin gives rise to a force at
a point r = (x, y) given by (1). We further assume an overdamped dynamics
in which the dislocation velocities are linearly proportional to the local forces.
Accordingly, the velocity of the nth dislocation along the glide direction, if
an external shear stress σ is also applied, is given by

χ−1
d vn

b
=

∑

m �=n

fx(rnm) + bnσ , (4)
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where χd is the effective mobility of the dislocations and rnm ≡ rn − rm the
relative position vector of dislocations n and m. Periodic boundary condi-
tions are imposed in the direction of motion (i.e. the x axis). In order to take
correctly into account the long range nature of the elastic interactions, the
stress has to be summed over an infinite number of images. When the dis-
tance between two dislocations is of the order of a few Burgers vectors, linear
elasticity theory (i.e. (1)) breaks down. In these instances, phenomenological
nonlinear reactions, such as the annihilation of a pair of dislocations, describe
more accurately the real behavior of dislocations in a crystal. In our model,
we annihilate a pair of dislocations with opposite Burgers vectors when the
distance between them is shorter than a cutoff ye [5,31]. In addition, we have
included in the model dislocation multiplication introducing a pair creation
rate r.

4.2 Dislocation Jamming and Andrade Creep

In [32], we studied the temporal relaxation of a simple dislocation dynamics
model discussed above. We recovered Andrade creep law without invoking
thermally activated processes, considering an ideal situation where thermal
fluctuations are irrelevant for the process. The strain rate, which is propor-
tional to the density of mobile dislocations dγ/dt =

∑
i bivi with vi the

velocity of each dislocation, decays as a power law with an exponent close to
2/3 in agreement with Andrade’s observations. At larger times, the strain-
rate was observed to cross over to a linear creep regime (i.e. to a plateau
signaling a steady rate of plastic deformation) whenever the applied stress is
larger than a critical threshold σc, or, otherwise, to decay exponentially to
zero (see Fig. 1).

These results suggest that a possible interpretation of dislocation mo-
tion and the corresponding creep laws of crystalline materials could also be
found within the general “jamming” framework proposed to encompass a
wide variety of non-equilibrium soft and glassy materials [33, 34]. Most of
these physical systems consist of various types of soft particles closely packed
into an amorphous state. At such high concentrations, the relative motion of
these particles is drastically constrained and, as a consequence, soft and con-
centrated materials usually respond like elastic solids upon the application
of low stresses. One then says that the system is jammed, since it is unable
to explore all the available configuration space. On the other hand, they flow
like viscous fluids above the so-called yield stress value σy, exhibiting a com-
mon rheology. Recent light scattering experiments [35,36] allow, for instance,
to detect the intermittent dynamics of a gel formed from attractive colloids
suggesting that intermittent behavior seems to be a fundamental ingredi-
ent for the slow relaxation of jammed materials. Moreover, this unjamming
transition can be induced by changing either the external stress applied, the
density, or the temperature of the system. The analogies of dislocation motion
and these so-called jammed systems are further explored by considering the
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Fig. 1. The strain rate relaxation for different stress values. The system size is
L = 300b and the initial density of edge dislocations is around 1%. The solid line
is the Andrade law dγ/dt ∼ t−2/3

influences of dislocation multiplication, and thermal-like fluctuations on the
dynamics. Dislocation multiplication favors the rearrangements of the system
and induces a linear creep regime (flowing phase) at lower stress values, but
it does not affect the initial power-law creep. The introduction of a finite
effective temperature T has a similar effect [32].

4.3 Dislocation Avalanches

While the average creep relaxation of the model is well described by the
smooth Andrade law, the velocity signal is in general strongly fluctuating. In
presence of a dislocation multiplication rate r, the model displays an inter-
mittent steady-state characterized by dislocation avalanches with a power law
distribution of energies that is in close agreement with the experiments [5].
Due to their complicated mutual interactions, dislocations are most of the
time jammed into metastable configurations, formed by walls, dipoles, and
far more complex dislocation structures. The formation of metastable config-
urations is responsible for the quiescent intervals in the acoustic activity, fol-
lowed by bursty events that occur when the accumulated shear stress and/or
the multiplication and annihilation processes may eventually favor the par-
tial destruction and/or rearrangement of the dislocation structures. Thus the
complex features of AE can be explained by the jamming of dislocations and
their subsequent slip, giving rise to avalanche-like events.
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5 Plastic Yielding in the Vortex Lattice

Transport experiments in the Corbino disk geometry indicate that the vortex
lattice undergoes plastic yielding. This process can be studied by molecular
dynamics (MD) simulations of interacting vortices [37]. One considers a set
of N rigid vortices confined in a disk of radius D. The equation of motion for
each vortex i at position ri

Γ
dri

dt
=

∑

j

fvv(ri − rj) + fL(ri) , (5)

where Γ is an effective viscosity for vortex flow. The first term on the right
hand side of this equation follows from the fact that a pair of vortices interact
with each other via a long-range force fvv(r) = AK1(|r|/λ)r̂, where A =
Φ2

0/(8π2λ3), λ is the London penetration length, and K1 is a first order
modified Bessel function. Distances are always measured in units of λ. The
last term corresponds to the current induced Lorentz-like force acting on
the vortices. The N vortices are confined inside the disk by the external
magnetic field and the sample edge barrier, that we model by imposing an
extra normal force on the vortices of the form fB = −g exp [−(D − r)/r0]/r0r̂,
with r0 = 0.1λ and g/A = 1. The coupled (5) are integrated numerically with
an adaptive step size fifth-order Runge-Kutta method. We do not truncate the
range of the vortex-vortex interaction since this leads to spurious fluctuations
caused by the force discontinuities. We study the response of the system as
a function of the applied current for different values of N , ranging from
N = 332 to N = 2064, and D (D = 18λ, 36λ, 72λ).

As in the experiments, for low currents we find a linear velocity profile
that corresponds to the rigid rotation of the vortex lattice. Above a threshold
current I0, the profile ceases to be linear, indicating the onset of plastic
flow. For higher currents I > I1, we observe that vortices end up moving in
uncorrelated annular channels, displaying a laminar 1/r velocity profile.

To better identify the transitions in the system rheology, we measure the
variations of the flow resistance R ≡

∑
i vi/I with I. After an initial transient,

the resistance reaches a steady state which fluctuates strongly in the plastic
regime and is much smoother in the solid and laminar phases (see Fig. 2).
As the current is increased, the steady-state resistance show a first sharp
jump around I0 corresponding to the breakdown of the linear velocity profile,
and a smaller jump at I1 indicating the onset of the hyperbolic profile. The
final plateau scales with the number of moving vortices N . Indeed in this
laminar regime, a scaling factor of N/D follows from a simple continuum
approximation with a constant density of vortices.

The Delaunay triangulation of the vortex positions in the disk allow to
characterize their topology. A pair of five-fold and seven-fold neighboring
vortices identify an edge dislocation in the vortex lattice. For I < I0, all
vortices within the bulk of the disk are six-fold as in a perfect triangular
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Fig. 2. The resistance noise observed in the Corbino disk for different values of the
injected current I. The strongest noise is observed for I 
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lattice, whereas a large number of five-fold and seven-fold coordinated vortices
are only observed along the boundary. These are geometrically necessary
dislocations and disclinations which need to be present in order to adjust a
triangular lattice into a circular geometry. As the resistance, the number of
five/seven-fold coordinated vortices reaches a fluctuating steady value after
an initial transient. As the current overcomes I0, new dislocation pairs are
nucleated, mainly within the highly strained central region. Typically we
observe the reiterative formation of new dipoles that readily unbind and
glide along the direction of their Burgers vector, in most cases towards the
disk boundary. To accommodate the shear stress generated by the external
current, the crystal should nucleate dislocations that are able to glide either
radially or tangentially. Nevertheless, in the undistorted triangular lattice
(or when the concentration of free dislocations is low), the dislocations that
are nucleated are the most elementary (with Burgers vectors along the three
basic crystalline directions), and only those with b almost parallel to the
radial direction can easily glide over long distances due to the Peach-Koehler
forces involved.
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6 Depinning of Dislocation Systems

6.1 Isolated Dislocations

A dislocation interacting with a pinning center such as a solute atom, a
particle, or a forest dislocation, typically does not remain straight. Bending
a dislocation has an energy cost, which can be used to balance the pinning
energy due to the collective effect of a random collection of defects. In the
simplest picture, the dislocation can be treated as an elastic string with a line
tension Γ , but this can only be considered as an approximation for the long-
range self-stress of the dislocation. As an illustration, consider a prevalently
edge dislocation lying on the xy plane, with Burgers vector in the y direction,
and denote by (x(s), y(s), 0) its position as a function of the line coordinate
s. The relevant component of the self-stress of the dislocation is given by

σyz(x0, y0) =
µb

4π

∫

ds

[(
dy

ds

)
x0 − x(s)

(1 − ν)(r0 − r(s))3

−
(

dx

ds

)
y0 − y(s)

(r0 − r(s))3

]

. (6)

From this expression it is possible to compute the restoring force associated
with a deformation of the dislocation and estimate the related line tension. (6)
can be generalized to dislocations of any character and the result is reported
in [38].

If we consider only small deformations of an edge dislocation in the xy
plane with Burgers vector along y, the line can be parametrized by a single
valued function y = u(x). The restoring force on the deformed dislocation is
given by

fy(x) =
µb2

4π

∫

dx′
[(

du

dx

)
x − x′

(1 − ν)|x′ − x|3 − u(x) − u(x′)
(x − x′)3

]

, (7)

which is in the form of a linear interaction kernel of the type used in con-
ventional models of the depinning transition. It is convenient to express the
stress in Fourier space, and expand to lowest order in q

f̃y(q) ∝ q2 log(|q|a)ũ(q) , (8)

where a is a low scale cutoff, of the order of b. From this result, we see that the
line tension approximation is correct up to a logarithmic factor and we can
directly apply the critical exponents expected for the depinning transition
of a linear interface [39–43]. In particular, the average dislocation velocity
reaches a steady state value v, playing the role of the order parameter of the
transition, that scales with the distance from the depinning stress σc as

v ∼ (σ − σc)β , (9)
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where β is a critical exponent and v = 0 for σ < σc. The roughness exponent
ζ is usually defined from the displacement correlation function

〈(u(x) − u(0))2〉 ∼ |x|2ζ . (10)

The expected numerical values are β � 0.25 and ζ � 1 [39–41] as it is
confirmed by numerical simulations [44].

6.2 Pileup and Low Angle Grain Boundaries

Dislocation pileups and low angle grain boundaries (LAGB) display a quite
similar geometrical structure; they are both one-dimensional arrangements of
N dislocation lines with the same Burgers vector b and average line direction
ê (for edge dislocations ê ⊥ b) along a given direction of space d̂, but they
differ in the relative orientation of the Burgers vector and the arrangement
direction d̂. In particular, in a pileup a set of edge dislocations lies in the slip
plane, defined by the dislocations axis ê and the Burgers vector, so that d̂ ‖ b̂,
while in the LAGB the edge dislocations lie in the perpendicular plane such
that d̂ ⊥ b̂. Neglecting climb, i.e. the motion of a dislocation perpendicular
to its slip plane, deformations of the structure occur solely within the slip
plane both for the pileup and for the LAGB.

As in the case of isolated dislocations, the elastic stress associated with
small deformations of these dislocation assemblies is needed in order to derive
the yield stress from statistical pinning theories and to determine the critical
behavior. In the rigid dislocation approximation, we do not consider the de-
formations along the z axis so that each dislocation is described by a set of
coordinates (xn, yn), where yn = nD, D is the grain boundary spacing, and
where xn is a small displacement from the x = 0 plane. A direct calculations
of the self-stress using isotropic elasticity yields a Peach-Koehler force on the
dislocation in (xm, ym)

fx(xm, ym) = − µb2

2π(1 − ν)

+∞∑

n=−∞

xm − xn

(ym − yn)2
. (11)

In Fourier space the associated elastic energy reads as

E =
µb2

8π(1 − ν)D2

∫

BZ

dk

2π

(
2π|k| − Dk2

)
x̃(k)x̃(−k) . (12)

From this expression, one can see that the elastic interaction kernel (2π|k| −
Dk2) is not quadratic in the wavevector, as it would be the case for a local
elastic manifold with a constant tension or stiffness, but grows roughly as
|k| for long wavelength deformations. This is a consequence of long range
interactions between dislocations in the LAGB which render a much stiffer
structure. A similar result is found for a pileup and even beyond the rigid line
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approximation, when three dimensional deformations are explicitly included
[45].

The morphology and dynamics of a pileup or a LAGB result from a com-
plicated interplay between elasticity and disorder. Pileup and LAGB are an-
other examples of the general problem of the depinning of elastic manifolds
in random media [39–43]. In the elastic approximation, the dynamics of the
pileup or the LAGB follows

χ
∂u

∂t
=

∫

ddx′K(x − x′)(u(x′) − u(x)) + bσ + η(x, u) , (13)

where χ is a damping constant, σ is the applied stress, η(x, u) describes
the effect of the pinning centers and the elastic interaction kernel scales as
|k| in Fourier space. This is similar to the problems of contact line [46],
and planar crack depinning [47, 48]. We can thus directly apply to our case
the results obtained for a manifold with long-range elastic energy [49]. The
renormalization group analysis predicts that dc = 3 is the upper critical
dimension, above which fluctuations are suppressed. Thus for d > dc there is
no roughening (i.e. ζ = 0) and the other exponents can be computed in the
mean-field approximation. These results are valid in the physically interesting
dimension d = 3 apart from additional logarithmic corrections.

6.3 Zener Pinning in Grain Growth

From an experimental viewpoint, grain boundary pinning is important since
the mobility of grain boundaries may be a limiting factor in grain growth [50].
Grain growth is driven by a reduction in energy: For an average grain size
R and straight grain boundaries, the characteristic energy stored per unit
volume in the form of GB dislocations is of the order of Γ0/R and, hence,
the energy gain achieved by increasing the grain size by dR is (Γ0/R2) dR.

Physically, the removal of GB dislocations occurs through the motion
of junction points in the GB network. As junction points must drag the
connecting GB with them, which may be pinned by disorder, motion can
only occur if the energy gain at least matches the dissipative work which has
to be done against the pinning forces. The dissipative work per unit volume
expended in moving all GB by dR is σcb/(DR)dR, and balancing against the
energy gain yields the limit grain size

Rl ≈
Γ0D

σcb
≈ µb

σc
. (14)

According to this relation, the grain size is inversely proportional to the
pinning stress. This gives a possibility to experimentally assess the nature of
the pinning by “tuning” the pinning stress and measuring the grain size as a
function of the tuning parameters.

An obvious method to tune the pinning stress is to modify the concentra-
tion of the pinning centers and to measure the impact that this has on grain
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Fig. 3. The average grain size of a vortex polycrystal as a function of the magnetic
induction on a sample of NbMo (data from [55]). In this case b is the lattice spacing
and Hc2 the second critical field of the type II superconductor. The full line is
obtained assuming strong pinning and non-local elasticity, while the dotted line is
derived under the hypothesis of local elasticity, that is, neglecting the long range
nature of the LAGB self-stress The dashed line was first derived in [55] assuming
that the average grain size could be approximated by the Larkin length of the
vortex lattice

size. However, this requires the comparison of results from different samples
and experimental results reported in the literature are inconclusive [51, 52].
We therefore refer to a quite different and unusual type of grain growth ex-
periment where the configuration of the pinning obstacles is kept constant
but the properties of the lattice are changed.

This type of grain growth experiment may be carried out on vortex lattices
of type-II superconductors in which quasi two-dimensional grain structures
are observed in vortex polycrystals. In such a system an external magnetic
field penetrates the sample in the form of flux lines that are disposed in a
triangular lattice. Its elastic properties (namely the lattice spacing b and the
elastic moduli) depend on the magnetic field itself. Details on the theory of
grain growth in vortex polycrystals are given elsewhere [53, 54]. Here we re-
port the result obtained in the presence of strong pinning due to columnar
defects (screw dislocations of the underlying crystalline lattice). As seen from
Fig. 3 the agreement with Bitter decoration data from [55] is quite satisfac-
tory, especially if compared to the estimate obtained from a local elasticity
assumption.
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7 Conclusions

The plastic flow in crystalline solids display complex features that are well
captured by dislocation dynamics models. Simulations suggest a possible in-
terpretation of dislocation motion within the general jamming scenario that
is currently being investigated to ascertain the non-equilibrium behavior of
this wide class of materials. In presence of solute atoms, dislocation flow and
plastic yielding represent instead a vivid example of the depinning transition
of elastic manifolds.

Dislocation dynamics models appear to be particularly well suited to de-
scribe plastic flow and dislocation-induced phase transitions in vortex lattices
in type II superconductors. We have shown that, in response to an injected
current in the superconductor, the resistance exhibits sharp jumps indicat-
ing the onset of two different regimes of plastic flow in the superconduct-
ing Corbino disk. The first is mediated by dislocation motion, mainly along
the radial direction, whereas the second is mediated by the coherent glide
motion of radial grain-boundaries. We have also described the formation of
grain boundaries and vortex polycrystals in thin superconducting films with
quenched disorder. In this case, we can apply concepts and ideas borrowed
from the theory of interface depinning.
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